# General Electric Company Schenectady, N.Y. 

## SUPPLY DEPARTMENT

## RAILWAY SIGNAL VOLT-AMMETER-TYPE'S

IN testing direct current railway signal apparatus and doing similar work on telephone and telegraph circuits, an instrument of the moving coil, permanent magnet type is necessary if reliable results
the value generolly iequired for storage battery work. Instruments of other types may introduce resistance and inductance into the circuit, and the indications are often misleading.


TYPE S VOLT-AMMETER
are to be obtained. Such an instrument shows polarity, has no hysteresis errors and very low internal losses. The permanent magnet instrument also measures the average value of a pulsating direct current, which is

## CONSTRUCTION

The General Electric Railway Signal VoltAmmeters are of the permanent magnet, D'Arsonval type with terminals so arranged that either current or potential can be

## 4714-2 Railway Signal Volt-Ammeter-Type S

measured. The standard instruments are arranged for four capacities or combinations so that two voltage ranges and two current ranges, or three *\$urgert ranges and one voltage range can' $1 \mathrm{se}^{*}$ obtained.
practically free from errors due to variations in temperature.

These Railway Signal Volt-Ammeters are small, compact and very substantial, and adequately fulfill the requirements of a small


TYPE S VOLT-AMMETER, COVER AND TERMINAL BOARD REMOVED

The internal arrangement of these instruments is shown in the above illustration.

The principle of operation is similar to that of the highest grade, direct current instruments, the measuring element consisting of a wire wound coil mounted on an aluminum frame which moves through the field of a permanent magnet. The polepieces of the magnet, and the inner core are carefully machined, and all parts are finished and mounted in a substantial manner. The shunts for the ammeter connections are of manganin, and the resistance wire for the voltmeter circuits has a very low temperature co-efficient so that readings are
combination instrument for the general testing of railway signals and other apparatus operated with batteries or by low voltage direct current circuits.

## Scale and Needle

The scale is approximately $2 \frac{1}{4} \mathrm{in}$. long and is doubly marked so that the different capacities can be read directly or by using even multipliers. To eliminate errors due to parallax, the instruments are equipped with flat pointers viewed on edge and a mirror is placed under the scale.

## Damping

The fluctuations of the pointer are damped by Foucault currents set up in the aluminum

Railway Signal Volt-Ammeter-TypeS 4714-3
ring on which the armature winding is mounted.

## Magnets

The magnets used in these are made from the best quality of magnet steel and are subjected to aging processes which insure their permanency

## Capacities

For convenience, the instruments are listed in three combinations which have been laid out to meet general testing conditions.

## Terminals

The terminals are arranged with one common post marked ( 0 ), and four others. each marked for a particular capacity. To use the instrument as a voltmeter, the ammeter connection is opened by backing out a milled head thumb screw. When used as an ammeter, this thumb screw is turned firmly down to its shoulder.

## Dimensions

These instruments are contained in polished mahogany cases, the outside dimensions of which are $67 \times 3\} \times 3 \mathrm{in}$.

|  | Cat. No. | Capacity | List Price |
| :---: | :---: | :---: | :---: |
| Combination No. 1 | 100518 | $\overline{5}$ volts, 1 ampere <br> 25 volts, 10 ampere | \$55.00 |
| Combination No. 2 | 100519 | 25 volts, 1.5 amperes <br> 150 Mil-amperes, 15 amperes | 55.00 |
| Combination No. 3 | 100520 | 25 volts, 150 mil-amperes 25 mil-ampercs, 7.5 amperes | 55.00 |



SCALES OF RAILWAY SIGNAL VOLT-AMMETERS
(Actual Size)

## GENERAL ELECTRIC COMPANY

PRINCIPAL OFFICES, SCHENECTADY, N. Y.
SALES OFFICES:
(Address nearest office.)
BOSTON, MASS., 84 State Street.
NEW YORK, N. Y., 30 Church Street.
Syracuse, N. Y., Post-Standard Building.
Buffalo, N. Y., Ellicott Square Building.
New Haven, Conn., Malley Building.
PHILADELPHIA, PA., Witherspoon Bldg.
Baltimore, Md., Continental Trust Building.
Charlotte, N. C., Trust Building.
Charleston, W. Va., Charleston National Bank Bldg.
Pittsburg, Pa., Park Building.
Richmond, Va., 712 Mutual Building.
ATLANTA, GA., Empire Building.
Macon, Ga., Grand Building.
New Orleans, La., Maison-Blanche Bldg.
CINCINNATI, OHIO, Provident Bank Building.
Columbus, Omio, Columbus Savings \& Trust Bldg.
Cleveland, Ohio, Citizens Building.
Nashville, Tenn., Stahlman Building.
Indianapolis, Ind., Traction Terminal Building.
CHICAGO, ILL., Monadnock Building.
Detroit, Mich., Majestic Bldg. (Office of Soliciting Agt.)
St. Louis, Mo., Wainwright Building.
Kansas City, Mo., Dwight Building.
Butte, Montana, Phoenix Building.
Minneapolis, Minn., 410-412 Third Avenue, North
DENVER, COLO., Kittredge Building.
Salt Lake City, Utah, Newhouse Building.
SAN FRANCISCO, CAL., Union Trust Building.
Los Angeles, Delta Building.
Portland, Ore., Worcester Building.
Seattle, Wash., Colman Building.
Spokane, Wash., Paulsen Building.
For all Texas and Oklahoma Business.
General Electric Company of Texas,
Dallas, Texas, Praetorian Bldg.
El Paso. Tex., Chamber of Commerce Bldg
Ohiahoma City, Okal., Insurance Bldg.
FOREIGN:
Foreign Department,
Schenectady, N. Y., and 30 Church St., New York, N. Y.
London Office, 83 Cannon St., London, E.C., England.
For all Canadian Business,
Canadian General Electric Company, Ltd.,

# General Flectric Company <br> Schenectady, N.Y. 

SUPPLY DEPARTMENT
fanuary, igIo

## THOMSON WATT-HOUR METERS WITH PREPAYMENT ATTACHMENTS FOR DIRECT AND ALTERNATING CURRENT <br> TYPES CP, CP3, IP AND IP3

Prepayment meters are recognized as invaluable for certain installations where it is


THOMSON WATT-HOUR METER WITH COMBINED PREPAYMENT DEVICE-TYPE CP3 FOR DIRECT CURRENT
desirable to obtain payment for electric energy in advance. Although they do not at present have the same popularity as the gas meter of this type, this is probably due to the fact that comparatively few of these devices which have previously been placed on the market have proven reliable and is not on account of any lack of demand for the right article. There is a large field now open which can be profitably covered by a good prepayment wattmeter.

The "pay as you go" principle is very popular with many people by whom a monthly bill is considered bothersome and possibly a hardship. In addition to this there is the small consumer whose business is not solicited because the cost involved in reading his meter, keeping his account, sending out bills, etc., when added to that of the original investment leaves very little profit. Much of this expense may be dispensed with and the business made profitable by installing prepayment meters.

Such meters are inherently more complicated than the standard watt-hour meter, on account of the extra parts involved and


THOMSON HIGH TORQUE WAIT-HOUR METER WITH COMBINED PREPAYMENT DEVICE-TYPE IP3 FOR ALTERNATING CURRENT
thus demand more attention to keep them in perfect operating condition.

The problem has been to produce a satisfactory prepayment meter having a minimum

[^0]
## 4716-2 Thomson Watt-Hour Meters with Prepayment Attachments

number of complicated parts, and sufficiently strong to withstand the rough treatment incident to transportation and commercial use.

The new prepayment attachment, for use with Thomson Watt-Hour Meters, is a redesign of the "Wood" attachment formerly furnished. It is supplied either in combination with the Type I or Type C 6 wattmeters
arrow points upward. A quarter dollar is then inserted in the slot and the knob turned to the right, the coin serving as a key which operates the mechanism within the device, turning the registering wheel and placing the coin to the credit of the customer. If the circuit is open when the coin is deposited the same motion of the knob which moves the


THOMSON WATT-HOUR METER WITH SEPARATE
PREPAYMENT DEVICE-TYPE CP
FOR DIRECT CURRENT
or as a separate device. The principle of operation is the same in each case, but the connection between meter and attachment is mechanical in the former, and electrical in the latter. The attachment consists of four principal parts, the escapement train, coin device, switch, and rate device.

## Operation

When it is desired to make an advance payment the winding knob is turned so that the
registering mechanism closes the circuit switch contained within the case of the attachment.
The dial of the combined prepayment meter contains, in addition to the standard marking, a scale marked in plain figures over which a pointer passes indicating the number of coins remaining to the credit of the depositor. When the meter has a separate prepayment attachment, the dial showing the number of coins standing to the customer's credit is placed on the attachment.

## Thomson Watt-Hour Meters with Prepayment Attachments 4716-3

When the first coin is deposited and the knob turned closing the main switch, the pointer rests opposite the first division on the scale. If a second coin is deposited before the current purchased with the first coin has been consumed, a second motion of the knob will bring the pointer opposite the second division on the scale. Twelve coins can thus be deposited consecutively, after which the
switch is opened so that no more current can be obtained until one or more coins have been deposited.

The indicating mechanism shows only the number of coins which stand to the credit of the customer, but, by consulting the meter dial, one can determine what fractional part of the prepayment next to be cancelled remains to the credit of the customer.


THOMSON HIGH TORQUE WATT-HOUR METER WITH SEPARATE PREPAYMENT DEVICE-TYPE IP FOR ALTERNATING CURRENT
slot is automatically closed and further prepayment cannot be made until the value of one or more coins has been consumed.

Whenever energy to the value of one coin has been delivered through the meter, the escapement is released mechanically in the combined device and electrically in the separate device, turning the pointer back one division. This process continues until all the energy for which payment has been made has been delivered. Thus the depositor can ascertain at any time how much energy can be obtained without further payment. When all energy has been delivered the circuit

## Actuating Force

The actuating force which operates the device is a large flat coil spring enclosed in a barrel or drum to which its outside end is attached. The operating knob winds this main spring by turning the drum. The spring has many turns and as the operation of the device never equals one whole turn, the spring always exerts a practically constant force.

## Rate Device

This consists of a small train of gears secured to the front of the frame directly back of the register. The gear ratio of the rate

## 4716-4 Thomson Watt-Hour Meters with Prepayment Attachments

device varies, depending upon the price charged for the service to be metered. Each device is marked with the price per kw,-hour for which it should be used. It will be noted that this device is a separate member secured independently to the meter frame. It can thus be easily removed and replaced in case a change of rate is desired.

## Switch

The switch is of the double-pole, doublebreak type with leaf contacts, the construction being similar to that used in heavy current circuit breakers, The toggle joint used to close the switch arms against the terminal blocks makes it impossible for the switch to open through accidental jar and also prevents any back pressure from being transmitted to the escapement train in such a way as to retard its action. The switch is liberally rated and will without injury to itself open any circuit carrying current up to the maximum overload allowable for the largest meter with which the device can be used.

## Unit of Prepayment and Coin Receptacle

The standard prepayment device is designed for use with quarter dollars. The coin receptacles are placed at the back of the meters so that the covers may be removed without interfering with the receptacle in any way. This feature possesses the advantage of permitting the testing of the meter without affording access to the coin box. It also prevents the collector, who is usually unfamiliar with the electrical features of the meter, from inadvertently injuring its adjust-


INTERIOR OF THOMSON WATT-HOUR METER WITH COMBINED PREPAYMENT DEVICE-TYPE IP3
ment. The coins fall into a drawer which is removable from the bottom of the case and which may be secured by a padlock. These locks are not furnished with the meter, it being thought best to permit the customer to use the lock which he considers most reliable for this purpose. The slot in which the coin is inserted is situated at the top of the meter case near the back.

## Rates of Charge

Standard rates of charge are $8,10,12$, $121 / 2,15,18$ and 20 cents per kilowatt hour, The meter can be furnished, at a slight addition in price, adapted for other rates ranging from 5 cents to 20 cents per kilowatt hour in steps of $1 / 2$ cent. The rate must always be specified on the order or it will be held pending this information. The rate of the combined or separate prepayment devices may be easily changed by the customer if he so desires. In the case of the combined device a different "rate device" is substituted for the one already installed in the meter; while in the case of the separate device a rate and contact making device, also made up as a unit, is substituted. - These devices can be furnished as supply parts adapting the meters for any of the above standard rates.

## Beating

Every precaution has been taken to guard against beating. A coin or washer larger than the coin for which the device is designed cannot be introduced into the receiving slot and a smaller one will not operate the device.

## Thomson Watt-Hour Meters with Prepayment Attachnents 4710-5

The knob, once started with a coin locked in, cannot be reversed, but must be given a halfturn to release the coin, which falls through a tube to the money box below. The coin is locked in as soon as the knob is moved and cannot be abstracted except by unlocking the money box. It is only by turning the knob that the consumer can obtain credit for his
payment. A coin having a thread or wire attached will operate the mechanism, but the motion of the actuating handle prevents the withdrawal of the coin, which generally passes into the receiving box. Should bits of string prevent the coin from passing to the drawer the intended fraud will be readily detected.

THOMSON WATT-HOUR METERS FOR DIRECT CURRENT WITH FORM 4 SEPARATE . PREPAYMENT DEVICE-TYPE CP

| 100-120 volts, 2 wire |  | 200-240 volts, 3 wire |  | 200-240 volts, 2 wire |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cat. No. | Amps. | Cat. No. | Amps. | Cat. No. | Amps. |
| 103224 | 5 | 103228 | 5 | 103232 | 5 |
| 103225 | 10 | 103229 | 10 | 103233 | 10 |
| 103226 | 15 | 103230 | 15 | 103234 | 15 |
| 103227 | 25 | 103231 | 25 | 103235 | 25 |

WITH COMBINED PREPAYMENT DEVICE-TYPE CP3

| 100-120 volts, 2 wire |  | 200-240 volts, 3 wire |  | 200-240 volts, 2 wire |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cat. No. | Amps. | Cat. No. | Amps. | Cat. No. | Amps. |
| 103236 | 5 | 103240 | 5 | 103244 | 5 |
| 103237 | 10 | 103241 | 10 | 103245 | 10 |
| 103238 | 15 | 103242 | 15 | 103246 | 15 |
| 103239 | 25 | 103243 | 25 | 103247 | 25 |

THOMSON HIGH TORQUE WATT-HOUR METERS FOR ALTERNATING CURRENT WITH FORM 4 SEPARATE PREPAYMENT DEVICE-TYPE IP

| 100-120 volts, 2 wire |  | 200-240 volts, 3 wire |  | 200-240 volts, 2 wire |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cat. No. | Amps. | Cat. No. | Amps. | Cat. No. | Amps. |
| 103511 | 3 | 103512 | 3 | 103513 | 3 |
| 103248 | 5 | 103252 | 5 | 103256 | 5 |
| 103249 | 10 | 103253 | 10 | 103257 | 10 |
| 103250 | 15 | 103254 | 15 | 103258 | 15 |
| 103251 | 25 | 103255 | 25 | 103259 | 25 |

WITH COMBINED PREPAYMENT DEVICE-TYPE IP3

| $100-120$ volts, 2 wire |  |
| :---: | :---: |
| Cat. No. | Amps. |
| 103514 | 3 |
| 103260 | 5 |
| 103261 | 10 |
| 103262 | 15 |
| 103263 | 25 |


| $200-240$ volts, 3 wire |  |
| :--- | ---: |
| Cat. No. |  |
|  | Amps. |
| 103515 |  |
| 103264 | 3 |
| 103265 | 10 |
| 103266 | 15 |
| 103267 | 25 |


| $200-240$ volts, 2 wire |  |
| :--- | ---: |
| Cat. No. | Amps. |
| 103516 | 3 |
| 103268 | 5 |
| 103269 | 10 |
| 103270 | 15 |
| 103271 | 25 |

4716-6 Thomson Wati-Hour Meters with Prepayment Attachments
DIMENSIONS OF THOMSON WATT-HOUR METERS WITH COMBINED PREPAYMENT ATTACH-MENTS-TYPES CP3 AND IP3 AND FORM 4 SEPARATE ATTACHMENT

100-120 AND 200-240 VOLTS TWO-WIRE AND 200-240 VOLTS THREE-WIRE


5 TO 25 AMPERES-TYPE CP3


3 TO 25 AMPERES-TYPE IP3


FORM 4 ATTACHMENT FOR USE WITH ALL TYPES CP AND IP PREPAYMENT METERS

Thomson Watt-Hour Meters with Prepayment Attachments 4716-7 CONNECTIONS OF THOMSON WATT-HOUR METERS WITH SEPARATE FORM 4 PREPAYMENT ATTACHMENT-TYPES CP AND IP
100-120 AND 200-240 VOLTS TWO-WIRE AND 200-240 VOLTS THREE-WIRE


## GENERAL ELECTRIC COMPANY

PRINCIPAL OFFICES, SCHENECTADY, N. Y.
SALES OFFICES:
(Address nearest office.)
BOSTON, MASS., 84 State Street.
NEW YORK, N. Y., 30 Church Street.
Syracuse, N. Y., Post-Standard Building.
Burfalo, N. Y.. Ellicott Square Building.
New Haven, Conn., Malley Building.
PHILADELPHIA, PA., Witherspoon Bldg.
Baltimore, Md., Continental Trust Building. Charlotte, N. C., Trust Building.
Charleston, W. Va., Charleston National Bank Bldg.
Pittsburg, Pa., Park Building.
Richmond, Va., 712 Mutual Building.
ATLANTA, GA., Empire Building.
Macon, Ga., Grand Building.
New Orleans, La., Maison-Blanche Bldg.
CINCINNATI, OHIO, Provident Bank Building.
Columbus, Ohio, Columbus Savings \& Trust Bldg.
Cleveland, Ohio, Citizens Building.
Nashville, Tenn., Stahlman Building.
Indianapolis, Ind., Traction Terminal Building. CHICAGO, ILL., Monadnock Building.
Detroit, Mich, Majestic Bldg. (Office of Soliciting Agt.)
St. Louis, Mo., Vainwright Building.
Kansas Ciry, Mo., Dwight Building.
Butte, Montana, Phoenix Building.
Minneapolis, Minn., 410-412 Third Avenue, North.
DENVER, COLO., Kittredge Building.
Salt Lake City, Utaif, Newhouse Building.
SAN FRANCISCO, CAL., Union Trust Building.
Los Angeles, Cal., Delta Building.
Portland, Ore., Worcester Building.
Seattle, Wash., Colman Building.
Sporane, Wash., Paulsen Building.
For all Texas and Orlahoma Business,
General Electric Company of Texas,
Dallas, Tex., Praetorian Bldg.
E1 Paso, Tex., Chamber of Commerce Bldg.
Oklahoma City, Okla., Insurance Bldg.
FOREIGN:

Foreign Department,
Schenectady, N. Y., and 30 Church St.,New York, N.Y. London Opfice, 83 Cannon St., London, E. C., England.

For all Canadian Business,
Canadian_General Electric Company, Ltd.,



# GENERAL ELECTRIC FAN MOTORS <br> (ND) 

SMALL POWER MOTORS


GENERAL ELECTRIC COMPANY<br>SUPPLY DEPARTMENT<br>SCHENECTADY, N. Y.

Copyright, 1910, by General Electric Company

## INTRODUCTION



OLLOWING its annual custom, the General Electric Company has prepared a catalogue of its Fan Motors for the season of 1910, and presents it with the hope that it will prove of service to the Company's patrons, present and prospective, and be the means of increasing the number of users of General Electric Fan Motors, and so add to the popularity of the motor.

General Electric Fan Motors for the coming season are, in appearance, substantially the same as those of last season, although various improvements have been made in the general design. The line of motors has been increased by the addition of S-inch motors and a six-blade 12 -inch motor, all of which will be found particularly well suited to residence and small office use. These 8 -inch motors are small and light, and consume very little energy, as will be seen by reference to the accompanying tables.

The manufacture of oscillating fan motors is confined to the larger sizes, namely, 12 - and 16 -inch fans.

The Ceneral Electric Company is prepared to furnish, in addition to its line of ceiling motors, column fan motors which, by the use of attractive standards, are adapted to floor or counter use.

General Electric Fan Motors are designed for all standard voltages and frequencies.

This catalogue illustrates also some of the sewing machine motors and small power motors adapted to domestic and business purposes.

Any desired information not contained in this catalogue will be gladly furnished on application to the nearest sales office of the Company.

These prices and data are published for the convenience of customers, and every effort is made to avoid error, but this Company does not guarantee their correctness, nor does it hold itself responsible for any errors or omissions in this publication. Both prices and data are subject to change without notice.

Fan Motors for Residences and Telephone Booths


A C. Desk Motor

D.C. Bracket Motor

D.C. Desk Motor

Eight-Inch, Four-Blade Fans


N RESPONSE to the demand for a fan for residence and small office use, the General Electric Company has developed a neat 8 -inch fan motor which can be finished to harmonize with the surroundings of the place in which it is to be used.

The frame and base are made of drawn metal, the weight being thereby reduced, and a smooth external surface obtained.

SPECIAL FINISHES. Motors are carried in stock finished in Black Oxide with Fan, Guards and Trimmings in Lacquered Brass. Oxidized Copper, Polished Copper, Polished Brass or Brushed Brass can be supplied at an additional cost.

SPEEDS. Desk, Bracket and Telephone Booth Fans are equipped with a Three-Speed Control Switch which provides a regulation sufficient for all requirements.

AD.JUSTMENT. The motor body is attached to the base by a hinge joint. A friction clamp with a wing nut allows a vertical adjustment of the fan for either desk or bracket use.

The Telephone Booth Motor is suspended from a suitable bracket by means of a spring suspension which prevents the slight vibration, incident to the operation of any motor, being transmitted to the wall of the booth, and also provides for a horizontal and vertical adjustment of the fan.

## OPERATING CHARACTERISTICS

Motors are carried in stock for alternating current circuits of from 25 to 60 cycles, at 110 volts or 220 volts, and for 40 eycles, 120 volts, operating over a range of voltage or frequency 5 per cent. cither above or helow normal ratings.

Direct Current Motors are for 110 and 220 volt circuits, operating over a range of voltage 5 per cent, either above or below normal.

Fan Motors for Residences and Telephone Booths


Telephone Booth Motor


Six-Blade, Twelve-Inch Alternating
Current Residence Motor

| сат vo |  |  |  | Watts at Fast Speed | Speed | $\begin{gathered} \text { Net } \\ \mathrm{Wt}, \mathrm{Lb} . \end{gathered}$ | Shipping <br> Wt. Lb. | List price |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Desk | Booth | Cycles | Volts |  |  |  |  | Desk | Booth |
| 76373 | 76374 | 25 | 110 | 20 | 1350 | $61 / 2$ | 131/2 | \$21.00 | \$24.00 |
| 75955 | 75952 | 40 | 120 | 33 | 1900 | $61 / 2$ | 131/2 | 20.50 | 23.50 |
| 75956 | 75953 | 60 | 110 | 25 | 1540 | $61 / 2$ | 131/2 | 20.00 | 23.00 |
| 75957 | 75954 | 60 | 220 | 30 | 1540 | $61 / 2$ | 131/2 | 22.00 | 25.00 |

Eight-Inch Direct Current Desk, Bracket and Telephone Booth Fan Motors

| cat. so. |  |  | Watts atFast Speed | Speed | $\begin{gathered} \text { Net } \\ \text { Wt. Lb. } \end{gathered}$ | Shipping <br> Wt. Lb. | t.1st price |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Desk | Booth | Volts |  |  |  |  | Desk | Booth |
| 75960 | 75958 | 110 | 18 | 1600 | 5 | 12 | \$18.00 | \$21.00 |
| 75961 | 75959 | 290 | 18 | 1600 | 5 | 12 | 20.00 | 28.00 |

FINISH. Black Oxide; blades, guards and trimmings finished in dipped and lacquered brass.
Twelve-Inch Alternating Current, Six-Blade Residence, Desk and Bracket Fan Motors Swivel and Trunnion Frame


FINISH. Frame and base of motor finished in black enamel; guard, blades and trimmings finished in dipped and lacquered brass.

These fans are designed for use in residences, hospitals and other places, where the humming sound produced by the blades of the four-blade fans operated at speeds necessary to produce a sufficient circulation of air, is considered objectionable.

Residence type fans are furnished in the 12 in . size only. With the exception of being wound for lower speeds and equipped with six blades, the motors are identical with the standard four-blade type. For further specifications sce page 8 .

# Alternating Current Twelve- and Sixteen-Inch Desk and Wall Bracket Fan Motors 

## SPECIFICATIONS

FINISII. Motors are carried in stock witl motor body and base finished in black japan; blades, guards and trimmings in dipped and lacquered brass. Special colored enanel or plated finishes can be furnished when necessary, at an additional cost. Prices will be quoted upon application.

SPEEDS. Motors are equipped with four-point regulating switeh which provides three running speeds.

The regulating coil is mounted on a switch base of a speeial material which is an excellent insulator, and not easily broken. The operating lever passes over a cam which lifts it from one contact to another, and insures a positive setting of the lever.

RANGE OF OPERATION. All motors are guaranteed to operate on the first and second speed points, $5 \%$ either above or below normal voltage when in any position, and will operate on low speed at normal voltage.

ADJUSTMENT. The yoke supporting the body is hinged to the base and a stop is provided to lock it in position. This enables the motor to be readily adjusted for either desk or bracket use without the addition of any parts.

## OSCILLATING FAN MOTORS

General Electric oscillating motors for 1910 are, in appearance, substantially the same as those of last season, although various improvements have been made in the general design.

MECHANISM. The mechanism is so applied that it does not interfere with the vertical adjustments, or the change from desk to bracket type, and vice versa. The connecting link can be attached to the gear at two points, thus providing for two angles of operation. A range of 90 degrees can be obtained, if desired. A knob on the gear spindle enables the oscillating mechanism to be instantly thrown in or out of action, while the motor is running.

Oscillating fan motors have, approximately, the same general characteristics as desk motors of similar rating. The additional power required to operate the oscillating device is but three to five watts, or approximately one-tenth of the power consumed by an ordinary $16 \mathrm{c} . \mathrm{p}$. lamp.

At full speed the motors will make approximately six complete oscillations per minute. This rate is considered the most efficient and best suited to general conditions and is uniform and positive throughout the entire range.

## Alternating Current Fan Motors



Alternating Current Desk Fan Motor

# Alternating Current Desk and Wall Bracket Swivel and Trunnion Frame Fan Motors 

TWELVE-INCH FANS


Desk Mator


Wall Bracket Motor

| Cat. No. | Cycles | Voltage | Watts at <br> Fast Speed |
| :---: | :---: | :---: | :---: |
| 34267 | 25 | 110 | 65 |
| 33594 | 40 | 120 | 80 |
| 34017 | 60 | 110 | 50 |
| 34018 | 60 | 220 | 50 |
| 34019 | 133 | 110 | 100 |

Fast
Speed
1300
1600
1500
1500
1800

| Net | WEIGHT | List <br> Shipping |
| :---: | :---: | :---: |
| $241 / 4$ | $421 / 4$ | $\$ 33.00$ |
| $241 / 4$ | $421 / 4$ | 31.00 |
| $241 / 4$ | $421 / 4$ | 30.00 |
| $241 / 4$ | $421 / 4$ | 32.00 |
| $241 / 4$ | $421 / 4$ | 30.00 |

FINISH. Frame and base of motor finished in black enamel: guard, blades and trimmings finished in dipped and lacquered brass.

Alternating Current Desk and Wall Bracket Swivel and Trunnion Frame Fan Motors

## SIXTEEN-INCH FANS



| Cat. No. | Cycles | Voltage | Watts at <br> Fast Speed | Fast <br> Speed | Net | Welght | Shipping |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | List |
| :---: |
| Price |

FINISH. Frame and base of motor finished in black enamel: guard. blades and trimmings finished in dipped and lacquered brass.

Alternating Current Oscillating Desk and Wall Bracket Swivel and Trunnion Frame Fan Motors

## TWELVE-INCH FANS



Wall Bracket Motor

Desk Motor

| Cat. No. | Cycles | Voltage | Watts |  | R.P.M | Net | WEIGHT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| 75433 | 25 | 110 | 70 | 1300 | $271 / 2$ | $451 / 2$ | $\$ 41.00$ |
| 75431 | 40 | 120 | 85 | 1600 | $271 / 2$ | $451 / 2$ | 39.00 |
| 75423 | 60 | 110 | 55 | 1500 | $271 / 2$ | $451 / 2$ | 38.00 |
| 75424 | 60 | 290 | 55 | 1500 | $271 / 2$ | $451 / 2$ | 40.00 |
| 75427 | 133 | 110 | 105 | 1750 | $271 / 2$ | $451 / 2$ | 38.00 |

FINISH. Frame and base of motor finished in black enamel; guard, blades and trimmings finished in dipped and lacquered brass.

# Alternating Current Oscillating Desk and Wall Bracket Swivel and Trunnion Frame Fan Motors 

## SIXTEEN-INCH FANS


-Wall Bracket Motor


Desk Motor

|  |  | FASt SPEed |  | Weight |  | List |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cat. No. | Cycles | Voltage | Watts | R.P.M. | Net | Shipping | Price |
| 75434 | 25 | 110 | 135 | 1300 | 29 | 47 | $\$ 47.00$ |
| 75432 | 40 | 120 | 150 | 1600 | 29 | 47 | 45.00 |
| 75425 | 60 | 110 | 90 | 1400 | 29 | 47 | 44.00 |
| 75426 | 60 | 220 | 90 | 1400 | 29 | 47 | 46.00 |
| 75429 | 133 | 110 | 160 | 1700 | 29 | 47 | 44.00 |

FINISH. Frame and base of motor finished in black enamel : guard, blade and trimmings finished in dipped and lacquered brass.

## Direct Current Twelve- and Sixteen-Inch Desk and Wall Bracket Fan Motors

## SPECIFICATIONS

FINISH. Motors are carried in stock with motor body and base finished in black enamel; blades, guards and trimmings in dipped and lacquered brass.

Special colored enamel or plated finishes can be furnished when necessary at an additional cost. Prices will be named upon request.

SPEEDS. Motors are equipped with four-point regulating switch which provides threc running speeds.

The resistance coil is mounted on a switch base of a special material which is an excellent insulator and not easily broken. The operating lever passes over a cam which lifts it from one contact to another and insures a positive setting of the lever.

RANGE OF OPERATION. All motors are guaranteed to operate on voltages $10 \%$ either above or below normal rating with the motor in any position.

ADJUSTMENT. The yoke supporting the body is hinged to the base and a stop is provided to lock it in position. This enables the motor to be readily adjusted for either desk or bracket use without the addition of any parts.

## OSCILLATING FAN MOTORS

General Electric oscillating motors for 1910 are, in appearance, substantially the same as those of last season, although various improvements have been made in the general design.

MECHANISM. The mechanism is so applied that it does not interfere with the vertical adjustment, or the change from desk to bracket type, and vice versa. The connecting link can be attached to the gear at two points, thus providing for two angles of operation, the maximum being 90 degrees. A knob on the gear spindle enables the oscillating mechanism to be instantly thrown in or out of action while the motor is running.

Oscillating fan motors have, approximately, the same general characteristics as desk motors of similar rating. The additional power required to operate the oscillating device is but three to five watts, or about one-tenth of the power consumed by an ordinary 16 c.p. lamp.

At full speed the motors will make approximately six complete oscillations per minute. This rate is considered to be the most efficient and best suited to general conditions. and is uniform and positive throughout the entire range.

Direct Current Fan Motors



Direct Current Desk Fan Motor

Direct Current Desk and Wall Bracket Swivel and Trunnion Frame Fan Motors


Wall Bracket Motor
Desk Motor
TWELVE-INCH FANS

| Cat. No. | Volts | Watts at <br> Fast Speed | Speeds | Net | Welght | Shipping |
| :---: | :---: | :---: | :---: | :---: | :---: | ---: |$\quad$| List |
| :---: |
| Price |

FINISH. Frame and base of motor finished in black enamel; guard, blades and trimmings finished in dipped and lacquered brass.


Desk Motor

Direct Current Oscillating Desk and Wall Bracket Swivel and Trunnion Frame Fan Motors


Wall Bracket Motor
Desk Motor
TWELVE-INCH FANS

| Cat. No. | Watts at |  |  | weight |  | List |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Volts | Fast Speed | Speeds | Net | Shipping |  |
| 60559 | 110 | 50 | 1550-1200-950 | 29 | 40 | \$34.00 |
| 60560 | 220 | 50 | 1550-1200-950 | 92 | 40 | 36.00 |
| SIXTEEN-INCH FANS |  |  |  |  |  |  |
| 60561 | 110 | 85 | 1500-1150-850 | 28 | 46 | \$40.00 |
| 60562 | 220 | 85 | 1500-1150-850 | 28 | 46 | 42.00 |

FINISH. Frame and base of motor finished in black japan; guard, blades and trimmings finished in dipped and lacquered brass.


Wall Bracket Motor

Desk Motor

# Alternating and Direct Current Ceiling and Column Fan Motors 

## SPECIFICATIONS

SUSPENSIONS. Unless otherwise specified on the order, Style " $B$ " adjustable suspension for $101 / 2$ to 12 foot ceilings will be furnished with all Ornamental Type Ceiling Fan Motors. (For other heights of ceilings see page 28.) Plain Type Ceiling Fan Motors are furnished with langer, hook and ceiling canopy, but without suspension rod. A table giving the necessary lengths of suspensions for various heights of ceilings will be found on page 28 .

Floor Column Fan Motors are furnished complete with floor plate and standard holding blades approximately $71 / 2 \mathrm{ft}$. from floor. Counter Column Fan Motors are furnished complete with counter flange and standard holding blades approximately 5 ft . from counter.

ELECTROLIER ATTACIIMENTS. All Ceiling and Column Fans are wired for two or four lights. Catalogue numbers do not include sockets or any other electrolier fittings, Short nipples permitting the attachment of sockets will be furnished with all ceiling and column fan motors at 50 cents per set of four, if desired.

RANGE OF VOLTAGE. Alternating Current, 105 volt, 50 and 60 cycle motors are designed to operate within a range of 100 to 110 volts.

115 voll, 50 and 60 cycle motors are designed to operate within a range of 112 to 120 volts.
220 volt, 50 and 60 cycle motors are designed to operate within a range of 210 to 230 volts.
110 volt, 25 cycle, and 120 rolt, 40 cycle motors are designed to operate satisfactorily on circuits having a variation of $5 \%$ above or below normal, but the sum of the two variations should not exceed $5 \%$.

Direct Current Motors can be operated satisfactorily on circuits the voltage variation of which is not more than $10 \%$ above or below the rated voltage.

RANGE OF FREQUENCIES. Motors can be furnished for use on 25, 40, 50 and 60 cycle circuits, but will not be furnished for higher frequencies. They can be operated satisfactorily on frequencies having a variation of $5 \%$ above or below normal, but the sum of the variations should not exceed $5 \%$.

SPEEDS. A.C. Plain Type Ceiling and Column Motors are equipped with a three-point regulating switch which provides two runuing speeds. Ornamental Type Ceiling and Column Motors are equipped with a four-point regulating switch which provides three running speeds.
D.C. Plain Type Ceiling and Column Motors are furnished for one speed only and are equipped with a starting and stopping switch. Ornamental Type Ceiling and Column Motors are furnished for single and three speeds. Single-Speed Motors are equipped with starting and stopping switch which provides one rumning speed only. Three-Speed Motors are equipped with four-point regulating switch which provides three running speeds.

BLADES. All motors are equipped with four blades.
Two-blade motors can be furnished whenever desired at same price as four-blade.

## Alternating Current, Four-Blade, Fifty-Two-Inch Sweep Ceiling Fan Motors

## Plain Type

| Cat, No. | Cycles | Volts |  | weicur |  | List |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Speeds | Net | Ship- | Price |
| 62364 | 25 | 110 | 175-225 | 55 | 100 | \$65.00 |
| 62365 | 40 | 120 | 175-225 | 55 | 100 | 63.00 |
| 62366 | 50 | 105 | 150-185 | 55 | 100 | 59.00 |
| 62367 | 50 | 115 | $150-185$ | 55 | 100 | 59.00 |
| 62368 | 50 | 220 | 150-185 | 55 | 100 | 61.00 |
| 46208 | 60 | 105 | 175-225 | 55 | 100 | 59.00 |
| 44986 | 60 | 115 | 175-295 | 55 | 100 | 59.00 |
| 44987 | 60 | 920 | 175-225 | 55 | 100 | 61.00 |

FINISH. Motor body finished in black japan; bottom cover, blade flanges, switch cover and switch support finished in streaked oxidized copper. Current consumed at fast speed, 140 watts. For further specifications, see page 18.


FINISH. Complete in streaked oxidized copper. Current consumed at last speed, 140 watts. For further specifications, see page 18 .

Alternating Current, Four-Blade, Fifty-Two-Inch Sweep Counter Column Fan Motors - Plain Type


FINISH. Motor body finished in flanges, switch cover, canopies

black japan; bottom cover, blade and standard finished in streaked oxidized copper Current consumed at fast speed. 140 watts. For further specifications, see page 18 .

Alternating Current, Four-Blade, Fifty-Two-Inch Sweep Counter Column Fan Motors-Ornamental Type



FINISH. Complete in streaked oxidized copper. Current consumed at fast speed, 140 watts. For further specifications, see page 18.

Alternating Current, Four-Blade, Two-Speed, Fifty-Two-Inch Sweep Floor Column Fan Motors - Plain Type


FINISH. Motor body and lower half of standard finished in black japan; bottom cover, blade flanges, switch cover, canopy and upper half of standard finished in streaked oxidized copper. Current consumed at fast speed, 140 watts. For further specifications see page 18 .

Alternating Current, Four-Blade, Three-Speed, Fifty-Two-Inch Sweep Floor Column Fan Motors - Ornamental Type


FINISH. Motor finished complete in streaked oxidized copper with upper half of standard covered with rope casing. Current consumed at fast speed, 140 watts. For further specifications, see page 18 .

Direct Current, Four-Blade, Single-Speed, Fifty-Eight-Inch Sweep
Ceiling Fan Motors - Plain Type

| Cat. No. | Volts | Speed | Net | Shipping | List Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 34007 | 110 | 200 | 48 | 80 | \$44.00 |
| 34008 | 220 | 200 | 48 | 80 | 48.00 |

FINISH. Motor body finished in black opies, switch cover and switch supper. Current consumed at fast tions, see page 18 .
japan; bottom cover, blade flanges, canport finished in streaked oxidized copspeed, 125 watts. For further specifica-

Direct Current, Four-Blade, Single- and Three-Speed, Fifty-Eight-Inch Sweep Ceiling Fan Motors - Ornamental Type


FINISII. Complete in oxidized copper. Current consumed at fast speed, 125 watts. For further specifications, see page 18.

Direct Current, Four-Blade, Single-Speed, Fifty-Eight-Inch Sweep Counter Column Fan Motors - Plain Type


Direct Current, Four-Blade, Single- and Three-Speed, Fifty-Eight-Inch
Sweep Counter Column Fan Motors-Ornamental Type


FINISH. Complete in streaked oxidized copper. Current consumed at fast speed, 125 watts. For further specifications, see page 18 .

Direct Current, Four-Blade, Single-Speed, Fifty-Eight-Inch Sweep Floor Column Fan Motors-Plain Type


FINISH. Motor body and lower half of standard finished in black japan; bottom cover, blade flanges, switch cover, canopy and upper half of standard finished in streaked oxidized copper. Current consumed at fast speed 125 watts. For further specifications, see page 18.

Direct Current, Four-Blade, Single- and Three-Speed, Fifty-Eight-Inch Sweep Floor Column Fan Motors - Ornamental Type


FINISH. Complete in streaked oxidized copper with upper half of standard covered with rope casing. Current consumed at fast speed, 125 watts. For further specifications, see page 18.

## Suspensions

Japanned Iron Pipe for Plain Type Ceiling Fan Motors

| Height of Ceiling | Length of Pipe Over all | Price | Height of Ceiling | Length of Pipe Over all | Price |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $81 / 2 \mathrm{ft}$. | $31 / 2 \mathrm{in}$. | \$0.15 | 131/2 ft. | 5 ft .3 in . | \$0.90 |
| 9 ft . | $91 / 2 \mathrm{in}$. | . 15 | 14 ft . | 5 ft .10 in . | . 90 |
| $31 / 2 \mathrm{ft}$. | $151 / 2 \mathrm{in}$. | . 30 | $141 / 2 \mathrm{ft}$. | 6 ft .3 in . | 1.05 |
| 10 ft . | $211 / 2 \mathrm{in}$. | . 30 | 15 ft . | 6 ft .10 in . | 1.05 |
| $101 / 2 \mathrm{ft}$. | 2 ft .3 in . | . 45 | $151 / 2 \mathrm{ft}$. | 7 ft .3 in . | 1.20 |
| 11 ft . | 2 ft .10 in . | . 45 | 16 ft . | 7 ft .10 in . | 1.20 |
| $111 / 2 \mathrm{ft}$. | 3 ft .3 in . | . 60 | $161 / 2 \mathrm{ft}$. | 8 ft .3 in . | 1.35 |
| 12 ft . | 3 ft .10 in . | . 60 | 17 ft . | 8 ft .10 in . | 1.35 |
| $121 / 2 \mathrm{ft}$. | 4 ft .3 in . | . 75 | $171 / 2 \mathrm{ft}$. | 9 ft .3 in. | 1.50 |
| 13 ft . | 4 ft .10 in | . 75 | 18 ft . | 9 ft .10 in . | 1.50 |

When lengths above specified are used the switch handle of the motor will be approximately $71 / 2 \mathrm{ft}$. from the floor.

## Adjustable Suspensions for Ornamental Type Ceiling Fan Motors

| Style | Length <br> of Hanger | IIeight <br> of Ceiling | When Furnished <br> With Motor | When Furnished <br> Without Motor |
| :---: | :---: | :---: | :---: | :---: |
| A | 19 to 28 in. | 10 to 11 ft. | $\ldots \ldots$ | $\$ 3.00$ |
| B | 24 to 40 in. | $101 / 2$ to 12 ft. | $\ldots \ldots$ | 3.00 |
| C | 42 to 76 in. | 12 to 15 ft. | $\$ 1.50$ | 4.50 |
| D | 60 to 112 in. | 15 to 18 ft. | 3.00 | 6.00 |

The suspensions specified above for various ceiling heights may be adjusted so that the switch handle of the motor will be approximately $71 / 2 \mathrm{ft}$. from floor.

Style B suspensions will be regularly furnished unless otherwise specified
For ceilings less than 10 ft . in height, a solid suspension with rope casing will be furnished.

## Solid Suspensions

Solid suspensions covered with rope casing may be furnished with Ornamental Type Ceiling Motors in place of adjustable suspensions, if desired. For ceilings higher than 12 ft . an additional charge of 75 cents per foot, or fraction thereof, of extra length required of solid suspension with casing will be made.

## Ventilating Fan Motors

Alternating Current Outfits


| Cat. No. | Diam. Fan. | Cycles | Volts |
| :---: | :---: | :---: | :---: |
| 35307 | $12^{\prime \prime}$ | 25 | 110 |
| 35308 | $12^{\prime \prime}$ | 40 | 120 |
| 34025 | $12^{\prime \prime}$ | 60 | 110 |
| 34026 | $12^{\prime \prime}$ | 60 | 220 |
| 58298 | $16^{\prime \prime}$ | 25 | 110 |
| 58299 | $16^{\prime \prime}$ | 40 | 120 |
| 34029 | $16^{\prime \prime}$ | 60 | 110 |
| 34030 | $16^{\prime \prime}$ | 60 | 220 |

APPROX. WT. LB.

| Net | Ship. | List Price |
| :--- | :---: | ---: |
| 23 | 50 | $\$ 30.00$ |
| 23 | 50 | 28.00 |
| 23 | 50 | 27.00 |
| 23 | 50 | 29.00 |
| $251 / 2$ | 55 | 36.00 |
| $251 / 2$ | 55 | 34.00 |
| $251 / 2$ | 55 | 33.00 |
| $251 / 2$ | 55 | 35.00 |

Note.-Prices include motor complete with six-blade fan and tripod together with a separate starting device with which is combined a three speed controller in the same box.


Direct Current Outfits

| Cat. No. | Diam. Fan | Volts |
| :---: | :---: | :---: |
| 34009 | $12^{\prime \prime}$ | 110 |
| 34010 | $12^{\prime \prime}$ | 220 |
| 34011 | $16^{\prime \prime}$ | 110 |
| 34012 | $16^{\prime \prime}$ | 220 |


| Approx. Wt. LB. |  |  |
| :---: | :---: | ---: |
| Net | Ship. | List Price |
| 91 | 60 | $\$ 23.00$ |
| 21 | 60 | 25.00 |
| 30 | 90 | 31.00 |
| 30 | 90 | 33.00 |



Speed Controllers for Direct Current Motors

| 34034 | $12^{\prime \prime}$ | 110 | $\$ 4.50$ |
| ---: | :--- | ---: | ---: |
| 34035 | $19^{\prime \prime}$ | 220 | 5.00 |
| 34036 | $16^{\prime \prime}$ | 110 | 5.00 |
| 34037 | $16^{\prime \prime}$ | 220 | 5.50 |

Supply Parts for Alternating and Direct Current Eight-Inch Desk and Wall Bracket Fan Motors


信

# Supply Parts for Alternating and Direct Current Eight-Inch Desk and Wall Bracket Fan Motors 

In ordering give name of part, reference letter and serial number of motor.

|  | List Price |  |  |  | List Price |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | Fan guard complete | . | \$1.25 | W | Bearing |  | \$1.00 |
| B | Guard clamping screw . | per 100 | . 50 | X | Screw for bearing and guard support | per 100 | . 50 |
| C | Guard support with screw | per 100 | 5.25 | Y | Oil wick collar |  | . 08 |
| D | Fan complete |  | . 75 | Z | Bearing nut | per 100 | 2.00 |
| E | Set screw for fan | per 100 | . 35 | Aa | Shaft bearing |  | . 10 |
| F | Basc with bushing. |  | 1.25 | Ba | Bearing spring | per 100 | 2.50 |
| G | Soft rubber bushing for base | per 100 | 2.50 | Ca | Fibre base plate |  | 10 |
| II | Frame-A.C. |  | 1.00 | Da | Screw for resistance unit | per 100 | . 75 |
| I | Cap with bearing complcte-A.C. |  | 2.10 | Ea | Resistance unit for D.C. motor |  | . 25 |
| J | Cap with bearing complete-D.C |  | 2.25 | Fa | Regulating switch complete with | csistance |  |
| K | Frame-D.C. |  | 1.00 |  | unit-D.C. |  | . 75 |
| L | Field complete of A.C. motors |  |  | Ga | Switch contact plug with nut and wa | her | . 08 |
|  | 60 cycle 110 volt |  | 1.50 | Ifa | Switch ratchet | per 100 | 1.75 |
|  | 60 cycle 220 volt |  | 6.50 | Ia | Screw for switch blade | per 100 | 1.00 |
|  | 40 cycle 120 volt |  | 6.00 | Ja | Switch contact plate | per 100 | 1.75 |
|  | 25 cycle 110 volt |  | 6.25 | Ка | Brush-holder cap |  | . 08 |
| M | Armature complete-A.C. | . | 3.00 | La | Brush-holder |  | . 20 |
| N | Armature shaft washer. | per 100 | . 35 | Ma | Brush |  | 15 |
| 0 | Armature complete-D.C. |  |  | Na | Bruslı spring | per 100 | 1.50 |
|  | 110 volt | . | 4.00 | Oa | Set screw for brush-holder | per 100 | . 75 |
|  | 220 volt |  | 5.00 | Pa | Oil cup |  | . 08 |
| P | Commutator |  | . 90 | Qa | Oil wick spring | per 100 | 2.25 |
| $Q$ | Field complete-D.C. |  |  | Ra | Oil wick | per 100 | 2.50 |
|  | 110 volt | . | 3.50 | Sa | Thumb nut for regulating switch scre |  | . 04 |
|  | 220 volt |  | 4.50 | Ta | Screw for regulating switch and base |  |  |
| R | Field coils for D.C. |  |  |  | plate | per 100 | . 75 |
|  | 110 volt | per set | 2.00 | Ua | Spacing nut for base plate |  | . 04 |
|  | 220 volt | per set | 3.00 | Va | Screw for motor cap | per 100 | . 55 |
| S | Regulating switch complete with coid | - C C. | 1.50 |  | Spacing sleeve for motor cap | per 100 | 1.75 |
| T | Regulating coil only-A.C. . | . | . 85 | Xa | Washer for linge bolt | per 100 | 1.75 |
| U | Switch blade |  | . 10 | Ya | Hinge bolt |  | . 08 |
| V | Binding post with nut and washer |  | . 10 | Za | Thumbnut for hinge boit |  | . 15 |

Supply Parts for Alternating and Direct Current Twelve- and SixteenInch Desk and Wall Bracket Fan Motors


# Supply Parts for Alternating and Direct Current Twelve- and SixteenInch Desk and Wall Bracket Fan Motors 

In ordering give name of part, reference letter and scrial number of motor.

|  | Fan guard complete | List Price |  | $\dagger \mathrm{Ia}$ | Armature complete for D.C. motors | List Price |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $12^{\prime \prime}$ |  | \$2.00 |  | $12^{\prime \prime} 110$ volts |  | \$5.00 |
|  | $1 \mathrm{c}^{\prime \prime}$ |  | 3.00 |  | 220 volts |  | 5.50 |
| *B | Guard clamping serew | per 100 | 1.00 |  | $16^{\prime \prime} 110$ volts |  | 5.50 |
| *C | Guard supports with clips |  |  |  | 220 volts |  | 6.50 |
|  | $12^{\prime \prime}$ |  | . 30 | Ja | Commutator |  | 00 |
|  | $16^{\prime \prime}$ |  | . 50 | *Ka | Fibrc basc plate |  | 08 |
| *D | Fan complete with set screw (t-blade) |  |  | La | Screw for base plate | per 100 | . 35 |
|  | $12^{\prime \prime}$. . . . . |  | 1.50 | $\dagger \mathrm{Ma}$ | Field coil for D.C. motor |  |  |
|  | $16^{\prime \prime}$ |  | 2.00 |  | $12^{\prime \prime} 110$ volt | per se | 2.75 |
| *E | Fan complete with set screw (6-blade) |  |  |  | 220 volt |  | 4.00 |
|  | $12^{\prime \prime}$. . . . . . |  | 2.00 |  | $16^{\prime \prime} 110$ volt | per set | 3.25 |
|  | $16^{\prime \prime}$ |  | 2.50 |  | 220 volt | per set | 4.25 |
| $\underset{\dagger G}{\text { F }}$ | Set screw for fan |  | . 35 | Na | Spur gear |  | 1.00 |
|  | Motor frame |  |  | Oa | Screw for spur gear and connecting |  | . 04 |
|  | $12^{\prime \prime}$ and $16^{\prime \prime}$ A.C. . |  | 3.00 | Pa | Screw with nut for spur gear |  | . 04 |
|  | $12^{\prime \prime}$ D.C. |  | 3.00 | Qa | Worm gear |  | . 60 |
|  | $16^{\prime \prime}$ D.C. |  | 3.75 | $\dagger$ †a | Resistance unit for A.C. motors |  | . 30 |
| H | Trumion screw |  | . 10 | $\dagger$ ¢a | Regulating coil for A.C. motors |  | 1.00 |
| I | Guard support screw | per 100 | 1.00 | Ta | Screw for regulating coil . . | per 100 | . 80 |
| J | Yoke for oscillator | per 100 | 1.00 | Ua | Spacing sleeve for regulating coil screw | per 100 | 1.75 |
| K | Thumb screw for yoke and frame |  | . 10 | Va | Nut for regulating coil screw. | per 100 | . 50 |
| L | Set screw for yoke and swive! |  | . 04 | Wa | Swivel for oscillating motor |  | 1.75 |
| M | Stud for rocker arm |  | . 05 | Xa | Clamp for oscillating swivel |  | . 85 |
|  | Thumb screw for yoke and base |  | . 10 | Ya | Screw for swivel clamp. |  | . 35 |
| * 0 | Base with screws and bushings |  |  | Za | Shield for spur gear. | per 100 | 2.50 |
|  | $12^{\prime \prime}$ |  | 2.10 | Ab | Gear case lid | per 100 | 1.75 |
|  | $16^{\prime \prime}$ |  | 2.50 | Bb | Screw for gear case lid | per 100 | . 35 |
|  | Soft rubber foot for base |  | 1.75 | Cb | Gear casc, . |  | 1.50 |
| Q | Soft rubber bushing for attaching cord | per 100 | 2.50 | Db | Screw fast'ng gear case in position | per 100 | 1.75 |
| R | Soft rubber bushing for field lead |  | 2.00 | *Eb | Field wedge-D.C. . . | per 100 | 1.75 |
| S | Swivel stud - . . |  | .60 | Fb | Oil cup. |  | . 15 |
|  | Swivel stud clamping screw |  | . 05 | Gb | Gear spindle. |  | . 25 |
|  | Swivel stud set screw |  | . 03 | Hb | Pinion for gear spindle |  | . 20 |
| V | Yoke for motors except oscillating |  | . 85 | Ib | Screw for gear spindle |  | . 04 |
| $\dagger$ W | Motor cap . |  | 1.25 | Jb | Operating knob complete |  | . 25 |
|  | Cap monogram | per 100 | 2.50 | Kb | Set screw for operating knob | per 100 | . 21 |
| $\dagger \mathrm{Y}$ | Field complete for A.C. motors |  |  | Lb | Brush-holder comp. with brush and ca | p per set | 1.25 |
|  | $12^{\prime \prime} 60$ cycles 110 volts |  | 7.50 | Mb | Brush-holder cap. |  | . 15 |
|  | 60 cycles 220 volts |  | 8.50 | Nb | Brush-holder terminal clip with screw |  | . 08 |
|  | 40 cycles 120 volts |  | 8.00 | *Ob | Connecting rod |  | . 35 |
|  | 25 cycles 110 volts |  | 9.00 | Pb | Rocker arm |  | . 50 |
|  | $16^{\prime \prime} 60$ cycles 110 volts |  | 8.50 | Qb | Pivot screw for rocker arm |  | . 05 |
|  | 60 cycles 220 volts |  | 9.50 | Rb | Armature shaft bearing |  | . 10 |
|  | 40 cycles 120 volts |  | 9.00 | Sb | Oil wick collar . |  | . 04 |
|  | 25 cycles 110 volts |  | 9.50 | Tb | Oil wick |  | . 03 |
|  | Armature complete for A.C. motors |  | 3.00 | Ub | Oil wick spring |  | . 02 |
| Aa | Armature shaft washers | per 100 | . 25 | Vb | Locking pin for operating knob | per 100 | 1.00 |
| $\stackrel{\mathrm{Ba}}{\mathrm{Ca}}$ | Regulating switch, less coil |  | . 80 | Wb | Compression spring for operating knob | per 100 | . 15 |
| Ca | Switch blade |  | . 05 | Xb | Worm . |  | . 35 |
| Da | Switch ratchet | per 100 | 1.75 | Yb | Brush |  | . 10 |
| $\stackrel{\mathrm{Ea}}{\mathrm{Fa}}$ | Support for resistance unit |  | . 03 | Zb | Brush spring | . | . 08 |
| Fa | Switch contact plate | per 100 | 1.75 | Ac | Bearing washer for swivel stud |  | . 10 |
| Ga | Switch blade pivot |  | 1.75 | Bc | Switch contact plug with nut and was |  | . 04 |
| $\dagger$ На | Resistance unit for D.C. motors |  |  | Cc | Ball for rocker arm . . . . |  | . 10 |
|  | $12^{\prime \prime} 110$ volts |  | . 30 | Dc | Binding post complete |  | . 10 |
|  | ${ }^{2} 220$ volts |  | . 40 | Ec | Cap nut for field stud |  | . 04 |
|  | $16^{\prime \prime} 110$ volts |  | . 30 | $\mathrm{Fc}^{\text {c }}$ | Field stud | per 100 | 1.75 |
|  | 220 volts | $\cdots$ | .40 | Gc | Clamping nut for field stud | per 100 | . 50 |

*State size $12^{\prime \prime}$ or $16^{\prime \prime}$.
$\dagger$ State rating and serial number of motor.

Supply Parts for Alternating and Direct Current Ceiling and
Column Fan Motors


# Supply Parts for Alternating and Direct Current Ceiling and Column Fan Motors 

In ordering give name of part, refercncc letter and scrial number of motor.

|  |  | List Price | §List Price |  |  |  | List Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *A | Frame, complete with field | \$27.50 \$ | 26.00 | Ca | Spring cotter for hanger pin | .. | \$0.50 |
| $\dagger$ - | Frame | 8.25 |  | Da | IIanger completc |  | . 65 |
| * C | Single field coil | . 35 |  | Ea | IIanger insulator |  | . 10 |
| $\dagger$ D | Single field coil | 1.50 |  | Fa | Regulator coil . | . . | 1.75 |
| $\dagger$ E | Field, complete with coils | 11.00 |  | Ga | Brush-holder cap | - . | . 08 |
| $\dagger \mathrm{F}$ | Screw for field . . . . per 100 | . 75 |  | Ha | Brush-holder complete | . | . 50 |
| G | Shaft | 2.10 |  | Ia | Lead clip . | per 100 | 1.75 |
| II | Set screw for shaft . . . per 100 | 1.75 |  | Ja | Screw for regulator coil | per 100 | . 65 |
| I | Coil clamp . . . . per 100 | . 75 |  | Ka | Brush |  | . 15 |
| J | Cover-D.C. | 2.50 | 1.50 | La | Brush spring | per 100 | 1.75 |
|  | Cover-A.C. | 3.00 | 2.00 | Ma | Binding post washer | per 100 | 2.50 |
| *K | Armaturc | 11.00 |  | Na | Cover screw | per 100 | 3.50 |
| $\dagger$ L | Armature, complete with commutator | 22.00 |  | Oa | Soft rubber bushing | per 100 | 1.50 |
| M | Commutator | 2.50 |  | Pa | Brush-holder set screw | per 100 | 3.50 |
| N | Blade holder screw . . per 100 | . 50 |  | Qa | Lower canopy screw | per 100 | 1.75 |
| 0 | Switch support | 1.50 | 1.00 | Ra | Binding post, complete |  | . 35 |
| * ${ }^{\prime}$ | Motor canopy . | . 80 |  | Sa | Switch screw | per 100 | . 50 |
| $\dagger$ ¢ | Motor canopy . | . 80 |  | Ta | Switch screw washer | per 100 | 1.50 |
| R | Ceiling canopy | . 80 |  | Ua | Screw plug | . . | . 08 |
| S | Set screw for ceiling canopy . per 100 | 1.75 |  | Va | Set screw for switch support. | - . | . 05 |
| T | Blade. | . 75 |  | Wa | Lead washer for shaft and sw |  |  |
| U | Blade-holder | . 55 |  |  | support | per 100 | 2.50 |
| V | Blade screw . . . . per 100 | . 50 |  | Xa | Set screw for suspension | per 100 | 3.50 |
| W | Switch key |  |  | Ya | Leather washer for bearing |  | 3.50 |
| X | Switch cover |  |  | Za | Upper bearing washer | . | . 80 |
| Y | Switch complete |  |  | Ab | Ball bearing | - | . 20 |
| Z | Oil can | . 10 |  | Bb | Lower bearing washer | . . | . 80 |
| Aa | Hanger hook | . 08 |  | Cb | Set screw for hanger | per 100 | 1.75 |
| Ba | Hanger pin . . | . 05 |  |  |  |  |  |
|  | *For A.C. Motor. $\dagger$ For D.C. Motor |  | For | ental | Motors. |  |  |

Small Power Motors


Domestic Buffing and Grinding Motor


Commercial Buffing and Grinding Motor


Alternating Current Motor


Sewing Machine Motor


Direct Current Motor

Motor Generator Set


Direct Current Portable Drill


Alternating Current Portable Drill
.


## 53.7 .8



GENERAL ELECTRC COMPANY
偪

# General Electric Company <br> Schenectady, N.Y. <br> SUPPLY DEPARTMENT 

fanuary, IgIo

## STEAM AND AIR FLOW METERS

TTHE economical generation or consumption of steam, like that of electricity, gas and other commodities, depends on accurate information which will show the amount being generated, consumed or distributed. Equally important is the determination of the exact amount of air being delivered or consumed, where air is used in place of steam as the working agent.

The Recording and Indicating Steam and Air Flow Meters manufactured by the General Electric Company provide a means for obtaining such information.

## RECORDING FLOW METER

The Recording Flow Meter will accurately record the rate of flow of steam in lbs. per hour, in pipes of any diameter, at any condition of temperature, pressure or moisture met in commercial practice. It will give an accurate record on periodically


RECORDING FLOW METER, TYPE R, FORM D
intermittent flow, such as occurs in operating reciprocating steam engines, pumps, ete., as well as on constant flow, provided it is recalibrated after it is installed. or the arrangement of the piping permits the insertion of the nozzle plugat a point in the steam main where the flow is constant. Since all meters. are carefully calibrated for constant flow before leaving the factory, it is necessary to recalibrate only when the flow is intermittent.

No change whatever in the main piping system of the station is necessary to install the meter, and as none of the steam being measured passes through it, the meter always remains cool. The meter may be located in any convenient place in the station so long as it is placed on a lower level than the nozzle plug. Drop in pressure caused by the insertion of the nozzle plug in the steam main is inappreciable, even at very high rates of flow,

## SERVICE FOR WHICH THE METER IS ADAPTED

Recording the total amount of steam gencrated by a battery of boilers.

Recording the amount of steam delivered to any department of a manufacturing plant.

Recording the amount of steam sold for power, heating or manufacturing purposes.

Enabling equalization of load on individual boilers of a battery.

Means of discovering losses originating from leaks between boilers and points of consumption, $c$.g., defective traps, gaskets and valves, where the loss otherwise could not be detected.
plus a pressure due to the velocity head. The pressure in the trailing set is equal to the static pressure minus a pressure due to the velocity head.

This difference of pressure existing in the two sets of openings is communicated through separated longitudinal chambers to the outer end of the plug and from there by proper piping to the meter.

## Description

The meter consists of two cylindrical hollow cups filled to about half their height with mercury and joined together at the bottom by a tube. This arrangement of cups and connecting tube forms a " U " tube, which is


NOZZLE PLUG

Means of discovering internal leaks in boilers shown by difference in the water input and the steam output.

Enabling determination of deterioration of efficiency of a boiler due to the formation in scale, etc.

Means of determining the efficiency in the method of stoking.

## Principle of Operation

If the temperature and pressure of the gas be constant, the rate of flow in a pipe will be proportional to the velocity. To measure this velocity, a nozzle plug is screwed into the pipe at the point where the flow is to be measured. One set of openings, known as the leading set, extends horizontally across the steam main and faces against the direction of flow. The other three openings near the center of the plag constitute the trailing set. The steam, impinging against the leading set of openings sets up a pressure in them which is equal to the static pressure
supported on and free to move as a balance about a set of knife edges.

A difference of pressure in the nozzle plug is communicated to the cups by flexible steel tubing placed inside the case. This difference of pressure causes the mercury to rise in the left hand cup and fall the same amount in the right hand cup until the unbalanced column of mercury exactly balances the difference in pressure.

By the displacement of the mercury, the beam carrying the cups moves downward on the left hand side of the knife edges. This side will descend until the moment of the weights on the right of the knife edges exactly balances the moment caused by the displacement of the mercury in the right hand cup. The motion of the beam is multiplied by levers and actuates the pen which moves in proportion to the amount of mercury displaced.

The time element of the meter consists of an eight day clock which drives the drum
feeding the paper. The paper on which the record is made is so calibrated that the rate of flow in lbs. per hour may be read at any instant or the average rate calculated for a given time. Each meter is equipped with a reroll device which is operated by a spring
actual rate of flow in lbs. per hour, it is necessary to compensate for pressure and temperature fluctuations.

Compensation is made automatically in the case of pressure variations. A hollow spring, similar to the pressure spring in a


RECORDING FLOW METER, TYPE R, FORM D, WITH AUTOMATIC PRESSURE CORRECTION DEVICE
mechanism and this device is of sufficient capacity to accommodate one complete roll of paper.

## Compensating Devices for Pressure and Superheat Variation

The velocity of the steam being measured may remain practically constant while the pressure and temperature vary over a considerable range. Therefore, to obtain the
steam gauge, is connected so as to be influenced by the static pressure at the point where the flow is being measured. Any variation of the static pressure causes the spring to expand or contract, and this movement actuates a small correction weight in such a manner as to affect the deflection of the pen so that the indicated rate of flow recorded is correct for the pressure existing in the steam main.

4720-4 Steam and Air Flow Meters

Compensation for temperature variations is made by an independent hand adjustment of the same correction weight which corrects the reading for pressure fluctuations. This
the Recording Flow Meter will be furnished without the automatic pressure compensating device. The meters are calibrated by the factory to give the true rate of flow in lbs.


RECORDING FLOW METER, TYPE R, FORM D, WITHOUT AUTOMATIC PRESSURE CORRECTION DEVICEl:
adjustment is made by increasing or decreasing the distance of the correction weight from its point of suspension and this distance is determined from a curve sent out with each meter.

## METERS SUITABLE FOR MEASURING FLOW AT CONSTANT TEMPERATURE AND PRESSURE

In many stations, the temperature and pressure at which steam is delivered is held practically constant. To meet this condition
per hour at the temperature and pressure existing in the steam main where the flow is to be measured.

If it is desired to measure the rate of flow at any other temperature and pressure than that at which the meter was calibrated, proper corrections can be readily made by setting the correction weight at a greater or less distance from its point of suspension. The exact distance for setting this weight, measured from its point of suspension for a given

## Steam and A ir Flow Meters 4720-5

pipe diameter, temperature and pressure is found by referring to a curve sent out with each meter.

## Finish

Interior and working parts of the meter are finished in dull black and nickel. The case is finished in dull black and nickel with glass front and top.

## Weight

The meter weighs complete 55 lbs .
Dimensions $23^{\prime \prime} \times 9^{\prime \prime} \times 13^{\prime \prime}$.
FOR MEASURING THE RATE OF FLOW OF STEAM—PRESSURE 25 TO 225 LBS. GAUGE

| with automatic pressure correction device |  | without automatic pressure CORRECTION DEVICE |  |
| :---: | :---: | :---: | :---: |
| *Cat. No. | Inches Pipe Diam. | *Cat. No. | Inches Pipe Diam. |
| 108142 | 2 | 108150 | 2 |
| 108143 | 3 | 108151 | 3 |
| 108144 | 4 | 108152 | 4 |
| 108145 | 6 | 108153 | 6 |
| 108146 | 8 | 108154 | 8 |
| 108147 | 10 | 108155 | 10 |
| 108148 | 12 | 108156 | 12 |
| 108149 | 14 | 108157 | 14 |
| *Cat. Nos. include meter complete with nozzle plug. |  |  |  |

Meters can be furnished for pipes of larger diameter if desired.

## WHEN ORDERING RECORDING FLOW METERS always give the following INFORMATION

Cat. No. and type of meter desired.
Cat. Nos. of additional nozzle plugs required.
Nominal pipe diameter at point of inserting the nozzle plug.

Average maximum and minimum steam pressure in lbs. gauge.

State whether steam is wet, saturated or superheated.
(If wet, give per cent. moisture; if superheated, give temperature in degrees Fahrenheit.)

Maximum amount of steam flowing through the pipe in lbs. per hour. (Approximate.)

State whether steam is used for engine, turbine, heating or manufacturing process.
(If used for engine or turbine, give type and rating.)

Include a sketch showing plan and elevation of the piping between the boiler and the apparatus consuming the steam. Give dimensions. Indicate on the sketch the point at which you desire to locate the meter.

## INDICATING FLOW METER, TYPE I, FORM F

The Type I, Form F Flow Meter will meet general commercial requirements where an indicating rather than a recording instrument is desired. Owing to its simplicity of construction, light weight and durability, it will be found especially useful for testing work, locating trouble due to leaks, etc.

This meter will indicate the instantaneous rate of flow of steam, air, or any gas at any condition of temperature, pressure or moisture


INDICATING FLOW METER, TYPE I, FORM F
met in commercial practice. The meter, if used to measure steam flow, gives a true indication of the instantaneous rate of flow in pounds per hour per sq. inch of pipe crosssectional area. If used to measure air, the units are in cubic feet of free air at $70^{\circ}$ Fahrenheit, but the same meter can not be used interchangeably for measuring steam and air flows.

When used on periodically intermittent flow, the same conditions must be satisfied in regard to installation and recalibration as in the case of the recording meter.

The piping, reservoirs, and nozzle pluge are of the same general design as those used with the recording meter.

The meter is portable and is provided with leather carrying strap.


INDICATING FLOW METER, TYPE I, FORM F FOR MEASURING STEAM FLOW

## Service for Which the Meter is Adapted For Measuring Steam Flow

The indicating flow meter will serve the same purposes and give the same information as the recording meter with the exception that no continuous record is made, all readings being instantaneous values of the rate of flow.

Since the Type I, Form F meter will measure the instantaneous rate of flow independently of pipe diameter, pressure or temperature, a single meter may be utilized to obtain readings in any number of different pipe lines throughout a station. It is necessary only that each pipe be provided with the proper nozzle plug to which the meter can be connected.


INDICATING FLOW METER, TYPE I, FORM F FOR MEASURING AIR FLOW

## For Measuring Air Flow

The Type I, Form F meter can be furnished for measuring the instantaneous rate of flow of air as well as steam. This opens up an additional field of usefulness for the meter where air is used for power or in manufactur-
ing processes. The meter will indicate the exact amount of air furnished to mines, blast furnaces, forced-draught apparatus, compressed air machinery, etc.

## Principle of Operation and Description

Use is made of the nozzle plug for obtaining a difference in working pressure proportional to the velocity in exactly the same manner as in the recording meter.

The meter itself consists of an iron casting which is cored out to form a " U " tube. This is filled for part of its height with mercury or water depending on whether the meter is used for measuring steam or air flow. (See Fig. A.) A difference of pressure in the nozzles of the plug causes a difference of level of the liquid in the "U" tube, A small float suspended by a silk cord actuates a pulley over which the cord passes. The pulley in turn moves a small bar magnet on the end of the shaft next to the dial in proportion to the change in level of the working fluid in the "U" tube. (See Fig. A.)
The indicating needle is mounted in a separate cylindrical casing. On the inner end of the needle shaft another bar magnet is mounted, which is free to turn in the same plane as the magnet on the inside of the meter casting. The mutual attraction of these two magnets keeps them always parallel and the necessity of a packed joint in transmitting the motion of the pulley to the indicating needle is thus eliminated.

When the valve in the by-pass is open, the dial can be rotated until the indicating needle reads zero, Opening of the valve also prevents blowing out of the working fluid in the " U" tube by excessive pressure in either leg.

## Method of Making Observations

The proper adjustments for pipe diameter, temperature and pressure are readily made by setting the graduated cylinders (see Fig. A) which actuate the rack carrying the pointer. When these settings are made, the rack is rotated by hand until the pointer coincides
with the indicating needle. The point on the graduated scale at the intersection of the needle and pointer gives the true instantaneous rate of flow per sq. in. of pipe cross section.

If the temperature and pressure of the gas remain practically constant, but one ad-

## WHEN ORDERING (INDICATING) STEAM FLOW METERS, ALWAYS GIVE THE FOLLOWING INFORMATION

Cat. No, and type of meter desired.
Cat. Nos, of additional nozzle plugs tequired.
Nominal pipe dismeter at the point of inserting the nozzle plug.

Average maximum and ninimum steam pressute in lbs. gauge,

justment of the graduated cylinders is necessary for making observations.

## Finish

The meter is finished in black japan and nickel.

## Weight

The meter weighs complete 25 bss .

State whether steam is wet, saturated or superheated.
(If wet, give per cent moisture; if superheated give temperature in degrees Fahrenheit.)
Maximum amount of steam flowing through the pipe in lbs. per hour (Approximate.)

State whether steam is used for engine, turbine, heating or manufacturing process.
(If used for engine or turbine, give type and rating.)
Include a sketch showing plan and elevation of the piping between the boiler and the apparatus consuming the steam Give dimensions, Indicate on the sketch the point at which you desire to locate the meter.

## FOR MEASURING THE RATE OF FLOW OF STEAM

* cat. no.


Superheat Scale-4\% Moisture to $260^{\circ}$ Fahrenheit

| 108158 | 108166 | 108174 | 2 |
| :--- | ---: | ---: | ---: |
| 108159 | 108167 | 108175 | 3 |
| 10160 | 108168 | 108176 | 4 |
| 108161 | 108169 | 108177 | 6 |
| 108162 | 108170 | 108178 | 8 |
| 108163 | 108171 | 108179 | 10 |
| 108164 | 108172 | 108180 | 12 |
| 108165 | 108173 | 108181 | 14 |

*Cat. Nos. include meter complete with nozzle plug. Meter can be furnished for pipes of larger diameter if desired.

WHEN ORDERING (INDICATING) AIR FLOW METERS, ALWAYS GIVE THE FOLLOWING INFORMATION
Cat. No. and type of meter desired.
Cat. Nos. of additional nozzle plugs required.
Nominal pipe diameter at point of inserting the nozzle plug.
Average maximum and minimum air pressure in lbs. gauge.

Range of temperature of air and normal temperature in degrees Fahrenheit.

Maximum amount of air flowing through the pipe in cu. ft. of free air. (Approximate.)

State for what purpose air is used.
Include sketch showing plan and elevation of the piping. Give dimensions. Indicate on the sketch the point at which you desire to locate the meter.

FOR MEASURING THE RATE OF FLOW OF AIR


| 108182 | 108190 | 2 |
| :--- | ---: | ---: |
| 108183 | 108191 | 3 |
| 108184 | 108192 | 4 |
| 108185 | 108193 | 6 |
| 108186 | 108194 | 8 |
| 108187 | 108195 | 10 |
| 108188 | 108196 | 12 |
| 108189 | 108197 | 14 |

*Cat. Nos include meter complete with nozzle plug.
Meters can be furnished for pipes of larger diameter if desired.

## THE INDICATING FLOW METER, TYPE I, FORM B

This meter is designed as a laboratory meter where maximum flexibility of operation is of fundamental importance. It is adapted to measure the instantaneous rate of flow at very high or very low velocitics. The Type I, Form B meter is furnished only for measuring the instantancous rate of flow of steam.

## Principle of Operation

The principle of operation of this meter is the same as the Recording Flow Meter,
the nozzle plug. There are no moving parts exposed to the fluid being metered, and consequently no wear or friction to be overcome No foundation is necessary as the meter is provided with leveling screws so that it may be mounted on any approximately level surface.

## Method of Making Observation

After the meter has been filled and the piping connected the level is adjusted and the


Type R, Form D, and the Indicating Flow Meter, Type I, Form F.

## Description

The meter consists of a "U" tube with glass legs which are filled for part of their length with mercury. Located centrally with respect to the glass tubes is a cylindrical chart from which is read the rate of flow. Suitable auxiliary scales are provided so that the indication is correct at any condition of pressure and temperature and for pipes of any diameter.

The two legs of the " U " tube are connected as shown with the two series of openings in
steam is turned on. It remains only to adjust the meter for the pressure and temperature of the fluid. This is done by rotating the inner handwheel at the lower end of the meter. The two sights are set to coincide with the meniscuses of the mercury in the glass " U " tube. The indieation of the movable pointer on the chart multiplied by a constant depending on the inclination of the meter is the rate of flow in lbs. per hour per sq. in. of pipe cross section. The inclination of the meter from the vertical position is easily varied, and in this way it is enabled to indicate very high and very low rates of flow with equal facility.

## Finish

The meter is finished in black japan and nickel.

## Weight

The meter weighs complete 45 lbs .

## FOR MEASURING THE RATE OF FLOW OF

| STEAM |  |
| :---: | :---: |
| *cat. no. |  |
| скт. мо. | Inches |
| Pressure 75-225 lbs. Gauge. Chart range $0-1220$ lbs. per sq. in. pipe area | Pipe |
| Superheat Scale $4 \%$ Moisture to $260^{\circ} \mathrm{Fahr}$. |  |
| 108198 | 2 |
| 108199 | 3 |
| 108200 | 4 |
| 108201 | 6 |
| 108202 | 8 |
| 108203 | 10 |
| 108204 | 12 |
| 108205 | 14 |

*Cat. Nos. include meter complete with nozzle plug.

Meters can be furnished for pipes of larger diameter if desired.

## WHEN ORDERING (INDICATING) STEAM FLOW

 METERS, ALWAYS GIVE THE FOLLOWING INFORMATIONCat. No. and type of meter desired.
Cat. Nos. of additional nozzle plugs required.
Nominal pipe diameter at the point of inserting the nozzle plug.

Average maximum and minimum steam pressure in lbs. gauge.

State whether steam is wet, saturated or superheated.
(If wet, give per cent. moisture; if superheated, give temperature in degrees Fahrenheit.)

Maximum amount of steam flowing through the pipe in lbs. per hour. (Approximate.)
State whether steam is used for engine, turbine, heating or manufacturing process.
(If used for engine or turbine, give type and rating.)

Include a sketch showing plan and elevation of the piping between the boiler and the apparatus consuming the steam. Give dimensions. Indicate on the sketch the point at which you desire to locate the meter.

NOZZLE PLUGS

| FOR USE with RECORDING FLOW METERS TYPE R, FORMD, for measuring steam flow |  | FOR USE WITH indicating FLOW METERS, TYPE I, FORM F, for measuring steam flow |  |
| :---: | :---: | :---: | :---: |
| *Cat. No. | Inches Pipe Diameter | *Cat. No. | Inches Pipe Diameter |
| 103541 | 2 | 103549 | 2 |
| 103542 | 3 | 103550 | 3 |
| 103543 | 4 | 103551 | 4 |
| 103544 | 6 | 103552 | 6 |
| 103545 | 8 | 103553 | 8 |
| 103546 | 10 | 103554 | 10 |
| 103547 | 12 | 103555 | 12 |
| 103548 | 14 | 103556 | 14 |
| por use with indicating <br> flow meters type i, porm f. for measuring air plow |  | FOR USE WITH INDICATING FLOW METERS, TYPE I, FORM B, for measuring steam flow |  |
|  |  |  |  |
| *Cat. No. | Inches Pipe Diameter | tCat. No. | Inches Pipe Diameter |
| 103557 | 2 | 103565 | 2 |
| 103558 | 3 | 103566 | 3 |
| 103559 | 4 | 103567 | 4 |
| 103560 | 6 | 103568 | 6 |
| 103561 | 8 | 103569 | 8 |
| 103562 | 10 | 103570 | 10 |
| 103563 | 12 | 103571 | 12 |
| 103564 | 14 | 103572 | 14 |

* Cat. Nos. include separators, valves and piping between nozzle and separators.
$\dagger$ Cat. Nos. include valves and piping between nozzle plug and valves; no separators are necessary.
Nozzle plugs for pipes of larger diameter can be furnished if desired.

GENERAL EIECTRIC COMPANY PRINCIPAL OFFICES, SCHENECTADY, N Y.

SALES OFFICES:
(Address nearest office.)
BOSTON, MASS., 84 State Street.
NEW YORK, N. Y., 30 Church Street.
Syracuse, N. Y., Post-Standard Building.
Buffalo, N. Y., Ellicott Square Building.
New Haven, Conn., Malley Building.
PHILADELPHIA, PA., Witherspoon Bidg.
Baltimore, MD., Continental Trust Building.
Charlotte, N. C., Trust Building.
Charleston, W. Va., Charleston National Bank Bldg. Pittsburg, Pa., Park Building.
Richmond, Va., 712 Mutual Building.
ATLANTA, GA., Empire Building.
New Orleans, La., Maison-Blanche Building.
CINCINNATI, OHIO. Provident Bank Building.
Columbus, Ohio, Columbus Savings \& Trust Bldg.
Cleveland, Ohio, Citizens Building.
Nashville, Tenn., Stahlman Building,
Indianapolis, Ind., Traction Terminal Building.
CHICAGO, ILL., Monadnock Building.
Detroit, Mich., Majestic Bldg., (Office of Soliciting Agt.)
St. Louis, Mo., Wainwright Building.
Kansas City, Mo., Dwight Building.
Butte, Montana, Phcenix Building.
Minneapolis, Minn., 410-412 Third Avenue, North.
DENVER, COLO., Kittredge Building.
Salt Lake City, Utaif, Newhouse Building.
SAN FRANCISCO, CAL., Union Trust Building.
Los Angeles, Cal., Delta Building.
Portland, Ore., Worcester Building.
Seattle, Wash., Colman Building.
Spokane, Wash., Paulsen Building.
For Texas and Oklahoma Business refer to General Electric Company of Texas Dallas, Tex., Praetorian Bldg. El Paso, Tex., Chamber of Commerce Bldg. Oklahoma City, Okla., Insurance Bldg.

FOREIGN:
Foreign Department,
Schenectady, N. Y., and 30 Church St., New York, N. Y. London Office, 83 Cannon St., London, E. C., England.

For all Canadian Business,
Canadian General Electric Company, Ltd.,

# General Electric Company 

Schenectady, N.Y.
SUPPLY DEPARTMENT

# THOMSON DIRECT CURRENT WATTHOUR METERS TYPES C-6, C-7 AND CQ 

THE Thomson Watthour Meter in its simplest form embodies three necessary elements, namely, a motor causing rotation, a generator providing the necessary load or drag, and a registering device, the function of which is to integrate the instantaneous values of the electrical energy passing in the system to be measured.

The element of the direct current Thomson Watthour Meter causing rotation is an electric motor which, being without iron in its fields and armature and rotating at a very low speed, has little or no counter electromotive force. Its armature current, therefore, is independent of the speed of rotation, and is constant for any definite potential applied at its terminals. The torque of this motor being proportional to the product of its armature and field currents, must vary directly as the energy passing through its coils. In order then, that the meter shall record correctly it is necessary only to provide some means for making the speed proportional to the torque. This is accomplished by applying a load or drag, the strength of which varies directly as the speed. This leads to a brief consideration of the generator element.


THOMSON WATTHOUR METER TYPE C-6

The electromotive force induced in a conductor passing through a field of constant strength is proportional to the number of magnetic lines of force cut in a given time; therefore, if the resistance of the conductor remains constant, the drag is proportional to the speed. An aluminum disk is directby connected to the meter armature by means of a vertical shaft and, passing between the jaws of permanent magnets (the field of fixed strength), constitutesthesecand necessary element of the Thomson Watthour Meter.

A means of combining all the instantaneous values of energy is found in the registering mechanism, the third element of the Thomson Watthour Meter. This is a revolution counter properly calibrated in the desired energy unit, for which purpose the watthour or kw, hour has become almost universally adopted.

These three fundamentals are embodied in the Thomson Watthour Meters for direct current service, Types C-6, C-7 and CQ. Their development, application and perfection, as described herein, have been accomplished only after years of investigation and experiment, with closest attention to the most exacting requirements.

[^1]
## 4721A-2 Thomson Direct Current Watthour Meters, Types C-6, C-7 and CQ

The following general description applies also to the Type C-7 meter, which is for use on circuits of from 500-600 volts.

## TYPE C-6

## Method of Support

The meter is supported by three lugs, the upper one of which is key-holed, and the lower right-hand one slotted. This permits of rapid and accurate levelling as the top screw can be inserted and the meter hung thereon approximately level. The right-hand screw may then be placed in position and the meter adjusted as may be required before forcing the screw tightly home.

## Cover

The cover which is slightly domed is fastened by studs and wing nuts and is removed directly toward the front. This obviates the necessity of leaving a space above the meter sufficient to remove the cover. The doming of the cover increases its stiffness and makes it difficult to bend it out of shape by screwing the sealing nuts down too tightly or by other means, so that the cover touches the disk.

## Sealing

The meter may be sealed by the wing nuts that hold the cover in place. A sealing wire is passed through the wing nuts and their respective studs, thus necessitating the use of but one wire. This method of sealing is a positive preventive of tampering without detection.

## BINDING POSTS AND DUSTPROOF QUALITIES

The binding posts are situated at the sides of the meters. It is standard practice to furnish flexible cable leads provided with copper terminals for meters of 100 amp . capacity and above. For meters of lower capacity, the leading-in wires are fastened in suitable brass binding posts with set screws. The leading-in holes are provided with insulating bushings and equipped with felt guards which fit closely about the wires after insertion and exclude both dust and insects.

The groove which entirely surrounds the edge of the cover is lined with a cotton felt strip and the dial window is set in putty further enhancing its dustproof qualities.

## Register

The register is of the four pointer type, registering directly in kw. hours, in all sizes up to 30 kw . In meters of capacities of 30 kw . or above, a dial constant of $10,100,1000$, etc., is required. By adopting this system the actual energy unit remains the same in all sizes, and the reading is obtained by the addition of one or more cyphers to the indication of the pointers. The dial face is made of porcelain having a dull finish. The figures are large and black, which, with the pure white background, renders the dial very legible and minimizes the chances of error in reading.

## Bearings

Almost any material of a fair degree of hardness and capable of receiving a high polish may be made into a bearing for a meter, but experience has proved that but two substances will continue to give satisfactory operation. These are the Oriental sapphire and the diamond. It is necessary that every stone be selected with the greatest care, undergo the most severe tests and be subjected to a most careful cutting, grinding and polishing to insure a satisfactory bearing. The stones that are discarded by the General Electric Company as unfit for use form a very large proportion of the company's entire purchases. The General Electric Company has but recently perfected a method for grinding and polishing diamonds in a concave form, by means of which is secured a surface unsurpassed even by jewels having a flat face. Diamond bearings are practically indestructible and are very desirable for large meters.

The cup diamond bearing is furnished in all Type C-6 meters of capacities of fifty kilowatts or above; the sapphire jewels are furnished in meters of smaller sizes.
All jewel bearings in meters manufactured by the General Electric Company are
mounted upon spring supported plungers. It has been determined by a series of exhaustive tests that the length of jewel life depends upon the relation that the weight of the moving clement bears to the strength of the supporting spring. For this reason all jewel springs are carefully gauged by high and low limit weights, any springs not coming within the prescribed limits being rejected.

## Pivots

The pivots or shaft ends which are used in Thomson Watthour Meters are unique in their construction, inasmuch as they may be removed by unscrewing them from the shaft or spindle proper. It is a well known fact that a roughened or damaged pivot is almost invariably coincident with a defective jewel and for this reason the
 General Electric Company recommends, and the majority of central stations make a practice of, inserting a new pivot in a meter at the time of replacing a worn jewel whether or not the pivot itself appears to be damaged. Quite frequently it will be found that the shaft of a meter has become more or less magnetized, and in case a steel pivot is used great difficulty is experienced in removal. To avoid this a brass pivot has been adopted, into the end of which is forced a small piece of the highest grade piano wire, drawn under such enormous pressure that the finest grain is obtained. This piano wire then, glass hardened and highly polished, forms the actual bearing surface of the rotating parts.

## Top Bearing Plug

The form of the top bearing plug is similar to that used in meters of earlier design, The bearing hole is of just sufficient size to permit the meter shaft to revolve freely.

## Shipping Device

For protection during shipment and any subsequent transportation, the Type C-6 meter is provided with a clamping device which holds the moving element securely in
position. This consists of a brass cap which is normally drawn down and held by the jewel screw against the force of a lifting

spring. When the cap is drawn down the moving element is free to rotate. When the jewel screw is backed out the cap is released

and the spring causes it to lift the moving element from the jewel and hold it firmly.

## Shaft

The armature shaft, or spindle, is tubular, combining great strength with extreme lightness. The strength of the shaft is such that it will withstand the stresses of armature and disk without buckling, yet the weight is

## 4721.1-4 Thomson Direc Current Watthour Meters, Types C-6, C-7 and CQ

exceedingly small compared with that of a solid shaft such as has been used heretofore.

## Accessibility

The entire mechanism is assembled upon a skeleton casting which in turn is fastened within the meter casing. By removing four screws and disconnecting the windings from the terminals the mechanism may be removed for inspection and repair.

The plane of the field coils is parallel to the back of the meter, hence by the removal of the front series coil and the register, and the loosening of the shunt field coil, the moving element may be taken out. This does not necessitate the removing of the magnets and, therefore, full load calibration is unaffected.

An automatic link between the worm wheel and the register permits removal and replacement of the latter without in any way affecting the proper mesh of gear and worm.

The four magnets are permanently fastened together in sets of two and each set may be removed from its supporting shelf by the loosening of two screws.

## Commutator and Brushes

The commutator is made up of silver bars assembled about the upper end of the shaft and fastened rigidly to it but insulated both from the shaft and from each other, The commutator is but one-tenth of an inch diameter, very much smaller than has hitherto been found practicable, owing to difficulties experienced in proper insulation.

This material reduction in size has decreased the commutator friction in about the same ratio as the decrease in diameter, yet no sacrifices have been made in commutator insulation.

A form of brush with gravity instead of spring control has been adopted, giving an even tension on the two brushes as well as on each individual leaf. A counterweight composed of two knurled thumb nuts on each brush-holder can be adjusted quickly and accurately to give the desired tension, thus obviating the necessity of a spring adjustment which, even to the most experienced, is a deli-
cate operation. The use of two nuts permits of locking the counterweight so that any vibration will not disturb the adjustment.

## Armature and Field Windings

To secure the highest torque with the lowest possible watt loss has been one of the chief aims in the design of the Type C-6 Thomson Watthour Meter, and to accomplish this it is absolutely necessary that the greatest possible number of magnetic lines


INTERIOR OF THOMSON WATTHOUR METER TYPE C-6 SHOWING SMALL COMMUTATOR AND GRAVITY BRUSHES
be intercepted by the armature during each revolution. A spherical armature moving within circular field coils is the construction that most nearly fulfills this condition, and has, therefore, been adopted in this meter. The armature is wound on a very thin and light paper shell, sufficiently stiff to withstand the strain incident to winding and subsequent handling and use. The wire composing the armature is of the smallest gauge consistent with mechanical strength.

