Simplification Goals

The goal of the simplification is to minimize the cost of realizing a function with physical circuit elements.

Save silicon area in VLSI circuits or reduce the number of SSI-circuits in implementation.

In general, it is desirable to minimize the number of circuit elements and to make each element as simple as possible.

Reduce the number of product terms to reduce gate count.

Minimize the number of literals in each product terms to minimize the number of gate inputs.

Unsimplified two-level switching function has 4 variables, 13 literals and 5 product terms.

Two-level SOP function

 Fig4p2

Simplified switching function has 3 literals and 2 product terms (CD, B) and 3 variables.

Simplification

Three "paper and pencil" methods
Karnaugh Map method up to six variables

Quine-McCluskey Tabular
Minimization method

Switching algebra

lification Of Switching Functions

Simplification

Karnaugh map for variables B and A

A		
B 0		
0	m_{0}	m
1	m_{2}	m
		ig

All possible minterms for variables B and A are : \mathbf{m}_{0}, $\mathrm{m}_{1}, \mathrm{~m}_{2}$ and m_{3}.

All possible maxterms for variables B and A are : M_{0}, $\mathrm{M}_{1}, \mathrm{M}_{\mathbf{2}}$ and M_{3}.

$$
\begin{aligned}
& M_{0}=B+A \\
& M_{1}=B+\bar{A} \\
& M_{2}=\bar{B}+A \\
& M_{3}=\bar{B}+\bar{A}
\end{aligned}
$$

lification Of Switching Functions

Simplification

Karnaugh map for variables C, B and A

All possible minterms for variables C, B and A are : m_{0}, $\mathrm{m}_{1}, \mathrm{~m}_{2}, \ldots$. and m_{7}.

$$
\begin{aligned}
m_{0} & =\bar{C} \cdot \bar{B} \cdot \bar{A} \\
m_{1} & =\bar{C} \cdot \bar{B} \cdot A \\
m_{2} & =\bar{C} \cdot B \cdot \bar{A} \\
m_{3} & =\bar{C} \cdot B \cdot A \\
m_{4} & =C \cdot \bar{B} \cdot \bar{A} \\
m_{5} & =C \cdot \bar{B} \cdot A \\
m_{6} & =C \cdot B \cdot \bar{A} \\
m_{7} & =C \cdot B \cdot A
\end{aligned}
$$

All possible maxterms for variables C, B and A are : M_{0}, M_{1}, M_{2}, \ldots. and M_{7}.

$$
\begin{aligned}
& M_{0}=C+B+A \\
& M_{1}=C+B+\bar{A} \\
& M_{2}=C+\bar{B}+A \\
& M_{3}=C+\bar{B}+\bar{A} \\
& M_{4}=\bar{C}+B+A \\
& M_{5}=\bar{C}+B+\bar{A} \\
& M_{6}=\bar{C}+\bar{B}+A \\
& M_{7}=\bar{C}+\bar{B}+\bar{A}
\end{aligned}
$$

Fig4p4

Fig4p5

Simplification

Karnaugh map for variables D, C, B and A

All possible minterms for variables D, C, B and A.

$$
\begin{aligned}
m_{0} & =\bar{D} \cdot \bar{C} \cdot \bar{B} \cdot \bar{A} \\
m_{1} & =\bar{D} \cdot \bar{C} \cdot \bar{B} \cdot A \\
m_{2} & =D \cdot \bar{C} \cdot B \cdot \bar{A} \\
m_{3} & =\bar{D} \cdot \bar{C} \cdot B \cdot A \\
m_{4} & =\bar{D} \cdot C \cdot \bar{B} \cdot \bar{A} \\
m_{5} & =\bar{D} \cdot C \cdot \bar{B} \cdot A \\
m_{6} & =\bar{D} \cdot C \cdot B \cdot \bar{A} \\
m_{7} & =\bar{D} \cdot C \cdot B \cdot A \\
m_{8} & =D \cdot \bar{C} \cdot \bar{B} \cdot \bar{A} \\
m_{9} & =D \cdot \bar{C} \cdot \bar{B} \cdot A \\
m_{10} & =D \cdot \bar{C} \cdot B \cdot \bar{A} \\
m_{11} & =D \cdot \bar{C} \cdot B \cdot A \\
m_{12} & =D \cdot C \cdot \bar{B} \cdot \bar{A} \\
m_{13} & =D \cdot C \cdot \bar{B} \cdot A \\
m_{14} & =D \cdot C \cdot B \cdot \bar{A} \\
m_{15} & =D \cdot C \cdot B \cdot A
\end{aligned}
$$

