
A Dependent Set Theory

Wojciech Moczydłowski
Department of Computer Science

Cornell University
Ithaca, NY, 14853, USA
wojtek@cs.cornell.edu

Abstract

Set theories are traditionally based on first-order logic.
We show that in a constructive setting, basing a set theory
on a dependent logic yields many benefits. To this end, we
introduce a dependent impredicative constructive set the-
ory which we call IZFD. Using realizability, we prove that
the underlying lambda calculus weakly normalizes, thus en-
abling program extraction from IZFD proofs. We also show
that IZFD can interpret IZF with Collection. By a well-
known result of Friedman, this establishes IZFD as a re-
markably strong theory, with proof-theoretical power equal
to that of ZFC. We further demonstrate that IZFD provides
a natural framework to interpret first-order definitions, thus
removing a longstanding barrier to implementing construc-
tive set theories. Finally, we prove that IZFD extended with
excluded middle is consistent, thus paving the way to using
our framework in the classical setting as well.

1 Introduction

There are two major foundational frameworks used in
mathematics and computer science — set theory and type
theory. The former is widely accepted as the foundation of
classical mathematics, the latter is being successfully ap-
plied in computer science, for the purpose of program ver-
ification, programming languages semantics and software
engineering.

Both theories are well understood and perform very well
in their habitats. Set theory can easily formalize most of
the concepts used by mathematicians. The power of mod-
ern type theories has exceeded that of Zermelo’s set the-
ory [34, 20, 21] and proof assistants based on type the-
ory, such as Coq [32] and Nuprl [10, 6], are successfully
used for applications such as extraction of distributed proto-
cols correct-by-construction [8] or formalization of difficult
mathematical theorems [14].

We show that combining these two worlds yields many

benefits. More specifically, we take a constructive set theory
IZF with Replacement (IZFR), and we extend its logic to in-
corporate several features typical of type theories — depen-
dent implications, conjunctions and what we call restricted
Σ-types. We call the resulting “dependent” set theory IZFD
and the underlying lambda calculus λS.

There are several attractive properties of IZFD. First of
all, λS weakly normalizes. We prove normalization of λS
using realizability, in a spirit close to our previous work
[22, 23]. The axiom of choice is used to provide the inter-
pretation of new set terms. The normalization result makes
it possible to extract programs from IZFD proofs.

Second, we show that the combination of dependent fea-
tures in the logic and Replacement axiom significantly in-
creases the power of a set theory, by showing that IZFD can
prove the axioms of IZF with Collection (IZFC). As known
since results of Friedman and Ŝĉedrov [13], Replacement
and Collection are not equivalent in the constructive set-
ting. While the proof-theoretic power of IZFC equals that
of ZFC [12], IZFR is much weaker. It is conjectured in [13]
that its consistency can be proved in ZF. Moreover, Collec-
tion is a very useful tool in the development of mathematics
in constructive set theories; most notably in the treatment
of inductive definitions [4, 28]. Thus, IZFD is a remarkably
strong set theory, having the proof-theoretic power of ZFC
and all the benefits of Collection at its disposal.

A longstanding, rarely mentioned barrier to utilizing
constructive set theories, is the mechanism of first-order
definitions. It is an indispensible tool in building the edifice
of mathematical knowledge and for implementing set the-
ory. For example, in ZFC, in order to introduce a function
symbol for the addition function on natural numbers, one
first shows the statement φ ≡ ∀m,n∃!o. ((m ∈ ω ∧ n ∈
ω) → “o is a sum of m and n”) ∧(¬(m ∈ ω ∧ n ∈ ω) →
o = 0). Then a binary symbol + can be added to the sig-
nature, along with the defining axiom ∀m,n.“if m,n ∈ ω,
then m+ n is a sum of m and n, otherwise m+ n is 0”. In
the constructive setting, however, showing φ is problematic.
Problems arise with any “partial” function symbol, such as

+, as extending an intended domain to the entire universe
seems to be impossible in general in the constructive set-
ting. Moreover, it is unknown how to perform this pro-
cedure while preserving the capability of program extrac-
tion. We show that IZFD provides a means for solving these
problems, as dependent implication combined with Σ-types
automatically “skolemizes” a set theory. As we prove that
the classical counterpart of IZFD is consistent, the mecha-
nism can also be applied in implementations of classical set
theories.

The importance of consistency results in this area cannot
be overestimated, as theories tend to dwell close to incon-
sistency [11, 27]. This is one reason for the restriction of Σ-
types we adopt, which amounts to disallowing the standard
reduction rule π1([t,M]) → t. Although IZFD with un-
restricted Σ-types enjoys useful proof-theoretic properties,
such as Subject Reduction, we show that it is also inconsis-
tent.

The properties of IZFD make it a viable base for a proof
assistant based on set theory with program extraction ca-
pability. As the earlier work [22, 23, 29, 20] does not ad-
dress the problem of definitions, a construction of a prover
based on previous approaches is problematic. We witnessed
the problems first-hand, while implementing a small prover
based on set theory. A unified presentation of IZFD should
facilitate the implementation process. We hope to utilize a
logical framework for this purpose.

This paper is organized as follows. In section 2, we intro-
duce informally the theory IZFD. A formal presentation of
the underlying lambda calculus λS can be found in section
3, where we also show that IZFD with unrestricted Σ-types
is inconsistent. We define and use realizabity to prove nor-
malization of λS in sections 4 and 5. In section 6 we inves-
tigate the power of IZFD and its classical counterpart. We
describe how to use λS to implement first-order definitions
in section 7. Related work is discussed in section 8.

2 IZFD

The theory IZFD is a dependent version of constructive
impredicative set theory IZF with Replacement (IZFR), in-
troduced by Myhill in [26]. IZFD arises by extending the
constructive first-order logic of IZFR with dependent fea-
tures. As any detailed account of a theory based on depen-
dent logic involves a large amount of syntax, we postpone
the formal treatment to the next section and first describe
the theory informally.

