
 1999 Microchip Technology Inc. DS00711A

Embedded Control Handbook
Update 2000

00711a.book Page i Thursday, March 2, 2000 8:05 AM

00711a.book Page ii Thursday, March 2, 2000 8:05 AM
“All rights reserved. Copyright © 1999, Microchip Technology
Incorporated, USA. Information contained in this publication
regarding device applications and the like is intended through
suggestion only and may be superseded by updates. No rep-
resentation or warranty is given and no liability is assumed by
Microchip Technology Incorporated with respect to the accu-
racy or use of such information, or infringement of patents or
other intellectual property rights arising from such use or oth-
erwise. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any intellectual property rights.
The Microchip logo and name are registered trademarks of
Microchip Technology Inc. in the U.S.A. and other countries.
All rights reserved. All other trademarks mentioned herein are
the property of their respective companies. No licenses are
conveyed, implicitly or otherwise, under any intellectual prop-
erty rights.”
DS00711A - page ii
Trademarks

The Microchip name, logo, KEELOQ, PIC, PICMASTER,
PICmicro, PRO MATE, PICSTART, MPLAB, and SEEVAL are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

Total Endurance, In-Circuit Serial Programming (ICSP),
microID, FilterLab are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 1999, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
 1999 Microchip Technology Inc.

00711a.book Page iii Thursday, March 2, 2000 8:05 AM
TO OUR VALUED CUSTOMERS:

Welcome to the Embedded Control Handbook (ECHB) Update 2000. The ECHB Update 2000 is the third in the
series of application-orientated publications from Microchip Technology Inc. It includes all new application notes, tech-
nical briefs and reference designs which have been written and published since the Embedded Control Handbook,
Volumes 1 and 2 were released.

Embedded Control Handbook (ECHB) - Volume 1. The ECHB - Volume 1 is the first ‘Volume’ in our library system of
PICmicro® 8-Bit microcontroller, Nonvolatile Memory, Secure Data Products, and other product application notes, tech-
nical briefs, and reference designs. Volume 1 replaces the 1994/1995 ECHB (released in September 1994) and 1995/
1996 ECHB Update I (released in September 1995).

Embedded Control Handbook (ECHB) - Volume 2 Math Library. This book is the second ‘Volume’ in our library sys-
tem of product application notes. Volume 2 contains a compilation of fixed-point, floating-point and trigonometry func-
tion application notes to help designers use the PICmicro® microcontroller library functions in a C program.

Microchip will continue publishing application notes, technical briefs and reference designs in a series of supplemental
handbooks called ‘Updates’. Updates will be published annually, providing an uninterrupted flow of current application
notes, technical briefs and reference designs for our customers’ convenience and use. These Updates, with revised
and new documents, will be incorporated into future Volumes as appropriate.

And of course, as individual application notes become available, they will be posted to our web site for download at:
www.microchip.com.

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of
your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publi-
cations will be refined and enhanced as new Volumes and Updates are introduced. We welcome your feedback.

If you have any questions or comments regarding this publication, please contact the Marketing Communications
Department via fax at 480.917.4150.
 1999 Microchip Technology Inc. DS00711A-page iii

00711a.book Page iv Thursday, March 2, 2000 8:05 AM
DS00711A-page iv 1999 Microchip Technology Inc.

PAGE

Table of Contents

00711a.book Page v Thursday, March 2, 2000 8:05 AM
UPDATE 2000 SUBJECT INDEX... ix

VOLUME 1 APPLICATION NOTES - ALPHABETICAL .. xiii

VOLUME 2 APPLICATION NOTES - ALPHABETICAL .. xvi

VOLUME 1 APPLICATION NOTES - NUMERICAL ... xvii

VOLUME 2 APPLICATION NOTES - NUMERICAL ... xx

SECTION 1 COMPANY PROFILE

Company Profile.. 1-1

SECTION 2 PICmicro® 8-BIT MICROCONTROLLER APPLICATION NOTES
AND TECHNICAL BRIEFS

Engineer’s Assistant Using a PIC16F84A - AN689... 2-1
Make a Delta-Sigma Converter Using a Microcontroller’s Analog Comparator Module - AN700 2-53
Switch Mode Battery Eliminator Based on a PIC16C72A - AN701 ... 2-61
RS-232 Autobaud for the PIC16C5X Devices - AN712... 2-81
Measure Tilt Using PIC16F84A & ADXL202 - AN715... 2-97
Migrating Designs from PIC16C74A/74B to PIC18C442 - AN716 .. 2-131
Brush-DC Servomotor Implementation using PIC17C756A - AN718.. 2-143
System Design Considerations for Implementing a ROM Microcontroller - AN721 2-173
Using PICmicro® MCUs to Connect to Internet via PPP - AN724... 2-177
PIC17CXXX to PIC18CXXX Migration - AN726.. 2-205
How to Implement ICSP™ Using PIC16CXXX OTP MCUs - TB013 .. 2-241
How to Implement ICSP™ Using PIC17CXXX OTP MCUs - TB015 .. 2-247
How to Implement ICSP™ Using PIC16F8X FLASH MCUs - TB016 ... 2-253
How to Implement ICSP™ Using PIC12C5XX OTP MCUs - TB017... 2-257
PIC12C67X Emulation Using PIC16C72 PICMASTER® Emulator Probe - TB020....................................... 2-265
Downloading HEX Files to External FLASH Memory

Using PIC17CXXX PICmicro® Microcontrollers - TB024 ... 2-273
Downloading HEX Files to PIC16F87X PICmicro® Microcontrollers - TB025... 2-281
Calculating Program Memory Checksums Using a PIC16F87X - TB026 ... 2-289
Simplifying External Memory Connections of PIC17CXXX PICmicro® Microcontrollers - TB027................. 2-295
Technique to Calculate Day of Week - TB028 ... 2-301
Complementary LED Drive - TB029.. 2-311
Using the PIC16F877 To Develop Code For PIC16CXXX Devices - TB033 .. 2-315

SECTION 3 SECURE DATA PRODUCT APPLICATION NOTES
AND TECHNICAL BRIEFS

Designing a Transponder Coil for the HCS410 - AN650... 3-1
PICmicro® Mid-Range MCU Code Hopping Decoder - AN672... 3-11
HCS410 Transponder Decoder Using a PIC16C56 - AN675.. 3-23
Designing a Base Station Coil for the HCS410 - AN677... 3-39
Wireless Home Security Implementing KEELOQ® and the PICmicro® Microcontroller - AN714 3-47
A Guide to Designing for EuroHomelink® Compatibility - TB021 .. 3-121
 1999 Microchip Technology Inc. DS00711A-page v

PAGE

Table of Contents (continued)

00711a.book Page vi Thursday, March 2, 2000 8:05 AM
SECTION 4 ANALOG/INTERFACE PRODUCT APPLICATION NOTES
AND TECHNICAL BRIEFS

Temperature Sensing Technologies - AN679 ... 4-1
Using Single Supply Operational Amplifiers in Embedded Systems - AN682... 4-11
Single Supply Temperature Sensing with Thermocouples - AN684 ... 4-19
Thermistors in Single Supply Temperature Sensing Circuits - AN685.. 4-35
Understanding and Using Supervisory Circuits - AN686... 4-45
Precision Temperature Sensing with RTD Circuits - AN687... 4-49
Layout Tips for 12-Bit A/D Converter Application - AN688.. 4-53
Anti-Aliasing, Analog Filters for Data Acquisition Systems - AN699 ... 4-59
Interfacing Microchip MCP3201 A/D Converter to 8051-Based Microcontroller - AN702 4-69
Using the MCP320X 12-Bit Serial A/D Converter with Microchip PICmicro® Devices - AN703...................... 4-81
Interfacing Microchip’s MCP3201 Analog/Digital (A/D) Converter to

MC68HC11E9-Based Microcontroller - AN704 .. 4-103
Controller Area Network (CAN) Basics - AN713 ... 4-113
Building a 10-bit Bridge Sensing Circuit using the PIC16C6XX and

MCP601 Operational Amplifier - AN717... 4-121
Interfacing Microchip’s MCP3201 Analog-to-Digital Converter to the

PICmicro® Microcontroller - AN719 ... 4-129
Operational Amplifier Topologies and DC Specifications - AN722.. 4-149

SECTION 5 NON-VOLATILE MEMORY APPLICATION NOTES
AND TECHNICAL BRIEFS

Interfacing a Microchip PIC16C92x to Microchip SPI™ Serial EEPROMs - AN668 ... 5-1
Converting from 93LC56/56B/66/66B Devices to 93LC56A/56B/66A/66B Devices - AN671 5-7
Solving Second Sourcing Issues with the 24LC00 Device in a SOT-23 Package - AN674 5-9
Physical Slot Identification Techniques for the 24LCS61/62 - AN676... 5-11
How to Use the 24LCS61/62 Software Addressable Serial EEPROM - AN683.. 5-17
I2C™ Memory Autodetect - AN690 ... 5-25
Microchip 93 Series Serial EEPROM Compatibility - AN698 .. 5-39
System Level Design Considerations When Using I2C™ Serial EEPROM Devices - AN709 5-43
SPI™ 25XX080/160 Mode 1,1 Write Operation - TB012 .. 5-45
Operational Differences Between 24LCS21 and 24LCS21A - TB014 .. 5-47

SECTION 6 RFID APPLICATION NOTES
AND TECHNICAL BRIEFS

RFID Coil Design - AN678 .. 6-1
Passive RFID Basics - AN680... 6-19
MCRF 355/360 Applications - AN707 ... 6-25
Antenna Circuit Design - AN710 ... 6-31
Optimizing Read-Range of the 13.56 MHz Demonstration Reader - AN725 .. 6-51
Contactless Programmer Interface Protocol - TB019.. 6-53
Contact Programming Support - TB023.. 6-57
Microchip Development Kit Sample Format - TB031 .. 6-59
MCRF355/360 Factory Programming Support (SQTPSM) - TB032 .. 6-61
DS00711A-page vi 1999 Microchip Technology Inc.

PAGE

Table of Contents (continued)

00711a.book Page vii Thursday, March 2, 2000 8:05 AM
SECTION 7 REFERENCE DESIGNS

Uninterruptible Power Supply Reference Design - PICREF-1 .. 7-1
Intelligent Battery Charger Reference Design - PICREF-2 ... 7-3
Watt-Hour Meter Reference Design - PICREF-3 .. 7-5
PICDIM Lamp Dimmer for the PIC12C508 - PICREF-4.. 7-7
13.56 MHz Reader Reference Design - microID™ 13.56 MHz Design Guide.. 7-9
FSK Reader Reference Design - microID™ 125 kHz Design Guide .. 7-11
PSK Reader Reference Design - microID™ 125 kHz Design Guide .. 7-13
ASK Reader Reference Design - microID™ 125 kHz Design Guide .. 7-15
FSK Anticollision Reader Reference Design - microID™ 125 kHz Design Guide .. 7-17

SECTION 8 DEVELOPMENT SYSTEMS

System Support Development Tools Selection Chart .. 8-1
On-Line Support Microchip Internet Connections ... 8-15
MPLAB® Integrated Development Environment ... 8-17
MPASM Universal PICmicro® Microcontroller Assembler Software 8-19
MPLAB®-ICD In-Circuit Debugger .. 8-21
MPLAB®-ICE In-Circuit Emulator ... 8-23
MPLAB®-SIM Software Simulator... 8-25
MPLAB®-C17 ANSI-Compliant C Compiler for PIC17CXXX Microcontrollers............................ 8-27
MPLAB®-C18 ANSI-Compliant C Compiler for PIC18CXXX Microcontrollers............................ 8-29
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator .. 8-31
PRO MATE® II Universal Microchip Device Programmer... 8-33
PICSTART® Plus Low-cost Development Kit Supports All PICmicro® MCUs 8-35
KEELOQ® Evaluation Kit ... 8-37
KEELOQ® Transponder Evaluation Kit.. 8-39
PICDEM-1 Low-Cost PICmicro® Demonstration Board ... 8-41
PICDEM-2 Low-Cost PIC16CXX Demonstration Board .. 8-43
PICDEM-3 Low-Cost PIC16C9XX Demonstration Board .. 8-45
PICDEM-17 PICmicro® Demonstration Board ... 8-47
MCP2510 CAN Development Kit .. 8-49
microID™ Programmer Kit .. 8-51
microID™ 125 kHz microID Developer’s Kit ... 8-53
microID™ 125 kHz Anticollision microID Developer’s Kit ... 8-55
microID™ 13.56 MHz Anticollision microID Developer’s Kit ... 8-57
FilterLab™ Active Filter Software Design Tool ... 8-59
SEEVAL® Designer’s Kit Microchip Serial EEPROM Designer’s Kit.. 8-61
Total Endurance™ Microchip Serial EEPROM Endurance Model.. 8-63

WORLDWIDE SALES AND SERVICE...8-67
 1999 Microchip Technology Inc. DS00711A-page vii

PAGE

00711a.book Page viii Thursday, March 2, 2000 8:05 AM
DS00711A-page viii 1999 Microchip Technology Inc.

Update 2000 Subject Index

00711a.book Page ix Thursday, March 2, 2000 8:05 AM
The following is an alphabetical subject index for the application notes, technical briefs and reference designs that are
ONLY available in the Embedded Control Handbook Update 2000. For complete listings of other application notes, tech-
nical briefs and reference designs available, please refer to “Volume 1 Application Notes” on page xiii, and “Volume 2
Application Notes” on page xvi directly following the subject index.

Miscellaneous
12-bit ADC:

AN704 .. 4-103
AN719 .. 4-129

16F87X: TB033 .. 2-315
24LC00: AN674 ... 5-9
24LCS21: TB014 ... 5-47
24LCS21A: TB014 ... 5-47
24LCS61/62:

AN676 .. 5-11
AN683 .. 5-17

24LCS61:
AN676 .. 5-11
AN683 .. 5-17

24LCS62:
AN676 .. 5-11
AN683 .. 5-17

8051 Interface: AN702 ... 4-69
93 Series Compatability:

AN671 .. 5-7
AN698 .. 5-39

93LC56/56B/66/66B: AN671 5-7
93LC56A/56B/66A/66B: AN671 5-7
93XX46: AN698 ... 5-39
93XX56: AN698 ... 5-39
93XX66: AN698 ... 5-39

A
Accelerometer: AN715 ... 2-97
Analog-to-Digital (A/D) Converter:

AN684 .. 4-19
AN685 .. 4-35
AN687 .. 4-49
AN688 .. 4-53
AN699 .. 4-59
AN700 .. 2-53
AN702 .. 4-69
AN703 .. 4-81
AN704 .. 4-103
AN716 .. 2-131
AN719 .. 4-129

Antenna:
AN678 .. 6-1
AN680 .. 6-19
AN707 .. 6-25
AN710 .. 6-31
AN725 .. 6-51

TB019 ... 6-53
TB023 ... 6-57
TB031 ... 6-59
TB032 ... 6-61

Anti-Aliasing filter: AN699 4-59
Anticollision:

AN678 .. 6-1
AN680 .. 6-19
AN707 .. 6-25
AN710 .. 6-31
AN725 .. 6-51
TB019 ... 6-53
TB023 ... 6-57
TB031 ... 6-59
TB032 ... 6-61

Autobaud Detector: AN712 2-81
Autodetect: AN690 ... 5-25
Automotive: AN713 .. 4-113

B
Battery Charging: PICREF-2 7-3
Battery Eliminator: AN701 2-61
Battery:

AN714 .. 3-47
PICREF-2 ... 7-3

Baud Rate Detection: AN712 2-81
Boot Loader Program:

TB025 ... 2-281
TB027 ... 2-295

Bridge Sensor: AN717 4-121
Brown-out detect (BOD): AN686 4-45
Buck Converter: PICREF-2 7-3

C
Calendar: TB028 .. 2-301
CAN: AN713 .. 4-113
Checksums:

TB026 ... 2-289
Code Development: TB033 2-315
Code Hopping:

Decoders, see KEELOQ® 3-1
Compatability: AN726 .. 2-205
Conversion: AN726 .. 2-205
 1999 Microchip Technology Inc. DS00711A-page ix

Update 2000 Subject Index (continued)

00711a.book Page x Thursday, March 2, 2000 8:05 AM
D
Day-of-Week: TB028 ... 2-301
DC Motor: AN718 .. 2-143
Decoders:

Code Hopping, see KEELOQ® 3-1
KEELOQ®, see KEELOQ® 3-1

Delta-Sigma Converter: AN700 2-53
Design Considerations: AN709 5-43
Difference Amplifier: AN682 4-11
Differences: AN726 .. 2-205
Downloader Program:

TB024 ... 2-273
TB025 ... 2-281

E
Emulator: TB020 .. 2-265
Energy: PICREF-3 ... 7-5
Engineer’s Assistant: AN689 2-1
Enhancements: AN726 2-205
EPROM: AN721 ... 2-173
EuroHomelink: see KEELOQ® 3-121
External Memory:

TB024 ... 2-273
TB027 ... 2-295

F
Filter:

Analog:
AN682 ... 4-11
AN699 ... 4-59

FilterLab™: AN699 .. 4-59
FLASH Memory:

TB016 ... 2-253
TB024 ... 2-273
TB025 ... 2-281
TB026 ... 2-289
TB027 ... 2-295
TB033 ... 2-315

Frames: AN713 .. 4-113
Frequency Counter: AN689 2-1

H
HCS515: AN714 .. 3-47
Hex Files:

TB024 ... 2-273
TB025 ... 2-281

How to use I2C: AN709 .. 5-43

I
I/O Multiplexing: TB029 2-311
I2C:

AN674 .. 5-9
AN676 .. 5-11

AN683 .. 5-17
AN690 .. 5-25
AN709 .. 5-43
AN716 .. 2-131
TB014 ... 5-47

ICEPIC - PIC16CXXX In-Circuit Emulator 8-31
ICSP:

TB013 ... 2-241
TB015 ... 2-247
TB016 ... 2-253
TB017 ... 2-257

In-Circuit Debugger: TB033 2-315
In-Circuit Serial Programming (ICSP):

TB013 ... 2-241
TB015 ... 2-247
TB016 ... 2-253
TB017 ... 2-257

Industrial: AN713 ... 4-113
Instrument: AN689 ... 2-1
Instrumentation Amplifier: AN682 4-11
Internet: AN724 .. 2-177
Inverter: PICREF-1 .. 7-1

K
KEELOQ® Evaluation Kit 8-37
KEELOQ® Transponder Evaluation Kit 8-39
KEELOQ®:

Decoder, Midrange: AN672 3-11
Decoder, transponder: AN675 3-23
EuroHomelink: TB021 3-121
Wireless Home Security: AN714 3-47

Keypad: AN714 .. 3-47

L
LCD Display:

AN689 .. 2-1
AN714 .. 3-47

LED Drive: TB029 .. 2-311
Lighting: PICREF-4 .. 7-7
Logic Analyzer: AN689 .. 2-1
Low Pass Filter: AN699 4-59

M
MC68HC11: AN704 ... 4-103
MCP130:

AN704 .. 4-103
AN719 .. 4-129

MCP2510 - CAN Development Kit 8-49
MCP320x: AN703 .. 4-81
Memory Autodetect: AN690 5-25
Microcontroller (MCU):

AN721 .. 2-173
AN724 .. 2-177
DS00711A-page x 1999 Microchip Technology Inc.

Update 2000 Subject Index (continued)

00711a.book Page xi Thursday, March 2, 2000 8:05 AM
microID™ 125 kHz Anticollision Developer’s Kit . 8-55
microID™ 125 kHz Design Guide:

ASK Reader Reference Design 7-15
FSK Anticollision Reader Reference Design 7-17
FSK Reader Reference Design 7-11
PSK Reader Reference Design 7-13

microID™ 125 kHz Developer’s Kit 8-53
microID™ 13.56 MHz Design Guide:

13.56 MHz Reader Reference Design 7-9
microID™ Programmer Kit 8-51
Migration:

AN716 .. 2-131
AN726 .. 2-205

Mode 1,1: TB012 ... 5-45
MPLAB® ... 8-17
MPLAB®-C17 ... 8-27
MPLAB®-C18 ... 8-29
MPLAB®-ICD ... 8-21
MPLAB®-ICE ... 8-23
MPLAB®-SIM ... 8-25

N
Noise:

AN688 .. 4-53
AN717 .. 4-121

O
On-Line Support .. 8-15
Operational Amplifier:

AN682 .. 4-11
AN684 .. 4-19
AN685 .. 4-35
AN687 .. 4-49
AN699 .. 4-59
AN717 .. 4-121
AN722 .. 4-149

OTP Memory:
AN721 .. 2-173
TB013 ... 2-241
TB015 ... 2-247
TB017 ... 2-257

P
PCB Layout: AN688 ... 4-53
Photo Detector Pre-Amp: AN682 4-11
PIC12C508: PICREF-4 .. 7-7
PIC12C508A: AN714 ... 3-47
PIC12C5XX:TB017 .. 2-257
PIC12C67X: TB020 ... 2-265
PIC16C62A: AN703 ... 4-81
PIC16C67: AN719 ... 4-129
PIC16C74A/74B: AN716 2-131
PIC16C77: AN714 ... 3-47

PIC16C7X: PICREF-2 .. 7-3
PIC16C924: AN668 ... 5-1
PIC16C92X:

AN668 .. 5-1
PICREF-3 ... 7-5

PIC16CF87X: TB026 ... 2-289
PIC16CXXX:

TB013 ... 2-241
PIC16F84: AN715 .. 2-97
PIC16F87X:

TB016 ... 2-253
TB025 ... 2-281

PIC17C43: PICREF-1 .. 7-1
PIC17C4X:TB015 .. 2-247
PIC17C756: AN718 ... 2-143
PIC17C75X:TB015 .. 2-247
PIC17CXXX:

AN726 .. 2-205
TB015 ... 2-247
TB024 ... 2-273
TB027 ... 2-295

PIC18C442: AN716 ... 2-131
PIC18CXXX:

AN726 .. 2-205
PICDEM-1 .. 8-41
PICDEM-17 .. 8-47
PICDEM-2 .. 8-43
PICDEM-2: AN719 ... 4-129
PICDEM-3 .. 8-45
PICMASTER®: TB020 2-265
PICmicro®: AN724 ... 2-177
PICSTART® Plus ... 8-35
PID Algorithm: AN718 .. 2-143
Plug and Play:

AN676 .. 5-11
AN683 .. 5-17

Power on reset (POR): AN686 4-45
Power Supply: PICREF-1 7-1
Power: PICREF-3 .. 7-5
PPP: AN724 ... 2-177
PRO MATE® II ... 8-33
Program Memory:

TB026 ... 2-289
Protocol: AN713 ... 4-113
Pulse Width Modulation:

AN701 .. 2-61
AN718 .. 2-143

R
Read Range:

AN678 .. 6-1
AN680 .. 6-19
AN707 .. 6-25
 1999 Microchip Technology Inc. DS00711A-page xi

Update 2000 Subject Index (continued)

00711a.book Page xii Thursday, March 2, 2000 8:05 AM
AN710 .. 6-31
AN725 .. 6-51
TB019 ... 6-53
TB023 ... 6-57
TB031 ... 6-59
TB032 ... 6-61

Remote Keyless Entry (RKE): AN714 3-47
RFID Applications:

AN678 .. 6-1
AN680 .. 6-19
AN707 .. 6-25
AN710 .. 6-31
AN725 .. 6-51
TB019 ... 6-53
TB023 ... 6-57
TB031 ... 6-59
TB032 ... 6-61

ROM: AN721 ... 2-173
RTD:

AN679 .. 4-1
AN687 .. 4-49

S
Security: see KEELOQ® and Wireless 3-47
Sensor: AN715 .. 2-97
Serial Communication: AN712 2-81
Serial EEPROM:

Software Addressable:
AN676 ... 5-11
AN683 ... 5-17

TB014 ... 5-47
Servomotor: AN718 ... 2-143
Sigma-Delta Converter: AN700 2-53
SOT-23: AN674 ... 5-9
SPI:

AN668 .. 5-1
AN700 .. 4-103
TB012 ... 5-45

Supervisory Circuit: AN686 4-45
Switchmode Power Supply: AN701 2-61
System Support ... 8-1

T
Tag:

AN678 .. 6-1
AN680 .. 6-19
AN707 .. 6-25
AN710 .. 6-31
AN725 .. 6-51
TB019 ... 6-53
TB023 ... 6-57
TB031 ... 6-59
TB032 ... 6-61

Temperature Sensing:
AN679 .. 4-1
AN684 .. 4-19
AN685 .. 4-35
AN687 .. 4-49

Thermistor:
AN679 .. 4-1
AN685 .. 4-35

Thermocouple:
AN679 .. 4-1
AN684 .. 4-19

Tilt Measurement: AN715 2-97
Transponder:

Coil Design, base station: AN677 3-39
Coil Design, HCS410: AN650 3-1
Decoder: AN675 ... 3-23

Triac Control: PICREF-4 .. 7-7

U
UPS: PICREF-1 ... 7-1
Utility Meter: PICREF-3 .. 7-5

V
VESA: TB014 ... 5-47
Vibration: AN715 .. 2-97
Voltage Regulator: AN701 2-61

W
Watt: PICREF-3 ... 7-5
Wireless Security: AN714 3-47

Z
Zero Crossing Detect: PICREF-4 7-7
DS00711A-page xii 1999 Microchip Technology Inc.

Volume 1 Application Notes - Alphabetical

00711a.book Page xiii Thursday, March 2, 2000 8:05 AM
The following is an alphabetical list of application notes, technical briefs and reference designs that are available in the
Microchip Technology Inc. Embedded Control Handbook, Volume 1. Please see your local Microchip Sales Represen-
tative, Distributor or Sales Office for the latest copy (order number DS00092).
PAGE
1.8 Volt Technology – Benefits ... AN550 7-67
24C01A Compatibility Issue and Its Mobility for Memory Upgrade ... AN517................. 7-11
A PC-Based Development Programmer for the PIC16C84 .. AN589............... 3-237
A Clock Design Using the PIC16C54 for LED Displays and Switch Inputs................................... AN590 2-197
A Comparison of 8-Bit Microcontrollers... AN520................. 2-69
A Real-Time Operating System for PIC16/17 ... AN585 5-105
Adaptive Differential Pulse Code Modulation using PIC16/17 Microcontrollers............................ AN643............... 3-451
Adding a Simple 4-channel 8-bit A/D to a PIC17C4X ..TB010 9-33
Air Flow Control Using Fuzzy Logic .. AN600 3-319
An Introduction to KEELOQ® Code Hopping ...TB003 9-7
Analog to Digital Conversion Using a PIC16C54... AN513 2-47
Apple® Desktop Bus (ADB).. AN591............... 3-243
Automatic Calibration of the WDT Time-out Period ...TB004 9-17
Basic Serial EEPROM Operation... AN536................. 7-45
Clock Design Using Low Power/Cost Techniques .. AN615 5-199
Code Development for the PIC16C52.. AN641............... 2-235
Code Hopping Decoder Using a PIC16C56.. AN661 6-19
Code Hopping Decoder Using Secure Learn.. AN662 6-33
Communicating with the I2C™ Bus Using the PIC16C5X ... AN515 7-1
Continuous Improvement .. AN603 8-27
Converting NTQ104/105/106 Designs to HCS200/300s... AN644 6-1
Converting to 24LCXXB and 93LCXX Serial EEPROMs.. AN608 7-183
D/A Conversion Using PWM and R-2R Ladders to Generate Sine and DTMF Waveforms AN655 2-237
Decoding Infrared Remote Controls Using a PIC16C5X Microcontroller AN657 2-255
Digital Signal Processing with the PIC16C74 .. AN616 3-373
EEPROM Endurance Tutorial ... AN601 7-177
Four Channel Digital Voltmeter with Display and Keyboard ... AN557 3-121
Frequency and Resolution Options for PWM Outputs .. AN539 4-145
Frequency Counter Using PIC16C5X ... AN592 2-209
How to get 10 Million Cycles Out of Your Microchip Serial EEPROM .. AN602 7-181
Implementation of an Asynchronous Serial I/O... AN510 2-1
Implementation of Fast Fourier Transforms.. AN542 4-177
Implementation of the Data Encryption Standard Using PIC17C42.. AN583 4-311
Implementing a Simple Serial Mouse Controller ... AN519 2-57
Implementing a Table Read.. AN556 5-95
Implementing IIR Digital Filters ... AN540 4-157
Implementing Long Calls .. AN581 2-171
Implementing Ohmmeter/Temperature Sensor... AN512 2-41
Implementing Table Read and Table Write... AN548 4-295
Implementing Ultrasonic Ranging ... AN597 3-301
Implementing Wake-up on Key Stroke.. AN528 2-89
Implementing Wake-up on Key Stroke.. AN552................. 3-21
Improving the Susceptibility of an Application to ESD .. AN595 8-1
In-Circuit Serial Programming of Calibration Parameters Using a PIC16CXXX AN656............... 3-535
Intelligent Battery Charger Reference Design Based on PIC16C7X .. RD002 10-3
Intelligent Remote Positioner (Motor Control) ... AN531 2-121
 1999 Microchip Technology Inc. DS00711A-page xiii

PAGE

Volume 1 Application Notes - Alphabetical (continued)

00711a.book Page xiv Thursday, March 2, 2000 8:05 AM
Interfacing 93CX6 Serial EEPROMs to PIC16C5X Microcontrollers .. AN530 7-13
Interfacing Microchip PIC16C54 to Microchip SPI™ Serial EEPROMs... AN648 7-235
Interfacing Microchip PIC16C64/74 to Microchip SPI™ Serial EEPROMs.................................. AN647 7-231
Interfacing Microchip Serial EEPROMs to Motorola® 68HC11 Microcontroller AN609 7-185
Interfacing Motorola 68HC11 to Microchip SPI™ Serial EEPROMs... AN646 7-225
Interfacing the 24LCXXB Serial EEPROMs to the PIC16C54 .. AN567 7-145
Interfacing the 8051 with 2-wire Serial EEPROMs.. AN614 7-213
Interfacing the 93XX76 and 93XX86 to a PIC16C5X.. AN619 7-223
Interfacing to AC Power Lines .. AN521 2-79
Interfacing to an LCD Module ... AN587 3-205
LCD Fundamentals Using PIC16C92X Microcontrollers... AN658............... 3-557
Lead-Acid Battery Charger Implementation Using PIC14C000 .. AN626 3-421
Logic Powered Serial EEPROMs.. AN535 7-35
Low Power Design Using PIC16/17.. AN606 5-161
Low-Power Real-Time Clock... AN582 3-181
Macros for Page and Bank Switching ... AN586 2-175
Math Utility Routines ... AN544 4-209
Modifying PIC16C54A Code for the PIC16C58A.. AN618 2-227
Multiplexing LED Drive and a 4x4 Keypad Sampling.. AN529 2-95
Optimizing Serial Bus Operations with Proper Write Cycle Times.. AN559 7-117
PIC14C000 A/D Theory and Implementation.. AN624 3-411
PIC14C000 Calibration Parameters.. AN621 3-405
PIC16/17 Oscillator Design Guide .. AN588 5-143
PIC16C54A EMI Results... AN577 2-165
PIC16C57 Based Code Hopping Security System ... AN645 6-7
PIC16C5X / PIC16CXXX Math Utility Routines .. AN526 5-1
Plastic Packaging and the Effects of Surface Mount Soldering Techniques................................. AN598 8-19
PLD Replacement ... AN511 2-19
Power-up Considerations.. AN522 2-81
Power-up Trouble Shooting .. AN607 5-177
PWM, a Software Solution for the PIC16CXXX ... AN654 3-523
Questions and Answers Concerning Serial EEPROMs .. AN572 7-173
Resistance and Capacitance Meter Using a PIC16C622 ... AN611 3-339
Saving and Restoring Status on Interrupt (Implementing a Parameter Stack) AN534 4-141
Secure Learning RKE Systems Using KEELOQ® Encoders ...TB001 9-1
Serial EEPROM Endurance .. AN537 7-59
Serial EEPROM Solutions vs. Parallel Solutions .. AN551 7-69
Serial Port Routines Without Using Timer0... AN593 2-221
Serial Port Utilities... AN547 4-283
Servo Control of a DC-Brush Motor .. AN532 4-1
Simple Code Hopping Decoder... AN663 6-49
Sine and DTMF Waveforms.. AN655 2-237
Smart Battery Charger with SMBus Interface ... AN667 3-579
Software Implementation of Asynchronous Serial I/O... AN555 3-85
Software Implementation of I2C Bus Master .. AN554 3-25
Software Interrupt Techniques .. AN514 2-53
Software Stack Management .. AN527 2-85
Techniques to Disable Global Interrupts ... AN576 5-99
Tone Generation ... AN543 4-199
Transformerless Power Supply ..TB008 9-31
Uninterruptible Power Supply Reference Design Based on PIC17C43.. RD001 10-1
Use of the SSP Module in the I2C Multi-Master Environment .. AN578 3-153
Using a PIC16C5X as a Smart I2C Peripheral ... AN541 2-135
DS00711A-page xiv 1999 Microchip Technology Inc.

PAGE

Volume 1 Application Notes - Alphabetical (continued)

00711a.book Page xv Thursday, March 2, 2000 8:05 AM
Using External RAM with PIC17CXX Devices ...TB005 9-23
Using KEELOQ to Generate Hopping Passwords .. AN665 6-63
Using Microchip 93 Series Serial EEPROMs with Microcontroller SPI™ Ports AN613 7-199
Using PIC16C5X Microcontrollers as LCD Drivers ... AN563 2-151
Using PWM to Generate Analog Output ... AN538 4-143
Using SRAM With A PIC16CXX...TB011 9-45
Using the 24LC21 Dual Mode Serial EEPROM .. AN610 7-193
Using the 24xx65 and 25xx32 with Stand-alone PIC16C54 Code.. AN558 7-73
Using the 8-Bit Parallel Slave Port .. AN579 3-169
Using the 93LC56 and 93LC66... AN560 7-121
Using the Analog-to-Digital (A/D) Converter ... AN546................... 3-1
Using the Capture Module .. AN545 4-259
Using the CCP Module(s) ... AN594 3-277
Using the Microchip Endurance Predictive Software .. AN562 7-141
Using the PORTB Interrupt on Change as an External Interrupt .. AN566 3-149
Using the PWM ... AN564 4-299
Using Timer1 in Asynchronous Clock Mode ... AN580 3-177
Watt-Hour Meter Reference Design Based on PIC16C924.. RD003 10-5
Yet Another Clock Featuring the PIC16C924 ... AN649............... 3-491
 1999 Microchip Technology Inc. DS00711A-page xv

Volume 2 Application Notes - Alphabetical

00711a.book Page xvi Thursday, March 2, 2000 8:05 AM
The following is an alphabetical list of application notes that are available in the Microchip Technology Inc. Embedded
Control Handbook, Volume 2, Math Library. Please see your local Microchip Sales Representative, Distributor or Sales
Office for the latest copy (order number DS00167).
PAGE
Embedding Assembly Routines into C Language Using A Floating Point Routine as an ExampleAN669.................. 5-1
Fixed Point Routines ... AN617................... 3-1
Floating Point Math Functions .. AN660................... 4-1
Floating Point to ASCII Conversion... AN670................... 6-1
IEEE 754 Compliant Floating Point Routines.. AN575................... 2-1
 1999 Microchip Technology Inc. DS00711A-page xvi

Volume 1 Application Notes – Numerical

00711a.book Page xvii Thursday, March 2, 2000 8:05 AM
The following is a numerical list of application notes, technical briefs and reference designs that are available in the Mi-
crochip Technology Inc. Embedded Control Handbook, Volume 1. Please see your local Microchip Sales Representa-
tive, Distributor or Sales Office for the latest copy (order number DS00092).
PAGE
AN510 Implementation of an Asynchronous Serial I/O .. 2-1
AN511 PLD Replacement... 2-19
AN512 Implementing Ohmmeter/Temperature Sensor .. 2-41
AN513 Analog to Digital Conversion Using a PIC16C54.. 2-47
AN514 Software Interrupt Techniques.. 2-53
AN515 Communicating with the I2C™ Bus Using the PIC16C5X ... 7-1
AN517 24C01A Compatibility Issue and Its Mobility for Memory Upgrade... 7-11
AN519 Implementing a Simple Serial Mouse Controller... 2-57
AN520 A Comparison of 8-Bit Microcontrollers .. 2-69
AN521 Interfacing to AC Power Lines .. 2-79
AN522 Power-up Considerations ... 2-81
AN526 PIC16C5X / PIC16CXXX Math Utility Routines .. 5-1
AN527 Software Stack Management.. 2-85
AN528 Implementing Wake-up on Key Stroke ... 2-89
AN529 Multiplexing LED Drive and a 4x4 Keypad Sampling ... 2-95
AN530 Interfacing 93CX6 Serial EEPROMs to PIC16C5X Microcontrollers .. 7-13
AN531 Intelligent Remote Positioner (Motor Control)... 2-121
AN532 Servo Control of a DC-Brush Motor ... 4-1
AN534 Saving and Restoring Status on Interrupt (Implementing a Parameter Stack) 4-141
AN535 Logic Powered Serial EEPROMs ... 7-35
AN536 Basic Serial EEPROM Operation ... 7-45
AN537 Serial EEPROM Endurance.. 7-59
AN538 Using PWM to Generate Analog Output ... 4-143
AN539 Frequency and Resolution Options for PWM Outputs.. 4-145
AN540 Implementing IIR Digital Filters ... 4-157
AN541 Using a PIC16C5X as a Smart I2C Peripheral ... 2-135
AN542 Implementation of Fast Fourier Transforms.. 4-177
AN543 Tone Generation... 4-199
AN544 Math Utility Routines ... 4-209
AN545 Using the Capture Module .. 4-259
AN546 Using the Analog-to-Digital (A/D) Converter .. 3-1
AN547 Serial Port Utilities .. 4-283
AN548 Implementing Table Read and Table Write .. 4-295
AN550 1.8 Volt Technology – Benefits ... 7-67
AN551 Serial EEPROM Solutions vs. Parallel Solutions .. 7-69
AN552 Implementing Wake-up on Key Stroke .. 3-21
AN554 Software Implementation of I2C Bus Master.. 3-25
AN555 Software Implementation of Asynchronous Serial I/O .. 3-85
AN556 Implementing a Table Read.. 5-95
AN557 Four Channel Digital Voltmeter with Display and Keyboard ... 3-121
AN558 Using the 24xx65 and 25xx32 with Stand-alone PIC16C54 Code ... 7-73
AN559 Optimizing Serial Bus Operations with Proper Write Cycle Times.. 7-117
AN560 Using the 93LC56 and 93LC66 .. 7-121
AN562 Using the Microchip Endurance Predictive Software.. 7-141
AN563 Using PIC16C5X Microcontrollers as LCD Drivers ... 2-151
AN564 Using the PWM... 4-299
 1999 Microchip Technology Inc. DS00711A-page xvii

PAGE

Volume 1 Application Notes – Numerical (continued)

00711a.book Page xviii Thursday, March 2, 2000 8:05 AM
AN566 Using the PORTB Interrupt on Change as an External Interrupt .. 3-149
AN567 Interfacing the 24LCXXB Serial EEPROMs to the PIC16C54 .. 7-145
AN572 Questions and Answers Concerning Serial EEPROMs.. 7-173
AN576 Techniques to Disable Global Interrupts... 5-99
AN577 PIC16C54A EMI Results .. 2-165
AN578 Use of the SSP Module in the I2C Multi-Master Environment.. 3-153
AN579 Using the 8-Bit Parallel Slave Port.. 3-169
AN580 Using Timer1 in Asynchronous Clock Mode... 3-177
AN581 Implementing Long Calls .. 2-171
AN582 Low-Power Real-Time Clock .. 3-181
AN583 Implementation of the Data Encryption Standard Using PIC17C42 ... 4-311
AN585 A Real-Time Operating System for PIC16/17... 5-105
AN586 Macros for Page and Bank Switching... 2-175
AN587 Interfacing to an LCD Module ... 3-205
AN588 PIC16/17 Oscillator Design Guide .. 5-143
AN589 A PC-Based Development Programmer for the PIC16C84 .. 3-237
AN590 A Clock Design Using the PIC16C54 for LED Displays and Switch Inputs 2-197
AN591 Apple® Desktop Bus (ADB).. 3-243
AN592 Frequency Counter Using PIC16C5X... 2-209
AN593 Serial Port Routines Without Using Timer0 .. 2-221
AN594 Using the CCP Module(s) ... 3-277
AN595 Improving the Susceptibility of an Application to ESD .. 8-1
AN597 Implementing Ultrasonic Ranging... 3-301
AN598 Plastic Packaging and the Effects of Surface Mount Soldering Techniques 8-19
AN600 Air Flow Control Using Fuzzy Logic.. 3-319
AN601 EEPROM Endurance Tutorial ... 7-177
AN602 How to get 10 Million Cycles Out of Your Microchip Serial EEPROM .. 7-181
AN603 Continuous Improvement.. 8-27
AN606 Low Power Design Using PIC16/17.. 5-161
AN607 Power-up Trouble Shooting .. 5-177
AN608 Converting to 24LCXXB and 93LCXX Serial EEPROMs.. 7-183
AN609 Interfacing Microchip Serial EEPROMs to Motorola® 68HC11 Microcontroller 7-185
AN610 Using the 24LC21 Dual Mode Serial EEPROM.. 7-193
AN611 Resistance and Capacitance Meter Using a PIC16C622 ... 3-339
AN613 Using Microchip 93 Series Serial EEPROMs with Microcontroller SPI™ Ports.............................. 7-199
AN614 Interfacing the 8051 with 2-wire Serial EEPROMs ... 7-213
AN615 Clock Design Using Low Power/Cost Techniques.. 5-199
AN616 Digital Signal Processing with the PIC16C74 ... 3-373
AN618 Modifying PIC16C54A Code for the PIC16C58A.. 2-227
AN619 Interfacing the 93XX76 and 93XX86 to a PIC16C5X ... 7-223
AN621 PIC14C000 Calibration Parameters ... 3-405
AN624 PIC14C000 A/D Theory and Implementation ... 3-411
AN626 Lead-Acid Battery Charger Implementation Using PIC14C000.. 3-421
AN641 Code Development for the PIC16C52 .. 2-235
AN643 Adaptive Differential Pulse Code Modulation using PIC16/17 Microcontrollers.............................. 3-451
AN644 Converting NTQ104/105/106 Designs to HCS200/300s .. 6-1
AN645 PIC16C57 Based Code Hopping Security System ... 6-7
AN646 Interfacing Motorola 68HC11 to Microchip SPI™ Serial EEPROMs... 7-225
AN647 Interfacing Microchip PIC16C64/74 to Microchip SPI™ Serial EEPROMs.................................... 7-231
AN648 Interfacing Microchip PIC16C54 to Microchip SPI™ Serial EEPROMs .. 7-235
AN649 Yet Another Clock Featuring the PIC16C924 ... 3-491
AN654 PWM, a Software Solution for the PIC16CXXX.. 3-523
AN655 D/A Conversion Using PWM and R-2R Ladders to Generate Sine and DTMF Waveforms 2-237
DS00711A-page xviii 1999 Microchip Technology Inc.

PAGE

Volume 1 Application Notes – Numerical (continued)

00711a.book Page xix Thursday, March 2, 2000 8:05 AM
AN656 In-Circuit Serial Programming of Calibration Parameters Using a PIC16CXXX............................. 3-535
AN657 Decoding Infrared Remote Controls Using a PIC16C5X Microcontroller.. 2-255
AN658 LCD Fundamentals Using PIC16C92X Microcontrollers .. 3-557
AN661 Code Hopping Decoder Using a PIC16C56 ... 6-19
AN662 Code Hopping Decoder Using Secure Learn ... 6-33
AN663 Simple Code Hopping Decoder .. 6-49
AN665 Using KEELOQ to Generate Hopping Passwords .. 6-63
AN667 Smart Battery Charger with SMBus Interface... 3-579
RD001 Uninterruptible Power Supply Reference Design Based on PIC17C43.. 10-1
RD002 Intelligent Battery Charger Reference Design Based on PIC16C7X .. 10-3
RD003 Watt-Hour Meter Reference Design Based on PIC16C924.. 10-5
TB001 Secure Learning RKE Systems Using KEELOQ® Encoders .. 9-1
TB003 An Introduction to KEELOQ® Code Hopping.. 9-7
TB004 Automatic Calibration of the WDT Time-out Period.. 9-17
TB005 Using External RAM with PIC17CXX Devices .. 9-23
TB008 Transformerless Power Supply... 9-31
TB010 Adding a Simple 4-channel 8-bit A/D to a PIC17C4X... 9-33
TB011 Using SRAM With A PIC16CXXX... 9-45
 1999 Microchip Technology Inc. DS00711A-page xix

Volume 2 Application Notes – Numerical

00711a.book Page xx Thursday, March 2, 2000 8:05 AM
The following is a numerical list of application notes that are available in the Microchip Technology Inc. Embedded Con-
trol Handbook, Volume 2, Math Library. Please see your local Microchip Sales Representative, Distributor or Sales Of-
fice for the latest copy (order number DS00167).
PAGE
AN575 IEEE 754 Compliant Floating Point Routines ... 2-1
AN617 Fixed Point Routines... 3-1
AN660 Floating Point Math Functions .. 4-1
AN669 Embedding Assembly Routines into C Language Using A Floating Point Routine as an Example.... 5-1
AN670 Floating Point to ASCII Conversion .. 6-1
 1999 Microchip Technology Inc. DS00711A-page xx

SECTION 1
MICROCHIP TECHNOLOGY INC.

COMPANY PROFILE

C
o

m
p

an
y P

ro
file

1

S1.book Page i Thursday, March 2, 2000 8:03 AM
Company Profile..1-1
 1999 Microchip Technology Inc. DS00711A-page 1-i

S1.book Page ii Thursday, March 2, 2000 8:03 AM
DS00711A-page 1-ii 1999 Microchip Technology Inc.

Company Profile

Microchip Technology Inc. C
o

m
p

an
y P

ro
file

1

S1.book Page 1 Thursday, March 2, 2000 8:03 AM
The Embedded Control Solutions Company

Since its inception, Microchip Technology has focused
its resources on delivering innovative semiconductor
products to the global embedded control marketplace.
To do this, we have focused our technology,
engineering, manufacturing and marketing resources
on synergistic product lines: PICmicro® 8-bit
microcontrollers (MCUs), high-endurance Serial
EEPROMs, an expanding product portfolio of analog/
interface products, RFID tags and KEELOQ® security
devices – all aimed at delivering comprehensive,
high-value embedded control solutions to a growing
base of customers.

Inside Microchip Technology you will find:

• An experienced executive team focused on
innovation and committed to listening to our
customers

• A focus on providing high-performance,
cost-effective embedded control solutions

• Fully integrated manufacturing capabilities

• A global network of manufacturing and customer
support facilities

• A unique corporate culture dedicated to
continuous improvement

• Distributor network support worldwide including
certified distribution FAEs
 1999 Microchip Technology Inc.

Chandler, Arizona: Company headquarters near
Phoenix, Arizona; executive offices, R&D and wafer
fabrication occupy this 242,000-square-foot multi-building
campus.
• A Complete Product Solution including:

- 8-bit RISC OTP, FLASH, EEPROM and ROM
MCUs

- A full family of advanced analog 8-bit MCUs

- KEELOQ security devices featuring patented
code hopping technology

- Stand-alone analog and interface products
plus microID™ RFID tagging devices

- A complete line of high-endurance Serial
EEPROMs

- World-class, easy-to-use development tools
- An Automotive Products Group to engage

with key automotive accounts and provide
necessary application expertise and
customer service

Business Scope

Microchip Technology Inc. designs, manufacturers and
markets a variety of CMOS semiconductor
components to support the market for cost-effective
embedded control solutions.

Microchip's products feature compact size, integrated
functionality, ease of development and technical
support so essential to timely and cost-effective
product development by our customers.
DS00027T-page 1-1

Tempe, Arizona: Microchip’s 200,000-square-foot wafer
fabrication facility provides increased manufacturing
capacity today and for the future.

Microchip Technology Inc.

S1.book Page 2 Thursday, March 2, 2000 8:03 AM
Market Focus

Microchip targets select markets where our advanced
designs, progressive process technology and
industry-leading product performance enables us to
deliver decidedly superior performance. Our Company
is positioned to provide a complete product solution for
embedded control applications found throughout the
consumer, automotive, telecommunication, office
automation and industrial control markets. Microchip
products are also meeting the unique design
requirements of targeted embedded applications
including internet, safety and security.

Certified Quality Systems

Microchip received QS-9000 Quality System
certification for its worldwide headquarters and wafer
fabrication facilities in September 1999. Microchip’s
quality system processes and procedures are QS-9000
compliant for all of the Company’s devices, including
PICmicro 8-bit MCUs, serial EEPROMs, KEELOQ code
hopping devices and microperipheral products.

QS-9000 was developed by Chrysler, Ford and
General Motors to establish fundamental quality
systems that provide for continuous improvement,
emphasizing defect prevention and the reduction of
variation and waste in the supply chain. Microchip was
audited by QS-9000 registrar Det Norske Veritas
Certification Inc. of Houston, the same firm which
granted Microchip its ISO 9001 Quality System
certification in 1997.

QS-9000 certification recognizes Microchip’s quality
systems conform to the stringent standards set forth by
the automotive industry, benefiting all customers.

Fully Integrated Manufacturing

Microchip delivers fast turnaround and consistent
quality through total control over all phases of
production. Research and development, design, mask
making, wafer fabrication, and the major part of
assembly and quality assurance testing are conducted
at facilities wholly-owned and operated by Microchip.
Our integrated approach to manufacturing along with
rigorous use of advanced Statistical Process Control
(SPC) and a continuous improvement culture has
resulted in high and consistent yields which have
positioned Microchip as a quality leader in its global
markets. Microchip’s unique approach to SPC provides
customers with excellent pricing, quality, reliability and
on-time delivery.
DS00027T-page 1-2
A Global Network of Plants and Facilities

Microchip is a global competitor providing local
services to the world’s technology centers. The
Company’s design and technology advancement
facilities, and wafer fabrication sites are located in
Chandler and Tempe, Arizona.

The Tempe facility provides an additional 200,000
square feet of manufacturing space that meets the
increased production requirements of a growing
customer base, and provides production capacity
which more than doubles that of Chandler.

Microchip facilities in Bangkok, Thailand, and
Shanghai, China, serve as the foundation of
Microchip’s extensive assembly and test capability
located throughout Asia. The use of multiple
fabrication, assembly and test sites, with more than
640,000-square-feet of facilities worldwide, ensures
Microchip’s ability to meet the increased production
requirements of a fast growing customer base.

Microchip supports its global customer base from direct
sales and engineering offices in Asia, North America,
Europe and Japan. Offices are staffed to meet the high
quality expectations of our customers, and can be
accessed for technical and business support. The
Company also franchises more than 60 distributors and
a network of technical manufacturer’s representatives
serving 24 countries worldwide.

Bangkok, Thailand: Microchip’s 200,000-square-foot
manufacturing facility houses the technology and
assembly/test equipment for high speed testing and
packaging.
 1999 Microchip Technology Inc.

Microchip Technology Inc.
C

o
m

p
an

y P
ro

file

1

S1.book Page 3 Thursday, March 2, 2000 8:03 AM
Embedded Control Overview

Unlike “processor” applications such as personal
computers and workstations, the computing or
controlling elements of embedded control applications
are embedded inside the application. The consumer is
only concerned with the very top-level user interface
such as keypads, displays and high-level commands.
Very rarely does an end-user know (or care to know)
the embedded controller inside (unlike the
conscientious PC users, who are intimately familiar not
only with the processor type, but also its clock speed,
DMA capabilities and so on).

It is, however, most vital for designers of embedded
control products to select the most suitable controller
and companion devices. Embedded control products
are found in all market segments: consumer,
commercial, PC peripherals, telecommunications,
automotive and industrial. Most embedded control
products must meet special requirements: cost
effectiveness, low-power, small-footprint and a high
level of system integration.

Typically, most embedded control systems are
designed around a MCU which integrates on-chip
program memory, data memory (RAM) and various
peripheral functions, such as timers and serial
communication. In addition, these systems usually
require complementary Serial EEPROM,
analog/interface devices, display drivers, keypads or
small displays.

Microchip has established itself as a leading supplier of
embedded control solutions. The combination of
high-performance PIC12CXXX, PIC16C5X,
PIC16CXXX, PIC17CXXX and PIC18CXXX MCU
families with Migratable Memory™ technology, along
with non-volatile memory products, provide the basis
for this leadership. By further expanding our product
portfolio to provide precision analog and interface
products, Microchip is committed to continuous
innovation and improvement in design, manufacturing
and technical support to provide the best possible
embedded control solutions to you.

PICmicro MCU Overview and Roadmap

Microchip PICmicro MCUs combine high-performance,
low-cost, and small package size, offering the best
price/performance ratio in the industry. More than 900
million of these devices have shipped to customers
worldwide since 1990. Microchip offers five families of
8-bit MCUs to best fit your application needs:

• PIC12CXXX 8-pin 12-bit/14-bit program word

• PIC16C5X 12-bit program word

• PIC16CXXX 14-bit program word
• PIC17CXXX 16-bit program word

• PIC18CXXX enhanced 16-bit program word

All families offer OTP, low-voltage and low-power
options, with a variety of package options. Selected
members are available in ROM, EEPROM or
reprogrammable FLASH versions.
 1999 Microchip Technology Inc.
PIC12CXXX: 8-Pin, 8-Bit Family
The PIC12CXXX family packs Microchip’s powerful
RISC-based PICmicro architecture into 8-pin DIP and
SOIC packages. These PIC12CXXX products are
available with either a 12-bit or 14-bit wide instruction
set, a low operating voltage of 2.5V, small package
footprints, interrupt handling, a deeper hardware stack,
multiple channels and EEPROM data memory. All of
these features provide an intelligence level not
previously available in applications because of cost or
size considerations.

PIC16C5X: 12-Bit Architecture Family
The PIC16C5X is the well-established base-line family
that offers the most cost-effective solution. These
PIC16C5X products have a 12-bit wide instruction set
and are currently offered in 14-, 18-, 20- and 28-pin
packages. In the SOIC and SSOP packaging options,
these devices are among the smallest footprint MCUs
in the industry. Low-voltage operation, down to 2.0V for
OTP MCUs, makes this family ideal for battery
operated applications. Additionally, the PIC16HV5XX
can operate up to 15 volts for use directly with a battery.

PIC16CXXX: 14-Bit Architecture Family
With the introduction of new PIC16CXXX family
members, Microchip now provides the industry’s
highest performance Analog-to-Digital Converter
capability at 12-bits for an 8-bit MCU. The PIC16CXXX
family offers a wide-range of options, from 18- to 68-pin
packages as well as low to high levels of peripheral
integration. This family has a 14-bit wide instruction set,
interrupt handling capability and a deep, 8-level
hardware stack. The PIC16CXXX family provides the
performance and versatility to meet the more
demanding requirements of today’s cost-sensitive
marketplace for mid-range 8-bit applications.

PIC17CXXX: 16-Bit Architecture Family
The PIC17CXXX family offers the world’s fastest
execution performance of any 8-bit MCU family in the
industry. The PIC17CXXX family extends the PICmicro
MCU’s high-performance RISC architecture with a
16-bit instruction word, enhanced instruction set and
powerful vectored interrupt handling capabilities. A
powerful array of precise on-chip peripheral features
provides the performance for the most demanding 8-bit
applications.

PIC18CXXX: 16-Bit Enhanced Architecture Family
The PIC18CXXX is a family of high performance,
CMOS, fully static, 16-bit MCUs with integrated
analog-to-digital (A/D) converter. All PIC18CXXX
MCUs incorporate an advanced RISC architecture.
The PIC18CXXX has enhanced core features, 32
level-deep stack, and multiple internal and external
interrupts sources. The separate instruction and data
busses of the Harvard architecture allow a 16-bit wide
instruction word with the separate 8-bit wide data. The
two-stage instruction pipeline allows all instructions to
execute in a single cycle, except for program branches,
which require two cycles. A total of 77 instructions
(reduced instruction set) are available. Additionally, a
large register set gives some of the architectural
DS00027T-page 1-3

Microchip Technology Inc.

S1.book Page 4 Thursday, March 2, 2000 8:03 AM
innovations used to achieve a very high performance of
10MIPS for an 8-bit MCU. The PIC18CXXX family has
special features to reduce external components, thus
reducing cost, enhancing system reliability and
reducing power consumption. These include
programmable Low Voltage Detect (LVD) and
programmable Brown-Out Detect (BOD).

The Mechatronics Revolution

We are living through a revolutionary period that is
impacting almost every aspect of our lives. The nature
of the revolution is the momentous shift from
analog/electro-mechanical timing and control to digital
electronics. It is called the Mechatronics Revolution,
and it is being staged in companies throughout the
world, with design engineers right on the front lines:
make it smarter, make it smaller, make it do more,
make it cost less to manufacture – and make it snappy.

To meet the needs of this growing customer base,
Microchip is rapidly expanding its already broad line of
8-bit PICmicro MCUs. The PIC12CXXX family’s size
opens up new possibilities for product design.

PICmicro MCU Naming Convention

The PICmicro architecture offers users a wider range of
cost/performance options than any 8-bit MCU family. In
order to identify the families, the following naming
conventions have been applied to the PICmicro MCUs:
DS00027T-page 1-4 1999 Microchip Technology Inc.

TABLE 1: PICmicro MCU NAMING CONVENTION*

*Please check with your local Microchip distributor, sales representative or sales office for the latest product information.

Family Architectural Features Name Technology

P
IC

18
C

X
X

X

8-bit Higher-
Performance
MCU Family

• 10 MIPS @ 40 MHz
• 4x PLL clock
• 16-bit wide instruction set
• C compiler efficient

instruction set
• Internal/external vec-

tored interrupts

PIC18Cxx2 OTP program memory with higher resolution analog functions

P
IC

17
C

X
X

X

8-bit
High-Performance

MCU Family

• 16-bit wide instruction set

• Internal/external vectored
interrupts

• DC - 33 MHz clock speed

• 120 ns instruction cycle
(@ 33 MHz)

• Hardware multiply

PIC17C4X OTP program memory, digital only
PIC17CR4X ROM program memory, digital only
PIC17C7XX OTP program memory with mixed-signal functions

P
IC

16
C

X
X

X

8-bit
Mid-Range
MCU Family

• 14-bit wide instruction set

• Internal/external interrupts

• DC - 20 MHz clock speed
(Note 1)

• 200 ns instruction cycle
(@ 20 MHz)

PIC14CXXX OTP program memory with A/D and D/A functions
PIC16C55X OTP program memory, digital only
PIC16C6X OTP program memory, digital only

PIC16CR6X ROM program memory, digital only
PIC16C62X OTP program memory with comparators

PIC16CR62X ROM program memory with comparators
PIC16CE62X OTP program memory with comparators and EEPROM data

memory
PIC16F62X FLASH program memory with comparators and EEPROM data

memory
PIC16C64X OTP program memory with comparators
PIC16C66X OTP program memory with comparators
PIC16C7X OTP program memory with analog functions (i.e. A/D)

PIC16CR7X ROM program memory with analog functions
PIC16C7XX OTP program memory with higher resolution analog functions
PIC16F8X FLASH program memory and EEPROM data memory

PIC16CR8X ROM program memory and EEPROM data memory
PIC16F87X FLASH program memory with higher resolution analog functions
PIC16C9XX OTP program memory, LCD driver

P
IC

16
C

5X

8-bit
Base-Line

MCU Family

• 12-bit wide instruction set

• DC - 20 MHz clock speed

• 200 ns instruction cycle
(@ 20 MHz)

PIC16C5X OTP program memory, digital only
PIC16CR5X ROM program memory, digital only
PIC16C505 OTP program memory, digital only, internal 4MHz oscillator

PIC16HV540 OTP program memory with high voltage operation

P
IC

12
C

X
X

X

8-bit, 8-pin
MCU Family

• 12- or 14-bit wide
instruction set

• DC - 10 MHz clock speed

• 400 ns instruction cycle
(@ 10 MHz)

• Internal 4MHz oscillator

PIC12C5XX OTP program memory, digital only
PIC12CE5XX OTP program memory, digital only with EEPROM data memory
PIC12CR5XX ROM program memory, digital only
PIC12C67X OTP program memory with analog functions

PIC12CE67X OTP program memory with analog functions and EEPROM data
memory

Note 1: The maximum clock speed for some devices is less than 20 MHz.

Microchip Technology Inc.
C

o
m

p
an

y P
ro

file

1

S1.book Page 5 Thursday, March 2, 2000 8:03 AM
Development Systems

Microchip is committed to providing useful and
innovative solutions to your embedded system
designs. Our installed base of application development
systems has grown to an impressive 150,000 systems
worldwide.

Among support products offered are MPLAB™-ICE
2000 In-Circuit Emulator running under the Windows

environment. This new real-time emulator supports
low-voltage emulation, to 2.0 volts, and full-speed
emulation. MPLAB, a complete Integrated Development
Environment (IDE), is provided with MPLAB-ICE 2000.
MPLAB allows the user to edit, compile and emulate
from a single user interface, making the developer
productive very quickly. MPLAB-ICE 2000 is designed to
provide product development engineers with an
optimized design tool for developing target applications.
This universal in-circuit emulator provides a complete
MCU design toolset for PICmicro MCUs in the
PIC12CXXX, PIC16C5X, PIC16CXXX, PIC17CXXX
and PIC18CXXX families. MPLAB-ICE 2000 is CE
compliant.

Microchip’s newest development tool, MPLAB In-Circuit
Debugger (ICD) Evaluation Kit, uses the in-circuit
debugging capabilities of the PIC16F87X MCU family
and Microchip’s ICSP™ capability to debug source code
in the application, debug hardware in real time and
program a target PIC16F87X device.
 1999 Microchip Technology Inc.
PRO MATE II, the full-featured, modular device
programmer, enables you to quickly and easily program
user software into PICmicro MCUs, HCS products and
Serial EEPROMs. PRO MATE II runs under MPLAB IDE
and operates as a stand-alone unit or in conjunction with
a PC-compatible host system.

The PICSTART Plus development kit, is a low-cost
development system for the PIC12CXXX, PIC16C5X,
PIC16CXXX and PIC17CXXX MCUs.

PICDEM low-cost demonstration boards are simple
boards which demonstrate the basic capabilities of the
full range of Microchip’s MCUs. Users can program the
sample MCUs provided with PICDEM boards, on a
PRO MATE II or PICSTART Plus programmer, and
easily test firmware. KEELOQ Evaluation Tools support
Microchip’s HCS Secure Data Products.

The Serial EEPROM Designer’s Kit includes
everything necessary to read, write, erase or program
special features of any Microchip Serial EEPROMs.
The Total Endurance Disk is included to aid in
trade-off analysis and reliability calculations. The total
kit can significantly reduce time-to-market and result in
an optimized system.
TABLE 2: PICmicro SYNERGISTIC DEVELOPMENT TOOLS
Development Tool Name PIC12CXXX PIC16C5X PIC16CXXX PIC16F87X PIC17CXXX PIC18CXXX

Integrated Development
Environment (IDE) MPLAB ✔ ✔ ✔ — ✔ ✔

C Compiler MPLAB-C17 — — — — ✔

C Compiler MPLAB-C18 — — — — — ✔

Full-Featured, Modular
In-Circuit Emulator MPLAB-ICE 2000 ✔ ✔ ✔ — ✔ ✔

In-Circuit Debugger
Evaluation Kit MPLAB-ICD — — — ✔ — —

Full-Featured, Modular
Device Programmer PRO MATE II ✔ ✔ ✔ — ✔ ✔

Entry-Level Development Kit
with Programmer PICSTART Plus ✔ ✔ ✔ — ✔ ✔
DS00027T-page 1-5

Microchip Technology Inc.

S1.book Page 6 Thursday, March 2, 2000 8:03 AM
Software Support

MPLAB Integrated Development Environment (IDE) is
a Windows-based development platform for
Microchip’s PICmicro MCUs. MPLAB IDE offers a
project manager and program text editor, a
user-configurable toolbar containing four pre-defined
sets and a status bar which communicates editing and
debugging information.

MPLAB-IDE is the common user interface for Microchip
development systems tools including MPLAB Editor,
MPASM Assembler, MPLAB-SIM Software Simulator,
MPLIB, MPLINK, MPLAB-C17 Compiler, MPLAB-C18
Compiler, MPLAB-ICE 2000, PRO MATE II
Programmer and PICSTART Plus Development
Programmer.

Microchip endeavors at all times to provide the best
service and responsiveness possible to its customers.
The Microchip Internet site can provide you with the
latest technical information, production released
software for development tools, application notes and
promotional news on Microchip products and
technology. The Microchip World Wide Web address is
http://www.microchip.com.

Secure Data Products Overview

Microchip’s patented KEELOQ® code hopping
technology is the perfect solution for remote keyless
entry and logical/physical access control systems. The
initial device in the family, HCS300 encoder, replaces
current fixed code encoders in transmitter applications
providing a low cost, integrated solution. The KEELOQ

family is continuing to expand with the HCS301 (high
voltage encoder), HCS200 (low-end, low-cost
encoder), and high-end encoders (HCS360 and
HCS361) that meet OEM specifications and
requirements. The HCS410, a self-powered
transponder superset of the HCS360, is the initial
device in a new and expanding encoder/transponder
family.

Microchip provides flexible decoder solutions by
providing optimized routines for Microchip’s PICmicro
MCUs. This allows the designer to combine the
decoder and system functionality in a MCU. The
decoder routines are available under a license
agreement. The HCS500, HCS512 and HCS515 are
the first decoder devices in the KEELOQ family. These
devices are single chip decoder solutions and simplify
designs by handling learning and decoding of
transmitters.

The KEELOQ product family is expanding to include
enhanced encoders and decoders. Typical applications
include automotive RKE, alarm and immobilizer
systems, garage door openers and home security
systems.
DS00027T-page 1-6
*Contact Microchip Technology Inc. for availability.

Analog/Interface Products

Using its technology achievements in developing
analog circuity for its PICmicro MCU family, the
Company launched a complementary line of
stand-alone analog and interface products. Many of
these stand-alone devices support functionality that
may not currently available on PICmicro MCUs.
Stand-alone analog IC products currently offered
include:

• Analog-to-Digital Converters

• Operational Amplifiers

• System Supervisors

Microchip also offers innovative silicon products to
support a variety of bus interfaces used to transmit data
to and from embedded control systems. The first
interface products support Controller Area Network
(CAN), a bus protocol highly integrated into a variety of
networked applications including automotive.

High-Performance 12-Bit Analog-to-Digital
Converters

The MCP320X 12-bit analog-to-digital converter (ADC)
family is based on a successive approximation register
architecture. The first four members include:
MCP3201, MCP3202, MCP3204 and MCP3208. The
MCP320X family features 100K samples per second
throughput, low power of 400 microamps active and
500 nanoamps standby, wide supply voltage of 2.7-5.5
volts, extended industrial temperature range of –40º to
85º, +/- 1 LSB DNL and +/- 1 LSB INL max. at 100
ksps., guaranteed no missing codes, and a serial
output with an industry-standard SPI® bus interface.
The MCP320X is available in 1-, 2-, 4-, and 8-input
channel versions (the MCP3201, MPC3202, MCP3204
and MCP3208, respectively). The devices are offered

KEELOQ Encoder Devices

Product

Transmis-
sion Code

Length Bits

Code
Hopping

Bits

Prog.
Encryp-
tion Key

Bits
Seed

Length
Operating

Voltage

HCS101* 66 — — — 3.5V to 13.0V

HCS200 66 32 64 32 3.5V to 13.0V

HCS201* 66 32 64 32 3.5V to 13.0V

HCS300 66 32 64 32 2.0V to 6.3V

HCS301 66 32 64 32 3.5V to 13.0V

HCS320 66 32 64 32 3.5V to 13.0V

HCS360 67 32 64 48 2.0V to 6.6V

HCS361 67 32 64 48 2.0V to 6.6V

HCS365* 69 32 2 x 64 60 2.0V to 6.6V

HCS370* 69 32 2 x 64 60 2.0V to 6.6V

HCS410 69 32 64 60 2.0V to 6.6V

HCS412* 69 32 64 60 2.0V to 6.6V

HCS470* 69 32 2 x 64 60 2.0V to 6.6V

KEELOQ Decoder Devices

Product
Reception

Length Bits

Transmit-
ters Sup-

ported Functions
Operating

Voltage
HCS500 67 Up to 7 15 Serial Functions 4.5V to 5.5V

HCS512 67 Up to 4 15 (S0, S1, S2, S3);
VLOW, Serial 3.0V to 6.0V

HCS515 67 Up to 7 15 Serial; 3 Parallel 4.5V to 5.5V
 1999 Microchip Technology Inc.

Microchip Technology Inc.
C

o
m

p
an

y P
ro

file

1

S1.book Page 7 Thursday, March 2, 2000 8:03 AM
in PDIP, SOIC and TSSOP packages. Applications
include data acquisition, instrumentation and
measurement, multi-channel data loggers, industrial
PCs, motor control, robotics, industrial automation,
smart sensors, portable instrumentation, and home
medical appliances.

Controller Area Network (CAN)

Microchip is enhancing its product portfolio by
introducing the CAN Product Family. The MCP2510 is
the smallest, easiest-to-use, CAN controller on the
market today. Combining the MCP2510 with
Microchip’s broad range of high-performance PICmicro
MCUs enables Microchip to support for virtually all of
today’s CAN-based applications. Other potential
benefits of having a separate CAN controller include
the ability for system designers to select from a much
wider variety of MCUs for an optimal performance
solution.

Additional products planned for Microchip’s CAN
product portfolio include other CAN peripherals and a
family of PICmicro MCUs with integrated CAN support.
Future support for CAN bus applications includes a
family of PICmicro MCUs and additional CAN
peripheral devices.

Operational Amplifiers

The Microchip MCP60X Operational Amplifier family
includes four devices: MCP601, MCP602, MCP603
and MCP604. These devices are Microchip’s first 2.7
volt single supply operational amplifier products. The
MCP60X family offers a gain bandwidth product of
2.8MHz with low typical operating current of 230µA.
The MCP60X devices use Microchip's advanced
CMOS technology which provides low bias current,
high speed operation, high open-loop gain and
rail-to-rail output swing.

System Supervisors

Microchip offers a complete family of system
supervisor products. The new devices include the
MCP809/810 and MCP100/101 supervisory circuits
with push-pull output and the MCP120/130 supervisory
circuits with open drain output. The devices are
functionally and pin-out comparable to products from
other analog suppliers.

microID™ RFID Tagging Devices

Only Microchip manufactures world-class components
for every application in the radio frequency
identification (RFID) system. From the advanced,
feature-packed microID family of RFID tags and
high-endurance Serial EEPROMs to high performance
PICmicro MCUs and KEELOQ code hopping encoders -
Microchip’s full range of RFID solutions are available
for your tag, peripheral and reader application designs.

The microID family can emulate almost any standard
on the market today. It provides drop-in compatible
solutions to the most commonly used 125kHz and
 1999 Microchip Technology Inc.
13.56 MHz tags and an upgrade migration path for
virtually any application with higher performance and
new features.

Serial EEPROM Overview

Microchip offers one of the broadest selections of
CMOS Serial EEPROMs on the market for embedded
control systems. Serial EEPROMs are available in a
variety of densities, operating voltages, bus interface
protocols, operating temperature ranges and space
saving packages.

Densities:

Currently range from 128 bits to 256K bits with higher
density devices in development.

Bus Interface Protocols:

We offer all popular protocols: I2C™, Microwire and
SPI.

Operating Voltages:

In addition to standard 5V devices there are two low
voltage families. The “LC” devices operate down to
2.5V, while the breakthrough “AA” family operates, in
both read and write mode, down to 1.8V, making these
devices highly suitable for alkaline and NiCd battery
powered applications.

Temperature Ranges:

Like all Microchip devices, many Serial EEPROMs are
offered in Commercial (0°C to +70°C), Industrial (-40°C
to +85°C) and Extended (-40°C to +125°C) operating
temperature ranges.

Packages:

Small footprint packages include: industry standard
5-lead SOT-23, 8-lead DIP, 8-lead SOIC in JEDEC and
EIAJ body widths, and 14-lead SOIC. The SOIC comes
in two body widths; 150 mil and 207 mil.

Technology Leadership:

Selected Microchip Serial EEPROMs are backed by a
1 million Erase/Write cycle guarantee. Microchip's
erase/write cycle endurance is among the best in the
world, and only Microchip offers such unique and
powerful development tools as the Total Endurance disk.
This mathematical software model is an innovative tool
used by system designers to optimize Serial EEPROM
performance and reliability within the application.

Microchip offers Plug-and-Play to the DIMM module
market with the 24LCS52, a special function
single-chip EEPROM that is available in space saving
packages. For Plug-and-Play video monitor
applications, Microchip offers the 24LC21, a
single-chip DDC1™/DDC2-compatible solution. In
addition, Microchip released a high-speed 1 MHz
2-wire Serial EEPROM device ideal for
high-performance embedded systems.
DS00027T-page 1-7

Microchip Technology Inc.

S1.book Page 8 Thursday, March 2, 2000 8:03 AM
Microchip is a high-volume supplier of Serial
EEPROMs to all the major markets worldwide. The
Company continues to develop new Serial EEPROM
solutions for embedded control applications.

OTP EPROM Overview

Microchip’s CMOS EPROM devices are produced in
densities from 64K to 512K. Typical applications
include computer peripherals, instrumentation, and
automotive devices. Microchip’s expertise in surface
mount packaging on SOIC and TSOP packages led to
the development of the surface mount OTP EPROM
market where Microchip is a leading supplier today.
Microchip is also a leading supplier of low-voltage
EPROMs for battery powered applications.

MIGRATABLE MEMORY™
TECHNOLOGY

Microchip’s innovative Migratable Memory technology
(MMT) provides socket and software compatibility
among all of its equivalent ROM,
one-time-programmable (OTP) and FLASH memory
MCUs. MMT allows customers to match the selection
of MCU memory technology to the product life cycle of
their application, providing an easy migration path to a
lower cost solution whenever appropriate.

FLASH memory is an ideal solution for engineers
designing products for embedded systems – especially
during the development and early stages of the
product. In certain products and applications, FLASH
memory may be used for the life of the product
because of the advantages of field upgradability or
where product inventory flexibility is required.

Once the design enters the pre-production stage and
continues through introduction and growth stages,
OTP program memory provides maximum
programming flexibility and minimum inventory
scrappage. The OTP device is pin and socket
compatible with the FLASH device – providing a lower
cost, high-volume flexible solution.

As the design enters a mature stage and program code
stabilizes, a lower cost, socket compatible ROM
memory device could be used. In some cases, OTP
memory may still be used as the most cost-effective
memory technology for the product. Compatibility and
flexibility are key to the success of the PICmicro MCU
product family, and ultimately the success of our
customers.

FLEXIBLE PROGRAMMING OPTIONS

To meet the stringent design requirements placed on
our customers, the following innovative programming
options are offered. These programming options
address procurement issues by reducing and limiting
work-in-process liability and facilitating finished goods
code revisions. Microchip's worldwide distributors
DS00027T-page 1-8
stock reprogrammable and one-time programmable
inventory, allowing customers to respond to immediate
sales opportunities or accommodate engineering
changes off the shelf.

FLASH (electrically reprogrammable)

PICmicro FLASH MCUs allow erase and
reprogramming of the MCU program memory.
Reprogrammability offers a highly flexible solution to
today's ever-changing market demands – and can
substantially reduce time to market. Users can program
their systems very late in the manufacturing process or
update systems in the field. This allows easy code
revisions, system parameterization or
customer-specific options with no scrappage.
Reprogrammability also reduces the design verification
cycle.

One-Time Programmable (OTP)

PICmicro OTP MCUs are manufactured in high
volumes without customer specific software and can be
shipped immediately for custom programming. This is
useful for customers who need rapid time to market
and flexibility for frequent software updates.

In-Circuit Serial Programming™ (ICSP™)

Microchip's PICmicro FLASH and OTP MCUs feature
ICSP capability. ICSP allows the MCU to be
programmed after being placed in a circuit board,
offering tremendous flexibility, reduced development
time, increased manufacturing efficiency and improved
time to market. This popular technology also enables
reduced cost of field upgrades, system calibration
during manufacturing, the addition of unique
identification codes to the system and system
calibration. Requiring only two I/O pins for most
devices, Microchip offers the most non-intrusive
programming methodology in the industry.

Self Programming

Microchip's PIC16F87X family features self
programming capability. Self programming enables
remote upgrades to the FLASH program memory and
the end equipment through a variety of medium ranging
from Internet and Modem to RF and Infrared. To setup
for self programming, the designer programs a simple
boot loader algorithm in a code protected area of the
FLASH program memory. Through the selected
medium, a secure command allows entry into the
PIC16F87X MCU through the USART, I2C or SPI serial
communication ports. The boot loader is then enabled
to reprogram the PIC16F87X FLASH program memory
with data received over the desired medium. And, of
course, self programming is accomplished without the
need for external components and without limitations
on the PIC16F87X’s operating speed or voltage.

Quick-Turn Programming (QTP)
 1999 Microchip Technology Inc.

Microchip Technology Inc.
C

o
m

p
an

y P
ro

file

1

S1.book Page 9 Thursday, March 2, 2000 8:03 AM
Microchip offers a QTP programming service for
factory production orders. This service is ideal for
customers who choose not to program a medium to
high unit volume in their own factories, and whose
production code patterns have stabilized.

Serialized Quick-Turn Programming (SQTPSM)

SQTP is a unique, flexible programming option that
allows Microchip to program serialized, random or
pseudo-random numbers into each device. Serial
programming allows each device to have a unique
number which can serve as an entry-code, password or
ID number.

Masked ROM

Microchip offers Masked ROM versions of many of its
most popular PICmicro MCUs, giving customers the
lowest cost option for high volume products with stable
firmware.
 1999 Microchip Technology Inc.
Future Products and Technology

Microchip is constantly developing advanced process
technology modules and new products that utilize our
advanced manufacturing capabilities. Current
production technology utilizes lithography dimensions
down to 0.7 micron.

Microchip’s research and development activities
include exploring new process technologies and
products that have industry leadership potential.
Particular emphasis is placed on products that can be
put to work in high-performance broad-based markets.

Equipment is continually updated to bring the most
sophisticated process, CAD and testing tools online.
Cycle times for new technology development are
continuously reduced by using in-house mask
generation, a high-speed pilot line within the
manufacturing facility and continuously improving
methodologies.

Objective specifications for new products are
developed by listening to our customers and by close
co-operation with our many customer-partners
worldwide.
DS00027T-page 1-9

Microchip Technology Inc.

S1.book Page 10 Thursday, March 2, 2000 8:03 AM
NOTES:
DS00027T-page 1-10
 1999 Microchip Technology Inc.

SECTION 2
PICmicro® 8-BIT MICROCONTROLLER

APPLICATION NOTES
AND TECHNICAL BRIEFS P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page i Thursday, March 2, 2000 8:02 AM
Engineer’s Assistant Using a PIC16F84A - AN689...2-1
Make a Delta-Sigma Converter Using a Microcontroller’s Analog Comparator Module - AN7002-53
Switch Mode Battery Eliminator Based on a PIC16C72A - AN701 ...2-61
RS-232 Autobaud for the PIC16C5X Devices - AN712...2-81
Measure Tilt Using PIC16F84A & ADXL202 - AN715...2-97
Migrating Designs from PIC16C74A/74B to PIC18C442 - AN716 ..2-131
Brush-DC Servomotor Implementation using PIC17C756A - AN718..2-143
System Design Considerations for Implementing a ROM Microcontroller - AN7212-173
Using PICmicro® MCUs to Connect to Internet via PPP - AN724...2-177
PIC17CXXX to PIC18CXXX Migration - AN726..2-205
How to Implement ICSP™ Using PIC16CXXX OTP MCUs - TB013 ..2-241
How to Implement ICSP™ Using PIC17CXXX OTP MCUs - TB015 ..2-247
How to Implement ICSP™ Using PIC16F8X FLASH MCUs - TB016 ...2-253
How to Implement ICSP™ Using PIC12C5XX OTP MCUs - TB017...2-257
PIC12C67X Emulation Using PIC16C72 PICMASTER® Emulator Probe - TB020...............................2-265
Downloading HEX Files to External FLASH Memory

Using PIC17CXXX PICmicro® Microcontrollers - TB024...2-273
Downloading HEX Files to PIC16F87X PICmicro® Microcontrollers - TB025.......................................2-281
Calculating Program Memory Checksums Using a PIC16F87X - TB026 ...2-289
Simplifying External Memory Connections of PIC17CXXX PICmicro® Microcontrollers - TB027.........2-295
Technique to Calculate Day of Week - TB028 ...2-301
Complementary LED Drive - TB029..2-311
Using the PIC16F877 To Develop Code For PIC16CXXX Devices - TB033 ..2-315
 1999 Microchip Technology Inc. DS00711A-page 2-i

S2.book Page ii Thursday, March 2, 2000 8:02 AM
DS00711A-page 2-ii 1999 Microchip Technology Inc.

AN689
Engineer’s Assistant Using a PIC16F84A

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 1 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

This compact instrument is intended to be a digital lab-
oratory tool for hardware and, in some cases, software
debugging. It contains four instruments in one unit:
logic probe, single channel logic state analyzer, fre-
quency counter and serial code receiver.

The only chip used is a PIC16F84A running at 10 MHz.
The display unit is a LCD dot matrix alphanumeric mod-
ule with 2 rows of 20 characters. The LCD is used as
the display device for all functions, except for the logic
probe which indicates low, high and pulse logic states
on individual LEDs. Mode select, parameter change,
function execute and ON/OFF switching is activated by
two keys.

The probe tip is the common input for all functions, and
the GND cable is used for connection to Vss of the
tested circuit.

Although there are a lot of functions integrated in a sin-
gle chip unit, it did not increase the complexity of hard-
ware, as all functions are implemented in software. This
enables a very good price/performance ratio.

The power supply is obtained by four 1.2V/180 mAh or
250 mAh NiCd batteries of LR03 (AAA) size. The
instrument also has a battery manager, which supports
automatic battery discharging and charging.

The source code is written in MPASM. As it is highly
optimized for code space, most of the code could not
be written in a modular format. For the same reason, a
lot of subroutines have more than one entry point and
some of them are terminated by a GOTO instruction
instead of using a RETURN instruction.

Author: Voja Antonic
PC Press
 1900 Microchip Technology Inc.
FEATURES

• Stand-alone hand-held instrument

• Single chip design

• Built-in rechargeable power supply
• Easy to assemble and ready to use, no adjust-

ment needed
• User interface with LCD output and command

input by two keys
• TTL or 5V CMOS input, or direct input from

RS-232C +/-12V signals

SPECIFIC FEATURES FOR INDIVIDUAL
FUNCTIONS

Logic Probe

The low and high logic levels are displayed by LEDs,
which are OFF if the probe tip is floating or connected
to a hi-impedance (>220k) output. A pulse transition is
detected and is indicated by turning on the LED for
80 ms.

Logic State Analyzer

The analyzer fetches 300 single bit samples at a select-
able rate (in 16 steps from 40 Hz to 1 MHz). It has a
programmable start at High-to-Low or Low-to-High
transition at input. Digital waveforms are displayed in a
pseudographic mode on the LCD.

Serial Code Receiver

The Serial Code Receiver receives 42 bytes and dis-
plays them in both HEX and ASCII. The baud rate is
selectable in 8 steps, from 1200 to 115200. The select-
able format is 7 or 8 bits with or without a parity bit
which is not displayed. Signal polarity is also select-
able. Direct signal stealing from an RS-232 or an
RS-232C interface is possible.

Frequency Counter

The Frequency Counter counts frequency and displays
it in an 8-digit decimal format on the LCD with a refresh
rate of 500 ms. There are four ranges, from 5 to 40
MHz, which affect the count resolution (from 4 to 32).

Battery Manager

The Battery Manager provides for discharging with an
automatic switch that changes to charge mode at 4V
battery voltage, charging with 18 mA of constant cur-
rent and automatic power off after 14 hours. Any DC
source between 10V and 30V, at any polarity, can be
used for charging.
DS00689A-page 2-1

AN689

S2.book Page 2 Thursday, March 2, 2000 8:02 AM
SYSTEM FUNCTIONS

User Interface

There are four modes of operation: Analyzer, Serial
Code Receiver, Frequency Counter and Battery Man-
ager. The logic probe function is transparent in all
modes except in the Frequency Counter.

In all modes, submodes are listed in the lower row of
the LCD. The submodes list can be cycled through by
pressing the right key, which moves the cursor (blinking
block) to the right. The left key activates the selected
submode (executes a function or changes the parame-
ter state/value).

The right-most submode (right arrow symbol) acts as a
shortcut jump to the next mode. After power-on (by
pressing any key), a mode is chosen by pressing the
left key, then the submode by the right key, and then the
eventual parameter change or command execution by
the left key again. The only exception is the Logic Probe
function, the only action needed is to switch the instru-
ment on, and the logic probe is ready to use.

In Analyzer and Serial Code Receiver mode, the aster-
isk (*) is a special symbol for the "Start" command.
When executed (left key pressed while the cursor is on
asterisk), it causes the program to wait for a start con-
dition or a start bit.

Although there is a manual Switch Off command
(accessible in Battery mode), there is also the auto-
matic power off after approximately 8 minutes of inac-
tivity if no key is pressed. Note that the down counter
for automatic power-off is "frozen", while the instrument
is waiting for a start condition in analyzer mode and for
the start bit in serial code receiver mode. Of course, the
same applies to the discharging and charging pro-
cesses, as another conditions are used to define the
end of those processes.

Figure 1 represents the key functions diagram. The
dotted line represents actions taken when the right key
is pressed, and the solid line is for the left key. The cur-
sor, which is the blinking block on the LCD, is repre-
sented as a solid block in Figure 1, but it is moved down
on the drawing for clarity.

A variable (named REL) in the assembler source code,
defines the position of the cursor on the LCD. If it is a
’1’ (default), the cursor will be placed on the first char-
acter of the command (or parameter). If it is a ’0’, the
code will be assembled so that the cursor will be moved
to the preceding location (if it exists) before the com-
mand.
DS00689A-page 2-2 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 3 Thursday, March 2, 2000 8:02 AM
FIGURE 1: HIGH LEVEL FUNCTION FLOWCHART

2
group
8-14

Analyzer
01MHz/01ms

1MHz/1ms
500kHz/2ms
228kHz/4.4ms
100kHz/10ms
50kHz/20ms
38.4kHz/26ms
25kHz/40ms
19.2kHz/52ms
10kHz/100ms
9.6kHz/104ms
4.8kHz/208ms
2.4kHz/417ms
1kHz/1ms
400Hz/2.5ms
100Hz/10ms
40Hz/25ms

1200

2400

4800

9600

19200

38400

57600

115200

7 7-bit
word

8 8-bit
word

7p 7-bits
+parity

8p 8-bits
+parity

1
group
1-7

3
group
15-21

4
group
22-28

5
group
29-35

6
group
36-42

range 5 MHz/resolution 4

range 10 MHz/resolution 8

range 20 MHz/resolution 16

range 40 MHz/resolution 32

I.. * 1 → br
ea

k

....iiiiiiii...iii.........iiiiiii......iiiiiii.....iiiiiiii

waiting
for
starting
condition

Display

1 group
1-60

2 group
61-120

3 group
121-180

4 group
181-240

start on
falling
edge

br
ea

k

break break

Charge
14 Hours

Discharge
to 4V

Power
Off

Battery
Off Disch Charge

Frequency counter
range

Frequency 12345678
20MHz/R16 →

Serial

Start

19.2 8 * 1 →

Display

Baud rate
select

start on
rising
edge

Sample rate

Starting
condition

Start

01MHz / 01ms I.. * 1 →

41 42 01 1F F3 34 A6

AB s4& 19.2 8 * 1 →

receive
42
bytes

→
00:00

5 group
241-300

iii......iiiiiii.....iiiiiiiiiiiiiiii...iii.........iiiiiiiii
 ^125 ^140 ^155 ^170

LCD output example while key 1 is depressed in
Display Group submode (group 3, samples 121-180)

iiiiiii.................iii.........iii........iiiiiii......
01MHz / 01ms I.. * 4 →

LCD output example while key 1 is released
(group 4, samples 181-240)

i7 7-bit
inverse

i8 8-bit
inverse

i7p 7-bits

+parity

i8p
8-bits

+parity

inverse

inverse

Break

AB s4& 19.2 8 * 1 →

LCD output example on Break command
if no bytes were received

41 42 01 1F F3 00 00
 19.2 8 * 1 →

LCD output example if Break command
was taken after reception of five bytes
 1900 Microchip Technology Inc. DS00689A-page 2-3

AN689

S2.book Page 4 Thursday, March 2, 2000 8:02 AM
Logic Probe

The typical hardware solution for a logic probe is shown
in Figure 2. Two inverters, for low and high indication,
and two monostables, for pulse detection, are com-
monly used in most low-cost logic probes. This solution
will display an unconnected probe tip as high logic

level. There are some better versions which can detect
a floating input and turn all LEDS off if it is detected.
Figure 3 represents the common solution for such func-
tions, where two analog comparators are employed to
detect the low, high and floating inputs.

FIGURE 2: TYPICAL LOGIC PROBE SCHEMATIC

FIGURE 3: IMPROVED LOGIC PROBE SCHEMATIC

Instead of using such approaches, the logic probe func-
tion in this instrument is software aided, and the floating
input is detected in a dynamic way instead of a static
one. The equivalent hardware schematic diagram of
this solution is shown in Figure 4 (Pulse detection cir-
cuit not shown). The hardware detail which supports
the operation of the logic probe used in this unit is rep-
resented by Figure 5. The microcontroller polls the
input tip and services LEDs L and H. If a transition is
detected, LED P is switched ON and the down counter
switches it OFF after 80 ms if no additional transition is
detected.

This approach has two disadvantages. Logic state
latching at a uniform rate may cause visible interfer-
ence if the frequency of the monitored signal is near the
latching rate. This problem is minimized by adding a
self-variable extra delay in software, which makes the
latching frequency unstable. This makes the range of
critical frequencies much wider, but the interference
appears as a very short burst of pauses in LED L or H
activity, which is completely avoided by adding an extra
debouncer of only 250 microseconds. Although unno-
ticeable, this delay helps prevent LED level instability
while monitoring critical frequencies.

MONOSTABLE

+5V +5V +5V

LED
“Low”

LED
“Pulse”

MONOSTABLE

Q

Q

Q

Q

Trigger on
falling edge

Trigger on
falling edge

Probe Tip

+5V

LED
“High”

+5V

LED
“High”

MONOSTABLE LED
“Pulse”

MONOSTABLE

Q

Q

Q

Q

Trigger on
falling edge

Trigger on
falling edge

+5V

+5V

LED
“Low”

Probe Tip

+5V

High
Resistance
DS00689A-page 2-4 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 5 Thursday, March 2, 2000 8:02 AM
FIGURE 4: FUNCTIONAL SCHEMATIC OF PIC16F84A LOGIC PROBE

FIGURE 5: SUPPORTING PIC16F84A LOGIC PROBE CIRCUITS

Another disadvantage is related to pulse indication on
LED P. In the case of a very short pulse, it is likely that
the microcontroller, which polls the input, may omit it
between two input reads. Instead of simple polling, the
internal counter, TMR0, is used here so that instead of
testing the logic state of the input, the state of TMR0 is
tested. In this way, pulses as short as 10 ns might be
detected. In reality, the minimal pulse width is limited by
resistor R6 and the input pin RA4 capacitance. The
T0SE bit in the OPTION_REG register is properly
updated at each pass, so that the first incoming transi-
tion will increment TMR0.

The logic probe software support is integrated in the
keyboard routine. LEDs L, H and P are active only while
the instrument is idle (doing nothing but waiting for
some key to be pressed), which is all the time while the
unit is ON, except in frequency counter mode, during
battery discharging or charging, or if the START com-
mand is issued in analyzer or serial receiver mode and
the job (300 samples fetched or all bytes received) is
not yet finished.

Pin RB2 is the output which generates square-wave
pulses. These pulses are fed through R5 to the probe
tip. The resistance is high enough not to affect the
tested circuit, except if the tested point is the floating
input. However, in that case it will probably make the
circuit unstable and thus help in locating the floating
input. This pulse stream is also used by software to
detect the floating probe tip, and in this case to switch

all LEDS off. This saves energy in batteries and helps
to detect if the probe tip is validly connected to the point
under test.

A simplified flow chart for the logic probe is represented
by Figure 6. As this subroutine is an integral part of the
key scan routine, the key (debouncers are not shown in
detail) and time-out testing (which employs a 16-bit
counter, "Time-out Counter") are also provided. "Up
Counter" is the free running counter which enables exe-
cution of the second part of the subroutine to be per-
formed at each 256th pass. "Down Counter" is the
timing base for the LED Pulse. If the state of this
counter is greater than zero and the LED Low or LED
High is on, the LED Pulse will be turned on. The pro-
gram exits only if some key is pressed (flag bit STA-
TUS,C denotes which) or when the time-out counter
reaches zero.

High

Probe Tip

Resistance

LED
“Low”

“High”

CLOCK
GENERATOR

LED

Probe Tip

OUTPUT
PORTB.2

220k

1.5k INPUT
PORTA.4

OUTPUT
PORTB.7

330

LED
“Low”

OUTPUT
PORTB.6

330

LED
“High”

OUTPUT
PORTB.5

330

LED
“Pulse”
 1900 Microchip Technology Inc. DS00689A-page 2-5

AN689

S2.book Page 6 Thursday, March 2, 2000 8:02 AM
FIGURE 6: LOGIC PROBE FLOWCHART

Logic State Analyzer

The commonly used hardware concept for a logic ana-
lyzer design is represented in Figure 7. All those func-
tions are realized in software, which is much easier to
implement, but results in a loss of sampling speed. The
software solution is briefly represented on the flow
chart in Figure 8.

In analyzer mode, a sequence of 300 one-bit fetches
is performed. Samples are stored in internal RAM
(actually, 304 samples are read, but the last 4 are
dummy reads). The upper row of the LCD is used to
display the samples. As the LCD (Hitachi’s LM032L)
has no graphic capabilities (it is not possible to
address a single dot), this is simulated by eight special
user-defined characters (which are stored in the char-
acter generator RAM), each for a group of 3-bit sam-
ples. This enables a pseudo-graphic mode which, in
this case, looks as if all pixels were individually
addressed.

The display shows a window of 60 samples. One of five
windows is selected by placing the cursor on the group
number and advancing it by pressing the left key. While
the key is pressed, the lower row displays the numeric

pointers, which help by counting the sample number
and calculating the timings in the recorded sequence.
When the key is released, the normal row 2 is restored.

A uniform clock, for sample rate, is internally gener-
ated. It is selectable to 16 steps. The frequency and
period are both displayed. The following is a list of avail-
able sample rates:

The sampling sequence does not start immediately
after the command is issued, but after the selected
transition (L to H or H to L) is detected. While waiting
for the transition to occur, the RB2 output is continu-
ously held in the state which is opposite of the trigger-
ing logic level. This enables application on the wired-or
logic, even if it is without pull-ups. If this condition never
occurs, it is possible to escape by pressing the right
key. In this case, message "Break" is displayed in the
LCD upper row.

Logic Probe

Preset time-out
counter

Self-variable
timing loop

TMR0 = 0?

Clear TMR0

Preset
down counter

Input = low?

Clear T0SE

Output = low?

Set Hi-imp
output

Input = low?

Turn on
LED “low”

Turn off
LED “low”

Set T0SE

Clear Hi-imp
output

Input = high?

Increment
up counter

Turn-off
LED 'high”

Turn-on
LED 'high”

mod 256

Up counter
= 0?

Down
counter = 0?

Decrement
down counter

LED “high”
on?

LED “low”
on?

Turn on
LED “pulse”

Turn off
LED “pulse”

Left key
falling edge?

Set flag
STATUS,C

Right key
falling edge?

Clear flag
STATUS,C

Return
Decrement

time-out counter

Time-out
counter = 0?

Switch off
power supply

Stop

1

2222

2

1

1

Yes

No

No

Yes

No

Yes

No

Yes

No

Yes
No

Yes

Yes

Yes

No

No

No

Yes
Yes

No

No

No

Yes

Yes

1 MHz 50 kHz 10 kHz 1 kHz

500 kHz 38.4 kHz 9.6 kHz 400 Hz

228 kHz 25 kHz 4.8 kHz 100 Hz

100 kHz 19.2 kHz 2.4 kHz 40 Hz
DS00689A-page 2-6 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 7 Thursday, March 2, 2000 8:02 AM
LED P has an additional function while sampling in
analyzer mode. It is turned OFF when the start com-
mand is issued, then turned ON when sampling or the
receiving condition was met, and then OFF again when

all samples are fetched. In slower rates, it is noticeable
that LED P blinks while sampling. One blinking period
is equal to 32 sampling periods.

FIGURE 7: LOGIC ANALYZER SCHEMATIC

Probe Tip Serial in

...Parallel Outputs

Serial out

Clock

N-bit Shift Register

Clock

Clock out
’Start’

Command

’Break’
Command

Starting
Transition

Select

+5V

Q

S R

Q

S R

Reset

N-th
Count

Start/Stop
Flip - Flop

Counter

Ready/Busy
Flip - Flop

Clock
Generator
 1900 Microchip Technology Inc. DS00689A-page 2-7

AN689

S2.book Page 8 Thursday, March 2, 2000 8:02 AM
FIGURE 8: LOGIC ANALYZER
FLOWCHART

All sample rates are generated by software, and the
three highest ones use individual subroutines. The
sample rate for 1 MHz, which is at the very beginning
of the program, has to fetch and memorize a single bit
sample by rotating it into the buffer, change the desti-
nation address after every 8 samples and exit the loop
after 304 samples. All this while keeping uniform timing
of 2 and 3 (alternated, which gives an average of 2.5)
instruction cycles for one fetch. That could not be real-
ized in a conventional manner, so it has a location-sen-
sitive structure. Upon exit, it jumps to address 4Dh
(which is far from the subroutine itself). If you modify
anything in this program, take care not to affect this
location.

The analyzer may have some unpredictable delays
between an external starting event (rising or falling
edge) and the first sample. In all cases, this delay may
vary from 0 to 4 microseconds, so it may have some
significance only in highest sample rates. One of the
reasons for this delay is the time which the microcon-
troller requires for a key test, which enables the manual
break if this event never comes. Also, there is some
minor jitter at the 1 MHz analyzer sample rate. In the
worst case, it might be 300 ns.

Analyzer

Point FSR to
Buffer

Right key
pressed?

Break
handling

Start
condition met?

Turn on
LED “pulse”

Get input in
flag C

Rotate INDF
through C

Timing
loop

8 bits
fetched?

Advance
FSR

End of
buffer?

Display buffer
in graphic mode

Return

Yes

No

No

Yes

No

No

Yes

Yes
DS00689A-page 2-8 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 9 Thursday, March 2, 2000 8:02 AM
Serial Code Receiver

In this mode, a total of 42 bytes is received and dis-
played in both HEX and ASCII. The acceptable format
is:

1 Start Bit / 7 or 8 Data Bits / 0 or 1 Parity Bit / 1 or
more Stop Bits.

It is possible to connect the probe tip directly to the
RS-232 or RS-232C +/- 12V voltage levels, to RS-422
or RS-485, or to +5V logic.

The available baud rates are:

1200 (1.2)

2400 (2.4)

4800 (4.8)

9600 (9.6)

19200 (19.2)
38400 (38.4)

57600 (57.6)

115200 (115)

7 or 8 data bits may be selected to adjust for the
desired data format.

Parity or no parity bit (suffix "p"). This affects only the
proper timing for this bit during reception. It is neither
tested for validity nor displayed.

Standard RS232C or inverse polarity. If prefix "i" is
displayed, then inverse polarity is active (low start bit,
inverted data and optional parity bits and high stop bit).
This is useful if the serial message must be fetched
before the RS-232C TX drivers and after the RX buffers
(which are both inverters).

Received bytes are displayed both in HEX and ASCII in
6 groups of 7 bytes each. ASCII representation is with
bit 7 cleared, and the non-printable characters
(00h-1Fh) are represented as dots. All other codes are
standard ASCII.

The string of received serial codes is 42 bytes long. If
the string is shorter, the instrument will wait for next
start bit, so it may look like it is stuck without any mes-
sage. In that case, reception may be stopped by press-
ing the right key. If no bytes were received, the
message "Break" will be displayed, but if at least one
byte was received, the received sequence will be dis-
played with all unreceived bytes represented as zeros.

Similar to the analyzer mode, LED P will be turned ON
when the first start bit is detected. This helps to detect
sequences of less than 42 bytes in length.

No error test is performed during reception.

Figure 9 represents the flowchart for the serial code
receiver.
 1900 Microchip Technology Inc. DS00689A-page 2-9

AN689

S2.book Page 10 Thursday, March 2, 2000 8:02 AM
FIGURE 9: SERIAL CODE RECEIVER FLOWCHART

Serial Code
Receiver

Clear buffer
and point FSR

to buffer

Preset
bit counter
to 7, 8 or 9

Inverse
signal mode?

Clear
hi-impedance

output

Input = low?

Right key
pressed?

Input = high?

Turn on
LED “pulse”

Loop 0.5
bit periods

Loop 1 bit
period

Get input in
flag C

Rotate INDF
through C

Decrement
bit counter

Bit counter
= 0?

Set
hi-impedance

output

Input = high?

Right key
pressed?

Input = low?

Any byte
received?

Display
“Break”

Parity bit
received?

Rotate left
INDF

Inverse signal
mode?

Complement
INDF

7-bit data
mode?

Rotate right
INDF

Advance
FSR

End of
buffer?

Display buffer
in HEX and
ASCII mode

Turn off
LED “pulse”

Return

Yes

No

No

Yes

Yes

No

No

Yes

Yes

No

No

Yes

Yes

No

No

Yes

Yes

No

No

No

No

No

Yes

Yes

Yes

Yes

1

1

2

2

DS00689A-page 2-10 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 11 Thursday, March 2, 2000 8:02 AM
Frequency Counter

Figure 10 shows the standard structure of the hard-
ware solution for a frequency counter. All this is substi-
tuted by software in the PICmicro® microcontroller
(MCU) aided by the existing TMR0. All counters are
binary, and the counter state is displayed after a 4-byte
binary to 8-digit decimal conversion. The display
refresh rate is 2 Hz.

The flow chart for the frequency counter is represented
in Figure 11. As this is the real-time function, the exist-
ing keyboard subroutine might not be used, but sepa-
rate key and time-out tests are written. The logic probe
function is disabled in this mode.

There is no "Start" command here, as this function is
active all the time while the instrument is in Frequency
Counter mode. There is only one submode, range
select, so pressing the right button is not used for step-
ping through submodes, but it changes the range
immediately.

Internal counter TMR0 is used, and the program
expands the width of the counter for an additional two
bytes. The fourth byte is added after 500 ms of counting
and multiplying the 24-bit counter state by a constant,
which depends on which prescaler factor was used.

The prescaler also affects the counter resolution. Here
are the counter ranges and corresponding resolutions:

Range 5 MHz / Resolution 4
Range 10 MHz / Resolution 8
Range 20 MHz / Resolution 16
Range 40 MHz / Resolution 32

The resolution surely affects the reading error of the
frequency counter, but this error is still less than the
error which is caused by the initial non-accuracy of
industrial class quartz crystals.

FIGURE 10: FREQUENCY COUNTER
SCHEMATIC

FIGURE 11: FREQUENCY COUNTER
FLOWCHART

Probe Tip
Prescaler
(Optional)

Display

Decoder

Parallel Register

Counter
Clock

Latch

Reset

1 sec
Time-base

Frequency
counter

Adjust
and display
prescaler

Both keys
released?

Clear TMR0

Clear software
counter

TMR0
overflow?

Advance
software
counter

Right key
pressed?

Left key
pressed?

500 ms
time-out?

Multiply counter by
prescaler factor x 2

Binary to
decimal

conversion

Display
counter state

Decrement
time-out counter

Time-out
counter = 0?

Switch off
power supply

Stop

Advance
prescaler

factor

Battery
manager mode

No

Yes

No

Yes

Yes

No

No

No

Yes

No

Yes
 1900 Microchip Technology Inc. DS00689A-page 2-11

AN689

S2.book Page 12 Thursday, March 2, 2000 8:02 AM
Battery Manager

The battery manager has three submodes. The first
one is manual power-off, although there is also the
automatic power off after approximately 8 minutes of
inactivity (no key pressed).

The second submode is discharging. It is performed
with 100 mA current through the resistors. The voltage
monitor informs the PICmicro MCU if battery voltage is
lower than 4V. If it is, the mode is automatically
switched to charging. It is recommended that an exter-
nal DC power supply be connected before the dis-
charging command is issued. This will decrease the
resulting discharging current to about 80 mA when the
instrument is ON, and the DC supply is connected as
the charging current flows independently of the mode
selected.

Charge submode, when started, displays the time in
HH:MM format, starting from 00:00, and switches off
the instrument (and charging current also) at 14:00.

It is also possible to charge the NiCd battery even if it is
not discharged, but this is not recommended, as unin-
tentional overcharging may affect its capacity and life.

The unit is ready to charge the battery all the time if it
is switched ON, even if the command charge is not
active. It is enough to connect the external DC supply
and to turn the instrument ON.

If the LCD were not counted, more than half of the hard-
ware is used for discharging and charging. Figure 12
explains the structure of the battery manager hardware
in a simplified form, where transistors T1, T4 and T5
are replaced by switches, for clarity. The flow chart for
the battery discharger and charger is shown in
Figure 13.

FIGURE 12: BATTERY MANAGEMENT SCHEMATIC

FIGURE 13: BATTERY MANAGER FLOWCHART

Power
On

Unit
Supply Constant

current
source

NiCd Battery
4 x 1.25V

T5 T4

14 hours
time-out

Discharge
Command

External DC
10 . . .30V

Voltage
< 4V Discharging

resistor

T1

Discharge

Switch on
discharging

resistor

Right key
pressed?

Voltage
< 4V?

Break
handling

Charge

TImer = 00:00

Display timer
in format
hh:mm

Right key
pressed?

Break
handling

One minute
passed?

Advance
timer by

one minute

14 hours
passed?

Switch off
power supply

Stop

Yes

Yes
No

No

Yes

No

No

Yes

Yes
DS00689A-page 2-12 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 13 Thursday, March 2, 2000 8:02 AM
HARDWARE OVERVIEW

The complete schematic diagram is shown in
Figure 14. The only IC used is the PIC16F84A-10/P,
running at 10 MHz. It controls the intelligent LCD mod-
ule via pins RB4-RB7, using two additional ports (RB0
and RB1) for the Enable signal and Register Select
(Control/Data).

FIGURE 14: PIC16F84A PROBE SCHEMATIC

LCD module LM032L may be controlled in 4-bit paral-
lel mode, which is used in this project. That is why pins
7-10 of the LCD are not used.

LEDs L, H and P share the same outputs with the LCD
data bus. The only consequence is that some very
minor and short LED flashing is visible while the
PICmicro MCU is accessing the LCD (mostly when
some key is pressed). RB0 also has two functions. It
controls the Enable signal for the LCD module and the
transistor T1, which is used for the discharging func-
tion. To eliminate current spikes through T1 while
accessing the LCD, capacitor C4 is added, which dis-
ables activating T1 by short Enable pulses. The main
discharging resistors (R20 and R21) are intentionally
located at two distant places on the PCB to minimize
heat dissipation in a small area.

Inputs RA0 and RA4 are used to read the same sig-
nal, which was necessary because RA4 is the only port
which may be directed to the TMR0 counter, and RA0
had to be the "edge bit" in the port. The analyzer fetch

routine in the highest rate must rotate PORTA bits in a
single instruction and perform bit transfers from the
input pin to the STATUS,C flag.

Resistors R3 and R6 are used for signal voltage limi-
tation, with internal reverse diodes in the PIC16F84A.
This enables connecting the probe tip directly to the
RS-232C connector, which has +/- 12V voltage range.
Resistor R8 disables input floating while the unit is OFF.

The voltage monitor (transistor T2 with ZD1) acts as
a comparator which holds input port RA1 low if the bat-
tery voltage is higher than 4V. This is used to automat-
ically detect the end of the discharging process. The
value of resistor R13 can be modified to fine trim this
cut-off voltage to 4V.

Transistor T5 is the main ON-OFF switch. RB3 con-
trols this transistor through T3. It is also activated by
pressing the left or right key. Diodes D3 and D4 dis-
able false activation of T5 through internal diodes in
the PICmicro MCU when it is powered OFF.

R22
330

R20
120

R21

120

LED 4
Discharge

T1
BC338

GND

Vo

Vcc

D0

D4

R11 2.7k

C1
100 nF

D1

D2

D3

D5 D6 D7 R/W RS ENA

C4
1 µF

R4 330

R2 330

R1 330

LED3

LED2

LED1

P

H

L

R7
1.5k

S3
Reset

R8
47k

MCLR

GND

RB4 RB5 RB6 RB7 RB1 RB0 Vcc

RB2 RA0 RA4 OSCOSC RA2 RA3 RB3

RA1

R5
220k

R3
1.5k

R6
1.5k

Probe
Input

Ground
Connection

Q1
10MHz

C2
27 pF

C3
27 pF

D4 D3

D2

D1

S1

Left
key

S2

Right
key

T3
BC338

R9
47k

D6 R14 15k

R15
15k

R17 15k

R16 15k

T5 BC328

NiCd
4 x 1.2V
180 mAh

R18 2.7k

D5

ZD2
6V8

T4
BC328

R19
62

D8

D7

LED 5
Charge

D11D9

D10 D12

Charge
DC 10 - 30V

R12
15k

R13
5.6k

ZD1
3V3

R10
2.7k

T2
BC338

D1 - D12: 1N4148
LCD

LM 032 L

PIC16F84A
 1900 Microchip Technology Inc. DS00689A-page 2-13

AN689

S2.book Page 14 Thursday, March 2, 2000 8:02 AM
Transistor T4 is the constant current regulator, which
enables the use of any DC supply between 10V and
30V for battery charging. Diodes D9-D12 allow appli-
cation of any voltage polarity. Zener diode ZD2 is not
the voltage stabilizer, but it protects the hardware from
overvoltage if the battery contacts are not properly tied
while charging.

S3 is the RESET key, which is mounted on the solder
side of the PCB, and is accessible from the lower side
of the instrument through the small hole at the bottom
plane of the package. It is used if the MCU drops into a
deadlock state for some reason or when the unit is
switched ON for the first time after assembly.

Pin 3 (Vo) on the LCD connector is for LCD driving volt-
age. The manufacturer recommends the use of a
potentiometer (10-20k) for voltage adjustment on this
input and to fine trim the LCD contrast, but in all cases
the contrast was optimal when the potentiometer was in
its lower-most position (Vo shortened to GND). So it
was rejected and pin 3 was connected to GND in the
final version of this instrument.

Charging current will flow all the time while DC supply
is connected and the unit is ON, even if the unit is not
in Charge mode. When the unit is OFF (e.g. when the
charging 14-hour process is finished), the charging cur-
rent is stopped.

Both charging and discharging are indicated on individ-
ual LEDs.

FIRST SWITCHING ON AFTER
ASSEMBLING

The batteries should be connected last, as there is no
easy way to disconnect them once they are soldered,
also it is not recommended to assemble the hardware
while the voltage is present. The best way is to test the
instrument with some external 5V power supply, and
when it is completely debugged and tested, the batter-
ies may be soldered. Do not connect the external DC
supply for charging batteries if the batteries are not
safely in their places! Zener diode ZD2 will reduce the
voltage to 6.8V, but avoid testing the efficiency of this
protection if at all avoidable.

If the NiCd batteries are discharged to the point the
PICmicro cannot operate, it will be necessary to keep
the left or right key pressed for some time (while the DC
supply is connected for charging), as the pressing of
any key makes hardware bypass for charging current.
After about one minute of such charging, the battery

voltage will be sufficient and then the unit will probably
need to be reset by pressing S3. The normal charging
process should then be used by executing the Charge
command in Battery mode.

The contrast on the LCD is voltage-dependent, and as
there is no voltage stabilizer, it appears to be a little
darker immediately after a full charge. The battery volt-
age will be slightly over 5V. This will not affect readabil-
ity. After a few minutes of operation, the battery voltage
stabilizes and the LCD appears as normal.

Note: Data EEPROM is used for some lookup tables.
This is read-only data and the Data EEPROM must be
programmed before the unit is ready to use. The MCU
will not affect data EEPROM contents. If your program-
mer does not support automatic loading of Data
EEPROM contents from the HEX file, it must be loaded
manually (a total of 61 bytes are used, and the last
three bytes are don’t care). The following will help in
that case (all values are hexadecimal):

addr 00-07h: 88 01 01 98 F4 02 8C E4
addr 08-0Fh: 2C 88 64 0A 88 32 14 D8
addr 10-17h: 80 1A 88 19 28 C8 C0 34
addr 18-1Fh: 88 0A 64 C8 60 68 C8 30
addr 20-27h: D0 C9 18 A1 80 01 01 14
addr 28-2Fh: 90 19 00 64 0A 00 28 19
addr 30-37h: 01 06 09 10 16 2E 30 64
addr 38-3Ch: CC 05 0E 3B 95

MECHANICAL CONSTRUCTION

The components layout is shown in Figure 16. All com-
ponents are placed on the component side of the PCB,
except key S3 (reset), which is on the solder side. So
are the NiCd batteries, which are placed in the specially
shaped PCB edges and soldered directly to the PCB.

The LCD module is placed on M3 spacers, 7 mm long,
which are tightened to 5 mm long spacers at the bottom
side of the PCB. This leaves enough room for batteries
which are 10 mm in diameter. Key 3 should not be
higher than 5 mm, and the recommended height for
keys 1 and 2 is about 16 mm. As the keys listed in the
parts list are 14.5 mm high, they should be mounted on
an extra spacer about 1.5 mm thick, non-conductive
material.

The probe tip is fixed using three wire loops soldered to
the PCB and to the tip. If it is not possible to get a con-
nector for the DC supply which fits to the PCB pads, it
is also possible to cut the PCB (across the dotted line
on the components layout) to make enough space for
some other type of connector, which may be tightened
to the package. Pads for wires, needed in this case, are
provided on the PCB. The polarity is not significant.

It is possible to build the package of the same material
which is used for printed circuit boards, as it can easily
be cut and joints soldered. Figure 15 shows the pack-
age detail.

Note: The LCD module used is Hitachi’s
LM032L. Type LM032LT may also be
used, but it is not recommended, as it is a
transflective type and contains the inte-
grated illumination (which may not be used
in this case, as it requires high voltage). Do
not use modules LM032H or LM032HT as
they require a dual voltage supply (+5/-5V).
DS00689A-page 2-14 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 15 Thursday, March 2, 2000 8:02 AM
FIGURE 15: CASE/PCB CONSTRUCTION FIGURE 16: PCB PARTS LAYOUT

Upper part
of case

soldered

LCD

Battery

main
PCB

soldered

5

7

16

20
.5

lower part of case

key

R3

R7

R6

R4

R5

R
20

L
E

D
2

L
E

D
1

K
E

Y
 S

3PI
C

16
F8

4A K
E

Y
 S

1

L
E

D
3

C
1

C
2

C
3

Q
1

L
E

D
5

L
E

D
4 K

E
Y

 S
2

D
C

C
ha

rg
e

C
4

R
22

R
21

R14

R15

R17

R16

R18

R19

T
5

T
4

T
3

T
1

T
2

R9

R10

R11

R12

R13

D
3

Z
D

1
D

4
D

2
D

1
D

5
D

6
D

7
D

8
D

9
D

10
D

11
D

12
Z

D
2

R1

R2

R8

H

P

D
is

ch
C

ha
rg

e

C
on

ne
ct

or
fo

r
L

E
D

D
C

D
C

G
N

D
L

+

-
+

+
-

-

C
B

E

E
B

C

C
B

E
C

B
E

E
B

C

-
+

+
-

+

 1900 Microchip Technology Inc. DS00689A-page 2-15

AN689

S2.book Page 16 Thursday, March 2, 2000 8:02 AM
PARTS LIST

1. LCD module type LM032L (Hitachi) ... 1
2. PCB.. 1

3. Microcontroller PIC16F84A-10/P (Microchip)... 1

4. Transistors:

BC338 (or any small signal silicon NPN in SOT-54,
pinning CBE)3

BC328 (or any small signal silicon PNP in SOT-54,
pinning CBE)2

5. Diodes:

1N4148 (or any small signal silicon diode)12
ZPD 3V3 (or any low power 3.3V zener diode)1

ZPD 6V8 (or any low power 6.8V zener diode)1

6. Resistors:

62R 1/4W axial1
120R 1/4W axial 2
330R 1/4W axial 4
1K5 1/4W axial3
2K7 1/4W axial3

5K6 1/4W axial1
15K 1/4W axial5
47K 1/4W axial2
220K 1/4W axial1

7. Capacitors:

27 pF ceramic2
100 nF ceramic1

1 uF tantal1

8. Quartz:

10 MHz 1

9. LEDs:

red, 3 mm diameter 2
green, 3 mm diameter2

yellow, 3 mm diameter1

10. I.C. socket:
18-pin 1

11. Keys:

typ ITT D 6 (raster 5*5 mm, 14.5 mm high) 2 typ SEL ET 5 (raster 5.5*3) or SEL ET 11 (raster
7.5*5)1

12. Connectors:

2*7 pins male connector for PCB, raster 2.54 mm
(100 mils)1
2*7 pins female connector for PCB, raster 2.54
mm (100 mils)1

cable-end crocodil-grip for GND connection1
coaxial 3.5 mm female connector typ PG2031

13. Mechanical parts:

spacer M3, 7 mm high 4 spacer M3, 5 mm high 4
DS00689A-page 2-16 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 17 Thursday, March 2, 2000 8:02 AM
LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 ;***
 00002 ;* Filename: PROBE.ASM
 00003 ;***
 00004 ;* Author: Voja Antonic
 00005 ;* Company: PC Press
 00006 ;* Revision: RevA1
 00007 ;* Date: 07-09-98
 00008 ;* Assembled using MPASM rev 01.50
 00009 ;***
 00010 ;* Include files:
 00011 ;* p16f84.inc
 00012 ;***
 00013 ;* This is the program for multi-purpose laboratory instrument which
 00014 ;* consists of logic probe, single-channel logic state analyzer,
 00015 ;* serial code receiver and frequency counter. As this is single-chip
 00016 ;* instrument, all functions are supported by software.
 00017 ;* LCD module used is Hitachi’s LM032L with 2 lines of 20 columns.
 00018 ;*
 00019 ;* Note: The code is optimized for code space, and for that reason the
 00020 ;* most of code could not be written in modular format. For the same
 00021 ;* reason a lot of subroutines have more than one entry point and some
 00022 ;* of them are terminated by GOTO instead of RETURN.
 00023 ;*
 00024 ;* I/O port usage (all PORTA bits are inputs, all PORTB bits outputs)
 00025 ;* (note: bits 0, 5, 6 and 7 in port B have two functions each):
 00026 ;* PORTA,0 (input) probe input
 00027 ;* PORTA,1 (input) voltage monitor (high if battery voltage < 4 V)
 00028 ;* PORTA,2 (input) left key (key 1) (low = key pressed)
 00029 ;* PORTA,3 (input) right key (key 2) (low = key pressed)
 00030 ;* PORTA,4 (input) probe input
 00031 ;* PORTB,0 (output) enable LCD (high=select LCD),discharge (high=on)
 00032 ;* PORTB,1 (output) register select LCD (low=instruction,high=data)
 00033 ;* PORTB,2 (output) hi-imp output for probe pin
 00034 ;* PORTB,3 (output) current hold for MCU supply (low = off)
 00035 ;* PORTB,4 (output) LCD module D4
 00036 ;* PORTB,5 (output) LCD module D5, LED P (high = on)
 00037 ;* PORTB,6 (output) LCD module D6, LED H (high = on)
 00038 ;* PORTB,7 (output) LCD module D7, LED L (high = on)
 00039 ;*
 00040 ;* External Clock Frequency: 10 MHz
 00041 ;* Config Bit Settings: CP=OFF, PWRTE=ON, WDT=OFF, OSC=HS
 00042 ;* Program Memory Usage: 1023 words
 00043 ;* Data RAM Usage: 68 bytes
 00044 ;* Data EEPROM Usage: 61 bytes
 00045 ;* Note: This is read-only data, so the Data EEPROM must be programmed
 00046 ;* before the unit is used. MCU will not affect data EEPROM contents.
 00047 ;***
 00048 list p=16f84, f=inhx8m, n=0
 00049 include "p16f84.inc"
 00001 LIST
 00002 ; P16F84.INC Standard Header File, V 2.00 Microchip Technology, Inc.
 00136 LIST
 00050
0000000C 00051 FLAG equ 0ch ; 1 by flag register
0000000D 00052 RXBITS equ 0dh ; 1 by bit0=parity,bit1=7/8 bits,bit 2=inverse
0000000E 00053 DJNZ equ 0eh ; 1 by general purpose, e.g. loop counter
0000000F 00054 SCRATCH equ 0fh ; 1 by general purpose scratchpad
00000010 00055 PCOUNT equ 10h ; 1 by timing count for led P (monostable sim)
00000011 00056 SUBMODE equ 11h ; 1 by submode (cursor horizontal position)
00000012 00057 DEBO1 equ 12h ; 1 by rotor for key 1 debouncing
00000013 00058 DEBO2 equ 13h ; 1 by rotor for key 2 debouncing

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
 1900 Microchip Technology Inc. DS00689A-page 2-17

AN689

S2.book Page 18 Thursday, March 2, 2000 8:02 AM
 00000014 00059 COUNT equ 14h ; 1 by general purpose counter
 00000015 00060 RATE equ 15h ; 1 by analyzer sample rate, 0...15
 00000016 00061 CHARCOU equ 16h ; 1 by char counter for fixed format display
 00000017 00062 SHOWCOU equ 17h ; 1 by 1-4, which group of 60 samples is shown
 00000018 00063 DELAYL equ 18h ; 1 by delay for led P on when led L is on
 00000019 00064 DELAYH equ 19h ; 1 by delay for led P on when led H is on
 0000001A 00065 PRESC equ 1ah ; 1 by prescaler rate for frequency counter
 0000001B 00066 TIMOUTL equ 1bh ; 1 by timeout counter lo, for auto power off
 0000001C 00067 TIMOUTH equ 1ch ; 1 by timeout counter hi, for auto power off
 0000001D 00068 RXRATE equ 1dh ; 1 by rx baud rate, 0...7
 0000001E 00069 BIN4 equ 1eh ; 4 by arith buf bin value, lo byte first
 00000022 00070 CMP4 equ 22h ; 4 by arith buf for comparing, lo byte first
 00000026 00071 BUFFER equ 26h ;42 by 42 by receive buf for analyzer and RX
 00000001 00072 REL equ 1 ;=1 to put cursor on 1st char of command
 00073 ;=0 to put cursor before the command
 00074
 00075 ; Bits definitions for FLAG register (bit 0 not used):
 00000001 00076 DP equ 1 ; decimal point in 3-digit bin2dec conv
 00000002 00077 PTIP equ 2 ; prev.state of probe input (for edge detect)
 00000003 00078 RIPPLE equ 3 ; zero blanking bit
 00000004 00079 XTOX equ 4 ; analyzer start at: 1=rising, 0=falling edge
 00000005 00080 LEDP equ 5 ; led Pulse, 1=on
 00000006 00081 LEDH equ 6 ; led High, 1=on
 00000007 00082 LEDL equ 7 ; led Low, 1=on
 00083
 00084 ;***
 00085 ;* Reset vector
 00086 ;***
0000 28A8 00087 goto Start
 00088
 00089 ;***
 00090 ;* Get1MHz
 00091 ;* This subroutine fetches 307 samples (last 7 will be ignored) from
 00092 ;* PORTA.0 rotating through CARRY at 1 MHz rate - 2.5 instr. cycles
 00093 ;* for each sample, realized mostly as 2 and 3 cycles alternatively,
 00094 ;* at the following order:
 00095
 00096 ;* 4t-2t-2t (not in main loop, executed only once), and then
 00097 ;* 2t-2t-3t-2t-3t-2t-3t-2t-3t-2t-3t-2t-3t-2t-2t-4t (repeat 19 times)
 00098 ;*
 00099 ;* Call Common inits loop counter (COUNT) to make 19 cycles before
 00100 ;* exiting (16 samples are fetched at each pass), and FSR to point to
 00101 ;* BUFF. It also presets T0SE bit depending on XTOX bit (in FLAG reg)
 00102 ;* to enable proper edge detect, as it will affect TMR0 state.
 00103 ;* State of key 2 (Break) is tested while waiting for start condition.
 00104 ;* Write ptr FSR is incremented after every 8 samples. COUNT initial
 00105 ;* value is 01101101, after ANDing 0c0h and subtracting 33h from it,
 00106 ;* makes 0dh, even if COUNT is incremented 18 times. After 19 passes,
 00107 ;* COUNT is incremented to b’10000000’, which after AND 0c0h and
 00108 ;* SUB 33h makes 4dh. Those jumps are location sensitive, and it makes
 00109 ;* the whole subroutine unrelocateable.
 00110 ;* Between this subroutine and the instruction goto Finished (below),
 00111 ;* which must be at loc. 4dh, there are 25 free locations. They are
 00112 ;* used for tables DecTab and CurTab, which causes that those tables
 00113 ;* must have the fixed length. If anything relocates here, take care
 00114 ;* not to affect location of instruction goto Finished.
 00115 ;* Input/Output variables: None
 00116 ;***
0001 00117 org 1 ; this subroutine must start at addr 1
 00118
0001 00119 Get1MHz ; 2.5 t read cycle
0001 306D 00120 movlw 80h-.19 ; loop end in 19 cyc(38 by=304 smpls)
0002 226F 00121 call Common ; initialize COUNT, FSR, hi-imp out...
 00122 ; ...bit XTOX and T0SE bit
0003 00123 GetEdge
0003 1D85 00124 btfss PORTA,3 ; test status of key 2 and...
DS00689A-page 2-18 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 19 Thursday, March 2, 2000 8:02 AM
0004 28CC 00125 goto Break ; ...jump to Break routine if pressed
 00126
0005 0801 00127 movf TMR0,W ; TMR0 = logic level edge detector
0006 0C85 00128 rrf PORTA,F ; <--- ; the first sample is a little earlier
 00129 ; ... to compensate starting delay
0007 1903 00130 btfsc STATUS,Z ; test if there was egde...
0008 2803 00131 goto GetEdge ; ...and loop if not
 00132
0009 0C80 00133 rrf INDF,F ; rotate bit into destination byte
000A 0C85 00134 rrf PORTA,F ; <--- get bit from input to C
000B 0C80 00135 rrf INDF,F ; rotate bit into destination byte
000C 0C85 00136 rrf PORTA,F ; <--- get bit from input to C
 00137 ; movwf PCL will jump here at 18 passes
 00138 ; ...@addr 0100 0000 (40h) - 33h = 0dh
000D 0C80 00139 rrf INDF,F ; rotate bit into destination byte
000E 0C85 00140 rrf PORTA,F ; <--- get bit from input to C
000F 0C80 00141 rrf INDF,F ; rotate bit into destination byte
0010 0C85 00142 rrf PORTA,F ; <--- get bit from input to C
0011 0C80 00143 rrf INDF,F ; rotate bit into destination byte
0012 0C85 00144 rrf PORTA,F ; <--- get bit from input to C
0013 0C80 00145 rrf INDF,F ; rotate bit into destination byte
 00146
0014 0A94 00147 incf COUNT,F ; COUNT = loop counter
 00148
0015 0C85 00149 rrf PORTA,F ; <--- get bit from input to C
0016 0C80 00150 rrf INDF,F ; rotate bit into destination byte
0017 0C85 00151 rrf PORTA,F ; <--- get bit from input to C
0018 0C80 00152 rrf INDF,F ; rotate bit into destination byte
 00153
0019 0A84 00154 incf FSR,F ; must be exactly 8 read cycles apart
 00155 ; ... between FSR incrementing
001A 0C85 00156 rrf PORTA,F ; <--- get bit from input to C
001B 0C80 00157 rrf INDF,F ; rotate bit into destination byte
001C 0C85 00158 rrf PORTA,F ; <--- get bit from input to C
001D 0C80 00159 rrf INDF,F ; rotate bit into destination byte
 00160
001E 0814 00161 movf COUNT,W ; COUNT = loop counter
 00162
001F 0C85 00163 rrf PORTA,F ; <--- get bit from input to C
0020 0C80 00164 rrf INDF,F ; rotate bit into destination byte
0021 0C85 00165 rrf PORTA,F ; <--- get bit from input to C
0022 0C80 00166 rrf INDF,F ; rotate bit into destination byte
 00167
0023 39C0 00168 andlw 0c0h ; this will make first 18 jumps to 0dh,
 00169 ; ...and the 19th one to 4dh
0024 0C85 00170 rrf PORTA,F ; <--- get bit from input to C
0025 0C80 00171 rrf INDF,F ; rotate bit into destination byte
0026 0C85 00172 rrf PORTA,F ; <--- get bit from input to C
0027 0C80 00173 rrf INDF,F ; rotate bit into destination byte
 00174
0028 3ECD 00175 addlw -33h ; this will make first 18 jumps to 0dh,
 00176 ; ...and the 19th one to 4dh
0029 0C85 00177 rrf PORTA,F ; <--- get bit from input to C
002A 0C80 00178 rrf INDF,F ; rotate bit into destination byte
002B 0C85 00179 rrf PORTA,F ; <--- get bit from input to C
002C 0C80 00180 rrf INDF,F ; rotate bit into destination byte
 00181
002D 0A84 00182 incf FSR,F ; must be exactly 8 read cycles apart
 00183 ; ... between FSR incrementing
002E 0C85 00184 rrf PORTA,F ; <--- get bit from input to C
002F 0C80 00185 rrf INDF,F ; rotate bit into destination byte
0030 0C85 00186 rrf PORTA,F ; <--- get bit from input to C
0031 0C80 00187 rrf INDF,F ; rotate bit into destination byte
0032 0C85 00188 rrf PORTA,F ; <--- get bit from input to C
 00189
0033 0082 00190 movwf PCL ; jumps to 0dh in first 18 passes
 1900 Microchip Technology Inc. DS00689A-page 2-19

AN689

S2.book Page 20 Thursday, March 2, 2000 8:02 AM
00191 ; jumps to 4dh at 19th pass
00192
00193

;***
00194 ;* This table is used for bin2ascii (4-byte to 8-digit) conversion
00195

;***
0034 00196 DecTab
0034 3498 3496 3480 00197 dt 098h,096h,080h ;
decimal 10 000 000
0037 340F 3442 3440 00198 dt 00fh,042h,040h ; decimal 1 000 000
003A 3401 3486 34A0 00199 dt 001h,086h,0a0h ; decimal 100 000
003D 3400 3427 3410 00200 dt 000h,027h,010h ; decimal 10 000
0040 3400 3403 34E8 00201 dt 000h,003h,0e8h ; decimal 1 000
0043 3400 3400 3464 00202 dt 000h,000h,064h ; decimal 100
0046 3400 3400 340A 00203 dt 000h,000h,00ah ; decimal 10

00204
00205 ;**
00206 ;* Cursor position table for all SUBMODEs in mode 4 (battery manager)
00207 ;**

0049 00208 CurTab4
0049 34D3 34C0 34C4 00209 dt 0d2h+REL,0c0h,0c3h+REL,0cah+REL

34CB
00210
00211 ;**
00212 ;* This is exit point for subroutine Get1MHz. Do not move this
00213 ;* instruction, it must be at address 4dh!
00214 ;**

004D 00215 org 80h-33h ; addr 1000 0000 (80h) - 33h = 4dh
00216 ; Get1MHz jumps here

004D 2A6A 00217 goto Finished
00218
00219 ;**
00220 ;* Table for LCD module character generator redefinition, to enable
00221 ;* pseudographic representation of bit samples in analyzer mode. It
00222 ;* defines first 8 characters, which are stored in LCD module’s RAM.
00223 ;**

004E 00224 Graphs
00225 ; * .*. .** *.. *.* **. ***

004E 3400 3401 3404 00226 dt 00h, 01h, 04h, 05h, 10h, 11h, 14h, 15h
3405 3410 3411
3414 3415

00227
00228 ;**
00229 ;* Cursor position table for all SUBMODEs in mode 1 (Analyzer)
00230 ;***

0056 00231 CurTab1
0056 34D3 34C0 34CD0 00232 dt 0d2h+REL,0c0h,0cch+REL,0ceh+REL,0d0h+REL

34CF 34D1
00233
00234 ;**
00235 ;* Cursor position table for all SUBMODEs in mode 2 (Serial rcvr)
00236 ;**

005B 00237 CurTab2
005B 34D3 34C8 34CD 00238 dt 0d2h+REL,0c7h+REL,0cch+REL,0ceh+REL,0d0h+REL

34CF 34D1
00239
00240 ;**
00241 ;* Prescaler table for resolution display in mode 3 (freq counter)
00242 ;**

0060 00243 PrescTab
0060 3404 3408 3410 00244 dt .4, .8, .16, .32

3420
00245
00246 ;**
00247 ;* Range table for max. frequency display in mode 3 (freq counter)
DS00689A-page 2-20 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 21 Thursday, March 2, 2000 8:02 AM
00248 ;**
0064 00249 RangeTab
0064 3405 340A 3414 00250 dt .5, .10, .20, .40

3428
00251 ;**
00252 ;* Timing constants for serial code receiver
00253 ;**

0068 00254 BaudRate
0068 34BC 345E 342E 00255 dt .188, .94, .46, .23, .11, .5, .3, .1

3417 340B 3405
3403 3401

00256
00257 ;**
00258 ;* Text strings (terminator = last character with bit 7 set)
00259 ;**

0070 00260 TxtHz
0070 344D 3448 347A 00261 dt "MHz",’/’+80h

34AF
0074 00262 DisTxt
0074 344F 3466 3466 00263 dt "Off Disch. Charg",’e’+80h

3420 3444 3469
3473 3463 3468
342E 3420 3443
3468 3461 3472
3467 34E5

0085 00264 Head1
0085 3441 346E 3461 00265 dt "Analyze",’r’+80h

346C 3479 347A
3465 34F2

008D 00266 Head2
008D 3453 3465 3472 00267 dt "Seria",’l’+80h

3469 3461 34EC
0093 00268 Head3
0093 3446 3472 3465 00269 dt "Frequenc",’y’+80h

3471 3475 3465
346E 3463 34F9

009C 00270 Head4
009C 3442 3461 3474 00271 dt "Batter",’y’+80h

3474 3465 3472
34F9

00A3 00272 BrkMes
00A3 3442 3472 3465 00273 dt "Brea",’k’+80h

3461 34EB
00274
00275 ;******* START
00276 ;**
00277 ;* Power Up sequence:I/O port B defined as all outputs,PORTB,3 set to
00278 ;* switch power supply on and the internal Data Ram is cleared
00279 ;**

00A8 00280 Start
00A8 1683 00281 bsf STATUS,RP0
00A9 0186 00282 clrf TRISB ; portb: all bits outputs,port a:inputs
00AA 1283 00283 bcf STATUS,RP0
00AB 300C 00284 movlw 0ch ; start of RAM clr, & PORTB output byte
00AC 0086 00285 movwf PORTB ; switch power supply ON (set PORTB,3)
00AD 23B8 00286 call ClrRam ; clear internal RAM and wait 33.8 ms

00287
00288 ;**
00289 ;* LCD module initialization. 4-bit mode selected, display data RAM
00290 ;* cleared cursor set to blink mode, and the pseudographics character
00291 ;* for character set 00h-07h preset from table Graphs.
00292 ;**

00AE 1086 00293 bcf PORTB,1 ; rs lo (instruction)
00AF 3002 00294 movlw 2 ; 4-bit mode
00B0 23E9 00295 call Nibble ; write 4-bit mode command
00B1 3028 00296 movlw 28h ; func set: 4 bit mode,2 lines,5*7 dots
 1900 Microchip Technology Inc. DS00689A-page 2-21

AN689

S2.book Page 22 Thursday, March 2, 2000 8:02 AM
00B2 23CF 00297 call WrComL ; write command and wait 130 us
00B3 3006 00298 movlw 06h ; modeset: cursor moves right, no shift
00B4 23CF 00299 call WrComL ; write command and wait 130 us
00B5 300D 00300 movlw 0dh ; disp on, no cursor,blink cursor pos
00B6 23CF 00301 call WrComL ; write command and wait 130 us

00302
00B7 3040 00303 movlw 40h ; cg ram addr 0
00B8 23CF 00304 call WrComL ; write address and wait 130 us
00B9 304E 00305 movlw Graphs ; start addr of graph set for lcd disp
00BA 008F 00306 movwf SCRATCH ; move start address to pointer
00BB 3020 00307 movlw .8*.4 ; 8 special characters to define

00308 ; CHARCOU decremented in Char routine,
00309 ; ...that is why here is 8*4

00BC 0096 00310 movwf CHARCOU ; loop counter for 8 special characters
00BD 00311 GoGraph
00BD 3005 00312 movlw .5 ; five rows are equal
00BE 0094 00313 movwf COUNT ; counter for 5 rows
00BF 00314 FiveRows ; inner loop: 5 rows are equal
00BF 23B5 00315 call PclSub1 ; move SCRATCH to PCL
00C0 23D9 00316 call CharNCC ; rows 1-5 from the table
00C1 0B94 00317 decfsz COUNT,F ; five passes over?
00C2 28BF 00318 goto FiveRows ; no, loop

00319
00C3 3015 00320 movlw 15h ; 15h=b’10101’=dot-space-dot-space-dot
00C4 23D6 00321 call CharBl ; row 6:all dots set,row 7:all dots clr
00C5 23D7 00322 call Blank ; row 8: all dots cleared
00C6 0A8F 00323 incf SCRATCH,F ; inc ptr
00C7 0B96 00324 decfsz CHARCOU,F ; 8 characters defined?
00C8 28BD 00325 goto GoGraph ; no, loop 8 x

00326
00327 ;******* USER INTERFACE
00328 ;**
00329 ;* This is home point for mode 1(Analyzer): prints text"Analyzer" and
00330 ;* command line in line 2, w/cursor location set on variable SUBMODE.
00331 ;* Then the keyboard routine is called, where it waits for key to be
00332 ;* pressed.
00333 ;* Break entry point prints message Break in line 1 and redraws line 2
00334 ;***

00C9 00335 Mode1 ; Mode 1: Analyzer
00C9 3084 00336 movlw Head1-1 ; start address of string -1
00CA 235F 00337 call Headline ; print "Analyzer"
00CB 28CD 00338 goto Farm1 ; avoid "Break" message
00CC 00339 Break ; Break entry pt (if Break in Mode 1)
00CC 23DB 00340 call PrintBrk ; print "Break"
00CD 00341 Farm1
00CD 227D 00342 call PrintM1 ; print string in line 2
00CE 00343 Farm1B
00CE 3056 00344 movlw CurTab1 ; get cursor table addr in analyze mode
00CF 2170 00345 call CurPosKb ; place cursor on proper position

00346 ; test keys / probe input,service leds
00347 ; return if key press (C:key1,NC:key2)
00348
00349 ;***
00350 ;* If key 1 pressed (C),SUBMODE is advanced (range 0...4,then wrapto 0
00351 ;* If key 2 pressed (NC), program vectors to corresponding routine
00352 ;*(except if SUBMODE=1,then the sample rate is advanced and displayed)
00353 ;***

00D0 1803 00354 btfsc STATUS,C ; test which key was pressed
00D1 28D4 00355 goto Key1A ; jump if key 1

00356 ; continue if key 2 pressed
00D2 212A 00357 call Range5 ; advance var SUBMODE in range 0...4
00D3 28CE 00358 goto Farm1B ; go wait next key
00D4 00359 Key1A ; key 1 pressed
00D4 0B11 00360 decfsz SUBMODE,W ; test SUBMODE (set Z if SUBMODE=1)
00D5 28DF 00361 goto NoRate ; jump if SUBMODE <>1

00362 ; continue if SUBMODE=1
DS00689A-page 2-22 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 23 Thursday, March 2, 2000 8:02 AM
00D6 0A95 00363 incf RATE,F ; advance sample rate
00D7 1215 00364 bcf RATE,4 ; RATE range 0...15

00365
00D8 22B7 00366 call ClrRow1 ; prepare line 1 to print sample rate #
00D9 0A15 00367 incf RATE,W ; readjust RATE from 0...15 to 1...16
00DA 2370 00368 call Print255 ; print serial # of sample rate 1...16
00DB 28CD 00369 goto Farm1 ; go redraw row 2, wait next command

00370
00DC 00371 EdgeSet ; Change start cond(L-2-H or H-2-L)
00DC 3010 00372 movlw 10h ; bit 4 is flag XTOX
00DD 068C 00373 xorwf FLAG,F ; change flag
00DE 28CD 00374 goto Farm1 ; go redraw row 2, wait next command
00DF 00375 NoRate
00DF 1811 00376 btfsc SUBMODE,0 ; bit 0 will be set only if SUBMODE=3
00E0 2A0E 00377 goto Mode1Go ; if SUBMODE=3
00E1 1891 00378 btfsc SUBMODE,1 ; bit 1 will be set only if SUBMODE=2
00E2 28DC 00379 goto EdgeSet ; if SUBMODE=2
00E3 1911 00380 btfsc SUBMODE,2 ; bit 2 will be set only if SUBMODE=4
00E4 29D4 00381 goto Mode1Show ; if SUBMODE=4

00382 ; if SUBMODE=0, program drops to Mode2.
00383
00384 ;**
00385 ;* This is home for mode 2 (RS232 receiver): prints text "Serial" and
00386 ;* command line in line 2,cursor placed depended on variable SUBMODE.
00387 ;* BrkRS entry point prints message Break in line 1 and redraws line 2
00388 ;* if 0 bytes are received, display first 7 bytes if any byte received
00389 ;***

00E5 00390 Mode2 ; mode 2: Serial receiver
00E5 308C 00391 movlw Head2-1 ; start address of string -1
00E6 235F 00392 call Headline ; print "Serial"
00E7 28ED 00393 goto Farm2 ; avoid "Break" message
00E8 00394 BrkRS ; Break entry pt (if Break in mode 2)
00E8 0804 00395 movf FSR,W ; FSR points to write next rcvd byte
00E9 3A26 00396 xorlw BUFFER ; if FSR=literal BUFF the 0 bytes rcvd
00EA 1D03 00397 btfss STATUS,Z ; test if FSR = literal BUFFER
00EB 2AC6 00398 goto Show2 ; no -some bytes received,show them
00EC 23DB 00399 call PrintBrk ; yes -no bytes received, print "Break"

00400
00401 ;***
00402 ;* Prints baud rate in KBaud on LCD
00403 ;*
00404 ;* Input variables: RXRATE in range 0...7
00405 ;* Output variables: CHARCOU decremented by num of characters printed
00406 ;***

00ED 00407 Farm2
00ED 30C8 00408 movlw 0c8h ; baud rate position on LCD
00EE 23CF 00409 call WrComL ; move cursor command

00410
00EF 108C 00411 bcf FLAG,DP ; no decimal point printing if RATE=0
00F0 019F 00412 clrf BIN4+1 ; BIN4+1 is high byte for baudrate disp

00413
00F1 0A1D 00414 incf RXRATE,W ; move RXRATE from range 0...7 to 1...8
00F2 008E 00415 movwf DJNZ ; DJNZ = RXRATE+1

00416
00F3 3073 00417 movlw .115 ; case RXRATE=7:then Baudrate=115 Kbaud
00F4 198E 00418 btfsc DJNZ,3 ; test if DJNZ=8 (same as RXRATE=7)
00F5 2905 00419 goto Lth256 ; yes, go case 115.2 (RXRATE=7)

00420
00F6 148C 00421 bsf FLAG,DP ; for rete 0...6 there is decimal point
00F7 149F 00422 bsf BIN4+1,1 ; case RXRATE=6:is hi byte for 57.6
00F8 3040 00423 movlw .576-.512 ; case RXRATE=6:is lo byte for 57.6
00F9 0A8E 00424 incf DJNZ,F ; DJNZ=RXRATE+2
00FA 198E 00425 btfsc DJNZ,3 ; test if DJNZ=8 (same as RXRATE=6)
00FB 2905 00426 goto Lth256 ; yes, go case 57.6 (RXRATE=6)

00427
00FC 019F 00428 clrf BIN4+1 ; for rates 0...5 hi byte is zero
 1900 Microchip Technology Inc. DS00689A-page 2-23

AN689

S2.book Page 24 Thursday, March 2, 2000 8:02 AM
00FD 3003 00429 movlw .3 ; constant for rates 0...5
00FE 009E 00430 movwf BIN4 ; BIN4 will be rotated (mult by 2)

00431 ; RXRATE+2 times to get 1.2 - 2.4 - 4.8
00432 ; - 9.6 - 19.2 - 38.4

00FF 00433 X2Loop
00FF 1003 00434 bcf STATUS,C ; clear bit C to get multiplying by 2
0100 0D9E 00435 rlf BIN4,F ; multiply low byte
0101 0D9F 00436 rlf BIN4+1,F ; multiply hibyte,that is 16-bit rotate
0102 0B8E 00437 decfsz DJNZ,F ; test if RXRATE+2 times multiplied
0103 28FF 00438 goto X2Loop ; no, loop
0104 081E 00439 movf BIN4,W ; yes, get result to print it
0105 00440 Lth256
0105 2372 00441 call PrintBR ; print baud rate,incl. decimal point
0106 23D7 00442 call Blank ; to delete last # from previous rate

00443
00444 ;**
00445 ;* Prints num bits to be received (7 or 8), with suffix "p" if parity
00446 ;* bit will be received (not written to RAM!), and with prefix "i" if
00447 ;* inverse input polarity is expected. Input variable RXBITS, bit0 set
00448 ;* if parity bit expected, bit 1 set if 8-bit word and bit 2 set if
00449 ;* inverse polarity (lo start bit,inverse data bits and high stop bit)
00450 ;***

0107 30CC 00451 movlw 0cch ; bit# pos (7/8/7p/8p/i7/i8/i7p/i8p) -1
0108 23CF 00452 call WrComL ; write command

00453
0109 3020 00454 movlw ’ ’ ; space: true polarity
010A 190D 00455 btfsc RXBITS,2 ; let it be space if RXBITS,2 cleared
010B 3069 00456 movlw ’i’ ; "i": inverse polarity
010C 23D8 00457 call Char ; print blank or "i"

00458
010D 3037 00459 movlw ’7’ ; "7": 7 bits
010E 1C8D 00460 btfss RXBITS,1 ; let it be 7 if RXBITS,1 set
010F 3038 00461 movlw ’8’ ; "8": 8 bits
0110 23D8 00462 call Char ; print "7" or "8" (bits)

00463
0111 3020 00464 movlw ’ ’ ; space: no parity
0112 180D 00465 btfsc RXBITS,0 ; let it be space if RXBITS,0 cleared
0113 3070 00466 movlw ’p’ ; "p": parity bit exists
0114 23D8 00467 call Char ; print "p" (parity bit) or blank

00468
00469 ;***
00470 ;* This call prints number of group displayed and "*" (execution) symb
00471 ;***

0115 22A5 00472 call KaoAna ; print rest of line - is the same as
00473 ; on mode 1 (analyzer)
00474
00475 ;***
00476 ;* Places cursor on proper position (input variable SUBMODE) and calls
00477 ;* keyboard subroutine, where it will wait for key to be pressed
00478 ;**

0116 305B 00479 movlw CurTab2 ; table with cursor positions
0117 2170 00480 call CurPosKb ; place cursor on proper pos

00481 ; test keys / probe input,service leds
00482 ; return if key press (C:key1,NC:key2)
00483
00484 ;***
00485 ;* If key1 pressed (C), SUBMODE is advanced (range 0..4, then wrap to 0
00486 ;* If key 2 pressed (NC), program vectors to corresponding routine
00487 ;* (except if SUBMODE=1, then the Baud rate is advanced and displayed)
00488 ;***

0118 1803 00489 btfsc STATUS,C ; test which key was pressed
0119 291C 00490 goto Key1B ; jump if C set, means key 1 pressed

00491 ; key 2 pressed
011A 212A 00492 call Range5 ; increment SUBMODE in range 0...4
011B 28ED 00493 goto Farm2 ; go redraw row2, wait for next command
011C 00494 Key1B ; key 1 pressed
DS00689A-page 2-24 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 25 Thursday, March 2, 2000 8:02 AM
011C 1911 00495 btfsc SUBMODE,2 ; bit 2 is set only if SUBMODE = 4
011D 2AC1 00496 goto Mode2Show ; jump if SUBMODE = 4

00497
011E 1C91 00498 btfss SUBMODE,1 ; bit1 cleared only if SUBMODE = 0 or 1
011F 2925 00499 goto Sub01 ; jump if SUBMODE = 0 or SUBMODE = 1

00500
0120 1811 00501 btfsc SUBMODE,0 ; bit 0 is set here only if SUBMODE = 3
0121 2AEA 00502 goto Mode2Go ; jump if SUBMODE = 3

00503 ; drops here if SUBMODE = 2
0122 0A8D 00504 incf RXBITS,F ; advance RXBITS (command)
0123 118D 00505 bcf RXBITS,3 ; RXBITS cycle in range = 0...7
0124 28ED 00506 goto Farm2 ; go redraw row2, wait for next command
0125 00507 Sub01
0125 1C11 00508 btfss SUBMODE,0 ; bit 0 is set here only if SUBMODE = 0
0126 2B28 00509 goto FreqEp ; if SUBMODE =0,goto frequency entry pt

00510
0127 0A9D 00511 incf RXRATE,F ; if SUBMODE = 1 then advance RXRATE
0128 119D 00512 bcf RXRATE,3 ; RXRATE cycle in range 0...7
0129 28ED 00513 goto Farm2 ; go redraw row2, wait for next command

00514
00515 ;**
00516 ;* This subroutine increments variable SUBMODE,and if the result is >4
00517 ;* it wraps to 0
00518 ;***

012A 00519 Range5 ; increment SUBMODE in range 0...4
012A 0A91 00520 incf SUBMODE,F ; advance SUBMODE
012B 1911 00521 btfsc SUBMODE,2 ; if SUBMODE,2 cleared then no overflow
012C 1C11 00522 btfss SUBMODE,0 ; if SUBMODE,0 cleared then no overflow
012D 0008 00523 return ; no overflow: return
012E 0191 00524 clrf SUBMODE ; SUBMODE cycle in range 0...4
012F 0008 00525 return ; SUBMODE wrapped to 0, return

00526
00527 ;***
00528 ;* Mode4 is home point for mode 4 (off/discharge/charge): prints text
00529 ;* "Battery" and command line in line2, with cursor placed depended on
00530 ;* variable SUBMODE. Then keyboard routine is called, where it will
00531 ;* wait for key to be pressed
00532 ;* Break4 entry point prints message Break in line1 and readraws line2
00533 ;* ExitDis is the entry point if key 2 is pressed during discharging
00534 ;***

0130 00535 ExitDis ; exit disch entry point,if disch Break
0130 23BD 00536 call DisEna30 ; turn off PORTB,0 discharge transistor
0131 00537 Break4 ; exit Chg entry point, if Charge Break
0131 23DB 00538 call PrintBrk ; print "Break"
0132 2934 00539 goto Contm4 ; avoid headline printing
0133 00540 Mode4 ; mode 4: discharge/charge
0133 2360 00541 call Headline2 ; print "Battery"
0134 00542 Contm4
0134 23CE 00543 call Row2 ; move cursor to line 2
0135 3073 00544 movlw DisTxt-1 ; point to message -1
0136 23DD 00545 call Write ; print Off Disch Charge
0137 00546 Farm4
0137 3049 00547 movlw CurTab4 ; point to cursor table for mode 4
0138 2170 00548 call CurPosKb ; place cursor @ Off/Disch/Charge/-->

00549 ; test keys / probe input,service leds
00550 ; return if key press (C:key1,NC:key2)
00551
00552 ;***
00553 ;* If key1 pressed (C), SUBMODE is advanced (range 0..3,then wrap to 0
00554 ;* If key 2 pressed (NC), program jumps to corresponding routine
00555 ;***

0139 1803 00556 btfsc STATUS,C ; test which key was pressed
013A 293E 00557 goto Key1D ; C set: key 1 pressed

00558 ; key 2 pressed
013B 0A91 00559 incf SUBMODE,F ; advance SUBMODE
013C 1111 00560 bcf SUBMODE,2 ; SUBMODE cycle in range 0...3
 1900 Microchip Technology Inc. DS00689A-page 2-25

AN689

S2.book Page 26 Thursday, March 2, 2000 8:02 AM
013D 2937 00561 goto Farm4 ; go redraw row2, wait for next command
013E 00562 Key1D ; key 1 pressed
013E 1891 00563 btfsc SUBMODE,1 ; bit 1 set only if Chg/Disch. submode
013F 2943 00564 goto ChargDis ; goto Charge or Discharge process

00565 ; depended on bit 0 in variable SUBMODE
0140 1C11 00566 btfss SUBMODE,0 ; SUBMODE,0 cleared here if SUBMODE=0
0141 28C9 00567 goto Mode1 ; shortcut to mode 1 (Analyzer)

00568
0142 29BC 00569 goto Suicide ; manual power off

00570
00571 ;******* CHARGE/DISCHARGE
00572 ;**
00573 ;* Charge/Disch entry point. If bit SUBMODE,0 set, then go to Charge
00574 ;* SUBMODE,1 is set in this point. (SUBMODE=2 or 3)
00575 ;**

0143 00576 ChargDis
0143 22B7 00577 call ClrRow1 ; in both cases row 1 must be cleared
0144 1811 00578 btfsc SUBMODE,0 ; test if SUBMODE,0 set, if so...
0145 2952 00579 goto Charge ; ...jump to Charge (SUBMODE=3)

00580 ; ...else continue to disch (SUBMODE=2)
00581
00582 ;**
00583 ;* Discharge starts here (SUBMODE=2)
00584 ;* Cursor moved to line 1 under text "Disch."
00585 ;* Then command 02h (Home Cursor) issued to LCD controller, but this
00586 ;* is dummy command - sense is to freeze it after first nibble, and
00587 ;* thus to leave PORTB,0 (ENA) in high state as long as discharging
00588 ;* lasts. After the discharging termination (if volt monitor detects
00589 ;* <4V or key 2 pressed), the command for LCD controller will be
00590 ;* completed, switching discharging transistor off.
00591 ;* If discharging is broken by key, program returns to user interface
00592 ;* for mode 4, if terminated by voltage monitor, charging takes place
00593 ;**

0146 1086 00594 bcf PORTB,1 ; pull LCD Reg Select low (=instr)
0147 0103 00595 clrw ; high nibble of instruction 02h = 0h
0148 23F1 00596 call Hinib_B ; output W,4-7 to 4-bit LCD data bus
0149 23ED 00597 call EnaLCD ; generate En signal (1200us) for LCD
014A 3020 00598 movlw 20h ; command 02h=home cursor(swap nibbles)

00599
014B 23F1 00600 call Hinib_B ; output W,4-7 to 4-bit LCD data bus
014C 1406 00601 bsf PORTB,0 ; ENA activated (the command won’t be

00602 ; finished until Break or voltage < 4V)
014D 00603 DisLoop
014D 1D85 00604 btfss PORTA,3 ; test key 2 status...
014E 2930 00605 goto ExitDis ; if low,disching manually broke by key

00606
014F 1C85 00607 btfss PORTA,1 ; test voltage monitor...
0150 294D 00608 goto DisLoop ; if still >=4V, loop

00609 ; dischging terminated (voltage < 4V)
00610

0151 23BD 00611 call DisEna30 ; switch off discahge transistor
00612
00613 ;**
00614 ;* Charging starts here (by command or after successful discharging)
00615 ;* Minute and hour counters are init’d and counting process starts.
00616 ;* Clock(in format HH:MM) is displayed in line 1 under text "Charge".
00617 ;* If charging broken by key, program returns to user interface for
00618 ;* mode 4, if terminated by timeout (14 hours), the unit jumps to
00619 ;* SUICIDE (switches off the unit forcing the output PORTB,3 low).
00620 ;**

0152 00621 Charge ; Charge entry point
00622

0152 019B 00623 clrf TIMOUTL ; initialize minute counter 0...59
0153 019C 00624 clrf TIMOUTH ; initialize hour counter 0...13
0154 00625 ChLoop
0154 308B 00626 movlw 8bh ; position of digital clock on LCD
DS00689A-page 2-26 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 27 Thursday, March 2, 2000 8:02 AM
0155 23CF 00627 call WrComL ; cursor to digital clock pos
0156 081C 00628 movf TIMOUTH,W ; TIMOUTH=hours in binary format
0157 2370 00629 call Print255 ; print hour in format HH
0158 303A 00630 movlw ’:’ ; ":" = separator
0159 21D1 00631 call PrintTL ; print ":" and minute in format MM

00632
015A 30E4 00633 movlw .228 ; 228 x 263270.4 us = 60 sec
015B 008F 00634 movwf SCRATCH ; high byte loop counter for 1 min loop
015C 00635 Min1
015C 23D2 00636 call GoLoop ; 1283t (513.2us) inclusive ; 1283t
015D 23D2 00637 call GoLoop ; total 1026.4us ; 1283t

00638
015E 1D85 00639 btfss PORTA,3 ; 2t test status of key 2...
015F 2931 00640 goto Break4 ; - ...if low,chg manually terminated

00641
0160 0B94 00642 decfsz COUNT,F ; 1t low byte loop counter
0161 295C 00643 goto Min1 ; 2t inner pass 1028.4 us

00644
0162 0B8F 00645 decfsz SCRATCH,F ; high byte loop counter for 1 minute
0163 295C 00646 goto Min1 ; one pass 263270.4 us

00647
0164 0A9B 00648 incf TIMOUTL,F ; advance minute counter
0165 081B 00649 movf TIMOUTL,W ; TIMOUTL = minute up counter
0166 3EC4 00650 addlw -.60 ; test if 60 minutes of charging done..
0167 1C03 00651 btfss STATUS,C ; if 60 minutes passed, C should be set
0168 296B 00652 goto NotHour ; not yet hour advance
0169 019B 00653 clrf TIMOUTL ; if 60 minutes done, clr minute cntr
016A 0A9C 00654 incf TIMOUTH,F ; ..and advance TIMOUTH=hour up counter
016B 00655 NotHour
016B 081C 00656 movf TIMOUTH,W ; TIMOUTH = hour up counter
016C 3EF2 00657 addlw -.14 ; test if 14 hours of charging
016D 1C03 00658 btfss STATUS,C ; if 14 hours passed, C should be set
016E 2954 00659 goto ChLoop ; ...if not yet 14 hours, loop
016F 29BC 00660 goto Suicide ; charging terminated after 14 h

00661
00662 ;******* KEYBOARD AND PROBE
00663 ;***
00664 ;* CurPosKb
00665 ;* This subroutine places cursor in line 2 at position taken from the
00666 ;* lookup table: table offset is addressed by W at input, and table
00667 ;* read location by variable SUBMODE.
00668 ;* High timeout counter (TIMOUTH) is initialized. This sets automatic
00669 ;* Power Off timing to about 8 minutes. TIMOUTL is of minor importance
00670 ;* here (it affects less than 2 secs of timing), so it was not worth
00671 ;* waisting one instruction word.
00672 ;* Bit DEBO,0 set to disable false recognizing of PORTA,3 low level as
00673 ;* falling edge (as if key 2 was just pressed). This could happen if
00674 ;* some function was broken by pressing key2, as those are simple port
00675 ;* tests without affecting debouncer.
00676 ;* This subroutine continues to keyboard scan subroutine.
00677 ;*
00678 ;* Input variables: SUBMODE, affects cursor position
00679 ;* Output variables: TIMOUTH=0, high timeout counter
00680 ;***

0170 00681 CurPosKb
0170 0711 00682 addwf SUBMODE,W ; add SUBMODE to lookup table offset
0171 23B6 00683 call PclSub ; get cursor position from table
0172 23CF 00684 call WrComL ; write new cursor position to LCD
0173 019C 00685 clrf TIMOUTH

00686
0174 1412 00687 bsf DEBO1,0 ; set any bit in both debouncers...
0175 1413 00688 bsf DEBO2,0 ; ...to disable false recognizing of...

00689 ; ...low level as falling edge
00690
00691 ;***
00692 ;* GoKbd
 1900 Microchip Technology Inc. DS00689A-page 2-27

AN689

S2.book Page 28 Thursday, March 2, 2000 8:02 AM
00693 ;* Is main keyboard subroutine, in which program loops all the time
00694 ;* except in freq counter mode, or while wait for start condition or
00695 ;* executing some command. Program exits subrout only if some key is
00696 ;* just pressed (not if continuosly pressed), or when timeout counter
00697 ;* (TIMOUTH, TIMOUTL) after 8 min reaches zero. If key 1 was pressed,
00698 ;* flag STATUS,C will be reset at exit, if key 2 was pressed, flag
00699 ;* STATUS,C will be set. If timeout detected, the routine SUICIDE is
00700 ;* executed (the unit is switched off forcing the output PORTB,3 low).
00701 ;* During keyboard scan, LEDs L, H and P are serviced. Logic state at
00702 ;* PORTA,4 affects LEDs L and H directly, and LED P is under control
00703 ;* of down counter PCOUNT. This counter is initialized at every logic
00704 ;* level transition at PORTA,4, and while counting down, if PCOUNT>0,
00705 ;* LED P is switched on.
00706 ;* Loop labeled "Unstable" adds the extra delay which timing is not
00707 ;* constant, but changes from 3 to 49t. This mins the interference
00708 ;* between the input scan and tested signal frequency.
00709 ;* Counter TMR0 is used for detecting of short pulses. At each
00710 ;* transition detected, TMR0 is cleared, then periodicaly tested if
00711 ;* counter state was incremented. If so, PCOUNT is initialized and LED
00712 ;* P turned on.
00713 ;* Register DJNZ is used as a freerunning counter, which divides loop
00714 ;* count by 256 and slows down PCOUNT countdown / keys scanning. Keys
00715 ;* are debounced and falling edge (pressing moment) detected by
00716 ;* rotating registers DEBO1 and DEBO2, and testing them if the key was
00717 ;* unpressed at least at 7 passes and then pressed at 1 pass.
00718 ;*
00719 ;* Input variables: none
00720 ;* Output variables: Bit STATUS,C reset if key 1 pressed, set if key 2
00721 ;***

0176 00722 GoKbd
0176 080E 00723 movf DJNZ,W ; 1t to avoid intrference,total avg 29t
0177 38F0 00724 iorlw 0f0h ; 1t extra time range from -.16 and -1
0178 008F 00725 movwf SCRATCH ; 1t here SCRATCH varies 0f0h to 0ffh
0179 00726 UnStable
0179 0F8F 00727 incfsz SCRATCH,F ; 1-17t (avg .9) adv extra timing count
017A 2979 00728 goto UnStable ; 2-32t (avg .17) loop loses extra time

00729
017B 0801 00730 movf TMR0,W ; TMR0 = hardware transition detector
017C 1903 00731 btfsc STATUS,Z ; test if transition at PORTA,4...
017D 2980 00732 goto NoIniP ; ...if not, do not affect LED P status
017E 1590 00733 bsf PCOUNT,3 ; initialize PCOUNT for LED P timing
017F 0181 00734 clrf TMR0 ; re-init hardware transition detector
0180 00735 NoIniP
0180 3028 00736 movlw 28h ; bit 4 (TOSE) RESET: L-to-H transition
0181 1A05 00737 btfsc PORTA,4 ; if probe tip low,leave TOSE reset...
0182 3038 00738 movlw 38h ; if high, set TOSE: H-to-L transition

00739
0183 1683 00740 bsf STATUS,RP0 ; select bank 1 of registers
0184 0081 00741 movwf OPTION_REG ; set/reset TOSE
0185 1283 00742 bcf STATUS,RP0 ; reselect bank 0

00743
0186 1019 00744 bcf DELAYH,0 ; init input bit in delay HI rotor
0187 1018 00745 bcf DELAYL,0 ; init input bit in delay LOW rotor
0188 3004 00746 movlw 4 ; value 4 = bit 2 set
0189 0686 00747 xorwf PORTB,F ; change state of PORTB.2 (square wave.

00748 ; generation probe tip hi-imp output
018A 1A05 00749 btfsc PORTA,4 ; test probe input logic level...
018B 2990 00750 goto InputHi ; ...and jump if case 2: input high

00751 ; ...or continue if case 1: input low
018C 1D06 00752 btfss PORTB,2 ; test hi-impedance output state and...
018D 1418 00753 bsf DELAYL,0 ; ...turn on led L, hi-ipm out was lo
018E 110C 00754 bcf FLAG,PTIP ; reset flag to notify that previous...

00755 ; ...state of probe tip was low
018F 2993 00756 goto ContInpX ; jump to skip case 2
0190 00757 InputHi ; entry point for case 2: input high
0190 1906 00758 btfsc PORTB,2 ; test hi-impedance output state and...
DS00689A-page 2-28 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 29 Thursday, March 2, 2000 8:02 AM
0191 1419 00759 bsf DELAYH,0 ; ...turn on led L, PORTB,2 was high
0192 150C 00760 bsf FLAG,PTIP ; set flag to notify that previoust...

00761 ; ...state of probe tip was high
0193 00762 ContInpX ; moves LHP leds from FLAG to PORTB
0193 138C 00763 bcf FLAG,LEDL ; init input bit for led L delay rotor
0194 0898 00764 movf DELAYL,F ; test DEALYL status...
0195 1D03 00765 btfss STATUS,Z ; ...and skip if DELAYL=0
0196 178C 00766 bsf FLAG,LEDL ; turn on led L if DELAYL rotor > 0
0197 0D98 00767 rlf DELAYL,F ; propagate bit thru DELAYL rotor

00768
0198 130C 00769 bcf FLAG,LEDH ; init input bit for led H delay rotor
0199 0899 00770 movf DELAYH,F ; test DEALYH status...
019A 1D03 00771 btfss STATUS,Z ; ...and skip if DELAYH=0
019B 170C 00772 bsf FLAG,LEDH ; turn on led H if DELAYH rotor > 0
019C 0D99 00773 rlf DELAYH,F ; propagate bit thru DELAYH rotor

00774
019D 23F0 00775 call MoveLESd ; send leds status flag bits to PORTB

00776
019E 0F8E 00777 incfsz DJNZ,F ; test if this is 256th pass...
019F 2976 00778 goto GoKbd ; ...if not, loop

00779
00780 ;------------------------- passes here each 256 pass (about 8.9ms)
00781

01A0 128C 00782 bcf FLAG,LEDP ; reset led P flag (set if PCOUNT>0)
01A1 0890 00783 movf PCOUNT,F ; test PCOUNT status...
01A2 1903 00784 btfsc STATUS,Z ; ...and skip jump if PCOUNT>0
01A3 29A9 00785 goto PCount0 ; ...else jump if PCOUNT = 0

00786
01A4 0390 00787 decf PCOUNT,F ; if PCOUNT>0, then decrement it
01A5 0818 00788 movf DELAYL,W ; W>0 if led L is on
01A6 0419 00789 iorwf DELAYH,W ; W>0 if led L or led H is on
01A7 1D03 00790 btfss STATUS,Z ; ...skip if both L and H leds are off
01A8 168C 00791 bsf FLAG,LEDP ; if PCOUNT>0, dec PCOUNT, & set led P
01A9 00792 PCount0

00793 ; ----------- key 2 test (right key)
01A9 0E05 00794 swapf PORTA,W ; let key 1&2 status move to bits 6&7
01AA 008F 00795 movwf SCRATCH ; SCRATCH,7=key2, SCARTCH,6=key1
01AB 098F 00796 comf SCRATCH,F ; complement to set bit if key pressed

00797
01AC 0D8F 00798 rlf SCRATCH,F ; set C if key 2 pressed

00799
01AD 0D93 00800 rlf DEBO2,F ; propagate key 2 bit thru rotor
01AE 1003 00801 bcf STATUS,C ; reset C,notify at exit key 2 pressed
01AF 0313 00802 decf DEBO2,W ; DEBO2 = b’00000001’ if just pressed
01B0 1903 00803 btfsc STATUS,Z ; skip return if key 2 not just pressed
01B1 0008 00804 return ; *** exit 1: key 2 just pressed (NC)

00805
00806 ; ----------- key 1 test (left key)
00807

01B2 0D8F 00808 rlf SCRATCH,F ; set C if key 1 pressed
00809

01B3 0D92 00810 rlf DEBO1,F ; propagate key 1 bit thru rotor
01B4 1403 00811 bsf STATUS,C ; set C, notify at exit key 1 pressed
01B5 0312 00812 decf DEBO1,W ; DEBO1 = b’00000001’ if just pressed
01B6 1903 00813 btfsc STATUS,Z ; skip return if key 1 not just pressed
01B7 0008 00814 return ; *** exit 2: key 1 just pressed (C)

00815
01B8 0B9B 00816 decfsz TIMOUTL,F ; timeout lo counter...
01B9 2976 00817 goto GoKbd ; ... not yet zero: loop

00818
01BA 0B9C 00819 decfsz TIMOUTH,F ; timeout hi counter...
01BB 2976 00820 goto GoKbd ; ... not yet zero: loop

00821 ; *** exit 3:cont with timeout process
00822
00823 ;***
00824 ;* Power Off entry point
 1900 Microchip Technology Inc. DS00689A-page 2-29

AN689

S2.book Page 30 Thursday, March 2, 2000 8:02 AM
00825 ;* Wait until both keys off for 34 ms, and then switch power off.
00826 ;* PORTB,3, when low, switches the unit off.
00827 ;**

01BC 00828 Suicide
01BC 21BF 00829 call KeysOff ; test keys off to avoud re-trigering
01BD 0186 00830 clrf PORTB ; pull PORTB,3 low to switch power off
01BE 29BE 00831 goto $; loop until power off

00832
00833 ;***
00834 ;* KeysOff
00835 ;* Loop until both keys off for 34 ms, then exit
00836 ;*
00837 ;* Input variables: none
00838 ;* Output variables: TIMOUTH is cleared to 0
00839 ;**

01BF 00840 KeysOff
01BF 019C 00841 clrf TIMOUTH ; initialize pointer
01C0 00842 BothOff
01C0 1905 00843 btfsc PORTA,2 ; skip if key 1 on
01C1 1D85 00844 btfss PORTA,3 ; do not skip if key 2 on
01C2 29BF 00845 goto KeysOff ; reinitialize ptr if any key on
01C3 23D0 00846 call loop130 ; loop 130us
01C4 0B9C 00847 decfsz TIMOUTH,F ; test pointer
01C5 29C0 00848 goto BothOff ; loop 256xs to verify both keys off
01C6 0008 00849 return ; both keys are off for at least 34 ms

00850
00851 ;******* ANALYZER
00852 ;***
00853 ;* Pointer2
00854 ;* Writes 2 measuring points for analyzer reference. 1st=TIMOUTL*10+5,
00855 ;* then TIMOUTL is incremented by 2 and the second one is TIMOUTL*10+0
00856 ;*
00857 ;* Input variables: TIMOUTL will first be printed as TIMOUTL*10+5
00858 ;* Output variables: TIMOUTL incremented by 3 (pointer advanced by 30)
00859 ;***

01C7 00860 Pointer2
01C7 21CF 00861 call Pointer1 ; first two digits
01C8 3035 00862 movlw ’5’ ; third digit is 5 for odd pointer
01C9 0A9B 00863 incf TIMOUTL,F ; each incr advances pointer by 10
01CA 21CD 00864 call AdvToCh ; advance ptr and print "5"
01CB 21CF 00865 call Pointer1 ; first two digits
01CC 304F 00866 movlw ’O’ ; third digit is 0 for even pointer
01CD 00867 AdvToCh
01CD 0A9B 00868 incf TIMOUTL,F ; each incr advances pointer by 10
01CE 2BD8 00869 goto Char ; print 0 or 5

00870
00871 ;***
00872 ;* Pointer1
00873 ;* Writes blank, then symbol "^" and then converts TIMOUTL and prints
00874 ;* as 2 digits.
00875 ;*
00876 ;* Input variables: TIMOUTL, bin value which prints as 2-digits
00877 ;* Output variables: none
00878 ;***

01CF 00879 Pointer1
01CF 23D7 00880 call Blank ; skip first 3 samples (one character)
01D0 305E 00881 movlw ’^’ ; "^" (pointing tool)
01D1 00882 PrintTL
01D1 23D8 00883 call Char ; print "^"
01D2 081B 00884 movf TIMOUTL,W ; TIMOUTL is the main pointer for...
01D3 2B70 00885 goto Print255 ; ...first two digits

00886
00887 ;***
00888 ;* Mode1Show
00889 ;* Write measuring points at row 2, and wait until keys are released.
00890 ;* Then incr. SHOWCOU in range 0...4 and continue to Draw subroutine
DS00689A-page 2-30 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 31 Thursday, March 2, 2000 8:02 AM
00891 ;* This command,which executes when key 2 is pressed in analyzer mode,
00892 ;* while the cursor is on the number of 60-sample group, advances the
00893 ;* pointer.
00894 ;* It continues to Draw routine.
00895 ;***

01D4 00896 Mode1Show
01D4 23CE 00897 call Row2 ; pointers are in row 2
01D5 1003 00898 bcf STATUS,C ; prepare for multiplying by 2
01D6 0D17 00899 rlf SHOWCOU,W ; W=SHOWCOU*2
01D7 009B 00900 movwf TIMOUTL ; TIMOUTL=SHOWCOU*2
01D8 0D9B 00901 rlf TIMOUTL,F ; TIMOUTL-SHOWCOU*4
01D9 079B 00902 addwf TIMOUTL,F ; TIMOUTL-SHOWCOU*6

00903
01DA 21C7 00904 call Pointer2 ; print 1st and 2nd pointer
01DB 21C7 00905 call Pointer2 ; print 3rd and 4th pointer

00906
01DC 21BF 00907 call KeysOff ; wait until key off
01DD 227D 00908 call PrintM1 ; restore normal row 2

00909
01DE 0A97 00910 incf SHOWCOU,F ; advance number of groups displayed
01DF 1917 00911 btfsc SHOWCOU,2 ; test if SHOWCOU=5: first test bit2...
01E0 1C17 00912 btfss SHOWCOU,0 ; test if SHOWCOU=5: ...then test bit 0
01E1 29E3 00913 goto Draw ; skip wrapping if SHOWCOU<5
01E2 0197 00914 clrf SHOWCOU ; SHOWCOU cycle in range 0...4

00915
00916 ;***
00917 ;* Draw
00918 ;* This subroutine writes 20 pseudographic chars in line 1 in analyzer
00919 ;* mode. First, whole buffer is rotated 0/60/120/180/240 bit places to
00920 ;* the right (if SHOWCOU=0/1/2/3/4,respectively) to adj. the sequence
00921 ;* to be displayed to the start of the buffer. Then the string of 20
00922 ;* 3-bit groups is rotated right, and displayed as 20 special chars
00923 ;* (codes 0-7), defined at program setup (at loop labeled GoGraph).
00924 ;* Then the buffer is rotated again, to the total of 304 bit places,
00925 ;* so the buffer contents is unmodified on exit.
00926 ;*
00927 ;* Input variables:
00928 ;* SHOWCOU, denotes which group of 60 samples will be displayed
00929 ;* Output variables: none
00930 ;***

01E3 00931 Draw
01E3 0817 00932 movf SHOWCOU,W ; prep to rotate buf SHOWCOU*60 times
01E4 1D03 00933 btfss STATUS,Z ; avoid rotating if SHOWCOU=0
01E5 21F9 00934 call Carusel ; rotate buffer SHOWCOU*60 times

00935
01E6 22BF 00936 call Row1 ; samples must be written in row 1
01E7 3014 00937 movlw .20 ; .20 characters to write
01E8 0096 00938 movwf CHARCOU ; CHARCOU is the main character counter
01E9 00939 Go20Chars
01E9 018F 00940 clrf SCRATCH ; register for 3-bit code gen (0...7)
01EA 2202 00941 call RRBuf ; bit from buffer in C...
01EB 0D8F 00942 rlf SCRATCH,F ; ...bit from C in code register
01EC 2202 00943 call RRBuf ; bit from buffer in C...
01ED 0D8F 00944 rlf SCRATCH,F ; ...bit from C in code register
01EE 2202 00945 call RRBuf ; bit from buffer in C...
01EF 0D0F 00946 rlf SCRATCH,W ; ...bit from C in code reg and in W
01F0 23D9 00947 call CharNCC ; draw one char = 3 samples
01F1 0B96 00948 decfsz CHARCOU,F ; 20 characters written?
01F2 29E9 00949 goto Go20Chars ; no, loop

00950
01F3 0817 00951 movf SHOWCOU,W ; prep to rotate to total of 304 bits
01F4 3C04 00952 sublw .4 ; W=4-SHOWCOU
01F5 1D03 00953 btfss STATUS,Z ; avoid rotating if SHOWCOU=0
01F6 21F9 00954 call Carusel ; rotate buffer again to restore it
01F7 2200 00955 call RRBuf4 ; four more times to get 304 times
01F8 28CD 00956 goto Farm1 ; done, go back to user interface
 1900 Microchip Technology Inc. DS00689A-page 2-31

AN689

S2.book Page 32 Thursday, March 2, 2000 8:02 AM
00957
00958 ;***
00959 ;* Carusel
00960 ;* This subroutine rotates BUFFER right W*60 times
00961 ;* Note: if W=0, rotating will be performed 1024 times
00962 ;*
00963 ;* Input variables: W,how many (*60) x the buf is rotated right (W>0)
00964 ;* Output variables: none
00965 ;***

01F9 00966 Carusel
01F9 008F 00967 movwf SCRATCH ; SCRATCH=W
01FA 0E8F 00968 swapf SCRATCH,F ; SCRATCH=W*16
01FB 028F 00969 subwf SCRATCH,F ; SCRATCH=W*15
01FC 00970 RRLoop
01FC 2200 00971 call RRBuf4 ; 4 rotates in every pass
01FD 0B8F 00972 decfsz SCRATCH,F ; done W*15*4 times?
01FE 29FC 00973 goto RRLoop ; no, continue rotating BUFFER
01FF 0008 00974 return ; done

00975
00976 ;***
00977 ;* RRBuf4 executes RRBuf 4 times
00978 ;* RRBuf rotates buffer(38 bytes=304 bits) right for one bit position.
00979 ;* Bit STATUS,C is first loaded from the first bit in buffer, so
00980 ;* will rotating be completely performed at 304 bits, not through C.
00981 ;*
00982 ;* Input/Output variables: none
00983 ;***

0200 00984 RRBuf4 ; 4 times rotates right 38 bytes
0200 2201 00985 call RRBuf2 ; rotate BUFFER 2* and then again 2*
0201 00986 RRBuf2
0201 2202 00987 call RRBuf ; rotate BUFF once and then again once
0202 00988 RRBuf ; rotates rt 38 bytes,bit in C at exit
0202 304B 00989 movlw BUFFER+.37 ; start with last byte to be rotated
0203 0084 00990 movwf FSR ; FSR = pointing register for rotating
0204 3026 00991 movlw .38 ; 38 bytes total buffer
0205 0094 00992 movwf COUNT ; byte counter

00993
0206 1003 00994 bcf STATUS,C ; C rotated into BUFFER+.37,so it...
0207 1826 00995 btfsc BUFFER,0 ; ...must be equal to bit BUFFER+0,0...
0208 1403 00996 bsf STATUS,C ; ...to perform non-destruct rotating
0209 00997 ByteLoop
0209 0C80 00998 rrf INDF,F ; byte rotated here
020A 0384 00999 decf FSR,F ; let FSR point to next byte
020B 0B94 01000 decfsz COUNT,F ; COUNT is byte counter, done?
020C 2A09 01001 goto ByteLoop ; no, loop
020D 0008 01002 return ; here the output bit is in STATUS,C

01003
01004 ;***
01005 ;* Mode1Go
01006 ;* This is entry point for analyzer start command (symbol *). After
01007 ;* clearing line1 of LCD, the program vectors to routines which handle
01008 ;* different sampling rates. Three highest rates (1 MHz, 500 KHz and
01009 ;* 228 KHz are sampled at individual routines (Get1MHz, Get500KHz and
01010 ;* Get228KHz), andthe remining rates at routine GetSlowClk. All those
01011 ;* routines (except Get1MHz, which is location-sensitive (so it is at
01012 ;* the very beginning of the program), are listed here.
01013 ;*
01014 ;* Input/Output variables: none
01015 ;***

020E 01016 Mode1Go ; *** ept: analyzer start
01017

020E 22B7 01018 call ClrRow1 ; clear LCD line 1 and turn LEDs off
01019

020F 0815 01020 movf RATE,W ; RATE = sample rate in range 0...15
0210 1903 01021 btfsc STATUS,Z ; skip if sample rate>0
0211 2801 01022 goto Get1MHz ; jump to individual routine if RATE=0
DS00689A-page 2-32 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 33 Thursday, March 2, 2000 8:02 AM
01023
01024 ; --- try 500 KHz rate

0212 008F 01025 movwf SCRATCH ; SCRATCH = RATE
0213 0B8F 01026 decfsz SCRATCH,F ; test if RATE=1
0214 2A2B 01027 goto Try228KHz ; if not RATE=1, then try if RATE=2

01028 ; if RATE=1, then drop to Get500KHz
01029
01030 ;***
01031 ;* Get500KHz
01032 ;* This subroutine fetches 304 samples at 2us rate (5 instr cycles
01033 ;* timing).
01034 ;* Call Common initializes loop counter (COUNT) to 38*8=304 samples
01035 ;* and FSR to point to BUFFER. It also presets T0SE bit depended on
01036 ;* XTOX bit (in FLAG register)to enable proper edge detecting, as it
01037 ;* will affect TMR0 state.
01038 ;* State of key 2(Break) tested while waiting for starting condition.
01039 ;*
01040 ;* Input/Output variables: none
01041 ;***

0215 01042 Get500KHz ; 5 t read cycle
0215 3026 01043 movlw .38 ; 38 bytes * 8 bits = 304 samples
0216 226F 01044 call Common ; initialize COUNT, FSR, hi-imp out...

01045 ; ...bit XTOX and T0SE bit
0217 01046 Edge500
0217 1D85 01047 btfss PORTA,3 ; test status of key 2 and...
0218 28CC 01048 goto Break ; ...jump to Break routine if pressed

01049
0219 0801 01050 movf TMR0,W ; TMR0 = logic level edge detector
021A 1903 01051 btfsc STATUS,Z ; test if there was egde...
021B 2A17 01052 goto Edge500 ; ...and loop if not
021C 0384 01053 decf FSR,F ; adj pointer as it will be advanced...

01054 ; ... before data write
021D 01055 Get500Loop
021D 0C85 01056 rrf PORTA,F ; <-- move input status to C
021E 0A84 01057 incf FSR,F ; advance write pointer
021F 0C80 01058 rrf INDF,F ; write bit C in destination rotor
0220 3006 01059 movlw .6 ; initialize count for 6 bits
0221 008E 01060 movwf DJNZ ; DJNZ = bit counter
0222 01061 Go6Bits
0222 0C85 01062 rrf PORTA,F ; <-- 6* move input status to C
0223 0C80 01063 rrf INDF,F ; write bit C in destination rotor
0224 0B8E 01064 decfsz DJNZ,F ; DJNZ = bit counter
0225 2A22 01065 goto Go6Bits ; loop if not yet 6 bits fetched

01066
0226 0C85 01067 rrf PORTA,F ; <-- move input status to C
0227 0C80 01068 rrf INDF,F ; write bit C in destination rotor
0228 0B94 01069 decfsz COUNT,F ; COUNT = byte counter
0229 2A1D 01070 goto Get500Loop ; loop if not yet 38 bytes fetched
022A 2A6A 01071 goto Finished ; all bits fetched; go display them

01072
01073 ;***
01074 ;* Test if register SCRATCH reaches 0 after decrementing(this happens
01075 ;* if RATE = 2), if so drop to Get228KHz else go to GetSlowClk
01076 ;***

022B 01077 Try228KHz
022B 0B8F 01078 decfsz SCRATCH,F ; test RATE status (SCRATCH=RATE-1)
022C 2A3F 01079 goto GetSlowClk ; jump if not RATE=2

01080
01081 ;***
01083 ;* This subroutine fetches 304 samples at 4.4us rate (11 instruction
01084 ;* cycles timing).
01085 ;* Call Common304 initializes loop counter (COUNT) to 304 samples
01086 ;* and FSR to point to BUFFER. It also presets T0SE bit depended on
01087 ;* XTOX bit (in FLAG register)to enable proper edge detecting, as it
01088 ;* will affect TMR0 state.
01089 ;* State of key 2(Break) tested while waiting for starting condition.
 1900 Microchip Technology Inc. DS00689A-page 2-33

AN689

S2.book Page 34 Thursday, March 2, 2000 8:02 AM
01090 ;*
01091 ;* Input/Ouput variables: none
01092 ;***

022D 01093 Get228KHz ; 11 t read cycle
022D 226C 01094 call Common304 ; init COUNT(lo), TIMOUTH(hi byte)...

01095 ; ...FSR, hi-imp outbit XTOX & T0SE bit
022E 01096 Edge228
022E 1D85 01097 btfss PORTA,3 ; test status of key 2 and...
022F 28CC 01098 goto Break ; ...jump to Break routine if pressed

01099
0230 0801 01100 movf TMR0,W ; TMR0 = logic level edge detector
0231 1903 01101 btfsc STATUS,Z ; test if there was egde...
0232 2A2E 01102 goto Edge228 ; ...and loop if not
0233 01103 Go228
0233 2A34 01104 goto $+1 ; 2 two extra cycles to make 11t
0234 01105 Go228B
0234 0C85 01106 rrf PORTA,F ; <--- ; 1 move input bit to C
0235 0C80 01107 rrf INDF,F ; 1 write bitC in destination rotor

01108
0236 0314 01109 decf COUNT,W ; 1 COUNT = bit counter
0237 3907 01110 andlw 7 ; 1 test if 8th pass...
0238 1903 01111 btfsc STATUS,Z ; 1 (2) ...and skip if not
0239 0A84 01112 incf FSR,F ; 1 (0) ...else advance pointer

01113
023A 0B94 01114 decfsz COUNT,F ; 1 COUNT = (lo byte) bit counter
023B 2A33 01115 goto Go228 ; 2 loop if not yet = 0
 01116
023C 0B9C 01117 decfsz TIMOUTH,F ; TIMOUTH = (hi byte) bit counter
023D 2A34 01118 goto Go228B ; this does not add extra cycles, as it
 01119 ; ...jumps after goto $+1
023E 2A6A 01120 goto Finished ; all bits fetched; go display them
 01121
 01122 ;***
 01123 ;* GetSlowClk
 01124 ;* This subroutine fetches 304 samples at variable rate, depended on
 01125 ;* RATE (SCRATCH=RATE-3). Timing constant is loaded from lookup table
 01126 ;* located at DATA EEPROM (locations 30h-3ch).
 01127 ;*
 01128 ;* Call Common304 initializes 16-bit loop counter to 304 samples
 01129 ;* (lo byte: COUNT=.304-.256, hi byte: TIMOUTH=.1)
 01130 ;* and FSR to point to BUFFER. It also presets T0SE bit depended on
 01131 ;* XTOX bit (in FLAG register)to enable proper edge detecting, as it
 01132 ;* will affect TMR0 state.
 01133 ;*
 01134 ;* Rates 3-11 (100KHz-2.4KHz) have loop period of factor from EEPROM
 01135 ;* table multiplied by 5 instruction cycles and adding 20 instruction
 01136 ;* cycles (Factor*5T+20T), and rates 12-15 (1.2KHz-40Hz) multilied the
 01137 ;* factor by 417 instruction cycles and adding 415 instruction cycle
 01138 ;* (Factor*417T+415T)
 01139 ;*
 01140 ;* RATE = 3, factor: 1, T/cycle: 25, Freq: 100 KHz
 01141 ;* RATE = 4, factor: 6, T/cycle: 50, Freq: 50 KHz
 01142 ;* RATE = 5, factor: 9, T/cycle: 65, Freq: 38.4 KHz
 01143 ;* RATE = 6, factor: 16, T/cycle: 100, Freq: 25 KHz
 01144 ;* RATE = 7, factor: 22, T/cycle: 130, Freq: 19.2 KHz
 01145 ;* RATE = 8, factor: 46, T/cycle: 250, Freq: 10 KHz
 01146 ;* RATE = 9, factor: 48, T/cycle: 260, Freq: 9.6 KHz
 01147 ;* RATE = 10, factor: 100, T/cycle: 520, Freq: 4.8 KHz
 01148 ;* RATE = 11, factor: 204, T/cycle: 1040, Freq: 2.4 KHz
 01149 ;* RATE = 12, factor: 5, T/cycle: 2500, Freq: 1 KHz
 01150 ;* RATE = 13, factor: 14, T/cycle: 6253, Freq: 400 Hz
 01151 ;* RATE = 14, factor: 59, T/cycle: 25018, Freq: 100 Hz
 01152 ;* RATE = 15, factor: 149, T/cycle: 62548, Freq: 40 Hz
 01153 ;*
 01154 ;* State of key 2 (Break) is tested while waiting for start condition.
 01155 ;* LED P is turned on while sampling, indicate sample period at slower
DS00689A-page 2-34 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 35 Thursday, March 2, 2000 8:02 AM
 01156 ;* rates, in which it appears to be visible.
 01157 ;*
 01158 ;* Input variables: RATE, affects timing factor
 01159 ;* Output variables: none
 01160 ;***
023F 01161 GetSlowClk
023F 030F 01162 decf SCRATCH,W ; W = RATE-3
0240 3E30 01163 addlw .48 ; rate table in data eeprom @ addr .48
 01164
0241 22AC 01165 call AGet_EE ; get time const. from dataeeprom table
0242 008F 01166 movwf SCRATCH ; time const for rates 3-15 -> SCRATCH
 01167
0243 226C 01168 call Common304 ; init COUNT(lo), TIMOUTH(hi byte)...
 01169 ; ...FSR, hi-imp outbit XTOX & T0SE bit
0244 01170 EdgeSlow
0244 1D85 01171 btfss PORTA,3 ; test status of key 2 and...
0245 28CC 01172 goto Break ; ...jump to Break routine if pressed
 01173
0246 0801 01174 movf TMR0,W ; TMR0 = logic level edge detector
0247 1903 01175 btfsc STATUS,Z ; test if there was egde...
0248 2A44 01176 goto EdgeSlow ; ...and loop if not
 01177
0249 1686 01178 bsf PORTB,5 ; turn led P on, notify sampling on
 01179
024A 01180 GoSlow
024A 0C85 01181 rrf PORTA,F ; <--- ; 1 move input bit to C
024B 0C80 01182 rrf INDF,F ; 1 write bitC in destination rotor
 01183
024C 0314 01184 decf COUNT,W ; 1 COUNT = bit counter
024D 3907 01185 andlw 7 ; 1 test if 8th pass...
024E 1903 01186 btfsc STATUS,Z ; 1 (2) ...and skip if not
024F 0A84 01187 incf FSR,F ; 1 (0) ...else advance pointer
 01188
0250 1995 01189 btfsc RATE,3 ; 1 1 if bits2 and 3 cleared, that...
0251 1D15 01190 btfss RATE,2 ; 2 1 ...means that rate<12...
0252 2A62 01191 goto Not417 ; - 2 ...if so, jump to short timing
 01192 ; --------417 (RATE 12-15,bits 2,3 set)
0253 080F 01193 movf SCRATCH,W ; 1 SCRATCH = timing constant
0254 0096 01194 movwf CHARCOU ; 1 CHARCOU = loop counter
0255 01195 Loop417 ; \
0255 3052 01196 movlw .82 ; 1 \
0256 008E 01197 movwf DJNZ ; 1 \
0257 23D3 01198 call Loop7 ; 411 > total cyc here 417*SCRATCH-1
0258 0000 01199 nop ; 1 /
0259 0B96 01200 decfsz CHARCOU,F ; 1 / 2t at exit only
025A 2A55 01201 goto Loop417 ; 2 / 0t at exit only
 01202
025B 0806 01203 movf PORTB,W ; 1
025C 39DF 01204 andlw 0dfh ; 1 reset bit 5 (LED P)
025D 1E14 01205 btfss COUNT,4 ; 1 2
025E 3820 01206 iorlw 20h ; 1 0 set bit 5 (LED P) if COUNT,4 = 0
025F 0086 01207 movwf PORTB ; 1 blink LED P while sampling each
 01208 ; 16th pass
0260 304E 01209 movlw .78 ; 1 constant for long timing
0261 2A64 01210 goto SameAs5 ; 2 skip short timing
0262 01211 Not417 ; ---------- 5 (RATE 3-11)
0262 2A63 01212 goto $+1 ; 2 waist 2 cycles
0263 080F 01213 movf SCRATCH,W ; 1 SCRATCH = timing constant
0264 01214 SameAs5 ; ---------- 417 and 5 (RATE 3-15)
0264 008E 01215 movwf DJNZ ; 1 DJNZ = loop counter
0265 23D2 01216 call GoLoop ; short time: 3T+5T*SCRATCH, long:393T
 01217
0266 0B94 01218 decfsz COUNT,F ; 1 COUNT = (lo byte) bit counter
0267 2A4A 01219 goto GoSlow ; 2 loop if not yet = 0
 01220
0268 0B9C 01221 decfsz TIMOUTH,F ; TIMOUTH = (hi byte) bit counter
 1900 Microchip Technology Inc. DS00689A-page 2-35

AN689

S2.book Page 36 Thursday, March 2, 2000 8:02 AM
0269 2A4A 01222 goto GoSlow ; adds 2T extra 1time, after 48th pass
026A 01223 Finished
026A 0197 01224 clrf SHOWCOU ; reset pointer to 1st group of 60 samp
026B 29E3 01225 goto Draw ; all bits fetched; display them
 01226
 01227 ;***
 01228 ;* Common304
 01229 ;* This subroutine initializes low byte loop counter (COUNT) to 304
 01230 ;* samples (lo byte: COUNT=.304-.256, hi byte: TIMOUTH=.1+1)
 01231 ;* and FSR to point to BUFFER. It also presets T0SE bit depended on
 01232 ;* XTOX bit (in FLAG register)to enable proper edge detecting, as it
 01233 ;* will affect TMR0 state.
 01234 ;* Entry point Common allows subroutines Get1MHz and GetSlowClk to
 01235 ;* preset COUNT to another values.
 01236 ;*
 01237 ;* Input variables:
 01238 ;* For entry point COMMON, register W is placed in COUNT
 01239 ;* Output variables:
 01240 ;* COUNT is initialized to # of loop passes (W or low byte of 304)
 01241 ;* TMR0 is cleared
 01242 ;* T0SE and PORTB,2 are copied from FLAG,XTOX
 01243 ;***
026C 01244 Common304
026C 3002 01245 movlw .2 ; hi byte=2 for reg lo byte value...
 01246 ; ...plus extra 256 passes
026D 009C 01247 movwf TIMOUTH ; hi byte loop counter for 304 passes
026E 3030 01248 movlw .304-.256 ; lo byte value for 304 passes
026F 01249 Common
026F 0094 01250 movwf COUNT ; COUNT = loop counter
0270 3026 01251 movlw BUFFER ; first byte of destination
0271 0084 01252 movwf FSR ; FSR = destination pointer
 01253
0272 3028 01254 movlw 28h ; initialize T0SE fot L-to-H transition
0273 1106 01255 bcf PORTB,2 ; clr hi-imp out if expecting rise edge
 01256
0274 1A0C 01257 btfsc FLAG,XTOX ; test slctd edge for start condition
0275 2A78 01258 goto ToOption ; and skip falling edge if rise slctd
 01259
0276 3038 01260 movlw 38h ; initialize T0SE fot H-to-L transition
0277 1506 01261 bsf PORTB,2 ; set hi-imp out if expecting fall edge
0278 01262 ToOption
0278 1683 01263 bsf STATUS,RP0 ; select bank 1 of registers
0279 0081 01264 movwf OPTION_REG ; set/reset TOSE
027A 1283 01265 bcf STATUS,RP0 ; reselect bank 0
027B 0181 01266 clrf TMR0 ; initialize TMR0 as edge detector
027C 0008 01267 return ; finished
 01268
 01269 ;***
 01270 ;* PrintM1
 01271 ;* Print string at line 2 in analyzer mode.
 01272 ;* At pos 0, rate in format XX[[.]X][M|K]Hz/XX[[.]X][u|m]s is printed.
 01273 ;* Those values picked from table located in Data EEPROM, locations
 01274 ;* 0-2Fh. Register CHARCOU is used to fill blanks up to pos 13 in line
 01275 ;* 2, to disable phantom characters appearance when changing rate from
 01276 ;* some long-string to short-string value.
 01277 ;* Symbol for starting or rising edge for starting event is written at
 01278 ;* pos 13, symbol "*" for start command at pos 15 and the number of
 01279 ;* group displayed at pos. 17.
 01280 ;*
 01281 ;* Input variables:
 01282 ;* RATE will be printed in pos 0, row2
 01283 ;* bit FLAG,XTOX affects the printed symbol of rising/falling edge
 01284 ;* SHOWCOU (number of group displayed) is printed as numeric (+1)
 01285 ;* Output variables: none
 01286 ;***
027D 01287 PrintM1
DS00689A-page 2-36 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 37 Thursday, March 2, 2000 8:02 AM
027D 23CE 01288 call Row2 ; move cursor to row 2
 01289
027E 300D 01290 movlw .13 ; init counter for 13 char fix format
027F 0096 01291 movwf CHARCOU ; CHARCOU = character counter
 01292
0280 0815 01293 movf RATE,W ; W = RATE
0281 0715 01294 addwf RATE,W ; W = 2 * RATE
0282 0715 01295 addwf RATE,W ; W = 3 * RATE (ea rate has 3 bytes
 01296 ; in table)
0283 22AC 01297 call AGet_EE ; get 1st byte via table in data eeprom
0284 009B 01298 movwf TIMOUTL ; TIMOUTL = 1st byte from table
0285 0E1B 01299 swapf TIMOUTL,W ; move to bits 0-3, bits 4-7 are freq
 01300
0286 22AD 01301 call Get_EE ; get 2nd byte via table in data eeprom
 01302
0287 1B1B 01303 btfsc TIMOUTL,6 ; bit 6 = decimal point for frequency
0288 148C 01304 bsf FLAG,DP ; set decimal point bit if bit 6 set
 01305
0289 2373 01306 call Print3 ; display sampling frequency
 01307
028A 304D 01308 movlw ’M’ ; for "MHz" display
028B 0895 01309 movf RATE,F ; if RATE=0...
028C 1D03 01310 btfss STATUS,Z ; ...then let it be MHz
028D 304B 01311 movlw ’K’ ; for "KHz" display
028E 1B9B 01312 btfsc TIMOUTL,7 ; bit 7=KHz or MHz,skip 1st char if clr
028F 23D8 01313 call Char ; print "M" or "K" if bit 7 set
0290 3070 01314 movlw TxtHz-1+1 ; for "Hz" display
0291 23DD 01315 call Write ; print "Hz"
 01316
0292 081B 01317 movf TIMOUTL,W ; TIMOUTL = 1st byte from table
 01318
0293 22AD 01319 call Get_EE ; get 2nd byte via table in data eeprom
 01320
0294 191B 01321 btfsc TIMOUTL,2 ; bit 2 = decimal point for period
0295 148C 01322 bsf FLAG,DP ; set decimal point bit if bit 2 set
 01323
0296 2373 01324 call Print3 ; display digits for period
 01325
0297 30E4 01326 movlw 0e4h ; Greek "micro"
0298 1D9B 01327 btfss TIMOUTL,3 ; if bit 3 set, let it be "micro"
0299 306D 01328 movlw ’m’ ; ...if not, convert to "milli" (m)
029A 23D8 01329 call Char ; print "micro" or "m"
029B 3073 01330 movlw ’s’ ; s stands for seconds
029C 23D8 01331 call Char ; print "s"
029D 01332 XtraChar ; adds extra (CHARCOU) blanks
029D 3020 01333 movlw ’ ’ ; print blank to overprint prev string
029E 23D9 01334 call CharNCC ; print blank without affecting CHARCOU
029F 0B96 01335 decfsz CHARCOU,F ; CHARCOU=character counter
02A0 2A9D 01336 goto XtraChar ; loop if not yet pos 13
 01337
 01338 ; ----- here is start condition symbol
02A1 3001 01339 movlw 1 ; symbol of rising edge
02A2 1E0C 01340 btfss FLAG,XTOX ; let it be rising if XTOX set
02A3 3004 01341 movlw 4 ; symbol of falling edge
02A4 23D6 01342 call CharBl ; print symbol and blank
02A5 01343 KaoAna ; ----- here is "start" ("*") symbol
02A5 302A 01344 movlw ’*’ ; "start" symbol
02A6 23D6 01345 call CharBl ; print "start" symbol and blank
 01346 ; --- here follows # of 60 smples group
02A7 0A17 01347 incf SHOWCOU,W ; SHOWCOU = number of 60 samples group
02A8 23C9 01348 call Num ; print it (incremented by 1)
02A9 23D7 01349 call Blank ; print blank
02AA 01350 Arrow
02AA 307E 01351 movlw 7eh ; 7Eh=right arrow in LM032L char set
02AB 2BD8 01352 goto Char ; print arrow in rightmost pos
 01353
 1900 Microchip Technology Inc. DS00689A-page 2-37

AN689

S2.book Page 38 Thursday, March 2, 2000 8:02 AM
 01354 ;***
 01355 ;* AGet_EE
 01356 ;* Get_EE
 01357 ;* This is routine for reading from Data EEPROM. Writing to BIN4+0 and
 01358 ;* BIN4+1 is also integrated here, as those variables are used for bin
 01359 ;* to decimal conversion.
 01360 ;*
 01361 ;* Input variables: W, data address at AGet_EE
 01362 ;* Output variables: BIN4, binary data of rate display from DATA EEPROM
 01363 ;***
02AC 01364 AGet_EE
02AC 0089 01365 movwf EEADR ; initialize eeprom address pointer
02AD 01366 Get_EE
02AD 3903 01367 andlw 3 ; hi byte BIN4 for freq display
02AE 009F 01368 movwf BIN4+1 ; BIN4+1 = hi byte for range 0...999
 01369
02AF 1683 01370 bsf STATUS,RP0 ; select bank 1 of registers
02B0 1408 01371 bsf EECON1,RD ; set handshaking bit for data ee read
02B1 1283 01372 bcf STATUS,RP0 ; reselect bank 0
02B2 0808 01373 movf EEDATA,W ; reading from data eeprom
02B3 0A89 01374 incf EEADR,F ; adv address pointer for future read
02B4 009E 01375 movwf BIN4 ; lo byte BIN4 for freq display
02B5 108C 01376 bcf FLAG,DP ; clear decimal point flag
02B6 0008 01377 return ; finished
 01378
 01379 ;***
 01380 ;* ClrRow1
 01381 ;* SameAs20
 01382 ;* This subroutine clears line 1 of LCD and switches off LEDs. Entry
 01383 ;* point SameAs20 allows clearing some other number of character
 01384 ;* positions starting from line 1 of LCD. Alll LEDs are turned off,
 01385 ;* flags for LEDs also Cursor pointer of LCD is restored to first pos
 01386 ;* of line 1 at exit of subroutine.
 01387 ;*
 01388 ;* Input variables:
 01389 ;* entry point ClrRow1: none
 01390 ;* entry point SameAs20: W=number of characters to be cleared
 01391 ;* Output variables:
 01392 ;* CHARCOU is decremented by the number of cleared characters
 01393 ;* SHOWCOU is cleared to 0
 01394 ;***
 01395 ;* Row1
 01396 ;* This subroutine moves cursor to pos 0 of row 1 on LCD.
 01397 ;*
 01398 ;* Input variables: none
 01399 ;* Output variables: none
 01400 ;***
02B7 01401 ClrRow1
02B7 3014 01402 movlw .20 ; 20 spaces (one row) to write
02B8 01403 SameAs20
02B8 0097 01404 movwf SHOWCOU ; SHOWCOU = space counter
02B9 22BF 01405 call Row1 ; move cursor to row 1
02BA 01406 LoopClD
02BA 23D7 01407 call Blank ; print one space
02BB 0B97 01408 decfsz SHOWCOU,F ; SHOWCOU = space counter
02BC 2ABA 01409 goto LoopClD ; loop if not yet 20 spaces
 01410
02BD 301F 01411 movlw 1fh ; bits 7,6,5 (LED flags) reset
02BE 058C 01412 andwf FLAG,F ; turn LED flags off
02BF 01413 Row1
02BF 3080 01414 movlw 080h ; command for line 1
02C0 2BCF 01415 goto WrComL ; go write command
 01416
 01417 ;******* SERIAL CODE RECEIVER
 01418 ;***
 01419 ;* Mode2Show
DS00689A-page 2-38 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 39 Thursday, March 2, 2000 8:02 AM
 01420 ;* This subroutine advances SHOWCOU in range 0...5, and then continues
 01421 ;* to subroutine Show2
 01422 ;***
02C1 01423 Mode2Show
02C1 0A97 01424 incf SHOWCOU,F ; advance SHOWCOU
02C2 1917 01425 btfsc SHOWCOU,2 ; bits 1 & 2 will be set if SHOWCOU...
02C3 1C97 01426 btfss SHOWCOU,1 ; ...is equal to 5...
02C4 2AC6 01427 goto Show2 ; ...if not, skip clearing
02C5 0197 01428 clrf SHOWCOU ; cycle show counter in range 0...5
 01429
 01430 ;***
 01431 ;* Show2
 01432 ;* This subroutine prints the 7 bytes of Buffer (+0,+7,+14,+21,+28 or
 01433 ;* +35) in hex mode at line 1, and the same bytes in ASCII at line 2.
 01434 ;* ASCII representation is with bit 7 reset, and non-printables (<20h)
 01435 ;* are printed as dots
 01436 ;*
 01437 ;* Input variables:
 01438 ;* SHOWCOU, denotes which group of 7 bytes will be displayed
 01439 ;* Output variables:
 01440 ;* CHARCOU is decremented by the number of characters printed
 01441 ;***
02C6 01442 Show2
02C6 3025 01443 movlw BUFFER-1 ; source pointer for reading -1
02C7 1917 01444 btfsc SHOWCOU,2 ; if bit 2 of SHOWCOU set...
02C8 3E1C 01445 addlw .28 ; ...then add 28 (4 groups) to pointer
02C9 1897 01446 btfsc SHOWCOU,1 ; if bit 1 of SHOWCOU set...
02CA 3E0E 01447 addlw .14 ; ...then add 14 (2 groups) to pointer
02CB 1817 01448 btfsc SHOWCOU,0 ; if bit 0 of SHOWCOU set...
02CC 3E07 01449 addlw .7 ; ...then add 7 to pointer
02CD 0084 01450 movwf FSR ; FSR on (1st byte pos)-1 to display
 01451
02CE 22BF 01452 call Row1 ; move cursor to row 1
02CF 3007 01453 movlw .7 ; bytes to display
02D0 008F 01454 movwf SCRATCH ; SCRATCH = byte display counter
02D1 01455 Hex7
02D1 0A84 01456 incf FSR,F ; adv pointer (it was x-1 at beginning)
02D2 0E00 01457 swapf INDF,W ; move hi nibble to display1. hex digit
02D3 23F8 01458 call HexDigit ; display 1st digit in hex mode
02D4 0800 01459 movf INDF,W ; move lo nibble to disp 2nd hex digit
02D5 23F8 01460 call HexDigit ; display 2nd digit in hex mode
02D6 23D7 01461 call Blank ; blank after hex number
 01462
02D7 0B8F 01463 decfsz SCRATCH,F ; SCRATCH = byte counter
02D8 2AD1 01464 goto Hex7 ; loop if not yet 7 bytes
 01465
02D9 0804 01466 movf FSR,W ; FSR = read pointer
02DA 3EF9 01467 addlw -.7 ; restore it for ASCII mode printing
02DB 0084 01468 movwf FSR ; FSR on (1st byte pos)-1 to display
 01469
02DC 23CE 01470 call Row2 ; move cursor to row 2
02DD 3007 01471 movlw .7 ; bytes to display
02DE 008F 01472 movwf SCRATCH ; SCRATCH = byte display counter
02DF 01473 Ascii7
02DF 0A84 01474 incf FSR,F ; adv pointer (it was x-1 at beginning)
02E0 0800 01475 movf INDF,W ; read byte
02E1 397F 01476 andlw 7fh ; reduce ascii representation to 7 bits
 01477
02E2 3EE0 01478 addlw -20h ; test if byte < 20h
02E3 3E20 01479 addlw 20h ; restore previous value
02E4 1803 01480 btfsc STATUS,C ; C is set if byte < 20h
02E5 30A5 01481 movlw 0a5h ; represent non-printables as dots
 01482 ; (0a5h = dot)
02E6 23D8 01483 call Char ; display ascii char
 01484
02E7 0B8F 01485 decfsz SCRATCH,F ; SCRATCH = byte counter
 1900 Microchip Technology Inc. DS00689A-page 2-39

AN689

S2.book Page 40 Thursday, March 2, 2000 8:02 AM
02E8 2ADF 01486 goto Ascii7 ; loop if not yet 7 bytes
 01487
02E9 28ED 01488 goto Farm2 ; go back to user interface
 01489
 01490 ;***
 01491 ;* Mode2Go
 01492 ;* This is entry point for Start command in mode 2 (serial code rcver)
 01493 ;* Line 1 and first 7 positions (ASCII chars) of line 2 on LCD is clr.
 01494 ;* Here, buffer is cleared and a sequence of 42 bytes are received and
 01495 ;* written to buffer. Manual break (key 2) jumps to Break handling.
 01496 ;* This protocol is used: High start bit, 7 or 8 data (true) bits, 0 or
 01497 ;* 1 parity bit (not written to memory) and 1 low stop bit (not tested
 01498 ;* for validity). If RXBITS,2 is set then the input is inverted.
 01499 ;* Baud rates 1200-115200 are supported.
 01500 ;* Note: no receive errors are detected nor indicated.
 01501 ;*
 01502 ;* Input variables:
 01503 ;* RXRATE (range 0...7),which affects timing loaded via table BaudRate
 01504 ;* RXBITS, bits 0-2 significant:bit0=parity,bit1=7/8 bits,bit2=inverse
 01505 ;*
 01506 ;* Output variables:
 01507 ;* Buffer (42 bytes) loaded with bytes received, all unreceived bytes
 01508 ;* represented as 00s.
 01509 ;***
02EA 01510 Mode2Go
02EA 1106 01511 bcf PORTB,2 ; clear hi-imp probe output...
02EB 190D 01512 btfsc RXBITS,2 ; ...let it be low if polarity bit clr
02EC 1506 01513 bsf PORTB,2 ; set hi-imp output if polarity bit set
02ED 23B7 01514 call ClrBuf ; clear wholw buffer
02EE 302F 01515 movlw .47 ; .47 blanks to clear displayed values
02EF 22B8 01516 call SameAs20 ; clear displayed HEX and ASCII values
 01517
02F0 3026 01518 movlw BUFFER ; start of buffer...
02F1 0084 01519 movwf FSR ; ...assigned to destination pointer
 01520
02F2 081D 01521 movf RXRATE,W ; RXRATE = selected rate in range 0...7
02F3 3E68 01522 addlw BaudRate ; add to timing constant table offset
02F4 23B6 01523 call PclSub ; get rate to W
02F5 01524 RX42Bytes
02F5 008E 01525 movwf DJNZ ; baudrate timing factor to time cnter
 01526
02F6 0194 01527 clrf COUNT ; this is to preset bit counter to 8...
02F7 1594 01528 bsf COUNT,3 ; ...and not to disturb W
 01529
02F8 1C0D 01530 btfss RXBITS,0 ; RXBITS,0 is set if 7 bits selected
02F9 1C8D 01531 btfss RXBITS,1 ; RXBITS,1 is set if parity bit select
02FA 0A94 01532 incf COUNT,F ; if not(RXBITS and 3 = 2) then COUNT=9
 01533
02FB 180D 01534 btfsc RXBITS,0 ; RXBITS,0 is set if 7 bits selected
02FC 188D 01535 btfsc RXBITS,1 ; RXBITS,1 is set if parity bit select
02FD 0394 01536 decf COUNT,F ; ifnot(RXBITS and 3=1)reduce to 8 or 7
 01537
02FE 1D0D 01538 btfss RXBITS,2 ; RXBITS,2 set if inverse polar slctd
02FF 2B07 01539 goto GetSp2 ; jump to true polarity if RXBITS,2 clr
 01540
0300 01541 GetSp1 ; ----- inverse rx
0300 1E05 01542 btfss PORTA,4 ; test input status...
0301 2B00 01543 goto GetSp1 ; ...and loop if still low
0302 01544 GetStart1
0302 1D85 01545 btfss PORTA,3 ; test status of key 2...
0303 28E8 01546 goto BrkRS ; ...and jump to Break if presseed
0304 1A05 01547 btfsc PORTA,4 ; test input status...
0305 2B02 01548 goto GetStart1 ; ...and loop if still high
0306 2B0D 01549 goto StartFound ; falling edge detected: start recept
 01550
0307 01551 GetSp2 ; ----- true rx
DS00689A-page 2-40 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 41 Thursday, March 2, 2000 8:02 AM
0307 1A05 01552 btfsc PORTA,4 ; test input status...
0308 2B07 01553 goto GetSp2 ; ...and loop if still high
0309 01554 GetStart2
0309 1D85 01555 btfss PORTA,3 ; test status of key 2...
030A 28E8 01556 goto BrkRS ; ...and jump to Break if presseed
030B 1E05 01557 btfss PORTA,4 ; test input status...
030C 2B09 01558 goto GetStart2 ; ...and loop if still low
 01559 ; rising edge detected: start reception
030D 01560 StartFound
 01561 ; 2-9 t from starting edge
030D 01562 HalfBit
030D 1686 01563 bsf PORTB,5 ; 1*W led P on
030E 0000 01564 nop ; 1*W waist one cycle
030F 0B8E 01565 decfsz DJNZ,F ; 1*W DJNZ = timing constant counter
0310 2B0D 01566 goto HalfBit ; 2*W loop if not half bit timing passd
 01567
0311 01568 RX8Bits
0311 008E 01569 movwf DJNZ ; 1 move timing constant to cnter
0312 01570 OneBit
0312 23A0 01571 call Waist8T ; 8 8 * W waist 8 t
0313 0B8E 01572 decfsz DJNZ,F ; 1 2 * W DJNZ=timing constant counter
0314 2B12 01573 goto OneBit ; 2 - * W loop if not 1 bit time passd
 01574
0315 23A2 01575 call Waist6T ; 6 waist 6 t
 01576
0316 0C85 01577 rrf PORTA,F ; 1 <--- move input status to C
0317 0C80 01578 rrf INDF,F ; 1 place C in input rotor
 01579
0318 0B94 01580 decfsz COUNT,F ; 1 COUNT = bit counter
0319 2B11 01581 goto RX8Bits ; 2 total 22t + (w-1) * 11
 01582 ;------------------received byte @ INDF
031A 180D 01583 btfsc RXBITS,0 ; test if parity bit selected...
031B 0D80 01584 rlf INDF,F ; ...and discard parity bit if received
 01585
031C 1D0D 01586 btfss RXBITS,2 ; test if inverse polarity selected...
031D 0980 01587 comf INDF,F ; ...and complement if true parity
 01588
031E 1003 01589 bcf STATUS,C ; clear 8th bit for 7-bit mode
031F 188D 01590 btfsc RXBITS,1 ; test if 7-bit mode selected and...
0320 0C80 01591 rrf INDF,F ; ..rotate 8th(zero) bit if 7bits slctd
 01592
0321 0A84 01593 incf FSR,F ; advance destination pointer
0322 1B04 01594 btfsc FSR,6 ; bits 4 and 6 will both be set if...
0323 1E04 01595 btfss FSR,4 ; ... end of buffer+1 reached
0324 2AF5 01596 goto RX42Bytes ; loop if not yet FSR=50h
0325 2AC6 01597 goto Show2 ; over: go show received bytes
 01598
 01599 ;******* FREQUENCY COUNTER
 01600 ;***
 01601 ;* GoPresc
 01602 ;* Prescaler factor (variable PRESC, in range 0...3) is advanced
 01603 ;* (executes when key 2 is pressed in frequency counter mode)
 01604 ;***
0326 01605 GoPresc
0326 0A9A 01606 incf PRESC,F ; advance prescaler
0327 111A 01607 bcf PRESC,2 ; and cycle prescaler in range 0...3
 01608
 01609 ;***
 01610 ;* FreqEp
 01611 ;* Frequency counter entry point.
 01612 ;* Subroutine WrParam does this: Displays message "Frequency" in row 1,
 01613 ;* counter range (taken from table RangeTab) & resolution (taken from
 01614 ;* table PrescTab) in row2.
 01615 ;* LEDs are turned OFF, and the main counter (BIN4, 4 bytes) cleared.
 01616 ;* The following is used to count pulses:
 01617 ;* State of TMR0 is written to BIN4+0 and sequencialy tested, and when
 1900 Microchip Technology Inc. DS00689A-page 2-41

AN689

S2.book Page 42 Thursday, March 2, 2000 8:02 AM
 01618 ;* bit7 of current value detected as 0 and the previous one was 1, the
 01619 ;* overflow is considered. In that case, state of BIN4+1 is advanced,
 01620 ;* extended to BIN4+2. After 500ms,the 32-bit value of BIN4 is shifted
 01621 ;* left in a total of PRESC+2 times, to get multiply by 4,8,16 or
 01622 ;* 32. Then BIN+4 (4 bytes) is converted to ASCII and printed on LCD.
 01623 ;* This routine does not call keyboard routine, as accurate timing of
 01624 ;* 500 ms must be generated for counting (high count register is
 01625 ;* CHARCOU lo count SHOWCOU). Instead of this, there is the individual
 01626 ;* routine for key 1 and key 2 test, and also the countdown timer for
 01627 ;* automatic power-off (registers TIMOUTL, TIMOUTH).
 01628 ;* If key 1 is pressed, mode 1 (analyzer) is entered. If key 2 is
 01629 ;* pressed, prescaler value is advanced.
 01630 ;*
 01631 ;* Note: code from label "Loop500A" to comment "; 500 ms timeout" is
 01632 ;* real time code. If the # of cycles is changed, then the literals
 01633 ;* 0f4h+1 and 24h+1 written to CHARCOU and SHOWCOU must be readjusted.
 01634 ;*
 01635 ;* Input variables: PRESC (affects prescaler factor)
 01636 ;* Output variables: none
 01637 ;***
0328 01638 FreqEp ; mode 3: frequency counter
0328 2364 01639 call WrParam ; print "Frequency" and "xxMHz/Rxx"
0329 21BF 01640 call KeysOff ; test both keys off for 34 ms and
 01641 ; initialize 8 min auto off sequence
032A 01642 Count500
032A 30D3 01643 movlw 0d2h+REL ; right arrow position
032B 23CF 01644 call WrComL ; move cursor on right arrow
 01645
032C 019F 01646 clrf BIN4+1 ; clear next counter byte
032D 01A0 01647 clrf BIN4+2 ; clear next counter byte
032E 01A1 01648 clrf BIN4+3 ; clear next counter byte
032F 018F 01649 clrf SCRATCH ; initialize TMR0 overflow detector
 01650
0330 30F5 01651 movlw 0f4h+1 ; high loop counter for 500 ms
0331 0096 01652 movwf CHARCOU ; CHARCOU = hi byte counter
0332 3025 01653 movlw 24h+1 ; 0f424h=.62500 cycles=1250000,T=500 ms
0333 0097 01654 movwf SHOWCOU ; SHOWCOU = lo byte counter
 01655
0334 081A 01656 movf PRESC,W ; PRESC = prescaler factor selected
0335 3E20 01657 addlw 20h ; for PRESC 0,1,2,3 w=20h,21h,22h,23h
0336 2278 01658 call ToOption ; here is clrf TMR0 also
0337 01659 Loop500A
0337 1D85 01660 btfss PORTA,3 ; 2 test key 2 status and
0338 2B26 01661 goto GoPresc ; - jump to "prescaler change" if hit
0339 01662 Loop500
0339 0801 01663 movf TMR0,W ; 1 1 1 only place where TMR0 is read
033A 009E 01664 movwf BIN4 ; 1 1 1 rtcc ---> freq0
 01665
033B 0D1E 01666 rlf BIN4,W ; 1 1 1 carry <--- TMR0.7
033C 0D8F 01667 rlf SCRATCH,F ; 1 1 1 rotor <--- carry
 01668
033D 080F 01669 movf SCRATCH,W ; 1 1 1 SCRATCH=TMR0 overflow detect
033E 3903 01670 andlw 3 ; 1 1 1 mask 2 LSbs for edge detect
033F 3A02 01671 xorlw 2 ; 1 1 1 00000000 if 1 <--- 0
 01672
0340 1D03 01673 btfss STATUS,Z ; 1 2 2 | skip if TMR0 overflow
0341 2B43 01674 goto NotOvf1 ; 2 - - | if nz
 01675 ; | 5T any case
0342 0A9F 01676 incf BIN4+1,F ; - 1 1 | nsb
0343 1903 01677 NotOvf1 btfsc STATUS,Z ; 2 2 1 | skip MSB adv ifnot overflow
0344 0AA0 01678 incf BIN4+2,F ; - - 1 | msb
 01679
0345 309B 01680 movlw Head4-1 ; 1 initialize "Battery" message
0346 1D05 01681 btfss PORTA,2 ; 2 test key 1 status and...
0347 2933 01682 goto Mode4 ; - got shortcut to mode 4 if pressed
 01683
DS00689A-page 2-42 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 43 Thursday, March 2, 2000 8:02 AM
0348 0B97 01684 decfsz SHOWCOU,F ; 1 (2) lo loop counter
0349 2B37 01685 goto Loop500A ; 2 (-) 20T total
 01686
034A 0B96 01687 decfsz CHARCOU,F ; (1) hi loop counter
034B 2B39 01688 goto Loop500 ; (2) 20T total
 01689
 01690 ; --- 500 ms timeout here
034C 0A1A 01691 incf PRESC,W ; prepare for x2 multiply: PRESC incr
034D 0096 01692 movwf CHARCOU ; CHARCOU = multiply factor counter
034E 0A96 01693 incf CHARCOU,F ; and prescaler constant incr again
034F 01694 ShLoop ; BIN4 = BIN4 * 2 total (PRESC+2) times
034F 1003 01695 bcf STATUS,C ; clear C to allow clean x2 multiply
0350 0D9E 01696 rlf BIN4, F ; low byte x2 multiply
0351 0D9F 01697 rlf BIN4+1,F ; next byte x2 multiply
0352 0DA0 01698 rlf BIN4+2,F ; next byte x2 multiply
0353 0DA1 01699 rlf BIN4+3,F ; highest byte x2 multiply
 01700
0354 0B96 01701 decfsz CHARCOU,F ; CHARCOU = multiply factor counter
0355 2B4F 01702 goto ShLoop ; loop if not PRESC*2 times multiplied
 01703
0356 308A 01704 movlw 8ah ; frequency display position
0357 23CF 01705 call WrComL ; cursor to freq display position
0358 238C 01706 call Print8 ; print the frequency in 8-digit ASCII
 01707
0359 0B9B 01708 decfsz TIMOUTL,F ; TIMOUTL=lo byte auto power off cnter
035A 2B2A 01709 goto Count500 ; inner loop
035B 151B 01710 bsf TIMOUTL,2 ; TIMOUTL is init to 4 passes instead
 01711 ; of 256, 4*256*500ms=512s=8.5min appr
 01712
035C 0B9C 01713 decfsz TIMOUTH,F ; TIMOUTH=hi byte auto power off cnter
035D 2B2A 01714 goto Count500 ; loop if not yet 8.5 min
 01715
035E 29BC 01716 goto Suicide ; 8.5 min timeout - go switch power off
 01717
 01718 ;******* BINARY TO ASCII CONVERSION
 01719 ;***
 01720 ;* Headline
 01721 ;* Clears SHOWCOU (Headline2 skips this), Clears LCD, prints right
 01722 ;* arrow @ last pos of row2, prints message addresed by W+1 at page 0.
 01723 ;* Terminator is last character with bit 7 set.
 01724 ;*
 01725 ;* Input variables: W+1 addresses string (on page 0) to be printed
 01726 ;* Output variables:
 01727 ;* CHARCOU is decremented by the number of characters printed
 01728 ;***
035F 01729 Headline
035F 0197 01730 clrf SHOWCOU ; initialize show group counter
0360 01731 Headline2
0360 008F 01732 movwf SCRATCH ; move input parameter to SCARTCH
0361 303B 01733 movlw .59 ; .59 characters to clear
0362 22B8 01734 call SameAs20 ; clear all but right arrow
0363 2BDE 01735 goto GoWrite ; print headline message on LCD
 01736
 01737 ;***
 01738 ;* WrParam
 01739 ;* Prints message "Frequency" in line 1 and parameters for frequency
 01740 ;* counter in line 2.
 01741 ;* Text XXMHz/RYY is printed, where XX is taken from RangeTab, and YY
 01742 ;* from PrescTab.
 01743 ;*
 01744 ;* Input variables:
 01745 ;* PRESC, affects displayed frequency range and resolution
 01746 ;* Output variables:
 01747 ;* CHARCOU is decremented by the number of characters printed
 01748 ;***
 01749 ;* Print255
 1900 Microchip Technology Inc. DS00689A-page 2-43

AN689

S2.book Page 44 Thursday, March 2, 2000 8:02 AM
 01750 ;* Entry point Print255 converts 8-bit binary value (<100) in BIN4 to
 01751 ;* 2-digit ASCII and prints it on LCD, without decimal point. Leading
 01752 ;* zeros are printed.
 01753 ;*
 01754 ;* Input variables: W, binary number (0-99) to be converted and printed
 01755 ;* Output variables:
 01756 ;* CHARCOU is decremented by the number of characters printed
 01757 ;***
 01758 ;* Print3
 01759 ;* Entrypoint Print3 converts 16-bit binary value (<1000) in BIN4 to 2-
 01760 ;* or 3-digit ASCII and prints it on LCD. Leading zero is skipped only
 01761 ;* if value is <100. Decimal point is printed between tens and ones if
 01762 ;* FLAG,DP is set, otherwise decimal point is omited.
 01763 ;*
 01764 ;* Input variables: BIN4 (2 bytes, LSB first, in range 0-999) binary
 01765 ;* number to be converted and printed
 01766 ;* Output variables:
 01767 ;* CHARCOU is decremented by the number of characters printed
 01768 ;***
 01769 ;* PrintBR
 01770 ;* Entry point PrintBR does the same as PRINT3, but the low byte value
 01771 ;* is in W instead in BIN4+0. This is used for baud rate display.
 01772 ;*
 01773 ;* Input variables: W, BIN+1 (2 bytes, LSB in W, MSB in BIN+1, in range
 01774 ;* 0-999) binary number to be converted and printed
 01775 ;* Output variables:
 01776 ;* CHARCOU is decremented by the number of characters printed
 01777 ;***
0364 01778 WrParam ; print xxMHz/Rxx
0364 3092 01779 movlw Head3-1 ; address of message "Frequency"
0365 2360 01780 call Headline2 ; print message
0366 23CE 01781 call Row2 ; move cursor to row 2
 01782
0367 3064 01783 movlw RangeTab ; offset of max frequency range table
0368 236E 01784 call Presc255 ; print max frequency range
 01785
0369 306F 01786 movlw TxtHz-1 ; address of message "MHz/"
036A 23DD 01787 call Write ; print message
036B 3052 01788 movlw ’R’ ; "R" stands for "Resolution"
036C 23D8 01789 call Char ; print "R"
 01790
036D 3060 01791 movlw PrescTab ; offset of resolution table
036E 01792 Presc255
036E 071A 01793 addwf PRESC,W ; add PRESC to offset
036F 23B6 01794 call PclSub ; read value from table
0370 01795 Print255
0370 108C 01796 bcf FLAG,DP ; clear decimal point enable flag
0371 019F 01797 clrf BIN4+1 ; clear hi byte (allow range 00-99)
0372 01798 PrintBR
0372 009E 01799 movwf BIN4 ; allow W as input parameter
0373 01800 Print3 ; convert BIN4(16),print 3 decimal dgts
0373 01A1 01801 clrf BIN4+3 ; clear hi byte
0374 01A0 01802 clrf BIN4+2 ; clear next byte
0375 01A5 01803 clrf CMP4+3 ; clear hi byte of temporary register
0376 01A4 01804 clrf CMP4+2 ; clear next byte of temporary register
0377 01A3 01805 clrf CMP4+1 ; clear next byte of temporary register
 01806
0378 3064 01807 movlw .100 ; first digit constant
0379 2383 01808 call Times ; # of times goes in BIN4+1 and BIN4?
037A 1D03 01809 btfss STATUS,Z ; skip printing if it goes zero times
037B 23C9 01810 call Num ; print digit (hundreds) if W>0
 01811
037C 300A 01812 movlw .10 ; second digit constant
037D 2383 01813 call Times ; how many times it goes in BIN4?
037E 23C9 01814 call Num ; print digit (tens)
 01815
DS00689A-page 2-44 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 45 Thursday, March 2, 2000 8:02 AM
037F 302E 01816 movlw ’.’ ; decimal point
0380 188C 01817 btfsc FLAG,DP ; test decimal pnt flag, skip if reset
0381 23D8 01818 call Char ; print decimal point if DP set
0382 2B9B 01819 goto NumBin4 ; print last digit (ones)
 01820
 01821 ;***
 01822 ;* Times
 01823 ;* Counts # of times CMP4 (32-bit value) "goes" in BIN4 (32-bit value).
 01824 ;* BIN4 is sequentialy subtracted by CMP4 and counter COUNT advanced.
 01825 ;* When borrow is detected, BIN4 is restored to the last positiv value
 01826 ;* (by ADDing CMP4 again), COUNTer decremented and written to W.
 01827 ;*
 01828 ;* Input variables: CMP4 (32-bit value), BIN4 (32-bit value)
 01829 ;* Output variables:
 01830 ;* BIN4 (32-bit value) modified to mod(CMP4)
 01831 ;* W (in range 0...9) = BIN4 (32-bit value) / CMP4 (32-bit value)
 01832 ;***
0383 01833 Times
0383 00A2 01834 movwf CMP4 ; place input param in CMP4 to compare
0384 0194 01835 clrf COUNT ; clear result counter
0385 01836 GoTD
0385 0A94 01837 incf COUNT,F ; advance result counter
0386 239D 01838 call Sub4 ; BIN4=BIN4-CMP4 nc if result <0
0387 1803 01839 btfsc STATUS,C ; test did it "go"?
0388 2B85 01840 goto GoTD ; loop if so
0389 23A5 01841 call Add4 ; BIN4=BIN4+CMP4 c set if ovf
038A 0314 01842 decf COUNT,W ; W=# of times CMP4 goes in BIN4(32bit)
038B 0008 01843 return ; result in W
 01844
 01845 ;***
 01846 ;* Print8
 01847 ;* This subroutine converts 32-bit value in BIN4 (low byte first), to
 01848 ;* 8-dig ASCII and prints to LCD. Leading zeros are printed as blanks.
 01849 ;* Table DecTab (21 words, must be at page 0 if PCLATH=0) used in conv.
 01850 ;*
 01851 ;* Input variables: BIN4 (32-bit value, <.100,000,000)
 01852 ;* Output variables:
 01853 ;* CHARCOU is decremented by the number of characters printed
 01854 ;***
038C 01855 Print8 ; bin2dec conv BIN4(32), print 8 digits
038C 3033 01856 movlw DecTab-1 ; inici tab ptr
038D 008F 01857 movwf SCRATCH ; SCRATCH = tab ptr
038E 118C 01858 bcf FLAG,RIPPLE ; zeros initialy print as blanks,until
 01859 ; ...first non-zero appears
038F 01860 Cif7
038F 01A5 01861 clrf CMP4+3 ; clear CMP4+3, it is =0 in all cases
0390 23B4 01862 call PclSub2 ; get constant from table
0391 00A4 01863 movwf CMP4+2 ; load dec. const from table in CMP4+2
0392 23B4 01864 call PclSub2 ; get constant from table
0393 00A3 01865 movwf CMP4+1 ; load dec. const from table in CMP4+1
0394 23B4 01866 call PclSub2 ; get constant from table
0395 2383 01867 call Times ; how many times CMP4 goes in BIN4?
0396 23C3 01868 call NZNum ; print if w>0 or RIPPLE=1, else blank
 01869
0397 080F 01870 movf SCRATCH,W ; SCRATCH = table pointer
0398 3EB9 01871 addlw .237-DecTab ; test if end of table
0399 1C03 01872 btfss STATUS,C ; C set if end of table
039A 2B8F 01873 goto Cif7 ; if not end of table loop (will be 7x)
039B 01874 NumBin4
039B 081E 01875 movf BIN4,W ; last digit is in BIN4
039C 2BC9 01876 goto Num ; last digit must be printed always
 01877
 01878 ;***
 01879 ;* Sub4
 01880 ;* Subtract CMP4 (32-byte value) from 32-bit value in BIN4, lo byte 1st
 01881 ;* This is performed as adding of negative value of CMP4. Negating is
 1900 Microchip Technology Inc. DS00689A-page 2-45

AN689

S2.book Page 46 Thursday, March 2, 2000 8:02 AM
 01882 ;* performed as comlementing and incrementing by 1.
 01883 ;* Note: Incrementing by 1 is performed on least significant byte only,
 01884 ;* without 32-bit extension,for code space saving. This will not cause
 01885 ;* error in this case, as the number of all possible values for CMP4+0
 01886 ;* is limited and none of them is equal to 0FFh before incrementing
 01887 ;* (all possible values are taken from table DecTab, & are: 0ah, 64h,
 01888 ;* 0e8h, 10h, 0a0h, 40h and 80h, and their negative values).
 01889 ;* However, this is valid if this subroutine is used for decimal
 01890 ;* conversion only, and if it is used for some other application,
 01891 ;* extension to 32-bit should be added after incrementing.
 01892 ;*
 01893 ;* Input variables: BIN4 (32-bit value), CMP4 (32-bit value)
 01894 ;* Output variables:
 01895 ;* BIN4 (32-bit value)
 01896 ;* STATUS,C denotes the sign of result: if cleared, output value
 01897 ;* is negative (there is borrow)
 01898 ;*
 01899 ;* Note: Entry points Waist8T and Waist6T are used only by some
 01900 ;* real-time routines, in that case the instructions are dummy
 01901 ;***
039D 01902 Sub4 ; 32-bit sub: BIN4 = BIN4 - CMP4
 01903 ; NC if result<0
039D 239F 01904 call NegCmp ; negate CMP (32 bits) first
039E 23A5 01905 call Add4 ; add as negative value
039F 01906 NegCmp
039F 09A2 01907 comf CMP4+0,F ; complement low byte
03A0 01908 Waist8T
03A0 09A3 01909 comf CMP4+1,F ; complement next byte
03A1 09A4 01910 comf CMP4+2,F ; complement next byte
03A2 01911 Waist6T
03A2 09A5 01912 comf CMP4+3,F ; complement high byte
03A3 0AA2 01913 incf CMP4+0,F ; neg = complement + 1
 01914 ; (no need test overflow here,it will
 01915 ; ...never reach 0 after incrementing)
03A4 0008 01916 return ; finished
 01917
 01918 ;***
 01919 ;* Add4
 01920 ;* Add CMP4 (32-byte value) to BIN4 (32-byte value). 4-instr. groups
 01921 ;* (movf-btfsc-incfsz-addwf) used instead of non-existing ADD W/ CARRY.
 01922 ;* Input variables: BIN4 (32-bit value), CMP4 (32-bit value)
 01923 ;* Output variables: BIN4 (32-bit value), 33th bit in STATUS,C
 01924 ;***
03A5 01925 Add4 ; 32-bit add: BIN4 = BIN4 + CMP4
03A5 0822 01926 movf CMP4,W ; low byte
03A6 079E 01927 addwf BIN4,F ; low byte add
 01928
03A7 0823 01929 movf CMP4+1,W ; next byte
03A8 1803 01930 btfsc STATUS,C ; skip to simple add if C was reset
03A9 0F23 01931 incfsz CMP4+1,W ; add C if it was set
03AA 079F 01932 addwf BIN4+1,F ; next byte add if NZ
 01933
03AB 0824 01934 movf CMP4+2,W ; next byte
03AC 1803 01935 btfsc STATUS,C ; skip to simple add if C was reset
03AD 0F24 01936 incfsz CMP4+2,W ; add C if it was set
03AE 07A0 01937 addwf BIN4+2,F ; next byte add if NZ
 01938
03AF 0825 01939 movf CMP4+3,W ; high byte
03B0 1803 01940 btfsc STATUS,C ; skip to simple add if C was reset
03B1 0F25 01941 incfsz CMP4+3,W ; add C if it was set
03B2 07A1 01942 addwf BIN4+3,F ; high byte add if NZ
 01943
03B3 0008 01944 return ; finished
 01945
 01946 ;***
 01947 ;* PclSub is used for indirect addressing
DS00689A-page 2-46 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 47 Thursday, March 2, 2000 8:02 AM
 01948 ;* PclSub1 uses SCRATCH instead of W as input parameter
 01949 ;* PclSub2 advances pointer SCRATCH before executong
 01950 ;*
 01951 ;* Note: PCLATH=0 in all cases. So all tables pointed by this routine
 01952 ;* are on page 0
 01953 ;***
03B4 01954 PclSub2
03B4 0A8F 01955 incf SCRATCH,F ; advance table pointer
03B5 01956 PclSub1
03B5 080F 01957 movf SCRATCH,W ; move table pointer to W
03B6 01958 PclSub
03B6 0082 01959 movwf PCL ; jump to address pointed by PCLATH,W
 01960
 01961 ;***
 01962 ;* ClrBuf
 01963 ;* ClrRam
 01964 ;* Subroutine ClrBuf clears BUFFER (42 bytes)
 01965 ;* Entry point ClrRam allows some other start point for claring. It
 01966 ;* clears internal RAM from address in W to the location 7Fh.
 01967 ;* (locations 50h-7Fh, which do not exist in 16F84, are dummy).
 01968 ;*
 01969 ;* Both entry points continue to disabling Enable signal for LCD and
 01970 ;* 33.8 ms timing loop
 01971 ;*
 01972 ;* Input variables:
 01973 ;* W is the start addr if area to be cleared (ClrRam entry point only)
 01974 ;* Output variables: none
 01975 ;***
03B7 01976 ClrBuf
03B7 3026 01977 movlw BUFFER ; get start address of buffer
03B8 01978 ClrRam
03B8 0084 01979 movwf FSR ; FSR = dest pointer for clearing
03B9 01980 Zeros
03B9 0180 01981 clrf INDF ; clear one byte
03BA 0A84 01982 incf FSR,F ; advance dest pointer
03BB 1F84 01983 btfss FSR,7 ; test if end of RAM...
03BC 2BB9 01984 goto Zeros ; ...if not, loop - else move LEDs
 01985
 01986 ;***
 01987 ;* Entry point DisEna30: Remove enable and discharge signal, and
 01988 ;* refresh LEDs. Then loop 33.8 ms
 01989 ;* Entry point Wait30: Loop 33.8 ms
 01990 ;* Input variables: none
 01991 ;* Output variables: none
 01992 ;***
03BD 01993 DisEna30
03BD 23EF 01994 call DisEna ; disable discharging output signal
03BE 01995 Wait30
03BE 0194 01996 clrf COUNT ; COUNT=time loop cnter,to wait 33.8ms
03BF 01997 GoWait30
03BF 23D0 01998 call loop130 ; waist 130 us
03C0 0B94 01999 decfsz COUNT,F ; COUNT = time loop counter
03C1 2BBF 02000 goto GoWait30 ; loop if not yet 256 passes
03C2 0008 02001 return ; timing over
 02002
 02003 ;***
 02004 ;* NZNum
 02005 ;* Num
 02006 ;* Print numeric value in W (in range 0...9) on LCD. If FLAG,RIPPLE is
 02007 ;* cleared, 0 is printed as blank. If non-zero numeric is printed, it
 02008 ;* automatically sets FLAG,RIPPLE.
 02009 ;* 0 (30h) prints as capital O (4Fh), for improved readibility, as 0
 02010 ;* may easily be substituted by 8 on LCD. This changing 0 to O is not
 02011 ;* performed only in ASCII representation of recorded bytes in serial
 02012 ;* code receiver.
 02013 ;* Entry point NUM prints numeric unconditionally, undependently of bit
 1900 Microchip Technology Inc. DS00689A-page 2-47

AN689

S2.book Page 48 Thursday, March 2, 2000 8:02 AM
 02014 ;* FLAG,RIPPLE.
 02015 ;*
 02016 ;* Input variables:
 02017 ;* W (0...9), number to be printed at current cursor position of LCD
 02018 ;* Output variables:
 02019 ;* CHARCOU is decremented by the number of characters printed
 02020 ;***
03C3 02021 NZNum ; same aso Num, only blank instead of 0
03C3 198C 02022 btfsc FLAG,RIPPLE ; test if RIPPLE bit set...
03C4 2BC9 02023 goto Num ; ...if RIPPLE set, no more blanks
03C5 3E00 02024 addlw 0 ; set Z flag if W=0
03C6 1903 02025 btfsc STATUS,Z ; is it = 0 ?
03C7 2BD7 02026 goto Blank ; if so, jump to space routine
03C8 158C 02027 bsf FLAG,RIPPLE ; if>0,clr RIPPLE bit, no more blanks
03C9 02028 Num
03C9 390F 02029 andlw 0fh ; isolate low nibble
03CA 1903 02030 btfsc STATUS,Z ; is it = 0 ?
03CB 301F 02031 movlw ’O’-30h ; if so, initialize capital O
03CC 3E30 02032 addlw 30h ; adjust ASCII for numeric
03CD 2BD8 02033 goto Char ; print digit
 02034
 02035 ;******* LCD ROUTINES
 02036 ;***
 02037 ;* All these entry ponts of this subroutine are used in program:
 02038 ;*
 02039 ;* Row2: Issues command to move cursor to row2 of LCD,and loops 130
 02040 ;* us,to allow time for LCD controller to execute command
 02041 ;* WrComl: Issues command in W to the LCD, and loops 130 us, to allow
 02042 ;* time to LCD controller to execute the command
 02043 ;* loop130: Loops 130 us including call and return
 02044 ;* GoLoop: Loops W*2 us
 02045 ;* Loop7: Same as GoLoop, only 2t shorter (for smpl rate routine)
 02046 ;***
03CE 02047 Row2
03CE 30C0 02048 movlw 0c0h ; command for line 2
 02049
03CF 02050 WrComL ; issues command in W
03CF 23E5 02051 call WrCom ; write command in LCD
03D0 02052 loop130 ; * waist 130 us
03D0 018E 02053 clrf DJNZ ; this is to init DJNZ to 40h and...
03D1 170E 02054 bsf DJNZ,6 ; not to disturb W
03D2 02055 GoLoop
03D2 2BD3 02056 goto $+1 ; 2 waist 2 t
03D3 02057 Loop7
03D3 0B8E 02058 decfsz DJNZ,F ; 1 DJNZ = timing loop counter
03D4 2BD2 02059 goto GoLoop ; 2 64x5=320t (128 us)
03D5 0008 02060 return ; 2 finished
 02061
 02062 ;***
 02063 ;* All these entry ponts of this subroutine are used in program:
 02064 ;*
 02065 ;* CharBl: print character in W, blank on LCD and decrement CHARCOU
 02066 ;* Blank: print blank (32h) on LCD and decrement CHARCOU
 02067 ;* Char: print character in W on LCD and decrement CHARCOU
 02068 ;* CharNCC: print character in W on LCD without affecting CHARCOU
 02069 ;*
 02070 ;* Note: CHARCOU is used to print fixed format message on LCD, as the
 02071 ;* calling routine will add N-CHARCOU blanks to fill area N chars long
 02072 ;*
 02073 ;* Input variables:
 02074 ;* all entry points except Blank: W = character to be printed
 02075 ;* Output variables:
 02076 ;* all entry points except CharNCC: CHARCOU is decremented by 1
 02077 ;***
03D6 02078 CharBl ; print char, then blank
03D6 23D8 02079 call Char ; print char first
DS00689A-page 2-48 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 49 Thursday, March 2, 2000 8:02 AM
03D7 02080 Blank ; print blank
03D7 3020 02081 movlw ’ ’ ; print blank
03D8 02082 Char ; print W
03D8 0396 02083 decf CHARCOU,F ; decrement character counter
03D9 02084 CharNCC ; print W without affecting CHARCOU
03D9 1486 02085 bsf PORTB,1 ; pull RS hi (data register select)
03DA 2BE6 02086 goto Skr1 ; continue 4-bit mode writing to LCD
 02087
 02088 ;***
 02089 ;* PrintBrk
 02090 ;* Print message "Break" in row 1, pos 0
 02091 ;*
 02092 ;* Input variables: none
 02093 ;* Output variables:
 02094 ;* CHARCOU is decremented by the number of characters printed
 02095 ;***
 02096 ;* Write
 02097 ;* Print message addressed by W+1 in line 1
 02098 ;* Note: Terminator is last character in string with bit 7 set
 02099 ;*
 02100 ;* Input variables: W points to string (RETLWs) decremented by 1
 02101 ;* Output variables:
 02102 ;* CHARCOU is decremented by the number of characters printed
 02103 ;***
03DB 02104 PrintBrk
03DB 22BF 02105 call Row1 ; move cursor to row 1
03DC 30A2 02106 movlw BrkMes-1 ; message "Break" address-1
 02107
03DD 02108 Write ; write string addressed by W, end w/ 0
03DD 008F 02109 movwf SCRATCH ; SCRATCH = source pointer
03DE 02110 GoWrite ; write string at (SCRATCH+1), wnd w/ 0
03DE 23B4 02111 call PclSub2 ; advance pointer and read pointed byte
03DF 3E80 02112 addlw 80h ; this is to test if bit 7 was set...
03E0 1803 02113 btfsc STATUS,C ; ...if so, C will be set
03E1 2BD8 02114 goto Char ; last character was with bit 7 set
03E2 397F 02115 andlw 7fh ; restore initial character value
03E3 23D8 02116 call Char ; print one character
03E4 2BDE 02117 goto GoWrite ; loop
 02118
 02119 ;***
 02120 ;* Wrcom
 02121 ;* Write command in W to LCD, then loop 130 us
 02122 ;* Skr1
 02123 ;* Allows data write to LCD, if PORTB,1 is set previously
 02124 ;* Nibble
 02125 ;* Write one nibble (W,0-3) to LCD data bus
 02126 ;*
 02127 ;* Note: all entry ponits are terminated by 130us timing loop, to allow
 02128 ;* LCD controller to execute accepted command/data.
 02129 ;*
 02130 ;* Input variables: command in W
 02131 ;* Output variables: none
 02132 ;***
03E5 02133 WrCom
03E5 1086 02134 bcf PORTB,1 ; rs lo (command)
03E6 02135 Skr1
03E6 008E 02136 movwf DJNZ ; save W in DJNZ for lo nibble writing
03E7 23F1 02137 call Hinib_B ; outputs w,4-7 to PORTB,4-7
03E8 23ED 02138 call EnaLCD ; generate enable signal for hi nibble
03E9 02139 Nibble
03E9 0E0E 02140 swapf DJNZ,W ; restore init value of W and swap it
03EA 23F1 02141 call Hinib_B ; outputs w,0-3 to PORTB,4-7
03EB 23ED 02142 call EnaLCD ; generate enable signal for low nibble
03EC 2BD0 02143 goto loop130 ; wait 130 for LCD to crunch command
 02144
 02145 ;***
 1900 Microchip Technology Inc. DS00689A-page 2-49

AN689

S2.book Page 50 Thursday, March 2, 2000 8:02 AM
 02146 ;* Generate Enable signal (1200us) for LCD controller,and refresh LEDs.
 02147 ;* Entry point DisEna: Remove enable & dischg signal,and refresh LEDs.
 02148 ;***
03ED 02149 EnaLCD
03ED 1406 02150 bsf PORTB,0 ; enable LCD controller
03EE 2BEF 02151 goto $+1 ; wait 2 cycles,make signal 1.2us long
03EF 02152 DisEna
03EF 1006 02153 bcf PORTB,0 ; terminate enable signal LCD control
 02154
 02155 ;***
 02156 ;* MoveLEDs
 02157 ;* Entry point MoveLEDs: transfer FLAG,LEDP FLAG,LEDH and FLAG,LEDL to
 02158 ;* PORTB,5 PORTB,6 and PORTB,7 to service LEDs.
 02159 ;*
 02160 ;* Input variables:
 02161 ;* FLAG, bits LEDP, LEDH, LEDH will affect LED1, LED2, LED3
 02162 ;* Output variables: none
 02163 ;***
 02164 ;* Hinib_B
 02165 ;* Entry point Hinib_B: output W,4-7 to 4-bit LCD data bus
 02166 ;*
 02167 ;* Input variables:
 02168 ;* hi nibble of W is copied to LCD data bus
 02169 ;* Output variables: none
 02170 ;***
03F0 02171 MoveLESd ; writes states LEDs L,H,P to PORTB,5-7
03F0 080C 02172 movf FLAG,W ; FLAG bits 5,6,7 are LED bits
03F1 02173 Hinib_B ; outputs w,4-7 to PORTB,4-7
03F1 1206 02174 bcf PORTB,4 ; clear high nibble of PORTB
03F2 1286 02175 bcf PORTB,5 ; clear high nibble of PORTB
03F3 1306 02176 bcf PORTB,6 ; clear high nibble of PORTB
03F4 1386 02177 bcf PORTB,7 ; clear high nibble of PORTB
03F5 39F0 02178 andlw 0f0h ; mask for hi nibble of W
03F6 0486 02179 iorwf PORTB,F ; write H nibble W to H nibble PORTB
03F7 0008 02180 return ; finished
 02181
 02182 ;***
 02183 ;* HexDigit
 02184 ;* This subroutine prints low nibble of W on LCD as hexadecimal digit.
 02185 ;* Zero (30h) is printed as capital O (7Fh)
 02186 ;*
 02187 ;* Input variables: W in range 0...0fh, hex number to be printed
 02188 ;* Output variables: CHARCOU is decremented by two
 02189 ;***
03F8 02190 HexDigit ; hex W (lo nibble) to LCD, change 0...
 02191 ; ...to capital O
03F8 390F 02192 andlw 0fh ; isolate low nibble of W...
03F9 009E 02193 movwf BIN4 ; ...and put it in BIN4
03FA 3EF6 02194 addlw -0ah ; test if input number > 9
03FB 1C03 02195 btfss STATUS,C ; Is it > 9 ?
03FC 2B9B 02196 goto NumBin4 ; ...if not, just print it as-is
03FD 3E41 02197 addlw .7+3ah ; 3ah...3fh to ’A’...’F’ correction
03FE 2BD8 02198 goto Char ; print ASCII adjusted hex value a...f
 02199
 02200 ;******* DATA EEPROM
 02201 ;***
 02202 ;* This table is located in data eeprom
 02203 ;* It contains numerical data for 16 sample frequencies period display
 02204 ;* for analyzer. Last 13 bytes are timing constants used by subroutine
 02205 ;* GetSlowClk to generate internal timing (three fastest rates need no
 02206 ;* constants from the table, as they are treated as special cases)
 02207 ;***
 02208 ;* ----- TABLE 1 (00h-2Fh): Rate display table for analyzer
 02209 ;*
 02210 ;* ****First byte: Flags. Bits in this byte have the following functs:
 02211 ;* bit 7 = 0: Frequency in Hz
DS00689A-page 2-50 1900 Microchip Technology Inc.