All possible maxterms for variables D, C, B and A.

$$
\begin{aligned}
& M_{o}=D+C+B+A \\
& M_{1}=D+C+B+\bar{A} \\
& M_{2}=D+C+\bar{B}+A \\
& M_{3}=D+C+\bar{B}+\bar{A} \\
& M_{4}=D+\bar{C}+B+A \\
& M_{5}=D+\bar{C}+B+\bar{A} \\
& M_{6}=D+\bar{C}+\bar{B}+A \\
& M_{7}=D+\bar{C}+\bar{B}+\bar{A} \\
& M_{8}=\bar{D}+C+B+A \\
& M_{9}=\bar{D}+C+B+\bar{A} \\
& M_{10}=\bar{D}+C+\bar{B}+A \\
& M_{11}=\bar{D}+C+\bar{B}+\bar{A} \\
& M_{12}=\bar{D}+\bar{C}+B+A \\
& M_{13}=\bar{D}+\bar{C}+B+\bar{A} \\
& M_{14}=\bar{D}+\bar{C}+\bar{B}+A \\
& M_{15}=\bar{D}+\bar{C}+\bar{B}+\bar{A}
\end{aligned}
$$

DC				
00	m_{0}	m_{4}	m_{12}	m_{8}
01	m_{1}	m_{5}	m_{13}	m_{9}
11	m_{3}	m_{7}	m_{15}	m_{11}
10	m_{2}	m_{6}	m_{14}	m_{10}

Fig4p6a

$D C{ }^{B A}$		01	11	10
00	m_{0}	m_{1}	m_{3}	m_{2}
01	m_{4}	m_{5}	m_{7}	m_{6}
11	m_{12}	m_{13}	m_{15}	m_{14}
10	m_{8}	m_{9}	m_{11}	m_{10}

Fig4p6

lification Of Switching Functions

Simplification

Karnaugh map for variables E, D, C, B and A

K-map for variables $\mathrm{E}, \mathrm{D}, \mathrm{C}, \mathrm{B}$ and A .

$D C$				10	$D C$	00	01	11	10
00	m_{0}	m_{1}	m_{3}	m_{2}	00	m_{16}	m_{17}	m_{19}	m_{18}
01	m_{4}	m_{5}	m_{7}	m_{6}	01	m_{20}	m_{21}	m_{23}	m_{22}
11	m_{12}	m_{13}	m_{15}	m_{14}	11	m_{28}	m_{29}	m_{31}	m_{30}
10	m_{8}	m_{9}	m_{11}	m_{10}	10	m_{24}	m_{25}	m_{27}	m_{26}
$\mathrm{E}=0$					$\mathrm{E}=1$				

Alternative K-map format for five variables

lification Of Switching Functions

Simplification

Karnaugh map for variables E, D, C, B and A

All possible minterms for variables E, D, C, B and A are : $m_{0}, m_{1}, m_{2}, m_{3}, \ldots$. and m_{31}.