Intuitively, the axioms of IZFD are: Empty Set, Pairing,
Infinity, Union, Power Set, ∈-Induction, dependent Sepa-
ration and dependent Replacement. The underlying logic
is an extension of the constructive first-order logic by de-
pendent implications, conjunctions and restricted Σ-types.
Formally, IZFD does not have any axioms in the traditional

• (IN) ∀a, b. a ∈ b↔ ∃c. c ∈I b ∧ a = c

• (EQ) ∀a, b. a = b ↔ ∀d. (d ∈I a → d ∈ b) ∧ (d ∈I b →
d ∈ a)

• (EMPTY) ∀c. c ∈I ∅ ↔ ⊥

• (PAIR) ∀a, b∀c. c ∈I {a, b} ↔ c = a ∨ c = b

• (INF) ∀c. c ∈I ω ↔ c = 0 ∨ ∃b ∈ ω. c = S(b)

• (SEPφ(p,a,f)) ∀f, a∀c. c ∈I Sφ(p,a,f)(a, f) ↔ (p : c ∈

a) ∧ φ(p, c, f)

• (UNION) ∀a∀c. c ∈I

S

a↔ ∃b ∈ a. c ∈ b

• (POWER) ∀a∀c. c ∈I P (a) ↔ ∀b. b ∈ c→ b ∈ a

• (REPLφ(p,a,b,f)) ∀f, a∀c. c ∈I Rφ(p,a,b,f)(a, f) ↔

(∀x. (p : x ∈ a) → ∃!y. φ(p, x, y, f)) ∧ (∃x. (p : x ∈
a) ∧ φ(p, x, c, f))

• (INDφ(a,f)) ∀f. (∀a. (∀b. b ∈I a → φ(b, f)) →

φ(a, f)) → ∀a. φ(a, f)

Figure 1. The axioms of IZFD

sense; it is a logic powerful enough to derive all the formu-
las listed in Figure 1. However, since these formulas are
helpful in defining and understanding IZFD, we will con-
tinue calling them axioms throughout the paper.

The axioms (SEPφ), (REPLφ) and (INDφ) are axiom
schemas, parameterized by a formula φ. The axioms (IN)
and (EQ) along with the intensional membership symbol∈I
form the backbone of the Leibniz (∀a, b. a = b → φ(a) →
φ(b)) and Extensionality (∀a, b. (∀c. c ∈ a ↔ c ∈ b) →
a = b) axioms, which are derivable1 in our axiomatization.
The symbol ∈I needs not be comprehended in order to uti-
lize the theory, as IZFD can prove all the axioms1 with ∈I
replaced by ∈. See [23] for more details.

The axioms (EMPTY), (PAIR), (INF), (SEPφ),
(UNION), (POWER) and (REPLφ) all assert the ex-
istence of certain classes and have the same form:
∀a.∀c. c ∈I tA(a) ↔ φA(c, a), where tA is a function
symbol and φA a corresponding formula for the axiom A.
For example, for (POWER), tPOWER is P and φPOWER

is ∀b. b ∈ c → b ∈ a. We reserve the notation tA and φA
to denote the term and the corresponding formula for the
axiom A.

The underlying logic includes dependent implications
and conjuctions, denoted by (p : φ) → ψ and (p : φ) ∧ ψ.
These can be found in the Separation and Replacement ax-
ioms. Their parameterizing formulas can depend on proofs,
denoted by p. Intuitively, in IZFD proofs are a valid subject
of discourse. This is the main feature which distinguishes
the axioms of IZFD from traditional axiomatizations. In
particular, the axioms of IZFR are precisely what remains if
the schemas are restricted to purely first-order formulas.

1For first-order formulas. See the discussion in Section 3.3.

3 The λS calculus

A lambda calculus is an integral part of any type theory.
It is a typed programming language, providing means for
program extraction capability. At the same time, its types
provide the logic of a theory and its terms serve as notation
for its proofs.

In this section, we describe in detail the calculus λS con-
stituting IZFD. As common in dependent logics, terms, for-
mulas and proof terms are all defined at the same time. The
judgments of the type system of λS induce the set theory
IZFD. We proceed to make this introduction precise.

3.1 The terms of λS

The terms of λS are divided into three syntactic cate-
gories, encompassing proof terms, set terms and formulas,
respectively. We will generally use letters M,N,O, P for
proof terms2, s, t, u for set terms, φ, ψ, ϑ for formulas and
T, S for arbitrary terms. Thus, whenever one of these sym-
bols is encountered in the text, the reader should assume
that it has been generated by the corresponding part of the
grammar. There are two kinds of variables. The first one,
denoted by letters p, q, x, y, z, intuitively corresponds to the
propositional implication. The second one, denoted usually
by letters a, b, c, intuitively corresponds to the first-order
quantification. We call them lambda and set variables, re-
spectively. The notation a, b. M stands for a term with its
variables a, b bound. The notation T stands for a sequence
of terms. The following abstract grammar defines the terms
of λS. The first part generates the proof terms. There are
two groups of proof terms. The first group corresponds to
the first-order logic with dependent features:

M ::= x |M N | λa. M | λx : φ. M | inl(M) | inr(M) |

fst(M) | snd(M) | [t,M] |M t | 〈M,N〉 |

case(M,x : φ. N, x : ψ. O) | magic(M) | πa.φ
2 (M)

The second group corresponds to the axioms of set theory:

inda,f. φ(M, t)

inProp(t, u,M) | inRep(t, u,M)

eqProp(t, u,M) | eqRep(t, u,M)

pairProp(t, u1, u2,M) | pairRep(t, u1, u2,M)

unionProp(t, u,M) | unionRep(t, u,M)

sepp,a,f.φProp(t, u, u,M) | sepp,a,f.φRep(t, u, u,M)

powerProp(t, u,M) | powerRep(t, u,M)

infProp(t,M) | infRep(t,M)

replp,a,b,f.φProp(t, u, u,M) | replp,a,b,f.φRep(t, u, u,M)

Intuitively, the Prop and Rep terms correspond to IZFD
axioms. For example, if M is a proof of t ∈I P (u), then

2The simultaneous usage of P for the power set function symbol should
not lead to any confusion.

powerProp(t, u,M) is a proof of t ⊆ u and if M is a proof
of t ⊆ u, then powerRep(t, u,M) is a proof of t ∈I P (u).
As in our previous work [22, 23], we adopt the convention
of using axRep and axProp terms to tacitly mean all Rep
and Prop terms, for ax being one of in, eq, pair, union,
sep, power, inf and repl. With this convention in mind, we
can summarize the definition of the Prop and Rep terms as:

axProp(t, u,M) | axRep(t, u,M),

where the number of terms in the sequence u depends on
the particular axiom.

The second part of the grammar generates the set terms:

t ::= a | πa.φ
1 (M) | ∅ | {t1, t2} | ω | P (t) |

[

t |

Sp,a,f.φ(t, t) | Rp,a,b,f.φ(t, t)

The term Sp,a,f.φ(t, t) intuitively corresponds to the set
{(p : a ∈I t) | φ(p, a, f)}. The term Rp,a,b,f.φ(t, t)
intuitively corresponds to the set {y | (∀(p : x ∈
t)∃!y. φ(p, x, y, t)) ∧ (∃p : x ∈ t. φ(p, x, y, t))}. The term
π
a.φ
1 (M) can be thought of as a dependent version of the

Hilbert’s epsilon operator εa. φ. These intuitions are justi-
fied by the typing system in Section 3.3.