AN689
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 51 Thursday, March 2, 2000 8:02 AM
 02212 ;* = 1: Frequency in Mhz or Khz
 02213 ;* bit 6 = 0: Frequency does not contain decimal point
 02214 ;* = 1: Frequency contains decimal point before last digit
 02215 ;* bits 5,4: Bits 9 and 8 for frequency display, respectively
 02216 ;* bit 3 = 0: Period in us (microseconds)
 02217 ;* = 1: Period in ms (miliseconds)
 02218 ;* bit 2 = 0: Period does not contain decimal point
 02219 ;* = 1: Period contains decimal point before last digit
 02220 ;* bits 1,0: Bits 9 and 8 for period display, respectively
 02221 ;* **** Second byte: low significant byte for frequency
 02222 ;* **** Third byte: low significant byte for period
 02223 ;***
 02224 ;* ----- TABLE 2 (30h-3Ch): Timing constant table for analyzer
 02225 ;*
 02226 ;* Timing constant factors to all sample rates generated by subroutine
 02227 ;* GetSlowClk (all except 1MHz, 500KHz and 228KHz)
 02228 ;***
 02229 ;* Note: This is read-only data, so the Data EEPROM must be programmed
 02230 ;* before the unit is ready to use. MCU will not affect data EEPROM
 02231 ;* contents. If your programmer does not support automatic loading of
 02232 ;* Data EEPROM contents from the HEX file, it must be loaded manualy.
 02233 ;* This will help in that case (all values are hexadecimal):
 02234 ;*
 02235 ;* addr 00-07: 88 01 01 98 F4 02 8C E4
 02236 ;* addr 08-0f: 2C 88 64 0A 88 32 14 D8
 02237 ;* addr 10-17: 80 1A 88 19 28 C8 C0 34
 02238 ;* addr 18-1f: 88 0A 64 C8 60 68 C8 30
 02239 ;* addr 20-27: D0 C9 18 A1 80 01 01 14
 02240 ;* addr 28-2f: 90 19 00 64 0A 00 28 19
 02241 ;* addr 30-37: 01 06 09 10 16 2E 30 64
 02242 ;* addr 38-3c: CC 05 0E 3B 95
 02243 ;*
 02244 ;* Total bytes used in Data EEPROM: 61 (the last 3 bytes don’t care)
 02245 ;***
2100 02246 org 2100h
 02247 ; constant T/sample Hz s RATE
 02248
2100 0088 0001 0001 02249 de b’10001000’, .1, .1 ; - 2.5 1M 1u 0
2103 0098 00F4 0002 02250 de b’10011000’, .244, .2 ; - 5 500K 2u 1
2106 008C 00E4 002C 02251 de b’10001100’, .228, .44 ; - 11 228K 4.4u 2
2109 0088 0064 000A 02252 de b’10001000’, .100, .10 ; 1 25 100K 10u 3
210C 0088 0032 0014 02253 de b’10001000’, .50, .20 ; 6 50 50K 20u 4
210F 00D8 0080 001A 02254 de b’11011000’, .128, .26 ; 9 65 38.4K 26u 5
2112 0088 0019 0028 02255 de b’10001000’, .25, .40 ; 16 100 25K 40u 6
2115 00C8 00C0 0034 02256 de b’11001000’, .192, .52 ; 22 130 19.2K 52u 7
2118 0088 000A 0064 02257 de b’10001000’, .10, .100 ; 46 250 10K 100u 8
211B 00C8 0060 0068 02258 de b’11001000’, .96, .104 ; 48 260 9.6K 104u 9
211E 00C8 0030 00D0 02259 de b’11001000’, .48, .208 ; 100 520 4.8K 208u 10
2121 00C9 0018 00A1 02260 de b’11001001’, .24, .161 ; 204 1040 2.4K 417u 11
2124 0080 0001 0001 02261 de b’10000000’, .1, .1 ; 5 2500 1K 1m 12
2127 0014 0090 0019 02262 de b’00010100’, .144, .25 ; 14 6253 400 2.5m 13
212A 0000 0064 000A 02263 de b’00000000’, .100, .10 ; 59 25018 100 10m 14
212D 0000 0028 0019 02264 de b’00000000’, .40, .25 ; 149 62548 40 25m 15
 02265
 02266 ; timing constants table
2130 0001 0006 0009 02267 de .001, .006, .009, .016, .022, .046, .048
 0010 0016 002E
 0030
2137 0064 00CC 0005 02268 de .100, .204, .005, .014, .059, .149
 000E 003B 0095
 02269
 02270 end

All other memory blocks unused.

Program Memory Words Used: 1023
 1900 Microchip Technology Inc. DS00689A-page 2-51

AN689

S2.book Page 52 Thursday, March 2, 2000 8:02 AM
Program Memory Words Free: 1

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 4 reported, 0 suppressed
DS00689A-page 2-52 1900 Microchip Technology Inc.

AN700
Make a Delta-Sigma Converter Using a Microcontroller’s

Analog Comparator Module

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 53 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

This application note describes how to implement an
Analog-to-Digital (A/D) Converter function using a
member of the PIC16C6XX series of microcontrollers.
Although these microcontrollers do not have a built-in
A/D Converter like other controllers from Microchip, the
comparator function, internal voltage reference and tim-
ers can be used to digitize an analog signal.

Some of the standard PICmicros have a comparator
module, consisting of two comparators, both of which
can be connected to PORTA in a variety of configura-
tions. The internal voltage reference divider can be
used with the comparators to establish thresholds.
Additionally, one of the comparator inputs can be con-
figured to the RA2 port allowing for the use of an exter-
nal voltage reference. By combining these elements, a
first order modulator and first order filter can be
designed, emulating the function of an analog-to-digital
delta-sigma conversion.

This method of conversion is quickly implemented in
firmware with very few additional external components.
Consequently, the cost of hardware implementation is
minimal, particularly for such a high resolution con-
verter solution. The input range is very flexible and
adjusted with external resistors. Although this method
is not particularly strong in terms of DC accuracy, it is
well suited for ratiometic applications.

DELTA-SIGMA THEORY

The function of the classical Delta-Sigma Analog-
to-Digital Converter is modeled with two circuit seg-
ments; a modulator and a digital filter. The modulator
section acquires an input signal as shown in Figure 1.
The input signal is added to a signal from a Digital-to
Analog (D/A) Converter in the negative feedback loop.
This differentiated signal then passes through an inte-
grator and finally to one of the two inputs of a compar-
ator. The comparator acts like a one-bit quantitizer. The
output of the comparator is sent back to the differentia-
tor via a one-bit Digital-to-Analog Converter. Addition-
ally, the output of the comparator passes through a
digital filter. With time, the output of the digital filter pro-
vides a multi-bit conversion result.

FIGURE 1: First Order Delta-Sigma A/D Converter Block Diagram.

Authors: Dieter Peter
Bonnie C. Baker
Dan Butler
Hartono Darmawaskita
Microchip Technology Inc.

Analog

Signal Input Multi-Bit
Digital Output

Digital Filter

Comparator
Diffe

rentiator

Integrator

1-Bit D/A Converter

VREF

+

–
+

–

 1999 Microchip Technology Inc. DS00700A-page 2-53

AN700

S2.book Page 54 Thursday, March 2, 2000 8:02 AM
This fundamental circuit concept has been used to gen-
erate a large variety of the converters that provide high
resolution, relatively inexpensively. The next logical
step for this type of A/D Converter is to move it into the
controller. A basic controller is not able to execute this
type of function, however, a few additional peripherals
make it possible. The circuit diagram for this type of
implementation is shown in Figure 2.

FIGURE 2: A microcontroller can be configured as a
Delta-Sigma Converter with two additional external
resistors and one capacitor. In this configuration, a low
pass filter is also implemented as part of the input
network.

In the circuit shown in Figure 2, the integrator function
of the delta-sigma function is implemented with an
external capacitor, CINT. The absolute accuracy of this
external capacitor is not critical, only its stability from
integration to integration, which occurs in a relatively
short period of time. When RA3 of the PIC16C6XX is
set high, the voltage at RA0 increases in magnitude.
This occurs until the output of the comparator (C1OUT)
is triggered low. At this point the driver to the RA3 out-
put is switched from high to low. Once this has
occurred, the voltage at the input to the comparator
(RA0) decreases. This occurs until the comparator is
tripped high. At this point, RA3 is set high and the cycle
repeats. While the modulator section of this circuit is
cycling, two counters are used to keep track of the time
and of the number of ones versus zeros that occur at
the output of the comparator.

If this circuit were compared to the classical
Delta-Sigma Converter, the integrator would be CINT.
The comparator is part of the controller, as well as its
voltage reference. The one-bit D/A Converter is imple-
mented in firmware by driving RA3 in accordance with
the output of the comparator (CMCON<6>). The firm-
ware drives the D/A Converter output at RA3. The dig-
ital filter is implemented with two counters.

IMPLEMENTATION WITH THE
CONTROLLER

With the circuit in Figure 2, it is possible to conceptual-
ize the delta-sigma function. The controller implemen-
tation of this circuit is summarized in the flow chart in
Figure 3.

FIGURE 3: A Delta-Sigma A/D Conversion Flow Chart
implemented with circuit shown in Figure 2. Care should
be taken to make the time required for every cycle taken
through the flow chart to be a constant. This code is
implemented until a conversion is complete.

Normally the output of the comparator is directly con-
nected to RA3 which keeps the voltage at RA0 equal to
the reference voltage of the comparator in preparation
for the next conversion.

When function “DeltaSigA2D” (Appendix A) is called to
perform a conversion, the result and counter variables
are cleared. Then the comparator is set to disconnect
the output from RA3.This puts RA3 under active pro-
gram control.

The comparator is checked at the beginning of each
loop. If the voltage on the capacitor is less than the
input voltage, RA3 is set high, which will put charge into
the capacitor raising the voltage. If the voltage on the
capacitor is greater than the input voltage, RA3 is set
low, taking charge out of the capacitor lowering the
capacitor voltage and the result register is incre-
mented.

This continues as long as necessary to get the required
resolution. For ten bits of resolution, 210 (1024) laps
through the loop are required. Each lap through the
loop takes 17 instruction cycles. Padding is used to
keep all paths through the code equal. A conversion
cycle takes 17.5mS when using a 4 MHz clock.

–

+

PIC16C6XXVDD

C1OUT

VIN

R2
47kΩ

R1
47kΩ RA3

PORTA<3>

Comparator
VDD

RA2

RA0

C1

CINT

100nf

Firmware
Closes
Loop

VREF = VDD/2
(can be
internal or external)CMCON := 0000 0011

VRCON := 1110 1100

(0–5V Input Range)
CMCON := 0x06
counter := 0
result := 0

VREF > VRAO

RA3 := 1 RA3 := 0
INCR (result)

INCR(counter)

counter = 1024?

CMCON := 0x03

DONE

YES NO

YESNO
DS00700A-page 2-54 1999 Microchip Technology Inc.

AN700
When finished, the comparator output is fed directly to
RA3, and the conversion is returned in result_l and
result_h.

The sample code provided calls the DeltaSigA2D func-
tion and prints the result in an infinite loop. The output
is transmitted at 9600 baud via RB7. The answers can
be displayed on a dumb terminal program such as
Hyperterm included with Windows ’95.

FIGURE 4: Conversion time versus bits of resolution
assuming a 20 µs integration time.

Each integration result is taken at a regular time interval.
If it is assumed that the time interval of a conversion is
20µs, the conversion time versus bits can easily be calcu-
lated. This relationship is shown graphically in Figure 4.
For instance, a 10-bit conversion would require 210 or
1024 samples. If the microcontroller conversion loop is
20µs, one complete conversion would take 20.48ms.

Room temperature test data for the circuit shown in Fig-
ure 2 is graphed in Figure 5. In Figure 5, the voltage
input is plotted versus the output code on the left axis
and the output error on the right axis. This data was
taken with the 1024 laps through the flow chart in Fig-
ure 3. The expected resolution of this configuration is
10-bits. The maximum code error for this test was ±2
counts or 2-bits of uncertainty. Consequently, the effec-
tive number of bits of this A/D Converter is 8-bits. The
core portion of the code that was used to perform this
conversion is listed at the end of the application note.

FIGURE 5: Room temperature test data for the circuit
shown in Figure 2. The input voltage range is 0.003 to
4.99V. The maximum error found in the test was ±2
counts. In this 10-bit system that is equivalent to
±9.8mV. This test was performed using one sample.
Results may vary from part to part. VDD = 5V, calibration
performed at 0.5V and 4.99V.

The A/D error was calculated assuming the codes for
Vin = 0.5V and Vin = 4.5V are ideal. This test was per-
formed with one Microcontroller at room temperature.
These result may vary from part to part.

10 11 12 13 14 15 16 17 18 19 20

100

10

1

0.1

0.01

Bits Resolution

T
im

e
p

er
 C

o
n

ve
rs

io
n

 (
se

c)

� �

� � � � �

�

� �

� �

�� �

� �

� � � � � �

�

�

�

�

�

� ��

�

�

� � �

� �

� �

� � � �

�

� �

�

� �

�

� �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

� �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �
 �

 �

0 1 2 3 4 5

VIN (V)

1024

768

512

256A
/D

 O
u

tp
u

t
(c

o
u

n
ts

)

 � Output �

A
/D

 E
rro

r (co
u

n
ts)

+4

+2

0

-2
 1999 Microchip Technology Inc. DS00700A-page 2-55

AN700

S2.book Page 56 Thursday, March 2, 2000 8:02 AM
ERROR ANALYSIS

This high resolution, low cost Delta-Sigma Converter
provides a good solution for ratiometric applications
where having the absolute results is not critical. Addi-
tionally, the function of analog gain is replaced by the
inherent digital filtering that this technique utilizes.

In this example, VDD is 5V and the reference voltage is
~VDD/2. The resistors are 47kΩ, which are chosen to
minimize the leakage errors across the resistors versus
the RDSON error of the output pin, RA3. The capacitor
has a value of 100nF.

RDSON Error

This error comes from the drain-source resistance of
the output FETs on the output pin, RA3. At room tem-
perature, this resistance error is typically less than
100Ω. Compared to R2, RDSON introduces about 0.2%
gain error. This is easily compensated for by increasing
the resistor, R1 by approximately 100Ω. Additionally,
the value of the RDSON resistance will increase with
rising temperature. Assuming a temperature change
from 20°C to 70°C, RDSON will change from ~100Ω to
~200Ω which adds an additional 0.2% error.

RA0 Port Leakage Current

This leakage current is specified at 1nA at room tem-
perature and 0.5µA (max) over temperature. The leak-
age current from the port at RA0 causes a voltage drop
across the parallel combination of R1 and R2. With
these two resistors equaling 47kΩ, the error caused by
this leakage current is ~11mV. This is also close to a
0.2% error. At room temperature this error is negligible.
Leakage current does increase with temperature.

Non-Symmetrical Output Port (RA3)

When the output port is high the FET resistance is
dependent on the p-channel on resistance. When the
output port is low the FET resistance is dependent on
the n-channel on resistance. The p-channel on resis-
tance is usually greater than the on resistance of the
n-channel FET. As a consequence, there is an additional
offset contribution of 5.5mV at room and over tempera-
ture.

Voltage Reference

The internal voltage reference to the comparator is
implemented with a simple voltage divider. The abso-
lute value of this voltage is dependent on internal resis-
tor matching and power supply voltage. Assuming the
power supply is an accurate 5V, the voltage error of this
reference, part to part is significant. However, once the
initial error of the internal voltage reference is removed
with calibration, it is ratiometric to the power supply.

This is the biggest error in the circuit, but easily reduced
with an external voltage reference.

Integration Capacitor

Any leakage errors of the capacitor will contribute to the
overall error of the system. If the RC time constant of
the circuit is greater than the sample frequency, the
non-linearity of this time response will cause a linearity
error in the system.

In this case the RC time constant is equal to:

tRC = R1||R2 * CINT

tRC = 47kΩ||47kΩ * 100nF

tRC = 2.35ms

The dielectric absorbtion is not critical. This is due to
the fact that the capacitor voltage is held at a relative
constant level.

In this example, the maximum voltage deviation due to
the non-linearity of the RC network is ~8mV. This is
also below a 0.2% error. If a lower sampling frequency
is used, the integrating capacitor must be increased in
value.

Comparator Offset

The offset of the comparator is specified at 10mV
(max). With a VDD of 5V, the error caused by the com-
parator is ~0.2%.

Out of Range Inputs

In the event that the input signal goes to the maximum,
minimum, or beyond the design limits, the converter will
produce erroneous results. This problem can be cor-
rected by decreasing R2 by 10% to 20%.

Offset Adjustment

If the application requires that the effect of the system
be nulled, this can be done by leaving VIN open and run-
ning a conversion cycle. The results of this conversion
will be equal to the offset voltage of the microprocessor
system plus the external reference (if used).

Error Source

Contribution at
Room Temp

Error Due to
Temperature

Offset Gain Offset Gain

RDSON or RA3
(with R1 = 47kΩ+100Ω)

negligible negligible 0.2%

Port Leakage negligible N/A 11mV N/A

FET Symmetry of RA3 5.5mV negligible 5.5mV N/A

Internal Voltage
Reference

49mV N/A 49mV* N/A

Comparator Offset 10mV N/A 10mV N/A

Most Probable Total Error 52mV* 0.2%

* the offset error of the internal voltage reference can be
reduced significantly with an external reference.

TABLE 1: Error contribution of all of the error
sources at room and at temperature (-40 to 85°C) for
R2 = 47kΩ. The “Most Probable Error Over Tempera-
ture” is calculated as the square root of the sum of the
squares.
DS00700A-page 2-56 1999 Microchip Technology Inc.

AN700
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 57 Thursday, March 2, 2000 8:02 AM
OTHER INPUT RANGES

The configuration shown in Figure 2 is designed for a 0
to 5V input range. The input range for this circuit is
determined by the resistor network (comprising of R1
and R2) and the reference voltage to the non-inverting
input of the comparator. If the ratio of R1 and R2 is
changed, the input range can be increased or
decreased in accordance with the relationship between
R1 and R2. Further adjustments can be implemented
with an additional resistor added to this input structure
that is biased to ground or the power supply.

Input Range of 2V to 3V

By adjusting the ratio of R1 and R2, the input range of
this converter can be increased or decreased. The
resistors that are selected for the circuit in Figure 6
reduces the input range from ±2.5V as in Figure 2 to
+/-500mV. In both cases, the input range is centered
around the reference voltage to the comparator, 2.5V.
This type of input range is best suited for sensors with
smaller output voltage ranges, such as the buffered
output of a pressure sensor or load cell.

The resistors are determined by comparing the desired
input range to the voltage range of RA3. Assuming that
the reference voltage in this problem is 2.5V, the input
range changes +/-500mV and the voltage at RA3
changes by +/-2.5V. The ratio of these two voltage
ranges is 5:1. Consequently, during one integration
period the difference between the current through R2
and R1 must always be less than zero. In this manner,
the RA3 gate will be capable of driving the capacitor,
CINT, past the reference voltage applied to the
non-inverting input of the comparator.

FIGURE 6: Configuration of the microcontroller for a
delta-sigma conversion with a ±500mV range centered
around 2.5V.

The design equations for this circuit are:

VIN(CM) = VRA0

VIN(P TO P) = VRA3(P TO P) (R1/R2)

where

VIN(CM) is equal to

(VIN (MAX) - VIN (MIN)) /2 + VIN (MIN)

VRA0 is the voltage applied to the comparator’s invert-
ing input

VIN (P TO P) is equal to (VIN(MAX) - VIN(MIN))

VRA3 (P TO P) is equal to VRA3(MAX) - VRA3(MIN)

–

+

VDD

C1OUT

VIN

R2
195kΩ

R1
39kΩ RA3

PORTA<3

Comparator
VDD

RA2

RA0

C1

CINT

100nf

Firmware
Closes
Loop

CMCON := 0000 0011
VRCON := 1110 1100

R2 => 5R1

IR2 => IR1

VREF = VDD/2
(can be
internal or external)

(2–3V Input Range)

PIC16C6XX
 1999 Microchip Technology Inc. DS00700A-page 2-57

AN700

S2.book Page 58 Thursday, March 2, 2000 8:02 AM
Input Range of 10V to 15V

By adding an additional resistor to the input structure of
the A/D Converter, an offset adjustment can be applied
to the input range. In Figure 7, R1 and R2 are equal and
configured to allow for an input range of +/-2.5V as
shown in Figure 2. The addition of R3, which is refer-
enced to ground, provides a level shift to the input
range of 10V.

With this circuit configuration, a 5V (full-scale) current
through R1 is equal to VREF / R1. If R3 is used to draw
the same current to ground, the integrating capacitor
will not be charged. In this manner, a 2.5V offset is
implemented with R3 = R1. To achieve a 10V offset, R3
must be equal to 4*R1 as shown in Figure 7.

FIGURE 7: Configuration of the microcontroller for a
delta-sigma conversion with a ±2.5V range centered
around 12.5V.

The design equations for this circuit are:

VIN(CM) = VRA0 (1 + R1/R3)

VIN(P TO P) = VRA3(P TO P) (R1/R2)

where

VIN(CM) is equal to

(VIN (MAX) - VIN (MIN)) /2 + VIN (MIN)

VRA0 is the voltage applied to the comparator’s invert-
ing input

VIN (P TO P) is equal to (VIN(MAX) - VIN(MIN))

VRA3 (P TO P) is equal to VRA3(MAX) - VRA3(MIN)

Input Range of ±500mV

The circuit in Figure 8 using the scaling technique dis-
cussed in the circuit shown in Figure 5 and the offset
shift technique discussed in the circuit shown in Figure
6. With this circuit, the input range is +/-500mV. This is
achieved by making R2 = 5R1. Then the signal input
range is level shifted by -2.5V. In the circuit in Figure 8
this is implemented with a resistor, R3, to the positive
supply. This level shift is achieved by making R3 = R1.

FIGURE 8: Configuration of the microcontroller for a
delta-sigma conversion with a ±500mV range centered
around ground.

The design equations for this circuit are:

VIN(CM) = VRA0 (1 + R1/R3)

VIN(P TO P) = VRA3(P TO P) (R1/R2)

where

VIN(CM) is equal to

(VIN (MAX) - VIN (MIN)) /2 + VIN (MIN)

VRA0 is the voltage applied to the comparator’s

inverting input

VIN (P TO P) is equal to (VIN(MAX) - VIN(MIN))

VRA3 (P TO P) is equal to VRA3(MAX) - VRA3(MIN)

This circuit can be used to measure the current through
a shunt resistor. The main error term at room tempera-
ture is comparator offset. In systems with a known
“zero-current” state, the offset can be measured and
removed through calculation or removed by adding or
subtracting the offset to the result counter.

REFERENCES

Cox, Doug, “Implementing Ohmmeter/Temperature
Sensor”, AN512, Microchip Technology, Inc.

Richey, Rodger, “Resistance and Capacitance Meter
Using a PIC16C622”, AN611, Microchip Technology,
Inc.

–

+

VDD

C1OUT

VIN

R2
78kΩ

R1
78kΩ RA3

PORTA<3>

Comparator
VDD

RA2

RA0

C1

CINT

100nf

Firmware
Closes
Loop

CMCON := 0000 0011
VRCON := 1110 1100

R2 => 5R1

IR2 => IR1

R3
19.5kΩ

VREF = VDD/2
(can be
internal or external)

(10–15V Input Range)

PIC16C6XX

–

+

VDD

C1OUT

VIN

R2
195kΩ

R1
39kΩ RA3

PORTA<3>

Comparator
VDD

RA2

RA0

C1

CINT

100nf

Firmware
Closes
Loop

CMCON := 0000 0011
VRCON := 1110 1100

R2 => 5R1

IR2 => IR1

R3
39kΩ

VDD

VREF = VDD/2
(can be
internal or external)

(0.5 to -0.5V Input Range)

PIC16C6XX
DS00700A-page 2-58 1999 Microchip Technology Inc.

AN700
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 59 Thursday, March 2, 2000 8:02 AM
APPENDIX A: SOURCE CODE = DELTASIG.ASM

;***
;* Filename: DeltaSig.asm
;***
;* Author: Dan Butler
;* Company: Microchip Technology Inc.
;* Revision: 1.00
;* Date: 02 December 1998
;* Assembled using MPASM V2.20
;***
;* Include Files:
;* p16C622.inc V1.01
;***
;* Provides two functions implementing the Delta Sigma A2D.
;* InitDeltaSigA2D sets up the voltage reference and comparator
;* in the "idle" state.
;* DeltaSigA2D runs the actual conversion. Results provided in
;* result_l and result_h.
;* See An700 figure 2 for external circuitry required.
;***
;* What’s changed
;*
;* Date Description of change
;*
;***
#include <p16C622.inc>
cblock

result_l
result_h
counter:2

endc
;
;
;
InitDeltaSigA2D
 bsf STATUS,RP0
 movlw 0xEC
 movwf VRCON
 bcf PORTA,3 ;set comparator pin to output
 bcf STATUS,RP0
 movlw 0x06 ;set up for 2 analog comparators with common reference
 movwf CMCON
 return
;
; Delta Sigma A2D
; The code below contains a lot of nops and goto next instruction. These
; are necessary to ensure that each pass through the loop takes the same
; amount of time, no matter the path through the code.
;
DeltaSigA2D
 clrf counter
 clrf counter+1
 clrf result_l
 clrf result_h
 movlw 0x03 ; set up for 2 analog comparators with common reference
 movwf CMCON
loop
 btfsc CMCON,C1OUT ; Is comparator high or low?
 goto complow ; Go the low route
comphigh
 nop ; necessary to keep timing even
 bcf PORTA,3 ; PORTA.3 = 0
 incfsz result_l,f ; bump counter

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
 1999 Microchip Technology Inc. DS00700A-page 2-59

AN700

S2.book Page 60 Thursday, March 2, 2000 8:02 AM
 goto eat2cycles ;
 incf result_h,f ;
 goto endloop ;
complow
 bsf PORTA,3 ; Comparator is low
 nop ; necessary to keep timing even
 goto eat2cycles ; same here
eat2cycles
 goto endloop ; eat 2 more cycles
endloop
 incfsz counter,f ; Count this lap through the loop.
 goto eat5cycles ;
 incf counter+1,f ;
 movf counter+1,w ;
 andlw 0x04 ; Are we done? (We’re done when bit2 of
 btfsc STATUS,Z ; the high order byte overflows to 1).
 goto loop ;
 goto exit
eat5cycles
 goto $+1 ; more wasted time to keep the loops even
 nop ;
 goto loop ;
exit
 movlw 0x06 ; set up for 2 analog comparators with common reference
 movwf CMCON
 return
 end
DS00700A-page 2-60 1999 Microchip Technology Inc.

AN701
Switch Mode Battery Eliminator Based on a PIC16C72A

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 61 Thursday, March 2, 2000 8:02 AM
OVERVIEW

The PIC16C72A is a member of the PICmicro® Mid-
Range Family of 8-bit, high-speed microcontrollers.
The PIC16C72 provides the following features:

• 5 Channel, 8-bit Analog-to-Digital Converter (A/D)
• CCP Module to generate a PWM output

• I2C™/SPI™ Module

• 3 Timers

• 8 Interrupt sources

This application note shows how to combine the A/D
and CCP modules with suitable software to produce a
Switch Mode Battery Eliminator (SMBE) providing 3.0,
4.5, 5.0, 6.0, 7.5 and 9.0 volt output voltages at up to 1
Amp with an AC or DC input between 12.6V and 30V
peak.

HARDWARE

The system makes use of the A/D to read the input and
output voltages, the Capture/Compare/Pulse module to
generate a PWM output, and Timer2 to regulate how
fast the program runs. External hardware includes a
switching power converter and a suitable output filter.
Six LEDs on PORTB indicate the output voltage as set
by two push buttons on PORTA.

Optional components not installed in this project
include a serial EEPROM to store the last voltage set-
ting and a level translator to convert TTL to RS-232 for
communications with a PC.

In-Circuit Serial Programming™ (ICSP) support has
also been provided. LEDs D7 and D8 share clock and
data lines required for ICSP. These LEDs indicate error
conditions and are optional.

Analog-to-Digital Converter Module

The A/D converts an input voltage between ground and
VDD to an 8-bit value presented in ADRES. In this appli-
cation, the switching converter input and output volt-
ages are sampled. Provisions have been included to
read the setting of a potentiometer.

Capture/Compare/Pulse Width Modulation
Module

The CCP module produces the PWM signal that con-
trols the series pass switching transistor. Depending
on the PWM period and FOSC, any number of bits
between 2 and 10 bits may be used to specify the PWM
on-time. The CCP module requires the use of Timer2,
the Timer2 prescaler, and the PR2 register to produce
a PWM output.

Timer2 Postscaler

Timer2 drives the CCP module to control the PWM
period and also drives the Timer2 postscaler. The
postscaler is incremented when Timer2 is reset at the
end of each PWM cycle and will generate an interrupt
when the postscaler overflows.

External Hardware

The switching buck converter relies on three compo-
nents to function:

• Series pass switch (Q1)

• Inductor (L1)

• Commutating diode (D10).

These devices form the core of all switch mode buck
converters.

Author: Brett Duane
Microchip Technology
 1900 Microchip Technology Inc. DS00701A-page 2-61

AN701

S2.book Page 62 Thursday, March 2, 2000 8:02 AM
Power Input Circuit

This circuit is a conventional linear power supply that
accepts AC or DC power with a peak voltage of 30V
(limited by the 78L05). The converter operates off the
unregulated bulk power, while the regulator supplies
power and a voltage reference to the controller.

Figure 1 shows the Power Input Circuit. Bridge rectifier
BR1 rectifies the raw power input that may be AC or
DC. Capacitor C6 provides rough filtering to reduce rip-
ple in the input voltage. Capacitor C8 provides the short
current pulses drawn by transistor Q1 when it is turned
on. Capacitor C7 provides filtering of regulator U2 out-
put.

FIGURE 1: POWER INPUT CIRCUIT

C8
1uF
35V
TANT

C6
1000uF
35V

C7
10uF
16V

+5VC5
.01uF

BR1

VUNREG

IN OUT
LM7805

GN
D

U2

J1
DS00701A-page 2-62 1900 Microchip Technology Inc.

AN701
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 63 Thursday, March 2, 2000 8:02 AM
Power Converter

Figure 2 shows the switching buck converter with drive
circuits. Unregulated DC is provided at the emitter of
transistor Q1. Q1, inductor L1 and diode D10 form the
basic buck switching converter. The output appears at
connector J4.

When RC2 (PWM output) is high, transistor Q2 is
turned on, pulling Q2’s collector to ground. This draws
current from Q1’s base, turning Q1 on. When Q1 is on,
current from capacitors C6 and C8 charge L1 through
the load. Resistor R19 limits the current drawn from the
base of Q1. Resistor R17 ensures that Q1 switches off
quickly. Resistor R20 ensures that transistor Q2
switches off quickly. Resistor R18 limits Q2’s base cur-
rent.

When RC2 is low, R20 turns off Q2 and R17 turns off
Q1. When Q1 is off, the current through L1 continues to
flow through L1, D10 and the load, discharging L1.
When the current through L1 becomes less than the
current drawn by the load, C10 provides the additional
current and reduces output voltage ripple.

To ensure that Q1 remains cool during operation, it
must be driven well into saturation. When driving tran-
sistors as digital switches, divide their hFE (small signal
gain) by 5 and use the resulting gain for your calcula-
tions. This ensures that the transistor switches through
its linear region quickly to prevent significant heat gen-
eration in the transistor.

As the unregulated input voltage decreases, the drive
applied to Q1 decreases to the point where Q1 starts
operating in its linear region, producing heat. Contin-
ued operation in the linear region will cause Q1 to
overheat and fail. Q1 usually shorts, causing the input
voltage to appear at the converter output. R19 was
selected to allow Q1 to operate safely as long as VUN-

REG is above 10V. The controller software will shut
down the converter if VUNREG falls below 10V.

The converter output contains a considerable amount
of noise. Capacitors C10 and C11 provide filtering to
reduce that noise. F1 is a PTC resistor acting as a 1
Amp, self-resetting fuse.

FIGURE 2: SWITCHING BUCK CONVERTER WITH DRIVE AND OUTPUT CIRCUITS

C10
470uF
16V

C11
10uF
35V

D10
1N5822

R19
270
1W

R17
47

L1
100uH

R18
1K

Q2
2N2222A

Q1
ZTX751

R20
220

F1

PWM
 1900 Microchip Technology Inc. DS00701A-page 2-63

AN701

S2.book Page 64 Thursday, March 2, 2000 8:02 AM
Microcontroller Circuits

The microcontroller, analog inputs and digital outputs
are shown in Figure 3.

The LEDs indicate the output voltage (D1-6) and con-
verter faults (D7-8). Switches S1 and S2 allow the user
to select the desired output voltage. Resistors R3, R4
and capacitor C4 form the voltage feedback circuit.
Resistors R15, R16 and capacitor C13 form the voltage
source sense circuit. PWM is output at pin RC2.

Register packs RN5 and RN6 limit current through
LEDs D1-D8. LEDs D7 and D8 share clock and data
lines required for ICSP. Jumper J1 disables all LEDs.

When programming the controller using ICSP, J1
should be removed. If ICSP does not function properly,
D7 and D8 or RN6 should be installed after program-
ming.

S1 is the decrease voltage button and S2 is the
increase voltage button. R13 and R14 are pull down
resistors.

Resonator Y1, and capacitors C2 and C3 set Fosc for
the controller. If Y1 is a ceramic resonator with internal
capacitors, C2 and C3 are not required. Resistor R1
pulls MCLR to +5V while allowing the controller to be
programmed using ICSP. In addition, connecting pins 1
and 3 of connector J2 causes a remote reset of the con-
troller. (See figure 5.)

FIGURE 3: MICROCONTROLLER, ANALOG INPUTS AND DIGITAL INPUTS AND OUTPUTS

UP DN

470

470

RN5

RN6

R3
1K

R16
5.6K

VUNREGVOUT

R4
1K

C4
.01uF C2

20pF
C3
20pF

R15
1K

Y1, 10MHz
Resonator

C12
.01uF

C13
.01uF

R1
10K

C1
.1uF

MCLR+5V

+5V

+5V

R13
5.6K

R14
5.6K

JP1

PWM

SDA

RC5

RC6

RC7

RA5

RA5

RA2

RA2

R2
5K

RB6

RB7

PIC16C72A

SCL
DS00701A-page 2-64 1900 Microchip Technology Inc.

AN701
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 65 Thursday, March 2, 2000 8:02 AM
FIRMWARE

Initialization

The controller is first initialized by configuring the A/D,
CCP and Timer2 peripherals, followed by clearing the
RAM required for variables and initializing some vari-
ables. Controller pins are configured as required for
each of the modules, or as digital outputs if they are not
being used.

A/D

Pins RA0, RA1 and RA3 are configured as analog
inputs. Pins RA2 and RA5 are used as digital inputs.
The controller VDD is used as VREF for the A/D.

The conversion clock source TAD is selected to be
between 1.6usec and 6.4usec. Since Tosc = 0.1usec
(Fosc = 10MHz), 32Tosc = 3.2usec. The A/D module is
turned on and pin RA1 (VOUT) is sampled for conver-
sion later in the loop.

TRISA configures pin RA4 as an output and all others
as inputs.

CCP (PWM)

The CCP module is set to PWM mode. Timer2 is
enabled with a 1:1 prescaler. PR2 is set to 63 (0x3F).
The resulting PWM frequency is 39.063KHz.
(TPWM=25.6msec). The CCP module uses 8-bit data
to control the PWM duty cycle. The PWM duty cycle is
set to 0, ensuring that the PWM output is turned off.

All pins on PORTC are configured as outputs, including
RC2 which is the controller PWM output.

Timer2 postscaler

Since Timer2 will also control the frequency that the
main loop will execute, the Timer2 postscaler is set to a
1:1 ratio and the Timer2 postscaler interrupt is enabled.
This will cause one interrupt for each PWM cycle.

RAM

RAM required for variables is cleared. The 3.0V LED
on PORTB is lit. The variable set_pt is initialized to
produce the 3.0V output. Button debounce counters
are initialized.

Main loop

For a digital control loop to function as well as an ana-
log controller, the digital control loop should repeat at
least 30 times faster than the fastest expected tran-
sient.

The ripple frequency at capacitor C7 is 120Hz, or twice
the AC power line frequency. In this application, the
loop must be executed at least 120 x 30, or 3600 times
a second to adequately respond to the bulk power rip-
ple. Transients at the converter output are also han-
dled, but less effectively with increasing frequency.

The Timer2 postscaler generates interrupts that are
counted by the interrupt service routine. When 8 inter-
rupts have occurred, the main loop is allowed to exe-
cute once. This causes the main loop to execute 4883
times a second.

The A/D starts a conversion on RA1/AN1 (VOUT). The
program loops wait for the conversion to complete. The
8-bit result is placed in VOUT. The A/D is then set to
sample the input voltage (VUNREG).

PID Controller

The control algorithm is a software implementation of a
Proportional-Integral-Differential (PID) controller. The
only input to this controller is the difference between
the desired output voltage and the actual output volt-
age, and is known as the error signal.

The first module produces the error signal by finding
the difference between set_pt and VOUT. The result
is saved in the low byte of a 2 byte signed variable
e0h:e0. The high byte is set to reflect a negative value
if needed. The difference is selected to produce a pos-
itive result if set_pt is greater than VOUT.

e0 = set_pt - vout

if e0<7>=0 , e0h = 0x00, else e0h = 0xFF

A proportional term is generated from the present error
signal. This is simply the signed error multiplied by
some factor Kp. The 2 byte signed result is saved as
proh:pro.

proh:pro = Kp * e0h:e0
Kp = proportional factor

The difference between the present and previous error
is found and saved as the 2 byte signed result
difh:dif. The previous error e1h:e1 is simply the
error result found in the execution of the previous loop.
The difference between errors is multiplied by some
factor (Kd) and saved as difh:dif.

difh:dif = Kd * (e1h:e1 – e0h:e0)
Kd=difference factor

The integral component is nothing more than a total of
all the errors produced since the last reset. The present
error is multiplied by some factor (Ki) before being
added to the running 2 byte unsigned total inth:int.

inth:int = inth:int + Ki * e0h:e0
Ki = integral factor

The proportional, integral and difference terms are
summed together. The result of the sum is saved as the
2 byte signed result pwmh:pwm.

pwmh:pwm = proh:pro + difh:dif
 + inth:int
 1900 Microchip Technology Inc. DS00701A-page 2-65

AN701

S2.book Page 66 Thursday, March 2, 2000 8:02 AM
The result is never greatly positive, but can sometimes
cause the result to underflow. When pwmh:pwm under-
flows (as it does when the load is disconnected), the
PWM drive signal must be forced to zero or the con-
verter output becomes unpredictable. The overload
LED is also lit.

If pwmh<7> = 1, then pwmh:pwm = 0x0000 and turn
on the OVLD LED, else turn off OVLD LED.

PWM Generator

The PWM generator module (software, not the periph-
eral) discards the 3 least and 5 most significant bits,
and uses the remaining 8 bits to generate PWM with a
desired on time. Of the remaining 8 bits, the 2 least sig-
nificant bits are loaded into CCP1CON<5:4>. The last
6 bits (with 2 leading zeros to form a byte) are loaded
into CCP1RL.

Conversion of the input voltage VUNREG is started.

Reading Buttons

The LED data at PORTB is copied to a temporary vari-
able.

The down button is read. If it is closed, its debounce
counter is incremented. If no overflow occurs, execu-
tion proceeds to reading the up button. If an overflow
does occur, the LED data is shifted right one bit, unless
bit 0 is already set. Overflows occur approximately
every half second.

The up button is read and processed similar to the
down button. If it is closed, its debounce counter is
incremented. If no overflow occurs, execution pro-
ceeds to convert VIN. If an overflow does occur, the
LED data is shifted left one bit, unless bit 5 is already
set. Overflows occur approximately every half second.

The LED data is copied back to PORTB to light the cor-
responding LED. The LED data is also used to find the
proper index to use prior to calling a look-up table.

A call to the lookup table is performed. The lookup
table routine adds the index in the W register to the pro-
gram counter. The next instruction performed is a
"retlw" instruction that places the new set_pt in the
W register and returns to the next instruction after the
call to the look-up table. The value returned is saved
as the new set_pt.

Both button debounce counters are reset.

The conversion result of VIN is retrieved from the A/D
and vin is subtracted from 0xC1 (10V set point). If the
result is positive, VIN is less than 10V and program exe-
cution is directed to a safety shutdown module. Other-
wise, program execution continues normally.

If (0xC1 – vin) is positive, go to shutdown.

The present error, e0h:e0, replaces the previous
error, e1h:e1.

Program execution then returns to the top of the loop to
wait for Timer2 postscaler interrupts.

Interrupts

The Interrupt Service Routine saves the state of the W
and STATUS registers, increments the interrupt counter
and restores the STATUS and W registers.

Safety Shutdown

The safety shutdown module has been included to turn
off the converter and to light the trip LED. Once
entered, there is no exit from this module except by
resetting the controller.

Gain constants Kp, Kd, and Ki

Constants Kp, Ki, and Kd were determined experimen-
tally. The goal was to maintain VOUT between 4.75V
and 5.25V when the 5V output was selected. VOUT
should remain within this band, regardless of changes
in the load current. This specifically includes 10%
changes in current, unloaded to full-load, and full-load
to unloaded step changes. Other step changes in load-
ing were also examined.

Constants determined for a 5V output were then used
for other voltage outputs.

Only resistive loads were considered. Some degrada-
tion of output performance may be expected with induc-
tive or capacitive loads.
DS00701A-page 2-66 1900 Microchip Technology Inc.

AN701
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 67 Thursday, March 2, 2000 8:02 AM
APPENDIX A: SWITCH MODE BUCK
CONVERTER

A switch mode buck converter performs a voltage
reduction by periodically charging an inductor from a
high voltage source, then allowing the charged inductor
to transfer its stored energy to the load at a lower volt-
age. This energy transfer occurs with little loss.

FIGURE 4: SWITCH MODE BUCK
CONVERTER TOPOLOGY

In the ideal buck converter, the average output power
equals the average input power. The switch is operated
at a constant frequency, but the duty cycle (on time /
cycle time) controls the output voltage.

When the switch Q (a transistor or MOSFET) is closed,
current from the source flows through the inductor L,
through the load R and back to the source. Energy is
being stored in the inductor by increasing inductor cur-
rent and building up a magnetic field.

When the switch is open, the source no longer supplies
energy. The energy stored in the magnetic field is
transferred to the load as the magnetic field collapses.
Inductor current is decreasing as current flows from the
inductor through the load R and diode D and back to
the inductor L.

No energy is lost in the inductor during this conversion.
The majority of losses occur in the switching device as
it switches though its linear region, and the commuta-
tion diode when it conducts due to its forward voltage
drop. Most electrolytic filter capacitors also have high
resistance to the high frequency ripple current.

If current flows through the inductor at all times, the
converter is operating in the continuous mode. The
average inductor current is the same as the load cur-
rent. If the load current is constant, variations in the
inductor current average to zero. The peak inductor
current will be no greater than twice the average cur-
rent, and can be reduced by raising the switching fre-
quency. This is normally the desired operating mode.

If the current through the inductor stops, the converter
is operating in the discontinuous mode. All the current
that flows through the load continuously must flow
through the switch and charge the inductor during the
time the switch is turned on. This can result in very high
currents in both the switch and inductor and risks satu-
rating the inductor. When the inductor is saturated, its
inductance decreases drastically. Considerable noise
is also produced as large currents are switched, requir-
ing a greater amount of filtering. This mode is normally

used only when there is very light loading of the con-
verter, but it is easier to stabilize than the continuous
mode converter.

In both continuous and discontinuous modes, charging
or discharging a filter capacitor at the converter output
makes up the difference between the inductor and load
currents. This filter capacitor also reduces output ripple
voltage and noise that switching converters produce.

The equations presented here assume an ideal circuit,
but actual circuits have similar results.

The approximate duty cycle D.C. can be approximated
by:

D.C. = VOUT = IIN = TON
VIN IOUT TPWM

Where VOUT = output voltage,
IIN = average input current,

TON = switch on time
VIN = input voltage,

IOUT = output current,
TPWM = PWM period = 1/FPWM

The ripple current magnitude due to switching is
approximated by:

IRIPPLE = (VIN-VOUT) * D.C. * TPWM
 L

Where L = inductor inductance,
IRIPPLE = ripple current peak-to-peak
FPWM = PWM frequency

The ripple current is absorbed by the output filter
capacitor C, but produces a small output ripple voltage
that is approximated by:

VRIPPLE = IRIPPLE * D.C. * TPWM
 C

Where VRIPPLE = output voltage ripple peak-to-peak

EXAMPLE 1: CAPACITOR AND
INDUCTOR SELECTION

Given: VUNREG = 20V, VOUT = 6V,
VRIPPLE = 0.1V, IRIPPLE = 1A,
FPWM = 39.063KHz

Solution:

D.C. = VOUT = 6 = 0.30
VIN 20

TPWM = 1 = 1 = 25.6uS
FPWM 39KHz

C = IRIP*D.C.*TPWM = (1A)(.3)(25.6uS)
VRIPPLE 0.1V

= 76.8uF

IRIP = (VIN-VOUT)*D.C.*TPWM

L

L = (VIN-VOUT)*D.C.*TPWM

IRIP

= (20V-6V)(0.30)(25.6uS)
1A

= 107.5uH

CD

L
Q R

Input Output
 1900 Microchip Technology Inc. DS00701A-page 2-67

AN701

S2.book Page 68 Thursday, March 2, 2000 8:02 AM
APPENDIX B: ACCESSORY
COMPONENTS

These accessory component are not installed on the
board, but can provide additional capabilities. Connec-
tor J2 provides for In-Circuit Serial Programming
(ICSP) and offers a remote MCLR reset by connecting
pins 1 and 3. Integrated circuit U3 and connector J3

provide RS-232 communications with the controller.
Integrated circuit U4 is a serial EEPROM that commu-
nicates with the controller using the I2C™ protocol.

FIGURE 5: ACCESSORY COMPONENTS

+5V

J2

MCLR

RB7

RB6

C29
.1uF +5V

RC7 +5V

RC6

R22
4.7K

+5V

SDA

SCL

+5V

R21
4.7K

C16
.1uF

R31
10

J3

DS275

24LC01BD

U4

U3

VCC

RXin

NC

TXout

RXout

Vdrv

TXin

GND

VCC

SCL

WP

GND

SDA

A2

A0

A1

+5V
DS00701A-page 2-68 1900 Microchip Technology Inc.

AN701
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 69 Thursday, March 2, 2000 8:02 AM
APPENDIX C: CODE
MPASM 02.20 Released SW_REG1A.ASM 3-9-1999 19:28:40

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

00001
;**

00002 ;* Filename: APPNOTE.ASM
00003

;**
00004 ;* Author: Brett Duane
00005 ;* Company: Microchip Technology
00006 ;* Revision: Rev 1.0
00007 ;* Date: 3-9-99
00008 ;* Assembled using MPASM rev 4.00.00
00009

;**
00010 ;* Include files: p16c72a.inc Rev 1.01
00011

;**
00012 ;*
00013 ;* Switching buck regulator using 16C72A using A/D,
00014 ;* PWM (CCP) and timer2 modules.
00015 ;*
00016 ;* PID control loop implementation.
00017 ;* Executes 4883 loops per second.
00018 ;* Spends most of its time looping waiting for timer2 overflows.
00019 ;*
00020 ;* A/D inputs and PWM output are 8 bits,
00021 ;* with internal calculations done in 16 bits
00022 ;*
00023 ;* Timer2 postscaler (1:16) generates an interrupt.
00024 ;*
00025 ;* RA0 converts a 0-5V input from trimmer, but is not used.
00026 ;* RA1 monitors VOUT.
00027 ;* RA2 is the up voltage push button input.
00028 ;* RA3 monitors VUNREG.
00029 ;* RA5 is the down voltage push button input.
00030 ;*
00031 ;* RB<5:0> drives LEDs to indicate the output voltage.
00032 ;* RB<7:6> drives LEDs to indicate overload or shutdown.
00033 ;*
00034 ;* RC2 is the PWM source for the switching converter.
00035 ;*
00036 ;*
00037 ;* Configuration Bit Settings
00038 ;* Brown-out detect is off
00039 ;* Code protect is off
00040 ;* Power-up timer is enabled
00041 ;* Watchdog timer is disabled
00042 ;* 10MHz resonator is driven in XT mode
00043 ;*
00044 ;* Program Memory Words Used: 230
00045 ;* Program Memory Words Free: 1818
00046 ;*
00047 ;* Data Memory Bytes Used: 24
00048 ;* Data Memory Bytes Free: 104
00049 ;*
00050

;**

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
 1900 Microchip Technology Inc. DS00701A-page 2-69

AN701

S2.book Page 70 Thursday, March 2, 2000 8:02 AM
00051 ;* What’s Changed
00052 ;*
00053 ;* Date Description of Change
00054 ;*
00055 ;* 3-3-99 This is the initial release.
00056 ;*
00057

;**
00058
00059 list p=16c72a
00060 #include <p16c72a.inc>
00001 LIST
00002 ; P16C72A.INC Standard Header File,Version 1.01 Microchip Technology, Inc.
00249 LIST
00061

2007 3FB1 00062 __config _BODEN_OFF & _CP_OFF & _PWRTE_ON & _WDT_OFF & _XT_OSC
00063
00064
00065 cblock 0x020
00066

 00000020 00067 UPCL ;up button debounce
 00000021 00068 UPCH ;up button debounce
 00000022 00069 DNCL ;down button debounce
 00000023 00070 DNCH ;down button debounce
 00000024 00071 SETPOINT ;voltage setpoint - RA0 result (unsigned)
 00000025 00072 VOUT ;output voltage feedback - RA1 result
 00000026 00073 VUNREG ;source voltage feedback - RA3 result
 00000027 00074 TEMPA ;temp variable
 00000028 00075 TEMPB ;temp variable
 00000029 00076 INT ;integral component
 0000002A 00077 INTH ;integral component
 0000002B 00078 PRO ;proportional component
 0000002C 00079 PROH ;proportional component
 0000002D 00080 DIF ;difference component
 0000002E 00081 DIFH ;difference component
 0000002F 00082 PWM ;PWM drive
 00000030 00083 PWMH ;PWM drive
 00000031 00084 E0 ;present error
 00000032 00085 E0H ;present error
 00000033 00086 E1 ;past error
 00000034 00087 E1H ;past error
 00000035 00088 T2POST ;postscaler interrupt counter
 00000036 00089 ISRS ;isr variable
 00000037 00090 ISRW ;isr variable

00091
00092 endc
00093

 000000F9 00094 DEL1 equ 0xf9 ;text equate - debounce delay
 00000089 00095 AVOUT equ 0x89 ;text equate - select VOUT channel
 00000099 00096 AVUNREG equ 0x99 ;text equate - select VUNREG channel

00097
00098

;**
00099 ;* Reset vector
00100 ;* This is the reset vector
00101 ;*
00102

;**
00103

0000 00104 org 0x00 ;reset vector
0000 280E 00105 goto Main ;program start

00106
00107
00108

;**
00109 ;* INTERRUPT SERVICE ROUTINE
DS00701A-page 2-70 1900 Microchip Technology Inc.

AN701
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 71 Thursday, March 2, 2000 8:02 AM
00110 ;* This ISR counts timer2 interrupts
00111 ;*
00112 ;* Input Variables:
00113 ;* T2POST Counts overflow interrupts
00114 ;*
00115 ;* Output Variables:
00116 ;* T2POST Counts overflow interrupts
00117 ;*
00118

;**
00119

0004 00120 org 0x04 ;interrupt service routine
00121

0004 00B7 00122 movwf ISRW ;save W
0005 0E03 00123 swapf STATUS,W ;get status
0006 00B6 00124 movwf ISRS ;save status

00125
0007 108C 00126 bcf PIR1,TMR2IF;clear interrupt request flag

00127
0008 0AB5 00128 incf T2POST,F ;increment interrupt counter

00129
0009 0E36 00130 swapf ISRS,W ;get status
000A 0083 00131 movwf STATUS ;restore status
000B 0EB7 00132 swapf ISRW,F ;restore W
000C 0E37 00133 swapf ISRW,W ;restore W

00134
000D 0009 00135 retfie ;return from interrupt

00136
00137

;**
00138 ;* Main Beginning of main loop
00139 ;* First segment of code initializes controller
00140

;**
00141

000E 00142 Main
000E 1303 00143 bcf STATUS,RP1;bank1 initialization
000F 1683 00144 bsf STATUS,RP0;bank1

00145 ;adc
0010 3004 00146 movlw 0x04 ;RA0,1,3 analog, RA2,5 digital, Vref=Vdd
0011 009F 00147 movwf ADCON1

00148
0012 302F 00149 movlw 0x2f ;RA0,1,3 analog in; RA2,5 digital in, RA4 dig out
0013 0085 00150 movwf TRISA

00151 ;PWM
0014 30FF 00152 movlw 0xFF ;set portC to all inputs
0015 0087 00153 movwf TRISC
0016 1107 00154 bcf TRISC,2 ;make RC2/PWM output

00155
0017 303F 00156 movlw .63 ;PWM period = 78.125KHz (8 bit resolution)
0018 0092 00157 movwf PR2

00158
00159 ;timer2

0019 148C 00160 bsf PIE1,TMR2IE;enable timer2 postscaler interrupts
00161
00162 ;display

001A 0186 00163 clrf TRISB ;make PORTB all outputs
00164

001B 1283 00165 bcf STATUS,RP0;select bank0
00166 ;adc

001C 3089 00167 movlw AVOUT ;(10MHz osc)set A/D conv clock(Fosc/32),
001D 009F 00168 movwf ADCON0 ;select RA1(AN1), turn on A/D

00169 ;PWM
001E 1217 00170 bcf CCP1CON,4;clear ls bits of PWM duty cycle
001F 1297 00171 bcf CCP1CON,5
0020 0195 00172 clrf CCPR1L ;set PWM to 0 (turn off PWM)
 1900 Microchip Technology Inc. DS00701A-page 2-71

AN701

S2.book Page 72 Thursday, March 2, 2000 8:02 AM
00173
0021 3004 00174 movlw 0x04 ;enable timer2, set prescale=1:1,
 postscale=1:1
0022 0092 00175 movwf T2CON
0023 300C 00176 movlw 0x0C ;set CCP1 to PWM mode
0024 0097 00177 movwf CCP1CON

00178
00179 ;**
00180 ;* Restart Clears memory
00181 ;*
00182 ;* Initializes display LEDs, desired output voltage,
00183 ;* debounce counters
00184 ;*
00185 ;* Enables interrupts
00186 ;*
00187 ;* Output Variables:
00188 ;* SETPOINT desired output voltage, set to 3.0V
00189 ;* DNCL, DNCH Down voltage button debounce counter
00190 ;* UPCL, UPCH Up voltage button debounce counter
00191 ;*
00192 ;**
00193

0025 3020 00194 Restart movlw 0x20 ;clear memory from 0x20 to 0x3f
0026 0084 00195 movwf FSR
0027 0180 00196 ClrMem clrf INDF
0028 0A84 00197 incf FSR,F
0029 1F04 00198 btfss FSR,6
002A 2827 00199 goto ClrMem

00200
002B 3001 00201 movlw 0x01 ;light 3.0V LED
002C 0086 00202 movwf PORTB

00203
002D 304D 00204 movlw 0x4d ;initial 3.0V setting
002E 00A4 00205 movwf SETPOINT

00206
002F 01A2 00207 clrf DNCL ;clear down button debounce counter
0030 01A0 00208 clrf UPCL ;clear up button debounce counter

00209
0031 30F9 00210 movlw DEL1
0032 00A3 00211 movwf DNCH ;preset down button debounce counter byte
0033 00A1 00212 movwf UPCH ;preset up button debounce counter high byte

00213
0034 170B 00214 bsf INTCON,PEIE ;enable peripheral interrupt sources
0035 178B 00215 bsf INTCON,GIE ;enable all interrupts

00216
00217 ;**
00218 ;*
00219 ;* Again Top of main loop
00220 ;*
00221 ;* Waits for 8 timer2 interrupts
00222 ;*
00223 ;* A/D converts VOUT
00224 ;*
00225 ;* Acquires VUNREG channel
00226 ;*
00227 ;* Input Variables:
00228 ;* T2POST Timer2 interrupt counter
00229 ;*
00230 ;* Output Variables:
00231 ;* VOUT Conversion result
00232 ;*
00233 ;**
00234

0036 00235 Again
0036 1DB5 00236 btfss T2POST,3 ;long delay
0037 2836 00237 goto Again ;try again
DS00701A-page 2-72 1900 Microchip Technology Inc.

AN701
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 73 Thursday, March 2, 2000 8:02 AM
00238
0038 01B5 00239 clrf T2POST ;clear counter

00240
00241 ;--- start conversion - feedback

0039 151F 00242 bsf ADCON0,GO_DONE ;start conversion
003A 0000 00243 nop
003B 191F 00244 Wc2 btfsc ADCON0,GO_DONE ;test if done
003C 283B 00245 goto Wc2 ;no, wait some more
003D 081E 00246 movf ADRES,W ;get conversion result
003E 00A5 00247 movwf VOUT ;save result

00248 ;--- end conversion
003F 3099 00249 movlw AVUNREG ;select VUNREG channel
0040 009F 00250 movwf ADCON0

00251
00252

;**
00253 ;* FErr Finds difference (error) between SETPOINT and VOUT
00254 ;* E0H:E0 = SETPOINT - VOUT
00255 ;*
00256 ;* Input Variables:
00257 ;* SETPOINT Desired output voltage
00258 ;*
00259 ;* Output Variables:
00260 ;* E0H:E0 Signed error
00261

;**
00262

0041 00263 FErr
0041 01B2 00264 clrf E0H ;clear error high byte

00265
0042 0825 00266 movf VOUT,W
0043 0224 00267 subwf SETPOINT,W ;f-w=d
0044 00B1 00268 movwf E0 ;save new error

00269
0045 1C03 00270 btfss STATUS,C ;was there a borrow?
0046 09B2 00271 comf E0H,F ;yes

00272
00273

;**
00274 ;* Ppp Produces proportional term by multiplying E0H:E0 by Kp
00275 ;*
00276 ;* PROH:PRO = E0H:E0 * Kp
00277 ;* Kp = 2^3 - Produced by 3 left shifts
00278 ;*
00279 ;* This term forces the output close to the desired output
00280 ;* quickly, but will never completely eliminate the error.
00281 ;*
00282 ;* Input Variables:
00283 ;* E0H:E0 Error found at top of loop
00284 ;* Kp Proportional gain factor (constant)
00285 ;*
00286 ;* Output Variables:
00287 ;* PROH:PRO Proportional component
00288 ;*
00289

;**
00290

0047 00291 Ppp
0047 0831 00292 movf E0,W ;move E0 to temp space
0048 00A7 00293 movwf TEMPA
0049 0832 00294 movf E0H,W
004A 00A8 00295 movwf TEMPB

00296
004B 1003 00297 bcf STATUS,C ;mult E0 by 2
004C 0DA7 00298 rlf TEMPA,F
004D 0DA8 00299 rlf TEMPB,F
 1900 Microchip Technology Inc. DS00701A-page 2-73

AN701

S2.book Page 74 Thursday, March 2, 2000 8:02 AM
00300
004E 1003 00301 bcf STATUS,C ;mult E0 by 2
004F 0DA7 00302 rlf TEMPA,F
0050 0DA8 00303 rlf TEMPB,F

00304
0051 1003 00305 bcf STATUS,C ;mult E0 by 2
0052 0DA7 00306 rlf TEMPA,F
0053 0DA8 00307 rlf TEMPB,F

00308
0054 0827 00309 PppD movf TEMPA,W ;move result in temp space to pro
0055 00AB 00310 movwf PRO
0056 0828 00311 movf TEMPB,W
0057 00AC 00312 movwf PROH

00313
00314

;**
00315 ;* DifCom Computes differential component
00316 ;*
00317 ;* Finds difference between this loop error and previous

loop error
00318 ;* DIFH:DIF = (E1H:E1 - E0H:E0) * Kd
00319 ;*
00320 ;* Kd = 2^3 - Produced by 3 left shifts
00322 ;* This term tends to slow controller response.
00323 ;*
00324 ;* Input Variables:
00325 ;* E1H:E1 Previous loop error
00326 ;* E0H:E0 Present loop error
00327 ;* Kd Differential gain factor (constant)
00328 ;*
00329 ;* Output Variables:
00330 ;* DIFH:DIF differential component
00331 ;*
00332

;**
00333

0058 00334 DifCom
0058 0834 00335 movf E1H,W ;get prev error high byte
0059 0232 00336 subwf E0H,W ;f-w=d E0-E1=w
005A 00AE 00337 movwf DIFH ;save difference high byte

00338
005B 0833 00339 movf E1,W ;get prev error low byte
005C 0231 00340 subwf E0,W ;f-w=d E0-E1=w
005D 00AD 00341 movwf DIF ;save difference low byte

00342
005E 1C03 00343 btfss STATUS,C ;was there a borrow?
005F 03AE 00344 decf DIFH,F ;yes

00345
00346 ;allow difference to be modified here
00347

0060 1003 00348 bcf STATUS,C ;mult dif by 2
0061 0DAD 00349 rlf DIF,F
0062 0DAE 00350 rlf DIFH,F

00351
0063 1003 00352 bcf STATUS,C ;mult dif by 2
0064 0DAD 00353 rlf DIF,F
0065 0DAE 00354 rlf DIFH,F

00355
0066 1003 00356 bcf STATUS,C ;mult dif by 2
0067 0DAD 00357 rlf DIF,F
0068 0DAE 00358 rlf DIFH,F

00359
00360
00361
00362

;**
DS00701A-page 2-74 1900 Microchip Technology Inc.

AN701
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 75 Thursday, March 2, 2000 8:02 AM
00363 ;* IntCom Computes integral component
00364 ;*
00365 ;* Multiplies present error by Ki,
00366 ;* adds result to INTH:INT
00367 ;*
00368 ;* INTH:INT = INTH:INT + E0H:E0 * Ki
00369 ;*
00370 ;* Ki = 2^3 -- Produced by 3 left shifts
00371 ;*
00372 ;* This term will eliminate all error,
00373 ;* but not quickly
00374 ;*
00375 ;* Input Variables:
00376 ;* E0H:E0 Present loop error
00377 ;* INTH:INT Running total of errors
00378 ;* Ki Integral gain factor (constant)
00379 ;*
00380 ;* Output Variables:
00381 ;* DIFH:DIF differential component
00382

;**
00383

0069 00384 IntCom
0069 0832 00385 movf E0H,W ;move E0 to temp space
006A 00A8 00386 movwf TEMPB
006B 0831 00387 movf E0,W
006C 00A7 00388 movwf TEMPA

00389
00390 ;allow error to be modified here before adding to integral
00391

006D 1003 00392 bcf STATUS,C
006E 0DA7 00393 rlf TEMPA,F ;E0
006F 0DA8 00394 rlf TEMPB,F ;E0H

00395
0070 1003 00396 bcf STATUS,C
0071 0DA7 00397 rlf TEMPA,F ;E0
0072 0DA8 00398 rlf TEMPB,F ;E0H

00399
0073 1003 00400 bcf STATUS,C
0074 0DA7 00401 rlf TEMPA,F ;E0
0075 0DA8 00402 rlf TEMPB,F ;E0H

00403
0076 0827 00404 IntD movf TEMPA,W ;get current error, E0
0077 07A9 00405 addwf INT,F ;add to INT, store in INT
0078 1803 00406 btfsc STATUS,C ;was there a carry?
0079 0AAA 00407 incf INTH,F ;yes, inc INT high byte

00408
007A 0828 00409 movf TEMPB,W ;get E0 high byte, E0H
007B 07AA 00410 addwf INTH,F

00411
00412

;**
00413 ;* Total Sums proportional, integral, and differential terms
00414 ;*
00415 ;* PWMH:PWM = INTH:INT + PROH:PRO + DIFH:DIF
00416 ;*
00417 ;* If the result should ever go negative,
00418 ;* the result is forced to 0,and the overload LED is set.
00419 ;* (This is an error condition.Can’t have a negative PWM.)
00420 ;*
00421 ;* Input Variables:
00422 ;* INTH:INT Integral term
00423 ;* PROH:PRO Proportional term
00424 ;* DIFH:DIF Differential term
00425 ;*
00426 ;* Output Variables:
 1900 Microchip Technology Inc. DS00701A-page 2-75

AN701

S2.book Page 76 Thursday, March 2, 2000 8:02 AM
00427 ;* PWMH:PWM Sum of terms
00428

;**
00429

007C 00430 Total
007C 082C 00431 PCom movf PROH,W ;add in proportional term
007D 00B0 00432 movwf PWMH

00433
007E 082B 00434 movf PRO,W
007F 00AF 00435 movwf PWM

00436
0080 082A 00437 ICom movf INTH,W ;add in integral term
0081 07B0 00438 addwf PWMH,F

00439
0082 0829 00440 movf INT,W
0083 07AF 00441 addwf PWM,F
0084 1803 00442 btfsc STATUS,C
0085 0AB0 00443 incf PWMH,F

00444
0086 082E 00445 DCom movf DIFH,W ;add in differential term
0087 07B0 00446 addwf PWMH,F

00447
0088 082D 00448 movf DIF,W
0089 07AF 00449 addwf PWM,F
008A 1803 00450 btfsc STATUS,C
008B 0AB0 00451 incf PWMH,F

00452
008C 1BB0 00453 Ovrld btfsc PWMH,7 ;did PWM go negative?
008D 2890 00454 goto NegPwm ;yes
008E 1306 00455 bcf PORTB,6 ;no - turn off overload LED
008F 2893 00456 goto PwmGen

00457
0090 1706 00458 NegPwm bsf PORTB,6 ;turn on overload LED
0091 01B0 00459 clrf PWMH ;set PWM to 0
0092 01AF 00460 clrf PWM

00461
00462

;**
00463 ;* PwmGen Divides PWHM:PWM by 8 (3 right shifts)
00464 ;* 2 LSbits of PWM sent to 2 LSbits of duty cycle register
00465 ;* remaining 6 bits sent to CCPR1L (duty cycle register)
00466 ;*
00467 ;* A/D has been acquiring VUNREG, start conversion.
00468 ;*
00469 ;* Input Variables:
00470 ;* PWMH:PWM PWM drive
00471

;**
00472

009 00473 PwmGen
0093 0CB0 00474 rrf PWMH,F ;PWMH
0094 0CAF 00475 rrf PWM,F ;PWM

00476
0095 0CB0 00477 rrf PWMH,F ;PWMH
0096 0CAF 00478 rrf PWM,F ;PWM

00479
0097 0CB0 00480 rrf PWMH,F ;PWMH - can ignore contents of PWMH now
0098 0CAF 00481 rrf PWM,F ;PWM

00482
0099 1217 00483 bcf CCP1CON,4 ;clear ls bits of PWM duty cycle
009A 1297 00484 bcf CCP1CON,5

00485
009B 0CAF 00486 rrf PWM,F ;shift carry INTo PWM, lsbit INTo carry
009C 1803 00487 btfsc STATUS,C ;is carry set?
009D 1617 00488 bsf CCP1CON,4 ;set PWM duty cycle lsb

00489
DS00701A-page 2-76 1900 Microchip Technology Inc.

AN701
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 77 Thursday, March 2, 2000 8:02 AM
009E 0CAF 00490 rrf PWM,F ;shift carry INTo PWM, lsbit INTo carry
009F 1803 00491 btfsc STATUS,C ;is carry set?
00A0 1697 00492 bsf CCP1CON,5 ;set PWM duty cycle lsb

00493
00A1 082F 00494 movf PWM,W ;get PWM
00A2 393F 00495 andlw 0x3f ;mask off 2 ms bits (78.125KHz)
00A3 0095 00496 movwf CCPR1L ;put in PWM duty cycle

00497
00A4 151F 00498 bsf ADCON0,2 ;start conversion VUNREG

00499
00500

;**
00501 ;* up/dn buttons
00502 ;* Debounces UP and DOWN buttons
00503 ;* Increments counters once for each pass
00504 ;* through the loop when button pressed.
00505 ;*
00506 ;* If button not pressed, counter is reset.
00507 ;*
00508 ;* If a button is successfully debounced,
00509 ;* both counters are reset.
00510 ;*
00511 ;* Debounce delay is about 0.5 seconds
00512 ;*
00513 ;* Moves voltage indicator bit as required.
00514 ;*
00515 ;* Finds index into lookup table, and calls table.
00516 ;*
00517 ;* Saves result from lookup table as new SETPOINT
00518 ;*
00519 ;* Input Variables:
00520 ;* PORTB Current indicator data
00521 ;* DNCH:DNCL Down button debounce counter
00522 ;* UPCH:UPCL Up button debounce counter
00523 ;*
00524 ;* Output Variables:
00525 ;* PORTB Current indicator data
00526 ;* DNCH:DNCL Down button debounce counter
00527 ;* UPCH:UPCL Up button debounce counter
00528 ;* SETPOINT New voltage setpoint
00529

;**
00530

00A5 0806 00531 movf PORTB,W ;move LED data to temp space
00A6 393F 00532 andlw 0x3f ;mask off non-voltage LEDs
00A7 00A7 00533 movwf TEMPA

00534
00A8 1E85 00535 Dnb btfss PORTA,5 ;down
00A9 28B3 00536 goto Upb ;down not pushed
00AA 0FA2 00537 incfsz DNCL,f ;down is pushed, inc debounce
00AB 28CE 00538 goto Wc3 ;no carry - go to next module
00AC 0FA3 00539 incfsz DNCH,f ;inc debounce counter high byte
00AD 28CE 00540 goto Wc3 ;no carry - go to next module

00541 ;---------------------- select next lower LED
00AE 1003 00542 bcf STATUS,C ;select next lower LED
00AF 0CA7 00543 rrf TEMPA,F ;shift LED data down 1 voltage
00B0 1803 00544 btfsc STATUS,C ;3V LED was set before rotate, so
00B1 1427 00545 bsf TEMPA,0 ;set it again

00546
00B2 28BE 00547 goto Dunb

00548
00B3 1D05 00549 Upb btfss PORTA,2 ;up button
00B4 28C9 00550 goto Nob ;up not pushed - no buttons pushed
00B5 0FA0 00551 incfsz UPCL,f ;down is pushed, inc debounce
00B6 28CE 00552 goto Wc3 ;no carry - go to next module
00B7 0FA1 00553 incfsz UPCH,F ;inc debounce counter high byte
 1900 Microchip Technology Inc. DS00701A-page 2-77

AN701

S2.book Page 78 Thursday, March 2, 2000 8:02 AM
00B8 28CE 00554 goto Wc3 ;no carry - go to next module
00555 ;-------------------- select next higher LED

00B9 1003 00556 bcf STATUS,C ;select next higher voltage LED
00BA 0DA7 00557 rlf TEMPA,F ;shift LED data up 1 voltage
00BB 1B27 00558 btfsc TEMPA,6 ;if 9V LED was set before,
00BC 16A7 00559 bsf TEMPA,5 ;set it again, and
00BD 1327 00560 bcf TEMPA,6 ;clear the overload LED

00561
00BE 0827 00562 Dunb movf TEMPA,W ;move LED data back to PORTB
00BF 0086 00563 movwf PORTB

00564
00C0 01A8 00565 clrf TEMPB
00C1 03A8 00566 decf TEMPB,F ;set TEMPB to -1

00567
00C2 0AA8 00568 NewSetincf TEMPB,F ;count up
00C3 0CA7 00569 rrf TEMPA,F ;rotate least sig bit INTo carry
00C4 1C03 00570 btfss STATUS,C ;is carry set now?
00C5 28C2 00571 goto NewSet ;no, try again

00572
00C6 0828 00573 movf TEMPB,W ;yes, put count in w
00C7 20DD 00574 call Tbl ;get corresponding value for PWM
00C8 00A4 00575 movwf SETPOINT ;put value in SETPOINT

00576
00C9 01A2 00577 Nob clrf DNCL ;clear down button debounce counter
00CA 01A0 00578 clrf UPCL ;clear up button debounce counter
00CB 30F9 00579 movlw DEL1
00CC 00A3 00580 movwf DNCH ;preset down button debounce counter
00CD 00A1 00581 movwf UPCH ;preset up button debounce counter high byte

00582
00583

;**
00584 ;* Wc3 VUNREG has been converted by now,
00585 ;* Get result, save in VUNREG.
00586 ;*
00587 ;* Select VOUT to aquire.
00588 ;*
00589 ;* Test VUNREG to see if it has dropped too low.
00590 ;* If too low, call protective shut-down.
00591 ;*
00592 ;* Input Variables:
00593 ;* VUNREG Input voltage.
00594

;**
00595

00CE 00596 Wc3
00CE 191F 00597 btfsc ADCON0,GO_DONE ;test if done
00CF 28CE 00598 goto Wc3 ;no, wait some more
00D0 081E 00599 movf ADRES,W ;get conversion result
00D1 00A6 00600 movwf VUNREG ;save result

00601
00D2 3089 00602 movlw AVOUT ;select feedback channel to aquire
00D3 009F 00603 movwf ADCON0

00604
00D4 0826 00605 movf VUNREG,W ;get UNREG
00D5 3C50 00606 sublw 0x50 ;10V-VUNREG=? C=1 if VUNREG<10V
00D6 1803 00607 btfsc STATUS,C
00D7 28E4 00608 goto ShutDn ;turn off regulator (dies here)

00609
 00610

00611
;**

00612 ;* Shift shift errors - save current error as old
00613 ;* E1H:E1 = E0H:E0
00614 ;*
00615 ;* Go back to top of loop.
00616 ;*
DS00701A-page 2-78 1900 Microchip Technology Inc.

AN701
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 79 Thursday, March 2, 2000 8:02 AM
00617 ;* Input Variables:
00618 ;* E0H:E0 Present error
00619 ;*
00620 ;* Output Variables:
00621 ;* E1H:E1 Previous error
00622

;**
00623

00D8 00624 Shift
00D8 0831 00625 movf E0,W
00D9 00B3 00626 movwf E1

00627
00DA 0832 00628 movf E0H,W
00DB 00B4 00629 movwf E1H

00630
00DC 2836 00631 goto Again

00632
00633

;**
00634 ;* Tbl Look up table.
00635 ;*
00636 ;* Called with an index in W.
00637 ;*
00638 ;* Index is added to program counter.
00639 ;*
00640 ;* Execution jumps to "retlw" which will return
00641 ;* to the calling program with table value in w.
00642 ;*
00643 ;* Input Variables:
00644 ;* w Offset index into table
00645 ;*
00646 ;* Output Variables:
00647 ;* w Value from table
00648

;**
00649

00DD 00650 Tbl ;call with index in w
00DD 0782 00651 addwf PCL,F ;add index to PC

00652
00DE 344D 3474 3482 00653 dt 0x4d, 0x74, 0x82, 0x9b, 0xc2, 0xea
 349B 34C2 34EA

00654 ;output voltage 3.0 4.5 5.0 6.0 7.5 9.0
00655
00656

;**
00657 ;* ShutDn Protective shutdown. Entry into this routine is a result
00658 ;* of a low input voltage. This turns off the converter
00659 ;* before the series pass transistor can overheat.
00660 ;*
00661 ;* PWM on-time is set to 0, turning off the converter.
00662 ;*
00663 ;* The converter trip LED is lit, indicating shutdown.
00664 ;*
00665 ;* Execution then loops without exit. The only exit is to
00666 ;* reset the controller.
00667

;**
00668

00E4 00669 ShutDn
00E4 1217 00670 bcf CCP1CON,4 ;turn off PWM
00E5 1297 00671 bcf CCP1CON,5
00E6 0195 00672 clrf CCPR1L

00673
00E7 1786 00674 bsf PORTB,7 ;light trip LED

00675
00E8 00676 Dead
00E8 28E8 00677 goto Dead ;stays here
 1900 Microchip Technology Inc. DS00701A-page 2-79

AN701

S2.book Page 80 Thursday, March 2, 2000 8:02 AM
00678
00679
00680 END

MEMORY USAGE MAP (’X’ = Used, ’-’ = Unused)

0000 : X---XXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0080 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
00C0 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXX------- ----------------
2000 : -------X-------- ---------------- ---------------- ----------------

All other memory blocks unused.

Program Memory Words Used: 230
Program Memory Words Free: 1818

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 0 reported, 7 suppressed
DS00701A-page 2-80 1900 Microchip Technology Inc.

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 81 Thursday, March 2, 2000 8:02 AM
INTRODUCTION
This application note describes an implementation of a
RS-232 Autobaud routine on a PIC16C54B microcon-
troller.

Many microcontroller applications require chip-to-chip
serial communication. Since the PIC16C54B has no
USART, serial communication must be performed in
software. Some applications use multiple transmission
rates. Multiple transmission rates require software
which detects the transmission rate and adjusts the
receive and transmit routines according to the trans-
mission rate.

ASYNCHRONOUS SERIAL I/O
COMMUNICATION
Figure 1 shows the format of a data byte transferred via
a serial communication line. Before the actual data byte
is going to be transmitted, the data line is set to a high
level. The first bit transmitted is called the start-bit and
is always low, followed by the actual data. The data is
transmitted with the LSb (last-significant-bit) first and
the MSb (most significant bit) last. A high level repre-
sents a one bit and a low level a zero bit. The final bit
transmitted is the stop-bit. The stop-bit is always a logic
high.

FIGURE 1: DATA BYTE

The number of bits transmitted per second is equal to
the baud rate. The inverse of the baud rate equals to
the transmission time for one bit.

Author: Thomas Schmidt
Microchip Technology

StopStart
Bit Bit

bit0 bit1 bit2 bit3 bit4 bit5 bit6 bit7

L
S

b

M
S

b

 1999 Microchip Technology Inc.
EXAMPLE 1: BAUDRATE CALCULATION

In asynchronous communication, the receiver must
know the baud rate of the transmitter, because only the
data shown in Figure 1 is transmitted. No clock is pro-
vided by the transmitter.

Example 2 depicts the asynchronous transmission of
the character ’A’. The character ’A’ has the value 41h
(ASCII).

EXAMPLE 2: ASYNCHRONOUS
TRANSMISSION OF
CHARACTER ’A’

Autobaud and Asynchronous Serial
Communication

In some systems, the transmission is not fixed to a
baud rate. In this case, the received has to adjust the
baud rate to that of the transmitter. Autobaud means
that the receiver measures the transmission time of a
calibration character and adjusts the delay routines for
the baud rate generation accordingly.

tone bit–
1

9600Baud
-------------------------- 104µs==

StopStart
Bit Bit

1 0 0 0 0 1 0

L
S

b

M
S

b

Note: Character ’A’ is equivalent to 41H .
41H=01000001b

0

RS-232 Autobaud for the PIC16C5X Devices

AN712
DS00712A-page 2-81

AN712

S2.book Page 82 Thursday, March 2, 2000 8:02 AM
THE SYSTEM
This chapter gives an overview on the setup of the
hardware and software.

The Hardware

In this application, a PIC16C54B is connected to a PC.
The PIC16C54B is placed on a PICDEM1 board. The
PICDEM1 board provides a DSUB9 connector to a PC
and a MAX232 interface circuit.

The PICDEM1 board is connected via the DSUB9 con-
nector and a serial cable to the serial port of the PC. In
this application, the PC sends a calibration character to
the PIC16C54B. The PIC16C54B detects the transmis-
sion rate by measuring the bit length of transmitted
zeros in a calibration character. The transmission time
is measure by a software counter. The value of the soft-
ware counter represents the value of the transmission
rate for one bit. This value is used to generate a delay
for bit sampling.

The hardware setup for this application note is shown
in Figure 2.

FIGURE 2: HARDWARE SETUP

The Program Flow
The program flow is shown in Figure 3.

FIGURE 3: PROGRAM FLOW OF THE MAIN
ROUTINE

After power-up, the PIC16C54B initializes the I/O ports
and waits for a calibration character from the PC. When
the PC sends the calibration character, the PIC16C54B
measures the transmission rate. This is done within the
autobaud routine. Once the transmission rate has been
detected, the PC has to send a second character. This
character is received and echoed to the PC by the
PIC16C54B. This process, receiving and transmitting
characters, runs in an infinite loop.

The software is divided into three modular routines:

• Autobaud routine
• Receive routine

• Transmit routine

Each routine is a separate software module and can
easily be integrated in custom code.

The communication between the PC and the
PIC16C54B is half-duplex. In order to implement a full-
duplex communication, please refer to AN510 Imple-
mentation Of An Asynchronous Serial I/O.

PC
PICDEM1

SERIAL LINK

COM
PORT

Power supply
AC Mains

9V

PIC16C54B

Autobaud

Receive
Character

Send
Character

Power-Up
DS00712A-page 2-82 1999 Microchip Technology Inc.

AN712
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 83 Thursday, March 2, 2000 8:02 AM
THE AUTOBAUD ROUTINE
This chapter describes the theory of operation and the
implementation of the autobaud routine.

In order to adjust to the transmission rate on the
receiver side, the transmitter has to send a known char-
acter to the receiver. This character is called the cali-
bration character. The receiver must know the pattern
of the character, so it can measure the time to receive
one or more bits. From the measured time, the receiver
calculates the transmission time for one bit. This time is
used in a receive or transmit routine to generate the
baud rate.

The calibration value used for the autobaud routine in
this application note is shown in Figure 4.

FIGURE 4: CALIBRATION CHARACTER
FOR AUTOBAUD ROUTINE

In the first step, the autobaud routine looks for the start-
bit. After the start-bit has been detected, a 16-bit soft-
ware counter will increment until the next low to high
transition is detected (see Figure 4). This means the
autobaud routine measures the transmission time of
eight zeros (including the start-bit).

The value in the counter represents the value for the
transmission rate for 8 zeros. In order to calculate the
transmission time for one bit, the value of the 16-bit
counter is divided by 8. The result is the transmission
time for one bit.

While measuring the transmission time and calculating
the transmission time for one bit, the autobaud routine
has to check if the 16-bit counter overflows or the result
of the division could be zero. A counter overflow means
that the transmitted signal is to slow. If the division by 8
equals zero, that means that the incoming signal is too
fast.

The Implementation

The implementation of the autobaud routine can be
broken up into 6 sections.

1. Check for start-bit

2. Measure time (increment counter)

3. Divide measured time by eight
4. Calculate time for half the transmission time for

one bit (divide previous result by two). Half the
baudrate is used in the receive routine to place
the sampling of the bits in the middle.

5. Adjust result for receive and transmit routines

6. Check if both calculated results are greater than
zero. If one of the results is zero, the baudrate
cannot be generated because the received sig-
nal was to fast.

Each of this sections will be explained separately in the
following text. The entire source code for the autobaud,
as well as the receive and transmit routines, are given
in the Appendix.

Check for Start-Bit

In the first step, the autobaud routine is called and the
registers are initialized (see Figure 5). The low and the
high byte of the autobaud counter are set to zero. The
autobaud status register is also cleared. The autobaud
status register contains two error flags, which indicate
if the incoming signal was too fast or too slow. After the
initialization, the receive pin RX is checked for a high to
low transition. When this is detected, the autobaud rou-
tine starts measuring.

FIGURE 5: CHECK FOR START BIT
Autobaud clrf AUTOBAUD_LOW ; reset register

clrf AUTOBAUD_HIGH ; reset register
clrf AUTOHALF_LOW ; reset register
clrf AUTOHALF_HIGH ; reset register
clrf AUTOB_STATUS ; reset autobaud

; status register
TestStartBit

btfsc PORTA, RX ; check for start-bit
goto TestStartBit ; Start-bit not found

Note: The software is designed for a 8-N-1 com-
munication. Where 8 equals the number of
data bits (start and stop bit not included),
N is equal to the no parity bit and 1 is equal
to the one stop bit.

0
StopStart

Bit Bit0 0 0 0 0 0 1
 1999 Microchip Technology Inc. DS00712A-page 2-83

AN712

S2.book Page 84 Thursday, March 2, 2000 8:02 AM
Measure Time To Receive Calibration Word

After the start-bit is detected, the autobaud routine
measures the time to receive the calibration character.
The source code of this section is shown in Figure 6.
The calibration character has the pattern 10000000b.
The autobaud routine increments a 16-bit counter until
a low to high transition is found. The registers for the
16-bit counter are called AUTOBAUD_HIGH (high byte)
and AUTOBAUD_LOW (low byte). If the high byte
overflows the error flag SIGNAL_SLOW in the register,
AUTOBAUD_STATUS will be set. An overflow means
that the incoming signal is too slow, because it takes
more cycles to increment the counter than to transmit
the full calibration character. See Figure 6.

Calculate Transmission Time For One Bit

After all bits are received the measured time has to be
divided by eight, because the time to receive eight
zeros was measured. The division is simply done by
shifting the 16-bit counter three times to the right. Zeros
are shifted into the counter from the left side. The trans-
mission time for one bit is stored in the registers
AUTOBAUD_LOW and AUTOBAUD_HIGH.

FIGURE 6: MEASURE TIME TO RECEIVE CALIBRATION WORD
Autobaud clrf AUTOBAUD_LOW ; reset register
TestBitHigh btfsc PORTA, RX ; Test for end of bit stream

goto Calculate ; End of bit stream, now calculate
; bit time for one bit

incfsz AUTOBAUD_LOW, f ; increment Autobaud low register
goto TestBitHigh ; test for high bit
incfsz AUTOBAUD_HIGH, f ; increment high byte of autobaud register
goto TestBitHigh ; test for end of bit stream
goto Signal2Slow ; High byte got an overflow. Transmitted

; signal is to slow for clock speed of the uc

FIGURE 7: CALCULATION OF TRANSMISSION TIME FOR ONE BIT
Autobaud clrf AUTOBAUD_LOW ; reset register

; divide by measure time by 8 (8 zero where transmitted
 including
; start-bit)

Calculate movlw 0x03 ; Initialize count register
movwf COUNTER ; Counter for number for rotates = 3

Divide bcf STATUS, C ; clear carry bit
rrf AUTOBAUD_HIGH,f ; rotate autobaud high register
rrf AUTOBAUD_LOW, f ; rotate autobaud low register
decfsz COUNTER, f ; decrement counter
goto Divide ; divide
DS00712A-page 2-84 1999 Microchip Technology Inc.

AN712
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 85 Thursday, March 2, 2000 8:02 AM
Calculate Half The Bit Time

After the transmission time for one bit is calculated, the
transmission time for half the bit time has to be com-
puted. This value is needed in the received routine to
place sampling in the middle of each bit. After the start
bit has been detected in the receive routine, the routine
waits 1.5 bit times before the first data bit is sampled.
This ensures that the sampling always happens in the
middle of the bit.

The calculation of half the bit time is done by simply
shifting the 16-bit counter to the right once. The result
of the division is stored in the registers
AUTOHALF_HIGH and AUTOHALF_LOW. The source
code for this section of the autobaud routine is shown
in Figure 8.

Adjust Transmission Times For Receive and
Transmit Routine

The value of the 16-bit counter for the full bit time and
the value for half the bit time have to be adjusted for the
receive and transmit routine. Each count in the register
AUTOBAUD_LOW and AUTOHALF_LOW stands for 5
instruction cycles, because it took five instruction
cycles to get one count. Since the receive and transmit
routines have a software overhead for storing or restor-
ing data, this overhead has to be subtracted from the
counter values.

After each adjustment, the result is checked to see if it
is negative. If this is the case, error flag SIGNAL2FAST
will be set. See Figure 9.

FIGURE 8: CALCULATION OF HALF THE BIT TIME
Autobaud clrf AUTOBAUD_LOW ; reset register

; Calculate half the bit time
CalcHalfBit bcf STATUS, C ; clear carry bit

rrf AUTOBAUD_HIGH,w ; rotate autobaud high register
movwf AUTOHALF_HIGH ; copy result into AUTOHALF_HIGH register
rrf AUTOBAUD_LOW, w ; rotate autobaud high register
movwf AUTOHALF_LOW ; copy result into AUTOHALF_LOW register

FIGURE 9: COUNTER ADJUSTMENT AND CHECK IF COUNTERS ARE NEGATIVE
Autobaud clrf AUTOBAUD_LOW ; reset register
AdjustLowByte movlw 0x3 ; 18-19 instruction cycles overhead from

; transmit and receive routine. This overhead
; must be subtracted from iterations

subwf AUTOBAUD_LOW, f ; Adjust low byte from Autobaud counter
btfss STATUS, C ; Is result negative? (equal=0 will be checked

; at ErrorCheck). C=0 result is negative
goto Signal2Fast ; Signal is to fast for receive and transmit routine
movlw 0x02 ; subtract 2 from low byte of half the bit time
subwf AUTOHALF_LOW, f ; subtract from low byte of half the bit time
btfss STATUS, C ; Is result negative? (equal=0 will be checked

; at ErrorCheck). C=0 result is negative
goto Signal2Fast ; Signal is to fast for receive and transmit routine
 1999 Microchip Technology Inc. DS00712A-page 2-85

AN712

S2.book Page 86 Thursday, March 2, 2000 8:02 AM
Check If Both Counter Values Are Zero

After the adjustment, both counter values for the full
and half bit time are checked for zeros. If this is the
case, the error flag SIGNAL2FAST is set. If both
counters are greater than or equal to one, the autobaud
routine returns to the main routine. The source code for
this section of the autobaud routine is shown in
Figure 10.

FIGURE 10: CHECK OF COUNTER VALUES
Autobaud clrf AUTOBAUD_LOW ; reset register

; check if AUTOBAUD_HIGH and AUTOBAUD_LOW are
 zero.
; This means the transmission time for one byte
 is too high

ErrorCheck movf AUTOBAUD_HIGH,w ; copy high byte of autobaud counter register
into

; w-register
xorwf AUTOBAUD_LOW, w ; AUTOBAUD_HIGH = AUTOBAUD_LOW?
btfss STATUS, Z ; is result zero?
goto ErrorCheckHalf ; Result is not zero, therefore finish autobaud

; routine
goto Signal2Fast ; Signal is to fast for routine

ErrorCheckHalf movf AUTOHALF_HIGH,w ; copy high byte of autobaud counter register
into

; w-register
xorwf AUTOHALF_LOW, w ; AUTOBAUD_HIGH = AUTOBAUD_LOW?
btfss STATUS, Z ; is result zero?
goto EndAutoBaud ; Result is not zero, therefore finish autobaud

; routine
; Error: delay for half the bit time is zero,
 therefore a
; delay cannot be generated with the delay
 routines. Incoming signal
; is to fast for clock speed.

Signal2Fast bsf AUTOB_STATUS, SIGNAL_FAST ; set error flag
retlw 0x00 ; return to operating system

Signal2Slow bsf AUTOB_STATUS, SIGNAL_SLOW ; set error flag
EndAutoBaud retlw 0x00 ; Return to operating system

THE TRANSMIT ROUTINE
The source code for the transmit routine is shown in
Figure 11.

FIGURE 11: SOURCE CODE OF THE TRANSMIT ROUTINE
 ; Transmit routine

; Transmits LSB first
; Software overhead = 10 instruction cycles

 (including call
; to DelayFullBit routine, return from
; delay routine not included)

Transmit movlw BITS ; Number of bit’s to transmit
movwf COUNTER ; Initialize count register
bcf PORTA, TX ; Generate start-bit
call DelayFullBit ; Generate Delay for one bit-time

TransmitNext rrf RXTX_REG, f ; Rotate receive register
btfsc STATUS, C ; Test bit to be transmitted
bsf PORTA, TX ; Transmit one
btfss STATUS, C ; Check carry bit if set
bcf PORTA, TX ; Transmit a zero
call DelayFullBit ; call Delay routine
decfsz COUNTER, f ; Decrement count register
goto TransmitNext ; Transmit next bit
DS00712A-page 2-86 1999 Microchip Technology Inc.

AN712
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 87 Thursday, March 2, 2000 8:02 AM
bsf PORTA, TX ; Generate Stop bit
call DelayFullBit ; Delay for Stop bit
retlw 0x00 ; Return to operating system

 :
 1999 Microchip Technology Inc. DS00712A-page 2-87

AN712

S2.book Page 88 Thursday, March 2, 2000 8:02 AM
In the first step, the transmit routine initializes the regis-
ter Count to 8. After the initialization, the RXTX_REG
register is rotated by one position to the right. The bit-0
of the RXTX_Reg is now stored in the carry flag. The
carry bit is checked whether it is a ‘1’ or a ‘0’. If the carry
bit is set, the TX-pin is also set, otherwise the TX-pin is
cleared. After all bits are transmitted, the stop-bit is
send.

The delay for the transmission is generated by the
DELAYFULLBit routine.

THE RECEIVE ROUTINE
The source code for the receive routine is shown in
Figure 13.

The receive routine first resets the receive register to ‘0’
and initializes the Count register with 8. After the ini-
tialization, the routine checks for the start-bit. When the
start bit is detected ,the receive routine waits 1.5 times
the transmission time of one bit before sampling the
next bit. This ensures that the bits are sampled in the
middle and not at the beginning or end of the bit (see
Figure 12). The delay for half the bit time is generated
by the routine DelayHalfBit. After the delay, the bit
is sample and stored in the register RXTX_REG.

FIGURE 12: RECEIVE ROUTINE SAMPLING

FIGURE 13: SOURCE CODE OF THE RECEIVE ROUTINE
; Receive Routine
; receive routine = 11 instruction cycles per
iteration

; including call to DelayFullBit routine
Receive clrf RXTX_REG ; Clear receive register

movlw BITS ; Number of bits to receive
movwf COUNTER ; Load number of bits into counter register

ReceiveStartBit btfsc PORTA, RX ; Test for start bit
goto ReceiveStartBit ; Startbit not found
call DelayHalfBit ; Wait until middle of start bit
call DelayFullBit ; Ignore start-bit and sample first

; data bit in the middle of the bit
ReceiveNext btfsc PORTA, RX ; Is bit a zero or a one

bsf STATUS,C ; bit is a one => set carry bit
btfss PORTA, RX ; Is bit a one or a zero
bcf STATUS,C ; bit is a zero => clear carry bit
rrf RXTX_REG, f ; Rotate receive register
call DelayFullBit ; Call Delay routine
decfsz COUNTER, f ; decrement receive count register by one
goto ReceiveNext ; Receive next bit
retlw 0x00 ; back to operation system

 :

S 1 0 1

Sample 2 (2)Sample 1 (1)

Note 1: Delay is generated by using delay value from register
AutoBaud2

Note 2: Delay is generated by using delay value from register
AutoBaud
DS00712A-page 2-88 1999 Microchip Technology Inc.

AN712
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 89 Thursday, March 2, 2000 8:02 AM
The time is measured by using a software timer. The
software timer is started when the start-bit is detected.
The start-bit is detected when a transition from high to
low occurs. Once the start-bit is detected, the software
timer counts until a low to high transition is detected.

THE DELAY ROUTINES
The delay routine for half the bit time and the full bit
time are identical in program flow. If the high byte is
zero, only the low byte will be decremented. For decre-
menting, the low byte is stored in a temporary register.
When the low byte is zero, the delay routine returns to
either the receive or transmit routine.

If the high byte is not zero, the low byte will be decre-
mented n-times, where n is the value stored in the high
byte.

OTHER POSSIBLE AUTOBAUD
IMPLEMENTATIONS
There a several other methods to implement an auto-
baud routine. These methods are briefly described
below. The implementations are not given within this
application note.

Measuring The Bit Length Using A Timer

Instead of using a software counter, a timer can be
used. This would require modifications in the autobaud
and the receive and transmit routines. The disadvan-
tage of this method is that one timer has to be dedi-
cated to the autobaud routine.

Measuring The Bit Length Of The First Bit For
Each Character Transmitted

This method measures the transmission time of the first
bit from a transmitted character. The measured value is
used to adjust the delay counter for receiving the fol-
lowing bits. The measurement is done for each charac-
ter received. Variations in the oscillator frequency are
compensated for using this method. The disadvantage
of this method is that the transmitted characters need a
zero to one transition in the first bit. This limits the num-
ber of characters which can be transmitted.

SOFTWARE PERFORMANCE
The performance of the autobaud routine is shown.

TABLE 1: SOFTWARE PERFORMANCE

Oscillator
Frequency

Min. Baudrate Max. Baudrate

4 MHz 110 Baud 19200 Baud

10 MHz 110 Baud 38400 Baud

20 MHz 110 Baud 57600 Baud
 1999 Microchip Technology Inc. DS00712A-page 2-89

AN712

S2
.b

oo
k

 P
ag

e
90

 T
hu

rs
da

y,
 M

ar
ch

 2
, 2

00
0

 8
:0

2
A

M

A
P

P
E

N
D

IX
M
P
A
S
M

0
2
.
2
0
.
0
4

I
n
t
e
r
m
e
d
i
a
t
e

A
U
T
O
1
6
B
3
.
A
S
M

3
-
1
7
-
1
9
9
9

1
1
:
2
8
:
1
3

0
0
0
0
1

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
0
2

;

*

T
i
t
l
e

:

R
S
-
2
3
2

A
u
t
o
b
a
u
d

r
o
u
t
i
n
e

*

0
0
0
0
3

;

*

A
u
t
h
o
r

:

T
h
o
m
a
s

S
c
h
m
i
d
t

*

0
0
0
0
4

;

*

A
p
p
l
i
c
a
t
i
o
n

E
n
g
i
n
e
e
r

f
o
r

S
t
a
n
d
a
r
d

M
i
c
r
o
c
o
n
t
r
o
l
l
e
r

a
n
d

A
S
S
P

P
r
o
d
u
c
t
s

*

0
0
0
0
5

;

*

D
a
t
e

:

0
4
.
0
1
.
1
9
9
9

*

0
0
0
0
6

;

*

R
e
v
i
s
i
o
n

:

1
.
0

*

0
0
0
0
7

;

*

L
a
s
t

M
o
d
i
f
i
e
d

:

0
4
.
0
1
.
1
9
9
9

*

0
0
0
0
8

;

*

D
e
s
c
r
i
p
t
i
o
n

:

T
h
e

p
u
r
p
o
s
e

o
f

t
h
i
s

p
r
o
g
r
a
m

t
o

d
e
t
e
c
t

a
u
t
o
m
a
t
i
c
a
l
l
y

t
h
e

B
a
u
d
r
a
t
e

o
f

a

R
S
-
2
3
2
*

0
0
0
0
9

;

*

t
r
a
n
s
m
i
t
t
e
r
.

T
h
e

d
e
t
e
c
t
e
d

b
a
u
d
r
a
t
e

i
s

u
s
e
d

t
o

a
d
j
u
s
t

a

d
e
l
a
y

r
o
u
t
i
n
e

f
o
r

a

t
r
a
n
s
m
i
t

a
n
d

*

0
0
0
1
0

;

*

r
e
c
e
i
v
e

r
o
u
t
i
n
e
.

*

0
0
0
1
1

;

*

T
h
i
s

p
r
o
g
r
a
m

m
e
a
s
u
r
e
s

t
h
e

t
r
a
n
s
m
i
s
s
i
o
n

t
i
m
e

o
f

a
n

i
n
c
o
m
i
n
g

c
a
l
i
b
r
a
t
i
o
n

c
h
a
r
a
c
t
e
r
.

B
a
s
e
d

o
n

*

0
0
0
1
2

;

*

t
h
e

m
e
a
s
u
r
e
d

t
i
m
e

t
h
e

t
r
a
n
s
m
i
s
s
i
o
n

t
i
m
e

f
o
r

o
n
e

b
i
t

i
s

c
a
l
c
u
l
a
t
e
d
.

T
h
i
s

v
a
l
u
e

i
s

u
s
e
d

i
n

*

0
0
0
1
3

;

*

a

s
o
f
t
w
a
r
e

d
e
l
a
y

r
o
u
t
i
n
e

t
o

g
e
n
e
r
a
t
e

a

d
e
l
a
y

f
o
r

o
n

b
i
t
.

T
h
e

d
e
l
a
y

r
o
u
t
i
n
e

i
s

c
a
l
l
e
d

f
r
o
m

*

0
0
0
1
4

;

*

a

t
r
a
n
s
m
i
t

a
n
d

r
e
c
e
i
v
e

r
o
u
t
i
n
e
.

T
h
e

u
s
e
r

i
s

f
r
e
e

t
o

m
o
d
i
f
y

t
h
e

m
a
i
n

r
o
u
t
i
n
e
.

I
f

t
h
e

u
s
e
r

*

0
0
0
1
5

;

*

c
h
o
o
s
e
s

t
o

m
o
d
i
f
y

t
h
e

r
e
c
e
i
v
e

a
n
d

t
r
a
n
s
m
i
t

r
o
u
t
i
n
e

h
e

h
a
s

t
o

m
o
d
i
f
y

a
s

w
e
l
l

t
h
e

s
o
f
t
w
a
r
e

*

0
0
0
1
6

;

*

a
d
j
u
s
t
m
e
n
t

i
n

t
h
e

a
u
t
o
b
a
u
d

r
o
u
t
i
n
e
.

*

0
0
0
1
7

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
1
8

0
0
0
1
9

0
0
0
2
0

L
I
S
T

P
=
1
6
C
5
4
B
,

r
=
h
e
x

0
0
0
2
1

0
0
0
2
2

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
2
3

;

*

I
n
c
l
u
d
e

f
i
l
e
s

*

0
0
0
2
4

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
2
5

#
i
n
c
l
u
d
e

"
P
1
6
C
5
X
.
I
N
C
"

0
0
0
0
1

L
I
S
T

0
0
0
0
2

;

P
1
6
C
5
X
.
I
N
C

S
t
a
n
d
a
r
d

H
e
a
d
e
r

F
i
l
e
,

V
e
r
s
i
o
n

4
.
0
0

M
i
c
r
o
c
h
i
p

T
e
c
h
n
o
l
o
g
y
,

I
n
c
.

0
0
3
1
3

L
I
S
T

0
0
0
2
6

0
0
0
2
7

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
2
8

;

*

P
i
n

d
e
f
i
n
i
t
i
o
n
s

*

0
0
0
2
9

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
3
0

#
d
e
f
i
n
e

R
X

2

;

r
e
c
e
i
v
e

p
i
n
,

c
o
n
n
e
c
t
e
d

t
o

R
A
2

0
0
0
3
1

#
d
e
f
i
n
e

T
X

3

;

t
r
a
n
s
m
i
t

p
i
n
,

c
o
n
n
e
c
t
e
d

t
o

R
A
3

0
0
0
3
2

0
0
0
3
3

0
0
0
3
4

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
3
5

;

*

R
e
g
i
s
t
e
r

d
e
f
i
n
i
t
i
o
n
s

*

P
le

as
e

ch
ec

k
M

ic
ro

ch
ip

’s
 W

or
ld

w
id

e
W

eb
si

te
 a

t w
w

w
.m

ic
ro

ch
ip

.c
om

 fo
r

th
e

la
te

st
 v

er
si

on
 o

f t
he

 s
ou

rc
e

co
de

.

DS00712A-page 2-90 1999 Microchip Technology Inc.

AN712
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2
.b

oo
k

 P
ag

e
91

 T
hu

rs
da

y,
 M

ar
ch

 2
, 2

00
0

 8
:0

2
A

M

0
0
0
3
6

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
3
7

c
b
l
o
c
k

0
x
0
8

0
0
0
0
0
0
0
8

0
0
0
3
8

A
U
T
O
B
A
U
D
_
L
O
W

;

l
o
w

b
y
t
e

o
f

b
i
t
-
t
i
m
e

c
o
u
n
t
e
r

0
0
0
0
0
0
0
9

0
0
0
3
9

A
U
T
O
B
A
U
D
_
H
I
G
H

;

h
i
g
h

b
y
t
e

o
f

b
i
t
-
t
i
m
e

c
o
u
n
t
e
r

0
0
0
0
0
0
0
A

0
0
0
4
0

A
U
T
O
H
A
L
F
_
L
O
W

;

l
o
w

b
y
t
e

o
f

h
a
l
f

t
h
e

b
i
t

t
i
m
e

0
0
0
0
0
0
0
B

0
0
0
4
1

A
U
T
O
H
A
L
F
_
H
I
G
H

;

h
i
g
h

b
y
t
e

f
o
r

h
a
l
f

t
h
e

b
i
t

t
i
m
e

0
0
0
0
0
0
0
C

0
0
0
4
2

A
U
T
O
B
_
S
T
A
T
U
S

;

s
t
a
t
u
s

b
y
t
e

f
o
r

A
u
t
o
b
a
u
d

r
o
u
t
i
n
e

0
0
0
0
0
0
0
D

0
0
0
4
3

T
E
M
P
1
,

T
E
M
P
2

;

t
e
m
p
o
r
a
r
y

r
e
g
i
s
t
e
r
s

0
0
0
0
0
0
0
F

0
0
0
4
4

R
X
T
X
_
R
E
G

;

r
e
c
e
i
v
e

r
e
g
i
s
t
e
r

0
0
0
0
0
0
1
0

0
0
0
4
5

C
O
U
N
T
E
R

;

r
e
c
e
i
v
e

&

T
r
a
n
s
m
i
t

c
o
u
n
t
e
r

r
e
g
i
s
t
e
r

0
0
0
4
6

e
n
d
c

0
0
0
4
7

0
0
0
4
8

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
4
9

;

*

B
i
t

d
e
f
i
n
i
t
i
o
n
s

i
n

r
e
g
i
s
t
e
r

A
U
T
O
B
_
S
T
A
T
U
S

*

0
0
0
5
0

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
5
1

#
d
e
f
i
n
e

S
I
G
N
A
L
_
F
A
S
T

0

;

s
i
g
n
a
l
-
t
o
-
f
a
s
t

f
l
a
g

i
n

A
U
T
O
B
_
S
T
A
T
U
S

0
0
0
5
2

;

b
y
t
e
.

T
h
i
s

b
i
t

i
n
d
i
c
a
t
e
s

t
h
a
t

t
h
e

0
0
0
5
3

;

i
n
c
o
m
i
n
g

s
i
g
n
a
l

w
a
s

t
o
o

f
a
s
t

0
0
0
5
4

;

A
U
T
O
B
_
S
T
A
T
U
S
.
S
I
G
N
A
L
_
F
A
S
T
=
0

S
i
g
n
a
l

w
a
s

O
K

0
0
0
5
5

;

A
U
T
O
B
_
S
T
A
T
U
S
.
S
I
G
N
A
L
_
F
A
S
T
=
1

S
i
g
n
a
l

w
a
s

t
o
o

f
a
s
t

0
0
0
5
6

#
d
e
f
i
n
e

S
I
G
N
A
L
_
S
L
O
W

1

;

s
i
g
n
a
l
-
t
o
-
s
l
o
w

f
l
a
g

i
n

A
U
T
O
B
_
S
T
A
T
U
S

0
0
0
5
7

;

b
y
t
e
.

T
h
i
s

b
i
t

i
n
d
i
c
a
t
e
s

t
h
a
t

t
h
e

0
0
0
5
8

;

i
n
c
o
m
i
n
g

s
i
g
n
a
l

w
a
s

t
o
o

s
l
o
w

0
0
0
5
9

;

A
U
T
O
B
_
S
T
A
T
U
S
.
S
I
G
N
A
L
_
S
L
O
W
=
0

S
i
g
n
a
l

w
a
s

O
K

0
0
0
6
0

;

A
U
T
O
B
_
S
T
A
T
U
S
.
S
I
G
N
A
L
_
S
L
O
W
=
1

S
i
g
n
a
l

w
a
s

t
o

s
l
o
w

0
0
0
6
1

0
0
0
6
2

0
0
0
6
3

0
0
0
6
4

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
6
5

;

*

O
t
h
e
r

d
e
f
i
n
i
t
i
o
n
s

*

0
0
0
6
6

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
6
7

#
d
e
f
i
n
e

B
I
T
S

8

;

n
u
m
b
e
r

o
f

b
i
t
s

t
o

r
e
c
e
i
v
e

0
0
0
6
8

0
0
0
6
9

0
0
0
7
0

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
7
1

;

*

F
u
s
e

c
o
n
f
i
g
u
r
a
t
i
o
n

*

0
0
0
7
2

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
F
F
F

0
F
F
9

0
0
0
7
3

_
_
C
O
N
F
I
G

_
C
P
_
O
F
F
&
_
W
D
T
_
O
F
F
&
_
X
T
_
O
S
C

0
0
0
7
4

0
0
0
7
5

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
7
6

;

*

R
e
s
e
t

v
e
c
t
o
r

*

0
0
0
7
7

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
1
F
F

0
0
0
7
8

O
R
G

0
x
1
F
F

0
1
F
F

0
A
0
0

0
0
0
7
9

g
o
t
o

B
e
g
i
n

0
0
0
8
0

0
0
0
8
1

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

 1999 Microchip Technology Inc. DS00712A-page 2-91

AN712

S2
.b

oo
k

 P
ag

e
92

 T
hu

rs
da

y,
 M

ar
ch

 2
, 2

00
0

 8
:0

2
A

M

0
0
0
8
2

;

*

P
r
o
g
r
a
m

S
t
a
r
t

*

0
0
0
8
3

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
0

0
0
0
8
4

O
R
G

0
x
0
0

0
0
0
8
5

0
0
0
8
6

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
8
7

;

*

I
n
i
t
i
a
l
i
z
a
t
i
o
n

*

0
0
0
8
8

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
0

0
0
6
6

0
0
0
8
9

B
e
g
i
n

c
l
r
f

P
O
R
T
B

;

s
e
t

a
l
l

l
a
t
c
h
e
s

o
f

P
O
R
T
B

t
o

’
0
’

0
0
0
1

0
0
4
0

0
0
0
9
0

c
l
r
w

;

r
e
s
e
t

W
-
R
e
g
i
s
t
e
r

0
0
0
2

0
0
0
6

0
0
0
9
1

t
r
i
s

P
O
R
T
B

;

i
n
i
t
i
a
l
i
z
e

T
R
I
S

r
e
g
i
s
t
e
r

0
0
0
3

0
0
6
5

0
0
0
9
2

c
l
r
f

P
O
R
T
A

;

r
e
s
e
t

l
a
t
c
h
e
s

o
f

P
o
r
t
A

0
0
0
4

0
C
F
7

0
0
0
9
3

m
o
v
l
w

b
’
1
1
1
1
0
1
1
1
’

;

R
2
=
R
X
,

R
A
3
=
T
X

0
0
0
5

0
0
0
5

0
0
0
9
4

t
r
i
s

P
O
R
T
A

;

i
n
i
t
i
a
l
i
z
e

T
R
I
S

r
e
g
i
s
t
e
r

f
o
r

P
O
R
T
A

0
0
0
9
5

0
0
0
9
6

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
9
7

;

*

M
a
i
n

r
o
u
t
i
n
e
.

T
h
e

m
a
i
n

r
o
u
t
i
n
e

d
e
t
e
c
t
s

f
i
r
s
t

t
h
e

t
r
a
n
s
m
i
s
s
i
o
n

*

0
0
0
9
8

;

*

t
i
m
e

o
f

t
h
e

i
n
c
o
m
i
n
g

c
a
l
i
b
r
a
t
i
o
n

c
h
a
r
a
c
t
e
r
.

A
f
t
e
r

t
h
a
t

t
h
e

*

0
0
0
9
9

;

*

r
o
u
t
i
n
e

r
e
c
e
i
v
e
s

a
n
d

t
r
a
n
s
m
i
t
s

i
n
c
o
m
i
n
g

c
h
a
r
a
c
t
e
r
s
.

*

0
0
1
0
0

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
6

0
9
0
F

0
0
1
0
1

c
a
l
l

A
u
t
o
b
a
u
d

;

c
a
l
l

A
u
t
o
b
a
u
d

r
o
u
t
i
n
e

0
0
0
7

0
2
0
C

0
0
1
0
2

m
o
v
f

A
U
T
O
B
_
S
T
A
T
U
S
,

w

;

c
h
e
c
k

i
f

a
n

e
r
r
o
r

o
c
c
u
r
r
e
d

0
0
0
8

0
6
4
3

0
0
1
0
3

b
t
f
s
c

S
T
A
T
U
S
,

Z

;

i
s

A
U
T
O
B
_
S
T
A
T
U
S
=
0

(
m
e
a
n
s

n
o

e
r
r
o
r

o
c
c
u
r
r
e
d
)

0
0
0
9

0
A
0
C

0
0
1
0
4

g
o
t
o

M
a
i
n

;

g
o
t
o

M
a
i
n

0
0
1
0
5

0
0
1
0
6

;

A
n

e
r
r
o
r

o
c
c
u
r
r
e
d
.

T
h
e

i
n
c
o
m
i
n
g

s
i
g
n
a
l

w
a
s

e
i
t
h
e
r

t
o
o

f
a
s
t

o
r

t
o
o

s
l
o
w
.

0
0
1
0
7

;

T
h
e

a
u
t
o
b
a
u
d

s
t
a
t
u
s

r
e
g
i
s
t
e
r

A
U
T
O
B
_
S
T
A
T
U
S

i
s

d
i
s
p
l
a
y
e
d

o
n

P
O
R
T
B

i
n

0
0
1
0
8

;

o
r
d
e
r

t
o

i
n
d
i
c
a
t
e
d

t
h
a
t

a
n

e
r
r
o
r

o
c
c
u
r
r
e
d
.

T
h
e

r
e
c
e
i
v
e

a
n
d

t
r
a
n
s
m
i
t

0
0
1
0
9

;

r
o
u
t
i
n
e

w
i
l
l

n
o
t

b
e

c
a
l
l
e
d
.

0
0
0
A

0
0
2
6

0
0
1
1
0

m
o
v
w
f

P
O
R
T
B

;

d
i
s
p
l
a
y

A
U
T
O
B
_
S
T
A
T
U
S

o
n

P
O
R
T
B

0
0
0
B

0
A
0
B

0
0
1
1
1

D
o
F
o
r
e
v
e
r

g
o
t
o

D
o
F
o
r
e
v
e
r

;

a
n

e
r
r
o
r

o
c
c
u
r
r
e
d
.

T
h
i
s

e
r
r
o
r

i
s

d
i
s
p
l
a
y
e
d

o
n

P
O
R
T
B
.

0
0
1
1
2

;

B
e
c
a
u
s
e

o
f

t
h
i
s

e
r
r
o
r
,

t
h
e

r
e
c
e
i
v
e

a
n
d

t
r
a
n
s
m
i
t

0
0
1
1
3

;

r
o
u
t
i
n
e

w
i
l
l

n
o
t

b
e

c
a
l
l
e
d
.

0
0
1
1
4

0
0
1
1
5

;

N
o

e
r
r
o
r

o
c
c
u
r
r
e
d
.

T
h
e
r
e

r
e
c
e
i
v
e

a
n
d

t
r
a
n
s
m
i
t

c
h
a
r
a
c
t
e
r
s
.

0
0
0
C

0
9
5
2

0
0
1
1
6

M
a
i
n

c
a
l
l

T
r
a
n
s
m
i
t

;

t
r
a
n
s
m
i
t

r
e
c
e
i
v
e
d

c
h
a
r
a
c
t
e
r

b
a
c
k

t
o

t
r
a
n
s
m
i
t
t
e
r

0
0
0
D

0
9
4
2

0
0
1
1
7

c
a
l
l

R
e
c
e
i
v
e

;

r
e
c
e
i
v
e

n
e
x
t

c
h
a
r
a
c
t
e
r

0
0
0
E

0
A
0
C

0
0
1
1
8

g
o
t
o

M
a
i
n

;

d
o

f
o
r
e
v
e
r

0
0
1
1
9

0
0
1
2
0

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
1
2
1

;

*

A
u
t
o
b
a
u
d

r
o
u
t
i
n
e

*

0
0
1
2
2

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
0
F

0
0
6
8

0
0
1
2
3

A
u
t
o
b
a
u
d

c
l
r
f

A
U
T
O
B
A
U
D
_
L
O
W

;

r
e
s
e
t

r
e
g
i
s
t
e
r

0
0
1
0

0
0
6
9

0
0
1
2
4

c
l
r
f

A
U
T
O
B
A
U
D
_
H
I
G
H

;

r
e
s
e
t

r
e
g
i
s
t
e
r

0
0
1
1

0
0
6
A

0
0
1
2
5

c
l
r
f

A
U
T
O
H
A
L
F
_
L
O
W

;

r
e
s
e
t

r
e
g
i
s
t
e
r

0
0
1
2

0
0
6
B

0
0
1
2
6

c
l
r
f

A
U
T
O
H
A
L
F
_
H
I
G
H

;

r
e
s
e
t

r
e
g
i
s
t
e
r

0
0
1
3

0
0
6
C

0
0
1
2
7

c
l
r
f

A
U
T
O
B
_
S
T
A
T
U
S

;

r
e
s
e
t

a
u
t
o
b
a
u
d

s
t
a
t
u
s

r
e
g
i
s
t
e
r

0
0
1
4

0
6
4
5

0
0
1
2
8

T
e
s
t
S
t
a
r
t
B
i
t

b
t
f
s
c

P
O
R
T
A
,

R
X

;

c
h
e
c
k

f
o
r

s
t
a
r
t
-
b
i
t

DS00712A-page 2-92 1999 Microchip Technology Inc.

AN712
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2
.b

oo
k

 P
ag

e
93

 T
hu

rs
da

y,
 M

ar
ch

 2
, 2

00
0

 8
:0

2
A

M

0
0
1
5

0
A
1
4

0
0
1
2
9

g
o
t
o

T
e
s
t
S
t
a
r
t
B
i
t

;

s
t
a
r
t
-
b
i
t

n
o
t

f
o
u
n
d

0
0
1
3
0

0
0
1
6

0
6
4
5

0
0
1
3
1

T
e
s
t
B
i
t
H
i
g
h

b
t
f
s
c

P
O
R
T
A
,

R
X

;

t
e
s
t

f
o
r

e
n
d

o
f

b
i
t

s
t
r
e
a
m

0
0
1
7

0
A
1
D

0
0
1
3
2

g
o
t
o

C
a
l
c
u
l
a
t
e

;

e
n
d

o
f

b
i
t

s
t
r
e
a
m
,

n
o
w

c
a
l
c
u
l
a
t
e

0
0
1
3
3

;

b
i
t

t
i
m
e

f
o
r

o
n
e

b
i
t

0
0
1
8

0
3
E
8

0
0
1
3
4

i
n
c
f
s
z

A
U
T
O
B
A
U
D
_
L
O
W
,

f

;

i
n
c
r
e
m
e
n
t

A
u
t
o
b
a
u
d

l
o
w

r
e
g
i
s
t
e
r

0
0
1
9

0
A
1
6

0
0
1
3
5

g
o
t
o

T
e
s
t
B
i
t
H
i
g
h

;

t
e
s
t

f
o
r

h
i
g
h

b
i
t

0
0
1
A

0
3
E
9

0
0
1
3
6

i
n
c
f
s
z

A
U
T
O
B
A
U
D
_
H
I
G
H
,
f

;

i
n
c
r
e
m
e
n
t

h
i
g
h

b
y
t
e

o
f

a
u
t
o
b
a
u
d

r
e
g
i
s
t
e
r

0
0
1
B

0
A
1
6

0
0
1
3
7

g
o
t
o

T
e
s
t
B
i
t
H
i
g
h

;

t
e
s
t

f
o
r

e
n
d

o
f

b
i
t

s
t
r
e
a
m

0
0
1
C

0
A
4
0

0
0
1
3
8

g
o
t
o

S
i
g
n
a
l
2
S
l
o
w

;

h
i
g
h

b
y
t
e

g
o
t

a
n

o
v
e
r
f
l
o
w
.

T
r
a
n
s
m
i
t
t
e
d

0
0
1
3
9

;

s
i
g
n
a
l

i
s

t
o
o

s
l
o
w

f
o
r

c
l
o
c
k

s
p
e
e
d

0
0
1
4
0

0
0
1
4
1

;

C
a
l
c
u
l
a
t
i
o
n

o
f

t
r
a
n
s
m
i
s
s
i
o
n

t
i
m
e

f
o
r

o
n
e

b
i
t

0
0
1
D

0
C
0
3

0
0
1
4
2

C
a
l
c
u
l
a
t
e

m
o
v
l
w

0
x
0
3

;

i
n
i
t
i
a
l
i
z
e

c
o
u
n
t

r
e
g
i
s
t
e
r

0
0
1
E

0
0
3
0

0
0
1
4
3

m
o
v
w
f

C
O
U
N
T
E
R

;

c
o
u
n
t
e
r

f
o
r

n
u
m
b
e
r

f
o
r

r
o
t
a
t
e
s

=

3

0
0
1
F

0
4
0
3

0
0
1
4
4

D
i
v
i
d
e

b
c
f

S
T
A
T
U
S
,

C

;

c
l
e
a
r

c
a
r
r
y

b
i
t

0
0
2
0

0
3
2
9

0
0
1
4
5

r
r
f

A
U
T
O
B
A
U
D
_
H
I
G
H
,
f

;

r
o
t
a
t
e

a
u
t
o
b
a
u
d

h
i
g
h

r
e
g
i
s
t
e
r

0
0
2
1

0
3
2
8

0
0
1
4
6

r
r
f

A
U
T
O
B
A
U
D
_
L
O
W
,

f

;

r
o
t
a
t
e

a
u
t
o
b
a
u
d

l
o
w

r
e
g
i
s
t
e
r

0
0
2
2

0
2
F
0

0
0
1
4
7

d
e
c
f
s
z

C
O
U
N
T
E
R
,

f

;

d
e
c
r
e
m
e
n
t

c
o
u
n
t
e
r

0
0
2
3

0
A
1
F

0
0
1
4
8

g
o
t
o

D
i
v
i
d
e

;

d
i
v
i
d
e

0
0
1
4
9

0
0
1
5
0

0
0
1
5
1

;

C
a
l
c
u
l
a
t
e

t
h
e

t
r
a
n
s
m
i
s
s
i
o
n

t
i
m
e

f
o
r

h
a
l
f

t
h
e

b
i
t

t
i
m
e

(
m
e
a
n
s

0
0
1
5
2

;

d
i
v
i
d
e

t
r
a
n
s
m
i
s
s
i
o
n

t
i
m
e

o
f

o
n
e

b
i
t

b
y

t
w
o
)
.

0
0
2
4

0
4
0
3

0
0
1
5
3

C
a
l
c
H
a
l
f
B
i
t

b
c
f

S
T
A
T
U
S
,

C

;

c
l
e
a
r

c
a
r
r
y

b
i
t

0
0
2
5

0
3
0
9

0
0
1
5
4

r
r
f

A
U
T
O
B
A
U
D
_
H
I
G
H
,
w

;

r
o
t
a
t
e

a
u
t
o
b
a
u
d

h
i
g
h

r
e
g
i
s
t
e
r

0
0
2
6

0
0
2
B

0
0
1
5
5

m
o
v
w
f

A
U
T
O
H
A
L
F
_
H
I
G
H

;

c
o
p
y

r
e
s
u
l
t

i
n
t
o

A
U
T
O
H
A
L
F
_
H
I
G
H

r
e
g
i
s
t
e
r

0
0
2
7

0
3
0
8

0
0
1
5
6

r
r
f

A
U
T
O
B
A
U
D
_
L
O
W
,

w

;

r
o
t
a
t
e

a
u
t
o
b
a
u
d

h
i
g
h

r
e
g
i
s
t
e
r

0
0
2
8

0
0
2
A

0
0
1
5
7

m
o
v
w
f

A
U
T
O
H
A
L
F
_
L
O
W

;

c
o
p
y

r
e
s
u
l
t

i
n
t
o

A
U
T
O
H
A
L
F
_
L
O
W

r
e
g
i
s
t
e
r

0
0
1
5
8

0
0
1
5
9

;

A
d
j
u
s
t

1
6
-
b
i
t

c
o
u
n
t
e
r

f
o
r

r
e
c
e
i
v
e

a
n
d

t
r
a
n
s
m
i
t

r
o
u
t
i
n
e
.

T
h
i
s

m
e
a
n
s

0
0
1
6
0

;

t
h
a
t

t
h
e

o
v
e
r
h
e
a
d

o
f

i
n
s
t
r
u
c
t
i
o
n

c
y
c
l
e
s

i
n

o
f

t
h
e

r
e
c
e
i
v
e
/
t
r
a
n
s
m
i
t

0
0
1
6
1

;

r
o
u
t
i
n
e

h
a
s

t
o

b
e

s
u
b
t
r
a
c
t
e
d

f
r
o
m

t
h
e

t
r
a
n
s
m
i
s
s
i
o
n

t
i
m
e

o
f

o
n
e

b
i
t

0
0
1
6
2

;

a
n
d

h
a
l
f

a

b
i
t
.

0
0
2
9

0
C
0
3

0
0
1
6
3

A
d
j
u
s
t
L
o
w
B
y
t
e

m
o
v
l
w

0
x
3

;

1
8
-
1
9

i
n
s
t
r
u
c
t
i
o
n

c
y
c
l
e
s

o
v
e
r
h
e
a
d

f
r
o
m

0
0
1
6
4

;

t
r
a
n
s
m
i
t
/
r
e
c
e
i
v
e

r
o
u
t
i
n
e
.

T
h
i
s

o
v
e
r
h
e
a
d

0
0
1
6
5

;

m
u
s
t

b
e

s
u
b
t
r
a
c
t
e
d

f
r
o
m

i
t
e
r
a
t
i
o
n
s

0
0
2
A

0
0
A
8

0
0
1
6
6

s
u
b
w
f

A
U
T
O
B
A
U
D
_
L
O
W
,

f

;

a
d
j
u
s
t

l
o
w

b
y
t
e

f
r
o
m

A
u
t
o
b
a
u
d

c
o
u
n
t
e
r

0
0
2
B

0
7
0
3

0
0
1
6
7

b
t
f
s
s

S
T
A
T
U
S
,

C

;

i
s

r
e
s
u
l
t

n
e
g
a
t
i
v
e
?

(
e
q
u
a
l
=
0

w
i
l
l

b
e

c
h
e
c
k
e
d

0
0
1
6
8

;

a
t

E
r
r
o
r
C
h
e
c
k
)
.

C
=
0

r
e
s
u
l
t

i
s

n
e
g
a
t
i
v
e

0
0
2
C

0
A
3
E

0
0
1
6
9

g
o
t
o

S
i
g
n
a
l
2
F
a
s
t

;

s
i
g
n
a
l

i
s

t
o
o

f
a
s
t

f
o
r

r
e
c
e
i
v
e

a
n
d

t
r
a
n
s
m
i
t

r
o
u
t
i
n
e

0
0
2
D

0
C
0
2

0
0
1
7
0

m
o
v
l
w

0
x
0
2

;

s
u
b
t
r
a
c
t

2

f
r
o
m

l
o
w

b
y
t
e

o
f

h
a
l
f

t
h
e

b
i
t

t
i
m
e

0
0
2
E

0
0
A
A

0
0
1
7
1

s
u
b
w
f

A
U
T
O
H
A
L
F
_
L
O
W
,

f

;

s
u
b
t
r
a
c
t

f
r
o
m

l
o
w

b
y
t
e

o
f

h
a
l
f

t
h
e

b
i
t

t
i
m
e

0
0
2
F

0
7
0
3

0
0
1
7
2

b
t
f
s
s

S
T
A
T
U
S
,

C

;

i
s

r
e
s
u
l
t

n
e
g
a
t
i
v
e
?

(
e
q
u
a
l
=
0

w
i
l
l

b
e

c
h
e
c
k
e
d

0
0
1
7
3

;

a
t

E
r
r
o
r
C
h
e
c
k
)
.

C
=
0

r
e
s
u
l
t

i
s

n
e
g
a
t
i
v
e

0
0
3
0

0
A
3
E

0
0
1
7
4

g
o
t
o

S
i
g
n
a
l
2
F
a
s
t

;

s
i
g
n
a
l

i
s

t
o
o

f
a
s
t

0
0
1
7
5

 1999 Microchip Technology Inc. DS00712A-page 2-93

AN712

S2
.b

oo
k

 P
ag

e
94

 T
hu

rs
da

y,
 M

ar
ch

 2
, 2

00
0

 8
:0

2
A

M

0
0
1
7
6

;

c
h
e
c
k

i
f

A
U
T
O
B
A
U
D
_
H
I
G
H

a
n
d

A
U
T
O
B
A
U
D
_
L
O
W

a
r
e

z
e
r
o
.

T
h
i
s

0
0
1
7
7

;

m
e
a
n
s

t
h
e

t
r
a
n
s
m
i
s
s
i
o
n

t
i
m
e

f
o
r

o
n
e

b
y
t
e

i
s

t
o
o

h
i
g
h

0
0
3
1

0
2
2
9

0
0
1
7
8

E
r
r
o
r
C
h
e
c
k

m
o
v
f

A
U
T
O
B
A
U
D
_
H
I
G
H
,
f

;

c
o
p
y

h
i
g
h

b
y
t
e

o
f

a
u
t
o
b
a
u
d

c
o
u
n
t
e
r

r
e
g
i
s
t
e
r

o
n
t
o

i
t
s
e
l
f

0
0
3
2

0
7
4
3

0
0
1
7
9

b
t
f
s
s

S
T
A
T
U
S
,

Z

;

i
s

z
e
r
o
-
f
l
a
g

s
e
t
?

0
0
3
3

0
A
3
8

0
0
1
8
0

g
o
t
o

E
r
r
o
r
C
h
e
c
k
H
a
l
f

;

n
o
,

t
h
e
r
e
f
o
r
e

c
h
e
c
k

n
e
x
t

b
y
t
e

0
0
3
4

0
2
2
8

0
0
1
8
1

m
o
v
f

A
U
T
O
B
A
U
D
_
L
O
W
,

f

;

c
o
p
y

l
o
w

b
y
t
e

o
f

a
u
t
o
b
a
u
d

r
e
g
i
s
t
e
r

o
n
t
o

i
t
s
e
l
f

0
0
3
5

0
7
4
3

0
0
1
8
2

b
t
f
s
s

S
T
A
T
U
S
,

Z

;

i
s

z
e
r
o
-
f
l
a
g

s
e
t
?

0
0
3
6

0
A
3
8

0
0
1
8
3

g
o
t
o

E
r
r
o
r
C
h
e
c
k
H
a
l
f

;

n
o
,

l
o
w

b
y
t
e

i
s

n
o
t

z
e
r
o

t
h
e
r
e
f
o
r
e

c
h
e
c
k

n
e
x
t

b
y
t
e

0
0
3
7

0
A
3
E

0
0
1
8
4

g
o
t
o

S
i
g
n
a
l
2
F
a
s
t

;

y
e
s
,

s
i
g
n
a
l

i
s

t
o
o

f
a
s
t
.

T
h
e
r
e
f
o
r
e

s
e
t

f
l
a
g

0
0
3
8

0
2
2
B

0
0
1
8
5

E
r
r
o
r
C
h
e
c
k
H
a
l
f

m
o
v
f

A
U
T
O
H
A
L
F
_
H
I
G
H
,
f

;

c
o
p
y

h
i
g
h

b
y
t
e

o
f

a
u
t
o
b
a
u
d

c
o
u
n
t
e
r

o
n
t
o

i
t
s
e
l
f

0
0
3
9

0
7
4
3

0
0
1
8
6

b
t
f
s
s

S
T
A
T
U
S
,

Z

;

i
s

z
e
r
o
-
f
l
a
g

s
e
t
?

0
0
3
A

0
A
4
1

0
0
1
8
7

g
o
t
o

E
n
d
A
u
t
o
B
a
u
d

;

f
i
n
i
s
h

a
u
t
o
b
a
u
d

r
o
u
t
i
n
e

0
0
3
B

0
2
2
A

0
0
1
8
8

m
o
v
f

A
U
T
O
H
A
L
F
_
L
O
W
,

f

;

c
h
e
c
k

l
o
w

b
y
t
e

0
0
3
C

0
7
4
3

0
0
1
8
9

b
t
f
s
s

S
T
A
T
U
S
,

Z

;

i
s

z
e
r
o
-
f
l
a
g

s
e
t
?

0
0
3
D

0
A
4
1

0
0
1
9
0

g
o
t
o

E
n
d
A
u
t
o
B
a
u
d

;

n
o
,

t
h
e
r
e
f
o
r
e

f
i
n
i
s
h

a
u
t
o
b
a
u
d

r
o
u
t
i
n
e

0
0
1
9
1

;

y
e
s
,

H
i
g
h

a
n
d

l
o
w

b
y
t
e

o
f

A
U
T
O
H
A
L
F

r
e
g
i
s
t
e
r

a
r
e

z
e
r
o

0
0
1
9
2

;

t
h
e
r
e

t
h
e

i
n
c
o
m
i
n
g

s
i
g
n
a
l

w
a
s

t
o
o

f
a
s
t

t
o

g
e
n
e
r
a
t
e

a

d
e
l
a
y

0
0
1
9
3

;

T
h
e
r
e
f
o
r
e

s
e
t

S
I
G
N
A
L
_
F
A
S
T

f
l
a
g

0
0
1
9
4

0
0
1
9
5

;

E
r
r
o
r
:

d
e
l
a
y

f
o
r

h
a
l
f

t
h
e

b
i
t

t
i
m
e

i
s

z
e
r
o
,

t
h
e
r
e
f
o
r
e

a

0
0
1
9
6

;

d
e
l
a
y

c
a
n
n
o
t

b
e

g
e
n
e
r
a
t
e
d

w
i
t
h

t
h
e

d
e
l
a
y

r
o
u
t
i
n
e
s
.

T
h
e

i
n
c
o
m
i
n
g

s
i
g
n
a
l

0
0
1
9
7

;

w
a
s

t
o
o

f
a
s
t

f
o
r

c
l
o
c
k

s
p
e
e
d
.

0
0
3
E

0
5
0
C

0
0
1
9
8

S
i
g
n
a
l
2
F
a
s
t

b
s
f

A
U
T
O
B
_
S
T
A
T
U
S
,

S
I
G
N
A
L
_
F
A
S
T

;

s
e
t

e
r
r
o
r

f
l
a
g

0
0
3
F

0
8
0
0

0
0
1
9
9

r
e
t
l
w

0
x
0
0

;

r
e
t
u
r
n

t
o

m
a
i
n

r
o
u
t
i
n
e

0
0
2
0
0

0
0
4
0

0
5
2
C

0
0
2
0
1

S
i
g
n
a
l
2
S
l
o
w

b
s
f

A
U
T
O
B
_
S
T
A
T
U
S
,

S
I
G
N
A
L
_
S
L
O
W

;

s
e
t

e
r
r
o
r

f
l
a
g

0
0
2
0
2

0
0
2
0
3

0
0
4
1

0
8
0
0

0
0
2
0
4

E
n
d
A
u
t
o
B
a
u
d

r
e
t
l
w

0
x
0
0

;

r
e
t
u
r
n

t
o

m
a
i
n

r
o
u
t
i
n
e

0
0
2
0
5

0
0
2
0
6

0
0
2
0
7

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
2
0
8

;

*

R
e
c
e
i
v
e

R
o
u
t
i
n
e

*

0
0
2
0
9

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
4
2

0
0
6
F

0
0
2
1
0

R
e
c
e
i
v
e

c
l
r
f

R
X
T
X
_
R
E
G

;

c
l
e
a
r

r
e
c
e
i
v
e

r
e
g
i
s
t
e
r

0
0
4
3

0
C
0
8

0
0
2
1
1

m
o
v
l
w

B
I
T
S

;

n
u
m
b
e
r

o
f

b
i
t
s

t
o

r
e
c
e
i
v
e

0
0
4
4

0
0
3
0

0
0
2
1
2

m
o
v
w
f

C
O
U
N
T
E
R

;

l
o
a
d

n
u
m
b
e
r

o
f

b
i
t
s

i
n
t
o

c
o
u
n
t
e
r

r
e
g
i
s
t
e
r

0
0
4
5

0
6
4
5

0
0
2
1
3

R
e
c
e
i
v
e
S
t
a
r
t
B
i
t

b
t
f
s
c

P
O
R
T
A
,

R
X

;

t
e
s
t

f
o
r

s
t
a
r
t

b
i
t

0
0
4
6

0
A
4
5

0
0
2
1
4

g
o
t
o

R
e
c
e
i
v
e
S
t
a
r
t
B
i
t

;

s
t
a
r
t
-
b
i
t

n
o
t

f
o
u
n
d

0
0
4
7

0
9
7
2

0
0
2
1
5

c
a
l
l

D
e
l
a
y
H
a
l
f
B
i
t

;

w
a
i
t

u
n
t
i
l

m
i
d
d
l
e

o
f

s
t
a
r
t
-
b
i
t

0
0
4
8

0
9
6
1

0
0
2
1
6

c
a
l
l

D
e
l
a
y
F
u
l
l
B
i
t

;

i
g
n
o
r
e

s
t
a
r
t
-
b
i
t

a
n
d

s
a
m
p
l
e

f
i
r
s
t

0
0
2
1
7

;

d
a
t
a

b
i
t

i
n

t
h
e

m
i
d
d
l
e

o
f

t
h
e

b
i
t

0
0
4
9

0
6
4
5

0
0
2
1
8

R
e
c
e
i
v
e
N
e
x
t

b
t
f
s
c

P
O
R
T
A
,

R
X

;

i
s

R
X

z
e
r
o

o
r

a

o
n
e
?

0
0
4
A

0
5
0
3

0
0
2
1
9

b
s
f

S
T
A
T
U
S
,
C

;

b
i
t

i
s

a

o
n
e

=
>

s
e
t

c
a
r
r
y

b
i
t

0
0
4
B

0
7
4
5

0
0
2
2
0

b
t
f
s
s

P
O
R
T
A
,

R
X

;

i
s

R
X

o
n
e

o
r

a

z
e
r
o
?

0
0
4
C

0
4
0
3

0
0
2
2
1

b
c
f

S
T
A
T
U
S
,
C

;

R
X

i
s

z
e
r
o

=
>

c
l
e
a
r

c
a
r
r
y

b
i
t

DS00712A-page 2-94 1999 Microchip Technology Inc.

AN712
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2
.b

oo
k

 P
ag

e
95

 T
hu

rs
da

y,
 M

ar
ch

 2
, 2

00
0

 8
:0

2
A

M

0
0
4
D

0
3
2
F

0
0
2
2
2

r
r
f

R
X
T
X
_
R
E
G
,

f

;

r
o
t
a
t
e

v
a
l
u
e

i
n
t
o

r
e
c
e
i
v
e

r
e
g
i
s
t
e
r

0
0
4
E

0
9
6
1

0
0
2
2
3

c
a
l
l

D
e
l
a
y
F
u
l
l
B
i
t

;

c
a
l
l

D
e
l
a
y

r
o
u
t
i
n
e

0
0
4
F

0
2
F
0

0
0
2
2
4

d
e
c
f
s
z

C
O
U
N
T
E
R
,

f

;

d
e
c
r
e
m
e
n
t

r
e
c
e
i
v
e

c
o
u
n
t

r
e
g
i
s
t
e
r

b
y

o
n
e

0
0
5
0

0
A
4
9

0
0
2
2
5

g
o
t
o

R
e
c
e
i
v
e
N
e
x
t

;

r
e
c
e
i
v
e

n
e
x
t

b
i
t

0
0
5
1

0
8
0
0

0
0
2
2
6

r
e
t
l
w

0
x
0
0

;

r
e
t
u
r
n

t
o

m
a
i
n

r
o
u
t
i
n
e

0
0
2
2
7

0
0
2
2
8

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
2
2
9

;

*

T
r
a
n
s
m
i
t

r
o
u
t
i
n
e

*

0
0
2
3
0

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
5
2

0
C
0
8

0
0
2
3
1

T
r
a
n
s
m
i
t

m
o
v
l
w

B
I
T
S

;

n
u
m
b
e
r

o
f

b
i
t
’
s

t
o

t
r
a
n
s
m
i
t

0
0
5
3

0
0
3
0

0
0
2
3
2

m
o
v
w
f

C
O
U
N
T
E
R

;

i
n
i
t
i
a
l
i
z
e

c
o
u
n
t

r
e
g
i
s
t
e
r

0
0
5
4

0
4
6
5

0
0
2
3
3

b
c
f

P
O
R
T
A
,

T
X

;

g
e
n
e
r
a
t
e

s
t
a
r
t
-
b
i
t

0
0
5
5

0
9
6
1

0
0
2
3
4

c
a
l
l

D
e
l
a
y
F
u
l
l
B
i
t

;

g
e
n
e
r
a
t
e

D
e
l
a
y

f
o
r

o
n
e

b
i
t
-
t
i
m
e

0
0
5
6

0
3
2
F

0
0
2
3
5

T
r
a
n
s
m
i
t
N
e
x
t

r
r
f

R
X
T
X
_
R
E
G
,

f

;

r
o
t
a
t
e

r
e
c
e
i
v
e

r
e
g
i
s
t
e
r

0
0
5
7

0
6
0
3

0
0
2
3
6

b
t
f
s
c

S
T
A
T
U
S
,

C

;

t
e
s
t

b
i
t

t
o

b
e

t
r
a
n
s
m
i
t
t
e
d

0
0
5
8

0
5
6
5

0
0
2
3
7

b
s
f

P
O
R
T
A
,

T
X

;

t
r
a
n
s
m
i
t

a

o
n
e

0
0
5
9

0
7
0
3

0
0
2
3
8

b
t
f
s
s

S
T
A
T
U
S
,

C

;

c
h
e
c
k

c
a
r
r
y

b
i
t

i
f

s
e
t

0
0
5
A

0
4
6
5

0
0
2
3
9

b
c
f

P
O
R
T
A
,

T
X

;

t
r
a
n
s
m
i
t

a

z
e
r
o

0
0
5
B

0
9
6
1

0
0
2
4
0

c
a
l
l

D
e
l
a
y
F
u
l
l
B
i
t

;

c
a
l
l

D
e
l
a
y

r
o
u
t
i
n
e

0
0
5
C

0
2
F
0

0
0
2
4
1

d
e
c
f
s
z

C
O
U
N
T
E
R
,

f

;

d
e
c
r
e
m
e
n
t

c
o
u
n
t
e
r

r
e
g
i
s
t
e
r

0
0
5
D

0
A
5
6

0
0
2
4
2

g
o
t
o

T
r
a
n
s
m
i
t
N
e
x
t

;

t
r
a
n
s
m
i
t

n
e
x
t

b
i
t

0
0
5
E

0
5
6
5

0
0
2
4
3

b
s
f

P
O
R
T
A
,

T
X

;

g
e
n
e
r
a
t
e

S
t
o
p

b
i
t

0
0
5
F

0
9
6
1

0
0
2
4
4

c
a
l
l

D
e
l
a
y
F
u
l
l
B
i
t

;

d
e
l
a
y

f
o
r

S
t
o
p

b
i
t

0
0
6
0

0
8
0
0

0
0
2
4
5

r
e
t
l
w

0
x
0
0

;

r
e
t
u
r
n

t
o

m
a
i
n

r
o
u
t
i
n
e

0
0
2
4
6

0
0
2
4
7

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
2
4
8

;

*

D
e
l
a
y

r
o
u
t
i
n
e

1
6
-
b
i
t

c
o
u
n
t
e
r

(
d
e
l
a
y

f
o
r

f
u
l
l

b
i
t

t
i
m
e
)

*

0
0
2
4
9

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
6
1

0
2
0
9

0
0
2
5
0

D
e
l
a
y
F
u
l
l
B
i
t

m
o
v
f

A
U
T
O
B
A
U
D
_
H
I
G
H
,
w

;

c
o
p
y

c
o
n
t
e
n
t

o
f

A
u
t
o
b
a
u
d

h
i
g
h

r
e
g
i
s
t
e
r

i
n
t
o

0
0
6
2

0
7
4
3

0
0
2
5
1

b
t
f
s
s

S
T
A
T
U
S
,

Z

;

i
s

h
i
g
h

b
y
t
e

=

0
?

0
0
6
3

0
A
6
5

0
0
2
5
2

g
o
t
o

L
o
a
d
H
i
g
h
B
y
t
e

;

n
o
,

h
i
g
h

b
y
t
e

i
s

n
o
t

z
e
r
o

0
0
6
4

0
A
6
B

0
0
2
5
3

g
o
t
o

D
e
c
L
o
w
B
y
t
e
O
n
l
y

;

d
e
c
r
e
m
e
n
t

o
n
l
y

l
o
w

b
y
t
e

0
0
2
5
4

0
0
6
5

0
0
2
E

0
0
2
5
5

L
o
a
d
H
i
g
h
B
y
t
e

m
o
v
w
f

T
E
M
P
2

;

l
o
a
d

T
E
M
P
2

w
i
t
h

c
o
n
t
e
n
t

o
f

A
U
T
O
B
A
U
D
_
H
I
G
H

0
0
6
6

0
0
6
D

0
0
2
5
6

c
l
r
f

T
E
M
P
1

;

r
e
s
e
t

T
E
M
P
1

r
e
g
i
s
t
e
r

0
0
6
7

0
2
E
D

0
0
2
5
7

D
e
c
L
o
w
B
y
t
e
1

d
e
c
f
s
z

T
E
M
P
1
,

f

;

d
e
c
r
e
m
e
n
t

l
o
w

b
y
t
e

0
0
6
8

0
A
7
0

0
0
2
5
8

g
o
t
o

D
e
c
L
o
w
B
y
t
e
1
1

;

d
o

u
n
t
i
l

r
e
s
u
l
t

i
s

z
e
r
o

0
0
6
9

0
2
E
E

0
0
2
5
9

d
e
c
f
s
z

T
E
M
P
2
,

f

;

d
e
c
r
e
m
e
n
t

l
o
w

b
y
t
e

0
0
6
A

0
A
6
7

0
0
2
6
0

g
o
t
o

D
e
c
L
o
w
B
y
t
e
1

;

d
e
c
r
e
m
e
n
t

l
o
w

b
y
t
e

a
g
a
i
n

0
0
2
6
1

0
0
6
B

0
2
0
8

0
0
2
6
2

D
e
c
L
o
w
B
y
t
e
O
n
l
y

m
o
v
f

A
U
T
O
B
A
U
D
_
L
O
W
,

w

;

c
o
p
y

l
o
w

b
y
t
e

f
r
o
m

a
u
t
o
b
a
u
d

r
e
g
i
s
t
e
r

0
0
6
C

0
0
2
D

0
0
2
6
3

m
o
v
w
f

T
E
M
P
1

;

i
n
t
o

T
E
M
P
1

0
0
6
D

0
2
E
D

0
0
2
6
4

D
e
c
L
o
w
B
y
t
e
2

d
e
c
f
s
z

T
E
M
P
1
,

f

;

d
e
c
r
e
m
e
n
t

l
o
w

b
y
t
e

u
n
t
i
l

z
e
r
o

0
0
6
E

0
A
7
1

0
0
2
6
5

g
o
t
o

D
e
c
L
o
w
B
y
t
e
2
2

;

e
x
t
r
a

t
w
o

c
y
c
l
e

d
e
l
a
y

0
0
6
F

0
8
0
0

0
0
2
6
6

r
e
t
l
w

0
x
0
0

;

r
e
t
u
r
n

f
r
o
m

s
u
b
r
o
u
t
i
n
e

0
0
7
0

0
A
6
7

0
0
2
6
7

D
e
c
L
o
w
B
y
t
e
1
1

g
o
t
o

D
e
c
L
o
w
B
y
t
e
1

;

a
d
d
i
t
i
o
n
a
l

t
w
o

c
y
c
l
e

d
e
l
a
y

0
0
7
1

0
A
6
D

0
0
2
6
8

D
e
c
L
o
w
B
y
t
e
2
2

g
o
t
o

D
e
c
L
o
w
B
y
t
e
2

;

a
d
d
i
t
i
o
n
a
l

t
w
o

c
y
c
l
e

d
e
l
a
y

 1999 Microchip Technology Inc. DS00712A-page 2-95

AN712

S2
.b

oo
k

 P
ag

e
96

 T
hu

rs
da

y,
 M

ar
ch

 2
, 2

00
0

 8
:0

2
A

M

0
0
2
6
9

0
0
2
7
0

0
0
2
7
1

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
2
7
2

;

*

D
e
l
a
y

r
o
u
t
i
n
e

1
6
-
b
i
t

c
o
u
n
t
e
r

(
d
e
l
a
y

f
o
r

h
a
l
f

b
i
t

t
i
m
e
)

*

0
0
2
7
3

;

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

0
0
7
2

0
2
0
B

0
0
2
7
4

D
e
l
a
y
H
a
l
f
B
i
t

m
o
v
f

A
U
T
O
H
A
L
F
_
H
I
G
H
,
w

;

c
o
p
y

c
o
n
t
e
n
t

o
f

A
u
t
o
b
a
u
d

h
i
g
h

r
e
g
i
s
t
e
r

i
n
t
o

0
0
7
3

0
7
4
3

0
0
2
7
5

b
t
f
s
s

S
T
A
T
U
S
,

Z

;

i
s

h
i
g
h

b
y
t
e

=

0
?

0
0
7
4

0
A
7
6

0
0
2
7
6

g
o
t
o

L
o
a
d
H
i
g
h
B
y
t
e
H

;

n
o
,

h
i
g
h

b
y
t
e

i
s

n
o
t

z
e
r
o

0
0
7
5

0
A
7
C

0
0
2
7
7

g
o
t
o

D
e
c
L
o
w
B
y
t
e
O
n
l
y
H

;

d
e
c
r
e
m
e
n
t

o
n
l
y

l
o
w

b
y
t
e

0
0
2
7
8

0
0
7
6

0
0
2
E

0
0
2
7
9

L
o
a
d
H
i
g
h
B
y
t
e
H

m
o
v
w
f

T
E
M
P
2

;

l
o
a
d

T
E
M
P
2

w
i
t
h

c
o
n
t
e
n
t

o
f

A
U
T
O
H
A
L
F
_
H
I
G
H

0
0
7
7

0
0
6
D

0
0
2
8
0

c
l
r
f

T
E
M
P
1

;

r
e
s
e
t

T
E
M
P
1

r
e
g
i
s
t
e
r

0
0
7
8

0
2
E
D

0
0
2
8
1

D
e
c
L
o
w
B
y
t
e
H
1

d
e
c
f
s
z

T
E
M
P
1
,

f

;

d
e
c
r
e
m
e
n
t

l
o
w

b
y
t
e

0
0
7
9

0
A
8
1

0
0
2
8
2

g
o
t
o

D
e
c
L
o
w
B
y
t
e
H
1
1

;

d
o

u
n
t
i
l

r
e
s
u
l
t

i
s

z
e
r
o

0
0
7
A

0
2
E
E

0
0
2
8
3

d
e
c
f
s
z

T
E
M
P
2
,

f

;

d
e
c
r
e
m
e
n
t

l
o
w

b
y
t
e

0
0
7
B

0
A
7
8

0
0
2
8
4

g
o
t
o

D
e
c
L
o
w
B
y
t
e
H
1

;

d
e
c
r
e
m
e
n
t

l
o
w

b
y
t
e

a
g
a
i
n

0
0
2
8
5

0
0
7
C

0
2
0
A

0
0
2
8
6

D
e
c
L
o
w
B
y
t
e
O
n
l
y
H

m
o
v
f

A
U
T
O
H
A
L
F
_
L
O
W
,

w

;

c
o
p
y

l
o
w

b
y
t
e

f
r
o
m

a
u
t
o
b
a
u
d

r
e
g
i
s
t
e
r

0
0
7
D

0
0
2
D

0
0
2
8
7

m
o
v
w
f

T
E
M
P
1

;

i
n
t
o

T
E
M
P
1

0
0
7
E

0
2
E
D

0
0
2
8
8

D
e
c
L
o
w
B
y
t
e
H
2

d
e
c
f
s
z

T
E
M
P
1
,

f

;

d
e
c
r
e
m
e
n
t

l
o
w

b
y
t
e

u
n
t
i
l

z
e
r
o

0
0
7
F

0
A
8
2

0
0
2
8
9

g
o
t
o

D
e
c
L
o
w
B
y
t
e
H
2
2

;

e
x
t
r
a

t
w
o

c
y
c
l
e

d
e
l
a
y

0
0
8
0

0
8
0
0

0
0
2
9
0

r
e
t
l
w

0
x
0
0

;

r
e
t
u
r
n

f
r
o
m

s
u
b
r
o
u
t
i
n
e

0
0
8
1

0
A
7
8

0
0
2
9
1

D
e
c
L
o
w
B
y
t
e
H
1
1

g
o
t
o

D
e
c
L
o
w
B
y
t
e
H
1

;

a
d
d
i
t
i
o
n
a
l

t
w
o

c
y
c
l
e

d
e
l
a
y

0
0
8
2

0
A
7
E

0
0
2
9
2

D
e
c
L
o
w
B
y
t
e
H
2
2

g
o
t
o

D
e
c
L
o
w
B
y
t
e
H
2

;

a
d
d
i
t
i
o
n
a
l

t
w
o

c
y
c
l
e

d
e
l
a
y

0
0
2
9
3

0
0
2
9
4

0
0
2
9
5

E
N
D

P
r
o
g
r
a
m

M
e
m
o
r
y

W
o
r
d
s

U
s
e
d
:

1
3
2

P
r
o
g
r
a
m

M
e
m
o
r
y

W
o
r
d
s

F
r
e
e
:

3
8
0

DS00712A-page 2-96 1999 Microchip Technology Inc.

Measure Tilt Using PIC16F84A & ADXL202

AN715

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 97 Thursday, March 2, 2000 8:02 AM
INTRODUCTION
Recent advances in accelerometer sensor technology,
especially with silicon micromachined types, have
driven the cost of these devices down significantly. As
of today, you could obtain an accelerometer for less
than $5 per axis. Measurement of acceleration or one
of the derivative properties such as vibration, shock, or
tilt has become very commonplace in a wide range of
products. At first you might think of seismic activity or
machinery performance monitoring, but would auto-
motive airbags, sports training products, or computer
peripherals ever cross your mind? The technology
behind acceleration sensors has advanced to provide a
very cost effective and user friendly solution for almost
any application.

There are many types of sensors that measure accel-
eration, vibration, shock, or tilt. These sensors include
piezo-film, electromechanical servo, piezoelectric, liq-
uid tilt, bulk micromachined piezo resistive and capaci-
tive sensors, as well as surface micromachined
capacitive. Each of these sensors has distinct charac-
teristics in the output signal of the sensor, cost to
develop, and type of operating environment. Measure-
ment of acceleration can also provide velocity by single
integration and position by double integration. Vibration
and shock can be used for machine health determina-
tion as well as motion and shock detection for car
alarms. Static acceleration due to gravity can be used
to determine tilt and inclination provided that the sensor
is responsive to static acceleration.

This application note will focus on the surface micro-
machined capacitive ADXL accelerometers from Ana-
log Devices, in particular the ADXL202. The example
application will use the ADXL202 accelerometer with
the PIC16F84A in a tilt meter. The PIC16F84A is a
good match with the ADXL202 because all acceleration
measurements are digital only. Secondly, the Data
EEPROM can be used to store the calibration con-
stants and restore on reset. The external interface can
also be changed easily to accommodate a LCD display
(as shown in this application note) or a serial interface
to the outside world.

MEMs SENSOR: THEORY OF
OPERATION
In recent years the silicon micromachined sensor has
made tremendous advancements in terms of cost and
level of on-chip integration for acceleration and/or
vibration measurements. By implementing additional
BiMOS circuitry on-chip, these products not only pro-
vide sensor but also signal conditioning in a single
package that requires a few external components to
complete the circuit. Some manufacturers have taken
this approach one step further by converting the analog
output of the sensor to a digital format such as duty
cycle. This method not only lifts the burden of designing
fairly complex analog circuitry for the sensor but also
reduces cost and board area. Because of these
advances, the micromachined accelerometer is finding
its way into such products as joysticks and airbags that
were previously impossible due to price or size limita-
tions of the sensor. Figure 1 shows the block diagram
of the ADXL202.

Author: Rodger Richey
Microchip Technology
 1999 Microchip Technology Inc. DS00715A-page 2-97

AN715

S2.book Page 98 Thursday, March 2, 2000 8:02 AM
FIGURE 1: ADXL202 BLOCK DIAGRAM

A surface micromachined device is composed of
springs, masses and motion sensing components.
These sensors use standard integrated circuit process-
ing techniques in standard wafer fabs, i.e., no addi-
tional cost to the user for special processes or fabs. As
shown in Figure 2, normal IC processes take place by
applying layers of oxide and polysilicon. Then using IC
photolithography and selective etching the sensor is
created as a 3-dimensional structure suspended above
the substrate free to move in all directions. The sur-
rounding area becomes the signal conditioning and
output circuitry.

FIGURE 2: SILICON STRUCTURE OF
ADXL202 (SIDE VIEW)

The core of the sensor is a surface micromachined
polysilicon structure or mass that is suspended on top
of the silicon wafer for each axis. The polysilicon
"springs" hold the mass and provides resistance to
movement due to acceleration forces. Both the mass
and the substrate have plates that form a differential
capacitor where the fixed plates on the substrate are
driven 180° out of phase. Figure 3 shows an exagger-
ated diagram of the sensor. Any movement of the mass
unbalances the differential capacitor resulting in a
square wave output with the amplitude proportional to
the acceleration. Each axis has a demodulator that rec-
tifies the signal and determines the direction of the
acceleration. This output is fed to a duty cycle modula-
tor (DCM) that incorporates external capacitors to set
the bandwidth of each axis. The analog signal is filtered
and converted to a duty cycle output by the DCM. An
external resistor sets the period of the duty cycle out-
put. A 0g acceleration produces a 50% duty cycle out-
put. A low-cost, all digital, microcontroller can be used
to measure acceleration by timing both the duty cycle
and the period of each axis. Refer to Figure 1 for inter-
action and connections between the various circuits
inside the device as described above.

Some of the advantages with micromachined sensors
are that they are low cost and most have on-chip signal
conditioning.

C
o
u
n
t
e
r

10

9

Cy

11

Rset

5

312

Cx

1413

4 7

+3.0V to +5.25V

Oscillator

Demod

Demod

CDC

100 ohm

VDD VDD XFilt Self Test

X Out

Y Out

Duty
Cycle
Modulator
(DCM)

32k
Rfilt

Rfilt
32k

X Sensor

Y Sensor

Com YFilt T2

uPADXL202

SUBSTRATE

SENSOR

SAC OXIDE

SUBSTRATE

SENSOR
DS00715A-page 2-98 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 99 Thursday, March 2, 2000 8:02 AM
FIGURE 3: SENSOR MECHANICAL OPERATION

CONFIGURING THE ADXL202
The end application for our ADXL202 is a simple tilt
meter that shows X-axis and Y-axis tilt (or pitch and roll
for you aeronautical buffs). The design procedure is
somewhat iterative since the bandwidth, period, and
microcontroller counter resolution play important roles
in the minimum resolution of the measurement. Analog
Devices has simplified the design procedure by provid-
ing an Excel spreadsheet entitled "The XL202 Interac-
tive Designer" that can be downloaded off their website
at www.analog.com and is shown in Appendix A. The
specifications for our system are +5VDC operation,
+/-1.0 degree tilt resolution, 25 samples per channel
per second, and the microcontroller should operate at
4MHz or less.

Through the use of an iterative process, the designer
can determine the external component values and the
noise and resolution of the acceleration measurement
without having to prototype a single circuit.

In Step 1of the spreadsheet shown in Appendix A, the
designer will enter the supply voltage which should be
between 3.0V and 5.25V. We will enter 5.0V. Analog
bandwidth is entered in Step 2, which calculates the
values for the external capacitors. The bandwidth
directly determines the noise floor and resolution of the
accelerometer and therefore may have to be adjusted
to provide the desired results based on calculations
later in the spreadsheet. Enter 10Hz and the resulting
capacitance is 0.50µF. Since 0.50µF is not a standard,
we can modify the bandwidth to get a standard value.
Using 10.5Hz yields a capacitor of 0.47µF.

In Step 3, the spreadsheet calculates the RMS and
peak-to-peak (P-P) noise of the acceleration measure-
ments. The designer must estimate the amount of time
that the actual signal will be above the P-P noise using
a multiplier. At this step enter 4, which in turn reveals

that the peak-to-peak noise will be 0.46 degrees of tilt.
Now the designer must evaluate the P-P noise estima-
tion because this noise determines the smallest accel-
eration resolution that the accelerometer can have. If
this noise estimation is not acceptable, then the band-
width must be lowered to reduce the P-P noise. This
example is well within the 1.0 degree specification and
so we will continue.

The next few steps set the period of the duty cycle out-
put and the measurement resolution due to the counter
on the microcontroller. Both the sample rate per chan-
nel and the percentage of time the ADXL202 will be
powered are entered in Step 4. The designer also
enters the time required to calculate the acceleration
for two channels and the spreadsheet then calculates
the period of the duty cycle output and the correspond-
ing external resistor. We will use 25 samples per sec-
ond per channel and the part will be powered up 100%
of the time. Analog Devices has already calculated the
time to acquire two channels and perform the calcula-
tions as 20ms. Of this time, it takes 3ms for calculations
based on a previous application note, leaving 17ms for
signal acquisition. This relates to 17,000 instruction
cycles on the PICmicro® running at 4MHz.

In Step 5, the counter rate of the microcontroller is used
to calculate the measurement resolution due to the
counter in g’s and degrees of tilt. The spreadsheet also
determines the size of the counter on the microcontrol-
ler to prevent an overflow. Per our specifications, the
microcontroller is clocked at 4MHz resulting in a 1MHz
timer frequency (Timer0). With this timer rate, the res-
olution of the digital section of the ADXL202 is 0.06
degrees of tilt. The counter required to acquire the dig-
ital output must be 15-bits. We can easily implement a
15-bit counter using the Timer0 as the low byte of the
count and for each Timer0 overflow increment an upper
byte counter. The designer must again determine if this

PROOF MASS
(BEAM) TETHER

FIXED
OUTER
PLATES

ANCHOR

APPLIED
ACCELERATION

CS1<CS2

TOP VIEW
 1999 Microchip Technology Inc. DS00715A-page 2-99

AN715

S2.book Page 100 Thursday, March 2, 2000 8:02 AM
resolution is acceptable. To increase the resolution,
either increase the counter rate (Step 5) or decrease
the number of samples per second (Step 4).

Step 6 checks for aliasing errors due to the sample
rate. Nyquist requirements specify that the sample rate
needs to be faster than the bandwidth by a factor of 2.
Analog Devices recommends that at least a factor of 10
is used to minimize dynamic errors from the PWM sam-
pling technique. For our case the, the ratio is 11.2 which
according to Nyquist and Analog Devices is more than
sufficient. If the spreadsheet calculates that the ratio is
low, the designer must increase the sample rate in Step
4 or decrease the bandwidth in Step 2.

The results are in! The spreadsheet calculates the
minimum resolution of the acceleration measurement
due to RMS P-P noise and resolution of the counter in
Step 7. It also provides a minimum resolution of a tilt
measurement. Our calculated minimum resolution is
0.5 degrees of tilt which is acceptable according to the
specification. If this resolution was not acceptable, then
the bandwidth (Step 2), acquisition rate (Step 4), or the
counter rate (Step 5) would have to be adjusted to
reduce noise.

The spreadsheet also offers the designer the ability to
explore how oversampling the PWM signal affects
noise at the expense of sacrificing bandwidth in Step 8.
Finally, Step 9 provides the estimated drift of the 0 g
point due to temperature effects.

TILT METER APPLICATION
In the tilt meter application, the value of tilt in the X-axis
and Y-axis is displayed on a 2-line by 8-character dot
matrix LCD display. The only other function is a push
button switch to perform a simple calibration cycle. The
PIC16F84A makes an ideal companion to the
ADXL202 because calibration parameters for the sen-
sor can be stored in on-chip Data EEPROM memory
for retrieval and usage in later calculations. Using the
ADXL202 in conjunction with a PICmicro® not only
reduces the time to market for the product but also
overall system cost and power consumption.

Figure 4 shows the schematic for the simple tilt meter.
For convenience, a 9V battery is used with a LM78L05
+5V regulator to provide power to the circuit. The
ADXL202 is configured as shown in the ADXL202
Interactive Designer spreadsheet with 0.47µF capaci-
tors on the XFILT and YFILT pins. A resistor of
1.0625MΩ is called out by the spreadsheet to connect
to the RSET pin. Since the duty cycle generator’s cur-
rent source that determines the PWM frequency is only
accurate to approximately 10%, a 1.0 MΩ, 5% resistor
can be used. The 6% error between the two resistors
will get corrected by the measurement of T2. The duty
cycle output pins from the ADXL202 XOUT and YOUT
are connected to RA0 and RA1 respectively.
DS00715A-page 2-100 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2
.b

oo
k

 P
ag

e
10

1
 T

hu
rs

da
y,

 M
ar

ch
 2

, 2
00

0
 8

:0
2

A
M

F
IG

U
R

E
 4

:
T

IL
T

 M
E

T
E

R
 S

C
H

E
M

A
T

IC

D
at

e:

 J
un

e
21

, 1
99

9
S

he
et

 1

of

 1

S
iz

e
D

oc
um

en
t N

um
be

r
R

E
V

A
T

IL
T.

S
C

H
1

T
itl

e
T

IL
T

 S
E

N
S

O
R

M
ic

ro
ch

ip
 T

ec
hn

ol
og

y
In

co
rp

or
at

edC
6

0.
47

U
F

C
7

0.
47

U
F

V
D

D
C

3

0.
1U

F

N
C

 1

V
T

P
 2

S
T

 3

V
S

S
 4

T
2

 5

N
C

 6

V
S

S
 7

N
C

 8
Y

O
U

T
 9

X
O

U
T

10
Y

F
IL

T
11

X
F

IL
T

12
V

D
D

13
V

D
D

14
U

2

A
D

X
L2

02

R
3

1.
0M

V
D

D
V

D
D

R
1

10
K

1
2

3
4

5
6

7
8

9
10

11
12

13
14

JP
2

LC
D

V
D

D
V

D
D

C
1

0.
1U

F

C
4

33
P

F
C

5
33

P
F

Y
1

4M
H

z

R
A

2
 1

R
A

3
 2

R
A

4/
T

0C
K

I
 3

M
C

LR
 4

V
S

S
 5

R
B

0/
IN

T
 6

R
B

1
 7

R
B

2
 8

R
B

3
 9

R
B

4
10

R
B

5
11

R
B

6
12

R
B

7
13

V
D

D
14

O
S

C
2

15
O

S
C

1
16

R
A

0
17

R
A

1
18

U
1

P
IC

16
F
84

A

R
5

10
0

R
4

10
K

C
8

0.
1U

F

V
D

D

C
2

0.
1U

F

V
IN

 3
V

O
U

T
1

G N D 2

V
R

1
78

L0
5

B
T

1
9V

S
1 S
W

 1999 Microchip Technology Inc. DS00715A-page 2-101

AN715

S2.book Page 102 Thursday, March 2, 2000 8:02 AM
The microcontroller circuit is also very simple. The
4MHz crystal uses two 33pF capacitors to complete the
oscillator circuit. The push button switch is connected
to RB4. This pin has internal pull-up resistors reducing
the need for any external circuitry. The LCD display is
driven using the 4-bit MPU mode which only requires 3
I/O pins for control and 4 I/O pins for data. Refer to the
specifications for the Hitachi HD44780 LCD controller
or the application note, AN587, "Interfacing PICmi-
cros® to an LCD Module", for more interface informa-
tion. The controls lines RS, R/W, and E connect to RB5,
RA3, and RA2. The data lines are connected to
RB<0:3>. There is also a 10ΚΩ potentiometer con-
nected to pin 3 of the LCD display to control the con-
trast.

Acceleration is a vector quantity with both a direction
and magnitude. The acceleration vector can be broken
up into two vectors on the ADXL202, the X-axis and
Y-axis. The ADXL202 is responsive to both static accel-
eration due to gravity as well as acceleration due to
motion. The main problem with using this type of
accelerometer to measure degrees tilt is not that it is
sensitive to motion but that it can’t distinguish between
gravity and motion. The user must implement some
type of time weighted filter to remove the effects of
motion from the measurement (not implemented in this
design). When the tilt angle is varied along the sensitive
X- and Y-axis, the acceleration vector changes and the
ADXL202 responds by changing the duty cycle out-
puts. The angle of tilt is defined by the following
equation:

θ = arcsin[(V(out)-V(zero g)) / (1g x Scale factor(V/g))]

This is a difficult calculation on an 8-bit microcontroller,
therefore the calculation will be simplified. In spite of
this, we still yield very good results (shown later in the
firmware section).

The firmware is centered around the duty cycle mea-
surement. The technical note from Analog Devices
titled "Using the ADXL202 Duty Cycle Output" shows a
very efficient method of measuring the period and duty
cycle of the PWM waveforms. Figure 5 shows the
waveforms from XOUT and YOUT. The most obvious
method of measuring these waveforms is to measure
the time from rising edge to falling edge to next rising
edge for each of the waveforms. While very simple, this
method takes 3 complete cycles to complete the pro-
cess. If you take a closer look at Figure 5, you will see
that the high time of XOUT and YOUT are centered
about each other. We can use this to our advantage.

Figure 6 shows the waveform and measurement points
for the improved measurement scheme. At Ta the
counter is started. The program then records the times
at Tb, Tc, and Td. By looking at the points of Figure 6,
we can say that:

T1x = Tb - Ta = Tb (counter was 0 at Ta)

T1y = Td - Tc

T2x = T2y = T2 = Te - Ta = Tg - Tf

Since we have already established that the center of T1
is aligned with the center of T2, the equation for T2
reduces to:

T2 = Td - T1y/2 - T1x/2

T2 = Td - (Td - Tc)/2 - Tb/2

This technique not only reduces the measurement time
to two cycles, it also only calculates T2 once.

FIGURE 5: ADXL202 DUTY CYCLE OUTPUT

X Out

Y Out
DS00715A-page 2-102 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 103 Thursday, March 2, 2000 8:02 AM
FIGURE 6: ADXL202 DUTY CYCLE MEASUREMENT

Now that our system is reading the duty cycle outputs
of the ADXL202 and displaying the results on the LCD
display, we need to consider how the system is cali-
brated. The first calibration step is the initial calibration
of the tilt sensor with respect to gravity. The simplest
method is to position the system such that the X-axis
and Y-axis are both level. When instructed to calibrate,
the PIC16F84A will calculate the duty cycle output T1
for both axis and the period T2. Several readings may
be taken and averaged to improve the accuracy of the
measurements. These values are now stored in both
RAM as well as EEPROM as calibration constants. A
scale factor is also used in the calibration process to
create an n-bit result. These constants are defined as:

• T2cal, the value of T2 during the calibration
phase. T2 must be stored because it can vary
over temperature and has jitter from one mea-
surement to another.

• ZXcal, the value of T1x during the calibration
phase.

• ZYcal, the value of T1y during the calibration
phase.

• K, the scale factor and is equal to [4 * (T2cal *
bit_scale_factor) / T2cal]

K needs to be calculated only once. Since each axis
will use this factor it is hard coded in the firmware. The
bit_scale_factor is used to determine the size of the
result. Since we are looking for a result of +/- 90 (1
degree of tilt per count), the bit scale factor would be
180. Therefore, K is assigned a value of 720. This is
the simplification that was mentioned earlier.

Once we have calculated the calibration constants we
can apply them to the duty cycle measurements to get
degree of tilt. The following formulas give the degree of
tilt for each axis:

ZXactual = (ZXcal * T2actual) / T2cal (1)

ZYactual = (ZYcal * T2actual) / T2cal (2)

T2actual is the current measurement of T2. This
formula adjusts the 0g value for changes in T2 due to
temperature or jitter.

XAcceleration = [K * (T1x - ZXactual)] / T2actual (3)

YAcceleration = [K * (T1y - ZYactual)] / T2actual (4)

The values of T1x and T1y are the current measure-
ments of T1 for each axis. The results in XAcceleration
and YAcceleration are the degrees to tilt in the X-axis
and Y-axis directions properly scaled for 1 degree per
count. This method of calibration is very simple yet will
suffer from small errors due to variance in duty cycle %
per g (which was assumed to be 12.5%) from one part
to the next.

X Out

Y Out

T1x

T2

Ta Tb

T1y
Tc Td

T2

Tg Tf
 1999 Microchip Technology Inc. DS00715A-page 2-103

AN715

S2.book Page 104 Thursday, March 2, 2000 8:02 AM
The order of the math operations is deliberate to pre-
serve the accuracy of the result. All math operations
are done in fixed point math. Several variables are
used in the math operations. The following table shows
the two inputs to each routine and the location of the
result of the routine.

TABLE 1: MATH OPERATIONS VARIABLE USAGE

For calculating Zactuals in formula (1) and (2), the 16 x
16 multiply of Zcal * T2actual takes place first followed
by the division of the result by T2cal. When calculating
tilt (really is scaled acceleration) in the formulas (3) and
(4), the subtraction of Zactual from T1 takes place first,
followed by multiplication of the result by K, and finally
the division of the result by T2actual.

Finally, the last two pieces of the code are for the LCD
display and the Data EEPROM access. The LCD code
is a derivative of that found in the application note,
AN587, "Interfacing PICmicro® Microcontrollers to an
LCD Module". Most of the changes were related to the
different I/O pins used for data and control. The Data
EEPROM routines use code directly from the
PIC16F84A data sheet DS35007 for reads and writes.
The WriteCal routine takes the calibration constants
and writes them to the Data EEPROM. This routine is
only called when a calibration cycle is performed. The
RestoreCal routine is called when the PIC16F84A is
reset. The calibration constants are grouped sequen-
tially in memory so that these routines can use indirect
addressing and shorten the length of code.

CONCLUSION
As in all applications, the type of acceleration sensor
depends on the system requirements as well as the
property being measured. Some accelerometers are
better suited towards measuring vibration and shock
such as the piezo-film and piezoelectric. Others are
used for tilt measurements such as liquid tilt and micro-
machined types. The type of sensor selected then dic-
tates the signal conditioning circuitry requirements.
Some accelerometers have AC response, some DC.
Some sensors have analog outputs, others digital. In
other words, one accelerometer does not fit into all
applications. This application note has shown that a
designer can quickly and easily complete an acceler-
ometer based design using the ADXL sensors from
Analog Devices. The use of a microcontroller further
simplifies the design by giving the designer a more inte-
grated, lower cost solution for the data measurement
application.

Operation Operand #1 Operand #2 Result

16 x 16 Addition ACCHI, ACCLO ARGH, ARGL ACCHI, ACCLO

16 x 16 Subtraction ACCHI, ACCLO ARGH, ARGL ACCHI, ACCLO

16 x 16 Multiply ACCHI, ACCLO ARGH, ARGL PRODW3, PRODW2,
PRODW1, PRODW0

32 x 16 Divide PRODW3, PRODW2,
PRODW1, PRODW0

DIV1, DIV0 ANS1, ANS0
DS00715A-page 2-104 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 105 Thursday, March 2, 2000 8:02 AM
REFERENCES

Data Sheets

• ADXL202 Data Sheet, Analog Devices Inc., Rev. 0

• ADXL210 Data Sheet, Analog Devices Inc.,
Rev. Pr.A

• PIC16F84A Data Sheet, Microchip Technology Inc.,
DS35007A

Technical Notes From Analog Devices

• Using the ADXL202 Duty Cycle Output

• Accelerometer Design and Applications

• A Compact Algorithm Using The ADXL202 Duty
Cycle Output

• The Interactive Designer ADXL202
 1999 Microchip Technology Inc. DS00715A-page 2-105

AN715

S2
.b

oo
k

 P
ag

e
10

6
 T

hu
rs

da
y,

 M
ar

ch
 2

, 2
00

0
 8

:0
2

A
M

A
P

P
E

N
D

IX
 A

:
A

D
X

L
20

2
IN

T
E

R
A

C
T

IV
E

 D
E

S
IG

N
E

R

T
he

 X
L2

02
 In

te
ra

ct
iv

e
D

es
ig

ne
r

E
nt

er
 v

al
ue

s
be

lo
w

.
W

he
n

yo
ur

 d
es

ig
n

is
 c

om
pl

et
e

th
e

va
lu

es
 f

or
 y

ou
r

de
si

gn
 w

ill
 p

rin
t

ou
t

on
 t

hi
s

pa
ge

.
P

ar
am

et
er

s
S

up
pl

y
vo

lta
ge

5.
0

V
V

dd
A

na
lo

g
B

an
dw

id
th

10
.5

H
z

A
cq

ui
si

tio
n

R
at

e
25

re
ad

in
gs

 p
er

 s
ec

on
d

R
es

ol
ut

io
n

(g
’s

)
0.

00
8

g
R

es
ol

ut
io

n
(d

eg
 o

f
til

t)
0.

47
de

g
of

 ti
lt

M
ic

ro
co

nt
ro

lle
r

co
un

te
r

ra
te

1
M

H
z

T
2

8.
5

m
S

P
ow

er
 c

yc
lin

g
%

10
0%

on
 t

im
e

T
m

ax
35

de
g

C
T

m
in

15
de

g
C

Z
er

o
g

dr
ift

 T
m

ax
0.

02
g

Z
er

o
g

dr
ift

 T
m

in
0.

02
g

C
o

m
p

o
n

en
t

V
al

u
es

0
S

up
pl

y
D

ec
ou

pl
in

g
0.

1
uF

X
ca

p,
 Y

ca
p

0.
47

uF
R

se
t

10
62

.5
ko

hm

u
P

C o u n t e r

X
 S

e
n

so
r

D
e

m
o

d

Y
 S

e
n

so
r

A
D

X
L

2
02

V
d

d

Y
F

ilt
T

2
R

se
t

C
o

m

X
F

il
t

D
e

m
o

d

O
sc

ill
a

to
r

A
n

a
lo

g
to D

u
ty

C
yc

le
(A

D
C

)

X
 O

u
t

Y
 O

u
t

32
k

32
k

S
e

lf
 T

es
t

V
d

d

R
fi

lt

R
fi

lt

C
x

C
y

10
0

oh
m

Y
ou

 w
ill

 b
e

as
ke

d
to

 e
nt

er
 v

ar
ie

ty
 o

f
de

si
gn

 p
ar

am
et

er
s

im
po

rt
an

t t
o

yo
ur

 a
pp

lic
at

io
ns

.
T

hi
s

w
ill

 in
cl

ud
e

su
ch

 is
su

es
 a

s
ho

w
 f

as
t i

s
th

e
si

gn
al

 y
ou

 n
ee

d
to

 m
ea

su
re

,
 w

ha
t i

s
th

e
re

qu
ir

ed
 u

pd
at

e
or

 a
cq

ui
si

tio
n

ra
te

, w
ha

t i
s

th
e

co
un

te
r

sp
ee

d
on

 y
ou

r
m

ic
ro

co
nt

ro
lle

r.
 A

ft
er

 e
nt

er
in

g
ta

rg
et

 v
al

ue
s

(in
pu

ts
)

th
e

sp
re

ad
sh

ee
t w

ill
 c

al
cu

la
te

 o
ut

pu
ts

 s
uc

h
as

 th
e

re
so

lu
tio

n
of

 t
he

 a
cc

el
er

om
et

er
.

 Y
ou

 c
an

 th
en

 it
er

at
e

th
e

in
pu

t v
al

ue
s

an
d

tr
ad

e
of

f
pa

ra
m

et
er

s
as

ne

ce
ss

ar
y

to
 m

ee
t

yo
ur

 d
es

ig
n

go
al

s.
 O

nl
y

en
te

r
va

lu
es

 th
at

 a
re

 in
 b

o
ld

.

C o u n t e r

C
y

R
se

t

C
x

V
D

D

O
sc

ill
at

or

D
em

od

D
em

od

10
0

oh
m

V
D

D

 V

D
D

X

F
ilt

 S

el
f T

es
t

X
 O

ut

Y
 O

ut

A
na

lo
g

to
D

ut
y

C
yc

le
(A

D
C

)

32
k

R
fil

t

R
fil

t
32

k
X

 S
en

so
r

Y
 S

en
so

r

C
om

Y

F
ilt

T
2

uP
A

D
X

L
20

2

0

DS00715A-page 2-106 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2
.b

oo
k

 P
ag

e
10

7
 T

hu
rs

da
y,

 M
ar

ch
 2

, 2
00

0
 8

:0
2

A
M

1.
 E

n
te

r
yo

u
r

n
o

m
in

al
 s

u
p

p
ly

 v
o

lt
ag

e

V
dd

5.
0

V

2.
 W

h
at

 is
 t

h
e

fa
st

es
t

si
g

n
al

 y
o

u
 w

an
t

to
 b

e
ab

le
 t

o
 o

b
se

rv
e?

E
nt

er
 d

es
ire

d
B

an
dw

id
th

10
.5

H
z

V
al

ue
 f

or
 C

x,
 C

y
0.

47
uF

C
om

po
ne

nt
 V

al
ue

!

3.
 E

st
im

at
e

 P
-P

 n
o

is
e

E
n

te
r

R
M

S
 t

o
 P

-P
 m

u
lt

ip
lie

r
4

X
 o

f
R

M
S

C
al

cu
la

te
d

 n
o

is
e

at
 t

h
e

an
al

o
g

 o
u

tp
u

t
X

fi
lt

 a
n

d
 Y

fi
lt

R
M

S
 M

ul
tip

lie
r

%
 o

f
tim

e
a

si
gn

al
 w

ill
 e

xc
ee

d
th

e
P

-P
 e

st
im

at
e

N
oi

se
(r

m
s)

 a
t X

fil
t,

Y
fil

t
0.

00
2

g
(m

ax
 R

M
S

)
2X

32
.0

0%
N

oi
se

(
P

-P
)

at
 X

fil
t,

Y
fil

t
0.

00
8

g
(m

ax
 P

-P
)

@
4X

 R
M

S
4X

4.
60

%
N

oi
se

(P
-P

)
at

 X
fil

t,
Y

fil
t

0.
47

D
eg

 o
f

til
t (

m
ax

 P
-P

)
A

t
17

m
g/

de
g

of
 ti

lt
6X

0.
27

%
N

ot
e:

 N
oi

se
 le

ve
l i

s
in

ve
rs

el
y

pr
op

or
tio

na
l t

o
su

pp
ly

 v
ol

ta
ge

8X
0.

01
%

N
ot

e
D

ec
re

as
e

N
oi

se
 (

in
cr

ea
se

 r
es

ol
ut

io
n)

 b
y

de
cr

ea
si

ng
 B

W
.

3A
. I

te
ra

te

Lo
ok

 a
t

th
e

P
-P

 n
oi

se
 e

st
im

at
e;

 th
is

 is
 th

e
no

is
e

lim
ite

d
re

so
lu

tio
n,

 (
th

e
sm

al
le

st
 s

ig
na

l y
ou

 c
an

 r
es

ol
ve

).

Is
 th

is
 a

cc
ep

ta
bl

e
fo

r
yo

ur
 a

pp
lic

at
io

n?
 I

f
no

t
yo

u
sh

ou
ld

co

ns
id

er
 a

dj
us

tin
g

th
e

ba
nd

w
id

th
 d

ow
n

to
 r

ed
uc

e
P

-P
 n

oi
se

 a
nd

 im
pr

ov
e

re
so

lu
tio

n.

T
he

 X
L2

02
 w

ill
 o

pe
ra

te
 f

ro
m

 3
.0

V
 to

 5
.2

5V
.

E
nt

er
 y

ou
r

no
m

in
al

 s
up

pl
y

vo
lta

ge
 h

er
e.

In
 t

hi
s

st
ep

 y
ou

 w
ill

 d
et

er
m

in
e

th
e

ba
nd

w
id

th
 f

or
 th

e
an

al
og

 s
ta

ge
 o

f
th

e
ac

ce
le

ro
m

et
er

.
T

he
 b

an
dw

id
th

 g
en

er
al

ly
 d

et
er

m
in

es
 th

e
no

is
e

flo
or

 a
nd

 t
hu

s
th

e
re

so
lu

tio
n

of
 t

he
 a

cc
el

er
om

et
er

.
 I

n
a

la
te

r
se

ct
io

n
yo

u
w

ill
 a

ls
o

ca
lc

ul
at

e
di

gi
ta

l n
oi

se
 s

ou
rc

es
 f

ro
m

 t
he

 P
W

M
 s

ta
ge

; t
he

 c
om

bi
na

tio
n

of
 t

he
se

 tw
o

no
is

e
so

ur
ce

s
de

te
rm

in
es

 th
e

to
ta

l n
oi

se
 f

lo
or

.
Y

ou
 w

ill
 b

e
m

ea
su

rin
g

a
re

al
 w

or
ld

 a
cc

el
er

at
io

n,
 s

uc
h

as
 h

um
an

 o
r

ve
hi

cl
e

m
ot

io
n.

W

ha
t p

ar
t

of
 th

e
si

gn
al

 c
on

te
nt

 is
 im

po
rt

an
t?

If

 th
e

si
gn

al
s

ar
e

tr
an

si
en

t,
 s

uc
h

as
 s

ho
ck

 o
r

im
pu

ls
e,

 y
ou

 m
ay

 w
an

t t
o

se
t a

 h
ig

he
r

ba
nd

w
id

th
.

H
um

an
 m

ot
io

n
ca

n
of

te
n

be
 m

ea
su

re
d

at
 1

0H
z

or
 le

ss
.

D
on

’t
fo

rg
et

 to
 c

on
si

de
r

fil
te

r
de

la
ys

 th
at

 c
ou

ld
 r

es
ul

t i
n

a
la

g
be

tw
ee

n
a

st
im

ul
us

 a
nd

 a
 r

es
po

ns
e

by
 t

he
 a

cc
el

er
om

et
er

, (
do

m
in

at
ed

 b
y

th
e

fil
te

r)
.

C
om

po
ne

nt
 v

al
ue

s
fo

r

th
e

X
fil

t a
nd

 Y
fil

t c
ap

ac
ito

r
ar

e
ca

lc
ul

at
ed

 b
el

ow
.

 Y
ou

 w
ill

 p
ro

ba
bl

y
w

an
t t

o
ite

ra
te

 to
 a

 s
ta

nd
ar

d
ca

pa
ci

to
r

va
lu

e.

T
he

 p
ea

k
to

 p
ea

k
no

is
e

of
 th

e
ac

ce
le

ro
m

et
er

 is
 th

e
be

st
 in

di
ca

to
r

of
 r

es
ol

ut
io

n
of

 th
e

ac
ce

le
ro

m
et

er
.

 N
oi

se
 is

 a
 s

ta
tis

tic
al

 p
ro

ce
ss

,
an

d
is

 b
es

t d
es

cr
ib

ed
 b

y
an

R

M
S

 m
ea

su
re

m
en

t,
(a

va
ila

bl
e

on
 t

he
 d

at
as

he
et

).
 P

-P
 n

oi
se

 is
 t

he
n

es
tim

at
ed

 u
si

ng
 a

 s
ta

tis
tic

al
 e

st
im

at
io

n.

Y
ou

 n
ee

d
to

 s
el

ec
t a

 R
M

S
 t

o
P

-P
 e

st
im

at
io

n.

T
he

ta

bl
e

be
lo

w
 te

lls
 y

ou
 h

ow
 v

ar
io

us
 R

M
S

 to
 P

-P
 n

oi
se

 m
ul

tip
lie

rs
, p

re
di

ct
 t

he
 a

m
ou

nt
 o

f
tim

e
th

e
ac

tu
al

 s
ig

na
l w

ill
 E

X
C

E
E

D
 th

e
es

tim
at

ed
 P

-P
 n

oi
se

.
T

he
 lo

w
er

 th
e

m
ul

tip
lie

r,
 th

e
m

or
e

lik
el

y
it

is
 th

at
 a

 n
oi

se
 e

ve
nt

 w
ill

 e
xc

ee
d

th
e

P
-P

 li
m

it.
 1999 Microchip Technology Inc. DS00715A-page 2-107

AN715

S2
.b

oo
k

 P
ag

e
10

8
 T

hu
rs

da
y,

 M
ar

ch
 2

, 2
00

0
 8

:0
2

A
M

4.
 H

o
w

 f
as

t
w

o
u

ld
 y

o
u

 li
ke

 t
o

 a
cq

u
ir

e
th

e
si

g
n

al
s?

E
nt

er
 d

es
ire

d
ac

qu
is

tio
n

ra
te

25
E

ac
h

C
ha

nn
el

 p
er

 s
ec

on
d

C
al

cu
la

te
 A

cq
u

is
it

io
n

 T
im

e
M

ax
im

um
 ti

m
e

av
ai

la
bl

e
to

 a
cq

ui
re

 2
 c

ha
nn

el
s

20
.0

m
s

%
 o

f
tim

e
pa

rt
 w

ill
 b

e
po

w
er

ed
 p

er
 s

ec
on

d
10

0%
T

im
e

re
qu

ire
d

to
 c

al
cu

la
te

 tw
o

ch
an

ne
ls

3.
0

m
s

T
im

e
le

ft
 f

or
 s

ig
na

l a
cq

ui
si

tio
n

17
.0

m
s

(t
w

o
ch

an
ne

ls
)

T
hi

s
im

pl
ie

s
a

re
qu

ire
m

en
t f

or
 th

e
va

lu
e

of
 th

e
P

W
M

 p
er

io
d

T
2

T
hu

s,
 T

2
=

8.
5

m
S

 o
r

11
8

H
z

T
hi

s
is

 th
e

S
am

pl
e

R
at

e
V

al
ue

 f
or

 R
se

t
10

62
.5

ko
hm

C
om

po
ne

nt
 V

al
ue

!

5.
 E

n
te

r
th

e
co

u
n

te
r

ra
te

 o
f

yo
u

r
M

ic
ro

co
n

tr
o

lle
r

an
d

 c
al

cu
la

te
 t

h
e

re
so

lu
ti

o
n

 o
f

th
e

d
ig

it
al

 o
u

tp
u

t.

C
ou

nt
er

 R
at

e
1

M
h

z
R

es
ol

ut
io

n
10

62
.5

C
ou

nt
s

pe
r

g
R

es
ol

ut
io

n
0.

00
1

g
Q

ua
nt

iz
at

io
n

bi
t s

iz
e

N
ot

e:
 y

ou
 w

ill
 n

ee
d

a
co

un
te

r
of

 s
iz

e
17

00
0

co
un

ts
 o

r
15

bi
ts

R
es

ol
ut

io
n

0.
06

D
eg

 o
f

T
ilt

B
as

ed
 o

n
17

m
g/

de
g

of
 ti

lt
T

o
av

oi
d

ov
er

flo
w

in
g

th
e

co
un

te
r

N
ot

e:
 In

cr
ea

se
 r

es
ol

ut
io

n
by

 in
cr

ea
si

ng
 c

ou
nt

er
 r

at
e

or
 d

ec
re

as
in

g
sa

m
pl

es
 p

er
 s

ec
on

d

6.
 C

h
ec

k
fo

r
al

ia
si

n
g

 a
n

d
 o

th
er

 e
rr

o
rs

 in
 s

am
p

lin
g

:

R
at

io
 o

f
sa

m
pl

e
ra

te
 (

1/
T

2)
 to

 a
na

lo
g

B
W

:
11

.2
G

oo
d!

In
 a

ll
ca

se
s

th
e

sa
m

pl
e

ra
te

 (
1/

T
2)

 n
ee

ds
 to

 b
e

fa
st

er
 th

an
 th

e
ba

nd
w

id
th

 o
f

th
e

an
al

og
 s

ec
tio

n
by

 a
 f

ac
to

r
of

 a
t l

ea
st

 2
 in

 o
rd

er
 to

 m
ee

t t
he

 r
eq

ui
re

m
en

ts
 o

f
N

yq
ui

st
.

N
yq

ui
st

 n
ot

w
ith

st
an

di
ng

, a
 r

at
io

 o
f

at
 le

as
t 1

0
is

 r
ec

om
m

en
d

to
 m

in
im

iz
e

dy
na

m
ic

 e
rr

or
s

th
at

 a
re

 e
nd

em
ic

 to
 P

W
M

 s
am

pl
in

g
te

ch
ni

qu
es

.
If

 y
ou

r
ra

tio
 is

 lo
w

, y
ou

 c
an

im

pr
ov

e
it

by
 e

ith
er

 in
cr

ea
si

ng
 th

e
sa

m
pl

e
ra

te
 (

by
 in

cr
ea

si
ng

 th
e

ac
qu

is
tio

n
ra

te
 in

 s
ec

tio
n

4)
 o

r
de

cr
ea

si
ng

 th
e

an
al

og
 b

an
dw

id
th

 (
 in

 s
ec

tio
n

2)
.

In
 th

is
 s

ec
tio

n
w

e
w

ill
 b

eg
in

 th
e

de
si

gn
 o

f
th

e
di

gi
ta

l o
ut

pu
t,

an
d

th
e

m
ic

ro
co

nt
ro

lle
r

in
te

rf
ac

e.
 Y

ou
 w

ill
 in

pu
t a

n
ac

qu
is

iti
on

 r
at

e,
 i

.e
. h

ow
 m

an
y

tim
es

 p
er

 s
ec

on
d

 y
ou

w

an
t a

 n
ew

 r
ea

di
ng

 f
ro

m
 th

e
ac

ce
le

ro
m

et
er

.
 Y

ou
 a

re
 a

ls
o

as
ke

d
ho

w
 lo

ng
 th

e
pa

rt
 s

ho
ul

d
be

 p
ow

er
ed

 e
ac

h
se

co
nd

.
 N

ot
e

th
at

 if
 y

ou
 o

nl
y

w
an

t a
 f

ew
 s

am
pl

es
 p

er

se
co

nd
, b

ut
 in

te
nd

 to
 k

ee
p

th
e

pa
rt

 p
ow

er
ed

 a
ll

of
 th

e
tim

e,
 th

en
 y

ou
 w

ill
 n

ee
d

to
 s

et
 a

 f
as

te
r

ac
qu

is
iti

on
 r

at
e

in
 o

rd
er

 to
 g

et
 r

ea
so

na
bl

e
va

lu
es

 f
or

 th
e

P
W

M
 o

ut
pu

t.

T
he

 p
ro

gr
am

 r
eq

ue
st

s
th

at
 y

ou
 in

pu
t t

he
 ti

m
e

re
qu

ire
d

to
 d

o
th

e
m

ul
tip

lie
s

an
d

di
vi

de
s

to
 c

al
cu

la
te

 th
e

ac
ce

le
ra

tio
n.

 3
.0

m
s

is
 th

e
tim

e
re

qu
ire

d
fo

r
a

M
ic

ro
ch

ip
 1

6C
63

ru

nn
in

g
at

 4
 M

hz
.

T
hi

s
se

ct
io

n
ge

ne
ra

te
s

a
co

m
po

ne
nt

 v
al

ue
 f

or
 th

e
R

se
t r

es
is

to
r.

In
 S

ec
tio

n
2,

 w
e

ca
lc

ul
at

ed
 th

e
re

so
lu

tio
n

of
 th

e
an

al
og

 s
ec

tio
n.

 I
n

th
is

 s
ec

tio
n

w
e

w
ill

 c
al

cu
la

te
 th

e
re

so
lu

tio
n

of
 th

e
di

gi
ta

l o
ut

pu
t;

a
fu

ct
io

n
of

 th
e

P
W

M
 r

at
e

T
2

(c
al

cu
la

te
d

in
 s

ec
tio

n
4)

, a
nd

 t
he

 c
ou

nt
in

g
ra

te
 o

f
yo

ur
 m

ic
ro

co
nt

ro
lle

r.
 P

le
as

e
no

te
 th

at
 th

e
co

un
tin

g
ra

te
 is

 d
iff

er
en

t,
an

d
us

ua
lly

 s
lo

w
er

 th
an

 th
e

m
ic

ro
co

nt
ro

lle
r

cl
oc

k
ra

te
.

T
he

 o
ut

pu
t o

f
th

is
 c

al
cu

la
tio

n
is

 a
 m

ea
su

re
 o

f
th

e
qu

an
tiz

at
io

n
er

ro
r

of
 th

e
co

un
te

r.
 I

n
so

m
e

ca
se

s
it

m
ay

 li
m

it
th

e
ul

tim
at

e
re

so
lu

tio
n;

 w
e

w
ill

 e
xp

lo
re

 th
is

 in

DS00715A-page 2-108 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2
.b

oo
k

 P
ag

e
10

9
 T

hu
rs

da
y,

 M
ar

ch
 2

, 2
00

0
 8

:0
2

A
M

7.
 E

st
im

at
e

o
f

to
ta

l r
es

o
lu

ti
o

n
 (

it
er

at
e

to
 m

ee
t

d
es

ig
n

 o
b

je
ct

iv
e)

N
oi

se
 d

ue
 to

 a
na

lo
g

se
ct

io
n

0.
00

8
g

(m
ax

 P
-P

)
@

4X
 R

M
S

T
hi

s
is

 th
e

no
is

e
co

nt
rib

ut
io

n
at

 th
e

an
al

og
 o

ut
pu

t X
ca

p,
 Y

ca
p

R
es

ol
ut

io
n

of
 d

ig
ita

l o
ut

pu
t-

 c
ou

nt
er

0.
00

1
g

T
hi

s
is

 th
e

qu
an

tiz
at

io
n

no
is

e
of

 th
e

di
gi

ta
l o

ut
pu

t
E

st
im

at
ed

 T
ot

al
 N

oi
se

 (
re

so
lu

tio
n)

:
0.

00
8

g
P

-P
T

hi
s

is
 th

e
to

ta
l P

-P
 n

oi
se

, w
hi

ch
 is

 th
e

ro
ot

 s
um

 s
qu

ar
e

of
 th

e
an

al
og

 a
nd

 d
ig

ita
l n

oi
se

.
E

st
im

at
ed

 T
ot

al
 N

oi
se

 (
re

so
lu

tio
n)

:
0.

5
de

g
of

 ti
lt

@
 1

7m
g/

de
g

N
oi

se
 (

R
es

ol
ut

io
n)

 is
 li

m
ite

d
by

:
B

an
dw

id
th

 a
t X

fil
t,

Y
fil

t;
 r

ed
uc

e
ba

nd
w

id
th

 if
 lo

w
er

 n
oi

se
 d

es
ire

d
(s

ec
tio

n
2)

8.
 O

p
ti

o
n

:
R

ed
u

ce
 n

o
is

e
b

y
o

ve
rs

am
p

lin
g

 (
at

 e
xp

en
se

 o
f

b
an

d
w

id
th

)

E
st

im
at

ed
 N

oi
se

 (
re

so
lu

tio
n)

 w
ith

 a
ve

ra
ge

 o
f:

1
S

am
pl

es
N

oi
se

 b
ef

or
e

ov
er

sa
m

pl
in

g
0.

00
8

g
P

-P
N

ot
e:

 S
am

pl
es

 s
ho

ul
d

be
 ta

ke
n

ab
ou

t:
95

.2
38

1
m

S
 a

pa
rt

N
oi

se
 a

ft
er

 o
ve

rs
am

pl
in

g
0.

00
8

g
P

-P
0%

R
ed

uc
tio

n
B

an
dw

id
th

 b
ef

or
e

ov
er

sa
m

pl
in

g
10

.5
H

z
B

an
dw

id
th

 a
ft

er
 o

ve
rs

am
pl

in
g

10
.5

H
z

9.
 E

st
im

at
ed

 D
ri

ft
 o

f
Z

er
o

 g
 p

o
in

t

D
rif

t f
ro

m
 2

5C
 V

al
ue

D
rif

t i
n

m
G

 p
er

 d
eg

re
e

C
0.

00
2

g/
C

D
rif

t i
n

m
G

D
rif

t i
n

de
g

of
 ti

lt
M

ax
 T

em
p

35
C

at
 T

m
ax

0.
02

m
g

1.
2

de
g

of
 ti

lt
at

 1
7m

g/
de

g
C

M
in

 T
em

p
15

C
at

 T
m

in
0.

02
m

g
1.

2
de

g
of

 ti
lt

at
 1

7m
g/

de
g

C

W
e

ar
e

no
w

 in
 a

 p
os

iti
on

 to
 b

rin
g

to
ge

th
er

 th
e

va
rio

us
 c

al
cu

la
tio

n
ab

ov
e

to
 d

et
er

m
in

e
th

e
re

so
lu

tio
n

of
 th

e
co

m
pl

et
e

an
al

og
 a

nd
 d

ig
ita

l d
es

ig
n.

 T
he

 u
lti

m
at

e
re

so
lu

tio
n

is

de
te

rm
in

ed
 b

y
bo

th
 th

e
no

is
e

at
 th

e
an

al
og

 o
ut

pu
t (

X
ca

p
an

d
Y

ca
p)

 a
nd

 th
e

qu
an

tiz
at

io
n

bi
t s

iz
e

of
 th

e
P

W
M

 +
 c

ou
nt

er
 s

ys
te

m
.

A
t t

hi
s

po
in

t c
he

ck
 th

e
to

ta
l s

ys
te

m

re
so

lu
tio

n
to

 s
ee

 if
 it

 m
ee

ts
 y

ou
r

re
qu

ire
m

en
ts

.
If

 it
 d

oe
s

no
t,

th
en

 r
ev

is
it

ba
nd

w
id

th
 a

t X
fil

t a
nd

 Y
fil

t,
ac

qu
is

tio
n

ra
te

 o
r

co
un

tin
g

ra
te

 to
 r

ed
uc

e
no

is
e.

 Y
ou

 m
ay

 a
ls

o
w

an
t

to
 c

on
si

de
r

di
gi

ta
l f

ilt
er

in
g,

 (
ov

er
sa

m
pl

in
g)

 t
o

re
du

ce
 n

oi
se

 a
t t

he
 e

xp
en

se
 o

f
sa

m
pl

in
g

ra
te

 a
s

di
sc

us
se

d
in

 th
e

ne
xt

 s
ec

tio
n.

A
no

th
er

 d
es

ig
n

op
tio

n
is

 to
 u

se
 d

ig
ita

l f
ilt

er
in

g
(a

ve
ra

gi
ng

)
in

 o
rd

er
 to

 r
ed

uc
e

no
is

e,
 a

t t
he

 e
xp

en
se

 o
f

ba
nd

w
id

th
.

 B
y

av
er

ag
in

g
se

ve
ra

l s
am

pl
es

 y
ou

 a
re

 in
 e

ff
ec

t f
ilt

er
in

g
th

e
si

gn
al

.
Im

pl
em

en
tin

g
av

er
ag

es
 o

f
2,

4
8,

 1
6

sa
m

pl
es

 a
re

 s
im

pl
e

rig
ht

 s
hi

ft
s

in
 m

ic
ro

co
nt

ro
lle

r
co

de
 (

ve
ry

 e
ff

ic
ie

nt
).

F

or
 o

ve
rs

am
pl

in
g

to
 w

or
k,

 s
am

pl
es

 n
ee

d
to

 b
e

ta
ke

n
at

 a
 r

at
e

no
 f

as
te

r
th

an
 1

0
tim

es
 th

e
an

al
og

 b
an

dw
id

th
.

N
ot

e:
 m

ak
e

su
re

 o
ve

rs
am

pl
in

g
is

 s
et

 to
 1

 s
am

pl
e

if
yo

u
do

n’
t w

an
t t

o
us

e
ov

er
sa

m
pl

in
g!

Y
ou

 c
an

 e
st

im
at

e
th

e
ze

ro
 g

 te
m

pe
ra

tu
re

 s
hi

ft
 b

y
en

te
rin

g
yo

ur
 e

xp
ec

te
d

te
m

pe
ra

tu
re

 r
an

ge
 b

el
ow

 a
nd

 a
n

es
tim

at
e

of
 th

e
dr

ift
 in

 m
g/

C
 (

fr
om

 th
e

da
ta

 s
he

et
).

 N
ot

e
th

at
 z

er
o

g
dr

ift
 c

an
 b

e
po

si
tiv

e
or

 n
eg

at
iv

e,
 b

ut
 in

 g
en

er
al

 is
 v

er
y

lin
ea

r.
 X

 a
xi

s
an

d
Y

ax
is

 d
rif

t a
re

 u
nc

or
re

la
te

d.
 1999 Microchip Technology Inc. DS00715A-page 2-109

AN715

S2.book Page 110 Thursday, March 2, 2000 8:02 AM
APPENDIX B: TILT SENSOR FIRMWARE FLOWCHART

Restore Calibrator
Constants

A

B

C

D

Start

Initialize

Check Accel

Read Accel

Find ZActual

Calculate Accel

Display tilt on
LCD Display

Delay

A

BRead Accel

Write Cal Data
to EEPROM

B

Display Cal
Message

T2calHi: T2calLo =
T2Hi: T2Lo

ZXcalHi: ZXcalLo =
T1XHi: T1XLo

ZYcalHi: ZYcalLo =
T1YHi: T1YLo

Display Done
Message

Return

RB4
= 0

N

Y

N RB4
= 1

Y

Xout
= 0

Xout
= 1

N

Y

N

Y

Enable Timer0
Interrupts

Clear Timer0

Xout
= 0

N

Y

Capture Timer0
T1X

Yout
= 0

N

Y

Yout
= 1

N

Y

Capture Timer0
T1Y Start

Yout
= 0

N

Y

Capture Timer0
T1YEnd

Calculate T1Y
T1YEnd-T1YStart

Calculate T2

Return

Calibrate Reading
Y-Axis

Calibrate Reading
X-Axis

(ZXcal * T2) / T2cal

C

(ZYcal * T2) / T2cal

Return

Calculate Y-Axis
Tilt

Calculate X-Axis
Tilt

K * (T1X - ZXactual)

D

Return

T2actual

K * (T1Y - ZYactual)
T2actual
DS00715A-page 2-110 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 111 Thursday, March 2, 2000 8:02 AM
APPENDIX C: TILT MOTOR SOURCE CODE LISTING

 00001 list p=16f84a
 00002 include <p16f84a.inc>
 00001 LIST
 00002 ; P16F84A.INC Standard Header File,Version 2.00 Microchip Technology
 00134 LIST
 00003
2007 3FF1 00004 __config _CP_OFF&_WDT_OFF&_XT_OSC&_PWRTE_ON
 00005 ;Assembled using MPASM V2.30
 00006 ;PORTA defines
 00007 #define XOUT 0
 00008 #define YOUT 1
 00009 #define E 2
 00010 #define RW 3
 00011
 00012 ;PORTB defines
 00013 #define CAL 4
 00014 #define RS 5
 00015
 00016 ;==
 00017 ; RAM EQUATES
 00018 ;==
 00019 cblock 0x0c
 0000000C 00020 T1XHi
 0000000D 00021 T1XLo
 0000000E 00022 ArgL
 0000000F 00023 ArgH
 00000010 00024 AccHi
 00000011 00025 AccLo
 00000012 00026 DivCnt
 00000013 00027 PRODW3
 00000014 00028 PRODW2
 00000015 00029 PRODW1
 00000016 00030 PRODW0
 00000017 00031 DIV0
 00000018 00032 DIV1
 00000019 00033 ANS0
 0000001A 00034 ANS1
 0000001B 00035 T2Hi
 0000001C 00036 T2Lo
 0000001D 00037 T1YStartLo
 0000001E 00038 T1YStartHi
 0000001F 00039 T1YEndLo
 00000020 00040 T1YEndHi
 00000021 00041 T1YHi
 00000022 00042 T1YLo
 00000023 00043 ZXcalHi
 00000024 00044 ZXcalLo
 00000025 00045 ZYcalHi
 00000026 00046 ZYcalLo
 00000027 00047 T2calHi
 00000028 00048 T2calLo
 00000029 00049 ZXActualHi
 0000002A 00050 ZXActualLo
 0000002B 00051 ZYActualHi
 0000002C 00052 ZYActualLo

Please check Microchip’s Worldwide website at www.microchip.com for the latest version of the source code.
 1999 Microchip Technology Inc. DS00715A-page 2-111

AN715

S2.book Page 112 Thursday, March 2, 2000 8:02 AM
 0000002D 00053 XAccel
 0000002E 00054 YAccel
 0000002F 00055 Temp0
 00000030 00056 Temp1
 00000031 00057 Temp2
 00000032 00058 Temp3
 00000033 00059 Timer0H
 00000034 00060 EADR
 00000035 00061 EDATA
 00062 endc
 00063
 0000000E 00064 Count1 equ ArgL
 0000000F 00065 Count2 equ ArgH
 0000002F 00066 Temp equ Temp0
 00000019 00067 CMD equ ANS0
 00000019 00068 LDATA equ CMD
 00000017 00069 Digit0 equ DIV0
 00000018 00070 Digit1 equ DIV1
 00071
 00000002 00072 KHi equ 0x02
 000000D0 00073 KLo equ 0xd0
 00074
0000 00075 org 0x0000
0000 2808 00076 goto Start ;Go to start of program
 00077
0004 00078 org 0x0004
0004 0AB3 00079 incf Timer0H,F
0005 110B 00080 bcf INTCON,T0IF
0006 118B 00081 bcf INTCON,RBIE
0007 0009 00082 retfie
 00083
0008 00084 Start
0008 1283 00085 bcf STATUS,RP0
0009 0185 00086 clrf PORTA
000A 0186 00087 clrf PORTB
000B 1683 00088 bsf STATUS,RP0 ;Bank1
000C 3003 00089 movlw B’00000011’ ;Set up the I/O ports
000D 0085 00090 movwf TRISA
000E 3010 00091 movlw B’00010000’
000F 0086 00092 movwf TRISB
0010 300F 00093 movlw B’00001111’
0011 0081 00094 movwf OPTION_REG
0012 1283 00095 bcf STATUS,RP0 ;Bank0
0013 21E1 00096 call OpenXLCD ;Initialize LCD
0014 22C6 00097 call RestoreCal ;Restore calibration constants
0015 178B 00098 bsf INTCON,GIE
 00099
0016 00100 Main
0016 20F2 00101 call CheckCal ;Check if need to calibrate
0017 2020 00102 call ReadAccel ;Read the acceleration
0018 2060 00103 call FindZActual ;Calibrate readings
0019 2085 00104 call CalculateAccel ;Calculate tilt (acceleration)
001A 2194 00105 call DisplayAccel ;Display results
001B 30FF 00106 movlw 0xff ;Delay for a while
001C 22A2 00107 call Delay_Ms_4MHz
001D 30FF 00108 movlw 0xff
001E 22A2 00109 call Delay_Ms_4MHz
001F 2816 00110 goto Main ;Do it again
 00111 ;**
 00112
DS00715A-page 2-112 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 113 Thursday, March 2, 2000 8:02 AM
 00113 ;==
 00114 ;=========== Acceleration Measurement/Calculation Routines ==========
 00115 ;==
 00116 ;**
 00117 ;ReadAccel
 00118 ; This subroutine acquires and calculates T1X, T1Y, and T2.
 00119 ; T1X is in registers T1XHi,T1XLo
 00120 ; T1Y is in registers T1YHi,T1YLo
 00121 ; T2 is in registers T2Hi,T2Lo
 00122 ;**
0020 00123 ReadAccel
0020 00124 EDGE1
0020 1805 00125 btfsc PORTA,XOUT ;Wait for low on XOUT
0021 2820 00126 goto EDGE1
0022 00127 EDGE2
0022 1C05 00128 btfss PORTA,XOUT ;Wait for high on XOUT
0023 2822 00129 goto EDGE2
0024 0181 00130 clrf TMR0 ;Clear Timer
0025 01B3 00131 clrf Timer0H
0026 110B 00132 bcf INTCON,T0IF ;Enable Timer0 overflow interrupt
0027 168B 00133 bsf INTCON,T0IE
0028 00134 EDGE3
0028 1805 00135 btfsc PORTA,XOUT ;Look for falling edge on XOUT
0029 2828 00136 goto EDGE3
002A 0801 00137 movf TMR0,W ;Save Timer0H:TMR0 as T1X
002B 008D 00138 movwf T1XLo
002C 0833 00139 movf Timer0H,W
002D 008C 00140 movwf T1XHi
002E 00141 EDGE4
002E 1885 00142 btfsc PORTA,YOUT ;Look a low level on YOUT
002F 282E 00143 goto EDGE4
0030 00144 EDGE5
0030 1C85 00145 btfss PORTA,YOUT ;Look for rising edge on YOUT
0031 2830 00146 goto EDGE5
0032 0801 00147 movf TMR0,W ;Save Timer0H:TMR0 for start
0033 009D 00148 movwf T1YStartLo ;of T1Y
0034 0833 00149 movf Timer0H,W
0035 009E 00150 movwf T1YStartHi
0036 00151 EDGE6
0036 1885 00152 btfsc PORTA,YOUT ;Look for falling edge on YOUT
0037 2836 00153 goto EDGE6
0038 0801 00154 movf TMR0,W ;Save Timer0H:TMR0 as the end
0039 009F 00155 movwf T1YEndLo ;of T1Y
003A 0833 00156 movf Timer0H,W
003B 00A0 00157 movwf T1YEndHi
003C 128B 00158 bcf INTCON,T0IE
 00159
003D 0820 00160 movf T1YEndHi,W ;Calculate T1Y
003E 0090 00161 movwf AccHi
003F 081F 00162 movf T1YEndLo,W
0040 0091 00163 movwf AccLo
0041 081E 00164 movf T1YStartHi,W
0042 008F 00165 movwf ArgH
0043 081D 00166 movf T1YStartLo,W
0044 008E 00167 movwf ArgL
0045 210E 00168 call Sub16x16
0046 0810 00169 movf AccHi,W
0047 00A1 00170 movwf T1YHi
0048 0811 00171 movf AccLo,W
0049 00A2 00172 movwf T1YLo
 1999 Microchip Technology Inc. DS00715A-page 2-113

AN715

S2.book Page 114 Thursday, March 2, 2000 8:02 AM
004A 0820 00173 movf T1YEndHi,W ;CALCULATE T2
004B 0090 00174 movwf AccHi ;2*(T2Hi,T2Lo) = (T1YEndHi:T1YEndLo)+
004C 081F 00175 movf T1YEndLo,W ;(T1YStartHi:T1YStartLo)-(T1XHi:T1XLo)
004D 0091 00176 movwf AccLo
004E 081E 00177 movf T1YStartHi,W
004F 008F 00178 movwf ArgH
0050 081D 00179 movf T1YStartLo,W
0051 008E 00180 movwf ArgL
0052 2107 00181 call Add16x16 ;ACCHI,ACCLO=(T1YEndHi:T1YEendLo)+
0053 080C 00182 movf T1XHi,W ; (T1YStartHi:T1YStartLo)
0054 008F 00183 movwf ArgH
0055 080D 00184 movf T1XLo,W
0056 008E 00185 movwf ArgL
0057 210E 00186 call Sub16x16 ;ACCHI,ACCLO = 2*T2
0058 1003 00187 bcf STATUS,C
0059 0C90 00188 rrf AccHi,F
005A 0C91 00189 rrf AccLo,F
005B 0810 00190 movf AccHi,W
005C 009B 00191 movwf T2Hi
005D 0811 00192 movf AccLo,W
005E 009C 00193 movwf T2Lo
005F 0008 00194 return
 00195
 00196
 00197 ;**
0060 00198 FindZActual
 00199 ; This subroutine finds the value of ZActual for the X and Y
 00200 ; axis.
 00201 ; Output is ZXActualHi & ZXActualLo for the X-axis and
 00202 ; ZYActualHi & ZXActualLo for the Y-axis.
 00203 ;**
0060 00204 FindZActual
0060 0823 00205 movf ZXcalHi,W ;First the X-axis
0061 0090 00206 movwf AccHi
0062 0824 00207 movf ZXcalLo,W
0063 0091 00208 movwf AccLo
0064 081B 00209 movf T2Hi,W
0065 008F 00210 movwf ArgH
0066 081C 00211 movf T2Lo,W
0067 008E 00212 movwf ArgL ;PRODW3,PRODW2,PRODW1,PRODW0 =
0068 211A 00213 call Mul16x16 ;(ZXCAL_HI,ZXCAL_LO)*(T2HI,T2LO)
0069 0827 00214 movf T2calHi,W
006A 0098 00215 movwf DIV1
006B 0828 00216 movf T2calLo,W
006C 0097 00217 movwf DIV0
006D 2165 00218 call Div32x16 ;ANS1,ANS0 = (ZXcal * T2) / T2cal
006E 081A 00219 movf ANS1,W
006F 00A9 00220 movwf ZXActualHi
0070 0819 00221 movf ANS0,W
0071 00AA 00222 movwf ZXActualLo
0072 0825 00223 movf ZYcalHi,W ;Same thing for the Y-axis
0073 0090 00224 movwf AccHi
0074 0826 00225 movf ZYcalLo,W
0075 0091 00226 movwf AccLo
0076 081B 00227 movf T2Hi,W
0077 008F 00228 movwf ArgH
0078 081C 00229 movf T2Lo,W
0079 008E 00230 movwf ArgL ;PRODW3,PRODW2,PRODW1,PRODW0 =
007A 211A 00231 call Mul16x16 ;(ZYCAL_HI,ZYCAL_LO)*(T2HI,T2LO)
007B 0827 00232 movf T2calHi,W
DS00715A-page 2-114 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 115 Thursday, March 2, 2000 8:02 AM
007C 0098 00233 movwf DIV1
007D 0828 00234 movf T2calLo,W
007E 0097 00235 movwf DIV0
007F 2165 00236 call Div32x16 ;ANS1,ANS0 = (ZYcal * T2) / T2cal
0080 081A 00237 movf ANS1,W
0081 00AB 00238 movwf ZYActualHi
0082 0819 00239 movf ANS0,W
0083 00AC 00240 movwf ZYActualLo
0084 0008 00241 return
 00242
 00243
 00244 ;**
 00245 ;CalculateAccel
 00246 ; This subroutine performs the acceleration calculation for
 00247 ; each axis. The formula is:
 00248 ; ACCEL = [K * (T1-Zactual) / T2actual]
 00249 ; Output is XAccel and YAccel
 00250 ;**
0085 00251 CalculateAccel
0085 0829 00252 movf ZXActualHi,W ;Check if acceleration is positive
0086 020C 00253 subwf T1XHi,W ;or negative by comparing
0087 1C03 00254 btfss STATUS,C ;T1X and ZXactual
0088 28A5 00255 goto CA1 ;Jump if T1X < ZXactual
0089 1D03 00256 btfss STATUS,Z ;Test if T1XHI=ZX_ACTUAL_HI
008A 288F 00257 goto CA2 ;Jump if T1X > ZXactual
008B 082A 00258 movf ZXActualLo,W
008C 020D 00259 subwf T1XLo,W
008D 1C03 00260 btfss STATUS,C
008E 28A5 00261 goto CA1 ;Jump if TX1 < ZXactual
008F 00262 CA2
008F 080C 00263 movf T1XHi,W ;T1X - ZXactual
0090 0090 00264 movwf AccHi
0091 080D 00265 movf T1XLo,W
0092 0091 00266 movwf AccLo
0093 0829 00267 movf ZXActualHi,W
0094 008F 00268 movwf ArgH
0095 082A 00269 movf ZXActualLo,W
0096 008E 00270 movwf ArgL
0097 210E 00271 call Sub16x16
0098 3002 00272 movlw KHi
0099 008F 00273 movwf ArgH
009A 30D0 00274 movlw KLo
009B 008E 00275 movwf ArgL
009C 211A 00276 call Mul16x16 ;PRODW3,PRODW2,PRODW1,PRODW0 =
 00277 ;K * (T1X - ZXactual)
009D 081B 00278 movf T2Hi,W
009E 0098 00279 movwf DIV1
009F 081C 00280 movf T2Lo,W
00A0 0097 00281 movwf DIV0
00A1 2165 00282 call Div32x16 ;ANS1:ANS0=
00A2 0819 00283 movf ANS0,W ; [K*(T1X-ZXactual)]/T2actual
00A3 00AD 00284 movwf XAccel ;The result will be a signed 8-bit #
00A4 28BB 00285 goto DoYCalc
00A5 00286 CA1
00A5 0829 00287 movf ZXActualHi,W ;ZXactual - T1X
00A6 0090 00288 movwf AccHi
00A7 082A 00289 movf ZXActualLo,W
00A8 0091 00290 movwf AccLo
00A9 080C 00291 movf T1XHi,W
00AA 008F 00292 movwf ArgH
 1999 Microchip Technology Inc. DS00715A-page 2-115

AN715

S2.book Page 116 Thursday, March 2, 2000 8:02 AM
00AB 080D 00293 movf T1XLo,W
00AC 008E 00294 movwf ArgL
00AD 210E 00295 call Sub16x16
00AE 3002 00296 movlw KHi
00AF 008F 00297 movwf ArgH
00B0 30D0 00298 movlw KLo
00B1 008E 00299 movwf ArgL
00B2 211A 00300 call Mul16x16 ;PRODW3,PRODW2,PRODW1,PRODW0 =
 00301 ;K * (ZXactual - T1X)
00B3 081B 00302 movf T2Hi,W
00B4 0098 00303 movwf DIV1
00B5 081C 00304 movf T2Lo,W
00B6 0097 00305 movwf DIV0
00B7 2165 00306 call Div32x16 ;ANS1,ANS0 =
00B8 0919 00307 comf ANS0,W ; [K*(ZXactual-T1X)]/T2actual
00B9 3E01 00308 addlw 0x01 ;The result will be a signed 8-bit #
00BA 00AD 00309 movwf XAccel
00BB 00310 DoYCalc
00BB 082B 00311 movf ZYActualHi,W ;Check if acceleration is positive
00BC 0221 00312 subwf T1YHi,W ;or negative by comparing
00BD 1C03 00313 btfss STATUS,C ;T1Y and ZYactual
00BE 28DB 00314 goto CA3 ;Jump if T1Y < ZYactual
00BF 1D03 00315 btfss STATUS,Z ;Test if T1YHI=ZY_ACTUAL_HI
00C0 28C5 00316 goto CA4 ;Jump if T1Y > ZYactual
00C1 082C 00317 movf ZYActualLo,W
00C2 0222 00318 subwf T1YLo,W
00C3 1C03 00319 btfss STATUS,C
00C4 28DB 00320 goto CA3 ;Jump if TY1 < ZYactual
00C5 00321 CA4
00C5 0821 00322 movf T1YHi,W ;T1Y - ZYactual
00C6 0090 00323 movwf AccHi
00C7 0822 00324 movf T1YLo,W
00C8 0091 00325 movwf AccLo
00C9 082B 00326 movf ZYActualHi,W
00CA 008F 00327 movwf ArgH
00CB 082C 00328 movf ZYActualLo,W
00CC 008E 00329 movwf ArgL
00CD 210E 00330 call Sub16x16
00CE 3002 00331 movlw KHi
00CF 008F 00332 movwf ArgH
00D0 30D0 00333 movlw KLo
00D1 008E 00334 movwf ArgL
00D2 211A 00335 call Mul16x16 ;PRODW3,PRODW2,PRODW1,PRODW0 =
 00336 ;K * (T1Y - ZYactual)
00D3 081B 00337 movf T2Hi,W
00D4 0098 00338 movwf DIV1
00D5 081C 00339 movf T2Lo,W
00D6 0097 00340 movwf DIV0
00D7 2165 00341 call Div32x16 ;ANS1,ANS0 =
00D8 0819 00342 movf ANS0,W ; [K*(T1Y-ZYactual)]/T2actual
00D9 00AE 00343 movwf YAccel ;The result will be a signed 8-bit #
00DA 0008 00344 return
00DB 00345 CA3
00DB 082B 00346 movf ZYActualHi,W ;ZYactual - T1Y
00DC 0090 00347 movwf AccHi
00DD 082C 00348 movf ZYActualLo,W
00DE 0091 00349 movwf AccLo
00DF 0821 00350 movf T1YHi,W
00E0 008F 00351 movwf ArgH
00E1 0822 00352 movf T1YLo,W
DS00715A-page 2-116 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 117 Thursday, March 2, 2000 8:02 AM
00E2 008E 00353 movwf ArgL
00E3 210E 00354 call Sub16x16
00E4 3002 00355 movlw KHi
00E5 008F 00356 movwf ArgH
00E6 30D0 00357 movlw KLo
00E7 008E 00358 movwf ArgL
00E8 211A 00359 call Mul16x16 ;PRODW3,PRODW2,PRODW1,PRODW0 =
 00360 ;K * (ZYactual - T1Y)
00E9 081B 00361 movf T2Hi,W
00EA 0098 00362 movwf DIV1
00EB 081C 00363 movf T2Lo,W
00EC 0097 00364 movwf DIV0
00ED 2165 00365 call Div32x16 ;ANS1,ANS0 =
00EE 0919 00366 comf ANS0,W ;[K*(ZYactual-T1Y)]/T2actual
00EF 3E01 00367 addlw 0x01 ;The result will be a signed 8-bit #
00F0 00AE 00368 movwf YAccel
00F1 0008 00369 return
 00370
 00371
 00372 ;**
 00373 ;CheckCal
 00374 ; This subroutine reads the CAL pushbutton switch (RB4) and if
 00375 ; it is low, performs a simple calibration routine.
 00376 ;**
00F2 00377 CheckCal
00F2 1A06 00378 btfsc PORTB,CAL ;Is RB4 low?
00F3 0008 00379 return ;If not then exit routine
00F4 2276 00380 call DisplayCal
00F5 2020 00381 call ReadAccel ;If yes then perform a read cycle
00F6 081B 00382 movf T2Hi,W ;Save the measured values in the
00F7 00A7 00383 movwf T2calHi ;calibration registers
00F8 081C 00384 movf T2Lo,W
00F9 00A8 00385 movwf T2calLo
00FA 080C 00386 movf T1XHi,W
00FB 00A3 00387 movwf ZXcalHi
00FC 080D 00388 movf T1XLo,W
00FD 00A4 00389 movwf ZXcalLo
00FE 0821 00390 movf T1YHi,W
00FF 00A5 00391 movwf ZYcalHi
0100 0822 00392 movf T1YLo,W
0101 00A6 00393 movwf ZYcalLo
0102 22B9 00394 call WriteCal ;Write the calibration data to EEPROM
0103 2292 00395 call DisplayDone ;Write message to LCD display
0104 00396 CCLoop
0104 1E06 00397 btfss PORTB,CAL ;Wait for pushbutton switch to be
0105 2904 00398 goto CCLoop ;released
0106 0008 00399 return
 00400 ;**
 00401
 00402
 00403 ;==
 00404 ;=================== Mathematical Operations ========================
 00405 ;==
 00406 ;**
 00407 ;Add16x16
 00408 ; This subroutine performs a 16-bit by 16-bit addition.
 00409 ; Note that this routine does not check for possible overflow
 00410 ; results i.e., 17-bit sum.
 00411 ; Inputs are AccHi:AccLo and ArgH:ArgL
 00412 ; Result is in AccHi:AccLo
 1999 Microchip Technology Inc. DS00715A-page 2-117

AN715

S2.book Page 118 Thursday, March 2, 2000 8:02 AM
 00413 ; (AccHi:AccLo) = (AccHi:AccLo)+(ArgH:ArgL)
 00414 ;**
0107 00415 Add16x16
0107 080E 00416 movf ArgL,W ;Add low bytes together
0108 0791 00417 addwf AccLo,F
0109 1803 00418 btfsc STATUS,C ;Check for carry out of addtion
010A 0A90 00419 incf AccHi,F ;If yes, increment AccHi
010B 080F 00420 movf ArgH,W ;Add high bytes together
010C 0790 00421 addwf AccHi,F
010D 0008 00422 return
 00423
 00424 ;**
 00425 ;Sub16x16
 00426 ; This subroutine performs a 16-bit by 16-bit subtraction.
 00427 ; Inputs are AccHi:AccLo and ArgH:ArgL
 00428 ; Result is in AccHi:AccLo
 00429 ; (AccHi:AccLo) = (AccHi:AccLo)-(ArgH:ArgL)
 00430 ;**
010E 00431 Sub16x16
010E 098E 00432 comf ArgL,F ;2’s complement ArgH:ArgL
010F 0A8E 00433 incf ArgL,F
0110 1903 00434 btfsc STATUS,2
0111 038F 00435 decf ArgH,F
0112 098F 00436 comf ArgH,F
0113 080E 00437 movf ArgL,W ;Now perform a 16-bit addition
0114 0791 00438 addwf AccLo,F
0115 1803 00439 btfsc STATUS,W
0116 0A90 00440 incf AccHi,F
0117 080F 00441 movf ArgH,W
0118 0790 00442 addwf AccHi,F
0119 0008 00443 return
 00444
 00445 ;**
 00446 ;Mul16x16
 00447 ; This subroutine performs a 16-bit by 16-bit multiplication.
 00448 ; It produces a 32-bit number. Multiplication by 0 is checked
 00449 ; and performed correctly, ie, A * 0 = 0.
 00450 ; Inputs are (AccHi:AccLo) and (ArgH:ArgL)
 00451 ; Output is (PRODW3:PRODW2:PRODW1:PRODW0)
 00452 ; (PRODW3:PRODW2:PRODW1:PRODW0) = (AccHi:AccLo) * (Argh:ArgL)
 00453 ;**
011A 00454 Mul16x16
011A 01AF 00455 clrf Temp0 ;Clear the temporary variables used
011B 01B0 00456 clrf Temp1 ;in this routine
011C 01B1 00457 clrf Temp2
011D 01B2 00458 clrf Temp3
011E 0196 00459 clrf PRODW0
011F 0195 00460 clrf PRODW1
0120 0194 00461 clrf PRODW2
0121 0193 00462 clrf PRODW3
0122 0811 00463 movf AccLo,W
0123 00AF 00464 movwf Temp0 ;Move contents of AccHi:AccLo
0124 0810 00465 movf AccHi,W ;into Temp1:Temp0
0125 00B0 00466 movwf Temp1
0126 0890 00467 movf AccHi,F ;Test if AccHi:AccLo = 0000
0127 1D03 00468 btfss STATUS,Z
0128 292C 00469 goto CheckNext ;AccHi:AccLo not zero
0129 0891 00470 movf AccLo,F
012A 1903 00471 btfsc STATUS,Z
012B 2960 00472 goto Equal0 ;AccHi:AccLo = 0000
DS00715A-page 2-118 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 119 Thursday, March 2, 2000 8:02 AM
012C 00473 CheckNext
012C 088F 00474 movf ArgH,F ;Test if ArgH:ArgL = 0000
012D 1D03 00475 btfss STATUS,Z
012E 2932 00476 goto DoMultiply ;ArgH:ArgL not zero
012F 088E 00477 movf ArgL,F
0130 1903 00478 btfsc STATUS,Z
0131 2960 00479 goto Equal0 ;ArgH:ArgL = 0000
0132 00480 DoMultiply
0132 088F 00481 movf ArgH,F ;Test if ArgH:ArgL has been reduced
0133 1D03 00482 btfss STATUS,Z ;to 0
0134 2938 00483 goto TestLSB ;ArgH:ArgL has not been reduced to 0
0135 088E 00484 movf ArgL,F
0136 1903 00485 btfsc STATUS,Z
0137 0008 00486 return ;ArgH:ArgL has been reduced to zero
 00487 ;so multiplication isdone
0138 00488 TestLSB
0138 1003 00489 bcf STATUS,C ;Shift ArgH:ArgL right
0139 0C8F 00490 rrf ArgH,F
013A 0C8E 00491 rrf ArgL,F
013B 1C03 00492 btfss STATUS,C ;Is LSb of ArgH:ArgL = 1
013C 295A 00493 goto DoShift ;Jump if LSb = 0
013D 082F 00494 movf Temp0,W ;If LSb = 1 then
013E 0796 00495 addwf PRODW0,F ;PRODW3:PRODW2:PRODW1:PRODW0 =
013F 1C03 00496 btfss STATUS,C ;PRODW3:PRODW2:PRODW1:PRODW0 +
0140 294A 00497 goto ADD2 ;Temp3:Temp2:Temp1:Temp0
0141 3001 00498 movlw 0x01 ;Add carry bit if necessary
0142 0795 00499 addwf PRODW1,F
0143 1C03 00500 btfss STATUS,C
0144 294A 00501 goto ADD2
0145 3001 00502 movlw 0x01 ;Add carry bit if PRODW1 overflows
0146 0794 00503 addwf PRODW2,F ;as a result of the addition of the
0147 1C03 00504 btfss STATUS,C ;previous carry
0148 294A 00505 goto ADD2
0149 0A93 00506 incf PRODW3,F
014A 00507 ADD2
014A 0830 00508 movf Temp1,W
014B 0795 00509 addwf PRODW1,F
014C 1C03 00510 btfss STATUS,C
014D 2953 00511 goto ADD3
014E 3001 00512 movlw 0x01
014F 0794 00513 addwf PRODW2,F
0150 1C03 00514 btfss STATUS,C
0151 2953 00515 goto ADD3
0152 0A93 00516 incf PRODW3,F
0153 00517 ADD3
0153 0831 00518 movf Temp2,W
0154 0794 00519 addwf PRODW2,F
0155 1C03 00520 btfss STATUS,C
0156 2958 00521 goto ADD4
0157 0A93 00522 incf PRODW3,F
0158 00523 ADD4
0158 0832 00524 movf Temp3,W
0159 0793 00525 addwf PRODW3,F
015A 00526 DoShift
015A 1003 00527 bcf STATUS,C ;Shift temp registers left
015B 0DAF 00528 rlf Temp0,F
015C 0DB0 00529 rlf Temp1,F
015D 0DB1 00530 rlf Temp2,F
015E 0DB2 00531 rlf Temp3,F
015F 2932 00532 goto DoMultiply
 1999 Microchip Technology Inc. DS00715A-page 2-119

AN715

S2.book Page 120 Thursday, March 2, 2000 8:02 AM
0160 00533 Equal0
0160 0196 00534 clrf PRODW0 ;Since one arguement equals zero
0161 0195 00535 clrf PRODW1 ;PRODW3,PRODW2,PRODW1,PRODW0 = 0
0162 0194 00536 clrf PRODW2
0163 0193 00537 clrf PRODW3
0164 0008 00538 return
 00539
 00540 ;**
 00541 ;Div32x16
 00542 ; This subroutine performs a 32-bit x 16-bit division.
 00543 ; Division is performed by binary long division.
 00544 ; Inputs are (PRODW3:PRODW2:PRODW1:PRODW0) and (DIV1:DIV0).
 00545 ; Output is (ANS1:ANS0)
 00546 ; (ANS1:ANS0) = (PRODW3:PRODW2:PRODW1:PRODW0) / (DIV1:DIV0)
 00547 ;**
0165 00548 Div32x16
0165 019A 00549 clrf ANS1 ;Clear the result registers
0166 0199 00550 clrf ANS0
0167 3011 00551 movlw 0x11 ;DivCnt = 17d
0168 0092 00552 movwf DivCnt
0169 00553 DA1
0169 0818 00554 movf DIV1,W
016A 0213 00555 subwf PRODW3,W ;Is DIV1 > PRODW3
016B 1C03 00556 btfss STATUS,C
016C 2973 00557 goto NoSub ;Jump if DIV1 > PRODW3
016D 1D03 00558 btfss STATUS,2 ;Is DIV1 = PRODW3
016E 297C 00559 goto DoSubs ;Jump if DIV1 < PRODW3
016F 0817 00560 movf DIV0,W ;Is DIV0 > PRODW2
0170 0214 00561 subwf PRODW2,W
0171 1803 00562 btfsc STATUS,C
0172 297C 00563 goto DoSubs ;Jump if DIV0 < PRODW2
0173 00564 NoSub
0173 1003 00565 bcf STATUS,C ;Clear the carry bit
0174 0D99 00566 rlf ANS0,F ;Add 0 to LSb of ANS1,ANS0
0175 0D9A 00567 rlf ANS1,F
0176 1003 00568 bcf STATUS,C ;Clear the carry bit
0177 0D96 00569 rlf PRODW0,F ;Shift PRODW3,2,1,0 left
0178 0D95 00570 rlf PRODW1,F
0179 0D94 00571 rlf PRODW2,F
017A 0D93 00572 rlf PRODW3,F
017B 2991 00573 goto ChkCnt
017C 00574 DoSubs
017C 0813 00575 movf PRODW3,W
017D 0090 00576 movwf AccHi
017E 0814 00577 movf PRODW2,W
017F 0091 00578 movwf AccLo
0180 0818 00579 movf DIV1,W
0181 008F 00580 movwf ArgH
0182 0817 00581 movf DIV0,W
0183 008E 00582 movwf ArgL
0184 210E 00583 call Sub16x16 ;(PRODW3:2) = (PRODW3:2)-(DIV1:0)
0185 0810 00584 movf AccHi,W
0186 0093 00585 movwf PRODW3
0187 0811 00586 movf AccLo,W
0188 0094 00587 movwf PRODW2
0189 1403 00588 bsf STATUS,C
018A 0D99 00589 rlf ANS0,F
018B 0D9A 00590 rlf ANS1,F ;Add 1 to LSb of ANS1:ANS0
018C 1003 00591 bcf STATUS,C
018D 0D96 00592 rlf PRODW0,F ;Shift PRODW3,2,1,0, left
DS00715A-page 2-120 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 121 Thursday, March 2, 2000 8:02 AM
018E 0D95 00593 rlf PRODW1,F
018F 0D94 00594 rlf PRODW2,F
0190 0D93 00595 rlf PRODW3,F
0191 00596 ChkCnt
0191 0B92 00597 decfsz DivCnt,F ;Check for 17 operations
0192 2969 00598 goto DA1 ;If not then loop
0193 0008 00599 return
 00600 ;**
 00601
 00602
 00603 ;==
 00604 ;====================== Display Routines ============================
 00605 ;==
 00606 ;**
 00607 ;DisplayAccel
 00608 ; This subroutine takes the values int XAccel and YAccel and
 00609 ; displays the ASCII equivalent on the LCD display.
 00610 ;**
0194 00611 DisplayAccel
0194 223E 00612 call BusyXLCD ;Wait for LCD to not be busy
0195 3001 00613 movlw 0x01 ;Reset cursor to home position
0196 221C 00614 call WriteCmdXLCD ;of line 1
 00615
0197 1FAD 00616 btfss XAccel,7 ;Check if XAccel is negative
0198 29A0 00617 goto XSpace
0199 223E 00618 call BusyXLCD ;Is negative
019A 302D 00619 movlw ’-’ ;Print a ’-’ to the display
019B 2254 00620 call WriteDataXLCD
019C 092D 00621 comf XAccel,W ;2’s complement XAccel
019D 3E01 00622 addlw 0x01
019E 00AD 00623 movwf XAccel
019F 29A3 00624 goto DispX
01A0 00625 XSpace ;Not negative
01A0 223E 00626 call BusyXLCD
01A1 3020 00627 movlw ’ ’ ;Print a space to the display
01A2 2254 00628 call WriteDataXLCD
01A3 00629 DispX
01A3 082D 00630 movf XAccel,W ;Convert XAccel to 2-digit ASCII
01A4 22AC 00631 call Bin2Ascii
01A5 223E 00632 call BusyXLCD
01A6 0818 00633 movf Digit1,W ;Write the upper digit to the LCD
01A7 2254 00634 call WriteDataXLCD
01A8 223E 00635 call BusyXLCD
01A9 0817 00636 movf Digit0,W ;Write the lower digit to the LCD
01AA 2254 00637 call WriteDataXLCD
01AB 223E 00638 call BusyXLCD
01AC 30DF 00639 movlw 0xdf ;Write a degrees symbol to the LCD
01AD 2254 00640 call WriteDataXLCD
01AE 223E 00641 call BusyXLCD
01AF 3020 00642 movlw ’ ’ ;Write " Pit" to the LCD
01B0 2254 00643 call WriteDataXLCD ;for the word pitch which refers
01B1 223E 00644 call BusyXLCD ;to the X-axis
01B2 3050 00645 movlw ’P’
01B3 2254 00646 call WriteDataXLCD
01B4 223E 00647 call BusyXLCD
01B5 3069 00648 movlw ’i’
01B6 2254 00649 call WriteDataXLCD
01B7 223E 00650 call BusyXLCD
01B8 3074 00651 movlw ’t’
01B9 2254 00652 call WriteDataXLCD
 1999 Microchip Technology Inc. DS00715A-page 2-121

AN715

S2.book Page 122 Thursday, March 2, 2000 8:02 AM
01BA 223E 00653 call BusyXLCD
01BB 30A8 00654 movlw 0xa8 ;Change the cursor position to home
01BC 221C 00655 call WriteCmdXLCD ;of line 2
 00656
01BD 1FAE 00657 btfss YAccel,7 ;Check if YAccel is negative
01BE 29C6 00658 goto YSpace
01BF 223E 00659 call BusyXLCD ;Is negative
01C0 302D 00660 movlw ’-’ ;Print a ’-’ to the display
01C1 2254 00661 call WriteDataXLCD
01C2 092E 00662 comf YAccel,W ;2’s complement YAccel
01C3 3E01 00663 addlw 0x01
01C4 00AE 00664 movwf YAccel
01C5 29C9 00665 goto DispY
01C6 00666 YSpace ;Not negative
01C6 223E 00667 call BusyXLCD
01C7 3020 00668 movlw ’ ’ ;Print a space to the display
01C8 2254 00669 call WriteDataXLCD
01C9 00670 DispY
01C9 082E 00671 movf YAccel,W ;Convert YAccel to 2-digit ASCII
01CA 22AC 00672 call Bin2Ascii
01CB 223E 00673 call BusyXLCD
01CC 0818 00674 movf Digit1,W ;Write the upper digit to the LCD
01CD 2254 00675 call WriteDataXLCD
01CE 223E 00676 call BusyXLCD
01CF 0817 00677 movf Digit0,W ;Write the lower digit t the LCD
01D0 2254 00678 call WriteDataXLCD
01D1 223E 00679 call BusyXLCD
01D2 30DF 00680 movlw 0xdf ;Write a degrees symbol to the LCD
01D3 2254 00681 call WriteDataXLCD
01D4 223E 00682 call BusyXLCD
01D5 3020 00683 movlw ’ ’ ;Write " Rol" to the LCD
01D6 2254 00684 call WriteDataXLCD ;for the word roll which refers
01D7 223E 00685 call BusyXLCD ;to the Y-axis
01D8 3052 00686 movlw ’R’
01D9 2254 00687 call WriteDataXLCD
01DA 223E 00688 call BusyXLCD
01DB 306F 00689 movlw ’o’
01DC 2254 00690 call WriteDataXLCD
01DD 223E 00691 call BusyXLCD
01DE 306C 00692 movlw ’l’
01DF 2254 00693 call WriteDataXLCD
01E0 0008 00694 return
 00695
 00696 ;**
 00697 ;OpenXLCD
 00698 ; This subroutine initializes the LCD display. It is
 00699 ; cleared and blank upon exit of this routine
 00700 ;**
01E1 00701 OpenXLCD
01E1 301E 00702 movlw 0x1e ;Delay for POR
01E2 22A2 00703 call Delay_Ms_4MHz
 00704
01E3 30F0 00705 movlw 0xf0 ;Write upper byte of configuration
01E4 1683 00706 bsf STATUS,RP0 ;value to the LCD three times
01E5 0586 00707 andwf TRISB,F ;After this the LCD can be read
01E6 1283 00708 bcf STATUS,RP0
01E7 0586 00709 andwf PORTB,F
01E8 3003 00710 movlw 0x03
01E9 0486 00711 iorwf PORTB,F ;Output data to the port, 8-bit mode
01EA 1505 00712 bsf PORTA,E ;Clock the data in
DS00715A-page 2-122 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 123 Thursday, March 2, 2000 8:02 AM
01EB 0000 00713 nop
01EC 1105 00714 bcf PORTA,E
 00715
01ED 300A 00716 movlw 0x0a ;Wait for ~5ms
01EE 22A2 00717 call Delay_Ms_4MHz
 00718
01EF 30F0 00719 movlw 0xf0
01F0 0586 00720 andwf PORTB,F
01F1 3003 00721 movlw 0x03
01F2 0486 00722 iorwf PORTB,F ;Output data to the port, 8-bit mode
01F3 1505 00723 bsf PORTA,E ;Clock the data in
01F4 0000 00724 nop
01F5 1105 00725 bcf PORTA,E
 00726
01F6 300A 00727 movlw 0x0a ;Wait for ~5ms
01F7 22A2 00728 call Delay_Ms_4MHz
 00729
01F8 30F0 00730 movlw 0xf0
01F9 0586 00731 andwf PORTB,F
01FA 3003 00732 movlw 0x03
01FB 0486 00733 iorwf PORTB,F ;Output data to the port, 8-bit mode
01FC 1505 00734 bsf PORTA,E ;Clock the data in
01FD 0000 00735 nop
01FE 1105 00736 bcf PORTA,E
 00737
01FF 30F0 00738 movlw 0xf0
0200 0586 00739 andwf PORTB,F
0201 1486 00740 bsf PORTB,1 ;Output data to the port, 4-bit mode
0202 1505 00741 bsf PORTA,E
0203 0000 00742 nop
0204 1105 00743 bcf PORTA,E
 00744
0205 300F 00745 movlw 0x0f
0206 1683 00746 bsf STATUS,RP0
0207 0486 00747 iorwf TRISB,F
0208 1283 00748 bcf STATUS,RP0
 00749
0209 223E 00750 call BusyXLCD ;Function Set: 4-bit mode, 2 lines,
020A 302F 00751 movlw 0x2f ;5x8 dots
020B 221C 00752 call WriteCmdXLCD
 00753
020C 223E 00754 call BusyXLCD ;Display Cntrl: display, cursor off
020D 3008 00755 movlw 0x08
020E 221C 00756 call WriteCmdXLCD
 00757
020F 223E 00758 call BusyXLCD ;Display Cntrl: display & cursor on,
0210 300F 00759 movlw 0x0f ;blinking on
0211 221C 00760 call WriteCmdXLCD
 00761
0212 223E 00762 call BusyXLCD ;Clear Display
0213 3001 00763 movlw 0x01
0214 221C 00764 call WriteCmdXLCD
 00765
0215 223E 00766 call BusyXLCD ;Shift Cntrl: cursor moves to left
0216 3013 00767 movlw 0x13
0217 221C 00768 call WriteCmdXLCD
 00769
0218 223E 00770 call BusyXLCD ;Set DDRAM address to 0
0219 3080 00771 movlw 0x80
021A 221C 00772 call WriteCmdXLCD
 1999 Microchip Technology Inc. DS00715A-page 2-123

AN715

S2.book Page 124 Thursday, March 2, 2000 8:02 AM
021B 0008 00773 return
 00774
 00775
 00776 ;**
 00777 ;WriteCmdXLCD
 00778 ; This subroutine writes a command to the LCD display using
 00779 ; a 4-bit interface.
 00780 ;**
021C 00781 WriteCmdXLCD
021C 1283 00782 bcf STATUS,RP0
021D 0099 00783 movwf CMD ;Save command in WREG to CMD
021E 30F0 00784 movlw 0xf0 ;Setup up data port for write
021F 1683 00785 bsf STATUS,RP0
0220 0586 00786 andwf TRISB,F
0221 1283 00787 bcf STATUS,RP0
0222 0586 00788 andwf PORTB,F
0223 0819 00789 movf CMD,W ;Write upper 4-bits to data port
0224 00AF 00790 movwf Temp
0225 0EAF 00791 swapf Temp,F
0226 300F 00792 movlw 0x0f
0227 052F 00793 andwf Temp,W
0228 390F 00794 andlw 0x0f
0229 0486 00795 iorwf PORTB,F
022A 1185 00796 bcf PORTA,RW ;Set the control bits for write
022B 1286 00797 bcf PORTB,RS ;and command
022C 0000 00798 nop
022D 1505 00799 bsf PORTA,E ;Clock the upper nibble in
022E 0000 00800 nop
022F 1105 00801 bcf PORTA,E
0230 30F0 00802 movlw 0xf0
0231 0586 00803 andwf PORTB,F
0232 300F 00804 movlw 0x0f
0233 0519 00805 andwf CMD,W ;Output the lower 4-bits to data port
0234 0486 00806 iorwf PORTB,F
0235 0000 00807 nop
0236 1505 00808 bsf PORTA,E ;Clock the lower nibble in
0237 0000 00809 nop
0238 1105 00810 bcf PORTA,E
0239 300F 00811 movlw 0x0f
023A 1683 00812 bsf STATUS,RP0
023B 0486 00813 iorwf TRISB,F
023C 1283 00814 bcf STATUS,RP0
023D 0008 00815 return
 00816
 00817
 00818 ;**
 00819 ;BusyXLCD
 00820 ; This subroutine monitors the busy bit from the LCD display
 00821 ; It returns when the LCD is no longer busy.
 00822 ;**
023E 00823 BusyXLCD
023E 1283 00824 bcf STATUS,RP0
023F 1585 00825 bsf PORTA,RW ;Set up for a read
0240 1286 00826 bcf PORTB,RS ;Read the busy bit/address
0241 0000 00827 nop
0242 1505 00828 bsf PORTA,E ;Clock the data out
0243 0000 00829 nop
0244 1D86 00830 btfss PORTB,3 ;Read the busy bit
0245 2A4D 00831 goto BNHI
0246 1105 00832 bcf PORTA,E ;Still busy
DS00715A-page 2-124 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 125 Thursday, March 2, 2000 8:02 AM
0247 0000 00833 nop
0248 1505 00834 bsf PORTA,E ;Clock out the lower nibble
0249 0000 00835 nop
024A 1105 00836 bcf PORTA,E
024B 1185 00837 bcf PORTA,RW
024C 2A3E 00838 goto BusyXLCD ;Try again
024D 00839 BNHI
024D 1105 00840 bcf PORTA,E ;LCD not busy
024E 0000 00841 nop
024F 1505 00842 bsf PORTA,E ;Clock out the lower nibble
0250 0000 00843 nop
0251 1105 00844 bcf PORTA,E
0252 1185 00845 bcf PORTA,RW
0253 0008 00846 return
 00847
 00848
 00849 ;**
 00850 ;WriteDataXLCD
 00851 ; This subroutine writes a byte of data to the LCD display
 00852 ; using the 4-bit interface.
 00853 ;**
0254 00854 WriteDataXLCD
0254 1283 00855 bcf STATUS,RP0
0255 0099 00856 movwf LDATA ;Save the data in LDATA
0256 30F0 00857 movlw 0xf0 ;Setup the data port
0257 1683 00858 bsf STATUS,RP0
0258 0586 00859 andwf TRISB,F
0259 1283 00860 bcf STATUS,RP0
025A 0586 00861 andwf PORTB,F
025B 0819 00862 movf LDATA,W ;Write the upper nibble of data
025C 00AF 00863 movwf Temp ;to the data port
025D 0EAF 00864 swapf Temp,F
025E 300F 00865 movlw 0x0f
025F 052F 00866 andwf Temp,W
0260 390F 00867 andlw 0x0f
0261 0486 00868 iorwf PORTB,F
0262 1686 00869 bsf PORTB,RS ;Set control signals for write
0263 1185 00870 bcf PORTA,RW ;to data registers
0264 0000 00871 nop
0265 1505 00872 bsf PORTA,E ;Clock the upper nibble in
0266 0000 00873 nop
0267 1105 00874 bcf PORTA,E
0268 30F0 00875 movlw 0xf0
0269 0586 00876 andwf PORTB,F
026A 300F 00877 movlw 0x0f
026B 0519 00878 andwf LDATA,W ;Write the lower nibble to data port
026C 0486 00879 iorwf PORTB,F
026D 0000 00880 nop
026E 1505 00881 bsf PORTA,E ;Clock the lower nibble in
026F 0000 00882 nop
0270 1105 00883 bcf PORTA,E
0271 300F 00884 movlw 0x0f
0272 1683 00885 bsf STATUS,RP0
0273 0486 00886 iorwf TRISB,F
0274 1283 00887 bcf STATUS,RP0
0275 0008 00888 return
 00889
 00890 ;**
 00891 ;DisplayCal
 00892 ; This subroutine displays a message to the LCD display
 1999 Microchip Technology Inc. DS00715A-page 2-125

AN715

S2.book Page 126 Thursday, March 2, 2000 8:02 AM
 00893 ; indicating that a calibration cycle is in progress.
 00894 ;**
0276 00895 DisplayCal
0276 223E 00896 call BusyXLCD
0277 3001 00897 movlw 0x01
0278 221C 00898 call WriteCmdXLCD
0279 223E 00899 call BusyXLCD
027A 3043 00900 movlw ’C’
027B 2254 00901 call WriteDataXLCD
027C 223E 00902 call BusyXLCD
027D 3061 00903 movlw ’a’
027E 2254 00904 call WriteDataXLCD
027F 223E 00905 call BusyXLCD
0280 306C 00906 movlw ’l’
0281 2254 00907 call WriteDataXLCD
0282 223E 00908 call BusyXLCD
0283 3069 00909 movlw ’i’
0284 2254 00910 call WriteDataXLCD
0285 223E 00911 call BusyXLCD
0286 3062 00912 movlw ’b’
0287 2254 00913 call WriteDataXLCD
0288 223E 00914 call BusyXLCD
0289 3072 00915 movlw ’r’
028A 2254 00916 call WriteDataXLCD
028B 223E 00917 call BusyXLCD
028C 3061 00918 movlw ’a’
028D 2254 00919 call WriteDataXLCD
028E 223E 00920 call BusyXLCD
028F 3074 00921 movlw ’t’
0290 2254 00922 call WriteDataXLCD
0291 0008 00923 return
 00924
 00925
 00926 ;**
 00927 ;DisplayDone
 00928 ; This subroutine displays a message to the LCD display
 00929 ; indicating that a calibration cycle has completed.
 00930 ;**
0292 00931 DisplayDone
0292 223E 00932 call BusyXLCD
0293 30A8 00933 movlw 0xa8
0294 221C 00934 call WriteCmdXLCD
0295 223E 00935 call BusyXLCD
0296 3044 00936 movlw ’D’
0297 2254 00937 call WriteDataXLCD
0298 223E 00938 call BusyXLCD
0299 306F 00939 movlw ’o’
029A 2254 00940 call WriteDataXLCD
029B 223E 00941 call BusyXLCD
029C 306E 00942 movlw ’n’
029D 2254 00943 call WriteDataXLCD
029E 223E 00944 call BusyXLCD
029F 3065 00945 movlw ’e’
02A0 2254 00946 call WriteDataXLCD
02A1 0008 00947 return
 00948
 00949
 00950
 00951 ;==
 00952 ;======================= Misc. Routines =============================
DS00715A-page 2-126 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 127 Thursday, March 2, 2000 8:02 AM
 00953 ;==
 00954 ;**
 00955 ;Delay_Ms_4MHz
 00956 ; Generic delay routine. Delay length in ms is loaded
 00957 ; into WREG before calling.
 00958 ;**
02A2 00959 Delay_Ms_4MHz
02A2 1283 00960 bcf STATUS,RP0
02A3 008E 00961 movwf Count1
02A4 00962 DLMS2M1
02A4 307C 00963 movlw 0x7c
02A5 008F 00964 movwf Count2
02A6 00965 DLMS2M2
02A6 0000 00966 nop
02A7 0B8F 00967 decfsz Count2,F
02A8 2AA6 00968 goto DLMS2M2
02A9 0B8E 00969 decfsz Count1,F
02AA 2AA4 00970 goto DLMS2M1
02AB 0008 00971 return
 00972
 00973
 00974 ;**
 00975 ;Bin2Ascii
 00976 ; This routine converts a binary number to a 2-digit ASCII
 00977 ; number. The binary number is sent in WREG.
 00978 ;**
02AC 00979 Bin2Ascii
02AC 0198 00980 clrf Digit1 ;Clear the upper digit
02AD 0097 00981 movwf Digit0 ;Save the binary number
02AE 00982 B2A1
02AE 300A 00983 movlw 0x0a ;Repeadedly subtract 10 from the
02AF 0217 00984 subwf Digit0,W ;number until the result is less
02B0 1C03 00985 btfss STATUS,C ;then 10
02B1 2AB5 00986 goto B2A2
02B2 0097 00987 movwf Digit0
02B3 0A98 00988 incf Digit1,F
02B4 2AAE 00989 goto B2A1
02B5 00990 B2A2
02B5 3030 00991 movlw 0x30 ;Add 0x30 to make the result
02B6 0797 00992 addwf Digit0,F ;ASCII
02B7 0798 00993 addwf Digit1,F
02B8 3400 00994 retlw 0
 00995 ;**
 00996
 00997
 00998 ;==
 00999 ;==================== Data EEPROM Routines ==========================
 01000 ;==
 01001 ;**
 01002 ;WriteCal
 01003 ; This subroutine takes 6 bytes starting with address
 01004 ; ZXcalHi and writes them to the internal Data EEPROM.
 01005 ; Calls to WriteEE perform the actual write sequence.
 01006 ;**
02B9 01007 WriteCal
02B9 3006 01008 movlw 0x06 ;Load byte counter with 6
02BA 008E 01009 movwf Count1
02BB 3023 01010 movlw ZXcalHi ;Load the starting address into FSR
02BC 0084 01011 movwf FSR
02BD 01B4 01012 clrf EADR ;Start writing data to EE address 0
 1999 Microchip Technology Inc. DS00715A-page 2-127

AN715

S2.book Page 128 Thursday, March 2, 2000 8:02 AM
02BE 01013 WCLoop
02BE 0800 01014 movf INDF,W ;Load data
02BF 00B5 01015 movwf EDATA
02C0 22D2 01016 call WriteEE ;Call routine to write data
02C1 0AB4 01017 incf EADR,F ;Increment EE address
02C2 0A84 01018 incf FSR,F ;Increment FSR
02C3 0B8E 01019 decfsz Count1,F ;Decrement count
02C4 2ABE 01020 goto WCLoop
02C5 0008 01021 return
 01022
 01023
 01024 ;**
 01025 ;RestoreCal
 01026 ; This subroutine reads 6 bytes from the Data EE starting
 01027 ; with address 0 and saves them starting with ZXcalHi.
 01028 ; Calls to ReadEE perform the actual read sequence.
 01029 ;**
02C6 01030 RestoreCal
02C6 3006 01031 movlw 0x06 ;Load byte counter
02C7 008E 01032 movwf Count1
02C8 3023 01033 movlw ZXcalHi ;Load starting address into FSR
02C9 0084 01034 movwf FSR
02CA 01B4 01035 clrf EADR ;Load starting EE address with 0
02CB 01036 RCLoop
02CB 22E4 01037 call ReadEE ;Read data from EE
02CC 0080 01038 movwf INDF ;Save in register
02CD 0AB4 01039 incf EADR,F ;Increment EE address
02CE 0A84 01040 incf FSR,F ;Increment FSR
02CF 0B8E 01041 decfsz Count1,F ;Decrement count
02D0 2ACB 01042 goto RCLoop
02D1 0008 01043 return
 01044
 01045 ;**
 01046 ;WriteEE
 01047 ; This is the subroutine to load the address and data into
 01048 ; the special EE access registers and perform the EE write
 01049 ; sequence.
 01050 ;**
02D2 01051 WriteEE
02D2 1283 01052 bcf STATUS,RP0
02D3 0834 01053 movf EADR,W ;Load EE address
02D4 0089 01054 movwf EEADR
02D5 0835 01055 movf EDATA,W ;Load EE data
02D6 0088 01056 movwf EEDATA
02D7 1683 01057 bsf STATUS,RP0
02D8 1208 01058 bcf EECON1,EEIF
02D9 1508 01059 bsf EECON1,WREN ;EE write sequence
02DA 3055 01060 movlw 0x55 ;must be performed
02DB 0089 01061 movwf EECON2 ;in this order
02DC 30AA 01062 movlw 0xaa ;otherwise write
02DD 0089 01063 movwf EECON2 ;does not take
02DE 1488 01064 bsf EECON1,WR ;place correctly
02DF 01065 eBusy
02DF 1E08 01066 btfss EECON1,EEIF ;Wait for write to complete
02E0 2ADF 01067 goto eBusy
02E1 1108 01068 bcf EECON1,WREN ;Disable writes
02E2 1283 01069 bcf STATUS,RP0
02E3 0008 01070 return
 01071
 01072
DS00715A-page 2-128 1999 Microchip Technology Inc.