The field coils, as before stated, are circular, and are placed as near each other as possible, one on either side of the armature, with the internal diameter just sufficient to give the necessary clearance for the rotating element. This construction prevents magnetic leakage.

Ribbon wire is employed for the field coils, thus economizing space and further carrying out the idea of concentration.

## Combined Resistance and Adjustable Shunt Field Coil

In all C-6 meters for use on circuits of 250 volts or less the necessary resistance, which is in series with the armature, is combined with the adjustable shunt field coil into a single winding. This coil may be moved up and down, in a plane parallel to that of the field coils, to give the required compensation on light loads. The combined resistance and

The magnets of the Types C-6, C-7 and CQ meters are subjected to a rigid process of selection, construction, magnetization and aging, and the processes used insure their permanence.

Only certain grades of stecl can be safely used for permanent magnets, therefore, the utmost care must be exercised in the selection of the original bars. After the bars are formed, certain chemical and physical processes are applied before they are magnetized, in order that absolute permanence may be assured. After being magnetized they are carefully measured and then


PARTS OF TYPE C- 6 THOMSON WATTHOUR METER
adjustable shunt field coil is circular in form and retains its shape without the use of a core or other support.
In $500-600$ volt meters, Type $\mathrm{C}-7$, the resistance is mounted on the outside of the meter back and is enclosed by a perforated sheet metal cover.

## Magnets

Absolute permanency of the retarding magnets is essential to the correct operation of a meter, and when it is remembered that the speed is inversely proportional to the square of the magnet strength, the serious effect of any change is at once apparent.
stored for a period of aging. If upon remeasurement no change has taken place the magnets are regarded as satisfactory; if any change has occured they are rejected.

## Torque

The value of high torque has become universally recognized as the most essential feature of a motor meter.

The peculiar design of the field coils and armature of the Type C-6 meter gives the greatest possible torque combined with minimum losses and weight of moving element. Expressed in units, the torque of this meter is greater than that of any other motor meter in commercial use.

## 4721A-6 Thomson Dirct Current Wattlour Meters, Types C-6, C-7 and CQ

The friction drag has been reduced to the lowest possible limits by the introduction of small commutator, gravity brushes, and an exceedingly light moving element. This combination of high torque with minimum friction is indicative of the "life with accuracy" that must inevitably result.

## Accuracy

The Type C-6 meter being a structure without iron and, therefore, involving no considerations of magnetic saturation, has a straight line characteristic throughout its entire range even to the point of physical destruction.

For the same reason the meter is not subject to hysteresis error on direct current or to wave form or frequency errors on alternating current circuits.

Changes of temperature do not affect its accuracy, as the temperature coefficients of both the motor and the generator elements are the same; consequently, a decreased torque due to increased resistance in the armature is at once offset by a correspondingly lessened drag in the disk.

By means of the adjustable shunt field coil the Type C-6 meter may, at the point of installation, be made to register correctly on light loads regardless of vibration and variation of potential from the normal, and this without affecting full load accuracy.

There is, moreover, a sufficient range of adjustment to permit of compensation for friction increase after a period of use. Normal aging of the commutator is not deleterious, as friction resulting from it quickly becomes constant. It is advisable to regulate light load accuracy by means of the shunt coil rather than by polishing the commutator.

## Overloads

The Type C-6 Thomson Watthour Meter is most liberally rated, and its low losses permit of operation under heavy overloads for considerable periods of time without detrimental effects, either permanent or temporary.

The magnetic circuit is so constructed that the meter is not sensitive to short circuits. The magnets are at some distance from the field coils, and lying in planes parallel to the coils, any projected field from the coils is at right angles to the magnetic flux. Furthermore, the field coils are so near together that the stray field effect is reduced to a minimum.

## Capacities

The Type C-6 Thomson Wathour Meter is manufactured in capacities ranging from 5 to 600 amperes inclusive, two-wire, and from 5 to 300 amperes inclusive, threewire, and for potentials of 100 to 250 volts.

Meters of like ampere rating but for potentials of 500 to 600 volts are known as Type C-7.

## Connections

The Types C-6 and C-7 meters are furnished with side connections, the line wires entering at the left and the load wires at the right. Both sides of the system are carried through the meter in all sizes up to and including 50 amperes Type C-6, and 25 amperes Type $\mathrm{C}-7$. In meters of larger ampere capacities a potential tap is used.

## Finish

Types C-6 and C-7 meters are provided with all metal covers finished in black japan.

## TYPE CQ

The Thomson Watthour Meter, Type CQ, is a Type C-6 meter modified to render it as far as possible free from errors due to external magnetic fields. This valuable characteristic is secured by a special four-pole field and armature construction.

In external appearance, the Type CQ meter is the same as the Type C-6. Since the same cover, register, bearings, etc., are used in both meters, the preceding description of the Types C-6 and C-7 meters applies to the Type CQ, with the following modifications:

## Armature and Field Windings

The field windings are not circular, but are formed in quadrants to embrace as closely as

# Thomson Direct Current Wallhour Meters, Types C-6, C-7 and CQ 4721A-7 

possible the spherical armature. The field coils are strip wound and the armature is wound from film coated wire, as in the Type C-6 meter.

## Commutator and Brushes

The diameter of the commutator is the same as in the Type C-6 meter, but the commutator is slightly longer to accommodate


THOMSON WATTHOUR METER-TYPE CQ
the four gravity brushes which are necessary on account of the four-pole construction of the armature.

## Resistance and Shunt Field Coils

The Type CQ meter has two adjustable shunt field coils to give the required compensation on light loads. The resistance in series with the potential circuit for front connected 2 -wire meters in capacities up to and including 300 volts and 3 -wire meters up to and including 600 volts is placed in an extension of the meter back as in the Type C-7. Meters of higher voltages will be furnished with an external resistance box.

## Capacities

The Type CQ Thomson Watthour Meters are manufactured in capacities ranging from


THOMSON WATTHOUR METER-TYPE CQ
(Interior View)
50 to 400 amperes inclusive, two-wire, and 50 to 200 amperes inclusive, three-wire, and for potentials of from 100 to 600 volts.

## Connections

The meters may be furnished with either front or back connections. In front connected meters the positions of the leadingin wires and cables are the same as in the Type C-6, so that either type of meter may be installed in the same location.

## Back Connected Meters

The meters described in this bulletin can be furnished with back connections adapting them for mounting on a switchboard. Back connected Types $\mathrm{C}-6$ and $\mathrm{C}-7$ meters are known as Type C-9. Type CQ meters furnished with back connections are known as Type CQ-2.

Back connected meters can be furnished with either a metal or moulded glass cover. The finish is the same as for front connected meters.

4721A-8 Thomson Direct Current Watthour Meters, Types C-6, C-7 and CQ

## THOMSON WATTHOUR METERS, TYPES C-6, C-7 AND CQ

## FRONT CONNECTED, METAL COVER, JAPAN FINISH

TYPE C-6, 100-120 VOLTS, 2-WIRE

| Cat. No. |  |  |
| :---: | :---: | ---: |
|  | $*$ Lights | Amp. |
| 37594 |  |  |
| 37595 | 10 | 5 |
| 37596 | 20 | 10 |
| 37597 | 30 | 15 |
| 37598 | 50 | 25 |
| 37599 | 100 | 50 |
| 37600 | 150 | 75 |
| 37601 | 200 | 100 |
| 37602 | 300 | 150 |
| 37603 | 600 | 300 |
|  | 1200 | 600 |
|  |  |  |

TYPE C-6, 200-240 VOLTS, 2-WIRE

| Cat. No. | * Lights | H.P | Amp. |
| :---: | :---: | :---: | :---: |
| 37614 | 20 | 11/4 | 5 |
| 37615 | 40 | 2 | 10 |
| 37616 | 60 | $31 / 2$ | 15 |
| 37617 | 100 | 7 | 25 |
| 37618 | 200 | 15 | 50 |
| 37619 | 300 | 20 | 75 |
| 37620 | 400 | 25 | 100 |
| 37621 | 600 | 40 | 150 |
| 37622 | 1200 | 80 | 300 |
| 37623 | 2400 | 160 | 600 |

TYPE CQ, 100-120 VOLTS, 2-WIRE

TYPE C-6, 200-240 VOLTS, 3 -WIRE
——

| 37604 | 20 | 5 |
| :--- | ---: | ---: |
| 37605 | 40 | 10 |
| 37606 | 60 | 15 |
| 37607 | 100 | 25 |
| 37608 | 200 | 50 |
| 37609 | 300 | 75 |
| 37610 | 400 | 100 |
| 37611 | 600 | 150 |
| 37612 | 1200 | 300 |

TYPE C-7, 500-600 VOLTS, 2-WIRE

Cat. No. H.P. Amp.
37624
37625
37626
37627
37628
37629
37630
37631
37632
37633


TYPE CQ, 200-240 VOLTS, 3-WIRE

| Cat. No. | * Lights | Amp. | Cat. No. | * Lights | Amp. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 65275 | 100 | 50 | 65280 | 200 | 50 |
| 65276 | 150 | 75 | 65281 | 300 | 75 |
| 65277 | 200 | 100 | 65282 | 400 | 100 |
| 65278 | 400 | 200 | 65283 | 800 | 200 |
| 65279 | 800 | 400 |  |  |  |

TYPE CQ, 200-240 VOLTS, 2-WIRE


* Rated on basis of 50 watts per lamp.

Note.-Always state normal voltage of circuit.

Thomson Direct Current Wathour Meters, Types C-6, C.7 and CQ 4721A-9 CONNECTIONS OF THOMSON WATTHOUR METERS, TYPES C-6, C-7 AND CQ


2-WIRE
TYPE C-6, 5 TO 50 AMPERES
$100-120$ VOLTS, $200-240$ VOLTS
TYPE C-7, 5 TO 25 AMPERES, 500-600 VOLTS


3-WIRE
TYPE C-6,5 TO 50 AMPERES
200-240 VOLTS


2-WIRE
TYPE C-6, 75 TO 600 AMPERES AND TYPE CQ, 50 TO 400 AMPERES 100-120 VOLTS, 200-240 VOLTS TYPE C-7, 50-600 AMPERES, 500-600 VOLTS


3-WIRE
TYPE C-6, 75 TO 300 AMPERES AND
TYPE CQ, 50 TO 200 AMPERES 200-240 VOLTS

CONNECTIONS OF THOMSON WATTHOUR METERS-(Continued)


2-WIRE
TYPE CQ, 50-400 AMPERES 500-600 VOLTS

THOMSON DIRECT CURRENT WATTHOUR METERS, TYPES C-6, C-7 AND CQ DIMENSIONS


TYPE C-6, 5-50 AMPERES, 2-WIRE UP TO 240 VOLTS
3-WIRE 200-240 VOLTS

Thomson Direct Gurrent Wathour Metcrs, Types C-6, C-7 and CQ
THOMSON DIRECT CURRENT WATTHOUR METERS, TYPES C-6, C-7 AND CQ

4731.1-12. Thamson Dired Current Wathour Meters, Types C-B, C-7 and CQ
THOMSON DIRECT CURRENT WATTHOUR METERS, TYPES C-6, C-7 AND CQ

TYPE C-6, 300 AMPERES TYPE CQ, 200 AMPERES


TYPE CQ, 50 AND 75 AMPERES
THOMSON DIRECT CURRENT WATTHOUR METERS, TYPES C-6, C-7 AND CQ


GENERIL ELECTR/C COMH'ANY
Thomson Direct Carrent Wathour Meters, Types C-6, C-7 and CQ 4721A-15
THOMSON DIRECT CURRENT WATTHOUR METERS, TYPES C-6, C-7 AND CQ

TYPE C-7. 75 AMPERES TYPE CQ, 50-75 AMPERES

## GENERAL ELECTRIC COMPANY

PRINCIPAL OFFICES, SCHENECTADY, N. Y.
SALES OFFICES
(Address nearest office)
BOSTON, MASS., 84 State Street
NEW YORK, N. Y., 30 Church Street
Syracuse, N. Y., Post-Standard Building.
Burfalo, N. Y., Ellicott Square Building.
New Haven, Conn., Malley Building.
PHILADELPHIA, PA., Witherspoon Building.
Baltimore, MD., Electrical Building.
Citarlotte, N. C.. Trust Building
Cifarleston, W. Va., Charleston National Bank Building.
Erie, Pa., 632 State Street.
Pittsburg, Pa., Park Buildin
Richmond, VA., 712 Mutual Building.
Roanoke, Va., Strickland Building.
ATLANTA, GA., Empire Building.
Birmingiam, Ala., Brown-Matx Building.
Macon, Ga., Grand Building.
New Orleans, La., Maison-Blanche Building.
CINCINNATI, OHIO Provident Bank Building
Columbus, Onio, Columbus Savings \& Trust Building.
Cleveland, Oho, Citizens Building.
Cilatianooga, Tenn., James Building.
Memphis, Tenn., Randolph Building.
Nasilville, Tenn., Stahiman Building.
indianapolis, Ind., Traction Terminal Building.
CHICAGO, ILL., Monadnock Building.
Detroit, Micin., Majestic Bldg. (Office of Soliciting Agt.)
St. Lours, Mo., Wainwright Building.
Kansas City, Mo., Dwight Building.
Butte, Montana, Phoenix Building.
Minneapolis, Minn., 410-412 Third Ave., North.
DENVER, COLO., First National Bank Building.
Salt Lake City, Utah, Newhouse Building.
SAN FRANCISCO, CAL., Union Trust Building.
Los Angeles, Cal., Delta Building.
Portland, Ore., Electric Building.
Seatile, Wash., Colman Building.
Spokane, Wash., Paulsen Building.

For Texas and Oklahoma business refer to
General Electric Company of Texas.
Dallas, Tex., Prætorian Building.
El Paso, Tex., Chamber of Commerce Building. Oklahoma City, Okla., Insurance Building.

## FOREIGN

Foreign Department,
Schenectady, N. Y., and 30 Church St., New York, N. Y. London Office, 83 Cannon St., London, E. C., England.

For all Canadian Business,
Canadian General Electric Company, Ltd.

# General Electric Company 

## REGULATING POLE ROTARY CONVERTERS

The extensive use of rotary converters, particularly in connection with electric lighting and industrial power plants, frequently necessitates a variable ratio between the A.C. and D.C. voltages, for charging storage
devices, however, require attention, and involve complications and expense in cable connections.

To simplify the wiring arrangements and reduce the cost of auxiliary devices, the


Fig. 1. HCB-6-500-500-270 VOLT REGULATING POLE ROTARY CONVERTER
batteries and compensating for line drop as well as for numerous other special requirements.

Heretofore, the variation of conversion ratio has been obtained by means of auxiliary apparatus such as induction regulators, or voltage varying dial switches connected to taps in the transformer windings. These

General Electric Company has developed a line of regulating pole rotary converters. In these machines the field structure is divided into two parts-a main pole and a regulating pole. The ratio between the voltages on the direct current and alternating current sides may be readily varied by varying the excitation of the regulating poles,

[^2]the only auxiliary apparatus required being a field rhesotat for controlling the exciting current. Where Automatic Regulation is required, machines may be provided with compound windings, or automatic field regulators may be used responsive to either voltage or current.

These converters are adapted for a variety of purposes where a variable conversion ratio is required, either to maintain constant D.C. voltage with varying A.C. voltage or to vary the D.C. voltage as required. Converters may be operated inverted where
range between 240 and 300 volts, to cover the usual lighting circuit requirements. In design, they are similar to standard rotary converters with the exception that the regulating poles are located next to the main pole pieces and a slightly different form of pole piece bridge is used for the main poles, in order to allow the auxiliary poles to be readily removed or assembled.

## Principle of Operation

Inasmuch as the characteristics of this type of machine are novel, the following explanation


Fig. 2. HCB-10-1000-300-240/300 VOLT REGULATING POLE ROTARY CONVERTER
it is required to furnish constant or variable A.C. voltage from a D.C. source. Where converter and inverted converter operation are desired, an opposite direction of rotation is required for the inverted operation.

Converters of this type are built in capacities from 300 kw up to 3000 kw . A list of standard sizes is given on page 7 . which are constructed to give a voltage
of the principles involved is given to facilitate a clear understanding of its operation.

Consider a machine with a field structure as shown in Fig. 3, resembling in appearance a machine with commutating poles, but with the brushes so set that one of the regulating poles adds its flux to that of one main pole. cutting the conductors between two direct current brushes. The regulating pole is shown with
a width equal to 20 per cent. of that of the main pole. To obtain definite figures, it will be assumed that the machine at normal speed, with the main poles excited to normal density, but with no excitation on the regulating poles, gives 250 volts D.C. Then with each regulating pole excited to the same density as the main poles, and with a polarity corresponding to that of the main pole in the same section between brushes, the D.C. voltage will rise to 300 volts at the same


Fig. 3
speed, since the total flux cutting the conductors in one direction between brushes has been increased 20 per cent. If, on the other hand, the excitation of the regulating poles is reversed and increased to the same density as that of the main poles, the D.C. voltage will fall to 200 volts, since in this case the regulating poles give an e.m.f. opposing that generated by the main poles.

Now if the machine is equipped with collector rings; i.e., if it is a converter, this method of varying the D.C. voltage from 200 volts to 300 volts does not give nearly as great a variation of the A.C. voltage; in fact the A.C. voltage will be the same when delivering 200 volts as when delivering 300 volts D.C., if the main field excitation is the same. This may be seen by reference to Fig. 4, which is a diagram of the A.C. voltage developed in the armature windings by the two sets of poles. The horizontal line OA represents the A.C., e.m.f. generated by the main poles alone, with the regulating poles unexcited; that is, when delivering 250 volts D.C. For a six-phase converter OA measures about 180 volts diametrical,
that is between electrically opposite collector rings. If now the regulating poles are excited to full strength, to bring the D.C. pressure up to 300 volts; the A.C. voltage generated by the regulating poles will be $90^{\circ}$ out of phase with that generated by the main poles (since they are spaced midway between the main poles), and will be about 40 volts as shown by the line AB . The resultant A.C. volts across the collector rings will be represented by the line $O B$ with a value equal to 184 .

If, on the other hand, the regulating poles are reversed at full strength, to cut the D.C. voltage down to 200 volts, the A.C. voltage of the main and regulating poles will be OA and $A C$ respectively, giving the resultant $O C$ equal to $O B$ with a value of 184 volts,

Hence the D.C. volts may be either 200 or 300 volts with the same A.C. volts, and if the main field is kept constant, the D.C. volts may range between 200 and 300 volts. while the A.C. volts vary only between 180 and 184 volts.

The A.C volts can be kept constant through the full range of D.C. volts by changing the main field so as always to give an equal and opposite flux change to that of the regulating field. A constant total flux may thus be obtained equal to the radius of the cir-


Fig. 4
cle BAC (see Fig. 4.) In this case the line OA, representing the main field strength, will equal $O B$ when the regulating field is unexcited, and 250 volts can only be obtained at this adjustment. This method of operation gives unity power factor with a constant impressed e.m.f. of 184 volts A.C., with a range of D.C. voltage from 200 to 300 volts.

## Construction Used

In practice machines are not built as indicated diagrammatically: that is, with

## 4723-4 Regulating Pole Rotary Converters

regulating poles spaced midway between the main poles, because a better construction is obtained by placing the regulating pole closer to the corresponding main pole, as shown in Fig, 5 Except for magnetic leakage from the main pole to the regulating pole when the latter is opposed to the former, $i . e$, when the D.C. voltage is being depressed,


Fig. 5
the effect on the D.C. voltage remains unchanged, by the altered location of the regulating poles. The effect on the A.C. voltage is, however, somewhat altered. Fig. 6 shows the effect on the A.C. voltage of varying the regulating field strength of a machine, proportioned according to Fig. 5. from a density equal to that in the main poles to the same density reversed, the main field strength remaining constant. The D.C. voltage in this case varies from 30 per cent,


Fig. 6
above that produced by the main field alonc to 30 per cent. below, or from 325 to 175 volts, while the A.C. voltage varies only from 200 to 175 volts.
To keep the A.C. voltage constant with such a machine the main field must be strengthened as the regulating field is weakened or reversed to reduce the D.C. voltage. This strengthening increases the core loss,
particularly on low D.C. voltages, whick. however, are rarely required, hence a machine proportioned as in Fig. 5 would not be operated through so wide a range as 175 to 325 volts. Assume therefore that the range is 240 to 300 volts, and that at the highest voltage both main and regulating fields have the same density, presenting to the armature practically one continuous pole face of uniform flux intensity. The diagram of A.C. component voltages to give constant A.C. resultant voltage across the rings for this case, is shown in Fig. 7.


Fig. 7
At 300 volts D.C. the main field produces au A.C. voltage OA. and the regulating field a voltage $A B$, with a resultant $O B$ equal to about 200 volts A.C. At 270 volts D.C. the main field produces an A.C. voltage $O A$ and a regulating field voltage $A B$, giving a resultant A.C. voltage $O B$, equal to 200 volts. Similarly, at 240 volts D.C. the main field produces an A.C. voltage OA, and the regulating field (now reversed) produces the counter voltage AB , giving the resultant OB again equal to 200 volts. It will be noted that, theoretically, the main field strength must be increased about 15 per cent. above its value at 300 volts D.C in order to keep the D.C. voltage at 250 volts.

## Wave Shape

When the design of this machine was first considered some criticism was aroused, because, it was stated that relatively higb losses would be experienced, due to the distortion of the voltage wave shape. These ideas originated from a theoretical discus. sion of the characteristics of the machine and were shown to be untenable when the proper theoretical treatment was used. The best answer to these objections lies, however
in the fact that the machines actually built have proved efficient in operation and have not shown any greater temperature rise than is experienced with standard machines.

## Commutation

Another objection put forward was that the commutation of the machine would be bad if not impossible, but this has been demonstrated as untrue. By properly proportioning the pole pieces and running the armature from the brushes toward the main poles
with delta primaries should not be used. Three-phase regulating pole converters can use the same options of transformer connections as fixed ratio converters.

## Starting

Regulating pole converters can be started either A.C or D.C. with the same facility as standard rotary converters.

## Machines In Service

Two regulating pole converters are installed in the new plant of the Indiana Steel Co..


Fig. 8. HCB-10-1000-300-240/300 VOLT REGULATING POLE ROTARY CONVERTER
as shown in Fig. 3 or 5, the slight weakening of the main field with increasing D.C. voltage does not appreciably affect commutation.

## Transformer Connections

Six-phase machines may be supplied from transformers with double delta secondaries or if a D.C. neutral is desired for three-wire service, diametrical connections may be used, provided the transformer primaries are Y connected. Diametrical secondaries
at Gary, Indiana, and have a capacity of 2000 kw, each with a voltage range of 200 to 300 volts. The generating plant is driven by gas engines with a storage battery auxiliary. The converters are supplied with automatic field varying apparatus responsive to changes in load on the A.C. generators, so arranged that the battery charges on light loads and drives the converters inverted at heavy loads, supplying power to the A.C. system

## 4723-6 Regulating Pole Rotary Converters

and relieving the gas engine driven units of $a$ considerable portion of the load fluctuations.

Four 1000 kw. machines for electric lighting service, with a voltage range of 240 to 300 volts, have been installed by the Brooklyn Edison Co.

The Potomac Electric Power Co., of Washington, D.C., is using two 1000 kw . converters for supplying current oo the Washing-
appreciated. The converter will be connected between the Niagara Falls transmission line and the Company's railway circuit, and provided with automatic regulating devices so that a practically constant load will be drawn from the transmission line, the load fluctuation being taken care of by the Company's own plant.

The Chicago Edison Company is operating a 500 kw . converter with a range of 230 to


Fig. 9. HCB-6-500-500-240/300 VOLT REGULATING POLE ROTARY CONVERTER
ton Railway \& Electric Co. By varying the D.C. voltage, any desired subdivision of load between the various substations can be obtained.

The Rochester Railway and Light Company have installed a 1500 kw . converter in order to regulate the power purchased from Niagara Falls, the balance of power required being generated in the Company's own plant. By this means not only will a high load factor be obtained but constant load will be drawn from the Supply Company, the importance of which will be readily

300 volts. This machine was tested through a range of 200 to 325 volts, and gave excellent commutation at all voltages and currents up to 50 per cent. overload. It is required to carry 150 kw . out-of-balance three-wire load of which the neutral is derived from transformers diametrically connected.

The machines already installed have given most satisfactory results in service, and the development of this type of converter will therefore meet a variety of special conditions for which good engineering methods have not hitherto been available.

The following is a list of machines installed and on order:

| kating | customer | $\underset{\substack{\text { No. INo. } \\ \text { STALLED }}}{ }$ | $\underset{\text { ORDER }}{\text { NO. ON }}$ |
| :---: | :---: | :---: | :---: |
| HCB $-6-500-500-225 / 300$ volts | Buffalo G.E. Co. | 2 |  |
|  | Commonwealth Edison Co., Chicago | 1 |  |
| HCB-14-500-514-245/260 volts | Rochester Rwy, and Ltg. Co. |  | 1 |
| HCB-8-1000-375-575/600 volts | Potomac Elec.-Pwr. Co., Washington, D.C. | 2 | 1 |
| HCB-10-1000-300-240/300 volts | Potomac Elec.-Pwr. Co., Washington, D.C. | 1 | 1 |
|  | Brooklyn Edison Co. | 4 |  |
| HCB-12-1000-400-250/275 volts | Schenectady Works |  | 1 |
| HCB-10-1500-300-525/600 volts | Rochester Rwy. and Ltg. Co. | 1 |  |
| HCB-14-1500-214-240/300 volts | N. Y. Central R. R. Co. | 1 |  |
| HCB-18-2000-166-200/300 volts | Indiana Steel Co., Gary, Ind. | 2 |  |

The following ratings are standard:

$$
\begin{aligned}
& \mathrm{HCB}-6-500-500-240 / 300 \text { volts } \\
& \mathrm{HCB}-5-750-375-240 / 300 \text { volts } \\
& \mathrm{HCB}-10-1000-300-240 / 300 \text { volts } \\
& \mathrm{HCB}-14-1.500-214-240 / 300 \text { volts } \\
& \mathrm{HCB}-15-2000-166-240 / 300 \text { volts }
\end{aligned}
$$

## - GENERAL ELECTRIC COMPANY

PRINCIPAL OFFICES, SCHENECTADY, N. Y.

## SALES OFFICES:

(Address nearest office.)
BOSTON, MASS., 84 State Street.
NEW YORK, N. Y., 30 Church Street.
Syracuse, N. Y., Post-Standard Building.
Buffalo, N. Y., Ellicott Square Building.
New Haven, Conn., Malley Building
PHILADELPHIA, PA., Witherspoon Building,
Baltimore, Mo., Continental Trust Building.
Charlotte, N. C., Trust Building.
Charleston, W. Va., Charleston National Bank Mldg. Pittsburg, Pa.. Park Building.
Richmond, Va., 712 Mutual Building.
ATLANTA, GA.. Empire Building. Macon, Ga., Grand Building.
New Orleans, La., Maison-Blanche Building. CINCINNATI, OHIO, Provident Bank Building. Columbus, Omo, Columbus Savings \& Trust Building. Cleveland, Oho, Citizens Building.
Nasinille, Tenn., Stahlman Building.
Indiana polis, Ind., Traction Terminal Building.
CHICAGO. ILL., Monadnock Building.
Detroit, Mici., Majestic Bldg. (Office of Soliciting Agt.)
St. Lours, Mo., Wainwright Building
Kansas City, Mo., Dwight Building
Butte, Montana, Phoenix Building.
Minneapolis, Minn., 410-412 Third Avenue, North
DENVER, COLO., Kittredge Building.
Salt Lake City, Utain, Newhouse Building.
SAN FRANCISCO, CAL., Union Trust Building.
Los Angeles, Cal., Delta Building.
Portland, Ore., Electric Building.
Seattle, Wasn., Colman Building
Spokane, Wasin., Paulsen Building.
For Texas and Oklahoma Business refer to General Electric Company of Texas,

Dallas, Tex., Praetorian Building.
EI Paso, Tex., Chamber of Commerce Building. Oklahoma City. Okla., Insurance Building.

## FOREIGN:

Foreign Department
Schenectady, N. Y., and 30 Church St., New York, N. Y. London Office, 83 Cannon St., London. E. C., England.

For all Canadian Business.
Canadian General Electric Company, Ltd..


# General Electric Company <br> Schenectady, N.Y. 

SMALL MOTOR DEPARTMENT
April, igIo Copyright, 1910
by General Electric Company
*Bulletin No. 4727

## SEWING MACHINE MOTORS

## FOR FAMILY SIZE MACHINES

Of all the mechanisms devised to lighten the labors of the housewife the sewing machine is perhaps the best example. Since 1845, when Howe first produced a satisfactory machine, vast numbers of sewing machines have been made and marketed for all conceivable purposes. Of these, probably the
of small size, comparatively easy application and reasonable cost is undoubtedly the most favored in all dwellings where electric power is available.

To meet the demand for a motor for this service, the General Electric Company has recently perfected a new design of small


DISASSEMBLED VIEW OF MOTOR AND BASE FOR HIGH ARM SEWING MACHINE
greatest number sold are those designed for household use.

With the advantages of convenient, uniform and rapid sewing by machine there yet comes the unpleasant and sometimes dangerous fatigue engendered by the long continued pumping action of the feet upon the sewing machine treadle. Many are the auxiliary devices proposed to avoid this laborious operation of foot power supply. Among all such, the modern electric motor
motor and utilized this advanced construction in the apparatus illustrated and described herewith. It is intended for ordinary domestic use-usually classified as for intermittent service. The motor is fitted with perforated covers protecting the internal revolving parts and still providing for proper ventilation of the windings.

On account of the lack of uniformity in the detail design of the different makes of sewing machines, we have found it desirable

[^3]Note.- The data in this publication are for the convenience of customers. and every effort is made to avoid error, but this Company does not guarantee their correctness, nor does it hold itself responsible for any errors of omissions in this publication,
Subject to change without notice.
to offer two varicties of motors. These are known as Forms HC and KC for the alternaling current type (DSS) and Forms H and K for the direct current type (DSD).

The Forms HC and H motors are applicable to most makes of high arm sewing machines of either the drop head or stationary head

driving belt, one rubber belt, ornamental cover, serew driver and four wood screws.

Form KC or K motor complete with bracket, belt tightener, indicating snap switch, 10 feet of cord with attaching plug, baseplate. treadle pull, one leather driving belt, one rubber belt, ornamental cover, screw driver and four wood screws.

The table on page 4 gives the applications recommended.

Full and clear instructions for assembly are shipped with each outfit. When the outfit has been installed in accordance with the directions and the motor connected to the source of electric supply by means of the flexible cord and plug, the operator can start the machine by turning the snap switch and thereafter govern the speed of the needle bar to a nicety by gently increasing or diminishing the pressure of the
styles. On some machines, owing to peculiarities in the design of the heads, the H motors cannot be applied. For these cases, the Forms KC and K motors are offered. Outlines of the Forms HC and KC motors are shown herewith.

The Forms KC and K motors. while particularly intended for use with low arm, automatic type selving machines, may be applicd to the high arm machines as well. Both outfits are complete, but the high arm type is slightly easier to install; it does not overhang the sewing machine table and is therefore preferable for all applications where it may be applied.

The accompanying illustrations show typical applications of the high and low arm types.

The complete outfits consist of:
Form HC or H motor complete with bracket, belt tightener, indicating snap switch, 10 feet of cord with attaching plug, baseplate, bobbin winder, treadle pull, one leather


TYPE DSS $1 / 30$ H.P. FORM KC MOTOR
the machine or increasing the speed. Reduction of pressure on treadle loosens the belt and reduces the speed.

To stop the machine quickly, remove all pressure from the treadle and the brake will be set automatically against the handwheel, stopping the needle immediately.

The Forms HC and H motors are fitted with a bobbin winder designed to take all forms of bobbins. The Forms KC and K motors are intended for so called automatic or chainstitch machines and therefore are not furnished with bobbin winder. When they are used with high arm sewing machines, if the winder furnished with the machine is one ordinarily operated by contact with the machine belt, we provide an elastic rubber belt which may be snapped over the motor pulley and used to drive the winder direct. When the winder is driven by friction con-


TYPE DSS $1 / 30$ H.P. FORM HC MOTOR - HIGH ARM TYPE
tact with the sewing machine handwheel, the use of the motor drive makes no change in the method of operation.

Not all sewing machines run in the same direction, hence the need of a reversible motor. All General Electric sewing machine motors can be made to run in either direction, in the following manner: Alternating current motors.-Remove the switch cover and the two machine screws holding the switch. It will then be observed that two of the wires leading to the back of the switch are colored. The connections of these should
be interchanged and the parts reassembled. Direct Current Motors.-The leads connected to the brush-holders should be in-


TYPE DSS $1 / 30$ H.P. FORM KC MOTOR - LOW ARM TYPE FRONT VIEW
terchanged and the connections properly tightened. Unless otherwise ordered, a regular stock motor will be supplied connected for clockwise rotation, i.e., producing rotation of the top of sewing machine handwheel towards the operator.


TYPE DSS $1 / 30$ H.P. FORM KC MOTOR - LOW ARM TYPE SIDE VIEW

The illustration on page 6 shows the appearance of the sewing machine when closed and with the motor removed. This is a very easy operation; it is only necessary to twist and

## 4727-4 Sewing Machine Motors

The following applications are recommended for the sewing machines listed:

| Make of Sewing Machine | Style | Rotation | Motor | Make of Sewing Machine | Style | Rotation | $\underset{\text { Form }}{\text { Motor }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Advance | DH | C.W. | H | National Seamstress | SH | C.W. | H |
| Advance | SH | C.W. | H | National Seamstress | DH | C.W. | H |
| Alliance | DH | C.W. | H | Navalle | DH | C.W. | H |
| Albion | SH | C.W. | H | New Companion | SH | C.W. | H |
| Albion | DH | C.W. | H | New Companion | DH | C.W. | H |
| American | SH | C.W. | H | New Adelaid | DH | C.W. | H |
| American Union | DH | C.W. | H | New Boston | SH | C.W. | H |
| Avon | SH | C.W. | H | New Crown | SH | C.W. | H |
| Avon | DH | C.W. | H | New Crown | DH | C W. | H |
| Beacon | DH | C.W. | H | New Daytonia | DH | C.W. | H |
| Boston | DH | C.W. | H | New Home | SH | C.W. | H |
| Burdick | SH | C.W. | H | New Home | DH | C.W. | H |
| Burdick | DH | C.W. | $\stackrel{\mathrm{H}}{\mathrm{H}}$ | New Home | Auto- | C.C.W. | K |
| Capital | DH | C.W. | H | New Home | matic | C.C.W |  |
| Challenge | DH | C.W. | H | New Idea | DH | C.W. | H |
| Chelsea | DH | C.W. | H | New Ideal | SH | C.W. | H |
| Crescent Rotary | DH | C.W. | H | New Rose | DH | C.W. | H |
| Crown Crescent | DH | C.W. | H | New Royal | DH | C.W. | H |
| Champion | SH | C.C.W. | H | Norwood | DH | C.W. | H |
| Climax | SH | C.W. | H | Outlet | DH | C.W. | H |
| Collins | DH | C.W. | H | Outlet Special | DH | C.W. | H |
| Commonwealth | DH | C.W. | H | Peerless | DH | C.W. | H |
| Continental | SH | C.W. | H | Pemberton | DH | C.W. | H |
| Davis D | DH | C.W. | H | Princess Special | DH | C.W. | H |
| Davis Rotary | SH | C.W. | K | Paragon | DH | C.W. | H |
| Davis Rotary | DH | C.W. | K | Pilgrim | DH | C.W. | H |
| Davis UF | SH | C.W. | H | Princess | DH | C.W. | H |
| Davis UF | DH | C.W. | H | Queen Crescent | DH | C.W. | H |
| Davis VF | SH | C.W. | H | Rose | DH | C.W. | H |
| Davis VF | DH | C.W. | H | Service | DH | C.W. | H |
| Davis Improved (Vertical |  |  |  | Seigal | DH | C.W. | $\stackrel{\mathrm{H}}{\mathrm{H}}$ |
| feed) | DH | C.W. | H | Seigal Special | DH | C.W. |  |
| Daytonia | DH | C.W. ${ }^{\text {C }}$ | $\stackrel{\mathrm{H}}{\mathrm{H}}$ | Singer | SH | C.W. | $\stackrel{\mathrm{H}}{\mathrm{H}}$ |
| Demorest | SH | C.C.W. | $\stackrel{\mathrm{H}}{\mathrm{H}}$ | Singer | DH | C.W. | H |
| Demorest | DH | C.C.W. | $\xrightarrow{\mathrm{H}}$ | Singer Rotary | $\underset{\text { DH }}{\text { DH }}$ | C.C.W. C.W. C. | K |
| Domestic | SH | C.C.W. | H | Shetucket Standard Rotary | $\stackrel{\mathrm{DH}}{\mathrm{SH}}$ | C. C C.W. | H |
| Domestic | $\mathrm{SH}^{\mathrm{SH}}$ | C.C.W. | $\xrightarrow{\mathrm{H}}$ | Standard Rotary | SH | $\xrightarrow{\text { C.C.C.W. }}$ | ${ }_{\mathrm{H}}^{\mathrm{H}}$ |
| Eldredge Rotary | DH | C.W. | H | Standard Vibrating | SH | C.C.W. | H |
| Eldredge Special | DH | C.W. | H | Standard Vibrating | DH | C.C.W. | H |
| Eldredge "B" Improved | DH | C.W. | H | Stearling | DH | C.W. | H |
| Eldredge Automatic | SH | C.C.W. | K | Steinway (Vibrating) | SH | C.W. | $\stackrel{\mathrm{H}}{4}$ |
| Eldredge Automatic | DH | C.C.W. | K | Sterling ( | DH | C.C.W. | H |
| Expert | SH | C.W. | H | Unique (Davis Style H) | DH | C.W. | H |
| Expert | DH | C.W. | H | Victory | SH | C.W. | H |
| Franklin | DH | C.W. | H | Velox | DH | C.W. |  |
| Favorite | DH | C.W. | $\stackrel{\mathrm{H}}{\mathrm{H}}$ | Vindex B | $\mathrm{SH}_{\text {SH }}$ | C.W. | H |
| Fireside | DH | C.W. | $\stackrel{\mathrm{H}}{\mathrm{H}}$ | Wanamaker | SH | C.W. | $\xrightarrow{\mathrm{H}}$ |
| Household | SH | C.C.W. | H H | Wanamaker | DH | C.C.W. | H |
| Household Howard | DH | C.C.W. | $\xrightarrow{\mathrm{H}}$ | Wheeler \& Wilson | SH | C.C.W. | K |
| Howard | DH | C.W. | H | White Rotary | SH | C.C.W. | H |
| Howe No. 1 | DH | C.W. | H | White Rotary | DH | C.C.W. | H |
| Howe No. 2 | DH | C.W. | H | White Vibrating | SH | C.W. | K |
| Improved New Companion | DH | C.W. | H | White Vibrating | DH | C.W. | K |
| Kruse \& Murphy | Auto- | C.C.W. | K | Wilcox \& Gibbs | SH | C.C.W. | K |
| King | DH | C.W. | H | Will C Free Vibrating | DH | C.W. | H |
| Mayflower | SH | C.W. | H | Winner | DH | C.W. | H |
| Minnesota | DH | C.W. | H | Yale | DH | C.W. | H |
| Monarch | DH | C.W. | H | Youths' Companion | DH | C.W. | H |

Note.-Form HC also applies where " H ", is indicated.
Form KC also applies where " K " is indicated.
Rotation-C.W. indicates clockwise rotation of motor pulley-corresponding to motion o top of sewing machine handwheel toward the operator.
Rotation-C.C.W. indicates counter-clockwise rotation of motor pulley - corresponding ts motion of top of sewing machine handwheel away from the operator.
lift the latch when the motor may be lifted out of its swiveling base plate and placed safely away, thereby protecting it from dust and accident. An ornamental cover is provided for the base plate.


View with Motor Turned on Swivel Base
constant speed, and the speed variation of the sewing machine is not dependent upon the introduction of resistance in the circuit with its consequent waste of power. Furthermore, as the motor itself runs constantly at


View with Motor Aligned with Sewing Machine

SEWING MACHINE EQUIPPED WITH A DSD $1 / 30$ H.P. FORM HC MOTOR

Owing to the widely varying conditions of operation it is impossible to give accurate figures with regard to the power required to drive various sewing machines, but under average conditions it is safe to assume that
its maximum speed the immediate acceleration of the sewing machine to full speed is assured, when the greatest working capacity is desired.

Satisfactory operation of direct current


ACCESSORY PARTS OF SEWING MACHINE MOTOR
when operating the ordinary family sewing machine the direct current motor will require about 45 watts, which is a little less than the power consumed by a $16 \mathrm{c} . \mathrm{p}$. incandescent lamp. The 60 cycle alternating current motor requires about 55 watts.

The motor runs normally at approximately
motors may be expected where the voltage of the supply circuit does not vary more than 10 per cent. either way from the normal voltage rating as stamped on the motor name plate. In the case of alternating current motors the maximum permissible variation is 5 per cent. of either frequency or voltage

## 4727-6 Sewing Machine Motors

above or below normal. Where both frequency and voltage vary, the sum of the two variations should not exceed 5 per cent.

The catalogue numbers and ratings given below apply to family size sewing
machine motors. The catalogue numbers include all parts comprising complete outfits.

In ordering, give Cat. No. of outfit, make and style of sewing machine, and direction of rotation of top of sewing machine handwheel.


BASE PLATE WITH ORNAMENTAL COVER

FAMILY SIZE SEWING MACHINE MOTORS
ALTERNATING CURRENT-60, 40 AND 25 CYCLES-SINGLE-PHASE

| catalogue no. |  | Type | H.P. | Speed (Sync.) | Cycles | Volts | approx. Weight in pounds |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Form IIC } \\ \text { Motor } \end{gathered}$ | $\begin{gathered} \text { Form KC } \\ \text { Motor } \end{gathered}$ |  |  |  |  |  | Net |  | Shipping |  |
|  |  |  |  |  |  |  | Form HC | Form KC | Form HC | Form KC |
| 68148 | 68154 | DSS | 1/30 | 1800 | 60 | 110 | 19 | 18 | 30 | 29 |
| 68149 | 68155 | DSS | 1/30 | 1800 | 60 | 220 | 19 | 18 | 30 | 29 |
| 68150 | 68156 | DSS | 1/30 | 2400 | 40 | 110 | 20 | 19 | 31 | 30 |
| 88464 | 88465 | DSS | 1/30 | 2400 | 40 | 120 | 20 | 19 | 31 | 30 |
| 68151 | 68157 | DSS | 1/30 | 2400 | 40 | 220 | 20 | 19 | 31 | 30 |
| 68152 | 68158 | DSS | 1/40 | 1500 | 25 | 110 | 20 | 19 | 31 | 30 |
| 68153 | 68159 | DSS | $1 / 40$ | 1500 | 25 | 220 | 20 | 19 | 31 | 30 |

CONTINUOUS CURRENT-SHUNT WOUND

| catalogue no. |  | Type | H.P. | Approx. Speed | Volts | APPROX. WEIGHT IN POUNDS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Form H Motor | Form K Motor |  |  |  |  | Net |  | Shipping |  |
|  |  |  |  |  |  | Form H | Form K | Form H | Form K |
| 68144 | 68146 | DSD | 1/30 | 1700 | 110 | 19 | 18 | 30 | 29 |
| 68145 | 68147 | DSD | 1/30 | 1700 | 220 | 19 | 18 | 30 | 29 |

Unless otherwise specified, motors are furnished to run the handwheel toward the operator.

The motors listed above are not powerful enough for dressmaking and tailoring or


SEWING MACHINE EQUIPPED WITH A DSD $1 / 30$ H.P. FORM H MOTOR - VIEW WITH MOTOR TURNED ON SWIVEL BASE


DSD $1 / 30$ H.P. FORM H MOTOR - SIDE VIEW
for light manufacturing purposes, as sewing machines for these uses are considerably heavier and require more power than those designed for ordinary domestic purposes.

For applications requiring power in excess of $1 / 30$ horse-power see separate publications.

The new family size sewing machine motors combine strength, reliability, simplicity of


DSS $1 / 30$ H.P. FORM HC MOTOR INSTALLED ON SEWING MACHINE
application, facility and economy of operation. They are gracefully designed, carefully made, finely finished and leave nothing to be desired. Persons having once tried this method of drive find it absolutely indispensable.

GENERAL ELECTRIC COMPANY

PRINCIPAL OFFICES, SCHENECTADY, N. Y.
SALES OFFICES:
(Address nearest office.)
BOSTON, MASS., 84 State Street.
NEW YORK, N. Y., 30 Church Street.
Syracuse, N.' Y., Post-Standard Building.
BuFfalo, N. Y., Ellicott Square Building.
New Haven, Conn., Malley Building.
PHILADELPHIA, PA., Witherspoon Building.
Baltmore, Mo., Electrical Building.
Cifarlotte, N.C., Trust Building
Charleston, W. Va., Charleston National Bank Bldg.
Pittsburg, Pa., Park Building.
Ricimond, Va., 712 Mutual Building.
Roanoke, Va., Strickland Building.
ATLANTA, GA., Empire Building.
Macon, Ga., Grand Building.
New Orleans, La, Maison-Blanche Building
CINCINNATI, OHIO, Provident Bank Building
Columbus, Ohio, Columbus Savings \& Trust Building
Cleveland, Ohio, Citizens Building.
Chattanooga, Tenn., James Building
Mempins, Tenn., Randolph Building.
Nashymile, Tenn., Stahiman Building
Indianarolis, Ind., Terminal Traction Building.
CHICAGO, ILL., Monadnock Building
Detroit, Mich., Majestic Bldg. (Office of Soliciting Agt.)
St. Lous, Mo., Wainwright Building.
Kansas City, Mo., Dwight Building.
Butte, Montana, Phoenix Building.
MINNEAPOLIS, MINN., 410-412 Third Avenuc, North.
DENVER, COLO., Kittredge Building.
Salt Lake City, Ütah, Newhouse Building
SAN FRANCISCO, CAL., Union Trust Building.
Los Angeles, Cal., Delta Building.
Portland, Ore., Electric Building.
Seattle, Wasil., Colman Building.
Spokane, Wasir, Paulsen Building.
For Texas and Oklahoma Business refer to General Electric Company of Texas, Dallas, Tic Company of Buildin Dallas, Tex., Praetorian Building. Oklahoma City, Okla., Insurance Building.

## FOREIGN:

Foreign Department
Schenectady, N. Y., and 30 Church St., Now York, N. Y London Office, 83 Cannon St., London, E. C., England.

For all Canadian Business,
Canadian General Electric Company, Ltd.,
Toronto, Ontario

## General Electric Company Schenectady, N.Y.

SUPPLY DEPARTMENT

March, 1010

## THOMSON SINGLE-PHASE HIGH TORQUE WATTHOUR METERS

The General Electric Company manufactures three types of Single-phase High Torque Watthour meters, as follows:

Type I metal cover, for house installation.
Type IS-2 metal cover, for switchboard use.

Accuracy, the prime requisite of a satisfactory meter, means not only initial accuracy under ideal operating conditions, but also continual accuracy over long periods of use, and under those variations from normal


THOMSON HIGH TORQUE WATTHOUR METER-TYPE I

Type IS-3 glass cover, for switchboard use.
These meters, which are constructed on the induction principle, differ in many respects from their predecessors, and contain the essential features of an ideal meter, as each change in design has been in keeping with the rapid advancement in the art.
conditions that are commonly experienced in central station practice. In the Singlephase High Torque Watthour meters, the General Electric Company has succeeded in obtaining a continued maintenance of the initial accuracy under all ordinary circumstances.

[^4]
## 4728-2 Thomson Single-Phase High Torque Wathour Meters

## GENERAL DESCRIPTION-TYPE I WATTHOUR METERS

The appearance of the General Electric High Torque Watthour meter, Type $I_{\text {, is }}$ particularly pleasing. It is small, compact and simple, although strong and durable in construction, and is exceptionally light in weight.

The mechanism is contained in a rectangular case which is provided with three


THOMSON HIGH TORQUE WATTHOUR METER WITH COVER REMOVED
supporting lugs or feet. The cover is pressed sheet metal and is light and stiff. Two rectangular windows sealed into the cover provide means for observing the register and meter disk.

## MECHANICAL FEATURES

## Register

The meter register is of the four dial type reading directly in kilowatt hours. One complete revolution of the most rapidly moving pointer on the Type I meter equals 10 kilowatt hours.

No multiplying constants are used on 60 cycle meters of 15 kw . capacity or less, nor on 40 or 50 cycle meters of 10 kw . or less. On meters of larger capacities a constant of 10 or multiple thereof is used. This decimal system renders possible the use of
the same unit (the kilowatt hour) for all registers, and the same value per revolution of each pointer.

## Cover and Sealing

The cover is held by two studs and wing nuts which firmly clamp it down on a felt packing, making a dust-proof and insectproof joint. The disk and register windows are set in putty, thus augmenting the dustproof qualities.

The meter is sealed by passing a single sealing wire through the wing nuts and their respective studs. This method of sealing is extremely simple and convenient and positively prevents tampering.

## Binding Posts

The binding posts in meters up to and including 100 amperes are located at the sides near the top of the case. Meters having a capacity in excess of 100 amperes have binding posts at the sides near the bottom of the case. Fibre and felt guards secured to the case at the point where the wires enter prevent introduction of dust, etc., and insulating bushings are provided at the lead-ing-in holes. Both sides of the line are carried through the meter in all capacities up to and including 100 amperes.

## Accessibility

The entire mechanism is assembled upon a skeleton casting or frame which in turn is fastened to the meter case. By removing two retaining screws and the two sealing studs, the frame and mechanism can be removed for inspection or repair.

By removing the register and pivot, the moving element can be taken out. It is unnecessary to change the position of the magnets during this operation and therefore full load calibration is unaffected.

An automatic dog, between the worm wheel and register, permits removal and replacement of the register without in any way affecting the proper mesh of worm and worm wheel.

The two permanent magnets are fastened rigidly together and by loosening two screws, may be removed as a unit from the supporting shelf.

## Jewels and Pivots

Almost any material if well polished will give, initially, low friction, and, therefore, prove satisfactory as a bearing. But for satisfactory continuous operation this condition of low friction must be maintained, and to secure this the jewel and pivot must be of the lhardest material and possess the highest possible polish. The eastern sapphire and the diamond have proved to be the only materials which give satisfactory service in integrating wattmeters. The greatest care is exercised in selecting the stones used in the General Electric Company's meters, and they are cut, polished and inspected by skilled workmen.

The jewel is set in a brass plug which in turn rests on a compression spring. The strength of each spring is carefully tested by a high and low limit gauge and all springs not within the proper limits are rejected.

The pivots are made from the highest grade of piano wire, drawn under such enormous pressure that the finest grain is obtained. These pivots are glass hardened and polished.

## Rotating Element

The rotating element consists of an aluminum disk mounted on a small bronze shaft. The lower end of the shaft carries a removable steel pivot, while the upper end contains a suitable worm for transmitting the disk rotation to the register.

## Shipping Device

For protection during shipment or any subsequent transportation these meters are provided with a clamping device which holds the moving element securely, at the same time lifting it entirely free from the jewel bearing. This clamping device consists of a
brass cap which is normally drawn down and held by the jewel screw against the force of a lifting spring. When the cap is drawn down, the moving element is free to rotate. When the jewel screw is backed out, the cap is released, and, because of the spring, lifts the moving element and holds it firmly.

## ELECTRICAL FEATURES

## Shielding

These meters are so designed that the magnetic circuit is practically closed upon itself, and stray fields which might tend to demagnetize the magnets are reduced to a minimum.
The magnets are further protected by their position; they are some distance from the coils, and the plane in which they lie is at right angles to any projected field.

## Prevention of Creeping

All General Electric induction meters are designed so as to prevent "creeping" or rotating on potential alone. The disk contains two small holes placed near the periphery and diametrically opposite each other. These holes increase the resistance to the flow of the eddy currents in the disk. When these openings are in the neighborhood of the potential pole, any tendency to rotate on potential alone is overcome and the disk is therefore prevented from rotating more than half a revolution. When current is flowing in the series coils, rotation of the disk is in no way affected, nor the accuracy of the meter impaired.

## Light Load Adjustment

Light load accuracy is highly important in all meters, as a very large portion of the central station's revenue is derived from the individually small, long hour demand of its customers. That the best results be obtained, it is essential that means be provided for controlling light load accuracy, and the devices used must be simple and convenient, as their adjustment should easily be accomplished by inspectors.

## 4728-4 Thomson Single-Phase High Torque Watthour Meters

These meters are provided with a light load adjustment or starting plate, consisting of a small sliding rectangular conductor placed between the potential coil and the disk. When this rectangular conductor is moved from its central position in the direction of rotation of the disk, the torque produced is positive; if moved in the opposite direction, the torque produced is negative. A lever is provided for moving the plate backward or forward over the meter disk, thus permitting a wide adjustment. The letters " $S$ " and " $F$ " are cast in the meter frame close to the lever arm indicating which way to move the lever for "slow" or "fast."

## TORQUE

The importance of high torque, or turning moment, is not generally appreciated at its true value.

A meter should theoretically do no work except the generation of eddy (Foucault) currents in the disk. This is possible, however, only in theory; in practice, two classes of work are done, first, the generation of eddy currents, and, second, the overcoming of friction. The first varies according to the law of the perfect meter, but friction does not; hence, variations of friction produce inaccuracy. It is obvious that the work done according to the law of the meter should be very large compared with the work which is not, i.e., friction. The variable factor will then represent a variation on only a small proportion of the total energy expended.

Reduced to its practical elements this means that to retain accuracy for a long period and without depreciation in value, a meter must be so constructed as to do a relatively large amount of work in the generation of eddy currents. In other words, a high torque, permitting a heavy drag or load, is essential to permanent and sustained accuracy. The factor of "Torque per Unit Weight" should also be of high value, in order that errors due to friction shall be negligible. Both of these requirements can be obtained only by
the careful proper proportioning of the various elements, and have been fully met in the Thomson High Torque Watthour meter.

## MAGNETS

In order that a meter shall record correctly, the retardation of its moving element must vary directly with its speed. This retardation is produced by the mutual reaction of eddy currents generated in the disk and the magnetic field of the permanent magnets. It is proportional to the square of the magnet strength; consequently, a slight change in the magnet strength will cause serious inaccuracies of the meter.

The experience of the General Electric Company, extending over the past twenty years, has been so complete and thorough as to guarantee the results in the manufacture of permanent magnets. This experience is the result of an actual commercial production of more than four million magnets.

## ACCURACY ON OVERLOADS

The losses in the meters are extremely low, hence permit accurate operation on heavy overloads, even for considerable periods of time, without detrimental effects either permanent or temporary.

The perfect shielding of the magnetic circuit, referred to above in relation to stray magnetic fields, protects the permanent magnets from the usual consequencies of short circuits, or other sudden current surges.

## INDUCTIVE LOAD ACCURACY

Accuracy on loads of low power factor is essential to an induction meter for general alternating current service.

Thomson Single-phase Watthour meters are so designed and adjusted as to secure the highest possible inductive load accuracy, and may be relied upon to record true kilowatt hours either upon an entirely noninductive load, such as incandescent lamps, or upon a highly inductive load, such as fan or other motors.

## VARIATIONS OF FREQUENCY

Thomson's High Torque Watthour meters in common with all other meters of their class, are designed and calibrated for the frequency upon which they are to be used.

In view of the fact that 125 to 133 cycle systems are now quite generally being converted into 60 cycle systems, all Type I meters ordered for use on 125 or 133 cycle
by test, and constitutes an important consideration,
The accuracy of these meters is unaffected by a 10 per cent. variation in voltage either above or below that for which they are calibrated.

## TESTING

For convenience in testing before installation, a testing loop has been provided


PARTS OF THOMSON HIGH TORQUE WATTHOUR METER-TYPE
systems are provided with means for immediate re-connection on 60 cycle circuits.

These induction meters are practically unaffected by a 10 per cent. variation either way from the normal rated frequency for which they are calibrated.

## VARIATIONS OF POTENTIAL

It is highly important that meters be accurate, irrespective of potential variations. This is especially true of meters used on systems of moderate size where voltage regulation is not always perfect and potential variations occur on different sections of the lines, or during portions of the twenty-four hours. This characteristic may be readily determined
in Type I meters. Any number of meters can be tested in series without recording the losses in the potential circuits by disconnecting this loop and connecting the potential coil of each meter to the source of potential at some point, before the wires enter the first meter of the series. The testing loop is conveniently placed on the left hand terminal board.

## FINISH

The Type I meter is intended for house installation and therefore is made for side connections only. The finish is dull black japan, which has proved to be the most permanent and pleasing for the house type

## 4728-6 Thomson Single-Phase High Torque Watthour Meters

of meter. If desired, this meter can be furnished with glass covers, of the same general outline as the aluminum covers, without additional charge.

## CAPACITIES

Special attention is called to the fact that the Thomson High Torque Watthour meter, Type I, is manufactured as a standard device for 2 -wire and 3 -wire service, and no auxiliary external devices are necessary for either application. The Type I meter is made for direct connection into the circuit up to and including 300 amperes, 2 -wire, and 150 amperes, 3 -wire service. Current transformers are not used unless the current is above these limits, or the voltage greater than 650 volts.

Potential transformers must be used above 650 volts.

## SINGLE-PHASE WATTHOUR METERS FOR SWITCHBOARD INSTALLATION TYPES IS-2 AND IS-3

The General Electric Company strongly advocates the practice of metering individual generators rather than using a single meter to measure the total output of a station.


SWITCHBOARD WATTHOUR METER-TYPE IS-2
By the use of a meter with each generator and feeder, a far better load factor on individual meters is obtainable, resulting
in greater accuracy. Furthermore, convenience of arrangement and connection is greatly increased, testing facilitated and


SWITCHBOARD WATTHOUR METER-TYPE IS-2 WITH COVER REMOVED
additions to the switchboard may be made with minimum expense and difficulty.

For switchboard use the General Electric Company has developed a line of singlephase meters known as Types IS-2 and IS-3.

## General Description

These meters are in many respects similar to the Type I Watthour meters already described but are designed and adapted for switchboard use.

They differ widely from earlier singlephase switchboard meters, not only in mechanical construction but also in electrical design. The new design is more compact, much neater in appearance and the instruments have greater accuracy than the earlier forms. At the same time, all the desirable and essential features are retained.

The Types IS-2 and IS-3 meters embody the many recent improvements that are common in other types of the General Electric Company's meters, and tests show them to be the most accurate switchboard meters ever placed in commercial service. The "Torque per Unit Weight" is the highest of any induction meter. The interior parts are secured to a
frame which may be removed by loosening four screws, disconnecting the leads from the binding posts, and lifting the entire meter free from its case, thus greatly simplifying inspection.

## Registers

The register is of the four-dial type, reading directly in kilowatt hours on meters of low capacity. On larger meters, a dial face multiplier of $10,100,1000$, etc., is required. By using this system, the actual energy units


GLASS ENCLOSED, SWITCHBOARD WATTHOUR METER TYPE IS-3
remain the same in all sizes, the reading being obtained by the addition of one or more ciphers to the indication of the first pointer. To permit greater accuracy where frequent readings are taken, the register on switchboard meters is constructed to record ten times faster than the corresponding capacity Type I meter. One revolution of the most rapidly moving pointer equals 10 kilowatt hours in meters without constants, except in the case of some low-capacity meters where the usual switchboard meter register would have a dial face multiplier of $1 / 10$. To overcome the use of a fractional multiplier in such cases, a dial face is used having 1 over the right-hand dial, 10 over the second dial, etc. In other words, such dials read 1 kilowatt
hour for one revolution of the most rapidly reading pointer. To distinguish these dials, the right-hand circle is black, pointer and figures being white. This distinguishing feature will prevent errors due to any oversight in noting the different units in which the dials read.

## Finish

The Type IS-2 meter has a cast metal cover and the Type IS-3 meter a rectangular glass cover. The fimish of both meters is dull black, the front of the Type IS-2 cover having a pebbled surface with raised portions polished copper, making a very agreeable appearance. In the Type IS- 3 meter, the frame, register, magnets, etc. are all finished in dull black.

## Capacities

The Types IS-2 and IS-3 meters are standard in capacities up to 150 amperes for 1150 and 2300 volt circuits. When used on 650 volt circuits and over, they are furnished with potential transformers, and above 1150 volts are supplied with both current and potential transformers.

## THOMSON HIGH TORQUE WATTHOUR METER-TYPE I SINGLE-PHASE

## FRONT CONNECTED, METAL OR GLASS COVER, JAPAN FINISH

100-120 VOLTS, $40-133$ CYCLES, TWO-WIRE

| Cat. No. | *Lights | Amperes |
| :---: | :---: | :---: |
| 51173 | 6 | 3 |
| $5117 \pm$ | 10 | 5 |
| 51175 | 20 | 10 |
| 51176 | 30 | 15 |
| 51177 | 50 | 25 |
| 51178 | 100 | 50 |
| 51179 | 150 | 75 |
| 51180 | 200 | 100 |
| 51181 | 300 | 150 |
| 33584 | 400 | 200 |
| 33585 | 600 | 300 |
|  |  |  |

[^5]4728-8 Thomson Single-Phase High Torque Watthour Meters

## THOMSON HIGH TORQUE WATTHOUR METERS-TYPE I <br> SINGLE-PHASE

FRONT CONNECTED, METAL OR GLASS COVER, JAPAN FINISH


* Rated on a basis of 50 watts per lamp.

Note.-. Hedys state normal vollage of circuit

## THOMSON HIGH TORQUE WATTHOUR METERS FOR SWITCHBOARD SERVICE-RECTANGULAR PATTERN

 SINGLE-PHASE PRIMARY CIRCUITS-60-133 CYCLESTYPE IS-2-CAST METAL CASE
dULL black finish

| * 1000-1150 VOLTS |  | $\dagger$ 2000-2300 VOLTS |  | * 1000-1150 VOLTS |  | $\dagger$ 2000-2300 VOLTS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cat. No. | Amperes |
| 41429 | 5 | 41515 | 5 | 41568 | 5 | 41576 | 5 |
| 41430 | 10 | 41516 | 10 | 41569 | 10 | 41577 | 10 |
| 41431 | 15 | 41517 | 15 | 41570 | 15 | 41578 | 15 |
| 41432 | 25 | 41518 | 20 | 41571 | 25 | 41579 | 20 |
| 41511 | 50 | 41519 | 30 | 41572 | 50 | 41580 | 30 |
| 41512 | 75 | 41520 | 40 | 41573 | 75 | 41581 | 40 |
| 41513 | 100 | 41521. | 60 | 41574 | 100 | 41582 | 60 |
| 41514 | 150 | 41522 | 80 | 41575 | 150 | 41583 | 80 |
|  |  | 41523 | 100 |  |  | 41584 | 100 |
|  |  | 41524 | 150 |  |  | 41585 | 150 |

[^6]
## CONNECTIONS OF THOMSON WATTHOUR METERS-TYPE I

100 TO 650 VOLTS-TWO-WIRE CIRCUITS


200 TO 650 VOLTS-THREE-WIRE CIRCUITS

3. TO 25 AMP., 25 TO 140 CYCLES 50 TO 100 AMP ,, 25 TO 75 CYCLES


50 TO 100 AMP., 76 TO 140 CYCLES 150 AMP., 25 TO 140 CYCLES

CONNECTIONS OF TWO-WIRE THOMSON WATTHOUR METERS SWITCHBOARD PATTERN - TYPES IS-2 AND IS-3


Back View
3 TO 150 AMP., NOT EXCEEDING 1150 VOLTS-WITH 5 TO 150 AMP., ABOVE 1150 VOLTS-WITH CURRENI POTENTIAL TRANSFORMERS

## DIMENSIONS OF THOMSON WATTHOUR METERS-TYPE I 100 TO 650 VOLTS-TWO-WIRE CIRCUITS 200 TO 650 VOLTS-THREE-WIRE CIRCUITS



50 AND 75 AMP., TGREE-WIRE, 75 CYCLES AND BELOW


50-75-100 AMP., THREE-WIRE, ABOVE 75 CYCLES 150 AMP., TAREE.WIRE, ALL FREQUENCIES

Thomson Single-Phase High Torque Wathour Meters 4728-11

## DIMENSIONS OF THOMSON WATTHOUR METER-TYPE I-(Continued)

100 TO 650 VOLTS


150 TO 300 AMP., TWO-WIRE, ALL FREQUENCIES

## DIMENSIONS OF TWO-WIRE THOMSON WATTHOUR METERS

 SWITCHBOARD PATTERN-TYPES IS-2 AND IS-3100 TO 650 VOLTS-TWO-WIRE

TYPE IS-2

3 TO 150 AMP., ALL FREQUENCIES

PRINCIPAL OFFICES, SCHENECTADY, N. Y.
SALES OFFICES:
(Address nearest office.)
BOSTON, MASS.. 84 State Street.
NEW YORK, N. Y., 30 Church Street
Syracuse, N. Y., Post-Standard Building.
Buffalo, N. Y., Ellicott Square Building.
New Haven, Conn., Malley Building
PHILADELPHIA, PA., Witherspoon Buitding.
Baltimore, Mo.. Electrical Building.
Cifarlotte, N. C.. Trust Building.
Charleston, W. Va., Charlestong National Bank Bldg.
Pittsburg, Pa., Park Building.
Ricimond, Va., 712 Mutual Building.
Roanoke, Va. Strickland Building.
ATLANTA, GA., Empire Building.
Macon, Ga., Grand Building.
New Orleans, La., Maison-Blanche Building
CINCINNATI, OHIO, Provident Bank Building
Columbus, Ohio, Columbus Savings \& Trust Buiding.
Cleveland, Oirio, Citizens Building.
Chattanooga, Tenn., James Building.
Mempins, Tenn., Randolph Building.
Nasilvile, TenN., Stahlman Building.
indianapolis, IND. Terminal Traction Building.
CHICAGO, ILL., Monadnock Building.
Detroit, Micir., Majestic Bldg. (Office of Soliciting Agt.)
St. Louis, Mo., Wainwright Building.
Kansas City, Mo., Dwight Building.
Butte, Montana, Phœnix Building.
Minneapolis, Minn., 410-412 Third Avenue, North.
DENVER, COLO.. Kittredge Building.
Salt Lake City. Utah, Newhouse Building.
SAN FRANCISCO, CAL., Union Trust Building.
Los Angeles, Cal., Delta Building.
Portland, Ore., Electric Building.
Seatile, Wasir., Colman Building.
Spokane, Wasif., Paulsen Building.

For Texas and Onlahoma Business refer to General Electric Company of Texas, Dallas, Tex., Praetorian Building Dallas, Tex., Praetorian Building
El Paso, Tex., Chamber of Commerce Building. Oklahoma City, OkJa., Insurance Building.

FOREIGN:
Foreign Department
Schenectady, N. Y., and 30 Church St., New York, N. Y London Office, 83 Cannon St., London, E. C., England.

For all Canadian Busimess,
Canadian General Electric Company, Ltd.,
Toronto, Ontario.

# General Flectric Company Schenectady, N.Y. 

SUPPLY DEPARTMENT

February, 19 Io

## MAZDA ECONOMY DIFFUSERS

In the past the Incandescent lamp has found its greatest field of usefulness in the lighting of small areas. The high efficiency of the Mazda lamp, however, makes it a competitor for lighting of larger areas and in order to equip it so as to meet these conditions most effectively, the Mazda Economy Diffuser has been designed.

It is obvious that the capacity of the lighting unit should bear a proportionate relation to the size of the room in which it is installed. For example, in small rooms, small units are necessary in order to produce an even illumination conomically. In large rooms, large units are more effective and give a directive effect to the lighting which avoids flatness in the illumination. The maintenance of this proportion produces a much better appearance, and should not be disregarded, especially in stores and other places where pleasing effects are desirable.

Practically all lighting units have a high intrinsic brilliancy. By properly diffusing the light and reducing this brilliancy the light is not only casier on the eyes but experience shows that it is possible to see equally well with a lower intensity of illumination.

[^7]The Mazda Economy Diffuser is placed on the market after considerable study and practical experimentation, as a unit particularly adapted for the illumination of large and medium sized rooms.

The especial advantages are as follows:
Wide range of capacity which can be obtained by using different sizes of lamps or by different steps in the switch combination.

Relatively low intrinsic brilliancy with excellent diffusion.

An economical distribution of light in which the maximum intensity is emitted at oblique angles in the lower hemisphere so as to illuminate the intermediate spaces. A small amount of light is sent above the horizontal so as to avoid darkness in the upper part of the room.
The appearance of the diffuser is particularly neat and attractive by daylight as well as when in use.
1 tis mechanically convenient, being arranged for suspension from a chain, gas pipe or ordinary hook, and is very casily kept clean.
The Mazda lamps are operated in a vertically pendant position, which is most favorable to long life.

## 隹29-2 Mazdat Economy Diffusers

## GENERAL DESCRIPTION

The structure of the Mazda Economy Diffuser is built around a central pipe. Rigidly attached to this pipe at its lower end is a nickel-plated reflector which supports the diffuser proper. A heavy sheet metal platform carrying the lamp sockets, which are permanently wired in various standard combinations, is also attached to this reflector by means of three screws. This platform is so arranged that it can be raised or lowered to accommodate lamps varying in size from 16 candle-power carbon to 100 -watt Mazda. The various parts of the

## LAMPS

Only clear bulb lamps with Edison bases should be used with this diffuser. Lamps are not included with the fixtures and should lee ordered separately.

## VENTILATION

The Mazda lamp. being more efficient than any previous form of incandescent lamp, radiates much less heat for a given amount of light; however, as it is a source of heat, provision must be made for cooling. In the Mazda Economy Diffuser, this feature has been carefully considered and


Fig. 2. SECTIONAL DIAGRAM SHOWING PASSAGE OF AIR THROUGH DIFFUSER
fixture are supported by a hook, which screws into a hickey attached to the upper end of the central pipe. The mechanism is enelosed in a neat spun metal casing held in place by the suspension hook at the top. This hook is cast with a bollow shank providing a convenient and inconspicuous means of leading in the conducting wires. Provision is made for supporting the globe by means of a suitable globe holder, which screws onto a rod hinged to the lower end of the central pipe and forces the upper rim of the globe against spring clips fastened to the under side of the reflector.


CONNECTIONS FOR ECONOMY DIFFUSER
ample provision has been made to avoid undue heatingThe method of ventilation is illustrated in Fig. 2.

## WIRING

The Five-light Diffuser is wired for a single multiple circuit and is intended to be used as a five-light fixture only. The six-light diffuser is wired for two circuits and is provided with three leads, one of which is common to both circuits. It may be wired permanently as a three-light or six-light fixture, or it may be used with a four-way snap switch which will light first one group of three lamps, then
the other group of three lamps and finally all six lamps. For example, a Mazda Economy Diffuser equipped with three 60watt and three 100 -watt Mazda lamps will have a capacity of 180,300 and 480 watts by simply turning the switch handle. A four-way snap switch especially adapted for this service has been developed and can be furnished on order.

## WATTS CONSUMPTION FOR EQUIPMENTS <br> FIVE-LIGHT DIFFUSER-SINGLE CIRCUIT

| Number of <br> Lamps | Watts per <br> Lamp | Watts Convumod |
| :---: | :---: | :---: |
| 5 | 40 | 200 |
| 5 | 60 | 300 |
| 5 | 100 | 500 |
| SIX-LIGHT | DIFFUSER-SINGLE | CIRCUIT |


| Number of <br> Lamps | Watts per <br> Lamp | Watts Consumed |
| :---: | :---: | :---: |
| 3 | 40 | 120 |
| 3 | 60 | 180 |
| 3 | 100 | 300 |
| 6 | 40 | 240 |
| 6 | 60 | 360 |

SIX-LIGHT DIFFUSER-DOUBLE CIRCUIT

| $\begin{array}{c}\text { Numbier of } \\ \text { Lampis }\end{array}$ | $\begin{array}{c}\text { Watts per } \\ \text { Lamp }\end{array}$ | Watts consumed |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | 40 | No. 2 | No. 3 | No. 4 |
| 6 | 60 | 120 | 120 | 240 |
| 3 | 40 | 180 | 180 | 360 |
| 3 | 60 | 120 | 180 | 300 |
| 3 | 40 | 120 | 300 | 420 |
| 3 | 100 | 60 |  |  |
| 3 | 100 |  |  |  |$\}$

## PLAIN TYPE

There are two principal types of Mazda Economy Diffusers known as Plain and Ornamental Type. The plain type may be subdivided into store type and mill type. The store type is equipped with a $26^{\prime \prime}$ porcelain enameled stcel diffuser, and the Mill Type Diffuser is equipped with $39^{\prime \prime}$ paint enameled diffuser, the latter being slightly more efficient than the store type as a larger proportion of the light is concentrated below the horizontal.

For use in rooms with high ceilings the store type can be furnished with an upper
canopy hook and ornamental link as illustrated on the front page, the type shown in Fig. 4 being more satisfactory for low ceiling work.

The dimensions of store type diffuser as illustrated on front page are the same as for Cat. No. 64.375 shown on page 4 .


Fig. 4. 26 IN. MAZDA ECONOMY DIFFUSER FOR STORE LIGHTING

## SHOCK ABSORBER

Since the life of the Mazda lamp is considerably decreased where it is subjected to excessive vibration, a belically wound spring is shipped with these diffusers so that when the lamps are installed this vibration is overcome; thus prolonging the life of the lamp.

## FINISH

The standard finish of the Plain Type Diffuser is streaked oxidized copper, although streaked oxidized silver or verde antique finishes can be supplied when specially ordered.


Fig. 5. 39 IN. MAZDA ECONOMY DIFFUSER FOR MILL LIGHTING

The standard finish of the Ornamental Type Mazda Economy Diffuser is Brushed Brass, although other finishes can be furnished on order.

## fr29-4 Mazda Economy Difusers

## GLOBE

The lamps in the Mazda Economy Diffuser are enclosed in a glass globe made in attractive five- and six-globe designs which give a finished appearance to the fixture and insure a large diffusing surface of relatively low intrinsic brilliancy, The globes furnished with the plain type diffuser are plain moulded glass sand-blasted on the inside, while the globes furnished with the ornamental type diffuser are of leaded sections of a specially selected opal art glass.

Plain frosted globes can be supplied with ornamental diffusers if required.

## SINGLE LIGHT MAZDA ECONOMY DIFFUSER (MILL TYPE)

Where it is necessary to install individual lights over machines, a diffuser as illustrated in Fig. 6 will be found especially suitable.

It consists of a sheet iron reflector 16 inches in diameter with a porcelain enameled reflecting surface and a paint finished upper surface.


Fig. 6. SINGLE LIGHT MAZDA ECONOMY DIFFUSER Cat. No. 108565, With Globe Cat. No. 108566, Without Globe

This globe will enclose the 100 watt Mazda lamporsmaller sizes. The diffuser itself can be attached to the standard shadeholder socket, or it can be attached to the standard socket. by means of the " $O$ " holder.

## ORNAMENTAL TYPE

The Ornamental Mazda Economy Diffusers comprise a number of fixtures which have been designed for the purpose of combining a scientific lighting unit with an orna-
mental fixture. They are not only attractive in appearance but highly efficient as light producers. The light is softened and distributed so as to facilitate the production of an even intensity of illumination. In this way the intense brilliancy so commonly found in incandescent lamp fixtures is avoided.


The various types of Ornamental Mazda Economy Diffusers, together with a detailed description of each, are shown on pages 5 to 8 Both plain and ornamental types are manufactured in five- and sixlight units.


In addition to the five- and six-light sizes, single light fixtures as shown on page 8 can be supplied.

The following is a brief description of the various ornamental types.

Cat. No. 64375 has a spun brass casing and

upper canopy with Gothic link and Amboy hooks, leaded glass diffuser and globe and simple cast brass knob.

Cat. No. 64503 has a cast brass canopy and Elizabethan hooks and link. The upper part of the spun brass casing is ornamented in scroll and leaf designs of cast brass. The diffuser and globe are of leaded glass and the bottom knob is a simple brass casting.

Cat. No. 64376 has a cast bronze upper canopy, Renaissance hooks and links, cast bronze husk ornaments on spun brass casing, leaded glass diffuser and globe, and simple cast brass bottom knob. It is suitable for use in
rooms where the architectural ornamentation is simple, and suggestive of the Renaissance.

Cat. No. 64377 has a cast bronze canopy, Renaissance hooks and link, cast brass scroll ornaments applied to spun brass casing, leaded glass diffuser and globe, and ornamental cast brass bottom knob. It is adapted to a scheme of decoration where the ornamentation is of Renaissance style.

Cat. No. 64378 has a cast bronze canopy, hooks and ink; cast bronze crown. and hood covering the spun brass casing; leaded glass

## 4729-6 Mazda Economy Diffusers

Cat. No. 64379 has an ornamental cast brass leaf and melon form canopy, Elizabethan hooks and links, leaded glass globe surmounted by a cast brass leaf cresting and closed in at the top by a spun brass hood with melon form of ornamentation; leaded glass globe and ornamental cast

brass bottom knob. This fixture will harmonize with architectural decoration of modern French style.

edge, and rich oak leaf border of cast brass; the heavy ornamental bottom knob is of cast brass. This fixture is very effective in rich gilt and warm bronze finishes.
Cat. No. 64381 is designed for rooms decorated in Renaissance
style and having high ceilings. It consists of leaded glass diffuser with an ornamental cresting around the edge, which is used as a base on which to build up the fixture. Above the diffuser is a spun brass casting, bearing a melon ornament, and a
parts of the fixture are of cast brass and the leaded glass globe is supported by a heavy ornamental cast bronze knob.

Cat. No. 64383 is a simple single-light fixture consisting of cast brass leaf form canopy, socket covers and leaded glass shades.

knob of cast brass. The diffuser is suspended from the central stem of the fixture by threc ornamental rod and link supports. This fixture has a heavy cast brass canopy with cast brass breaks and ornaments. The leaded glass globe is supported by an ornamental cast brass bottom knob.

Cat. No. 64382 is particularly adapted for use in rooms decorated in rich Renaissance style or the Modern French style where the decorations are of a massive character. In this fixture the leaded glass diffuser is used as a motive upon which the design is laid out. The ornament consists of a series of consol forms tied together by festoons, supporting a large ornamental cast top. The lighting unit proper is suspended from four heavy plain chains, which in turn are carried by four heavy consols attached to the central stem of the fixture. The canopy and other ornamental
$\dagger$ Cut shows plain frosted globe and bottom knob.

Cat. Nos. 64386 and 64384 are simple, single light fixtures of a classie type consisting of cast brass canopy and socket covers, cast brass hooks and chain of Elizabethan style, and leaded glass shades.
$\dagger$ Cat. No. $6+387$ is treated as a ceiling fixture for rooms having low ceilings. This fixture consists of a spun copper corona with cast brass ornaments applied, leaded glass globe, and simple brass bottom knob.
Cat. No. 64504 is treated as a highly ornamental ceiling fixture. In this fixture the leaded glass diffuser is surmounted by a corona of brass and leaded glass. The ornamentation around the corona is composed of festoons of roses executed in leaded glass and by means of the light transmitted through the diffuser gives the effect of a band of soft harmonious color, in pleasing contrast to the more brilliantly lighted surfaces of the globe and diffuser. The globe is of leaded

## 4729-8 Mazda Economy Difiusers

glass supported by an ornamental cast brass knob.
${ }^{*}$ Cat. No. 64505 is designed for use in rooms having low or medium height ceilings. The leaded glass globe is surmounted by a cresting
leaded glass globe and simple cast brass bottom knob.

Cat. No. 64388 is designed for use in rooms decorated in Renaissance style having low or medium height ceilings. The leaded glass

made up of cast brass conventional leaf forms while the casing and canopy are of spun brass. The bottom knob is a simple brass casting.
*Cat. No. 64506 is provided with Amboy hooks and plain brass chain, and a spun brass casing with cast brass ornaments applied,
globe is surmounted by an ornamental cast brass cresting. The casing is of spun brass with cast ornaments applied and the canopy is a combination of spun and cast brass. The ornamental bottom knob is of cast brass.

* Cut shows plain frosted globe.


537. 8

## n. 4732 <br> CURTIS TURBINE INSTALLATIONS <br>  <br> <br> GENERAL <br> <br> GENERAL <br> <br> ELECTRIC <br> <br> ELECTRIC <br> <br> COMPANY

 <br> <br> COMPANY}.
.

# Curtis Steam Turbine-Generator Installations 



# General Electric Company 

Schenectady, New York

## Curtis Steam Turbine-Generators

A
LTHOUGH Curtis Steam Turbine-Generators were introduced less than ten years ago, the capacity sold in America alone now exceeds one and one-quarter million of kilowatts. These turbines have been installed in the electric lighting plants of nearly every large city, because of their

High steam economy at all loads;
Economy in floor space and building materials required;
Moderate initial cost and low maintenance expense;
Simplicity of construction; absence of all small clearances; absence of thrust balancing pistons with their heavy and uncertain leakages;
Maintenance of efficiency and general durability;
Ability to effectively utilize the large increase of available energy incident to the use of high steam pressure and high vacuum;
Ability to use high superheat without mechanical difficulties.
Large Lighting Railway and Power Plants equipped with Curtis Steam Turbines have shown the highest economy ever obtained, and the output of industrial and manufacturing plants has been materially increased. These turbines are built with vertical and horizontal shafts for high, low and mixed pressures. The latter types may be applied to existing plants using reciprocating engines, and in many cases will double the available capacity with very slight increase in steam consumption.

The illustrations of Curtis Steam Turbine Plants in this pamphlet indicate the enormous generating capacity which can be maintained in a building of comparatively moderate dimensions. They also illustrate some of the other advantages peculiar to a Curtis Turbine Station, for example, ample floor space available for auxiliary apparatus; easy accessibility to all machinery; perfect provision for cleanliness and ventilation.

A pamphlet describing the construction and performance of the Curtis Steam Turbine-Generator in detail will be sent on request.


1500 Kw . Curtis Steam Turbine-Generators Installed for the Dallas Electric Light and Power Company, Dallas, Texas
(AQB 8-1500-900, 2300 Volts)


## Curtis Steam Turbine-Generators

ALTHOUGH Curtis Steam Turbine-Generators were introduced less than ten years ago, the capacity sold in America alone now exceeds one and one-quarter million of kilowatts. These turbines have been installed in the electric lighting plants of nearly every large city, because of their

High steam economy at all loads;
Economy in floor space and building materials required;
Moderate initial cost and low maintenance expense;
Simplicity of construction; absence of all small clearances; absence of thrust balancing pistons with their heavy and uncertain leakages;
Maintenance of efficiency and general durability;
Ability to effectively utilize the large increase of available energy incident to the use of high steam pressure and high vacuum;
Ability to use high superheat without mechanical difficulties.
Large Lighting Railway and Power Plants equipped with Curtis Steam Turbines have shown the highest economy ever obtained, and the output of industrial and manufacturing plants has been materially increased. These turbines are built with vertical and horizontal shafts for high, low and mixed pressures. The latter types may be applied to existing plants using reciprocating engines, and in many cases will double the available capacity with very slight increase in steam consumption.

The illustrations of Curtis Steam Turbine Plants in this pamphlet indicate the enormous generating capacity which can be maintained in a building of comparatively moderate dimensions. They also illustrate some of the other advantages peculiar to a Curtis Turbine Station, for example, ample floor space available for auxiliary apparatus; easy accessibility to all machinery; perfect provision for cleanliness and ventilation.

A pamphlet describing the construction and performance of the Curtis Steam Turbine-Generator in detail will be sent on request.


1500 Kw . Curtis Steam Turbine-Generators Installed for the Dallas Electric Light and Power Company, Dallas, Texas
(AQB 8-1500-900, 2300 Volts)



5000 KW . Curtis Steam Turbine-Generators Installed for the N. Y. C. \& H. R. R. R. at Yonkers, N. Y.
(ATB 4-5000-750, 11000 Volts)



3000 Kw. Curtis Steam Turbine-Generator Installed for the Birmingham Railway Light and Power Company, Birmingham, Ala.
(ATB 12-3000-600, 2300 Volts)



5000 Kw . Curtis Steam Turbine-Generators Installed for New York Edison Company (Waterside Station No. 1)
(ATB 6-5000-500, 6600 Volts and ATB 10-5000-720, 7600 Volts)



3000 Kw . and 5000 Kw . Curtis Steam Turbine-Generators Installed for Public Service Corporation, Marion, N. J.
(ATB 6-5000-500, 13200 Volts, ATB 12-3000-600, 13200 Volts and ATB 10-3000-720, 13200 Volts)



5000 Kw . Curtis Steam Turbine-Generator Installed for Arlington Mills, Lawrence, Mass.
(ATB 6-5000-800, 600 Volts)


500 Kw . Low Pressure Curtis Steam Turbine-Generator Installed for the American Car and Foundry Co., Detroit, Mich.
(CC 4-500-1500, 250 Volts)



5000 Kw . Curtis Steam Turbine-Generator Installed for the Union Gas and Electric Co., Cincinnati, Ohio
(ATB 10-5000-720 4500 Volts)


Twelve


5000 Kw. Curtis Steam Turbine-Generators Installed for the Kansas City Metropolitan Street Railway Company
(ATB 6-5000-500, 6600 Volts)



1500 Kw. Curtis Steam Turbine-Generator Installed for Pacific Mills, Dover, N. H.
(ATB 8-1500.900, 600 Volts)



2000 Kw. Four-stage Curtis Steam Turbine direct connected to ATB 8-2000750 , 2300 Volt Generators, Installed for the Edison Electric Co., Los Angeles, Cal.



5000 Kw. Curtis Steam Turbine-Generator Installed for the Twin City Rapid Transit Co., Minneapolis, Minn.
(ATB 6-5000-750, 13200 Volts)



Seventern


1000 Kw. Curtis Steam Turbine-Generator Installed for Usine de l' Harrach, Algiers, North Africa
(ATB 4-1000-1500, 10000 Volts)


New York Edison Company's Waterside Station No. 2


Generating Station of Potomac Electric Light and Power Company, Washington, D. C.


Twenty


Commonwealth Edison Company's Fisk Street Station, Chicago, Ill.



Power House of the Edison Electric Illuminating Company, Boston, Mass.



[^8]

3000 Kw. Curtis Steam Turbine-Generators Installed in Generating Station of the Norfolk \& Portsmouth Railway Co.


8000 Kw . and 14000 Kw . Curtis Steam Turbine-Generators in New York Edison Company's Waterside Station No. 2
(ATB 10-14000-720, 7500 Volts and ATB 4-8000-750, 6600 Volts)


8000 Kw . and 3000 Kw . Curtis Steam Turbine-Generators Installed for the Seattle Electric Company, Seattle, Wash.
(ATB $10-8000-720,13200$ Volts and ATB 10-3000-720, 13800 Volts)


9000 Kw . Curtis Steam Turbine-Generator Installed for the Pacific Gas and Electric Co., Station "C," Oakland, Cal. (ATB 10-9000-M-720, 4150 Volts)


1500 Kw. Curtis Steam Turbine-Generator Installed for the Macon Railway and Light Co., Macon, Ga.
(ATB 8-1500-900, 2300 Volts)


800 Kw . Curtis Steam Turbine-Generator Installed for Usine de la Societe du Gaz, Nice, France (ATB 2-800-1500, 10000 Volts)



2000 Kw . Curtis Steam Turbine-Generator Installed for the Illinois Traction System, Peoria, Ill.
(ATB 4-2000-750, 2300 Volts)



25 Kw . Horizontal and 500 Kw . Vertical Curtis Steam Turbine-Generators Installed for the Nashua Manufacturing Co., Nashua, N. H.
(C $25 \mathrm{Kw} .3600,125$ Volts and ATB 4-500, 600 Volts)


1500 Kw. Curtis Steam Turbine-Generator Installed for the New Orleans Railway and Light Company, New Orleans, La.
(ATB 8-1500-900, 2300 Volts)



500 Kw . Two-Stage Curtis Steam Turbine direct connected to ATB 4-5001800, Form T, 600 V. Generator, Installed at Fulton Bag and Cotton Mills Station, Atlanta, Ga.