$$
\begin{array}{llll}
m_{o}=\bar{E} \cdot \bar{D} \cdot \bar{C} \cdot \bar{B} \cdot \bar{A} & m_{4}=\bar{E} \cdot \bar{D} \cdot C \cdot \bar{B} \cdot \bar{A} & m_{8}=\bar{E} \cdot D \cdot \bar{C} \cdot \bar{B} \cdot \bar{A} & m_{17}=E \cdot \bar{D} \cdot \bar{C} \cdot \bar{B} \cdot A \\
m_{1}=\bar{E} \cdot \bar{D} \cdot \bar{C} \cdot \bar{B} \cdot A & m_{5}=\bar{E} \cdot \bar{D} \cdot C \cdot \bar{B} \cdot A & m_{9}=\bar{E} \cdot D \cdot \bar{C} \cdot \bar{B} \cdot A & m_{18}=E \cdot \bar{D} \cdot \bar{C} \cdot B \cdot \bar{A} \\
m_{2}=\bar{E} \cdot D \cdot \bar{C} \cdot B \cdot \bar{A} & m_{6}=\bar{E} \cdot \bar{D} \cdot C \cdot B \cdot \bar{A} & m_{10}=\bar{E} \cdot D \cdot \bar{C} \cdot B \cdot \bar{A} & \cdots \\
m_{3}=\bar{E} \cdot \bar{D} \cdot \bar{C} \cdot B \cdot A & m_{7}=\bar{E} \cdot \bar{D} \cdot C \cdot B \cdot A & \cdots & m_{3 l}=E \cdot D \cdot C \cdot B \cdot A
\end{array}
$$

All possible maxterms for variables E, D, C, B and A are : $M_{0}, M_{1}, M_{2}, M_{3}, \ldots$ and M_{31}.

$$
\begin{array}{llll}
M_{o}=E+D+C+B+A & M_{4}=E+D+\bar{C}+B+A & M_{8}=E+\bar{D}+C+B+A & M_{17}=\bar{E}+D+C+B+\bar{A} \\
M_{1}=E+D+C+B+\bar{A} & M_{5}=E+D+\bar{C}+B+\bar{A} & M_{9}=E+\bar{D}+C+B+\bar{A} & M_{18}=\bar{E}+D+C+\bar{B}+A \\
M_{2}=E+D+C+\bar{B}+A & M_{6}=E+D+\bar{C}+\bar{B}+A & M_{10}=E+\bar{D}+C+\bar{B}+A & \cdots \\
M_{3}=E+D+C+\bar{B}+\bar{A} & M_{7}=E+D+\bar{C}+\bar{B}+\bar{A} & \cdots & M_{31}=\bar{E}+\bar{D}+\bar{C}+\bar{B}+\bar{A}
\end{array}
$$

fimplification Of Switching Functions

Simplification

Karnaugh map for variables F, E, D, C, B and A

lification Of Switching Functions

Simplification

Karnaugh map for variables F, E, D, C, B and A

All possible minterms for variables F, E, D, C, B and A are $: m_{0}, m_{1}, m_{2}, m_{3} \ldots$ and m_{63}.

$$
\begin{array}{llll}
m_{0}=\bar{F} \cdot \bar{E} \cdot \bar{D} \cdot \bar{C} \cdot \bar{B} \cdot \bar{A} & m_{16}=\bar{F} \cdot E \cdot \bar{D} \cdot \bar{C} \cdot \bar{B} \cdot \bar{A} & m_{32}=F \cdot \bar{E} \cdot \bar{D} \cdot \bar{C} \cdot \bar{B} \cdot \bar{A} & m_{48}=F \cdot E \cdot \bar{D} \cdot \bar{C} \cdot \bar{B} \cdot \bar{A} \\
m_{1}=\bar{F} \cdot \bar{E} \cdot \bar{D} \cdot \bar{C} \cdot \bar{B} \cdot A & m_{17}=\bar{F} \cdot E \cdot \bar{D} \cdot \bar{C} \cdot \bar{B} \cdot A & m_{33}=F \cdot \bar{E} \cdot \bar{D} \cdot \bar{C} \cdot \bar{B} \cdot A & m_{49}=F \cdot E \cdot \bar{D} \cdot \bar{C} \cdot \bar{B} \cdot A \\
\vdots & \vdots & \vdots & \vdots \\
m_{15}=\bar{F} \cdot \bar{E} \cdot D \cdot C \cdot B \cdot A & m_{31}=\bar{F} \cdot E \cdot D \cdot C \cdot B \cdot A & m_{47}=F \cdot \bar{E} \cdot D \cdot C \cdot B \cdot A & m_{63}=F \cdot E \cdot D \cdot C \cdot B \cdot A
\end{array}
$$