AN715
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 129 Thursday, March 2, 2000 8:02 AM
 01073 ;**
 01074 ;ReadEE
 01075 ; This is the subroutine to read from the data EE using the
 01076 ; special EE access registers.
 01077 ;**
02E4 01078 ReadEE
02E4 1283 01079 bcf STATUS,RP0
02E5 0834 01080 movf EADR,W ;Load EE address
02E6 0089 01081 movwf EEADR
02E7 1683 01082 bsf STATUS,RP0
02E8 1408 01083 bsf EECON1,RD ;Perform the EE write sequence
02E9 1283 01084 bcf STATUS,RP0
02EA 0808 01085 movf EEDATA,W ;Move data into WREG
02EB 0008 01086 return
 01087
 01088
 01089 end

MEMORY USAGE MAP (’X’ = Used, ’-’ = Unused)

0000 : X---XXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0080 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
00C0 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0100 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0140 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0180 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
01C0 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0200 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0240 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0280 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
02C0 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXX---- ----------------
2000 : -------X-------- ---------------- ---------------- ----------------

All other memory blocks unused.

Program Memory Words Used: 745
Program Memory Words Free: 279

Errors : 0
Warnings : 0 reported, 0 suppressed
 1999 Microchip Technology Inc. DS00715A-page 2-129

AN715

S2.book Page 130 Thursday, March 2, 2000 8:02 AM
NOTES:
DS00715A-page 2-130 1999 Microchip Technology Inc.

AN716
Migrating Designs from PIC16C74A/74B to PIC18C442

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 131 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

The PIC18CXX2 was intended to make conversions
from midrange controllers to enhanced controllers as
easily as possible. Changes to register and bit names,
and bit locations were kept to a minimum. The
PIC18CXX2 was designed to be pin-compatible with
28-pin and 40-pin midrange microcontrollers.

This application note describes the minimum changes
required to port code from the PIC16C74A to the
PIC18C442, and are typical when migrating code from
any midrange controller to any enhanced microcontrol-
ler.

Changes to the PIC16C74A code largely consists of
renaming registers and bits, moving bits to new regis-
ters, and placing variables into the appropriate places
in RAM. Where additional features have been added,
changes to code have been suggested.

OSCILLATOR OPERATION

Changes to the oscillator circuit or device configuration
with respect to the oscillator mode may be required.
Oscillator performance should be verified to ensure
that it starts and operates as expected.

Crystal oscillator modes may require changes in load-
ing capacitors and/or oscillator mode. RC oscillators
may operate at a different frequency than expected on
the PIC18C442 (when using the same components).

OSCILLATOR MODES

The PIC18C442 has more oscillator modes than the
PIC16C74A. Two RC modes affect the use of one pin.
OSC1 is used for the RC oscillator, as before. OSC2
may be used either for clock output (FOSC/4) or as dig-
ital I/O pin RA6.

There are now two HS modes. The HS/PLL mode oper-
ates with a crystal or resonator from 4 MHz to 10 MHz
while the HS mode can use a crystal or resonator up to
20 MHz.

At Power-On Reset, the OST (1024 oscillator cycles)
and PWRT (optional 72 ms) delays occur as in the HS
mode. When the PLL is enabled, an additional 2 ms
delay is added to allow the Phase Locked Loop (PLL)
to lock to the crystal frequency and stabilize.

HS/PLL mode uses a PLL to multiply the oscillator fre-
quency by 4, providing an output up to 40 MHz to the
instruction clock divider. This is divided to produce the
Q clocks, resulting in the 10 MHz instruction clock rate.

When waking from SLEEP, the OST and 2 ms PLL
delays are required for the oscillator and PLL to restart
in HS/PLL mode.

CLOCK SWITCHING

The PIC18C442 now allows use of the Timer1 oscilla-
tor in place of the system oscillator. When operating
from the Timer1 oscillator, the system oscillator is shut
down as in SLEEP mode, and will require the same
delays to restart as when waking from SLEEP. This
allows continued operation at very low speed (Fcycle =
32 kHz/4 = 8 kHz), with power consumption almost as
low as SLEEP mode. Clock switching is possible
between any system oscillator mode and the Timer1
oscillator. However, the system oscillator mode cannot
be changed.

Both of the following conditions must be met to allow
clock switching:

• The Timer1 oscillator must be enabled by setting
the T1OSCEN bit in T1CON<3>.

• Clock switching must be enabled by clearing the
OSCSEN bit in CONFIG1H<5>.

Note: Bits not defined in the PIC16C74A should
not be modified in the PIC18C442 until the
effects of these changes are known.

Note 1: Even though compatible devices are
tested to the same electrical specifica-
tions, the device characteristics may have
changed due to changes in the manufac-
turing process. These differences should
not affect systems that were designed well
within the device specifications. For sys-
tems that operate close to or outside the
specification limits, manufacturing differ-
ences may cause the device to behave
differently.

Author: Brett Duane
Microchip Technology Inc.

Note 2: Oscillator operation should be verified to
ensure that it starts and performs as
expected. Adjusting the loading capacitor
values and/or the oscillator mode may be
required.
 1999 Microchip Technology Inc. Preliminary DS00716A-page 2-131

AN716

S2.book Page 132 Thursday, March 2, 2000 8:02 AM
The actual clock switching is performed by operating
the SCS bit, OSCCON<0>. Clearing the SCS bit
causes the controller oscillator to be used for the con-
troller clock, while setting the SCS bit causes the
Timer1 oscillator to be used.

Peripherals that depend on the system clock for timing
will be affected by the change in clock frequency.

INSTRUCTION CHANGES

When migrating code from midrange to enhanced con-
trollers, the user must become aware of changes to the
instruction set and make appropriate changes to their
code. Usually, this requires examining the points in the
code where program execution branches, depending
on the state of a STATUS bit. Sometimes new instruc-
tions can simplify existing code.

Appendix C lists instructions for which status bit opera-
tion has changed from the PIC16C74A to the
PIC18C422. Table C-1 lists the instructions that are
carried over from the PIC16C74A, but generally affect
new status bits. Table C-2 lists the instructions that
were not carried over, and provides replacement
instructions. Table C-3 lists new instructions, the status
bits they affect or detect, and a short description of
what the instruction does.

RAM

In the PIC16C74A, all variables and Special Function
Registers (SFR’s) are stored in two banks. Each bank
can provide up to 128 addresses. The first 32 locations
in each bank are reserved for SFR’s while the remain-
der is used for GPR’s in RAM.

The PIC18C442 data memory is grouped into banks of
256 bytes each. All SFR’s are contained in bank 15.
The PIC18C442 can store all variables in bank 0 with
the same addresses used in the PIC16C74A.
Addresses should be 12-bits long, and have the form
“0x0nn” (the first 4 bits are always 0 for bank 0,
nn = address used in the PIC16C74A).

The BANKSEL directive and banking instructions of the
PIC16C74A are no longer required in the PIC18C442,
as all data variables can be stored in bank 0. Refer-
ences to the BANKSEL directive can be commented
out, removed, or left in place “as is”. As data memory
requirements grow, either the BANKSEL directive or
firmware can modify the BSR to select the correct
bank.

1. Ensure that all RAM variables have 12-bit
addresses assigned to them, and are located in
bank 0.

2. When the code clears STATUS bits RP1 and
RP0 for the first time, replace these lines with
clrf BSR.

3. Comment out or remove all other references to
RP0 or RP1.

4. Comment out or remove all references to the
BANKSEL directive (optional).

Access banking is automatically used when an oper-
and has a 12-bit address below 0x080 (GPRs in the
bottom half of bank 0), or at and above 0xF80 (SFRs in
the top half of bank 15). When accessing operands in
the access bank range (0x000–0x07F or 0xF80–
0xFFF), the BSR is ignored. Addresses in the lower half
of the access range access bank 0, while addresses in
the upper half of the access range access bank 15.

In the PIC16C74A, SFRs were contained in the lower
32 locations of each bank. In the PIC18C442, all SFRs
are located in the top portion of bank 15, and have
12-bit addresses assigned to them (0xF80 to 0xFFF).
When accessing the SFRs, their symbolic names
should be used. Access banking will ignore the BSR
and automatically select bank 15 to access SFRs. Most
SFR names are unchanged or very similar to those in
the PIC16C74A. (See Appendix A.)

The FSR register is replaced by the register pair
FSR0H:FSR0L, and contains the entire 12-bit address
required to access any SFR or GPR in any bank.
Change FSR to FSR0L. FSR0H should be cleared.
Use INDF0 as the operand in instructions to access the
register or RAM selected by FSR0. The practice of
using FSR0 to access SFR’s is discouraged. Direct
addressing using the SFR name uses less code and is
easier to maintain.

1. If the FSR is used to access SFRs, replace the
corresponding INDF operand with the SFR
name.

2. Replace all bsf STATUS,IRP instructions and
bcf STATUS,IRP instructions with clrf
FSR0H.

3. Replace all occurrences of BANKISEL var-
name with clrf FSR0H.

4. Change FSR to FSR0L.

5. Change INDF to INDF0.

If FSR0L is incremented or decremented using INCF or
DECF instructions beyond 8 bits, FSR0L will roll over,
and the STATUS bits will be affected accordingly.
FSR0H will not be affected by the rollover (see
Example 1).

EXAMPLE 1: INCREMENTING FSR0L
AND OVERFLOW

clrf FSR0H ; clear FSR0H
movlw 0xFF
movwf FSR0L ; load FSR0L with max

; 8-bit count
incf FSR0L, F ; FSR0L incremented to 0x00

; STATUS,C=1 STATUS,Z=1
; FSR0H=0x00 (no change)
DS00716A-page 2-132 Preliminary 1999 Microchip Technology Inc.

AN716
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 133 Thursday, March 2, 2000 8:02 AM
PROGRAM MEMORY

The PIC16C74A uses a 13-bit program counter to
address program memory words. The PIC18C442
uses a 21-bit program counter to address program
memory bytes and counts by two when fetching pro-
gram instructions. Attempts to write a 1 to PCL<0> will
result in PCL<0>=0. Therefore, the program counter
will always access program memory with the address
LSb always set to 0.

Writing to PCL will cause PCLATH and PCLATU to be
written to PCH and PCU, respectively, as in the
PIC16C74A. However, a read of PCL will update
PCLATH and PCLATU from PCH and PCU.

The CALL and GOTO instructions contain all the
addressing information required. Manipulation of
PCLATH to prepare for jumps is not required, and will
have no practical effect. Such code may be left in the
program, commented out, or removed.

Instructions with $

Occasionally, programmers will use a ‘$’ symbol to indi-
cate the program address of the current opcode. ‘$’ by
itself still functions as before. However, since the pro-
gram counter now addresses bytes instead of words,
any offsets added to ‘$’ need to be doubled to refer to
the correct address (see Example 2).

EXAMPLE 2: $ OFFSETS DOUBLED

RETLW Tables

Computed GOTO subroutines for RETLW tables will
require modifications to the way the table offset is com-
puted before the table is called, or modification of the
offset within the table subroutine. Since a computed
goto causes a jump to a retlw instruction, PCL <0>
must be 0. This requires the offset to be doubled to
jump to the correct location in the table.

Example 3 shows a way to modify the table subroutine
to support a 256 entry table (offset = 0 to 255) without
having to consider how the table was called, or possible
code page boundary issues. One temporary RAM loca-
tion and a label at the start of the table entries are
required.

EXAMPLE 3: MODIFIED ROUTINE TO SUPPORT 256 ENTRY TABLE

goto $-6 ; replaces goto $-3
goto $+0x2E ; replaces goto $+0x17

movf OFFSET,w ; OFFSET=0x00 to 0xFF
call table
...

ORG 0x3C0
table movwf taboff ; save table offset

bcf STATUS,C ; clear STATUS bit
rlcf taboff,F ; multiply by 2, save in taboff

movlw HIGH(tab_st1) ; get high byte of table start
btfsc STATUS,C ; test carry bit
incf WREG,W
movwf PCLATH ; modify PCLATH if required

movlw LOW(tab_st1) ; get low byte of table address
addwf taboff,W ; add in offset
btfsc STATUS,C ; test for overflow
incf PCLATH,F ; increment if needed
movwf PCL ; make jump, PCLATH and PCLATU are

: written to PCH and PCU

tab_st1 retlw 0x00 ; table body, first entry, offset=0
retlw 0x01 ; (256 entry, 256 word/512 byte)
...
...
 1999 Microchip Technology Inc. Preliminary DS00716A-page 2-133

AN716

S2.book Page 134 Thursday, March 2, 2000 8:02 AM
TABLES IN PROGRAM MEMORY

Computed GOTOs using RETLW tables can be per-
formed on the PIC18C442, but this allows only one byte
of data to be stored in each program memory instruc-
tion (16-bits), and limits the table size to 256 entries.

Table operations allow two 8-bit bytes of data to be
stored in each program memory word, doubling table
data density. There is no limit to the number of table
entries, up to the maximum program memory. Program
memory can also be read to calculate a program
checksum to verify program integrity.

Table Reads

A 21 bit table pointer to program memory is loaded with
the address of the data byte to be read. This pointer is
stored in TBLPTRU<4:0>, TBLPTRH<7:0>, and
TBLPTRL<7:0>. A TBLRD* instruction causes the data
at that address to be placed into TABLAT where the
program can use it as data.

TBLPTRU<4:0>, TBLPTRH<7:0>, and TBLPTRL<7:0>
are SFRs in memory space. TBLPTRL<0> need not
always be 0 as with PCL<0>. The TBLPTR group of
registers can be automatically incremented or decre-
mented using variations of the TBLRD* instruction.
Table 1 shows the instructions and their effects on
TABLAT and TBLPTR. Pointer increment/decrement
operations affect all 21 bits of the TBLPTR registers.

TABLE 1: TABLE READ INSTRUCTIONS
AND EFFECTS ON THE TABLE
POINTER

Steps for Table Reads

The steps to perform a table read from program mem-
ory are:

1. Set the table pointer to the desired byte address.
(TBLPTR may be even or odd as required.)

2. Execute a TBLRD instruction.

3. Read the byte retrieved from program memory
in TABLAT.

Code for Table Reads

An example of table read code is shown in Example 4.

EXAMPLE 4: TABLE READ CODE

Instruction Effects

TBLRD* Places copy of program memory
byte in TABLAT

TBLRD*+ Places copy of program memory
byte in TABLAT
Increments TBLPTR after read

TBLRD*- Places copy of program memory
byte in TABLAT
Decrements TBLPTR after read

TBLRD+* Increments TBLPTR before read
Places copy of program memory
byte in TABLAT

RdStr movlw HIGH(string)
movwf TBLPTRH ; load high byte of pointer (0x12)
movlw LOW(string)
movwf TBLPTRL ; load low byte of pointer (0x34)

read tblrd*+ ; read byte from program memory,
; and increment pointer one byte

movff TABLAT,PORTB ; move byte from table latch to output port B

tstfsz TABLAT ; was retrieved byte a null?
goto read ; no, do loop again

return

ORG 0x1234
String DW "This is a test.",0x00 ; text string
DS00716A-page 2-134 Preliminary 1999 Microchip Technology Inc.

AN716
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 135 Thursday, March 2, 2000 8:02 AM
INTERRUPTS

The PIC18C442 resets with the interrupt structure in a
PIC16C74A compatible mode. The interrupt vector ori-
gin has been changed from 0x0004 in the PIC16C74A
to 0x0008 in the PIC18C442.

Interrupt Pins

The RB0/INT pin on the PIC16C74A has been
renamed to RB0/INT0. The PIC18C442 offers 2 addi-
tional interrupt pins. RB1 and RB2 have been renamed
RB1/INT1 and RB2/INT2 to support the additional
interrupt functions.

Interrupt Handling Registers

The INTCON register is mostly unchanged. Bits INTE
and INTF are renamed INT0IE and INT0IF, respec-
tively.

The INTCON2 register contains bits that determine
which edge of INT0, INT1, and INT2 will trigger inter-
rupts. Interrupt priority for Timer0 and PORTB Inter-
rupt-on-change is set in INTCON2. PORTB weak pull-
up resistors are controlled here.

The INTCON3 register contains INT1 and INT2 inter-
rupt enable bits, the interrupt flag bits, and interrupt pri-
ority bits.

Interrupt flag bits located in PIR1 have interrupt enable
bits in PIE1 and interrupt priority bits in IPR1. The same
is true for PIR2, PIE2, and IPR2.

1. Change the interrupt vector origin from 0x0004
to 0x0008.

2. Rename INT bit to INT0, INTF to INT0IF, and
INTE to INT0IE.

3. Change OPTION, NOT_RBPU to INTCON2,
NOT_RBPU.

4. Change OPTION, INTEDG to INTCON2,
INTEDG0.

INT0 is always a high priority interrupt. The interrupt
enable bit, INT0IE, and interrupt flag bit, INT0IF, are
located in the INTCON register.

With respect to interrupt control, all other register and
bit names, and bit locations in the PIC16C74A are
unchanged in the PIC18C442.

Interrupt Priority

The PIC18C442 also offers 2 levels of interrupt priority,
each with its own interrupt vector. Interrupts assigned
high priority take the high priority interrupt vector at
0x0008, while interrupts assigned low priority take the
low priority interrupt vector at 0x0018. Interrupt priority
is enabled by setting IPEN, RCON<7> (Interrupt Prior-
ity Enable).

When IPEN is clear, all interrupts are considered high
priority and take the high priority vector. This is the pri-
ority mode compatible with the PIC16C74A.

When IPEN is set, interrupt priority is enabled. The
functions of GIE, INTCON<7> and PEIE, INTCON<6>
are modified. GIE becomes GIEH (Global Interrupt
Enable High) and PEIE becomes GIEL (Global Inter-
rupt Enable Low). If GIEL is clear, all low priority inter-
rupts are disabled. If GIEH is clear, all high and low
priority interrupts are disabled.

Each interrupt source has an associated interrupt prior-
ity bit to set its priority. When set, interrupt priority is
high. When clear, interrupt priority is low. If an interrupt
source has an interrupt flag bit in PIR1 or PIR2, corre-
sponding interrupt priority bits will be located in IPR1 or
IPR2. The remaining priority bits are located in
INTCON2 and INTCON3.

The interrupt priorities for Timer0 and RBIF are set
using TMR0IP, INTCON2<2> and RBIP, INTCON<2>.
Interrupt priorities for the INT1 and INT2 pins are set
using INT1IP, INTCON3<6> and INT2IP, INTCON3<7>.
Clearing these bits will select low priority interrupts.

The interrupt enable bits for INT1 and INT2 are set
using INT1IE, INTCON3<3>, and INT2IE,
INTCON3<4>. The corresponding interrupt flag bits are
INT1IF, INTCON3<3> and INT2IF, INTCON3<4>.

Return Address Stack

The PIC18C442 stack has a 31 level stack instead of
the 8 level stack in the PIC16C74A. The PIC18C442
also allows access to the stack pointer, stack error bits,
and top-of-stack contents. PUSH and POP instructions
have been added to manipulate the stack contents and
stack pointer

The PIC16C74A stack is 8 levels deep, and functions
as a circular buffer. Pushes beyond the 8th push over-
write the 1st push, 2nd push, etc. Pops beyond the 1st
push begin returning the 8th push, 7th push, etc. There
is no indication of the state of the stack. The stack con-
tents are not available to the program.

The PIC18C442 stack is 31 levels deep, and functions
as a linear buffer. The 31st push will set the stack over-
flow status bit STKFUL, STKPTR<7>. The 32nd push
will overwrite the 31st push. All pops beyond the 1st
push return 0x0000, set the stack underflow status bit
STKUNF, STKPTR<6>, and restarts the program (but
does not reset the device). Optionally, a device reset
can occur when the stack overflow and underflow
status bits are set (see RESETs.) The STKFUL and
STKUNF bits are reset only by a POR or by software.
This allows the program to respond to stack errors.

When the controller is initialized, the stack pointer
STKPTR contains 0x00, and points to a stack address
that contains 0x00000, which is the RESET vector. A
PUSH or CALL instruction, or an interrupt will increment
the stack pointer to the next higher stack location to
become the new top-of-stack where the PC is then
stored. A return instruction (RETURN or RETFIE) will
move the contents of the top-of-stack to the PC, and
 1999 Microchip Technology Inc. Preliminary DS00716A-page 2-135

AN716

S2.book Page 136 Thursday, March 2, 2000 8:02 AM
decrement the stack pointer. The POP instruction sim-
ply decrements the stack pointer, discarding the con-
tents of the top-of-stack.

The 21-bit top-of-stack can be accessed through the
top-of-stack registers TOSU<4:0>, TOSH<7:0>, and
TOSL<7:0>. The top-of-stack is readable and writable,
allowing data to be stored and retrieved using the
stack.

Fast Register Stack

The fast register stack is a group of registers that saves
the contents of the WREG, STATUS, and BSR registers
every time an interrupt or subroutine call occurs. This
stack is one level deep and is not accessible to the
user. When a return with the fast option
(retfie FAST) is executed, the contents of the fast
register stack are restored back to the WREG,
STATUS, and BSR registers.

Calls may use the Fast Register Stack. A call with the
fast stack option (call label, FAST) saves the
WREG, STATUS, and BSR registers to the fast register
stack. A corresponding return is required to restore
these registers (return FAST).

If interrupts are enabled, the fast register stack cannot
be used for a return from a call. If an interrupt occurs
during a called subroutine, the contents of the fast reg-
ister stack will be replaced by the current WREG,
STATUS, and BSR contents at the time of the interrupt.
After the interrupt returns, the fast register stack will still
contain the WREG, STATUS, and BSR contents from
when the interrupt was executed. If a subroutine should
attempt to return using the fast register stack, an
improper context will be restored.

If interrupt priority is enabled, only high priority inter-
rupts can use the fast register stack. High priority inter-
rupts may interrupt low priority interrupts at any time.

RESETS

The PIC18C442 responds to all the same RESET
sources as the PIC16C74A.

The PCON register has been renamed to RCON. The
TO and PD bits from the STATUS register have been
moved to RCON. All bits retain the same functions in
the PIC18C442 as they had in the PIC16C74A.

Power-On Reset

The PCON register of the PIC16C74A has been
renamed RCON and contains the POR bit. Operation
of the POR bit is unchanged.

Brown-Out Reset

The PCON register of the PIC16C74A has been
renamed RCON and contains the BOR bit. Operation
of the BOR bit is unchanged.

The Brown-out Reset (BOR) module can be configured
as enabled or disabled in the PIC18C442 as in the
PIC16C74A. When BOR is enabled, the Power-up
Timer (PWRT) is also automatically enabled. The state
of the PWRT enable bit, PWRTEN, CONFIG2L<0> is
ignored. However, the PIC18C442 offers four BOR
thresholds instead of one, and is selected using
BORV1:BORV0, CONFIG2L<3:2>. The time that VDD
must remain below VBOR (Parameter D005) has
increased from the PIC16C74A (Parameter 35, TBOR).

1. Change PCON to RCON
2. Change STATUS, NOT_TO to RCON, NOT_TO

3. Change STATUS, NOT_PD to RCON, NOT_PD

4. Select VBOR threshold in configuration
(BORV1:BORV0, CONFIG2L<3:2>)

MCLR

MCLR on the PIC18C442 operates the same as the
PIC16C74A. No changes to the code or circuit are
required.

WDT

In the PIC18C442, the WDT now has its own
postscaler, independent of the Timer0 prescaler. The
WDT is enabled when WDTEN, CONFIG2H<0> is set,
disabled when clear. The WDT postscaler is pro-
grammed using WDTPS2:WDTPS0, CONFIG2H<3:1>
to select a ratio from 1:1 to 1:128.

TO, STATUS<4> and PD, STATUS<3> bits have been
moved to TO, RCON<3> and PD, RCON<2>. The
operation of these bits is unchanged.

If the WDT has been disabled by clearing WDTEN, the
WDT may be enabled under software control by setting
SWDTE, WDTCON<0>, and disabled by clearing this
bit. The WDT postscaler ratio can not be changed.

If the WDT is enabled using WDTEN, then changing
SWDTE will have no effect.

Stack Over/Underflow

The PIC16C74A has an 8 level stack. Once the PC has
been pushed to the stack 8 times, a 9th push would
overwrite the 1st stack location without any errors being
generated. The PIC18C442 uses a 31 level stack.
When the stack is almost full (30 pushes), and another
push occurs, the 31st push sets the STKFUL status bit.
The 32nd push overwrites the 31st push.

Conversely, the stack is empty (all pushes have been
popped) and another pop occurs, the STKUNF bit is set
and the PC is loaded with the RESET vector address.
This does not reset the controller, but does restart the
code.
DS00716A-page 2-136 Preliminary 1999 Microchip Technology Inc.

AN716
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 137 Thursday, March 2, 2000 8:02 AM
The device can be configured to perform a reset when
either the STKFUL or STKUNF bits are set. Setting
SVTREN, CONFIG4L<0> will allow the stack error bits
to reset the controller. The STKFUL and STKUNF bits
are cleared only by a POR or by software. A reset
caused by a stack error will not clear these bits. To
determine the cause of this reset, the user will have to
poll the STKFUL and STKUNF bits and clear them
when taking corrective action.

RESET Instruction

The PIC18C442 offers a RESET instruction. This
instruction performs a device reset similar to a MCLR
reset. All peripherals are reset and program execution
resumes from the reset vector.

The RCON register contains the RI bit. The RI bit is set
by POR, BOR, and WDT resets, and is cleared by the
RESET instruction. The TO, PD, BOR, and POR bits are
unaffected. By polling the RI bit, RCON<4>, the reason
for this reset can be determined.

TIMER0

The PIC18C442 Timer0 resets to a mode identical to
the PIC16C74A. The Timer0 count is read and written
using TMR0L instead of TMR0. The OPTION_REG
register has been renamed T0CON.

The PSA bit, T0CON<3>, now only enables the Timer0
prescaler when clear, and disables the Timer0 pres-
caler when set (same effect as in the PIC16C74A with
respect to Timer0).

If a different Timer0 prescaler ratio is required,
PS2:PS0, OPTION<2:0> has been replaced by
T0PS2:T0PS0, T0CON<2:0>, which functions identi-
cally with respect to Timer0.

Timer0 will set its interrupt flag bit (T0IF) when TMR0L
overflows (same as when Timer0 overflows in the
PIC16C74A).

The WDT and its postscaler are unaffected by settings
in T0CON. See the section on the WDT.

The RBPU bit, OPTION<7>, has been renamed and
moved to RBPU, INTCON2<7>. INTEDG, OPTION<6>
has been renamed and moved to INT0EDG,
INTCON2<6>.

The changes required in code are:

1. Rename and move OPTION, NOT_RBPU to
INTCON2, NOT_RBUP.

2. Rename and move OPTION_REG, INTEDG to
INTCON2, INTEDG0.

3. Change OPTION_REG to T0CON.

4. Rename PS2:PS0 to T0PS2:T0PS0.

5. Operations modifying PS2:PS0 and PSA for the
WDT are commented out. Modify CONFIG2H
instead.

6. Timer0 reads/writes use TMR0L instead of
TMR0.

Timer0 can operate as a 16-bit timer by clearing
T08BIT, T0CON<6>. In this mode, TMR0H is written to
the Timer0 high byte when TMR0L is written. TMR0H
is updated from the Timer0 high byte when TMR0L is
read. Timer0 interrupts will occur when Timer0 (in
16-bit mode) rolls over from 0xFFFF to 0x0000.

TIMER1

The PIC18C442 Timer1 module is upwardly compati-
ble with the PIC16C74A Timer1 module.

When RD16, T1CON<7> is set, a read of TMR1L
causes TMR1H to be updated from the Timer1 high
byte. A write to TMR1L will cause the Timer1 high byte
to be updated from TMR1H. In this mode, the user does
not have to check to see if the low byte rolled over while
reading the high byte, or stop the timer when loading it.

The Timer1 oscillator of the PIC18C442 is functionally
identical to the PIC16C74A Timer1 oscillator. However,
due to process changes, operation of the Timer1 oscil-
lator should be verified to operate as expected.

TIMER2

The Timer2 module of the PIC18C442 is identical to the
Timer2 module of the PIC16C74A. No code changes
are required.

TIMER3

The PIC18C442 provides a fourth timer not present in
the PIC16C74A. This timer is identical to Timer1 as
implemented in the PIC18C442. Both timers can serve
as a timebase for the CCP capture and compare func-
tions, and may use the Timer1 oscillator. Both may be
reset by the CCP compare special event trigger.

CAPTURE/COMPARE/PWM

The capture, compare, and PWM functions of the
PIC16C74A are fully compatible with the PIC18C442.
No code changes or circuit modifications are required.

The PIC18C442 CCP module offers an extra mode not
present in the PIC16C74A. The compare mode can
toggle the CCP output pin on a match.

Note: Even though the user has made no
changes to the Timer1 oscillator circuit,
oscillator operation should be verified to
ensure that it starts and performs as
expected. Adjusting the loading capacitor
values may be required.
 1999 Microchip Technology Inc. Preliminary DS00716A-page 2-137

AN716

S2.book Page 138 Thursday, March 2, 2000 8:02 AM
A/D

The A/D module on the PIC18C442 resets to the same
state as in the PIC16C74A. Code written for the
PIC16C74A will run with only one change on the
PIC18C442. Because the PIC18C442 has a 10-bit A/D
module, two 8-bit registers are now required to make
the 10-bit result available. ADRES has been renamed
to ADRESH, and will contain the 8 MSb of the result. As
long as the user treats the ADCON0 and ADCON1 reg-
isters as if they were part of the PIC16C74A, the A/D
module will function the same as in the PIC16C74A.

A new register and three new bits in ADCON1 offer
some enhanced features over the PIC16C74A.
ADRESL holds the additional bits of the 10-bit conver-
sion result. ADFM, ADCON1<7> controls the justifica-
tion of the 10-bit result in ADRESH:ADRESL. If the
user wishes to use an 8-bit result, clear bit ADFM
(RESET state, compatible with the PIC16C74A), and
the 8 MSbs are placed in ADRESH. The remaining 2
bits are stored in ADRESL<7:6>. Bits ADRESL<6:0>
will be cleared. This format allows the user to use the
8-bit result in ADRESH in 8-bit math operations.

If the user wishes to make use of all 10 bits, set bit
ADFM. The 8 LSb are stored in ADRESL<7:0> and the
2 MSbs of the result are stored in ADRESH<1:0>. Bits
ADRESH<7:2> are cleared. This format is useful for
taking the 10-bit result from ADRESH:ADRESL, and
using it “as is” in 16-bit math operations.

The instruction clock can now run at 10 MHz (100 nS)
when a 10 MHz oscillator drives the PLL. The clock
sources available in ADCS1:ADCS0, ADCON0<7:6>
do not allow TAD to be set to a minimum of 1.6 µSec
with such high clock speeds. A third A/D clock select bit
is provided in ADCS2, ADCON1<6>. When ADCS2 is
set, the instruction clock is divided by 2 allowing TAD to
be set correctly. The internal A/D RC oscillator is not
affected.

The user can use an external voltage reference for the
A/D conversion in the PIC16C74A and the PIC18C442.
The PIC18C442 also allows the use of a low reference
voltage. Depending on the setting of PCFG3:PCFG0,
ADCON1<3:0>, the user can select as references the
controller supply and ground, an external high refer-
ence and the controller ground, or external high and
low references.

The references can not exceed the controller supply
rails, but can modify the conversion range by introduc-
ing a positive offset, and reducing the full scale input
voltage. Check the electrical specifications for limits on
the reference voltages (Parameters A20, A20A, A21,
A22, and A25).

Example 5 shows how to initialize the A/D module.

EXAMPLE 5: A/D SETUP

USART

The PIC16C74A USART is upwardly compatible with
the PIC18C442 USART. No code changes are
required.

The USART can monitor the serial data in 9-bit mode.
Setting the ADDEN, RCSTA<3> bit causes the USART
to generate an interrupt only when the 9th received
data bit is set, instead of every time a new data byte has
been received. RCREG is unchanged until the 9th bit is
set. When set, RCREG is loaded with the received
address.

This is useful for networks that indicate that the other 8
bits are a device address by setting the 9th bit. When
the 9th bit is clear, data is being sent.

SSP

SSPCON has been renamed SSPCON1. Otherwise,
the PIC16C74A SSP module is upwardly compatible
with the PIC18C442 MSSP module.

SPI Mode

The PIC16C74A SSP module is fully compatible with
the PIC18C442 with respect to SPI mode. No changes
to code are required.

This example shows how to initialize the A/D module
for the following conditions:

AN0 may be anywhere in the range of 0.5V to 3.5V.
The input is currently at 2.296V. The controller is
using an 8 MHz oscillator and the PLL. A 10-bit result
is desired for use in 16-bit calculations.

The clock source is selected by setting
ADCS2:ADCS0 to B“110”:

ADCS2 = B“1”, ADCS1:ADCS0 = B“10”.

The 32 MHz PLL output is divided by 64 to produce a
2.0 µSec TAD.

The port is configured to make AN0 and AN1 analog
inputs, AN2 as the low reference (VREF-) and AN3 as
the high reference (VREF+) by setting PCFG3:PCFG0
to B“1101”. 3.5V is applied to AN3, and 0.5V to AN2.
These references will apply to all conversions on all
channels.

The ADFM bit is set to select right justification of the
result.

The AN0 channel is selected by setting CHS2:CHS0
to B“000”, and the conversion started by setting the
GO/DONE bit, ADCON0<2>. When the GO/DONE bit
clears, ADRESH:ADRESL will contain 0x0265.
DS00716A-page 2-138 Preliminary 1999 Microchip Technology Inc.

AN716
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 139 Thursday, March 2, 2000 8:02 AM
I2C Mode

The PIC16C74A SSP module is upwardly compatible
with the PIC18C442 MSSP module. No changes to
code are required for conversion.

The SSP module used in the PIC16C74A provides lim-
ited support for master mode I2C. The MSSP module is
used in the PIC18C442, and supports I2C master and
multi-master modes in hardware.

Master mode has been added. SSPCON2 has been
added to support hardware master modes. Slave mode
now provides general call support.

Master Mode

The master SSP module (MSSP) supports master
mode I2C in hardware through the use of SSPCON2.
Arbitration for multi-master operation is provided. The
baud rate generator is used to generate SCL.

In the PIC16C74A, master mode was implemented in
software that monitored and controlled the SCL and
SDA pins. Start (S) and stop (P) bit interrupts where
provided by SSP hardware.

The PIC18C442 still supports such operation without
code changes. However, master and multi-master
modes are now provided by hardware.

When master mode is selected (SSPM3:SSPM0,
SSPCON1<3:0> = B“1011”), and SSPEN,
SSPCON1<5> is set, the SSP module will control SCL
and SDA. Data and slave addresses (7-bit or 10-bit)
with R/W bit are sent in SSPBUF, and the baud rate is
set in SSPADD<6:0>.

Only one operation can be completed at a time. Each
operation must complete before the next can be
started. Successful completion is indicated by setting
SSPIF when the SSP module is becomes idle. Opera-
tions are start, repeated start, stop, sending 1 byte of
data, receiving 1 byte of data, and sending an ACK/
NACK. If an attempt is made to program the next oper-
ation before the module becomes idle, the program-
ming is ignored, the WCOL status bit, SSPCON1<7>,
is set and SSPIF remains clear. WCOL is cleared by
software. If the bus was busy, BCLIF, PIR2<3>, is set
generating an interrupt.

Slave General Call Support

Slave general call support is enabled by setting
GCEN, SSPCON2<7>. When an address match
occurs (either slave address, or the general call
address of 0x00 when GCEN is set), several actions
occur.

• The received address is placed in the SSPBUF
register

• The BUFFER FULL status bit BF, SSPSTAT<0>,
is set

• An ACK pulse is generated

• An interrupt is generated by setting
SSPIF, PIR1<3>

When the interrupt is serviced, SSPBUF must be read
to determine if the interrupt was generated by a slave
or general call address match.

When the slave is configured for 10-bit addresses with
GCEN set, and the general call address is detected,
the UA, SSPSTAT<1> bit will not be set. Instead, the
slave will begin receiving data after the ACK is sent.

CONCLUSION

Conversion of a PIC16C74A application to run on a
PIC18C442 consists of the following:

• Checking to make sure that the main and Timer1
(if used) oscillators work as expected

• Placing variables into bank 0 and assigning 12-bit
addresses

• Modifying computed goto subroutines for read-
ing tables

• Modifying the names and locations of bits and
registers

• If the Brown-out Reset is enabled, select a BOR
threshold

If desired, the user can make use of additional features
offered by the PIC18C442. These are:

• Additional system oscillator modes

• System clock switching for reduced power
requirements

• Additional memory (program and data)

• Data retrieval using program memory

• Additional interrupt pins

• Interrupt priority
• Stack access and status

• Optional stack error reset

• Fast register stack to save and restore context

• RESET instruction

• Timer0 operates as an 8 or 16-bit timer/counter

• A fourth timer, Timer3, that duplicates Timer1
• A 10-bit A/D module

• Full I2C master mode
 1999 Microchip Technology Inc. Preliminary DS00716A-page 2-139

AN716

S2.book Page 140 Thursday, March 2, 2000 8:02 AM
APPENDIX A: CHANGED REGISTER/BIT LOCATIONS/NAMES

TABLE A-1: CHANGED REGISTER/BIT LOCATIONS/NAMES

APPENDIX B: CODE CHANGES

PIC16C74A PIC18C442
Notes

Register Bit Register Bit

OPTION_REG NOT_RBPU INTCON2 NOT_RBPU

OPTION_REG INTEDG INTCON2 INTEDG0

OPTION_REG T0CS T0CON T0CS

OPTION_REG T0SE T0CON T0SE

OPTION_REG PSA T0CON PSA WDT has own postscaler. Enabled using
WDTEN, CONFIG2H<0>

OPTION_REG PS2 T0CON T0PS2 WDT postscaler set using WDTPS2, CONFIG2H<3>

OPTION_REG PS1 T0CON T0PS1 WDT postscaler set using WDTPS1, CONFIG2H<2>

OPTION_REG PS0 T0CON T0PS0 WDT postscaler set using WDTPS0, CONFIG2H<1>

PCON NOT_POR RCON NOT_POR

PCON NOT_BOR RCON NOT_BOR

STATUS NOT_TO RCON NOT_TO

STATUS NOT_PD RCON NOT_PD

INDF — INDF0 —

FSR — FSR0L —

TMR0 — TMR0L —

SSPCON — SSPCON1 —

ADRES — ADRESH —

; PIC18C442 code ; replaced PIC16C74A code

clrf BSR ; bcf STATUS,RP0
; bcf STATUS,RP1
; (first occurrence only)
; (otherwise comment out or remove)

movf INDF0,w ; movf INDF,w
movf TMR0L,w ; movf TMR0,w
movf FSR0L,w ; movf FSR,w
movf SSPCON1,w ; movf SSPCON,w
movf ADRESH,w ; movf ADRES,w

movf T0CON,w ; movf OPTION_REG,w (TIMER0 OPERATIONS ONLY)
movf RCON,w ; movf PCON,w
DS00716A-page 2-140 Preliminary 1999 Microchip Technology Inc.

AN716
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 141 Thursday, March 2, 2000 8:02 AM
APPENDIX C: INSTRUCTION CHANGES FROM PIC16C74A TO PIC18C442

TABLE C-1: DIFFERENCES IN STATUS BIT OPERATION

TABLE C-2: INSTRUCTIONS NO LONGER SUPPORTED

Instruction
STATUS Bits

Notes
16C74A 18C442

ADDLW C, DC, Z C, DC, Z, OV, N

ADDWF C, DC, Z C, DC, Z, OV, N

ANDLW Z Z, N

ANDWF Z Z, N

COMF Z Z, N

DECF Z C, DC, Z, OV, N

INCF Z C, DC, Z, OV, N

IORLW Z Z, N

IORWF Z Z, N

MOVF Z Z, N

RETFIE GIE GIE/GIEH, PEIE/GIEL Interrupt priority modifies names and functions of
these bits

RLF C, DC, Z C, Z, N Rotate left using carry bit

RRF C, DC, Z C, Z, N Rotate right using carry bit

SUBLW C, DC, Z C, DC, Z, OV, N

SUBWF C, DC, Z C, DC, Z, OV, N

XORLW Z Z, N

XORWF Z Z, N

Legend: STATUS bits in Bold are affected in code conversion from PIC16C74A to PIC18C442

16C Instructions 16C STATUS Bits Work-Around

CLRW Z Use CLRF WREG instead

Legend: STATUS bits in Bold are affected in code conversion from PIC16C74A to PIC18C442
 1999 Microchip Technology Inc. Preliminary DS00716A-page 2-141

AN716

S2.book Page 142 Thursday, March 2, 2000 8:02 AM
TABLE C-3: NEW PIC18C442 INSTRUCTIONS

Instructions STATUS Bits Notes

ADDWFC C, DC, Z, OV, N Add WREG, F, and carry bit

BC Conditional branch depending on carry STATUS bit

BN Conditional branch depending on negative STATUS bit

BNC Conditional branch depending on carry STATUS bit

BNN Conditional branch depending on negative STATUS bit

BNOV Conditional branch depending on overflow STATUS bit

BNZ Conditional branch depending on zero STATUS bit

BOV Conditional branch depending on overflow STATUS bit

BRA Unconditional branch

BTG Toggle bit b of file f

BZ Conditional branch depending on zero STATUS bit

CPFSEQ Branch depending on result of unsigned subtraction

CPFSGT Branch depending on result of unsigned subtraction

CPFSLT Branch depending on result of unsigned subtraction

DAW C Decimal Adjust WREG

DCFSNZ Decrement file, skip next instruction if result is not zero

INFSNZ Increment file, skip next instruction if result is not zero

LFSR Move literal to file pointed to by FSR

MOVF Z, N Move file f

MOVFF Move any file to any file

MOVLB Move literal to BSR (Bank Select Register)

MULLW Multiply literal with WREG

MULWF Multiply WREG with file

NEGF C, DC, Z, OV, N 2’s complement, toggles sign of 8-bit signed data

POP Discard top of stack, decrement stack pointer

PUSH Increment stack pointer, copy PC to top of stack

RCALL Call subroutine at offset

RESET ALL Reset controller

RLNCF Z, N Rotate left without using carry bit

RRNCF Z, N Rotate right without using carry bit

SETF Set all bits of file

SUBFWB C, DC, Z, OV, N WREG - f with borrow (carry)

SUBWFB C, DC, Z, OV, N f - WREG with borrow (carry)

TBLRD Read byte from table in program memory

TBLWT Write byte to table in program memory

TSTFSZ Test file, skip next instruction if file=0
DS00716A-page 2-142 Preliminary 1999 Microchip Technology Inc.

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 143 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

This application note demonstrates the use of a
PIC17C756A microcontroller (MCU) in a brush-DC ser-
vomotor application. The PIC17CXXX family of micro-
controllers makes an excellent choice for cost-effective
embedded servomotor control applications. Some of
the benefits of the PIC17CXXX MCU family include fast
instruction cycle execution (up to 120 ns), an 8 x 8
hardware multiplier, and many useful hardware periph-
erals. The application hardware is shown in Figure 1.

FIGURE 1: DC SERVOMOTOR
APPLICATION HARDWARE

SYSTEM OVERVIEW

A block diagram of the servomotor system is provided
in Figure 2. The system is comprised of the following
elements:

• PIC17C756A MCU
• RS-232 Interface

• Power Amplifier

• Brush-DC Motor & Rotary Encoder

The MCU is responsible for communications with the
host system, measuring the motor position, calculating
the compensation algorithm and motion profile, and
producing the drive signal sent to the power amplifier.

An RS-232 interface is the primary means of communi-
cation with the MCU. One of the two available USARTs
on the MCU is used for this purpose. The operation of
the motor is controlled and monitored from a host sys-
tem using ASCII commands.

One of the three available pulse-width modulation
(PWM) modules on the MCU is used to generate the
motor drive signal. The PWM frequency is 32.2 kHz at
a device operating frequency of 33 MHz and the mod-
ule provides 10 bits of resolution. The torque applied to
the motor is determined by the PWM duty cycle. The
PWM signal is connected to a ‘H’-bridge power ampli-
fier capable of delivering up to 3A to the DC motor.

A Pittman Inc. 9234 series motor is used in this design.
The motor has a no-load speed of 6151 RPM at 24
volts input and a torque constant of 5.17 oz-in/A (with-
out gearbox). The peak stall current is 8.11A. A 5.9:1
ratio gearbox is installed on the output shaft.

A Hewlett Packard HEDS-9140 rotary optical encoder
is mounted on the rear of the motor with a 500 count-
per-revolution (CPR) encoder wheel mounted on the
shaft. The encoder provides two pulse outputs that are
in phase quadrature and a third index output that can
be used to align the motor shaft to a reference position.

To save space, a stackable printed circuit board (PCB)
system was designed that allows two PCBs to be
mounted on top of the motor (see Figure 1). The bot-
tom PCB contains a 5V regulator, motor driver, encoder
interface, and limit switch buffer circuitry. The upper
PCB contains the PIC17C756A MCU, crystal, RS-232
interface, and reset button.

HARDWARE DESCRIPTION

The design makes extensive use of the hardware
peripherals available on the PIC17C756A. The periph-
erals used in this application are summarized in
Table 1.

A complete schematic diagram for the application is
given in Appendix A.

Author: Stephen Bowling
Microchip Technology Inc.
Brush-DC Servomotor Implementation using PIC17C756A

AN718
 1999 Microchip Technology Inc. DS00718A-page 2-143

AN718

S2.book Page 144 Thursday, March 2, 2000 8:02 AM
TABLE 1: PIC17C756A PERIPHERAL
USAGE FOR DC SERVOMOTOR
APPLICATION

FIGURE 2: DC SERVOMOTOR BLOCK DIAGRAM

Peripheral Function

TMR0 Used as a counter to maintain the
incremental up-count from the motor
position encoder

TMR1 PWM1 time-base

TMR2 Servo update time-base

TMR3 Used as a counter to maintain the
incremental down-count from the
motor position encoder

PWM1 Generates drive signal for DC motor

USART1 Terminal communications

I/O Encoder index signal, PWM ampli-
fier enable, limit switch inputs

RS-232
Transceiver

RX

TX

T0CKI

TCLK3

PIC 17C756A MCU

PWM1

Interface

DC Motor/Encoder

V+

Power Amplifier

Position Feedback

Encoder
DS00718A-page 2-144 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 145 Thursday, March 2, 2000 8:02 AM
Motor Position Feedback

Referring to the schematic diagrams (Figure A-1 to
Figure A-3), the outputs of the rotary encoder are con-
nected to 2.7k pull-up resistors, filtered using RC net-
works, and buffered by Schmidt trigger inverters
U5A - U5C. The outputs of the rotary encoder include
two quadrature outputs and a third index output that is
used to align the shaft of the motor to a known refer-
ence position. The conditioned index signal is con-
nected to I/O pin RF0 of the MCU.

The conditioned quadrature outputs from the rotary
encoder are connected to D flip-flops U6A and U6B.
These D flip-flops decode the quadrature pulse train
into up and down pulse outputs. A timing diagram indi-
cating the operation of the decoder circuit is shown in
Figure 3.

A simplified schematic diagram of the encoder inter-
face is shown in Figure 4. The MCU accumulates the
total distance traveled between servo updates based
on the up and down pulse outputs from U6A and U6B.
To accomplish this, Timer0 and Timer3 are configured
as counters with external clock inputs. The output of D
flip-flop U6A (up pulses) is connected to the Timer0
external clock input and the output of D flip-flop U6B
(down pulses) is connected to the Timer3 external
clock input. Each of these timer registers is 16 bits
wide.

Three external logic inputs are provided at connector
J4 on the motor driver PCB and are intended for
mechanical limit switch sensing. These inputs could
also be used to activate certain motor functions. The

inputs are filtered and buffered by U5D – U5F similar to
the encoder interface circuitry. The conditioned limit
switch signals are connected to I/O pins RF1, RF2, and
RF3 of the MCU.

PWM Amplifier

Integrated circuit U1 is an H-bridge driver that uses
DMOS output devices and can deliver up to 3A output
current at supply voltages up to 52V. The device has an
internal charge pump for driving the high-side transis-
tors and dead-time circuitry to prevent cross-conduc-
tion of the output devices. Each side of the bridge may
be driven independently and the inputs are TTL com-
patible. An enable input and automatic thermal shut-
down are also provided. A transient voltage suppressor
is connected across the motor terminals to prevent volt-
age spikes generated by the motor inductance from
damaging the bridge.

The PWM1 output from the MCU is buffered through
inverters U3A, U3B, and U3D and connected to both
sides of the H-bridge driver IC. One side of the bridge
is driven with a inverted PWM signal. By driving the
bridge in this manner, the motor may be turned in either
direction depending on the PWM duty cycle. A 50%
PWM duty cycle will produce zero motor torque. A
100% duty cycle will produce maximum motor torque in
the forward direction, while a 0% duty cycle will pro-
duce maximum motor torque in the opposite direction.

An enable signal from I/O pin RF4 of the MCU is con-
nected to the bridge driver through inverter U3C. This
signal turns the output of the PWM amplifier on or off.

FIGURE 3: ENCODER TIMING

Motor Reverses Direction Here

ENC. CH. A

ENC. CH. B

Up Count

Down Count
 1999 Microchip Technology Inc. DS00718A-page 2-145

AN718

S2.book Page 146 Thursday, March 2, 2000 8:02 AM
FIGURE 4: SIMPLIFIED ENCODER INTERFACE SCHEMATIC

Servo Update Timing

The servo update calculations are performed in an
interrupt service routine and are synchronized with the
output of PWM1. This is desirable because the duty
cycle is updated at multiples of the PWM period. The
PWM1 output is connected to the TCLK12/RB4 pin and
is used as a clock source for Timer2. Timer2 has an
associated period register, PR2. When the value of
Timer2 is equal to the value loaded in PR2, Timer2 is
reset to 0 and an interrupt is generated. By adjusting
the value in PR2, the servo update frequency may be
adjusted to any ratio of the PWM1 output. At a device
operating frequency of 33 MHz, the frequency of
PWM1 is 32.2 kHz. A 3.9 kHz servo update frequency
will be achieved with the value in PR2 set to 8.

RS-232 Transceiver

The TX and RX pins of USART1 are connected to a
Dallas Semiconductor DS275 RS-232 transceiver. The
chip was selected for its small size and because it is
line-powered. The chip uses power from the receive
input to generate the correct RS-232 voltage levels
while transmitting. To save space, RS-232 connections
are made through a RJ-11 connector on the MCU PCB.

Power Supply

Voltage regulator VR1 provides 5 volts to the MCU, RS-
232 driver, interface logic, and the rotary encoder. The
system is designed to operate at any supply voltage
between 10 volts and 24 volts. The supply voltage is
connected directly to the PWM amplifier.

Up

Down

PIC17C756A

ENCODER
A

B

D

C

Q

Q
CLR

PR

D

C

Q

Q

PR

CLR

RA1/T0CKI

RB5/TCLK3

Timer0

Timer3

+5

+5

74HC74

74HC74

U6A

U6B
DS00718A-page 2-146 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 147 Thursday, March 2, 2000 8:02 AM
SOURCE CODE

The source code is written in the C programming lan-
guage for ease of implementation and was compiled
using the MPLAB™-C17 compiler. A complete source
code listing for the application has been provided in
Appendix B.

The source code performs four basic functions:

• RS-232 communication

• Motor position measurement
• Compensator algorithm calculation

• Motion profile calculation

All functions, except the RS-232 communications are
performed in an interrupt service routine.

RS-232 Communications

The DC motor software allows control of the motor
operating mode and parameter changes via a remote
terminal with a RS-232 link operating at 19.2 kbaud. All
RS-232 communication takes place in the main pro-
gram loop. The USART1 reception interrupt flag
(RC1IF) is polled to detect when a character has been
received. Each received character is stored in a buffer,
echoed to the USART, and the buffer index is incre-
mented. This continues until the buffer is full or a
<CR> is received. After a <CR> is received, the buffer
contents are checked for numerical or command data
and a ‘READY>’ prompt is sent to the terminal. If the
command is not recognized, an error message is sent
out.

Servo Updates

The servo calculations are performed each time a
Timer2 interrupt occurs. A flowchart of the servo inter-
rupt service routine (ISR) is shown in Figure 5.

32-bit Operations

This application makes extensive use of 32-bit values.
Since MPLAB-C17 does not provide direct support for
32-bit variable types, the 32-bit variables used in the
program are declared as unions. The use of a union in
the C programming language allows multiple variable
types to share the same data space. A union with the
name of ‘LONG’ has been declared in the source code.
The union LONG consists of an array of four characters
and an array of two integers. Therefore, any variables
that are declared with this data type may be manipu-
lated as four bytes or two integers. Additionally, the
contents of the entire union may be copied to another
location by simply assigning it to another union of the
same type.

Position Updates

During each servo update period, the function
UpdatePosition() is called. The count values in
Timer0 and Timer3 are used to find the total motor dis-
tance traveled during the previous servo update period.
The counters are never cleared to avoid the possibility
of losing count information. Instead, the values of the
Timer0 and Timer3 registers saved during the previous
sample period are subtracted from the present values
using two’s-complement signed arithmetic. This calcu-
lation provides the total number of up and down pulses
accumulated during the servo update period. The use
of two’s complement arithmetic accounts for a timer
overflow that may have occurred since the last read.
The down pulse count is then subtracted from the up
pulse count, which provides a signed result indicating
the total distance (and direction) traveled during the
sample period. This value also represents the mea-
sured velocity of the motor in encoder counts per servo
update period and is stored in the variable mvelocity.

The measured position of the motor is stored in the
union mposition. The upper 24 bits of mposition
holds the position of the motor in encoder counts. The
lower eight bits of mposition represent fractional
encoder counts. The value of mvelocity is added to
mposition at each servo update period to find the
new position of the motor. With 24 bits, the absolute
position of the motor may be tracked through 33,554
shaft revolutions using a 500 CPR encoder. The size of
mposition can be increased as necessary to track
greater distances.
 1999 Microchip Technology Inc. DS00718A-page 2-147

AN718

S2.book Page 148 Thursday, March 2, 2000 8:02 AM
FIGURE 5: SERVO ISR FLOWCHART

END

START

UPDATE MOTOR

POSITION

VELOCITY
OR POSITION

MODE?

UPDATE

PROFILE

MOTION

CALCULATE

POSITION
ERROR

CALCULATE

PID ALGORITHM

UPDATE PWM

DUTY CYCLE

NO

YES
DS00718A-page 2-148 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 149 Thursday, March 2, 2000 8:02 AM
The theoretical maximum encoder bit rate is deter-
mined by the number of bits in the counter registers and
the servo update rate. If the counter should overflow
between servo update periods, motor position informa-
tion will be lost. A 16-bit counter register, for example,
would provide 216 – 1 counts before an overflow
occurred. Since two’s complement arithmetic is used,
the number of encoder counts during a given sample
period must be limited to 215 – 1, or 32767. The max-
imum encoder rate is determined by multiplying the
servo sampling frequency by the maximum encoder
counts per sample. For this design, the servo update
frequency is 3.9 kHz, which gives a theoretical maxi-
mum encoder rate of 128 MHz. In practice, the encoder
rate is limited by the external clock timing specifications
for Timer0 and Timer3. The minimum external clock
period for Timer0 and Timer3 is TCY + 40ns. There-
fore, the maximum encoder rate is 6.2 MHz for a device
operating frequency of 33 MHz.

PID Algorithm

The MCU must calculate and provide the correct motor
drive signal based on the received motion commands
and position/velocity feedback data. A compensation
algorithm is used to ensure that the feedback loop is
stabilized. Many types of algorithms may be used
including various implementations of digital filters,
fuzzy-logic, and the PID (proportional, integral, deriva-
tive) algorithm. A PID algorithm is used in this applica-
tion since it is widely used in industrial applications and
is easy to implement.

Figure 6 shows a flowchart indicating the function of
the PID algorithm as it is implemented here. During
each iteration of the servo loop, a position error is cal-
culated and is used as the input to the algorithm. To
control the operation of the PID algorithm, each of the
three terms has a gain constant that can be adjusted in
real-time by the user. Each term of the PID algorithm is
calculated using a 16 bit x 16 bit signed multiplication
algorithm with the PID gain constants kp, ki, and kd
defined as 16-bit signed integers.

The union position holds the commanded motor
position. The value of mposition, the measured
motor position, is subtracted from position to find the
present error in encoder counts. The least significant
eight bits of these variables represent fractional
encoder counts and are not used in the PID algorithm
calculations. The sub32() function is used to subtract
the values. The values to be subtracted are placed in
aarg and barg. The result of the subtraction is avail-
able in aarg after the function has been called. The
error calculation result in aarg is truncated to a signed
16-bit integer and stored in u0.

The multiplication routine is implemented as inline
assembly instructions in the C source code. The algo-
rithm executes in 36 cycles and takes advantage of the
8 x 8 hardware multiplier on the MCU. To perform the
multiplication, the signed 16-bit integers to be multi-
plied are loaded into the multplr and multcnd vari-

ables and the function mult() is called. The 32-bit
multiplication result is available in the union aarg. The
add32() function is used to add the 32-bit terms of the
PID algorithm.

The proportional term of the PID algorithm provides an
output that is a function of the immediate position error,
u0.

The integral term of the PID algorithm accumulates
successive position errors calculated during each
servo loop iteration and improves the low frequency
open-loop gain of the servo system. The effect of the
integral term is to reduce small steady-state position
errors.

If the stat.saturated bit is set because the PWM
output during the previous servo update period was
saturated, the current position error is not be added to
the integral value. This prevents a condition known as
‘integrator-windup’ that occurs when the integral term
continues to accumulate error when the output is satu-
rated. When the output is no longer saturated, the inte-
gral term ‘unwinds’ and causes abrupt motion as the
accumulated error is reduced.

The differential term of the PID algorithm is a function
of the difference in error between the current servo
update period and the previous one. The integral term
improves the high frequency open-loop response of the
servo system.

After the three terms of the PID algorithm are summed,
the 32-bit result stored in ypid is saturated to 24 bits.
The 16-bit signed integer ypwm is used to set the PWM
duty cycle. The upper 16 bits of ypid are used to set
the duty cycle, which effectively divides the output of
the PID algorithm by 256. The range of the duty cycle
is restricted so that the PWM duty cycle cannot be less
than 1% or greater than 99%. This ensures that Timer2
will always receive a valid clock input for the servo
update timing interrupt. If beyond the limits, ypwm is set
to the maximum allowable positive or negative value
and stat.saturated is set to ‘1’. An offset value of
512 must be added to ypwm before it is written to the
PWM duty cycle registers. (For 10-bit PWM resolution,
a value of ‘0’ written to the duty cycle registers provides
a 0% duty cycle and a value of 1023 provides a 100%
duty cycle.)
 1999 Microchip Technology Inc. DS00718A-page 2-149

AN718

S2.book Page 150 Thursday, March 2, 2000 8:02 AM
FIGURE 6: PID ALGORITHM FLOWCHART

END

START

CALCULATE
PROPORTIONAL

SATURATION
FLAG SET?

INTEGRAL (2)
ADD ERROR TO

CALCULATE
INTEGRAL TERM

AND ADD TO YPID

CALCULATE

UPDATE PWM

DUTY CYCLE

NO

YES

YES

NO

TERM (1)

ADD TO YPID (4)

DIFFERENTIAL
TERM AND

IS OUTPUT
SATURATED?

SET

FLAG

CLEAR

SATURATION

FLAG
 SATURATION

(1) ypid = kp • u0
(2) Integral = Integral + u0

(3) ypid = ypid + Integral • ki
(4) ypid = ypid + kd(u0 - u1)

(3)
DS00718A-page 2-150 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 151 Thursday, March 2, 2000 8:02 AM
Motion Profile

For optimum motion control, a method must be imple-
mented that will control the motor acceleration and
deceleration. Motion will be abrupt without the profile,
causing excessive wear on the mechanical compo-
nents and degrading the performance of the compen-
sation algorithm.

For this application, a simple motion profile that gener-
ates trapezoidal (or triangular) moves has been imple-
mented. The profile characteristics are adjusted by
specifying a 16-bit velocity limit, vlim, and a 16-bit
acceleration value, accel. The motion profile is used
in Velocity Mode and Position Mode. If the motor is
operating in one of these modes, the function
UpdateTrajectory() is called each time
ServoISR() is executed.

A specific motor velocity is established by adding an
offset value to the commanded position at each servo
update period. The 32-bit variable velact is used in
the profile to hold the present commanded velocity of
the motor. The lower 24 bits of velact and the least
significant 8 bits of position, the commanded motor
position, represent fractional encoder counts. The pur-
pose of these additional bits is to increase the range of
velocities that may be achieved. To achieve a particular
motor velocity, the upper 16 bits of velact are added
to position during each step of the profile. This
allows the commanded motor velocity to vary between
1/256 counts/TS and 127 counts/TS. The actual velocity
range of the motor is dependent on the servo update
rate and the resolution of the encoder. With a 3.9 kHz
servo update rate and a 500 CPR encoder, the range
of commanded motor velocities is from 1.8 RPM to
59,436 RPM.

Motor acceleration/deceleration is accomplished in a
manner similar to the motor velocity. The value of
accel is added to or subtracted from velact at each
servo update period.

A flowchart for the operation of the motion profile in
Velocity Mode is shown in Figure 7. In Velocity Mode,
data entered at the prompt is stored in the commanded
velocity variable, velcom. After velcom is updated,
the motor begins to accelerate or decelerate to the new
commanded velocity. Acceleration continues until
velact is equal to velcom or the velocity limit, vlim,
has been exceeded. The value of velact is added to
the commanded motor position, position. The motor
will continue to run at the commanded velocity or the
velocity limit until further velocity data is received. If the
output is saturated (stat.saturated = ‘1’) during
a particular servo update period, the commanded posi-
tion is not changed.

A flowchart for the operation of the motion profile in
Position Mode is shown in Figure 8. In Position Mode,
a 16-bit relative movement distance is entered as
encoder counts divided by 256. The total movement
distance is divided by 2 and placed in phase1dist. A
second variable, flatcount, is set to zero. The direc-

tion of the move is determined and stored in the
stat.neg_move flag. The final move destination is
calculated based on the present measured position
and is stored in fposition. Finally, the
stat.move_in_progress flag is set. Further posi-
tion commands are ignored until the move has com-
pleted and this flag is cleared.

The motor begins to accelerate and the value of
velact is subtracted from phase1dist at each servo
update period to keep track of the distance traveled in
the first half of the move. The value of velact is added
or subtracted from the commanded motor position,
position, depending on the state of the
stat.neg_move flag. The motor stops accelerating
when velact is greater than vlim. After the velocity
limit has been reached, flatcount is incremented at
each servo update period to keep track of the time
spent in the flat portion of the move.

The first half of the move is completed when
phase1dist becomes negative. At this time, the
stat.phase flag is set to ‘1’. The variable flat-
count is then decremented at each servo period.
When flatcount = 0, the motor begins to deceler-
ate. The move is complete when velact = 0. The
previously calculated destination in fposition is writ-
ten to the commanded motor position and the
stat.move_in_progress flag is cleared at this
time.
 1999 Microchip Technology Inc. DS00718A-page 2-151

AN718

S2.book Page 152 Thursday, March 2, 2000 8:02 AM
FIGURE 7: MOTION PROFILE FLOWCHART – VELOCITY MODE

START

IS OUTPUT

SATURATED?

CURRENT
VELOCITY LESS

THAN COMMANDED
VELOCITY?

ACCELERATE

CURRENT
VELOCITY GREATER

THAN COMMANDED
VELOCITY?

VELOCITY
GREATER THAN

VELOCITY

SET CURRENT

EQUAL TO

COMMANDED VELOCITY

SET CURRENT

EQUAL TO

VELOCITY

VELOCITY

VELOCITY LIMIT

IS

CURRENT
IS

LIMIT?

ADD CURRENT

VELOCITY TO

COMMANDED

POSITION

END

CURRENT
VELOCITY GREATER

THAN COMMANDED
VELOCITY?

IS

DECELERATE

EQUAL TO

COMMANDED VELOCITY

VELOCITY

SET CURRENT

SET CURRENT

EQUAL TO

VELOCITY

VELOCITY LIMIT

CURRENT

VELOCITY LESS
THAN COMMANDED

VELOCITY?

IS

IS
CURRENT
VELOCITY

GREATER THAN
VELOCITY

LIMIT?

NO

YES

NO

YES

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES
DS00718A-page 2-152 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 153 Thursday, March 2, 2000 8:02 AM
FIGURE 8: MOTION PROFILE FLOWCHART – POSITION MODE

START

YES

NO

YES

NO

NO

YES

YES

NO YES

NO

YES

NO

NO

YES

NO

YES

IS
OUTPUT

SATURATED?

IN
PHASE 1 OF

MOVE?

HAS
VELOCITY

LIMIT BEEN
REACHED?

ACCELERATE

INCREMENT

FLAT COUNT

IS

FLAT COUNT

0?

IS
CURRENT VELOCITY

0?

DECREMENT

FLAT COUNT

DECELERATE

CLEAR

MOVE IN PROGRESS

FLAG

SET COMMANDED

POSITION EQUAL TO

CALCULATED FINAL

POSITION

SUBTRACT CURRENT

VELOCITY FROM

PHASE 1 DISTANCE

IS

MOVE POSITIVE?

IS

MOVE POSITIVE?

ADD CURRENT

COMMANDED POSITION

VELOCITY TO

COMMANDED POSITION

VELOCITY TO

SUBTRACT CURRENT

IS

PHASE 1 DISTANCE

NEGATIVE?

SET FLAG TO

INDICATE PHASE 2

ADD CURRENT

COMMANDED POSITION

VELOCITY TO

COMMANDED POSITION

VELOCITY TO

SUBTRACT CURRENT

END
 1999 Microchip Technology Inc. DS00718A-page 2-153

AN718

S2.book Page 154 Thursday, March 2, 2000 8:02 AM
USER INTERFACE

When power is first applied to the motor, the user will
see a ‘READY>’ prompt appear on the terminal. At this
time, the DC motor is ready to receive commands. A
summary of all the commands is given in Table 2.

The software that controls the DC motor allows three
basic modes of operation that are selectable from the
remote terminal. These modes include Manual Mode,
Velocity Mode, and Position Mode.

The default mode for the motor at power-up is Manual
Mode. No position feedback is used in Manual Mode.
The data entered at the prompt directly controls the
PWM duty cycle delivered to the motor.

In Velocity Mode, the entry data specifies the signed
motor velocity, which is given as encoder counts per
sample period multiplied by 256. When new velocity
data has been entered, the motor will accelerate or
decelerate to the new velocity at a rate specified by the
acceleration value. The motor will not accelerate if the
velocity limit has been reached.

In Position Mode, the entry data specifies a signed
16-bit relative move distance. The movement distance,
entered at the prompt, is given as encoder counts
divided by 256. When a move distance is specified, a
motion status flag is set and any additional move data
are ignored until the current move is complete.

The profile of the move will be trapezoidal or triangular
depending on the total move distance, the velocity limit,
and the acceleration value. For a trapezoidal move, the

motor will accelerate to the velocity limit and remain at
that velocity until it is time for the motor to decelerate.
If half of the move distance has been traveled before
the motor reaches the velocity limit, the motor will begin
to decelerate and the move will be triangular.

The motor operating parameters are displayed using
the ‘R’ command. Any of the parameters may be mod-
ified by first entering the command to change the
parameter, followed by a carriage return (<CR>). The
parameter is then modified by entering the new value
followed by a <CR>. The user can then verify that the
parameter was changed by using the ‘R’ command
again.

SUMMARY

The use of the PIC17C756A MCU in a DC servomotor
application has many features that allow a cost-effec-
tive implementation with few external components.
These include (2) 16-bit counters for position measure-
ment, hardware PWM modules, and a hardware multi-
plier for high computational throughput.

ServoISR(), as written for this application, executes
in 780 instruction cycles. For a servo update rate of
3.9kHz and a MCU clock frequency of 33 MHz, only
37% of the total MCU processing time is consumed.
This provides additional time for performing unrelated
tasks, computing more complicated compensator algo-
rithms, or increasing the servo update rate.

TABLE 2: DC SERVO MOTOR COMMAND SUMMARY

Command Data Range Description

M <CR> -500 ≤ data ≤ 500
Changes to the manual mode of operation. All subsequent data
input is written directly to the PWM output.

V <CR> -32768 ≤ data ≤ 32767
Changes to velocity mode. All subsequent data input is velocity in
encoder counts per sample period multiplied by 256.

P <CR> -32768 ≤ data ≤ 32767
Changes to position mode. All subsequent data input is a relative
position move in encoder counts multiplied by 256.

W <CR> Enables/disables PWM drive to the motor; the default is disabled.

R <CR> Displays current KP, KI, KD, velocity limit, and acceleration limit.
L <CR> Displays the present motor position in hexadecimal format.

KP <CR> data <CR> -32768 ≤ data ≤ 32767
Changes the proportional gain factor of the PID algorithm. The
command is followed by the data value.

KI <CR> data <CR> -32768 ≤ data ≤ 32767
Changes the integral gain factor of the PID algorithm. The com-
mand is followed by the data value.

KD <CR> data <CR> -32768 ≤ data ≤ 32767
Changes the differential gain factor of the PID algorithm. The com-
mand is followed by the data value.

KV <CR> data <CR> 0 ≤ data ≤ 65535
Changes the velocity limit of the trajectory profile. The data value is
encoder counts per sample period multiplied by 256. The com-
mand is followed by the data value.

KA <CR> data <CR> 0 ≤ data ≤ 65535
Changes the acceleration value for the trajectory profile. The com-
mand is followed by the data value.

KS <CR> data <CR>
Changes the servo update rate. The data value is written to the
period register for Timer2. The servo update rate will be the PWM
frequency divided by the value entered here.
DS00718A-page 2-154 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 155 Thursday, March 2, 2000 8:02 AM
APPENDIX A: SCHEMATICS

FIGURE A-1: SCHEMATIC 1

+
5
V

IN
D

E
X

LI
M

+

LI
M
-

G
P

I

E
N

M
C

LR

T
X

1

R
X

1

+
5
V

+
5
V

C
8

.1
u
F

C
1
0

.1
u
F

.1
u
F

C
1
1

+
5
V

.1
u
F

C
1

D
W

N

+
5

V
C

1
2

2
2

p
F3

3
.0

MY
1

C
1
3

2
2
p
F

P
W

M

C
9

.1
u
F

U
P

4
G

N
D

1
R

X
o

u
t

2
V

d
rv

3
T

X
in

5
T

X
o
u

t

6
N

C

7
R

X
in

8
V

C
C

U
1

D
S

2
7
5

P
W

M

LI
M

+

IN
D

E
X

+
5
V

4 3
21

S
1

C
5

.1
u
F

4
.7

k

R
1

4
7

0

R
2

M
C

L
R

+
5
V

R
X

1

+
5
V

C
1
4

.1
u
F

1
2

3 5 7

4 6 8

1
1

1
3

1
2

1
4

9
1
0

J
5

D
W

N

E
N

LI
M

-

G
P

I

U
P

1 2 3 4 65

J
1

+
5
V

2
6

R
F

2

2
5

R
F

3

1
0

R
D

1

2
4

R
F

4

2
3

R
F

5

2
2

R
F

6

2
1

R
F

7

2
0

V
D

D

1
9

V
S

S

1
8

N
C

1
7

T
E

S
T

1
6

M
C

L
R

1
5

R
E

3

1
4

R
E

2

1
3

R
E

1

1
2

R
E

0

1
1

R
D

0

4
4

R
A

1

6
0

R
A

0

4
5

R
A

2

4
6

R
A

3

4
7

R
B

6

4
8

R
B

7

4
9

V
D

D

5
0

O
S

C
1

5
1

O
S

C
2

5
2

N
C

5
3

V
S

S

5
4

R
B

2

5
5

R
B

5

5
6

R
B

4

5
7

R
B

3

5
8

R
B

1

5
9

R
B

0

U
2

P
IC

17
C

75
6A

P
W

M

T
X

1

 1999 Microchip Technology Inc. DS00718A-page 2-155

AN718

S2.book Page 156 Thursday, March 2, 2000 8:02 AM
FIGURE A-2: SCHEMATIC 2

9 8

74HC04

U3:D

R1

.2, 5W

3OUT1 IN

U4

LM2940T

+5V

C6

.1uF

C5

100uF, 22V

C4

.1uF

+VS

13 12

74HC04

U3:F

1

2

3

J6

C2

.01uF

4.7k
R6R7

4.7k

1 2

74HC04

U3:A
3 4

74HC04

U3:B

5 6

74HC04

U3:C

C1

.1uF

+5V

5
IN_1

11

49

7
IN_2

3 1 8 2

10 6
SUB

L6203

U1

+5V

PWM

EN 11 10

74HC04

U3:E

+VS

2

1

J2

2

1

J1

POWER

C3

.01uF

Z1

2

COM

EN

MOTOR
 CONNECTIONS

INPUT
DS00718A-page 2-156 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 157 Thursday, March 2, 2000 8:02 AM
FIGURE A-3: SCHEMATIC 3

PWM

65

U5:C

74HC14

2.7k
R19

2.7k
R18

2.7k
R17

2.7k

R13

2.7k

R14

2.7k

R15

2.7k

R16

C12

56pF

C11

56pF

C10

56pF

C9

56pf

1213

U5:F

74HC14

89

U5:D

74HC14

1011

U5:E

74HC14

+5V

LIMIT
SWITCH
INPUTS

1

2

3

4

5

6

J4

1 2

3

5

7

4

6

8

11

13

12

14

9 10

J5

+5V

1

2

3

4

5

J3

+5V

ROTARY
ENCODER
CONNECTIONS

21

U5:A

74HC14

43
U5:B

74HC14

C7

56pF

C8

56pF

2.7k

R12

2.7k

R11

R8

2.7k

R9

2.7k

R10

2.7k

6Q

5
Q

1 CLR
2 D
3 C

4 PRE

U6:A

74HC74

+5V

+5V

8

9
Q

13 CLR
12 D
11 C

10 PRE

U6:B

74HC74

+5V

.1uF

C13

EN

DWNUP

DWN

UP

Q

 1999 Microchip Technology Inc. DS00718A-page 2-157

AN718

S2.book Page 158 Thursday, March 2, 2000 8:02 AM
APPENDIX B: SOURCE CODE
//---
// 17motor.c
// Written By: Steve Bowling, Microchip Technology
//
// This source code demonstrates the use of the PIC17C756A in a
// brush-DC servomotor application and is written for the MPLAB-C17
// compiler. The following files should be included in the C17
// project, which is compiled for the large memory model:
//
// 17motor.c --
// c0l17.o -- startup code
// idata17.o -- initialized data support
// p17c756.o -- processor definition module
// int756l.o -- interrupt handler routines
// pmc756l.lib -- library functions
// p17c756l.lkr -- linker script
//
//---

#include <p17c756.h>
#include <stdlib.h>
#include <usart16.h>
#include <string.h>
#include <timers16.h>
#include <captur16.h>
#include <pwm16.h>
#include <ctype.h>
#include <delays.h>
#include <mem.h>

#define F 1
#define W 0

const rom char start[] = “\r\n\r\n17C756A DC Servomotor”;
const rom char ready[] = “\n\rREADY>”;
const rom char error[] = “\n\rERROR!”;

char inpbuf[8]; // input buffer for ASCII commands
char data[9]; // buffer for ASCII conversions
char command; // holds the last parameter change

// command that was received

unsigned char
i, // index to ASCII buffer
udata, // received character from USART
mode, // determines servo mode
tempchar,
PRODHtemp, // temp context saving for ISR
PRODLtemp, // “
FSR0temp, // “
FSR1temp; // “

struct { // holds status bits for servo
 unsigned phase:1; // first half/ second half of profile
 unsigned neg_move:1; // backwards relative move
 unsigned move_in_progress:1; //
 unsigned saturated:1; // servo output is saturated
 unsigned bit4:1;
 unsigned bit5:1;
 unsigned bit6:1;
 unsigned bit7:1;
} stat ;

Please check Microchip’s Worldwide website at www.microchip.com for the latest version of the source code.
DS00718A-page 2-158 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 159 Thursday, March 2, 2000 8:02 AM
int

tempint3, //
tempint2, //
tempint1, //
tempint0, //
UpCount, // encoder up counts during sample period
DnCount, // encoder down counts “ “ “
u0,u1, // current and previous position error
kp,ki,kd, // PID gain constants
integral, // PID error accumulation
ypwm, // duty cycle derived from PID calculation
multcnd,multplr, // holds values to be multiplied in mult()
velcom,vlim; // commanded velocity, velocity limit

unsigned int accel; // acceleration parameter for motion profile

union LONG
{
unsigned int ui[2];
int i[2];
char b[4];
};

union LONG
aarg, // Used for math calculations.
barg, // “
ypid, // Used to hold result of the PID

// calculations.
position, // Commanded position.
mposition, // Actual measured position.
fposition, // Final commanded position of motion

// profile.
poserror, // 32-bit position error calculated

// in the PID
mvelocity, // measured velocity
velact, // current commanded velocity
phase1dist, // total distance for first half of move.
flatcount; // Holds the number of sample periods for

// which the velocity limit was reached in
// the first half of the move.

// Function Declarations--

void main(void); // Required for the main function
void InitPorts(void); // Initializes ports/peripherals
void InitVars(void); // Initializes variable used in program
void DoCommand(void); // Parses input buffer after a <CR> was received
void ServoISR(void); // Performs the error calculations and PID
void UpdatePosition(void); // Updates the measured motor position
void UpdateTrajectory(void); // Does the motion profile
void add32(void); // Performs a 32 bit addition
void sub32(void); // Performs a 32 bit subtraction
void mult(void); // Performs a 16 x 16 --> 32 multiplication
void ulitoa(unsigned int value1, // Converts 32-bit value in two integers
unsigned int value0, char *string); // to an ASCII string in hexadecimal
char ntoh(unsigned int value); // format.

//---

void main(void)
{

 1999 Microchip Technology Inc. DS00718A-page 2-159

AN718

S2.book Page 160 Thursday, March 2, 2000 8:02 AM
InitVars();
InitPorts();
Install_PIV(ServoISR); // Servo_ISR is installed as the

// peripheral
Enable(); // int. handler.

putrsUSART1(start);
putrsUSART1(ready);

while(1) // This is the main program loop
 { // that polls USART1 for received
 // characters.
 if(PIR1bits.RC1IF)
 {
 switch(udata = ReadUSART1())
 {
 case 0x0d: DoCommand(); // got a <CR>, so process the string
 strset(inpbuf, 0); // clear the input buffer
 i = 0; // clear the input buffer index
 putrsUSART1(ready); // put a ready prompt on the screen
 break;

 default: inpbuf[i] = udata; // put the received character in the
 i++; // next buffer location and increment
 if(i > 7) // the buffer index
 {
 putrsUSART1(ready); // if we got more than 7 chars before a
 strset(inpbuf, 0); // <CR>, clear the input buffer and clear
 i = 0; // the buffer index
 }
 else putcUSART1(udata); // otherwise, echo the received character
 break; //

 } //end switch(udata)

 } //end if(PIR1bits.RC1IF)

 } //end while(1)
} //end main

//---

void DoCommand(void) // This routine parses the input buffer
{ // after a <CR> was received.
unsigned int num;

if(isdigit(inpbuf[0]) || inpbuf[0] == ‘-’) // Did we get a numerical input?
 {
 if(command) // Was numerical input preceded
 { // by a command to change a
 switch(command) // parameter?
 {
 case ‘P’: kp = atoi(inpbuf); // proportional gain change
 break;

 case ‘I’: ki = atoi(inpbuf); // integral gain change
 break;

 case ‘D’: kd = atoi(inpbuf); // differential gain change
 break;

 case ‘A’: accel = atoui(inpbuf); // acceleration change
 break;
DS00718A-page 2-160 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 161 Thursday, March 2, 2000 8:02 AM

 case ‘V’: vlim = atoui(inpbuf); // velocity limit change
 break;

 case ‘S’: PR2 = atoub(inpbuf); // servo update timing change
 break;

 default: break;

 }
 command = 0;
 }

 else if(mode == 0) ypwm = atoi(inpbuf); // manual mode: write directly to PWM

 else if(mode == 1) velcom = atoi(inpbuf); // velocity mode: input data is velocity

 else if(mode == 2) // Input data is a relative movement
// distance

 { // distance for position mode.
 if(!stat.move_in_progress) // Make sure no move is in progress.
 {
 phase1dist.i[1] = atoi(inpbuf); // Load the 16-bit relative movement

// distance into the upper
 phase1dist.i[0] = 0; // two bytes of phase1dist variable

 fposition.i[0] = position.i[0]; // Final position is commanded position
 fposition.i[1] = position.i[1] // + relative move distance
 + phase1dist.i[1];

 if(phase1dist.b[3] & 0x80) // If the relative move is negative,
 {
 stat.neg_move = 1; // set flag to indicate neg. move

 _asm // and covert phase1dist to a positive
 comf phase1dist+2,F // value.
 comf phase1dist+3,F
 clrf WREG,F
 incf phase1dist+2,F
 addwfc phase1dist+3,F
 _endasm

 }
 else stat.neg_move = 0; // Clear the flag for a positive move.

 _asm // phase1dist now holds the total
 rlcf phase1dist+3,W // distance, so divide by 2
 rrcf phase1dist+3,F
 rrcf phase1dist+2,F
 rrcf phase1dist+1,F
 rrcf phase1dist+0,F
 _endasm

 flatcount.i[1] = 0; // Clear flatcount
 flatcount.i[0] = 0;

 stat.phase = 0; // Clear flag: first half of move.
 stat.move_in_progress = 1;
 }
 }
 else;
 }

else switch(inpbuf[0])
 {
 case ‘K’: if(inpbuf[1] == ‘P’) command = ‘P’;// If this is a parameter change,
 1999 Microchip Technology Inc. DS00718A-page 2-161

AN718

S2.book Page 162 Thursday, March 2, 2000 8:02 AM
 else // determine which parameter
 if(inpbuf[1] == ‘I’) command = ‘I’;
 else
 if(inpbuf[1] == ‘D’) command = ‘D’;
 else
 if(inpbuf[1] == ‘A’) command = ‘A’;
 else
 if(inpbuf[1] == ‘V’) command = ‘V’;
 else
 if(inpbuf[1] == ‘S’) command = ‘S’;
 break;

 case ‘W’: if(PORTFbits.RF4 == 0)
 {
 putrsUSART1(“\r\nPWM ON”);
 SetDCPWM1(512);
 }
 else
 {
 putrsUSART1(“\r\nPWM OFF”);
 }
 PORTF = PORTF ^ 0x10; // enables or disables PWM amplifier
 break;

 case ‘R’: putrsUSART1(“ Kp = “); // Send all parameters to host.
 uitoa(kp, data);
 putsUSART1(data);

 putrsUSART1(“ Ki = “);
 uitoa(ki, data);
 putsUSART1(data);

 putrsUSART1(“ Kd = “);
 uitoa(kd, data);
 putsUSART1(data);

 putrsUSART1(“ Vlim = “);
 uitoa(vlim, data);
 putsUSART1(data);

 putrsUSART1(“ Acc. = “);
 uitoa(accel, data);
 putsUSART1(data);

 break;

 case ‘M’: putrsUSART1(“ Manual Mode”); // Put the servomotor in manual mode.
 SetDCPWM1(512);
 mode = 0;
 break;

 case ‘V’: putrsUSART1(“ Velocity Mode”); // Put the servomotor in velocity mode.
 velcom = 0;
 SetDCPWM1(512);
 position = mposition;
 fposition = position;
 mode = 1;
 break;

 case ‘P’: putrsUSART1(“ Position Mode”); // Put the servomotor in position mode.
 SetDCPWM1(512);
 position = mposition;
 fposition = position;
 mode = 2;
 break;
DS00718A-page 2-162 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 163 Thursday, March 2, 2000 8:02 AM
 case ‘L’: tempint0 = mposition.i[0]; // Send measured and commanded position
 tempint2 = position.i[0]; // to host.
 tempint1 = mposition.i[1];
 tempint3 = position.i[1];
 ulitoa(tempint1,tempint0,data);
 putrsUSART1(“ Measured = “);
 putsUSART1(data);
 ulitoa(tempint3,tempint2,data);
 putrsUSART1(“ Commanded = “);
 putsUSART1(data);
 break;

 case ‘Z’: if(!stat.move_in_progress) // Set measured position to 0.
 {
 if(mode) CloseTimer2(); // Disable interrupt generation.
 position.i[1] = 0;
 position.i[0] = 0;
 mposition = position;
 fposition = position;
 WriteTimer0(0);
 WriteTimer3(0);
 mvelocity.i[1] = 0;
 mvelocity.i[0] = 0;
 UpCount = 0;
 DnCount = 0;
 if(mode) OpenTimer2(TIMER_INT_ON&T2_SOURCE_EXT);// Enable Timer2
 }

 putrsUSART1(ready);
 break;

 default: if(inpbuf[0] != ‘\0’)
 {
 putrsUSART1(error);
 }
 break;

 }

}

//---

void ServoISR(void)
{
PRODHtemp = PRODH; // Save context for necessary registers
PRODLtemp = PRODL;
FSR0temp = FSR0;
FSR1temp = FSR1;

UpdatePosition(); // Get new mposition, mvelocity values

if(mode) // This portion of code not executed
 { // in manual mode.
 UpdateTrajectory(); // Do trajectory algorithm to get new

// commanded position.
 aarg = position; // Subtract measured position
 barg = mposition; // from commanded position
 sub32(); // to get 32 bit position error.

 poserror.b[2] = aarg.b[3]; // LSByte holds fractional encoder counts,
 poserror.b[1] = aarg.b[2]; // so shift everything right.
 poserror.b[0] = aarg.b[1];

 if (poserror.b[2] & 0x80) // If position error is negative.
 1999 Microchip Technology Inc. DS00718A-page 2-163

AN718

S2.book Page 164 Thursday, March 2, 2000 8:02 AM
 {
 poserror.b[3] = 0xff; // Sign-extend to 32 bits.

 if((poserror.i[1] != 0xffff) || !(poserror.b[1] & 0x80))
 {
 poserror.i[1] = 0xffff; // Limit error to 16-bit signed integer
 poserror.i[0] = 0x8000;
 }
 else;
 }

 else // If position error is positive.
 {
 poserror.b[3] = 0x00;

 if((poserror.i[1] != 0x0000) || (poserror.b[1] & 0x80))
 {
 poserror.i[1] = 0x0000; // Limit error to 16-bit signed integer.
 poserror.i[0] = 0x7fff;
 }
 else;
 }

 u0 = poserror.i[0]; // Put position error in u0.

 multcnd = u0; // Calculate proportional term
 multplr = kp; // of PID
 mult();
 ypid = aarg;

 if(!stat.saturated) integral +=u0; // Bypass integration if saturated.

 multcnd = integral; // Calculate integral term of PID
 multplr = ki;
 mult();
 barg = ypid;
 add32(); // Add integral term.
 ypid = aarg;

 multcnd = u0 - u1; // Calculate differential term of PID
 multplr = kd;
 mult();
 barg = ypid; // Add differential term
 add32();
 ypid = aarg;

 if(ypid.b[3] & 0x80) // If PID result is negative
 {
 if((ypid.b[3] < 0xff) || !(ypid.b[2] & 0x80))
 {
 ypid.i[1] = 0xff80; // Limit result to 24-bit value
 ypid.i[0] = 0x0000;
 }
 else;
 }

 else // If PID result is positive
 {
 if(ypid.b[3] || (ypid.b[2] > 0x7f))
 {
 ypid.i[1] = 0x007f; // Limit result to 24-bit value
 ypid.i[0] = 0xffff;
 }
 else;
 }
DS00718A-page 2-164 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 165 Thursday, March 2, 2000 8:02 AM
 ypid.b[0] = ypid.b[1]; // Shift PID result right to get
 ypid.b[1] = ypid.b[2]; // upper 16 bits of 24-bit result in
 ypwm = ypid.i[0]; // ypid.i[0]

 u1 = u0; // Save current error in u1
 } // end if(mode)

stat.saturated = 0; // Clear saturation flag

if(ypwm > 500)
 {
 ypwm = 500;
 stat.saturated = 1;
 }
else if(ypwm < -500)
 {
 ypwm = -500;
 stat.saturated = 1;
 }

SetDCPWM1((unsigned int)(ypwm + 512)); // Write new duty cycle value

PRODH = PRODHtemp; // Restore context.
PRODL = PRODLtemp;
FSR0 = FSR0temp;
FSR1 = FSR1temp;

PIR1bits.TMR2IF = 0; // Clear flag that generated interrupt.
}

//---
// The relative distance travelled during the sample period is found using
// the following formula:
//
// mvelocity = (Timer0 - prev. Timer0) - (Timer3 - prev. Timer3)
//
// This is done so the timers do not have to be cleared each sample period
// and potentially cause counts to be lost.
//

void UpdatePosition(void)
{
mvelocity.i[0] = DnCount; // Add previous Timer3 value
mvelocity.i[0] -= UpCount; // Subtract previous Timer0 value

UpCount = ReadTimer0(); // get new values from Timer0
DnCount = ReadTimer3(); // and Timer3

mvelocity.i[0] += UpCount; // Add current Timer0 value
mvelocity.i[0] -= DnCount; // Subtract current Timer3 value

mvelocity.b[2] = mvelocity.b[1]; // Shift result left: LSbyte is
mvelocity.b[1] = mvelocity.b[0]; // fractional
mvelocity.b[0] = 0;

if (mvelocity.b[2] & 0x80) // Sign-extend result
 mvelocity.b[3] = 0xff;
else
 mvelocity.b[3] = 0;

aarg = mposition; // Add velocity to measured position
barg = mvelocity;
add32();
mposition = aarg;
 1999 Microchip Technology Inc. DS00718A-page 2-165

AN718

S2.book Page 166 Thursday, March 2, 2000 8:02 AM
}

//---

void UpdateTrajectory(void)
{
if(mode == 1) // If servomotor is in velocity mode.
 {
 if(!stat.saturated) // Don’t update profile if saturated.
 {
 if(velact.i[1] < velcom) // If current velocity is less than
 { // commanded velocity.
 aarg = velact;
 barg.i[0] = accel; // Accelerate
 barg.i[1] = 0;
 add32();
 velact = aarg;

 if(velact.i[1] > velcom) // Don’t exceed commanded velocity
 velact.i[1] = velcom;

 if(velact.i[1] > vlim) // Don’t exceed velocity limit parameter
 velact.i[1] = vlim;
 }
 else
 if(velact.i[1] > velcom) // If current velocity exceeds commanded
 { // velocity
 aarg = velact;
 barg.i[0] = accel; // Decelerate
 barg.i[1] = 0;
 sub32();
 velact = aarg;
 if(velact.i[1] < velcom) // Don’t exceed commanded velocity
 velact.i[1] = velcom;
 if(velact.i[1] < -vlim) // Don’t exceed velocity limit parameter
 velact.i[1] = -vlim;
 }
 else;

 aarg = position; // Add current commanded velocity to
 barg.i[0] = velact.i[1]; // the commanded position
 if(velact.b[3] & 0x80)
 barg.i[1] = 0xffff;
 else barg.i[1] = 0;
 add32();
 position = aarg;
 }
 }

else if(mode == 2)
 { // If we’re in position mode.
 if(!stat.saturated) // Don’t update profile if output is

// saturated
 {
 if(!stat.phase) // If we’re in the first half of the move.
 {
 if(velact.i[1] < vlim) // If we’re still below the velocity limit
 { // for the move
 aarg = velact;
 barg.i[0] = accel;
 barg.i[1] = 0;
 add32();
 velact = aarg;
 }
 else // If we’re at the velocity limit,
DS00718A-page 2-166 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 167 Thursday, March 2, 2000 8:02 AM
 { // increment flatcount to keep track of
 _asm // time spent in flat portion of
 clrf WREG,F // trajectory.
 incf flatcount+0,F
 addwfc flatcount+1,F
 addwfc flatcount+2,F
 addwfc flatcount+3,F
 _endasm
 }

 aarg = phase1dist; // go ahead and subtract the current
 barg.i[1] = 0; // velocity from the move distance to keep
 barg.i[0] = velact.i[1]; // track of the number of encoder counts
 sub32(); // travelled during this sample period.
 phase1dist = aarg;

 aarg = position; // Add the current velocity to the
// commanded position.

 if(stat.neg_move) sub32();
 else add32();
 position = aarg;

 if(phase1dist.b[3] & 0x80) // If phase1dist has gone negative, the
 stat.phase = 1; // first half of the move has completed

 }

 else // If we’re in the second half of the

// move.
 {
 if(flatcount.i[1] || flatcount.i[0])
 {
 _asm // If flatcount is not zero, decrement it.
 clrf WREG,F
 decf flatcount+0,F
 subwfb flatcount+1,F
 subwfb flatcount+2,F
 subwfb flatcount+3,F
 _endasm
 }
 else
 if(velact.i[1]) // If velact is not 0, decelerate.
 {
 aarg = velact;
 barg.i[0] = accel;
 barg.i[1] = 0;
 sub32();
 velact = aarg;
 }
 else // flatcount is 0, velact is 0, so move is
 { // over. Set commanded position equal to
 position = fposition; // the final position calculated at the
 stat.move_in_progress = 0; // beginning of the move.
 }

 aarg = position; // Add current velocity to commanded
// position.

 barg.i[1] = 0;
 barg.i[0] = velact.i[1];
 if(stat.neg_move) sub32();
 else add32();
 position = aarg;
 }
 } // END if(!stat.saturated)
 } // END if(mode == 2)
 1999 Microchip Technology Inc. DS00718A-page 2-167

AN718

S2.book Page 168 Thursday, March 2, 2000 8:02 AM
else;

}

//---

void add32(void) //
{
_asm

 MOVFP barg+0,WREG
 ADDWF aarg+0,F
 MOVFP barg+1,WREG
 ADDWFC aarg+1,F
 MOVFP barg+2,WREG
 ADDWFC aarg+2,F
 MOVFP barg+3,WREG
 ADDWFC aarg+3,F

_endasm
}

//---

void sub32(void) //
{
_asm

 MOVFP barg+0,WREG
 SUBWF aarg+0,F
 MOVFP barg+1,WREG
 SUBWFB aarg+1,F
 MOVFP barg+2,WREG
 SUBWFB aarg+2,F
 MOVFP barg+3,WREG
 SUBWFB aarg+3,F

_endasm
}

//---

void mult(void) // Multiplies 16-bit values in multplr
{ // and multend.
_asm // 32-bit result is stored in aarg

 movfp multcnd+0,WREG
 mulwf multplr+0
 movpf PRODH,aarg+1
 movpf PRODL,aarg+0

 movfp multcnd+1,WREG
 mulwf multplr+1
 movpf PRODH,aarg+3
 movpf PRODL,aarg+2

 movfp multcnd+0,WREG
 mulwf multplr+1

 movfp PRODL,WREG
 addwf aarg+1,F
 movfp PRODH,WREG
 addwfc aarg+2,F
 clrf WREG,F
 addwfc aarg+3,F

DS00718A-page 2-168 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 169 Thursday, March 2, 2000 8:02 AM
 movfp multcnd+1,WREG
 mulwf multplr+0

 movfp PRODL,WREG
 addwf aarg+1,F
 movfp PRODH,WREG
 addwfc aarg+2,F
 clrf WREG,F
 addwfc aarg+3,F

 btfss multplr+1,7
 goto $ + 5
 movfp multcnd+0,WREG
 subwf aarg+2,F
 movfp multcnd+1,WREG
 subwfb aarg+3,F

 btfss multcnd+1,7
 goto $ + 5
 movfp multplr+0,WREG
 subwf aarg+2,F
 movfp multplr+1,WREG
 subwfb aarg+3,F

 nop
_endasm
}

//---

void ulitoa(unsigned int value1, unsigned int value0, char *string)
{
unsigned int temp; // Converts 32-bit value stored in two

// integers to an ASCII string in
temp = value1; // hexidecimal format.
*string = ntoh(temp >> 12);
string++;

temp = value1 & 0x0f00;
*string = ntoh(temp >> 8);
string++;

temp = value1 & 0x00f0;
*string = ntoh(temp >> 4);
string++;

temp = value1 & 0x000f;
*string = ntoh(temp);
string++;

temp = value0;
*string = ntoh(temp >> 12);
string++;

temp = value0 & 0x0f00;
*string = ntoh(temp >> 8);
string++;

temp = value0 & 0x00f0;
*string = ntoh(temp >> 4);
string++;

temp = value0 & 0x000f;
*string = ntoh(temp);
string++;
 1999 Microchip Technology Inc. DS00718A-page 2-169

AN718

S2.book Page 170 Thursday, March 2, 2000 8:02 AM
*string = 0;

return;
}

//---

char ntoh(unsigned int value) // Converts hexidecimal value to ASCII
{ // value.
char hexval;

if(value < 10) hexval = value + ‘0’;
else if(value < 16) hexval = value - 10 + ‘A’;

return hexval;
}

//---

void InitVars(void)
{
i = 0;

kp = 2000;
ki = 15;
kd = 6000;

vlim = 4096;
velcom = 0;
velact.i[1] = 0;
velact.i[0] = 0;
accel = 65535;

integral = 0;
mvelocity.i[1] = 0;
mvelocity.i[0] = 0;
UpCount = 0;
DnCount = 0;
position = mposition;
fposition = position;

stat.move_in_progress = 0;
stat.neg_move = 0;
stat.phase = 1;

mode = 0;
ypwm = 0;

strset(inpbuf,’\0’);
}

//---

void InitPorts(void)
{
ADCON1 = 0x0E; // ensure port F is configured for

// digital IO.
PORTF = 0x00; // ensure port F is 0 before setting data

// direction.
DDRF = 0x0f; // RF<7:4> outputs, RF<3:0> inputs

PORTFbits.RF4 = 0; // ensure pwm amplifier is disabled!!!

// Up/Down Register Setup -----------------------

WriteTimer0(0);
DS00718A-page 2-170 1999 Microchip Technology Inc.

AN718
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 171 Thursday, March 2, 2000 8:02 AM
WriteTimer3(0);
OpenTimer0(TIMER_INT_OFF&T0_EDGE_FALL&T0_SOURCE_EXT&T0_PS_1_1);
OpenTimer3(TIMER_INT_OFF&T3_SOURCE_EXT);
TCON2bits.CA1 = 1;

// PWM Setup ------------------------------------

OpenTimer1(TIMER_INT_OFF&T1_SOURCE_INT&T1_T2_8BIT);// set up timer1 for PWM timebase
OpenPWM1(0xff); // start up PWM1
SetDCPWM1(512); // set the initial PWM duty cycle

// to ~50%

PR2 = 0x08; // Set Timer2 overflow period to 8
// for 3.9 kHz update at 33 MHz

OpenTimer2(TIMER_INT_ON&T2_SOURCE_EXT); // Enable Timer2

// USART1 Setup ---------------------------------

OpenUSART1(USART_TX_INT_OFF&USART_RX_INT_OFF&USART_ASYNCH_MODE&
 USART_EIGHT_BIT&USART_CONT_RX, 26); // open the serial port

// 19.2 kbaud @ 33 Mhz
}

 1999 Microchip Technology Inc. DS00718A-page 2-171

AN718

S2.book Page 172 Thursday, March 2, 2000 8:02 AM
NOTES:
DS00718A-page 2-172 1999 Microchip Technology Inc.

AN721
System Design Considerations for Implementing a

ROM Microcontroller

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 173 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

When developing a system that will ultimately utilize a
ROM-based microcontroller (MCU), it is still typical to
make use of an EPROM-based MCU during the final
stages of the design. Initial development may also
include the use of some type of emulator system, but
prototype units normally make use of a windowed
EPROM or OTP EPROM MCU, and the design is opti-
mized/validated based upon the performance of the
EPROM-based device without, in many cases, taking
into consideration potential differences in the perfor-
mance of the ROM-based device that will ultimately be
used.

CAUSE OF OTP VS. ROM
DIFFERENCES

While MCU manufacturers go to great lengths to
ensure that the performance differences of EPROM vs.
ROM devices are minimized, there are external factors
that historically have prevented fully achieving this goal.
There are a number of key factors that can contribute
to differing performance between the two types of
devices, which include:

• Operating Voltage Range:

ROM devices operate to a lower VDDMIN due to the
difference in physics between EPROM and ROM
memory cells.

• Parametrics:

ROM and EPROM devices are not manufactured
using the same fabrication process, leading to
subtle differences in parametric performance.

• Functional Operation:

One device may have design changes imple-
mented to improve performance or correct errata
that exists on the other device.

Each of these issues is discussed in more detail in the
appropriate sections that follow.

Designers who are developing systems using EPROM
products that are targeted to move to ROM devices as
production volumes increase, or who find themselves

needing to convert an existing EPROM-based design
to ROM, should thoroughly review this application note
to determine if the potential for problems exist. This
document is not intended to be an all encompassing list
of all possible issues, it is simply a reference resource
for key items that have previously been identified as
potentially causing problems.

OPERATING VOLTAGE RANGE

EPROM devices operate at VDD levels above ~2.3V
limited by the device physics of an EPROM cell. The
ROM devices do not have this limitation and, therefore,
typically operate down below 2.0V. When designing a
low voltage system and developing/validating the
design using an EPROM device, it is necessary to use
a higher VDD level than that which will actually be used
in the final design. The gain of the internal transistors
are sensitive to the VDD value and this can lead to func-
tional performance differences in the oscillator start-up/
stabilization time, the watchdog timer speed. VIH/VIL,
and VOH/VOL levels. Each of these issues is discussed
in greater detail under the ‘Parametrics’ section.

The system designer(s) should ensure adequate mar-
gin to the published specifications when using
EPROM-based devices for development, and the use
of ROM prototypes is highly recommended for low volt-
age application validation.

PARAMETRICS

The parametric performance of the ROM equivalent of
an EPROM-based device may vary due to the pro-
cesses used to fabricate the two different devices.
There are a number of different scenarios that lead to
the two devices being fabricated using different pro-
cess technologies. First, ROM devices do not require
several of the process steps required to make an
EPROM device, so the processes are different by defi-
nition. Second, ROM devices are often manufactured
using different starting wafer sizes and/or different pro-
cess geometries. These options help maximize the
cost savings that can be realized with ROM devices.

All of these may lead to some amount of variation in the
parametric performance between the EPROM and
ROM devices. The manufacturer ensures that both the
ROM and EPROM devices meet the datasheet specifi-
cations so that drop in compatibility is maintained.
However, it is sometimes the case that a design

Author: Rick Stoneking
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS00721A-page 2-173

AN721

S2.book Page 174 Thursday, March 2, 2000 8:02 AM
becomes dependent upon the actual parametric perfor-
mance of a device instead of being designed to operate
under the worst case specifications. This can lead to
problems when developing a ROM application using an
EPROM, or if trying to port a EPROM product to ROM
to realize a cost reduction.

OSCILLATOR PERFORMANCE

Oscillator performance is a key parameter that may
vary relatively significantly between the EPROM and
ROM devices. The operation of the oscillator is highly
dependent upon the internal transistor gains, which are
determined by the process technology used during fab-
rication.

The transistor gains of the oscillator circuit effect oscil-
lator start-up time and the oscillator stability with a
given set of external components (crystal/resonator,
capacitors, resistors). It is absolutely critical that the
system designer(s) make every effort to verify the per-
formance of the ROM device with the intended crystal/
resonator design. This is highly recommended for oscil-
lator verification whenever possible.

Another potential issue is, if the VDD ramp rate is rela-
tively slow, the oscillator start-up timer may start
sooner, relative to the start of the VDD ramp.

WATCHDOG TIMER (WDT)

The watchdog timer (WDT) is another function which
can be highly sensitive to the parametrics of the pro-
cess used to fabricate the device. The WDT utilizes an
internal free running RC oscillator. The values of the
internal resistor and capacitor may vary relatively sig-
nificantly between the EPROM and ROM devices. It is,
therefore, necessary to either allow for this in the selec-
tion of the WDT time-out value, or verify the design
using actual ROM devices, if possible.

CURRENT CONSUMPTION

The current consumption between EPROM and ROM
devices may also vary as a result of parametric differ-
ences in the processes. This includes both IDD and
IPD values. Again, the manufacturer ensures that both
devices meet the datasheet specifications, but designs
that are very power sensitive should be evaluated using
actual ROM devices, if possible to verify that the final
design meets the current and power targets.

VOLTAGE THRESHOLDS

Another area where process parametrics may cause
subtle differences in device operation is related to the
VIL/VIH and VOL/VOH values of the device. Because
these levels are a dependent upon the internal transis-
tor thresholds, which is a function of the process used
to manufacture the device, careful consideration should
be given to the input and output level specifications,
and the system should be designed to work with the
specified worst case values.

ELECTROSTATIC DISCHARGE (ESD)
PERFORMANCE

In some cases, there may be a difference in the actual
ESD performance of the ROM versus EPROM devices.
This may lead to problems in some designs, where
ESD events are likely or common. The system designer
should check the ROM device datasheet to determine
if there is a difference in the ESD specification and, for
applications that are expected to be particularly sus-
ceptible to ESD, should perform system validation with
ROM devices, if possible.

FUNCTIONAL OPERATION

Functional operation differences between EPROM and
ROM devices that are meant to be equivalent occasion-
ally do occur. These differences are typically due to the
fact that one of the devices (usually the EPROM) is
developed and released first and contains some errata
concerning actual functional performance. The second
device typically implements fixes for some or all the
known errata and, therefore, does not function identi-
cally to the other.

In other cases, changes or improvements may have
been implemented to enhance a device but the
enhancements may not have been released to produc-
tion on both devices, so there is some period where the
devices do not function identically.

It should also be noted that it should not be assumed
that any or all errata for the EPROM device has been,
or will be, corrected in the ROM device, and it is also
possible that new errata is introduced on the ROM
device that did not exist on the EPROM device.

Functional differences are often related to the opera-
tion of one of the peripheral blocks including:

• USART

• SSP

• PWM

• Timers

• MCLR operation
• A/D Converter

In all cases, the system designer(s) should specifically
request any errata that exists for each of the two
devices, as well as any known device specific issues
between the EPROM and ROM versions of the device
being used. And finally, ROM prototypes should be
used whenever possible for final system validation.

ROM PROTYPES

Microchip offers customers a ROM prototype service,
which allows systems in the latest stages of design val-
idations to be checked out using a ROM PIC rather than
an EPROM-based micro. This should be used if there
are any concerns about the functional or parameter dif-
ferences between the EPROM micro and the intended
ROM device.
DS00721A-page 2-174 1999 Microchip Technology Inc.

AN721
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 175 Thursday, March 2, 2000 8:02 AM
SUMMARY

When developing a new ROM application using an
EPROM-based MCU, or when attempting to move an
established EPROM-based design to ROM to reduce
costs, there are a number of key factors to be consid-
ered to minimize problems and ensure a reliable ROM
design. The ideas presented in this application note are
not intended to be all inclusive, but do represent key
issues that have been identified in the past as present-
ing potential problems. It can not be stressed enough
that actual ROM devices should be used for system/
design validation whenever possible. This alone signif-
icantly reduces the risk of unanticipated application
performance issues occurring in the future. It is also
key that all hardware be designed so that acceptable
operation at worst case device specifications is
ensured.
 1999 Microchip Technology Inc. DS00721A-page 2-175

AN721

S2.book Page 176 Thursday, March 2, 2000 8:02 AM
NOTES:
DS00721A-page 2-176 1999 Microchip Technology Inc.

AN724
Using PICmicro® MCUs to Connect to Internet via PPP

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 177 Thursday, March 2, 2000 8:02 AM
SOFTWARE LICENSE AGREEMENT

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller
is intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Micro-
controller products.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights
are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applica-
ble laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIR-
CUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON
WHATSOEVER.
 1999 Microchip Technology Inc. DS00724C-page 2-177

AN724

S2.book Page 178 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

PICmicro microcontrollers (MCU) are suitable for low-
cost connections to the Internet. The desire to connect
everything to the Internet focuses the price reduction
challenge on the Internet interface. Typically, the inter-
face is an overpowered embedded PC running a bulky
operating system and memory intensive applications.
For low-cost applications that handle smaller amounts
of data, a much better choice is the Microchip family of
PICmicro MCUs. This application note will show how
these little processors are capable of connecting to the
Internet with resources to spare for controlling the orig-
inal application.

The software will dial into the Internet and try to con-
nect to the server using Point to Point Protocol (PPP).
It continues pinging once every 30 seconds to keep the
connection open while responding to ping requests.
With the Internet Protocol (IP) connection established
you can add your own algorithms for traceroute, Trivial
File Transfer Protocol (TFTP), Simple Network Man-
agement Protocol (SNMP), or get the time and date
accurate to a millisecond.

Since there are lots of good books and free Internet
resources to describe how the Internet works, this
application note will focus on the less publicized details
of negotiating PPP. Another common protocol used to
connect to the Internet by modem is the Serial Line
Internet Protocol (SLIP). PPP was chosen for this appli-
cation note instead of the simpler SLIP because it is
much more versatile. PPP has the advantage of not
requiring a unique login script for most servers. Another
advantage of PPP is line quality monitoring. Although
not implemented in this algorithm, it is useful when reli-
able communications is a top priority. The most impor-
tant reason is to maintain compatibility with Internet
Service Providers by riding the popularity of desktop
operating systems, which use PPP by default.

This Internet interface requires a physical connection to
a local Internet Service Provider (ISP) with a serial line
or modem. The rest is all software. The algorithm
requires about 145 bytes of RAM and 2170 words of
ROM. The amount of processor time available for other
tasks will depend on the processor’s clock speed and
baud rate of the serial connection. The algorithm takes
time for each received or transmitted character and
extra time to process or create a data or control packet.

This algorithm does not include Transmission Control
Protocol (TCP) which is required for email, Telnet, web
browsing, and File Transfer Protocol (FTP). These
algorithms could be added but they require a processor
with a lot more RAM and ROM. This algorithm will not
connect to every server; it attempts an unscripted PPP
login and falls back to a generic script. If it fails, some
login tweaking or implementing more Link Control Pro-
tocol (LCP) options will usually bring up the connection.

FIGURE 1: PHOTO OF PROTOTYPE
CONNECTED TO THE
INTERNET

FIGURE 2: BLOCK DIAGRAM

Author: Myron Loewen
for Microchip Technology Inc.

Dialer

PPP

Ping

Status
LEDs

Trigger
Switch

Internet
Service
Provider

ModemModem

Remote
Host to

Ping

Serial
PICmicro

MCU

Internet

LCP
PAP
IPCP

IP
DS00724C-page 2-178 1999 Microchip Technology Inc.

AN724
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 179 Thursday, March 2, 2000 8:02 AM
INTERNET PROTOCOLS

The Internet is just a very large bunch of many types of
computers connected in a variety of ways. What makes
it all work is the thousands of standards and conven-
tions that all computers follow. Most standards are doc-
umented and freely available on the Internet. Table 5
lists the standards needed for this algorithm and where
to find them.

Data gets around the Internet in specially marked pack-
ets that are passed from computer to computer. The
packets indicate the type of data they contain such as
a part of a web page or email. Each packet gets stuffed
in its own envelope specially marked to get it to the right
program on the remote computer. This is important
because you may be running several web browsing
windows simultaneously on one machine. The type of
data determines if the envelope is the simpler UDP type
or a more robust TCP type. TCP packets generate
extra packets to open and close the connection and
resend lost packets.

Each computer gets a unique Internet address that
looks like 10.241.45.12, and works much like a postal
mailing address. The envelope is stuffed in a larger
envelope with the source and destination addresses
written on the front. This is like international mail, the
address will get it anywhere on the Internet.

But the Internet works more like passing notes in class.
The larger envelope goes into a bigger envelope with
your friend’s name on it. Your friend opens the enve-
lope and checks the Internet address. If he is the recip-
ient, he processes it, otherwise he puts it in a new big
envelope. From the Internet address he can tell which
direction to send the envelope and puts the name of his
neighbor, in that direction, on the front. The process
repeats until the envelope makes it to the correct Inter-
net address across the class, or gets lost along the way.

In this algorithm only the ping packets travel this way.
The other packets have the same format but are just
exchanged locally between this algorithm and the Inter-
net server it dials up. These packets are discussed in
the next few sections and are used by both ends to con-
figure the serial link options.

PPP requires the serial data format to be set to eight
data bits with no parity. The PPP data is sent as pack-
ets that start and stop with the tilde character (~) or in
hexadecimal 0x7E. Because ~ has a special meaning,
any other instance of ~ is replaced by the }^ escape
sequence. The escape sequence works by transmitting
two characters instead of the original, first the } and
then the original exored with the space character, or in
hexadecimal 0x20. Because the } has a special mean-
ing, it too is also escaped in the same way resulting in
the 2-character sequence }]. For compatibility with all
serial links, the control characters 0x00 to 0x1F can
also be optionally mapped into the 2-character escape
sequence. For more complete details, read RFC 1662
PPP in HDLC-like Framing.

The PPP connection can be broken into several
phases. First, if the link is dead, carrier detect from the
modem is one of the stimuli that starts the link estab-
lishment phase. This phase uses Link Control Protocol
(LCP) to detect and negotiate link options with the
remote computer.

Next the authentication phase verifies the User ID and
password with Password Authentication Protocol
(PAP). Although not one of the phases, this is where
ISPs negotiate compression protocols. The final phase
is the network layer protocol. Each protocol such as IP,
is configured with its control protocol like IPCP.

Control protocols are very similar for LCP, PAP, CCP,
and IPCP but the protocol field is different and the
options have different meanings. Each packet can
request, deny, or accept a list of options. Negotiation
starts with either side requesting a list of options in a
request (REQ) packet. Each option consists of an
option type byte, length byte, and option parameters. If
the receiving end likes all the options, it replies with an
acknowledge (ACK) packet.
 1999 Microchip Technology Inc. DS00724C-page 2-179

AN724

S2.book Page 180 Thursday, March 2, 2000 8:02 AM
FIGURE 3: PPP NEGOTIATION WITH REQ,
ACK, NAK, AND REJ PACKETS

If it doesn’t like some parameters, it responds with a not
acknowledge (NAK) packet that repeats all the options
it rejects and replaces the rejected parameters with
acceptable values. If required options are missing
those are added to the NAK reject list.

If some options are not recognized or are considered
non-negotiable they are rejected with the REJ packet
that lists all the bad options. The first side updates its
option list and retransmits requests until it gets an ACK
reply packet. The other side can start negotiations at
any time and the resulting link may have different
options for each direction. The terminate, code reject,
protocol reject, echo, and discard control packet types
are not implemented in this algorithm. The details are
broken down into a section for each control protocol.

LCP-REQ7 - 2, 3, 7, 8

LCP-REJ7 - 2, 7, 8

LCP-REQ8 - 3

LCP-ACK8 - 3

LCP-REQ2 - 2

LCP-ACK2 - 2

PAP-REQ3

PAP-ACK3

IPCP-REQ9 - 3

IPCP-ACK9 - 3

IPCP-REQ4 - 0.0.0.0

IPCP-NAK4 - 16.52.2.6

IPCP-REQ5 - 16.52.2.6

IPCP-ACK5 - 16.52.2.6

Establishing
Connection

Authenticating
User

Getting IP
Options

and Address
16.52.2.6

ISP PICmicro MCU Status

TABLE 1: ACRONYMS

Acronym Description

ACK Acknowledgement

CCP Compression Control Protocol

CRC Cyclic Redundancy Check

CHAP Challenge-Handshake Authentication
Protocol

DNS Domain Name System

DTR Data Terminal Ready

FTP File Transfer Protocol

ICMP Internet Control Message Protocol

IP Internet Protocol

IPCP Internet Protocol Control Protocol

ISP Internet Service Provider

LCP Link Control Protocol

MRU Maximum Receive Unit

NAK Negative Acknowledgement

PAP Password Authentication Protocol

PPP Point-to-Point Protocol

REJ Reject

REQ Request

RFC Request For Comment

SLIP Serial Line Internet Protocol

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

TTL Time To Live

UDP User Datagram Protocol
DS00724C-page 2-180 1999 Microchip Technology Inc.

AN724
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 181 Thursday, March 2, 2000 8:02 AM
DIAL-UP SCRIPT

We cannot start link negotiations without a physical
connection to the Internet. In this algorithm, a dial-up
modem makes the connection and then the link is
negotiated. The modem dial script could be removed
for circuits with a direct connection to the server’s serial
port. The sendwait (command, test, timeout)
routine does most of the work for the script. The script
sends the command string and then returns when it
receives the test string or the time expires. The timeout
units are 10 milliseconds, thus a timeout of 100 is 1000
milliseconds or 1 second.

First the modem is taken into command mode with a
pause, then three plus characters (+) and another
pause. The | character in the command string causes a
1-second pause; use them where required in any
sendwait() command string. Then, the ATH com-
mand hangs up the modem in case it was already off
hook. The ATZ and AT&F commands then reset the
modem and restore factory default settings. ATS11=50
speeds up the tone dialing to reduce connect time. The
modem has 3 seconds to echo the command before
the algorithm aborts and assumes the modem is not
functioning.

The algorithm indicates dialing by flashing the status
LED. Then it sends the dial string to the modem and
waits 30 seconds for the modem to respond with the
connect message before the algorithm gives up and
tries the whole process again. If the dial string contains
pauses, or the modem is faster than 2400 baud you
may need to increase the timeout. When the modem
connects, the connection LED stays on steady, other-
wise it is turned off.

The script waits 10 seconds for a colon followed by a
space to detect when the server is prompting for the
userID. Whether it gets the prompt or not, it sends the
first PPP packet. This makes use of the fact that most
servers switch to PPP login instead of further text
prompts when they get the first few characters of a PPP
packet instead of a valid User ID. If the bait is taken, the
script ends and PPP negotiation begins. Otherwise the
script continues by sending the User ID, password, and
command to enter PPP. The IP address is not captured
at this time because the IPCP negotiations will capture
it later.

FIGURE 4: PPP LOGIN FLOW CHART

Send PPP
Packet Header

Start

Initialize
Modem

Modem
Ready?

Start PPP

Connect?

userID
Prompt?

PPP
Reply?

Send
User ID

Send
Password

Send
PPP Command

Login
Failure?

Dial ISP

Modem Failed
No

No

No

Yes

Yes

Yes

Yes

No

No
 1999 Microchip Technology Inc. DS00724C-page 2-181

AN724

S2.book Page 182 Thursday, March 2, 2000 8:02 AM
LCP OPTIONS

The LCP options are negotiated first to establish the
link. A sample packet is shown in Figure 5. It has the
normal PPP header of 0x7E 0xFF 0x03 followed by
0xC0 0x21 to indicate that the protocol is LCP. The LCP
packet consists of a code, identification, length, and a
list of options to configure followed by the standard 2
byte PPP CRC. The code is a byte to indicate the
meaning of the packet. A list of codes is found in
Table 2. The identification byte is incremented after
each negotiation request, which makes requests
unique and connects them to the correct reply. The
16-bit length is the number of bytes in the LCP packet,
four for the header plus the sum of the lengths of each
option.

The list of possible options is found in Table 3. Each
option is sent as a one byte option type, followed by a
one byte option length, and an optional parameter. The
option length is two for the option header plus the num-
ber of bytes in the parameter. Here is a brief description
of the more common options:

1 Maximum-Receive-Unit – The 2 byte parameter
is the maximum size of PPP packets. It would be
nice to make this value very small to conserve
buffer space in the limited PICmicro MCU RAM.
However, the minimum allowable value of 576 is
much too big to help. Since the MRU option has no
benefit and can be safely left at the 1500 default,
this algorithm doesn’t waste code space to support
it. Note that packets longer than the 47 byte buffer
size are truncated to fit, and typically the longest
packet to handle is about 40 characters. Some
ping packets are much longer but they are quite
tolerant of losing the extra padding characters.

2 Async-Control-Character-Map – The 4-byte
parameter in this option adds up to 32 bits: each bit
represents one of the ASCII control characters
from 0 to 31. Starting with the most significant bit
as character 31 and the least significant as charac-
ter 0. If the bit for the character is a one then that
character must be transmitted as a } sequence.
This way the server and client can decide to
escape only the characters which may cause prob-
lems instead of wasting bandwidth escaping all
control characters. Even characters that do not
need to be escaped may be, this algorithm exploits
that to simplify the software and to transmit all con-
trol characters as two bytes.

3 Authentication-Protocol – This option chooses
the method of sending the password. Unless you
have already logged in with the script, this option
will be required. A parameter value of 0xC023
selects Password Authentication Protocol (PAP)
which sends a packet containing the User ID and
password in plain text. A parameter value of
0xC223 selects the Challenge Handshake Authen-
tication Protocol (CHAP) in which the User ID is
sent in plain text and the password encrypts and
returns a random string from the server. On the
server, the password encrypts the same string; if
the two results match, the user is logged in. For
simplicity, this algorithm only supports the PAP
method. So far no ISP has forced it to use the
CHAP method.

5 Magic-Number – This option did not need to be
implemented for the PPP negotiations to con-
verge. The 4 byte parameter is a random number;
if identical to the server’s, then both ends choose
another random number. Assuming good random-
ness, the chance of random numbers not being
unique after three iterations is so low that the
transmission path is assumed to be looped back,
just echoing packets sent.

7 Protocol-Field-Compression – This option has
no parameters. If requested, the acknowledging
side may transmit future PPP packets with the first
byte of the 2-byte protocol field left out. This is
meant to save bandwidth. It is easy to uncompress
- if an odd byte arrives at the start of the protocol
field it must be the second byte since the first byte
is always even, and the second is always odd. A
zero is inserted for the missing first character.

8 Address-and-Control-Field-Compression –
This option has no parameters. However, if
requested, the acknowledging side may transmit
future PPP packets with the second and third
bytes, 0xFF and 0x03, left out. This is also meant
to save bandwidth. It is also easy to decompress
because if the first character in the packet is not
0xFF, a 0xFF is inserted first, if the second charac-
ter is not 0x03, a 0x03 is inserted first.

The other options didn’t need to be implemented to
make the Internet connection, but as standards evolve
in the future a missing option could prevent login. Note
that only options up to number 16 can be negotiated
without modifying the TestOptions() routine. It has
a one word parameter called option in which each of
the 16 bits indicate acceptance of an option. For exam-
ple, if the Most Significant Bit (MSB) is set, then option
16 is accepted; if bit 0 is cleared, then option 1 is
rejected. LCP is complete when both sides of the con-
nection have their list acknowledged by the other side.
DS00724C-page 2-182 1999 Microchip Technology Inc.

AN724
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 183 Thursday, March 2, 2000 8:02 AM
FIGURE 5: A SAMPLE LCP REQUEST PACKET

TABLE 2: LCP NEGOTIATION CODES

Type Packet Type Details

0 Vendor Specific RFC2153

1 Configure-Request RFC1661

2 Configure-Ack RFC1661

3 Configure-Nak RFC1661

4 Configure-Reject RFC1661

5 Terminate-Request RFC1661

6 Terminate-Ack RFC1661

7 Code-Reject RFC1661

8 Protocol-Reject RFC1661

9 Echo-Request RFC1661

10 Echo-Reply RFC1661

11 Discard-Request RFC1661

12 Identification RFC1570

13 Time-Remaining RFC1570

01

C0 21 REQ 25 00 18 2 3 5 7 8

7E FF 03 LCP Code ID Length Options 8F 64 7E

Framing Protocol Payload Checksum Framing

The complete packet with more option details:

0000: 7E FF 03 C0 21 01 25 00 18 02 06 00 0A 00 00 03

0010: 04 C0 23 05 06 71 AE BE D2 07 02 08 02 8F 64 7E

Same LCP packet with } escape sequences:

0000: 7E FF 7D 23 C0 21 7D 21 25 7D 20 7D 38 7D 22 7D

0010: 26 7D 20 7D 2A 7D 2A 7D 20 7D 23 7D 24 C0 23 7D

0020: 25 7D 26 71 AE BE D2 7D 27 7D 22 7D 28 7D 22 8F

0030: 64 7E

02 06 00 0A 00 00

Type Length Data

01

C0 21 REQ 25 00 18 2 3 5 7 8

7E FF 03 LCP Code ID Length Options 8F 64 7E

Framing Protocol Payload Checksum Framing

The complete packet with more option details:

0000: 7E FF 03 C0 21 01 25 00 18 02 06 00 0A 00 00 03

0010: 04 C0 23 05 06 71 AE BE D2 07 02 08 02 8F 64 7E

Same LCP packet with } escape sequences:

0000: 7E FF 7D 23 C0 21 7D 21 25 7D 20 7D 38 7D 22 7D

0010: 26 7D 20 7D 2A 7D 2A 7D 20 7D 23 7D 24 C0 23 7D

0020: 25 7D 26 71 AE BE D2 7D 27 7D 22 7D 28 7D 22 8F

0030: 64 7E

02 06 00 0A 00 00

Type Length Data
 1999 Microchip Technology Inc. DS00724C-page 2-183

AN724

S2.book Page 184 Thursday, March 2, 2000 8:02 AM
TABLE 3: LCP OPTIONS

Type Configuration Option Details

 0 Vendor Specific RFC2153

 1 Maximum-Receive-Unit RFC1661

 2 Async-Control-Character-Map RFC1662

 3 Authentication-Protocol RFC1661

 4 Quality-Protocol RFC1661

 5 Magic-Number RFC1661

 6 Quality-Protocol Deprecated

 7 Protocol-Field-Compression RFC1661

 8 Address-and-Control-Field-Compression RFC1661

 9 FCS-Alternatives RFC1570

 10 Self-Describing-Pad RFC1570

 11 Numbered-Mode RFC1663

 12 Multi-Link-Procedure Deprecated

 13 Callback RFC1570

 14 Connect-Time Deprecated

 15 Compound-Frames Deprecated

 16 Nominal-Data-Encapsulation Deprecated

 17 Multilink-MRRU RFC1990

 18 Multilink-Short-Sequence-Number-Header RFC1990

 19 Multilink-Endpoint-Discriminator RFC1990

 20 Proprietary

 21 DCE-Identifier RFC1976

 22 Multi-Link-Plus-Procedure RFC1934

 23 Link Discriminator for BACP RFC2125

 24 LCP-Authentication-Option

 25 Consistent Overhead Byte Stuffing (COBS)

 26 Prefix elision

 27 Multilink header format

 28 Internationalization RFC2484

 29 Simple Data Link on SONET/SDH
DS00724C-page 2-184 1999 Microchip Technology Inc.

AN724
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 185 Thursday, March 2, 2000 8:02 AM
PAP OPTIONS

The PAP details can be found in RFC 1334. For this
algorithm they were simplified to one packet exchange.
The PAP packet is similar to LCP with 0xC023 instead
of 0xC021 in the protocol field. Instead of negotiating
options, only the User ID and password are sent as a
request. If the server acknowledges, then the user is
logged in. A NAK reply would mean that the User ID or
password is incorrect. The format can be seen in
Figure 6. The first payload byte is the length of the User
ID, followed by the User ID. The password is appended
in the same way: Length first followed by password.

FIGURE 6: A SAMPLE PAP REQUEST PACKET

C0 23 01 04 0014 06 userid 08 password

7E FF 03 PAP Code ID Length User ID Password 58 3D 7E

Framing Protocol Payload Checksum Framing

The complete packet:

0000: 7E FF 03 C0 23 01 04 00 14 06 75 73 65 72 69 64

0010: 08 70 61 73 73 77 6F 72 64 58 3D 7E
 1999 Microchip Technology Inc. DS00724C-page 2-185

AN724

S2.book Page 186 Thursday, March 2, 2000 8:02 AM
IPCP OPTIONS

After LCP is negotiated and PAP is accepted, the Inter-
net Protocol must be configured. The options are for IP
address and IP Compression with more details in RFC
1332. IP address is option three and its 4-byte param-
eter is the Internet address of this node. The server typ-
ically sends a request with option three followed by the
IP address. Otherwise, the address is found by
requesting an invalid choice like 0.0.0.0 and the server
replies with a NAK and option three with the correct
address. A sample packet is shown in Figure 7. Some
server implementations may request IP Compression
Protocol option type two. These requests are rejected
because TCP is not implemented in this algorithm.
Table 4 shows the IPCP configuration option types.

FIGURE 7: A SAMPLE IPCP NAK PACKET

TABLE 4: IPCP CONFIGURATION OPTION
TYPES

Type Configuration Option Details

 1 IP-addresses Deprecated

 2 IP-Compression-Protocol RFC1332

 3 IP-address RFC1332

 4 Mobile-IPv4 RFC2290

129 Primary DNS Server address RFC1877

130 Primary NBNS Server
address

RFC1877

131 Secondary DNS Server
address

RFC1877

132 Secondary NBNS Server
address

RFC1877

03

80 21 NAK 05 00 0A 3

7E FF 03 IPCP Code ID Length Option A3 4D 7E

Framing Protocol Payload Checksum Framing

The complete packet:

0000: 7E FF 03 80 21 03 05 00 0A 03 06 CD C8 2D 4A A3

0010: 4D 7E

03 06 CD C8 2D 4A

Type Length Data
DS00724C-page 2-186 1999 Microchip Technology Inc.

AN724
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 187 Thursday, March 2, 2000 8:02 AM
CCP OPTIONS

Some servers will try to negotiate compression, but
since this algorithm is optimized for size instead of
speed, these requests are rejected. The compression
algorithms are complex and in some cases proprietary,
yet have little benefit on the short packets used in this
algorithm. Choosing the puddle jumper option type 3
means that no compression or decompression is
required.

ICMP COMMUNICATIONS

The Internet Control Message Protocol messages are
sent with full IP packets, an example is shown in
Figure 8. This protocol is used to implement ping, but it
has many other uses that you can read about in RFCs
792 and 950. Ping works by sending a packet to a
remote Internet address and waiting for the reply, like
radar or sonar from which it gets the name. This algo-
rithm pings a fixed address once every 30 seconds to
maintain an ISP connection. During this time it also
responds to pings initiated by remote devices on the
Internet.

The description of this packet is better understood as
two parts, the IP header and the ICMP message. The
packets discussed up to this point were just for setting
up the serial link and never made it past the server. A
lot more information is packed into the IP header. Its 20
bytes contain the instructions to take it anywhere on the
Internet.

The first byte is broken into two nibbles, the first 4 bits
are the IP version which is currently still four. The next
4 bits are the header length, which is the number of 32
bit words in the header, 5 in this case. The second byte
is the type of service to optimize for: minimize delay,
maximize throughput, maximize reliability, or minimize
monetary cost. The recommended value for ping is

0x00 which means normal service with no optimization.
The third and fourth bytes are the 16 bit total length of
the IP header plus the following data such as the ICMP
message.

The next 4 bytes are for fragmented packets and since
these packets are so small, this algorithm ignores frag-
mentation. The ninth byte is the time to live (TTL) flag
and it sets the maximum number of routers a packet
can pass through before it is discarded. This is impor-
tant to keep the Internet from getting clogged with lost
packets. The TTL flag is usually set to 32 or 64 and dec-
remented by each router the packet passes through.
The tenth byte is a protocol field which says what type
of information the IP header is attached to.

Bytes 11 and 12 are called the header checksum,
which is a 16 bit one ’s complement sum of the 20
header bytes. For implementation details check RFC
1071 which has a very good description and sample C
code. Basically, a 16-bit one’s complement sum is the
16 bit sum of 16 bit data where overflow carries into bit
16 are wrapped around and added to bit 0. The next 4
bytes are the source IP address and the last four bytes
are the destination IP address.

The ICMP message follows with a type byte, code byte,
and checksum word, see Figure 9. The type byte is 0
for a ping reply or 8 for a ping request. The code byte
is zero in both cases and the checksum is again a one’s
complement sum. This time the checksum is the sum
of the ICMP header plus the following data. The
amount of data is the IP header total length minus the
IP header length. In the case of a ping the originator
stuffs in some data to see if it is properly echoed by the
ping reply. This arbitrary data could just as well be your
collected data or other information you wish to send.
This algorithm responds to ping requests without echo-
ing back any of the arbitrary data and causes some
ping programs to report an error.

FIGURE 8: INTERNET PROTOCOL PACKET SHOWING MEMORY LOCATIONS IN RX BUFFER

Buffer
Offset

bit
0

bit
8

bit
16

bit
24

bit
31

4 IP Version Length Type of Service Total Length in Bytes

8 Identification Flags Fragment Offset

12 Time To Live (TTL) Protocol Header Checksum

16 Source IP Address

20 Destination IP Address

24 ICMP, TCP, or UDP Header and Data

.

.

.

 1999 Microchip Technology Inc. DS00724C-page 2-187

AN724

S2.book Page 188 Thursday, March 2, 2000 8:02 AM
FIGURE 9: A SAMPLE OF A PING WITH NO OPTIONAL DATA

Buffer
Offset

bit
 0

bit
 8

bit
16

bit
24

bit
31

PPP Packet

0000 : FF 03 00 21

4
Version
0100

Length
0101

Service
0000 0000

Total Length
00000000 00011100

0004 : 45 00 00 1C

8
Identification

1000 1000 0001 0000
Flags
010

Fragment Offset
00000 00000000

0008 : 88 10 40 00

12
TTL

0111 1111
Protocol

0000 0001
Header Checksum

00110011 10100111
000C : 7F 01 33 A7

16
Source IP Address

11001101 11001000 00101101 01111100
0010 : CD C8 2D 7C

20
Destination IP Address

11001111 10100001 01110101 01000011
0014 : CF A1 75 43

24
ICMP Type
0000 1000

ICMP Code
0000 0000

ICMP Checksum
11110111 11111110

0018 : 08 00 F7 FE

28
PING Identifier

00000000 00000001
PING Sequence Number

00000000 00000000
001C : 00 01 00 00

0020 : 22 7C 7E
DS00724C-page 2-188 1999 Microchip Technology Inc.

AN724
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 189 Thursday, March 2, 2000 8:02 AM
UDP DETAILS

UDP is the protocol required to transfer files with TFTP,
convert host names to IP addresses with DNS, or sta-
tus and event reporting with SNMP. Its simplicity and
bandwidth efficiency make it an important part of some
multimedia Internet protocols. The official specification
is found in RFC 768.

This algorithm doesn’t support UDP protocols but this
section will give you a bit of background and make it
easier for you to add it to the algorithm. First of all UDP
is an unreliable protocol, not that it should be avoided,
but rather that packets can get lost without warning and
may require retransmission. It is deterministic in the
sense that each packet, or timeout, triggers the next
event without regard to what state the connection is in.
This simplifies programming and makes debugging
much easier.

The format of UDP is shown in Figure 10. There are 20
bytes of IP header, then 8 bytes of UDP header, and the
UDP data. The first two 2 byte fields are the source and
destination port numbers. The port numbers are impor-
tant to identify what process gets the UDP data. An
example is port 69 which is always used for TFTP.

The next two bytes are the UDP length, eight bytes of
UDP header plus the length of the UDP data. This
value is redundant because it can be calculated from
the IP header by subtracting the header length from the
total length.

The last 2 bytes of the UDP header are the 16 bit one’s
complement checksum of the pseudo header, the UDP
header, and the UDP data. The pseudo header is not
transmitted but the following 12 bytes are added to the
checksum anyway. The 32 bit source and destination
addresses, the 16-bit UDP address, and the 8-bit pro-
tocol field are extended to 16 bits to ensure that the
UDP data is going to the correct IP address.

The checksum is optional and set to zero if not used.
Since zero means no checksum, then a valid checksum
that adds up to zero must be inverted to 0xFFFF. If the
UDP data is an odd number of bytes, your 16 bit check-
sum routine will need to pretend that there is an extra
byte 0x00 at the end.

The format of the UDP data will depend on which port
you are connecting to and which protocol is using the
data. A good example is the Trivial File Transfer Proto-
col (TFTP) which is well documented in RFC 1350.

TCP DETAILS

TCP is the protocol required to transfer files with FTP,
communicate by email with SMTP, login remotely with
Telnet, or serve web pages with HTTP. The original
specification is found in RFC 793; however, it has been
improved by the Host Requirements RFCs 1122 and
1123.

This algorithm doesn’t even pretend to support TCP
packets because of the larger RAM and ROM require-
ments. Parts of the protocol may fit in a PICmicro
MCUs with larger program memory size, so here is a lit-
tle information for those brave enough to try. TCP is
considered a reliable protocol because it hides lost and
missing packets from the running applications: it tracks
and retransmits them in the background.

This is really no different than UDP for the purpose of
this algorithm since there is no distinction of software
levels. In both cases the same process is responsible
to retransmit missing packets. The difference is in the
complexity and size of the packets. Another difference
is that the other end of the connection is expecting this
algorithm to keep track of packet timing, retransmit pre-
vious packets, and remember the state of multiple
simultaneous connections.

FIGURE 10: THE UDP PACKET FORMAT

Buffer
Offset

bit
0

bit
16

bit
31

4 IP Header

24 Source Port Number Destination Port Number

28 UPD Length UDP Checksum

32 UDP Data Such as TFTP
.
.
.

 1999 Microchip Technology Inc. DS00724C-page 2-189

AN724

S2.book Page 190 Thursday, March 2, 2000 8:02 AM
HARDWARE IMPLEMENTATION

This application note was designed for the PIC16C63A
to demonstrate how compact the PPP connection algo-
rithm can be shrunk. The algorithm uses 151 of the 192
file registers and 2.2k of the 4k ROM and only six I/O
pins. There is still plenty of space for your own code
and the code is portable enough to move it into a
smaller or larger PICmicro MCU. The 4 MHz crystal is
fast enough and could be slowed down, unless you
need a faster modem or run additional CPU intensive
tasks.

The modem is a Ceremtek CH1786LC, running at 2400
baud, but with packet sizes under 50 bytes speed is not
much of an issue. For higher traffic connections or large
data transfers you may want to upgrade to the larger
but still pin-compatible 14.4 kilobaud CH1794. Be sure
to check with the modem manufacturer what external
circuitry is required before connecting to the telephone
line. Your circuit must be designed and tested to meet
the telecom standards of the country in which you wish
to use it.

Only the telephone line, power, serial transmit, receive,
and DTR line need to be connected to use this modem.
The DTR line must be tied low for the modem to oper-
ate properly. The modem can be very sensitive to
power supply noise so be sure to keep it close to a
bypass capacitor. You could also change the software
a little and replace the modem with an RS232 driver to
go directly to the server’s serial port.

One desirable characteristic of this modem is that it
draws a maximum of 50 mA. Since it is only on for brief
periods and the entire circuit never draws more than a
total of 65 mA, we can easily power it off a 9V battery.
A typical 9V alkaline battery with a 560mA hour rating
would give us about 9 hours of power. The modem off
hook to ping time is under a minute, so if we just send
one ping and hang up, the battery would last for more
than 500 pings. This works out to be about a year and
a half at one ping per day.

This requires the power supply to turn off completely
after the ping is successful. The power supply design
uses a NPN transistor to turn on a PNP transistor which
supplies the current to the voltage regulator. The NPN
transistor can be turned on by the processor or by a
momentary switch. When the momentary switch closes
it turns on the power, and as the microcontroller initial-

izes it too turns on the NPN transistor. By this time the
user has released the switch and the microcontroller
keeps the power on. The switch could be almost any-
thing like a magnetic burglar sensor or even a thermo-
stat. When the ping is complete it releases the power
and turns itself off. If you need to ping the device, just
keep the manual switch closed until you want the power
off. With the switch released, it will power down after
the first successful ping or an automatic timeout if there
is no modem connection, password fails, or no ping
replies.

The PNP transistor is also a benefit to reducing power
consumption because no voltage drop is lost to a
reverse protection diode. You may also upgrade to a
low dropout (LDO) voltage regulator to get a little extra
life out of the battery before the 5 volt regulator stops
regulating. Choose a regulator that includes a power
switch, or change the PNP to a MOSFET to reduce the
current draw by one mA and add another two percent
to the battery life. Rather than improving efficiency with
a DC-DC converter, I would choose a lower-voltage
battery pack with a flat discharge curve that barely
maintains the minimum LDO regulating voltage. If the
device will be inaccessible or needs a long shelf life,
then go with a lithium-ion battery pack.

There are three LEDs: one indicates the modem status
and the other two indicate serial data transmitted and
received. The modem status LED is off while the soft-
ware initalizes the modem, flashes quickly while dial-
ing, and goes on steady when connected. If it goes off
after flashing then it didn’t connect and it will try again
in a couple seconds. After connecting and negotiating
PPP the status light will go off for a second and then
flash out its 32 bit IP address. A long flash is a one and
a short flash is a zero. Write down each bit as it flashes
and then convert the binary to hexadecimal. Make it
easier by grouping the bits in fours, each a hexadecimal
character. Insert three decimals spaced every 8 bits,
convert the four numbers to decimal, and you have your
IP address, see Figure 11. This address is usually
dynamically assigned resulting in a different address
every time it logs on the Internet.

FIGURE 11: CALCULATION OF IP ADDRESS FROM LED PULSES

Note: For first-time developers of PICmicro
MCUs, using the Microchip PICDEM Dem-
onstration boards (DV163002) may be
useful.

Record long flashes as 1 bit.
Record short flashes as 0 bit.
There will be a pause every eight flashes.
Example:

1100 1101 1100 1000 0010 1101 0100 1010

Hexadecimal: C D • C 8 • 2 D • 4 A

Decimal: 205 • 200 • 45 • 74
DS00724C-page 2-190 1999 Microchip Technology Inc.

AN724
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 191 Thursday, March 2, 2000 8:02 AM
SOFTWARE IMPLEMENTATION

The software is written in C to keep it portable. This way
the algorithm can be developed on a PC and tested
with a variety of low-cost compilers and debuggers or
simply print all relevant data to the screen. Then, just
press PrintScreen or use DOS to pipe the screen out-
put to a file for analysis. To compile for a PC, replace
the serial functions with COM port routines and use the
PC tick counter at address ‘0040:006C’ instead of
TMR0.

There are a number of excellent C compilers for the
PICmicro MCU. This code was started with the free
compiler CC5X from B. Knudsen Data in Norway and
completed with the PICmicro MCU C Compiler from
HiTech in Australia. The code shown will compile with
the HiTech demo available at http://www.htsoft.com. It
should work with all the other C compilers for the
PICmicro MCU if you do all compiler specific modifica-
tions required to the code.

The code consists of a main routine that does the two
main tasks of modem control scripting and the protocol
state machine. There are a couple of support routines
for calculating the CRC checksums, creating packets,
checking configuration options, and controlling the
modem.

When you press the power switch, the microcontroller
powers up, does a short time delay loop, and asserts
RB3 to keep the power on. The 250 millisecond time
delay is meant to prevent false triggering. As long as
either the user is pressing the power button or RB3 is
asserted the power will stay on. The software will
release RB3 to turn off the power after it successfully
pings a remote host, times out trying, or fails 20 dial
attempts. If the power button is still pressed, the soft-
ware continues to dial or attempt more pings until the
button is released. For example, if you want to ping it
from another computer you will have to hold in the but-
ton until you complete your ping tests.

The software will attempt to phone the number pro-
grammed in the source code up to 20 times at about
30-second intervals. When it connects it tries going
from a script login to a PPP login by sending a PPP
packet instead of a User ID. If that fails, it falls back to
a script login; otherwise it goes into the main loop of the
algorithm. The protocol state machine loop does all the
serial I/O, packet processing, packet creation, and tim-
ing to negotiate PPP and complete a ping.

The state machine starts in state 0. When the Internet
server acknowledges the LCP configuration packet
state, bit 0 is set. When the algorithm acknowledges
the server’s LCP configuration, bit 1 is set. As long as
bit 0 is clear, the algorithm will send an LCP request
once every second. When both bits are set the algo-
rithm moves into state 4.

In state four a PAP request with the User ID and pass-
word is sent once a second. The acknowledgement of
the password moves the algorithm into state five. When
the algorithm acknowledges the server’s IPCP options
it moves into state six. In state six the algorithm
requests IP address 0.0.0.0 once a second. The server
should reply with a NAK packet containing the correct
address to move the algorithm into it final state 7. Here
it flashes out the IP address on the status LED and then
pings the hardcoded host IP address every 30 sec-
onds. After the first good ping reply, it turns off the
power unless the power button is still pressed.

The MakePacket routine creates an outgoing packet
in the transmit buffer. Every loop of the state machine
checks if the serial transmitter is ready for another
character. If the transmit buffer is empty, it sends the
next character. On the last character it marks the buffer
empty and sends an extra 0x7E to mark the end of the
packet.

Every loop of the state machine also checks the serial
receiver for characters from the modem or Internet
server. Characters that are sent using the previously
described } escape sequence are immediately con-
verted back to the original character. The CRC check-
sum is also calculated as the bytes come in so that
packets longer than the buffer can still pass the CRC.

The OptionTest routine is used to test the receive
buffer for whatever options the server is requesting. It
takes a 16-bit option parameter, where each bit repre-
sents an option from 1 to 16 - with 16 being the MSB. If
a bit is set, then its corresponding option can be
accepted. If the server requests options that are not
allowed by the option parameter, then the subroutine
returns a zero and deletes the options that were
allowed. This way a REJ packet can be sent to tell the
server which options to drop. If it is an LCP packet with
option three set to CHAP then the subroutine returns a
one and deletes the options that passed. This way a
NAK packet can be sent to tell the server to switch to
PAP. In all other cases the subroutine returns a value
greater than one and leaves the receive buffer
unchanged.
 1999 Microchip Technology Inc. DS00724C-page 2-191

AN724

S2.book Page 192 Thursday, March 2, 2000 8:02 AM
FIGURE 12: PPP NEGOTIATION STATE MACHINE

State 0
No Connection

State 1
Tx Channel Ready

State 2
Rx Channel Ready

State 3
PPP Connected

State 4
Authenticating User

State 5
Configuring IPCP

State 6
Requesting Address

State 7
Ready for Ping

LCP NAK or LCP REJ

Send LCP Requests

LCP REQ/NAK
Send LCP Requests

LCP ACK

LCP REQ/NAK LCP ACK

Automatic

PAP ACK

IPCP REQ/ACK

IPCP ACK

Send PAP Requests

Send IPCP Requests

Send Ping Requests

PAP REQ

PAP NAK

IPCP REQ/REJ

IPCP NAK/REQ

LCP REQ/NAK

LCP REQ/NAK

LCP REQ/NAK
DS00724C-page 2-192 1999 Microchip Technology Inc.

AN724
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 193 Thursday, March 2, 2000 8:02 AM
CONCLUSION

This algorithm is a little taste of what is possible with a
PICmicro MCU, you will likely use this information as a
basis for even more powerful Internet applications. Just
remember to only make small changes to working code
and test them before making the next change.

This information is quite technical, so don’t give up if
you are not already TCP/IP savvy. Remember that all
the so called experts had to learn it at some time too.
Read a book like TCP/IP Illustrated Volume 1 by Rich-
ard Stevens and the referenced RFCs, then compile
the code and analyze lots of packets. Start your exper-
imenting slowly with a relatively easy task like adding
support for replying to Traceroute requests. Here’s a
hint: test the TTL on valid IP packets received to trigger
sending an ICMP error packet.

This tutorial was meant to encourage the development
of tiny Internet interfaces and not to replace or override
the established Internet standards documents.

The prototype does what I needed it to do but there are
many areas in which it could be improved upon, such
as size, speed, power requirements, RAM usage, sup-
ported protocols, and more universal PPP negotiations.
The possibilities are only limited by your imagination
and creativity in overcoming the obstacles.
 1999 Microchip Technology Inc. DS00724C-page 2-193

AN724

S2.book Page 194 Thursday, March 2, 2000 8:02 AM
TABLE 5: REFERENCES
W.R. Stevens, TCP/IP Illustrated, Vol. 1, Addison Wesley, Reading, MA, 1994

James Carlson, PPP Design and Debugging, Addison Wesley, Reading, MA, 1997

RFC 0768 User Datagram Protocol. J. Postel. Aug-28-1980.
RFC 0791 Internet Protocol. J. Postel. Sep-01-1981.

RFC 0792 Internet Control Message Protocol. J. Postel. Sep-01-1981.

RFC 0793 Transmission Control Protocol. J. Postel. Sep-01-1981.

RFC 0867 Daytime Protocol. J. Postel. May-01-1983.

RFC 0950 Internet Standard Subnetting Procedure. J.C. Mogul, J. Postel. Aug-01-1985.

RFC 1055 Nonstandard for transmission of IP datagrams over serial lines: SLIP. J.L. Romkey. Jun-01-1988.
RFC 1071 Computing the Internet checksum. R.T. Braden, D.A. Borman, C. Partridge. Sep-01-1988.

RFC 1122 Requirements for Internet hosts - communication layers. R.T. Braden. Oct-01-1989.

RFC 1123 Requirements for Internet hosts - application and support. R.T. Braden. Oct-01-1989.

RFC 1144 Compressing TCP/IP headers for low-speed serial links. V. Jacobson. Feb-01-1990.

RFC 1157 Simple Network Management Protocol J.D. Case, M. Fedor, M.L. Schoffstall, C. Davin. May-01-1990.

RFC 1332 The PPP Internet Protocol Control Protocol (IPCP). G. McGregor.May 1992.
RFC 1334 PPP Authentication Protocols. B. Lloyd, W. Simpson. October 1992.

RFC 1350 The TFTP Protocol (Revision 2). K. Sollins. July 1992.

RFC 1547 Requirements for an Internet Standard Point-to-Point Protocol. D. Perkins. December 1993.

RFC 1570 PPP LCP Extensions. W. Simpson. January 1994.

RFC 1661 The Point-to-Point Protocol (PPP). W. Simpson, Editor. July 1994.

RFC 1662 PPP in HDLC-like Framing. W. Simpson, Editor. July 1994.
RFC 1663 PPP Reliable Transmission. D. Rand. July 1994.

RFC 1700 Assigned Numbers. J. Reynolds, J. Postel. October 1994.

RFC 1962 The PPP Compression Control Protocol (CCP). D. Rand. June 1996.

RFC 1989 PPP Link Quality Monitoring. W. Simpson. August 1996.

RFC 1994 PPP Challenge Handshake Authentication Protocol (CHAP). W. Simpson. August 1996.

RFCs available online from sites like: http://www.cis.ohio-state.edu/hypertext/information/rfc.html

Assigned PPP Numbers: ftp://ftp.isi.edu/in-notes/iana/assignments/ppp-numbers
DS00724C-page 2-194 1999 Microchip Technology Inc.

AN724
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 195 Thursday, March 2, 2000 8:02 AM
FIGURE 13: SCHEMATIC

R
7

10

V
C

C

R
x

T
x

D
T

R

G
N

D

T
IP

R
IN

G

U
3

C
H

17
86

LC

2 1

R
5

10
1 2 R
J1

1

R
B

0

T
x

R
x

U
2

P
IC

16
C

63
A

R
B

1

R
B

2

R
B

3

O
S

C
1

O
S

C
2

M
C

LR V
cc

V
S

S

V
S

S

8
13

19
20

18
10

17
11

1
19

20

24 23 22 21 9 10

R
2

1k R
3

1k R
4

1k R
6

10
k

C
3

22
p

C
4

22
p

IN
O

U
T

GND

U
1

79
L0

5

+
C

1
4.

7
C

2
0.

1

3
2

7-
35

V

R
1

2.
2k D
4

O
pt

io
na

l
E

ls
e

S
ho

rt

Tr
ig

ge
r

S
1

V
C

C

V
C

C
Q

1
2N

29
07

E
C

C E

Q
2

2N
22

22

V
ba

tt

B

B

X
1

4
M

H
z

R
8

10
k

V
ba

tt

D
1

D
2

D
3

L
eg

en
d

:

D
1

=
 S

ta
tu

s
LE

D
D

2
=

 P
ow

er
 L

E
D

D
3

=
 T

x
LE

D
D

4
=

 R
s

LE
D

 1999 Microchip Technology Inc. DS00724C-page 2-195

AN724

S2.book Page 196 Thursday, March 2, 2000 8:02 AM
APPENDIX A: SOURCE CODE

SOFTWARE LICENSE AGREEMENT
The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller
is intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Micro-
controller products.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights
are reserved. Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applica-
ble laws, as well as to civil liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIR-
CUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON
WHATSOEVER.
DS00724C-page 2-196 1999 Microchip Technology Inc.

AN724
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 197 Thursday, March 2, 2000 8:02 AM
APPENDIX A: SOURCE CODE

///
//
// PING.C version 1.10 July 29/99 (C)opyright by Microchip Technology Inc.
//
///
//
// For more documentation read the Microchip Application Note 724
// This code is ready to compile with the HiTech C compiler demo for the PIC16C63A.
//
// You will need these additional things to make this code work:
//
// - the simple hardware described in application note
//
// - an Internet account with PPP dialup access (not compatible with all ISPs)
//
// - replace 5551234 with your ISP’s phone number in the line like this
// if (sendwait(“5551234\r”,”NNECT”,3000)) {
//
// - replace userid with your account userid in the line like this:
// if (sendwait(“userid\r”,”word:”,200))
//
// - replace password with your account password in the line like this:
// if (sendwait(“password\r”,”tion:”,1000))
//
// - replace the entire string in the line like this:
// MakePacket(PAP,REQ,number,”\x14\x06userid\x08password”);
//
// C converts the \x## in the string to a character with that ASCII value
// ## is a hexadecimal value, so the following character cannot be
// if the next character is 0-9 or A-F or a-f then it will confuse the compiler
// the solution is to convert the next characters to \x## until a non hex char
// if in doubt look at the assembly output from the compiler
// replace the userid with yours and the \x06 with your userid length
// replace the password with yours and the \x08 with your password length
// replace the first value in the string, it must be the string length plus 4
//
// Once login is working you should also change the IP address of the Internet host to ping
// if you can not ping 207.161.117.67 with your PC this code will not work either
// It is CF.A1.75.43, the characters 2 to 5, in the string in the line like this:
// MakePacket(IP,0,1,”\x10\xCF\xA1\x75\x43\x8\x0\xF7\xFE\x0\x1\x0\x0”);
// Convert the address you want to hexadecimal and replace the four values.
//
// Make sure the power-on reset and brownout detect config bits are enabled
//
///

// Defines for Internet constants
#define REQ 1 // Request options list for PPP negotiations
#define ACK 2 // Acknowledge options list for PPP negotiations
#define NAK 3 // Not acknowledged options list for PPP negotiations
#define REJ 4 // Reject options list for PPP negotiations
#define TERM 5 // Termination packet for LCP to close connection
#define IP 0x0021 // Internet Protocol packet
#define IPCP 0x8021 // Internet Protocol Configure Protocol packet
#define CCP 0x80FD // Compression Configure Protocol packet
#define LCP 0xC021 // Link Configure Protocol packet
#define PAP 0xC023 // Password Authentication Protocol packet

#define MaxRx 46 // Maximum size of receive buffer
#define MaxTx 46 // Maximum size of transmit buffer

unsigned char addr1, addr2, addr3, addr4;// Assigned IP address
unsigned int rx_ptr, tx_ptr, tx_end; // pointers into buffers
unsigned int checksum1, checksum2; // Rx and Tx checksums
 1999 Microchip Technology Inc. DS00724C-page 2-197

AN724

S2.book Page 198 Thursday, March 2, 2000 8:02 AM
unsigned char number; // Unique packet id

#include <pic1663.h> // Defines specific to this processor

#define serial_init() RCSTA=0x90;TXSTA=0x24;SPBRG=103// Set up serial port
#define serial_tx_ready() TXIF // Transmitter empty
#define serial_send(a) TXREG=a // Transmit char a
#define serial_rx_ready() RCIF // Receiver full
#define serial_get() RCREG // Receive char
#define serial_error() OERR // USART error
#define serial_fix() {CREN=0;CREN=1;} // Clear error

unsigned int TIME; // 10 milliseconds counter
#define TIME_SET(a) TIME=a // Set 10 millisecond counter to value ‘a’
bank1 unsigned char tx_str[MaxRx+1]; // Transmitter buffer
bank1 unsigned char rx_str[MaxTx+1]; // Receiver buffer

// Process all the interrupts in the PIC here
static void interrupt isr(void) {
 if (T0IF) { // Timer overflow interrupt?
 TMR0 = 100; // Set to overflow again in 10ms @ 4MHz
 T0IF = 0; // Clear overflow interrupt flag
 TIME++; // Increment 10 ms counter
 }
}

// Add next character to the CRC checksum for PPP packets
unsigned int calc(unsigned int c) {
 char i; // Just a loop index
 c &= 0xFF; // Only calculate CRC on low byte
 for (i=0;i<8;i++) { // Loop eight times, once for each bit
 if (c&1) { // Is bit high?
 c /= 2; // Position for next bit
 c ^= 0x8408; // Toggle the feedback bits
 } else c /= 2; // Just position for next bit
 } // This routine would be best optimized in assembly
 return c; // Return the 16 bit checksum
}

// Add character to the new packet
void add(unsigned char c) {
 checksum2 = calc(c^checksum2) ^ (checksum2/256); // Add CRC from this char to running total
 tx_str[tx_ptr] = c; // Store character in the transmit buffer
 tx_ptr++; // Point to next empty spot in buffer
}

// Create packet of type, code, length, and data string specified
// packet is the type, like LCP or IP
// code is the LCP type of packet like REQ, not used for IP packets
// num is the packet ID for LCP, or the IP data type for IP packets
// *str is the packet data to be added after the header
// returns the packet as a string in tx_str
void MakePacket(unsigned int packet, unsigned char code, unsigned char num, const unsigned char
*str) {
 unsigned int length; // Just a dual use temp variable
 tx_ptr = 1; // Point to second character in transmit buffer
 tx_str[0] = ‘ ‘; // Set first character to a space for now
 checksum2 = 0xFFFF; // Initialize checksum
 add(0xFF); // Insert PPP header OxFF
 add(3); // Insert PPP header 0x03
 add(packet/256); // Insert high byte of protocol field
 add(packet&255); // Insert low byte of protocol field
 if (packet==IP) { // If Internet Protocol
 add(0x45); // Insert header version and length
 add(0); // Insert type of service
 add(0); // Insert total packet length high byte
DS00724C-page 2-198 1999 Microchip Technology Inc.

AN724
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 199 Thursday, March 2, 2000 8:02 AM
 add((*str)+12); // Insert total packet length low byte
 add(0x88); // Insert identification high byte
 add(0x10); // Insert identification low byte
 add(0x40); // Insert flags and fragment offset
 add(0); // Insert rest of fragment offset
 add(127); // Insert time to live countdown
 add(num); // insert the protocol field
 length = 0x45+0x88+0x40+127+addr1+addr3+str[1]+str[3]; // high byte checksum
 packet = *str + 12 + 0x10 + num + addr2 + addr4 + str[2] + str[4];

// low byte checksum
 packet += length/256; // make 1’s complement
 length = (length&255) + packet/256; // by adding low carry to high byte
 packet = (packet&255) + length/256; // and adding high carry to low byte
 length += packet/256; // fix new adding carries
 add(~length); // Insert 1’s complement checksum high byte
 add(~packet); // Insert 1’s complement checksum low byte
 add(addr1); // Insert the 4 bytes of this login’s IP address
 add(addr2);
 add(addr3);
 add(addr4);
 length = *str - 4; // save the number of following data bytes
 str++; // point to the first data byte
 } else {
 add(code); // Insert packet type, like REQ or NAK
 add(num); // Insert packet ID number
 add(0); // Insert most significant byte of length
 length = *str - 3; // point to the first data byte
 }
 while (length) { // copy the whole string into packet
 length--; // decrement packet length
 add(*str); // add current character to packet
 str++; // point to next character
 }
 length = ~checksum2; // invert the checksum
 add(length&255); // Insert checksum msb
 add(length/256); // Insert checksum lsb
 tx_end=tx_ptr; // Set end of buffer marker to end of packet
 tx_ptr = 0; // Point to the beginning of the packet
}

// Test the option list in packet for valid passwords
// option is a 16 bit field, where a high accepts the option one greater than the bit #
// returns 2 for LCP NAK, 1 is only correct fields found, and zero means bad options
// return also modifies RX_STR to list unacceptable options if NAK or REJ required
unsigned char TestOptions(unsigned int option){
 unsigned int size; // size is length of option string
 unsigned ptr1 = 8, // ptr1 points data insert location
 ptr2 = 8; // ptr2 points to data origin
 char pass = 3; // pass is the return value
 size = rx_str[7]+4; // size if length of packet
 if (size>MaxRx) size=MaxRx; // truncate packet if larger than buffer
 while (ptr1<size) { // scan options in receiver buffer
 if (rx_str[ptr1]==3 && rx_str[ptr1+2]!=0x80 && rx_str[2]==0xc2)
 pass&=0xfd; // found a CHAP request, mark for NAK
 if (!((1<<(rx_str[ptr1]-1))&option))
 pass=0; // found illegal options, mark for REJ
 ptr1 += rx_str[ptr1+1]; // point to start of next option
 }
 if (!(pass&2)) { // If marked for NAK or REJ
 if (pass&1) { // save state for NAK
 option=0xfffb;
 }
 for (ptr1=8; ptr1<size;) {
 if (!((1<<(rx_str[ptr1]-1))&option)) {// if illegal option
 for (pass=rx_str[ptr1+1]; ptr1<size && pass; ptr1++) { // move option
 rx_str[ptr2]=rx_str[ptr1]; // move current byte to new storage
 1999 Microchip Technology Inc. DS00724C-page 2-199

AN724

S2.book Page 200 Thursday, March 2, 2000 8:02 AM
 ptr2++; // increment storage pointer
 pass--; // decrement number of characters
 }
 } else {
 ptr1+=rx_str[ptr1+1]; // point to next option
 }
 }
 rx_str[7] = ptr2-4; // save new option string length
 pass=0; // restore state for REJ
 if (option==0xfffb) pass=1; // restore state for NAK
 }
 return pass;
}

// Send a string and loop until wait string arrives or it times out
// send is the string to transmit
// wait is the string to wait for
// timeout is in multiples of 10 milliseconds
// addr1 is used to control the status LED, 0=off, 1=flash, 2=on
// returns 0 if timeout, returns 1 if wait string is matched
char sendwait(const char *send, const char *wait, unsigned int timeout) {
 addr2=addr3=0;
 for (TIME_SET(0); TIME<timeout;) { // loop until time runs out
 if (!addr1) PORTB&=0xFB; // if addr1=0 turn off status LED
 else if (addr1==1) { // if addr1=1 flash status LED
 if (TIME&4) PORTB&=0xFB; // flash period is 8 x 10ms
 else PORTB|=4;
 } else PORTB|=4; // if addr1>1 turn on status LED
 if (serial_rx_ready()) { // is there an incoming character
 PORTB|=1; // turn on the Rx LED
 addr4 = serial_get(); // get character
 if (serial_error()) serial_fix(); // clear serial errors
 if (wait[addr2]==addr4) addr2++; // does char match wait string
 else addr2=0; // otherwise reset match pointer
 PORTB&=0xFE; // turn off the Rx LED
 if (!wait[addr2]) return 1; // finished if string matches
 } else if (send[addr3] && (serial_tx_ready())) { // if char to send and Tx ready
 if (send[addr3]==’|’) { // if pause character
 if (TIME>100) { // has 1 second expired yet?
 TIME_SET(0); // if yes clear timer
 addr3++; // and point to next character
 }
 } else {
 PORTB|=2; // turn on Tx LED
 TIME_SET(0); // clear timer, timeout starts after last char
 serial_send(send[addr3]); // send the character
 addr3++; // point to next char in tx string
 }
 PORTB&=0xFD; // turn off Tx LED
 if (!send[addr3] && !(*wait))
 return 1; // done if end of string and no wait string
 }
 }
 return 0; // return with 0 to indicate timeout
}

void flash(void) { // flash all LEDs if catastrophic failure
 for (TIME_SET(0);;) {
 if (TIME&8) PORTB|=0x07; // flash period is 16 x 10ms
 else PORTB&=0xF8;
 if (TIME>3000) PORTB&=0xF7; // after 30 seconds turn off the power
 }
}

void pulse(unsigned char data) { // pulse Status LED with IP address
 TIME_SET(0);
DS00724C-page 2-200 1999 Microchip Technology Inc.

AN724
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 201 Thursday, March 2, 2000 8:02 AM
 for(number=0;number<9;) { // pulse out 8 address bits and a blank
 if (TIME<100) PORTB&=0xFB; // turn off Status LED between bits
 else if (number<8) PORTB|=4; // start each address bit here
 if (TIME>200 || (!(data&0x80) && TIME>120)) { // end of bit?
 TIME_SET(0); // yes, then restart timer for next bit
 number++; // increment bit counter
 data<<=1; // position address to send next bit
 }
 }
}

// The main loop, login script, PPP state machine, and ping transponder
void main(void) {
 signed int c; // serial character received
 unsigned int packet = 0; // Type of the last received packet, reused as temp
 unsigned char state = 0; // PPP negotiation state, from dialing=0 to done=6
 unsigned char extended = 0; // flag if last character was an escape sequence

 PORTA=0;
 PORTB=0; // Turn off power supply, turn off LEDs
 PORTC=0;
 TRISA=0; // Turn all I/O into outputs
 TRISB=0x00;
 TRISC=0xC0;
 OPTION=0x85; // Set up TIMER 0 for millisecond counting
 INTCON=0xA0;

 serial_init(); // Initialize serial port to 2400 baud format N81
 TIME_SET(0);
 while (TIME<25); // 250 millisecond delay to prevent false power up
 PORTB=8; // Turn on the power so user can release power button

 for(number=1;;number++) { // Redial indefinitely every 30 seconds
 if (number==10) PORTB&=0xF7; // Turn off power if dialing fails
 addr1=0; // Set flag to keep the Status LED off
 if(!sendwait(“|+++|\rath\r|atz\r|at&fs11=55\r|atdt”,”atdt”,3000))// Init modem
 flash();
 addr1=1; // Set flag to flash Status LED
 // Modify this line with your ISP phone number
 if (sendwait(“5551234\r”,”NNECT”,3000)) {
 addr1=2; // Set flag to keep the Status LED on
 if (sendwait(““,”: “,1000)) // Wait for user id prompt
 if (sendwait(“\x7e\xff\x7d\x23\x08\x08\x08\x08”,”~~”,1000))
 break; // Start PPP
 else { // Fallback to script if required
 if (sendwait(“userid\r”,”word:”,200))// Modify these lines as described
 if (sendwait(“password\r”,”tion:”,1000))
 if (!sendwait(“ppp\r”,”IP address”,200))
 // Modify is start PPP command is not ppp or 2
 sendwait(“2\r”,”IP address”,200);
 }
 break;
 }
 }

 // State machine loop until successful ping or PPP negotiation timeout
 for (TIME_SET(0);;) {
 if (TIME>7000 || number>20) PORTB&=0xF7;
 if (serial_rx_ready()) { // Incoming character?
 PORTB ^=1; // Turn on Rx LED
 c = serial_get(); // get the character
 if (serial_error()) serial_fix();// clear Rx errors
 if (c == 0x7E) { // start or end of a packet
 if (rx_ptr && (checksum1==0xF0B8))
 packet = rx_str[2]*256 + rx_str[3]; // if CRC passes accept packet
 extended &= 0x7E; // clear escape character flag
 1999 Microchip Technology Inc. DS00724C-page 2-201

AN724

S2.book Page 202 Thursday, March 2, 2000 8:02 AM
 rx_ptr = 0; // get ready for next packet
 checksum1 = 0xFFFF; // start new checksum
 } else if (c == 0x7D) { // if tilde character set escape flag
 extended |= 1;
 } else {
 if (extended&1) { // if escape flag
 c ^= 0x20; // recover next character
 extended &= 0xFE; // clear Rx escape flag
 }
 if (rx_ptr==0 && c!=0xff) rx_str[rx_ptr++] = 0xff; // uncompress PPP header
 if (rx_ptr==1 && c!=3) rx_str[rx_ptr++] = 3;
 if (rx_ptr==2 && (c&1)) rx_str[rx_ptr++] = 0;
 rx_str[rx_ptr++] = c; // insert character in buffer
 if (rx_ptr>MaxRx) rx_ptr = MaxRx;// Inc pointer up to end of buffer
 checksum1 = calc(c^checksum1) ^ (checksum1/256); // calculate CRC checksum
 }
 PORTB&=0xFE; // turn off Status LED
 } else if (tx_end && (serial_tx_ready())) { // Data to send and Tx empty?
 PORTB|=2; // turn on Tx LED
 c = tx_str[tx_ptr]; // get character from buffer
 if (tx_ptr==tx_end) { // was it the last character
 tx_end=0; // mark buffer empty
 c=’~’; // send tilde character last
 PORTB&=0xFD; // turn off Tx LED
 } else if (extended&2) { // sending escape sequence?
 c^=0x20; // yes then convert character
 extended &= 0xFD; // clear Tx escape flag
 tx_ptr++; // point to next char
 } else if (c<0x20 || c==0x7D || c==0x7E) { // if escape sequence required?
 extended |= 2; // set Tx escape flag
 c = 0x7D; // send escape character
 } else {
 if (!tx_ptr) c=’~’; // send ~ if first character of packet
 tx_ptr++;
 }
 serial_send(c); // Put character in transmitter
 }

 if (packet == LCP) {
 switch (rx_str[4]) { // Switch on packet type
 case REQ:
 state &= 0xfd; // clear remote ready state bit
 if (c=TestOptions(0x00c6)) {// is option request list OK?
 if (c>1) {
 c = ACK; // ACK packet
 if (state<3) state |= 2;// set remote ready state bit
 } else {
 rx_str[10]=0xc0; // else NAK password authentication
 c = NAK;
 }
 } else { // else REJ bad options
 c = REJ;
 }
 TIME_SET(0);
 MakePacket(LCP,c,rx_str[5],rx_str+7); // create LCP packet from Rx buffer
 break;
 case ACK:
 if (rx_str[5]!=number) break;// does reply id match the request
 if (state<3) state |= 1; // Set the local ready flag
 break;
 case NAK:
 state &= 0xfe; // Clear the local ready flag
 break;
 case REJ:
 state &= 0xfe; // Clear the local ready flag
 break;
DS00724C-page 2-202 1999 Microchip Technology Inc.

AN724
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 203 Thursday, March 2, 2000 8:02 AM
 case TERM:
 break;
 }
 if (state==3) state = 4; // When both ends ready, go to state 4
 } else if (packet == PAP) {
 switch (rx_str[4]) { // Switch on packet type
 case REQ:
 break; // Ignore incoming PAP REQ
 case ACK:
 state = 5; // PAP ack means this state is done
 break;
 case NAK:
 break; // Ignore incoming PAP NAK
 }
 } else if (packet == IPCP) {
 switch (rx_str[4]) { // Switch on packet type
 case REQ:
 if (TestOptions(0x0004)) {// move to next state on ACK
 c = ACK;
 state = 6;
 } else { // otherwise reject bad options
 c = REJ;
 }
 MakePacket(IPCP,c,rx_str[5],rx_str+7);
 break; // Create IPCP packet from Rx buffer
 case ACK:
 if (rx_str[5]==number) { // If IPCP response id matches request id
 state = 7; // Move into final state
 pulse(addr1); // Pulse Status LED to show the
 pulse(addr2); // IP address
 pulse(addr3);
 pulse(addr4);
 PORTB|=4; // Turn on Status LED after pulsing
 TIME_SET(5800); // Move timer ahead for quicker PING
 }
 break;
 case NAK: // This is where we get our address
 addr1 = rx_str[10];
 addr2 = rx_str[11]; // Store address for use in IP packets
 addr3 = rx_str[12];
 addr4 = rx_str[13];
 MakePacket(IPCP,REQ,rx_str[5],rx_str+7);
 break; // Make IPCP packet from Rx buffer
 case REJ:
 break; // Ignore incoming IPCP REJ
 case TERM:
 break; // Ignore incoming IPCP TERM
 }
 } else if (packet == IP) {
 if (state<7 || (rx_str[19]==addr4 && rx_str[18]==addr3 &&
 rx_str[17]==addr2 && rx_str[16]==addr1)) {
 // ignore echoed packets from our address or before we reach state 7
 // may power down here because echoes are good indications that modem
 // connection hung-up
 // This would be a good place to insert a traceroute test and
 // response
 } else if (rx_str[13]==1) { // IP packet with ICMP payload
 if (rx_str[24]==8) { // Received PING request
 rx_str[20]=rx_str[16]; // Copy 4 origin address bytes to
 // destination address
 rx_str[21]=rx_str[17];
 rx_str[22]=rx_str[18];
 rx_str[23]=rx_str[19];
 rx_str[19]=16; // Length of IP address(4) + ping protocol(8) + 4
 rx_str[24]=0; // Change received ping request(8) to ping reply(0)
 packet = rx_str[28]+rx_str[30];// Calculate 1’s comp checksum
 1999 Microchip Technology Inc. DS00724C-page 2-203

AN724

S2.book Page 204 Thursday, March 2, 2000 8:02 AM
 rx_str[26] = packet&255;
 rx_str[27] = packet/256;
 packet = rx_str[27]+rx_str[29]+rx_str[31];
 rx_str[27] = packet&255;
 packet = packet/256 + rx_str[26];
 rx_str[26] = packet&255;
 rx_str[27] += packet/256;
 rx_str[26] = ~rx_str[26]; // Invert the checksum bits
 rx_str[27] = ~rx_str[27];
 MakePacket(IP,0,1,rx_str+19);// Make IP packet from modified Rx buffer
 } else if (rx_str[24]==0) { // Received PING reply
 if ((rx_str[28]|rx_str[30]|rx_str[31])+rx_str[29]==1)
 PORTB&=0xF7; // Turn off the power after successful ping
 }
 }
 } else if (packet == CCP) {
 switch (rx_str[4]) { // If CCP response id matches request id
 case REQ:
 c = REJ;
 if (TestOptions(0x0004)) c = ACK; // ACK option 3 only, REJ anything else
 MakePacket(CCP,c,rx_str[5],rx_str+7);// Create CCP ACK or REJ packet
 // from Rx buffer
 }
 } else if (packet) { // Ignore any other received packet types
 } else if (!tx_end && (state==0 || state==2) && TIME>100) {
 // Once a second try negotiating LCP
 number++; // Increment Id to make packets unique
 TIME_SET(0); // Reset timer
 MakePacket(LCP,REQ,number,”\x0E\x02\x06\x00\x0A\x00\x00\x07\x02\x08\x02”);
 // Request LCP options 2,7,8
 } else if (!tx_end && state == 4 && TIME>100) {
 // Once a second try negotiating password
 TIME_SET(0); // Reset timer
 number++;
 // format like printf(“%c%c%s%c%s”,strlen(name)+strlen(password)+6,
 // strlen(name),name,strlen(password),password);
 // Modify this line as described above
 MakePacket(PAP,REQ,number,”\x14\x06\xuserid\x08password”);
 } else if (!tx_end && state == 6 && TIME>100) {
 // Once a second try negotiating IPCP
 number++; // Increment Id to make packets unique
 TIME_SET(0); // Reset timer
 MakePacket(IPCP,REQ,number,”\xA\x3\x6\x0\x0\x0\x0”);
 // Request IPCP option 3 with addr 0.0.0.0
 } else if (!tx_end && state == 7 && TIME>3000) { // Every 30 seconds do a ping
 TIME_SET(0); // Reset timer
 number++; // Increment ping count
 MakePacket(IP,0,1,”\x10\xCF\xA1\x75\x43\x8\x0\xF7\xFE\x0\x1\x0\x0”);
 // Ping 207.161.117.67
 }
 packet = 0; // Indicate that packet is processed
 }
}

DS00724C-page 2-204 1999 Microchip Technology Inc.

AN726
PIC17CXXX to PIC18CXXX Migration

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 205 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

The specification of the PIC18CXXX Architecture was
done with several goals. One of the most important of
these goals was code compatibility with existing
PICmicro® families. This goal eases the migration from
one product family to the PIC18CXXX family.

For customers that are designing a new application that
is based on an existing PICmicro device, but require
added functionality (memory space, performance,
peripheral features, ...), having source code compatibil-
ity is very useful (eases the development).

This application note looks at what may need to be
addressed when migrating an application from a
PIC17CXXX device to a PIC18CXXX device. It will not
address the details of layout issues due to the different
pinouts between these two families.

So looking at the issues for a code conversion, the fol-
lowing few points need to be inspected:

• Module Differences

• Memory Map Differences

- Program Memory Map
- Data Memory Map

• Instruction Execution Differences

• Architectural Modifications (such as Table Read
and Table Write implementation)

Like any conversion project, the ease of the conversion
is influenced by the way the initial project was imple-
mented, such as using the register names and bit
names from the data sheet (supplied in the Microchip
include file). This along with other good programming
techniques (symbolic code, documentation, ...) do a lot
to ease the effort in a conversion project.

MODULE DIFFERENCES

First, one needs to understand what are the differences
between the modules. Then the code can be evaluated
to see if there are any changes required due to these
differences. Some modules are functionally compatible
and should only require minor changes due to the
differences of the program and data memory maps of
the devices. Other modules have differences due to the
decision to keep module compatibility with the
PICmicro Mid-Range family.

The following PIC17CXXX modules are upward com-
patible to the PIC18CXXX module. This means that the
status and control bits are in the same registers at the
same bit position. The PIC18CXXX module may have
some additional control bits for the added features, but
as long as the PIC17CXXX unimplemented bits were
written as’0’, the modules will operate in the same
modes. PIC17CXXX modules that should not require
source code modification to function on the
PIC18CXXX family include:

• MSSP

• USART

• Hardware 8 x 8 Multiply

PIC17CXXX modules that will require some source
code modification to function on the PIC18CXXX family
include:

• 10-Bit A/D

• Timer0

PIC17CXXX modules that will require extensive source
code modification to function on the PIC18CXXX family
include:

• Timer 1
• Timer 2

• Timer 3

• Capture

• PWM

• In-Circuit Serial Programming (ICSP™)

Author: Mark Palmer
Microchip Technology Inc.
 1900 Microchip Technology Inc. DS00726A-page 2-205

AN726

S2.book Page 206 Thursday, March 2, 2000 8:02 AM
A/D module

The PIC18CXXX 10-bit A/D module was specified to be
compatible with the PIC16CXXX 10-bit A/D module.
This means that there are some differences in the loca-
tion of the status/control bits in the ADCON0 and
ADCON1 registers. Table 1 shows which A/D control
registers the bits reside in, and the comments indicate
if the bit position changed or if it is in a different register.

Migration Impact

Code written for the PIC17C7XX 10-bit A/D mod-
ule will require changes due to the remapping of
the bit locations, as well as the differences for the
program and data memory maps of the devices.
The functionality of the module did not change, so
the timing requirements should not need any mod-
ifications.

CCP Special Event Trigger

The CCP Special Event Trigger allows the com-
pare action to start an A/D conversion. This feature
is not present on the PIC17C7XX family and is an
enhancement that does not affect code migration
to the PIC18CXXX family.

TABLE 1: 10-BIT A/D BIT COMPATIBILITY

Note: Please refer to the device data sheet
for timing specifications to ensure
applicability.

Bit
PIC17CXXX

Register
PIC18CXX2

Register
Comments

ADON ADCON0 ADCON0 — (1)

GO/DONE ADCON0 ADCON0 — (1)

CHS3 ADCON0 N.A. PIC18CXX2 has up to 8 analog input channels.
PIC17C7XX has up to 16 analog input channels.

CHS2 ADCON0 ADCON0 New bit position

CHS1 ADCON0 ADCON0 New bit position
CHS0 ADCON0 ADCON0 New bit position

ADCS2 N.A. ADCON1 PIC18CXX2 has 3 new A/D Conversion Clock selections:
FOSC/2, FOSC/4, and FOSC/16

ADCS1 ADCON1 ADCON0 Moved to different register

ADCS0 ADCON1 ADCON0 Moved to different register

ADFM ADCON1 ADCON1 New bit position

PCFG3 ADCON1 ADCON1 — (1)

PCFG2 ADCON1 ADCON1 — (1)
PCFG1 ADCON1 ADCON1 — (1)

PCFG0 ADCON1 ADCON1 — (1)

Note 1: No change required
DS00726A-page 2-206 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 207 Thursday, March 2, 2000 8:02 AM
USART module

The PIC17CXXX has a USART module, while the
PIC18CXXX has an Addressable USART (AUSART)
module. The AUSART module is based on the
PIC16CXXX family AUSART module, which has the
high baud rate feature. All bits for the PIC17CXXX
USART module have the same register names and the
same bit position as the PIC18CXXX AUSART module.
The AUSART module has two additional bits, the High
Baud Rate Select (BRGH) bit and the Address Detect
Enable (ADDEN) bit.

Table 2 shows the Addressable USART Register com-
patibility.

Migration Impact

Code written for the PIC17CXXX USART module
should only require changes due to the differences
for the program and data memory maps of the
devices, but not due to the functionality of the mod-
ule. The default state of the BRGH and ADDEN
bits after a Power-on Reset allows compatibility
with the PIC17CXXX USART module. Ensure that
your code did not modify the state of these bits
from the default state of ’0’.

TABLE 2: ADDRESSABLE USART COMPATIBILITY

Bit
PIC17CXXX

Register
PIC18CXX2

Register
Comments

CSRC TXSTA TXSTA — (1)

TX9 TXSTA TXSTA — (1)

TXEN TXSTA TXSTA — (1)

SYNC TXSTA TXSTA — (1)

BRGH N.A. TXSTA New bit
TRMT TXSTA TXSTA — (1)

TX9D TXSTA TXSTA — (1)

SPEN RCSTA RCSTA — (1)

RX9 RCSTA RCSTA — (1)

SREN RCSTA RCSTA — (1)

CREN RCSTA RCSTA — (1)
ADDEN N.A. RCSTA New bit

FERR RCSTA RCSTA — (1)

OERR RCSTA RCSTA — (1)

RX9D RCSTA RCSTA — (1)

Note 1: No change required
 1900 Microchip Technology Inc. DS00726A-page 2-207

AN726

S2.book Page 208 Thursday, March 2, 2000 8:02 AM
Timer0 module

This module was specified to allow an operational com-
patibility to both the PIC16CXXX and PIC17CXXX fam-
ilies. Compatibility is specified by some new control
bits. Table 3 shows the Timer0 Register compatibility.
Figure 1 shows the PIC17CXXX Timer0 Block Dia-
gram, while Figure 2 shows PIC18CXXX Timer0 Block
Diagram when in 16-bit timer mode (T08BIT is
cleared).

In the PIC17CXXX, the Timer0 module has the unique
characteristic of having its own interrupt vector
address. In PIC18CXXX devices, the Timer0 interrupt
is included with all the other peripheral interrupts. Code
conversions will need to take this into account.

Migration Impact

In the PIC18CXXX, the T08BIT selects if the
Timer0 module will operate as an 8-bit timer or a
16-bit timer. To make this compatible with the
PIC17CXXX implementation, the T08BIT must be
cleared by software to select the 16-bit timer mode
(the default state is set). When in the 16-bit timer
mode, the 16-bit reads are now buffered. The
TMR0H register is a buffered register that is
loaded/written with an access to the TMR0L regis-
ter. This allows removal of any software routines
that were used to ensure a proper 16-bit read.

The PIC18CXXX PreScaler Assignment (PSA) bit
selects if the prescaler is to be used. The default is
prescaler not used, giving the same default
prescale assignment as the PIC17CXXX Timer0.
If the PSA bit is cleared, the prescaler is used.
With the default state of the T0PS2:T0PS0 bits,
the prescale assignment is 1:256. To assign this
value to the PIC17CXXX, T0PS3 would need to be
set and the T0PS2:T0PS0 bits would be don’t
care. For the PIC18CXXX, when the prescaler is
selected all T0PS2:T0PS0 bits have meaning.

The PIC17CXXX Timer0 Interrupt vector address
is no longer a dedicated location in the
PIC18CXXX. The interrupt service routine is now
required to test the TMR0IF bit as a potential inter-
rupt source. Interrupt latency can be addressed by
partitioning the interrupt sources between the high
and low priority interrupt vector addresses. This
technique is application dependent.

TABLE 3: TIMER0 REGISTER COMPATIBILITY

Bit
PIC17CXXX

Register
PIC18CXX2

Register
Comments

TMR0ON N.A. T0CON New bit to start Timer0 incrementing

T08BIT N.A. T0CON New bit to configure timer in 16-bit mode

T0CS T0STA T0CON New register

T0SE T0STA T0CON New register and bit position

PSA N.A. T0CON New register and bit position
T0PS3 T0STA N.A. — (1)

T0PS2 T0STA T0CON New register and bit position

T0PS1 T0STA T0CON New register and bit position

T0PS0 T0STA T0CON New register and bit position

INTEDG T0STA N.A. — (1)

Note 1: This bit name is not applicable to the PIC18CXXX family.
DS00726A-page 2-208 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 209 Thursday, March 2, 2000 8:02 AM
FIGURE 1: PIC17CXXX TIMER0 MODULE BLOCK DIAGRAM

FIGURE 2: PIC18CXXX TIMER0 MODULE BLOCK DIAGRAM

RA1/T0CKI Synchronization
Prescaler
(8 stage
async ripple
counter)

T0SE

FOSC/4

T0CS T0PS3:T0PS0 Q2 Q4

0

1
TMR0H<8> TMR0L<8>

Interrupt on overflow
sets T0IF

4

PSOUT

Note 1: Upon reset, Timer0 is enabled in 8-bit mode with clock input from the T0CKI pin and the prescaler not selected (though prescaler
bits select the maximum prescale count (1:256).

T0CKI pin

T0SE

0

1

0

1

T0CS

Fosc/4

Programmable
Prescaler

Sync with
Internal
clocks

TMR0L

(2 TCY delay)

PSOUT

Data bus<7:0>

8

PSA
T0PS2, T0PS1, T0PS0

Set interrupt
flag bit TMR0IF

on overflow

3

TMR0

TMR0H

 High Byte

8
8

8

Read TMR0L

Write TMR0L
 1900 Microchip Technology Inc. DS00726A-page 2-209

AN726

S2.book Page 210 Thursday, March 2, 2000 8:02 AM
Timer1 module

The implementation of the PIC17CXXX Timer1 module
is completely different from that on the PIC18CXXX.
The module used on the PIC18CXXX family is the
same implementation as the Timer1 module found on
the PIC16CXXX with some enhancements. This mod-
ule now allows a true implementation of a Real Time
Clock circuit.

Figure 3 shows the Timer1 block diagrams for the
PIC17CXXX. Operation in both the 8-bit and 16-bit
modes are shown.

Figure 4 shows the Timer1 block diagram for the
PIC18CXXX.

Migration Impact

This module requires a source code rewrite.

FIGURE 3: PIC17CXXX TIMER1 BLOCK DIAGRAMS

FOSC/4

RB4/TCLK12

TMR1ON

TMR1CS

TMR1

PR1

Reset

Equal

Set TMR1IF

0

1

Comparator<8>Comparator x8

RB4/TCLK12
FOSC/4

TMR1ON

TMR1CS
TMR1 x 8

PR1 x 8

Reset

EqualSet TMR1IF

1

0

Comparator<8>Comparator x16

TMR2 x 8

PR2 x 8

MSB LSB

16-Bit Mode

8-Bit Mode
DS00726A-page 2-210 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 211 Thursday, March 2, 2000 8:02 AM
FIGURE 4: PIC18CXXX TIMER1 MODULE BLOCK DIAGRAM

 Timer 1 TMR1L

T1OSC
T1SYNC

TMR1CS

T1CKPS1:T1CKPS0

SLEEP input

T1OSCEN
Enable
Oscillator(1)

TMR1IF
Overflow
Interrupt

Fosc/4
Internal
Clock

TMR1ON
on/off

Prescaler
1, 2, 4, 8

Synchronize

det

1

0

0

1

Synchronized
Clock Input

2

T13CKI/T1OSO

T1OSI

TMR1

Flag Bit

Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates
power drain.

high byte

Data Bus<7:0>

8

TMR1H

8
8

8

Read TMR1L

Write TMR1L

8

 1900 Microchip Technology Inc. DS00726A-page 2-211

AN726

S2.book Page 212 Thursday, March 2, 2000 8:02 AM
Timer2 module

The implementation of the PIC17CXXX Timer2 module
is completely different from that on the PIC18CXXX.
The module used on the PIC18CXXX family is the
same implementation as the Timer2 module found on
the PIC16CXXX.

Figure 5 shows the Timer2 block diagrams for the
PIC17CXXX. Operation in both the 8-bit and 16-bit
modes are shown.

Figure 6 shows the Timer2 block diagram for the
PIC18CXXX.

Migration Impact

This module requires a source code rewrite.

FIGURE 5: PIC17CXXX TIMER2 BLOCK DIAGRAMS

FIGURE 6: PIC18CXXX TIMER2 MODULE BLOCK DIAGRAM

RB4/TCLK12 FOSC/4 TMR2ON

TMR2CS

TMR2

PR2

Reset

Equal

Set TMR2IF

1

0

Comparator<8>Comparator x8

RB4/TCLK12
FOSC/4

TMR1ON

TMR1CS
TMR1 x 8

PR1 x 8

Reset

EqualSet TMR1IF

1

0

Comparator<8>Comparator x16

TMR2 x 8

PR2 x 8

MSB LSB

8-Bit Mode

16-Bit Mode

Comparator

TMR2
Sets flag

TMR2

output (1)

Reset

Postscaler

Prescaler

PR2

2

FOSC/4

1:1 1:16

1:1, 1:4, 1:16

EQ

4

bit TMR2IF

Note 1: TMR2 register output can be software selected by the MSSP Module as a baud clock.

to

TOUTPS3:TOUTPS0

T2CKPS1:T2CKPS0
DS00726A-page 2-212 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 213 Thursday, March 2, 2000 8:02 AM
Timer3 module

The implementation of the PIC17CXXX Timer3 module
is completely different from that on the PIC18CXXX.
The module used on the PIC18CXXX family is the
same implementation as the Timer1 module found on
the PIC16CXXX, with some enhancements. This mod-
ule now allows a true implementation of a Real Time
Clock circuit.

Figure 7 is the block diagram of the PIC17CXXX
Timer3 with three capture registers and one period reg-
ister. Figure 8 is the block diagram of the PIC17CXXX
Timer3 with four capture registers. As can be seen from
these diagrams, the Timer3 module is tightly linked with
the capture feature of the PIC17CXXX. In the
PIC18CXXX, the capture feature is a software pro-
grammable mode of the CCP module.

Figure 9 is a block diagram of the PIC18CXXX Timer3
module.

Migration Impact

This module requires a source code rewrite.

FIGURE 7: PIC17CXXX TIMER3 WITH THREE CAPTURE AND ONE PERIOD REGISTER BLOCK
DIAGRAM

PR3H/CA1H

TMR3H

Comparator<8>
FOSC/4

TMR3ON

Reset
Equal0

1

Comparator x16

RB5/TCLK3

Set TMR3IF
TMR3CS

PR3L/CA1L

TMR3L

CA2H CA2LRB1/CAP2

Edge select,
Prescaler select

2

Set CA2IF

Capture2

CA2ED1: CA2ED0

 Enable

CA3H CA3LRG4/CAP3

Edge select,
Prescaler select

2

Set CA3IF

Capture3

CA3ED1: CA3ED0

 Enable

CA4H CA4LRE3/CAP4

Edge select,
Prescaler select

2

Set CA4IF

Capture4

CA4ED1: CA4ED0

 Enable
 1900 Microchip Technology Inc. DS00726A-page 2-213

AN726

S2.book Page 214 Thursday, March 2, 2000 8:02 AM
FIGURE 8: PIC17CXXX TIMER3 WITH FOUR CAPTURES BLOCK DIAGRAM

FIGURE 9: PIC18CXXX TIMER3 MODULE BLOCK DIAGRAM

RB0/CAP1

Edge Select,
Prescaler Select

PR3H/CA1H PR3L/CA1L

RB1/CAP2

RG4/CAP3

Edge Select,
Prescaler Select

2

Set CA1IF
Capture1 Enable

TMR3ON
TMR3CS

0

1

Set TMR3IF

Edge Select,
Prescaler Select

CA2H CA2L

Set CA2IF

CA3H CA3L

Set CA3IF

CA1ED1, CA1ED0

FOSC/4

RB5/TCLK3

Capture2 Enable

Capture3 Enable

CA2ED1, CA2ED0

2

CA3ED1: CA3ED0

TMR3H TMR3L

2

RE3/CAP4

Edge Select,
Prescaler Select

2
CA4H CA4L

Set CA4IF
Capture4 Enable

CA4ED1: CA4ED0

Timer3
TMR3L

T1OSC
T3SYNC

TMR3CS
T3CKPS1:T3CKPS0

SLEEP input

T1OSCEN
Enable
Oscillator(1)

Fosc/4
Internal
Clock

TMR3ON
on/off

Prescaler
1, 2, 4, 8

Synchronize

det

1

0

0

1

Synchronized
Clock input

2

T1OSO/

T1OSI

TMR3

T13CKI

CLR

CCP Special Trigger
T3CCPx

To Timer1 Clock Input

Note 1: When the T1OSCEN bit is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.

High Byte

DataBus<7:0>

8

TMR3H

8
8

8

Read TMR3L

Write TMR3L

Set TMR3IF flag bit
on overflow

8

DS00726A-page 2-214 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 215 Thursday, March 2, 2000 8:02 AM
Capture/Compare/PWM modules

The PIC18CXXX family uses CCP modules. This is
compatible with PIC16CXXX family devices. The
PIC17CXXX allows more features to be used concur-
rently (3 PWM outputs and 4 capture inputs), while the
PIC18CXX2 devices have 2 CCP modules. Table 4
shows the timer resources that are usable for the Time
Based Operation feature selected.

TABLE 4: TIMER RESOURCES FOR TIME
BASED OPERATION
FEATURES

PWM Operation

In the PIC17CXXX, the PWM time base can be set
to either Timer1 or Timer2. These timers both have
the capability to have their clock source derived
from the external pin TCLK12. The PIC18CXXX
PWM must always use Timer2 as the time base
with the clock source from the internal device
clock. Table 5 shows the registers used to specify
the PWM duty cycle between the two families.

Figure 10 is a block diagram of the PIC17CXXX
PWM. Timer1 or Timer2 may be used as the time
base for the PWM outputs.

Figure 11 is a block diagram of the PIC18CXXX
PWM. Timer2 is the time base for all PWM out-
puts.

TABLE 5: DUTY CYCLE REGISTERS

FIGURE 10: PIC17CXXX PWM BLOCK
DIAGRAM

FIGURE 11: PIC18CXXX PWM BLOCK
DIAGRAM

MIGRATION IMPACT

Migrating code from the PIC17CXXX family to the
PIC18CXXX family will require a rewrite of the source
code to function. Since the CCP module is software
programmable to operate in any of the three modes, the
total number of PWM outputs may not match what is
provided by the PIC17CXXX.

Time Based
Feature

PIC17CXXX PIC18CXXX

Capture Timer3 Timer1 or Timer3

Compare N.A. Timer1 or Timer3

PWM Timer1 or Timer2 Timer2

Device
PWM Duty Cycle Bits

DC9:DC2 DC1:DC0

PIC17CXXX PWxDCH PWxDCL<7:6>

PIC18CXXX CCPRxL CCPxCON<5:4>

PWxDCH

Duty Cycle registers PWxDCL<7:6>

Clear Timer,
PWMx pin and
Latch D.C.

(Slave)

Comparator

TMRx

Comparator

PRy

(Note 1)

R

S

Q

PWMxON

 PWMx

Note 1: 8-bit timer is concatenated with 2-bit internal Q clock
or 2 bits of the prescaler to create 10-bit time-base.

Read

Write

CCPR1L

CCPR1H (Slave)

Comparator

TMR2

Comparator

PR2

(Note 1)

R Q

S

Duty cycle registers CCP1CON<5:4>

Clear Timer,
CCP1 pin and
latch D.C.

TRISC<2>

RC2/CCP1

Note: 8-bit timer is concatenated with 2-bit internal Q clock
or 2 bits of the prescaler to create 10-bit timebase.
 1900 Microchip Technology Inc. DS00726A-page 2-215

AN726

S2.book Page 216 Thursday, March 2, 2000 8:02 AM
Capture Operation

In the PIC17CXXX family, the capture feature is
tightly linked with the Timer3 module. Figure 7 and
Figure 8 show the capture block diagrams.

Figure 12 is the PIC18CXXX Capture Operation
Block Diagram. In the PIC18CXXX, the capture
feature is a software programmable mode of the
CCP module.

MIGRATION IMPACT

Migrating code from the PIC17CXXX family to the
PIC18CXXX family will require a rewrite of the source
code to function. Since the CCP module is software
programmable to operate in any of the three modes, the
total number of capture inputs may not match what is
provided by the PIC17CXXX.

FIGURE 12: PIC18CXXX CAPTURE OPERATION (WITH TIMER1 AND TIMER3)

CCPR1H CCPR1L

TMR1H TMR1L

Set flag bit CCP1IF
TMR3
Enable

Q’s
CCP1CON<3:0>

CCP1 Pin

Prescaler
³ 1, 4, 16

and
edge detect

TMR3H TMR3L

TMR1
Enable

T3CCP2

T3CCP2

CCPR2H CCPR2L

TMR1H TMR1L

Set flag bit CCP2IF

TMR3
Enable

Q’s
CCP2CON<3:0>

CCP2 Pin

Prescaler
³ 1, 4, 16

and
edge detect

TMR3H TMR3L

TMR1
Enable

T3CCP2
T3CCP1

T3CCP2
T3CCP1
DS00726A-page 2-216 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 217 Thursday, March 2, 2000 8:02 AM
Compare Operation

The PIC17CXXX family does not support a com-
pare operation. This is an enhancement for the
PIC18CXXX family. Figure 13 shows the operation
of the PIC18CXXX compare mode. Two compare
values can be initialized, and they can be used to
compare against either Timer1 or Timer3.

MIGRATION IMPACT

This feature of the CCP module is an enhancement to
the PIC17CXXX devices.

FIGURE 13: PIC18CXXX COMPARE OPERATION (WITH TIMER1 AND TIMER3)

CCPR1H CCPR1L

TMR1H TMR1L

Comparator
Q S

R

Output
Logic

Special Event Trigger

Set flag bit CCP1IF

matchRC2/CCP1

TRISC<2>
CCP1CON<3:0>
Mode Select

Output Enable

Pin

Special Event Trigger will:
Reset Timer1or Timer3, but not set Timer1 or Timer3 interrupt flag bit,
and set bit GO/DONE (ADCON0<2>)
which starts an A/D conversion (CCP2 only)

TMR3H TMR3L

T3CCP2

CCPR2H CCPR2L

Comparator

10

T3CCP2
T3CCP1

Q S

R

Output
Logic

Special Event Trigger

Set flag bit CCP2IF

matchRC1/CCP2

TRISC<1>
CCP2CON<3:0>
Mode Select

Output Enable

Pin

0 1
 1900 Microchip Technology Inc. DS00726A-page 2-217

AN726

S2.book Page 218 Thursday, March 2, 2000 8:02 AM
Master SSP Module

The PIC17CXXX MSSP module is upwardly compati-
ble with the PIC18CXXX MSSP module. The
PIC18CXXX MSSP module also includes two modes
that are present in the PIC16CXXX SSP module.
These are the modes:

1. I2C slave mode, 7-bit address with start and stop
bit interrupts enabled

2. I2C slave mode, 10-bit address with start and
stop bit interrupts enabled

These modes were retained for ease of code migration
from PIC16CXXX devices to the PIC18CXXX family.

Migration Impact

Code written for the PIC17CXXX MSSP module
should only require changes due to the differences
in the program and data memory maps of the
devices, but not due to the functionality of the mod-
ule.

External Interrupts

For the PIC17CXXX, the INT interrupt had its own vec-
tor address. In the PIC18CXXX, it is part of the periph-
eral interrupts vector address. This means that the INT
interrupt code will need to be moved into the general
peripheral interrupt service routine (ISR), and this rou-
tine will need to add a check for the INT interrupt
source.

The PIC18CXXX family has some enhancements for
the external interrupts. First, there are now three exter-
nal interrupt pins, as opposed to one pin in the
PIC17CXXX family. Second, enhancements to the
architecture of the interrupt logic allows additional
capability (High/Low priority). These enhancements
are discussed in the section “Architectural Enhance-
ments” .

Migration Impact

The PIC17CXXX external interrupt requires minor
modifications to be used with the PIC18CXXX
devices.

PortB Interrupt-On-Change

The PORTB interrupt-on-change feature of the
PIC17CXXX family has all PORTB pins with the inter-
rupt on change feature. This feature was multiplexed
with other peripheral features such as Captures,
PWMs, Timer clock inputs, and SPI pins. The PORTB
interrupt on change feature of the PIC18CXXX family
matches that of our Mid-Range family. That is, there is
only an interrupt on change on the upper four port pins
of PORTB. There are no other peripheral feature multi-
plexed onto these pins.

Migration Impact

On the PIC18CXXX family, only RB7:RB4 have the
interrupt on change feature. These pins do not
have any peripheral feature multiplexed on them.

PORTB Weak Pull-up Enable

The control bit to enable the weak pull-ups on PORTB
have been moved from PORTB<7> (PIC17CXXX) to
INTCON2<7> (PIC18CXXX).

Migration Impact

Code changes are only required due to the differ-
ences of the data memory maps.

Hardware 8 x 8 Multiply

The operation of the 8 x 8 hardware multiply is identical
between the two families.

Migration Impact

Changes may only be required due to the differ-
ences of the data memory maps.

Brown-out Reset (BOR)

The Brown-out Reset (BOR) logic has been enhanced
in the PIC18CXXX family. The BOR trip point is now
programmable at time of device programming. One of
four trip points can be selected. The BOR trip points are
shown in Table 6.

Migration Impact

Since none of these trip points are specified at the
same voltage level as the trip point for the
PIC17CXXX family, some modifications may need
to be done with the application. These modifica-
tions may be software, hardware, or both.

TABLE 6: BOR TRIP POINT COMPARISON

Family
BOR Trip Point Option

4.5 V (min) 4.2 V (min) 4.0 V (typ) 2.7 V (min) 2.5 V (min)

PIC18CXXX Yes Yes — Yes Yes
PIC17CXXX — — Yes — —
DS00726A-page 2-218 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 219 Thursday, March 2, 2000 8:02 AM
On-Chip Oscillator Circuit

The oscillator circuit has been modified to allow new
enhanced features, such as a Phase Lock Loop (PLL)
option) and clock switching to the Timer1 oscillator.
Clock switching allows the optimization of the applica-
tions power consumption, by only operating at high fre-
quency (high power) when the application software
requires that performance. It also allows the operation
at a lower frequency (low power) when application soft-
ware is not performance critical.

The oscillator options of the PIC18CXXX family allow
an extended frequency range compared to the
PIC17CXXX device. The oscillator mode that was
selected for the PIC17CXXX device may need to be
changed to operate the PIC18CXXX at the desired fre-
quency.

Table 7 shows a comparison of the oscillator selection
modes between the PIC17CXXX and the PIC18CXXX
devices. There are some modes where an additional
I/O pin becomes available to the device. These are the
RCIO and ECIO modes.

Migration Impact

Since the oscillator circuitry is different between
the two families, any external components that are
required need to be re-evaluated to ensure opera-
tion in the application.

MCLR

The MCLR operation is different between the two fam-
ilies. The MCLR operation of the PIC18CXXX family is
identical to the Mid-Range family. Please inspect elec-
trical specification parameter # 30 to understand the
implications in your system.

Migration Impact

Ensure that the differences in the electrical speci-
fications are met by the application circuit.

Power-On Reset (POR)

The Power-On Reset (POR) operation is different
between the two families. The POR operation of the
PIC18CXXX family is identical to the Mid-Range family
(for the same modes).

Migration Impact

Ensure that the differences in the Power-On Reset
timings are addressed by the hardware and soft-
ware of the application.

In-Circuit Serial Programming (ICSP)

The ICSP operation is different between the two fami-
lies. This relates to both the hardware interface as well
as the software protocol and timings.

Migration Impact

The new implementation method will need to be
accounted for in the design conversion.

TABLE 7: OSCILLATOR MODE SELECTION COMPARISON

Note: Oscillator operation should be verified
to ensure that it starts and performs as
expected. Adjusting the loading
capacitor values and/or the oscillator
mode may be required.

Frequency Range Oscillator Type
Oscillator Mode Selection

Comment
PIC17CXXX PIC18CXXX

DC - 4 MHz RC RC RC or RCIO —
DC - 200 kHz Crystal/Resonator LF LP —

200 KHz - 2 MHz Crystal/Resonator LF XT —

2 MHz - 4 MHz Crystal/Resonator XT XT —

4 MHz - 16 MHz Crystal/Resonator XT HS —

16 MHz - 25 MHz Crystal/Resonator XT HS or HS + PLL (1) —

25 MHz - 33 MHz Crystal/Resonator XT HS + PLL (2) —

33 MHz - 40 MHz Crystal/Resonator N.A. HS + PLL (3) —
DC - 33 MHz External Clock EC EC or ECIO —

33 - 40 MHz External Clock N.A. EC or ECIO —

Note 1: The external crystal would have a frequency of 4 MHz - 6.25 MHz.

Note 2: The external crystal would have a frequency of 6.25 MHz - 8.25 MHz.

Note 3: The external crystal would have a frequency of 8.25 MHz - 10 MHz.
 1900 Microchip Technology Inc. DS00726A-page 2-219

AN726

S2.book Page 220 Thursday, March 2, 2000 8:02 AM
MEMORY MAP DIFFERENCES

The memory map affects instructions that are required
for program flow and addressing program and data
memory. The memory maps between the PIC17CXXX
and PIC18CXXX families are similar, but still require
discussion for the upward migration of application
code.

These are broken down into two discussions, one for
the Program Memory map and the other for the Data
Memory map.

Program Memory

The PIC17CXXX family can address 64-Kwords of pro-
gram memory (128-KBytes). This memory space is
broken up into 8 program memory pages of 8-Kwords.
The architecture required the modification of the
PCLATH register for any CALL or GOTO instruction that
has a destination in a different page than is currently
selected by the PCLATH register.

The PIC18CXXX family can address 2-MBytes of pro-
gram memory (1-Mword). The use of program memory
pages has been eliminated. Now the CALL and GOTO
instructions are 2-word instructions and can address
any location in the program memory space. In some
instances the destination address is close to the CALL
or GOTO instruction. In these cases, optimized instruc-
tions are available; the relative call and unconditional
branch instructions (called the RCALL and BRA instruc-

tions), which are one word instructions. Condition
branch instructions are also available, which will branch
to a new program memory location based on an offset
from the current program counter value. These condi-
tional branch instructions are useful for the generation
of optimized code from a C compiler. Figure 14 shows
the program flow instructions for PIC17CXXX and
PIC18CXXX families.

Example 1 shows a code sequence for branching to a
code segment depending on the status of the zero bit.
For the PIC17CXXX family, the GOTO instruction will
cause the execution to branch to the program memory
page dependent on the value loaded in the PCLATCH
register. In the PIC18CXXX family, the GOTO instruction
is two words and can address any location in the pro-
gram memory. To ensure robustness of the system, the
2nd word of a two word instruction (when executed as
an instruction) is executed as a NOP. This allows the
same source code to work for both families, though in
the PIC18CXXX family an extra instruction cycle will be
required to reach the code at the Not_Zero symbol.

Example 2 shows an alternate implementation done
with the PIC18CXXX instruction set. With this instruc-
tion, the location of the software routine labeled Zero
would need to be within 128 words before the BZ
instruction or 127 words after the BZ instruction.

FIGURE 14: PROGRAM MEMORY FLOW INSTRUCTIONS

EXAMPLE 1: PIC17CXXX OR PIC18CXXX CODE EXAMPLE

EXAMPLE 2: ALTERNATE PIC18CXXX CODE EXAMPLE

Not_Zero

BTFSC STATUS, Z
GOTO Zero
:

; Is result Zero
; YES, goto the code for a result of Zero
; NO, result was not Zero

Not_Zero
BZ Zero
:

; If result Zero, goto the code for a result of Zero
; NO, result was not Zero

PIC17CXXX

PIC18CXXX

CALL
GOTO

CALL
GOTO k7 k k k k k k k0Opcode

RCALL
BRA k k k k k k k k k kOpcode

Address Reach

Within currently selected Program
Memory Page (2-Kword size), as
specified by the PCLATH register.

The entire 1-Mword Program
Memory map.

+1023, -1024 single word instructions
from the current Program Counter
Address.

BC, BNC
BZ, BNZ

k k k k k k k kOpcode
+127, -128 single word instructions
from the current Program Counter
Address.

BN, BNN
BOV, BNOV

k19 k k k k k k k k k k k81 1 1 1

k k k k k k k k k k k kOpcode
DS00726A-page 2-220 1900 Microchip Technology Inc.

AN726

/
s

/2

/2

/2

/2

/2

/2

/2

/2

n.
ted

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 221 Thursday, March 2, 2000 8:02 AM
The ability to branch on the condition of a status bit
value allows more efficient code to be generated.
Table 8 shows how these are implemented between
the PIC18CXXX family and the PIC17CXXX family. In
the PIC18CXXX family, the branch is relative from the
program counter location and has a reach of -128
words or +127 words. In the PIC17CXXX family two
possible methods are shown. Method 1 is the positive
logic method which may have been used. Method 2
(shaded) is the negative logic method which would get
to the carry routine one instruction cycle quicker.
Method 1 is what translates to the corresponding
PIC18CXXX instruction.

Each method requires the use of a GOTO instruction.
The GOTO instruction allows access to any location in
the selected page of program memory (as specified by
the value in the PCLATH register). The number of
cycles indicates the number of cycles to get to the
desired routine for the true case (as defined by the
PIC18CXXX conditional branch instruction) and the
cycles in parentheses () indicates the number of cycles
for the false case. As can be seen by the Table 8 com-
parison, the number of cycles and memory require-
ments is better for the PIC18CXXX instructions.

Migration Impact

Minimal changes should be required for
PIC17CXXX source code. Any operations on
PCLATH (paging) are ignored, since the
PIC18CXXX families CALL and GOTO instructions
contain the entire address.

Look-up tables will require some sort of modifica-
tion. Tables implemented using the RETLW instruc-
tion need to be modified due to the Program
Counter now being a byte counter (see explana-
tion in “Program Counter”). Tables implemented
using the PIC17CXXX Table Reads will need to be
modified to address the new implementation in the
PIC18CXXX (see explanation in “Table Reads
and Table Writes”).

Code optimization can be achieved by removing
instructions that modify the PCLATH register
before the CALL and GOTO instructions. If the
desired program memory location is within ± 1K
instruction words, then the use of the BRA and
RCALL instructions will maintain the use of one
instruction word, instead of the new requirement
for two words.

Additional optimization can be achieved by utilizing
new instructions, such as Branch on condition
instructions. These Branch on condition instruc-
tions must have the program memory address of
the branch code to be within -128 to +127 instruc-
tion words from the branch instruction.

TABLE 8: BRANCH ON STATUS BIT COMPARISON

Alternate PIC18CXXX Instruction PIC17CXXX Instruction Sequence (Note 1)

Method
Cycles/
Words Method 1

Cycle/
Words Method 2

Cycle
Word

BC Carry 2 (1) /1

NoCarry

BTFSC
GOTO
:

STATUS, C
Carry

3 (2) /2

Carry

BTFSS
GOTO
:

STATUS, C
NoCarry

2 (3)

BNC NoCarry 2 (1) /1

Carry

BTFSS
GOTO
:

STATUS, C
NoCarry

3 (2) /2

NoCarry

BTFSC
GOTO
:

STATUS, C
Carry

2 (3)

BN Neg 2 (1) /1

NotNeg

BTFSC
GOTO
:

STATUS, N
Neg

3 (2) /2

Neg

BTFSS
GOTO
:

STATUS, N
NotNeg

2 (3)

BNN NotNeg 2 (1) /1

Neg

BTFSS
GOTO
:

STATUS, N
NotNeg

3 (2) /2

NotNeg

BTFSC
GOTO
:

STATUS, N
Neg

2 (3)

BOV Ovflw 2 (1) /1

NoOvflw

BTFSC
GOTO
:

STATUS, OV
Ovflw

3 (2) /2

Ovflw

BTFSS
GOTO
:

STATUS, OV
NoOvflw

2 (3)

BNOV NoOvflw 2 (1) /1

Ovflw

BTFSS
GOTO
:

STATUS, OV
NoOvflw

3 (2) /2

NoOvflw

BTFSC
GOTO
:

STATUS, OV
Ovflw

2 (3)

BZ Zero 2 (1) /1

NotZero

BTFSC
GOTO
:

STATUS, Z
Zero

3 (2) /2

Zero

BTFSS
GOTO
:

STATUS, Z
NotZero

2 (3)

BNZ NotZero 2 (1) /1

Zero

BTFSS
GOTO
:

STATUS, Z
NotZero

3 (2) /2

NotZero

BTFSC
GOTO
:

STATUS, Z
Zero

2 (3)

Note 1: This method may also be used by the PIC18CXXX family. This is source code compatible, but the GOTO instruction is now a two word instructio
When the second word of the GOTO instruction is executed as if it was a single word instruction (when the skip occurs), the second word is execu
as a no operation (NOP instruction).
 1900 Microchip Technology Inc. DS00726A-page 2-221

AN726

S2.book Page 222 Thursday, March 2, 2000 8:02 AM
Data Memory

The Data Memory Map of the PIC17CXXX devices is
shown in Figure 15 with the PIC18CXXX data memory
map shown in Figure 16. In both architectures, the
bank size is 256 bytes. Software code migration does
not require the low nibble of the Bank Select Register
(BSR) to be modified. The PIC17CXXX devices also
bank the Special Function Registers (SFRs). This is not
required with the PIC18CXXX architecture. All instruc-
tions which are used to modify the BSR<7:4> bit may
be removed from the user code.

Figure 17 shows the mapping of data memory from a
PIC17CXXX device to a PIC18CXXX device. The map-
ping translates without effort given that the GPR RAM
addresses were specified with the full address, and not
the relative address within the selected bank. With a full
10-bit address, the assembler will map the addresses
correctly. The SFR, though not at the same addresses

will be properly mapped to the correct location in bank
15 due to the supplied header file. No software coding
modifications are required to address the SFR regis-
ters, since the SFR registers are in the Access bank,
and can be addressed regardless of the selected bank
(value of the BSR register).

The low nibble of the BSR (BSR<3:0>) specifies the
RAM bank to access. This is the same for both the
PIC17CXXX and PIC18CXXX. Any operations on the
high nibble of the BSR (BSR<7:4>) can be ignored by
the PIC18CXXX, since these bits are not implemented.

In the PIC17CXXX, the GPRs in the memory range
1Ah to 1Fh are in shared RAM. When mapped to the
PIC18CXXX, these addresses are in the access bank
and therefore are also shared RAM.

FIGURE 15: PIC17CXXX DATA MEMORY MAP

00h

1Fh
20h

FFh

BSR
Bank

0
Bank

1
Bank

2
Bank

3
Bank

14
Bank

15

SFR
Area

GPR
Area
DS00726A-page 2-222 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 223 Thursday, March 2, 2000 8:02 AM
FIGURE 16: PIC18CXXX DATA MEMORY MAP

BSR

Bank 0

Bank 1

Bank 2

Bank 3

Bank 15

GPR
Area

SFR
Area

Access RAM
 1900 Microchip Technology Inc. DS00726A-page 2-223

AN726

S2.book Page 224 Thursday, March 2, 2000 8:02 AM
FIGURE 17: MAPPING OF DATA MEMORY FROM PIC17CXXX TO PIC18CXXX

BSR

00h

1Fh
20h

FFh

Bank
0

Bank
1

Bank
2

Bank
3

SFR
Area

GPR
Area

Bank 0

Bank 1

Bank 2

Bank 3

Bank 15

000h

01Fh
020h

0FFh
100h

11Fh
120h

1FFh
200h

21Fh
220h

2FFh
300h

31Fh
320h

3FFh

F00h

F1Fh
F20h

FFFh

SFR

19h

019h

PIC17CXXX
PIC18CXXX

SFR Area
N.A.

GPR Area
GPR and SFR Area
DS00726A-page 2-224 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 225 Thursday, March 2, 2000 8:02 AM
There are occasions where the application software
requires moving data from one register to another. This
transfer may be a single byte or a block of data.

For the PIC17CXXX family there are instructions that
move the contents from the Peripheral (P) area (first 32
locations in data memory) to the File (F) area (any-
where in the specified 256 locations), or from the File
area to the Peripheral area. The actual RAM address is
specified by the Bank Select Register (BSR) value,
since both the SFR registers and GPR registers are
banked.

With the PIC18CXXX, the instruction moves the con-
tents from one register to another anywhere in the 4
KByte data memory space without any banking
requirements.

Example 1 shows the sequence of instructions to move
a value from one RAM location to another in the
PIC17CXXX family. Example 2 shows the instruction to
move a value from one RAM location to another in the
PIC18CXXX family.

Migration Impact

If the PIC17CXXX source code uses register defi-
nitions that specifies full 12-bit addresses for ALL
register file locations, then no work is required for
the remapping of the data memory. The BSR low
nibble (BSR<3:0>) will be updated in the same
fashion. Optimization can be done by removing
any instructions that are used to modify the high
nibble of the BSR register (BSR<7:4>), since
these bits are not implemented on the
PIC18CXXX. There is one instruction that is only
used to do this modification. This is the MOVLR
instruction.

EXAMPLE 1: PIC17CXXX MEMORY-TO-MEMORY MOVES

EXAMPLE 2: PIC18CXXX MEMORY-TO-MEMORY MOVES

Case 1: Single Byte Transfer

banksel MYREG1

MOVFP MYREG1, WREG

banksel MYREG2

MOVPF WREG, MYREG2

; Switch to the bank for MYREG1
; (may not be required)
; Move contents of MYREG1 to the
; WREG register
; Switch to the bank for MYREG2
; (may not be required)
; Move contents of the WREG
; register to MYREG2

Case 2: Block Transfer

LP1

Continue

MOVLW BYTE_CNT
MOVWF CNTR
banksel MYREG1

MOVFP MYREG1, WREG

banksel MYREG2

MOVPF WREG, MYREG2

DECFSZ CNTR
BRA LP1
:

; Load the Byte Count value
; into register CNTR (same bank as MYREG1)
; Switch to the bank for MYREG1
; (may not be required)
; Move contents of MYREG1 to the
; WREG register
; Switch to the bank for MYREG2
; (may not be required)
; Move contents of the WREG
; register to MYREG2
; All bytes moved?
; NO, move next byte
; YES, Continue

Case 1: Single Byte Transfer

MOVFF MYREG1, MYREG2 ; Move contents of MYREG1 to MYREG2

Case 2: Block Transfer

LP1

Continue

MOVLW BYTE_CNT
MOVWF CNTR
MOVFF POSTINC0, POSTINC1
DECFSZ CNTR
BRA LP1
:

; Load the Byte Count value
; into register CNTR
; Move contents of MYREG1 to MYREG2
; All bytes moved?
; NO, move next byte
; YES, Continue
 1900 Microchip Technology Inc. DS00726A-page 2-225

AN726

S2.book Page 226 Thursday, March 2, 2000 8:02 AM
INSTRUCTION SET

With the merging of the PIC16CXXX and PIC17CXXX
instruction sets to create the PIC18CXXX instruction
set and the enhancements to the architecture, some
instructions had to be modified. Table 9 shows the
PIC17CXXX instructions that have been modified.
Some instructions operate on a new status bit which
indicates if the resultant value is negative (N). Five
instructions now affect the status of the zero (Z) bit.
These instructions are:

• CLRF
• RRCF
• RRNCF
• RLCF
• RLNCF

Three instructions have changed the mnemonics, but
the arguments do not need to be modified. For these
three instructions a simple search and replace can be
used. These instructions are:

• MOVPF
• MOVFP
• NEGW

Table 9 shows what these instructions should be
replaced with.

The method of operation for four instructions (Table
Reads and Table Writes) has changed. The application
code surrounding the operation of this feature needs to
be revisited and the code modified accordingly. These
instructions are:

• TABLRD
• TLRD
• TABLWT
• TLWT

Lastly, two instructions have been removed. These
instructions are:

• MOVLR
• LCALL

The MOVLR instruction is no longer required since there
are no separate banks for the Special Function Regis-
ters. The LCALL instruction is changed to the
PIC18CXXX CALL instruction, since it can access any
location in the program memory map. The application
code that preconditioned the PCLATH register can be
removed, since it is no longer needed for calling the
desired routine.

The PIC17CXXX family only has five instructions
where the operation on the status bits changed. These
are the clear file and rotate instructions (CLRF, RLCF,
RLNCF, RRCF, and RRNCF).

Table 9 shows the PIC17CXXX instructions that are dif-
ferent in the PIC18CXXX architecture. These differ-
ences may be related to the status bits that are
affected. An instruction is now handled by a more
generic instruction, or the operation of the instruction
has been modified to better fit with the new architec-
ture. Rows that are shaded are new instructions to the
PIC18CXXX architecture that are replacing
PIC17CXXX instructions. These are shown to indicate
the status bits affected.

Migration Impact

Ensure that the instructions that affect the status
bits differently do not cause algorithm issues and
that other instructions are appropriately converted
and implemented.
DS00726A-page 2-226 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 227 Thursday, March 2, 2000 8:02 AM
TABLE 9: INSTRUCTION SET COMPARISON

Instruction
Status Bits Affected

Comment
PIC17CXXX PIC18CXXX

ADDLW k C,DC,OV, Z C,DC,OV, Z, N —
ADDWF f, d C,DC,OV, Z C,DC,OV, Z, N —

ADDWFC f, d C,DC,OV, Z C,DC,OV, Z, N —

ANDLW k Z Z, N —

ANDWF f, d Z Z, N —

CLRF f, s none Z Instruction now affects Zero (Z) bit

DECF f, d C,DC,OV, Z C,DC,OV, Z, N —
INCF f, d C,DC,OV, Z C,DC,OV, Z, N —

IORLW k Z Z, N —

IORWF f, d Z Z, N —

LCALL k none N.A. Use CALL n, s instruction

MOVFP f, p none N.A. Use MOVFF fs, fd instruction

MOVFF fs, fd N.A. none Replaced MOVFP and MOVPF instructions
MOVLR k none N.A. Not required for PIC18CXXX devices

MOVPF p, f Z N.A. Use MOVFF fs, fd instruction

NEGW f, s C,DC,OV, Z N.A. Use NEGF f instruction

NEGF f N.A. C,DC,OV, Z, N Replaced NEGW f, s instruction

RLCF f, d C C, Z, N Instruction now affects Zero (Z) bit

RLNCF f, d none Z, N Instruction now affects Zero (Z) bit
RRCF f, d C C, Z, N Instruction now affects Zero (Z) bit

RRNCF f, d none Z, N Instruction now affects Zero (Z) bit

SUBLW k C,DC,OV, Z C,DC,OV, Z, N —

SUBWF f, d C,DC,OV, Z C,DC,OV, Z, N —

SUBWFB f, d C,DC,OV, Z C,DC,OV, Z, N —

TABLRD t, i, f none N.A. Use TBLRD instructions
TABLWT t, i, f none N.A. Use TBLWT instructions

TLRD t, f none N.A. Use TBLRD instructions

TLWT t, f none N.A. Use TBLWT instructions

TBLRD*
TBLRD*+
TBLRD*-
TBLRD+*

N.A. none Replaced TABLRD and TLRD instructions

TBLWT*
TBLWT*+
TBLWT*-
TBLWT+*

N.A. none Replaced TABLWT and TLWT instructions

XORLW k Z Z, N —

XORWF f, d Z Z, N —
Note 1: The N bit is new for the PIC18CXXX family of devices.
 1900 Microchip Technology Inc. DS00726A-page 2-227

AN726

S2.book Page 228 Thursday, March 2, 2000 8:02 AM
ARCHITECTURAL ENHANCEMENTS

Some of the architectural enhancements that are
implemented in the PIC18CXXX family include:

• Program Counter
• Table Read / Table Write
• Interrupts
• Stack
• Indirect Addressing

Program Counter

The program counter of the PIC18CXXX Architecture
works on a byte address, as opposed to a word
address for the PIC17CXXX family. This means that the
addresses of routines will be different. When using
symbolic coding, the assembler will take care of gener-
ating the correct address, but any routine that directly
modifies the program counter needs to take this differ-
ence into account. One of the most common code func-
tions where this occurs is in table lookup routines that
use the RETLW instruction.

Example 1 shows a typical table look-up for the
PIC17CXXX family. Example 2 shows the table look-up
for the PIC18CXXX Architecture. Since the Offset

needs to be multiplied by two to get the byte address,
the reach (size) of the look-up table is now half. Access
to the PCLATU and PCLATH registers or the ability to
do Table Reads allows larger tables to be stored in
memory.

Occasionally the use of the ’$’ symbol is used in the
source code to indicate the program address of the cur-
rent instruction. The ’$’ syntax still operates as before,
but since the program counter now specifies byte
addresses any offset to the ’$’ parameter need to be
doubled. Example 3 shows these modifications.

Migration Impact

Any modification of the PCL register will require
the source code to be inspected to ensure that the
desired address will be accessed. This is due to
the Program Counter being a byte count into pro-
gram memory and not the program memory word
count. This is commonly found in simple Table
Lookup routine. Remember that reading PCL
updates the contents of PCLATH and PCLATU
(from PCH and PCU), and writing to PCL loads
PCH and PCU with the contents of PCLATH and
PCLATU.

EXAMPLE 1: PIC17CXXX TABLE LOOK-UP USING THE RETLW INSTRUCTIONS

EXAMPLE 2: PIC18CXXX TABLE LOOK-UP USING THE RETLW INSTRUCTIONS

EXAMPLE 3: USE OF THE ’$’ PARAMETER

MOVFP Offset, WREG ; Load WREG with offset to Table
CALL Table_LU ; Call the lookup table
:
:

Table_LU ADDWF PCL ; Add Offset to PCL
RETLW ’A’ ; Returns value in WREG
RETLW ’B’ ; Returns value in WREG
: ;

MOVFF Offset, WREG ;
CALL Table_LU ; Call the lookup table
:
:

Table_LU BCF Offset, 7 ; Clear MSb, for rotate to LSb
RLNCF Offset, PCL ; Offset * 2 added to PCL
RETLW ’A’ ; Returns value in WREG
RETLW ’B’ ; Returns value in WREG
: ;

GOTO $ - 6 ; Replaces GOTO $ - 3
GOTO $ - 0x2E ; Replaces GOTO $ + 0x17

DS00726A-page 2-228 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 229 Thursday, March 2, 2000 8:02 AM
Table Reads and Table Writes

Table Read and Table Write operations have been
changed. In the PIC17CXXX architecture, the table
pointer register points to the program memory word
address. In the PIC18CXXX architecture the table
pointer register points to the program memory byte
address. This means that the PIC18CXXX is now only
operating with 8-bits of data. This allows there to be
only one instruction for a Table Read and one instruc-
tion for a Table Write. The PIC17CXXX architecture
requires two instructions for each, due to operating with
16-bits of data.

Example 4 shows the PIC17CXXX code segment for
reading a fixed number of words (WORD_COUNT) into
sequential RAM locations using indirect addressing.
Example 5 shows the PIC18CXXX code segment for
reading a fixed number of bytes (BYTE_COUNT) into
sequential RAM locations using indirect addressing.

Migration Impact

The code sections where Table reads and Table
writes were implemented would need to be rewrit-
ten to address the differences in the implementa-
tions.

EXAMPLE 4: PIC17CXXX TABLE READ

EXAMPLE 5: PIC18CXXX TABLE READ

MOVLW WORD_COUNT ; Load the Word Count value
MOVWF CNTR ; into CNTR

;
MOVLW HIGH(TBL_ADDR) ; Load the Table Address
MOVWF TBLPTRH ;
MOVLW LOW(TBL_ADDR) ;
MOVWF TBLPTRL ;
TABLRD 0, 1, DUMMY ; Dummy read,

; Updates TABLATH
; Increments TBLPTR

LOOP1 TLRD 1, INDF0 ; Read HI byte in TABLATH
TABLRD 0, 1, INDF0 ; Read LO byte in TABLATL,

; update TABLATH:TABLATL,
; and increment TBLPTR

DECFSZ CNTR ; Read Word Count locations
GOTO LOOP1 ; Read next word

MOVLW BYTE_COUNT ; Load the Byte Count value
MOVWF CNTR ; into CNTR

;
;; MOVLW UPPER(TBL_ADDR) ; Load the Table Address
;; MOVWF TBLPTRU ; (on POR TBLPTRU = 0, so
;; ; loading TBLPTRU is not
;; ; required for conversions)

MOVLW HIGH(TBL_ADDR) ; Load the Table Address
MOVWF TBLPTRH ;
MOVLW LOW(TBL_ADDR) ;
MOVWF TBLPTRL ;

LOOP1 TBLRD*+ ; Read value into TABLAT,
; Increment TBLPTR

MOVFF TABLAT, POSTINC0 ; Copy byte to RAM @ FSR0
; Increment FSR0

DECFSZ CNTR ; Read Byte Count locations
GOTO LOOP1 ; Read next Byte
 1900 Microchip Technology Inc. DS00726A-page 2-229

AN726

S2.book Page 230 Thursday, March 2, 2000 8:02 AM
Interrupts

The interrupt structure of the two families is significantly
different. Figure 18 shows a simplified block diagram
for the interrupt structures of the two families.

In the PIC17CXXX family, there are four interrupt vector
addresses with a priority that is fixed by hardware. In
the PIC18CXXX family, there are two interrupt vector
addresses. One vector address for High Priority inter-
rupts and one vector address for Low Priority inter-
rupts. The priority of the peripheral interrupt is software
programmable.

Table 10 compares the interrupt vector addresses for
both the PIC17CXXX and PIC18CXXX families.

Migration Impact

The code section for interrupt handling would need
to be rewritten to address the differences in the
implementations. If the PIC17CXXX separate
interrupts are desired for a reduction of the inter-
rupt latency, the PIC18CXXX HighPriority/Low Pri-
ority vectors may be able to address this.

TABLE 10: INTERRUPT VECTOR ADDRESSES

Location

PIC17CXXX
Address

PIC18CXXX
Address Comment

Word Byte Word Byte

Reset Vector Address 0000h N.A. 0000h 0000h —

INT pin Interrupt Vector
Address

0004h N.A. — — PIC17CXXX must move this code to either the
high or low priority interrupt vector address

High Priority Interrupt Vector
Address

— — 0004h 0008h —

Low Priority Interrupt Vector
Address

— — 000Ch 0018h —

Timer0 Interrupt Vector
Address

0010h N.A. — — PIC17CXXX must move this code to either the
high or low priority interrupt vector address

T0CKI pin Interrupt Vector
Address

0018h N.A. — — PIC17CXXX must move this code to either the
high or low priority interrupt vector address

Peripheral Interrupt Vector
Address

0020h N.A. — — For code migration without software enhance-
ments, the code at this address should now be
ORG’d to the PIC18CXXX High Priority Inter-
rupt Vector Address (0x018)
DS00726A-page 2-230 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 231 Thursday, March 2, 2000 8:02 AM
FIGURE 18: INTERRUPT STRUCTURE BLOCK DIAGRAMS

Peripheral 1 IF
Peripheral 1 IE

T0IF
T0IE

INTF
INTE

T0CKIF
T0CKIE

GLINTD

PEIE

Wake-up (If in SLEEP mode)
or terminate long write

Interrupt to CPU

PEIF

Peripheral x IF
Peripheral x IE

PIC17CXXX

T0IE

GIEH/GIE

GIEL/PEIE

Wake-up if in SLEEP mode

Interrupt to CPU
Vector to location
0008h

INT2F
INT2E
INT2P

INT1F
INT1E
INT1P

T0IF
T0IE
T0IP

INT0F
INT0E

RBIF
RBIE
RBIP

IPE

T0IF

T0IP

INT1F
INT1E
INT1P
INT2F
INT2E
INT2P

RBIF
RBIE
RBIP

INT0F
INT0E

GIEL\PEIE

Interrupt to CPU
Vector to Location

IPE

IPE

0018h

Peripheral Interrupt Flag bit
Peripheral Interrupt Enable bit
Peripheral Interrupt Priority bit

Peripheral Interrupt Flag bit
Peripheral Interrupt Enable bit
Peripheral Interrupt Priority bit

TMR1IF
TMR1IE
TMR1IP

XXXXIF
XXXXIE
XXXXIP

Additional Peripheral Interrupts

TMR1IF
TMR1IE
TMR1IP

High Priority Interrupt Generation

Low Priority Interrupt Generation

XXXXIF
XXXXIE
XXXXIP

Additional Peripheral Interrupts

PIC18CXXX
 1900 Microchip Technology Inc. DS00726A-page 2-231

AN726

S2.book Page 232 Thursday, March 2, 2000 8:02 AM
Stack

The stack of the PIC17CXXX family is 16 levels deep.
When the 17th item is loaded onto the stack, the con-
tent of stack level 1 is overwritten (circular buffer). In the
PIC18CXXX family, the stack is 31 levels deep. When
the 32nd item is loaded onto the stack, the content of
stack level 31 is overwritten (stack pointer becomes
stuck at 31).

The PIC17CXXX has a stack available bit (STKAV),
which indicates if the stack pointer is pointing to the top
of stack, or if the stack has rolled over. The PIC18CXXX
has 2 bits, which are used to specify if the stack is full
(STKFUL) or if underflow (STKUNF) condition has
occurred. A configuration bit (STVREN) specifies if
these flags generate a device reset.

In the PIC18CXXX, the stack pointer is now memory
mapped. This is useful in some applications, such as
Real Time Operating Systems (RTOS). Utmost care
should be taken if modifying the stack pointer and con-
tents of the stack.

An enhancement of the PIC18CXXX is the implemen-
tation of the Fast Register Stack. The Fast Register
Stack saves the contents of the WREG, STATUS, and
BSR registers. This stack is one level deep for each
register. This is useful for saving the status of these
registers when you do a subroutine call (if interrupts are
disabled), or for interrupts where nesting is not a possi-
bility (do not use with low priority interrupts).

Figure 19 shows the operation of the PIC17CXXX
stack, while Figure 20 shows the operation of the
PIC18CXXX stack.

Migration Impact

When migrating code from the PIC17CXXX to the
PIC18CXXX, one should only need to modify the
application software in regards to stack overflows
and underflows. If no stack overflow/underflow
checking was implemented, then there are no
code migration issues due to the hardware stack.

FIGURE 19: PIC17CXXX STACK OPERATION

FIGURE 20: PIC18CXXX STACK OPERATION

Push1
Push2
Push3

Push14
Push15
Push16

Push17
Push18 Top of Stack

After this PUSH, the STKAV bit is cleared

00011
0x001A34

11111
11110
11101

00010
00001
00000

00010

Return Address Stack

Top of Stack
0x000D58

TOSLTOSHTOSU
0x340x1A0x00

STKPTR<4:0>
DS00726A-page 2-232 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 233 Thursday, March 2, 2000 8:02 AM
Indirect Addressing

The PIC17CXXX family has 2 indirect addressing
pointers (registers) called FSR0 and FSR1. Each
pointer uses an 8-bit register. This allows the indirect
addressing to occur anywhere in the selected banks of
data memory (SFR bank and GPR bank).

The PIC18CXXX family has 3 indirect addressing
pointers (registers) called FSR0, FSR1 and FSR2.
Each pointer uses an 12-bit register. This allows the
indirect addressing to occur anywhere in the data
memory map.

Table 11 shows a comparison of the Indirect Address-
ing capabilities and operation.

Migration Impact

From the PIC17CXXX code, ensure that the cur-
rent value of the BSR<3:0> is loaded into the high
byte of the FSR register in the PIC18CXXX. This
will ensure that the data memory access is in the
correct bank.

Also, if any of the FSR automatic increment/decre-
ment features are used (through the manipulation
of the PIC17CXXX ALUSTA control bits), the
appropriate indirect addressing register needs to
be selected in the PIC18CXXX code.

Any indirect accesses to the PIC17CXXX SFRs
would require that the PIC18CXXX FSRxH regis-
ter be loaded with 0x0F. This makes the indirect
addresses occur in bank 15.

TABLE 11: INDIRECT ADDRESSING COMPARISON

Feature PIC17CXXX PIC18CXXX Comment

Number of FSR registers 2 3

FSRx Register Size 8-bits 12-bits

BSR specifies Bank(s) Yes No PIC17CXXX specifies both SFR and GPR banks

FSR Memory Reach 256 Bytes 4096 Bytes PIC18CXXX can access entire memory range,
PIC17CXXX can access only in selected banks
(SFR and GPR banks).

Instruction to load value into FSRx
register

No Yes LFSR instruction is a 2 word 2 cycle instruction

FSR Pre-increment support No Yes PIC18CXXX operation determined by register
addressed (register PREINCx)

FSR Post-increment support Yes Yes PIC18CXXX operation determined by register
addressed (register POSTINCx).
PIC17CXXX operation determined by control bits
(FS3:FS2 and FS1:FS0 in register ALUSTA)

FSR Post-decrement support Yes Yes PIC18CXXX operation determined by register
addressed (register POSTDECx)
PIC17CXXX operation determined by control bits
(FS3:FS2 and FS1:FS0 in register ALUSTA)

FSR with Offset support No Yes PIC18CXXX operation determined by register
addressed (register PLUSWx)

ALUSTA control bits (FS3:FS2 and
FS1:FS0) for Indirect Addressing
Operation

Yes No PIC18CXXX operation determined by register
addressed
 1900 Microchip Technology Inc. DS00726A-page 2-233

AN726

S2.book Page 234 Thursday, March 2, 2000 8:02 AM
LAYOUT

The pinout of the devices will need to be compared on
an individual basis. The first PIC18CXXX devices
(PIC18CXX2) are design to be footprint/functional
compatible with some of the 28- and 40-pin Mid-Range
devices. These devices are therefore not footprint com-
patible with the existing PIC17CXXX devices. This
means that a revision of the board layout will be
required.

Future PIC18CXXX devices may be footprint compati-
ble, but a pin-by-pin comparison is required to ensure
footprint/functional compatibility with the desired
PIC17CXXX device. This functional compatibility does
not ensure a compatibility with regards to the electrical
characteristics of the device (such as I/O pin VIL/VIH

characteristics or signal timings).

Migration Impact

A new layout is currently required for all migrations
from the PIC17CXXX devices to the PIC18CXXX
devices. Future PIC18CXXX devices may be
specified that are footprint compatible with
PIC17CXXX devices

CODING TECHNIQUES

The conversion process is aided when the initial code
was written symbolically. That is, register names, bit
names, and address labels are used in the source code
as opposed to the hard coded values.

Example 1 shows the technique for using symbols for
register and bit definitions, while Example 2 shows
labels being used to specify addresses.

EXAMPLE 1: CODE TECHNIQUE #1

EXAMPLE 2: CODE TECHNIQUE #2

BSF 3,2 ; Bad Programmer

BSF STATUS, Z ; Good Programmer

GOTO 0x0934 ; Bad Programmer

MY_Routine

GOTO
:
:
:

MY_Routine ; Good Programmer

; This is at address 0x0934
DS00726A-page 2-234 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 235 Thursday, March 2, 2000 8:02 AM
EXAMPLE CODE CONVERSION

Appendix A is a code conversion from a code segment
found in Application Note AN547, Serial Port Utilities.
The code segment was source file SERINT.ASM. The
source file includes indications in the comments for
each source code line that was changed. This is shown
by a comment as follows:

 ;*****.

This was done to easily indicate each line that required
a change, and specify the change that was imple-
mented to make the source code compatible with the
PIC18CXXX assembler.

CONCLUSION

Understanding the issues in a code conversion from
one device to another is very important for assuring a
smooth conversion process. This document hopefully
has given you insight into where to inspect your code
during the conversion process.

One of the main architectural goals of the PIC18CXXX
family is that of source code compatibility foremost with
the PICmicro Mid-Range Architecture and then with the
High-End Architecture. The different implementation of
peripheral and architectural features are the biggest
hurdle. Since some of these peripheral modules and
architectural features are implemented differently
between the two families, this directly affects the ease
of the conversion process. Conversions may require
minimal effort in most applications, but there will be fea-
tures (such as time based functions) that may require a
full source code rewrite. Depending on the application
of these functions, this rewrite may be relatively minor
or fairly involved.
 1900 Microchip Technology Inc. DS00726A-page 2-235

AN726

S2.book Page 236 Thursday, March 2, 2000 8:02 AM
APPENDIX A: EXAMPLE CODE CONVERSION

EXAMPLE 1: CONVERTED SOURCE CODE EXAMPLE

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of source code.