Thirty-four


1500 Kw . Turbo-Alternator with 25 Kw . Turbine Exciter and Switchboard, Installed for Louis DeJonge Co., Fitchburg, Mass.
(ATB 8-1500-900, 600 Volts)




5000 Kw . Curtis Steam Turbine-Generator Installed for the United Railways and Electric Company (Pratt Street Station), Baltimore, Md.
(ATB 4-5000-750, 13000 Volts)



5000 Kw . Curtis Steam Turbine-Generator Installed for Usine á Gaz de Marseilles
(ATB 4.5000 Kw. 750, 13200 Volts)

12000 Kw. Curtis Steam Turbine-Generators Installed for Boston Edison
(ATB 10-12000-720, 6900 Volts)


800 Kw . Low Pressure Curtis Steam Turbines Installed for the Philadelphia
Rapid Transit Co., Phila., Pa.
(Direct Current, 6 Poles, $800 \mathrm{Kw} ., 1200$ r.p.m., 600 Volts)


2250 Kw . Curtis Steam Turbine-Generator Installed for the Union Light, Heat and Power Company, Newport, Ky.
(ATB 8-2250-900, 4500 Volts)


3000 Kw . Curtis Steam Turbine-Generators Installed for the Edison Electric and Illuminating Company, Detroit, Mich.
(ATB 12-3000-600, 4600 Volts and ATB 10-3000-720, 4600 Volts)


1000 Kw . Curtis Steam Turbine-Generator Installed for Usine de la Goulette Tunis, Africa


2250 Kw. Curtis Steam Turbine-Generator Installed for the Denver Gas and Electric Company, Denver, Colo.
(ATB 8-2250-900, 2300 Volts)



500 Kw . Curtis Steam Turbine-Generator Installed for the Danbury \& Bethel Street Railway Company, Danbury, Conn.
(CC 4-500-1800, 575 Volts)



[^9] Railway Company, Quincy Point, Mass.
(ATB 4-2000-750, 13200 Volts)


5000 Kw . and 9000 Kw . Curtis Steam Turbine-Generators Installed for the Potomac Electric Light and Power Company, Washington, D. C.
(ATB 4-5000-750, 6600 Volts and ATB 4-9000-750, 6600 Volts)


7500 Kw. Low Pressure Curtis Steam Turbine-Generator Installed for the Interborough Rapid Transit Co., 59th Street Station, New York City

5000 Kw . and 8000 Kw . Curtis Steam Turbine-Generators Installed for the Edison Electric Illuminating Company, Boston, Mass.


500 Kw . and 1500 Kw . Curtis Steam Turbine-Generators installed for the Philadelphia Electric Co., Tacony, Pa.
(AQB 4-500-1800, 2500 Volts and AQB 8-1500-900, 2300 Volts)


Three 500 Kw . Curtis Turbines direct connected to ATB 4-500-1800, 2300
Volt Generators Installed for D. L. \& W. R. R. Co's Shop, Scranton, Pa.


5000 Kw . Curtis Steam Turbine-Generators Installed for the Union Electric
(ATB $14-5000-514,4000$ Volts and ATB $6-5000-500,6600$ Volts)


5000 Kw. Curtis Steam Turbine-Generator Installed for the United Railways of San Francisco
(ATB 4-5000-750, 13,200 Volts)


Ten 12000 Kw . Curtis Steam Turbine-Generators in Commonwealth


3500 Kw . Curtis Steam Turbine-Generator Installed for the Great Western Power Co., Oakland, Cal.
(ATB 6-3500-M-1200, 11000 Volts)


Fifty-five

# General Electric Company 

Principal Offices, Schenectady, New York

## Sales Offices

Address nearest office

| BOSTON, MASS. <br> NEW YORK, N. Y. |
| :---: |
| Syracuse, N. Y. |
| Buffalo, N. Y. |
| New Haven, Coun. |
| PHILADELPHIA, |
| Chartote N C ( |
|  |
| Pittsburg, Pa. |
| Richmond, Va. |
| Roanoke, Va. |
| ATLANTA, GA. |
| Macon, Ga. |
| New Orleans, La. |
| CINCINNATI, OHIO |
| Columbus, Ohio |
| Cleveland, Ohio |
| Chattanooga, Tenn. |
| Memplis, Tenn. |
| Nashville, Tenn. |
| Indianapolis, Ind. |
| CHICAGO, ILL. |
| Detroit, Mich. |
| St. Louis, Mo. |
| Kansas City, Mo. |
| Butte, Montana |
| Minneapolis, Minn. |
| DENVER, COLO. |
| Salt Lake City, Utah |
| SAN FRANCISCO, CAL. |
| Los Angles, Cal. |
| Portland, Ore. |
| Seattle, Wash. |
| Spokane, Wash. |

84 State Strect
NEW YORK, N. Y. . . . . 30 Church Strect

Ellicott Square Building
New Haven, Coun.
PHILADELPHILA, PA. . . . . . Witherspoon Building
Baltimore, Md. . . . Electrical Building
Charlotte, N. C.
Charlestown, W. Va. Charlcston National Mank Building
Charlestown, W. Va. . Charleston National Bank Building
.
Richmond, Va.
7 II Mutual Building
Roanoke, Va.
Macon, Ga.
New Orleans, La.
CINCINNATI, OHIO
Alaison-Blanclic Building
Provident Bank Building
CINCINNATI, OHIO Provident Bank Building
Columbus, Ohio
Cleveland Ohio
Cleveland, Ohio
Citizens Building
Clattanooga, Tenn. . . . James Building
Memplis, Tenn. . Randolph Building
Nashville, Tenn. . . . . Stah1man Building
Indianapolis, Ind. . . . Traction Terminal Building
CHICAGO, ILL. . Monadnock Building
St. Louis, Mo.
Kansas City, Mo.
Butte, Montana
Minneapolis, Minn.
DENVER, COLO.
SAN FRANCISCO, CAL.
Los Angles, Cal.
Portland, Orc.
Spokane, Wash.
Strickland Building
Empire Building
Grand Building
Majestic Bldg. (Office of Soliciting Agent)
Wainwright Building
Dwight Building
Plocnix İuilding
Phonix Building
$410-412$ Third Avenuc, North
Kittredge Building
Newhouse Building
Union Trust Building
Dclta Building
Electric Building
Colman Building
Paulsen Building
For Texas and Oklahoma Business refer to
Gencral Electric Company of Texas,
Dallas, Tcx.

## FOREIGN

Foreign Department,
Schenectady, N. Y., and 30 Church St., New York, N. Y.
London Office, 83 Cannon St., London, E. C., England.
For all Canadian Busincss,
Canadian General Electric Company, Ltd., Toronto, Ontario.


# General Flectric Company Schenectady, N.Y. 

April, IgIo

# LIGHTNING ARRESTERS 

## In Designing Lightning Arresters, the Engineers of the General Electric Company Have Considered the Great Variety of Conditions and Phenomena Produced by Lightning, Including All Effects of Abnormal Voltage. MULTIGAP LIGHTNING ARRESTERS FOR ALTERNATING CURRENTS

THE lightning arresters described in this publication were designed after careful consideration of the great variety of conditions and phenomena produced by lightning, including all effects of abnormal voltage. These arresters, designed upon an elaboration of Prof. Elihu Thomson's fundamental patents, consist of a series of spark gaps shunted by graded resistances but without series resistance. The advantages possessed by them are:

1. Uniform voltage discharge over a wide range of frequency due to graded resistance.
2. Shunting the dynamic current through resistance.
3. The "breaking back" action on low frequency surges.
4. Fuse in ground leg of non-grounded neutral systems.
5. Adjustable gap in each leg shunted by a fuse.
6. Metallic resistance rods of improved composition.
7. Durable knurled cylinders of special alloy.
8. General Electric standard multiplex connection.
When properly installed they will perform the following functions:

First. Prevent excessive rises of potential of a transitory nature between lines as well as detween lines and ground.

Second. Restrain the flow of the dynamic current across the gaps and extinguish the arc when normal potential is restored.

Third. Discharge high potentials covering a wide range of frequency.
The essential elements of the arrester are a number of cylinders spaced with a small air gap between them and placed between line and ground, and between line and line. In operation the multigap arrester discharges at a much lower voltage than would a single gap having a length equal to the sum of the small gaps.
In explaining the action of multigaps, there are three things to consider:

1. The transmission of the static stress along the line of cylinders.
2. The sparking of the gaps.
3. The action and duration of the dynamic current which follows the spark, and the extinguishment of the arc.

A spark may be defined as conduction of electricity by the air, and an arc as conduction of electricity by vapor of the electrode.

Distribution of Static Siress along Cylinders. The cylinders of the multigap arrester act like plates of condensers in series. This condenser function is the essential feature of its operation. When a static stress is applied to a series of cylinders between line and ground, the stress is instantly carried from end to end. If the top cylinder is positive it will attract a negative charge on the face of the adjacent cylinder and repel an equal positive charge to the opposite face, and so on down the entire row. The second cylinder has a definite capacity relative to the third cylinder and also to the ground; conse-

## 4736-2 Lightning Arresters

quently the charge induced on the third cylinder will be less than on the second cylinder, due to the fact that only part of the positive charge on the second cylinder induces negative elcetricity on the third, while the rest of the charge induces negative electricity to the ground. Each successive cylinder, counting from the top of the arrester, will have a slightly smaller charge of clectricity than the preceding one. The condition has been expressed as "a steeper potential gradient near the line."
Sparking of the Gaps, The quantity of electricity induced on the second cylinder is greater than on any lower cylinder and its gap has a greater potential strain across it as shown by the illustration below. When the potential across the first gap is sufficient to spark, the second cylinder is charged to line potential and the second gap receives the static strain and breaks down. The successive action is similar to overturning a row of nine-pins by pushing the first pin against the second. This phenomenon explains why a given length of
air gap concentrated in one gap requires more potential to spark across it than the same total length made up of a row of multigaps. As the spark crosses each successive gap, the potential gradient along the remainder readjusts itself.

How the Dynamic Are is Extinguished. When the sparks extend across all the gaps the dynamic current will follow if, at that instant, the dynamic potential is sufficient. On account of the relatively greater current of the dynamic flow, the distribution of potential along the gaps becomes equal, and has the value necessary to maintain the dynamic current are on a gap. The dynamic current continues to flow until the potential of the generator passes through zero to the next half cycle, when the arc-extinguishing quality of the metal cylinders comes into action. The alloy contains a metal of low boiling point which prevents the reversal of the dynamic current. It is a rectifying effect, and before the potential again reverses, the are vapor in the gaps has cooled to a non-conducting state.

## BASIC PRINCIPLES OF GENERAL ELECTRIC MULTIGAP LIGHTNING ARRESTERS

Rectification. The greater the value of the dynamic current, the greater the number of gaps required to extinguish the ares.

Shunting by Resistance. Any arcis unstable and can be extinguished by placing a properly proportioned resistance in parallel with it.

Effect of Frequency. The higher the fre-
 quency of the lightning oscillation, the more readily will the multigap respond to the potential.

Briefly stated, the problem is to properly limit the dynamic current so that the are may be extinguished; to arrange a shunt circuit so that the series resistance will be automatically cut out if safety demands it on account of a heavy lightning stroke and, while retaining these properties, to make the arrester sensitive to a wide range of frequencies. It should be noted that

Scries resistance limits the rate of discharge of the lightning as well as of the dynamic current.

## GRADED SHUNT RESISTANCE

The desired result is obtained in the General Electric Multigap Lightning Arresters by the use of graded shunt resistance. Without regarding the "cumulative" or "breaking back" effect of the graded resistance, described later, this type of arrester may be considered as four arresters in one. First, for small discharges there are a few gaps in series with a high shunt resistance. This part of the arrester will safely discharge accumulated static and also all disruptive discharges of small ampere capacity. In the figure below this path is shown through $I I$,


CONNECTIONS FOR 33000 -VOLT Y SYSTEM WITH GROUNDED NEUTRAL
(resistance) and GS (gaps). Second, there are a number of gaps in series with a medium shunt resistance which will discharge disruptive strokes of medium ampere capacity; in the figure this path is shown through $M$ (resistance) and GH plus GS (gaps). Third, there are a greater number of gaps in series with a low shunt resistance which will discharge heavy disruptive strokes. In the figure this path is shown through $L$ (resistance) and $G M$ plus $G H$ plus $G S$ (gaps). Fourth and last, the total number of gaps has no series resistance, thus enabling the
arrester to freely discharge the heaviest induced strokes. In the figure this path is shown through zero resistance and GL plus $G M$ plus GH plus GS (gaps),

In each of the above circuits the numbet of gaps and the resistance are so proportioned as to extinguish the dynamic are at the end of the balf cycle in which the lightning discharge takes place.

## THE "CUMULATIVE" OR "BREAKING BACK" EFFECT

The graded shunt resistances give a valuable effect not brought out in the previous description, where the arrester is considered as four separate arresters. This is the "cumulative " or "breaking back" action.


CONNECTIONS FOR 33000-VOLT DELTA OR UNGROUNDED Y SYSTEMS

When a lightning strain between line and ground takes place, the potential is carried down the high resistance, $I I$, to the series gaps, $G S$, and the series gaps spark over. Although it may require several thousand volts to spark across an air gap, it requires
relatively only a few volts to maintain the are which follows the spark. In consequence, when the gaps $G S$ spark over, the lower end of the high resistance is reduced practically to ground potential. If the high resistance can carry the discharge current without giving an ohmic drop sufficient to break down the shunted gaps GII, nothing further occurs -the arc goes out. If, on the contrary, the lightning stroke is too heavy for this, the potential strain is thrown across the shunted gaps, GHI, equal in number to the previous set. In other words, the same voltage breaks down both of the groups of gaps, $G S$ and GII, in succession. The lightning discharge current is now limited only by the medium resistance, $M$, and the potential is concentrated across the gaps, GM. If the medium resistance cannot discharge

After the spark passes, the dynamic arcs are extinguished in the reversed order. The low resistance, $L$, is proportioned so as to draw the dynamic ares instantly from the gaps, GL. The dynamic current continues in the next group of gaps, GM, until the end of the half cycle of the generator wave. At this instant the medium resistance, $M$, aids the rectifying quality of the gaps, GM, by shunting out the low frequency dynamic current of the generator. On account of this shunting effect the current dies out sooner in the gaps, GM, than it otherwise would. In the same manner, but to a less degree, the high resistance, $I I$, draws the dynamic current from the gaps, GHI. This current now being limited by the high resistance, the are is easily extinguished at the end of the first one-half cycle of the generator wave.

"V" UNIT OF MULTIGAP LIGHTNING ARRESTERS
the lightning, the gaps GM spark, and the discharge is limited only by the low resistance. The low resistance should take care of most cases but with extraordinarily heavy strokes and high frequencies, the discharge can "break back" far enough to cut out all resistance. In the last step the resistance is relatively low in proportion to the number of shunt gaps, $G L$, and is designed to cut out the dynamic current instantly from the gap, $G L$. The illustration of the 2200 volt arrester on page 8 shows that the low resistance actually performs this function. This "breaking back" effect is valuable in discharging lightning of low frequency, in a manner better than has been obtained before.

Therefore the superiority of the General Electric High-voltage Arrester is due largely to the proper shunting of its gaps, resulting in an arrester with the following properties: first, it will relieve the line of either light or heavy lightning disturbance, throughoul a wide range of frequency; and, second, the groups of gaps are so proportioned to the shunt resistance that the rectifying quality of the cylinders readily extinguishes the arc.

## "V" UNIT FOR MULTIGAP ARRESTERS

The High-voltage Multigap Arrester is made up of " $V$ " units consisting of gaps between knurled cylinders and connected
together at their ends by short metal strips. The base is of porcelain, which thoroughly insulates each cylinder, and insures the proper functioning of the multigaps.

## CYLINDERS

The cylinders are made of an improved alloy that contains metal of low boiling point which gives the rectifying effect, and metals
is increased at that particular point. The knurling, therefore, insures longer life to the cylinder by forcing successive ares to shift to a new point. When worn along the entire face the cylinder should be slightly turned.

## RESISTANCE RODS

The low resistance section of the graded shunt is composed of rods of a new metallic


INSTALLATION OF A 12500 -VOLT, THREE-PHASE, MULTIGAP LIGHTNING ARRESTER IN THE GARFIELD PARK SUB-STATION OF THE WEST CHICAGO PARK COMMISSION
of high boiling point which cannot vaporize in the presence of the one of low boiling point. The cylinders are heavily knurled. As the arc plays on the point of a knurl it gradually burns back and when the metal of low boiling temperature is used up, the gap
alloy. These rods have large current-carrying capacity, and practically zero temperature coefficient up to red heat.

The medium and high resistance rods are of the same standard composition previously used. The contacts are metal caps shrunk
on the ends; the resistances are permanent in value and the inductance is reduced to a minimum. The rods are designed with a large factor of safety, and have sufficient heat absorbing eapacity to take the dynamic energy following transitory lightning discharges. They are glazed to prevent absorption of moisture and surface arcing.

## DIFFERENCE BETWEEN ARRESTER FOR GROUNDED Y AND NON-GROUNDED NEUTRAL SYSTEMS

The connections for a three-phase arrester, 33,000 volts between lines, are shown in the illustrations on page 3 . One illustration shows the design for a thoroughly grounded Y system and the other for a non-grounded neutral system. The latter includes delta, ungrounded $Y$, and $Y$ systems grounded through a high resistance.

The difference in design lies in the use of a fourth arrester leg between the multiplex connection and ground on ungrounded systems. The reason for introducing the fourth leg is evident. The arrester is designed to have two legs between line and line. If one line became accidentally grounded, the full line potential would be thrown across one leg if the fourth or ground leg were not present. On a Y system with a grounded neutral the accidentally grounded phase causes a short circuit of the phase and the arrester is relieved of the strain by the tripping of the circuit breaker. Briefly stated, the fourth or ground leg of the arrester is used when, for any reason, the system could be operated, even for a short time, with one phase grounded.

## MULTIPLEX CONNECTION

The multiplex connection has been a distinetive feature of the General Electric Company's arresters for several years. It consists of a common connection between the phase legs of the arrester above the earth connection and provides an arrester better adapted to relieve high potential surges between lines than would otherwise be pos-
sible. Its use also economizes greatly in space and material for delta and partially grounded or non-grounded Y systems.

## FUSE AUXILIARIES

The practice of introducing an auxiliary adjustable gap between each line wire and its corresponding leg of the arrester has been modified in the new design with marked increase in the sensitiveness of the arrester. As the gap is necessary, under certain abnormal conditions, it is left on the arrester but short circuited by a fuse so that it comes into service only when the fuse blows on account of an are between phase and ground or some similar extremely severe continued strain. The sensitiveness is also greatly increased by the addition of a similar shunting fuse around the adjustable gap in the ground leg of the arrester. The ground leg is necessary only when there is an accidental ground of a phase; ordinarily the increased sensitiveness is maintained continually.

## LOCATION-INSTALLING-SPACING SETTING OF ADJUSTABLE GAP

Ample wall space should be provided and plenty of room in front should be left for the operator. The arresters should be installed as near as possible to where the lines enter the building. The following minimum separation distances, recommended by the General Electric Company for the past few years, have proved entirely satisfactory.
TABLE GIVING PROPER SPACE BETWEEN
LIGHTNING ARRESTERSAND FOR SET-
TING AD JUSTABLE GAP

Note-If barriers are used the width of barriers should be added to distances given.

It is advisable to install arresters in a dry place, and before assembling them the wooden supports, insulators, etc., should be thoroughly dried to expel all moisture which may have collected during transportation.

The adjustable spark gap on these arresters is shunted by a fuse as explained on page 6 . This fuse blows under certain conditions and cuts in the added protection of the gap. The settings of this gap for the various arresters should be as given on preceding page.

## VOLTAGE RANGE OF ARRESTERS

Lightning arresters of the form described have been designed for voltages from 5700 to 37000 . For lower voltages, down to 300 volts, alternating current, the arresters are of slightly different design, having only two resistance rods, A view of the 300 -volt arrester is shown on page 9 . For 300 volts and less no resistance is necessary, as the voltage is so low that the arc cannot hold. These arresters, therefore, consist simply of spark gaps.

## LOW VOLTAGE ARRESTERS-FORMS F1 AND F2 <br> 300 TO 5700 VOLTS

The 2200 -volt arrester consists of one unit having fourteen cylinders, nine of which are shunted by a low resistance and eleven by a


GROUND
FORM F1, 2200-VOLT MULTIGAP ARRESTER FOR STATION INSTALLATION
high resistance. As in the case of the high voltage arresters, the grading of resistance provides selective paths for lischarges. Its action and advantages are therefore similar to those of the high-voltage arrester. Accumulated static charges pass off across the high resistance and two gaps. High frequency discharges pass across all the gaps; discharges of moderate frequency across the low resistance and four gaps. The low resistance is so proportioned to the number of shunted gaps that the high frequency discharge across


OSCILLOGRAPH CURVES SHOWING LIGHTNING ARRESTER ACTION
these gaps is not followed by the dynamic current, the dynamic shunting at once to the low resistance. The discharge, as illustrated on the following page, takes place over all the gaps, but the arcs between the gaps shunted by the low resistances are very small compared with the bright ares between the last four gaps. The static discharge passes through all the gaps, while the half wave of dynamic current following the static is shunted part of the way by the resistance.

An oscillogram of this phenomenon is shown above. The only current in the shunted gaps is the current of static discharge. It should be noted, however, that the current shown is not a measure of the true current, as the oscillograph cannot respond to currents of such high frequency.

## 4736-8 Lightning Arresters

This arrester is designed to operate across 2200 volts. It is used, however, from each line to ground, giving, thus connected, sufficient protection and being always able to handle a discharge when one line is grounded. It is built to be used single-pole,


Ground
FORM F2, 3000-VOLT MULTIGAP ARRESTER FOR STATION INSTALLATION
but by placing two or three in the same box, becomes double-pole or triple-pole.

The 1000 -volt arrester is the same in design but has only one gap between the high resistance rod and line.


2200-VOLT, FORM F1, LIGHTNING ARRESTER DISCHARGING AND SHUNTING THE DYNAMIC CURRENT

The 3000 -volt arrester shown above is based on the same general principle as the 2200 -volt arrester, differing from it mainly in having
two additional gaps to take care of the higher voltage.

The 2200 -volt arrester, Form F1, is used in various combinations to form arresters of higher voltage. The complete line is catalogued on pages 13 and 14 .

## LOW-VOLTAGE LIGHTNING ARRESTERS 300 Volts OR LESS

For low-voltage, alternating current circuits up to 300 volts the Form D lightning arresters are used. This type has been sold


SINGLE-POLE FORM D ARRESTER
by the General Electric Company for several years, and in its present form meets the requirements for the protection of low voltage circuits such as transformer secondaries, motors, series arc lamps, etc. The arresters are made in single, double and triple-pole units mounted in compact iron boxes; various forms are shown in the accompanying illustrations.

## PROTECTION OF MIXED OVERHEAD AND CABLE SYSTEMS

It is frequently necessary and desirable for sircuits to dip underground when passing through cities, under rivers, etc., and in these cases some form of metal covered cable is generally used. Resonance invariably produces high potentials at the junction of overhead and underground lines, and these potentials are often of sufficient value to break down the insulation of the cables and also the insulation of apparatus installed on the system.

Whenever lines contain both inductance and capacity in appreciable quantities, high voltages which endanger the insulation of the whole system and which it is impossible to detect on ordinary switchboard instru-
ments may exist. Abnormal voltages are therefore often found in circuits containing a combination of underground and overhead circuits and in underground transmission lines.

For the protection of underground cables, arresters should be installed at all points
mended. It is advisable to place these arresters in the station on each outgoing line. When cables are used, the arrester should be placed on the pole where the cable joins the overhead wires. The accompanying illustration shows the appearance of one of the


DOUBLE-POLE AND TRIPLE-POLE FORM D 300-VOLT ARRESTERS
where a cable joins overhead construction.

It is difficult, however, to determine the proper arresters for such circuits on account of the various conditions to be met. Recommendations will gladly be made on receipt of information as to accessibility, ease of inspection, voltage and power of system, and length of overhead and underground circuits.


HORN ARRESTER FOR CONSTANT CURRENT CIRCUITS FOR STATION USE

CONSTANT CURRENT ARRESTERS
For constant current lighting circuits, horn arresters with resistances are recom-

General Electrie horn lightning arresters for station use.

## DISCONNECTING SWITCHES

Lightning Arresters are listed in this Bulletin without disconnecting switches. The use of such switches, however, is strongly recommended in order that the lightning arresters may be disconnected from the line for proper inspection, adjustment, cleaning, etc., without opening the line circuit.


POST TYPE INSULATOR DISCONNECTING SWITCH

The disconnecting switches listed in this Bulletin, except the 2500 -volt switches, are of the post insulator type. The 2500 -volt switches are single-blade, front connected, and are mounted directly on marble bases. The post insulator switches are arranged for mounting on flat surfaces.

## CHOKE COILS

The proper selection and installation of choke coils is an important feature of light-


HOUR GLASS TYPE-CHOKE COIL 15000-35000 VOLTS
ning protection. Choke coils should be used with lightning arresters except when the arresters are used to protect cable systems.

Three types of General Electric choke coils are shown in the accompanying illustrations,

6600 VOLTS


LOW VOLTAGE CHOKE COILS
3. The insulating supports can best be designed for the strains that they have to withstand.

## INSTRUCTIONS FOR ORDERING HIGHVOLTAGE LIGHTNING ARRESTERS

All high-voltage arresters listed are for three-phase circuits. Information on those for single- or two-phase circuits will be furnished on request.

All lightning arresters are listed wilhout choke coils or disconnecting switches, but the use of both is recommended. Choke coils, however, should not be used with cable systems.

When it is impossible to order a lightning arrester equipment by Cat. No., the data called for in the following list should accompany the requisition.

1. What is the normal line to line voltage?
2. How many sets of transmission lines are there?


4600 VOLTS

The 4600 -volt coil is made of insulated wire wound on wooden core supported by iron feet. The 6600 -volt coil is made of insulated wire and is mounted on marble base. For voltages above 6600 the "hour glass" type with air insulated turns is used. With this type the coil is mounted on a wooden, slate or marble base,

The "hour glass" type has the following advantages on high voltages.

1. Should there be any arcing between adjacent turns, the coils will reinsulate themselves after the discharge.
2. They are mechanically strong; and sagging is prevented by tapering the coils toward the center turns.
3. Is the system single-phase, two-phase or three-phase, or three-phase, four wire?
4. Is the system delta connected; Y connected, neutral non-grounded; or $Y$ connected, neutral grounded?
5. If single-phase, is the neutral grounded?
6. Are switches to be furnished with the arrester?
7. If so, are they to be double-blade or single-blade?
8. If double-blade switches are required, state the current-carrying capacity of the line switch.
9. Are choke coils to be furnished? If so, state their ampere capacities and the number desired.
10. The number of switch hooks to be furnished.
11. If the line is partly overhead and partly underground, submit a rough sketch that shows where the underground portion is located with reference to the stations and the remainder of the line.

## DIRECT CURRENT LIGHTNING ARRESTERS

The Type M Form D-2 arrester has been the standard for direct current circuits for several years, and is furnished for lighting and power circuits of from 60 to 375 volts, and for railway and power circuits of from 250 to 1800 volts.


The present form of arrester is somewhat longer and narrower than the earlier types, and the spark gap and non-inductive resistance are in a straight line, thus forming a direct path for the discharge and reducing to a minimum the possibility of short circuit in the box in case of excessively heavy lightning discharges. One of the valuable features of the MD-2 arrester is the fact that all parts can be readily inspected on removing the cover of the porcelain enclosing box and a glance will show if the arrester is in proper condition for the next storm. The gap is surrounded by a strong electro-magnet which immediately blows out the dynamic arc through the chute after the lightning discharge has passed.

The gaps on arresters up to 850 volts are adjusted to .025 inch, and on higher voltages to .094 inch. These arrangements have been found to afford excellent protection to the insulation of the equipments, due to the ow breakdown points.

The spark gap terminals are threaded and attached to the lid of the box, thus affording a ready method of adjustment, positive grip on the terminals, and easy access for examination.


DIRECT CURRENT LIGHTNING ARRESTER-INTERIOR

## GROUND CONNECTIONS

In all lightning arrester installations it is of the utmost importance to make perfect ground connections, as a large majority of lightning arrester troubles can be traced to the lack of this precaution. It has been customary to ground a lightning arrester by means of a large metal plate buried in a bed of charcoal at a depth of six or eight feet in the earth.

A more satisfactory method of making a ground is to drive a number of 1 in , iron pipes six or eight feet into the earth at several points about the station, connecting all these pipes together by means of copper wire or preferably copper strip. A quantity of salt should be placed around each pipe at

## 4796-12 Lightning Arresters

the surface of the ground and the ground thoroughly moistened with water. It is advisable to connect the pipes to the iron frame work of the station, and also to any water mains, metal flumes, or trolley rails that are available.

For the station of ordinary size the following recommendation is made. Place three earth-pipes equally spaced near each outside wall, making twelve altogether, and place three extra pipes spaced about 6 feet apart at a point nearest the arrester.

When plates are placed in streams of running water, it is much better for them to be buried in the mud along the bank than to lie in the stream. Streams with rocky bottoms are to be avoided except as a last resort.

Whenever plates are placed at any distance from the arrester it is advisable to drive a pipe in the earth directly beneath the arrester, thus making the ground connections as short as possible. Earth plates at a distance cannot be depended upon. Long ground wires in a station cannot be depended upon unless a lead is carried to the multiple pipe earths described above.

In view of the fact that it is advisable occasionally to examine the ground connections to see that they are in proper condition, it is desirable to lay out the exact plans of the location of the ground plates, ground
wires, or pipes, with a brief description of them, so that at any time the data may be referred to.

From time to time the resistance of the ground connections should be measured to determine their condition. This is very easily done when pipe grounds are installed, as the resistance of one pipe can be accurately determined when three or more pipes are used. The resistance of a single pipe ground in good condition has an average value of about 15 ohms. A simple and satisfactory method of keeping account of the condition of the earth connections is to divide the pipeearths into two groups and connect each group to the 110 -volt lighting circuit with an ammeter in series. If there is a flow of about 20 amperes the conditions are satisfactory provided the pipe-earths are properly distributed around the station.
For grounding pole lightning arresters on low voltage distribution circuits, a simple but satisfactory method is to drive a single $\frac{3}{1}$ inch or 1 inch pipe into the ground at the foot of the pole, and connect it to the arrester, preferably with the copper wire. The wire should be well soldered to the top of the pipe. The pipe should be driven to a depth of six to eight feet and should extend up the pole about 8 feet to avoid interference with the ground wire.


## GRADED SHUNT RESISTANCE MULTIGAP LIGHTNING ARRESTERS FOR ALTERNATING CURRENT CONSTANT POTENTIAL CIRCUITS-UP TO 5700 VOLTS



[^10]
## LOW VOLTAGE ALTERNATING CURRENT LIGHTNING ARRESTERS

APPROXIMATE SHIPPING WEIGHTS


CONNECTIONS OF LIGHTNING ARRESTER
CAT. NO. 3413 FOR INDIVIDUAL A.C.
ARC LAMP


## DIMENSIONS OFLOW-VOLTAGEALTERNATING CURRENT LIGHTNING ARRESTERS


S.P. LINE ARRESTERS

CAT. NOS. 46710 AND $\mathbf{4 6 7 1 2}$

T.P. LINE ARRESTERS

CAT, NOS. 46716 AND 77008

T.P. STATION ARRESTER CAT, NO. 77023

T.P. STATION ARRESTER

CAT. NO. 46715



4736-16 Lightning Arresters

## DIMENSIONS OF LOW-VOLTAGE ALTERNATING CURRENT LIGHTNING ARRESTERS


D.P. STATION ARRESTER CAT, NO, 78473

D.P. LINE ARRESTER CAT. NO. 78472



Lightning Arresters 4is6-17

## DIMENSIONS OF LOW-VOLTAGE ALTERNATING CURRENT LIGHTNING ARRESTERS


D.P. STATION ARRESTER CAT. NO, 78479


T.P. STATION ARRESTER CAT. NO. 78489

T.P. LINE ARRESTER CAT. NO, 78490 CONNECTIONS OF LIGHTNING ARRESTERS FOR TWO-PHASE THREEWIRE CIRCUITS

Arresters shown in opposite diagram are for line service.
For station service use corresponding sin-gle-pole station type as follows:

## LINE

Cat. No. 46712
Cat. No. 46981
Cat. No. 75947

STATION
Cat. No. 45477
Cat. No. 46980
Cat. No. 75946

## ALTERNATING CURRENT GRADED SHUNT RESISTANCE MULTIGAP LIGHTNING ARRESTERS

THE FOLLOWING CAT. NOS. DO NOT INCLUDE DISCONNECTING SWITCHES THREE-PHASE

THREE-PHASE
FOR "DELTA" OR UNGROUNDED "Y" CIRCUITS FOR GROUNDED "Y" CIRCUITS

| Cat No, | Min and Max. Voltage on which Arresters should be Installed | Approx. Shipptng Weight in Llk | Cat. No. | Min and Max, Voltake on which Arresters should be Instalted | Approx. Shipping Weight in Lb. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 46991 | $5700-7600$ | 353 | 46992 | 5700-7600 | 325 |
| 46998 | 7601-12250 | 465 | 46994 | 7601-122.50 | 420 |
| 46995 | 12251-13500 | 550 | 46996 | 1225 $\mathrm{t}-13500$ | 509 |
| 46997 | 13501-17000 | 650 | 16948 | 13501-17000 | 575 |
| 46999 | 17001-22000 | 805 | 47000 | 17001-22000 | 715 |
| 47001 | 22001-27000 | 980 | 47002 | 22601-27000 | 870 |
| 47008 | 27001-32000 | 1245 | 47004 | 27001-82000 | 1115 |
| 47005 | 32001-37000 | 1430 | 47006 | 32001-37000 | 1820 |

## DIMENSIONS OF ALTERNATING CURRENT GRADED SHUNT RESISTANCE MULTIGAP LIGHTNING ARRESTERS FOR 3-PHASE DELTA OR UNGROUNDED "Y" CIRCUITS




DIMENSIONS OF ALTERNATING CURRENT GRADED SHUNT RESISTANCE MULTIGAP LIGHTNING ARRESTERS FOR 3-PHASE DELTA OR UNGROUNDED "Y" CIRCUITS-Continued


LETTERS ON DIAGRAMS SHOW WHICH CYLINDER OF EACH UNIT IS CONNECTED


# DIMENSIONS OF ALTERNATING CURRENT GRADED SHUNT RESISTANCE MULTIGAP LIGHTNING ARRESTERS FOR 3-PHASE GROUNDED " Y " CIRCUITS 



DIMENSIONS OF ALTERNATING CURRENT GRADED SHUNT RESISTANCE MULTIGAP LIGHTNING ARRESTERS FOR 3-PHASE GROUNDED " Y " CIRCUITS-Continued



LETTERS ON DIAGRAMS SHOW WHICH CYLINDER OF EACH UNIT IS CONNECTED

4236-22 Lightuing Aresters
CHOKE COILS FOR USE WITH ALTERNATING CURRENT LIGHTNING ARRESTERS


DIMENSIONS OF CHOKE COILS, HOUR GLASS TYPE 15000 TO 35000 VOLTS

| Cat. No. |  |  | Volts | Amp. | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Marble Base | Slate Base | Wood Base |  |  |  |  |  |  |
| 77704 | 77699 | 76859 | 15000 |  | $71 \frac{15}{6}$ | 81 | $5 \frac{3}{4}$ | $19 \frac{11}{16}$ |
| 77705 | 77700 | 76860 | 25000 | 200 | $10{ }^{5}$ | 13 | $10 \frac{1}{4}$ | $223^{\circ}$ |
| 77706 | 77701 | 76861 | 35000 | 200 | 132 | 13 | $10 \frac{1}{4}$ | $25 \frac{1}{4}$ |

DISCONNECTING SWITCHES FOR USE WITH ALTERNATING CURRENT LIGHTNING ARRESTERS


## LIGHTNING ARRESTERS FOR CONSTANT CURRENT CIRCUITS-HORN TYPE DOUBLE POLE STATION ARRESTERS

FOR USE ON SECONDARIES OF CONSTANT FOR USE ON CONSTANT CURRENT INCANCURRENT TRANSFORMERS FOR ARC DESCENT SERIES SYSTEMS LIGHTING SYSTEMS

ual circuit to which the arrester is connected. It does not refer to the generator voltage as governed by the single-circuit rating.
*Multi-circtit transformers-two arresters required

RECOMMENDATIONS FOR ADJUSTING THE GAP OF HORN ARRESTERS

| Voltage of Circuit | 1100 | 1500 | 2300 | 3200 | $\ddagger 600$ | 6900 | 9200 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Each Gap in Inches G | $\frac{1}{2}$ | $k$ | $\frac{1}{8}$ | $\frac{3}{16}$ | $\frac{1}{4}$ | $\frac{3}{8}$ | $\frac{1}{2}$ |

DIMENSIONS AND WEIGHTS OF HORN LIGHTNING ARRESTERS FOR STATION USE


| CAT- NO, |  | APPROX.WY. IN LB, |  | DIMENSIONS IN INCHES |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Pirect | Alternating Current | Net | Shipping | A | B | C |
|  | 47558 | 20 | 35 | 24 | 83 | 32 |
| 58960 | 47559 | 42 | 125 | $23 \frac{7}{6}$ | $28{ }^{3}$ | $8 \frac{1}{2}$ |
|  | 47560 | 47 | 135 | $23 \frac{7}{8}$ | 298 | $8 \frac{1}{2}$ |
| 58961 | 47561 | 44 | 130 | $23 \frac{8}{6}$ | 28 | $8 \frac{1}{2}$ |
| 58962 | 47562 | 78 | 180 | $23 \frac{1}{6}$ | 32 | $17^{2}$ |
| 58959 | 47563 | 15 | 25 | 24 | $13 \frac{9}{16}$ | $3{ }^{3}$ |
|  | 47577 | 70 | 170 | $23 \%$ | $29{ }^{\frac{3}{6}}$ | 17 |

## 4736-24 Lightning Arresters

LIGHTNING ARRESTERS FOR CONSTANT CURRENT CIRCUITS-HORN TYPE
Single pole line arresters


SINGLE POLE HORN LIGHTNING ARRESTER FOR OUTDOOR SERVICE

DIMENSIONS
FOR A.C. ARC AND INCANDESCENT CIRCUITS

| Cat. No. | Volts | Gap Setting | A | B | C | D | E | F | G | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 78253 | 2500 | $\frac{1}{4}$ | $23 \frac{3}{16}$ | $17 \frac{7}{8}$ | $7!$ | $10^{5}$ | $9{ }^{\text {a }}$ | 127 | 7 | $1{ }_{8}^{3}$ |
| 78256 | 3200 | 16 | $23 \frac{5}{16}$ | $17 \%$ | 71 | $10^{5}$ | $14 \frac{3}{6}$ | $17 \frac{1}{4}$ | 9 | $2 \frac{13}{16}$ |
| 78260 | 4600 |  | $23{ }^{1}$ | $18 \frac{1}{8}$ | 92 | 12\% | 15? | $18 \frac{3}{6}$ | 9 | $3 \frac{3}{16}$ |
| 78263 | 9200 |  | $27 \frac{1}{2}$ | 223 | $9 \%$ | 12 \% | 14\% | $17 \frac{7}{6}$ | 9 | $2 \frac{15}{16}$ |

FOR RECTIFIER AND BRUSH ARC CIRCUITS

| 78258 | 3200 | $\frac{3}{16}$ | $23 \frac{5}{16}$ | 177 | 71 | $10^{5}$ | 143 | 173 | 9 | $2 \frac{12}{16}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 78283 | 4600 | ${ }^{16}$ | $231{ }^{16}$ | $18 \frac{1}{1}$ | $9 \frac{1}{1}$ | 123 | $15 \frac{3}{4}$ | $18 \frac{8}{6}$ | 9 | $3 \frac{1}{16}$ |
| 78264 | 9200 | $\frac{1}{2}$ | 271 | $22 \frac{3}{6}$ | $9 \%$ | 125 | $14 \frac{7}{6}$ | $17 \frac{7}{6}$ | 9 | $2 \frac{15}{16}$ |

Lightning Arresters 4736-25

## LIGHTNING ARRESTERS FOR CONSTANT CURRENT CIRCUITS-HORN TYPE double pole line arresters



## DIMENSIONS

FOR A.C. ARC AND INCANDESCENT CIRCUITS

| Cat. No. | Volts | Gap Setting | A | B | C. | D | E | F | E | H |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 78252 | 1500 | 4 | $23{ }^{3} 6$ | $17 \%$ | 71 | $10 \%$ | 14 | 18 | 7 | $3!$ |
| 78254 | 2500 | $\frac{1}{1}$ | $23 \frac{5}{16}$ | $17 \frac{8}{8}$ | $7 \frac{1}{6}$ | $10^{\frac{5}{8}}$ | 143 | 188 | 9 | 216 |
| 78255 | 3200 | 3 | $23{ }^{\frac{5}{16}}$ | $17 \frac{7}{8}$ | $7 \frac{1}{6}$ | $10^{\frac{5}{6}}$ | 19 | 23 | 10 | $4{ }^{1 / 2}$ |
| 78259 | 4600 |  | $23 \frac{1}{1}$ | $18 \frac{1}{8}$ | $9 \frac{1}{8}$ | $12 \frac{5}{6}$ | 245 | 285 | 14 | $5_{15}^{5}$ |
| 78261 | 9200 | $\frac{1}{2}$ | $27 \frac{1}{2}$ | 223 | $9 \frac{1}{6}$ | $12 \frac{5}{8}$ | 25 | 29 | 15 | $5^{16}$ |

FOR RECTIFIER AND BRUSH ARC CIRCUITS

| 78251 | 1100 | ${ }^{5}$ | $23 \frac{5}{16}$ | $17 \%$ | 7) | $10^{5}$ | 14 | 18 | 7 | $3 \frac{1}{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 78257 | 3200 | $\frac{3}{16}$ | $23^{\frac{1}{16}}$ | 178 | 76 | $10^{\frac{3}{5}}$ | 19 | 23 | 10 | $4 \frac{1}{2}$ |
| 78282 | 4600 |  | $23{ }^{1}$ | $18^{\frac{1}{3}}$ | $9 \%$ | $12{ }^{\frac{5}{4}}$ | $24 \frac{5}{8}$ | 288 | 14 | $\frac{32}{5_{16}}$ |
| 78262 | 9200 | $\frac{1}{2}$ | $27 \frac{1}{2}$ | 223 | 92 | 125 | $25^{\circ}$ | 29 | 15 | $5^{16}$ |

## LIGHTNING ARRESTERS FOR DIRECT CURRENT CIRCUITS TYPE M FORM D-2



## DIMENSIONS AND CONNECTIONS OF LIGHTNING ARRESTERS FOR DIRECT CURRENT CIRCUITS

 ahcrane ecualizing or nechtive aide

## INDEX

Page
Alternating Current Arresters (Multigap)
Theory . $1,2,3,4$High Voltage
Catalogue Numbers ..... 18
Description .....  $4,5,6,7$ .....  $4,5,6,7$
Dimensions ..... 18, 19, 20, 21
Installing ..... 6 ..... 6
Ratings ..... 18
Low Voltage
Catalogue Numbers ..... 13, 14
Description ..... 7, 8
Dimensions ..... 14, 15, 16, 17
Ratings ..... 13
Arc Circuits, Arresters for, See Horn Arresters
Choke Coils
Catalogue Numbers ..... 22
Description ..... 10
Dimensions ..... 22
Ratings ..... 22
Direct Current Arresters (MD-2)
Catalogue Numbers ..... 26
Description ..... 11
Dimensions ..... 26
Ratings ..... 26
Grounds for Lightning Arresters ..... 11, 12
Horn Arresters (A.C. and D.C.)
Catalogue Numbers ..... 23, 24, 25
Description ..... 9
Dimensions ..... 23, 24, 25
Ratings ..... 23, 24,25
Switches
Catalogue Numbers ..... 22
Description ..... 9
Dimensions ..... 22
Ratings ..... 22

## GENERAL ELECTRIC COMPANY

PRINCIPAL OFFICES, SCHENECTADY, N. Y.

> SALES OFFICES:
> (Address nearest office.)

BOSTON, MASS., 84 State Street.
NEW YORK, N. Y., 30 Church Street.
Syracuse, N. Y., Post-Standard Building.
Bufalo, N. Y.. Ellicott Square Building.
NEW HAVEN, CONN.: Malley Building.
PHILADELPHIA, PA.. Witherspoon Building.
Baltimore, Mo. Electrical Building.
Cuarlotte,
Charlotte, N. C. Trust Building
Cilarleston, W. V́a., Charleston National Bank Bidg. Pittsburg, Pa., Park Building
Richmond. Va., 712 Mutual Building.
Roanoke, Va., Strickland Building.
ATLANTA, GA., Empire Building.
Macon, Ga., Grand Building.
New Orleans, La, Maison-Blanche Building
CINCINNATI, OHÍO., Provident Bank Buildin
Columbus, Ohio, Columbus Savings \& Trust Building.
Cleveland, Ohio, Citizens Building.
Chattanooga, Tenn., James Building
Memphis, TENN., Randolph Building.
Nashyille, Tenn., Stahlman Building.
Indianapolis, Ind., Traction Terminal Building.
CHICAGO, ILL., Monadnock Building.
Detroit, Mrch., Majestic Bldg. (Office of Soliciting Agt.)
ST. Lours, Mo, Wainwright Building.
Kansas City, Mo., Dwight Building.
Minneapolis, Minn. $410 \cdot 412$ Third Avent
DENVER, COLO., Kittredge Building.
DENVER, COLO., Kittredge Building.
Butie, Montana, Phœmix Building.
Salt Lake City, UTAh, Newhouse Building.
SAN FRANCISCO, CAL., Union Trust Building
SAN FRANCISCO, CAL., Union T
Los Angeles, Cal, Delta Building.
Portland, Ore., Electric Building.
Seattle, Wash., Colman Building.
Spokane, Wasi., Paulsen Building.
For Texas and Oklahoma Business refer to
General Electric Company of Texas,
Dallas, Tex., Praetorian Building
El Paso, Tex., Chamber of Commerce Building.
Oklahoma City, Okla., Insurance Building.
FOREIGN:
Foreign Department
Schenectady, N. Y., and 30 Church St., New York, N. Y. London Office, 83 Cannon St., London, E. C., England.

For all Canadian Business,
Canadian General Electric Company, Ltd.,
Toronto, Ontario.

# General Flectric Company Schenectady, N.Y. 

## POWER AND MINING DEPARTMENT




Fig. 1. 25 KW . ELECTRIC HARDENING FURNACE OUTFIT

THE rapid development of the tool steel industry from the old-time carbon to the self hardening, then to the sweating process, and finally to the high speed steels, demanded a corresponding development in the methods of hardening the finished product, and in order to meet this requirement the open fire
or coal furnace gave way to the muffle furnace and the externally heated lead and metallic salt baths. These furnaces while being a great improvement are, however, more or less unsatisfactory on account of unequal heating and the consequent cracking and checking of the tools hardened, the

## 4737-2 Electric Ilardening Furnace

inability of the operator to quickly and properly regulate the temperature, the oxidation of tools due to air contact, resulting in large quantities of unsatisfactory work, and in the lead bath the forming of dross on the surface of the bath, the sticking of lead to the tool, the formation of poisonous gases and the floating of the steel on the bath due to the greater specific weight of the lead.

The number of manufactured articles that depend for their economical production on efficient and durable tools has become so large that any further improvement in the hardening or tempering of tool steel is of vital importance, and a notable advance in this direction has been made, not only by the development of high speed steel but also by the introduction of the electric furnace in which metallic salts are brought to a liquid state by passing current through them and in which the heating of the tool to be hardened can be exactly controlled and kept uniform throughout over a wide range of temperature. By its use, hardening and tempering can be carried out on scientific lines and steel of the proper hardness and temper for any class of work can be obtained readily and economically. Furthermore, a more durable and uniform product can be obtained in this type of electric furnace than with any other method heretofore employed.
The process of hardening necessitates the maintenance of a constant and uniform temperature in the furnace in order to obtain the best possible results, this requirement being by no means fulfilled by the ordinary coal, gas, oil, nor in fact by any muffle or pack furnace, nor by the lead or salt baths which are externally heated. It is also often necessary to adjust the temperature of the furnace, which cannot be done with precision with the ordinary furnaces, but owing to the flexibility of electric control the adjustment of the temperature in the electric furnace is easily accomplished, and with a source of constant power it is possible to maintain the furnace" at a uniform temperature for any desired length of time.

## CONSTRUCTION OF FURNACE

The electric furnace manufaetured by the General Electric Company is operated from an alternating current, single-phase supply, and the outfit consists of a crucible and a regulating transformer as shown in Fig. 1, and includes the necessary connecting cables, cleaning scoops and starting electrode.


Fig. 2. SECTIONAL ELEVATION OF FURNACE


Fig. 3. SECTIONAL PLAN OF FURNACE

The crucible is built up of slabs of refractory material cemented together and surrounded by beat insulating material in a substantial sheet iron case. Two soft iron electrodes, located on opposite sides of the crucible, direct the current, from the transformer, through the bath. They are arranged so as to be readily renewable. The life of the electrodes is approximately 3000 hours when operated at 1400 degrees F., and 400 hours when operated at 2200 degrees F . A hood, containing a warming oven as shown, is furnished and must be connected to a suitable pipe to conduct the vapors to the outer air. The construction of the crucible is shown in detail in the sectional plan view and in the sectional elevation Figs. 2 and 3. Attention is called to the fact that the heat insulation provided is sufficient so that with the bath at a temperature of 2400 degrees F., the sheet iron case is not uncomfortable to the touch. This feature not only reduces fire risk, but also allows the quenching bath to be


Fig. 4. DIAGRAM OF ELECTRIC CIRCUITS

## 47S7-4 Electric Ilardening Furnace

## OPERATION OF FURNACE

As the salt used for the bath solidifies and becomes a non-conductor of current when cold, it is necessary to start the melting of the bath by means of an auxiliary electrode provided for the purpose. Before closing the line switch on the panel, a small channel of approximately 1 sq. in. in section should be cut in the solidified bath and extending from one electrode to the other, the chips remaining in the channel. Two or three pieces of any standard lamp carbon approximately $\overline{7} \mathrm{in}$. long and $1 / 2 \mathrm{in}$. in diameter should then be laid on top of the chipped portion. The line switch should be closed and the dial switch rotated to the extreme right in which position the minimum obtainable voltage is applied to the furnace terminals. By means of the auxiliary electrode, the carbons should be tightly pressed against the furnace electrode at the left, and as shown in Fig. 5, until the chipped salt directly under the carbons is melted. The auxiliary electrode should then be drawn slowly to the right, allowing the salt in the channel to melt, until it reaches the right-hand furnace terminal, after which the starting electrode is removed from the bath and the switch rotated to the extreme left, in which position the maximum voltage is obtained. The molten channel together with the carbons is sufficient to maintain the circuit which will gradually increase the molten bath till the entire mass is in a liquid state, after which the starting carbons are removed.


Fig. 5. STARTING THE FURNACE

As the melting of the bath progresses its resistance decreases and to prevent an excess current being taken from the line the furnace voltage should be lowered by rotating the dial switch to the right a sufficient amount to keep the line current within normal. After the bath has been entirely liquefied, it is automatically maintained at a constant temperature by heat convection, and the uniform distribution of current through it and any desired temperature can be indefinitely maintained by the proper adjustment of the dial switch, this temperature being practically uniform throughout the bath except at the surface for a depth of about $5 / 8 \mathrm{in}$. The time necessary to establish the circuit in the channel varies from 5 to 10 minutes and that required to bring the entire bath to the desired temperature from 1 to $11 / 2$ hours, but after all the salt has been melted any desired change in the temperature can be quickly obtained by adjusting the voltage. For measuring the temperature the General Electric Company recommend and will furnish a special thermoelectric pyrometer calibrated so that the temperature can be read directly.

When any desired temperature has been obtained by the proper adjustment of the dial switch, that portion of the tool to be hardened is immersed in the bath and allowed to remain until it attains the same color as the bath, when it is removed and hardened in water or oil as required. When the tool is removed from the bath, it is coated with a thin film of the salt which prevents contact with the air and effectually prevents oxidation, but as soon as the tool is immersed in the cooling medium the salt chips off, leaving the steel absolutely clean, except that in the case of high speed steel hardened in oil there is apt to be a slight coating of burnt oil which is, however, easily removed. As far as can be determined, the salt has absolutely no effect on the composition of carbon-steel, but there seems to be a tendency to produce a film of soft metal of a few mils in thickness on the surface of high speed steels. This appears, however, to be true only for certain tempera-
tures and in case the tool is kept 100 long in the bath; and it is, of course, in no way detrimental if the tools are ground after being hardened. In operating the furnace care should be taken that water or wet tools do not come in contact with the bath, as it will cause the hot salt to sputter and may burn the operator,

## CAPACITY OF FURNACE

Fig. 1 illustrates the standard 25 kw ., 60 cycle furnace for the hardening of high
clearance should be equal to one-half of the total diameter or thickness of the piece to be heated, and allowing 1 in . clearance top and bottom and on the remaining sides the maximum size of tool which can be successfully heated in a bath of the dimensions given is 6 in. $\times 6 \mathrm{in} . x+\mathrm{in}$. In heating a number of small pieces simultaneously the useful area of bath is, of course, increased in proportion to the decrease in the size of the individual picces. For the reason given above, all tools of whatever shape should always be immersed


Fig. 6. POWER REQUIRED BY ELECTRIC FURNACE
speed steel, and the crucible has a section of $8 \mathrm{in}, \times 8$ in, $\times 12 \mathrm{in}$. deep, being designed for a bath 8 in . deep.

Steel is a much better electrical conductor than the bath and special precautions are therefore necessary not only to prevent the tool coming in contact with the electrodes but also to insure an ample clearance between them, so as to avoid diverting sufficient current from the bath through the tool to heat it to detrimental temperature, This
in the bath with their greatest length parallel to the electrodes. The rate at which work can be done with the electric furnace depends on the shape and on the contact surface of the piece to be heated, and on the manipulation of the regulating switch by the operator, and an approximate idea can be obtained by referring to the following tabulation which gives the time required to raise the temperature of round stock from room temperature to 1400 degrees F.

| Size of Stock | No. of Pieces | Weight in Lb. | $\begin{aligned} & \text { Time } \\ & \text { in Min. } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| $1 / 2^{\prime \prime}$ diam. $6^{\prime \prime}$ " long | 1 | . 32 | $3 / 4$ |
| $1 /{ }^{1 / \prime \prime}$ " diam. $6^{\prime \prime}$ " long | 6 | 1.92 |  |
| 3/4" ${ }^{\prime \prime}$ diam. $6^{\prime \prime}$ " long | 1 | . 71 | $11 / 2$ |
| 3/4" ${ }^{\prime \prime}$ diam. $6^{\prime \prime}$ long | 6 | 4.26 | 6 |
| $1^{\prime \prime \prime}$ " diam. $6^{\prime \prime}$ " long | 1 | 1.27 | $21 / 2$ |
| $1^{\prime \prime}$ (liam. $6^{\prime \prime}$ long | 6 | 7.62 | 8 |

When heating a single piece the switch was not changed, but when heating six pieces simultaneously the voltage was increased as soon as the steel was immersed and again lowered as the proper temperature was obtained.

The curve (Fig. 6) shows the power required by this furnace to maintain the bath constant at various temperatures, and in general the amount of power varies approximately as the surface so that from the figures given the power required at any temperature for any size of crucible can be estimated. From the curve it will be noted that the power required for temperatures necessary for hardening carbon steel is approximately one-fourth that required for hardening high speed steel
and two sizes of regulating transformers have therefore been designed for each size of crucible, so that if a given crucible is to be used for carbon steel only a much smaller transformer can be supplied. Both carbon and high speed steel can be treated in the crucible when controlled by the larger transformer, but as a different salt mixture is required for obtaining the necessary temperatures, it is preferable, in case both kinds of steel are to be hardened, to have two crucibles, one containing a mixture of barium chloride and potassium chloride in which a temperature range of from 1200 degrees $F$. to 1800 degrees F . for the hardening of carbon steel can be obtained, and the other containing barium only and in which a range of from 1800 degrees F. to 2400 degrees F. can be obtained for the heating of high speed stecl. In furnishing two crucibles with one transformer, it should, however, be noted that they cannot be operated simultaneously, but two crucibles are recommended for economy and for convenience in avoiding the necessity of changing the bath with a consequent loss of time and labor and more or less of the salt.


## ADVANTAGES OF THE ELECTRIC FURNACE

THE Electric Furnace reduces hardening and tempering to an exact process and therefore produces uniformly superior results. The important advantages of the electric furnace will be evident to the practical worker who has read the preceeding pages. These advantages may be summarized as follows:

1. The production and maintenance of constant and uniform temperature for hardening any class of steel.
2. The exact knowledge of the temperature of the steel in its heated condition.
3. The equal and even heating of the material, and therefore the prevention of strains with consequent checks and cracks or the burning off of sharp edges and points.
4. The prevention of air from striking the heated tool, thereby avoiding oxidation.
万. The prevention of foreign matter entering the bath, thereby avoiding the pitting of the steel.
5. The obtaining of clean surfaces after hardening, thus to a considerable extent making unnecessary any cleaning.
6. The practicability of placing the cooling bath close to the furnace.
S. Easy operation of the furnace.
7. Reduction of fire risk.
8. Cleanliness.

## GENERAL ELECTRIC COMPANY

PRINCIPAL OFFICES, SCHENECTADY, N. Y.

SALES OFFICES:
(Address nearest office.)
BOSTON, MASS., 84 State Street.
NEW YORK, N. Y., 30 Church Street.
SYRACUSE, N. Y., Post-Standard Building
SYRACUSE, N. Y., Post-Standard Building
BuFfalo, N. Y., Ellicott Square Buiding.
New Haven, Conn., Malley Building.
NEV HAVEN, CONN., Mtalley Buiding.
PHILADELPHIA, PA., Witherspoon Bldg.
Baltimore, MD., Electrical Building.
Cilarlotte, N. C., Trust Building .
Charleston, W. Va., Charleston
Pittsburg, Pa., Park Building.
Ricimand, VA., 712 Mutual Building
Ricinmond, Va., 712 Mutual Building
Roanore, Va., Strickland Building.
ROANORE, VA., Strickiand Building
ATLANTA, GA., Empire Bu
Macon, Ga., Grand Buiding
EeV ORLEANS, LA., Maison-Blanche Building
CINCINNATI, OHIIO, Provident Bank Building.
Colvmbus, Oino, Columbus Savings \& Trust Bldg.
Cleveland, Oifio, Citizens Building.
Chattanogga, Tenn., James Building
Memphis, TenN., Randolph Building.
Nasilville, Tenn., Stahlman Buiding.
Indianapolis, Ind., Traction Terminal Building.
Indianapolis, Ind., Traction Terminal Building.
CHICAGO, ILL.. Monadnock Building
Detroit, Micil., Majestic Bldg. (Office of Soliciting Agt.) St. Lours, Mo. Wainwright Building.
Kansas City, Mo., Dwight Building.
BUtTe, Montana, Phœenix Building.
MinNEAPOLIS, MINN., 410412 Third Avenue, North.
DENVER, COLO., Kittredge Building.
Salt Lake City, Utail, Newhouse Building.
SAN FRANCISCO, CAL., Union Trust Building.
SAN FRANCISCO, CAL., Union Tr
Los Angeles, Cal., Delta Building.
Los Angeles, Cal., Delta Building
Portland, Ore., Electric Building.
Seattle, Wasi., Colman Building.
Spokane, Wasir., Paulsen Building.

For Texas and Oklahoma Business refer to
General Electric Company of Texas,
Dallas, Tex., Praetorian Bldg.
El Paso. Tex., Chamber of Commerce B

## FOREIGN:

Foreign Department.
Schenectady, N. Y., and 30 Church St., New York, N. Y.
London Office, 83 Cannon St., London, E. C., England.
For all Canadian Business,
Canadian General Electric Company, Ltd.,
Toronto, Ontario.

## General Flectric Company

Schenectady, N.Y.

| May, 19 Io |  | Bulletin No. 4738 |
| :---: | :---: | :---: |

## BELT DRIVEN REVOLVING ARMATURE ALTERNATORS

The General Electric Company has developed three sizes of polyphase, 60 cycle generators for use in small isolated plants. These generators are of the revolving armature, self-excited type and are designed for service at any power factor between . 8 and 1.0 .

## Arrangement

The Type AT generators as shown in the illustrations are for belt drive, but can be readily used for direct connection by omitting the pulley and sliding base.


AT 4 ( $7 / \frac{1}{2}-15-25$ ) -1800 ALTERNATORS

## Phases and Voltages

The Type AT alternator can also be wound for two-phase, and when so wound is designated Type AQ. For single-phase service, standard three-phase windings with a load carried by any two of the three legs is recommended. Such generators are good for 70 per cent. of their three-phase capacity when run single-phase. These machines can be furnished for the following voltages: $120,240,480$ and 600.

## Armature

The armature is of the revolving type and contains two distinct windings. The main generator armature winding is connected to the three collector rings, while the exciter armature winding is connected to the commutator.

## Field

The field structure consists of laminated pole pieces cast into a rigid stationary frame.

[^11]
## $4738-2$ Belt Driven Revolving Armature Alternators

The pole pieces contain field coils which bave a common flux for both generator and exciter. When machine is furnished as a symchronous motor, grids are placed on the poles.

## Bearings

The bearing housing is carefully cleaned, and painted inside, thus insuring a llow of oil free from grit. The bearings are of suitable dimersions to give ample cooling surface, and are self-oiling, each bearing having two oil rings.

## Exciter

No external excitation is required for these machines. The armature winding is independent of the armature winding of the
the temperature rising more than $55^{\circ} \mathrm{C}$. The rise in temperature is based on the temperature of the surrounding atmosphere being $2.5^{\circ} \mathrm{C}$, and the recorded temperature must be corrected by one-half of 1 per cent. for each degree that this temperature differs from $25^{\circ} \mathrm{C}$, in accordance with the standardizing rules of the A.I.E.E.

## Load

These machines were primarily designed for lighting loads; and when used on inductive loads, the best results are obtained by avoiding sudden change of load.

## As Synchronous Motors

When operated as synchronous motors these machines are rated 10 h.p., 20 h.p. and

exciter. The exciter winding, therefore, is not similar to a rotary converter where taps are taken off the main armature winding, nor does it depend on rectifying commutators or series transformers for stepping down part of the armature current. This arrangement has been thoroughly tried out, both in test and practice, and has proven thoroughly reliable in every way.

## Temperatures

These machines will operate under full rated k.v.a. load continuously, at any power factor between .8 and 1.0 with a temperature rise of any part not exceeding $40^{\circ} \mathrm{C}$. above the surrounding air. They will carry 25 per cent. overload in k.v.a. under the same power factor conditions for two hours without

35 h.p. respectively. The field winding should be connected through switches on the field frame in order that the field circuit may be broken up to eliminate any danger that might arise from induced voltage. This precaution is advisable in addition to the grids mentioned under the heading of field. It is not advisable to throw on full rated voltage and a compensator should, therefore. be provided to reduce it.

When 50 per cent. of normal voltage is applicd, the starting torque will be approximately 25 per cent. full load torque.

## As Rotary Condensers

When operating as rotary condensers, these machines are rated 6 k.v.a., 12 k.v.a and 20 k.v.a.

Belt Driven Revolving Armature Alternators 4738-9


25 KW . BELT DRIVEN
ALTERNATOR
(AT 4-25-1800)


## 4738-4 Bell Driven Revolving Armature Alternators

## RATINGS, WEIGHTS AND OUTPUTS

TYPE AT 60 CYCLE, BELT DRIVEN ALTERNATOR

| Rating | kW. |  | NET Weigats, lbs. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1.0 P.F. | 0.8 P.F. | Rotor | Stator | Sub-Base | Total |
| AT $-4-7 \frac{1}{2}-1800 *$ | $7 \frac{1}{2}$ | 6 | 120 | 500 | 95 | 715 |
| AT-1-15-1800 * | 15 | 12 | 165 | 810 | 95 | 1070 |
| AT $-4-25-1800$ * | 25 | 20 | 235 | 1160 | 140 | 1535 |



DIMENSIONS (Inches)

| Type | Poles | kw. |  | Speed <br> R.P.M. | A | B | c | D | E | G | H | J | K |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\stackrel{1.0}{\text { P.F. }}$ | $\stackrel{0 .}{0 .{ }_{\mathrm{F}}^{2}}$ |  |  |  |  |  |  |  |  |  |  |
| AT | 4 | 75 | 6 | 1800 * | 223 | 29. | $13 \frac{1}{6}$ | $2{ }^{3} 16$ | $28 \frac{13}{16}$ | $26 \frac{1}{2}$ | $3 \frac{1}{2}$ | 8 | $32 \frac{1}{2}$ |
| AT | 4 | 15 | 12 | 1800 * | 253 | $33 \frac{1}{16}$ | $14 \frac{1}{2}$ | $2 \frac{7}{16}$ | $33 \frac{1}{2}$ | 295 | $4 \frac{1}{4}$ | 10 | 374 |
| AT | 4 | 25 | 20 | 1800 * | 293 | 38 | $16 \frac{5}{8}$ | $2{ }^{3}$ | $38 \frac{1}{2}$ | 325 | $5 \frac{1}{2}$ | 12 | 38\% |

[^12]
# General Flectric Company <br> Schenectady, N.Y. <br> SUPPLY DEPARTMENT 

May, 19 Io
Capyriohy 1010
Bulletin No. 47.10

## LINE DROP COMPENSATORS TYPE V4 FOR ALTERNATING CURRENT CIRCUITS

IT is extremely desirable, in any system of electrical distribution, to be able to read the actual voltage at the point of distribution by means of the voltmeters in the generating station. Various devices have
been designed for accomplishing this result but while they are accurate on loads for which they are adjusted, they are not accurate on light loads, overloads, or loads of different power factors. It will be readily seen that unless a device of this kind is accurate on all loads with a single adjustment, it has no large field of usefulness.
The General Electric Company has now perfected a device which when once adjusted requires no further attention, and can be fully relied upon to indicate the variations of potential at the point of distribution under all conditions of load without appreciable error between noload and heavy overloads. This device is used in connection with the standard station voltmeter.

The compensator proper consists of three principal parts, a current trarsformer, a variable resistance and a variable reactance.

The secondary of the transformer is connected in series with the resistance and react-
ance, and the primary is connected to the secondary of an external current transformer.

The reactance and resistance are both so wound that any proportion of the winding can be cut in or out of the voltmeter circuit.

Both elements have 12 points of adjustment of one volt each, giving a total combined drop at maximum setting of about 17 volts.

The voltmeter, instead of being connected directly across the secondaries of the pótential transformer, as is usual, has inserted in series with it portions of the reactance and resistance above mentioned. These are so connected that the drop in potential across them will be combined with that of the potential transformer, so that the voltmeter reading will indicate the potential at the center of distribution or end of the line.

If the amount of reactance and resistance is properly adjusted, we shall have produced a local circuit exactly corresponding in all its characteristics to that of the main circuit. Any change in the main circuit produces a corresponding change in the local circuit, and hence causes the voltmeter to always indicate the potential at the end of the line or center of distribution or at any point for which the adjustment is made.

[^13]
## 4*40-2 Voltmeter Compensating Device Jor Alternating, Current Circuits

In making adjustment, it is advisable to calculate the ohmic drop for full load and set the resistance arm at the point which will give the required compensation and then adjust the reactance arm until the voltmeter reading corresponds to the voltage at the point on the line selected for normal voltage.

After the final adjustments have lieen made, no further attention to the device is required until some change is made in the construction of the circuit.

Type V4 Line Drop Compensators are manufactured for four frequencies as follow:


DIAGRAM OF CONNECTIONS OF TYPE V4 LINE DROP COMPENSATOR

## ADAPTABILITY

It will be readily seen from the foregoing that a device so constructed can be applied to switchboards already installed without any radical changes in the existing panels and can be mounted at any convenient place behind the panel or on the wall, the small leads only being brought to the instrument on the panel.

The device includes a small current transformer, the primary of which is wound for 5 amperes maximum current. It is therefore necessary to install a standard current transformer in the main circuit for operating the device, unless current transformers are already installed for operating other instruments. When the compensating device is furnished with a switchboard, it is usually arranged to operate in series with current transformers operating other instruments and thus does not require an additional current transformer. In case it is to be used in connection with switchboards alrea ly installed, it may, or may not, be necessary to furnish an extra current transformer, depending entirely on the load already connected to the existing transformer. This question should be referred to the nearest district office before ordering.


* Price doas not include external current transtorme: When external current transformers are desired, the contonikw: ampere capacity of the circuit nust be given.


DIMENSIONS OF TYPE V4 LINE DROP COMPENSATOR

# General Electric Company <br> Schenectady, N.Y. <br> SUPPLY DEPARTMENT <br> May, 1910 <br> Copyright 1510 by Generul Stectric Company <br> Bulletin No. 4741 

## LUMINOUS ARC LAMPS FOR DIRECT CURRENT MULTIPLE CIRCUITS

The modern mill or factory operator is fully aware of the influence of the character of the artificial illumination provided, on the quality, speed and volume of production; the selection of lighting units will, therefore, be dependent on their efficiency, light distribution, first cost and maintenance costs.

The Multiple Luminous Arc Lamp is recommended for lighting areas where a large volume of light is desired and is especially well adapted for lighting machine shops, foundries, factory yards and places where the slight fumes given off by the lamp are not objectionable.

The Multiple Luminous Are Lamp embodies such marked points of superiority over all other forms of are lamps heretofore produced for mill and factory lighting that it should not only be selected for new lighting installations of this character, but can be made to economically supersede lighting systems already installed and which have heretofore been the best obtainable. This is made possible by the peculiar characteristics of this lamp, which are as follows:

## High efficiency and low maintenance:

The Luminous Arc Lamp is one of the most efficient lighting units used for commer-
cial service and, because of its long electrode life, the maintenance cost per candle-power is as low, if not lower, than that of any other unit.

## Distribution:

The lamps give an ideal distribution of light which is maintained throughout the life of the electrodes.

Special reflectors can be furnished to throw the maximum light in cither a horizontal or a vertical direction. This makes it possible to install the lamps in low or high studded factories and secure a satisfactory light distribution on the floor.

## SUPERIOR DESIGN

The Multiple Luminous Are Lamp is patterned after the series luminous are lamp invented by the General Electric Company, and approximately 50,000 of which are now in use. The most striking feature is the character of the arc used, this being formed between an upper electrode consisting of a short copper bar and the lower electrode which is composed of an iron composite called magnetite.

The design of the lamp is such that the upper electrode always remains in the same fixed position, the feeding and regulating

[^14]
## 4741-2 Luminous Ire Lamps for Direal Current Multiple Circuits

being done through the lower electrode which moves in a vertical direction. Since the upper electrode remains stationary, the arc always remains in the same focal position.


## Mechanism of 4 Amp. Lamp

## EXCELLENT DIFFUSION

Inside the globe and directly alove the are is located a small reflector 11 in . diameter. This reflector is made of sheet steel and is of the well-known inverted concentric type. With the luminous are most of the light is emitted by the are stream proper in a horizontal direction, this being an important aid to good diffusion. By placing a reflector above the arc, part of the light is concen-


Distribution of Illumination for 4 and 6.5 Amp. Lamps
trated diredly beneath the lamp so that the maximum light and a very even distribution is obtained on the working plane.

Another point of more than passing interest is its efficiency.

At 4 amperes, the efficiency is .758 watts per mean hemispherical candle-power, and at 6.5 amperes it is .493 ; this, it will be seen, is remarkably high efficiency for a lamp of this character.


Power Circuit Multipie Luminous Arc Lamp with External Cutout Resistance

The cost of maintenance is always an important item to users of electrical apparatus. With the Multiple Luminous Are this has been reduced to a minimum. No inner enclosing globes are used, only one outer globe being required. The cost of the upper electrode can well be considered negligible, as it has a life of between 6000 and 8000 hours at 4 amperes, and 1000 to 2000 hours at 6.5 amperes with a comparatively small renewal cost. In trimming, only the lower electrode requires renewing, and as this has a life of from 175 to 200 hours at 4 amperes, and

100 to 130 hours at 6.5 amperes, the expense of trimming is relatively low.

The mechanism of the lamp itself is not only simple but very substantial. In feeding, the lower or negative electrode is drawn

6.5 Amp. Multiple Luminous Arc Lamp
upward by a pair of shunt magnets until it strikes the positive electrode; the magnets are then short circuited by an automatic series cutout, and allow the lower electrode to fall back into normal position thereby forming the arc. It will thus be seen that when the lamp is operating, the steadying resistance and small series cutout only are in circuit with the arc, this being the most efficient mechanism possible. The steadying resistance is of the wellknown edgewise wound type.

The casing used is of solid copper with black oxidized copper finish. Flexible cables have been substituted in place of binding posts, so no trouble will be experienced with this lamp from metallic dust.

The Luminous Arc Lamp can be furnished for use on direct current circuits. For 110
volts, lamps adjusted for 4 or 6.5 amperes are available. The 4 ampere lamp is intended for use where only a moderate illumination is required. Where a greater amount of light is necessary the $6.5 \mathrm{am}-$ pere lamp will be found to give excellent results. With this lamp all the problems of factory and mill lighting, no matter how difficult, are solved, as it is particularly adapted for this work.

For 220 -volt service, a single lamp adjusted for three amperes may be used. A more satisfactory way, however, is to operate the 4 or 6.5 ampere arc lamp two in series on 220 volts, thus obtaining twice the amount of light with but little more energy. The 4 and 6.5 ampere lamps can also be furnished for operating 5 in series on 550

6.5 Amp. Lamp with Globe Lowered for Trimming
volts. With the multiple series lamps, external cutout resistances are used so that if one lamp should fail to operate due to the electrode being entirely consumed, the operation of the other lamp will not be affected.

4741-4 Luminous Arc Lamps for Dired Current Multiple Circuils

CATALOGUE NUMBERS

| Amps. | CAT. NO. |  | Descriptive | Shup. Wt . in Lb. |
| :---: | :---: | :---: | :---: | :---: |
|  | Lamp | Casing |  |  |
| 100-125 VOLTS |  |  |  |  |
| $\frac{4}{6.5}$ | $\begin{aligned} & 9592 \\ & 9594 \end{aligned}$ | $\begin{aligned} & 111782 \\ & 11783 \end{aligned}$ | Black Ox. Copper Black Ox. Copper | $\dagger 80$ |
| 220 VOLTS |  |  |  |  |
| 3 | 9596 | 111782 | Black Ox. Copper | 80 |
| MULTIPLE-SERIES OR $\{2$ IN SERIES ON 220 VOLTS POWER-CIRCUIT $\{5$ IN SERIES ON 550 VOLTS |  |  |  |  |
| $\frac{4}{6.5}$ | $\begin{aligned} & 9593 \\ & -9597 \end{aligned}$ | $\begin{aligned} & 111782 \\ & 111783 \end{aligned}$ | Black Ox. Copper Black Ox. Copper | ) 80 |

ACCESSORIES

| Cat. No. | Description | Ship. Wt. in Lb . |
| :---: | :---: | :---: |
| *108467 | Externa! Cutout Resistance for 4 amp. |  |
| -108468 | External Cutout Resistance for 6.5 amp . | 20 |
| 40527 | Magnetite Electrode for 3 and 4 amp . |  |
| 108470 |  |  |

DIAGRAM OF CONNECTIONS


## GENERAL ELECTRIC COMPANY

## PRINCIPAL. OPFICES, SCHENECTADV: N.

## SALES OFPICES

(Address nearest office.)

BOSTON, MASS,. 84 State Street.
NEW YORK, N. Y., 30 Church Street,
Syracuse, N. V., Post-Standard Building.
Buffalo. N. Y-. Ellicott Square Buidding,
New Haven, Conn.. Malley Building,
PHILADELPHIA, PA.. Witherspoon Bulding.
Baltimore, Md., Electrical Building:
Cifarlotie, N. C., Trust Building.
Cuarleston, W. VA., Charleston National Bank IMdes
Pitisuurg, PA., Park Building.
Ricumond; VA., 712 Mutual Building,
Roanoke, Va., Strickland Building.
ATLANTA, GA., Empire Building.
Macon, Gx., Grand Building.
New Orleans, La., Maison-Blanche Bubling
CINCINNATI, OHIO, Provident Bank Building,
Cofumnus, Ohro, Columbus Savings \& Trust Builting.
Cleveland, Ohio, Citizens Building.

Cintianooga, Tenn, James Building. Mkaputs, TeNN., Randolph BuildinE. Nasuville, Tenv, Stahlman BuildingIndianapolis, Ind., Traction Terminal Building. CHICACO, ILL., Monadnock Building. Detrott, Micif., Majestic Bldy. (Office of Soliciting Agt.) St, Lous, Mo.. Wainwright Building. Kansas City, Mo., Dwight Building, Butte, Moniana, Phoenix Building. Minneapolis, Minin $410-412$ Third Avenue, Nortis. DENVER, COLO., Kittredge Building, Salt Lake City, Utaif, Newhouse Building. SAN FRANCISCO, CAL., Union Trust Building. Los Angeles, Cali, Delta Building. Portlants, Ore., Electric Building. Seattie, Wash ${ }^{4}$ Colmum Building. Spokane, Wash, Paulsen Building.

> For Texas and Oktanoma Business refer to
> Ceneral Electric Company of Texas.
> Dallas, Tex.. Praetorian Bldg.
> EI Paso. Tex., Chamber of Commeree Blag.
> Oklahoma City, Okla., Insuranee Blds.

## FOREICN:

Foreign Departminnt,
Schenectaly, N. Y, and 30 Church St, New York, N. Y.
Lonnon OFFick, 83 Cannon St., London E. C., Bogland.

Fot all Casadian Business.
Canadian Cieneral Electric Company, Ltd., Toronto, Ontarie.

INIHMSIFIND ARC



## Intensified Arc Lamps



General Electric Company
Schenectady, New York
June, 1910
No. 4743

Copyright, 1910, by General Electric Company

## INTRODUCTORY

To meet the growing demand for an economical, high efficiency lighting unit, the General Electric Company offers its Intensified Arc Lamp.

This lamp is pleasing in appearance, and the different forms are so designed as to harmonize with various styles of architectural ornamentation. Its illumination gives a closer approach to day-


Store Lighting with Intensified Are Lamps, R. H. Stearns' Store, Boston, Mass.
light than any lamp yet placed on the market, and its simple mechanism insures reliability in operation, ease in trimming, and reduces the maintenance cost to a minimum.

The Intensified Arc Lamp provides a lighting unit of artistic design which embodies all of the essential characteristics demanded by present-day methods of illumination.

## Mechanism

The mechanism of the Intensified Are Lamp represents a radical departure from the type heretofore used for the operation of enclosed are lamps. There are three carbons as shown in Fig. 1. The two upper or positive carbons are small in diameter, and are brought obliquely into contact, thereby maintaining an are without the necessity of any regulating mechanism for the upper carbons. The lower negative carbon is somewhat larger in diameter than the upper ones and is regulated by means of the ordinary series magnet mechanism.

The construction is unusually rigid throughout and all sliding contacts have been eliminated. The magnets are wire wound with fireproof insulation and all modern improve-


Fig. 2. Mechanism D.C. Intensified Arc Lamp ments which tend to make a lamp reliable and effective, have been incorporated.

## Globe Suspension

The simple and effective globe suspension system provided for this lamp is illustrated by Fig. 3, which shows the lamp with both outer and inner globes lowered for cleaning and trimming.

The outer globe is bowl shaped and held at its rim by a metal ring hinged to the lower edge of the lamp casing. A convenient locking device diametrically opposite the hinge serves to hold the globe in position.

For supporting the inner globe, a white enameled collar and elastic metal band are used.

The collar and enclosing globe (which may be considered as a unit) has two supporting pins placed diametrically opposite each other and resting firmly in two diagonal recesses in the neek of a supporting ring. This ring is provided with two flexible metal strips (see Fig. $4)$, one of which is hinged to the lamp casing, the other being fitted with a latch. By this arrangement it is obvious that when the ring is being latched into position the face


Fig. 3. View of Intensified Are Lamp with Globes Lowered for Trimming
of the enclosing globe is free to seat itself firmly against the surface of the gas cap.

The wire netting which surrounds the enclosing globe is attached to the nickeled support and becomes part of the lamp. When the globe is either broken or discarded, the netting remains intact. The outer globe is simply hinged and has a thumbscrew latch for holding it against the bottom of the lamp casing.


Fig. 4. Inner Globe, Holder and Net

## Efficiency and Distribution

The high efficiency of the intensified are is due primarily to the use of small diameter carbons. The position of the are remains constant and permits the most ef-


Fig. 5. Opal Inner and Clear Outer Globes and Reflector fective use of globes and reflectors.

While there are two cored positive carbons used, they are burned alternately; the current density therefore is relatively high and as the heat cannot readily pass off by conduction, as in the larger carbons, the end of the electrode is maintained in a state of high incandescence. Under these conditions, the end of the positive earbon is within the area of the crater, and prevents the wandering of the are which is experienced with the larger diameter carbons ordinarily used in enclosed are lamps.

It has, however, been found that the diameter of the lower, or negative carbon, can be increased without materially affecting the arc efficiency or the steadiness of light distribution.


Fig. 6. Opal Inner and Outer Globes and Reflector

At standard are adjustment ( 5 amp .80 volts) the maximum radial efficiency of the D.C. intensifice are with clear inner globe
(no outer) and small metal reflector is about . 6 watts per candlepower. This unusually high efficiency permits the economical use of opal and other globes to insure proper diffusion. With light opal inner globe (no outer) the maximum radial efficiency is about .9 watts per candle and this globe is ordinarily recommended.

The standard reflector is of opal glass, held in the lower part of the casing. Sufficient light is allowed to pass through the reflector and the openings in the lower part of the casing to prevent the


Fig. 8. Opal Inner and Art Glass Outer Globes and Reflector appearance of a dark ceiling. For installations where ceiling illumination is of minor consideration a metal reflector which throws all the light in a downward direc-


Fig. 7. Opal Inner and Holophane Outer Globes and Reflector tion is available. The shape of the enclosing globe (see Figs. 5, 6, 7 and 8) differs from that of the globes heretofore found in general use, the design being the result of a long series of experiments to determine a shape of enclosing globe which would give the most efficient distribution.


## D.C. INTENSIFIED ARC LAMP

Design: French Renaissance
Finish: Polished Brass

## CATALOGUE NUMBERS

Lamp 9589
Casing 107722
Ornament 111950


## D.C. INTENSIFIED ARC LAMP

Design: Fleur-de-lis<br>Finish: Royal Copper

## CATALOGUE NUMBERS

## Current Adjustment

The standard current adjustment for the direct current Intensified Are Lamp is 5 amperes ( 80 V . arc). Lamps can, however, be furnished to consume as low as $31 / 2$ amperes ( 80 V . arc) and as high as 6 amperes ( 80 V . arc). Inasmuch as the efficiency is dependent, in a large measure, upon the current density of the positive carbon, adjustments lower than 5 amps. are not recommended. The 5 ampere lamp is recommended as a unit embodying both satisfactory carbon life and efficiency.

## Electrode Life

Although small diameter carbons are used (two 6 m.m. upper, and one $9.5 \mathrm{~m} . \mathrm{m}$. lower) operating at high current densities, a life of from 80 to 100 hours is obtained from the 5 ampere (80 V. arc) direct current lamp.

## Cost of Maintenance

An important factor with any lighting unit is the cost of mantenance. With the Intensified Are Lamp this is reduced to a minimum. The cost of carbons is but slighty more than for an ordinary Enclosed Arc Lamp. The arrangement of inner and outer globes is such that the expense for globe breakage is practically negligible.

## Important

When ordering give the catalogue number of the lamp and casing and ormament if desired. Also specify kind of outer globe wanted. Ceiling suspension canopies, chains, ctc., are not furnished unless specified in order.

Outer and inner globes are interchangeable, and fit any style of casing.

It is, Herefore, necessary when ordering to specify the catalogue numbers of both lamp and casing. When outer globes are required, they should also be designated by catalogue numbers.

## Color

The correct color value of artificial illuminants should, in all cases, receive due consideration. When used to illuminate commercial interiors, especially where colored fabrics are displayed, the selection of an illuminant having the characteristics of diffused daylight is imperative. So many clams for whiteness of light are made for illuminants whose light is obviously tinted, that such claims have been to some degree discredited.

In order to illustrate the superiority of the Intensified Are Lamp for color matching and selection, the lumichromoscope is available. With such an instrument the effect of daylight, together with various artificial light rays projected on the same fabric, can be simultaneously compared, and the superiority of the light from the Intensified Are Lamp over other artificial illuminants, readily observed.

The illustration on page 12 shows the same fabric under four different light sources; viz., Welsbach gas, D.C. Intensified Arc, Nernst and Incandescent light. The daylight color of the fabric is also shown and the effect is the same as when displayed under the Intensified Arc Lamp.

## Summary

From the foregoing, it is evident that in the design of the Intensified Are Lamp there is embodied all of the characteristic features desirable for the asthetic and economical illumination of commercial interiors.

## COLOR CIIART

Showing the illuminating values of various forms of lighting compared with daylight


Twelve

# Inverted Diffuser for Intensified Arc Lamps 

The Intensified Arc Lamp was primarily designed for store lighting in which field the demand for a new illuminant was most imperative. As soon as it was available, a considerable demand


Intensified Are Lamp with Inverted Diffuser
for its use in mill lighting was evidenced. Mill lighting requirements being somewhat different from those of store lighting, it was found advisable to provide a different design of lighting unit.

The mill type Intensified Are Lamp is shown on page 13. The mechanism is the same as for the regular store type lamp, the difference being in the casing, globe and diffuser. The casing is made dust proof, has flexible current leads and is arranged to take the 40 inch inverted diffuser, which made such a decided improvement in the former Enclosed Are Lamp for mill lighting.

A special diffusing globe is used, which combines efficiency of light transmission with a high degree of diffusion. The lower part of the globe is frosted so as to prevent the direct image of the are from shiming in one's eyes. The upper part of the globe is elear so as to allow the maximum intensity of light to fall on the diffuser. There being but one globe a minimum amount of light is lost in absorption. As no upward light is required, the diffuser is so arranged as to reflect all light below the horizontal. Taken together the diffuser and globe cut out glare and concentrate a strong-yet well diffused-illumination on the working level. A special advantage of this combination is that the downward light is sent out at oblique angles so as to give even illumination over the spaces between lamps rather than being concentrated enough to cause a spotted effect.

The usefulness of the diffuser Intensified Are Lamp is not limited to the field of mill lighting. It will be found suitable for all classes of factories, machine shops, armories, docks, warehouses, etc.

Not only is this lamp one of the most efficient as a light producer, but it can be maintained for a lower cost than almost any other illuminant.

## INTENSIFIED ARC LAMPS-DIRECT CURRENT <br> NIULTIPLE-100-125 VOLTS--FORN 19



The Cat. No. of casing covers plan type. In ordering any of the above lamps specify Cat. No. of lanp, casing and ormament for lamps with ornamental casings.

# General Electric Company 

Principal Offices, Schencetady, N. Y.



Meter Testing Rheostat, 15 Amperes, 110120 Volts
load for the meter is necessary Of the various devices in use for this purpose, the most common is a bank of incandescent lamps. This arrangement is far from satisfactory on account of the size and weight of the bank, and is uneconomical because of the expense due to lamp renewals and breakage.

In the Meter Testing Rheostats, here described, these objectionable features are eliminated, and when used with a portable test meter the rheostats afford a very efficient
outfit for meter testing. The switches and resistances are designed to give loads varying from one-half an ampere to the full load rating of the rheostats in one-half ampere steps.


Meter Testing Rheostat, 30 Amperes, $110 / 120$ Volts
The switches on the 15 ampere box are mounted on a small terminal board which is separated from the base of the rheostat. In the 30 ampere size, this terminal board is omitted, the switches being mounted directly on the base. Each switch is marked with the value of the load which it controls. Suitable binding posts are provided into which the line wires are inserted and fastened by set screws.

The resistance units are similar in design to the well-known Form $P$ units employed in

[^15]4744-2 Meter Testing Rheostals
Gencral Electric motor-starting rheostats of small capacities. Those furnished with the 15 ampere rheostat are cylindrical in shape, and are securely fastened to the base of the box and reinforced by a small brass rod which passes through their center and absolutely prevents buckling due to extreme heat.

Flat units made of the same material are furnished with the 30 ampere rheostat and are made in this form in order to economize space.


The resistance metal is non-corrosive and has a very low temperature coefficient. It is wound on a fireproof body and the complete unit is covered with a protecting compound which, unlike some forms, will not crack and peel off, nor will it melt or run like enamel, but will become harder when subjected to high temperatures.

As the units have a negligible temperature coefficient the load remains steady as the resistance heats up, thus permitting the rheostat to be used with satisfactory results in testing meters where portable indicating instruments are used as standards.

The inductance of the units is also negligible, therefore the device can be used interchangeably on direct or alternating current circuits. The units may be readily removed in case of damage. In ordering units it is necessary only to state the drawing number of the capacity of the rheostat as marked on the name plate, and the rating of the switch to which the desired resistance is connected.


The rheostat is substantially madc and neatly finished in black japan.


Spare Resistance Units for Cat. No. 65294, \$0.50 list each.

Spare Resistance Units for Cat. No. 111708 , $\$ 1.00$ list each.

# General Electric Company <br> Schenectady, N.Y. 

# RAILWAY DEPARTMENT 

## Pry.

July, agIo

## PORTABLE SUBSTATIONS FOR ELECTRIC RAILWAYS

In modern street railway systems employing high tension alternating current power generators and distribution, permanent notary converter substations are usually lo-
they feed. In many cases, the normal load on a sub-station can be carried by one rotary converter unit, and frequently no reserve equipment is provided in the sub-station for


PORTABLE SUBSTATION FOR THE T.B.G. \& S. RAILWAY CO,
400 KW , CAPACITY AT 33,000 VOLTS
cated at such points on the line as are required to furnish 600 volt or 1200 volt direct current to the trolley wire with reasonable voltage regulation under the normal service conditions on the particular sections of the line which
use in case of accident, or for supplying abnormab current demands.

On the majority of electric roads, there are certain sections of the line on which abnormally heavy traffic must be handled at

[^16]
## 4746-2 Portable Sub-Stations for Electric Railways

infrequent intervals or only during a certain portion of the year, as for instance, lines serving fair grounds, parks or summer resorts, where the heavy passenger traffic only lasts for a few weeks or even for a few days out of the entire year. Often such sections of line

For the supply of intermittent power of the above character and to provide for a temporary supply of power in case of accidents at sub-stations equipped with only one rotary converter unit, the General Electric Company has developed Portable Sub-Sta-


TRANSFORMER END OF PORTABLE SUB-STATION, 400 KW . CAPACITY, 33,000 VOLTS
are not operated at all, except on those special occasions.

