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A b s t r a c t - - T h e  aim of this paper is to present the counterpart of the theory of Fourier series in 
the Mellin setting, thus to consider a finite Mellin transform, or MeUin-Fourier coefficients, together 
with the associated Mellin-Fourier series. The presentation, in a systematic and overview form, 
is independent of the Fourier theory (or Laplace transform theory) and follows under natural and 
minimal assumptions upon the functions in question. This material is put into connection with 
classical Mellin transform theory on R+ via the Mellin-Poisson summation formula, also in the form 
of two tables, as well as with Fourier transform theory. A highlight is an application to a new Kramer- 
type form of the exponential sampling theory of signal analysis. (~) 2000 Elsevier Science Ltd. All 
rights reserved. 

K e y w o r d s - - M e l l i n  transforms, Mellin-Fourier series, Mellin-Poisson summation formula, Expo- 
nential sampling theorem. 

1. I N T R O D U C T I O N  

In their papers [1,2], the authors studied the Mell in  transform 

.M[f](s) = f ( u ) u  s-1 du, s = c + it, t ~ R,  (1.1) 

so important in the resolution of partial differential equations, the summation of certain infinite 
series and especially in number theory, for functions 

{ /0 } f e X c : =  f : R + - ~ C ;  [If[]Xc:=[[f(x)xc-l[[Ll(~+) = [ f ( u ) i u C - l d u < c o  , (1.2) 

for some c E R. They studied it as a fully independent discipline, i.e., independent of Fourier or 
Laplace transform theory--which is not the case in the customary brief treatments in [3-9] as 
wel l  as  in m a n y  b o o k s  on  n u m b e r  theory ,  e.g. ,  [10,11]. 
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The purpose of this paper is to consider the finite Mellin transform 

e ~r P 

-- f ~ ( k )  = / f (u)u c+ik-1 du, (1.3) Ad~[f](k) 
J e  

of certain f • L~oc(R+), thus the Mellin-Fourier coefficients associated with the Mellin-Fourier 
series 

o o  

1 
f j ~ ( k ) x  , x • R+. (1.4) f(x) ~ ~ ~ ^ -~-~ 

(The notation .Mc[f](k) is used for the finite Mellin transform, and A4[f](s) without the index c 
for the classical, continuous Mellin transform.) This aspect of Mellin theory does not seem to 
have been, apart  from the work of the authors [12], studied explicitly so far. 

The "certain" functions in question here are those f : R+ --* C which we shall call recurrent, 
the values of which recur in the sense that  f (x)  = f(e2'~x) for all x c R+. The function f will 
be called c-recurrent for c • 11(, if x~f(x) is recurrent, i.e., if f (x)  = e2~f(e2~Cx) for all x • R+. 
As to the space in question in this instance, 

{ // } Y~ := f • L~o¢(R+); f is c-recurrent, IISllgo : =  If(u)lu ~-~ du < ~ . (1.5) 
--Tr 

The fundamental interval of c-recurrent functions can be taken as [e -~, e ~] or, more generally, as 
[),e -~, ),e ~] for any A > 0; it is the counterpart of the interval [-~r, 7r] or [-~r + a, 7r + c~] for any 
a • R in the 2It-periodic case. Observe that  the space Yc, c • R, supplied with the norm II • IlYo, 

is a Banach space. 
As examples, every polynomial in x ~, i = v/-2-i, namely p(x i) := }-~jn_~ ajx~j, aj • C, belongs 

to Y0, and x-Cp(x i) to Yc; f (x ) := x-CF(logx) is c-recurrent if F(u) is 2~r-periodic. 
As to the fundamental orthogonal system in the Mellin frame, the counterpart of the system 

{eik~}keZ in the periodic case, we have the functions ~c,k(x):=x -(c+~k) for x • R+, k E Z 
and e • R for which {~c,k}kez • Y~ and [ ~ , j ] ~ ( k )  = 2rrSj,k, j , k  • Z (Sj,k being Kronecker's 
symbol). Further, {~o0,k}k6Z for c = 0 is orthogonal with 

e ~t 

e ~o,k(u)~o,j(u) du 27rSj,k. (1.6) 
- -  Tr U 

The basic operational properties of the finite Mellin transform are collected in the following 

l e m m a .  

LEMMA 1.1. 

(a) 

with 

The finite Mellin transform A4 ~ o f f  • Yc is a well-defined linear, bounded operator 

,M c:  Yc --* I°°(Z), f H {f~c(k)}k~z ,  

A I f~ (k ) l  ~ Ilfllgc, k e z. 