; TITLE ’Serial Interface Routines
; PROCESSOR 18C452
;
;This is a short program to demonstrate how to transmit and receive
;serial data using the PIC18C452.
;
;A message will be transmitted and routed right back to the processor
;and read. The read information will be saved in an internal buffer.
;
; Program: 18C_SER.ASM
; Revision Date:
; 7-02-99 Conversion to PIC18Cxx2 code.
; Converted from PIC17C42 SERINT.ASM 1-22-97
; as found in AN547 (DS00547C)
;
;
 LIST P = 18C452

#include <p18c452.inc> ;***** Changed the include file
;
;*** These Registers may be remapped to allow the other application software
;*** to take advantage of the access RAM in Bank 0.
;
TX_BUFFER equ 0x80
RX_BUFFER equ 0xB0
RXPTR equ 0x20
TXPTR equ 0x21
SERFLAG equ 0x22
RTINUM equ 0x23
;
; Status Bits used with user registers
;
TXDONE equ 0
RXDONE equ 1
HILOB equ 2
;
;

DS00726A-page 2-236 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 237 Thursday, March 2, 2000 8:02 AM
 ORG 0
 goto start
;
; Changes ORG directives to point to new High and Low priority interrupts
; Removed origines to TMRO, T0CKI, and Peripheral interrupts.
;
; ORG 0x0010 ;vector for rtcc interrupt
 ;***** No Longer an separate TMRO Interrupt Vector Address
;rtcc_int ;not used here
;
 ORG 0x0008 ;vector for peripheral interrupt
 ;***** Vector Address changed from 0x0020
perf_int
 goto service_perf ;service the interrupts
;
 ORG 0x0030
;
;initialize the serial port: baud rate interrupts etc.
init_serial
 clrf SERFLAG ;clear all flags
 ;***** REMOVED ’, F’
; movlb 0 ;***** REMOVE
 movlw 0x07 ;select 9600 baud
 MOVWF SPBRG ;***** Change MOVFP tp MOVWF
 movlw 0x90 ;set up serial pins
 MOVWF RCSTA ;***** Change MOVFP tp MOVWF
 clrf TXSTA ;setup transmit status
 ;***** REMOVED ’, F’
; movlb 1 ;***** REMOVE
 clrf PIR1 ;clear all interrupts
 ;***** REMOVED ’, F’, Changed PIR -> PIR1
 clrf PIE1 ;clear all enables
 ;***** REMOVED ’, F’, Changed PIE -> PIE1
 bsf PIE1,RCIE ;enable receive interrupt
 ;***** Changed PIE -> PIE1
 movlw RX_BUFFER ;set pointer to rx buffer
 MOVWF RXPTR ;***** Change MOVPF tp MOVWF
 clrf INTCON ;clear all interrupts
 ;***** REMOVED ’, F’, INTSTA -> INTCON
 bsf INTCON,PEIE ;enable peripheral ints
 ;***** INTSTA -> INTCON
 retfie
;
;start transmission of first two bytes
start_xmit
; movlb 0 ;***** REMOVE
 bsf TXSTA,TXEN ;enable transmit
; tablrd 1,1,W ;load latch ;***** REPLACED
; tlrd 1,TXREG ;load high byte ;***** REPLACED
 TBLRD*+ ;***** Due to New Implementation of Table Read function
 MOVFF TABLAT, TXREG ;***** Due to New Implementation of Table Read function
; movlb 1 ;***** REMOVE
empty_chk
 btfss PIR1,TXIF ;TXBUF empty?
 ;***** Changed PIR -> PIR1
 goto empty_chk ;no then keep checking
; movlb 0 ;***** REMOVE
; tablrd 0,1,TXREG ;load lo byte ;***** REPLACED
 TBLRD*+ ;***** Due to New Implementation of Table Read function
 MOVFF TABLAT, TXREG ;***** Due to New Implementation of Table Read function
; movlb 1 ;***** REMOVE
 bsf PIE1,TXIE ;enable transmit interrupts
 ;***** Changed PIE -> PIE1
 bsf SERFLAG,HILOB ;set up next for high byte
 return
;

 1900 Microchip Technology Inc. DS00726A-page 2-237

AN726

S2.book Page 238 Thursday, March 2, 2000 8:02 AM
;
 PAGE
;
service_perf
;check for transmit or receive interrupts only
 btfsc PIR1,RCIF ;RX buffer full?
 ;***** Changed PIR -> PIR1
 goto service_recv ;yes then service
 btfss PIR1,TXIF ;TX buffer empty?
 ;***** Changed PIR -> PIR1
 goto exit_perf ;no, ignore other int.
service_xmt
 btfsc SERFLAG,TXDONE ;all done?
 goto exit_perf ;yes then quit
 btfsc SERFLAG,HILOB ;if clr, do low byte
 goto rd_hi ;else read high byte
; tablrd 0,1,W ;read lo ;***** REPLACE
 TBLRD*+ ;***** Due to New Implementation of Table Read function
 goto sx_cont ;continue
rd_hi
; tlrd 1,W ;read high byte ;***** REPLACE
 TBLRD*+ ;***** Due to New Implementation of Table Read function
sx_cont
 btg SERFLAG,HILOB ;toggle flag
; movlb 0 ;***** REMOVE
; MOVPF TXREG ;***** REMOVE, TXREG loaded by next instruction
 MOVFF TABLAT, TXREG ;***** Due to New Implementation of Table Read function
 tstfsz W ;last byte?
 goto exit_perf ;no then cont
end_xmt ;else end transmit
; movlb 1 ;***** REMOVE
 bcf PIE1,TXIE ;disable tx interrupt
 ;****** Changed PIE -> PIE1
 bsf SERFLAG,TXDONE ;set done flag
exit_perf
; bcf INTSTA,PEIF ;***** REMOVE, clear peripheral int
 ;***** This instruction was never needed
 retfie
;
service_recv
 btfsc SERFLAG,RXDONE ;RX complete?
 goto exit_perf ;exit int
 MOVFF RXPTR, FSR0L ;***** Change MOVFP to MOVFF and FSR0 to FSR0L
; movlb 0 ;***** REMOVE
 MOVFF RCREG,INDF0 ;***** Change MOVFP to MOVFF
 clrf WREG ;clr W
 ;***** REMOVED ’, F’
 cpfsgt INDF0 ;value = 0?
 goto end_recv ;yes then end
 incf FSR0L, F ;inc pointer
 ;***** REMOVED ’, F’, Changed FSR0 to FSR0L and specified destination
 MOVFF FSR0L, RXPTR ;***** Change MOVFP to MOVFF and FSR0 to FSR0L
 goto exit_perf ;return from int
end_recv
 bsf SERFLAG,RXDONE ;set flag
 clrf INTCON ;clear all int
 ;***** REMOVED ’, F’, INTSTA -> INTCON
; movlb 1 ;***** REMOVE
 bcf PIE1,RCIE ;disable rx interrupts
 ;***** Changed PIE -> PIE1
 goto exit_perf ;return
 PAGE
DS00726A-page 2-238 1900 Microchip Technology Inc.

AN726
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 239 Thursday, March 2, 2000 8:02 AM
;
start
 clrf FSR1L ;assign FSR1 as S.P.
 ;***** REMOVED ’, F’ and Changed FSR0 to FSR0L
 decf FSR1L, F ; /
 ;***** REMOVED ’, F’, Changed FSR0 to FSR0L and
 ;***** specified destination
 movlw 0x20 ;clear ram space
 MOVWF FSR0L ;***** Change MOVFP to MOVWF and FSR0 to FSR0L
start1
 clrf INDF0 ;clear ram
 ;***** REMOVED ’, F’
 incfsz FSR0L, F ;inc and skip if done
 ;***** REMOVED ’, F’, Changed FSR0 to FSR0L and
 ;***** specified destination
 goto start1
 call init_serial ;initialize serial port
 movlw LOW MESSAGE ;load table pointer
 MOVWF TBLPTRL ;***** Change MOVPF tp MOVWF
 movlw HIGH MESSAGE ; /
 MOVWF TBLPTRH ;***** Change MOVPF tp MOVWF
 CLRF TBLPTRU ;***** ADDED this instruction due to larger memory
 ;***** space of PIC18Cxxx Architecture
 call start_xmit ;start transmission
chk_end
 btfss SERFLAG,RXDONE ;receive all?
 goto chk_end ;no then keep checking
;
loop goto loop ;spin wheel
;
 ORG 0x100
MESSAGE
 DATA "The code is: Tea for the Tillerman"
 DATA 0
;
;
 END
 1900 Microchip Technology Inc. DS00726A-page 2-239

AN726

S2.book Page 240 Thursday, March 2, 2000 8:02 AM
NOTES:
DS00726A-page 2-240 1900 Microchip Technology Inc.

TB013
How to Implement ICSP™ Using PIC16CXXX OTP MCUs

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 241 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

In-Circuit Serial Programming (ICSP™) is a great way
to reduce your inventory overhead and time-to-market
for your product. By assembling your product with a
blank Microchip microcontroller (MCU), you can stock
one design. When an order has been placed, these
units can be programmed with the latest revision of
firmware, tested, and shipped in a very short time. This
method also reduces scrapped inventory due to old
firmware revisions. This type of manufacturing system
can also facilitate quick turnarounds on custom orders
for your product.

Most people would think to use ICSP with PICmicro™
OTP MCUs only on an assembly line where the device
is programmed once. However, there is a method by
which an OTP device can be programmed several
times depending on the size of the firmware. This
method, explained later, provides a way to field
upgrade your firmware in a way similar to EEPROM- or
Flash-based devices.

HOW DOES ICSP WORK?

Now that ICSP appeals to you, what steps do you take
to implement it in your application? There are three
main components of an ICSP system: Application
Circuit, Programmer and Programming Environment.

Application Circuit

The application circuit must be designed to allow all the
programming signals to be directly connected to the
PICmicro. Figure 1 shows a typical circuit that is a start-
ing point for when designing with ICSP. The application
must compensate for the following issues:

1. Isolation of the MCLR/VPP pin from the rest of
the circuit.

2. Isolation of pins RB6 and RB7 from the rest of
the circuit.

3. Capacitance on each of the VDD, MCLR/VPP,
RB6, and RB7 pins.

4. Minimum and maximum operating voltage for
VDD.

5. PICmicro Oscillator.

6. Interface to the programmer.

The MCLR/VPP pin is normally connected to an RC cir-
cuit. The pull-up resistor is tied to VDD and a capacitor
is tied to ground. This circuit can affect the operation of
ICSP depending on the size of the capacitor. It is, there-
fore, recommended that the circuit in Figure 1 be used
when an RC is connected to MCLR/VPP. The diode
should be a Schottky-type device. Another issue with
MCLR/VPP is that when the PICmicro device is pro-
grammed, this pin is driven to approximately 13V and
also to ground. Therefore, the application circuit must
be isolated from this voltage provided by the
programmer.

FIGURE 1: TYPICAL APPLICATION CIRCUIT

Author: Rodger Richey
Microchip Technology Inc.

Application PCB
PIC16CXXX

MCLR/VPP

VDD

VSS

RB7
RB6

VDD VDD

To application circuit

Isolation circuits

ICSP Connector

PRO MATE and PICSTART are registered trademarks and PICmicro and ICSP are trademarks of Microchip Technology Inc.
 1999 Microchip Technology Inc. DS91013B-page 2-241

TB013

S2.book Page 242 Thursday, March 2, 2000 8:02 AM
Pins RB6 and RB7 are used by the PICmicro for serial
programming. RB6 is the clock line and RB7 is the data
line. RB6 is driven by the programmer. RB7 is a bi-
directional pin that is driven by the programmer when
programming, and driven by the PICmicro when verify-
ing. These pins must be isolated from the rest of the
application circuit so as not to affect the signals during
programming. You must take into consideration the out-
put impedance of the programmer when isolating RB6
and RB7 from the rest of the circuit. This isolation cir-
cuit must account for RB6 being an input on the
PICmicro, and for RB7 being bi-directional (can be
driven by both the PICmicro and the programmer). For
instance, PRO MATE® II has an output impedance of
1k¾. If the design permits, these pins should not be
used by the application. This is not the case with most
applications so it is recommended that the designer
evaluate whether these signals need to be buffered. As
a designer, you must consider what type of circuitry is
connected to RB6 and RB7 and then make a decision
on how to isolate these pins. Figure 1 does not show
any circuitry to isolate RB6 and RB7 on the application
circuit because this is very application dependent.

The total capacitance on the programming pins affects
the rise rates of these signals as they are driven out of
the programmer. Typical circuits use several hundred
microfarads of capacitance on VDD which helps to
dampen noise and ripple. However, this capacitance
requires a fairly strong driver in the programmer to
meet the rise rate timings for VDD. Most programmers
are designed to simply program the PICmicro itself and
don’t have strong enough drivers to power the applica-
tion circuit. One solution is to use a driver board
between the programmer and the application circuit.
The driver board requires a separate power supply that
is capable of driving the VPP and VDD pins with the
correct rise rates and should also provide enough cur-
rent to power the application circuit. RB6 and RB7 are
not buffered on this schematic but may require buffer-
ing depending upon the application. A sample driver
board schematic is shown in Appendix A.

The Microchip programming specification states that
the device should be programmed at 5V. Special con-
siderations must be made if your application circuit
operates at 3V only. These considerations may include
totally isolating the PICmicro during programming. The
other issue is that the device must be verified at the
minimum and maximum voltages at which the applica-
tion circuit will be operating. For instance, a battery

Note: The driver board design MUST be tested
in the user's application to determine the
effects of the application circuit on the
programming signals timing. Changes
may be required if the application places
a significant load on VDD, VPP, RB6 OR

RB7.
DS91013B-page 2-242
operated system may operate from three 1.5V cells giv-
ing an operating voltage range of 2.7V to 4.5V. The
programmer must program the device at 5V and must
verify the program memory contents at both 2.7V and
4.5V to ensure that proper programming margins have
been achieved. This ensures the PICmicro option over
the voltage range of the system.

This final issue deals with the oscillator circuit on the
application board. The voltage on MCLR/VPP must rise
to the specified program mode entry voltage before the
device executes any code. The crystal modes available
on the PICmicro are not affected by this issue because
the Oscillator Start-up Timer waits for 1024 oscillations
before any code is executed. However, RC oscillators
do not require any startup time and, therefore, the
Oscillator Startup Timer is not used. The programmer
must drive MCLR/VPP to the program mode entry volt-
age before the RC oscillator toggles four times. If the
RC oscillator toggles four or more times, the program
counter will be incremented to some value X. Now
when the device enters programming mode, the pro-
gram counter will not be zero and the programmer will
start programming your code at an offset of X. There
are several alternatives that can compensate for a slow
rise rate on MCLR/VPP. The first method would be to
not populate the R, program the device, and then insert
the R. The other method would be to have the pro-
gramming interface drive the OSC1 pin of the PICmicro
to ground while programming. This will prevent any
oscillations from occurring during programming.

Now all that is left is how to connect the application cir-
cuit to the programmer. This depends a lot on the
programming environment and will be discussed in that
section.

Programmer

The second consideration is the programmer.
PIC16CXXX MCUs only use serial programming and
therefore all programmers supporting these devices
will support ICSP. One issue with the programmer is the
drive capability. As discussed before, it must be able to
provide the specified rise rates on the ICSP signals and
also provide enough current to power the application
circuit. Appendix A shows an example driver board.
This driver schematic does not show any buffer circuitry
for RB6 and RB7. It is recommended that an evaluation
be performed to determine if buffering is required.
Another issue with the programmer is what VDD levels
are used to verify the memory contents of the PICmi-
cro. For instance, the PRO MATE II verifies program
memory at the minimum and maximum VDD levels for
the specified device and is therefore considered a pro-
duction quality programmer. On the other hand, the
PICSTART® Plus only verifies at 5V and is for prototyp-
ing use only. The Microchip programming specifica-
tions state that the program memory contents should
be verified at both the minimum and maximum VDD lev-
els that the application circuit will be operating. This
implies that the application circuit must be able to han-
dle the varying VDD voltages.
 1999 Microchip Technology Inc.

TB013
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 243 Thursday, March 2, 2000 8:02 AM
There are also several third party programmers that are
available. You should select a programmer based on
the features it has and how it fits into your programming
environment. The Microchip Development Systems
Ordering Guide (DS30177) provides detailed informa-
tion on all our development tools. The Microchip Third
Party Guide (DS00104) provides information on all of
our third party tool developers. Please consult these
two references when selecting a programmer. Many
options exist including serial or parallel PC host con-
nection, stand-alone operation, and single or gang pro-
grammers. Some of the third party developers include
Advanced Transdata Corporation, BP Microsystems,
Data I/O, Emulation Technology and Logical Devices.

Programming Environment

The programming environment will affect the type of
programmer used, the programmer cable length, and
the application circuit interface. Some programmers
are well suited for a manual assembly line while others
are desirable for an automated assembly line. You may
want to choose a gang programmer to program multiple
systems at a time.

The physical distance between the programmer and
the application circuit affects the load capacitance on
each of the programming signals. This will directly
affect the drive strength needed to provide the correct
signal rise rates and current. This programming cable
must also be as short as possible and properly
terminated and shielded, or the programming signals
may be corrupted by ringing or noise.

Finally, the application circuit interface to the program-
mer depends on the size constraints of the application
circuit itself and the assembly line. A simple header
can be used to interface the application circuit to the
programmer. This might be more desirable for a man-
ual assembly line where a technician plugs the
programmer cable into the board. A different method is
the use of spring loaded test pins (commonly referred
to as pogo pins). The application circuit has pads on
the board for each of the programming signals. Then
there is a fixture that has pogo pins in the same config-
uration as the pads on the board. The application
circuit or fixture is moved into position such that the
pogo pins come into contact with the board. This
method might be more suitable for an automated
assembly line.

After taking into consideration the issues with the appli-
cation circuit, the programmer, and the programming
environment, anyone can build a high quality, reliable
manufacturing line based on ICSP.

Other Benefits

ICSP provides other benefits, such as calibration and
serialization. If program memory permits, it would be
cheaper and more reliable to store calibration con-
stants in program memory instead of using an external
serial EEPROM. For example, your system has a ther-
mistor which can vary from one system to another.
Storing some calibration information in a table format

allows the micrcontroller to compensate in software for
external component tolerances. System cost can be
reduced without affecting the required performance of
the system by using software calibration techniques.
But how does this relate to ICSP? The PICmicro has
already been programmed with firmware that performs
a calibration cycle. The calibration data is transferred
to a calibration fixture. When all calibration data has
been transferred, the fixture places the PICmicro in
programming mode and programs the PICmicro with
the calibration data. Application note AN656, In-Circuit
Serial Programming of Calibration Parameters Using a
PICmicro Microcontroller, shows exactly how to imple-
ment this type of calibration data programming.

The other benefit of ICSP is serialization. Each individ-
ual system can be programmed with a unique or ran-
dom serial number. One such application of a unique
serial number would be for security systems. A typical
system might use DIP switches to set the serial num-
ber. Instead, this number can be burned into program
memory, thus reducing the overall system cost and low-
ering the risk of tampering.

Field Programming of PICmicro OTP MCUs

An OTP device is not normally capable of being
reprogrammed, but the PICmicro architecture gives
you this flexibility provided the size of your firmware is
at least half that of the desired device and the device is
not code protected. If your target device does not have
enough program memory, Microchip provides a wide
spectrum of devices from 0.5K to 8K program memory
with the same set of peripheral features that will help
meet the criteria.

The PIC16CXXX microcontrollers have two vectors,
reset and interrupt, at locations 0x0000 and 0x0004.
When the PICmicro encounters a reset or interrupt con-
dition, the code located at one of these two locations in
program memory is executed. The first listing of
Example 1-1 shows the code that is first programmed
into the PICmicro. The second listing of Example 1-1
shows the code that is programmed into the PICmicro
for the second time.
 1999 Microchip Technology Inc. DS91013B-page 2-243

TB013

S2.book Page 244 Thursday, March 2, 2000 8:02 AM
EXAMPLE 1-1: PROGRAMMING CYCLE LISTING FILES
First Program Cycle Second Program Cycle

Prog Opcode Assembly |ProgOpcodeAssembly
Mem Instruction |Mem Instruction

0000 2808 goto Main ;Main loop | 0000 0000 nop
0001 3FFF <blank> ;at 0x0008 | 0001 2860 goto Main ;Main now
0002 3FFF <blank> | 0002 3FFF <blank> ;at 0x0060
0003 3FFF <blank> | 0003 3FFF <blank>
0004 2848 goto ISR ;ISR at | 0004 0000 nop
0005 3FFF <blank> ;0x0048 | 0005 28A8 goto ISR ;ISR now at
0006 3FFF <blank> | 0006 3FFF <blank> ;0x00A8
0007 3FFF <blank> | 0007 3FFF <blank>
0008 1683 bsf STATUS,RP0 | 0008 1683 bsf STATUS,RP0
0009 3007 movlw 0x07 | 0009 3007 movlw 0x07
000A 009F movwf ADCON1 | 000A 009F movwf ADCON1
 . | .
 . | .
 . | .
0048 1C0C btfss PIR1,RBIF | 0048 1C0C btfss PIR1,RBIF
0049 284E goto EndISR | 0049 284E goto EndISR
004A 1806 btfsc PORTB,0 | 004A 1806 btfsc PORTB,0
 . | .
 . | .
 . | .
0060 3FFF <blank> | 0060 1683 bsf STATUS,RP0
0061 3FFF <blank> | 0061 3005 movlw 0x05
0062 3FFF <blank> | 0062 009F movwf ADCON1
 . | .
 . | .
 . | .
00A8 3FFF <blank> | 00A8 1C0C btfss PIR1,RBIF
00A9 3FFF <blank> | 00A9 28AE goto EndISR
00AA 3FFF <blank> | 00AA 1806 btfsc PORTB,0
 . | .
 . | .
 . | .

DS91013B-page 2-244 1999 Microchip Technology Inc.

TB013
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 245 Thursday, March 2, 2000 8:02 AM
The example shows that to program the PICmicro a
second time the memory location 0x0000, originally
goto Main (0x2808), is reprogrammed to all 0’s which
happens to be a nop instruction. This location cannot
be reprogrammed to the new opcode (0x2860)
because the bits that are 0’s cannot be reprogrammed
to 1’s, only bits that are 1’s can be reprogrammed to
0’s. The next memory location 0x0001 was originally
blank (all 1’s) and now becomes a goto Main
(0x2860). When a reset condition occurs, the PICmicro
executes the instruction at location 0x0000 which is the
nop, a completely benign instruction, and then exe-
cutes the goto Main to start the execution of code.
The example also shows that all program memory loca-
tions after 0x005A are blank in the original program so
that the second time the PICmicro is programmed, the
revised code can be programmed at these locations.
The same descriptions can be given for the interrupt
vector at location 0x0004.

This method changes slightly for PICmicros with >2K
words of program memory. Each of the goto Main
and goto ISR instructions are replaced by the follow-
ing code segments due to paging on devices with >2K
words of program memory.

movlw <page>movlw <page>
movwf PCLATHmovwf PCLATH
goto Main goto ISR

Now your one time programmable PICmicro is exhibit-
ing more EEPROM- or Flash-like qualities.

CONCLUSION

Microchip Technology Inc. is committed to supporting
your ICSP needs by providing you with our many years
of experience and expertise in developing ICSP
solutions. Anyone can create a reliable ICSP program-
ming station by coupling our background with some
forethought to the circuit design and programmer
selection issues previously mentioned. Your local
Microchip representative is available to answer any
questions you have about the requirements for ICSP.
 1999 Microchip Technology Inc. DS91013B-page 2-245

TB013

S2.book Page 246 Thursday, March 2, 2000 8:02 AM
APPENDIX A: SAMPLE DRIVER BOARD SCHEMATIC

R
6

1
V

P
P
_O

U
T

TO
 C

IR
C

U
IT

 3 2
 1

41
U

1A

T
LE

21
44

A

R
9

10
0

R
9

10
0

V
C

CQ
1

2N
39

06

R
10

10
0

R
2

33
k

 5 6
 7

U
1B

T
LE

21
44

A

V
C

C

V
cc

15
V

E
X

T
E

R
N

A
L

P
O

W
E

R
 S

U
P

P
LY R
12

10
0k

V
P

P
_I

N

F
R

O
M

P
R

O
G

R
A

M
M

E
R

C
1

1N
F

D
1

12
.7

V

Q
2

2N
22

22

R
13

5k

Q
3

2N
39

06

C
3

0.
1m

F

V
D

D
_O

U
T

R
15

1
TO

 C
IR

C
U

IT

C
6

0.
1m

F

 1
0

 9
 8

U
1C

T
LE

21
44

A

V
C

C
R

18

10
0

R
17

10
0

Q
4

2N
22

22

R
22

5k

R
19

10
0

C
4

1N
F

D
2

6.
2V

V
D

D
_I

N

 1
2

 1
3

14
U

1D

T
LE

21
44

A

R
4

10
k

R
21

10
0k

F
R

O
M

P
R

O
G

R
A

M
M

E
R

R
B

6_
IN

G
N

D
_I

N
G

N
D

_O
U

T

F
R

O
M

P
R

O
G

R
A

M
M

E
R

F
R

O
M

P
R

O
G

R
A

M
M

E
R

T
O

 C
IR

C
U

IT

R
B

6_
O

U
T

R
B

7_
IN

F
R

O
M

P
R

O
G

R
A

M
M

E
R

TO
 C

IR
C

U
IT

R
B

7_
O

U
T

TO
 C

IR
C

U
IT

N
o

te
:

T
he

 d
riv

er
 b

oa
rd

 d
es

ig
n

M
U

S
T

 b
e

te
st

ed
 in

 t
he

 u
se

ap
pl

ic
at

io
n

to
 d

et
er

m
in

e
th

e
ef

fe
ct

s
of

 t
he

 a
pp

lic
at

ci
rc

ui
t

on
 t

he
 p

ro
gr

am
m

in
g

si
gn

al
s

tim
in

g.
 C

ha
ng

m
ay

 b
e

re
qu

ire
d

if
th

e
ap

pl
ic

at
io

n
pl

ac
es

 a
 s

ig
ni

fic
lo

ad
 o

n
V

dd
, V

pp
, R

B
6

or
 R

B
7.

*s
ee

te

xt

in

te
ch

ni
ca

l
*s

ee

te
xt

in

te

ch
ni

ca
l

DS91013B-page 2-246 1999 Microchip Technology Inc.

TB015
How to Implement ICSP™ Using PIC17CXXX OTP MCUs

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 247 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

PIC17CXXX microcontroller (MCU) devices can be
serially programmed using an RS-232 or equivalent
serial interface. As shown in Figure 1, using just three
pins, the PIC17CXXX can be connected to an external
interface and programmed. In-Circuit Serial Program-
ming (ICSP™) allows for a greater flexibility in an appli-
cation as well as a faster time to market for the user's
product.

This technical brief will demonstrate the practical
aspects associated with ICSP using the PIC17CXXX. It
will also demonstrate some key capabilities of OTP
devices when used in conjunction with ICSP.

Implementation

The PIC17CXXX devices have special instructions,
which enables the user to program and read the
PIC17CXXX's program memory. The instructions are
TABLWT and TLWT which implement the program mem-
ory write operation and TABLRD and TLRD which per-
form the program memory read operation. For more
details, please check the In-Circuit Serial Programming
for PIC17CXXX OTP Microcontrollers Specification
(DS30273), PIC17C4X data sheet (DS30412) and
PIC17C75X data sheet (DS30264).

When doing ICSP, the PIC17CXXX runs a boot code,
which configures the USART port and receives data
serially through the RX line. This data is then pro-
grammed at the address specified in the serial data
string. A high voltage (about 13V) is required for the
EPROM cell to get programmed, and this is usually
supplied by the programming header as shown in
Figure 1 and Figure 2. The PIC17CXXX's boot code
enables and disables the high voltage line using a ded-
icated I/O line.

FIGURE 1: PIC17CXXX IN-CIRCUIT SERIAL PROGRAMMING USING TABLE WRITE
INSTRUCTIONS

Author: Stan D’Souza
Microchip Technology Inc.

PIC17CXXX

Data
Memory

Program
Memory

Data L
Data H

Boot
Code

USART Level Converter

In-Circuit
Programming

Connector

I/O
13V Enable

SYSTEM BOARD

VPP

13V

RX

TX

Data H:Data L

PRO MATE and PICSTART are registered trademarks and ICSP is a trademark of Microchip Technology Inc.
 1999 Microchip Technology Inc. DS91015B-page 2-247

TB015

S2.book Page 248 Thursday, March 2, 2000 8:02 AM
FIGURE 2: PIC17CXXX IN-CIRCUIT SERIAL PROGRAMMING SCHEMATIC

ICSP Boot Code

The boot code is normally programmed, into the
PIC17CXXX device using a PRO MATE® or
PICSTART® Plus or any third party programmer. As
depicted in the flowchart in Figure 4, on power-up, or a
reset, the program execution always vectors to the boot
code. The boot code is normally located at the bottom
of the program memory space e.g. 0x700 for a
PIC17C42A (Figure 3).

Several methods could be used to reset the
PIC17CXXX when the ICSP header is connected to the
system board. The simplest method, as shown in
Figure 2, is to derive the system 5V, from the 13V sup-
plied by the ICSP header. It is quite common in manu-
facturing lines, to have system boards programmed
with only the boot code ready and available for testing,
calibration or final programming. The ICSP header
would thus supply the 13V to the system and this 13V
would then be stepped down to supply the 5V required
to power the system. Please note that the 13V supply
should have enough drive capability to supply power to
the system as well as maintain the programming volt-
age of 13V.

The first action of the boot code (as shown in flowchart
Figure 4) is to configure the USART to a known baud
rate and transmit a request sequence to the ICSP host
system. The host immediately responds with an
acknowledgment of this request. The boot code then
gets ready to receive ICSP data. The host starts send-
ing the data and address byte sequences to the
PIC17CXXX. On receiving the address and data
information, the 16-bit address is loaded into the
TBLPTR registers and the 16-bit data is loaded into the
TABLAT registers. The RA2 pin is driven low to enable
13V at MCLR. The PIC17CXXX device then executes
a table write instruction. This instruction in turn causes
a long write operation, which disables further code exe-
cution. Code execution is resumed when an internal

interrupt occurs. This delay ensures that the program-
ming pulse width of 1 ms (max.) is met. Once a location
is written, RA2 is driven high to disable further writes
and a verify operation is done using the Table read
instruction. If the result is good, an acknowledge is sent
to the host. This process is repeated till all desired loca-
tions are programmed.

In normal operation, when the ICSP header is not con-
nected, the boot code would still execute and the
PIC17CXXX would send out a request to the host.
However it would not get a response from the host, so
it would abort the boot code and start normal code
execution.

FIGURE 3: BOOT CODE EXAMPLE FOR
PIC17C42A

PIC17CXXX

VDD

MCLR

RA2

RX

VSS

+5V

MAX232

2N3905 13V

+5V

Serial Port TX

Serial Port RX
TX

7805

Programming Header

Reset Vector

Boot Code

Program Memory

0x700

0x7FF
DS91015B-page 2-248 1999 Microchip Technology Inc.

TB015
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 249 Thursday, March 2, 2000 8:02 AM
FIGURE 4: FLOWCHART FOR ICSP BOOT CODE

Start

Received Host’s

Configure USART
and send request

Goto Boot Code

Prepare to receive
ICSP data

Do Table Write
operation

Received Address
and Data info?

Last Data/Address

Signal Programming
Error

END

sequence?

ACK?
Time-out complete?

Start Code
Execution

Interrupt?

Read Program
Location

Program location
verified correctly?

No

Yes

No

Yes

No

Yes

No

Yes

Yes

No

YesNo
 1999 Microchip Technology Inc. DS91015B-page 2-249

TB015

S2.book Page 250 Thursday, March 2, 2000 8:02 AM
USING THE ICSP FEATURE ON
PIC17CXXX OTP DEVICES

The ICSP feature is a very powerful tool when used in
conjunction with OTP devices.

Saving Calibration Information Using ICSP

One key use of ICSP is to store calibration constants or
parameters in program memory. It is quite common to
interface a PIC17CXXX device to a sensor. Accurate,
pre-calibrated sensors can be used, but they are more
expensive and have long lead times. Un-calibrated sen-
sors on the other hand are inexpensive and readily
available. The only caveat is that these sensors have to
be calibrated in the application. Once the calibration
constants have been determined, they would be unique
to a given system, so they have to be saved in program
memory. These calibration parameters/constants can
then be retrieved later during program execution and
used to improve the accuracy of low cost un-calibrated
sensors. ICSP thus offers a cost reduction path for the
end user in the application.

Saving Field Calibration Information Using
ICSP

Sensors typically tend to drift and lose calibration over
time and usage. One expensive solution would be to
replace the sensor with a new one. A more cost effec-
tive solution however, is to re-calibrated the system and
save the new calibration parameter/constants into the
PIC17CXXX devices using ICSP. The user program
however has to take into account certain issues:

1. Un-programmed or blank locations have to be
reserved at each calibration constant location in
order to save new calibration parameters/con-
stants.

2. The old calibration parameters/constants are all
programmed to 0, so the user program will have
to be "intelligent" and differentiate between blank
(0xFFFF), zero (0x0000), and programmed locations.

Figure 5 shows how this can be achieved.

Programming Unique Serial Numbers Using
ICSP

There are applications where each system needs to
have a unique and sometimes random serial number.
Example: security devices. One common solution is to
have a set of DIP switches which are then set to a
unique value during final test. A more cost effective
solution however would be to program unique serial
numbers into the device using ICSP. The user applica-
tion can thus eliminate the need for DIP switches and
subsequently reduce the cost of the system.

FIGURE 5: FIELD CALIBRATION USING ICSP

Parameter 1.1
0xFFFF
0xFFFF
0xFFFF

Parameter 2.1
0xFFFF
0xFFFF
0xFFFF

Factory Settings

0x0000
Parameter 1.2

0xFFFF
0xFFFF
0x0000

Parameter 2.2
0xFFFF
0xFFFF

Field Calibrate #1

0x0000
0x0000

Parameter 1.3
0xFFFF
0x0000
0x0000

Parameter 2.3
0xFFFF

Field Calibrate #2
DS91015B-page 2-250 1999 Microchip Technology Inc.

TB015
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 251 Thursday, March 2, 2000 8:02 AM
Code Updates in the Field Using ICSP

With fast time to market it is not uncommon to see
application programs which need to be updated or cor-
rected for either enhancements or minor errors/bugs. If
ROM parts were used, updates would be impossible
and the product would either become outdated or
recalled from the field. A more cost effective solution
is to use OTP devices with ICSP and program them in
the field with the new updates. Figure 6 shows an
example where the user has allowed for one field
update to his program.

Here are some of the issues which need to be
addressed:

1. The user has to reserve sufficient blank memory
to fit his updated code.

2. At least one blank location needs to be saved at
the reset vector as well as for all the interrupts.

3. Program all the old "goto" locations (located at
the reset vector and the interrupts vectors) to 0
so that these instructions execute as NOPs.

4. Program new "goto" locations (at the reset vec-
tor and the interrupt vectors) just below the old
"goto" locations.

5. Finally, program the new updated code in the
blank memory space.

CONCLUSION

ICSP is a very powerful feature available on the
PIC17CXXX devices. It offers tremendous design flex-
ibility to the end user in terms of saving calibration con-
stants and updating code in final production as well as
in the field, thus helping the user design a low-cost and
fast time-to-market product.

FIGURE 6: CODE UPDATES USING ICSP

Goto Boot

Goto Main1
0xFFFF
0xFFFF

Production Program

0x0000

Main1

Main

Boot

Goto Main

Goto Boot

0x0000
Goto Main2

0xFFFF

Code Update #1

Main1

Main

Boot

Goto Main

Main2

0x0000
 1999 Microchip Technology Inc. DS91015B-page 2-251

TB015

S2.book Page 252 Thursday, March 2, 2000 8:02 AM
NOTES:
DS91015B-page 2-252 1999 Microchip Technology Inc.

TB016
How to Implement ICSP™ Using PIC16F8X FLASH MCUs

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 253 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

In-Circuit Serial Programming (ICSP™) with PICmicro®

FLASH microcontrollers (MCU) is not only a great way
to reduce your inventory overhead and time-to-market
for your product, but also to easily provide field
upgrades of firmware. By assembling your product with
a Microchip FLASH-based MCU, you can stock the
shelf with one system. When an order has been
placed, these units can be programmed with the latest
revision of firmware, tested, and shipped in a very short
time. This type of manufacturing system can also facil-
itate quick turnarounds on custom orders for your prod-
uct. You don’t have to worry about scrapped inventory
because of the FLASH-based program memory. This
gives you the advantage of upgrading the firmware at
any time to fix those “features” that pop up from time to
time.

HOW DOES ICSP WORK?

Now that ICSP appeals to you, what steps do you take
to implement it in your application? There are three
main components of an ICSP system.

These are the: Application Circuit, Programmer and
Programming Environment.

Application Circuit

The application circuit must be designed to allow all the
programming signals to be directly connected to the
PICmicro. Figure 1 shows a typical circuit that is a
starting point for when designing with ICSP. The
application must compensate for the following issues:

1. Isolation of the MCLR/VPP pin from the rest of
the circuit.

2. Isolation of pins RB6 and RB7 from the rest of
the circuit.

3. Capacitance on each of the VDD, MCLR/VPP,
RB6, and RB7 pins.

4. Minimum and maximum operating voltage for
VDD.

5. PICmicro Oscillator.

6. Interface to the programmer.

The MCLR/VPP pin is normally connected to an RC cir-
cuit. The pull-up resistor is tied to VDD and a capacitor
is tied to ground. This circuit can affect the operation of
ICSP depending on the size of the capacitor. It is,
therefore, recommended that the circuit in Figure 1 be
used when an RC is connected to MCLR/VPP. The
diode should be a Schottky-type device. Another issue
with MCLR/VPP is that when the PICmicro device is
programmed, this pin is driven to approximately 13V
and also to ground. Therefore, the application circuit
must be isolated from this voltage provided by the
programmer.

FIGURE 1: TYPICAL APPLICATION CIRCUIT

Author: Rodger Richey
Microchip Technology Inc.

Application PCB
PIC16F8X

MCLR/VPP

VDD

VSS

RB7
RB6

VDD VDD

To application circuit

Isolation circuits

ICSP Connector

PRO MATE, PICSTART and PICmicro are registered trademarks and ICSP is a trademark of Microchip Technology Inc.
 1999 Microchip Technology Inc. DS91016B-page 2-253

TB016

S2.book Page 254 Thursday, March 2, 2000 8:02 AM
Pins RB6 and RB7 are used by the PICmicro for serial
programming. RB6 is the clock line and RB7 is the data
line. RB6 is driven by the programmer. RB7 is a bi-
directional pin that is driven by the programmer when
programming, and driven by the PICmicro when verify-
ing. These pins must be isolated from the rest of the
application circuit so as not to affect the signals during
programming. You must take into consideration the
output impedance of the programmer when isolating
RB6 and RB7 from the rest of the circuit. This isolation
circuit must account for RB6 being an input on the
PICmicro and for RB7 being bi-directional (can be
driven by both the PICmicro and the programmer). For
instance, PRO MATE® II has an output impedance of
1k¾. If the design permits, these pins should not be
used by the application. This is not the case with most
applications so it is recommended that the designer
evaluate whether these signals need to be buffered. As
a designer, you must consider what type of circuitry is
connected to RB6 and RB7 and then make a decision
on how to isolate these pins. Figure 1 does not show
any circuitry to isolate RB6 and RB7 on the application
circuit because this is very application dependent.

The total capacitance on the programming pins affects
the rise rates of these signals as they are driven out of
the programmer. Typical circuits use several hundred
microfarads of capacitance on VDD which helps to
dampen noise and ripple. However, this capacitance
requires a fairly strong driver in the programmer to
meet the rise rate timings for VDD. Most programmers
are designed to simply program the PICmicro itself and
don’t have strong enough drivers to power the applica-
tion circuit. One solution is to use a driver board
between the programmer and the application circuit.
The driver board requires a separate power supply that
is capable of driving the VPP and VDD pins with the cor-
rect rise rates and should also provide enough current
to power the application circuit. RB6 and RB7 are not
buffered on this schematic but may require buffering
depending upon the application. A sample driver board
schematic is shown in Appendix A.

The Microchip programming specification states that
the device should be programmed at 5V. Special con-
siderations must be made if your application circuit
operates at 3V only. These considerations may include
totally isolating the PICmicro during programming. The
other issue is that the device must be verified at the
minimum and maximum voltages at which the applica-
tion circuit will be operating. For instance, a battery

operated system may operate from three 1.5V cells giv-
ing an operating voltage range of 2.7V to 4.5V. The
programmer must program the device at 5V and must
verify the program memory contents at both 2.7V and
4.5V to ensure that proper programming margins have
been achieved. This ensures the PICmicro option over
the voltage range of the system.

This final issue deals with the oscillator circuit on the
application board. The voltage on MCLR/VPP must rise
to the specified program mode entry voltage before the
device executes any code. The crystal modes available
on the PICmicro are not affected by this issue because
the Oscillator Start-up Timer waits for 1024 oscillations
before any code is executed. However, RC oscillators
do not require any startup time and, therefore, the
Oscillator Startup Timer is not used. The programmer
must drive MCLR/VPP to the program mode entry volt-
age before the RC oscillator toggles four times. If the
RC oscillator toggles four or more times, the program
counter will be incremented to some value X. Now
when the device enters programming mode, the pro-
gram counter will not be zero and the programmer will
start programming your code at an offset of X. There
are several alternatives that can compensate for a slow
rise rate on MCLR/VPP. The first method would be to
not populate the R, program the device, and then insert
the R. The other method would be to have the pro-
gramming interface drive the OSC1 pin of the PICmicro
to ground while programming. This will prevent any
oscillations from occurring during programming.

Now all that is left is how to connect the application cir-
cuit to the programmer. This depends a lot on the
programming environment and will be discussed in that
section.

Programmer

The second consideration is the programmer.
PIC16F8X MCUs only use serial programming and
therefore all programmers supporting these devices
will support ICSP. One issue with the programmer is
the drive capability. As discussed before, it must be
able to provide the specified rise rates on the ICSP sig-
nals and also provide enough current to power the
application circuit. Appendix A shows an example
driver board. This driver schematic does not show any
buffer circuitry for RB6 and RB7. It is recommended
that an evaluation be performed to determine if buffer-
ing is required. Another issue with the programmer is
what VDD levels are used to verify the memory contents
of the PICmicro. For instance, the PRO MATE II verifies
program memory at the minimum and maximum VDD

levels for the specified device and is therefore consid-
ered a production quality programmer. On the other
hand, the PICSTART® Plus only verifies at 5V and is for
prototyping use only. The Microchip programming
specifications state that the program memory contents
should be verified at both the minimum and maximum
VDD levels that the application circuit will be operating.
This implies that the application circuit must be able to
handle the varying VDD voltages.

Note: The driver board design MUST be tested
in the user’s application to determine the
effects of the application circuit on the
programming signals timing. Changes
may be required if the application places
a significant load on Vdd, Vpp, RB6 or
RB7.
DS91016B-page 2-254 1999 Microchip Technology Inc.

TB016
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 255 Thursday, March 2, 2000 8:02 AM
There are also several third party programmers that are
available. You should select a programmer based on
the features it has and how it fits into your programming
environment. The Microchip Development Systems
Ordering Guide (DS30177) provides detailed informa-
tion on all our development tools. The Microchip Third
Party Guide (DS00104) provides information on all of
our third party tool developers. Please consult these
two references when selecting a programmer. Many
options exist including serial or parallel PC host con-
nection, stand-alone operation, and single or gang pro-
grammers. Some of the third party developers include
Advanced Transdata Corporation, BP Microsystems,
Data I/O, Emulation Technology and Logical Devices.

Programming Environment

The programming environment will affect the type of
programmer used, the programmer cable length, and
the application circuit interface. Some programmers
are well suited for a manual assembly line while others
are desirable for an automated assembly line. You may
want to choose a gang programmer to program multiple
systems at a time.

The physical distance between the programmer and
the application circuit affects the load capacitance on
each of the programming signals. This will directly
affect the drive strength needed to provide the correct
signal rise rates and current. This programming cable
must also be as short as possible and properly termi-
nated and shielded or the programming signals may be
corrupted by ringing or noise.

Finally, the application circuit interface to the program-
mer depends on the size constraints of the application
circuit itself and the assembly line. A simple header
can be used to interface the application circuit to the
programmer. This might be more desirable for a man-
ual assembly line where a technician plugs the
programmer cable into the board. A different method is
the use of spring loaded test pins (commonly referred
to as pogo pins). The application circuit has pads on
the board for each of the programming signals. Then
there is a fixture that has pogo pins in the same config-
uration as the pads on the board. The application
circuit or fixture is moved into position such that the
pogo pins come into contact with the board. This
method might be more suitable for an automated
assembly line.

After taking into consideration the issues with the appli-
cation circuit, the programmer, and the programming
environment, anyone can build a high quality, reliable
manufacturing line based on ICSP.

Other Benefits

ICSP provides other benefits, such as calibration and
serialization. If program memory permits, it would be
cheaper and more reliable to store calibration con-
stants in program memory instead of using an external
serial EEPROM. For example, your system has a ther-
mistor which can vary from one system to another.
Storing some calibration information in a table format
allows the micrcontroller to compensate in software for
external component tolerances. System cost can be
reduced without affecting the required performance of
the system by using software calibration techniques.
But how does this relate to ICSP? The PICmicro has
already been programmed with firmware that performs
a calibration cycle. The calibration data is transferred
to a calibration fixture. When all calibration data has
been transferred, the fixture places the PICmicro in
programming mode and programs the PICmicro with
the calibration data. Application note AN656, In-Circuit
Serial Programming of Calibration Parameters Using a
PICmicro Microcontroller, shows exactly how to imple-
ment this type of calibration data programming.

The other benefit of ICSP is serialization. Each individ-
ual system can be programmed with a unique or ran-
dom serial number. One such application of a unique
serial number would be for security systems. A typical
system might use DIP switches to set the serial num-
ber. Instead, this number can be burned into program
memory thus reducing the overall system cost and low-
ering the risk of tampering.

Field Programming of FLASH PICmicros

With the ISP interface circuitry already in place, these
FLASH-based PICmicros can be easily reprogrammed
in the field. These FLASH devices allow you to repro-
gram them even if they are code protected. A portable
ISP programming station might consist of a laptop com-
puter and programmer. The technician plugs the ISP
interface cable into the application circuit and down-
loads the new firmware into the PICmicro. The next
thing you know the system is up and running without
those annoying “bugs”. Another instance would be that
you want to add an additional feature to your system.
All of your current inventory can be converted to the
new firmware and field upgrades can be performed to
bring your installed base of systems up to the latest
revision of firmware.

CONCLUSION

Microchip Technology Inc. is committed to supporting
your ICSP needs by providing you with our many years
of experience and expertise in developing ICSP
solutions. Anyone can create a reliable ICSP program-
ming station by coupling our background with some
forethought to the circuit design and programmer
selection issues previously mentioned. Your local
Microchip representative is available to answer any
questions you have about the requirements for ICSP.
 1999 Microchip Technology Inc. DS91016B-page 2-255

TB016

S2.book Page 256 Thursday, March 2, 2000 8:02 AM
APPENDIX A: SAMPLE DRIVER BOARD SCHEMATIC

R
6

1
V

P
P
_O

U
T

TO
 C

IR
C

U
IT

 3 2
 1

41
U

1A

T
LE

21
44

A

R
9

10
0

R
9

10
0

V
cc

Q
1

2N
39

06

R
10

10
0

R
2

33
k

 5 6
 7

U
1B

T
LE

21
44

A

V
C

C

V
cc

15
V

E
X

T
E

R
N

A
L

P
O

W
E

R
 S

U
P

P
LY R
12

10
0k

V
P

P
_I

N

F
R

O
M

P
R

O
G

R
A

M
M

E
R

C
1

1N
F

D
1

12
.7

V

Q
2

2N
22

22

R
13

5k

Q
3

2N
39

06

C
3

0.
1m

F

V
D

D
_O

U
T

R
15

1
TO

 C
IR

C
U

IT

C
6

0.
1m

F

 1
0

 9
 8

U
1C

T
LE

21
44

A

V
cc

R
18

10
0

R
17

10
0

Q
4

2N
22

22

R
22

5k

R
19

10
0

C
4

1N
F

D
2

6.
2V

V
D

D
_I

N

 1
2

 1
3

14
U

1D

T
LE

21
44

A

R
4

10
k

R
21

10
0k

F
R

O
M

P
R

O
G

R
A

M
M

E
R

R
B

6_
IN

G
N

D
_I

N
G

N
D

_O
U

T

F
R

O
M

P
R

O
G

R
A

M
M

E
R

F
R

O
M

P
R

O
G

R
A

M
M

E
R

TO
 C

IR
C

U
IT

R
B

6_
O

U
T

R
B

7_
IN

F
R

O
M

P
R

O
G

R
A

M
M

E
R

TO
 C

IR
C

U
IT

R
B

7_
O

U
T

TO
 C

IR
C

U
IT

N
o

te
:

T
he

 d
riv

er
 b

oa
rd

 d
es

ig
n

M
U

S
T

 b
e

te
st

ed
 in

 t
he

 u
se

r’s
ap

pl
ic

at
io

n
to

 d
et

er
m

in
e

th
e

ef
fe

ct
s

of
 t

he
 a

pp
lic

at
io

n
ci

rc
ui

t
on

 t
he

 p
ro

gr
am

m
in

g
si

gn
al

s
tim

in
g.

 C
ha

ng
es

m
ay

 b
e

re
qu

ire
d

if
th

e
ap

pl
ic

at
io

n
pl

ac
es

 a
 s

ig
ni

fic
an

t
lo

ad
 o

n
V

dd
, V

pp
, R

B
6

or
 R

B
7.

*s
ee

 te
xt

 in
 te

ch
ni

ca
l b

rie
f.

*s
ee

 te
xt

 in
 te

ch
ni

ca
l b

rie
f.
DS91016B-page 2-256 1999 Microchip Technology Inc.

TB017
How to Implement ICSP™ Using PIC12C5XX OTP MCUs

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 257 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

The technical brief describes how to implement in-cir-
cuit serial programming (ICSP™) using the
PIC12C5XX OTP PICmicro® MCU.

ICSP is a simple way to manufacture your board with
an unprogrammed PICmicro and program the device
just before shipping the product. Programming the
PIC12C5XX MCU in-circuit has many advantages for
developing and manufacturing your product.

• Reduces inventory of products with old
firmware. With ICSP, the user can manufacture
product without programming the PICmicro MCU.
The PICmicro will be programmed just before the
product is shipped.

• ICSP in production. New software revisions or
additional software modules can be programmed
during production into the PIC12C5XX MCU.

• ICSP in the field. Even after your product has
been sold, a service man can update your
program with new program modules.

• One hardware with different software. ICSP
allows the user to have one hardware, whereas
the PIC12C5XX MCU can be programmed with
different types of software.

• Last minute programming. Last minute pro-
gramming can also facilitate quick turnarounds on

custom orders for your products.

IN-CIRCUIT SERIAL PROGRAMMING

To implement ICSP into an application, the user needs
to consider three main components of an ICSP system:
Application Circuit, Programmer and Programming
Environment.

Application Circuit

During the initial design phase of the application circuit,
certain considerations have to be taken into account.
Figure 1 shows and typical circuit that addresses the
details to be considered during design. In order to
implement ICSP on your application board you have to
put the following issues into consideration:

1. Isolation of the GP3/MCLR/VPP pin from the rest
of the circuit.

2. Isolation of pins GP1 and GP0 from the rest of
the circuit.

3. Capacitance on each of the VDD, GP3/MCLR/
VPP, GP1, and GP0 pins.

4. Interface to the programmer.
5. Minimum and maximum operating voltage for

VDD.

FIGURE 1: TYPICAL APPLICATION CIRCUIT

Author: Thomas Schmidt
Microchip Technology Inc.

Application PCB
PIC12C5XX

GP3/MCLR/VPP

VDD

VSS

GP0
GP1

VDD VDD

To application circuit

Isolation circuits

ICSP Connector

PRO MATE, PICSTART and PICmicro are registered trademarks and ICSP is a trademark of Microchip Technology Inc.
 1999 Microchip Technology Inc. DS91017B-page 2-257

TB017

S2.book Page 258 Thursday, March 2, 2000 8:02 AM
Isolation of the GP3/MCLR/VPP Pin from the
Rest of the Circuit

PIC12C5XX devices have two ways of configuring the
MCLR pin:

• MCLR can be connected either to an external RC
circuit or

• MCLR is tied internally to VDD

When GP3/MCLR/VPP pin is connected to an external
RC circuit, the pull-up resistor is tied to VDD, and a
capacitor is tied to ground. This circuit can affect the
operation of ICSP depending on the size of the capac-
itor.

Another point of consideration with the GP3/MCLR/VPP

pin, is that when the PICmicro is programmed, this pin
is driven up to 13V and also to ground. Therefore, the
application circuit must be isolated from the voltage
coming from the programmer.

When MCLR is tied internally to VDD, the user has only
to consider that up to 13V are present during program-
ming of the GP3/MCLR/VPP pin. This might affect other
components connected to that pin.

For more information about configuring the GP3/
MCLR/VPP internally to VDD, please refer to the
PIC12C5XX data sheet (DS40139).

Isolation of Pins GP1 and GP0 from the Rest
of the Circuit

Pins GP1 and GP0 are used by the PICmicro for serial
programming. GP1 is the clock line and GP0 is the data
line.

GP1 is driven by the programmer. GP0 is a bi-direc-
tional pin that is driven by the programmer when pro-
gramming and driven by the PICmicro when verifying.
These pins must be isolated from the rest of the appli-
cation circuit so as not to affect the signals during pro-
gramming. You must take into consideration the output
impedance of the programmer when isolating GP1 and
GP0 from the rest of the circuit. This isolation circuit
must account for GP1 being an input on the PICmicro
and for GP0 being bi-directional pin.

For example, PRO MATE® II has an output impedance
of 1 kΩ. If the design permits, these pins should not be
used by the application. This is not the case with most
designs. As a designer, you must consider what type of
circuitry is connected to GP1 and GP0 and then make
a decision on how to isolate these pins.

Total Capacitance on VDD, GP3/MCLR/VPP,
GP1, and GP0

The total capacitance on the programming pins affects
the rise rates of these signals as they are driven out of
the programmer. Typical circuits use several hundred
microfarads of capacitance on VDD, which helps to
dampen noise and improve electromagnetic interfer-
ence. However, this capacitance requires a fairly strong
driver in the programmer to meet the rise rate timings
for VDD.

Interface to the Programmer

Most programmers are designed to simply program the
PICmicro itself and don’t have strong enough drivers to
power the application circuit.

One solution is to use a driver board between the pro-
grammer and the application circuit. The driver board
needs a separate power supply that is capable of driv-
ing the VPP, VDD, GP1, and GP0 pins with the correct
ramp rates and also should provide enough current to
power-up the application circuit.

The cable length between the programmer and the cir-
cuit is also an important factor for ICSP. If the cable
between the programmer and the circuit is too long, sig-
nal reflections may occur. These reflections can
momentarily cause up to twice the voltage at the end of
the cable, that was sent from the programmer. This volt-
age can cause a latch-up. In this case, a termination
resistor has to be used at the end of the signal line.

Minimum and Maximum Operating Voltage for
VDD

The PIC12C5XX programming specification states that
the device should be programmed at 5V. Special con-
siderations must be made if your application circuit
operates at 3V only. These considerations may include
totally isolating the PICmicro during programming. The
other point of consideration is that the device must be
verified at minimum and maximum operation voltage of
the circuit in order to ensure proper programming mar-
gin.

For example, a battery driven system may operate from
three 1.5V cells giving an operating voltage range of
2.7V to 4.5V. The programmer must program the device
at 5V and must verify the program memory contents at
both 2.7V and 4.5V to ensure that proper programming
margins have been achieved.
DS91017B-page 2-258 1999 Microchip Technology Inc.

TB017
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 259 Thursday, March 2, 2000 8:02 AM
THE PROGRAMMER

PIC12C5XX MCUs only use serial programming and,
therefore, all programmers supporting these devices
will support the ICSP. One issue with the programmer
is the drive capability. As discussed before, it must be
able to provide the specified rise rates on the ICSP sig-
nals and also provide enough current to power the
application circuit. It is recommended that you buffer
the programming signals.

Another point of consideration for the programmer is
what VDD levels are used to verify the memory contents
of the PICmicro. For instance, the PRO MATE II verifies
program memory at the minimum and maximum VDD

levels for the specified device and is therefore consid-
ered a production quality programmer. On the other
hand, the PICSTART® Plus only verifies at 5V and is for
prototyping use only. The PIC12C5XX programming
specifications state that the program memory contents
should be verified at both the minimum and maximum
VDD levels that the application circuit will be operating.
This implies that the application circuit must be able to
handle the varying VDD voltages.

There are also several third-party programmers that
are available. You should select a programmer based
on the features it has and how it fits into your program-
ming environment. The Microchip Development Sys-
tems Ordering Guide (DS30177) provides detailed
information on all our development tools. The Microchip
Third Party Guide (DS00104) provides information on
all of our third party development tool developers.
Please consult these two references when selecting a
programmer. Many options exist including serial or par-
allel PC host connection, stand-alone operation, and
single or gang programmers.

PROGRAMMING ENVIRONMENT

The programming environment will affect the type of
programmer used, the programmer cable length, and
the application circuit interface. Some programmers
are well suited for a manual assembly line while others
are desirable for an automated assembly line. A gang
programmer should be chosen for programming multi-
ple MCUs at one time. The physical distance between
the programmer and the application circuit affects the
load capacitance on each of the programming signals.
This will directly affect the drive strength needed to pro-
vide the correct signal rise rates and current. Finally,
the application circuit interface to the programmer
depends on the size constraints of the application cir-
cuit itself and the assembly line. A simple header can
be used to interface the application circuit to the pro-
grammer. This might be more desirable for a manual
assembly line where a technician plugs the
programmer cable into the board.
 1999 Microchip Technology Inc. DS91017B-page 2-259

TB017

S2.book Page 260 Thursday, March 2, 2000 8:02 AM
A different method is the uses spring loaded test pins
(often referred as pogo-pins). The application circuit
has pads on the board for each of the programming sig-
nals. Then there is a movable fixture that has pogo pins
in the same configuration as the pads on the board.
The application circuit is moved into position and the
fixture is moved such that the spring loaded test pins
come into contact with the board. This method might be
more suitable for an automated assembly line.

After taking into consideration the issues with the
application circuit, the programmer, and the program-
ming environment, anyone can build a high quality,
reliable manufacturing line based on ICSP.

OTHER BENEFITS

ICSP provides several other benefits such as calibra-
tion and serialization. If program memory permits, it
would be cheaper and more reliable to store calibration
constants in program memory instead of using an
external serial EEPROM.

Field Programming of PICmicro OTP MCUs

An OTP device is not normally capable of being repro-
grammed, but the PICmicro architecture gives you this
flexibility provided the size of your firmware is less than
half that of the desired device.

This method involves using jump tables for the reset
and interrupt vectors. Example 1 shows the location of
a main routine and the reset vector for the first time a
device with 0.5K-words of program memory is pro-
grammed. Example 2 shows the location of a second
main routine and its reset vector for the second time the
same device is programmed. You will notice that the
GOTO Main that was previously at location 0x0002 is
replaced with an NOP. An NOP is a program memory
location with all the bits programmed as 0s. When the
reset vector is executed, it will execute an NOP and
then a GOTO Main1 instruction to the new code.

EXAMPLE 1: LOCATION OF THE FIRST MAIN ROUTINE AND ITS INTERRUPT VECTOR

MOVLW XX

MOVWF OSCAL

PROGRAM MEMORY

0X000

0X1FF

GOTO MAIN10X001

MAIN10X040

0X080

CALIBRATION VALUE

RESET VECTOR

MAIN1 ROUTINE

UNPROGRAMMED

UNPROGRAMMED

LEGEND: XX = CALIBRATION VALUE
DS91017B-page 2-260 1999 Microchip Technology Inc.

TB017
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 261 Thursday, March 2, 2000 8:02 AM
EXAMPLE 2: LOCATION OF THE SECOND MAIN ROUTINE AND IT INTERRUPT VECTOR
(AFTER SECOND PROGRAMMING)

MOVLW XX

MOVWF OSCAL

PROGRAM MEMORY

0X000

0X1FF

NOP0X001

MAIN10X040

0X080

CALIBRATION VALUE

RESET VECTOR

MAIN1 ROUTINE

GOTO MAIN2

MAIN2

MAIN2 ROUTINE

0X10E

0X136

UNPROGRAMMED

UNPROGRAMMED

0X002

LEGEND: XX = CALIBRATION VALUE
 1999 Microchip Technology Inc. DS91017B-page 2-261

TB017

S2.book Page 262 Thursday, March 2, 2000 8:02 AM
Since the program memory of the PIC12C5XX devices
is organized in 256 x 12 word pages, placement of such
information as look-up tables and CALL instructions
must be taken into account. For further information,
please refer to application note AN581, Implementing
Long Calls and application note AN556, Implementing
a Table Read.

CONCLUSION

Microchip Technology Inc. is committed to supporting
your ICSP needs by providing you with our many years
of experience and expertise in developing in-circuit sys-
tem programming solutions. Anyone can create a reli-
able in-circuit system programming station by coupling
our background with some forethought to the circuit
design and programmer selection issues previously
mentioned. Your local Microchip representative is avail-
able to answer any questions you have about the
requirements for ICSP.
DS91017B-page 2-262 1999 Microchip Technology Inc.

TB017
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 263 Thursday, March 2, 2000 8:02 AM
APPENDIX A: SAMPLE DRIVER BOARD SCHEMATIC

R
6

1
V

P
P
_O

U
T

TO
 C

IR
C

U
IT

 3 2
 1

41
U

1A

T
LE

21
44

A

R
9

10
0

R
9

10
0

V
cc

Q
1

2N
39

06

R
10

10
0

R
2

33
k

 5 6
 7

U
1B

T
LE

21
44

A

V
C

C

V
C

C

15
V

E
X

T
E

R
N

A
L

P
O

W
E

R
 S

U
P

P
LY R
12

10
0k

V
P

P
_I

N

F
R

O
M

P
R

O
G

R
A

M
M

E
R

C
1

1N
F

D
1

12
.7

V

Q
2

2N
22

22

R
13

5k

Q
3

2N
39

06

C
3

0.
1m

F

V
D

D
_O

U
T

R
15

1
TO

 C
IR

C
U

IT

C
6

0.
1m

F

 1
0

 9
 8

U
1C

T
LE

21
44

A

V
cc

R
18

10
0

R
17

10
0

Q
4

2N
22

22

R
22

5k

R
19

10
0

C
4

1N
F

D
2

6.
2V

V
dd

_I
N

 1
2

 1
3

14
U

1D

T
LE

21
44

A

R
4

10
k

R
21

10
0k

F
R

O
M

P
R

O
G

R
A

M
M

E
R

G
P

1_
IN

G
N

D
_I

N
G

N
D

_O
U

T

F
R

O
M

P
R

O
G

R
A

M
M

E
R

F
R

O
M

P
R

O
G

R
A

M
M

E
R

T
O

 C
IR

C
U

IT

G
P

1_
O

U
T

G
P

0_
IN

F
R

O
M

P
R

O
G

R
A

M
M

E
R

TO
 C

IR
C

U
IT

G
P

0_
O

U
T

TO
 C

IR
C

U
IT

N
o

te
:

T
he

 d
riv

er
 b

oa
rd

 d
es

ig
n

M
U

S
T

 b
e

te
st

ed
 in

 t
he

 u
se

r’s
ap

pl
ic

at
io

n
to

 d
et

er
m

in
e

th
e

ef
fe

ct
s

of
 th

e
ap

pl
ic

at
io

ns
ci

rc
ui

t
on

 t
he

 p
ro

gr
am

m
in

g
si

gn
al

s
tim

in
g.

 C
ha

ng
es

m
ay

 b
e

re
qu

ire
d

if
th

e
ap

pl
ic

at
io

n
pl

ac
es

 a
 s

ig
ni

fic
an

t
lo

ad
 o

n
V

D
D

 ,
V

P
P
, G

P
0

or
 G

P
1.

*s
ee

 te
xt

 in
 te

ch
ni

ca
l b

rie
f.

*s
ee

 te
xt

 in
 te

ch
ni

ca
l b

ri
ef

.

 1999 Microchip Technology Inc. DS91017B-page 2-263

TB017

S2.book Page 264 Thursday, March 2, 2000 8:02 AM
NOTES:
DS91017B-page 2-264 1999 Microchip Technology Inc.

TB020
PIC12C67X Emulation Using PIC16C72 PICMASTER® Emulator Probe

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 265 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

This technical brief describes how to use the PIC16C72
PICMASTER® emulator probe for PIC12C67X emula-
tion.

OVERVIEW

Many simple PIC12C67X applications can be devel-
oped using the MPLAB™ simulator (Version 3.31 or
higher), for complex applications real-time emulation
may be required. Since the PIC16C72 shares the same
upward expanded memory map and similar pin func-
tions as the PIC12C67X, the PICMASTER emulator
probe 16J (AC165009) can be used to emulate most
PIC12C67X functions. The PIC16C710, PIC16C711 or
PIC16C715 emulator probes are not recommended for
PIC12C67X emulation due to only 5 bits in the PORTA
(address 05 hex) register map versus the 6 bits for the
PIC12C67X.

A custom bond-out chip is being designed specifically
for emulation of the PIC12C67X (scheduled for com-
pletion in Q3 1998) and this will eliminate the need for
this technical brief.

HARDWARE EMULATION
RECOMMENDATIONS

Your target PCB will accept the 8 pin PDIP or SOIC pin
out of the PIC12C67X. An adapter socket must be con-
structed to interface from your 8 pin target to the 28 pin
DIP socket on the emulator probe.

PACKAGE TYPES

Building the adapter socket

Many PIC12C67X functions are multiplexed into a sin-
gle pin. For example, the GP2/T0CK1/AN2/INT pin, can
be configured as a digital I/O, Timer 0 counter input, A/
D input, or external interrupt pin. This highly multi-
plexed PIC12C67X pin does not exactly match a corre-
sponding PIC16C72 pin, however most applications
will use this pin in only one of it’s four configurations.
Therefore, a single PIC12C67X pin function can be
mapped into the corresponding pin on PORTA or
PORTB of the PIC16C72.

If any A/D channels are enabled then it is necessary to
map all PIC12C67X GPIO (Digital I/O’s) to PORTB of
the PIC16C72. Using PORTB will enable emulation of
the external interrupt, programmable pull-up resistors,
and will simplify changes to the ADCON1 register.

Your adapter socket pin out must be customized for
your specific application. The following tables show the
pin out for six common applications.

Author: Rob Stein
Microchip Technology Inc. PDIP, SOIC

8

7

6

5

1

2

3

4

P
IC

12C
67

P
IC

12C
67

VSSVDD

GP0/AN0

GP1/AN1/VREF

GP2/TOCK1/
AN2/INT

GP5/OSC1/CLKIN

GP4/OSC2/AN3
GP3/MCLR/VPP

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0/INT
VDD
Vss
RC7/RX/DT
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA

MCLR/VPP
RA0/AN0
RA1/AN1
RA2/AN2

RA3/AN3/VREF
RA4/T0CKI

RA5/AN4/SS
Vss

OSC1/CLKIN
OSC2/CLKOUT

RC0/T1OSO/T1CKI
RC1/T1OSI/CCP2

RC2/CCP1
RC3/SCK/SCL

*1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

SDIP, SOIC, Windowed Side Brazed Ceramic

P
IC

16C
72
 1999 Microchip Technology Inc. DS91020A-page 2-265

TB020

S2.book Page 266 Thursday, March 2, 2000 8:02 AM
TABLE 1: 6 DIGITAL I/O’S

Note 1: If you plan to use the GPIO pull-up resistors then map to PORTB.

TABLE 2: 4 ANALOG AND 2 DIGITAL I/O’S

TABLE 3: 3 ANALOG AND 3 DIGITAL I/O’S

PIC12C67X Pin Function Equivalent PIC16C72 Function

Name # Name #

VDD 1 VDD 20

GP5/OSC1/CLKIN 2 RA5/AN4 7

GP4/OSC2/AN3/CLKOUT 3 RA4/TOCK1 6

GP3/MCLR/Vpp 4 RA3/AN3/Vref 5

GP2/TOCK1/AN2/INT 5 RA2/AN2 4

GP1/AN1/Vref 6 RA1/AN1 3

GP0/AN0 7 RA0/AN0 2

VSS 8 VSS 8,19

PIC12C67X Pin Function Equivalent PIC16C72 Function

Name # Name #

VDD 1 VDD 20

GP5/OSC1/CLKIN 2 RB5 26

GP4/OSC2/AN3/CLKOUT 3 RA3/AN3/Vref 5

GP3/MCLR/Vpp 4 RB3 24

GP2/TOCK1/AN2/INT 5 RA2/AN2 4

GP1/AN1/Vref 6 RA1/AN1 3

GP0/AN0 7 RA0/AN0 2

VSS 8 VSS 8,19

PIC12C67X Pin Function Equivalent PIC16C72 Function

Name # Name #

VDD 1 VDD 20

GP5/OSC1/CLKIN 2 RB5 26

GP4/OSC2/AN3/CLKOUT 3 RB4 25

GP3/MCLR/Vpp 4 RB3 24

GP2/TOCK1/AN2/INT 5 RA3/AN3/Vref 5

GP1/AN1/Vref 6 RA1/AN1 3

GP0/AN0 7 RA0/AN0 2

VSS 8 VSS 8,19
DS91020A-page 2-266 1999 Microchip Technology Inc.

TB020
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 267 Thursday, March 2, 2000 8:02 AM
TABLE 4: 2 ANALOG AND 4 DIGITAL I/O’S

TABLE 5: 1 ANALOG AND 5 DIGITAL I/O’S

Note 1: If you plan to use the GPIO pull-up resistors then map to PORTB.

TABLE 6: 2 ANALOG, 3 DIGITAL I/O’S AND 1 EDGE TRIGGERED INTERRUPT

PIC12C67X Pin Function Equivalent PIC16C72 Function

Name # Name #

VDD 1 VDD 20

GP5/OSC1/CLKIN 2 RB5 26

GP4/OSC2/AN3/CLKOUT 3 RB4 25

GP3/MCLR/Vpp 4 RB3 24

GP2/TOCK1/AN2/INT 5 RB2 23

GP1/AN1/Vref 6 RA1/AN1 3

GP0/AN0 7 RA0/AN0 2

VSS 8 VSS 8,19

PIC12C67X Pin Function Equivalent PIC16C72 Function

Name # Name #

VDD 1 VDD 20

GP5/OSC1/CLKIN 2 RB5 26

GP4/OSC2/AN3/CLKOUT 3 RB4 25

GP3/MCLR/Vpp 4 RB3 24

GP2/TOCK1/AN2/INT 5 RB2 23

GP1/AN1/Vref 6 RB1 22

GP0/AN0 7 RA0/AN0 2

VSS 8 VSS 8,19

PIC12C67X Pin Function Equivalent PIC16C72 Function

Name # Name #

VDD 1 VDD 20

GP5/OSC1/CLKIN 2 RB5 26

GP4/OSC2/AN3/CLKOUT 3 RB4 25

GP3/MCLR/Vpp 4 RB3 24

GP2/TOCK1/AN2/INT 5 RB0/INT 21

GP1/AN1/Vref 6 RA1/AN1 3

GP0/AN0 7 RA0/AN0 2

VSS 8 VSS 8,19
 1999 Microchip Technology Inc. DS91020A-page 2-267

TB020

S2.book Page 268 Thursday, March 2, 2000 8:02 AM
HARDWARE DIFFERENCES AND
WORK-AROUNDS

The PIC12C67X has more flexibility in selecting A/D
versus digital I/O pins (see table 2, ADCON1 register).
To work around this difference, enable more A/D chan-
nels on PORTA of the PIC16C72 and map all digital I/
O’s to PORTB of the PIC16C72 (and ignore the extra
16C72 A/D channels).

The PIC12C67X also has an on chip oscillator with the
ability to output it’s clock (to CLKOUT pin). The internal
oscillator option can be emulated with the PIC16C72 by
using a 4Mhz ‘canned’ clock oscillator, with the probe
jumper set to “INT CLK”.

The RA4/T0CK1 pin of the PIC16C72 when configured
as an output is open drain, and therefore will need a
pull-up resistor to emulate the GP4 PIC12C67X pin
output.

SOFTWARE EMULATION
RECOMMENDATIONS

The PIC12C67X and PIC16C72 both have 2K words of
program memory and 128 bytes of RAM. As is indi-
cated by the following register file map, the PIC12C67X
is a sub-set of the PIC16C72. The ‘extra’ registers of
the PIC16C72 can be ignored while emulating.
DS91020A-page 2-268 1999 Microchip Technology Inc.

TB020
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 269 Thursday, March 2, 2000 8:02 AM
FIGURE 1: PIC12C67X REGISTER FILE MAP FIGURE 2: PIC16C72 REGISTER FILE MAP
File Address

00h

01h

02h

03h

04h

05h

06h

07h

08h

09h
0Ah

0Bh

0Ch

7Fh

80h

81h

82h

83h

84h

85h

86h

87h
88h

89h
8Ah

8Bh

8Ch

FFhBank 0 Bank 1

INDF(1) INDF(1)

TMR0 OPTION

PCL

STATUS

FSR

GPIO

PCLATH

INTCON

PCL

STATUS

FSR

PCLATH

INTCON

PIR1 PIE1

PCON

General
Purpose
Register

0Dh 8Dh

0Eh 8Eh

0Fh 8Fh

10h 90h
11h 91h
12h 92h
13h 93h
14h 94h
15h 95h

16h 96h

17h 97h

18h 98h

1Fh 9Fh
20h A0h

BFh
C0h

General
Purpose
Register

File Address

Mapped
in Bank 0

TRIS

OSCCAL

ADRES
ADCON0 ADCON1

19h
1Ah

1Bh

1Ch
1Dh

1Eh

99h

9Ah
9Bh

9Ch

9Dh

9Eh

F0h
EFH70h

Unimplemented data memory location; read as ’0.

Note 1: Not a physical register.

INDF(1)
TMR0
PCL

STATUS
FSR

PORTA
PORTB
PORTC

PCLATH
INTCON

PIR1

TMR1L
TMR1H
T1CON
TMR2

T2CON
SSPBUF
SSPCON
CCPR1L
CCPR1H

CCP1CON

ADRES
ADCON0

INDF(1)
OPTION

PCL
STATUS

FSR
TRISA
TRISB
TRISC

PCLATH
INTCON

PIE1

PCON

PR2
SSPADD
SSPSTAT

ADCON1

00h
01h
02h
03h
04h
05h
06h
07h
08h
09h
0Ah
0Bh
0Ch
0Dh
0Eh
0Fh
10h
11h
12h
13h
14h
15h
16h
17h
18h
19h
1Ah
1Bh
1Ch
1Dh
1Eh
1Fh

80h
81h
82h
83h

84h
85h
86h
87h
88h
89h
8Ah
8Bh
8Ch
8Dh
8Eh
8Fh
90h
91h
92h
93h
94h
95h
96h
97h
98h
99h
9Ah
9Bh
9Ch
9Dh
9Eh
9Fh

20h A0h
General
Purpose
Register

General
Purpose
Register

7Fh FFh
Bank 0 Bank 1

BFh
C0h

File AddressFile Address

Unimplemented data memory location; read as ’0.

Note 1: Not a physical register.
 1999 Microchip Technology Inc. DS91020A-page 2-269

TB020

S2.book Page 270 Thursday, March 2, 2000 8:02 AM
SPECIAL FUNCTION REGISTER SUMMARY (BANK 0)
PIC12C67X

1: The PIC12C67X bit names are different than the
corresponding PIC16C72 names, but the functions
are the same.

PIC16C72

Addre
ss

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Bank 0

00h(1) INDF
Addressing this location uses contents of FSR to address data memory (not a physical reg-
ister)

01h TMR0 Timer0 module’s register

02h(1) PCL Program Counter's (PC) Least Significant Byte

03h(1) STATUS IRP(4) RP1(4) RP0 TO PD Z DC C

04h(1) FSR Indirect data memory address pointer

05h GPIO — — GP5 GP4 GP3 GP2 GP1 GP0

06h — Unimplemented

07h — Unimplemented

08h — Unimplemented

09h — Unimplemented

0Ah(1,2) PCLATH — — — Write Buffer for the upper 5 bits of the Program Counter

0Bh(1) INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GBIF

0Ch PIR1 — ADIF — — — — — —

0Dh — Unimplemented

0Eh — Unimplemented

0Fh — Unimplemented

10h — Unimplemented

11h — Unimplemented

12h — Unimplemented

13h — Unimplemented

14h — Unimplemented

15h — Unimplemented

16h — Unimplemented

17h — Unimplemented

18h — Unimplemented

19h — Unimplemented

1Ah — Unimplemented

1Bh — Unimplemented

1Ch — Unimplemented

1Dh — Unimplemented

1Eh ADRES A/D Result Register

1Fh ADCON0 ADCS1 ADCS0 r CHS1 CHS0
GO/

DONE
r ADON

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INDF Addressing this location uses contents of FSR to address data memory (not a physical register)

TMR0 Timer0 module’s register

PCL Program Counter's (PC) Least Significant Byte

STATUS IRP(4) RP1(4) RP0 TO PD Z DC C

FSR Indirect data memory address pointer

PORTA — — PORTA Data Latch when written: PORTA pins when read

PORTB PORTB Data Latch when written: PORTB pins when read

PORTC PORTC Data Latch when written: PORTC pins when read

— Unimplemented

— Unimplemented

PCLATH — — — Write Buffer for the upper 5 bits of the Program Counter

INTCON GIE PEIE T0IE INTE RBIE T0IF INTF RBIF

PIR1 — ADIF — — SSPIF CCP1IF TMR2IF TMR1IF

— Unimplemented

TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register

TMR1H Holding register for the Most Significant Byte of the 16-bit TMR1 register

T1CON — —
T1CKPS

1
T1CKPS

0
T1OSCE

N
T1SYNC TMR1CS TMR1ON

TMR2 Timer2 module’s register

T2CON —
TOUTPS

3
TOUTPS

2
TOUTPS

1
TOUTPS

0
TMR2ON

T2CKPS
1

T2CKPS
0

SSPBUF Synchronous Serial Port Receive Buffer/Transmit Register

SSPCON WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0

CCPR1L Capture/Compare/PWM Register (LSB)

CCPR1H Capture/Compare/PWM Register (MSB)

CCP1CO
N

— — CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M0

— Unimplemented

— Unimplemented

— Unimplemented

— Unimplemented

— Unimplemented

— Unimplemented

ADRES A/D Result Register

ADCON0 ADCS1 ADCS0 CHS2 CHS1 CHS0
GO/

DONE
— ADON

(1)
DS91020A-page 2-270 1999 Microchip Technology Inc.

TB020
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 271 Thursday, March 2, 2000 8:02 AM
SPECIAL FUNCTION REGISTER SUMMARY (BANK 1)
PIC12C67X

Note 1: The PIC12C67X bit names are different
than the corresponding PIC16C72 names,
but the functions are the same.

2: The OSCCAL register is unimplemented in
the PIC16C72.

PIC16C72

Addre
ss Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 Bank 1

80h(1) INDF
Addressing this location uses contents of FSR to address data memory (not a physical
register)

81h OPTION GPPU INTEDG T0CS T0SE PSA PS2 PS1 PS0

82h(1) PCL Program Counter’s (PC) Least Significant Byte

83h(1) STATUS IRP(4) RP1(4) RP0 TO PD Z DC C

84h(1) FSR Indirect data memory address pointer

85h TRIS — — GPIO Data Direction Register

86h — Unimplemented

87h — Unimplemented

88h — Unimplemented

89h — Unimplemented

8Ah(1,2) PCLATH — — — Write Buffer for the upper 5 bits of the PC

8Bh(1) INTCON GIE PEIE T0IE INTE GPIE T0IF INTF GPIF

8Ch PIE1 — ADIE — — — — — —

8Dh — Unimplemented

8Eh PCON — — — — — — POR —

8Fh OSCCAL CAL3 CAL2 CAL1 CAL0
CALFS

T
CALSL

W
— —

90h — Unimplemented

91h — Unimplemented

92h — Unimplemented

93h — Unimplemented

94h — Unimplemented

95h — Unimplemented

96h — Unimplemented

97h — Unimplemented

98h — Unimplemented

99h — Unimplemented

9Ah — Unimplemented

9Bh — Unimplemented

9Ch — Unimplemented

9Dh — Unimplemented

9Eh — Unimplemented

9Fh
ADCON
1

— — — — — PCFG2 PCFG1 PCFG0

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

INDF Addressing this location uses contents of FSR to address data memory (not a physical register)

OPTION RBP0 INTEDG T0CS T0SE PSA PS2 PS1 PS0

PCL Program Counter's (PC) Least Significant Byte

STATUS IRP(4) RP1(4) RP0 TO PD Z DC C

FSR Indirect data memory address pointer

TRISA — — PORTA Data Direction Register

TRISB PORTB Data Direction Register

TRISC PORTC Data Direction Register

— Unimplemented

— Unimplemented

PCLATH — — — Write Buffer for the upper 5 bits of the PC

INTCON GIE PEIE T0IE INTE RBIE T0IF INTF RBIF

PIE1 — ADIE — — SSPIE CCP1IE TMR2IE TMR1IE

— Unimplemented

PCON — — — — — — POR BOR

— Unimplemented

— Unimplemented

— Unimplemented

PR2 Timer2 Period Register

SSPADD Synchronous Serial Port (I2C mode) Address Register

SSPSTAT — — D/A P S R/W UA BF

— Unimplemented

— Unimplemented

— Unimplemented

— Unimplemented

— Unimplemented

— Unimplemented

— Unimplemented

— Unimplemented

— Unimplemented

— Unimplemented

ADCON1 — — — — — PCFG2 PCFG1 PCFG0

(1)

(1)

(2)
 1999 Microchip Technology Inc. DS91020A-page 2-271

TB020

S2.book Page 272 Thursday, March 2, 2000 8:02 AM
Your application software can be written with the
MPASM conditional assembly feature. When emulat-
ing, assemble for the PIC16C72, when programming,
re-assemble for the PIC12C67X. The attached source
code (AtoD.asm) has been written to show a condi-
tional assembly example and re-mapping of the regis-
ters.

SOFTWARE EMULATION
DIFFERENCES AND WORK
AROUNDS:

Both devices have an ADCON1 register with 3 bits of
control (PCFG0, 1, &2), however the PIC12C67X has
much finer control over it’s individual A/D pins. There-
fore, if only one PIC12C67X A/D channel is needed
(ADCON1 = xxxx x110), the PIC16C72 emulator will be
configured as three A/D channels enabled (ADCON1=
xxxx x100). Only one channel will be connected from
the emulator to the PIC12C67X and the other two
channels will be ignored.

The ADCON1 register differences are:

TABLE 2A: PIC16C72 PCFG2:PCFG0 A/D Control bits

PCFG2 : PCFG0 RA5 RA3 RA2 RA1 RA0 VREF

000 A A A A A VDD

001 A VREF A A A RA3

010 A A A A A VDD

011 A VREF A A A RA3

100 D A D A A VDD

101 D VREF D A A RA3

110 D D D D D -----

111 D D D D D -----

TABLE 2B: PIC12C67X PCFG2:PCFG0 A/D Control bits

PCFG2 : PCFG0 GP4 GP2 GP1 GP0 VREF

000 A A A A VDD

001 A A Vref A GP1

010 D A A A VDD

011 D A Vref A GP1

100 D D A A VDD

101 D D Vref A GP1

110 D D D A VDD

111 D D D D -----
DS91020A-page 2-272 1999 Microchip Technology Inc.

TB024
Downloading HEX Files to External FLASH Memory

Using PIC17CXXX PICmicro® Microcontrollers

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 273 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

The PIC17CXXX devices have the capability to inter-
face external FLASH memory into the 64K x 16 pro-
gram memory space. Coupled with this feature is the
ability to read and write to the entire program memory
of the device. Using one of the standard serial inter-
faces on the PICmicro (USART, SPI, I2C™), a com-
plete hex file can be downloaded into the external
FLASH memory by a bootloader program. The
PIC17CXXX family consists of seven devices as shown
in Table 1.

TABLE 1: FEATURES LIST

Author: Rodger Richey
Microchip Technology Inc.

Features PIC17C42A PIC17C43 PIC17C44 PIC17C756A PIC17C762 PIC17C766

Max Freq for Ops 33 MHz 33 MHz 33 MHz 33 MHz 33 MHz 33 MHz

Op Voltage Range 2.5V - 6.0V 2.5V - 6.0V 2.5V - 6.0V 3.0V - 5.5V 3.0V - 5.5V 3.0V - 5.5V

Prog Memory x16 2K 4K 8K 16K 8K 16K

Data Memory (bytes) 232 454 454 902 678 902

Hardware Multiplier Yes Yes Yes Yes Yes Yes

Timers 4 4 4 4 4 4

Capture Inputs 2 2 2 4 4 4

PWM Outputs 2 2 2 3 3 3

USART/SCI 1 1 1 2 2 2

A/D Channels - - - 12 16 16

Power-on Reset Yes Yes Yes Yes Yes Yes

Brown-out Reset - - - Yes Yes Yes

ICSP - - - Yes Yes Yes

Watchdog Timer Yes Yes Yes Yes Yes Yes

Interrupt Sources 11 11 11 18 18 18

I/O pins 33 33 33 50 66 66
 1999 Microchip Technology Inc. DS91024A-page 2-273

TB024

S2.book Page 274 Thursday, March 2, 2000 8:02 AM
FLASH SELECTION

The first decision is what FLASH memory to use in the
circuit. This document will focus on the Am29F100 from
AMD. This device has a selectable memory/interface
size: 128K x 8 or 64K x 16. The 16-bit interface is cho-
sen because the PIC17CXXX devices have 16-bit wide
program memory. The address line A15 may need to
be inverted depending on the PICmicro internal OTP
memory size and the FLASH memory selected. The
AMD device needs to access address locations 2AAAh
and 5555h for program and erase operations. For
PICmicro microcontrollers with 8K or less program
memory, no inversion is necessary, but is required for

the 16K and larger devices. The address location
2AAAh in the FLASH memory is mapped on top of
internal program memory, which takes precedence.
Any access to 2AAAh will be to the internal OTP mem-
ory and not to the external FLASH memory. The inver-
sion is transparent to the designer except that program
or erase operations will use address locations AAAAh
and D555h instead due to the inversion. The Technical
Brief (TB027), Simplifying External Memory Connec-
tions of PIC17CXXX PICmicro mirocontrollers, covers
the memory mapping and circuit connection consider-
ations in more detail. Figure 1 shows a block diagram
for the external memory connections.

FIGURE 1: EXTERNAL MEMORY INTERFACE BLOCK DIAGRAM (x16 DEVICES

MICROCONTROLLER
CONFIGURATION

The microcontroller has several operating modes. The
first being Microcontroller mode, which uses only the
internal OTP program memory. In this mode all I/O pins
function as I/O pins. The second mode is Micropro-
cessor mode, which uses only external memory. In this
mode, 19 of the I/O pins function as the external mem-
ory interface (3 for control, 16 for address/data). The
final mode is Extended Microcontroller mode, which
uses internal OTP program memory. The remainder of
64K is external to the device. This mode must be used
to program the external FLASH memory and the boot-
loader routine must reside in the OTP memory. Refer to
the PIC17C7XX data sheet (DS30289) or the
PIC17C4X data sheet (DS30412) for more information
about processor modes. Figure 2 shows the memory
map configuration for extended microcontroller mode
for the PIC17C756A.

FIGURE 2: PIC17C756A IN EXTENDED
MICROCONTROLLER MODE

AD7-AD0

PIC17CXXX

AD15-AD8

ALE

AD15-AD0

Memory

A14-A0

D15-D0

A14-A0

OE

WR

OE WR

CE

74FCT16373

A15

A15

0000h

3FFFh

FFFFh

PIC17C756A
0000h

3FFFh

FFFFh

External Memory
DS91024A-page 2-274 1999 Microchip Technology Inc.

TB024
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 275 Thursday, March 2, 2000 8:02 AM
HEX FILE FORMAT

The HEX file to be programmed into program memory
will be read into the microcontroller using one of its
standard interface modules: USART, SPI, or I2C. The
formats supported by the Microchip development tools
are the Intel Hex Format (INHX8M), Intel Split Hex For-
mat (INHX8S), and the Intel Hex 32 Format (INHX32).
The format required by the PIC17CXXX devices is the
INHX32 due to the 64K of address space. Please refer
to Appendix A in the MPASM User’s Guide (DS33014)
for more information about HEX file formats. The
INHX32 format supports 32-bit addresses using a lin-
ear address record. The basic format of the INHX32
hex file is:

:BBAAAATTHHHH...HHHHCC

Each data record begins with a 9 character prefix and
always ends with a 2 character checksum. All records
begin with a ’:’ regardless of the format. The individual
elements are described below.

• BB - is a two digit hexadecimal byte count repre-
senting the number of data bytes that will appear
on the line. Divide this number by two to get the
number of words per line.

• AAAA - is a four digit hexadecimal address repre-
senting the starting address of the data record.
Format is high byte first followed by low byte. The
address is doubled because this format only sup-
ports 8-bits (to find the real PICmicro address,
simply divide the value AAAA by 2).

• TT - is a two digit record type that will be '00' for
data records, '01' for end of file records and '04'
for extended address record.

• HHHH - is a four digit hexadecimal data word. For-
mat is low byte followed by high byte. There will
be BB/2 data words following TT.

• CC - is a two digit hexadecimal checksum that is
the two's complement of the sum of all the pre-
ceding bytes in the line record.

The HEX file is composed of ASCII characters 0 thor-
ough 9 and A to F and the end of each line has a car-
riage return and linefeed. The downloader code in the
PICmicro must convert the ASCII characters to binary
numbers for use in programming.

PICmicro CODE

The code for the PIC17CXXX devices was written
using the MPLAB-C17 C compiler. A demo version of
the MPLAB-C17 C compiler is available off the
Microchip website, www.microchip.com. This code
uses USART2 on the PIC17C756A as the interface to
the PC. In addition to USART2, two I/O pins are used
to implement hardware handshaking with the PC host.
Handshaking must be used because the program time
of the FLASH memory prevents the PC from simply
streaming the data down to the PICmicro microcontrol-
ler. The PICmicro microcontroller itself does not have
enough RAM to buffer the incoming data while the
FLASH is programming. Listing 1 shows the C code.
Figure 3 shows a flowchart for the downloader code.

In this particular example, the hardware USART2 is
used to download hex files from the PC host. Hardware
handshaking is used to communicate with the PC. The
function DataRdyU2 properly asserts the handshake
signals to the PC to receive one byte of data.

Two other functions not listed read in a byte (Hex8in)
or a word (Hex16in) and return the binary value of the
ASCII characters read. Hex8in reads two characters
and converts them to an 8-bit value. Hex16in reads in
4 characters and converts them to binary. The format
for Hex16in is high byte then low byte.
 1999 Microchip Technology Inc. DS91024A-page 2-275

TB024

S2.book Page 276 Thursday, March 2, 2000 8:02 AM
LISTING 1: HEX DOWNLOAD CODE WRITTEN FOR MPLAB™-C17
void EraseFlash(void)
{

rom int *EFp; // FLASH requires following sequence to
 unsigned int dataEF; // initiate a write

EFp = (rom int *)0xd555; // Setup pointer to D555h
*EFp = 0xaaaa; // Write data AAAAh
EFp = (rom int *)0xaaaa;
*EFp = 0x5555;
EFp = (rom int *)0xd555;
*EFp = 0x8080;
EFp = (rom int *)0xd555;
*EFp = 0xaaaa;
EFp = (rom int *)0xaaaa;
*EFp = 0x5555;
EFp = (rom int *)0xd555;
*EFp = 0x1010;
EFp = (rom int *)0x8000;
do // Wait for FLASH to erase

 {
 dataEF = *EFp;
 if(dataEF & 0x0020)
 Nop();
 Nop();
 } while(!(dataEF&0x0080));

return;
}
void ProgPreamble(void)
{ // FLASH requires a preamble before each

rom int *PPp; // word that is programmed

PPp = (rom int *)0xd555; // Setup pointer to D555h
*PPp = 0xaaaa; // Write data AAAAh
PPp = (rom int *)0xaaaa;
*PPp = 0x5555;
PPp = (rom int *)0xd555;
*PPp = 0xa0a0;
return;

}
char DownloadHex(void)
{

unsigned char ByteCount,RecType,Checksum,FChecksum;
unsigned char DHi,Errors;
unsigned char bytes;
unsigned int AddrL,AddrH;
unsigned int HexData;

 unsigned char temp;
 char str[5];

rom int *DHp;

 EraseFlash(); // Erase FLASH
AddrH = 0; // Make high address word 0
while(1) //
{ // Wait for a :

while(1)
{

while(!DataRdyU2());
if(RCREG2 == ’:’)

break;
}
Errors = 0; // Preset errors to 0
ByteCount = Hex8in(); // Read in ByteCount and store in Checksum

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of source code.
DS91024A-page 2-276 1999 Microchip Technology Inc.

TB024
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 277 Thursday, March 2, 2000 8:02 AM
Checksum = ByteCount;
AddrL = Hex16in(); // Read in low word of address and add
Checksum += (unsigned char)AddrL; // to Checksum
Checksum += ((unsigned char)(AddrL>>8));
RecType = Hex8in(); // Read in RecordType and add to Checksum
Checksum += RecType;
if(RecType == 0x00) // Data record
{

if(AddrH) // Assemble 16-bit word address
DHp = (rom int *)((AddrL>>1)+0x8000); // from AddrH and AddrL

else
DHp = (rom int *)(AddrL>>1);

bytes = ByteCount>>1; // get number of words in record
for(DHi=0;DHi<bytes;DHi++) // loop for number of words
{

 temp = Hex8in(); // Read in word of data and
HexData = (unsigned int)Hex8in(); // add to Checksum
Checksum += temp;
Checksum += (unsigned char)HexData;

 HexData <<= 8;
 HexData |= (unsigned int)temp;
 if(DHp > (rom int *)0x3fff) // If address in not in OTP
 { // then program
 while(1)

 {
 ProgPreamble(); // Program preamble

 *DHp = HexData; // write cycle
 while((HexData&0x0080) != (*DHp&0x0080)) // Wait for program cycle
 Nop(); // to terminate
 if(*DHp == HexData) // Make sure data was programmed

 break; // If not try to reprogram
 }

}
DHp++; // Increment address pointer

}
FChecksum = Hex8in(); // Read in LineChecksum
if(FChecksum != (~Checksum + 1)) // Compare to calculated

Errors = 1; // If not equal, increment errors
}
else if(RecType == 0x04) // Extended address record
{

AddrH = Hex16in(); // Read in 16-bits of address
Checksum += (unsigned char)AddrH; // and add to Checksum
Checksum += ((unsigned char)(AddrH>>8));
FChecksum = Hex8in(); // Read in Line Checksum
if(FChecksum != (~Checksum + 1)) // Compare to calculated

Errors = 1; // If not equal, increment errors
}
else if(RecType == 0x01) // End of file record
{

FChecksum = Hex8in(); // Read in LineChecksum
if(FChecksum != (~Checksum + 1)) // Compare to calculated

Errors = 1; // If not equal, increment errors
break;

}
}
return Errors; // Return number of errors

}

 1999 Microchip Technology Inc. DS91024A-page 2-277

TB024

S2.book Page 278 Thursday, March 2, 2000 8:02 AM
FIGURE 3: FLOWCHART

Download Hex

AddrH = 0,

Received = :?

Read ByteCount and
store in LineChecksum

Read AddrL and
add to LineChecksum

Read RecType and
add to LineChecksum

ByteCount == 0?

Read HexData and
add to LineChecksum

1

2RecType == 0?

Errors = 0

Address = Address/2

ByteCount = ByteCount/2

Address > 3FFFh?

Write data to FLASH

Wait for FLASH to
finish programming

Program success?

Increment address

Read Checksum and
compare to LineChecksum

Result == 0?

Increment Errors

1

Erase FLASH

Write AAAAh to D555h

Write 5555h to AAAAh

Write 8080h to D555h

Write AAAAh to D555h

Write 5555h to AAAAh

Write 1010h to D555h

Wait for FLASH to erase

Return

No

Yes

No

Yes

Yes

No

No

Yes

3

No

Yes

Yes

No

4

DS91024A-page 2-278 1999 Microchip Technology Inc.

TB024
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 279 Thursday, March 2, 2000 8:02 AM
FIGURE 3 : FLOWCHART (CONT’D)

RecType == 4?

Read AddrH and
add to LineChecksum RecType == 1?

Read Checksum and
compare to LineChecksum

2

4Result == 0?

Increment Errors

Result == 0? Increment Errors

Return Errors

No

Yes

Yes

No

Yes

No

No

Yes

4

Read Checksum and
compare to LineChecksum

4

Return

3

Program Preamble

Write AAAAh to D555h

Write 5555h to AAAAh

Write A0A0h to D555h
 1999 Microchip Technology Inc. DS91024A-page 2-279

TB024

S2.book Page 280 Thursday, March 2, 2000 8:02 AM
NOTES:
DS91024A-page 2-280 1999 Microchip Technology Inc.

TB025
Downloading HEX Files to PIC16F87X PICmicro® Microcontrollers

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 281 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

The release of the PIC16F87X devices introduces the
first mid-range family of devices from Microchip Tech-
nology that has the capability to read and write to inter-
nal program memory. This family has FLASH-based
program memory, SRAM data memory and EEPROM
data memory. The FLASH program memory allows for
a truly reprogrammable system. Table 1 shows the fea-
tures of the PIC16F87X family of devices.

ACCESSING MEMORY

The read and write operations are controlled by a set of
Special Function Registers (SFRs). There are six
SFRs required to access the FLASH program memory:

• EECON1

• EECON2

• EEDATA

• EEDATH

• EEADR

• EEADRH

The registers EEADRH:EEADR holds the 12-bit address
required to access a location in the 8K words of pro-
gram memory. The registers EEDATH:EEDATA are
used to hold the data values. When reading program
memory, the EEPGD bit (EECON1<7>) must be set to
indicate to the microcontroller that the operation is
going to be on program memory. If the bit is cleared, the
operation will be performed on data memory at the
address pointed to by EEADR. The EEDATA register will
hold the data. The EECON1 register also has bits for
write enable and to initiate the read or write operation.
There is also a bit to indicate a write error has occurred,
possibly due to a reset condition happening while a
write operation is in progress. Figure 1 shows the reg-
ister map for EECON1.

The EECON2 register is not a physical register. Reading
it will result in all ’0’s. This register is used exclusively in
the EEPROM and FLASH write sequences. Listing 1
shows the code snippet to initiate a write operation on
the PIC16F87X devices.

TABLE 1: PIC16F87X FAMILY FEATURES

Author: Rodger Richey
Microchip Technology Inc.

Key Features PIC16F873 PIC16F874 PIC16F876 PIC16F877

Operating Frequency DC - 20 MHz DC - 20 MHz DC - 20 MHz DC - 20 MHz

Resets POR, BOR POR, BOR POR, BOR POR, BOR

Flash Prog Memory (14-bit words) 4K 4K 8K 8K

Data Memory (bytes) 192 192 368 368

EEPROM Data Memory 128 128 256 256

Interrupts 13 14 13 14

I/O Ports Ports A,B,C Ports A,B,C,D,E Ports A,B,C Ports A,B,C,D,E

Timers 3 3 3 3

Capture/Compare/PWM modules 2 2 2 2

Serial Communications MSSP, USART MSSP, USART MSSP, USART MSSP, USART

Parallel Communications — PSP — PSP

10-bit Analog-to-Digital Module 5 input channels 8 input channels 5 input channels 8 input channels
 1999 Microchip Technology Inc. DS91025A-page 2-281

TB025

S2.book Page 282 Thursday, March 2, 2000 8:02 AM
FIGURE 1: EECON1 REGISTER

HEX FILE FORMAT

The data to be programmed into program memory will
be read into the microcontroller using one of its stan-
dard interface modules: SPI, I2C™, USART, or PSP.
Probably the simplest format to send the data to the
microcontroller is in the standard HEX format used by
the Microchip development tools. The formats sup-
ported are the Intel HEX Format (INHX8M), Intel Split
HEX Format (INHX8S), and the Intel HEX 32 Format
(INHX32). The most commonly used formats are the
INHX8M and INHX32 and therefore are the only for-
mats discussed in this document. Please refer to
Appendix A in the MPASM User's Guide (DS33014) for
more information about HEX file formats. The differ-
ence between INHX8M and INHX32 is that INHX32
supports 32-bit addresses using a linear address
record. The basic format of the hex file is the same
between both formats as shown below:

:BBAAAATTHHHH...HHHHCC

Each data record begins with a 9 character prefix and
always ends with a 2 character checksum. All records
begin with a ':' regardless of the format. The individual
elements are described below.

• BB - is a two digit hexadecimal byte count repre-
senting the number of data bytes that will appear

on the line. Divide this number by two to get the
number of words per line.

• AAAA - is a four digit hexadecimal address repre-
senting the starting address of the data record.
Format is high byte first followed by low byte. The
address is doubled because this format only sup-
ports 8-bits (to find the real PICmicro address,
simply divide the value AAAA by 2).

• TT - is a two digit record type that will be '00' for
data records, '01' for end of file records and '04'
for extended address record (INHX32 only).

• HHHH - is a four digit hexadecimal data word. For-
mat is low byte followed by high byte. There will
be BB/2 data words following TT.

• CC - is a two digit hexadecimal checksum that is
the two's complement of the sum of all the pre-
ceding bytes in the line record.

Since the PIC16F87X devices only have a maximum of
8K words, the linear address record '04' is ignored by
the routine. The HEX file is composed of ASCII char-
acters 0 thorough 9 and A to F and the end of each line
has a carriage return and linefeed. The downloader
code in the PICmicro microcontrollers must convert the
ASCII characters to binary numbers to be used for pro-
gramming.

R/W-x U-0 U-0 U-0 R/W-x R/W-0 R/S-0 R/S-0

EEPGD — — — WRERR WREN WR RD R= Readable bit
W= Writable bit
S= Settable bit
U= Unimplemented bit,
read as ‘0’
- n= Value at POR reset

bit7 bit0

bit 7: EEPGD: Program / Data EEPROM Select bit
1 = Accesses Program memory
0 = Accesses data memory
 Note: This bit cannot be changed while a write operation is in progress.

bit 6:4: Unimplemented: Read as '0'

bit 3: WRERR: EEPROM Error Flag bit
1 = A write operation is prematurely terminated
 (any MCLR reset or any WDT reset during normal operation)
0 = The write operation completed

bit 2: WREN: EEPROM Write Enable bit
1 = Allows write cycles
0 = Inhibits write to the EEPROM

bit 1: WR: Write Control bit
1 = initiates a write cycle.
 The bit is cleared by hardware once write is complete.
 The WR bit can only be set (not cleared) in software.
0 = Write cycle to the EEPROM is complete

bit 0: RD: Read Control bit
1 = Initiates an EEPROM read (read takes one cycle)
 RD is cleared in hardware. The RD bit can only be set (not cleared) in software.
0 = Does not initiate an EEPROM read
DS91025A-page 2-282 1999 Microchip Technology Inc.

TB025
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 283 Thursday, March 2, 2000 8:02 AM
PICmicro Code

The sample downloader code does not specifically use
one of the interface modules on the PIC16F87X device.
Instead, a routine called GetByte retrieves a single
character from the HEX file over the desired interface.
It is up to the engineer to write this routine around the
desired interface. Another routine GetHEX8 calls Get-
Byte twice to form a two digit hexadecimal number.

One issue that arises is how many times to reprogram
a location that does not program correctly. The sample
code provided simply exits the downloader routine and
stores a value of 0xFF in the WREG if a program memory
location does not properly program on the first attempt.
The engineer may optionally add code to loop several
times if this event occurs.

Still another issue that is not specifically addressed in
the sample code is to prevent the downloader from
overwriting its own program memory address locations.
The designer must add an address check to prevent
this situation from happening.

Finally, the designer must account for situations where
the download of new code into the microcontroller is
interrupted by an external event such as power failure
or reset. The system must be able to recover from such
an event. This is not a trivial task, is very system
dependent, and is therefore left up to the designer to
provide the safeguards and recovery mechanisms.

Another error that could happen is a line checksum
error. If the calculated line checksum does not match
the line checksum from the HEX file, a value of 1 is
returned in WREG. The part of the routine that calls the
downloader should check for the errors 0xFF (could not
program a memory location) and 1. If program memory
is programmed correctly and no errors have been
encountered, the downloader routine returns a 0 in
WREG to indicate success to the calling routine. Figure
2 shows the flowchart for the downloader routines.
Listing 2 shows the complete listing for the downloader
code.

The routine ASCII2HEX converts the input character to
a binary number. The routine does not provide any out
of range error checking for incoming characters. Since
the only valid characters in a HEX file are the colon (:),
the numbers 0 through 9 and the letters A through F,
the routine can be highly optimized. It first subtracts 48
from the character value. For the ASCII numbers 0
through 9, this results in a value from 0 to 9. If the char-
acter is A through F, the result is a number greater than
15. The routine checks to see if the upper nibble of the
result is 0. If not 0, then the original value was A
through F and the routine now subtracts an additional
43 from the character resulting in the binary values 10
through 15. The colon is not accounted for in this rou-
tine because the main part of the downloader code
uses it as a line sync.

LISTING 1: FLASH WRITE SEQUENCE
bsfSTATUS,RP1 ; Bank2
bcfSTATUS,RP0
movfAddrH,W ; Load address into
movwfEEADRH ; EEADRH:EEADR
movfAddrL,W
movwfEEADR
bsfSTATUS,RP0 ; Bank3
bsfEECON1,EEPGD ; Set for Prog Mem
bsfEECON1,RD ; read operation
bcfSTATUS,RP0 ; Bank2
nop
movfEEDATA,W ; Data is read
… ; user can now
movfEEDATH,W ; access memory
…

 1999 Microchip Technology Inc. DS91025A-page 2-283

TB025

S2.book Page 284 Thursday, March 2, 2000 8:02 AM
LISTING 2: HEX DOWNLOAD CODE WRITTEN FOR MPASM
 list p=16f877
 #include "c:\progra~1\mplab\p16f877.inc"

DownloadCode ;Uses USART to receive data from PC
 banksel RCREG
DCStart
 call GetByte
 movlw ’:’ ;Wait for colon
 subwf RCREG,W
 btfss STATUS,Z
 goto DCStart

 call GetHex8 ;Read byte count
 movwf ByteCount ;Store in register
 movwf LineChecksum ;Store in line checksum
 bcf STATUS,C
 rrf ByteCount,F ;Divide byte counter by 2 to get words

 call GetHex8 ;Read high byte of 16-bit address
 movwf AddrH
 addwf LineChecksum,F ;Add high byte to line checksum
 call GetHex8 ;Read low byte of 16-bit address
 movwf AddrL
 addwf LineChecksum,F ;Add low byte to line checksum

 call GetHex8 ;Read record type
 movwf RecType
 addwf LineChecksum,F ;Add to line checksum

DataRec ;Data reception
 movf RecType,F ;Check for data record (0h)
 btfss STATUS,Z
 goto EndOfFileRec ;Otherwise check for EOF
DRLoop
 movf ByteCount,F ;Check for bytecount = 0
 btfsc STATUS,Z
 goto DRCkChecksum ;If zero, goto checksum validation
 call GetHex8 ;Read lower byte of data (2 characters)
 movwf HexDataL ;Add received data to checksum
 addwf LineChecksum,F
 call GetHex8 ;Read upper byte of data (2 characters)
 movwf HexDataH ;Add received data to checksum
 addwf LineChecksum,F

WriteDataSequence ;Write sequence to internal prog. mem FLASH
 banksel EEADRH
 movf AddrH,W ;Write address to EEADRH:EEADR registers
 movwf EEADRH
 movf AddrL,W
 movwf EEADR
 movf HexDataH,W ;Write data to EEDATH:EEDATA registers
 movwf EEDATH
 movf HexDataL,W
 movwf EEDATA
 banksel EECON1 ;Write sequence
 bsf EECON1,EEPGD ;Set EEPGD to indicate program memory
 bsf EECON1,WREN ;Enable writes to memory
 bcf INTCON,GIE ;Make sure interrupts are disabled
 movlw 0x55 ;Required write sequence
 movwf EECON2
 movlw 0xaa

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of source code.
DS91025A-page 2-284 1999 Microchip Technology Inc.

TB025
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 285 Thursday, March 2, 2000 8:02 AM
 movwf EECON2
 bsf EECON1,WR ;Start internal write cycle
 nop
 nop
 bcf EECON1,WREN ;Disable writes

 banksel EECON1 ;Read sequence
 bsf EECON1,EEPGD ;Set EEPGD to indicate program memory
 bsf EECON1,RD ;Enable reads from memory
 bcf STATUS,RP0
 nop
 movf EEDATH,W ;Compare memory value to HexDataH:HexDataL
 subwf HexDataH,W
 btfss STATUS,Z
 retlw 0xff ;If upper byte not equal, return FFh
 movf EEDATA,W ; to indicate programming failure
 subwf HexDataL,W
 btfss STATUS,Z
 retlw 0xff ;If lower byte not equal, return FFh
 ; to indicate programming failure
 incf AddrL,F ;Increment address for next iteration
 btfsc STATUS,Z
 incf AddrH,F
 decf ByteCount,F ;Decrement byte count
 goto DRLoop ;Go back to check for ByteCount = 0

DRCkChecksum ;Checksum verification
 call GetHex8 ;Read in checksum
 addwf LineChecksum,W ;Add to calculated checksum
 btfss STATUS,Z ;Result should be 0
 retlw 1 ; If not return 1 to indicate checksum fail
 goto DCStart ;Do it again

EndOfFileRec ;End of File record (01h)
 decf RecType,W ;If EOF record, decrement should = 0
 btfss STATUS,Z
 goto DCStart ;Not valid record type, wait for next :
 call GetHex8 ;Read in checksum
 addwf LineChecksum,W ;Add to calculated checksum
 btfss STATUS,Z ;Result should be 0
 retlw 1 ; If not return 1 to indicate checksum fail
 retlw 0 ;Otherwise return 0 to indicate success

GetByte
; Insert your code here to retrieve a byte of data from
; the desired interface. In this case it is the USART on F877.
;clear CTS
; banksel PIR1
;GH4Waitbtfss PIR1,RCIF
; goto GH4Wait
;set CTS
 nop
 banksel RCREG
 movf RCREG,W
 return

GetHex8 ;This function uses the USART
 call GetByte ;Read a character from the USART
 call ASCII2Hex ;Convert the character to binary
 movwf Temp ;Store result in high nibble
 swapf Temp,F

 call GetByte ;Read a character from the USART
 call ASCII2Hex ;Convert the character to binary
 iorwf Temp,F ;Store result in low nibble
 1999 Microchip Technology Inc. DS91025A-page 2-285

TB025

S2.book Page 286 Thursday, March 2, 2000 8:02 AM
 movf Temp,W ;Move result into WREG
 return

ASCII2Hex ;Convert value to binary
 movwf Temp1 ;Subtract ASCII 0 from number
 movlw ’0’
 subwf Temp1,F
 movlw 0xf0 ;If number is 0-9 result, upper nibble
 andwf Temp1,W ; should be zero
 btfsc STATUS,Z
 goto ASCIIOut
 movlw ’A’-’0’-0x0a ;Otherwise, number is A - F, so
 subwf Temp1,F ;subtract off additional amount
ASCIIOut
 movf Temp1,W ;Value should be 0 - 15
 return

 end
DS91025A-page 2-286 1999 Microchip Technology Inc.

TB025
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 287 Thursday, March 2, 2000 8:02 AM
FIGURE 2: FLOWCHART

Download Code

Get a single byte
GetByte

Character = :?

Read ByteCount and
store in LineChecksum

Divide by 2 to
get # of words

Read AddrH and
add to LineChecksum

Read AddrL and
add to LineChecksum

Read RecType and
add to LineChecksum

ByteCount = 0?

Read DataH and
add to LineChecksum

Read DataL and
add to LineChecksum

Decrement ByteCount

Record type = 0?

3

1

Yes

No

2

Read Checksum and
add to LineChecksum

Result = 0?

Return with W = 1

1

No

Yes

Yes

No

No

Yes

RecType = 1?

Read Checksum and
add to LineChecksum

Result = 0?

Return with W = 1

2

Return with W = 0

No

Yes

Yes No

1

3

Move AddrH:AddrL
into EEADRH:EEADR

Write 55h to EECON2

Move HexDataH:HexDataL
into EEDATH:EEDATA

Set EEPGD and WREN bits

Write AAh to EECON2

Set WR bit

Wait for EE Write complete

Set RD bit

RecType = 0?

EEDATH = HexDataH?

EEDATA = HexDataL?

Continue with program

Return with W = FFh

Return with W = FFh
No

No

Yes

Yes
 1999 Microchip Technology Inc. DS91025A-page 2-287

TB025

S2.book Page 288 Thursday, March 2, 2000 8:02 AM
NOTES:
DS91025A-page 2-288 1999 Microchip Technology Inc.

TB026
Calculating Program Memory Checksums Using a PIC16F87X

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 289 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

Many applications require the microcontroller to cal-
culate a checksum on the program memory to deter-
mine if the contents have been corrupted. Until now,
the only family of PICmicro® microcontrollers to have
the capability to read from program memory are the
PIC17CXXX devices. The PIC16F87X devices are
the first 14-bit core PICmicro microcontrollers that are
able to access program memory in the same fashion
as used with data EEPROM memory. These devices
are FLASH extensions of the popular PIC16C7X fam-
ily. Table 1 shows a comparison between the two PIC-
micro microcontroller families.

TABLE 1: PIC16C7X vs. PIC16F87X

Feature PIC16C7X PIC16C87X

Pins 28 or 40 28 or 40

Timers 3 3

Interrupts 11 or 12 13 or 14

Communica-
tion

PSP, USART,

SSP (SPI or I2C
Slave)

PSP, USART,

SSP(SPI or I2C
Master/Slave)

Frequency 20 MHz 20 MHz

A/D 8-bit 10-bit

CCP 2 2

Program Mem. 4K or 8K EPROM 4K or 8K FLASH

RAM 192 or 368 bytes 192 or 368 bytes

Data EEPROM None 128 or 256 bytes

Other --- In-Circuit Debugger

Author: Rodger Richey
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS91026A-page 2-289

TB026

S2.book Page 290 Thursday, March 2, 2000 8:02 AM
ACCESSING MEMORY

The data EEPROM and FLASH Program memory are
both accessed using the same method. An address
and/or data value are stored in Special Function Regis-
ters (SFR) and then memory is accessed using control
bits in other SFRs. There are six SFRs required to
access memory:

• EECON1

• EECON2

• EEDATA

• EEDATH

• EEADR

• EEADRH

When interfacing to data EEPROM memory, the
address is stored in the EEADR register and the data is
accessed using the EEDATA register. The operation is

controlled using the EECON1 and EECON2 registers.
The register map for EECON1 is shown in Figure 1.
EECON2 is not a physical register. Reading it will result
in all ’0’s. This register is used exclusively in the
EEPROM and FLASH write sequences.

When interfacing to FLASH program memory, the
address is stored in the EEADRH:EEADR registers and
the data is accessed using the EEDATH:EEDATA regis-
ters. Since the same set of control registers are used
to access data and program memory, the EEPGD bit
(EECON1<7>) is used to indicate to the microcontroller
whether the operation is going to be on data memory
(EEPGD = 0) or program memory (EEPGD = 1). Refer to
Section 7.0 in the PIC16F87X data sheet (DS30292)
for more information about using the EEPROM and
FLASH memories.

FIGURE 1: EECON1 REGISTER

R/W-x U-0 U-0 U-0 R/W-x R/W-0 R/S-0 R/S-0

EEPGD — — — WRERR WREN WR RD R = Readable bit
W = Writable bit
S = Settable bit
U = Unimplemented bit,

read as ‘0’
- n = Value at POR reset

bit7 bit0

bit 7: EEPGD: Program / Data EEPROM Select bit
1 = Accesses Program memory
0 = Accesses data memory
 Note: This bit cannot be changed while a write operation is in progress.

bit 6:4: Unimplemented: Read as ’0’

bit 3: WRERR: EEPROM Error Flag bit
1 = A write operation is prematurely terminated
 (any MCLR reset or any WDT reset during normal operation)
0 = The write operation completed

bit 2: WREN: EEPROM Write Enable bit
1 = Allows write cycles
0 = Inhibits write to the EEPROM

bit 1: WR: Write Control bit
1 = initiates a write cycle. (The bit is cleared by hardware once write is complete.
 The WR bit can only be set (not cleared) in software.
0 = Write cycle to the EEPROM is complete

bit 0: RD: Read Control bit
1 = Initiates an EEPROM read (read takes one cycle. RD is cleared in hardware.
 The RD bit can only be set (not cleared) in software).
0 = Does not initiate an EEPROM read
DS91026A-page 2-290 1999 Microchip Technology Inc.

TB026
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 291 Thursday, March 2, 2000 8:02 AM
HEX FILE FORMAT

Development tools from Microchip support the Intel
HEX Format (INHX8M), Intel Split HEX Format
(INHX8S), and the Intel HEX 32 Format (INHX32). The
most commonly used formats are the INHX8M and the
INHX32. These are the only formats discussed in this
document. Please refer to Appendix A in the MPASM
User’s Guide (DS33014) for more information about
HEX file formats. The difference between INHX8M and
INHX32 is that INHX32 supports 32-bit addresses
using a linear address record. The basic format of the
hex file is the same between INHX8M and INHX32 as
shown below:

:BBAAAATTHHHH...HHHHCC

Each data record begins with a 9 character prefix and
always ends with a 2 character checksum. All records
begin with a ’:’ regardless of the format. The individual
elements are described below.

• BB - is a two digit hexadecimal byte count repre-
senting the number of data bytes that will appear
on the line.

• AAAA - is a four digit hexadecimal address repre-
senting the starting address of the data record.
Format is high byte first followed by low byte, the
address is doubled because this format only sup-
ports 8-bits (to find the real PICmicro address,
simply divide the value AAAA by 2).

• TT - is a two digit record type that will be '00' for
data records, '01' for end of file records and '04'
for extended address record (INHX32 only).

• HHHH - is a four digit hexadecimal data word. For-
mat is low byte followed by high byte. There will
be BB/2 data words following TT.

• CC - is a two digit hexadecimal checksum that is
the two's complement of the sum of all the pre-
ceding bytes in the line record.

HEX File Preparation

The checksum used to verify program memory con-
tents is a 14-bit number calculated only on the program
memory contents of a HEX file. The reason that only
14-bits is used is because the PIC16F87X has 14-bit
wide program memory.

The first step to obtaining the checksum is to get a com-
plete HEX file that has all address locations specified.
This can be easily accomplished in MPLAB by enabling
the programmer, either PROMATE II or PICSTART
PLUS, whichever one is available. Load the HEX file
into MPLAB using the menus File -> Import -> Down-
load to Memory. Then save the HEX file using File ->
Export -> Save HEX File. Make sure that the Program
Memory box is checked with a range of 0 to 8191 and
the Configuration bits and IDs box are also checked. It
is optional to check the EEPROM memory box depend-
ing on you application. This will create a complete HEX
file including all program memory, configuration word,
IDs, and optionally EEPROM memory.

The checksum provided by a programmer, such as
PROMATE II or PICSTART PLUS, is not valid because
the configuration word and device ID are included in the
calculation. Therefore, a different program is required
to calculate the program memory checksum. Once a
complete HEX file has been obtained by the previously
presented method, it must be processed and modified
to contain the checksum. The program CHECK-
SUM.EXE, which is a DOS based program, reads in the
HEX file, calculates the checksum, and outputs the new
HEX file with checksum included. The checksum is cal-
culated by:

1. Adding together the memory locations 0x0000
to 0x1FFE.

2. Mask off all but the lower 14-bits.
3. Take the 2's complement of Step 2.

4. Mask off all but the lower 14-bits.

5. Save this value into the HEX file at address
0x1FFF.

The program ignores all configuration word, ID, and
EEPROM memory information in the HEX file and
dumps it to the output file unchanged. The output file
can then be programmed into the PIC16F87X device.

PICmicro Code

The code used by the PIC16F87X to calculate check-
sum uses 36 words of program memory and two data
memory locations. The example code uses data mem-
ory locations 0x7E and 0x7F to store the calculated
checksum. These locations are shared across all
banks. The user can optionally change these locations
and add banking into the routine. Figure 2 shows the
flowchart for the routine. The checksum is created such
that by adding up all program memory locations, a 14-
bit result of 0x0000 is obtained. Since the calculation is
done in 16-bits, the result will actually be 0x4000, but
the upper two bits are masked off by the routine.
Example 1 shows the code in MPASM to calculate the
program memory checksum. If the program memory
verifies, the routine returns a '1'. If a failure is detected,
the routine returns a '0'.
 1999 Microchip Technology Inc. DS91026A-page 2-291

TB026

S2.book Page 292 Thursday, March 2, 2000 8:02 AM
LISTING 1: PROGRAM MEMORY CHECKSUM ROUTINE
CalcChecksum

bsf STATUS,RP1 ;Go to Bank 2
bcf STATUS,RP0
clrf ChecksumL ;Clear the Checksum
clrf ChecksumH ;registers
clrf EEADR ;Set the Program Memory
clrf EEADRH ; address to 0x0000

CLoop ;Loop for each location
bsf STATUS,RP0 ; to read memory location
bsf EECON1,EEPGD ;Set for program memory
bsf EECON1,RD ;Set for read operation
bcf STATUS,RP0 ;Go to Bank 2
nop
movf EEDATA,W ;Add low byte to Checksum
addwf ChecksumL,F
btfsc STATUS,C ;Check for overflow
incf ChecksumH,F ;Yes, increment Checksum
movf EEDATH,W ;Add high byte
addwf ChecksumH,F
incf EEADR,F ;Increment low address
btfsc STATUS,Z ;Check for overflow
incf EEADRH,F ;Increment high address
movf EEADRH,F ;Check to see if
btfss STATUS,Z ; address wrapped
goto CLoop ; from 0x1fff to
movf EEADR,F ; 0x0000
btfss STATUS,Z
goto CLoop

;Checkcum calculation complete
bcf ChecksumH,7 ;Clear upper 2 bits
bcf ChecksumH,6 ; only 14-bit checksum
movf ChecksumH,F ;Checksum should be 0
btfss STATUS,Z
retlw0 ;Checksum failed
movf ChecksumL,F
btfss STATUS,Z
retlw0 ;Checksum failed
retlw1 ;Checksum passed

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of source code.
DS91026A-page 2-292 1999 Microchip Technology Inc.

TB026
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 293 Thursday, March 2, 2000 8:02 AM
FIGURE 1: FLOWCHART

Calculate Checksum

Initialize Checksum
registers to 0x00

Initialize EEADRH:EEADR
registers to 0x0000

Z = 1?

Z = 1?

EEADRH:
EEADR = 0?

Mask off upper two
bits of Checksum

Checksum = 0?

Read a word out
of program memory

Add EEDATA to Checksum

Increment Checksum

Add EEDATH to Checksum

Increment EEADR

Increment EEADRH

Return 1 in W Return 0 in W

Yes

Yes

No

No

Yes

No

No

Yes

high byte
 1999 Microchip Technology Inc. DS91026A-page 2-293

TB026

S2.book Page 294 Thursday, March 2, 2000 8:02 AM
NOTES:
DS91026A-page 2-294 1999 Microchip Technology Inc.

TB027
Simplifying External Memory Connections of PIC17CXXX PICmicro®

Microcontrollers

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 295 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

The PIC17CXXX family of PICmicro® microcontrollers
has an external program memory interface. Since the
PIC17CXXX devices implement a 16-bit instruction
word, the external memory must be 16-bits wide. The

addressing space of these devices is 64K x 16, which
requires 16-bits of address as well. Until a few years
ago, the designer had to use two 8-bit latches for
addressing and two 8-bit wide memories. Now, many
manufacturers of logic and memory devices have
developed 16-bit wide devices. These new 16-bit wide
devices can simplify the layout, reduce part count and
cost as shown in Figure 1.

FIGURE 1: EXTERNAL MEMORY INTERFACE BLOCK DIAGRAM (x16 DEVICES)

Author: Rodger Richey
Microchip Technology Inc.

AD7-AD0

PIC17CXXX

AD15-AD8

ALE

AD15-AD0

Memory

A15-A0

D15-D0

A15-A0

OE

WR

OE WR

CE

74xxx16373
 1999 Microchip Technology Inc. DS91027B-page 2-295

TB027

S2.book Page 296 Thursday, March 2, 2000 8:02 AM
IMPLEMENTATION

Although EPROM and static RAM devices are compat-
ible with PICmicro microcontrollers, FLASH memory
was chosen to implement a reprogrammable system.
Due to the operational characteristics of FLASH mem-
ory, the PIC17CXXX device must be configured in
extended microcontroller mode to implement an exter-
nal reprogrammable system. In this mode, the internal
memory of the PICmicro microcontroller is operational,
and the remainder of the 64K memory is external to the
device (see Figure 2). The bootloader routine is located
in the on-chip memory. This routine reads data from the
outside world and programs it into the FLASH memory.
The PIC17CXXX has many interfaces, which could be
used for downloading new code into the external mem-
ory including: USART, SPI, or I2C™. Since the
PIC17CXXX has two USARTs, one could be used to
communicate with other devices in the system and the
second USART could be used for downloading new
code into the FLASH.

FIGURE 2: PIC17C756 IN EXTENDED
MICROCONTROLLER MODE

LOGIC DEVICES

In recent years, many manufacturers have developed
x16 versions of the more popular 74xxx devices. These
new devices use the following naming convention:

74xxx16yyy

where xxx defines the technology (HC,AC,FCT, etc.)
and yyy defines the part number (244, 373, etc.). For
the purposes of this design, the 74xxx16373 will be
used. The technology depends on the operating fre-
quency of the microcontroller. Appendix A lists some of
the manufacturers of the x16 logic devices. All these
devices have the same pinout which includes 16 inputs,
16 outputs, two latch enable (LE) pins and two output
enable (OE) pins. Each set of LE/OE controls 8-bits of
input/output. As shown in Figure 3, both LE pins are
tied to the RE0/ALE pin of the microcontroller and the
OE pins are tied to ground. These devices can be found
in various packages types (DIP through TSSOP).

0000h

3FFFh

FFFFh

PIC17C756
0000h

3FFFh

FFFFh

External Memory
DS91027B-page 2-296 1999 Microchip Technology Inc.

TB027
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 297 Thursday, March 2, 2000 8:02 AM
FIGURE 3: SCHEMATIC USING x16 DEVICES

A0 11
A1 10
A2 9
A3 8
A4 7
A5 6
A6 5
A7 4
A8 42
A9 41
A10 40
A11 39
A12 38
A13 37
A14 36
A15 35

DQ0 15
DQ1 17
DQ2 19
DQ3 21
DQ4 24
DQ5 26
DQ6 28
DQ7 30
DQ8 16
DQ9 18

DQ10 20
DQ11 22
DQ12 25
DQ13 27
DQ14 29
DQ15 31

RESET 44
BYTE 33

RY/BY 2

Vcc 23
Vss 13
Vss 32

CE 12
WE 43
OE 14

U3

AM29F100

RC0
RC1
RC2
RC3
RC4
RC5
RC6
RC7
RD0
RD1
RD2
RD3
RD4
RD5
RD6

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14

1OE 1
1Q1 2
1Q2 3
GND 4
1Q3 5
1Q4 6
Vcc 7
1Q5 8
1Q6 9
GND 10
1Q7 11
1Q8 12
2Q1 13
2Q2 14
GND 15
2Q3 16
2Q4 17
Vcc 18
2Q5 19
2Q6 20
GND 21
2Q7 22
2Q8 23
2OE 242LE25

2D826
2D727
GND28
2D629
2D530
Vcc31
2D432
2D333
GND34
2D235
2D136
1D837
1D738
GND39
1D640
1D541
Vcc42
1D443
1D344
GND45
1D246
1D147
1LE48

U2

74AC16373

C6

0.1µF

C7

0.1µF

A0
A1

A2
A3

A4
A5

A6
A7
A8
A9

A10

RE0

+5V

RC0
RC1

RC2
RC3

RC4
RC5

RC6
RC7
RD0
RD1

RD2

+5V

RD3

RD4
RD5

RD6
RD7

RD7

+5V
C5

0.1µF

R2

2.2K

 1

2

3
Q1
2N2222A

A11

A12
A13

A14
A15

R3

4.7K
+5V

RC4
RC3
RC2
RC1
RC0

C8
0.1µF

+5V

RE2
RE1

RD7nA15

OSC1

RB3

RB2

RA0
RB0
RB1

RC7
RC6
RC5

RB4
RB5

OSC2

RD1/AD9 10
RD0/AD8 11
RE0/ALE 12
RE1/OE 13
RE2/WR 14
RE3/CAP4 15

TEST 17
MCLR/VPP 16

NC 18
VSS 19
VDD 20
RF7/AN11 21
RF6/AN10 22
RF5/AN9 23
RF4/AN8 24
RF3/AN7 25
RF2/AN6 26

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61

RA0/INT 60
RB0/CAP1 59
RB1/CAP2 58

RB3/PWM2 57
RB4/TCLK12 56

RB5/TCLK3 55
RB2/PWM1 54

Vss 53
NC 52

OSC2/CLKOUT 51
OSC1/CLKIN 50

VDD 49
RB7/SDO 48
RB6/SCK 47

RA3/SDI/SDA 46
RA2/SS/SCL 45

RA1/T0CKI 44

R
F

1/
A

N
5

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
U1
PIC17C756A

RD0
RD1

RD2
RD3
RD4
RD5
RD6

RE0
RE1
RE2
RE3

MCLR

+5V

RF2
RF3
RF4
RF5
RF6
RF7

RF0
RF1

RG0
RG1
RG2
RG3

+5V

C1
0.1µF

C2

0.1µF
RA4
RA5
RG6
RG7

RG5

RA2
RA3

RB7
RB6

RA1

RG4

+5V

+5V

C3
0.1µF

C4
0.1µF

R
D

2/
A

D
10

R
D

3/
A

D
11

R
D

3/
A

D
12

R
D

5/
A

D
13

R
D

6/
A

D
14

R
D

7/
A

D
15

R
C

0/
A

D
0

V
D

D
N

C
V

S
S

R
C

1/
A

D
1

R
C

2/
A

D
2

R
C

3/
A

D
3

R
C

4/
A

D
4

R
C

5/
A

D
5

R
C

6/
A

D
6

R
C

7/
A

D
7

R
F

0/
A

N
4

A
V

D
D

A
V

S
S

R
G

3/
A

N
0/

V
R

E
F
+

R
G

2/
A

N
1/

V
R

E
F
-

R
G

1/
A

N
2

R
G

0/
A

N
3

N
C

V
S

S
V

D
D

R
G

4/
C

A
P

3
R

G
5/

P
W

M
3

R
G

7/
T

X
2/

C
K

2
R

G
6/

R
X

2/
D

T
2

R
A

5/
T

X
1/

C
K

1
R

A
4/

R
X

1/
D

T
1

+5V

C9
0.1µF

R1
4.7K

RE0
 1999 Microchip Technology Inc. DS91027B-page 2-297

TB027

S2.book Page 298 Thursday, March 2, 2000 8:02 AM
MEMORY DEVICES

Almost all manufacturers of memory make a x16
device. Currently, the smallest x16 FLASH memories
are the 1 Megabit (64K x 16) devices from AMD or
Catalyst. Memory selection should address the
required program voltage requirements because
some manufacturers have single supply devices and
others have multiple supply devices. Appendix A lists
some of the manufacturers of x16 FLASH memory
devices. Some of the basic features of any FLASH
memory are:

• Power supply options

- Single power supply for read, erase and pro-
gram operations (desirable for 5V only sys-
tems)

- or Dual power supply, one for read an
another for program/erase operations

• Access time

• Software method of detecting end of program
cycle

• Full chip erase capability

• Hardware and software data protection

The devices from AMD provide many superior features
over other manufacturers of FLASH memory including:

• x8 or x16 configurable

• Low power consumption:

- 28 mA typical active read current
- 30 mA typical program/erase current

- 25 µA typical standby current

• Any combination of sectors can be erased

• Embedded algorithms that automatically pre-pro-
grams and erases sectors or programs and veri-
fies data at a specified address

• Minimum 100,000 program/erase cycles

• JEDEC compatible pinout and software com-
mands

• Hardware pin for detecting end of program/erase
cycles

• Software commands that suspend or resume an
erase cycle to read data out of other sectors

• Hardware reset pin

Figure 3 shows the schematic of the PIC17C756A with
the AM29F100 FLASH memory from AMD. The first
thing to notice is that the address line, A15, is inverted
before going to the FLASH. The reason is that com-
mands must be issued to the lower half of the FLASH
to program or erase. The commands for both program
and erase are shown below.

Program

1. Send AAAAh to address 5555h

2. Send 5555h to address 2AAAh

3. Send 8080h to address 5555h

4. Send 16-bits of data to desired address

Chip Erase

1. Send AAAAh to address 5555h

2. Send 5555h to address 2AAAh

3. Send 8080h to address 5555h

4. Send AAAAh to address 5555h

5. Send 5555h to address 2AAAh

6. Send 1010h to address 5555h

Sector Erase

1. Send AAAAh to address 5555h

2. Send 5555h to address 2AAAh

3. Send 8080h to address 5555h

4. Send AAAAh to address 5555h

5. Send 5555h to address 2AAAh

6. Send 3030h to desired sector address

As shown in Figure 2, the on-chip memory of the
PICmicro microcontroller is located in the first part of
program memory, and in some devices, this on-chip
program memory overlaps the address 2AAAh in the
FLASH. The length of this memory depends on the
device:

• PIC17C42A from 0000h to 07FFh,

• PIC17C43 from 0000h to 0FFFh,
• PIC17C44 from 0000h to 1FFFh,

• PIC17C752 from 0000h to 1FFFh,

• PIC17C756A from 0000h to 3FFFh,

• PIC17C762 from 0000h to 1FFFh, and

• PIC17C766 from 0000h to 3FFFh

The first three devices do not require the inverter cir-
cuit, but the PIC17C756A does. When the bootloader
program tries to send any data to address 2AAAh, the
core thinks it is writing to the internal memory address
because it is less than 3FFFh. The address/data lines
from the PICmicro microcontroller assert the correct
address/data, but the control lines do not allow the
FLASH memory to be enabled for reading or writing.
Therefore, by inverting A15, address 2AAAh of the
FLASH can be accessed at location AAAAh in the pro-
gram memory of the PIC17C756A. Address 5555h can
be accessed at location D555h. The PIC17C756A is
now able to send program and erase commands to the
FLASH. The program memory address locations
4000h to 7FFFh are now located in the FLASH at loca-
tions C000h to FFFFh (See Figure 4).
DS91027B-page 2-298 1999 Microchip Technology Inc.

TB027
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 299 Thursday, March 2, 2000 8:02 AM
FIGURE 4: OVERLAP OF FLASH

The previous method leaves part of the external
FLASH unused, which can amount to 25% of program
memory depending on the PICmicro microcontroller
used. There is another method which completely uses
all of the FLASH, but requires additional firmware sup-
port. The inverter circuit shown in Figure 3 is connected
to the CE pin of the FLASH and A15 of the FLASH is
connected to an I/O pin of the PICmicro microcontroller.
In this case, external program memory becomes
“banked”. Only addresses from 8000h to FFFFh can be
used and the I/O pin controls which bank is selected
(See Figure 5). The designer must now have some pre-
vious knowledge about the locations of routines in
external memory. A table must be created to define the
location of each routine in external memory by bank (0
or 1) and address (8000h to FFFFh). This table is
located in the on-chip program memory of the PICmicro
microcontroller and cannot be changed. The designer
must be careful when constructing this table to take into
account the growth routines of old routines and addition
of new routines for bug fixes or enhancements. In most
cases, the C compiler cannot correctly execute code
from both banks of FLASH. One bank would be for data
and the other for code.

FIGURE 5: BANKING OF FLASH

CONCLUSION

By using the new x16 logic and memory devices, a
designer can lower part count, cut cost, reduce board
size and simplify layout. Since most manufacturers use
the standard JEDEC footprint for their devices, single
source supply concerns can be eliminated.

0000h

3FFFh

FFFFh

PIC17C756A

7FFFh
8000h

AM29F100
0000h

FFFFh

7FFFh
8000h

BFFFh
C000h

0000h

3FFFh

FFFFh

PIC17C756A

7FFFh
8000h

7FFFh

0000h

8000h

FFFFh

AM29F100
 1999 Microchip Technology Inc. DS91027B-page 2-299

TB027

S2.book Page 300 Thursday, March 2, 2000 8:02 AM
APPENDIX A

The following list of manufacturers is provided for refer-
ence only and is not meant to be a complete listing of
all companies producing x16 logic and memory prod-
ucts.

x16 Logic Manufacturers

• National Semiconductor www.national.com

• IDT www.idt.com

• Quality Semiconductor www.qualitysemi.com

• Pericom Semiconductor www.pericom.com

• Texas Instruments www.ti.com

x16 FLASH Manufacturers

• AMD www.amd.com

• Catalyst www.catsemi.com

• Hyundai www.hea.com

• Intel www.intel.com

• ISSI www.issiusa.com
• Micron Technology www.micron.com/flash

• Texas Instruments www.ti.com
DS91027B-page 2-300 1999 Microchip Technology Inc.

TB028
Technique to Calculate Day of Week

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 301 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

Basically, there are two kinds of electronic systems that
come with a built-in calendar. The first kind of system is
used mainly to display a calendar for a user’s conve-
nience. Examples of these systems are digital watches,
computers, VCRs and TVs with on-screen display fea-
tures. The second kind of system is required to know
whether a given date is a weekend or weekday. Exam-
ples of such a system are multi-rate meters (such as a
phone bill meter) and electronic pricing systems, where
the weekend rate and the weekday rate are different.

In order to build an electronic calendar into the system,
the designer needs to write a piece of software that will
be able to determine the day (Sunday, Monday, ….Sat-
urday) of the week when a date is input into the system.
This routine is the basic component of an electronics
calendar.

This Technical Brief provides a technique to find the
exact day for a given date input.

THEORY OF CALCULATION

The method used to calculate the day of week is a
straight forward and simple one. This method makes
use of 31 December 1989 as a reference point. The
reason why this date was chosen as a reference point
is because it was on the last day of the week (Sunday),
and also on the last day of a year (this makes it easy to
calculate the number of days since the next day/date
will be first/first). One day after this date was Monday,
and two days after this date was Tuesday, and so on.

The date given will be N days after the 31st December
1989, and if the number N is divided by the number of
days in a week (7), the return will correspond to a spe-
cific day of the week. For this application, 0 corre-
sponds to Sunday, 1 to Monday, and so on till 6
corresponds to Saturday. Therefore, when a date is
given, the number of days from the date given after the
31 December can be calculated. Then the division of
the number by 7 will give a remainder, which will corre-
spond to the day of the week that the system required.

DESCRIPTION OF SOFTWARE

This application note provides two routines for the cal-
culation of the day of the week. One is written in ANSI
C and the other is written in assembly language using
a PIC16C54 microcontroller.

In these routines, the number of days after 31 Decem-
ber 1989 is calculated and stored in a register called
AccValue. There are a total of three steps involved in
getting the number of days.

The first step is to find out the difference in years, and
convert the difference into days. A 16-bit counter,
TempYear, is used as a temporary counter and is ini-
tialized to the year 1990. The routine will keep compar-
ing the contents of TempYear to the year
(CurrentYear in the 'C' software) that is input in the
software. If the TempYear value is less than the year
value, TempYear will be increased by 1 until the con-
tents of TempYear match the year given.

The AccValue will be increased by 1 (instead of 365,
because 365MOD7 = 1) or by 2 (if TempYear is a leap
year) for each comparison in which the TempYear
value is less than the year value.

The second step involves calculating the number of
days that have elapsed between the first day (inclusive)
of that year and the first day of the month given. The
number of days elapsed is calculated and pre-stored in
a table. This value is retrieved with respect to the input
month and added to the AccValue.

The way to calculate the pre-stored value is as follows;
for January there is less than one month elapsed,
therefore the value stored is 0. For February, the month
passed is only 1 (January) and the value stored is
31MOD7, which is 3. For March, 2 months have
passed, (January and February), so the value stored is
(28+31)MOD7, which is 3.

The third step involves adding the day given to the
AccValue. The AccValue is then divided by 7, and
the remainder gives the result corresponding to the day
of week.

Figure 1 is a flowchart of the software routine.

The software here will only work if the input given
ranges from 1 January 1990 to 31 December 2099.

The software does not check for the use of errorneous
dates such as 29 February 1998, or 32 March 1999.

Author: Tan Beng Hai
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS91028A-page 2-301

TB028

S2.book Page 302 Thursday, March 2, 2000 8:02 AM
FIGURE 1: APPLICATION FLOWCHART

AccValue = AccValue + Day

GetDayofWeek

AccValue = 0,
TempYear = 1990

Is TempYear =
CurrentYear?

Is TempYear a
Leap Year?

Is Month >
February?

Is TempYear
a Leap Year?

AccValue = AccValue + Table[Month]

AccValue + 2

TempYear + 1

AccValue = AccValueMOD7

Return AccValue

AccValue + 1

AccValue + 1

Yes

No

Yes

No

Yes

No

No

Yes
DS91028A-page 2-302 1999 Microchip Technology Inc.

TB028
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 303 Thursday, March 2, 2000 8:02 AM
APPENDIX A: PIC16C54 ASSEMBLY CODE
ListP=16C54

;
;**
;
PCL equ 02h
STATUS equ 03h
;
#define Z STATUS,2
#define C STATUS,0
;
YearHi equ 10h ;Store the Upper byte of Year
YearLw equ 11h ;Store the Lower byte of year
Month equ 12h ;Store the Month(1 for January, 2 for February and so on)
Day equ 13h ;Store the Day
AccValue equ 14h
TempA equ 15h
TempB equ 16h
TempYearHi equ 15h
TempYearLw equ 16h
Lbyte equ 17h
Hbyte equ 18h
Ltemp equ 19h
Htemp equ 1Ah
Temp equ 1Bh
;

org 0x00
;**
; Test program for GetDayofWeek
; The End Result willbe stored in AccValue
;**
;
main movlw 19h ;Set Date as 21 September 1998

movwf TempA
movlw 98h
movwf TempB
movlw 9
movwf Month
movlw D’21’
movwf Day

;
call BCDtoBin ;Convert the 4-digit BCD Year to 16bit int value

;
movfw Lbyte
movwf YearLw

;
movfw Hbyte
movwf YearHi

;
call GetDayofWeek ;Calculate Day

;
Loop gotoLoop
;
;**
; Accumulated Value for Month
; This routine return the remainder value when
; number of days summed up and divided by 7
;**
;
GetMonthValueaddwfPCL,1

nop
retlw 0 ;January
retlw 3 ;February, %(31/7) = 3

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of source code.
 1999 Microchip Technology Inc. DS91028A-page 2-303

TB028

S2.book Page 304 Thursday, March 2, 2000 8:02 AM
retlw 3 ;March, Remaider for (3+28)/7
retlw 6 ;April, (3+31)/7
retlw 1 ;May, (6+30)/7

retlw 4 ;June, (1+31)/7
retlw 6 ;July,%(4+30)/7= 6
retlw 2 ;August, %(6+31/7) = 2
retlw 5 ;September, %(2+31)/7=4
retlw 0 ;October, %(5+30)/7=6
retlw 3 ;November, (0+31)/7=3
retlw 5 ;December, (3+30)/7=5

;
;**
; Routine : GetDayofWeek
;**
;
GetDayofWeekclrfAccValue

call CheckValidInput
btfss Z ;Is input Valid ?
retlw 08

;
movlw 0C6h ;Set the Temp counter to 1990(Decimal)
movwf TempYearLw
movlw 07
movwf TempYearHi

;
GetDay_0 call CompYear ;Check is Year > Temp counter

btfsc Z
goto GetDay_1 ;Year = Temp

;
;Year is > Temp Year
;

incf AccValue,1
call IsLeapYear ;Check is TempYear = Leap Year
btfsc Z ;Is Leap Year ?
incf AccValue,1 ;Yes !

;
call IncTemp
goto GetDay_0

;
GetDay_1 movlw.3

subwf Month,W ;Check is Month > February ?
btfss C
goto GetDay_2 ;No !

;
call IsLeapYear ;Check for Leap year
btfss Z
goto GetDay_2 ;Not Leap Year!
incf AccValue,1

;
GetDay_2 movf Month,w

call GetMonthValue
addwf AccValue,1 ;Sum the AccValue with Month Value
movf Day,w ;
addwf AccValue,1 ;Sum the AccValue with Day Value
call Modula_7 ;AccValue%7
retlw 0

;
;**
; Routine: Check Valid Input for 1990-2099
; (equivalent to 07C6h - 0833h)
; If Input Valid, return Valid = 1
; Else Valid = 0
;**
;
CheckValidInput movlw 07h

subwf YearHi,w
DS91028A-page 2-304 1999 Microchip Technology Inc.

TB028
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 305 Thursday, March 2, 2000 8:02 AM
btfss C
goto NotValid ;YearHi is < 07h

;
btfss Z
goto CheckValid_0 ;YearHi not equal to 07h

;
;YearHi is = 07h Check For Year low
;

movlw 0C6h
subwf YearLw,w
btfss C
goto NotValid ;YearLw is <90

;
ValidYear bsf Z

retlw 0 ;Year is valid
;
;YearHi is greater 07h, check for YearHi=08h
;
CheckValid_0 movlw 08h

subwf YearHi,w
btfss Z
goto NotValid ;YearHi is > 20

;
;YearHi is 20, check for YearLw < or = 33
;

movlw 34h
subwf YearLw,w
btfss C ;is YearLw end with Hex value ?
goto ValidYear ;Not a valid value

;
NotValid bcf Z

retlw 0
;
;**
; Routine: Modula_7
; Register: ACC
; Output: Remaider of Acc/7
;**
;
Modula_7 movlw .7

subwf AccValue,w
btfss C
goto Modula_70

;
;Contents of Acc > 7
;

movlw .7
subwf AccValue,1
goto Modula_7

;
Modula_70 movf AccValue,w

movwf Temp
retlw 0

;
;**
; Routine : CompYear
; ReturnZ=1 if Year > TempYear
; Else return 0
;**
;
CompYear movf YearHi,w

subwf TempYearHi,w
btfss Z
retlw 0 ;YearHi > TempYearHi

;
movfw YearLw
 1999 Microchip Technology Inc. DS91028A-page 2-305

TB028

S2.book Page 306 Thursday, March 2, 2000 8:02 AM
subwf TempYearLw,w
retlw 0

;
;**
; Routine: IsLeapYear
; Return Z=1 if TempYear is Leap year
; Else Return 0
;**
;
IsLeapYear btfsc TempYearLw,0

goto NotLeapYear
;

btfsc TempYearLw,1
goto NotLeapYear

;
bsf Z
retlw 0

;
NotLeapYear bcf Z

retlw 0
;
;**
; Routine: IncTemp
; Increment The Temporary Counter
;**
;
IncTemp incfsz TempYearLw,1

retlw 0
;

incf TempYearHi,1
retlw 0

;
;**
; Routine : BCDtoBin
; This routine convert 4-Digit BCD value(D3D2D1D0)
; into 16Bit Binary code
; input : 2 digit High Byte is stored in TempA
; 2 digit Low byte is store in TempB
; Output: Hbyte:Lbyte
; For more on the BCD to Bin conversion please refer
; to AN544
;**
;
BCDtoBin clrf Htemp

clrf Ltemp
clrf Lbyte
clrf Hbyte

;
swapf TempA,w ;D3*10
call Mpy10

;
movfw TempA ;[(D3*10)+D2]*10
call Mpy10

;
swapf TempB,w ;{[(D3*10)+D2]*10+D1}*10
call Mpy10

;
movfw TempB ;
andlw 0x0f

;
addwf Lbyte,1 ;{[(D3*10)+D2]*10+D1}*10+D4
btfsc C
incfH byte,1
retlw 0

;

DS91028A-page 2-306 1999 Microchip Technology Inc.

TB028
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 307 Thursday, March 2, 2000 8:02 AM
;**
; Routine : Mpy10
; This routine multiply the value store in W register by 10
; Theory : Let say the input is N,
; 1st, Store the product of 2*N into Temporary register
; 2nd, Multiply the value N by 8, (8*N) and store in Hbyte and Lbyte
; 3nd, Sum up the value obtained in 1st and 2nd steps
; The whole process is equivalent to 2*N+8*N = N(2+8) = 10*N
;**
;
Mpy10 andlw 0x0f

addwf Lbyte,1 ;2*N and store the product in temp
btfsc C
incf Hbyte,1

;
bcf C
rlf Lbyte,w
movwf Ltemp
rlf Hbyte,W
movwf Htemp

;
bcf C ;8*N
rlf Lbyte,1
rlf Hbyte,1

;
bcf C
rlf Lbyte,1
rlf Hbyte,1

;
bcf C
rlf Lbyte,1
rlf Hbyte,1

;
movfw Ltemp ;8*N+2*N =10*N
addwf Lbyte,1
movfw Htemp
addwf Hbyte,1
retlw 0

;
;**
;

END
 1999 Microchip Technology Inc. DS91028A-page 2-307

TB028

S2.book Page 308 Thursday, March 2, 2000 8:02 AM
APPENDIX B: C IMPLEMENTATION
#include<P17C756.H>

#define OK 1
#define Error8

charGetDayofWeek();
charCheckValidInput(unsigned int);
charIsLeapYear(int);

rom constunsigned charTable[13]={0,0,3,3,6,1,4,6,2,5,0,3,5};

unsigned intCurrentYear;
unsigned charMonth,Day;

/***
* Test Program for the routine GetDayofWeek()
***/
voidmain(){

charTemp;

CurrentYear = 1998;/*Date : 21 September 1998*/
Month = 9;
Day = 21;

Temp = GetDayofWeek();/*Result stored in Temp*/
do{
}while(1);

}

/**
* GetDayofWeek
* This routine calculate the Day(Sunday, Monday,...Saturday) of
* week when a Date(year, Month, Day) is given.
* Input : Year, Month and Day which in this routine is used
* as global variable.
* Output Variable : 0 to 6(which correspond to Sunday to Saturdaday
* respectively) if the input is acceptable, else a value 8 is return
***/
charGetDayofWeek(){

unsigned intTempYear;
unsigned charAccValue, Temp;

if(CheckValidInput(CurrentYear)!=OK)/* Return Error if input not Valid*/
return Error;

TempYear = 1990;/*Comparation start with year 1990*/
AccValue = 0;/*Init AccValue to 0*/

/* If TempYear is a leap year AccValue +2, else AccValue+1 */

while(TempYear != CurrentYear){
AccValue++;
if(IsLeapYear(TempYear))

AccValue++;
TempYear++;

}

if(Month > 2){
if(IsLeapYear(TempYear)==1)

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of source code.
DS91028A-page 2-308 1999 Microchip Technology Inc.

TB028
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 309 Thursday, March 2, 2000 8:02 AM
AccValue++;
}

AccValue += Table[Month];
AccValue += Day;

AccValue= AccValue%7;

return(AccValue);
}

/***
* CheckValidInput
* Return a ’1’ if the input is within the required range. Else
* return a ’0’.
*
* Input Variable : 16Bit Unsigned Int
* Output Varible : ’1’ if input ranges between 1990 & 2099 inclusively
***/
charCheckValidInput(unsigned int Input){

if(Input>=1990 && Input<=2099)
returnOK;

else
return !OK;

}

/***
* IsLeapYear
* Return a ’1’ if the input is a leap year. Else return a ’0’
*
* Input Variable : 16Bit Unsigned Int
* Output Varible : ’1’ if is a leap year, else ’0’.
***/
charIsLeapYear(int Year){

Year=Year&0x0003;
if(Year==0)

return 1;
else

return0;
}
/***/
 1999 Microchip Technology Inc. DS91028A-page 2-309

TB028

S2.book Page 310 Thursday, March 2, 2000 8:02 AM
NOTES:
DS91028A-page 2-310 1999 Microchip Technology Inc.

TB029
Complementary LED Drive

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 311 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

Light Emitting Diodes, or LED’s, are discrete compo-
nents able to produce light when a current passes
through them. Most microcontroller designs use one or
more LED’s. This application highlights the utility of
driving multiple LED’s with a minimum number of I/O
pins. Typically, each I/O drives or sources a single LED.
To drive more than one, a high I/O count is required. In
order to reduce I/O requirements, LED’s are multi-
plexed in a matrix (as found on a keyboard). The com-
plementary LED drive method proposes to implement
even more LEDs while using fewer I/O.

LEDs are polarized and can only operate when current
flows from anode to cathode (unlike a switch). We can
therefore take advantage of this fact. Table 1 shows the
number of possible LEDs with respect to the number of
I/O pins required. Fifty-six LEDs can be driven using
only 8 pins. The only drawback is that only one LED can
be driven at a time.

Typical applications include; games, bargraphs, audio,
video, or driving a single seven-segment LED display.

TABLE 1: NUMBER OF LEDS WITH
RESPECT TO I/O COUNT

THEORY OF OPERATION

Some microcontrollers available today can sink high
current, while others offer a limited number of pins to
source high current. Microchip microcontrollers have a
very flexible pin structure. When a pin is configured as
an input, the input impedance is very high (typically
10 Mohm). When a pin is configured as an output, it
can source 20 or 25 mA and sink 25 mA.

To have a better understanding of the application, place
two diodes in parallel and reverse the polarities (that is,
attach anode to cathode and vice-versa). If you apply 5
volts (with of course a limiting resistor) to one end and
ground to another, only one LED will illuminate. The
reason is, LED’s are polarized and can operate only
when current flows from anode to cathode.

Figure 1 gives an example of driving 12 LEDs using
only 4 I/Os. To turn an LED on, first configure the appro-
priate register determining which pins are inputs and
which are outputs. Then, write the appropriate voltages
on the output pins. Each pin has a 200 ohm resistor to
limit the current through the LED’s, and since two pins
are needed to drive one LED, the resistance is doubled.

I/O pins 2 3 4 5 6 6 8

LEDs 2 6 12 20 30 42 56

Author: Jean-Claude Rebic
Pioneer-Standard
 1999 Microchip Technology Inc. DS91029A-page 2-311

TB029

S2.book Page 312 Thursday, March 2, 2000 8:02 AM
FIGURE 1: EXAMPLE OF LED PLACEMENT, RESULTING IN 12 LEDS FOR 4 PINS

There will always be numerous paths for the current to
travel between two pins with this technique. Let’s take
LED 6 for instance (pin 0 and pin 2 configured as out-
puts, pin 1 and pin 3 configured as inputs; pin 0 is at 5
Vcc and pin 2 is at ground). There are three distinct
paths that the current can take:

• Through LED 6

• Through LED 0 in series with LED 2

• Through LED 8 in series with LED 5

Only LED 6 will light up because all three paths have
the same voltage drop and all LED's in the series do not
have enough of a voltage drop to drive any current.

SPECIAL CONSIDERATIONS

The Complementary LED Drive technique will not work
with an open collector output (for example pin RA4 on
the PIC16CXX family). Care should be taken when
sharing a port with other I/O functions, use a shadow
register as a port buffer. Do all operations on the
shadow register and write this buffer to the port. It is
possible to drive more than one LED at a time, but care
must be given in the design. For example, in Figure 1,
LEDs 0 and 8 will work if pin 0 (Vcc), pin 1 (Gnd) and
pin3 (Gnd) are outputs and pin 2 is an input.

MULTIPLE LEDs AT THE SAME TIME

Trying to turn on more than one LED at a time is a
recurrent problem since the Complementary LED Drive
technique only allows one LED at a time to be driven.
The solution is to have a duty cycle scheme where
each LED is turned on sequentially (4 LED's produce a
25% duty cycle). However, there is concern that this
process will diminish the brightness level.

Normally, as we increase current flow through an LED,
it's brightness increases until it reaches a point where
the brightness will actually decrease. This is due to the
anode-cathode junction overheating. By running short
pulses through the LED at a higher current, we are able
to minimize the overheating, and the peak luminosity
increases (phenomenon used in GaAsP lasers). For
instance, a 10 mA LED has the same intensity to a pho-
tometer as a 40 mA pulsed LED with a 25% duty cycle.
Both instances produce the same luminosity when
measuring the luminosity with a photometer.

Fortunately, the human eye doesn't act as a photome-
ter. It can only combine the average brightness and
peak brightness. Our earlier 40 mA example will there-
fore appear brighter than the 10 mA LED. To increase
the current at the maximum rated value of the Micro-
chip microcontroller, use the 25 mA sink/source capa-
bility. This pulsing technique is quite useful in battery
applications. By pulsing a higher current with a smaller
duty cycle, the visual brightness is maintained while
consuming less power.

Certain precautions must be taken to use the pulsating
technique. First, make sure the LED junction does not
overheat, and second, do not dissipate more than the
average maximum rated power of the LED.

To learn more about the LED properties in a multi-
plexed environment, please refer to Siemens Optoelec-
tronics Data Book 1995-1996, Multiplexing LED
Displays, Appnote3, p.11-10.

SOFTWARE

As complex as the hardware appears, the software is
quite straight forward. Just clear all I/Os associated
with the LEDs to remove all glitches. Then load the off-
set into the accumulator and call a table that configures
the I/O TRIS register. Remember that pins configured
as outputs will either source (anode of the selected
LED) or sink (cathode of the selected LED) current, and
all other pins will be configured as inputs. At this point,
use the same offset to call a table with the appropriate
voltages.

The code is a simple subroutine written for a
PIC16C54. Figure 1 is located on PORTA, and a 200
ohm resistor is added for each pin.

CONCLUSION

The Complementary LED Drive will help minimize the
number of pins required to drive LEDs in your design,
thereby taking advantage of Microchip Technology’s
smaller 8-pin families.

1

Pin 0

Pin 2

Pin 3

Pin 1

200

200

200

200

0

32

54

1110 76 98
DS91029A-page 2-312 1999 Microchip Technology Inc.

TB029
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 313 Thursday, March 2, 2000 8:02 AM
APPENDIX A: SOFTWARE LISTING
Output_Led_
 clrf PORTA ; Clear port all to 0
 movf Led_Value,w ; Read LED pointer
 call Table_Tris_ ; Configure i/o direction
 trisa ; Write to tris register
 movf Led_Value,w ; Read LED pointer
 call Table_Io_ ; Call table
 movwf PORTA ; Write to port
 retlw 0

Table_Io_
 addwf PCL,f
 retlw b’00100000’ ; Led 0
 retlw b’00000010’ ; Led 1
 retlw b’00100000’ ; Led 2
 retlw b’00000001’ ; Led 3
 retlw b’00000010’ ; Led 4
 retlw b’01000000’ ; Led 5
 retlw b’00000001’ ; Led 6
 retlw b’00100000’ ; Led 7
 retlw b’00000010’ ; Led 8
 retlw b’00100000’ ; Led 9
 retlw b’00000001’ ; Led 10
 retlw b’00000010’ ; Led 11
;
Table_Tris_
 addwf PCL,f
 retlw b’01000101’ ; Led 0
 retlw b’01000101’ ; Led 1
 retlw b’00000111’ ; Led 2
 retlw b’01000110’ ; Led 3
 retlw b’00100101’ ; Led 4
 retlw b’00100101’ ; Led 5
 retlw b’00100110’ ; Led 6
 retlw b’01000101’ ; Led 7
 retlw b’01000101’ ; Led 8
 retlw b’00000111’ ; Led 9
 retlw b’01000110’ ; Led 10
 retlw b’00100101’ ; Led 11

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of source code.
 1999 Microchip Technology Inc. DS91029A-page 2-313

TB029

S2.book Page 314 Thursday, March 2, 2000 8:02 AM
NOTES:
DS91029A-page 2-314 1999 Microchip Technology Inc.

TB033
Using the PIC16F877 To Develop Code For

PIC16CXXX Devices

P
IC

m
icro

® 8-B
it

M
icro

co
n

tro
ller

2

S2.book Page 315 Thursday, March 2, 2000 8:02 AM
INTRODUCTION

With the release of the FLASH-based PIC16F87X fam-
ily, Microchip Technology has completed the circle on
product technology. Microchip is now in the unique
position of offering FLASH, OTP or ROM-based ver-
sions of devices with similar feature sets. Customers
now have the most flexible position to select their
choice of technology and easily migrate from one tech-
nology to another, reaping the benefits and cost struc-
tures which best suit their needs.

The PIC16F877 FLASH-based PICmicro® introduced
by Microchip has the unique distinction of being a
superset part with reprogrammable program memory
for most PIC16CXXX products. The FLASH program
memory, coupled with a built-in, In-Circuit Debugger
(ICD), allows the development of a simple, low-cost
emulator or ROMulator for most of the PIC16CXXX
products.

A typical design scenario starts with the customer
developing the initial prototype using a FLASH product.
A limited production run using FLASH allows the cus-
tomer to verify the operation of the production line with-
out sacrificing product. Full production then starts with
either FLASH or OTP, depending on how well the soft-
ware has been validated. When the software has a
proven track record of robustness, the customer can
migrate to a lower cost ROM. This technical brief will
highlight the design considerations associated with
such a strategy.

The original goal of the PIC16F87X devices was to
maintain compatibility with the existing PIC16C6X/7X
devices, such that any code written for a PIC16C6X/7X
device will run on a PIC16F87X without any modifica-
tions. It is so compatible that any HEX file generated for
a PIC16C6X/7X device can be programmed into the
PIC16F87X device, as long as the configuration bits
are set correctly. Developing an application for an OTP
or ROM device using the PIC16F87X requires some
care and minor device differences must be taken into
account.

The PIC16F87X devices have some features that are
not available or modified from the PIC16CXXX devices.
When developing code, use the data sheet for the tar-
get device and refer to the exceptions listed in the next
section for each device. Following these suggestions
should minimize the number of problems that arise.
The features not found on the OTP/ROM PIC16CXXX
microcontrollers are:

• FLASH Program Memory with read and write
capabilities

• EEPROM Data Memory

• Master SSP (MSSP)

The peripherals on the PIC16F87X devices that are
modified versions of the PIC16CXXX device, but code
compatible, are:

• 10-bit A/D converter

• 9-bit Addressable USART

Certain resources are consumed when the MPLAB™-
ICD In-Circuit Debugger is used to develop code.
These resources are released when the debugger is
not used. The resources include:

• Last 256 words of program memory: IF00h to IFFh

• Program memory location 0000h must be a NOP
instruction

• Pins RB6 and RB7: CLK and Data for ICD
• MCLR/VPP used for programming @ 13V

• Data memory locations 70h, 1EBh – 1EFh

• 1 Level of stack

Author: Stan D’Souza, Rodger Richey
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS91033A-page 2-315

TB033

D

S2.book Page 316 Thursday, March 2, 2000 8:02 AM
PART-TO-PART DIFFERENCES

When using the PIC16F87X device to develop code for
an application that will eventually use a ROM or OTP
device, the designer should not only keep in mind the
discrepancies between the devices, but also the errata
for both devices. A limitation on one or both devices
may require the designer to use different workarounds
to make the application work. All device errata can be
found on the Microchip website (www.microchip.com).

The following paragraphs explain the differences or
what’s missing on the target device when compared to
the PIC16F87X device. Some differences, such as pro-
gram and data memory sizes, need to be monitored as
development progresses to ensure that the limits are
not exceeded for the target device. Obviously, none of
the advanced features of the PIC16F87X should be
used, such as Data EEPROM memory or Master Mode
I2C™. Appendix A shows tables comparing the OTP/
ROM PIC16CXXX to the FLASH equivalent.

Data Memory

All of the PIC16CXXX devices, except the PIC16C66/
67/76/77, have only two banks of data memory. The
method of switching between the two banks is to clear
the RP0 bit (STATUS<5>) to access registers in Bank 0
and set the bit to access registers in Bank 1. Any indi-
rect addressing uses only the FSR special function reg-
ister (SFR) to access any register in Bank 0 or Bank 1.
However, the PIC16F87X devices and the PIC16C66/
67/76/77 all have four banks of data memory. The
RP1:RP0 bits (STATUS<5,6>) now select the bank for
direct data memory addressing operations. When per-
forming indirect data memory accesses on a device
with four banks, the IRP bit (STATUS<7>) is used to
indicate the upper or lower two banks. Since the FSR
can access 256 registers or one register in either the
two lower or upper banks, only one additional bit is
required to indicate which set of registers to operate on.
The following table shows the bank decoding of RP1
and RP0

TABLE 1: BANK CONTROL

When writing code on the PIC16F87X devices for a tar-
get PIC16CXXX device, simply maintain the IRP and
RP1 bits as ‘0’s. This requirement follows the recom-
mendations in the target data sheet to maintain these
bits clear for devices that have only two banks of data
memory.

SSP Module

The next difference is the SSP Module that contains the
SPI™ and I2C peripherals. There are several variations
of the SSP Module. Microchip currently has three ver-
sions of the SSP Module:

• BSSP

- 2-mode SPI
- Slave I2C with Start & Stop bit detection

• SSP

- 4-mode SPI with Microwire®

- Slave I2C with Start & Stop bit detection

• MSSP

- 4-mode SPI with Microwire
- Slave I2C

- Master Mode I2C

Of all the differences between the three modules, the
revision of the 2-mode SPI module to 4-modes is the
biggest backward compatibility issue. These changes
include redefining the functionality of the CKP (SSP-
CON<4>), adding the CKE bit (SSPSTAT<6>) and add-
ing the SMP bit (SSPSTAT<7>). In the BSSP module,
the CKP bit controlled both the idle state of the clock
and the clock edge that data is transmitted on as shown
below:

• Idle state for clock is high, transmit happens on
falling edge, receive on rising edge

• Idle state for clock is low, transmit happens on ris-
ing edge, receive on falling edge

In the new 4-mode SPI module, the CKP bit controls
the idle state of the clock, the CKE bit controls the edge
that data is transmitted and the SMP bit controls where
the incoming data is sampled (middle or end of bit
time). The SMP bit sets the SPI module for regular SPI
operation or Microwire operation. The table below
shows this graphically.

TABLE 2: SPI CONFIGURATION

To properly configure the PIC16F87X devices to be
compatible with the non-FLASH devices, you must set
the bits to the following states:

• For BSSP operation when CKP = ‘0’,
set CKP = ‘0’, CKE = ‘1’, SMP = ‘0’

• For BSSP operation when CKP = ‘1’,
set CKP = ‘1’, CKE = ‘1’, SMP = ‘0’

Even though the PIC16F87X devices add Master Mode
I2C to the SSP module, problems will not be encoun-
tered as long as code is written using the target device
data sheet. This part of the SSP module was designed
to be 100% compatible with the existing BSSP and
SSP modules.

RPO

0 1

RP1 0 Bank 0 Bank 1

1 Bank 2 Bank 3

CKE

0 1

CKP 0 low, falling low, rising

1 high, rising high, falling
S91033A-page 2-316 1999 Microchip Technology Inc.

TB033
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 317 Thursday, March 2, 2000 8:02 AM
A/D Module

Although the 10-bit A/D converter is 100% compatible
to the 8-bit A/D, it does have a 10-bit result. These 10
bits are spread across the two registers, ADRESH and
ADRESL, either left or right justified. Any code written
for the PIC16F87X 10-bit A/D converter will be compat-
ible as long as the result is left justified (default state)
and the code uses ADRESH as the 8-bit result. The
ADRESH register is in the same place in the Data
Memory map as the ADRES register of the 8-bit A/D.
When changing over to the target OTP or ROM device,
you simply need to change ADRESH to ADRES.

USART

The addressable USART also has only one additional
bit, ADDEN (RCSTA<3>). The default state of this bit is
0, which turns off 9-bit addressing and therefore
remains 100% compatible to the non-addressable
USART. Here again, problems should not be encoun-
tered as long as the target data sheet is used to write
code.

Brown-out Reset

On a device that has Brown-out Reset, only the BOR bit
(PCON<0>) was added. In most cases, this bit is not
used and can be ignored. The main consideration
when writing code on the PIC16F87X device for a
device that does not have Brown-out Reset is to make
sure that this function is disabled in the configuration
bits.

Extra SFRs

The PIC16F87X devices will have some SFRs that are
not present in other devices. The code should refrain
from using these locations, otherwise unexpected
results may occur. As long as the code is written using
the target device data sheet, problems should not be
encountered.

CONCLUSION

The MPLAB-ICD In-Circuit Debugger makes an ideal
low-cost development tool for not only the PIC16F87X
devices but also for the PIC16C6X/7X devices as well.
Using the guidelines presented in this technical brief, a
designer should be able to design/debug an application
using the FLASH devices and then switch to the lower
cost ROM or OTP equivalents for production.

Comparison tables by device family follow for review of
feature differences.
 1999 Microchip Technology Inc. DS91033A-page 2-317

TB033

S2.book Page 318 Thursday, March 2, 2000 8:02 AM
APPENDIX A: DEVICE COMPARISON TABLES
PIC16C62A/62B/CR62: 2KW, 28-pin, Without Analog FLASH Equivalent

Device PIC16C62A PIC16C62B PIC16CR62 PIC16F873

Program Memory 2KW 2KW 2KW 4KW

Data Bytes 128 128 128 192

Memory Banks 0,1 0,1 0,1 0,1,2,3

Shared — — — 16 bytes (F0h-FFh)

Data EEPROM 128 128 128 128

Additional Features
— — — 10-bit A/D

Addressable RT
CCP2

Additional SFRs — — — PIR2, PIE2, CCPR2L,
CCPR2H, CCP2CON,

RXSTA, TXSTA, SPBRG,
ADCON0, ADCON1,
ADRESH, ADRESL,
SSPCON2, TXREG,

RCREG

Bit IRP Reserved Reserved Reserved Selects upper/lower bank

Differences RP1 Reserved Reserved Reserved Selects upper/lower bank

SMP — Yes — Microwire/slew rate control

CKE — Yes — Clock edge/levels select

CKP Yes Yes Yes Clock idle/stretching control

PIC16C63A/CR63: 4KW, 28-pin, Without Analog FLASH Equivalent

Device PIC16C63A PIC16CR63 PIC16F873

Program Memory 4KW 4KW 4KW

Data Bytes 192 192 192

Memory Banks 0,1 0,1 0,1,2,3

Shared — — 16 bytes (F0h-FFh)

Data EEPROM — — 128

Additional Features
Brown-out Reset Brown-out Reset 10-bit A/D

Brown-out Reset

Additional SFRs — — ADCON0, ADCON1,
ADRESH, ADRESL,

SSPCON2

Bit IRP Reserved Reserved Selects upper/lower bank

Differences RP1 Reserved Reserved Selects upper/lower bank

SMP Yes — Microwire/slew rate control

CKE Yes — Clock edge/levels select

CKP Yes Yes Clock idle/stretching control

BOR Yes Yes Brown-out Reset status

ADDEN — — Selects 9-bit addressing
DS91033A-page 2-318 1999 Microchip Technology Inc.

TB033
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 319 Thursday, March 2, 2000 8:02 AM
PIC16C64A/CR64: 2KW, 40-pin, Without Analog FLASH Equivalent

Device PIC16C64A PIC16CR64 PIC16F874

Program Memory 2KW 2KW 4KW

Data Bytes 128 128 192

Memory Banks 0,1 0,1 0,1,2,3

Shared — — 16 bytes (F0h-FFh)

Data EEPROM — 128 128

Additional Features

Brown-out Reset — 10-bit A/D
Addressable USART

CCP2
Brown-out Reset

Additional SFRs — — PIR2, PIE2, CCPR2L,
CCPR2H, CCP2CON,

RXSTA, TXSTA, SPBRG,
ADCON0, ADCON1,
ADRESH, ADRESL,
SSPCON2, TXREG,

RCREG

Bit IRP Reserved Reserved Selects upper/lower bank

Differences RP1 Reserved Reserved Selects upper/lower bank

SMP — — Microwire/slew rate control

CKE — — Clock edge/levels select

CKP Yes Yes Clock idle/stretching control

BOR Yes Yes Brown-out Reset status

PIC16C65A/65B/CR65: 4KW, 40-pin, Without Analog FLASH Equivalent

Device PIC16C65A PIC16C65B PIC16CR65 PIC16F874

Program Memory 4KW 4KW 4KW 4KW

Data Bytes 192 192 192 192

Memory Banks 0,1 0,1 0,1 0,1,2,3

Shared — — — 16 bytes (F0h-FFh)

Data EEPROM — — 128 128

Additional Features Brown-out Reset Brown-out Reset Brown-out Reset Brown-out Reset

Additional SFRs
— — — ADCON0, ADCON1,

ADRESH, ADRESL,
SSPCON2

Bit IRP Reserved Reserved Reserved Selects upper/lower bank

Differences RP1 Reserved Reserved Reserved Selects upper/lower bank

SMP Yes Yes — Microwire/slew rate

CKE Yes Yes — Clock edge/levels select

CKP Yes Yes Yes Clock idle/stretching

BOR Yes Yes Yes Brown-out Reset status

ADDEN — — — Selects 9-bit addressing
 1999 Microchip Technology Inc. DS91033A-page 2-319

TB033

S2.book Page 320 Thursday, March 2, 2000 8:02 AM
PIC16C66/67: 8KW, 28/40-pin, Without Analog FLASH Equivalent

Device PIC16C66 PIC16C67 PIC16F876/877

Program Memory 8KW 8KW 8KW

Data Bytes 368 368 368

Memory Banks 0,1,2,3 0,1,2,3 0,1,2,3

Shared 16 bytes (F0h-FFh) 16 bytes (F0h-FFh) 16 bytes (F0h-FFh)

Data EEPROM — — 128

Additional Features — — 10-bit A/D

Additional SFRs — — ADCON0, ADCON1,
ADRESH, ADRESL,

SSPCON2

Bit
Differences

ADDEN
ADDEN — Selects 9-bit addressing
DS91033A-page 2-320 1999 Microchip Technology Inc.

TB033
P

IC
m

icro
® 8-B

it

M
icro

co
n

tro
ller

2

S2.book Page 321 Thursday, March 2, 2000 8:02 AM
PIC16C72/72A/CR72: 2KW, 28-pin, With Analog FLASH Equivalent

Device PIC16C72 PIC16C72A PIC16CR72 PIC16F873

Program Memory 2KW 2KW 2KW 4KW

Data Bytes 128 128 128 192

Memory Banks 0,1 0,1 0,1 0,1,2,3

Shared — — — 16 bytes (F0h-FFh)

Data EEPROM — — — 128

Additional Features
— — — Addressable USART

CCP2

Additional SFRs — — — PIR2, PIE2, CCPR2L,
CCPR2H, CCP2CON,

RXSTA, TXSTA, SPBRG,
SSPCON2, TXREG,
RCREG, ADRESL

Bit IRP Reserved Reserved Reserved Selects upper/lower bank

Differences RP1 Reserved Reserved Reserved Selects upper/lower bank

SMP — Yes Yes Microwire/slew rate control

CKE — Yes Yes Clock edge/levels select

CKP Yes Yes Yes Clock idle/stretching control

Register
Names

ADRESH
ADRESH ADRES ADRES ADRESH in F873 same as

ADRES

PIC16C73A/73B: 4KW, 28-pin, With Analog FLASH Equivalent

Device PIC16C73A PIC16C73B PIC16F873

Program Memory 4KW 4KW 4KW

Data Bytes 192 192 192

Memory Banks 0,1 0,1 0,1,2,3

Shared — — 16 bytes (F0h-FFh)

Data EEPROM — — 128

Additional Features Brown-out Reset Brown-out Reset Brown-out Reset

Additional SFRs — — ADRESL,SSPCON2
Bit IRP Reserved Reserved Selects upper/lower bank

Differences RP1 Reserved Reserved Selects upper/lower bank

SMP Yes Yes Microwire/slew rate control

CKE Yes Yes Clock edge/levels select

CKP Yes Yes Clock idle/stretching control

BOR Yes Yes Brown-out Reset status

ADDEN — — Selects 9-bit addressing

Register
Names

ADRESH
ADRES ADRES ADRESH in F873 same as

ADRES
 1999 Microchip Technology Inc. DS91033A-page 2-321

TB033

S2.book Page 322 Thursday, March 2, 2000 8:02 AM
PIC16C74A/74B: 4KW, 40-pin, With Analog FLASH Equivalent

Device PIC16C74A PIC16C74B PIC16F874

Program Memory 4KW 4KW 4KW

Data Bytes 192 192 192

Memory Banks 0,1 0,1 0,1,2,3

Shared — — 16 bytes (F0h-FFh)

Data EEPROM — — 128

Additional Features Brown-out Reset Brown-out Reset Brown-out Reset

Additional SFRs — — ADRESL,SSPCON2

Bit IRP Reserved Reserved Selects upper/lower bank

Differences RP1 Reserved Reserved Selects upper/lower bank

SMP Yes Yes Microwire/slew rate control

CKE Yes Yes Clock edge/levels select

CKP Yes Yes Clock idle/stretching control

BOR Yes Yes Brown-out Reset status

ADDEN — — Selects 9-bit addressing

Register
Names

ADRESH
ADRES ADRES ADRESH in F874 same as

ADRES

PIC16C76/77: 8KW, 28/40-pin, Without Analog FLASH Equivalent

Device PIC16C76 PIC16C77 PIC16F876/877

Program Memory 8KW 8KW 8KW

Data Bytes 368 368 368

Memory Banks 0,1,2,3 0,1,2,3 0,1,2,3

Shared 16 bytes (F0h-FFh) 16 bytes (F0h-FFh) 16 bytes (F0h-FFh)

Data EEPROM — — 128

Additional Features — — 10-bit A/D

Additional SFRs — — ADRESL, SSPCON2

Bit
Differences

ADDEN
— — Selects 9-bit addressing

Register
Names

ADRESH
ADRES ADRES ADRESH in F876/77 same

as ADRES
DS91033A-page 2-322 1999 Microchip Technology Inc.

SECTION 3
SECURE DATA PRODUCT

APPLICATION NOTES
AND TECHNICAL BRIEFS

S
ecu

re D
ata P

ro
d

u
ct

3

S3.book Page i Thursday, March 2, 2000 8:01 AM
Designing a Transponder Coil for the HCS410 - AN650...3-1
PICmicro® Mid-Range MCU Code Hopping Decoder - AN672...3-11
HCS410 Transponder Decoder Using a PIC16C56 - AN675..3-23
Designing a Base Station Coil for the HCS410 - AN677...3-39
Wireless Home Security Implementing KEELOQ® and the PICmicro® Microcontroller - AN7143-47
A Guide to Designing for EuroHomelink® Compatibility - TB021 ..3-121
 1999 Microchip Technology Inc. DS00711A-page 3-i

S3.book Page ii Thursday, March 2, 2000 8:01 AM
DS00711A-page 3-ii 1999 Microchip Technology Inc.

AN650
Designing a Transponder Coil for the HCS410

S
ecu

re D
ata P

ro
d

u
ct

3

S3.book Page 1 Thursday, March 2, 2000 8:01 AM
OVERVIEW
This application note explains the design of transpon-
der coils. An Excel spreadsheet is used to automate the
update of values, depending on the specified parame-
ters. The spreadsheet file name is transpnd.xls. A
zip file containing this spreadsheet and a copy of this
application note can be downloaded from Microchip’s
web site at www.microchip.com.

The basic approach is to choose the transponder coil
external dimensions, since volume will usually be the
primary constraint for a coil as it will need to fit into a
keyfob, credit card or other small volume. Secondly,
properties of the core, coil windings as well as the
equivalent load placed across the coil are entered. This
fixes the Initial Coil Specification.

Once the initial coil is built, measurements are made on
this coil to determine the coil quality factor. These mea-
surements are used to calculate the Optimum Coil
Specification for a second coil.

SPREADSHEET FEATURES
The spreadsheet is split into three worksheets. The first
worksheet concerns the initial coil specification. The
inputs to this worksheet are the:

• coil external dimensions

• core effective relative permeability

• wire resistivity

• coil-packing factor

• transponder resonant frequency

• equivalent load that the HCS410 presents to the
resonant circuit.

The worksheet output gives the minimum number of
turns that the coil is required to have. The number of
turns together with coil dimensions fix the coil induc-
tance, wire resistance, resonating capacitor and wire
diameter.

The second worksheet enables the user to change the
number of turns from what is suggested in the initial coil
specification in order to use a standard value resonat-
ing capacitor.

The third worksheet requires a quality (Q) factor mea-
surement to be made on the initial coil when it is opti-
mally resonated. The two measured voltage values are
the only inputs required to determine the number of
turns for the optimal coil. Once again, the optimal num-
ber of turns together with the same coil dimensions fix
the coil inductance, wire resistance, resonating capac-
itor and wire diameter. The second worksheet can also
be used to change the number of turns from what is
suggested in the Optimum Coil Specification in order to
use a standard value resonating capacitor.

The authors welcome feedback, comments, questions and
errata via e-mail.

mike.sonnabend.@microchip.com
jan.van.niekerk@microchip.com

Authors: Mike Sonnabend, Jan van Niekerk
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS00650A-page 3-1

AN650

S3.book Page 2 Thursday, March 2, 2000 8:01 AM
INTRODUCTION
Overview of Inductive Communication

Communication between a KEELOQ transponder and
a base station occurs via magnetic coupling between
the transponder coil and base station coil. The base
station coil forms part of a series Resistance Inductor
Capacitor (RLC) circuit. The base station communi-
cates to the transponder by switching the 125kHz sig-
nal to the series RLC circuit on and off. Thus, the base
station magnetic field is switched on and off.

The transponder coil is connected in parallel with a res-
onating capacitor (125kHz) and a KEELOQ HCS410
transponder integrated circuit. When the transponder is
brought into the base station magnetic field, it magnet-
ically couples with this field and draws energy from it.
This loading effect can be observed as a decrease in
voltage across the base station resonating capacitor.

The KEELOQ transponder communicates to the base
station by “shorting out” its parallel LC circuit. This de-
tunes the transponder and removes the load, which is
observed as an increase in voltage across the base
station resonating capacitor. The base station capaci-
tor voltage is the input to the base station AM-demodu-
lator circuit. The demodulator extracts the transponder
data for further processing by the base station soft-
ware.

Using the Spread Sheet

Color Coding
The spreadsheet is color coded as shown in the table
below.

Units
The units in the spreadsheet have been made SI units.
Below is a table with some of the most common conver-
sions that the user may come across.

WORKSHEET 1: INITIAL COIL
SPECIFICATION

Data Required

The first step is to decide on the dimensions that the
coil should have. The dimensions required by the
spreadsheet are shown in Figure 1 below.

FIGURE 1: COIL DIMENSIONS

Ferrite Core Usage
The next step is to decide if a ferrite core (also called a
ferrite slug) is going to be used or not. If an air core is
used, then the relative permeability is 1.

There are advantages and disadvantages to using a
ferrite core. The advantage is that the coil can have a
larger inductance for a given volume. The disadvan-
tage is that the effective permeability can be very sen-
sitive to the core mechanical dimensions.

One method used to get the exact inductance for a coil
wound onto a ferrite core is to have sets of samples
built up, each with a different numbers of turns wound
onto the cores. Measurements for these coils and inter-
polation will yield the correct number of turns for the fer-
rite core. Alternatively, some manufacturers will wind
the coil onto the ferrite core to a specified inductance.

Color Meaning

Green User input. The default values correspond to
the HCS410 EV kit transponder coil.

Red Output.

Gray System defined.

Conversion from: Operation

Inches (in) to meters (m) * .0254

Inches (in) to centimeters (cm) * 2.54

Inches (in) to millimeters (m) * 25.4

Centimeters (cm) to meters (m) * 0.01

Millimeters (mm) to meters (m) * 0.001

Farads (F) to pico farads (nF) * 1e-9

Henry (H) to micro henry (µH) * 1e-6

Coil Dimensions

Input Units
Typ.

Value Description

h mm 9 Height of coil along its axis.

Do mm 2.3 Outside diameter of coil.

Di mm 1.5 Inside diameter of coil. Also
core outside diameter if core
is used.

Di

h

Do
DS00650A-page 3-2 1999 Microchip Technology Inc.

AN650
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 3 Thursday, March 2, 2000 8:01 AM
Ferrite core manufacturers usually publish curves of
slug effective permeability vs. slug length divided by
slug diameter. There is a large difference between the
ferrite material permeability (typically 2300) and the
effective permeability of a slug (typically 23). The effec-
tive permeability must be used in the spreadsheet.

Wire Resistivity
The default values in the spreadsheet assume
annealed copper wire. The wire resistivity need not be
changed unless a different wire material is used. The
packing factor can be left at 0.5 if the coil is tightly
wound with wire that has a circular cross section.

Magnetic Field Operating Frequency
The magnetic field is generated by the base-station
and the frequency is set at the base-station. The tran-
sponder coil operates at the same frequency and
should match the base station magnetic field operating
frequency i.e. 125kHz.

HCS410 Load
The equivalent average load that the HCS410 presents
to the transponder resonant circuit can change with the
HCS410 configuration i.e. this value will be higher if auto
damping is not selected. The average load is in the order
of mega ohms when the HCS410 is battery powered.
The HCS410 pool capacitor will average out the resis-
tance of the coil except during transponder to base
communication and during auto damping when the
HCS410 “shorts” out the coil.

One method to measure the average load is to use a
DM303003 HCS410 Evaluation Kit with a transponder
that is perfectly resonated. The base-station and tran-
sponder are to be programmed in the same way as for
the final application. The transponder is placed in the
field. The voltage is measured across the coil using a
high impedance oscilloscope probe. The coil voltage
and exact position of the coil is noted where the tran-
sponder just stops working.

The HCS410 is then replaced with a variable resistor.
Keeping the coil in exactly the same position noted
above, the variable resistor is adjusted until the voltage
is exactly the same. This resistor value is the value to
be used as equivalent HCS410 load. The value will be
in the order of 100k ohm if no battery is used.

Core Permeability

Input Units
Typ.

Value Description

µr 23.5 Effective relative permeability.
This is the ratio of magnetic field
strength inside the coil with the
core in place, to the magnetic
field strength if an air core
replaces the core.

Wire Resistivity

Input Units
Typ.

Value Description

ρ ohm-m 1.72E-08 Coil wire resistivity at 20°C.
Resistivity for annealed cop-
per wire is used. If the coil
uses another type of wire,
then the corresponding resis-
tivity would have to be used.

K 0.5 Packing factor. This compen-
sates for copper area lost due
to wire shape that is round
and not square as well as wire
insulation. If the coil is wound
by hand, then the space factor
of less than 0.5 may have to
be chosen to compensate for
wasted space.

Field Operating Frequency

Input Units
Typ.

Value Description

F kHz 125 Coil operating frequency
(resonance).

HCS410 Load

Input Units
Typ.

Value Description

RP Ω 60000 This is an equivalent average load
that the HCS410 presents to the
transponder coil.
 1999 Microchip Technology Inc. DS00650A-page 3-3

AN650

S3.book Page 4 Thursday, March 2, 2000 8:01 AM
Intermediate Calculations

The variables used to calculate the initial coil are given
in the table below.

Output Data

The output data for the initial coil matches the HCS410
equivalent load to the wire resistance and results in
minimum number of turns.

Initial Coil Specifications - Variables

Input Units Typical Value Description

ωr rad/sec 785398.1634 Transmission frequency in radians per second.

A sq. mm 36 Area for packing wire into.

RONE ohms 5.70374E-5 Coil resistance of one turn which occupies the total volume.

LONE Henry 7.36485E-9 Coil inductance of one turn which occupies the total volume.

Initial Coil Specifications - Output Data

Input Units Typical Value Description

NMIN Turns 319.8168897 This is the minimum number of turns that the coil should have to match the
HCS410 local resistance.

LMIN µH 753.2980565 The minimum coil inductance, since inductance increases with number of
turns.

RMIN Ω 5.833943331 Minimum wire resistance, since resistance increases with number of turns.

CMAX pF 2152.055119 This is the maximum capacitance for the resonating capacitor. The product
of LMIN and CMAX is a constant determined from resonant frequency.

DMAX mm 0.084652661 This is the maximum wire diameter, as fitting more turns into a constant vol-
ume requires thinner wire to be used.
DS00650A-page 3-4 1999 Microchip Technology Inc.

AN650
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 5 Thursday, March 2, 2000 8:01 AM
WORKSHEET 2: USER ENTERS NUMBER OF TURNS
Data Required

The number of turns as suggested for NMIN or NOPT

can be entered as the number of turns. This number
can be changed slightly until the output results are as
desired i.e. to use a standard value resonating capaci-
tor. Note that too large a change in N will result in a non-
optimal coil.

Output Data

The worksheet output includes the resonating capaci-
tor value which should be a standard value component.

WORKSHEET 3: QUALITY FACTOR MEASUREMENT
The coil shape factor M is obtained from measure-
ments made on the initial coil design. This can only be
done after the initial coil has been designed and built.
This factor is calculated as follows:

1. Place the coil into the base-station magnetic
field.

2. Resonate the coil with a capacitor placed in par-
allel with the coil, which is the same type (dissi-
pation factor) as the capacitor which will be used
with the optimally designed coil.

3. Measures the voltage (VCAP) across the coil
using a high impedance oscilloscope probe.

4. Disconnect the capacitor while keeping the res-
onant circuit in EXACTLY the same place with
respect to the magnetic field.

5. Now measure the voltage (VNO_CAP) across the
coil using the high impedance oscilloscope
probe.

Data Required

The two voltage measurements from the quality factor
measurement are the only data required.

User Enters Number of Turns

Input Units
Typ.

Value Description

N Turns 350 The user is free to select a num-
ber of turns that the coil should
have. This is useful in order to
match the inductance to a stan-
dard value capacitor

User Enters Number of Turns

Input Units Typical Value Description

L uH 902.194437 Coil inductance for number of turns entered by user.

RWIRE Ω 6.987076595 Wire resistance for number of turns entered by user.

CRES pF 1796.88421 Resonating capacitor to resonate coil with number of turns entered by user.

DWIRE mm 0.080920264 Wire diameter; choose closest available wire diameter.

Q Factor Measurement

Input Units
Typ.

Value Description

VCAP V 46.25 Voltage across the initial coil
plus capacitor when the coil is
resonant.

VNO_CAP V 20.94 Voltage across initial coil with
capacitor disconnected and coil
kept in exactly the same place.
 1999 Microchip Technology Inc. DS00650A-page 3-5

AN650

S3.book Page 6 Thursday, March 2, 2000 8:01 AM
Intermediate Calculations

The coil shape factor M is found from Q factor mea-
surements on the first coil design. It can subsequently
be used for optimization of further coil designs while
keeping coil dimensions constant.

Output Data

The Optimum Resonant Circuit Specification is derived
for the case where the shape factor has been calcu-
lated from Q-factor measurements made on the initial
coil design. The number of turns will always be greater
than for the initial coil

Field

Input Units Typical Value Description

Q 22.086915 Quality factor calculated from VCAP/VNO_CAP

M 3.591551527 This is a proportionality factor between the internal resistance of the coil
observed in Q factor measurements and the DC resistance of the coil wire
as measured with a multimeter. This factor is dependent on the coil’s physi-
cal geometry and thus called the “shape factor” M in this application note.

RINT Ω 0.000204853 Internal resistance for one turn.

Optimum Coil Specification

Input Units Typical Value Description

NOPT Turns 6.85.3006229 Optimum number of turns that the coil should have once shape factor M is
known.

LOPT uH 3458.806841 Coil inductance for optimum number of turns.

ROPT Ohm 26.78685141 Wire resistance for optimum number of turns.

COPT pF 468.6988932 Resonating capacitor to resonate coil with optimum number of turns.

DOPT mm 0.057829675 Optimum wire diameter; choose closest available wire diameter.
DS00650A-page 3-6 1999 Microchip Technology Inc.

AN650
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 7 Thursday, March 2, 2000 8:01 AM
APPENDIX A: FORMULAS USED IN
THE SPREADSHEET

This appendix gives the formulas used in the spread-
sheet. All values use metric units.

For a frequency f in Hertz, the radians per second fre-
quency is given by:

Area A for packing wire is determined from coil outside
diameter Do, coil inside diameter Di and coil axial
length h as:

RONE is the wire resistance of one turn of wire that has
resistivity ρ and occupies total available volume
adjusted by packing factor K:

LONE the inductance for one turn of wire that occupies
the total available volume, wound onto a core of relative
permeability µr is given by:

Minimum number of turns NMIN, for a load with equiva-
lent resistance RP connected in parallel across the par-
allel resonant circuit is given by:

The coil inductance for N turns is given by:

The reason for the factor N squared comes from the
empirical formula given in reference [1].

Similarly the resistance of the coil wire RWIRE is given
by:

The reason for the factor N squared and not just N is
that for a constant coil volume, increasing N from 1 turn
to N turns increases the resistance as follows:

• Resistance increases by a factor of N due to coil
length increasing N times

• Resistance also increases by a further factor of N
due to the wire cross sectional area being
reduced by a factor of N due to the constant area
for the conductors to fit into.

The resonant capacitor C is given by the formula:

 The wire diameter DWIRE is given by the formula:

The closest available wire diameter is chosen to wind
the coil with.

With coil quality factor measurement giving the voltage
VCAP across the coil when it is perfectly resonated with
a resonating capacitor, and VNO_CAP when the capac-
itor is disconnected, the coil quality factor Q is calcu-
lated as:

The transponder resonant circuit consists of a coil con-
nected in parallel with a capacitor. The quality factor of
this resonant circuit Q is defined as:

Appendix B; Nature of the internal resistance “RINT”
shows that the internal flux resistance for one turn of
wire RINT it is related to the wire resistance for one turn
of wire RONE by the measured magnetic shape factor
M:

and that the total coil resistance can be written as:

Using the three equations above and coil inductance
for N turns, the coil shape factor can be written as:

From Appendix E, the optimum number of turns N, for
a load with equivalent resistance RP connected in par-
allel across the parallel resonant circuit is given by:

ωr 2πf=

A
Do Di–()

2
--------------------- h×=

RONE ρπ Do Di+()
2AK

----------------------=

LONE

µr Do Di+()2

127000 26Do 36h 14Di–+()
--=

NMIN

RP RONE

ωr LONE

-----------------------=

L LONE N
2

=

RWIRE RONE N
2

=

C
1

ωr
2
 L

-------------=

DWIRE 2
AK
πN
-------=

Q
VCAP

VNO_CAP
---------------------=

Q
ω L

RTOTAL
-----------------=

RINT RONEM=

RTOTAL RONE RINT+()N2
=

M
ω LONE

Q RONE
------------------- 1–=

N
RP RONE RINT+()

ωr LONE

---------------------------------------=
 1999 Microchip Technology Inc. DS00650A-page 3-7

AN650

S3.book Page 8 Thursday, March 2, 2000 8:01 AM
APPENDIX B: NATURE OF THE
INTERNAL
RESISTANCE RINT

Induced Electromotive Force

Faraday’s law states that the induced electro motive
force (EMF) E in a circuit is numerically equal to the
rate of change of the flux Φ through it. Expanding this
statement for a coil of N turns in which the flux Φ varies
at the same rate through each turn gives the induced
EMF as:

If the coil has a core other than vacuum, then the mag-
netic flux is increased by a factor equal to the relative
permeability µr:

Letting the magnetic flux be:

gives:

This voltage is the voltage across the coil when no res-
onating capacitor is used. Since no current flows
through the coil, any resistances associated with the
coil do not affect E.

Induced Current

If the coil is shorted out with a capacitor that resonates
with the coil inductance at the magnetic field frequency,
then induced current flows through the coil. The current
in turn generates a magnetic field that opposes the
magnetic field that creates it.

Using the Biot Savart law it can be shown that the mag-
netic flux produced by a coil is given by:

where:

µ0 is the permeability of vacuum.

µr is the relative permeability of the core.
N is the number of turns on the coil.

I is the RMS current flowing in the coil due to the base
station magnetic field.
k is a factor based on the coil dimensions.

Φ is the flux through the coil due to the current I.

The flux is produced by the current is opposite in phase
to base-station flux but proportional in magnitude.

The transponder circuit current is thus:

Transponder Resistance

The transponder coil internal resistance RFLUX due to
magnetic flux considerations is thus:

Substituting for E and I gives:

It can be seen that RFLUX is independent of the mag-
netic flux Φ but it is proportional to the coil physical
dimensions that determine k:

Using a proportionality factor P:

letting:

then:

The transponder coil wire resistance for a constant coil
volume, is equal to:

where:

and:

ρ is the resistivity of coil wire material i.e. copper.
Do is the coil outside diameter.

Di is the coil inside diameter.

A is the total area for packing the wire into.

K is the packing factor i.e. fraction of coil cross section
occupied by copper.

The nature of RFLUX is that it is proportional to N
squared as is RWIRE. Thus RINT can be set proportional
to RONE by using a factor of proportionality M. This will
remain true regardless of the number of turns N and the
magnetic flux Φ.

Thus the total resistance for the transponder can be
written as:

Substituting for RWIRE and RFLUX:

Substituting for RINT:

E N
dΦ
dt
-------–=

E µr N
dΦ
dt
-------–=

Φ Φ̂ ω t)(cos=

E µr Nω Φ̂ ω t)(sin=

Φ k µ0 µr NI=

I
Φ

k µ0 µr N
----------------------=

RFLUX

E
I
---∝

RFLUX k µ0 µr
2
 ω N

2∝

RFLUX P k µ0 µr
2
 ω N

2
=

RINT P k µ0 µr
2
 ω =

RFLUX RINT N
2

=

RWIRE RONE N
2

=

RONE ρπ Do Di+()
2AK

----------------------=

RINT MRONE=

RTOTAL RWIRE RFLUX+=

RTOTAL RONE N2
RINT N2+=

RTOTAL RONE N
2

MRONE N
2

+=
DS00650A-page 3-8 1999 Microchip Technology Inc.

Z
R(RP× 2

w
2× C

2× R i w
3

L RP×××+ +
2

C
2× i w L×× i RP×–+

2
w C×× RP)+

R(p
2

w
2× C

2× 1)+
---=

AN650
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 9 Thursday, March 2, 2000 8:01 AM
APPENDIX C: RESONANT
FREQUENCY FOR
TRANSPONDER

The equivalent circuit for a transponder is shown below.

E is a voltage source that represents the voltage
induced in the coil due to the magnetic field.
R represents the total internal resistance of the coil.

L is the coil inductance.

C is the resonating capacitor capacitance.

Rp is the resistive load presented to the resonant circuit
by the HCS410.

The resonant frequency for the above circuit will now
be derived.

The impedance seen by E is

Manipulating this gives:

At resonance, the impedance is purely resistive, which
means that’s the imaginary portion of the equation is
zero. This gives frequency as:

It can be seen that the load affects the resonant fre-
quency. If the load is taken off, then the resonant fre-
quency is:

If the load resistance is decreased, the point at which
the number inside the square root becomes negative
causes the frequency to be imaginary and oscillation
stops.

To calculate at which point the load lowers the resonant
frequency by x%, using the equations above:

APPENDIX D: MAXIMUM POWER
TRANSFER

It is desirable to match resonant circuit to the load Zp
for maximum power transfer.

The voltage across the load ZP is:

This can be simplified to:

 The power in the load ZP is given by:

Substituting for V gives:

To find the maximum power transfer to the load ZP, the
expression for power is differentiated with respect to ZP

and set to zero. The roots of this equation will give value
of ZP for maximum power transfer.

Solving for ZP gives:

At resonance, assuming that ZP has a negligent effect
on frequency:

which can be written as:

Substituting for C into the optimum ZP equation gives:

+

–

LR

30E

C
1800pF RP

100k

900uH

Z R i w L
RP

1
i w C××

RP
1

i w C××
------------------+

------------------------------+××+=

Z
R(RP× 2

w
2× C

2× R i w
3

L RP×××+ +
2

C
2× i w L×× i RP×–+

2
w C×× RP)+

R(p
2

w
2× C

2× 1)+
---=

ω 1
LC

1

RP
2

C
2

----------------+=

ω 1

LC
-----------=

RP

100

x 200 x–

L
C
----=

+

–

LR

30E

C
1800pF ZP

100k

900uH

V

V E

ZP
1

i w C××
------------------×

ZP
1

i w C××
------------------+

R i w L
ZP

1
i w C××

ZP
1

i w C××
------------------+

-----------------------------+××+

---×=

V
i Zp E××

R ZP w C i R i w
2

L Zp C w L i Zp)×–×+××××+×–×××(
---=

P
V

2

ZP

------=

P Zp
E

2

R ZP w C i R i w
2

L Zp C w L i Zp)×–×+××××+×–×××
2

(
--×–=

d
dZP

--------P 0=

ZP
i R w L×–×()–

R w C i w
2

L C i)–×××+××()
--=

ω 1

LC
-----------=

C
1

Lω2
---------=

ZP
i R w L×+×–()

R
-------------------------------- w L××=
 1999 Microchip Technology Inc. DS00650A-page 3-9

AN650

S3.book Page 10 Thursday, March 2, 2000 8:01 AM
The quality factor Q is defined as:

which can be re-written as:

Substituting this R into the equation for ZP gives:

This shows that for maximum power transfer, the load
must have a capacitive reactance equal to (L and a
resistance component equal to (LQ. Since the Q for a
transponder is always going to be above 10, and since
the HCS410 is modeled as a resistive load, maximum
power transfer occurs when:

APPENDIX E: OPTIMUM NUMBER
OF TURNS

Have already shown in “APPENDIX D: Maximum
Power Transfer” that maximum power transfer occurs
when:

Q is defined as:

Substituting for Q in ZP gives:

“Appendix A: Formulas used in the spreadsheet” gives
inductance as:

“Appendix B: Nature of the Internal Resistance RINT”
gives the total resistance in the transponder resonant
circuit as:

Substituting the above two equations for L and R in ZP

gives:

Simplifying:

Solving for optimum number of turns N gives:

Note that RINT was defined as:

where M is the coil shape factor.

APPENDIX F: REFERENCES
1. Babani, B.B., ed. 1974. Coil Design and Construction

Manual. London: Bernards (publishers) Limited.

2. Nelkon, M., & Parker, P. ed. 1970. Advanced Level
Physics. London: Heinemann Educational Books Ltd.

Q
ωL
R

-------=

R
ωL
Q

-------=

ZP ωL Q i–()=

ZP ωLQ=

ZP ωLQ=

Q
ωL
R

-------=

ZP
ω2

L
2

R
------------=

L LONE N2=

RTOTAL RONEN
2

= RINTN
2

+

ZP

ω2
LONE

2
N

4

RONE N
2

RINT N
2

+
--=

ZP

ω2
LONE

2
N

2

RONE RINT+
--------------------------=

N
ZP RONE RINT+()

ω LONE

--=

RINT MRONE=
DS00650A-page 3-10 1999 Microchip Technology Inc.

AN672
PICmicro® Mid-Range MCU Code Hopping Decoder

S
ecu

re D
ata P

ro
d

u
ct

3

S3.book Page 11 Thursday, March 2, 2000 8:01 AM
OVERVIEW
This application note describes the working of a
KEELOQ® code hopping decoder implemented on a
Microchip Midrange MCUs (PIC16C6X, PIC16C7X,
PIC16C62X) The software can be used to implement a
stand alone decoder or be integrated with the user
application. The decoder supports the Microchip’s
HCS200, HCS201, HCS300, HCS301, HCS360, and
HCS361 KEELOQ hopping code encoders. The decoder
supports normal and secure learning. Two manufactur-
ers codes allow different manufacturers to share a pub-
lic key, but retain their own private keys.

KEY FEATURES
• Supports two manufacturer’s codes
• Compatible with Microchip’s HCS200, HCS201,

HCS300, HCS301, HCS360 and HCS361
encoders.

• PIC16C6X, PIC16C7X and PIC16C62X platforms
• Automatic baud rate detection
• Automatic Normal or Secure learn detection
• Four function outputs
• Six learnable transmitters
• RC Oscillator
• Serial interface

FIGURE 1: MICROCHIP MIDRANGE
DECODER

FUNCTIONAL INPUTS AND OUTPUTS

Author: Vivien Delport
Microchip Technology Inc.

18

17

16

15

14

13

12

11

1

2

3

4

5

6

7

8

9 10

LRNIN

LRNOUT

NC

MCLR

GND

S0

S1

S2

S3

RFIN

NC

OSCIN

OSCOUT

VDD

S_DTA

EE_CS

EE_CLK

EE_DIO

TABLE 1: MICROCHIP DECODER FUNCTIONAL INPUTS AND OUTPUTS

Mnemonic Pin Number Input / Output Function

RF IN 18 I Demodulated PWM signal from RF receiver. The decoder
uses this input to receive encoder transmissions.

LEARN INIT I 1 Input to initiate learning.

LEARN INDICATION 2 O Output to show the status of the learn process (in an inte-
grated system this will be combined with the system sta-
tus indicator).

S_DTA 13 O Serial data string output which contains the function code,
VLOW bit and function code match bit.

S0, S1, S2, S3 6, 7, 8, 9 O Function outputs, correspond to encoder input pins.

EE_CS
EE_CLK
EE_DIO

10,11,12 I/O External Serial EEPROM Interface lines.

KEELOQ is a registered trademark of Microchip Technology, Inc.
PICmicro is a trademark of Microchip Technology, Inc.
Microchip’s Secure Data Products are covered by some or all of the following patents:
Code hopping encoder patents issued in Europe, U.S.A., and R.S.A. — U.S.A.: 5,517,187; Europe: 0459781; R.S.A.: ZA93/4726
 1999 Microchip Technology Inc. DS00672C-page 3-11

Secure learning patents issued in the U.S.A. and R.S.A. — U.S.A.: 5,686,904; R.S.A.: 95/5429

AN672

S3.book Page 12 Thursday, March 2, 2000 8:01 AM
PUBLIC AND PRIVATE
MANUFACTURER’S CODE

The decoder supports two manufacturer’s codes,
called the public manufacturer’s code and private man-
ufacturer’s code. This feature allows two manufactur-
ers to share one public manufacturer’s code, but retain
their own private manufacturer’s code. The decoder
uses the public manufacturer’s code first to drive the
encoder’s decryption key, but if learn fails, it will retry
using the private manufacturer’s code.

PROGRAM FLOW

The decoder software will run on any PIC6C6X/7X with
1K program memory. The operating frequency is
4 MHz. The clock speed is important as the reception
routine (RECEIVE) has some critical timing specifica-
tions. Other decoder functions that rely on a 4 MHz
clock speed are the hold times of the various outputs,
time-outs, etc. The compiler used is MPASM.

A high-level description of the main program flow, the
transmission validation flow, and the transmitter learn
flow are described in the following sections. More
detailed descriptions of the other modules can be found
in Application Note AN642.

MAIN PROGRAM FLOW

After reset, the decoder enters the main loop where it
spends most of the time. The main loop checks the
learn button and if pressed (TST_LEARN) enters the
learn mode. The microcontroller checks transmissions
from the encoders (RECEIVE). Once 65 bits are
received, the microcontroller validates the transmis-
sion. When a valid transmission is received from a
learnt encoder, the decoder sends out a serial data
string containing the function code (TX_FUNC) and sets
the appropriate function outputs (M_BUT).

TRANSMISSION VALIDATION FLOW

After reception of a code, the decoder will first check if
the transmitter is learnt on the decoder. This is done by
calculating the checksum on the received transmis-
sion’s serial number and then searching through the
transmitter blocks stored in EEPROM to find a match. If
a match is found, the decoder reads the decryption key
stored for that transmitter and decrypts the hopping
code portion. The 10 LSBs of the discrimination value
are compared to the 10 LSBs of the serial number. The
16-bit synchronization counter is validated by checking
if the received counter is in the blocked window. The
decoder then checks if the counter is in the double
operation window. If this is the case, the decoder will
wait for the next sequential transmission to synchro-
nize. If the counter is within the single operation win-
dow, the decoder updates the EEPROM counters and
then generates the appropriate function output.

TRANSMITTER LEARN FLOW

To be able to use a transmitter with the decoder, the
transmitter must first be learned into the decoder. Add-
ing a transmitter is done by pressing the learn button. If
the button is pressed for longer than 10 seconds, the
decoder executes an “erase all” function, which will
remove all the transmitters learned.

Normal Secure Learn Selection: In learn mode, the
decoder monitors transmissions for 4 seconds. If two
codes are received with different serial numbers, the
first code is used as the hop code and the second as
the seed for the secure learn algorithm. If the two serial
numbers are the same, the first received code will be
used for the normal learn algorithm.

Manufacturer’s Code Selection: The decryption key
is derived using the public manufacturer’s code stored
in a ROM table. The received hopping code is validated
by comparing the received transmission’s discrimina-
tion bits with the lower bits of the serial number. If the
decryption validation fails, the decoder will derive the
decryption key again by using the private manufac-
turer’s code, also store in a ROM table. If the decryption
validation was successful, the decoder will calculate a
checksum value on the transmission’s serial number.
All of the information is then stored in an unused block
in the EEPROM. The same memory block will be used
if the transmitter was already learned. The result of the
learn sequence is displayed on the LED.

COMPILER OPTIONS

Delayed Increment: When this option is enabled, the
decoder will automatically increment the synchroniza-
tion counter by twelve, 30 seconds after the last valid
reception. The synchronization window is increased
from 16 to 256 in this mode. Delayed increment is used
to defeat jamming code grabbers in single button trans-
mitters. This option is enabled by setting the define
variable DLY_INC to 1 and recompiling the code.

SERIAL FUNCTION STRING OUTPUT

The decoder’s serial output sends out a function byte
which consists of the function code, battery low status
flag, and a function code match bit. After the last bit was
clocked out, the line will go high for 500 ms. Repeated
transmissions will, as with the binary function outputs,
extend this 500 ms time-out. Start bit is one and the
stop bit is zero.

The data byte format for this output is shown in
Figure 2.

SOURCE CODE

A floppy disk containing the source code for this appli-
cation note is available under no fee license from your
Microchip distributor. The disk order number is
DS40149.
DS00672C-page 3-12 1999 Microchip Technology Inc.

AN672
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 13 Thursday, March 2, 2000 8:01 AM
FIGURE 2: DATA BYTE FORMAT

FIGURE 3: MAIN PROGRAM FLOW

S3 S2 S1 S0 VLOW FUNC_OK 0 0 Stop

Note: The serial data is clocked out with basic pulse width TE = 200 µs

Start

Valid
Transmission

Check For
Valid Transmission

Learn
Button

Update Timer

and do
Req Event

Learn
Button

Update Timer
and do

Req Events

Time
> 8.2 sec

Erase All
Transmitters

From Memory

Transmitter
Learn
Mode

Start

End

Validate
Received

Transmission

YES YES

NO

YES

NO YES

NO NO

Pressed

Released
 1999 Microchip Technology Inc. DS00672C-page 3-13

AN672

S3.book Page 14 Thursday, March 2, 2000 8:01 AM
FIGURE 4: TRANSMITTER LEARN FLOW

Check For
Valid

Transmission

Valid
Transmission

Update Timer
and do

Req Events

Time
> 30 sec

Key
Equal

Last
TX Block

Store Counter,
Checksum &

 Decryption Key

Discr = SN

Get Random
Block Number

Decrypt
Transmission’s
Hopcodes

Calculate
Serial Number

Checksum

Chksum’s
Equal

Indicate
Learn
Failed

Block
Used

Check For
Second Valid
Transmission

New
Transmission

Time
> 8 sec

Store
First

Transmission

Load Public
Manufacturer’s

Code

Calculate
Decryption

Key

Load Private
Manufacturer’s

Code

Private
Key Used

Indicater LEARN
Successful

Store TX &
Indicate Secure

Learn

Store Tx &
Indicate Normal

Learn

Recover Received
Transmissions

NO

NO

NO

YES

YES

YES

NO

NO

NO

YES

End

Start

NO

NO

YES

NO

YES

YES

YES

YES

NO

YES
DS00672C-page 3-14 1999 Microchip Technology Inc.

AN672
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 15 Thursday, March 2, 2000 8:01 AM
FIGURE 5: TRANSMISSION VALIDATION FLOW

Read Key and
Decrypt

Hop Code

Compare
Discr Value

Disc
Equal

Resync
Set

Substract
Counters

Difference
> 3FFFh

Resync
Set

Difference
>16

Update
Counter

Load
Counter From

RAM

Use Next
Transmitter

 Block

All TX
Blocks

Counter
> 4h

Calculate
Serial Number

Checksum

Checksum
Equal

Generate
Outputs

Compare
with

EEPROM

Load
Counter From

EEPROM

YES

Start

Stop

YES

YES

NO

NO

NO

NO

NO

NO

NO

YES

YES

YES

YES

Store Counter &
Set Resync Flag

YES

NO
 1999 Microchip Technology Inc. DS00672C-page 3-15

AN672

S3.book Page 16 Thursday, March 2, 2000 8:01 AM
DECODER MEMORY MAPS
TABLE 2: MEMORY MAP ROM (8-BIT BYTES)

Word Address Mnemonic Description

42 MKEY1_0

64-Bit Public
Manufacturers Code
(Used to generate
decryption keys)

43 MKEY1_1

44 MKEY1_2

45 MKEY1_3

46 MKEY1_4

47 MKEY1_5

48 MKEY1_6

49 MKEY1_7

4A MKEY2_0

64-Bit Private
Manufacturers Code
(Used to generate
decryption keys)

4B MKEY2_1

4C MKEY2_2

4D MKEY2_3

4E MKEY2_4

4F MKEY2_5

50 MKEY2_6

51 MKEY2_7

52 EKEY_0

64-Bit
EEPROM Key

(Used to encrypt EEPROM data)

53 EKEY_1

54 EKEY_2

55 EKEY_3

56 EKEY_4

57 EKEY_5

58 EKEY_6

59 EKEY_7
DS00672C-page 3-16 1999 Microchip Technology Inc.

AN672
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 17 Thursday, March 2, 2000 8:01 AM
TABLE 3: MEMORY MAP EEPROM (16 BIT WORDS)

Address Mnemonic Address Mnemonic

00 Scratch Pad #1 – First TX 20 CNT20

01 Scratch Pad #1 – First TX 21 CNT21

02 Scratch Pad #1 – First TX 22 DISC2

03 Scratch Pad #1 – First TX 23 CHKSUM2

04 Scratch Pad #2 – Seed TX 24 KEY20

05 Scratch Pad #2 – Seed TX 25 KEY21

06 Scratch Pad #2 – Seed TX 26 KEY22

07 Scratch Pad #2 – Seed TX 27 KEY23

08 Not Used 28 CNT30

09 Not Used 29 CNT31

0A Not Used 2A DISC3

0B Not Used 2B CHKSUM3

0C Not Used 2C KEY30

0D Not Used 2D KEY31

0E Not Used 2E KEY32

0F Not Used 2F KEY33

10 CNT00 30 CNT40

11 CNT01 33 CNT41

12 DISC0 32 DISC4

13 CHKSUM0 33 CHKSUM4

14 KEY00 34 KEY40

15 KEY01 35 KEY41

16 KEY02 36 KEY42

17 KEY03 37 KEY43

18 CNT10 38 CNT50

19 CNT11 39 CNT51

1A DISC1 3A DISC5

1B CHKSUM1 3B CHKSUM5

1C KEY10 3C KEY50

1D KEY11 3D KEY51

1E KEY12 3E KEY52

1F KEY13 3F KEY53

Note:

SCRATCHPAD: Temporary storage of transmission during learn.

CHKSUM: The encoder serial number checksum.

KEY: These bytes contain the decryption key for each encoder.

DIS: Discrimination values and function code storage.

CNT: Two copies of the synchronization counter are stored for each encoder to prevent loss of synchro-
nization information due to EEPROM write failure.
 1999 Microchip Technology Inc. DS00672C-page 3-17

AN672

S3.book Page 18 Thursday, March 2, 2000 8:01 AM
TABLE 4: RAM MEMORY MAP (8-BIT BYTES)

Address Mnemonic Description

0C FLAGS Decoder flags

0D ADDRESS Address register – points to address in EEPROM

0E TXNUM Current transmitter’s block index

0F TX_CNT Transmitter loop counter

10 OUTBYT General data register, mask register used in decryption

11 CNT0

Loop counters12 CNT2

13 CNT3

14 CNT_HI
16-bit event clock counter

15 CNT_LO

16 RAM_HI
16-bit RAM counter (used in resynchronization)

17 RAM_LW

18 TMP0

Temporary registers

19 TMP1

1A TMP2

1B TMP3

1C TMP4

1D TMP5

1E TMP6

1F TMP7

20 CSR4

64-bit shift register
Used in reception, decryption and key generation

21 CSR5

22 CSR6

23 CSR7

24 CSR0

25 CSR1

26 CSR2

27 CSR3

28 KEY7

64-bit shift register holds decryption key

29 KEY6

2A KEY5

2B KEY4

2C KEY3

2D KEY2

2E KEY1

2F KEY0
DS00672C-page 3-18 1999 Microchip Technology Inc.

AN672
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 19 Thursday, March 2, 2000 8:01 AM
Many of the memory locations in RAM are used by multiple routines. A list of alternate names and functions are given
in the table below.

Address Mnemonic Also Known As Description

10 CNT2 OUTBYT Temporary Loop Counter.

18 HOP1 CSR0

32-bit hop code register.
19 HOP2 CSR1

1A HOP3 CSR2

1B HOP4 CSR3

OD EHOP3 ADDRESS

Extended 32-bit buffer used during key
generation as a 32-bit buffer.

1C EHOP2 TXNUM

1D EHOP1 TX_CNT

1E EHOP0 CNT3

17 SER_0 CSR7

28-bit serial number, stores received
transmission open 32 bits.

16 SER_1 CSR6

15 SER_2 CSR5

14 SER_3 CSR4

1B FUNC CSR3 Button code and user nibble of discrimination
value.

1A DISCR CSR2 Discrimination value.

19 CNTR_HI CSR1
16-bit received counter.

18 CNTR_LW CSR0
 1999 Microchip Technology Inc. DS00672C-page 3-19

AN672

S3.book Page 20 Thursday, March 2, 2000 8:01 AM
DEVICE PINOUTS

The device used in the application note is a PIC16C6X PDIP.

TIMING PARAMETERS

PIN PICmicro Function Decoder Function PIN PICmicro Function Decoder Function

1 Port A Bit 2 LEARN Input Act Low 18 Port A Bit 1 RF Input

2 Port A Bit 3 LRN IND Output High 17 Port A Bit 0 Not Used

3 TIMER0 Connect to VDD 16 OSCIN RC OSC (4 MHz)

4 MCLR Brown-out detect 15 OSCOUT —

5 GND Ground 14 VDD +5V supply

6 Port B Bit 0 S0 13 Port B Bit 7 FUNC OK

7 Port B Bit 1 S1 12 Port B Bit 6 CS (1)

8 Port B Bit 2 S2 11 Port B Bit 5 CLK (2)

9 Port B Bit 3 S3 10 Port B Bit 4 DIO (3+4)

Parameter Typical Unit

Output activation duration 524 ms

Output pause if new function code received 100 ms

Erase all duration 8.4 s

Learn mode time-out 33.6 s

Learn successful LED flash duration 4.2 s

Learn successful LED flash rate 3.8 Hz

Learn failure LED on duration 1 s
DS00672C-page 3-20 1999 Microchip Technology Inc.

AN672
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 21 Thursday, March 2, 2000 8:01 AM
APPENDIX A: APPENDIX SCHEMATIC DIAGRAMS

FIGURE A-1: SCHEMATIC DIAGRAM OF MICROCHIP KEELOQ DECODER

VCC

Power Supply

1
2
3

J1

CON3

12V

GND C2
100 µF

VI G
N
D

VO

U2
LM7805D5

1N4004/7

VCC

C3
100 µF

R8

R3
1K

VI G
N
D

VO

U4
LOW VOLTAGE DETECTOR

R4

R5
R6

R7

S0

S1
S2
S3

D1

D3
D4

D2

D5

1
J1

RF INPUT

VCC

RFIN

MCLR 4

RTCC 3

OSC1 16

CLKOUT
 15

RA0 17
RA1 18
RA2 1
RA3 2

RB1 7

V
C
C

1
4

G
N
D
5

RB0 6

RB2 8
RB3 9
RB4 10
RB5 11
RB6 12
RB7 13

U5

PIC16C61

R1
10K

C1
10 pF

VCC

CS 1
SK 2
DI 3
DO 4

VCC

GND

NC
NC

U1

93C46

Serial EEPROM

VCC

R2

LEARN
1

2
S1
SW PB

10K

 8

 5

 7
 6

Serial Data Output

1K
 1999 Microchip Technology Inc. DS00672C-page 3-21

AN672

S3.book Page 22 Thursday, March 2, 2000 8:01 AM
NOTES:
DS00672C-page 3-22 1999 Microchip Technology Inc.

AN675
HCS410 Transponder Decoder Using a PIC16C56

S
ecu

re D
ata P

ro
d

u
ct

3

S3.book Page 23 Thursday, March 2, 2000 8:01 AM
INTRODUCTION
This document describes a secure transponder sys-
tem. The system is suitable for use in security applica-
tions such as cars, motor bikes, and scooters (two-
wheelers). Microchip’s secure HCS410 KEELOQ code
hopping transponder is used. The decoder is imple-
mented on a Microchip PIC16C56 microcontroller. The
software can be used to implement a stand-alone
decoder or can be integrated into a security system.
The maximum operating range of this particular appli-
cation circuit is 25 millimeters (one inch).

KEY FEATURES

• Stand-alone transponder decoder
• Compatible with KEELOQ HCS410 transponder

• Twelve learnable transponders

• Two function outputs

• XT oscillator

TYPICAL APPLICATIONS

• Automotive/scooter/motorcycle

• Access control

• Gate and garage door openers

• Identity tokens

PIN FUNCTIONSAuthor: Vivien Delport, Mike Sonnabend
Microchip Technology Inc.

P
IC

16C
56

LRN_IN

LRN_OUT

NC

MCLR

1

2

3

4

18

17

16

15

NC

IMMOB

OSC_IN

OSC_OUT

GND

DATA_B2T

DATA_T2B

IGN/POLL

5

6

7

8

14

13

12

11

VDD

VALID

EE_CS

EE_CLK

FIELD 9 EE_DIO10

KEELOQ is a registered trademark of Microchip Technology, Inc.
Microchip’s Secure Data Products are covered by some or all of the following patents:
Code hopping encoder patents issued in Europe, U.S.A., and R.S.A. — U.S.A.: 5,517,187; Europe: 0459781; R.S.A.: ZA93/4726
Secure learning patents issued in the U.S.A. and R.S.A. — U.S.A.: 5,686,904; R.S.A.: 95/5429
 1999 Microchip Technology Inc. DS00675D-page 3-23

AN675

S3.book Page 24 Thursday, March 2, 2000 8:01 AM
HARDWARE
Overview

The hardware for this application note consists of a
microcontroller circuit, a transponder, and a base sta-
tion circuit. Figure 1 shows an overview of the hard-
ware and the interface between each block. The base
station is shown in Figure 2. The transponder and
microcontroller are shown in Figure 3.

FIGURE 1: TRANSPONDER SYSTEM BLOCK DIAGRAM

FIGURE 2: READ/WRITE BASE STATION

HCS410

OSC

NF Read Channel

PIC16C56
RF Field
125 kHz

Carrier
Enable

Data
Output

Learn Enable
Poll/Ignition

Learn Indicator
Immobilize
Valid Token

TRANSPONDER BASE STATION MICROCONTROLLER

R5
470k

env

2

1

D6 D7
1

2
R6

10k

R7
10k

+5V

8
3

2
1

4

U6A

R8

56k

R9

22k

+5V

C6
0.1µF

C6

10n

R16
120k

8

7
6

5

4

DATA_T2B

R17
390k

+

–

+

–

C4
100pF

+5V

R18
2.7k VREF

C7
0.1µF

D1
LED

2

1

D5

env

R3
100

C3
1n5 100V

C2
10n 100V

R4
470k

Q1

L1
1mH

C1
1.5nF 630 V

VCC

R1
180+5V

R2
10K

11

12

U1
PI

RST

7
5
4
6

14
13
15
1
2
3

9
10

CLKOUT

DATA_B2T

Q4
Q5
Q6
Q7
Q8
Q9

Q10
Q12
Q13
Q14

PO
PO

2N3904

74HC4060

LM358 LM358

U6B
1N4148 1N4148

VREF

VREF
DS00675D-page 3-24 1999 Microchip Technology Inc.

AN675
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 25 Thursday, March 2, 2000 8:01 AM
FIGURE 3: MICROCONTROLLER, POWER SUPPLY, AND TRANSPONDER

MICROCONTROLLER

Y1
4 MHz MCLR 4

RTCC
 3

OSC1
 16

CLKOUT
 15

RA0 17

RA1 18

RA2 1

RA3 2

RB1
 8

V
c
c

1
4

G
N
D

5

RB0 6

RB2
 9

RB4

 7

RB5

10
RB3

11

RB6 12

RB7 13

U2

PIC16C56

LRN_OUT

LRN_IN

DATA_T2B

DATA_B2T

+5V

DATA_B2T

DATA_T2B

1

2

R13
10k

1

2

R14
10k

+5V+5V

2

SW1
POLL

SW2
LEARN

1

2

R10
1k

1

2

R11
1k

1

2

R12
1k

VALID

FIELD

EE_CS

EE_CLK

EE_DIO

IGN/POLL

1

2

C8
22 pF

1

2

C9
22 pF

+5V
CS 1

SK 2

DI 3

DO 4

Vcc 8

GND 5

NC 7

NC 6

U3

93LC46B

D4
LED

D3
LED

1

2

C10
22 µF

Vcc

VI G
N
D

VO

U4
LM7805

POWER SUPPLY

1

2

C12
10 µF

1

2

C11
10 nF

+5V

1

2

1

xx

x
x

VCC RESET

U7

1

2

3

4

8

7

9

5

H
C

S
410

U5

1.5 nF

1.0 mH

x

x

x x
0.1 µF

TRANSPONDER

15V

C14

C13

L2

+5V

R15
10K

LED D2
LED

1

2 3

R19
1k

TCM809L

IMMOB
 1999 Microchip Technology Inc. DS00675D-page 3-25

AN675

S3.book Page 26 Thursday, March 2, 2000 8:01 AM
Microcontroller

The microcontroller consists of the following
components:

• Microchip PIC16C56 microcontroller

• A Microchip 93LC46B serial EEPROM used to
store all the information of learned transponders

• A 5V supply voltage regulator

• A supply supervisor that inhibits the microcontrol-
ler during low voltage events

• Two push buttons used for user inputs

• Three indicator LEDs used for user feedback and
indication of function outputs

The microcontroller interfaces to the base station circuit
by means of two wires: DATA_T2B used to read data
from the transponder to the base station. The carrier
enable line of the read/write base station (DATA_B2T)
used by the base microcontroller to send data to the
transponder.

Table 1 lists the I/O pin assignment for this application.

Read/Write Base Station

The base station is designed to operate from supply
VCC between 9V and 12 V.

The 14-bit binary counter U1 divides the 4MHz micro-
controller clock CLKOUT to produce a 125kHz clock to
transistor Q1. This transistor drives the resonant circuit
formed by R1, C1 and L1 to produce a magnetic field.
The microcontroller can switch the magnetic field on
and off via signal DATA_B2T for communication to the
transponder.

The transponder is powered by coupling with the mag-
netic field produced by L1. The transponder also mod-
ulates this field for communication back to the
microcontroller. The field modulation is detected at the
junction of C1 and L1 by the envelope detector circuit
input at diode D5. The envelope detector output signal
is amplified by U6A and the data is recovered by band-
pass filter U6B. The filter output DATA_T2B is fed
directly to the microcontroller.

Table 8 lists the components used in the decoder circuit
as shown in the schematics, in Figure 2 and Figure 3.

Table 9 lists the components used for the transponder
in Figure 3.

TABLE 1: PIC16C56 I/O PIN ASSIGNMENT

Pin Number Pin Function Device Pin Description

17 IMMOB RA0 Immobilize function output

1 LRN_ IN RA2 Input to initiate learning

2 LRN_OUT RA3 Output to show the status of the learn process
(in an integrated system this will be combined with the
system status indicator).

6 DATA_B2T RB0 Data from base station to transponder

7 DATA_T2B RB1 Data from transponder to base station

8 IGN/POLL RB2 Input to activate transponder polling

9 FIELD RB3 Magnetic field is active

10
11
12

EE_DIO
 EE_CLK
EE_CS

RB4
RB5
RB6

Interface lines to external serial EEPROM

13 VALID RB7 Valid token pulse function output
DS00675D-page 3-26 1999 Microchip Technology Inc.

AN675
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 27 Thursday, March 2, 2000 8:01 AM
INTRODUCTION TO THE HCS410
KEELOQ TRANSPONDER

The HCS410 is a KEELOQ code hopping transmitter/
transponder designed for secure entry and identifica-
tion system. The device combines the circuitry required
for Remote Keyless Entry (RKE) and inductively cou-
pled Identify Friend or Foe (IFF) This section describes
software which uses the inductive coupled IFF func-
tions of the HCS410.

IFF Activation

IFF mode is activated when the HCS410 senses a sig-
nal on its LC0 pin. After the HCS410 verifies application
of power and elapse of the normal debounce time, the
device starts to acknowledge IFF activation by loading
the LC pins with continuous acknowledge pulses as
shown in Figure 4. This is an indication that the
HCS410 is ready to receive a command. All the com-
munication timing is done in multiples of the basic time
element TE.

IFF Commands

The HCS410 transponder responds to 5-bit IFF com-
mands or opcodes. The opcodes are sent to the
HCS410 with the least significant bit (LSb) first.
Depending on the command, additional data may be
required for the HCS410 to respond. A list of IFF com-
mands can be found in the HCS410 data sheet
(DS40158).

FIGURE 4: IFF ACTIVATION WAVEFORM

36 ms

 Pulse width = TE

255 TE3 TE 3 TE
 1999 Microchip Technology Inc. DS00675D-page 3-27

AN675

S3.book Page 28 Thursday, March 2, 2000 8:01 AM
IFF Communication Protocols and
Waveforms

All communication to and from the HCS410 during IFF
is done in asynchronous Pulse Position Modulation
(PPM) format. The format differs when sending com-
mands and data to the HCS410 and when receiving
data from the HCS410. After a complete transaction,
the HCS410 is ready for the next command and will
continue to send out acknowledge pulses. Commands
to the HCS410 start with a pulse of 2 TE. Time is
measured from rising edge to rising edge with a logic 1
being 6 TE and a logic 0, 4 TE.

Data coming from the HCS410 starts with a start pulse
of 1 TE. Again, time is measured from rising edge to ris-
ing edge with a logic 1 being 3TE and a logic 0, 2 TE. All
data words are preceded by two preamble bits with the
logic value 012 before the data is sent out.

FIGURE 5: IFF COMMUNICATION WAVEFORM

T E

2 TE

3 TE

Encoder
Response

4 TE

6 TE

Decoder
Commands

Logic 0

Logic 1

TPMH
DS00675D-page 3-28 1999 Microchip Technology Inc.

AN675
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 29 Thursday, March 2, 2000 8:01 AM
Identify Friend or Foe (IFF)

Identify Friend or Foe (IFF) is a procedure used to
authenticate a transponder. IFF challenges the tran-
sponder with a random 32-bit value and then verifies
the response.

HCS410 Commands Used

This application uses the following transponder com-
mands: The IFF READ command (Figure 6) is used to
read the two portions of the 32-bit serial number (SER1
and SER0).

The IFF CHALLENGE command (IFF1 using key-1 and
HOP algorithm) is used to validate the transponder.
The microcontroller generates a 32-bit random chal-
lenge and then validates the transponder’s 32-bit
response by decrypting the response using the KEELOQ

decryption algorithm.

FIGURE 6: IFF READ COMMAND

FIGURE 7: IFF CHALLENGE COMMAND

Response
Start pulse TRT 18 bits

0 1

Ack pulses

2 TE

Challenge
16/32 bits

Response
18/34 bitsAck pulses Opcode TOTD
 1999 Microchip Technology Inc. DS00675D-page 3-29

AN675

S3.book Page 30 Thursday, March 2, 2000 8:01 AM
SOFTWARE DESCRIPTION

Overview (Figure 8)

After reset, the decoder enters the main loop. The main
loop checks the learn button and if pressed
(TST_LEARN) enters the learn mode. The decoder also
checks the IGN/POLL input and if low it starts polling
for transponder acknowledge pulses for up to 30 sec-
onds. If a transponder is detected, it is validated by
means of a 32-bit challenge/response IFF. The decoder
pulses the VALID output pin for 500 ms and asserts the
IMMOB output for the duration that the IGN/POLL input
is held low if the transponder is authentic.

Transponder Validation Flow

The decoder reads the transponder’s 32-bit serial
number after it detects the acknowledge pulses. It then
calculates the 16-bit serial number checksum value.
The decoder then searches through all the EEPROM
memory blocks for a matching checksum value. Then,
it challenges the transponder with a 32-bit random
challenge. The decoder validates the transponder by
decrypting the 32-bit response with the 64-bit transpon-
der key and comparing it to the 32-bit challenge.

Transponder Learn Flow

The 64-bit Manufacturer’s Code is read from the ROM
table after the decoder enters learn mode. The decoder
then starts polling the field to check if there is any tran-
sponder in the field for up to 30 seconds. The decoder
reads the transponder’s 32-bit serial number after it
detects acknowledge pulses. The transponder’s
decryption key is then calculated using the 64 bit Man-
ufacturer’s Code and the 32-bit serial number. The
decoder then challenges the transponder with a 32-bit
random challenge and validates the 32-bit response by
using the newly calculated 64-bit transponder key. The
decoder calculates the 16-bit serial number checksum
then stores both the 16-bit checksum value and the 64-
bit transponder key in EEPROM.

Calibration on Acknowledge Pulses
(WAIT_ACK)

The WAIT_ACK function determines if there is a
transponder in the field. The routine also calibrates on
the acknowledge pulses of the transponder, thereby
determining the basic elemental periods TE, which is
used for communication to the HCS410 transponder.
The routine switches on the inductive field and waits for
30 ms for the transponder to activate. It then waits for
up to 100 ms for a falling edge on the data output line
of the read/write base station. The decoder calibrates
on the time between the two rising edges. This time,
which is equal to 2 TE, is the used by the WAIT_TE rou-
tine during communication to the HCS410. The
decoder waits for three acknowledge pulse pairs before
it indicates that there is a transponder in the field by set-
ting the zero flag and returning E_OK.

Capturing Data from the HCS410 (REC_PPM)

The REC_PPM function is used to receive PPM data
from the transponder. The decoder waits for the start
bit, after which it starts measuring the time from rising
edge to rising edge. The decoder then checks if this
values if less than 2 TE in which case, the result bit
value is set to logic 0. Otherwise, the bit value is set to
a logic 1. The function receives either 18- or 34-bits,
depending on the initial value of the loop counter
(CNT2) The incoming data is stored in a 32-bit tempo-
rary shift register (TMP3:TMP0). The two preamble bits
are rotated though the shift register and their values are
ignored.

Source Code

A floppy disk containing the source code for this appli-
cation note is available under no fee license from your
Microchip distributor. The disk order number is
DS40149.
DS00675D-page 3-30 1999 Microchip Technology Inc.

AN675
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 31 Thursday, March 2, 2000 8:01 AM
FIGURE 8: PROGRAM FLOW DIAGRAM

Start

Initialize

LEARN
Pressed

POLL
Pressed?

Switch
Field
On

Valid
ACKs?

Timeout
Reached

No

Read Serial
Number and

Calculate

Compare with
EEPROM’s
Checksum

Equal?

Increase
Block
Index

Read 64 Bit
Decryption

Key

Challenge

with a 32 bit
Challenge

Reponse
Valid

Generate

Outputs

Stop

Yes

Yes

Activate Learn
Sequence

Yes

Yes

No

No

Function

HCS410

No

No

No

Yes

Yes

Checksum
 1999 Microchip Technology Inc. DS00675D-page 3-31

AN675

S3.book Page 32 Thursday, March 2, 2000 8:01 AM
ADDING/LEARNING TRANSPONDERS

Overview

Adding/learning a transponder involves calculating the
transponder’s decryption key, then challenging the
transponder and verifying the response using the newly
derived key. If the learn was successful, the key and a
serial number checksum will be stored in EEPROM.
The decoder reads the transponder’s 32-bit serial num-
ber, forces the upper 4 bits to 6h or 2h to calculate the
two input seed algorithms. Then, using these two input
seeds and the decryption algorithm, the 64-bit tran-
sponder key is calculated. The Manufacturer’s Code is
stored in a ROM table in program memory.

Generating the 64-bit Key

SEED1 = 6h + 28 bit Serial Number

SEED2 = 2h + 28 bit Serial Number

The transponder key is derived using the KEELOQ

decryption algorithm and the 64-bit Manufacturer’s
Code as follows:

Key Upper 32 bits = F KEELOQ Decrypt (SEED1) | 64-Bit Manufacturers Code

Key Lower 32 bits = F KEELOQ Decrypt (SEED2) | 64-Bit Manufacturers Code

Calculating the 16-bit Checksum From
28-bit Serial Number

The serial number checksum value stored in EEPROM
is calculated by as follows:

Checksum = [(SER_3 + SER_1) << 8] + (SER_2 + SER_0)

Note: If the calculated checksum is zero the value
is changed to 5AA5h.
DS00675D-page 3-32 1999 Microchip Technology Inc.

AN675
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 33 Thursday, March 2, 2000 8:01 AM
APPENDIX A: MEMORY ALLOCATIONS

TABLE 2: MEMORY FOR EACH TRANSPONDER

TABLE 3: COMBINED EEPROM MEMORY ALLOCATION

Name Description Bytes

1 Checksum 16-bit checksum value of the serial number 2

2 Key 64-Bit decryption key 8

Total 10

Name Description Bytes

1 Block 1 Scratch pad 6

2 Block 2 16-bit seed counter used by random generator 2

3 Block 3 Stored data for transponder #1 10

4 Block 4 Stored data for transponder #2 10

5 Block 5 Stored data for transponder #3 10

6 Block 6 Stored data for transponder #4 10

7 Block 7 Stored data for transponder #5 10

8 Block 8 Stored data for transponder #6 10

9 Block 9 Stored data for transponder #7 10

10 Block 10 Stored data for transponder #8 10

11 Block 11 Stored data for transponder #9 10

12 Block 12 Stored data for transponder #10 10

13 Block 13 Stored data for transponder #11 10

14 Block 14 Stored data for transponder #12 10

Total 128
 1999 Microchip Technology Inc. DS00675D-page 3-33

AN675

S3.book Page 34 Thursday, March 2, 2000 8:01 AM
TABLE 4: MEMORY MAP EEPROM (16-BIT WORDS)

Address Mnemonic Address Mnemonic

00 CHAL_LW 20 KEY6_2

01 RESP_LW 21 KEY6_3

02 RESP_HI 22 CHKSUM_7

03 CHAL_SEED 23 KEY7_0

04 CHKSUM_1 24 KEY7_1

05 KEY1_0 25 KEY7_2

06 KEY1_1 26 KEY7_3

07 KEY1_2 27 CHKSUM_8

08 KEY1_3 28 KEY8_0

09 CHKSUM_2 29 KEY8_1

0A KEY2_0 2A KEY8_2

0B KEY2_1 2B KEY8_3

0C KEY2_2 2C CHKSUM_9

0D KEY2_3 2D KEY9_0

0E CHKSUM_3 2E KEY9_1

0F KEY3_0 2F KEY9_2

10 KEY3_1 30 KEY9_3

11 KEY3_2 33 CHKSUM_10

12 KEY3_3 32 KEY10_0

13 CHKSUM_4 33 KEY10_1

14 KEY4_0 34 KEY10_2

15 KEY4_1 35 KEY10_3

16 KEY4_2 36 CHKSUM_11

17 KEY4_3 37 KEY11_0

18 CHKSUM_5 38 KEY11_1

19 KEY5_0 39 KEY11_2

1A KEY5_1 3A KEY11_3

1B KEY5_2 3B CHKSUM_12

1C KEY5_3 3C KEY12_0

1D CHKSUM_6 3D KEY12_1

1E KEY6_0 3E KEY12_2

1F KEY6_1 3F KEY12_3

CHAL_LW Temporary storage of lower 16 bits of challenge
RESP_HI Temporary storage of upper 16 bits of HCS410’s response
RESP_LW Temporary storage of lower 16 bits of HCS410’s response
CHAL_SEED 16 bit seed counter used by random generator to calculate a 32 bit random seed
CHKSUM Transponder’s serial number 16 bit checksum storage
KEY These bytes contain the 64 bit decryption key for each transponder
DS00675D-page 3-34 1999 Microchip Technology Inc.

AN675
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 35 Thursday, March 2, 2000 8:01 AM
TABLE 5: RAM MEMORY MAP (8-BIT BYTES)

Many of the memory locations in RAM are used by multiple routines. A list of alternate names and functions are given
in the table below.

Address Mnemonic Description

0D FLAGS Decoder flags

0E ADDRESS Address register – points to address in EEPROM

0F TXNUM Current transponder’s block index

10 XP_CNT Transponder loop counter

08 OUTBYT General data register, mask register used in decryption

09 TMP0

Temporary registers
0A TMP1

0B TMP2

0C TMP3

11 CNT0

General loop counters
12 CNT1

13 CNT2

07 CNT3

14 CSR0

32-bit Code shift register used in decryption and key generation
15 CSR1

16 CSR2

17 CSR3

18 KEY7

64-bit shift register holds decryption key

19 KEY6

1A KEY5

1B KEY4

1C KEY3

1D KEY2

1E KEY1

1F KEY0

Address Mnemonic Also known as Description

18 DTA1 TMP0

32-bit hop code register
19 DTA2 TMP1

1A DTA3 TMP2

1B DTA4 TMP3

OD EHOP3 ADDRESS

Extended 32-bit buffer used during key generation
as a 32-bit buffer

1C EHOP2 TXNUM

1D EHOP1 TE_CNT

1E EHOP0 CNT2

17 SER_0 CSR0

Shift register for unencrypted 32 bits received from transponder
16 SER_1 CSR1

15 SER_2 CSR2

14 SER_3 CSR3
 1999 Microchip Technology Inc. DS00675D-page 3-35

AN675

S3.book Page 36 Thursday, March 2, 2000 8:01 AM
TABLE 6: MANUFACTURER’S CODE IN PROGRAM MEMORY (RETLW TABLE)

TABLE 7: TIMING PARAMETERS

Address Mnemonic Description

09B MKEY_0

64-Bit Manufacturer’s Code
(Used to generate decryption keys)

09C MKEY_1

09D MKEY_2

09E MKEY_3

09F MKEY_4

0A0 MKEY_5

0A1 MKEY_6

0A2 MKEY_7

Parameter Typical Unit

Output activation duration 500 ms

Transponder validation duration 330 ms

Erase all duration 4.2 s

Learn mode time-out 25 s
DS00675D-page 3-36 1999 Microchip Technology Inc.

AN675
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 37 Thursday, March 2, 2000 8:01 AM
TABLE 8: BILL OF MATERIALS FOR BASE STATION

TABLE 9: BILL OF MATERIALS FOR TRANSPONDER

Item Reference Supplier Part Number Description

1 C1 Digi-Key P3499 1.5nF, 630V Polypropylene Capacitor

2 C2 Digi-Key P4797 10nF, B Series 100V Polyester Capacitor

3 C3 Digi-Key P4787 1.5nF, B Series 100V Polyester Capacitor

4 C4 Digi-Key P4773 100pF, B Series 100V Polyester Capacitor

5 C5 Digi-Key P4797 10nF, B Series 100V Polyester Capacitor

6 C6, C7, C11, C14 Digi-Key 1210PHCT 0.1µF, 50V Axial Ceramic Capacitor

7 C8, C9 Digi-Key P4016A 22pF, 50V Ceramic Disc Capacitor

8 C10 Digi-Key P918 22µF 25V, KG Series Miniature Aluminum
Electrolytic Capacitor

9 C12 Digi-Key P6629 10µF 25V, Z Series Miniature Aluminum
Electrolytic Capacitor

10 D1, D2, D3, D4 Digi-Key P403 3mm Red Diffused High Brightness LED

11 D5, D6, D7 Digi-Key IN4148DICT 100V, 500 MW Fast Switching Diode

12 L1 Coilcraft DO5022P-105 1mH, DO5022 Series Surface Mount
Power Inductors

13 Q1 Digi-Key 2N3904 Small Signal General Purpose Transistor

14 R1 Digi-Key 180R W-1 180R, 5% Metal Oxide Film Resistor

15 R2, R6, R7, R13,
R14, R15

Digi-Key 10K W-1 10k, 5% Metal Oxide Film Resistor

16 R3 Digi-Key 100R W-1 100R, 5% Metal Oxide Film Resistor

17 R4, R5 Digi-Key 470K W-1 470k, 5% Metal Oxide Film Resistor

18 R8 Digi-Key 56K W-1 56k, 5% Metal Oxide Film Resistor

19 R9 Digi-Key 22K W-1 22k, 5% Metal Oxide Film Resistor

20 R10, R11, R12, R19 Digi-Key 1K W-1 1k, 5% Metal Oxide Film Resistor

21 R16 Digi-Key 120K W-1 120k, 5% Metal Oxide Film Resistor

22 R17 Digi-Key 390K W-1 390k, 5% Metal Oxide Film Resistor

23 R18 Digi-Key 2.7K W-1 2.7k, 5% Metal Oxide Film Resistor

24 SW1, SW2 Digi-Key P8006S Momentary Push-button Switch

25 U1 Digi-Key MM74HC4060N 14 Stage Binary counter

26 U2 Digi-Key PIC16C56-XP/P 8-Bit CMOS Microcontroller

27 U3 Digi-Key 93LC46B-I/P 2K CMOS Serial EEPROM

28 U4 Digi-Key LM78L05ACH +5V 100 mA Positive Regulator, TO-39

29 U6 Digi-Key LM358N Low Power Dual OP Amp

30 U7 Digi-Key 158-2021-2 IC 4.63V UP Reset Monitor SOT-23

31 Y1 Digi-Key X911 4 MHz ZTA Series Ceramic Resonator

Note: Different value of the same order may have to be used to compensate for tolerance variations in R1, L1, and
C1 to keep the peak-to-peak voltage across L1 at 100V.

Item Reference Supplier Part Number Description

1 U5 Microchip HCS410 KEELOQ Transponder IC

2 L2 Digi-Key DN7437 1000 µH Power Axial Inductor

3 C13 Digi-Key P4787 0.0015 µF 100V Poly B Series CAP

4 C14 Digi-Key 1210PHCT 0.1µF, 50V Axial Ceramic Capacitor
 1999 Microchip Technology Inc. DS00675D-page 3-37

AN675

S3.book Page 38 Thursday, March 2, 2000 8:01 AM
NOTES:
DS00675D-page 3-38 1999 Microchip Technology Inc.

AN677
Designing a Base Station Coil for the HCS410

S
ecu

re D
ata P

ro
d

u
ct

3

S3.book Page 39 Thursday, March 2, 2000 8:01 AM
OVERVIEW

This application note describes the Excel spreadsheet
to design base station coils. The spreadsheet file name
is basesta.xls. A zip file containing this spreadsheet
and a copy of this application note can be downloaded
from Microchip’s web site at www.microchip.com.

The basic approach used is to choose the driver cir-
cuit driving voltage and current. These two values are
used to calculate the total resistance that the series
resistor-inductor-capacitor (RLC) circuit should have.
Secondly, the resonating capacitor rated voltage is
chosen. The coil inductance and resonating capacitor
value can then be calculated.

For a given coil inductance and coil resistance, choos-
ing the coil average diameter and coil winding aspect
ratio determines the coil dimensions, number of turns
and wire diameter.

The magnetic field strength can be calculated at any
given distance given the coil average diameter, number
of turns and coil current.

FEATURES

The spreadsheet is split into three worksheets. The first
worksheet concerns the HCS410 Evaluation Kit coil
driver circuit. Based on the HCS410 Evaluation Kit
power supply and coil driver electrical characteristics,
the coil inductance, total coil losses at operating tem-
perature and resonant capacitor can be calculated.

The second worksheet uses the coil inductance and
total coil losses from the first worksheet with added
inputs such as coil diameter to calculate an optimum
coil. Coil dimensions, optimum number of turns and
wire diameter is provided.

The third worksheet uses the root mean square (RMS)
coil current, number of turns and coil diameter from the
first two worksheets to calculate the magnetic field at a
given axial distance away from the coil.

INTRODUCTION

Overview of Inductive Communication

Communication between a KEELOQ transponder and
a base station occurs via magnetic coupling between
the transponder coil and base station coil.

The base station coil forms part of a series RLC circuit.
The base station communicates to the transponder by
switching the 125kHz signal to the series RLC circuit on
and off. Thus, the base station magnetic field is
switched on and off.

The transponder coil is connected in parallel with a res-
onating capacitor (125kHz) and a KEELOQ HCS410
transponder integrated circuit. When the transponder is
brought into the base station magnetic field, it magnet-
ically couples with this field and draws energy from it.
This loading effect can be observed as a decrease in
voltage across the base station resonating capacitor.
The KEELOQ transponder communicates to the base
station by “shorting out” its parallel LC circuit. This de-
tunes the transponder and removes the load, which is
observed as an increase in voltage across the base
station resonating capacitor. The base station capaci-
tor voltage is the input to the base station AM-demodu-
lator circuit. The demodulator extracts the transponder
data for further processing by the base station soft-
ware.

Power Losses

• The dominant system power losses in the
HCS410 Evaluation Kit are listed below

- The power supply filter loss, which reduces
the coil driver voltage.

- The losses due to the field effect transistors
(FETs) that supply current to the RLC circuit.

- The coil resistance losses at DC.

- The coil losses due to skin effect and proxim-
ity losses. These are approximated to be
equal to the coil resistance at DC.

Author: Mike Sonnabend, Jan van Niekerk
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS00677A-page 3-39

AN677

S3.book Page 40 Thursday, March 2, 2000 8:01 AM
Using the worksheet Units

The units in the worksheet have been made SI units.
Below is a table with some of the most common conver-
sions that the user may come across.

WORKSHEET 1: HCS410 EVALUATION KIT BASE STATION COIL DRIVER

HCS410 Evaluation Kit Base Station Driver Design

FIGURE 1: EVALUATION KIT COIL DRIVER CIRCUIT

Figure 1 shows the final stage of the evaluation kit coil
driver circuit. The input “125 kHz” is a 125 kHz square
wave which drives Q1 and Q2 to generate a magnetic
field. When this square wave is stopped, no magnetic
field is generated. The signal “PC” preserves charge on
the capacitor C3 when the field is switched off by dis-
connecting the capacitor from ground.

The magnetic field produced by a coil is directly propor-
tional to coil current. The base station coil (L1) forms
part of a series RLC circuit that resonates at 125kHz. At
resonance, the series RLC circuit is a purely resistive
load for the driver circuit. Thus the current (and field) is

determined as driver voltage divided by RLC circuit
resistance. The RLC circuit resistance consists of all
the circuit losses and not just the DC resistance of the
coil.

The driver square wave peak-to-peak voltage is propor-
tional to the power supply voltage VPSU minus the volt-
age drop across the blocking diode D1 and filter resistor
R17.

The total RLC circuit resistance RTOTAL is fixed by the
ratio of driver square wave RMS voltage divided by
RMS coil current.

Color coding

Color Meaning

Green User input. The default values correspond
to the HCS410 Evaluation Kit. If the
HCS410 Evaluation Kit is used for a new
coil design, changes are not required.

Red Output

Gray System defined

Conversion from: Operation

Inches (in) to meters (m) x .0254

Inches (in) to centimeters (cm) x 2.54

Inches (in) to millimeters (m) x 25.4

Centimeters (cm) to meters (m) x 0.01

Millimeters (mm) to meters (m) x 0.001

Farads (F) to nanofarads (nF) x 1e-9

Henry (H) to microhenry (µH) x 1e-6

•

•

• • •

+

−

0

VPSU

12V

D1

D1N4002

 R17

0.47

C17
3300 µF

Q1
MTP23P06V

 R16

1Ω

Q2
MTP50N06V

L1

154.39 µH

RCOIL

2.4673
C3

10.5 nF

Q4

•125kHz PC MTW14N50
DS00677A-page 3-40 1999 Microchip Technology Inc.

AN677
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 41 Thursday, March 2, 2000 8:01 AM
FIGURE 2: RESISTANCE LOSSES

The resistance RTOTAL minus the driver circuit loss
RCONST determines the total coil loss resistance RCOIL.
The driver circuit loss resistance RCONST consists of
the losses due to the FET (Q1 or Q2 and, Q4) “on”
resistance, the series resistor R16 if used, and the loss
due to the dissipation factor of resonating capacitor C3.