To meet these conditions, either the permanent sub-station equipment must be of much larger capacity than required for the average service and additional feeder copper installed (and even then the line drop may be excessive when under maximum service conditions), or a temporary sub-station must be installed.
tions consisting of specially arranged cars containing complete sub-station equipments, including a rotary converter or motor generator set of the required capacity, transformers, switchboard and accessories. These Portable Sub-Stations are provided with trucks adapted for short radius curves and may be conveniently moved to any section of the line requiring power temporarily, only necessitating making connections to the high

Portable Sub-Stalions for Electric Railways 4746-3
tension lines and direct current trolley or feeders, to render them ready for immediate service.

A considerable number of these Portable Sub-Stations have been built for various roads, and they have proved to be a most valuable adjunct to the modern street railway system.

## LIMITATIONS OF SIZE

Owing to the limiting railroad clearance dimensions it is generally impracticable to provide for more than 500 kw . capacity in a single car and the large clearances required for high voltages will probably confine the use of portable sub-stations to transmission voltages of 60,000 volts and less. Even lower


CONVERTER END OF PORTABLE SUB-STATION, 500 KW . 600 VOLT CONVERTER

1st. For ensuring continuity of power supply with a minimum investment in permanent sub-stations.
2nd. For saving large investment in copper and sub-station equipment on lines heavily loaded only on special days or seasons.
3rd. For providing additional power at any point where the traffic may be temporarily abnormally heavy.
4th. For furnishing power to extensions while under construction.
limits of capacity may be prescribed by the strength of bridges and culverts on the railway on which the car is to be used.

## EQUIPMENT

Portable sub-stations are generally provided with a rotary converter equipment, interchangeable with that used in the permanent sub-stations. Such an equipment for

## 4746-4 Porlable Sub-Stations for Electric Railways

cither 25 or 60 cycles consists of the following principal items:

Rotary Converter.
Step-Down Transformer.
Reactive Coil.
Blower if Transformer is Air-Blast type. Switehboard Equipment.
Lightning Arresters.
Special conditions may make motor gencrators more desirable in certain cases, when the equipment comprises:

> Motor-Generator Sct.
> Step-Down Transformer if Linc Voltage cxeceds 13,200 Volts.
> Blower if Transformer is Air-Blast type.
> Switchboard Equipment.
> Lightning Arrester.

Illumination at night is obtaincd from rows of incandescent lamps near the roof connected in groups of five in serics either to the converter or the trollcy by a single-pole double throw lighting switch on the D.C. pancl.

## CONVERTERS

The General Electric Company standard rotary converter with speed limit attachment is used with slight modifications. The commutator end of the base is provided with leveling bolts to facilitate leveling the converter for operating when the ear is located on a grade. Special attention is given to the balancing of the converter armature to minimize vibration of the car.

The converter is securely fastened to the car floor framing to prevent shifting of the converter while the car is in transit. However, means are provided for leveling the converter without weakening this blocking.

The equalizer switch is mounted on the pillow block instead of the field frame on account of the limited width of the car, as shown in the illustrations.

## TRANSFORMERS

Transformers are gencrally of the air blast type, this type being particularly suitable on account of its light weight per unit of output.

They are usually made top connected for the higl potential leads and bottom connected for the low potential leads which are carricd through the air blast chamber to the reactive coil and starting pancl. For potentials above 33,000 volts, oil cooled transformers must be used, and on account of the small clearances between the transformer and car walls, sometimes it is necessary to employ a blower to stimulate circulation.
The standard reactive coil with starting panel as designed for permanent sub-stations is used without any modifications. Trc reactive coil is of the air blast type when air blast transformers are employed.

## LIGHTNING ARRESTERS

The use of lightning arresters in wooden cars is not recommended on account of the fire risk. However, for voltages up to 13,200 the lightning arresters are small and can readily be housed in asbestos lumber compartments or the car protected by lining that section of it with asbestos.

When a portable sub-station is located near a permanent sub-station equipped with effective lightning arresters, the portable substation may be protected thereby, but if the car is used some distance from any permanent sub-station for a considerable timc, so that lightning protection is required, then lightning arresters should be installed outside and away from the car or a steel car provided equipped with lightning arresters.

## SWITCHBOARD

The switchboard for a converter equipment consists of:

1 Incoming line and transformer pancl.
1 D.C. converter and feeder panel.
1 Converter starting pancl.
Panels are made of natural black slate and the instruments have a dull, black finish.

Portable Sub-Stations for Electric Railways $4 \pi / 46-5$

Threc-Phase Incoming Line and Transformer Panel:

Size of panel 76 in . high, 16 in . wide.
Equipment:
1 Hand operated T.P.S.T. oil switch with transformer trip.
1 Ammeter.
I Current transformer.
1 Low potential transformer (for 60 eycle converter only).

1 Integrating wattmeter.
1 S.P.S.T. main switch.
1 S.P.D.T. lighting switch.
2 Potential receptacles with 1 plug.
1 D.C. lightning arrester.
1 S.P.4T. starting switch (for 60 cycle converter only).
1 Starting resistance (for 60 cycle converter only).
1 S.P.S.T. equalizer switch (mounted on converter frame).


LIGHTNING ARRESTER COMPARTMENT OF PORTABLE SUB-STATION SHOWN ON PAGE 1

1 High potential transformer (for 60 cycle converter only).
1 Synchronism indicator (for 60 cycle converter only).
1 Synchronizing plug and receptacle (for 60 eycle converter only).
3 Enclosed fuses for blower motor.
D.C. Converter and Feeder Panel.

Equipment:
1 Carbon break circnit breaker with low voltage release.
1 Ammeter.
1 Voltmeter
1 Hand-operated field rheostat.

Three-Phase Converter Starting Panel Mounted on Reactance.

For 25 cycle converters up to 500 kw .
Equipment:
1 D.P.D.T. lever switch.
Six-Phase Converter Starting Panel Mounted on Reactance. For 500 kw .25 cycle converters.

Equipment:
1 T.P.D.T. lever switch for fractional voltage taps.
1 T.P.D.T. lever switch for full voltage leads.

1746-6 Portable Sub-Siations for Electric Railways

## ARRANGEMENT OF APPARATUS

The positions of the switchboard panels are shown in the plan and elevation diagram on page 9. The oil switches are located at the end of the car, thus obtaining a short and direct run of high tension connections, and isolating them from the attendant whose operating position will be in the center of the car.


The incoming high tension lines may be connected directly to the transmission linc, but if frequent or continued use of the portable sub-station in one locality is necessary, disconnecting switches should be mounted on the nearest pole to facilitate disconnecting the oil switch without having to cut off power from the transmission line.

The transformers and the converters which constitute the bulk of the weight are usually placed over the trucks to relieve the car body of heavy loads.

The car is protected above and at the side of the circuit breaker by asbestos lumber from any areing which may result from the

Opening of the circuit breaker on short circuits or overloads.

The positive feeder cable is carried to a terminal block on the outside of the car near the roof for convenient connection to the trolley wire or feeder. The negative cable is securely grounded to both trucks. No connection is made to the equalizer switch on the converter, but if the converter does not take its share of the load when used near another sub-station, a temporary connection can readily be made to the equalizer bus in the station.

## CAR CONSTRUCTION

The car bodies may be constructed of either wood or steel. The chief objection to the wood car is the possibility of fire which may result from electrical disturbances on the interior or be communicated from the outside.

The steel ear body is heavier and more expensive but the small increase in cost should be well worth the insurance it provides. In general, a complete portable sub-station with a steel car will weigh about $10 \%$ more and cost about $10 \%$ more than a similar suhstation with a wood car body.

The design and construction of the steel car body is necessarily materially different from that of the wood body as explained in the following paragraphs.

## WOOD CAR BODIES

The wood car body consists of an ordinary freight car with special provision for light, ventilation and accessibility. Ventilation is obtained from the windows and doors which can remain open on either side of the ear, depending on the weather conditions, and through hatch covers in the roof immediately above the transformer and converter, which may be raised on cither side independently. These hatch covers may be entirely removed for installing or dismantling the apparatus with a crane. They are provided with wide over-lapping edges to shield the apparatus

## Portable Sub-Stations for Electric Railway's 47,46-7

from ordinary rain storms when open and to make a perfectly tight joint when closed.

These cars are generally wood lined inside but may instead be lined throughout with asbestos lumber.

Unless a more elaborate finish is desired, the outside is given three coats of paint and the interior is left unpainted.

The high tension entrance end of the car is specially constructed to form a weather protection over the line entrance bushings. The opposite end of the car is detachable to facilitate the removal of apparatus if no crane is available, and end doors as well as center doors are provided to give adequate ventilation on the ends of the car, to give access to oil switches and high tension insulators at one end and to the collector rings; etc., of the converter at the other end of the car without having to pass through the narrow aisles. All doors are fitted with wire glass sash in the upper panels.

## STEEL CAR BODIES

The ventilation of steel cars is obtained by means of louvre panels at the top and bottom of each side of the car near the transformer and converter. These panels are provided with covers on the inside for protection against a driving storm or severe cold weather.

Hatch covers are provided above the transformer and converter for installing or dismantling the machines, but are bolted to the car body and are not intended for ventilation.

The sides and roof consist of heavy sheet steel plates riveted to a structural steel frame, all parts being made of non-combustible material except the running board and the window sashes which are of wood. The doors are of wood protected with a metal sheathing. The floor is of a composition cement laid on galvanized corrugated sheet iron or ferro-inclave plates securely fastened to the floor framing. This flooring is especially adapted for steel cars to withstand shocks received in transportation and is not cold or otherwise objectionable to walk on.

The under side of the roof is sheathed with thin galvanized iron so as to form air pockets between it and the roof plates to prevent any direct radiation of heat when the car is standing in the sun. This sheathing also acts as a protection against any possible condensation which might otherwise drop on the apparatus.

To further prevent the atmosphere in the car from getting too warm from radiation through the steel plates on the sides of the car, the exterior is painted a light grey color. The interior is painted white to reflect the light and give a more uniform illumination. The composition floor, although colored in its plastic state, is given two coats of paint to make it less susceptible to moisture.

The steel car shown in the illustration is provided with roof entrance bushings for the 33,000 volt incoming lines. This was done to keep the high voltage lines further from the ground and to allow more available space inside. These bushings can readily be removed when the car is to be transported.

## CAR EQUIPMENT

As cars must be shipped over steam railroad lines to their destination, they are provided with MCB equipment throughout, including air brakes acting on all wheels. A hand brake shaft is usually provided at one end, operating the brakes on one truck only. If the car is required to pass around curves of very short radius, a special construction of the brake rigging to permit the trucks to swivel may be required, differing from the usual steam railroad brake rigging. Draft gear is of the MCB standard type with MICB standard couplers and hand levers at the side of car. Bodies should have the usual steps, ladders, etc.

The trucks are usually of the diamond frame arch bar type equipped with 33 in. wheels mounted on MICB standard steel axles and fitted with cast iron journal boxes.

## 4746-8 Portable Sub-Stations for Electric Railways

## SIZE AND WEIGHT

A portable converter sub-station for 13,200 volts and 300 kw . capacity will have an interior length of approximately $36 \mathrm{ft} .$, width 7 ft .6 in., and height $S \mathrm{ft}$., and will weigh, complete, about $76,500 \mathrm{lbs}$. For 33,000 volts and 500 kw . capacity, the interior dimensions will be, approximately: length 40 ft ., width Sft . ( 3 in., height 9 ft ., and weight about 97,000 lbs. A 60,000 volt, 60 cycle portable substation with oil cooled transformer, Form K 10 oil switches and 500 kw . induction motor-generator installed in a steel car will have interior dimensions of 50 ft . length, 8 ft .6 in . width, 9 ft .3 in . height and a weight of approximately $150,000 \mathrm{lbs}$. On account of the size of high tension entrance bushings, they are designed for placing in the roof, and are lifted out before shipment on account of passage through tunnels, etc., the holes being temporarily closed.

## INSTALLATION

The car body and trucks can be purchased directly according to the customer's own specifications or the car complete with equipment can be supplied by the General Electric Company. In either case, if the installation is done by the General Electric Company, the car should preferably be shipped to the Company's Schenectady Works for installing the apparatus.

In wooden cars, the high tension insulators are mounted on metallic pins fastened to steel or metal covered supports, the metal being thoroughly grounded to the trucks to reduce fire risk in case of a failure of the insulation.

The entrance bushings are similarly supported and the supports are grounded to the framing. The small wires are run in iron pipe conduits under the car floor.

The heavy cables are supported on porcelain clamp insulators run in the air blast chamber, or when run under the car floor are protected against mechanical injury and wheel splash.

## DATA FOR QUOTATIONS

Inquiries which require the car to be furnished by the General Electric Company should state:

Minimum Clearance on Local Tracks.
There may be less clearance on the Purchaser's local tracks than on the various lines over which the car wotld pass to its destination. This data should be given in the usual way, i.e., the different permissible widths for various heights above the track.
Minimum Radius of Curve around whicl Car must Pass.
Where the Apparatus will be Installed.
Steel or Wood Box Desired.
Special Requirements.
If the car is furnished by the customer and the installation is done by the General Electric Company, the inquiry should be accompanied by drawings of the car, indicating the interior dimensions and arrangements for line entrances and how the apparatus is to be placed in the car; that is, whether through hatches or removable end or side doors.

plan and elevation of portable sub-station, 300 KW . capacity at 33,000 volts

$$
\begin{aligned}
& \because \\
& \therefore+\cdots i, i
\end{aligned}
$$

GENERAL ELECTRIC COMPANY
PRINCIPAL OFFICES, SCHENECTADY, N. Y.

SALES OFFICES
(Address nearest office)
BOSTON, MASS., $8 \pm$ State Street
NESTON, MASS., $8 \pm$ State Street.
NORK, N. Y., 30 Church Strect.
SyRacuse, N. Y., Post-Standard Building.
Burfalo, N. Y., Ellicott Square Building
New Haven, Conn,, Malley Building.
PHILADELPHIA, PA., Witherspoon Building.
Baltimore, Mo., Electrical Building.
Cifarlotte, N. C., Trust Building.
Charleston, W. VA., Charleston National Bank Blog. Pittsburg, Pa.. Park Building.
Richmond, VA., 712 Mutual Building.
Ronnoke, VA., StrickIand Building.
ATLANTA, GA., Empire Building.
Birmingham, Ala., Brown-Marx Building.
Birmingmam, Ala., Brown-Marx Buildin
Macon, Ga., Grand Building.
Nev Orleans. La., Maison-Blanche Building.
CINCINNATI, OHIO, Provident Bank Building
Columbus, Onio, Columbus Savings \& Trust Building.
Cleveland, Ohio, Citizens Building.
Chattanooga, Tenn., Jannes Building.
Memphis, Tenn., Randolph Building.
Nashivile, TenN., Stahlman Building.
Indianapolis, Ind., Traction Terminal Building.
CHICAGO, ILL., Monadnock Building.
Detroit, MICH., Majestic Bldg. (Office of Soliciting Agt.)
Sr. Louis, Mo., Wainwright Building.
Kinsas City, Mo., Dwight Building.
Butie, Montana, Phocnix Building.
Minneapolis, Minn., 410-412 Third Avenue, North.
DENVER, COLO. Kittredge Building
Sait Lake City. Ütah, Newhouse Building.
SAN FRANCISCO, CAL.. Union Trust Building.
Los Angeles, Cal., Delta Building.
Portland, Ore., Electric Building.
Seattle, Vash., Colman Building.
Spokane, Wash., Paulsen Building.
For Texas and Orlahoma Business refer to
General Electric Company of Texas
Dallas, Tex., Praetorian Buidding.
Dallas, Tex., Praetorian Building.
El Paso. Tex., Chamber of Comnnerce Building. Oklahoma City, Okla., Insurance Buileting.

## FOREIGN

Foretgn Department,
Schenectady, N. Y., and 30 Church St., New York, N. Y. London Orfice, S3 Cinnon St, Lomlon, E. C., England

For all Canadian Business,
Canadian General Electric Company, Ltd..
Toronto, Ontario.

# RALLWAY LINE MATERIAL FOR DIRECT SUSPENSION \&CATENARY CONSTRUCTION 



## GENERAL ELECTRIC COMPANY

# PRICE SUPPLEMENT 

## TO ACCOMPANY BULLETIN NO. 4747

RAILWAY LINE MATERIAL



# RAILWAY LINE MATERIAL <br> FOR <br> DIRECT SUSPENSION <br> AND <br> <br> CATENARY CONSTRUCTION 

 <br> <br> CATENARY CONSTRUCTION}


GENERAL ELECTRIC COMPANY
Supply Department
SCHENECTADY, N. V .
June, IOIO
Bulletin No. $77+7$
Liry

## ADVICE REGARDING THE PLACING OF ORDERS

1. Orders, and correspondence regarding orders, must always be sent to the nearest Sales Office. (See list of Sales Offices at end of this catalogue.)
2. Catalogue numbers should be used wherever possible.
3. Avoid ordering goods "same as last." If it is advisable to refer to a previous order the date and number of the order and the number of our invoice covering previous shipment should be specified to avoid delay and error in locating it.
4. In ordering, catalogue numbers should be accompanied by the name of the article. This insures complete identification, and lessens the danger of typographical errors in transmitting orders. Where it is impossible to give the catalogue number, a full description of the article required should be furnished.
5. State distinctly how goods are to be shipped-whether by freight, express or mail. If any special route is preferred, it should be mentioned on the order.
6. Careful attention is given to the proper packing of goods, especially glassware, and receipts are obtained from carriers for delivery in good condition. This Company cannot, therefore, be held responsible for goods damaged or lost in transportation. All possible precaution, however, will be used to prevent injury or delay, and, if required, shipments will be traced. All claims for breakage should be presented to transportation companies handling the freight. We will gladly co-operate with our customers in having such claims adjusted by the carriers.
7. All claims must be made within three days of the receipt of the goods and should be accompanied by the package slip which is forwarded with each shipment.
8. When referring to orders, always give the number or date of your order as well as the name of the consignee of the goods.
9. Do not return material of any kind without first communicating with the nearest Sales Office and obtaining-

First: Approval for returning goods.
Second: Returned Apparatus tag, giving proper shipping directions.
10. All returned goods must be plainly marked with the name and address of the sender, and proper notice of shipment and shipping receipt should be sent to the Sales Office.
11. Prices are subject to change without notice and it is understood that this Company will in no way be held responsible for such changes.
12. All prices are listed at point of manufacture. Charges for boxing and packing will be made in accordance with our regular custom.

# SHERARDIZING, THE NEW PROTECTIVE FINISH FOR IRON AND STEEL 

In place of galvanizing, enameling, or other processes heretofore employed, a process of finishing known as Sherardizing has been adopted as standard for the protection of iron and steel line material devices. In this process, which is comparatively new, zinc is deposited by distillation upon the surface to be protected, and this zinc coating not only adheres to the surface as in hot or electrolytic galvanizing, but forms with the iron an alloy extending considerably below the surface, which resists corrosion under the most adverse weather conditions, and is proof against the tendency to scale off exhibited by the best hot galvanizing, under prolonged exposure. It withstands successfully the Preece test of successive immersions in copper sulphate solution, which is the standard form of test specified and applied by practically all telegraph and telephone companies and other large users of galvanized materials.

Sherardizing has the additional advantage of furnishing efficient protection of threaded and other finished surfaces without materially altering their dimensions, whereas, in hot galvanizing, screw threads have to be recut and the steel surface is, therefore, liable to partial exposure. It is also free from the weakening effect caused by hot galvanizing on malleable iron in certain forms, which has to some extent limited the employment of galvanizing in line material manufacture, and has often seriously impaired the integrity of castings of irregular sections.

The adoption of Sherardizing marks the most important step in the art of line material manufacture since the design of Catenary Construction.

## DIMENSIONS

In this catalogue descriptions of the overhead line devices contain detail dimensions which, it is believed, will assist intending purchasers. It must be understood, however, that the dimensions given are averages and therefore subject to reasonable variation in manufacture.

## DIRECT SUSPENSION LINE MATERIAL POLE BRACKETS

The following pole brackets represent the various forms called for in modern railway line construction and include the three styles of tube, the use of which has been approved in the best practice.

The wrought iron pipe referred to in the table is standard welded gas and water pipe, and the structural tubing is a special high carbon steel tube with butt joint, which, because of the great stiffness of the material does not require a welded seam.

All diameters given are the nominal inside diameters of standard wrought iron pipe.
All parts of these brackets are finished in black japan.
The following table gives dimensions and weights of the various tubes employed.


Iron poles, such as are used in line construction, have actual outside diameters somewhat larger than their nominal listed diameters.

$$
\begin{aligned}
& 4^{\prime \prime} \text { Standard Pipe Pole, actual outside diam. } . \quad . \quad . \quad 4 \frac{1}{2} \text { inches } \\
& 5^{\prime \prime} \text { Standard Pipe Pole, actual outside diam. } \\
& 6^{\prime \prime} \text { Standard Pipe Pole, actual outside diam. } \\
& 7^{\prime \prime} \text { Standard Pipe Pole, actual outside diam. } \\
& \hline
\end{aligned}
$$

## FLEXIBLE BRACKETS

## For Wood Poles

9 ft . long with Guy Rod and Galvanized Steel Cable
FORM A-1 BRACKETS



For Sherardized Brackets or brackets other than 9 feet in length, prices will be quoted on application.

## 4747-8 Railway Line Material

## POLE BRACKETS, FLEXIBLE

For Wood Poles

9 ft . long with Guy Rod and Galvanized Steel Cable *
FORM A-2 BRACKETS


- This bracket differs from the Form "A-1" only in that it has additional adjustment for tension of span wire.


For Sherardized Brackets or brackets other than 9 feet in length, prices will be quoted on application.
9 ft .6 in . long for 1200 Volt Form H Suspensions
FORM A-3 BRACKETS



For Sherardized Brackets or brackets other than 9 ft .6 in . in length, prices will be quoted on application.

## POLE BRACKETS, FLEXIBLE <br> For Wood Poles <br> 9 ft . long with Guy Rod and Galvanized Steel Cable FORM B COMBINATION BRACKETS



| Cat. No. | Description | Approx. Weight per 100 | Cat. No, | Description | Approx Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40021 | "A" tubing, arm 12 ${ }^{\prime \prime}$ ", strut $1 \frac{1}{4}$ " | 4150 | 40024 | "A " tubing, arm 2 ", strut $1 \frac{1}{2}$ " | 5050 |
| 40022 | "C" tubing, arm 12 ${ }^{\text {" }}$ ", strut $1 \frac{1}{4}$ " | 5000 | 40025 | "C" tubing, arm 2", strut $1 \frac{1}{2}$ " | 6250 |
| 40023 | Wrought iron pipe, arm $1 \frac{1}{2}{ }^{\prime \prime}$, strut $1 \frac{1}{4}{ }^{\prime \prime}$ | 5100 | 40026 | Wrought iron pipe, arm $2^{\prime \prime}$, strut 11 $\frac{1}{\prime \prime}^{\prime \prime}$ | 6400 |

For Sherardized Brackets or brackets other than 9 feet in length, prices will be quoted on application.
For use with 5 in . Standard Pipe Poles
FORM A-1 BRACKETS



By changing pole clamps these brackets may also be used for $4^{\prime \prime}, 6^{\prime \prime}$ or $7^{\prime \prime}$ poles.
For separate list of pole clamps see page 14.
For Sherardized Brackets or brackets other than 9 feet in length, prices will be quoted on application.

## POLE BRACKETS, FLEXIBLE

For use with 5 in. Standard Pipe Poles
9 ft . long with Guy Rod and Galvanized Steel Cable FORM A-2 BRACKETS
FORM B COMBINATION BRACKETS


| Cat. No. | Description | Approx. <br> Weight <br> per 100 | Cat. No. | Description | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40045 | "A" tubing, arm $1 \frac{1}{2}$ ", strut $1 \frac{1}{4}$ " | 5150 | 40048 | "A" tubing, arm 2 ", strut $1 \frac{1}{2}$ " . | 6200 |
| $40046$ | " C " tubing, arm $1 \frac{1}{2}$ ", strut $1 \frac{1}{4}$ " | $6050$ | $40049$ | "C" tubing, arm $2^{2}$ ", strut $1 \frac{1}{2}$ " | 7350 |
| $40047$ | Wrought iron pipe, arm $1 \frac{1}{2}{ }^{\prime \prime}$ strut $1 \frac{1}{4}^{\prime \prime}$ | 6150 | 40050 | Wrought iron pipe, arm $2^{\prime \prime}$, strut $1 \frac{1}{2 \prime \prime}$ | 7500 |

By changing pole clamps these brackets may also be used for $4^{\prime \prime}, 6^{\prime \prime}$, or $7^{\prime \prime}$ poles.
For separate list of pole clamps see page 14 .
For Sherardized Brackets or brackets other than 9 feet in length, prices will be quoted on application.

## POLE BRACKETS, FLEXIBLE

For use with 5 in . Standard Pipe Poles
9 ft . arms with Guy Rod and Galvanized Steel Cable
FORM A-1 BRACKETS


| Cat. No. | Description |  | Approx. Weight per 100 | Cat. No. | Description |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40057 | $1 \frac{1}{2}$ " " A ' tubing | . . | 7550 | 40060 | $2^{\prime \prime}$ "A" tubing | - - | - | 8900 |
| 40058 | $1 \frac{1}{2}$ " " C " tubing . | . . | 8700 | 40061 | 2 " "C' tubing | . . | . | 10700 |
| 40059 | $1 \frac{1}{2}$ " Wrought iron pipe | . - | 8900 | 40062 | $2^{\prime \prime}$ Wrought iron pipe | . . | , | 10900 |

FORM A-2 BRACKETS



By changing pole clamps these brackets may also be used for $4^{\prime \prime}, 6^{\prime \prime}$, or $7^{\prime \prime}$ poles.
For separate list of pole clamps see page 14.
For Sherardized Brackets or brackets with arms other than 9 feet in length, prices will be quoted on application.

## 4747-12 Railway Line Material

## POLE BRACKETS, FLEXIBLE

For use with 5 in. Standard Pipe Poles
9 ft . arms with Guy Rod and Galvanized Steel Cable FORM B COMBINATION BRACKETS


| Cat. No. | Description | Approx. <br> Weight <br> per 100 | Cat, No, | Description | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | "A" tubing, arm $1 \frac{1}{2}$ ", strut $1 \frac{1}{4}$ " | 9650 | 40072 | "A" tubing, arm 2", strut 1 $\frac{1}{2}$ " | 11000 |
| 40070 | "C' tubing, arm $1 \frac{1}{2}$ ", strut $1 \frac{1}{4}$ " | 10800 | 40073 | "C' tubing, arm 2 ", strut $1 \frac{1}{2}$ " | 12800 |
| 40071 | Wrought iron pipe, arm $1 \frac{1}{2}^{\prime \prime}$, strut $1 \frac{1}{4}^{\prime \prime}$ | 11000 | 40074 | Wrought iron pipe, arm $2^{\prime \prime}$, strut $1 \frac{1}{2}^{\prime \prime}$ | 13000 |

By changing pole clamps these brackets may also be used for $4^{\prime \prime}, 6^{\prime \prime}$, or $7^{\prime \prime}$ poles.
For separate list of pole clamps see page 14.
For Sherardized Brackets or brackets with arms other than 9 feet in length, prices will be quoted on application.

## RIGID BRACKETS - For Wood Poles <br> 9 ft . long <br> FORM C BRACKETS



| Cat. No. | Description | Approx. Weight per 100 | Cat. No. | Description | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40027 | "A ${ }^{\prime \prime}$ tubing, arm $1 \frac{1}{2}$ ", strut $1 \frac{1}{4}$ " | 2850 | 40030 | "A" tubing, arm $2^{\prime \prime}$, strut $1 \frac{1}{2}{ }^{\prime \prime}$. | 3800 |
| $+0028$ | "C', tubing, arm $1 \frac{1}{2}{ }^{\prime \prime}$, strut $1 \frac{1}{4}$ " ${ }^{\prime}$ | 3700 | 40031 | "C"' tubing, arm ${ }^{\prime \prime}$ ", strut $1 \frac{1}{2}$ " | $5000$ |
| 40099 | Wrought iron dide, arm $1 \frac{1^{\prime \prime}}{}$, strut $11^{\prime \prime}$ | 3800 | $\underline{10032}$ | Wrought iron pipe, arm $2^{\prime \prime}$, strut $1 \frac{1}{2}{ }^{\prime \prime}$ |  |

For Sherardized Brackets or brackets other than 9 feet in length, prices will be quoted on application.

## POLE BRACKETS-RIGID

For use with 5 in. Standard Pipe Poles
9 ft . long
FORM C BRACKETS


| Cat. No. | Description | Approx. Weight per 100 per 100 | Cat. No. | Description | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | "A" tubing, arm $1 \frac{1}{2}$ ", strut $1 \frac{1}{4}$ " | 3750 | 40054 | "A" tubing, arm 2 ", strut $1 \frac{1}{2}$ " |  |
| $40052$ | "C" tubing, arm $1 \frac{2}{2}$ ", strut $1 \frac{1}{4}$ " | $4650$ | $40055$ | "C" tubing, arm 2 ", strut $1 \frac{1}{2}$ " | 5800 |
| 40053 | Wrought iron pipe, arm $1 \frac{1}{2}{ }^{\prime \prime}$, strut $1 \frac{1}{4}^{\prime \prime}$ | 4900 | 40056 | Wrought iron pipe, arm' ${ }^{\prime \prime}$, strut $1 \frac{1}{2}{ }^{\prime \prime}$ | 6000 |

Two, 9 ft . arms

## FORM C BRACKETS



| Cat. No. | Description | Approx. Weight per 100 | Cat. No. | Description | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40075 | "A" tubing, arm $1 \frac{1}{2}$ ", strut $1 \frac{1}{4}$ " | 6650 |  |  |  |
| 40076 | "C" tubing, arm $1 \frac{1}{2}$ ", strut $1 \frac{1}{4}$ " | $8200$ | $\begin{aligned} & 40078 \\ & 40079 \end{aligned}$ | "C " tubing, arm $2^{\prime \prime}$, strut $1 \frac{1}{2}$ " | $\begin{array}{r} 8200 \\ 10400 \end{array}$ |
| 40077 | Wrought iron pipe, arm $1 \frac{1}{2}{ }^{\prime \prime}$, strut $1 \frac{1}{4}{ }^{\prime \prime}$ | 8500 | 40080 | Wrought iron pipe, arm $2^{\prime \prime}$, strut $1 \frac{1}{2}{ }^{\prime \prime}$ | $\begin{aligned} & 10400 \\ & 10700 \end{aligned}$ |

By changing pole clamps these brackets may also be used for $4^{\prime \prime}, 6^{\prime \prime}$, or $7^{\prime \prime}$ poles.
For separate list of pole clamps see page 14 .
For Sherardize 14
For Sherardized Brackets or brackets with arms other than 9 feet in length, prices will be quoted on application.

# CLAMPS AND BANDS 

For Brackets for Iron Poles
BRACKET CLAMPS
FOR HOLDING HORIZONTAL ARMS TO POLE


| cat no: |  | Description |  |  |  | APPROX, Wt. per 100 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Single | Double |  |  |  |  | Single | Double |
| 40081 | 40097 | For $4^{\prime \prime}$ Standard Pipe Pole and 112" Bracket Arms |  |  |  | 680 | 775 |
| 40082 | 40098 | For $5^{\prime \prime}$ Standard Pipe Pole and 11/" Bracket Arms |  |  |  | 745 | 760 |
| 40083 | 40099 | For $5^{\prime \prime}$ Standard Pipe Pole and $2^{\prime \prime}$ Bracket Arms |  |  |  | 745 | 760 |
| 40084 | 40100 | For 6" Standard Pipe Pole and 12" Bracket Arms |  |  |  | 980 | 995 |
| 40085 | 40101 | For 6 " Standard Pipe Pole and $2^{\prime \prime}$ Bracket Arms |  |  |  | 980 | 995 |
| 40086 | 40102 | For 7" Standard Pipe Pole and 2" Bracket Arms | . |  |  | 1360 | 1405 |

For Sherardized clamps prices will be quoted on application

## ANGLE CLAMPS

FOR HOLDING SUPPORTING STRUTS TO POLE


Cat. No. 40088


Cat. No. 40104


For Sherardized clamps prices will be quoted on application.
POLE BANDS
FOR HOLDING GUY RODS AND SPAN WIRES TO POLE



For Sherardized clamps prices will be quoted on application.

## POLE BRACKETS-CAST IRON

## FOR SUPPORTING PIPE BRACKET ARM



Cat. No. 15037

| Cat. No. |  | Description | Approx. <br> Weight |
| :--- | :--- | :--- | :--- |
| per 100 |  |  |  |

## SUSPENSIONS-FORM H

In this section are listed all forms of suspensions demanded by the varying conditions of direct suspension construction.

In general there are five forms; the Form H suspensions, consisting of malleable iron shells into which the insulation holding the studs is permanently moulded; the Form S , consisting of malleable iron yokes with strain insulators of various forms shackled to them; the Form D, or cap and cone-suspensions; the Form G, in which insulation is provided by an insulated bolt; and Form $T$, feeder tap suspensions.

Form H suspensions consist primarily of malleable iron shells into which
 the insulation holding the studs is permanently moulded. A load of over five tons is required to pull the stud from this form of suspension.

## STRAIGHT LINE-600 VOLTS

These are made in two sizes $3 \frac{1}{4} \mathrm{in}$. and $3 \underline{2} \mathrm{in}$. in diameter, each of which is furnished with either $\frac{5}{6}$ in or $\frac{3}{4}$ in stud. The $3 \frac{1}{2}$ in. suspension has extra heavy shell and arms and is designed especially for the heaviest construction. Each of these suspensions, being in one piece, is held against turning by the span wire, and cannot, therefore, become unscrewed as a result of vibration in service.


600 Volt Straight Line Suspension
Overall length $6 \frac{1}{2}$ in.; arm yokes accommodate $\frac{3}{3} \mathrm{in}$. span wire. Shell and stud have the standard sherardized finish.

| Cat. No. | Sbelc |  | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: |
|  | Dia. | Height |  |  |
| 25980 | $3\}^{\prime \prime}$ | $2^{\prime \prime}$ | 5 | 210 |
| 39688 | $3{ }^{\prime \prime}$ | $2 \frac{1}{\prime \prime}^{\prime \prime}$ | $\frac{3 \prime \prime}{\prime \prime}$ | 215 |
| 39690 | $3{ }^{\prime \prime}{ }^{\prime \prime}$ | $21^{\prime \prime}$ |  | 265 |
| 25979 | $3{ }^{\prime \prime \prime}$ | $2 \frac{1}{4 \prime \prime}^{\prime \prime}$ | $\frac{y^{\prime \prime}}{}$ | 270 |

## STRAIGHT LINE-1200 VOLTS

These suspensions and the $3 \frac{1}{2}$ in. straight line 600 volt suspensions are identical, except that the arms are replaced by clevises to which giant or wood strain insulators are shackled. A new bracket designed particularly for 1200 volt, Form H suspensions is listed on page 8 .

WITH 2 IN. GIANT STRAIN INSULATORS, CAT. No. 64425


1200 Volt Straight Line Suspension
Overall length between centers of outer eyes $12 \frac{1}{4} \mathrm{in}$.: diameter of shell $3 \frac{1}{2} \mathrm{in}$. All metal parts including the stud have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 66624 | $3^{\prime \prime}$ | 460 |
| 66622 | $z^{\prime \prime}$ | 465 |

## SUSPENSIONS-FORM H

## Straight Line- 1200 Volts

WITH 1 IN. WOOD STRAIN INSULATORS, CAT. No. 16727


Overall length between centers of outer eyes 233 in.; diameter of shell $3 \frac{1}{2}$ in. All metal parts including stud have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 66620 | $s^{\prime \prime}$ | 565 |
| 66618 | 570 |  |

WITH $1 \frac{1}{4}$ IN. WOOD STRAIN INSULATORS, CAT. No. 37488


1200 Volt Straight Line Suspension
 have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 89475 | $5^{\prime \prime}$ | 635 |
| 89473 | $\frac{3^{\prime \prime}}{4}$ | 640 |

## SUSPENSION BODY WITH PINS

FOR 1200 VOLT STRAIGHT LINE AND 600 AND 1200 VOLT DOUBLE CURVE FORM H SUSPENSIONS


Suspension Body

Length between centers of clevis holes $4 \frac{7}{6}$ in.; diameter of shell $3 \frac{1}{2}$ in.; diameter of pins $\frac{1}{2}$ in. All metal parts including stud have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 66330 | $\frac{5}{8 \prime \prime}$ | 285 |
| 66326 | $\frac{3}{4}$ | 290 |

## SINGLE CURVE

The Form H Single Curve Suspension consists of a $3 \frac{1}{2} \mathrm{in}$. body casting, into which the insulation holding the stud is moulded, with a clevis on one side to which the pull off arm is attached by means of a $\frac{1}{2}$ in. steel pin and cotter. For 1200 volt work, strain insulators are shackled to the pull off arm.

## SUSPENSIONS-FORM H

## SINGLE CURVE



600 Volt Single Curve Suspension

## 600 VOLTS

Length between center line of stud and center of pull off eye $4 \frac{1}{2} \mathrm{in}$.; height above center of pull off eye $3 \frac{1}{2} \mathrm{in}$.; diameter of pull off eye $\frac{9}{} \frac{1}{6}$ in.; thickness of pull off arm at eye $\frac{1}{2}$ in.; diameter of shell $3 \frac{1}{2} \mathrm{in}$. All metal parts including stud have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 68953 | $\frac{3}{2 \prime \prime}^{\prime \prime}$ | 310 |
| 68955 | $\frac{3 \prime \prime}{4}$ | 315 |

## 1200 VOLTS

WITH 2 IN. GIANT STRAIN INSULATOR, CAT. No. 64417


Length between center line of stud and center of outer eye $8 \frac{11}{16}$ in ; : height above center of pull off eye $3 \frac{1}{2}$ in.; diameter of shell $3 \frac{1}{2} \mathrm{in}$. All metal parts including shell have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight <br> per 100 |
| :---: | :---: | :---: |
| 68965 | $5^{\prime \prime}$ | 415 |
| 68967 | $s^{\prime \prime}$ | 420 |

1200 Volt Single Curve Suspension

WITH 1 IN. WOOD STRAIN INSULATOR, CAT. No. 43229
Length between center line of stud and center of outer eye $14 \frac{3}{8} \mathrm{in}$; height above center of pull off eye $3 \frac{1}{2}$ in.; diameter of shell $3 \frac{1}{2} \mathrm{in}$. All metal parts including stud have standard sherardized finish.


| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 68945 | $\frac{8}{\prime \prime}_{\prime \prime}^{\prime \prime}$ | 470 |
| 68947 | 475 |  |

1200 Volt Single Curve Suspension

WITH $11 / 4$ IN. WOOD STRAIN INSULATOR, CAT. No. 43230
Length between center line of stud and center of outer eye $14 \frac{3}{8} \mathrm{in}$; height above center of pull off eye $3 \frac{1}{2} \mathrm{in}$.; diameter of shell $3 \frac{1}{2}$ in. All metal parts including stud have standard sherardized finish.

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| 1200 | Cat. No. | Diameter of Stud | Approx. Weight per 100 |

1200 Volt Single Curve Suspension

## SUSPENSIONS-FORM H

SUSPENSION BODY-WITH PIN
FOR 600 AND 1200 VOLT SINGLE CURVE FORM H SUSPENSIONS


3
Suspension Body

Distance between center line of stud and center of clevis hole $2 \frac{2}{8} \mathrm{in}$.; diameter of shell $3 \frac{1}{2}$ in.; height of shell $2 \frac{1}{4}$ in.; diameter of pin $\frac{1}{2}$ in. All metal parts including stud have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 68961 | $\frac{5}{\prime \prime}^{\prime \prime}$ | 255 |
| 68963 | $\frac{2^{\prime \prime}}{4}$ | 260 |

## DOUBLE CURVE

The Form H double curve suspensions are like the single curve suspensions, except that there are two clevises and arms.


600 Volt Double Curve Suspension

600 VOLTS
Length between centers of pull off eyes 9 in .; height above center of pull off eyes $3 \frac{1}{2}$ in.; diameter of shell $3 \frac{1}{2}$ in.; diameter of pull off eyes $\frac{2}{16}$ in.; thickness of pull off arms at eyes $\frac{1}{2} \mathrm{in}$. All metal parts including stud have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 68957 | $\frac{5}{\prime \prime}$ | 395 |
| 68959 | $\frac{3^{\prime \prime}}{4}$ | 400 |

## 1200 VOLTS

WITH 2 IN. GIANT STRAIN INSULATORS, CAT. No. 64417


Length between centers of pull off eyes $17 \frac{3}{8} \mathrm{in}$; height above centers of pull off eyes $3 \frac{1}{2} \mathrm{in}$.; diameter of shell $3 \frac{1}{2}$ in. All metal parts including stud have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 68969 | $\frac{5^{\prime \prime}}{4 \prime}$ | 605 |
| 68971 | $\frac{3^{\prime \prime}}{4}$ | 610 |

## SUSPENSIONS-FORM H

WITH 1 IN, WOOD STRAIN INSULATORS, CAT. No, 43229


1200 Volt Double Curve Suspension
Length betwcen centers of pull off eyes 287 in ; height above centers of pull off eyes $3 \frac{1}{2} \mathrm{in}$; diameter of shell $3 \frac{1}{2}$ in. All metal parts including stud have standard sherardized finish.

| Cat No. | Diameter of Stird | Apprax. Weight per 100 |
| :---: | :---: | :---: |
| 68949 | $5^{\prime \prime}$ | 715 |
| 68951 | $\frac{3}{4 \prime}$ | 720 |

WITH $11 / 4$ IN. WOOD STRAIN INSULATORS, CAT. No. 43230


1200 Volt Double Curve Suspension
Length between centers of pull off eyes 281 in; height above centers of pull off eyes 31 in ; diametcr of shell $3 \frac{1}{2}$ in. All metal parts including stud have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| $\begin{array}{r} 89489 \\ 89491 \end{array}$ | $\begin{aligned} & \frac{i^{\prime \prime}}{i^{\prime \prime}} \\ & \hline \end{aligned}$ | $\begin{aligned} & 765 \\ & 770 \end{aligned}$ |

## BRIDGE OR CEILING- 600 VOLTS

These suspensions have a total height of 2 inches above the ear seat. The supporting ears are slotted for $\frac{1}{2}$ inch lag screws or bolts.


Ceiling Suspension

## LOW BRIDGE OR CEILING AND LOW MINING - 600 VOLT

To produce a suspension of minimum height and a long creepage surface together with high mechanical strength, an entirely new feature has been introduced into the manufacture of both the Low Bridge or Ceiling Suspension and the Low Mining Suspension. The new feature is the "crimped cup" method of clamping the stud into the shell-the method being similar to that employed in the manufacture of Giant Strain Insulators. The insulation between the shell and the stud cap is sheet mica, $\frac{1}{8}$ in thick, with a fibre backing.

This design throws the entire mechanical load on to the malleable iron cup which is of ample strength to care for the greatest loads possible under operating conditions; thus the moulded insulation, used to give the long creepage surface, is entirely relieved of mechanical strains.

## SUSPENSIONS-FORM H LOW BRIDGE CEILING SUSPENSION

The Low Bridge or Ceiling Suspension is for use under bridges and elevated structures where head room is limited. The top of Cat. No. 64560 is designed to be countersunk in the supporting timber, bringing the top of the ear hub $\frac{1}{4}$ in. below the bottom of the timber. Cat. No. 105705 has the supporting arms at its top so that it may be attached to the overhead structure without countersinking, its total height above the ear seat is $1 \frac{1}{4} \mathrm{in} . ; \frac{1}{2} \mathrm{in}$. screws are required for the supporting arms. Shell and stud have standard sherardized finish.


Cat. No. 105705

Cat. No. 64560
$\square$ Approx.


## LOW MINING SUSPENSION

This mining suspension is like the Low Bridge Suspension in its internal design and will be found useful in many places where the suspension shown at the bottom of the page is too high. The Low Mining Suspension is adapted to use with the standard roof bolt and wedges or with the expansion bolts listed on page 22. Shell and stud have the standard sherardized finish.

Height from ear seat to top of shell $1 \frac{1}{4}$ in.; diameter of shell at top 3 in .; height of boss above shell $\frac{8}{8}$ in.

| Cat. No. | Description | Approx. <br> Weight <br> per 100 |
| :--- | :---: | :---: | :---: | :---: |
| 64561 | Low Mining Suspension $\xi^{\prime \prime}$ stud . | 150 |

## MINING

The height of the Form H Mining Suspension, from the ear seat to the top of the shell is 2 inches.
The extended flange at the top gives wide bearing surface against the mine roof to resist transverse stress on curves and the sides are grooved for the reception of a wrench with which the suspension can be set up tight on the roof bolt. The double petticoat provides ample leakage surface for voltages up to 600 .

In the following tables mining suspensions are listed with several different arrangements for fastening into the mine roof, and for convenience in ordering repair parts, the insulating portion is listed also separately.

Diameter of top flarige 4 in : diameter of shell $3 \frac{1}{3} \mathrm{in}$.; height from ear seat to top of flange 2 in . Shell and stud have standard sherardized finish.

| Cat. No, | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 35688 | $\frac{3 \prime \prime}{8^{\prime \prime}}$ | 250 |
| 40965 | $\frac{7^{\prime \prime}}{255}$ |  |

# SUSPENSIONS-FORM H 

## MINING



Mining Suspension

## WITH ROOF BOLT AND WEDGES

This suspension consists of the standard Form H mining suspension, with a 5 in . roof bolt and two expansion wedges. The bolt is slotted near the top and the upper wedge is arranged to engage it so as to prevent turning of the bolt in screwing up the suspension. When the suspension is removed from the bolt the whole device is loosened in the hole by a blow with a hammer and may thus be readily recovered.

The roof drilling should be $1 \frac{3}{\mathrm{~g}} \mathrm{in}$. in diameter and at least 5 in . deep. All metal parts including stud have standard sherardized finish.

| Cat. No. | Description |  |  |  |  |  |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 35686 | Mining Suspension | complete, | $3^{\prime \prime}$ stud |  |  |  |  |  | 370 |
| 40963 | Mining Suspension | complete, | $3^{\prime \prime}$ stud |  |  |  |  |  | 375 |
| 35689 | Roof bolt ( $8^{\prime \prime}-11$, | " special) | - |  |  |  |  |  | 40 |
| 35690 | Upper roof wedge | . |  |  |  |  |  |  | 45 |
| 35691 | Lower roof wedge | $\bigcirc \quad$. | - |  |  |  | - |  | 35 |

## WITH 4 IN. EXPANSION BOLT



The suspensions listed in the following table are made up of the standard Form H suspension, with a 4 in . expansion bolt consisting of a malleable iron shell, $1 \frac{1}{4} \mathrm{in}$. in diameter, a roof bolt and a conical nut by means of which the shell is expanded when in position. The roof bolt being properly seated in the suspension boss, the shell is readily expanded in the roof hole by a few turns of the suspension.

The roof drilling should be $1 \frac{1}{4} \mathrm{in}$. in diameter and at least 5 in . deep.
Expansion bolts Cat. Nos. 100409 and 100410 are furnished as alternatives for Cat. Nos. 66334 and 66336 when so desired. The whole difference consists in the addition of a hexagonal shaped shoulder on the roof bolt which is of service in recovering the expansion bolt from the hole. All metal parts including stud have standard sherardized finish.

| Cat. No. | Description | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 68941 | Mining Suspension complete, $5^{\prime \prime}$ stud . . . . . | 350 |
| 68943 | Mining Suspension complete, $\frac{3^{\prime \prime}}{\prime \prime}$ stud . | $355$ |
| 66334 | Expansion boit, $4^{\prime \prime}$ long, with stud (threaded $8^{\prime \prime}-11$ ). . | 100 |
| 66336 | Expansion bolt, $6^{\prime \prime}$ long, with stud (threaded $\left.5^{\prime \prime}-11\right)$. . | 110 |
| 100409 | Expansion bolt, $4^{\prime \prime}$ long, with stud (threaded $\frac{5}{5}-11$ ) having hexagonal shoulder | 105 |
| 100410 | Expansion bolt, $6^{\prime \prime}$ long, with stud (threaded ${ }^{5 \prime \prime}-11$ ) having hexagonal shoulder | 115 |

## SUSPENSIONS-FORM H

## MINING

## WITH LAG SCREW AND WOOD PLUG

This suspension consists of the standard Form H mining suspension, with a gimlet point lag screw threaded and rusted in the top and projecting 3 in . above the tapped boss.

It is used in connection with a wooden plug, Cat. No. 34137, which


Mining Suspension is drilled axially for the lag screw. The plug is driven into a hole drilled in the mine roof and the lag screwed into the plug, its taper splitting the wood and expanding it permanently in place.

The roof drilling should be $1 \frac{1}{2}$ in. in diameter and 4 in . deep.
This is also an excellent ceiling suspension for use in timbered entries, or in car-barn wiring as the lag can be screwed into the roof timbers.

The lag screw, shell and stud have standard sherardized finish.


## BRACKET

The Form H bracket suspension consists of the standard $3 \frac{1}{4}$ in shell to which the bracket arm clamp is hinged, thus providing the flexibility required to care for vibration in the trolley wire.

For suspensions for 2 in pipe the height from ear seat to center of bracket arm clamp is $5 \frac{1}{\frac{1}{i n} . ; ~ f o r ~} 1 \frac{1}{2}$ in. pipe the height is $4 \frac{3}{3} \mathrm{in}$; diameter of shell $3 \frac{1}{4} \mathrm{in}$. All metal parts including stud have standard sherardized finish.

| Cat. No. | Description |  |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 25992 | Bracket Suspension complete, $5^{\prime \prime}$ stud for $2^{\prime \prime}$ pipe |  |  |  | 540 |
| 25993 | Bracket Suspension complete, $\frac{5}{\prime \prime \prime}_{\prime \prime}$ stud for $11_{2}^{\prime \prime}$ pipe |  |  |  | 530 |
| 25994 | Bracket Suspension, $5^{\prime \prime}$ stud, without clamp ${ }^{\text {a }}$. |  |  |  | 275 |
| 25996 | Clamp for $2^{\prime \prime}$ pipe, for use with Cat. No. 25992 |  |  |  | 265 |
| 25997 | Clamp for $1 \frac{1}{2}^{\prime \prime}$ pipe, for use with Cat. No. 25993 |  | - | . | 255 |

The clamps for the Form H Bracket Suspensions are the same as those used with Form G Bracket Suspensions.
Bracket Suspeasion

## 4747-24 Railway Line Malerial

## SUSPENSIONS-FORM S

These suspensions consist of liberally designed malleable iron yokes fitted with 2 in . giant strain insulators or wood strain insulators either 1 in . or $1 \frac{1}{4} \mathrm{in}$. in diameter. If other insulators are desired, bodies and insulators should be ordered separately.

## SINGLE TROLLEY

## STRAIGHT LINE-600 VOLTS

WITH 2 IN. GIANT STRAIN INSULATORS, CAT. No. 64425
Length between centers of outer eyes 155 in . All metal parts including stud have standard sherardized finish.


WITH 1 IN. WOOD STRAIN INSULATORS, CAT. No. 16727
Length between centers of outer eyes 27 in . All metal parts including stud have standard sherardized finish.


WITH 1 1/4 IN. WOOD STRAIN INSULATORS, CAT. No. 37488
Length between centers of outer eyes 27 in . All metal parts including stud have standard sherardized finish.


## STRAIGHT LINE—1200 VOLTS

WITH 2 IN. GIANT STRAIN INSULATORS, CAT. NOS. 64425 AND 64417


1200 Volt Straight Line Suspension
Length between centers of outer eyes 24 in All metal parts including stud have standard sherardized finish.

| Cat, No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 100120 | $8^{\prime \prime}$ | 620 |
| 100118 | $\frac{4}{4}^{\prime \prime}$ | 625 |

## SUSPENSIONS-FORM S

 BODIES FOR STRAIGHT LINE SUSPENSIONS COMPLETE WITH BOLTS, WASHERS AND PINSLength between pin centers 8 in .; clevis opening ig in.; diameter of pins $\frac{1}{2}$ in. All metal parts including stud have standard sherardized finish.

|  | Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: |
| - -3 | 66632 | \%" | 235 |
| 1 | 66630 | $3^{\prime \prime}$ | 240 |

SINGLE CURVE-600 VOLTS
WITH 2 IN. GIANT STRAIN INSULATOR, CAT. No. 64425
Length between center line of stud to center of outer eye 9 in . All metal parts including stud have standard sherardized finish.


WITH 1 IN. WOOD STRAIN INSULATOR, CAT. No. 16727
Length between center line of stud to center of outer eye $14 \frac{\pi}{3} \mathrm{in}$. All metal parts including stud have standard sherardized finish.


| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 33958 | $3^{\prime \prime \prime}$ | 295 |
| 33954 | $4^{\prime \prime}$ | 300 |

600 Volt Single Curve Suspension

WITH 1 1/4 IN WOOD STRAIN INSULATOR, CAT. No. 37488
Length between center line of stud to center of outer eye $14 \frac{7}{3} \mathrm{in}$. All metal parts including stud have standard sherardized finish.


600 Volt Single Curve Suspension
SINGLE CURVE- 1200 VOLTS
WITH 2 IN. GIANT STRAIN INSULATORS, CAT. NOS. 64425 AND 64417


1200 Volt Single Curve Suspension

Length between center line of stud and center of outer eye $13 \frac{1}{2} \mathrm{in}$. All metal parts including stud have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight <br> per 100 |
| :---: | :---: | :---: |
| 68166 | $5^{\prime \prime}$ | 345 |
| 68165 | $\frac{9}{\prime \prime}_{\prime \prime}$ | 350 |

## SUSPENSIONS-FORM S

BODIES FOR SINGLE CURVE SUSPENSIONS

## COMPLETE WITH BOLTS, WASHERS AND PINS

Length between center line of stud and center of pin $5 \frac{1}{\frac{1}{2}}$ in.; clevis opening $\frac{9}{16}$ in.; diameter of pin $\frac{1}{2} \mathrm{in}$. Standard sherardized finish throughout.

|  | Cat. No. | Diameter of Stud |
| :---: | :---: | :---: |
| Single Curve <br> Suspension Body | 64241 | $5^{\prime \prime}$ |
| 150 |  |  |

DOUBLE CURVE-600 VOLTS
WITH 2 IN. GIANT STRAIN INSULATORS, CAT. No. 64425
Length between centers of outer eyes 18 in. All metal parts including stud have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 25988 | $\frac{5^{\prime \prime}}{3 \prime \prime}$ | 410 |
| 25986 | $\frac{y^{\prime \prime}}{}$ | 415 |

600 Volt Double Curve Suspension

DOUBLE Suspension Body

WITH 1 IN, WOOD STRAIN INSULATORS, CAT. No. 16727


600 Volt Double Curve Suspension
Length between centers of outer eyes $29 \frac{3}{4}$ in. All metal parts including stud have standard sherardized finish.

| Cat, No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 33960 | $5^{\prime \prime}$ | 515 |
| 33956 | $\frac{1}{n}^{\prime \prime}$ | 520 |

WITH 1 1/4 IN. WOOD STRAIN INSULATORS, CAT. No. 37488


600 Volt Double Curve Suspension
Length between centers of outer eyes $29 \frac{3}{3} \mathrm{in}$. All metal parts including stud have standard sherardized finish.

| Cat. No. | Diameter ot Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 64254 | $\frac{\mathrm{~h}^{\prime \prime}}{8 \prime}$ | 585 |
| 64253 | $\frac{3^{\prime \prime}}{590}$ |  |

## SUSPENSIONS-FORM S

## Single Trolley

DOUBLE CURVE- 1200 VOLTS
WITH 2 IN. GIANT STRAIN INSULATORS, CAT. NOS. 64425 AND 64417


1200 Volt Double Curve Suspension
Length between centers of outer eyes $26 \frac{1}{2} \mathrm{in}$. All metal parts including stud have standard sherardized finish.

| Cat. No | Diameter of Stud | $\xi^{\prime \prime}$ |
| :---: | :---: | :---: |
| 68168 | $\zeta^{\prime \prime}$ | Avprox. Weight per 100 |
| 68167 | 620 |  |
| 625 |  |  |

## BODIES FOR DOUBLE CURVE SUSPENSIONS

COMPLETE WITH BOLTS, WASHERS AND PINS
Length between centers of pins $10 \underline{1} \mathrm{in}$., clevis opening $\frac{9}{6}$ in. diameter of pins $\frac{1}{2} \mathrm{in}$. Standard sherardized finish througbout.

|  | Cat. No | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & 6+246 \\ & 6+245 \end{aligned}$ | $\frac{5^{\prime \prime \prime}}{3^{\prime \prime}}$ | $\begin{aligned} & 235 \\ & 240 \end{aligned}$ |

Double Curve Suspension Body

## Double Trolley

The stud bolts in all Form S double trolley suspensions are spaced $6 \frac{1}{2}$ in. between centers.

## STRAIGHT LINE-600 VOLTS

WITH 2 IN. GIANT STRAIN INSULATORS, CAT, No. 64425


600 Volt Straight Line Suspension

Length between centers of outer eyes $22 \frac{1}{8}$ in.; distance betiveen stud centers $6 \frac{1}{2}$ in. All metal parts including studs have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 66644 | $\frac{5}{2}^{\prime \prime}$ | 555 |
| 66642 | $\frac{3}{4}$ | 565 |

# SUSPENSIONS—FORM S 

Double Trolley
STRAIGHT LINE
WITH 1 IN. WOOD STRAIN INSULATORS, CAT. No. 16727


600 Volt Straight Line Suspension
Length between centers of outer eyes $33 \frac{1}{2}$ in. ; distance between stud centers $6 \frac{1}{2} \mathrm{in}$. All metal parts including studs have standard sherardized finish.

| Cat. No. | Diameter of Stul | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 66636 | $8^{\prime \prime}$ | 660 |
| 66634 | $\frac{4}{\prime \prime}^{62}$ | 60 |

WITH $11 / 4$ IN. WOOD STRAIN INSULATORS, CAT. No. 37488


600 Volt Straight Line Suspension
Length between centers of outer eyes $33 \frac{1}{2} \mathrm{in}$. ; distance between stud centers $6 \frac{1}{2} \mathrm{~m}$. All metal parts including studs have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: |
| 89479 | $\hat{z}^{\prime \prime}$ | 730 |
| 89477 | $\mathrm{y}^{\prime \prime}$ | 740 |

1200 VOLTS
WITH 2 IN. GIANT STRAIN INSULATORS, CAT. NOS. 64425 AND 64417


1200 Volt Straight Line Suspension
Length between centers of outer eyes $30 \frac{1}{2}$ in. distance between stud centers $6 \frac{1}{2}$ in. All metal parts including studs have standard sherardized firish.

| Cat. No | Diameter of Stud | Approx, Weight per 100 |
| :---: | :---: | :---: |
| 100124 | $\frac{夕^{\prime \prime}}{4 \prime}$ | 765 |
| 100122 | $\frac{3^{\prime \prime}}{}$ | 775 |

## BODIES FOR STRAIGHT LINE SUSPENSIONS

## COMPLETE WITH BOLTS, WASHERS AND PINS

Length between pin centers 14$\}$ in.; distance between stud centers $6 \frac{1}{2} \mathrm{in}$.; clevis opening $\frac{9}{16}$ in.; diameter of pins $\frac{1}{2}$ in. Standard sherardized finish throughout.

| A | Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: |
|  | 66628 | \$" | 380 |
|  | 66626 |  | 390 |

## SUSPENSIONS-FORM S

Double Trolley
SINGLE CURVE - 600 VOLTS
WITH 2 IN. GIANT STRAIN INSULATOR, CAT. No. 64425
Length between center line of outer stud and center of outer eye $15 \frac{1}{2}$ in; ; distance between stud centers $6 \frac{1}{2}$ in. All metal parts including studs have standard sherardized finish.


600 Volt Single Curve Suspension

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 27377 | $5^{\prime \prime}$ | 350 |
| 27374 | $\mathbf{' \prime}^{\prime \prime}$ | 360 |

WITH 1 IN. WOOD STRAIN INSULATOR, CAT. No. 16727
Length between center line of outer stud und center of outer eye $21 \frac{3}{3} \mathrm{in}$; distance between stud centers $6 \frac{1}{2}$ in. All metal parts including studs have standard sherardized finish.


600 Volt Single Curve Suspension

WITH $11 / 4$ IN. WOOD STRAIN INSULATOR, CAT. No. 37488
Length between center line of outer stud and center of outer eye 21 l in. ; distance between stud centers $6 \frac{1}{\mathrm{~h}} \mathrm{in}$. All metal parts including studs have standard sherardized finish.


SINGLE CURVE- 1200 VOLTS
WITH 2 IN. GIANT STRAIN INSULATOR, CAT. NOS. 64425 AND 64417
Length between center line of outer stud and center of outer eye $19 \frac{7}{4}$ in.; distance between stud centers $6 \frac{1}{2}$ in: All metal parts including studs have standard sherardized finish.


## BODIES FOR SINGLE CURVE SUSPENSIONS COMPLETE WITH BOLTS, WASHERS AND PINS

Length between center line of outer stud and center of pin $11 \frac{3}{3}$ in.; distance between stud centers $6 \frac{1}{2}$ in.; clevis opening $\frac{9}{16}$ in.; diameter of pin $\frac{1}{2}$ in. Standard sherardized finish throughout.


Single Curve Suspension Body

| Cat. No | Diameter of Stud | Apiprox. Weight per 100 |
| :---: | :---: | :---: |
| 64248 | $5^{\prime \prime}$ | 265 |
| 64247 | $7^{\prime \prime}$ | 275 |

4747-30 Railway Line Material

## SUSPENSIONS-FORM S

DOUBLE CURVE- 600 VOLTS
WITH 2 IN. GIANT STRAIN INSULATORS, CAT. No. 64425


600 Volt Double Curve Suspension
Length between centers of outer eyes $24 \frac{1}{2} \mathrm{in}$; distance between stud centers $6 \frac{1}{2} \mathrm{in}$. All metal parts including studs have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 27376 | $\frac{3^{\prime \prime}}{4 \prime}$ | 570 |
| 27375 | $\frac{3}{4}$ | 580 |

WITH 1 IN. WOOD STRAIN INSULATORS, CAT. No. 16727


600 Volt Double Curve Suspension
Length between centers of outer eyes $36 \frac{1}{2}$ in.; distance between stud centers $6 \frac{1}{2} \mathrm{in}$. All metal parts including studs have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 33968 | $\frac{5 \prime \prime}{\prime \prime}$ | 675 |
| 33964 | $\frac{3 \prime \prime}{4}$ | 685 |

WITH $11 / 4$ IN. WOOD STRAIN INSULATORS, CAT. No, 37488


Length between centers of outer eyes $36 \frac{1}{4} \mathrm{in}$.; distance between stud centers $6 \frac{1}{2} \mathrm{in}$. All metal parts including studs have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 64258 | $8^{\prime \prime}$ | 745 |
| 64257 | $f^{\prime \prime}$ | 755 |

## SUSPENSIONS-FORM S

DOUBLE CURVE-1200 VOLTS
WITH 2 IN. GIANT STRAIN INSULATORS CAT. NOS. 64425 AND 64417


Length between centers of outer eyes 33 in ; distance between stud centers $6 \frac{1}{2} \mathrm{in}$. All metal parts including studs have standard sherardized finish.

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 68172 | $\frac{5 \prime \prime}{\prime \prime}$ | 780 |
| 68171 | $3^{\prime \prime}$ | $\frac{79}{790}$ |

BODIES FOR DOUBLE CURVE SUSPENSIONS

## COMPLETE WITH BOLTS, WASHERS AND PINS

Length between centers of pins 17 in ; distance between stud centers $6 \frac{1}{2} \mathrm{in}$; clevis opening $\frac{{ }^{\prime}}{6}$ in.; diameter of pin $\frac{1}{2} \mathrm{in}$. Standard sherardized finish throughout.


Double Curve Suspension Body

| Cat. No. | Diameter of Stud | Approx. Weight per 100 |
| :---: | :---: | :---: |
| 64250 | $\frac{8^{\prime \prime}}{4^{\prime \prime}}$ | 395 |
| 64249 | 405 |  |

BOLTS, WASHERS AND PINS WITH STANDARD SHERARDIZED FINISH
FOR FORM S SUSPENSIONS-STRAIGHT LINE, SINGLE AND DOUBLE CURVE

| Cat. No, |  | Description | Approx. <br> Weight |
| :--- | :--- | :--- | :--- | :--- |
| per 100 |  |  |  |

## SUSPENSIONS-FORM D



Section of Form D Suspension

The Form D Suspensions are recommended only for voltages up to and including 600.
In the Form D suspensions the cap, cone and malleable iron body casting (also the lock washer when ordered) are assembled as shown in the sectional view above. The cap and cone dovetail together in such a way as to prevent the formation of a film of moisture between them. The stud bolt head is made considerably larger than the opening in the body casting so that accidental breakage of the insulation will not allow the trolley wire to fall. A dead load of over six tons is required to crush the insulation between the stud cap and body.

The lock washer, which is supplied only when specially ordered, engages directly with the screw cap and the body and effectively prevents any tendency to unscrew from vibration.

## CAP AND CONE INSULATORS

For convenience in ordering parts, caps, cones and lock washers are listed separately in the following table. They are interchangeable for all Form D suspensions having studs of corresponding diameter.

The bodies are listed separately in the tables of complete suspensions.
All studs, bodies and lock washers have standard sherardized finish.


|  |  | Description | Approx. <br> Cat, No. |
| :--- | :--- | :--- | :--- |
|  |  |  | Wer 100 |

## SUSPENSIONS-FORM D

Single Trolley
STRAIGHT LINE
Overall length $6 \frac{1}{2} \mathrm{in}$.; height above ear seat $2 \frac{1}{6} \mathrm{in}$.; arm yokes accommodate $\frac{f}{6} \mathrm{in}$. span wire. Stud and body have standard sherardized finish.

| Cat. No. | Description |  | Approx per 100 |
| :---: | :---: | :---: | :---: |
| 37979 | Straight line suspension, st stud | . . | 195 |
| 37981 | Straight line suspension, $\frac{31}{1 \prime}$ stud | . . | 200 |
| 39700 | Straight line body | \% - | 100 |



## SINGLE CURVE

Distance between center line of stud and center of pull off eye 45 in .; diameter of pull off eye $\frac{9}{16} \mathrm{in}$.; thickness of arm at eye $\frac{1}{2} \mathrm{in}$. Stud and body have standard sherardized finish.

| Cat. No. | Description |  | Approx. <br> Weight. <br> per 100 |  |
| :---: | :---: | :---: | :---: | :---: |
| 37983 | Single curve suspension, | $\frac{5}{4 \prime \prime}$ stud |  | 245 |
| 37984 | Single curve suspension, $\frac{3^{\prime \prime}}{4}$ stud | . | 250 |  |
| 39701 | Single curve body | . | . | . |

## DOUBLE CURVE



Double Curve Suspension
Length between centers of eyes $9 \frac{1}{4} \mathrm{in}$.; diameter of pull off eye $\frac{9}{16} \mathrm{in}$; thickness of arms at eyes $\frac{1}{2} \mathrm{in}$. Stud and body have standard sherardized finish.

| Cat. No. |  | Descríption |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |



## CEILING

Height above ear seat $2 \frac{7}{16}$ in.; diameter of screw holes ${ }^{2} 6$ in. Stud and body have standard sherardized finish.

| Cat. No. | Description | Approx per 100 |
| :---: | :---: | :---: |
| 37991 |  | 350 |
| 37993 | Ceiling suspension, $\frac{3}{4}$ " stud |  |
| 39703 | Ceiling body | 250 |

# SUSPENSIONS-FORM D SINGLE TROLLEY 

## STRAIN



Overall length $7 \frac{1}{2} \mathrm{in}$.; diameter of pull off eyes $\frac{7}{16}$ in.; arm yokes accommodate $\frac{3}{8} \mathrm{in}$, span wire. Stud and body have standard sherardized finish.


## MINING

The height of the Form D mining suspension from the top of the ear seat to the top of the body is $4_{16}^{5}$ inches.

The suspensions are listed with both roof bolt and wedges, and with the 4 in . expansion bolt;


Mining Suspension With Roof Bolt and Wedges for the former the roof drilling should be $1 \frac{3}{8} \mathrm{in}$. in diameter, and for the latter $1 \frac{1}{4} \mathrm{in}$. in diameter; the depth of the hole being at least 4 in in either case.

Greatest diameter 5 in.; diameter of top body flange 4 in.; height of body $4 \frac{5}{5} \mathrm{in}$. All metal parts including studs have standard sherardized finish.

| Cat. No. | Description | Approx. per 100 |
| :---: | :---: | :---: |
| 37995 | Mining suspension, ${ }^{\prime \prime \prime}$ stud with roof bolt and wedges | 510 |
| 40969 | Mining suspension, ${ }^{\frac{3}{2} / 1}$ stud with roof bolt and wedges | 510 515 |
| 68937 | Mining suspension, $8_{8}^{\prime \prime}$ stud with $4^{\prime \prime}$ expansion bolt | 490 |
| 68939 | Mining suspension, $\frac{3^{\prime \prime}}{3^{\prime \prime}}$ stud with $4^{\prime \prime}$ expansion bolt | 495 |
| 39704 | Mining body | 285 |
| 41069 | Roof bolt ( $\stackrel{5}{2}^{\prime \prime}-11,5^{\prime \prime}$ special) with nut | 50 |
| 35690 | Upper roof wedge | 45 |
| 35691 | Lower roof wedge | 35 |
| 68397 | Expansion bolt, $4^{\prime \prime}$ long with nut | 110 |



## BRACKET

For suspensions for 2 in . pipe the height from ear seat to center of bracket arm clamp is $3 \frac{1}{2} \mathrm{in}$.; for $1 \frac{1}{2} \mathrm{in}$. pipe the height is $3 \frac{1}{4} \mathrm{in}$. All metal parts including studs have standard sberardized finish.

| Cat. No. | Description |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: |
|  | Bracket Suspension, $8^{\prime \prime}$ 的 stud, for $2^{\prime \prime}$ pipe | $\cdots$. | 400 |
| 60016 | Bracket Suspension, $\frac{3}{\prime \prime}^{\prime \prime}$ stud, for $2^{\prime \prime}$ pipe | . | 405 |
| 38008 | Bracket Suspension, ${ }^{\prime \prime}$ / stud, for $1 \frac{1}{2}{ }^{\prime \prime}$ pipe | + . | 375 |
| 60017 | Bracket Suspension, ${ }^{\prime \prime}{ }^{\prime \prime}$ stud, for $1 \frac{1}{2}{ }^{\prime \prime}$ pipe | . . | 380 |
| $39706$ | Bracket Body, for $2^{\prime \prime}$ pipe . . |  | 305 |
| 39707 | Bracket Body, for $1 \frac{1}{2}{ }^{\prime \prime}$ pipe . . . | 4. | 280 |

[^17]
## SUSPENSIONS—FORM D

## DOUBLE TROLLEY

The Form D Double Trolley Suspensions are particularly suited for use where there is a difference of potential between the two wires, inasmuch as they insulate the wires from each other. This separate insulation of the wires is essential where they are fed from different sources, for example, where two companies operate over the same track.

The distance between centers is $6 \frac{1}{2} \mathrm{in}$. which allows ample space for frog and crossing devices where double trolley turnouts are installed.

The bodies are heavier throughout than the bodies of corresponding single trolley suspensions and are fully adequate to the stresses of the heaviest line construction.

STRAIGHT LINE


Straight Line Suspension
 and body have standard sherardized finish.

| Cat. No. |  | Description | Approx. <br> Weight |
| :--- | :--- | :---: | :---: |
| per 100 |  |  |  |

SINGLE CURVE


Single Curve Suspension
Length between center line of outer stud and center of pull off eye $11 \frac{1}{8} \mathrm{in}$.; distance between centers of studs $6 \frac{1}{2}$ in.; diameter of pull off eye $\frac{9}{16}$ in. ; thickness of pull oft arm at eye $\frac{1}{2} \mathrm{in}$. Studs and body have standard sherardized finish.

| Cat. No. |  | Description | Approx, <br> Weight |
| :--- | :--- | :--- | :--- |
| per 100 |  |  |  |

SUSPENSIONS-FORM D
DOUBLE CURVE


Length between centers of pull off eyes $15 \frac{1}{3} \mathrm{in}$; distance between centers of studs $6 \frac{1}{2}$ in.; diameter of pull off eyes $\frac{2}{16} \mathrm{in}$; thickness of pull off arms at eye $\frac{1}{2}$ in. Studs and body have standard sherardized finish.

| Cat. No. | Description |  |  |  |  |  |  |  |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 39927 | Double Trolley, Double Curve Suspension, ${ }^{\prime \prime \prime}$ " stud |  |  |  |  |  |  |  |  |  | 565 |
| 39928 | Double Trolley, Double Curve Suspension, $\frac{31}{\prime \prime}$ stud |  |  |  |  |  |  |  |  |  | 575 |
| 39710 | Double Trolley, Double Curve Body . . |  |  |  |  |  |  |  |  |  | 375 |

## SUSPENSIONS-FORM G



Section of Form G Suspension

The Form G Suspensions consist of malleable iron castings and insulated bolts assembled as indicated in the sectional view. The insulated bolt is held firmly in place by a cap casting threaded to the body casting. A dead load of over 6 tons is required to crush the insulation between the stud cap of the insulated bolt and the body casting. Particular attention is called to a new feature of the insulated bolt: The shoulder of the forged steel bolt is under cut providing a considerable recess into which the insulating compound is moulded. The effect of the undercut is to provide a flange which very effectively binds the compound to the bolt at the point which otherwise would be weakest.

## INSULATED BOLTS

Insulated Bolts, Cat. Nos. 17207 and 62561 are interchangeable for all Form G suspensions, having studs of corresponding diameter, and fit all standard ears except the automatic ear, Cat. No. 17338, for which a special insulated bolt, Cat. No. 17341, with pointed stud is provided. All three insulated bolts are alike excepting in their studs. The studs have standard sherardized finish.



## SUSPENSIONS-FORM G

STRAIGHT LINE


Straight Line Suspension

Overall length across arms 6 in .; height above ear seat $3 \frac{7}{8} \mathrm{in}$.; arm yokes accommodate $\frac{3}{3} \mathrm{in}$. span wire. All metal parts including studs have standard sherardized finish.

| Cat. No. |  |  | Description |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SINGLE CURVE


Single Curve Suspension

Length from center line of stud to center of pull off eye 4 in.; height above ear seat $3 \frac{7}{8}$ in.; diameter of pull off eye $\frac{2}{16}$ in.; thickness of pull off arm at eye $\frac{1}{2} \mathrm{in}$. All metal parts including stud have standard sherardized finish.


## SUSPENSIONS-FORM G

DOUBLE CURVE


Double Curve Suspension

Length between centers of pull off eyes 8 in; height above ear seat $3 \frac{7}{8}$ in.; diameter of pull off eyes $\frac{9}{6}$ in; thickness of pull off arm at eye $\frac{1}{2} \mathrm{in}$. All metal parts including stud have standard sherardized finish


## CEILING



Ceiling Suspension

Height above ear seat $3_{16}^{9}$ in.; diameter of screw holes $\frac{9}{16}$ in. All metal parts including stud have standard sherardized finish.

| Cat. No. | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Approx <br> Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25998 | Ceiling | Suspen | on, |  |  | . | . | , | - | - | . | . | - | - |  |  | , | $\sim$ | - | 225 |
| 66034 | Ceiling | Suspe | on, |  |  |  |  | . | . | . | . |  | - | , |  |  | . | . | . | 230 |
| 25991 | Body | - . | - | . | . | , | * | , | - | - | + | - | . | . |  |  |  | . | * | 75 |
| 25999 | Cap | , $\quad$ | - | - | - | . | $\cdot$ | - | $-$ |  | 1 | - | $\cdots$ | , | - | + | ; | , | , | 60 |

## SUSPENSIONS -FORM G

## SOCKET CEILING



Socket Ceiling Suspension
Height above ear seat $3 \frac{7}{16} \mathrm{in}$.; width of screw slots $\frac{9}{16} \mathrm{in}$. All metal parts including stud have standard sherardized finish.



## Bracket Suspension

For suspensions for 2 in . pipe the height from ear seat to center of bracket arm clamp is $6 \frac{1}{2}$ in.; for $1 \frac{1}{2}$ in.pipe the height is $6 \frac{1}{4} \mathrm{in}$. All metal parts including stud have standard sherardized finish.


## SUSPENSIONS-FORM T

## FEEDER TAP

The Feeder Tap Suspensions will fit any standard ear, except the automatic ear, Cat. No, 17338, and are used in place of the insulated suspensions, a tap from the feeder wire being substituted for the regular span wire. The bodies of these suspensions are composition with the lugs tinned for soldering to the span wire.


Straight Line Suspension

Overall length 6 in.; yokes accommodate $\frac{3}{3} \mathrm{in}$. span wire.



Feeder Clamp Suspension

| Cat. No. | Description | A | B | C | Approx. <br> Weight <br> per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 16380 | Feeder Clamp Suspension, $\frac{6}{\prime \prime}_{\prime \prime}$ stud comp. for $1 / 0$ feeder wire | $1{ }_{1}^{15}{ }^{\prime \prime}$ | $1 \frac{1}{5}^{\circ}$ | $5^{\frac{1}{2}}{ }^{\text {n }}$ | 90 |
| 48807 | Feeder Clamp Suspension, ${ }^{\text {/" }}$ stud comp. for $1 / 0$ feeder wire | $1 \frac{15}{15}{ }^{\prime \prime}$ | $1 \frac{1}{1 \prime \prime}$ | $5 \frac{1}{2 \prime \prime}$ | 95 |
| 61567 | Feeder Clamp Suspension, $\frac{50}{\prime \prime \prime}$ stud comp. for $4 / 0$ feeder wire | $2 \frac{1}{3 \prime \prime}{ }^{\prime \prime}$ | $13^{\prime \prime}$ | $5{ }^{\prime \prime}$ | 225 |
| 48808 | Feeder Clamp Suspension, $\frac{3}{4 \prime \prime}^{\prime \prime}$ stud comp. for $4 / 0$ feeder wire | $2 \frac{1}{12}{ }^{\prime \prime}$ | $1 \frac{3^{\prime \prime}}{}$ | $5{ }^{\frac{1 \prime \prime}{\prime \prime}}$ | 230 |

## EARS FOR ROUND WIRE

## SOLDERED



Form H


Form H2

Soldered Ears for round wire are furnished in two Forms-the "H" and the "H2" which differ only in the diameter of the hub flange. The Form H with a $1 \frac{1}{8} \mathrm{in}$. flange is particularly suitable for use with suspensions of the insulated bolt type, Form G. The Form H2 ears have a $1_{16}^{7} \mathrm{in}$. hub flange and are especially suitable for suspensions presenting a large bearing surface at the base of their studs, such as the Forms H, S and D.

These ears have a groove depth equal to the diameter of the wire so that when the lips are peened down and soldered the bottom of the wire is exposed, allowing unobstructed passage of the trolley wheel.

In the design of these ears all angles are filled with generous fillets, and in their manufacture extreme care is exercised to maintain accurate dimensions of the milled grooves and of the lips which are tapered to a knife edge.

Grooves are milled to exact dimensions and, unless specially ordered, are tinned for soldering.

9 IN. PLAIN



12 IN. PLAIN



# EARS FOR ROUND WIRE 

## SOLDERED

15 IN. PLAIN

## LEECD

| Cat. No. | Description |  |  |  |  |  |  |  |  |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16394 | Form H, for No, 0 wire, $8^{\prime \prime}$ tap |  |  |  |  |  |  |  | - |  | . | 82 |
| 15022 | Form H, for No. 00 wire, 年" tap |  | . | Z |  |  |  |  |  |  |  | 94 |
| 31665 | Form H2, for No. 0 wire, $5^{\prime \prime}$ tap |  |  |  |  |  |  |  |  |  |  | 88 |
| 31667 | Form H2, for No. 00 wire, $5^{\prime \prime}$ tap |  |  |  |  |  |  |  |  |  |  | 104 |
| 34111 | Form H2, for No. 000 wire, ${ }^{\prime \prime}$ tap |  |  | - |  |  |  |  |  |  |  | 122 |
| 26151 | Form H2, for No. 000 wire, ${ }^{\prime \prime}$ tap |  |  |  |  |  |  |  |  |  |  | 122 |
| 34112 | Form H2, for No. 0000 wire, $\frac{3}{\prime \prime}^{\prime \prime}$ tap |  |  | - |  |  |  |  |  |  |  | 128 |
| 19492 | Form H2, for No. 0000 wire, $\frac{3}{4 \prime \prime}$ tap |  |  |  | , |  | , |  | - |  |  | 128 |



Form J

## CLINCH

Clinch Ears for round wire are furnished in two forms, - the " J " and the " J 2 " which differ only in the diameter of the hub flange, The Form J, with a $1 \frac{1}{\mathrm{~s}} \mathrm{in}$. flange is particularly suitable for use with suspensions of the insulated bolt type, Form G. The Form J2 ears have a $\frac{17}{16} \mathrm{in}$. hub flange and are especially suitable for suspensions presenting a large bearing surface at the base of their studs, such as the Forms H, S and D.

The Clinch Ears have an extra deep groove so that the lips approximately meet beneath


Form J2 the wire and are generally used without solder.
In the design of these ears all angles are filled with generous fillets, and in their manufacture extreme care is exercised to maintain accurate dimensions of the milled grooves and of the lips which are tapered to a knife edge.

Grooves are milled to exact dimensions and unless specially ordered are furnished untinned.

## CLINCH

9 IN. PLAIN
5.E.CD.


EARS FOR ROUND WIRE

## CLINCH



15 IN. PLAIN

GECD.


## SOLDERED

All feeder, strain and splicing ears for use on round wire are of the deep groove form as denoted by the letter J. The 0 and 00 sizes have hub flanges $1 \frac{1}{8} \mathrm{in}$. in diameter and the 000 and 0000 sizes have $1 \frac{7}{16} \mathrm{in}$. flanges, the size of the flange being indicated by the absence or presence of the numerical exponent (2) after the form letter.

All these ears are designed for soldering and unless especially ordered are furnished with tinned lips.
15 IN. FEEDER


The feeder lug of the 0 and 00 ears is drilled to take $00 \mathrm{~B} . \&$ S. solid wire. The 000 and 0000 ears take wire up to and including $0000 \mathrm{~B} . \& \mathrm{~S}$.

## EARS FOR ROUND WIRE

## SOLDERED

15 IN. STRAIN


| Cat. No. |  | Description |  |
| :--- | :--- | :--- | :--- | :--- |

19 IN. STRAIN


Form J, for No. 0 wire, $5^{\prime \prime}$ tap
Form J, for No. 00 wire, $5^{\prime \prime}$ tap
Form 12, for No 000 wire, $\frac{5}{8}^{\prime \prime}$ tap
Form J2, for No. 000 wire, $\frac{3^{\prime \prime}}{}$ " tap
Form J2, for No. 0000 wire, $\frac{8}{2 \prime \prime}$ tap
Form J2, for No. 0000 wire, $\frac{3^{\prime \prime}}{4}$ tap

SINGLE END STRAIN

## E.E.CD.

## 30459

[^18]

## EARS FOR ROUND WIRE

## SOLDERED

$131 / 4$ IN. DOUBLE BOSS STRAIN FOR USE WITH STRAIN PLATES



15 IN. SPLICING


| 15138 | Form J, for No. 0 wire, $8^{\prime \prime}$ tap |  |  |  |  |  |  |  |  |  |  |  |  | 125 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12900 | Form J, for No. 00 wire, $8^{\prime \prime}$ tap |  | - | - | + | . |  |  |  |  |  |  |  | 130 |
| 34119 | Form J2, for No. 000 wire, ${ }^{\prime \prime}$ tap |  |  |  |  | . |  |  |  |  |  |  |  | 210 |
| 26154 | Form J2, for No. 000 wire, $\frac{31}{\prime \prime}$ tap |  |  |  |  |  |  |  |  |  |  |  |  | 210 |
| 34120 | Form J2, for No. 0000 wire, $\mathrm{k}^{\prime \prime}$ tap |  |  |  |  |  |  |  |  |  |  |  |  | 250 |
| 26155 | Form J2, for No. 0000 wire, $\frac{31}{4 \prime}$ tap |  | - |  |  |  |  |  |  |  |  |  |  | 250 |

19 IN. SPLICING EARS-MECHANICAL
Equipped with large clamping nuts for holding trolley wire. No solder needed.


[^19]
## EARS FOR ROUND WIRE

## SOLDERED CLINCH

## 16 1/2 IN. FLEXIBLE

These ears have hinged hubs to afford flexibility when used with rigid suspensions such as the Form D Bracket, and the various Ceiling and Mining Suspensions.


## SCREW CLAMP-FORM A

The ease of installation and removal of the Screw Clamp Ears for round wire make them increasingly useful, not only for temporary installations in mine work but also for more permanent work where comparatively slow speeds are encountered.

5 IN. PLAIN


| Cat. No. | Description |  |  |  |  |  |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 41047 | For Nos. 0 and 00 wire, $8^{\prime \prime}$ tap, mal. iron, sherardized |  |  |  |  |  |  |  | 70 |
| 41443 | For Nos. 0 and 00 wire, ${ }^{\prime \prime \prime}$ tap, comp. |  |  |  |  | * |  |  | 80 |
| 66042 | For Nos, 0 and 00 wire, $3^{\prime \prime}$ tap, mal. iron, sherardized |  |  |  |  | $c$ |  |  | 70 |
| 66044 | For Nos, 0 and 00 wire, $\frac{T^{\prime \prime}}{4}$ tap, comp. . . |  |  |  |  | . | . |  | 80 |
| 41049 | For Nos, 000 and 0000 wire, \%" tap, mal. iron, sherardized |  | . | - |  | . |  |  | 75 |
| 41444 | For Nos. 000 and 0000 wire, $8^{\prime \prime}$ tap, comp. |  | . |  |  | . |  |  | 85 |
| 66043 | For Nos, 000 and 0000 wire, $\frac{3}{4 \prime \prime}$ tap, mal. iron, sherardized |  |  |  |  | , |  |  | 75 |
| 66045 | For Nos. 000 and 0000 wire, $\frac{3}{4}{ }^{\prime \prime}$ tap, comp. . . . . | . | . | - | . | , | . |  | 85 |

## EARS FOR ROUND WIRE

## FORM B CLAMPING EAR

This ear is provided with a thin metal sheath surrounding the wire.


Overall length 8 in.; height from center of trolley wire to top of hub 1 g in.


## 6 IN. AUTOMATIC EAR

The Automatic Ear is clamped on the wire by the spreading action of a special pointed stud in the suspension, for which the special insulated bolt, Cat, No. 17341, is furnished with Form G suspensions.

This ear is often very useful for temporary work, and, together with the adapter, can be used with standard suspensions.



## EARS FOR GROOVED WIRE

## SOLDERED CLINCH



Clinch Ears for grooved wire are designed to be sprung on the wire by hand and the sides crimped together, making a snug fit. They are then usually soldered. The 00 ears are furnished with the hub flange either $1 \frac{1}{8} \mathrm{in}$. or $1 \frac{7}{16} \mathrm{in}$. in diameter; the difference being designated by the absence or presence of a numerical exponent after the form letter. Special attention is called to the fact that the grooves are formed to give an exact fit both at the groove bottom and the lips. The ears are furnished with lips tinned for soldering.

9 IN. PLAIN


| Cat. No. |  | Description |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

12 IN. PLAIN

|  |
| :--- | :--- |

EARS FOR GROOVED WIRE

## SOLDERED CLINCH



| Cat. No. | Description |  |  |  |  |  |  |  |  |  |  |  |  | Approx. <br> Weight <br> per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 39878 | Form P, for No. 00 wire, $5^{\prime \prime}$ tap |  |  |  |  |  | . | - |  | . |  |  |  | 108 |
| 39881 | Form P2, for No. 00 wire, ${ }^{\prime \prime}$ tap |  |  |  |  |  | . |  |  |  |  |  |  | 125 |
| 39882 | Form P2, for No. 000 wire, $\mathrm{s}^{\prime \prime}$ tap |  |  |  |  |  | - |  |  | . |  |  | . | 150 |
| 39883 | Form P2, for No. 000 wire, $\frac{3}{\prime \prime}^{\prime \prime}$ tap |  |  |  |  |  | . | . |  | . |  |  |  | 150 |
| 39884 | Form P2, for No. 0000 wire, $5^{\prime \prime}$ tap |  |  |  |  |  | \% | - |  | - |  |  |  | 170 |
| 39885 | Form P2, for No. 0000 wire, $\frac{3}{\prime \prime \prime}^{\prime \prime}$ tap |  |  |  | , | ; | , |  | , | , | * | - | . | 170 |

15 IN. FEEDER EARS



The feeder boss on all $1 / 0$ and $2 / 0$ ears is drilled to take wire $2 / 0$ and smaller. The $3 / 0$ and $4 / 0$ ears take feeder wires up to $4 / 0$.


19 IN. STRAIN

|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 39886 | Form P, for No. 00 wire, $\frac{5}{8 \prime \prime}^{\prime \prime}$ tap |  |  |  |  |  |  |  |  |  |  |  |  | 170 |
| 39887 | Form P'2, for No. 000 wire, $\frac{51}{5 \prime \prime}$ tap |  |  |  |  |  | . |  |  |  | - |  | - | 238 |
| 39888 | Form P2, for No. 000 wire, ?" tap |  |  |  |  |  |  |  |  |  |  |  | , | 240 |
| 39889 | Form P2, for No. 0000 wire, $\frac{5}{2 \prime \prime}_{\prime \prime}$ tap |  |  |  |  |  | , |  |  |  |  |  | , | 290 |
| 39890 | Form P2, for No. 0000 wire, $\frac{3^{\prime \prime}}{4}$ tap | , |  | - | + | - | , | - | - | , | . | - | . | 290 |

# EARS FOR GROOVED WIRE 

## SOLDERED CLINCH

SINGLE END STRAIN

| Cat. No. |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$131 / 4$ IN. DOUBLE BOSS STRAIN EARS
FOR USE WITH STRAIN PLATES


Form P2, for No. 00 wire, $8^{\prime \prime \prime}$ tap

## SPLICING EARS-SOLDERED

Designed for soldering in same manner as soldered splicing sleeves.

## GEED.



## EARS FOR GROOVED WIRE

19 IN. SPLICING EARS-MECHANICAL



## SCREW CLAMP-FORM A

The form of the grooved trolley wire permits the use of a clamping ear which holds the wire with perfect security, and at the same time offers no obstruction to the passage of the trolley wheel.


Diagram Showing How
The Clamping Ear Holds
Grooved Trolley Wire
Diameter flange $1_{16}^{7}$ in.; Thickness $\frac{1}{8}$ in.; Height 2 in.
The lips of the ears are so shaped as to give a four-point bearing in the grooves which prevents any tendency of the wire to roll out of the ear as a result of tortional or transverse stress.

The 5 in . and 7 in . Plain Ears are listed in both malleable iron and composition.
The Feeder and Strain Ears are composition with lips tinned for soldering to the wire.
All Screw Clamp Ears for grooved wires are interchangeable on Nos. 00,000 and 0000 wire. They have $1_{16}^{\frac{7}{16}}$ in, hub flanges and have ${ }_{16}^{5-18}$ screws.

5 IN. PLAIN


| Cat. No. | Description |  |  |  |  |  |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 37804 | For Nos. 00,000 and 0000 wires, | F"' tap, mal. iron, sherardized |  |  |  |  |  |  | 66 |
| 27627 | For Nos. 00, 000 and 0000 wires, | 年 tap, comp. ${ }^{\prime \prime}$ |  |  |  |  |  |  | 75 |
| 59564 | For Nos. 00, 000 and 0000 wires, | $\frac{3}{\prime \prime}_{\prime \prime}$ tap, mal. iron, sherardized |  |  |  |  |  |  | 66 75 |
| 30310 | For Nos. 00, 000 and 0000 wires, | $\frac{3^{\prime \prime}}{}$ tap, comp. |  |  |  |  |  |  | 75 |

## EARS FOR GROOVED WIRE

## SCREW CLAMP EARS FORM A

7 IN. PLAIN
The 7 in. Plain Ears, being designed especially for use with Nos. 000 and 0000 grooved wires, are extra heavy throughout.


| Cat. No |  | Description |  |
| :--- | :--- | :--- | :--- | :--- | :--- |

## 10 IN. CURVE

The Curve Ears may also be advantageously employed in straight line construction, especially with Nos, 000 and 0000 wires.


| 37808 | For Nos. 00,000 and 0000 wires, $\frac{3 n}{4 n}$ tap, mal. iron, sherardized |  |
| :--- | :--- | :--- |
| 37685 | For Nos. 00,000 and 0000 wires, $\frac{3 n}{4}$ tap, mal. iron, sherardized | 125 |



| 59568 | For Nos. 00,000 and 0000 wires, $8^{\prime \prime}$ tap, mal. iron, sherardized | . | . | 185 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 43716 | For Nos. 00,000 and 0000 wires, $\frac{3^{\prime \prime}}{4}$ tap, mal, iron, sherardized | $:$ | . | . | . |

7 IN. FEEDER-WITH SUSPENSION BOSS



These feeder ears will accommodate feeder wire up to and including 4/0.

EARS FOR GROOVED WIRE
SCREW CLAMP EARS - FORM A
7 IN. FEEDER-WITHOUT SUSPENSION BOSS



This ear will accommodate feeder wire up to and including $4 / 0$.

12 IN. STRAIN


For Nos. 00, 000 and 0000 wires, 5 " tap, comp.

12 IN. STRAIN-EXTRA HEAVY


For Nos. 00, 000 and 0000 wires, $\frac{3^{\prime \prime}}{4^{\prime \prime}}$ tap, comp.


61232
For Nos. 00, 000 and 0000 wires, comp.

## STRAIN PLATES



Strain Plate with Double Boss Ear

The Strain Plate consists of a malleable iron casting designed for support at the center by any standard straight line hanger, the center hole being tapped for either $\frac{5}{6} \mathrm{in}$. or $\frac{3}{4} \mathrm{in}$. stud. $\frac{1}{2} \mathrm{in}$. holes are provided at each corner of the plate for attachment of guy wires. The double boss ears listed on pages 46 and 51 are generally used with the strain plate, though the use of two screw clamp ears either 5 in . or 7 in . long, is sometimes preferred.


Overall length 10 in .; length between centers of pull off eyes $7 \frac{\mathrm{in}}{} \mathrm{in}$; length between centers of stud bolts $7 \frac{3}{4}$ "; overall width $6 \frac{9}{4} \mathrm{in}$; width between centers of pull off eyes $5 \frac{1}{2} \mathrm{in}$. Standard sherardized finish throughout.

| Cat. No. | Description |  |  |  |  |  |  |  |  |  |  |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 62537 | Strain Plate only, ${ }^{\prime \prime}{ }^{\prime \prime}$ tap, $\frac{5}{8 \prime \prime}$ studs |  | - | - | - | * | - |  | - |  |  |  | - | 300 |
| 62536 | Strain Plate only, $\frac{3}{4}$ " tap, $\frac{3}{4}{ }^{\prime \prime}$ studs . |  | - | . | . | - | . | - | - | . | - | . | . | 310 |

## SOLDERED SPLICING SLEEVES

In order to secure the greatest possible strength, Soldered Splicing Sleeves are made from hard drawn seamless tubing, so annealed as to relieve all internal strains in the metal and avoid all danger of weather cracks to which hard drawn brass is liable under exposure to the weather and extreme temperature changes. The sleeves are accurately tapered to insure smooth transition of the trolley wheel and resist the wear encountered in severe service. Since the weakest point of any sleeve must be at the slot, especial precautions are taken in forming it, and no more of the metal is cut away than is necessary to permit rapid installation on the trolley wire. The sleeves are tinned for soldering.

## BRASS SLEEVES (STANDARD)

## 

| Cat. No. |  | Description | Approx. <br> Weight |
| :--- | :--- | :--- | :--- |
| per 100 |  |  |  |

## PURE COPPER SLEEVES

| 88641 | For No. 0 round wire, $15^{\prime \prime} \times 8^{\prime \prime}$ |  |  |  |  |  | - | . | . | - | 80 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 88651 | For No. 00 round or grooved wire, $16^{\prime \prime} \times 5^{\prime \prime}$ |  |  |  |  |  | . |  |  | . | 80 |
| 88672 | For No, 000 round or grooved wire, $18^{\prime \prime} \mathrm{x}^{\prime \prime} \mathrm{i}^{\prime \prime}$ |  |  |  |  |  | : |  |  | - | 130 |
| 88785 | For No. 0000 round or grooved wire, $20^{\prime \prime} \times \frac{1^{\prime \prime}}{}$ |  |  |  |  |  | , |  | , | . | 200 |

## MECHANICAL SPLICING SLEEVES

For use without solder, Made of brass with tempered steel wedges.


| Cat. No. | Description |  |  |  |  |  |  |  |  |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 64441 | For No. 0 round wire, $10^{\prime \prime}$ long |  | . | - |  |  |  |  |  |  |  | 75 |
| 64442 | For No. 00 round or grooved wire, $11^{\prime \prime}$ long |  |  | - |  |  |  |  | . |  |  | 90 |
| 64443 | For No. 000 round or grooved wire, $11^{\prime \prime}$ long |  |  |  |  |  |  |  |  |  |  | 115 |
| 64444 | For No. 0000 round or grooved wire, $12^{\prime \prime}$ long |  |  |  | . | - |  |  | , |  |  | 125 |

# STRAIN INSULATORS 



Recent radical improvements in design give the Giant Strain Insulator a largely increased mechanical strength and a dielectric strength to care for the potentials encountered in direct suspension work. The insulation under stress is exclusively sheet mica (under compression) and the limit of its mechanical strength is the rupturing limit of the metal parts without regard to temperature or other service conditions. The insulators are made in two sizes, having 2 in . and $25 \mathrm{~s}_{8}^{\mathrm{in}}$. diameters, and equipped with standard and large eyes and standard and large clevises in any combination. All metal parts are sherardized.

STRENGTH

| MECHANICAL |  |  | electrical |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $2^{\prime \prime}$ | $2 \xi^{\prime \prime}$ |  | $2^{\prime \prime}$ | $23^{\prime \prime}$ |
| Test load <br> Average breaking load | 2500 lbs . 5000 lbs . | 4000 lbs. <br> 8000 lbs. | Test voltage <br> Average breakdown voltage | $\begin{array}{r} 5000 \mathrm{v} \\ 12000 \mathrm{v} \end{array}$ | $\begin{array}{r} 5000 \mathrm{v} . \\ 15000 \mathrm{v} \end{array}$ |

DIMENSIONS

| dimensions or eyes |  |  | dimension of clevises |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Inside Diam. | Outside <br> Diam |  | Spread | Diam. of Through Bolt |
| Standard eye for $2^{\prime \prime}$ ins. Large eye for $2^{\prime \prime}$ ins. Standard eye for 2$\}^{\prime \prime}$ ins. Large eye for $2 \frac{5}{8 \prime} \mathrm{ins}$. | $\begin{aligned} & \frac{9}{16} 6^{\prime \prime} \\ & \frac{11}{11} \\ & \frac{9}{16} \\ & \frac{15}{16}{ }^{\prime \prime \prime} \end{aligned}$ | $\begin{aligned} & 1 \frac{5}{16 \prime \prime} \\ & 1 \frac{9}{16} \\ & 17^{\prime \prime \prime} \\ & 16^{\prime \prime \prime} \\ & 1 \frac{1}{16} 6^{\prime \prime} \end{aligned}$ | Standard clevis for $2^{\prime \prime}$ ins. Standard clevis for $2^{5 \prime 3}$ " ins. Large clevis for $2 \frac{3}{8}^{\prime \prime}$ ins. | $\begin{aligned} & \frac{9}{16}{ }^{\prime \prime \prime} \\ & \frac{5}{4} \\ & \frac{1}{4}, \end{aligned}$ |  |

2 IN. GIANT


Cat. No. 64425


Cat. No. 64417


## STRAIN INSULATORS

$25 / 8$ IN. GIANT


Cat No. 64426


Cat. No. 64420


## SPHERICAL

The Spherical Strain Insulators are made in two sizes having diameters $2 \frac{1}{4} \mathrm{in}$, and $2 \frac{3}{4}$ in. They are designed especially for use in span and guy wires in relatively light construction. The smaller size is suitable for a working load of 1000 lbs .; the average tensile strength is 3000 lbs . The $2 \frac{3}{4} \mathrm{in}$. size has an average tensile strength of 5000 lbs ., and is suitable for a working load up to 2000 lbs . Both sizes are subjected to a potential test of 5000 volts.


## STRAIN INSULATORS

WOOD

## WITH TWO EYES

The Wood Strain Insulators are made from selected hickory，treated by a special oil impregna－ ting process which permanently excludes moisture．All end caps have standard sherardized finish．


| Cat．No． | A | B | C | D | Test Load | Average <br> Breaking Load | Approx Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16727 | $9 \frac{1}{2 \prime \prime}$ | $5^{\prime \prime}$ | $1^{\prime \prime}$ | ${ }^{9} 6^{\prime \prime}$ | 3500 lbs ． | 7000 lbs ． | 140 |
| 37488 | $9 \frac{1}{2 \prime \prime}$ | $5^{\prime \prime}$ | $11^{\prime \prime}$ | ${ }^{16} 10$ | 5000 lbs ． | 10000 lbs ． | 175 |
| 61563 | $12^{\prime \prime}$ | $5^{\prime \prime}$ | $1{ }^{\frac{3}{\prime \prime}}$ | 颜＂ | 7500 lbs ． | 15000 lbs ． | 440 |
| 37489 | $20^{\prime \prime}$ | $15^{\prime \prime}$ | $1^{\prime \prime}$ | ${ }^{9} 16^{\prime \prime}$ | 3500 lbs ． | 7000 lbs ． | 180 |
| 36313 | 20 ＂ | $15^{\prime \prime}$ | $1 \frac{1}{\prime \prime}^{\prime \prime}$ | ${ }^{1}{ }^{\prime \prime \prime}{ }^{\prime \prime}$ | 5000 lbs ． | 10000 lbs ． | 235 |
| 48433 | $28 \frac{1}{}{ }^{\prime \prime}$ | $24^{\prime \prime}$ | $11^{\prime \prime}$ | 魚 | 5000 lbs ． | 10000 lbs ． | 300 |

## WITH EYE AND CLEVIS



| Cat．No． | A | B | C | D | E | Test Load | Average <br> Breaking Load | Approx Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 43229 | $9 \frac{3}{4 \prime}^{\prime \prime}$ | $5^{\prime \prime}$ | $1^{\prime \prime}$ | $1^{9} 6^{\prime \prime}$ | 永＂${ }^{\prime \prime}$ | 3500 lbs ． | 7000 lbs | 160 |
| 43230 | $93^{\prime \prime}$ | $5^{\prime \prime}$ | $14^{\prime \prime}$ | 16＂${ }^{9} 1{ }^{\prime \prime}$ | $\frac{17}{\frac{11}{2}}{ }^{\prime \prime}$ | 5000 lbs ． | 10000 lbs ． | 185 |
| 43231 | $20{ }^{\frac{1}{4}}{ }^{\prime \prime}$ | $15^{\prime \prime}$ | $1^{\prime \prime}$ | $\begin{aligned} & 96 \\ & 36 \\ & 36 \end{aligned}$ | 11＂ | 3500 lbs ． | $7000 \mathrm{lbs} .$ | 225 |
| 43232 | $204^{\prime \prime}$ | $15^{\prime \prime}$ | $14^{\prime \prime}$ | ${ }^{9} 6{ }^{\prime \prime}$ | 永 ${ }^{\prime \prime}$ |  | 10000 lbs ． | $295$ |

Clevis has $\frac{17}{32} \mathrm{in}$ ．bolt hole and $\frac{1}{2} \mathrm{in}$ ．bolt．

WITH EYE AND TAPPED BOSS


| Cat．No． | A | B | c | D | Tap | Test Load | Average <br> Breaking Load | Approx， per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 17030 \\ 100126 \end{array}$ | $\begin{aligned} & 9 \frac{1}{4}^{\prime \prime \prime} \\ & 9 \frac{4}{2}^{\prime \prime} \end{aligned}$ | $\begin{aligned} & 5^{\prime \prime} \\ & 5^{\prime \prime} \end{aligned}$ | $\begin{aligned} & 1^{\prime \prime} \\ & 11^{\prime \prime} \end{aligned}$ | $\begin{aligned} & 9{ }^{1 \prime \prime \prime} \\ & 9^{\prime \prime \prime} \\ & { }^{\prime \prime} \end{aligned}$ | $\begin{aligned} & \frac{5 n}{}=11 \\ & \frac{5}{5}-11 \end{aligned}$ | 3500 lbs. 5000 lbs. | $\begin{gathered} 7000 \mathrm{lbs} . \\ 10000 \mathrm{lbs} . \end{gathered}$ | $\begin{aligned} & 110 \\ & 190 \end{aligned}$ |

## TURNBUCKLES

## INSULATED TURNBUCKLE

Insulated turnbuckles are provided with drop forged steel eyebolts. In turnbuckles with malleable iron castings, the eyebolts are sherardized to prevent rusting and in the composition turnbuckles the eyebolt is heavily plated with copper. The casting is made in two halves which fit around the head of the insulated portion and are then riveted together, thus affording a resistance to tensile strain limited only by the ultimate breaking point of the solid metal. The swivel bearing is metal to metal and is designed so that there is no relative motion between the insulated portion and the adjoining head. The maximum draw-up for both sizes is 4 in.


| Cat No, | Description |  | Test Load | Average Breaking Load | Max. Length Between Eyes | Diameter of Eyes | Approx. <br> Weight <br> per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27382 | $8^{\prime \prime}$ bolt, mal iron, sherardized |  | 4000 lbs . | 8000 lbs . | $11{ }^{\prime \prime}$ | $3^{\prime \prime}$ | 325 |
| 17223 | \%" bolt, comp. - | . | 2500 lbs . | 5000 lbs . | $11{ }^{\prime \prime}$ | 4 | 350 |
| 40802 | $3^{\prime \prime}$ " bolt, mal iron sherardized | . | 7000 lbs . | 14000 lbs . | $12^{\prime \prime}$ | $1{ }^{\prime \prime}$ | 350 |
| 40803 | $\frac{1}{\prime \prime}^{\prime \prime}$ bolt, comp . | , | 4500 lbs . | 9000 lbs . | $12^{\prime \prime}$ | $1^{\prime \prime}$ | 375 |

## TURNBUCKLE WITH INSULATED EYE

This consists of a forged steel turnbuckle with one eye insulated with moulded compound, protected on the inside by a special steel ring having its edges beveled to prevent cutting the guy wire. These turnbuckles have standard sherardized finish.


Turnbuckle with Insulated Eye

| Cat. No. | Description | 'Test Load | Average Breaking Load | Max. Take-up | Diam. Bolt | Max. Length Between Centers of Eyes | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 27383 \\ 100293 \end{array}$ | Forged turnbuckle, with ins, eye Forged turnbuckle, with ins, eye | 3000 lbs . 4000 lbs. | 6000 lbs. 8000 lbs | $\begin{aligned} & 6 \frac{1^{\prime \prime}}{} \\ & 6 \frac{1}{2}^{\prime \prime} \end{aligned}$ | $\frac{\frac{1}{\prime \prime}^{\prime \prime}}{5^{\prime \prime}} .$ | $\begin{aligned} & 187^{\prime \prime} \\ & 18 \frac{3}{4}^{\prime \prime} \end{aligned}$ | $\begin{aligned} & 275 \\ & 325 \end{aligned}$ |

## TROLLEY FROGS

For different classes of service three sets of frogs, differing in the divergence angle of tongues and length of pan, are furnished.

For ordinary city service, with turnout radii not exceeding about 50 feet, the $20^{\circ}$ frogs are suitable, but, with the longer radii introduced by suburban and interurban work, smaller divergence angles are necessary.

The following table gives the range of distance from track switch point to track frog with which each set of trolley frogs may be most satisfactorily used:

| Frog Distance | Divergence Angie of Trolley Frog |
| :---: | :---: |
| Up to 22 feet | $20^{\circ}$ |
| From 20 to 30 feet | $15^{\circ}$ |
| Abave 28 feet | $8^{\circ}$ |

The minimum frog distance given in the table with which the $15^{\circ}$ frogs may be used to best advantage corresponds to a turnout radius of 40 feet, but when suburban cars, using high speed trolley wheels, run over city tracks it is advisable to use $15^{\circ}$ rather than $20^{\circ}$ frogs throughout the city construction even where the minimum frog distance is less than 20 feet.

In order to insure smooth transition of the wheel between tongue and pan, the pans of all Form G frogs have, at each end, an inclined plane rising at a very acute angle from the horizontal, which receives the flange of the wheel at a point depending upon the depth of the wheel groove. The depth of tongues and rise of the inclined plane admit the use of a groove depth of from $\frac{3}{4} \mathrm{in}$. to $1 \frac{1}{8} \mathrm{in}$.

All standard frogs are provided with four pull off rings, but similar frogs with two rings can be furnished if specially ordered.

The following diagram shows an excellent method of properly placing the frogs on the line, and while certain variables, such as super-elevation of the outer rail on the curve, length of wheel base, and projection of trolley pole rearward from center of car, will necessitate slight variation of setting. this location will be found so nearly correct that a very small alteration, which must be determined by experiment, will compensate for the variable conditions.


## TO LOCATE TROLLEY FROG

From switch point, $A$, draw a line to center point, $D$, of frog distance $B C$, and from switch point B , draw a line to center point E , of arc AEC . The intersection of these two lines at F will be the proper location of the frog.

## TROLLEY FROGS, FORM G

## 20 DEGREE FROGS

FOR ROUND OR GROOVED WIRES


20 Degree V Frog


20 Degree 3-Way Frog


All pull off eyes are $\frac{1}{2}$ in. in diameter.

# TROLLEY FROGS, FORM G 

15 DEGREE FROGS
FOR ROUND OR GROOVED WIRES


15 Degree Left-hand Frog


15 Degree 3-Way Frog


All pull off eyes are $\frac{1}{2} \mathrm{in}$. in diameter.
Frogs similar to the above but for $1 / 0$ wire will be furnished at the same price.
8 DEGREE FROGS
FOR ROUND OR GROOVED WIRES


$$
\begin{array}{l|l}
29127 & \text { Right-hand frog, for Nos. } 00,000 \text { and } 0000 \text { wires, comp. } \\
29128 & \text { Left-hand frog, for Nos. } 00,000 \text { and } 0000 \text { wires, comp. } \\
29126 & \text { V frog, for Nos. } 00,000 \text { and } 0000 \text { wires, comp. . }
\end{array}
$$

 $21 \frac{z_{2}^{\prime}}{\mathbf{k}^{\prime}}$
$21, "$

1300
1300 1350

[^20]Frogs similar to the above but for $1 / 0$ wire will be furnished at the same price.

TROLLEY FROGS, FORM G


Frogs similar to the above but for $1 / 0$ wire will be furnished at the same price
TROLLEY FROGS, FORM G2


Frog with One Tongue in Position, Other Two Disconnected
The Form G2 frogs are like the Form G, excepting in material and the arrangement of the end tongues. The body of the Form G2 is sherardized malleable iron and the renewable end tongues are composition. The tongue proper, which is peaned over the trolley wire, and the shoe, which clamps the wire under pressure from the large clamping nut, are in one piece and may be removed and replaced without in any way disturbing the frog body.

20 DEGREE FROGS
FOR ROUND OR GROOVED WIRES


20 Degree Left-hand Frog

| Cat. No. | Description | Overall <br> Length | Overall Width | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: |
| 110745 | Right-hand frog, for Nos. 0 and 00 wires, mall. iron, sherardized Right-hand frog, for Nos. 000 and 0000 wires, mall. iron, sherardized | $17^{\prime \prime}$ | $6{ }^{\frac{1}{2}}{ }^{\prime \prime}$ | 710 |
| +60302 |  | 17" | $6{ }^{\prime \prime}$ | 710 |
| 110746 | Left-hand frog, for Nos. 0 and 00 wires, mall iron, sherardized | $17^{\prime \prime}$ | $6 \frac{1}{2}$ | 710 |
| 60301 |  | 17" | $6 \frac{1}{2 \prime \prime}$ | 710 |
| 110747 | Left-hand frog, for Nos. 000 and 0000 wires, mall. iron, sherardized V frog, for Nos. 0 and 00 wires, mall. iron, sherardized | $17^{\prime \prime}$ | $6{ }^{\prime \prime}{ }^{\prime \prime}$ | 725 725 |
| 60303 | V frog, for Nos. 000 and 0000 wires, mall. iron, sherardized | $17^{\prime \prime}$ | 6 ${ }^{\frac{1}{2}}$ | 725 1000 |
| 110748 | 3 -way frog, for Nos. 000 and 0000 wires, mall. iron, sherardized | $17^{\prime \prime}$ | $7{ }^{\prime \prime}$ | 1000 |
| 60307 110756 |  | 17 | 78 | 50 50 |
| 110756 65856 | End tongue for all frogs for Nos. 0 and 00 wires, comp. |  |  | 50 |

All pull off eyes $\frac{1}{2} \mathrm{in}$. in diameter.

# TROLLEY FROGS, FORM G2 <br> 15 DEGREE FROGS <br> FOR ROUND OR GROOVED WIRES 



15 Degree Left-hand Frog


All pull off eyes are $\frac{1}{2} \mathrm{in}$. in diameter.

## 8 DEGREE FROGS

FOR ROUND OR GROOVED WIRES


8 Degree Left-hand Frog

## 110753

60131
110754
60132
110755
60133
110756 65856

Right-hand frog, for Nos. 0 and 00 wires, mall. iron sherardized
Right-hand frog, for Nos. 000 and 0000 wires, mall. iron sherardized
Left-hand frog, for Nos. 0 and 00 wires, mall. iron sherardized
Left-hand frog, for Nos. 000 and 0600 wires, mall. iron sherardized
V frog, for Nos. 0 and 00 wires, mall. iron sherardized
V frog, for Nos. 000 and 0000 wires, mall. iron sherardized
End tongue for all frogs, for Nos. 0 and 00 wires, comp.
End tongue for all frogs, for Nos. 000 and 0000 wires, comp.

| 217" | $6^{\prime \prime}$ | 1300 |
| :---: | :---: | :---: |
| $21{ }^{\frac{7}{8}}{ }^{\text {\% }}$ | $6^{\prime \prime}$ | 1300 |
| $21{ }^{\frac{7}{3}}$ | $6^{\prime \prime}$ | 1300 |
| $21{ }^{\prime \prime}$ | $6^{\prime \prime}$ | 1300 |
| $21{ }^{\frac{7}{6}}$ | $6^{\prime \prime}$ | 1350 |
| $21 \frac{7}{\prime \prime}^{\prime \prime}$ | $6^{\prime \prime}$ | 1350 |
|  |  | 50 |
|  |  | 50 |

1300
1300
1300
1350
1350
50

All pull off eyes are $\frac{1}{2} \mathrm{in}$. in diameter.

## TROLLEY FROGS-SPECIAL

## 8 DEGREE HIGH SPEED FROGS FOR ROUND OR GROOVED WIRES



8 Degree Right-hand Frog

| Cat. No. | Description | Overall Length | $\begin{aligned} & \text { Overall } \\ & \text { Width } \end{aligned}$ | Approx. per 100 |
| :---: | :---: | :---: | :---: | :---: |
| 58720 | Right-hand frog, complete with guard plate and clamping ears for Nos. 00,000 and 0000 comp . | 237" | $6 \square^{\prime \prime}$ | 1900 |
| 58721 | Left-hand frog, complete with guard plate and clamping ears for Nos. 00,000 and 0000 comp. | 237" | $65^{\prime \prime \prime}$ | 1900 |
| 58722 | V frog, complete with guard plate and clamping ears for Nos, 00,000 and 0000 comp. | 237" | $6 \mathrm{l}^{\prime \prime}$ | 1900 |

All pull off eyes are $\frac{1}{2} \mathrm{in}$. in diameter.

## 8 DEGREE FROGS

For line work where both wheel and sliding collectors are employed the following are offered.


8 Degree Right-band Frog


All pull off eyes are $\frac{1}{2} \mathrm{in}$. in diameter.

## 15 DEGREE FROGS

Suitable for yard work where sliding collectors are used.


15 Degree Right-hand Frog


All pull off eyes are $\frac{1}{2}$ in in diameter.

## CROSSINGS, FORM G, UNINSULATED

The principle of the inclined plane to insure smooth transition of the trolley wheel between tongue and pan has been embodied in the design of all Form G Crossings, and the maximum speed at which the trolley will operate at crossing points has been greatly increased thereby. They will accommodate round or grooved wires of the sizes indicated in the tables.

## RIGHT ANGLE CROSSING




Crossings similar to the above, but for $1 / 0$ wire will be furnished at the same price.

## ADJUSTABLE CROSSING

The Form G Adjustable Crossing can be set at any angle between 30 and 90 degrees.


Overall length of each runway 203 in .


Crossings similar to the above, but for $1 / 0$ wire will be furnished at the same price.

## CROSSINGS, FORM G, UNINSULATED

35 DEGREE CROSSING


| Cat. No. | Description |  | Overall <br> Length | Overall Width | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 42413 | Crossing for Nos. 00,000 and 0000 wires, comp. | - - r - - | $16^{\prime \prime}$ | $5 \frac{1}{2 \prime}$ | 865 |

Crossings similar to the above, but for $1 / 0$ wire will be furnished at the same price.

15 DEGREE CROSSING


| 19490 | Crossing for Nos. 00,000 and 0000 wires, comp. | $214^{\prime \prime}$ | $53^{\prime \prime}$ | 1025 |
| :--- | :--- | :--- | :--- | :--- |

Crossings similar to the above, but for $1 / 0$ wire will be furnished at the same price.

For use where both wheel and sliding collectors are employed, the following are offered.

## RIGHT ANGLE CROSSING

This crossing is similar to the right angle crossing for wheel collectors, Cat. No. 11297, excepting that in the pan is provided a double groove runway for wheels, and heavy extension flanges, offer a smooth underrun for sliding collectors.



## CROSSINGS, FORM G, UNINSULATED

## ADJUSTABLE CROSSING

The Adjustable Crossing is composed of light structural steel sections with sherardized finish, having a dip at the center point to provide clearance for the passage of the sliding collector.



## CROSSINGS, FORM L, INSULATED

The Form L Insulated Crossing consists of a beam of selected second growth hickory thoroughly impregnated with preservative oils to exclude moisture, finished with black japan, and castings of standard composition metal with a replaceable white fiber runway. Attachment to the trolley wires is effected by mechanical clamps so that the crossing may be installed quickly without soldering and without cutting either wire.

The fiber runways as listed include fiber plates with screws. The crossings will accommodate round or grooved wires of the sizes indicated in the tables.


Overall length $35 \frac{1}{2}$ in.; overall width $18 \frac{1}{2}$ in.


[^21]
# CROSSINGS, FORM L, INSULATED <br> SINGLE TROLLEY <br> adjustable crossings 

The Form L Adjustable Crossings can be set at any angle between 45 and 90 degrees.


Overall length 36 in .; maximum overall width $16 \frac{1}{2}$ in.



Overall length $35 \frac{1}{2}$ in : maximum overall width $16 \frac{1}{2} \mathrm{in}$.

| 26150 | Adjustable crossing, for Nos. 00,000 and 0000 wires |  | 14 | 1400 |
| :--- | :--- | :--- | :--- | :--- |
| 19407 | White fiber runway for Cat. No. 26150 |  |  |  |

Crossings similar to the above, but for $1 / 0$ wire will be furnished at the same price.

## ACUTE ANGLE

The Acute Angle Crossings can be furnished either right or left hand. The right hand crossing is considered standard and is generally applicable. However, under certain conditions such as the crossing of a 250 and 500 volt line, right and left crossings are not interchangeable. The left hand crossings are, therefore, listed and will be made up on order at the same prices as the corresponding right hand crossings.


# CROSSINGS, FORM L, INSULATED 

SINGLE TROLLEY
ACUTE ANGLE-RIGHT-HAND CROSSINGS



Crossings similar to the above, but for $1 / 0$ wire will be furnished at the same price.

LEFT-HAND CROSSINGS



Crossings similar to the above, but for $1 / 0$ wire will be furnished at the same price.

## DOUBLE TROLLEY

The Double Trolley Crossings consist primarily of an insulating beam and two cross tongues spaced suitably for use where the double trolley wires are $6 \frac{1}{2}$ inches between centers. Crossings with tongue spacing either greater or less than standard will be supplied for special conditions at prices corresponding to the standard.

Crossings consisting of two insulating beams and a single cross tongue or with two beams and two cross tongues (for the crossing of two double trolley lines) are built to order.

# CROSSINGS, FORM L, INSULATED DOUBLE TROLLEY 

RIGHT-ANGLE CROSSING



Overall length $43 \frac{1}{2} \mathrm{in}$.; overall width $18 \frac{1}{2} \mathrm{in}$.

| Cat. No. | Description |  | Approx. per 100 |
| :---: | :---: | :---: | :---: |
| $46185$ | Right-angle crossing, for Nos. 00,000 and 0000 wires, $6 \frac{1}{2}$ " between trolley centers | - . | 1925 |
| 100936 | White fiber runway, for Cat. No. 46185. | .. |  |

Crossings similar to the above, but for $1 / 0$ wite will be furnished at the same price.

## ADJUSTABLE CROSSING

The Adjustable Double Crossing may be set at any angle between 45 and 90 degrees; when set at 45 degrees, the distance bet ween wires is $4 \frac{3}{4}$ inches, and at 90 degrees $6 \frac{1}{2}$ inches.


Overall length $43 \frac{1}{2}$ in.; maximum overall width $16 \frac{1}{2} \mathrm{in}$.

64634 Adjustable crossing, for Nos, 00,000 and 0000 wires, $6 \frac{1}{2}$ " between pivot points
White fiber runway, for Cat. No. 64634 .
Crossings similar to the above, but for $1 / 0$ wire will be furnished at the same price.

## CROSSINGS, FORM L, INSULATED

DOUBLE TROLLEY
ACUTE ANGLE

RIGHT-HAND CROSSING


| Cat. No. | Description |  | overall dimensions |  | $\begin{aligned} & \text { Distance } \\ & \text { Between } \\ & \text { Trolley } \\ & \text { Centers } \end{aligned}$ | Approx. per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Length | Width |  |  |
| $\begin{array}{r} 64169 \\ 100929 \end{array}$ | $35^{\circ}$ Right-hand crossing, for Nos, 00,000 and 0000 wires White fiber runway, for Cat No 6160 |  | $492^{\prime \prime}$ | $92^{\prime \prime}$ | $6 \frac{1}{2}{ }^{\prime \prime}$ | 2300 |
| 100184 | 270 ${ }^{\circ}$ Right-hand crossing, for Nos. 00,000 and 0000 wires |  | $492^{\prime \prime}$ | $92^{\prime \prime}$ | $6 \frac{1}{2}^{\prime \prime}$ | 2400 |
| 100928 | White fiber runway, for Cat. No. 100184. |  | $4{ }^{2}$ | 92 | 62 | 2400 |
| $\begin{aligned} & 100183 \\ & 100927 \end{aligned}$ | $20^{\circ}$ Right-hand crossing, for Nos, 00,000 and 0000 wires White fiber runway, for Cat. No. 100183 |  | $49 \frac{1}{2}^{\prime \prime}$ | $92^{\prime \prime}$ | $62^{\prime \prime}$ | 2500 |
| 62552 | $15^{\circ}$ Right-hand crossing, for Nos, 00,000 and 0000 wires |  | $71 \frac{1}{2 \prime}$ | $67^{\prime \prime}$ | 62゙ ${ }^{\prime \prime}$ |  |
| 100926 | White fiber runway, for Cat. No. 62552 . |  | 712 | 6 | 62 | 2600 |

Crossings similar to the above, but for $1 / 0$ wire will be furnished at the same price.

LEFT-HAND CROSSING



Crossings similar to the above, but for $1 / 0$ wire will be furnished at the same price.

## SECTION INSULATORS, FORM L

The Form L Section Insulator consists of a beam of selected second growth hickory well seasoned and treated with preservative oils to exclude moisture, finished with black japan, and castings of the standard composition metal, with a replaceable runway of hickory. Attachment to the trolley wires is made by double mechanical clamps at each end. The wood runway in conjunction with the accurately aligned castings offers a straight under-run insuring a smooth passage for the trolley wheel. For 600 volt service the wood runway provides a 7 in . break in the trolley circuit-for 1200 volt service the break is 12 in .

The insulators will accommodate round or grooved wires of the sizes indicated in the tables,

600-1200 VOLTS


Overall length 312 in .


## 600 VOLTS





## AUTOMATIC SECTION INSULATORS - 600 VOLTS

This device is a combined Section Insulator and Automatic Section Switch, and, while it is designed especially for use in mine tramway work, may often be used to advantage on spur tracks in surface work where it is desirable to cut out the spur section after the car has run back on to the main line.

The switch blade is operated by the trolley wheel, and is permanently connected to the feeder or to the main line trolley wire.


- Overall length $30 \frac{1}{2} \mathrm{in}$; height $5 \frac{1}{\mathrm{~s}} \mathrm{in}$.


Section insulators similar to the above, but for $1 / 0$ wire will be furnished at the same price.

## LINE MATERIAL FOR CATENARY CONSTRUCTION

The radical departure in the design of trolley line construction made necessary by the advent of high tension, current distribution for electric railway operation resulted in great improvements in mechanical as well as electrical features of the trolley line. The catenary system of line construction, while providing ample insulation surface for the highest potentials used or contemplated. also incidentally affords marked mechanical improvement which is important with the high speeds of modern suburban and interurban operation, and steam railroad electrification.


Catenary Line Construction on the Washington, Baltimore and Annapolis Railway
In direct suspension construction the limit for pole spacing with reasonable sag in the trolley wire is approximately 100 ft . and the minimum deflection attainable with this spacing necessitates heavy upward tension on the trolley to maintain contact with the wire. In the catenary construction on the other hand the spacing of the poles is only a matter of weight of span which each pole can carry, and of sag permissible in the messenger cable. It has been found that, without unduly increasing the height and the weight of the poles, the spacing may be 150 ft . on tangents.

The catenary system which is equally applicable to bracket or cross span construction consists essentially of an arrangement of a slack messenger cable and suitable hangers so distributed as to maintain the trolley wire practically without sag between suspension points, or to limit the sag as may be necessary for various conditions of operation.

The blow of a collector passing suspension points at high speed is thus greatly reduced. The shorter distance between hangers necessitates less stress in the trolley wire and reduces danger of break in the line.

The catenary system, therefore, offers the mechanical advantages of a longer pole spacing and a flatter trolley wire, and a flexibility in the line which obviates the hammer blow of the collector at suspension points, and reduces danger of mechanical breakage.

## LINE MATERIAL FOR CATENARY CONSTRUCTION

In catenary bracket construction，the messenger is carricd by porcelain petticoat insulators on the bracket arms，and in cross span construction the messenger is insulated either by strain insulators introduced in the span wire or by an insulated messenger hanger or support．The strain insulators for this purpose and for all pull－offs and anchorages for voltages up to and including 3300 volts are of specially treated wood，while those for higher voltages are of porcelain under compression．The entire insulating system is designed for three times the normal working voltage under the severest weather conditions．This factor of safety in dielectric strength is of vital importance，especially in lines operat－ ing over steam railroad tracks，because of the deteriorating effect of deposit from smoke on the insula－ tion surface．

The features of catenary construction which vary in adaptation to different operating conditions are the messenger and strain insulators and supports and the spacing of trolley wire hangers．

The three－point suspension in which，with 150 ft ．pole spacing，the hangers are 50 ft ．apart has been found ample to maintain a sufficiently level trolley wire for operation with wheel collector at


Double Trach Tangent Construction
speeds up to sixty－five miles per hour．A new element is，however，introduced by the sliding panto－ graph or bow trolley which，on account of its great inertia，requires a closer spacing of the trolley supports．It has been found that an eleven－point suspension，which with 150 ft ．pole spacing brings the hangers 13.6 ft ．apart，renders the trolley wire sufficiently level for this type of collector．

All the catenary hangers catalogued in the following pages are of lengths suitable for a 22 －inch deflection（distance between messenger and trolley wire at messenger supports）and this deflection is recommended excepting for special conditions．

In this section are listed the various devices which are distinctly for catenary work．Others such as splicing sleeves，low voltage strain insulalors，frogs and crossings，are suitable for both direct suspension and catenary construction and are listed in the direct suspension section of this catalogue．

Lists of materials for various types of construction shown elsewhere in this catalogue are useful for general estimating purposes．

## BRACKETS

The angle iron bracket，by reason of its horizontal stiffness greatly facilitates initial adjustment of the messenger during installation and insures maintaining uniform sag in messenger span through－ out the length of the tangent．Its horizontal stiffness is also of great value in case of line breakage， the line remaining undisturbed except for two or three spans on either side of the break．

The angle bracket consists of two 2 in ．x $1 \frac{1}{2} \mathrm{in}$ ．x $\frac{1}{4} \mathrm{in}$ ．angle irons joined at the extreme end by a space block and rivet，and by a second space block approximately 2 ft ．nearer the pole．The guy rod which supports the bracket from the pole top is attached to this second space block，and the

## LINE MATERIAL FOR CATENARY CONSTRUCTION

## BRACKETS

slot formed between the angles by the space blocks through which the insulator pin bolt passes prcvides means for transverse adjustment of the messenger with respect to the track. The inner ends of the angles are sprung apart to span the pole to which they are lagged or bolted. This bracket is suitable for 7 ft .6 in . distance between track center and pole face.


Angle Iron Bracket Arm
Cat. No. 43322



Cat. No. 47016
For double track pole construction, a bracket arm having two guy rods and two sets of fittings is used. This double bracket is riveted at one end and bolted at the other to allow for spanning the pole in installation. It is 16 ft . over all and suitable for 14 ft . track center.

| Cat. No. |  | Description | Approx. <br> Weight <br> per 100 |
| :--- | :--- | :--- | :--- | :--- |
| 47016 | $16 \mathrm{ft}$. Double Angle Iron Bracket, japanned | 11000 |  |

## LINE MATERIAL FOR CATENARY CONSTRUCTION BRACKETS

The "T" iron bracket has all of the advantages of the angle iron bracket, excepting its stiffness in the horizontal plane.

The guy rod is attached to the arm approximately 2 ft . from the end and the extension beyond the guy rod attachment provides for transverse adjustment of the messenger.

"T" Iron Bracket-Cat. No. 48414
The "T" iron bracket consists of a "T" iron arm $2 \frac{1}{4} \mathrm{in} . \mathrm{x} 2 \frac{1}{4} \mathrm{in} . \mathrm{x} \frac{5}{16} \mathrm{in}$., guy rod, pole fitting and two 5 in. $\times \frac{1}{2}$ in. lag screws but does not include insulator pin. The length of the standard " $T$ " iron bracket is 8 ft .6 in . which is suitable for 7 ft . 6 in . distance between track center and pole face.

| Cat. No. | Description |  |  |  |  |  |  |  |  |  |  |  |  | Approx <br> Weight <br> per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 48414 | $8 \mathrm{ft}$.6 in . "T" Bracket, japanned | - | - | . | - | - | . |  | - | - |  |  | . | 5500 |



For double track work with 14 ft . track centers the " T " iron bracket consists of two arms, two guy rods and two sets of fittings, each arm being 7 ft .6 in . long.

| 48415 | Double "T" Iron Bracket with arms, 7 ft .6 in . long, japanned . . . 10000 |
| :--- | :--- | :--- |

## 4747-80 Railway Line Matertal

## LINE MATERIAL FOR CATENARY CONSTRUCTION BRACKET EXTENSIONS



Double Track Pull-Off with Bracket Extensions
The extension for the angle iron bracket consists of a "T" iron $2 \mathrm{in} . \times 2 \mathrm{in} . \times \frac{1}{4}$ in., the web of which fits into the slot of the bracket replacing the outer space block. A bolt is provided for securing the extension in place.

The extension for " T " iron brackets consists of " T " iron $2 \mathrm{in} . \times 2 \mathrm{in}$. $\mathrm{x} \frac{1}{4}$ in. to which are riveted malleable iron castings for clamping to the bracket arm. Two bolts are furnished for securing it in place.
Cat. No. 67458

## LINE MATERIAL FOR CATENARY CONSTRUCTION



Cat. No. 43324 MESSENGER INSULATORS

The smaller of these two insulators is offered for voltages up to and including 3300 and the larger for voltages up to and including 11,000 . Both insulators have been thoroughly tested out in years of service and are adequate for the service for which they are recommended. Both are threaded for cementing on $1 \frac{3}{8} \mathrm{in}$. pins.

The upper shell of the 11,000 volt insulator is grooved so as to limit fractures from missiles and leave sufficient porcelain for insulation against normal potential even after the edges have been broken off, Malicious breakage of insulators is responsible for more trouble in maintenance of high potential lines than any other cause. This grooving of the petticoat affords considerable insurance against grounding of the line.

To insure customers against defective insulators, it is recommended that insulators be generally purchased assembled on the pins so that purchasers may have the benefit of the high potential shop test ajter assembling. When assembling the insulators in the ficlds, the cementing should be done with a good grade of neat Portland cement.

For assembled insulators and pins, including high potential tests, an additional charge will be made.


## TANGENT HANGERS



Form CF Hanger

The Form CF hanger, for supporting the trolley wire from the messenger cable, consists of a stem of flat steel strip, riveted at one end to a malleable iron screw clamp trolley ear; at the other end the stem is bent to form a loop by which the hanger is suspended. The loop is so formed that the hanger cannot free itself of the messenger; at the same time it permits a $2 \frac{3}{4} \mathrm{in}$. vertical movement of the trolley wire independently of the messenger.

The Form CA hanger differs from the Form CF only in that the messenger loop of the latter is replaced by a malleable iron sisterhook and its stem is turned through 90 degrees.


FORM CF
FORM CA

| Cat. No* | Length in In. | Approx. Wt. per 100 | Cat. No. ${ }^{\text {F }}$ | Length in In. | Approx. Wt. per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 100078 |  | 73 |  |  |  |
| 100079 | $6 \frac{7}{4}$ | 75 | $48443$ | $\begin{aligned} & 6 \\ & 63 \end{aligned}$ | $\begin{aligned} & 64 \\ & 66 \end{aligned}$ |
| 100080 | $8 \frac{1}{2}$ | 80 | $48444$ | $8 \frac{1}{2}$ | $\begin{aligned} & 66 \\ & 71 \end{aligned}$ |
| 100081 | $11^{\circ}$ | 86 | 48445 | $11^{2}$ | $\frac{71}{77}$ |
| 100082 | 12 | 88 | 48446 | 12 | $\frac{14}{79}$ |
| 100083 | $13 \frac{1}{2}$ | 91 | 48447 | $13 \frac{1}{2}$ | $82$ |
| 100084 | 143 | 94 | 48448 | $143$ | $85$ |
| 100085 | 16 | $97$ | $48449$ | $16$ | $88$ |
| $100086$ | $17 \frac{1}{2}$ | $100$ | $48450$ | $17 \frac{1}{2}$ | $\begin{aligned} & 88 \\ & 91 \end{aligned}$ |
| $\begin{aligned} & 100087 \\ & 100088 \end{aligned}$ | $19 \%$ | $104$ | $48451$ | $\begin{aligned} & 162 \\ & 194 \end{aligned}$ | $\begin{aligned} & 91 \\ & 95 \end{aligned}$ |
| 100088 | $20 \frac{1}{2}$ | 106 | 48452 | $20 \frac{1}{4}$ | $\begin{aligned} & 90 \\ & 97 \end{aligned}$ |

[^22]
# LINE MATERIAL FOR CATENARY CONSTRUCTION 



## TANGENT HANGERS

FORM CG
As an alternative to Forms CA and CF hangers, the Company offers its Form CG hanger which can be furnished as readily as the other two. It is made of $\frac{1}{8} \mathrm{in}$. x 1 in, flat steel strip with a loop formed at the top to fit over the messenger cable, allowing a play of 2 in . The trolley wire clamp is made of two interchangeable malleable iron castings. Both bolts used are standard machine bolts.

## STEADY YOKES

On long tangents it may be desirable to steady the trolley wire against lateral movement and Trolley Wire Steadies are provided for this purpose. They are installed at intervals of about 1000 feet and, for bracket construction and either Forms CA, CF or CG hangers, consist of the steady yoke, steady ear, strain insulators, bracket extension, eye bolt and steel cable for the guys. The arrangement isillustrated on page
 100. The steady ear generally used is Cat. No. 37685,10 -inch curve clamping ear. The eye bolt should be threaded for at least four inches of its length to permit adjustment. The size recommended is $16 \mathrm{in}, \mathrm{x} \frac{5}{8} \mathrm{in}$.


## PULL-OFF HANGERS

In order to insure clearances for the passage of sliding collectors, the pull-off hangers are designed for use with bridles which are attached to the ear and the upper part of the pull-off stem, and which lead to the pull-off insulator or to a steel ring into which the wire is made up,

The Form CF pull-off hanger is provided with a messenger clamp having an eye for single guying and also a slot for a guy wire from the second line in double track construction. The messenger clamp is free to move vertically between the top of the hanger stem and the adjustable
 stem clamp. An adjustment of six in. below the nominal length of the hanger is entirely feasible so that two lengths of hangers will provide for pull-offs at any point in the line. The stem is $\frac{5}{8} \mathrm{in}$. in diameter.

The Form CA pull-off hanger differs from the Form CF primarily in that the messenger clamp casting is threaded to the stem and the distance between messenger and trolley wire is therefore fixed by adjustment when installing. These hangers are adjustable through a length of one and one half in. greater and less than the nominal length. The stem of the Form CA hanger is $\frac{3}{4} \mathrm{in}$. in diameter.

Both CF and CA pull-off hangers have standard sherardized finish throughout.

| FORM CF |  |  | FORM CA |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Cal No. | Length in In | $\begin{gathered} \text { Approx Wt, } \\ \underset{\text { per } 100}{ } \end{gathered}$ | Cat No, | Length in In, | $\begin{gathered} \text { Approx WI, } \\ \text { per } 100 \end{gathered}$ |
| 68931 | 15 | 400 | 48.839 | 11 | 480 |
| 68932 | 18 | 410 | 48140 | 17 | 500 |
| 65933 | 21 | 420 | 48441 | 20 | 520 |



LINE MATERIAL FOR CATENARY CONSTRUCTION


Single Track Curve with Form CF Pull-Offs


Single Track Anchorage-Form CF

## 4747-84 Railway Line Material

## LINE MATERIAL FOR CATENARY CONSTRUCTION

## ANCHORAGE MATERIAL

To provide vertical flexibility at anchorage points in lines using the Form CF tangent and pull-off hangers, the trolley wire and messenger are clamped independently and the clamps guyed to the anchor eye through a strain insulator and a turnbuckle.

The Form CA anchor hanger for use with Form CA tangent and pull-off hangers is fitted with a $\frac{5}{8} \mathrm{in}$. steel stem and is arranged for guying to the anchor eye through a bridle with suitable strain insulator and turnbuckle.

Either method of anchoring provides ample clearance for sliding collectors and prevents forming "pockets" or angles between trolley and guy wires in which a collector may catch,

All anchorage devices excepting ears which are of composition and tinned for soldering are sherardized throughout.



* Half strain soldered clinch ears may be used if preferred.


## SPAN WIRE MESSENGER HANGERS



Cat. No. 60958

The span wire messenger hangers for the attachment of the messenger to the cross span are used throughout tangents and curves in cross span construction, excepting where replaced at anchorages by the span wire anchor clamp. The hangers are arranged for adjustment to any angle between the messenger. and span wires.

The insulation of Cat. No. 48454 is a
 porcelain spool. Provision for drainage of moisture from the upper surface is made through the center along the metal stud.

# LINE MATERIAL FOR CATENARY CONSTRUCTION 

SPAN WIRE MESSENGER HANGERS-(Concluded)

| Cat. No. | Description | Approx. <br> Weight <br> per 100 |
| :--- | :--- | :--- |
| 60958 <br> 48454 | Span Wire Messenger Hanger, sherardized <br> Insulated Span Wire Messenger Hanger, metal parts sherardized | 80 |

## STRAIN INSULATORS

The strain insulators used in catenary work are the same as for direct suspension construction shown on page 59 , excepting the following porcelain insulators.

The strain insulators for high potentials possess mechanical and electrical features of vital importance. The interlinking of the holes provided for attachment of the guy wires brings the material under mechanical stress entirely in compression and the crushing strength of the material is considerably above the maximum stress to which it can be subjected in service. Because of the form of the insulator it is impossible for rain driving in any direction to maintain a continuous surface


Cat. No. 45207 between terminals. All surfaces are exposed to the washing action of rain from different directions so that accumulation of dust or harboring of insects is prevented.

| Cat. No. | Description |  | Approx Weight per 100 |
| :---: | :---: | :---: | :---: |
| 45207 | $62^{\prime \prime}$ Strain Insulator, max. safe working voltage 11000 |  |  |
|  | max. safe working load 2500 lbs | - | 350 |
| 61912 | $7 \frac{1}{2}{ }^{\prime \prime}$ Strain Insulator, max. safe working voltage 15000 | \% | \% |
|  | max. safe working load 4500 Ibs. | - | 1050 |

## SECTION INSULATORS <br> 600 volts


$N=$

Cat. No. 89586
In the section insulators for wheel collectors, the trolley insulation is provided by a device similar to the Form L direct suspension section insulator excepting that the wood beams and runways are longer and adapted to care for higher voltages and speeds. The messenger insulation consists of wood strains.


## LINE MATERIAL FOR CATENARY CONSTRUCTION

## SECTION INSULATORS




## 3300-11000 VOLTS FOR WHEEL AND SLIDING COLLECTORS

The section insulator for use with both wheel and sliding collectors consists of a wooden beam of large cross section to which terminal castings are attached by through bolts insulated from the beam by porcelain spool insulators. A 60 in . renewable runway on the bottom offers a level passage for any style of collector. The messenger is insulated by wood and porcelain strain insulators in series.


$$
\text { Cat. No. } 60433
$$



## LINE MATERIAL FOR CATENARY CONSTRUCTION

## STEEL STRAND

Common galvanized strand is not recommended for any purpose in catenary construction and wherever steel strand is used it should be one of the three special grades, properties of which are given in the following table.

PROPERTIES OF SEVEN STRAND WIPED GALVANIZED STEEL CABLE SIEMENS-MARTIN STRAND $90,000 \mathrm{LB}$. PER SQ. IN.

| Dia. in In | Tensile Strength in Lb. | Elastic <br> Limit in Lb. | Elongation | Lay in In. |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \frac{1}{4} \\ & \frac{5}{5} \\ & \frac{3}{6} \\ & \frac{1}{1} \\ & \frac{7}{16} \\ & \frac{1}{2} \\ & \frac{2}{5} \end{aligned}$ | $\begin{array}{r} 3060 \\ 4850 \\ 6800 \\ 9000 \\ 11000 \\ 19000 \end{array}$ | $\begin{array}{r} 1830 \\ 2910 \\ 4080 \\ 5300 \\ 6600 \\ 11400 \end{array}$ | $\begin{aligned} & 6-9 \% \\ & 6-9 \% \\ & 5-8 \% \\ & 5-8 \% \\ & 5-8 \% \\ & 4-6 \% \end{aligned}$ | $\begin{aligned} & 3 \\ & 3 \frac{1}{2} \\ & 4 \\ & 4 \frac{1}{2} \\ & 4 \frac{1}{5} \\ & \hline \end{aligned}$ |

HIGH STRENGTH OR SECOND GRADE, 150,000 LB. PER SQ. IN.

| $\begin{aligned} & \frac{1}{4} \\ & \frac{\pi}{16} \\ & \frac{1}{2} \\ & \frac{1}{16} \\ & \frac{1}{4} \\ & \frac{1}{3} \end{aligned}$ | $\begin{array}{r} 5100 \\ 8100 \\ 11500 \\ 15000 \\ 18000 \\ 25000 \end{array}$ | $\begin{array}{r} 3315 \\ 5265 \\ 7475 \\ 9500 \\ 11700 \\ 16250 \end{array}$ | $\begin{aligned} & 3-5 \% \\ & 3-5 \% \\ & 3-5 \% \\ & 3-5 \% \\ & 3-5 \% \\ & 2-4 \% \end{aligned}$ | $\begin{aligned} & 3 \frac{1}{2} \\ & 4 \\ & 4 \frac{1}{2} \\ & 5 \\ & 5 \\ & 5 \frac{1}{2} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |

EXTRA HIGH STRENGTH OR THIRD GRADE, 225,000 LB. PER SQ. IN.

| $\begin{aligned} & \frac{1}{4} \\ & \frac{3}{3} \\ & \frac{1}{6} \\ & \frac{8}{7} \\ & \frac{7}{16} \\ & \frac{1}{2} \\ & \frac{5}{2} \end{aligned}$ | $\begin{array}{r} 7600 \\ 12100 \\ 17250 \\ 22500 \\ 27000 \\ 42000 \end{array}$ | $\begin{array}{r} 5700 \\ 9075 \\ 12930 \\ 16800 \\ 20250 \\ 31500 \end{array}$ | $\begin{aligned} & 2 \frac{1}{2} \% \\ & 2 \frac{1}{2}-4 \% \\ & 2 \frac{1}{2}-4 \% \\ & 20-4 \% \\ & 22-4 \% \\ & 12 \%-3 \% \end{aligned}$ | $\begin{aligned} & 4 \\ & 4 \frac{1}{2} \\ & 5 \\ & 5 \frac{1}{2} \\ & 5 \frac{1}{2} \\ & 6 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |

WEIGHT

| Dia, in In. | Per $1000 \mathrm{Ft} . \mathrm{Lb}$ | Per Mile Lb. | Dia. in In. | Per 1000 Ft . Lb: | Per Mile Lb. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \frac{1}{4} \\ & \frac{5}{3^{46}} \\ & \frac{3}{4} \end{aligned}$ | $\begin{aligned} & 115 \\ & 210 \\ & 300 \end{aligned}$ | $\begin{array}{r} 607 \\ 1108 \\ 1584 \end{array}$ | $\frac{\frac{7}{6}}{\frac{1}{2}} \frac{\frac{1}{8}}{8}$ | $\begin{aligned} & 370 \\ & 510 \\ & 700 \end{aligned}$ | $\begin{aligned} & 1953 \\ & 2692 \\ & 3696 \end{aligned}$ |

For ordinary conditions, the messenger cable should be of $\frac{7}{6}$ in. extra galvanized Siemens-Martin steel. For pull-offs $\frac{1}{4}$ in. cable is satisfactory, and for general guying purposes $\frac{3}{8}$ in. extra galvanized Siemens-Martin strand is generally recommended. Special conditions may call for "high strength" cable, but as this cable requires mechanical fastenings on account of its stiffness, it should be used only where absolutely necessary,

## DEFLECTORS



Deflectors are for use with sliding collectors and are designed to depress the collector when a car is turning from a siding to the main line, or crossing from one track to another, and are interchangeable on either right or left hand turnouts and on Nos.00, 000 and 0000 grooved wires. Deflectors must be designed especially for local conditions and prices will be quoted on specification of erossing or divergence angles and conditions of operation. These deflectors will not interfere with the operation of wheel collectors

## LINE MATERIAL FOR CATENARY CONSTRUCTION CONSTRUCTION NOTES

## HANGERS FOR SHORT TANGENT SPANS

To prevent creeping of the messenger and unequal strains at the brackets, the tension of the messenger wire is made the same in short spans as in the 150 ft . spans; and with this constant tension, the sag of the messenger and consequently the length of the trolley hangers vary with the length of span. The number and length of hangers required for different spans is shown in the following table:

ELEVEN-POINT CONSTRUCTION

| Length <br> Pole Spacing | Points | number of hangers per span |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $6{ }^{\prime \prime}$ | 67" | $8 \frac{1}{2 *}$ | $11^{\prime \prime}$ | $12^{\prime \prime}$ | 131 ${ }^{\prime \prime}$ | 14? ${ }^{\prime \prime}$ | $16^{\prime \prime}$ | 172" | 194* | $20 \frac{1}{2}{ }^{\text {n }}$ |
| 150 ft . | 11 | 1 | 2 | 2 | 2 | - | - | 2 | - | - | 2 | - |
| 125 ft . | 9 | - | - | - | 1 | 2 | 2 | - | 2 | - | 2 | - |
| 110 ft . | 8 | - | - | - | - | - | 2 | 2 | - | 2 | - | 2 |
| 95 ft . | 7 | - | - | - | - | - | - | - | 3 | 2 | - | 2 |
| 80 ft . | 6 | - | - | - | - | - | - | - | - | 2 | 2 | 2 |
| 70 ft . | 5 | - | - | - | - | - | - | - | - | - | 3 | 2 |
| 55 ft . | 4 | - | - |  | - | - | - | - | - | - | - | 4 |

THREE-POINT CONSTRUCTION


## CURVE CONSTRUCTION

In all curve work the use of pull-off hangers is recommended to secure the proper curvature of messenger and trolley wire. On curves not sharper than 10 degrees or 574 ft . radius, pull-off hangers bridled to a backbone run between the line poles or bracket extensions, depending on whether the poles are set outside or inside the curve, are recommended. On all curves sharper than 10 degrees it is generally cheaper and better practice to set the line poles or extra guy poles outside the curve and to bridle the pull-off hangers to a backbone run between them. On sharp curves the bracket extension method would require a close pole spacing which in the interest of economy should be avoided.

In general the adoption of some standard pole spacing for curves is preferable as it will reduce the number of special length hangers to be carried in stock. As an assistance to this end the following table is given, designating definite pole spacings for the various degrees of curvature and also indicating the number and lengths of tangent and pull-off hangers per span. This pole and pull-off spacing will keep the trolley wire within from four to six inches of the track center.

ELEVEN-POINT CURVE CONSTRUCTION

| Angle of Curve | Radius |  | Pole Spacing | $\begin{aligned} & \text { No. } \\ & \text { Pulil. } \\ & \text { off } \\ & \text { Point } \end{aligned}$ | NUMBER OF HANGERS PER SPAN Straight Line Hangers |  |  |  |  |  |  |  |  |  |  | Pull-Off Hangers |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $6^{\prime \prime}$ |  | 67" | $82^{\prime \prime}$ | $11^{\prime \prime}$ | $12^{\prime \prime}$ | 132 ${ }^{\prime \prime}$ | 143" | $16^{\prime \prime}$ | 171 ${ }^{\prime \prime}$ | 191" | $20 \frac{1}{2 \prime}$ | $14^{\prime \prime}$ | 17" | $20^{\prime \prime}$ |
| $0^{\circ}-2^{\circ}$ | 0 | 2865 |  | 150 | 1 | 1 | 2 | 2 | 2 | - | - | 2 | - | - | 1 | - | - | - | 1 |
| $2^{\circ}-4^{\circ}$ | 2865 | 1433 | 150 | 2 | 1 | 2 | 2 | 2 | - | - | - | - | - | 2 | - | 2 | - | - |
| $4^{\circ}-6^{\circ}$ | 1433 | 955 | 125 | 2 | - | - | - | 1 | 2 | - | - | 2 | - | 2 | - | 2 | - | - |
| $6^{\circ}-10^{\circ}$ | 955 | 574 | 95 | 12 | - | - | - | - | - | - | - | 3 | - | - | 2 | - | 2 | - |
| $10^{\circ}-14^{\circ}$ | 574 | 410 | 95 | 3 | - | - | - | - | - | - | - | 2 | - | - | 2 | - | 3 | - |
| $14^{\circ}-20^{\circ}$ | 410 | 288 | 70 | 3 | - | - | - | - | - | - | - | - | - | 2 | 2 | - | - | 3 |
|  | 288 | 150 | 70 | 4 | - | - | - | - | - | - | - | - | - | - | 2 | - | - | 4 |
|  | 150 | 75 | 55 | 6 | - | - | - | - | - | - | - | - | - | - | - | - | - | 6 |
|  | 75 | 40 | 50 | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - | 8 |

## LINE MATERIAL FOR CATENARY CONSTRUCTION

THREE-POINT CURVE CONSTRUCTION

| Angle of Curve | Radius |  | Pole Spacing | $\begin{aligned} & \text { No. } \\ & \text { Puil. } \\ & \text { off } \\ & \text { Points } \end{aligned}$ | nUmber of hangers per span |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Straight Line Hangers |  | Pull-Off Hangers |  |  |
|  |  |  | $6^{\prime \prime}$ |  | $63^{\prime \prime}$ | $82^{\prime \prime}$ | $11^{\prime \prime}$ | $12^{\prime \prime}$ | $13 \frac{1}{}{ }^{\prime \prime}$ | 143" | $16^{\prime \prime}$ | 171 ${ }^{\prime \prime}$ | 191" | $20 \frac{1}{}{ }^{\prime \prime}$ | .$^{4 \prime}$ | $17^{*}$ | $20^{*}$ |
| $0^{\circ}-2^{\circ}$ | 0 | 2865 |  | 150 | 1 | 1 | - | - | - | - | - | 2 | - | - | - | - | - | - | 1 |
| $2^{\circ}-4^{\circ}$ | 2865 | 1433 |  | 150 | 2 | 1 | - | _ | - | - | - | - | - | - | - | - | 2 | - | - |
| $4^{\circ}-6^{\circ}$ | 1433 | 955 | 125 | 2 | - | - | - | 1 | - | - | - | - | - | - | - | - | 2 | - |
| $6^{\circ}-10^{\circ}$ | 955 | 574 | 95 | 2 | - | - | - | - | - | - | - | 1 | - | - | - | - | 2 | - |
| $10^{\circ}-14^{\circ}$ | 574 | 410 | 95 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | 3 | - |
| $14^{\circ}-20^{\circ}$ | 410 | 288 | 70 | 3 | - | - | - | - | - | - | - | - | - | - | - | - | - | 3 |
|  | 288 | 150 | 70 | 4 | - | - | - | - | - | - | - | - | - | - | - | - | - | 4 |
|  | 150 | 75 | 55 | 6 | - | - | - | - | - | - | - | - | - | - | - | - | - | 6 |
|  | 75 | 40 | 50 | 8 | - | - | - | - | - | - | - | - | - | - | - | - | - | 8 |

## STAGGERING TANGENT LINE

Where sliding collectors are used it is recommended that the tangent line be staggered by means of steadies guyed in opposite directions, to avoid wearing grooves in the collector contact surface. (In bracket construction the standard bracket extensions are used in guying the outside steady yoke arm.)

For this purpose the trolley wire should be displaced approximately eight in. on each side of the track center every 1000 ft ., i.e., there should be one complete wave from the extreme position on one side across the track and back to the extreme position on the same side in each 2000 ft . of line.

When the roadbed is new it is well to simply make provisions for staggering, but to defer the actual displacement of the trolley wire until the roadbed is settled and put in final shape, as the sway of the car due to irregularities in the track may be enough to throw the sliding contact entirely off the wire.

## GENERAL INFORMATION

The problem of installing catenary material is somewhat different from that in connection with the installation of ordinary direct current construction, on account of the requirements imposed by the messenger cable. To obtain a line which will not require frequent re-adjustment the messenger cable must be installed with practically uniform tension throughout its entire length, that is, the shorter spans require less sag. For this reason certain definite pole spacings have been recommended in the foregoing tables with corresponding hanger lengths. When these hangers are used and the messenger adjusted to bring the trolley wire a uniform distance above the track, the messenger cable will have the correct tension.

As there are in this construction two wires to be provided for instead of one, it is necessary to make suitable provisions for two wires in special work, pull-offs and anchors.

## METHOD OF INSTALLATION <br> BRACKET CONSTRUCTION

After the poles are installed, the brackets should be located at a height of eighteen in. more than the required distance between the top of the rail and the trolley wire; this allows for two in. sag of the bracket due to the yielding of the pole when loaded, in single track construction. For double construction this distance should be sixteen in. greater than the desired height of trolley above the top of rail.

Generally no back guys are required for this construction on tangent track but all poles on curves and at anchor points should be properly guyed. This Company recommends the use of strain insulators in all guy cables.

When brackets and insulators are in place the line is ready for the trolley and messenger wires. The foreman doing the construction work can soon determine what method of running out the trolley and messenger wires is best suited to the conditions under which he has to work. The following method of installation is suggested and is known from experience to be efficient and practicable.

The trolley and messenger wire may both be run out at once and hung over the brackets, except at curves where the trolley wire should be supported below the bracket arms. The trolley wire should then be pulled up tight and temporarily anchored while resting on the bracket arm.

## LINE MATERIAL FOR CATENARY CONSTRUCTION METHOD OF INSTALLATION BRACKET CONSTRUCTION-(Concluded)

Ir ordinary construction it is generally inconvenient to measure the tension on the trolley wire. For this reason it is recommended, in order to obtain the desired tension of about one thousand pounds for 0000 trolley wire, that the pull be made with a
 pair of three sheave blocks, and a "luff" or purchase with a pair of two sheave blocks. Three men can pull a trolley to about the right tension with this combination.

The messenger wire should next be adjusted for tension to give the sag at (A) in the accompanying sketch of about 9 in . at 30 degrees F., 10 in , at 60 degrees $F_{\text {., and }} 11$ in at 85 degrees $\mathrm{F}_{\text {., after which it }}$ may be lifted in position on the insulators and tied in. The trolley wire should then be dropped and temporarily supported by hooks from the brackets and from the messenger wire at the center of the span. The line will then be ready for the hangers which should be installed in accordance with the table given on page 88 . Both messenger and trolley wires should be anchored every one-half mile on tangent track, and at the ends of tangent track approaching a curve. Sufficient slack should be left in the curves to allow the trolley and messenger wires to


Sketch of Clearance
be pulled over to the center of the track. Where bridles for pull-offs and anchors are used, care should be taken to see that no wires are allowed within a space six inches above the plane of the trolley wire at a distance of three feet from the trolley wire. This clearance is necessary to avoid interference with sliding contacts.

## SPAN CONSTRUCTION

In span construction the span wire should be installed so that when the weight of the messenger and trolley is put on it, there will be a sag of about one foot for each 20 ft . of span, and the back guys should be insulated for full line potential.

After the poles are guyed and the spans in place, the messenger and trolley wires are run out and hung temporarily from the span wires by hooks. The tension on the trolley and messenger wires and the installation of hangers may then proceed as in bracket construction.

The following sketches and diagrams show convenient methods of satisfying conditions met in every day practice.

## HANGERS FOR ELEVEN-POINT TANGENT TRACK CONSTRUCTION AND SHORT SPANS

 (FOR 22 -INCH DEFLECTION)

## LINE MATERIAL FOR CATENARY CONSTRUCTION

HANGERS FOR ELEVEN-POINT TANGENT TRACK CONSTRUCTION AND SHORT SPANS


HANGERS FOR ELEVEN-POINT CURVE CONSTRUCTION AND SHORT SPANS (FOR 22-INCH DEFLECTION)

$2^{\circ}$ to $4^{\circ}$ or 2865 to $1433 F t$. Aodivis Curves


## LINE MATERIAL FOR CATENARY CONSTRUCTION

HANGERS FOR ELEVEN-POINT CURVE CONSTRUCTION AND SHORT SPANS
(FOR 22-INCH DEFLECTION)


HANGERS FOR THREE-POINT TANGENT TRACK CONSTRUCTION
AND SHORT SPANS
(FOR 22-INCH DEFLECTION)

llo Ft. Span Jpoints


## LINE MATERIAL FOR CATENARY CONSTRUCTION

HANGERS FOR THREE-POINT CURVE CONSTRUCTION AND SHORT SPANS
(FOR 22-INCH DEFLECTION)


95ft. Spon 3 points of pull off


## 4747-94 Railway Line Material

LINE MATERIAL FOR CATENARY CONSTRUCTION



## LINE MATERIAL FOR CATENARY CONSTRUCTION



Single Track Curve Consfruction-With Extra Poles Set for Backbone


Double Track Curve Construction-With Bracket Extensions

## LINE MATERIAL FOR CATENARY CONSTRUCTION



Double Track Curve Construction-With Extra Poles Set for Backbone


LINE MATERIAL FOR CATENARY CONSTRUCTION


4747-98 Railway Line Material
LINE MATERIAL FOR CATENARY CONSTRUCTION


## LINE MATERIAL FOR CATENARY CONSTRUCTION



Double Track Tangent-Bridge Construction


Double Track Curve-Bridge Construction

## LINE MATERIAL FOR CATENARY CONSTRUCTION



Single Track-Street Corner


Trolley Wire Steady-Bracket Construction

## LINE MATERIAL FOR CATENARY CONSTRUCTION



Arrangement of Feeder Tap-Bracket Construction


## CROSS ARMS

## MALLEABLE IRON-FEEDER

These arms as listed are suitable for Standard Pipe Poles of various diameters. It should be noted that the diameters given


2-Pin Single Arm are "pipe measurements." The actual outside diameters, corresponding to the nominal diameters are given in the note below.

The diameter of the insulator pin holes is $1_{9}{ }^{\prime \prime} \mathrm{f} \mathrm{in}$.


4-Pin Double Feeder Arm

DOUBLE

2-PIN

| Cat. No. | Description |  |  |  |  |  |  |  |  |  |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40113 | For $4^{\prime \prime}$ standard pipe pole |  |  |  |  |  |  |  |  |  |  |  | 1300 |
| 40114 | For $5^{\prime \prime}$ standard pipe pole |  |  | . |  |  |  |  |  |  |  |  | 1450 |
| 40115 | For $6^{\prime \prime}$ standard pipe pole |  |  |  |  |  |  |  |  |  |  |  | 1600 |
| 40116 | For 7" standard pipe pole |  | - | - |  |  | - |  |  |  |  |  | 1700 |

4-PIN

| 40117 | For 4" standard pipe pole |  |  |  |  |  | . |  |  | - |  | . |  |  |  |  | 1700 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40118 | For $5^{\prime \prime}$ standard pipe pole |  | . |  |  | - | - |  |  | - |  | - |  |  |  | . | 1900 |
| 40119 | For $6^{\prime \prime}$ standard pipe pole |  | . |  |  |  |  |  |  | - |  | 2 | - |  |  |  | 2000 |
| 40120 | For $7^{\prime \prime}$ standard pipe pole |  |  |  |  |  | , |  |  | - |  |  | - | . |  |  | 2200 |

6-PIN


## SINGLE

1-PIN

| 40137 | For $4^{\prime \prime}$ standard pipe pole |  |  |  |  |  | , |  |  |  |  |  | . | - | - | . | 950 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40138 | For $5^{\prime \prime}$ standard pipe pole |  | - | - |  |  |  | - |  |  |  |  |  |  | . |  | 1100 |
| 40139 | For $6{ }^{\prime \prime}$ standard pipe pole |  | - |  |  |  | - |  |  | - |  |  | . | ? | - |  | 1200 |
| 40140 | For $7^{\prime \prime}$ standard pipe pole |  |  |  |  |  |  |  |  | - |  |  |  |  | - |  | 1300 |
| 2-PIN |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 40141 | For 4" standard pipe pole |  | , | . | - | . |  | . | - | - |  |  | - |  | . | . | 1250 |
| 40142 | For $5^{\prime \prime}$ standard pipe pole |  |  | . | - |  |  | - |  | . |  |  | . |  | , |  | 1400 |
| 40143 | For $6^{\prime \prime}$ standard pipe pole |  |  | . | - |  |  | : | - | , |  |  | , |  | , |  | 1500 |
| 40144 | For $7^{\prime \prime}$ standard pipe pole |  | , | - | - | - |  | . | - | - |  | c | - | - | . |  | 1600 |

## CROSS ARMS

MALLEABLE IRON-FEEDER-SINGLE (Concluded)
3-PIN

| Cat. No. |  | Description |
| :--- | :--- | :--- | | Approx. |
| :---: |
| Weight |
| per 100 |

Note.-Actual outside diam of 4 in. Standard Pipe Pole, 41 in.
Actual outside diam. of 5 in . Standard Pipe Pole, $5 i_{6}$ in.
Actual outside diam. of 6 in. Standard Pipe Pole, $6 \%$ in.
Actual outside diam. of 7 in . Standard Pipe Pole, $7 \frac{1}{3}$ in.

## WOOD CROSS ARMS



The wood cross arms are furnished in yellow pine - painted two coats. The low tension feeder and the high tension arms are bored for $1 \frac{1}{2} \mathrm{in}$. pins and two $\frac{1}{2}$ in. lag screws. The telephone arms are bored for $1 \frac{1}{4} \mathrm{in}$. pins and two $\frac{1}{2} \mathrm{in}$. lag screws. Arms with other boring will be furnished to order.

LOW TENSION FEEDER-CROSS SECTION $31 / 4$ IN. x $41 / 4$ IN.

| Cat. No. | No. of Pins | Length in In. | SPACING in inches |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Ends | Center | Sides |  |
| 40179 | 2 | 36 | 4 | 28 |  | 100 |
| 40180 | 4 | 48 | 4 | 16 | 12 | 140 |
| 40181 | 4 | 60 | 4 | 18 | 17 | 170 |
| 40182 | 4 | 72 | 4 | 24 | 20 | 210 |
| 40183 | 6 | 72 | 4 | 16 | 12 | 210 |

HIGH TENSION-CROSS SECTION 4 IN. $\times 5$ IN.

| 100000 | 2 | 36 | 4 | 28 |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 100001 | 2 | 48 | 40 | 17 |  |
| 100002 | 4 | 60 | 4 | 18 | 210 |
| 100003 | 4 | 72 | 4 | 22 | 250 |
| 100004 | 4 | 96 | 4 | 32 | 310 |
| 100005 | 6 | 96 | 4 | 20 | 430 |
| 100006 | 6 | 120 | 4 | 28 | 430 |

TELEPHONE-CROSS SECTION 2 3/4 IN. $\times 3$ 3/4 IN.

| 100007 | 2 | 24 | 3 | 18 |  | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 100008 | 2 | 30 | 3 | 24 |  | 70 |
| 100009 | 4 | 42 | 3 | 16 | 10 | 95 |
| 100010 | 6 | 62 | 3 | 16 | 10 | 140 |
| 100011 | 8 | 82 | 3 | 16 | 10 | 180 |
| 100012 | 10 | 102 | 3 | 16 | 10 | 235 |
| 100013 | 4 | 48 | 3 | 16 | 13 | 110 |
| 100014 | 6 | 72 | 3 | 16 | $12 \frac{1}{2}$ | 165 |
| $100015$ | 8 | 96 | 3 | $16$ | $12 \frac{2}{3}$ | 220 |
| 100016 | 12 | 120 | 3 | 14 | 10 | 275 |

## CROSS ARM BRACES

## - *

Diameter of hole at pole end $\frac{3}{16}$ in; at cross arm end $\frac{7}{16}$ in.

| Cat. No. | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40184 | $20^{\prime \prime} \times 1 \frac{1}{4 \prime \prime}^{\prime \prime} \times \frac{1^{\prime \prime}}{4 \prime}$, plain |  |  |  |  |  |  | - | - |  | - |  |  |  |  | 180 |
| 40185 | $20^{\prime \prime} \times 1{ }^{\frac{1}{\prime \prime}} \times{ }^{\frac{1}{\prime \prime}}$, galvanized |  |  | . | . |  |  | . | . | - | - |  |  |  |  | 180 |
| 40186 | $24^{\prime \prime} \times 1^{\frac{11}{\prime \prime}} \times{ }^{\prime \prime}$, plain . |  |  | . | , |  |  | . | , |  | * | . | . | . |  | 215 |
| 40187 | $24^{\prime \prime} \times 11^{\prime \prime} \times{ }^{\frac{3}{\prime \prime}}$, galvanizeत |  |  |  | . | , | . | . | . | . | , |  | \% |  | - | 215 |
| 40188 | $28^{\prime \prime} \times 1{ }^{\prime \prime} \times{ }^{\prime \prime} \times{ }^{\prime \prime \prime}{ }^{\prime \prime}$, plain . |  |  | , | . | , | . | . | . | - | . |  | . | , |  | 250 |
| 40189 | $28^{\prime \prime} \times 1{ }^{\frac{11}{\prime \prime}} \times \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, galvanized |  |  |  | . | 。 |  | - | . | , |  |  |  | - |  | 250 |
| 40190 | $20^{\prime \prime} \times 11_{32^{\prime \prime}}^{\prime \prime} \times \mathrm{l}^{\prime \prime}{ }^{\prime \prime}$, plain. | . |  |  | . | . | - | , | , | . | - |  | * | : |  | 160 |
| 40191 | $20^{\prime \prime} \times 1 \frac{7}{32}^{\prime \prime} \times \frac{\frac{7}{17}^{\prime \prime}}{}{ }^{\prime \prime}$, galvanized |  |  |  | - | - | - | - | . | . | - | , | * | , | , | 160 |
| 40192 | $24^{\prime \prime} \times 1^{\frac{7}{3 \prime}}{ }^{\prime \prime}{ }^{\prime \prime} \times \frac{7^{\prime \prime}}{\frac{7}{3} 2^{\prime \prime}}$, plain. |  |  |  | . | . | - | , | - | . | - | . | - | . |  | 190 |
| 40193 | $24^{\prime \prime} \times 1{ }^{\prime \prime} \frac{7}{3 \prime \prime}^{\prime \prime} \times{ }^{\prime \prime} \frac{7}{7 \prime \prime}_{\frac{7}{32}}{ }^{\prime \prime}$, galvanized |  |  |  | . | . |  | , | - | . | - | . | . | - | . | 190 |
| 40194 |  | . | - |  | . | . | . | + |  | - |  |  | - | - |  | 220 |
| 40195 | $28^{\prime \prime} \times 1 \frac{7}{3}^{\prime \prime} \times{ }^{\prime \prime} \frac{7}{3 \prime \prime}^{\prime \prime}$, galvanized |  |  |  |  | . |  | . | + | . | . |  |  |  |  | 220 |
| 100017 | $20^{\prime \prime} \times 1^{\prime \prime} \times \frac{3}{16 \prime}$, plain | - | - | . | + | - | - |  | - |  | . |  |  |  |  | 110 |
| 100018 | $20^{\prime \prime} \times 1^{\prime \prime} \times \frac{3}{11^{\prime \prime}}$, galvanized | . |  |  | 2 | . | . |  | - | . | . | - | . |  |  | 110 |
| 100019 | $24^{\prime \prime} \times 1^{\prime \prime} \times \frac{3^{\prime \prime}}{16^{\prime \prime}}$, plain | . |  | - | - | - | . | . |  | - |  |  |  |  | - | 125 |
| 100020 | $24^{\prime \prime} \times 1^{\prime \prime} \times \frac{3}{16 \prime \prime}$, galvanized | - | $\cdots$ | . | - | . | . | , | - | . |  |  |  | . |  | 125 |
| 100021 | $28^{\prime \prime} \times 1^{\prime \prime} \times \frac{3}{16}{ }^{\prime \prime}$, plain . | . |  |  | * | , | - | - | - | . |  | . |  |  | . | 140 |
| 100022 | $28^{\prime \prime} \times 1^{\prime \prime} \times \frac{3}{16}{ }^{\prime \prime}$, galvanized - | - | * |  | * | - | - | , | - | - |  | - | - | - | - | 140 |

## CROSS ARM CLAMPS

FOR FASTENING WOOD CROSS ARMS TO IRON POLES


Cat. No. 40162


Cat. No. 40166

| cat. no. |  | Dia. of Pole | APPROX. WEIGHT PER 100 |  |
| :---: | :---: | :---: | :---: | :---: |
| Single <br> Cross Arm | Double Cross Arm |  | Single | Double |
| $\begin{aligned} & 40161 \\ & 40162 \\ & 40163 \\ & 40164 \end{aligned}$ | $\begin{aligned} & 40165 \\ & 40166 \\ & 40167 \\ & 40168 \end{aligned}$ | $\begin{aligned} & 4^{\prime \prime} \\ & 5^{\prime \prime} \\ & 6^{\prime \prime} \\ & 7^{\prime \prime} \end{aligned}$ | $\begin{array}{r} 675 \\ 925 \\ 1050 \\ 1150 \end{array}$ | $\begin{array}{r} 850 \\ 1150 \\ 1325 \\ 1450 \end{array}$ |

## BOLTS, NUTS AND WASHERS

CROSS ARM BOLTS
FOR FASTENING WOOD CROSS ARMS TO WOOD POLES

| Cat. No. |  | Length | Diameter | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: |
| Plain | Galvanized |  |  |  |
| 100097 | 100103 | $10^{\prime \prime}$ | ${ }^{\frac{1}{2}}{ }^{\prime \prime}$ | 65 |
| 100098 | 100104 | $12^{\prime \prime}$ | $\frac{1 / \prime \prime}{\prime \prime}$ | 75 |
| 100099 | 100105 | $14^{\prime \prime}$ | [" | 85 |
| 100100 | 100106 | $16^{\prime \prime}$ | 2" | 95 |
| 100101 | 100107 | $18^{\prime \prime}$ | \% | 105 |
| 100102 | 100108 | $20^{\prime \prime}$ | $\frac{1}{2 \prime \prime}$ | 115 |
| 42427 | 42433 | $10^{\prime \prime}$ | \%" | 100 |
| 42428 | 42434 | $12^{\prime \prime}$ | \%" | 125 |
| 42429 | 42435 | $14^{\prime \prime}$ | $\frac{517}{\prime \prime}$ | 140 |
| 42430 | 42436 | $16^{\prime \prime}$ | $5^{\prime \prime}$ | 155 |
| 42431 | 42437 | $18^{\prime \prime}$ |  | 175 |
| 42432 | 42438 | $20^{\prime \prime}$ |  | 190 |

The above Catalogue Numbers cover holts with nuts but without washers:

## WELDED STEEL EYE BOLTS



| 40210 | 40220 | $6^{\prime \prime}$ | $\frac{1}{2}$ | 80 |
| :---: | :---: | :---: | :---: | :---: |
| 40211 | 40221 | $10^{\prime \prime}$ | $\frac{1}{2}{ }^{\prime \prime}$ | 80 |
| 40212 | 40222 | $12^{\prime \prime}$ | 1" | 95 |
| 40213 | 40223 | $14^{\prime \prime}$ | $\frac{1}{2}$ | 105 |
| 43684 | 43686 | $16^{\prime \prime}$ | $\frac{1 / 2}{}{ }^{\prime \prime}$ | 120 |
| 40214 | 40224 | $10^{*}$ | 5"1 | 130 |
| 40215 | 40225 | $12^{\prime \prime}$ | \%" | 150 |
| 40216 | 40226 | $14^{\prime \prime}$ |  | 170 |
| 43685 | 43687 | $16^{\prime \prime}$ | S" | 190 |
| 40217 | 40227 |  |  | 235 |
| 40218 | 40228 | $14^{\prime \prime}$ | 先 | 260 |
| 40219 | 40229 | $16^{\prime \prime}$ | - | 285 |

The above Catalogue Numbers cover bolts with nuts and washers.
DROP FORGED STEEL EYE BOLTS


| Cat. no. |  | Length | DIAMETER |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Plain | Galvanized |  | Stock | Eye |  |
| 40798 | 40780 | $6^{\prime \prime}$ | $\frac{1}{2}{ }^{\prime \prime}$ |  | 60 |
| 40799 | 40781 | $8^{\prime \prime}$ | $\begin{aligned} & 2^{\prime \prime} \\ & \hline \end{aligned}$ | $\frac{16}{16}$ | 70 |
| 64544 | 40782 | $10^{\prime \prime}$ | I" | ${ }^{16}$ | 80 |
| 40230 | 40232 | $12^{\prime \prime}$ | $\frac{1}{2}$ | $1{ }^{11}$ | 95 |
| 64545 | 40783 | $14^{\prime \prime}$ | $\frac{1}{2 \prime \prime}$ | ${ }_{16 \prime \prime}^{16}$ | 105 |
| 64546 | 40784 | $16^{\prime \prime}$ | $\frac{1}{2}{ }^{\prime \prime}$ | $\frac{11}{16}{ }^{\prime \prime}$ | 120 |
| 64548 | 40786 | $6^{\prime \prime}$ | 5" | 3 | 90 |
| 64549 | 40787 | $8^{\prime \prime}$ | \%" | $3 /$ | 110 |
| 64550 | 40788 | $10^{\prime \prime}$ | \% | i" | 130 |
| 40231 | 40233 | $12^{\prime \prime}$ | $\frac{51 \prime}{3 \prime}$ | $\frac{3}{4}{ }^{\prime \prime}$ | 150 |

The above Catalogue Numbers cover bolts with nuts and washers.
The bolts are threaded four inches.
Variations in length can be furnished at corresponding prices,

BOLTS, NUTS AND WASHERS
DROP FORGED STEEL EYE BOLTS - (Concluded)

| CAT. NO. |  | Length | DAAMETER |  | Approx, Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Plain | Galvanized |  | Stock | Eyc |  |
| 64551 | 40789 | $14^{*}$ | 5 " | $3^{\prime \prime}$ | 170 |
| 64552 | 48837 | $16^{\prime \prime}$ | \%', | $\frac{1}{4 \prime \prime}$ | 190 |
| 64553 | 40791 | $18^{\prime \prime}$ | \%"' | ! | 210 |
| 64555 | 40793 | $10^{\prime \prime}$ | ${ }^{3 /}$ | i' | 210 |
| 64556 | 40794 | $12^{\prime \prime}$ | $\frac{17}{4 \prime \prime}$ | $1^{\prime \prime}$ | 235 |
| 64557 | 40795 | $16^{\prime \prime}$ | " | 1" | 285 |
| $64558$ | 40796 | $18^{\prime \prime}$ | ${ }^{\prime \prime}$ | $1^{\prime \prime}$ | 310 |
| 645.59 | 40797 | $20^{\prime \prime}$ |  | $1^{\prime \prime}$ | 335 |

The above Catalogue Numbers cover bolt with nuts and washers.
The bolts are threaded four inches.
Variations in length can be furnished at corresponding prices.
FORK BOLTS



The above Catalogue Numbers cover bolts with nut but no washer.
CARRIAGE BOLTS
Length of thread is about three times the diameter.
PRICE PER HUNDRED

| Length in Inches | DIAMETER |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $1 "$ | $1^{\prime \prime}$ | $2^{\prime \prime}$ | 차N-1" |
| $1 \frac{1}{2}$ | \$1.00 | \$1.90 | . $\cdot$ | . |
| 13 | 1.04 | 1,98 | , . . | * |
| 2 | 1.08 | 2.06 |  | ¢. |
| $2 \frac{1}{2}$ | 1.16 | 2.22 | \$3.00 | 85.20 |
| 3 | 1.24 | 2.38 | 3.22 | 5.54 |
| $3 \frac{1}{2}$ | 1.32 | 2.54 | 3.44 | 5.88 |
| 4 | 1.40 | 2.70 | 3.66 | 6.22 |
| $4 \frac{1}{2}$ | 1.48 | 2.86 | 3.88 | 6.56 |
| 5 | 1.56 | 3.02 | 4.10 | 6.90 |
| 6 | 1.72 | 3.34 | 4.54 | 7.58 |
| 7 | 1.88 | 3.66 | 4.98 | 8.26 |
| 8 | 2.04 | 3.98 | 5.42 | $8.94$ |
| 9 | 2.20 | 4.30 | 5.86 | 9.62 |
| 10 | 2.36 | 4.62 | 6.30 | 10.30 |
| 11 | 2.52 | 4.94 | 6.74 | 10.98 |
| 12 | 2.68 | 5.26 | 7.18 | 11.66 |

Prices on galvanized bolts will be quoted on application.
WEIGHT IN LBS. PER HUNDRED

| Length <br> In Inches | DIAMETER |  |  |  | Length In Inches | diameter |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | !* | $t^{\prime \prime}$ | $1^{*}$ | 1" |  | $8^{*}$ | $t^{\prime \prime}$ | !" | \% |
|  | 3.2 | 8.9 | 17.4 | 32. |  | 7.6 | 19.1 | 35.5 | 60.4 |
| 13 | 3.7 | $9 .$ | 18.6 | 34. | 6 | 8.9 | $22 .$ | 40.6 | 68,4 |
| 2 | 3.9 | 10.3 | 20 | 36.4 | 7 | 10.2 | 24.9 | 45.8 | 76.4 |
| $2 \frac{1}{2}$ | 4.5 | 11.8 | 22.6 | 40.4 | 8 | 11.4 | 27.8 | 50.9 | 84,4 |
| 3 | 5.1 | 13.2 | 25.1 | 44.4 | 9 |  | 30.8 | 56.1 | 92.4 |
| 32 | 5.8 | 14.7 | 27.7 | 48.4 | 10 |  | 33.7 | 61.3 | 101. |
| 4 | 6.4 | 16.2 | $30.3$ | $52.4$ | 11 |  | 34.8 | 66.4 | $109$ |
| $4 \frac{1}{2}$ | 7. | 17.6 | 32.9 | 56.4 | 12 |  | 37.5 | 71.6 | 117. |

## BOLTS, NUTS AND WASHERS <br> STANDARD MACHINE BOLTS

The prices given below apply to bolts with Square Heads and Nuts. For Hexagonal Nuts add 10 per cent. For Hexagonal Heads and Nuts add 20 per cent.

PRICE PER HUNDRED

| Length In Inches | DIAMETER |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ! ${ }^{\prime \prime}$ | 56" | $t^{\prime \prime}$ | $\mathrm{L}^{\prime \prime}$ | $J^{\prime \prime}$ | $6^{\prime \prime}-1{ }^{\prime \prime}$ | $? *$ |
| 1) | \$1.70 | \$2.00 | \$2.40 | \$2.80 | \$3.60 | \$5.20 | 87.20 |
| 2 | 1.78 | 2.12 | 2.56 | 3.00 | 3.86 | 5.58 | 7.70 |
| 21 | 1.86 | 2.24 | 2.72 | 3.20 | 4.12 | 5.96 | 8.20 |
| 3 | 1.94 | 2.36 | 2.88 | 3.40 | 4.38 | 6.34 | 8.70 |
| $3 \frac{1}{2}$ | 2.02 | 2.48 | 3.04 | 3.60 | 4.64 | 6.72 | 9.20 |
| 4 | 2.10 | 2.60 | 3.20 | 3.80 | 4.90 | 7.10 | 9.70 |
| $4 \frac{1}{2}$ | 2.18 | 2.72 | 3.36 | 4.00 | 5.16 | 7.48 | 10.20 |
| 5 | 2.26 | 2.84 | 3.52 | 4.20 | 5.42 | 7.86 | 10.70 |
| $5 \frac{1}{2}$ | 2.34 | 2.96 | 3.68 | 4.40 | 5.68 | 8.24 | 11.20 |
| 6 | 2.42 | 3.08 | 3.84 | 4.60 | 5.94 | 8.62 | 11.70 |
| $6 \frac{1}{2}$ | 2.50 | 3.20 | 4.00 | 4.80 | 6.20 | 9.00 | 12.20 |
| 7 | 2.58 | 3.32 | 4.16 | 5.00 | 6.46 | 9.38 | 12.70 |
| 71 | 2.66 | 3.44 | 4.32 | 5.20 | 6.72 | 9.76 | 13.20 |
| 8 | 2.74 | 3.56 | 4.48 | 5.40 | 6.98 | 10.14 | 13.70 |
| 9 | 2.90 | 3.80 | 4.80 | 5.80 | 7.50 | 10.90 | 14.70 |
| 10 | 3.06 | 4.04 | 5.12 | 6.20 | 8.02 | 11.66 | 15.70 |
| 11 | 3.22 | 4.28 | 5.44 | 6.60 | 8.54 | 12.42 | 16.70 |
| 12 | 3.38 | 4.52 | 5.76 | 7.00 | 9.06 | 13.18 | 17.70 |
| 13 | + |  | 6.08 | 7.40 | 9.58 | 13.94 | 18.70 |
| 14 |  |  | 6.40 | 7.80 | 10.10 | 14.70 | 19.70 |
| 15 |  |  | 6.72 | 8.20 | 10.62 | 15.46 | 20.70 |
| 16 | * |  | 7.04 | 8.60 | 11.14 | 16.22 | 21.70 |
| 17 | , |  |  |  | 11.66 | 16.98 | 22.70 |
| 18 |  |  |  |  | 12.18 | 17.74 | 23.70 |
| 19 |  |  |  |  | 12.70 | $18.50$ | $24.70$ |
| 20 |  |  |  |  | 13.22 | 19.26 | 25.70 |

Length of thread is about three times the diameter of bolt head. Bolts with longer thread furnished to order. Prices on galvanized bolts will be quoted on application.

AVERAGE WEIGHT PER HUNDRED INCLUDING NUTS

| Length | DIAMETER |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In Inches | $\mathbf{t}^{\prime \prime}$ | 16" | $1^{\prime \prime}$ | 立" | $\mathrm{f}^{\prime \prime}$ | 寿" | $1 /$ | $3{ }^{20}$ |
| ${ }_{2}{ }^{\frac{1}{2}}$ | 3.9 lbs . | 6.2 lbs. | $9.7 \mathrm{lbs}$ | 14.7 lbs. | 20.4 lbs . | 26. Ibs. |  |  |
| 2 | 4.6 | 7.2 | $11.3$ | $16,5$ | 22.4 | $29$ | $39.9$ | $63.2$ |
| $2 \frac{1}{2}$ | 5.4 | 8.2 | 12.9 | 18.5 | 25. | 32.2 | 44.1 | 69. |
| 3 | 6.2 | 9.3 | 14.5 | 20.5 | 27.8 | 35.4 | 48.3 | 75.2 |
| $3 \frac{1}{2}$ | 6.9 | 10.4 | 16.1 | 22.6 | 30.6 | 38.7 | 52.5 | 81.4 |
| 4 | 7.6 | 11.5 | 17.7 | 24.7 | 33.4 | 42. | 56.7 | 87.6 |
| $4 \frac{1}{2}$ | 8.3 | 12.6 | 19.2 | 26.8 | 36.2 | 45.3 | 60.9 | 93.8 |
| 5 | 9. | 13.7 | 20.7 | 28.9 | 39. | 48.6 | 65.1 | 100. |
| $5 \frac{1}{2}$ | 9.7 | 14.8 | 22.2 | 31. | 41.8 | 51.9 | 69.2 | 106. |
| 6 | 10.4 | 15.9 | 23.7 | 33.1 | 44.6 | 55.2 | 73.4 | 112. |
| $6 \frac{1}{2}$ | 11.1 | 17. | 25.2 | 35.2 | 47.4 | 58.5 | 77.6 | 118.5 |
| 7 | 11.8 | 18.1 | 26.7 | 37.8 | 50.2 | 61.8 | 81.8 | 124.5 |
| 712 | 12.5 | 19.2 | 28.2 | 39.4 | 53.1 | 65.1 | 86. | 130.5 |
| 8 | 13.2 | 20.3 | 29.7 | 41.5 | 56. | 68.5 | 90. | 136.5 |
| 9 |  |  | 33.1 | 45.7 | 61.5 | 75.2 | 98. | 149. |
| 10 |  |  | 36.5 | 49.9 | 67. | 81.9 | 106.3 | 161. |
| 11 |  |  | $40 \text {. }$ |  | 72,5 | 88.7 | 114.6 | 173. |
| 12 |  |  | 43.5 | 58.3 | 78. | 95.5 | 122.9 | $184.5$ |
| 13 |  |  | 47. | 62.5 | 83.5 | 102.3 | 131.2 | 196.5 |
| 14 |  |  | 50.5 | 66.7 | 89. | 109.1 | 139.5 | 209. |
| 15 |  |  | $54 .$ | $70.9$ | $94.5$ | 116. | 148. | 221. |
| 16 |  |  | 57.5 | 75.1 | $100 .$ | 123. | 156.5 | 233. |
| 17 |  |  |  |  | 105.5 | 130. | 165. | 245. |
| 18 19 |  |  |  |  | 111. | 137. | 173.5 | 257.5 |
| 19 20 |  |  |  |  | 116.5 122. | 144. | 182. | 270. |

BOLTS, NUTS AND WASHERS
ROUND PLATE WASHERS


Prices on galvanized round plate washers quoted on application.

SQUARE PLATE WASHERS


NATIONAL LOCK WASHERS


| Description |  |  |  |  |  |  | List Price per 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| For $\frac{1}{4}^{\prime \prime}$ Bolt | - |  | - | - | . | . | \$8.25 |
| For ${ }^{3 \prime}{ }^{\prime \prime}$ Bolt | * |  | . | - | . | . | 9.50 |
| For $\frac{1}{2}^{\prime \prime}$ ' Bolt | . |  | , |  |  | ? | 9.75 |
| For $9^{\prime \prime}$ " Bolt | . |  |  | - | - | ; | 10.75 |
| For $5^{\prime \prime}$ " Bolt | , |  | . |  |  |  | 12.25 |
| For ${ }^{\frac{3}{4}}$ " Bolt | - | , | - | - |  | , | 13.25 |

Prices on galvanized square washers quoted on application.

GIMLET OR CONE POINT LAG SCREWS
PRICE PER HUNDRED

| Length Under Head in Inches | HLAMETER |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\%^{\prime \prime}$ and ${ }^{\text {a }}$ " | $3^{*}$ | 고레 | I' | $k^{2}-l^{*}$ | $3^{*}$ |
|  | \$2.45 | \$2.96 | \$3.47 | \$4.11 | \$6.00 |  |
| $2 \frac{1}{2}$ | 2.65 | 3.22 | 3.79 | 4.47 | 6.50 | \$9.20 |
| $3^{2}$ | 285 | 3.48 | 4.11 | 4.83 | 7.00 | 9.90 |
| $3 \frac{1}{2}$ | 3.05 | 3.74 | 4.43 | 5.19 | 7.50 | 10.60 |
| 4 | 3.25 | 4.00 | 4.75 | 5.55 | 8.00 | 11.30 |
| $4 \frac{1}{2}$ | 3.45 | 4.26 | 5.07 | 5.91 | 8.50 | 12.00 |
| $5^{2}$ | 3.65 | 4.52 | 5.39 | 6.27 | 9.00 | 12.70 |
| $5 \frac{1}{2}$ | 3.85 | 4.78 | 5.71 | 6.63 | 9.50 | $13.40$ |
| 6 | 4.05 | 5.04 | 6.03 | 6.99 | 10.00 | $14.10$ |
| $6 \frac{1}{2}$ | 4.25 | 5.30 | 6.35 | 7.35 | 10.50 | $14.80$ |
| $7$ | 4.45 | 5.56 | 6.67 6.99 | 7.71 8.07 | 11.00 | $15.50$ |
| $7 \frac{1}{2}$ | 4.65 | 5.82 | 6.99 | 8.07 8.43 | 11.50 | 16.20 |
| 8 | 4.85 | 6.08 | 7.31 | 8.43 | 12.00 | 16.90 |
| 9 | 5.25 | 6.60 | 7.95 8.59 | 9.15 | 13.00 | 18.30 |
| 10 | 5.65 | 7.12 | 8.59 | 9.87 | 14.00 | 19.70 |

Prices will be quoted upon application for galvanized lag screws or for larger sizes,

BOLTS, NUTS AND WASHERS-TURNBUCKLES
GIMLET OR CONE POINT LAG SCREWS-(Concluded)
AVERAGE WEIGHT PER HUNDRED

| Length | DIAMETER |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Under <br> Head in Inches | R" ${ }^{\prime \prime}$ | $l^{\prime \prime}$ | 产** | $!^{\prime \prime}$ | V" | $t^{*}$ | $8^{\prime \prime}$ |
| 2 | 4.8 lbs | 6.7 lbs | 10.3 fbs | 13. lbs | 22.8 lbs | 24. 1 lbs . |  |
| $2 \frac{1}{2}$ | 5.6 | 8.4 | 11.9 | 15.6 | 25.3 , | 27.2 | 39 lbs. |
| 3 | 6.5 | 9.1 | 13.5 | 18.2 | 27.8 | 30.5 |  |
| $3 \frac{1}{2}$ | 7.3 | 10.6 | 15.1 | 20.6 | 30.4 | 33.7 |  |
| 4 | 8.2 | 12. | 16.7 | 22.9 | 33. | 37. |  |
| $4 \frac{1}{2}$ | 9. | 13. | 18.6 | 25.2 | 35.5 | 40.2 |  |
| 5 | 9.9 | 14. | 20.5 | 27.5 | 38. | 43.5 | 67 |
| $5 \frac{1}{2}$ | 10.8 | 15. | 22.4 | 30.3 | 40.7 | 47. 50.6 | 72 |
| 6 | 11.7 | 16. | 24.2 28. | 32. | 43.3 50. | 50.6 57.8 | 87 |
| 8 |  |  | 28. | 41. | 56.8 | 64.7 | 97 |
| 9 |  |  |  | 45.5 | 63.5 | 72. | 107 |
| 10 |  |  |  | 50. | 70.3 | 79.2 | 117 |

TURNBUCKLES
DROP FORGED STEEL
WITH TWO EYES


Cat. No. 40237

| Plain | Galvanized | Description |  |  |  |  |  |  |  |  |  |  |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 40236 | 40240 | $3^{\prime \prime}$ bolts, $4^{\prime \prime}$ opening |  | . | - | - | - | - | - |  | - |  | - |  | 75 |
| 40237 | 40241 | $\frac{1}{2}{ }^{\prime \prime}$ bolts, $6^{\prime \prime}$ opening |  |  | . | , |  |  |  |  |  |  | . |  | 160 |
| 40238 | 40242 | $\frac{1}{2} \frac{1}{2}_{\prime \prime}^{\prime \prime}$ bolts, $9^{\prime \prime}$ opening |  |  | . | , |  | . |  |  |  |  |  |  | 190 |
| 40239 | 40243 | $\frac{5}{8 \prime \prime}_{\prime \prime}$ bolts, $12^{\prime \prime}$ opening |  |  |  | , | + | . | , | - | - | - | - |  | 395 |

## WITH EYE AND HOOK



Cat. No. 40245


## INSULATOR PINS

## ALL WOOD PINS




## WOOD SIDE BRACKETS



## IRON PINS



IRON BRACKETS


Cat. No. 8744


Cat. No. 40201


Cat. No. 17194

Of these brackets, Cat. No. 8744 is intended for light feeder wires. Cat. No. 40201 is a heavie! bracket with curved back for pole use, and will carry the largest size feeder. Cat. Nos. 17194 anc 60669 are extra heavy and made of gray iron.

## INSULATOR PINS

IRON BRACKETS-(Concluded)

STEEL PINS WITH WOOD TOPS
These pins consist of high carbon steel bolts with paraffined wood
tops having 1 in. or 13 in. thread.
Prices include nut and washer.

For pins having other dimensions than given above, or for pins with galvanized bolts, prices will be quoted on application.


## STEEL PINS WITH PORCELAIN AND WOOD TOPS

These pins are built with a steel bolt the total length of the pin. The threaded portion is paraffined wood, and is supported on a porcelain base; the porcelain serves to prevent burning of the pin, due to arcing around the skirt of the insulator.

Prices include nut and washer.

Cat. No.


For pins having other dimensions than given above, or for pins with galvanized bolts, prices will be quoted on application.


## INSULATOR PINS

## STANDARD "LEE" PINS-ALL METAL

The "Lee" pin consists of a hollow iron base, a separable iron thimble and a steel stud bolt with nut and washer. The thimble is designed for cementing into the insulator and because of the separable feature the cementing may be done at whatever place is most convenient without causing difficulty in shipping. This renders unnecessary the expensive practice of cementing in the field.

| Cat. No. | DJMENSIONS IN INCHES |  |  |  |  |  |  |  | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | E | F | G | H |  |
| 100165 | $13 \frac{1}{8}$ | $6 \frac{1}{4}$ | $6{ }^{7}$ | 3 | 3 | $1 \frac{3}{1}$ | $1 \frac{1}{5}$ | $\frac{3}{4}$ | 450 |
| 100166 | $14 \frac{3}{8}$ | $7 \frac{1}{2}$ | $6 \frac{5}{6}$ | 3 | 3 | $1 \frac{1}{4}$ | $1 \frac{1}{4}$ | $\frac{3}{4}$ | 490 |
| 100167 | $15 \frac{7}{6}$ | $9^{2}$ | $6 \frac{6}{6}$ | 3 | $3 \frac{3}{4}$ | $1 \frac{1}{4}$ | 1 l | 4 | 550 |
| 100168 | $17 \%$ | 11 | $6 \frac{7}{7}$ | 3 | $3{ }^{3}$ | $1{ }_{1}^{\frac{7}{4}}$ | $1 \frac{1}{6}$ | 3 | 65.5 |
| 100169 | $19 \frac{1}{6}$ | $12 \frac{1}{2}$ | $6 ?$ | 3 | $3 \frac{3}{4}$ | $1 \frac{1}{4}$ | $1 \frac{1}{8}$ | 1 | 725 |
| 100170 | $20 \frac{7}{4}$ | 14 | 67 | 3 | $4 \frac{3}{4}$ | $1{ }_{4}^{3}$ | 18 | 1 | 820 |

Pins with other lengths of stud bolts or with extended pin base can be furnished if specifically ordered.


RIDGE IRONS
These irons are arranged for attachment to the top of wood poles with $\frac{3}{3} \mathrm{in}$. lag screws. The irons are galvanized.


Cat. No. 40203


| Nat. No: | Description | Dimensions ix inches |
| :--- | :--- | :--- | :--- | :--- |

PIPE POLE-TOP PINS
WITH SEPARABLE THIMBLES

| Cat. No. | dimenstons in inches |  |  |  |  |  |  | Approx Weight per 100 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | B | C | D | F* | G | H |  |
| 100171 | 13 | $8 \frac{1}{2}$ | $3 \frac{1}{2}$ | 1 | 2 | $\frac{17}{3 \frac{1}{2}}$ | $\frac{37}{32}$ | 445 |
| 100172 | 15 | 10 | 4 | 1 | 2 | $\frac{31}{32}$ | \% | 505 |
| 100173 | $17 \frac{1}{2}$ | $11 \frac{3}{4}$ | $4 \frac{1}{2}$ | $1 \frac{1}{4}$ | 2 | $\frac{1}{2}$ |  | 580 |
| 100174 | $20 \frac{1}{2}$ | 14 | $5 \frac{1}{4}$ | $1{ }_{4}^{1}$ | $\frac{2}{2}$ | $\frac{21}{32}$ | ${ }^{\frac{17}{32}}$ | 670 |
| 100175 | $23 \frac{1}{2}$ | 16 | 6 | $1 \frac{1}{2}$ | 2 | $\frac{21}{32}$ | $\frac{17}{32}$ | 760 |

${ }^{*}$ Nominal pipe measurement. The actual diameter is 2.375 in .


## INSULATORS

## FEEDER TAP

FOR ATTACHING FEEDER TAP TO BRACKET ARM
For use in pole bracket construction for insulating taps run from the feeder to the trolley wire. Opening in insulating bushings is 1 in .


Feeder Tap Insulator


FEEDER WIRE, 600 VOLTS


Cat. No. 64259

## WITH TOP AND SIDE BEARING

Cat. No. 64259 is an all compound insulator suitable for feeders up to and including $500,000 \mathrm{c} . \mathrm{m}$. The special compound used will not soften at a temperature less than 650 degrees fahrenheit.

| Cat. No | Description | Appror. Weight per 100 |
| :---: | :---: | :---: |
| 64259 | Insulator with top and side grooves for $4 / 0$ to $500,000 \mathrm{c} \cdot \mathrm{m}$. feeders |  |
|  | $1^{\prime \prime}$ pirr hole . . . . . . . . . . | 225 |

## TIE TOP

## WITH TOP AND SIDE BEARING

The tie top insulator consists of a sherardized malleable iron shell into which the standard insulating compound is moulded. It is furnished with both 1 in . and $1 \frac{3}{8} \mathrm{in}$. pin holes and is suitable for the heaviest loads in all locations excepting corners, for which standard corner insulators are used.


Cat. No. 46012

| Cat. No, | Description | Diam. Pin Hole | Approx Weight pet 100 |
| :---: | :---: | :---: | :---: |
| 46013 | Insulator with top and side grooves for No. 0000 and smaller cond. | $1^{\prime \prime}$ | 415 |
| 46012 | Insulator with top and side grooves for $500,000 \mathrm{c.m}$. and smaller cond. | 1 | 445 |
| 46007 | Insulator with top and side grooves for No. 0000 and smaller cond. | $1{ }^{\prime \prime}$ | 410 |
| 46006 | Insulator with top and side grooves for $500,000 \mathrm{c} . \mathrm{m}$, and smaller cond. | $18{ }^{\text {\% }}$ | 440 |
| 46005 | Insulator with top and side grooves for $800,000 \mathrm{c} . \mathrm{m}$. and smaller cond. | $1 \frac{17}{\prime \prime}$ | 520 |
| 46004 | Insulator with top and side grooves for $1,500,000 \mathrm{c} . \mathrm{m}$. and smaller cond. | $1 \frac{3}{6}^{\prime \prime}$ | 540 |

## INSULATORS

## FEEDER WIRE, 600 VOLTS-CLIP TOP

WITH TOP AND SIDE BEARING
The clip top insulators have sherardized malleable iron shells with the standard moulded compound insulation. They are listed for two sizes of pins and to accommodate cables up to $1,500,000 \mathrm{c} . \mathrm{m}$. cross section. The top clips being well malleablized are readily peaned over the feeder to bold it in place. It should be noted particalarly that in all the General Electric Company's iron clad insulators, the iron shells extend well below the lowest bearing point of the insulator pins thereby greatly strengthening them against side strains. The clip top insulators are offered for any service excepting at corners, for which standard corner insulators are used.


Cat. No. 46010

| Cat. No. | Description | Diam <br> Pin Hole | Approx. Weight per 100 |
| :---: | :---: | :---: | :---: |
| 46011 | Insulator with top clips and side groove for No, 0000 and smaller cond. | $1^{\prime \prime}$ | 390 |
| 46010 | Insulator with top clips and side groove for $500,000 \mathrm{c} . \mathrm{m}$. and smaller cond. | $1^{\prime \prime}$ | 415 |
| 46003 | Insulator with top clips and side groove for No. 0000 and smaller cond. | $1 \frac{18}{* \prime}^{\prime \prime}$ | 385 |
| 46002 | Insulator with top clips and side groove for $500,000 \mathrm{c} . \mathrm{m}$. and smaller cond. | $13^{\prime \prime}$ | 410 |
| 46000 | Insulator with top clips and side groove for $800,000 \mathrm{c} . \mathrm{m}$. and smaller cond. | 173* | 495 |
| 46001 | Insulator with top clips and side groove for $1,500,000 \mathrm{~cm}$. and smaller cond. | $13{ }^{\prime \prime}$ | 520 |

## WEDGE TOP

## WITH TOP AND SIDE BEARING

This insulator is like the clip top insulator in general design but the clip


Cat. No. 61110

Cat, No. 46008


## INSULATORS

## FEEDER WIRE, 600 VOLTS

## GLASS



Cat. No. 40275


Cat. No. 40276


Cat. No. 40278

| Cat. No. | dimensions in inches |  |  |  |  | $\begin{aligned} & \text { No. per } \\ & \text { Bbl. } \end{aligned}$ | Approx. Weight Each |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diam. | Height | Top Groove | Side Groove | Pin Hole |  |  |
| 40275 | $3 \frac{1}{2}$ | $4 \frac{1}{2}$ | 1 | $\frac{7}{8}$ | 1 | 110 | $2 \frac{1}{8}$ |
| 40276 | $3 \frac{3}{4}$ | 4 | $1 \frac{1}{6}$ | 1 | 1 | 125 | 2 |
| * 40277 | $4 \frac{1}{4}$ | $5 \frac{1}{2}$ | $1 \frac{7}{8}$ | $1{ }^{3}$ | 1 | 50 | 4 |
| 40278 | 4 | $4 \frac{1}{4}$ | $1 \frac{5}{6}$ | $1 \frac{1}{4}$ | $13^{3}$ | 75 | $2 \frac{5}{8}$ |

* Similar in appearance to Cat. No. 40276.

PORCELAIN


Cat, No. 40282


Cat. No. 40279


Cat. No. 40280

| 40279 | $3 \frac{3}{4}$ | 3 |  | $\frac{1}{4}$ | $\frac{5}{5}$ | 1 | 200 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40280 | $3 \frac{1}{2}$ | $4 \frac{1}{2}$ | $1 \frac{1}{2}$ | 1 | 200 | $1 \frac{1}{2}$ | $1 \frac{1}{2}$ |
| 40282 | $4 \frac{1}{4}$ | $4 \frac{1}{4}$ | $1 \frac{7}{8}$ | $1 \frac{1}{2}$ | $1 \frac{3}{8}$ | 100 |  |

## INSULATORS

FOR TELEPHONE, TELEGRAPH, SIGNAL WORK, ETC.


Cat. No. 9322


Cat. No. 40271


Cat. No. 9312

| Cat. No. | Description | dimensions in inches |  |  |  |  | Working Voltage | No per Bbl. | Approx. <br> Weight Each |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Diam. | Height | Top Groave | Side Groove | Pin <br> Hole |  |  |  |
| 9322 | Standard pony glass <br> Standard pony glass, double petticoat <br> Glass transposition | $2 \frac{1}{4}$ | $3 \frac{1}{2}$ |  | $\frac{1}{3}$ | 1 |  | 400 | $\frac{9}{16}$ |
| 9312 |  | 23 | $3 \frac{1}{2}$ |  | $\frac{3}{8}$ | 1 |  | 300 | $\frac{3}{4}$ |
| 40271 |  | $3 \frac{7}{8}$ | $4 \frac{1}{2}$ |  | 8 | 1 |  | 100 | 24 |

PORCELAIN


Cat. No. 40272


Cat. No. 40273


Cat. No. 40274

| 40272 | Porcelain transposition | $3 \frac{1}{2}$ | $4 \frac{1}{2}$ |  | $\frac{3}{8}$ | 1 |  | 150 | $1 \frac{1}{2}$ |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 40273 | Pony porcelain, deep groove | $3 \frac{1}{4}$ | $3 \frac{1}{2}$ |  | $\frac{5}{4}$ | 1 |  | 200 | $1 \frac{1}{4}$ |
| $* 40274$ | double petticoat | Porcelain |  |  |  |  |  |  |  |

[^23]INSULATORS
FOR ALTERNATING CURRENT WORK
FOR WORKING VOLTAGES UP TO 3500


Cat. No. 40283 Glass


Cat. No. 40274 Porcelain


Cat. No. 40284 Glass

| Cat. No. | DIMENSIONS IN INCHES |  |  |  |  | No. per Bbl. | $\underset{\text { Each }}{\text { Approx. Wt. }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diam. | Height | Top Groove | Side Groove | Pin*Hole |  |  |
| 40283 | 4] | $4 \frac{1}{6}$ | None | $\frac{3}{4}$ | 1 | 125 | $2 \frac{1}{4}$ |
| 40281 | $4 \frac{3}{3}$ | $3 \frac{7}{8}$ | $1$ | ${ }^{5}$ | 1 | 125 | $2 \frac{1}{2}$ |
| 40274 | $3 \frac{3}{4}$ | 3 | $\frac{1}{2}$ | $\frac{3}{5}$ | 1 |  | $1 \frac{1}{4}$ |

FOR WORKING VOLTAGES UP TO 7500


Cat. No. 40285


Cat. No. 40287

| Cat. No. | dimensions in inches |  |  |  |  | Test Voltage | No. per Bbl. | Approx. Weight in Lbs. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diam. | Height | Top Groove | Side Groove | $\begin{aligned} & \text { Pin } \\ & \text { Hole } \end{aligned}$ |  |  |  |
|  | $4 \frac{1}{2}$ | $4 \frac{1}{8}$ | $1 \frac{1}{8}$ | 1 | 1 | 40000 | 100 |  |
| *40286 | 5 | $4 \frac{1}{8}$ | $\frac{5}{8}$ | $\frac{3}{4}$ | 1 | 40000 | 80 | $2 \frac{1}{2}$ |
| 40287 | $5 \frac{1}{2}$ | $3 \frac{1}{2}$ |  | ${ }_{4}^{4}$ | 1 | 40000 | $100$ | $2 \frac{2}{8}$ |
| $\dagger 40288$ | $6 \frac{2}{5}$ | $4 \frac{1}{4}$ | 4 | $\frac{3}{4}$ | $1 \frac{3}{8}$ | $50000$ | $50$ | $3^{\frac{1}{8}}$ |

[^24]
## INSULATORS

FOR ALTERNATING CURRENT WORK
FOR WORKING VOLTAGES UP TO 11000


Cat. No. 100156


Cat. No. 100158


Cat. No. 100157

| Cat. No. | dimensions in inches |  |  |  |  | Test Voltage | No in Bbl. | Approx <br> Weight Each |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diam. | Height | $\begin{aligned} & \text { Top } \\ & \text { Groove } \end{aligned}$ | Side Groove | Pin Hole |  |  |  |
| 100156 | $5 \frac{3}{4}$ | $4 \frac{1}{2}$ | $\frac{5}{8}$ | $\frac{1}{2}$ | $1 \frac{3}{5}$ | 50000 | 65 | 3 |
| 100158 | $6{ }^{3}$ | $5 \frac{3}{8}$ | 1 | $\frac{7}{16}$ | $1 \frac{3}{8}$ | 50000 | 40 | $4 \frac{1}{4}$ |
| 100157 | $5 \frac{3}{4}$ | $5 \frac{1}{4}$ | $\frac{5}{8}$ | $\frac{3}{4}$ | $1 \frac{3}{8}$ | 50000 | 50 | $4 \frac{1}{2}$ |

FOR WORKING VOLTAGES UP TO 22000


Cat. No. 100161


Cat. No. 100159


Cat. No. 100160

|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 100161 | $7 \frac{1}{4}$ | 7 | 1 | $\frac{5}{8}$ | $1 \frac{3}{8}$ | 70000 | 20 | 8 |
| 100159 | $6 \frac{5}{4}$ | $5^{\frac{3}{4}}$ | $\frac{5}{8}$ | $\frac{1}{2}$ | $1 \frac{3}{8}$ | 70000 | 35 | 6 |
| 100160 | $7 \frac{1}{8}$ | 7 | $\frac{3}{4}$ | $\frac{1}{2}$ | $1 \frac{3}{8}$ | 70000 | 26 |  |

## INSULATORS

FOR ALTERNATING CURRENT WORK
FOR WORKING VOLTAGES UP TO 33000
PORCELAIN


Cat. No. 100164

| Cat No. | dimensions in inches |  |  |  |  | Test Voltage | No. in Bbl. or Crate | Approx Whight Each |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Diam. | Height | $\begin{aligned} & \text { Top } \\ & \text { Groove } \end{aligned}$ | Side Groove | $\begin{aligned} & \text { Pin } \\ & \text { Hole } \end{aligned}$ |  |  |  |
| $\begin{aligned} & 100162 \\ & 100164 \\ & 100163 \end{aligned}$ | $\begin{aligned} & 8 \\ & 88 \\ & 8 \frac{1}{2} \end{aligned}$ | $\begin{aligned} & 9 \\ & 7 \frac{3}{6} \\ & 8 \frac{1}{4} \end{aligned}$ | $\begin{array}{r}\frac{3}{4} \\ \frac{3}{4} \\ \frac{3}{4} \\ \hline\end{array}$ | $\frac{3}{1}$ <br> $\frac{5}{5}$ <br> $\frac{3}{4}$ | $1 \frac{3}{8}$ $1 \frac{3}{4}$ $1 \frac{3}{8}$ | $\begin{aligned} & 86000 \\ & 85000 \\ & 85000 \end{aligned}$ | $\begin{aligned} & 15 \\ & 16 \\ & 15 \end{aligned}$ | $\begin{gathered} 9 \frac{3}{4} \\ 10^{\frac{1}{3}} \\ 11 \end{gathered}$ |

PORCELAIN STRAIN INSULATOR


STANDARD PORCELAIN INSULATOR FOR SPAN AND ANCHOR WIRES

| Cat. No. | Length | Width | Groove |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 110900 \\ & 110901 \end{aligned}$ | $\begin{aligned} & 2 \frac{1_{2}^{\prime \prime}}{2} \\ & 3 \frac{1^{\prime \prime}}{4} \end{aligned}$ | $\begin{aligned} & 2 \frac{5}{16}{ }^{\prime \prime} \\ & 2 \frac{3^{\prime \prime}}{4} \end{aligned}$ | $\frac{1}{\prime \prime \prime}$ $\frac{5}{2 \prime \prime}$ $\frac{5}{\prime \prime}$ |

# INSULATED POLE TOPS-CLAMPS—CLIPS FOR IRON POLES 



Cat. No. 66448

COMPLETE WITH WOOD PLUG, EYEBOLT AND NUT

| Cat. No. | Dia. of Top of Pole | Weight per 100 |
| :--- | :---: | :---: |
|  |  |  |
| 66448 | $3^{\prime \prime}$ | 1500 |
| 66450 | $4^{\prime \prime}$ | 1600 |
| 66452 | $4 y^{\prime \prime}$ | 1700 |
| 66454 | $5^{\prime \prime}$ | 2000 |
| 66456 | $6^{\prime \prime}$ | 3600 |
| 66458 | $7^{\prime \prime}$ | 3800 |



Cat. No. 66460

POLE TOPS WITH FEEDER ARMS, COMPLETE WITH WOOD PLUG, EYEBOLT AND NUT

| Cat. No. | Dia. of Top of Pole 4 | Weight per 100 |
| :---: | :---: | :---: |
| 66460 | $3^{\prime \prime}$ | 4700 |
| 66462 | $4^{\prime \prime}$ | 4800 |
| 66464 | $4 \frac{1}{\prime \prime}$ | 4900 |
| 66466 | $5^{\prime \prime}$ | 5000 |
| 66468 | $6^{\prime \prime}$ | 5900 |
| 66470 | $7^{\prime \prime}$ | 7000 |

TROLLEY TERMINAL CLAMP
Cat. No. No. 27437


CROSBY CLIPS
Weight
per 100

## FEEDER CABLE SPLICERS AND CONNECTORS-SECTION SWITCHES CABLE SPLICER



| Cat. No. | Size of Cable | Cat. No. | Size of Cable |
| :---: | :---: | :---: | :---: |
| 43508 | $250,000 \mathrm{c.m}$. | 43511 | 43512 |
| 43509 | $300,000 \mathrm{c.m}$ | 43513 | $750,000 \mathrm{c.m}$. |
| 43510 | $400,000 \mathrm{c.m}$. | $1,000,000 \mathrm{c.m}$. |  |

CABLE CONNECTOR


|  |  |  |  |
| :--- | :--- | :--- | :--- |
| 43538 | $250,000 \mathrm{c.m}$ | 43541 | $500,000 \mathrm{c.m}$. |
| 43539 | $300,000 \mathrm{c.m}$. | 43542 | $750,000 \mathrm{c} . \mathrm{m}$ |
| 43540 | $400,000 \mathrm{c.m}$. | 43543 | $1,000,000 \mathrm{c.m}$. |

## SECTION SWITCHES



Cat. No. 40307
Section Switch

In these switch boxes, the hinge clip of the switch is connected to the trolley line, and the box is so constructed that the cover can be closed and locked whether the switch is open or closed, thus preventing any interference with the line by unauthorized persons.

| cat. no. |  | Amp. Cap. | Weight each |  |
| :---: | :---: | :---: | :---: | :---: |
| With Box | Without Box |  | With Box | Without Box |
| 40305 | 40313 | 200 | 12 | 5 |
| 40307 | 40315 | 400 | $17 \frac{1}{2}$ | 8 |
| *40321 |  | 400 | 32 |  |
| 40309 | 40317 | 600 | 23 | 11 |
| 40311 | 40319 | 1200 | 46 | 28 |



Cat. No. 40321
Section Switch and Fuse

## SECTION SWITCHES

## aUTOMATIC SECTIONALIZING SWITCH

## FOR RAILWAY FEEDER SYSTEMS

The automatic sectionalizing switch herein illustrated and described is designed to improve the efficiency of direct current feeder systems by permitting all section feeders to be placed in multiple. This is accomplished by connecting the switch directly across the section insulators, which, while giving all the advantages of the non-sectionalizing system, does not, in consequence of the automatic operation of the switch, do away with the beneficial results gained from a sectionalized system.

Suppose the trolley or third rail system to be divided into three sections, A, B and C. (see connection diagram Fig. 1), and cars become banked during rush hours, etc. in section B , it will be seen that under the general conditions of section feeding the feeders to sections A and C will be idle while the feeder to section $B$ will be insufficient, with a resultant drop in potential and consequent bad operating conditions.

The system, however, can be made continuous and all feeders placed in multiple by the use of the automatie sectionalizing switch, the operation of which is as follows:


Automatic Sectionalizing Switch

* The switch is connected across the section insulator by the taps G and H. Circuit breaker B on being closed energizes section $B$ and current passes through $\operatorname{tap} G$, switch blade Y, contactor operating coil X to contact stud on relay which is open circuited. On closing circuit breaker C, section C is energized, current passes through tap $H$, switch blade Z, and relay operating coil W to ground, closing the relay disk $V$. This in turn completes the circuit through the contactor operating coil X , causing the contactor to close and completing the circuit across the insulator, thus placing all feeders in multiple. It will be noted that under these conditions should cars become banked in any one section, current from the other sections will be fed across the section insulators, thus increasing materially the efficiency of the entire copper distribution. The switch will not operate until both breakers, feeding the sections it is connected to, are closed.

In systems where these switches have


Fig. 1
Connections of Automatic Sectionalizing Switch on Direct Current Trolley Systems been installed, exchange current readings taken during rush hours, as high as 600 and 700 amperes have been recorded, with a resultant increase in potential of from 100 to 150 volts.

In cases of short circuits the isolation of the section affected is very simple. A short circuit occurring on section A will, as the system is continuous, eause $\dagger$ Breakers A, B and C to drop out and all automatic switches to open circuit. When the station operator closes Breaker A, it will at once open, showing the locality of the trouble. He will next close Breakers B and C, which will energize these sections, causing the automatic switch to close and tying the two sections together.

When the short circuit in section $A$ has been remedied, Breaker A can be closed, antomatically tying in section A with the rest of the system.

[^25]
## SECTION SWITCHES-OVERHEAD LINE TOOLS

## AUTOMATIC SECTIONALIZING SWITCH-(Concluded)

## FOR RAILWAY FEEDER SYSTEMS

Attention is especially called to the fact that a section cannot be isolated, i.e., both sectionalizing switches will not drop out until the circuit breakers feeding the two adjacent sections and the breaker feeding the section to be isolated have been tripped. After the sectionalizing switches have thus been open-circuited, the breakers feeding the two adjacent sections can be closed.

The sectionalizing switch and box enclosing it are constructed and finished to withstand severest weather conditions. As the location and suspension of the switch depend on local conditions, no brackets are furnished.

This switch is highly recommended to customers wishing to improve their operating conditions without the large outlay for feeder copper generally necessary. Its use is also highly recommended in the original layout of feeder systems since by its adoption a smaller cross-section of feeder copper can be utilized.

DIMENSIONS


Fig. 2
Connections of Automatic Sectionalizing Switch on Direct Current Third Rail Systems-Rails Continuous Between Sub-Stations


$\dagger$ (Railway Rating) - 1000 amperes can be carried 60 per cent. of the time. Continuous capacity is 600 amperes.

OVERHEAD LINE TOOLS


Cat. No. 16914


OVERHEAD LINE TOOLS


Cat. No. 100029



Cat. No. 35799

35799
Wrench for Form H mining suspensions .


Cat. No. 46765
46765 Wrench for Forms $\mathrm{H}, \mathrm{D}$ and G , straight line suspensions : TROLLEY WIRE HAULING CLAMP

## OVERHEAD LINE TOOLS-ANCHOR RODS AND ANCHORS

WIRE CABLE THIMBLES

| Approx. Wgt. |
| :---: | :---: |
| per 100 |

FEEDER STRAIN CLAMPS

| Cat. No. | Description |  |
| :---: | :---: | :---: |
| 100077 | For No. 0000 cable-M. I. sherardized | 1 - |
| 100076 | For No. 250,000-300,000 c.m. cable-M. I sherardized. | $=-$ |
| 100075 | For No. 400,000-650,000 c.m. cable M. I. sherardized - |  |
| 100074 | For No. $700,000-1,000,000 \mathrm{c.m}$. cable-M. I. sherardized | \% - |

## DISTRIBUTING RINGS



## ANCHOR RODS AND ANCHORS

ANCHOR RODS-GALVANIZED


Cat. No. 48838


Above Cat. Nos, cover anchor rods with nuts but without washers.

## ANCHOR RODS AND ANCHORS

HARPOON ANCHOR


| Cat. No, | Diameter | Length | Approx. Wgt. <br> per 100 |
| :---: | :---: | :---: | :---: |
| 100049 | $1^{\prime \prime}$ | 5 ft | 2200 |

## MATHEWS' GUY ANCHORS



*The ratchet wrench used in conjunction with the regular wrench makes it possible to set anchors at acute angles or close to walls, etc.

The anchors listed above are finished plain-prices for similar anchors galvanized furnished on application.

## INDEX OF SUBJECTS



## INDEX TO CATALOGUE NUMBERS

| No. Page | No. Page | No. Page | No. Page | No. Page | No. Page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7798-110 | $19491 \quad 74$ | 2913262 | 3568622 | 39892-50 | 40065-11 |
| $874+-111$ | 19492-43 | 29133-62 | 3568821 | 39893 50 | 40066-11 |
| 8747 - 110 | 2145- 51 | 2913462 | 3568922 | 39894-50 | 40067-11 |
| 8749-110 | 21450-74 | 29135-62 | $3.5690 \quad 22.34$ | 3989.550 | 40068-11 |
| 8750-110 | $21485-54$ | 30310 52 | 3.2691 29.34 | 39896 44,50 | 40069-12 |
| 8751-110 | 21487-51 | 30458 46,52 | 35799124 | 3992736 | 40070-12 |
| 8841-110 | 21488-51 | 30459-4 | 36310-23 | 3992836 | 40071-12 |
| 9312-116 | 25976-38 | $30460-45$ | $36313 \quad 59$ | 40009-7 | 40072-12 |
| 9322116 | 25977-38 | 30609-71 | 37487 63 | 400107 | 40073-12 |
| 11294-41 | 25978-38,39 | 30610-71 | 37488-59 | 400117 | 40074-12 |
| 11296-41 | 25979-16 | 30611-71 | 3748959 | 40012-7 | 4007513 |
| 11297-67 | 25980-16 | 3061271 | 3768553 | 400137 | 40076-13 |
| 11298-67 | 25981-38 | 3061371 | 3780452 | 400147 | $40077 \quad 13$ |
| 12900-46 | 25982-38 | 30614-71 | 3780.553 | 400158 | 40078-13 |
| 15022-43 | 25983-25 | $30615-71$ | $37806 \quad 53$ | 400168 | $40079 \quad 13$ |
| 15026-15 | 25984-39 | 30616-71 | 3780853 | 40017-8 | 40080-13 |
| 15037-15 | 2598539 | $3166.5-43$ | 3797933 | 400188 | 4008114 |
| 15120-44 | 25986-26 | 31660-42 | 3798133 | 40019-8 | 40082-14 |
| 15121-44 | 25987-25 | 31667-43 | 37983 33 | 400208 | 40083-14 |
| 15138-46 | 25988-20 | 31668-42 | 37984-33 | 400219 | 40084-14 |
| 15140-45 | 25989-40 | 32.562-42 | 37986 | 40022-9 | 40085-14 |
| 15147-45 | 2.5990-40 | 32463-42 | 3793833 | 400239 | 40086-14 |
| 15157-42 | 25991-39,40 | 32504-42 | 37991-33 | 400249 | 40087-14 |
| 15901-48 | 25992-23 | $32565-42$ | 3799333 | 4002:-9 | 40098-14 |
| 15902-48 | 25993-23 | 32566-44 | 37995-34 | 400269 | $40090 \quad 14$ |
| 15903-48 | 25994-23 | 32567 44 | 37997-34 | $40027 \quad 12$ | 40092-14 |
| 15993-64 | 25995-40 | 32568-44 | 3800534 | 4002812 | 40093-14 |
| 1603-4-42 | 25996-23,40 | 32560-44 | 38008-34 | 40029 12 | 4009.4-14 |
| 16379-48 | 25997-23.40 | $32570-44$ | 3801035 | 4003012 | 40095-14 |
| 16380-41 | 25998-39 | 32.571-44 | 3801235 | $40031 \quad 12$ | 40096-14 |
| 16394-43 | 25999-39 | 32572-44 | 38014-35 | 40032-12 | 40097-14 |
| 16395-64 | 26143-32 | 32573-44 | 38016-35 | 40033-9 | 40098-14 |
| 16399-58 | 2614-32 | 32574-43 | 38690-40 | 40034-9 | 40099-14 |
| 16400-58 | 26150-70 | 32575-43 | 38691-40 | 40035-9 | 40100-14 |
| 16727-59 | 26151-43 | $32576-43$ | 39088-16 | 40036-9 | 40101-14 |
| 16762-124 | 26152-44 | $32577-43$ | 39690-16 | 40037-9 | 40102-14 |
| 16914-123 | 26153-44 | 33954-25 | 39700-33 | 40038-9 | 40103-14 |
| 16915-124 | $261.54-46$ | 33050-26 | 39701-33 | 40039-10 | 40104-14 |
| 16925-32 | 26155-46 | 33058-25 | 39702-33 | 40040-10 | 40106-14 |
| 10926-32 | 26156-45 | 33060-26 | 39703-33 | 40041-10 | 40108-14 |
| 17030-59 | 26157-45 | 33062-29 | 39704-34 | 40042-10 | 40109-14 |
| 17194-111 | 27370-20 | $33064-30$ | 39705-34 | 400+3-10 | 40110-14 |
| 17207-37 | 27374--29 | 33066-29 | 39706-34 | $400+4-10$ | 40111-14 |
| 17221-58 | 27375-30 | 33968-30 | 39707-34 | 40045-10 | 40112-14 |
| 17222-58 | 27376-30 | 34111 -43 | 39708-35 | 40046-10 | 40113-102 |
| 17223-60 | 27377-29 | 34112-43 | 39709-35 | 40047-10 | 40114-102 |
| 17302-47 | 27378-58 | 34113-44 | 39710-36 | 40048-10 | 40115-102 |
| 17338-48 | 27379-58 | $3+114-4.4$ | 39876-49 | 40049-10 | 40116-102 |
| 17341-37 | 27380-58 | 34115-44 | 39877-49 | 500.50-10 | 40117-102 |
| 17400-48 | 27381-58 | 34116-44 | 39878-50 | 40051-13 | 40118-102 |
| 19406-70 | 27382-60 | 3+117-45 | 39879-49 | 400.52-13 | 40119-102 |
| 19407-70 | 27383-60 | 34118-45 | 39880-49 | 40053-13 | 40120-102 |
| 19410-74 | 27437-120 | 3+119-46 | 39881-50 | 40054-13 | 40121-102 |
| 19424-44 | 27441-31 | 34120-46 | 39882-50 | 400.5-13 | 40122-102 |
| 19425-44 | 2744-31 | 34121-45 | 39883-50 | 40056-13 | 40123-102 |
| 19436-51 | 27627-52 | 34122-45 | 39884-50 | 40057-11 | 40124-102 |
| 19437-51 | 27628-53 | 34124-53 | 39885-50 | 40058-11 | 40137-102 |
| 19438-51 | 29126-63 | 34127-54 | 39886-50 | 40059-11 | 40138-102 |
| 19457-124 | 20127-63 | 34136-23 | 39887-50 | 40060-11 | 40139-102 |
| 19464-106 | 29128-63 | 34137-23 | 39888-50 | 40061-11 | 401:0-102 |
| 19480-32 | 29129-63 | 34870-75 | 39889-50 | 40062-11 | 40141-102 |
| 19484-47 | 20130-63 | 34871-75 | 39890-50 | 40063-11 | 40142-102 |
| 19490-68 | 29131-63 | 34872-75 | 39891-50 | 40064-11 | 40143-102 |

INDEX TO CATALOGUE NUMBERS

| No. Page | No. Page | No. Page | No. Page | No. Page | No. Page |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 40144-102 | 40240-109 | 40794-106 | 43684-105 | 48837-106 | 64243-26 |
| 40145-103 | 40241-109 | 40795106 | 13685-105 | 48838-125 | 64244-26 |
| 40146-103 | 402+2-109 | 40796-106 | 43086-105 | 49054-66 | 64245-27 |
| 40147-103 | 402 $43-109$ | 40797106 | 43087-105 | 49211120 | 64246-27 |
| 40148-103 | 4024.4-109 | 40798 105 | 4370586 | 49212120 | 64247-29 |
| 40161-104 | 40245-109 | 40799-105 | 43716-53 | 49213-120 | 6424829 |
| 40162-10. | 40246-109 | 10802-60 | +5207-85 | 51889 31 | 6424931 |
| 40163-104 | 402 $47-109$ | 40803-60 | 46000-114 | 5189031 | 6425031 |
| 40164-104 | +102 4 - 109 | 40937-49 | 16001-114 | 58720-66 | 6425125 |
| 40165-104 | 40249109 | 4093849 | 46002 114 | 5872166 | 64252-25 |
| 40166-104 | 40250-109 | 4093949 | 46003-114 | 5872266 | 6425326 |
| 40167-104 ${ }^{\text {. }}$ | 40251-109 | 40940-49 | 4600. -113 | 50203 J1 | 64254-26 |
| 10168-104 | 40253-110 | 4094149 | 46005-113 | 59204-51 | 6425529 |
| 10179-103 | 40258-111 | 40942-49 | 46006113 | 59205-46 | 64256-29 |
| 40180-103 | 40259-111 | 40943-49 | 46007-113 | 50206-46 | 642.7-30 |
| 40181-103 | 40260-111 | 4094-49 | 46008-114 | 59564-52 | 64258-30 |
| 10182-103 | 40261-111 | 10961-20 | 46009-114 | 5950553 | 64259-113 |
| 41083-103 | +0262-111 | 10963-22 | 46010-114 | 5956653 | 64368-81 |
| 40181-104 | 10263-111 | 40065-21 | 46011-114 | 50507-54 | 64117-57 |
| 40185-104 | +0264-111 | 40967-23 | 16012-113 | $50568 \quad 33$ | 64118-.57 |
| 40186-104 | 40265-111 | 40969-31 | 46013-113 | 59525-66 | 64419-54 |
| 40187-104 | 10260-111 | 41047-47 | 16014-114 | 50826-66 | 64420-58 |
| 40188-104 | 10267-111 | 41049-47 | 46181-71 | 60015-34 | 64421-58 |
| 40189-104 | 40268-111 | 11069-31 | 46181-69 | 60016-34 | 64122-58 |
| 40190-104 | 40269-111 | 41186-46.32 | 46185-72 | 60017-34 | 64423-58 |
| 40191-104 | 40270-111 | 41187-52 | 46190-74 | 60131-65 | 6442土-38 |
| 40192-104 | 40271-116 | 41188-52 | 46572-81 | 60132-65 | $64425 \quad 57$ |
| 40193-104 | 10272-116 | 41189-46 | 46644-62 | 60133-65 | 64426-58 |
| 4019.4-104 | 40273-116 | 41190-40 | 16045-62 | 60226-65 | 64427-57 |
| 40195-104 | 40274-116.117 | 41443-47 | +6046-62 | 60228-65 | 64128-57 |
| 40201-111 | 40275-115 | 1144-47 | 46647-62 | 60229-65 | 64429-58 |
| 40203-112 | +0276-115 | 42413-68 | 46703-84 | 60234-65 | 6.4430-58 |
| 40204-112 | 10277-115 | 42427-10.j | 46740-71 | 60301-64 | 64431-56 |
| 40207-113 | 40278-11.5 | 42428-105 | 46741-74 | 60302-64 | 64432-56 |
| 40208-113 | 10279-113 | 42429-105 | 46742-80 | 60303-64 | 64433-56 |
| 40209-113 | +0280-115 | 42430-10.5 | 46765-124 | 60307-64 | 6443-56 |
| 40210-105 | 10282-115 | 42+31-105 | 47016-78 | $603+8$-45 | 64435-56 |
| 40211-10.5 | 40283-117 | 42432-105 | 48414-79 | 60349-45 | 64436-56 |
| 40212-105 | 10284-117 | +2433-105 | 48415-79 | 60350-45 | 64437-56 |
| 40213-105 | 10285-117 | $4243+-105$ | 48416-80 | 60351-50 | 64438-56 |
| 40214-105 | 40286-117 | 42435-105 | 48417-84 | 60352-50 | 64441-56 |
| 40215-105 | 10287-117 | +2436-105 | 48433-59 | 60433-86 | 6444256 |
| 40216-105 | 10288-117 | 42437-105 | 48139-82 | 60.13-7-74 | 64443-56 |
| 40217-105 | 40303-121 | +2438-105 | 48440-82 | 60435-74 | $644 \pm 4-56$ |
| 40218-105 | 10307-121 | 43229-59 | 48411-82 | 60436-86 | 64544-105 |
| 40219-105 | 40309-121 | +3230-59 | 4844-81 | 60609-111 | 64545-105 |
| 40220-105 | 40311-121 | 43231-59 | 484, ${ }^{\text {P }}$-81 | 609.5-8.5 | 64546-105 |
| 40221-105 | 40313-121 | 43232-59 | 484.4-81 | 6110S-114 | 64548-105 |
| 4022:-105 | 40315-121 | 43322-78 | 48445-81 | 61109-114 | 64549-105 |
| 40223-105 | 40317-121 | 43324-81 | $48.46-81$ | 61110-114 | 64550-105 |
| 40224-105 | 40319-121 | 43508-121 | $48+47-81$ | 61232-54,84 | 64551-106 |
| 40225-105 | 40321-121 | 43509-121 | 48448-81 | 61563-59 | 64552-106 |
| 40226-105 | 40780-105 | 43510-121 | 4844-81 | 61567-41 | 64553-106 |
| 40227-105 | 40781-10.5 | 43511-121 | 48450-81 | 61872-123 | 645.55-106 |
| 40223-105 | 10782-105 | 43512-121 | 48451-81 | 61912-85 | 64550-106 |
| 40229-105 | 40783-105 | 43513-121 | 48452-81 | 62536-55 | 64557-106 |
| 40230-105 | 40784-105 | 43538-121 | 48453-81 | 62537-55 | 64558-106 |
| 40231-105 | 40786-105 | 43539-121 | 48454-85 | 62552-73 | 64559-106 |
| 40232-105 | 10787-105 | 43540-121 | 48455-54 | 62561-37 | $64.000-21$ |
| 40236-109 | 40788-105 | 43541-121 | 48522-84 | 64166-71 | 64561-21 |
| 40237-109 | 40789-106 | 435-12-121 | 48807-41 | 64167-71 | 64634-72 |
| 40238-109 | 40791-106 | 43543-121 | 48808-41 | 64169-73 | 658.56-64,65 |
| 40239-109 | 40793-106 | 43683-106 | 48835-69 | 64170-68 | 66019-38 |

# INDEX TO CATALOGUE NUMBERS 

No. Pag
No. Page
No. Page
No. Page
No. Page
No. Page

| 6602238 | $68168 \quad 27$ | 88307-120 | 100021 lot | 100101 105 | $100187 \quad 73$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 6602539 | 68169 29 | 88398126 | 100029104 | 10010:2 105 | 10021631 |
| 6602840 | $68170 \quad 29$ | 88309126 | 100023110 | 100103 10.5 | 10021784 |
| 66030 40 | 68171--31 | 88418-1206 | 100024110 | 10010410.5 | 100247 8.5 |
| 6603439 | 6817231 | 88641 - 6 | 100025110 | 10010.510 .5 | 100268-73 |
| 660424 | 68397 34 | 8863150 | 100026110 | 100106 10.5 | 100293 60 |
| $660+3$ +7 | 68399 to | 8867256 | 100027110 | 100107 10.5 | 10040922 |
| $66044 \quad 47$ | 6844251 | 8858.5-50 | 100028110 | 100108105 | 100410 29 |
| 6604547 | 6844-51 | 8889451 | $100029 \quad 124$ | 100118-24 | 100830-73 |
| 6632617 | 68445 51 | 88895 - 1 | $100030 \quad 124$ | $100120 \quad 24,71$ | 100917 72 |
| 6633017 | 68446 4. 5 | 88590 - 1 | 100031 123 | 100122 28 | 10091971 |
| $6633 \pm 22$ | 68931 \&2 | 88897 to | 10003: 125 | 100124-28 | 10092171 |
| 6633622 | 08932 82 | $88898+46$ | 100033 125 | 10012650 | 10092271 |
| 66448-120 | 68933 82 | 88839 -46 | 100034 125 | 1001308 | 100923-71 |
| 66450-120 | 65937 34 | 989.545 | 100035 125 | 1001318 | 10092471 |
| 66452-190 | 69939 34 | 8896.580 | 100036 12.5 | 100132 8 | 10092673 |
| 66454-120 | 659412 | $89+7317$ | 100037125 | 1001:33 S | $100927 \quad 73$ |
| 66456120 | 68943 2- | 8947517 | 100038 125 | 100134 s | 10092873 |
| 60458-120 | 6894518 | . 8947728 | 100039 12.5 | 10013:5 \% | 10092973 |
| 66460120 | 6594718 | $89+70$ | 100040 12.5 | 100156118 | 10093173 |
| 66462120 | $68949 \quad 20$ | 89181-24 | $1000+1$ 19.5 | 1001.\% 118 | 100932-73 |
| 66464 120 | 6805120 | $59453-24$ | 100042125 | 1001.58 118 | 100933-73 |
| 66466120 | 6895318 | 8948518 | 100043125 | 100159118 | 100934-73 |
| 60468120 | 68905-18 | 39487 lb | 100041125 | 100160 11S | 10093.: 69 |
| $66470 \quad 120$ | 6895719 | 8948920 | 100045125 | 100161-118 | 100936 72 |
| 6661817 | 68959-19 | 8949120 | 100046-125 | 100162119 | 105705-21 |
| $66620 \quad 17$ | 6896119 | 59586-85 | 100047-125 | 100163119 | 108.530-120 |
| 66622--16 | 6896319 | 100000-103 | 100048 12.5 | 100164119 | 110706126 |
| 60624-16 | 68965-18 | 100001103 | $100049 \quad 126$ | 100165-112 | 110745-64 |
| 6662628 | 68967-18 | 100002103 | 100074 12.5 | 100166112 | 110746-64 |
| 6062828 | 6896919 | 100003103 | 100075-125 | 100167 112 | 110747-64 |
| 66630-95 | 68971-19 | 100004103 | 100076-12.5 | 100168112 | 110718-64 |
| 66632-25 | 69066110 | 10000.j-103 | 100077195 | 100169-112 | 1107.43-6.5 |
| 6663428 | 69067110 | 100006103 | 100078-81 | 100170-112 | 1107.00-6.5 |
| 6663628 | 69068-110 | 100007-103 | 100079-81 | 100171-112 | 110751-6.5 |
| 66638 24 | 69069-110 | 100008103 | 100080-81 | 100172-112 | 110752-65 |
| 66640-24 | 88385-125 | 100009-103 | 100081-81 | 100173-112 | 110753-65 |
| 66642--27 | 88386-125 | 100010103 | 100082-81 | 100174-119 | 110754-65 |
| 66641-27 | 88357-125 | 100011103 | 100083-81 | 100175-112 | 110755-65 |
| 66646-24 | 88388-125 | 100012-103 | 10008 4 -81 | 100176-74,85 | 1107.50-6465 |
| 66648--24 | 88389-125 | 100013-103 | 100085-81 | 100177-86 | 110900-119 |
| 66673-66 | 88390-125 | 100014-103 | 100086-81 | 100178-86 | 110901-119 |
| 66674-66 | 88391-126 | 100015-103 | 100087-81 | 100179-71 | 111099-82 |
| 66675-66 | 88392-126 | 100016-103 | 100088-81 | 100180-71 | 112151-86 |
| 67158-80 | 88393-126 | 100017-104 | 10009710.5 | 100181-71 | 112152-86 |
| 68165-25 | 88394-126 | 100018104 | 100098-10.5 | 100183-73 | 1121,33-86 |
| 68160-2\% | 88305-126 | 100019-10t | 100099-10.5 | 100184-73 |  |
| $68167 \quad 27$ | 88396-126 | 100020-104 | 100100-10.5 | 100186-73 |  |

$$
\begin{aligned}
& 1 \\
& i \\
& i
\end{aligned}
$$

## GENERAL ELECTRIC COMPANY

PRINCIPAL OFFICES, SCHENECTADY, N. Y.
SALES OFFICES
(Address nearest office)
BOSTON, MASS., 84 State Street. NEW YORK, N. Y., 30 Church Street. Syracuse, N.' Y., Post-Standard Building. Byracuse, N. Y., Post-Standard Building.
New Haven, Conn., Malley Building.
NEW HAVEN, CONN.: Malley Building. Buitding.
Baltimore, MD., Electrical Building.
Cilimplotte, M. C.: Trust Building.
Charlotte, N. C.̈. Trust Building.
Pittsburg, Pa., Park Building.
Ritchburg, Pa., 712 Mutual Bullding.
Roanoke, VA., Strickland Building.
ATLANTAGHAM, Ala., Brown-Marx Building
Miring, Ga., Grand Building.
Macon, Ga., Grand Building.
New Orieans, La, Maison-Blanche Building
CINCINNATI, OHIO, Provident Bank Building
Columbus, Ohio, Columbus Savings \& Trust Building.
Cleveland, Ohio, Citizens Building.
Chattanogga, Tenn., James Building.
Memphis, Tenn., Randolph Building.
Nashille, Tenn., Stahlman Building
Indianapolis, Ind., Traction Terminal Building.
CHICAGO, ILL.. Monadnock Building.
Detrort, Mrchi., Majestic Bldg. (Office of Soliciting Agt.) St. Lous, Mo., Wainwright Building.
Kansas City, Mo., Dwight Building.
Butte, Montana, Pheenix Buildin
MinNEAPOLIS, Minn..410-412 Third Avenue, North. DENVER, COLO. Kittredge Building.
SALT LAKE City, UTtah, Newhouse Building.
SAN FRANCISCO, CAL., Union Trust Building.
Los Angeles, Cal, Delta Building.
Portiand, Ore., Electric Building.
Seattle, Wash., Colman Building.
Spokane, Wash., Paulsen Building.
For Texas and Orlahoma Business refer to
General Electric Company of Texas,
Dallas, Tex., Praetorian Building.
El Paso, Tex., Chamber of Commerce Building. Oklahoma City, Okla., Insurance Building.

## FOREIGN

Foreign Department,
Schenectady, N. Y., and 30 Church St., New York, N. Y
London Office, 83 Cannon St., London, E. C., England.
For all Canadian Business,
Canadian General Electric Company, Ltd.,


## 4537.8

## RANIJ BONIDS



GE $\mathbb{N} \mathbb{U} \mathbb{R}$ R EIECTRIC CORMPANY

## ERRATA

To accompany Bulletin No. 4748

## RAIL BONDS

Page 12—Reference to page 155 under "Bonds with Offset Tucking" should be changed to 35.

Page 34-Reference to pages 152 and 153 should be changed to 32 and 33 respectively.

Page 35-Reference to pages 149, 152 and 153 should be changed to 29, 32 and 33 respectively.

Page 38-Reference to page 163 should be changed to 43.
Page 43 -Reference to page 158 should be changed to 38.

## RAIL BONNS



GENERAL ELECTRIC COMPANY
Supply Department

Copyright, 1910
by General Electric Company

## ADVICE REGARDING THE PLACING OF ORDERS

1. Orders, and correspondence regarding orders, must always be sent to the nearest Sales Office. (See list of Sales Offices at end of this catalogue.)
2. Catalogue numbers should be used wherever possible.
3. Avoid ordering goods "same as last." If it is advisable to refer to a previous order the date and number of the order and the number of our invoice covering previous shipment should be specified to avoid delay and error in locating it.
4. In ordering, catalogue numbers should be accompanied by the name of the article. This insures complete identification, and lessens the danger of typographical errors in transmitting orders. Where it is impossible to give the catalogue number, a full description of the article required should be furnished.
5. State distinctly how goods are to be shipped-whether by freight, express or mail. If any special route is preferred, it should be mentioned on the order.
6. Careful attention is given to the proper packing of goods, especially glassware, and receipts are obtained from carriers for delivery in good condition. This Company cannot, therefore, be held responsible for goods damaged or lost in transportation. All possible precaution, however, will be used to prevent injury or delay, and, if required, shipments will be traced. All claims for breakage should be presented to transportation companies handling the freight. We will gladly co-operate with our customers in having such claims adjusted by the carriers.
7. All claims must be made within three days of the receipt of the goods and should be accompanied by the r.ckage slip which is forwarded with each shipment.
8. When referring to orders, always give the number or date of your order as well as the name of the consignee of the goods.
9. Do not return material of any kind without first communicating with the nearest Sales Office and obtaining-

First: Approval for returning goods.
Second: Returned Apparatus tag, giving proper shipping directions.
10. All returned goods must be plainly marked with the name and address of the sender, and proper notice of shipment and shipping receipt should be sent to the Sales Office.
11. Prices are subject to change without notice and it is understood that this Company will in no way be held responsible for such changes.
12. All prices are listed at point of manufacture. Charges for boxing and packing will be made in accordance with our regular custom

## RAIL BONDS



Form A stud terminal rail bond with branched flat wire or ribbon conductors, for use on web of rail under splice bar.


Form B stud terminal rail bond with flat wire or ribbon conductor (unbranched), for use on web of rail under splice bar.


Form C stud terminal rail bond with flat wire conductor, for use on flange or foot of rail.

## 4748-8 Rail Bonds



Form D stud terminal rail bond with single cable conductor, for spanning splice bars or cross-bonding. The conductor may pass under splice bar when space permits.

Form E similar to Form D except conductor is of solid wire.


Form F stud terminal bond with branched cable conductor, for use on web of rail under splice bar.


Form M1 twin stud terminal bond with cable conductor, for use on head of rail.


Form AS soldered terminal rail bond with branched flat wire or ribbon conductors, for use on web of rail under splice bar.

## SOLDERED TYPE-(Continued)



Form BS soldered terminal rail bond with flat wire or ribbon conductors, for use on head of rail.


Form GS soldered T shaped terminal bond with cable wire conductor, for use on head of rail.


Form CS soldered terminal rail bond with flat wire or ribbon conductor, for use on flange or foot of rail.


## SOLDERED TYPE-(Concluded)

Form DS soldered terminal rail bond with single cable conductor, for spanning splice bar or crossbonding. The conductor may pass under splice bar when space permits.

## SELECTION OF BONDS

The General Electric Company will be glad to submit recommendations and drawings to meet any condition which may be referred to it. Where conditions permit, the compressed terminal bond concealed under the joint plate is to be preferred. Its location on the rail protects it from injury from outside sources and prevents its being stolen. Its construction is such as to make it perfectly adapted to withstand both the vertical and the horizontal movements of the joint. The method of applying compressed terminal bonds calls for the exercise of only ordinary care in drilling the holes and mounting the compressor. The uniformly good results obtained with this bond depend less upon the exercise of personal judgment by the bonding gang than is the case with any other type of bond. Notwithstanding this fact, however, there is a legitimate field for each of the types of bond included in this catalogue.

An attempt to crowd more copper than is recommended under a splice bar will result undoubtedly in the breaking of the conductors. This company recommends, therefore, that customers follow its suggestions and thereby avoid those difficulties which would be encountered by overlooking certain points in selecting and installing rail bonds.

Requests for information in this connection should be accompanied by the following:
(a) Name of maker and section numbers of rail and joint plate, or a sketch showing section through rail and joint plate.
(b) If patented joint, name of joint.

The following table gives in circular mils the sectional area of copper equivalent to steel rails of various weights and having various resistance coefficients.

| Weight of Rail Lbs. per Yard | RATIO OF RESISTANCE OF STEEL TO RESISTANCE OF COPPER |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|  |  |  | c.m. | $\mathrm{c}, \mathrm{~m}_{4}$ |  |  | $\mathrm{c} . \mathrm{m}$ |  |  | c.m. |
| 50 | $1061030$ | $909455$ | $795773$ | $707354$ | $636618$ | $578743$ | $530515$ | $489705$ | $454725$ | 424410 |
| 60 | 1273236 | 1091346 | 954928 | 848825 | $7639+2$ | $69+491$ | 636618 | 587646 | 545670 | 509292 |
| 70 | 1485442 | 1273237 | 1114083 | 990296 | 891266 | 810239 | 742721 | 685587 | 636615 | 594174 |
| 75 | 1591545 | 1364183 | 1193660 | 1061031 | 954927 | 868115 | 795773 | 734558 | 682087 | 636615 |
| 80 | 1697648 | 1455127 | 1273238 | 1131766 | 1018589 | 925989 | 848825 | 783528 | 727560 | 679056 |
| 90 | 1909854 | 1637018 | 1432393 | 1273237 | 1145913 | 1041735 | 954928 | 881469 | 818505 | 763938 |
| 100 | 2122060 | 1818910 | 1591546 | 1414708 | 1273236 | 1157486 | 1061030 | 979410 | 909450 | 848820 |

The ratio of resistance of steel ordinarily used for track rails (with the present tendency to use steel high in carbon), to the resistance of copper, averages closely 13 to 1 . The area of the cross section of a rail is one tenth of its weight in pounds per yard. A 70 pound rail will, therefore, have a sectional area of seven square inches, the equivalent of 685,587 circular mils of copper at the 13 to 1 ratio.

## COMPRESSED STUD TERMINAL BONDS

We illustrate in the following pages all of the standard forms of compressed stud terminal bonds. They should be installed with our special, double-screw, or hydraulic compressors.


The accompanying illustration shows in cross section a $\frac{7}{8}$ in. diameter terminal compressed into a $\frac{7}{8} \mathrm{in}$. diameter hole in a piece of steel $\frac{5}{8} \mathrm{in}$. thick, representing the web of a rail. It was compressed with a double-screw compressor, exerting a pressure of 20 tons, operated by one man with the standard 40 in . wrench. Two annular grooves $\frac{1}{16}$ in. wide and $\frac{1}{16} \mathrm{in}$. deep were cut in the walls of the hole, and it will be observed that these grooves became completely filled with copper. This indicates that the studs are soft and malleable, flowing easily and evenly under the pressure of the screw, and that the compressor screw forces the copper back into the hole, entircly filling it before it forms the rivet head over the hole.

## APPLICATION OF BONDS

Holes should be drilled with well sharpened tools so that the walls and edges of the hole will be smooth and free from burrs and other irregularities. Bond holes should be of the exact diameter of the bond stud to be inserted.

Oil should not be used in the drilling of holes, as all traces of it cannot readily be removed from the hole, and oil will prevent proper contact between the copper and the steel. A solution of soda and water or plain water may be used, but care should be exercised to see that the hole is wiped perfectly dry before the terminal is inserted. Bonds should not be installed in damp weather. If these simple precautions be disregarded, the electrical efficiency of the bonding will be greatly affected.

If bond holes have been drilled some time prior to the applying of the bonds, the holes should be reamed, as a clean, bright contact is essential.

Rail bond terminals should be rubbed clean and bright with a piece of fine emery cloth before they are inserted in the rail.

Rail bond studs should never be upset with a hammer. Hammering a terminal merely puts a rivet head over the hole, and does not force the copper back into contact with the steel surrounding the hole.

The compression method of installing bonds is admitted generally to be the correct one. After the head of the bond has been drawn up tightly against the web of the rail by the outer screw of our special compressor, the inner screw forces the copper back into the hole. The compressing portion of this inner screw is so designed that a rivet head cannot be formed on the terminal until the hole has been completely filled, even to the pores of the stecl. The rivet or button head seals the union, and insures practically a moisture-proof joint. A solution of red lead and linseed oil may be applied to the terminal and adjacent steel, after compression. This will effectually seal the joint against the admission of moisture.

## APPLICATION OF BONDS-(Concluded)

To effect radial expansion of the copper in the hole equally in all directions, the inner screw of the bond compressor should be centered in the depression in the end of the terminal.

Bond holes should be located so as to allow for the spacing determined upon between the abutting rail lengths. For instance in single bonding, the holes for a 10 in . bond to be applied to rail lengths spaced $\frac{1}{8} \mathrm{in}$. apart, should be drilled $4 \frac{15}{16} \mathrm{in}$. from the end of the rail.

The General Electric Company strongly advises against the locating of bond holes close to the end of the rail. In most cases this sort of drilling provides for a bond too short to embody the necessary flexibility. Moreover it has been found that where the shock caused by the wheels pounding on the joint is dissipated through the copper at the point where it is fixed rigidly to the rail, it has a tendency to shorten the life of the copper.

## BONDS WITH OFFSET TUCKING

In most methods of double bonding under the joint plate, the terminals of each bond are applied at unequal distances from the ends of the rails, making it necessary to offset the tucking from the middle of the bond, so as to avoid interfering with the insertion of the joint boits or the terminals of the other bond. The General Electric Company aims to have the tucking coincide with the spacing between rail ends, and, to accomplish this, must know the exact location of bond holes relatively to the ends of the rails. This information may be conveyed conveniently by a rough pencil sketch showing the side elevation of the rails with the bond drillings indicated.

In order to obtain the double advantage of the mechanical security of the compressed terminal and the efficient electrical contact of a soldered joint, there is an occasional demand for bonds with tinned terminals. Any compressed terminal bond may be furnished with tinned terminals.*

Before installing this style of bond, the rail surrounding the hole should be faced with the special facing tool shown on page 155. The bond hole and spot face should be tinned.

After compression, the terminal of the bond and the surrounding steel are heated, soldering the bond to the rail. The joint should be allowed to cool slowly.

## TERMINAL LENGTH

All orders for stud terminal bonds to be applied to the web of the rail, should state either the section number of the rail or the thickness of the web in inches. This information will enable us to ship bonds with terminals of the correct length. Manifestly a terminal stud sufficiently long to insure good results upon compression in a web $\frac{5}{8}$ in. thick, is too long for a web $\frac{3}{8}$ in. thick, as too much copper in a terminal will cause it to form into a rivet head over the hole before the hole is completely filled.

Lacking knowledge of the web thickness, this company will ship bonds with the following terminal lengths for the terminal diameters given. These lengths have been found best suited to average conditions.

| Diameter of Terminal | Length of Terminal |
| :---: | :---: |
| 产" | $\frac{11 "}{16}$ |
| 年 ${ }^{\prime \prime}$ | ${ }^{\frac{11}{16}}{ }^{\prime \prime}$ |
| $\frac{4}{4 \prime \prime}$ | $\stackrel{3}{4} /$ |
| $1^{\prime \prime}$ | $\frac{13}{16}{ }^{\prime \prime}$ |

## FORM A RIBBON BONDS

The Form A ribbon bond is furnished for use under the joint plate where, usually, the space is restricted, and extreme compactness of design is necessary. The conductor of this bond is composed of thin copper ribbons pressed into the desired shape. The relative movement of the rails is almost wholly in the vertical plane, therefore the laminations are horizontal so as to afford maximum flexibility in the vertical plane.

The bonding space provided in most rail sections with standard angle bars is so distributed as to require the unbalanced form of bond, having more than half of the total conductor section in the lower branch. The balanced form of bond is suitable for use in the great majority of cases only under special angle bars and the patented joints. To enable us to determine the correct distribution of the conductor laminations all orders for bonds should state the maker's name and section number of the rail on which the bonds are to be used.

* Standard Ribbon Bonds of $4 / 0$ section with $\frac{7}{3}$ in. dia. terminals may be furnished with extra large head on terminal to provide large area of contact.


## FORM A-1 RIBBON BOND



## Form A-1 Ribbon Bond Equally Divided Middle Tucking

The above style of bond is used for single bonding rail joints where the available space both above and below the bolts is sufficient to accommodate one-half the total cross sectional area of the bond.


Girder Rail Bonded with one Form A-1 Ribbon Bond Spanning Both Inner Bolts

FORM A-5 RIBBON BOND

\%spuicin

This bond is used under the same conditions as the Form A-1, from which it differs only in the method of bringing the conductors out of the terminal at two points instead of one.


Girder Rail Bonded with two Form A-5 Ribbon Bonds Spanning Both Inner Bolts

## FORM A-2 RIBBON BOND



This bond is similar to the Form A-1 excepting that the tucking in the equally divided conductor is offset from the middle of the bond. It is used for double bonding.

All orders for Form A-2 bonds should state the exact location of the bond holes relative to the ends of the rails. This information will determine the location of the tucking.


Girder Rail Double Bonded with two Form A-2 Ribbon Bonds

## FORM A-6 RIBBON BOND



This bond is similar to the Form A-2 excepting that the conductors issue from the terminal at two points instead of one. The tucking is offset from the middle for double bonding.

When ordering Form A-6 bonds, give the exact location of the bond holes to insure the proper locating of the tuck.


Girder Rail Bonded with four Form A-6 Ribbon Bonds
Two on Each Side of Rail

## FORM A-3 RIBBON BOND



Form A-3 Unbalanced Ribbon Bond Middle Tucking

This bond is similar to the Form A-1 excepting that it has more ribbons in one branch than in the other. It is adapted for use where the available space on one side of the bolts is insufficient to accommodate one-half of the total conductor section.


T Rail Bonded with one Form A-3 Unbalanced Ribbon Bond

## FORM A-7 RIBBON BOND



This bond is the same as the Form A-3 excepting that the conductor is brought out of the terminal at two points instead of one.


T Rail Bonded with Form A-7 Ribbon Bond
Spanning Both Inner Bolts

## FORM A-4 RIBBON BOND



Form A-4 is similar to the Form A-3 excepting that the tuck is offset from the middle. It is used in double bonding.

When ordering A-4 bonds, give the exact location of the bond holes relative to the ends of the rails, so that we may know where to locate the tucking.


T Rail Double Bonded with two Form A-4 Unbalanced Ribbon Bonds

FORM A-8 RIBBON BOND


Form A-8 bond is similar to Form A-4 except in the scheme of having the conductor issue at two points in the terminal instead of one.

This bond is used for double bonding and all orders for it should give the exact location of the bond holes relative to the ends of the rails to insure the proper locating of the tuck.


T Rail Double Bonded with Form A-8 Ribbon Bonds
Spanning Both Inner Bolts

## FORM F CABLE BOND

The Form F bond is intended for use under the joint plate. It has cable wire instead of flat wire conductors.

Cable conductors are equally flexible in all planes, and are well adapted for use where the bonding space is not restricted.

The general recommendations that are given for selecting and installing flat wire bonds apply also to cable bonds.

FORM F-5 CABLE BOND


This bond is similar to the Form A-5 excepting the conductor is of extra flexible cable instead of ribbon. It is intended for use under the joint plate when the bonding space permits.


T Rail Bonded with one Form F-5 Bond, Spanning Both Inner Bolts
FORM F-6 CABLE BOND


This bond is similar to Form F-5 except the tucking is offset from the middle. It is adapted to double bonding of joints.

In ordering please give the exact location of the bond holes relative to the ends of the rails, to enable us to locate the tucking.


T Rail Double Bonded with two Form F-6 Bonds


In many sections of rail the bonding space is so distributed that it will not accommodate the standard forms of bonds with equal branches, there being more room below than above the joint plate bolts. When ribbon bonds are employed this condition is met by a bond having more ribbons in the lower branch than in the upper. This method of unbalancing the branches cannot be followed satisfactorily in the cable form of bond because the cable is not so compact as the flat wire conductor, and when a sufficient number of wires are transferred from the upper to the lower conductor to obtain the requisite clearance for the upper branch, the lower branch is too large to fit into the space below the bolts without being badly pinched between the rail and the plate. This pinching will very materially shorten the life of the bond, as the conductor is not free to move.

When the cable form of bond is desired for use where the rail conditions are such as described, this Company recommends that the standard balanced bond be used with the conductors pressed at the factory to a shape that will insure ample clearance between the bond and the angle bar.

The accompanying illustration shows the General Electric Company's Form F-9 cable bond with the conductor pressed to approximately a triangular section excepting in the tuck, where the original round shape of the cable is preserved. The tuck coming between the bolts where there is ample room does not require a change in shape.

Flexibility tests prove that the pressing of the conductor does not affect the life of the bond.


Sectional View of 70 Lb . A.S.C.E. Rail with Standard Angle Bars, Showing $4 / 0$ Bond with
Round Cable Conductors in Dotted Lines and Pressed Cable Conductors in Solid Lines

FORM F-10 CABLE BOND


This bond is similar to Form F-9 having pressed cable conductors but is tucked off center to adapt it to double-bonding.

## FORM F-10 CABLE BOND - (Concluded)

When ordering F-10 bonds give the exact location of the bond holes relative to the ends of the rails, so that the bonds may be tucked in the right place.


T Rail Double Bonded with two Form F-10 Bonds

FORM B RIBBON BOND


Form B Ribbon Bond
Where the inner bolt holes are located so as to permit the drilling of a bond hole between the end of the rail and the bolt hole, a short bond with undivided conductor in the form of a letter "S" may be installed. This bond must be made too short to embody the requisite flexibility and is recommended only for temporary work, such as is done in mines, where the rails are frequently shifted and the bond destroyed. It is an efficient bond at low cost for this class of work.


T Rail Bonded with One Form B Bond

## FORM C RIBBON FOOT BOND

 FOR FOOT OF RAIL

Form C beveled head foot bond is adapted for use on the foot of T rails having suspended joints. Its most general adaptation has been for bonding third rails. The terminal heads are beveled to correspond with the bevel of the rail foot. As in the Forms A and B bonds, the conductor laminations are so disposed as to give maximum flexibility in the vertical plane.

FORM C RIBBON FOOT BOND - (Concluded)
FOR FOOT OF RAIL


Two Form C Beveled Head Bonds Applied to the Base of a T Rail Largely Used for Bonding Third Rails

To apply this bond the special hydraulic punch shown on page 38, and the hydraulic compressor on page 43 are recommended.

The hydraulic punch of 100 tons capacity punches a tapered hole in the foot of the rail. The smaller aperture of the hole, which is at the bottom, is of the same diameter as the bond terminal. The 35 -ton compressor forces the copper back into the hole against the taper until the top of the terminal is flush with the top surface of the rail foot. The holes in the rail may be drilled at right angles with the top surface of the rail foot and the bond applied with screw compressor No. 40294, on page 42.

To furnish Form C bonds with terminals of the correct length to insure flush compression, it is necessary that the section number of the rail and the maker's name be given or a sketch of the rail in cross section, showing the distance between the edge of the foot and the center of the hole, be given.

When greater clearance is desired between bond conductor and track ballast than is obtainable with one long sweeping tuck as illustrated above, double tucking as shown in the accompanying illustration may be employed.

Form C foot bonds should have a developed length of at least 7 in . in the smaller conductor sections, and 9 in . in sections above $350,000 \mathrm{~cm}$. They may be formed to give any required distance between terminal centers.

Made in any length, and section up to $500,000 \mathrm{~cm}$.


## FORM M-1 TWIN STUD TERMINAL BOND



This bond is a new development in rail bonding, and is for application to the outer side of the head of $T$ rails. This form of bond is applied without disturbing the joint plate. It is short-has the requisite flexibility, and is efficient and durable. The bond is installed with simple tools, and its first cost and the cost of installation are low. Its position on the rail makes it easy to inspect. Each terminal with its two studs is forged from soft, pure copper. The studs are $\frac{1}{2} \mathrm{in}$. in diameter, and spaced $1 \frac{1}{4} \mathrm{in}$. between centers. The conductor portion of the bond is flexible cable, which is welded to the terminals at low temperature, and all air is excluded. This process insures a perfect union between the terminals and the conductor, and preserves the purity and malleability of the copper. The conductor issues from the lower side of each terminal, and in the direction of the vertical movement of the joint. This construction removes all stress from the terminals and confines it to the flexible portion of the bond.

It is recommended that the four holes for Form M-1 bond be drilled simultaneously with the General Electric Company's double-twin spindle drilling machine, which will insure their being spaced exactly on the required centers and drilled on the same horizontal plane.

## APPLICATION



The four holes in the head of the rail are drilled simultancously by the four-spindle drilling machine shown on page 38 , and the bonds applied with a riveting hammer. The sharp edges of the holes should be dulled with a blunt punch, to avoid cutting the terminal studs as they enter the holes. After drilling, a hand milling cutter, shown on page 40 , should be inserted in each hole and a small annular groove cut in its walls near the orifice. The copper will flow into this groove, firmly anchoring the stud and sealing the hole against the admission of moisture. The length of the terminal stud should exceed the depth of the hole by $\frac{1}{16} \mathrm{in}$. As the stud in our standard $4 / 0$ bond is $\frac{9}{16}$ in. long, exclusive of the conical end, the straight wall of the hole should be $\frac{1}{2} \mathrm{in}$. deep. On the outer side of the bond terminal, opposite each stud, is a small copper boss. To install the bond, the hammer should be applied to this boss, lightly at first, and gradually with more force, until the boss has disappeared. This operation will completely fill the hole with dense copper, perfect contact being obtained at the ends of the studs, as well as at the sides.

The same general precautions relating to the application of compressed terminal bonds should be observed in connection with twin stud bonds.

The holes should not be drilled with oil. The contact surfaces of the steel and copper should be dry, clean and bright.

FORMS D AND E RAIL BONDS


In the Form D rail bond the conductor consists of a single stranded cable. The Form E bond is similar but the conductor is solid wire. Both of these forms of rail bond are adapted to bonding around the splice bar of T or girder rails, cross bonding between rails and tracks, and around special work. The conductors emerge from the terminal head at an angle approximating 15 degrees with the plane of the terminal head. The Form D is recommended for short spans such as around a splice bar. The Form E is recommended where long distances are to be spanned.

FORMS D AND E STUB END BONDS


Form D Stub End Bond


Form E Stub End Bond

A stub end bond is a conductor with a terminal on one end only. It is frequently employed in special work, where the cable end is to be spliced to a long bond spanning crossings and special work. The standard length is 12 in . but they can be furnished in any length desired.


Form D Bond Spanning Splice Bar of T Rail
The developed length of the Form D bond for spanning splice bars should be at least 4 in . longer than the splice bar.

Bonds furnished in any length or section.

## SEPARATE BOND TERMINALS



Separate bond terminals are furnished, drilled and tinned for soldering to a conductor which may be scrap trolley wire or feeder cable. They are useful in bonding special work, where many different distances are to be spanned and where it is difficult to predetermine the exact length.

## DRILLING OF TERMINAL SHANKS

Orders should specify size of wire or cable conductor to be used and diameter of stud required. When size of conductor is given, in the absence of specifications to the contrary, drilling will be made as follows:


## FEEDER CLAMPS FOR CONDUCTOR RAIL



These clamps are for attaching to feeder cables in third rail systems. Stub end bond terminals, shown on page 22 , are soldered into the sleeves, and the studs compressed in the conductor rail.

In ordering state size of cable and size of bond conductor to be used.

## SOLDERED RAIL BONDS

Appreciating that, in a limited way, there is a legitimate field for soldered rail bonds (as in temporary work, or in bonding old rails where it would prove too expensive to remove the joint plate with the consequent renewal of all bolts), the General Electric Company has developed a full line of bonds of this type.

Great care should be exercised in the soldering, as it often occurs that while the union is strong enough to hold the bond on the rail, the actual area of contact is insufficient to give good electrical results.

## SOLDERED RAIL BONDS - (Continued)

As in stud terminal bonds, ribbon conductors are employed when short distances are to be spanned or where space is restricted, as under fish plates, and the laminations are invariably disposed in the horizontal plane in order to afford maximum flexibility to meet the vertical movement of the rail joint.

For bonding to the head of the rail we make a cable wire as well as a ribbon wire bond.
For bonding around fish plates and special work and for cross bonding, etc., cable conductor is employed.


> In all of these forms the conductor is welded into forged copper terminals.
> The contact surfaces of all soldered bond terminals are furnished with minute spot bosses which provide space between terminal and rail for an elastic film of solder, to compensate for the different contraction coefficients of the copper and steel.

## APPLICATION

The application of soldered rail bonds requires the utmost care to insure adequate electrical and mechanical union between the copper and the steel. This is especially so where the bonds are to be applied to a vertical surface such as the ball or the web of the rail.

The cleaning and tinning of the rail surfaces for the reception of soldered bonds cannot be done too carefully, especially in the case of bonds installed on a vertical surface. All rust and scale must be removed from the surface and the rail heated until the cleaned surface shows a violet or light blue color ( 280 degrees to 290 degrees C.). Soldering flux (preferably zinc chloride) should then be applied with brush or swab and heavy bar solder rubbed on the cleaned surface until it is thoroughly tinned. The bond should then be clamped lightly to the rail and the joint heated sufficiently to quickly melt wire solder applied to it. The clamp should then be tightened and the wire solder applied as the joint cools down. The practice of cooling the joints with water after soldering has usually been followed in order to expedite the work, but there is good reason to believe that the sudden contraction of the copper terminal, which will respond more quickly than the rail to the cooling effect of the water, tends to shear off the film of solder between terminal and rail. The joints should, therefore, be allowed to cool down naturally if traffic conditions under which the work is done will permit it.

The completed joint should be painted with a good black weatherproof paint.
An efficient working gang for installing soldered bonds consists of a skilled and trustworthy man to direct the work and do the soldering, one helper to handle the torches and two men to operate the grinder.


The Form AS bond corresponds to the Form A stud terminal bond, and is used under like conditions, the terminals being soldered to the web of the rail, and the laminations being divided and "tucked" to span the fish plate bolts.


T Rail Bonded with one Form AS-3 Bond

## FORM AS SOLDERED BOND-(Concluded)

FOR ATTACHMENT TO WEB OF RAIL UNDER FISH PLATE


| dimensions |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Conductor | A | B | C | Thickness <br> Terminal |
| 0000 | $1.75^{\prime \prime}$ | $1.00^{\prime \prime}$ | $2.69^{\prime \prime}$ |  |
| 300000 | $1.85^{\prime \prime}$ | $1.09^{\prime \prime}$ | $2.875^{\prime \prime}$ | $\frac{5^{\prime \prime}}{16^{\prime \prime}}$ |

In the dimension table the minimum distance (dimension C) between the center of the fish plate bolt spanned by the conductor, and the outer end of the terminal, is given to assist in determining the overall length necessary for any given joint. As in the classification of the stud terminal bonds, a numeral after the form letters of the Form AS bonds indicates the division and tucking of the ribbons, thus:

Form AS 1 has equally divided ribbons and center tucking.
Form AS 2 has equally divided ribbons and offset tucking.
Form AS 3 has unbalanced ribbons and center tucking.
Form AS 4 has unbalanced ribbons and offset tucking.
On account of the inaccessibility of the Form AS bonds under the fish plates it is essential that they be installed with the greatest care to insure permanency of contact with the rail.

## FORM BS SOLDERED BONDS



The Form BS bonds are applied to the outer side of the rail head and do not require removal of the fish plate for their installation. On account of the small amount of material which they contain and the difficulty of removing them by ordinary means, they are practically safe from loss by theft.


| Conductor <br> Section | Overall Developed <br> Length |
| :---: | :---: |
| 00 | $7.73^{\prime \prime}$ |
| 0000 | $8.83^{\prime \prime}$ |
| 400000 | $11.03^{\prime \prime}$ |


| Formed <br> Length |
| :--- |
| $\frac{6^{\prime \prime}}{7 \frac{1}{2 \prime}_{\prime \prime}^{\prime \prime}}$ |
| $8 \frac{1}{2}^{\prime \prime}$ |



Form BS Bond Applied to Ball of Rail

## FORM GS SOLDERED BOND



In the Form GS soldered bond the cable conductor is brought out straight from a point midway between the ends of each terminal. The terminal has a sleeve through which the conductor emerges, which prevents the small wires from being reduced in cross section in the welding operation. This bond is for application to the ball of the rail, and is formed to clear the splice bar. The terminals are tapered and the thinner edge is at the top, making the bond less likely to be knocked off.


| Conductor <br> Section | Overall Developed <br> Length | Formed <br> Length |
| :---: | :---: | :---: |
| 0000 | $7^{\prime \prime}$ | $6^{\prime \prime}$ |

## FORM CS SOLDERED BONDS



Form CS Bond
The Form CS bond is designed for attachment to the top or the bottom of the rail base.

FORM CS SOLDERED BONDS-(Concluded)

| Conductor <br> Section | Overall Developed <br> Length | Formed <br> Length |
| :---: | :---: | :---: |
| 00 | $7.73^{\prime \prime}$ | $6^{\prime \prime}$ |
| 000 | $8.83^{\prime \prime}$ | $7 \frac{1^{\prime \prime}}{}$ |



Form CS Bond Applied to Base of Rail

## FORM DS SOLDERED BOND



The Form DS soldered bond corresponds to the Form D terminal stud bond, and is for bonding around joint plates, crossbonding, and bonding around special track work.

| Conductor <br> Section | Length | Dimensions of terminals in inches |  |
| :---: | :---: | :---: | :---: |
|  | Width | Thickness |  |
| 00 | 1.75 | .625 | .25 |
| 000 | 2.25 | .75 | .28 |

## CHANNEL PINS

Channel pins are not recommended for permanent bonding but are occasionally useful for temporary work. They are made with a straight groove deep enough to avoid cutting the wire in driving. The pins are taper pointed and slightly larger than the hole, so that when driven they envelop the wire and make a solid joint.


Cat. No. 17315

| Cat. No. | Dameter | Size of Wire | $\begin{aligned} & \text { Weight } \\ & \text { per } 1000 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 17225 | $3^{\prime \prime}$ | 4 | 20 |
| 17224 | $\frac{19}{3}$ | 0 | 40 |
| 17315 | \%" | 00 | 90 |
| 17553 | $4{ }^{4}$ | 0000 | 70 |

TRACK DRILLING AND PUNCHING DEVICES AND ACCESSORIES-DRILLS


Many methods are employed for drilling bond holes in rails. Without definite knowledge of the amount of work and the conditions under which it is to be performed, it is difficult to recommend the style of machine to employ, The intention in compiling this information has been to give data on a complete line of devices generally used for drilling and punching rails, from the simplest hand ratchet to the more elaborate power drills and hydraulic punches.

In many cases railways are having bond holes punched or drilled in rails at the mills. It is important that such holes be reamed bright before the bond is applied.


# TRACK DRILLING AND PUNCHING DEVICES AND ACCESSORIES-DRILLS-(Concluded) HAND RATCHET DRILLS WITH SQUARE TAPER SOCKET 

| CAt. No. |  | dimensions |  | Feed | Weight in Lb . | Socket Accommodates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Round <br> Feed <br> Sleeve | Hex. <br> Feed <br> Sleeve | Length Handle | Length Sleeve |  |  |  |
| 103273 |  | $10^{\prime \prime}$ | $7{ }^{3 \prime \prime}$ | 2" | 5 | No. I sq. taper shank drill !" to 12" dia. |
| 103274 |  | $12^{\prime \prime}$ | $8 \frac{11}{\prime \prime}$ | $2{ }^{\prime \prime}$ | 7 | No. 1 sq. taper shank drill ${ }^{\prime \prime}$ " to $\frac{12^{\prime \prime}}{\prime \prime}$ dia. |
| 103275 | 103278 | $15^{\prime \prime}$ | $9 \frac{1}{2}^{\prime \prime}$ | $3^{\prime \prime}$ | $9{ }^{\frac{2}{4}}$ | No. 1 sq. taper shank drill $\mathrm{f}^{\prime \prime}$ to $1 \mathrm{l}^{\prime \prime}$ dia. |
| 103276 | 103279 | $17^{\prime \prime}$ | $10^{\text {i/ }}$ | 33" | 12 | No. 2 sq. taper shank drill $\frac{1}{6}^{\prime \prime}$ to $2^{\prime \prime}$ dia. |
| 103277 | 103280 | $20^{\prime \prime}$ | 117" | $33^{\prime \prime}$ | 154 | No. 2 sq, taper shank drill $\frac{1}{8 \prime \prime}$ to $2^{\prime \prime}$ dia. |

HAND RATCHET DRILLS WITH ROUND TAPER SOCKET

| CAT. NO. | Length of Handle | Length ot Sleeve | Feed | Weight in Lb. | TAKES MORSE ROUND TAPER SHANK DRILI. |  | Socket Accommodates |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feed Sleeve |  |  |  |  | Min. | Max, |  |
| 103281 | $10^{\prime \prime}$ | $73^{\prime \prime}$ | $1 \frac{3}{4 \prime}^{\prime \prime}$ | 5 | $\frac{1}{16}{ }^{\prime \prime}$ | $\frac{19}{32}$ |  |
| 103282 | $12^{\prime \prime}$ | 83" | $1 \frac{1}{3 \prime \prime}^{\prime \prime}$ | $6 \frac{1}{2}$ | $34^{\prime \prime}$ | $\frac{23}{32}$ | Cat. No, 103285 taper drill sleeve Cat. No. 103289 flat drill socket |
| 103283 | $15^{\prime \prime}$ | $92^{\prime \prime}$ | $23^{\prime \prime}$ | 9 | 63/4 | $17^{\circ}$ | $\left\{\begin{array}{l}\text { Cat. Nos. } 103285 \text { and } 103286 \text { taper } \\ \text { drill sleeve } \\ \text { Cat. No. } 103290 \text { flat drill socket }\end{array}\right.$ |
| 103284 | $17^{\prime \prime}$ | $10^{\prime \prime}$ | $2 \frac{5}{16}{ }^{\prime \prime}$ | 11 | $16^{\prime \prime}$ | $2^{\prime \prime}$ | Cat. No, 103287 taper drill sleeve Cat. No. 103291 flat drill socket |

TAPER SLEEVES FOR HAND RATCHET DRILLS


Taper Sleeve

| Cat, No, | Used with Hand Ratechet No, | Takes Standard or Morse Tapered |
| :---: | :---: | :---: | :---: |
| Shank Drills |  |  |

FLAT DRILL SOCKETS FOR HAND RATCHET DRILLS


Flat drill sockets accommodate drills (flat or round) with standard or Morse square taper shank No. 1 or No. 2,

Cat. No. 103289 fits in hand ratchet Cat. No. 103282.
Cat. No. 103290 fits in hand ratchet Cat. No. 103283.
Cat. No. 103291 fits in hand ratchet Cat. No. 103284.

# SQUARE TAPER SHANK DRILLS (No. 1 SHANK) <br> FOR USE WITH HAND RATCHET DRILLS 



Shank $1 \frac{1}{2} \mathrm{in}$. long, tapered $\frac{5}{8}$ in. to $\frac{3}{8} \mathrm{in}$.

| Cat. No. | Diameter | Length Overall | Length Twist |
| :---: | :---: | :---: | :---: |
| 103310 | $\frac{10}{\prime \prime}$ | $6 \frac{17}{\prime \prime}$ | $43^{\prime \prime}$ |
| 103311 | $\frac{13}{17}$ | $6{ }^{\prime \prime}$ | $4 \frac{3}{}{ }^{\prime \prime}$ |
| 103312 | $9{ }^{16}$ | $6 \frac{1}{2}^{\prime \prime}$ | $4{ }^{3 \prime \prime}$ |
| 103313 | 14" | $6 \frac{1}{2 \prime}$ | 4 ? ${ }^{\text {a }}$ |
| 103314 | 5" | $6 \frac{10}{2 \prime}$ | $4 \frac{31}{8 \prime}$ |
| 103315 | $\frac{21}{32}$ | $6 \frac{1}{2}$ | $4{ }^{\prime \prime}$ |
| 103316 | 6 | $6{ }^{\text {²" }}$ | $4 \frac{3}{8 \prime \prime}$ |
| 103317 | ${ }^{2} \frac{1}{2}$ | $6{ }^{1 \prime \prime}$ | $4{ }^{3}{ }^{3 /}$ |
| 103318 | + | $6 \frac{11}{1 /}$ | $43^{\prime \prime}$ |
| 103319 | $\frac{1}{2}$ | $6^{\text {¹/ }}$ | $4 \frac{1}{2}$ |
| 103320 | $\stackrel{7}{6}^{\circ}$ | $7 \%$ | $4^{\frac{3}{4}}$ |
| 103321 | \% | 7 " | $4{ }^{\prime \prime}$ |
| 108322 | ${ }^{\prime \prime}$ | $73^{\prime \prime}$ | $5{ }^{\prime \prime}$ |
| 103323 | 弥" | 71 " | $5{ }^{\text {i }}$ " |
| 103324 | 5 " | $8^{\prime \prime}$ | $5 \frac{1}{2 \prime}$ |
| 103325 | $\frac{1}{1 \prime \prime}$ | 8" | $5 \frac{10}{3}$ |
| 103326 |  | $82^{\prime \prime}$ | $6 \frac{17}{1 "}$ |
| 103327 | $I_{x_{1}^{2}}^{1 \prime \prime}$ | $8{ }^{\prime \prime}$ | $6 \stackrel{11}{\prime \prime}$ |
| 103328 | $1{ }_{1}^{12}{ }^{\prime \prime \prime}$ | $9^{\prime \prime}$ | $6 \frac{1}{2}^{\prime \prime}$ |

SQUARE TAPER SHANK DRILLS (No. 2 SHANK)

## FOR USE WITH HAND RATCHET DRILLS

Shank $1 \frac{3}{4} \mathrm{in}$. long, tapered $\frac{3}{1} \mathrm{in}$. to $\frac{1}{2} \mathrm{in}$.

Cat. No.
Diameter


Length Overall
Length Twist


TAPER SHANK TWIST DRILLS
STANDARD OR MORSE TAPER FOR USE WITH HAND RATCHETS



FLAT DRILLS WITH STANDARD OR MORSE SQUARE TAPER SHANK NOS. 1 OR 2


Flat Drill

| cat. no. |  | Diameter |
| :---: | :---: | :---: |
| No. 1 Shank | No. 2 Shank |  |
| 103292 | 103301 | $\frac{1}{2}{ }^{\prime \prime}$ |
| 103293 | 103302 | \%" |
| 103294 | 103303 |  |
| 103295 | 103304 | $\frac{4}{8}$ |
| 103296 | 103305 | 1 " |
| 103297 | 103306 | $16^{\circ}$ |
| 103298 | 103307 | 1 |
| 103299 | 103308 | 13 |
| 103300 | 103309 | $1 \frac{1}{2}$ |

All drills 6 in . long. Drills casily sharpened and capable of fast work. Adapted to band ratchets with square taper sockets.


Drift
Cat. No. 103386 drift is used to remove taper drills and sockets from ratchet drill shanks. It is 7 in . long, finished complete and case hardened.


## CLIMAX TRACK DRILL

This track drill is substantially built and well adapted to hard usage. It has crucible steel gears and forged steel hooks. The hooks are shaped to permit drilling of holes as close as $\frac{1}{2}$ in. to the end of the rail, and are adjustable lengthwise to extend over a Weber joint or a guard rail. The hooks may be adjusted to the height of the rail by a set screw. To clear the track it is necessary only to break the back brace and throw the hooks backward.

| Cat. Co. | Description | Weight <br> in Lb. |
| :---: | :---: | :---: | :---: |
| 103387 | Climax Track Drill for T Rail | 60 |

REPAIR PARTS FOR CLIMAX DRILL


| Cat, No. | Description | Cat. No. | Description |
| :---: | :---: | :---: | :---: |
| 103388 | Ratchet Wheel | 103402 | Bottom Frame |
| 103389 | Ratchet Feed Dog | 103403 | Hook (2) |
| 103390 | Crank (2) . | 103404 | Upright Frame |
| 103391 | Eccentric Gear | 103405 | Nut Box |
| 103392 | Bevel Gear (3) | 103406 | Right Toggle Joint |
| 103393 | Feed Screw | 103407 | Left Toggle Joint |
| 103394 | Vertical Shaft | 103408 | Spindle |
| 103395 | Crank Shaft | 103409 | Steel Nut |
| 103396 | Foot Plate | 103410 | Joint Handle |
| 103397 | Foot Plate Bolt (2) | 103411 | Hook Coupling |
| 103398 | Ball Bearing | 103412 | $12^{\prime \prime}$ Bolt (6) |
| 103399 | Brass Bushing | $103+13$ | $1^{\prime \prime}$ Bolt (3) |
| 103400 | Spindle Cap Set Screw | 103414 | Key for Ratchet Wheel |
| 103401 | Rocker Shaft |  |  |

## PAULUS TRACK DRILL



The Paulus Track Drill has proved to be a most satisfactory hand operated upright machine for drilling rails. It is provided with an automatic feeding device that requires no attention. A dog connecting ratchet on the feed screw is operated by an eccentric which is put in motion by the revolving spindle and results in as coarse a feed as is consistent with the best results from a point of view of time and of safety to the bit.



## REPAIR PARTS OF PAULUS TRACK DRILL



Following is a list of renewal parts for Paulus Track Drills:
When ordering repair parts for Paulus Drills please state whether they are required for the "T" rail or girder rail pattern.

REPAIR PARTS OF PAULUS TRACK DRILL-(Concluded)


| Cat. No. | Description |  | Cat. No. | Description |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 103417 | Ratchet Wheel |  | 103426 | Vertical Shaft | . - | - 1 |  |
| 103418 | Housing for Ratchet Wheel |  | 103427 | Crank Shaft. . | - | , | - |
| 103419 | Lower Frame . |  | *103428 | Rail Hooks . | \% | , | . |
| 103420 | Rocker Shaft | - | 103429 | Foot Plate | - | , | . |
| 103421 | Two Cranks . | - $\quad$ - | 103430 | Two Upper Gears | . | . . | $r$ |
| 103422 | Upper Frame | * | 103431 | Two Lower Gears | * | - | . |
| 103423 | Spindle . | - | 103432 | Back Brace | - | . + | . |
| 103424 | Feed Screw . | -. | 103433 | Set Screw . | - | $\because$ | . |
| 103425 | Ratchet Feed Dog . | - |  |  |  |  |  |

*Style of rail, T or Girder, must be specified.

## ROUND STRAIGHT SHANK DRILLS

These drills listed below are adapted to drilling machines shown on pages 152 and 153.
Diameter of shank is $\frac{41}{64}$ in; length of shank $2 \frac{1}{4}$ in.; length overall 6 in.; length of twist 3 in.

| Cat. No. | Diameter | Cat. No. | Diameter | Cat. No. | Diameter | Cat. No. | Diameter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 103434 \\ & 103435 \\ & 103436 \\ & 103437 \\ & 103438 \end{aligned}$ |  | $\begin{aligned} & 103439 \\ & 103440 \\ & 103441 \\ & 103442 \\ & 103443 \end{aligned}$ |  | $\begin{aligned} & 103+44 \\ & 103445 \\ & 103446 \\ & 103+47 \\ & 103448 \end{aligned}$ |  | $\begin{aligned} & 103449 \\ & 103450 \\ & 103451 \\ & 103452 \end{aligned}$ | $\begin{aligned} & \frac{31}{32}{ }^{\prime \prime} \\ & 1^{\prime \prime} \\ & 1^{\frac{1}{3} 2^{\prime \prime}} \\ & 1_{1}^{16} \end{aligned}$ |

## THE MAGIC HIGH SPEED BIT



The Magic High Speed Bit
This bit is made of Sheffield air hardened steel and will retain its temper even at a very high temperature.

## THE MAGIC HIGH SPEED BIT-(Concluded)

Fits the chuck of any standard collapsible track drill. Diameter of rod shank $\frac{41}{64}$ in. May be used with drilling machines shown on pages 152 and 153.

| Cat. No. | Dia. of Bit |
| :---: | :---: |
| 103453 |  |
| 103454 | $\frac{1^{\prime \prime}}{\prime \prime \prime}$ |
| 103455 | $\frac{3}{\prime \prime}$ |
| 103456 | $3^{\prime \prime}$ |
| 103457 | $3^{\prime \prime \prime}$ |

## FLAT HIGH-SPEED STEEL BITS



These bits do not require any special or expensive chuck, as they have same size shank as the standard track drill bit. They bore easily and quickly, and retain their cutting edge much longer, and can readily be reground.

| Cat. No. | Size, Inches | Cat. No. | Size, Inches |
| :---: | :---: | :---: | :---: |
| 103458 | $\frac{5}{4}$ | 103462 | 103463 |
| 103459 | $\frac{1}{6}$ | 103464 | $\frac{1}{15}$ |
| 103460 | $\frac{4}{15}$ | 103465 | 1 |
| 103416 | $\frac{1}{16}$ | $1 \frac{1}{16}$ | 1 |

Bits have $\frac{14}{4} \mathrm{in}$. straight shank, and may be used with drilling machine shown on pages 152 and 153.


Diameter of shank $\frac{41}{64}$ in.
For use with upright drills on pages 152 and 153.
This tool is used to clean the surface of the rail surrounding the bond hole. When the head of a compressed terminal bond is to be soldered to the rail it is essential that the rail be brightened to insure good contact.

In ordering, specify diameter of bond hole.



This tool is for the same purpose as the one above, but is adapted for use with hand ratchet drills on page 149. Specify size of taper shank desired.

## DUNTLEY ELECTRIC DRILL



This drill has been specially designed to operate on circuits of from 450 to 600 volts direct current, and will handle drilling in iron or steel up to 1 in . in diameter. For wood boring it will handle work up to $2 \frac{1}{2}$ in. in a very satisfactory manner. This drill is regularly equipped with socket to take standard round, taper shank drills. It is furnished with feed screw, starting switch, 20 ft . of cable, and a fuse block and 3 fuses.

Special precautions have been taken to prevent danger of shocks to workmen, and if directions are followed there is no danger from this source, even though the windings of the tool may become grounded.

The design and construction of these tools has been carefully worked out in accordance with the most approved principles. The armature is built up on a steel shaft, hardened and ground, and with the driving pinion an integral part. The armature core is made of the highest grade of electrical sheet, and is wound with specially insulated magnet wire, held in the slots by means of wedges, no binding wire being used. The commutator is large in diameter, containing a great many bars of hard drawn copper, insulated throughout with the best amber mica. The brushes are of carbon. A fan is provided on the armature shaft and revolves at the speed of the armature, setting up a circulation of air through the openings provided for that purpose.

| Cat. No. | Description | Weight <br> in Lb. |  |
| :---: | :---: | :---: | :---: | :---: |
| 103468 | Duntley Electric Drill |  | 35 |



## No. 3 BOYER ANGLE GEAR

Where it is necessary to work in very close quarters or drill near to the ties, we recommend the use of our No. 3 Boyer Angle Gear in connection with our electric drill. This gear is no larger than an ordinary hand ratchet. Distance from center of spindle to the outside of housing, $1 \frac{3}{4} \mathrm{in}$. Distance from point of feed screw to the end of socket, $8 \frac{1}{4} \mathrm{in}$.

No. 3 BOYER ANGLE GEAR-(Concluded)

| Cat. No. |  | Description | Weight <br> in Lb. |
| :--- | :--- | :--- | :--- | :--- |
| 103469 | No. 3 Boyer Angle Gear |  | 13 |



Application of the Angle Gear

The application of the angle gear in connection with the Duntley drill and ordinary "old man" is shown in the accompanying illustration. The angle gear is used here on account of the shallowness of the track, which will not permit the use of the drill directly.

DUNTLEY TRACK DRILL


The accompanying illustration shows the combination of the Duntley 550-volt drill and the Boyer angle gear in a track drill, being built with a view of accomplishing quick and accurate work in the drilling of track for bond holes, joint plate or tie rods. The relative positions of the drill and angle gear are maintained by means of a connecting casting which slides on a split sleeve or quill on the main bar. This sleeve can be clamped to the bar in any desired position, and when so clamped limits the drill to a longitudinal movement, due to a feather in the quill.

In drilling, the feed screw is forced against the backing up arm, which can be readily loosened and backed up after a hole has been drilled, allowing the drill and angle gear to be pulled back out of the way. Weight 120 pounds. Capacity 1 in . steel.

## HYDRAULIC FOOT BOND PUNCH

This tool is designed to punch bond holes in the foot of $T$ rails. The ram and punch are at the bottom or underneath the rail and operate upwards, punching a tapered hole with the large aperture at the top. The tool punches the hole at right angles with the top surface of the rail base. Dogs provided with adjusting screws drop over the ball of the rail, preserving the alignment and holding the tool firmly during operation. Guide pieces are provided to show proper location of bond holes. A rod placed at the end of the punch after the slug is removed forces the ram back into the cylinder by a crank placed between the two vertical handles.

This is the companion tool to the Hydraulic Foot Bond Compressor shown on page 163.


Cat. No. 40295


DOUBLE-TWIN SPINDLE DRILL


This machine is designed to drill all four holes at one time in the head of T rails for the Twin Stud Terminal Bond. The machine is easy to handle and operate, and it works rapidly and accurately. It has a positive automatic feeding device, which can be adjusted within wide limits. The drills are operated by a lever, each stroke of which rotates the drills through a positive mechanism which provides equal rotation for all drill points.

Each spindle is provided with an adjusting sleeve so that each drill may be set independently of the others. This provision offsets uneven wearing or setting of rails and disalignment of rails on curves. Each machine is equipped with a gauge for determining the depth of the holes. Frames can be raised or lowered quickly to bring the holes into their correct positions. The machines are attached to the rails and operated without disturbing rail joints.

## DOUBLE-TWIN SPINDLE DRILL-(Concluded)

The drill points are held rigidly in the machine and seldom break or chip. For the same reason the desired holes may be started without first prick punching the rail.

The levers by which the machines are operated are detachable so that the tools may be moved easily from place to place. When car or train service over the tracks to be bonded must not be disturbed, these drilling machines can be attached rigidly to the splice bars instead of to the head of the rail.

Each drilling machine is equipped with all fittings and one complete set of new drills. Many parts of these machines are interchangeable and small parts may be ordered by mail.


## MOTOR DRILL



Double-Twin Drill Operated by Electric Motor

The Multiple-Spindle Drill is so designed that it can be operated by a small electric motor instead of a lever. The machine as shown makes a very compact and efficient portable drill. It is a highly developed, high speed tool, that will endure the very severe conditions of track work. Easily handled and operated by two men. With this machine, Twin Terminal bonds can be installed at a very low cost.

The motor is extremely light and compact, and it will operate directly on a 500 -volt trolley circuit. The internal windings are thoroughly well protected and insulated, and the armature shaft is geared direct to the drill spindles. A device, not shown, for correctly and easily sharpening the drills can be attached to the motor.

| Cat. No. | Description | Weikht <br> in Lb. |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 103471 | Motor Operated Double-Twin Spindle Drill | 280 |

## TWIST DRILLS

These drills are made especially for the Double-Twin Spindle Drill and are uniform in size, being $\frac{1}{2}$ in. in diameter by 6 in. long. The drills give very good results without lubrication if they are properly sharpened.

| Cat. No. |  | Description |  |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| 103472 | Special $\frac{1}{2}$ Twist Drill |  |  |

## HAND TOOLS FOR TWIN STUD TERMINAL BONDS

 HAND MILLING CUTTER

The Hand Milling Cutter cuts the small groove in the hole. With a swinging motion that will keep the milling teeth pressed against the sides of the hole, the cutter is rotated several times within the hole.



The punch is made of tool steel, tempered. It is to round off and blunt the sharp edge of the hole.

The double faced riveting hammer is especially adapted for applying twin stud terminal bonds.

| Cat, No. | Description |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | Weight |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 103475 | Dulling Punch | $\square$ |  |  |  |  |  | $\cdots$ |  | , | - |  | $\square$ |  | - | , | 3 oz . |
| 103476 | Riveting Hammer | 4 |  | . | - | - | - | - | - | , | $\cdot$ | - | , |  | - | ' | $2 \frac{1}{2} \mathrm{lb}$. |

## RAIL BOND COMPRESSORS

## DOUBLE SCREW COMPRESSORS



All of our Double Screw Compressors are of the same design, and differ only in size and the amount of pressure they exert. The distribution of the metal in the frame is such as to make the machines strong and substantial, and as light as is practicable.

After the terminal has been inserted in the hole and the compressor mounted on the rail, the inner screw is centered in the depression in the bond terminal. The outer screw is then drawn up with the handwheel until it rests against the rail web, thus holding the machine rigid and drawing the bond head up tight against the opposite side of the web. Compression is then effected with the wrench on the inner screw.

The end of the compressing screw is so designed that the hole in the rail must be completely filled with copper before the terminal can be riveted or button-headed over the hole.

The handwheel may be detached easily and discarded when work is to be done in limited space, as over ties, as the outer screw is provided with a hexagonal end to take a wrench.

The compressing power of these machines is from 20 to 30 tons.
Cat. No, 68935 is designed to take the lighter rails from 30 to 40 lb . It has a vertical adjusting screw to center the compressing screw in the depression in the bond terminal. Power exerted 15 tons.

All compressors are furnished with operating wrench. Extra wrenches may be ordered by catalogue number.


WRENCHES FOR COMPRESSORS


PARTS OF SCREW COMPRESSORS

| Cat. No. |  | Description |  |
| :--- | :--- | :--- | :--- |

[^26]
## SCREW COMPRESSOR FOR FOOT BONDS



Cat. No. 40294

This compressor is used for installing the Form C Beveled Head Foot Bond. The bond holes are drilled or punched at right angles to the upper surface of the foot of the rail.

The body or frame is made of forged steel. The compressing screw is of tool steel with square cut threads, and is carefully tempered. Two handles are provided for conveniently carrying the tool about. The tightening wedge is attached to the frame by a chain to prevent loss. When ordering this machine please give section number of rail used.

The compressor weighs 80 lbs .

| Cat. No. | Description |
| :--- | :---: |
| 40294 | Foot Bond Screw Compressor $\quad . \quad$. |

.

PARTS OF FOOT BOND COMPRESSOR


[^27]
## HYDRAULIC FOOT BOND COMPRESSOR



This is the companion tool to the Foot Bond Punch illustrated on page 158. It is intended for the installation of Form C Beveled Head Foot Bonds. The holes in the rail are tapered with the large aperture at the top; the bond terminals are inserted from beneath the rail, and compressed backward against the taper, forming an absolutely water-tight and flush joint, and a perfect contact. The bonds are drawn into place before being compressed, by means of the crank and side bars. A guide plate is attached to the lower end of these side bars to indicate the proper location of the tool and insure the ram being directly over the bond. Weight complete, 135 pounds.

| Cat. No. | Description |
| :---: | :---: |
| 40296 | Hydraulic Conductor Bond Compressor, 35 tons $\quad . \quad$. |

Cat. No. 40296

## SCREW HYDRAULIC WEB BOND COMPRESSOR

This tool is designed for compressing the terminals of bonds in the web of T or girder rails.



## HYDRAULIC CONDUCTOR BOND COMPRESSORS

## For Use in Underground Conduit Work

This tool is designed for compressing bond terminals in conductor rails for underground contact systems. In such work one end of the bond is compressed in the rail while it is lying loose in the street; this tool is intended for that part of the work. After the rail is in place and fixed on its insulators, the remaining bond terminal is compressed with the special tool shown below. .

| Cat. No. | Description |
| :---: | :---: |
| 40298 | Hydranlic Conductor Bond Compressor, weight 110 pounds, <br> capacity 15 tons |



## For Use in Manhole

This compressor is designed for compressing the bond terminals in underground conductor rails after they are set in position in conduit. The tool is dropped into position through the manhole, and is supported by means of the cross bar which extends across the hole. It is drawn up tight against the rail with the crank and screw, and the hook catching in the slot holds the tool firmly during operation. Weight, 110 lbs . ; capacity, 15 tons.

| Cat. No. | Description |
| :---: | :---: |
| 40299 | Hydraulic Conductor Bond Compressor |

## DUNTLEY PORTABLE ELECTRIC GRINDER FOR 460 TO 600 VOLT CIRCUITS

For grinding rails for bonds, either soldered or otherwise fastened, we are offering a portable electric grinder that will accomplish a very large amount of work at a rapid rate. This tool is light, absolutely portable, and can be handled by a comparatively inexperienced operator.

The grinder carries an emery wheel 8 in . in diameter, and $\frac{5}{5}$ in. face. The speed of the tool is 3,000 r.p.m. and the weight complete is $2 S \mathrm{lbs}$. It is regularly equipped with an $\delta$ in. in diameter by $\frac{5}{8} \mathrm{in}$. face emery wheel, and two $20-\mathrm{ft}$. lengths of cable attached to the grinder. The switch is mounted on the machine within easy reach of the hand.


## DUNTLEY PORTABLE ELECTRIC GRINDER-(Concluded)

FOR 460 TO 600 VOLT CIRCUIT

| Cat. No. | Description | Weight <br> in Lb. |  |
| :--- | :--- | :--- | :--- | :--- |
| 103477 | Portable Electric Grinder | . | 28 |

HAND POWER GRINDING MACHINE


## Rail Grinding Machine

This machine is simple in construction, compact and light. It may be carried readily by two men. The legs and handles are iron pipe. It is equipped with a flexible shaft and an emery wheel 8 in. in diameter with $\frac{5}{8} \mathrm{in}$. face.

| Cat. No. | Description |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 103478 | Grinding Machine with 5 ft . flexible shaft |  | - | * | , | , | - | - |  |  |  | - | ' |
| 103479 | Flexible Shaft only, 5 ft , long .. |  | . | - | . | . | , |  |  |  |  | . | $\stackrel{ }{-}$ |
| 103480 | Emery Wheel only, $8^{\prime \prime} \times 8^{\prime \prime}$. |  | . | - | * | - | - | , | - |  |  |  | , |
| 103481 | Carborundum Wheel only, $\frac{5^{\prime \prime}}{} \times 8^{\prime \prime}$ |  | , |  | - | - | . |  | . | - | - | - |  |



## TORCH

For kerosene burning this machine is equipped with two powerful burners, mounted on a 10 gallon brazed tank, tested at 200 lbs . pressure per square inch. The burners are mounted on swivel joints, and are easily adjustable to any position.

For gasolene burning the machine is equipped with a large single burner of great power.

Cat. No. 103482


## BLOW TORCHES



Cat. No. 43689


Cat. No. 43690

Cat. No. 43689 is a Kerosene Torch, capacity 15 gals. It will heat a rail to soldering temperature in one-fourth the time required with Gasoline Torch. It may be refilled without exhausting the pressure in the tank. Cat. No. 43690 is the same as Cat. No. 43689 except that it has flexible hose instead of pipe connections, adapting it for use on elevated structures, etc.


SOLDERED BOND CLAMPS




## INDEX TO SUBJECTS



INDEX TO CATALOGUE NUMBERS

| No. Page | No. Page | No. Page | No. Page | No. Page | No. Page | No. Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17224-28 | 103292-31 | 103325-30 | 103358-31 | 103411-32 | 103444-34 | 103477-45 |
| 17225-28 | 103293-31 | 103326-30 | 103359-31 | 103412-32 | 103445-34 | 103478-45 |
| 17315-28 | 103294-31 | 103327-30 | 103360-31 | 103413-32 | 103446-34 | 103479-45 |
| 17553-28 | 103295-31 | 103328-30 | 103361-31 | 103414-32 | 103447-34 | 103480-45 |
| 40294-42 | 103296-31 | 103329-30 | 103362-31 | 103415-33 | 103448-34 | 103481-45 |
| 40295-38 | 103297-31 | 103330-30 | 103363-31 | 103416-33 | 103449-34 | 103482-45 |
| 40296-43 | 103298-31 | 103331-30 | 103364-31 | 103417-34 | 103450-34 | 103483-46 |
| 40298-44 | 103299-31 | 103332-30 | 103365-31 | 103418-34 | 103451-34 | 103484-46 |
| 40299-44 | 103300-31 | 103333-30 | 103366-31 | 103419-34 | 103452-34 | 103485-41 |
| 43688-45 | 103301-31 | 103334-30 | 103387-32 | 103420-34 | 103453-35 | 103486-41 |
| 43689-46 | 103302-31 | 103335-30 | 103388-32 | 103421-34 | 103454-35 | 103487-41 |
| 43690-46 | 103303-31 | 103336-30 | 103389-32 | 103422-34 | 103455-35 | 103488-42 |
| 61040-41 | 103304-31 | 103337-30 | 103390-32 | 103423-34 | 103456-35 | 103489-42 |
| 61041-41 | 103305-31 | 103338-30 | 103391-32 | 103424-34 | 103457-35 | 103490-42 |
| 61042-41 | 103306-31 | 103339-30 | 103392-32 | 103425-34 | 103458-35 | 103491-42 |
| 61180-41 | 103307-31 | 103340-30 | 103393-32 | 103426-34 | 103459-35 | 103492-42 |
| 68935-41 | 103308-31 | 103341-30 | 103394-32 | 103427-34 | 103460-35 | 103493-42 |
| 68936-41 | 103309-31 | 103342-30 | 103395-32 | 103428-34 | 103461-35 | 103494-42 |
| 103273-29 | 103310-30 | 103343-30 | 103396-32 | 103429-34 | 103462-35 | 103495-42 |
| 103274-29 | 103311-30 | 103344-30 | 103397-32 | 103430-34 | 103463-35 | 103496-42 |
| 103275-29 | 103312-30 | 103345-30 | 103398-32 | 103431-34 | 103464-35 | 103497-42 |
| 103276-29 | 103313-30 | 103346-30 | 103399-32 | 103432-34 | 103465-35 | 103498-42 |
| 103277-29 | 103314-30 | 103347-30 | 103400-32 | 103433-34 | 103466-35 | 103499-42 |
| 103278-29 | 103315-30 | 103348-31 | 103401-32 | 103434-34 | 103467-35 | 103500-42 |
| 103279-29 | 103316-30 | 103349-31 | 103402-32 | 103435-34 | 103468-36 | 103501-42 |
| 103280-29 | 103317-30 | 103350-31 | 103403-32 | 103436-34 | 103469-37 | 103502-42 |
| 103281-29 | 103318-30 | 103351-31 | 103404-32 | 103437-34 | 103470-39 | 103503-42 |
| 103282-29 | 103319-30 | 103352-31 | 103405-32 | 103438-34 | 103471-39 | 108051-43 |
| 103283-29 | 103320-30 | 103353-31 | 103406-32 | 103439-34 | 103472-40 | 108482-43 |
| 103284-29 | 103321-30 | 103354-31 | 103407-32 | 103440-34 | 103473-40 | 108483-43 |
| 103285-29 | 103322-30 | 103355-31 | 103408-32 | 103441-31 | 103474-40 |  |
| 103286-29 | 103323-30 | 103356-31 | 103409-32 | 103442-34 | 103475-40 |  |
| 103287-29 | 103324-30 | 103357-31 | 103410-32 | 103443-34 | 103476-40 |  |

## GENERAL ELECTRIC COMPANY

PRINCIPAL OFFICES, SCHENECTADY, N. Y.

SALES OFFICES
(Address nearest office)
BOSTON, MASS., 84 State Street.
NEW YORK, N. Y., 30 Church Street.
Syracuse, N.Y., Post-Standard Building.
Buffalo, N. Y., Ellicott Square Building.
New Haven, Conn., Malley Building.
PHILADELPHIA, PA., Witherspoon Building.
Baltimore, Mo., Electrical Building.
Charlotte, N. C., Trust Building.
Charleston, W. Va, Charleston National Bank Bidg.
Pittsburg, Pa., Park Building.
Richmond, VA., 712 Mutual Building.
Roanoke. Va, Strickland Building.
ATLANTA, GA., Empire Building.
Birmingham, Ala., Brown-Marx Building.
Macon, Ga., Grand Building.
New Orleans, La, Maison-Blanche Building
CINCINNATI, OHIO. Provident Bank Building
Columbus, Ohio, Columbus Savings \& Trust Building.
Cleveland, Ohio, Citizens Building.
Chattanooga, Tenn., James Building.
Memphis, Tenn., Randolph Building.
Nashyille, TenN., Stahlman Building.
Indianapolis. Ind.. Traction Terminal Building.
CHICAGO, ILL.. Monadnock Building.
Detroit, Mich., Majestic Bldg. (Oefice of Soliciting Agt.)
St. Louis, Mo., Wainwright Building.
Kansas City, Mo., Dwight Building.
Butte, Montana, Phoenix Building.
Minneapolis. Minn., 410-412 Third Avenue, North.
DENVER, COLO., Kittredge Building
Den Lake City Utah, Newhouse Building
SAN FRANCISCO, CAL., Union Trust Building.
Los Angeles, Cal., Delta Building.
Portland, Ore., Electric Building.
Seattle, Wash., Colman Building.
Spokane, Wash., Paulsen Building.
For Texas and Oklahoma Business refer to
General Electric Company of Texas,
Dallas, Tex., Praetorian Building.
EI Paso, Tex., Chamber of Commerce Building.
Oklahoma City, Okla., Insurance Building.

FOREIGN
Foreign Department,
Schenectady, N. Y., and 30 Church St., New York, N.Y
London Office, 83 Cannon St., London, E. C., England.
For all Canadian Business,
Canadian General Electric Company, Ltd..
Toronto, Ontario.
AN

# ALTERNATING CURRENT SWITCHBOARD PANELS 

THREE-PHASE THREE-WIRE AND SINGLE-PHASE 1150 AND 2300 VOLTS, 25/125 CYCLES

90 INCHES HIGH

## WITH SECONDARY APPARATUS



General Electric Company

## ！：

4ヵヤ
母

## NOTICE

This bulletin contains a number of references to other publications. Information regarding the matters thus referred to may be had from any local office of the Company.

The panels listed are all of the sectionalized type and each section has a separate catalogue number. Since each section includes essential apparatus, three sections (one top, one middle and one bottom) are required to form a complete panel.

The pages are sectionalized so that the user may have before him a picture of the complete panel desired together with a full description of the equipment. All sections included between full sized pages are interchangeable for equal capacities excepting as noted on the top sections.

The following procedure will simplify the selection of a panel,
1 The index on page 1 will tell where the panel may be found.
2 Choose the top section first and the note above the table of catalogue numbers will indicate at once just what middle and bottom sections may be used.
3 Check the "Equipment" given for the panel chosen and thus insure that it meets all requirements. The diagrams of connections which are included with each class of panels clearly illustrate the function of each piece of apparatus comprising the equipment.

## ALTERNATING CURRENT SWITCHBOARD PANELS

## THREE-PHASE THREE-WIRE AND SINGLE-PHASE

*1150 AND 2300 VOLTS - *25/125 CYCLES

## 90 INCHES HIGH-WITH SECONDARY APPARATUS

*All panels are listed for 2300 volts, 60 cycles, but with slight modifications may be used for 1150 volts or any frequency from 25 to 125 cycles. See Voltage and Frequency under General Information.

The following illustration shows a switchboard comprised entirely of standard panels.


Copyright, 1910, by General Electric Company

## GENERAL INFORMATION

These panels are designed for general use in central stations and isolated plants, suitable provision being made for operating generators in parallel.

All A.C. instruments and meters are operated from the secondaries of standard current and potential transformers and the automatic oil switches are of the transformer trip form. The use of secondary apparatus produces maximum safety to both the operator and the system and is recommended for all 2300 volt systems.

The instruments, meters, oil switches, etc., furnished with these panels are of the General Electric Company's highest grade for 2300 volt switchboards, and sufficient information regarding them is given under the "Equipment" of the panels to enable the reader to refer to the various bulletins whieh contain detailed deseriptions.

## VOLTAGE

Unless otherwise ordered, apparatus will be calibrated for 2300 volts. Panels may be used to eontrol 1150 volt generators and feeders, but when generator panels are used for 1150 volt machines the kilowatt rating of the panel is decreased one-half.

FREQUENCY
Unless otherwise ordered, apparatus will be calibrated for 60 cycles. All panels may be used on any frequency from 25 to 125 cycles without additional charge excepting those equipped with 50 watt potential transformers for which an additional charge will be made when used for frequencies less than 60 cycles.

## MATERIAL OF PANELS

All sections are oiled Natural Black Slate $11 / 2$ in. thick, with $3 / 8$ in. bevel. Blue Vermont Marble, Black Enameled Slate or panels 2 in. thick may be substituted at increased prices which may be obtained from any office of the General Electric Company.

## FRAMEWORK

A complete supporting framework of $11 / 4 \mathrm{in}$. pipe with necessary fittings is included with each panel, excepting the pipe for tie rods. . For panels equipped with remote control oil switches a suitable pipe framework for supporting oil switch and buses is also included. See Switchboard Arrangements.

## SILL

A wooden sill for supporting the switchboard 1 in . from the floor is recommended for all installations. See Switchboard Arrangements. This sill is not furnished by the General Electric Company.

## BUSES

Suitable insulating supports for A.C. and exciter buses are furnished with these panels, supports for one set of A.C. buses being furnished on panels
having S.T. oil switches and for two sets of A.C. buses on panels having D.T. oil switches. Buses will be located as shown on the Switchboard Arrangements.

Owing to the varying amounts of bus bar copper which may be required for a given panel, it is impossible to include with these panels a fixed a mount which would not be too great for some cases and too small for others. All panels are, therefore, listed without copper for buses and the latter must be ordered by Cat. No. from the bus bar tables on another page.

## CONNECTIONS

Each panel is furnished complete with insulated connections from oil switches to buses, necessary small wiring on back of panel, primary leads (not exceeding 15 ft . in length) for potential transformers, and multi-conductor cable (not exceeding 25 ft . in length) for secondary conneetions from both the current and potential transformers to the terminal blocks on the panel.

It will be noted from the diagrams of connections for the various panels that each panel is so wired on the back that secondary leads from current and potential transformers may be brought to the panel either from above or from below, and that suitable terminal blocks are provided for attaching these leads to the panel. The terminal blocks have suitable terminals and links for the insertion of calibrating instruments while the panel is in service.

The Switchboard Arrangements on the pages in rear of this section show the main connections and supports for same which are to be furnished by the purchaser. When generator panels with governor control switches or feeder panels with regulator control switches are ordered, the purchaser must furnish the necessary control leads from the panel to the governor or regulator.

## INSTRUMENT EQUIPMENTS

Alternative instrument equipments are provided for both generator and feeder panels in order that suitable combinations may be available for any of the usual load conditions.

For Generator Panels the following are recommended:

| (a) For |
| :---: |
| ordinary |
| balanced |
| power |
| loads |


| (b) For |
| :---: |
| unbalanced |
| lighting |
| loads | \(\left\{\begin{array}{l}One A.C. Ammeter, <br>

One A.C. Voltmeter, <br>
One D.C. Field Ammeter, <br>
One A.C. Indicating Wattmeter <br>
for units 500 Kw. and above.\end{array}\right.\)

[^28]
## INSTRUMENT EQUIPMENTS (Cont'd)

With combination (b) an 8 point receptacle is furnished on the middle section to allow voltage readings on all three phases.
For Feeder Panels it is customary to use,
One ammeter for single-phase lighting,
One ammeter and one voltmeter compensated for ohmic drop, for single-phase lighting when regulators are used.

* Three ammeters for three-phase lighting,

One ammeter for three-phase power.
When Ground Detectors are to be used it is recommended that they be mounted on rigid brackets on top of the switchboard or in some convenient location away from the board.

## METER EQUIPMENTS

Watthour meters are listed for both generator and feeder panels. Except where it is necessary to meter certain feeders, generator watthour meters are recommended in preference to feeder watthour meters as the former operate at better load factors and are not subject to changes in capacity. When watthour meters are desired for several feeder panels which are not equipped with regulators and which are connected to one set of buses, economy may be practiced by omitting the potential transformers from each panel and using a common set of transformers connected to the bus. Such cases should be referred to the General Office for recommendations.

Meters heretofore known as "Recording Wattmeters" will in the future be known as "Watthour Meters." Throughout this bulletin, the terms "Polyphase Watthour Meter" and "Single-phase Watthour Meter" are used in place of "Polyphase Recording Wattmeter" and "Single-phase Recording Wattmeter" respectively.

## $\dagger$ OIL SWITCH EQUIPMENTS

The K-5 oil switches which are listed for all panels are of two classes, all 200 ampere switches being rated 4500 volts while the 300 and 500 ampere switches are rated 7500 volts. Panels are listed with oil switches both on the back of panel and remote control on pipe framework. The latter location is recommended in all cases where double throw switches are required as the connecting cables render the back of the panel almost inaccessible when the former location is used. This is especially true when generator or feeder cables are brought to the switch from the top of the panel. Panels with 200 ampere double-throw oil switches on the back are listed, however, for use in small installations where the more expensive arrangement is not justified.

## RELAYS

Relays are not required on any of these panels excepting when an indicating wattmeter or a watthour meter and an automatic oil switch are operated from the same current transformers. However, time limit relays are listed for all panels having automatic switches, both for the purpose of securing greater oil switch rupturing capacity when required, and for use on circuits subject to heavy momentary overloads.

## RATINGS OF GENERATOR PANELS

The ampere ratings given for generator panels are the maximum currents which they are designed to carry for one or two hours, the corresponding kilowatt ratings being the normal capacity of the largest machines with which the panels may be used. The kilowatt ratings given are based on unity power factor and overloads of 25 per cent. for one or two hours and 65 per cent. momentarily. For overloads of 50 per cent. for one or two hours and 100 per cent. momentarily multiply the normal kw . rating of the generator by 1.2 and select a panel having a kw. rating at least equal to product thus obtained. RATINGS OF INDUCTION MOTOR PANELS

The apparent efficiency of an induction motor of given horse-power and voltage varies somewhat with the speed for which the motor is designed, so that panels having a given ampere rating cannot be given a corresponding horse-power rating which will be correct for all speeds. Panels listed herein which are intended for controlling induction motors are, therefore, rated in amperes only, the ratings given being the maximum current (other than momentary) which they are designed to carry. The ampere capacity of the panel required for a given motor may be determined by the following formulas:
For motors with 25 per cent. overload guarantee:
Ampere Capacity of Panel

$$
\begin{aligned}
& =\frac{\text { H.P. } \times .746 \times 1000 \times 1.25}{1.73 \times \text { volts } \times \text { efficiency } \times \text { power factor }} \\
& =\frac{H . P . \times 539}{\text { volts } \times \text { efficiency } \times \text { power factor }}
\end{aligned}
$$

For motors with 50 per cent. overload guarantee:
Ampere Capacity of Panel

$$
\begin{aligned}
= & \frac{\text { H.P. } \times .746 \times 1000 \times 1.5}{1.73 \times \text { volts } \times \text { efficiency } \times \text { power factor }} \\
= & \text { H.P. } \times 646.5
\end{aligned}
$$

The ampere ratings given for feeder panels are the maximum current (normal or overload other than momentary) which they are designed to carry. Panels of larger capacity than necessary should not as a rule be chosen in order to provide for a possible future increase of load, since the consequent low load factor of the current transformers has an injurious effect on the accuracy of the instruments and meters; furthermore the overload feature on the oil switches is rendered inoperative except on short circuits and extremely heavy overloads due to the very high ratio of the current transformers as compared with the normal load of the circuit to be controlled.

[^29]Copyright, 1910, by General Electric Company

## RUPTURING CAPACITY OF OIL SWITCHES

The switches used on these panels are capable of opening heavy overloads or short circuits on any system where the aggregate full load circuits of all the generators connected to the bus does not exceed the kiiowatt ratings given below.

If power is received from an outside source having a capacity in excess of the following limits, the incoming lines must be equipped with automatic switches capable of rupturing the power behind them and the automatic devices must be so set as to limit the bus capacity to the rupturing capacity of the switches connected to the bus.

It will be noted that the rupturing capacity of automatic switches is materially increased by the use of time limit rclays.

| Switch <br> Ampere <br> Rating | Voltage of Circuit | RUPTURING, CAPACITY IN KILOWATTS |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Non. Automatic | Automatic Instantaneous | Automatic with Time Limit Relay. Set for a Minimum of $1,1 / 2$ Seconds Delay |
| 200 | 1150 | 5900 | 2400 | 5900 |
| 200 | 2300 | 5300 | 2100 | 5300 |
| 300-500 | 1150 | 6300 | 2500 | 6300 |
| 300-500 | 2300 | 5900 | 2400 | 5900 |

## INFORMATION WHICH SHOULD ACCOMPANY ORDERS

Delay in shipment and dissatisfaction on the part of the Purchaser will often be avoided if the order is accompanied by as much of the following information as pertains to the panel or panels ordered. GENERAL

1. Order of Panels-Preferably in the form of a rough sketch including existing, blank and new panels and also showing any open spaces. See Fig. 1 Page 65 for recommended arrangement.
2. If Existing Panels are to be matched give serial numbers of same if of General Electric manufacture, otherwise give brief description preferably in form of sketch showing location of apparatus and bolts on front of panels, location and size of bus bars, location of oil switches, etc.
3. Location of Oil Switches when remote controlwhich of the locations shown in "Switchboard Arrangements" is desired?
4. Ultimate Total Capacity of Station-If power is received from an outside source, do conditions exist such as outlined under "Rupturing Capacity of Oil Switches?"
5. Available Space behind and above switchboard, also height of basement, if any.

## GENERATOR PANELS

1. Rating of Generators including voltage, normal load, one or two hour overload, frequency, power factor and maximum excitation.
2. Location of Rheostats-All of these panels are designed for chain operated generator field rheostats. Which of the rheostat locations shown on pages in rear of this section is desired?
3. Main Cables-Are they to be brought to oil switches from above or from below?

## FEEDER PANELS

1. Main Cables-Are they to be brought to oil switches from above or from below?
2. Location of Regulators-If Feeder Regulators are chain operated, which of the locations shown on pages in rear of this section is desired?
3. Normal Ampere Load of Circuits to be controlled -See "Rating of Feeder Panels" on a preceding page.

## INDUCTION MOTOR PANELS

1. Main Cables-Are they to be brought to oil switches from above or from below?
2. Rating of Motor including voltage, normal and overload h.p. rating, power factor and efficiency.
3. Method of Starting Motor.

## TA REGULATOR PANELS

1. Fill out and attach special Regulator Information Blank.
2. If a current transformer is used for compensating for line drop specify where same is to be connected.

# THREE-PHASE GENERATOR PANELS <br> 2300 VOLTS-60 CYCLES 

26 1/2 TO 1600 KILOWATTS

WITH OIL SWITCHES \{ Mounted on back of panel T.P.S.T. AND T.P.D.T. $\{$ Remote control, mounted on pipe framework



## EQUIPMENT

A $=$ H.E. A.C. ammeter with, .....amp. scale.
F.A. $=$ D.H. D.C. field ammeter with. . . . . . amp. scale (acale to be given with order).
$\mathrm{V}=\mathrm{H} . \mathrm{E}$. A.C, voltmeter with 175 volt scale.
A.S. $($ optional $)=$ Three-way ammeter switch Ior connecting A in each phase,

Sections without A.S. cannot be used with Middle Sections, pages 10 A and 12 A Bottom Sections, page 10B
Sections with A.S. cannot be used with Middle Sections, pages 9A and 11A Bottom Sections, page 9B

| Kw. of Gen. | AMP. CAPACITY |  | CAT. NO. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Panel | A | Without A.S. | $\begin{aligned} & \text { With } \\ & \text { A.S. } \end{aligned}$ |
| 26.5 | 8 | 10 | 108600 | 108619 |
| 32 | 10 | 12 | 108601 | 108620 |
| 40 | 12 | 15 | 108602 | 108621 |
| 50 | 16 | 20 | 108603 | 108622 |
| 6.5 | 20 | 25 | 105604 | 108623 |
| 80 | 25 | 30 | 108605 | 108624 |
| 100 | 30 | 40 | 108606 | 108625 |
| 130 | 40 | 50 | 108607 | 108626 |
| 160 | 50 | 60 | 108608 | 108627 |
| 200 | 65 | 80 | 108609 | 108628 |
| 260 | 80 | 100 | 108610 | 108629 |
| 320 | 100 | 120 | 108611 | 108630 |
| 400 | 125 | 150 | 108612 | 108631 |
| 520 | 160 | 200 | 108613 | 108632 |
| 840 | 200 | 250 | 108614 | 108633 |
| 800 | 250 | 300 | 108615 | 109634 |
| 960 | 300 | 400 | 108618 | 108635 |
| 1280 | 400 | 500 | 108617 | 108636 |
| 1600 | 500 | 600 | 108618 | 108637 |



These Sections cannot be used with Bottom Sections, page 9B

| Kw. of Gen. | AMP. <br> CAPACITY |  | $\begin{aligned} & \text { P.I.W. } \\ & \text { Scale } \\ & \text { in Kw. } \end{aligned}$ | Cat. NO. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | Panel | A |  |  |  |
| 26.5 | 8 | 10 |  | 40 | 108638 | 108657 |
| 32 | 10 | 12 | 50 | 108639 | 108658 |
| 40 | 12 | 15 | 60 | 108640 | 108659 |
| 50 | 16 | 20 | 80 | 108641 | 108660 |
| 65 | 20 | 25 | 100 | 108642 | 108661 |
| 80 | 25 | 30 | 120 | 108643 | 108662 |
| 100 | 30 | 40 | 150 | 108644 | 108663 |
| 130 | 40 | 50 | 200 | 108645 | 108664 |
| 160 | 50 | 60 | 250 | 108646 | 108665 |
| 200 | 65 | 80 | 300 | 108647 | 108666 |
| 260 | 80 | 100 | 400 | 108648 | 108667 |
| 320 | 100 | 120 | 500 | 108649 | 108668 |
| 400 | 125 | 150 | 600 | 108650 | 108669 |
| 520 | 160 | 200 | 800 | 108651 | J08670 |
| 640 | 200 | 250 | 1000 | 108652 | 108671 |
| 800 | 250 | 300 | 1200 | 108653 | 108672 |
| 960 | 300 | 400 | 1500 | 108654 | 108673 |
| 1280 | 409 | 500 | 2000 | 108655 | 108674 |
| 1600 | 500 | 600 | 2500 | 108656 | 108675 |

## IMPORTANT-NOTE BEFORE ORDERING

1. Do not forget "Information which should accompany orders"-see page 4.
2. Always consider carefully the question of "Oil Switch Rupturing Capacity" in order to determine if panels are suitable for future as well as present requirements.
3. If Voltage or Frequency is other than listed, see General Information.
4. Exciter Panels are listed in S 413 and should be used whenever the exciters are to be connected to a bus for use with one or more generators.
When T.A. regulators are used all exciters must be paralleled and exciter panels are therefore necessary.
5. Rheostat Mechanism-Use Concentrac Rheostat Mechanism (for operating both the generator and exciter field rheostats) when generators have individual exciters and exciter panels are not required,
Use Chain Rheostat Mechanism (for operating generator field rheostat only) when generators are excited from an exciter bus or other common source.
6. One D.P.D.T. Governor Control Switch Cat. No. 108907 should be ordered in addition to the generator pane! whenever the generator is equipped with a motor operated governor.
7. Synchronizing Equipment-One of the following equipments should be ordered for the entire switchboard, if two or more generators are to be operated in parallel. Equipment $B$ is necessary only when exciter panels are used and the same are not equipped with voltmeters.

## Equipment A

One-Swinging bracket containing;
One-110 volt . . . .cycle synchronism indicator. Two-Synchronizing lamp receptacles.
Two-4 point synchronizing plugs.

Equipment A-
Equipment B-

25 Cycles
Cat. No. 59706
Cat. No. 108210

Equipment B
One-Swinging bracket containing:
One- 110 volt....cycle synchronism indiestor. Two-Synchronizing lamp receptacles. One- 150 volt exciter voltmieter type DH.
$T w o-4$ point synchronizing plugs.
One-4 point potential plug.
40 Cycles
Cat. No. 59707
Cat. No. 108211

60 Cycles
Cat. No. 59708
Cat. No, 108212


## EQUIPMENT

$A=H . E . \quad$ A.C. ammeter with..... amp. scale.
P.I.W $=$ H.E. polyphase indicating wattmeter with.......kw, scale.
$V=$ II.E. A.C. voltmeter with 175 volt scale.
F.A. $=$ D.H. D.C. field ammeter with. ..... amp. scale (scale to be given with order).
A.S. (optional)=Three-way ammeter switch for connecting A in each phase.

Page 9A

R.M. $=\ldots$. . . Rheostat mechanism (chain or concentric), (See page 8A.)
F.S. $=$ D.P.S.T. 250 volt. . . . . . amp. field switch with discharge clips. (Discharge resistance is not included.)
S.R. $=4$ point synchronizing receptacle.
G.C.S. $=$ Governor control switch-NOT INCLUDED (when desired see page 8A).
C.H. $=$ Card holder

O S. = T.P.S.T.. .....amp. non-automatic K-5 oil switch mounted on back of panel (or on pipe framework remote from panel) with operating mechanism.
N.P. $=$ Name plate (on only one panel in a complete switchboard).


One-50 watt $2200-1100 / 110$ volt 60/125 sycle potential transformer and fuses.

Bus Bars must be ordered separately; see "Bus Bar Copper."

These Sections cannot be used with Bottom Sections, page 9B

| $\begin{aligned} & \text { Kw, } \\ & \text { of } \\ & \text { Gen. } \end{aligned}$ | $\begin{gathered} \text { AMP; } \\ \text { CAPACITY } \end{gathered}$ |  | P.I.W Scale in Kw | CAt, no. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
|  | Panel | A |  | $\begin{aligned} & \text { Witho } \\ & \text { A.S. } \end{aligned}$ | A,S. |
| 26.5 | 8 | 10 |  | 40 | 108076 | 10¢695 |
| 32 | 10 | 12 | 50 | 108677 | 108696 |
| 40 | 12 | 15 | 60 | 108578 | 105097 |
| 50 | 16 | 20 | 80 | 108679 | 108698 |
| 65 | 20 | 25 | $10 \cdot$ | 10ヶ650 | 108699 |
| 80 | 25 | 30 | 120 | 108681 | 108700 |
| 100 | 30 | 40 | 120 | 108682 | 108701 |
| 130 | 40 | 50 | 200 | 108683 | 108702 |
| 160 | 50 | 00 | 250 | 108084 | 108703 |
| 200 | 65 | 80 | 300 | 108685 | 108704 |
| 260 | 80 | 100 | 400 | 108685 | 108705 |
| 320 | 100 | 120 | 600 | 108687 | 108706 |
| 400 | 125 | 150 | 600 | 108688 | 108707 |
| 520 | 160 | 200 | 800 | 108689 | 108705 |
| 640 | 200 | 250 | 1000 | 108690 | 108709 |
| 800 | 250 | 300 | 1200 | 108691 | 108710 |
| 960 | 300 | 400 | 1500 | 108692 | 108711 |
| 1280 1600 | 400 500 | 500 | 2000 | 108893 | 108712 |
| 1600 | 500 | 600 | 2500 | 108694 | 108713 |



WITH CHAIN RHEOSTAT MECHANISM

| 640 | $8-200$ | 200 | 200 | 105771 | 108789 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 960 | $250-300$ | 300 | 200 | 105772 | 108790 |
| 1600 | $400-500$ | 500 | 200 | 108773 | 108791 |
| 040 | $8-200$ | 200 | 300 | 108774 | 108792 |
| 960 | $250-300$ | 300 | 300 | 108775 | 108793 |
| 1600 | $400-500$ | 500 | 300 | 108776 | 108794 |

WITH CONCENTRIC RHEOSTAT MECHANISM


Page 9B

| Kw. of Gen. | AMP. CAPACITY |  | $\begin{aligned} & \text { Cat, } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | Panel | Current <br> Transf'x |  |
| 25.5 | 8 | 10 | 108831 |
| 32 | 10 | 15 | 108832 |
| 40 | 12 | 15 | 108833 |
| 50 | 16 | 29 | 108834 |
| 65 | 20 | 30 | 108835 |
| 80 | 25 | 30 | 108836 |
| 100 | 30 | 40 | 108837 |
| 130 | 40 | 60 | 108838 |
| 160 | 50 | 60 | 108839 |
| 200 | 65 | 80 | 108840 |
| 260 | 80 | 100 | 108841 |
| 320 | 100 | 150 | 108842 |
| 400 | 125 | 150 | 105843 |
| 520 | 160 | 200 | 108844 |
| 640 | 200 | 300 | 108845 |
| 800 | 250 | 300 | 108846 |
| 960 | 300 | 400 | 108847 |
| 1280 | 400 | 600 | 108848 |
| 1600 | 500 | 6,00 | 108849 |

ำแำ


## EQUIPMENT

A $=$ Three H.B. A.C. ammeters with...... amp. scale.
$\mathrm{V}=\mathrm{H} . \mathrm{E}$. A.C. voltmeter with 175 volt scale.
F.A. $=$ D.H. D.C. Field ammeter with , . . . amp. scale (scale to be given with order).
.

These Sections cannot be used with Middle Sections, pages 9A and 11A Bottom Sectlons, page 9B

| $\begin{gathered} \mathrm{K} w . \\ \mathrm{of} . \\ \mathrm{Gen} . \end{gathered}$ | AMP. CAPACITY |  | Cat, No. |
| :---: | :---: | :---: | :---: |
|  | Panel | A |  |
| 26.5 | 8 | 10 | 108714 |
| 32 | 10 | 12 | 108715 |
| 40 | 12 | 15 | 108716 |
| 50 | 16 | 20 | 108717 |
| 65 | 20 | 25 | 108718 |
| 80 | 25 | 30 | 108719 |
| 100 | 30 | 40 | 108720 |
| 130 | 40 | 50 | 108721 |
| 160 | 50 | 60 | 108722 |
| 200 | 65 | 80 | 108723 |
| 260 | 80 | 100 | 108724 |
| 320 | 100 | 120 | 108725 |
| 400 | 125 | 150 | 108726 |
| 520 | 160 | 200 | 108727 |
| 640 | 200 | 250 | 108728 |
| 800 | 250 | 300 | 108729 |
| 960 | 300 | 400 | 108730 |
| 1280 | 400 | 500 | 108731 |
| 1600 | 500 | 600 | 108732 |

Page 10A

|  | AMP. CAPACITY |  |  | cat. no. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { of } \\ \text { Gen. } \end{gathered}$ | Panel | O.S. | FS. | $\begin{aligned} & \text { O.S. } \\ & \text { on Back } \\ & \text { of Panel } \end{aligned}$ | 0.5 . Remote Control |

WITH CHAIN RHEOSTAT MECHANISM

| 640 | $8-200$ | 200 | 200 | 108780 | 108798 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 960 | $250-300$ | 300 | 200 | 108781 | 108799 |
| 1600 | $400-500$ | 500 | 200 | 108782 | 108800 |
| 640 | $8-200$ | 200 | 300 | 108783 | 108801 |
| 960 | $250-300$ | 300 | 300 | 108784 | 108802 |
| 1600 | $400-500$ | 500 | 300 | 108785 | 108803 |



Page 10B

| Kw. of Gen. | AME. CAFACITY |  | Cat. No. |
| :---: | :---: | :---: | :---: |
|  | Panel | Current Transf'rs |  |
| 26.5 | 8 | 10 | 108850 |
| 32 | 10 | 15 | 103851 |
| 40 | 12 | 15 | 108852 |
| 50 | 16 | 20 | 108853 |
| 65 | 20 | 30 | 108854 |
| 80 | 25 | 30 | 108855 |
| 100 | 30 | 40 | 108856 |
| 130 | 40 | 60 | 108857 |
| 160 | 50 | 60 | 108858 |
| 200 | 65 | 80 |  |
| 260 | 80 | 100 | 108860 |
| 320 | 100 | 150 | 108861 |
| 400 | 125 | 150 | 108862 |
| 520 | 160 | 200 | 108863 |
| 640 | 200 | 300 | 108864 |
| 800 | 250 | 300 | 108865 |
| 960 | 300 | 400 | 108866 |
| 1280 | 400 | 600 | 108867 |
| 1600 | 500 | 600 | 108868 |



## EQUIPMENT

$\mathbf{A}=$ Three H. B. A.C. ammoters with ... amp. sciale:
$V=H$ E A.C. voltmeter with 175 volt scale.
P.I. W, $=\mathrm{H}, \mathrm{E}$. polyphase indicating wattmeter
with $\ldots . \mathrm{kw}^{2}$, scale.
R.M. $=\ldots$. Rheostat mechanism (chain or concentric). (See page 8 A. )
F.S. $=$ D.P.S.T. 250 volt . ... amp. field switch with discharge clips. (Discharge resistance is not included.)
hese Sections cannot be used with Botrom Sections, patge 9B

| Kw, of Gefr. | AMP CAPACITY |  | $\begin{aligned} & \text { P1W } \\ & \text { ScRle } \\ & \text { in Kw. } \end{aligned}$ | Cat. <br> No. |
| :---: | :---: | :---: | :---: | :---: |
|  | Panel | A |  |  |
| 26.5 | 8 | 10 | 40 | 105733 |
| 82 | 10 | 12 | 50 | 108734 |
| 40 | 12 | 15 | 80 | 108735 |
| 50 | 16 | 20 | 80 | 105736 |
| 65 | 20 | 25 | 100 | 108737 |
| 80 | 25 | 30 | 120 | 10873 K |
| 100 | 30 | 40 | 150 | 108739 |
| 180 | 40 | 50 | 200 | 108740 |
| 160 | 50 | 60 | 250 | 108741 |
| 200 | 65 | 80 | 300 | 108742 |
| 260 | 80 | 100 | 400 | 108743 |
| 320 | 100 | 120 | 500 | 108744 |
| 400 | 125 | 150 | 600 | 108745 |
| 520 | 160 | 200 | 800 | 108746 |
| 640 | 200 | 250 | 1000 | 108747 |
| 800 | 250 | 300 | 1200 | 108745 |
| 960 | 300 | 400 | 1200 | 108749 |
| 1250 | 400 | 500 | 2000 | 108750 |
| 1600 | 500 | 600 | 2500 | 108751 |

Page 11A

|  | AMP. CAPACIIX |  |  | CAT. NO. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Gen. | Panel | O.S. |  | O.S. On Back of Panel | O.S. <br> Remote <br> Control |

WITH CHAIN RHEOSTAT MECHANISM

| 640 | $8-200$ | 200 | 200 | 108807 | 108813 |
| ---: | ---: | ---: | ---: | :---: | ---: |
| 960 | $250-300$ | 300 | 200 | $\ldots .$. | 108814 |
| 1600 | $400-500$ | 500 | 200 | $\cdots .$. | 108815 |
| 640 | $8-200$ | 200 | 300 | 108808 | 108816 |
| 960 | $250-300$ | 300 | 300 | $\ldots .$. | 108817 |
| 1600 | $400-500$ | 500 | 300 | $\ldots .$. | 108818 |

WITH CONCENTRIC RHEOSTAT MECHANISM
 complete switchboard).
P.R.W. = Polyphase watt-hour meter with metal cover DS-4.

Two-Current transformers . . . . . . amp,

Two-50 watt 2200-1100/110 volt $60 / 125$ cycle potential transformers and fuses.

Bus Bars must be ordered separately; see "Bus Bar Copper,"

Page 11B

| Kw. of Gen. | AMP. CAPACITY |  | Cat. No. |
| :---: | :---: | :---: | :---: |
|  | Panel | Current Transf'rs |  |
| 235 | 8 | 10 | 108869 |
| 32 | 10 | 15 | 108870 |
| 40 | 12 | 15 | 108871 |
| 50 | 16 | 20 | 108872 |
| 65 | 20 | 30 | 108873 |
| 80 | 25 | 30 | 108874 |
| 100 | 30 | 40 | 108875 |
| 130 | 40 | 60 | 108876 |
| 160 | 50 | 60 | 108877 |
| 200 | 65 | 80 | 108878 |
| 260 | 80 | 100 | 108879 |
| 320 | 100 | 150 | 108880 |
| $4 \subset 0$ | 125 | 150 | 108881 |
| 520 | 160 | 200 | 108882 |
| 640 | 200 | 300 | 108883 |
| 800 | 250 | 300 | 108884 |
| 960 | 300 | 400 | 108885 |
| 1280 | 400 | 600 | 108886 |
| 1600 | 500 | 600 | 108887 |



## EQUIPMENT

$\mathrm{A}=$ Three H.E. A.C. ammeters with. . . . . . amp. scale.
P.L.W. $=$ H.E. polyphase indicating wattmeter with, . . . . . kw, scale.
$\mathrm{V}=\mathrm{H} . \mathrm{E}$. A.C. voltmeter with 175 volt scale.
F.A. $=$ D.H. D.C. Field ammeter with...... amp. scale (scale to be given with order).

These Sections cannot be used with Bottom Sections, page 9 B

| $\begin{gathered} \text { Kw. } \\ \text { of } \end{gathered}$ | AMP. <br> CAPACITY |  | P.I.W. Scale in Kw. | $\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Panel | A |  |  |
| 26.5 | 8 | 10 | 40 | 108752 |
| 32 | 10 | 12 | 50 | 108753 |
| 40 | 12 | 15 | 60 | 108754 |
| 50 | 16 | 20 | 80 | 108755 |
| 65 | 20 | 25 | 100 | 108756 |
| 80 | 25 | 30 | 120 | 108757 |
| 100 | 30 | 40 | 150 | 108758 |
| 130 | 40 | 50 | 200 | 108759 |
| 160 | 50 | 60 | 250 | 108760 |
| 200 | 65 | 80 | 300 | 108761 |
| 260 | 80 | 100 | 400 | 108762 |
| 320 | 100 | 120 | 500 | 108763 |
| 400 | 125 | 150 | 600 | 108764 |
| 520 | 160 | 200 | 800 | 108765 |
| 640 | 200 | 250 | 1000 | 108766 |
| 800 | 250 | 300 | 1200 | 108767 |
| 960 | 300 | 400 | 1500 | 108768 |
| 1280 | 400 | 500 | 2000 | 108769 |
| 1600 | 500 | 600 | 2500 | 108770 |

Page 12A


WITH CHAIN RHEOSTAT MECHANISM

| 640 | $8-200$ | 200 | 200 | 108810 | 108822 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 960 | $250-300$ | 300 | 2000 | $\cdots .$. | 108823 |
| 1600 | $400-500$ | 500 | 200 | $\cdots$, | 108824 |
| 640 | $8-200$ | 200 | 300 | 108811 | 1088825 |
| 960 | $250-300$ | 300 | 300 | $\cdots \cdots$ | 108826 |
| 1600 | $400-500$ | 500 | 300 | $\cdots \cdots$ | 108827 |

C.H. =Card holder
O.S. $=$ T.P.D.T . . . . amp. non-automatic K-5 oil switch mounted on back of panel (or on pipe framework remote from panel) with operating mechanism.
N.P. $=$ Name plate (on only one panel in a complete switchboard).


| P.R.W. $=$ Polyphase watt-hour meter with glass cover DS-5. | Page 12B |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Kw. of Gen. | AMP. CAPACITY |  | $\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$ |
|  |  | Panel | Current <br> Transf'rs |  |
| Two-Current transformers.......smp.Two-50 watt $2200-1100 / 110$ volt $60 / 125$ | 26.5 | 8 | 10 | 108888 |
|  | 32 40 | 12 | 15 | 108889 108890 |
|  | 50 | 16 | 20 | 108891 |
|  | 65 | 20 | 30 | 108892 |
|  | 80 | 25 | 30 | 108893 |
| Two-50 watt $2200-1100 / 110$ volt 60/125 cycle potential transformers and fuses. | 100 | 30 | 40 | 108894 |
|  | 130 | 40 | 60 | 108895 |
|  | 160 | 50 | 60 | 108896 |
|  | 200 | 65 | 80 | 108897 |
| Bus Bars must be ordered separately; see "Bus Bar Copper," | 260 | 80 | 100 | 108898 |
|  | 320 | 100 | 150 | 108899 |
|  | 400 | 125 | 150 | 108900 |
|  | 520 | 160 | 200 | 108901 |
|  | 640 | 200 | 300 | 108902 |
|  | 800 | 250 | 300 | 108903 |
|  | 960 | 300 | 400 | 108904 |
|  | 1280 | 400 | 600 | 108905 |
|  | 1600 | 500 | 600 | 108906 |

# SINGLE-CIRCUIT <br> THREE-PHASE FEEDER OR INDUCTION MOTOR PANELS 

## 2300 VOLTS-60 CYCLES <br> 8 TO 500 AMPERES

WITH OIL SWITCHES \{ Mounted on back of panel
T.P.S.T. AND T.P.D.T. ( Remote control, mounted on pipe framework

DIAGRAMS OF CONNECTIONS


KEY TO SYMBOLS
A $\quad$ Ammeter.
A.S. -Three-way ammeter switch.
B.A.S. Bell alarm switch.
C.T. -Current transformer.

F $\quad$ Fuse.
O.S. $=$ Oil switch.
P.T. $=$ Potential transformer.
P.R.W. =Polyphase watthour meter.
T.B. =Terminal board for secondary leads from current and potentiai tranaformers.

T,C. $=$ Trip coil on oil switch.


## EQUIPMENT

A3(optional)
with..... amp. scales. $\underset{\text { Thre }}{\text { H.E. }}$. Ammetera
A(optional) - One H.E. A.C. ammeter with .......amp. scale.
A.S. (optional) $=$ Three-way ammeter switch for connecting A in each phase.

These Sections cannot be used with Middle Sections, page 17A Bottom Sections, page 17B

| AMP, CAPACITY |  | CAT. NO. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Panel | $\begin{aligned} & \mathrm{A} \text { or } \\ & \mathrm{A} 3 \end{aligned}$ | Blank | With A | With A.S. | $\begin{gathered} \text { With } \\ \text { A3 } \end{gathered}$ |
| 8 | 10 |  | 108911 | 108968 | 109025 |
| 10 | 12 |  | 108912 | 108969 | $109026$ |
| 12 | 15 |  | 108913 | 108970 | 109027 |
| 16 | 20 |  | 108914 | 108971 | 109028 |
| 20 | 25 |  | 108915 | 108972 | 109029 |
| 25 | 30 |  | 108916 | 108973 | 109030 |
| 30 | 40 |  | 108917 | 108974 | 109031 |
| 40 | 50 |  | 108918 | 108975 | 109032 |
| 50 | 60 |  | 108919 | 108976 | 109033 |
| 65 | 80 | 8 | 108920 | 108977 | 109034 |
| 80 | 100 | 8 | 108921 | 108978 | 109035 |
| 100 | 120 | $\cdots$ | 108922 | 108979 | 109036 |
| 125 | 150 |  | 108923 | 108980 | 109037 |
| 160 | 200 |  | 108924 | 108981 | 109038 |
| 200 | 250 |  | 108925 | 108982 | 109039 |
| 250 | 300 |  | 108926 | 108983 | 109040 |
| 300 | 400 |  | 108927 | 108984 | 109041 |
| 400 | 500 |  | 108928 | 108985 | 109042 |
| 500 | 600 |  | 108929 | 108986 | 109043 |

## IMPORTANT-NOTE BEFORE ORDERING

1. Do not forget "Information which should accompany orders"-see page 4.
2. Avoid ordering panels larger than necessary for present requirements-See "Rating of Feeder Panels."
3. Always consider the question of "Oil Switch Rupturing Capacity" in order to determine if panels are suitable for future as well as present requirements.
4. If Voltage or Frequency is other than listed see General Information.
5. Lighlning Arresters are not included with these panels.
6. See General Information for method of determining ampere capacity of panel required for a given Induclion Motor.
7. These panels cannot be used with any motors which require a controller or starting equipment mounted on the panel; for instance, those Form K motors which do not have self-contained starting compensators.



## EQUIPMENT

A3(optional) $=$ Three H.E. A.C. ammeters with. . . . . amp. scale.

A (optional) $=$ One H.E. A.C. ammeter with ......-amp.scale.
I.R. = D.P. instantáneous overload relay,
A.S.(optional) $=$ Three-way ammeter switcb for connecting A in each phase.

These Sections cannot be used with Middle Sections, page $16 A$ Bottom Sections, page 16B

| AMP, CAPACITY |  | CAT. NO. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Panel | $\begin{aligned} & \mathrm{A} \text { or } \\ & \mathrm{A} 3 \end{aligned}$ | With- out A. ASorA3 | With A | With A and A.S. | $\begin{aligned} & \text { With } \\ & \text { A3 } \end{aligned}$ |
| 8 | 10 |  | 108949 | 109006 | 109063 |
| 10 | 12 |  | 108950 | 109007 | 109064 |
| 12 | 15 |  | 108951 | 109008 | 109065 |
| 16 | 20 |  | 108952 | 109009 | 109066 |
| 20 | 25 |  | 108953 | 109010 | 109067 |
| 25 | 30 |  | 108951 | 109011 | 109068 |
| 30 | 40 |  | 108955 | 109012 | 109069 |
| 40 | 50 |  | 108956 | 109013 | 109070 |
| 50 | 60 | 0 | 108957 | 109014 | 109071 |
| 65 | 80 | 8 | 108958 | 109015 | 109072 |
| 80 | 100 | $\stackrel{1}{0}$ | 108959 | 109016 | 109073 |
| 100 | 120 | - | 108960 | 109017 | 109074 |
| 125 | 150 |  | 108961 | 109018 | 109075 |
| 160 | 200 |  | 108962 | 109019 | 109076 |
| 200 | 250 |  | 108963 | 109020 | 109077 |
| 2.50 | 300 |  | 108964 | 109021 | 109078 |
| 300 | 400 |  | 108965 | 109022 | 109079 |
| 400 | 500 |  | 108966 | 109023 | 109080 |
| 500 | 600 |  | 108967 | 109024 | 109081 |


C.H. $=$ Card holder.
O.S. =T.P.S.T. . . . amp. automatic K-5 oil switch mounted on back of panel (or on pipe framework remote from panel) with operating mechanism and bell alarm switch.
N.P. = Name plate (on only one panel in a complete switchboard).


Page 16B

.


## EQUIPMENT

| A3(optional) $=$ Three H.E. A.C. ammeters with . . . . . . amp. acales. | 8 10 12 | 10 12 15 |  | $\begin{aligned} & 1089330 \\ & 108931 \\ & 108932 \end{aligned}$ | $\begin{aligned} & 108987 \\ & 108988 \\ & 108989 \end{aligned}$ | $\begin{aligned} & 109044 \\ & 109045 \\ & 109046 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 16 16 20 25 | 20 25 30 |  | $\begin{aligned} & 108933 \\ & 108934 \\ & 108935 \end{aligned}$ | $\begin{aligned} & 108990 \\ & 108991 \\ & 108992 \end{aligned}$ | $\begin{aligned} & 109047 \\ & 109048 \\ & 109049 \end{aligned}$ |
| $A($ odtional $)=$ One H.E. A.C. arameter with . . . . . . amp. tcale. | 30 40 50 | 40 50 60 | \% | $\begin{aligned} & 108936 \\ & 108937 \\ & 108938 \end{aligned}$ | $\begin{aligned} & 108993 \\ & 108994 \\ & 108995 \end{aligned}$ | $\begin{aligned} & 109050 \\ & 109051 \\ & 109052 \end{aligned}$ |
| T.R. = D.P. time limit overload relay. | 65 80 100 | 80 100 120 |  | $\begin{aligned} & 108939 \\ & 108940 \\ & 108941 \end{aligned}$ | $\begin{aligned} & 108996 \\ & 108997 \\ & 108998 \end{aligned}$ | $\begin{aligned} & 109053 \\ & 109054 \\ & 109055 \end{aligned}$ |
| A.S. (optional) $=$ Three-way ammeter switch for connecting $\mathbf{A}$ in each phase. | 125 160 200 | 150 200 250 |  | $\begin{aligned} & 1089442 \\ & 108943 \\ & 108944 \end{aligned}$ | $\begin{aligned} & 108999 \\ & 109000 \\ & 109001 \end{aligned}$ | 109056 109057 109058 |
|  | 250 300 400 | 300 400 500 |  | $\begin{aligned} & 108945 \\ & 108946 \\ & 108947 \end{aligned}$ | $\begin{aligned} & 109002 \\ & 109003 \\ & 109004 \end{aligned}$ | 109059 <br> 109060 <br> 109061 |
|  | 500 | 600 |  | 108948 | 109005 | 109062 |

O.S. $=$ T.P.S.T. .....amp. automatic K-5 oil switch mounted on back of panel (or on pipe framework remote from panel) with operating mechanism and bell alsrm switch.
N.P. $=$ Name plate (on only one panel in a complete switchboard).

These Sections cannot be used with

| AMP. CIPACITY |  | CAT. No. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Panel | $\begin{aligned} & \mathrm{A} \text { or } \\ & \mathrm{A} 3 \end{aligned}$ | WithAS orA3 | $\begin{gathered} \text { With } \\ \text { A } \end{gathered}$ | $\begin{aligned} & \text { With } \\ & \text { A and } \\ & \text { A.S. } \end{aligned}$ | $\begin{aligned} & \text { With } \\ & \text { A3 } \end{aligned}$ |
| $\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$ | $\begin{aligned} & 10 \\ & 12 \\ & 15 \end{aligned}$ |  | $\begin{aligned} & 108930 \\ & 108931 \\ & 108932 \end{aligned}$ | $\begin{aligned} & 108987 \\ & 108988 \\ & 108989 \end{aligned}$ | $\begin{aligned} & 109044 \\ & 109045 \\ & 109046 \end{aligned}$ |
| $\begin{aligned} & 16 \\ & 20 \\ & 25 \end{aligned}$ | $\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 108933 \\ & 108934 \\ & 108935 \end{aligned}$ | $\begin{aligned} & 108990 \\ & 108991 \\ & 108992 \end{aligned}$ | $\begin{aligned} & 109047 \\ & 109048 \\ & 109049 \end{aligned}$ |
| $\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$ | 40 50 60 | \% <br> 8 <br> 8 | $\begin{aligned} & 108936 \\ & 108937 \\ & 108938 \end{aligned}$ | $\begin{aligned} & 108993 \\ & 108994 \\ & 108995 \end{aligned}$ | $\begin{aligned} & 109050 \\ & 109051 \\ & 109052 \end{aligned}$ |
| $\begin{array}{r} 65 \\ 80 \\ 100 \end{array}$ | $\begin{array}{r} 80 \\ 100 \\ 120 \end{array}$ |  | $\begin{aligned} & 108939 \\ & 108940 \\ & 108941 \end{aligned}$ | $\begin{aligned} & 108996 \\ & 108997 \\ & 108998 \end{aligned}$ | $\begin{aligned} & 109053 \\ & 109054 \\ & 109055 \end{aligned}$ |
| $\begin{aligned} & 125 \\ & 160 \\ & 200 \end{aligned}$ | 150 200 250 |  | $\begin{aligned} & 108942 \\ & 108943 \\ & 108944 \end{aligned}$ | $\begin{aligned} & 108999 \\ & 109000 \\ & 109001 \end{aligned}$ | $\begin{aligned} & 1099056 \\ & 109057 \\ & 109058 \end{aligned}$ |
| $\begin{aligned} & 250 \\ & 300 \\ & 400 \end{aligned}$ | $\begin{aligned} & 300 \\ & 400 \\ & 500 \end{aligned}$ |  | $\begin{aligned} & 108945 \\ & 108946 \\ & 108947 \end{aligned}$ | $\begin{aligned} & 109002 \\ & 109003 \\ & 109004 \end{aligned}$ | $\begin{aligned} & 109059 \\ & 109060 \\ & 109061 \end{aligned}$ |
| 500 | 600 |  | 108948 | 109005 | 109062 |

Page 17A
C.H. $=$ Card holder.

| AMP, CAPACITY |  | CAT. No. |  |
| :---: | :---: | :---: | :---: |
| Panel | O.S | O.S. <br> on Back <br> of Panel | O.S. <br> Remote <br> Control |
| $8-200$ 200 109085 <br> $250-300$ 300 109086 <br> $400-500$ 500 109087 | 1090909 <br> 109092 |  |  |

Page 17B

| AMP. Capacity |  | cat. no. |  |
| :---: | :---: | :---: | :---: |
| Panel | Current <br> Trans- <br> formers | $\begin{gathered} \text { With } \\ \text { DS-4 } \\ \text { P.R.W. } \end{gathered}$ | $\begin{aligned} & \text { With } \\ & \text { DS-5 } \\ & \text { P.R.W. } \end{aligned}$ |
| 8 10 12 | 10 15 15 | 109113 109114 109115 | $\begin{aligned} & 109132 \\ & 109133 \\ & 109134 \end{aligned}$ |
| 16 20 | 20 30 | 109116 109117 | 109135 109136 |
| 25 | 30 | 109118 | 109137 |
| 30 | 40 | 109119 | 109138 |
| 40 | 60 | 109120 | 109139 |
| 50 | 60 | 109121 | 109140 |
| 65 | 80 | 109122 | 109141 |
| 80 | 100 | 109123 | 109142 |
| 100 | 150 | 109124 | 109143 |
| 125 | 150 | 109125 | 109144 |
| 160 | 200 | 109126 | 109145 |
| 200 | 300 | 109127 | 109146 |
| 250 | 300 | 109128 | 109147 |
| 300 | 400 | 109129 | 109148 |
| 400 | 600 | 109130 | 109149 |
| 500 | 600 | 109131 | 109150 |



These Sections cannot be used with
Middle Sections, page 20A Bottom Sections, page 20B

| AMP, CAPACITY |  | CAT. NO. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Panel | $\begin{aligned} & \text { A or } \\ & \text { A3 } \end{aligned}$ | Blank | $\underset{\mathrm{A}}{\text { With }}$ | With A and A.S. | With A3 |
| 8 | 10 |  | 109154 | 109211 | 109268 |
| 10 | 12 |  | 109155 | 109212 | 109269 |
| 12 | 15 |  | 109156 | 109213 | 109270 |
| 16 | 20 |  | 109157 | 109214 | 109271 |
| 20 | 25 |  | 109158 | 109215 | 109272 |
| 25 | 30 |  | 109159 | 109216 | 109273 |
| 30 | 40 |  | 109160 | 109217 | 109274 |
| 40 | 50 |  | 109161 | 109218 | 109275 |
| 50 | 60 | $\stackrel{5}{8}$ | 109162 | 109219 | 109276 |
| 65 | S0 | O-8 | 109163 | 109220 | 109277 |
| 80 | 100 |  | 109164 | 109221 | 109278 |
| 100 | 120 |  | 109165 | 109222 | 109279 |
| 125 | 150 |  | 109166 | 109223 | 109280 |
| 160 | 200 |  | 109167 | 109224 | 109281 |
| 200 | 250 |  | 109168 | 109225 | 109282 |
| 250 | 300 |  | 109169 | 109226 | 109283 |
| 300 | 400 |  | 109170 | 109227 | 109284 |
| 400 | 500 |  | 109171 | 109228 | 109285 |
| 500 | 600 |  | 109172 | 109229 | 109286 |

These Sections cannot be used with Middle Sections page 19A

| AMP. CAPACITY |  | CAT. NO. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Panel | $\begin{gathered} \mathrm{A} \text { or } \\ \mathrm{A} 3 \end{gathered}$ | Without A, AS orA3 | $\underset{A}{\text { With }}$ | With $\triangle$ and A.S. | $\begin{aligned} & \text { With } \\ & \text { A3 } \end{aligned}$ |
| $\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$ | $\begin{aligned} & 10 \\ & 12 \\ & 15 \end{aligned}$ |  | $\begin{aligned} & 109192 \\ & 109193 \\ & 109194 \end{aligned}$ | $\begin{aligned} & 109249 \\ & 109250 \\ & 109251 \end{aligned}$ | $\begin{aligned} & 109306 \\ & 109307 \\ & 109308 \end{aligned}$ |
| $\begin{aligned} & 16 \\ & 20 \\ & 25 \end{aligned}$ | $\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 109195 \\ & 109196 \\ & 109197 \end{aligned}$ | $\begin{aligned} & 109252 \\ & 109253 \\ & 109254 \end{aligned}$ | $\begin{aligned} & 109309 \\ & 109310 \\ & 109311 \end{aligned}$ |
| $\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$ | $\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$ | 8 | $\begin{aligned} & 109198 \\ & 109199 \\ & 109200 \end{aligned}$ | $\begin{aligned} & 109255 \\ & 109256 \\ & 109257 \end{aligned}$ | $\begin{aligned} & 109312 \\ & 109313 \\ & 109314 \end{aligned}$ |
| $\begin{array}{r} 65 \\ 80 \\ 100 \end{array}$ | $\begin{array}{r} 80 \\ 100 \\ 120 \end{array}$ | $\cdots$ | $\begin{aligned} & 109201 \\ & 109202 \\ & 109203 \end{aligned}$ | $\begin{aligned} & 109258 \\ & 109259 \\ & 109260 \end{aligned}$ | $\begin{aligned} & 109315 \\ & 109316 \\ & 109317 \end{aligned}$ |
| $\begin{aligned} & 125 \\ & 160 \\ & 200 \end{aligned}$ | $\begin{aligned} & 150 \\ & 200 \\ & 250 \end{aligned}$ |  | $\begin{aligned} & 109204 \\ & 109205 \\ & 109206 \end{aligned}$ | $\begin{aligned} & 109261 \\ & 109262 \\ & 109263 \end{aligned}$ | $\begin{aligned} & 109318 \\ & 109319 \\ & 109320 \end{aligned}$ |
| $\begin{aligned} & 250 \\ & 300 \\ & 400 \end{aligned}$ | $\begin{aligned} & 300 \\ & 400 \\ & 500 \end{aligned}$ |  | $\begin{aligned} & 109207 \\ & 109208 \\ & 109209 \end{aligned}$ | $\begin{aligned} & 109264 \\ & 109265 \\ & 109266 \end{aligned}$ | $\begin{aligned} & 109321 \\ & 109322 \\ & 109323 \end{aligned}$ |
| 500 | 600 |  | 109210 | 109267 | 10932 |


O.S. = T.P.D.T.... amp. automatic K-5 oil switch mounted on back of panel (or on pipe framework remote from panel) with operating mechanism and bell alarm switch.

| AMP. CAPACITY |  | CAT. NO. |  |
| :---: | :---: | :---: | :---: |
| Panel | O.S. | OS. on Back of Panel | OS. Remote Control |
| $\begin{array}{r} 8-200 \\ 250-300 \\ 400-500 \end{array}$ | 200 300 500 | 109325 | $\begin{aligned} & 109327 \\ & 109328 \\ & 109329 \end{aligned}$ |

N.P. $=$ Name plate (on only one panel in a complete switchboard).

Page 19A
C.H. = Card holder, -

Page 19A


Page 19B

| AMP. CAPACITY |  | Cat. No. |
| :---: | :---: | :---: |
| Panel | Current Transformers |  |
| $\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$ | $\begin{aligned} & 10 \\ & 15 \\ & 15 \end{aligned}$ | $\begin{aligned} & 109333 \\ & 109334 \\ & 109335 \end{aligned}$ |
| $\begin{aligned} & 16 \\ & 20 \\ & 25 \end{aligned}$ | $\begin{aligned} & 20 \\ & 30 \\ & 30 \end{aligned}$ | $\begin{aligned} & 109336 \\ & 109337 \\ & 109338 \end{aligned}$ |
| $\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$ | $\begin{aligned} & 40 \\ & 60 \\ & 60 \end{aligned}$ | 109339 109340 109341 |
| 65 80 100 | 80 100 150 | $\begin{aligned} & 109342 \\ & 109343 \\ & 109344 \end{aligned}$ |
| $\begin{aligned} & 125 \\ & 160 \\ & 200 \end{aligned}$ | 150 200 300 | $\begin{aligned} & 109345 \\ & 109346 \\ & 109347 \end{aligned}$ |
| $\begin{aligned} & 200 \\ & 350 \\ & 300 \\ & 400 \end{aligned}$ | $\begin{aligned} & 300 \\ & 400 \\ & 600 \end{aligned}$ | $\begin{aligned} & 109348 \\ & 109349 \\ & 109350 \end{aligned}$ |
| 500 | 600 | 109351 |

.

## EQUIPMENT

A\$ (optional) $=$ Theree H.E. A.C. ammeters with......, amp. scales.
A (optional) $=$ One H.E. A.C. ammeter with . ......amp. scale.
T.R. $=$ D.P. time limit overload relay.
A.S. (optional) $=$ Three-way ammeter switch for connecting A in each phase.
These Sections cannot be used with

| AMP. Capacity |  | cat. No. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Panel | $\begin{aligned} & \mathrm{A} \text { or } \\ & \mathrm{A} 3 \end{aligned}$ | $\begin{gathered} \text { With- } \\ \text { out A, } \\ \text { A.S. or } \\ \Delta 3 \end{gathered}$ | $\underset{A}{\text { With }}$ | With A and A.S. | $\begin{aligned} & \text { With } \\ & \text { A3 } \end{aligned}$ |
| $\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$ | $\begin{aligned} & 10 \\ & 13 \\ & 15 \end{aligned}$ |  | $\begin{aligned} & 109173 \\ & 109174 \\ & 109175 \end{aligned}$ | $\begin{aligned} & 109230 \\ & 109231 \\ & 109232 \end{aligned}$ | $\begin{aligned} & 109287 \\ & 109288 \\ & 109289 \end{aligned}$ |
| $\begin{aligned} & 16 \\ & 20 \\ & 25 \end{aligned}$ | $\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 109176 \\ & 109177 \\ & 109178 \end{aligned}$ | $\begin{aligned} & 109233 \\ & 109234 \\ & 109235 \end{aligned}$ | $\begin{aligned} & 109290 \\ & 109291 \\ & 109292 \end{aligned}$ |
| $\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$ | $\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$ |  | $\begin{aligned} & 109179 \\ & 109180 \\ & 109181 \end{aligned}$ | $\begin{aligned} & 109236 \\ & 109237 \\ & 109238 \end{aligned}$ | $\begin{aligned} & 109293 \\ & 109294 \\ & 109295 \end{aligned}$ |
| $\begin{array}{r} 65 \\ 80 \\ 100 \end{array}$ | $\begin{array}{r} 80 \\ 100 \\ 120 \end{array}$ | $\cdots$ | $\begin{aligned} & 109182 \\ & 109183 \\ & 109184 \end{aligned}$ | $\begin{aligned} & 109239 \\ & 109240 \\ & 109241 \end{aligned}$ | $\begin{aligned} & 109296 \\ & 109297 \\ & 109298 \end{aligned}$ |
| $\begin{aligned} & 125 \\ & 360 \\ & 200 \end{aligned}$ | $\begin{aligned} & 150 \\ & 200 \\ & 250 \end{aligned}$ |  | $\begin{aligned} & 109185 \\ & 109186 \\ & 109187 \end{aligned}$ | $\begin{aligned} & 109242 \\ & 109243 \\ & 109244 \end{aligned}$ | $\begin{aligned} & 109299 \\ & 109300 \\ & 109301 \end{aligned}$ |
| $\begin{aligned} & 250 \\ & 300 \\ & 400 \end{aligned}$ | $\begin{aligned} & 300 \\ & 400 \\ & 500 \end{aligned}$ |  | $\begin{aligned} & 109188 \\ & 109189 \\ & 109190 \end{aligned}$ | $\begin{aligned} & 109245 \\ & 109246 \\ & 109247 \end{aligned}$ | $\begin{aligned} & 109302 \\ & 109303 \\ & 109304 \end{aligned}$ |
| 500 | 600 |  | 109191 | 109248 | 10930 |


O.S. $=$ T.P.D.T. . . . . . amp. automatic K-5 oil switch mounted on back of panel (or on pipe framework remote from panel) with operating mechanism and bell alarm switch.

## C.H. = Card holder.

| AMP. CAPACITY |  | CAT. NO. |  |
| :---: | :---: | :---: | :---: |
| Panel | O.S. | 0 S : on Back of Panel | O.S. Remote Control |
| $\begin{array}{r} 8-200 \\ 250-300 \\ 400-500 \end{array}$ | $\begin{aligned} & 200 \\ & 300 \\ & 500 \end{aligned}$ | ${ }^{109326}=$ | $\begin{aligned} & 109330 \\ & 109331 \\ & 109332 \end{aligned}$ |

N.P. $=$ Name plate (on only one panel in a
complete switchboard).
Page 20A

Page 20B
P.R.W. $=$ Polyphase watt-hour meter DS-4 with metal cover (or DS-5 with glass cover).

Two-Current transformers. ..... amp.

Two- 50 watt $2200-1100 / 110$ volt $60 / 125$
cycie potential transformers and fuses.
Two-50 watt $2200-1100 / 110$ volt $60 / 125$

Bus Bars must be ordered separately; see
"Bus Bar Copper."


| AMP. CAPACITY |  | CAT. NO. |  |
| :---: | :---: | :---: | :---: |
| Panel | Current Transformers | $\begin{aligned} & \text { With } \\ & \text { DS-4. } \\ & \text { P.R.W. } \end{aligned}$ | $\begin{gathered} \text { With } \\ \text { DS.5 } \\ \text { P.R.W. } \end{gathered}$ |
| 8 10 12 | $\begin{aligned} & 10 \\ & 15 \\ & 15 \end{aligned}$ | $\begin{aligned} & 109352 \\ & 109353 \\ & 109354 \end{aligned}$ | $\begin{aligned} & 109371 \\ & 109372 \\ & 109373 \end{aligned}$ |
| 16 20 25 | 20 30 30 | $\begin{aligned} & 109355 \\ & 109356 \\ & 109357 \end{aligned}$ | $\begin{aligned} & 109374 \\ & 109375 \\ & 109376 \end{aligned}$ |
| 30 40 50 | $\begin{aligned} & 40 \\ & 60 \\ & 60 \end{aligned}$ | $\begin{aligned} & 109358 \\ & 109359 \\ & 109360 \end{aligned}$ | $\begin{aligned} & 109377 \\ & 109378 \\ & 109379 \end{aligned}$ |
| 65 80 100 | 80 100 150 | 109361 109362 109363 | $\begin{aligned} & 109380 \\ & 109381 \\ & 109382 \end{aligned}$ |
| 125 160 200 | 150 200 300 | 109364 109365 109366 |  |
| 250 300 400 | 300 400 600 | 109367 109368 109369 | 109386 <br> 109387 <br> 10938 |
| 400 500 | 600 600 | 109369 109370 | 109388 109389 |

$\square$
$\qquad$
-

# DOUBLE-CIRCUIT <br> THREE-PHASE FEEDER PANELS 

# 2300 VOLTS-60 CYCLES <br> 8 TO 200 AMPERES PER CIRCUIT 

## WITH T.P.S.T. OIL SWITCHES $\left\{\begin{array}{l}\text { Mounted on back of panel } \\ \text { Remote control, mounted on pipe framework }\end{array}\right.$

## NOTE

The panels listed are for controlling two circuits of equal capacity, the panel rating being the total ampere capacity of the two circuits. If so ordered, any panel will be furnished with an equipment suitable for two circuits of different capacities providing the ampere capacity of either circuit does not exceed 200 amperes.

For Diagrams of Connections
see
Single-Circuit Panels, Page 14


EQUIPMENT
$\mathrm{A}($ optional $)=T w o$ H.E. A.C. ammeters with ...x...amp. scales.
A.S.(optional) $=$ Two three-way ammeter Bwitches for connecting $\mathbf{A}$ in each phase.

These Sections cannot be used with Middle Sections, page 24A

| AMP. CAPACITY |  | cat. no. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Panel | A | Blank | With | With A and A.S |
| 16 | 10 |  | 109392 | 109422 |
| 20 | 12 |  | 109393 | 109423 |
| 24 | 15 |  | 109394 | 109424 |
| 32 | 20 |  | 109395 | 109425 |
| 40 | 25 |  | 109396 | 109426 |
| 50 | 30 |  | 109397 | 109427 |
| 60 | 40 | \% | 109398 | 109428 |
| 80 | 50 |  | 109399 | 109429 |
| 100 | 60 |  | 109400 | 109430 |
| 130 | 80 |  | 109401 | 109431 |
| 160 | 100 |  | 109402 | 109432 |
| 200 | 120 |  | 109403 | 109433 |
| 250 | 150 |  | 109404 | 109434 |
| 320 | 200 |  | 109405 | 109435 |
| 400 | 250 |  | 109406 | 109436 |



Page 23A
C.H. = Two card holder.
O.S. $=T_{w o}$ T.P.S.T, 200 amp , automatic K-5 oil switches mounted on back of panel (or on pipe framework remote from panel) with operating mechanisms and bell alarm switches.

| AMP. CAPACITY |  | cat. no. |  |
| :---: | :---: | :---: | :---: |
| Panel | O.S. | O.S. on Back of Panel | O.S. Control |
| 16-400 | 200 | 109452 | 109454 |

N.P. = Name plate (on only one panel in a
complete switchboard),

Page 23B

## IMPORTANT-NOTE BEFORE ORDERING

1. Do not forget "Information which should accompany orders"-see page 4.
2. Avoid ordering panels of larger capacsty than necessary for present requirements, for reasons given under
"Rating of Feeder Panels."
3. Always consider carefully the question of "Oil Switch Rupturing Capacity" in order to determine if panels are suitable for future as well as present requirements.
4. If Voltage or Frequency is other than listed, see General Information.
5. Lightning Arresters are not included with these panels.


EQUIPMENT
$\mathbf{A}($ optional $)=T_{w o}$ H.E. A.C. ammeters with . . . . . . amp. scale.

T, R, $=T$ wo D.P. time limit overload relays.
A.S. (optional) $=$ Two $\quad$ three-way ammeter switches for connecting $A$ in each phase.

These Sections cannot be used with Middle Sections, page 23A

| AMP, CAPACITY |  | CAT. NO. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Panel | A | Without A or A.S. | With A | With $A$ and A.S. |
| 16 | 10 |  | 109407 | 109437 |
| 20 | 12 |  | 109408 | 109438 |
| 24 | 15 |  | 109409 | 109439 |
| 32 | 20 |  | 109410 | 109440 |
| 40 | 25 |  | 109411 | 109441 |
| 50 | 30 | $\stackrel{\square}{0}$ | 109412 | 109442 |
| 60 | 40 | \% | 109413 | 109443 |
| 80 | 50 | $\bigcirc$ | 109414 | 109444 |
| 100 | 60 |  | 109415 | 109445 |
| 130 | 80 |  | 109416 | 109446 |
| 160 | 100 |  | 109417 | 109447 |
| 200 | 120 |  | 109418 | 109448 |
| 250 | 150 |  | 109419 | 109449 |
| 320 | 200 |  | 109420 | 109450 |
| 400 | 250 |  | 109421 | 109451 |



Page 24A
C.H. $=$ Two card bolders.

| O.S. $=$ Two T.P.S.T. 200 amp . automatic K-5 oil switches mounted on back of panel (or on pipe framework remote from panel) with operating mechanisms and bell alarm switches. | amp. Capacity |  | cat. no. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Panel | O.S. | O.S. on Back of Panel | O.S. Remote Control |
|  | 16-400 | 200 | 109453 | 109455 |

N.P. = Name plate (on only one panel in a
complete switchboard).


Fowr-Current transformers . . . . . . amp.

Bun Bars must be ordered separately; see "Bus Bar Copper,"

Page 24B

| AMP. CAPACITY |  | Cat. No. |
| :---: | :---: | :---: |
| Panel | Current Transformers |  |
| $\begin{aligned} & 16 \\ & 20 \\ & 24 \end{aligned}$ | 10 15 15 | $\begin{aligned} & 109456 \\ & 109457 \\ & 109458 \end{aligned}$ |
| $\begin{aligned} & 32 \\ & 40 \\ & 50 \end{aligned}$ | 20 30 30 | $\begin{aligned} & 109459 \\ & 109460 \\ & 109461 \end{aligned}$ |
| $\begin{array}{r} 60 \\ 80 \\ 100 \end{array}$ | 40 60 60 | $\begin{aligned} & 109462 \\ & 109463 \\ & 109464 \end{aligned}$ |
| 130 <br> 160 <br> 200 <br> 10 | 80 100 150 | $\begin{aligned} & 109465 \\ & 109466 \\ & 109467 \end{aligned}$ |
| 250 320 400 | 150 200 300 | 109468 109469 109470 |

$\qquad$

## SINGLE-CIRCUIT

## SINGLE-PHASE FEEDER PANELS <br> Without Feeder Regulators <br> 2300 VOLTS-60 CYCLES <br> 8 TO 200 AMPERES

WITH OIL SWITCHES \{ Mounted on back of panel
D.P.S.T. AND D.P.D.T. Remote control, mounted on pipe framework

## DIAGRAMS OF CONNECTIONS




## EQUIPMENT

A (optional) $=\mathrm{H} . \mathrm{E} . \mathrm{A} . \mathrm{C}$, ammeter with...... amp. scale.

These Sections cannot be used with Bottom Sections, page 29B

| AMP. CAPACITY |  | CAt. no. |  |
| :---: | :---: | :---: | :---: |
| Panel | A | Blank | With A |
| $\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$ | 10 12 15 |  | $\begin{aligned} & 109474 \\ & 109475 \\ & 109476 \end{aligned}$ |
| 16 20 25 | 20 25 30 |  | $\begin{aligned} & 109477 \\ & 109478 \\ & 109479 \end{aligned}$ |
| 30 40 50 | 40 50 60 | 17 <br> ¢ <br> 1 | $\begin{aligned} & 109480 \\ & 109481 \\ & 109482 \end{aligned}$ |
| 65 80 100 | 80 100 120 |  | 109483 109484 109485 |
| 125 160 200 | 150 200 250 |  | 109486 109487 109488 |

## IMPORTANT-NOTE BEFORE ORDERING

1. Do not forget "Information which should accompany orders"-see page 4.
2. If panels with D.T. oil switches are ordered, state whether the switch is to be connected for transferring feeder to either of two phases of a single set of buses or to either of two sets of buses. See wirings on preceding page.
3. Avoid ordering panels of larger capacity than necessary for present requirements, for reasons given under "Rating of Feeder Panels."
4. Always consider carefully the question of "Oil Switch Rupturing Capacity" in order to determine if panels are suitable for future as well as present requirements.
5. If Voltage or Frequency is other than listed, see General Intormation.
6. Lightning Arresters are not included with these panels.



## EQUIPMENT

$\mathbf{A}$ (optional) $=$ H.E. A.C. ammeter with. . . . . . amp. scale.
I.R. $=$ S.P. instantaneous overload relay.

These Sections cannot be used with Bottom Sections, page 28B

| AMP, CAPACITY |  | cat. no. |  |
| :---: | :---: | :---: | :---: |
| Panel | A | Without A | With A |
| 8 10 12 | 10 12 15 |  | $\begin{aligned} & 109504 \\ & 109505 \\ & 109506 \end{aligned}$ |
| 16 20 25 | $\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 109507 \\ & 109508 \\ & 109509 \end{aligned}$ |
| 30 40 50 | 40 50 60 | ¢ | $\begin{aligned} & 109510 \\ & 109511 \\ & 109512 \end{aligned}$ |
| 65 80 100 | 80 100 120 |  | 109513 109514 109515 |
| 125 160 200 | $\begin{aligned} & 150 \\ & 200 \\ & 250 \end{aligned}$ |  | $\begin{aligned} & 109516 \\ & 109517 \\ & 109518 \end{aligned}$ |



Page 28B

| AMP. CAPACITY |  | Panel Current <br> Trans- <br> former |  | Cat. No. |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |
| 8 | 10 | 109521 |  |  |
| 10 | 15 | 109522 |  |  |
| 12 | 15 | 109523 |  |  |
| 16 | 20 | 109524 |  |  |
| 20 | 30 | 109525 |  |  |
| 25 | 30 | 109526 |  |  |
| 30 | 40 | 109527 |  |  |
| 40 | 60 | 109528 |  |  |
| 50 | 60 | 109529 |  |  |
| 65 | 80 | 109530 |  |  |
| 80 | 100 | 109531 |  |  |
| 100 | 150 | 109532 |  |  |
| 125 | 150 | 109533 |  |  |
| 160 | 200 | 109534 |  |  |
| 200 | 300 | 109535 |  |  |

$$
11111 \quad 11 \quad 1 \quad 11 \quad 11 \quad 1
$$

$$
141:
$$



## EQUIPMENT

$A$ (optional) $=$ H.E. A.C. ammeter with . . . . . . amp, scale.

## T.R. $=$ S, P, time limit overload relay.

C.H. = Card holder.
O.S. $=$ D P.S.T. 200 amp . automatic K-5 oil switch mounted on back of panel (or on pipe framework remote from panel) with operating mechanism and bell alarm switch.

## N.P. = Name plate (on only one panel in a complete switchboard).


S.R.W. = Single-phase watt-hour meter IS-2 with metal cover (or IS-3 with glass cover).

One-Current transformer. . . . . amp.

One-50 watt $2200-1100 / 110$ volt $60 / 125$ cycle potential transformer and fuses.

These Sections may be used with any Middle or Bottom Section

| amp. Capacity |  | Cat, no. |  |
| :---: | :---: | :---: | :---: |
| Panel | A | Without A | With A |
| $\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$ | $\begin{aligned} & 10 \\ & 12 \\ & 15 \end{aligned}$ |  | $\begin{aligned} & 109489 \\ & 109490 \\ & 109491 \end{aligned}$ |
| 16 20 25 | $\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$ |  | $\begin{aligned} & 109492 \\ & 109493 \\ & 109494 \end{aligned}$ |
| $\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$ | $\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$ | $\begin{gathered} \text { Nis } \\ \hline 80 \end{gathered}$ | $\begin{aligned} & 109495 \\ & 109496 \\ & 109497 \end{aligned}$ |
| $\begin{array}{r} 65 \\ 80 \\ 100 \end{array}$ | $\begin{array}{r} 80 \\ 100 \\ 120 \end{array}$ |  | $\begin{aligned} & 109498 \\ & 109499 \\ & 109500 \end{aligned}$ |
| $\begin{aligned} & 125 \\ & 160 \\ & 200 \end{aligned}$ | $\begin{aligned} & 150 \\ & 200 \\ & 250 \end{aligned}$ |  | $\begin{aligned} & 109501 \\ & 109502 \\ & 109503 \end{aligned}$ |

Page 29A

| AMP. CAPACITY |  | CAT. No. |  |
| :---: | :---: | :---: | :---: |
| Panel | O.S. | O.S. <br> on Back <br> of Panel | O.S. <br> Remote <br> Control |
| $8-200$ | 200 | 109519 | 109520 |

Bus Bars must be ordered separately; see "Bus Bar Copper."

Page 29B

| AMP, CAPACITY |  | CAT. NO. |  |
| :---: | :---: | :---: | :---: |
| Pancl | Current Transformer | $\begin{gathered} \text { With } \\ \text { IS-2 } \\ \text { S.R.W. } \end{gathered}$ | $\begin{gathered} \text { With } \\ \text { IS.3 } \\ \text { S.R.W. } \end{gathered}$ |
| 8 10 12 | 10 15 15 | $\begin{aligned} & 109536 \\ & 109537 \\ & 109538 \end{aligned}$ | $\begin{aligned} & 109551 \\ & 109552 \\ & 109553 \end{aligned}$ |
| 16 20 25 | 20 30 30 | $\begin{aligned} & 109539 \\ & 109540 \\ & 109541 \end{aligned}$ | $\begin{aligned} & 109554 \\ & 109555 \\ & 109556 \end{aligned}$ |
| 30 40 50 | 40 60 60 | $\begin{aligned} & 109542 \\ & 109543 \\ & 109544 \end{aligned}$ | $\begin{aligned} & 109557 \\ & 109558 \\ & 109559 \end{aligned}$ |
| 65 80 100 | 80 100 150 | $\begin{aligned} & 109545 \\ & 109546 \\ & 109547 \end{aligned}$ | $\begin{aligned} & 109560 \\ & 109561 \\ & 109562 \end{aligned}$ |
| 125 160 200 | 150 200 300 | $\begin{aligned} & 109548 \\ & 109549 \\ & 109550 \end{aligned}$ | $\begin{aligned} & 109563 \\ & 109564 \\ & 109565 \end{aligned}$ |




EQUIPMENT

A (optional) $=$ H.E. A.C. ammeter with. . . . . . amp. scale

These Sections cannot be used with Bottorn Sections, page 32B

| AMP. CAPACITY |  | CAT. NO. |  |
| :---: | :---: | :---: | :---: |
| Panel | A | Blank | With A |
|  |  |  |  |
| 8 | 10 |  | 109569 |
| 10 | 12 |  | 109570 |
| 12 | 15 |  | 109571 |
| 16 | 20 |  | 109572 |
| 20 | 25 |  | 109573 |
| 25 | 30 |  | 109574 |
| 30 | 40 | 0 | 109575 |
| 40 | 50 | 0 | 109576 |
| 50 | 60 | 0 | 109577 |
| 65 | 80 |  | 109578 |
| 80 | 100 |  | 109579 |
| 100 | 120 |  | 109580 |
| 125 | 150 |  | 109581 |
| 160 | 200 |  | 109582 |
| 200 | 250 |  | 109583 |



## EQUIPMENT

A (optional) $=$ H.E. A.C. ammeter with, . . . . . amp. scale.
I.R. $=$ S.P. instántaneous overioad relay.

These Sections cannot be esed with Bottom Sections, page 31B

| AMP, CAPACITY |  | CAT. No. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Panel | A | Without A. | With A |  |
|  |  |  |  |  |
| 8 | 10 |  | 109599 |  |
| 10 | 12 |  | 109600 |  |
| 12 | 15 |  | 109601 |  |
| 16 | 20 |  | 109602 |  |
| 20 | 25 |  | 109603 |  |
| 25 | 30 |  | 109604 |  |
| 30 | 40 |  | 0 |  |
| 40 | 50 |  | 109605 |  |
| 50 | 60 |  | 0 |  |
| 65 | 80 |  | 109606 |  |
| 80 | 100 |  | 109607 |  |
| 100 | 120 |  | 109608 |  |
| 125 | 150 |  | 109609 |  |
| 160 | 200 |  | 109611 |  |
| 200 | 250 |  | 109612 |  |
|  |  |  | 109613 |  |



One-Current transformer......amp.

Bus Bars must be ordered separately: see Bars must be ord
"Bus Bar Copper."

Page 31B

| AMp. Capscity |  |  |
| :---: | :---: | :---: |
| Panel | Current <br> Transformer | Cat. No. |
| 8 | 10 | 109616 |
| 10 | 15 | 109617 |
| 12 | 15 | 109618 |
| 16 | 20 | 109619 |
| 20 | 30 | 109620 |
| 25 | 30 | 109621 |
| 30 | 40 | 109622 |
| 40 | 60 | 109623 |
| 50 | 60 | 109624 |
| 65 | 80 | 109625 |
| 80 | 100 | 109626 |
| 100 | 150 | 109627 |
| 125 | 150 | 109628 |
| 160 | 200 | 109629 |
| 200 | 300 | 109630 |



- i




## EQUIPMENT

$\mathbf{A}$ (optional) $=$ H.E. A.C. ammeter with..... amp. scale.
T.R. =S.P. time limit overload relay.
O.S. $=$ D.P.D.T. 200 amp , automatic K-5 oil switch mounted on back of panel (or on pipe framework remote from panel) with operating mechanism and bell alarm switch.

| AMP. CAPACITY |  | CAT. No. |  |
| :---: | :---: | :---: | :---: |
| Panel | O.S. | O.S. <br> on Back <br> of Panel | O.S. <br> Remote <br> Control |
| $8-200$ | 200 | 109614 | 109615 |

N.P. $=$ Name plate (on only one panel in a complete switchboard).


| S.R.W. $=$ Single-phase watt-hour meter, IS-2 with metal cover (or IS-3 with glass cover). | Page 32B |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMP. CAPACITY |  | CAt. no. |  |
|  | Panel | Current <br> Transformer | $\begin{gathered} \text { With } \\ \text { IS-2 } \\ \text { S.R,W. } \end{gathered}$ | $\begin{gathered} \text { With } \\ \text { IS. } 3 \\ \text { S.R.W. } \end{gathered}$ |
| One-Current transformer. ......amp. | 8 10 12 | 10 15 15 | $\begin{aligned} & 109631 \\ & 109632 \\ & 109633 \end{aligned}$ | $\begin{aligned} & 109646 \\ & 109647 \\ & 109648 \end{aligned}$ |
|  | 16 20 25 | 20 30 30 | 109634 109635 109636 | 109649 109650 109651 |
| One-50 watt 2200-1100/110 volt 60/125 cycle potential transformer and fuses. | 30 40 30 | 40 60 60 | 109637 109638 109639 | $\begin{aligned} & 109652 \\ & 109653 \\ & 109854 \end{aligned}$ |
|  | 65 80 100 | 80 100 150 | 109640 109641 109642 | 109655 109656 109657 |
| Bus Bars must be ordered separately; see "Bus Bar Copper." | 125 160 200 | 150 200 300 | 109643 109644 109645 | $\begin{aligned} & 109658 \\ & 109659 \\ & 109660 \end{aligned}$ |



$-\square--\cdots-\cdots$
$\qquad$

# SINGLE-CIRCUIT <br> SINGLE-PHASE FEEDER PANELS <br> With Hand Operated Feeder Regulators 

2300 VOLTS-60 CYCLES
8 TO 200 AMPERES

WITH OIL SWITCHES / Mounted on Back of Panel
D.P.S.T. AND D.P.D.T. \Remote Control, Mounted on Pipe Framework

## DIAGRAMS OF CONNECTIONS



KEY TO SYMBOLS
A $\quad$ Ammeter.
B.A.S. - Bell alarm switch,
C.T. $=$ Current transformer.
C.V. $=$ Compensated voltmeter.

F $\quad$ Fuse.
F.R. Feeder regulator hand controlled (see Bulletin on feeder regulators
for connections of motor-operated regulator and control switch).
O.S. Oil switch.
P.T. $=$ Potential transformer.
S.R.W. $=$ Single-phase watthour meter (dotted lines indicate extra wiring and transformer required when S.R.W. is used).
T.B. $\quad=$ Terminal board for secondary leads from current and potential tranaformers.
T.C. Trip coil on oil awitch.

## IMPORTANT-NOTE BEFORE ORDERING

1. Do not forget "Information which should accompany orders"-see page 4.
2. If panels with D.T oil switches are ordered, state whether the switch is to be connected for transferring the feeder to either of two phases of a single set of buses or to either of two sets of buses. See wirings on preceding page
3. Avoid ordering panels of larget capacily than necessary for present requirements, for reasons given under "Rating of Feeder Panels."
4. Always consider carefully the question of "Oil Switch Rupturing Capacity" in order to determine if panels are suitable for future as well as present requirements.
5 If Voltage or Frequency is other than listed, see General Information.
6 Lightning Arresters are not included with these panels.



## EQUIPMENT

$\mathbf{A}=\mathrm{H}, \mathrm{R}, \mathrm{A}, \mathrm{C}$, ammeter with........,amp. scale.
C. $V_{*}=$ H.E. compensated voltmeter with 175 voit scale (compensated for ohmaic drop only).
T.R. (optional) $=$ S.P. time limit overload relay . (T.R. is moved It in. to the left when R.M. is used on the middle section.)

| AMP. CAPACITY |  | CAT. NO. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Panel | A | Without <br> T.R. | With <br> T.R. |  |
|  |  |  |  |  |
| 8 | 10 | 109661 | 109676 |  |
| 10 | 12 | 109662 | 109677 |  |
| 12 | 15 | 109663 | 109678 |  |
| 16 | 20 | 109664 | 109679 |  |
| 20 | 25 | 109665 | 109680 |  |
| 25 | 30 | 109666 | 109681 |  |
| 30 | 40 | 109667 | 109682 |  |
| 40 | 50 | 109668 | 109683 |  |
| 50 | 60 | 109669 | 109684 |  |
| 65 | 80 | 109670 | 109685 |  |
| 80 | 100 | 109671 | 109686 |  |
| 100 | 120 | 109672 | 109687 |  |
| 125 | 150 | 109673 | 109688 |  |
| 160 | 200 | 109674 | 109689 |  |
| 200 | 250 | 109675 | 109690 |  |
|  |  |  |  |  |

Page 36A
R.M. (optional) = Chain operating mechanism for feeder regulator.
R.C.S. (optional) $=$ D.P.D.T. control switch for electrically operated feeder regulator.
C.H. $=$ Card holder.
O.S. = D.P.S.T. 200 amp . automatic K-5 oil switch mounted on back of panel (or on pipe framework remote from panel) with operating mechanism and bell alarm switch.
N.P. = Name plate (on only one panel in a complete switchboard).
S.R.W. =Single-phase watt-hour meter, IS-2 with metal cover (or IS-3 with glass cover),

Two current transformers.... . . amp.

Onc 50 watt $2200-1100 / 110$ volt $60 / 125$ cycle potential transformer and fuses.

Bus Bars must be ordered separately; see "Bus Bar Copper."

Page 36B

| AMP, CAPACITY |  | CAT. NO. |  |
| :---: | :---: | :---: | :---: |
| Panel | Current Transformers | $\begin{gathered} \text { With } \\ \text { IS-2 } \\ \text { S.R.W. } \end{gathered}$ | $\begin{gathered} \text { With } \\ \text { IS-3 } \\ \text { S.R.W. } \end{gathered}$ |
| 8 10 12 | 10 15 15 | 109710 109711 109712 | $\begin{aligned} & 109725 \\ & 109726 \\ & 109727 \end{aligned}$ |
| 16 20 25 | 20 30 30 | 109713 109714 109715 | $\begin{aligned} & 109728 \\ & 109729 \\ & 109790 \end{aligned}$ |
| 30 40 50 | 40 60 60 | 109716 109717 109718 | $\begin{aligned} & 109731 \\ & 109732 \\ & 109733 \end{aligned}$ |
| 65 80 100 | 80 100 150 | 109719 109720 109721 | $\begin{aligned} & 109734 \\ & 109735 \\ & 109736 \end{aligned}$ |
| 125 160 200 | 150 200 300 | 109722 109723 109724 | $\begin{aligned} & 109737 \\ & 109738 \\ & 109739 \end{aligned}$ |

11
7

$\begin{array}{rrr}=-- & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \end{array}$




## One current transformer . . . . . . amp,

One 50 watt $2200-1100 / 110$ volt $60 / 125$ cycle potential transformer and fuses.

Bus Bars must be ordered separately; see "Bus Bar Copper."

Page 37B

| AMP, CAPACITY |  | Cat. No. |
| :---: | :---: | :---: |
| Panel | Current Transformer |  |
| $\begin{aligned} & 8 \\ & 10 \\ & 12 \end{aligned}$ | 10 15 15 | 109774 109775 109776 |
| 16 20 25 | 20 30 30 | $\begin{aligned} & 109777 \\ & 109778 \\ & 109779 \end{aligned}$ |
| $\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$ | $\begin{aligned} & 40 \\ & 60 \\ & 60 \end{aligned}$ | $\begin{aligned} & 109780 \\ & 109781 \\ & 109782 \end{aligned}$ |
| 65 80 100 | 80 100 150 | $\begin{aligned} & 109783 \\ & 109784 \\ & 109785 \end{aligned}$ |
| $\begin{aligned} & 125 \\ & 160 \\ & 200 \end{aligned}$ | 150 200 300 | $\begin{aligned} & 109786 \\ & 109787 \\ & 109788 \end{aligned}$ |



## EQUIPMENT

$\mathrm{A}=\mathrm{H}, \mathrm{E}, \mathrm{A}, \mathrm{C}$, ammeter with,.......amp, seale.
C.V. $=$ H.E. compensated voltmeter with 175 volt scale (compensated for ohmic drop only).
T.R. (optional) $=$ S.P. time limit overload relay. (T.R. is moved 13 in. to the left when R.M. is used on the middle section.)

| AMP, CAPACITY |  | CAT. NO. |  |
| :---: | :---: | :---: | :---: |
| Panel | A | Without T.R. | With T.R. |
| 8 | 10 | 109740 | 109755 |
| 10 | 12 | 109741 | 109756 |
| 12 | 1.5 | 109742 | 109757 |
| 16 | 20 | 109743 | 109758 |
| 20 | 25 | 109744 | 109759 |
| 25 | 30 | 109745 | 109760 |
| 30 | 40 | 109746 | 109761 |
| 40 | 50 | 109747 | 109762 |
| 50 | 60 | 109748 | 109763 |
| 65 | 80 | 109749 | 109764 |
| 80 | 100 | 109750 | 109765 |
| 100 | 120 | 109751 | 109766 |
| 12.5 | 150 | 109752 | 109767 |
| 160 | 200 | 109753 | 109768 |
| 200 | 250 | 109754 | 109769 |

Page 38A
R.M.(optional) $=$ Chain operating mechanism for feeder regulator.
R.C.S.(optional) = D.P.D.T. control awitch for electrically operated feeder regulator.
C.H. $=$ Card holder .
O.S. $=$ D.P.D.T. 200 amp . automatic $\mathrm{K}-5$ oil switch mounted on back of panel (or on pipe (ramework remote from panel) with operating mechanism and bell alarm switch.
N.P. = Name plate (on only one panel in a complete switchboard).


WITH R.M. FOR REGULATOR

| 8-200 | 200 | 109770 | 109772 |
| :--- | :--- | :--- | :--- |

WITH R.C.S. FOR REGULATOR

| $8-200$ | 200 | 109751 | 109773 |
| :--- | :--- | :--- | :--- |

Page 38B
S.R.W. = Single-phase wath-hour meter, IS-2 with metal cover (or IS-3 with giass cover).

Two current transformers, ....., amp.

One 50 watt $2200-1100 / 110$ volt $60 / 125$ cycle potential transformer and fuses.

Bus Bars must be ordered separately; see

| AMP, CAPACITY |  | cat. no. |  |
| :---: | :---: | :---: | :---: |
| Panel | Current Transformers | $\begin{gathered} \text { With } \\ \text { IS-2 } \\ \text { S.R.W. } \end{gathered}$ | $\begin{aligned} & \text { With } \\ & \text { IS-3 } \\ & \text { S.R.W. } \end{aligned}$ |
| $\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$ | $\begin{aligned} & 10 \\ & 15 \\ & 15 \end{aligned}$ | $\begin{aligned} & 109789 \\ & 109790 \\ & 109791 \end{aligned}$ | $\begin{aligned} & 109804 \\ & 109805 \\ & 109806 \end{aligned}$ |
| $\begin{aligned} & 16 \\ & 20 \\ & 25 \end{aligned}$ | $\begin{aligned} & 20 \\ & 30 \\ & 30 \end{aligned}$ | $\begin{aligned} & 109792 \\ & 109793 \\ & 109794 \end{aligned}$ | $\begin{aligned} & 100807 \\ & 109<08 \\ & 109809 \end{aligned}$ |
| $\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$ | $\begin{aligned} & 40 \\ & 60 \\ & 60 \end{aligned}$ | $\begin{aligned} & 109795 \\ & 109796 \\ & 109797 \end{aligned}$ | $\begin{aligned} & 109810 \\ & 109811 \\ & 109812 \end{aligned}$ |
| $\begin{array}{r} 65 \\ 80 \\ 100 \end{array}$ | $\begin{array}{r} 80 \\ 100 \\ 150 \end{array}$ | $\begin{aligned} & 109798 \\ & 109799 \\ & 109800 \end{aligned}$ | $\begin{aligned} & 109813 \\ & 109814 \\ & 109815 \end{aligned}$ |
| $\begin{aligned} & 125 \\ & 160 \\ & 200 \end{aligned}$ | $\begin{aligned} & 150 \\ & 200 \\ & 300 \end{aligned}$ | $\begin{aligned} & 109801 \\ & 109802 \\ & 109803 \end{aligned}$ | $\begin{aligned} & 109816 \\ & 109817 \\ & 109818 \end{aligned}$ |

$$
-\overline{-=-}
$$

# SINGLE-CIRCUIT <br> SINGLE-PHASE FEEDER PANELS <br> With Automatic Feeder Regulators 

## 2300 VOLTS-60 CYCLES <br> 8 TO 200 AMPERES

WITH OIL SWITCHES / Mounted on back of panel
D.P.S.T. AND D.P.D.T. \ Remote control, mounted on pipe framework

## DIAGRAMS OF CONNECTIONS



## IMPORTANT-NOTE BEFORE ORDERING

1. Do not forget "Information which should accompany orders"-see page 4.
2. If panels with D.T. oil switches are ordered, state whether the switch is to be connected for transferring the feeder to either of two phases of a single set of buses or to either of two sets of buses. See wirings on preceding page.
3. Avoid ordering panels of larger capacity than necessary for present requirements, for reasons given under "Rating of Feeder Panels."
4. Always consider carefully the question of "Oil Switch Rupturing Capacity" in order to determine if panels are suitable for future as well as present requirements.
5. If Voltage or Frequency is other than listed, see General Information.
6. Lightning Arresters are not included with these panels.


One ourrent transformer . . . . . amp.

Mounting only for one current transformer and one 200 watt potential transformer which are supplied with the contact making voltmeter.

Bus Bars must be ordered separately; see "Bus Bar Copper."

| AMP, CAPACITY  <br> Panel Current <br> Transformer <br> 8 Cat. <br> No.  |  |  |
| :---: | :---: | :---: |
| 10 | 10 | 109849 |
| 12 | 15 | 109850 |
| 16 | 15 | 109851 |
| 20 | 20 | 109852 |
| 25 | 30 | 109853 |
| 30 | 30 | 109854 |
| 40 | 40 | 109855 |
| 50 | 60 | 109856 |
| 65 | 60 | 109857 |
| 80 | 80 | 109858 |
| 100 | 100 | 109859 |
| 125 | 150 | 109860 |
| 160 | 150 | 109861 |
| 200 | 200 | 109862 |



## EQUIPMENT

C.V. $=$ H, E. compensated voltmeter with 175
volt scale (compensated for ohmic drop
only). only).
A. = H.E. $\quad$ Scale. $\quad$ A.C. ammeter with $\ldots$....amp. scale.
C.M.V. $=$ Drilling and mounting only for contact making voltmeter (C.M.V. together with one current transformer and one 200 watt potential transformer are furnished with the automatic regulator).
T.R. $($ optional $)=$ S.P. time limit overload relay.

## C.H. $=$ Card holder.

O.S. $=$ D.P.S.T. 200 amp , automatic K-5 oil switch mounted on back of panel (or on pipe framework remote from panel) with operating mechanism and bell alarm switch.
N.P. = Name plate (on only one panel in a complete switchboard).

 cover).

Two current transformers . . . . . amp.

Mounling only for one current tramsformer and one 200 watt potential transformer which are supplied with the contact making voltmeter.

Bus Bars must be ordered separately; see

| AMP. CAPACITY |  | CAT. NO. |  |
| :---: | :---: | :---: | :---: |
| Panel | A | $\begin{aligned} & \text { Without } \\ & \text { T.R. } \end{aligned}$ | $\begin{aligned} & \text { With } \\ & \text { T.R. } \end{aligned}$ |
| 8 | 10 | 109819 | 109834 |
| 10 | 12 | 109820 | 109835 |
| 12 | 15 | 109821 | 109836 |
| 16 | 20 | 109822 | 109837 |
| 20 | 25 | 109823 | 109838 |
| 25 | 30 | 109824 | 109839 |
| 30 | 40 | 109825 | 109840 |
| 40 | 50 | 109826 | 109841 |
| 50 | 60 | 109827 | 109842 |
| 65 | 80 | 109828 | 109843 |
| 80 | 100 | 109829 | 109844 |
| 100 | 120 | 109830 | 109845 |
| 125 | 150 | 109831 | 109846 |
| 160 | 200 | 109832 | 109847 |
| 200 | 250 | 109833 | 109848 |

Page 42A

| AMP. CAPACITY |  | CAT. No. |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Panel | O.S. | O.S. <br> On Back <br> of Panel | O.S, <br> Remote <br> Control |  |
| $8-200$ | 200 | 109894 | 109895 |  |

Page 42B

| AMP. CAPACITY |  | CAT, NO. |  |
| :---: | :---: | :---: | :---: |
| Panel | Current Transformers | $\begin{gathered} \text { With } \\ \text { IS-2 } \\ \text { S.R.W. } \end{gathered}$ | $\begin{aligned} & \text { With } \\ & \text { IS-3 } \\ & \text { S.R.W. } \end{aligned}$ |
| 8 10 12 | 10 15 15 | $\begin{aligned} & 109864 \\ & 109865 \\ & 109866 \end{aligned}$ | $\begin{aligned} & 109879 \\ & 109880 \\ & 109881 \end{aligned}$ |
| 16 20 25 | 20 30 30 | $\begin{aligned} & 109867 \\ & 109868 \\ & 109869 \end{aligned}$ | $\begin{aligned} & 109882 \\ & 109883 \\ & 109884 \end{aligned}$ |
| 30 40 50 | 40 60 60 | $\begin{aligned} & 109870 \\ & 102871 \\ & 109872 \end{aligned}$ | $\begin{aligned} & 109885 \\ & 109886 \\ & 109887 \end{aligned}$ |
| $\begin{array}{r} 65 \\ 80 \\ 100 \end{array}$ | 80 100 150 | 109873 109874 109875 | 109888 109889 109890 |
| $\begin{aligned} & 125 \\ & 160 \\ & 200 \\ & \hline \end{aligned}$ | 150 200 300 | 109875 109877 109878 | $\begin{aligned} & 109891 \\ & 109892 \\ & 109893 \\ & \hline \end{aligned}$ |




S 626 Page 43B


One current transformer, ......amp.

Mounting only for one current transformer and one 200 watt potential transformer making voltmeter.

Bus Bars must be ordered separately; see "Bus Bar Copper."

| AMP. CAPACITY |  | Cat. No. |
| :---: | :---: | :---: |
| Panel | Current Transformer |  |
| 8 10 12 | 10 15 15 | $\begin{aligned} & 110132 \\ & 110133 \\ & 110134 \end{aligned}$ |
| 16 20 25 | 20 30 30 | $\begin{aligned} & 110135 \\ & 110130 \\ & 110137 \end{aligned}$ |
| 30 40 50 | 40 60 60 | $\begin{aligned} & 110138 \\ & 110139 \\ & 110140 \end{aligned}$ |
| 65 80 100 | 80 100 150 | $\begin{aligned} & 110141 \\ & 110192 \\ & 110143 \end{aligned}$ |
| 125 160 200 | 150 200 300 | $\begin{aligned} & 110144 \\ & 110145 \\ & 110146 \end{aligned}$ |



EQUIPMENT
C.V. $=$ H.E. Compensated voltmeter with 175 volt acale (compensated for ohmic drop only),
$\mathrm{A}=\mathrm{H} . \mathrm{E} . \quad$ A.C. ammeter with...........mp. scale.
C.M.V, $=$ Drilling and mownting only for contact making voltmeter (C.M.V. together with one current transformer and one 200 watt potential transformer are furnished with the automatic regulator).
T.R. (optional) $=$ S.P. time limit overload relay.

| AMP. CAPACITY |  | CAt. no. |  |
| :---: | :---: | :---: | :---: |
| Panel | A | Without T.R. | $\begin{aligned} & \text { With } \\ & \text { T.R. } \end{aligned}$ |
| 8 | 10 | 110100 | 110115 |
| 10 | 12 | 110101 | 110116 |
| 12 | 15 | 110102 | 110117 |
| 16 | 20 | 110103 | 110118 |
| 20 | 25 | 110104 | 110119 |
| 25 | 30 | 110105 | 110120 |
| 30 | 40 | 110106 | 110121 |
| 40 | 50 | 110107 | 110122 |
| 50 | 60 | 110108 | 110123 |
| 65 | 80 | 110109 |  |
| 80 | 100 | 110110 | 110125 |
| 100 | 120 | 110111 | 110126 |
| 125 | 150 | 110112 | 110127 |
| 160 | 200 | 110113 | 110128 |
| 200 | 250 | 110114 | 110129 |


C. $\mathrm{H}=$ Card holder.
O.S. $=$ D.P.D.T. 200 amp . automatic K-5 oit switch mounted on back of panel (or on pipe framework remote from panel) with operating mechanism and bell alarm switch.

Page 44A
. P, $=$ Name plate (on only one panel in a com plete switchboard).

R.W, $=$ Single-phase watt-hour meter, IS-2 with meta cover (or IS-3 with glass cover).

Two current transformers.......amp.

Mounling only for one current transtormer and one 200 watt potential transformer which are supplied with the contact making voltmeter.

Bus Bars must be ordered separately; see "Bus Bar Copper."

Page 44B

| AMP. CAPACITY |  | CAT. NO. |  |
| :---: | :---: | :---: | :---: |
| Panel | Current Transformers | $\begin{aligned} & \text { With } \\ & \text { IS-2 } \\ & \text { S.R.W. } \end{aligned}$ | $\begin{gathered} \text { With } \\ \text { IS-3 } \\ \text { S.R.W. } \end{gathered}$ |
| $\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$ | $\begin{aligned} & 10 \\ & 15 \\ & 15 \end{aligned}$ | 110147 110148 110149 | 110162 110163 110164 |
| 16 20 25 | $\begin{aligned} & 20 \\ & 30 \\ & 30 \end{aligned}$ | $\begin{aligned} & 110150 \\ & 110151 \\ & 110152 \end{aligned}$ | 110165 110166 110167 |
| 30 40 50 | 40 60 60 | 110153 110154 110155 | $\begin{aligned} & 110168 \\ & 110169 \\ & 110170 \end{aligned}$ |
| 65 80 100 | $\begin{array}{r} 80 \\ 100 \\ 150 \end{array}$ | $\begin{aligned} & 110156 \\ & 110157 \\ & 110158 \end{aligned}$ | 110171 110172 110173 |
| $\begin{aligned} & 125 \\ & 160 \\ & 200 \end{aligned}$ | $\begin{aligned} & 150 \\ & 200 \\ & 300 \end{aligned}$ | 110159 110160 110161 | $\begin{aligned} & 110174 \\ & 110175 \\ & 110176 \end{aligned}$ |

# DOUBLE-CIRCUIT <br> SINGLE-PHASE FEEDER PANELS <br> Without Feeder Regulators and <br> With Hand Operated Feeder Regulators 

## 2300 VOLTS-60 CYCLES

8 TO 200 AMPERES PER CIRCUIT

WITH T.P.S.T. OIL SWITCHES $\left\{\begin{array}{l}\text { Mounted on back of panel } \\ \text { Remote control, mounted on pipe framework }\end{array}\right.$

NOTE
The panels listed are for controlling two circuits of equal capacity, the panel rating being the total ampere capacity of the two circuits. If so ordered, any panel will be furnished with an equipment suitable for two circuits of different capacities providing the ampere capacity of either circuit does not exceed 200 amperes.

For diagrams of connections see those for single-circuit panels.

Without Regulators ..................... Page 20
With Hand Operated Regulators....... Page 34


## EQUIPMENT

$\mathrm{A}($ optlonal $)=T w o$ H.E. A.C. ammeters with ........ amp. scales.

These Sections cannot be used with Middle Sections, page 50A Bottom Sections, page 50B

| AMP, CAPACITY |  | CAT, NO. |  |
| :---: | :---: | :---: | :---: |
| Panel | A | Blank | With A |
| $\begin{aligned} & 16 \\ & 20 \\ & 24 \end{aligned}$ | 10 12 15 |  | 110179 110180 110181 |
| $\begin{aligned} & 32 \\ & 40 \\ & 50 \end{aligned}$ | $\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$ |  | 110182 110183 110184 |
| $\begin{array}{r} 60 \\ 80 \\ 100 \end{array}$ | 40 50 60 | $\stackrel{N}{\square}$ | $\begin{aligned} & 110185 \\ & 110186 \\ & 110187 \end{aligned}$ |
| $\begin{aligned} & 130 \\ & 160 \\ & 200 \end{aligned}$ | $\begin{array}{r} 80 \\ 100 \\ 120 \end{array}$ |  | 110188 110189 110190 |
| $\begin{aligned} & 250 \\ & 320 \\ & 400 \end{aligned}$ | 150 200 250 |  | 110191 110192 110193 |



| EQUIPMENT | These Sections cannot be used with Middle Sections, page 50A Bottom Sections, Dage 50B |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | AMP, CAPACITY |  | cat. No. |  |
|  | Panel | A | Without A | With A |
| A (optional) $=T w o$ H.E. A.C. ammeters with ᄂ.... amp. scales. | 16 20 24 | 10 12 15 | $\begin{aligned} & \stackrel{\infty}{\underset{\theta}{2}} \end{aligned}$ | $\begin{aligned} & 110194 \\ & 110195 \\ & 110196 \end{aligned}$ |
|  | 32 40 50 | 20 25 30 |  | 110197 110198 110199 |
|  | 60 80 100 | 40 50 60 |  | $\begin{aligned} & 110200 \\ & 110201 \\ & 110202 \end{aligned}$ |
| T.R. $=$ D.P. time limit overload relay (used as equivalent of two S.P. relays). | 130 160 200 | 80 100 120 |  | 110203 110204 110205 |
|  | 250 320 400 | 150 200 250 |  | $\begin{aligned} & 110206 \\ & 110207 \\ & 110208 \end{aligned}$ |

## IMPORTANT-NOTE BEFORE ORDERING

1. Do not forget "Information which should accompany orders"-see page 4.
2. If panels with D.T. oil switches are ordered, state whether the switch is to be connected for transferring the feeder to either of two phases of a single set of buses or to either of two sets of buses. See wirings for single circuit panels.
3. Avoid ordering panels of larger capacity than necessary for present requirements, for reasons given under "Rating of Feeder Panels."
4. Always consider carefully the question of "Oil Switch Rupturing Capacity" in order to determine if panels are suitable for future as well as present requirements.
5. If Voltage or Frequency is other than listed, see General Information.
6. Lightning Arresters are not included with these panels.


EQUIPMENT
$\mathrm{A}=\mathrm{T}_{\text {wo }}$ H.E. A.C. ammeters with....... amp. scales,
C.V. $=$ Two H.E. compensated voltmeters with 175 volt scales (compensated for ohmic drop only).

These Sections cannot be used with Middle Sections, page 49 A Bottom Sections, page 49 B

| AMP. CAPACITX |  |  |
| :---: | :---: | :---: |
| Panel | A | Cat. No. |
|  |  |  |
|  |  | 10 |
| 24 | 12 | 110209 |
| 32 | 15 | 110210 |
| 40 | 20 | 110211 |
| 50 | 25 | 110213 |
| 60 | 30 | 110214 |
| 80 | 40 | 110215 |
| 100 | 50 | 110216 |
| 130 | 60 | 110217 |
| 160 | 80 | 110218 |
| 200 | 100 | 110219 |
| 250 | 120 | 110220 |
| 320 | 150 | 110221 |
| 400 | 200 | 110222 |
|  | 250 | 110223 |

Page 49A
C.H. $=$ Two card holders.
O.S. $=T w 0$ D.P.S.T. 200 amp , automatic K- 5 oil switches mounted on back of panel (or on pipe framework remote from panel) with operating mechanisms and bell alarm switches.

| AMP, CAPACITY | CAT, No. |  |  |
| :---: | :---: | :---: | :---: |
| Panel | O.S. | O.S. <br> on Back <br> of Panel | O.S. <br> Remote <br> Control |
| $16-400$ | 200 | 110239 | 110240 |

N.P. = Name plate (on only one panel in a complete switchboard).


| AMP. CAPACITY |  | Cat. No. |
| :---: | :---: | :---: |
| Panel | Current Transformers |  |
| $\begin{aligned} & 16 \\ & 20 \\ & 24 \end{aligned}$ | 10 15 15 | 110245 110246 110247 |
| 32 40 50 | 20 30 30 | 110248 110249 110250 |
| $\begin{array}{r} 60 \\ 80 \\ 100 \end{array}$ | 40 60 60 | 110251 110252 110253 |
| 130 160 200 | 80 100 150 | 110254 110255 110256 |
| 250 320 400 | 150 200 300 | $\begin{aligned} & 110257 \\ & 110258 \\ & 110259 \end{aligned}$ |


EQUIPMENT
These Sections cannot be used with Middle Sections, page 49A Bottom Sections, page 49B
$\mathrm{A}=$ Two H.E. A.C. ammeters with....... amp, scales.
C.V. $=$ Two H.E. compensated voltmeters with 175 volt scales (compensated for ohmic drop only).
T.R. $=$ D.P. time limit overload relay (used as equivalent of two S.P. relays).

| AMP. CAPACITX |  | $\begin{aligned} & \text { Cat } \\ & \text { No } \end{aligned}$ |
| :---: | :---: | :---: |
| Panel | A |  |
| 16 20 24 | 10 12 15 | $\begin{aligned} & 110224 \\ & 110225 \\ & 110226 \end{aligned}$ |
| $\begin{aligned} & 32 \\ & 40 \\ & 50 \end{aligned}$ | $\begin{aligned} & 20 \\ & 25 \\ & 30 \end{aligned}$ | $\begin{aligned} & 110227 \\ & 110228 \\ & 110229 \end{aligned}$ |
| $\begin{array}{r} 60 \\ 80 \\ 100 \end{array}$ | 40 50 60 | 110230 110231 110232 |
| 130 160 200 | $\begin{array}{r} 80 \\ 100 \\ 120 \end{array}$ | $\begin{aligned} & 110233 \\ & 110234 \\ & 110235 \end{aligned}$ |
| $\begin{aligned} & 250 \\ & 320 \\ & 400 \end{aligned}$ | 150 200 250 | $\begin{aligned} & 110236 \\ & 110237 \\ & 110238 \end{aligned}$ |


R.M. (optional) $=T$ wo chain operating mechanisms for feeder regulators.
R.C.S. (optional) $=T w o$ D.P.D.T. control switches for electrically operated feeder regulators.
C.H. $=$ Two card holders.


WITH R.M. FOR REGULATOR
O.S. = Two D.P.S. T, 200 amp. automatic K-5 oil switches mounted on back of panel (or on pipe framework remote from panel) with operating mechanisms and bell alarm switches.

Page 50A
-

N.P. = Name plate (on only one panel in a complete switchboard.


Page 50B

Two current transformers . . . . . . amp.

Two 50 watt $2200-1100 / 110$ volt $60 / 125$ cycle potential transformers and fuses.

Bus Bars must be ordered separately; see "Bus Bar Copper."
cycle potential transformers and fuses.

| AMP. CAPACITY |  | $\begin{aligned} & \text { Cat. } \\ & \text { No. } \end{aligned}$ |
| :---: | :---: | :---: |
| Panel | Current Transformers |  |
| $\begin{aligned} & 16 \\ & 20 \\ & 24 \end{aligned}$ | 10 15 15 | $\begin{aligned} & 110260 \\ & 110261 \\ & 110262 \end{aligned}$ |
| $\begin{aligned} & 32 \\ & 40 \\ & 50 \end{aligned}$ | 20 30 30 | $\begin{aligned} & 110263 \\ & 110264 \\ & 110265 \end{aligned}$ |
| $\begin{array}{r} 60 \\ 80 \\ 100 \end{array}$ | 40 60 60 | 110266 110267 110268 |
| $\begin{aligned} & 130 \\ & 160 \\ & 200 \end{aligned}$ | 80 100 150 | $\begin{aligned} & 110269 \\ & 110270 \\ & 110271 \end{aligned}$ |
| $\begin{aligned} & 250 \\ & 320 \\ & 400 \end{aligned}$ | 150 200 300 | 110272 110273 110274 |

## TA REGULATOR PANELS

## For Forms L \& K Regulators 2300 VOLTS- 60 CYCLES

## DIAGRAMS OF CONNECTIONS

These connections are representative and apply only for the conditions shown. The connections differ sol what depending upon the number of exciters with which a regulator is used.


Fig, 1
Type TA Form L Regulator with two exciters and several generators


Fig. 2
Type TA Form K-5 Regulator with three exciters and several generators


## EQUIPMENT

Blank Top Section

Caz. No. 110275

Page 53A

## IMPORTANT-NOTE BEFORE ORDERING

1. Do not forget "Information which should accompany orders"-see page 4.
2. If Vollage or Frequency is other than listed, see General Information.
3. Regulator equipments as listed are intended for maintaining constant bus voltage. A current transformer is required if the regulator is to be compounded and suitable transformers are listed on page 64. When ordering always state where current transformer is to be connected.
4. When TA Regulators are used, provision should be made for paralleling exciters. Separate panels for exciter control are therefore necessary.


## EQUIPMENT

$\mathbf{L}=$ Drilling and mounting only for one TA regulator Form L.

One 200 watt $2200-1100 / 110$ volt $60 / 125$ cycle potential transformer.

Cat. No. 110276

Regulator, equalizer rheostats, condensers, or compensator, are not included.
$\mathbf{L}=$ Drilling and mounting only for one TA regulator Form L.

One 200 watt $2200-1100 / 110$ volt 60/125 cycle potential transformer.


Cat. No. 110278

Regulator, equalizer rheostats, condensers, or compensator are not included.
N.P. $=$ Name plate (on only one panel in a complete awitchboard).

Blank Bottom Section

When A.C. or exciter bus bars extend across panel they must be ordered separately see "Bus Bar Copper." graph 3.


Thls Section cannot be used for regulators larger tban K-12.
$\mathrm{K}=$ Drilling and mounting only for one TA
regulator Form K.
EQUIPMENT

One 200 watt 2200-1100/110 voit 60/125
Cat. No. 110277

Regulator, equalizer rheostats, condensers, or compensator are not included.

$\mathrm{K}=\underset{\text { Drilling and mounting only for one TA }}{\text { regula }} \boldsymbol{K}$ regulator Porm K.

One $\begin{gathered}200 \text { watt } 2200-1100 / 110 \text { voit } 60 / 125 \\ \text { cycle potential transformer. }\end{gathered}$ cycle potential transformer.

This Section cannot be used for regulators larger than K-13.

Cat. No, 110279
Regulator, equalizer rheostats, condensers, or compensator are not included.
N.P. - Name plate (on only one pancl in a complete switchboard).


# COMBINATION TA REGULATOR AND THREE-PHASE EXCITER MOTOR PANELS 

For Forms L \& K Regulators

## 2300 VOLTS-60 CYCLES 8 TO 200 AMPERES

WITH OIL SWITCHES \{ Mounted on back of panel
T.P.S.T. AND T.P.D.T. $\{$ Remote control, mounted on pipe framework

## DIAGRAMS OF CONNECTIONS

For T.A. Regulators see. . . . . . page 52
For Induction Motor see. ..... page 14


EQUIPMENT

A (optional) $=\mathrm{H}, \mathrm{E}, \quad$ A.C. $\quad$ mmeter with . . . . . amp. scale.
$\mathbf{L}=$ Drilling and mounting only for one TA regulator Form L,

One 200 watt 2200-1100/110 volt 60/125 cycle potential transformer.

Regulator, equalizer rheostat, condensers or compensator are not included

Equalizer 'rheostats, when required, must be mounted on exciter panels.

These Sections cannot be used with Middle Sections, page 60A

| AMP. CAPACITY |  | cat. no. |  |
| :---: | :---: | :---: | :---: |
| Panel | A | $\underset{A}{\text { Without }}$ | $\underset{A}{\text { With }}$ |
| 8 10 12 | 10 12 15 |  | $\begin{aligned} & 110285 \\ & 110286 \\ & 110287 \end{aligned}$ |
| 16 20 25 | 20 25 30 |  | $\begin{aligned} & 110288 \\ & 110289 \\ & 110290 \end{aligned}$ |
| 30 40 50 | 40 50 60 | 感 | 110291 110292 110293 |
| 65 80 100 | $\begin{array}{r} 80 \\ 100 \\ 120 \end{array}$ |  | 110294 110295 110296 |
| 125 160 200 | 150 200 250 |  | 110297 110298 110299 |

## IMPORTANT-NOTE BEFORE ORDERING

1. Do not forget "Information which should accompany orders"-see page 4 .
2. If Voltage or Frequency is other than listed, see General Information.
3. Regulator equipments as listed are intended for maintaining constant bus voltage. A current transformer is required if the regulator is to be compounded and suitable transformers are listed on page 64. When ordering always state where current transformer is to be connected.
4. When TA Regulators are used, provision should be made for paralleling exciters. Separate panels for exciter control are therefore necessary.
5. See General Information for method of determining ampere capacity of panel required for a given motor,

These panels cannot be used with any motors which require a controller or starting equipment mounted on the panel; for instance, those Form K motors which do not have self-contained starting compensators.


## EQUIPMENT

Equalizer rheostats, when required, must be mounted on exciter panels.
T.R. = D.P. time limit overload relay,

This Section cannot be used with Middle Sections, page 59A

$$
\begin{aligned}
& L=\begin{array}{c}
\text { Drilling and mounting only for one TA } \\
\text { regulator Form L. }
\end{array} \\
& \begin{array}{c}
\text { One } \\
\text { cycle potential transformer. }
\end{array} 200 \text { watt } 2200-1100 / 110 \text { volt } 60 / 125 \\
& \begin{array}{c}
\text { Regulator, equalizer rbeostat, condensers, } \\
\text { or compensator are not included. }
\end{array}
\end{aligned}
$$

## Cat. No. 110300



A (optional) $=$ H.E. A.C. ammeter with . . . . . . amp. scale.
C.H. $=$ Card holder ,
O.S. =T.P.S.T. 200 amp . automatic K-5 oil ewitch mounted on back of panel (or on pipe framework remote from panel) with operating mechanism and bell alarm switch.
N.P. = Name plate (on only one panel in a complete switchboard).



EQUIPMENT
This Section cannot be used with regulators larger then K-12 Middle Sections, page 60A
$\mathrm{K}=$ Drilling and mounting only for one TA regulator Form K.

One 200 watt $2200-1100 / 110$ volt $60 / 125$ cycle potential transformer.

Cat. No. 110301

Regulator, equalizer rheostat, condensers, or compensator are not included.

Equalizer rheostats, when required, must be mounted on exciter panels.


A (optional) $=$ H.E. A.C. ammeter with .......amp. scale.
C.H. = Card holder.
O.S, = T.P.S.T. 200 amp. automatic K-5 oil switch mounted on back of panel (or on pipe framework remote from panel) with operating mechanism and bell alarm with op
N.P. $=$ Name plate (on only one panel in a complete switchboard).

| AMP. CAP. |  | cat. no. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Panel | A | Without A |  | With A |  |
|  |  | $\begin{gathered} \text { O.S. } \\ \text { on Back } \\ \text { of Panel } \end{gathered}$ | O.S. Remote Control | $\begin{aligned} & \text { O.S. } \\ & \text { on Back } \\ & \text { of Panel } \end{aligned}$ | $\begin{aligned} & \text { O.S. } \\ & \text { Remote } \\ & \text { Control } \end{aligned}$ |
| ${ }_{10}^{8}$ | 10 |  | $\begin{aligned} & \stackrel{\infty}{\mathbf{N}} \\ & \underset{\sim}{2} \end{aligned}$ | 110303 110304 | 110319 110320 |
| 12 | 15 |  |  | 110305 | 110321 |
| $\begin{aligned} & 16 \\ & 20 \end{aligned}$ | 20 25 20 |  |  | 110306 110307 11008 | 110322 110323 110324 |
| 25 | 30 |  |  | 110308 | 110324 |
| $\begin{aligned} & 30 \\ & 40 \end{aligned}$ | 40 50 |  |  | 110309 110310 110311 | 110325 110326 110227 |
| 50 | 60 |  |  | 110311 | 110327 |
| 65 80 | 80 100 |  |  | ${ }_{110313}^{110312}$ | 110328 110329 |
| 100 | 120 |  |  | 110314 | 110330 |
| 125 |  |  |  |  |  |
| 160 200 | 200 250 |  |  | ${ }_{110317}^{11036}$ | ${ }_{110333}^{110332}$ |
|  |  |  |  |  | 110333 |



| Two current transformers.......amp. (for ammeter and oil switch only). | Page 60B |  |  |
| :---: | :---: | :---: | :---: |
|  | AMP. CAPACITY |  | Cat. No. |
|  | Panel | Current Transformers |  |
|  | 8 10 12 | 10 15 15 | $\begin{aligned} & 110366 \\ & 110367 \\ & 110368 \end{aligned}$ |
| Current transformer for regulator must be ordered separately-see page 58 A , paragraph 3. | 16 20 25 | 20 30 30 | 110369 110370 110371 |
|  | 30 40 50 | $\begin{aligned} & 40 \\ & 60 \\ & 60 \end{aligned}$ | $\begin{aligned} & 110372 \\ & 110373 \\ & 110374 \end{aligned}$ |
| Bus Bars must be ordered separately; see "Bus Bar Copper." | 65 80 100 | 80 100 150 | 110375 110376 110377 |
|  | 125 160 200 | 150 200 300 | $\begin{aligned} & 110378 \\ & 110379 \\ & 110380 \end{aligned}$ |



## EQUIPMENT

A (optional) $=$ H.B. A.C. ammeter with ...... amp, scale.
$\mathrm{L}=$ Drilling and mountling only for one TA regulator Form L.

One 200 watt $2200-1100 / 110$ volt $60 / 125$ cycle potential transformer.

Regulator, equalizer rheostat, condensers, or compensator are not included.

Equalizer rheostats, when required, must be mounted on exciter panela.

This Section eannot be used with Middle Sections, page 63A

| AMP, CAPACITY |  | cat. no. |  |
| :---: | :---: | :---: | :---: |
| Panel | A | Without | Wich |
| $\begin{array}{r} 8 \\ 10 \\ 12 \end{array}$ | 10 12 15 |  | $\begin{aligned} & 110382 \\ & 110383 \\ & 110384 \end{aligned}$ |
| $\begin{aligned} & 16 \\ & 20 \\ & 25 \end{aligned}$ | 20 25 30 |  | 110385 110386 110387 |
| $\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$ | 40 50 60 | \% | 110388 110389 110390 |
| $\begin{array}{r} 65 \\ 80 \\ 100 \end{array}$ | 80 100 120 |  | 110391 110392 110393 |
| $\begin{aligned} & 125 \\ & 160 \\ & 200 \end{aligned}$ | 150 200 250 |  | 110394 110395 110396 |



## EQUIPMENT

This Section cannot be used with Middle Sections, page 62A
$\mathrm{L}=$ Drilling and mounting only for one TA regulator Form L.

One 200 watt $2200-1100 / 110$ volt $60 / 125$ cycle potential transformer.

Regulator, equalizer rheostat, condensers, or compensator are not included.

Cat. No, 110397

Equalizer rheostats. when required, must be mounted on exciter panels.
T.R. $=$ D.P. time limit overload relay.



## EQUIPMENT

$\mathrm{K}=$ Drilling and mounting only for one TA regulator Form K.

One 200 watt 2200-1100/110 volt $60 / 125$ cycle potential transformer,

Cat. No. 110398
Regulator, equalizer rheostat, condensers, or compensator are not included.

Equalizer rheostats, when required, must be mounted on exciter panels.

This Section cannot be used with regulators larger than K-12 Middle Sections, page 63A

Page 63A

| A (optional) $=$ H.E. A.C. ammeter with .......amp. scale. | AMP. CAP. |  | cat. no. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Panel | A | Without A |  | With A |  |
|  |  |  | O.S. on Back of Panel | O.S. Remote Control | 0.S. on Back of Panel | O.S. Remote Control |
| C.H, - Card holder. | 8 10 12 | 10 12 15 | - <br>  <br> $=$ | $\begin{aligned} & \text { 要 } \\ & = \end{aligned}$ | 110432 110433 110434 | 110448 110449 110450 |
| O.S. $=$ T.P.D.T. 200 amp. automatic K-5 oil switch, mounted on back of panel (or on pipe framework remote from | $\begin{aligned} & 16 \\ & 20 \\ & 25 \end{aligned}$ | 20 25 30 |  |  | 110435 110436 110437 | $\begin{aligned} & 110451 \\ & 110452 \\ & 110453 \end{aligned}$ |
| panel) with operating mechanism and bell alarm switch. | $\begin{aligned} & 30 \\ & 40 \\ & 50 \end{aligned}$ | $\begin{aligned} & 40 \\ & 50 \\ & 60 \end{aligned}$ |  |  | 110438 110439 110440 | 110454 110455 110456 |
| N.P. $=$ Name plate (on only one panel in a complete switchboard). | 65 80 100 | 80 100 120 |  |  | 110441 110442 110443 | 110457 110458 110459 |
|  | 125 160 200 | 150 200 250 |  |  | 110444 110445 110446 | 110460 110461 110462 |

Page 63B

$\mathrm{A}($ optional $)=\mathrm{H} . \mathrm{E} . \quad$ A.C. ammeter with C.H. - Card holder.
S. $=$ T.P.D.T. 200 amp automatic K-5 (or on pipe framework remote from bell alarm switch.

- Name plate (on only one panel in a

$$
\begin{aligned}
& \text { Two ourrent transformers. .... amp, (for } \\
& \text { ammeter and oil switch only). } \\
& \text { Current transformer for regulator must be } \\
& \text { ordered separately-see page 58A, par- } \\
& \text { agraph 3. }
\end{aligned}
$$

| Cat, |
| :--- |
| No. |
| 110463 |
| 110464 |
| 110465 |
| 110466 |
| 110467 |
| 110468 |
| 110469 |
| 110470 |
| 110471 |
| 110472 |
| 110473 |
| 110474 |
| 110475 |
| 110476 |
| 110477 |

## CURRENT TRANSFORMERS FOR TA REGULATORS

| Cat. No. | Ampere Capacity | Ratio | Cat. No. | Ampere Capacity | Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 41251 | 5 | 1:1 | 41260 | 150 | 30:1 |
| 41252 | 10 | 2:1 | 41261 | 200 | 40:1 |
| 41253 | 15 | 3:1 | 41262 | 300 | $60: 1$ |
| 41254 | 20 | 4:1 | 41263 | 400 | 80:1 |
| 41255 | 30 | $6: 1$ | 41264 | 600 | 120:1 |
| 41256 | 40 | 8:1 | 108053 | 800 | 160:1 |
| 41257 | 60 | 12:1 | 41300 | 1000 | 200: 1 |
| 41258 | 80 | 16:1 | 41301 | 1500 | $300: 1$ |
| 41259 | 100 | $20 \cdot 1$ | 41302 | 2000 | 400: 1 |

When ordering state whether the current transformer is to be connected in the bus bars to regulate for total generator output or in a particular feeder. circuit.

## BUS BAR COPPER

Bus bars must be ordered separately for each panel as per the following sample order:
Item No. 1-One three-phase generator panel,

$$
\begin{aligned}
& \text { Top Section Cat. No......-.-.-. } \\
& \text { Middle Section Cat. No......... } \\
& \text { Bottom Section Cat. No........... }
\end{aligned}
$$

A.C. Buses Cat. No. $\qquad$ Exciter Buses Cat. No.............
$\qquad$
If the total current supplied to a bus by all panels in the board does not exceed 625 amperes, bus bars may at once be chosen from the following tables since the ampere capacity of bus required for any panel will be within the minimum limit catalogued. For all other cases the method described on the following page is recommended as a simple means of determining the ampere capacity of bus required.
A.C. BUSES

| For One Set of Three-Phase Buses |  |  |  | For Two Sets of Three-Phase Buses |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | cat. nos. |  | Ampere Capacity of Bus Required | cat. nos. |  |  |
| Ampere Capacity of Bus Required | For Panel 16 In. Wide | For Panel 20 In. Wide | For Panel 24 In. Wide |  | For Panel 16 In . Wide | For Panel 20 In . Wide | For Panel 24 In. Wide |
| 1 to 625 626 to 1250 1251 to 1875 | $\begin{aligned} & 110478 \\ & 110479 \\ & 110480 \end{aligned}$ | 110481 110482 110483 | 110484 110485 110486 | 1 to 625 626 to 1250 1251 to 1875 | 110487 110488 110489 | 110490 110491 110492 | $\begin{aligned} & 110493 \\ & 110494 \\ & 110495 \end{aligned}$ |

EXCITER BUSES

|  |  |  |  |
| :---: | :---: | :---: | :---: |
| Ampere Capacity <br> of Bus Required | For Panel 16 In. Wide | For Panel 20 In. Wide |  |
| 1 to 625 <br> 626 to 1250 <br> 1251 to 1875 | For Panel 24 In. Wide |  |  |

The Cat. Nos. of A.C. Buses cover bare copper bars. If so specified with the order, $0000 \mathrm{~B} . \& \mathrm{~S}$. insulated wire may be substituted when the bus capacity for any panel in the entire switchboard does not exceed 260 amperes. Such substitution should never be made if future extensions are contemplated which will make the ultimate bus capacity for any panel greater than 260 amperes.

The Cat. Nos. of Exciter Buses cover one positive and one negative bus and should not be used with exciter panels for which an equalizer bus is required. Exciter panels and buses for same are listed in S 413.

A SIMPLE METHOD OF DETERMINING BUS CAPACITY


Fig. 1
Fig. 1 illustrates a simple diagrammatical method of determining the ampere capacity of bus required for any panel. The method is as follows:

1-Make a rough plan of the entive bnard, regardless of the number of panels to be ordered.
The Order of Panels shown is reconmended, it being most economical of copper and best adapted to future extensions.
2-To avoid confusion keep on one side of board everything pertaining to exciter buses, and on other side everything pertaining to A.C, buses.
3-With single lines represent the exciter and A.C. buses across such panels as they actually extend and by means of arrows indicate that portion of each bus which is connected to feeders and that portion which is connected to generators. Remember that "Generator" and "Feeder" arrows must always point toward each other, otherwise the rules given below do not hold. Note also that the field circuits of A.C. generator panels are treated as D.C. feeders for the exciter bus.
4-On each panel mark its ampere rating, $i, e_{,}$, the maximum current it supplies to or takes from the bus. For A.C. generator panels the D,C. rating is the excitation of the machines.
5-Apply the following rules consecutively, and note their application in Fig. 1. (For the sake of clearness ampere ratings are shown in light face type and bus capacities in bold face type.)
(a) Always begin with the tail of the arrow and treat "Generator" and "Feeder" sections of the bus separately.
(b) Bus capacity for first panel =Ampere rating of panel.
(c) Bus capacity for each succeeding panel = Ampere rating of panel plus bus capacity for preceding panel. (See sums marked above the buses in Fig. 1.)
(d) For a panel not connected to a bus extending across it, use the smaller value of the bus capacities already obtained for the two adjoining panels. (See exciter bus for panel C.)
(e) The bus capacity for any feeder panel need not exceed the maximum for the generator panels (see A.C. bus for panel G) and vice versa (see exciter bus for panel B). Hence the corrections made in values obtained by applying rules (b) and (c).
The arrangement of panels shown in Fig. I is the one which is mostly used. The above method may, however, be applied to other arrangements, one of which is shown in Fig. 2. Here the generators must feed both ways to the feeders at either end of the board so that in determining A.C. bus capacities it is necessary to first consider the generators with the feeders at one end, and then with the feeders at the other end as shown by the dotted A.C. buses. The required bus capacities are then obtained by taking the maximum values for the two cases.


Fig, 2

## 2300 VOLT A.C. SWITCHBOARD ARRANGEMENTS

Heayy broken lines in the following diagrams (Figs. 3, 4, 5 and 6) show alternate locations for apparatus furnished by the General Electric Company, Light broken lines show material to be furnished by the purchaser.


Fig. 3
Single throw oil switch mounted on back of pancl


Fig. 5
Double throw oil switch mounted on back of panel


Fig. 4
Single throw remote control oil switch mounted on pipe framework behind switchboard


Fig. 6
Double throw remote control oil switch mounted on pipe framework behind switchboard

## 2300 VOLT A.C. SWITCHBOARD ARRANGEMENTS

Heavy broken lines in the following diagram (Fig. 7) show alternate locations of apparatus furnished by the General Electric Company. Light broken lines show material to be furnished by parchaser.


Arrangement A
Arrangement B
Fig. 7
Single throw remote control oil switch mounted on pipe framework below switchboard

## 2300 VOLT A.C. SWITCHBOARD ARRANGEMENTS

ALTERNATE LOCATIONS OF GENERATOR FIELD RHEOSTATS


Fig. 9


Dimensions $Y$ and $Z$ should be given with the order

Fig. 8

2300 VOLT A.C. SWITCHBOARD ARRANGEMENTS
alternate locations of chain operated feeder regulators


Fig. 10


Fig. 13

Fig. 11

Fig. 12



Fig. 14
.

## GENERAL ELECTRIC COMPANY

PRINCIPAL OFFICES, SCHENECTADY, N. Y.

SALES OFFICES:
(Address nearest office.)
BOSTON, MASS., 84 State Street.
NEW YORK, N. Y., 30 Church Street.
Syracuse, N. Y., Post-Standard Building.
BuFfazo. N. Y., Ellicott Square Building.
New Haven, Conn., Malley Building.
NEW HAVEN, CONN., Malley Building.
Baltimore, MD., Electrical Building.
Chlimore, MD.. Electrical Butiding
Charlotte, N. C.. Trust Building.
Charleston, W. Va., Charleston
PIITSBURG, PA., Park Building.
RICIMOND, VA., 712 Mutual Building.
Roanoke, Va., Strickland Building.
ATLANTA, GA., Empire Building.
Birmingham, Alan, Brown-Marx Building.
Birmingham, Ala., Brown-Marx Building.
Macon, Ga., Grand Building.
NEW ORLEANS, LA., Maison-Blanche Building.
CINCINNATI, OHIO, Provident Bank Building.
Columbus, Ohio, Columbus Savings \& Trust Buid
Columbus, Oho, Columbus Savings \& Trust Building.
Cleveland, Ohio, Citizens Building.
Chattanooga, Tenn., James Building.
Memphis, Tenn., Randolph Building.
NashVille, Tenn., Stahlman Building.
IndIANAPOLIS, Ind., Traction Terminal Building.
CHICAGO, ILL., Monadnock Building.
Detroit, Mich., Majestic Bldg. (Office of Soliciting Agt.)
St. Louis, Mo., Wainwright Building
Kansas City, Mo., Dwight Building.
BUTTE, MONTANA, Phœenix Building.
MINNEAPOLIS, MiNN., 410-412 Third Avenue, North.
DENVER, COLO., Kittredge Building.
Salt Lake City, Utaif, Newhouse Buitding.
SAN FRANCISCO, CAL., Union Trust Building.
Los Angeles, Cal., Delta Building.
Portland, Ore., Electric Building.
Seattle, Wash., Colman Building.
Spokane, Wasif, Paulsen Building.

```
For Texas and Oklahoma Business refer to
General Electric Company of Texas,
Dallas, Tex., Praetorian Building
Dl Paso, Tex., Chamber of Commerce Building.
Oklahoma City, Okla.. Insurance Building.
```


## FOREIGN:

Foreign Department,
Schenectady, N. Y., and 30 Church St., New York, N. Y. London Office, 83 Cannon St., London, E. C., England.

For all Canadian Business,
Canadian General Electric Company, Ltd.,
Toronto, Ontario.



[^0]:    Note: The data in this publication are for the convenience of customers, and every effort is made to avoid error, but this
    Sompany does not guarantee their coriectness, nor does it hold itself responsible for any errors or omissions in this publication. Subject to change without notice.

[^1]:    Note. -The data in this publication are for the convenience of customers, and every effort is made to avoid error, but this Company does not guarantee their correctness, nor does it hold itself responsible for any errors or omissions in this publication. Subject to change without notice.
    *Supersedes Bulletin No. 4721.
    Second Edition.

[^2]:    Nots: The data in this publication are for the convenience of customers, and every effort is made bo avoid error, but this Conipany does not guarantee their correctness, nor does it hold itself responsible tor any errors or omissions in this publication. Subject to change without notice.

[^3]:    *Superseding No. 4611

[^4]:    * Supersedes Bulletin No. 4498.

    Nore.- The data in this publication are for the convenience of customers, and every effort is made to avoid error, but this Company does not guarantee their correctness, nor does it hold itself responsible for any errors or omissions in this publication. Subject to canange without notice.

[^5]:    - Rated on a basis of 50 watts per lamp.

[^6]:    * Fumished with potential transformers.
    $\dagger$ Furnished with current and potential transformers.

[^7]:    * Supersedes Eulletiin No. 4660.

    Nois. The data in this publicution are for the convenieme of custompers, foll evergeftort is made to avoid error, but this Company does not guarantee their correctness, nor dous it hold itself responsibie for any crrors ur oinissions in this rublication. Subject
    to change without notice.

[^8]:    2000 Kw . Curtis Steam Turbine-Generators Installed for the West Jersey R. R. Co. (Westville Power House)

[^9]:    2000 Kw. Curtis Steam Turbine-Generator, Installed for Old Colony Street

[^10]:    *Voltage across outside wires.

[^11]:    Note,-The data in this publication are for the convenience of customers, and every effort is made to avoid error, but this Subject to change without notice.

[^12]:    *120, 240, 480 and 600 volts
    Type "AQ". Quarter-Phase rating (same as above).
    Type "AS" Single-Phase rating (70 per cent. of above)

[^13]:    Not
    pany does not guarantee their correctness, nor does it hold it self respushibler, and every effort is made to avoid error, but this Com to shange without nutice:

    Supersedes Rullelin No, 4S6io

[^14]:    Note. - The data in this publication are for the convenience of customers, and every effort is made to avoid error, but this Company does not guarantee their correctness, nor does it hoid itself responsible for any errorw or omissions in ther publication. Subject to change without notice.

[^15]:    Nore: The prices and data in this publication are for the convenience of customers, and everyeffort is made to avoid error, but
    this Company does not guarantee their correctness, nor does it hold itself responsible for any cation. Both prices and data are subject to change without notice. itself responsible for any errors or omissione in this publi-

[^16]:    Note. -The data in this publication are for the convenience of customers, and every effort is made to avoid error but this Company does not guarantee their correctness, nor does it hold itself responsible for any errors or omissions in this publication abject to change without notice.

    * Supersedes Bulletin No. 4694.

[^17]:    Bracket Suspension

[^18]:    $8^{\prime \prime}$, for No. 0 wire $8^{\prime \prime}$, for No. 00 wire
    $9^{\prime \prime}$, for No. 000 wire

[^19]:    41189 41190

    For Nos. 0 and 00 wire, $5^{\prime \prime}$ tap
    For Nos. 0 and 00 wire, $\frac{3}{4}$ " tap

[^20]:    All pull off eyes are $\frac{1}{2}$ in. in diameter.

[^21]:    Crossings similar to above, but for $1 / 0$ wire will be furnished at the same price.

[^22]:    All hangers have standard sherardized finish throughout.
    *These hangers are of lengths suitable for 22 in. deflection.

[^23]:    * For use on telephone circuits where the wires are carried on the same poles with high tension power lines. In such cases the induced potential between the telephone wires and ground often reaches sevetal thousand volts, so that it is necessary in every instance, to suspend both sides of the telephone circuit on high tension insulators.

[^24]:    * Similar in appearance to Cat. No. 40285.
    $\dagger$ Similar in appearance to Cat. No. 40287.

[^25]:    * The above description holds good for the operation of the switches properly connected between any number of sections, and for making rails continuous between substations. (See Fig. 2.)

[^26]:    *Compressor No, 68935 has no provision for handwheel.

[^27]:    ${ }^{*}$ When ordering Tightening Wedge please give section number of rail used.

[^28]:    *The price of combination (b) can be reduced by using one A.C. ammeter and a three-way ammeter switch instead of three ammeters.

[^29]:    *The price of three-phase lighting equipments can be reduced by using one ammeter and a three-way ammeter switch instead of three ammeters.
    $\dagger$ The K-5 oil switch which has been specified under the Equipment of all panels listed herein is a new switch recently developed and will shortly stupersede the K-3. However, the full line of $K-5$ switches is not in production at a new switch recently developed Electric Company reserves the privilege of substituting, without notice, $K-3$ switches on orders which are rent time and the General panels before the $\mathrm{K}-5$ switch specified is in production.