All possible maxterms for variables F, E, D, C, B and A are : $M_{0}, M_{1}, M_{2}, \ldots$ and M_{63}.

$$
\begin{array}{llll}
M_{0}=F+E+D+C+B+A & M_{16}=F+\bar{E}+D+C+B+A & M_{32}=\bar{F}+E+D+C+B+A & M_{48}=\bar{F}+\bar{E}+D+C+B+A \\
M_{1}=F+E+D+C+B+\bar{A} & M_{17}=F+\bar{E}+D+C+B+\bar{A} & M_{33}=\bar{F}+E+D+C+B+\bar{A} & M_{49}=\bar{F}+\bar{E}+D+C+B+\bar{A} \\
\vdots & \vdots & \vdots & \vdots \\
M_{15}=F+E+\bar{D}+\bar{C}+\bar{B}+\bar{A} & M_{31}=F+\bar{E}+\bar{D}+\bar{C}+\bar{B}+\bar{A} & M_{47}=\bar{F}+E+\bar{D}+\bar{C}+\bar{B}+\bar{A} & M_{63}=\bar{F}+\bar{E}+\bar{D}+\bar{C}+\bar{B}+\bar{A}
\end{array}
$$

Simplification

Plotting Functions in Canonical Form on the Karnaugh map

If switching function is expressed in canonical form, it may be readily plotted on a K-map. Each cell on the K-map corresponds to minterm/maxterm of the canonical form.

Suppose we have following Boolean function f_{1} which is given in canonical SOP form :

$$
f_{1}(B, A)=\bar{B} \cdot \bar{A}+B \cdot \bar{A} \quad f_{1}(B, A)=\sum m(0,2)
$$

We have assumed that right side of variables (B, A) represent a "least significant bit" and left side (B) represent a "most significant bit".

$$
\begin{aligned}
\Rightarrow \quad m_{0} & =\bar{B} \cdot \bar{A} \\
m_{1} & =\bar{B} \cdot A \\
m_{2} & =B \cdot \bar{A} \\
m_{3} & =B \cdot A
\end{aligned}
$$

BA 		
0	m_{0}	m_{1}
1	m_{2}	m_{3}
		ig4p3

If we plot minterms (1's) only on the K-map, then m_{0} and m_{2} are 1.

$$
f_{1}(B, A)=\sum^{m}(0,2)=\prod^{\left.M(1,3)=M_{1} \cdot M_{3}=(B+\bar{A}) \cdot(\bar{B}+\bar{A}), ~\right)}
$$

If we plot maxterms (0's) only on the K-map, then M_{1} and M_{3} are 0 .

If we plot all minterms (1) and maxterms (0) on the K-map, then the K-map corresponds directly to the truth table of the function f_{1}.

Simplification

Plotting Functions in Canonical Form on the Karnaugh map

$$
\begin{aligned}
& f_{2}(C, B, A)=\sum m(0,3,5)=m_{0}+m_{3}+m_{5} \\
& =\bar{C} \cdot \bar{B} \cdot \bar{A}+\bar{C} \cdot B \cdot A+C \cdot \bar{B} \cdot A \\
& =\prod M(1,2,4,6,7)=M_{1} \cdot M_{2} \cdot M_{4} \cdot M_{6} \cdot M_{7} \\
& =(C+B+\bar{A}) \cdot(C+\bar{B}+A) \cdot(\bar{C}+B+A) \cdot(\bar{C}+\bar{B}+A) \cdot(\bar{C}+\bar{B}+\bar{A})
\end{aligned}
$$

$B A$ 001 11 010				
0	m_{0}	m_{1}	m_{3}	m_{2}
1	m_{4}	m_{5}	m_{7}	m_{6}

Simplification

Plotting Functions in Canonical Form on the Karnaugh map

SOP and POS form of switching function \boldsymbol{f}_{3} respectively.

$$
\begin{aligned}
& f_{3}(D, C, B, A)=\sum m(0,3,5,7,10,11,12,13,14,15) \\
& =\prod M(1,2,4,6,8,9)
\end{aligned}
$$

Simplification

Plotting Functions in Canonical Form on the Karnaugh map

E	D	C	B	A	f_{4}
0	0	0	0	0	0
0	0	0	0	1	0
0	0	0	1	0	0
..
0	1	1	1	0	1
0	1	1	1	1	1
1	0	0	0	0	0
..
1	0	1	1	0	1
1	0	1	1	1	1
1	1	0	0	0	0
..
1	1	1	1	0	1
1	1	1	1	1	1

Table4p4
The truth table for the function f_{4}.

SOP and POS form of switching function f_{3} respectively.

$$
\begin{aligned}
& f_{5}(F, E, D, C, B, A)=\sum m(9,11,25,27,41,43,57,59) \\
& =\prod M(0,1, \cdots, 8,10,12,13, \cdots, 24,26,28, \cdots, 40,42,44, \cdots, 56,58,60, \cdots, 63)
\end{aligned}
$$

K-map for the function f_{5}.

In canonical form the each product or sum term must contain all the variables, either complemented or uncomplemented.

In standard form each product/sum term may have any number of literals.
$\begin{aligned} & \text { Standard SOP } \\ & \text { form }\end{aligned} f_{6}(C, B, A)=A+B \cdot \bar{A}+\bar{C} \cdot B$
$\begin{aligned} & \text { Standard POS } \\ & \text { form }\end{aligned} f_{7}(C, B, A)=(\bar{A}+B+\bar{C}) \cdot(\bar{B}+C) \cdot A$

lification Of Switching Functions

Simplification

Plotting Functions in Standard SOP/POS Form on the K-map

Consider the following function $f_{8}(B, A)$, which is expressed as a standard sum of products.

Example

$$
f_{8}=\bar{A}+B \cdot A
$$

The first term represents the portion of the map where $\mathrm{A}=0$ (minterms $\mathrm{m}_{0}, \mathrm{~m}_{2}$).

The second term represents the portion of the map where $\mathrm{A}=1$ and $\mathrm{B}=1$ (minterm $\left.\mathrm{m}_{3}\right)$.
B is don't care

Minterms $\mathrm{m}_{0}, \mathrm{~m}_{2}$ and m_{3} are covered only once.

Fig4p21

Minterms (ones)
plotted on the K-map.

The canonical sum of product form for function f_{8}.

$$
\longrightarrow f_{8}=\bar{B} \cdot \bar{A}+B \cdot \bar{A}+B \cdot A=\sum m(0,2,3)
$$

We can use K-map to make a conversion from standard SOP to canonical SOP form.

$$
f_{10}(D, C, B, A)=(A+\bar{C})(D+B+A)(D+C+\bar{A}) \quad \text { Standard Pos }
$$

The complement of the function \boldsymbol{f}_{10}
Convert each 0 cell to a 1 cell and plot function in canonical or standard SOP form.

plification Of Switching Functions

Simplification

Guidelines for Simplifying Functions Using K-maps
Five important points to keep in mind.

1. Each minterm on a K-map of n variables has n logically adjacent minterms.

Simplification

Guidelines for Simplifying Functions Using K-maps
Five important points to keep in mind.

Adjacent minterms :
Example : $(\bar{C} B A \quad \overline{C B} A) \longleftrightarrow\left(m_{3}, m_{1}\right)$
$(\bar{C} B A \quad \bar{C} B \bar{A}) \longleftrightarrow\left(m_{3}, m_{2}\right)$
$(\bar{C} B A \quad C B A) \longleftrightarrow\left(m_{3}, m_{7}\right)$

Example :

$$
\begin{gathered}
\left(m_{2}, m_{0}\right) \\
\left(m_{2}, m_{3}\right) \\
\left(m_{2}, m_{6}\right) \\
\left(m_{2}, m_{10}\right) \\
\text { Or } \\
\left(m_{13}, m_{5}\right) \\
\left(m_{13}, m_{9}\right) \\
\left(m_{13}, m_{12}\right) \\
\left(m_{13}, m_{15}\right)
\end{gathered}
$$

Fig4p30

Simplification

Guidelines for Simplifying Functions Using K-maps
Five important points to keep in mind.
2. Group squares in powers of $2(2,4,8,16, .$.$) . Grouping 2^{n}$ squares, eliminates n variables.

Eliminates two variables
A and B are eliminated

Fig4p33

Simplification

Guidelines for Simplifying Functions Using K-maps
Five important points to keep in mind.

Simplification

Guidelines for Simplifying Functions Using K-maps
Five important points to keep in mind.
3. Group as many squares together as possible. The larger the group is, the fewer the number of literals in the resulting product term.
4. Make as few groups as possible to cover all the minterms of function. The fewer the groups, the fewer the number of product terms in the minimized function. Stop, when all minterms are used at least once. The minterm is covered when it is used at least once in groups.
5. Start grouping with those minterms which has fewest number of logically adjacent minterms.

Simplification

We must ensure that all the minterms of the function are covered when we combine squares. There are no minterms already covered by other terms.

A prime implicant is a product term obtained by combining the maximum possible number of adjacent squares in the map.
If minterm in a square is covered by only one prime implicant, that prime implicant is said to be essential.

Essential Prime Implicants $C \cdot A$
$\bar{C} \cdot \bar{A}$
「-1 Prime Implicants
$D \cdot \bar{C} \quad D \cdot A \quad B \cdot A \quad \bar{C} \cdot B$

$$
\begin{aligned}
F & =C \cdot A+\bar{C} \cdot \bar{A}+D \cdot \bar{C}+\bar{C} \cdot B \\
& =C \cdot A+\bar{C} \cdot \bar{A}+D \cdot \bar{C}+B \cdot A \\
& =C \cdot A+\bar{C} \cdot \bar{A}+D \cdot A+\bar{C} \cdot B
\end{aligned}
$$

$$
=C \cdot A+\bar{C} \cdot \bar{A}+D \cdot A+B \cdot A \text { Four possible standard forms (SOP) }
$$

Simplification

Examples with K-maps Example with Five-Variable Map

Simplification
Examples with K-maps
Example with Six-Variable Map

$$
f_{5}(F, E, D, C, B, A)=\sum m(9,11,25,27,41,43,57,59)
$$

Simplified Boolean function f_{5} :

$$
F=D \bar{C} A
$$

Minimized standard form (SOP)

Simplification

Examples with K-maps

$$
\begin{aligned}
& F(D, C, B, A)=\sum m(0,1,2,5,8,9,10) \\
& \prod^{M(3,4,6,7,11,12,13,14,15)}
\end{aligned}
$$

1's marked in the squares (minterms): $m_{0}, m_{1}, m_{2}, m_{5}$,

$$
m_{8}, m_{9}, m_{10}
$$

0's marked in the squares (maxterms) : $M_{3}, M_{4}, M_{6}, M_{7}, M_{11}$,

$$
M_{12}, M_{13}, M_{14}, M_{15}
$$

If the squares marked with 0 's are combined, (and take reduced minterms) we obtain the simplified complemented function: \bar{F}

If we take reduced maxterms, we obtain simplified function F.

$$
\bar{F}(D, C, B, A)=B \cdot A+D \cdot C+C \cdot \bar{A}
$$

$$
\begin{aligned}
& F=\overline{\bar{F}}(D, C, B, A)=\overline{B \cdot A+D \cdot C+C \cdot \bar{A}} \\
& =(\overline{B \cdot A)} \cdot(\overline{D \cdot C)} \cdot(\bar{C} \cdot \bar{A}) \\
& =(\bar{B}+\bar{A}) \cdot(\bar{D}+\bar{C}) \cdot(\bar{C}+A)
\end{aligned}
$$

Gate implementation of the function $\quad F(D, C, B, A)=\sum(0,1,2,5,8,9,10)$

$\text { DC } \stackrel{\text { BA }}{1}$	01	11	10
$00 \stackrel{m_{0}^{i}}{i_{1}^{\prime}}$	$\left\lvert\, \begin{gathered}m_{1} \\ 1 \\ 1 \\ 1\end{gathered}\right.$	$\begin{array}{r} m_{3} \\ 0 \end{array}$	$\left[\begin{array}{c} m_{2} \\ \vdots \\ 1 \end{array}\right.$
$01{ }^{m_{4}}$	m_{5} 1 \vdots 1	${ }^{m_{7}} 0$	${ }^{m_{6}}$
11m_{12} 0	+ ${ }^{m} 13$	m_{15} 0	m_{14} 0
$10\left[\begin{array}{c} m_{0-n} \\ \vdots \\ \vdots \end{array}\right.$	$\stackrel{m_{9}}{\text { ¢ }}$	[${ }^{m_{11}}$	$\begin{gathered} m_{1+\theta--} \\ 1 \\ 1 \end{gathered}$

$$
\xrightarrow[(\text { standard POS form })]{F=(\bar{B}+\bar{A}) \cdot(\bar{D}+\bar{C}) \cdot(\bar{C}+A)}
$$

	00	01	11	10
00	$\begin{array}{r} m_{0} \\ 1 \end{array}$	${ }^{m_{1}} 1$	[$\begin{array}{r}\text { m } \\ \\ 11 \\ 0\end{array}$	$\begin{array}{r} m_{2} \\ 1 \end{array}$
01	m ${ }^{\text {m }}$	${ }^{m_{5}}$		$\begin{gathered} m_{6}- \\ \vdots \\ \hline 0 \end{gathered}$
11	$\left\lvert\, \begin{gathered} m_{12} \\ 10 \\ 1=0 \\ i=0 \end{gathered}\right.$	0	${ }^{\text {m }}$	$\left[\begin{array}{l} m 14 \\ -10 \end{array}\right.$
10	${ }^{m_{8}} 1$	${ }^{m_{9}} 1$	\% $\begin{array}{r}\text { m } \\ 11 \\ 10 \\ \vdots \\ \hline\end{array}$	$\begin{array}{r} m_{10} \\ 1 \end{array}$

(standard SOP form)

In practice, there are some applications where the function is not specified for certain combinations of the input variables.

For example, four-bit binary code for the decimal digits (0-9, $P_{0}-P_{9}$).

Six unspecified outputs for some input ($P_{10}-P_{15}$) combinations.

These don't care conditions can be used on a map to provide further simplification of the Boolean function.

Mark the don't care minterm with X in the K-map.

$$
F=\bar{C} \cdot \bar{B}+\bar{D} \cdot \bar{B} \cdot A+D \cdot \bar{C} \cdot \bar{A} \quad(\text { Simplified without } \mathrm{X})
$$

(Simplified with X) $F=\bar{C} \cdot \bar{B}+\bar{D} \cdot \bar{B} \cdot A+\bar{C} \cdot \bar{A}$

The End