If the starting point for the design selects a power sup-
ply current which is too high or a power supply voltage
which is too low, then a RTOTAL circuit resistance is
required which will be lower than the driver circuit
losses RCONST. This is not realizable and would require
the coil loss resistance RCOIL to be negative.

For maximum operating distance, the aim of the coil
driver is to have low losses. This means using FET’s
that have a low “on” resistance. Preserving charge in
capacitor C3 when the field is switched off reduces the
time for the field to build up to its maximum when
enabled again. This removes the bandwidth limitation
on the Q factor of the resonating circuit, given as Q=f/
BW. The Q is now limited by the maximum voltage
across the resonating capacitor C3, and is given by
Q=VCAP/VRMS, where VRMS is the coil driver voltage
applied to the RLC circuit.

Since the Q is limited by the voltage rating of the reso-
nating capacitor V_C3, and the total RLC circuit resis-
tance RTOTAL is known, the coil inductance L is
calculated from

where the resonant frequency fr is given by

The coil inductance L and resonant frequency ωr deter-
mine the resonating capacitor C from the equation

Data Required

RTOTAL RCONST + ÞRCOIL

where

RCONST R_Q1 + R16 + R_C3 + R_Q4

4.3 1.83 2.47

=

 =

1.83 0.3 1 0.13 0.4

Q
V_C3RMS

VRMS

ωr L×
RTOTAL

----------------= =

fr

ωr

2π
------=

ωr
2 1

LC
-------=

TABLE 1: POWER SUPPLY PARAMETERS

Input Units
Typical
Value

Description

VPSU [V] 12 Rated PSU voltage used with the base station. This should remain in the range of 8
Volts to 14 Volts if the HCS410 Evaluation Kit Base Station is to be used.

IPSU [A] 0.5 Rated PSU current. This can be lowered and will lower the magnetic field strength if
the design is current limited.

TABLE 2: COIL DRIVER CIRCUIT ELECTRICAL PARAMETERS

Input Units Typical Value Description

fr [Hz] 125000 Coil operating frequency (resonance)

V_D1 [V] 0.625 Blocking diode forward voltage drop at IPSU

R17 [ohm] 0.47 Supply filter resistor value

R_Q1 [ohm] 0.3 Maximum "on" resistance of Q1 and Q2

R16 [ohm] 1 RLC series resistor

R_C3 [ohm] 0.128 Resonating capacitor dissipation resistance

R_Q4 [ohm] 0.4 Enhanced frequency circuit Q4 on resistance

V_C3 [V] 400 Resonating capacitor C3 rated maximum voltage
 1999 Microchip Technology Inc. DS00677A-page 3-41

AN677

S3.book Page 42 Thursday, March 2, 2000 8:01 AM
Intermediate Calculations

Output Data

The inductance LCOIL and coil resistance RCOIL are used for inputs to the Coil Design worksheet.

WORKSHEET 2: COIL DESIGN ENGINE

Data Required

FIGURE 3: COIL DIMENSIONS

The input to the coil design specifies coil inductance
LCOIL, coil loss resistance RCOIL, coil average diameter
Dm, coil winding aspect ratio h2x, coil loss factor
KLOSS, coil wire packing factor, electrical characteris-
tics for the wire used, coil operating temperature and
relative permeability for the coil if a core is used.

With large currents, the coil will get hot, as do the driv-
ers. The coil temperature is proportional to the coil
losses, which are due to the DC resistance of the wire
at the operating temperature t, plus losses due to skin
effect and proximity effect. The assumption made in
this worksheet is that the losses due to skin effect and
proximity effect RLOSS are equal to KLOSS X the DC
resistance of the wire at room temperature (RWIRE)
plus the increase in wire resistance RSIGMA due to tem-
perature. Thus KLOSS is set to 1 in the worksheet.

FIGURE 4: COIL LOSSES

TABLE 3: COIL DRIVER CIRCUIT CALCULATED PARAMETERS

Output Units Typical Value Description

VDRV [V] 11.14 Driver square wave peak to peak voltage

VRMS [V] 5.01 Driver square wave rms voltage

IRMS [A] 1.11 RMS coil current

RTOTAL [ohm] 4.51 Total resistance

Q 28.2 Quality factor of RLC circuit

ωr [rad/sec] 785398 Transmission frequency

RCONST [ohm] 1.83 Evaluation circuit losses

TABLE 4: RLC RESONATOR CIRCUIT VALUES

Output Units Typical Value Description

CRES [nF] 10 Resonating Capacitor

LCOIL [µH] 162.11 Coil inductance

RCOIL [ohm] 2.69 Total coil losses at temperature t

LCOIL
RCOIL Dm

rr

aa h2x = aa/rr
RCOIL RWIRE + RSIGMA + RLOSS=

2.47 1.086 0.169 1.235
DS00677A-page 3-42 1999 Microchip Technology Inc.

AN677
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 43 Thursday, March 2, 2000 8:01 AM
The default values in Table 5 assume annealed copper wire and an air core coil.

Output Data

FIGURE 5: COIL SPECIFICATION

TABLE 6: OUTPUTS

TABLE 5: COIL PARAMETERS

Input Units Typical Value Description

LCOIL [µH] 162.11 Coil inductance

RCOIL [ohm] 2.69 Total coil losses at temperature t

Dm [mm] 54 Coil average diameter

h2x 3 Coil aspect ratio (height/depth)

KLOSS 1 Factor for skin effect and proximity losses. These losses are dissipated
in the coil are assumed to be KLOSS times the DC coil resistance at tem-
perature t.

K 0.5 Space factor (packing). This compensates for copper area lost due to
wire shape which is round and not square as well as wire insulation. If
the coil is wound by hand, then the space factor of less than 0.5 may
have to be chosen to compensate for wasted space.

ρ [ohm-m] 1.72E-08 Coil wire resistivity at 20 degrees C. Resistivity for annealed copper wire
is used. If the coil uses another type of wire, then the corresponding
resistivity would have to be used.

sigma [per deg C] 0.00393 Coil wire resistance temperature coefficient. The value used is for cop-
per wire. This value is used to calculate the resistance increase due to
the coil operating at a temperature different than 20 oC.

t [deg C] 60 Coil operating temperature. This will vary according to the duty cycle,
which is determined by the HCS410 Evaluation Kit firmware. The tem-
perature rises with higher duty cycle.

µr 1 Relative permeability. It is assumed that the base station coil has an air
core. This design does not consider ferrite cores.

Di

x

h

NOPT turns
of wire with
diameter
DWIRE

Output Units
Typical
Value

Description

RWIRE [ohm] 1.16 Coil DC resistance at
room temperature

DWIRE [mm] 0.356 Wire diameter: choose
closest to

NOPT turns 39.59 Optimum number of
turns: choose closest to

DI [mm] 52.38 Coil inside diameter

h [mm] 4.86 Coil axial height

x [mm] 1.62 Coil winding depth
 1999 Microchip Technology Inc. DS00677A-page 3-43

AN677

S3.book Page 44 Thursday, March 2, 2000 8:01 AM
WORKSHEET 3: MAGNETIC FIELD PRODUCED BY A COIL

Data Required

For a base station coil shown below

FIGURE 6: MAGNETIC FIELD AT
DISTANCE DIST

The magnetic field at distance DIST along the axis is
given by

The values NOPT and Dm are used from the coil design
on worksheet 2 and IRMS is used from worksheet 1.
The input Dist can be entered to see what the magnetic
field HD is at a certain distance. The value range is the
estimated range at which the field would activate an
Evaluation Kit long-range transponder

TABLE 7: TRANSPONDER DISTANCE FROM BASE STATION

Output Data

TABLE 8: MAGNETIC FIELD STRENGTH

CONCLUSION

By using the formulas given in Appendix B, the equation for the field can be rewritten as shown in the following equation.

It can be seen that the field is:

• proportional to the square root of the rated capac-
itor voltage VCAP,

• proportional to the square root of the current in
the coil and,

• inversely proportional to the cube of the axial dis-
tance from the coil.

• The reason that increased frequency ωr, or
increased relative permeability µr decreases the
field is because the number of turns has to be
decreased to remain within VCAP specification.

• For a distance Dist, it can be shown that the mag-
netic field strength HD is a maximum when Dm
(coil radius) is twice the distance Dist.

Dm

NOPT, IRMS

DIST

HD

HD

NOPT IRMS

Dm

2

2

××

2
Dm

2

2

Dist()2
+

3 2⁄
×

--=

Input Units Typical Value Description

DIST [cm] 0 Transponder axial distance from coil center

Output Units
Typical
Value

Description

HD [A/m] 814.26 Magnetic field at distance Dist, in ampere turns per meter.

Range [cm] 24.11 Evaluation Kit transponder, proximity activation range. This is the distance along
the coil axis where the field is 1.123 ampere-turns per meter, which is the field,
required to activate an Evaluation Kit transponder for RF talkback.

HD 5 2× 3 4⁄
5×= 127×

VCAP

µr ωr×
----------------------×

VRMS

RTOTAL

----------------× Dm

3 Dm× 9 h 10 x×+×+

D
2

m 4 Dist
2×+

 3
---×

×
DS00677A-page 3-44 1999 Microchip Technology Inc.

AN677
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 45 Thursday, March 2, 2000 8:01 AM
APPENDIX A: EXAMPLE
CALCULATION

Problem

Design a coil that uses the HCS410 Evaluation Kit as
base station, has a diameter of 120mm with square coil
cross section, and draws 1A from the power supply.

Solution

Worksheet 1: Change the following from the default val-
ues in the worksheet.

IPSU=1amp, R16=0 ohms, as a series resistor is not
needed.

The coil inductance required is 81 µH with resonating
capacitor 20nF.

Worksheet 2: Change the following from the default val-
ues in the worksheet.

Dm=120, h2x=1 to get a square coil cross section.

The result for the coil is to use wire with a diameter of
0.48mm. From the table, AWG #24 is chosen which has
a diameter of 0.51 mm. The number of turns is 17.

Worksheet 3:

The distance for a standard Evaluation Kit long-range
transponder to be activated should be 39cm.

The values calculated give a good starting point for the
coil design but are approximations, and the resonating
capacitor will still have to be trimmed for resonance to
occur. The model used for the losses is KLOSS is equal
to 1. This loss factor may vary for different coils.

APPENDIX B: FORMULAS USED

This appendix gives the main formulas used in the
worksheet. All values use metric units.

For a square wave with peak to peak voltage VDRV,
driving an RLC circuit, the RMS value of this voltage
VRMS is given by

The total resistance of the circuit is given by

For a frequency f in Hertz, the radians per second fre-
quency is given by

For a series RLC circuit with resistance RTOTAL, coil
with inductance LCOIL and resonating capacitor with
rated voltage V_CRES, the quality factor Q of the circuit
is given by

The resonating capacitor CRES value is given by

If NOPT turns of wire occupies a cross sectional area of
x by h, with packing factor of K (ratio of copper area to
total area), then the wire diameter DWIRE is

For a coil of average diameter DM, wound with NOPT

turns of wire with diameter DWIRE and resistivity ρ, the
resistance of the wire RWIRE is given by

For a coil of average diameter DM, with core which causes
relative permeability UR, wound with NOPT turns of wire
with axial height h and radial depth (inside radius to out-
side radius) x, the coil inductance in Henry is given by

For a coil of average diameter DM, wound with NOPT

turns and carrying current IRMS, the magnetic field at
axial distance DIST away is given by

APPENDIX C: REFERENCES

1. Babani, B.B., ed. 1974. Coil Design and Construction
Manual. London: Bernards (publishers) Limited.

2. Nelkon, M., & Parker, P. ed. 1970. Advanced Level
Physics. London: Heinemann Educational Books Ltd.

Note: Our design does not calculate self inter-
winding capacitance of the inductor.

COMMENTS

The authors welcome feedback, comments, questions
and errata via e-mail.

mike.sonnabend@microchip.com

jan.van.niekerk@microchip.com

GLOSSARY

Dissipation Factor: A measure of the losses of a capac-
itor. Dissipation factor varies with frequency and tem-
perature.

Proximity Effect Losses: These are losses caused by
adjacent conductors (proximity) generating eddy cur-
rents in each other.

Relative Permeability µr: The ratio of magnetic field in
a material to the magnetic field if the material were
replaced by vacuum.

Skin Effect: This is the tendency for an alternating cur-
rent to flow near the surface (skin) of a conductor as the
frequency increases.

VRMS VDRV=
2

π
-------×

ωr 2πf=

Q
V_CRES

VRMS 2 2××

ωr LCOIL

RTOTAL

--------------------==

Cres
1

ωr
2

LCOIL×
----------------------------=

DWIRE 2
K x h××
π NOPT×
----------------------×=

RWIRE

4 ρ Dm×× NOPT×

DWIRE

2
---=

LCOIL

µr Dm()2×
127000 3 Dm 9 h 10 x×+×+×()×
-- NOPT()2×=

H
NOPT IRMS

Dm

2

2

××

2
Dm

2

2

Dist()2
+

3 2⁄---=

RTOTAL
VRMS

IRMS
--------------=
 1999 Microchip Technology Inc. DS00677A-page 3-45

AN677

S3.book Page 46 Thursday, March 2, 2000 8:01 AM
NOTES:
DS00677A-page 3-46 1999 Microchip Technology Inc.

AN714
Wireless Home Security Implementing KEELOQ® and the

PICmicro® Microcontroller

S
ecu

re D
ata P

ro
d

u
ct

3

S3.book Page 47 Thursday, March 2, 2000 8:01 AM
INTRODUCTION

This application note describes a Microchip system
solution for a low end/power wireless home security
system. This design implements an HCS200 encoder
for the intruder sensor signal encryption, one
PIC12C508A PICmicro® for sensor monitoring and RF
signal initiation, HCS515 decoders for decrypting the
received intruder sensor signal and a PIC16C77
PICmicro for base station panel monitoring and control.
Other support logic is included, such as a battery
back-up circuit, simple single stage lead acid battery
charger and external siren control, but the focus of the
application is the implementation of Microchip
KEELOQ® and PICmicro products for a complete solu-
tion.

APPLICATIONS

Applications implementing low power RF wireless sys-
tems are entering the marketplace with ever increasing
acceptance, fueled in part by growing awareness of the
consumer. Low power wireless systems usually trans-
mit less than 1mW of power and do not require user
licenses for operation. These systems operate over dis-
tances of 5 to 100 meters, depending on the applica-
tion.

Wireless systems are being implemented in the auto-
motive, residential, personal and commercial arenas
with increasing growth rates every year. Wireless sys-
tems in these areas include, but are not limited to: vehi-
cle alarm arming and disarming, home garage and
gate door openers, home lighting control, home secu-
rity and fire alarm systems, pagers, cellular phones,
utility meters for near-field readings, warehouse inven-
tory control systems and RF LANs.

In many of these applications, different levels of secu-
rity are required. The level of security required is
dependent on the application and customer demands.
For instance, a warehouse inventory control or utility
meter system may require little or no security features
whereas automobile access and home security alarm
systems will require more.

No matter what level of security features are imple-
mented, one vulnerable link in low power RF wireless
based security systems is the actual RF signal itself. An
RF based system could allow for the would be intruder/
thief to use a code scanning or a code grabbing system
to possibly gain unauthorized access to the home, car
or other less secure system.

Code scanning is an effective tool for the would be thief
on systems with limited number of possible code com-
binations which are found in quite a number of remote
control systems. Patience, time and a hand-held micro-
processor based system are all the intruder would
need.

Code grabbing is a far easier way of gaining unautho-
rized access. In this method, the thief would monitor
and capture the RF signal used in opening the home
garage door or car. The thief would then wait until an
opportune moment and then retransmit this code to
gain access.

It is apparent that secure remote control systems can
be implemented, if two conditions are met. The KEELOQ

code hopping system meets both these conditions with
ease.

1. A large number of possible combinations must
be available.

A 66-bit transmission code is used to make scan-
ning impossible. The 32-bit encrypted portion pro-
vides for more than 4 billion code combinations. A
complete scan would take 17 years! If the 34-bit
fixed portion is taken into account, the time
required for a complete scan jumps to 5,600 billion
years.

2. The system may never respond twice to the
same transmitted code.

The random code algorithm will never respond to
the same code twice over several lifetimes of a typ-
ical system.

Every time a remote control button is pushed, the sys-
tem will transmit a different code. These codes appear
random to an outsider, therefore, there is no apparent
relationship between any code and the previous or next
code.

For more information on code scanning, code grabbing
and an introduction to KEELOQ Code Hopping, see
Technical Brief TB003, titled “An Introduction to
KEELOQ Code Hopping”. Refer to the Secure Data

Author: Richard L. Fischer
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS00714A-page 3-47

AN714

S3.book Page 48 Thursday, March 2, 2000 8:01 AM
Products Handbook, Microchip document number
DS40168 for additional information on KEELOQ® prod-
ucts.

With the arrival of the Microchip KEELOQ code hopping
security products, secure remote control systems can
be implemented. Microchip provides a complete secu-
rity solution with a full range of encoders and decoders
that incorporate the Company’s patented KEELOQ code
hopping technology algorithm, allowing you to get the
most advanced security technology. KEELOQ encoders
are designed to be the transmitters and KEELOQ decod-
ers, the receiver of secure remote keyless entry (RKE)
systems.

The KEELOQ encoders feature on-chip, error corrected
EEPROM for non-volatile operation and, therefore,
reduce the required components normally external to
the encoder. The only additional circuitry required are
push buttons, battery and RF circuitry.

The KEELOQ decoders are single-chip solutions that
employ normal and secure learning mechanisms, and
operate over a wide voltage range. Microchip decoders
are also full-featured with serial interface to PICmicro
microcontrollers, allowing designers to integrate the
decoder with system functionality.

SYSTEM OVERVIEW

The Microchip KEELOQ solution is being implemented
into more and more systems requiring proven security.
Systems such as, but not limited to:

• Automotive security
• Gate and garage door openers

• Identity tokens

• Software protection

• Commuter access

• Industrial tagging

• Livestock tagging
• Parking access

• Secure communications

• Residential security

One simple example implementing the KEELOQ solu-
tion is a home security system. The home security sys-
tem described herein utilizes KEELOQ code hopping
security products and a PICmicro microcontroller.

Some specific system design goals for this low end/
power security system were:

• Wireless solution

• Secure RF transmissions

• Battery operation of intruder sensors for a mini-
mum of 1.5 years

• Sensor module flexibility to operate with various
off-the-shelf switches for doors and windows

• Microcontroller based system

• Battery back-up system which provided for up to
10 hours of operation at a load draw of 400mA

• System remote arm and disarm by means of the
existing garage door opener (not completely
implemented in the current release)

The three main hardware components, which comprise
this home security system are, the Base Station Panel,
Intruder Sensor Modules and the Battery Charger/
Accessory Unit.

SYSTEM DESCRIPTION

The following sections provide a greater in depth look
into each of the three main hardware components.

BASE STATION PANEL

The home security base station panel provides for:

• Monitoring of sensor module initiated RF signals
• User interface and system setup via the 4x4 key-

pad
• Visual feedback via the 2x16 character Liquid

Crystal Display (LCD) module
• On-board piezo buzzer control

• Real-time clock

• Monitoring of a single stage battery charger unit

• Automatic DC power selection circuit

The base station can be functionally divided into 4 main
components:

1. KEELOQ HCS515 decoder interface.

2. Power supply switching circuit.

3. Battery charger unit monitoring.

4. LCD and 4x4 keypad interface.

Base Station Operation

One of the more important tasks the base station’s
microcontroller (PIC16C77) must handle, is to monitor
and process the output data of the two HCS515 decod-
ers. Each decoder is capable of learning up to seven
sensor modules or “zones”. Within each zone, there are
four different message types which the PIC16C77 must
decode and process (See Appendix A, Figure 6 for the
following text description).

For example, a sensor module may send an alarm,
okay, test or learn transmission. In turn, the PIC16C77
reads the data (up to 80-bits) from the HCS515
decoder, evaluates the message contents and initiates
the appropriate action. If an alarm condition occurs, the
external siren will be activated and the internal panel
piezo buzzer, (BZ1) will sound, if enabled. For any valid
signal reception, such as a test, learn, sensor okay
condition or alarm transmission, the history profile for
that sensor module will be updated. This update con-
sists of a time stamp and the sensor’s module battery
status. If the sensor battery status indicates a low bat-
tery state, then the base panel piezo buzzer will beep
(if enabled) four times every minute until the condition
is resolved. The user can determine which sensor mod-
ule battery is low through proper keypad selections and
individual zone battery status displayed on the LCD.
DS00714A-page 3-48 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 49 Thursday, March 2, 2000 8:01 AM
The base station can be placed into a “learn” mode so
as to learn up to seven sensors (zones). Through
proper keypad selections, the PICmicro commands the
HCS515 decoder into the learn mode. (See Figure 1
and Table 1). Once placed in this mode, two consecu-
tive transmissions by the sensor are required to com-
plete a successful learn. Once a sensor is learned, a
“key” name for that zone must be selected. A menu will
automatically appear on the LCD for this selection pro-
cess. Currently up to 15 different key names are avail-
able to choose from. The selected key name is then
stored in the HCS515 EE user space.

The history profile of each sensor is written to the avail-
able user EEPROM in the HCS515 decoder. The total
EEPROM data space available in the HCS515 is
2Kbits. System data space is 1Kbits and user memory
space is the remaining 1Kbits. System data space is
not accessible by the user (See Table 2 for the user
EEPROM memory map). The demodulated data input
into the decoders is obtained from a super regenerative
data receiver referenced RF1 (See Appendix A, Figure
7, Part Number RR3-433.92 - Manufactured by Tele-
controlli). The receiver has a typical RF sensitivity of
-105dBm and consumes 3mA, maximum.

A Microchip microcontroller supervisory circuit,
MCP130-475, is used to ensure the required system
panel operating voltage range is adhered to. The
brown-out feature on the PIC16C77 was not used since
the base panel system operating voltage range is 4.5 to
5.5VDC.

The base station panel is designed to operate from one
of two available DC input sources: the converted AC
line power or the 12V lead-acid battery back-up (See
Appendix A, Figure 5 for the following text description).

Both DC sources are fed into the panel via connector,
JP1. From JP1, each source is input to separate adjust-
able voltage regulators. The primary DC source regula-
tor, U2, has its Vout set to 5.50VDC, while the secondary
DC source regulator, U3, has its Vout set to 5.05VDC.
Both regulator outputs are fed into separate inputs of
the automatic battery back-up switch, U1.

Switch U1, is an 8-pin monolithic CMOS I.C. which
senses the DC level of the two input sources and con-
nects the supply of the greater potential to its output,
pin 1. This is a break-before-make switch action and
switching typically occurs in 50µs. Capacitor C9 is used
to minimize the switching transient during the transition.

One limitation of the switch is its current switching
capabilities. Maximum continuous current of the switch
is exceeded by this panel design so two PNP transis-
tors were added which provides for greater power
switching.

The implementation of the PNP transistors is such that
when the primary source is the greater of the two, pin 6
of U1, labeled “PBAR”, is effectively tied to ground
internally and therefore Q1 is biased into saturation.
During this configuration, Q3 is in the off state because
pin 3, labeled “SBAR”, is at hi-impedance.

When the secondary DC source is the greater of the
two, Q3 will be biased into saturation and Q1 will be off.
In either state, the load is handled through the transis-
tors and the “VO” pin of U1 is no longer required. How-
ever, the “VO” pin is configured for driving LEDs, which
indicate the DC source selected.

The PIC16C77 receives status back relating to the
switch selection via the signal labeled “PSOURCE”.
The state of this feedback signal is active low when the
primary DC source is selected, and active high if the
secondary source is selected.

This power switching circuit also allows for the
PIC16C77 to select the secondary source, even if the
primary source is present. If the signal labeled “BAT-
SEL” is asserted high by the PIC16C77, NPN transistor
Q2 will be turned on and effectively reduce Vout of U2
to 1.25VDC. U1 will detect the drop and switch to the
backup source. This feature can be used as a test-
mechanism. Finally, VOUT of U3 supplies the voltage ref-
erence, VREF, for the Analog-to-Digital module on the
PIC16C77. This signal is labeled “VBAT”.

As with any home security system, it is important to
provide for backup power in the event of a primary
source failure. A simple single stage back-up/charger
unit is provided for this requirement. Based upon a load
draw of 400mA, 10 hours of operation are provided for.
This is a worse case scenario, which includes a 170mA
(typical) current draw from the external siren.

The PIC16C77 samples the battery voltage, once per
minute. If the sampled battery voltage is less than
~12.75VDC, then the current limit resistor, R15, is
switched in or if >12.75VDC, then bypassed (See
Appendix A, Figure 9 and Appendix A, Figure 10). The
user can view the battery voltage on the LCD by press-
ing the appropriate keys on the 4x4 keypad. (See
Table 1).

The system LCD and 4x4 keypad provide for system
status feedback and setup. Status information, such as
sensor module battery state, zone faults and
time-of-day are displayed on the 2x16 character LCD.
The LCD is updated by the PIC16C77 through data
transfers on PORTD (See Appendix A, Figure 6 and
Appendix A, Figure 7).

System parameter setup such as enabling the internal
piezo buzzer, time-of-day setup, zone naming and
alarm initiating is provided through the 4x4 keypad.
System test modes are also entered through the key-
pad. The keypad is interfaced to PORTB which utilizes
the interrupt on change feature.
 1999 Microchip Technology Inc. DS00714A-page 3-49

AN714
FIGURE 1: 4x4 Keypad Layout

1 2 3PANIC

4 5 6ALT

7 8 9AUX

0 #ESC ✻

100

100

100

100

100

100

100

100

PIC16C77
82K 82K 82K 82K

VDD

RB3

RB2

RB1

RB0

RB4

RB5

RB6

RB7
DS00714A-page 3-50 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 51 Thursday, March 2, 2000 8:01 AM
TABLE 1: 4x4 Keypad Selections versus Respective System Response

Primary 4x4
Keypad Entry

Secondary 4x4
Keypad Entry

Final 4x4
Keypad Entry

System Response

PANIC ✻ N/A Arm System Immediately w/o entry of User Code and w/o
Arm time delay

N/A Arm System via entry of User Code and enable arm time
delay (5 minutes)

1 N/A Enable Internal Piezo Buzzer to sound if selected

 ALT 5 1 Select Battery as Power Source to System

2 Monitor Battery Voltage if primary is Selected

3 Review Battery on/off cycle time and daily cycle count

6 1 Review number of learned transmitters (sensor modules/
zones)

2 Review sensor module battery status and check
time-of-day last received

7 N/A Check on Alarm conditions for system. (was an Alarm sig-
nal received)

AUX 6 1 Place HCS515 decoder in ‘Learn’ mode and execute

2 Place HCS515 decoder in ‘Erase All’ mode and execute

7 1 Toggle if time-of-day will be displayed on LCD

2 Set / Change time-of-day via keypad entries
Keys 1 & 4 for incrementing/decrementing hours count
Keys 2 & 5 for incrementing/decrementing minutes count
Keys 3 & 6 for incrementing/decrementing seconds count

8 N/A Entry of 4-digit User Code. The 4-digit Master Code must
be known and entered before the User code can be
changed. Master code in ROM via SQTP

9 N/A Set time for key wait expiration.

ESC # N/A Disable System Armed State with Entry of User Code

0 N/A Clear LCD Screen

1 N/A Disable Internal Piezo Buzzer from sounding if selected

PANIC N/A Clear Alarm Zone Trip Status for LCD

ESC N/A Toggle LCD Backlight
 1999 Microchip Technology Inc. DS00714A-page 3-51

AN714

S3.book Page 52 Thursday, March 2, 2000 8:01 AM
TABLE 2: HCS515 Decoder User EEPROM Map
A

D
D

R

Description

A
D

D
R

Description

A
D

D
R

Description

A
D

D
R

Description

A
D

D
R

Description

80 USER_COD1 9E ZONE4_NM BC XMTR_CNT DA F8 ALRM_HRS

81 USER_COD1 9F TOD4_HRS BD DB F9 ALRM_MIN

82 USER_COD1 A0 TOD4_MIN BE DC FA ALRM_SEC

83 USER_COD1 A1 TOD4_SEC BF DD FB ALRM_STAT

84 USER_COD1 A2 BATT4_ST C0 USER_COD2 DE FC

85 A3 C1 USER_COD2 DF FD

86 MSTR_CODE A4 C2 USER_COD2 E0 FE

87 A5 ZONE5_NM C3 USER_COD2 E1 FF LAST_XMIT

88 A6 TOD5_HRS C4 USER_COD2 E2

89 ZONE1_NM A7 TOD5_MIN C5 E3

8A TOD1_HRS A8 TOD5_SEC C6 E4

8B TOD1_MIN A9 BATT5_ST C7 E5

8C TOD1_SEC AA C8 E6

8D BATT1_ST AB C9 E7

8E AC ZONE6_NM CA E8

8F AD TOD6_HRS CB E9

90 ZONE2_NM AE TOD6_MIN CC EA

91 TOD2_HRS AF TOD6_SEC CD EB

92 TOD2_MIN B0 BATT6_ST CE EC

93 TOD2_SEC B1 CF ED

94 BATT2_ST B2 D0 EE

95 B3 ZONE7_NM D1 EF

96 B4 TOD7_HRS D2 F0 BT_ON_CNT

97 ZONE3_NM B5 TOD7_MIN D3 F1 BT_ON_HRS

98 TOD3_HRS B6 TOD7_SEC D4 F2 BT_ON_MIN

99 TOD3_MIN B7 BATT7_ST D5 F3 BT_ON_SEC

9A TOD3_SEC B8 D6 F4 BT_OFF_HRS

9B BATT3ST B9 D7 F5 BT_OFF_MIN

9C BA D8 F6 BT_OFF_SEC

9D BB D9 F7

LEGEND:

USER_CODx User Code (2 locations)

ZONEx_NM Zone Name (where x is the zone number)

TODx_HRS Time of Day (Hours, where x is the zone num-
ber)

TODx_MIN Time of Day (Minutes)

TODx_SEC Time of Day (Seconds)

BATTx_ST Battery Status (Sensor Module Battery)

- 0xF0 (High)
- 0x0F (Low)

BT_ON_CNT Daily count for battery cycles (on/off)

BT_ON_HRS Time of Day (hours) when battery is last
selected

BT_ON_MIN Time of Day (minutes) when battery is last
selected

BT_ON_SEC Time of Day (seconds) when battery is last
selected

BT_OFF_HRS
Time of Day (hours) when battery is last
de-selected

BT_OFF_MIN
Time of Day (minutes) when battery is last
de-selected

BT_OFF_SEC
Time of Day (seconds) when battery is last
de-selected

ALRM_STAT Alarm Status

- 0x41 (Alarm)
- 0xBE (Clear)

ALRM_HRS
Alarm Condition (hours) when alarm is acti-
vated

ALRM_MIN
Alarm Condition (minutes) when alarm is acti-
vated

ALRM_SEC
Alarm Condition (seconds) when alarm is acti-
vated

XMTR_CNT Number of transmitters learned

LAST_XMIT
Last decoder transmission type received and
recorded

MSTR_CODE Currently not used

LEGEND: (Continued)
DS00714A-page 3-52 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 53 Thursday, March 2, 2000 8:01 AM
A 32.768KHz watch crystal is connected to the Timer1
external oscillator pins for the generation of a real time
clock. Specific system data, such as alarm time, battery
on/off cycle time and all valid decoded RF signals are
time-tagged. The clock time is setup/changed via the
4x4 keypad and operates using the military time format,
i.e., 2:30PM will display as 14:30:00, while 2:30AM will
display as 02:30:00.

INTRUDER SENSOR MODULE

The four main functions of the intruder sensor modules
are:

1. Intruder detection.

2. Sensor battery status.

3. Sensor learn.

4. Sensor test.

For each of these functions, an input to the HCS200
KEELOQ encoder is asserted (active high) by the
PIC12C508A. The end result is a 66-bit encrypted code
word transmission, via RF, to the base station panel for
decryption and processing.

In order to provide for these functions, additional logic
is implemented to complement the HCS200 encoder.
The logic consists of a PIC12C508A microcontroller, a
relaxation type oscillator circuit, N-channel MOSFET
for signal level translation, Colpitts oscillator used for
the Amplitude Shift Keying (ASK) transmitter, and a few
additional passive components.

See Appendix A, Figure 11 and Figure 12 for the fol-
lowing sensor operation discussion.

One important operational requirement of the sensor
module besides reliable signal decoding and secure
RF transmission, is low current consumption. With the
components selected, sensor battery life is calculated
to be a minimum of 1.5 years.

Sensor operation

The KEELOQ HCS200 encoder is a perfect fit for imple-
mentation into the sensor modules. The HCS200
encoder provides for:

Security

• Programmable 28-bit serial number

• Programmable 64-bit encryption key
• Each transmission is unique

• 66-bit transmission code length

• 32-bit hopping code

• 28-bit serial number, 4-bit function code,
VLOW indicator transmitted

• Encryption keys are read protected

Operating

• 3.5–13.0V operation

• Three button inputs

• Seven functions available
• Selectable baud rate

• Automatic code word completion

• Battery low signal transmitted to receiver
• Non-volatile synchronization data

Other

• Easy to use programming interface

• On-chip EEPROM

• On-chip oscillator and timing components

• Button inputs have internal pulldown resistors

The HCS200 combines a 32-bit hopping code gener-
ated by a powerful non-linear encryption algorithm, with
a 28-bit serial number and 6 information bits to create
a 66-bit transmission stream. The length of the trans-
mission eliminates the threat of code scanning and the
code hopping mechanism makes each transmission
unique, thus rendering code capture-and-resend
schemes useless. (See Figure 2, Figure 3 and Figure 4
for code word organization and formats).

The encryption key, serial number and configuration
data are stored in EEPROM, which is not accessible via
any external connection. This makes the HCS200 a
very secure unit.
 1999 Microchip Technology Inc. DS00714A-page 3-53

AN714

S3.book Page 54 Thursday, March 2, 2000 8:01 AM
FIGURE 2: Code Word Organization.

FIGURE 3: Code Word/PWM Transmission Format .

TE - Basic pulse element *

TBP - PWM bit pulse width *
TP - Preamble duration *
TH - Header Duration *
THOP - Hopping code duration *
TFIX - Fixed code duration *
TG - Guard Time *

* - See Data Sheet (DS40168) for parameter timing
specifics

FIGURE 4: Data Word Format.

Fixed
(1 bit)

VLOW

(1 bit)

Button
Status
(4 bits)

28-bit
Serial Number

Button
Status
(4 bits)

Discrimina-
tion bits
(12 bits)

16-bit
Sync Value

1 bit of Status
1 bit Fixed

+
Serial Number and

Button Status (32 bits)
+ 32 bits of Encrypted Data

Fixed Code Data Encrypted Code Data

66 bits
of Data
Transmitted

LOGIC ‘0’

LOGIC ‘1’

Preamble Header
Encrypted Portion
 of Transmission

Fixed portion of
Transmission

Guard
Time

TP TH THOP TFIX TG

TBP

TE TE TE

Bit 0 Bit 1

Header

Bit 30 Bit 31 Bit 32 Bit 33 Bit 58 Bit 59

Fixed Code WordHopping Code Word Guard

LSBLSB MSB MSB S3 S0 S1 S2 VLOW RPT

 Time

Serial Number Button Code Status

Bit 60 Bit 61 Bit 62 Bit 63 Bit 64 Bit 65
DS00714A-page 3-54 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 55 Thursday, March 2, 2000 8:01 AM
The HCS200 responds to input signals initiated by the
PIC12C508A. The PIC12C508A provides for the sen-
sor signal detection and decoding and RF signal initia-
tion. The PIC12C508A is configured to operate on the
internal RC oscillator with the wake-up on pin change
feature enabled. The PIC12C508A is placed in the
“sleep” mode for about 99% of the time, based on the
overall repeated time period of 1.5 hrs (discussed
later). While the wake-up on pin change feature is uti-
lized, the internal weak pull-ups are disabled and larger
ohmic external resistors are used. This reduces the
current consumption, while retaining the wake-up on
pin change feature.

Since the HCS200 and RF circuitry are only required
after the PIC12C508A awakens by a pin state change
and with the requirement to reduce additional current
draw from the battery, the HCS200 and RF circuitry are
powered through I/O pin, GP5. The current sourcing
capability of the PIC12C508A is sufficient for this
requirement. This configuration reduces the overall cur-
rent draw by 1µA (typically) during sleep mode.

The PIC12C508A detects and responds to one of the
four input pin state changes, which are:

1. Intruder sensor activation on input pin GP3
(active high).

2. Sensor test transmission activated by switch clo-
sure on input pin GP1 (active high).

3. Sensor learn transmission activation by switch
closure on input pin GP1 (active high).

4. 1.5 hr timing cycle on input pin GP0 (active
high). This signal is used to generate a sensor
battery status transmission.

Once the wake-up signal has been decoded, the
HCS200 and RF circuitry are powered-up via pin GP5,
labeled “CNTPWR”. (See Appendix A, Figure 11 and
Figure 12). A 3µs delay is allowed for power-up stabili-
zation and then the PIC12C508A asserts an active high
signal to U2 inputs S0, S1 or both, depending on the
wake-up signal decoded. The HCS200 input pin states
are as follows:

1. Pin S0 asserted only - alarm condition.

2. Pin S1 asserted only - 1.5 hr elapsed time sen-
sor update.

3. Pin S0 and S1 asserted simultaneously, Learn
or test mode entered.

The alarm condition is in response to a possible
intruder detection at the door or window. The switches
used for monitoring door and window access are
FORM C and SPST type, respectively. The FORM C
door switches used are specifically designed for steel
skin doors, but are well suited for use in wooden doors.
SENTROL, INC manufactures both switch types used.
The door and window switch part numbers used are
1078C and 3650W, respectively.

Jumpers JP1 and JP2 are configured, based on
whether the sensor is to be used for a door or window.
If the sensor is used for a door, JP1 is closed and JP2

is open. For a window application, JP2 is closed and
JP1 is open. These jumpers can be used for imple-
menting different resistor values, based upon the sen-
sor switch implemented.

It is imperative that the correct switches are specified to
eliminate a source of false alarm conditions. Items such
as door to frame gap and door material construction
contribute a big part in selecting the appropriate switch
sensor.

The 1.5 hr elapsed time sensor update is developed
using a relaxation timing circuit. The timing circuit con-
sists of a JFET configured as a constant current source
set to 400nA, a Programmable Unijunction Transistor
(PUT), an N-channel MOSFET for signal level transla-
tion and a reverse biased diode to reduce PUT dis-
charge time.

This timing circuit is configured to produce a state
change on pin GP0 approximately every 100 seconds.
The constant current source charges up the low leak-
age 10µF capacitor, C1. When the voltage across C1
equals the firing voltage of the PUT, which is the peak
point emitter voltage termed VP, and if the current is
large enough, the PUT will enter into the negative resis-
tance region and begin to discharge. The maximum fir-
ing current required by the 2N6028 for a RG value = 1M
is 150nA. RG = (R2*R3)/(R2+R3).

Resistors R2 and R3 set the voltage VP. This voltage is
VP = ~(VBat * R2)/(R2 + R3). Diode D1, which is
reversed biased during the PIC12C508A sleep period
is used to reduce the PUT discharging time period.
When the PIC12C508A wakes from sleep, diode D1 is
forward biased and provides a low impedance path to
ground for C1 discharge (See Appendix A, Figure 11).
When the diode is not used, the discharge period was
observed to be about 7-8ms. With the diode, the dis-
charge time period was reduced to tens of microsec-
onds. The savings of several milliseconds, reduces the
time the PIC12C508A is awake and therefore helps to
extend the battery life of the sensor module.

The N-channel MOSFET, Q2, provides for signal level
translation from the PUT. If the voltage level set by
resistors R2 and R3 (~ 4VDC for new batteries) is
applied directly to pin GP0, additional current con-
sumption would be realized, since this voltage on a
Complimentary Metal Oxide Semiconductor (CMOS)
input would be near its threshold.

The N-channel MOSFET is configured as a switch,
such that the drain channel is tied to VBat through a
6.8Mohm resistor and the source channel is grounded.
Then, by tying the drain channel to pin GP0, the voltage
on GP0 is either VBat or ground, depending on the PUT
state applied to the gate of Q2.

Changing the R2 to R3 ratio could increase voltage, VP.
If the voltage level was set such that it falls outside the
CMOS input threshold, then Q2 and R1 could be elim-
inated.
 1999 Microchip Technology Inc. DS00714A-page 3-55

AN714

S3.book Page 56 Thursday, March 2, 2000 8:01 AM
When the PIC12C508A wakes from sleep, it incre-
ments a counter variable and then returns to sleep.
This process repeats until the counter variable equals
54, which equates to approximately 1.5 hrs. At this 1.5
hr time cycle, the PIC12C508A initiates an ‘OKAY’ sig-
nal. This signal is received and decoded by the base
panel for determining the state of the sensor module
battery.

The PIC12C508A then resets the cycle count variable
to zero and starts the time cycle process over again.
Since the battery status is embedded into all 66-bit
code word transmissions, if an alarm, learn or test con-
dition is activated, the counter variable will also be reset
to zero.

A test or learn transmission is initiated if switch S1 is
depressed. The learn sequence will be recognized if
the base station is placed in the learn mode. In either
case, the switch closure wakes the PIC12C508A from
sleep. The PIC12C508A then decodes the inputs and
asserts the proper signals on the S0 and S1 pins of the
HCS200.

With any RF link, noise is an issue that must be consid-
ered. There are some ways to control transmission
integrity such as error detection/correction algorithms,
repeated transmissions (simplex mode - one way) or
with high end systems, the master queues each sensor
for a transmission (half-duplex). The system described
in this application note is configured for the simplex
mode of operation and implements repeated signal
transmissions for alarm conditions.

As the number of sensor modules installed in the home
increases, 14 possible with this design, the odds
increase that two or more sensors may converge in
time for initiating a transmission cycle. The result would
be a RF signal collision at the receiver and most likely
all data would be lost. Once this condition occurs and
since the time base for each system is not at the exact
same frequency, they will typically diverge until the next
occurrence.

The time base for the sensor module is the
PIC12C508A which is clocked internally by the on-chip
RC oscillator operating at ~ 4 MHz.

While the sensor module initiates up to four different
RF transmission cycles, the most important one is the
alarm condition. If the PIC12C508A detects an alarm
condition, repeated RF transmissions are sent to
ensure the base station receives the alarm signal. In
the event that an ‘OKAY’ signal transmission from sen-
sor module A and an alarm transmission from sensor
module B occur at the exact same time, the alarm
transmission will be received because of repeated
alarm transmissions. The ‘OKAY’ signal only sends 1
code word transmission, while the alarm condition
results in up to 5 code words transmitted.

The simple RF circuit implemented in the sensor mod-
ule is an Amplitude Shift Keying (ASK) type consisting
of a Colpitts oscillator with a SAW resonator. The reso-
nator provides for a stable resonant frequency of
433.92 MHz (See Appendix A, Figure 12).

The PWM data output of the HCS200 encoder is
applied to the base of the Colpitts oscillator and there-
fore amplitude modulates the carrier by turning the car-
rier on/off. The data rate is typically 833 bps.

SENSOR MODULE BATTERY CAPACITY
CALCULATIONS

Before the expected battery life of the sensor module
can be calculated, an operational cyclic time period
must be defined. The cyclic period for the sensor mod-
ule is composed of three distinct operational states:
sleep, housekeeping and intentional radiation. These
three states repeat on a continual basis, therefore, cre-
ating an operational cyclic profile. The profile is then
used to calculate the battery capacity requirements.

For the sensor module, the cyclic time interval is
approximately 1.5 hours. During this 1.5 hours, the
PIC12C508A is placed in sleep 54 times. Of these 54
times, the processor wakes-up from sleep 53 times to
perform some minor housekeeping and on the 54th
wake-up from sleep, the intentional radiation state is
executed. This is the “OK” transmission.

There is also the power-up state. This state is only exe-
cuted once (initial power-up), and exhibits no significant
impact on the overall battery life.

The active times for each of these states is defined
below. The processor wake-up time from sleep (typical
400µs) is included in the two wake-up states.

Timing states known:

• Sleep state - typical 100 seconds (each occur-
rence)

• Housekeeping state – typical 56 ms (each occur-
rence)

• Intentional radiation state – typical 700 ms (each
occurrence)

Therefore, cyclic time period is:

= (54 x 100s) + (53 x 56mS) + 700mS

= 5403.7 seconds

= 1.5010 hours
DS00714A-page 3-56 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 57 Thursday, March 2, 2000 8:01 AM
Current consumption variables known:

Sleep state current consumption:

• 3.2µA @ 6.4VDC (new batteries)
• 2.0µA @ 3.3VDC (battery EOL)

Housekeeping state current consumption:

• 0.70mA @ 6.4VDC

• 0.30mA @ 3.3VDC

Intentional radiation state current consumption:

• 4.64mA peak @ 6.4VDC

• 2.22mA peak @ 3.3VDC

With these operational parameters known, we can now
calculate the expected battery life respective to new
battery voltage. It should be noted that this is the worst
case scenario and the actual battery capacity required
may be less.

Calculate As Follows:

1. Calculate the percentage of time spent in each
state relative to the overall cyclic time period.

Sleep state%:

• (5400s/5403.7s) x 100 = 99.932%

Housekeeping state%:

• (2.9680s/5403.7s) x 100 =.054925%

Intentional radiation state%:

• (700mS/5403.7s) x 100 =.012954%

2. Calculate the number of hours in 18 and 24
months.

• 18 months (547.5 days) x 24hrs/day = 13,140
hours

• 24 months (730 days) x 24hrs/day = 17,520
hours

3. With the hours, percentages and current vari-
ables known the battery capacity required for
the sensor module can be developed.

For 18 months:

Sleep state:

• 13,140 hours x 99.932% x 3.2uA = 42mAh

Housekeeping state:

• 13,140 hours x .054925% x .70mA = 5.052mAh

Intentional radiation state:

• 13,140 hours x .012954% x 4.64mA =
7.899mAh

Total battery capacity required = 54.95mAh

For 24 months:

Sleep state:

• 17,520 hours x 99.932% x 3.2uA = 56.02mAh

Housekeeping state:

• 17,520 hours x .054925% x .70mA = 6.736mAh

Intentional radiation state:

• 17,520 hours x .012954% x 4.64mA =
10.530mAh

Total battery capacity required = 73.29mAh

From these calculations, we can see that if the desired
operational life of the sensors is 1.5 years, the battery
capacity would need to be ~55mAh. It is noted that
these calculations do not take into consideration the
operational characteristics of the batteries such as
leakage and self discharge.

BATTERY CHARGER/ACCESSORY UNIT

The battery charger/accessory unit provides for system
back-up power in the event of primary power loss.
Approximately 10 hours of system operation is pro-
vided with battery operation.

This unit also contains some system peripheral cir-
cuitry and is divided into 4 main components:

1. Single stage constant voltage (constant poten-
tial) battery charger.

2. Enclosure door tamper switch feedback.
3. External piezo siren drive.

4. System remote arm/disarm using existing
garage door opener. (currently not fully imple-
mented)

Theory of Operation

The single stage battery charger consists of an adjust-
able voltage regulator, U1, operational amplifiers
(op-amp) U2 and U3, P-channel MOSFET Q4, NPN
transistor Q6, current limit resistor R15, and Schottky
diode D1 (See Appendix A, Figure 9 and Figure 10).
The battery used in this system is a NP4-12
Yuasa-Exide lead acid type.

The standby (float) service is a battery operational
state where a constant voltage is maintained on the
battery, until the battery is called on to discharge.

In this system, a constant voltage (constant potential)
charging circuit is implemented to generate this main-
tenance voltage. The manufacturer recommends a
2.3 volts/cell maintenance voltage during this float
mode. This equates to a total maintenance voltage
requirement of 13.8 volts. In the event of a deep dis-
charge cycle, the initial charging current could
approach 8 amps (2CA). For this application, the initial
charging current is limited to approximately 630 mA.
(.16CA) When charging at 2.30 volts/cell, charging cur-
rent at the final stage of charging will drop to as little as
0.002CA.

During the charge cycle, the charge current will
decrease and the battery voltage will increase. When
the battery voltage approaches 12.75VDC, the current
limit resistor will be switched out of the charge loop
through turning on Q6. This will shorten the remaining
battery recovery time.
 1999 Microchip Technology Inc. DS00714A-page 3-57

AN714

S3.book Page 58 Thursday, March 2, 2000 8:01 AM
NP batteries are designed to operate in standby ser-
vice for approximately 5 years based upon a normal
service condition, in which float charge voltage is main-
tained between 2.25 and 2.30 volts per cell in an ambi-
ent temperature of approximately 20°C (68°F).

In general, to assure optimum battery life, a tempera-
ture compensated charger is recommended. If the
operational temperature range is between 5°C to 40°C
(41°F to 104°F), it is not necessary to provide a temper-
ature compensation function. If a temperature compen-
sated charger is not implemented, the manufacturer
recommends the maintenance voltage be set to a volt-
age which closely reflects the average ambient temper-
ature based upon a compensation factor of -3mV/°C for
standby (float) use.

For example:

Standard center point voltage temperature is:

• 13.8 volts @ 20°C.

Estimated average temperature is:

• 29.44°C (~85°F).

Compensated charging voltage is:

• 13.8 volts + (-3mV (29.44° - 20°)) = 13.772
volts.

For this design, the battery maintenance voltage is set
to 13.77 volts. Adjustable voltage regulator, U1, is
adjusted to approximately 14.00VDC. This voltage
accounts for the forward voltage drop of diode, D1.

This charging circuit is operating in an open loop con-
figuration in the sense that the regulator output is man-
ually set. If a voltage trim is required, potentiometer
R18, must be adjusted.

In order to provide for some feedback to the base panel
controller, a differential amplifier is configured with
op-amps, U2 and U3. This amplifier configuration is
such that a reference 5.1VDC zener voltage is sub-
tracted from the battery voltage. This difference is
amplified and routed to TB1, pin 7. The PIC16C77 base
station controller will periodically sample this voltage. If
this voltage falls outside the required battery mainte-
nance voltage, then the PIC16C77 will indicate such on
the LCD and an adjustment will be required.

An airflow fan is implemented in the accessory enclo-
sure to dissipate any gases generated by the battery
and provide for moderate enclosure cooling. Air inlet
and exhaust ports are provided in the enclosure. The
steel enclosure dimensions are 10Hx8Wx4D. The fan
current draw is approximately 100 mA @ 12VDC.

For added security, an enclosure door tamper switch is
utilized. If the enclosure door is opened, the PIC16C77
will be notified at pin RA2 and an alarm sequence is ini-
tiated, if the system is armed. This switch is interfaced
to TB5, pins 1 and 2. While the enclosure door is
closed, the feedback signal developed across R3 is
active low, else if the enclosure door is opened, an
active high signal is observed across R3.

In the event that an alarm condition has been initiated,
the base station PIC16C77 controller will turn on NPN
transistor, Q1. When Q1 is on, its collector junction will
be switched to ground, and this state will turn on Q3.
The drain channel of Q3 is connected to TB2, pin 1
through a 56-ohm/10W current limit resistor for direct
connection to the external piezo siren. The siren imple-
mented operates at 12VDC, typically, with a current draw
of ~170mA while exhibiting a ~116dBm sound pressure
level annunciation. This circuit can be easily modified to
allow for additional current draw should a louder siren
be desired.

An eight conductor overall shielded cable provides the
interface link between the base station panel and the
battery charger/accessory unit.

This system also allows for an existing garage door
system to arm and disarm the security system. (This
feature is not completely implemented at this time)

REGULATORY CONSIDERATIONS

While low power wireless products do not need to be
individually licensed, they are subject to regulation.
Before low power wireless systems can be marketed in
most countries, they must be certified to comply with
specific technical regulations. In the U.S., the FCC
issues certification. In the U.K., it is DTI, in Germany it
is the FTZ, and so on.

FCC Compliance

It is noted here that Microchip Technology Incorporated
does not guarantee compliance with any FCC or other
regulatory requirements for this home security system,
although FCC guidelines were followed and adhered
to, when possible. It is the responsibility of the designer
to ensure that the design is compliant to local stan-
dards.

SUMMARY

Automobile, Home or Office. All aspects of today’s daily
life require security. Consumers have a key pad in their
hand, a security keypad on their wall and a smart card
to get in the door.

The KEELOQ family of patented code hopping devices
has quickly become the world standard for security
applications by providing a simple yet highly secure
solution for remote control locking devices, house keys,
garage door openers, and home security.

From the low-cost, low-end HCS200 encoder to the
high-end HCS410 encoder and transponder,
Microchip’s KEELOQ code hopping solutions incorpo-
rate high security, a small package outline, and low cost
- an ideal combination for multifunctional, unidirectional
remote keyless entry (RKE) systems. For logical and
physical access control applications, such as cellular
phones and smart cards, the KEELOQ family offers con-
venience and security in one package.
DS00714A-page 3-58 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 59 Thursday, March 2, 2000 8:01 AM
Microchip provides a complete security solution with a
full range of encoders and decoders that incorporate
the Company’s patented KEELOQ code hopping algo-
rithm, allowing you to get the most advanced security
technology for practically a steal.

As with all security systems, it is important that the end
user understand the level of security, which is required
for the assets you are wanting to protect. The strength
of the security system is only as strong as the weakest
link. Microchips KEELOQ Security devices are proven
not be a weak link.

GLOSSARY OF TERMS

REFERENCE MATERIAL

1. Application Manual, Yuasa-Exide Incorporated,
1996.

2. Handbook of Batteries, 2nd Edition,
McGraw-Hill, David Linden, 1995.

3. Secure Data Products Handbook, Microchip
Technology Inc., Document # DS40168, 1997.

4. Embedded Control Handbook, Microchip Tech-
nology Inc., Document # DS00092, 1997.

5. PIC16C7X Data Sheet, Document # DS30390,
1997.

6. FCC Code of Federal Regulations, Title 47 -
Telecommunication, Chapter I - Federal Com-
munication Commission, Part 15 - Radio Fre-
quency Devices,
(http://frwebgate.access.gpo.gov/cgi-bin/mul-
tidb.cgi).

Note: Information contained in the application
note regarding device applications and the
like is intended through suggestion only
and may be superseded by updates. No
representation or warranty is given and no
liability is assumed by Microchip Technol-
ogy Incorporated with respect to the accu-
racy or use of such information, or
infringement of patents or other intellectual
property rights arising from such use or
otherwise.

ASK Amplitude Shift Keying

EEPROM Electrically Erasable Programma-
ble Read Only Memory

Encryption Method by which if “plain text” is
known and the keying variables are
known the “cipher text” can be pro-
duced

KEELOQ
Algorithm

Nonlinear algorithm for generation
of “cipher text”

JFET Junction Field Effect Transistor

LAN Local Area Network

LCD Liquid Crystal Display

MOSFET Metal Oxide Semiconductor Field
Effect Transistor

PICmicro Microchip Technology Microcontrol-
ler

PUT Programmable Unijunction Transistor

PWM Pulse Width Modulation

RKE Remote Keyless Entry

RF Radio Frequency
 1999 Microchip Technology Inc. DS00714A-page 3-59

AN714

S3.book Page 60 Thursday, March 2, 2000 8:01 AM
APPENDIX A: SYSTEM SCHEMATICS
FIGURE 5: Base Station Panel (1 of 4)

V
B

A
T

1
5
0
0

R
5

B
A

T
T

IO
[0

..
4
]

R
V

1

IO
4

IO
3

IO
2

IO
1

IO
0

.1
u
F

C
2

5
1
0

R
1
1

L
M

3
1
7
M

D
T

-1
U

3

JDA
V

O
U

T
V

IN

1
u
F

C
4

2
2
0

R
8

1
0
K

R
1
0

Z
T

X
9
5
7

Q
3

1
0
u
F

C
9

V
D

D

P
S

O
U

R
C

E

B
A

T
T

M
A

IN

2
2
0

R
6

1
K

R
2

1
K

R
1

2
2
0

R
7

1
0
K

R
9 IC

L
7
6
7
3

U
1

6
P

B
A

R
3

S
B

A
R

1
V

O

4
G

N
D

2
V

S

5
N

C

7
N

C

8
V

P

1
0
K

R
1
2

2
N

4
4
0
0

Q
2

1
3
0
0

R
3

1
u
F

C
3

J
P

1 87654321

R
V

2
.1

u
F

C
1L

M
3
1
7
M

D
T

-1
U

2

JDA
V

O
U

T
V

IN

3
9
0

R
4

Z
T

X
9
5
7

Q
1

1
K

R
1
3

B
A

T
S

E
L

D
2

D
1

DS00714A-page 3-60 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 61 Thursday, March 2, 2000 8:01 AM
FIGURE 6: Base Station Panel (2 of 4)

3
3
p
F

C
6

3
3
p
F

C
5

B
A

T
S

E
L

IO
[0

..
4
]

1
0
K

R
1
7

IO
4

2
2
0

R
1
6

8
M

H
z

Y
2V

D
D

V
D

D

3
2
.7

6
8
K

H
z

Y
1

V
D

D
2
7
p
F

C
8

2
7
p
F

C
7

P
S

O
U

R
C

E

B
Z

S
IG

A
R

M
R

D
Y

L
C

D
B

D

E R
S

L
C

D
0

L
C

D
1

R
W

L
C

D
2

D
B

4
D

B
5

D
B

6

L
C

D
[0

..
6
]

D
B

7

L
C

D
3

L
C

D
4

L
C

D
5

L
C

D
6

K
Y

0
K

Y
1

K
Y

2
K

Y
3

K
Y

4
K

Y
5

IO
3

IO
2

IO
1

IO
0

V
B

A
T

2
2
0

R
1
5

2
2
0

R
1
4

D
A

T
A

2
C

L
K

2

D
A

T
A

1
C

L
K

1

D
T

O
U

T

H
C

S
5
1
5

U
5

1
4

N
C

1
2

V
S

S

9
S

D
A

T

1
0

S
C

L
K

6
M

C
L
R

1
1

R
F

IN

1
3

N
C

8
N

C

7
N

C

5
S

1

4
S

0

3
V

D
D

2
N

C

1
N

C
V

D
D

H
C

S
5
1
5

U
4

1
4

N
C

1
2

V
S

S

9
S

D
A

T

1
0

S
C

L
K

6
M

C
L
R

1
1

R
F

IN

1
3

N
C

8
N

C

7
N

C

5
S

1

4
S

0

3
V

D
D

2
N

C

1
N

C
V

D
D

M
C

P
1
3
0
-4

7
5

U
6

2
R

S
T

1
V

S
S

3
V

D
D

V
D

D

P
IC

1
6
C

7
7

U
7

8
R

E
0

6
R

A
4
/T

O
C

K
I

9
R

E
1

7
R

A
5

4
R

A
2

2
R

A
0
/A

N
0

3
R

A
1
/A

N
1

5
R

A
3
/A

N
3

1
0

R
E

2

1
8

R
C

3

2
3

R
C

4

2
4

R
C

5

2
5

R
C

6

2
6

R
C

7

1
7

R
C

2
/C

C
P

1

1
1

V
D

D

3
2

V
D

D
1
2

V
S

S

3
1

V
S

S

1
6

T
1
O

S
I

1
5

T
1
O

S
O

1
M

C
L
R

1
9

R
D

0

2
0

R
D

1

2
1

R
D

2

2
2

R
D

3

2
7

R
D

4

2
8

R
D

5

2
9

R
D

6

3
0

R
D

7

1
4

O
S

C
2

1
3

O
S

C
1

3
3

R
B

0

3
4

R
B

1

3
5

R
B

2

3
6

R
B

3

3
7

R
B

4

3
8

R
B

5

3
9

R
B

6

4
0

R
B

7
K

Y
6

K
Y

7

K
Y

[0
..
7
]

 1999 Microchip Technology Inc. DS00714A-page 3-61

AN714

S3.book Page 62 Thursday, March 2, 2000 8:01 AM
FIGURE 7: Base Station Panel (3 of 4)

7BD

6BD

5BD

4BD
WR

E
SR0DCL

1DCL

2DCL

3DCL

4DCL

5DCL

6DCL

V
D

D

L
C

D
[0

..
6
]

V
D

D
V

O

K
Y

7 8
2
K

R
3
3

8
2
K

R
3
2

8
2
K

R
3
1

8
2
K

R
3
0

V
D

D

1
0
0

R
2
9

1
K

R
2
1

1
0
K

R
2
0

H
1

61
51

41
31

21
11

01
9

8
7

6
5

4
3

2
1

2
N

3
9
0
6

Q
4

2
.2

K

R
1
9

1
0
K

R
1
8

V
D

D

L
C

D
B

D

.1
u
F

C
1
0

A
N

T
E

N
N

A

S
1
7

S
1
6

S
1
5

S
1
3

S
1
2

S
1
1

S
9

S
8

S
7

S
5

S
4

S
3

K
Y

6

K
Y

5

1
0
0

R
2
8

1
0
0

R
2
7

K
Y

4

1
0
0

R
2
6

K
Y

[0
..
7
]

K
Y

0
K

Y
1

K
Y

2

K
Y

3
1
0
0

R
2
5

1
0
0

R
2
4

S
6

S
2

1
0
0

R
2
3

1
0
0

R
2
2

S
1
4

S
1
0

R
R

3
-4

3
3
.9

2

R
F

1
1
5

A
F

+
V

C
C

1
4

O
U

T
1
3

T
E

S
T

1
2

A
F

+
V

C
C

1
1

A
F

 G
N

D
1
0

A
F

+
V

C
C

7
R

F
 G

N
D

3
IN

2
R

F
 G

N
D

1
R

F
+

V
C

C

D
T

O
U

T

V
D

D

DS00714A-page 3-62 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 63 Thursday, March 2, 2000 8:01 AM
FIGURE 8: Base Station Panel (4 of 4)

D
6

D
5

2
.2

K
R

3
5

R
E

A
D

Y

B
Z

S
IG

3
3

R
3
8

1
K

R
3
7

2
N

3
9
0
4

Q
5

B
Z

1
V

D
D

A
R

M
R

D
Y

D
8

D
4

D
3

2
.2

K
R

3
6

B
A

T
T

D
7 A
L
A

R
M

V
D

D
V

D
D

.1
u
F

C
1
1

.1
u
F

C
1
0

.1
u
F

C
1
2

.1
u
F

C
9

 1999 Microchip Technology Inc. DS00714A-page 3-63

AN714

S3.book Page 64 Thursday, March 2, 2000 8:01 AM
FIGURE 9: Battery Charger/Accessory Panel (1 of 2)

S
W

IT
C

H

A
L
A

R
M

5
6

R
1
2

T
B

2 21

B
A

T
T

E
R

Y F
A

N

T
B

3 21

S
E

C
 D

C

S
E

C
S

R
C

1
N

5
8
2
1

D
1 T

B
4 21

IR
F

D
9
0
2
0

Q
3

1
KR
1
6

D
3

1
0
K

R
1
0

1
3
K

R
3

1
0
K

R
1

2
N

4
4
0
0

Q
1

D
O

O
R

2
2
K

R
1
1

T
B

5

2 1

4
0
0

R
7

R
L
IM

IT

S
E

C
 D

C

S
E

C
 M

O
N

T
B

1

1
2

1
1

1
0

987654321
5
K

R
1
8

1
K

R
1
7

A
L
A

R
M

T
A

M
P

E
R

 S
W

D
2

1
0
K

R
1
3

1
K

R
8

IR
F

D
9
0
2
0

Q
4

2
2

R
1
5

1
0
K

R
9 2

N
4
4
0
0

Q
6

P
R

IM
 D

C

1
K

R
6

3
6
0

R
2

2
K

R
1
9

L
M

3
1
7

U
1

V
O

U
T

JDA

V
IN

1
u
F

C
1

R
V

1

.1
u
F

C
2

S
1

DS00714A-page 3-64 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 65 Thursday, March 2, 2000 8:01 AM
FIGURE 10: Battery Charger/Accessory Panel (2 of 2)

FIGURE 11: Sensor Module (1 of 2)

3K

R25

1.1K

R24

LT1013
U3B

4

8

 7
 6

 5

1N5231
Z2

1K

R22

PRIM DC

SECSRCLT1013
U3A

4

8

 1
 2

 3
30K

R21

30K
R20

PRIM DC

LT1013
U2B

4

8

 7
 6

 5

1.1K

R23

SEC MON

PRIM DC

.1uF
C4

.1uF
C3

3K
R26

PRIM DC

4.3M
R2

10uF
C1

2N6028
U35.6M

R8

VBat

100K
R4

100
R6

1
P
J

2
P
J

NO

6.8M
R7

G

K

A

2N5457
Q1

D1
VN10LP
Q2

6.8M
R1

VBat

1.8M
R3

VBat

S1

HCS200

U2
8

VDD
7

NC
6

PWM
5

VSS
4

NC

3
S2

2
S1

1
SO

510

R5

PIC12C508A

U1
 8

VSS
 7

GP0
 6

GP1
 5

GP2
 4

GP3

 3
GP4

 2
GP5

 1
VDD

VBat

OK_TEST_LRN

TB1

3
2
1

VBat

C
NC

CNTPWR

OK_ALARM

PWMOUT
 1999 Microchip Technology Inc. DS00714A-page 3-65

AN714

S3.book Page 66 Thursday, March 2, 2000 8:01 AM
FIGURE 12: Sensor Module (2 of 2)

CNTPWR

PCB TRACK
L1

470pF
C4

47

R10
2.2pF
C3

12pF
C2

20mm

R02101A
U4

BFR92A

Q3

220
R9

47K
R11

PWMOUT

6.0V
BT1

100nF
C5

VBat

JP3
DS00714A-page 3-66 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 67 Thursday, March 2, 2000 8:01 AM
APPENDIX B: BASE STATION CODE FILES
/***
* *
* Wireless Home Security with Keeloq and the PICmicro *
* *
**
* *
* Filename: base77.c *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* System files required: *
* *
* powrup77.as (Hi-Tech file, modified) *
* basecode.as *
* base77.c *
* newmprnt.c (Hi-Tech file) *
* baselcd.c *
* hcsdec.c *
* prockey.c *
* timeset.c *
* proctran.c *
* diagfunc.c *
* zonename.c *
* codesel.c *
* init.c *
* delays.c *
* *
* *
* pic.h (Hi-Tech file) *
* sfr.h (Hi-Tech file) *
* stdio.h (Hi-Tech file) *
* string.h (Hi-Tech file) *
* cnfig77.h *
* base77.h *
* baselcd.h *
* hcsdec.h *
* prockey.h *
* time.h *
* proctran.h *
* diagfunc.h *
* zonename.h *
* code.h *
* hcs515ee.h *
* *
* *
**
* *
* Notes: *
* *
* Device Fosc -> 8.00MHz external crystal *
* Timer1 -> 32.768KHz external watch crystal *
* WDT -> off *
* Brownout -> off *
* Powerup timer -> on *
* Code Protect -> all *
* *
* Interrupt sources - *
* 1. 4x4 Keypad on PortB *
* 2. Real-time clock - Timer1 (1sec. interval) *
* 3. Timer0 (32mS interval) *
* *
* *
* *
* Memory Usage Map: *
* *
* User segment $1FFA - $1FFE $0005 (5) bytes total User segment *
* Program ROM $0000 - $0002 $0003 (3) words *
* Program ROM $0004 - $180F $180C (6156) words *
* Program ROM $1AC7 - $1FF9 $0533 (1331) words *
* Program ROM $2007 - $2007 $0001 (1) words *

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code
 1999 Microchip Technology Inc. DS00714A-page 3-67

AN714

S3.book Page 68 Thursday, March 2, 2000 8:01 AM
* $1D43 (7491) words total Program ROM *
* *
* *
* Bank 0 RAM $0020 - $0062 $0043 (67) bytes *
* Bank 0 RAM $0064 - $0069 $0006 (6) bytes *
* Bank 0 RAM $0070 - $007D $000E (14) bytes *
* $0057 (87) bytes total Bank 0 RAM *
* *
* Bank 1 RAM $00A0 - $00D6 $0037 (55) bytes total Bank 1 RAM *
* Bank 0 Bits $0318 - $031A $0003 (3) bits total Bank 0 Bits *
* *
* *
* *
***/

#include <pic.h> // processor if/def file
#include <stdio.h>
#include “cnfig77.h” // configuration word definitions
#include “base77.h” // function prototypes, defines.
#include “hcs515ee.h” // HCS515 EE user memory map

 __CONFIG (CONBLANK & BODEN_OFF & PWRTE_ON & CP_ALL & WDT_OFF & HS_OSC);

/***

 MAIN PROGRAM BEGINS HERE

**/

void main(void)
{

Init_Adc(); // initiliaze ADC module
Init_Pwm(); // initialize PWM for internal piezo use
Init_Timer1(); // initialize Timer1 module
Init_Timer0(); // initialize Timer0
Init_Portb(); // initialize PortB for panel keypad
Init_Lcd(); // initialize panel LCD module
Init_EE_Memory(); // initialize HCS515 EE memory sections

flag1.battery_off = 1; // set initial state of flag
flag1.buzzer = 1; // set buzzer default state
flag1.new_day = 1; // set initial flag for indicating new day
key_wait_limit = SEC4; // set initial key wait time (4 seconds)

printf(“ Home Security”); // display initial message line 1
Line_2(); // position lcd cursor on line2 / position 1
printf(“Keeloq Security”); // display initial message line 2

decoder2_ee[0] = CLEAR; //
temp = Write_User_EE2(ALRM_STAT, &decoder2_ee[0], 1);//write alarm status (clear) byte to EE

PORTB; // dummy read
RBIF = 0; // ensure PORTB change flag is cleared
PEIE = 1; // set peripheral enable bit
GIE = 1; // set global interrupt enable bit

while(1) // main program loop
{

if (HCSDATA2) // test if HCS515 initiated activity
{

Read_Decoder_Trans(); // process reception from HCS515
}

if (flag1.keyread) // housekeeping for processing keypad entry
{

Process_Key(); // process key entry
flag1.keyread = 0; // reset flag

}

if (flag1.learn_entered) // learn activated for decoder 2
{

Read_Learn(2); // read two bytes of learn response
if ((decoder2[0] & 0xFD) == 0x84) // test if learn was successful
{

Zone_Name(); // assign name to sensor module (zone)
}
flag1.learn_entered = 0; // reset flag

}

DS00714A-page 3-68 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 69 Thursday, March 2, 2000 8:01 AM
if (flag1.time_update) // housekeeping for realtime clock?
{

Display_Time(); // display and update TOD on LCD
}

if ((flag1.read_battery) && (!PSOURCE)) // battery voltage requires checking?
{

Test_Batt_Volt(); // check once per hour
} // flag set in interrupt every hour

Check_Battery_Time(); // test if battery source was cycled on/off

if (flag1.arm_countdown == 1)
{

Home_It(); // set lcd cursor to line1/position 1
printf(“Armed Countdown!”); // format message for LCD

if (time_to_arm == 0x00)
{

flag2.alarm_set1= 1; // set alarm state entry flag1
ARMRDY = 0; // turn on base panel ARMED LED
flag2.alarm_set2= 1; // set alarm state entry flag2
flag1.arm_countdown = 0; // reset flag so as not to come into loop again
flag1.arm_now = 1; // set flag to indicate system is now ARMED

}
}

if (flag1.arm_now == 1) // test flag if system is ARMED now
{

Home_It(); // set lcd cursor to line1/position 1
printf(“ System Armed “); // format message for LCD

}

if ((flag2.sensor_batt_low == 1) && (seconds < 1))
{

Sound_Piezo(1); // toggle internal piezo for 100mS
Delay_100mS(1); // short delay

}

if (TAMPER_SW) // test if accessory panel door is opened
{

if (flag1.arm_now == 1) // is system ARMED?
{

ALARM_ON; // accessory panel door open and alarm mode set
}

if (seconds < 1) // allow small for internal buzzer to sound
{

Sound_Piezo(2); // toggle internal piezo for 200mS
Delay_100mS(1); // short delay

}
}

if (GARAGE_EN) // test for garage door open/close state change
{

NOP(); // no code written/tested at this time

}
}

}

void mystartup(void)
{

PORTA = 0b000000; // enable battery current limit, disable external
// alarm

porta_image = 0b000000;
TRISA = 0b111001; // set RA1 as an output
PORTC = 0b00001000; // powerup init code
TRISC = 0b01100011; // RC0/1/5/6 inputs, all else outputs
TRISD = 0b11111111; // ensure TRISD is set for inputs
PORTE = 0b100; // LCD backdrive off
TRISE = 0b00000010; // RE2/RE0 output, RE1 input

asm(“ljmp start”); // return control back to program
}

void Delay_10mSb(char loop_count) // approximate 10mS base delay
{

unsigned int inner; // declare integer auto variable
char outer; // declare char auto variable
 1999 Microchip Technology Inc. DS00714A-page 3-69

AN714

S3.book Page 70 Thursday, March 2, 2000 8:01 AM
while (loop_count) // stay in loop until done
{

for (outer = 9; outer > 0; outer--)
for (inner = 249; inner > 0; inner--);

loop_count--;
}

}

void interrupt piv_isr(void)
{

if (T0IE && T0IF) // has Timer0 overflow event occurred?
{

if (HCSDATA2) // test for Keeloq decoder activity
{

key_wait = SEC4 +1; // set key_wait to expiration time
valid_key = ESC; // set valid key for ESCape character

}
key_wait ++; // update key wait timer
T0IF = 0; // reset Timer0 overflow flag

}

else if (TMR1IE && TMR1IF) // has Timer1 overflow event occurred?
{

if (seconds < 59) // is cummulative seconds < 59?
{

seconds++; // yes, so increment seconds
}
else // else seconds => 59
{

if (flag1.arm_countdown) // is countdown to ARM system flag set?
{

time_to_arm --; // yes, so decrement time to arm count
}

seconds = 0x00; // reset seconds
if (minutes < 59) // is cummulative minutes < 59?
{

minutes++; // yes, so updates minutes
}
else // else minutes => 59
{

minutes = 0x00; // reset minutes
flag1.read_battery = 1; // set flag for reading battery voltage
if (hours < 23) // is cummulative hours < 23
{

hours ++; // yes, so update hours
}
else
{

hours = 0x00; // reset time
flag1.new_day = 1; // set flag to indicate new day

}
}

}

TMR1H |= 0x80; // reset Timer1 period for 1 second
TMR1IF = 0; // reset Timer1 overflow flag
}

else if (RBIE && RBIF) // test for PORTB change event?
{

Delay_10mSb(2); // 10mS delay
switch (valid_key = (PORTB | 0x0F))
{

case (0x7F): // test for single key in row 4
key_index = 0x0C; // ‘ESC’, ‘*’, ‘0’, ‘#’
break;

case (0xBF): // test for single key in row 3
key_index = 0x08; // ‘ALT’, ‘7’, ‘8’, ‘9’
break;

case (0xDF): // test for single key in row 2
key_index = 0x04; // ‘PANIC’, ‘4’, ‘5’, ‘6’
break;

case (0xEF): // test for single key in row 1
key_index = 0x00; // ‘AUX’, ‘1’, ‘2’, ‘3’
break;

default:
key_index = 0x10; // no valid “single” key entered
flag1.keyread = 0; // set keyread processing flag to false
break;

}

DS00714A-page 3-70 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 71 Thursday, March 2, 2000 8:01 AM
if (key_index != 0x10) // if row = 1-4 valid
{

PORTB = 0xFF; // initialize PORTB outputs to logic 1’s
portb_image = 0b11101111; // initialize mask byte for column detect
PORTB; // initialize PORTB input conditions
RBIF = 0; // reset interrupt flag
portb_image >>= 1; // rotate mask value 1 position right

 while (CARRY)
{

PORTB = portb_image; // write key selection mask value to PORTB
NOP(); // small settling time for output drive
if (RBIF) // is change on PORTB flag set?
{

flag1.keyread = 1; // set keyread processing flag to true
flag1.keyhit = 1; // set valid key hit flag
CARRY = 0; // reset carry flag

}
else // no change on PORTB so ..
{

key_index++; // increment key index
portb_image >>= 1; // update PORTB selection mask value

}
}

}

PORTB = 0xF0; // reset PORTB drive states
if (flag1.keyhit == 1) // test if there was valid key hit
{

valid_key = keypad[key_index]; // obtain selected key
flag1.keyhit = 0; // invalid key hit

}

PORTB; // PortB dummy read
RBIF = 0; // reset flag

}
}

void Display_Time(void)
{

Line_2(); // position lcd cursor on line2 / position 1
printf(“Time-> %02u:%02u:%02u” ,hours,minutes,seconds);

}

void putch(char data)
{

Write_Lcd_Data(data); // write data to LCD via “printf”
}

 1999 Microchip Technology Inc. DS00714A-page 3-71

AN714

S3.book Page 72 Thursday, March 2, 2000 8:01 AM
/***
* *
* Filename: base77.h *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
***/

// ROM ARRAY STORAGE DEFINED HERE

#define ESC 0x1B // text sub. for Escape key
#define ALT 0x40 // text sub. for Alternate key
#define AUX 0x41 // text sub. for Auxillary key
#define PANIC 0x50 // text sub. for Panic key

const char keypad[17] = {PANIC,’1’,’2’,’3’,
 ALT,’4’,’5’,’6’,
 AUX,’7’,’8’,’9’,
 ESC,’*’,’0’,’#’,’?’};

// FUNCTION PROTOTYPES

/* Functions defined in file base77.c */
void Display_Time(void); // function for displaying TOD
void Delay_10mSb(char loop_count); // 10mS delay used for keypad debounce

/* Functions defined in file init.c */
extern void Init_Adc(void); // reference linkage to defined function
extern void Init_Pwm(void);
extern void Init_Timer1(void);
extern void Init_Timer0(void);
extern void Init_Portb(void);
extern void Init_EE_Memory(void);

/* Functions defined in file baselcd.c */
extern void Init_Lcd(void); // reference linkage to defined function
extern void Write_Lcd_Data (char data);
extern void Home_Clr(void);
extern void Home_It(void);
extern void Line_2(void);

/* Functions defined in file delays.c */
extern void Delay_100mS(char loop_count); // reference linkage to defined function
extern void Delay_10mS(char loop_count);
extern void Delay_1mS(char loop_count);

/* Functions defined is file diagfunc.c */
extern void Sound_Piezo(char ontime); // reference linkage to defined function
extern void Test_Batt_Volt(void);
extern void Check_Battery_Time(void);

/* Function defined in file prockey.c */
extern void Process_Key (void); // reference linkage to defined function

/* Functions defined in file hcsdec.c */
extern void Read_Trans(char length); // reference linkage to defined function
extern char Read_Learn(char length);
extern void Read_Decoder_Trans(void);
extern char Write_User_EE2(char address, char * wrptr, char length);

/* Function defined in file proctran.c */
extern void Process_Trans(void); // reference linkage to defined function

/* Function defined in file zonename.c */ // reference linkage to defined function
extern void Zone_Name(void);

// VARIABLES (DEFINED HERE)

struct event_bits1 // bit structure for housekeeping flags
 {

unsigned new_day :1; // flag for indicating new day
unsigned arm_countdown :1; // flag set when counting down to arming system
unsigned buzzer :1; // flag set when piezo buzzer will sound when called
unsigned read_battery :1; // flag used for read battery voltage
unsigned battery_on :1; // flag set when battery source is selected
DS00714A-page 3-72 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 73 Thursday, March 2, 2000 8:01 AM
unsigned battery_off :1; // flag set when battery is not selected
unsigned time_update :1; // flag used for updating LCD and E2 Memory
unsigned erase_all :1; // flag set when HCS515 erase all operation complete
unsigned battery_sel :1; // flag set when battery source is selected
unsigned erase_entered :1; // flag set when HCS515 erase all operation entered
unsigned arm_now :1; // flag set when system is immediately armed w/o user

// code
unsigned learn_entered :1; // flag set when HCS515 learn operation entered
unsigned code_valid :1; // flag set after user security access code accepted
unsigned code_entered :1; // flag set when user security access code entered
unsigned keyread :1; // flag set for indicating keypad selection needs

// processed
unsigned keyhit :1; // flag set when valid key hit on 4x4 keypad is

// detected
} flag1; // variable name

struct event_bits2 // define bit structure for housekeeping flags
{
 unsigned :1; // bit padding

unsigned alarm_set1 :1; // flag set when system is armed (1 of 2)
unsigned :6; // bit padding
unsigned valid_rcv :1; // flag used if HCS515 demod data is correct
unsigned sensor_batt_low :1; // flag indicating if sensor module battery is low
unsigned :5; // bit padding
unsigned alarm_set2 :1; // flag set when system is armed (2 of 2)

} flag2; // variable name

char porta_image; // define PortA image register
char portb_image; // define PortB image register
char key_index; // define key index variable for const array
char hours; // define variable used for hours
char minutes; // define variable used for minutes
char seconds; // define variable used for seconds

bank1 char temp;
bank1 char key_wait; // define variable for key wait timer
bank1 char valid_key; // define variable for 4x4 keypad value
bank1 char key_wait_limit; // define variable for key wait timer

// VARIABLES (REFERENCE DECLARATION)

//extern bank1 char decoder1[10]; // reference linkage, array storage for valid trans.
// reception (decoder 1)

extern bank1 char decoder2[10]; // reference linkage, array storage for valid trans.
// reception (decoder 2)

//extern bank1 char decoder1_ee[6]; // reference linkage to array variable
extern bank1 char decoder2_ee[6]; // reference linkage to array variable
extern bank1 char time_to_arm; // reference linkage to defined variable

// PORTBITS (DEFINED HERE)

#define PortBit(port,bit) ((unsigned)&(port)*8+(bit))

static bit TAMPER_SW @ PortBit(PORTA,5); // Input from Accessory unit door tamper switch

static bit ARMRDY @ PortBit(PORTC,3); // Alarm/Ready Light bias control
static bit HCSCLK2 @ PortBit(PORTC,4); // HSC515 clock input (Ref. U5)
static bit HCSDATA2 @ PortBit(PORTC,5); // HCS515 data output (Ref. U5)
static bit HCSDATA1 @ PortBit(PORTC,6); // HCS515 data output (Ref. U4)
static bit HCSCLK1 @ PortBit(PORTC,7); // HCS515 clock input (Ref. U4)
static bit PSOURCE @ PortBit(PORTD,0); // Power Source indication status

static bit GARAGE_EN @ PortBit(PORTE,1); // Input from Existing garage door receiver
static bit LCDBD @ PortBit(PORTE,2); // LCD Back Drive on/off

// MACROS (DEFINED HERE)

#defineNOP()asm(“ nop”) // define NOP macro

#define ALARM_ON porta_image |= 0b000100;\
 PORTA = porta_image; // enable external alarm

#define ALARM_OFF porta_image &= ~0b000100;\
 PORTA = porta_image; // enable external alarm

#define SEC4 120 //
 1999 Microchip Technology Inc. DS00714A-page 3-73

AN714

S3.book Page 74 Thursday, March 2, 2000 8:01 AM
/***
* *
* Wireless Home Security with Keeloq and the PICmicro *
* *
**
* *
* Filename: baselcd.c *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* Files required: *
* *
* baselcd.h *
* *
**
* *
* Notes: The routines within this file are required for *
* communicating with the system LCD (2x16) module *
* connected to PORTD. *
* *
* *
* PORTD: RD4 - RD7 (4-bit data interface) *
* RD3 - (R/W control signal) *
* RD2 - (E control signal) *
* RD1 - (RS control signal) *
* *
* PORTE: RE2 - (LCD backlight on/off / 60mA draw) *
* *
* *
***/

#include “baselcd.h” // function prototypes, defines..

void Init_Lcd(void) // initialize LCD display
{

CONTROL = 0x01; // initial state of control lines
 TRISCTRL = 0x01; // initialize control lines

Delay15ms(); // ~15mS delay upon powerup

 DATA = 0x30; // output setup data to LCD
 E = 1; // set enable high

NOP();
 E = 0; // set enable low

Delay5ms(); // ~5mS delay

 DATA = 0x30; // output setup data to LCD
 E = 1; // set enable high

NOP();
 E = 0; // set enable low

Delay200us(); // ~200uS delay

DATA = 0x30; // output setup data to LCD
 E = 1; // set enable high

NOP();
 E = 0; // set enable low
 Lcd_Busy(); // test for lcd_busy state

 DATA = 0x20; // output setup data to LCD
 E = 1; // set enable high

NOP();
 E = 0; // set enable low
 Lcd_Busy(); // test for lcd_busy state

 Write_Lcd_Cmd(0x28); // define 4 bit interface, 2 lines. 5x7 dots
 Write_Lcd_Cmd(0x0C); // display on, cursor on, blink off
 Write_Lcd_Cmd(0x01); // clear display
 Write_Lcd_Cmd(0x06); // entry mode set..
 Write_Lcd_Cmd(0x28); //
}

DS00714A-page 3-74 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 75 Thursday, March 2, 2000 8:01 AM
void Write_Lcd_Cmd(char cmd) // subroutiune for lcd commands
{
 DATA = (cmd & 0xF0); // send upper 4 bits of command
 E = 1; // set enable high

NOP();
 E = 0; // set enable low
 DATA = ((cmd << 4) & 0xF0); // now send lower 4 bits of command
 E = 1; // set enable high

NOP();
 E = 0; // set enable low
 Lcd_Busy(); // check lcd busy flag
}

void Write_Lcd_Data(char data) // subroutine for lcd data
{

DATA = 0x00; // set pins to defined state
 RS = 1; // assert register select to 1
 DATA |= (data & 0xF0); // send upper 4 bits of data
 E = 1; // set enable high

NOP(); //
 E = 0; // set enable low

DATA &= 0x0F;
 DATA |= (data << 4); // now send lower 4 bits of data
 E = 1; // set enable high

NOP(); //
 E = 0; // set enable low
 RS = 0; // negate register select to 0
 Lcd_Busy(); // check lcd busy flag
}

void Lcd_Busy(void)
{

TRISDATA_7 = 1; // make line an input
 RW = 1; // assert R/W for read operation

 while(TRUE) // stay in loop until lcd not busy
 {
 E = 1; // set enable high

 NOP(); // ensure tDDR spec is met before test
 if (!DATA_7) // is busy bit negated
 {
 E = 0; // set enable low

RW = 0; // negate R/W for write operation
TRISDATA_7 = 0; // return line to output
return; // exit busy routine

 }
 else
 {

E = 0; // set enable low
NOP();
E = 1; // set enable high
NOP();
E = 0; // set enable low

 }
}

}

void Delay15ms(void) // approximate 15ms delay
{

char outer, inner;
for (outer = 24; outer > 0; outer--)

for (inner = 250; inner > 0; inner--);
}

void Delay5ms(void) // approximate 5ms delay
{

char outer, inner;
for (outer = 8; outer > 0; outer--)

for (inner = 253; inner > 0; inner--);
}

void Delay200us(void) // approximate 200us delay
{

char delay;
for (delay = 66; delay > 0; delay--);

}

 1999 Microchip Technology Inc. DS00714A-page 3-75

AN714

S3.book Page 76 Thursday, March 2, 2000 8:01 AM
void Cursor_Right(void) // shift lcd cursor right 1 position
{
 Write_Lcd_Cmd(0x14);
}

void Cursor_Left(void) // shift lcd cursor left 1 position
{
 Write_Lcd_Cmd(0x10);
}

void Display_Shift(void) // shift lcd display contents
{
 Write_Lcd_Cmd (0x1C);
}

void Home_Clr(void) // clear lcd and set cursor to line1/position 1
{
 Write_Lcd_Cmd(0x01);
}

void Home_It(void) // set lcd cursor to line1/position 1
{
 Write_Lcd_Cmd(0x02);
}

void Line_2(void) // clear lcd and set to line2/position 1
{
 Write_Lcd_Cmd (0xC0);
}

DS00714A-page 3-76 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 77 Thursday, March 2, 2000 8:01 AM
/***
* *
* Filename: baselcd.h *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
***/

// FUNCTION PROTOTYPES

/* Functions defined in file baselcd.c */
void Write_Lcd_Cmd(char cmd); // write command to lcd
void Lcd_Busy(void); // busy flag check
void Delay15ms(void); // approximate 15ms delay
void Delay5ms(void); // approximate 5ms delay
void Delay200us(void); // approximate 200us delay

static unsigned char PORTD @ 0x08; // reference/declare of PORTD variable
static unsigned char TRISD @ 0x88; // reference/declare of TRISD variable

// MACROS (DEFINED HERE)

#define TRUE 1
#define NOP() asm(“ nop”)

#define CONTROL PORTD // Port for lcd control lines
#define TRISCTRL TRISD // I/O setup for control Port
#define DATA PORTD // Port for lcd data
#define TRISDATA TRISD // I/O setup for data Port

// PORTBITS (DEFINED HERE)

#define PortBit(port,bit) ((unsigned)&(port)*8+(bit))

static bit DATA_7 @ PortBit(PORTD,7); // DATA bit 7 for LCD busy check
static bit TRISDATA_7 @ PortBit(TRISD,7); // TRIS bit 7 for LCD busy check
static bit RW @ PortBit(PORTD,3); // R/W control bit for LCD
static bit RS @ PortBit(PORTD,1); // Register select bit for LCD
static bit E @ PortBit(PORTD,2); // Enable/Clock for bit for LCD
 1999 Microchip Technology Inc. DS00714A-page 3-77

AN714

S3.book Page 78 Thursday, March 2, 2000 8:01 AM
/***
* *
* Wireless Home Security with Keeloq and the PICmicro *
* *
**
* *
* Filename: delays.c *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* Files required: *
* *
* pic.h *
* *
* *
**
* *
* Notes: The delay routines within this file are used *
* by other system functions. *
* *
* *
***/

#include <pic.h> // processor if/def file

#define NOP() asm(“ nop”) // define NOP macro

void Delay_1S(char loop_count) // approximate 1S base delay
{

unsigned int inner; // define/declare auto type int variable
unsigned char outer; // define/declare auto type char variable

while (loop_count)
{

for (outer = 145; outer > 0; outer--)
for (inner = 985; inner > 0; inner--)
{

NOP();
NOP();
NOP();
NOP();
NOP();

}
loop_count--; // decrement loop iteration counter

}
}

void Delay_100mS(char loop_count) // approximate 100mS base delay
{

unsigned int inner; // define/declare auto type int variable
unsigned char outer; // define/declare auto type char variable

while (loop_count)
{

for (outer = 87; outer > 0; outer--)
for (inner = 255; inner > 0; inner--);

loop_count--; // decrement loop iteration counter
}

}

void Delay_10mS(char loop_count) // approximate 10mS base delay
{

unsigned int inner; // define/declare auto type int variable
unsigned char outer; // define/declare auto type char variable

while (loop_count)
{

for (outer = 9; outer > 0; outer--)
for (inner = 246; inner > 0; inner--);
DS00714A-page 3-78 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 79 Thursday, March 2, 2000 8:01 AM
loop_count--; // decrement loop iteration counter
}

}

void Delay_1mS(char loop_count) // approximate 1mS base delay
{

unsigned int inner; // define/declare auto type int variable
unsigned char outer; // define/declare auto type char variable

while (loop_count)
{

for (outer = 1; outer > 0; outer--)
for (inner = 219; inner > 0; inner--);

loop_count--; // decrement loop iteration counter
}

}

void Delay_200uS(void) // approximate 200us delay
{

char delay; // define/declare auto type char variable
for (delay = 66; delay > 0; delay--);

}

void Delay_20uS(char loop_count) // approximate 20us base delay
{

char delay; // define/declare auto type char variable

for (; loop_count > 0 ; loop_count--)
for (delay = 6; delay > 0; delay--);

}

void Delay_10uS(void) // approximate 10us delay
{

char delay; // define/declare auto type char variable

NOP();
NOP();

for (delay = 2; delay > 0; delay--);
}

void Delay_5uS(void) // approximate 5us delay
{

NOP();
NOP();
NOP();
NOP();
NOP();

}
 1999 Microchip Technology Inc. DS00714A-page 3-79

AN714

S3.book Page 80 Thursday, March 2, 2000 8:01 AM
/***
* *
* Wireless Home Security with Keeloq and the PICmicro *
* *
**
* *
* Filename: diagfunc.c *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* Files required: *
* *
* pic.h *
* stdio.h *
* diagfunc.h *
* hcs515ee.h *
* *
* *
* *
**
* *
* *
* Notes: The routines within this file are used for: *
* *
* 1. Monitoring battery voltage and determining if current *
* limiting resistor is switched in or out. *
* 2. Converting ADC result to a floating point number *
* 3. Initiating drive signal for piezo buzzer *
* 4. Monitoring and recording battery on/off T.O.D. and number *
* of on/off cycles. *
* *
* *
***/

#include <pic.h>
#include <stdio.h>
#include “diagfunc.h”
#include “hcs515ee.h”

void Test_Batt_Volt(void)
{

ADON = 1; // power up ADC module
NOP(); // short delay
ADGO = 1; // start conversion
while(ADGO); // wait here until conversion complete
ADON = 0; // power down ADC module

if (ADRES > 0xBA) // is battery voltage > 12.75Vdc?
{

BATT_CURR_ON; // yes, so remove battery charge current limit
}
else
{

BATT_CURR_OFF; // no, so battery charge current limit on
}
flag1.read_battery = 0; // reset read battery status flag

}

void Battery_Voltage(void)
{

Test_Batt_Volt(); // perform conversion on scaled battery voltage
battery_volts = (((ADRES * 0.019726562) / 2.7477) + 5.13) * 1.9984;

}

void Sound_Piezo(char ontime)
{

if (flag1.buzzer) // test if buzzer is enabled
{

GIE = 0; // disable global interrupt enable
CCP1CON = 0b00001100; // set CCP1 for PWM
DS00714A-page 3-80 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 81 Thursday, March 2, 2000 8:01 AM
do // loop
{

Delay_1mS(100); // ~99.91 mS
} while (--ontime); // number of 100mS loops

CCP1CON = 0x00; // turn off CCP1 module
GIE = 1; // re-enable global interrupt enable

}
}

void Check_Battery_Time(void)
{

/* Test if battery has been selected and record time */
if (PSOURCE && !flag1.battery_on) // test if battery is selected
{ // if PSOURCE == 1, then battery is selected

decoder2_ee[0] = hours; // write hours count to buffer for EE write
decoder2_ee[1] = minutes; // write minutes count to buffer for EE write
decoder2_ee[2] = seconds; // write seconds count to buffer for EE write
temp = Write_User_EE2(BT_ON_HRS, &decoder2_ee[0], 3); // write battery on-time to EE

// memory

flag1.battery_on = 1; // set flag to indicate battery is selected
flag1.battery_off = 0; // reset flag for battery off time

}

/* Test if battery is de-selected and record time */
if (!PSOURCE && !flag1.battery_off) // test if line is primary source
{ // if !PSOURCE == 0, main power is on

decoder2_ee[0] = hours; // write hours count to buffer for EE write
decoder2_ee[1] = minutes; // write minutes count to buffer for EE write
decoder2_ee[2] = seconds; // write seconds count to buffer for EE write

 temp = Write_User_EE2(BT_OFF_HRS, &decoder2_ee[0], 3);// write battery off-time to EE
// memory

Delay_1mS(5);

temp = Read_User_EE2(BT_ON_CNT, &decoder2_ee[0], 1);// read battery on cycle count
decoder2_ee[0] ++;

Delay_1mS(5);
temp = Write_User_EE2(BT_ON_CNT, &decoder2_ee[0], 1); // write updated battery on cycle

// count

flag1.battery_off = 1; // set flag to indicate battery is not selected
flag1.battery_on = 0; // reset battery on status flag

}

/* Test if new 24 hour period has began */
if (flag1.new_day) // test if new day flag has been set
{

decoder2_ee[0] = 0x00; // set array element to 0
decoder2_ee[1] = 0x00; // set array element to 0
decoder2_ee[2] = 0x00; // set array element to 0
decoder2_ee[3] = 0x00; // set array element to 0
decoder2_ee[4] = 0x00; // set array element to 0
decoder2_ee[5] = 0x00; // set array element to 0

temp = Write_User_EE2(BT_ON_CNT, &decoder2_ee[0], 1);// reset daily battery on count
temp = Write_User_EE2(BT_ON_HRS, &decoder2_ee[0], 6);// reset battery on/off time to 0

flag1.new_day = 0; // reset 24 hour flag
}

}

 1999 Microchip Technology Inc. DS00714A-page 3-81

AN714

S3.book Page 82 Thursday, March 2, 2000 8:01 AM
/***
* *
* Filename: diagfunc.h *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
***/

// FUNCTION PROTOTYPES

/* Functions defined in file hcsdec.c */
extern char Write_User_EE2(char address, char * wrptr, char length);
extern char Read_User_EE2(char address, char * rdptr, char length);

/* Function defined in file delays.c */
extern void Delay_1mS(char loop_count); // reference linkage to defined function

// VARIABLES (REFERENCE DECLARATION)

extern struct event_bits1 // bit structure for housekeeping flags
 {

unsigned new_day :1; // flag for indicating new day
unsigned arm_countdown :1; // flag set when counting down to arming system
unsigned buzzer :1; // flag set when piezo buzzer will sound when called
unsigned read_battery :1; // flag used for read battery voltage
unsigned battery_on :1; // flag set when battery source is selected
unsigned battery_off :1; // flag set when battery is not selected
unsigned time_update :1; // flag used for updating LCD and E2 Memory
unsigned erase_all :1; // flag set when HCS515 erase all operation complete
unsigned battery_sel :1; // flag set when battery source is selected
unsigned erase_entered :1; // flag set when HCS515 erase all operation entered
unsigned arm_now :1; // flag set when system is immediately armed w/o user

// code
unsigned learn_entered :1; // flag set when HCS515 learn operation entered
unsigned code_valid :1; // flag set after user security access code accepted
unsigned code_entered :1; // flag set when user security access code entered
unsigned keyread :1; // flag set for indicating keypad selection needs

// processed
unsigned keyhit :1; // flag set when valid key hit on 4x4 keypad is

// detected
} flag1; // variable name

extern bank1 char decoder2_ee[6]; // reference linkage to defined variable

extern bank1 char temp; // reference linkage to defined variable

extern char porta_image; // reference linkage to defined variable
extern char hours; // reference linkage to defined variable
extern char minutes;
extern char seconds;

// VARIABLES (DEFINED HERE)

bank1 double battery_volts; // variable defined here

// PORTBITS (DEFINED HERE)

#define PortBit(port,bit) ((unsigned)&(port)*8+(bit))

static bit PSOURCE @ PortBit(PORTD,0); // Power Source indication status
static bit BATSEL @ PortBit(PORTE,0); // Battery Select (test only)

// MACROS (DEFINED HERE)

#define NOP()asm(“ nop”) // define NOP macro

#define BATT_CURR_ON porta_image |= 0b000010;\
 PORTA = porta_image; // enable maximum battery charge current

#define BATT_CURR_OFF porta_image &= ~0b000010;\
 PORTA = porta_image; // enable maximum battery charge current
DS00714A-page 3-82 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 83 Thursday, March 2, 2000 8:01 AM
/***
* *
* Wireless Home Security with Keeloq and the PICmicro *
* *
**
* *
* Filename: hcsdec.c *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* Files required: *
* *
* pic.h *
* stdio.h *
* hcsdec.h *
* *
* *
* *
**
* *
* *
* Notes: The routines within this file are required for *
* communicating with the system HCS515 decoders. *
* *
* *
* *
***/

#include <pic.h>
#include <stdio.h>
#include “hcsdec.h”

void Read_Trans(char length)
{

TRISDATA2 = 1; // ensure pin direction is input
lrn_ptr = decoder2 // initialize pointer

Delay_20uS(3); // intervals of 20uS delay (61uS total)
HCSCLK2 = 1; // assert clock - provide ack to HCS515

Delay_20uS(2); // ~42uS (Tclh)
HCSCLK2 = 0; // negate clock
Delay_20uS(2); // ~42uS (Tcll)

while (length) // stay while length != 0
{

command.bit_counter = 8; // initialize bit counter
do
{

HCSCLK2 = 1; // set clock high (total high time - 26uS)
NOP(); // add in .5uS delay
Delay_20uS(1); // ~24uS delay
HCSCLK2 = 0; // set clock low (sample data after falling edge)

// (total low time - 31.5uS)
temp_buffer >> = 1;> // rotate buffer contents towards LSB
if (HCSDATA2) // test if data line is logic 1
{

temp_buffer |= 0x80; // set bit 7 to logic 1
}
Delay_20uS(1); // ~24uS delay

} while (--command.bit_counter); // decrement counter and test if complete

*lrn_ptr++ = temp_buffer; // save off read byte and update pointer
length --; // decrement loop length counter

}
}

char Read_Learn(char length)
{

TRISDATA2 = 1; // ensure pin direction is input
HCSCLK2 = 0; // ensure clock line is low
 1999 Microchip Technology Inc. DS00714A-page 3-83

AN714

S3.book Page 84 Thursday, March 2, 2000 8:01 AM
lrn_ptr = decoder2; // initialize pointer
command.treq_timeout = 0x0000; // initialize union variable (integer element)

do // loop until HCS515 responds
{ // or until ~35 seconds expires

Delay_1mS(2); // intervals of 2mS delay
Delay_20uS(20); // plus
command.treq_timeout++; // increment response wait timer

if (HCSDATA2 == 1) // has HCS515 responded ?
{

command.treq_timeout = TREQ +1; // if so then set timeout expiration
}

} while (command.treq_timeout <= TREQ);

Home_Clr(); // clear lcd and set to line1 / position 1
if (HCSDATA2 == 0) // is data line still low?
{ // transmission has not been detected 35 sec.

return (TREQ_ERR); // return with error code
}

// At this point the first of two learn transmissions has been received
Delay_100mS(1); // delay of 100mS delay

if (HCSDATA2 != 0) // data line should be lo at this pointw
{

return (TREQ_ERR); // else, return with error code
}

command.treq_timeout = 0x0000; // initialize union variable (integer element)

printf(“1st trans. rcv’d”); // format message for LCD
Line_2(); // position lcd cursor on line2 / position 1
printf(“30 seconds left “); // format message for LCD

// wait here for second transmission
do // loop until HCS515 responds
{ // or until ~30sec expires

Delay_1mS(1); // intervals of 1.3mS delay
Delay_20uS(20); // plus more
command.treq_timeout++; // increment response wait timer

if (HCSDATA2 == 1) // has HCS515 responded ?
{

command.treq_timeout = TREQ +1; // if so then set timeout expiration
}

} while (command.treq_timeout <= TREQ);

Home_Clr(); // clear lcd and set to line1 / position 1
if (HCSDATA2 == 0) // is data line still low?
{

return (TREQ_ERR); // return with error code
}

// At this point the second and final learn transmission has been received by the HCS515
 command.tack_timeout = 0x00; // initialize union variable (char element)

Delay_20uS(4); // Tcla wait period (spec - 50ouS min)
HCSCLK2 = 1; // assert clock, send acknowledge to HCS515

do // loop until HCS515 responds
{ // or until wait time expires

Delay_5uS();
command.tack_timeout++; // increment response wait timer

if (HCSDATA2 == 0) // has HCS515 responded ?
{

command.tack_timeout = TACK +1; // if so then set timeout expiration
}

} while (command.tack_timeout <= TACK);

if (HCSDATA2 == 1) // is data line still high?
{

return (TACK_ERR); // return with error code
}

Delay_20uS(2); // ~42uS (Tclh)
HCSCLK2 = 0; // negate clock
Delay_20uS(2); // ~42uS (Tcll)
TRISDATA2 = 1; // set data pin direction

// Read x number of bytes from the second transmission (up to 10)
while (length)
{

DS00714A-page 3-84 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 85 Thursday, March 2, 2000 8:01 AM
command.bit_counter = 8; // initialize bit counter
do
{

HCSCLK2 = 1; // set clock high
NOP(); // add in .5uS delay
Delay_20uS(1); // ~22uS delay
HCSCLK2 = 0; // set clock low (data sampled on falling edge)

temp_buffer >> = 1; // rotate towards LSB position
if (HCSDATA2) // test if carry bit set
{

temp_buffer |= 0x80; // set bit 7 to logic 1
}
Delay_20uS(1); // ~22uS delay

} while (--command.bit_counter); // decrement counter and test if complete

*lrn_ptr++ = temp_buffer; // save off learn status message and update pointer
length --; // decrement byte counter

}

return (NO_ERROR); // return with no read error
}

char Learn(void)
{

flag1.learn_entered = 0; // reset learn entered flag

temp = Command_Mode(ACTIVE_LRN, DUMMY, DUMMY); // initiate command mode
if (temp != 0)
{

return (temp); // return with error code
}

// At this point Command Mode for Learn has been sent to HCS515, wait for acknowledge
// HCS515 should respond within 20uS (max) after clock line is asserted

TRISDATA2 = 1; // ensure data direction pin state is input
Delay_20uS(2); // wait for ~ 40uS (Tlrn-20uS(min) Tlrn)
HCSCLK2 = 1; // set clock high, begin TACK period

command.tack_timeout = 0x00; // initialize variable
do // loop until HCS515 responds with
{ // data line high or until time expires

// loop time ~8uS (total: 5*8us= 40uS)
command.tack_timeout++; // increment timeout counter

if (HCSDATA2 == 1) // has HCS515 responded and entered learn mode ?
{

command.tack_timeout = TACK_LRN +1;// if so then set timeout expiration
}

} while ((!HCSDATA2) && (command.tack_timeout <= TACK_LRN));

if (!HCSDATA2) // is DATA line still low after TACK
{

return (TACK_LRN_ERR); // return with error code
}

Delay_20uS(1); // ~22uS delay (Tresp spec 20-1000uS)
HCSCLK2 = 0; // set clock low
Delay_20uS(1); // ~22uS delay (TACK2 spec 10uS max)

flag1.learn_entered = 1; // set flag learn entered mode
return (NO_ERROR); // return with no error condition

}

char Erase_All(void)
{

flag1.erase_all = 0; // reset flag for erase all status

temp = Command_Mode(ERASE_ALL, SUBCOM0, DUMMY); // initiate command mode
if (temp != 0)
{

return (temp); // return with error code
}

TRISDATA2 = 1; // ensure data direction pin state is input
Delay_20uS(2); // wait for ~ 42uS(Tera time)
HCSCLK2 = 1; // set clock high, begin TACK period
 1999 Microchip Technology Inc. DS00714A-page 3-85

AN714

S3.book Page 86 Thursday, March 2, 2000 8:01 AM
command.tack_timeout = 0x00; // initialize variable
do // loop until HCS515 responds with
{ // driving data line high or until time expires

Delay_20uS(46); // wait ~900uS per loop (spec - 210mS max)
command.tack_timeout++; // increment timeout counter

if (HCSDATA2 == 1) // has HCS515 finished erasing xmtrs ?
{

command.tack_timeout = TACK_ERASE +1; // if so then set timeout expiration
}

} while ((!HCSDATA2) && (command.tack_timeout <= TACK_ERASE));

if (!HCSDATA2) // is DATA line still low after TACK (max)
{

return (TACK_ERASE_ERR); // return with error code
}

Delay_20uS(1); // ~22uS delay (Tresp)
HCSCLK2 = 0; // set clock low
Delay_20uS(1); // ~22uS delay (TACK2 wait)

flag1.erase_all = 1; // set flag to indicate all xmtrs have been erased
return (NO_ERROR); // return with no error condition

}

char Read_User_EE2(char address, char * rdptr, char length)
{
 temp = Command_Mode(READ, address, DUMMY); // initiate command mode

if (temp != 0)
{

return (temp); // return with error code
}

Delay_20uS(50); // Trd time period (1000 - 2000uS)
TRISDATA2 = 1; // ensure data direction pin state is input

while (length) // test byte read counter is zero
{

command.bit_counter = 8; // initialize bit counter
do
{

HCSCLK2 = 1; // set clock high
NOP(); // add in .5uS delay
Delay_20uS(1); // ~22uS delay
HCSCLK2 = 0; // set clock low (data sampled on falling edge)

temp_buffer >> = 1; // rotate towards LSB position
if (HCSDATA2) // test if carry bit set
{

temp_buffer |= 0x80; // set bit 7 to logic 1
}
Delay_20uS(1); // ~22uS delay

} while (--command.bit_counter); // decrement counter and test if complete

*rdptr++ = temp_buffer; // save off read byte and update pointer

Delay_20uS(50); // Trd time period (1000 - 2000uS)
length --; // decrement read counter
}

HCSDATA2 = 0; // ensure data line is set low
TRISDATA2 = 1; // ensure direction of pin is input
return (NO_ERROR); // return with no error

}

char Write_User_EE2(char address, char * wrptr, char length)
{

temp = Command_Mode(WRITE, address, WRITE); // initiate command mode
if (temp != 0)
{

return (temp); // return with error code
}

while (length) // test for end of string (null character)
{

TRISDATA2 = 0; // ensure data direction pin state is output
command.bit_counter = 8; // initialize bit counter
temp_buffer = *wrptr; // assign data to temp_buffer
DS00714A-page 3-86 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 87 Thursday, March 2, 2000 8:01 AM
do
{

temp_buffer >> = 1; // rotate LSB into carry
if (CARRY) // test if carry bit set
{

HCSDATA2 = 1; // set data line high
}
else
}

HCSDATA2 = 0; // set data line low
}

HCSCLK2 = 1; // set clock high
Delay_20uS(1); // ~22uS delay
HCSCLK2 = 0; // set clock low (data sampled on falling edge)
Delay_20uS(1); // ~22uS delay (also provides for required Tds)

} while (--command.bit_counter); // decrement counter and test if complete

Delay_20uS(1); // wait for ~ 20uS (spec -20uS min -Twr)
HCSDATA2 = 0; // set data line low
Delay_20uS(1); // wait for ~ 20uS
TRISDATA2 = 1; // set pin direction for input
HCSCLK2 = 1; // set clock high, begin TACK period

Delay_1mS(3); // wait here 3mS to start

command.tack_timeout = 0x40; // initialize variable

do // loop until HCS515 responds (1 loop = 48uS)
{ // or until ~9mS expires

Delay_20uS(2) ~41uS delay
command.tack_timeout++; // increment timeout counter

if (HCSDATA2 == 1) // has HCS515 responded ?
{

command.tack_timeout = TACK_WR +1;// if so then set timeout expiration
}

} while (command.tack_timeout <= TACK_WR);

Delay_20uS(2); // ~20uS delay (Tresp)
HCSCLK2 = 0; // set clock low
Delay_20uS(1); // ~20uS delay (TACK2 wait)

length --; // decrement write count
wrptr++; // increment data pointer
}

TRISDATA2 = 1; // ensure data direction pin state is input
Delay_1mS(1);
return (NO_ERROR); // return with no error condition

}

char Command_Mode(char decoder_command, char cmd_byte1, char cmd_byte2)
{

command.treq_timeout = 0x0000; // initialize union variable (integer element)

TRISDATA2 = 1; // ensure data direction pin state is input
HCSCLK2 = 1; // set clock high to initiate command
TRISCLK2 = 0; // ensure data direction pin state is output

do // loop until HCS515 responds (1 loop = 33uS)
{ // or until ~500mS expires (total loop 660mS)

Delay_20uS(1); // ~24uS delay
command.treq_timeout++; // increment response wait timer

if (HCSDATA2 == 1) // has HCS515 responded ?
{

command.treq_timeout = TREQ +1; // if so then set timeout expiration
}

} while (command.treq_timeout <= TREQ);

if (HCSDATA2 == 0) // is data line still low?
{

return (TREQ_ERR); // return with error code
}

// At this point the HCS515 has responded by asserting data line high
// so bring the clock low

Delay_20uS(2); // (Tresp, spec-20uS(min)) ~42uS delay
HCSCLK2 = 0; // bring clock low, ack to decoder
 1999 Microchip Technology Inc. DS00714A-page 3-87

AN714

S3.book Page 88 Thursday, March 2, 2000 8:01 AM
// At this point, HCS515 has acknowledged PICmicro by negating data line (low)
Delay_20uS(2); // Tstart (20uS min) ~ 41.50uS delay
TRISDATA2 = 0; // ensure data direction pin state is output

command.bit_counter = 8; // initialize bit counter
temp_buffer = decoder_command; // assign command to temp_buffer
do
{

temp_buffer >> = 1; // rotate LSB into carry
if (CARRY) // test if carry bit set
{

HCSDATA2 = 1; // set data line high
 }

else
{

HCSDATA2 = 0; // set data line low
 }

HCSCLK2 = 1; // set clock high
Delay_20uS(1); // ~23.5uS delay
HCSCLK2 = 0; // set clock low(data sampled on falling edge)
Delay_20uS(1); // ~23.5uS delay (also provides for required Tds)

} while (--command.bit_counter); // decrement counter and test if complete

command.bit_counter = 8; // initialize bit counter
temp_buffer = cmd_byte1; // 1st byte after command byte to temp_buffer
do
{

temp_buffer >> = 1; // rotate LSB into carry
if (CARRY) // test if carry bit set
{

HCSDATA2 = 1; // set data line high
}
else
{

HCSDATA2 = 0; // set data line low
 }

HCSCLK2 = 1; // set clock high
Delay_20uS(1); // ~20uS delay
HCSCLK2 = 0; // set clock low (data sampled on falling edge)
Delay_20uS(1); // ~20uS delay (also provides for required Tds)

} while (--command.bit_counter); // decrement counter and test if complete

if (cmd_byte2 == WRITE) // test if Write EE is using command mode function
{

return (NO_ERROR);
}

command.bit_counter = 8; // initialize bit counter
temp_buffer = cmd_byte2; // 2nd byte after command byte to temp_buffer
do
{

temp_buffer >> = 1; // rotate LSB into carry
if (CARRY) // test if carry bit set
{

HCSDATA2 = 1; // set data line high
}
else
{

HCSDATA2 = 0; // set data line low
 }

HCSCLK2 = 1; // set clock high
Delay_20uS(1); // ~20uS delay
HCSCLK2 = 0; // set clock low(data sampled on falling edge)
Delay_20uS(1); // ~20uS delay (also provides for required Tds)

} while (--command.bit_counter); // decrement counter and test if complete

return (NO_ERROR); // return with no error
}

DS00714A-page 3-88 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 89 Thursday, March 2, 2000 8:01 AM
/***
* *
* Filename: hcsdec.h *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
***/

// FUNCTION PROTOTYPES

/* Functions defined in file hcsdec.c */
char Learn(void); // reference linkage to defined function
void Read_Trans(char length);
char Erase_All(void);
char Read_User_EE2(char address, char * rdptr, char length);
char Write_User_EE2(char address, char * wrptr, char length);
char Command_Mode(char decoder_command, char cmd_byte1, char cmd_byte2);

/* Functions defined in file baselcd.c */
extern void Home_Clr(void); // reference linkage to defined function
extern void Line_2(void);

/* Functions defined in file delays.c */
extern void Delay_5uS(void); // reference linkage to defined function
extern void Delay_20uS(char loop_count);
extern void Delay_1mS(char loop_count);
extern void Delay_100mS(char loop_count);
extern void Delay_10mS(char loop_count);

// VARIABLES (REFERENCE DECLARATION)

extern struct event_bits1 // bit structure for housekeeping flags
 {

unsigned new_day :1; // flag for indicating new day
unsigned arm_countdown :1; // flag set when counting down to arming system
unsigned buzzer :1; // flag set when piezo buzzer will sound when called
unsigned read_battery :1; // flag used for read battery voltage
unsigned battery_on :1; // flag set when battery source is selected
unsigned battery_off :1; // flag set when battery is not selected
unsigned time_update :1; // flag used for updating LCD and E2 Memory
unsigned erase_all :1; // flag set when HCS515 erase all operation complete
unsigned battery_sel :1; // flag set when battery source is selected
unsigned erase_entered :1; // flag set when HCS515 erase all operation entered
unsigned arm_now :1; // flag set when system is immediately armed w/o user

// code
unsigned learn_entered :1; // flag set when HCS515 learn operation entered
unsigned code_valid :1; // flag set after user security access code accepted
unsigned code_entered :1; // flag set when user security access code entered
unsigned keyread :1; // flag set for indicating keypad selection needs

// processed
unsigned keyhit :1; // flag set when valid key hit on 4x4 keypad is

// detected
} flag1; // variable name

extern struct event_bits2 // define bit structure for housekeeping flags
{

unsigned :1; // bit padding
unsigned alarm_set1 :1; // flag set when system is armed (1 of 2)
unsigned :6; // bit padding
unsigned valid_rcv :1; // flag used if HCS515 demod data is correct
unsigned sensor_batt_low:1; // flag indicating if sensor module battery is low
unsigned :5; // bit padding
unsigned alarm_set2 :1; // flag set when system is armed (2 of 2)

} flag2; // variable name

extern bank1 char temp;// reference linkage to defined variable

// VARIABLES (DEFINED HERE)

bank1 char * bank1 lrn_ptr; // define pointer
bank1 char decoder1[10]; // array storage for valid trans.

// reception (decoder 1)
bank1 char decoder2[10]; // array storage for valid trans.

// reception (decoder 2)
 1999 Microchip Technology Inc. DS00714A-page 3-89

AN714

S3.book Page 90 Thursday, March 2, 2000 8:01 AM
bank1 char decoder1_ee[6]; // array for reading/writing to HCS515 EE
bank1 char decoder2_ee[6]; // array for reading/writing to HCS515 EE

bank1 char temp_buffer; // temp buffer for writing/reading data (HCS515)

bank1 union notify {
unsigned int treq_timeout; // integer element
unsigned int tack_wr_timeout; // integer element
unsigned char tresp_timeout; // char element
unsigned char tack_timeout; // char element
unsigned char bit_counter; // char element

} command; // variable defined

// PORTBITS (DEFINED HERE)

#define PortBit(port,bit) ((unsigned)&(port)*8+(bit))

static bit HCSDATA1 @ PortBit(PORTC,6); // declare bit for HCS515 data line
static bit HCSDATA2 @ PortBit(PORTC,5); // declare bit for HCS515 data line
static bit HCSCLK1 @ PortBit(PORTC,7); // declare bit for HCS515 clock line
static bit HCSCLK2 @ PortBit(PORTC,4); // declare bit for HCS515 clock line

static bit TRISDATA1 @ PortBit(TRISC,6); // declare bit for HCS515 data pin direction
static bit TRISDATA2 @ PortBit(TRISC,5); // declare bit for HCS515 data pin direction
static bit TRISCLK1 @ PortBit(TRISC,7); // declare bit for HCS515 clock pin direction
static bit TRISCLK2 @ PortBit(TRISC,4); // declare bit for HCS515 clock pin direction

// MACROS DEFINED HERE

#defineNOP()asm(“ nop”) // define NOP macro

// DEFINE HCS515 DECODER COMMANDS

#define READ 0xF0 // Read a byte from the user
#define WRITE 0xE1 // Write a byte to the user
#define ACTIVE_LRN 0xD2 // Activate a learn sequence
#define ERASE_ALL 0xC3 // Activate an erase all
#define SUBCOM0 0x00 // Erase all Subcommand byte
#define SUBCOM1 0x01 // Erase all Subcommand byte

#define TREQ 20000 //
#define TACK 50 //
#define TACK_WR 240
#define TACK_LRN 5 // timeout constant for Learn (Tack)
#define TACK_ERASE 250

#define NO_ERROR 0
#define TREQ_ERR 1
#define TACK_ERR 2
#define TACK_WR_ERR 4
#define TACK_LRN_ERR 10
#define TACK_ERASE_ERR 20

#define DUMMY 0x81
DS00714A-page 3-90 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 91 Thursday, March 2, 2000 8:01 AM
/***
* *
* Wireless Home Security with Keeloq and the PICmicro *
* *
**
* *
* Filename: init.c *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* Files required: *
* *
* pic.h *
* *
**
* *
* Notes: The routines within this file are required for *
* initializing PICmicro peripherals and the HCS515 EE. *
* *
* *
***/

#include <pic.h> // processor if/def file

extern char Write_User_EE2(char address, char * wrptr, char length);
extern const char zone_name_address[]; // 89,90,97,9E,A5,AC,B3
extern bank1 char decoder2_ee[6];
extern bank1 char temp;

void Init_Adc(void)
{

ADCON1 = 0b101; // RA0/RA1 analog, RA3 Vref
ADCON0 = 0b10000000; // Tosc32, channel 0

}

void Init_Pwm(void)
{

PR2 = 122; // set for frequency of ~4KHz
CCPR1L = 40; // duty cycle ~33%
T2CON = 0b00000001; // set TMR2 prescale for 4
TMR2ON = 1; // turn on TMR2

}

void Init_Timer1(void)
{

TMR1CS = 1; // Timer1 clock select, external
T1OSCEN = 1; // enable Timer1 oscillator mode
TMR1L = 0x00;
TMR1H = 0x80; // initialize timer1
TMR1IF = 0; // reset Timer1 overflow flag
TMR1IE = 1; // enable TMR1 Overflow interrupt
TMR1ON = 1; // turn on Timer1 module

}

void Init_Timer0(void)
{

OPTION = 0b11010111; // set Timer0 for 1:256, internal clock
TMR0 = 0x00; // set Timer0 for initial state
T0IF = 0; // reset Timer0 overflow flag
T0IE = 1; // enable Timer0 Overflow interrupt

}

void Init_Portb(void)
{

PORTB = 0b11110000; // PortB setup
TRISB = 0b11110000; // RB7-RB4 inputs, RB3-RB0 outputs
PORTB; // dummy read of PortB
RBIF = 0; // reset flag
 1999 Microchip Technology Inc. DS00714A-page 3-91

AN714

S3.book Page 92 Thursday, March 2, 2000 8:01 AM
RBIE = 1; // set PortB interrupt on change
}

void Init_EE_Memory(void)
{

char index = 0; // define auto type variable
decoder2_ee[0] = 0x00; // set array element to known state
decoder2_ee[1] = 0x00; // set array element to known state
decoder2_ee[2] = 0x00; // set array element to known state
decoder2_ee[3] = 0x00; // set array element to known state

do
{

temp = Write_User_EE2(((zone_name_address[index]) + 1), &decoder2_ee[0], 4);
index++;

} while (index < 7);
}

DS00714A-page 3-92 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 93 Thursday, March 2, 2000 8:01 AM
/***
* *
* Wireless Home Security with Keeloq and the PICmicro *
* *
**
* *
* Filename: prockey.c *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* Files required: *
* *
* pic.h *
* stdio.h *
* string.h *
* prockey.h *
* hcs515ee.h *
* *
**
* *
* Notes: The routines within this file are required for *
* processing the 4x4 keypad selections. *
* *
* This file generates ~ 650 words of code. If additional *
* requirements are required, the file may need to be reduced into *
* 4 smaller separate nodes. *
* *
* Possible: 1 node for PANIC Key *
* 1 node for ALTnerate Key *
* 1 node for AUXiliary Key *
* 1 node for ESCape Key *
* *
* It is also noted here that there are many tasks generated *
* within this file which include user menus. The menus can be *
* reduced or removed and still retain system functionality *
* and operation. This approach would also reduce the overall *
* code size of this node. However, the menus do help with user *
* interaction. *
* *
***/

#include <pic.h> // processor if/def file
#include <stdio.h>
#include <string.h>
#include “prockey.h” // function prototypes, variables, defines..
#include “hcs515ee.h”

void Process_Key(void)
{

int i; // define auto type integer variable

switch (valid_key)
{

case (PANIC): // if ‘PANIC’ key has been pressed

key_wait = 0x00; // reset key wait timer
while ((valid_key != ESC) && (key_wait < key_wait_limit))
{

if (valid_key == ‘*’) // labled ‘*’ on keypad
{

/* Arm System here w/o entry of User Code and w/o “ARM” time delay */
flag2.alarm_set1= 1; // set alarm state entry flag1
ARMRDY = 0; // turn on base panel ARMED LED
Home_It(); // set lcd cursor to line1/position 1
printf(“ System Armed “); // format message for LCD
flag2.alarm_set2= 1; // set alarm state entry flag2
flag1.arm_now = 1; // set immediate alarm entry flag true
key_wait = SEC4 + 1; // set key wait timer to expire
flag1.arm_countdown = 0; // reset flag for ARMED countdown

}

 1999 Microchip Technology Inc. DS00714A-page 3-93

AN714

S3.book Page 94 Thursday, March 2, 2000 8:01 AM
/* Arm System here with entry of User Code and enable “ARM” time delay */
else if ((valid_key == ‘#’) && (!flag1.arm_now))
{

codestring[4] = 0x00; // initialize variable
csindex = 0; // initialize array index
flag1.keyread = 0; // reset key read flag

Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“To Arm... Enter”); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“User Code-> “); // format message for LCD

Code_Select(); // function for entering Master/User code

temp = Read_User_EE2(USER_CODE, &tempstring[0], 4); // read User Code from EE

Home_Clr(); // clear lcd and set cursor to line1/position 1
if ((i = strcmp(codestring, tempstring)) < 0)
{
flag1.code_valid = 0; // flag set false, invalid Master Code entered
}

else if (i > 0)
{
flag1.code_valid = 0; // flag set false, invalid Master Code entered
}

else
{
printf(“Armed Countdown!”); // format message for LCD
Sound_Piezo(1); // 100ms enable of internal piezo
flag1.code_valid = 1; // flag set true, valid master code entered
flag1.arm_countdown = 1; // set flag to indicate ARM countdown state
time_to_arm = 6; // set time to arm for ~ 6 minutes

}

if (!flag1.code_valid) // test if there was a Invalid Master Code entry
{

printf(“* Invalid User *”); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“* Code Entered *”); // format message for LCD
Sound_Piezo(1); // 100ms enable of internal piezo
Delay_100mS(1); // short delay
Sound_Piezo(1); // 100ms enable of internal piezo
Delay_100mS(6) ; // short delay for user to view LCD message
Home_Clr(); // clear lcd and set cursor to line1/position 1

}
}

else if (valid_key == ‘1’) // labled 1 on keypad
{

flag1.buzzer = 1; // set flag so piezo buzzer will sound
key_wait = SEC4 + 1; // set key wait timer to expire

}
}
break;

case (ALT): // if ‘ALTernate’ key has been pressed

key_wait = 0x00;// reset key wait timer
while ((valid_key != ESC) && (key_wait < key_wait_limit))
{

if (valid_key == TEST) // TEST == 5 on keypad (labeled TEST)
{

Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“Battery.. Sel[1]”); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“Vdc[2], Time[3]”); // format message for LCD

key_wait = 0x00; // reset key wait timer
while ((valid_key != ESC) && (key_wait < key_wait_limit))
{

if (valid_key == ‘1’) // is battery select option chosen?
{
if (LCDBD) // test if backlight is on
{
BATSEL ^= 1; // toggle battery backup select
flag1.battery_sel ^= 1; // set flag indicating battery is selected

}
key_wait = SEC4 + 1; // set key wait timer to expire

}

DS00714A-page 3-94 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 95 Thursday, March 2, 2000 8:01 AM
else if (valid_key == ‘2’) // is battery voltage option chosen?
{

while (valid_key != ESC) // stay in loop until ESCape key is pressed
{

Home_It(); // set lcd cursor to line1/position 1
if (!PSOURCE) // test if primary power is on
{

Battery_Voltage(); // perform conversion on ADC channel 0
printf(“Battery Voltage:”); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“ %.3f Vdc “, battery_volts); // format message for LCD

}
else // primary is not on
{

printf(“ Battery Source “); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“ is selected “); // format message for LCD

}
Delay_100mS(1); // ~100 mS delay

}
}

else if (valid_key == ‘3’) // display recorded battery on time
{

Home_Clr(); // clear lcd and set cursor to line1/position 1
temp = Read_User_EE2(BT_ON_HRS, &decoder2_ee[0], 6); // read recorded time of

// battery on
printf(“on: -> %02u:%02u:%02u “ , decoder2_ee[0],decoder2_ee[1],decoder2_ee[2]);
Line_2(); // set lcd cursor to line2/position 1
printf(“off:--> %02u:%02u:%02u” , decoder2_ee[3],decoder2_ee[4],decoder2_ee[5]);
valid_key = 0x20; // reset key
while (valid_key != ESC); // stay in loop until ESCape key is pressed
Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“Battery daily “); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
temp = Read_User_EE2(BT_ON_CNT, &decoder2_ee[0], 1); // read daily battery cycle

// count

printf(“cycle count= %02u” , decoder2_ee[0]); // format message for LCD
valid_key = 0x20; // reset key
while (valid_key != ESC); // stay in loop until ESCape key is pressed

}
}

}

else if (valid_key == ALARM_STATUS) // ALARM_STATUS == 7 on keypad (labeled INSTANT)
{

Home_It(); // set lcd cursor to line1/position 1
temp = Read_User_EE2(ALRM_HRS, &decoder2_ee[0], 4); // read alarm status and time info

if (decoder2_ee[3] == CLEAR)
{

printf(“ No Zone Fault! “); // format message for LCD
}

else if (decoder2_ee[3] == ALRM)
{

printf(“Fault: %02u:%02u:%02u”, decoder2_ee[0],decoder2_ee[1],decoder2_ee[2]);
temp = (decoder2[1] - 1) & 0x0F;
temp = Read_User_EE2(zone_name_address[temp], &decoder2_ee[0], 1);// read zone name
Line_2(); // set lcd cursor to line2/position 1
ptr = &room_name[decoder2_ee[0]][0];// pointer initialization
printf(“%s”, ptr); // format message for LCD

}

else
{

printf(“Error Condition “); // format message for LCD
}

while (valid_key != ESC); // stay here until ESCape key is pressed
}

else if (valid_key == BYPASS) // BYPASS == 6 on keypad (labeled INSTANT)
{

Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“Lrn’d Xmtr’s[1]”); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“Battery Stat[2]”); // format message for LCD

key_wait = 0x00; // reset key wait timer
while ((valid_key != ESC) && (key_wait < key_wait_limit))
{

 1999 Microchip Technology Inc. DS00714A-page 3-95

AN714

S3.book Page 96 Thursday, March 2, 2000 8:01 AM
if (valid_key == ‘1’)
{

temp = Read_User_EE2(XMTR_CNT, &decoder2_ee[0], 1);
 // read # of Xmtrs learned to EE

Home_Clr();// clear lcd and set cursor to line1/position 1
printf(“Number of Xmtr’s”); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“ Learned-> %u”, decoder2_ee[0]); // format message for LCD
while (valid_key != ESC); // stay here until ESCape key is pressed

}
else if (valid_key == ‘2’)
{

char index = 0x00;
while (valid_key != ESC) // loop until ESCape key is pressed
{

temp = Read_User_EE2(zone_name_address[index], &decoder2_ee[0], 5); // read
Home_It(); // set lcd cursor to line1/position 1
printf(“Zone%u-> %02u:%02u:%02u”, index+1, decoder2_ee[1], decoder2_ee[2],

decoder2_ee[3]);
Line_2(); // set lcd cursor to line2/position 1
if (decoder2_ee[4] == 0xAA)// test if battery state is Okay
{
printf(“Battery Vdc:Okay”); // format message for LCD

}
if (decoder2_ee[4] == 0x55)// test if battery state is Low
{
printf(“Battery Vdc:Low “);// format message for LCD

}
else // else batteyr state not reported
{
printf(“Battery Vdc:??? “); // format message for LCD

}
index ++; // increment zone name index
if (index > 6) // test for more than 7 (0-6) zones
{
index = 0x00; // increment zone name index

}
Delay_100mS(1); // short delay
valid_key = 0x20; // reset valid_key contents
while ((valid_key != ‘#’) && (valid_key != ESC));

}

temp = Read_User_EE2(LAST_XMIT, &decoder2_ee[0], 1);
Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“ Last Reception “); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
if (decoder2_ee[0] == ALRM)// test for Alarm transmission
{

printf(“ was an Alarm! “); // format message for LCD
}
if (decoder2_ee[0] == CLEAR)// test for non-Alarm tranmsission
{

printf(“ was a non-Alarm”); // format message for LCD
}
if (decoder2_ee[0] == TST_LRN)// test for Learn/Test tranmsission
{

printf(“was a Test/Learn”);// format message for LCD
}
if (decoder2_ee[0] == OKAY) // test for 1.5 hour cycle transmission
{

printf(“was a Sensor OK “); // format message for LCD
}
valid_key = 0x20; // reset valid key contents
while (valid_key != ESC); // stay here until ESCape key is pressed

}
}

}
}
Home_Clr(); // clear lcd and set cursor to line1/position 1
break;

case (AUX): // if ‘AUXiliary’ key has been pressed

key_wait = 0x00; // reset key wait timer
while ((valid_key != ESC) && (key_wait < key_wait_limit))
{

if (valid_key == CHIME) // CHIME == 9 on panel
{

Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“Enter key wait..”); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“[1]2Sec [2]4ec “); // format message for LCD
DS00714A-page 3-96 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 97 Thursday, March 2, 2000 8:01 AM
key_wait = 0x00; // reset key wait timer
while ((valid_key != ESC) && (key_wait < key_wait_limit))
{

switch (valid_key)
{

case (‘1’):
key_wait_limit = SEC2;
key_wait = SEC4 + 1; // set key wait timer to expire
break;

case (‘2’):
key_wait_limit = SEC4;
key_wait = SEC4 + 1; // set key wait timer to expire
break;
default:
break;

}
}
Home_Clr();// clear lcd and set cursor to line1/position 1

}

else if (valid_key == CODE) // CODE == 8 on keypad
{

codestring[4] = 0x00; // initialize variable
 csindex = 0; // define and initialize auto variable

flag1.keyread = 0; // reset key read flag

Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“ Enter 4-digit “); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“ Master Code.. “); // format message for LCD

Delay_100mS(11) ; // short delay for user to view LCD message
Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“Mstr Code-> “); // format message for LCD

Code_Select(); // function for entering Master/User code
codestring[0] &= 0x0F; //
codestring[1] &= 0x0F; //
codestring[2] &= 0x0F; //
codestring[3] &= 0x0F; //

/* At this point the 4-digit Master code may have been entered? */

Home_Clr(); // clear lcd and set cursor to line1/position 1
if ((i = strcmp(codestring, master_code)) < 0)
{

flag1.code_valid = 0; // flag set false, invalid master code entered
}
else if (i > 0)
{

flag1.code_valid = 0; // flag set false, invalid master code entered
}
else
{

printf(“Valid Mastr Code”); // format message for LCD
flag1.code_valid = 1; // flag true if valid master code entered
Sound_Piezo(1); // 100ms enable of internal piezo
Delay_100mS(1); // short delay
Sound_Piezo(1); // 100ms enable of internal piezo

}

if (!flag1.code_valid) // test if there was a Invalid Master Code entry
{

printf(“* Wrong Master *”); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“* Code Entered *”); // format message for LCD
Sound_Piezo(1); // 100ms enable of internal piezo
Delay_100mS(10) ; // short delay for user to view LCD message
valid_key = ESC; // ste valid_key for EScape key

}

else if (flag1.code_valid) // else test if there was a Valid Master Code entry
{

Delay_100mS(11) ; // short delay for user to view LCD message
codestring[4] = 0x00; // initialize variable
csindex = 0; // define and initialize auto variable
valid_key = ‘#’; // set key entry point
flag1.keyread = 0; // reset key read flag

}

while (valid_key != ESC) // stay in loop until ESCape is detected
{

 1999 Microchip Technology Inc. DS00714A-page 3-97

AN714

S3.book Page 98 Thursday, March 2, 2000 8:01 AM
if (valid_key == ‘#’) // test for # key detection
{
Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“ Enter 4-digit “); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“ User Code.. “); // format message for LCD

Delay_100mS(11) ; // short delay for user to view LCD message
Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“User Code-> “);// format message for LCD

Code_Select(); // function for entering Master/User code

valid_key = 0x20; // reset valid_key

Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“Accept Code:%s”, &codestring[0]); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“Yes[1] or No[2] “); // format message for LCD

while ((valid_key != ESC) && (valid_key != ‘#’))
{
if (valid_key == ‘1’)// test if key 1 is pressed
{
Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“ Code entered “);// format message for LCD
Line_2(); // position lcd cursor on line2 / position 1
printf(“ Accepted!! “);// format menu selection for LCD
temp = Write_User_EE2(USER_CODE, &codestring[0], 4);// write to EE
Delay_100mS(10) ; // short delay for user to view LCD message
valid_key = ESC;

}

else if (valid_key == ‘2’)
{
Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“ Code entered “);// format message for LCD
Line_2(); // position lcd cursor on line2 / position 1
printf(“ not Accepted! “);// format message for LCD
csindex = 0x00; // reset code array index
flag1.keyread = 0; // reset key read flag
Delay_100mS(7); // short delay for user to view LCD message
valid_key = ‘#’; // set valid_key to stay in loop

}
}

}
}
Home_Clr(); // clear lcd and set cursor to line1/position 1

}

else if (valid_key == TIME) // TIME == 7 on keypad
{

Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“ Toggle Time[1] “); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“ or Set Time[2] “); // format message for LCD

key_wait = 0x00; // reset key wait timer
while ((valid_key != ESC) && (key_wait < key_wait_limit))
{

if (valid_key == DISPLAY_TIME) // DISPLAY_TIME == 1 on keypad
{
flag1.time_update ^= 1; // toggle time on/off
Home_Clr(); // clear lcd and set cursor to line1/position 1

if (flag1.time_update != 1) // LCD toggled off
{
Line_2(); // set lcd cursor to line2/position 1
printf(“ “); // format message for LCD

}
key_wait = SEC4 + 1; // set key wait timer to expire

}

else if (valid_key == SET_TIME) // SET_TIME == 2 on keypad
{
flag1.keyread = 0; // reset key read flag
Set_Time(); // function to set time
key_wait = SEC4 + 1; // set key wait timer to expire

}
}

}

else if (valid_key == LEARN) // LEARN == 6 on keypad (labled BYPASS on panel)
DS00714A-page 3-98 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 99 Thursday, March 2, 2000 8:01 AM
{
Home_Clr(); // clear lcd and set cursor to line1/position 1
printf(“ Learn Mode[1] “); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“or Erase All[2] “); // format message for LCD

key_wait = 0x00; // reset key wait timer
while ((valid_key != ESC) && (key_wait < key_wait_limit))
{

if (valid_key == LEARN_DEC)// LEARN_DEC == 1 on keypad
{
Home_Clr(); // clear lcd and set cursor to line1/position 1
temp = Learn(); // execute decoder learn function
if (temp == 0) // chekc for no error during learn
{
printf(“ Learn Entered! “); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“ 35sec. timeout “); // format message for LCD
Delay_100mS(4); // short delay
Sound_Piezo(1); // quick toggle of internal piezo

}
else
{
printf(“Lrn Entry Error!”); // format message for LCD

}
key_wait = SEC4 + 1; // set key wait timer to expire

}

else if (valid_key == ERASE) // ERASE == 2 on keypad
{
Home_Clr(); // clear lcd and set cursor to line1/position 1
temp = Erase_All(); // execute decoder erase all function
if (temp == 0) // check for no error during erase all
{
printf(“ Erase All “); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“ Successful! “); // format message for LCD
Delay_100mS(4); // short delay
Sound_Piezo(1); // quick toggle of internal piezo
decoder2_ee[0] = 0x00;
temp = Write_User_EE2(XMTR_CNT, &decoder2_ee[0], 1);

}
else
{
printf(“Erase Entry Err “); // format message for LCD

}
Home_Clr(); // clear lcd and set cursor to line1/position 1
key_wait = SEC4 + 1; // set key wait timer to expire

}
}

}
}
break;

case (ESC):

key_wait = 0x00; // reset key wait timer
valid_key = 0x00; // reset valid key contents
while ((valid_key != ESC) && (key_wait < key_wait_limit))
{

if (valid_key == ‘#’) // labled ‘#’ on keypad
{

Home_Clr(); // clear lcd and set cursor to line1/position 1
if ((!flag2.alarm_set1) && (!flag2.alarm_set2) &&

// (!flag1.arm_countdown))
{
printf(“System not Armed”); // format message for LCD
Delay_100mS(10) ; // short delay for user to view LCD message
Home_Clr(); // clear lcd and set cursor to line1/position 1
valid_key = ESC; // set valid_key contents to ESCape

}

else
{
codestring[4] = 0x00; // initialize variable
csindex = 0; // define and initialize auto variable
flag1.keyread = 0; // reset key read flag

printf(“To Disarm..Enter”); // format message for LCD
Line_2(); // set lcd cursor to line2/position 1
printf(“User Code-> “);// format message for LCD
 1999 Microchip Technology Inc. DS00714A-page 3-99

AN714

S3.book Page 100 Thursday, March 2, 2000 8:01 AM
Code_Select(); // function for entering Master/User code

temp = Read_User_EE2(USER_CODE, &tempstring[0], 4); // read from to EE

Home_Clr(); // clear lcd and set cursor to line1/position 1
if ((i = strcmp(codestring, tempstring)) < 0)
{
flag1.code_valid = 0; // flag set false, invalid master code entered

}
else if (i > 0)
{
flag1.code_valid = 0; // flag set false, invalid master code entered

}
else
{
Home_It(); // set lcd cursor to line1/position 1
printf(“System DisArmed!”); // format message for LCD
ALARM_OFF; // turn off external Alarm drive
ARMRDY = 1; // turn on base panel ARMED LED
Sound_Piezo(1); // 100ms enable of internal piezo
flag1.code_valid = 1; // flag set false, invalid master code entered
flag2.alarm_set1= 0; // reset alarm state entry flag1
flag2.alarm_set2= 0; // reset alarm state entry flag2
flag1.arm_now = 0; // reset immediate alarm entry flag
flag1.arm_countdown = 0;// ensure flag is reset

}

if (!flag1.code_valid)// test if there was a Invalid Master Code entry
{
printf(“* Invalid Code *”); // format message for LCD

}

Delay_100mS(10) ; // short delay for user to view LCD message
Home_Clr(); // clear lcd and set cursor to line1/position 1
valid_key = ESC;

}
}

else if (valid_key == ‘0’) //
{

Home_Clr();// clear lcd and set cursor to line1/position 1
valid_key = ESC;// set valid key contents to ESCape

}

else if (valid_key == ‘1’) // labled 1 on keypad
{

flag1.buzzer = 0;// clear flag so piezo buzzer will not sound
valid_key = ESC;// set valid key contents to ESCape

}

else if (valid_key == PANIC)//
{

decoder2_ee[0] = CLEAR; // write non-alarm status byte to buffer
temp = Write_User_EE2(ALRM_STAT, &decoder2_ee[0], 1); // write alarm time to

// EE memory
}

else if (valid_key == ESC)//
{

if (!flag1.battery_sel)
{
BATSEL ^= 1; // toggle battery backup select

}

LCDBD ^= 1; // toggle LCD backlight on/off
}

}
break;

default:
break;

}
}

DS00714A-page 3-100 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 101 Thursday, March 2, 2000 8:01 AM
/***
* *
* Filename: prockey.h *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
***/

// FUNCTION PROTOTYPES

/* Functions defined in file baselcd.c */
extern void Home_Clr(void); // reference linkage to defined function
extern void Home_It(void);
extern void Line_2(void);

/* Functions defined in file diagfunc.c */
extern void Sound_Piezo(char ontime); // reference linkage to defined function
extern void Battery_Voltage(void);

/* Functions defined in file delays.c */
extern void Delay_1S(char loop_count); // reference linkage to defined function
extern void Delay_100mS(char loop_count);
extern void Delay_1mS(char loop_count);

/* Functions defined in file hcsdec.c */
extern char Learn(void); // reference linkage to defined function
extern char Erase_All(void);
extern char Read_User_EE2(char address, char * rdptr, char length);
extern char Write_User_EE2(char address, char * wrptr, char length);

/* Function defined in file timeset.c */
extern void Set_Time(void); // reference linkage to defined function

/* Function defined in file codesel.c */ // reference linkage to defined function
extern void Code_Select(void);

// VARIABLES (REFERENCE DECLARATION)

extern struct event_bits1 // bit structure for housekeeping flags
 {

unsigned new_day :1; // flag for indicating new day
unsigned arm_countdown :1; // flag set when counting down to arming system
unsigned buzzer :1; // flag set when piezo buzzer will sound when called
unsigned read_battery :1; // flag used for read battery voltage
unsigned battery_on :1; // flag set when battery source is selected
unsigned battery_off :1; // flag set when battery is not selected
unsigned time_update :1; // flag used for updating LCD and E2 Memory
unsigned erase_all :1; // flag set when HCS515 erase all operation complete
unsigned battery_sel :1; // flag set when battery source is selected
unsigned erase_entered :1; // flag set when HCS515 erase all operation entered
unsigned arm_now :1; // flag set when system is immediately armed w/o user

// code
unsigned learn_entered :1; // flag set when HCS515 learn operation entered
unsigned code_valid :1; // flag set after user security access code accepted
unsigned code_entered :1; // flag set when user security access code entered
unsigned keyread :1; // flag set for indicating keypad selection needs

// processed
unsigned keyhit :1; // flag set when valid key hit on 4x4 keypad is

// detected
} flag1; // variable name

extern struct event_bits2 // define bit structure for housekeeping flags
{

unsigned :1; // bit padding
unsigned alarm_set1 :1; // flag set when system is armed (1 of 2)
unsigned :6; // bit padding
unsigned valid_rcv :1; // flag used if HCS515 demod data is correct
unsigned sensor_batt_low :1; // flag indicating if sensor module battery is low
unsigned :5; // bit padding
unsigned alarm_set2 :1; // flag set when system is armed (2 of 2)

} flag2; // variable name

extern char porta_image; // reference linkage to defined variable in bank0
extern char hours; // reference linkage to defined variable in bank0
extern char minutes; // reference linkage to defined variable in bank0
 1999 Microchip Technology Inc. DS00714A-page 3-101

AN714

S3.book Page 102 Thursday, March 2, 2000 8:01 AM
extern char seconds; // reference linkage to defined variable in bank0
extern char key_index; // reference linkage to defined variable in bank0
extern bank1 char key_wait; // reference linkage to defined variable in bank1
extern bank1 char valid_key; // reference linkage to defined variable in bank1
extern bank1 char key_wait_limit; // reference linkage to defined variable in bank1
extern bank1 char temp; // reference linkage to defined variable in bank1

extern bank1 char decoder2[10]; // reference linkage, array storage for valid trans.
// reception (decoder 2)

extern bank1 char decoder2_ee[6]; // reference linkage to defined variable in bank1
extern bank1 double battery_volts; // reference linkage to defined variable in bank2

extern const char zone_tod_address[];
extern const char zone_name_address[];
extern const char room_name[][17];

extern const char *ptr;
extern const char master_code[]; // Master code required for changing user code

// VARIABLES (DEFINED HERE)

bank1 char codestring[5]; // define array variable in bank1
bank1 char csindex; // define array index variable in bank1
bank1 char tempstring[5]; // define array variable for temp storage
bank1 char time_to_arm; // define variable

// PORTBITS (DEFINED HERE)

#define PortBit(port,bit) ((unsigned)&(port)*8+(bit))

static bit ALARM_DRV @ PortBit(PORTA,2); // Alarm drive state
static bit ARMRDY @ PortBit(PORTC,3); // Alarm/Ready Light bias control
static bit PSOURCE @ PortBit(PORTD,0); // Power Source indication status
static bit BATSEL @ PortBit(PORTE,0); // Battery Select (test only)
static bit LCDBD @ PortBit(PORTE,2); // LCD Back Drive on/off

// MACROS (DEFINED HERE)

#define NOP() asm(“ nop”)// define NOP macro

#define ALARM_ON porta_image |= 0b000100;\
PORTA = porta_image; // enable external alarm

#define ALARM_OFF porta_image &= ~0b000100;\
PORTA = porta_image; // enable external alarm

#define BATT_CURR_ON porta_image |= 0b000010 ;\
PORTA = porta_image; // enable maximum battery charge current

#define BATT_CURR_OFFporta_image &= ~0b000010 ;\
PORTA = porta_image; // enable maximum battery charge current

#define SEC2 61 //
#define SEC4 120 //

#define ESC 0x1B // text sub. for Escape key
#define AWAY 0x31 // text sub. for ‘1’ key
#define YES 0x31 // text sub. for ‘1’ key
#define DISPLAY_TIME 0x31 // text sub. for ‘1’ key
#define LEARN_DEC 0x31 // text sub. for ‘1’ key

#define OFF 0x32 // text sub. for ‘2’ key
#define SET_TIME 0x32 // text sub. for ‘2’ key
#define ERASE 0x32 // text sub. for ‘1’ key

#define TEST 0x35 // text sub. for ‘5’ key
#define LEARN 0x36 // text sub. for ‘6’ key
#define BYPASS 0x36 // text sub, for ‘6’ key
#define TIME 0x37 // text sub. for ‘7’ key
#define ALARM_STATUS 0x37 // text sub. for ‘7’ key
#define CODE 0x38 // text sub. for ‘8’ key
#define CHIME 0x39 // text sub. for ‘9’ key

#define ALT 0x40 // text sub. for ALTernate key
#define AUX 0x41 // text sub. for Auxillary key
#define PANIC 0x50 // text sub. for PANIC key
DS00714A-page 3-102 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 103 Thursday, March 2, 2000 8:01 AM
/***
* *
* Wireless Home Security with Keeloq and the PICmicro *
* *
**
* *
* Filename: proctran.c *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* Files required: *
* *
* pic.h *
* proctran.h *
* hcs515ee.h *
* errcode.h *
* *
**
* *
* Notes: The routines within this file are required for *
* determining what type of transmission has been received *
* from the HCS515 decoder(s). *
* *
* Currently only 1 decoder is implemented. *
* *
***/

#include <pic.h>
#include “proctran.h” // function prototypes, defines..
#include “hcs515ee.h”

bit alarm_detect; // define bit
bit ok_detect; // define bit
bit test_detect; // define bit

void Read_Decoder_Trans(void)
{

char maj_detect = 0; // initialize variable for majority detect

alarm_detect = 0; // initialize bit
ok_detect = 0; // initialize bit
test_detect = 0; // initialize bit
flag2.valid_rcv = 0; // reset valid reception flag

Delay_1mS(2); // wait 2mS
if (HCSDATA2) // is data line high?

maj_detect ++; // yes so increment majority detect count

Delay_1mS(2); // wait 2mS
if (HCSDATA2) // is data line high?

maj_detect ++; // yes so increment majority detect count

Delay_1mS(20); // wait 20mS

if (HCSDATA2) // is data line high?
maj_detect ++; // yes so increment majority detect count

Delay_1mS(2); // wait 2mS
if (HCSDATA2) // is data line high?

maj_detect ++; // yes so increment majority detect count

if (maj_detect == 4) // majority detect == 4?
{

Read_Trans(10); // can read up to 10 bytes of received message

/* Test here if received function codes indicate a possible “ALARM” transmission */
if (((decoder2[0] & 0x78) == 0x08) && ((decoder2[5] & 0xF0) == 0x20))
{

alarm_detect = 1;
flag2.valid_rcv = 1; // if here then there is a valid reception

}

/* Test here if received function codes indicate a “TEST/LEARN” transmission */
else if (((decoder2[0] & 0x78) == 0x10) && ((decoder2[5] & 0xF0) == 0x40))
{

 1999 Microchip Technology Inc. DS00714A-page 3-103

AN714

S3.book Page 104 Thursday, March 2, 2000 8:01 AM
test_detect = 1;
flag2.valid_rcv = 1; // if here then there is a valid reception

}

/* Test here if received function codes indicate a possible “OKAY” transmission */
else if (((decoder2[0] & 0x78) == 0x18) && ((decoder2[5] & 0xF0) == 0x60))
{

ok_detect = 1;
flag2.valid_rcv = 1; // if here then there is a valid reception

}
maj_detect = 0; // reset majority detect count

}

if (flag2.valid_rcv) // test if there was a valid transmission
{

decoder2_ee[0] = hours; // write hours count to buffer for EE write
decoder2_ee[1] = minutes; // write minutes count to buffer for EE write
decoder2_ee[2] = seconds; // write seconds count to buffer for EE write

if (alarm_detect)
{

if ((flag2.alarm_set1 == 1) && (flag2.alarm_set2 == 1)) // is system ARMED?
{

ALARM_ON; // yes, so turn on external alarm
Sound_Piezo(5); // toggle internal piezo for 500mS
Delay_100mS(1); // short delay
Sound_Piezo(1); // toggle internal piezo for 100mS
decoder2_ee[3] = ALRM; // write “ALARM ON” status byte to buffer for EE

write
}
else // if here zone trip occurred but system is NOT ARMED
{

ALARM_OFF; // ensure alarm is off
Sound_Piezo(1); // toggle internal piezo for 100mS
Delay_100mS(1); // short delay
Sound_Piezo(5); // toggle internal piezo for 500mS
decoder2_ee[3] = CLEAR; // write “CLEAR” status byte to buffer for EE write

}
temp = Write_User_EE2(ALRM_HRS, &decoder2_ee[0], 4); // write alarm condition status

// and time to EE
}

else if (test_detect)
{

Sound_Piezo(1);// toggle internal piezo for 100mS
decoder2_ee[3] = TST_LRN; // write “TEST/LEARN” status byte to buffer for EE

// write
}

else if (ok_detect)
{

Sound_Piezo(1); // toggle internal piezo for 100mS
Delay_100mS(1); // short delay
Sound_Piezo(1); // toggle internal piezo for 100mS
decoder2_ee[3] = OKAY; // write “OKAY” status byte to buffer for EE write

}

temp = Write_User_EE2(LAST_XMIT, &decoder2_ee[3], 1); // write last transmission type
// code to EE

if ((decoder2[0] & 0x04)) // test for Vlow bit in sensor module transmission
{

decoder2_ee[3] = LOW; // write battery “LOW” status code to buffer for EE
// write

flag2.sensor_batt_low = 1; // set flag indicating zone battery is low
}
else
{

decoder2_ee[3] = HIGH; // write battery “HIGH” status code to buffer for EE
// write

flag2.sensor_batt_low = 0; // reset flag
}

/* Write battery status and respective time stamp to appropriate zone tag in EE memory */
temp = (decoder2[1] - 1) & 0x0F;// determine which transmitter block was received
temp = Write_User_EE2(zone_tod_address[temp], &decoder2_ee[0], 4); // write alarm

// time to EE memory
}

}

DS00714A-page 3-104 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 105 Thursday, March 2, 2000 8:01 AM
/***
* *
* Filename: proctran.h *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
***/

// FUNCTION PROTOTYPES

/* Functions defined in file delays.c */
extern void Delay_100mS(char loop_count); // refercene linkage to defined function
extern void Delay_10mS(char loop_count);
extern void Delay_1mS(char loop_count);

/* Function defined is file diagfunc.c */
extern void Sound_Piezo(char ontime); // reference linkage to defined function

/* Functions defined in file hcsdec.c */
extern void Read_Trans(char length); // reference linkage to defined function
extern char Write_User_EE2(char address, char * wrptr, char length);
extern char Read_User_EE2(char address, char * rdptr, char length);

const char zone_tod_address[] = { 0x8A, 0x91, 0x98, 0x9F, 0xA6, 0xAD, 0xB4 };

// VARIABLES (REFERENCE DECLARATION)

extern struct event_bits2 // define bit structure for housekeeping flags
{

unsigned :1; // bit padding
unsigned alarm_set1 :1; // flag set when system is armed (1 of 2)
unsigned :6; // bit padding
unsigned valid_rcv :1; // flag used if HCS515 demod data is correct
unsigned sensor_batt_low :1; // flag indicating if sensor module battery is low
unsigned :5; // bit padding
unsigned alarm_set2 :1; // flag set when system is armed (2 of 2)

} flag2; // variable name

extern char porta_image; // reference linkage to defined variable (SFR)
extern char hours; // reference linkage to defined variable in bank0
extern char minutes; // reference linkage to defined variable in bank0
extern char seconds; // reference linkage to defined variable in bank0

extern bank1 char decoder2[10]; // reference linkage, array storage for valid trans.
// reception (decoder 2)

extern bank1 char decoder1_ee[6]; // reference linkage to defined array variable in
// bank1
// reception (decoder 2)

extern bank1 char decoder2_ee[6]; // reference linkage to defined array variable in
// bank1

extern bank1 char temp; // reference linkage to defined variable in bank1

// PORTBITS (DEFINED HERE)

#define PortBit(port,bit) ((unsigned)&(port)*8+(bit))

static bit HCSDATA2 @ PortBit(PORTC,5); // declare bit for HCS515 data line

// MACROS (DEFINED HERE)

#define NOP()asm(“ nop”) // define NOP macro

#define ALARM_ON porta_image |= 0b000100;\
 PORTA = porta_image; // enable external alarm

#define ALARM_OFF porta_image &= ~0b000100;\
 PORTA = porta_image; // enable external alarm
 1999 Microchip Technology Inc. DS00714A-page 3-105

AN714

S3.book Page 106 Thursday, March 2, 2000 8:01 AM
/***
* *
* Wireless Home Security with Keeloq and the PICmicro *
* *
**
* *
* Filename: timeset.c *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* Files required: *
* *
* pic.h *
* stdio.h *
* time.h *
* *
**
* *
* Notes: The routine within this file is used for *
* setting the time-of-day via 4x4 keypad selections. *
* *
* Key Function *
* *
* 1 Increment hours count *
* 4 Decrement hours count *
* *
* 2 Increment minutes count *
* 5 Decrement minutes count *
* *
* 3 Increment seconds count *
* 6 Decrement seconds count *
* *
* *
***/

#include <pic.h> // processor if/def file
#include <stdio.h>
#include “time.h” // function prototypes, variables, defines..

void Set_Time(void)
{

TMR1IE = 0; // disable real-time clock interrupts
Home_Clr(); // clear lcd and set cursor to line1/position 1

while (valid_key != ESC)
{

Line_2(); // set lcd cursor to line2/position 1
Delay_10mS(15); // short delay
printf(“Time-> %02u:%02u:%02u” ,hours,minutes,seconds);

switch (valid_key) // evaluate expression
{

case (‘1’): // test if hours will be incremented
hours++; // increment hours
if (hours > 23) // test if hours will roll over
{

hours = 0x00; // yes, so reset hours
}
break; // exit from switch evaluation

case (‘2’): // test if minutes will be incremented
minutes++; // increment minutes
if (minutes > 59) // test if minutes will roll over
{

minutes = 0x00; // yes, so reset minutes
}
break; // exit from switch evaluation

case (‘3’): // test if seconds will be incremented

seconds++; // increment seconds
if (seconds > 59) // test if seconds will roll over
{

seconds = 0x00; // yes, so reset seconds
}

DS00714A-page 3-106 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 107 Thursday, March 2, 2000 8:01 AM
break; // exit from switch evaluation

case (‘4’): // test if hours will be decremented
hours--; // decrement hours
if (hours > 23) // test if hours will underflow
{

hours = 23; // yes, so reset hours
}
break; // exit from switch evaluation

case (‘5’): // test if minutes will be decremented
minutes--; // decrement minutes
if (minutes > 59) // test if minutes will underflow
{

minutes = 59; // yes, so reset minutes
}
break; // exit from switch evaluation

case (‘6’): // test if seconds will be decremented

seconds--; // decrement seconds
if (seconds > 59) // test if seconds will underflow
{
seconds = 59; // yes, so reset seconds
}
break; // exit from switch evaluation

default: // if no match occurs
break; // exit from switch evaluation

}
}

TMR1IF = 0; // reset Timer 1 interrupt flag
TMR1IE = 1; // re-enable Timer 1 interrupts
Home_It(); // set lcd cursor to line1/position 1
printf(“ Time Entered! “); // format message for display
Delay_100mS(10); // short delay
Home_Clr(); // clear lcd and set cursor to line1/position 1
flag1.time_update = 1; // set flag for displaying time

}

 1999 Microchip Technology Inc. DS00714A-page 3-107

AN714

S3.book Page 108 Thursday, March 2, 2000 8:01 AM
/***
* *
* Filename: time.h *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
***/

// FUNCTION PROTOTYPES

/* Functions defined in file baselcd.c */
extern void Home_Clr(void); // reference linkage to defined function
extern void Home_It(void);
extern void Line_2(void);

/* Functions defined in file delays.c */
extern void Delay_100mS(char loop_count); // reference linkage to defined function
extern void Delay_10mS(char loop_count);

// VARIABLES (REFERENCE DECLARATION)

extern struct event_bits1 // bit structure for housekeeping flags
 {

unsigned new_day :1; // flag for indicating new day
unsigned arm_countdown :1; // flag set when counting down to arming system
unsigned buzzer :1; // flag set when piezo buzzer will sound when called
unsigned read_battery :1; // flag used for read battery voltage
unsigned battery_on :1; // flag set when battery source is selected
unsigned battery_off :1; // flag set when battery is not selected
unsigned time_update :1; // flag used for updating LCD and E2 Memory
unsigned erase_all :1; // flag set when HCS515 erase all operation complete
unsigned battery_sel :1; // flag set when battery source is selected
unsigned erase_entered :1; // flag set when HCS515 erase all operation entered
unsigned arm_now :1; // flag set when system is immediately armed w/o user

// code
unsigned learn_entered :1; // flag set when HCS515 learn operation entered
unsigned code_valid :1; // flag set after user security access code accepted
unsigned code_entered :1; // flag set when user security access code entered
unsigned keyread :1; // flag set for indicating keypad selection needs

// processed
unsigned keyhit :1; // flag set when valid key hit on 4x4 keypad is

// detected
} flag1; // variable name

extern char hours; // reference linkage to defined variable in bank0
extern char minutes; // reference linkage to defined variable in bank0
extern char seconds; // reference linkage to defined variable in bank0
extern bank1 char valid_key; // reference linkage to defined variable in bank1

// MACROS DEFINED HERE

#define NOP() asm(“ nop”) // define NOP macro

#define SEC4 120 //
#define ESC 0x1B // text sub. for Escape key
DS00714A-page 3-108 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 109 Thursday, March 2, 2000 8:01 AM
/***
* *
* Wireless Home Security with Keeloq and the PICmicro *
* *
**
* *
* Filename: zonename.c *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* Files required: *
* *
* pic.h *
* stdio.h *
* zonename.h *
* hcs515ee.h *
* *
**
* *
* Notes: The routine within this file are used for *
* assigning key (room) names to learned sensor *
* modules (zones). *
* *
* *
***/

#include <pic.h>
#include <stdio.h>
#include “zonename.h” // function prototypes, defines..
#include “hcs515ee.h” // HCS515 EE memory defines

void Zone_Name(void)
{

char room_index = 0x00; // define and init auto variable
T0IE = 0; // disable Timer0 interrupts

Home_Clr(); // clear lcd & set cursor to line1/position1
printf(“Select Zone Name”); // format message for LCD
Delay_100mS(15); // ~1.5 second delay
Home_Clr(); // clear lcd & set cursor to line1/position1
printf(“[ESC] == choice “); // format message for LCD
valid_key = 0x20; // reset valid key buffer contents

while (valid_key != ESC) // loop until ESC key is detected
{

Line_2(); // set cursor to line2 / position 1
ptr = &room_name[room_index][0]; // pointer initialization to names for rooms
printf(“%s”, ptr); // format message for LCD
Delay_10mS(8); // short response delay

if (valid_key == ‘1’) // are we scrolling through zone names?
{

room_index++; // increment room index count
valid_key = 0x20; // reset valid key entry
if (room_index > max_rooms) // test if room index exceeds max # of rooms
{

room_index = 0x00; // reset room index count
}

}
}

decoder2_ee[0] = ((decoder2[1] >> 4) & 0x0F); // determine number of Xmtrs learned
temp = Write_User_EE2(XMTR_CNT, &decoder2_ee[0], 1); // write number Xmtrs learned to EE

decoder2_ee[0] = room_index; // acquire reference count for zone name
temp = (decoder2[1] - 1) & 0x0F; // determine which transmitter block was just

// received
temp = Write_User_EE2(zone_name_address[temp], &decoder2_ee[0], 1); // write zone name to EE

// memory

Home_Clr(); // clear lcd & set cursor to line1/ position1
valid_key = 0x20;
T0IE = 1; // re-enable Timer0 based interrupts

}

 1999 Microchip Technology Inc. DS00714A-page 3-109

AN714

S3.book Page 110 Thursday, March 2, 2000 8:01 AM
/***
* *
* Filename: zonename.h *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
***/

// FUNCTION PROTOTYPES

/* Functions defined in file baselcd.c */
extern void Home_Clr(void); // reference linkage to defined function
extern void Line_2(void);

/* Functions defined in file delays.c */
extern void Delay_10mS(char loop_count); // reference linkage to defined function
extern void Delay_100mS(char loop_count);

// VARIABLES (DEFINED HERE)

const char *ptr; // define general purpose const pointer

const char zone_name_address[] = { 0x89, 0x90, 0x97, 0x9E, 0xA5, 0xAC, 0xB3 };

const char room_name[][17] = { “ Family Room “,” Living Room “,” Great Room “,
 ” Dining Room “,“ Den “,” Office “,
 ” Master Bedroom “,” Bedroom #1 “,“ Bedroom #2 “,
 ” Bedroom #3 “,” Garage Door “,” Service Door “,
 “ Laundry Door “,” Patio Door “,” Sliding Door “ };

#define max_rooms 14

// VARIABLES (REFERENCE DECLARATION)

extern struct event_bits2 // define bit structure for housekeeping flags
{

unsigned :1; // bit padding
unsigned alarm_set1 :1; // flag set when system is armed (1 of 2)
unsigned :6; // bit padding
unsigned valid_rcv :1; // flag used if HCS515 demod data is correct
unsigned sensor_batt_low :1; // flag indicating if sensor module battery is low
unsigned :5; // bit padding
unsigned alarm_set2 :1; // flag set when system is armed (2 of 2)

} flag2; // variable name

extern bank1 char key_wait; // reference linkage to defined variable in bank1
extern bank1 char valid_key; // reference linkage to defined variable in bank1
extern bank1 char temp; // reference linkage to defined variable in bank1

extern bank1 char decoder2_ee[6];
extern bank1 char decoder2[10]; // array storage for valid trans.

extern char Write_User_EE2(char address, char * wrptr, char length);

// MACROS (DEFINED HERE)

#define NOP() asm(“ nop”) // define NOP macro

#define ESC 0x1B // text sub. for Escape key
DS00714A-page 3-110 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 111 Thursday, March 2, 2000 8:01 AM
;***
; *
; Wireless Home Security with Keeloq and the PICmicro *
; *
;***
; *
; Filename: powerup77.as *
; Date: 07/18/99 *
; File Version: 1.00 *
; *
;***
; *
; Notes: This assembly file provides for a remapped processor *
; code startup location. *
; *
; *
; Within the “#if defined(_PIC14)” section below the new startup *
; code called “mystartup” is executed upon successful completion *
; of a reset state. The function “mystartup” is located in the *
; base77.c file. *
; *
; *
;***

#include“sfr.h”

global powerup,start
psect powerup,class=CODE,delta=2

extrn _mystartup

powerup
#if defined(_12C508) || defined(_12C509)

movwf 5 ;store calibration to OSCCAL
#endif
#if defined(_PIC14)

movlw high _mystartup
movwf PCLATH
goto (_mystartup & 0x7FF)

#endif
#if defined(_PIC16)

movlw start>>8
movwf PCLATH
movlw start & 0xFF
movwf PCL

#endif
end powerup
 1999 Microchip Technology Inc. DS00714A-page 3-111

AN714

S3.book Page 112 Thursday, March 2, 2000 8:01 AM
/***
* *
* Filename: cnfig77.h *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
***/

/***** CONFIGURATION BIT DEFINITIONS FOR PIC16C77 PICmicro *****/

#define CONBLANK 0x3FFF

#define CP_ALL 0x00CF
#define CP_75 0x15DF
#define CP_50 0x2AEF
#define CP_OFF 0x3FFF
#define BODEN_ON 0x3FFF
#define BODEN_OFF 0x3FBF
#define PWRTE_OFF 0x3FFF
#define PWRTE_ON 0x3FF7
#define WDT_ON 0x3FFF
#define WDT_OFF 0x3FFB
#define LP_OSC 0x3FFC
#define XT_OSC 0x3FFD
#define HS_OSC 0x3FFE
#define RC_OSC 0x3FFF
DS00714A-page 3-112 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 113 Thursday, March 2, 2000 8:01 AM
;***
; *
; Wireless Home Security with Keeloq and the PICmicro *
; *
;***
; *
; Filename: basecode.as *
; Date: 07/18/99 *
; File Version: 1.00 *
; *
;***
; *
; Notes: This assembly file provides for the Master Code *
; which can be placed into EPROM at programming time. *
; *
; The address location in EPROM for this PSECT (accesscode) *
; is 1FFAh. *
; *
; To place this PSECT at this address the following option *
; is inserted on the Additional Command Line Options for the *
; target filename hex node. *
; *
; -L-Paccesscode=1FFAh *
; *
;***

psect accesscode,class=CODE,delta=2
global _master_code

_master_code:

retlw 0x01 ; 1st digit of code
retlw 0x02 ; 2nd digit of code
retlw 0x03 ; 3rd digit of code
retlw 0x04 ; 4th digit of code
retlw 0x00 ; null character for string

end
 1999 Microchip Technology Inc. DS00714A-page 3-113

AN714

S3.book Page 114 Thursday, March 2, 2000 8:01 AM
/***
* *
* Filename: hcs515ee.h *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
***/

#define USER_CODE 0x80
#define MSTR_CODE 0x86 // define EE address for Master Code entry
#define XMTR_CNT 0xBC // define EE address learned XMTR count

#define BT_ON_CNT 0xF0 // define EE address for battery cycle count
#define BT_ON_HRS 0xF1 // define EE address for battery on TOD
#define BT_OFF_HRS 0xF4 // define EE address for battery off TOD

#define ALRM_HRS 0xF8 // define EE address for Alarm TOD
#define ALRM_STAT 0xFB // define EE address for Alarm Status
#define LAST_XMIT 0xFF // define EE address for last XMTR type

#define LOW 0x55 // define byte for label “LOW”
#define HIGH 0xAA // define byte for label “HIGH”

#define ALRM 0x41 // define byte for label “ALRM”
#define CLEAR 0xBE // define byte for label “CLEAR”
#define TST_LRN 0xB1 // define byte for label “TST_LRN”

#define OKAY 0x4F // define byte for label “OKAY”
#define ERROR 0xB0 // define byte for label “ERROR”
DS00714A-page 3-114 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 115 Thursday, March 2, 2000 8:01 AM
APPENDIX C: SENSOR MODULE CODE FILES
/***
* *
* Wireless Home Security with Keeloq and the PICmicro *
* *
**
* *
* Filename: sensor08.c *
* Date: 05/24/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
* Author: Richard L. Fischer *
* Company: Microchip Technology Incorporated *
* *
**
* *
* Files required: *
* *
* pic.h (Hi-Tech file) *
* cnfig50x.h *
* *
* sensor08.c (Sensor Module code) *
* powerup08.as (Hi-Tech file, modified) *
* delay12.as (Delay Routine code) *
* *
**
* *
* Notes: *
* *
* PICmicro -> PIC12C508A *
* Fosc -> Internal RC *
* Weak-pull-ups disabled (current constraints) *
* Wakeup from sleep --> typical 400uS *
* Wake-up from sleep until test of GPWUF --> typical 20.03mS *
* Current consumption in sleep mode: (sleep duration -> ~100sec) *
* -> ~3.2uA @ 6.4Vdc (new battery) *
* -> ~2.0uA @ 3.3Vdc (battery EOL) *
* *
* Sensor operational lower-limit voltage: *
* -> 4Vdc (Low voltage status to base) *
* *
* *
* Current consumption during wakeup: *
* housekeeping only: (typical 56mS) *
* -> ~ 0.70mA @ 6.4Vdc *
* -> ~ 0.30mA @ 3.3Vdc *
* intentional radiation: (typical 700mS) *
* -> ~ 4.64mA @ 6.4Vdc *
* -> ~ 2.22mA @ 3.3Vdc *
* *
* *
* Memory Usage Map: *
* *
* User segment $0000 - $0002 $0003 (3) bytes total User segment *
* Program ROM $0000 - $01FE $01FF (511) words *
* Program ROM $0FFF - $0FFF $0001 (1) words *
* $0200 (512) words total Program ROM *
* *
* Bank 0 RAM $0007 - $000C $0006 (6) bytes total Bank 0 RAM *
* *
***/

#include <pic.h> // processor if/def processor file
#include “cnfig50x.h” // configuration bit definitions

 __CONFIG (CONBLANK & MCLRE_OFF & CP_OFF & WDT_OFF & IntRC_OSC);

extern void Delay_Ms_4MHz(char delay); //prototype for delay function

// MACROS DEFINED HERE
#define PUT_COUNT 54 // define number of PUT fires on pin GP0

// before initiating sensor okay signal
// each PUT fire sequence is 100 seconds,
// total time is therefore 1.5hrs

Please check Microchip’s Worldwide Website at www.microchip.com for the latest revisiion of the source code.
 1999 Microchip Technology Inc. DS00714A-page 3-115

AN714

S3.book Page 116 Thursday, March 2, 2000 8:01 AM
#define SLEEP asm (“sleep”) // macro for sleep instruction
// RF and begin PUT discharge

#define NOP asm (“NOP”); // power-up stabilization period (3uS)

#define PortBit(port,bit) ((unsigned)&(port)*8+(bit))
static bit AUTO_CYCLE @ PortBit(GPIO,0); // define auto cycle pin
static bit LEARN_TEST @ PortBit(GPIO,1); // define okay/learn/test pin
static bit ALARM_SIGNAL @ PortBit(GPIO,3); // define alarm signal pin

// GLOBALS DEFINED HERE
persistent char auto_transmit; // variable used for counting PUT based

// wake-ups

//**
//**
/* Determine source of wake-up from SLEEP. Wake-up source is either:

 1. Alarm sensor trip via active high on pin GP3.
 2. Auto wake-up via Programmable Unijunction Transistor (PUT)
 firing active high on pin GP0.
 3. Learn/test active high on pin GP1.

*/

void Identify_wakeup(void)
{
 if (ALARM_SIGNAL) // has alarm sensor been activated?
 {
 GPIO = 0b111010; // set GP5 pin state to turn on HCS200 & RF

// also set GP2 for PUT discharge state
 TRIS = 0b011011; // set GP5 as output, power up HCS200 and

// RF and begin PUT discharge
 NOP; // power-up stabilization period (3uS)

 NOP;
 NOP;

 TRIS = 0b001011; // set GP4 as output, assert S0 on HCS200
 Delay_Ms_4MHz(255); // ensure multiple alarm transmissions
 Delay_Ms_4MHz(255); // ensure multiple alarm transmissions
 Delay_Ms_4MHz(80); // ensure multiple alarm transmissions

// want 5 transmissions at 3.3Vdc @ 4MHz

 auto_transmit = 0; // reset auto cycle counter since alarm
 } // tripped

 else if (LEARN_TEST) // learn/test condition entered?
 {
 GPIO = 0b111010; // set GP5 pin state to turn on HCS200 & RF

// also set GP2 for PUT discharge state

 TRIS = 0b011011; // set GP5 as output, power up HCS200 and

// RF and begin PUT discharge
 NOP; // power-up stabilization period (3uS)
 NOP;
 NOP;

 TRIS = 0b011001; // set GP1 as output, assert S1 on HCS200
 Delay_Ms_4MHz(120); // ensure single transmission time

// want 1 transmission at 3.3Vdc @ 4MHz
 auto_transmit = 0; // reset auto cycle counter since learn/test

// has been activated
 }

 else // else PUT fired (Vgs = 0Vdc)
 {
 if (++auto_transmit < PUT_COUNT) // time for initiating sensor okay?
 {
 GPIO = 0b011010; // set GP2 and GP5 pin latches to logic low
 TRIS = 0b011011; // set GP2 and GP5 pin direction to outputs

// begin PUT discharge immediately
 Delay_Ms_4MHz(30); // PUT discharge time period (minimum)
 }

 else // else it is time for initiating sensor okay?
 {
 GPIO = 0b111010; // set GP5 pin state to turn on HCS200 & RF

// also set GP2 for PUT discharge state
 TRIS = 0b011011; // set GP5 as output, power up HCS200 and RF
DS00714A-page 3-116 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 117 Thursday, March 2, 2000 8:01 AM
// and begin PUT discharge
 NOP; // power-up stabilization period (3uS)
 NOP;
 NOP;

 TRIS = 0b001001; // set GP1/GP5 as output, assert S0/S1 on HCS200
 Delay_Ms_4MHz(255); // ensure multiple sensor okay transmissions
 Delay_Ms_4MHz(10); // ensure multiple sensor okay transmissions

// want 2 transmissions at 3.3Vdc @ 4MHz (worst case)
 auto_transmit = 0; // reset auto cycle counter
 }
 }
}

void main(void)
{

 if (GPWUF) // has wake-up on pin-change occurred?
 {
 OPTION = 0b11011111; // enable GP2 for I/O

 GPIO = 0b011110; // GPIO pin latch state is not affected by
 TRIS = 0b011011; // wake-up, keep I/O direction same as in

// sleep to ensure valid read of Vih on pin

 Delay_Ms_4MHz(20); // short delay for debounce and pin state
// stabilization

 Identify_wakeup(); // determine source of wake-up from sleep

 GPIO = 0b011010; // set GP2 & GP5 pin latches to logic low
 TRIS = 0b011011; // power off to HCS200 and RF

 GPWUF = 0; // reset wake-up status bit
 }

 else if (TO && PD) // else, is it a power up condition?
 {
 auto_transmit = 0; // initialize wake-up counter, powerup only
 }

// code to do all the time independant of reset
// condition (GPWUF or Power-up)

 OPTION = 0b01011111; // enable wake-up on change and GP2 I/O
 GPIO = 0b011010; // set GP2 to logic low, PUT discharge state
 TRIS = 0b011011; // set GP0 and GP1 for inputs, GP2 output

// power off to HCS200 and RF

 GPIO = 0b011110; // start PUT cycle via release of pin GP2
 GPIO; // dummy read prior to entering sleep
 SLEEP; // go to sleep

 #asm
 rept 0x165
 goto 0x1FF // fill unused memory with goto 0x1FF
 endm
 #endasm

}

 1999 Microchip Technology Inc. DS00714A-page 3-117

AN714

S3.book Page 118 Thursday, March 2, 2000 8:01 AM
;***
; *
; Wireless Home Security with Keeloq and the PICmicro *
; *
;***
; *
; Filename: delay12.as *
; Date: 07/18/99 *
; File Version: 1.00 *
; *
;***
; *
; Notes: *
; *
; The file is contains the assembly code for executing intervals *
; of a 1mS delay. The timing is based upon the PIC12C508A *
; internal RC oscillator of 4MHz. *
; *
;***

psect text0,class=CODE,local,delta=2
global_Delay_Ms_4MHz ; make function scope global
signat_Delay_Ms_4MHz,4216 ; signature for link time

extrn string_table

_Delay_Ms_4MHz
nop
movwf ((?a_Delay_Ms_4MHz+0) &0x7F) ; init outerloop count

outer:
movlw 0xF9
movwf ((?a_Delay_Ms_4MHz+1) &0x7F) ; init innerloop count

inner:
 nop
 decfsz ((?a_Delay_Ms_4MHz+1) &0x7F) ; decrement innerloop count
 goto inner
 decfsz ((?a_Delay_Ms_4MHz+0) &0x7F) ; decrement outerloop count
 goto outer

movf 0x08,w ; restore w for jump table access
goto string_table ; go to string table

FNSIZE _Delay_Ms_4MHz,2,1 ; inform linker of argument and local variable
; sizes for function

global ?a_Delay_Ms_4MHz ; declare symbol as public

end end assembly
DS00714A-page 3-118 1999 Microchip Technology Inc.

AN714
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 119 Thursday, March 2, 2000 8:01 AM
;***
; *
; Wireless Home Security with Keeloq and the PICmicro *
; *
;***
; *
; Filename: powrup08.as *
; Date: 07/18/99 *
; File Version: 1.00 *
; *
;***
; *
; *
; *
;***

#include“sfr.h”

global powerup,start
; psect powerup,class=CODE,delta=2

extrn _main

powerup
#if defined(_12C508) || defined(_12C509)

movwf 5 ;store calibration to OSCCAL
 goto _main
#endif
#if defined(_PIC14)

clrf STATUS
movlw start>>8
movwf PCLATH
goto start & 7FFh

#endif
#if defined(_PIC16)

movlw start>>8
movwf PCLATH
movlw start & 0xFF
movwf PCL

#endif
end powerup
 1999 Microchip Technology Inc. DS00714A-page 3-119

AN714

S3.book Page 120 Thursday, March 2, 2000 8:01 AM
/***
* *
* Filename: cnfig50x.h *
* Date: 07/18/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.83 PL3 *
* *
***/

/***** CONFIGURATION BIT DEFINITIONS FOR PIC12C508(A) and PIC12C509(A) PICmicro *****/

#define CONFIGADD 0xFFF
#define CONBLANK 0xFFF

#define MCLRE_ON 0xFFF
#define MCLRE_OFF 0xFEF
#define CP_ON 0xFF7
#define CP_OFF 0xFFF
#define WDT_ON 0xFFF
#define WDT_OFF 0xFFB
#define LP_OSC 0xFFC
#define XT_OSC 0xFFD
#define IntRC_OSC 0xFFE
#define ExtRC_OSC 0xFFF
DS00714A-page 3-120 1999 Microchip Technology Inc.

TB021
A Guide to Designing for EuroHomelink® Compatibility

S
ecu

re D
ata P

ro
d

u
ct

3

S3.book Page 121 Thursday, March 2, 2000 8:01 AM
INTRODUCTION

The Prince EuroHomelink system is an in-car RF con-
trol system to control gate and garage door openers,
door locks, and home security systems. Although the
system can support older generation fixed code sys-
tems all new systems require code hopping. The
KEELOQ® code hopping system from Microchip
Technology is the default code hopping system in the
EuroHomelink. A standardized system allows different
manufacturers to make EuroHomelink compatible
receivers while still allowing each manufacturer to
implement unique features and maintain control over
their own manufacturer’s code. This document sets out
the requirements for a EuroHomelink compatible sys-
tem.

REFERENCED DOCUMENTS

Author: Kobus Marneweck
Microchip Technology Inc.

• An Introduction to KEELOQ Code Hopping – DS91002

• HCS200 KEELOQ Code Hopping Encoder Data Sheet – DS40138

• HCS300 KEELOQ Code Hopping Encoder Data Sheet – DS21137

• HCS301 KEELOQ Code Hopping Encoder Data Sheet – DS21143

• HCS360 KEELOQ Code Hopping Encoder Data Sheet – DS40152

• HCS361 KEELOQ Code Hopping Encoder Data Sheet – DS40146

• HCS410 KEELOQ Code Hopping Encoder Data Sheet – DS40158

• Secure Learning RKE systems using KEELOQ Encoders – DS91000

• Guidelines for KEELOQ Secure Learning Implementation – DS91007_C

• PICmicro™ Midrange MCU Code Hopping Decoder – DS00672

EuroHomelink is a registered trademark of Prince
KEELOQ and PICmicro are registered trademarks of Microchip Technology Inc.
 1999 Microchip Technology Inc. DS91021A-page 3-121

TB021

S3.book Page 122 Thursday, March 2, 2000 8:01 AM
SYSTEM DESCRIPTION

A EuroHomelink system consists of a receiver that can
accept KEELOQ code hopping transmissions from an in-
car EuroHomelink transmitter or the manufacturer’s
own transmitters. See the referenced documents for
details on the KEELOQ code hopping system.

Learning

The learning system used is the KEELOQ Secure Learn-
ing system. Technical Briefs DS9100 and DS91007_C
describe how Secure Learning works in more detail. In
a Secure Learning system a seed value is transmitted
during the training or learning phase. This seed is used
to calculate a encryption/decryption key for the trans-
mitter using a key generation algorithm and a manufac-
turer’s code. The system makes provision for a
common easy-train default manufacturer’s code and a
private manufacturer’s code used to generate keys for
the manufacturer’s own transmitters.

Easy-train default Manufacturer’s Code

Microchip Technology will act as an independent custo-
dian of the easy-train default manufacturer’s code.
Each manufacturer can also choose their own private
manufacturer’s code. In order for Microchip to act as an
independent custodian, all decoders or microcontrol-
lers used in receivers must be loaded by Microchip with
the easy-train default manufacturer’s code.

Serial Number Allocation

The EuroHomelink system will use a 28-bit encoder
serial number. The serial number space will be allo-
cated to allow the EuroHomelink transceiver to detect
the specific manufacturer.

TABLE 1: SERIAL NUMBER ALLOCATION

Start End Size Manufacturer

0000000H 0000000H 1 Test transmitter

0000001H 0FFFFFFH 16M Manufacturer 1

1000000H 1FFFFFFH 16M Manufacturer 2

2000000H 2FFFFFFH 16M Manufacturer 3

3000000H 3FFFFFFH 16M Manufacturer 4

4000000H 4FFFFFFH 16M Manufacturer 5

5000000H 5FFFFFFH 16M Manufacturer 6

6000000H 6FFFFFFH 16M Manufacturer 7

7000000H 7FFFFFFH 16M Manufacturer 8

8000000H 8FFFFFFH 16M Manufacturer 9

9000000H 9FFFFFFH 16M Manufacturer 10

A000000H AFFFFFFH 16M Manufacturer 11

B000000H FFFFFF0H 64M Easy-train default

FFFFFFEH FFFFFFEH 1 EuroHomelink Test TX 1 – Normal

FFFFFFFH FFFFFFFH 1 EuroHomelink Test TX 2 - Secure

Note: Microchip offers Serialized Quick Turn Programming™ (SQTP) service to preprogram encoder devices.
Software is provided to the customer to generate code files in a secure format. Files start on 50,000
boundaries and are 50,000 in size.

SQTP is a service mark of Microchip Technology Inc.
DS91021A-page 3-122 1999 Microchip Technology Inc.

TB021
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 123 Thursday, March 2, 2000 8:01 AM
RECEIVER REQUIREMENTS

Modulation Format

The standard KEELOQ PWM (1/3, 2/3) format will be
used. The code word consists of a preamble, header,
32 bit encrypted portion, 28 bit serial number, 4 bit
function code, a battery low indication bit and a repeat
or CRC bit depending on the encoder used. The last bit
will be ignored by the receiver.

Bit Rate and Bandwidth

An elemental time period of TE = 200 µs is used. This
translates to a bit rate of 1.67 KBps. The receiver band-
width need to be at least 3.3 KHz.

Learning Procedure

The learning procedure consists of placing the receiver
in a learn mode by any of the procedures described in
DS91007_C. Push the button that will be used for that
gate or door. The EuroHomelink transceiver will trans-
mit a code hopping transmission for 3 seconds followed
by the seed transmission for 3 seconds from which the
key is calculated. The code hopping and seed trans-
mission will alternate every 3 seconds. A successful
learn can be confirmed by pressing the appropriate
button to open or close the gate or door.

Reference Decoder Application Note

The PICmicro Midrange MCU Code Hopping Decoder
application note implements a EuroHomelink compati-
ble receiver on a PIC16C61. This application note and
code can be used as the basis to implement an inte-
grated receiver and motor control system.

Other Decoder Solutions

Microchip will make available a dedicated decoder that
will implement a dual key and will be EuroHomelink
compatible. This decoder can be used in conjunction
with a microcontroller to implement a system.
 1999 Microchip Technology Inc. DS91021A-page 3-123

TB021

S3.book Page 124 Thursday, March 2, 2000 8:01 AM
TRANSMITTER REQUIREMENTS

TABLE 2: SUMMARY OF ENCODERS AND THEIR FEATURES

Encoder HCS200 HCS300 HCS301 HCS360 HCS361 HCS410

Inputs 3 4 4 4 4 3

Functions 7 15 15 15 15 7

Voltage 3.5-13V 2.0-6.3V 3.5-13V 2.0-6.6V 2.0-6.6V 2.0-6.6V

Serial # bits 28 28 28 28/32 28/32 28/32

Key bits 64 64 64 64 64 64

Transmission 66 66 66 67 67 69

Queuing bits 0 0 0 0 0 2

Seed 32 32 32 48 48 60

Baud rates 2 3 3 2 2 3

LED output No Yes Yes Yes Yes Yes

Time-out Yes Select Select Select Select Select

Modulation PWM PWM PWM PWM
Manchester

PWM
VPWM

PWM
Manchester

Application Low cost/
Low end

Mid-range Mid-range High-end
OEM

High-end
OEM

High-end
Transponder

TABLE 3: ENCODER CONFIGURATION OPTIONS

Option Setting Relevant Encoder

Discrimination bits LSB 10 or 12 bits of Serial number All

Overflow 0 or 00 All

Low voltage trip point 0 or 1 depending on battery voltage All

Obdurate TE = 200 µs All

Envelope Encryption Off HCS300, HCS301

Seed transmission Enabled HCS360, HCS361, HCS410

Limited seed Not specified HCS360, HCS361, HCS410

Extended serial number Disabled HCS360, HCS361, HCS410

Independent mode Disabled HCS360, HCS361

Long Guard time Disabled HCS360

PWM select Enabled HCS360, HCS361, HCS410

Delay mode Disabled HCS360, HCS361

USR bits 00 HCS360, HCS361

Time out Enabled All

Blank Alternate Code Word Disabled HCS360, HCS361, HCS410

Minimum 3 Code words Not specified HCS410

Delayed counter increment Disabled HCS410

TABLE 4: SEED TRANSMISSION OPTIONS ON ENCODERS

S[3210] Encoder Notes

X111 HCS200, HCS410

1111 HCS300, HCS301

0011 HCS360, HCS361, HCS410 Delayed after 3 seconds

1001 HCS360, HCS361
DS91021A-page 3-124 1999 Microchip Technology Inc.

TB021
S

ecu
re D

ata P
ro

d
u

ct

3

S3.book Page 125 Thursday, March 2, 2000 8:01 AM
EUROHOMELINK OPERATION

Training Procedure

The EuroHomelink is factory set to default to KEELOQ

using the easy-train default manufacturer’s code. No
training is therefore, required by the EuroHomelink sys-
tem and the receiver’s learning procedure can be fol-
lowed.

For a non-default manufacturer’s key or fixed code
system, the EuroHomelink must be trained. Press the
outer buttons on the EuroHomelink transceiver for 20
seconds. Release the buttons when the LED starts
blinking rapidly. Press any button (the LED will blink
slowly) and operate the transmitter. Successful training
will be indicated by a rapid blinking LED. The
EuroHomelink is now ready to be trained to the trans-
ceiver.

Function Code During Seed Transmission

The function code is set to 1111. On KEELOQ encoders
this may be different.

Bit Rate

An elemental time period of TE = 200 µs is used. This
translates to a bit rate of 1.67 KBps.

Frequency

The operating frequency will be:

AM Modulation Depth

3 dB (not on/off modulated)

SYSTEM VALIDATION

Test Transmitter and Test Modes

A serial number 0000000H is reserved as a test
transmitter. Manufacturers can program a transmitter
with serial 0000000H and their manufacturer’s code to
test their receiver.

The EuroHomelink accommodates two test
transmitters. The table shows the configuration of the
test transmitters. This data will be used to define the
output transmissions of the EuroHomelink after being
trained to one of the two serial numbers identified in
Table 1. A default manufacturer’s code of
01234567-89ABCDEFh is used.

Reference Test Receiver

The application note PICmicro Midrange MCU Code
Hopping Decoder can be used a reference receiver.
Pre-programmed PIC16C61s microcontrollers can be
ordered from Microchip technology with the easy-train
default manufacturer’s code embedded.

TECHNICAL CONTACTS

Sharon Mathias – Prince UK

Lothar Grad – Price Germany

433.92 MHz ± 100 KHz

TABLE 5: TEST TRANSMITTER AND TEST MODES

Test transmitter Serial Number Seed Key

1. Normal Learn (Decrypt) 1234567h Not applicable 0516FBE9-89074278h

2. Secure Learn (XOR) 1234567h 0123456789 00000000-00000000h

Learn (XOR) ABCDEFh

Tel: UK 1-926-333-035

email: sharon.mathias@jci.com

Tel: GER 7031-9391-46

email: lothar.grad@jci.com
 1999 Microchip Technology Inc. DS91021A-page 3-125

TB021

S3.book Page 126 Thursday, March 2, 2000 8:01 AM
NOTES:
DS91021A-page 3-126 1999 Microchip Technology Inc.

SECTION 4
ANALOG/INTERFACE PRODUCT

 APPLICATION NOTES
AND TECHNICAL BRIEFS

A
n

alo
g

/In
terface

4

S4.book Page i Thursday, March 2, 2000 8:00 AM
Temperature Sensing Technologies - AN679 ...4-1
Using Single Supply Operational Amplifiers in Embedded Systems - AN682...4-11
Single Supply Temperature Sensing with Thermocouples - AN684 ...4-19
Thermistors in Single Supply Temperature Sensing Circuits - AN685..4-35
Understanding and Using Supervisory Circuits - AN686...4-45
Precision Temperature Sensing with RTD Circuits - AN687 ...4-49
Layout Tips for 12-Bit A/D Converter Application - AN688..4-53
Anti-Aliasing, Analog Filters for Data Acquisition Systems - AN699 ...4-59
Interfacing Microchip MCP3201 A/D Converter to 8051-Based Microcontroller - AN7024-69
Using the MCP320X 12-Bit Serial A/D Converter with Microchip PICmicro® Devices - AN703..............4-81
Interfacing Microchip’s MCP3201 Analog/Digital (A/D) Converter to

MC68HC11E9-Based Microcontroller - AN704 ...4-103
Controller Area Network (CAN) Basics - AN713 ...4-113
Building a 10-bit Bridge Sensing Circuit using the PIC16C6XX and

MCP601 Operational Amplifier - AN717 ..4-121
Interfacing Microchip’s MCP3201 Analog-to-Digital Converter to the

PICmicro® Microcontroller - AN719...4-129
Operational Amplifier Topologies and DC Specifications - AN722..4-149
 1999 Microchip Technology Inc. DS00711A-page 4-i

S4.book Page ii Thursday, March 2, 2000 8:00 AM
DS00711A-page 4-ii 1999 Microchip Technology Inc.

AN679
Temperature Sensing Technologies

A
n

alo
g

/In
terface

4

S4.book Page 1 Thursday, March 2, 2000 8:00 AM
INTRODUCTION

Of all of the sensing technologies, temperature sensing
is the most common. This phenomena can be
explained by citing examples in a multitude of applica-
tions where knowing and using the actual or relative
temperature is critical. For instance, other sensors
such as pressure, force, flow, level, and position many
times require temperature monitoring in order to insure
accuracy. As an example, pressure and force are usu-
ally sensed with resistive Wheatstone bridge configura-
tions. The temperature errors of the resistive elements
of these bridges can exceed the actual measurement
range of the sensor, making the pressure sensor’s out-
put fairly useless, unless the temperature of the bridge
is known. Flow and level sensor accuracies are depen-
dent on the density of the liquid or gas.

One variable that affects the accuracy of these sensors
is the temperature of that material. Position is most typ-
ically used in motor control. In these circuits, tempera-
ture affects the efficiency of the motor. Consequently,
the understanding of temperature sensing is needed in
order to fully understand how to accurately sense most
other physical phenomena.

This application note will cover the most popular temper-
ature sensor technologies to a level of detail that will
give the reader insight into how to determine which sen-
sor is most appropriate for the application. This note is
written from the perspective of catering to the complex
issues of the sensing environment and required accu-
racy. Once the sensor is selected, subsequent Micro-
chip application notes can be used to design
appropriate microcontroller interface circuits. These cir-
cuits will offer the complete signal path from the low level
output signals of the sensor, through the analog signal
conditioning stages to the microcontroller. Techniques
such as sensor excitation, sensor signal gain, and digital
linearization are reserved for these further discussions.

SO MANY TEMPERATURE SENSORS

The most popular temperature sensors used today are
the Thermocouple, Resistive Temperature Device
(RTD), Thermistor, and the newest technology, the Inte-
grated Silicon Based Sensors. There are other sensing
technologies, such as Infrared (Pyrometers) and Ther-
mal Pile. These alternatives are beyond the scope of
this application note.

Each of these sensor technologies cater to specific tem-
perature ranges and environmental conditions. The
sensor’s temperature range, ruggedness, and sensitiv-
ity are just a few characteristics that are used to deter-
mine whether or not the device will satisfy the
requirements of the application. No one temperature
sensor is right for all applications. The thermocouple's
wide temperature range is unrivalled as is the excellent
linearity of the RTD and the accuracy of the Thermistor.

Table 1 summarizes the main characteristics of these
four temperature sensors. This table can be used dur-
ing the first pass of the sensor selection process. Fur-
ther details concerning the construction and charac-
teristics of these sensors are given in the following sec-
tions of this application note.

To complement the specifications sited in Table 1, a list
of typical applications for these four temperature sen-
sors are shown in Table 2.

Author: Bonnie Baker
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS00679A-page 4-1

AN679

S4.book Page 2 Thursday, March 2, 2000 8:00 AM
Thermocouple RTD Thermistor Integrated Silicon

Temperature Range −270 to 1800°C −250 to 900 °C −100 to 450°C -55 to 150°C

Sensitivity 10s of µV / °C 0.00385 Ω / Ω / °C
(Platinum)

 several Ω / Ω / °C Based on technology
that is -2mV/°C
sensitive

Accuracy ±0.5°C ±0.01°C ±0.1°C ±1°C

Linearity Requires at least a 4th
order polynomial or
equivalent look up
table.

Requires at least a 2nd
order polynomial or
equivalent look up
table.

Requires at least 3rd
order polynomial or
equivalent look up
table.

At best within ±1°C. No
linearization required.

Ruggedness The larger gage wires
of the thermocouple
make this sensor more
rugged. Additionally,
the insulation materi-
als that are used
enhance the thermo-
couple’s sturdiness.

RTDs are susceptible
to damage as a result
of vibration. This is due
to the fact that they typ-
ically have 26 to 30
AWG leads which are
prone to breakage.

The thermistor element
is housed in a variety of
ways, however, the most
stable, hermetic Ther-
mistors are enclosed in
glass. Generally ther-
mistors are more difficult
to handle, but not
affected by shock or
vibration.

As rugged as any IC
housed in a plastic pack-
age such as dual-in-line
or surface outline ICs.

Responsiveness in
stirred oil

less than 1 Sec 1 to 10 Secs 1 to 5 Secs 4 to 60 Secs

Excitation None Required Current Source Voltage Source Typically Supply
Voltage

Form of Output Voltage Resistance Resistance Voltage, Current, or
Digital

Typical Size Bead diameter =
5 x wire diameter

0.25 x 0.25 in. 0.1 x 0.1 in. From TO-18 Transis-
tors to Plastic DIP

Price $1 to $50 $25 to $1000 $2 to $10 $1 to $10

TABLE 1: The most common temperature sensors in industry are the thermocouple, RTD, thermistor, and integrated
silicon based. No one temperature sensor is right for all applications. The thermocouple’s wide temperature range is
unrivalled as is the excellent linearity of the RTD and the accuracy of the thermistor. The silicon sensor is easy to
implement and install in a circuit.

Sensor Type Application

Thermocouple
Extremely high temperature sensing, biophysics, metal cutting research, gas chroma-
tography, internal combustion engine temperatures, chemical reactions

RTD Cold junction compensation, bridge temperature, calibration, process control.

Thermistor
Cold junction compensation, bridge temperature sensing, pyrometer calibration, vac-
uum manometers, anemometers, flow meters, liquid level, fluid velocity, thermal con-
ductivity cells, gas chromatography

Silicon Based
Cold junction compensation, personal computers, office electronics, cellular phones,
HVAC, battery management, four speed controls

TABLE 2: Listed are some examples of the applications that each temperature sensor is best suited for.
DS00679A-page 4-2 1999 Microchip Technology Inc.

AN679
A

n
alo

g
/In

terface

4

S4.book Page 3 Thursday, March 2, 2000 8:00 AM
THE VERSATILE, INEXPENSIVE
THERMOCOUPLE

The thermocouple consists of two wires of dissimilar
metals that are soldered together at one end as shown
in Figure 1. The temperature at the Reference Junction
(also know as the Cold Junction Compensation Point) is
used to negate the errors contributed by the Iron-Cop-
per and Constantan-Copper junctions. The connecting
point of the two metals of the thermocouple is posi-
tioned on the target where the temperature measure-
ment is needed.

This configuration of materials produces a voltage
between the two wires at the unsoldered end that is a
function of the temperature of all of the junctions. Con-
sequently, the thermocouple does not require voltage or
current excitation. As a matter of fact, an attempt to pro-
vide either type of excitation could introduce errors into
the system.

Since a voltage develops at the open end of the two dis-
similar wires, it would seem as if the thermocouple
interface could be done in a straight forward manner by
measuring the voltage difference between the wires.

This could easily be the case if it wasn’t for the fact that
the termination ends of the thermocouple wires con-
nect to another metal, usually copper.

This creates another pair of thermocouples, which
introduces a significant error to the system. The only
way to negate this error is to sense the temperature at
the Reference Junction box (Figure 1) and subtract the
contributing errors of these connections in a hardware
solution or a combination of software and hardware.

Pure hardware calibration techniques are more limited
in terms of linearization correction than the combina-
tion of software and hardware techniques. Typically, an
RTD, Thermistor, or Integrated Silicon Sensor is used
to sense this junction temperature accurately.

In principle the thermocouple can be made from any
two metals, however, in practice standard combinations
of these two metals have been embraced because of
their desirable qualities of linearity and their voltage
magnitude drop versus temperature. These common
thermocouple types are E, J, T, K, N, S, B, and R (sum-
marized in Table 3 and Figure 2).

Thermocouples are highly non-linear and require sig-
nificant linearization algorithms, as will be discussed
later. The Seebeck Coefficient in Table 3 represents
the average drift of the specific thermocouple at a spe-
cific temperature.

FIGURE 1: A thermocouple is constructed of two dissimilar metals, such as the Iron and Constantan in this Type J
thermocouple. The temperature of the Reference Junction Compensation (also known as the Cold Junction Compensation
or Isothermal Block) is used to negate the errors contributed by the Iron-Copper and Constantan-Copper Junctions.

Signal
Conditioning
Electronics

Reference
Junction

Copper

Constantan

Iron Solder
Joint

Type J
Thermocouple

Iron–Copper
Junction

Copper–Constantan
Junction
 1999 Microchip Technology Inc. DS00679A-page 4-3

AN679

S4.book Page 4 Thursday, March 2, 2000 8:00 AM
.

FIGURE 2: Thermocouples are sensitive to a wide
range of temperatures making them appropriate for a
variety of hostile environments.

At the time of shipment, the thermocouple performance
is guaranteed by the vendor in accordance with NIST
175 standards (adopted by ASTM). These standards
define the temperature behavior of the thermocouple
as well as the quality of the material used.

Thermocouples are extremely non-linear when com-
pared to RTD, Thermistor, and Integrated Silicon Sen-
sors. Consequently, complex algorithms must be
performed with the processor portion of the circuit. An
example of the complexity of the calculation is shown in
Table 4. These are the Type K Thermocouple coeffi-
cients that can be used to linearize the output voltage
results for a temperature range of 0°C to 1372°C. These
coefficients are used in the equation

where
V is equal to the voltage across the thermocouple junc-
tion, and

t is equal to the temperature.

The alternative to using these complex calculations is
to use program memory for a look-up table. The
replacement look-up table for the equation coefficients
of the Type K thermocouple in Table 4 is approximately
an 11 x 14 array of decimal integers ranging from 0.000
to 13.820.

Additionally, the thermocouple can quantify tempera-
ture as it relates to a reference temperature. The refer-
ence temperature is defined as the temperature at the
end of the thermocouple wires furthest from the sol-
dered bead. This reference temperature is usually
sensed using an RTD, Thermistor, or Integrated Silicon
Sensor.

The thermal mass of the thermocouple is smaller than
the RTD or Thermistor, consequently the response of
the thermocouple as compared to larger temperature
sensors is faster. The wide temperature ranges of the
sensor makes it exclusively appropriate for many hos-
tile sensing environments.

Thermocouple
Type

Conductors
Temperature
Range (°C)

Seebeck
Coefficient

Application
Environments

E Chromel, Constantan -200 to 900 60µV/°C oxidizing, inert, vacuum

J Iron, Constantan 0 to 760 51µV/°C
vacuum, oxidizing
reducing, inert

T Copper, Constantan −200 to 371 40µV/°C corrosive, moist, subzero

K Chromel, Alumel -200 to 1260 40µV/°C completely inert

N Nicrosil, Nisil 0 to 1260 38µV/°C oxidizing

S
Platinum(10% Rhodium),
Platinum

0 to 1480 11µV/°C oxidizing, inert

B
Platinum (30% Rhodium)
Platinum (6% Rhodium)

0 to 1820 8µV/°C
oxidizing, inert

R
Platinum (13% Rhodium),
Platinum

0 to 1480 12µV/°C oxidizing, inert

TABLE 3: The most common thermocouple types are shown with their standardized material and performance
specifications. These thermocouple types are fully characterized by the American Society for Testing and Materials
(ASTM) and specified in IST-90 units per NIST Monograph 175.

(M
IL

LI
V

O
LT

S
)

80

70

60

50

40

30

20

10

0 1000 2000 3000 4000 5000
AMBIENT TEMPERATURE (°F)

E

J
K

T

N

R
S

B

T
H

E
R

M
O

C
O

U
P

LE
 O

U
T

P
U

T

V c0 c1t c2t
2

c3t
3
...+ + +=

c0 -1.7600413686 x 10-2

c1 3.8921204975 x 10-2

c2 1.8558770032 x 10-5

c3 -9.9457592874 x 10-8

c4 3.1840945719 x 10-10

c5 -5.6072844889 x 10-13

c6 5.6075059059 x 10-16

c7 -3.2020720003 x 10-19

c8 9.7151147152 x 10-23

c9 -1.2104721275 x 10-26

TABLE 4: These are the Type K thermocouple
coefficients that can be used to linearize the output
voltage results for a temperature range of 0°C to
1372°C. These coefficients are used in the equation
V = c0 + c1t + c2t

2 + c3t

3 ... where V is equal to the
voltage across the thermocouple junction, and t is
equal to the temperature.
DS00679A-page 4-4 1999 Microchip Technology Inc.

AN679
A

n
alo

g
/In

terface

4

S4.book Page 5 Thursday, March 2, 2000 8:00 AM
Thermocouple Error Analysis

Thermocouples are generally low cost, rugged and
available in smaller sizes than the other temperature
sensors. Any stress on the material due to bending
stretching or compression can change the characteris-
tics of the thermal gradients. Additionally, corrosive
material can penetrate the insulation material and cause
a change in the thermal characteristics. It is possible to
encase the thermocouple bead in protective tubing such
as a ceramic tube for high temperature protection.
Metallic wells can also provide mechanical protection.

The thermocouple voltage drop occurs along the tem-
perature gradient down the length of the two dissimilar
metals. This does not imply that shorter versus longer
wires will necessarily have differing Seebeck Coeffi-
cients. With shorter wires, the temperature gradient is
simply steeper. However, the longer wires do have an
advantage in terms of conduction affects. With the
longer wires the temperature gradient is lower and con-
duction losses are reduced.

On the down side, these types of temperature sensors
have a very low output signal. This places additional
requirements on the signal conditioning circuitry that fol-
lows the thermocouple. In addition to this low level output
signal, the linearity of the device requires a considerable
amount of calibration. This calibration is typically done in
firmware as well as software. In firmware, an absolute
temperature reference is needed which serves as a
“cold junction” reference. In software, the linearity errors
of the thermocouple are reduced with look-up tables or
high order polynomial equations. And finally, EMI signals
are easily coupled in to this two-wire system.

Lower gage wires are required for higher temperatures
and will also have a longer life. However, if sensitivity is
a prime concern, larger wire gages will provide better
measurement results.

To summarize, thermocouples are usually selected
because for the wide temperature range, ruggedness,
and price. Accuracy and good linearity are hard to
achieve in precision systems. If high accuracy is desir-
able, other temperature sensors may be a better alter-
native.

THE RTD IS ABSOLUTELY AN
ALTERNATIVE

RTD element technologies are constantly improving,
enhancing the quality of the temperature measure-
ment. To produce a high quality, accurate temperature
measurement system, the selection of the RTD ele-
ment is critical. The RTD (Resistance Temperature
Detector) is a resistive element constructed from met-
als, such as, Platinum, Nickel or Copper. The particular
metals that are chosen exhibit a predictable change in
resistance with temperature. Additionally, they have the
basic physical properties that allow for easy fabrication.
The temperature coefficient of resistance of these met-
als is large enough to render measurable changes with
temperature.

Other temperature sensing devices, such as thermo-
couples, fall short of giving the designer an absolute
result that is fairly linear over temperature. The linear
relation between resistance and temperature of the
RTD simplifies the implementation of signal condition-
ing circuitry. The resistance change to temperature of
each of these types of RTDs is shown in Table 5. Plati-
num RTDs (PRTD) are the most accurate and reliable
of the three types shown in Table 5.

Of all the material types, Platinum RTDs are best suited
for precision applications where absolute accuracy and
repeatability is critical. The platinum material is less
susceptible to environmental contamination, where
copper is prone to corrosion causing long term stability
problems. Nickel RTDs tolerate environmental condi-
tions fairly well, however, they are limited to smaller
temperature ranges.

The PRTD has nearly linear thermal response, good
chemical inertness and is easy to manufacture in the
form of small-diameter wires or films. As shown in
Table 5, the resistivity of the platinum is higher than the
other metals, making the physical size of the element
smaller. This offers advantages where "real-estate" is
at a premium as well better thermal responsiveness.

Thermal responsiveness of an RTD affects the mea-
surement time. It is also dependent on the housing
material of the RTD and the size of the implementation
of the RTD element. Elements with smaller dimensions
can be housed in smaller packages. Since RTD are
typically smaller, their thermal response times can be
shorter than silicon based temperature sensors.

The absolute, 0°C value of the element is available in a
wide range of resistances and can be specified by the
user. For instance, the standard resistance of a plati-
num RTD (PRTD) is 100Ω. But, they are also available
as 50, 100, 200, 500 1000 or 2000Ω elements.

As stated before, the RTD is an absolute temperature
sensing devices as opposed to the thermocouple,
which senses relative temperatures. Consequently,
additional temperature sensors would not necessarily
enhance the accuracy of the system.
 1999 Microchip Technology Inc. DS00679A-page 4-5

AN679

S4.book Page 6 Thursday, March 2, 2000 8:00 AM
In most applications, linearization is not required.
Table 6 shows the temperature versus resistance of a
100 Ω platinum RTD. With a 100Ω PRTD, the change in
resistance from 0°C to 100°C changes resistance by:

The accuracy of the PRTD over its temperature range
is also shown in terms of ∆°C from ideal.

Of the temperature sensors discussed in this applica-
tion note, the RTD is the most linear with only two coef-
ficients in the linearization equation,

for temperatures 0 °C to 859 °C

for temperatures -200°C to 0°C
where
Rt is the resistance of the RTD at measurement
 temperature,
t is the temperature being measured,
R0 is the magnitude of the RTD at 0°C,
A, B and C are calibration coefficients derived from
experimentation.

These equations are solved after five iterations making
it possible to resolve to ±0.001°C of accuracy.

RTD Error Analysis

Beyond the initial element errors shown in Table 6 there
are other sources of error that effect the overall accu-
racy of the temperature sensor. The introduction of
defects into the mechanical integrity of the part such as
bending the wires, shock due to rough handling, con-
striction of the packaging that leads to stress during
thermal expansion, and vibration can have a long term
effect on the repeatability of the sensor.

Although the mechanical stresses can effect long term
stability, the electrical design used to condition, gain and
digitize the RTD output can also effect the overall accu-
racy. One of these sources of errors is the self heating of
the RTD element that results from the required current
excitation. A current excitation is used to convert the
resistance of the RTD into a voltage. It is desirable to
have a high excitation current through the resistive sens-
ing element in order to keep the output voltage above the
system noise levels. A negative side to this design
approach is that the element will self-heat as a result of
the higher current. The combination of current and resis-
tance create power and in turn the by-product of heat.
The heat generated by the power dissipation of the ele-
ment artificially increases the resistance of the RTD.

The error contribution of the heat generated by the element's
power dissipation is easily calculated given the package
thermal resistance (θPACKAGE), the magnitude of the current
excitation and the value of the RTD resistance (RRTD).

RTD Detector
Material

Thermal Response
(at 0°C)

Typical Material Resistivity
(at 0°C)

Platinum 0.00385 Ω/Ω/°C (IEC 751) 9.81 x 10-6 Ω cm

Nickel 0.00672 Ω/Ω/°C 5.91 x 10-6 Ω cm

Copper 0.00427 Ω/Ω/°C 1.53 x 10-6 Ω cm

TABLE 5: RTD temperature sensing devices are available in a variety of materials. The temperature coefficient of
these devices is specified in terms of ohms, per ohms per °C.

∆R (Thermal Response) x R0 x ∆t=

∆R 0.00038Ω/Ω/°C x 100Ω x 100°C=

∆R 38.5Ω=

Rt R0 1 At Bt
2

+ +()=

Rt R0 1 At Bt
2

+ +() C t 100t
3

–()+=

Temperature (°C)
Typical Absolute Resistive Value

(Ω)
Deviation in Ω Deviation in °C

-200 23.0 ± 0.56 ± 1.3

-100 61.5 ± 0.32 ± 0.8

0 100.0 ± 0.12 ± 0.3

100 138.5 ± 0.30 ± 0.8

200 177.0 ± 0.48 ± 1.3

300 215.5 ± 0.64 ± 1.8

400 254.0 ± 0.79 ± 2.3

500 292.5 ± 0.93 ± 2.8

600 331.0 ± 1.06 ± 3.3

700 369.5 ± 1.17 ± 3.8

800 408.0 ± 1.28 ± 4.3

TABLE 6: OMEGA Platinum Resistance Elements Allowable Deviation from Ideal Values for a 100Ω Sensor. The PRTD in
this illustration is manufactured to have a thermal response of 0.00385Ω/ Ω / °C (IEC 751) near 0°C, Class B.
DS00679A-page 4-6 1999 Microchip Technology Inc.

AN679
A

n
alo

g
/In

terface

4

S4.book Page 7 Thursday, March 2, 2000 8:00 AM
For example, if the package thermal resistance is 50°C/W,
the RTD’s nominal resistance is 250Ω, and the element is
excited with a 5mA current source, the artificial increase in
temperature (∆ °C) as a result of self heating is:

This example illustrates the importance of keeping the
magnitude of current excitation as low as possible,
preferably less than 1mA.

A second source of error resulting from the electrical
design comes from the lead wires to and from the sens-
ing element. The technique used to connect the RTD to
the rest of the circuit can be a critical issue. Three possi-
ble wire configurations can be used when connecting the
element to the remainder of the circuit. In Figure 3a. the
2-wire configuration is by far the least expensive, how-
ever, the current that is used to excite the RTD element
flows through the wires as well are the resistive element.
A portion of the wires are exposed to the same tempera-
tures as the RTD. The effects of the wire resistance
change with temperature can become a critical issue.

For example, if the lead wire is constructed of 5 gage cop-
per leads that are 50 meters long (with a wire resistance of
1.028Ω/km), the contribution of both wires increases the
RTD resistance by 0.1028Ω. This translates into a temper-
ature measurement error of 0.26°C for a 100Ω @ 0°C
RTD. This error contributes to the non-linearity of the over-
all measurement. The least accurate of configurations
shown in Figure 3 is the 2-wire. Circuits can be configured
to effectively use the 3-wire and 4-wire configuration to
remove the error contribution of the lead wires completely.

FIGURE 3: RTD elements are available in two-wire,
three-wire or four-wire configurations. Two-wire RTDs are
the least accurate because the contribution of the wire
resistance and wire resistance drift to the measurement.
With four-wire RTDs, this error can be eliminated by
using force and sense techniques in the circuit design.

GET THE GREAT ACCURACY OF THE
THERMISTOR

If accuracy is a high priority, the thermistor should be
the temperature sensor of choice. Thermistors are
available in two varieties, NTC and PTC. The NTC
(negative temperature coefficient) thermistor is con-
structed of ceramics composed of oxides of transition
metals (manganese, cobalt, copper, and nickel). With a
current excitation the NTC has a negative temperature
coefficient that is very repeatable and fairly linear.
These temperature dependent semiconductor resistors
operate over a range for −100°C to 450°C. Combined
with the proper packaging, they have a continuous
change of resistance over temperature. This resistive
change versus temperature is larger than the RTD (see
Figure 4), consequently the thermistor is systematically
more sensitive.

FIGURE 4: The temperature response versus
resistance of the NTC thermistor and the RTD.

The temperature characteristics of a typical NTC ther-
mistor along with a 100Ω RTD is shown in Figure 4. In
this figure, the difference between the temperature
coefficients of these two sensors is noticeable. The
thermistor has a negative temperature coefficient as
expected and the absolute value of the sensor changes
by 10,000 times over its usable temperature range. In
contrast, the RTD shown has a positive temperature
coefficient and only changes by four times over is
usable temperature range.This higher sensitivity of the
thermistor makes it attractive in terms of accuracy in
measurements.

∆ °C I
2
RRTD*θPACKAGE=

∆ °C 5mA()2
 x 250Ω x 50°C/Watt=

∆ °C 0.3125 °C=

a.) Two-wire RTD b.) Three-wire RTD c.) Four-wire RTD
 less accurate most used most accurate

100

10

1

.1

.01

.001

.0001
-50 0 50 100 150 200 250 300

PLATINUM RTD
(100 OHMS AT 0°C)

TEMPERATURE (°C)

R
E

S
IS

TA
N

C
E

 R
AT

IO
 (

R
t/R

25
°C

)

NTC THERMISTERS
 1999 Microchip Technology Inc. DS00679A-page 4-7

AN679

S4.book Page 8 Thursday, March 2, 2000 8:00 AM
The Thermistor is less linear than the RTD in that it
requires a 3rd order polynomial for precise temperature
corrections. The linearity equations for the Thermistor are:

over the entire temperature range

where
BX are the material constants of the thermistor

This linearization formula can resolve to a total mea-
surement uncertainty of ±0.005°C. However, it is
tedious when implemented in the microcontroller. Alter-
natively, look-up tables can be generated to serve the
same purpose with slightly less accuracy.

Thermistor Error Analysis

Although the NTC thermistor has the capability of
being more accurate than the RTD temperature sen-
sor, the two sensors have many things in common.
They are both temperature sensitive resistors.

When using the thermistor, an error due to overheating
is easily created. As a matter of fact, more care is
required when designing the excitation of the thermistor
because the thermistor resistive values are usually
higher than the RTD. Take for example, a package ther-
mal resistance of 10°C/W (bead diameter of 14mils), a
nominal Thermistor resistance is 10kΩ @ 25°C with the
Thermistor excitation of 5mA. The artificial increase in
temperature (∆°C) as a result of self heating is:

With temperature changes of this nature, the measure-
ment is obviously inaccurate, but also the thermal coef-
ficient of the thermistor material delays the full effect of
the problem for several seconds as the package mate-
rial stabilizes. To complicate this thermal effect further,
the thermal heating of the thermistor decreases the
thermistor resistance (instead of the increase seen with
the RTD). Since the thermistor has a negative resistive
coefficient, the overheating effect reverses as the ther-
mistor resistance becomes less than the voltage
across the thermistor divided by the excitation cur-
rent.This phenomena is not easily overcome with soft-
ware calibration and should be avoided.

The PTC thermistor has a positive temperature coeffi-
cient and is constructed from barium titanate. The sen-
sitivity of the PTC is considerably higher than the
sensitivity of the NTC thermistor and should be used
when a specific temperature range is of interest (-25 to
150°C). Over the lower portion of the resistance versus
temperature curve the thermistor resistance if fairly
constant. At higher temperatures the material passes
through a threshold temperature (between 80°C and
140°C, dependent on chemical composition of the
ceramic) where the resistance versus temperature
characteristics change dramatically (Figure 5).

At this point, increases in temperature cause a rise in
the PTC's resistance and the PTC resistive / tempera-
ture characteristics become very steep.

A second type of PTC thermistor is known as the Silis-
tor. This device is constructed of a thermally sensitive
silicon material and also has a positive temperature
coefficient (-60°C to 150°C) that is linear over the entire
operating range.

Both of the thermal characteristics of the PTC type
thermistors are shown in Figure 5.

FIGURE 5: PTC thermistor and silistor resistance versus
temperature response.

SELECT THE EASY TO USE
INTEGRATED SILICON
TEMPERATURE SENSOR

The integrated circuit temperature sensors offer
another alternative to solving temperature measure-
ment problems. The advantages of integrated circuit
silicon temperature sensors include, user friendly out-
put formats and ease of installation in the PCB assem-
bly environment.

Since the silicon temperature sensor is an integrated
circuit, integrated circuit designs can be easily imple-
ment on the same silicon as the sensor. This advantage
allows the placement of the most challenging portions
of the sensor signal conditioning path to be included in
the IC chip. Consequently, the output signals from the
sensor, such as large signal voltages, current, or digital
words, are easily interfaced with other elements of the
circuit. As a matter of fact, some integrated silicon sen-
sors include extensive signal processing circuitry, pro-
viding a digital I/O interface for the microcontroller.

On the other hand, the accuracy and temperature
range of this sensor does not match the other types of
sensors discussed in this application note. A tempera-
ture sensor IC can operate over a nominal temperature
range of –55 to 150 °C. Some devices go beyond this
range, while others operate over a narrower range.

In RT B0

B1

t

B2

t
2

B3

t
3

------+ + +=

∆ °C I2RTHERMISTOR x θPACKAGE=

∆ °C 5mA()2
x 10kΩ x 10 °C/Watt=

∆ °C 2.5 °C=

T
TEMPERATURE

LIN

LOG

R

Silistor

Switc
hing

 Ty
pe

 P
TC
DS00679A-page 4-8 1999 Microchip Technology Inc.

AN679
A

n
alo

g
/In

terface

4

S4.book Page 9 Thursday, March 2, 2000 8:00 AM
CHOOSE THE RIGHT TEMPERATURE
SENSOR

Of the temperature sensors on the market today, the
thermocouple, RTD, Thermistor, and Integrated Silicon
Sensors are continuing to dominate. The thermocouple
is most appropriate for higher temperature sensing,
while the RTD is best suited for lower temperatures
were good linearity is desirable. The Thermistor is typ-
ically used for applications with smaller temperature
ranges, but it offers greater accuracy than the thermo-
couple or the RTD.

All four of the sensors mentioned in this application
note have the capability of providing good, accurate,
and reliable performance, making the final sensor
selection appear somewhat trivial. However, once the
temperature sensor has been selected, the next step is
to design the analog and digital signal conditioning cir-
cuit. The design of this circuit will determine the actual
performance that is finally achieved.

Several application notes can be found in the Micro-
chip’s library that elaborate on these circuits. Each of
these application notes will present circuit alternatives
that take into account simplicity, accuracy and cost.

REFERENCES
Baker, Bonnie, “Low Power Temperature Sensing with
Precision Converters”, Sensors, (February 1997) p 38.

Baker, Bonnie, “Precision Temperature Sensing with
RTD Circuits”, AN687, Microchip Technology Inc.
(1998).

Baker, Bonnie, “Single Supply Temperature Sensing
with Thermocouples”, AN684, Microchip Technology
Inc. (1998).

Baker, Bonnie, “Thermistors in Single Supply Temper-
ature Sensing Circuits”, AN685, Microchip Technology
Inc. (1998).

Klopfenstein, Rex, “Software Linearization of a Ther-
mocouple”, Sensors, (December 1997) p 40.

Product Book, Thermometrics, Inc. (1997).

Schraff, Fred. “Thermocouple Basics” Measurement &
Control, (June 1996) p 126.

Sulciner, James, “Understanding and Using PRTD
Technology, Part 1: History, Principles and Designs”,
Sensors, (August 1996).

http://www.omega.com/techref/
 1999 Microchip Technology Inc. DS00679A-page 4-9

AN679

S4.book Page 10 Thursday, March 2, 2000 8:00 AM
NOTES:
DS00679A-page 4-10 1999 Microchip Technology Inc.

AN682
Using Single Supply Operational Amplifiers

in Embedded Systems

A
n

alo
g

/In
terface

4

A
n

alo
g

/In
terface

4

S4.book Page 11 Thursday, March 2, 2000 8:00 AM
INTRODUCTION

Beyond the primitive transistor, the operational ampli-
fier is the most basic building block for analog applica-
tions. Fundamental functions such as gain, load
isolation, signal inversion, level shifting, adding and/or
subtracting signals are easily implemented with this
building block. More complex circuits can also be imple-
mented, such as the instrumentation amplifier, a cur-
rent to voltage converter, and filters, to name only a few.
Regardless of the level of complexity of the operational
amplifier circuit, knowing the fundamental operation
and behavior of this building block will save a consider-
able amount of upfront design time.

Formal classes on this subject can be very comprehen-
sive and useful. However, many times they fall short in
terms of experience or common sense. For instance, a
common mistake that is made when designing with
operational amplifiers is to neglect to include the
bypass capacitors in the circuit. Operational amplifier
theory often overlooks this practical detail. If the bypass
capacitor is missing, the amplifier circuit could oscillate
at a frequency that “theoretically” doesn’t make sense.
If text book solutions are used, this is a difficult problem
to solve.

This application note is divided into three sections. The
first section will list the fundamental amplifier applica-
tions with the design equations included. These ampli-
fier circuits where selected with embedded system
integration in mind.

The second section will use these fundamental circuits
to build useful amplifier functions in embedded control
applications.

The third section will identify the most common single
supply operational amplifier (op amp) circuit design
mistakes. This list of mistakes have been gathered over
many years of trouble shooting circuits with numerous
designers in the industry. The most common design pit-
falls can easily be avoided if the check list from this
short tutorial is used.

FUNDAMENTAL OPERATIONAL
AMPLIFIER CIRCUITS

The op amp is the analog building block that is analogous
to the digital gate. By using the op amp in the design, cir-
cuits can be configured to modify the signal in the same
fundamental way that the inverter, AND, and OR gates do
in digital circuits. In this section, fundamental building
blocks such as the voltage follower, non-inverting gain
and inverting gain circuits will be discussed. This will be
followed by a rail splitter, difference amplifier, summing
amplifier and current to voltage converter.

Voltage Follower Amplifier

Starting with the most basic op amp circuit, the buffer
amplifier (shown in Figure 1) is used to drive heavy
loads, solve impedance matching problems, or isolate
high power circuits from sensitive, precise circuitry.

FIGURE 1: Buffer Amplifier; also called a voltage
follower.

The buffer amplifier, shown in Figure 1, can be imple-
mented with any single supply, unity gain stable ampli-
fier. In this circuit as with all amplifier circuits, the op
amp must be bypassed with a capacitor. For single sup-
ply amplifiers that operate in bandwidths from DC to
megahertz, a 1µF capacitor is usually appropriate.
Sometimes a smaller bypass capacitor is required for
amplifiers that have bandwidths up to the 10s of mega-
hertz. In these cases a 0.1µF capacitor would be appro-
priate. If the op amp does not have a bypass capacitor
or the wrong value is selected, it may oscillate.

Author: Bonnie Baker
Microchip Technology Inc.

MCP601

VOUT = VIN

*

*Bypass Capacitor, 1µF

VDD

2 7

3
4

6

VOUT

VIN
 1999 Microchip Technology Inc. DS00682B-page 4-11

AN682

S4.book Page 12 Thursday, March 2, 2000 8:00 AM
The analog gain of the circuit in Figure 1 is +1 V/V.
Notice that this circuit has positive overall gain but the
feedback loop is tied from the output of the amplifier to
the inverting input. An all too common error is to assume
that an op amp circuit that has a positive gain requires
positive feedback. If positive feedback is used, the ampli-
fier will most likely drive to either rail at the output.

This amplifier circuit will give good linear performance
across the bandwidth of the amplifier. The only restric-
tions on the signal will occur as a result of a violation of
the input common-mode and output swing limits. These
limitations will be discussed in the third section of this
application note (“Amplifier Design Pitfalls”).

If this circuit is used to drive heavy loads, the amplifier
that is actually selected must be specified to provide
the required output currents. Another application where
this circuit may be used is to drive capacitive loads. Not
every amplifier is capable of driving capacitors without
becoming unstable. If an amplifier can drive capacitive
loads, the product data sheet will highlight this feature.
However, if an amplifier can’t drive capacitive loads, the
product data sheets will not explicitly say.

Another use for the buffer amplifier is to solve imped-
ance matching problems. This would be applicable in a
circuit where the analog signal source has a relatively
high impedance as compared to the impedance of the
following circuitry. If this occurs, there will be a voltage
loss with the signal as a consequence of the voltage
divider between the source’s impedance and the fol-
lowing circuitry’s impedance. The buffer amplifier is a
perfect solution to the problem. The input impedance of
the non-inverting input of an amplifier can be as high as
1013 Ω for CMOS amplifiers. In addition, the output
impedance of this amplifier configuration is usually less
than 10 Ω.

FIGURE 2: Load isolation is achieved using a buffer
amplifier.

Yet another use of this configuration is to separate a
heat source from sensitive precision circuitry, as shown
in Figure 2. Imagine that the input circuitry to this buffer
amplifier is amplifying a 100µV signal. This type of
amplification is difficult to do with any level of accuracy
in the best of situations. This precision measurement
can easily be disrupted by changing the output current
drive of the device that is doing the amplification work.

An increase in current drive will cause self heating of
the chip which will induce an offset change. An analog
buffer can be used to perform the function of driving
heavy loads while the front end circuitry can be used to
make precision measurements.

Gaining Analog Signals

The buffer solves a lot of analog signal problems, how-
ever, there are instances in circuits where a signal
needs to be gained. Two fundamental types of amplifier
circuits can be used. With the first type, the signal is not
inverted as shown in Figure 3. This type of circuit is
useful in single supply1 amplifier applications where
negative voltages are usually not possible.

FIGURE 3: Operational amplifier configured in a
non-inverting gain circuit.

The input signal to this circuit is presented to the high
impedance, non-inverting input of the op amp. The gain
that the amplifier circuit applies to the signal is equal to:

Typical values for these resistors in single supply cir-
cuits are above 2kΩ for R2. The resistor, R1, restrictions
are dependent on the amount of gain desired versus
the amount of amplifier noise and input offset voltage
as specified in the product data sheet of the op amp.

Once again, this circuit has some restrictions in terms of
the input and output range. The non-inverting input is
restricted by the common-mode range of the amplifier.
The output swing of the amplifier is also restricted as
stated in the product data sheet of the individual amplifier.
Most typically, the larger signal at the output of the ampli-
fier causes more signal clipping errors than the smaller
signal at the input. If undesirable clipping occurs at the
output of the amplifier, the gain should be reduced.

R1 R2

VIN

VOUT

*

Buffer
Precision Amplifier

*Bypass Capacitor, 1µF

*

VS

MCP601

VDD

–

+

R1

VIN

VOUT

*Bypass Capacitor, 1µF

R2

*

VDD

MCP601

VOUT 1
R2

R1
------+

 = VIN

VOUT 1
R2

R1
------+

 = VIN

1. For this discussion, single supply implies that the neg-
ative supply pin of the operational amplifier is tied to
ground and the positive supply pin is tied to +5V. All
discussion in this application note can be extrapolated
to other supply voltages where the single supply ex-
ceeds 5V or dual supplies are used.

DS00682B-page 4-12 1999 Microchip Technology Inc.

AN682
A

n
alo

g
/In

terface

4

A
n

alo
g

/In
terface

4

S4.book Page 13 Thursday, March 2, 2000 8:00 AM
An inverting amplifier configuration is shown in Figure
4. With this circuit, the signal at the input resistor, R1, is
gained and inverted to the output of the amplifier. The
gain equation for this circuit is:

The ranges for R1 and R2 are the same as in the
non-inverting circuit shown in Figure 3.

FIGURE 4: Operational amplifier configured in an
inverting gain circuit. In single supply environments a
VBIAS is required to insure the output stays above
ground.

In single supply applications, this circuit can easily be
misused. For example, let R2 equal 10kΩ, R1 equal
1kΩ, VBIAS equal 0V, and the voltage at the input resis-
tor, R1, equal to 100mV. With this configuration, the out-
put voltage would be −1V. This would violate the output
swing range of the operational amplifier. In reality, the
output of the amplifier would go as near to ground as
possible.

The inclusion of a DC voltage at VBIAS in this circuit
solves this problem. In the previous example, a voltage
of 225mV applied to VBIAS would level shift the output
signal up 2.475V. This would make the output signal
equal (2.475V − 1V) or 1.475V at the output of the
amplifier. Typically, the average output voltage should
be designed to be equal to VDD/2.

Single Supply Circuits and Supply Splitters

As was shown in the inverting gain circuit (Figure 4),
single supply circuits often need a level shift to keep the
signal between negative (usually ground) and positive
supply pins. This level shift can be designed with a sin-
gle amplifier and a combination of resistors and capac-
itors as shown in Figure 5. Many times a simple buffer
amplifier without compensation capacitors will accom-
plish this task. In other cases the level shift circuit will
see dynamic or transient load changes, like the refer-
ence to an Analog-to-Digital (A/D) converter. In these
applications, the level shift circuit must hold its voltage
constant. If it does change, a conversion error might be
observed.

FIGURE 5: A supply splitter is constructed using one
operational amplifier. This type of function is particu-
larly useful in single supply circuits.

A solid level shift voltage can easily be implemented
using a voltage divider (R3 and R4) or a reference volt-
age source buffered by the amplifier. The transfer func-
tion for this circuit is:

The circuit in Figure 5 has an elaborate compensation
scheme to allow for the heavy capacitive load, C1. The
benefit of this big capacitor is that it presents a very low AC
resistance to the reference pin of the A/D converter. In the
AC domain, the capacitor serves as a charge reservoir that
absorbs any momentary current surges which are charac-
teristic of sampling A/D converter reference pins.

The Difference Amplifier

The difference amplifier combines the non-inverting
amplifier and inverting amplifier circuits of Figure 3 and
Figure 4 into a signal block that subtracts two signals.
The implementation of this circuit is shown in Figure 6.

FIGURE 6: Operational amplifier configured in a
difference amplifier circuit.

VOUT

R2

R1

 –= VIN 1

R2

R1
------+

 VBIAS+

R1

VIN

VOUT*
MCP601

R2

*Bypass Capacitor, 1µF

VBIAS

VOUT

R2

R1

 –= VIN 1
R2

R1
------+

 VBIAS+

VDD

R1=10 to 100Ω

VIN

VOUT
*

ADC

*Bypass Capacitor, 1µF

VDD

C2

C1

MCP601

R4

R3

VREF

VS

*

VOUT VS
R4

R3 R4+

 =

R2=10 to 100Ω

VOUT VS
R4

R3 R4+

 =

R2

VOUT

R2

*Bypass Capacitor, 1µF

V2

V1

R1

R1

*

VOUT V1 V2–()
 R2

R1

 VREF

 R2

R1

+=

MCP601

VREF

VDD
 1999 Microchip Technology Inc. DS00682B-page 4-13

AN682

S4.book Page 14 Thursday, March 2, 2000 8:00 AM
The transfer function for this amplifier circuit is:

This circuit configuration will reliably take the difference
of two signals as long as the signal source impedances
are low. If the signal source impedances are high with
respect to R1, there will be a signal loss due to the volt-
age divider action between the source and the input
resistors to the difference amplifier. Additionally, errors
can occur if the two signal source impedances are mis-
matched. With this circuit it is possible to have gains
equal to or higher than one.

Summing Amplifier

Summing amplifiers are used when multiple signals
need to be combined by addition or subtraction. Since
the difference amplifier can only process two signals, it
is a subset of the summing amplifier.

FIGURE 7: Operational amplifier configured in a sum-
ming amplifier circuit.

The transfer function of this circuit is:

Any number of inputs can be used on either the invert-
ing or non-inverting input sides as long as there are an
equal number of both with equivalent resistors.

Current to Voltage Conversion

An operational amplifier can be used to easily convert
the signal from a sensor that produces an output cur-
rent, such as a photodetector, into a voltage. This is
implemented with a single resistor and an optional
capacitor in the feedback loop of the amplifier as shown
in Figure 8.

FIGURE 8: Current to voltage converter using an
amplifier and one resistor. The top light scanning
circuit is appropriate for precision applications. The
bottom circuit is appropriate for high speed
applications.

As light impinges on the photo diode, charge is gener-
ated, causing a current to flow in the reverse bias direc-
tion of the photodetector. If a CMOS op amp is used,
the high input impedance of the op amp causes the cur-
rent from the detector (ID1) to go through the path of
lower resistance, R2. Additionally, the op amp input
bias current error is low because it is CMOS (typically
<200 pA). The non-inverting input of the op amp is ref-
erenced to ground which keeps the entire circuit biased
to ground. These two circuits will only work if the com-
mon mode range of the amplifier includes zero.

Two circuits are shown in Figure 8. The top circuit is
designed to provide precision sensing from the photo-
detector. In this circuit the voltage across the detector
is nearly zero and equal to the offset voltage of the
amplifier. With this configuration, current that appears
across the resistor, R2, is primarily a result of the light
excitation on the photodetector.

The photosensing circuit on the bottom of Figure 8 is
designed for higher speed sensing. This is done by
reverse biasing the photodetector, which reduces the
parasitic capacitance of the diode. There is more leak-
age through the diode which causes a higher DC error.

VOUT V1 V2–()
 R2

R1

 VREF

 R2

R1

+=

R2

VOUT

R2

*Bypass Capacitor, 1µF

V3

V4

R1

R1

V1

V2

MCP601
*

VOUT V1 V2 V3– V– 4+()=
R2

R1

R1

R1

VDD

VOUT V1 V2 V3– V– 4+()=
R2

R1

VBIAS

R2

C2

R2

VOUT

VOUT = R2 ID1

*Bypass Capacitor, 1µF

D1

VOUT

Light

D1

Light

*
MCP601

*
MCP601

ID1

ID1

VDD

VDD
DS00682B-page 4-14 1999 Microchip Technology Inc.

AN682
A

n
alo

g
/In

terface

4

A
n

alo
g

/In
terface

4

S4.book Page 15 Thursday, March 2, 2000 8:00 AM
USING THE FUNDAMENTALS

Instrumentation Amplifier

Instrumentation amplifiers are found in a large variety
of applications from medical instrumentation to process
control. The instrumentation amplifier is similar to the
difference amplifier in that it subtracts one analog sig-
nal from another, but it differs in terms of the quality of
the input stage. A classic, three op amp instrumenta-
tion amplifier is illustrated in Figure 9.

FIGURE 9: An instrumentation amplifier can be
designed using three amplifiers. The input operational
amplifiers provide signal gain. The output operational
amplifier converts the signal from two inputs to a single
ended output with a difference amplifier.

With this circuit the two input signals are presented to the
high impedance non-inverting inputs of the amplifiers.
This is a distinct advantage over the difference amplifier
configuration when source impedances are high or mis-
matched. The first stage also gains the two incoming sig-
nals. This gain is simply adjusted with one resistor, RG.

Following the first stage of this circuit is a difference
amplifier. The function of this portion of the circuit is to
reject the common mode voltage of the two input sig-
nals as well as differentiate them. The source imped-
ances of the signals into the input of the difference
amplifier are low, equivalent and well controlled.

The reference voltage of the difference stage of this
instrumentation amplifier is capable of spanning a wide
range. Most typically this node is referenced to half of
the supply voltage in a signal supply application. A sup-
ply splitter such as the circuit in Figure 5 can be used
for this purpose. The transfer function of this circuit is:

A second instrumentation amplifier is shown in
Figure 10. In this circuit, the two amplifiers serve the
functions of load isolation, and signal gain. The second
amplifier also differentiates the two signals.

FIGURE 10: An instrumentation amplifier can be
designed using two amplifiers. This configuration is
best suited for higher gains. (gain ≥ 3 V/V)

The circuit reference voltage is supplied to the first op
amp in the signal chain. Typically, this voltage is half of
the supply voltage in a single supply environment.

The transfer function of this circuit is:

Floating Current Source

A floating current source can come in handy when driv-
ing a variable resistance, like an Resistive Temperature
Device (RTD). This particular configuration produces
an appropriate 1mA source for an RTD type sensor,
however, it can be tuned to any current.

FIGURE 11: A floating current source can be
constructed using two operational amplifiers and a
precision voltage reference.

*Bypass Capacitor, 1µF

V2

R4

R3 VOUT
RG MCP602

V1

R2

R2

R4R3*

*

VOUT V1 V2–() 1
2R2

RG
---------+

 R4

R3

 VREF

R4

R3

 +=

VREF

VS

VDD

1/2

MCP602

1/2

MCP602

1/2

VOUT V1 V2–() 1
2R2

RG
---------+

 R4

R3

 VREF

R4

R3

 +=

*

VOUT

*Bypass Capacitor, 0.1µF

VREF

V2

RG

R1

VOUT V1 V2–() 1
R1

R2

2R1

RG
---------+ +

 VREF+=

V1

R2

R1

R2

VDD

MCP602

1/2

MCP602

1/2

VOUT V1 V2–() 1
R1

R2

2R1

RG
---------+ +

 VREF+=

IOUT

R1

*

R1

R1 R1

VREF=2.5V

RTD

VREF - 2VR1

2 (VREF - 2VR1)

RL=2.5kΩ

+VR1

IOUT

VREF

RL

-------------=

*Bypass Capacitor, 1µF R1=25kΩ

MCP602

1/2

MCP602

VDD

1/2

 1999 Microchip Technology Inc. DS00682B-page 4-15

AN682

S4.book Page 16 Thursday, March 2, 2000 8:00 AM
With this configuration, the voltage of VREF is reduced
via the first resistor, R1, by the voltage VR1. The voltage
applied to the non-inverting input of the top op amp is
VREF − VR1. This voltage is gained to the amplifier’s out-
put by two to equal 2(VREF − VR1). Meanwhile, the out-
put for the bottom op amp is presented with the voltage
VREF − 2VR1. Subtracting the voltage at the output of the
top amplifier from the non-inverting input of the bottom
amplifier gives 2(VREF − VR1) − (VREF − 2VR1) which
equals VREF .

The transfer function of the circuit is:

Filters

Bandpass and low pass filters are very useful in elimi-
nating unwanted signals prior to the input of an A/D
converter. The low pass filter shown in Figure 12 has
two poles that can be configured for a Butterworth filter
response. Butterworth filters have a flat magnitude
response in the pass-band with good all-around perfor-
mance.

FIGURE 12: Low pass, 2-pole, active filters are easily
designed with one operational amplifier. The resistors
and capacitors can be adjusted to implement other
filter types, such as Bessel and Chebyshev.

On the down side, there is some overshoot and ringing
with a step response through this filter. This may or may
not be an issue, depending on the application circuit
requirements. The gain of this filter is adjustable with
R3 and R4.

Notice the similarities in this gain equation and the
non-inverting amplifier shown in Figure 3.

This type of filter is also referred to as an anti-aliasing
filter, which is used to eliminate circuit noise in the fre-
quency band above half of nyquist of the sampling sys-
tem. In this manner, these high frequency noises, that
would typically alias back into the signal path, are
removed.

The DC gain of the circuit in Figure 12 is:

The bandpass filter shown in Figure 13 is configured
with a zero and two poles to accommodate speech
applications. The single zero high pass filter portion of
this circuit is constructed with C1 and R1 in parallel with
R2. Notice that R1 and R2 also creates a supply splitter
voltage at the non-inverting inputs of both of the ampli-
fiers. This insures that both operational amplifiers oper-
ate in their linear region. The second amplifier, U2, in
conjunction with the components R3, R4, C3, and C4
set a two pole corner frequency. This filter eliminates
high frequency noise that may be aliased back into the
signal path.

The signal gain of this circuit is:

For more details about filters refer to AN699
“Anti-aliasing Analog Filters for Data Acquisitions
Systems.

IOUT

VREF

RL

-------------=

VOUT

Second Order: 10kHz, Low Pass Sallen Key Filter

VIN

R3 R4

R1 R2

C2

C1

*
MCP601

100kΩ 909kΩ

54.9kΩ 97.6kΩ

100pF

470pF

*Bypass Capacitor, 1µF

VOUT

VIN
------------- 1

R4

R3
------+

 =

VDD

VOUT

VIN
------------- 1

R4

R3
------+

 =

VOUT VIN
R3

R4

 R2

R1 R2+

 =
DS00682B-page 4-16 1999 Microchip Technology Inc.

AN682
A

n
alo

g
/In

terface

4

A
n

alo
g

/In
terface

4

S4.book Page 17 Thursday, March 2, 2000 8:00 AM
FIGURE 13: Band pass filters can be implemented with one operational amplifier designed to perform the high pass
function and a second amplifier to perform the low pass function.

FIGURE 14: Complete single supply temperature measurement circuit.

Putting it Together

The circuit shown in Figure 14 utilizes four operational
amplifiers along with a 12-bit A/D converter to imple-
ment a complete single supply temperature measure-
ment circuit. The temperature sensor is an RTD which
requires current excitation. The current excitation is
supplied by the circuit described in Figure 11. The gain
and anti-aliasing filter is implemented with the circuit
shown in Figure 13.

The voltage signal from the RTD is sensed by an ampli-
fier that is used in a combination of a non-inverting con-
figuration and inverting configuration.

The output of this amplifier is then sent to an amplifier
that is configured as a two pole, low pass filter in a gain
of +6V/V. A gain of six was chosen in order to comply
with the input range of A/D converter. Assuming the
sampling frequency of the A/D converter is 75kHz,
which is also know as the nyquist frequency, the cut-off
frequency of the anti-aliasing filter (U4) is set to 10kHz.
This allows plenty of bandwidth for the filter to attenuate
the signal prior to 1/2 of nyquist. The A/D converter is a
12-bit Successive Approximation Register (SAR) con-
verter that is interfaced to the PIC12C509 microcontrol-
ler.

R1

*Bypass Capacitor, 1µF

C1

R2

R4

C4

R3

C3

ADC PIC12C509

*

VOUT VIN
R3

R4

 R2

R1 R2+

 =

VIN

R5

MCP602

1/2
MCP602

1/2

VDD

VDD

REF

IN+

IN–

24.9kΩ

ADC

PIC12C509
REF

Pt100

100Ω

24.9kΩ

24.9kΩ

2.49kΩ

24.9kΩ

100kΩ
100kΩ

10kΩ

1mA

V REF =2.5 V

4.7µF

Lead Compensation Gain = 6V/V

+IN

2.2µF

3.3µF

2.67kΩ 13kΩ

MCP604

1/4

MCP604

1/4

MCP604

1/4
MCP604

1/4

49.9kΩ
 1999 Microchip Technology Inc. DS00682B-page 4-17

AN682

S4.book Page 18 Thursday, March 2, 2000 8:00 AM
AMPLIFIER DESIGN PITFALLS

Theoretically, the circuits within this application note
work. Beyond the theory, however, there are few tips
that will help get the circuit right the first time. This sec-
tion, “Amplifier Design Pitfalls”, lists common problems
associated with using an op amp with a power supply
and an input signal on a PC Board. It is divided into four
categories: General Suggestions, Input State Prob-
lems, Bandwidth Issues, and Single Supply Pitfalls.
Hopefully, the most common problems with op amp
implementation have been addressed within this appli-
cation note, however, if you have any other inputs from
experience, please e-mail your suggests to bon-
nie.baker@microchip.com.

In General

1. Be careful of the supply pins. Don’t make them
too high per the amplifier specification sheet and
don’t make them too low. High supplies will dam-
age the part. In contrast, low supplies won’t bias
the internal transistors and the amplifier won’t
work or it may not operate properly.

2. Make sure the negative supply (usually ground)
is in fact tied to a low impedance potential. Addi-
tionally, make sure the positive supply is the volt-
age you expect when it is referenced to the
negative supply pin of the op amp. Placing a volt
meter across the negative and positive supply
pins will verify that you have the right relation-
ship between the pins.

3. Ground can’t be trusted, especially in digital cir-
cuits. Plan your grounding scheme carefully. If
the circuit has a lot of digital circuitry, consider
separate ground and power planes. It is very dif-
ficult, if not impossible, to remove digital switch-
ing noise from an analog signal.

4. Decouple the amplifier power supplies with
by-pass capacitors as close to the amplifier as
possible. For CMOS amplifiers, a 0.1µF capaci-
tor is usually recommended. Also decouple the
power supply with a 10µF capacitor.

5. Use short lead lengths to the inputs of the ampli-
fier. If you have a tendency to use the white perf
boards for prototyping, be aware that they can
cause noise and oscillation. There is a good
chance that these problems won’t be a problem
with the PCB implementation of the circuit.

6. Amplifiers are static sensitive! If they are dam-
aged, they may fail immediately or exhibit a soft
error (like offset voltage or input bias current
changes) that will get worse over time.

Input Stage Problems

1. Know what input range is required from your
amplifier. If either inputs of the amplifier go
beyond the specified input range, the output will
typically be driven to one of the power supply
rails.

2. If you have a high gain circuit, be aware of the
offset voltage of the amplifier. That offset is
gained with the rest of your signal and it might
dominate the results at the output of the ampli-
fier.

3. Don’t use rail-to-rail input stage amplifiers
unless it is necessary. By the way, they are only
needed when a buffer amplifier circuit is used or
possibly an instrumentation amplifier configura-
tion. Any circuit with gain will drive the output of
the amplifier into the rail before the input has a
problem.

Do You Have the Bandwidth?

1. Account for the bandwidth of the amplifier when
sending signals through the circuit. You may
have designed an amplifier for a gain of 10 and
find that the AC output signal is much lower than
expected. If this is the case, you may have to
look for an amplifier with a wider bandwidth.

2. Instability problems can usually be solved by
adding a capacitor in parallel with the feedback
resistor around the amplifier. This does mean
typically and not always. If an amplifier circuit is
unstable, a quick stability analysis will show the
problem and probably the solution.

Single Supply Rail-to-Rail

1. Operational Amplifier output drivers are capable
of driving a limited amount of current to the load.

2. Capacitive loading an amplifier is risky business.
Make sure the amplifier is specified to handle
any loads that you may have.

3. It is very rare that a single supply amplifier will
truly swing rail-to-rail. In reality, the output of
most of these amplifiers can only come within 50
to 200mV from each rail. Check the product data
sheets of your amplifier.

REFERENCES

Sergio Franco, “Design with Operational Amplifiers and
Analog Integrated Circuits”, McGraw Hill

Frederiksen, Thomas, “Intuitive Operational Amplifi-
ers”, McGraw Hill

Williams, Jim, “Analog Circuit Design”, Butter-
worth-Heinemann

Baker, Bonnie, “Anti-aliasing Analog Filters for Data
Acquisition Systems”, AN699, Microchip Technology
Inc.
DS00682B-page 4-18 1999 Microchip Technology Inc.

Single Supply Temperature Sensing with Thermocouples

AN684

A
n

alo
g

/In
terface

4

S4.book Page 19 Thursday, March 2, 2000 8:00 AM
INTRODUCTION
There is a variety of temperature sensors on the market
all of which meet specific application needs. The most
common sensors used to solve these application prob-
lems include the thermocouple, Resistive Temperature
Detector (RTD), Thermistor, and silicon based sensors.
For an overview and comparison of these sensors,
refer to Microchip’s AN679, “Temperature Sensing
Technologies”.

This application note focuses on circuit solutions that
use thermocouples in the design. The signal condition-
ing path for the thermocouple system will be discussed
in this application note followed by complete applica-
tion circuits.