I f f  6 Y~, c E R, and a E R+, then 

[ f ( ~ z ) l ~ o ( k )  = ~ - ( c + i k ) ~ ^  / ~  

(1.7) 

(b) I[ f 6 Yc, then xiJ f (x)  6 Yc for j E Z, and 

[xiJS(x)]~o (k) = f~o(k + j). 

For further results and details in the matter,  see [12]. 
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2. T H E  F I N I T E  ME L L I N T R A N S L A T I O N  A N D  C O N V O L U T I O N  

The finite Mellin translation operator T~ for c E R, h E R+ is defined by 

z~: L~oc(R+) ~ L~oc(R+) , (T~f) (X) := hCf(hx), x E R+, 

with Th := T °. The translation T~ : Yc --* Yc for c E R, h E R+, f EYc is an isometric isomorphism 

with (r~) -1 = T~/h, and 

IIr~flly~ = Ilfilrc. (2.1) 

As to its properties, concerning the Mellin transform of the translation, one has for f EYc, 

r e .el A - i k  A hgJj~c (k) = h fj~c(k), h E R+, k E Z, (2.2) 

as well as the convergence of T~ to the identity, 

lim IlT~f - f[lYc = 0. (2.3) 
h---* 1 

If f EYc, then the basic Riemann-Lebesgue Lemma states that  

lim f~c (k )  = 0. (2.4) 

As to the proof, one has by (2.2) and (2.3) for hk := exp(Tr/k), k E Z \ {0}, [k I --* co, 

2 If~o(k)l t [ r h ~ f  ^ - ~  = - f ]~o  (k) I < I l r h ~ f  - -  fllYo 0. 

Concerning the convolution structure for Yc, the finite Mellin convolution of f ,  g E Y~ is defined 

by 

( f *g ) ( x ) :=  - .  f g(u)d--u u = - .(vUuf)(x)g(u)u -~,  (2.5) 

in case the integral exists. If f , g  E Yc, c E R then it readily follows that  f * g EYc exists, a.e., 

on R+, and 

Ill * gllro <-IIflIYolIglIYo, (2.6) 

and the associated convolution theorem states that  for f ,  g E Yc, 

If * g]~o (k) ^ ^ = fj~c (k)gj~ (k), k E Z, (2.7) 

noting Fubini's theorem and the c-recurrency of the convolution product. 
Convolution is commutative and associate, namely, 

f l  * f~ = f2 * f l ,  (a.e.), (f l  * f2) * f3 = f l  * (f2 * f3), (a.e.), 

for f l ,  f2, f3 E Y~, and (Y~, +, *) turns out to be a Banach algebra. 

3. M E L L I N - F O U R I E R  SERIES A N D  
T H E  M E L L I N  D I F F E R E N T I A L  O P E R A T O R  

T h e  n th partial sum of the Mellin-Fourier series, defined by 

n 

(SO f ) ( x ) :=  27r ~ f~_(k )x  -ik, n E Rl0, (3.1) 
k ~ - n  
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may readily be represented as a convolution integral, 

S~f  = f * D~, n E No, (3.2) 

for f 6 Yc with SCf 6 Yc, where {D,~}neNo is the Mellin-Dirichlet kernel 

D~(x) "= l x - ~  " 2¢r E x-ik' x E R+, (3.3) 
] ¢ = - n  

with D c E Y~. 
Dirichlet kernel, 

4 
[ISCiI[Y~l = IiDC][y~. = ~-~ logn + 0(1), 

On the other hand, for the Mellin-arithmetie (or (C, 1)) means 

o~I(x) . -  _ _ 1  ~ s~f(x), x E a+, 
n + l  

k=O 

for which a,~f E Y~, for f EYc, one has the convolution representation 

In general, SCf(x) does not converge to f (x) ,  since for the norm of the Mellin- 

n --* c~. (3.4) 

n e No, (3.5) 

a~f  = f * i t ,  (3.6) 

F ,  c { n}neNo being the Mellin-Fejdr kernel 

FC(x):= 1 ~ D C ( x ) ,  x E R + ,  n E N o ,  
n + l  

k = l  

for which the representation 

21r 1 x -ik, 
k = - n  n 

(3.7) 

x e •+,  (3.s) 

is especially useful. This kernel is a real-valued, positive, and continuous function (see Corol- 
lary 5.1 below). This readily leads to another representation of the Mellin-Ces~ro means, namely 

1 n+ l / / /~o (k )x  , 
] g ~ - - n  

x E R+. (3.9) 

The Fej4r-type theorem in this frame is stated as the following. 