The third part of the grammar generates the formulas of
IZFD:

φ ::= ⊥ | (x : φ) → ψ | (x : φ) ∧ ψ | φ ∨ ψ | ∀a. φ | ∃a. φ

The formulas (x : φ) → ψ and (x : φ) ∧ ψ are depen-
dent versions of implication and conjunction. The variable
x binds in ψ, which can mention x (inside of πa.φ1 terms).
Traditional formulas φ → ψ and φ ∧ ψ are defined as ab-
breviations for (x : φ) → ψ and (x : φ) ∧ ψ, where x is
fresh.

Definition 3.1 A lambda term is a term generated by the
first part of the grammar. A set term is a term generated
by the second part of the grammar. A formula is a term
generated by the third part of the grammar.

The free variables of a term M are denoted by FV (M).
The definition of FV (M), as well as the definition of the
(capture-avoiding) substitution, follows the grammar in a
natural way, taking into account the formulas appearing in
subscripts and superscripts of terms. We show two repre-
sentative cases of the definition:

FV (πa.φ
1 (M)) = (FV (φ) \ {a}) ∪ FV (M)

FV (inda,f.φ(M, t)) = (FV (φ) \ {a, f}) ∪ FV (t) ∪ FV (M)

3.2 The reduction relation

The reduction relation, denoted by →, is deterministic
and defined on the lambda terms. It arises from the follow-
ing reduction rules and evaluation contexts:

(λx : φ. M)N →M [x := N] (λa. M) t→M [a := t]

fst(〈M,N〉) →M snd(〈M,N〉) → N πa.φ
2 ([t,M]) →M

case(inl(M), x : φ. N, x : ψ. O) → N [x := M]
case(inr(M), x : φ. N, x : ψ. O) → O[x := M]

axProp(t, u, axRep(t, u,M)) →M
inda,f.φ(M, t) → λc. M c (λb.λx : b ∈I c. inda,f.φ(M, t) b)

Note that the standard reduction rule πa.φ1 ([t,M]) → t is
not present. The reasons for this omission will become clear
in Section 3.4.

The evaluation contexts describe call-by-need (lazy)
evaluation order:

[◦] ::= fst([◦]) | snd([◦]) | case([◦], x : φ. N, x : ψ. O) |

πa.φ
2 ([◦]) | axProp(t, u, [◦]) | [◦] M | magic([◦])

We distinguish certain λS terms, listed below, as values.
The set of λS-values will be denoted by λSv . In the defini-
tion, t, u, φ,M,N are arbitrary terms.

λa.M | λx : φ.M | inr(M) | inl(M) | [t,M] |〈M,N〉 | axRep(t, u,M)

Definition 3.2 We write M ↓ and say that M normalizes
if the reduction sequence starting from M terminates. We
write M ↓ v if we want to state that v is the term at which
this reduction sequence terminates. We write M →∗ N if
M reduces to N in some number of steps. The symbol =→

denotes the smallest equivalence relation extending →.

3.3 The types of λS

We now introduce the type system for λS. Contexts,
denoted by Γ, are finite sequences of pairs (z, T), where z
is a variable and T is either a formula or a string Set. The
domain of a context Γ = z1 : T1, . . ., zn : Tn, denoted by
dom(Γ), is the set {z1, . . ., zn}. There are three kinds of
typing judgments:

• Γ ` t : Set, read as “t is a set term in the context Γ”.

• Γ ` φ : Form, read as “φ is a formula in the context
Γ”.

• Γ `M : φ, read as: “M is a proof of the formula φ in
the context Γ”.

Recall from Section 2 that tA(u) and φA(t, u) are the term
and formula corresponding to the axiom (A) of IZFD.

Γ ` φ : Form

Γ, x : φ ` x : φ
x /∈ dom(Γ)

Γ, a : Set ` a : Set
a /∈ dom(Γ)

Γ ` t, t : Set Γ, a, f : Set, p : a ∈ t ` φ : Form

Γ ` Sp,a,f. φ(t, t) : Set

Γ ` t, t : Set Γ, a, b, f : Set, p : a ∈ t ` φ : Form

Γ ` Rp,a,b,f. φ(t, t) : Set

Γ ` u : Set
Γ ` tA(u) : Set Γ ` ⊥ : Form

Γ ` t : Set Γ ` u : Set
Γ ` t ◦ u : Form

◦ ∈ {∈I ,=,∈}

Γ ` φ : Form Γ ` ψ : Form

Γ ` φ ∨ ψ : Form

Γ ` φ : Form Γ, x : φ ` ψ : Form

Γ ` (x : φ) ◦ ψ : Form
◦ ∈ {→,∧}

Γ, a : Set ` φ : Form

Γ ` Qa. φ : Form
Q ∈ {∀, ∃}

Γ, x : φ `M : ψ

Γ ` λx : φ. M : (x : φ) → ψ

Γ, a : Set `M : φ

Γ ` λa. M : ∀a. φ

Γ `M : (x : φ) → ψ Γ ` N : φ

Γ ` M N : ψ[x := N]

Γ ` M : ∀a. φ Γ ` t : Set

Γ `M t : φ[a := t]

Γ ` M : φ Γ ` N : ψ[x := M]

Γ ` 〈M,N〉 : (x : φ) ∧ ψ

Γ `M : (x : φ) ∧ ψ

Γ ` fst(M) : φ

Γ ` M : (x : φ) ∧ ψ

Γ ` snd(M) : ψ[x := fst(M)]

Γ ` t : Set Γ `M : φ[a := t]

Γ ` [t,M] : ∃a. φ

Γ `M : ∃a. φ

Γ ` πa.φ
1 (M) : Set

Γ `M : ∃a. φ

Γ ` πa.φ
2 (M) : φ[a := πa.φ

1 (M)]

Γ ` M : φ

Γ ` inl(M) : φ ∨ ψ

Γ ` M : ψ

Γ ` inr(M) : φ ∨ ψ

Γ `M : φ ∨ ψ Γ, x : φ ` N : ϑ Γ, x : ψ ` O : ϑ

Γ ` case(M,x : φ. N, x : ψ. O) : ϑ

Γ `M : ∀c. (∀b. b ∈I c → φ[a, f := b, t]) → φ[a, f := c, t] Γ ` t : Set

Γ ` inda,f. φ(M, t) : ∀a. φ[f := t]

Γ ` M : φA(t, u) Γ ` t, u : Set

Γ ` axRep(t, u,M) : t ∈I tA(u)

Γ `M : t ∈I tA(u)

Γ ` axProp(t, u,M) : φA(t, u)

Γ `M : ∃c. c ∈I u ∧ t = c

Γ ` inRep(t, u,M) : t ∈ u

Γ ` M : t ∈ u

Γ ` inProp(t, u,M) : ∃c. c ∈I u ∧ t = c

Γ `M : ∀d. (d ∈I t→ d ∈ u) ∧ (d ∈I u→ d ∈ t)

Γ ` eqRep(t, u,M) : t = u

Γ `M : t = u
Γ ` eqProp(t, u,M) : ∀d. (d ∈I t→ d ∈ u) ∧ (d ∈I u→ d ∈ t)

Γ `M : ⊥
Γ ` magic(M) : φ

Γ ` S : T
Γ, a : Set ` S : T

a /∈ dom(Γ)

Γ ` S : T Γ ` φ : Form

Γ, x : φ ` S : T
x /∈ dom(Γ)

Lemma 3.3 If Γ ` S : T , then FV (S) ∪ FV (T) ⊆
dom(Γ). Moreover, for any (x, φ) ∈ Γ, FV (φ) ⊆ dom(Γ).

We write Γ ` T : S, when this judgment can be derived us-
ing the typing rules. The theory IZFD arises from the typing
system, by considering the formulas φ such that ` M : φ
for some term M , to be provable in IZFD. Although IZFD
might seem formidable at the first sight, we remark that its
complexity does not surpass that of other formal systems
intended for general use [32, 25, 18].

Most of the rules are standard. The typing system incor-
porates the definition of formulas and terms of set theory.
The term π

a.φ
1 can be thought of as a version of the Hilbert’s

epsilon operator, as it provides a witness to any provable ex-
istential quantifier. For example, if ` M : ∃a. a = P (ω),
then πa. a=P (ω)

1 (M) is “the” A such that A = P (ω), as we
have ` π

a. a=P (ω)
2 (M) : π

a. a=P (ω)
1 (M) = P (ω). In fact,

a dependent version of the Hilbert’s axiom is provable, as it
is easy to see that ` λx : ∃a. φ. πa.φ2 (x) : (x : ∃a. φ) →

φ[a := π
a.φ
1 (x)].

The πa.φ1 operator is non-extensional — from the facts
that M : ∃a. φ, N : ∃a. ψ and O : ∀a. φ ↔ ψ we can-
not derive πa.φ1 (M) = π

a.ψ
1 (N). Because of this, there are

instances of the Leibniz axiom not provable in IZFD, such
as a = b → π

c.φ(a)
1 (M) ∈ e → π

c.φ(b)
1 (M) ∈ e. The ef-

fect spreads to the extensional ∈-Induction, Separation and
Replacement axiom schemas — for example, there are for-
mulas φ such that c ∈ Sφ(p,x)(a) ↔ p : c ∈ a ∧ φ(p, c)
is not provable. However, one can axiomatize IZFD with
extensional ∈-Induction axiom with no harm to the devel-
opments in the paper. Furthermore, versions of Separation
and Replacement insulated against non-extensionality can
be derived, for example c ∈ Sφ(p,x)(a) ↔ c ∈ a ∧ ∃d. d =
c ∧ q : d ∈ a ∧ φ(q, d). Finally, it is unclear if any of the
unprovable instances would be useful in mathematical prac-
tice. We hope to further investigate the interaction between
π
a.φ
1 terms and extensionality in the future.

3.4 Inconsistency of unrestricted Σ-types

There are two natural rules missing from λS: the reduc-
tion rule πa.φ1 ([t,M]) → t and the typing rule:

Γ `M : ψ

Γ `M : φ
φ =→ ψ (∗)

Let IZFΣ
D denote IZFD extended with these rules. Unlike

IZFD, IZFΣ
D enjoys nice proof-theoretical properties, such

as Subject Reduction. However, as the following theorem
shows, it also suffers the property of being inconsistent.

Theorem 3.4 IZFΣ
D is inconsistent.

Proof Recall first that in set theories, 0 = ∅, 1 = {∅}. For
the informal proof, consider the set B = {x ∈ 1 | ∃a. a =
a}. We can show that for any p proving x ∈ B, there
is exactly one y which witnesses the formula ∃a. a = a,
namely the set A used for proving p. Formally, we set
y = πa. a=a1 (snd(sep∃a. a=aProp(x, 1, p))). By the Re-
placement axiom, all these y’s can be collected in one set
C. Now take any set D and use it to show that ∃a. a = a

and furthermore that 0 ∈ B. Applying (*) to the y corre-
sponding to this proof, we easily find that D ∈ C. There-

fore C contains all sets and thus is a subject to the Russell’s
paradox.3

For the formal proof, we only present the relevant terms
and provable judgments. Let eqRefl denote the term cor-
responding to the proof of ∀a. a = a, let 0in1 denote
the term corresponding to the proof of 0 ∈ 1 and let
russ denote the proof term corresponding to the proof of
∀a. (∀b. b ∈ a) → ⊥. The terms are probably best read in a
bottom-up fashion.

B ≡ S∃a. a=a(1)

t ≡ πa. a=a
1 (snd(sepProp(x, 1, p)))

M ≡ 〈eqRefl t, λz. λq : z = t. q〉

N ≡ λx. λp : x ∈ B.[t,M]

` N : ∀x.(p : x ∈ B) → ∃!y. y = t

C ≡ Rp,x,y. y=t(B)

P ≡ sepRep(0, 1, 〈0in1, [a, eqRefl a]〉)

a : Set ` P : 0 ∈I B

Q ≡ λa. replRep(a,B, 〈N, [0, 〈P, eqRefl a〉]〉

` Q : ∀a. a ∈ C

` russ C Q : ⊥ �

4 Realizability

Let ZFO be the Zermelo-Fraenkel set theory extended
with the binary relational symbol < and the axiom stating
that < well-orders the universe. In this section we work in
ZFO. Although ZFO might seem excessive as a metatheory
for the purpose of proving normalization of a constructive
system, we remark that with a bit more effort and slightly
more obscure presentation, we could carry out the proof in
ZFC.

Definition 4.1 If φ(a) is a ZFO formula, then “the first a
such that φ” is defined to be:

• The empty set, if there is no A such that φ(A).

• The smallest set A in the ordering < such that φ(A)
holds, otherwise.

Our realizers are lambda terms of λS. The set of realizers
arises as an image of the term-erasing map which replaces
all set terms in a term by ∅. The reason for the erasure is that
set terms play no part in reductions and eliminating them
makes the account much cleaner. We leave the judgment
whether this presentation is better than those in [22, 23] to
the reader. The result of erasure on the term T will be de-
noted by T ′. It is defined inductively in an obvious way. We
show several representative cases:

x′ = x a′ = ∅ (M N)′ = M ′ N ′ (λa.M)′ = λa.M ′

3Russell’s paradox is not necessary to derive contradiction, as ∈-
induction together with C ∈ C is also contradictory.

(πa.φ
1 (M))′ = ∅ (tA(u))′ = ∅ (λx : τ.M)′ = λx : τ ′. M ′

(πa.φ
2 (M))′ = πa.φ′

2 (M ′) (axRep(t, u,M))′ = axRep(t′, u′,M ′)

Definition 4.2 The set R consists of all closed terms in the
range of the erasing map. A realizer is any element of R.

We state several easy properties of the erasure map.

Lemma 4.3 For any M , M ′ does not have any free set
variables.

Lemma 4.4 R is closed under reductions: if M ∈ R and
M → N , then N ∈ R.

Lemma 4.5 If M ′ normalizes, then so does M .

4.1 Realizability relation

We proceed to define the realizability relation M ρ φ,
read as “M realizes φ”, where M is a realizer and φ comes
from the extended languageL defined below. The definition
and presentation are based heavily on our previous work
[22, 23], originally inspired by McCarty’s thesis [19].

Definition 4.6 A set A is a λ-name iff A is a set of pairs
(v,B) such that v ∈ λSv ∩ R and B is a λ-name.

In other words, λ-names are sets hereditarily labelled by
realizers that are λS values.

Definition 4.7 The class of λ-names is denoted by V λ.

Formally, V λ is generated by the following transfinite
inductive definition on ordinals:

V λα =
⋃

β<α

P (λSv × V λβ) V λ =
⋃

α∈ORD
V λα

We now extend the language of IZFD to encompass all
λ-names as constants. We also restrict the formulas by al-
lowing only the elements of R as arguments of πa.φ1 ([◦]).
We call the resulting class-sized language L. Thus, the
grammar is extended and modified by:

t ::= A | πa.φ1 (R) | . . .

From now on until the end of this section, symbols
M,N,O, P range exclusively over realizers, letters a, b, c
vary over set variables in the language, letters A,B,C vary
over λ-names, letters φ, ψ over formulas in L and the let-
ter ρ varies over finite partial functions from set variables to
V λ. We call such functions environments.

Definition 4.8 For any formula φ of L, any set term t of L
and ρ defined on all free variables of φ and t, we define by
metalevel induction a realizability relation M ρ φ in an
environment ρ and a meaning of a term [[t]]ρ in an environ-
ment ρ.

• [[a]]ρ ≡ ρ(a)

• [[A]]ρ ≡ A

• [[ω]]ρ. Omitted. See [23] for details.

• [[πa.φ1 (M)]]ρ is the first A such that M ↓ [∅, N] and
N ρ φ[a := A].

• [[tA(u)]]ρ ≡ {(axRep(∅, ∅, N), B) ∈ R × V λγ | N ρ

φA(B, [[u]]ρ)}. The definition of the ordinal γ is simi-
lar to the one in [23].

• M ρ ⊥ ≡ ⊥

• M ρ t ∈I s ≡M ↓ v ∧ (v, [[t]]ρ) ∈ [[s]]ρ

• M ρ t = s and M ρ t ∈ s are defined together by
∈-induction. See [23] for details.

• M ρ φ ∨ ψ ≡ (M ↓ inl(M1) ∧M1 ρ φ) ∨ (M ↓
inr(M1) ∧M1 ρ ψ)

• M ρ (x : φ) ∧ ψ ≡ M ↓ 〈M1,M2〉 ∧ (M1 ρ

φ) ∧ (M2 ρ ψ[x := M1])

• M ρ (x : φ) → ψ ≡ (M ↓ λx : _. M1) ∧
∀N. (N ρ φ) → (M1[x := N] ρ ψ[x := N])

• M ρ ∃a. φ ≡M ↓ [∅, N] ∧ ∃A. N ρ φ[a := A]

• M ρ ∀a. φ ≡M ↓ λa. N ∧ ∀A. N ρ φ[a := A]

It is not difficult to show that the definition of realiz-
ability is well-founded. Therefore, (metalevel) inductive
proofs on the definition of realizability are justified, such as
the proof of the following lemma:

Lemma 4.9 [[t[a := s]]]ρ = [[t[a := [[s]]ρ]]]ρ = [[t]]ρ[a:=[[s]]ρ]

and M ρ φ[a := s] iff M ρ φ[a := [[s]]ρ] iff
M ρ[a:=[[s]]ρ] φ.

Proof Proceed as in [23], using Lemma 4.3 in the case t =
π
b.φ
1 (M). �

The following two easy lemmas state that realizability
behaves similarly to saturated sets as far as reductions and
normalization are concerned:
Lemma 4.10 If (M ρ φ) then M ↓.

Lemma 4.11 If M →∗ M ′ then M ′
ρ φ iff M ρ φ.

Realizability is also invariant with respect to reductions
of lambda terms inside of set terms and formulas:

Lemma 4.12 If M →∗ N , then [[t[x := M]]]ρ = [[t[x :=
N]]]ρ and O ρ φ[x := M] iff O ρ φ[x := N].

The following keystone in the normalization proof is
proved exactly as in [23].

Lemma 4.13 (M,C) ∈ [[tA(u)]]ρ iff M = axRep(∅, ∅, N)
and N ρ φA(C, [[u]]ρ).

5 Normalization

We are now ready to prove that λS normalizes, thus en-
abling program extraction from IZFD proofs. The environ-
ments in this section are finite partial functions which map
set variables to V λ and lambda variables to realizers. Any
such environment can be used as a realizability environment
by ignoring the mapping of lambda variables.

Definition 5.1 For any term T with free lambda vari-
ables x1, . . ., xn and ρ defined on x1, . . ., xn, T [ρ] denotes
T [x1 := ρ(xi), . . ., xn := ρ(xn)].

For any formula φ of IZFD there is a natural corre-
sponding formula φ̂ of L which results by replacing every
π
a.ψ
1 (M) occuring in φ by πa.ψ1 (M ′).

Definition 5.2 For a lambda termM , we writeM to denote
M ′[ρ], when ρ is clear from the context. Also, for a formula
φ of IZFD, we write φ to denote φ̂[ρ].

Lemma 5.3 For any ρ, T [z := S] = T [z := S].

Definition 5.4 For a sequent Γ ` M : φ, ρ |= Γ means
that ρ is defined on dom(Γ), for all (ai, Set) ∈ dom(Γ),
ρ(ai) ∈ V λ and for all (xi, φi) ∈ Γ, ρ(xi) ρ φi.

Theorem 5.5 (Normalization) If Γ ` O : ϑ then for all
ρ |= Γ, O ρ ϑ.

Proof We proceed by metalevel induction on Γ ` O : ϑ.
Note first that by Lemmas 3.3 and 4.3, O is closed, thus it
is a realizer. We only show the new cases compared to [23].
Case Γ ` O : ϑ of:

•
Γ `M : ∃a. φ

Γ ` πa.φ2 (M) : φ[a := π
a.φ
1 (M)]

By Lemma 5.3, (φ[a := π
a.φ
1 (M)]) = φ[a :=

π
a.φ
1 (M)]. By the inductive hypothesis, M ρ ∃a. φ,

so M ↓ [∅, N] and there is some A such that N ρ

φ[a := A]. Furthermore, [[πa.φ1 (M)]]ρ is the first A
such that M ↓ [∅, Q] and Q ρ φ[a := A], so
also N ρ φ[a := [[πa.φ1 (M)]]ρ]. By Lemma 4.9,
N ρ φ[a := π

a.φ
1 (M)]. Since πa.φ2 (M) →∗ N , by

Lemma 4.11 πa.φ2 (M) ρ φ[a := π
a.φ
1 (M)], which

shows the claim.

•
Γ `M : φ Γ ` N : ψ[x := M]

Γ ` 〈M,N〉 : (x : φ) ∧ ψ

By the inductive hypothesis, M ρ φ and N ρ

ψ[x := M], thus also N ρ ψ[x := M], which is
precisely what needs to be shown.

•
Γ `M : (x : φ) ∧ ψ

Γ ` fst(M) : φ

The proof is the same as in [22, 23].

•
Γ `M : (x : φ) ∧ ψ

Γ ` snd(M) : ψ[x := fst(M)]

By the inductive hypothesis, M ↓ 〈M1,M2〉 and
M2 ρ ψ[x := M1]. As snd(M) →∗ M2, by Lemma
4.11 it suffices to show that M2 ρ ψ[x := fst(M)],
which is equivalent to M2 ρ ψ[x := fst(M)]. Since
fst(M) →∗ M1 and ψ[x := fst(M)] = ψ[x :=
fst(M)], Lemma 4.12 shows the claim.

•
Γ `M : (x : φ) → ψ Γ ` N : φ

Γ `M N : ψ[x := N]

By the inductive hypothesis, for some φ1, M ↓ λx :
φ1. M1, N ρ φ and for all P ρ φ, M1[x := P] ρ

ψ[x := P]. Thus in particularM1[x := N] ρ ψ[x :=
N]. As M N = M N →∗ (λx : φ1. M1) N →
M1[x := N], Lemmas 4.11 and 5.3 show the claim.

•
Γ, x : φ `M : ψ

Γ ` λx : φ. M : (x : φ) → ψ

Take any ρ |= Γ. We need to show that for any N ρ

φ, M [x := N] ρ ψ[x := N]. Take any such N .
Since ρ[x := N] |= Γ, x : φ, by the inductive hypoth-
esis M ′[ρ[x := N]] ρ ψ̂[ρ[x := N]]. It is easy to see
that this is equivalent to M [x := N] ρ ψ[x := N].

• The cases corresponding to the axRep and axProp
terms are handled as in [22, 23], using Lemma 4.13.�

Corollary 5.6 (Normalization) If `M : φ, thenM ′ ↓ and
thus also M ↓.

Corollary 5.7 IZFD is consistent.

Proof If `M : ⊥, then M ρ ⊥, which is not the case. �

5.1 Program extraction

We now briefly explain how to use the normalization
result for the purpose of program extraction from IZFD
proofs. For a natural number n, let n denote the IZFD nu-
meral corresponding to n. We will need the following in-
stance of Lemma 4.13:

Lemma 5.8 (M,C) ∈ [[ω]]ρ iff M = infRep(∅, N) and
N ρ C = 0 ∨ ∃y. y ∈ ω ∧ C = S(y).

An easy consequence is Numerical Existence Property for
the realizability model:

Lemma 5.9 If M ρ ∃y ∈ ω. φ, then one can obtain a
number n and a realizer O such that O ρ φ[y := n].

Proof [Sketch] The process of obtaining n and O is essen-
tially the procedure described in the proof of Numerical Ex-
istence Property for IZFR in [22], using Lemma 5.8 and
replacing applications of Term Existence Property by appli-
cations of Definition 4.1. �

We show one example of extraction, referring the reader
to [9] for more general account, including extraction of
higher-order functions. Suppose IZFD ` M : ∀x ∈ ω∃y ∈
ω. φ. From this proof, we extract a function f : nat → nat
which works as follows. It takes a natural number n as
an argument. It constructs an IZFD proof ` N : n ∈ ω.
Then ` M n N : ∃y ∈ ω. φ[x := n]. By Theorem 5.5,
M ∅ N ρ ∃y ∈ ω. φ[x := n]. Using Lemma 5.9, we
obtain a natural numberm along with a realizerO such that
O ρ φ[x, y := n,m]. The function f returns m.

The key property of IZFD, which makes it possible to
utilize our account from [9], is Term Existence Property,
internalized by πa.φ1 terms.

6 The properties of IZFD

In this section, we relate IZFD and its classical counter-
part to well-known first-order set theories.

Theorem 6.1 IZFD interprets IZFC .

Proof The precise formulation of the claim is: if IZFC` φ,
then for some term M , IZFD `M : φ. We formulate IZFC
as IZFR extended with the Collection axiom schema:

(COLLφ(x,y,f)) ∀f . ∀a. (∀x ∈ a∃y. φ) → ∃b. ∀x ∈ a∃y ∈ b. φ

To show that IZFD interprets IZFR, we first need to prove
that it interprets the rules of first-order logic. Most of them
are present in the type system of λS as special cases when
dependencies are not used. The only missing rule is elimi-
nation of the existential quantifier:

Γ ` ∃a. φ Γ ` ∀a. φ→ ψ

Γ ` ψ
a /∈ FV (ψ)

It is easy to show that in IZFD the following rule is ad-
missible, that is if assumptions are derivable, then so is the
conclusion:

Γ ` M : ∃a. φ Γ ` N : ∀a. φ→ ψ

Γ ` N (πa.φ
1 (M)) (πa.φ

2 (M)) : ψ
a /∈ FV (ψ)

Second, we need to give the interpretation of IZFR terms in
IZFD and show that they satisfy the respective axioms. This
is straightforward, as it suffices to add extraneous binders

for Separation and Replacement terms. For example, we
interpret {x ∈ a | φ} as {p : x ∈ a | φ}, where p is fresh.

The only nontrivial thing left is the interpretation of the
Collection axiom. Intuitively, it follows from Replacement,
as using dependent implication and π

a.φ
1 terms, we can

transform a proof p of ∀x ∈ a∃y. φ into ∀q : x ∈ a∃!y. φ ∧

y = π
a.φ
1 (p x q). Formally, we exhibit the proof terms. To

increase readability, we display ∀x. (p : x ∈ a) → φ as
∀p : x ∈ a. φ, ∃x. (p : x ∈ a) ∧ φ as ∃p : x ∈ a. φ and
Rφ(t, t) as {y | (∀p : x ∈ t∃!y. φ[f := t]) ∧ (∃p : x ∈
a. φ[f := t])}.

M1 ≡ 〈πy.φ
2 (p x q), eqRefl πy.φ

1 (p x q)〉

M2 ≡ λz. λr : φ[y := z] ∧ z = πy.φ
1 (p x q). snd(r)

M3 ≡ λx. λq : x ∈ a. [πy.φ
1 (p x q), 〈M1,M2〉]

M4 ≡ [x, 〈q, 〈πy.φ
2 (p x q), eqRefl πy.φ

1 (p x q)〉〉]

M5 ≡ replRep(πy.φ
1 (p x q), a, f , 〈M3,M4〉)

M6 ≡ λx. λq : x ∈ a. [πy.φ
1 (p x q), 〈M5, π

y.φ
2 (p x q)〉]

ψ ≡ φ ∧ y = πy.φ
1 (p x q)

t ≡ {y | (∀q : x ∈ a∃!y. ψ) ∧ ∃q : x ∈ a. ψ}

N ≡ λf. λp : ∀x ∈ a∃y. φ. [t,M6]

` N : ∀f. (∀x ∈ a∃y. φ) → ∃b. ∀x ∈ a∃y ∈ b. φ �

Therefore, by results of Friedman [12], the proof-
theoretical strength of IZFD equals that of ZFC.

We now consider a classical version of IZFD. Let ZFD
be IZFD extended with the excluded middle axiom EM. We
show that ZFD is consistent. For this purpose, take a for-
mulation of ZFO with set terms, such as IZFR from [22] +
EM + “the universe is well-ordered by <”. Define an era-
sure map on formulas and set terms of λS, which returns
formulas and set terms of ZFO. The representative cases of
the definition follow, where ιa.φ denotes “the first a such
that φ”:

a = a πa.φ
1 (M) = ιa.φ ∅ = ∅ {t1, t2} = {t1, t2} ω = ω

(p : φ) → ψ = φ → ψ Sp,a,f.φ(u, t) = {a ∈ u | φ(z, a, t)}

Rp,a,b,f.φ(u, t) = Ra,b,f. φ(u, t)

With the map at hand, we can easily prove by induction on
the proof the consistency result:

Theorem 6.2 If ZFD` t : Set, then t is a term of ZFO. If
ZFD`M : φ, then ZFO ` φ. Thus ZFD is consistent.

Theorem 6.3 ZFD interprets ZF.

Proof By Theorem 6.1, IZFD interprets IZFC . Since
ZF=IZFC + EM, the claim follows. �

7 The definition mechanism

A crucial feature of first-order set theories, which makes
formalization of mathematics so convenient, is the mech-
anism of definitions. If a theory T proves a statement

∃!a. φ(a), then a new constant c can be introduced along
with the defining axiom φ(t). More importantly, if a state-
ment ∀x∃!y. φ(x, y) is provable, the introduction of a new
function symbol f along with the axiom ∀x. φ(x, f(x)),
is justified. The Definition Elimination theorem guarantees
the safety of this extending process.

There are several problems with this approach. First,
it adds an extra layer on top of first-order logic, which
makes the account and possible implementation more dif-
ficult. Moreover, the “domain” of new function symbols is
the entire universe: in set theory, nothing prevents a user
from using terms such as 5 + P (ω). More importantly, it
is not known how to use this mechanism while preserving
the capability of program extraction. Finally, there is also
a more insidious, fundamental problem with “partial” func-
tion symbols, which seems to make it impossible in general
to utilize the mechanism in constructive set theories.

Consider a very simple example — a definition of the
function symbol f corresponding to the function which as-
signs 5 to every natural number. The standard approach4

defines f to be ∅ on any set out of its intended domain.
Thus, in order to introduce f , one first needs to prove the
formula

φ ≡ ∀x∃y. ((x ∈ ω → y = 5) ∧ (x /∈ ω → y = ∅))∧

∀z. ((x ∈ ω → z = 5) ∧ (x /∈ ω → z = ∅)) → z = y.

Constructively, a proof of the second part of φ is problem-
atic. Note that in order to obtain any information about
z, one first needs to know whether x ∈ ω or not and this
knowledge is unavailable in the constructive world. We
conjecture that it is impossible to prove φ in constructive
set theories.

IZFD provides a solution to all these problems. For
our example, we can simply prove a formula ` M :
∀x ∈ ω∃!y. y = 5. Then M itself can be used to pro-
vide a “typed” function symbol, as for any set x along
with a proof p of its membership in ω, we can show that
π
y. y=5∧∀z. z=5→z=y
1 (M x p) is the unique set equal to 5.

The benefits of this approach are manifold. First, non-
sense applications of term symbols, such as 5 + P (ω), are
outlawed, as all new function symbols are automatically
“typed”. Second, all features necessary for providing the
mechanism of definitions are already present in IZFD, so
there is no need for description and implementation of an
extra layer on top of the theory. Last, but definitely not
least, the program extraction capability remains intact.

The price to pay is the possibly problematic interaction
with the Leibniz axiom, discussed in Section 3.3. It remains
to be seen, however, if any significant difficulties would
arise in practice.

4We have recently discovered an alternative approach which would
work in strong, impredicative set theories such as IZFR. However, it is
not applicable to weaker set theories such as CZF.

8 Related work

The theories IZFC and IZFR are well-investigated. Re-
search up to 1985 is presented in [7, 33]. Recent results
include demonstration of the disjunction, numerical exis-
tence and related properties for IZFC extended with vari-
ous choice axioms [29] and normalization of IZFR extended
with inaccessible sets [22, 23].

There is a significant amount of research on connections
between type and set theories. Aczel [2, 3] described mu-
tual interpretations of variants of CZF and Martin-Löf type
theory. Werner [34] did the same thing for Zermelo set the-
ory and Calculus of Constructions. Miquel [20, 21] investi-
gated embeddings of impredicative set theories without ∈-
induction axiom schema in type theories. Howe [17] inves-
tigated an extension of the set theoretic universe with type-
theoretical constructs in order to validate the type theory of
Nuprl.

Modifications of logic underlying set theory were inves-
tigated before. Agerholm and Gordon [5, 15] studied clas-
sical higher-order set theory HOL-ST. They did not find a
clear advantage of HOL-ST over first-order ZF. A map the-
ory [16] provides a unified framework for sets and com-
putation. An ongoing research on algebraic set theory [24]
investigates set theories based on category theory. There are
also set theories based on linear logics [30, 31].

There are several known paradoxes in type theories
[11, 27], which show that extending the power of type the-
ory is a precarious activity, easily leading to contradiction.
The particulars of our paradox seem to be unrelated to these
results, as we utilize very set-theoretical combination of
Russell’s paradox, Replacement and Separation axioms.

9 Conclusion

We have shown that extending set theory with type-
theoretic features yields many benefits, from both theoreti-
cal and practical points of view. We leave several questions
open:

• Can the normalization proof be conducted in IZFD?

• Can constructive mathematics be smoothly developed
in IZFD?

• Can IZFD be useful in system development along the
lines of the B-Tool [1]?

• The inconsistency in Section 3.4 utilizes a dependent
nature of the Replacement axiom. Is there a consis-
tent, possibly weaker, dependent set theory with unre-
stricted Σ-types?

• Is IZFD conservative over IZFC?

While we conjecture that the answers to the first two ques-
tions are positive, we do not have intuitions regarding the
rest of them.
Acknowledgements I would like to thank my advisor, Bob
Constable, for suggestions and support, Richard Shore and
Andrew Myers for valuable discussions and comments and
anonymous referees for helpful comments.

References

[1] J.-R. Abrial. The B-book: assigning programs to meanings.
Cambridge University Press, New York, NY, USA, 1996.

[2] P. Aczel. The type theoretic interpretation of constructive set
theory. In A. MacIntyre, L. Pacholski, and J. Paris, editors,
Logic Colloquium ’77. North Holland, 1978.

[3] P. Aczel. On relating type theories and set theories. In
TYPES ‘98: Selected papers from the International Work-
shop on Types for Proofs and Programs, pages 1–18, Lon-
don, UK, 1999. Springer-Verlag.

[4] P. Aczel and M. Rathjen. Notes on constructive set the-
ory. Technical Report 40, Institut Mittag-Leffler (The Royal
Swedish Academy of Sciences), 2000/2001.

[5] S. Agerholm and M. J. C. Gordon. Experiments with ZF Set
Theory in HOL and Isabelle. In Proc. of the 8th Int. Work-
shop on Higher Order Logic Theorem Proving and Its Appli-
cations, pages 32–45, London, UK, 1995. Springer-Verlag.

[6] S. Allen, M. Bickford, R. Constable, R. Eaton, C. Kreitz,
L. Lorigo, and E. Moran. Innovations in computational type
theory using Nuprl. Journal of Applied Logic, 4(4):428–469,
2006.

[7] M. Beeson. Foundations of Constructive Mathematics.
Springer-Verlag, 1985.

[8] M. Bickford and R. L. Constable. A Logic of Events. Tech-
nical Report TR2003-1893, Cornell University, 2003.

[9] R. Constable and W. Moczydłowski. Extracting Programs
from Constructive HOL Proofs via IZF Set-Theoretic Se-
mantics. In Proc. 3rd Int. Joint Conf. on Automated Reason-
ing (IJCAR 2006), volume 4130 of LNCS, pages 162–176.
Springer, 2006.

[10] R. L. Constable et al. Implementing Mathematics with the
Nuprl Proof Development System. Prentice-Hall, NJ, 1986.

[11] T. Coquand. An Analysis of Girard’s Paradox. In Proc. 1st
Ann. IEEE Symposium on Logic in Computer Science, pages
227–236. IEEE Computer Society Press, June 1986.

[12] H. Friedman. The consistency of classical set theory relative
to a set theory with intuitionistic logic. Journal of Symbolic
Logic, 38:315–319, 1973.

[13] H. Friedman and A. Ŝĉedrov. The lack of definable wit-
nesses and provably recursive functions in intuitionistic set
theories. Advances in Mathematics, 57:1–13, 1985.

[14] G. Gonthier. A computer-checked proof of the Four Colour
Theorem. Preprint, 2005.

[15] M. Gordon. Set Theory, Higher Order Logic or Both? In
TPHOLs ’96: Proc. of the 9th Int. Conf. on Theorem Proving
in Higher Order Logics, volume 1125 of LNCS, pages 191–
202. Springer-Verlag, 1996.

[16] K. Grue. Map theory. Theor. Comput. Sci., 102(1):1–133,
1992.

[17] D. J. Howe. Semantic foundations for embedding HOL
in Nuprl. In M. Wirsing and M. Nivat, editors, Alge-
braic Methodology and Software Technology, volume 1101
of LNCS, pages 85–101. Springer-Verlag, Berlin, 1996.

[18] C. Kreitz. The Nuprl Proof Development System, Version 5:
Reference Manual and User’s Guide. Department of Com-
puter Science, Cornell University, December 2002.

[19] D. McCarty. Realizability and Recursive Mathematics.
D.Phil. Thesis, University of Oxford, 1984.

[20] A. Miquel. A Strongly Normalising Curry-Howard Corre-
spondence for IZF Set Theory. In Proc. of 12th Ann. Conf. of
the EACSL (CSL 2003), volume 2803 of LNCS, pages 441–
454. Springer, 2003.

[21] A. Miquel. Lambda-Z: Zermelo’s Set Theory as a PTS with
4 Sorts. In J.-C. Filliâtre, C. Paulin-Mohring, and B. Werner,
editors, TYPES, volume 3839 of Lecture Notes in Computer
Science, pages 232–251. Springer, 2004.

[22] W. Moczydłowski. Normalization of IZF with Replacement.
In Proc. 15th Ann. Conf. of the EACSL (CSL 2006), volume
4207 of Lecture Notes in Computer Science. Springer, 2006.

[23] W. Moczydłowski. A Normalizing Intuitionistic Set The-
ory with Inaccessible Sets. Technical Report TR2006-2051,
Cornell University, 2006. In submission.

[24] I. Moerdijk and E. Palmgren. Type theories, toposes and
constructive set theory: predicative aspects of AST. Annals
of Pure and Applied Logic, 114:155–201, 2002.

[25] M. Muzalewski. An Outline of PC Mizar. Foundation of
Logic, Mathematics and Informatics, Mizar User Group,
Brussels, 1993.

[26] J. Myhill. Some properties of intuitionistic Zermelo-
Fraenkel set theory. In Cambridge Summer School in Math-
ematical Logic, volume 29, pages 206–231. Springer, 1973.

[27] A. M. Pitts. Non-trivial power types can’t be subtypes of
polymorphic types. In 4th Annual Symposium on Logic
in Computer Science, pages 6–13. IEEE Computer Society
Press, Washington, 1989.

[28] M. Rathjen. Generalized inductive definitions in construc-
tive set theory. In L. Crosilla and P. Schuster, editors, From
Sets and Types to Topology and Analysis: Towards Prac-
ticable Foundations for Constructive Mathematics. Oxford
University Press, 2005.

[29] M. Rathjen. Metamathematical properties of intuitionistic
set theories with choice principles. 2006. Manuscript, avail-
able from the web page of the author.

[30] M. Shirahata. Linear Set Theory. PhD thesis, 1994.
[31] K. Terui. Light affine set theory: A naive set theory of poly-

nomial time. Studia Logica, 77(1):9–40, 2004.
[32] The Coq Development Team. The Coq Proof Assistant Ref-

erence Manual – Version V8.0, Apr. 2004.
[33] A. Ščedrov. Intuitionistic set theory. In Harvey Friedman’s

Research on the Foundations of Mathematics, pages 257–
284. Elsevier, 1985.

[34] B. Werner. Sets in types, types in sets. In TACS ‘97: Proc. of
the 3rd Int. Symposium on Theoretical Aspects of Computer
Software, pages 530–546. Springer-Verlag, 1997.