THERMOCOUPLE OVERVIEW
Thermocouples are constructed of two dissimilar metals
such as Chromel and Constantan (Type E) or Nicrosil
and Nisil (Type N). The two dissimilar metals are
bonded together on one end of both wires with a weld

bead. This bead is exposed to the thermal environment
of interest. If there is a temperature difference between
the bead and the other end of the thermocouple wires,
a voltage will appear between the two wires at the end
where the wires are not soldered together. This voltage
is commonly called the thermocouple’s Electromotive
Force (EMF) voltage. This EMF voltage changes with
temperature without any current or voltage excitation. If
the difference in temperature between the two ends (the
weld bead versus the unsoldered ends) of the thermo-
couple changes, the EMF voltage will change as well.

There are as many varieties of thermocouples as there
are metals, but some combinations work better than
others. The list of thermocouples shown in Table 1 are
most typically used in industry. Their behaviors have
been standardized by the National Institute of Stan-
dards and Technology (NIST).The particular document
from this organization that is pertinent to thermocou-
ples is the NIST Monograph175, “Temperature-Electro-
motive Force Reference Functions and Tables for the
Letter-Designated Thermocouple Types Based on the
ITS-90”. Manufacturers use these standards to qualify
the thermocouples that they ship.

Author: Bonnie C. Baker
Microchip Technology Inc.

Thermocouple Type Conductors
Temperature range

(°C)

Seebeck
Coefficient
(@ 20°C)

Application
Environments

E Chromel (+)
Constantan (−)

-200 to 900 62µV/°C oxidizing, inert,
vacuum

J Iron (+)
Constantan (−)

0 to 760 51µV/°C vacuum, oxidizing
reducing, inert

T Copper (+)
Constantan (−)

−200 to 371 40µV/°C corrosive, moist,
subzero

K Chromel (+)
Alumel (−)

-200 to 1260 40µV/°C completely inert

N Nicrosil (+)
Nisil (−)

0 to 1260 27µV/°C oxidizing

B Platinum (30% Rhodium) (+)
Platinum (6% Rhodium) (−)

0 to 1820 1µV/°C oxidizing, inert

S Platinum (10% Rhodium) (+)
Platinum (−)

0 to 1480 7µV/°C oxidizing, inert

R Platinum (13% Rhodium) (+)
Platinum (−)

0 to 1480 7µV/°C oxidizing, inert

TABLE 1: Common thermocouple types—The most common thermocouple types are shown with their standardized
material and performance specifications. These thermocouple types are fully characterized by the American Society
for Testing and Materials (ASTM) and specified in IST-90 units per NIST Monograph 175.
 1999 Microchip Technology Inc. DS00684B-page 4-19

AN684

S4.book Page 20 Thursday, March 2, 2000 8:00 AM
This style of temperature sensor offers distinct advan-
tages over other types, such as the RTD, Thermistor or
Silicon sensors. As stated before, the sensor does not
require any electrical excitation, such as a voltage or
current source.

The price of thermocouples varies dependent on the
purity of the metals, integrity of the weld bead and qual-
ity of the wire insulation. Regardless, thermocouples
are relatively inexpensive as compared to other variet-
ies of temperature sensors.

The thermocouple is one of the few sensors that can
withstand hostile environments. The element is capa-
ble of maintaining its integrity over a wide temperature
range as well as withstanding corrosive or toxic atmo-
spheres. It is also resilient to rough handling. This is
mostly a consequence of the heavier gages of wire
used with the thermocouples construction.

The temperature ranges of the thermocouples included
in Table 1 vary depending on the types of metals that
are used. These ranges are also shown graphically in
Figure 1. All of the voltages shown in Figure 1 are ref-
erenced to 0°C.

Thermocouples produce a voltage that ranges from
nano volts to tens of millivolts. This voltage is repeat-
able, but non-linear. Although this can be seen to a cer-
tain degree in Figure 1, Figure 2 does a better job of
illustrating the non-linearity of the thermocouple. In Fig-
ure 2, the first derivative of the EMF voltage versus
temperature is shown. This first derivative at a specified
temperature is called the Seebeck Coefficient. The
Seebeck Coefficient is a linearized estimate of the tem-
perature drift of the thermocouple’s bead over a small
temperature range. Since all thermocouples are
non-linear, the value of this coefficient changes with
specified temperature. This coefficient is used when
designing the hardware portion of the thermocouple
system that senses the absolute reference tempera-
ture. The design and use of the absolute temperature
reference will be discussed later in this application
note.

From Figure 1, it can be summized that the EMF volt-
age of a thermocouple is extremely small (millivolts).
Additionally, Figure 2 illustrates that the change of the
EMF voltage per degree C is also small (µV/°C). Con-
sequently, the signal conditioning portion of the elec-
tronics requires an analog gain stage. In addition, the
voltage that a thermocouple produces represents the
temperature difference between the weld bead and the
other end of the wires. If an absolute temperature mea-
surement (as opposed to relative) is required, a portion
of the thermocouple signal conditioning electronics
must be dedicated to establishing a temperature refer-
ence.

FIGURE 1: EMF voltage of various thermocouples
versus temperature

E
M

F
 V

O
LT

A
G

E
 (

m
V

)

80

60

40

20

0 500 1000 1500 2000
TEMPERATURE (°C)

E

J

K

S
BT

2500

FIGURE 2: Seebeck coefficient of various thermo-
couples versus temperature

S
E

E
B

E
C

K
 C

O
E

F
F

IC
IE

N
T

 (µ
V

/°
C

) 80

60

40

20

−500 0 500 1000 1500
TEMPERATURE (°C)

E

J

K

S

R

T

2000

100
DS00684B-page 4-20 1999 Microchip Technology Inc.

AN684
A

n
alo

g
/In

terface

4

S4.book Page 21 Thursday, March 2, 2000 8:00 AM
A summary of the thermocouple’s advantages and dis-
advantages are listed in Table 2.

THERMOCOUPLE SIGNAL
CONDITIONING PATH

The signal conditioning signal path of the thermocouple
circuit is illustrated in Figure 3. The elements of the
path include the thermocouple, reference temperature
junction, analog gain cell, Analog-to-Digital (A/D) Con-
verter and the linearization block. Thermocouple 1 is
the thermocouple that is at the site of the temperature
measurement. Thermocouple 2 and 3 are a conse-
quence of the wires of Thermocouple 1 connecting to
the copper traces of the PCB.

The remainder of this application note will be devoted
to solving the reference temperature, signal gain and
A/D conversion issues. Linearization issues associated
with thermocouples will also be discussed.

DESIGNING THE REFERENCE
TEMPERATURE SENSOR

An absolute temperature reference is required in most
thermocouple applications. This is used to remove the
EMF error voltage that is created by thermocouples 2
and 3 in Figure 3. The two metals of these thermocou-
ples come from the temperature sensing element
(Thermocouple 1) and the copper traces of the PCB.
The isothermal block in Figure 3 is constructed so that
the Thermocouples 2 and 3 are kept at the same tem-
perature as the absolute temperature sensing device.
These elements can be kept at the same temperature
by keeping the circuitry in a compact area, analyzing
the board for possible hot spots, and identifying thermal
hot spots in the equipment enclosure. With this config-
uration, the known temperature of the copper junctions
can be used to determine the actual temperature of the
thermocouple bead.

In Figure 3, the absolute reference temperature is
sensed at the isothermal block, and then subtracted
from the signal path. This is a hardware implementa-
tion. Alternatively, the absolute reference temperature
can be sensed and subtracted is firmware. The hard-
ware solution can be designed to be relatively error free
as will be discussed later. The firmware correction can
be more accurate because of the computing power of
the processor. The trade-off for this type of calibration
is computing time.

The relationship between the thermocouple bead tem-
perature and zero degrees C is published in the form of
look-up tables or coefficients of polynomials in the
NIST publication mentioned earlier. If the absolute tem-
perature of thermocouple 2 and 3 (Figure 3) are known,
the actual temperature at the test sight (Thermocouple
1) can be measured and then calculated.

FIGURE 3: The thermocouple signal path starts with the thermocouple which is connected to the copper traces of the
PCB on the isothermal block. The signal path then continues on to a differentiating circuit that subtracts the temperature
of the isothermal block from the thermocouple’s temperature. After this signal is digitized, a microcontroller uses the
digital word from the temperature sensing circuit for further processing.

ADVANTAGES DISADVANTAGES

No Excitation Required Non-Linear

Inexpensive Needs Absolute
Temperature Reference

Wide Variety of Materials Small Voltage
Output Signals

Wide Temperature
Ranges

Very Rugged

TABLE 2: Thermocouple Advantages and Disad-
vantages

M
icrocontroller

A/D
Converter

−

+−

+

+

−

+

−

Copper

Isothermal
Block

Constantan

+

−

Σ
Thermocouple 2

Thermocouple 3

Absolute
Temperature
Reference

Offset Adjust

Analog
Gain and

Compensation
Thermocouple (1)
for Temperature

Sensing

Type J

Iron
 1999 Microchip Technology Inc. DS00684B-page 4-21

AN684

S4.book Page 22 Thursday, March 2, 2000 8:00 AM
ERROR CORRECTION WITH
HARDWARE IMPLEMENTATIONS

Many techniques can be used to sense the reference
temperature on the isothermal block; five of which are
discussed here. The first example uses a second ther-
mocouple. It is used to sense ambient at the copper
connection and configured to normalize the resultant
voltage to an assignable temperature. As a second
example, a standard diode is used to sense the abso-
lute temperature of the isothermal block. This is done
by using the negative temperature coefficient of
−2.2mV/°C characteristic of the diode. Thirdly, a ther-
mistor temperature sensor is shown as the reference
temperature device. As with the diode, the thermistor
has a negative temperature coefficient. The thermistor
is a more challenging to use because of its non-linear
tendencies, however, the price is right. Another tech-
nique discusses an RTD as the reference temperature
sensor. These sensors are best suited for precision cir-
cuits. And finally, the integrated silicon temperature
sensor is briefly discussed.

Using a Second Thermocouple

A second thermocouple can be used to remove the
error contribution of all of the thermocouples in the cir-
cuit. A circuit that uses this technique is shown in
Figure 4.

FIGURE 4: A second temperature reference can be
created by using a second thermocouple.

In this circuit example, a Type E thermocouple is cho-
sen to sense the unknown temperature. The Type E
thermocouple is constructed of Chromel (a combina-
tion of Nickel and Chromium) on its positive side and
Constantan on its negative side. A second Type E ther-
mocouple is included in the circuit. It is positioned on
the isothermal block and installed between the first
thermocouple and the signal conditioning circuit.The
polarity of the two Type E thermocouples is critical so
that the Constantan on both of the thermocouples are
connected together.

From this circuit configuration, two additional thermo-
couples are built, both of which are constructed with
chromel and copper. These two thermocouples are
opposing each other in the circuit. If both of these newly
constructed thermocouples are at the same tempera-
ture, they will cancel each other’s temperature induced
errors.

The two remaining Type E thermocouples generate the
appropriate EMF voltage that identifies the temperature
at the sight of the first thermocouple.

This design technique is ideal for instances where the
temperature of the isothermal block has large varia-
tions or the first derivative of voltage versus tempera-
ture of the selected thermocouple has a sharp slope
(see Figure 2). Thermocouples that fit into this cate-
gory in the temperature range from 0°C to 70°C are
Type T and Type E.

The error calculation for this compensation scheme is:

where

EMF1 is the voltage drop across the Type E thermocou-
ple at the test measurement site.

EMF2 is the voltage drop across a Copper/Constantan
thermocouple, where the copper metal is actually a
PCB trace.

EMF3 is the voltage drop across a Copper/Constantan
thermocouple, where the copper metal is actually a
PCB trace.

EMF4 is the voltage drop across a Type E thermocouple
on the Isothermal Block.

VTEMP is the equivalent EMF voltage of a Type E ther-
mocouple, #1, referenced to 0°C.

The temperature reference circuitry is configured to
track the change in the Seebeck Coefficient fairly accu-
rately. The dominating errors with this circuit will occur
as a consequence of less than ideal performance of the
Type E thermocouples, variations in the purity of the
various metals, and an inconsistency in the tempera-
ture across the isothermal block.

Diode Temperature Sensing

Diodes are useful temperature sensing devices where
high precision is not a requirement. Given a constant
current excitation, standard diodes, such as the
IN4148, have a voltage change with temperature of
approximately −2.2mV/°C. These types of diodes will
provide fairly linear voltage versus temperature perfor-
mance. However, from part to part they may have vari-
ations in the absolute voltage drop across the diode as
well as temperature drift.

This type of linearity is not well suited for thermocou-
ples with wide variations in their Seebeck Coefficients
over the temperature range of the isothermal block
(referring to Figure 2). If there are wide variations with
the isothermal block temperature, Type K, J, R and S

Isothermal Block

Copper

Type E (4)

Gain
CellConstantan

Constantan

Chromel

Ty
pe

 E
 (

1) +

−

+ − + −

+ −

(2)

(3)

VTEMP

VTEMP +EMF3 EMF1 EMF4– EMF2–+=
DS00684B-page 4-22 1999 Microchip Technology Inc.

AN684
A

n
alo

g
/In

terface

4

S4.book Page 23 Thursday, March 2, 2000 8:00 AM
thermocouples may be best suited for the application.
If the application requires more precision in terms of lin-
earity and repeatability from part to part than an
off-the-shelf diode, the MTS102, MTS103 or MTS105
from Motorola can be substituted.

A circuit that uses a diode as an absolute temperature
sensor is shown in Figure 5. A voltage reference is
used in series with a resistor to excite the diode. The
diode change with temperature has a negative coeffi-
cient, however, the magnitude of this change is much
higher than the change of the collective thermocouple
junctions on the isothermal block. This problem is
solved by putting two series resistors in parallel with the
diode. In this manner, the change of −2.2mV/°C of the
diode is attenuated to the Seebeck Coefficient of the
thermocouple on the isothermal block. The Seebeck
Coefficient of the thermocouples on the isothermal
block are also equal to the Seebeck Coefficient (at iso-
thermal block temperature) of the thermocouple that is
being used at the test site. Table 3 has some recom-
mended resistance values for various thermocouple
types and excitation voltages.

FIGURE 5: A diode can also be used in a hardware
solution to zero out the temperature errors from the
isothermal block.

This circuit appears to provide a voltage excitation for
the diode. This is true, however, the ratio of the voltage
excitation to the changes in voltage drop changes with
temperature across the diode minimize linearity errors.

Of the three voltage references chosen in Table 3, the
10V reference provides the most linear results. It might
also be noticed that changes in the reference voltage
will also change the current through the diode. This
being the case, a precision voltage reference is recom-
mended for higher accuracy application requirements.

Thermistor Circuits

Thermistors are resistive devices that have a Negative
Temperature Coefficient (NTC). These inexpensive
sensors are ideal for moderate precision thermocouple
sensing circuits when some or all of the non-linearity of
the thermistor is removed from the equation.

The NTC thermistor’s non-linearity can be calibrated
out with firmware or hardware techniques. The firm-
ware techniques are more accurate, however, hard-
ware techniques are usually more than adequate.
Details on these linearity issues of thermistors are dis-
cussed in Microchip’s AN685, “Thermistors in Single
Supply Temperature Sensing Circuits”.

VOUT

VSUPPLY

VREF

VREF

R1

R2

D1 R3

Instrumentation
Amplifier

~ −2.2mV/°C

Offset
Voltage

T
he

rm
oc

ou
pl

e

Isothermal Block

+

−

T
h

er
m

o
co

u
p

le
 T

yp
e

 S
ee

b
ec

k
C

o
ef

fi
ci

en
t

 (
@

20
°C

)

VREF
(V)

R1 (Ω) R2 (Ω) R3 (Ω)

J 51µV/°C 4.096 9.76k 4.22k 100

J 51µV/°C 5.0 12.1k 4.22k 100

J 51µV/°C 10.0 27k 4.22k 100

K 40µV/°C 4.096 9.76k 5.36k 100

K 40µV/°C 5.0 12.1k 5.36k 100

K 40µV/°C 10.0 27k 5.36k 100

R 7µV/°C 4.096 9.76k 31.6k 100

R 7µV/°C 5.0 12.1k 31.6k 100

R 7µV/°C 10.0 27k 31.6k 100

S 7µV/°C 4.096 9.76k 31.6k 100

S 7µV/°C 5.0 12.1k 31.6k 100

S 7µV/°C 10.0 27k 31.6k 100

TABLE 3: Recommended resistors and voltage
references versus thermocouples for the circuit shown
in Figure 5.
 1999 Microchip Technology Inc. DS00684B-page 4-23

AN684

S4.book Page 24 Thursday, March 2, 2000 8:00 AM
Figure 6 shows a thermistor in series with a equivalent
resistor and voltage excitation. In this circuit, the
change in voltage with temperature is ~ −25mV/°C.
This temperature coefficient is too high. A resistor
divider (R1 and R2 in Figure 6) can easily provide the
required temperature coefficient dependent on the
thermocouple type.

This type of voltage excitation does have fairly linear
operation over a limited temperature range (0°C to
50°C). Taking advantage of this linear region reduces
firmware calibration overhead significantly.

Alternatively, the NTC thermistor can be excited with a
current source. Low level current sources, such as
20µA are usually recommended which minimizes self
heating problems. A thermistor that is operated with
current firmware excitation has a fairly non-linear out-
put. With this type of circuit, firmware calibration would
be needed. Although the firmware calibration is some-
what cumbersome, this type of excitation scheme can
be more accurate.

Figure 7 compares the linearity of the thermistor with
the current excitation configuration to a voltage excita-
tion scheme shown in Figure 6.

FIGURE 6: As a third method, a thermistor is used to
sense the temperature of the isothermal block. In this
circuit, the isothermal block error is eliminated in
hardware.

FIGURE 7: The Thermistor in Figure 6 requires linearization. This can be accomplished by using the Thermistor in
series with a standard resistor.

VSUPPLY

R1

R2

~ –25mV/°C
Isothermal Block

10KΩ
Thermistor

Type J

R4

R5

Offset
Adjust

Gain
Adjust-25mV/°C R2×

R1 R2+

D2
(LM136-2.5)

VIN+

VIN–

–

+

2.5kΩ

O
U

T
P

U
T

 V
O

LT
A

G
E

 (
V

)

2

1.5

1

0.5

0

−50 −25 0 25

TEMPERATURE (°C)

50

2.5

75 100 125 150

VOUT

20µA

10KΩ

10KΩ
NTC

2.5V Reference

10KΩ

VOUT
DS00684B-page 4-24 1999 Microchip Technology Inc.

AN684
A

n
alo

g
/In

terface

4

S4.book Page 25 Thursday, March 2, 2000 8:00 AM
RTD Sensor Circuits

Typically, an RTD would be used on the isothermal
block if high precision is desired. The RTD element is
nearly linear, consequently, employing linearization
algorithms for the RTD is usually not required. The
most effective way to get good performance from an
RTD is to excite it with current. Both Figure 8 and
Figure 9 show circuits that can be used for this pur-
pose.

In Figure 8, a precision current reference is gained by
the combination of R1, R2, J1, U1 and U2. U2 generates
a 200µA precision current source. That current is pulled
across R1 forming a voltage drop for the power supply
down to the non-inverting input of U1. U1 is used to iso-
late R1 from R2, while translating the voltage drop
across R1 to R2. In this manner, the 200µA current from
U2 is gained by the ratio of R1/ R2. J1 is used to allow
the voltage at the top of the RTD element to float
dependent on its resistance changes with temperature.
The RTD element should be sensed differentially. The
voltage across this differential output is proportional to
absolute temperature.

FIGURE 8: An 4-wire RTD can be used to sense the
temperature of the isothermal block. RTDs require a
precision current excitation as shown here.

In Figure 9, a voltage reference is used to generate a
1mA current source for the RTD element. The advan-
tage of this configuration is that the voltage reference
can be used elsewhere, allowing ratiometric calibration
techniques in other areas of the circuit.

FIGURE 9: 3-wire RTD current excitation is
generated with a precision voltage reference.

The RTD sensor is best suited for situations where pre-
cision is critical. Both of the RTD circuits (Figure 8 and
Figure 9) will output a voltage that is fairly linear and
proportional to temperature. This voltage is then used
by the microcontroller to convert the absolute tempera-
ture reading of the isothermal block back to the equiva-
lent EMF voltage. This can be preformed by the
microcontroller with a look-up table or a polynomial cal-
culation for higher accuracy. This EMF voltage is then
subtracted from the voltage measured across the sen-
sor/isothermal block combination. In this manner, the
errors from the temperature at the isothermal block are
removed.

For more information about RTD circuits, refer to Micro-
chip’s AN687, “Precision Temperature Sensing with
RTD Circuits”.

R1 R2

MCP601

−

+
J1

U1

U2
REF200
200µA

RTD
100Ω

−

+

200µA
R1

R2

(p-channel)

R

−

+

R

−

+

R R

2.5kΩ

VREF = 2.5V

−

+

MCP602
1/21mA

RTD

MCP602
1/2

R = 25kΩ
 1999 Microchip Technology Inc. DS00684B-page 4-25

AN684

S4.book Page 26 Thursday, March 2, 2000 8:00 AM
Silicon Sensor

Silicon temperature sensors are differentiated from the
simple diode because of their complexity (see
Figure 10). A silicon temperature sensor is an inte-
grated circuit that uses the diode as a basic tempera-
ture sensing building block. It conditions the
temperature response internally and provides a usable
output such as 0 to 5V output, digital 8 or 12 bit word,
or temperature-to-frequency output.

The output of this type of device is used by the proces-
sor to remove the isothermal block errors.

FIGURE 10: Silicon sensors are also useful for
isothermal block temperature sensing. These type of
devices only sense the temperature and do not
implement any error correction in hardware.

SIGNAL CONDITIONING CIRCUITS
Once the reference temperature of the isothermal block
is known, the temperature at the bead of the thermo-
couple can be determined. This is done by taking the
EMF voltage, subtracting isothermal block errors, and
determining the temperature through look-up tables or
linearization equations. The EMF voltage must be digi-
tized in order to easily perform these operations. Prior
to the A/D conversion process, the low level voltage at
the output of the thermocouple must be gained.

This is typically done with an instrumentation amplifier
or a operational amplifier in a high gain configuration.
An instrumentation amplifier uses several operational
amplifiers and is configured to have a electrically equiv-
alent differential inputs, high input impedance, poten-
tially high gain, and good common-mode rejection. Of
these four attributes, the first three are most useful for
thermocouple applications.

Single supply configurations of instrumentation amplifi-
ers are shown in Figure 11 and Figure 12. In Figure 11,
three operation amplifier are used along with a selec-
tion of resistors. The circuit gain in Figure 11 can be
controlled with RG.

FIGURE 11: Instrumentation amplifier using three
operational amplifiers

In Figure 12, an instrumentation amplifier is built using
two amplifiers. Once again the gain is easily adjusted
with RG in the circuit.

FIGURE 12: Instrumentation amplifier using two opera-
tional amplifiers

More details concerning the operation of Figure 11 and
Figure 12 circuit configurations can be found in Micro-
chip’s AN682, “Using Single Supply Operational Ampli-
fiers in Embedded Systems”.

Finally, Figure 13 shows an circuit configuration using a
single operational amplifier in an non-inverting gain.

These operational amplifier circuits will be used in the
signal conditioning portion of the following thermocou-
ple circuits.

Silicon
Sensor

Signal
Conditioning

Circuit

−

+ F
ir

m
w

ar
e

C
om

pe
ns

at
io

n

A/D
Conversion

Isothermal Block

P
IC

m
ic

ro
®

 M
C

U

Temperature
Reference
Junction

MCP601

*Bypass Capacitor, 1µF

V2

R4

R3 VOUT
RG MCP601

V1

R2

R2

R4R3*

*

VOUT V1 V2–() 1
2R2

RG
---------+

 R4

R3

 VREF

R4

R3

 +=

VREF

VS

VDD

MCP602

1/2

MCP602
1/2

40kΩ

*

VOUT

*Bypass Capacitor, 1µF

VREF

V2

MCP602

MCP602

RG

10kΩ

10kΩ

40kΩ

VOUT V1 V2–() 5
80k
RG
---------+

 VREF+=

V1

1/2

1/2
DS00684B-page 4-26 1999 Microchip Technology Inc.

AN684
A

n
alo

g
/In

terface

4

S4.book Page 27 Thursday, March 2, 2000 8:00 AM
FIGURE 13: A single operational amplifier can be
configured for analog gain.

THERMOCOUPLE CIRCUITS VERSUS
ACCURACY

There are three types of thermocouple sensing sys-
tems in this section. The first circuit is designed to
sense a threshold temperature. The second circuit will
provide up to 8 bits of accuracy. This circuit accuracy
can be improved by adding a higher resolution A/D
Converter to the circuit, as shown in the third sensing
system.

Threshold Temperature Sensing

A thermocouple can be used to sense threshold tem-
peratures. This is particularly useful in industrial appli-
cations where high temperature processes need to be
limited. The circuit to implement this type of function is
shown in Figure 14. The threshold temperature sens-
ing circuit in this figure combines the building blocks
from Figure 4 and Figure 13.

This circuit is designed for simplicity. Consequently, all
of the isothermal block error correction is performed in
hardware. The Type E thermocouple is chosen for this
circuit because of its high EMF voltage at high temper-
atures. This makes it easier to separate the real signal
from background noise. Since the output of the isother-
mal block is single ended, the amplifier circuit in
Figure 13 is used. In the event that there is a great deal
of ambient or electrical noise, an instrumentation
amplifier would serve this application better.

The EMF voltage of the thermocouple is calibrated
across the isothermal block with a second thermocou-
ple. This voltage is then gained by a single supply
amplifier in a non-inverting configuration. The gain on
the amplifier is adjustable by changing the ratio of R2
and R1. In this case the signal is gained by 47.3V/V
using a MCP601, single supply, CMOS operational
amplifier. This gain was selected to provide a 2.5V out-
put to the amplifier for a 700°C mid-scale measure-
ment.

The microcontroller comparator can be programmed to
compare between 1.25V and 3.75V with increments of
VDD/32 (LSB size of 156.25mV). This is done by con-
figuring the CMCON register of the PIC16C62X to
CxOUT = 0 and CM<2:0> = 010. Additionally, the volt-
age reference to the comparator is changed in the
VRCON register. The initial settings for this register is
VREN = 1and VRR = 0. The processor can then cycle
through the VRCON register VR<3:0> for a total of 16
different voltage reference settings for comparisons to
the input signal from the MCP601 operational amplifier.

FIGURE 14: This circuit can be used to determine temperature thresholds. With calibration, the circuit is accurate to four
bits.

R1

VIN

VOUT

*Bypass Capacitor, 1µF

R2

*

VS

VOUT 1
R2

R1
------+

 = VIN

MCP601

Isothermal Block

Copper

Type E

Constantan

Constantan

Chromel

Type E

+

−

+ − + −

+ −

(2)

+

−

MCP601

R1 = 432Ω R2 = 20Ω

VEMF * 1
R2

R1
------+

Comparator
(4-bits, ranges from
1.25V to 3.75V)

PIC16C62X

Temperature of interest
~700°C

(3)
 1999 Microchip Technology Inc. DS00684B-page 4-27

AN684

S4.book Page 28 Thursday, March 2, 2000 8:00 AM
A look-up table for the millivolts to 500°C to 1000°C for
the Type E thermocouple is provided in Table 4. The
temperature at the test sight is found by dividing the out-
put voltage of the amplifier by 47.3 and using the look-up
table to estimate the actual temperature. AN566, “Imple-
menting a Table Read” can be used in this application to
program the PICmicro® microcontroller.

Measurement errors (referred to the thermocouple) in
this circuit come from, the offset voltage of the opera-
tional amplifier (+/-2mV) and the comparator LSB size
(+/-1.65mV). Negligible error contributions come from
the look-up table resolution, resistors and power supply
variations.

Given the errors above, the accuracy of the comparison
in this circuit is ~ +/-35°C over a nominal temperature
range of 367.7°C to 992.6°C. This error can be cali-
brated out. The temperature thresholds for the various
settings of VR<3:0> of the VRCON register is summa-
rized in Table 5.

This accuracy can be improved by using an amplifier
with less initial offset voltage or an A/D conversion with
more bits.

All of the temperature calibration work in this circuit is
performed in hardware. Linearization and temperature
accuracy are performed in firmware with the look-up
table above.

°C 0 10 20 30 40 50 60 70 80 90 100

500 37.005 37.815 38.624 39.434 40.243 41.052 41.862 42.671 43.479 44.286 450.93

600 45.093 45.900 46.705 47.509 48.313 49.116 49.917 50.718 51.517 52.315 53.112

700 53.112 53.908 54.709 55.497 56.289 57.080 57.870 58.659 58.446 60.232 61.017

800 61.017 61.801 62.583 63.364 64.144 64.922 65.698 66.473 67.246 68.017 68.787

900 68.787 69.554 70.319 71.082 71.844 72.603 73.360 74.115 74.869 75.621 76.373

TABLE 4: Type E thermocouple look-up table. All values in the tables are in millivolts.

VR<3:0>
Comparator
Reference

Nominal
Temperature

Threshold

0000 1.25V 368.4°C

0001 1.40625V 409.8°C

0010 1.5625V 450.9°C

0011 1.71875V 491.7°C

0100 1.875V 532.6°C

0101 2.03125V 573.4°C

0110 2.1875V 614.3°C

0111 2.34375V 655.4°C

1000 2.5V 696.8°C

1001 2.65625V 738.3°C

1010 2.8125V 780.2°C

1011 2.96875V 822.3°C

1100 3.125V 864.8°C

1101 3.28125V 907.6°C

1110 3.4375V 950.9°C

1111 3.59375V 994.7°C

TABLE 5: With a PIC16C62X controller, the
comparator reference voltage is shown with the
nominal temperature threshold that would be
measured with the circuit in Figure 14
DS00684B-page 4-28 1999 Microchip Technology Inc.

AN684
A

n
alo

g
/In

terface

4

S4.book Page 29 Thursday, March 2, 2000 8:00 AM
Temperature Sensing up to 8-bits

An eight bit accurate thermocouple circuit is achievable
by using the circuit shown in Figure 15. A Type K ther-
mocouple is chosen for this circuit because of its stable
Seebeck Coefficient between 0 and 50°C. Circuits from
Figure 7 and Figure 11 are used to implement the ref-
erence temperature block as well as the signal condi-
tioning block, respectively.

The thermistor is used as the absolute temperature
sensor on the isothermal block. The combination of the
thermistor and the surrounding resistors perform a first
order linearization of the thermistor as discussed ear-
lier.

The non-inverting input of the instrumentation amplifier
(see Figure 11) is connected to the combination of the
Type K thermocouple and the thermistor error correc-
tion circuitry. The inverting input of the instrumentation

amplifier is connected to the combination of R4 and R5
which provide an offset adjust capability. This offset
adjustment capability is not needed if the temperature
sensing application starts from 0°C. However, if the
temperature of interest is above a certain threshold, the
offset adjust can be used to improve the dynamic range
of the measurement by allowing for the full-scale range
of the instrumentation amplifier and the A/D Converter
to be utilized.

Assuming that the temperature range of the measure-
ment is from 500°C to 1000°C an appropriate offset
voltage at the inverting input of the instrumentation
amplifier would be 43.72mV for the combination of the
Type K thermocouple offset at 750°C (per Table 6) and
for the thermistor absolute temperature sensing circuit
at 25°C.

FIGURE 15: This circuit will provide 8-bit accurate temperature sensing results using a thermocouple. In this circuit, the
A/D Converter is included in the PIC12C671 microcontroller.

°C 0 10 20 30 40 50 60 70 80 90 100

500 20.644 21.071 21.497 21.924 22.360 22.776 23.203 23.629 24.055 24.480 24.905

600 24.905 25.330 25.766 26.179 26.602 27.025 27.447 27.869 28.289 28.710 29.129

700 29.129 29.548 29.965 30.382 30.798 31.213 31.628 32.041 32.453 32.865 33.275

800 33.275 33.685 34.093 34.501 34.906 35.313 35.718 36.121 35.524 36.925 37.326

900 37.326 37.725 38.124 38.522 38.918 39.314 39.708 40.101 40.494 40.885 41.276

TABLE 6: Type K thermocouple output voltage look-up table. All values in the table are in millivolts.

VSUPPLY= +5V

VREF = 2.5V

9.76kΩ

RG

~25mV/°C

Isothermal Block

NTC Thermistor
10KΩ @ 25°C

Type K

R4

R5
1kΩ

Offset Adjust

Gain
Adjust

MCP602

MCP602

MCP601

100Ω

19.1kΩ
PIC12C671

with
8-Bit A/D

10kΩ

10kΩ

10kΩ

10kΩ 10kΩ

10kΩ

1/2

1/2

VREF

D2 (LM136-2.5)

–

+

2.5kΩ
 1999 Microchip Technology Inc. DS00684B-page 4-29

AN684

S4.book Page 30 Thursday, March 2, 2000 8:00 AM
Assuming that the offset has been minimized, the out-
put range of the thermocouple circuit for an excursion
from 500°C to 1000°C is ∆20.632mV.

The output of the instrumentation amplifier swings up to
VDD − 100mV. In this single supply, 5V environment, the
output of the MCP601 operational amplifier will swing
from 100mV to 4.9V.

The differential voltage swing at the inputs to the instru-
mentation amplifier is −17.41mV to +16.13mV centered
around the voltage reference of 2.5V.

Given a full-scale voltage of 33.54mV from the temper-
ature sensing circuit, the instrumentation amplifier can
be configured for a gain of 137.85V/V. This gain can
easily be implemented by making RG equal to 147Ω.
This circuit is not restricted to 8-bits of accuracy. An
external A/D Converter such as one of Microchip’s
12-bit A/D Converter, MCP320X, can be used to further
enhance the circuit’s accuracy.

High Precision Temperature Sensing with a
12-bit Converter

The circuit shown in Figure 15 can be further enhanced
to allow for 12-bit accuracy with the addition of a
MCP3201 12-bit A/D Converter and a 4th order low
pass analog filter. With this circuit, the PIC12C671 is
replaced with the PIC12C509.

The analog circuit in Figure 16, remains unchanged
from the design shown in Figure 15 up to the analog
low pass filter. This additional low pass filter is con-
structed using the MCP602, CMOS dual operational
amplifier. The 4th order low pass filter Butterworth
design that is implemented in this circuit has a cut-off
frequency of 10Hz. This cut-off frequency assumes that
the sample rate of the MCP3201 is 20Hz or greater.
The analog filter is used to remove the instrumentation
amplifier noise, as well as the noise that may be aliased
into the digital conversion from the environment. This
filter was designed using Microchip’s FilterLab pro-
gram. For more information about analog filter design,
refer to Microchip’s AN699, “Anti-Aliasing Filters for
Data Acquisition Systems". The 12-bit resolution pro-
vided by the MCP3201 allows for a temperature mea-
surement accuracy of 0.1 °C over the 500 °C to 1000
°C range of this circuit.
DS00684B-page 4-30 1999 Microchip Technology Inc.

AN684
A

n
alo

g
/In

terface

4

S4.book Page 31 Thursday, March 2, 2000 8:00 AM
FIGURE 16: This circuit will provide 12-bit accurate temperature sensing results using a thermocouple. In this circuit, an
external A/D Converter (MCP3201), is used to digitize the analog signal.

V
S

U
P

P
LY

=
 +

5V

V
R

E
F
 =

 2
.5

V

9.
76

k

R
G

~
25

m
V

/°
C

N
T

C
 T

he
rm

is
to

r
10

K
 @

 2
5°

C

Ty
pe

 K

R
4 R

5
1k

O
ffs

et
 A

dj
us

t

G
ai

n
A

dj
us

t

M
C

P
60

2

M
C

P
60

2

M
C

P
60

1

10
0

19
.1

k
10

k

10
k

10
k10

k
10

k

10
k

1/
2

1/
2

V
R

E
F

D
2

(L
M

13
6-

2.
5)

– +

V
R

E
F

66
.5

k

51
.1

k

47
nF

10
5k

51
.1

k

10
0n

F

66
.5

k

11
5k

33
0n

F
P

IC
12

C
50

9
1

F

M
C

P
60

2
1/

2

V
R

E
F

M
C

P
60

2
1/

2

Is
ot

he
rm

al
 B

lo
ck

2.
5k
 1999 Microchip Technology Inc. DS00684B-page 4-31

AN684

S4.book Page 32 Thursday, March 2, 2000 8:00 AM
THERMOCOUPLE LINEARIZATION

Once a voltage from the absolute reference tempera-
ture sensor is digitized, the processor can implement a
variety of algorithms. In the case with the circuit in
Figure 15, the processor scans a simple look-up table.
With this type of data, the microcontroller is left to trans-
late the signal from the sensing element into the appro-
priate EMF voltage.

For high precision applications, look-up tables may not
be adequate. In these cases, a multi-order polynomial
can be used to generate the thermocouples tempera-
ture. The polynomial coefficients for Voltage to Temper-
ature Conversion (T = a0 + a1V + a2V2 + ... + anVn) are
shown in Table 7.

For further discussion concerning the firmware imple-
mentation of thermocouple linearization, refer to
AN556. This application note discussed the implemen-
tation of look-up tables. Additionally, firmware is avail-
able from Microchip that provides look-up tables code
to do linearization that is directly programmable into the
PICmicro microcontroller of your choice.

CONCLUSION

Thermocouples have their advantages when used in
tough application problems. They are rugged and
impervious to hostile environments. The voltage output
of this temperature sensing element is relatively low
when compared to the devices that can convert voltage
signals to a digital representation. Consequently, ana-
log gain stages are required in the circuit.

Thermocouple Type

E J K R S T

Range 0° to 1000°C 0° to 760°C 0° to 500°C -50° to 250°C -50° to 250°C 0° to 400°C

a0 0.0 0.0 0.0 0.0 0.0 0.0

a1 1.7057035E-2 1.978425E-2 2.508355E-2 1.8891380E-1 1.84949460E-1 2.592800E-2

a2 -2.3301759E-7 -2.00120204E-7 7.860106E-8 -9.3835290E-5 -8.00504062E-5 -7.602961E-7

a3 6.543558E-12 1.036969E-11 -2.503131E-10 1.3068619E-7 1.02237430E-7 4.637791E-11

a4 -7.3562749E-17 -2.549687E-16 8.315270E-14 -2.2703580E-10 -1.52248592E-10 -2.165394E-15

a5 -1.7896001E-21 3.585153E-21 -1.228034E-17 3.5145659E-13 1.88821343E-13 6.048144E-20

a6 8.4036165E-26 -5.344285E-26 9.804036E-22 -3.8953900E-16 -1.59085941E-16 -7.293422E-25

a7 -1.3735879E-30 5.099890E-31 -4.413030E-26 2.8239471E-19 8.23027880E-20

a8 1.0629823E-35 1.057734E-30 -1.2607281E-22 -2.34181944E-23

a9 -3.2447087E-41 -1.052755E-35 3.1353611E-26 2.79786260E-27

a10 -3.3187769E-30

Error +/-0.02°C +/-0.05°C +/-0.05°C +/-0.02°C +/-0.02°C +/-0.03°C

TABLE 7: NIST Polynomial Coefficients of Voltage-to-temperature conversion for various thermocouple type
DS00684B-page 4-32 1999 Microchip Technology Inc.

AN684
A

n
alo

g
/In

terface

4

S4.book Page 33 Thursday, March 2, 2000 8:00 AM
REFERENCES

Baker, Bonnie, “Thermistors in Single Supply Temper-
ature Sensing Circuits”, AN685, Microchip Technology
Inc., 1998

Baker, Bonnie, “Precision Temperature Sensing with
RTD Circuits”, AN687, Microchip Technology Inc., 1998

Baker, Bonnie, “Temperature Sensing Technologies”,
AN679, Microchip Technology Inc., 1998

Baker, Bonnie, “Anti-Aliasing Filters for Data Acquisi-
tion Systems”, AN699, Microchip Technology Inc.,
1998

Klopfenstein, Rex, “Software Linearization of a Ther-
mocouple”, SENSORS, Dec. 1997, pg 40

“Practical Temperature Measurements”, OMEGA Cata-
log, pg 2-11

“Thermocouples and Accessories”, Measurement &
Control, June 1996, pg 190

“RTD Versus Thermocouple”, Measurement & Control,
Feb., 1997, pg 108

“Ya Can’t Calibrate a Thermocouple Junction!, Part 2 -
So What?” Measurement & Control, Oct. 1996, pg 93

“A Comparison of Programs That Convert Thermocou-
ple Properties to the 1990 International Temperature &
Voltage Scales”, Measurement & Control, June, 1996,
pg 104

“Thermocouple Basics”, Measurement & Control,
June, 1996, pg 126

G.W. Burns, M.G. Scroger, G.F. Strouse, et al. Temper-
ature-Electromotive Force Reference Functions and
Tables for the Letter-Designated Thermocouple Types
Based on the IPTS-90 NIST Monograph 175. Washing-
ton, D.C.: U.S. Department of Commerce, 1993

D’Sousa, Stan, “Implementing a Table Read”, AN556,
Microchip Technology Inc., 1997
 1999 Microchip Technology Inc. DS00684B-page 4-33

AN684

S4.book Page 34 Thursday, March 2, 2000 8:00 AM
NOTES:
DS00684B-page 4-34 1999 Microchip Technology Inc.

AN685
Thermistors in Single Supply Temperature Sensing Circuits

A
n

alo
g

/In
terface

4

S4.book Page 35 Thursday, March 2, 2000 8:00 AM
INTRODUCTION

There is a variety of temperature sensors on the market
all of which meet specific application needs. The most
common sensors that are used to solve these applica-
tion problems include the thermocouple, Resistive
Temperature Detector (RTD) thermistor, and sili-
con-based sensors. For an overview and comparison
of these sensors, refer to Microchip’s AN679, “Temper-
ature Sensing Technologies”.

This application note focuses on circuit solutions that
use Negative Temperature Coefficient (NTC) ther-
mistors in the design. The Thermistor has a non-linear
resistance change-over temperature. The degree of
this non-linearity will be discussed in the “Hardware
Linearization Solutions” section of this application note.
From this discussion, various linearization resistor net-
works will be shown with error analysis included.
Finally, the signal conditioning path for the thermistor
system will be covered with complete application cir-
cuits from sensor or microprocessor.

THERMISTOR OVERVIEW

The term “thermistor” originated from the descriptor
THERMally Sensitive ResISTOR. The two basic types
of thermistors are the Negative Temperature Coeffi-
cient (NTC) and Positive Temperature Coefficient
(PTC). The NTC thermistor is best suited for precision
temperature measurement. The PTC is best suited for
switching applications. This application note will only
discuss NTC applications.

The NTC thermistor is used in three different modes of
operation which services a variety of applications. One
of the modes exploits the resistance-versus-tempera-
ture characteristics of the thermistor. The other two
modes take advantage of the voltage-versus-current
and current-over-time characteristics of the thermistor.

Voltage-Versus-Current Mode

Voltage-versus-current applications use one or more
thermistors that are operated in a self-heated,
steady-state condition. An application example for an
NTC thermistor in this state of operation would be using
a flow meter. In this type of circuit, the thermistor would
be in an ambient self-heated condition. The ther-

mistor’s resistance is changed by the amount of heat
generated by the power dissipated by the element. Any
change in the flow of the liquid or gas across the device
changes the power dissipation factor of the thermistor
element. In this manner, the resistance of the ther-
mistor is changed, relative to the degree of cooling pro-
vided by the flow of liquid or gas. A useful thermistor
graph for this phenomena is shown in Figure 1. The
small size of the thermistor allows for this type of appli-
cation to be implemented with minimal interference to
the system. Applications such as vacuum manometers,
anemometers, liquid level control, fluid velocity and gas
detection are used with the thermistors in voltage-ver-
sus-current mode.

FIGURE 1: When a thermistor is overheated by its
own power, the device operates in the voltage-versus-
current mode. In this mode, the thermistor is best suited
to sense changes in the ambient conditions, such as
changes in the velocity of air flow across the sensor.

Current-Over-Time Mode

The current-over-time characteristics of a thermistor
also depends on the dissipation constant of the ther-
mistor package as well as element’s heat capacity. As
current is applied to a thermistor, the package will begin
to self-heat. If the current is continuous, the resistance
of the thermistor will start to lessen. The thermistor cur-
rent-time characteristics can be used to slow down the
affects of a high voltage spike, which could be for a
short duration. In this manner, a time delay from the
thermistor is used to prevent false triggering of relays.

Author: Bonnie C. Baker
Microchip Technology Inc.

50

20

10

5

2
1

0.5

0.2
0.1

0.01 0.1 1 10 100

A
p

p
lie

d
 V

o
lt

ag
e

(V
) 100mW

10m
W

50mW

5m
W

1m
W

30K

Current (mA)
 1999 Microchip Technology Inc. DS00685B-page 4-35

AN685

S4.book Page 36 Thursday, March 2, 2000 8:00 AM
The effect of the thermistor current-over-time delay is
shown in Figure 2. This type of time response is rela-
tively fast as compared to diodes or silicon based tem-
perature sensors. The diode and silicon based sensors
require several minutes to reach their steady state tem-
perature. In contrast, thermocouples and RTDs are
equally as fast as the thermistor, but they don’t have the
equivalent high level outputs. Applications based on
current-over-time characteristics include time delay
devices, sequential switching, surge suppression or in
rush current limiting.

FIGURE 2: The time constant of the thermal mass of
the thermistor sensor can be used to time delay a
reaction to changes in conditions in a circuit. If a
thermistor is overdriven, the thermal mass time constant
of the sensor eventually causes the thermistor to
overheat, reducing its resistance.

Resistance-Versus-Temperature Mode

By far, applications using the first mode, resis-
tance-versus-temperature, NTC Thermistor configura-
tions, are the most prevalent. These circuits perform
precision temperature measurement, control and com-
pensation. Unlike applications that are based on the
voltage-versus-current and current-over-time charac-
teristics of the thermistor, the resistance-versus-tem-
perature circuits depend on the thermistor being
operated in a “zero-power” condition. This condition
implies that there is no self-heating of the thermistor as
a consequence of current or voltage excitation. The
resistance-versus-temperature response of a 10kΩ,
NTC thermistor is shown in Figure 3.

The resistance across the thermistor is relatively high
in comparison to the RTD element which is usually in
the hundreds of ohms range. Typically, the 25°C rating
for thermistors is from 1kΩ up to 10MΩ . The housing of
the thermistor varies as the requirements for hermetic-
ity and ruggedness vary, but in all cases, there are only
two wires going to the element. This is possible
because of the resistance of the wiring over tempera-
ture is considerably lower than the thermistor element.
Consequently, a four wire configuration is not neces-
sary, as it is with the RTD element. (Refer to AN687,
“RTD Temperature Sensing Circuits” for details.)

FIGURE 3: In precision temperature measurement
environments, the thermistor is used in a “zero power”
condition. In this condition, the power consumption of the
thermistor has a negligible affect on the elements
resistance. This is a graph of an NTC 10kΩ thermistor
resistance-versus-temperature.

Since the thermistor is a resistive element, current exci-
tation is required. The current can originate from a volt-
age or current reference, as will be shown in the
“Hardware Linearization Solutions” section of this
application note. The performance of the thermistor in
Figure 3 is fairly repeatable as long as the power
across the device does not exceed the power dissipa-
tion capability of the package. Once this condition is
violated, the thermistor will self-heat and artificially
decrease in resistance, giving a higher than actual tem-
perature reading.

180

160

140

120

100

80

60

40

20

0 10 20 30 40 50 60 70 80
Time (Sec)

C
u

rr
en

t
(m

A
)

V=6V

V=9V

V=12V

V=16V

V=18V

10,000,000

1,000,000

100,000

10,000

1,000

100
-100 -50 0 50 100 150

Temperature (°C)

N
T

C
 T

h
er

m
is

to
r

R
es

is
ta

n
ce

 (
Ω

)
o

f
10

kΩ
@

25
°C

 T
h

er
m

is
to

r

NTC Thermistor Linearity

DS00685B-page 4-36 1999 Microchip Technology Inc.

AN685
A

n
alo

g
/In

terface

4

S4.book Page 37 Thursday, March 2, 2000 8:00 AM
Figure 3 illustrates the high degree of non-linearity of the
thermistor element. Although the thermistor has consid-
erably better linearity than the thermocouple linearity, the
thermistor still requires linearization in most temperature
sensing circuits. The non-linear response of the ther-
mistor can be corrected in software with an empirical
third-order polynomial or a look-up table. There are also
easy hardware linearization techniques that can be
applied prior to digitalization of the output of the ther-
mistor. These techniques will be discussed later in this
application note. The third-order polynomial is also
called the Steinhart-Hart Thermistor equation. This
equation is an approximation and can replace the expo-
nential expression for a thermistor. Wide industry accep-
tance makes it the most useful equation for precise
thermistor computation.

The Steinhart-Hart equation is:

where:

 T is the temperature of the thermistor in Kelvin.

A0, A1, A3, B0, B1, and B3, are contents provided by the
thermistor manufacturer.

RT is the thermocouple resistance at temperature, T.

With a typical thermistor, this third-order linearization
formula provides ±0.1°C accuracy over the full temper-
ature range. This is usually better than the accuracy of
individual elements from part to part.

Although the temperature range of the thermistor is a
little better than the diode or silicon-based temperature
sensor (−55°C to +175°C), it is still limited to a practical
range of −100°C to +175°C. This can also be compared
to the temperature sensing range of the RTD (−200°C
to 600°C) or the thermocouple which ranges up to
1820°C.

The advantages versus disadvantages of the ther-
mistor are summarized in Table 1.

Thermistors are manufactured by a large variety of ven-
dors. Each vendor carefully specifies their thermistor
characteristics with temperature, depending on their
manufacturing process. Of all of the temperature sen-
sors, the thermistor is the least expensive sensing ele-
ment on the market. Prices start at $0.10 with some
vendors and range up to $25.

The thermistor is used in a large variety of applications
such as automotive monitor and control exhaust emis-
sions, ice detection, skin sensors, blood and urine ana-
lyzers, refrigerators, freezers, mobile phones, base
stations laser drives, and battery pack charging. In the
precision instrumentation applications, thermistors are
used in hand-held meters and temperature gauges.

T 1/(A0 A1(ln RT) A+ +
3

lnR(T
3)=

lnRT B0 B1/T B3/T3+ +=

ADVANTAGES DISADVANTAGES

Fast Non-Linear

Small Excitation Required

Two-Wire
Limited Temperature
Range

Inexpensive Self-Heating

Fragile

TABLE 1: Summary of Thermistor Advantages and
Disadvantages.
 1999 Microchip Technology Inc. DS00685B-page 4-37

AN685

S4.book Page 38 Thursday, March 2, 2000 8:00 AM
THE TEMPERATURE- RESISTIVE
MODE OF THE THERMISTOR

An electrical configuration for the thermistor is shown in
Figure 4. This illustrates a seemingly obvious way to
excite the thermistor and measure the change in resis-
tance where the sensing element is excited with a cur-
rent source.

FIGURE 4: Common sense would dictate that the
thermistor be excited by a precision constant current
source as shown in this figure. A picture of an NTC
Thermistor is shown on the right.

With this style of excitation, the magnitude of the cur-
rent source is typically below 100µA, preferably 20µA.
Lower currents prevent the thermistor from entering a
self-heating condition as described previously. This
style of excitation is effective for sensing a limited range
of temperatures. Larger ranges of temperature have
deltas in resistance that are too high to accurately con-
vert the resistance to voltage without bumping into the
noise limitations of the analog signal path.

As an example, the temperature range of a typical
thermistor from BetaTHERM is −80°C to 150°C. The
change is resistance for a 10kΩ @ 25°C thermistor from
BetaTHERM over its temperature range is shown in
Table 2.

It is useful to note that the differential resistance for a
10°C delta at high temperature is significantly smaller
than a 10°C delta at low temperatures. For instance,
the change in resistance of the device in Table 2 from
125°C to 135°C is 76.28Ω (340.82Ω − 264.54Ω). The
change in resistance of the same thermistor from
−25°C to −15°C is 58.148kΩ. This diversity in the ratio
of resistance to temperature over the range of ther-
mistor creates an awkward analog problem. If the ther-
mistor in this example is excited with a 20µA current
source, the analog circuit must discriminate between
0.015V deltas at high temperatures and 1.16V deltas at
low temperatures for ∆10°C of resolution. This forces
the LSB size in a linear digitizing system to be 1/2 of
0.015V. This would require a 9.57-bit system to achieve
10°C accuracy from the system over a temperature
span of -25°C to 135°C (delta of 160°C).

Precision Current
Source <100µA

VOUT

NTC Thermistor

Available typically 10kΩ @ 25°C

Temp
(°C)

R Value
(Ω)

Temp
(°C)

R Value
(Ω)

Temp
(°C)

R Value
(Ω)

-80 7296874 0 32650.8 75 1480.12

-75 4713762 5 253985.5 80 1256.17

-70 3095611 10 19903.5 85 1070.58

-65 2064919 15 15714.0 90 916.11

-60 1397935 20 12493.7 95 786.99

-55 959789 25 10000 100 678.63

-50 667828 30 8056.0 105 587.31

-45 470609 35 6530.1 110 510.06

-40 335671 40 5324.9 115 44.48

-35 242195 45 4366.9 120 388.59

-30 176683 50 3601.0 125 340.82

-25 130243 55 2985.1 130 299.82

-20 96974 60 2487.1 135 264.54

-15 72895 65 2082.3 140 234.08

-10 55298 70 1751.6 145 207.70

-5 42314.6 150 184.79

TABLE 2: Resistive changes with temperature of a
BetaTHERM, 10kΩ @ 25 °C (10K3A1) NTC
Thermistor in its “zero power” mode.
DS00685B-page 4-38 1999 Microchip Technology Inc.

AN685
A

n
alo

g
/In

terface

4

S4.book Page 39 Thursday, March 2, 2000 8:00 AM
LINEARIZATION SOLUTIONS

It is obvious in this example that the conversion process
is inefficient if a linear response is required. It is also
obvious that the digital output word will require a look-up
table to linearize the response. Additionally, tempera-
ture accuracy is usually required for most systems.
These problems can be solved to a small degree by
using a high resolution Analog-To-Digital (A/D) Convert-
ing device. In this scenario, bits will still be thrown away,
but the LSB size is smaller. An alternative is to imple-
ment linearization with the analog hardware.

A simple approach to a first level linearization of the
thermistor output is to use one of the three circuits
shown in Figure 5. In Figure 5a. the thermistor is
placed in series with a standard resistor (1%, metal
film) and a voltage source. The temperature response
and linearity of the system shown in Figure 5a. is
shown in Figure 6. In this figure, the series thermistor
system responds to temperature in a linear manner
over a limited temperature range. The linearization
resistor’s value (RSER) should be equal to magnitude of
the thermistor at the mid-point of the temperature range
of interest. This creates a response where the output

slope of the resistive network is at its steepest at this
mid-point temperature. If high precision is required, this
range is typically +/-25°C around the nominal tempera-
ture of the thermistor at the RSER value.

In Figure 5b., the thermistor is placed in parallel with a
standard resistor (RPAR), which creates a composite
resistor element. This type of resistive configuration is
typically used in system feedback loops and used for
automatic gain control circuits.

The resistance to temperature response along with the
linearization error of this circuit configuration is shown in
Figure 7. Once again, the optimum linearity response of
this resistive network is obtained at the point where the
thermistor resistance and RPAR are equal.

A third linearization approach is shown in Figure 5c.
This circuit combines the parallel configuration in
Figure 5b. with an additional reference resistor and a
capacitor. The switchable reference is used to charge
and discharge the parallel NTC resistance and the ref-
erence resistor against the integrating capacitor, CINT.
With this circuit, the NTC resistance is biased to a volt-
age reference and the integrating capacitor charges.

FIGURE 5: The series configuration (a) requires a voltage excitation. The parallel configuration (b) can be used in the
feedback loop of an amplifier and does not require a precision source. The parallel configuration can be combined with a
capacitor (c) which provides a linear circuit response with time.

FIGURE 6: The series configuration response of the
circuit shown in Figure 5a. has good linear response in a
±25°C range surrounding the temperature where both
resistors (NTC and RSER) are equal. The error in this
range is typically within ±1%. VREF = 5V.

FIGURE 7: The parallel configuration response of the
circuit shown in Figure 5c. allows for a counter to be used
to determine the relative resistance of the NTC element.

VOUT

NTC Thermistor

VREF
(Precision Voltage Reference)

RUSER
(±1% tolerance, metal film)

NTC
Thermistor

RPAR (±1%
tolerance,
metal film)

VOUT

NTC
Thermistor

RPAR
(±1% tolerance,
metal film)

RREF (+/–1%
tolerance,
metal film)

CINT
NPO ceramic,
Polycarbonate,
Polystyrene, or
Silver Mica)

a. b. c. VREF

Voltage Out with 10kΩ NTC
in Series with 10kΩ Resistor and 5V Excitation
(Keystone Thermometrics MS97A 10kΩ @25°C)

5.0

4.0

3.0

2.0

1.0

0.0

-50 -25 0 25 50 75 100
Temperature (°C)

V
O

U
T
 (

V
)

E
rr

or
 (

°C
)

2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5

Error

Resistance

Parallel Resistance with 10kΩ NTC
in Parallel with 10kΩ Resistor

(Keystone Thermometrics MS97A 10kΩ @25°C)
10.0

8.0

6.0

4.0

2.0

0.0
-50 -25 0 25 50 75 100

2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5

Temperature (°C)

R
es

is
ta

nc
e

(k
Ω

)

E
rr

or
 (

°C
)

Error
Resistance
 1999 Microchip Technology Inc. DS00685B-page 4-39

AN685

S4.book Page 40 Thursday, March 2, 2000 8:00 AM
 Once the voltage at the top of the integrating capacitor
reaches a threshold value VTH (Figure 8), the integra-
tion time is recorded and the switching voltage refer-
ence is set to zero which discharges the integrating
capacitor.

FIGURE 8: The RC time response of the circuit shown
in Figure 5c. allows for the microcontroller counter to be
used to determine the relative resistance of the NTC
element.

Once the integrating capacitor is discharged, the refer-
ence voltage is applied to the reference resistor RREF.
This circuit is allowed to integrate until VOUT reaches
VTH and the time of that integration period is recorded.

The integration time of this circuit can be calculated
using:

If the ratio of VTH:VREF is kept constant, the unknown
resistance of the RNTC || RPAR can be determined with:

In this configuration, the resistance calculation of the
parallel combination of RNTC || RPAR is independent of
CINT.

The implementation of this linearization circuit will be
discussed with further detail in the “Thermistor Signal
Conditioning Circuits” of this application note.

The circuits in Figure 5, along with the other configura-
tions shown in Figure 9 linearize the thermistor to vari-
ous ways. Figure 9a. uses the combination of the
parallel and serial configurations shown in Figure 5 to
extend the linear temperature response beyond 50°C.
Figure 9b. demonstrates a way that the initial DC volt-
age of a thermistor linearization circuit can be removed
by employing a bridge configuration. The circuit in
Figure 9c. uses a switching network to adjust the lin-
earization range of the of the NTC Thermistor. Addi-
tionally, there is a resistor divider added that
implements a bridge configuration in order to reduce
DC errors. The response of all of these networks can
easily be modeled in an excel spreadsheet or mathcad
which can be used to generate the appropriate look-up
tables.

The next section of this application note will use the
networks in Figure 5 to implement complete application
circuits.

FIGURE 9: Other Thermistor Linearization Circuits.

V
O

U
T
 (

V
)

0 t1 t2
Time(s)

VTH

RNTC||RPAR RREF

VOUT VREF 1 e
t/RC–

–() or=

t RC ln 1 VTH/VREF–()=

RNTC||RPAR t2/t1() RREF×=

a. Parallel Series Composition b. Bridge Network c. Switchable Temperature Ranges

NTC

NTC1

NTC2 RPAR

RSER

NTC2RSER1

NTC1 RSER2

RSER

RREF

RREF RSERRSERRSER
DS00685B-page 4-40 1999 Microchip Technology Inc.

AN685
A

n
alo

g
/In

terface

4

S4.book Page 41 Thursday, March 2, 2000 8:00 AM
THERMISTOR SIGNAL
CONDITIONING CIRCUITS

There is a large variety of application circuits where the
thermistor can be utilized. The three circuits in this
application note use the thermistor to implement the
cold junction compensation portion of a thermocouple
circuit, a linear variable gain versus temperature circuit
and an integrated scheme which achieves high accu-
racy.

Thermocouple Cold Junction Compensation

Although thermocouples can sense temperatures
accurately at extreme temperatures or in ambient hos-
tile conditions, a reference temperature is required, if
an absolute temperature measurement is desired. (See
Microchip’s AN684, “Single Supply Temperature Sens-
ing with Thermocouples” for details concerning ther-
mocouple circuit requirements.)

The circuit in Figure 10 is designed to sense the tem-
perature at the isothermal block location with a ther-
mistor. The linearized temperature response of the
thermistor is divided down to appropriate levels in order
to minimize the EMF voltage errors introduced to the
circuit by the parasitic thermocouples on the isothermal
block. This style of compensation is done in hardware,
requiring no supportive firmware compensation
schemes.

FIGURE 10: A thermistor is used to sense the temperature of the isothermal block in a thermocouple temperature sensing
application.

The drift with temperature of the parasitic thermocou-
ples on the isothermal block is approximately
−51µV/°C. The thermistor circuit changes by
25.07mV/°C over the 0 to 50°C linear range given the
resistor configuration and the 2.5V excitation voltage.
The thermistor drift is divided down using the resistor
divider formed with R1 and R2. Appropriate resistor val-
ues for R1 and R2 with a Type J thermocouple is 100Ω
and 49.9kΩ, inclusive. The R4 and R5 resistor divider is
used to zero offsets in the system as well as implement
any required level shifts.

An instrumentation amplifier is used to differentiate the
offset error correction circuitry and the Type J thermo-
couple EMF voltage. (For more details about instru-

mentation amplifiers, see Microchip’s AN682, “Using
Operational Amplifiers for Analog Gain in Embedded
System Design”.)

With the thermistor linearization circuitry in place, the
voltage changes at the input to the instrumentation
amplifier in accordance with temperature changes at
the Type J thermocouple measurement site.

The instrumentation amplifier is configured in the
appropriate gain for the expected temperature excur-
sions of the Type J thermocouple. The output of the
gained analog signal is digitized and used by the micro-
controller. With this circuit implementation, the micro-
controller is only required to linearize the thermocouple
output response.

VSUPPLY

R1

R2

~25.07mV/°C
Isothermal Block

10KΩ
Thermistor

Type J

R4

R5

Offset
Adjust

Gain
Adjust

R1 + R2 ~ R THERMISTOR@25

25.0750mV/°C R2×
R1 R2+

+

_

Instrumentation
Amplifier

D2 (LM136-2.5)

A/D Converter Input

PIC16CXXX

2.5KΩ
 1999 Microchip Technology Inc. DS00685B-page 4-41

AN685

S4.book Page 42 Thursday, March 2, 2000 8:00 AM
Temperature Dependent Reference

A temperature dependent reference voltage can be
constructed using thermistor/resistive parallel combi-
nation illustrated in Figure 5b. as the feedback element
in an operational amplifier circuit. The implementation
of this type of circuit configuration is shown in
Figure 11. In this circuit, a precision reference is used
to drive the inverting input of an operational amplifier.
The gain of the amplifier portion of the circuit is:

where:

VOUT:AMP is the voltage at the output of the opera-
tional amplifier

VIN:AMP is the voltage presented to the non-invert-
ing input of the amplifier

A 2.5V precision voltage reference is used to generate
the 0.276 voltage at the input to the operational ampli-
fier. When the temperature of the NTC thermistor is
equal to 0°C, the resistance of the thermistor is approx-
imately 32,650.8Ω. The value of the parallel combina-
tion of this resistor and the 10kΩ metal film resistor
(RPAR) is equal to 7655.38Ω. This gives a operational
amplifier gain of 14.94 V/V or an output voltage
(VOUT:AMP) of 4.093V.

When the temperature of the NTC thermistor is 50°C,
the resistance of the thermistor is approximately
3601Ω. Following the same calculations above, the
operational amplifier gain becomes 5.8226V/V, giving a
1.595V at the output of the amplifier.

The voltage at the output of the amplifier is used as the
voltage reference of a 12-bit A/D Converter. Over the
reference range of 4.093V to 1.595V the converter pro-
vides 11.75-bit accurate conversions. The converter
digitizes the input signal in accordance with the transfer
function:

FIGURE 11: A thermistor is used to change the gain of an amplifier circuit with respect to temperature.

VOUT:AMP VIN:AMP 1 RNTC||RPAR()/R1+()=

DIGITAL OUT
VIN:ADS

VOUT:AMP

 2

12
1–()=

(to the nearest integer value)

PIC12C509

GP0
GP1
GP2

MCP3201

NTC Thermistor
10KΩ @ 25(°C)

RLIN=10KΩ
(+/-1% tolerance
metal film

R1=549Ω
(+/-1% tolerance
metal film

VREF=2.5V

V=0.276V

R3=1000Ω

R2=8060Ω

VIN:AMP

MCP601
VOUT:AMP

+IN

–IN

_

+

REF

AGND

Signal
Input
DS00685B-page 4-42 1999 Microchip Technology Inc.

AN685
A

n
alo

g
/In

terface

4

S4.book Page 43 Thursday, March 2, 2000 8:00 AM
Temperature Sensing Using an Integrator

The linearization circuit in Figure 5c. is simply imple-
mented with one microcontroller in the signal path as
shown in Figure 12.

FIGURE 12: This circuit switches the voltage reference
on and off at GP1 and GP2. In this manner, the time
constant of the NTC Thermistor (RNTC || RPAR) and
integrating capacitor (CINT) is compared to the time
constant of the reference resistor (RREF) and integrating
capacitor.

This sensing circuit is implement by setting GP1 and
GP2 of the PIC12C509 as inputs. Additionally, GP0 is
set low to discharge the capacitor, CINT. Once CINT is
discharged, the configuration of GP0 is changed to an
input and GP1 is set to a high output. A timer counts the
amount of time before GP0 changes to 1, giving the
time, t1 per Figure 8.

At this point, GP1 and GP2 are again set as inputs and
GP0 as an output low. Once the integrating capacitor
CINT, has time to discharge, GP2 is set to a high output
and GP0 as an input. A timer counts the amount of time
before GP0 changes to 1, giving the time, t2, per
Figure 8.

For more details concerning the implementation of this
type of integrating circuit, refer to Microchip’s AN512,
“Implementing Ohmmeter/Temperature Sensor”, and
AN611, “Resistance and Capacitance Meter Using a
PIC16C622”.

CONCLUSION

Although the thermistor is non-linear, it can be tamed
for a limited temperature range. This allows the design
of an inexpensive temperature sensing device which
can be used in a variety of Analog-to-Digital Converter
applications.

REFERENCES

Lavenuta, Greg, “Negative Temperature Coefficient
Thermistors – the Temp Calibration Standard”, SEN-
SORS, August, 1997, pg 54.

Lavenuta, Greg, “Negative Temperature Coefficient
Thermistors – Level of Uncertainty”, SENSORS, June
1997, pg 47.

Lavenuta, Greg, “Negative Temperature Coefficient
Thermistors – Measuring”, SENSORS, Sept, 1997, pg
48.

Lavenuta, Greg, “Negative Temperature Coefficient
Thermistors” SENSORS, May 1997, pg 46.

Lavenuta, Greg, “Negative Temperature Coefficient
Thermistors – Temp Controlled Bath”, SENSORS, July
1997, pg17.

Paillard, Bruno, “Temperature Compensating an Inte-
grated Pressure Sensor”, SENSORS, Jan. 1998, pg
36.

Thermometrics Corporation, Catalog, 1996.

Baker, Bonnie, “Temperature Sensing Technologies”,
AN679, Microchip Technology Inc., 1998.

“Practical Temperature Measurements”, OMEGA CAT-
ALOG, pg Z-11.

Baker, Bonnie, “RTD Temperature Sensing Circuits”,
AN687, Microchip Technology Inc., 1998.

Baker, Bonnie, “Single Supply Temperature Sensing
with Thermocouples”, AN684, Microchip Technology
Inc., 1998.

Baker, Bonnie, “Using Operational Amplifiers for Ana-
log Gain in Embedded System Design”, AN682, Micro-
chip Technology Inc., 1998.

Cox, Doug, “Implementing Ohmmeter/Temperature
Sensor”, AN512, Microchip Technology Inc.

Richey, Rodger, “Resistance and Capacitance Meter
Using a PIC16C622”, AN611, Microchip Technology
Inc.

NTC Thermistor
10KΩ @ 25(°C)

RPAR=10KΩ
(±1% tolerance
metal film

RREF

P
IC

12C
509

GP2

GP1

GP0
CINT 100Ω
 1999 Microchip Technology Inc. DS00685B-page 4-43

AN685

S4.book Page 44 Thursday, March 2, 2000 8:00 AM
NOTES:
DS00685B-page 4-44 1999 Microchip Technology Inc.

AN686
Understanding and Using Supervisory Circuits

A
n

alo
g

/In
terface

4

S4.book Page 45 Thursday, March 2, 2000 8:00 AM
SCOPE

This application note discusses what microcontroller
supervisory devices are, why they are needed and
some factors to consider when choosing one. Supervi-
sory devices is a broad term that encompasses POR
(power on reset) devices, BOD (brown-out detect)
devices and watchdog timer devices. This application
note will cover supervisor devices with POR and BOD
functions only.

WHAT DOES A SUPERVISORY
CIRCUIT DO?

A supervisory circuit can be used for several different
applications, but there are two primary functions that a
supervisor provides:

1. During a power up sequence, the device holds a
microcontroller in reset until the system power
has come up to the correct level and stabilized
(the POR function), and

2. reset the controller immediately if the power
drops below a nominal value either at power
down or during a ‘brown-out’ condition.

Some supervisor devices also provide things like low
battery warning, watchdog timer and other more elab-
orate functions that are beyond the scope of this appli-
cation note.

WHY DO I NEED A SUPERVISORY
CIRCUIT ANYWAY?

One question system designers may ask themselves
is, “Why do I need one of these things anyway?” There
are 3 situations that you must consider when answering
this question:

1. What would happen to the microcontroller (or
other devices in the system) if there was noise
on the supply voltage as it powers up?

2. What would happen if there is a glitch on the
power supply while the system is running?

3. What does the microcontroller do when the sys-
tem power is turned off?

If you ponder these questions and have visions of
phone calls from angry customers, then you might con-
sider using a supervisor device.

IN THE BEGINNING: POWER-UP
PROBLEMS

Most designers working on a prototype system are
familiar with putting a reset switch of some kind on the
reset pin of the microcontroller. Why? Because they are
making both hardware and firmware changes, which
sometimes cause the system to malfunction, resulting
in the microcontroller no longer behaving in a rational
manner. Sometimes it just plain doesn’t work. The sys-
tem designer pushes the reset button a couple of times
to determine if the problem goes away. If not, more
changes are made and the process continues. The
push button provides a means of manually resetting the
system. This may work fine for the system development
phase, but what do you do to ensure proper system
power-up when it goes into production?

Many systems rely on a simple pullup resistor tied to
the reset line and their system works fine every time.
But what if different components in the system are all
powering up as the supply voltage is ramping up and
noise is injected onto the supply line? Most microcon-
trollers have specs that describe power up ramps for
proper initialization of the controller. A glitch on the sup-
ply line may very well cause the microcontroller (or
some other component) to power-up incorrectly and
prevent the system from operating as intended. See
Figure 1. A supervisor device solves this problem by
holding the microcontroller in reset until the power has
reached a stable level. Timeout periods vary for differ-
ent devices but typical values are 150ms - 500ms.
When the timeout period is complete, the device will
release the reset line and allow the microcontroller to
begin exection of its code.

FIGURE 1: POR Function

Author: Bruce Negley
Microchip Technology Inc.

0
Time

 V
o

lt
ag

e

0 500ms

5V

Supervisor holds
microcontroller in
reset until the supply
voltage is stable

Possible glitch in
power supply ramp

Supervisor
Output

Pin
Supply
Voltage
 1999 Microchip Technology Inc. DS00686A-page 4-45

AN686

S4.book Page 46 Thursday, March 2, 2000 8:00 AM
Brown-Out: A Dirty Little Problem

Brown-out (Figure 2) is a condition where the supply
voltage dips or ‘sags’ down to a safe operating level
before returning to a nominal level. This condition can
be caused by many different things such as inadequate
power regulation, system components turning on or off,
system malfunctions, etc. Unfortunately, brown-out
conditions often don’t show up in the system develop-
ment stage, but wait until the production run begins with
all the system components installed to show their ugly
heads. It is often at this point that perplexing problems

are discovered, and eventually tracked down to some
kind of brown-out condition. These problems can man-
ifest themselves in many different ways including logic
levels being misinterpreted or high current situations by
creating invalid CMOS input levels. It is also possible to
cause a more insidious problem of corrupting RAM
locations inside the microcontroller. This problem can
lead to irrational behavior on the part of the microcon-
troller that does different things at different times and
may not show itself at all when an emulator is used to
track down the problem.

FIGURE 2: Brown-Out Condition

Problems at Power-Down

Most microcontrollers today do not have any on-board
POR/BOD protection. Some of them do, but they may
not offer adequate protection against some system fail-
ures. One system problem that is seen quite frequently
is the “Microcontroller running amok” problem that
occurs when the supply voltage is ramped down very
slowly, such as when a bench power supply is turned
down manually or during the decay of a battery supply.
When this situation occurs, it is possible for many
microcontrollers to begin running through its code in a
somewhat random manner. There may not be enough
voltage to sustain RAM locations, so the program
counter as well as any other variable stored in RAM
may not contain valid data. This provides the means for
the micro to execute any or all portions of the code
stored in program memory with indeterminate values in
all RAM locations.

Obviously, the longer it takes for the supply to ramp
down the greater the danger of this situation occurring
and causing problems. See Figure 3. For some sys-
tems, this situation may not cause any problems more
serious than some spurious data sent to a display as
the system is powered down. However, if the system
contains other components that work to a lower voltage
such as EEPROM devices, the problem becomes
potentially more serious. EEPROM devices are avail-
able on the market that work down to 1.8V and may

respond to commands as low as 1.2V. If the microcon-
troller executes a portion of its code that controls writ-
ing to the EEPROM, then there is the distinct possibility
that random data will be written to the EEPROM device,
which may or may not be discovered when the system
is powered up the next time. This problem very often
does not show up in the system development phase
because the system is not being powered up and down
on a regular basis, or it is powered from a supply differ-
ent from the one used in production. It often shows up
when the system goes into production and the system
is being tested at different stages of the production line
with different power supplies. A typical scenario: Data
is written into the EEPROM and the system is tested as
good and then powered down. At the next station it is
discovered that the EEPROM data has been corrupted.
This often results in a call to the EEPROM vendor with
complaints of data retention problems, when the actual
problem was the microcontroller sending write com-
mands to the EEPROM during power down.

Time

S
u

p
p

ly
 V

o
lt

ag
e

0 500ms

0

5V

Glitch in
power supply

Low end of
operating range

Supervisor

Period
 Timeout

Supervisor resets
microcontroller
supply voltage drops
below nominal value
DS00686A-page 4-46 1999 Microchip Technology Inc.

AN686
A

n
alo

g
/In

terface

4

S4.book Page 47 Thursday, March 2, 2000 8:00 AM
FIGURE 3: Microcontroller loses control with slowly decaying supply

SO HOW DO I CHOOSE THE RIGHT
DEVICE?

For the standard POR/BOD type of supervisor device,
there are really only a couple of factors that you need
to consider when making your choice. The major fac-
tors to consider are: reset voltage, output driver type,
and reset polarity. Most supervisor devices come in a
variety of reset voltages to support both 5V and 3V sys-
tems. Table 1, below shows typical reset voltage
ranges. Choosing the correct trip point depends mainly
on the operating range of the controller you are using
and the variation of your supply voltage. You want to
choose the highest trip point you can that will not inter-
fere with the normal variations of your supply voltage.
For a typical microcontroller, it might operate at 5V
±10% or 4.5V - 5.5V. Choosing a device with a trip point
range of 4.5V - 4.75V will ensure that the controller is
reset before the low end of the operating range is
reached.

TABLE 1: Typical Trip Point Values

Many vendors also provide different output driver
options for their devices. The usual choices are open
drain, open drain with internal pull-up and standard
push-pull output drivers. The open drain options allow
more than one source to pull the reset line to the reset
state, such as a pushbutton or some other component
that has the ability to reset the controller such as an
over-temperature safety switch.

Since some microcontrollers have a low active reset
line and some are high active, you must also choose a
reset device with the correct polarity. For reference, the
MCP100/120/130 are all active low devices and the
MCP101 is active high.

CONCLUSIONS

Using supervisory circuits can protect microcontroller
based systems from a number of power-related prob-
lems. If you are experiencing problems in your system
that are not making sense, it may be power related and
if so, it may be beneficial to add a supervisory device to
the system. This application note provides some guide-
lines that you can use in determining what the problem
might be and what device should be chosen to solve
the problem.

Time

S
u

p
p

ly
 V

o
lt

ag
e Microcontroller

‘loses control’ here

~1.5V

~4V

Other components in system
may work down to here

DANGER
ZONE

Minimum Trip
Point (V)

Typical Trip
Point (V)

Maximum Trip
Point (V)

2.55
2.85
3.0
4.25
4.35
4.50
4.60

2.625
2.925
3.075
4.375
4.475
4.625
4.725

2.7
3.0
3.15
4.50
4.60
4.75
4.85
 1999 Microchip Technology Inc. DS00686A-page 4-47

AN686

S4.book Page 48 Thursday, March 2, 2000 8:00 AM
NOTES:
DS00686A-page 4-48 1999 Microchip Technology Inc.

AN687
Precision Temperature Sensing with RTD Circuits

A
n

alo
g

/In
terface

4

S4.book Page 49 Thursday, March 2, 2000 8:00 AM
INTRODUCTION

One of the most widely measured phenomena in the
process control environment is temperature. Common
elements such as Resistance Temperature Detectors
(RTDs), thermistors, thermocouples or diodes are used
to sense absolute temperatures as well as changes in
temperature. For an overview and comparison of these
sensors, refer to Microchip’s AN679, “Temperature
Sensing Technologies”.

Of these technologies, the platinum RTD temperature
sensing element is the most accurate and stable over
time and temperature. RTD element technologies are
constantly improving, further enhancing the quality of
the temperature measurement (see Figure 1). Typi-
cally, a data acquisition system conditions the analog
signal from the RTD sensor, making the analog transla-
tion of the temperature usable in the digital domain.

This application note focuses on circuit solutions that
use Platinum RTDs in the design. Initially, the RTD tem-
perature sensing element will be compared to the neg-
ative temperature coefficient (NTC) thermistor, which is
also a resistive temperature sensing element. In this
forum the linearity of the RTD will be presented along
with calibration formulas that can be used to improve
the off the shelf linearity of the element. If more infor-
mation is needed concerning the thermistor tempera-
ture sensor, refer to Microchip’s AN685, “Thermistors
in Single Supply Temperature Sensing Circuits”.
Finally, the signal conditioning path for the RTD system
will be covered with complete application circuits from
sensor or microprocessor.

FIGURE 1: Unlike thermistors, RTD temperature
sensing elements require current excitation.

RTD OVERVIEW

The acronym “RTD” is derived from the term “Resis-
tance Temperature Detector”. The most stable, linear
and repeatable RTD is made of platinum metal. The
temperature coefficient of the RTD element is positive.
This is in contrast to the NTC thermistor that has a neg-
ative temperature coefficient as shown graphically in
Figure 2. An approximation of the platinum RTD resis-
tance change over temperature can be calculated by
using the constant 0.00385Ω/Ω/°C. This constant is
easily used to calculate the absolute resistance of the
RTD at temperature.

where

RTD(T) is the resistance value of the RTD element at
temperature (Celsius),

RTD0 is the specified resistance of the RTD element at
0°C, and

T is the temperature environment that the RTD is
placed (Celsius).

FIGURE 2: The temperature versus resistance
characteristics of the RTD sensing element is consid-
erably different than the thermistor sensor element. The
RTD sensing element has a positive temperature
coefficient and is considerably more linear.

The RTD element resistance is extremely low as com-
pared to the resistance of an NTC thermistor element
which ranges up to 1MΩ at 25°C. Typical specified 0°C
values for RTDs are 50, 100, 200, 500, 1000 or 2000Ω.
Of these options, the 100Ω platinum RTD is the most
stable over time and linear over temperature.

Author: Bonnie C. Baker
Microchip Technology Inc.

Precision Current Source <1mA

VOUT

RTD, most popular element
is made using Platinum,
typically 100Ω @ 0°C

RTD T() RTD0= T RTD0 0.00385Ω/Ω/°C××+

-100 50 0 50 100 150 200 250 300
Temperature (°C)

R
es

is
ta

nc
e

(Ω
)

100

10

1

0.1

0.01

0.001

0.0001

Thermistor

RTD
 1999 Microchip Technology Inc. DS00687A-page 4-49

AN687

S4.book Page 50 Thursday, March 2, 2000 8:00 AM
If the RTD element is excited with a current reference
at a level that does not create a error due to self-heat-
ing, the accuracy can be ±4.3°C over its entire temper-
ature range of -200°C to 800°C. If a higher accuracy
temperature measurement is required, the linearity for-
mula below (Calendar-Van Dusen Equation) can be
used in a calculation in the processor engine or be
used to generate a look-up table.

where

RTD(T) is the resistance of the RTD element at temper-
ature,

RTD0 is the specified resistance of the RTD element at
0°C,

T is the temperature that is applied to the RTD element
(Celsius), and

A, B, and C are constants derived from resistance mea-
surements at 0°C, 100°C, and 260°C.

The linearity performance of a typical RTD is shown in
Figure 3.

FIGURE 3: The linearity error of the Platinum RTD
temperature sensor is small when compared to other
sensors such as the thermocouple and thermistor.

The RTD element requires a current excitation. If the
magnitude of the current source is too high the element
will dissipate power and start to self-heat. Conse-
quently, care should be taken to insure that ð1mA of
current is used to excite the RTD element.

The advantages and disadvantages of the RTD tem-
perature sensing element is summarized in Table 1.

RTD CURRENT EXCITATION CIRCUIT

For best linearity, the RTD sensing element requires a
stable current reference for excitation. This can be
implemented in a number of ways, one which is shown
in Figure 4. In this circuit, a voltage reference along
with two operational amplifiers are used to generate a
floating 1mA current source.

FIGURE 4: A current source for the RTD element can
be constructed in a single supply environment from two
operational amplifiers and a precision voltage reference.

This is accomplished by applying a 2.5V precision volt-
age reference to R4 of the circuit. Since R4 is equal to
R3 and the non-inverting input to A1 is high impedance,
the voltage drop across these two resistors is equal.
The voltage between R3 and R4 is applied to the
non-inverting input of A1. That voltage is gained by (1 +
R2/R1) to the output of the amplifier and the top of the
reference resistor, RREF . If R1 = R2, the voltage at the
output of A1 is equal to:

where
VOUTA1 is the voltage at the output of A1 and
VR4 is the voltage drop across R4.
The voltage at the output of A2 is equal to:

This same voltage appears at the inverting input of A2
and across to the non-inverting input of A2.

Solving these equations, the voltage drop across the
reference resistor, RREF is equal to:

where
VRREF is the voltage across the reference resistor, RREF

and
VR3 is the voltage drop across R3

The current through RREF is equal to:

ADVANTAGES DISADVANTAGES

Very Accurate and Stable Expensive Solution

Fairly Linear to ±4%°C Requires Current
Excitation

Good Repeatability Self-Heating

Low Resistive Element

TABLE 1: RTD temperature sensing element
advantages and disadvantages.

RTD T() RTD0 1 AT BT
2

100CT
3

CT
4

+()–+ +()=

-200 -100 0 100 200 300 400 500 600 700 800

Temperature (°C)

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

Te
m

pe
ra

tu
re

 E
rr

or
 (

±
°C

)

R2

−

+

R1

R3 R4

RREF = 2.5kΩ

VREF
 = 2.5V

−

+

1mA

A1

A2

RW

−

+

RW

RW

1/2

R1=R2=R3=R4=25kΩ

MCP602

1/2
MCP602

VOUTA1 1 R2/R1+() VREF VR4–()×
VOUTA1 2 VREF VR4–()×

=

=

VOUTA1 VREF VR4– VR3–=

VRREF VOUTA1 VOUTA2

VRREF

–

2 VREF VR4–()× VREF VR4– VR3–()

VRREF

–

VREF

=

=

=

IRTD VREF / RREF=

DS00687A-page 4-50 1999 Microchip Technology Inc.

AN687
A

n
alo

g
/In

terface

4

S4.book Page 51 Thursday, March 2, 2000 8:00 AM
This circuit generates a current source that is ratiomet-
ric to the voltage reference. The same voltage refer-
ence can be used in other portions of the circuit, such
as the analog-to-digital (A/D) converter reference.

Absolute errors in the circuit will occur as a consequence
of the absolute voltage of the reference, the initial offset
voltages of the operational amplifiers, the output swing of
A1, mismatches between the resistors, the absolute
resistance value of RREF and the RTD element. Errors
due to temperature changes in the circuit will occur as a
consequence of the temperature drift of the same ele-
ments listed above. The primary error sources over tem-
perature are the voltage reference, offset drift of the
operational amplifiers and the RTD element.

RTD SIGNAL CONDITIONING PATH

Changes in resistance of the RTD element over tem-
perature is usually digitized through an A/D conversion
as shown in Figure 5. The current excitation circuit
shown in Figure 4 is used to excite the RTD element.
With this style of excitation, the magnitude of the cur-
rent source can be tuned to 1mA or less by adjusting
RREF . The voltage drop across the RTD element is
sensed by A3 then gained and filtered by A4. With this
circuit, a three-wire RTD element is selected. This con-
figuration minimizes errors due to wire resistance and
wire resistance drift over temperature.

In this circuit, the RTD element equals 100Ω at 0°C. If
the RTD is used to sense temperature over its entire
range of -200 to 600 °C, the range of resistance pro-
duced by the RTD would be nominally 23Ω to 331Ω.

Since the resistance range is relatively low, wire resis-
tance and wire resistance change over temperature can
skew the measurement of the RTD element. Conse-
quently, a three wire RTD device is used to reduce these
errors.

The errors contributed by the wire resistances, RW1 and
RW3, is subtracted from the circuit with the A3 the oper-
ational amplifier circuit. In this configuration, R1 and R2
are equal and relatively high. The value of R3 is selected
to insure that the leakage currents through the resistor
does not introduce errors to the current to the RTD ele-
ment. The transfer function of this portion of the circuit is:

where

VIN = VW1+VRTD+VW3,

VWx is the voltage drop across the wires to and from the
RTD and

VOUTA3 is the voltage at the output of A3.

If it is assumed that

R1 = R2 and RW1 = RW3

the transfer function above reduces to:

VOUTA3 = VRTD

The voltage signal at the output of A3 is filtered with a
2nd order, low pass filter created with A4, R3, C3, R4,
and C4. This same signal is also gained by the resistors
R5 and R6.

FIGURE 5: This circuit uses an RTD temperature sensitive element to measure temperatures from -200 to 600°C.
The current generator circuit from Figure 4 excites the sensor. An operational amplifier, A3, is used to zero wire
resistance error. A fourth amplifier, A4 is used to gain the signal and filter possible alias interference. A 12-bit converter,
MCP3201, converts the voltage across the RTD to digital code for the 8-pin controller, PIC12C508.

VOUTA3 VIN Vw1–() 1 R2/ R1+() VIN R2/R1()–=

R

MCP3201

PIC12C508

Current
Generator
Circuit

PT100
(100Ω@0°C,

RTD)

R

2.5kΩ

R

RW1

MCP604

MCP604

MCP604

MCP604

1mA VREF =2.5 V

R

A1
1/4

1/4

A2

RW2

RW2

VIN

R1=100kΩ
A3

1/4

1/4

A4
R4

R3 C4

R5

R6

C3

R2=100k

VREF

VSS
–IN

+IN
 1999 Microchip Technology Inc. DS00687A-page 4-51

AN687

S4.book Page 52 Thursday, March 2, 2000 8:00 AM
CONCLUSION

Although the RTD requires a more circuitry in the signal
conditioning path than the thermistor or the silicon tem-
perature sensor, it ultimately provides a high precision,
relatively linear result over a wider temperature range.
If further linearization is performed in the processor, the
RTD circuit can achieve ±0.01°C accuracy.

REFERENCES

Baker, Bonnie, “Temperature Sensing Technologies”,
AN679, Microchip Technology Inc.

“Practical Temperature Measurements”, OMEGA CAT-
ALOG, pg Z-11

Baker, Bonnie, “Single Supply Temperature Sensing
with Thermocouples”, AN684, Microchip Technology
Inc.

Baker, Bonnie, “Using Operational Amplifiers for Ana-
log Gain in Embedded System Design”, AN682, Micro-
chip Technology Inc.

Baker, Bonnie, “Thermistors in Single Supply Temper-
ature Sensing Circuits”, AN685, Microchip Technology
Inc.

Hyde, Darrell, “Evaluating Thin Film RTD Stability”,
SENSORS, OCT. 1997, pg 79

Madden, J.R., “Refresher on Resistance Temperature
Devices”, SENSORS, Sept., 1997, pg 66

Li, Xumo, “Producing Higher Accuracy From SPRTs
(Standard Platinum Resistance Thermometer)”, MEA-
SUREMENT & CONTROL, June, 1996, pg118
DS00687A-page 4-52 1999 Microchip Technology Inc.

AN688
Layout Tips for 12-Bit A/D Converter Application

A
n

alo
g

/In
terface

4

S4.book Page 53 Thursday, March 2, 2000 8:00 AM
INTRODUCTION

This Application Note originally started as a “cook
book” for a true 12-bit layout. The assumption of this
type of approach is that a reference design could be
provided, which easily could be used for every layout
implementation. But, the notion of this approach is fairly
unrealistic. There are a multitude of successful ways to
layout out systems with 12-bit Analog-to-Digital (A/D)
Converters and each layout is highly dependent on the
number of devices in the circuit, the types of the
devices (digital or analog) and the environment that the
final product will reside in. Given all of these variables,
it could easily be demonstrated that one successful lay-
out that provides twelve noise free bits from an analog
signal may easily fail in another setting.

Because of the complexity of this problem, this Applica-
tion Note will provide basic guidelines, ending with a
review of issues to be aware of. Throughout the appli-
cation note, examples of good layout and bad layout
implementations will be presented. This will be done in
the spirit of discussing concepts and not with the intent
of recommending one layout as the only one to use.

GETTING A GOOD START

Imagine that the task at hand is to design a pressure
sensing circuit that will accurately measure the pres-
sure and present the results on an LCD display screen.
Seems easy enough.

The circuit diagram for this system is shown in Figure 1.
The pressure sensor that is chosen for the job is a
piezo resistive sensor that is configured as a four ele-
ment bridge. The particular sensor that is selected
requires voltage excitation. The full swing output of the
sensor is a small (10s of millivolts) differential signal
that most appropriately is gained by an operational
amplifier structure that also converts the differential
output of the sensor to a single ended analog signal. A
12-bit converter is chosen to match the precision of the
pressure sensor. Once the converter digitizes the volt-
age presented at its input, the digital code is sent to a
microcontroller. The job of the microcontroller is to per-
form tasks such as calibration corrections and linear-
ization. Once this is done, the results are sent to the
LCD display.

The final step in the circuit development is to work
through the calibration and linearization issues associ-
ated with the pressure sensor. Once these issues are
settled, the microcontroller firmware is developed. Now
the board is ready to go to layout.

FIGURE 1: This is a pressure sensor application where the differential signal from the sensor is gained by an
instrumentation amplifier and digitized with a 12-bit A/D Converter, MCP3201. The results of the conversion is displayed
on the LCD display.

Author: Bonnie C. Baker
Microchip Technology Inc.

AD
680

1/2
MCP602

VDD

8
7
6
5

1

2

4

R1

RG

R2

LCD Display

PICmicro®

R2

R1

1/2
MCP602

MCP3201

3

–

+

–

+

2.5V

12-Bit ADCIAOUT
IA–

IA+

IAOUT IA+ IA––() 1
R1

R2

2R1

RG

---------+ +
 2.5V+=

Pressure Sensor
 1999 Microchip Technology Inc. DS00688B-page 4-53

AN688

S4.book Page 54 Thursday, March 2, 2000 8:00 AM
ONE MAJOR STEP TOWARDS
DISASTER
The size of this circuit seems manageable. So small that
one may be tempted to use an auto router layout tool. If
this type of tool is used, it should be used carefully. If the
tool is capable of implementing restrictions into the lay-
out implementation, the layout design may have a fight-
ing chance. If restrictions are not implemented by the
auto routing tool, the best approach is to not use it at all.

GENERAL LAYOUT GUIDELINES
Device Placement

Device placement is critical. In general, there are some
noise sensitive devices in this layout and other devices
that are major problem creators. Here is a quick way to
identify the good, from the bad, from the ugly.

1. Separate the circuit devices into two categories:
high speed (>40MHz) and low speed.

2. Separate the above categories into three
sub-categories: pure digital, pure analog, and
mixed signal.

The board layout strategy should map the diagram
shown in Figure 2. Notice the relationship of digital ver-
sus analog and high speed versus slower speeds to the
board connector.

FIGURE 2: The placement of an active component on
a PCB is critical in precision 12-bit+ circuits.

In Figure 2b. the digital and analog circuit is shown as
being separate from the digital devices, which are closest
to the connector or power supply.

The pure analog devices are furthest away for the digital
devices to insure that switching noise is not coupled into
the analog signal path.

The treatment of the A/D Converter in layout varies from
technology to technology. For instance, if the A/D Con-
verter uses a Successive Approximation Register (SAR)
design approach, the entire device should be connected
to the analog power and ground planes. A common error
is to have the converter straddle the analog and digital
planes. This strategy may work, but as the accuracy
specifications of the A/D Converter improve the digital
ground and power plane noise begins to cause prob-
lems. For high resolution SAR converters, a digital buffer
should be used to isolate the converter from bus activity
on the digital side of the circuit.

In contrast, if the A/D Converter is designed using a
delta-sigma technology, it should straddle the analog
and digital planes. This is due to the fact that the
Delta-Sigma Converter is primarily a digital IC.

Ground and Power Supply Strategy

Once the general vicinity of the devices are deter-
mined, the ground planes and power planes should be
defined. The strategy of the implementation of these
planes are a bit tricky.

First of all, assuming that a ground plane is not needed
is a dangerous assumption in any circuit with analog
and/or mixed signal devices. Ground noise problems
are more difficult to deal with than power supply noise
problems because analog signals are most typically
referenced to ground. For instance, in the circuit shown
in Figure 1, the A/D Converter’s inverting input pin
(MCP3201) is connected to ground. Additionally, the
negative side of the pressure sensor is also connected
to ground.

A layout for the circuit in Figure 1 is shown in Figure 3.
This layout implementation does not have ground or
power planes on the board.

FIGURE 3: Layout of the top and bottom layers of the circuit in Figure 1. Note that this layout does not have a ground or
power plane.

Digital

Analog

Digital
Buffer

A/D

a) High frequency components
should be placed near the
connector.

b) Separate the digital and
analog portions of the circuit.

high

low

fr
eq

ue
nc

y

Top Layer Bottom Layer

Dual
Op

Amp

12-Bit
A/D Converter

Pressure
Sensor
Connection

Dual
Op

Amp

12-Bit
A/D Converter

Pressure
Sensor
Connection

2.5V
Reference

2.5V
Reference

+5V Connect

Ground Connect
DS00688B-page 4-54 1999 Microchip Technology Inc.

AN688
A

n
alo

g
/In

terface

4

S4.book Page 55 Thursday, March 2, 2000 8:00 AM
With this circuit layout, the controller is dedicated to inter-
facing with the converter and sending the converter’s
results to the LCD display. The digital output of the con-
verter over time is shown in Figure 4. This data was col-
lected with no excitation being applied to the sensor.

FIGURE 4: This is a histogram of 4096 samples from
the output of the A/D Converter from a PCB that does
not have a ground or power plane as shown in the PCB
layout in Figure 3. The by-pass capacitors are installed.

When determining the grounding strategy of a board,
the task at hand should actually be to determine if the
circuit can work adequately with just one ground plane
or does it need multiple planes.

Figure 5 shows the same layout shown in Figure 3,
plus a ground plane. It should be noted that the ground
plane has a few breaks due to signal traces. These
breaks should be kept to a minimum. Current return
paths should not be “pinched” as a consequence of
these traces restricting the easy flow of current from the
device to the power connector. The histogram for the
A/D Converter output is shown in Figure 6. Compared
to Figure 4, the output codes are much tighter. The
same active devices were used for both tests. The pas-
sive devices were different causing a slight offset differ-
ence. The noise shown with the A/D Converter digital
code is assignable to the op amp noise and the
absence of an anti-aliasing filter.

If the circuit has a “minimum” amount of digital circuitry
on board, a single ground plane and a single power
plane may be appropriate. The qualifier “minimum” is
defined by the board designer. The danger of connect-
ing the digital and analog ground planes together is that
the analog circuitry can pick-up the noise on the supply
pins and couple it into the signal path. In either case,
the analog and digital grounds and power supplies
should be connected together at one or more points in
the circuit to insure that the power supply, input and out-
put ratings of all of the devices are not violated.

The inclusion of a power plane in a 12-bit system is not
as critical as the required ground plane. Although a
power plane can solve many problems, power noise
can be reduced by making the power traces two or
three times wider than other traces on the board and by
using by-pass capacitors effectively.

FIGURE 5: Layout of the top and bottom layers of the
circuit in Figure 1. Note that this layout DOES have a
ground.

FIGURE 6: This is a histogram of 4096 samples from
the output of the A/D Converter on the PCB that has a
ground plane as shown in the PCB layout in Figure 5.
Note that the power traces are made considerably wider
than the signal traces in order to reduce power supply
trace inductance. This circuit has all by-pass capacitors
installed.

Output Code of 12-bit A/D Converter
25

04
25

05
25

06
25

07
25

08
25

09
25

10
25

11
25

12
25

13
25

14
25

15
25

16
25

17
25

03

N
um

be
r

of
 O

cc
ur

re
nc

es

Digital Code VS. Occurrences

1400

1200

1000

800

600

400

200

0

Top Layer

Bottom Layer

Dual
Op

Amp

12-Bit
A/D Converter

Pressure
Sensor
Connection

Ground Connect

+5V Connect

Reference
2.5V

Output Code of 12-bit A/D Converter

1400

1200

1000

800

600

400

200

0

N
um

be
r

of
 O

cc
ur

re
nc

es

Digital Code VS. Occurrences

24
95

24
96

24
97

24
98

24
99

25
00

25
01

25
02

25
03

25
04

25
05

25
06

25
07

25
08

24
94
 1999 Microchip Technology Inc. DS00688B-page 4-55

AN688

S4.book Page 56 Thursday, March 2, 2000 8:00 AM
Signal Traces

Generally speaking, the signal traces on the board
(both digital and analog) should be a short as possible.
This basic guideline will minimize the opportunities for
extraneous signals to couple into the signal path.

One area to be particularly cautious of is the input ter-
minals of analog devices. These input terminals nor-
mally have a higher impedance than the output or
power supply pins. As an example, the voltage refer-
ence input pin to the analog to digital converter is most
sensitive while a conversion is occurring. With the type
of 12-bit converter shown in Figure 1, the input termi-
nals (IN+ and IN−) are also sensitive to injected noise.

Another potential for noise injection into the signal path
is the input terminals of an operational amplifier. These
terminals have typically 109 to 1013 Ω input impedance.

These high impedance input terminals are sensitive to
injected currents. This can occur if the trace from a high
impedance input is next to a trace that has fast chang-
ing voltages, such as a digital or clock signal. When a
high impedance trace is in close proximity to a trace
with these types of voltage changes, charge is capaci-
tivly coupled into the high impedance trace.

FIGURE 7: A capacitor can be constructed on a PCB
by placing two traces in close proximity. With this PCB
capacitor, signals can be coupled between the traces.

As shown in Figure 7, the value of the capacitance
between two traces is primarily dependent on the dis-
tance (d) between the traces and the distance that the
two traces are in parallel (L). From this model, the
amount of current generated into the high impedance
trace is equal to:

I = C δV/δt
where

I equals the current that appears on the high
impedance trace

C equals the value of capacitance between the two
PCB traces

δV equals the change in voltage of the trace that is
switching, and

δt equals the amount of time that the voltage
change took to get from one level to the next.

DID I SAY BY-PASS?

A good rule concerning by-pass capacitors is to always
include them in the circuit. If they are not included, the
power supply noise may very well eliminate any chance
for 12-bit precision.

By-pass capacitors belong in two locations on the
board: one at the power supply (10µF to 100µF or both)
and one for every active device (digital and analog).
The value of the device’s by-pass capacitor is depen-
dent on the device in question. If the bandwidth of the
device is less than or equal to ~1MHz, a 1µF will reduce
injected noise dramatically. If the bandwidth of the
device is above ~10MHz, a 0.1µF capacitor is probably
appropriate. In between these two frequencies, both or
either one could be used. Refer to the manufacturer’s
guidelines for specifics.

Every active device on the board requires a by-pass
capacitor. The by-pass capacitor must be placed as
close as possible to the power supply pin of the device
as shown in Figure 5. If two by-pass capacitors are
used for one device, the smaller one should be closest
to the device pin. Finally, the lead length of the by-pass
capacitor should be as short as possible.

To illustrate the benefits of by-pass capacitors, data is
collected from the layout shown in Figure 5, minus the
by-pass capacitors. This data is shown in Figure 8.

FIGURE 8: This a histogram of 4096 samples from the
output of the A/D Converter on the PCB that has a
ground plane as shown in the PCB layout in Figure 3.
With this circuit implementation, all by-pass capacitors
have been removed.

w = thickness of PCB trace
L = length of PCB trace
d = distance between the two PCB traces
eo = dielectric constant of air = 8.85 X 10-12 F/m
er = dielectric constant of substrate coating relative to air

PCB Trace

w
(typ 0.003mm)

PCB
Cross-Section

w x L x eo x erC = pF
d

L

d

Output Code of 12-bit A/D Converter

25
06

25
07

25
08

25
09

25
10

25
11

25
12

25
13

25
14

25
15

25
16

25
17

25
18

25
19

25
05

N
um

be
r

of
 O

cc
ur

re
nc

es

Digital Code VS. Occurrences

1400

1200

1000

800

600

400

200

0

DS00688B-page 4-56 1999 Microchip Technology Inc.

AN688
A

n
alo

g
/In

terface

4

S4.book Page 57 Thursday, March 2, 2000 8:00 AM
PCB DESIGN CHECK LIST

Good 12-bit layout techniques are not difficult to master
as long as a few guidelines are considered.

1. Check device placement versus connectors.
Make sure that high speed devices and digital
devices are closest to the connector.

2. Always have at least one ground plane in the cir-
cuit.

3. Make power traces wider than other traces on
the board.

4. Review current return paths and look for possi-
ble noise sources on ground connects. This is
done by determining the current density at all
points of the ground plane and the amount of
possible noise present.

5. By-pass all devices properly. Place the capaci-
tors as close to the power pins of the device as
possible.

6. Keep all traces as short as possible.
7. Follow all high impedance traces looking for

possible capacitive coupling problems from
trace to trace.

REFERENCES

Morrison, Ralph, “Noise and Other Interfering Signals”,
John Wiley & Sons, Inc., 1992

Baker, Bonnie, “Noise Sources in Applications Using
Capacitive Coupled Isolated Amplifiers”, AB-047,
Burr-Brown Corporation
 1999 Microchip Technology Inc. DS00688B-page 4-57

AN688

S4.book Page 58 Thursday, March 2, 2000 8:00 AM
NOTES:
DS00688B-page 4-58 1999 Microchip Technology Inc.

 AN699
Anti-Aliasing, Analog Filters for Data Acquisition Systems

A
n

alo
g

/In
terface

4

S4.book Page 59 Thursday, March 2, 2000 8:00 AM
INTRODUCTION

Analog filters can be found in almost every electronic
circuit. Audio systems use them for preamplification,
equalization, and tone control. In communication sys-
tems, filters are used for tuning in specific frequencies
and eliminating others. Digital signal processing sys-
tems use filters to prevent the aliasing of out-of-band
noise and interference.

This application note investigates the design of analog
filters that reduce the influence of extraneous noise in
data acquisition systems. These types of systems pri-
marily utilize low-pass filters, digital filters or a combina-
tion of both. With the analog low-pass filter, high
frequency noise and interference can be removed from
the signal path prior to the analog-to-digital (A/D) con-
version. In this manner, the digital output code of the
conversion does not contain undesirable aliased har-
monic information. In contrast, a digital filter can be uti-
lized to reduce in-band frequency noise by using
averaging techniques.

Although the application note is about analog filters, the
first section will compare the merits of an analog filter-
ing strategy versus digital filtering.

Following this comparison, analog filter design param-
eters are defined. The frequency characteristics of a
low pass filter will also be discussed with some refer-
ence to specific filter designs. In the third section, low
pass filter designs will be discussed in depth.

The next portion of this application note will discuss
techniques on how to determine the appropriate filter
design parameters of an anti-aliasing filter. In this sec-
tion, aliasing theory will be discussed. This will be fol-
lowed by operational amplifier filter circuits. Examples
of active and passive low pass filters will also be dis-
cussed. Finally, a 12-bit circuit design example will be
given. All of the active analog filters discussed in this
application note can be designed using Microchip’s Fil-
terLab software. FilterLab will calculate capacitor and
resistor values, as well as, determine the number of
poles that are required for the application. The program
will also generate a SPICE macromodel, which can be
used for spice simulations.

ANALOG VERSUS DIGITAL FILTERS

A system that includes an analog filter, a digital filter or
both is shown in Figure 1. When an analog filter is
implemented, it is done prior to the analog-to-digital
conversion. In contrast, when a digital filter is imple-
mented, it is done after the conversion from ana-
log-to-digital has occurred. It is obvious why the two
filters are implemented at these particular points, how-
ever, the ramifications of these restrictions are not quite
so obvious.

FIGURE 1: The data acquisition system signal chain
can utilize analog or digital filtering techniques or a
combination of the two.

There are a number of system differences when the fil-
tering function is provided in the digital domain rather
than the analog domain and the user should be aware
of these.

Analog filtering can remove noise superimposed on the
analog signal before it reaches the Analog-to-Digital
Converter. In particular, this includes extraneous noise
peaks. Digital filtering cannot eliminate these peaks
riding on the analog signal. Consequently, noise peaks
riding on signals near full scale have the potential to
saturate the analog modulator of the A/D Converter.
This is true even when the average value of the signal
is within limits.

Additionally, analog filtering is more suitable for higher
speed systems, i.e., above approximately 5kHz. In
these types of systems, an analog filter can reduce
noise in the out-of-band frequency region. This, in turn,
reduces fold back signals (see the “Anti-Aliasing Filter
Theory” section in this application note). The task of
obtaining high resolution is placed on the A/D Con-
verter. In contrast, a digital filter, by definition uses over-
sampling and averaging techniques to reduce in band
and out of band noise. These two processes take time.

Since digital filtering occurs after the A/D conversion
process, it can remove noise injected during the con-
version process. Analog filtering cannot do this. Also,

Author: Bonnie C. Baker
Microchip Technology Inc.

Analog
Input
Signal

Analog
Low Pass
Filter

A/D
Conversion

Digital
Filter
 1999 Microchip Technology Inc. DS00699B-page 4-59

AN699

S4.book Page 60 Thursday, March 2, 2000 8:00 AM
the digital filter can be made programmable far more
readily than an analog filter. Depending on the digital fil-
ter design, this gives the user the capability of program-
ming the cutoff frequency and output data rates.

KEY LOW PASS ANALOG FILTER
DESIGN PARAMETERS

A low pass analog filter can be specified with four
parameters as shown in Figure 2 (fCUT-OFF, fSTOP,
AMAX, and M).

FIGURE 2: The key analog filter design parameters
include the –3dB cut-off frequency of the filter (fcut–off),
the frequency at which a minimum gain is acceptable
(fstop) and the number of poles (M) implemented with
the filter.

The cut-off frequency (fCUT-OFF) of a low pass filter is
defined as the -3dB point for a Butterworth and Bessel
filter or the frequency at which the filter response
leaves the error band for the Chebyshev.

The frequency span from DC to the cut-off frequency is
defined as the pass band region. The magnitude of the
response in the pass band is defined as APASS as
shown in Figure 2. The response in the pass band can
be flat with no ripple as is when a Butterworth or Bessel
filter is designed. Conversely, a Chebyshev filter has a
ripple up to the cut-off frequency. The magnitude of the
ripple error of a filter is defined as ε.

By definition, a low pass filter passes lower frequencies
up to the cut-off frequency and attenuates the higher
frequencies that are above the cut-off frequency. An
important parameter is the filter system gain, AMAX.
This is defined as the difference between the gain in the
pass band region and the gain that is achieved in the
stop band region or AMAX = APASS − ASTOP.

In the case where a filter has ripple in the pass band,
the gain of the pass band (APASS) is defined as the bot-
tom of the ripple. The stop band frequency, fSTOP, is the
frequency at which a minimum attenuation is reached.
Although it is possible that the stop band has a ripple,
the minimum gain (ASTOP) of this ripple is defined at the
highest peak.

As the response of the filter goes beyond the cut-off fre-
quency, it falls through the transition band to the stop
band region. The bandwidth of the transition band is
determined by the filter design (Butterworth, Bessel,
Chebyshev, etc.) and the order (M) of the filter. The filter
order is determined by the number of poles in the trans-
fer function. For instance, if a filter has three poles in its
transfer function, it can be described as a 3rd order fil-
ter.

Generally, the transition bandwidth will become smaller
when more poles are used to implement the filter
design. This is illustrated with a Butterworth filter in
Figure 3. Ideally, a low-pass, anti-aliasing filter should
perform with a “brick wall” style of response, where the
transition band is designed to be as small as possible.
Practically speaking, this may not be the best approach
for an anti-aliasing solution. With active filter design,
every two poles require an operational amplifier. For
instance, if a 32nd order filter is designed, 16 opera-
tional amplifiers, 32 capacitors and up to 64 resistors
would be required to implement the circuit. Additionally,
each amplifier would contribute offset and noise errors
into the pass band region of the response.

FIGURE 3: A Butterworth design is used in a low
pass filter implementation to obtain various responses
with frequency dependent on the number of poles or
order (M) of the filter.

Strategies on how to work around these limitations will
be discussed in the “Anti-Aliasing Theory” section of
this application note.

M = Filter Order

G
ai

n
(d

B
)

APASS

ASTOP

AMAX

Pass Band
Transition

Stop Band

Frequency(Hz)

fCUT–OFF

fSTOP

 Band

.
ε

1.0

0.1

0.01

0.001

A
m

pl
itu

de
 R

es
po

ns
e

V
O

U
T
/V

IN

0.1 1.0 10

n = 16

n = 32

n = 1

n = 2

n = 4

n = 8

Normalized Frequency
DS00699B-page 4-60 1999 Microchip Technology Inc.

AN699
A

n
alo

g
/In

terface

4

S4.book Page 61 Thursday, March 2, 2000 8:00 AM
ANALOG FILTER DESIGNS
The more popular filter designs are the Butterworth,
Bessel, and Chebyshev. Each filter design can be iden-
tified by the four parameters illustrated in Figure 2.
Other filter types not discussed in this application note
include Inverse Chebyshev, Elliptic, and Cauer
designs.

Butterworth Filter
The Butterworth filter is by far the most popular design
used in circuits. The transfer function of a Butterworth
filter consists of all poles and no zeros and is equated
to:

VOUT /VIN = G/(a0sn + a1sn-1 + a2sn-2... an-1s2 + ans + 1)

where G is equal to the gain of the system.

Table 1 lists the denominator coefficients for a Butter-
worth design. Although the order of a Butterworth filter
design theoretically can be infinite, this table only lists
coefficients up to a 5th order filter.

As shown in Figure 4a., the frequency behavior has a
maximally flat magnitude response in pass-band. The
rate of attenuation in transition band is better than
Bessel, but not as good as the Chebyshev filter. There
is no ringing in stop band. The step response of the
Butterworth is illustrated in Figure 5a. This filter type
has some overshoot and ringing in the time domain, but
less than the Chebyshev.

Chebyshev Filter
The transfer function of the Chebyshev filter is only sim-
ilar to the Butterworth filter in that it has all poles and no
zeros with a transfer function of:

VOUT/VIN = G/(a0 + a1s + a2s2+... an-1sn-1 + sn)

Its frequency behavior has a ripple (Figure 4b.) in the
pass-band that is determined by the specific placement of
the poles in the circuit design. The magnitude of the ripple
is defined in Figure 2 as ε. In general, an increase in ripple
magnitude will lessen the width of the transition band.

The denominator coefficients of a 0.5dB ripple Cheby-
shev design are given in Table 2. Although the order of
a Chebyshev filter design theoretically can be infinite,
this table only lists coefficients up to a 5th order filter.

The rate of attenuation in the transition band is steeper
than Butterworth and Bessel filters. For instance, a 5th
order Butterworth response is required if it is to meet
the transition band width of a 3rd order Chebyshev.
Although there is ringing in the pass band region with
this filter, the stop band is void of ringing. The step
response (Figure 5b.) has a fair degree of overshoot
and ringing.

Bessel Filter

Once again, the transfer function of the Bessel filter has
only poles and no zeros. Where the Butterworth design
is optimized for a maximally flat pass band response
and the Chebyshev can be easily adjusted to minimize
the transition bandwidth, the Bessel filter produces a
constant time delay with respect to frequency over a
large range of frequency. Mathematically, this relation-
ship can be expressed as:

C = −∆θ * ∆f

where:

C is a constant,

θ is the phase in degrees, and

f is frequency in Hz

Alternatively, the relationship can be expressed in
degrees per radian as:

C = −∆θ / ∆ω

where:

C is a constant,

θ is the phase in degrees, and

ω is in radians.

The transfer function for the Bessel filter is:

VOUT/VIN = G/(a0 + a1s + a2s2+... an-1sn-1 + sn)

The denominator coefficients for a Bessel filter are
given in Table 3. Although the order of a Bessel filter
design theoretically can be infinite, this table only lists
coefficients up to a 5th order filter.

The Bessel filter has a flat magnitude response in
pass-band (Figure 4c). Following the pass band, the
rate of attenuation in transition band is slower than the
Butterworth or Chebyshev. And finally, there is no ring-
ing in stop band. This filter has the best step response
of all the filters mentioned above, with very little over-
shoot or ringing (Figure 5c.).

M a0 a1 a2 a3 a4

2 1.0 1.4142136

3 1.0 2.0 2.0

4 1.0 2.6131259 3.4142136 2.6131259

5 1.0 3.2360680 5.2360680 5.2360680 3.2360680

TABLE 1: Coefficients versus filter order for Butter-
worth designs.

M a0 a1 a2 a3 a4

2 1.516203 1.425625

3 0.715694 1.534895 1.252913

4 0.379051 1.025455 1.716866 1.197386

5 0.178923 0.752518 1.309575 1.937367 1.172491

TABLE 2: Coefficients versus filter order for 1/2dB
ripple Chebyshev designs.

M a0 a1 a2 a3 a4

2 3 3

3 15 15 6

4 105 105 45 10

5 945 945 420 105 15

TABLE 3: Coefficients versus filter order for Bessel
designs.
 1999 Microchip Technology Inc. DS00699B-page 4-61

AN699

S4.book Page 62 Thursday, March 2, 2000 8:00 AM
FIGURE 4: The frequency responses of the more popular filters, Butterworth (a), Chebyshev (b), and Bessel (c).

FIGURE 5: The step response of the 5th order filters shown in Figure 4 are illustrated here.

ANTI-ALIASING FILTER THEORY

A/D Converters are usually operated with a constant
sampling frequency when digitizing analog signals. By
using a sampling frequency (fS), typically called the
Nyquist rate, all input signals with frequencies below
fS/2 are reliably digitized. If there is a portion of the
input signal that resides in the frequency domain above
fS/2, that portion will fold back into the bandwidth of
interest with the amplitude preserved. The phenomena
makes it impossible to discern the difference between
a signal from the lower frequencies (below fS/2) and
higher frequencies (above fS/2).

This aliasing or fold back phenomena is illustrated in
the frequency domain in Figure 6.

In both parts of this figure, the x-axis identifies the fre-
quency of the sampling system, fS. In the left portion of
Figure 6, five segments of the frequency band are iden-
tified. Segment N =0 spans from DC to one half of the
sampling rate. In this bandwidth, the sampling system
will reliably record the frequency content of an analog
input signal. In the segments where N > 0, the fre-
quency content of the analog signal will be recorded by
the digitizing system in the bandwidth of the segment
N = 0. Mathematically, these higher frequencies will be
folded back with the following equation:

FIGURE 6: A system that is sampling an input signal at fs (a) will identify signals with frequencies below fs/2 as well as
above. Input signals below fs/2 will be reliably digitized while signals above fs/2 will be folded back (b) and appear as lower
frequencies in the digital output.

10

0

-10

-20

-30

-40

-50

-60

-70

0.1 1 10
Normalized Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

10

0

-10

-20

-30

-40

-50

-60

-70

0.1 1 10
Normalized Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

10

0

-10

-20

-30

-40

-50

-60

-70

0.1 1 10
Normalized Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

(c) 5th Order Bessel Filter(b) 5th Order Chebyshev with 0.5dB Ripple(a) 5th Order Butterworth Filter

(c) 5th Order Bessel Filter (b) 5th Order Chebyshev with 0.5dB Ripple(a) 5th Order Butterworth Filter

Time (s)

A
m

pl
itu

de
 (

V
)

Time (s)

A
m

pl
itu

de
 (

V
)

Time (s)

A
m

pl
itu

de
 (

V
)

fALIASED fIN NfS–=

N = 1N = 0 N = 2 N = 3 N = 4

0 fs/2 fs 3fs/2 2fs 5fs/2 3fs 6fs/2 4fs

A
na

lo
g

In
pu

t

(1)
(2)

(3)

(5)
(4)

N = 0

(1)
(2)

(3)
(5)

(4)

0 fs/2 fs

S
am

pl
ed

 O
ut

pu
t

R
ep

re
se

nt
at

io
n

a) b)
DS00699B-page 4-62 1999 Microchip Technology Inc.

AN699
A

n
alo

g
/In

terface

4

S4.book Page 63 Thursday, March 2, 2000 8:00 AM
For example, let the sampling rate, (fS), of the system
be equal to 100kHz and the frequency content of:

fIN(1) = 41kHz

fIN(2) = 82kHz

fIN(3) = 219kHz

fIN(4) = 294kHz

fIN(5) = 347kHz

The sampled output will contain accurate amplitude
information of all of these input signals, however, four
of them will be folded back into the frequency range
of DC to fS/2 or DC to 50kHz. By using the equation
fOUT = |fIN - NfS|, the frequencies of the input signals
are transformed to:

fOUT(1) = |41kHz - 0 x 100kHz| = 41kHz

fOUT(2) = |82kHz - 1 x 100kHz| = 18kHz

fOUT(3) = |219kHz - 2 x 100kHz| = 19kHz

fOUT(4) = |294kHz - 3 x 100kHz| = 6kHz

fOUT(5) = |347kHz - 4 x 100kHz| = 53kHz

Note that all of these signal frequencies are between
DC and fS/2 and that the amplitude information has
been reliably retained.

This frequency folding phenomena can be eliminated
or significantly reduced by using an analog low pass fil-
ter prior to the A/D Converter input. This concept is
illustrated in Figure 7. In this diagram, the low pass filter
attenuates the second portion of the input signal at fre-
quency (2). Consequently, this signal will not be aliased
into the final sampled output. There are two regions of
the analog low pass filter illustrated in Figure 7. The
region to the left is within the bandwidth of DC to fS/2.
The second region, which is shaded, illustrates the
transition band of the filter. Since this region is greater
than fS/2, signals within this frequency band will be
aliased into the output of the sampling system. The
affects of this error can be minimized by moving the
corner frequency of the filter lower than fS/2 or increas-
ing the order of the filter. In both cases, the minimum
gain of the filter, ASTOP, at fS/2 should less than the sig-
nal-to-noise ratio (SNR) of the sampling system.

For instance, if a 12-bit A/D Converter is used, the ideal
SNR is 74dB. The filter should be designed so that its
gain at fSTOP is at least 74dB less than the pass band
gain. Assuming a 5th order filter is used in this example:

fCUT-OFF = 0.18fS /2 for a Butterworth Filter

fCUT-OFF = 0.11fS /2 for a Bessel Filter

fCUT-OFF = 0.21fS /2 for a Chebyshev Filter with
0.5dB ripple in the pass band

fCUT-OFF = 0.26fS /2 for a Chebyshev Filter with
1dB ripple in the pass band

FIGURE 7: If the sampling system has a low pass
analog filter prior to the sampling mechanism, high
frequency signals will be attenuated and not sampled.

ANALOG FILTER REALIZATION
Traditionally, low pass filters were implemented with
passive devices, ie. resistors and capacitors. Inductors
were added when high pass or band pass filters were
needed. At the time active filter designs were realizable,
however, the cost of operational amplifiers was prohibi-
tive. Passive filters are still used with filter design when
a single pole filter is required or where the bandwidth of
the filter operates at higher frequencies than leading
edge operational amplifiers. Even with these two excep-
tions, filter realization is predominately implemented
with operational amplifiers, capacitors and resistors.

Passive Filters

Passive, low pass filters are realized with resistors and
capacitors. The realization of single and double pole
low pass filters are shown in Figure 8.

FIGURE 8: A resistor and capacitor can be used to
implement a passive, low pass analog filter. The input
and output impedance of this type of filter
implementation is equal to R2.

The output impedance of a passive low pass filter is rel-
atively high when compared to the active filter realiza-
tion. For instance, a 1kHz low pass filter which uses a
0.1µF capacitor in the design would require a 1.59kΩ
resistor to complete the implementation. This value of
resistor could create an undesirable voltage drop or
make impedance matching difficult. Consequently,
passive filters are typically used to implement a single
pole. Single pole operational amplifier filters have the
added benefit of “isolating” the high impedance of the
filter from the following circuitry.

(1)

0 fs/2 fs

A
na

lo
g

O
ut

pu
t (2)

Low Pass Filter

20

0

-20

G
ai

n
(d

B
)

Frequency (Hz)
100 1k 10k 100k 1M

VOUT

VIN

1

1+sRC
=

R2

VOUTVIN

fc = 1/2p R2C2

C2

20dB/decade
 1999 Microchip Technology Inc. DS00699B-page 4-63

AN699

S4.book Page 64 Thursday, March 2, 2000 8:00 AM
FIGURE 9: An operational amplifier in combination with two resistors and one capacitor can be used to implement a
1st order filter. The frequency response of these active filters is equivalent to a single pole passive low pass filter.

It is very common to use a single pole, low pass, pas-
sive filter at the input of a Delta-Sigma A/D Converter.
In this case, the high output impedance of the filter
does not interfere with the conversion process.

Active Filters

An active filter uses a combination of one amplifier, one to
three resistors and one to two capacitors to implement one
or two poles. The active filter offers the advantage of pro-
viding “isolation” between stages. This is possible by tak-
ing advantage of the high input impedance and low output
impedance of the operational amplifier. In all cases, the
order of the filter is determined by the number of capacitors
at the input and in the feedback loop of the amplifier.

Single Pole Filter

The frequency response of the single pole, active filter
is identical to a single pole passive filter. Examples of
the realization of single pole active filters are shown in
Figure 9.

Double Pole, Voltage Controlled Voltage Source

The Double Pole, Voltage Controlled Voltage Source is
better know as the Sallen-Key filter realization. This fil-
ter is configured so the DC gain is positive. In the
Sallen-Key Filter realization shown in Figure 10, the DC
gain is greater than one. In the realization shown in
Figure 11, the DC gain is equal to one. In both cases,
the order of the filters are equal to two. The poles of
these filters are determined by the resistive and capac-
itive values of R1, R2, C1 and C2.

FIGURE 10: The double pole or Sallen-Key filter
implementation has a gain G = 1 + R4 /R3. If R3 is open
and R4 is shorted the DC gain is equal to 1 V/V.

FIGURE 11: The double pole or Sallen-Key filter
implementation with a DC gain is equal to 1V/V.

G
ai

n
(d

B
)

Frequency (Hz)

60

40

20

100 1k 10k 100k 1M

VOUT

VIN

1 + R2 / R1

1+sR2C2

=

R2
VOUT

VIN

fc = 1/2π R2C2

C2

R1

a. Single pole, non-inverting active filter b. Single pole, inverting active filter c. Frequency response of single pole
non-inverting active filter

VOUT

VIN

–R2 / R1

1+sR2C2

=

R2
VOUT

VREF

C2

VIN

1 + R2 / R1

R1

MCP601 MCP601

20dB/decade

R2

VOUT

VIN

C2

R1

R4R3

C1

Sallen-Key

VOUT

VIN

K/(R1R2C1C2)

s2+s(1/R1C2+1/R2C2+1/R2C1 – K/R2C1+1/R1R2C1C2)
=

K = 1 + R4/R3

MCP601

R2

VOUT

VIN

C1

R1 C2

Sallen and Key

MCP601
DS00699B-page 4-64 1999 Microchip Technology Inc.

AN699
A

n
alo

g
/In

terface

4

S4.book Page 65 Thursday, March 2, 2000 8:00 AM
Double Pole Multiple Feedback

The double pole, multiple feedback realization of a 2nd
order low pass filter is shown in Figure 12. This filter
can also be identified as simply a Multiple Feedback
Filter. The DC gain of this filter inverts the signal and is
equal to the ratio of R1 and R2. The poles are deter-
mined by the values of R1, R3, C1, and C2.

FIGURE 12: A double pole, multiple feedback circuit
implementation uses three resistors and two capacitors
to implement a 2nd order analog filter. DC gain is equal
to –R2 / R1.

ANTI-ALIASING FILTER DESIGN
EXAMPLE

In the following examples, the data acquisition system
signal chain shown in Figure 1 will be modified as fol-
lows. The analog signal will go directly into an active low
pass filter. In this example, the bandwidth of interest of
the analog signal is DC to 1kHz. The low pass filter will
be designed so that high frequency signals from the
analog input do not pass through to the A/D Converter
in an attempt to eliminate aliasing errors. The imple-
mentation and order of this filter will be modified accord-
ing to the design parameters. Excluding the filtering
function, the anti-aliasing filter will not modify the signal
further, i.e., implement a gain or invert the signal. The
low pass filter segment will be followed by a 12-bit SAR
A/D Converter. The sampling rate of the A/D Converter
will be 20kHz, making 1/2 of Nyquist equal to 10kHz.
The ideal signal-to-noise ratio of a 12-bit A/D Converter
of 74dB. This design parameter will be used when
determining the order of the anti-aliasing filter. The filter
examples discussed in this section were generated
using Microchip’s FilterLab software.

Three design parameters will be used to implement
appropriate anti-aliasing filters:

1. Cut-off frequency for filter must be 1kHz or
higher.

2. Filter attenuates the signal to -74dB at 10kHz.

3. The analog signal will only be filtered and not
gained or inverted.

Implementation with Bessel Filter Design

A Bessel Filter design is used in Figure 13 to imple-
ment the anti-aliasing filter in the system described
above. A 5th order filter that has a cut-off frequency of
1kHz is required for this implementation. A combination
of two Sallen-Key filters plus a passive low pass filter
are designed into the circuit as shown in Figure 14.
This filter attenuates the analog input signal 79dB from
the pass band region to 10kHz. The frequency
response of this Bessel, 5th order filter is shown in
Figure 13.

FIGURE 13: Frequency response of 5th order Bessel
design implemented in Figure 14.

R3

VOUT

VIN

R1

C2

R2
C1

VOUT

VIN

–1/R1R3C5C6

s2C2C1 + sC1 (1/R1 + 1/R2 + 1/R3) + 1/(R2R3C2C1)
=

MCP601

Frequency (Hz)

G
ai

n
(d

B
)

90

0

-90

-180

-270

-360

-450

-540

-630

-720

10

0

-10

-20

-30

-40

-50

-60

-70

-80

P
ha

se
 (

de
gr

ee
s)

100 10,0001,000

gain

phase
 1999 Microchip Technology Inc. DS00699B-page 4-65

AN699

S4.book Page 66 Thursday, March 2, 2000 8:00 AM
FIGURE 14: 5th order Bessel design implemented two Sallen-Key filters and on passive filter. This filter is designed to
be an anti-aliasing filter that has a cut-off frequency of 1kHz and a stop band frequency of ~5kHz.

Implementation with Chebyshev Design

When a Chebyshev filter design is used to implement
the anti-aliasing filter in the system described above, a
3rd order filter is required, as shown Figure 15.

FIGURE 15: 3rd order Chebyshev design implemen-
ted using one Sallen-Key filter and one passive filter.
This filter is designed to be an anti-aliasing filter that has
a cut-off frequency of 1kHz -4db ripple and a stop band
frequency of ~5kHz.

Although the order of this filter is less than the Bessel,
it has a 4dB ripple in the pass band portion of the fre-
quency response. The combination of one Sallen-Key
filter plus a passive low pass filter is used. This filter is
attenuated to -70dB at 10kHz. The frequency response
of this Chebyshev 3rd order filter is shown in Figure 16.

FIGURE 16: Frequency response of 3rd order
Chebyshev design implemented in Figure 15.

This filter provides less than the ideal 74dB of dynamic
range (AMAX), which should be taken into consider-
ation.

The difference between -70dB and -74dB attenuation
in a 12-bit system will introduce little less than 1/2 LSB
error. This occurs as a result of aliased signals from
10kHz to 11.8KHz. Additionally, a 4dB gain error will
occur in the pass band. This is a consequence of the
ripple response in the pass band, as shown in
Figure 16.

VIN

VOUT

MCP601

MCP601

2.94kΩ

33nF

18.2kΩ

4.7nF

10nF

10.5kΩ 1.96kΩ 16.2kΩ

10nF

33µF

VOUT

VIN
MCP601

9.31kΩ 2.15kΩ

68nF

330nF

20kΩ

2.2nF

Frequency (Hz)

G
ai

n
(d

B
)

90

0

-90

-180

-270

-360

-450

-540

-630

-720

10

0

-10

-20

-30

-40

-50

-60

-70

-80

P
ha

se
 (

de
gr

ee
s)

100 10,0001,000

gain

phase
DS00699B-page 4-66 1999 Microchip Technology Inc.

AN699
A

n
alo

g
/In

terface

4

S4.book Page 67 Thursday, March 2, 2000 8:00 AM
FIGURE 17: 4th order Butterworth design implemented two Sallen-Key filters. This filter is designed to be an
anti-aliasing filter that has a cut-off frequency of 1kHz and a stop band frequency of ~5kHz.

Implementation with Butterworth Design

As a final alternative, a Butterworth filter design can be
used in the filter implementation of the anti-aliasing fil-
ter, as shown in Figure 17.

For this circuit implementation, a 4th order filter is used
with a cut-off frequency of 1kHz. Two Sallen-Key filters
are used. This filter attenuates the pass band signal
80dB at 10kHz. The frequency response of this Butter-
worth 4th order filter is shown in Figure 18.

The frequency response of the three filters described
above along with several other options are summarized
in Table 4.

FIGURE 18: Frequency response of 4th order
Butterworth design implemented in Figure 17.

VIN

VOUT

MCP601

MCP601
2.94kΩ 10nF

33nF

26.1kΩ

6.8nF

2.37kΩ 15.4kΩ

100nF

Frequency (Hz)

G
ai

n
(d

B
)

90

0

-90

-180

-270

-360

-450

-540

-630

-720

10

0

-10

-20

-30

-40

-50

-60

-70

-80

P
ha

se
 (

de
gr

ee
s)

100 10,0001,000

phase

gain

FILTER
ORDER,

M

BUTTERWORTH,
AMAX (dB)

BESSEL, AMAX
(dB)

CHEBYSHEV, AMAX (dB)
W/ RIPPLE ERROR OF

1dB

CHEBYSHEV, AMAX (dB)
W/ RIPPLE ERROR OF

4dB

3 60 51 65 70

4 80 66 90 92

5 100 79 117 122

6 120 92 142 144

7 140 104 169 174

TABLE 4: Theoretical frequency response at 10kHz of various filter designs versus filter order. Each filter has a
cut-off frequency of 1kHz.
 1999 Microchip Technology Inc. DS00699B-page 4-67

AN699

S4.book Page 68 Thursday, March 2, 2000 8:00 AM
CONCLUSION

Analog filtering is a critical portion of the data acquisi-
tion system. If an analog filter is not used, signals out-
side half of the sampling bandwidth of the A/D
Converter are aliased back into the signal path. Once a
signal is aliased during the digitalization process, it is
impossible to differentiate between noise with frequen-
cies in band and out of band.

This application note discusses techniques on how to
determine and implement the appropriate analog filter
design parameters of an anti-aliasing filter.

REFERENCES

Baker, Bonnie, “Using Operational Amplifiers for Ana-
log Gain in Embedded System Design”, AN682, Micro-
chip Technologies, Inc.

Analog Filter Design, Valkenburg, M. E. Van, Oxford
University Press.

Active and Passive Analog Filter Design, An Introduc-
tion, Huelsman, Lawrence p., McGraw Hill, Inc.
DS00699B-page 4-68 1999 Microchip Technology Inc.

AN702
Interfacing Microchip MCP3201 A/D Converter to 8051-Based

Microcontroller

A
n

alo
g

/In
terface

4

S4.book Page 69 Thursday, March 2, 2000 8:00 AM
INTRODUCTION

In embedded controller applications, it is often desir-
able to provide a means to digitize analog signals. The
MCP3201 12-bit Analog-to-Digital (A/D) Converter
gives the designer an easy means to add this feature to
a microcontroller with a minimal number of connec-
tions.

This Application Note will demonstrate how easy it is to
connect the MPC3201 to an 8051-compatible micro-
processor.

The MCP3201 is a fast 100kHz 12-bit A/D Converter
featuring low power consumption and power saving
standby modes. The features of the device include an
onboard sample-hold and a single pseudo differential
input. Output data from the MCP3201 is provided by a
high speed serial interface that is compatible with the
SPI® protocol. The MCP3201 operates over a broad
voltage range (2.7V – 5.5V). The device is offered in
8-pin PDIP and 150mil SOIC packages.

The MCP3201 connects to the target microprocessor
via an SPI-like serial interface that can be controlled by
I/O commands, or by using the synchronous resources
commonly found in microcontrollers. Two methods will
be explored in supporting the serial format for the A/D
Converter: An I/O port "bit-banging" method and a
method that uses the 8051 UART in synchronous serial
mode 0. An 8051 derivative processor, the 80C320,
was chosen for testing since it has a second onboard
serial port. This second serial port allows the A/D Con-
verter sample data to be echoed to a host PC running
an ASCII terminal program such as Hyperterm. Both
ports respond to the standard 8051 setup instructions
for code portability. An 8051 has a single UART that
can be dedicated to either the A/D Converter, or to
other communication tasks.

I/O PORT METHOD

The serial data format supported by the MCP3201 is
illustrated in Figure 1. The A/D Converter will come out
of its sleep mode on the falling edge of CS. The conver-
sion is then initiated with the first rising edge of CLK.
During the next 1.5 CLK cycles, the converter samples
the input signal. The sampling period stops at the end
of the 1.5 CLK cycles on the falling edge of CLK, and
DOUT also changes from a Hi-Z state to null. Following
the transmission of the null bit, the A/D Converter will
respond by shifting out conversion data on each subse-
quent falling edge of the clock. The most significant bits
are clocked out first. The micro is supplying the CS and
CLK signals and the A/D Converter responds with the
bit data on DOUT.

As shown in Figure 1, starting with an initial NULL bit,
bits B11, B10, B9…B0 are shifted out of the A/D Con-
verter. Following bit B0, further CLK falling edges will
cause the A/D Converter to shift out bits B1…B11 in
reverse order of the initial bit sequence. Continued
CLKs will shift out zeros following B11 until CS returns
high to signal the end of the conversion. On the rising
edge of CS, DOUT will change to a Hi-Z state. The device
receiving the data from the A/D Converter can use the
low-to-high edge of CLK to validate (or latch) the A/D
Converter bit data at DOUT.

The 8051 instruction set provides for bit manipulation to
allow the use of I/O pins to serve as a serial host for the
A/D Converter. By manually toggling the I/O pins and
reading the resulting A/D Converter DOUT bits, the
designer is free to use any I/O pin that can provide the
needed function. The drawback to this method is the
bandwidth limit imposed by the execution time of the
opcodes supporting the A/D Converter communication.
Example 1 shows a code module for a simple I/O port
"bit-banging" method for supporting the MCP3201. To
optimize for speed, the result is right justified in the
ADRESH:ADRESL register pair.

Author: Lee Studley
Microchip Technology Inc.

SPI is a registered trademark of Motorola
 1999 Microchip Technology Inc. DS00702A-page 4-69

AN702

S4.book Page 70 Thursday, March 2, 2000 8:00 AM
FIGURE 1: MCP3201 Serial Data Format.

EXAMPLE 1: I/O PORT METHOD CODE

 GET_AD: SETB CS ; set cs hi
MOV COUNTA,#15 ;

 NXTBIT: CLR DCLK ; X,X,NULL,D11,D10,D9...D0
CLR CS ; CS low to start conversion or keep low till done
SETB DCLK ; raise the clock
MOV C,SDAT ; put data into C flag
RLC A ; shift C into Acc (A/D low bits)
XCH A,ADRESH ; get ADRESH byte (save low bits in ADRESH for now)
RLC A ; shift C into Acc (A.D high bits)
XCH A,ADRESH ; get low bits back into Acc for next loop
DJNZ COUNTA,NXTBIT
MOV ADRESL,A ; put A into ADRESL
ANL ADRESH,#0FH ; mask off unwanted bits (x,X,X,Null)
SETB CS ; set CS hi to end conversion

USING THE SERIAL PORT IN
SYNCHRONOUS MODE0

The UART on the 8051 supports a synchronous shift
register mode that, with some software help, can be
used to speed up the communications to the A/D Con-
verter. In Mode0, the UART uses the RX pin for data I/
O, while the TX pin provides a synchronization clock.
The shift register is 8 bits wide and the TX pin will tran-
sition low to high to supply a clock rising edge for each
bit. Figure 2 shows the typical Mode0 timing.

Since the UART was designed primarily to support
RS-232 data transfers, the bit order expected is LSb
first. The shift register Mode0 also uses this bit order.
As shown in Figure 1, the first 12 bits of the A/D Con-
verter data are ‘backwards’ for our application. Fortu-
nately, the MCP3201 provides the reverse order of
sampled bits after the initial transfer of bits B11…B0.

Inspection of Figure 1 readily shows that working back
from the last data bit transferred, 3 bytes received from
the shift register will cover 24 bits of the 26 bits trans-
ferred from the A/D Converter. Conveniently, bit manip-
ulation can be used to provide the two CLK rising edges
needed during the beginning sample operation. After
these two initial CLK cycles, the UART shifter can be
accessed three times to read in the remainder of the
data. The bit order will be correct for the third shifter
byte as MSB data, the second byte will have 4 LSBs in
the upper nibble (the lower nibble will be masked off),
and the first byte will be tossed. Figure 3 shows the
relationship between the shifted bits and SBUF data
received by the UART. Example 2 shows a code mod-
ule for using the synchronous port as the interface. The
result is left justified in the ADRESH:ADRESL register
pair.

FIGURE 2: Typical 8051 UART Mode0 Timing.

CS/SHDN

CLK

DOUT
HI-Z

NULL

S/H

0 B11 B10 B9 B8 B7 B6 B4B5 B3 B2 B1 B0 B3B2B1 B4 B5 B7 B8B6 B9 B10 B11

RxD
(Data)

TxD
(Clock)

Bit order (LSb enters RxD first)

D0

8051 typical serial port Mode0 receive waveforms

D2 D3 D4 D5 D7D1 D6
DS00702A-page 4-70 1999 Microchip Technology Inc.

AN702
A

n
alo

g
/In

terface

4

S4.book Page 71 Thursday, March 2, 2000 8:00 AM
FIGURE 3: Serial Port Waveforms.

EXAMPLE 2: SYCHRONOUS PORT CODE
 GET_AD: SETB CS ; set CS hi

CLR DCLK ; X,X,NULL,D11,D10,D9...D0
CLR CS ; CS low to start conversion or keep low till done
SETB DCLK ; 1st S/H clock
CLR DCLK ;
SETB DCLK ; 2nd S/H clock and leave DCLK high

SETB REN_1 ; REN=1 & R1_1=0 initiates a receive
CLR R1_1 ;

 BYTE_1: JNB R1_1,BYTE_1
MOV A,SBUF1 ; toss this byte
CLR R1_1

 BYTE_2: JNB R1_1,BYTE_2
MOV ADRESL,SBUF1 ; save LSbs
CLR R1_1

 BYTE_3: JNB R1_1,BYTE_3
MOV ADRESH,SBUF1 ; save MSbs
SETB CS ; set CS hi to end conversion
ANL ADRESL,#0FH ; mask off unwanted LSb bits

CS/SHDN

DCLOCK

DOUT

HI-Z
null

0 D11 D10 D9 D8 D7 D6 D4D5 D3 D2 D1 D0 D3D2D1 D4 D5 D7 D8D6 D9 D10 D11

target bits in desired order

S/H
LSb MSb

Byte 1
LSb MSb

Byte 2
LSb MSb

Byte 3

SBUF Byte 1

D5 D6 D7 D8 D9 D11D10 null

SBUF Byte 2 (LSig word)

D3 D2 D1 D0 x xx x

SBUF Byte 3 (MSig word)

D11 D10 D9 D8 D7 D5D6 D4

MSb LSb MSb LSb
 1999 Microchip Technology Inc. DS00702A-page 4-71

AN702

S4.book Page 72 Thursday, March 2, 2000 8:00 AM
A Quick Comparison of Results

The test circuit used was taken from the data sheet and
is shown in Figure 4.

FIGURE 4: Test Circuit.

Oscilloscope screen shots of the I/O port method vs.
the Synchronous Port method are shown in Figure 5
and Figure 6.

FIGURE 5: Scope Shot: I/O Port Method.

FIGURE 6: Scope Shot: Synchronous Port Method.

An 80C320 microprocessor clocked at a crystal fre-
quency of 11.0592 MHz yielded the following results:

IN SUMMARY

Both methods illustrate the ease with which the
MCP3201 A/D Converter can complement a design to
add functionality for processing analog signals. The
synchronous serial port method provides a 2:1 perfor-
mance increase over the I/O port method, but con-
sumes one UART as a resource. The I/O port method
is flexible in allowing any suitable 3 I/O pins to be used
in the interface.

Potential applications include control voltage monitor-
ing, data logging, and audio processing. The routines in
the source code appendices provide the designer with
an effective resource to implement the design.

.1 µF 10 µF10 µF

VREF

+VIN

-VIN

GND

CS

DOUT

CLK

VCC

MCP3201
DS80C320

VDD (8051)P1.1

P1.2 (RX)

P1.3 (TX)

10

+5V

CS

DOUT

CLK

CS

DOUT

CLK

Method

CS Time
(Conv. time

approx.)
Approx.

Throughput
Resources

Used

I/O Port 99 µs 10 kHz 3 I/O pins
(P1.1..P1.3)

Sync.
Serial

43.4 µs 23 kHz 3 I/O pins
(P1.1..P1.3)
1 UART
(Mode0)

Note: The 80C320 can be clocked to 33MHz, which
would effectively decrease the conversion time
by a factor of 3 for increased performance in
demanding applications.

TABLE 1: Conversion Time Comparison.
DS00702A-page 4-72 1999 Microchip Technology Inc.

AN702
A

n
alo

g
/In

terface

4

S4.book Page 73 Thursday, March 2, 2000 8:00 AM
APPENDIX A: I/O PORT SOURCE CODE
;
;
$MOD51
$TITLE(ads)
$DATE(7/19/98)
$PAGEWIDTH(132)
$OBJECT(C:\ASM51\ads.OBJ)
;
; Author Lee Studley
; Assembled with Metalink’s FreeWare ASM51 assembler
; Tested with NOICE emulation software.
; Tested with a DALLAS DS80C320 (8031) micro clocked @ 11.0592mhz
; This test uses a ’bit banging’ approach yielding a conversion time
; of approximately 99uS
; The result is transmitted via the original 8051 UART to an ascii
; terminal at 19.2k baud 8N1 format
;
;================= RESET AND INTERRUPT VECTORS ======================

;
RSTVEC EQU 0000H;
IE0VEC EQU 0003H;
TF0VEC EQU 000BH;
IE1VEC EQU 0013H;
TF1VEC EQU 001BH;
RITIVEC EQU 0023;
TF2VEC EQU 002BH;(8052)

;
;================= VARIABLES ================

DSEG

;================= PROGRAM VARIABLES =================
COUNTA EQU 30H
COUNTB EQU 31H
ADRESL EQU 2
ADRESH EQU 3

;================= HARDWARE EQUATES =================
DCLK EQU P1.3
SDAT EQU P1.2
CS EQU P1.1

;
;================= CONSTANTS =================
;
;================= PROGRAM CODE =================
;
CSEG

;org RSTVEC
;LJMP START

ORG 4000H ; NOICE SRAM/PROGRAM SPACE

;==
START:
;==
; Initialize the on-chip serial port for mode 1
; Set timer 1 for baud rate: auto reload timer
;==
SETUPUART:

MOV PCON,#80H; SET FOR DOUBLE BAUD RATE
MOV TMOD,#00100010B; two 8-bit auto-reload counters

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
 1999 Microchip Technology Inc. DS00702A-page 4-73

AN702

S4.book Page 74 Thursday, March 2, 2000 8:00 AM
MOV TH1, #0FDH; 19.2K @ 11.059 MHZ
MOV SCON,#01010010B; mode 1, TI set
SETB TR1; start timer for serial port

;==
; GET_AD: Initiates the A/D conversion and retreives the AD sample into
; ADRESH,ADRESL.
; The A/D convertor is connected to port1 pins 0..2 as:
; SDAT EQU P1.0 I/O
; DCLK EQU P1.1 I/O
; CS EQU P1.2 I/O
; Uses: ADRESL,ADRESH,ACC,COUNTA
; Exits: ADRESH=(x,x,x,x,B11..B8), ADRESL(B7..B0,)
;==

GET_AD: SETB CS ; set cs hi

MOV COUNTA,#15 ; number of bits to shift 12+X,X,NULL=15

NXTBIT: CLR DCLK ; X,X,NULL,D11,D10,D9...D0
 CLR CS ; CS low to start conversion or keep low till done

SETB DCLK ; raise the clock
MOV C,SDAT ; put data into C flag
RLC A ; shift C into Acc (A/D low bits)
XCH A,ADRESH ; get ADRESH byte(sav low bits in ADRESH for now)
RLC A ; shift C into Acc (A/D high bits)
XCH A,ADRESH ; get low bits back into Acc for next loop
DJNZ COUNTA,NXTBIT
MOV ADRESL,A ; put A into ADRESL
ANL ADRESH,#0FH ; mask off unwanted bits (x,X,X,Null
SETB CS ; set CS hi to end conversion

;=END__GET_AD==
;==

;==
PROCDIGS:

CALL BIN16BCD
MOV R0,#7

NXTDIG:
MOV A,#30H
ADD A,@R0
CALL SENDCHAR
DEC R0
CJNE R0,#3,NXTDIG

CALL RETNEWLINE ; send a carrage return and line feed
CALL DELAY1 ; wait here awhile
JMP START

;==
;=SUBROUTINES==
;==
;==
;==
RETNEWLINE:

MOV A,#0AH ; *** \n newline
CALL SENDCHAR
MOV A,#0DH ; *** return
CALL SENDCHAR
RET

;==
SENDCHAR:
T_TST: JNB TI,T_TST ; loop till output complete

CLR TI ; clear bit
MOV SBUF,A ; send data
RET

;==
DS00702A-page 4-74 1999 Microchip Technology Inc.

AN702
A

n
alo

g
/In

terface

4

S4.book Page 75 Thursday, March 2, 2000 8:00 AM
;**
; BIN16BCD

; The following routine converts an unsigned integer value in the
; range of 0 - 9999 to an unpacked Binary Coded Decimal number. No
; range checking is performed.
;
; INPUT: R3 (MSB), R2(LSB) contain the binary number to be
; converted.
; OUTPUT: R7(MSD), R6, R5, R4(LSD) contain the 4 digit, unpacked BCD
; representation of the number.
; Uses: R1,R2,R3,R4,R5,R6,R7,ACC
;**

BIN16BCD:

MOV R1,#16D ; loop once for each bit (2 bytes worth)
MOV R5,#0 ; clear regs.
MOV R6,#0
MOV R7,#0

BCD_16LP:

MOV A,R2
ADD A,R2
MOV R2,A

MOV A,R3
ADDC A,R3
MOV R3,A

;======
MOV A,R5
ADDC A,R5
DA A
MOV R5,A

MOV A,R6
ADDC A,R6
DA A
MOV R6,A
DJNZ R1,BCD_16LP ; loop until all 16 bits done

;=================
;unpack the digits
;=================

SWAP A ;swap so that digit 4 is rightmost
ANL A,#0FH ;mask off digit 3
MOV R7,A ;save digit 4 in R7
MOV A,R6 ;get digits 3,4 again
ANL A,#0FH ;mask off digit 4
MOV R6,A ;save digit 3

MOV A,R5 ;get digits 1,2
SWAP A ;swap so that digit 2 is rightmost
ANL A,#0FH ;mask off digit 1
XCH A,R5 ;put digit 2 in R5, digit 1 => ACC
ANL A,#0FH ;mask off digit 2
MOV R4,A ;save digit 1 in R4 then exit

 RET
;==

DELAY1: DJNZ R2,DELAY1
DELAY2: DJNZ R3,DELAY1

RET
;==
;==
END
 1999 Microchip Technology Inc. DS00702A-page 4-75

AN702

S4.book Page 76 Thursday, March 2, 2000 8:00 AM
APPENDIX B: SYNCHRONOUS PORT SOURCE CODE
;
;
$MOD51
$TITLE(ads2)
$DATE(7/29/98)
$PAGEWIDTH(132)
$OBJECT(C:\ASM51\ads2.OBJ)
;
; Author: Lee Studley
; Assembled with Metalink’s FreeWare ASM51 assembler
; Tested with NOICE emulation software.
; Tested with a DALLAS DS80C320 (8031) micro clocked @ 11.0592mhz
; This micro has a 2nd UART resource at pins P1.2,P1.3
;
; This test uses a the UART MODE0 approach yielding a conversion
; time of approximately 43.4uS
; The result is transmitted via the original 8051 UART to an ascii
; terminal at 19.2k baud 8N1 format
;
;================= RESET AND INTERRUPT VECTORS ======================
;
RSTVEC EQU 0000H ;
IE0VEC EQU 0003H ;
TF0VEC EQU 000BH ;
IE1VEC EQU 0013H ;
TF1VEC EQU 001BH ;
RITIVEC EQU 0023H ;
TF2VEC EQU 002BH ; (8052)
;
;================= VARIABLES =================

DSEG

;================= PROGRAM VARIABLES =================
COUNTA EQU 30H
COUNTB EQU 31H
ADRESL EQU 2
ADRESH EQU 3

;================= HARDWARE EQUATES =================
DCLK EQU P1.3
SDAT EQU P1.2
CS EQU P1.1
;
;

;2nd Uart equates
SCON1 EQU 0C0H
SBUF1 EQU 0C1H
REN_1 BIT SCON1.4
R1_1 BIT SCON1.0
;
;
;================= CONSTANTS =================
;
;================= PROGRAM CODE =================
;

CSEG

; ORG RSTVEC
; LJMP START

ORG 4000H ; NOICE SRAM/PROGRAM SPACE

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
DS00702A-page 4-76 1999 Microchip Technology Inc.

AN702
A

n
alo

g
/In

terface

4

S4.book Page 77 Thursday, March 2, 2000 8:00 AM
;==
START:
;==
; Initialize the on-chip serial port for mode 1
; Set timer 1 for baud rate: auto reload timer
;==
SETUPUART:

MOV PCON,#80H ; SET FOR DOUBLE BAUD RATE
MOV TMOD,#00100010B ; two 8-bit auto-reload counters
MOV TH1,#0FDH ; 19.2K @ 11.059 MHZ
MOV SCON,#01010010B ; mode 1, TI set
SETB TR1 ; start timer for serial port

;==
SETUPUART2:
 MOV SCON1,#00000000B ; 2nd uart mode 0, TI set
 ; Shift clk(TX)=Tosc/12
;==

;==
; GET_AD: Initiates the A/D conversion and retreives the AD sample into
; ADRESH,ADRESL.
; The A/D convertor is connected to port1 pins 1..3 as:
; DCLK EQU P1.3 Tx(synchronous clock)
; SDAT EQU P1.2 Rx(synchronous data)
; CS EQU P1.1 I/O
; Uses: ADRESL,ADRESH,ACC,COUNTA
; Exits: ADRESH=(B11..B4), ADRESL(B3..B0,x,x,x,x)
;==
GET_AD: SETB CS ; set cs hi

CLR DCLK ; X,X,NULL,D11,D10,D9...D0
CLR CS ; CS low to start conversion or keep low till done
SETB DCLK ; 1st S/H clock
CLR DCLK ;
SETB DCLK ; 2nd S/H clock and leave DCLK high

SETB REN_1 ; REN=1 & R1_1=0 initiates a receive
CLR R1_1 ;

BYTE_1: JNB R1_1,BYTE_1
MOV A,SBUF1 ; toss this byte
CLR R1_1

BYTE_2: JNB R1_1,BYTE_2
MOV ADRESL,SBUF1 ; save lsbs
CLR R1_1

BYTE_3: JNB R1_1,BYTE_3
MOV ADRESH,SBUF1 ; save msbs
SETB CS ; set CS hi to end conversion
ANL ADRESL,#0F0H ; mask off unwanted lsb bits

;=END__GET_AD==
;==

;==
PROCDIGS:

CALL BIN16BCD
MOV R0,#7

NXTDIG:
MOV A,#30H
ADD A,@R0
CALL SENDCHAR
DEC R0
CJNE R0,#3,NXTDIG

CALL RETNEWLINE ; send a carrage return and line feed
 1999 Microchip Technology Inc. DS00702A-page 4-77

AN702

S4.book Page 78 Thursday, March 2, 2000 8:00 AM
CALL DELAY1 ; wait here awhile
JMP START

;==
;=SUBROUTINES==
;==
;==
;==
RETNEWLINE:

MOV A,#0AH ; *** \n newline
CALL SENDCHAR
MOV A,#0DH ; *** return
CALL SENDCHAR
RET

;==
SENDCHAR:
T_TST: JNB TI,T_TST ; loop till output complete

CLR TI ; clear bit
MOV SBUF,A ; send data
RET

;==

;==
; BIN16BCD
; The following routine converts an unsigned integer value in the
; range of 0 - 9999 to an unpacked Binary Coded Decimal number. No
; range checking is performed.
;
; INPUT: R3 (MSB), R2(LSB) contain the binary number to be
; converted.
; OUTPUT: R7(MSD), R6, R5, R4(LSD) contain the 4 digit, unpacked BCD
; representation of the number.
; Uses: R1,R2,R3,R4,R5,R6,R7,ACC
;**

BIN16BCD:
MOV A,ADRESL ; right justify the
SWAP A ; R3:R2 pair for bin16bcd routine
MOV ADRESL,A

MOV A,ADRESH
SWAP A
ANL A,#0F0H
ORL ADRESL,A

MOV A,ADRESH
SWAP A
ANL A,#0FH
MOV ADRESH,A

;======
MOV R1,#16D ; loop once for each bit (2 bytes worth)
MOV R5,#0 ; clear regs.
MOV R6,#0
MOV R7,#0

BCD_16LP:

MOV A,R2
ADD A,R2
MOV R2,A

MOV A,R3
ADDC A,R3
MOV R3,A

;======
MOV A,R5
DS00702A-page 4-78 1999 Microchip Technology Inc.

AN702
A

n
alo

g
/In

terface

4

S4.book Page 79 Thursday, March 2, 2000 8:00 AM
ADDC A,R5
DA A
MOV R5,A

MOV A,R6
ADDC A,R6
DA A
MOV R6,A
DJNZ R1,BCD_16LP ; loop until all 16 bits done

;=================
;unpack the digits
;=================

SWAP A ;swap so that digit 4 is rightmost
ANL A,#0FH ;mask off digit 3
MOV R7,A ;save digit 4 in R7
MOV A,R6 ;get digits 3,4 again
ANL A,#0FH ;mask off digit 4
MOV R6,A ;save digit 3

MOV A,R5 ;get digits 1,2
SWAP A ;swap so that digit 2 is rightmost
ANL A,#0FH ;mask off digit 1
XCH A,R5 ;put digit 2 in R5, digit 1 => ACC
ANL A,#0FH ;mask off digit 2
MOV R4,A ;save digit 1 in R4 then exit

RET

;==
;==
;==

DELAY1: DJNZ R2,DELAY1
DELAY2: DJNZ R3,DELAY1

RET
;==
;==
;==

END
 1999 Microchip Technology Inc. DS00702A-page 4-79

AN702

S4.book Page 80 Thursday, March 2, 2000 8:00 AM
NOTES:
DS00702A-page 4-80 1999 Microchip Technology Inc.

AN703
Using the MCP320X 12-Bit Serial A/D Converter with

Microchip PICmicro® Devices

A
n

alo
g

/In
terface

4

S4.book Page 81 Thursday, March 2, 2000 8:00 AM
OVERVIEW
The MCP320X devices comprise a family of 12-bit suc-
cessive approximation Analog to Digital (A/D) Convert-
ers. These devices provide from one to eight analog
inputs with both single ended and differential inputs.
Data is transferred to and from the MCP320X through
a simple SPI-compatible 3-wire interface. This appli-
cation note discusses how to interface the MCP320X
devices to Microchip PICmicro® devices, using both
software and hardware SPI with examples shown in C
and Assembly languages. The programs in this appli-
cation note were developed using a PIC16C62A and
MCP3202 on a PICDEM-2 demonstration board. As a
matter of convenience, the CLK, DO, and DI pins of the
PIC16C62A are used for all examples, whether using
the hardware SPI peripheral or the software SPI imple-
mentation. The software SPI may be adapted to I/O
ports on any PICmicro device.

COMMUNICATION

Communication to the MCP3202 is accomplished via a
synchronous SPI-compatible scheme. This interface
consists of three lines; DOUT, DIN and CLK. Control
information is loaded into the MCP320X through the
DIN line and data is output on the DOUT line. The CLK
signal is generated by the PICmicro and is used as both
communication and conversion clock for the A/D Con-
verter. Data bits are latched in from DIN on the rising
edge of CLK and latched out to DOUT on the falling
edge. A fourth line, CS, is an active low signal used to
select the chip and enable it for conversion and com-
munication. See Figure 1 for a communication timing
diagram.

FIGURE 1: Communication with MCP3202 using LSB first format

Author: Jake McKernan
Microchip Technology Inc.

Null
Bit

B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

CS

CLK

DOUT

HI-Z HI-Z

(MSB)

DIN

* After completing the data transfer, if further clocks are applied with CS low, the A/D Converter will output zeros indefinitely.

O
D

D/
SI

G
N

St
ar

t

SG
L/

D
IF

F

M
SB

F

Don’t Care

*

SPI is a trademark of Motorola Corporation
 1999 Microchip Technology Inc. DS00703A-page 4-81

AN703

S4.book Page 82 Thursday, March 2, 2000 8:00 AM
A 4-bit configuration command is issued to the
MCP3202 to begin the conversion process. When com-
munication of the command word to the MCP3202
begins, the first ‘1’ bit seen by the MCP3202 on the DIN

line will be interpreted as a start bit. Leading 0’s may be
clocked into the device with no effect. The start bit is fol-
lowed by a mode selection bit, indicating whether the
conversion result will be single-ended or differential. A
mode select bit of '1' selects single-ended mode and '0'
selects differential mode. Next, the channel select bit is
clocked into the MCP3202, which sets the channel to
be converted. A '0' in this bit position selects Channel
0, while a '1' selects Channel 1. If differential mode was
selected, the channel select bit determines which
channel will be subtracted from the other. Table 1 illus-
trates how the A/D result will be affected by the channel
and mode selection bits. Finally, a data format bit is
clocked into the MCP3202. This bit selects whether the
result of the conversion will be shifted out in LSb for-
mat. A '0' in this bit position will cause the data to be
shifted out in MSb only format. If a '1', the data will first
be shifted out in MSb format, followed by the same data
in LSb format. Keep in mind that the data will always be
shifted out in MSb format, regardless of the state of the
data format bit.

The command word is followed by the clocking in of a
dummy bit, during which time the converter determines
whether the MSb should be a 0 or 1. The 12-bit A/D
result is then clocked out of the MCP3202 one bit at a
time. The LSb of the A/D result is common to both data
formats, i.e. the LSb is output only once while all other
result bits are output twice (once for MSb first format,
once for LSb first format). 0's will be clocked out of the
DOUT line if CLK pulses are issued after all data bits are
extracted from the converter.

IMPLEMENTATION

As previously mentioned, several code examples of
interfacing to the MCP3202 are shown in this applica-
tion note. All methods use essentially the same algo-
rithm of performing an A/D conversion, displaying the
result on PORTB, then waiting for a keypress. The
examples cover hardware and software SPI, relocat-
able and absolute assembly and C.

Written in absolute assembly, Appendix A shows the
use of the hardware SSP module in master SPI mode.
The SSP is set up to clock data in on the rising edge,
clock data out on the falling edge and drive the clock
high when idle, with a frequency of Fosc/64. All bits of
PORTB are configured as outputs and the port is
cleared. To begin the conversion process, the
MCP3202 is selected using the CS line and 0x01 is
loaded into the SSPBUF of the PIC16C62A. This shifts
out seven leading 0’s, followed by a start bit. The sub-
routine WAIT_BF then monitors the BF flag in the SSP-
STAT register, which indicates when the 8-bit transfer is
complete. Next, a value of 0xE0 is loaded into the SSP-
BUF, the MSb’s being the three configuration informa-
tion bits, and the lower five bits being dummy
information to round out the byte. The configuration bits
in this example set the MCP3202 up for single-ended
conversion on channel 1, with the output in MSb first
format. During the transmission of the 5 LSb’s, the
MCP3202 will begin shifting out A/D result data. The
WAIT_BF subroutine is called after the SSPBUF is
loaded, waiting for the transmission to be complete.
Once the transmission is complete, the MSb’s of the
result are read from the SSPBUF, masked, and dis-
played on PORTB for examination by the user. Finally,
a dummy value of 0x00 is loaded into the SSPBUF to
retrieve the final eight LSb’s of the A/D result from the
MCP3202.

The WAIT_PRESS routine is then called, waiting for
the RA4 button of the PICDEM-2 board to be pressed
and released. Once the button has been pressed and
released, the remaining data is read from the SSPBUF
and displayed on the PORTB pins. This information is
displayed until the RA4 button is again pressed and
released (by calling the WAIT_PRESS subroutine),
after which the A/D process begins again.

Appendix B demonstrates the same functionality as the
program in Appendix A, but is written in the C language.
This allows portability between platforms (12-bit, 14-bit
or 16-bit cores), with a minimum of change to the
program.

Appendices C and D are used together to show a hard-
ware SPI implementation using relocatable assembly
code. The main file (MCP3202c.asm) is shown in
Appendix C and contains the main functionality of the
program, while the assembly file shown in Appendix D
(waitfcn.asm) contains the auxiliary functions (i.e. wait-
ing for SPI transmission to complete and for RA4 press
and release). The linker script (16c62a.lkr) shown in
Appendix D controls where the relocatable segments

CONFIG
 BITS

CHANNEL
SELECTION

GND

SGL/
DIFF

ODD/
SIGN

0 1

SINGLE
ENDED MODE

1 0 + -

1 1 + -

PSEUDO-
DIFFERENTIAL

 MODE

0 0 IN+ IN-

0 1 IN- IN+

TABLE 1: Configuration Bits for the
MCP3202
DS00703A-page 4-82 1999 Microchip Technology Inc.

AN703
A

n
alo

g
/In

terface

4

S4.book Page 83 Thursday, March 2, 2000 8:00 AM
are placed in the PIC16C62A program memory and
defines the processor’s available RAM space for the
linker. Please consult the MPASM User’s Guide for
more details on how to write relocatable code.

Appendix E illustrates communication to the MCP3202
using firmware SPI rather than the hardware periph-
eral. The same I/O pins are used to generate the clock
and data signals as with the hardware peripheral, for
convenience. Program initialization occurs as with the
previous examples, except that the hardware periph-
eral is excluded and replaced with initialization of
PORTC bits. Three registers are initialized to be used
as input and output buffers, and there are two new sub-
routines added to communicate to the MCP3202. The
first routine called will be OUT_CONTROL, which
issues the control word to the MCP3202. The control
word to be sent is loaded into the OUTBUF register
before the subroutine is called. Each of the four bits is
then shifted out and clocked into the A/D Converter
using the DOUT and CLK lines of PORTC, respectively.
Once all bits are shifted out, the subroutine returns to
the calling function. To retrieve the data from the A/D
Converter, a second subroutine is implemented. The
IN_DATA subroutine toggles the CLK line and reads the
DIN line, shifting each new bit into the INBUFL and
INBUFH registers. All 12 bits of the result are read by
this subroutine which will return to the calling function
once the transfer is complete. As with the previous
examples, the MSb’s are displayed on PORTB, while
the program waits for RA4 to toggle. The LSb’s are then
displayed, the program waits for RA4 to toggle again,
and the process repeats again.

Appendix F is a variation on Appendix E, demonstrat-
ing the use of relocatable assembly to implement a
software SPI. The same subroutines are used for this
example, but are declared as external. The wait func-
tions and linker script (waitfcn.asm, 16c62a.lkr) files
shown in Appendix C are used in this example. The
ser_io.asm file shown in Appendix G contains the
OUT_CONTROL and IN_DATA subroutines used in
this example.

The final example, shown in Appendix H, illustrates the
firmware SPI implementation in the C language. Two
functions are added to this implementation,
Output_Control and Input_Data. As with the previous
example, the Output_Control shifts the 4-bit command
out to the MCP3202 one bit at a time and Input_Data
reads all 12 bits of the result. The data is then displayed
on PORTB, waiting for input on RA4 before continuing
on. In this program, the A/D result data may be
accessed in one of two ways; as a 16-bit value or as two
8-bit values. When reading the value in from the
MCP3202 using the Input_Data function, the A/D result
is treated as a 16-bit value. During the display portion
of the program, the result is accessed 8-bits at a time
for display on PORTB.

SCHEMATIC

The code for this application note was developed on a
PICDEM-2 demonstration board. An equivalent circuit
of the board as used in this application note is shown in
Appendix I. A full schematic of the PICDEM-2 board
can be found in the PICDEM-2 User’s Guide, available
with the kit or from the Microchip web site
(www.microchip.com).

The SPI communication lines CLK, DOUT and DIN are
connected to RC3, RC4 and RC5, respectively. The CS
signal is generated using RC2 as a general purpose
output pin. PORTB is used entirely as an output port for
display of A/D result data. All LED’s are driven through
470Ω current limiting resistors. RA4 is connected to a
momentary contact switch and pullup resistor for allow-
ing the user to cycle through the A/D result data on
PORTB.

Channel 1 of the A/D Converter is used throughout the
application note, and must have an analog voltage
applied to it to get meaningful results from the
MCP3202. This was done using a 0-5v power supply
output fed directly into pin three of the MCP3202.

The PIC16C62A uses the RC oscillator configuration
as the main clock, operating at an approximate fre-
quency of 4MHz. An RC network is also provided on
the MCLR line to help ensure that the device is reset
correctly on application of power.

CONCLUSION

The example code shown in this application note gives
a firm grasp of how to interface the MCP3202 A/D Con-
verter to PICmicro devices. The code has the potential
to be adapted to any Microchip PICmicro device, an
exercise left up to the user. Implementations in multiple
languages and styles also gives the developer flexibility
in successfully writing code and libraries to use this
device in end-user applications.
 1999 Microchip Technology Inc. DS00703A-page 4-83

AN703

S4.book Page 84 Thursday, March 2, 2000 8:00 AM
APPENDIX A: HARDWARE SPI, ABSOLUTE ASSEMBLY
;***
;*
;* This program demonstrates communication with the MCP3202 A/D converter
;* using absolute assembly code. This code was written for the midrange
;* PICmicro devices (using a PICDEM-2 board and the 16C62A) and uses the SSP
;* module in SPI mode for communication to the MCP3202.
;*
;* Filename: mcp3202a.asm
;*
;* (C) 1998 Microchip Technology, Inc.
;* All Rights Reserved
;*
;***

 list p=16c62a

 include “p16c62a.inc”

ADCS equ 0x02 ;chip select line for A/D

 ORG 0x0000

 clrf PCLATH ;reset PCLATH for Page0 operation
 clrf STATUS ;reset STATUS for Bank 0 operation
 clrf FSR ;clear FSR
 goto START ;begin main program

 ORG 0x0004
_ISR
 goto _ISR ;stay here if interrupt occurs

WAIT_BF
 bsf STATUS,RP0 ;select Bank0
 btfss SSPSTAT,BF ;check for BF set
 goto WAIT_BF ;continue to wait
 bcf STATUS,RP0 ;select Bank1
 return ;return to caller

WAIT_PRESS
 btfsc PORTA,4 ;check for button press
 goto WAIT_PRESS

WAIT_RLS
 btfss PORTA,4 ;check for button release
 goto WAIT_RLS
 return ;return to caller

START
 movlw 0x32 ;set up SSP to clock data out on falling edge
 movwf SSPCON ;clock data in on rising edge, clock idle high

 clrf PORTB ;clear PortB outputs

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
DS00703A-page 4-84 1999 Microchip Technology Inc.

AN703
A

n
alo

g
/In

terface

4

S4.book Page 85 Thursday, March 2, 2000 8:00 AM
 bsf STATUS,RP0 ;select Bank1
 movlw 0x10
 movwf TRISC ;set up Port C for SPI master

 clrf TRISB ;configure PortB as outputs

 bcf STATUS,RP0 ;select Bank0
 bsf PORTC,ADCS ;deselect A/D device

BEGIN_AD
 bcf PORTC,ADCS ;select A/D device
 movlw 0x01
 movwf SSPBUF ;output start bit

 call WAIT_BF ;wait for transfer complete

 movlw 0xE0 ;output 3 command and 5 dummy bits
 movwf SSPBUF ;shift out command and receive 4 MSb’s
 call WAIT_BF ;wait for transfer complete

 movf SSPBUF,W ;read result (MSB’s of conversion)
 andlw 0x0F ;mask out MSb’s
 movwf PORTB ;display on PortB

 movlw 0x00 ;load dummy value
 movwf SSPBUF ;shift remaining bits
 call WAIT_BF ;wait for transfer complete

 call WAIT_PRESS ;wait for button press/release before advancing

 movf SSPBUF,W ;read result (LSb’s)
 movwf PORTB ;display on PortB

 bsf PORTC,ADCS ;de-select A/D converter

 call WAIT_PRESS ;wait for button press/release before advancing

HERE
 goto BEGIN_AD ;play it again, Sam

 END
 1999 Microchip Technology Inc. DS00703A-page 4-85

AN703

S4.book Page 86 Thursday, March 2, 2000 8:00 AM
APPENDIX B: HARDWARE SPI, C LANGUAGE
/***
*
* This program is written to demonstrate interfacing the MCP3202 A/D
* converter to Microchip PICmicro devices. The code demonstrates
* how to implement hardware SPI to communicate with the converter,
* and is written in C for the HiTech PICC C compiler. By modifying the
* #include statement to “#include<16c62a.h>” the code may be compiled
* using MPLAB-C 1.21.
*
* Filename: mcp3202b.c
*
* (C) 1998 Microchip Technology, Inc.
* All Rights Reserved
*
***/

#include<pic1662.h> /* modify this statement for use with the MPLAB-C compiler */

#define ADCS 0x04 /* I/O bit position for CS line */
#define BUSY 0x01 /* Bit0 of SSPSTAT, indicated when SPI xmission complete */
#define BUTTON 0x10 /* I/0 bit position for RA4 line */

void Wait_for_Press()
{
 while(PORTA & BUTTON)
 {
 /* wait for button press */
 }

 while(!(PORTA & BUTTON))
 {
 /* wait for button release */
 }
}

void main(void)
{
 TRISB = 0x00;
 PORTB = 0x00; /* reset PortB outputs */

 SSPCON = 0x32; /* set up SSP to clock data out on falling edge */
 TRISC = 0x10; /* clock data in on rising edge, clock idle high */

 PORTC |= ADCS; /* de-select A/D device */

 while(1)
 {
 PORTC &= ~ADCS; /* select A/D device */

 SSPBUF = 0x01; /* output start bit */

 while(!(SSPSTAT & BUSY))

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
DS00703A-page 4-86 1999 Microchip Technology Inc.

AN703
A

n
alo

g
/In

terface

4

S4.book Page 87 Thursday, March 2, 2000 8:00 AM
 {
 /* wait for transfer complete */
 }

 SSPBUF = 0xE0; /* output 3 command, 5 dummy bits */

 while(!(SSPSTAT & BUSY))
 {
 /* wait for transfer complete */
 }

 PORTB = SSPBUF & 0x0F; /* mask and output conversion MSb’s */

 SSPBUF = 0x00; /* output dummy word */

 while(!(SSPSTAT & BUSY))
 {
 /* wait for transfer complete */
 }

 PORTC |= ADCS; /* de-select A/D device */

 Wait_for_Press(); /* wait for button press/release */

 PORTB = SSPBUF; /* output LSb’s */

 Wait_for_Press(); /* wait for button press/release */
 }
}

 1999 Microchip Technology Inc. DS00703A-page 4-87

AN703

S4.book Page 88 Thursday, March 2, 2000 8:00 AM
APPENDIX C: HARDWARE SPI, RELOCATABLE ASSEMBLY
;***
;*
;* This program demonstrates communication with the MCP3202 A/D converter
;* using relocatable assembly code. This code was written for the midrange
;* PICmicro devices (using a PICDEM-2 board and the 16C62A) and uses the SSP
;* module in SPI mode for communication to the MCP3202.
;*
;* The two subroutines WAIT_BF and WAIT_PRESS are external functions, compiled
;* and linked separately from the WAITFCN.ASM file. These subroutines wait
;* for the SPI transmission to complete and for RA4 to be pushed and released,
;* respectively.
;*
;* Filename: mcp3202c.asm
;*
;* (C) 1998 Microchip Technology, Inc.
;* All Rights Reserved
;*
;***

list p=16C62a

#include “p16c62a.inc”

ADCSequ0x02 ;CS line for MCP3202 (RC6)

EXTERN WAIT_BF ;define wait function call symbols
EXTERN WAIT_PRESS

RESETCODE ;select reset code section

clrf PCLATH ;reset PCLATH on powerup
clrf STATUS ;reset STATUS on powerup
clrf FSR ;reset FSR on powerup
goto START ;go start and initialize program

INTCODE ;select interrupt code section
_ISR
goto _ISR ;stay here if interrupt occurs

START ;initialization
movlw 0x32
movwf SSPCON ;setup SSP for operation

clrf PORTB ;reset LED output port

bsf STATUS,RP0 ;select Bank1
movlw 0x10
movwf TRISC ;configure PORTC for operation

clrf TRISB ;configure PORTB as outputs

bcf STATUS,RP0 ;select Bank0
bsf PORTC,ADCS ;deselect A/D converter

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
DS00703A-page 4-88 1999 Microchip Technology Inc.

AN703
A

n
alo

g
/In

terface

4

S4.book Page 89 Thursday, March 2, 2000 8:00 AM
BEGIN_AD ;start A/D conversion
bcf PORTC,ADCS ;select A/D converter
movlw 0x01 ;load start bit
movwf SSPBUF ;output start bit to A/D

call WAIT_BF ;wait for transmission complete

movlw 0xE0 ;load 3 command and 5 dummy bits
movwf SSPBUF ;output on SPI port

call WAIT_BF ;wait for transmission complete

movf SSPBUF,W ;read A/D result MSb’s
 andlw 0x0F ;mask off garbage bits
movwf PORTB ;output MSb’s on PORTB LED’s

movlw 0x00 ;load dummy data
movwf SSPBUF ;output on SPI (shifts in LSb’s)
call WAIT_BF ;wait for transmission complete

call WAIT_PRESS ;wait for button press/release

movf SSPBUF,W ;read A/D result LSb’s
movwf PORTB ;output LSb’s on PORTB LED’s

bsf PORTC,ADCS ;deselect A/D converter

call WAIT_PRESS ;wait for button press/release

HERE
goto BEGIN_AD ;repeat process

END
 1999 Microchip Technology Inc. DS00703A-page 4-89

AN703

S4.book Page 90 Thursday, March 2, 2000 8:00 AM
APPENDIX D: WAIT FUNCTIONS AND LINKER SCRIPT FOR APPENDIX C
;***
;*
;* Wait functions for MCP3202 A/D converter demonstration. These
;* functions wait for SPI communication and RA4 button press/release
;* on the PICDEM-2 board. This file is to be assembled and linked
;* with mcp3202c.ASM or mcp3202e.ASM for proper usage.
;*
;* Filename: waitfcn.asm
;*
;* (C) 1998 Microchip Technology, Inc.
;* All Rights Reserved
;*
;***
 list p=16C62a
 #include “p16c62a.inc”
 CODE ;select code section

WAIT_BF ;wait for SPI transmission complete
 GLOBAL WAIT_BF ;declare WAIT_BF visible to outside world
 bsf STATUS,RP0 ;select Bank1
 btfss SSPSTAT,BF ;check for transmission complete (BF set)
 goto WAIT_BF ;not finished, continue waiting
 bcf STATUS,RP0 ;select Bank0
 return ;return to calling function

WAIT_PRESS ;wait for RA4 press/release
 GLOBAL WAIT_PRESS ;declare WAIT_PRESS visible to outside world

 btfsc PORTA,4 ;check for button press
 goto WAIT_PRESS ;not pressed, check again

WAIT_RLS ;button now pressed
 btfss PORTA,4 ;check for button release
 goto WAIT_RLS ;not released, check again
 return ;button now released, return to calling func

 END

//***
//*
//* 16C62A Linker Script to be used with MCP3202C.ASM and WAITFCN.ASM
//* to link the corresponding object files.
//*
//* Filename: 16c62a.lkr
//*
//* (C) 1998 Microchip Technology, Inc.
//* All Right Reserved
//*
//***

CODEPAGE NAME=reset_vector START=0x00 END=0x03
CODEPAGE NAME=interrupt_vector START=0x04 END=0x7FF
DATABANK NAME=gpr0 START=0x20 END=0x7F
DATABANK NAME=gpr1 START=0xA0 END=0xBF
DATABANK NAME=sfr0 START=0x0 END=0x1F PROTECTED
DATABANK NAME=sfr1 START=0x80 END=0x9F PROTECTED
SECTION NAME=RESET ROM=reset_vector
SECTION NAME=INT ROM=interrupt_vector

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
DS00703A-page 4-90 1999 Microchip Technology Inc.

AN703
A

n
alo

g
/In

terface

4

S4.book Page 91 Thursday, March 2, 2000 8:00 AM
APPENDIX E: FIRMWARE SPI, ABSOLUTE ASSEMBLY
;***
;*
;* This program demonstrates communication with the MCP3202 A/D converter
;* using absolute assembly code. This code was written for the midrange
;* PICmicro devices (using a PICDEM-2 board and the 16C62A) and uses firmware
;* to implement the SPI module for communication to the MCP3202.
;*
;* Filename: mcp3202d.asm
;*
;* (C) 1998 Microchip Technology, Inc.
;* All Rights Reserved
;*
;***
list p=16c62a

include “p16c62a.inc”

ADCS equ 0x02 ;chip select line for A/D converter
DOUT equ 0x05 ;serial data out to A/D converter
DIN equ 0x04 ;serial data in from A/D converter
CLK equ 0x03 ;serial data clock to A/D converter

 CBLOCK 0x20
OUTBUF
INBUFH
INBUFL
COUNT
 ENDC

ORG 0x0000

clrf PCLATH ;reset PCLATH for Page0 operation
clrf STATUS ;reset STATUS for Bank 0 operation
clrf FSR ;clear FSR
goto START ;begin main program

ORG 0x0004
_ISR
goto _ISR ;stay here if interrupt occurs

OUT_CONTROL
 movwf OUTBUF ;load control word into buffer
 swapf OUTBUF ;rotate control word into position

 movlw 0x04
 movwf COUNT ;init bit counter

BIT_OUT
 rlf OUTBUF ;rotate bit into carry
 bcf PORTC,DOUT ;pre-clear data out
 btfsc STATUS,C ;check if bit should be set
 bsf PORTC,DOUT ;set data out

 bsf PORTC,CLK ;generate clock pulse
 nop
 bcf PORTC,CLK

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
 1999 Microchip Technology Inc. DS00703A-page 4-91

AN703

S4.book Page 92 Thursday, March 2, 2000 8:00 AM

 decfsz COUNT ;decrement bit counter
 goto BIT_OUT ;output next bit
 return ;finished, return to caller

IN_DATA
 clrf INBUFH
 clrf INBUFL ;reset input buffer

 movlw 0x0D
 movwf COUNT ;init bit counter

BIT_IN
 bsf PORTC,CLK ;set clock to latch bit
 bcf STATUS,C ;pre-clear carry
 btfsc PORTC,DIN ;check for high or low bit
 bsf STATUS,C ;set carry bit

 rlf INBUFL
 rlf INBUFH ;rotate bit into position

 bcf PORTC,CLK ;drop clock for next bit

 decfsz COUNT ;decrement bit counter
 goto BIT_IN ;get next bit
 return ;return to caller

WAIT_PRESS
 btfsc PORTA,0x04 ;check for button press
 goto WAIT_PRESS

WAIT_RLS
 btfss PORTA,0x04 ;check for button release
 goto WAIT_RLS
 return ;return to caller

START
 clrf PORTB ;clear PortB outputs

 movlw 0x40
 movwf PORTC ;initialize PortC: ADCS high, DO, CLK low

bsf STATUS,RP0 ;select Bank1
movlw 0x10
movwf TRISC ;set up Port C for SPI master

clrf TRISB ;configure PortB as outputs

bcf STATUS,RP0 ;select Bank0

clrf OUTBUF ;reset output buffer
clrf INBUFH ;reset input buffer
clrf INBUFL

BEGIN_AD
 bcf PORTC,ADCS ;select A/D converter

DS00703A-page 4-92 1999 Microchip Technology Inc.

AN703
A

n
alo

g
/In

terface

4

S4.book Page 93 Thursday, March 2, 2000 8:00 AM
 movlw 0x0F ;load control word
 call OUT_CONTROL ;output control word

 call IN_DATA ;read data from A/D converter

 bsf PORTC,ADCS ;de-select A/D converter

 movlw 0x0F ;load MSB mask
 andwf INBUFH,W ;mask out MSB’s and put result in W
 movwf PORTB ;output MSB’s

 call WAIT_PRESS ;wait for button press

 movf INBUFL,W ;load LSB’s into W
 movwf PORTB ;output LSB’s

 call WAIT_PRESS ;wait for button press
 goto BEGIN_AD ;play it again, Sam

 END
 1999 Microchip Technology Inc. DS00703A-page 4-93

AN703

S4.book Page 94 Thursday, March 2, 2000 8:00 AM
APPENDIX F: FIRMWARE SPI, RELOCATABLE ASSEMBLY
;***
;*
;* This program demonstrates communication with the MCP3202 A/D converter
;* using relocatable assembly code. This code was written for the midrange
;* PICmicro devices (using a PICDEM-2 board and the 16C62A) and uses the SSP
;* module in SPI mode for communication to the MCP3202.
;*
;* The subroutine WAIT_PRESS is an external function, compiled and linked
;* separately from the WAITFCN.ASM file. This subroutine waits for RA4 to be
;* pushed and released.
;* The subroutines OUT_CONTROL and IN_DATA are also external functions, but
;* compiled and linked from the SER_IO.ASM file. INBUFH and INBUFL are data
;* bytes that are used by the IN_DATA routine to return the A/D conversion
;* result to the calling function.
;*
;* Filename: mcp3202e.asm
;*
;* (C) 1998 Microchip Technology, Inc.
;* All Rights Reserved
;*
;***
list p=16c62a

include “p16c62a.inc”

 EXTERN WAIT_PRESS
 EXTERN OUT_CONTROL
 EXTERN IN_DATA

 EXTERN INBUFH
 EXTERN INBUFL

ADCS equ 0x02 ;chip select line for A/D converter

RESET CODE
clrf PCLATH ;reset PCLATH for Page0 operation
clrf STATUS ;reset STATUS for Bank 0 operation
clrf FSR ;clear FSR
goto START ;begin main program

INT CODE
_ISR
goto _ISR ;stay here if interrupt occurs

START
 clrf PORTB ;clear PortB outputs

 movlw 0x40
 movwf PORTC ;initialize PortC: ADCS high, DO, CLK low

bsf STATUS,RP0 ;select Bank1
movlw 0x10
movwf TRISC ;set up Port C for SPI master

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
DS00703A-page 4-94 1999 Microchip Technology Inc.

AN703
A

n
alo

g
/In

terface

4

S4.book Page 95 Thursday, March 2, 2000 8:00 AM
clrf TRISB ;configure PortB as outputs

bcf STATUS,RP0 ;select Bank0

BEGIN_AD
 bcf PORTC,ADCS ;select A/D converter

 movlw 0x0F ;load control word
 call OUT_CONTROL ;output control word

 call IN_DATA ;read data from A/D converter

 bsf PORTC,ADCS ;de-select A/D converter

 movlw 0x0F ;load MSB mask
 andwf INBUFH,W ;mask out MSB’s and put result in W
 movwf PORTB ;output MSB’s

 call WAIT_PRESS ;wait for button press

 movf INBUFL,W ;load LSB’s into W
 movwf PORTB ;output LSB’s

 call WAIT_PRESS ;wait for button press
 goto BEGIN_AD ;play it again, Sam

 END
 1999 Microchip Technology Inc. DS00703A-page 4-95

AN703

S4.book Page 96 Thursday, March 2, 2000 8:00 AM
APPENDIX G: RELOCATABLE ASSEMBLY FIRMWARE SPI FUNCTIONS FOR
APPENDIX F

;***
;*
;* Serial functions for MCP3202 A/D converter demonstration. These
;* functions perform SPI communication. This file is to be assembled
;* and linked with mcp3202e.ASM for proper usage.
;*
;* Filename: ser_io.asm
;*
;* (C) 1998 Microchip Technology, Inc.
;* All Rights Reserved
;*
;***
list p=16c62a

#include “p16c62a.inc”

DOUT equ 0x05 ;serial data out to A/D converter
DIN equ 0x04 ;serial data in from A/D converter
CLK equ 0x03 ;serial data clock to A/D converter

UDATA 0x20
OUTBUF res 1
INBUFH res 1
INBUFL res 1
COUNT res 1

 GLOBAL INBUFH
 GLOBAL INBUFL

CODE

OUT_CONTROL
GLOBAL OUT_CONTROL
 movwf OUTBUF ;load control word into buffer
 rlf OUTBUF
 rlf OUTBUF
 rlf OUTBUF
 rlf OUTBUF ;rotate control word into position

 movlw 0x04
 movwf COUNT ;init bit counter

BIT_OUT
 rlf OUTBUF ;rotate bit into carry
 bcf PORTC,DOUT ;pre-clear data out
 btfsc STATUS,C ;check if bit should be set
 bsf PORTC,DOUT ;set data out

 bsf PORTC,CLK ;generate clock pulse
 nop
 bcf PORTC,CLK

 decfsz COUNT ;decrement bit counter
 goto BIT_OUT ;output next bit

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
DS00703A-page 4-96 1999 Microchip Technology Inc.

AN703
A

n
alo

g
/In

terface

4

S4.book Page 97 Thursday, March 2, 2000 8:00 AM
 return ;finished, return to caller

IN_DATA
GLOBAL IN_DATA
 clrf INBUFH
 clrf INBUFL ;reset input buffer

 movlw 0x0D
 movwf COUNT ;init bit counter

BIT_IN
 bsf PORTC,CLK ;set clock to latch bit
 bcf STATUS,C ;pre-clear carry
 btfsc PORTC,DIN ;check for high or low bit
 bsf STATUS,C ;set carry bit

 rlf INBUFL
 rlf INBUFH ;rotate bit into position

 bcf PORTC,CLK ;drop clock for next bit

 decfsz COUNT ;decrement bit counter
 goto BIT_IN ;get next bit
 return ;return to caller

 END
 1999 Microchip Technology Inc. DS00703A-page 4-97

AN703

S4.book Page 98 Thursday, March 2, 2000 8:00 AM
APPENDIX H: FIRMWARE SPI, C LANGUAGE
/***
*
* This program is written to demonstrate interfacing the MCP3202 A/D
* converter to Microchip PICmicro devices. The code demonstrates
* how to implement software SPI to communicate with the converter,
* and is written in C for the HiTech C compiler, PICC. Changing the
* #include directive to “#include<16c62a.h>” will allow the use of the
* MPLAB-C v1.21 C compiler to compile this file.
*
* Filename: mcp3202f.c
*
* (C) 1998 Microchip Technology, Inc.
* All Rights Reserved
*
***/

#include <pic1662.h> /* modify this statement for use with the MPLAB-C compiler */

#define ADCS 0x04 /* I/O bit position for CS line */
#define BUSY 0x01 /* Bit0 of SSPSTAT, indicated when SPI xmission complete */
#define BUTTON 0x10 /* I/0 bit position for RA4 line */

#define DOUT 0x20 /* data out to MCP3202 */
#define DIN 0x10 /* data in from MCP3202 */
#define CLK 0x08 /* clock out to MCP3202 */

/* Function Prototypes */

void Wait_for_Press(void);
void Output_Control(char TempChar);
int Input_Data(void);

void Wait_for_Press()
{
 while(PORTA & BUTTON)
 {
 /* wait for button press */
 }

 while(!(PORTA & BUTTON))
 {
 /* wait for button release */
 }
}

void Output_Control(char TempChar)
{
 unsigned char Mask = 0x08; /* mask to test for 0/1 */
 unsigned char Count; /* gen purpose bit counter */

 for(Count = 0x00; Count < 0x04; Count++) /* count 4 bits */

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
DS00703A-page 4-98 1999 Microchip Technology Inc.

AN703
A

n
alo

g
/In

terface

4

S4.book Page 99 Thursday, March 2, 2000 8:00 AM
 {
 PORTC &= ~DOUT; /* pre-clear data line */

 if(TempChar & Mask) /* check if bit should be high or low */
 {
 PORTC |= DOUT; /* set data line */
 }

 PORTC |= CLK; /* send clock line high */

 Mask >>= 0x01; /* rotate mask for next bit */
 /* also used to burn time for clock */
 PORTC &= ~CLK; /* send clock line low */
 }
}

int Input_Data(void)
{
 unsigned char Count; /* gen purpose bit counter */
 unsigned int Mask = 0x8000; /* mask to insert ‘1’ at bit position */
 unsigned int Result = 0x0000; /* A/D result register */

 for(Count = 0x00; Count < 0x0D; Count++) /* count 13 bits */
 { /* 12-bit result + 1 null bit */
 if(PORTC & DIN) /* check if bit is high or low */
 {
 Result |= Mask; /* bit high, set bit in result */
 }

 PORTC |= CLK; /* send clock line high */

 Mask >>= 0x01; /* rotate mask for next bit */
 /* also used to burn time for clock */
 PORTC &= ~CLK; /* send clock line low */
 }

 Result >>= 0x03; /* rotate bits into position */
 Result &= 0x0FFF; /* mask out 12-bit result */

 return(Result); /* return result to caller */
}

void main(void)
{
 union DualAccess /* declare union to allow access to */
 { /* variable as 8 or 16-bit */
 unsigned int By_16; /* allows 16-bit access */

 struct Bytewise /* struct provides for 8-bit access */
 {
 unsigned char Lo; /* LSB of variable */
 unsigned char Hi; /* MSB of variable */
 } By_8;
 } ADresult;

 1999 Microchip Technology Inc. DS00703A-page 4-99

AN703

S4.book Page 100 Thursday, March 2, 2000 8:00 AM

TRISB = 0x00;
PORTB = 0x00; /* reset PortB outputs */

PORTC = 0x40; /* init PortC (A/D de-selected) */
TRISC = 0x10; /* config PortC */

PORTC |= ADCS; /* de-select A/D converter */

while(1)
{
 PORTC &= ~ADCS; /* select A/D converter */

 Output_Control((char)0x0F); /* output control word to A/D converter */

 ADresult.By_16 = Input_Data(); /* read result from converter */

 PORTC |= ADCS; /* de-select A/D converter */

 PORTB = ADresult.By_8.Hi; /* display A/D MSb’s */

 Wait_for_Press(); /* wait for key press/release */

 PORTB = ADresult.By_8.Lo; /* display A/D LSb’s */

 Wait_for_Press(); /* wait for key press/release */

}
}

DS00703A-page 4-100 1999 Microchip Technology Inc.

AN703
A

n
alo

g
/In

terface

4

S4.book Page 101 Thursday, March 2, 2000 8:00 AM
APPENDIX I: EQUIVALENT SCHEMATIC

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.

A
n

al
og

 V
o

lt
ag

e

+5
v

C
S

 1

C
H

0
 2

C
H

1
 3

V S S

4

D
IN

 5

D
O

U
T

 6

C
L

K
 7

V C C

8

M
C

P
32

02

+
5v

+5
v

4.
7k

+
5v

4.
7k

S
1

+
5v

.1
u

f

M
C

L
R

 1

R
A

0
 2

R
A

1
 3

R
A

2
 4

R
A

3
 5

R
A

4
 6

R
A

5
 7

R
B

0
21

R
B

1
22

R
B

2
23

R
B

3
24

R
B

4
25

R
B

5
26

R
B

6
27

R
B

7
28

O
S

C
1

 1
3

O
S

C
2

 1
4

R
C

0
11

R
C

1
12

R
C

2
13

R
C

3
14

R
C

4
15

R
C

5
16

R
C

6
17

R
C

7
18

V D D

2 0

V S S

8

V S S 1

1 9

P
IC

16
C

62
A

L
E

D
R

E
D

47
0

4.
7k

20
p

f

 1999 Microchip Technology Inc. DS00703A-page 4-101

AN703

S4.book Page 102 Thursday, March 2, 2000 8:00 AM
NOTES:
DS00703A-page 4-102 1999 Microchip Technology Inc.

AN704
Interfacing Microchip’s MCP3201 Analog/Digital (A/D) Converter to

MC68HC11E9-Based Microcontroller

A
n

alo
g

/In
terface

4

S4.book Page 103 Thursday, March 2, 2000 8:00 AM
INTRODUCTION

Many of the embedded control systems designed today
require some flavor of Analog-to-Digital (A/D) Con-
verter. Embedded system applications such as Data
Acquisition, Sensor Monitoring, and Instrumentation
and Control all have varying A/D Converter require-
ments.

For the most part, these A/D Converter requirements
are a combination of performance, cost, package size
basis and availability. In some applications a microcon-
troller with an on-chip A/D Converter may meet the
design requirements. Typically, these on-chip A/D Con-
verter modules fit well into embedded applications
which require a 10-35ksps A/D Converter. In other
applications, a stand-alone A/D Converter is required
for various performance reasons.

For those applications which require higher perfor-
mance or remote sense capability, the Microchip
MCP3201 12-bit A/D Converter fits very nicely.

The Microchip Technology Inc. MCP3201 employs a
classic SAR architecture. The device uses an internal
sample and hold capacitor to store the analog input
while the conversion is taking place. Conversion rates
of 100ksps are possible on the MCP3201. Minimum
clock speed (10 kHz or 625sps, assuming 16 clocks) is
a function of the capacitors used for the sample and
hold.

The MCP3201 has a single pseudo-differential input.
The (IN–) input is limited to ±100mV. This can be used
to cancel small noise signals present on both the (IN+)
and (IN–) inputs. This provides a means of rejecting
noise when the (IN–) input is used to sense a remote
signal ground. The (IN+) input can range from the (IN-)
input to VREF.

The reference voltage for the MCP3201 is applied to
VREF pin. VREF determines the analog input voltage
range and the LSB size, i.e.:

As the reference input is reduced, the LSB size is
reduced accordingly.

Communication with the MCP3201 is accomplished
using a standard SPI™ compatible serial interface.
This interface allows direct connection to the serial
ports of microcontrollers and digital signal processors.

The MCP3201 is suitable for use with a wide variety of
microcontrollers from Microchip and others. This appli-
cation note describes how to interface the MCP3201
with a Motorola MC68HC11 microcontroller. Applica-
tion Note, AN702 covers microcontrollers based on the
Intel 8051 architecture.

Figure 1 shows the hardware schematic for this inter-
face. Appendix A contains a listing of the source code.

CIRCUIT DESCRIPTION

The serial interface of the Microchip MCP3201 A/D
Converter has three wires, a serial clock input (DCLK),
the serial data output (DOUT) and the chip select input
signal (CS/SHDN). For this simple circuit interface, the
Motorola MC68HC11E9 SPI port is used. PORTD:<4>
is configured for the serial clock and PORTD:<2> is the
data input to the microcontroller. The SPI clock rate for
this application is set at 1 MHz.

The MC68HC11 is configured in the master mode with
its CPOL and CPHA bits set to logic one (default setting
on power-up).

A conversion is initiated with the high to low transition
of CS/SHDN (active low). The chip select is generated
by PORTD:<5> of the microcontroller. The device will
sample the analog input from the rising edge of the first
clock after CS goes low for 1.5 clock cycles. On the fall-
ing edge of the second clock, the device will output a
low null bit. With the next 12 clocks, the MCP3201 will
output the result of the conversion with the MSB first
(See Figure 2 and Figure 3). Data is always output from
the device on the falling edge of the clock. If the device
continues to receive clocks while CS/SHDN is low, the
device will output the conversion LSB first. If more
clocks are provided to the device while CS/SHDN is still
low (after the LSB first data has been transmitted), the
device will clock out zeros indefinitely.

Author: Richard L. Fischer
Microchip Technology Inc.

LSB size = VREF

212
 1999 Microchip Technology Inc. DS00704B-page 4-103

SPI is a trademark of Motorola Inc.

AN704

S4.book Page 104 Thursday, March 2, 2000 8:00 AM
FIGURE 1: Hardware Schematic
DS00704B-page 4-104 1999 Microchip Technology Inc.

AN704
A

n
alo

g
/In

terface

4

S4.book Page 105 Thursday, March 2, 2000 8:00 AM
FIGURE 2: SPI Communication using 8-bit segments (Mode 1,1: SCLK idles high).

FIGURE 3: SPI Communication using 8-bit segments (Mode 0,0: SCLK idles low).

CS/SHDN

DCLK 9 10 11 12 13 14 15 16

DOUT

NULL
BIT B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0HI-Z

B7 B6 B5 B4 B3 B2 B1 B0B11 B10 B9 B8? ? 0

MCU latches data from A/D Converter

Data is clocked out of
A/D Converter on falling edges

on rising edges of DCLK

1 2 3 4 5 6 7 8

B1

B1
MCU Received Data

(After 16 clocks)

LSB first data begins
to come out

HI-Z

CS/SHDN

DCLK 9 10 11 12 13 14 15 16

DOUT
NULL

BIT
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0HI-Z

B7 B6 B5 B4 B3 B2 B1 B0B11 B10 B9 B8? ? 0

MCU latches data from A/D Converter

Data is clocked out of
A/D Converter on falling edges

on rising edges of DCLK

1 2 3 4 5 6 7 8

HI-ZB1

B1
MCU Received Data

(After 16 clocks)

LSB first data begins
to come out

B2
 1999 Microchip Technology Inc. DS00704B-page 4-105

AN704

S4.book Page 106 Thursday, March 2, 2000 8:00 AM
As the analog input signal is applied to the IN+ and IN-
inputs, it is ratioed to the VREF input for conversion scal-
ing.

Where:

VIN = analog input voltage V(IN+) - V(IN–)

VREF = reference voltage

F.S. = full scale = 4096

VREF can be sourced directly from VDD or can be sup-
plied by an external reference. In either configuration,
the VREF source must be evaluated for noise contribu-
tions during the conversion. The voltage reference
input of the MCP3201 ranges from 250mV to 5VDC,
which approximately translates to a corresponding LSB
size from 61µV to 1.22mV per bit.

For this simple application, the MCP3201 voltage
reference input is tied to 5VDC. This translates to a
1.22mV/bit resolution for the A/D Converter module.
The voltage input to the MCP3201 is implemented with
a multi-turn potentiometer. The output voltage range of
this passive driver is approximately 0VDC to 5VDC.

Finally, a simple RS-232 interface is implemented using
the USART peripheral of the microcontroller and a
MAX233 transceiver IC. The USART transmits the cap-
tured A/D Converter binary value, both in ASCII and
Decimal, to the PC terminal at 9600 baud.

As with all applications which require moderate to high
performance A/D Converter operation, proper ground-
ing and layout techniques are essential in achieving
optimal performance. Proper power supply decoupling
and input signal and VREF parameters must be consid-
ered for noise contributions.

SOURCE CODE DESCRIPTION

The code written for this simple application performs
five main functions:

1. Controller Initialization.
2. A/D Converter Conversion.

3. Conversion to ASCII.

4. Conversion to Decimal.

5. Transmit ASCII and Decimal to PC for display.

Upon power-up the microcontroller Port pins, USART
peripheral and SSP module are initialized. The default
microcontroller SPI bus mode is 1,1. The bus mode can
be changed on power-up via SW1. If SW1 is depressed
on power-up then PORTC:<7> is pulled low. The initial-
ization code checks this pin state and if a logic low SPI
bus mode 0,0 is selected. Likewise if PORTC:<7> is a
logic high, (SW1 is not depressed), then mode 1,1 is
the operational bus state. Once the initialization code is
executed, the main code loop is entered and executed
continuously.

After asserting PORTD:<5> the SPDR register is writ-
ten to for initiating a SPI bus cycle. When the SPI cycle
is complete, (SPIF flag is set to logic 1), the received
data is read from the SPDR register and written to the
RAM variable RESULT_MSB. The SPDR register is
again written to, which initiates a SPI bus cycle, and the
second 8-bits are received and written to the RAM vari-
able RESULT_LSB. Here the composite result, located
in variables RESULT_MSB and RESULT_LSB is right
adjusted one bit location. The CS/SHDN is then
negated and the MCP3201 enters into the shutdown
mode.

Next the hex_to_ascii and hex_to_decimal rou-
tines are called and executed. Then the
display_conversion routine is executed which
sends the data to the USART for transmission to the
PC for display.

REFERENCES

Williams, Jim, “Analog Circuit Design,” Butterworth-
Heinemann

Baker, Bonnie, “Layout Tips for 12-bit A/D Converter
Applications,” AN688, Microchip Technology Inc.

MCP3201 12-bit A/D Converter with SPI Serial Inter-
face, Microchip Technology, Document DS21290B,
1999.

Digital output code = VIN x F.S.
VREF

1.22mV = 5VDC

212 bits
DS00704B-page 4-106 1999 Microchip Technology Inc.

AN704
A

n
alo

g
/In

terface

4

S4.book Page 107 Thursday, March 2, 2000 8:00 AM
APPENDIX A: SOURCE CODE

MCP3201.SRC Assembled with IASM 07/01/1999 11:30 PAGE 1
Interfacing Microchip MCP3201 ADC to Motorola MC68HC11E9-Based Microcontroller

 1
 2
 3 ***
 4 *
 5 * Filename: MCP3201.src
 6 * Date: 07/01/99
 7 *
 8 * File Version: 1.00
 9 *
 10 * Author: Richard L. Fischer
 11 * Microchip Technology Inc.
 12 *
 13 ***
 14 *
 15 *
 16 * This code demonstrates how the Microchip MCP3201 Analog-to-Digital
 17 * Converter (ADC) is interfaced to the Synchronous Serial Peripheral
 18 * (SSP) of the MC68HC11E9 microcontroller. The interface uses two
 19 * Serial Peripheral Interface (SPI) lines (SCK, MISO) on the
 20 * 68HC11E9 Microcontroller for the clock (SCK) and data in (MISO).
 21 * A chip select (CS) to the MCP3201 is generated with a general
 22 * purpose port line (PD5). The MC68HC11E9 is placed into the master
 23 * mode which allows use of the port line PD5 for the CS control
 24 * signal. The simple application uses Mode 00 or Mode 11 to the
 25 * define bus clock polarity and phase.
 26 *
 27 * SPI bus mode 1,1 is the default mode of operation upon power-up.
 28 * If SPI bus Mode 0,0 is desired, cycle off power, depress and
 29 * hold SW1, cycle on power then release SW1. SPI bus Mode 0,0 is
 30 * now the operational mode.
 31 *
 32 * For this application, the SPI data rate is set to one eighth of
 33 * the microcontroller clock frequency. The MC68HC11E9 device clock
 34 * frequency used for this application is 8MHz. This translates to
 35 * an ADC throughput of 62.5kHz. In order to obtain the maximum
 36 * throughput (100kHz) from the MCP3201 ADC the M68HC11E9 must be
 37 * clocked at 12.8Mhz.
 38 *
 39 *
 40 **
 41
 42
 43 ***
 44 * MICROCONTROLLER RELATED EQUATES *
 45 ***
 46
 0000 47 REGBASE EQU $1000 ; Register Base Address
 0000 48 PACTL EQU $26 ; PortA bit7 control
 0000 49 PORTA EQU $00 ; PortA Address
 0000 50 PORTB EQU $04 ; PortB Address
 0000 51 DDRC EQU $07 ; PortD Data Direction Register
 0000 52 PORTC EQU $03 ; PortC Address
 0000 53 DDRD EQU $09 ; PortD Data Direction Register
 0000 54 PORTD EQU $08 ; PortD Address
 55
 0000 56 SPCR EQU $28 ; SPI Control Register
 0000 57 SPSR EQU $29 ; SPI Status Register

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
 1999 Microchip Technology Inc. DS00704B-page 4-107

AN704

S4.book Page 108 Thursday, March 2, 2000 8:00 AM
 0000 58 SPDR EQU $2A ; SPI Data Register
 59
 0000 60 BAUD EQU $2B ; Baud Rate Register
 0000 61 SCCR2 EQU $2D ; SCI Control Register 2
 0000 62 SCSR EQU $2E ; SCI Status Register
 0000 63 SCDR EQU $2F ; SCI Data Register
 64
 65
 0000 66 MASKCS EQU $20 ; Mask for Chip Select Bit
 67
 68
 69 ***
 70 * INTERNAL RAM USAGE *
 71 ***
 72
 0000 73 ORG $0000 ; Internal RAM
 74
 0000 75 RESULT_MSB RMB 1 ; Converted MSB
 0001 76 RESULT_LSB RMB 1 ; Converted LSB
 77
 0002 78 THOUS RMB 1 ; Variable for ASCII thousands
 0003 79 HUNDS RMB 1 ; Variable for ASCII hundreds
 0004 80 TENS RMB 1 ; Variable for ASCII tens
 0005 81 ONES RMB 1 ; Variable for ASCII ones
 82
 0006 83 DISPLAY_BUFF RMB 1F ; Buffer string for display
 84
 85
 86
 87 ***
 88 * INTERNAL MEMORY EQUATES *
 89 ***
 90
 0025 91 EEPMBEG EQU $B600 ; EEPROM begin
 0025 92 EEPMEND EQU $B7FF ; EEPROM end
 93
 0025 94 EPRMBEG EQU $D000 ; EPROM begin
 0025 95 EPRMEND EQU $FFFF ; EPROM end
 96
 0025 97 RAMBEG EQU $0000 ; RAM begin
 0025 98 RAMEND EQU $01FF ; RAM end
 99
 100
 101
 102 ***
 103
 D000 104 ORG EPRMBEG ; Beginning of code
 105
 D000 [03] 8E01FF 106 start LDS #RAMEND ; Initialize Stack Pointer
 D003 [06] 7F0000 107 CLR RESULT_MSB ; Clear ram variables
 D006 [06] 7F0001 108 CLR RESULT_LSB ; Clear ram variables
 109
 D009 [03] CE0006 110 LDX #DISPLAY_BUFF ; Initialize X pointer to RAM
 D00C [04] 18CED12D 111 LDY #DISPLAY_IMAGE ; Initialize Y pointer to ROM
 D010 [05] 18A600 112 copy LDAA 0,Y ; Read from ROM
 D013 [04] A700 113 STAA 0,X ; Save into RAM
 D015 [03] 08 114 INX ; Point to next RAM location
 D016 [04] 1808 115 INY ; Point to next ROM location
 D018 [04] 8C0026 116 CPX #DISPLAY_BUFF+20 ; Copy display string complete?
 D01B [03] 26F3 117 BNE copy ; No, so copy some more
 118
 119
 D01D [03] CE1000 120 LDX #REGBASE ; Initialize X Index pointer
 121
 D020 [07] 1D00FF 122 BCLR PORTA,X,$FF ; Set PortA outputs low
 D023 [07] 1C2680 123 BSET PACTL,X,$80 ; Set PortA bit7 to output
DS00704B-page 4-108 1999 Microchip Technology Inc.

AN704
A

n
alo

g
/In

terface

4

S4.book Page 109 Thursday, March 2, 2000 8:00 AM
 D026 [07] 1D04FF 124 BCLR PORTB,X,$FF ; Set PortB outputs low
 D029 [07] 1C077F 125 BSET DDRC,X,$7F ; Set PortC for outputs
 126 ; except for pin7
 D02C [07] 1D03FF 127 BCLR PORTC,X,$FF ; Set PortC outputs low
 D02F [07] 1C0937 128 BSET DDRD,X,$37 ; Make all PortD pins outputs
 129 ; except PD3
 D032 [02] 8620 130 LDAA #$20 ;
 D034 [04] A708 131 STAA PORTD,X ; Set CS high and all other
 132
 D036 [07] 1C2D08 133 BSET SCCR2,X,$08 ; Enable SCI TX
 D039 [02] 8630 134 LDAA #$30 ; Initialize SCI for 9600
 D03B [04] A72B 135 STAA BAUD,X ; baud at 8Mhz
 136
 D03D [07] 1E038006 137 BRSET PORTC,X,$80,m11 ; Branch to Mode 11 if pin high
 D041 [02] 8650 138 LDAA #$50 ; Else, Mode 00
 D043 [04] A728 139 STAA SPCR,X ; Initialize SPI control reg
 D045 [03] 2004 140 BRA start_conversion ; Go start conversion
 141
 D047 [02] 865C 142 m11 LDAA #$5C ; Mode 11
 D049 [04] A728 143 STAA SPCR,X ; Initialize SPI control reg
 144
 145
 146
 147 ***
 148 *
 149 * The routines to follow perform 3 repetitive functions:
 150 *
 151 * 1. Initiate an ADC conversion sequence
 152 * 2. Convert acquired data for display
 153 * 2. Transmit converted data to PC
 154 *
 155 ***
 156
 157 start_conversion
 158
 D04B [07] 1D0820 159 BCLR PORTD,X,MASKCS ; Assert CS to ADC
 160
 D04E [06] 6F2A 161 CLR SPDR,X ; Initiate SPI bus cycle
 D050 [07] 1F2980FC 162 rd1 BRCLR SPSR,X,$80,rd1 ; Wait until cycle completes
 D054 [04] A62A 163 LDAA SPDR,X ; Read data and clear flag (SPIF)
 D056 [03] 9700 164 STAA RESULT_MSB ; Save off upper bits
 165
 D058 [06] 6F2A 166 CLR SPDR,X ; Initiate SPI bus cycle
 D05A [07] 1F2980FC 167 rd2 BRCLR SPSR,X,$80,rd2 ; Wait until cycle completes
 168
 D05E [07] 1C0820 169 BSET PORTD,X,MASKCS ; Negate CS, place ADC in shutdown
 D061 [04] A62A 170 LDAA SPDR,X ; Read data and clear flag (SPIF)
 D063 [03] 9701 171 STAA RESULT_LSB ; Save off lower bits
 172
 D065 [06] 760000 173 ROR RESULT_MSB ; Move bit 0 into carry
 D068 [06] 760001 174 ROR RESULT_LSB ; Rotate MSB bit0 into LSB bit7
 D06B [06] 1500F0 175 BCLR RESULT_MSB,$F0 ; Mask out upper bits of MSB
 176
 D06E [06] BDD093 177 JSR hex_to_ascii ; Convert to ASCII for display
 D071 [06] BDD0D3 178 JSR hex_to_decimal ; Convert to decimal for display
 179
 180
 181
 182 ***** ROUTINE FOR DISPLAYING CONVERTED DATA ***********
 183
 184 display_conversion
 185
 D074 [04] 18CE0006 186 LDY #DISPLAY_BUFF ; Initialize Y pointer
 D078 [05] 18A600 187 tx_loop LDAA 0,Y ; Retrieve MSB upper nibble
 188
 D07B [04] A72F 189 STAA SCDR,X ; Initiate SCI Transmit
 1999 Microchip Technology Inc. DS00704B-page 4-109

AN704

S4.book Page 110 Thursday, March 2, 2000 8:00 AM
 D07D [07] 1F2E40FC 190 wtx BRCLR SCSR,X,$40,wtx ; Wait until cycle completes
 D081 [04] 1808 191 INY ; Increment Y pointer
 D083 [05] 188C0026 192 CPY #DISPLAY_BUFF+20 ; All characters sent?
 D087 [03] 26EF 193 BNE tx_loop ; No, so send more characters
 194
 195
 D089 [04] 18CE0000 196 LDY #$0000 ; Approximately 485mS delay
 D08D [04] 1809 197 decy DEY ; Decrement counter
 D08F [03] 26FC 198 BNE decy ; Stay in loop until Y=0
 199
 D091 [03] 20B8 200 BRA start_conversion ; Stay in main loop
 201
 202
 203
 204 ***** ROUTINE FOR CONVERTING TO ASCII *****************
 205
 206 hex_to_ascii
 207
 D093 [04] 3C 208 PSHX ; Save off X Index register
 D094 [03] CE0000 209 LDX #RESULT_MSB ; Initialize X
 D097 [04] 18CE000E 210 LDY #DISPLAY_BUFF+8 ; Initialize Y
 D09B [04] A600 211 next LDAA 0,X ; Get Result_MSB data
 D09D [03] 36 212 PSHA ; Save ACCA
 D09E [02] 84F0 213 ANDA #$F0 ; Mask out lower nibble
 D0A0 [02] 44 214 LSRA ; Shift upper nibble
 D0A1 [02] 44 215 LSRA ; into lower nibble
 D0A2 [02] 44 216 LSRA ;
 D0A3 [02] 44 217 LSRA ;
 D0A4 [02] 8109 218 CMPA #$09 ; Is value a number ?
 D0A6 [03] 2F07 219 BLE numb_1 ; Yes, make it 0-9 ($30 - $39)
 D0A8 [02] 8B37 220 ADDA #$37 ; No, make it a letter (A - F)
 D0AA [05] 18A700 221 STAA 0,Y ; Save ASCII letter
 D0AD [03] 2005 222 BRA do_lsb ; Convert lower nibble
 D0AF [02] 8B30 223 numb_1 ADDA #$30 ;
 D0B1 [05] 18A700 224 STAA 0,Y ; Save ASCII number
 225
 D0B4 [04] 1808 226 do_lsb INY ; Increment Y
 D0B6 [04] 32 227 PULA ; Restore ACCA
 D0B7 [02] 840F 228 ANDA #$0F ; Mask out upper nibble
 D0B9 [02] 8109 229 CMPA #$09 ; Is value a number ?
 D0BB [03] 2F07 230 BLE numb_2 ; Yes, make it 0-9 ($30 - $39)
 D0BD [02] 8B37 231 ADDA #$37 ; No, make it a letter (A - F)
 D0BF [05] 18A700 232 STAA 0,Y ; Save ASCII letter
 D0C2 [03] 2005 233 BRA next1 ;
 234
 D0C4 [02] 8B30 235 numb_2 ADDA #$30 ;
 D0C6 [05] 18A700 236 STAA 0,Y ; Save ASCII number
 237
 D0C9 [03] 08 238 next1 INX ; Increment X
 D0CA [04] 1808 239 INY ; Increment Y
 D0CC [04] 8C0002 240 CPX #RESULT_MSB+2 ; Converted all bytes?
 D0CF [03] 26CA 241 BNE next ; No, so do some more
 D0D1 [05] 38 242 PULX ; Else yes so restore X
 D0D2 [05] 39 243 RTS ; Return from subroutine
 244
 245
 246
 247 ***** ROUTINE FOR CONVERTING TO DECIMAL ***************
 248
 249 hex_to_decimal
 250
 D0D3 [04] DC00 251 LDD RESULT_MSB ; Initialize ACCA and ACCB
 D0D5 [06] 7F0002 252 CLR THOUS ; Zero out THOUSANDS temp location
 D0D8 [06] 7F0003 253 CLR HUNDS ; Zero out HUNDREDS temp location
 D0DB [06] 7F0004 254 CLR TENS ; Zero out TENS temp location
 D0DE [06] 7F0005 255 CLR ONES ; Zero out ONES temp location
DS00704B-page 4-110 1999 Microchip Technology Inc.

AN704
A

n
alo

g
/In

terface

4

S4.book Page 111 Thursday, March 2, 2000 8:00 AM
 256
 D0E1 [05] 1A8303E7 257 ck_thous CPD #$03E7 ; ACCD >= 1000 or more?
 D0E5 [03] 2508 258 BLO ck_hunds ; No, so go check hundreds
 D0E7 [04] 8303E8 259 SUBD #$03E8 ; Subtract 1000 from ACCD
 D0EA [06] 7C0002 260 INC THOUS ; Increment THOUS
 D0ED [03] 20F2 261 BRA ck_thous ; Go check for more
 262
 D0EF [05] 1A830063 263 ck_hunds CPD #$0063 ; ACCD >= 100 OR more?
 D0F3 [03] 2508 264 BLO ck_tens ; No, so go check tens
 D0F5 [04] 830064 265 SUBD #$0064 ; Subtract 100 from ACCD
 D0F8 [06] 7C0003 266 INC HUNDS ; Increment HUND
 D0FB [03] 20F2 267 BRA ck_hunds ; Go check for more
 268
 D0FD [02] C10A 269 ck_tens CMPB #$0A ; No, ACCB >= 10 or more?
 D0FF [03] 2507 270 BLO do_ones ; No, finish up with ONES
 D101 [02] C00A 271 SUBB #$0A ; Subtract another 10 from B
 D103 [06] 7C0004 272 INC TENS ; Bump “TENS”
 D106 [03] 20F5 273 BRA ck_tens ; Loop again
 274
 D108 [02] CB30 275 do_ones ADDB #$30 ; Convert ONES to ASCII
 D10A [04] 18CE001E 276 LDY #DISPLAY_BUFF+18 ; Initialize Y pointer into buffer
 D10E [03] 9602 277 LDAA THOUS ;
 D110 [02] 8B30 278 ADDA #$30 ; Convert THOUS to ASCII
 D112 [05] 18A700 279 STAA 0,Y ; Save it
 D115 [04] 1808 280 INY ; Increment Y
 D117 [03] 9603 281 LDAA HUNDS ;
 D119 [02] 8B30 282 ADDA #$30 ; Convert HUNDS to ASCII
 D11B [05] 18A700 283 STAA 0,Y ; Save it
 D11E [04] 1808 284 INY ; Increment Y
 D120 [03] 9604 285 LDAA TENS ;
 D122 [02] 8B30 286 ADDA #$30 ; Convert TENS to ASCII
 D124 [05] 18A700 287 STAA 0,Y ; Save it
 D127 [04] 1808 288 INY ; Increment Y
 D129 [05] 18E700 289 STAB 0,Y ; Save conversion into string
 D12C [05] 39 290 RTS ; Return from subroutine
 291
 292
 293
 D12D 4865782D 294 DISPLAY_IMAGE DB ‘Hex-> 0x : Decimal-> ‘,0D,0A
 3E203078
 20202020
 203A2044
 6563696D
 616C2D3E
 20202020
 200D0A
 295
 296
 297 ***
 298 * INTERRUPT VECTORS *
 299 ***
 300
 FFD6 301 ORG $FFD6 ; VECTORS
 302
 FFD6 D000 303 DW start ; SCI Serial System - RIE, TIE, TCIE, ILIE
 FFD8 D000 304 DW start ; SPI Serial Transfer Complete - SPIE
 FFDA D000 305 DW start ; Pulse Accumalator Input Edge - PAII
 FFDC D000 306 DW start ; Pulse Accumalator Overflow - PAOVI
 FFDE D000 307 DW start ; Timer Overflow - TOI
 FFE0 D000 308 DW start ; Timer Input Capture 4/Output Compare 5 - I4/O5I
 FFE2 D000 309 DW start ; Timer Output Compare 4 - OC4I
 FFE4 D000 310 DW start ; Timer Output Compare 3 - OC3I
 FFE6 D000 311 DW start ; Timer Output Compare 2 - OC2I
 FFE8 D000 312 DW start ; Timer Output Compare 1 - OC1I
 FFEA D000 313 DW start ; Timer Input Capture 3 - IC3I
 FFEC D000 314 DW start ; Timer Input Capture 2 - IC2I
 FFEE D000 315 DW start ; Timer Input Capture 1 -IC1I
 1999 Microchip Technology Inc. DS00704B-page 4-111

AN704

S4.book Page 112 Thursday, March 2, 2000 8:00 AM
 FFF0 D000 316 DW start ; Real Time Interrupt - RTII
 FFF2 D000 317 DW start ; IRQ (External Pin)
 FFF4 D000 318 DW start ; XIRQ Pin
 FFF6 D000 319 DW start ; Software Interrupt
 FFF8 D000 320 DW start ; Illegal Opcode Trap
 FFFA D000 321 DW start ; COP Failure
 FFFC D000 322 DW start ; Clock Monitor Fail
 FFFE D000 323 DW start ; Reset
 324
 0000 325 END
 326
 327
 328

 Symbol Table

BAUD 002B
CK_HUNDS D0EF
CK_TENS D0FD
CK_THOUS D0E1
COPY D010
DDRC 0007
DDRD 0009
DECY D08D
DISPLAY_BUFF 0006
DISPLAY_CONVERSI D074
DISPLAY_IMAGE D12D
DO_LSB D0B4
DO_ONES D108
EEPMBEG B600
EEPMEND B7FF
EPRMBEG D000
EPRMEND FFFF
HEX_TO_ASCII D093
HEX_TO_DECIMAL D0D3
HUNDS 0003
M11 D047
MASKCS 0020
NEXT D09B
NEXT1 D0C9
NUMB_1 D0AF
NUMB_2 D0C4
ONES 0005
PACTL 0026
PORTA 0000
PORTB 0004
PORTC 0003
PORTD 0008
RAMBEG 0000
RAMEND 01FF
RD1 D050
RD2 D05A
REGBASE 1000
RESULT_LSB 0001
RESULT_MSB 0000
SCCR2 002D
SCDR 002F
SCSR 002E
SPCR 0028
SPDR 002A
SPSR 0029
START D000
START_CONVERSION D04B
TENS 0004
THOUS 0002
TX_LOOP D078
WTX D07D
DS00704B-page 4-112 1999 Microchip Technology Inc.

AN713
Controller Area Network (CAN) Basics

A
n

alo
g

/In
terface

4

S4.book Page 113 Thursday, March 2, 2000 8:00 AM
INTRODUCTION

Controller Area Network (CAN) was initially created by
German automotive system supplier Robert Bosch in
the mid-1980s for automotive applications as a method
for enabling robust serial communication. The goal was
to make automobiles more reliable, safe and fuel-effi-
cient while decreasing wiring harness weight and com-
plexity. Since its inception, the CAN protocol has gained
widespread popularity in industrial automation and
automotive/truck applications. Other markets where
networked solutions can bring attractive benefits like
medical equipment, test equipment and mobile
machines are also starting to utilize the benefits of CAN.
The goal of this application note is to explain some of
the basics of CAN and show the benefits of choosing
CAN for embedded systems networked applications.

CAN OVERVIEW

Most network applications follow a layered approach to
system implementation. This systematic approach
enables interoperability between products from differ-
ent manufacturers. A standard was created by the
International Standards Organization (ISO) as a tem-
plate to follow for this layered approach. It is called the
ISO Open Systems Interconnection (OSI) Network
Layering Reference Model and is shown in Figure 1 for
reference.

The CAN protocol itself implements most of the lower
two layers of this reference model. The communication
medium portion of the model was purposely left out of
the Bosch CAN specification to enable system design-
ers to adapt and optimize the communication protocol
on multiple media for maximum flexibility (twisted pair,
single wire, optically isolated, RF, IR, etc.). With this
flexibility, however, comes the possibility of interopera-
bility concerns.

To ease some of these concerns, the International Stan-
dards Organization and Society of Automotive Engi-
neers (SAE) have defined some protocols based on
CAN that include the Media Dependant Interface defini-
tion such that all of the lower two layers are specified.

ISO11898 is a standard for high-speed applications,
ISO11519 is a standard for low-speed applications, and
J1939 (from SAE) is targeted for truck and bus applica-
tions. All three of these protocols specify a 5V differen-
tial electrical bus as the physical interface.

The rest of the layers of the ISO/OSI protocol stack are left
to be implemented by the system software developer.
Higher Layer Protocols (HLPs) are generally used to imple-
ment the upper five layers of the OSI Reference Model.

HLPs are used to:

1) standardize startup procedures including bit rates
used,

2) distribute addresses among participating nodes
or types of messages,

3) determine the structure of the messages, and

4) provide system-level error handling routines.

This is by no means a full list of the functions HLPs perform,
however it does describe some of their basic functionality.

CAN PROTOCOL BASICS

Carrier Sense Multiple Access with Collision
Detection (CSMA/CD)

The CAN communication protocol is a CSMA/CD proto-
col. The CSMA stands for Carrier Sense Multiple
Access. What this means is that every node on the net-
work must monitor the bus for a period of no activity
before trying to send a message on the bus (Carrier
Sense). Also, once this period of no activity occurs, every
node on the bus has an equal opportunity to transmit a
message (Multiple Access). The CD stands for Collision
Detection. If two nodes on the network start transmitting
at the same time, the nodes will detect the ‘collision’ and
take the appropriate action. In CAN protocol, a non-
destructive bitwise arbitration method is utilized. This
means that messages remain intact after arbitration is
completed even if collisions are detected. All of this arbi-
tration takes place without corruption or delay of the
higher priority message.

There are a couple of things that are required to sup-
port non-destructive bitwise arbitration. First, logic
states need to be defined as dominant or recessive.
Second, the transmitting node must monitor the state of
the bus to see if the logic state it is trying to send actu-
ally appears on the bus. CAN defines a logic bit 0 as a
dominant bit and a logic bit 1 as a recessive bit.

Author: Keith Pazul
Microchip Technology Inc.
 1999 Microchip Technology Inc. Preliminary DS00713A-page 4-113

AN713

S4.book Page 114 Thursday, March 2, 2000 8:00 AM
A dominant bit state will always win arbitration over a
recessive bit state, therefore the lower the value in the
Message Identifier (the field used in the message arbitra-
tion process), the higher the priority of the message. As an
example, suppose two nodes are trying to transmit a mes-
sage at the same time. Each node will monitor the bus to
make sure the bit that it is trying to send actually appears
on the bus. The lower priority message will at some point
try to send a recessive bit and the monitored state on the
bus will be a dominant. At that point this node loses arbi-
tration and immediately stops transmitting. The higher pri-
ority message will continue until completion and the node
that lost arbitration will wait for the next period of no activity
on the bus and try to transmit its message again.

Message-Based Communication

CAN protocol is a message-based protocol, not an
address based protocol. This means that messages are
not transmitted from one node to another node based on
addresses. Embedded in the CAN message itself is the
priority and the contents of the data being transmitted. All
nodes in the system receive every message transmitted
on the bus (and will acknowledge if the message was prop-
erly received). It is up to each node in the system to decide
whether the message received should be immediately dis-
carded or kept to be processed. A single message can be
destined for one particular node to receive, or many nodes
based on the way the network and system are designed.

For example, an automotive airbag sensor can be con-
nected via CAN to a safety system router node only.
This router node takes in other safety system informa-
tion and routes it to all other nodes on the safety system
network. Then all the other nodes on the safety system
network can receive the latest airbag sensor informa-
tion from the router at the same time, acknowledge if
the message was received properly, and decide
whether to utilize this information or discard it.

Another useful feature built into the CAN protocol is the
ability for a node to request information from other
nodes. This is called a Remote Transmit Request
(RTR). This is different from the example in the previ-
ous paragraph because instead of waiting for informa-
tion to be sent by a particular node, this node
specifically requests data to be sent to it.

For example, a safety system in a car gets frequent
updates from critical sensors like the airbags, but it may
not receive frequent updates from other sensors like the
oil pressure sensor or the low battery sensor to make
sure they are functioning properly. Periodically, the safety
system can request data from these other sensors and
perform a thorough safety system check. The system
designer can utilize this feature to minimize network traf-
fic while still maintaining the integrity of the network.

One additional benefit of this message-based protocol
is that additional nodes can be added to the system
without the necessity to reprogram all other nodes to
recognize this addition. This new node will start receiv-
ing messages from the network and, based on the
message ID, decide whether to process or discard the
received information.

CAN Message Frame Description

CAN protocol defines four different types of messages
(or Frames). The first and most common type of frame
is a Data Frame. This is used when a node transmits
information to any or all other nodes in the system. Sec-
ond is a Remote Frame, which is basically a Data
Frame with the RTR bit set to signify it is a Remote
Transmit Request (see Figure 2 and Figure 3 for details
on Data Frames). The other two frame types are for
handling errors. One is called an Error Frame and one
is called an Overload Frame. Error Frames are gener-
ated by nodes that detect any one of the many protocol
errors defined by CAN. Overload errors are generated
by nodes that require more time to process messages
already received.

Data Frames consist of fields that provide additional
information about the message as defined by the CAN
specification. Embedded in the Data Frames are Arbi-
tration Fields, Control Fields, Data Fields, CRC Fields,
a 2-bit Acknowledge Field and an End of Frame.

The Arbitration Field is used to prioritize messages on the
bus. Since the CAN protocol defines a logical 0 as the
dominant state, the lower the number in the arbitration
field, the higher priority the message has on the bus. The
arbitration field consists of 12-bits (11 identifier bits and
one RTR bit) or 32-bits (29 identifier bits, 1-bit to define the
message as an extended data frame, an SRR bit which is
unused, and an RTR bit), depending on whether Standard
Frames or Extended Frames are being utilized. The cur-
rent version of the CAN specification, version 2.0B,
defines 29-bit identifiers and calls them Extended Frames.
Previous versions of the CAN specification defined 11-bit
identifiers which are called Standard Frames.

As described in the preceding section, the Remote
Transmit Request (RTR) is used by a node when it
requires information to be sent to it from another node.
To accomplish an RTR, a Remote Frame is sent with the
identifier of the required Data Frame. The RTR bit in the
Arbitration Field is utilized to differentiate between a
Remote Frame and a Data Frame. If the RTR bit is
recessive, then the message is a Remote Frame. If the
RTR bit is dominant, the message is a Data Frame.

The Control Field consists of six bits. The MSB is the
IDE bit (signifies Extended Frame) which should be
dominant for Standard Data Frames. This bit deter-
mines if the message is a Standard or Extended Frame.
In Extended Frames, this bit is RB1 and it is reserved.
The next bit is RB0 and it is also reserved. The four
LSBs are the Data Length Code (DLC) bits. The Data
Length Code bits determine how many data bytes are
included in the message. It should be noted that a
Remote Frame has no data field, regardless of the value
of the DLC bits.

The Data Field consists of the number of data bytes
described in the Data Length Code of the Control Field.

The CRC Field consists of a 15-bit CRC field and a
CRC delimiter, and is used by receiving nodes to deter-
mine if transmission errors have occurred.
DS00713A-page 4-114 Preliminary 1999 Microchip Technology Inc.

AN713
A

n
alo

g
/In

terface

4

S4.book Page 115 Thursday, March 2, 2000 8:00 AM
The Acknowledge Field is utilized to indicate if the mes-
sage was received correctly. Any node that has cor-
rectly received the message, regardless of whether the
node processes or discards the data, puts a dominant
bit on the bus in the ACK Slot bit time (see Figure 2 or
Figure 3 for the location of the ACK Slot bit time).

The last two message types are Error Frames and
Overload Frames. When a node detects one of the
many types of errors defined by the CAN protocol, an
Error Frame occurs. Overload Frames tell the network
that the node sending the Overload Frame is not ready
to receive additional messages at this time, or that
intermission has been violated. These errors will be
discussed in more detail in the next section.

Fast, Robust Communication

Because CAN was initially designed for use in automo-
biles, a protocol that efficiently handled errors was crit-
ical if it was to gain market acceptance. With the
release of version 2.0B of the CAN specification, the
maximum communication rate was increased 8x over
the version 1.0 specification to 1Mbit/sec. At this rate,
even the most time-critical parameters can be transmit-
ted serially without latency concerns. In addition to this,
the CAN protocol has a comprehensive list of errors it
can detect that ensures the integrity of messages.

CAN nodes have the ability to determine fault condi-
tions and transition to different modes based on the
severity of problems being encountered. They also
have the ability to detect short disturbances from per-
manent failures and modify their functionality accord-
ingly. CAN nodes can transition from functioning like a
normal node (being able to transmit and receive mes-
sages normally), to shutting down completely (bus-off)
based on the severity of the errors detected. This fea-
ture is called Fault Confinement. No faulty CAN node or
nodes will be able to monopolize all of the bandwidth on
the network because faults will be confined to the faulty
nodes and these faulty nodes will shut off before bring-
ing the network down. This is very powerful because
Fault Confinement guarantees bandwidth for critical
system information.

As discussed previously, there are five error conditions
that are defined in the CAN protocol and three error
states that a node can be in, based upon the type and
number of error conditions detected. The following sec-
tion describes each one in more detail.

Errors Detected

CRC Error

A 15-bit Cyclic Redundancy Check (CRC) value is cal-
culated by the transmitting node and this 15-bit value is
transmitted in the CRC field. All nodes on the network
receive this message, calculate a CRC and verify that
the CRC values match. If the values do not match, a
CRC error occurs and an Error Frame is generated.
Since at least one node did not properly receive the
message, it is then resent after a proper intermission
time.

Acknowledge Error

In the Acknowledge Field of a message, the transmit-
ting node checks if the Acknowledge Slot (which it has
sent as a recessive bit) contains a dominant bit. This
dominant bit would acknowledge that at least one
node correctly received the message. If this bit is
recessive, then no node received the message prop-
erly. An Acknowledge Error has occurred. An Error
Frame is then generated and the original message will
be repeated after a proper intermission time.

Form Error

If any node detects a dominant bit in one of the fol-
lowing four segments of the message: End of Frame,
Interframe Space, Acknowledge Delimiter or CRC
Delimiter, the CAN protocol defines this to be a form
violation and a Form Error is generated. The original
message is then resent after a proper intermission
time. (see Figure 2 and/or Figure 3 for where these
segments lie in a CAN message).

Bit Error

A Bit Error occurs if a transmitter sends a dominant
bit and detects a recessive bit, or if it sends a reces-
sive bit and detects a dominant bit when monitoring
the actual bus level and comparing it to the bit that it
has just sent. In the case where the transmitter
sends a recessive bit and a dominant bit is detected
during the Arbitration Field or Acknowledge Slot, no
Bit Error is generated because normal arbitration or
acknowledgment is occurring. If a Bit Error is
detected, an Error Frame is generated and the origi-
nal message is resent after a proper intermission
time.

Stuff Error

CAN protocol uses a Non-Return–to-Zero (NRZ)
transmission method. This means that the bit level is
placed on the bus for the entire bit time. CAN is also
asynchronous, and bit stuffing is used to allow
receiving nodes to synchronize by recovering clock
information from the data stream. Receiving nodes
synchronize on recessive to dominant transitions. If
there are more than five bits of the same polarity in a
row, CAN will automatically stuff an opposite polarity
bit in the data stream. The receiving node(s) will use
it for synchronization, but will ignore the stuff bit for
data purposes. If, between the Start of Frame and
the CRC Delimiter, six consecutive bits with the
same polarity are detected, then the bit stuffing rule
has been violated. A Stuff Error then occurs, an Error
Frame is sent, and the message is repeated.
 1999 Microchip Technology Inc. Preliminary DS00713A-page 4-115

AN713

S4.book Page 116 Thursday, March 2, 2000 8:00 AM
Error States

Detected errors are made public to all other nodes via
Error Frames or Error Flags. The transmission of an
erroneous message is aborted and the frame is
repeated as soon as the message can again win arbi-
tration on the network. Also, each node is in one of
three error states, Error-Active, Error-Passive or Bus-
Off.

Error-Active

An Error-Active node can actively take part in bus
communication, including sending an active error flag,
which consists of six consecutive dominant bits. The
Error Flag actively violates the bit stuffing rule and
causes all other nodes to send an Error Flag, called
the Error Echo Flag, in response. An Active Error Flag,
and the subsequent Error Echo Flag may cause as
many as twelve consecutive dominant bits on the bus;
six from the Active Error Flag, and zero up to six more
from the Error Echo Flag depending upon when each
node detects an error on the bus. A node is Error-
Active when both the Transmit Error Counter (TEC)
and the Receive Error Counter (REC) are below 128.
Error-Active is the normal operational mode, allowing
the node to transmit and receive without restrictions.

Error-Passive

A node becomes Error-Passive when either the
Transmit Error Counter or Receive Error Counter
exceeds 127. Error-Passive nodes are not permitted
to transmit Active Error Flags on the bus, but instead,
transmit Passive Error Flags which consist of six
recessive bits. If the Error-Passive node is currently
the only transmitter on the bus then the passive error
flag will violate the bit stuffing rule and the receiving
node(s) will respond with Error Flags of their own
(either active or passive depending upon their own
error state). If the Error-Passive node in question is
not the only transmitter (i.e. during arbitration) or is a
receiver, then the Passive Error Flag will have no
effect on the bus due to the recessive nature of the
error flag. When an Error-Passive node transmits a
Passive Error Flag and detects a dominant bit, it must
see the bus as being idle for eight additional bit times
after an intermission before recognizing the bus as
available. After this time, it will attempt to retransmit.

Bus-Off

A node goes into the Bus-Off state when the Trans-
mit Error Counter is greater than 255 (receive errors
can not cause a node to go Bus-Off). In this mode,
the node can not send or receive messages,
acknowledge messages, or transmit Error Frames of
any kind. This is how Fault Confinement is achieved.
There is a bus recovery sequence that is defined by
the CAN protocol that allows a node that is Bus-Off
to recover, return to Error-Active, and begin transmit-
ting again if the fault condition is removed.

CONCLUSION

The CAN protocol was optimized for systems that need
to transmit and receive relatively small amounts of
information (as compared to Ethernet or USB, which
are designed to move much larger blocks of data) reli-
ably to any or all other nodes on the network. CSMA/
CD allows every node to have an equal chance to gain
access to the bus, and allows for smooth handling of
collisions.

Since the protocol is message-based, not address
based, all messages on the bus receive every message
and acknowledge every message, regardless of
whether in needs the data or not. This allows the bus to
operate in node-to-node or multicast messaging for-
mats without having to send different types of mes-
sages.

Fast, robust message transmission with fault confine-
ment is also a big plus for CAN because faulty nodes
will automatically drop off the bus not allowing any one
node from bringing a network down. This effectively
guarantees that bandwidth will always be available for
critical messages to be transmitted. With all of these
benefits built into the CAN protocol and its momentum
in the automotive world, other markets will begin to see
and implement CAN into their systems.
DS00713A-page 4-116 Preliminary 1999 Microchip Technology Inc.

AN713
A

n
alo

g
/In

terface

4

S4.book Page 117 Thursday, March 2, 2000 8:00 AM
FIGURE 1: ISO/OSI Reference Model

Application

Presentation

Session

Transport

Network

Data Link Layer

Physical Layer

Logical Link Control (LLC)

• Acceptance Filtering
• Overload Notification
• Recovery Management

Medium Access Control (MAC)

• Data Encapsulation/Decapsulation
• Frame Coding (Stuffing/Destuffing)]
• Error Detection/Signalling
• Serialization/Deserialization

Physical Signaling (PLS)

• Bit Encoding/Decoding
• Bit Timing/Synchronization

Physical Medium Attachment (PMA)

• Driver/Receiver Characteristics

Medium Dependent Interface (MDI)

• Connectors

ISO/OSI Reference Model

OSI Reference Layers
 1999 Microchip Technology Inc. Preliminary DS00713A-page 4-117

AN713

S4.book Page 118 Thursday, March 2, 2000 8:00 AM
FIGURE 2: Standard Data Frame

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0

IN
T

Su
sp

en
d

T
ra

ns
m

it
B

us
 I

dl
e

A
ny

 F
ra

m
e

In
te

r-
F

ra
m

e
S

pa
ce

Start of Frame

D
at

a
Fr

am
e

or
R

em
ot

e
Fr

am
e

3
8

0
0

0
0

1
1

1
1

1
1

1
1

1

Start of Frame

D
at

a
Fr

am
e

(n
um

be
r

of
 b

it
s

=
 4

4
+

 8
N

)

12
A

rb
it

ra
ti

on
 F

ie
ld

ID 10

11

ID3

ID0

Id
en

tif
ie

r

M
es

sa
ge

F
ilt

er
in

g

St
or

ed
 in

 B
uf

fe
rs

RTR
IDE
RB0
DLC3

DLC0

6

4

C
on

tr
ol

Fi
el

d D
at

a
L

en
gt

h
C

od
e

Reserved Bit

8N
 (

0≤
N

≤8
)

D
at

a
F

ie
ld

8
8

S
to

re
d

in
 T

ra
ns

m
it/

R
ec

ei
ve

 B
uf

fe
rs

B
it

S
tu

ff
in

g

16
C

R
C

 F
ie

ld

15 C
R

C

7

E
nd

 o
f

F
ra

m
e

CRC Del
Ack Slot Bit
ACK Del 1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
0

IN
T

Su
sp

en
d

T
ra

ns
m

it
B

us
 I

dl
e

A
ny

 F
ra

m
e

In
te

r-
Fr

am
e

Sp
ac

e

Start of Frame

D
at

a
F

ra
m

e
or

R
em

ot
e

F
ra

m
e

3
8

DS00713A-page 4-118 Preliminary 1999 Microchip Technology Inc.

AN713
A

n
alo

g
/In

terface

4

S4.book Page 119 Thursday, March 2, 2000 8:00 AM
FIGURE 3: Extended Data Frame

1
1

1
1

1
0

B
us

 I
dl

e

Start of Frame

D
at

a
Fr

am
e

or
R

em
ot

e
Fr

am
e

0
1

1
0

0
0

1

Start of Frame

A
rb

itr
at

io
n

Fi
el

d

32

11

ID10

ID3

ID0

IDE

Id
en

tif
ie

r

M
es

sa
ge

Fi
lte

ri
ng

St
or

ed
 in

 B
uf

fe
rs

SRR

EID17

EID0
RTR
RB1
RB0
DLC3

18

DLC0

6
C

on
tr

ol
Fi

el
d

4
Reserved bits

D
at

a
L

en
gt

h
C

od
e

St
or

ed
 in

 T
ra

ns
m

it/
R

ec
ei

ve
 B

uf
fe

rs

8
8

D
at

a
Fr

am
e

(n
um

be
r

of
 b

its
 =

 6
4

+
8N

)

8N
 (

0≤
N

≤8
)

D
at

a
Fi

el
d

1
1

1
1

1
1

1
1

16
C

R
C

 F
ie

ld

15 C
R

C

CRC Del
Ack Slot Bit
ACK Del

E
nd

 o
f

Fr
am

e

7

B
it

St
uf

fi
ng

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0

IN
T

S
us

pe
nd

T
ra

ns
m

it
B

us
 I

dl
e

A
ny

 F
ra

m
e

In
te

r-
Fr

am
e

S
pa

ce

Start of Frame

D
at

a
Fr

am
e

or
R

em
ot

e
Fr

am
e

3
8

E
xt

en
de

d
Id

en
tif

ie
r

 1999 Microchip Technology Inc. Preliminary DS00713A-page 4-119

AN713

S4.book Page 120 Thursday, March 2, 2000 8:00 AM
NOTES:
DS00713A-page 4-120 Preliminary 1999 Microchip Technology Inc.

AN717
Building a 10-bit Bridge Sensing Circuit using the
PIC16C6XX and MCP601 Operational Amplifier

A
n

alo
g

/In
terface

4

S4.book Page 121 Thursday, March 2, 2000 8:00 AM
INTRODUCTION

Sensors that use Wheatstone bridge configurations,
such as pressure sensors, load cells, or thermistors
have a great deal of commonality when it comes to the
signal conditioning circuit. This application note delves
into the inner workings of the electronics of the signal
conditioning path for sensors that use Wheatstone
bridge configurations. Analog topics such as gain and
filtering circuits will be explored. This discussion is
complemented with digital issues such as digital filter-
ing and digital manipulation techniques. Overall, this
note’s comprehensive investigation of hardware and
firmware provides a practical solution including error
correction in the data acquisition sensor system.

A sensor that is configured in a Wheatstone bridge typ-
ically supplies a low level, differential output signal. The
application problem the designer is challenged with is
to capture this small signal and eventually convert it to
a digital format that gives an 8 to 12 bit representation
of the signal.

The inexpensive design strategy shown in the block
diagram in Figure 1 uses a low pass filter prior to digiti-
zation. The conversion from analog to digital is per-
formed with the microcontroller (MCU). The MCU used
in this circuit must have internal analog functions such
as a voltage reference and a comparator. These inter-
nal analog building blocks are used to implement a first
order modulator. This is combined with the MCU’s com-
puting power where a digital filter can be
implemented.

FIGURE 1: The bridge sensor signal conditioning
chain filters high frequency noise in the analog domain
then immediately digitizes it with a microcontroller.

BRIDGE SENSOR DATA
ACQUISITION CIRCUIT
IMPLEMENTATION

Figure 2 gives a detailed circuit for the block diagram
shown in Figure 1. The analog portion of this circuit
consists of the sensor (in this example a 1.2kΩ, 2mV/V
load cell), an analog multiplexer, an amplifier and an
R/C network. (A complete list of the load cell’s specifi-
cations is given in Table 1.) An analog multiplexer is
used to switch the two sensor outputs between a single
ended signal path to the controller. The amplifier is con-
figured as a buffer and used to isolate the sensor load
from the R/C network. The R/C network implements the
integrator function of a first order modulator. This net-
work can also be used to adjust the input range to the
MCU.

Author: Bonnie C. Baker
Microchip Technology Inc.

MUX

LOW

PASS

FILTER
PICmicro®

Rated Capacity 32 ounces (896 g)

Excitation 5VDC to 12VDC

Rated Output 2mV/V ±20%

Zero Balance ±0.3mV/V

Operating Temperature -55 to 95°C

Compensated Temperature -5 to 50°C

Zero Balance over Tempera-
ture

0.036% FS/°C

Output over Temperature 0.036% FS/°C

Resistance 1200Ω ±300Ω

Safe Overload 150%

Full-Scale Deflection 0.01” to 0.05”

TABLE 1: Load Cell, LCL816G (Omega)
Specifications.
 1999 Microchip Technology Inc. DS00717A-page 4-121

AN717

S4.book Page 122 Thursday, March 2, 2000 8:00 AM
In this circuit, the integrator function of the modulator is
implemented with an external capacitor, CINT. When
RA3 of the PIC16C6XX is set high, the voltage at RA0
increases in magnitude. This occurs until the output of
the comparator (CMCON<6>) is triggered low. At this
point, the driver to the RA3 output is switched from high
to low. Once this has transpired, the voltage at the input
to the comparator (RA0) decreases. This occurs until
the comparator is tripped high. At this point, RA3 is set
high and the cycle repeats. While the modulator section
of this circuit is cycling, two counters are used to keep
track of the time and of the number of ones versus
zeros that occur at the output of the comparator. The
firmware flow chart for this conversion process is
shown in Figure 3.

FIGURE 3: This microcontroller A/D conversion flow
chart is implemented with the circuit shown in
Figure 2. Care should be taken to make the time that
every cycle takes through the flow chart constant.

FIGURE 2: The combination of an R/C network and the microcontroller’s analog peripherals can be used to perform an
A/D conversion function.

R1= 2.15kΩ (2.67kΩ nominal)
R2= 165kΩ
CINT= 1µF (60Hz LPF)
A1= Single Supply, CMOS op amp
A2= Single Supply Analog Multiplexer
A3= Dual Digital Pot, 1kΩ
VDD= 5V
A4 = PIC16CXX Microcontroller

M
A

X
32

3

LCN

LCP

VSENSOR = VDD

—

+
MCP601

A1
A2

R1

A3B

—

+
CINT

RA0

RA2

RA3

3 7

Comparator

RB1

RB0

R2

VDD

Firmware closes Loop

VREF3 = VSENSOR/2
(can be internal or external)

A3A

10kΩ

10kΩ
1µF

VSENSOR

A4

CMCON =0x03
COUNTER =0
RESULT =0

RA3 =0
INCR (RESULT)RA3 =1

VREF > VRAO

COUNTER=1024?

INCR (COUNTER)

DONE

NO

NO

YES

YES

CMCON =0x06
DS00717A-page 4-122 1999 Microchip Technology Inc.

AN717
A

n
alo

g
/In

terface

4

S4.book Page 123 Thursday, March 2, 2000 8:00 AM
After the timing counter goes to 1024 on one side of the
Wheatstone bridge, the MCU switches the multiplexer
(A2) to the leg of the other side of the sensor. With the
voltage of the other leg of the sensor connected to the
input of the amplifier, the controller cycles through
another conversion for 1024 counts. The two results
from these cycles are subtracted, giving the conversion
results. This technique provides 10-bits of resolution
with 9.9-bits of accuracy (rms).

The design equations for this circuit are:

VIN (CM) = VREF3

VIN (P to P) = VRA3 (P to P) (R1 / R2)

with VIN (CM) approximates VDD /2 or is equal to
(LCP + LCN)/2,

where:

VREF3 is the voltage reference applied to the com-
parator’s non-inverting input and equal to approxi-
mately VSENSOR /2. If made external, this
reference voltage can be used to adjust offset
errors

VIN (P to P) is equal to (LCP(MAX) − LCN(MIN)) or
(LCP(MIN) − LCN(MAX)) which equals the sensor full
scale range and VRA3 (P to P) is equal to VRA3 (MAX)
− VRA3 (MIN) or
approximately VDD

The system in this application note has been designed
to have a full-scale input range to the comparator of
± 40.5mV. Given 9.9-bit (rms) accuracy, the LSB size is
84.7µV.

The transfer function of the percentage of ones
counted versus input voltage is shown in Figure 4. In
this diagram, both the duty cycle between ones and
zeros as well as the pulse width is modulated.

FIGURE 4: The relationship between input voltage
and the number of ones that are counted by the
controller is shown conceptually with this diagram. At
low input voltages, the output of the comparator
produces very few zeros within the 1024 counts. At
voltages in the center of the input range, the
comparator quickly toggles between ones and zeros.
At higher voltages, the comparator output produces
mostly zeros and very few ones.

