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Abstract. The hybrid MHD-Gyrokinetic model has been proven to be very successful in describing the coupling
between Alfvén waves and energetic particles and their mutual interaction in toroidal devices. HMGC, the nonlin-
ear MHD-Gyrokinetic code originally developed at the Frascati laboratories, is being currently extended to include
new physics. In this paper we will present the first simulations of an electron fishbone mode using the extended
HMGC code. We will also present some benchmarks of the new hybrid code HYMAGYC (linear resistive MHD
in general curvilinear geometry plus fully nonlinear gyrokinetic description, k⊥ρH ∼ 1, of the energetic particles)
with the results obtained by HMGC and an analytical expression of the energetic particle response.

1. Introduction

The hybrid MHD-Gyrokinetic model [1] has been proven to be very successful in describ-
ing the coupling between Alfvén waves and energetic particles and their mutual interaction in
toroidal devices [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. HMGC [2], the nonlinear MHD-Gyrokinetic
code originally developed at the Frascati laboratories, has been applied to case studies of en-
ergetic particle driven modes (such as, e.g., TAEs and EPMs [3, 4, 5]), but also to analyses
of experimentally observed modes in existing devices (JT-60U [12], DIII-D [13]) and forth-
coming (ITER [6, 14]) or proposed (FAST [15]) burning plasmas experiments. The simple
physical model, originally used in HMGC (O(ε3) nonlinear reduced MHD equations, circular
shifted magnetic surface equilibrium, zero bulk plasma pressure, and drift-kinetic fast ions),
has been recently extended to include new physics, which are currently under implementation
and/or benchmarking [16]. These extensions include both thermal ion compressibility and dia-
magnetic effects, in order to account for thermal ion collisionless response to low-frequency
Alfvénic modes driven by energetic particles (e.g., KBAEs), and finite parallel electric field
due to parallel thermal electron pressure gradient, which enters the parallel Ohm’s law and
generalizes it, accounting for the kinetic thermal plasma response. Moreover, HMGC is now
able to treat two independent particle populations kinetically, assuming different equilibrium
distribution functions (as, e.g., bulk ions, energetic particles accelerated by NB, IRCH, fusion
generated alpha particles, etc.). Applications of the extended HMGC include, e.g., kinetic ther-
mal ion effects on Alfvénic fluctuations, electron and ion fishbones, KBAEs, fast ion driven
GAMs, EPMs in burning plasma experiments with multiple fast ion species (as in the case of
FAST [15]). The HMGC code also participates to several benchmark activities within the ITPA
Energetic Particle group [17] and the SciDAC GSEP collaboration [18]. On a separate ground,
the new hybrid code HYMAGYC [19] (linear resistive MHD in general curvilinear geometry
plus fully nonlinear gyrokinetic description, k⊥ρH ∼ 1, of the energetic particles) is under test-
ing: several benchmarks between HYMAGYC and HMGC in overlapping regimes of validity
and comparison with analytically computed particle responses are underway. In the following
sections, the first results obtained in simulating an electron fishbone mode using the extended
HMGC code (see Sect. 2), and a detailed benchmark of the gyrokinetic model of HYMAGYC
both with analytical expressions and HMGC results for the particles responses (see Sect. 3) will
be presented.
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2. Electron fishbone simulations using the extended version of HMGC

Internal kink instabilities exhibiting fishbone like nature have been observed in a variety of ex-
periments where a high energy electron population was present (among others, DIII-D [20],
Compass-D [21], HL-1M [22], FTU [23] and Tore Supra [24]). The relevance of the electron
fishbones is primarily related to the fact that suprathermal electrons are characterized by rela-
tively small width orbits, when compared with those of fast ions, similarly to the case of alpha
particles in burning plasmas: thus, electron fishbones offer the opportunity to study the cou-
pling between energetic particles and MHD like modes in burning plasma relevant conditions
even in present machines. In fact, precession resonance depends on energy, not mass; mean-
while, suprathermal electron transport perpendicular to B caused by fishbones can reflect some
properties of fluctuation induced transport of fusion alphas due to precession resonance.

In the present study we will refer to the typical parameters of the FTU machine, where elec-
tron fishbones appearance has occurred in Lower Hybrid heated discharges. However, in these
preliminary studies we will not refer to a specific FTU discharge. To this aim, we have used
the recently extended HMGC code [16]. The FTU-like equilibrium corresponds to a torus with
circular shape cross section, with an inverse aspect ratio ε ≡ a/R0 ≈ 0.35 (with a and R0 the
minor and major radius, respectively). The safety factor profile has been assumed slightly
reversed, with q0 ≈ 1.2, qmin ≈ 1.05 at rqmin

/a ≈ 0.3, and qa ≈ 3.1. Reference mag-
netic field BT = 5T, deuterium bulk plasma with on-axis density ni0 = 1 × 1020m−3 and a
profile ni(ψ)/ni0 = (1 − ψnorm)1/2, on-axis ion temperature Ti0 = 2 keV and radial profile
Ti(ψ)/Ti0 = (1− ψnorm) have been assumed; here ψnorm is the normalized poloidal flux (being
ψnorm = 0 on-axis and ψnorm = 1 at the plasma boundary).

The particle populations treated kinetically will be the energetic electrons, described by a
strongly anisotropic Maxwellian distribution function, and the bulk ions, described by an i-
sotropic Maxwellian. In this way, both resonant excitation by suprathermal electrons as well as
thermal ion Landau damping and finite compressibility are accounted for.

As to energetic electrons, particles have been loaded accordingly to the following felectrons dis-
tribution function:

felectrons ∝
n̂Ee(ψ)

τEe(ψ)3/2
Θ(α;α0,∆)e−E/TEe(ψ) ≡ n̂Ee(ψ)

τEe(ψ)3/2
f̂electrons (1)
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with E the energy, n̂Ee(ψ) the radial density profile normalized to the on-axis value nEe0,
TEe(ψ) the temperature and τEe(ψ) ≡ TEe(ψ)/TEe0 the radial temperature profile normalized
to the on-axis value TEe0, u the parallel (to the equilibrium magnetic field) velocity, µ the con-
served magnetic moment, α the pitch angle of the energetic electrons, Θ(α;α0,∆) represent-
ing the anisotropy of the distribution function and Ωce = eB/(mec) with e, me the (absolute
value of) charge and mass of electrons, respectively, and B the (local) equilibrium magnetic
field. In the code, the parallel velocity is normalized to the on-axis energetic electron ther-
mal velocity û ≡ u/vth0, with vth0 =

√
TEe0/me, and the magnetic moment is normalized as
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µ̂ ≡ µΩce0/TEe0, with Ωce0 the on-axis cyclotron frequency. The values of cosα0 = 0 and
∆ = 0.1 have been considered (thus assuming the perpendicular temperature much higher than
the parallel one). In Figs. 1. the anisotropic part of the electron distribution function f̂electrons in
the normalized space (µ̂, û) and the radial (ψ) dependence of the energetic electrons density are
shown (the radial position of the maximum gradient of the energetic electrons density is some-
what internal but close to the minimum q position rqmin

). Energetic electrons are characterized
by uniform temperature TEe = TEe0 = 50 keV.

μ̂

û

felectrons (a.u.)^

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

nEe/nEe0

FIG. 1.: f̂electrons function in the plane (µ̂, û) (left), and normalized energetic electrons density
profile vs. the normalized poloidal flux function ψ (right).

Note that for these preliminary studies on electron fishbones on-axis peaked energetic electron
density has been assumed, whereas, usually, LH experiments on FTU have typical off-axis
peaked profiles.

Energetic electrons will be characterized, generally speaking, by much higher velocities than
the ones of the bulk ions, which also will be treated kinetically to describe properly ion Landau
damping and thermal ion compression; thus, the problem of properly choosing the time step
for the simulation arises. In the actual version of HMGC a time step sub-cycling algorithm has
been implemented, such that, at fixed time step on which the field solver advances the solution,
each particle in the gyrokinetic module is able to sub-divide the time step in order to properly
integrate the equations of motion. Accordingly, the fields are linearly interpolated in time during
the sub-cycling. As the accuracy condition requires very different sub-cycling levels, depending
on the velocity magnitude and the closeness to the magnetic axis, this individual sub-cycling
algorithm reveals to be fairly efficient.

It has to be noted that the suprathermal electron distribution function, as previously assigned,
is given in terms of variables (E,α, ψ), which are not all constant of the unperturbed motion.
Thus, one can expect that the distribution function relaxes in time. To prevent this to occur
in the following simulations, the ∇B drift contribution to the source term in the equation that
evolves the weight of the particles has been neglected, thus forcing the equilibrium distribution
function to be constant in time.

A simulation, showing an unstable mode driven by the energetic electrons, is reported in Fig. 2.
(left), where the toroidal mode number considered is n = 1, and the poloidal Fourier compo-
nents retained are m = 1, ..., 4. The mode exists only if a threshold in nEe0/ni0 is exceeded,
which, for this particular equilibrium, is nEe0/ni0 ≈ 0.055. A very clear growing mode, with
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FIG. 2.: Energetic electron driven mode: total energy content in the different Fourier compo-
nents used in the simulation (left). No unstable mode is observed (right) in a similar simulation
in which, artificially, the mirroring term in the energetic electron equations of motion has been
switched off.

the characteristics of a n = 1 internal kink is observed, with a displacement function which
is quite diffused (different from the classic, m = 1 “step function”), because of the weakly
reversed shear inside the qmin surface used in the simulation. This can be seen in Fig. 3., where
the poloidal structure of the eigenfunction is shown together with the power spectrum of the
electrostatic component of the fluctuating electromagnetic fields. Note that the mode rotates
counterclockwise, i.e. in the direction of the diamagnetic velocity of the suprathermal elec-
trons, with a real frequency of ω/ωA0 = −0.0815 and a growth rate γ/ωA0 = 0.024, ωA0 being
the on-axis Alfvén frequency, and, thus, γ/|ω| ≈ 0.29. A first evidence that the mode shown in
Fig. 2. (left) is actually an e-fishbone, can be obtained by artificially switching off the mirroring
term in the equations of motion of the energetic electrons, thus suppressing the contribution
of trapped electrons: this is shown in Fig. 2. (right), where the energy content of the different
Fourier components are plotted vs. time, showing that the system, in this case, is stable.
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FIG. 3.: Poloidal structure of the energetic electrons driven mode (electrostatic component of
the fluctuating electromagnetic field, left), and its power spectrum (right); the black curves
represent the Alfvén continuous spectrum.

To better clarify the dynamics of energetic particles, the power transfer from the energetic elec-
trons to the wave during the linear growth of the mode is shown in Fig. 4. (left) versus µ̂ and û, at
the radial position where the power exchange is maximum (r/a ≈ 0.15). Figure 4. (right) shows
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the analogous quantity for the thermal ions. Trapped energetic electrons are clearly driving the
wave, whereas mainly the counterpassing bulk ions contribute to Landau damping. Note that,
in Fig. 4., each particle contribution is referred to the value of û of that particle when crossing
the equatorial plane.
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FIG. 4.: Power exchange in the (µ̂, û) space between, respectively, suprathermal electrons (left)
and the bulk ions (right) and the wave at the radial position where the power exchange is max-
imum (r/a ≈ 0.15) (violet color code corresponds to maximum damping, red to maximum
drive). The black curves correspond to the trapped/passing region boundary. Note that elec-
trons and ions velocity space variables normalizations are different.

The details of the power exchange between the energetic electrons and the wave are shown in
Fig. 5., where the contribution of the counterpassing, the trapped and the copassing fractions
of the energetic electrons are shown separately: the trapped populations clearly give the ma-
jor contribution to the total power exchange (see also with Fig. 4. (left)), suggesting that the
resonance of the mode occurs with the trapped electron precession motion, whereas the coun-
terpassing and copassing fractions give a small damping. This is consistent with the fact that
barely trapped/circulating electrons are characterized by precession reversal [25].
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FIG. 5.: Power exchange in the (µ̂, û) space between the energetic electrons and the wave:
counterpassing (left), trapped (centre) and copassing (right) fractions, respectively. Note that
the color code scale is relative to each plot.

While performing a numerical simulation, the HMGC code can also be used to evolve a set of
test particles; the generalized coordinates of such particles are stored in time, and can be used,
after the simulation has finished, to compute a variety of single particle features. In this case, we
are interested in analyzing the single particle frequencies, namely, the precession and bounce
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frequencies. To this purpose, a set of test particles has been initialized at the radial location
where the power exchange is maximized, sampling the same region of space (µ̂, û) used for the
power exchange plots (see Figs. 4., 5.).

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
x 1.438E+01

0 2 4 6

-1

0

1

μ

u r/a=0.148
(μ,u) power

t A0= 240.00

trapped particles

H
M

G
C

 c
od

e 
- E

N
EA

 - 
Fr

as
ca

ti

=-0.05;
=-0.10;
=-0.15;

=-0.20;
=-0.25;
=-0.30

ω/ωA0

FIG. 6.: Power exchange, in the (µ̂, û) space,
between the trapped energetic electrons and the
wave, with the curves ωprecession− ω = 0 super-
posed for several values of ω, as obtained by the
time evolution of a set of test particles.

The bounce frequencies are always much
larger, in absolute value, than the mode fre-
quency and, as expected, the precession fre-
quencies of the trapped test particles fall in
the range of the mode frequency. In Fig. 6.
the power exchange between the trapped en-
ergetic electrons and the wave is shown to-
gether with a family of curves describing the
resonance conditions ωprecession − ω = 0, for
several values of ω. As it is clear from the
Figure, the maximum power exchange is be-
tween the curves defined by ω/ωA0 = −0.05
(thick, black curves) and ω/ωA0 = −0.10
(red curves), in good agreement with the
mode frequency ωmode/ωA0 = −0.0815 ob-
tained from the simulation.

The dependence of the mode frequency and growth rate of the e-fishbone on the magnetic field
BT , while keeping βEe,i and TEe,i constant, is shown in Fig. 7.; note that nEe0/ni0 = 0.2 for
those cases. Mode frequency scales approximately as ω/ωA0 ∝ 1/B1.5

T , somewhat weaker than
expected from an analytical scaling (see [26], Eq.(9)) where only deeply trapped particles were
considered (ωtheory/ωA0 ' ωdEe/ωA0 ∝ 1/B2

T , again assuming βEe,i and TEe,i to be constant;
ωdEe is the bounce averaged precession frequency of the energetic electrons).
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fishbone.

Although HMGC is a global code, and, thus,
the frequency of a unstable mode being de-
termined by the competitive effects of drive
(in this case, due to energetic electrons) and
damping (Alfvén continuum and ion Landau
damping), Fig. 6. shows that the precession
frequency of the trapped energetic electrons
being situated in a specific portion of the
(µ̂, û) plane plays a major role in determin-
ing the real frequency of the mode [25]. The
specific localization of the maximum power
exchange along the resonance curve in the
plane (µ̂, û) would result, in turn, from the de-
tails of the energetic particles contribution (see, e.g., Eq. (7) of Ref. [26]). As a result, the
mode behaviour in our numerical experiment, for testing the scaling of mode frequency and
growth rate with BT , is a compromise between the lowest order fishbone response, ω ' ωdEe,
and the necessity of maximizing the drive γ/ωA0 ∝ (BT/B0)3/4 exp(−B1/2

T /B
1/2
0 ), with

B0 = 5T as reference. This scaling of γ/ωA0 fits well that of Fig. 7. and is obtained read-
ily from γ/ω ∼ BTE

5/2
res exp(−Eres/T ) [25, 26], given Eres ∼ (ωBT ) the resonance energy

for optimized wave-particle power exchange and the observed scaling for the real frequency
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ω ∝ B
−1/2
T . The power exchange in the (µ̂, û) plane is shown in Fig. 8.: the pattern does

not change qualitatively, apart from the observation that the regions of highest power exchange
move along the resonance curves toward higher energies, as expected from the frequency scal-
ing, suggesting µ̂ ∝ B

−1/2
T .
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FIG. 8.: Power exchanges between energetic electrons and the wave for BT = 5T (left), BT =
2.5T (centre), and BT = 1.25T (right), nEe0/ni0 = 0.2.

3. Benchmarks of HYMAGYC

HYMAGYC [19] is the new Hybrid Magnetohydrodynamic-Gyrokinetic code developed in
Frascati, written in order to overcome some of the HMGC restrictions. Main characteristics
of the code are: the thermal (core) plasma is described by full, resistive MHD linear equa-
tions in general curvilinear flux coordinates with arbitrary cross section (fluid nonlinearities
are presently not retained); the MHD module provides e.m. potentials (vector potential A and
electrostatic potential φ) required by the gyrokinetic module. As for the energetic-ion pop-
ulation, particle gyrocenter-coordinates are evolved by solving the gyrokinetic equations up
to order O(ε2) and O(εεB) (where ε ∼ ρE/Ln is, here, the gyrokinetic ordering parameter,
ρE being the ion Larmor radius of the energetic particle, Ln the equilibrium scale length and
εB ∼ ρE/LB, LB being the equilibrium magnetic field scale length); the perturbed quantities
satisfy the nonlinear gyrokinetic ordering [27] (ω/ΩcE ≈ k‖ρE = O(ε), k⊥ρE = O(1)). In this
section, we present some validation tests that have been performed on the gyrokinetic module
newly written for HYMAGYC. To this purpose, the particles response to assigned time vary-
ing e.m. fields computed by HYMAGYC has been compared with an analytical solution and
with the solution provided by HMGC. The analytical solution, which is well in the limit of va-
lidity also of HMGC, has been derived assuming circular, concentric magnetic surfaces, small
inverse aspect ratio ε ≡ a/R0 = 0.01, uniform safety factor profile, and small Larmor gyrora-
dius ρE/a = 0.01. Moreover, only the parallel (to the equilibrium magnetic field) component
of the vector potential and the electrostatic potential have been considered, with assigned real
frequency and growth-rate, and a single Fourier component:

φ(m,n)(r, t) = φ0(r/a)me
−
(

r−r0
∆0

)2

e−iωt , (4)

A
(m,n)
‖ (r, t) = A‖,0(r/a)me

−
(

r−r1
∆1

)2

e−iωt (5)

with m = n = 4, φ0 = A‖,0 = 10−10, r0/a = 0.3, r1/a = 0.6, ∆0/a = ∆1/a = 0.2, ω/ωA0 =
(0.3 + i0.01). The distribution function for the energetic particles is bi-Maxwellian with uni-
form radial profiles and TE,⊥/TE,‖ = 0.01 and a normalized density profile nE(r)/nE0 =
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FIG. 9.: Perturbed density response (real and imaginary contributions) of the driven (m,n) =
(4, 4) component and those of the first satellites (m ± 1, n) are shown: radial profiles at a
specific time (top; the abscissa is the array index of the radial coordinate x1, “1” corresponding
to the axis and “121” to the plasma surface), and time evolution at normalized radial coordinate
x1 = 0.5.

exp−2.5(r/a)2 . The analytical derivation follows the one obtained in Ref. [2], and has been ob-
tained by neglecting the mirroring term in the parallel velocity equation of motion, and consid-
ering only unperturbed particles motion. A comparison between the analytical solution and the
results obtained by HMGC and HYMAGYC is shown in Figs. 9., where the perturbed density
response of the driven (m = 4, n = 4) component and those of the first satellites (m ± 1, n)
are reported (note that the amplitudes of the satellites are much lower than the one the driving
component, thus justifying the higher noise observed).
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