THEOREM 3.1. If  f EYc for c E C, then 

lim I I ~ f  - fllv~ = o. iO,---~ (X) 

For the proof one first needs the fact that c ^ c [F~]A4~(0 ) = [[FnC[[yc = 1 together with 

lim f F~(u)u ~-1 du = O, (3.10) 
n--~OO J E / f  

where E~ := {x E [e -'~, e'~]; 11 - x I >_ 5} for arbitrary 0 < 6 < 1 - e -•. Then, using Fubini's 
Theorem, we obtain 

e~ eW du 
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where CE~:=[e - ~ , e  ~ ] \ E ~ .  Now, by (2.3) to each E > 0 there is a 0 < ~ < 1 - e  -~ such 

that  [[T~/~,f -- filY~ < ~ for u E CE~. Further, the translation operator is bounded, so that  

IIT~/=f - fllY¢ < 21ifllvo. Thus, 

{rE 2HfllyoF~(u)u du+eliFT, ilvo} <e. l imsup t l a~f  - fllg~ -< l i m s u p  c c-1 c 
n-'~OO re ---~OO 6 

A basic application of this result is the identity theorem for the finite Mellin transform, as follows. 

THEOREM 3.2. I f  f x , f 2  e Yc with [f~]~o(k) -- [ f 2 ] ~ ( k )  for all k ~ Z, then f~ = f2, a.e. 

Concerning the proof, for 9 := f l - f 2  take the alternative representation of the Mellin-arithmetic 
means, namely (3.12), 

• 
aC~g(x) = 2zr 1 g~,~(k)x -ik, x E R+, 

k=-n n+l 

and note that  a~g(x) = 0 for all n E N0 by assumption. Theorem 3.2 now yields the result. 
In order to study the convergence of Mellin-Fourier series, another concept is needed, namely, 

tha t  of a derivative; associated with it is antidifferentiation. As to the classical derivative, it 
does not fit into the setting of Mellin transform theory. The effective operator of (first-order) 
differentiation is in fact given by e ~ f ( x )  = ( x ( d ) ) f ( x )  + e f (x)  (and not just ( x ( d ) ) ,  the 
particular case c = 0, as has always been considered so far). The reason for this derivative is that  
in the Mellin setting, for f E Xc, 

f ( z )  lim - h~x f (hx )  + - - ~ f ( x )  = x f ' ( x )  + c f (x) ,  (3.11) 
h---*l h - 1 hx x 

by L'Hospital 's rule. 

The associated operator of antidifferentiation turns out to be given via j l f ( x ) : =  x -~ f o  ( f (u)  
× u ~-1 du ) with Jl  f ( x ) = ]o f ( u ) u-1 du for c = 0 (and not just the classical primitive f o  f ( u ) du ). 
The Mellin differential operator of order r E N is then defined iteratively by 

e~:=e~, e~:=e~ (e;-'), 

and the underlying Mellin-Sobolev spaces X~ for c E JR, r E N by 

X ;  := { f  6 Xc; 3g E C r - I ( R + )  with f = g, a.e., g(r-1) E ACloc(R+) and e~g E Xc I . 

As to the second- and third-order Mellin derivatives, they are given by 

e 2 j ( z )  : x2f(21(x) + (2c + 1)xf'(z) + c2f(x), 
03f (x)  = x3f(3)(x) q- (3a-4-3)x2f(2)(x) "4- (3c 2 + 3c + 1)xf'(x) + c3f(x). 

The main result in this respect is a characterization of the Mellin derivative in terms of Mellin 
transforms, a result to be found in [1,2]. 

THEOREM 3.3. The following assertions are equivalent for f E Xc, c E ~, and r E N. 

(i) There holds f E X~. 
(ii) There exists a function 91 E Xc such that 

(iii) 

( - i t ) r M [ I ] ( c  + i t)  = M[gq(c  + it), t e •. 

There exists a function g2 E Xc such that 

f ( x )  = x-C ~Ox fOUl " " ~O u' - '  g2(ur)ucdur 
du2 dul 
U2 U l  

a.e., x E JR+. 

(3.12) 

(3.13) 
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I f  one of the assumptions above is satisfied, then OJc • Xc for all 1 <_ j <_ r, and 

Ocrf = gl = g2, a.e., on ]~+. 

The Mellin antiderivative of order r 6 1%I of f 6 Xc, namely J~f(x) ,  is then defined by the 
right side of (3.13). 

This would enable one to establish the fundamental theorem of the differential and integral 

calculus in the Mellin frame in the form that  J~O~f(x) = f ( x )  and e~cJ~f(x) = f (x ) ,  a.e., on R+ 
under suitable conditions on f and j r f  (see [1]). 

When turning to differentiability properties of functions f 6 Y~, the Mellin derivative (but gen- 
erally not the classical derivative f ' )  will retain c-recurrency. This is obvious from the definition 

of Oe. 

Let us now turn to the pointwise convergence of Mellin-Fourier series. In view of assertion (3.4), 
just as in the classical theory smoothness assumptions upon the functions in question will be 
needed. A first result reads as follows. 

THEOREM 3.4. If  f e Yc, c 6 R, is classically differentiable in xo e [e -~, e~], then 

1 (90 

f (xo) = ~'-~ y ~  f~(k)xo c-ik. 
k = - o o  

As to the proof, assume for simplicity that  x0 = 1, f(1)  = 0, and set g ( x ) : = x C f ( x ) / ( x  i - 1), 
i -- v/KT. Then, by a telescoping argument (see [13]) 

1>-~  ^ 1 ~  
21r f j ~ ( k )  = 

k = - m  k = - r n  

{ g L o ( k +  1) ^ -g:~o(k)} 

1 
= - -  g ~ o ( - m ) }  ~ 0 = f (1) ,  2= { g ~ o ( ~  + 1) - ^ 

by the Riemann-Lebesgue Lemma. 

COROLLARY 3.5. Let f 6 Yc for c e R be locally absolutely continuous on •+ such that the 
Mellin-derivative Ocf  is essentially bounded on [e -~, e=]. Then, for some constant K > O, and 
all n 6 N, 

n 

1 _~__nf ~ -c- ik  - -  ~(k)x <_ K x  -c esssup l y ~ O ~ f ( y ) l ,  
f ( x )  - 2~r k ~e[c- . ,e .]  

x 6]~+,  (3.14) 

and 

1 ~-~ A -c--ik 

k = - n  

f ( x )  1 ~ ^ -c-~k < tf(~)l + - ~ ]~o(k)x 
k = - - n  

so that the Mellin series is uniformly bounded on [e -~, e~]. Further, there holds for every Xo e R+ 
for which Ocf(xo) exists, 

1 oo 
f R . o ( k ) X o  . (3 .15)  f(xo) = ~ ~ ^ -c-,~ 

k=--oo 

For further results and proofs in this direction see [12]. 
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4. M E L L I N - P O I S S O N  S U M  F O R M U L A  

The basic connection between classical Mellin transform theory and Mellin-Fourier theory as 
presented here is the Poisson sum formula in the Mellin setting. A preliminary result reads as 

follows. 

PROPOSITION 4.1. If  f E Xc, c E R, the series 

O 0  

fC(x) := E f (e2~jx) e2~J~' x E R+, (4.1) 
j ~ - - O O  

converges absolutely, a.e., on [e -~, e~], and fc EYc with 

IlfCllv~ ~ IlflIx~. 

Furthermore, 
c A  [f ]~o(k) = M[f](c + ik), k e z, 

i.e., the finite Mellin transform of fc  EYc is equal to the restriction to {c} x iZ (of the line 
{c} x JR) of the continuous Mellin transform of f E Xc. 

Now, to the Mellin-Poisson sum formula itself. 

THEOREM 4.2. Let f E Xc be continuous, and 

OO 

I•[f](c + ik)l  < oo. 
k=-oo 

If  series (4.1) defining SO(x) converges uniformly on [e -~, e~], then 

(3O OO 

= 21r E Jut[f l (c+ik)x-ik '  x E R + .  
k = - o o  k = - o o  

As to a sufficient condition for the uniform convergence of the series defining fc we have the 

following proposition. 

PROPOSITION 4.3. I f  f E X 1 is continuous on R+, then the series fc converges absolutely and 
uniformly on [e -~, e~]. In particular, fc is continuous on R+. 

For the details concerning the foregoing sum formula, see [12]. 

5. A P P L I C A T I O N S  

5.1. Me l l i n -Po i s son  S u m  F o r m u l a  App l i ed  to  t h e  Mel l in -Fe jdr  K e r n e l  

For our purpose, we first need to recall the continuous Fejdr kernel ~c {F~ }p>0 C Xc for c E R, 

defined in [1], namely 

F p ( x )  . -  x -C ( x p i / 2  - x - p i / 2 ~  2 
21rp \ lo--~- ] , x E R+, p > 0, (5.1) 

which has the Mellin transform 

o<l t l_<p,  

ItI > p, 
(5.2) 
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for c, t E ](. 
finite Mellin-Fej~r kernel Fen(x) of (3.7). 

COROLLARY 5.1. The finite Mellin-Fej& kernel has the representation 

X_ c (:x) ( x((n+l)/2)i  - X_((n+l) /2) i  ~ 2 

F C ( x ) -  27r(n+1) k=Y~ \ ~  27rklogx ] , x E R + ,  uEN0 .  

The sum formula of Theorem 4.2 yields the following further representation of the 

(5.3) 

PROOF. To apply Theorem 4.2, we need to compute (/~)c for p :-- n + 1, 

' 

yielding 

-c ) c x-C ~oo ( x ( ( n + l ) / ~ -  x-(('~+l)/2)~ 2 
(F~+ 1 ( z ) -  2zr(n+l) k= - k, 2rklogx ] ,  z E R + .  (5.4) 

Obviously, this series is absolutely convergent on [e - ' ,  e~]; thus an application of this theorem, 
together with (5.2) and representation (3.8), imply 

(x) - 2re 1 n + 1 x-ik = F~(x), 
k = - n  

x ER+,  

which completes the proof. 

This result is the counterpart of the fundamental formula 

oo sin2(n + 1)x sin2(n + 1)x 
- , (x  e R ) ,  (5 .5)  

k=-oo (x + kTr) 2 sin 2x 

of Fourier analysis and the theory of meromorphic functions (cf. [14, p. 203], the right-hand side 
being the counterpart of another representation of F~(x), namely, 

1 1 X-- c (x((n+. 1 ) / 2 ) i -  X-- ( (n+l) /2) i )  2 
F~(x) ~ n + 1 ~ xi/2 x_i/2 , X 7 £ e 2 r j ,  

= j E Z. (5.6) 
n + 1e_27rjc x = e 21rj, 

2r 

The Mellin-Poisson formula may also be applied to prove the basic transformation formula for the 
Jacobi theta function, namely that O(y) = y-1/20(y-1), y E R+, where 0(y) -= ~kC¢__ oo e -~k2y, 
y > 0; see [12]. This transformation formula is the counterpart of formula (5.5) in the following 
sense: whereas (5.5) is connected with Fej~r-summability of Fourier series, the former is associated 
with Gauss-Weierstrass summability of such series. 

5.2. A Kramer-Type Exponential Sampling Theorem 

As a second application, in particular of Mellin-Fourier series, we consider the resolution of the 
first-order Mellin-differential equation 

iOcy(x) = loguy(x), x ,u  E R+, c E R, (5 .7)  

the general solution of which is given by 

y(x) = x -c-il°gu :----Kc(x, u), x, u E R+. (5.8) 
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Let us first consider this kernel from the Mellin-Fourier series point of view. 

LEMMA 5.2. If  Kc(x, .) : R+ --* C for x • R+, c • R is given by 

gc(x,u)' .= X -c- i l °gu ,  u e [ e - ' ,  e ' ) ,  (5.9) 

with recurrent continuation on u • R+, then Kc(x, u) as a function of the second variable belongs 
to Yo for a11 x • R+, and 

oo 

Kc(x ,u )=  E e-Cklinc(e-kx) u-ik (5.10) 
k ~ - o o  

holds true for all u • [e -~, e~). In particular, the Mellin-Fourier series of (5.10) is uniformly 
bounded, i.e., for some constant C > O, 

n 

E e-Cklin¢( e-kx) u-ik - < l + C l l ° g x l '  u e l ~ + ,  n e N .  (5.11) 
k = - - n  

Here, the line-function is defined by 

X -  c x~ri _ X-Tri  x - C  f ' r  

line(x) . -  2r  log x - 27r---i J_~ z -it dt. (5.12) 

PROOF. In order to apply Corollary 3.5, we note that  Kc(x, u) is absolutely continuous for all 
x • R+, and also OoKc(x, .) = -i(logx)K~(x, .) belongs to Y0 for all x • R+. The finite Mellin 
transform of Kc(x, .) turns out to be 

A/[° [Kc(x,-)] (k) = fe-~ x-C-i log Uu-ik dUu = x-c ~r (xe_k)-it  dt = 27re -ck lin~ (e-kx) . 

Thus, the assertion follows from this corollary, since [K~(x, u)l _< 1 for all x, u • R+. | 

As an immediate consequence, we have the following corollary. 

COROLLARY 5.3. The kernel Kc(x, u) of (5.8) for e • R satisfies the relation 

Ko(x, u) = u~Kc(u, x), (5.13) 

and therefore, 

o o  

K°(x ' u )=uC E e-~klinc(e-ku) x-ik'  x • [ e - ~ , e r ) ,  u • lR+.  (5.14) 
k = - o o  

Thus, Ko(x, u) as a function of x has been expanded into a Mellin-Fourier series, the coefficients 
of which, namely 21ruCe -ck linc(e-ku), involve the line-function. 

Let us now return to equation (5.7). In the particular case c = 0 and u = uk = e k, k E Z, the 
system 

 k(x) :=  x - i k ,  x • R + ,  (5 .15)  

forms a sequence of eigensolutions of 

iOoy( ) = y (e ") - (e  = O. (5.16) 

Now, {Pk}keZ is a complete system of orthogonal functions with respect to the weighted 
2 - - I t  7r L1/x(e ,e ) scalar-product (f,g)A4 = f~e" f(x)g(x)(d~). Here, the orthogonality is given 
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by (1.6) and the  completeness can be reduced from Theorem 3.2. The  informat ion available 

concerning (5.16) is tha t  the  eigenfunctions in (5.15) allow us to  apply  Kramer ' s  L e m m a  of signal 

analysis (see, e.g., [15] and the  l i terature cited there), which states in a slightly modified form 
the  following lemma. 

LEMMA 5.4. Consider a weight function w > 0 on an interval I C R, and  a kernel K : I x R -* C 

with K(. ,  u) • L2 (I), 1 each u • R, and  let {Uk}k~z C R+ be a countable set of reals such tha t  

{K(x,  uk) }kez forms a complete orthogonal set in L2 (I). If  

f (u)  = / i  K(x,  u)g(x)w(x) dx, u • R+, 

for some g • L~(I), then f can be reconstructed from its sampled values f(uk) by the series 
oo 

f(u) = ~ f(uk)Sk(u), u • ~,+, (5.17) 
k-oo 

where 
f l  K(x,  u)K(x, Uk)W(X) dx 

Sk (u) = f l  IK( x' Uk)]2W(X) dx 

Series (5.17) is absolutely convergent for each u E R+ and uniformly so if f l  IK(x,u)[2w(x) dx is 
bounded. 

Thus,  each function f which is representable as a finite (Mellin) integral t ransform 
e ~r 

f(u) f~ g(x)go(x,u) dx = - - ,  u • • ,  ( 5 . 1 8 )  
--w X 

for some g • L2/x(e ~, e -q) with Ko(x, u) = x -il°gu can be reconstructed from its sample )oints 

f(uk) = f (e  k) in terms of the series 
oo 

f(u) = E f(ek)Sk(u)' U • R+,  (5.19) 
k - o o  

the  series being uniformly convergent on l~+. 

Recalling Corol lary 5.3 and the definition of the finite Mellin t ransform, the kernel of  this 
sampling series turns  out  to be 

Sk(u) = f:~" go(x ,u)go(x ,  u k ) ~  1 ^ 
f:e- iKo(x, uk)p_~ = ~-~r[go(',u)]~o(k) = lino(e-ku) = uCe-Cklinc(e-ku). 

After  rescaling f(u) -~ uCf(u), u ~ u 1/T, and using Corol lary 5.3 again, we obta in  the  following 

version of Kramer ' s  l emma in the frame of  the Mellin t ransform. I t  is the  basic new result, at 
least as to  the  approach presented, of this paper.  

THEOREM 5.5. Let T > O, c > O, and f be given by 
e wT 

f 

f(u) J g(x)gc(x,u)x c - l ~ ,  u • R, (5.20) 
Je 

2 e - l r T ) .  for some g • Lx~_l (e 7rT, Then, there holds 
oo 

k~-oo 

the series being uniformly convergent on R+. 

1This lemma operates in L2-space so that the completeness of {K(x, uk)}keZ also applies to this space. Now, 
Theorem 3.2, in fact the Meilin theory presented here as well as in [1], has so far just been presented in an 
Ll-setting. Needed would be a Fej~r-type theorem in the norm [[f[ ~.~ := Je-~ [f(u)[ 2uc-1 du with c -- 0 (which 
follows most easily from the classical Fej4r theorem in L2(-lr, 7r)-space supplied with a substitution--but this 
would be contrary to our aims). Back to the completeness, if ¢(x) would be orthogonal to the system {x-lk}keT. , 
then a°¢(x) ---- 0 so that ¢(x) ---- lim~--,oo an°¢(x) = 0. See [16] in the matter. 
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This result is referred as to as the exponential sampling theorem in optical physics and en- 
gineering circles due to the fact one samples at the points uk = e k, k E Z (which lie on both 
sides of the point u = 1 and accumulate at u = 0). The result is of importance especially in 
those applications where independent pieces of information accumulate near time u = 0, see, e.g., 

[17-19]. 
In comparison the classical Shannon Theorem (in the form deducible from Kramer's Lemma) 

reads that if F is given by 
~rT p 

/ ¢~*g(x) dx, u E R, F(u) 
J -  rT 

for  s o m e  g E L2(-~rT, ~rT), (i.e.,  w -~ 1), then 

F(u)=  E F s i n c ( T u - k ) ,  u E R + ,  
k = - o o  

where sine u = (sin 7ru)/Tru. 
As to the Shannon sampling theorem and associated material see [20-22] as well as [23,24]. 

For Mellin-type differential equations see [25]. 
For a different proof of the exponential sampling theorem that is independent of Kramer's 

Lemma and depends on the Mellin-Poisson sum formula of Section 4 together with results on 
Mellin-bandlimited functions, the reader is referred to [26]. 

Table 1. Mellin transform versus Fourier transform. 

Continuous Mellin Transform (s e C) 

J~[f l (s)  :---- - -  ~oe f(z)a: s-1 dx 

Xc :---- { f :  R+ --* C; f (x)x  c-1 E L 1 (R+)} 

M :  x~  --, c ( { ~ }  x JR) 
s = c + i t  

Mellin Translation Operator 

(T~f) (X) := hCf(hx), x ,h e R+ 

l[*UI]x~ = llfllx~, I e x c  

Mellin Derivative and Primitive 

ecy (x ) :=x l ' ( x )  + Of(X) 

f0 xf (  du J~f(x) = X -c u)u c -  
U 

Mellin Convolution 

( f  *g)(x) = fo°°f (X)  g(u) duu 

.A~[f * g](s) = M[f](s)M[g](s) 

f, g E Xc 

Inverse Mellin Transform (x E R+) 

1_~ [c+ioeg(s)x_ s ds 
McX[gl(x) := 27tiJc-loe 

g e Ll({c} x ia)  

Mellin Inversion Theorem (x e R+) 

/ (x )  = ~ ; l [ M [ f l l ( x )  
1 oe 

= - f M[ f ] (e+i t ) x -~ - i td t  
21r J_oe 
f • Xc, .A4[f] e LI({e} x iR) 

Continuous Fourier Transform (v E R) 

~'[F](v) := ~ foe F(u) e-ivu du 
x/2~r J -  oe 

F : R ~ C ,  F E L  I(R) 

~ :  L ' (R) - -*C(R)  

Classical Translation Operator 

(ThF)(u):=F(u+h),  u, h E R  

IIThFIIL~(~) = IIFIIL~m), F e D ( R )  

Classical Derivative and Primitive 

J F(u) := fo"F(y) dy 

Fourier Convolution 
1 f¢oe 

(F * G)(u) = - - ~  ]_ooF(u - y)G(y) dy 

~'[F * Cl(v) = .T[F](v).T'[GI(v) 

F, G E L 1 (R) 

Inverse Fourier Transform (u E R) 
1 f~oe 

..T'-t [ C l ( u ) : =  _ _ - ~ . ] - o e G ( v ) e  iuv  dv  

C • L I (R) 

Fourier Inversion Theorem (u E R) 

F(u) = ~--1 [5t-[Fl] (u) 

_ ~ foo .r[Fl(v) e~"" dv 
~/ 21r J - oe 

F, Y[F l e 51 (R) 
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6. C O N N E C T I O N S  B E T W E E N  T H E  T W O  M E L L I N  A N D  
F O U R I E R  T R A N S F O R M  T H E O R I E S  

T h e  pu rpose  of  th is  sect ion is to  consider  the  connect ions  be tween the  (cont inuous)  Mell in  

and  Four ie r  t r ans fo rm theo rem as well as be tween the  finite Mell in and  finite Four ie r  t r ans fo rm 

theor ies  (see Table  1). 

Let  us first compa re  the  two classical  (cont inuous)  t r ans fo rm theor ies  in the  form of  a t ab l e  

p u t t i n g  the  cor respond ing  resul ts  side by  side. T h e  ma te r i a l  concerning  the  Mell in t r ans fo rm is 

t aken  f rom [1]. L e m m a  6.1 presents  the  d i rec t  connect ions  be tween  the  Mell in t r ans fo rm on R +  

and  Four ie r  t r ans fo rm on R (see Table  2). 

Table 2. Finite Mellin transform versus finite Fourier transform. 

Finite Mellin Transform (k • Z) 

~ [ l ] ( k )  - 12~o(k) :=  _ I ( ~ ) x  ~+~k-t  dz  

S c-recurrent: I(x) = e2"Cf(x2'%), x • R+ 

S: [e-",e"] -~C 

{ ;; / I • Y ~ : =  /c-recurrent: _,lS(u)lu~-ldu<oc 

Mellin Translation Operator 

(T~f)(x):=hCf(hx), x , h • R +  

Ilff, f l lxc = IlSllx~, f • Yc 

Finite Mellin Convolution 

x 

je--*r 

z 4 c [ I  • gl(k) = ~ q I l ( a ) M ~ [ a l ( k )  

f ,  g E  Yc 

Mellin-Fourier Series (x • R+) 
1 oo 

f(x) ~ "2-- ~ JMa[fl(k) x-c-ik 
zTr k...~--c¢ 

f • Y c  

Mellin-Poisson Sum Formula 

fC(x) := ~ f(e2~kx)e 27rkc 

f e Xc  : f c  e Yc 

M c [ / ~ l ( k )  = ~ [ / ] ( e  + i k ) ,  k • Z 
oo 

Finite Fourier Transform (k E Z) 

1 f '  
5r2.[F](k) := ~ J_ F(u)e -ik= du 

F 27r-periodic: F(x + 2r) = F(x), 

F :  [-~,~] ~ C  

F E LI~ 

x E R  

Classical Translation Operator 

(ThF)(u):=F(u+h), u, h E R  

IlThFllL~,~ = IIFIIL~ , F E L21. 

Finite Fourier Convolution 

( F *  G)(u) = ~ F ( u  - y)G(y)  dy 
lr 

5t-2~[F * V] (k )  = :F2~r[F](k)~2~r[G](k) 

F, G e L21 

Fourier Series (u E R) 

F(u) ~ ~" ~-2.[F](k)e ~k~ 
k = - o o  

F E L21~ 

Poisson Sum Formula 

F*(u) = ~ ~ F(u + 2krr) 
k -~ -- oo 

F E L 1 ( R ) :  F *  E L17r 

~-2,[F*l(k) = ~'[Fl(k), k E Z 

F*(u) = ~ St'[F](k)e ik~ 
k = - o o  

LEMMA 6.1.  / f  f : R+  --* C and F : N --~ C for c E ]R a re  r e l a t ed  by 

F(u)  = f(e~)e cu, u E N, f ( x )  = F( logx )x  -c, x E R + ,  

respectively, then  f E Xc iff ~r[F](v) exists for all v E R. In this case, one has  

1 A 
9r[F](v)  = - - - ~  f j~(c  - iv), 

x/'zzr 

f ~  (c + it) = v r ~ [ F l ( - t ) ,  

v E R ,  

t E R .  
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As to  the  p roof  of  this lemma, the  subst i tu t ions  u = e x in the  corresponding definitions yield 

the  desired result. 

LEMMA 6.2. H g  : {C} X iR ~ C and  G : R ~ C for c • R are related by 

g(c  + it)  = o ( t ) , ,  t • R, 

then g 6 Ll({c}  x JR) i f f G  • LI(R) ,  and 

~--1 [G](u) = v ~ . A / [ c  1 [g] ( e -u )  , 

l[g](x) = 1 ~__I[G] ( _ l O g x ) ,  M~- 
vzTr 

u E R ,  

x • R + .  

L e m m a  6.2 relates the  inverse Fourier t ransform ~ ' - l [G] (u )  to the inverse Mellin t r ans fo rm 

M-[~[g](x). The  second table compares  the  theory  of the  finite Mellin t ransform (or Mellin- 

Fourier coefficients) for c-recurrent functions, considered in this paper,  with tha t  of  the  classical 

finite Fourier  t ransform (or Fourier coefficients) for 27r-periodic functions; Mellin-Fourier series 

and classical Fourier series are also put  side by side. The  Poisson sum formulae connect  the  

cont inuous wi th  the  finite t ransform in bo th  cases. 

LEMMA 6.3. Let  f : R+  --* C and F : ~, --* C for c • ~, be related by 

F(u) u • R, / (x)  = F(log )z -c, x • R+, 

respectively, then f • Yc iff F • L ~ .  In this case, one has for k • Z 

1 f ^ c  

Furthermore, the series 

k=-oo k=-oo 

forms for zk :=x -c- ik  the Mellin series associated with f ( x ) ,  x • R+, and for zk : = e  -ik~ the 

Fourier series of F(u) ,  u • R. 

L e m m a  6.3 is devoted to  the  direct connections between the finite Mellin t ransform and the  

Fourier  coefficients, as well as between the  corresponding series. 
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