ERROR SOURCES AND SYSTEM
SOLUTIONS

A wheatstone bridge is designed to give a differential
output rendering a small voltage that changes propor-
tionally to the sensor’s excitation, i.e. pressure or tem-
perature, etc. The dominant types of errors that a
sensor exhibits in its transfer function can be catego-
rized as offset, gain, linearity, noise, and thermal.
These sensors also produce other errors such as hys-
teresis, repeatability, stability and aging that are
beyond the scope of this application note. An equal
contributor to the overall system errors is the offset,
gain, and linearity errors from the active components in
the signal conditioning path.

OFFSET ERRORS

The offset error of a system can be mathematically
described with a constant additive to the entire transfer
function as shown in Figure 5.

FIGURE 5: The offset error of a system can be
described graphically with a transfer function that has
shifted along the x-axis.

Typically, offset error is measured at a point where the
input signal to the system is zero. This technique pro-
vides an output signal that is equal to the offset. This
type of error can originate at the sensor or within the
various components in the analog signal path. By defi-
nition, the offset error is repeatable and stable at a
specified operating condition. If the operating condi-
tions change, such as temperature, voltage excitation
or current excitation, the offset error may also change.

The offset errors in this signal path come from the
wheatstone bridge sensor, the operational amplifier
(A1) offset, the port leakage current at RA0, the internal
voltage reference (VREF3) offset, the comparator offset,
and the non-symmetrical output port of RA3. The only
difference in the signal path of the two sensor outputs
is the multiplexer channel, which interfaces directly with
a high impedance CMOS operational amplifier. Other-
wise, both sensor output signals are configured to
travel down the same signal-conditioning path. Conse-
quently, the conversion data taken from the positive leg

Digital Data Stream

at the Output

of the Comparator

Voltage In

0.0

1.0

2.0

3.0

4.0

5.0

O
ut

pu
t S

ig
na

l

0 1 2 3 4 5 6
Input Signal / Excitation

Ideal Transfer
Function

Transfer
Function with
Offset Error

Out = Offset Error + IN
 1999 Microchip Technology Inc. DS00717A-page 4-123

AN717

S4.book Page 124 Thursday, March 2, 2000 8:00 AM
of the load cell sensor (LCP) has the same offset and
gain errors as the conversion data taken from the neg-
ative output of the load cell sensor (LPN), with the
exception of the bridge’s offset error.

To accommodate these errors, the design equations for
this circuit remains:

VIN (CM) = VREF3

VIN(P to P) = VRA3 (P to P) (R1 / R2)

But, now the worst case variation of VIN(P to P) is equal
to (LCP(MAX) − LCP(MIN) + LCOFF + A1OFF + RA0OFF +
VREF3-OFF + COMPOFF + RA3OFF)

where:

∆LCOFF is the maximum offset voltage that can be
generated by the load cell bridge

A1OFF is the offset voltage of the operational
amplifier

RA0OFF is the offset error caused by the leakage
current of port RA0. This leakage current is speci-
fied at 1nA at room temperature and 0.5µA (max)
over temperature. This leakage current causes a
voltage drop across the parallel combination of R1
and R2

VREF3-OFF is the offset error of the internal voltage
reference of the MCU or VDD/2. This error can be
reduced significantly with an external voltage ref-
erence

COMPOFF is the offset of the internal comparator
of the MCU and

RA3OFF is caused by the inability of RA3 to go
completely to the rails. It can be quantified by
RA3OFF = ((VDD − RA3HIGH) − RA3LOW)/2. This
formula assumes VREF3 = VDD / 2

The maximum magnitudes of these errors are summa-
rized in Table 2.

Firmware Offset Calibration

The offset errors of the circuit can be calibrated in firm-
ware. This is performed by subtracting the conversion
code results of the positive leg of the sensor from the
results of the negative leg of the sensor. The analog
representation of the result of this calculation in firm-
ware is:

VOUT = LCP + LCOFF + A1OFF + RA0OFF +
VREF3-OFF + COMPOFF + RA3OFF − LCN −
A1OFF − RA0OFF − VREF3-OFF − COMPOFF
− RA3OFF

VOUT = LCP − LCN + LCOFF

This result illustrates the efficiency of using firmware to
eliminate most of the offset errors, however, the
trade-off for having offset adjustments performed by
the MCU is dynamic range. In anticipation of these off-
set errors, the designer should increase the
peak-to-peak analog input range of the conversion sys-
tem. This will result in a conversion that has a wider
dynamic range, consequently, lower accuracy.

To counteract this, the accuracy can be improved if
more samples are taken in the conversion process.
This technique will elongate the overall conversion
time. Another technique that can be used is to perform
a simple offset adjust in hardware which can be imple-
mented with the digital potentiometer (A3A).

Hardware Offset Calibration

Given the design equations for this circuit and the
errors in Table 2, the total expected offset error over
temperature for the electronics is ±69.3mV. With a sen-
sor full-scale range of ±10mV, the dynamic range of the
system would be ~7.9 times larger than the nominal,
error free peak-to-peak range at the input of the com-
parator.

The 8-bit, 1kΩ digital potentiometer (A3A) in Figure 2 is
placed in series between the power supply (5V) with
two 10kΩ, 1% resistors. This configuration provides a
voltage reference range to the comparator of ±119mV
centered around mid-supply (2.5V) with a resolution of
0.5mV. If an external reference is used with a ±0.5mV
error range, the electronics will contribute ±20.8mV off-
set error over temperature. This changes the worst
case full-scale peak-to-peak range of the system to
±30.8mV. This is only approximately three times larger
than the nominal full-scale output (±10mV) of the sen-
sor.

System Span (Gain) Errors

The span or gain of a system can be mathematically
described as a constant, which is multiplied against the
input signal. The magnitude of the span can easily be
determined using the formula below:

Ideal Output = Input x Gain

Error Source
Offset Voltage over

Temperature

Load Cell Bridge ±1.5mV in a 5V system

Op Amp ±2mV

Port Leakage, RA0 ±1.3mV

Internal VREF ±49mV

Comparator ±10mV

Output Port, RA3
(asymmetrical output
swing)

5.5mV

TABLE 2: Maximum offset errors over temperature for
the circuit shown in Figure 3.
DS00717A-page 4-124 1999 Microchip Technology Inc.

AN717
A

n
alo

g
/In

terface

4

S4.book Page 125 Thursday, March 2, 2000 8:00 AM
Span error is the deviation of the span multiple from
ideal and can be described with the formula below:

Actual Output = Input x Span (1 + Span Error)

Examples of transfer functions with span error are
shown in Figure 6. The plots in Figure 6 do not have
offset errors.

FIGURE 6: Span or gain errors can be described
graphically as a transfer function that rotates around
the intercept of the x and y-axis.

Firmware Span (Gain) Calibration

For this circuit, the span error of the sensor is less influ-
ential than the offset errors on the system. Span errors
come from the Load Cell (±20%), the resistors (±1%),
capacitor (±10%), and the ON resistance of the RA3
port (0.2%). This circuit can rely on firmware calibration
with a reduction in the dynamic range of the system.
The combination of the sensor error and the capacitor
error increases the requirements on the input range to
the modulator configuration.

Hardware Span (Gain) Calibration

Span errors can most effectively be removed in the
analog domain. For instance, the span error of the sen-
sor can be adjusted with the sensor’s excitation volt-
age. As a trade-off for this adjustment strategy, the
common mode voltage of the sensor is changed, creat-
ing offset errors with respect to the reference voltage
(VREF3) of the comparator. This problem can be allevi-
ated by making the voltage reference ratiometric to the
sensor excitation source. Span errors can also be
adjusted with either R1 or R2. In the circuit in Figure 2,
the other half of the dual, 1kΩ digital potentiometer
(A3B) is configured to perform this function. This type of
adjustment does not change the offset error of the sys-
tem. Finally, span errors can be corrected with changes
to the integration capacitor. Of all of the span adjust-
ments, this one is the most awkward to implement.

SYSTEM LINEARITY ERRORS

Linearity error differs from offset or span errors in that
it has a unique affect on each individual code of the dig-
itizing system. Linearity errors are defined as the devi-
ation of the transfer function from a straight line. Some
engineers define this error using a line that stretches
between the end points of the transfer curve while oth-
ers define it using a line that is calculated using a “best
fit” algorithm. In either case, the linearity errors can
cause significant errors in translating the sensor input
(pressure, temperature, etc.) to digital code.

Linearity errors come in many forms as shown in
Figure 7. Sometimes the linearity error of a system can
be characterized with a multi-order polynomial, but
more typically this error is difficult to predict from sys-
tem to system, in which case, firmware piecewise lin-
earization methods are usually used.

FIGURE 7: The linearity error of a sensor or system
can sometimes be modeled and understood, which
allows the designer to use predetermined algorithms
in the MCU to minimize their affect. However, typically,
these errors are not easily predicted and difficult to
calibrate out of the signal path.

Linearity errors in this system originate primarily in the
sensor and secondarily in the remainder of the signal
conditioning circuit.

Firmware Linearization

Linearity errors can be calibrated out of the system in
firmware using polynomial calculations if the transfer
function is understood or piecewise linearization meth-
ods if the transfer function from part to part varies. If
piecewise linearization is used, calibration data should
be taken from the system and stored in EEPROM. Uti-
lizing the calibration data, piecewise linearization is
easily implemented using two 16 bit unsigned subtrac-
tions, one 16 bit unsigned multiplication and one 16 bit
unsigned divide.

XCAL = XFULL / (YFULL – YOFF) x (YSAMP – YZERO)

where:

XCAL is equal to the calibrated results

XFULL is the ideal full scale response saved in
EEPROM

Actual Output = Input x Span (1 + Span Error)

Input Signal / Excitation

0.0

1.0

2.0

3.0

4.0

5.0

O
ut

pu
t S

ig
na

l

0 1 2 3 4 5 6

Ideal Transfer
Function

Transfer
Function with
Span Error

Out = Offset + (Span x IN)(j + kIN2 + mIN3 +…)
or

Out = Offset + (Span x IN)(uncharacterized polynomial)

0.0

1.0

2.0

3.0

4.0

5.0

O
ut

pu
t S

ig
na

l
0 1 2 3 4 5 6

Input Signal / Excitation

Ideal Transfer
Function

Transfer
Function with
Linearity Error
 1999 Microchip Technology Inc. DS00717A-page 4-125

AN717

S4.book Page 126 Thursday, March 2, 2000 8:00 AM
YFULL is the measured full scale response saved in
EEPROM

YOFF is the measured offset error saved in
EEPROM

YSAMP is the measured sample that requires lin-
earization and calibration

This style of linearization correction also removes off-
set and span errors from the digital results.

Hardware Linearization

There are two components that generate linearity
errors. The sensor can contribute up to ±0.25%FS
error. The capacitor in this circuit can also contribute an
appreciable error if care is not taken in limiting the
charge and discharge range of the device. If the R/C
time constant of the circuit is greater than the inverse of
the sample frequency, the non-linearity of this time
response will cause a linearity error in the system.

In this case the R/C time constant is equal to:

tRC = R1||R2 x CINT

tRC = 2.67kΩ||165kΩ x 1µF

tRC = 2.627msec

also, tRC <= tSAMPLE /6.5

The maximum voltage deviation due to the non-linearity
of the R/C network is ~10mV. This is below a 0.2%
error. If a lower sampling frequency is used, the inte-
grating capacitor must be increased in value.

SYSTEM NOISE ERRORS

Noise can plague the best of circuits, particularly cir-
cuits that have large analog segments. An effective way
to approach noise problems is to use a basic list of
guidelines in conjunction with a working knowledge of
noise fundamentals. The checklist that every designer
should have on hand includes:

1. Are bypass capacitors included in the design?

2. Is a low impedance ground plane implemented
to minimize any ground noise across sensitive
analog parts?

3. Are appropriate anti-aliasing filters used in front
of the A/D converter?

4. Are the devices in the circuit too noisy?

Firmware Noise Reduction

The A/D converter described in this application note
was modeled after a classic first order delta-sigma
topology. In the digital domain, the data collection algo-
rithm implements a simple average engine by default.
This style of averaging, otherwise known as digital fil-
tering, is also called a single order sinc filter or Finite
Impulse Response (FIR) filter.

Further noise reduction algorithms can be imple-
mented with the PIC MCU which will produce a system
with higher accuracy. As an example, a third order FIR
filter can be implemented with the following calcula-
tions in code:

y(n) = (2x(n) + x(n-1) + x(n-2) + x(n-3) + x(n-4) +
x(n-5) + x(n-6)) / 8

where:

n identifies the measurement sample

y(n) is the output digital results

x(n) is the measurement sample results

This filter is also known as a sinc3 filter.

Other filter types, such as the Infinite Impulse
Response (IIR) filter or a decimation filter can also be
used to improve accuracy. A detailed discussion of
these filters are beyond the scope of this application
note, however, references have been provided for fur-
ther reading.

Hardware Noise Reduction

In Figure 2, the R/C network that is used to implement
the integrator function also serves as a low pass filter.
This low pass filter is equal to:

f3dB = 1 / (2 π R1 ||R2 x CINT)

Further noise reduction can be implement by adding a
second modulator stage at the input so this system.
This implementation is shown in Figure 8.
DS00717A-page 4-126 1999 Microchip Technology Inc.

AN717
A

n
alo

g
/In

terface

4

S4.book Page 127 Thursday, March 2, 2000 8:00 AM
REFERENCES

Peter, Baker, Butler, Darmawaskita, “Making a
Delta-Sigma Converter Using A Microcontroller’s Ana-
log Comparator Module”, AN700, Microchip Technol-
ogy, Inc.

Baker, Bonnie C., “Anti-aliasing, Analog Filters for Data
Acquisition Systems”, AN699, Microchip Technology,
Inc.

Baker, Bonnie C., “Layout Tips for 12-Bit Converter
Applications”, AN688, Microchip Technology, Inc.

Morrison, Ralph, “Noise and Other Interfering Signals”,
John Wiley & Sons, Inc., 1192

Baker, Bonnie C., “Analog Circuit Noise Sources and
Remedies”, EDTN Internet Magazine, Analog Avenue
Tech Notes, Oct. 1998

Baker, Bonnie C., “Noise Sources in Applications Using
Capacitive Coupled Isolated Products”, AB-047,
Burr-Brown Corp.

Palacheria, Amar, “Implementing IIR Digital Filters”,
AN540, Microchip Technology, Inc.

Norsworthy, Schreier, Temes, “Delta-Sigma A/D Con-
verters: Theory, Design, and Simulation”, IEEE Press

FIGURE 8: An additional modulator stages can reduce noise in the system even further. In this circuit, one modulator
stage is added which improves the system from a 9.9-bit accurate (rms) system to an 11.1-bit accurate system.

R1, R3 = 2.15kΩ (2.67kΩ nominal)
R2, R4 = 165kΩ
CINT = 1µF (60Hz LPF)
A1 = Single Supply, CMOS op amp
A2 = Single Supply Analog Multiplexer
A3 = Dual Digital Pot, 1kΩ
VDD = 5V
A4 = PIC16C6XX Microcontroller

M
A

X
32

3

LC-

LC+

VSENSOR = VDD

—

+
MCP602

A4
A2

R3

A3B

—

+
CINT

RA0

RA2

RA3

3 7

Comparator

RB1

RB0

R2

VDD

VREF3 = VSENSOR/2
(can be internal or external)

A3A

10kΩ

10kΩ

1µF

VSENSOR

½

CINT

R4

R1

Firmware
closes Loop

—

+
MCP602

A1

½

A4
 1999 Microchip Technology Inc. DS00717A-page 4-127

AN717

S4.book Page 128 Thursday, March 2, 2000 8:00 AM
NOTES:
DS00717A-page 4-128 1999 Microchip Technology Inc.

AN719
Interfacing Microchip’s MCP3201 Analog-to-Digital

Converter to the PICmicro® Microcontroller

A
n

alo
g

/In
terface

4

S4.book Page 129 Thursday, March 2, 2000 8:00 AM
INTRODUCTION

Many of the embedded control systems designed today
require some flavor of a Analog-to-Digital (A/D) Con-
verter. Embedded system applications such as data
acquisition, sensor monitoring and instrumentation and
Control all have varying A/D Converter requirements.

For the most part, these A/D Converter requirements
are a combination of performance, cost, package size,
and availability. Microchip offers a variety of solutions to
meet these design requirements. The first possible
solution is to implement the PICmicro® microcontroller
(MCU). The PICmicro MCU offers many options for
smart solutions. One of these features is the A/D Con-
verter module. These A/D Converter modules are pri-
marily successive approximation register (SAR) type
and range in functionality from 8- to 12-bit with channel
size ranges of 4 to 16. For example, the PIC16C77 has
8-channels of 8-bit A/D Converter, while the
PIC17C766 has 16-channels of 10-bit A/D Converter.

These on-board A/D Converter modules fit well into
embedded applications, which requires a 10-35ksps
A/D Converter.

For those applications which require a higher perfor-
mance or remote sense capability, the Microchip
MCP3201, 12-bit A/D Converter fits very nicely.

The MCP3201 employs a classic SAR architecture.
The device uses an internal sample and hold capacitor
to store the analog input while the conversion is taking
place. Conversion rates of 100ksps are possible on the
MCP3201. Minimum clock speed (10kHz or 625sps,
assuming 16 clocks) is a function of the capacitors
used for the sample and hold.

The MCP3201 has a single pseudo-differential input.
The (IN–) input is limited to ±100mV. This can be used
to cancel small noise signals present on both the (IN+)
and (IN–) inputs. This provides a means of rejecting
noise when the (IN–) input is used to sense a remote
signal ground. The (IN+) input can range from the (IN–)
input to VREF.

The reference voltage for the MCP3201 is applied to
VREF pin. VREF determines the analog input voltage
range and the LSB size, i.e.:

As the reference input is reduced, the LSB size is
reduced accordingly.

Communication with the MCP3201 is accomplished
using a standard SPI™ compatible serial interface.
This interface allows direct connection to the serial
ports of MCUs and digital signal processors.

In order to simplify the design process for implementing
the MCP3201, Microchip has written C and assembly
code routines for a PIC16C67 to communicate with the
MCP3201 A/D Converter.

Figure 1 shows the hardware schematic implemented
in this application. Appendix A contains a listing of the
C source code. Appendix B contains a listing of the
assembly source code.

Author: Richard L. Fischer
Microchip Technology Inc.

LSB size = VREF

212
 1999 Microchip Technology Inc. DS00719A-page 4-129

AN719

S4.book Page 130 Thursday, March 2, 2000 8:00 AM
FIGURE 1: MCP3201 A/D Converter to PICmicro MCU Interface.
DS00719A-page 4-130 1999 Microchip Technology Inc.

AN719
A

n
alo

g
/In

terface

4

S4.book Page 131 Thursday, March 2, 2000 8:00 AM
CIRCUIT DESCRIPTION

The serial interface of the Microchip MCP3201 A/D
Converter has three wires, a serial clock input (DCLK),
the serial data output (DOUT) and the chip select input
signal (CS/SHDN). For this simple circuit interface, the
PICmicro PIC16C67 SPI port is used. PortC:<3> is
configured for the serial clock and PortC:<4> is the data
input to the PICmicro. The SPI clock rate for this appli-
cation is set at 1MHz.

The PIC16C67 is configured in the master mode with
its CKP bit set to logic 1 and CKE bit set to logic 0. This
configuration is the SPI bus mode 1,1.

A conversion is initiated with the high to low transition
of CS/SHDN (active low). The chip select is generated
by PORTA:<5> of the PICmicro. The device will sample
the analog input from the rising edge on the first clock
after CS goes low for 1.5 clock cycles. On the falling
edge of the second clock, the device will output a low
null bit. The next 12 clocks will output the result of the
conversion with the MSB first (See Figure 2 and
Figure 3). Data is always output from the device on the
falling edge of the clock. If the device continues to
receive clocks while CS/SHDN is low, the device will
output the conversion LSB first. If more clocks are pro-
vided to the device while CS/SHDN is still low (after the
LSB first data has been transmitted), the device will
clock out zeros indefinitely.

As the analog input signal is applied to the IN+ and IN-
inputs, it is ratioed to the VREF input for conversion
scaling.

Where:

VIN = analog input voltage V(IN+) - V(IN–)

VREF = reference voltage

F.S. = full scale = 4096

VREF can be sourced directly from VDD or can be sup-
plied by an external reference. In either configuration,
the VREF source must be evaluated for noise contribu-
tions during the conversion. The voltage reference
input, VREF of the MCP3201 ranges from 250mV to
5VDC which approximately translates to a correspond-
ing LSB size from 61µV to 1.22mV per bit.

For this simple application, the MCP3201 voltage refer-
ence input is tied to 5VDC. This translates to a
1.22mV / bit resolution for the A/D Converter module.

The voltage input to the MCP3201 is implemented with
a multi-turn potentiometer. The output voltage range of
this passive driver is approximately 0VDC to 5VDC.

Finally, a simple RS-232 interface is implemented using
the USART peripheral of the PICmicro and a MAX233
transceiver IC. The USART transmits the captured A/D
Converter binary value, both in ASCII and correspond-
ing voltage to the PC terminal at 9600 baud.

With a few discrete components, a MCP3201 A/D Con-
verter IC., and a PICDEM-2 demonstration board, this
simple application can be implemented.

As with all applications which require moderate to high
performance A/D Converter operation, proper ground-
ing and layout techniques are essential in achieving
optimal performance. Proper power supply decoupling
and input signal and VREF parameters must be consid-
ered for noise contributions.

SOURCE CODE DESCRIPTION

The code written for this application performs six func-
tions:

1. PICmicro Initialization

2. A/D Conversion

3. Conversion to ASCII

4. Conversion to Decimal

5. Conversion to Voltage (*C code only)

6. Transmit ASCII, Decimal and Voltage to PC for
display.

C CODE:

Upon power up, three initialization routines are called
and executed. These routines initialize the PICmicro
Port pins, USART peripheral and SSP module for SPI
functionality. The default PICmicro SPI bus mode is 1,1.
To place the PICmicro in SPI bus mode 0,0, comment
out the “#define mode11” definition statement and
rebuild the project.

Upon completion of the initialization routines, the main
code loop is entered and executed every ~150ms. This
continuous loop consists of performing an analog con-
version, transmitting the results to the PC for display,
delaying for ~150ms and then repeating the loop.

The A/D conversion sequence is initiated every time
CS/SHDN is asserted. PortA:<5> is used as the CS/
SHDN to the MCP3201. After asserting PortA:<5>, the
SSPBUF register is written to, for initiating a SPI bus
cycle. When the SPI cycle is complete, (BF flag is set
to logic 1), the received data is read from the SSPBUF
register and written to the RAM array variable
"adc_databyte[1]". The SSPBUF register is again writ-
ten to, which initiates a SPI bus cycle, and the second
8-bits are received and written to the RAM array vari-
able "adc_databyte[0]". The CS/SHDN is then negated
and the MCP3201 enters into the shutdown mode.

Next, the “Display_Adc_Result” routine is called and
executed. Here the composite result, located in array
variable “adc_databyte” is right adjusted one bit loca-
tion. Then a printf statement is executed which formats

Digital output code = VIN x F.S.
VREF

1.22mV = 5VDC

212 bits
 1999 Microchip Technology Inc. DS00719A-page 4-131

AN719

S4.book Page 132 Thursday, March 2, 2000 8:00 AM
and sends the data to the USART for transmission to
the PC for display. The data output is in three formats:
ASCII, Decimal and Voltage.

ASSEMBLY CODE:

Upon power up, three initialization routines are called
and executed. These routines initialize the PICmicro
Port pins, USART peripheral and SSP module for SPI
functionality. The default PICmicro SPI bus mode is 1,1.
To place the PICmicro in SPI bus mode 0,0, comment
out the “#define mode11” statement and rebuild the
project.

FIGURE 2: SPI Communication using 8-bit segments (Mode 0,0: DCLK idles low).

FIGURE 3: SPI Communication using 8-bit segments (Mode 1,1: DCLK idles high).

CS/SHDN

DCLK 9 10 11 12 13 14 15 16

DOUT

NULL
BIT B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

HI-Z

B7 B6 B5 B4 B3 B2 B1 B0B11 B10 B9 B8? ? 0

MCU latches data from A/D

Data is clocked out of
A/D Converter on falling edges

Converter on rising edges of DCLK

1 2 3 4 5 6 7 8

HI-ZB1

B1
MCU Received Data

(After 16 clocks)

LSB first data begins
to come out

B2

CS/SHDN

DCLK 9 10 11 12 13 14 15 16

DOUT

NULL
BIT B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0

HI-Z

B7 B6 B5 B4 B3 B2 B1 B0B11 B10 B9 B8? ? 0

MCU latches data from A/D

Data is clocked out of
A/D Converter on falling edges

Converter on rising edges of DCLK

1 2 3 4 5 6 7 8

B1

B1
MCU Received Data

(After 16 clocks)

LSB first data begins
to come out

HI-Z

15
DS00719A-page 4-132 1999 Microchip Technology Inc.

AN719
A

n
alo

g
/In

terface

4

S4.book Page 133 Thursday, March 2, 2000 8:00 AM
Upon completion of the initialization routines, the main
code loop is entered and executed every ~150ms. This
continuous loop consists of performing an analog con-
version, converting the A/D Converter binary data into
Decimal and ASCII and then transmitting the results to
the PC for display, delaying for ~150ms and then
repeating the loop.

The A/D conversion sequence is initiated every time
CS/SHDN is asserted. PortA:<5> is used as the CS/
SHDN to the MCP3201. After asserting PortA:<5>, the
SSPBUF register is written to, for initiating a SPI bus
cycle. When the SPI cycle is complete, (BF flag is set
to logic 1), the received data is read from the SSPBUF
register and written to the RAM variable
"adc_result+1". The SSPBUF register is again written
to, which initiates a SPI bus cycle, and the second
8-bits are received and written to the RAM variable
"adc_result". Here the composite result, located in vari-
able adc_result is right adjusted one bit location. The
CS/SHDN is negated and the MCP3201 enters into the
shutdown mode.

Next, the “Hex_Dec” and “Hex_Ascii” routines are exe-
cuted which convert the raw A/D Converter binary data
into Decimal and ASCII values. Then, the
”Display_Data” routine is executed which sends the
data to the USART for transmission to the PC for dis-
play.

REFERENCES

Williams, Jim, “Analog Circuit Design”, Butter-
worth-Heinemann.

Baker, Bonnie, “Layout Tips for 12-bit A/D Converter
Applications”, AN688, Microchip Technology Inc.

MCP3201 12-bit A/D Converter with SPI Serial Inter-
face, Microchip Technology, Document # DS21290B,
1999.
 1999 Microchip Technology Inc. DS00719A-page 4-133

AN719

S4.book Page 134 Thursday, March 2, 2000 8:00 AM
APPENDIX A:
/***
* *
* Interfacing Microchip’s MCP3201 ADC to the PICmicro MCU *
* *
**
* *
* Filename: mcp3201.c *
* Date: 06/30/99 *
* File Version: 1.00 *
* *
* Compiler: Hi-Tech PIC C Compiler V7.84 PL1 *
* MPLAB V4.12.00 *
* *
* Author: Richard L. Fischer *
* Microchip Technology Incorporated *
* *
**
* *
* Files required: *
* *
* pic.h - Hi-Tech provided file *
* stdio.h - Hi-Tech provided file *
* cnfig67.h *
* mcp3201.h *
* *
* mcp3201.c *
* mprnt.c - Hi-Tech provided file *
* *
**
* *
* *
* This code demonstrates how the Microchip MCP3201 Analog-to-Digital*
* Converter (ADC) is interfaced to the Synchronous Serial Peripheral*
* (SSP) of the PICmicro MCU. For this application note the PICmicro *
* PIC16C67 is selected. The interface uses two Serial Peripheral *
* Interface (SPI) lines (SCK, SDI) on the PICmicro for the clock *
* (SCK) and data in (SDI). A chip select (CS) to the MCP3201 is *
* generated with a general purpose port line PORTA:<5>. The simple *
* application uses Mode 1,1 to define bus clock polarity and *
* phase. *
* *
* For this application, the SPI data rate is set to one fourth *
* (FOSC/4) of the microcontroller clock frequency. The PIC16C67 *
* device clock frequency used for this application is 4MHz. This *
* translates to an ADC throughput of approximately 62.5kHz. In *
* order to obtain the maximum throughput (100kHz) from the *
* MCP3201 ADC the PIC16C67 should be clocked at 6.4Mhz. *
* *
* *
* *
***/

#include <pic.h> // processor if/def file
#include <stdio.h>
#include “cnfig67.h” // configuration word definitions
#include “mcp3201.h”

_CONFIG (CONBLANK & BODEN_ON & PWRTE_ON & CP_OFF & WDT_OFF & XT_OSC);

/* SPI Bus mode selection */
#define mode11 // comment out and rebuild for mode 00

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
DS00719A-page 4-134 1999 Microchip Technology Inc.

AN719
A

n
alo

g
/In

terface

4

S4.book Page 135 Thursday, March 2, 2000 8:00 AM
/**

 MAIN PROGRAM BEGINS HERE

**/

void main(void)
{

Init_Ports(); // initialize ports
Init_SSP(); // initialize SSP module
Init_Usart(); // initialize USART module

while (TRUE) // loop forever
{

Read_Adc(); // initiate MCP3201 conversion and read result
Display_Adc_Result(); // display results via USART to PC
Delay_10mS(15); // 150mS delay

}
}

void Delay_10mS(char loop_count) // approximate 10mS base delay
{

unsigned int inner; // declare integer auto variable
char outer; // declare char auto variable

while (loop_count) // stay in loop until done
{

for (outer = 9; outer > 0; outer--)
for (inner = 249; inner > 0; inner--);

loop_count--;
}

}

void putch(char data)
{

while (!TRMT); // wait until TSR is empty
TXREG = data; // write data to USART

}

void Read_Adc(void)
{

CS = 0; // assert MCP3201 chip select
SSPBUF = 0x01; // initiate a SPI bus cycle
while (!STAT_BF); // wait until cycle completes
adc.databyte[1] = SSPBUF; // transfer ADC MSbyte into buffer

SSPBUF = 0x81; // initiate a SPI bus cycle
while (!STAT_BF); // wait until cycle completes
CS = 1; // negate MCP3201 chip select
adc.databyte[0] = SSPBUF; // transfer ADC LSbyte into buffer

}

void Display_Adc_Result(void)
{

double temp; // define auto type variable
adc.result >>= 1; // adjust composite integer for 12 valid bits
adc.result &= 0x0FFF; // mask out upper nibble of integer
temp = (adc.result * 0.001225585); // compute floating point result
 1999 Microchip Technology Inc. DS00719A-page 4-135

AN719

S4.book Page 136 Thursday, March 2, 2000 8:00 AM
printf(“Hex->0x%X : Decimal->%u : %4.3f Vdc\n\r”, adc.result, adc.result, temp);
}

void Init_Usart(void)
{

SPBRG = 25; // set baud rate for 9600 @ 4MHz
TXSTA = 0x24; // BRGH = 1, enable transmitter
RCSTA = 0x90; // enable serial port

}

void Init_SSP(void)
{
#ifdef mode11

SSPSTAT = 0b00000000; // Master sample data in middle, data xmt on
// rising edge

SSPCON = 0b00110000; // enable Master SPI, bus mode 1,1, FOSC/4

#else if
SSPSTAT = 0b01000000; // Master sample data in middle, data xmt on

// rising edge
SSPCON = 0b00100000; // enable Master SPI, bus mode 0,0, FOSC/4

#endif
}

void Init_Ports(void)
{

PORTA = 0b100000; // set PORTA data latches to initial state
PORTB = 0x00; // set PORTB data latches to initial state
PORTC = 0b11010000; // set PORTC data latches to initial state
PORTD = 0x00; // set PORTD data latches to initial state
PORTE = 0x00; // set PORTE data latches to initial state

TRISA = 0b000000; // set PORTA pin direction
TRISB = 0x00 // set PORTB pin direction
TRISC = 0b11010000; // set PORTC pin direction
TRISD = 0x00; // set PORTD pin direction
TRISE = 0x00; // set PORTE pin direction

}

DS00719A-page 4-136 1999 Microchip Technology Inc.

AN719
A

n
alo

g
/In

terface

4

S4.book Page 137 Thursday, March 2, 2000 8:00 AM
/***
* *
* Filename: mcp3201.h *
* Date: 06/30/99 *
* File Version: 1.00 *
* *
* *
***/

// FUNCTION PROTOTYPES DECLARED HERE

void Read_Adc(void);
void Display_Adc_Result(void);
void Delay_10mS(char loop_count);
void Init_Usart(void);
void Init_SSP(void);
void Init_Ports(void);

union {
char databyte[2]; // declare temp array for adc data
unsigned int result; // declare integer for adc result

} adc; // define union variable

#define TRUE 1

#define PortBit(port,bit) ((unsigned)&(port)*8+(bit))

static bit CS @ PortBit(PORTA,5); // MCP3201 Chip Select
 1999 Microchip Technology Inc. DS00719A-page 4-137

AN719

S4.book Page 138 Thursday, March 2, 2000 8:00 AM
/***
* *
* Filename: cnfig67.h *
* Date: 06/30/99 *
* File Version: 1.00 *
* *
* *
***/

/***** CONFIGURATION BIT DEFINITIONS FOR PIC16C67 PICmicro *****/

#define CONBLANK 0x3FFF

#define CP_ALL 0x00CF
#define CP_75 0x15DF
#define CP_50 0x2AEF
#define CP_OFF 0x3FFF
#define BODEN_ON 0x3FFF
#define BODEN_OFF 0x3FBF
#define PWRTE_OFF 0x3FFF
#define PWRTE_ON 0x3FF7
#define WDT_ON 0x3FFF
#define WDT_OFF 0x3FFB
#define LP_OSC 0x3FFC
#define XT_OSC 0x3FFD
#define HS_OSC 0x3FFE
#define RC_OSC 0x3FFF
DS00719A-page 4-138 1999 Microchip Technology Inc.

AN719
A

n
alo

g
/In

terface

4

S4.book Page 139 Thursday, March 2, 2000 8:00 AM
APPENDIX B:
;***
; *
; Interfacing Microchip’s MCP3201 ADC to the PICmicro MCU *
; *
;***
; *
; Filename: mcp3201.asm *
; Date: 06/30/99 *
; File Version: 1.00 *
; *
; Assembler: MPASM V2.30.00 *
; Linker: MPLINK V1.30.01 *
; MPLAB V4.12.00 *
; *
; Author: Richard L. Fischer *
; Company: Microchip Technology Incorporated *
; *
;***
; *
; Files required: *
; *
; mcp3201.asm *
; hexdec.asm *
; hexascii.asm *
; *
; p16c67.inc *
; 16c67.lkr *
; *
; *
;***
; *
; This code demonstrates how the Microchip MCP3201 Analog-to-Digital*
; Converter (ADC) is interfaced to the Synchronous Serial Peripheral*
; (SSP) of the PICmicro MCU. For this application note the PICmicro *
; PIC16C67 is selected. The interface uses two Serial Peripheral *
; Interface (SPI) lines (SCK, SDI) on the PICmicro for the clock *
; (SCK) and data in (SDI). A chip select (CS) to the MCP3201 is *
; generated with a general purpose port line PORTA:<5>. The simple *
; application uses Mode 1,1 to define bus clock polarity and *
; phase. *
; *
; For this application, the SPI data rate is set to one fourth *
; (FOSC/4) of the microcontroller clock frequency. The PIC16C67 *
; device clock frequency used for this application is 4MHz. This *
; translates to an ADC throughput of approximately 62.5kHz. In *
; order to obtain the maximum throughput (100kHz) from the *
; MCP3201 ADC the PIC16C67 should be clocked at 6.4Mhz. *
; *
; *
; *
;**/

list p=16c67 ; list directive to define processor
#include <p16c67.inc> ; processor specific variable definitions

__CONFIG _BODEN_ON & _PWRTE_ON & _CP_OFF & _WDT_OFF & _XT_OSC

#define mode11 ; if SPI bus mode 1,1 is desired
; else comment out and rebuild for mode 0,0

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
 1999 Microchip Technology Inc. DS00719A-page 4-139

AN719

S4.book Page 140 Thursday, March 2, 2000 8:00 AM
;***** VARIABLE DEFINITIONS

TEMP_VAR UDATA 0x20 ;
adc_result RES 2 ; variable used for context saving
offset RES 1
temp RES 1

TEMP_VAR1 UDATA_OVR ; create udata overlay section
counthi RES 1
countlo RES 1

GLOBAL adc_result ; make variables available to other modules
EXTERN Hex_Dec ; reference linkage
EXTERN Hex_Ascii ; reference linkage
EXTERN adc_temph, adc_templ ; reference linkage
EXTERN thous ; reference linkage

#define CS PORTA,5 ; MCP3201 Chip Select
#define CR 0x0D ; macro for carriage return
#define LF 0x0A ; macro for line feed

;**

RESET_VECTOR CODE 0x000 ; processor reset vector
movlw high start ; move literal into W
movwf PCLATH ; initialize PCLATH
goto start ; go to beginning of program

INT_VECTOR CODE 0x004 ; interrupt vector location
; no interrupt code needed for this application

MAIN CODE 0x040 ; set code section to start at 0x040
start

call Init_Ports ; initialize ports
call Init_SSP ; initialize SSP module
call Init_Usart ; initialize USART module

forever call Read_Adc ; read MCP3201 ADC
call Hex_Dec ; convert adc_result to decimal
call Hex_Ascii ; convert adc_result to ASCII
call Display_Data ; display data to PC
call Delay_150mS ; 150mS delay
goto forever ; continuos loop

; Read MCP3201 ADC for 2 bytes
Read_Adc

banksel PORTA ; linker to select SFR bank
bcf CS ; assert MCP3201 chip select
movlw 0x01 ; move literal into W
banksel SSPBUF ; linker to select SFR bank
movwf SSPBUF ; initiate SPI bus cycle
banksel SSPSTAT ; linker to select SFR bank

spi_busy1 btfss SSPSTAT,BF ; test, is bus cycle complete?
goto spi_busy1 ; wait, bus cycle not complete
banksel SSPBUF ; linker to select SFR bank
movf SSPBUF,w ; read SSPBUF and place into W
banksel adc_result ; linker to select GPR bank
DS00719A-page 4-140 1999 Microchip Technology Inc.

AN719
A

n
alo

g
/In

terface

4

S4.book Page 141 Thursday, March 2, 2000 8:00 AM
movwf adc_result+1 ; write SSPBUF to adc_result

movlw 0x81 ; move literal into W
banksel SSPBUF ; linker to select SFR bank
movwf SSPBUF ; initiate SPI bus cycle
banksel SSPSTAT ; linker to select SFR bank

spi_busy2 btfss SSPSTAT,BF ; test, is bus cycle complete?
goto spi_busy2 ; wait, bus cycle not complete
banksel PORTA ; linker to select SFR bank
bsf CS ; negate MCP3201 chip select
movf SSPBUF,w ; read SSPBUF and place into W
banksel adc_result ; linker to select GPR bank
movwf adc_result ; write SSPBUF to adc_result

rrf adc_result+1,f ; adjust MSB 1 position right
rrf adc_result,f ; adjust LSB 1 position right and include carry
movlw 0x0F ; move literal into W
andwf adc_result+1,f ; mask out upper nibble of ADC result

movf adc_result,w ; move adc_result LSB into W
movwf adc_templ ; save W into temp register
movf adc_result+1,w ; move adc_result MSB into W
movwf adc_temph ; save W into temp register
return ; return from subroutine

; Display ADC data (ASCII and DECIMAL) to USART
Display_Data

banksel offset ; linker to select GPR bank
clrf offset ; initialize table index value
movlw high msg1 ; move high byte of table address -> W
movwf PCLATH ; initialize PCLATH

txlp1 movf offset,w ; move offset value into W
call msg1 ; retrieve table element
movwf temp ; move element into temp
btfsc temp,7 ; test for end of string
goto send_hex ; end of message so send the data
banksel TXREG ; linker to select SFR bank
movwf TXREG ; initiate USART transmission
banksel TXSTA ; linker to select SFR bank
btfss TXSTA,TRMT ; test if TSR is empty
goto $-1 ; stay in testing loop
banksel offset ; linker to select GPR bank
incf offset,f ; increment table index
goto txlp1 ; stay in transmit loop

send_hex movlw adc_temph ; obtain variable address
movwf FSR ; initialize FSR as pointer

send_hex1 movf INDF,w ; retrieve data byte
banksel TXREG ; linker to select SFR bank
movwf TXREG ; initiate USART transmission
banksel TXSTA ; linker to select bank
btfss TXSTA,TRMT ; test if TSR is empty
goto $-1 ; stay in testing loop
incf FSR,f ; update pointer
movlw adc_temph+4 ; compose end of string address value
subwf FSR,w ; do compare
btfss STATUS,C ; done with sending data
goto send_hex1 ; no, so send some more

banksel offset ; linker to select GPR bank
clrf offset ; initialize table index value

txlp2 movf offset,w ; move offset value into W
 1999 Microchip Technology Inc. DS00719A-page 4-141

AN719

S4.book Page 142 Thursday, March 2, 2000 8:00 AM
call msg2 ; retrieve table element
movwf temp ; move element into temp
btfsc temp,7 ; test for end of string
goto send_dec ; end of message so send the data
banksel TXREG ; linker to select SFR bank
movwf TXREG ; initiate USART transmission
banksel TXSTA ; linker to select SFR bank
btfss TXSTA,TRMT ; test if TSR is empty
goto $-1 ; stay in testing loop
banksel offset ; linker to select GPR bank
incf offset,f ; increment table index
goto txlp2 ; stay in transmit loop

send_dec movlw thous ; obtain variable address
movwf FSR ; initialize FSR as pointer

send_dec1 movf INDF,w ; retrieve data byte
banksel TXREG ; linker to select SFR bank
movwf TXREG ; initiate USART transmission
banksel TXSTA ; linker to select SFR bank
btfss TXSTA,TRMT ; test if TSR is empty
goto $-1 ; stay in loop
incf FSR,f ; update pointer
movlw thous+4 ; compose end of string address value
subwf FSR,w ; do compare
btfss STATUS,C ; done with sending data
goto send_dec1 ; no, so send some more

movlw CR ; move literal into W
banksel TXREG ; linker to select SFR bank
movwf TXREG ; initiate USART transmission
banksel TXSTA ; linker to select SFR bank
btfss TXSTA,TRMT ; test if TSR is empty
goto $-1 ; no, so stay in loop

movlw LF ; move literal into W
banksel TXREG ; linker to select SFR bank
movwf TXREG ; initiate USART transmission
banksel TXSTA ; linker to select SFR bank
btfss TXSTA,TRMT ; test if TSR is empty
goto $-1 ; no, so stay in loop
return ; return from subroutine

; Delay for ~ 150mS
Delay_150mS

movlw D’150’ ; move literal into W
banksel counthi ; linker to select GPR bank
movwf counthi ; initialize upper counter

outer movlw D’250’ ; move literal into W
movwf countlo ; initialize lower counter

inner decf countlo,f ; decrement counter low
btfss STATUS,Z ; is result == 0
goto inner ; no, stay in loop
decf counthi,f ; else, decrement count high
btfss STATUS,Z ; is result == 0
goto outer ; no, so start again
return ; return from subroutine

; Initialize USART Module
Init_Usart movlw D’25’ ; move literal into W

banksel SPBRG ; linker to select SFR bank
movwf SPBRG ; set baud rate for 9600 @ 4MHz
movlw B’00100100’ ; move literal into W
DS00719A-page 4-142 1999 Microchip Technology Inc.

AN719
A

n
alo

g
/In

terface

4

S4.book Page 143 Thursday, March 2, 2000 8:00 AM
movwf TXSTA ; BRGH = 1, enable transmitter
movlw B’10010000’ ; move literal into W
banksel RCSTA ; linker to select SFR bank
movwf RCSTA ; enable serial port
return ; return from subroutine

; Initialize SSP Module
Init_SSP
#ifdef mode11

movlw B’00110000’ ; move literal into W
banksel SSPCON ; linker to select SFR bank
movwf SSPCON ; enable Master SPI, bus mode 1,1, FOSC/4
banksel SSPSTAT ; linker to select SFR bank
clrf SSPSTAT ; Master sample data in middle, data xmt on

; rising edge

#else
movlw B’00100000’ ; move literal into W
banksel SSPCON ; linker to select SFR bank
movwf SSPCON ; enable Master SPI, bus mode 0,0, FOSC/4
movlw B’01000000’ ; move literal into W
banksel SSPSTAT ; linker to select SFR bank
movwf SSPSTAT ; Master sample data in middle, data xmt on

; rising edge
#endif

return ; return from subroutine

; Initialize PORTS
Init_Ports movlw 0x00 ; move literal into W

banksel PORTA ; linker to select SFR bank
movwf PORTB ; set PORTB data latches to initial state
movwf PORTD ; set PORTD data latches to initial state
movwf PORTE ; set PORTE data latches to initial state
movlw B’100000’ ; move literal into W
movwf PORTA ; set PORTA data latches to initial state
movlw B’11010000 ; move literal into W
movwf PORTC ; set PORTC data latches to initial state

banksel TRISA ; linker to select SFR bank
clrf TRISA ; set PORTA pin direction
clrf TRISB ; set PORTB pin direction
clrf TRISD ; set PORTD pin direction
clrf TRISE ; set PORTE pin direction
movlw B’11010000’ ; move literal into W
movwf TRISC ; set PORTC pin direction
return ; return from subroutine

TABLE_DATA CODE 0x200 ; table starts here
msg1 addwf PCL,f ; generate computed goto

DT “HEX-> 0x”,80

msg2 addwf PCL,f ; generate computed goto
DT “ : DECIMAL-> “,80

END ; directive ‘end of program’
 1999 Microchip Technology Inc. DS00719A-page 4-143

AN719

S4.book Page 144 Thursday, March 2, 2000 8:00 AM
;***
; *
; Hex to Decimal conversion of ADC result for display *
; *
;***
; *
; Filename: hexdec.asm *
; Date: 06/30/99 *
; File Version: 1.00 *
; *
; Assembler: MPASM V2.30.00 *
; Linker: MPLINK V1.30.01 *
; MPLAB V4.12.00 *
; *
; Author: Richard L. Fischer *
; Company: Microchip Technology Incorporated *
; *
;***

 #include <p16c67.inc> ; processor specific variable definitions

 GLOBAL Hex_Dec, thous ; make subroutine ‘Hex_Dec’ available to other
 modules

 EXTERN adc_result ; reference linkage

HEXDEC_VAR UDATA 0x30 ; create udata variable section
thous RES 1 ; reserve one location
hunds RES 1 ; reserve one location
tens RES 1 ; reserve one location
ones RES 1 ; reserve one location

GLOBAL thous, hunds, tens, ones

; ***** Subroutine begins here

HEXDEC CODE ; create code section “HEXDEC”
Hex_Dec

banksel thous ; linker to select GPR bank
clrf thous ; initialize ‘thousands’ variable
clrf hunds ; initialize ‘hundreds’ variable
clrf tens ; initialize ‘tens’ variable
clrf ones ; initialize ‘ones’ variable

chk_thous movlw 0x04 ; move literal into W ... 1024 (0x0400)
banksel adc_result+1 ; linker to select GPR bank
subwf adc_result+1,w ; subtract 1024 from adc_result MSB
btfss STATUS,C ; is adc_result MSB > 1024
goto chk_hunds2 ; no, so check hundreds
incf thous,f ; else, increment thousands
movlw 0x04 ; move literal into W
subwf adc_result+1,f ; subtract 1000 from adc_result MSB
movlw D’24’ ; move literal into W
addwf adc_result,f ; add remainder 24 into adc_result LSB
btfsc STATUS,C ; was there a carry into adc_result MSB?
incf adc_result+1,f ; yes, so increment
goto chk_thous ; go check thousands again

chk_hunds2 movlw 0x01 ; 256 (0x0100)
subwf adc_result+1,w ; subtract 200 from adc_result MSB
btfss STATUS,C ; is adc_result MSB >= 256
goto chk_hunds1 ; no, so check multiples of 100
movlw D’2’ ; else,
DS00719A-page 4-144 1999 Microchip Technology Inc.

AN719
A

n
alo

g
/In

terface

4

S4.book Page 145 Thursday, March 2, 2000 8:00 AM
addwf hunds,f ; add 2 into hundreds
movlw 0x01 ; move literal into W
subwf adc_result+1,f ; subtract 200 from adc_result MSB
movlw D’56’ ; move remainder into W
addwf adc_result,f ; add remainder 56 into adc_result LSB
btfsc STATUS,C ; was there a carry into adc_result MSB
incf adc_result+1,f ; yes, so increment adc_result MSB

movlw D’10’ ; move literal into W
subwf hunds,w ; check to see if hunds = 1000
btfss STATUS,Z ; is result == 0?
goto chk_hunds2 ; no, so check hundreds (200) again
clrf hunds ; clear hundreds
incf thous,f ; increment thousands
goto chk_hunds2 ; go check hundreds (200) some more

chk_hunds1 movlw D’100’ ; move literal into W
subwf adc_result,w ; subtract 100 from adc_result LSB
btfss STATUS,C ; is adc_result >= 100
goto chk_tens ; no so check tens
incf hunds,f ; else, increment hundreds
movlw D’100’ ; move literal into W
subwf adc_result,f ; reduce hundreds count by 100

movlw D’10’ ; move literal into W
subwf hunds,w ; check to see if hunds may = 1000
btfss STATUS,Z ; is result == 0?
goto chk_hunds1 ; no, so check hundreds (100) again
clrf hunds ; clear hundreds
incf thous,f ; increment thousands
goto chk_hunds1 ; go check hundreds (100) some more

chk_tens movlw D’10’ ; move literal into W
subwf adc_result,w ; subtract 10 from adc_result LSB
btfss STATUS,C ; is adc_result LSB >= 10
goto chk_ones ; no, so check ones

 incf tens,f ; else, increment tens
movlw D’10’ ; move literal into W
subwf adc_result,f ; reduce tens count by 10
goto chk_tens ; go check tens again

chk_ones movf adc_result,w ; read adc_result LSB and store into W
movwf ones ; save off as ones
movlw 0x30 ; move literal into W
iorwf thous,f ; compose ASCII byte (thousands)
iorwf hunds,f ; compose ASCII byte (hundreds)
iorwf tens,f ; compose ASCII byte (tenths)
iorwf ones,f ; compose ASCII byte (ones)
return ; return from subroutine

END ; directive ‘end of program’
 1999 Microchip Technology Inc. DS00719A-page 4-145

AN719

S4.book Page 146 Thursday, March 2, 2000 8:00 AM
;***
; *
; Hex to ASCII conversion of ADC result for display *
; *
;***
; *
; Filename: hexascii.asm *
; Date: 06/30/99 *
; File Version: 1.00 *
; *
; Assembler: MPASM V2.30.00 *
; Linker: MPLINK V1.30.01 *
; MPLAB V4.12.00 *
; *
; Author: Richard L. Fischer *
; Company: Microchip Technology Incorporated *
; *
;***

 #include <p16c67.inc> ; processor specific variable definitions

GLOBAL Hex_Ascii ; make subroutine ‘Hex_Ascii’ available to
 other modules

GLOBAL adc_temph, adc_templ ; reference linkage

TEMP_VAR1 UDATA_OVR ; create udata overlay section
adc_temph RES 2
adc_templ RES 2

HEXASCII CODE ; create code section “HEXASCII”
Hex_Ascii

banksel adc_templ ; linker to select GPR bank
movf adc_templ,w ; move copy of adc_result LSB into W
movwf adc_templ+1 ; make copy ADC result LSB
movf adc_temph,w ; move copy of adc_result MSB into W
movwf adc_temph+1 ; make copy ADC result MSB
movlw 0x30 ; move literal into W
movwf adc_temph ; place a ASCII zero in MS digit location

swapf adc_templ,f ; swap nibbles
movlw 0x0F ; move literal into W
andwf adc_templ,f ; mask out upper nibble
andwf adc_templ+1,f ; mask out upper nibble

movlw D’10’ ; move literal into W
subwf adc_templ,w ; test byte
btfsc STATUS,C ; was a borrow generated
goto add_37L ; no, so must be A - F
movlw 0x30 ; else it is 0 - 9
addwf adc_templ,f ; compose ASCII byte

chk_lsd movlw D’10’ ; move literal into W
subwf adc_templ+1,w ; test value
btfsc STATUS,C ; was a borrow generated
goto add_37L1 ; no, so must be A - F
movlw 0x30 ; else it is 0 - 9
addwf adc_templ+1,f ; compose ASCII byte

chk_msd movlw D’10’ ; move literal into W
subwf adc_temph+1,w ; test byte
btfsc STATUS,C ; was a borrow generated
goto add_37H ; no, so must be A - F
movlw 0x30 ; else it is 0 - 9
addwf adc_temph+1,f ; compose ASCII byte
goto exit ; exit routine
DS00719A-page 4-146 1999 Microchip Technology Inc.

AN719
A

n
alo

g
/In

terface

4

S4.book Page 147 Thursday, March 2, 2000 8:00 AM
add_37L movlw 0x37 ; move literal into W
addwf adc_templ,f ; compose ASCII character
goto chk_lsd ; check least significant digit

add_37L1 movlw 0x37 ; move literal into W
addwf adc_templ+1,f ; compose ASCII character
goto chk_msd ; check most significant digit

add_37H movlw 0x37 ; move literal into W
addwf adc_temph+1,f ; compose ASCII character

exit return ; return from subroutine

END ; directive ‘end of program’
 1999 Microchip Technology Inc. DS00719A-page 4-147

AN719

S4.book Page 148 Thursday, March 2, 2000 8:00 AM
NOTES:
DS00719A-page 4-148 1999 Microchip Technology Inc.

AN722
Operational Amplifier Topologies and DC Specifications

A
n

alo
g

/In
terface

4

S4.book Page 149 Thursday, March 2, 2000 8:00 AM
INTRODUCTION

Operational amplifiers (op amps) are as prolific in ana-
log circuits as salt and pepper is on food. They are
sprinkled throughout the sensor data acquisition sys-
tem, performing a variety of functions. For instance, at
the sensor interface, amplifiers are used to buffer and
gain the sensor output. The current or voltage excita-
tion to the sensor, quite often is generated by an ampli-
fier circuit. Following the front end sensor circuitry, an
op amp is used to implement a low pass, band pass or
high pass filter. In this portion of the circuit, gain stages
are also implemented using programmable gain ampli-
fiers or instrumentation amplifiers whose building
blocks are the op amp. Analog-to-Digital (A/D) convert-
ers are most typically driven by an amplifier in order to
achieve good converter performance.

Each one of these amplifier applications place unique
demands on the device, so that one performance spec-
ification may be critical in one circuit, but not necessar-

ily in another. This application note defines the DC
specifications of op amps and presents circuit applica-
tions where optimization of a particular specification is
critical.

DEFINING THE OP AMP

Ideal Specifications

The op amp can be simply defined as an analog gain
block with two signal inputs, two power supply connec-
tions and one output, as shown in Figure 1.

The input stage of the op amp has two terminals, the
non-inverting (VIN+) and inverting (VIN-) inputs. For the
ideal voltage feedback amplifier, both inputs are
matched having no leakage current, infinite input
impedance, infinite common mode rejection, zero noise
and zero offset voltage (VOS) between the terminals.

The power supply terminals (VDD and VSS) of the ideal
op amp, have no minimum or maximum voltage restric-
tions. Additionally, the current from the power supply
through the amplifier (ISUPPLY, IDD or IQ) is zero and any
variation in the power supply voltage does not intro-
duce errors into the analog signal path.

FIGURE 1: The ideal op amp description can be separated into four basic categories: input, power supply, output, and
signal transfer.

Author: Bonnie C. Baker
Microchip Technology Inc.

VIN-

VIN+

VOUT

VDD

VSS

OP AMP

INPUT

• Input Current (IB) = 0
• Input Impedance (ZIN) = ∞
• Input Voltage Range (VIN) → no limits
• Zero Input Voltage and Current Noise
• Zero DC offset error (VOS)
• Common-Mode Rejection = ∞

POWER SUPPLY

• No min or max Voltage (VDD, VSS)
• ISUPPLY = 0 Amps
• Power Supply Rejection Ratio (PSRR) = ∞

SIGNAL TRANSFER

• Open Loop Gain (AOL)= ∞
• Bandwidth = 0 → ∞
• Zero Harmonic Distortion (THD)

OUTPUT

• VOUT = VSS to VDD
• IOUT =
• Slew Rate (SR) = ∞
• ZOUT = 0Ω
 1999 Microchip Technology Inc. DS00722A-page 4-149

AN722

S4.book Page 150 Thursday, March 2, 2000 8:00 AM
In terms of the amplifier output, the swing capability
equals or exceeds the voltage restrictions of the power
supply. The output current (IOUT) of this terminal can be
infinite for indefinite periods of time, without causing
reliability or catastrophic failures. The speed (SR) at
which the output swings from rail to rail is instanta-
neous and the output impedance (ZOL or ZCL) is zero.

Finally, the open loop gain of the amplifier block is infi-
nite and the bandwidth of the open loop gain is also infi-
nite. To put the finishing touches on the signal transfer
characteristics of the ideal amplifier, signals pass
through the device without added distortion (THD) or
noise.

Technology Limitations

This ideal amplifier does not exist. Consequently, per-
formance specifications describe the amplifier so that
the designer can assess the impact it will have on his
circuit.

The errors that appear on the terminals of the op amp
are a consequence of the semiconductor process and
transistor implementation of the integrated circuit. In
terms of the impact of the type of process that is used
to design the amplifier, some generalities are summa-
rized in Figure 2. These generalities are just that and
not hard and fast rules.

FIGURE 2: Different IC processes render different
advantages for amplifiers. The choices in processes
for single supply amplifiers are Bipolar, CMOS and
BiFET, which is a combination of Field Effect
Transistors (FET) and Bipolar transistors.

For instance, the BiFET op amp is designed using an
FET (Field Effect Transistor) as the device at the input
terminals and Bipolar for the remainder of the circuit.
Op amp designed with this IC implementation have
higher slew rates as compared to the pure Bipolar
amplifier and CMOS amplifier.

In contrast, a pure Bipolar amplifier has NPN or PNP
transistors at the input terminals. This allows the IC
designer to achieve relatively low input offset voltage
and voltage noise between the input terminals as well
as higher open loop gains.

The commonality between the BiFET and Bipolar
amplifiers are that they typically have wider bandwidths
and higher output drive capability, as compared to the
CMOS amplifier.

CMOS, on the other hand is well known for its low
power, single supply op amps. The transistors in this
style of amplifier are CMOS, allowing for an infinite
input impedance and zero current leakage. This char-
acteristic is similar in BiFET amplifiers. The degrada-
tion of these input impedances and leakage currents
with the BiFET and CMOS input op amps are due to the
required electrostatic discharge (ESD) cells that are
added to the input terminals. CMOS amplifiers are also
capable of rail-to-rail operation (in analog terms) while
still having low quiescent current (current from the
power supply).

The op amp specifications can be separated into two
general categories, DC and AC. For the remainder of
this application note, only the DC specifications will be
discussed with accompanying detailed applications
where that specification has an impact on the circuit
performance. For discussions on AC specifications,
refer to the application note from Microchip entitled
“Operational Amplifier AC Specifications and Applica-
tions”, AN723. (available December, 1999)

DC SPECIFICATIONS

The DC specifications discussed in this application
note are:

• Input Offset Voltage (VOS)

• Input Bias Current (IB)

• Input Voltage Range (VIN or VCM)

• Open Loop Gain (AOL)

• Power Supply Rejection (PSRR or PSR)
• Common-mode Rejection (CMRR)

• Output Voltage Swing (VOUT, VOH, or VOL)

• Output Resistance (ROUT, ROL, RCL, ZOL, or ZCL)

• Power Supply and Temperature Range (VSS, VDD,
IDD, and IQ)

In Figure 3, these parameters are shown in their proper
locations to allow for easy circuit evaluation and error
analysis.

CMOSBiFET

BiPOLAR

• High Slew Rates

• Low Voltage
• Single Supply
• Micropower
• Rail-to-Rail

• Very Low Noise
• Low Offset Voltage
• High Voltage Gain

• High
 ZIN

• Low Noise
 Current

• Stable Offset
 Voltage

• Wide BW
• High Output
 Drive
DS00722A-page 4-150 1999 Microchip Technology Inc.

AN722
A

n
alo

g
/In

terface

4

S4.book Page 151 Thursday, March 2, 2000 8:00 AM
FIGURE 3: DC parameters for the op amp are
modeled in a way to assist definition of specifications
and easy error analysis of circuits.

For the remainder of this application note, these DC
specifications will be defined and then evaluated within
a sensitive application.

Input Offset Voltage (VOS)

Specification Discussion - The input offset voltage
specification of an amplifier defines the maximum volt-
age difference that will occur between the two input ter-
minals in a closed loop circuit while the amplifier is
operating in its linear region. The input offset voltage is
always specified at room temperature in terms of µV or
mV. The over temperature specification can be guaran-
teed as µV/°C as well as an absolute value of µV or mV.
Offset voltage is always modeled as a voltage source at
the non-inverting input of the amplifier, as shown in
Figure 3.

As with any amplifier specification, offset voltage can
vary from part to part and with temperature, as shown
in the distribution graphs in the Figure 4. The offset
voltage of a particular amplifier does not vary unless
the temperature, power supply voltage, common-mode
voltage or output voltage changes, as shown in
Figure 3 as part of VERR. The affects of these changes
are discussed later. FIGURE 4: The input offset voltage of an amplifier

varies from part to part but always falls within the
stated specification voltage range.

Application Challenge - The offset voltage error of a
particular amplifier may or may not be a problem,
dependent on the application circuit. For instance, if a
device is configured as a buffer (also known as a volt-
age follower), amplifiers with larger offset voltage
errors, in the range of 2mV to 10mV, are usually not sig-
nificantly different in performance than high precision
amplifiers with extremely low offset voltage specifica-
tions, in the range of 100µV to 500µV. On the other
hand, an amplifier with a high offset voltage that is in a
high closed loop gain configuration can dramatically
compromise the dynamic range of the circuit.

For example, the circuit in the Figure 5 is designed so
that the analog input voltage (VIN) is gained by:

VOUT = (1 + RF / RIN) (VIN + VOS)

VIN-

VIN+

VOUT

IB+

IB-

VERR

+

←

←

VERR= VOS+PSRRERROR+CMRERROR+OPEN LOOP GAINERROR

VERRAOL

ZOL

VDD

VSS

IDD↓ VIN-

VIN+

VOUT

VOS

+

OFFSET VOLTAGE
PRODUCTION DISTRIBUTION

Offset Voltage (uV)

P
er

ce
n

t
o

f
S

am
p

le
 (

%
)

-2
00

0
-1

60
0

-1
20

0
-8

00
-4

00 0
40

0
80

0
12

00
16

00
20

00

25

20

15

10

5

0

25

20

15

10

5

0

0.
25

0.
75

1.
25

1.
75

2.
25

2.
75

3.
25

3.
75P

er
ce

n
t

o
f

A
m

p
lif

ie
rs

 (
%

)

OFFSET VOLTAGE DRIFT MAGNITUDE
PRODUCTION DISTRIBUTION

Offset Voltage Drift (uV / deg C)

P
er

ce
n

t
o

f
A

m
p

lif
ie

rs
 (

%
)

OFFSET VOLTAGE DRIFT MAGNITUDE
PRODUCTION DISTRIBUTION

Typical production
distribution of
packaged units
 1999 Microchip Technology Inc. DS00722A-page 4-151

AN722

S4.book Page 152 Thursday, March 2, 2000 8:00 AM
FIGURE 5: An amplifier with a high input Offset
Voltage can cause errors in the system, if the amplifier
is configured in a high closed loop gain circuit.

Unfortunately, the offset voltage of the amplifier is also
multiplied by the same gain factor as the input signal.
In this example, (1 + RF / RIN) is equal to 101V/V. An
amplifier with an offset voltage of 1mV would produce
a constant DC error at the output of 101mV. In a 5V sys-
tem, 101mV lessens the dynamic range by approxi-
mately 2%.

Input Bias Current (IB, IB+, IB-, and IOS)

Specification Discussion - All op amps have a leakage
current that sources or sinks at both input terminals.
Typically, this leakage current is called input bias cur-
rent. The model for input bias current error is shown in
Figure 3. The input offset current (IOS) is equal to the
difference between the input bias current at the
non-inverting terminal (IB+) minus the input bias current
at the inverting (IB-) terminal of the amplifier.

With CMOS and FET input amplifiers, the magnitude of
the input bias current ranges from sub-pico amperes to
several hundred pico amperes. The leakage at the
input terminals of the CMOS amplifier usually does not
come from the gate of the CMOS device but rather from
the ESD cell. At room temperature, the input bias cur-
rent of a CMOS amplifier can be less than a few tens of
pico amperes. As the temperature increases, the ESD
cells start to conduct current. This current appears at
the input terminals of the amplifier.

In contrast, amplifiers with Bipolar inputs typically have
input bias currents that range in the 10s of nano amps
to several hundred nano amps. This current is the base
current of the input Bipolar transistors. These amplifiers
also have ESD cells, but the leakage from the base of
the input transistor is much higher than the leakage
from the ESD cells over temperature.

Application Challenge - Circuits that use high value
resistors in the feedback loop or at the input of the
amplifier are the most sensitive configurations for the
op amp’s input bias current error. For instance, if a high
value resistor, such as 100kΩ is placed in series with
the input of a Bipolar input amplifier that has an input
bias current of 100nA, the resultant voltage is 100kΩ x
100nA or 10mV. This error at the input to the amplifier
is added to any offset voltage error and then gained by
the amplifier circuit.

In contrast, the input bias current of a CMOS amplifier
could be 100pA. The voltage generated by the combi-
nation of this input bias current and a 100kΩ resistor is
10µV. In this scenario it is quite possible that the offset
voltage error of the amplifier is greater than the error
generated by the input bias current.

An example of a circuit that might use higher value
resistors is a filter, such as the low pass filter shown in
the Figure 6. In this circuit, the poles are established
using the combination of resistors and capacitors. As
the cut-off frequency of a low pass filter is decreased,
the RC time constants that generate the poles
increase. In the situation where a low frequency, low
pass filter is required, it is easy enough to find higher
value capacitors. However, if board real-estate is an
issue, higher value resistors are a more economical
alternative.

FIGURE 6: This Sallen-Key, 2nd order, 10Hz,
Butterworth, low pass filter circuit has two large
resistors in series with the non-inverting input of the op
amp. Input bias current errors from a Bipolar op amp
will cause a considerable amount of error. In contrast,
the input bias current from CMOS or BiFET amplifiers
will be low enough not to cause appreciable errors.

This RC relationship in combination with CMOS op
amps can be used to an advantage with filters that have
lower cut-off frequencies. Surface mount resistors can
be found up to several mega ohms and surface mount
film capacitors that are approximately the same size as
the surface mount resistors can be found as high as
several hundred nano farads. With this combination of
passive devices, a compact, second order low pass fil-
ter can easily be designed down to 10Hz or lower.

In the example in Figure 6, a Bipolar amplifier with an
input bias current of 100nA would generate a DC error
through the resistor combination of R1 and R2 of
102.7mV. In contrast, a CMOS amplifier with an input
bias current of 100pA would generate a DC error of
102.7µV.

RIN

RF

100Ω

10kΩ

Voltage
Voltage

Input, VIN

Output, VOUT

VOUT = (1+RF / RIN) (VIN + VOS)

VOS

+

+

–
R1

VIN VOUT

R2
C2

C1

R1 = 130kΩ
R2 = 887kΩ
C1 = 100nF
C2 = 22nF
DS00722A-page 4-152 1999 Microchip Technology Inc.

AN722
A

n
alo

g
/In

terface

4

S4.book Page 153 Thursday, March 2, 2000 8:00 AM
Input Voltage Range (VIN or VCM)

Specification Discussion - Each of the two input pins of
the op amp has voltage swing restrictions. These
restrictions are due to the input stage design. In the
device product data sheet, the input voltage restrictions
are clearly defined in one of two ways. Most commonly,
the Input Voltage Range, VIN, is specified as a separate
line item in the specification table. This specification is
also usually defined as a condition for the CMRR spec-
ification, input common-mode voltage range, VCM. The
more conservative specification of the two is where the
input voltage range is called out as a CMRR test condi-
tion because the CMRR test validates the input voltage
range with a second specification.

The input voltage range is more a function of the input
circuit topology rather than the silicon process.
Although the input devices of the amplifier can be

CMOS, Bipolar or FET, there are three basic topologies
that are used to design the input stage of single supply,
voltage feedback amplifiers. These topologies are
shown with a CMOS input stage in Figure 7. In
Figure 7a, PMOS transistors (Q1 and Q2) are used for
the first device at the input terminals. With this particu-
lar topology, the gate of both transistors can go 0.2 to
0.3V below the negative power supply voltage before
these devices leave their active region. However, the
input terminal can not go any higher than several hun-
dred millivolts from the positive power supply voltage
before the input devices are pulled out of their linear
region. An amplifier designed with a PMOS input stage
will typically have an input range of VSS -0.2V to
VDD - 1.2V.

FIGURE 7: The input voltage range of an op amp is dependant on the topology of the input stage of the amplifier. The
input stage can be constructed of PMOS (a) devices allowing for the input to swing below the negative supply or a
NMOS differential pair (b) where the inputs can swing above the positive supply. A composite input stage (c) uses
PMOS and NMOS differential pairs so the input voltage range can extend from above the positive rail to below the
negative rail.

(a) PMOS differential input stage (b) NMOS differential input stage

(c) Composite PMOS and NMOS differential input stage

VIN+

↓

←

IB

VIN-

IB

→
Q1 Q2

1

2

3

+VSUPPLY

-VSUPPLY

VIN+

IB

VIN-

IB

Q1 Q2

+VSUPPLY

-VSUPPLY

→ ←

↓

VIN+

IB

Q3 Q1

-VSUPPLY

→

↓

←

Q2

↓

VIN-

IB

→
←

Q4

+VSUPPLY

VBIAS
 1999 Microchip Technology Inc. DS00722A-page 4-153

AN722

S4.book Page 154 Thursday, March 2, 2000 8:00 AM
If the amplifier is designed with NMOS input transistors
as shown in Figure 7b, the input range is restricted near
the negative power supply voltage. In this case, the
input terminals can be taken to a few tenths of a volt
above the positive supply rail, but only to 1.2V above
the negative supply rail.

If an amplifier input stage uses PMOS and NMOS tran-
sistors, it is configured as a composite stage, as shown
in Figure 7c. With this topology, the amplifier effectively
combines the advantages of the PMOS and NMOS
transistors for true rail-to-rail input operation. When the
input terminals of the amplifier are driven towards the
negative rail, the PMOS transistors are turned com-
pletely on and the NMOS transistors are completely off.
Conversely, when the input terminals are driven to the
positive rail, the NMOS transistors are in use while the
PMOS transistors are off.

Although, this style of input stage has rail-to-rail input
operation there are trade-offs. This design topology will
have wide variations in offset voltage. In the region near
ground, the offset error of the PMOS portion of the
input stage is dominant. In the region near the positive
power supply, the input stage offset error is dominated
by the NMOS transistor pair. With this topology, the off-
set voltage error can change dramatically in magnitude
and sign as the common mode voltage of the amplifier
inputs extend over their entire range.

The basic topologies shown in Figure 7 can be used
with FET input or Bipolar input amplifiers. In the case of
the FET input amplifier, the offset errors between the
PFET and NFET are consistent with the CMOS errors
with the circuit shown in Figure 7c. With Bipolar input
stages, input offset voltage variations are still a prob-
lem, but input bias current is an additional error that is
introduced. The nano ampere base current of an NPN
transistor comes out of the device, while the nano
ampere base current of a PNP transistor goes into the
device.

Application Challenge - The input voltage range restric-
tions become critical in a subset of op amp circuit appli-
cations. For instance, if an op amp is configured as a
voltage follower, it will most likely exhibit limitations in
linearity due the input stage restrictions. This type of
circuit is shown in Figure 8a, along with a current mon-
itor circuit in Figure 8b.

FIGURE 8: If an amplifier is used as a buffer (a), the
input devices of the operation amplifier may limit the
input range of the buffer. If an amplifier is used in a
high power supply sense circuit (b), the input stage
must be able to extend to the positive rail.

A buffer circuit configuration (Figure 8a.), requires
rail-to-rail operation of the amplifier at its inputs as well
as its outputs.

The high side current monitor circuit (Figure 8b), uses
an op amp that must have an input voltage range up to
the positive power supply rail. This circuit design
senses the amount of current that is coming from the
power supply. When the current exceeds 2A, the
non-inverting input of the amplifier falls below the
inverting input. As a result, that output goes low which
turns off the JFET, Q1, pulling the drain of the JFET low.
This action brings the monitor output low.

These two applications present special requirements
on the op amp. Most typically, an op amp is designed
with a closed loop gain greater than one. In this
instance, the output stage restrictions will limit the lin-
ear performance of the amplifier before the input stage
will.

Open Loop Gain (AOL)

Specification Discussion - The Open Loop Gain of an
op amp is the ratio of change in output voltage signal to
the change in differential input voltage offset. This
parameter is measured with or without a load. Ideally,
the open loop gain of an amplifier should be infinite. In
reality, the open loop gain, AOL, is less than ideal at DC
ranging from 95dB to 110dB. This can be translated
into volts per volts with the formula:

AOL (V/V) = 10(AOL
(dB) / 20)

+

–

RIN

VMONITOR

VOUT

RB

+

–

VIN

VOUT

VOUT = VIN

(a)

RA(b)

VDD

Q1
DS00722A-page 4-154 1999 Microchip Technology Inc.

AN722
A

n
alo

g
/In

terface

4

S4.book Page 155 Thursday, March 2, 2000 8:00 AM
Using this formula, a 10µV differential input signal to an
amplifier with an open loop gain of 100dB (105 V/V) in
an open loop configuration would be gained to the out-
put of the amplifier to 1V.

In production runs, the open loop gain can vary up to
30% from part to part, consequently, a closed loop sys-
tem is a more desirable configuration when using an
amplifier, unless the amplifier is used as a comparator.
With a closed loop system, the gain is dependent on
the accuracy of the resistors in the circuit.

In a closed loop system, the effects of the open loop
gain error is easily determined with:

AOL (dB) = 20 log (∆VOUT / ∆VOS)

This formula states that a change in the output voltage
of the closed loop system will generate a small change
in offset voltage. The offset voltage error is then gained
by the closed loop system, generating a gain error.
(Refer to Figure 3, where ∆VOS = open loop gain error.)

A load will degrade the open loop gain performance.
Some manufacturers recognize this and specify more
than one test condition.

Power Supply Rejection (PSRR)

Specification Discussion - The power supply rejection
ratio specification quantifies the amplifier’s sensitivity to
power supply changes. Ideally, the power supply rejec-
tion ratio should be infinite. Typical specifications for a
power supply rejection ratio of an amplifier range from
60dB to 100dB.

As is with the open loop gain (AOL) characteristics of an
amplifier, DC and lower frequency power supply noise
is rejected more than at higher frequencies. In a closed
loop system, a less than ideal power supply rejection
capability of an amplifier manifests itself as an offset
voltage error as shown in Figure 3 (PSRRERROR = ∆VOS).
This error is best described with the formula:

PSRR(dB) = 20 log (∆VSUPPLY / ∆VOS)

The formula that describes power supply rejection is:

PSR(V/V) = ∆VOS / ∆VSUPPLY

Where:

VSUPPLY = VDD - VSS

Application Challenge - An application where power
supply rejection is critical is shown in Figure 9. In this
circuit, a battery is used to power an amplifier which is
configured in a high, closed loop gain of 101V/V. During
the life of the battery, the output voltage ranges from
5.75V down to 4.75V. If the power supply rejection of
the amplifier is 500µV/V (or 66dB), the error at the out-
put of the amplifier over time would be 50.5mV. In a
12-bit system with a full-scale range of 4.096V, this
would equate to a 50.5 counts worth of offset change
over the life of the battery.

FIGURE 9: A battery powered application can see a
change in power supply voltage of several hundreds of
millivolts over the life of the product. If an op amp is
configured with a high closed loop gain in these types
of applications, it must have good DC power supply
rejection.

Common Mode Rejection Ratio (CMRR)

Specification Discussion - The Common Mode Rejec-
tion Ratio of an amplifier describes the amplifier’s input
sensitivity to equivalent voltage changes of both inputs.
This error manifests itself as an offset error
(CMRR ERROR), as shown in Figure 3.

CMRR(dB) = 20 log (∆VCM / ∆VOS)

Where:

∆VOS = CMRRERROR

Application Challenge - The specification range for
CMRR in single supply amplifiers is from 45dB up to
90dB. Typically, this error becomes an issue when an
amplifier is in a circuit where the input common mode
voltage changes with input signal. A good example
where this is the case, is when the amplifier is in a
non-inverting configuration. A common circuit that has
this configuration is shown in the Figure 10.

+

–
VDD

VOUT

RIN

RF

VIN

+

VOS VSS

PSR (V/V) = ∆VOS/∆VSUPPLY

VOUT = (1 + RF/RIN) (VIN + VOS)

B
at

te
ry

 V
ol

ta
ge

,
4-

ce
ll,

 N
iM

H
 (

V
)

Minutes

6

5

4

3
0 50 100

0
20
40
60
80
100

P
er

ce
nt

 C
ha

rg
e

(%
)

 1999 Microchip Technology Inc. DS00722A-page 4-155

AN722

S4.book Page 156 Thursday, March 2, 2000 8:00 AM
FIGURE 10: A poor common mode rejection capability
with either amplifier will cause an offset error that is
gained to the output of the circuit.

Voltage Output Swing (VOUT, VOH, or VOL)

Specification Discussion - The output swing specifica-
tion of an op amp defines how close the output terminal
of the amplifier can be driven to the negative or positive
supply rail under defined operating and load conditions.
Unlike the input voltage range (VIN) specification, the
voltage output swing of an amplifier is not as well
defined from manufacturer to manufacturer. The output
current as well as the amplifier’s open loop gain (AOL)
are related to this specification. The output current is a
test condition for the voltage output swing specification.

It is also a test condition for the open loop gain test,
which validates the voltage output swing test with a
second amplifier specification.

The output swing capability of the amplifier is depen-
dent on the output stage design and the amount of cur-
rent that the output stage is driving under test. With this
portion of the specification, care should be taken when
comparing amplifiers.

For instance, a single supply amplifier, MCP601, is
used to generate the data in Table 1. It should be noted
that the defined conditions of this specification have a
significant influence on the amplifier’s performance
capability. All of these conditions, as well as others, can
be found in op amp data sheets.

The key to comparing voltage output swing specifica-
tions, is to determine the amount of current that the
amplifier is sinking or sourcing. The smaller the output
current is, the closer the amplifier will swing to the rail.

If the load is specified as a current, this determination
is easy. However, if the load is reference to
(VDD − VSS) /2 + VSS, the output current is determined

by dividing the voltage across the load resistor by the
load resistor. It is useful to note that when the load is
referenced to (VDD − VSS)/2 + VSS, the output of the
amplifier will be sourcing or sinking half the current, as
when the load is referenced to VDD or VSS.

The device in Table 1 was tested with the VDD equal to
5V and VSS equal to ground. Since this data was taken
with one device, it does not necessarily represent the
performance of all devices in the product family.

RGR2

VDD

R2

R1

R1

VREF

A2
A1VIN–

VOS2 VIN+
VOS1

VOUT

CMRR (per op amp) = 20 log (∆VCM/∆VOS)

VOUT = (Gain) ((VIN+) + VOS1 - (VIN-) - VOS2) + VREF1

Gain = 1 + R1/R2 + 2R2/RG

Output Voltage Swing Test Conditions
Measured

Output Swing
from VSS (mV)

Measured
Output Swing
from VDD (mV)

High, to VDD w / 10kΩ load referenced to (VDD − VSS) / 2 + VSS 11.2

High, to VDD w / 10kΩ load referenced to VSS 20.4

High, to VDD w / 10kΩ load referenced to VDD 1.95

High, to VDD w / amplifier source current equal to 100µA 3.8

Low, to VSS w / 10kΩ load referenced to (VDD − VSS) / 2 + VSS 11.6

Low, to VSS w / 10kΩ load referenced to VSS 3.7

Low, to VSS w / 10kΩ load referenced to VDD 25.5

Low, to VSS w / amplifier sink current equal to 100µA 8.1

TABLE 1: This data was taken with one sample of the MCP601 op amp and demonstrates the effects of the output
conditions on the output swing performance of that amplifier. This data was taken with no regard to the open loop gain
of the amplifier.
DS00722A-page 4-156 1999 Microchip Technology Inc.

AN722
A

n
alo

g
/In

terface

4

S4.book Page 157 Thursday, March 2, 2000 8:00 AM
The output voltage swing versus input offset voltage of
this amplifier is shown in Figure 11. By using this plot,
the open loop gain of the device can be calculated as
the slope between two points. For example, the open
loop gain of this amplifier using VOUT = 1V to 4V, is
75dB.

With this plot, it is noticeable that the linearity of the
amplifier starts to degrade long before the output swing
maximums are reached. If the output of an amplifier is
operated beyond the linear region of this curve, the
input to output relationship of the signal will be non-lin-
ear.

FIGURE 11: This graph shows the relationship
between the output swing of an amplifier and input
offset voltage with a 25kΩ load and VDD = 5V. The
open loop gain of the amplifier can be calculated by
selecting two points on the graph and calculating the
slope. As the output swing of the amplifier goes
towards the rail, the amplifier function eventually
breaks down. This is first manifested with changes in
input offset voltage.

Output Impedance (ROUT, RCL, ROL, ZCL, ZOL)

Specification Discussion - The fact that the output
impedance of an op amp is low, makes the device use-
ful in terms of “isolating” the impedance of two portions
of a circuit. For this reason, low output impedance of an
op amp is an important characteristic, but the precise
output impedance is usually is not specified.

When the output impedance is specified, it is given in
terms of a resistance or impedance of a closed loop
configuration (RCL or ZCL) or an open loop configura-
tion (ROL or ZOL). Output impedance is most often spec-
ified as resistance.

Closed loop output resistance is the easiest to measure
and is equal to:

RCL = ∆VOUT / ∆IL
where

∆VOUT = the change in output voltage and

∆IL = the change in output current with a change in
output voltage

The effective closed loop output impedance is less than
the open loop output impedance by a factor equal to the
reciprocal of the loop gain. The loop gain is equal to the
open loop gain of the amplifier divided by the closed
loop gain of the non-inverting circuit. For the circuit
shown in Figure 12, the open loop resistance is equal
to:

RCL = ROL / (AOL / (1 + RF / RIN))

In this formula (1 + RF / RIN), is the non-inverting closed
loop gain. This closed loop gain is also known as 1/β.

FIGURE 12: The closed loop output resistance of an
amplifier is lessened by the magnitude of the open
loop gain of the amplifier.

Power Supply Requirements (VSS, VDD, IDD, IQ)

Specification Discussion - Power supply voltage
defines the acceptable difference between VDD and
VSS which allows linear operation of the amplifier. If this
voltage difference is less than specification, the ampli-
fier may not operate reliably. If the power supply voltage
is greater than specified, the amplifier most likely will
operate as expected, but it is possible that damage may
occur due to overvoltage stress on the internal transis-
tors in the amplifier.

The power supply range is usually listed as a separate
line item in the specification table in the product data
sheet. Occasionally, the specification is called out as a
condition under the PSRR specification.

Power supply current (IDD or IQ) is specified with no
load. Typically, if a load is applied to the amplifier, a
source current will primarily be pulled from VDD,
through the op amp output stage, and then through the
load. A sink current will primarily result in an increase
of VSS.

30 1 2 4 5
-40

-30

-20

-10

0

10

Output Voltage (V)

O
ffs

et
 V

ol
ta

ge
 (

m
V

) VIN
VOUT

VREF

AOL

RCL
 1999 Microchip Technology Inc. DS00722A-page 4-157

AN722

S4.book Page 158 Thursday, March 2, 2000 8:00 AM
Temperature Range

There are three types of temperature ranges that are
specified with op amps.

• Specified Temperature Range - The range where
the amplifier will meet specifications as called out
in the specification table.

• Operating Temperature Range - The range where
the amplifier will operate without damage but per-
formance is not necessarily guaranteed.

• Storage Temperature Range - Defines the tem-
perature maximums and minimums where the
package will not sustain permanent damage. In
this range the amplifier may not operate properly.

CONCLUSION

When searching for the right amplifier for an applica-
tion, various performance specifications need to be
taken into consideration. The first set of specifications
to consider are the affects of the DC limitations of the
amplifier. In single supply applications, amplifier errors
such as input voltage swing, input offset voltage and
input bias current could reduce the dynamic range of
the amplifier. Conversely, in high gain circuits, the out-
put voltage swing could cause signal clipping problems.

The second set of specifications to consider are the AC
specifications. These issues are discussed in detail in
the application note from Microchip entitled “Opera-
tional Amplifier AC Specifications and Applications”,
AN723 (available December, 1999.)

REFERENCES

Wait, Huelsman, Korn, Introduction to Operational
Amplifier Theory and Applications, McGraw Hill, 1975

“Operational Amplifier AC Specifications and Applica-
tions”, Baker, Bonnie, Microchip Technology, Inc.
AN723 (available December, 1999)
DS00722A-page 4-158 1999 Microchip Technology Inc.

SECTION 5
NON-VOLATILE MEMORY

APPLICATION NOTES
AND TECHNICAL BRIEFS

N
o

n
-Vo

latile M
em

o
ry

5

S5.book Page i Thursday, March 2, 2000 7:59 AM
Interfacing a Microchip PIC16C92x to Microchip SPI™ Serial EEPROMs - AN6685-1
Converting from 93LC56/56B/66/66B Devices to 93LC56A/56B/66A/66B Devices - AN6715-7
Solving Second Sourcing Issues with the 24LC00 Device in a SOT-23 Package - AN6745-9
Physical Slot Identification Techniques for the 24LCS61/62 - AN676...5-11
How to Use the 24LCS61/62 Software Addressable Serial EEPROM - AN683......................................5-17
I2C™ Memory Autodetect - AN690 ...5-25
Microchip 93 Series Serial EEPROM Compatibility - AN698 ..5-39
System Level Design Considerations When Using I2C™ Serial EEPROM Devices - AN7095-43
SPI™ 25XX080/160 Mode 1,1 Write Operation - TB012 ..5-45
Operational Differences Between 24LCS21 and 24LCS21A - TB014 ..5-47
 1999 Microchip Technology Inc. DS00711A-page 5-i

S5.book Page ii Thursday, March 2, 2000 7:59 AM
DS00711A-page 5-ii 1999 Microchip Technology Inc.

AN668
Interfacing a Microchip PIC16C92x to Microchip SPI™ Serial EEPROMs

N
o

n
-Vo

latile M
em

o
ry

5

S5.book Page 1 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

There are many different microcontrollers on the mar-
ket today that are being used in embedded control
applications. Many of these embedded control systems
need non-volatile memory. Because of their small
footprint, byte level flexibility, low I/O pin requirement,
low power consumption, and low cost, serial
EEPROMs are a popular choice for non-volatile stor-
age.

Microchip addresses these needs by offering a full line
of serial EEPROMs covering industry standard serial
communication protocols for two-wire, three-wire, and
SPI communication. Serial EEPROM devices are avail-
able in a variety of densities, operational voltage
ranges, and packaging options.

This application note provides assistance and source
code to ease the design process of interfacing a Micro-
chip PIC16C92x microcontroller and a Microchip SPI
serial EEPROM. The hardware SPI port on the micro-
controller provides a simple three-wire connection to
the EEPROM and no external “glue” logic is required

Figure 1 describes the hardware schematic for the
interface between Microchip’s SPI devices and the
Microchip PIC16C92x Microcontroller. The schematic
shows the connections necessary between the micro-
controller and the serial EEPROM, and the software
was written assuming these connections. Appendix A
contains a listing of the SPI source code.

Author: Shannon Poulin
Microchip Technology Inc.

SPI is a trademark of Motorola, Inc.
 1999 Microchip Technology Inc. DS00668A-page 5-1

AN668

S5.book Page 2 Thursday, March 2, 2000 7:59 AM
FIGURE 1: CIRCUIT FOR PIC16C92X

CS

SO

WP

Vss

Vcc

HOLD

SCK

SI

1

2

3

4

8

7

6

5

Vcc
25xxX

X
X

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44

9 8 7 6 5 4 3 2 1 68 67 66 65 64 63 62 61

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

PIC16C924

RD5/SEG29/COM3
RG6/SEG26
RG5/SEG25
RG4/SEG24
RG3/SEG23
RG2/SEG22
RG1/SEG21
RG0/SEG20
RG7/SEG28
RF7/SEG19
RF6/SEG18
RF5/SEG17
RF4/SEG16
RF3/SEG15
RF2/SEG14
RF1/SEG13
RF0/SEG12

RA4/T0CKI
RA5/AN4/SS

RB1
RB0/INT

RC3/SCK/SCL
RC4/SDI/SDA

RC5/SDO

VLCD2
VLCD3
AVDD
VDD
VSS

C1
C2

OSC1/CLKIN
OSC2/CLKOUT

RC0/T1OSO/T1CKI

R
A

3/
A

N
3/

V
R

E
F

R
A

2/
A

N
2

V
S

S
R

A
1/

A
N

1
R

A
0/

A
N

0
R

B
2

R
B

3
M

C
LR

/V
P

P
N

/C
R

B
4

R
B

5
R

B
7

R
B

6
V

D
D

C
O

M
0

R
D

7/
S

E
G

31
/C

O
M

1
R

D
6/

S
E

G
30

/C
O

M
2

T
1O

S
I

C
C

P
1

V
L

C
D

1
V

LC
D

A
D

J
R

D
0/

S
E

G
00

R
D

1/
S

E
G

01
R

D
2/

S
E

G
02

R
D

3/
S

E
G

03
R

D
4/

S
E

G
04

R
E

7/
S

E
G

27
R

E
0/

S
E

G
05

R
E

1/
S

E
G

06
R

E
2/

S
E

G
07

R
E

3/
S

E
G

08
R

E
4/

S
E

G
09

R
E

6/
S

E
G

11
R

E
5/

S
E

G
10
DS00668A-page 5-2 1999 Microchip Technology Inc.

AN668
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 3 Thursday, March 2, 2000 7:59 AM
APPENDIX A: SOURCE CODE
MPASM 01.40.01 Intermediate ANXXX.ASM 4-7-1997 14:04:01 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
 VALUE

 00001 LIST P=16C924
 00002
 00003 ; Port C pin descriptions
 00004 ; SCK bit = 3
 00005 ; SDI bit = 4
 00006 ; SDO bit = 5
 00007 ; CS bit = 7
 00008 ;
 00009 ; 10MHz crystal is being used, thus each instruction cycle = 400nS
 00010 ;
 00011 ;*******************RAM register definitions**********************
 00000020 00012 rxdata equ 20h
 00000021 00013 txdata equ 21h
 00000022 00014 addr equ 22h
 00000023 00015 loops equ 23h
 00000024 00016 outbyte equ 24h
 00000025 00017 temp1 equ 25h
 00000026 00018 temp2 equ 26h
 00019 ;*******************Bit definitions*******************************
 00020
 00021 #define CS 3
 00022 #define SMP 7 ; SSPSTAT register bit definition
 00023 #define CKE 6 ; SSPSTAT register bit definition
 00024 #define SPI_HOLD PORTB,4 ; SPI Hold pin definition
 00025 #define SPI_WP PORTB,1 ; SPI Write Protect pin definition
 00026 #define SPI_CS PORTB,3 ; SPI Chip Select bit definition
 00027
 00028 ;*******************Include file**********************************
 00029 include “p16c924.inc”
 00001 LIST
 00002 ; P16C924.INC Standard Header File, Version 1.00 Microchip Technology, Inc.
 00288 LIST
 00030 ;***
0000 00031 org 0x000 ; set the reset vector
0000 2801 00032 goto start ; go to the beginning of main
 00033
 00034 ;!!!!!!!!!!!!!!!!!!!!!!Begin Main Program!!!!!!!!!!!!!!!!!!!!!!!!!
0001 1283 00035 start bcf STATUS,RP0 ; set to bank 0
0002 0187 00036 clrf PORTC ; initialize portc to 0
0003 1683 00037 bsf STATUS,RP0 ; set to bank 1
0004 3010 00038 movlw 0x10 ; all bits are outputs except SDI
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0005 0087 00039 movwf TRISC ; move the value to TRIS portc
 00040 ;***
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0006 0186 00041 clrf TRISB
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0007 1394 00042 bcf SSPSTAT,SMP
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0008 1314 00043 bcf SSPSTAT,CKE
0009 1283 00044 bcf STATUS,RP0 ; set to bank0
 00045 ;***
000A 1606 00046 bsf SPI_HOLD
000B 1486 00047 bsf SPI_WP
000C 1586 00048 bsf SPI_CS
 00049

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of the source code.
 1999 Microchip Technology Inc. DS00668A-page 5-3

AN668

S5.book Page 4 Thursday, March 2, 2000 7:59 AM
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
000D 018C 00050 clrf PIE1 ; disable peripheral interrupts
000E 018B 00051 clrf INTCON ; disables all interrupts
000F 1283 00052 bcf STATUS,RP0 ; set to bank 0
0010 0194 00053 clrf SSPCON ; clear SSP control register
0011 3031 00054 movlw 0x31 ; set up spi port, SPI master,
0012 0094 00055 movwf SSPCON ; clk/16, ckp=1 (mode 1,1)
0013 1587 00056 bsf PORTC,3 ;bug workaround
0014 3055 00057 movlw 0x55 ; put starting address 55 in
0015 00A2 00058 movwf addr ; addr for later use
 00059 ;Send the write enable sequence (WREN)
0016 1186 00060 bcf SPI_CS ; clear the chip select line
0017 3006 00061 movlw 0x06 ; load WREN sequence
0018 00A4 00062 movwf outbyte ; store in RAM location outbyte
0019 2065 00063 call output ; call the SPI output routine
001A 1586 00064 bsf SPI_CS ; set the chip select line
 00065 ;Send the write status register sequence (WRSR)
001B 1186 00066 bcf SPI_CS ; clear the chip select line
001C 3001 00067 movlw 0x01 ; clear all status register
001D 00A4 00068 movwf outbyte ; store in RAM location outbyte
001E 2065 00069 call output ; call the SPI output routine
001F 3000 00070 movlw 0x00 ; load up zero to send
0020 00A4 00071 movwf outbyte ; store in RAM location outbyte
0021 2065 00072 call output ; call the SPI output routine
0022 1586 00073 bsf SPI_CS ; set the chip select line
 00074 ;Wait the required 5mS for the write cycle timer Twc
0023 2070 00075 call delay ; call the delay subroutine
 00076 ;Send the write enable sequence (WREN)
0024 1186 00077 bcf SPI_CS ; clear the chip select line
0025 3006 00078 movlw 0x06 ; load WREN sequence
0026 00A4 00079 movwf outbyte ; store in RAM location outbyte
0027 2065 00080 call output ; call the SPI output routine
0028 1586 00081 bsf SPI_CS ; set the chip select line
 00082 ;Send the read status register sequence (RDSR)
0029 1186 00083 bcf SPI_CS ; clear the chip select line
002A 3005 00084 movlw 0x05 ; load RDSR sequence
002B 00A4 00085 movwf outbyte ; store in RAM location outbyte
002C 2065 00086 call output ; call the SPI output routine
002D 2065 00087 call output ; read the data in status reg.
002E 1586 00088 bsf SPI_CS ; set the chip select line
 00089 ;Send the write sequence (WRITE)
002F 1186 00090 bcf SPI_CS ; clear the chip select line
0030 3002 00091 movlw 0x02 ; load WRITE sequence
0031 00A4 00092 movwf outbyte ; store in RAM location outbyte
0032 2065 00093 call output ; call the SPI output routine
 00094 ;****Comment out for use with 25xx010, 25xx020 or 25xx040********
0033 3000 00095 movlw 0x00 ; load high address byte
0034 00A4 00096 movwf outbyte ; store in RAM location outbyte
0035 2065 00097 call output ; call the SPI output routine
 00098 ;**
0036 0822 00099 movf addr,W ; move the address into w
0037 00A4 00100 movwf outbyte ; store in RAM location outbyte
0038 2065 00101 call output ; call the SPI output routine
0039 30AA 00102 movlw 0xAA ; load data AA into w
003A 00A4 00103 movwf outbyte ; store in RAM location outbyte
003B 2065 00104 call output ; call the SPI output routine
003C 1586 00105 bsf SPI_CS ; set the chip select line
 00106 ;Perform data polling (RDSR bit 1)
003D 1186 00107 bcf SPI_CS ; clear the chip select line
003E 3005 00108 movlw 0x05 ; load RDSR sequence
003F 00A4 00109 movwf outbyte ; store in RAM location outbyte
0040 2065 00110 call output ; call the SPI output routine
 00111 ;
0041 3030 00112 movlw 0x30 ; give the spi device time to
0042 00A3 00113 movwf loops ; set the WIP bit in the
Message[305]: Using default destination of 1 (file).
DS00668A-page 5-4 1999 Microchip Technology Inc.

AN668
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 5 Thursday, March 2, 2000 7:59 AM
0043 0BA3 00114 wait decfsz loops ; status register before coming
0044 2843 00115 goto wait ; back and doing data polling
 00116 ;
0045 2065 00117 polling call output ; read the data in status reg.
0046 1820 00118 btfsc rxdata,0 ; test the WIP bit in status reg.
0047 2845 00119 goto polling ; WIP clear, loop until WIP set
0048 1586 00120 bsf SPI_CS ; set the chip select line
 00121 ;Send read sequence (READ), read address 0x55
0049 1186 00122 bcf SPI_CS ; clear the chip select line
004A 3003 00123 movlw 0x03 ; load READ sequence
004B 00A4 00124 movwf outbyte ; store in RAM location outbyte
004C 2065 00125 call output ; call the SPI output routine
 00126 ;****Comment out for use with 25xx010, 25xx020 or 25xx040********
004D 3000 00127 movlw 0x00 ; load high address byte
004E 00A4 00128 movwf outbyte ; store in RAM location outbyte
004F 2065 00129 call output ; call the SPI output routine
 00130 ;**
0050 0822 00131 movf addr,W ; move the address into w
0051 00A4 00132 movwf outbyte ; store in RAM location outbyte
0052 2065 00133 call output ; call the SPI output routine
0053 2065 00134 call output ; call output to read 1 byte
0054 1586 00135 bsf SPI_CS ; set the chip select line
 00136 ;Send the write enable sequence (WREN)
0055 1186 00137 bcf SPI_CS ; clear the chip select line
0056 3006 00138 movlw 0x06 ; load WREN sequence
0057 00A4 00139 movwf outbyte ; store in RAM location outbyte
0058 2065 00140 call output ; call the SPI output routine
0059 1586 00141 bsf SPI_CS ; set the chip select line
 00142 ;Send the write disable sequence (WRDI)
005A 1186 00143 bcf SPI_CS ; clear the chip select line
005B 3004 00144 movlw 0x04 ; load WRDI sequence
005C 00A4 00145 movwf outbyte ; store in RAM location outbyte
005D 2065 00146 call output ; call the SPI output routine
005E 1586 00147 bsf SPI_CS ; set the chip select line
 00148 ;Send the read status register sequence (RDSR)
005F 1186 00149 bcf SPI_CS ; clear the chip select line
0060 3005 00150 movlw 0x05 ; load RDSR sequence
0061 00A4 00151 movwf outbyte ; store in RAM location outbyte
0062 2065 00152 call output ; call the SPI output routine
0063 2065 00153 call output ; read the data in status reg.
 00154 ;*******Go back to main routine*********************************
0064 2801 00155 goto start
 00156
 00157 ;*******************SPI output subroutine***********************
0065 0824 00158 output movf outbyte,W ; move outbyte into w
0066 0093 00159 movwf SSPBUF ; place data in send buffer
0067 1683 00160 loop1 bsf STATUS,RP0 ; set to bank 1
Message[302]: Register in operand not in bank 0. Ensure that bank bits are correct.
0068 1C14 00161 btfss SSPSTAT,BF ; has data been received?
0069 2867 00162 goto loop1 ; loop if not received yet
006A 1283 00163 bcf STATUS,RP0 ; set to bank 0
006B 0813 00164 movf SSPBUF,W ; empty the receive buffer
 00165
006C 1294 00166 bcf SSPCON,SSPEN ; disable SPI peripheral
006D 1694 00167 bsf SSPCON,SSPEN ; enable SPI peripheral
 00168 ; the previous 2 bcf and bsf instructions are
 00169 ; are required per device errata.
006E 00A0 00170 movwf rxdata ; put received byte into rxdata
006F 3400 00171 retlw 0 ; return from subroutine
 00172
 00173 ; 250 x 400nS x 50 = 5mS (plus overhead)
0070 3032 00174 delay movlw 0x32 ; move 50 decimal into w
0071 00A5 00175 movwf temp1 ; move 50 decimal into temp1
0072 30FA 00176 dec1 movlw 0xFA ; move 250 decimal into w
0073 00A6 00177 movwf temp2 ; move 250 decimal into temp2
0074 0BA6 00178 dec2 decfsz temp2,1 ; decrement temp2, skip if zero
 1999 Microchip Technology Inc. DS00668A-page 5-5

AN668

S5.book Page 6 Thursday, March 2, 2000 7:59 AM
0075 2874 00179 goto dec2 ; goto decrement 2 if not zero
0076 0BA5 00180 decfsz temp1,1 ; decrement temp1, skip if zero
0077 2872 00181 goto dec1 ; goto decrement 1 if not zero
0078 3400 00182 retlw 0 ; return both locations = 0
 00183
 00184 END

MEMORY USAGE MAP (‘X’ = Used, ‘-’ = Unused)

0000 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXX-------

All other memory blocks unused.

Program Memory Words Used: 121
Program Memory Words Free: 3975

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 7 reported, 0 suppressed
DS00668A-page 5-6 1999 Microchip Technology Inc.

AN671
Converting from 93LC56/56B/66/66B Devices to

93LC56A/56B/66A/66B Devices

N
o

n
-Vo

latile M
em

o
ry

5

S5.book Page 7 Thursday, March 2, 2000 7:59 AM
DESCRIPTION

This application note details the process of converting
from 93LC56, 93LC56B, 93LC66, and 93LC66B type
devices to Microchip’s new 93LC56A, 93LC56B,
93LC66A, and 93LC66B devices. The new devices
offer improved data polling, lower standby current,
lower operating current and are available in a small
8-pin TSSOP package. The new devices also offer
fixed device organization. For example, the “A” suffix on
the 93LC56A indicates that the device is organized as
x8 only. The “B” suffix indicates that the 93LC56B is
organized as x16 only.

The new devices also incorporate power protection cir-
cuitry that adds extra data protection when powering
the device up and down. The 93LCxxA/B devices are
designed to function as 2.5V-6.0V parts. The internal
voltage-detect circuit inhibits writes at < 2.2V nominally.

The operational parameters of the old and new devices
are outlined below.

The following product conversion decision tree will
assist in converting from the old to the new devices. In
order to properly convert to new products two items
need to be known about the application; the operating
voltage of the system and whether the memory is orga-
nized as x8 or x16.

PRODUCT CONVERSION
DECISION TREE

Part Number Organization Operating Range
93LC56 x8 or x16 2.0V-6.0V

93LC56B x16 only 2.0V-6.0V

93LC66 x8 or x16 2.0V-6.0V

93LC66B x16 only 2.0V-6.0V
93AA56 x8 or x16 1.8V-6.0V

93AA66 x8 or x16 1.8V-6.0V

93LC56A NEW x8 only 2.5V-6.0V

93LC56B NEW x16 only 2.5V-6.0V

93LC66A NEW x8 only 2.5V-6.0V

93LC66B NEW x16 only 2.5V-6.0V

Author: Shannon Poulin
Microchip Technology Inc.

93LC56/93LC56B
CURRENTLY USING

OR
93LC66/93LC66B

2.5V
TO

6.0V?
ORG?

YES X8

NO X16

USE 93LC56B
OR 93LC66B

USE 93LC56A
OR 93LC66A

USE 93AA56
OR 93AA66
 1999 Microchip Technology Inc. DS00671A-page 5-7

AN671

S5.book Page 8 Thursday, March 2, 2000 7:59 AM
NOTES:
DS00671A-page 5-8 1999 Microchip Technology Inc.

AN674
Solving Second Sourcing Issues with the 24LC00 Device in a

SOT-23 Package

N
o

n
-Vo

latile M
em

o
ry

5

S5.book Page 9 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

Many potential customers of the 24LC00 have
expressed interest in the device, especially with it
available in the ultra-small SOT-23 package. The one
thing that has kept customers from designing in or
qualifying the 24LC00 is the fact that it is a proprietary
device without a second source. Because of this issue,
Microchip Technology Inc. has put together this
application note to assist customers in designing their
applications to except a 24LC00 in a SOT-23 or a
standard 1K-bit I2C device in an 8-lead, 150 mil SOIC
package.

HARDWARE/LAYOUT
CONSIDERATIONS

Figure 1 below shows a board layout having both pack-
ages to scale with respect to each other. One can see
from the figure that if the 24LC00 is placed as shown, a
board can be easily designed to accept both devices.
The connection from SCL on the 24LC00 to the SCL
pad location on a standard I2C device is shown as a
dashed line as it runs underneath the 24LC00.

Since the 24LC00 does not have a WP pin, no
connection was made from the 24LC00 to the WP pin
of a standard I2C device. Most devices that contain WP
pins require it to be tied to either VCC or VSS, so a trace
running to the WP pad will required for most
applications.

FIGURE 1: BOARD LAYOUT ALLOWING
SECOND SOURCING OF
MICROCHIP’S 24LC00

SOFTWARE CONSIDERATIONS

The Microchip 24LC00 is the only 16 byte device on the
market that has a full function I2C interface. That
means standard software routines that have been
written for I2C communication will work with the
24LC00 device. In addition, Microchip offers I2C
communication application notes and source code
available for download on our web site
(www.microchip.com).

The 24LC00 does not include page-write capability
found on most of the industry’s 1K-bit and higher I2C
Serial EEPROMs. Software written for the 24LC00 will
be able to be utilized without modification in systems
where an industry standard 1K I2C Serial EEPROM is
used. The one caveat is that the 24LC00 will answer to
any I2C memory address from 000 to 111. Some 1K
I2C Serial EEPROMs in the market have active address
inputs, and therefore answer only to the address that is
specified by the state of the three address inputs. Care
must be taken to make sure address inputs match the
application software if a second source device with
active address inputs is chosen.

Author: Keith Pazul
Microchip Technology Inc.

150 mil SOIC

VCC

WP

SCL

SDAVSS

NC

NC

NC

24LC00
 1999 Microchip Technology Inc. DS00674A-page 5-9

AN674

S5.book Page 10 Thursday, March 2, 2000 7:59 AM
NOTES:
DS00674A-page 5-10 1999 Microchip Technology Inc.

AN676
Physical Slot Identification Techniques for the 24LCS61/62

N
o

n
-Vo

latile M
em

o
ry

5

S5.book Page 11 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

With the complexity of systems ever increasing, system
designers are faced with new challenges in identifying
and assigning system resources on-the-fly. Often a
system will have multiple peripheral cards that must be
added on demand to fill a processing requirement or
configuration. These cards will need to be dynamically
identified and added to the system’s resource
management database.

Various Plug and Play (PnP) solutions have been
developed to meet these requirements. A common
thread among PnP schemes is to have a lower
bandwidth channel, such as the I2C bus, allocated as a
means of interrogating newly added system cards.
Through this data link, the system master can get or
assign crucial information and calibration data from a
specific card, without impacting the system’s higher
bandwidth bus.

SOFTWARE ADDRESSABLE
SOLUTIONS

The Microchip Technology Inc. 24LCS61/62 is a 1K/2K
bit Serial EEPROM developed for applications that
require non-volatile storage of data and to have many
devices on the same bus but do not have the spare I/O
pins required to address each device individually.
These devices contain an 8-bit address register that is
set upon power-up and allows the connection of up to
255 devices on the same bus. When the process of
assigning ID values to each device is in progress, the
device will automatically handle bus arbitration if more
than one device is operating on the bus. In addition, an
external open drain output pin (EDS) is available that
can be used to enable other circuitry associated with
each individual system. See the Microchip 24LCS61/
62 (DS21226) data sheet for further information on
these devices.

A PNP SCENARIO APPLICATION

This application will utilize a system made of multiple
circuit cards plugged into a backplane. A common high
bandwidth bus and an I2C™ bus will interconnect the
slots of the backplane. The system master must create
a table that correlates the card type inserted into each
slot. To do this, the system master needs to read the
information about each board in the system. This infor-
mation is stored in the 24LCS61/62 on that board. The
system master also needs to determine the physical
slot number that the board is plugged into. Listed below
are five methods for determining physical slot locations.

Author: Rick Stoneking
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS00676B-page 5-11

AN676

S5.book Page 12 Thursday, March 2, 2000 7:59 AM
Method 1: Direct Connection of the EDS Pins
to the System Master

The simplest method to determine the physical slot
location is to route the EDS output pin from each card
back to the system master. This physical connection, or
return line, serves as a fixed slot identifier. Each device
on the bus would then be identified by connecting this

line to a unique input pin on the system master. After
performing the arbitration process, the system master
can toggle the output of the EDS pin on a particular
device, and sense the resulting physical slot location
indicated by poling the I/O pins.

This method requires equal number of return lines as
there are devices on the bus.

FIGURE 1: METHOD 1

I/O I/O I/O S
D

A
S

C
L

SLOT 0 SLOT 1 SLOT 2

24LCS61/62 24LCS61/62 24LCS61/62SYSTEM MASTER

SCL

SDA

HIGH SPEED PARALLEL BUS

S
C

L
S

D
A

E
D

S

S
C

L
S

D
A

E
D

S

S
C

L
S

D
A

E
D

S

I2C is a trademark of Philips Corporation.
DS00676B-page 5-12 1999 Microchip Technology Inc.

AN676
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 13 Thursday, March 2, 2000 7:59 AM
Method 2: Encoded Return Lines to System
Master

Dedicated return lines can be encoded to identify
physical slots. The encoding is made by the connec-
tions, or lack of connections, between the EDS pin on
a particular device, and the return lines going back to
the system master. These connections take place on
the main bus backplane. After arbitration, the system
master would activate the EDS pin on a single device in
sequence, and read the encoded value on the return
lines connected to the I/O pins. The physical slot iden-
tifier will be returned in binary coded form. In the exam-
ple shown below, asserting the EDS pin on the device
in slot 1 will yield the binary “0001”, indicating to the
master that this device is in slot 1. In this method, N
return lines can encode a maximum of 2N devices on
the bus.

This method has the advantage that it only consumes
one pin on the connector between the board and the
backplane. Therefore, the entire bus to identify and
interrogate boards in the system will only require three
pins (SCL, SDA and EDS) on the backplane connector.

For further reliability assurance, the designer can drop
the code which has no physical connections to any
return lines (i.e., “0000”). This would make every valid
slot identifier assert at least one return line. This elimi-
nates the possibility of a faulty device being errone-
ously assigned the ‘0’ slot identifier. This lowers the
total allowable number of slots given N return lines to
2N – 1.

FIGURE 2: METHOD 2

HIGH SPEED PARALLEL BUS

I/O I/O I/O S
D

A
S

C
L

SLOT 1 SLOT 2 SLOT 3

24LCS61/62 24LCS61/62 24LCS61/62SYSTEM MASTER

SCL

SDA

I/O

S
C

L
S

D
A

E
D

S

S
C

L
S

D
A

E
D

S

S
C

L
S

D
A

E
D

S

(8
)

(4
)

(2
)

(1
)

 1999 Microchip Technology Inc. DS00676B-page 5-13

AN676

S5.book Page 14 Thursday, March 2, 2000 7:59 AM
Method 3: Microcontroller Slot Address
Sensing, and Serial Communication

Each card contains a 24LCS61/62 nonvolatile memory
device, and a dedicated microcontroller (this example
uses the Microchip PIC16C57) for transmitting slot
information serially over the I2C bus. Both are
connected to the backplane’s I2C bus. The
microcontroller on the card uses two dedicated I/O
lines for SDA and SCL connections. This provides a
feedback path for determining the physical slot in which
a card resides. Other dedicated I/O lines by the
microcontroller to sense a slot number from the dedi-
cated connector pins. These pins are encoded with the
slot identifier on the backplane.

First, the system master processor will initiate the
24LCS61/62 arbitration process until all memory
devices are assigned unique ID. Next, the system

master will sequentially address each 24LCS61/62 and
assert the EDS pin. The EDS line serves as a select
line for that particular microcontroller, and puts that
microcontroller into a state where it will respond to
commands from the system master. The
microcontroller can wake up to a normally formatted
I2C command and respond with the physical slot
identifier. Because the memory devices on the bus
wake up to 06XH, and the microcontroller wakes up to
0AXH, there will never be a bus contention issue
between them.

The number of I/O lines dedicated to sensing physical
slot information will determine the number of devices
addressable on the bus. If the microcontroller has eight
I/O lines then the full number (255) of 24LCS61/62’s
can be addressed.

FIGURE 3: METHOD 3

SLOT 0

24LCS61/62
SYSTEM MASTER

SCL

HIGH

Microcontroller

E
D

S

SDA

SLOT 0

24LCS61/62

Microcontroller

E
D

S

SLOT 0

24LCS61/62

Microcontroller

E
D

S

G
N

D
G

N
D

G
N

D

G
N

D
G

N
D

V
C

C

G
N

D
V

C
C

G
N

D

 SPEED PARALLEL BUS

S
C

L
S

D
A

S
C

L
S

D
A

S
C

L
S

D
A

S
C

L
S

D
A

DS00676B-page 5-14 1999 Microchip Technology Inc.

AN676
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 15 Thursday, March 2, 2000 7:59 AM
Method 4: Virtual Memory Addressing on
Cards

This method is applicable when all communication
between boards is accomplished by transfers between
memory spaces on each board. In this scenario, the
system master starts by querying the I2C bus looking
for unassigned 24LCS61/62 devices. This is done by
repeatedly sending the assign address command and
checking for acknowledging devices. If a device
acknowledges, then a software address is assigned to
that device after the arbitration cycle has been
completed. The system master can then either con-
tinue assigning software addresses to any remaining
24LCS61/62 devices on the bus, or it may immediately
assign a “virtual memory address” to the board
associated with the just assigned 24LCS61/62 device
(hereafter referred to as the “slave board”). The first
step of assigning the virtual address is to read the con-
figuration data from the 24LCS61/62 device. This tells
the system master the amount of virtual memory space
to reserve for the slave board. The system master
would then issue a command to the 24LCS61/62

device with the OE bit set to ‘1’, which enables the EDS
pin on the 24LCS61/62 device. The EDS pin is tied to
an input on the slave board microcontroller which
signals it to enter a “receive virtual address” mode.
Once the slave board is ready to receive the virtual
address the system master sends the necessary
information out over the main system bus to be
received by the current slave board. Any necessary
communication between the system master and the
slave board is completed and the system master then
issues a command to the 24LCS61/62 device with the
OE bit set to a ‘0’, which signals the slave board micro-
controller to terminate the assign virtual memory
address mode. This sequence is then repeated until no
unassigned 24LCS61/62 devices remain on the I2C
bus. Once the process is complete the slave board can
be addressed by its virtual address.

This method has the advantage of requiring only one
I/O pin on the slave board microcontroller, and may be
used when it is not necessary to know which physical
slot a slave board is in.

FIGURE 4: METHOD 4

SLOT 0

24LCS61/62

SYSTEM MASTER

SCL

HIGH

Microprocessor

E
D

S

SDA

 SPEED PARALLEL BUS

lower memory address

upper memory address

SLOT 1

24LCS61/62

Microprocessor

E
D

S lower memory address

upper memory address

SLOT 2

24LCS61/62

Microprocessor

E
D

S lower memory address

upper memory address

S
C

L
S

D
A

S
C

L
S

D
A

S
C

L
S

D
A

S
C

L
S

D
A

 1999 Microchip Technology Inc. DS00676B-page 5-15

AN676

S5.book Page 16 Thursday, March 2, 2000 7:59 AM
Method 5: Microcontroller Slot Address
Sensing and Communication over System
Bus

This method may be used if the physical slot must be
identified and thus the slot ID number is hard-coded
into the slave board connector. In this scenario the EDS
pin of the 24LCS61/62 device is used to enable the
slave board microcontroller in the same way as in the
method above, however, once enabled, the slave board
microcontroller reads the hard coded physical slot
number and then sends this information to the system
master via the system bus. From that point on the slave
board can be addressed by using its slot ID number.

This method again requires only a single I/O on the
slave board microcontroller, and is effective when the
physical location of a given slave board must be known.

CONCLUSION

The Microchip 24LCS61/62 is a powerful building block
in creating a board identification solution for multiboard
systems. The methods outlined above are generic in
nature, and meant to serve as a starting point for
development of individual solutions for physical slot
identification.

FIGURE 5: METHOD 5

SLOT 0

24LCS61/62

SYSTEM MASTER

SCL

HIGH

Microcontroller

E
D

S

SDA

 SPEED PARALLEL BUS

SLOT 1

24LCS61/62

Microcontroller

E
D

S

SLOT 2

24LCS61/62

Microcontroller

E
D

S

S
C

L
S

D
A

S
C

L
S

D
A

S
C

L
S

D
A

S
C

L
S

D
A

DS00676B-page 5-16 1999 Microchip Technology Inc.

How to Use the 24LCS61/62 Software Addressable
Serial EEPROM

AN683

N
o

n
-Vo

latile M
em

o
ry

5

S5.book Page 17 Thursday, March 2, 2000 7:59 AM
INTRODUCTION
The purpose of this application note is to provide an
example of how to use the Microchip Technology
24LCS61/62 in a multi board type of system. A hypo-
thetical system is presented and described, along with
the source code to implement all of the features of the
these devices.

SYSTEM DESCRIPTION
The hypothetical system described in this application
note is an industrial controller that can be configured by
adding/removing/changing individual circuit cards. This
system utilizes a high speed parallel bus for normal
communication between the individual cards, and an
I2C bus is used for detecting the installed system cards,
determining their configuration, and initializing the sys-
tem accordingly. After the initial power up sequence
determines the ‘boot configuration’, this secondary bus
is also periodically polled looking for new
devices/cards.

HARDWARE DESCRIPTION

Figure 1 shows a block diagram of the system. This
application note does not address the entire system,
but only those portions necessary to demonstrate the
code required for a typical implementation using the
24LCS61/62 devices. The system consists of a system
master which controls the I2C bus, and any number of
additional circuit cards.

Each of these circuit cards has either a 24LCS61 or
24LCS62 on it, which allows the system master to iden-
tify the presence of each card, determine the type of
card (e.g. Memory, I/O, Display), and read/write any
necessary configuration data. Each circuit card may or
may not have a microcontroller of it’s own. For those
that do the EDS pin of the 24LCS61/62 device is used
as an input to the microcontroller to tell it that it has
been detected by the system master.

SOFTWARE DESCRIPTION

Figure 2 shows the flow chart for the system master
node initialization. At the start of the initialization the
system master enters a software loop which sends the
Assign ID command over the I2C bus and looks for an

acknowledge (ACK) signal, indicating that there is an
unassigned device. If the ACK is detected the system
master then reads the six byte device serial number
which latches the assigned ID into the addressed
24LCS61/62 device. The serial number serves as an
arbitration mechanism only in this system, nothing fur-
ther is done with it after it is read. The system master
then reads the first byte of the 24LCS61/62 EEPROM
memory, which is defined to contain the size in bytes of
the EEPROM array. This is so that the system master
can write a time stamp to the last three bytes of the
EEPROM after configuration has been completed. Dur-
ing this read the system master sets the EDS pin of the
24LCS61/62 low to signal the microcontroller (if any) on
the circuit card that it has been detected and assigned.

Author: Rick Stoneking
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS00683A-page 5-17

AN683

S5.book Page 18 Thursday, March 2, 2000 7:59 AM
FIGURE 1: SYSTEM BLOCK DIAGRAM

FIGURE 2: SYSTEM FLOW FOR MASTER
NODE INITIALIZATION

SOURCE CODE DISCUSSION

Appendix A contains the ‘C’ source code for the func-
tions necessary to perform the operations described in
the Software Description section above. These func-
tions rely on additional I2C functions that are defined in
the sw12c16.lib library created by, and available from,
Microchip Technology. A listing for this library has not
been included in this application note.

The following files are required in order to complete the
source code in Appendix A:

The source code was compiled using MPLAB-C v1.21
and has been verified to work. The source code, includ-
ing the required libraries and header files, is available
for download from the Microchip website (www.micro-
chip.com).

The following is a discussion of the purpose and oper-
ation of each of the functions in Appendix A.

Main()

This simple function represents the main system mas-
ter control program. This routine sets up the system
master hardware (init_hardware()) and then calls the
sys_init() routine.

Sys_Init()

This routine controls the detection and configuration of
any circuit cards that are installed in the system. It per-
forms a while loop that calls the Assign_ID() function,
passing in the id value to be assigned, to determine if
there are any unassigned devices on the bus. If the
Assign_ID() function finds a device on the bus the

Master System Bus

I2C Bus

Slave Board

M
aster S

ystem
 C

ontroller

Slave BoardSlave Board

EDS

Slave Board

 S
lave M

icrocontroller

24LC
S

61/62

EDS

 S
lave M

icrocontroller

24LC
S

61/62

EDS

 S
lave M

icrocontroller

24LC
S

61/62

EDS

 S
lave M

icrocontroller

24LC
S

61/62

Initialize hardware
Call sys_init() to

detect devices on

Assign ID to detected
device

Call Assign_ID
to poll I2C bus for

unassigned
devices

Unassigned
Devices?

exit sys_init routine
back to main()

Read array size code
from addr 0x00

Read device type
code from addr 0x01

Execute device
specific configuration

code

Write time stamp
to last three bytes of

array

No

File Name Description

24lcs6x.c Main file (listing 1)

swi2c16.h MPLAB-C header file

swi2c16.lib MPLAB-C library file

delays.h MPLAB-C header file

delays.lib MPLAB-C library file

math.h MPLAB-C header file

17c42a.h MPLAB-C header file
DS00683A-page 5-18 1999 Microchip Technology Inc.

AN683
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 19 Thursday, March 2, 2000 7:59 AM
sys_init() routine then reads the memory size
(address 0) and stores this in the global variable addr
for later use. The variable oe_bit is then set and the
device code is read (address 1). This value is used
determine and execute the proper initialization/configu-
ration code.

After the device configuration is finished a time stamp
is written to the last three bytes of the array. Before
returning to main() the value of the variable id is decre-
mented so that a subsequent call to the sys_init() rou-
tine, which could be used to check for new devices that
have been added to the system, will assign the next
unused ID number.

Write_Byte()

This routine writes a single byte to the 24LCS61/62
device. The address that is to be written to must be
placed in the global variable addr before calling this
function in order for it work properly. The ID number of
the device to be written to, and the data byte that is to be
written are passed in by the calling function. The write is
then initiated by issuing the write command, followed by
the device ID, address byte and data byte.

 After the data byte is sent, a stop condition is generated
to initiate the internal write cycle. The Ack_Poll() routine
is then called to wait for the device to finish writing before
continuing.

Read_Byte()

This routine reads a single byte from the 24LCS61/62
device. The device ID number and the address to be
read are passed in by the calling function. The routine
then sets the internal address pointer of the
24LCS61/62 by sending a write command (after ORing
the oe_bit - see Write_Byte() above), followed by the
device ID, and the address. A start condition is then
generated followed by the read command (the oe_bit is
again OR’d), and the device ID. The data byte is then
read from the I2C bus and returned to the calling func-
tion after generating a stop condition.

Ack_Poll()

This is a simple subroutine that is used after a write
command is sent in order to allow the 24LCS61/62 to
complete an internal write cycle before continuing. This
is done by issuing repeated write commands to the
24LCS61/62 device, whose ID is passed in by the call-
ing function, until an acknowledge is generated by the
24LCS61/62 indicating that it has completed the write
cycle. It should be noted that the oe_bit is OR’d with the
write command so that the state of the EDS pin is not
inadvertently changed during the polling. After the
acknowledge is received a stop condition is sent before
the routine ends.

Clear_Addr()

This routine issues the Clear Address command to all
24LCS61/62 devices on the bus, which causes them all
to reset their internal ID to 00, and to enter the unas-
signed state. The Assign ID command is followed by a
dummy ID byte, and a stop condition.

Assign_ID()

Checks the bus for, and assigns an ID to, an unas-
signed 24LCS61/62 device. To do this the Assign ID
command is sent, followed by the ID (which has been
passed in by the calling function). The bus is then
checked for an acknowledge being generated by an
unassigned device. If no ACK is seen the function
returns a ‘0’ to indicate that no device was found. If an
ACK has been generated, the function then reads the

Note: the actual code has not been included in this
example but, rather, comments are used to indicate
where this code would go.

Note: The state of the global variable oe_bit is logi-
cally OR’d, after being shifted left three bits, with the
control code in order to provide control of the state of
the EDS pin.
 1999 Microchip Technology Inc. DS00683A-page 5-19

AN683

S5.book Page 20 Thursday, March 2, 2000 7:59 AM
six byte serial number, generates a stop condition which
latches the assigned ID number into the 24LCS61/62,
and returns a ‘1’ indicating a device was found and
assigned.

init_hardware()

This function initializes the hardware for the simplified
system used to test and validate the operation of the
code in this application note. This hardware uses a
PIC17C4x with SCL and SDA on port pins RC6 and
RC7 respectively. Both pins require an appropriate pul-
lup resistor as detailed in the sw12c16.h file.

SUMMARY

This application note has detailed the basics of using
the 24LCS61/62 in a multi board system. Several addi-
tions/enhancements could easily be added including
implementing multi-byte page mode writes to the
24LCS61/62, detecting/handling I2C bus errors, and
creating the necessary code/interrupt to generate a
periodic call from main() to sys_init() in order to detect
and configure newly added devices. The source code
provided was written in ‘C”, versus assembly language,
for a couple of reasons. First, the use of ‘C’ makes the
code more portable so that it can easily be imple-
mented on any one of several microcontrollers. Sec-
ond, it is believed that ‘C’ is a more ‘readable’ and
therefore better serves as an instructional tool than
does assembly language.

ADDITIONAL INFORMATION

24LCS61/62 Device Datasheet; Microchip Technology
Inc.; DS21226

AN676: “Physical Slot Identification Techniques for the
24LCS61/62”; Microchip Technology, Inc.; DS00676
DS00683A-page 5-20 1999 Microchip Technology Inc.

AN683
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 21 Thursday, March 2, 2000 7:59 AM
APPENDIX A: SOURCE CODE
/***
* *
* 24LCS6x.c *
* Source code for application note AN683 which demonstrates *
* using the Microchip Technology 24LCS61/62 software *
* addressable I2C Serial EEPROM. *
* *
* 06/xx/98 Original creation R. Stoneking *
* Created and compiled with MPLAB-C V1.21 *
* *
* This code is written to run on a PIC17C4x device with SCL *
* and SDA on PORTC.6 and PORTC.7 respectively. Both of these *
* pins require an external pullup resistor as explained in the *
* swi2c16.h file. *
* *
* This code does not make any attempt run the I2C bus at a *
* set speed, so the code will work independant of the *
* oscillator frequency (at faster speeds additional delays may *
* be required to prevent violating the I2C timing specs. *
* *
***/
#include <17c42a.h>
#include <delays.h>
#include <math.h>
#include <swi2c16.h> /* required header file from PICmicro */
 /* library */
/******************** Function Prototypes************************/
void sys_init(void);
void Clear_ID(void);
char Assign_ID(char);
void Write_Byte(char, char);
char Read_Byte(char, char);
void AckPoll(char);
void init_hardware(void);
/*********** Global Defines**************************************/
#define SET_WP_CMD 0x60
#define READ_CMD 0x61
#define WRITE_CMD 0x62
#define ASN_ADD_CMD 0x64
#define CLR_ADD_CMD 0x66
#define FOUND 1
#define NFOUND 0
/*********** Global Variables************************************/
char temp,
 id,
 oe_bit,
 rxbuf[16],
 addr,
 hour = 5,
 minute = 0x45,
 second = 0x33;

/**/
void main(void)
{
 init_hardware(); /* set up PICmicro */
 Clear_ID();
 sys_init();
 while(1); * loop forever */
} /* end main () */

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of source code.
 1999 Microchip Technology Inc. DS00683A-page 5-21

AN683

S5.book Page 22 Thursday, March 2, 2000 7:59 AM
/***
* Name: sys_init *
* Desc: This routine controlls the querrying of the bus, *
* detection and assigning of new devices, and execution *
* of any necessary configuration routines when a new *
* device is found. *
* *
* Inputs: None *
* *
* Setup: None *
* *
* Return: Void *
***/
void sys_init(void)
{
 id = 1; /* start assigned id’s at 1 */
 oe_bit = 0; /* EDS pin inactive */
 while(Assign_ID(id) == FOUND)

{
oe_bit = 1; /* set EDS pin low while

addressing device */
addr = Read_Byte(id,0x00); /* read byte 0 for array size */
temp = Read_Byte(id,0x01); /* read byte 1 for device code */
switch(temp) /* execute module dependant code */
{
case 0x01: /* Memory Module */

 /* add code here for Memory Module */
 break;

case 0x02: /* I/O Module */
 /* add code here for I/O Module */
 break;

case 0x03: /* Display Module */
 /* add code here for Display Module */
 break;

 default:
 /* add code here for unknown Module codes */
 break;
 }
 Write_Byte(id, second); /* write time stamp to last 3
 bytes of array */
 addr--;
 Write_Byte(id, minute);
 addr--;
 oe_bit = 0; /* set EDS pin high during
 last command */
 Write_Byte(id, hour);
 id++;
 } /* end while() */
 id--; /* decrement id by one so next
 call to sys_init uses correct id */
} /* end sys_init() */
/***
* Name: Write_Byte *
* Desc: Write the data byte passed by the calling funtion to *
* the device specified in id, at the location pointed to*
* by the global variable addr. *
* *
* Inputs: id - the id of the device on the bus to be written to *
* data_byte - byte to be written to the array *
* *
* Setup: Global variable addr must be set before entry *
* *
* Return: Void *
***/
DS00683A-page 5-22 1999 Microchip Technology Inc.

AN683
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 23 Thursday, March 2, 2000 7:59 AM
void Write_Byte(char wr_id, char data_byte)
{
 RestartI2C();
 temp = WriteI2C(WRITE_CMD | (oe_bit << 3));
 AckI2C();
 temp = WriteI2C(wr_id);
 AckI2C();
 temp = WriteI2C(addr); /* address byte */
 AckI2C();
 temp = WriteI2C(data_byte); /* data byte */
 AckI2C();
 StopI2C();
 AckPoll(wr_id); /* wait for write cycle to finish */
} /* end Write_Byte() */
/***
* Name: Read_Byte *
* Desc: Reade the data from the device specified by id at the *
* address specified by the paramater addr. *
* *
* Inputs: id - the id of the device on the bus to be written to *
* addr - byte to be read in the array *
* *
* Setup: None *
* *
* Return: Data byte read *
***/
char Read_Byte(char rd_id, char loc)
{

PORTD.0 = 1;
StartI2C();
temp = WriteI2C(WRITE_CMD | (oe_bit << 3));
AckI2C();
temp = WriteI2C(rd_id);
AckI2C();
temp = WriteI2C(loc); /* address byte */
AckI2C();
NOP();
RestartI2C();
temp = WriteI2C(READ_CMD | (oe_bit << 3));
AckI2C();
temp = WriteI2C(rd_id);
AckI2C();
temp=ReadI2C();
AckI2C();
StopI2C();
return I2C_BUFFER;

} /* end Read_Byte() */
/***
* Name: AckPoll *
* Desc: Send repeated Write commands and check for DUTk. *
* Return when ack received. If no ack is received this *
* will loop indefinately. *
* *
* Inputs: Id of device to be polled *
* *
* Setup: None *
* *
* Return: Void *
***/
void AckPoll(char ack_id)
{
 do
 {
 RestartI2C();
 temp = WriteI2C(WRITE_CMD | (oe_bit << 3));
 AckI2C();
 temp = WriteI2C(ack_id);
 1999 Microchip Technology Inc. DS00683A-page 5-23

AN683

S5.book Page 24 Thursday, March 2, 2000 7:59 AM
 AckI2C();
}while(BUS_STATUS.2);
StopI2C();

} /* end AckPoll() */
/***
* Name: Clear_Addr() *
* Desc: Send Clear Address Command to all devices on the bus, *
* resetting all device ID registers to 00. *
* *
* Inputs: None *
* *
* Setup: None *
* *
* Return: Void *
***/
void Clear_ID()
{

RestartI2C();
temp = WriteI2C(CLR_ADD_CMD);
AckI2C();
temp = WriteI2C(0x00);
AckI2C();
StopI2C();

}
/***
* Name: Assign_ID *
* Desc: Sends Assign ID command over the I2C bus and looks for*
* the acknowlege from an unassigned device. If a device*
* is found, the six byte serial number is read into *
* the rxbuf[] array for use by the calling function. *
* *
* Inputs: Id to be assigned to device if detected *
* *
* Setup: None *
* *
* Return: 1 if device is found, 0 if no device found *
***/
char Assign_ID(char new_id)
{

RestartI2C();
temp = WriteI2C(ASN_ADD_CMD);
AckI2C();
temp = WriteI2C(new_id);
AckI2C();
if (BUS_STATUS.2) /* Check for unassigned device on bus */
return NFOUND; /* and exit if none */
temp = getsI2C(rxbuf,6); /* Otherwise read SN */
StopI2C();
return FOUND;

}
void init_hardware()

{
SPBRG = 0x0f; /* Use 0x07 for 19.2Kbps, 0x0f for 9600 bps */
TXSTA = 0x20; /* Async mode, 8 Data bits, txen = 1 */
RCSTA = 0x90; /* 8 Data bits, spen = 1, cren = 1 */
PORTB = 0x0;
DDRB = 0xff; /* Port B all inputs */
PORTC = 0xff; /* Set Port C to all ones */
DDRC = 0xff; /* Port C all outputs for now */
PORTD = 0;
DDRD = 0x0; /* Port D all outputs */

 DDRE = 0xff; /* Port E all inputs */
PIR = 0; /* Clear any pending interrupts */
CPUSTA.GLINTD = 1; /* Disable global interrupts */
} /* end init_hardware() */

#include <swi2c16.lib>
#include <delays.lib>
DS00683A-page 5-24 1999 Microchip Technology Inc.

AN690
I2C™ Memory Autodetect

N
o

n
-Vo

latile M
em

o
ry

5

S5.book Page 25 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

This application note describes a method to automati-
cally detect the memory size of a serial EEPROM con-
nected to an I2C bus. The topics include:

• Automatic detection of memory size on the I2C
bus

• Standard I2C

• Smart Serial or the I2C Dilemma

• Another set of routines for I2C
• How to tell the addressing scheme

• How to tell the size

• Putting it all together

• Debugging

• Compatibility

• References

AUTOMATIC DETECTION OF
MEMORY SIZE ON THE I2C BUS

The purpose of this application note is to show how to
solve a common problem in microcontroller applica-
tions with Serial EEPROMs. User needs often dictate
different memory sizes for different versions of an
application, but cost constraints require the smallest
possible memory to be used each time. A typical appli-
cation example could be the base station (receiver) of
a remotely controlled garage door opener. Versions
capable of storing 4, 20, 200 or 1000 users could be
implemented from a single source code complement-
ing the controller with the appropriate memories.

Microchip currently offers a very broad range of mem-
ory capacities with I2C bus interface (from 16 bytes in
the 24C00 up to 32k bytes in the 24C256).

The microcontroller has to be able to tell which mem-
ory it is dealing with on the I2C bus in order to address
it properly.

There are two possible approaches to the problem, one
is to provide some kind of configuration information to
the controller by means of dip switches or jumpers, the
other one is to make the controller capable of automatic
detection. In this application note, we will show how to
implement the automatic detection in an easy, safe and
compatible way.

The software techniques explained in the following will
be demonstrated on a generic mid-range PICmicro®

microcontroller (MCU), PIC16C62A and can be tested
immediately using a PICDEM2 demo board.

All the code can be adapted to any other PICmicro
MCU (12, 14 and 16 bit core) and/or pin configuration
with minor modifications to the source code.

Standard I2C

The I2C protocol utilizes a master/slave bi-directional
communication bus. The master, usually a microcon-
troller that controls the bus, generates the serial clock
(SCL) and originates the start and stop conditions. A
Serial EEPROM is considered a slave device and is
defined as a transmitter during read operations and
generates acknowledges when receiving data from the
master. The start and stop bits are utilized to control the
bus. Normal operation begins with a start bit and ends
with a stop bit. Following a start, commands begin with
an 8 bit ’control’ byte originated by the master. The con-
trol byte identifies the slave device to be addressed and
defines the operation to take place. A typical control
byte for a Serial EEPROM (slave address = 1010) is
shown in Figure 1. The control byte, therefore, consists
of a start bit, a four-bit slave address, a read/write bit
and an acknowledge. The slave address consists of the
1010 identifying address plus the three block or chip
select bits A2,A1,A0.

Smart Serial or the I2C Dilemma [ref 3]

The I2C serial bus has many advantages over other
common serial interfaces for serial embedded devices.
The I2C bus with level-triggered inputs offers better
noise immunity over edge-triggered technology.
Opcodes are not needed to communicate with storage
devices because all interfaces are intuitive and compa-
rable to parallel devices.

But the standard protocol limits addressing up to a
maximum of 16K bytes of memory on the bus via the 8-
bit address and the three device or memory block
select pins A0, A1, and A2 (8x2kbytes).

Herein lies the dilemma. With the advent of the more
sophisticated personal communication devices such as
cellular and full-featured phones, personal digital assis-
tants and palm-top computers, 16K bytes is not
enough!

So the Smart Serial concept grew from the industry’s
need for increased memory requirements in I2C
embedded applications, smarter endurance perfor-
mance, security needs, and the need for more function-
ality at lower power demands.

Author: Lucio Di Jasio
Microchip Technology, Italy
 1900 Microchip Technology Inc. DS00690A-page 5-25

AN690

S5.book Page 26 Thursday, March 2, 2000 7:59 AM
Microchip Technology has designed an addressing
scheme for I2C Serial EEPROM based on the standard
I2C protocol and device addresses, but incorporating
an additional address byte for enabling the designer to
use up to 256K bits per device and add from 1 to 8
devices on the system bus. This flexibility allows for
future memory expansion and more advanced features
in a smaller, more cost effective design.

For the first byte, or control byte, the Smart Serials
adhere to the I2C protocol (reference Figure 2). The
next 2 bytes (instead of one) define the address of the
requested memory location.

Another Set of Routines for I2C bus

Many application notes have already been published
by Microchip Technology on the I2C bus interface such
as: AN515, AN537, AN558, AN567, AN608, AN554,
AN578 and AN535. In the following, we will use tech-
niques and code taken from those application notes as
a base to build a new compact, powerful set of routines.
The first step will be to modify a basic set of routines
[ref1,2,4,6,8] to make them capable of producing Stan-
dard I2C and Smart Serial addressing, selecting the
addressing scheme at run time by means of a flag (that
we will call: SMART).

Listing 1 (i2c.inc) shows the new set of routines. As
usual, there are two layers of functions:

• The lower layer (composed of routines: BSTOP,
BSTART, RXI2C, TXI2C, BITIN, BITOUT, ERR;
listing starts from line 153) deals with sending
and detecting the single bits and bytes on the bus
and contains no new code.

• The higher layer (composed of routines: RDbyte,
WRbyte and SETI2C, from line 1 to 152) assem-
bles commands and takes care of addressing
schemes. This will be the focus of our discussion.

What is new here, is that we moved to function SETI2C
(lines 112..152) all the code that deals with the details
of the addressing scheme. This function gets a SMART
flag as an input and provides Standard or Smart
addressing according to its value. Both RDbyte and
WRbyte rely on SETI2C for the command and address
generation, and therefore are now compatible with
Standard and Smart Serial.

Determining the Addressing Scheme

As a next small step toward automatic memory size
detection we need to find a method to distinguish auto-
matically between a Smart Serial and a Standard Serial
EEPROM.

The algorithm proposed is very simple and compact,
made up of only the following 4 steps:

1. Put in Smart Serial mode the I2C routines (set
SMART flag).

2. Issue a write command to location 0000, writing
a 1.

(0000) <- 00

(0001) <- 01

If the memory is a Smart Serial, then we get the correct
interpretation.

(0000) <- 01

3. Put in Standard I2C Mode the I2C routines (clear
the SMART flag).

4. Issue a read command of location 0000.

If the memory really is a Standard I2C, then this read
command will give us the contents of location 0000,
and that was set to 0!.

If the memory is a Smart Serial, we get a read com-
mand with a partial (incomplete) addressing.

What happens in this case is not really part of the I2C
bus definition, so let's analyze two possible cases.

a) Partial addressing set only the most significant
bits of the internal address register and leaves
unattached the lower 8 bits. This means that we
will read location 0000.

b) Partial addressing doesn't modify at all the
address register. This means that the address
remains equal to the last value set (by the last
Smart Write) and reading gives the contents of
location 0000.

If in both cases we end up reading a 1, that tells us that
it was a Smart Serial memory. If a 0 was read, then it
was a Standard I2C serial memory.

Listing 2) (i2cauto.asm) lines 108..120 implement in
just 10 lines of assembly this simple algorithm.

Determining Memory Size

The last step toward automatic memory size detection
is the development of an algorithm to tell the size of a
memory given its addressing scheme. That is, suppose
we know whether it is a Standard or Smart, we want to
be able to measure its size.

Note: If the memory is a standard I2C, this com-
mand is interpreted as a sequential write
command of two bytes that produces writ-
ing a 00 byte to location 0000 and a 01
byte to location 0001.

Note: Locations 0000 and 0001 are obviously
corrupted through this procedure and there
is no way to save and restore them (until
the addressing scheme is known!).
DS00690A-page 5-26 1900 Microchip Technology Inc.

AN690
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 27 Thursday, March 2, 2000 7:59 AM
We will base the detection algorithm on a simple
assumption which is:

If a memory is of size N, then trying to address
locations out of the 0..N-1 range will produce a fall
back in the same range (modulus N). Since the
most significant (extra) address bits will be simply
ignored, they are DON’T CARE bits to the device
as can be easily verified from each device data
sheet.

We can develop a simple test function to tell us whether
a memory is of a given size N (or smaller).

In a high level pseudo language, such a test function
could look like this:

EXAMPLE 1:
function TestIfSizeIs(Size N): boolean
(// is memory range 0..N-1 ?
 var TEMP;
 TEMP = Read(0000);

 if (Read(N) == TEMP)
 Write(0000, TEMP+1)

 if (Read(N) == TEMP+1)
 Write(0,TEMP-1)
 return(TRUE)
 // else
 return(FALSE)
) //end function

Having this function, we can then set up a loop to test
memory sizes.

In the case of the Standard I2C, we can loop and test
from N=128 to N=2048 corresponding to models from
24C01 up to 24C16 doubling N at each iteration as in
the following:

EXAMPLE 2:
function StandardI2CMemDetect() : integer
(// returns a model number 1..16

 N = 128
 MODEL = 1
 loop

 if (TestIfSizeIs(N))
 break

 else
 N=N*2

 MODEL=MODEL*2
 while(N<=2048)

return (MODEL);
) //end function

Similarly, a function to measure Smart Serial memories
will loop with N=4096 up to N=32768.

Please note that in this second algorithm, no memory
location had to be reserved. Even location 0 that is
modified could always be saved and restored by the
test algorithms.

PUTTING IT ALL TOGETHER

Now all the pieces of the puzzle are ready and we can
complete our automatic memory size detection routine.
First we determine the addressing scheme, and once
that is known, we enter a loop to measure the actual
memory size. Depending on the addressing scheme,
we will enter the loop with different initial values corre-
sponding to the different ranges of memory according
to the memory models available on the market.

Listing 2 (i2cauto.asm) lines 136..174 implement in
assembly in a very compact way both algorithms.

Debugging

Assembling the code and testing it on a PIC16C62A on
a PICDEM2 board or any other target board (after mod-
ifying the pin definitions in listing 2 (i2cauto.asm)
lines 48..60) will prove the functionality of the proposed
code. Just insert an I2C memory in the DIL socket on
the PICDEM2 board, power up or press the reset but-
ton, and voila’, on the LEDs will appear the binary rep-
resentation of the memory TYPE value according to
Table 1.
 1900 Microchip Technology Inc. DS00690A-page 5-27

AN690

S5.book Page 28 Thursday, March 2, 2000 7:59 AM
TABLE 1: MEMORY TYPE VALUE

The reader is invited to experiment and modify further
this software to adapt it to their specific needs. When
doing so, we strongly recommend having at hand the
SEEVAL kit, a cheap and effective tool from Microchip
Technology that allows the designer to read/write any
Serial EEPROM and connects to any PC through the
serial port. Further consider the "Endurance" software
tool from Microchip Technology, while designing mem-
ory applications where reliability and endurance are
critical.[ref 9,10]

Compatibility

While most of the code presented strictly follows the
existing I2C and Smart Serial standards, it should be
compatible with any Serial EEPROM device from any
manufacturer, that adheres to such standards. Only
Microchip Serial EEPROMs were tested. It is left up to
the user to validate this code for Serial E2 from other
manufacturers.

Further, there is some space for discussion, as a pos-
sible future compatibility issue, on the addressing
scheme detection method. As a matter of fact, the
behavior of the serial memory in case of partial
addressing (as it occurs during step 4 in the case of
Smart Serial) is not part of the specification. While it
works with current implementations of the Smart Serial
protocol (from Microchip and up to the 24C256), it is not
guaranteed to do so in the future.

References

[1] AN515 Communicating with I2C™ Bus Using the
PIC16C5X, Bruce Negley

[2] AN535 Logic Powered Serial EEPROMs, R. J.
Fisher and Bruce Negley

[3] AN558 Using the 24xx65 and the 24xx32 with
Stand-alone PIC16C54 Code, Dick Fisher and
Bruce Negley

[4] AN567 Interfacing the 24LCxxB Serial EEPROMs
to the PIC16C54, Bruce Negley

[5] AN608 Converting to 24LCXXB and 93LCxx Serial
EEPROMs, Nathan John

[6] AN536 Basic Serial EEPROM Operation, Steve
Drehobl

[7] AN554 Software Implementation of I2C™ Bus
Master, Amar Palacherla

[8] AN559 Optimizing Serial Bus Operations with
Proper Write Cycle Times, Lenny French

[9] AN537 Serial EEPROM Endurance, Steve Dre-
hobl

[10] AN602 How to get 10 Million Cycles Out of Your
Microchip Serial EEPROM, David Wilkie

Standard I2C Smart Serial

Type Size Model Type Size Model

01 128 24C01/21/41 32 4096 24C32

02 256 24C02/62 64 8192 24C65/64

04 512 24C04 128 16384 24C128

08 1024 24C08 0 32768 24C256

16 2048 24C16/164
DS00690A-page 5-28 1900 Microchip Technology Inc.

AN690
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 29 Thursday, March 2, 2000 7:59 AM
FIGURE 1: CONTROL BYTE
ALLOCATION

FIGURE 2: BYTE WRITE

Slave Address R/W A

START READ/WRITE

1 10 0 A1 A0A2

Bus Activity
Master

SDA Line

Bus Activity

S

A
C
K

Control
Byte

S
T
A
R
T

A
C
K

Word
Address (1)

Word
Address (0)

A
C
K

Data

A
C
K

S
T
O
P

 1900 Microchip Technology Inc. DS00690A-page 5-29

AN690

S5.book Page 30 Thursday, March 2, 2000 7:59 AM
APPENDIX A: SOURCE CODE

LISTING 1: I2C.INC
;**
;* Filename: I2C.INC
;**
;* Author: Lucio Di Jasio
;* Company: Microchip Technology
;* Revision: RevA0
;* Date: 5-7-98
;* Assembled using MPASM v02.15
;**
;* Two wire/I2C Bus READ/WRITE Sample Routines
;* both Smart Serial and Standard I2C addressing schemes supported
;* PIC16CXXX mid-range (14 bit core) version
;*
;* Note: 1) All timing is based on a reference crystal frequency of 4MHz
;* which is equivalent to an instruction cycle time of 1 usec.
;* 2) Address and literal values are read in hexidecimal unless
;* otherwise specified.
;***
;*
;* Register File Assignment
;***
 CBLOCK
 FLAGS
 INDHI ; address
 INDLO
 DATO ; data buffer for read write functions
 ERCODE ; error code (see table below)
 EEBUF ; read write buffer
 SLAVEbuf ; SLAVE address (+ addrHi on 24LC16)
 COUNT
 AUX
 ENDC
;**
; flag definitions
;
#define FLAG_EE FLAGS,0 ; I2C bus error
#define SMART FLAGS,1 ; Smart(1) Standard(0)
;
;***
;* Bit Assignments
;***

#define SLAVE B’10100000’ ; Device address (1010xxx0)

; error codes
#define ERR_NACK 1 ; no ACK reading
#define ERR_STOP 2 ; SDA locked in STOP
#define ERR_TOWR 3 ; time out in read (>20ms)
#define ERR_LOCK 4 ; SDA locked in BITOUT

;***
;* RDbyte
;* read one byte from serial EEPROM device
;*
;* Input : INDHI/LO
;* SLAVE = device address (1010xxx0)
;* Output : DATO = data read from serial EEPROM
;***
;

Please check Microchip’s Worldwide Website at www.microchip.com for the latest version of source code.
DS00690A-page 5-30 1900 Microchip Technology Inc.

AN690
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 31 Thursday, March 2, 2000 7:59 AM
RDbyte bcf FLAG_EE ; reset error flag
 call SETI2C ; set address pointer

; enter here for sequential reading

RDnext call BSTART ; START
 movf SLAVEbuf,W ; use SLAVE addr(+IndHi se 24LC16)
 movwf EEBUF
 bsf EEBUF,0 ; it’s a read command
 call TXI2C ; Output SLAVE + address + read command
 call RXI2C ; read in DATO and ACKnowledge
 movf EEBUF,W
 movwf DATO

 bsf STATUS,C ; set ACK = 1 (NOT ACK)
 call BITOUT ; to STOP further input
 goto BSTOP ; generate STOP bit

;***
;* WRbyte
;* write one byte to EEPROM device
;*
;* Input : DATO = data to be written
;* INDHI/LO= EEPROM data address
;* SLAVE = device address (1010xxx0)
;* PROT = 1-> SmartSerial | 0> Standard
;* Output : FLAG_EE = set if operation failed
;***

WRbyte bcf FLAG_EE ; reset error condition
 call SETI2C ; set address pointer
 movf DATO,W ; move DATO
 movwf EEBUF ; into buffer
 call TXI2C ; output DATO and detect ACKnowledge
 call BSTOP ; generate STOP bit

; loop waiting for writing complete
 movlw .80 ; 80 test=20ms timeout
 movwf AUX
WRpoll CLRWDT ; keep the WDT from resetting
 bcf FLAG_EE
 call BSTART ; invia start
 movlw SLAVE
 movwf EEBUF
 call TXI2C ; ed un comando di scrittura
 btfss FLAG_EE ; se non da ACK -> ercode 3 -> BUSY
 goto WRpollE
WRbusy decfsz AUX,F
 goto WRpoll
 movlw ERR_TOWR ; time out in scrittura
 call ERR
WRpollE goto BSTOP ; exit sending the stop condition

;***
;* SETI2C
;* set the address pointer at INDHI/LO, use Smart or Standard
;* addressing scheme according to SMART flag
;*
;* Input : INDHI = EEPROM data address
;* INDLO
;* SLAVE = device address (1010xxx0)
;* SMART = 1-> Smart Serial | 0> Standard I2C
;* Output : SLAVEbuf for sequential read
;***
SETI2C
 btfsc SMART ; if clear -> Standard I2C
 1900 Microchip Technology Inc. DS00690A-page 5-31

AN690

S5.book Page 32 Thursday, March 2, 2000 7:59 AM
 goto Smart ; if set -> Smart Serial

Standard
 bcf STATUS,C ;
 rlf INDHI,W ; add address MSb
 iorlw SLAVE ; to slave address
 movwf EEBUF
 movwf SLAVEbuf ; save for sequential read
 call BSTART ; generate START bit
 call TXI2C ; output first comand byte
 goto SETseq

Smart
 movlw SLAVE ; prepare slave address
 movwf EEBUF
 movwf SLAVEbuf ; save for sequential read
 call BSTART ; generate START bit
 call TXI2C ; output first command byte
 movf INDHI,W ;
 movwf EEBUF ; output address MSB
 call TXI2C

SETseq
 movf INDLO,W ; send address LSB
 movwf EEBUF
 goto TXI2C ; Output WORD address

;***
;* TXI2C
;* transmit 8 data bits
;*
;* Input : EEBUF
;* Output : none
;***
TXI2C
 movlw .8 ; Set counter for eight bits
 movwf COUNT

TXlp
 rlf EEBUF,F ; data bit in CARRY
 call BITOUT ; Send bit
 decfsz COUNT,F ; 8 bits done?
 goto TXlp ; No.

 call BITIN ; Read acknowledge bit
 movlw ERR_NACK
 btfsc STATUS,C ; Check for acknowledgement
 call ERR ; No acknowledge from device
 return

;***
;* BITOUT
;* send single bit
;*
;* Input : bit in CARRY
;* Output : Bit transmitted over I2C
;* Error bits set as necessary
;***
BITOUT
 btfss STATUS,C ; is it 0/1?
 goto Bit0

Bit1
 bsf STATUS,RP0 ; select RAM bank 1
 bsf SDA ; input SDA (pull up->1)
 bcf STATUS,RP0 ; back to RAM bank 0
DS00690A-page 5-32 1900 Microchip Technology Inc.

AN690
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 33 Thursday, March 2, 2000 7:59 AM
 movlw ERR_LOCK
 btfss SDA ; Check for error
 call ERR ; SDA locked low by device
 goto Clk1

Bit0
 bsf STATUS,RP0 ; select RAM bank 1
 bcf SDA ; Output SDA
 bcf STATUS,RP0 ; back to RAM bank 0
 bcf SDA ; clear 0
 nop ; Delay

Clk1
 bsf SCL ; rise SCL
 nop
 nop
 nop ; Timing delay 4us minimum
 nop
 nop
 bcf SCL ; lower SCL
 return

;
;***
;* RXI2C
;* receive eight data bits
;*
;* Input : None
;* Output : RXBUF = 8-bit data received
;***
RXI2C
 movlw .8 ; 8 bits of data
 movwf COUNT
 clrf EEBUF

RXlp
 call BITIN ; new bit in CARRY
 rlf EEBUF,F ; enter new bit
 decfsz COUNT,F ; 8 bits?
 goto RXlp
 return

;
;***
;* BITIN
;* Single bit receive
;*
;* Input : None
;* Output : EEBUF,0 bit received
;***
BITIN
 bsf STATUS,RP0 ; select RAM bank 1
 bsf SDA ; Set SDA for input
 bcf STATUS,RP0 ; back to RAM bank 0
 bsf SCL ; Clock high
 nop
 nop
 nop
 nop ; provide minimum Tset up
 CLRC
 btfsc SDA ; Read SDA pin in CARRY
 bsf STATUS,C
 bcf SCL ; Return SCL to low
 return

;***
 1900 Microchip Technology Inc. DS00690A-page 5-33

AN690

S5.book Page 34 Thursday, March 2, 2000 7:59 AM
;* START bit generation
;*
;* input : none
;* output : initialize bus communication
;***
BSTART
 bsf STATUS,RP0 ; select RAM bank 1
 bsf SDA ; SDA input (pull-up ->1)
 bcf STATUS,RP0 ; back to RAM bank 0
 bsf SCL ; Set clock high
 nop
 nop
 nop
 nop ; 5us before falling SDA
 bsf STATUS,RP0 ; select RAM bank 1
 bcf SDA ; SDA output
 bcf STATUS,RP0 ; back to RAM bank 0
 bcf SDA ; set SDA = 0
 nop
 nop
 nop
 nop ; 4us before falling SCL
 bcf SCL ; Start clock train
 return

;***
;* STOP bit generation
;*
;* Input : None
;* Output : Bus communication, STOP condition
;***
BSTOP
 bsf STATUS,RP0 ; select RAM bank 1
 bcf SDA ; SDA output
 bcf STATUS,RP0 ; back to RAM bank 0
 bcf SDA ; set SDA = 0
 bsf SCL ; Set SCL high
 nop
 nop
 nop
 nop ; 4us before rising SDA
 bsf STATUS,RP0 ; select RAM bank 1
 bsf SDA ; SDA input (pull-up ->1) while SCL high
 bcf STATUS,RP0 ; back to RAM bank 0
 movlw ERR_STOP ; Ready error code
 btfss SDA ; High?
 call ERR ; Error, SDA locked before STOP

 bcf SCL ; lower SCL
 return
;
;***
;* Two wire/I2C - CPU communication error status table
;*
;* input : W-reg = error code
;* output : ERCODE = error code
;* FLAG(ERROR) = 1
;***
ERR
 bcf STATUS,RP0 ; back to RAM bank 0
; record last error

 movwf ERCODE ; Save error code
 bsf FLAG_EE ; Set error flag
 return
DS00690A-page 5-34 1900 Microchip Technology Inc.

AN690
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 35 Thursday, March 2, 2000 7:59 AM
LISTING 2: I2CAUTO.ASM
LIST n=0, c=132
RADIX HEX
PROCESSORPIC16C62A

;**
;* Filename: I2CAUTO.ASM
;**
;* Author: Lucio Di Jasio
;* Company: Microchip Technology
;* Revision: RevA0
;* Date: 5-7-98
;* Assembled using MPASM v02.15
;**
;* Include files:
;* p16c62A.inc rev1.01
;*
;**
;* software detection of I2C memory size
;*
;* PIC16CXXX /+5V
;* +-----------+ |
;* | Vdd+--------------+--------+ 24CXXX
;* | | +++ | +--------+
;* | | | | +--+Vdd |
;* | | | | 4k7 | |
;* | | +++ | |
;* | RC4+--------------+-----------+SDA |
;* | RC3+--------------------------+SCL |
;* | | | |
;* | Vss+--------------+-----------+Vss |
;* +-----------+ | +--------+
;* GND
;*
;* can be tested on a PICDEM2 demo board
;**

 INCLUDE "P16C62A.INC"

 __CONFIG _XT_OSC & _CP_OFF & _WDT_ON
 __IDLOCS H’62A0’

;**
;* external 4MHZ crystal oscillator
;* no code protection
;* no watchdog
;* ID code is "62A0"
;**

; pin assignments

#define SDA PORTC,4 ; i I2C SDA
#define SCL PORTC,3 ; o I2C SCL

MASKA equ 0FF ; unused all inputs

MASKB equ 00 ; all outputs to LEDs

MASKC equ b’11110111’ ; SCL and SDA on this port
; enable SCL as output
;
;--
; RAM assignments
;
 CBLOCK 20
 TEMP
 SIZELO ; memory size
 1900 Microchip Technology Inc. DS00690A-page 5-35

AN690

S5.book Page 36 Thursday, March 2, 2000 7:59 AM
 SIZEHI
 TYPE ; memory type
 ENDC

;**

 org 00 ; reset vector

 goto Start

;**

 org 04 ; interrupt vector

 retfie ; esce riabilitando gli interrupt

;**

 INCLUDE "i2c.inc"

;**
;* MemDetect,
;* automatic detection of memory size
;*
;* INPUT:
;* none
;* OUTPUT:
;* SIZEHI/LO memory size as detected
;* TYPE memory type (see table below)
;* FLAG_EE bus error flag
;* ERCODE bus error code
;*
;* Standard I2C Smart Serial
;* TYPE SIZE MODEL TYPE SIZE MODEL
;* 01 128 24C01/21/41 32 4096 24C32
;* 02 256 24C02/62 64 8192 24C65/64
;* 04 512 24C04 128 - 16384 24C128
;* 08 1024 24C08 0 - 32768 24C256
;* 16 2048 24C16/164
;*
;**
MemDetect
 clrf INDHI ; address 0000h
 clrf INDLO
 bsf SMART ; write(smart, 0000, 1)
 movlw 1
 movwf DATO
 call WRbyte
 bcf SMART
 call RDbyte ; read(standard, 0000)
 movf DATO,W
 btfsc STATUS,Z
 goto StandardD
SmartD
 bsf SMART ; it is a Smart Serial
 movlw HIGH(.4096)
 movwf SIZEHI ; size = 4096 byte
 clrf SIZELO
 movlw .32
 movwf TYPE ; start with TYPE = 24C32
 goto TestD

StandardD
 bcf SMART ; it is a Standard Serial
 movlw .128
 movwf SIZELO ; size = 128 byte
 clrf SIZEHI
DS00690A-page 5-36 1900 Microchip Technology Inc.

AN690
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 37 Thursday, March 2, 2000 7:59 AM
 movlw 01
 movwf TYPE ; start with TYPE = 24C01

TestD
 call RDbyte ; TEMP=read(0)
 movf DATO,W
 movwf TEMP
LoopDet movf SIZELO,W ; DATO=read(SMART, size)
 movwf INDLO
 movf SIZEHI,W
 movwf INDHI
 call RDbyte
 movf DATO,W
 xorwf TEMP,W ; compare TEMP with DATO
 btfss STATUS,Z
 goto LoopDN
 incf TEMP,W ; if same value than TEMP=TEMP+1
 movwf TEMP
 movwf DATO
 clrf INDHI
 clrf INDLO
 call WRbyte ; write(SMART, 0000, TEMP)
 movf SIZELO,W ; if (read(SMART, size) == TEMP)
 movwf INDLO
 movf SIZEHI,W
 movwf INDHI
 call RDbyte
 movf DATO,w ; if still same value it means
 xorwf TEMP,W ; we reached the actual memory size
 btfsc STATUS,Z
 goto DetEx

LoopDN
 bcf STATUS,C ; double memory size
 rlf SIZELO,F
 rlf SIZEHI,F
 bcf STATUS,C
 rlf TYPE,F ; double TYPE code
 btfss TYPE,4
 goto LoopDet ;
DetEx
 nop
 return

;**
; init ports and option register
;
Start
 bsf STATUS,RP0 ; select RAM bank 1
 movlw MASKA ; set tris registers
 movwf PORTA ; PORTA
 movlw MASKB ;
 movwf PORTB ; PORTB
 movlw MASKC ;
 movwf PORTC ; PORTC

 movlw b’00000111’ ; enable pull_ups, prescale TMR0 1:256
 movwf OPTION_REG

 bcf STATUS,RP0
 clrf FLAGS ; reset all flags
 1900 Microchip Technology Inc. DS00690A-page 5-37

AN690

S5.book Page 38 Thursday, March 2, 2000 7:59 AM
;**
;

Main
 call MemDetect ; determine memory size

 movf TYPE,W ; if using a PICDEM2 board
 movwf PORTB ; send TYPE to the LEDs

MainLoop
 goto MainLoop ; stuck in the loop until reset

 END

DS00690A-page 5-38 1900 Microchip Technology Inc.

AN698
Microchip 93 Series Serial EEPROM Compatibility

N
o

n
-Vo

latile M
em

o
ry

5

S5.book Page 39 Thursday, March 2, 2000 7:59 AM
INTRODUCTION
With Microchip Technology’s introduction of the
93XX46, 93XX56, and 93XX66 devices in the ‘A’ and
‘B’ versions, a certain number of compatibility ques-
tions have arisen. This application note is intended to
discuss, in detail, the differences between each of the
variations of the 93XX series of devices offered and
address all of the technical considerations related to
the conversion from one device to another.

There are several key areas in which compatibility, par-
ticularly with respect to conversion from the ‘original’
93XX46/56/66 and 93XX46B/56B/66B to the new
93XX46A/B, 93XX56A/B, and 93XX66A/B, must be spe-
cifically addressed. These areas include the following:

• Operating Voltage Range

• Write Cycle Initiation

• CS Functionality

• Ready/Busy Polling

• Tying DI and DO together
• Noise Immunity

Each of these points is addressed individually in this
app note under a section heading of the same name.

PRODUCT FAMILY OVERVIEW
The current 93 series product offering from Microchip
Technology totals 31 devices when including both the
original and the new devices. In addition, each device is
offered in one or more temperature grades. This fairly
large number of individual products is mitigated, from a
compatibility standpoint, by the fact that for many of the
devices a single die is used for multiple ‘part numbers’.
For example, the original 93AA46, 93AA46B, 93LC46,
and 93LC46B are all ‘made’ from the exact same die. The
‘AA’ and ‘LC’ versions are separated by testing to differ-
ent VDD limits and the ‘B’ version is a bonding option. In
other cases multiple parts are created from a single die
through the use of metal level options during fabrication.
The significance of this is in the fact that in any case
where a single die makes multiple parts (as in the exam-
ple of the 93XX46/46B above) the functionality is identical
for all variations. This effectively reduces the number of
different devices that have to be addressed in this appli-
cation note by allowing several devices to be grouped
together for the purpose of functional discussions. Fur-

ther reduction is possible by grouping devices of different
array sizes together when their functionality is otherwise
identical. Finally, devices can also be grouped together
regardless of whether they utilize X8 or X16 communica-
tion.

Table 1 provides a list of devices that have been
grouped together such that the members of each group
are functionally identical with the exceptions of voltage
range, array size, and/or X8/X16 communication (which
are irrelevant for the purposes of this application note)

TABLE 1: FUNCTIONAL GROUPING

For the remainder of this document reference will only
be made to the functional group number listed above
rather than to specific devices. In all cases any device
from within the group will function as described.

OPERATING VOLTAGE RANGE
One key difference between Group 2 ‘LC’ devices and
Group 4 ‘LC’ devices is the range of VDD over which the
devices operate. Group 2 devices are specified to oper-
ate from 2.0V to 6.0V and Group 4 devices are speci-
fied from 2.5V to 6.0V. Group 4 devices have a VDD

threshold detect that is set at ~2.2V (nominal) which
prevents operation when VDD drops below that level. In
any application where a Group 2 ‘LC’ device is being
used at a VDD level below 2.5V, the equivalent ‘AA’
Group 2 device should be used. Because this conver-
sion does not require using a device from a new func-
tional group (see Table 1) there are no other
compatibility issues. The second compatibility issue
arises from converting from Group 2 ‘C’ devices to
Group 5 ‘C’ devices. Group 2 devices, while specified
as ‘C’ which indicates a VDD operating range of 4.5V to
5.5V, will actually operate down to ~1.8V due to the fact
that the VCC threshold detection circuit has a ~1.5V trip
point. Group 5 ‘C’ devices, however, have a VCC thresh-

Author: Rick Stoneking
Microchip Technology Inc.

Group Devices

1 93C06, 93C46

2
(Original)

93AA46/46B, 93LC46/46B,
93AA56/56B, 93LC56/56B, 93C56/56B,
93AA66/66B, 93LC66/66B, 93C66/66B

3 93AA76, 93LC76, 93C76
93AA86, 93LC86, 93C86

4
(New)

93LC46A/46B,
93LC56A/56B,
93LC66A/66B

5 93C46B, 93C56A/56B, 93C66A/66B
 1999 Microchip Technology Inc. DS00698A-page 5-39

AN698

S5.book Page 40 Thursday, March 2, 2000 7:59 AM
old detect trip point of ~3.8V. Because of this difference
in trip point settings, applications that previously used
Group 2 ‘C’ devices, and have a requirement to operate
below 4.5V, should be converted to Group 4 ‘LC’
devices, which will operate down to 2.5V.

WRITE CYCLE INITIATION
For the 93 Series EEPROM’s, the internal write cycle is
initiated by one of two events depending upon the func-
tional group. For Groups 1, 3, and 5 the write cycle is
initiated by the rising edge of CLK for the last data bit
(D0). For Groups 2 and 4, the write cycle is not initiated
until CS is lowered.

The devices in Groups 1 and 5 are targeted specifically
at 5V, extended temperature applications. Group 5
devices were intentionally designed to have the same
write cycle CS functionality as Group 1 devices in order
to serve as drop in replacements. Group 3 devices are
unique in that they span the entire voltage range but
also initiate the write cycle on the rising edge of CLK.

A potential compatibility issue regarding write cycle CS
functionality only occurs if converting from Group 1, 3
or 5 devices to Group 2 or 4 devices. The issue is that
with Groups 1, 3 or 5 devices the write cycle is initiated
as soon as the rising edge of CLK is detected for the
last data bit and the application firmware is not required
to lower the CS line until: either the next command is to
be sent (Group 1 or, 2) not at all (Group 3 and 5). So if
a Group 2 or 4 device were to be placed into such an
application the write cycle would not be initiated until
just before the next command or not at all. In both
cases the command following the write would be
ignored. For case one, the part would be in a write cycle
and would not recognize the command, and for case
two, the device would see an invalid command and
abort (no falling edge of CS after write command).

When converting from Group 2 or 4 devices to Group 1,
3 or 5 devices there are no compatibility issues related
to write cycle CS functionality.

CS FUNCTIONALITY
In addition to the write cycle initiation compatibility
question discussed in the previous section there are a
couple of other conditions related to CS functionality
that must be understood. These are related to both how
the CS function works for the various devices, as well
as to what conditions may occur, due to the way the
firmware is written, which may cause problems. Table 2
details the differences in the way the CS pin functions
for the various device groups. As can bee seen from the
table (Item 1) devices in Groups 2 and 4 require that CS
be brought low, after the write command is given, in
order for the write cycle to be initiated.

This presents a compatibility problem only when con-
verting from Group 3 or 5 devices to Group 2 or 4 (i.e.
reducing EEPROM array size or moving from a 5V
design to 2.5V or 1.8V design). In order to minimize this
compatibility problem, CS should always be brought
low after sending a write command, regardless of
which device is being used.

Item 2 in Table 2 shows that Group 1 devices require a
low to high transition on the CS pin after the write cycle
has completed if data polling was used. If the CS line is
not brought low after the write command is sent (i.e.
data polling is not used), then no transition is required
on CS after the write cycle completes (Item 3). To avoid
this compatibility problem, CS should always be
brought high at the end of a data polling routine.

Items 4 and 5 show that Group 1 devices require a low
to high transition to occur after a write cycle completes
in order for the next command to be recognized.

TABLE 2: CS FUNCTIONALITY

Item
Group

1
Group

2
Group

3
Group

4
Group

5
Description

1 No Yes No Yes No Does CS have to go low to start the write Cycle?

2 Yes No No No No Does CS, if data polling is used, have to have a low to high
transition after the write cycle in order for the next command
to be recognized?

3 Yes N/A N/A Yes Yes If CS is not lowered after a write command, and is held high
through the write cycle, will the next command be
recognized?

4 No Yes Yes Yes Yes If CS is brought high during write cycle will the next command
be recognized?

5 No Yes Yes Yes Yes If CS changes during write cycle, and is high at the end of the
write cycle, will the next command be recognized?
DS00698A-page 5-40 1999 Microchip Technology Inc.

AN698
N

o
n

-Vo
latile M

em
o

ry

5

S5.book Page 41 Thursday, March 2, 2000 7:59 AM
READY/BUSY POLLING
Ready/Busy polling is a method that allows the MCU to
poll the serial EEPROM device during a write cycle to
determine when the write cycle has completed. The
basic operation is that once a write cycle has been ini-
tiated the serial EEPROM will drive the DO line low, if
CS is brought high during the write cycle, until the write
cycle is complete. Once the write cycle has completed
the DO pin is driven high.

There are two methods of functional operation of the
DO pin for ready busy polling. The first (or original)
method applies to Group 1, 2, and 3 devices. For these
devices when CS is brought high during a write cycle,
the DO pin will drive low while the write is in progress
and then drive high once complete. If the CS pin is
brought high at any time after a write cycle has com-
pleted, the DO pin remains in a high impedance state.

For Group 4 and 5 devices the operation is the same
except that when CS is brought high after a write cycle
is complete, the DO pin will drive high to indicate a
ready state. This was done because on the original
devices it was possible to miss the Ready signal if data
polling was not started until after the write cycle com-
pleted. The DO pin will continue to drive the ready sig-
nal out until a start condition is detected, at which time
the DO pin will return to a high impedance state. This
difference in operation only becomes a compatibility
issue if the DI and DO lines are being tied together for
two wire operation (see the next section for a separate
discussion of this issue).

TYING DI AND DO TOGETHER
When using the new 93 series devices (Group 4 and 5)
with DI and DO tied directly together a bus contention
issue will arise and in most cases will render the bus
inoperable. The problem is a result of the change that
was made to the operation of the DO pin during Ready/
Busy polling. The original 93 series devices (Group 1,2
and 3) all tri-state the DO pin any time CS is brought
high after a write cycle has finished. The new 93 series
devices (Group 4 and 5) do not tri-state DO in the same
situation, but instead drive the DO pin high to indicate
the ready state. Because the DO pin (and therefore the
DI pin also when DO and DI are tied together) is being
actively driven high by the serial EEPROM a potential
for bus contention exists if the MCU attempts to drive
the DI line low. The actual voltage level of the bus will
be a function of the sink capability of the MCU I/O pin
and the source capability of the serial EEPROM. To
prevent this bus contention issue it is necessary to use
a resistor (~10K Ohm typical) to tie DI to DO instead of
a direct connection.

Another potential problem with tying DI and DO occurs
if CS is brought high after the write cycle has been ini-
tiated and valid clock transitions occur on the CLK line
during the write cycle. This can cause the device to see
an inadvertent START condition when the write cycle
ends (and the DO line drives high to the Ready state).

This is caused by the fact that the Twc of the device is
variable (depending upon process/Vcc/temperature
variations) and, therefore, causes the write cycle to end
in an asynchronous fashion with respect to the clock.
For example, if CS is high when the write cycle ends
and DO goes high (thereby pulling DI high), then a low
to high transition on the CLK will be seen as a valid
START condition when it may not have been intended
to be a START condition.

NOISE IMMUNITY
Probably the single biggest compatibility issue (related
to conversions) exists between the original 93 series
devices and the new devices due to noise immunity. The
new devices (Group 4 and 5) are much faster internally
than the older devices which makes them more suscep-
tible to noise. This noise susceptibility becomes an acute
problem during power up/down, during which time the
state of the CS pin may be allowed to float up by an MCU
that is not fully powered up. If this occurs it is very possi-
ble that noise on the CLK and DI pins can occur in the
correct sequence required to issue an EWEN command
followed by a spurious erase or write command. The
most common occurrence is that of the EWEN followed
by an ERASE command with the address and data bits
all set to ‘1’, so the last byte of the array is erased to ‘FF’.
The solution for this problem is a pull down resistor on
the CS pin, which will prevent the device from respond-
ing to the spurious ‘commands’ on the CLK and DI lines.

DEVELOPING ROBUST CODE AND
HARDWARE
In order to design a system (both hardware and firm-
ware) that will be portable when changing the particular
93 series device being interfaced with, the following
suggestions should be considered:

• The CS pin should be brought low at the end of
every command issued to the device.

• Utilize Ready/Busy polling to verify that the device
has completed the write operation rather than a
delay loop of fixed duration.

• Create a data polling routine that leaves the CS
line low when it is finished.

• Do not allow transitions on the CLK line (if CS is
high) while the device is in a write cycle.

• Utilize a resistor between DO and DI if implement-
ing a two wire interface.

• Utilize a pull down resistor on the CS line to pre-
vent spurious commands during power up/down.

SUMMARY
When converting from one 93 series device to another
there are a few key items that must be examined from
the firmware side, as well as from the hardware side.
By careful attention to these items it is possible to sim-
plify and expedite the conversion process, as well as
develop robust code and designs that will minimize the
requirement for future changes.
 1999 Microchip Technology Inc. DS00698A-page 5-41

AN698

S5.book Page 42 Thursday, March 2, 2000 7:59 AM
NOTES:
DS00698A-page 5-42 1999 Microchip Technology Inc.

AN709
System Level Design Considerations When Using

I2C™ Serial EEPROM Devices

N
o

n
-Vo

latile M
em

o
ry

5

S5.book Page 43 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

Developing systems that implement the I2C protocol for
communicating with serial EEPROM devices requires
that a certain key factors be considered during the
hardware and software development phase if the sys-
tem is to achieve maximum compatibility and robust-
ness. This application note discusses these factors,
both hardware and software, to help insure that an opti-
mal system design is achieved. This application note is
limited to single master systems and therefore does not
specifically address the unique requirements of a multi-
master system. However, the concepts presented in
this application note apply equally as well to those sys-
tems.

CONDITIONS TO BE CONSIDERED

Due to the bi-directional nature of the data bus devices
operate in both transmit and receive modes at various
times. In order to make this bi-directional operation
possible the protocol must define specific times at
which any given device may transmit or receive, as well
as define specific points in the protocol where the func-
tions are swapped (i.e. the transmitter becomes the
receiver and the receiver becomes the transmitter).
There are a number of events which could potentially
cause this sender/receiver ‘synchronization’ to be lost,
which can result in situations where:

• Both the master and the slave are in a send
mode.

• Both the master and the slave are in a receive
mode.

• The ‘bit count’ is off by one or more bits between
the master and the slave.

These events, which include the microcontroller being
reset during I2C communication, brown-out conditions,
excessive noise on the clock or data lines, and
improper bus input levels during power up, can be
effectively neutralized through a combination of hard-
ware and software techniques.

FIGURE 1: RECOMMENDED HARDWARE
CONFIGURATION

INSURING ‘BUS-FREE’ DURING
POWER-UP
In order to insure that the internal state machine of the
serial EEPROM is correctly initialized at power up, it is
crucial to guarantee that the device sees a ‘bus-free’
condition (defined as both SCL and SDA being high)
until VDDmin has been reached. The ideal way to guar-
antee this is through the use of pull-up resistors on both
the SDA and SCL lines. In addition, these pull-ups
should be tied to the same voltage source as the VDD

pin of the device. In other words is the device VDD is
supplied from the main positive supply rail then the SCL
and SDA pull-ups should be connected to that same
supply rail (as opposed to being connected to a micro-
controller I/O pin, for example). Figure 1 is an example
of the recommended hardware configuration. The rea-
soning behind doing this is the same for both adding
the pull-up to the SCL line and for utilizing the same
supply for the VDD pin and the pull-ups. As anyone who
has had any experience with CMOS logic already
knows, it is necessary to ensure that all inputs are tied
either high or low, since allowing a CMOS input to float
can lead to a number of problems. If the SCL line does
not have a pull-up, or if the pull-ups are not tied to the
VDD supply rail, then conditions occur, however briefly,
where the SCL/SDA inputs are floating with respect to
the VDD supply voltage. When possible this condition
should be avoided.

Author: Rick Stoneking
Microchip Technology Inc.

EEPROM

µC

SCL

SDA

VDD

I2C is a trademark of Philips Semiconductors
 1999 Microchip Technology Inc. DS00709B-page 5-43

AN709

S5.book Page 44 Thursday, March 2, 2000 7:59 AM
When it is not possible to add a pullup resistor to the
SCL line (i.e. the hardware design has already been
finalized) then the firmware should be configured to
either: 1) drive the SCL line high during power up or,
2) float the SCL input during power up.

Of these two options, the first is the recommended
method, despite typical concerns regarding latch-up,
because it does not negatively impact the battery life in bat-
tery powered applications. Microchip Technology’s serial
EEPROM devices, like all CMOS devices, are susceptible
to latch-up, however latch-up does not occur until currents
in excess of 100mA are injected into the pin. Typical micro-
controllers are not capable of supply currents of this mag-
nitude, therefore the risk of latch-up is extremely low.

The second option is also acceptable but does lead to
a brief increase in the current draw of the device during
the time period in which the SCL pin is floating with
respect to VDD. This increase can be significant in com-
parison to the normal standby current of the device and
can have a detrimental affect on battery life in power
sensitive applications.

In all cases it is important that the SCL and SDA lines
not be actively held low while the EEPROM device is
powered up. This can have an indeterminable effect on
the internal state machine and, in some cases, the
state machine may fail to correctly initialize and the
EEPROM will power up in an incorrect state.

Another improper practice which should be pointed out is
the driving of the SDA line high by the microcontroller pin
rather than tri-stating the pin and allowing the requisite
pullup resistor to pull the bus up to the high state. While
this practice would appear harmless enough, and indeed
it is as long as the microcontroller and EEPROM device
never get out of sync, there is a potential for a high cur-
rent situation to occur. In the event that the microcontrol-
ler and EEPROM should get out of sync, and the
EEPROM is outputting a ‘low’ (i.e. sending an ACK or
driving a data bit of ‘0’) while the microcontroller is driving
a high then a low impedance path between VDD and VSS

is created and excessive current will flow out of the micro-
controller I/O pin and into the EEPROM SDA pin. The
amount of current that flows is limited only by the IOL
specification of the microcontoller’s I/O pin. This high cur-
rent state can obviously have a very detrimental effect on
battery life, as well as potentially present long term reli-
ability problems associated with the excess current flow.

FORCING INTERNAL RESET VIA
SOFTWARE

In all designs it is recommended that a software reset
sequence be sent to the EEPROM as part of the micro-
controllers power up sequence. This sequence guaran-
tees that the EEPROM is in a correct and known state.
Assuming that the EEPROM has powered up into an
incorrect state (or that a reset occurred at the microcon-
troller during communication), the following sequence

(which is further explained below) should be sent in
order to guarantee that the serial EEPROM device is
properly reset:

• START Bit

• Clock in nine bits of ‘1’

• START Bit

• STOP Bit

The first START bit will cause the device to reset from
a state in which it is expecting to receive data from the
microcontroller. In this mode the device is monitoring
the data bus in receive mode and can detect the START
bit which forces an internal reset.

The nine bits of ‘1’ are used to force a reset of those
devices that could not be reset by the previous START
bit. This occurs only if the device is in a mode where it is
either driving an acknowledge on the bus (low), or is in
an output mode and is driving a data bit of ‘0’ out on the
bus. In both of these cases the previous START bit
(defined as SDA going low while SCL is high) could not
be generated due to the device holding the bus low. By
sending nine bits of ‘1’ it is guaranteed that the device
will see a NACK (microcontroller does not drive the bus
low to acknowledge data sent by EEPROM) which also
forces an internal reset.

The second START bit is sent to guard against the rare
possibility of an erroneous write that could occur if the
microcontroller was reset while sending a write com-
mand to the EEPROM, and, the EEPROM was driving
an ACK on the bus when the first START bit was sent. In
this special case if this second START bit was not sent,
and instead the STOP bit was sent, the device could ini-
tiate a write cycle. This potential for an erroneous write
occurs only in the event of the microcontroller being
reset while sending a write command to the EEPROM.

The final STOP bit terminates bus activity and puts the
EEPROM in standby mode.

This sequence does not effect any other I2C devices
which may be on the bus as they will simply disregard
it as an invalid command.

SUMMARY

This application note has presented ideas that are fun-
damental in nature, yet not always obvious, to the utili-
zation of I2C serial EEPROM devices. Ideally the
hardware/software engineer(s) takes these ideas into
consideration during system development and design
accordingly. It is recommended that the software reset
sequence detailed in this application note be added to
the system initilization code of any system that utilizes
an I2C serial EEPROM device.

REFERENCES

‘I2C-Bus Specification’, Philips Semiconductors, January
1992

‘The I2C-Bus and How to Use It’, Philips Semiconductors,
April 1995
DS00709B-page 5-44 1999 Microchip Technology Inc.

TB012
SPI™ 25XX080/160 Mode 1,1 Write Operation

N
o

n
-Vo

latile M
em

o
ry

5

S5.book Page 45 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

The early revision of Microchip’s 25xx080 and 25xx160
devices (revision A and B) require a software work
around for proper write operation in mode 1,1. Mode
0,0 does NOT require a work around. This issue does
not exist in 25xx080 and 25xx160 revision C silicon.
The revision number can be found on the outside of a
packaged part. It is the middle letter of the three letter
string following the package type.

Mode 0,0 and 1,1 indicate that an SPI slave device
latches serial data in on the rising edge of clock and out
after the falling edge of clock. Mode 0,1 and 1,0 SPI
devices would latch data in on the falling edge of clock
and out after the rising edge of clock.

Reading a 25xx080 or 25xx160 devices do not require
any software adjustments whether it is read in mode
0,0 or 1,1. However, for revision A or B silicon to prop-
erly initiate a write, the clock line must be low, when
raising chip select (CS) for the write cycle to begin. In
mode 0,0 the polarity of the clock is defined as low, and

the clock idles low when not shifting data in or out. In
mode 1,1, the polarity of the clock is defined as high,
and the clock idles high when not shifting data in or out.

Figure 1 depicts a write timing diagram. It can be seen
that for mode 0,0 operation, the clock line is low when
CS is brought high to start the write cycle timer. The
write will be completed successfully in this case.

The dashed lines in Figure 1 also depict the state of the
clock in mode 1,1. The drawing shows that the clock
line will be high when CS is raised. This will not start the
write cycle timer, and the part will not write successfully.

Figure 2 shows the timing necessary for proper
implementation of mode 1,1 writes. The following steps
should be taken to write properly in mode 1,1:

1. Load and send the write instruction.
2. Load and send the address.

3. Load and send the data.

4. Lower the clock line.
5. Raise chip select to start a write.

6. Raise the clock line.

The bold indicates the extra steps necessary to prop-
erly implement mode 1,1 operation on revision A or B
silicon. The write cycle timer will begin when the chip
select line is raised.

FIGURE 1: NORMAL WRITE OPERATION

Author: Shannon Poulin
Microchip Technology Inc.

SO

SI

SCK

CS

0 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 301

0 00000 A15 14 13 12 1 A0 7 6 5 4 3 2 1 0

instruction address bytes data byte

high impedance

31

21

TWC

Mode 0,0

0

Write cycle begins
when CS is raised.

0 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 301 31

Mode 1,1
SCK

~ ~
~ ~

~ ~
~ ~

~ ~

…

~ ~
 1999 Microchip Technology Inc. DS91012A-page 5-45

SPI is a trademark of Motorola.

TB012

S5.book Page 46 Thursday, March 2, 2000 7:59 AM
FIGURE 2: MODIFIED WRITE OPERATION

CS

Twc

SCK must be low when CS is raised
for the write cycle to begin.

0 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 301 31

Mode 1,1
SCK

SCK Low

SCK
0 2 3 4 5 6 7 8 9 10 11 21 22 23 24 25 26 27 28 29 301 31

Mode 0,0

~ ~

SO

SI 0 00000 A15 14 13 12 1 A0 7 6 5 4 3 2 1 0

instruction address bytes

high impedance

210

~ ~
~ ~

~ ~

…

~ ~
~ ~

data byte
DS91012A-page 5-46 1999 Microchip Technology Inc.

TB014
Operational Differences Between 24LCS21 and 24LCS21A

N
o

n
-Vo

latile M
em

o
ry

5

S5.book Page 47 Thursday, March 2, 2000 7:59 AM
DIFFERENCES BETWEEN 24LCS21
AND 24LCS21A

The 24LCS21 and 24LCS21A are both 1K Serial
EEPROM devices that implement both DDC1 and
DDC2 modes of operation as defined by the VESA
committee. Both devices will always power up in DDC1
mode (transmit only), where data is clocked out of the
device using the VCLK pin. Both devices will transition
to DDC2 mode (bi-directional mode) upon the first high-
to-low transition of the SCL line. The only difference
between the two devices is that the 24LCS21A has the
“return to DDC1” recovery feature as shown in the
flowchart (Figure 1). This feature allows the device to
return to the DDC1 mode if a valid read or write com-
mand is not received in the time that 128 clocks are
seen on the VLCK pin.

SCENARIO FOR POTENTIAL
PROBLEMS BY SWITCHING FROM
24LCS21 TO 24LCS21A

Most video cards will access the EDID table, either with
DDC1 mode or DDC2 mode – but not both. If a PC
wants to access the EDID table in the monitor using
DDC1 mode only, then the two devices will operate
exactly the same.

If the PC wants to access the EDID table in DDC2
mode, then the transition to DDC2 mode will be the
same for both devices. If this is the operation flow (and
it is assumed that most systems will operate this way),
both devices will operate in exactly the same way.

The only real issue that can occur by switching to the
24LCS21A device is if the device jumps back to DDC1
while the system still thinks the device is in DDC2
mode. This can only happen if the system toggles the
SCL pin to move into DDC2 mode and waits until after
the VCLK pin sees 128 clocks before sending the
actual command, causing the device to transition back
to DDC1. If this happens, then it is possible that the
device may not recognize the next transmitted com-
mand.

Author: Bruce Negley
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS91014B-page 5-47

TB014

S5.book Page 48 Thursday, March 2, 2000 7:59 AM
FIGURE 1: FLOWCHART FOR DDC1/DDC2 MODE OPERATION IN 24LCS21A

Communication
is idle

Is VSYNC

present?
No

Send EDID continuously
using VSYNC as clock

High to low
transition on

SCL?

No

Yes

Yes

Stop sending EDID
Switch to DDC2 mode

Display has

transition state
?

optional

Set VSYNC counter = 0

Change on

VCLK lines?
SCL, SDA orNo

Yes

High - low
transition on SCL?

Reset VSYNC counter = 0

No

Yes

Valid

received?
DDC2 address

No

No VCLK
cycle?

Yes

Increment VCLK counter

Yes

Switch back to DDC1
mode

DDC2 communication
idle. Display waiting for

address byte

DDC2B
address
received?

Yes

Receive DDC2B
command

Respond to DDC2B
command

Is display
Access.bus™

Yes

Valid Access.bus
address?

No

Yes

See Access.bus
specification to determine

correct procedure

Yes

No

Yes

No

No

No

The 24LCS21A was designed to

Display Power-on
or

DDC Circuit Powered
from +5 volts

or start timer

Reset counter or timer

(if appropriate)

Counter=128 or
timer expired?

High to low
transition on

SCL?

No

Yes

comply to the portion of flowchart inside dash box.

Note 1: The base flowchart is copyright 1993, 1994, 1995 Video Electronic Standard Association (VESA)
from VESA’s Display Data Channel (DDC™) Standard Proposal ver. 2p rev. 0, used by permission
of VESA.

2: The dash box and text “The 24LCS21A and …inside dash box.” are added by Microchip Technol-
ogy, Inc.

3: VSYNC signal is normally used to derive a signal for VCLK pin on the 24LCS21A.

capable?

Note: Since the 24LCS21 does not
have the ‘Return to DDC1’
capability, it will always take this
path.

Note: This portion of the flowchart and the return
path from DDC2 mode to DDC1 mode is
only available on the 24LCS21A.
DS91014B-page 5-48 1999 Microchip Technology Inc.

SECTION 6
RFID APPLICATION NOTES

AND TECHNICAL BRIEFS

R
F

ID

6

S6.book Page i Thursday, March 2, 2000 7:59 AM
RFID Coil Design - AN678 ..6-1
Passive RFID Basics - AN680...6-19
MCRF 355/360 Applications - AN707 ...6-25
Antenna Circuit Design - AN710 ...6-31
Optimizing Read-Range of the 13.56 MHz Demonstration Reader - AN725 ..6-51
Contactless Programmer Interface Protocol - TB019..6-53
Contact Programming Support - TB023 ..6-57
Microchip Development Kit Sample Format - TB031 ..6-59
MCRF355/360 Factory Programming Support (SQTPSM) - TB032 ..6-61
 1999 Microchip Technology Inc. DS00711A-page 6-i

S6.book Page ii Thursday, March 2, 2000 7:59 AM
DS00711A-page 6-ii 1999 Microchip Technology Inc.

AN678
RFID Coil Design

R
F

ID

6

S6.book Page 1 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

In a Radio Frequency Identification (RFID) application,
an antenna coil is needed for two main reasons:

• To transmit the RF carrier signal to power up the
tag

• To receive data signals from the tag

An RF signal can be radiated effectively if the linear
dimension of the antenna is comparable with the
wavelength of the operating frequency. In an RFID
application utilizing the VLF (100 kHz – 500 kHz) band,
the wavelength of the operating frequency is a few
kilometers (λ = 2.4 Km for 125 kHz signal). Because of
its long wavelength, a true antenna can never be
formed in a limited space of the device. Alternatively, a
small loop antenna coil that is resonating at the
frequency of the interest (i.e., 125 kHz) is used. This
type of antenna utilizes near field magnetic induction
coupling between transmitting and receiving antenna
coils.

The field produced by the small dipole loop antenna is
not a propagating wave, but rather an attenuating wave.
The field strength falls off with r-3 (where r = distance
from the antenna). This near field behavior (r-3) is a
main limiting factor of the read range in RFID
applications.

When the time-varying magnetic field is passing
through a coil (antenna), it induces a voltage across the
coil terminal. This voltage is utilized to activate the
passive tag device. The antenna coil must be designed
to maximize this induced voltage.

This application note is written as a reference guide for
antenna coil designers and application engineers in the
RFID industry. It reviews basic electromagnetics
theories to understand the antenna coils, a procedure
for coil design, calculation and measurement of
inductance, an antenna-tuning method, and the
relationship between read range vs. size of antenna
coil.

REVIEW OF A BASIC THEORY FOR
ANTENNA COIL DESIGN

Current and Magnetic Fields

Ampere’s law states that current flowing on a conductor
produces a magnetic field around the conductor.
Figure 1 shows the magnetic field produced by a
current element. The magnetic field produced by the
current on a round conductor (wire) with a finite length
is given by:

EQUATION 1:

where:

In a special case with an infinitely long wire where
α1 = -180° and α2 = 0°, Equation 1 can be rewritten as:

EQUATION 2:

FIGURE 1: CALCULATION OF
MAGNETIC FIELD B AT
LOCATION P DUE TO
CURRENT I ON A STRAIGHT
CONDUCTING WIRE

Author: Youbok Lee
Microchip Technology Inc.

I = current

r = distance from the center of wire

µo = permeability of free space and given as
µo = 4 π x 10-7 (Henry/meter)

Bφ
µoI

4πr
--------- α2cos α1cos–()= Weber m

2⁄()

Bφ
µoI

2πr
---------= Weber m

2⁄()

Wire

dL

I

r
0 B (into the page)

P

R

α2

α

α1

Ζ

X

 1999 Microchip Technology Inc. DS00678B-page 6-1

AN678

S6.book Page 2 Thursday, March 2, 2000 7:59 AM
The magnetic field produced by a circular loop antenna
coil with N-turns as shown in Figure 2 is found by:

EQUATION 3:

where:

Equation 3 indicates that the magnetic field produced
by a loop antenna decays with 1/r3 as shown in
Figure 3. This near-field decaying behavior of the
magnetic field is the main limiting factor in the read
range of the RFID device. The field strength is
maximum in the plane of the loop and directly
proportional to the current (I), the number of turns (N),
and the surface area of the loop.

Equation 3 is frequently used to calculate the
ampere-turn requirement for read range. A few
examples that calculate the ampere-turns and the field
intensity necessary to power the tag will be given in the
following sections.

FIGURE 2: CALCULATION OF
MAGNETIC FIELD B AT
LOCATION P DUE TO
CURRENT I ON THE LOOP

FIGURE 3: DECAYING OF THE
MAGNETIC FIELD B VS.
DISTANCE r

a = radius of loop

Bz

µoINa
2

2 a
2

r
2

+()
3 2⁄---------------------------------=

µoINa
2

2

1

r
3

 = for r

2
>>a

2 α

R

ry

Icoil

Bz

P

z

a

r

r-3

B

Note: The magnetic field produced by a
loop antenna drops off with r-3.
DS00678B-page 6-2 1999 Microchip Technology Inc.

AN678
R

F
ID

6

S6.book Page 3 Thursday, March 2, 2000 7:59 AM
INDUCED VOLTAGE IN ANTENNA
COIL

Faraday’s law states a time-varying magnetic field
through a surface bounded by a closed path induces a
voltage around the loop. This fundamental principle
has important consequences for operation of passive
RFID devices.

Figure 4 shows a simple geometry of an RFID
application. When the tag and reader antennas are
within a proximity distance, the time-varying magnetic
field B that is produced by a reader antenna coil
induces a voltage (called electromotive force or simply
EMF) in the tag antenna coil. The induced voltage in
the coil causes a flow of current in the coil. This is called
Faraday’s law.

The induced voltage on the tag antenna coil is equal to
the time rate of change of the magnetic flux Ψ.

EQUATION 4:

where:

The negative sign shows that the induced voltage acts
in such a way as to oppose the magnetic flux producing
it. This is known as Lenz’s Law and it emphasizes the
fact that the direction of current flow in the circuit is
such that the induced magnetic field produced by the
induced current will oppose the original magnetic field.

The magnetic flux Ψ in Equation 4 is the total magnetic
field B that is passing through the entire surface of the
antenna coil, and found by:

EQUATION 5:

where:

The inner product presentation of two vectors in
Equation 5 suggests that the total magnetic flux ψ that
is passing through the antenna coil is affected by an
orientation of the antenna coils. The inner product of
two vectors becomes maximized when the two vectors
are in the same direction. Therefore, the magnetic flux
that is passing through the tag coil will become
maximized when the two coils (reader coil and tag coil)
are placed in parallel with respect to each other.

FIGURE 4: A BASIC CONFIGURATION OF READER AND TAG ANTENNAS IN AN RFID
APPLICATION

N = number of turns in the antenna coil

Ψ = magnetic flux through each turn

V N
dΨ
dt

--------–=

B = magnetic field given in Equation 3

S = surface area of the coil

• = inner product (cosine angle between
two vectors) of vectors B and surface
area S

Note: Both magnetic field B and surface S are
vector quantities.

ψ B· Sd∫=

Tag Coil

V = V0sin(ωt)

Tag

B = B0sin(ωt)

Reader Coil

I = I0sin(ωt)
Tuning Circuit

Reader
Electronics
 1999 Microchip Technology Inc. DS00678B-page 6-3

AN678

S6.book Page 4 Thursday, March 2, 2000 7:59 AM
From Equations 3, 4, and 5, the induced voltage V0 for
an untuned loop antenna is given by:

EQUATION 6:

where:

If the coil is tuned (with capacitor C) to the frequency of
the arrival signal (125 kHz), the output voltage Vo will
rise substantially. The output voltage found in
Equation 6 is multiplied by the loaded Q (Quality
Factor) of the tuned circuit, which can be varied from 5
to 50 in typical low-frequency RFID applications:

EQUATION 7:

where the loaded Q is a measure of the selectivity of
the frequency of the interest. The Q will be defined in
Equations 30, 31, and 37 for general, parallel, and
serial resonant circuit, respectively.

FIGURE 5: ORIENTATION DEPENDENCY
OF THE TAG ANTENNA.

The induced voltage developed across the loop
antenna coil is a function of the angle of the arrival sig-
nal. The induced voltage is maximized when the
antenna coil is placed perpendicular to the direction of
the incoming signal where α = 0.

EXAMPLE 1: B-FIELD REQUIREMENT

EXAMPLE 2: NUMBER OF TURNS AND
CURRENT (AMPERE-
TURNS) OF READER COIL

 f = frequency of the arrival signal

N = number of turns of coil in the loop

S = area of the loop in square meters (m2)

Bo = strength of the arrival signal

α = angle of arrival of the signal

Vo 2πfNSBo αcos=

Vo 2πfoNQSBo αcos=

Tag

B-field

α

Line of axis

(Tag)

The strength of the B-field that is needed to turn on
the tag can be calculated from Equation 7:

EQUATION 8:

where the following parameters are used in the
above calculation:

tag coil size = 2 x 3 inches =
38.71 cm2: (credit
card size)

frequency = 125 kHz

number of turns = 100

Q of antenna coil = 15

AC coil voltage
to turn on the tag = 7 V

cos α = 1 (normal direction,
α = 0).

Bo
Vo

2πfoNQS αcos
------------------------------------=

7 2.4()

2π() 125 kHz() 100() 15() 38.71cm
2()

---=

 1.5≈ µWb/m
2

Assuming that the reader should provide a read
range of 10 inches (25.4 cm) with a tag given in
Example 1, the requirement for the current and
number of turns (Ampere-turns) of a reader coil that
has an 8 cm radius can be calculated from
Equation 3:

EQUATION 9:

This is an attainable number. If, however, we wish to
have a read range of 20 inches (50.8 cm), it can be
found that NI increases to 48.5 ampere-turns. At
25.2 inches (64 cm), it exceeds 100 ampere-turns.

NI()
2Bz a

2
r

2
+()

µa
2

3 2⁄

=

2 1.5 10
6–×() 0.08

2
0.254

2
+()

4π 10
7–×() 0.08()

3 2⁄

=

7.04 ampere - turns()=
DS00678B-page 6-4 1999 Microchip Technology Inc.

AN678
R

F
ID

6

S6.book Page 5 Thursday, March 2, 2000 7:59 AM
For a longer read range, it is instructive to consider
increasing the radius of the coil. For example, by
doubling the radius (16 cm) of the loop, the
ampere-turns requirement for the same read range (10
inches: 25.4 cm) becomes:

EQUATION 10:

At a read range of 20 inches (50.8 cm), the
ampere-turns becomes 13.5 and at 25.2 inches (64
cm), 26.8. Therefore, for a longer read range,
increasing the tag size is often more effective than
increasing the coil current. Figure 6 shows the relation-
ship between the read range and the ampere-turns
(IN).

FIGURE 6: AMPERE-TURNS VS. READ
RANGE FOR AN ACCESS
CONTROL CARD (CREDIT
CARD SIZE)

The optimum radius of loop that requires the minimum
number of ampere-turns for a particular read range can
be found from Equation 3 such as:

EQUATION 11:

where:

By taking derivative with respect to the radius a,

The above equation becomes minimized when:

The above result shows a relationship between the
read range vs. tag size. The optimum radius is found
as:

where:

The above result indicates that the optimum radius of
loop for a reader antenna is 1.414 times the read
range r.

NI
2 1.5 10

6–×() 0.16
2

0.25
2

+()

4π 10
7–×() 0.16

2()
--

3 2⁄
=

2.44 (ampere-turns)=

100

10

1

0.1

0.01

0.001
0.001 0.01 0.1 101

a = 50 cm
a = 20 cm
a = 10 cm
a = 5 cm
a = 2 cm

a = sqrt(2)*r

r (m)

N
I f

or
 1

.5
 µ

-W
eb

er
/m

2

Note: BO = 1.5 µWb/m2 is used.

a = radius of coil

r = read range

NI K
a

2
r

2
+()

3
2

a
2

------------------------=

K
2Bz

µo
---------=

d NI()
da

-------------- K
3 2⁄ a

2
r

2
+()

1 2⁄
2a

3() 2a a
2

r
2

+()
3 2⁄

–

a
4

--=

K
a

2
2r

2
–() a

2
r

2
+()

1 2⁄

a
3

--=

a
2

2r
2

– 0=

a 2= r
 1999 Microchip Technology Inc. DS00678B-page 6-5

AN678

S6.book Page 6 Thursday, March 2, 2000 7:59 AM
WIRE TYPES AND OHMIC LOSSES

Wire Size and DC Resistance

The diameter of electrical wire is expressed as the
American Wire Gauge (AWG) number. The gauge
number is inversely proportional to diameter and the
diameter is roughly doubled every six wire gauges. The
wire with a smaller diameter has higher DC resistance.
The DC resistance for a conductor with a uniform
cross-sectional area is found by:

EQUATION 12:

where:

Table 1 shows the diameter for bare and
enamel-coated wires, and DC resistance.

AC Resistance of Wire

At DC, charge carriers are evenly distributed through
the entire cross section of a wire. As the frequency
increases, the reactance near the center of the wire
increases. This results in higher impedance to the cur-
rent density in the region. Therefore, the charge moves
away from the center of the wire and towards the edge
of the wire. As a result, the current density decreases
in the center of the wire and increases near the edge of
the wire. This is called a skin effect. The depth into the
conductor at which the current density falls to 1/e, or
37% of its value along the surface, is known as the skin
depth and is a function of the frequency and the perme-
ability and conductivity of the medium. The skin depth
is given by:

EQUATION 13:

where:

EXAMPLE 3:

The wire resistance increases with frequency, and the
resistance due to the skin depth is called an AC
resistance. An approximated formula for the ac resis-
tance is given by:

EQUATION 15:

where:

For copper wire, the loss is approximated by the DC
resistance of the coil, if the wire radius is greater than

 cm. At 125 kHz, the critical radius is 0.019
cm. This is equivalent to #26 gauge wire. Therefore, for
minimal loss, wire gauge numbers of greater than #26
should be avoided if coil Q is to be maximized.

 l = total length of the wire

σ = conductivity

S = cross-sectional area

f = frequency

µ = permeability of material

σ = conductivity of the material

RDC
l

σS
------= Ω()

δ 1

πfµσ
-----------------=

a = coil radius

The skin depth for a copper wire at 125 kHz can be
calculated as:

EQUATION 14:

δ 1

πf 4π 10
7–×() 5.8 10

7–×()
--=

0.06608

f
-------------------= m()

0.187= mm()

Rac
1

2σπδ
------------- RDC() a

2δ
------=≈ Ω()

.066 f⁄
DS00678B-page 6-6 1999 Microchip Technology Inc.

AN678
R

F
ID

6

S6.book Page 7 Thursday, March 2, 2000 7:59 AM
TABLE 1: AWG WIRE CHART

Wire
Size

(AWG)

Dia. in
Mils

(bare)

Dia. in
Mils

(coated)

Ohms/
1000 ft.

Cross
Section
(mils)

1 289.3 — 0.126 83690

2 287.6 — 0.156 66360

3 229.4 — 0.197 52620

4 204.3 — 0.249 41740

5 181.9 — 0.313 33090

6 162.0 — 0.395 26240

7 166.3 — 0.498 20820

8 128.5 131.6 0.628 16510

9 114.4 116.3 0.793 13090

10 101.9 106.2 0.999 10380

11 90.7 93.5 1.26 8230

12 80.8 83.3 1.59 6530

13 72.0 74.1 2.00 5180

14 64.1 66.7 2.52 4110

15 57.1 59.5 3.18 3260

16 50.8 52.9 4.02 2580

17 45.3 47.2 5.05 2060

18 40.3 42.4 6.39 1620

19 35.9 37.9 8.05 1290

20 32.0 34.0 10.1 1020

21 28.5 30.2 12.8 812

22 25.3 28.0 16.2 640

23 22.6 24.2 20.3 511

24 20.1 21.6 25.7 404

25 17.9 19.3 32.4 320

Note: 1 mil = 2.54 x 10-3 cm

26 15.9 17.2 41.0 253

27 14.2 15.4 51.4 202

28 12.6 13.8 65.3 159

29 11.3 12.3 81.2 123

30 10.0 11.0 106.0 100

31 8.9 9.9 131 79.2

32 8.0 8.8 162 64.0

33 7.1 7.9 206 50.4

34 6.3 7.0 261 39.7

35 5.6 6.3 331 31.4

36 5.0 5.7 415 25.0

37 4.5 5.1 512 20.2

38 4.0 4.5 648 16.0

39 3.5 4.0 847 12.2

40 3.1 3.5 1080 9.61

41 2.8 3.1 1320 7.84

42 2.5 2.8 1660 6.25

43 2.2 2.5 2140 4.84

44 2.0 2.3 2590 4.00

45 1.76 1.9 3350 3.10

46 1.57 1.7 4210 2.46

47 1.40 1.6 5290 1.96

48 1.24 1.4 6750 1.54

49 1.11 1.3 8420 1.23

50 0.99 1.1 10600 0.98

Wire
Size

(AWG)

Dia. in
Mils

(bare)

Dia. in
Mils

(coated)

Ohms/
1000 ft.

Cross
Section
(mils)

Note: 1 mil = 2.54 x 10-3 cm
 1999 Microchip Technology Inc. DS00678B-page 6-7

AN678

S6.book Page 8 Thursday, March 2, 2000 7:59 AM
INDUCTANCE OF VARIOUS
ANTENNA COILS

The electrical current flowing through a conductor
produces a magnetic field. This time-varying magnetic
field is capable of producing a flow of current through
another conductor. This is called inductance. The
inductance L depends on the physical characteristics of
the conductor. A coil has more inductance than a
straight wire of the same material, and a coil with more
turns has more inductance than a coil with fewer turns.
The inductance L of inductor is defined as the ratio of
the total magnetic flux linkage to the current Ι through
the inductor: i.e.,

EQUATION 16:

where:

In a typical RFID antenna coil for 125 kHz, the
inductance is often chosen as a few (mH) for a tag and
from a few hundred to a few thousand (µH) for a reader.
For a coil antenna with multiple turns, greater
inductance results with closer turns. Therefore, the tag
antenna coil that has to be formed in a limited space
often needs a multi-layer winding to reduce the number
of turns.

The design of the inductor would seem to be a relatively
simple matter. However, it is almost impossible to
construct an ideal inductor because:

a) The coil has a finite conductivity that results in
losses, and

b) The distributed capacitance exists between
turns of a coil and between the conductor and
surrounding objects.

The actual inductance is always a combination of
resistance, inductance, and capacitance. The apparent
inductance is the effective inductance at any frequency,
i.e., inductive minus the capacitive effect. Various
formulas are available in literatures for the calculation
of inductance for wires and coils[1, 2].

The parameters in the inductor can be measured. For
example, an HP 4285 Precision LCR Meter can
measure the inductance, resistance, and Q of the coil.

Inductance of a Straight Wire

The inductance of a straight wound wire shown in
Figure 1 is given by:

EQUATION 17:

where:

EXAMPLE 4: CALCULATION OF
INDUCTANCE FOR A
STRAIGHT WIRE

Inductance of a Single Layer Coil

The inductance of a single layer coil shown in Figure 7
can be calculated by:

EQUATION 19:

where:

FIGURE 7: A SINGLE LAYER COIL

N = number of turns

I = current

Ψ = magnetic flux

L
Nψ

I
--------= (Henry)

l and a = length and radius of wire in cm,
respectively.

a = coil radius (cm)

l = coil length (cm)

N = number of turns

L 0.002l loge
2l
a

3
4
---–= µH()

The inductance of a wire with 10 feet (304.8 cm)
long and 2 mm diameter is calculated as follows:

EQUATION 18:

L 0.002 304.8() 2 304.8()
0.1

 ln

3
4
---–=

0.60967 7.965()=

4.855 µH()=

L
aN()2

22.9l 25.4a+
--------------------------------= µH()

l

a

Note: For best Q of the coil, the length should
be roughly the same as the diameter of
the coil.
DS00678B-page 6-8 1999 Microchip Technology Inc.

AN678
R

F
ID

6

S6.book Page 9 Thursday, March 2, 2000 7:59 AM
Inductance of a Circular Loop Antenna Coil
with Multilayer

To form a big inductance coil in a limited space, it is
more efficient to use multilayer coils. For this reason, a
typical RFID antenna coil is formed in a planar
multi-turn structure. Figure 8 shows a cross section of
the coil. The inductance of a circular ring antenna coil
is calculated by an empirical formula[2]:

EQUATION 20:

where:

FIGURE 8: A CIRCULAR LOOP AIR CORE
ANTENNA COIL WITH
N-TURNS

The number of turns needed for a certain inductance
value is simply obtained from Equation 20 such that:

EQUATION 21:

EXAMPLE 5: EXAMPLE ON NUMBER OF
TURNS

Inductance of a Square Loop Coil with
Multilayer

If N is the number of turns and a is the side of the
square measured to the center of the rectangular cross
section that has length b and depth c as shown in
Figure 9, then[2]:

EQUATION 23:

The formulas for inductance are widely published and
provide a reasonable approximation for the relationship
between inductance and number of turns for a given
physical size[1]-[4]. When building prototype coils, it is
wise to exceed the number of calculated turns by about
10%, and then remove turns to achieve resonance. For
production coils, it is best to specify an inductance and
tolerance rather than a specific number of turns.

FIGURE 9: A SQUARE LOOP ANTENNA
COIL WITH MULTILAYER

a = average radius of the coil in cm

N = number of turns

b = winding thickness in cm

h = winding height in cm

L
0.31 aN()2

6a 9h 10b+ +
----------------------------------= µH()

X

b

a

h

a

b

center of coil

N-Turn Coil

N
LµH 6a 9h 10b+ +()

0.31()a
2

--=

Equation 21 results in N = 200 turns for L = 3.87 mH
with the following coil geometry:

To form a resonant circuit for 125 kHz, it needs a
capacitor across the inductor. The resonant capaci-
tor can be calculated as:

EQUATION 22:

a = 1 inch (2.54 cm)
h = 0.05 cm
b = 0.5 cm

C
1

2πf()2
L

1

4π2() 125 10
3×() 3.87 10

3–×()
--==

419= pF()

L 0.008aN
2

2.303log10
a

b c+

 0.2235
b c+

a
------------ 0.726+ +

 = µH()

(a) Top View (b) Cross Sectional View

b

c

a

N-Turn Coil

a

 1999 Microchip Technology Inc. DS00678B-page 6-9

AN678

S6.book Page 10 Thursday, March 2, 2000 7:59 AM
CONFIGURATION OF ANTENNA
COILS

Tag Antenna Coil

An antenna coil for an RFID tag can be configured in
many different ways, depending on the purpose of the
application and the dimensional constraints. A typical
inductance L for the tag coil is a few (mH) for 125 kHz
devices. Figure 10 shows various configurations of tag
antenna coils. The coil is typically made of a thin wire.
The inductance and the number of turns of the coil can
be calculated by the formulas given in the previous sec-
tion. An Inductance Meter is often used to measure the

inductance of the coil. A typical number of turns of the
coil is in the range of 100 turns for 125 kHz and 3~5
turns for 13.56 MHz devices.

For a longer read range, the antenna coil must be tuned
properly to the frequency of interest (i.e., 125 kHz).
Voltage drop across the coil is maximized by forming a
parallel resonant circuit. The tuning is accomplished
with a resonant capacitor that is connected in parallel
to the coil as shown in Figure 10. The formula for the
resonant capacitor value is given in Equation 22.

FIGURE 10: VARIOUS CONFIGURATIONS OF TAG ANTENNA COIL

Co

a

2a

Co Co

d = 2a

2a

N-turn Coil

b

DS00678B-page 6-10 1999 Microchip Technology Inc.

AN678
R

F
ID

6

S6.book Page 11 Thursday, March 2, 2000 7:59 AM
Reader Antenna Coil

The inductance for the reader antenna coil is typically
in the range of a few hundred to a few thousand
micro-Henries (µH) for low frequency applications. The
reader antenna can be made of either a single coil that
is typically forming a series resonant circuit or a double
loop (transformer) antenna coil that forms a parallel
resonant circuit.

The series resonant circuit results in minimum
impedance at the resonance frequency. Therefore, it
draws a maximum current at the resonance frequency.
On the other hand, the parallel resonant circuit results
in maximum impedance at the resonance frequency.
Therefore, the current becomes minimized at the reso-
nance frequency. Since the voltage can be stepped up
by forming a double loop (parallel) coil, the parallel
resonant circuit is often used for a system where a
higher voltage signal is required.

Figure 11 shows an example of the transformer loop
antenna. The main loop (secondary) is formed with
several turns of wire on a large frame, with a tuning
capacitor to resonate it to the resonance frequency

(125 kHz). The other loop is called a coupling loop
(primary), and it is formed with less than two or three
turns of coil. This loop is placed in a very close
proximity to the main loop, usually (but not necessarily)
on the inside edge and not more than a couple of cen-
timeters away from the main loop. The purpose of this
loop is to couple signals induced from the main loop to
the reader (or vise versa) at a more reasonable
matching impedance.

The coupling (primary) loop provides an impedance
match to the input/output impedance of the reader. The
coil is connected to the input/output signal driver in the
reader electronics. The main loop (secondary) must be
tuned to resonate at the resonance frequency and is
not physically connected to the reader electronics.

The coupling loop is usually untuned, but in some
designs, a tuning capacitor C2 is placed in series with
the coupling loop. Because there are far fewer turns on
the coupling loop than the main loop, its inductance is
considerably smaller. As a result, the capacitance to
resonate is usually much larger.

FIGURE 11: A TRANSFORMER LOOP ANTENNA FOR READER

C2

Coupling Coil
(primary coil)

To reader electronics

Main Loop
(secondary coil)

C1
 1999 Microchip Technology Inc. DS00678B-page 6-11

AN678

S6.book Page 12 Thursday, March 2, 2000 7:59 AM
RESONANCE CIRCUITS, QUALITY
FACTOR Q, AND BANDWIDTH

In RFID applications, the antenna coil is an element of
resonant circuit and the read range of the device is
greatly affected by the performance of the resonant
circuit.

Figures 12 and 13 show typical examples of resonant
circuits formed by an antenna coil and a tuning
capacitor. The resonance frequency (fo) of the circuit is
determined by:

EQUATION 24:

where:

The resonant circuit can be formed either series or
parallel.

The series resonant circuit has a minimum impedance
at the resonance frequency. As a result, maximum
current is available in the circuit. This series resonant
circuit is typically used for the reader antenna.

On the other hand, the parallel resonant circuit has
maximum impedance at the resonance frequency. It
offers minimum current and maximum voltage at the
resonance frequency. This parallel resonant circuit is
used for the tag antenna.

Parallel Resonant Circuit

Figure 12 shows a simple parallel resonant circuit. The
total impedance of the circuit is given by:

EQUATION 25:

where:

The ohmic resistance r of the coil is ignored. The
maximum impedance occurs when the denominator in
the above equation minimized such as:

EQUATION 26:

This is called a resonance condition and the resonance
frequency is given by:

EQUATION 27:

By applying Equation 26 into Equation 25, the
impedance at the resonance frequency becomes:

EQUATION 28:

FIGURE 12: PARALLEL RESONANT
CIRCUIT

The R and C in the parallel resonant circuit determine
the bandwidth, B, of the circuit.

EQUATION 29:

L = inductance of antenna coil

C = tuning capacitance

fo
1

2π LC
------------------=

ω = angular frequency = 2πf

R = load resistor

Z jω() jωL

1 ω2
LC–() j

ωL
R

-------+
---= Ω()

ω2
LC 1=

fo
1

2π LC
------------------=

Z R=

R LC

B
1

2πRC
---------------= Hz()
DS00678B-page 6-12 1999 Microchip Technology Inc.

AN678
R

F
ID

6

S6.book Page 13 Thursday, March 2, 2000 7:59 AM
The quality factor, Q, is defined by various ways such
as:

EQUATION 30:

where:

By applying Equation 27 and Equation 29 into
Equation 30, the loaded Q in the parallel resonant
circuit is:

EQUATION 31:

The Q in parallel resonant circuit is directly proportional
to the load resistor R and also to the square root of the
ratio of capacitance and inductance in the circuit.

When this parallel resonant circuit is used for the tag
antenna circuit, the voltage drop across the circuit can
be obtained by combining Equations 7 and 31,

EQUATION 32:

The above equation indicates that the induced voltage
in the tag coil is inversely proportional to the square
root of the coil inductance, but proportional to the num-
ber of turns and surface area of the coil.

The parallel resonant circuit can be used in the trans-
former loop antenna for a long-range reader as dis-
cussed in "Reader Antenna Coil" (Figure 11). The
voltage in the secondary loop is proportional to the turn
ratio (n2/n1) of the transformer loop. However, this high
voltage signal can corrupt the receiving signals. For this
reason, a separate antenna is needed for receiving the
signal. This receiving antenna circuit should be tuned
to the modulating signal of the tag and detunned to the
carrier signal frequency for maximum read range.

Series Resonant Circuit

A simple series resonant circuit is shown in Figure 13.
The expression for the impedance of the circuit is:

EQUATION 33:

where:

EQUATION 34:

EQUATION 35:

The impedance in Equation 33 becomes minimized
when the reactance component cancelled out each
other such that XL = XC. This is called a resonance
condition. The resonance frequency is same as the
parallel resonant frequency given in Equation 27.

FIGURE 13: SERIES RESONANCE
CIRCUIT

The half power frequency bandwidth is determined by
r and L, and given by:

EQUATION 36:

fo = resonant frequency

B = bandwidth

Q
Energy Stored in the System per One Cycle

Energy Dissipated in the System per One Cycle
--=

fo

B
----=

Q R
C
L
----=

Vo 2πfoNQSBo αcos=

2πfoN R
C
L

 SBo αcos=

r = ohmic resistance of the circuit

Z jω() r j XL XC–()+= Ω()

XL 2πfoL= Ω()

Xc
1

2πfoC
---------------= Ω()

C

EIN
L

Eo

125 kHz

r

B
r

2πL
----------= Hz()
 1999 Microchip Technology Inc. DS00678B-page 6-13

AN678

S6.book Page 14 Thursday, March 2, 2000 7:59 AM
The quality factor, Q, in the series resonant circuit is
given by:

EQUATION 37:

The series circuit forms a voltage divider; the voltage
drops in the coil is given by:

EQUATION 38:

or

EQUATION 39:

EXAMPLE 6: CIRCUIT PARAMETERS.

EXAMPLE 7: CALCULATION OF READ
RANGE

ωL
r

------- 1
ωC r
------------= for unloaded circuit;

1
r

L
C
---- ; for loaded circuit

Q
fo

B
---- ==

Vo
jXL

r jXL jXc–+
-------------------------------Vin=

Vo
Vin

XL

r
2 XL Xc–()

2
+

--
XL

r 1
XL Xc–

r

2

+

Q

1
XL Xc–

r

2

+

--= = =

If the series resistance of the circuit is 15 Ω, then the
L and C values form a 125 kHz resonant circuit with
Q = 8 are:

EQUATION 40:
XL Qrs 120Ω= =

L
XL

2π f

120
2π 125 kHz()
--------------------------------- 153= = = µH()

C
1

2πfXL

1
2π 125 kHz() 120()
--- 10.6= = = nF()

Let us consider designing a reader antenna coil with
L = 153 µH, diameter = 10 cm, and winding
thickness and height are small compared to the
diameter.

The number of turns for the inductance can be
calculated from Equation 21, resulting in 24 turns.

If the current flow through the coil is 0.5 amperes,
the ampere-turns becomes 12. Therefore, the read
range for this coil will be about 20 cm with a credit
card size tag.
DS00678B-page 6-14 1999 Microchip Technology Inc.

AN678
R

F
ID

6

S6.book Page 15 Thursday, March 2, 2000 7:59 AM
Q and Bandwidth

Figure 14 shows the approximate frequency bands for
common forms of Amplitude Shift Keying (ASK),
Frequency Shift Keying (FSK), and Phase Shift Keying
(PSK) modulation. For a full recovery of data signal
from the tag, the reader circuit needs a bandwidth that
is at least twice the data rate. Therefore, if the data rate
is 8 kHz for an ASK signal, the bandwidth must be at
least 16 kHz for a full recovery of the information that is
coming from the tag.

The data rate for FSK (÷ 10) signal is 12.5 kHz.
Therefore, a bandwidth of 25 kHz is needed for a full
data recovery.

The Q for this FSK (÷ 10) signal can be obtained from
Equation 30.

EQUATION 41:

For a PSK (÷ 2) signal, the data rate is 62.5 kHz (if the
carrier frequency is 125 kHz) therefore, the reader
circuit needs 125 kHz of bandwidth. The Q in this case
is 1, and consequently the circuit becomes
Q-independent.

This problem may be solved by separating the
transmitting and receiving coils. The transmitting coil
can be designed with higher Q and the receiving coil
with lower Q.

Limitation on Q

When designing a reader antenna circuit, the
temptation is to design a coil with very high Q. There
are three important limitations to this approach.

a) Very high voltages can cause insulation
breakdown in either the coil or resonant
capacitor.

For example, a 1 ampere of current flow in a 2 mH
coil will produce a voltage drop of 1500 VPP. Such
voltages are easy to obtain but difficult to isolate.
In addition, in the case of single coil reader
designs, recovery of the return signal from the tag
must be accomplished in the presence of these
high voltages.

b) Tuning becomes critical.

To implement a high Q antenna circuit, high volt-
age components with a close tolerance and high
stability would have to be used. Such parts are
generally expensive and difficult to obtain.

c) As the Q of the circuit gets higher, the amplitude
of the return signal relative to the power of the
carrier gets proportionally smaller complicating
its recovery by the reader circuit.

FIGURE 14: Q FACTOR VS. MODULATION SIGNALS

Q
fo

B

125 kHz
25 kHz

--------------------= =

5=

35

30

25

20

15

10

5

0
50 75 100 125 150 175 200

Q = 30

Q = 14

Q = 8

Q =5

ASK
FSK

÷8,10
FSK

÷8,10

PSK

÷2

PSK

÷2
 1999 Microchip Technology Inc. DS00678B-page 6-15

AN678

S6.book Page 16 Thursday, March 2, 2000 7:59 AM
Tuning Method

The circuit must be tuned to the resonance frequency
for a maximum performance (read range) of the device.
Two examples of tuning the circuit are as follows:

• Voltage Measurement Method:
a) Set up a voltage signal source at the

resonance frequency (125 kHz)
b) Connect a voltage signal source across the

resonant circuit.
c) Connect an Oscilloscope across the

resonant circuit.
d) Tune the capacitor or the coil while

observing the signal amplitude on the
Oscilloscope.

e) Stop the tuning at the maximum voltage.

• S-parameter or Impedance Measurement
Method using Network Analyzer:

a) Set up an S-Parameter Test Set (Network
Analyzer) for S11 measurement, and do a
calibration.

b) Measure the S11 for the resonant circuit.
c) Reflection impedance or reflection

admittance can be measured instead of the
S11.

d) Tune the capacitor or the coil until a
maximum null (S11) occurs at the
resonance frequency, fo. For the impedance
measurement, the maximum peak will occur
for the parallel resonant circuit, and
minimum peak for the series resonant
circuit.

FIGURE 15: VOLTAGE VS. FREQUENCY FOR RESONANT CIRCUIT

FIGURE 16: FREQUENCY RESPONSES FOR RESONANT CIRCUIT

f
fo

V

(a) (b) (c)

S11

f
fo fo

Z

f
fo

Z

f

Note 1: (a) S11 Response, (b) Impedance Response for a Parallel Resonant Circuit, and (c)
Impedance Response for a Series Resonant Circuit.

2: In (a), the null at the resonance frequency represents a minimum input reflection at
the resonance frequency. This means the circuit absorbs the signal at the frequency
while other frequencies are reflected back. In (b), the impedance curve has a peak
at the resonance frequency. This is because the parallel resonant circuit has a max-
imum impedance at the resonance frequency. (c) shows a response for the series
resonant circuit. Since the series resonant circuit has a minimum impedance at the
resonance frequency, a minimum peak occurs at the resonance frequency.
DS00678B-page 6-16 1999 Microchip Technology Inc.

AN678
R

F
ID

6

S6.book Page 17 Thursday, March 2, 2000 7:59 AM
READ RANGE OF RFID DEVICES

Read range is defined as a maximum communication
distance between the reader and tag. The read range
of typical passive RFID products varies from about
1 inch to 1 meter, depending on system configuration.
The read range of an RFID device is, in general,
affected by the following parameters:

a) Operating frequency and performance of
antenna coils

b) Q of antenna and tuning circuit

c) Antenna orientation

d) Excitation current and voltage

e) Sensitivity of receiver

f) Coding (or modulation) and decoding (or
demodulation) algorithm

g) Number of data bits and detection
(interpretation) algorithm

h) Condition of operating environment (metallic,
electrical noise), etc.

With a given operating frequency, the above conditions
(a – c) are related to the antenna configuration and
tuning circuit. The conditions (d – e) are determined by
a circuit topology of the reader. The condition (f) is
called the communication protocol of the device, and
(g) is related to a firmware program for data interpreta-
tion.

Assuming the device is operating under a given
condition, the read range of the device is largely
affected by the performance of the antenna coil. It is
always true that a longer read range is expected with
the larger size of the antenna. Figures 17 and 18 show
typical examples of the read range of various passive
RFID devices.

FIGURE 17: READ RANGE VS. TAG SIZE FOR PROXIMITY APPLICATIONS

FIGURE 18: READ RANGE VS. TAG SIZE FOR LONG RANGE APPLICATIONS

Proximity Reader
Antenna

Tag

Tag

Tag

Tag

1 inch

2 inches

3 ~ 4 inches

4 ~ 5 inches

0.5" diameter

1" diameter

2" diameter

3.37" x 2.125"
(Credit Card Type: ISO Card)

(4" x 3")

(16" x 32")

Long Range

0.5" diameter

4 ~ 5 inches

8 ~ 12 inches

18 ~ 22 inches

27 ~ 32 inches

Reader Antenna
2" diameter

 3.37" x 2.125"

Tag

Tag

Tag

Tag

 (Credit Card Type: ISO Card)

1" diameter
 1999 Microchip Technology Inc. DS00678B-page 6-17

AN678

S6.book Page 18 Thursday, March 2, 2000 7:59 AM
REFERENCES

1. Frederick W. Grover, Inductance Calculations:
Working Formulas and Tables, Dover
Publications, Inc., New York, NY., 1946.

2. Keith Henry, Editor, Radio Engineering
Handbook, McGraw-Hill Book Company, New
York, NY., 1963.

3. V. G. Welsby, The Theory and Design of
Inductance Coils, John Wiley and Sons, Inc.,
1960.

4. James K. Hardy, High Frequency Circuit Design,
Reston Publishing Company, Inc., Reston,
Virginia, 1975.
DS00678B-page 6-18 1999 Microchip Technology Inc.

AN680
Passive RFID Basics

R
F

ID

6

S6.book Page 19 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

Radio Frequency Identification (RFID) systems use
radio frequency to identify, locate and track people,
assets, and animals. Passive RFID systems are
composed of three components – an interrogator
(reader), a passive tag, and a host computer. The tag
is composed of an antenna coil and a silicon chip that
includes basic modulation circuitry and non-volatile
memory. The tag is energized by a time-varying
electromagnetic radio frequency (RF) wave that is
transmitted by the reader. This RF signal is called a
carrier signal. When the RF field passes through an
antenna coil, there is an AC voltage generated across
the coil. This voltage is rectified to supply power to the
tag. The information stored in the tag is transmitted
back to the reader. This is often called backscattering.
By detecting the backscattering signal, the information
stored in the tag can be fully identified.

DEFINITIONS

Reader

Usually a microcontroller-based unit with a wound out-
put coil, peak detector hardware, comparators, and
firmware designed to transmit energy to a tag and read
information back from it by detecting the backscatter
modulation.

Tag

An RFID device incorporating a silicon memory chip
(usually with on-board rectification bridge and other RF
front-end devices), a wound or printed input/output coil,
and (at lower frequencies) a tuning capacitor.

Carrier

A Radio Frequency (RF) sine wave generated by the
reader to transmit energy to the tag and retrieve data
from the tag. In these examples the ISO frequencies of
125 kHz and 13.56 MHz are assumed; higher frequen-
cies are used for RFID tagging, but the communication
methods are somewhat different. 2.45 GHz, for
example, uses a true RF link. 125 kHz and 13.56 MHz,
utilize transformer-type electromagnetic coupling.

Modulation

Periodic fluctuations in the amplitude of the carrier
used to transmit data back from the tag to the reader.

Systems incorporating passive RFID tags operate in
ways that may seem unusual to anyone who already
understands RF or microwave systems. There is only
one transmitter – the passive tag is not a transmitter or
transponder in the purest definition of the term, yet bidi-
rectional communication is taking place. The RF field
generated by a tag reader (the energy transmitter) has
three purposes:

1. Induce enough power into the tag coil to
energize the tag. Passive tags have no battery
or other power source; they must derive all
power for operation from the reader field.
125 kHz and 13.56 MHz tag designs must
operate over a vast dynamic range of carrier
input, from the very near field (in the range of
200 VPP) to the maximum read distance (in the
range of 5 VPP).

2. Provide a synchronized clock source to the
tag. Many RFID tags divide the carrier fre-
quency down to generate an on-board clock for
state machines, counters, etc., and to derive the
data transmission bit rate for data returned to
the reader. Some tags, however, employ on-
board oscillators for clock generation.

3. Act as a carrier for return data from the tag.
Backscatter modulation requires the reader to
peak-detect the tag's modulation of the reader's
own carrier. See page 20 for additional
information on backscatter modulation.

Author: Pete Sorrells
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS00680B-page 6-19

AN680

S6.book Page 20 Thursday, March 2, 2000 7:59 AM
SYSTEM HANDSHAKE

Typical handshake of a tag and reader is as follows:

1. The reader continuously generates an RF
carrier sine wave, watching always for modula-
tion to occur. Detected modulation of the field
would indicate the presence of a tag.

2. A tag enters the RF field generated by the
reader. Once the tag has received sufficient
energy to operate correctly, it divides down the
carrier and begins clocking its data to an output
transistor, which is normally connected across
the coil inputs.

3. The tag’s output transistor shunts the coil,
sequentially corresponding to the data which is
being clocked out of the memory array.

4. Shunting the coil causes a momentary
fluctuation (dampening) of the carrier wave,
which is seen as a slight change in amplitude of
the carrier.

5. The reader peak-detects the amplitude-modu-
lated data and processes the resulting bitstream
according to the encoding and data modulation
methods used.

BACKSCATTER MODULATION

This terminology refers to the communication method
used by a passive RFID tag to send data back to the
reader. By repeatedly shunting the tag coil through a
transistor, the tag can cause slight fluctuations in the
reader’s RF carrier amplitude. The RF link behaves
essentially as a transformer; as the secondary winding
(tag coil) is momentarily shunted, the primary winding
(reader coil) experiences a momentary voltage drop.
The reader must peak-detect this data at about 60 dB
down (about 100 mV riding on a 100V sine wave) as
shown in Figure 1.

This amplitude-modulation loading of the reader’s
transmitted field provides a communication path back
to the reader. The data bits can then be encoded or
further modulated in a number of ways.

FIGURE 1: AMPLITUDE – MODULATED
BACKSCATTERING SIGNAL

100 mV

100V
DS00680B-page 6-20 1999 Microchip Technology Inc.

AN680
R

F
ID

6

S6.book Page 21 Thursday, March 2, 2000 7:59 AM
DATA ENCODING

Data encoding refers to processing or altering the data
bitstream in-between the time it is retrieved from the
RFID chip’s data array and its transmission back to the
reader. The various encoding algorithms affect error
recovery, cost of implementation, bandwidth, synchro-
nization capability, and other aspects of the system
design. Entire textbooks are written on the subject, but
there are several popular methods used in RFID
tagging today:

1. NRZ (Non-Return to Zero) Direct. In this
method no data encoding is done at all; the 1’s
and 0’s are clocked from the data array directly
to the output transistor. A low in the
peak-detected modulation is a ‘0’ and a high is a
‘1’.

2. Differential Biphase. Several different forms of
differential biphase are used, but in general the
bitstream being clocked out of the data array is
modified so that a transition always occurs on
every clock edge, and 1’s and 0’s are distin-
guished by the transitions within the middle of
the clock period. This method is used to embed
clocking information to help synchronize the
reader to the bitstream; and because it always
has a transition at a clock edge, it inherently
provides some error correction capability. Any
clock edge that does not contain a transition in
the data stream is in error and can be used to
reconstruct the data.

3. Biphase_L (Manchester). This is a variation of
biphase encoding in which there is not always a
transition at the clock edge.

FIGURE 2: VARIOUS DATA CODING WAVEFORMS

Data

NRZ_L

Biphase_L
(Manchester)

Differential
Biphase_S

SIGNAL WAVEFORM DESCRIPTION

Digital Data

Non-Return to Zero – Level

‘1’ is represented by logic high level.
‘0’ is represented by logic low level.

Biphase – Level (Split Phase)
A level change occurs at middle of
every bit clock period.

‘1’ is represented by a high to low
 level change at midclock.
‘0’ is represented by a low to high

 level change at midclock.

Differential Biphase – Space

‘1’ is represented by a change in
 level at start of clock.
‘0’ is represented by no change in

Bit Rate Clock Signal

(Direct)

CLK

A level change occurs at middle of
every bit clock period.

level at start of clock.

1 0 1 1 0 0 0 1 1 0 1 0
 1999 Microchip Technology Inc. DS00680B-page 6-21

AN680

S6.book Page 22 Thursday, March 2, 2000 7:59 AM
DATA MODULATION

Although all the data is transferred to the host by
amplitude-modulating the carrier (backscatter modula-
tion), the actual modulation of 1’s and 0’s is accom-
plished with three additional modulation methods:

1. Direct. In direct modulation, the Amplitude
Modulation of the backscatter approach is the
only modulation used. A high in the envelope is
a ‘1’ and a low is a ‘0’. Direct modulation can pro-
vide a high data rate but low noise immunity.

2. FSK (Frequency Shift Keying). This form of
modulation uses two different frequencies for
data transfer; the most common FSK mode is
Fc/8/10. In other words, a ‘0’ is transmitted as an
amplitude-modulated clock cycle with period
corresponding to the carrier frequency divided
by 8, and a ‘1’ is transmitted as an
amplitude-modulated clock cycle period corre-
sponding to the carrier frequency divided by 10.
The amplitude modulation of the carrier thus
switches from Fc/8 to Fc/10 corresponding to 0's

and 1's in the bitstream, and the reader has only
to count cycles between the peak-detected
clock edges to decode the data. FSK allows for
a simple reader design, provides very strong
noise immunity, but suffers from a lower data
rate than some other forms of data modulation.
In Figure 3, FSK data modulation is used with
NRZ encoding.

3. PSK (Phase Shift Keying). This method of data
modulation is similar to FSK, except only one
frequency is used, and the shift between 1’s and
0’s is accomplished by shifting the phase of the
backscatter clock by 180 degrees. Two common
types of PSK are:

• Change phase at any ‘0’, or

• Change phase at any data change
(0 to 1 or 1 to 0).

PSK provides fairly good noise immunity, a
moderately simple reader design, and a faster
data rate than FSK. Typical applications utilize a
backscatter clock of Fc/2, as shown in Figure 4.

FIGURE 3: FSK MODULATED SIGNAL, FC/8 = 0, FC/10 = 1

FIGURE 4: PSK MODULATED SIGNAL

8 cycles = 0 8 cycles = 0 10 cycles = 1 10 cycles = 1 8 cycles = 0

Phase
Shift

Phase
Shift

Phase
Shift

Phase
Shift
DS00680B-page 6-22 1999 Microchip Technology Inc.

AN680
R

F
ID

6

S6.book Page 23 Thursday, March 2, 2000 7:59 AM
ANTICOLLISION

In many existing applications, a single-read RFID tag is
sufficient and even necessary: animal tagging and
access control are examples. However, in a growing
number of new applications, the simultaneous reading
of several tags in the same RF field is absolutely criti-
cal: library books, airline baggage, garment, and retail
applications are a few.

In order to read multiple tags simultaneously, the tag
and reader must be designed to detect the condition
that more than one tag is active. Otherwise, the tags
will all backscatter the carrier at the same time, and the
amplitude-modulated waveforms shown in Figures 3
and 4 would be garbled. This is referred to as a
collision. No data would be transferred to the reader.
The tag/reader interface is similar to a serial bus, even
though the “bus” travels through the air. In a wired serial
bus application, arbitration is necessary to prevent bus
contention. The RFID interface also requires arbitration
so that only one tag transmits data over the “bus” at one
time.

A number of different methods are in use and in
development today for preventing collisions; most are
patented or patent pending, but all are related to
making sure that only one tag “talks” (backscatters) at
any one time. See the MCRF355/360 Data Sheet
(page 7) and the 13.56 MHz Reader Reference Design
(page 47) chapters for more information regarding the
MCRF355/360 anticollision protocol.
 1999 Microchip Technology Inc. DS00680B-page 6-23

AN680

S6.book Page 24 Thursday, March 2, 2000 7:59 AM
NOTES:
DS00680B-page 6-24 1999 Microchip Technology Inc.

AN707
MCRF 355/360 Applications

R
F

ID

6

S6.book Page 25 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

The MCRF355 passive RFID device is designed for low
cost, multiple reading, and various high volume tagging
applications using a frequency band of 13.56 MHz. The
device has a total of 154 memory bits that can be repro-
grammed by a contact programmer. The device oper-
ates with a 70 kHz data rate, and asynchronously with
respect to the reader’s carrier. The device turns on
when the coil voltage reaches 4 VPP and outputs data
with a Manchester format (see Figure 2-3 in the data
sheet). With the given data rate (70 kHz), it takes about
2.2 ms to transmit all 154 bits of the data. After trans-
mitting all data, the device goes into a sleep mode for
100 ms +/- 50%.

The MCRF355 needs only an external parallel LC res-
onant circuit that consists of an antenna coil and a
capacitor for operation. The external LC components
must be connected between antenna A, B, and ground
pads. The circuit formed between Antenna Pad A and
the ground pad must be tuned to the operating fre-
quency of the reader antenna.

MODE OF OPERATION

The device transmits data by tuning and detuning the
resonant frequency of the external circuit. This process
is accomplished by using an internal modulation gate
(CMOS), that has a very low turn-on resistance (2 ~ 4

ohms) between Drain and Source. This gate turns on
during a logic “High” period of the modulation signal
and off otherwise. When the gate turns on, its low turn-
on resistance shorts the external circuit between
Antenna Pad B and the ground pad. Therefore, the res-
onant frequency of the circuit changes. This is called
detuned or cloaking. Since the detuned tag is out of the
frequency band of the reader, the reader can’t see it.

The modulation gate turns off as the modulation signal
goes to a logic “Low.” This turn-off condition again
tunes the resonant circuit to the frequency of the reader
antenna. Therefore the reader sees the tag again. This
is called tuned or uncloaking.

The tag coil induces maximum voltage during “uncloak-
ing (tuned)” and minimum voltage during cloaking
(detuned). Therefore, the cloaking and uncloaking
events develop an amplitude modulation signal in the
tag coil.

This amplitude modulated signal in the tag coil perturbs
the voltage envelope in the reader coil. The reader coil
has maximum voltage during cloaking (detuned) and
minimum voltage during uncloaking (tuned). By detect-
ing the voltage envelope, the data signal from the tag
can be readily reconstructed.

Once the device transmits all 154 bits of data, it goes
into “sleep mode” for about 100 ms. The tag wakes up
from sleep time (100 ms) and transmits the data pack-
age for 2.2 ms and goes into sleep mode again. The
device repeats the transmitting and sleep cycles as
long as it is energized.

FIGURE 1: VOLTAGE ENVELOPE IN READER COIL

Author: Dr. Youbok Lee, Ph.D.
Microchip Technology Inc.

V

t

When tag is in cloaking

When tag is in uncloaking
 1999 Microchip Technology Inc. DS00707A-page 6-25

microID is a trademark of Microchip Technology Inc. All rights reserved.

AN707

S6.book Page 26 Thursday, March 2, 2000 7:59 AM
FIGURE 2: (A) UNCLOAKING (TUNED) AND (B) CLOAKING (DETUNED) MODES AND THEIR
RESONANT FREQUENCIES

L1

L2

C

SW OFF

f

f

(a)

(b)

f0 13.56 MHz=

f0
 ′

13.56 ∆f+() MHz=

2Ω

L1

L2

C

SW ON

2Ω

C1

C2

L

SW OFF

2Ω (c)

C1

C2

L

SW ON

2Ω
(d) f

f

f0 13.56 MHz=

f0
 ′

13.56 - ∆f() MHz=

Coil voltage in tag

Coil voltage in tag

SW = OFF

SW = ON

SW = OFF

SW = ON

MCRF355

MCRF355

MCRF355

MCRF355
DS00707A-page 6-26 1999 Microchip Technology Inc.

AN707
R

F
ID

6

S6.book Page 27 Thursday, March 2, 2000 7:59 AM
ANTICOLLISION FEATURES

During sleep mode, the device remains in a cloaked
state where the circuit is detuned. Therefore, the
reader can’t see the tag during sleep time. While one
tag is in sleep mode, the reader can receive data from
other tags. This enables the reader to receive clean
data from many tags without any data collision. This
ability to read multiple tags in the same RF field is

called anticollision. Theoretically, more than 50 tags
can be read in the same RF field. However, it is affected
by distance from the tag to the reader, angular orienta-
tion, movement of the tags, and spacial distribution of
the tags.

FIGURE 3: EXAMPLE OF READING MULTIPLE TAGS

t

t

τ

t

t

Tag 1

Tag 2

Tag 3

Tag N

t1 t2 t3 tN

Reading data from Tag N

Reading data from Tag 3

Reading data from Tag 2

Reading data from Tag 1

Data
Packet

Data
Packet

Sleep
 1999 Microchip Technology Inc. DS00707A-page 6-27

AN707

S6.book Page 28 Thursday, March 2, 2000 7:59 AM
EXTERNAL CIRCUIT
CONFIGURATION

Since the device transmits data by tuning and detuning
the antenna circuit, caution must be given in the exter-
nal circuit configuration. For a better modulation index,
the differences between the tuned and detuned fre-
quencies must be wide enough (about 3 ~ 6 MHz).

Figure 4 shows various configurations of the external
circuit. The choice of the configuration must be chosen
depending on the form-factor of the tag. For example,
(a) is a better choice for printed circuit tags while, (b) is
a better candidate for coil-wound tags. Both (a) and (b)
relate to the MCRF355.

In configuration (a), the tuned resonance frequency is
determined by a total capacitance and inductance from
Antenna Pad A to VSS. During cloaking, the internal

switch (modulation gate) shorts Antenna Pad B and
VSS. Therefore, the inductance L2 is shorted out. As a
result, the detuned frequency is determined by the total
capacitance and inductance L1. When shorting the
inductance between Antenna Pad B and VSS, the
detuned (cloak) frequency is higher than the tuned
(uncloak) frequency

In configuration (b), the tuned frequency (uncloak) is
determined by the inductance L and the total capaci-
tance between Antenna Pad A and VSS. The circuit
detunes (cloak) when C2 is shorted. This detuned fre-
quency (cloak) is lower than the tuned (uncloak) fre-
quency

The MCRF360 includes a 100 pF internal capacitor.
This device needs only an external inductor for opera-
tion. The explanation on tuning and detuning is the
same as for configuration (a).

FIGURE 4: VARIOUS EXTERNAL CIRCUIT CONFIGURATIONS

Ant. Pad A

Ant. Pad B

Vss

C1 > C2

L1 > L2

L1 > L2

ftuned
1

2π LTC
----------------------=

fdetuned
1

2π L1C
----------------------=

LT L1 L2 2Lm+ +=

ftuned
1

2π LCT

----------------------=

fdetuned
1

2π LC1

----------------------=

CT

C1C2
C1 C2+
--------------------=

ftuned
1

2π LTC
----------------------=

fdetuned
1

2π L1C
----------------------=

LT L1 L2 2Lm+ +=

L1

L2

C

C1

C2

L

Ant. Pad A

Ant. Pad B

Vss

Ant. Pad A

Ant. Pad B

Vss

L1

L2

C = 100 pF

where:

Lm = mutual inductance

=

K = coupling coefficient of two inductors

K L1L2

0 K 1≤ ≤

MCRF355

(a) Two inductors and one capacitor

(b) Two capacitors and one inductor

(c) Two inductors with one internal capacitor

MCRF355

MCRF360
DS00707A-page 6-28 1999 Microchip Technology Inc.

AN707
R

F
ID

6

S6.book Page 29 Thursday, March 2, 2000 7:59 AM
PROGRAMMING OF DEVICE

All of the memory bits in the MCRF355/360 are repro-
grammable by a contact programmer or by factory pro-
gramming prior to shipment, known as Serialized Quick
Turn ProgrammingSM (SQTPSM). For more information
about contact programming, see page 69 of the
microID™ 13.56 MHz System Design Guide
(DS21299). For information about SQTP programming,
please see TB032 (DS91032), page 19 of the design
guide.

Serial Quick Turn Programming (SQTP) is a Service Mark of Microchip Technology Inc.
 1999 Microchip Technology Inc. DS00707A-page 6-29

AN707

S6.book Page 30 Thursday, March 2, 2000 7:59 AM
NOTES:
DS00707A-page 6-30 1999 Microchip Technology Inc.

AN710
Antenna Circuit Design

R
F

ID

6

S6.book Page 31 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

Passive RFID tags utilize an induced antenna coil volt-
age for operation. This induced AC voltage is rectified
to provide a voltage source for the device. As the DC
voltage reaches a certain level, the device starts oper-
ating. By providing an energizing RF signal, a reader
can communicate with a remotely located device that
has no external power source such as a battery. Since
the energizing and communication between the reader
and tag is accomplished through antenna coils, it is
important that the device must be equipped with a
proper antenna circuit for successful RFID applica-
tions.

An RF signal can be radiated effectively if the linear
dimension of the antenna is comparable with the wave-
length of the operating frequency. However, the wave-
length at 13.56 MHz is 22.12 meters. Therefore, it is
difficult to form a true antenna for most RFID applica-
tions. Alternatively, a small loop antenna circuit that is
resonating at the frequency is used. A current flowing
into the coil radiates a near-field magnetic field that falls
off with r-3. This type of antenna is called a magnetic
dipole antenna.

For 13.56 MHz passive tag applications, a few micro-
henries of inductance and a few hundred pF of reso-
nant capacitor are typically used. The voltage transfer
between the reader and tag coils is accomplished
through inductive coupling between the two coils. As in
a typical transformer, where a voltage in the primary
coil transfers to the secondary coil, the voltage in the
reader antenna coil is transferred to the tag antenna
coil and vice versa. The efficiency of the voltage trans-
fer can be increased significantly with high Q circuits.

This section is written for RF coil designers and RFID
system engineers. It reviews basic electromagnetic
theories on antenna coils, a procedure for coil design,
calculation and measurement of inductance, an
antenna tuning method, and read range in RFID appli-
cations.

REVIEW OF A BASIC THEORY FOR
RFID ANTENNA DESIGN

Current and Magnetic Fields

Ampere’s law states that current flowing in a conductor
produces a magnetic field around the conductor. The
magnetic field produced by a current element, as
shown in Figure 1, on a round conductor (wire) with a
finite length is given by:

EQUATION 1:

where:

In a special case with an infinitely long wire where:

Equation 1 can be rewritten as:

EQUATION 2:

FIGURE 1: CALCULATION OF
MAGNETIC FIELD B AT
LOCATION P DUE TO
CURRENT I ON A STRAIGHT
CONDUCTING WIRE

Author: Dr. Youbok Lee, Ph.D.
Microchip Technology Inc.

I = current

r = distance from the center of wire

µ0 = permeability of free space and given
as 4 π x 10-7 (Henry/meter)

α1 = -180°

α2 = 0°

Bφ
µoI

4πr
--------- α2cos α1cos–()= Weber m

2⁄()

Bφ
µoI

2πr
---------= Weber m

2⁄()

Wire

dL

I

r
0 B (into the page)

P

R

α2

α

α1

Ζ

X

 1999 Microchip Technology Inc. DS00710A-page 6-31

AN710

S6.book Page 32 Thursday, March 2, 2000 7:59 AM
The magnetic field produced by a circular loop antenna
is given by:

EQUATION 3:

where

The above equation indicates that the magnetic field
strength decays with 1/r3. A graphical demonstration is
shown in Figure 3. It has maximum amplitude in the
plane of the loop and directly proportional to both the
current and the number of turns, N.

Equation 3 is often used to calculate the ampere-turn
requirement for read range. A few examples that calcu-
late the ampere-turns and the field intensity necessary
to power the tag will be given in the following sections.

FIGURE 2: CALCULATION OF
MAGNETIC FIELD B AT
LOCATION P DUE TO
CURRENT I ON THE LOOP

FIGURE 3: DECAYING OF THE
MAGNETIC FIELD B VS.
DISTANCE r

I = current

radius of loop

distance from the center of wire

permeability of free space and given
as µo = 4 π x 10-7 (Henry/meter)

a =

r =

µ0 =

Bz

µoINa
2

2 a
2

r
2

+()
3 2⁄---------------------------------=

µoINa
2

2

1

r
3

 = for r

2
>>a

2

α
R

ry

Icoil

Bz

P

z

a

X

V Vo ωtsin=

r

r-3

B

DS00710A-page 6-32 1999 Microchip Technology Inc.

AN710
R

F
ID

6

S6.book Page 33 Thursday, March 2, 2000 7:59 AM
INDUCED VOLTAGE IN AN ANTENNA
COIL

Faraday’s law states that a time-varying magnetic field
through a surface bounded by a closed path induces a
voltage around the loop.

Figure 4 shows a simple geometry of an RFID applica-
tion. When the tag and reader antennas are in close
proximity, the time-varying magnetic field B that is pro-
duced by a reader antenna coil induces a voltage
(called electromotive force or simply EMF) in the closed
tag antenna coil. The induced voltage in the coil causes
a flow of current on the coil. This is called Faraday’s
law. The induced voltage on the tag antenna coil is
equal to the time rate of change of the magnetic flux Ψ.

EQUATION 4:

where:

The negative sign shows that the induced voltage acts
in such a way as to oppose the magnetic flux producing
it. This is known as Lenz’s Law and it emphasizes the
fact that the direction of current flow in the circuit is
such that the induced magnetic field produced by the
induced current will oppose the original magnetic field.

The magnetic flux Ψ in Equation 4 is the total magnetic
field B that is passing through the entire surface of the
antenna coil, and found by:

EQUATION 5:

where:

The presentation of inner product of two vectors in
Equation 5 suggests that the total magnetic flux ψ that
is passing through the antenna coil is affected by an
orientation of the antenna coils. The inner product of
two vectors becomes maximized when the cosine
angle between the two are 90 degree, or the two (B field
and the surface of coil) are perpendicular to each other.
The maximum magnetic flux that is passing through the
tag coil is obtained when the two coils (reader coil and
tag coil) are placed in parallel with respect to each
other. This condition results in maximum induced volt-
age in the tag coil and also maximum read range. The
inner product expression in Equation 5 also can be
expressed in terms of a mutual coupling between the
reader and tag coils. The mutual coupling between the
two coils is maximized in the above condition.

FIGURE 4: A BASIC CONFIGURATION OF READER AND TAG ANTENNAS IN RFID
APPLICATIONS

N = number of turns in the antenna coil

Ψ = magnetic flux through each turn

V N
dψ
dt
-------–=

B = magnetic field given in Equation 2

S = surface area of the coil

• = inner product (cosine angle between two
vectors) of vectors B and surface area S

Note: Both magnetic field B and surface S are
vector quantities.

ψ B· Sd∫=

Tag Coil V = V0sin(ωt)

Tag

B = B0sin(ωt)

Reader Coil

I = I0sin(ωt)

Tuning CircuitReader
Electronics
 1999 Microchip Technology Inc. DS00710A-page 6-33

AN710

S6.book Page 34 Thursday, March 2, 2000 7:59 AM
Using Equations 3 and 5, Equation 4 can be rewritten
as:

EQUATION 6:

where:

EQUATION 7:

The above equation is equivalent to a voltage transfor-
mation in typical transformer applications. The current
flow in the primary coil produces a magnetic flux that
causes a voltage induction at the secondary coil.

As shown in Equation 6, the tag coil voltage is largely
dependent on the mutual inductance between the two
coils. The mutual inductance is a function of coil geom-
etry and the spacing between them. The induced volt-
age in the tag coil decreases with r-3. Therefore, the
read range also decreases in the same way.

From Equations 4 and 5, a generalized expression for
induced voltage Vo in a tuned loop coil is given by:

EQUATION 8:

where:

In the above equation, the quality factor Q is a measure
of the selectivity of the frequency of the interest. The Q
will be defined in Equations 31 through 47.

FIGURE 5: ORIENTATION DEPENDENCY
OF THE TAG ANTENNA

The induced voltage developed across the loop
antenna coil is a function of the angle of the arrival sig-
nal. The induced voltage is maximized when the
antenna coil is placed in parallel with the incoming sig-
nal where α = 0.

EXAMPLE 1: CALCULATION OF B-FIELD
IN A TAG COIL

V = voltage in the tag coil

i1 = current on the reader coil

a = radius of the reader coil

b = radius of tag coil

r = distance between the two coils

M = mutual inductance between the tag
and reader coils, and given by:

 f = frequency of the arrival signal

N = number of turns of coil in the loop

S = area of the loop in square meters (m2)

Q = quality factor of circuit

Βo = strength of the arrival signal

α = angle of arrival of the signal

V N2
dΨ21

dt
-------------– N2

d
dt
----- B∫ Sd⋅()–= =

µoN1N2a

2 πb
2()

2 a
2

r
2

+()
3 2⁄--

di1

dt
-------–=

 M
di1

dt
-------–=

 N2
d
dt

µoi1N1a
2

2 a
2

r
2

+()
3 2⁄---------------------------------· Sd∫–=

M
µoπN1N2 ab()2

2 a
2

r
2

+()
3 2⁄-------------------------------------=

V0 2πfNSQBo αcos=

Tag

B-field

a

The MCRF355 device turns on when the antenna
coil develops 4 VPP across it. This voltage is rectified
and the device starts to operate when it reaches 2.4
VDC. The B-field to induce a 4 VPP coil voltage with
an ISO standard 7810 card size (85.6 x 54 x 0.76
mm) is calculated from the coil voltage equation
using Equation 8.

EQUATION 9:

and

where the following parameters are used in the
above calculation:

Tag coil size = (85.6 x 54) mm2 (ISO card
size) = 0.0046224 m2

Frequency = 13.56 MHz

Number of turns = 4

Q of tag antenna
coil

= 40

AC coil voltage to
turn on the tag

= 4 VPP

cosα = = 1 (normal direction, α = 0).

Vo 2πfNSQBo α 4=cos=

Bo
4 2()⁄

2πfNSQ αcos
---------------------------------- 0.0449== µwbm

2–()
DS00710A-page 6-34 1999 Microchip Technology Inc.

AN710
R

F
ID

6

S6.book Page 35 Thursday, March 2, 2000 7:59 AM
EXAMPLE 2: NUMBER OF TURNS AND
CURRENT (AMPERE-
TURNS)

EXAMPLE 3: OPTIMUM COIL DIAMETER
OF THE READER COIL

The above result shows a relationship between the
read range vs. optimum coil diameter. The optimum coil
diameter is found as:

EQUATION 12:

where:

The result indicates that the optimum loop radius, a, is
1.414 times the demanded read range r.

Assuming that the reader should provide a read
range of 15 inches (38.1 cm) for the tag given in the
previous example, the current and number of turns
of a reader antenna coil is calculated from
Equation 3:

EQUATION 10:

The above result indicates that it needs a 430 mA
for 1 turn coil, and 215 mA for 2-turn coil.

NI()rms

2Bz a
2

r
2

+()

µa
2

3 2⁄

=

2 0.0449 10
6–×() 0.1

2
0.38()2

+()

4π 10
7–×() 0.1

2()

3 2⁄
=

0.43 ampere - turns()=

a = radius of coil

r = read range.

An optimum coil diameter that requires the minimum
number of ampere-turns for a particular read range
can be found from Equation 3 such as:

EQUATION 11:

NI K
a

2
r

2
+()

3
2

a
2

------------------------=

K
2Bz

µo
---------=where:

d NI()
da

-------------- K
3 2⁄ a

2
r

2
+()

1 2⁄
2a

3() 2a a
2

r
2

+()
3 2⁄

–

a
4

--=

By taking derivative with respect to the radius a,

K
a

2
2r

2
–() a

2
r

2
+()

1 2⁄

a
3

--=

a
2

2r
2

– 0=

The above equation becomes minimized when:

a 2= r
 1999 Microchip Technology Inc. DS00710A-page 6-35

AN710

S6.book Page 36 Thursday, March 2, 2000 7:59 AM
WIRE TYPES AND OHMIC LOSSES

Wire Size and DC Resistance

The diameter of electrical wire is expressed as the
American Wire Gauge (AWG) number. The gauge
number is inversely proportional to diameter, and the
diameter is roughly doubled every six wire gauges. The
wire with a smaller diameter has a higher DC resis-
tance. The DC resistance for a conductor with a uni-
form cross-sectional area is found by:

EQUATION 13:

where:

Table 1 shows the diameter for bare and
enamel-coated wires, and DC resistance.

AC Resistance of Wire

At DC, charge carriers are evenly distributed through
the entire cross section of a wire. As the frequency
increases, the reactance near the center of the wire
increases. This results in higher impedance to the cur-
rent density in the region. Therefore, the charge moves
away from the center of the wire and towards the edge
of the wire. As a result, the current density decreases
in the center of the wire and increases near the edge of
the wire. This is called a skin effect. The depth into the
conductor at which the current density falls to 1/e, or
37% of its value along the surface, is known as the skin
depth and is a function of the frequency and the perme-
ability and conductivity of the medium. The skin depth
is given by:

EQUATION 14:

where:

EXAMPLE 4:

The wire resistance increases with frequency, and the
resistance due to the skin depth is called an AC
resistance. An approximated formula for the AC resis-
tance is given by:

EQUATION 16:

where:

 l = total length of the wire

σ = conductivity

S = cross-sectional area

f = frequency

µ = permeability of material

σ = conductivity of the material

RDC
l

σS
------= Ω()

δ 1

πfµσ
-----------------=

a = coil radius

The skin depth for a copper wire at 13.56 MHz can
be calculated as:

EQUATION 15:

δ 1

πf 4π 10
7–×() 5.8 10

7–×()
--=

0.0179

f
----------------= m()

0.187= mm()

Rac
1

2σπδ
------------- RDC() a

2δ
------=≈ Ω()
DS00710A-page 6-36 1999 Microchip Technology Inc.

AN710
R

F
ID

6

S6.book Page 37 Thursday, March 2, 2000 7:59 AM
TABLE 1: AWG WIRE CHART

Wire
Size

(AWG)

Dia. in
Mils

(bare)

Dia. in
Mils

(coated)

Ohms/
1000 ft.

Cross
Section
(mils)

1 289.3 — 0.126 83690

2 287.6 — 0.156 66360

3 229.4 — 0.197 52620

4 204.3 — 0.249 41740

5 181.9 — 0.313 33090

6 162.0 — 0.395 26240

7 166.3 — 0.498 20820

8 128.5 131.6 0.628 16510

9 114.4 116.3 0.793 13090

10 101.9 106.2 0.999 10380

11 90.7 93.5 1.26 8230

12 80.8 83.3 1.59 6530

13 72.0 74.1 2.00 5180

14 64.1 66.7 2.52 4110

15 57.1 59.5 3.18 3260

16 50.8 52.9 4.02 2580

17 45.3 47.2 5.05 2060

18 40.3 42.4 6.39 1620

19 35.9 37.9 8.05 1290

20 32.0 34.0 10.1 1020

21 28.5 30.2 12.8 812

22 25.3 28.0 16.2 640

23 22.6 24.2 20.3 511

24 20.1 21.6 25.7 404

25 17.9 19.3 32.4 320

Note: 1 mil = 2.54 x 10-3 cm

26 15.9 17.2 41.0 253

27 14.2 15.4 51.4 202

28 12.6 13.8 65.3 159

29 11.3 12.3 81.2 123

30 10.0 11.0 106.0 100

31 8.9 9.9 131 79.2

32 8.0 8.8 162 64.0

33 7.1 7.9 206 50.4

34 6.3 7.0 261 39.7

35 5.6 6.3 331 31.4

36 5.0 5.7 415 25.0

37 4.5 5.1 512 20.2

38 4.0 4.5 648 16.0

39 3.5 4.0 847 12.2

40 3.1 3.5 1080 9.61

41 2.8 3.1 1320 7.84

42 2.5 2.8 1660 6.25

43 2.2 2.5 2140 4.84

44 2.0 2.3 2590 4.00

45 1.76 1.9 3350 3.10

46 1.57 1.7 4210 2.46

47 1.40 1.6 5290 1.96

48 1.24 1.4 6750 1.54

49 1.11 1.3 8420 1.23

50 0.99 1.1 10600 0.98

Wire
Size

(AWG)

Dia. in
Mils

(bare)

Dia. in
Mils

(coated)

Ohms/
1000 ft.

Cross
Section
(mils)

Note: 1 mil = 2.54 x 10-3 cm
 1999 Microchip Technology Inc. DS00710A-page 6-37

AN710

S6.book Page 38 Thursday, March 2, 2000 7:59 AM
INDUCTANCE OF VARIOUS
ANTENNA COILS

An electric current element that flows through a con-
ductor produces a magnetic field. This time-varying
magnetic field is capable of producing a flow of current
through another conductor – this is called inductance.
The inductance L depends on the physical characteris-
tics of the conductor. A coil has more inductance than
a straight wire of the same material, and a coil with
more turns has more inductance than a coil with fewer
turns. The inductance L of inductor is defined as the
ratio of the total magnetic flux linkage to the current Ι
through the inductor:

EQUATION 17:

where:

For a coil with multiple turns, the inductance is greater
as the spacing between turns becomes smaller. There-
fore, the tag antenna coil that has to be formed in a lim-
ited space often needs a multilayer winding to reduce
the number of turns.

Calculation of Inductance

Inductance of the coil can be calculated in many differ-
ent ways. Some are readily available from refer-
ences[1-4]. It must be remembered that for RF coils the
actual resulting inductance may differ from the calcu-
lated true result because of distributed capacitance.
For that reason, inductance calculations are generally
used only for a starting point in the final design.

Inductance of a Straight Wound Wire

The inductance of a straight wound wire shown in
Figure 1 is given by:

EQUATION 18:

where:

EXAMPLE 5: INDUCTANCE
CALCULATION FOR A
STRAIGHT WIRE:

Inductance of Thin Film Inductor with a
Rectangular Cross Section

Inductance of a conductor with rectangular cross sec-
tion as shown in Figure 6 is calculated as:

FIGURE 6: A STRAIGHT THIN FILM
INDUCTOR

EQUATION 20:

where:

N = number of turns

I = current

Ψ = the magnetic flux

L
Nψ

I
--------= (Henry)

l and a = length and radius of wire in cm,
respectively.

a = width in cm

b = thickness in cm

l = length of conductor in cm

L 0.002l loge
2l
a

3
4
---–= µH()

The inductance of a wire with 10 feet (304.8cm) long
and 2 mm in diameter is calculated as follows:

EQUATION 19:

L 0.002 304.8() 2 304.8()
0.1

 ln

3
4
---– =

0.60967 7.965()=

4.855 µH()=

b

a

l

L 0.002l
2l

a b+

 0.50049 a b+
3l

------------+ +ln

= µH()
DS00710A-page 6-38 1999 Microchip Technology Inc.

AN710
R

F
ID

6

S6.book Page 39 Thursday, March 2, 2000 7:59 AM
Inductance of a Circular Coil with Single Turn

The inductance of a circular coil shown in Figure 7 can
be calculated by:

FIGURE 7: A CIRCULAR COIL WITH
SINGLE TURN

EQUATION 21:

where:

Inductance of an N-turn Circular Coil with
Single Layer

The inductance of a circular coil with single layer is cal-
culated as:

EQUATION 22:

where:

Inductance of N-turn Circular Coil with
Multilayer

FIGURE 8: N-TURN CIRCULAR COIL
WITH SINGLE LAYER

Figure 8 shows an N-turn inductor of circular coil with
multilayer. Its inductance is calculated by:

EQUATION 23:

where: a = mean radius of loop in (cm)

d = diameter of wire in (cm)

N = number of turns

l = length

a = the radius of coil in cm

X
d

a

L 0.01257 a() 2.303log10
16a

d
--------- 2–

 = µH()

L
aN()2

22.9l 25.4a+
--------------------------------= µH()

a = average radius of the coil in cm

N = number of turns

b = winding thickness in cm

h = winding height in cm

X

b

a

N-turns coil

a

b

Center of coil

h

L
0.31 aN()2

6a 9h 10b+ +
----------------------------------= µH()
 1999 Microchip Technology Inc. DS00710A-page 6-39

AN710

S6.book Page 40 Thursday, March 2, 2000 7:59 AM
Inductance of Spiral Wound Coil with Single
Layer

The inductance of a spiral inductor is calculated by:

EQUATION 24:

FIGURE 9: A SPIRAL COIL

Inductance of N-turn Square Loop Coil with
Multilayer

Inductance of a multilayer square loop coil is calculated
by:

EQUATION 25:

where:

FIGURE 10: N-TURN SQUARE LOOP COIL
WITH MULTILAYER

L
aN()2

8a 11b+
----------------------= µH()

a

b

N = number of turns

a = side of square measured to the center
of the rectangular cross section of
winding

b = winding length

c = winding depth as shown in Figure 10.

Note: All dimensions are in cm.

L 0.008aN
2

2.303log10
a

b c+

 0.2235b c+
a

------------ 0.726+ +

µH()=

(a) Top View
(b) Cross Sectional View

a

b

c
a

DS00710A-page 6-40 1999 Microchip Technology Inc.

AN710
R

F
ID

6

S6.book Page 41 Thursday, March 2, 2000 7:59 AM
Inductance of a Flat Square Coil

Inductance of a flat square coil of rectangular cross
section with N turns is calculated by[4]:

EQUATION 26:

where:

FIGURE 11: SQUARE LOOP INDUCTOR
WITH A RECTANGULAR
CROSS SECTION

The formulas for inductance are widely published and
provide a reasonable approximation for the relationship
between inductance and the number of turns for a
given physical size[1–4]. When building prototype coils,
it is wise to exceed the number of calculated turns by
about 10% and then remove turns to achieve a right
value. For production coils, it is best to specify an induc-
tance and tolerance rather than a specific number of
turns.

0.0467aN
2 log10 2

a
2

t w+

log10 2.414a()–

0.02032aN
2

0.914
0.2235

a
---------------- t w+()+

+=

L = in µH

a = side length in inches

t = thickness in inches

w = width in inches

w a
 1999 Microchip Technology Inc. DS00710A-page 6-41

AN710

S6.book Page 42 Thursday, March 2, 2000 7:59 AM
CONFIGURATION OF ANTENNA
CIRCUITS

Reader Antenna Circuits

The inductance for the reader antenna coil for
13.56 MHz is typically in the range of a few microhen-
ries (µH). The antenna can be formed by aircore or fer-
rite core inductors. The antenna can also be formed by
a metallic or conductive trace on PCB board or on flex-
ible substrate.

The reader antenna can be made of either a single coil,
that is typically forming a series or a parallel resonant
circuit, or a double loop (transformer) antenna coil.
Figure 12 shows various configurations of reader
antenna circuit. The coil circuit must be tuned to the
operating frequency to maximize power efficiency. The
tuned LC resonant circuit is the same as the bandpass
filter that passes only a selected frequency. The Q of
the tuned circuit is related to both read range and band-
width of the circuit. More on this subject will be dis-
cussed in the following section.

Choosing the size and type of antenna circuit depends
on the system design topology. The series resonant cir-
cuit results in minimum impedance at the resonance
frequency. Therefore, it draws a maximum current at

the resonance frequency. Because of its simple circuit
topology and relatively low cost, this type of antenna
circuit is suitable for proximity reader antenna.

On the other hand, a parallel resonant circuit results in
maximum impedance at the resonance frequency.
Therefore, maximum voltage is available at the reso-
nance frequency. Although it has a minimum resonant
current, it still has a strong circulating current that is
proportional to Q of the circuit. The double loop
antenna coil that is formed by two parallel antenna cir-
cuits can also be used.

The frequency tolerance of the carrier frequency and
output power level from the read antenna is regulated
by government regulations (e.g., FCC in the USA).

FCC limits for 13.56 MHz frequency band are as fol-
lows:

1. Tolerance of the carrier frequency: 13.56 MHz
+/- 0.01% = +/- 1.356 kHz.

2. Frequency bandwidth: +/- 7 kHz.

3. Power level of fundamental frequency: 10 mv/m
at 30 meters from the transmitter.

4. Power level for harmonics: -50.45 dB down from
the fundamental signal.

The transmission circuit including the antenna coil must
be designed to meet the FCC limits.

FIGURE 12: VARIOUS READER ANTENNA CIRCUITS

(a) Series Resonant Circuit (b) Parallel Resonant Circuit

L

C

C

L

(primary coil)

To reader electronics

(secondary coil)

C1

C2

(c) Transformer Loop Antenna
DS00710A-page 6-42 1999 Microchip Technology Inc.

AN710
R

F
ID

6

S6.book Page 43 Thursday, March 2, 2000 7:59 AM
Tag Antenna Circuits

The MCRF355 device communicates data by tuning
and detuning the antenna circuit (see AN707).
Figure 13 shows examples of the external circuit
arrangement.

The external circuit must be tuned to the resonant fre-
quency of the reader antenna. In a detuned condition,
a circuit element between the antenna B and VSS pads
is shorted. The frequency difference (delta frequency)
between tuned and detuned frequencies must be
adjusted properly for optimum operation. It has been
found that maximum modulation index and maximum
read range occur when the tuned and detuned frequen-
cies are separated by 3 to 6 MHz.

The tuned frequency is formed from the circuit ele-
ments between the antenna A and VSS pads without
shorting the antenna B pad. The detuned frequency is
found when the antenna B pad is shorted. This detuned
frequency is calculated from the circuit between
antenna A and VSS pads excluding the circuit element
between antenna B and VSS pads.

In Figure 13 (a), the tuned resonant frequency is

EQUATION 27:

where:

and detuned frequency is

EQUATION 28:

In this case, is higher than .

Figure 13(b) shows another example of the external cir-
cuit arrangement. This configuration controls C2 for
tuned and detuned frequencies. The tuned and
untuned frequencies are

EQUATION 29:

and

EQUATION 30:

A typical inductance of the coil is about a few micro-
henry with a few turns. Once the inductance is deter-
mined, the resonant capacitance is calculated from the
above equations. For example, if a coil has an induc-
tance of 1.3 µH, then it needs a 106 pF of capacitance
to resonate at 13.56 MHz.

LT = L1 + L2 + 2LM = Total inductance
between antenna A and VSS pads

L1 = inductance between antenna A and
antenna B pads

L2 = inductance between ant. B and VSS

pads

M = mutual inductance between coil 1 and
coil 2

=

k = coupling coefficient between the two
coils

C = tuning capacitance

fo
1

2π LTC
---------------------=

k L1L
2

fdetuned
1

2π L1C
---------------------=

fdetuned ftuned

ftuned
1

2π
C1C2

C1 C2+

 L

--=

fdetuned
1

2π LC1

---------------------=
 1999 Microchip Technology Inc. DS00710A-page 6-43

AN710

S6.book Page 44 Thursday, March 2, 2000 7:59 AM
CONSIDERATION ON QUALITY
FACTOR Q AND BANDWIDTH OF
TUNING CIRCUIT

The voltage across the coil is a product of quality factor
Q of the circuit and input voltage. Therefore, for a given
input voltage signal, the coil voltage is directly propor-
tional to the Q of the circuit. In general, a higher Q

results in longer read range. However, the Q is also
related to the bandwidth of the circuit as shown in the
following equation.

EQUATION 31:

FIGURE 13: VARIOUS EXTERNAL CIRCUIT CONFIGURATIONS

Q
fo

B
----=

Ant. Pad A

Ant. Pad B

Vss

MCRF355

C1 > C2

L1 > L2

L1 > L2

(a) Two inductors and one capacitor

(b) Two capacitors and one inductor

(c) Two inductors with one internal capacitor

ftuned
1

2π LTC
----------------------=

fdetuned
1

2π L1C
----------------------=

LT L1 L2 2Lm+ +=

ftuned
1

2π LCT

----------------------=

fdetuned
1

2π LC1

----------------------=

CT

C1C2
C1 C2+
--------------------=

ftuned
1

2π LTC
----------------------=

fdetuned
1

2π L1C
----------------------=

LT L1 L2 2Lm+ +=

L1

L2

MCRF355

C

C1

C2

L

Ant. Pad A

Ant. Pad B

Vss

Ant. Pad A

Ant. Pad B

Vss

L1

L2

MCRF360

C = 100 pF

where:

Lm = mutual inductance

=

K = coupling coefficient of two inductors

K L1L2

0 K 1≤ ≤
DS00710A-page 6-44 1999 Microchip Technology Inc.

AN710
R

F
ID

6

S6.book Page 45 Thursday, March 2, 2000 7:59 AM
Bandwidth requirement and limit on circuit Q
for MCRF355

Since the MCRF355 operates with a data rate of
70 kHz, the reader antenna circuit needs a bandwidth
of at least twice of the data rate. Therefore, it needs:

EQUATION 32:

Assuming the circuit is turned at 13.56 MHz, the maxi-
mum attainable Q is obtained from Equations 31
and 32:

EQUATION 33:

In a practical LC resonant circuit, the range of Q for
13.56 MHz band is about 40. However, the Q can be
significantly increased with a ferrite core inductor. The
system designer must consider the above limits for
optimum operation.

RESONANT CIRCUITS

Once the frequency and the inductance of the coil are
determined, the resonant capacitance can be calcu-
lated from:

EQUATION 34:

In practical applications, parasitic (distributed) capaci-
tance is present between turns. The parasitic capaci-
tance in a typical tag antenna coil is a few (pF). This
parasitic capacitance increases with operating fre-
quency of the device.

There are two different resonant circuits: parallel and
series. The parallel resonant circuit has maximum
impedance at the resonance frequency. It has a mini-
mum current and maximum voltage at the resonance
frequency. Although the current in the circuit is mini-
mum at the resonant frequency, there are a circulation
current that is proportional to Q of the circuit. The par-
allel resonant circuit is used in both the tag and the
high-power reader antenna circuit.

On the other hand, the series resonant circuit has a
minimum impedance at the resonance frequency. As a
result, maximum current is available in the circuit.
Because of its simplicity and the availability of the high
current into the antenna element, the series resonant
circuit is often used for a simple proximity reader.

Parallel Resonant Circuit

Figure 14 shows a simple parallel resonant circuit. The
total impedance of the circuit is given by:

EQUATION 35:

where ω is an angular frequency given as .

The maximum impedance occurs when the denomina-
tor in the above equation is minimized. This condition
occurs when:

EQUATION 36:

This is called a resonance condition, and the reso-
nance frequency is given by:

EQUATION 37:

Bminimum 140 kHz=

Qmax

fo

B
---- 96.8= =

C
1

L 2πfo()2
----------------------=

Z jω() jωL

1 ω2
LC–() j

ωL
R

-------+
--- Ω()=

ω 2πf=

ω2
LC 1=

f0
1

2π LC
------------------=
 1999 Microchip Technology Inc. DS00710A-page 6-45

AN710

S6.book Page 46 Thursday, March 2, 2000 7:59 AM
By applying Equation 36 into Equation 35, the imped-
ance at the resonance frequency becomes:

EQUATION 38:

where R is the load resistance.

FIGURE 14: PARALLEL RESONANT
CIRCUIT

The R and C in the parallel resonant circuit determine
the bandwidth, B, of the circuit.

EQUATION 39:

The quality factor, Q, is defined by various ways such
as

EQUATION 40:

where:

By applying Equation 37 and Equation 39 into
Equation 40, the Q in the parallel resonant circuit is:

EQUATION 41:

The Q in a parallel resonant circuit is proportional to the
load resistance R and also to the ratio of capacitance
and inductance in the circuit.

When this parallel resonant circuit is used for the tag
antenna circuit, the voltage drop across the circuit can
be obtained by combining Equations 8 and 41:

EQUATION 42: .

The above equation indicates that the induced voltage
in the tag coil is inversely proportional to the square
root of the coil inductance, but proportional to the num-
ber of turns and surface area of the coil.

Series Resonant Circuit

A simple series resonant circuit is shown in Figure 15.
The expression for the impedance of the circuit is:

EQUATION 43:

where:

EQUATION 44:

EQUATION 45:

The impedance in Equation 43 becomes minimized
when the reactance component cancelled out each
other such that . This is called a resonance
condition. The resonance frequency is same as the
parallel resonant frequency given in Equation 37.

ω = = angular frequency

fo = resonant frequency

B = bandwidth

r = ohmic losses

Z R=

R LC

B
1

2πRC
---------------= Hz()

Q
Energy Stored in the System per One Cycle

Energy Dissipated in the System per One Cycle
--=

f0

B
----=

reac cetan
resis cetan
---------------------------=

ωL
r

-------=

1
ωcr
---------= For capacitance

For inductance

2πf

r = a dc ohmic resistance of coil
and capacitor

XL and XC = the reactance of the coil and
capacitor, respectively, such
that:

Q R
C
L
----=

Vo 2πfoNQSBo αcos=

2πf0N R
C
L

 SB0 αcos=

Z jω() r j XL XC–()+= Ω()

XL 2πfoL= Ω()

Xc
1

2πfoC
---------------= Ω()

XL XC=
DS00710A-page 6-46 1999 Microchip Technology Inc.

AN710
R

F
ID

6

S6.book Page 47 Thursday, March 2, 2000 7:59 AM
FIGURE 15: SERIES RESONANCE
CIRCUIT

The half power frequency bandwidth is determined by
r and L, and given by:

EQUATION 46:

The quality factor, Q, in the series resonant circuit is
given by:

The series circuit forms a voltage divider, the voltage
drops in the coil is given by:

EQUATION 47:

When the circuit is tuned to a resonant frequency such
as XL = XC, the voltage across the coil becomes:

EQUATION 48:

The above equation indicates that the coil voltage is a
product of input voltage and Q of the circuit. For exam-
ple, a circuit with Q of 40 can have a coil voltage that is
40 times higher than input signal. This is because all
energy in the input signal spectrum becomes squeezed
into a single frequency band.

EXAMPLE 6: CIRCUIT PARAMETERS

C

EIN
L

Eo

13.56 MHz

r

B
r

2πL
----------= Hz()

Q
f0

B
---- ωL

r
------- 1

rωC
-----------= = =

Vo

jXL

r jXL jXc–+
-------------------------------Vin=

Vo

jXL

r
--------Vin=

jQVin=

If the DC ohmic resistance r is 5 Ω, then the L and C
values for 13.56 MHz resonant circuit with Q = 40 are:

EQUATION 49:

XL Qrs 200Ω= =

L
XL

2πf

200
2π 13.56MHz()
-------------------------------------- 2.347= = = µH()

C
1

2πfXL

1
2π 13.56 MHz() 200()
--- 58.7= = = (pF)
 1999 Microchip Technology Inc. DS00710A-page 6-47

AN710

S6.book Page 48 Thursday, March 2, 2000 7:59 AM
TUNING METHOD

The circuit must be tuned to the resonance frequency
for a maximum performance (read range) of the device.
Two examples of tuning the circuit are as follows:

• Voltage Measurement Method:
a) Set up a voltage signal source at the

resonance frequency.

b) Connect a voltage signal source across the
resonant circuit.

c) Connect an Oscilloscope across the
resonant circuit.

d) Tune the capacitor or the coil while
observing the signal amplitude on the
Oscilloscope.

e) Stop the tuning at the maximum voltage.

• S-parameter or Impedance Measurement
Method using Network Analyzer:

a) Set up an S-Parameter Test Set (Network
Analyzer) for S11 measurement, and do a
calibration.

b) Measure the S11 for the resonant circuit.
c) Reflection impedance or reflection

admittance can be measured instead of the
S11.

d) Tune the capacitor or the coil until a
maximum null (S11) occurs at the
resonance frequency, fo. For the impedance
measurement, the maximum peak will occur
for the parallel resonant circuit, and
minimum peak for the series resonant
circuit.

FIGURE 16: VOLTAGE VS. FREQUENCY FOR RESONANT CIRCUIT

FIGURE 17: FREQUENCY RESPONSES FOR RESONANT CIRCUIT

f
fo

V

(a) (b) (c)

S11

f
fo fo

Z

f
fo

Z

f

Note 1: (a) S11 Response, (b) Impedance Response for a Parallel Resonant Circuit, and (c)
Impedance Response for a Series Resonant Circuit.

2: In (a), the null at the resonance frequency represents a minimum input reflection at
the resonance frequency. This means the circuit absorbs the signal at the frequency
while other frequencies are reflected back. In (b), the impedance curve has a peak
at the resonance frequency. This is because the parallel resonant circuit has a max-
imum impedance at the resonance frequency. (c) shows a response for the series
resonant circuit. Since the series resonant circuit has a minimum impedance at the
resonance frequency, a minimum peak occurs at the resonance frequency.
DS00710A-page 6-48 1999 Microchip Technology Inc.

AN710
R

F
ID

6

S6.book Page 49 Thursday, March 2, 2000 7:59 AM
READ RANGE OF RFID DEVICES

Read range is defined as a maximum communication
distance between the reader and tag. In general, the
read range of passive RFID products varies, depending
on system configuration and is affected by the following
parameters:

a) Operating frequency and performance of
antenna coils

b) Q of antenna and tuning circuit

c) Antenna orientation

d) Excitation current

e) Sensitivity of receiver

f) Coding (or modulation) and decoding (or
demodulation) algorithm

g) Number of data bits and detection (interpreta-
tion) algorithm

h) Condition of operating environment (electrical
noise), etc.

The read range of 13.56 MHz is relatively longer than
that of 125 kHz device. This is because the antenna
efficiency increases as the frequency increases. With a
given operating frequency, the conditions (a – c) are
related to the antenna configuration and tuning circuit.
The conditions (d – e) are determined by a circuit topol-
ogy of reader. The condition (f) is a communication pro-
tocol of the device, and (g) is related to a firmware
software program for data detection.

Assuming the device is operating under a given condi-
tion, the read range of the device is largely affected by
the performance of the antenna coil. It is always true
that a longer read range is expected with the larger size
of the antenna with a proper antenna design.
Figures 18 and 19 show typical examples of the read
range of various passive RFID devices.

FIGURE 18: READ RANGE VS. TAG SIZE FOR TYPICAL PROXIMITY APPLICATIONS*

FIGURE 19: READ RANGE VS. TAG SIZE FOR TYPICAL LONG RANGE APPLICATIONS*

Note: Actual results may be shorter or longer than the range shown, depending upon factors discussed above.

3 x 6 inch
Reader Antenna

Tag

Tag

Tag

Tag

~ 1.5 inches

4 inches

5 ~ 6 inches

6 ~ 7 inches

0.5-inch diameter

1-inch diameter

2-inch diameter

2-inch x 3.5-inch”
(Credit Card Type)

Qtag 40≥

20 x 55 inch
Long Range

0.5-inch diameter

7 ~ 9 inches

14 ~ 21 inches

25 ~ 30 inches

35 ~ 40 inches

Reader

2-inch diameter

 2-inch” x 3.5-inch

Tag

Tag

Tag

Tag

 (Credit Card Type)

1-inch diameter

Qtag 40≥
 1999 Microchip Technology Inc. DS00710A-page 6-49

AN710

S6.book Page 50 Thursday, March 2, 2000 7:59 AM
REFERENCES

[1] V. G. Welsby, The Theory and Design of Induc-
tance Coils, John Wiley and Sons, Inc., 1960.

[2] Frederick W. Grover, Inductance Calculations
Working Formulas and Tables, Dover Publications,
Inc., New York, NY., 1946.

[3] Keith Henry, Editor, Radio Engineering Handbook,
McGraw-Hill Book Company, New York, NY., 1963.

[4] James K. Hardy, High Frequency Circuit Design,
Reston Publishing Company, Inc.Reston, Virginia,
1975.
DS00710A-page 6-50 1999 Microchip Technology Inc.

AN725
Optimizing Read-Range of the 13.56 MHz Demonstration Reader

R
F

ID

6

S6.book Page 51 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

The 13.56 MHz Anticollision Reader in the DV103003
microID™ Developer's Kit is designed to demonstrate
basic operation of the MCRF355, but not to show the
limits of its performance. The MCRF355 is a very
advanced, carrier-independent tagging IC with the low-
est power consumption and highest speed in the indus-
try as of this writing. Designing a reader that takes
advantage of the inherent performance of the
MCRF355 involves two primary optimizations:

a) Increasing the speed of the digital processing by
using a high-end PICmicro® microcontroller
(MCU) to sample the data and calculate the
checksums. This will help take advantage of the
2.2 msec data burst time and high-speed anti-
collision capabilities of the MCRF355.

b) Increasing the reader’s carrier field volume and/
or power output in order to provide power to the
tag at longer distance from the reader. This
application note describes one method of
accomplishing this improvement.

Following are the steps to achieve a read-range of 12
inches to 18 inches using a 2-inch x 2-inch sample tag
based on MCRF355, properly tuned to the carrier fre-
quency.

1. Disconnect the power cable and RS-232 cable
from the reader, and remove the six screws from
the back of the case.

2. Make an antenna with the following parameters:

a) Use AWG #18 ~ #20 wire.

b) Make one turn: a rectangular loop with
7.85-inches x 7.75-inches as shown in
Figure 1. This antenna will fit in PAC TEC’s
CF-125 enclosure. The enclosure is avail-
able from PAC TEC or its distributors. This
will result in about 800 nH ~ 1 µH of induc-
tance.

c) This inductance requires 172 pF ~ 138 pF
of capacitance to tune the antenna circuit to
13.56 MHz.

3. Connect the new inductor (antenna) and capac-
itor to the demo reader board by following these
steps:

a) Disconnect the C31, C9, and C10 from the
circuit board.

b) Disconnect L3 (printed antenna) from the
circuit. This can be accomplished by cutting
off the metallic trace on the board.

c) Connect the new resonant capacitance
(172 pF ~ 138 pF) at C31, C9, C10.

d) Connect the new antenna at L3. Connect
one side of the antenna to the resonant
capacitor and the other side to ground.

4. Tuning the antenna circuit:

The benefit of this modification will be realized only
if the antenna circuit is tuned precisely to the
13.56 MHz carrier. Here is one method for tuning
the circuit:

a) Connect an oscilloscope across the new
antenna (L3).

b) Observe the voltage while adjusting the
capacitance (C31, C9, C10).

c) Adjust the cap to + and - direction and stop
at the maximum voltage.

d) Bring the voltage to above 200 VPP.

5. Read-Range Measurement:

Reconnect the power and RS-232 cables to the
reader. The reader should now provide between
12 ~ 18 inches of read range. If it does not exhibit
this performance, check the following:

a) Check the antenna voltage again, bringing
it to above 200 VPP.

b) Adjust VR1 in the reader circuit; VR1 is very
sensitive to voltage. Connect a 1 MΩ resis-
tor across C17 permanently. Then, connect
a Digital Volt Meter across the resistor, and
adjust the VR1 between 4.7-volts to
4.87-volts while measuring the read range.
Set the VR1 for maximum range.

Author: Youbok Lee, Ph.D
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS00725A-page 6-51

AN725

S6.book Page 52 Thursday, March 2, 2000 7:59 AM
FIGURE 1: ANTENNA GEOMETRY

1.1 Formula for Inductance Calculation

EQUATION 1: RECTANGULAR LOOP

where:

EQUATION 2: SQUARE LOOP

where:

Wire = AWG #18 ~ #20

7.85-inches

7.
75

-in
ch

es

PAC TEC CF-125

Lrect nH[] N
2() 10.16()= 2 w h+() 2 h

2
w

2
++– h

h h
2

w
2

++
w

ln– w
w h

2
w

2
++

h

ln– h
2w
a

 ln w

2h
a

 ln+ +

w

h

N = number of turns

w = width of the rectangle (inches)

h = height of the rectangle (inches)

a = wire radius (inches)

Lsquare nH[] N
2() 20.32()w w

a

 ln 0.774–=

w

w

N = number of turns

w = length of one side (inches)

a = wire radius (inches)
DS00725A-page 6-52 1999 Microchip Technology Inc.

TB019
Contactless Programmer Interface Protocol

R
F

ID

6

S6.book Page 53 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

The following is a description of how to interface to
Microchip’s contactless programmer for use with the
MCRF2xx family of RF/ID products. The programmer
will check for a blank, unlocked MCRF2xx tag before
initiating programming. Once programming has been
completed, the programmer will return a pass or fail
code. The programmer communicates at 9600 baud, 8
data bits, 1 stop bit, and no parity.

Programmer Wake-up

Sending an ASCII ‘W’ (57hex) to the programmer on
the RS-232 interface will tell the programmer to wake
up and be prepared to receive commands. The pro-
grammer will reply with ASCII ‘R’ (52h) when it is ready.

Blank Check

Sending an ASCII ‘T’ (54h) will signal the programmer
to read the part about to be contactlessly programmed
and check to see if it is blank (all 1’s) and unlocked. If
the part is blank and unlocked the programmer will
reply with an ASCII ‘Y’ (59h) to signify programming
should continue. If the part is not blank or not unlocked,
the programmer will reply with an ASCII ‘N’ (4Eh) to
indicate an error. It is always necessary to perform a
blank check before programming MCRF2xx devices.

Sending Data to the Programmer

If the programmer responds with an ASCII ‘Y’ to indi-
cate the part is blank, the PC can begin passing the 16
bytes of required data to the programmer data buffer.

The data should be passed in ASCII equivalent hex
bytes and the programmer will acknowledge the receipt
of each byte by echoing back what it has received. For
example, to program 05 hex data into the first byte the
PC would send ASCII ‘0’ (30h), the programmer would
echo 0 back. Next the programmer would send ASCII 5
(35h), and the programmer will echo back 5. All of the
data must be sent in UPPERCASE ASCII equivalent
only. See Figure 1 for a typical programming sequence.

Program and Verify the Device

After 16 bytes of data have been received by the pro-
grammer, it is ready to begin programming the data
buffer into the MCRF2xx. Sending an ASCII ‘V’ (56h)
will tell the programmer to program the 16 bytes it has
received and verify that the device has programmed
properly. When the device programs properly, the pro-
grammer replies with ASCII ‘y’ (79h). If the program-
ming was not successful, the programmer replies with
ASCII ‘n’ (6Eh). A successful programming operation
should take less than 2 seconds per device.

Error Conditions

If the PC does not send a byte to the programmer for
more than 3 seconds, the programmer will timeout and
reset. The entire programming sequence will need to
be repeated, beginning with the programmer wake-up
byte ASCII ‘W’.

If invalid bytes are sent to the programmer during the
loading of the program buffer, the programmer will
return an ASCII ‘Q’ (51h). The entire programming
sequence will need to be repeated, beginning with the
programmer wake-up byte ASCII ‘W’.

Author: Shannon Poulin
Microchip Technology Inc.
 1999 Microchip Technology Inc. DS91019A-page 6-53

TB019

S6.book Page 54 Thursday, March 2, 2000 7:59 AM
FIGURE 1: TYPICAL SEQUENCE

The following is the programming sequence necessary to

PC Send
‘W’ to the
programmer

Programmer
replies with
‘R’ to the PC

and verify the device.
the programmer, and instruct the programmer to program

wake up the programmer, check if a MCRF2xx part is
blank, unlocked and ready to be programmed, send
F1E2D3C4B5A6978888796A5B4C3D2E1F ASCII data to

STEP1

STEP2
PC Send
‘T’ to the
programmer

Programmer
replies with ‘Y’
if the device
is OK and ‘N’ if
there is an error

STEP3

PC Send
‘F’ to prog.

Programmer replies
with ‘F’

WAKE UP

VERIFY BLANK

PASS 16 BYTES
OF DATA

PC Send
‘1’ to prog.

Programmer replies
with ‘1’

PC Send
‘E’ to prog.

Programmer replies
with ‘E’

PC Send
‘2’ to prog.

Programmer replies
with ‘2’

PC Send
‘2’ to prog.

Programmer replies
with ‘2’

PC Send
‘E’ to prog.

Programmer replies
with ‘E’

PC Send
‘1’ to prog.

Programmer replies
with ‘1’

PC Send
‘F’ to prog.

Programmer replies
with ‘F’

F

1

E

2

2

E

1

F

Byte 1

Byte 2

Byte 15

Byte 16

STEP4
PROGRAM/VERIFY

PC Send ‘V’ to the
programmer to initiate
a program/verify cycle

Programmer
replies with ‘y’
if the device
programs OK and
‘n’ if there is an
error
DS91019A-page 6-54 1999 Microchip Technology Inc.

TB019
R

F
ID

6

S6.book Page 55 Thursday, March 2, 2000 7:59 AM
ASCII CHARACTER SET

Most Significant Characters

Hex 0 1 2 3 4 5 6 7
L

ea
st

 S
ig

n
if

ic
an

t
C

h
ar

ac
te

rs

0 NUL DLE Space 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 Bell ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
 1999 Microchip Technology Inc. DS91019A-page 6-55

TB019

S6.book Page 56 Thursday, March 2, 2000 7:59 AM
NOTES:
DS91019A-page 6-56 1999 Microchip Technology Inc.

TB023
Contact Programming Support

R
F

ID

6

S6.book Page 57 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

The MCRF200 and MCRF250 are 125 kHz RF tags,
which can be contact or contactlessly programmed.
The contact programming of the device is performed by
Microchip Technology, Inc. upon customer request. The
customer can choose any ID code suitable to their
application subject to a minimum order quantity. These
devices can also be contactlessly programmed after
encapsulation using the Microchip microID contactless
programmer (PG103001).

DEFINITIONS

First, the customer has to define the following operation
options of the MCRF200 (DS21219) and MCRF250
(DS21212):

Second, the ID codes and series numbers must be
supplied by the customer or an algorithm can be
specified by the customer. This section describes only
the case in which actual serial numbers are supplied.

The customer must supply the ID codes and series
numbers on floppy disk or via email. The codes should
conform to the SQTP format below:

FILE SPECIFICATION

SQTP codes supplied to Microchip must comply with
the following format:

The ID code file is a plain ASCII text file from floppy disk
or email (no headers).

The code files should be compressed. Please make
self-extracting files.

The code files are used in alphabetical order of their file
names (including letters and numbers).

Used (i.e., programmed) code files are discarded by
Microchip after use.

Each line of the code file must contain one ID code for
one IC.

The code is in hexadecimal format.

The code line is exactly as long as the selected code
length (e.g., code length = 64, ID code = 16 hex char-
acters = 64-bit number).

Each line must end with a carriage return.

Each hexadecimal ID code must be preceded by a
decimal series number.

Series number and ID code must be separated by a
space.

The series number must be unique and ascending to
avoid double programming.

The series numbers of two consecutive files must also
count up for proper linking.

FIGURE 1: EXAMPLE OF TWO CODE FILES, CODE LENGTH = 64 BITS

• Bit rate Defined as clocks per bit e.g.,
Fc/16, Fc/32, Fc/40, Fc/50, Fc/64,
Fc/80, Fc/100, and Fc/128

• Modulation FSK, PSK1, PSK2, ASK Direct

• Encoding NRZ_L (Direct), Biphase_L
(Manchester), Differential
Biphase_S

• Code length 32, 48, 64, 96, and 128 bits

Author: Pete Sorrells
Microchip Technology Inc.

FILE0000.TXT
00001 A34953DBCA001F26
00002 C4F55308B492A783
00003 38FAC359981200B7
 " "
12345 9278256DCAFE8756

FILE0001.TXT
12346 EA43786937DCFB87
12347 459724FCA487ED24
 " "
 " "

Last Code

Serial Number Carriage Return

Filename

Code File

Next Code

ID Code

Space Necessary
 1999 Microchip Technology Inc. DS91023A-page 6-57

TB023

S6.book Page 58 Thursday, March 2, 2000 7:59 AM
NOTES:
DS91023A-page 6-58 1999 Microchip Technology Inc.

TB031
Microchip Development Kit Sample Format

R
F

ID

6

S6.book Page 59 Thursday, March 2, 2000 7:59 AM
Notes:

• Users can program all 154 bits of the MCRF355/360. The array can be programmed in any custom format and
with any combination of bits.

• The format presented here is used for Microchip microIDTM Development System (DV103003) and can be ordered
as production material with a unique customer number.

• See TB032 for information on ordering custom programmed production material.
• The Microchip Development System (DV103003) uses nine 1’s (111111111) as header.
• The preprogrammed tag samples in the development kit have hex 11(= 0001 0001) as the customer number.
• For the development system, users can program the customer number (1 byte) plus the 13 bytes of user data, or

they can deselect the “Microchip Format” option in the MicroIDTM RFLAB and program all 154 bits in any format.
• When users program the samples using the MicroIDTM RFLAB, the RFLAB calculates the checksum (2 bytes)

automatically by adding up all 14 bytes (customer number + 13 bytes of user data), and put into the checksum
field in the device memory. See Example 1 for details.

• When the programmed tag is energized by the reader field, the tag outputs all 154 bits of data.
• When the demo reader detects data from the tag, it reports the 14 bytes of the data (customer number plus 13

bytes of user data) to the host computer if the header and checksum are correct. The reader does not send the
header and checksum to the host computer.

• The “MicroIDTM RFLab” or a simple terminal program such as “terminal.exe” can be used to read the reader’s out-
put (28 hex digits) on the host computer.

• When the demo reader is used in the terminal mode (“terminal.exe), the tag’s data appear after the first two
dummy ASCII characters (GG). See Example 2 for details.

EXAMPLE 1: CHECKSUM

EXAMPLE 2: READER’S OUTPUT IN TERMINAL MODE (“TERMINAL.EXE”)

111111111
Customer
Number 0 Byte 130 0 Byte 12 0 … 0 Byte 2 0 Byte 1 0 Checksum 0 Checksum 0

Header 13 Bytes of User Data 16-Bit Checksum

9 bit header

8 bit customer number

104 bits (13 x 8) of user data

17 bits of zeros between each byte, header, and checksum

16 bits of checksum

Total: 154 bits

Checksum (xxxxxxxx xxxxxxxx) = Byte 1 + Byte 2 ++ Byte 13 + Customer Number (1 byte)

The demo reader outputs GG+28 hex digits, i.e., GG 12345678901234567890ABCDEFGF.

The first two ASCII characters (GG) are dummy characters.

The tag’s data are the next 28 hex digits (112 bits) after the first two ASCII characters (GG).
 1999 Microchip Technology Inc. DS91031B-page 6-59

TB031

S6.book Page 60 Thursday, March 2, 2000 7:59 AM
NOTES:
DS91031B-page 6-60 1999 Microchip Technology Inc.

TB032
MCRF355/360 Factory Programming Support (SQTPSM)

R
F

ID

6

S6.book Page 61 Thursday, March 2, 2000 7:59 AM
INTRODUCTION

The MCRF360 and MCRF360 are 13.56 MHz RF tags
which can be contact programmed. The contact pro-
gramming of the device can be performed by the user
or factory-programmed by Microchip Technology, Inc.
upon customer request. All 154 bits of data may be pro-
grammed in any format or pattern defined by the cus-
tomer.

For factory programming, ID codes and series numbers
must be supplied by the customer or an algorithm may
be specified by the customer. This technical brief
describes only the case in which identification codes
(ID) and series numbers are supplied. The customer
may supply the ID codes and series numbers on floppy
disk or via email. The codes must conform to the Seri-
alized Quick Turn ProgrammingSM (SQTPSM) format
below:

FILE SPECIFICATION

SQTP codes supplied to Microchip must comply with
the following format:

The ID code file is a plain ASCII text file from floppy disk
or email (no headers).

If code files are compressed, they should be
self-extracting files.

The code files are used in alphabetical order of their file
names (including letters and numbers).

Used (i.e., programmed) code files are discarded by
Microchip after use.

Each line of the code file must contain one ID code for
one IC.

The code is in hexadecimal format.

The code line is exactly 154 bits (39 hex characters,
where the last 2 bits of the last character are don’t
cares).

Each line must end with a carriage return.

Each hexadecimal ID code must be preceded by a
decimal series number.

Series number and ID code must be separated by a
space.

The series number must be unique and ascending to
avoid double programming.

The series numbers of two consecutive files must also
count up for proper linking.

Author: Shannon Poulin
Microchip Technology Inc.

Serialized Quick Turn Programming (SQTP) is a service mark of Microchip Technology inc.
 1999 Microchip Technology Inc. DS91032A-page 6-61

TB032

S6.book Page 62 Thursday, March 2, 2000 7:59 AM
FIGURE 1: EXAMPLE OF TWO SEQUENTIAL CODE FILES

FILE0000.TXT
00001 A34953DBCA001F261234567890ABCDEF0123457
00002 C4F55308B492A7831234567890ABCDEF012345B
00003 38FAC359981200B71234567890ABCDEF012345F
 " "
12345 9278256DCAFE87561234567890ABCDEF987654B

FILE0001.TXT
12346 EA43786937DCFB871234567890ABCDEF987654B
12347 459724FCA487ED241234567890ABCDEF9876547
 " "
 " "

Last Code

Series Number Carriage Return

Filename

Code File

Next Code

ID Code

Space Necessary

Filename
DS91032A-page 6-62 1999 Microchip Technology Inc.

SECTION 7
REFERENCE DESIGNS

R
eferen

ce D
esig

n
s

7

S7.book Page i Thursday, March 2, 2000 7:58 AM
Uninterruptible Power Supply Reference Design - PICREF-1 ..7-1
Intelligent Battery Charger Reference Design - PICREF-2 ...7-3
Watt-Hour Meter Reference Design - PICREF-3 ..7-5
PICDIM Lamp Dimmer for the PIC12C508 - PICREF-4..7-7
13.56 MHz Reader Reference Design - microID™ 13.56 MHz Design Guide..7-9
FSK Reader Reference Design - microID™ 125 kHz Design Guide ..7-11
PSK Reader Reference Design - microID™ 125 kHz Design Guide ..7-13
ASK Reader Reference Design - microID™ 125 kHz Design Guide ..7-15
FSK Anticollision Reader Reference Design - microID™ 125 kHz Design Guide7-17
 1999 Microchip Technology Inc. DS00711A-page 7-i

S7.book Page ii Thursday, March 2, 2000 7:58 AM
DS00711A-page 7-ii 1999 Microchip Technology Inc.

Uninterruptible Power Supply Reference Design

PICREF-1

R
eferen

ce D
esig

n
s

7

S7.book Page 1 Thursday, March 2, 2000 7:58 AM
INTRODUCTION

At times, power from a wall socket is neither clean nor
uninterruptible. Many abnormalities such as blackouts,
brownouts, spikes, surges, and noise can occur. Under
the best conditions, power interruptions can be an
inconvenience. At their worst, they can cause loss of
data in computer systems or damage to electronic
equipment.

It is the function of an Uninterruptible Power Supply
(UPS) to act as a buffer and provide clean, reliable
power to vulnerable electronic equipment. The basic
concept of a UPS is to store energy during normal
operation (through battery charging) and release
energy (through DC to AC conversion) during a power
failure.

UPS systems are traditionally designed using analog
components. Today these systems can integrate a
microcontroller with AC sine wave generation, offering
the many benefits listed below.

PIC17C43 Microcontroller Benefits

• High Quality Sine Wave - High throughput allows
for high quality output

• Flexibility - core control features and operations
can be changed with software modifications only

• Transportability of Design

• Variable Loop Response

• Digital Filtering
• Parts and Complexity Reduction

• Peripheral Integration

• Ease of Interfacing

• Testability

• Time to Market

PICREF-1 OVERVIEW

The Microchip Technology PICREF-1 UPS Reference
Design offers a ready-made uninterruptible power sup-
ply solution with the flexibility of a microcontroller.

The PIC17C43 microcontroller handles all the control
of the UPS system. The PIC17C43 is unique because
it provides a high performance and low cost solution
not found in other microcontrollers.

The PIC17C43 PWM controls an inverter whose out-
put, when filtered, results in a sinusoidal AC output
waveform. Fault signaling can be initiated internal or
external to the PIC17C43 depending on the type of
fault. A fault will disable the entire inverter. The output
voltage and current will be monitored by the PIC17C43
to make adjustments “real-time” to correct for DC offset
and load changes.

The PIC17C43 controls all module synchronization as
well as inverter control and feedback. The PIC17C43
uses zero crossing for synchronization of input voltage/
phase to output voltage/phase. All internal module syn-
chronization is handled by the PIC17C43.

The control algorithms and software are written in C for
maintainability and transportability.

PICREF-1 Key Features

• True UPS Topology

• True Sinusoidal Output

• Point-to-Point Output Correction

• 1400 VA Rating

• 120/240 V Input

For complete documentation of DS30450C,
PICREF1, Uninterruptible Power Supply
Reference Design, please visit our
worldwide website @www.microchip.com

Information contained in this publication is intended through suggestion only and may be superseded by updates. No
representation or warranty is given and no liability is assumed by Microchip Technology Inc. with respect to the accu-
racy or use of such information, or infringement of patents arising from such use or otherwise. It is the responsibility
of each user to ensure that each UPS is adequately designed, safe, and compatible with all conditions encountered
during its use. “Typical” parameters can and do vary in different applications. All operating parameters, including
“Typicals”, must be validated for each customer application by the customer's technical experts. Use of Microchip's
products as critical components in life support systems is not authorized except with express written approval by
Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.
 1999 Microchip Technology Inc. DS30450C-page 7-1

PICREF-1

S7.book Page 2 Thursday, March 2, 2000 7:58 AM
NOTES:

ACKNOWLEDGMENTS

Project Lead Engineer:
Robert Schreiber, Microchip Technology

Reference Design Documentation:
Beth McLoughlin, Microchip Technology

System and Code Development:
Airborne Power (Consultants)
Guy Gazia (guyg@airbornepower.com),
David Karipides (davek@airbornepower.com),
Terry Allinder
DS30450C-page 7-2 1999 Microchip Technology Inc.

Intelligent Battery Charger Reference Design

PICREF-2

R
eferen

ce D
esig

n
s

7

S7.book Page 3 Thursday, March 2, 2000 7:58 AM
INTRODUCTION

Typically, simple battery chargers do not provide the
intelligence to charge different battery technologies or
batteries with the same technology but different volt-
ages and capacities. At best, this may leave the battery
improperly charged. At worst, it can pose a serious
safety hazard. A microcontroller can provide the intelli-
gence to overcome these problems.

In addition to intelligent control, the microcontroller can
provide a low-cost, flexible solution for charging batter-
ies. Complete battery charging applications may be
developed quickly using a microcontroller. Add to this
the serial communication capability of the microcontrol-
ler, real-time data logging and monitoring is possible.

Simple battery chargers use all analog components to
accomplish their function. However, by using a micro-
controller, a battery charger can be made intelligent.

Microcontroller Benefits

• Flexibility to handle different technologies, volt-
ages and capacities.

• Variable Voltage Generation Control
• Charge/Discharge Multiple Battery Packs

• “Windowed” A/D for High Resolution

PICREF-2 OVERVIEW

The Microchip Technology PICREF-2 Intelligent Bat-
tery Charger (IBC) Reference Design offers a ready-
made battery charger solution. This Reference Design
is targeted to battery charger applications such as
camcorders, portable audio equipment, portable
phones, and portable power tools.

With the PICREF-2 Reference Design, the user will be
able to simply pick their complete battery charging
system by completing the steps listed:

1. Pick the required battery management features
from the modular source code provided.

2. Pick the critical battery pack parameters and mod-
ify the global constants to those specifications.

The hardware design contains the necessary circuitry
to support charging and discharging algorithms, charge
termination methods, and RS-232 communications.

The modular source code is written in C and consists
of the charge termination algorithms, discharge algo-
rithm, interdevice communications, and RS-232 com-
munications modules.

The PC based software provides a means for
requesting and displaying battery status information.

PICREF-2 Key Features

• Compatibility Across Battery Technologies

• Low Cost
• Flexible Development Environment

• Fast Charge Rate

• High Charge Current Capability

• High Discharge Current Capability for Conditioning

• Real-Time Debug

• Data Logging

• User Selectable Embedded Charge Termination
Algorithms

For complete documentation of DS30145C,
PICREF-2, Intelligent Battery Charger
Reference Design, please visit our
worldwide website @www.microchip.com

Information contained in this publication is intended through suggestion only and may be superseded by updates. No
representation or warranty is given and no liability is assumed by Microchip Technology Inc. with respect to the accu-
racy or use of such information, or infringement of patents arising from such use or otherwise. It is the responsibility
of each user to ensure that each Battery Charger is adequately designed, safe, and compatible with all conditions
encountered during its use. “Typical” parameters can and do vary in different applications. All operating parameters,
including “Typicals”, must be validated for each customer application by the customer's technical experts. Use of
Microchip's products as critical components in life support systems is not authorized except with express written
approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.
 1999 Microchip Technology Inc. DS30451C-page 7-3

PICREF-2

S7.book Page 4 Thursday, March 2, 2000 7:58 AM
NOTES:

ACKNOWLEDGMENTS

Project Lead Engineer:
Robert Schreiber,
Microchip Technology, Inc.

Reference Design Documentation:
Beth McLoughlin,
Microchip Technology, Inc.

System and Code Development:
TriSys Inc.,Consultants

TRADEMARKS

Duracell is a registered trademark of Duracell.
Windows is a trademark of Microsoft Corp.
Microsoft is a registered trademark of Microsoft Corp.
Yuasa is a trademark of Yuasa.
I2C is a trademark of Philips Corporation.
DS30451C-page 7-4 1999 Microchip Technology Inc.

S7.book Page 5 Thursday, March 2, 2000 7:58 AM
PICREF-3
Watt-Hour Meter Reference Design
R
eferen

ce D
esig

n
s

7

INTRODUCTION

The PICREF-3 Watt-Hour Meter (WHM) Reference
Design shows the use of a mixed signal microcontroller
in an AC power measurement application.

The traditional sensor signal processing chain consist-
ing of sensor, signal conditioning electronics, A/D con-
verter and microcontroller is abbreviated by the use of
the mixed signal microcontroller with its on-board A/D
converter.

The mixed signal microcontroller used is the Microchip
PIC16C924. This microcontroller has five A/D chan-
nels, two of which are used to digitize voltage and cur-
rent signals. The microcontroller features of pulse width
modulation (PWM) and direct liquid crystal display
(LCD) drive are utilized to further reduce cost and parts
count.

The PWM output feature is used with a single pole RC
filter to provide a comparator reference with 10 bits of
resolution.

The direct LCD drive is used to drive an 8-digit,
7-segment LCD.

MICROCONTOLLER BENEFITS

The use of a PIC16C924 microcontroller in a power
meter offers the following advantages:

• Real-Time Electrical Measurement and
Power/Energy Calculations

• Direct LCD Drive
- Present Time

- Total Watt-Hours (Whr)

- Maximum or Cumulative Demand

• Customization

• Quick Time-to-Market

PICREF-3 OVERVIEW

The WHM Reference Design provides a cost effective
circuit capable of monitoring and displaying power and
energy consumption on worldwide power mains in the
90V to 264V range.

The PIC16C924 microcontroller shows that the
real-time events of sampling voltage and current wave-
forms can be interleaved with power and energy calcu-
lations. All measurements and calculations are
performed once per second.

The current waveforms measured are linear for resis-
tive and inductive loads and non-linear for switching
power supplies. The current waveform is sampled dur-
ing the positive current cycle with waveform symmetry
assumed between positive and negative cycles (valid
for the measured waveforms). A hardware method for
full cycle current measurements and firmware methods
for complex current waveform shapes are provided in
the Design Modifications section.

PICREF-3 KEY FEATURES

• Accepts polarized and unpolarized worldwide
power mains.

• Measures and displays AC Voltage (90V to 264V),
Load Current and Power Factor.

• Measures power line frequency (47 Hz to 63 Hz).

• Calculates Watts, Watt-Hrs and cumulative
Watt-Hrs and displays these values, as well as
frequency and time.

• True RMS measurements.

• Firmware control of triac load switch on/off state.

• Real time clock during power-saving sleep mode.
• Hibernate mode to save on battery life during storage.

• Battery back-up for microcontroller.

For complete documentation of DS30452A,
PICREF-1, Watt-Hour Meter Reference
Design, please visit our worldwide website
@www.microchip.com
 1999 Microchip Technology Inc. DS30452A-page 7-5

INFORMATION CONTAINED IN THIS PUBLICATION IS INTENDED THROUGH SUGGESTION ONLY AND MAY BE SUPERSEDED BY UPDATES.
NO REPRESENTATION OR WARRANTY IS GIVEN AND NO LIABILITY IS ASSUMED BY MICROCHIP TECHNOLOGY INC. WITH RESPECT TO
THE ACCURACY OR USE OF SUCH INFORMATION, OR INFRINGEMENT OF PATENTS ARISING FROM SUCH USE OR OTHERWISE. IT IS
THE RESPONSIBILITY OF EACH USER TO ENSURE THAT EACH WATT-HOUR METER IS ADEQUATELY DESIGNED, SAFE, AND COMPATI-
BLE WITH ALL CONDITIONS ENCOUNTERED DURING ITS USE. "TYPICAL" PARAMETERS CAN AND DO VARY IN DIFFERENT APPLICA-
TIONS. ALL OPERATING PARAMETERS, INCLUDING "TYPICALS", MUST BE VALIDATED FOR EACH CUSTOMER APPLICATION BY THE
CUSTOMER’S TECHNICAL EXPERTS. USE OF MICROCHIP’S PRODUCTS AS CRITICAL COMPONENTS IN LIFE SUPPORT SYSTEMS IS NOT
AUTHORIZED EXCEPT WITH EXPRESS WRITTEN APPROVAL BY MICROCHIP. NO LICENSES ARE CONVEYED, IMPLICITLY OR OTHERWISE,
UNDER ANY INTELLECTUAL PROPERTY RIGHTS.

PICREF-3

S7.book Page 6 Thursday, March 2, 2000 7:58 AM
NOTES:

ACKNOWLEDGMENTS

Hardware Design and Firmware Development:
Dennis E. Coleman, Sr. Applications Engineer,
Microchip Technology, Inc.
dennis.coleman@microchip.com

Documentation:
Beth McLoughlin, Applications Engineer,
Microchip Technology, Inc.
DS30452A-page 7-6 1999 Microchip Technology Inc.

PICDIM Lamp Dimmer for the PIC12C508

PICREF-4

S7.book Page 7 Thursday, March 2, 2000 7:58 AM
INTRODUCTION

The PIC12CXXX family of devices adds a new twist to
the 8-bit microcontroller market by introducing for the
first time fully functional microcontrollers in an eight
pin package. These parts are not stripped down
versions of their larger brethren, they add features in a
package smaller than available ever before for
microcontrollers. Using the familiar 12-bit opcode
width of the PIC16C5X family with the same TMR0
module, Device Reset Timer, and WatchDog Timer
(WDT), the PIC12C5XX family adds an internal 4MHz
oscillator main clock, serial programming, wake-up on
change, user selectable weak pullups, and
multiplexing of the MCLR, T0CKI, OSC1, and OSC2
pins.

This combination of familiar and new features in a
compact package gives the designer unprecedented
flexibility to produce designs which are much cheaper
and smaller than ever before possible, and allows the
replacement of even mundane devices like timers and
discrete components economically.

This reference note describes an application where
the use of a microcontroller was not previously
economically feasible for any but the highest end
products: lamp dimming.
 1999 Microchip Technology Inc. DS40171A-page 7-7

Information contained in this publication is intended through suggestion only and may be superseded by updates. No
representation or warranty is given and no liability is assumed by Microchip Technology Inc. with respect to the accu-
racy or use of such information, or infringement of patents arising from such use or otherwise. It is the responsibility
of each user to ensure that each UPS is adequately designed, safe, and compatible with all conditions encountered
during its use. “Typical” parameters can and do vary in different applications. All operating parameters, including
“Typicals”, must be validated for each customer application by the customer's technical experts. Use of Microchip's
products as critical components in life support systems is not authorized except with express written approval by
Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

For complete documentation of DS40171A, PICREF-4, PICDIM Lamp Dimmer for the PIC12C508
Reference Design, please visit our worldwide website @www.microchip.com

R
eferen

ce D
esig

n
s

7

PICREF-4

S7.book Page 8 Thursday, March 2, 2000 7:58 AM
NOTES:

ACKNOWLEDGMENTS

Project Lead Engineer:
Scott Fink

System and Code Development:
Scott Fink
DS40171A-page 7-8 1999 Microchip Technology Inc.

microID™ 13.56 MHz DESIGN GUIDE

13.56 MHz Reader Reference Design

R
eferen

ce D
esig

n
s

7

S7.book Page 9 Thursday, March 2, 2000 7:58 AM
1.0 INTRODUCTION
This chapter provides a reference guide for the
13.56 MHz reader designer. The schematic included in
this chapter is for the 13.56 MHz Reference Reader
included in the DV103003 microID™ Developer’s Kit.
The circuit is designed for short read-range applica-
tions. The basic design can be modified for long-range
or other applications with MCRF355/360 devices. An
electronic copy of the PICmicro® microcontroller
source code is available upon request.

2.0 READER CIRCUITS
The RFID reader consists of transmitting and receiving
sections. It transmits a carrier signal (13.56 MHz),
receives the backscattered signal from the tag, and
performs data processing. The reader also communi-
cates with an external host computer. A basic block dia-
gram of a typical RFID reader is shown in Figure 2-1.

The transmitting section contains a 13.56 MHz signal
oscillator (74HC04), power amplifier (Q2), and RF tun-
ing circuits. The tuning circuit matches impedance

between the antenna coil circuit and the power driver at
13.56 MHz. The radiating signal strength from the
antenna must comply with government regulations. For
best performance, the antenna coil circuit must be
tuned to the same frequency of the tag. The design for
antenna circuits is given in Application Note AN710
(DS00710).

The receiving section contains an envelope detector
(D6), hi-pass filters, and amplifiers (U2 and U3). When
the tag is energized, it transmits 154 bits of data that is
encoded in Biphase-L (Manchester). In the Manchester
encoding, data ‘1’ is represented by a logic high-to-low
level change at midclock, and data ‘0’ is represented by
a low-to-high level change at midclock. There is always
a level change at middle of every bit clock.

For complete documentation of DS21311A,
microID™ 13.56 MHz Design Guide, please
visit our worldwide website @www.micro-
chip.com.

FIGURE 2-1: FUNCTIONAL BLOCK DIAGRAM OF TYPICAL RFID READER

13.56 MHz
Signal Oscillator Power Amplifier Tuning Circuit

Ant.
 CoilMicrocontroller Filter and Envelope

Detector

Serial Interface
 (RS232)

Host Computer

Amplifier

microID is a trademark of Microchip Technology Inc.
 1999 Microchip Technology Inc. DS21311A-page 7-9

PICmicro is a registered trademark of Microchip Technology In.

microID™ 13.56 MHz Design Guide

S7.book Page 10 Thursday, March 2, 2000 7:58 AM
NOTES:
DS21311A-page 7-10 1999 Microchip Technology Inc.

microID™ 125 kHz DESIGN GUIDE

FSK Reader Reference Design

R
eferen

ce D
esig

n
s

7

S7.book Page 11 Thursday, March 2, 2000 7:58 AM
1.0 INTRODUCTION
This application note is written as a reference guide for
FSK reader designers. Microchip Technology Inc.
provides basic reader electronics circuitry for the
MCRF200 customers as a part of this design guide.
The circuit is designed for a read range of 3 ~ 5 inches
with an access control card. The microID FSK Reader
(demo unit), which is built based on the FSK reference
design, is available in the microID Designers Kit
(DV103001). The circuit can be modified for longer
read range or other applications with the MCRF200. An
electronic copy of the FSK microID PICmicro® source
code is available upon request.

2.0 READER CIRCUITS
The RFID reader consists of transmitting and receiving
sections. It transmits a carrier signal, receives the
backscattering signal, and performs data processing.
The reader also communicates with an external host
computer. A basic block diagram of the typical RFID
reader is shown in Figure 2-1.

For complete documentation of DS51137B,
microID™ 125 kHz Design Guide, please visit
our worldwide website @www.micro-
chip.com.

FIGURE 2-1: BLOCK DIAGRAM OF TYPICAL RFID READER FOR FSK SIGNAL (125 kHz)

(4 MHz Crystal Oscillator)
Carrier Signal Amplifier

 (Power Driver)

Envelope Detector
Filter, Amplifier,

and Pulse ShapingInterface with
Host Computer

Transmitting Section

Antenna Coil

CLK

To Host Computer

Serial Interface (RS-232)

125 kHz

Time Base Signal Generator

Microcontroller
Data Decoding

Receiving Section

÷ 32
 1999 Microchip Technology Inc. DS51137B-page 7-11

PICmicro is a registered trademark of Microchip Technology Inc.

microID™ 125 kHz Design Guide

S7.book Page 12 Thursday, March 2, 2000 7:58 AM
NOTES:
DS51137B-page 7-12 1999 Microchip Technology Inc.

microID™ 125 kHz DESIGN GUIDE

PSK Reader Reference Design

R
eferen

ce D
esig

n
s

7

S7.book Page 13 Thursday, March 2, 2000 7:58 AM
1.0 INTRODUCTION
This application note is written as a reference guide for
PSK reader designers. Microchip Technology Inc.
provides basic reader schematic for the MCRF200
customers as a part of this design guide. The circuit is
designed for a read range of 3 ~ 5 inches with an
access control card. The microID PSK Reader (demo
unit), which is built based on the PSK reference design,
is available in the microID Designers Kit (DV103001).
The circuit can be modified for longer read range or
other applications with the MCRF200. An electronic
copy of the PSK microID PICmicro® source code is
available upon request.

2.0 READER CIRCUITS
The RFID reader consists of transmitting and receiving
sections. It transmits a carrier signal, receives the
backscattering signal, and performs data processing.
The reader also communicates with an external host
computer. A basic block diagram of the typical RFID
reader is shown in Figure 2-1.

For complete documentation of DS51138B,
microID™ 125 kHz Design Guide, please visit
our worldwide website @www.micro-
chip.com.

FIGURE 2-1: BLOCK DIAGRAM OF TYPICAL RFID READER FOR PSK SIGNAL (125 kHz)

(4 MHz Crystal Oscillator)
32÷ Carrier Signal Amplifier

 (Power Driver)

Envelope Detector

Filter, Amplifier
Pulse Shaping,

Phase Comparator
and Interface with

Host Computer

Transmitting Section

Antenna Coil

CLK

To Host Computer

Serial Interface (RS-232)

125 kHz

Time Base Signal Generator

Microcontroller
Data Decoding

Receiving Section

Circuits

PICmicro is a registered trademark of Microchip Technology Inc.
 1999 Microchip Technology Inc. DS51138B-page 7-13

microID™ 125 kHz Design Guide

S7.book Page 14 Thursday, March 2, 2000 7:58 AM
NOTES:
DS51138B-page 7-14 1999 Microchip Technology Inc.

microID™ 125 kHz DESIGN GUIDE

ASK Reader Reference Design

R
eferen

ce D
esig

n
s

7

S7.book Page 15 Thursday, March 2, 2000 7:58 AM
1.0 INTRODUCTION
This application note is written as a reference guide for
ASK reader designers. Microchip Technology Inc.
provides basic reader electronics circuitry for the
MCRF200 customers as a part of this design guide.
The circuit is designed for a read range of 3 ~ 5 inches
with an access control card. The microID ASK Reader
(demo unit), which is built based on the ASK reference
design, is available in the microID Designers Kit
(DV103001). The circuit can be modified for longer
read range or other applications with the MCRF200. An
electronic copy of the ASK microID PICmicro® source
code is available upon request.

2.0 READER CIRCUITS
The RFID reader consists of transmitting and receiving
sections. It transmits a carrier signal, receives the
backscattering signal, and performs data processing.
The reader also communicates with an external host
computer. A basic block diagram of the typical ASK
RFID reader is shown in Figure 2-1.

For complete documentation of DS51166C,
microID™ 125 kHz Design Guide, please visit
our worldwide website @www.micro-
chip.com.

FIGURE 2-1: BLOCK DIAGRAM OF TYPICAL RFID READER FOR ASK SIGNAL (125 kHz)

(4 MHz Crystal Oscillator)
Carrier Signal Amplifier

 (Power Driver)

Envelope Detector
Filter, Amplifier,

and Pulse ShapingInterface with
Host Computer

Transmitting Section

Antenna Coil

CLK

To Host Computer

Serial Interface (RS-232)

125 kHz

Time Base Signal Generator

Microcontroller
Data Decoding

Receiving Section

÷ 32

PICmicro is a registered trademark of Microchip Technology Inc.
 1999 Microchip Technology Inc. DS51166C-page 7-15

microID™ 125 kHz Design Guide

S7.book Page 16 Thursday, March 2, 2000 7:58 AM
NOTES:
DS51166C-page 7-16 1999 Microchip Technology Inc.

microID™ 125 kHz DESIGN GUIDE

FSK Anticollision Reader Reference Design

R
eferen

ce D
esig

n
s

7

S7.book Page 17 Thursday, March 2, 2000 7:58 AM
1.0 INTRODUCTION
When more than one tag is in the same RF field of a
reader, each tag will transmit data at the same time.
This results in data collision at the receiving end of the
reader. No correct decision can be made based on this
data. The reader must receive data from a tag at a time
for correct data processing.

The anticollision device (MCRF250) is designed to
send FSK data to reader without data collision, and it
must be read by an anticollision reader. This type of
device can be effectively used in inventory and asset
control applications where multiple tags are read in the
same RF field. The anticollision algorithm of the device
is explained in the MCRF250 Data Sheet, page 15.

This application note is written as a reference guide for
anticollision reader designers. The anticollision reader
is designed to provide correct signals to the
anticollision device (MCRF250) to perform an anticolli-
sion action during operation.

Microchip Technology Inc. provides basic anticollision
FSK reader electronic circuitry for the MCRF250
customers as a part of this design guide. The microID
Anticollision Reader (demo unit), that can read 10 tags
or more in the same RF field, is available in the microID
Developers Kit (DV103002). An electronic copy of the
microID PICmicro® source code is also available upon
request.

For complete documentation of DS51167B,
microID™ 125 kHz Design Guide, please visit
our worldwide website @www.micro-
chip.com.

FIGURE 1-1: BLOCK DIAGRAM OF TYPICAL RFID READER FOR FSK SIGNAL (125 kHz)

(4 MHz Crystal Oscillator)
Carrier Signal Amplifier

 (Power Driver)

Envelope Detector

Interface with
Host Computer

Transmitting Section

Antenna Coil

CLK

To Host Computer
Serial Interface (RS-232)

125 kHz

Time Base Signal Generator

Microcontroller

Data Decoding

Receiving Section

÷ 32

 Signal Collision
 Detector

Gap Signal Gate

Filter/AmplifierPulse Waveform Shaping
Data
 1999 Microchip Technology Inc. DS51167B-page 7-17

PICmicro is a registered trademark of Microchip Technology Inc.

microID™ 125 kHz Design Guide

S7.book Page 18 Thursday, March 2, 2000 7:58 AM
NOTES:
DS51167B-page 7-18 1999 Microchip Technology Inc.

SECTION 8
DEVELOPMENT SYSTEMS

D
evelo

p
m

en
t S

ystem
s

8

S8.book Page i Thursday, March 2, 2000 7:56 AM
System Support Development Tools Selection Chart ..8-1
On-Line Support Microchip Internet Connections ...8-15
MPLAB® Integrated Development Environment ...8-17
MPASM Universal PICmicro® Microcontroller Assembler Software8-19
MPLAB®-ICD In-Circuit Debugger..8-21
MPLAB®-ICE In-Circuit Emulator ...8-23
MPLAB®-SIM Software Simulator...8-25
MPLAB®-C17 ANSI-Compliant C Compiler for PIC17CXXX Microcontrollers..................8-27
MPLAB®-C18 ANSI-Compliant C Compiler for PIC18CXXX Microcontrollers..................8-29
ICEPIC Low-Cost PIC16CXXX In-Circuit Emulator ..8-31
PRO MATE® II Universal Microchip Device Programmer...8-33
PICSTART® Plus Low-cost Development Kit Supports All PICmicro® MCUs8-35
KEELOQ® Evaluation Kit ...8-37
KEELOQ® Transponder Evaluation Kit..8-39
PICDEM-1 Low-Cost PICmicro® Demonstration Board ...8-41
PICDEM-2 Low-Cost PIC16CXX Demonstration Board ..8-43
PICDEM-3 Low-Cost PIC16C9XX Demonstration Board ..8-45
PICDEM-17 PICmicro® Demonstration Board ...8-47
MCP2510 CAN Development Kit ..8-49
microID™ Programmer Kit..8-51
microID™ 125 kHz microID Developer’s Kit ...8-53
microID™ 125 kHz Anticollision microID Developer’s Kit ...8-55
microID™ 13.56 MHz Anticollision microID Developer’s Kit8-57
FilterLab™ Active Filter Software Design Tool...8-59
SEEVAL® Designer’s Kit Microchip Serial EEPROM Designer’s Kit..8-61
Total Endurance™ Microchip Serial EEPROM Endurance Model..8-63
Worldwide Sales and Service..8-67
 1999 Microchip Technology Inc. DS00711A-page 8-i

S8.book Page ii Thursday, March 2, 2000 7:56 AM
DS00711A-page 8-ii 1999 Microchip Technology Inc.

SYSTEM SUPPORT
Development Tools Selection Chart

D
evelo

p
m

en
t S

ystem

8

S8.book Page 1 Thursday, March 2, 2000 7:56 AM
MPLAB™-ICE Cross Reference Parts List

Model Name/
Part Number

Lead Count/
Package Type

Hardware Tools

Emulator Pod Processor Module Device Adapter Transition Socket

PIC12C508/
PIC12C508A

8P, 8JW
8SM

ICE2000
ICE2000

PCM16XA0
PCM16XA0

DVA12XP080
DVA12XP080

—
XLT08SO

PIC12C509/
PIC12C509A

8P, 8JW
8SM

ICE2000
ICE2000

PCM16XA0
PCM16XA0

DVA12XP080
DVA12XP080

—
XLT08SO

PIC12CE518
8P, 8JW

8SM, 8SN
ICE2000
ICE2000

PCM16XA0
PCM16XA0

DVA12XP080
DVA12XP080

—
XLT08SO

PIC12CE519
8P, 8JW

8SM, 8SN
ICE2000
ICE2000

PCM16XA0
PCM16XA0

DVA12XP080
DVA12XP080

—
XLT08SO

PIC12C671
8P, 8JW

 8SM
ICE2000
ICE2000

PCM12XA0
PCM12XA0

DVA12XP081
DVA12XP081

—
XLT08SO

PIC12C672
 8P, 8JW

8SM
ICE2000
ICE2000

PCM12XA0
PCM12XA0

DVA12XP081
DVA12XP081

—
XLT08SO

PIC12CE673 8P, 8JW ICE2000 PCM12XA0 DVA12XP081 —

PIC12CE674 8P, 8JW ICE2000 PCM12XA0 DVA12XP081 —

PIC14C000
28SP, 28JW

28SO
28SS

ICE2000
ICE2000
ICE2000

PCM14XA0
PCM14XA0
PCM14XA0

DVA14XP280
DVA14XP280
DVA14XP280

—
XLT28SO
XLT28SS

PIC16C505
14P, 14JW

14SL
ICE2000
ICE2000

PCM16XA0
PCM16XA0

DVA16XP140
DVA16XP140

—
XLT14SO

PIC16C52
18P

18SO
ICE2000
ICE2000

PCM16XA0
PCM16XA0

DVA16XP180
DVA16XP180

—
XLT18SO

PIC16C54/
PIC16C54A

18P, 18JW
18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XA0
PCM16XA0
PCM16XA0

DVA16XP181
DVA16XP181
DVA16XP181

—
XLT18SO
XLT20SS

PIC16HV540(*)
18P, 18JW,

18SO,
20SS

ICE2000
ICE2000
ICE2000

PCM16XM0
PCM16XM0
PCM16XM0

DVA16XP181
DVA16XP181
DVA16XP181

—
XLT18SO
XLT20SS

PIC16C55/
PIC16C55A

28P, 28JW
28SP
28SO
28SS

ICE2000
ICE2000
ICE2000
ICE2000

PCM16XA0
PCM16XA0
PCM16XA0
PCM16XA0

DVA16XP280
DVA16XP280
DVA16XP280
DVA16XP280

XLT28XP
—

XLT28SO
XLT28SS2

PIC16C554
18P, 18JW

18SO
18SS

ICE2000
ICE2000
ICE2000

PCM16XC0
PCM16XC0
PCM16XC0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

PIC16C558
18P, 18JW

18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XC0
PCM16XC0
PCM16XC0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

PIC16C56/
PIC16C56A

18P, 18JW
18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XA0
PCM16XA0
PCM16XA0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

PIC16C57/
PIC16C57C

28P, 28JW
28SP
28SO
 28SS

ICE2000
ICE2000
ICE2000
ICE2000

PCM16XA0
PCM16XA0
PCM16XA0
PCM16XA0

DVA16XP280
DVA16XP280
DVA16XP280
DVA16XP280

XLT28XP
—

XLT28SO
XLT28SS2

* Contact Microchip Technology Inc. for availability.
 1999 Microchip Technology Inc. DS30392J-page 8-1

s

System Support

S8.book Page 2 Thursday, March 2, 2000 7:56 AM
PIC16C58A/
PIC16C58B

18P, 18JW
18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XA0
PCM16XA0
PCM16XA0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

PIC16C62A
28SP, 28JW

28SO
28SS

ICE2000
ICE2000
ICE2000

PCM16XB1
PCM16XB1
PCM16XB1

DVA16XP281
DVA16XP281
DVA16XP281

—
XLT28SO
XLT28SS

PIC16C62B
28SP, 28JW

28SO
28SS

ICE2000
ICE2000
ICE2000

PCM16XE1
PCM16XE1
PCM16XE1

DVA16XP281
DVA16XP281
DVA16XP281

—
XLT28SO
XLT28SS

PIC16C620/
PIC16C620A

18P, 18JW
18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XC0
PCM16XC0
PCM16XC0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

PIC16C621/
PIC16C621A

18P, 18JW
18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XC0
PCM16XC0
PCM16XC0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

PIC16C622/
PIC16C622A

18P, 18JW
18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XC0
PCM16XC0
PCM16XC0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

PIC16CE623
18P, 18JW

18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XC0
PCM16XC0
PCM16XC0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

PIC16CE624
18P, 18JW

18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XC0
PCM16XC0
PCM16XC0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

PIC16CE625
18P, 18JW

18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XC0
PCM16XC0
PCM16XC0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

PIC16C63
28SP, 28JW

28SO
ICE2000
ICE2000

PCM16XB1
PCM16XB1

DVA16XP281
DVA16XP281

—
XLT28SO

PIC16C63A
28SP, 28JW

28SO
28SS

ICE2000
ICE2000
ICE2000

PCM16XE1
PCM16XE1
PCM16XE1

DVA16XP281
DVA16XP281
DVA16XP281

—
XLT28SO
XLT28SS

PIC16C64A
40P, 40JW

44L
44PQ, 44PT

ICE2000
ICE2000
ICE2000

PCM16XB1
PCM16XB1
PCM16XB1

DVA16XP400
DVA16XL440
DVA16PQ440

—
—

XLT44PT

PIC16C642
28SP, 28JW

28SO
ICE2000
ICE2000

PCM16XD0
PCM16XD0

DVA16XP281
DVA16XP281

—
XLT28SO

PIC16C65A
40P, 40JW

44L
44PQ, 44PT

ICE2000
ICE2000
ICE2000

PCM16XB1
PCM16XB1
PCM16XB1

DVA16XP400
DVA16XL440
DVA16PQ440

—
—

XLT44PT

PIC16C65B
40P, 40JW

44L
44PQ, 44PT

ICE2000
ICE2000
ICE2000

PCM16XE1
PCM16XE1
PCM16XE1

DVA16XP400
DVA16XL440
DVA16PQ440

—
—

XLT44PT

PIC16C66
28SP, 28JW

28SO
ICE2000
ICE2000

PCM16XE1
PCM16XE1

DVA16XP281
DVA16XP281

—
XLT28SO

PIC16C662
40P, 40JW

44L
44PQ, 44PT

ICE2000
ICE2000
ICE2000

PCM16XD0
PCM16XD0
PCM16XD0

DVA16XP400
DVA16XL440
DVA16PQ440

—
—

XLT44PT

PIC16C67
40P, 40JW

44L
44PQ, 44PT

ICE2000
ICE2000
ICE2000

PCM16XE1
PCM16XE1
PCM16XE1

DVA16XP400
DVA16XL440
DVA16PQ440

—
—

XLT44PT

PIC16C71
18P, 18JW

18SO
ICE2000
ICE2000

PCM16XF0
PCM16XF0

DVA16XP180
DVA16XP180

—
XLT18SO

PIC16C710
18P, 18JW

18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XF0
PCM16XF0
PCM16XF0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

MPLAB™-ICE Cross Reference Parts List (Continued)

Model Name/
Part Number

Lead Count/
Package Type

Hardware Tools

Emulator Pod Processor Module Device Adapter Transition Socket

* Contact Microchip Technology Inc. for availability.
DS30392J-page 8-2 1999 Microchip Technology Inc.

System Support
D

evelo
p

m
en

t S
ystem

s

8

S8.book Page 3 Thursday, March 2, 2000 7:56 AM
PIC16C711
18P, 18JW

18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XF0
PCM16XF0
PCM16XF0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

PIC16C712(*)
18P, 18JW

18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XE1
PCM16XE1
PCM16XE1

DVA16XP182
DVA16XP182
DVA16XP182

—
XLT18SO
XLT20SS

PIC16C715
18P, 18JW

18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XG0
PCM16XG0
PCM16XG0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

PIC16C716(*)
18P, 18JW

18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XE1
PCM16XE1
PCM16XE1

DVA16XP182
DVA16XP182
DVA16XP182

—
XLT18SO
XLT20SS

PIC16C72
28SP, 28JW

28SO
28SS

ICE2000
ICE2000
ICE2000

PCM16XB1
PCM16XB1
PCM16XB1

DVA16XP281
DVA16XP281
DVA16XP281

—
XLT28SO
XLT28SS

PIC16C72A
28SP, 28JW

28SO
28SS

ICE2000
ICE2000
ICE2000

PCM16XE1
PCM16XE1
PCM16XE1

DVA16XP281
DVA16XP281
DVA16XP281

—
XLT28SO
XLT28SS

PIC16C73A
28SP, 28JW

28SO
ICE2000
ICE2000

PCM16XB1
PCM16XB1

DVA16XP281
DVA16XP281

—
XLT28SO

PIC16C73B
28SP, 28JW

28SO
28SS

ICE2000
ICE2000
ICE2000

PCM16XE1
PCM16XE1
PCM16XE1

DVA16XP281
DVA16XP281
DVA16XP281

—
XLT28SO
XLT28SS

PIC16C74A
40P, 40JW

44L
44PQ, 44PT

ICE2000
ICE2000

PCM16XB1
PCM16XB1
PCM16XB1

DVA16XP400
DVA16XL440
DVA16PQ440

—
—

XLT44PT

PIC16C74B
40P, 40JW

44L
44PQ, 44PT

ICE2000
ICE2000
ICE2000

PCM16XE1
PCM16XE1
PCM16XE1

DVA16XP400
DVA16XL440
DVA16PQ440

—
—

XLT44PT

PIC16C76
28SP, 28JW

28SO
ICE2000
ICE2000

PCM16XE1
PCM16XE1

DVA16XP281
DVA16XP281

—
XLT28SO

PIC16C77
40P, 40JW

44L
44PQ, 44PT

ICE2000
ICE2000
ICE2000

PCM16XE1
PCM16XE1
PCM16XE1

DVA16XP400
DVA16XL440
DVA16PQ440

—
—

XLT44PT

PIC16C773(*)
28SP, 28JW

28SO
28SS

ICE2000
ICE2000
ICE2000

PCM16XL0
PCM16XL0
PCM16XL0

DVA16XP281
DVA16XP281
DVA16XP281

—
XLT28SO
XLT28SS

PIC16C774(*)
40P, 40JW

44L
44PQ, 44PT

ICE2000
ICE2000
ICE2000

PCM16XL0
PCM16XL0
PCM16XL0

DVA16XP400
DVA16XL440
DVA16PQ440

—
—

XLT44PT

PIC16F83
18P

18SO
ICE2000
ICE2000

PCM16XH0
PCM16XH0

DVA16XP180
DVA16XP180

—
XLT18SO

PIC16F84
18P

18SO
ICE2000
ICE2000

PCM16XH0
PCM16XH0

DVA16XP180
DVA16XP180

—
XLT18SO

PIC16F84A
18P

18SO
20SS

ICE2000
ICE2000
ICE2000

PCM16XH0
PCM16XH0
PCM16XH0

DVA16XP180
DVA16XP180
DVA16XP180

—
XLT18SO
XLT20SS

PIC16F873*
28SP
28SO

ICE2000
ICE2000

PCM16XK0
PCM16XK0

DVA16XP281
DVA16XP281

—
XLT28SO

PIC16F874(*)
40P
40L

44PQ, 44PT

ICE2000
ICE2000
ICE2000

PCM16XK0
PCM16XK0
PCM16XK0

DVA16XP400
DVA16XL440
DVA16PQ440

—
—

XLT44PT

PIC16F876(*) 28SP
28SO

ICE2000
ICE2000

PCM16XK0
PCM16XK0

DVA16XP281
DVA16XP281

—
XLT28SO

MPLAB™-ICE Cross Reference Parts List (Continued)

Model Name/
Part Number

Lead Count/
Package Type

Hardware Tools

Emulator Pod Processor Module Device Adapter Transition Socket

* Contact Microchip Technology Inc. for availability.
 1999 Microchip Technology Inc. DS30392J-page 8-3

System Support

S8.book Page 4 Thursday, March 2, 2000 7:56 AM
PIC16F877(*)
40P
40L

44PQ, 44PT

ICE2000
ICE2000
ICE2000

PCM16XK0
PCM16XK0
PCM16XK0

DVA16XP400
DVA16XL440
DVA16PQ440

—
—

XLT44PT

PIC16C923
64SP
64PT

ICE2000
ICE2000

PCM16XJ0
PCM16XJ0

DVA16XP640
DVA16PQ640

—
XLT64PT1

PIC16C924
64SP

68L, 68CL
64PT

ICE2000
ICE2000
ICE2000

PCM16XJ0
PCM16XJ0
PCM16XJ0

DVA16XP640
DVA16XL680
DVA16PQ640

—
—

XLT64PT1

PIC17C42A
40P, 40JW

44L
44PQ, 44PT

ICE2000
ICE2000
ICE2000

PCM17XA0
PCM17XA0
PCM17XA0

DVA17XP400
DVA17XL440
DVA17PQ440

—
—

XLT44PT

PIC17C43
40P, 40JW

44L
44PQ, 44PT

ICE2000
ICE2000
ICE2000

PCM17XA0
PCM17XA0
PCM17XA0

DVA17XP400
DVA17XL440
DVA17PQ440

—
—

XLT44PT

PIC17C44
40P, 40JW

44L
44PQ, 44PT

ICE2000
ICE2000
ICE2000

PCM17XA0
PCM17XA0
PCM17XA0

DVA17XP400
DVA17XL440
DVA17PQ440

—
—

XLT44PT

PIC17C752
68L

64PT
ICE2000
ICE2000

PCM17XA0
PCM17XA0

DVA17XL680
DVA17PQ640

—
XLT64PT2

PIC17C756/
PIC17C756A

68L, 68CL
64PT

ICE2000
ICE2000

PCM17XA0
PCM17XA0

DVA17XL680
DVA17PQ640

—
XLT64PT2

PIC17C762
84L

80PT
ICE2000
ICE2000

PCM17XA0
PCM17XA0

DVA17XL840
DVA17PQ800

—
XLT80PT

PIC17C766
84L, 84CL

80PT
ICE2000
ICE2000

PCM17XA0
PCM17XA0

DVA17XL840
DVA17PQ800

—
XLT80PT

PIC18C242(*) 28P, 28JW
 28SO

ICE2000
ICE2000

PCM18XA0
PCM18XA0

DVA18XP280
DVA18XP280

—
XLT28SO

PIC18C252(*) 28P, 28JW
28SO

ICE2000
ICE2000

PCM18XA0
PCM18XA0

DVA18XP280
DVA18XP280

—
XLT28SO

PIC18C442(*)
40P, 40JW

40L
44PT

ICE2000
ICE2000
ICE2000

PCM18XA0
PCM18XA0
PCM18XA0

DVA18XP400
DVA18XL440
DVA18PQ440

—
—

XLT44PT

PIC18C452(*)
40P, 40JW

40L
44PT

ICE2000
ICE2000
ICE2000

PCM18XA0
PCM18XA0
PCM18XA0

DVA18XP400
DVA18XL440
DVA18PQ440

—
—

XLT44PT

MPLAB™-ICE Cross Reference Parts List (Continued)

Model Name/
Part Number

Lead Count/
Package Type

Hardware Tools

Emulator Pod Processor Module Device Adapter Transition Socket

* Contact Microchip Technology Inc. for availability.
DS30392J-page 8-4 1999 Microchip Technology Inc.

System Support
D

evelo
p

m
en

t S
ystem

s

8

S8.book Page 5 Thursday, March 2, 2000 7:56 AM
PICMASTER® Emulator Systems Cross Reference and Ordering Information

Model Name/
Part Number PICMASTER POD PICMASTER Probe Kit PICMASTER-CE POD PICMASTER-CE

Probe Kit

PIC12C508(*) AC008001 AC165004 EM007101 AC165015

PIC12C509(*) AC008001 AC165004 EM007101 AC165015

PIC14000 AC008001 AC145001 EM007101 AC145002

PIC16C52 AC008001 AC165004 EM007101 AC165015

PIC16C54 AC008001 AC165004 EM007101 AC165015

PIC16C54A AC008001 AC165004 EM007101 AC165015

PIC16C55 AC008001 AC165004 EM007101 AC165015

PIC16C554 AC008001 AC165030 EM007101 AC165020

PIC16C558 AC008001 AC165030 EM007101 AC165020

PIC16C56 AC008001 AC165004 EM007101 AC165015

PIC16C57 AC008001 AC165004 EM007101 AC165015

PIC16C58A AC008001 AC165004 EM007101 AC165015

PIC16C620 AC008001 AC165008 EM007101 AC165018

PIC16C621 AC008001 AC165008 EM007101 AC165018

PIC16C622 AC008001 AC165008 EM007101 AC165018

PIC16C62A AC008001 AC165009 EM007101 AC165016

PIC16C63 AC008001 AC165009 EM007101 AC165016

PIC16C642 AC008001 AC165031 EM007101 AC165021

PIC16C64A AC008001 AC165009 EM007101 AC165016

PIC16C65A AC008001 AC165009 EM007101 AC165016

PIC16C66 AC008001 AC165034 EM007101 AC165024

PIC16C662 AC008001 AC165031 EM007101 AC165021

PIC16C67 AC008001 AC165034 EM007101 AC165024

PIC16C71 AC008001 AC165010 EM007101 AC165013

PIC16C710 AC008001 AC165010 EM007101 AC165013

PIC16C711 AC008001 AC165010 EM007101 AC165013

PIC16C715 AC008001 AC165032 EM007101 AC165022

PIC16C72 AC008001 AC165009 EM007101 AC165016

PIC16C73A AC008001 AC165009 EM007101 AC165016

PIC16C74A AC008001 AC165009 EM007101 AC165016

PIC16C76 AC008001 AC165034 EM007101 AC165024

PIC16C77 AC008001 AC165034 EM007101 AC165024

PIC16C923 AC008001 AC165012 EM007101 AC165019

PIC16C924 AC008001 AC165012 EM007101 AC165019

PIC16F83 AC008001 AC165011 EM007101 AC165014

PIC16F84 AC008001 AC165011 EM007101 AC165014

PIC17C42A AC008001 AC175002 EM007101 AC175003

PIC17C43 AC008001 AC175002 EM007101 AC175003

PIC17C44 AC008001 AC175002 EM007101 AC175003

PIC17C756 AC008001 AC175004 EM007101 AC175005

* PICMASTER PIC12CXXX emulation support also requires the use of a probe kit daughter board AC122001.
 1999 Microchip Technology Inc. DS30392J-page 8-5

System Support

S8.book Page 6 Thursday, March 2, 2000 7:56 AM
Model Name/
Part Number ICEPIC Pod ICEPIC

Daughter Board

PIC12C508(*) EM167200 AC165201

PIC12C509(*) EM167200 AC165201

PIC16C52 EM167200 AC165201

PIC16C54 EM167200 AC165201

PIC16C54A EM167200 AC165201

PIC16C55 EM167200 AC165201

PIC16C554 EM167200 AC165208

PIC16C558 EM167200 AC165208

PIC16C56 EM167200 AC165201

PIC16C57 EM167200 AC165201

PIC16C58A EM167200 AC165201

PIC16C61 EM167200 AC165211

PIC16C620 EM167200 AC165202

PIC16C621 EM167200 AC165202

PIC16C622 EM167200 AC165202

PIC16C62A EM167200 AC165207

PIC16C63 EM167200 AC165207

PIC16C642 EM167200 EM167213

PIC16C64A EM167200 AC165207

PIC16C65A EM167200 AC165207

PIC16C66 EM167200 AC165214

PIC16C662 EM167200 EM165213

PIC16C67 EM167200 AC165214

PIC16C71 EM167200 AC167211

PIC16C710 EM167200 AC167211

PIC16C711 EM167200 AC167211

PIC16C715 EM167200 AC167215

PIC16C72 EM167200 AC165207

PIC16C73A EM167200 AC165207

PIC16C74A EM167200 AC165207

PIC16C76 EM167200 AC165214

PIC16C77 EM167200 AC165214

PIC16C923 EM167200 AC165210

PIC16C924 EM167200 AC165210

PIC16F83 EM167200 AC165212

PIC16F84 EM167200 AC165212

* PIC12CXXX emulation support also requires the use of a
kit daughter board adapter AC122002.
DS30392J-page 8-6 1999 Microchip Technology Inc.

System Support
D

evelo
p

m
en

t S
ystem

s

8

S8.book Page 7 Thursday, March 2, 2000 7:56 AM
Software Tools Cross Reference and Ordering Information

Model Name/
Part Number

MPLAB™ MPLAB-C17 MPLAB-C18
Total Endurance™

Software Model
KEELOQ®

License Disk

24CXX/24LCXX — — — SW242001 DS40149

93CXX/93LCXX — — — SW242001 DS40149

HCS200 — — — — DS40149

HCS201 — — — — DS40149

HCS300 — — — — DS40149

HCS301 — — — — DS40149

HCS320 — — — — DS40149

HCS360 — — — — DS40149

HCS361 — — — — DS40149

HCS410 — — — — DS40149

HCS412 — — — — DS40149

HCS500 — — — — DS40149

HCS512 — — — — DS40149

HCS515 — — — — DS40149

PIC12C508 SW007002 — — — —

PIC12C508A SW007002 — — — —

PIC12C509 SW007002 — — — —

PIC12C509A SW007002 — — — —

PIC12CE18 SW007002 — — — —

PIC12CE19 SW007002 — — — —

PIC12C671 SW007002 — — — —

PIC12C672 SW007002 — — — —

PIC12CE673 SW007002 — — — —

PIC12CE674 SW007002 — — — —

PIC14C000 SW007002 — — — —

PIC16C505 SW007002 — — — —

PIC16C52 SW007002 — — — —

PIC16C54 SW007002 — — — —

PIC16C54A SW007002 — — — —

PIC16C54C SW007002 — — — —

PIC16C55 SW007002 — — — —

PIC16C55A SW007002 — — — —

PIC16C554 SW007002 — — — —

PIC16C558 SW007002 — — — —

PIC16C56 SW007002 — — — —

PIC16C56A SW007002 — — — —

PIC16C57 SW007002 — — — —

PIC16C57C SW007002 — — — —

PIC16C58A SW007002 — — — —

PIC16C58B SW007002 — — — —

PIC16C62A SW007002 — — — —

PIC16C62B SW007002 — — — —

PIC16C620 SW007002 — — — —

PIC16C620A SW007002 — — — —

PIC16C621 SW007002 — — — —

PIC16C621A SW007002 — — — —

PIC16C622 SW007002 — — — —

PIC16C622A SW007002 — — — —

PIC16CE623 SW007002 — — — —

PIC16CE624 SW007002 — — — —

 Shaded area indicates not applicable.
* Contact Microchip Technology Inc. for availability.
 1999 Microchip Technology Inc. DS30392J-page 8-7

System Support

S8.book Page 8 Thursday, March 2, 2000 7:56 AM
PIC16CE625 SW007002 — — — —

PIC16F627(*) SW007002 — — — —

PIC16F628(*) SW007002 — — — —

PIC16C63 SW007002 — — — —

PIC16C63A SW007002 — — — —

PIC16C64A SW007002 — — — —

PIC16C642 SW007002 — — — —

PIC16C65A SW007002 — — — —

PIC16C65B SW007002 — — — —

PIC16C66 SW007002 — — — —

PIC16C662 SW007002 — — — —

PIC16C67 SW007002 — — — —

PIC16C71 SW007002 — — — —

PIC16C710 SW007002 — — — —

PIC16C711 SW007002 — — — —

PIC16C712 SW007002 — — — —

PIC16C715 SW007002 — — — —

PIC16C716 SW007002 — — — —

PIC16C717 SW007002 — — — —

PIC16C72 SW007002 — — — —

PIC16C72A SW007002 — — — —

PIC16C73B SW007002 — — — —

PIC16C73C(*) SW007002 — — — —

PIC16C74A SW007002 — — — —

PIC16C74B SW007002 — — — —

PIC16C76 SW007002 — — — —

PIC16C77 SW007002 — — — —

PIC16C770(*) SW007002 — — — —

PIC16C771(*) SW007002 — — — —

PIC16C773 SW007002 — — — —

PIC16C774 SW007002 — — — —

PIC16F83 SW007002 — — — —

PIC16F84 SW007002 — — — —

PIC16F84A SW007002 — — — —

PIC16F873 SW007002 — — — —

PIC16F874 SW007002 — — — —

PIC16F876 SW007002 — — — —

PIC16F877 SW007002 — — — —

PIC16C923 SW007002 — — — —

PIC16C924 SW007002 — — — —

PIC17C42A SW007002 SW006010 — — —

PIC17C43 SW007002 SW006010 — — —

PIC17C44 SW007002 SW006010 — — —

PIC17C752 SW007002 SW006010 — — —

PIC17C756 SW007002 SW006010 — — —

PIC17C756A SW007002 SW006010 — — —

PIC17C762 SW007002 SW006010 — — —

PIC17C766 SW007002 SW006010 — — —

PIC18C242(*) SW007002 — SW006011(*) — —

PIC18C252(*) SW007002 — SW006011(*) — —

Software Tools Cross Reference and Ordering Information (Continued)

Model Name/
Part Number

MPLAB™ MPLAB-C17 MPLAB-C18
Total Endurance™

Software Model
KEELOQ®

License Disk

 Shaded area indicates not applicable.
* Contact Microchip Technology Inc. for availability.
DS30392J-page 8-8 1999 Microchip Technology Inc.

System Support
D

evelo
p

m
en

t S
ystem

s

8

S8.book Page 9 Thursday, March 2, 2000 7:56 AM
PIC18C442(*) SW007002 — SW006011(*) — —

PIC18C452(*) SW007002 — SW006011(*) — —

Programmers Cross Reference and Ordering Information

Model Name/
Part Number

PICSTART
Plus PRO MATE II

PRO MATE II

DIP SOIC SSOP PLCC MQFP TQFP ICSP Module

24CXX/
24LCXX

— DV007003 AC004001 AC004002 — — — — AC004004

93CXX/
93LCXX

— DV007003 AC004001 AC004002 — — — — AC004004

HCS200 — DV007003 AC004001 AC004002 — — — — AC004004

HCS201 — DV007003 AC004001 AC004002 — — — — AC004004

HCS300 — DV007003 AC004001 AC004002 — — — — AC004004

HCS301 — DV007003 AC004001 AC004002 — — — — AC004004

HCS320 — DV007003 AC004001 AC004002 — — — — AC004004

HCS360 — DV007003 AC004001 AC004002 — — — — AC004004

HCS361 — DV007003 AC004001 AC004002 — — — — AC004004

HCS410 — DV007003 AC004001 AC004002 — — — — AC004004

HCS412 — DV007003 AC004001 AC004002 — — — — AC004004

HCS500(*) — DV007003 — — — — — — AC004004

HCS512 — DV007003 AC164001 AC164002 — — — — AC004004

HCS515(*) — DV007003 — — — — — — AC004004

PIC12C508 DV003001 DV007003 AC124001 AC124001 — — — — AC004004

PIC12C508A DV003001 DV007003 AC124001 AC124001(†)

AC164026(†) — — — — AC004004

PIC12C509 DV003001 DV007003 AC124001 AC124001 — — — — AC004004

PIC12C509A DV003001 DV007003 AC124001 AC124001(†)

AC164026(†) — — — — AC004004

PIC12CE518 DV003001 DV007003 AC124001 AC124001(†)

AC164026(†) AC164026 — — — AC004004

PIC12CE519 DV003001 DV007003 AC124001 AC124001(†)

AC164026(†) AC164026 — — — AC004004

PIC12C671 DV003001 DV007003 AC124001 AC124001 — — — — AC004004

PIC12C672 DV003001 DV007003 AC124001 AC124001 — — — — AC004004

PIC12CE673 DV003001 DV007003 AC124001 — — — — — AC004004

PIC12CE674 DV003001 DV007003 AC124001 — — — — — AC004004

PIC14C000 DV003001 DV007003 AC144001 AC144002 AC144002 — — — AC004004

PIC16C505 DV003001 DV007003 AC124001 AC164026 — — — — AC004004

PIC16C52 DV003001 DV007003 AC164001 AC164002 — — — — AC004004

PIC16C54 DV003001 DV007003 AC164001 AC164002 AC164015 — — — AC004004

PIC16C54A DV003001 DV007003 AC164001 AC164002 AC164015 — — — AC004004

PIC16C54C DV003001 DV007003 AC164001 AC164002 AC164015 — — — AC004004

PIC16HV540 DV003001 DV007003 AC164001 AC164002 AC164015 AC004004

PIC16C55 DV003001 DV007003 AC164001 AC164002 AC164015 — — — AC004004

PIC16C55A DV003001 DV007003 AC164001 AC164002 AC164015 — — — AC004004

PIC16C554 DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16C558 DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16C56 DV003001 DV007003 AC164001 AC164002 AC164015 — — — AC004004

PIC16C56A DV003001 DV007003 AC164001 AC164002 AC164015 — — — AC004004

PIC16C57 DV003001 DV007003 AC164001 AC164002 AC164015 — — — AC004004

PIC16C57C DV003001 DV007003 AC164001 AC164002 AC164015 — — — AC004004

PIC16C58A DV003001 DV007003 AC164001 AC164002 AC164015 — — — AC004004

 Shaded area indicates not applicable.
* Contact Microchip Technology Inc. for availability.
† AC124001 (208 mil); AC164026 (150 mil).

Software Tools Cross Reference and Ordering Information (Continued)

Model Name/
Part Number

MPLAB™ MPLAB-C17 MPLAB-C18
Total Endurance™

Software Model
KEELOQ®

License Disk

 Shaded area indicates not applicable.
* Contact Microchip Technology Inc. for availability.
 1999 Microchip Technology Inc. DS30392J-page 8-9

System Support

S8.book Page 10 Thursday, March 2, 2000 7:56 AM
PIC16C58B DV003001 DV007003 AC164001 AC164002 AC164015 — — — AC004004

PIC16C62A DV003001 DV007003 AC164012 AC164017 AC164021 — — — AC004004

PIC16C62B DV003001 DV007003 AC164012 AC164017 AC164021 — — — AC004004

PIC16C620 DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16C620A DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16C621 DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16C621A DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16C622 DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16C622A DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16CE623 DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16CE624 DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16CE625 DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16F627(*) DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16F628(*) DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16C63 DV003001 DV007003 AC164012 AC164017 — — — — AC004004

PIC16C63A DV003001 DV007003 AC164012 AC164017 AC164021 — — — AC004004

PIC16C64A DV003001 DV007003 AC164012 — — AC164013 AC164014 AC164020 AC004004

PIC16C642 DV003001 DV007003 AC164012 AC164017 — — — — AC004004

PIC16C65A DV003001 DV007003 AC164012 — — AC164013 AC164014 AC164020 AC004004

PIC16C65B DV003001 DV007003 AC164012 — — AC164013 AC164014 AC164020 AC004004

PIC16C66 DV003001 DV007003 AC164012 AC164017 — — — — AC004004

PIC16C662 DV003001 DV007003 AC164012 — — AC164013 AC164014 AC164020 AC004004

PIC16C67 DV003001 DV007003 AC164012 — — AC164013 AC164014 AC164020 AC004004

PIC16C71 DV003001 DV007003 AC164010 AC164010 — — — — AC004004

PIC16C710 DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16C711 DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16C712(*) DV003001 DV007003 AC164010 AC164010 AC164018 AC004004

PIC16C715 DV003001 DV007003 AC164010 AC164010 AC164018 — — — AC004004

PIC16C716(*) DV003001 DV007003 AC164010 AC164010 AC164018 AC004004

PIC16C717(*) DV003001 DV007003 AC164010 AC164010 AC164018 AC004004

PIC16C72 DV003001 DV007003 AC164012 AC164017 AC164021 — — — AC004004

PIC16C72A DV003001 DV007003 AC164012 AC164017 AC164021 — — — AC004004

PIC16C73A DV003001 DV007003 AC164012 AC164017 — — — — AC004004

PIC16C73B DV003001 DV007003 AC164012 AC164017 AC164021 — — — AC004004

PIC16C74A DV003001 DV007003 AC164012 — — AC164013 AC164014 AC164020 AC004004

PIC16C74B DV003001 DV007003 AC164012 — — AC164013 AC164014 AC164020 AC004004

PIC16C76 DV003001 DV007003 AC164012 AC164017 — — — — AC004004

PIC16C77 DV003001 DV007003 AC164012 — — AC164013 AC164014 AC164020 AC004004

PIC16C770(*) DV003001 DV007003 AC164028 AC164028 AC164018 — — — AC004004

PIC16C771(*) DV003001 DV007003 AC164028 AC164028 AC164018 — — — AC004004

PIC16C773 DV003001 DV007003 AC164012 AC164017 AC164021 — — — AC004004

PIC16C774 DV003001 DV007003 AC164012 — — AC164013 AC164014 AC164020 AC004004

PIC16F83 DV003001 DV007003 AC164010 AC164010 — — — — AC004004

PIC16F84 DV003001 DV007003 AC164010 AC164010 — — — — AC004004

PIC16F84A DV003001 DV007003 AC164010 AC164010 — — — — AC004004

PIC16F873 DV003001 DV007003 AC164012 AC164017 — — — — AC004004

PIC16F874 DV003001 DV007003 AC164012 — — AC164013 AC164014 AC164020 AC004004

PIC16F876 DV003001 DV007003 AC164012 AC164017 — — — — AC004004

PIC16F877 DV003001 DV007003 AC164012 — — AC164013 AC164014 AC164020 AC004004

PIC16C923 DV003001 DV007003 AC164025 — — — — AC164023 AC004004

PIC16C924 DV003001 DV007003 AC164025 — — AC164022 — AC164023 AC004004

PIC17C42A DV003001 DV007003 AC174001 — — AC174002 AC174004 AC174005 AC004004

PIC17C43 DV003001 DV007003 AC174001 — — AC174002 AC174004 AC174005 AC004004

PIC17C44 DV003001 DV007003 AC174001 — — AC174002 AC174004 AC174005 AC004004

Programmers Cross Reference and Ordering Information (Continued)

Model Name/
Part Number

PICSTART
Plus PRO MATE II

PRO MATE II

DIP SOIC SSOP PLCC MQFP TQFP ICSP Module

 Shaded area indicates not applicable.
* Contact Microchip Technology Inc. for availability.
† AC124001 (208 mil); AC164026 (150 mil).
DS30392J-page 8-10 1999 Microchip Technology Inc.

System Support
D

evelo
p

m
en

t S
ystem

s

8

S8.book Page 11 Thursday, March 2, 2000 7:56 AM
PIC17C752 DV003001 DV007003 — — — AC174007 — AC174008 AC004004

PIC17C756 DV003001 DV007003 — — — AC174007 — AC174008 AC004004

PIC17C756A DV003001 DV007003 — — — AC174007 — AC174008 AC004004

PIC17C762 DV003001 DV007003 — — — AC174012 — AC174011 AC004004

PIC17C766 DV003001 DV007003 — — — AC174012 — AC174011 AC004004

PIC18C242(*) DV003001 DV007003 AC164012 AC164017 — — — — AC004004

PIC18C252(*) DV003001 DV007003 AC164012 AC164017 — — — — AC004004

PIC18C442(*) DV003001 DV007003 AC164012 — — AC164013 — AC164020 AC004004

PIC18C452(*) DV003001 DV007003 AC164012 — — AC164013 — AC164020 AC004004

Programmers Cross Reference and Ordering Information (Continued)

Model Name/
Part Number

PICSTART
Plus PRO MATE II

PRO MATE II

DIP SOIC SSOP PLCC MQFP TQFP ICSP Module

 Shaded area indicates not applicable.
* Contact Microchip Technology Inc. for availability.
† AC124001 (208 mil); AC164026 (150 mil).
 1999 Microchip Technology Inc. DS30392J-page 8-11

System Support

S8.book Page 12 Thursday, March 2, 2000 7:56 AM
PICmicro MCU Demo Boards and Evaluation Kits Cross Reference and
Ordering Information

Model Name/
Part Number

SIMICE PICDEM-1 PICDEM-2 PICDEM-3 PICDEM-14A PICDEM-17

PIC12C508 DV162010 DM163001 — — — —

PIC12C508A DV162010 DM163001 — — — —

PIC12C509 DV162010 DM163001 — — — —

PIC12C509A DV162010 DM163001 — — — —

PIC12CE518 — — — — — —

PIC12CE519 — — — — — —

PIC12C671 — — — — — —

PIC12C672 — — — — — —

PIC12CE673 — — — — — —

PIC12CE674 — — — — — —

PIC14C000 — — — — DM143001 —

PIC16C505 — — — — — —

PIC16C52 DV162010 DM163001 — — — —

PIC16C54 DV162010 DM163001 — — — —

PIC16C54A DV162010 DM163001 — — — —

PIC16C54C DV162010 DM163001 — — — —

PIC16HV540 — —

PIC16C55 DV162010 DM163001 — — — —

PIC16C55A DV162010 DM163001 — — — —

PIC16C554 — DM163001 — — — —

PIC16C558 — DM163001 — — — —

PIC16C56 DV162010 DM163001 — — — —

PIC16C56A DV162010 DM163001 — — — —

PIC16C57 DV162010 DM163001 — — — —

PIC16C57C DV162010 DM163001 — — — —

PIC16C58A DV162010 DM163001 — — — —

PIC16C58B DV162010 DM163001 — — — —

PIC16C62A — — DM163002 — — —

PIC16C62B — — DM163002 — — —

PIC16C620 — DM163001 — — — —

PIC16C620A — DM163001 — — — —

PIC16C621 — DM163001 — — — —

PIC16C621A — DM163001 — — — —

PIC16C622 — DM163001 — — — —

PIC16C622A — DM163001 — — — —

PIC16CE623 — — — — — —

PIC16CE624 — — — — — —

PIC16CE625 — — — — — —

PIC16F627 — — — — — —

PIC16F628 — — — — — —

PIC16C63 — — DM163002 — — —

PIC16C63A — — DM163002 — — —

PIC16C64A — — DM163002 — — —

PIC16C642 — — DM163002 — — —

PIC16C65A — — DM163002 — — —

PIC16C65B — — DM163002 — — —

PIC16C66 — — DM163002 — — —

PIC16C662 — — DM163002 — — —

PIC16C67 — — DM163002 — — —

PIC16C71 — DM163001 — — — —

PIC16C710 — DM163001 — — — —

PIC16C711 — DM163001 — — — —

PIC16C712 — — — — — —

PIC16C715 — DM163001 — — — —

PIC16C716 — — — — — —

 Shaded area indicates not applicable.
DS30392J-page 8-12 1999 Microchip Technology Inc.

System Support
D

evelo
p

m
en

t S
ystem

s

8

S8.book Page 13 Thursday, March 2, 2000 7:56 AM
PIC16C717 — — — — — —

PIC16C72 — — DM163002 — — —

PIC16C72A — — DM163002 — — —

PIC16C73A — — DM163002 — — —

PIC16C73B — — DM163002 — — —

PIC16C74A — — DM163002 — — —

PIC16C74B — — DM163002 — — —

PIC16C76 — — DM163002 — — —

PIC16C77 — — DM163002 — — —

PIC16C773 — — — — — —

PIC16C774 — — DM163002 — — —

PIC16F83 — DM163001 — — — —

PIC16F84 — DM163001 — — — —

PIC16F84A — DM163001 — — — —

PIC16F873 — — DM163002 — — —
PIC16F874 — — DM163002 — — —
PIC16F876 — — DM163002 — — —
PIC16F877 — — DM163002 — — —
PIC16C923 — — — DM163003 — —

PIC16C924 — — — DM163003 — —

PIC17C42A — DM163001 — — — —

PIC17C43 — DM163001 — — — —

PIC17C44 — DM163001 — — — —

PIC17C752 — — — — — DM173001
PIC17C756 — — — — — DM173001
PIC17C756A — — — — — DM173001
PIC17C762 — — — — — DM173001
PIC17C766 — — — — — DM173001
PIC18C242 — — DM163002 — — —
PIC18C252 — — DM163002 — — —
PIC18C442 — — DM163002 — — —
PIC18C452 — — DM163002 — — —

PICmicro MCU Demo Boards and Evaluation Kits Cross Reference and
Ordering Information (Continued)

Model Name/
Part Number

SIMICE PICDEM-1 PICDEM-2 PICDEM-3 PICDEM-14A PICDEM-17

 Shaded area indicates not applicable.
 1999 Microchip Technology Inc. DS30392J-page 8-13

System Support

S8.book Page 14 Thursday, March 2, 2000 7:56 AM
KEELOQ, microID™, and Serial EERPOM Evaluation Kits

Model
Name/

Part No.

KEELOQ®
Evaluation

Kit

KEELOQ
Transponde
r Evaluation

Kit

Serial
EEPROM

Design Kit

MCP2510
CAN

Developme
nt Kit*

microID
Programme

r Kit

125 kHz
microID

Developer’s
Kit

125 kHz
Anticollisio
n microID

Developer’s
Kit

13.56 MHz
Anticollision

microID
Developer’s

Kit

24CXX/
24LCXX

— — DV243001 — — — — —

93CXX/
93LCXX

— — DV243001 — — — — —

HCS200 DM303002 — — — — — — —

HCS201 DM303002 — — — — — — —

HCS300 DM303002 — — — — — — —

HCS301 DM303002 — — — — — — —

HCS320 DM303002 — — — — — — —

HCS360 DM303002 — — — — — — —

HCS361 DM303002 — — — — — — —

HCS410 — DM303005 — — — — — —

HCS412 — DM303005 — — — — — —

HCS500 DM303002 — — — — — — —

HCS512 DM303002 — — — — — — —

HCS515 DM303002 — — — — — — —

MCRF200 — — — — PG103001 DV103001 — —

MCRF250 — — — — PG103001 — DV103002 —

MCRF355 — — — — — — — DV103003

MCP2510 — — — DV251001 — — — —

 Shaded area indicates not applicable.
* Contact Microchip Technology Inc. for availability.
DS30392J-page 8-14 1999 Microchip Technology Inc.

ON-LINE SUPPORT
Microchip Internet Connections

D
evelo

p
m

en
t S

ystem

8

S8.book Page 15 Thursday, March 2, 2000 7:56 AM
On-line Support
Microchip provides on-line support on the
Microchip World Wide Web (WWW) site.
The web site is used by Microchip as a means to
make files and information easily available to
customers. To view the site, the user must have
access to the internet and a web browser, such as
Netscape® or Microsoft® Internet Explorer®. Files
are also available for FTP download from our FTP
site.

Connecting to the Microchip
Internet Web Site
The Microchip web site is available by using
your favorite internet browser to attach to:

www.microchip.com
The file transfer site is available by using an FTP
service to connect to:

ftp://www.microchip.com
The web site and file transfer site provide a
variety of services. Users may download files
for the latest development tools, data sheets,
application notes, user’s guides, articles, and
sample programs. A variety of Microchip specific
business information is also available, including
listings of Microchip sales offices, distributors and
factory representatives. Other data available for
consideration is:

• Latest Microchip press releases
• Technical support section with frequently

asked questions
• Design tips
• Device errata
• Job postings
• Microchip consultant program member listing
• Links to other useful web sites related to

Microchip products
• Conferences for products, development

systems, technical information and more
• Listing of seminars and events

Systems Information and
Upgrade Hot Line
The Systems Information and Upgrade Hot Line
provides system users a listing of the latest
versions of all of Microchip’s development
systems software products. Plus, this line
provides information on how customers can
receive any currently available upgrade kits. The
Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada
and
1-480-786-7302 for the rest of the world
 1999 Microchip Technology Inc. DS30128J-page 8-15

s

On-Line Support

S8.book Page 16 Thursday, March 2, 2000 7:56 AM
NOTES:
DS30128J-page 8-16 1999 Microchip Technology Inc.

MPLAB™
Integrated Development Environment

D
evelo

p
m

en
t S

ystem

8

S8.book Page 17 Thursday, March 2, 2000 7:56 AM
MPLAB gives PICmicro® MCU
users the flexibility to edit,
compile, and debug from a single
user interface.
MPLAB is a Windows®-based development platform for the Microchip Technol-
ogy PICmicro microcontroller (MCU) families. MPLAB Integrated Development
Environment (IDE) offers a project manager and program text editor, a user-con-
figurable toolbar containing four predefined sets, and a status bar which commu-
nicates editing and debugging information.

MPLAB is the common user interface for Microchip development systems tools
including MPLAB Editor, MPASM Assembler, MPLAB-SIM Software Simulator,
MPLIB, MPLINK, MPLAB-C17 C Compiler, MPLAB-ICE In-Circuit Emulator,
PICSTART® Plus Development Programmer, and PRO MATE® II Programmer.
Additional products may become available as add-on tools in the future.

The MPLAB desktop provides the development environment and tools for devel-
oping and debugging your application as a project, allowing you to quickly move
between different development and debugging modes. With the MPLAB environ-
ment, you can write and debug your source code, automatically locate errors in
source files for editing, debug with breakpoints based on internal register values,
watch the program flow with MPLAB-SIM (software simulator) or MPLAB-ICE,
make timing measurements with a “stop watch,” view variables in watch win-
dows, program firmware with PICSTART Plus or PRO MATE II programmers,
and find quick answers to questions from the MPLAB on-line help.
 1999 Microchip Technology Inc.

s

Features:
MPLAB Project Manager
� Organizes the different files that

comprise your application firmware
under one “Project”

� Allows you to create a project; add, edit
or debug a source code file in a project;
build object files: and download code to
the emulator or simulator with a mouse
click

� Supports multiple source files such as
MPASM and MPLAB-C17 source files,
precompiled libraries and object files,
and linker scripts

� Includes configurable build tools

MPLAB-SIM Software Simulator
� Discrete-event simulator integrated into

the MPLAB IDE features debug
capabilities including unlimited
breakpoints, trace, examine/modify
registers, watch variables, and time-
stamp

� Simulates the core functions as well as
most peripherals of the PICmicro
MCUs

MPLAB Editor
� Full-featured programmer’s editor lets

you write and edit firmware source files
or other text files for PICmicro MCUs

� Creates reusable source file templates
for quick creation of new source files

MPASM Universal Assembler
� Has full-featured macro capabilities,

conditional assembly and several
source and listing formats

� Generates various object code formats
to support Microchip development
tools and third-party programmers
without exiting MPLAB

MPLINK Linker
� A linker for Microchip’s MPLAB-C17 C

compiler and the relocatable
assembler, MPASM

� Combines multiple input object
modules, generated by MPLAB-C17 or
MPASM, into a single executable file

� Generates the symbolic information for
debugging with MPLAB
DS51070C-page 8-17

MPLAB

S8.book Page 18 Thursday, March 2, 2000 7:56 AM
Ordering Information:
Model Name:

MPLAB IDE

Ordering Part Number:

SW007002

Tools Supported:

MPLAB-ICE In-Circuit Emulator

ICEPIC Emulator System

SIMICE Entry-level Hardware
Simulator

PICSTART Plus Low-cost
Programmer

PRO MATE II Full-featured
Programmer

Host System Requirements:

PC with 386 or higher processor.
Pentium® recommended

8 MB Memory, 32 MB recommended

16 MB hard disk space, 20 MB
recommended

VGA or Super VGA Monitor

Microsoft® Windows 3.1 or greater

CD-ROM Drive
DS51070C-page 8-18
System Description:
MPLAB allows you to write, debug, and optimize the PICmicro MCU appli-
cations for firmware product designs.

MPLAB IDE software package includes the following:

� MPLAB Project Manager

� MPLAB-SIM Software Simulator

� MPLAB Editor

� MPASM Universal Macro Assembler for the PICmicros and other language
products supporting the Common Object Description file Format

� MPLINK, MPLIB

To order or obtain more information about MPLAB IDE, contact the
Microchip sales office nearest you.

Customer Support:
Microchip maintains a worldwide network of distributors, representatives,
local sales offices, Field Application Engineers, and Corporate Application
Engineers. Microchip’s Internet home page can be reached at:
www.microchip.com.

Development Tools from Microchip

MPLAB™ Integrated Development Environment (IDE)

MPLAB-C17 C compiler for PIC17CXXX MCUs

MPLAB-C18 C compiler for PIC18CXXX MCUs

C compiler Sold by third-party vendors (HI-TECH, IAR, CCS)

MPASM Universal PICmicro macro-assembler

MPLINK/MPLIB Linker/Librarian

MPLAB-SIM Software Simulator

MPLAB-ICD In-circuit debugger evaluation kit

MPLAB-ICE 2000 Full-featured modular in-circuit emulator

ICEPIC Low-cost in-circuit emulator

PRO MATE® II Full-featured, modular device programmer

PICSTART®Plus Entry-level development kit with programmer
 1999 Microchip Technology Inc.

MPASM
Universal PICmicro® Microcontroller Assembler Software

D
evelo

p
m

en
t S

ystem

8

S8.book Page 19 Thursday, March 2, 2000 7:56 AM
This product brief describes the technical aspects of
the PICmicro MCU Assembler. The MPASM Cross
Assembler is a PC hosted symbolic assembler. It
supports all microcontroller series, including the
PIC12CXX, PIC16C5X, PIC16CXX and PIC17CXX
families.

MPASM offers fully featured Macro capabilities,
conditional assembly, and several source and listing
formats. It generates various object code formats to
support Microchip’s development tools as well as third
party programmers.

MPASM allows full symbolic debugging from the
MPLAB Integrated Development Environment.

MPASM REQUIREMENTS

MPASM will run on any IBM PC/AT® or compatible
computer running DOS 5.0 or later.

MPASM ASSEMBLER FEATURES

MPASM supports the 12-bit PIC12CXX and
PIC16C5X, the 14-bit PIC16CXX, and the 16-bit
PIC17CXX cores.

All instructions are single-word and single-cycle,
except for branches, which execute in two cycles. Most
instructions operate on one or more operands.

MPASM have the following features to assist in
developing software for specific user applications:

• Provides translation of Assembler source code to
object code for all Microchip microcontrollers.

• Macro Assembly Capability

• Provides Object, Listing, Symbol and special files
required for debugging with one of the Microchip
Emulator systems.

• Supports Hex (default), Decimal and Octal source
and listing formats.

• Output formats: INHX8S, INHX8M, INHX32 and
relocatable objects.
 1998 Microchip Technology Inc. DS30179F-page 8-19

s

MPASM

S8.book Page 20 Thursday, March 2, 2000 7:56 AM
MPASM DIRECTIVE LANGUAGE

MPASM provides a full featured directive language
represented by four basic classes of directives:

• Data Directives are those that control the
allocation of memory and provide a way to refer to
data items symbolically, by meaningful names.

• Listing Directives control the MPASM listing
display. They allow the specification of titles and
subtitles, page ejects and other listing control.

• Control Directives permit sections of conditionally
assembled code.

• Macro Directives control the execution and data
allocation within macro body definitions.

MPLINK

MPLINK provides a linker for relocatable objects pro-
duced by MPASM and MPLAB-C17. It allows the pro-
duction of reusable code and can combine objects
generated by both MPASM and MPLAB-C17 into an
application

MPLINK is extremely flexible because it is controlled
with a linker script. The script defines the processor
ROM and RAM memory regions, and relocatable
objects from the compiler and assembler are placed
into available program memory locations. RAM is allo-
cated as needed. If code space overflows the available
ROM or if variables are used beyond the capacity of the
current device, MPLINK will give an error message.

MPLINK allows blocks of data to be defined as reus-
able, so that routines that never call each other can
make efficient use of RAM.

MPLINK generates map files to display usage of pro-
cessor resources and locations of global variables and
function executables. It also generates debugging files
for use with MPLAB. Symbolic information is included
in these files which allows MPLAB to track source lines,
variables, and executable code.

MPLINK is distributed in two executable formats: a
Win32 console application suitable for Windows 95 and
Win NT platforms, and an extended DOS DPMI appli-
cation suitable for Windows 3.x and DOS platforms.

MPLIB

MPLIB manages the creation and modification of
library files. Library files have distinct advantages over
re-coding routines in all applications:

• Libraries make linking easier – multiple objects
can be contained in a single library.

• Libraries help keep code small – only the routines
that are used in an application are extracted from
the library.

• Libraries make projects more maintainable –
deleting or adding calls to a library does not
change the overall build process.

MPASM INSTRUCTION SET

MPASM supports the entire instruction set of the
PIC16C5X, PIC16CXX and PIC17CXX microcontrol-
lers, as represented in the following four classes of
instructions:

• Data Move Operations
• Arithmetic and Logical Operations

• Bit Manipulation Operations

• Special Control Operations

The Microchip microcontroller set is used to operate on
data located in any of the file registers, including the I/
O registers. There are:

• Data Transfer Operations

• Logical Operations

• Rotate Operations

MPASM provides bit level file register operations to
manipulate and test individual bits in any addressable
register, literal and control operations permitting
operations on literals and branches to subroutines in
program memory.

The Microchip microcontroller instruction sets allow
read and write of special function registers such as the
PC and status registers.
DS30179F-page 8-20 1998 Microchip Technology Inc.

MPLAB™-ICD
In-Circuit Debugger

D
evelo

p
m

en
t S

ystem

8

S8.book Page 21 Thursday, March 2, 2000 7:56 AM
Develop your next FLASH PICmicro® MCU
project with MPLAB-ICD, a powerful and
affordable development and evaluation kit!
Microchip’s In-Circuit Debugger, MPLAB-ICD, is a powerful, low-cost development
and evaluation kit for the FLASH PIC16F87X microcontroller (MCU) family. MPLAB-
ICD utilizes the In-Circuit Debugging capability of the PIC16F87X. This feature, along
with Microchip's In-Circuit Serial Programming™ (ICSP™) protocol, offers cost-effec-
tive

in-circuit FLASH programming and debugging from the graphical user interface of the
MPLAB Integrated Development Environment (IDE). A designer can develop and
debug source code by watching variables, setting break points, and single-stepping.
Running at full speed enables testing hardware in real-time.

The modular design of the In-Circuit Debugger consists of three basic components:
ICD module, ICD header, and ICD demo board. The ICD module connects to a serial
(COM) port of a PC. When instructed by MPLAB IDE, the ICD module programs and
issues debug commands to the target PIC16F87X using ICSP protocol. A 9-inch, 6
conductor cable connects the ICD module to the ICD header. The header contains a
target PIC16F877, a modular jack, and 28-pin and 40-pin male DIP headers. The

28-pin and 40-pin DIP headers can be plugged into a target circuit board or into the
ICD demo board. A modular jack can be designed into at a target circuit board to sup-
port direct connection to the ICD module or, alternatively, a DIP socket on a target
application can support direct connection to the ICD header. If a target application is
not available, immediate prototype development using the MPLAB-ICD is feasible
with the included ICD demo board. This board offers LEDs, DIP switches, an analog
potentiometer, and prototyping area.

The MPLAB-ICD complete hardware development system along with the free MPLAB
software provides a powerful, affordable run-time development tool.
 1999 Microchip Technology Inc.
Features:
� PIC16F87X evaluation and

demonstration board

� PIC16F87X device programming

� In-circuit run-time debugging

� Real-time code execution

� One hardware break point

� Single step

� Watch variables

� 3.0V to 5.5V operating

� 32 kHz to 20 MHz operation

� PC communication at speeds up to
57600 baud

� Includes Microchip’s MPLAB IDE:

- Editor

- Assembler

- Linker

- Simulator

- Project Manager

- Source level symbolic debug
DS51210A-page 8-21

s

MPLAB™-ICD

S8.book Page 22 Thursday, March 2, 2000 7:56 AM
Ordering Information:
MPLAB-ICD

Ordering Part Number:

DV164001

Devices Supported:

PIC16F873

PIC16F874

PIC16F876

PIC16F877

Contact Microchip Technology’s web
site at www.microchip.com for infor-
mation on how to use the MPLAB-ICD
with:

Host System Requirements:

PC-compatible machine with 486 or
higher processor

4 MB RAM, 16 MB recommended
20 MB available hard disk space

Microsoft® Windows® 3.X/95/98

CD-ROM Drive

One free serial port

9V, 0.75A Power Supply
(PICSTART® Plus or equivalent)

PIC16C62 PIC16C72

PIC16C63 PIC16C73

PIC16C64 PIC16C74

PIC16C65 PIC16C76

PIC16C66 PIC16C77
DS51210A-page 8-22
System Description:
The low-cost PC- based MPLAB-ICD comes with the ICD module; ICD
header; ICD demo board; RS-232 cable; 40-pin DIP and 28-pin SDIP con-
nection sockets; one 9-inch, 6-conductor modular cable; MPLAB IDE soft-
ware; and complete documentation. MPLAB-ICD requires the user to
provide a power supply for operation. (A PICSTART® Plus or equivalent 9V,
0.75A power supply is required.)

The MPLAB-ICD module connects to the serial port of the host PC via the
RS-232 cable. The 9-inch modular cable connects the MPLAB-ICD module
to the

MPLAB-ICD header. The MPLAB-ICD header plugs into the connection
socket located on the demo board or a target application. A user provided
power supply from the demo board or target application, powers the MPLAB-
ICD module.

To obtain more information about MPLAB-ICD or any other Microchip prod-
uct, contact the Microchip sales office nearest you or visit the Microchip web
site.

Customer Support:
Microchip maintains a worldwide network of distributors, representatives,
local sales offices, Field Application Engineers, and Corporate Application
Engineers. Microchip’s Internet home page can be reached at:
www.microchip.com.

Development Tools from Microchip

MPLAB™ Integrated Development Environment (IDE)

MPLAB-C17 C compiler for PIC17CXXX MCUs

MPLAB-C18 C compiler for PIC18CXXX MCUs

C compiler Sold by third-party vendors (HI-TECH, IAR, CCS)

MPASM Universal PICmicro macro-assembler

MPLINK/MPLIB Linker/Librarian

MPLAB-SIM Software Simulator

MPLAB-ICD In-circuit debugger evaluation kit

MPLAB-ICE 2000 Full-featured modular in-circuit emulator

ICEPIC Low-cost in-circuit emulator

PRO MATE® II Full-featured, modular device programmer

PICSTART®Plus Entry-level development kit with programmer
 1999 Microchip Technology Inc.

MPLAB™-ICE
In-Circuit Emulator

D
evelo

p
m

en
t S

ystem

8

S8.book Page 23 Thursday, March 2, 2000 7:56 AM
MPLAB-ICE is a high-performance,
real-time in-circuit emulator.
MPLAB-ICE is Microchip’s new Universal In-Circuit Emulator (ICE) for the PICmicro®
8-bit microcontrollers (MCU). Designed with the user requirements in mind, the
MPLAB-ICE system is small, portable and light weight, and offers improved perfor-
mance and value. For quick hook-up to portable or desktop PCs, MPLAB-ICE easily
connects to the parallel (printer) port. In addition, MPLAB-ICE provides a migration
path for existing customers designing with PICMASTER® Probe Kits.

Interchangeable processor modules allow the system to be easily configured to emu-
late different processors. This modular system consists of an emulator pod, a proces-
sor module, a device adapter, and a translation socket. Also included is Microchip’s
MPLAB Integrated Development Environment (IDE) featuring MPASM macro assem-
bler, MPLAB programmer’s editor, symbolic debugger, and project manager with built-
in support for high-level languages that supports the Common Object Description for-
mat (i.e., MPASM and MPLAB-C17).

MPLAB-ICE 2000 is a full-featured emulator system providing full-speed emulation,
low voltage operation, 32K by 128-bit trace, and up to 65,535 breakpoints. Complex
triggering of the MPLAB-ICE 2000 provides sophisticated trace analysis and preci-
sion breakpoints. The trace analyzer captures real-time execution addresses,
opcodes, and read/writes of external data. It also traces all file register RAM usage
showing internal addresses and data values, as well as all accesses to special func-
tion registers, including I/O, timers, and peripherals. Triggers and breakpoints can be
set on single events, multiple events, and sequences of events. The MPLAB-ICE 2000
analyzer is fully transparent and does not require halting the processor to view the
trace. In addition, MPLAB-ICE 2000 supports code coverage profiling on program
memory accesses.
 1999 Microchip Technology Inc.
Features:
� High-performance PC-based

development system for PICmicro
MCUs

� Includes MPLAB IDE

� Assembly and C source level
debugging

� Real-time in-circuit emulation to
maximum speed of PICmicro MCUs

� Program memory emulation and
memory mapping capability up to
64K words

� Real-time trace with up to 32K deep
by 128 bit wide buffer

� Low voltage emulation
(as low as 2.0 volts)

� Unlimited software breakpoints

� Trigger/break/trace on program
address and data; internal register
address and data; eight external
inputs; bus cycle type

� Complex breakpoints with up to four
levels of advanced trigger features,
including sequential events, AND/
OR events, filtered trace, time
between two events, and pass
counts

� External trigger input and output
allows logic analyzer/scope interface

� Time-stamp trace feature

� Software programmable processor
clock (32 kHz to 40 MHz)

� Code coverage

� Parallel port (printer) interface

� Supports all PICmicro package
types, including all through-hole and
surface-mount packages

� Interchangeable processor modules
DS51176A-page 8-23

s

MPLAB™-ICE

S8.book Page 24 Thursday, March 2, 2000 7:56 AM
Ordering Information:
See the Development Tools Selection
Chart, or www.microchip.com for
specific part numbers. To order or
obtain more information about
MPLAB-ICE or any other Microchip
product, contact the Microchip Sales
Office, representative, or distributor
nearest you.

Host System Requirements:

PC with 386 or higher processor.
Pentium® recommended

8 MB Memory, 32 MB recommended

16 MB hard disk space, 20 MB
recommended

VGA or Super VGA Monitor

Microsoft® Windows® 3.1 or greater

Parallel Port
DS51176A-page 8-24
System Description:

Customer Support:
Microchip maintains a worldwide network of distributors, representatives,
local sales offices, Field Application Engineers, and Corporate Application
Engineers. Microchip’s Internet home page can be reached at:
www.microchip.com.

Features MPLAB-ICE 2000

Real-Time Emulation Full Speed

Low-Voltage Emulation 2.0 to 5.5 volts

Trace Memory 32K x 128 bit

Break/Trigger on Internal Registers Yes

Software Breakpoints Program Address

Complex Break/Trigger on Logic Program Address and Data; Internal
Register Address and Data; Access
Type; and 8 External Inputs

Logic Analyzer Trigger 1 External Input and Output

Multi-level Trigger Yes (four levels)

Pass Counter Yes

Delay Counter Yes

Time Stamp Yes

Programmable Clock 32 kHz to 40 MHz

Logic Probes Yes

Communications Parallel (printer) Port

Code Coverage Profiling Yes

*Contact Microchip Technology Inc for availability

Development Tools from Microchip

MPLAB™ Integrated Development Environment (IDE)

MPLAB-C17 C compiler for PIC17CXXX MCUs

MPLAB-C18 C compiler for PIC18CXXX MCUs

C compiler Sold by third-party vendors (HI-TECH, IAR, CCS)

MPASM Universal PICmicro macro-assembler

MPLINK/MPLIB Linker/Librarian

MPLAB-SIM Software Simulator

MPLAB-ICD In-circuit debugger evaluation kit

MPLAB-ICE 2000 Full-featured modular in-circuit emulator

ICEPIC Low-cost in-circuit emulator

PRO MATE® II Full-featured, modular device programmer

PICSTART®Plus Entry-level development kit with programmer
 1999 Microchip Technology Inc.

MPLAB™-SIM
Software Simulator

D
evelo

p
m

en
t S

ystem

8

S8.book Page 25 Thursday, March 2, 2000 7:56 AM
MPLAB-SIM provides an extremely
powerful and cost-effective
debugging solution.
The MPLAB-SIM software simulator allows speedy isolation of code problems
and versatile debugging of firmware designs on all PICmicro® MCU devices.
MPLAB-SIM simulates the core functions as well as many of the peripherals of
the PICmicro MCU product line. External signals can be simulated with stimulus
files or from user-defined key presses and can be applied to any external
PICmicro MCU pin. Values can be directly injected into registers from files to
simulate A/D conversions and other 8-bit inputs.

MPLAB-SIM simulates timers, counters, I/O ports, Watch Dog Timers, Capture/
Compare modules, comparators, sleep mode, LCD registers, parallel slave
ports, interrupts and wake up from sleep. Registers not usually accessible, such
as prescalers and postscalers, can be viewed in the simulator.

MPLAB-SIM uses the same interface as the PICMASTER® and ICEPIC emu-
lators to provide easy migration to these and other Microchip development tools.

MPLAB-SIM is a central component in the MPLAB™ Integrated Development
Environment (IDE) desktop. The MPLAB IDE provides a powerful development
environment supporting a rich set of software and hardware tools. This highly
integrated tool set lets you develop and debug your application as a project,
moving quickly from code generation, through compilation and editing, to
debugging and optimization, and finally to programming PICmicro MCU
devices.
 1999 Microchip Technology Inc.
Features:
MPLAB-SIM Software Simulator

� Discrete-event simulator integrated
into the MPLAB Integrated
Development Environment

� Simulates the core functions as
well as most peripherals of the
PICmicro MCUs

External Stimulus Events
� Asynchronous events defined by the user

can be assigned to function keys on the
keyboard.

� Synchronous clocks with adjustable duty
cycles and periods can be assigned to any
pin.

� Pin stimulus files can simulate multiple
input signals precisely synchronized to
code execution.

� Register injection files can provide
8-bit values at specific points in the
program to simulate A/D conversions or
byte values applied to ports or other
registers.

Expanded Trace Buffer
� 8k cycles of program execution provide

detailed information on program flow.
� Time stamp shows the elapsed time at

each instruction execution.
� Changed register values are shown on

each instruction cycle.

MPLAB Integrated Development
Environment
� Project Manager to easily build

applications
� Programmers editor for creating and

modifying source code
� MPASM/MPLINK/MPLIB universal

assembler/linker/librarian
� Support for MPLAB-C17 and third party C

compilers
� Source level symbolic debugging
� Stopwatch with programmable

clock frequency
� Watch windows
� PICSTART® Plus and PRO MATE®

device programmer support
� Extensive on line help
� Programmable tool bars,

powerful breakpointing features,
and much more!
DS51088C-page 8-25

s

MPLAB™-SIM

S8.book Page 26 Thursday, March 2, 2000 7:56 AM
Ordering Information:
Model Name:

MPLAB-SIM

Ordering Part Number:

SW007002

Tools Supported:

MPLAB-SIM Software Simulator

PICMASTER In-Circuit Emulator

PICSTART Plus Low-cost
Programmer

PRO MATE II Device Programmer

ICEPIC Low-cost Emulator

Host System Requirements:

PC with 386 or higher processor.
Pentium® recommended

8 MB Memory, 32 MB recommended

12 MB hard disk space,
20 MB recommended

VGA or Super VGA Monitor

Microsoft® Windows® 3.1 or greater
DS51088C-page 8-26
System Description:
MPLAB-SIM is a discrete event simulator software application designed to
imitate operation of the PICmicro MCUs. It allows the user to debug software
that will use any of these microcontrollers.

At any instruction boundary, you may examine and/or modify any data
area within the processor, or provide external stimulus to any of the pins.
MPLAB-SIM gives you a solid, low cost, source-level debug tool to help you
through the early design verification stages of your project.

MPLAB-SIM runs under MPLAB. This allows you to write, debug, and opti-
mize the PICmicro MCU applications for firmware product designs.

MPLAB IDE software package includes the following:

� MPLAB Project Manager

� MPLAB Editor

� MPASM Universal Macro Assembler for the PICmicro MCUs and other
language products supporting the Common Object Description file format

To order or obtain more information about MPLAB-SIM, contact the Micro-
chip sales office nearest you. MPLAB-SIM software may also be down-
loaded from Microchip’s internet home page at www.microchip.com.

Customer Support:
Microchip maintains a worldwide network of distributors, representatives,
local sales offices, Field Application Engineers, and Corporate Application
Engineers. Microchip’s Internet home page can be reached at:
www.microchip.com.

Development Tools from Microchip

MPLAB™ Integrated Development Environment (IDE)

MPLAB-C17 C compiler for PIC17CXXX MCUs

MPLAB-C18 C compiler for PIC18CXXX MCUs

C compiler Sold by third-party vendors (HI-TECH, IAR, CCS)

MPASM Universal PICmicro macro-assembler

MPLINK/MPLIB Linker/Librarian

MPLAB-SIM Software Simulator

MPLAB-ICD In-circuit debugger evaluation kit

MPLAB-ICE 2000 Full-featured modular in-circuit emulator

ICEPIC Low-cost in-circuit emulator

PRO MATE® II Full-featured, modular device programmer

PICSTART®Plus Entry-level development kit with programmer
 1999 Microchip Technology Inc.

MPLAB™-C17
ANSI-Compliant C Compiler for PIC17CXXX Microcontrollers

D
evelo

p
m

en
t S

ystem

8

S8.book Page 27 Thursday, March 2, 2000 7:56 AM
MPLAB-C17 provides powerful
integration capabilities and ease
of use!
The MPLAB-C17 compiler is a full-featured ANSI compliant C compiler for the
Microchip Technology PIC17CXXX family of PICmicro® 8-bit microcontrollers
(MCU). MPLAB-C17 is fully compatible with Microchip’s MPLAB Integrated
Development Environment (IDE), allowing source level debugging with both the
MPLAB-ICE In-Circuit Emulator and the MPLAB-SIM simulator. MPLAB pro-
vides a convenient, project oriented development environment that reduces
development time.

MPLAB-C17 allows code for the PIC17CXXX family to be written in the C high-
level language using powerful PICmicro libraries, enabling the developer to
devote more time to the application and less time to the details of the processor.

MPLAB-C17 was designed explicitly for the PIC17CXXX family and allows the
use of a software stack for maximum RAM reusability or can be run without a
stack for optimal code space efficiency.

MPLAB-C17 provides user configurable interrupt support macros for saving and
restoring context during interrupt handling. Libraries and interrupt handlers are
provided for multiple memory models. Libraries, precompiled objects and linker
scripts can be included in MPLAB projects along with C and Assembly source
files for use with MPLAB’s make and build functions.

MPLAB-C17 will run on any 386 or better PC, on DOS® 5.0+ or as a native 32-bit
Windows® 95 or Windows NT® executable.
 1999 Microchip Technology Inc.
Features:
� ANSI compliant

� Integrated with MPLAB for easy-to-
use project management and
source-level debugging

� Generates relocatable object
modules for enhanced code reuse

� Fully compatible with object modules
generated with MPASM, allowing
complete freedom in mixing
assembly and C in a single project

� Transparent read/write access to
external memory

� Interrupt code can be written in C or
Assembly

� Strong support for inline assembly
for when total control is absolutely
necessary

� Efficient code generator engine with
multi-level optimization

� Extensive library support, including
PWM, SPI™, I2C™, USART, UART,
string manipulation, and math
libraries

� Allows code and data to be located at
absolute addresses

� Easy manipulation of processor
configuration words
DS51107D-page 8-27

s

MPLAB™-C17

S8.book Page 28 Thursday, March 2, 2000 7:56 AM
Ordering Information:
Model Name:

MPLAB-C17

Ordering Part Number:

SW006010

Devices Supported:

All PIC17CXXX microcontrollers

Host System Requirements:

PC with 386 or higher processor

4 MB Memory, 16 MB recommended

8 MB hard disk space,
20 MB recommended

VGA or Super VGA Monitor

MS-DOS/PC-DOS
version 5.0 or greater
or Microsoft® WIndows 95 or
WIndows NT
DS51107D-page 8-28
System Description:
The MPLAB-C17 ANSI-compliant C Compiler comes complete with the
MPLAB IDE. The IDE allows you to quickly move between different develop-
ment and debugging modes, for example, you can quickly advance from
software debugging with MPLAB-SIM to hardware debugging with MPLAB-
ICE.

MPLAB-C17 has implemented extensions to the C language to provide spe-
cific support for Microchip’s PICmicro MCU environment. These C library
extensions include:

To order or obtain more information about MPLAB-C17 or any other
Microchip product, contact the Microchip sales office nearest you.

Customer Support:
Microchip maintains a worldwide network of distributors, representatives,
local sales offices, Field Application Engineers, and Corporate Application
Engineers. Microchip’s Internet home page can be reached at:
www.microchip.com.

A/D converter Input Capture Interrupt Support Macros

SPI Timers USART

I2C I/O Port Pulse Width Modulation

Reset External LCD Software SPI

Software I2C Software USART Character Classification

Relay Memory/String Manipulation Number/Text Conversion

32-bit Math Library

Development Tools from Microchip

MPLAB™ Integrated Development Environment (IDE)

MPLAB-C17 C compiler for PIC17CXXX MCUs

MPLAB-C18 C compiler for PIC18CXXX MCUs

C compiler Sold by third-party vendors (HI-TECH, IAR, CCS)

MPASM Universal PICmicro macro-assembler

MPLINK/MPLIB Linker/Librarian

MPLAB-SIM Software Simulator

MPLAB-ICD In-circuit debugger evaluation kit

MPLAB-ICE 2000 Full-featured modular in-circuit emulator

ICEPIC Low-cost in-circuit emulator

PRO MATE® II Full-featured, modular device programmer

PICSTART®Plus Entry-level development kit with programmer
 1999 Microchip Technology Inc.

MPLAB™-C18
ANSI-Compliant C Compiler for PIC18CXXX Microcontrollers

D
evelo

p
m

en
t S

ystem

8

S8.book Page 29 Thursday, March 2, 2000 7:56 AM
MPLAB-C18 provides powerful
integration capabilities and ease
of use!
The MPLAB-C18 compiler is a full-featured ANSI compliant C compiler for the
Microchip Technology PIC18CXXX family of PICmicro® 8-bit microcontrollers
(MCUs). MPLAB-C18 is fully compatible with Microchip’s MPLAB Integrated
Development Environment (IDE), allowing source level debugging with both the
MPLAB-ICE In-Circuit Emulator and the MPLAB-SIM simulator. MPLAB pro-
vides a convenient, project oriented development environment that reduces
development time.

MPLAB-C18 allows code for the PIC18CXXX family to be written in the C high-
level language using powerful PICmicro libraries, enabling the developer to
devote more time to the application and less time to the details of the processor.

MPLAB-C18 was designed explicitly for the PIC18CXXX family and allows the
use of a software stack for maximum RAM reusability.

MPLAB-C18 provides user configurable interrupt support for saving and restor-
ing context during interrupt handling. Libraries are provided for multiple memory
models. Libraries, precompiled objects, and linker scripts can be included in
MPLAB projects along with C and Assembly source files for use with MPLAB’s
make and build functions.

MPLAB-C18 will run on any 486 or better PC as a native 32-bit Windows®95 or
Windows NT®executable.
 1999 Microchip Technology Inc.
Features:
� ANSI compliant

� Integrated with MPLAB for easy-to-
use project management and
source-level debugging

� Generates relocatable object
modules for enhanced code reuse

� Fully compatible with object modules
generated with MPASM, allowing
complete freedom in mixing C and
Assembly in a single project

� Transparent read/write access to
external memory

� Interrupt code can be written in C or
Assembly

� Strong support for inline assembly
for when total control is absolutely
necessary

� Efficient code generator engine with
multi-level optimization

� Extensive library support, including
peripheral string manipulation, and
math libraries

� Allows code and data to be located at
absolute addresses

� Easy manipulation of processor
configuration words
DS51208A-page 8-29

s

MPLAB™-C18

S8.book Page 30 Thursday, March 2, 2000 7:56 AM
Ordering Information:
Model Name:

MPLAB-C18

Ordering Part Number:

SW006011

Devices Supported:

All PIC18CXXX microcontrollers

Host System Requirements:

PC with 486 or higher processor

4 MB Memory, 16 MB recommended
8 MB hard disk space,
20 MB recommended

MS-DOS®/PC-DOS® or
Microsoft® Windows® 95 or
Windows NT®
DS51208A-page 8-30
System Description:
The MPLAB-C18 ANSI-compliant C Compiler comes complete with the
MPLAB IDE. The IDE allows you to quickly move between different develop-
ment and debugging modes, for example, you can quickly advance from
software debugging with MPLAB-SIM to hardware debugging with MPLAB-
ICE.

MPLAB-C18 has implemented extensions to the C language to provide spe-
cific support for Microchip’s PICmicro MCU environment.

To order or obtain more information about MPLAB-C18 or any other Micro-
chip product, contact the Microchip sales office nearest you.

Customer Support:
Microchip maintains a worldwide network of distributors, representatives,
local sales offices, Field Application Engineers, and Corporate Application
Engineers. Microchip’s Internet home page can be reached at:
www.microchip.com

Development Tools from Microchip

MPLAB™ Integrated Development Environment (IDE)

MPLAB-C17 C compiler for PIC17CXXX MCUs

MPLAB-C18 C compiler for PIC18CXXX MCUs

C compiler Sold by third-party vendors (HI-TECH, IAR, CCS)

MPASM Universal PICmicro macro-assembler

MPLINK/MPLIB Linker/Librarian

MPLAB-SIM Software Simulator

MPLAB-ICD In-circuit debugger evaluation kit

MPLAB-ICE 2000 Full-featured modular in-circuit emulator

ICEPIC Low-cost in-circuit emulator

PRO MATE® II Full-featured, modular device programmer

PICSTART®Plus Entry-level development kit with programmer
 1999 Microchip Technology Inc.

ICEPIC
Low-Cost PIC16CXXX In-Circuit Emulator

D
evelo

p
m

en
t S

ystem

8

S8.book Page 31 Thursday, March 2, 2000 7:56 AM
ICEPIC: Affordable PIC16CXXX
In-Circuit Emulation Solution.
ICEPIC is a low-cost in-circuit emulation solution for the Microchip
Technology PIC16C5X and PIC16CXXX families of 8-bit one-time-
programmable (OTP) microcontrollers. The modular system can support
different subsets of PIC16C5X or PIC16CXXX products through the use of
interchangeable personality modules or daughter boards. The emulator is
capable of emulating without target application circuitry being present.

ICEPIC is designed to operate on PC-compatible machines ranging
from 286-AT® systems through the new Pentium® based machines. The
ICEPIC development software runs under Microsoft® Windows® 3.X
environment, allowing the operator access to a wide range of supporting
software accessories.

The ICEPIC development software provides a user-friendly operating
environment with an easy-to-use toolbar; unlimited number of breakpoints;
single, multiple and procedure step; ability to display and modify any
register; user-selectable processor speeds via an oscillator module; full
context-sensitive help and an RS-232 serial port.

ICEPIC is fully compatible with Microchip’s MPASM Universal Assembler
and MPLAB-C17 Compiler.
 1999 Microchip Technology Inc.
Features:
� Real time, non-intrusive emulation

of PIC16C5X and PIC16CXXX
microcontrollers

� 8K words of emulation memory

� Full speed, real time emulation to
20 MHz for PIC16C5X family

� Up to 10 MHz real time emulation
for PIC16CXXX family

� Microsoft Windows compatible

� Source level debug capability in
assembly or C

� Symbolic debug capability

� 8K hardware breakpoints

� Custom watch points

� PC communication via serial
interface at speeds up to 57K baud

� Display and modify any register
(Program or Data)

� User selectable processor speeds
(via oscillator module)
DS51073C-page 8-31

s

ICEPIC

S8.book Page 32 Thursday, March 2, 2000 7:56 AM
Ordering Information:
See the Development Tools Selection
Chart, page 8-1 or
www.microchip.com for specific part
numbers. To order or obtain more
information about MPLAB-ICE or any
other Microchip product, contact the
Microchip Sales Office, representa-
tive, or distributor nearest you.
DS51073C-page 8-32
System Description:
The low-cost PC-based ICEPIC In-Circuit Emulator system comes with an
emulator unit (mother board), power supply, RS-232 cable, probe header
cable(s) to connect to the application circuit, and one device-specific
personality daughter board.

These interchangeable personality modules or daughter boards are
contained with the mother board within one housing, connecting to the target
application via a connector cable that extends from the housing. The mother
board incorporates the common emulation logic while the daughter board is
for device-specific emulator logic. This economical system allows the user
to purchase a new daughter board for a new processor group as needed, at
approximately 30% of the full system cost.

ICEPIC was designed by NEOSOFT Inc. and is manufactured under license
by RF Solutions Ltd. To order or obtain more information about ICEPIC or
any other Microchip product, contact the Microchip sales office nearest you.

Customer Support:
Microchip maintains a worldwide network of distributors, representatives,
local sales offices, Field Application Engineers, and Corporate Application
Engineers. Microchip’s Internet home page can be reached at:
www.microchip.com.

Development Tools from Microchip

MPLAB™ Integrated Development Environment (IDE)

MPLAB-C17 C compiler for PIC17CXXX MCUs

MPLAB-C18 C compiler for PIC18CXXX MCUs

C compiler Sold by third-party vendors (HI-TECH, IAR, CCS)

MPASM Universal PICmicro macro-assembler

MPLINK/MPLIB Linker/Librarian

MPLAB-SIM Software Simulator

MPLAB-ICD In-circuit debugger evaluation kit

MPLAB-ICE 2000 Full-featured modular in-circuit emulator

ICEPIC Low-cost in-circuit emulator

PRO MATE® II Full-featured, modular device programmer

PICSTART®Plus Entry-level development kit with programmer
 1999 Microchip Technology Inc.

PRO MATE® II
Universal Microchip Device Programmer

D
evelo

p
m

en
t S

ystem

8

S8.book Page 33 Thursday, March 2, 2000 7:56 AM
CE Compliant PRO MATE II makes
programming easy.
The PRO MATE II device programmer tool allows development engineers to pro-
gram user software into Microchip Technology’s entire line of PICmicro® 8-bit
microcontrollers (MCU), HCS Security Products, and 2- and 3-wire serial
EEPROM products.

The PRO MATE II device programmer is easy to use and operates either as a
stand-alone unit or in conjunction with a PC-compatible host system. When con-
nected to a host system, PRO MATE II provides an exceptionally user-friendly
interface to give the developer complete control over the programming session.
This time-saving tool comes complete with all the accessories needed to con-
nect to a host system including interface cables and a universal input power sup-
ply.

In addition to the programmer unit, the PRO MATE II system contains Micro-
chip’s highly-acclaimed MPLAB™ Integrated Development Environment (IDE),
with its built-in editor, assembler, and Windows®-based MPLAB-SIM simulator.
The

PRO MATE II programmer includes full documentation and software.

PRO MATE II is CE compliant, meaning it meets or exceeds all the directives for
safety, emissions, electrostatic discharge (ESD) and susceptibility (to radiated
emission) requirements set forth by the European Union (EU) countries.

The PRO MATE II device programmer is designed to be robust and reliable with:
enhanced socket module alignment with four auto alignment pins; three levels of
over-current protection and superior ESD immunity for rugged environments; a
small and compact universal IEC power supply and improved LCD display and
buttons.
 1999 Microchip Technology Inc.
Features:
� Programs EPROM and/or EEPROM

program and data memory for all
Microchip PICmicro MCUs, HCS
Security Products, and 2- and 3-wire
serial EEPROM products

� Designed to operate with the PRO
MATE II In-Circuit Serial
Programming™ Kit (sold separately)

� Three operating modes: Host Mode,
Safe Mode, and Stand-Alone Mode

� Complete line of interchangeable
socket modules supports all package
options (sold separately)

� Universal platform can quickly and
easily support future Microchip
products

� SQTPSM serialization adds a unique
serial number to each device
programmed (in PC host mode)

� MPLAB Project support to
automatically download object file to
PRO MATE II

� MPASM Assembler translates
assembler source code to object
code for all PICmicro devices

� MPLAB-SIM Windows-based
simulator designed to model
operation of all PICmicro MCUs

� Indexed on-line help

� Complete documentation including
all User’s Guides and Microchip’s
Technical Library CD-ROM

� Supports the serial programming
mode in PICmicros

� Supports a DOS command line
interface
DS51074D-page 8-33

s

PRO MATE® II

S8.book Page 34 Thursday, March 2, 2000 7:56 AM
Ordering Information:
Model Name:

PRO MATE II

Ordering Part Number:

DV007003

Devices Supported:

All PICmicro MCUs

HCS Security Products

Serial EEPROMs

Socket Modules and ICSP Kit are sold
separately. For a complete list, please
contact Microchip or refer to the Devel-
opment Systems Ordering Guide
(DS30177).

Host System Requirements:

PC with 386 or higher processor.
Pentium® recommended

8 MB Memory, 32 MB recommended

16 MB hard disk space,
20 MB recommended

VGA or Super VGA Monitor

Microsoft® Windows 3.1 or greater

CD-ROM Drive

COM Port
DS51074D-page 8-34
System Description:
Microchip’s PRO MATE II makes it easy to program the company’s entire line
of 8-bit RISC microcontrollers, HCS Security Products, and serial
EEPROMs operating either as a stand-alone unit or in conjunction with a
PC-compatible host system. When connected to a host system, PRO MATE
II provides an exceptionally user-friendly interface to give the developer
complete control over the programming session.

The new PRO MATE II software provides many user interface features.
These include a “safe mode,” where accidental corruption of master code is
prevented, and the ability to save and restore “environment” settings. The
PRO MATE II system runs with Microchip’s popular MPLAB IDE software.

To order or obtain more information about PRO MATE II or any other Micro-
chip product, contact the Microchip sales office nearest you.

Customer Support:
Microchip maintains a worldwide network of distributors, representatives,
local sales offices, Field Application Engineers, and Corporate Application
Engineers. Microchip’s Internet home page can be reached at:
www.microchip.com.

Development Tools from Microchip

MPLAB™ Integrated Development Environment (IDE)

MPLAB-C17 C compiler for PIC17CXXX MCUs

MPLAB-C18 C compiler for PIC18CXXX MCUs

C compiler Sold by third-party vendors (HI-TECH, IAR, CCS)

MPASM Universal PICmicro macro-assembler

MPLINK/MPLIB Linker/Librarian

MPLAB-SIM Software Simulator

MPLAB-ICD In-circuit debugger evaluation kit

MPLAB-ICE 2000 Full-featured modular in-circuit emulator

ICEPIC Low-cost in-circuit emulator

PRO MATE® II Full-featured, modular device programmer

PICSTART®Plus Entry-level development kit with programmer
 1999 Microchip Technology Inc.

PICSTART® Plus
Low-cost Development Kit Supports All PICmicro® MCUs

D
evelo

p
m

en
t S

ystem

8

S8.book Page 35 Thursday, March 2, 2000 7:56 AM
PICSTART Plus makes designing
with Microchip MCUs simple and
affordable.
The PICSTART Plus development system from Microchip Technology pro-
vides the product development engineer with a highly-flexible, low-cost
microcontroller (MCU) design tool set for all Microchip PICmicro 8-bit
devices (DIP packages up to 40 pins).

The PICSTART Plus development system runs on any PC-compatible
machine running under the Windows® 3.1 operating system. PICSTART
Plus is easy-to-use and features Microchip’s highly acclaimed MPLAB™
Integrated Development Environment (IDE), with its built-in editor, assem-
bler and Windows-based

MPLAB-SIM simulator. The PICSTART Plus development system includes
full documentation, software, development programmer, and a device sam-
ple.

The CE compliant PICSTART Plus development programmer features a
molded plastic enclosure and special circuit design techniques to enhance
ESD protection. PICSTART Plus is a development programmer and is not
recommended for use in a production environment.

Sample software programs are provided to help the developer quickly
become familiar with the PICSTART Plus development system and with
Microchip’s PICmicro MCU families. The PICSTART Plus system also
includes Microchip’s new CD-ROM containing complete documentation
necessary to get started with your design.
 1999 Microchip Technology Inc.
Features:
� Operates with PC-compatible host

system running Windows under
MPLAB environment

� Reads, programs, verifies EPROM
and EEPROM program and data
memory

� Reads, programs, verifies all
configuration bits

� Programs and verifies an address
range

� Displays, edits, and transfers device
contents to and from programmer
unit

� MPLAB Project support to
automatically download object file to
PICSTART Plus

� MPASM Assembler translates
assembler source code to object
code for all PICmicro devices

� MPLAB-SIM Windows-based
simulator designed to model
operation of all PICmicro MCUs

� Complete with RS-232 cable and 9
volt power supply

� PICmicro MCU device sample

� Complete documentation, User’s
Guides and CD-ROM
DS51075C-page 8-35

s

PICSTART® Plus

S8.book Page 36 Thursday, March 2, 2000 7:56 AM
Ordering Information:
Model Name:

PICSTART Plus

Ordering Information:

DV003001

Devices Supported:

All PICmicro MCUs
(DIP Packages up to 40 pins)

Host System Requirements:

PC with 386 or higher processor.
Pentium® recommended

8 MB Memory, 32 MB recommended

16 MB hard disk space,
20 MB recommended

VGA or Super VGA Monitor

Microsoft® Windows 3.1 or greater

CD-ROM Drive

COM Port
DS51075C-page 8-36
System Description:
The PICSTART Plus development system includes the PICSTART Plus
development programmer and the MPLAB IDE.

The PICSTART Plus programmer gives the product developer the ability to
program user software into any of the supported MCUs The PICSTART Plus
software running under MPLAB provides for full interactive control over the
programmer.

The MPASM macro assembler provides programmable memory data files,
listing files, and special files required for symbolic debug. The MPLAB-SIM
software simulator allows the user to isolate code problems and debug firm-
ware designs on PICmicro devices. It simulates the core functions as well as
most of the peripherals of the PICmicro MCU families. It is particularly suit-
able for optimizing algorithms where real-time emulation is not required.

To order or obtain more information about PICSTART Plus or any other
Microchip product, contact the Microchip sales office nearest you.

Customer Support:
Microchip maintains a worldwide network of distributors, representatives,
local sales offices, Field Application Engineers, and Corporate Application
Engineers. Microchip’s Internet home page can be reached at:
www.microchip.com

Development Tools from Microchip

MPLAB™ Integrated Development Environment (IDE)

MPLAB-C17 C compiler for PIC17CXXX MCUs

MPLAB-C18 C compiler for PIC18CXXX MCUs

C compiler Sold by third-party vendors (HI-TECH, IAR, CCS)

MPASM Universal PICmicro macro-assembler

MPLINK/MPLIB Linker/Librarian

MPLAB-SIM Software Simulator

MPLAB-ICD In-circuit debugger evaluation kit

MPLAB-ICE 2000 Full-featured modular in-circuit emulator

ICEPIC Low-cost in-circuit emulator

PRO MATE® II Full-featured, modular device programmer

PICSTART®Plus Entry-level development kit with programmer
 1999 Microchip Technology Inc.

KEELOQ®

Evaluation Kit

D
evelo

p
m

en
t S

ystem

8

S8.book Page 37 Thursday, March 2, 2000 7:56 AM
Lets you evaluate the capabilities
of Microchip’s code hopping
devices.
The KEELOQ Evaluation Kit demonstrates the capabilities of Microchip Tech-
nology’s code hopping technology. The KEELOQ Code Hopping Encoder
devices are designed to be the transmitter portion. The KeeLoq Decoder
devices are used in the receiver portion of secure RKE* systems. The
devices use the KeeLoq code hopping algorithm which combines high secu-
rity, a small package outline, and a very low cost to make this an ideal solu-
tion for unidirectional RKE systems.

Primary applications for the KeeLoq devices include automobile keyless
entry and security systems, garage door openers, home security systems,
central locking systems, gate openers, vehicle immobilizers, identity tokens,
and a growing list of other applications.

The KEELOQ Evaluation Kit includes all the necessary hardware to evaluate
a code hopping system, as well as a basic demonstration software program,
which is supplied on a PC-compatible 3.5-inch diskette.

*Remote Keyless Entry
 1999 Microchip Technology Inc.

s

Features:
� Transmit hopping code messages

using KeeLoq encoders

� Display the fixed and changing parts
of hopping code messages on a PC

� Receive and decode hopping code
transmissions using a PIC16C56/
93C46 decoder or HCS512 decoder

� Learn new encoders onto the
HCS512 decoders or PIC16C56/
93C46 EEPROM-based decoder

� Program KeeLoq encoders

� Comprehensive User’s Guide

� Schematics for transmitter and
receiver

� Supports HCS200, HCS300,
HCS301, HCS360, and HCS361
encoders

� Licence disk containing source code
and application notes describing a
software decoder.
DS51083E-page 8-37

KEELOQ®

S8.book Page 38 Thursday, March 2, 2000 7:56 AM
Ordering Information:
Model Name:

KEELOQ Evaluation Kit

Ordering Part Number:

DM303002

Devices Supported:

HCS200 Encoder

HCS300 Encoder

HCS301 Encoder

HCS360 Encoder

HCS361 Encoder

HCS512 Decoder

PIC16C56 Decoder

Host System Requirements:

PC-compatible computer: 386DX, 486
 or Pentium®-based with
ISA or EISA bus

Serial Port

EGA, VGA, 8514/A,
Hercules graphic card
(EGA or higher recommended)

Microsoft® Windows® 3.1 or greater
in 386 enhanced mode

4 MB RAM, 4 MB free disk space

3.5-inch diskette drive
DS51083E-page 8-38
System Description:
� HCS512 and PIC16C56/93C46 EEPROM-based decoders

� RF Receiver module

� On-board +5V regulator and filtered rectifier for direct input from 9V AC/DC
wall adapter

� Tow radio frequency transmitters using HCS300 hopping code encoders

� RS-232 socket and associated hardware for direct connection to RS-232
interface

� Six bright LEDs connected to decoder outputs

� Supports HCS200, HCS300, HCS301, HCS360, and HCS361 samples

Also includes all necessary software to program transmitters and to display
codes or messages.

To order or obtain more information about KeeLoq or any other Microchip
product, contact the Microchip sales office nearest you.

Customer Support:
Microchip maintains a worldwide network of distributors, representatives,
local sales offices, Field Application Engineers, and Corporate Application
Engineers. Microchip’s Internet home page can be reached at:
www.microchip.com

Development Tools from Microchip

MPLAB™ Integrated Development Environment (IDE)

MPLAB-C17 C compiler for PIC17CXXX MCUs

MPLAB-C18 C compiler for PIC18CXXX MCUs

C compiler Sold by third-party vendors (HI-TECH, IAR, CCS)

MPASM Universal PICmicro macro-assembler

MPLINK/MPLIB Linker/Librarian

MPLAB-SIM Software Simulator

MPLAB-ICD In-circuit debugger evaluation kit

MPLAB-ICE 2000 Full-featured modular in-circuit emulator

ICEPIC Low-cost in-circuit emulator

PRO MATE® II Full-featured, modular device programmer

PICSTART®Plus Entry-level development kit with programmer
 1999 Microchip Technology Inc.

KEELOQ®

Transponder Evaluation Kit

D
evelo

p
m

en
t S

ystem

8

S8.book Page 39 Thursday, March 2, 2000 7:56 AM
Lets you evaluate the capabilities
of Microchip’s Code Hopping
transmitter and transponder
devices.
The KEELOQ Transponder Evaluation Kit allows the user to fully evaluate the
HCS410 and HCS412 Code Hopping Transmitter/Transponder. The
HCS410 and HCS412 uses the KEELOQ code hopping technology which
combines high security transmitter and transponder operation in a small,
low-cost package.

Primary applications for the KeeLoq devices include automobile keyless
entry, security systems, garage door openers, home security systems, cen-
tral locking systems, gate openers, vehicle immobilizers, identity tokens,
electronic tagging, passive (batteryless) transponders, and a growing list of
other applications.

The KEELOQ Transponder Evaluation Kit is supplied with software to let the
user easily reprogram or modify the HCS410 or HCS412’s settings. The
hardware includes a base station which functions as an HCS410/412 pro-
grammer/code hopping decoder and transponder reader unit.
 1999 Microchip Technology Inc.
Features:
� Base station with RF and inductive

communication

� Allows full testing of the HCS410/412
in all its modes

� Allows programming of the HCS410/
412

� Base station learns up to four
transmitter/transponders

� Simple, normal, and secure learning
schemes available

� Displays IFF challenge, responses,
and decrypted responses

� Displays code hopping
transmissions

� Windows® software includes

- Selection of manufacturer’s
code

- Selection of other key
generation options

- Selection of HCS410/412
options

- HCS410/412 programming

- Monitoring of IFF and code
hopping transmissions

� Comprehensive User's Guide
DS51106A-page 8-39

s

KEELOQ®

S8.book Page 40 Thursday, March 2, 2000 7:56 AM
Ordering Information:
Model Name:

KEELOQ Transponder Evaluation Kit

Ordering Information:

DM303005

Devices Supported:

HCS410 Encoder

HCS412 Encoder

Host System Requirements:

PC-compatible computer: 386DX,
486 or Pentium®-based with
ISA or EISA bus

EGA, VGA, 8514/A,
Hercules graphic card
(EGA or higher recommended)

Microsoft® Windows® 3.1 or greater
in 386 enhanced mode

4 MB RAM, 4 MB free disk space

3.5-inch diskette drive

One serial port (2400 baud)
DS51106A-page 8-40
System Description:
The KEELOQ Transponder Evaluation Kit Hardware consists of a base
station, a transmitter/transponder, a batteryless transponder, and various
HCS410 and HCS412 samples. The base station doubles as a programmer
and decoder. The base station includes a coil used for generating a mag-
netic field used to communicate with a transponder inductively. The base
station has an RF receiver for receiving KeeLoq code hopping transmis-
sions.

The accompanying Windows software is supplied on a 3.5-inch diskette and
includes all the necessary software for programming and testing the
HCS410 and HCS412 in all its modes.

To order or obtain more information about KeeLoq or any other Microchip
product, contact the Microchip sales office nearest you.

Customer Support:
Microchip maintains a worldwide network of distributors, representatives,
local sales offices, Field Application Engineers, and Corporate Application
Engineers. Microchip’s Internet home page can be reached at:
www.microchip.com

Development Tools from Microchip

MPLAB™ Integrated Development Environment (IDE)

MPLAB-C17 C compiler for PIC17CXXX MCUs

MPLAB-C18 C compiler for PIC18CXXX MCUs

C compiler Sold by third-party vendors (HI-TECH, IAR, CCS)

MPASM Universal PICmicro macro-assembler

MPLINK/MPLIB Linker/Librarian

MPLAB-SIM Software Simulator

MPLAB-ICD In-circuit debugger evaluation kit

MPLAB-ICE 2000 Full-featured modular in-circuit emulator

ICEPIC Low-cost in-circuit emulator

PRO MATE® II Full-featured, modular device programmer

PICSTART®Plus Entry-level development kit with programmer
 1999 Microchip Technology Inc.

PICDEM-1
Low-Cost PICmicro® Demonstration Board

D
evelo

p
m

en
t S

ystem

8

S8.book Page 41 Thursday, March 2, 2000 7:56 AM
PRODUCT INFORMATION

The PICDEM-1 is a simple board which demonstrates
the capabilities of several Microchip microcontrollers.
The microcontrollers supported are: PIC16C5X
(PIC16C54 to PIC16C58), PIC16C62X, PIC16CE62X,
PIC16C71, PIC16C84, PIC17C42, PIC17C43 and
PIC17C44, PIC16F84, PIC16C710, PIC16C711,
PIC16C770, PIC16C771, PIC16C55X, and
PIC16C715. All necessary hardware is included to run
basic demo programs, which are supplied on a 3.5-inch
disk. The users can program the samples (one each of
PIC17C42, PIC16C71 and PIC16C55) provided with
the PICDEM-1, on a PRO MATE®or PICSTART® pro-
grammer and easily debug/test the sample code, or the
user can connect the PICDEM-1 with the
PICMASTER emulator and download the sample
code to the emulator and debug/test the code.
Additionally, a generous 200-hole prototype area is
available for the user to build some additional hardware
and connect it to the microcontroller socket(s).

FEATURES:

Hardware:

• 40-pin, 28-pin and 18-pin Precision sockets
for all supported microcontrollers.

• On board +5V regulator and filter rectifier
for direct input from 9V AC/DC wall adapter.

• RS-232 socket and associated hardware for
direct connection to RS-232 interface.

• 5K pot to simulate analog input for PIC16C71.

• Three push button Key for external
stimulus and RESET.

• Eight bright LEDs connect to PORTB, help in
• displaying 8-bit binary values on PORTB.

• Socket for “canned” crystal Oscillator.

• Unpopulated holes provided for Xtal connection

• Jumper to disconnect on board RC Oscillator.

• 200-hole prototype area for user’s hardware.
 1999 Microchip Technology Inc. DS30368F-page 8-41

s

PICDEM-1

S8.book Page 42 Thursday, March 2, 2000 7:56 AM
Software:

• Program for PIC16C71 to demonstrate
on-chip A/D features.

• Program for PIC16C84 to demonstrate
on-chip EEPROM.

• Program for PIC17C42 to demonstrate
on-chip USART.

• Program for PIC16C5X to demonstrate
key input capability.

• All demo programs supplied on 3.5" disk,

DOCUMENTATION

• A comprehensive User's Guide with easy to follow
step-by-step Getting Started and a Tutorial.

• Schematics for the entire circuit.

SAMPLES

Several UV erasable devices supplied are included.
The device types may change from time to time. The
supplied devices are typically:

• PIC17C42

• PIC16C71

• PIC16C55

SALES AND SUPPORT

To order or to obtain information, e.g., on the pricing or delivery, please use the listed part numbers, and refer to the
listed sales offices.

PART NUMBER DESCRIPTION

DM163001 Low-cost Demonstration Board for
PIC16C5X (PIC16C54 to PIC16C58), PIC16C62X, PIC16CE62X,
PIC16C71, PIC16C84, PIC17C42, PIC17C43 and PIC17C44,
PIC16F84, PIC16C710, PIC16C711, PIC16C770, PIC16C771,
PIC16C55X, and PIC16C715
DS30368F-page 8-42 1999 Microchip Technology Inc.

PICDEM-2
Low-Cost PIC16CXX Demonstration Board

D
evelo

p
m

en
t S

ystem

8

S8.book Page 43 Thursday, March 2, 2000 7:56 AM
PRODUCT INFORMATION
The PICDEM-2 is a simple board which demonstrates
the capabilities of several Microchip microcontrollers,
including PIC16C62, PIC16C63, PIC16C64,
PIC16C65, PIC16C66, PIC16C67, PIC16C72
PIC16C73, PIC16C74, PIC16C76, PIC16C77,
PIC16C662, PIC16C642, PIC16F87X, PIC16C773,
PIC16C774, and PIC18CXX2. All necessary hardware
is included to run basic demo programs, which are
supplied on a 3.5" disk. A programmed sample is
included, and the user may erase it and program it with
the other sample programs using the PRO MATE® or
PICSTART® Plus programmer and easily debug and
test the sample code. The PICDEM-2 is also usable
with the PICMASTER emulator, and all of the sample
programs can be run and modified using the PICMAS-
TER. Additionally, a generous prototype area is avail-
able for user hardware.

FEATURES:
Hardware:
• 40- and 28-pin DIP sockets
• On board +5V regulator for direct input

from 9V AC/DC wall adapter or 9V battery.
• RS-232C socket and associated hardware

for direct connection to RS-232C interface.
• 5K pot for analog inputs for the PIC16C73/74
• Three push button keys for external stimulus

and RESET.
• Eight bright LEDs connected to PORTB

for displaying 8-bit binary values.
• Socket for “canned” crystal oscillator.
• Unpopulated holes provided for crystal

connection
• 128 x 8 Serial EEPROM.
• LCD module header.
• Keyboard header.
• Unpopulated holes for ACCESS.bus connector.
 1999 Microchip Technology Inc. DS30411E-page 8-43

s

PICDEM-2

S8.book Page 44 Thursday, March 2, 2000 7:56 AM
Hardware (continued):
• Jacks for connection of 9V battery.
• Jumper to disconnect on-board RC oscillator.
• Prototype area for user hardware.

Software:

• Program for PIC16C74 to demonstrate
on-chip A/D feature.

• Program for PIC16C64 to demonstrate
I2C Serial EEPROM usage.

• All demo programs supplied on 3.5-inch disk.

DOCUMENTATION:

• A comprehensive User's Guide with easy to
follow, step-by-step Getting Started and Tutorial.

• Full schematics.

Samples:

Several UV erasable devices supplied are included.
The device types may change from time to time. The
supplied devices are typically:

• PIC16C64
• PIC16C74

SALES AND SUPPORT

To order or to obtain information, e.g., on the pricing or delivery, please use the listed part numbers, and refer to
the listed sales offices.

PART NUMBER DESCRIPTION

DM163002 Low-cost Demonstration Board for
PIC16C62, PIC16C63, PIC16C64, PIC16C65, PIC16C66,
PIC16C67, PIC16C72 PIC16C73, PIC16C74, PIC16C76,
PIC16C77, PIC16C662, PIC16C642, PIC16F87X, PIC16C773,
PIC16C774, and PIC18CXX2
DS30411E-page 8-44 1999 Microchip Technology Inc.

PICDEM-3
Low-Cost PIC16C9XX Demonstration Board

D
evelo

p
m

en
t S

ystem

8

S8.book Page 45 Thursday, March 2, 2000 7:56 AM
PRODUCT INFORMATION
The PICDEM-3 is a simple board which demonstrates
the capabilities of Microchip’s microcontroller LCD
family. All necessary hardware is included to run basic
demo programs, which are supplied on a 3.5" disk. A
programmed sample is included, and the user may
erase it and program it with the other sample programs
using the PRO MATE® or PICSTART®Plus program-
mer. The PICSTART Plus requires a 68- to 40-pin con-
verter socket.

The PICDEM-3 is also usable with the PICMASTER®

emulator, and all of the sample programs can be run
and modified using the PICMASTER. Additionally, a
generous prototype area is available for user hardware.

All software is written in C using the MPLAB-C17/demo
version.

FEATURES:
Hardware:
• 68-pin PLCC sockets

• Unpopulated 44-pin PLCC socket for
future 44-pin versions

• On board +5V regulator for direct input
from 9V AC/DC wall adapter or 9V battery

• RS-232C socket and associated hardware
for direct connection to RS-232C interface

• 5K pot for analog input to the PIC16C9XX

• Thermistor for use with A/D converter

• Three push button keys for external
stimulus and RESET

• LCD Panel with 4 backplanes and 12 segments

• On-board LCD charge pump circuit with “unpopu-
lated” external resistor ladder supported

• Socket for “canned” crystal oscillator
• Unpopulated holes provided for crystal

or ceramic resonator connection

• Supports custom LCD Panel connection
(up to 4 common, up to 28 segment) with
common/segment header

• LCD pixel data converted to a digital result.
Requires external hardware with SPI interface

• Serial port to communicate LCD pixel
data to PC for display

• Keyboard header
• Jacks for connection of 9V battery
• Jumper to disconnect on-board RC oscillator

• Prototype area for user hardware

Software:

• MPLAB-C demo for PIC16CXX

• Sample programs which demonstrate:

- Real-time clock and display

- Temperature sensor and display
- Volt meter

- USART using the SPI port

- PC software to display LCD pixel information

• All demo programs supplied on 3.5" disk.

DOCUMENTATION:

• A comprehensive User's Guide with easy to
follow, step-by-step Getting Started and Tutorial.

• Full schematics.

A UV erasable device is supplied. The device type may
vary depending upon availability. The supplied devices
are either:

• PIC16C924

• PIC16C923

SALES AND SUPPORT

To order or to obtain information, e.g., on the pricing or delivery, please use the listed part numbers, and
refer to the listed sales offices.

PART NUMBER DESCRIPTION

DM163003 Low-cost Demonstration Board for
PIC16C923 and PIC16C924
 1999 Microchip Technology Inc. DS51078C-page 8-45

s

PICDEM-3

S8.book Page 46 Thursday, March 2, 2000 7:56 AM
NOTES:
DS51078C-page 8-46 1999 Microchip Technology Inc.

PICDEM-17
PICmicro® Demonstration Board

D
evelo

p
m

en
t S

ystem

8

S8.book Page 47 Thursday, March 2, 2000 7:56 AM
PRODUCT INFORMATION

The PICDEM-17 is an evaluation board that demon-
strates the capabilities of several Microchip microcon-
trollers, including PIC17C752, PIC17C756,
PIC17C762, and PIC17C766. All necessary hardware
is included to run basic demo programs, which are sup-
plied on a 3.5-inch disk. A programmed sample is
included, and the user may erase it and program it with
the other sample programs using the PRO MATE II or
PICSTART Plus device programmers and easily debug
and test the sample code. In addition, PICDEM-17 sup-
ports down-loading of programs to and executing out of
external FLASH memory on board. The PICDEM-17 is
also usable with the MPLAB™-ICE or PICMASTER®

emulator, and all of the sample programs can be run
and modified using either emulator. Additionally, a gen-
erous prototype area is available for user hardware.

FEATURES:

Hardware

• 68-pin PLCC socket

• Space for 84-pin socket
• On board digital and analog +5V regulator for

direct input from 9V AC/DC wall adapter or 9V
battery

• RS232 interface with DB9 connector for USART1
• RS232 interface with DB9 connector for USART2

with hardware handshaking signals
• Precision analog voltage source and reference for

10-bit A/D
• MCP2510 CAN interface support

• External memory mapped 64K x 16 bit FLASH

• 24LC01B Serial EEPROM

• 8 memory mapped push button switches

• 8 memory mapped LEDs

• “Canned” oscillator for PICmicro and CAN chip

• LCD module header

• Analog and digital prototyping areas

Software

• Program for PIC17C756A to demonstrate periph-
erals on-chip or demo board itself:

• A/D

• Capture

• FLASH

• I2C

• PWM

• Switches
• USART2

• External LCD

Documentation:

• A comprehensive User’s Guide with easy to fol-
low, step-by-step Getting Started and Tutorial.

• Full schematics

Samples:

The supplied device is typically a PIC17C756A.

SALES AND SUPPORT

To order or to obtain information, e.g., on the pricing or delivery, please use the listed part numbers, and refer to
the listed sales offices.

PART NUMBER DESCRIPTION

DM173001 PICDEM-17
 1999 Microchip Technology Inc. DS51188A-page 8-47

s

PICDEM-17

S8.book Page 48 Thursday, March 2, 2000 7:56 AM
NOTES:
DS51188A-page 8-48 1999 Microchip Technology Inc.

MCP2510
CAN Development Kit

D
evelo

p
m

en
t S

ystem

8

S8.book Page 49 Thursday, March 2, 2000 7:56 AM
The MCP2510 Controller Area
Network (CAN) Developer’s Kit is
ideal for CAN system developers
as well as for CAN beginners.
MCP2510 software development is made easy by offering a variety of fea-
tures to manipulate the functionality of the MCP2510. The MCP2510 CAN
Developer’s Kit provides the ability to read, display, and modify all registers
of the MCP2510 on a

bit-by-bit or a byte-by-byte basis. Included on the target board are PICmi-
cro® sockets, a header to access the required MCP2510 pins, and a proto-
type area for the user to quickly build and test his own CAN node. Also
included are on-board transceivers that have jumper-configureable options
to allow different bus setups. In addition, this tool provides the user with an
expansion connector for connecting a user-created CAN network. By using
this expansion connector in this manner, the PC interface can be used as a
simple bus monitor for CAN message traffic.

For CAN beginners, the MCP2510 CAN Developer's Kit can be used as a
low-cost method of demonstrating basic input and output functionality by
transmitting and receiving CAN messages. Transmitted messages are set
up via an easy-to-use Windows® interface. LEDs connected to the
MCP2510 transmit and receive pins toggle to show message traffic. Both
analog and digital signals can be generated on the target board. These sig-
nals are then received by the host PC and displayed in a de-stuffed format
for easy identification of message contents. In this manner, basic CAN com-
munication can be demonstrated and understood.
 1999 Microchip Technology Inc.
Features:
� On-board features speed

understanding:

- Ability to read, display, and
modify all registers

- Ability to manipulate mes-
sage mask and message fil-
ter functions

- Modifications can be done on
a bit-by-bit basis or a byte-by-
byte basis

� Aids in development of users’ CAN
network:

- On-board industry-standard
CAN transceivers

- Prototype area for user-
defined transceivers that are
jumper selectable

- Expansion connector
enables users to connect
external CAN network and
use PC interface as a basic
bus monitor

- PICmicro sockets, access to
MCP2510 signals and proto-
type area for quick CAN
mode development

� CAN messages demonstration
capability for CAN beginners:

- Easy to create and send
CAN messages

- Displays received messages
in de-stuffed format

- Target board contains
switches and dials to vary
message contents

- LEDs toggle on and off to sig-
nify CAN message traffic

- Familiar user interface
DS51211A-page 8-49

s

MCP2510

S8.book Page 50 Thursday, March 2, 2000 7:56 AM
Ordering Information:
See the Microchip Development Sys-
tems Ordering Guide (DS30177) or
www.microchip.com for specific part
numbers. To order or obtain more
information about the MCP2510 CAN
Developer’s Kit or any other Microchip
product, contact the Microchip Sales
Office, representative, or distributor
nearest you.

Host System Requirements:

PC with 486 or higher processor.
Pentium® recommended

4 MB Memory, 8 MB recommended

2 MB hard disk space,
5 MB recommended

VGA or Super VGA Monitor

Microsoft® Windows 3.1 or greater

Parallel Port

Customer Support:

Microchip maintains a worldwide net-
work of distributors, representatives,
local sales offices, Field Application
Engineers, and Corporate Application
Engineers. Microchip’s Internet home
page can be reached at: www.micro-
chip.com
DS51211A-page 8-50
System Description:
The KEELOQ Transponder Evaluation Kit Hardware consists of a base
station, a transmitter/transponder, a batteryless transponder, and various
HCS410 samples. The base station doubles as a programmer and decoder.
The base station includes a coil used for generating a magnetic field used to
communicate with a transponder inductively. The base station has an RF
receiver for receiving KeeLoq code hopping transmissions.

The accompanying Windows software is supplied on a 3.5-inch diskette and
includes all the necessary software for programming and testing the
HCS410 in all its modes.

To order or obtain more information about KeeLoq or any other Microchip
product, contact the Microchip sales office nearest you.

Customer Support:
Microchip maintains a worldwide network of distributors, representatives,
local sales offices, Field Application Engineers, and Corporate Application
Engineers. Microchip’s Internet home page can be reached at:
www.microchip.com

Development Tools from Microchip

MPLAB™ Integrated Development Environment (IDE)

MPLAB-C17 C compiler for PIC17CXXX MCUs

MPLAB-C18 C compiler for PIC18CXXX MCUs

C compiler Sold by third-party vendors (HI-TECH, IAR, CCS)

MPASM Universal PICmicro macro-assembler

MPLINK/MPLIB Linker/Librarian

MPLAB-SIM Software Simulator

MPLAB-ICD In-circuit debugger evaluation kit

MPLAB-ICE 2000 Full-featured modular in-circuit emulator

ICEPIC Low-cost in-circuit emulator

PRO MATE® II Full-featured, modular device programmer

PICSTART®Plus Entry-level development kit with programmer
 1999 Microchip Technology Inc.

microID™
Programmer Kit

D
evelo

p
m

en
t S

ystem

8

S8.book Page 51 Thursday, March 2, 2000 7:56 AM
DESCRIPTION

The microID Programmer Kit is used to contact-
lessly program MCRF200 or MCRF250 microID
devices. The programmer is calibrated for ISO-
card tags but can be adjusted to be used for virtu-
ally any 125 kHz microID tag configuration,
including button tags and keyfobs.

The microID Programmer’s Kit includes:

1. RF-LAB 125 Software Interface (runs
under Windows 95/98)

2. Contactless Programmer
3. Power Supply (110/220V)
4. RS-232 Serial Cable
5. Documentation including Microchip’s Tech-

nical Library CD-ROM and a complete 125
kHz System Design Guide (application
notes, designs, and tutorials)

Order Information:

Description Part Number

microID Programmer’s Kit PG103001
 1999 Microchip Technology Inc. DS51213A-page 8-51

s

microID™

S8.book Page 52 Thursday, March 2, 2000 7:56 AM
NOTES:
DS51213A-page 8-52 1999 Microchip Technology Inc.

microID™
125 kHz microID Developer’s Kit

D
evelo

p
m

en
t S

ystem

8

S8.book Page 53 Thursday, March 2, 2000 7:56 AM
DESCRIPTION

The 125 kHz microID Developer’s Kit is an easy-
to-use tool for design engineers at all skill levels.
This kit includes all the hardware, software,
reference designs, and samples required to get
started in RFID designs.

The developer’s kit also includes a contactless
programmer and readers for three different
configurations of MCRF200: 123h (ASK), 08Dh
(PSK), and 00Ah (FSK).

The programmer is used to contactlessly
program MCRF200 or MCRF250 microID
devices. The programmer is calibrated for ISO-
card tags but can be adjusted to be used for
virtually any 125 kHz microID tag configuration,
including button tags and keyfobs.
 1999 Microchip Technology Inc. DS51214A-page 8-53

s

microID™

S8.book Page 54 Thursday, March 2, 2000 7:56 AM
FEATURES

The 125 kHz microID Developer’s Kit includes:

1. PSK Reader
2. FSK Reader
3. ASK Reader
4. Contactless Programmer
5. Power Supplies (2)
6. RS-232 Cables (2)
7. RF-LAB 125 Software Interface

(runs under Windows 95/98)
8. Samples in Card-Tag Form (123h, 08Dh,

00Ah)
9. Samples in DIP Form (123h, 08Dh, 00Ah)
10. Documentation including Microchip’s Tech-

nical Library CD-ROM and a complete
13.56 MHz System Design Guide (applica-
tion notes, reference designs, and tutorials)

Order Information:

Description Part Number

125 kHz microID Developer’s Kit DV103001
DS51214A-page 8-54 1999 Microchip Technology Inc.

microID™
125 kHz Anticollision microID Developer’s Kit

D
evelo

p
m

en
t S

ystem

8

S8.book Page 55 Thursday, March 2, 2000 7:56 AM
DESCRIPTION

The 125 kHz Anticollision microID Developer’s
Kit is an easy-to-use tool for design engineers at
all skill levels. This kit includes all the hardware,
software, reference designs, and samples
required to get started in 125 kHz anticollision
(multiread) RFID designs.

The developer’s kit also includes a contactless
programmer and anticollision reader for FSK
configuration of MCRF250 (40Ah).

The Programmer is used to contactlessly
program MCRF200 or MCRF250 microID
devices. The programmer is calibrated for ISO-
card tags but can be adjusted to be used for
virtually any 125 kHz microID tag configuration,
including button tags and keyfobs.
 1999 Microchip Technology Inc. DS51215A-page 8-55

s

microID™

S8.book Page 56 Thursday, March 2, 2000 7:56 AM
FEATURES

The 125 kHz Anticollision microID Developer’s Kit
includes:

1. FSK Anticollision Reader
2. Contactless Programmer
3. Power Supplies (2)
4. RS-232 Cables (2)
5. RF-LAB 125 Software Interface

(runs under Windows 95/98)
6. Samples in Card and DIP Form
7. Documentation including Microchip’s Tech-

nical Library CD-ROM and a complete 125
kHz System Design Guide (application
notes, designs, and tutorials

Order Information:

Description Part Number

125 kHz Anticollision microID Developer’s Kit DV103002
DS51215A-page 8-56 1999 Microchip Technology Inc.

microID™
13.56 MHz Anticollision microID Developer’s Kit

D
evelo

p
m

en
t S

ystem
s

8

S8.book Page 57 Thursday, March 2, 2000 7:56 AM
DESCRIPTION

The 13.56 MHz microID Developer’s Kit is an
easy-to-use tool for design engineers at all skill
levels. This kit includes all the hardware,
software, reference designs, and samples
required to get started in 13.56 MHz RFID
designs.

This kit is intended to show basic operation of the
high-performance MCRF355 tagging chip.

The 13.56 MHz Anticollision microID Developer’s
Kit includes:

1. 13.56 MHz Anticollision Reader
2. Contact Programmer
3. Power Supplies (2)
4. RS-232 Cables (2)
5. RF-LAB 13.56 Software Interface

(runs under Windows 95/98)
6. Socketed Tags
7. Flexible, Preprogrammed Performa™ tags

by Checkpoint Systems Inc.
8. Samples in DIP Form
9. Documentation including Microchip’s Tech-

nical Library CD-ROM and a complete
13.56 MHz System Design Guide
 1999 Microchip Technology Inc. DS51212A-page 8-57

microID™

S8.book Page 58 Thursday, March 2, 2000 7:56 AM
Order Information:

Description Part Number

13.56 MHz Anticollision microID Developer’s Kit DV103003
DS51212A-page 8-58 1999 Microchip Technology Inc.

FILTERLAB™
Active Filter Software Design Tool

D
evelo

p
m

en
t S

ystem

8

S8.book Page 59 Thursday, March 2, 2000 7:56 AM
The difficult job of low-pass, active
filter design is made easy with
FilterLab software.
FilterLab is an innovative software tool that simplifies active filter design.
Available at no cost from Microchip’s web site (www.microchip.com), the Fil-
terLab active filter software design tool provides full schematic diagrams of
the filter circuit with component values and displays the frequency response.

FilterLab allows the design of low-pass filters up to an 8th order filter with
Chebyshev, Bessel or Butterworth responses from frequencies of 0.1 Hz to
10 MHz. Users can select a flat passband or sharp transition from passband
to stopband. Options, such as minimum ripple factor, sharp transition and
linear phase delay, are available. Once the filter response has been identi-
fied, FilterLab generates the frequency response and the circuit. For maxi-
mum design flexibility, changes in capacitor values can be implemented to
fit the demands of the application. FilterLab will recalculate all values to
meet the desired response, allowing real-world values to be substituted or
changed as part of the design process.

FilterLab also generates a spice model of the designed filter. Extraction of
this model will allow time domain analysis in spice simulations, streamlining
the design process.

Further consideration is given to designs used in conjunction with an ana-
log-to-digital converter. A suggested filter can be generated by simply input-
ting the bit resolution and sample rate via the Anti-Aliasing Wizard. This
eliminates erroneous signals folded back into the digital data due to the
aliasing effect.
 1999 Microchip Technology Inc.
Features:
� Multiple Filter Order and Responses

with Gain Option

- Ability to select Bessel, But-
terworth or Chebyshev filter
response

- Up to 8th-order filters can be
simulated

- Circuit diagram and compo-
nent values given

� Bode Plot with Phase Margin

- –Resultant Bode plot gener-
ated

� Circuit Implementation

- Standard 1 percent resistors
- Standard capacitor values

generate and user adjustable
- Circuit configuration: Sallen-

Key (noninverting) or multi-
ple feedback (inverting)

� Spice Model Generated

- Spice Model of entire filter
generated

- Allows for streamline of simu-
lations

� Anti-Aliasing Wizard

- Filter optimization for Analog-
to-Digital Converter base on
bit resolution and sample rate
DS51209A-page 8-59

s

FilterLab™

S8.book Page 60 Thursday, March 2, 2000 7:56 AM
Ordering Information:
FilterLab

Devices Supported:

PC

Host System Requirements:

PC with 386 or higher processor.
Pentium® recommended

8 MB Memory, 32 MB recommended

16 MB hard disk space,
20 MB recommended

600 x 800 Monitor

Microsoft® Windows® 95/98

CD-ROM Drive

Customer Support:

Microchip maintains a worldwide net-
work of distributors, representatives,
local sales offices, Field Application
Engineers, and Corporate Application
Engineers. Microchip’s Internet home
page can be reached at: www.micro-
chip.com
DS51209A-page 8-60
Development Tools from Microchip

MPLAB™ Integrated Development Environment (IDE)

MPLAB-C17 C compiler for PIC17CXXX MCUs

MPLAB-C18 C compiler for PIC18CXXX MCUs

C compiler Sold by third-party vendors (HI-TECH, IAR, CCS)

MPASM Universal PICmicro macro-assembler

MPLINK/MPLIB Linker/Librarian

MPLAB-SIM Software Simulator

MPLAB-ICD In-circuit debugger evaluation kit

MPLAB-ICE 2000 Full-featured modular in-circuit emulator

ICEPIC Low-cost in-circuit emulator

PRO MATE® II Full-featured, modular device programmer

PICSTART®Plus Entry-level development kit with programmer
 1999 Microchip Technology Inc.

SEEVAL®

DESIGNER’S KIT
Microchip Serial EEPROM Designer’s Kit

D
evelo

p
m

en
t S

ystem

8

S8.book Page 61 Thursday, March 2, 2000 7:56 AM
FEATURES

• Includes everything necessary to begin
developing Serial EEPROM-based applications

• Microchip Total Endurance software model

• Microchip SEEVAL evaluation and
programming board

• Microchip SEEVAL software

• Microchip Serial EEPROM handbook

• Microchip Serial EEPROM sample pack

• RS-232 serial cable

• Power supply

SYSTEM REQUIREMENTS

• DOS 3.1 or higher

• Windows 3.1

• VGA monitor

• 386 or 486 processor recommended

• Math coprocessor recommended

DEVICE SUPPORT

• Microchip 2-wire 24CXX/24LCXXB/85CXX

• Microchip Smart Serial 24XX65

• Microchip 3-wire 93CXX/93LCXX series

• Microchip 4-wire 59C11
 1999 Microchip Technology Inc. DS21049E-page 8-61

s

SEEVAL® Designer’s Kit

S8.book Page 62 Thursday, March 2, 2000 7:56 AM
DESCRIPTION

Now designers of Serial EEPROM-based applications
can enjoy the increased productivity, reduced time to
market, and the ability to create a rock-solid design that
only a well-thought-out development system can
provide. Microchip’s Serial EEPROM Designer’s Kit
includes everything necessary to quickly develop a
robust and reliable Serial EEPROM-based design and
greatly reduce the time required for system integration
and hardware/software debug.

The Total Endurance software model enables
designers to quickly choose the best Serial EEPROM
for the specific application and perform trade-off
analysis with voltage, temperature, write cycle and
other system parameters in order to achieve the
desired Erase/Write endurance (specific ppm rate) or
product lifetime. Total Endurance is the new standard of
excellence in understanding and predicting the Erase/
Write endurance of Serial EEPROMs. An on-line
endurance tutorial is included, along with hypertext
help files.

Microchip’s SEEVAL Serial EEPROM evaluation and
programming system will accept any Microchip Serial
EEPROM in DIP package and enable the designer or
system integrator to read, write, or erase any byte or
the entire array. SEEVAL also provides the following
advanced features to aid in system integration and
debug:

• Program special user functions like
Smart Serial configurations

• Hexadecimal display of array contents
• Pre-set or user-defined repeating patterns

• User-configurable functions like continuous
read/write, programmable delay, etc.

• Upload/download files between the Serial
EEPROM and disk

Another industry first, the Microchip Serial EEPROM
Handbook provides a plethora of information crucial to
the designers of Serial EEPROM-based systems.
Along with data sheets on Microchip Serial EEPROMs,
this resource provides application notes regarding
Erase/Write endurance, interfacing with different
protocols and many, many others. A cross-reference
and selector guide are also included, plus article
reprints and qualification reports on Microchip Serial
EEPROMs.

USING SEEVAL AND TOTAL
ENDURANCE

Both software packages can be loaded from Windows
by choosing FILE RUN and entering SETUP.EXE from
the Program Manager. The applications will install
themselves; then a double mouse-click will start either
application. The first step in either program is to select
a device from the device list.

In Total Endurance, the user has simply to choose a
Microchip Serial EEPROM device from the device-list
menu and begin entering the application parameters.
The entire process can take literally seconds to
complete, and the model will output the PPM level and
FIT rate of the device vs. the number of Erase/Write
cycles. If the user has specified an application lifetime,
the model will output PPM and FIT rates at that point in
time. Alternately, the user may input a desired PPM
level and the model will calculate the application
lifetime which will result in that survival rate. The user
may then trade-off any of the parameters (device type,
voltage, application life, temperature, # of bytes per
cycle, # of cycles per day etc.) to arrive at an optimal
solution for the intended application.

Whenever a parameter is changed, calculation of the
ppm/application life is automatic. An “update” box will
appear inside the graph to indicate that new data has
been entered and the graph should be redrawn. A
single click in the “draw” box will redraw the plot of ppm
vs. cycles; a click in the “Resize” box will take the plot
to full-screen display for a closer view. The plot data
can be saved to a file or the plot itself can be copied to
the clipboard to be pasted into another application.

In SEEVAL, the user may choose to load a file from
disk to program the Serial EEPROM, or read data from
the EEPROM and save it to disk. The screen displays
the contents of a software buffer. The buffer may be
manipulated before programming data to the Serial
EEPROM, or data can be written to the Serial
EEPROM directly on-line. An area of memory can be
highlighted (selected) and programmed with a
predefined pattern or user-specified pattern.
Alternately, the entire device can be programmed with
any repeating pattern.

Both SEEVAL and Total Endurance allow the user to
save any configuration as default. This configuration
(device and application settings) will then automatically
load at boot time.

Order Information:

Description Part Number

Serial EEPROM Designer’s Kit DV243001
DS21049E-page 8-62 1999 Microchip Technology Inc.

TOTAL ENDURANCE™
Microchip Serial EEPROM Endurance Model

D
evelo

p
m

en
t S

ystem

8

S8.book Page 63 Thursday, March 2, 2000 7:56 AM
FEATURES

• IBM PC compatibility

• Windows 3.1 or DOS 3.1 compatibility

• Automatic or manual recalculation

• Real-time update of data

• Full-screen or windowed graphical view

• Hypertext on-screen help
• Key or slide-bar entry of parameters

• On-screen editing of parameters

• Single-click copy of plot to clipboard

• Numeric export to delimited text file

• On-disk Endurance Tutorial

SYSTEM REQUIREMENTS

• DOS 3.1 or higher

• Windows 3.1

• 1MB memory

• 386 or 486 processor recommended

• Math coprocessor recommended

DEVICE SUPPORT

• Microchip 2-wire 24CXX/24LCXXB/24AAXX/
85CXX

• Microchip 3-wire 93CXX/93LCXX/93AAXX Series

• Microchip 4-wire 59C11
 1999 Microchip Technology Inc. DS21074F-page 8-63

s

Total Endurance™

S8.book Page 64 Thursday, March 2, 2000 7:56 AM
DESCRIPTION

Microchip’s revolutionary Total Endurance Model
provides electronic systems designers with
unprecedented visibility into Serial EEPROM-based
applications. This advanced software model (with a
very friendly user interface) eliminates time and
guesswork from Serial EEPROM-based designs by
accurately predicting the device’s performance and
reliability within a user-defined application
environment. Design trade-off analysis which formerly
consumed days or weeks can now be performed in
minutes...with a level of accuracy that delivers a truly
robust design.

Users may input the following application parameters:

• Serial EEPROM device type

• Bytes to be written per cycle
• Cycling mode - byte or page

• Data pattern type - random or worst-case

• Temperature in °C
• Erase/Write cycles per day

• Application lifetime or target PPM level

The model will respond with FIT rate, PPM level,
application life and a plot of the PPM level vs. number
of cycles. The model is available in both DOS and
Windows versions.

BACKGROUND

Microchip’s research into the Erase/Write endurance of
Serial EEPROMs has resulted in the conclusion that
endurance depends upon three primary effects: the
physical properties of the EEPROM cell, the internal
error-correction technology employed, and the
application environment. EEPROM endurance
specified as a “typical” value in device data sheets must
therefore be evaluated on a case-by-case basis, taking
into account the manner in which the device will be
used in the application. The Microchip Total

Endurance software applies the user-defined
application parameters to a complex mathematical
model in order to emulate the EEPROM’s performance
and reliability in the system.

USING THE MODEL

The user has simply to choose a Microchip Serial
EEPROM device from the device-list menu and begin
entering the application parameters. The entire
process can take literally seconds to complete, and the
model will output the PPM level and FIT rate of the
device vs. the number of Erase/Write cycles. If the user
has specified an application lifetime, the model will out-
put PPM and FIT rates at that point in time. Alternately,
the user may input a desired PPM level and the model
will calculate the application lifetime which will result in
that survival rate. The user may then trade-off any of
the parameters (device type, voltage, application life,
temperature, # of bytes per cycle, # of cycles per day
etc.) to arrive at an optimal solution for the intended
application.

Whenever a parameter is changed, calculation of the
ppm/application life is automatic. An “update” box will
appear inside the graph to indicate that new data has
been entered and the graph should be redrawn. A
single click in the “draw” box will redraw the plot of ppm
vs. cycles; a click in the “Resize” box will take the plot
to full-screen display for a closer view. The plot data
can be saved to a file or the plot itself can be copied to
the clipboard to be pasted into another application.

ACCURACY OF THE MODEL

The accuracy of the Microchip Total Endurance model
has been verified against test data to within ten percent
of the actual values. However, Microchip makes no war-
ranty as to its accuracy or applicability of the
information to any given application. It is intended to be
used as a guide to aid designers of Serial EEPROM-
based systems in performing trade-off analysis and

Order Information:

Description Part Number

Total Endurance Software Disk SW242001
DS21074F-page 8-64 1999 Microchip Technology Inc.

D
evelo

p
m

en
t S

ystem
s

8

S8.book Page 65 Thursday, March 2, 2000 7:56 AM
NOTES:
 1999 Microchip Technology Inc. DS00711A-page 8-65

S8.book Page 66 Thursday, March 2, 2000 7:56 AM
NOTES:
DS00711A-page 8-66 1999 Microchip Technology Inc.

D
evelo

p
m

en
t S

ystem
s

8

S8.book Page 67 Thursday, March 2, 2000 7:56 AM
NOTES:
 1999 Microchip Technology Inc. DS00711A-page 8-67

Information contained in this publication regarding device applications and the like is intended for suggestion only and may be superseded by updates. No representation or warranty is given and no liability is assumed
by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products
as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights. The Microchip
logo and name are registered trademarks of Microchip Technology Inc. in the U.S.A. and other countries. All rights reserved. All other trademarks mentioned herein are the property of their respective companies.

DS00711A-page 8-68 1999 Microchip Technology Inc.

All rights reserved. © 2000 Microchip Technology Incorporated. Printed in the USA. 3/00 Printed on recycled paper.

AMERICAS
Corporate Office
Microchip Technology Inc.
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-786-7200 Fax: 480-786-7277
Technical Support: 480-786-7627
Web Address: http://www.microchip.com

Atlanta
Microchip Technology Inc.
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
Microchip Technology Inc.
5 Mount Royal Avenue
Marlborough, MA 01752
Tel: 508-480-9990 Fax: 508-480-8575
Chicago
Microchip Technology Inc.
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
Microchip Technology Inc.
4570 Westgrove Drive, Suite 160
Addison, TX 75248
Tel: 972-818-7423 Fax: 972-818-2924
Dayton
Microchip Technology Inc.
Two Prestige Place, Suite 150
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175
Detroit
Microchip Technology Inc.
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Los Angeles
Microchip Technology Inc.
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
Microchip Technology Inc.
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

AMERICAS (continued)
Toronto
Microchip Technology Inc.
5925 Airport Road, Suite 200
Mississauga, Ontario L4V 1W1, Canada
Tel: 905-405-6279 Fax: 905-405-6253

ASIA/PACIFIC
Hong Kong
Microchip Asia Pacific
Unit 2101, Tower 2
Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2-401-1200 Fax: 852-2-401-3431
Beijing
Microchip Technology, Beijing
Unit 915, 6 Chaoyangmen Bei Dajie
Dong Erhuan Road, Dongcheng District
New China Hong Kong Manhattan Building
Beijing 100027 PRC
Tel: 86-10-85282100 Fax: 86-10-85282104
India
Microchip Technology Inc.
India Liaison Office
No. 6, Legacy, Convent Road
Bangalore 560 025, India
Tel: 91-80-229-0061 Fax: 91-80-229-0062
Japan
Microchip Technology Intl. Inc.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa 222-0033 Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Shanghai
Microchip Technology
RM 406 Shanghai Golden Bridge Bldg.
2077 Yan’an Road West, Hong Qiao District
Shanghai, PRC 200335
Tel: 86-21-6275-5700 Fax: 86 21-6275-5060

ASIA/PACIFIC (continued)
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan, R.O.C
Microchip Technology Taiwan
10F-1C 207
Tung Hua North Road
Taipei, Taiwan, ROC
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5858 Fax: 44-118 921-5835
Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann-Ring 125
D-81739 München, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Arizona Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

11/15/99

WORLDWIDE SALES AND SERVICE

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

S8.book Page 68 Thursday, March 2, 2000 7:56 AM

	S1.pdf
	Company Profile
	Section 1 Microchip Technology Inc. Company Profile

	1
	The Embedded Control Solutions Company‚
	Business Scope
	Market Focus
	Certified Quality Systems
	Fully Integrated Manufacturing
	A Global Network of Plants and Facilities
	Embedded Control Overview
	PICmicro MCU Overview and Roadmap
	The Mechatronics Revolution
	PICmicro MCU Naming Convention
	TABLE 1: PICmicro MCU Naming Convention*
	8-bit Higher- Performance MCU Family
	PIC18Cxx2
	OTP program memory with higher resolution analog functions
	8-bit High-Performance MCU Family
	PIC17C4X
	OTP program memory, digital only
	PIC17CR4X
	ROM program memory, digital only
	PIC17C7XX
	OTP program memory with mixed-signal functions
	8-bit Mid-Range MCU Family
	PIC14CXXX
	OTP program memory with A/D and D/A functions
	PIC16C55X
	OTP program memory, digital only
	PIC16C6X
	OTP program memory, digital only
	PIC16CR6X
	ROM program memory, digital only
	PIC16C62X
	OTP program memory with comparators
	PIC16CR62X
	ROM program memory with comparators
	PIC16CE62X
	OTP program memory with comparators and EEPROM data memory
	PIC16F62X
	FLASH program memory with comparators and EEPROM data memory
	PIC16C64X
	OTP program memory with comparators
	PIC16C66X
	OTP program memory with comparators
	PIC16C7X
	OTP program memory with analog functions (i.e. A/D)
	PIC16CR7X
	ROM program memory with analog functions
	PIC16C7XX
	OTP program memory with higher resolution analog functions
	PIC16F8X
	FLASH program memory and EEPROM data memory
	PIC16CR8X
	ROM program memory and EEPROM data memory
	PIC16F87X
	FLASH program memory with higher resolution analog functions
	PIC16C9XX
	OTP program memory, LCD driver
	8-bit Base-Line MCU Family
	PIC16C5X
	OTP program memory, digital only
	PIC16CR5X
	ROM program memory, digital only
	PIC16C505
	OTP program memory, digital only, internal 4MHz oscillator
	PIC16HV540
	OTP program memory with high voltage operation
	8-bit, 8-pin MCU Family
	PIC12C5XX
	OTP program memory, digital only
	PIC12CE5XX
	OTP program memory, digital only with EEPROM data memory
	PIC12CR5XX
	ROM program memory, digital only
	PIC12C67X
	OTP program memory with analog functions
	PIC12CE67X
	OTP program memory with analog functions and EEPROM data memory
	Note 1: The maximum clock speed for some devices is less than 20 MHz.
	Development Systems

	TABLE 2: PICmicro Synergistic Development Tools
	MPLAB‰
	4
	4
	4
	—
	4
	4
	MPLAB-C17
	—
	—
	—
	—
	4
	MPLAB-C18
	—
	—
	—
	—
	—
	4
	MPLAB-ICE 2000
	4
	4
	4
	—
	4
	4
	MPLAB-ICD
	—
	—
	—
	4
	—
	—
	PRO MATE‚ II
	4
	4
	4
	—
	4
	4
	PICSTART‚ Plus
	4
	4
	4
	—
	4
	4
	Software Support
	Secure Data Products Overview
	Analog/Interface Products
	microID™ RFID Tagging Devices
	Serial EEPROM Overview
	OTP EPROM Overview
	Migratable Memory™ Technology
	Flexible Programming Options
	Future Products and Technology

	NOTES:

	Company Profile
	Microchip Technology Inc.

	S2.pdf
	INTRODUCTION
	FEATURES
	SPECIFIC FEATURES FOR INDIVIDUAL FUNCTIONS

	SYSTEM FUNCTIONS
	Logic Probe
	Logic State Analyzer
	Serial Code Receiver
	Frequency Counter
	Battery Manager

	HARDWARE OVERVIEW
	FIRST SWITCHING ON AFTER ASSEMBLING
	MECHANICAL CONSTRUCTION
	Parts List
	Introduction
	delta-sigma Theory
	Implementation with the controller
	Error analysis
	RDSON Error
	RA0 Port Leakage Current
	Non-Symmetrical Output Port (RA3)
	Voltage Reference
	Integration Capacitor
	Comparator Offset
	Out of Range Inputs
	Offset Adjustment

	Other Input Ranges
	Input Range of 2V to 3V
	Input Range of 10V to 15V
	Input Range of ±500mV

	References
	APPENDIX A: SOURCE CODE = DeltaSig.asm
	Overview
	Hardware
	Analog-to-Digital Converter Module
	Capture/Compare/Pulse Width Modulation Module
	Timer2 Postscaler
	External Hardware
	Power Input Circuit
	Power Converter
	Microcontroller Circuits

	Firmware
	Initialization
	A/D
	CCP (PWM)
	Timer2 postscaler
	RAM
	Main loop
	PID Controller
	PWM Generator
	Reading Buttons
	Interrupts
	Safety Shutdown
	Gain constants Kp, Kd, and Ki

	Introduction
	Asynchronous Serial I/O communication
	Autobaud and Asynchronous Serial Communication

	The System
	The Hardware
	The Program Flow

	The Autobaud routine
	The Implementation

	The transmit routine
	The receive routine
	The delay routines
	Other possible autobaud implementations
	Measuring The Bit Length Using A Timer
	Measuring The Bit Length Of The First Bit For Each Character Transmitted

	Software Performance
	INTRODUCTION
	MEMs SENSOR: Theory of Operation
	Configuring the ADXL202
	Tilt Meter Application
	Conclusion
	REFERENCES
	Introduction
	Oscillator Operation
	Oscillator Modes
	Clock Switching
	Instruction Changes
	RAM
	Program Memory
	Instructions with $
	RETLW Tables

	Tables in Program Memory
	Table Reads
	Steps for Table Reads
	Code for Table Reads

	Interrupts
	Interrupt Pins
	Interrupt Handling Registers
	Interrupt Priority
	Return Address Stack
	Fast Register Stack

	Resets
	Power�On Reset
	Brown�Out Reset
	MCLR
	WDT
	Stack Over/Underflow
	RESET Instruction

	Timer0
	Timer1
	Timer2
	Timer3
	Capture/Compare/PWM
	A/D
	USART
	SSP
	SPI Mode
	I2C Mode
	Master Mode
	Slave General Call Support

	Conclusion
	INTRODUCTION
	FIGURE 1: DC servomotor application hardware�

	SYSTEM OVERVIEW
	HARDWARE DESCRIPTION
	TABLE 1: PIC17C756A Peripheral Usage For DC �ServoMotor Application
	FIGURE 2: DC Servomotor block diagram�
	Motor Position Feedback
	PWM Amplifier
	FIGURE 3: Encoder Timing�
	FIGURE 4: Simplified Encoder Interface Schematic�

	Servo Update Timing
	RS-232 Transceiver
	Power Supply

	SOURCE CODE
	RS-232 Communications
	Servo Updates
	32-bit Operations
	Position Updates
	FIGURE 5: Servo ISR Flowchart�

	PID Algorithm
	FIGURE 6: PID Algorithm Flowchart�

	Motion Profile
	FIGURE 7: Motion Profile Flowchart – Velocity Mode�
	FIGURE 8: Motion Profile Flowchart – Position Mode�

	USER INTERFACE
	SUMMARY
	TABLE 2: Dc Servo Motor Command Summary�

	Introduction
	Cause of OTP vs. ROM differences
	Operating Voltage Range
	Parametrics
	Oscillator Performance
	Watchdog Timer (WDT)
	Current Consumption
	Voltage Thresholds
	ElectroStatic Discharge (esd) Performance
	Functional Operation
	ROM Protypes
	Summary
	Software License Agreement�
	Introduction
	Internet Protocols
	Dial-UP Script
	LCP options
	PAP options
	IPCP options
	CCP options
	ICMP communications
	UDP details
	TCP details
	Hardware Implementation
	Software Implementation
	Conclusion
	Appendix A: Source Code
	Introduction
	Module Differences
	A/D module
	USART module
	Timer0 module
	Timer1 module
	Timer2 module
	Timer3 module
	Capture/Compare/PWM modules
	Master SSP Module
	External Interrupts
	PortB Interrupt-On-Change
	PORTB Weak Pull-up Enable
	Hardware 8 x 8 Multiply
	Brown-out Reset (BOR)
	On-Chip Oscillator Circuit
	MCLR
	Power-On Reset (POR)
	In-Circuit Serial Programming (ICSP)

	Memory Map Differences
	Program Memory
	Data Memory

	Instruction Set
	Architectural Enhancements
	Program Counter
	Table Reads and Table Writes
	Interrupts
	Stack
	Indirect Addressing

	Layout
	Coding Techniques
	Example Code Conversion
	Conclusion
	Introduction
	HOW DOES ICSP WORK?
	Application Circuit
	Programmer
	Programming Environment
	Other Benefits
	Field Programming of PICmicro OTP MCUs
	CONCLUSION

	Introduction
	Implementation
	ICSP Boot Code

	Using the ICSP Feature on PIC17CXXX OTP Devices
	Saving Calibration Information Using ICSP
	Saving Field Calibration Information Using ICSP
	Programming Unique Serial Numbers Using ICSP
	Code Updates in the Field Using ICSP

	Conclusion
	Introduction
	HOW DOES ICSP WORK?
	Application Circuit
	Programmer
	Programming Environment
	Other Benefits
	Field Programming of FLASH PICmicros

	CONCLUSION
	INTRODUCTION
	In-circuit serial programming
	Application Circuit

	The Programmer
	Programming Environment
	OTHER BENEFITS
	Field Programming of PICmicro OTP MCUs

	CONCLUSION
	introduction
	Overview
	Hardware Emulation Recommendations
	Package types
	Building the adapter socket

	Hardware differences and work-arounds
	Software Emulation Recommendations
	Software Emulation Differences and work arounds:
	Introduction
	FLASH SELECTION
	MICROCONTROLLER CONFIGURATION
	HEX FILE FORMAT
	PICmicro CODE

	Introduction
	ACCESSING MEMORY
	HEX FILE FORMAT
	PICmicro Code

	Introduction
	Accessing Memory
	HEX File Format
	HEX File Preparation
	PICmicro Code

	INTRODUCTION
	IMPLEMENTATION
	LOGIC DEVICES
	MEMORY DEVICES
	CONCLUSION
	APPENDIX A
	INTRODUCTION
	Theory of Calculation
	Description of software
	Introduction
	THEORY OF OPERATION
	SPECIAL CONSIDERATIONS
	MULTIPLE LEDs AT THE SAME TIME

	SOFTWARE
	CONCLUSION

	Introduction
	Part-to-Part Differences
	Data Memory
	SSP Module
	A/D Module
	USART
	Brown-out Reset
	Extra SFRs

	Conclusion

	S3.pdf
	Overview
	Spreadsheet Features
	Introduction
	Overview of Inductive Communication
	Using the Spread Sheet

	WORKSHEET 1: INITIAL COIL SPECIFICATION
	Data Required
	Intermediate Calculations
	Output Data

	WORKSHEET 2: USER ENTERS NUMBER OF TURNS
	Data Required
	Output Data

	WORKSHEET 3: QUALITY FACTOR MEASUREMENT
	Data Required
	Intermediate Calculations
	Output Data

	Overview
	Key Features
	Functional inputs and outputs
	TABLE 1: Microchip Decoder Functional Inputs and Outputs

	Public and Private Manufacturer’s Code
	Program Flow
	Main Program Flow
	Transmission Validation Flow
	Transmitter Learn Flow
	Compiler Options
	Serial Function String Output
	Source Code
	Decoder Memory Maps
	TABLE 2: Memory map ROM (8-bit Bytes)
	TABLE 3: Memory map EEPROM (16 bit words)
	TABLE 4: RAM memory map (8-bit bytes)

	Device Pinouts
	Timing parameters
	Introduction
	Key Features
	Typical Applications
	Pin functions
	Hardware
	Overview
	Microcontroller
	Read/Write Base Station
	TABLE 1: PIC16C56 I/O PIN Assignment

	Introduction to the HCS410 KeeLoq Transponder
	IFF Activation
	IFF Commands
	IFF Communication Protocols and Waveforms
	Identify Friend or Foe (IFF)
	HCS410 Commands Used

	Software Description
	Overview (Figure�8)
	Transponder Validation Flow
	Transponder Learn Flow
	Calibration on Acknowledge Pulses (WAIT_ACK)
	Capturing Data from the HCS410 (REC_PPM)
	Source Code

	Adding/Learning Transponders
	Overview
	Generating the 64-bit Key
	Calculating the 16-bit Checksum From 28-bit Serial Number
	TABLE 2: Memory for Each Transponder
	TABLE 3: combined eeprom memory allocation
	TABLE 4: Memory map eeprom (16-bit words)
	TABLE 5: ram memory map (8-bit bytes)
	TABLE 6: manufacturer’s code in program memory (retlw table)
	TABLE 7: Timing parameters
	TABLE 8: bill of materials for base station
	TABLE 9: bill of materials for transponder

	Overview
	Features
	Introduction
	Overview of Inductive Communication
	Power Losses
	Using the worksheet
	Color coding
	Units

	worksheet 1: HCS410 Evaluation Kit Base Station Coil Driver
	HCS410 Evaluation Kit Base Station Driver Design
	Data Required
	TABLE 1: Power supply parameters
	TABLE 2: Coil Driver Circuit Electrical parameters

	Intermediate Calculations
	TABLE 3: coil driver circuit calculated parameters

	Output Data
	TABLE 4: RLC resonator circuit values

	worksheet 2: Coil Design Engine
	Data Required
	TABLE 5: coil parameters

	Output Data
	TABLE 6: outputs

	worksheet 3: Magnetic Field Produced by a Coil
	Data Required
	TABLE 7: Transponder distance from base station

	Output Data
	TABLE 8: magnetic field strength

	Conclusion
	Appendix A: Example Calculation
	Problem
	Solution

	Appendix B: Formulas used
	Appendix C: References
	comments
	Glossary
	INTRODUCTION
	APPLICATIONS
	SYSTEM OVERVIEW
	SYSTEM DESCRIPTION
	BASE STATION PANEL
	FIGURE 1: 4x4 Keypad Layout�
	TABLE 1: 4x4 Keypad Selections versus Respective System Response
	TABLE 2: HCS515 Decoder User EEPROM Map�

	INTRUDER SENSOR MODULE
	FIGURE 2: �Code Word Organization.�
	FIGURE 3: �Code Word/PWM Transmission Format .
	FIGURE 4: �Data Word Format.

	SENSOR MODULE BATTERY CAPACITY CALCULATIONS
	BATTERY CHARGER/ACCESSORY UNIT

	REGULATORY CONSIDERATIONS
	FCC Compliance

	SUMMARY
	Glossary of Terms�
	Reference Material
	FIGURE 5: Base Station Panel (1 of 4)�
	FIGURE 6: Base Station Panel (2 of 4)�
	FIGURE 7: Base Station Panel (3 of 4)��
	FIGURE 8: Base Station Panel (4 of 4)��
	FIGURE 9: Battery Charger/Accessory Panel (1 of 2)��
	FIGURE 10: Battery Charger/Accessory Panel (2 of 2)��
	FIGURE 11: Sensor Module (1 of 2)��
	FIGURE 12: Sensor Module (2 of 2)��

	Introduction
	Referenced Documents
	System Description
	Learning
	Easy-train default Manufacturer’s Code
	Serial Number Allocation
	TABLE 1: Serial Number Allocation

	Receiver Requirements
	Modulation Format
	Bit Rate and Bandwidth
	Learning Procedure
	Reference Decoder Application Note
	Other Decoder Solutions

	Transmitter Requirements
	TABLE 2: Summary of encoders and their features
	TABLE 3: Encoder configuration options
	TABLE 4: Seed Transmission options on Encoders

	EuroHomelink Operation
	Training Procedure
	Function Code During Seed Transmission
	Bit Rate
	Frequency
	AM Modulation Depth

	System Validation
	Test Transmitter and Test Modes
	TABLE 5: Test Transmitter and Test Modes

	Reference Test Receiver

	Technical contacts

	S4.pdf
	Introduction
	So Many Temperature Sensors
	TABLE 1: The most common temperature sensors in industry are the thermocouple, RTD, thermistor, a...
	TABLE 2: Listed are some examples of the applications that each temperature sensor is best suited...

	The Versatile, Inexpensive Thermocouple
	TABLE 3: The most common thermocouple types are shown with their standardized material and perfor...
	TABLE 4: These are the Type K thermocouple coefficients that can be used to linearize the output ...
	Thermocouple Error Analysis

	The RTD is Absolutely an Alternative
	TABLE 5: RTD temperature sensing devices are available in a variety of materials. The temperature...
	RTD Error Analysis
	TABLE 6: OMEGA Platinum Resistance Elements Allowable Deviation from Ideal Values for a 100W Sens...

	Get the Great Accuracy of the Thermistor
	Thermistor Error Analysis

	Select the Easy to Use Integrated Silicon Temperature Sensor
	Choose the Right Temperature Sensor
	references
	Introduction
	Fundamental Operational Amplifier Circuits
	Voltage Follower Amplifier
	Gaining Analog Signals
	Single Supply Circuits and Supply Splitters
	The Difference Amplifier
	Summing Amplifier
	Current to Voltage Conversion

	Using the Fundamentals
	Instrumentation Amplifier
	Floating Current Source
	Filters
	For more details about filters refer to AN699 “Anti-aliasing Analog Filters for Data Acquisitions...
	Putting it Together

	Amplifier Design Pitfalls
	In General
	Input Stage Problems
	Do You Have the Bandwidth?
	Single Supply Rail-to-Rail

	References
	Introduction
	Thermocouple overview
	TABLE 1: Common thermocouple types—The most common thermocouple types are shown with their standa...
	TABLE 2: Thermocouple Advantages and Disad- vantages

	Thermocouple Signal Conditioning Path
	designing the reference temperature sensor
	Error Correction with Hardware Implementations
	Using a Second Thermocouple
	Diode Temperature Sensing
	TABLE 3: Recommended resistors and voltage references versus thermocouples for the circuit shown ...

	Thermistor Circuits
	RTD Sensor Circuits
	Silicon Sensor

	Signal Conditioning Circuits
	Thermocouple circuits versus accuracy
	Threshold Temperature Sensing
	TABLE 4: Type E thermocouple look-up table. All values in the tables are in millivolts.
	TABLE 5: With a PIC16C62X controller, the comparator reference voltage is shown with the nominal ...

	Temperature Sensing up to 8-bits
	TABLE 6: Type K thermocouple output voltage look-up table. All values in the table are in millivo...

	High Precision Temperature Sensing with a 12-bit Converter

	Thermocouple linearization
	Conclusion
	TABLE 7: NIST Polynomial Coefficients of Voltage-to-temperature conversion for various thermocoup...

	References
	Introduction
	thermistor overview
	Voltage-Versus-Current Mode
	Current-Over-Time Mode
	Resistance-Versus-Temperature Mode
	TABLE 1: Summary of Thermistor Advantages and Disadvantages.

	the temperature- resistive mode of the thermistor
	TABLE 2: Resistive changes with temperature of a BetaTHERM, 10kW @ 25 °C (10K3A1) NTC Thermistor ...

	Linearization solutions
	thermistor signal conditioning circuits
	Thermocouple Cold Junction Compensation
	Temperature Dependent Reference
	Temperature Sensing Using an Integrator

	Conclusion
	References
	Scope
	What does a Supervisory Circuit Do?
	Why Do I Need a Supervisory Circuit Anyway?
	In the Beginning: Power-Up Problems
	Brown-Out: A Dirty Little Problem
	Problems at Power-Down

	So How Do I Choose the Right Device?
	TABLE 1: Typical Trip Point Values

	Conclusions
	Introduction
	RTD overview
	TABLE 1: RTD temperature sensing element advantages and disadvantages.

	RTD current excitation circuit
	RTD signal conditioning path
	Conclusion
	References
	Introduction
	Getting a good start
	One major Step towards Disaster
	General layout guidelines
	Device Placement
	Ground and Power Supply Strategy
	Signal Traces

	Did I say By-pass?
	PCB Design check list
	References
	Introduction
	Analog Versus Digital Filters
	Key low pass Analog Filter Design Parameters
	Analog Filter Designs
	Butterworth Filter
	TABLE 1: Coefficients versus filter order for Butter- worth designs.

	Chebyshev Filter
	TABLE 2: Coefficients versus filter order for 1/2dB ripple Chebyshev designs.

	Bessel Filter
	TABLE 3: Coefficients versus filter order for Bessel designs.

	Anti-aliasing filter theory
	Analog Filter realization
	Passive Filters
	Active Filters

	Anti-aliasing filter design example
	Implementation with Bessel Filter Design
	Implementation with Chebyshev Design
	Implementation with Butterworth Design
	TABLE 4: Theoretical frequency response at 10kHz of various filter designs versus filter order. E...

	conclusion
	References
	Introduction
	I/O port method
	Using the Serial Port in Synchronous Mode0
	A Quick Comparison of Results
	TABLE 1: Conversion Time Comparison.

	In Summary
	OVERVIEW
	Communication
	TABLE 1: Configuration Bits for the MCP3202

	Implementation
	Schematic
	Conclusion
	INTRODUCTION
	Circuit Description
	SOURCE CODE DESCRIPTION
	REFERENCES
	INTRODUCTION
	CAN OVERVIEW
	CAN PROTOCOL BASICS
	Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
	Message-Based Communication
	Fast, Robust Communication

	CONCLUSION
	Introduction
	Bridge Sensor Data Acquisition Circuit Implementation
	TABLE 1: Load Cell, LCL816G (Omega) Specifications.

	Error Sources and System Solutions
	Offset Errors
	TABLE 2: Maximum offset errors over temperature for the circuit shown in Figure�3.
	Firmware Offset Calibration
	Hardware Offset Calibration
	System Span (Gain) Errors
	Firmware Span (Gain) Calibration
	Hardware Span (Gain) Calibration

	System Linearity Errors
	Firmware Linearization
	Hardware Linearization

	System Noise Errors
	Firmware Noise Reduction
	Hardware Noise Reduction

	References
	INTRODUCTION
	Circuit Description
	SOURCE CODE DESCRIPTION
	C CODE:
	ASSEMBLY CODE:
	REFERENCES

	Introduction
	Defining the Op Amp
	Ideal Specifications
	FIGURE 1: The ideal op amp description can be separated into four basic categories: input, power ...

	Technology Limitations
	FIGURE 2: Different IC processes render different advantages for amplifiers. The choices in proce...

	DC Specifications
	FIGURE 3: DC parameters for the op amp are modeled in a way to assist definition of specification...
	Input Offset Voltage (Vos)
	FIGURE 4: The input offset voltage of an amplifier varies from part to part but always falls with...
	FIGURE 5: An amplifier with a high input Offset Voltage can cause errors in the system, if the am...

	Input Bias Current (Ib, Ib+, Ib-, and Ios)
	FIGURE 6: This Sallen-Key, 2nd order, 10Hz, Butterworth, low pass filter circuit has two large re...

	Input Voltage Range (Vin or Vcm)
	FIGURE 7: The input voltage range of an op amp is dependant on the topology of the input stage of...
	FIGURE 8: If an amplifier is used as a buffer (a), the input devices of the operation amplifier m...

	Open Loop Gain (Aol)
	Power Supply Rejection (PSRR)
	FIGURE 9: A battery powered application can see a change in power supply voltage of several hundr...

	Common Mode Rejection Ratio (CMRR)
	FIGURE 10: A poor common mode rejection capability with either amplifier will cause an offset err...

	Voltage Output Swing (Vout, Voh, or Vol)
	TABLE 1: This data was taken with one sample of the MCP601 op amp and demonstrates the effects of...
	FIGURE 11: This graph shows the relationship between the output swing of an amplifier and input o...

	Output Impedance (Rout, Rcl, Rol, Zcl, Zol)
	FIGURE 12: The closed loop output resistance of an amplifier is lessened by the magnitude of the ...

	Power Supply Requirements (Vss, Vdd, Idd, Iq)
	Temperature Range

	Conclusion
	References

	S5.pdf
	Introduction
	FIGURE 1: CIRCUIT FOR PIC16C92x

	Description
	Product conversion decision tree
	Introduction
	Hardware/Layout Considerations
	FIGURE 1: Board Layout Allowing Second Sourcing of Microchip’s 24LC00

	Software Considerations
	Introduction
	Software Addressable Solutions
	A PnP Scenario Application
	Method 1: Direct Connection of the EDS Pins to the System Master
	FIGURE 1: Method 1

	Method 2: Encoded Return Lines to System Master
	FIGURE 2: Method 2

	Method 3: Microcontroller Slot Address Sensing, and Serial Communication
	FIGURE 3: Method 3

	Method 4: Virtual Memory Addressing on Cards
	FIGURE 4: Method 4

	Method 5: Microcontroller Slot Address Sensing and Communication over System Bus

	Conclusion
	FIGURE 5: Method 5

	Introduction
	System Description
	Hardware Description
	Software Description
	FIGURE 1: SYSTEM Block diagram �
	FIGURE 2: System flow for master node initialization

	Source Code Discussion
	Summary
	Additional Information
	Introduction
	Automatic detection of memory size on the I2C bus
	Standard I2C
	Smart Serial or the I2C Dilemma [ref 3]
	Another Set of Routines for I2C bus
	Determining the Addressing Scheme
	Determining Memory Size

	Putting it all together
	Debugging
	TABLE 1: Memory Type Value

	Compatibility
	References
	FIGURE 1: Control Byte Allocation
	FIGURE 2: Byte Write

	introduction
	Product Family Overview
	TABLE 1: Functional grouping

	Operating Voltage Range
	Write cycle initiation
	CS functionality
	TABLE 2: CS Functionality

	Ready/BUSY Polling
	tying DI and DO together
	noise immunity
	developing robust code and hardware
	Summary
	Introduction
	Conditions to be Considered
	Insuring ‘Bus-Free’ During Power-up
	Forcing Internal Reset via Software
	Summary
	References
	INTRODUCTION
	FIGURE 1: Normal write operation
	FIGURE 2: Modified write operation

	Differences between 24LCS21 and 24LCS21A
	Scenario for potential problems by switching from 24LCS21 to 24LCS21A
	FIGURE 1: Flowchart for DDC1/DDC2 Mode operation in 24LCS21A

	S6.pdf
	Introduction
	Review of a Basic Theory for Antenna Coil Design
	Current and Magnetic Fields
	FIGURE 1: Calculation of Magnetic Field B at Location P Due to Current I on a Straight Conducting...
	FIGURE 2: Calculation of Magnetic Field B at Location P Due to Current I on the Loop
	FIGURE 3: Decaying of the Magnetic Field B vs. Distance r

	Induced Voltage in Antenna Coil
	FIGURE 4: A Basic Configuration of Reader and Tag Antennas in an RFID Application
	FIGURE 5: Orientation Dependency of the Tag Antenna.
	FIGURE 6: Ampere-turns vs. Read Range for an Access Control Card (credit card size)

	Wire Types and Ohmic Losses
	Wire Size and DC Resistance
	AC Resistance of Wire
	TABLE 1: AWG Wire Chart

	Inductance of Various Antenna Coils
	Inductance of a Straight Wire
	Inductance of a Single Layer Coil
	FIGURE 7: A Single Layer Coil

	Inductance of a Circular Loop Antenna Coil with Multilayer
	FIGURE 8: A Circular Loop Air Core Antenna Coil with N�Turns

	Inductance of a Square Loop Coil with Multilayer
	FIGURE 9: A Square Loop Antenna Coil with Multilayer

	Configuration of Antenna Coils
	Tag Antenna Coil
	FIGURE 10: Various Configurations of Tag Antenna Coil

	Reader Antenna Coil
	FIGURE 11: A Transformer Loop Antenna for Reader

	Resonance Circuits, Quality Factor Q, and Bandwidth
	Parallel Resonant Circuit
	FIGURE 12: Parallel Resonant Circuit

	Series Resonant Circuit
	FIGURE 13: Series Resonance Circuit

	Q and Bandwidth
	Limitation on Q
	FIGURE 14: Q Factor vs. Modulation Signals

	Tuning Method
	FIGURE 15: Voltage vs. Frequency for Resonant Circuit
	FIGURE 16: Frequency Responses for Resonant Circuit

	Read Range of RFID Devices
	FIGURE 17: Read Range vs. Tag Size for Proximity Applications
	FIGURE 18: Read Range vs. Tag Size for Long Range Applications

	References
	Introduction
	Definitions
	Reader
	Tag
	Carrier
	Modulation

	System Handshake
	Backscatter Modulation
	FIGURE 1: Amplitude – Modulated Backscattering Signal

	Data Encoding
	FIGURE 2: Various Data Coding Waveforms

	Data Modulation
	FIGURE 3: FSK Modulated Signal, Fc/8 = 0, Fc/10 = 1
	FIGURE 4: PSK Modulated Signal

	Anticollision
	Introduction
	Mode of Operation
	FIGURE 1: Voltage Envelope in Reader COil
	FIGURE 2: (a) Uncloaking (tuned) and (b) Cloaking (detuned) modes and their resonant frequencies

	Anticollision Features
	FIGURE 3: Example of Reading Multiple Tags

	External Circuit Configuration
	FIGURE 4: Various External Circuit Configurations

	Programming of Device
	Introduction
	Review of a Basic Theory for RFID antenna Design
	Current and Magnetic Fields
	FIGURE 1: Calculation of magnetic field B at location P due to current I on a straight conducting...
	FIGURE 2: Calculation of magnetic field B at location P due to current I on the loop
	FIGURE 3: Decaying of the magnetic field B vs. distance r

	Induced Voltage in an Antenna Coil
	FIGURE 4: A basic configuration of reader and tag antennas in RFID applications
	FIGURE 5: Orientation Dependency of the Tag Antenna

	Wire Types and Ohmic Losses
	Wire Size and DC Resistance
	AC Resistance of Wire
	TABLE 1: AWG Wire Chart

	Inductance of Various Antenna Coils
	Calculation of Inductance
	FIGURE 6: A straight thin film inductor
	FIGURE 7: A circular coil with single turn
	FIGURE 8: N-turn circular coil with single layer
	FIGURE 9: A spiral coil
	FIGURE 10: N-turn square loop coil with multilayer
	FIGURE 11: Square loop inductor with a rectangular cross section

	Configuration of Antenna Circuits
	Reader Antenna Circuits
	FIGURE 12: Various Reader Antenna Circuits

	Tag Antenna Circuits

	Consideration on Quality Factor Q and Bandwidth of Tuning Circuit
	FIGURE 13: Various External Circuit Configurations
	Bandwidth requirement and limit on circuit Q for MCRF355

	Resonant Circuits
	Parallel Resonant Circuit
	FIGURE 14: Parallel Resonant Circuit

	Series Resonant Circuit
	FIGURE 15: Series Resonance Circuit

	Tuning Method
	FIGURE 16: Voltage vs. Frequency for Resonant Circuit
	FIGURE 17: Frequency Responses for Resonant Circuit

	Read Range of RFID Devices
	FIGURE 18: Read Range vs. Tag Size for Typical Proximity Applications*
	FIGURE 19: Read Range vs. Tag Size for Typical Long Range Applications*

	References
	Introduction
	FIGURE 1: Antenna Geometry

	INTRODUCTION
	Programmer Wake-up
	Blank Check
	Sending Data to the Programmer
	Program and Verify the Device
	Error Conditions
	FIGURE 1: typical sequence

	ASCII Character Set
	Introduction
	Definitions
	File Specification
	FIGURE 1: Example of Two Code Files, Code Length = 64 bits

	Introduction
	File Specification
	FIGURE 1: Example of Two Sequential Code Files

	S7.pdf
	PIC17C43 Microcontroller Benefits
	PICREF-1 Key Features
	For complete documentation of DS30450C, PICREF1, Uninterruptible Power Supply Reference Design, p...
	Project Lead Engineer:
	Reference Design Documentation:
	System and Code Development:
	For complete documentation of DS30145C, PICREF-2, Intelligent Battery Charger Reference Design, p...
	For complete documentation of DS30452A, PICREF-1, Watt-Hour Meter Reference Design, please visit ...
	For complete documentation of DS40171A, PICREF-4, PICDIM Lamp Dimmer for the PIC12C508 Reference ...
	Project Lead Engineer:
	System and Code Development:
	FIGURE 2�1: Functional Block Diagram of Typical RFID Reader
	FIGURE 2�1: Block Diagram of Typical RFID Reader for FSK Signal (125 kHz)
	FIGURE 2�1: Block Diagram of Typical RFID Reader for PSK Signal (125 kHz)
	FIGURE 2�1: Block Diagram of Typical RFID Reader for ASK Signal (125 kHz)
	FIGURE 1�1: Block Diagram of Typical RFID Reader for FSK Signal (125 kHz)

	S8.pdf
	MPLAB™-ICE Cross Reference Parts List�
	PICMASTER® Emulator Systems Cross Reference and Ordering Information�
	Software Tools Cross Reference and Ordering Information�
	Programmers Cross Reference and Ordering Information�
	PICmicro MCU Demo Boards and Evaluation Kits Cross Reference and Ordering Information�
	KeeLoq, microID™, and Serial EERPOM Evaluation Kits
	MPASM REQUIREMENTS
	MPASM assembler Features
	MPASM Directive Language
	MPLINK
	MPLIB
	MPASM Instruction Set
	Product Information
	Features:
	Hardware:
	Software:

	Documentation
	Samples
	SALES AND SUPPORT
	Product Information
	Features:
	Hardware:
	Hardware (continued):
	Software:

	Documentation:
	Samples:

	SALES AND SUPPORT
	Product Information
	Features:
	Hardware:
	Software:

	Documentation:
	SALES AND SUPPORT
	Product Information
	Features:
	Hardware
	Software
	Documentation:
	Samples:

	Sales and Support
	Description
	Order Information:

	Description
	Features
	Order Information:

	Description
	Features
	Order Information:

	Description
	Order Information:

	FEATURES
	SYSTEM REQUIREMENTS
	DEVICE SUPPORT
	DESCRIPTION
	Using SEEVAL and Total Endurance
	Order Information:

	FEATURES
	SYSTEM REQUIREMENTS
	DEVICE SUPPORT
	DESCRIPTION
	BACKGROUND
	USING THE MODEL
	ACCURACY OF THE MODEL
	Order Information:

