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12.1  Introduction

Concern over indoor fungal growth has increased over the last decades. Research that relates 
human health issues to the deterioration of indoor air quality due to microbiological pollutants 
have been accumulated (Rath et al. 2011; Weber 2012; Täubel and Hyvärinen 2015). In addition, 
since the 1980s, it has been registered that there is an increase in the occurrence of natural disas-
ters such as floods and extreme rainfall, on a global scale, which has enhanced the problems related 
to biodeterioration in indoor buildings (Bloom et al. 2009; Chow et al. 2019; EASAC 2018). It is 
worth mentioning that these kinds of events are directly related to fungal growth since water is a 
key factor in the development of these microorganisms (Johansson et al. 2013; Møller et al. 2017). 
Considering the strong impact of indoor fungi on public health, several guidelines have been 
 proposed from different European and North American institutions. These institutions include the 
University of Connecticut Health Center, which proposed Guidance for Clinicians on the 
Recognition and Management of Health Effects Related to Mold Exposure and Moisture Indoors 
(Storey et al. 2004); the United States Environmental Protection Agency (US EPA), which proposed 
Mold Remediation in Schools and Commercial Buildings (EPA 2008); the World Health 
Organization (WHO), which proposed guidelines for indoor air quality, dampness, and mold 
(WHO 2009); the Canadian National Collaborating Centre for Environmental Health Mould 
Remediation Recommendations (Palaty 2014); and the US Centers for Disease Control and 
Prevention (CDC), proposed Mold Clean-Up After Disasters (2018), among others (US CDC 2018). 
These guidelines proposed that there is a dose-effect relationship, where more visible mold showed 
more symptoms. The improvement in molecular techniques enhances the interest in the field of 
mycology because due to these techniques it becomes possible to understand the mechanisms by 
which fungi affect the health of exposed human being.

Considering these facts, a great deal of attention has been given on the development of antimicro-
bial materials, especially those based on nanotechnology (Mittal et al. 2013; Singh 2016a; Soliman 
2017). Moreover, different strategies focusing on efficient association of nanoscale materials in the 
development of bioactive surfaces which can prevent biofilm formation in indoor environments 
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have been intensively studied in the last two decades (Bellotti et  al. 2015; Manjumeena 2017; 
Ghorbani et al. 2018; Han et al. 2019; Barberia-Roque et al. 2019).

The main aim of this chapter is to integrate current knowledge about indoor fungal deterioration 
and its control through the use of nanotechnology. Moreover, nanomaterials used as effective anti-
fungal agents and possible mechanisms involved in the inhibition of fungal growth have been also 
described.

12.2  Indoor Fungal Deterioration

12.2.1 Indoor Mycobiota

The mycobiota of indoor environments contains about 150 species and it is considered that a high 
level of exposure for a building indoor occupant is one greater than 1000 CFU m−3 (Sedlbauer 
2002; Crook and Burton 2010). Most species belong to the so-called anamorphic fungi, which 
include deuteromycetes, hyphomycetes, or fungi imperfecti (Yang and Heinsohn 2007). But most 
are in the ascomycota phylum. In addition to these micro-fungi, a number of basidiomycetes are 
also found in indoor environments, growing on wood in buildings, and are considered important 
degraders of wooden building material (Adan and Samson 2011). The important sources of indoor 
fungal spores include wood products, foodstuffs, vegetables, carpet dust, and fruits. It is impor-
tant to point out that some fungi may come from more than one source. The fungal genera most 
 frequently found in indoor environments are Cladosporium, Penicillium, Aspergillus, and 
Stachybotrys (Verdier et al. 2014).

After germination, the spores produce a mycelium which covers diverse materials such as tex-
tile, paper, wood, coatings, wall paper, and gypsum, among others, depending on the moisture 
availability (Grant et al. 1989; Annila et al. 2018). Many fungi can produce numerous spores or 
other propagules, and this explains why there can be high concentrations in the air. The spore of 
anamorphic fungi is called a conidium. The structure bearing conidia is known as a conidiophore. 
The formation of conidia varies between the different genera and their efficiency to produce 
 airborne propagules is mainly determined by the mode of conidium formation (Cole and Samson 
1979). For example, species of Aspergillus and Penicillium produce numerous dry conidia which 
easily become airborne, and this explains the presence of these fungi in an indoor environment 
(Guerra et  al. 2019; Kavkler et  al. 2015). In contrast, with blastic arthric conidiogenesis, 
Cladosporium species are among the most abundant fungi in outdoor and indoor air (Anaya et al. 
2016; Bensch et al. 2018; Asif et al. 2019).

12.2.2 Factors Influencing Indoor Fungal Growth

Many environmental parameters can influence the growth of indoor fungi. Among some are biotic, 
and others are physical and chemical, or abiotic factors. Biotic factors include the presence of fungal 
propagules or spores, viability of spores, the nature of the fungal species, and competing fungi and 
other organisms. Abiotic factors include nutrients, temperature, moisture, pH, oxygen and carbon 
dioxide, relative humidity, and light (Crawford et al. 2015; Liu et al. 2018). The viability of fungal 
spores is associated with several factors, such as age, UV light, and extreme conditions (Johansson 
et  al. 2005; Chen et  al. 2017). The dead spores present may be allergenic and contain secondary 
metabolites, but they cannot germinate and grow and hence are unable to cause infections. Moreover, 
some viable spores may remain in dormancy. Dormant fungal spores are usually either physically or 
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chemically restricted from germination. A physical barrier, such as a thickened spore wall, restricts 
the absorption of water required for spore germination (Madelin 1994; Carlile et al. 2001).

Indoor fungi adapt and grow in environments that are not favorable for bacteria with low water 
activity and nutrients (Webster and Weber 2007). Different species of fungi have different abilities 
to access and utilize simple or complex forms of carbohydrate, organics, and mineral nutrients. 
Decomposition and degradation of a substrate is due to enzyme activities. The types of enzymes 
required depend on the substrates. The primary food source for indoor fungi is cellulosic matter 
(Yang and Heinsohn 2007). Fungi usually grow in a wide range of temperatures. In this context, 
range, including minimum, optimum, and maximum temperatures, can be defined as a tempera-
ture profile. Each species has its own profile. Some have narrow and some have wide temperature 
profiles. Fungi that can grow in a wider temperature range may also have a competitive edge 
(Griffin 1994). The relative humidity is critically important in indoor fungal growth; it has a sec-
ondary effect on condensation and the hygroscopicity of materials (Lattab et al. 2012). In fact, most 
indoor fungal growth occurs as a result of dampness, but not just due to high relative humidity and 
condensation on indoor surfaces (Crook and Burton 2010; Täubel and Hyvärinen 2015).

Vegetative and reproductive functions of fungi from indoor environments, together with biotic 
and abiotic factors, are responsible for deteriorating materials and affecting the health of people 
who are in these environments (WHO 2009; Hurraß et al. 2017). For example, Ponizovskaya et al. 
(2019) described the complex of microfungi colonizing mineral building materials, limestone and 
plaster, in interiors of cultural heritage (Ponizovskaya et  al. 2019). These species can actively 
develop in materials, penetrating for years into the substrates and causing their deterioration in 
conditions of considerably more moisture content. In this group, Acremonium charticola and 
Lecanicillium sp. were able to solubilize calcium carbonate (CaCO3). Moreover, the identification 
and quantification of filamentous fungi in samples from different indoor and outdoor environ-
ments based on traditional microculture methods, DNA extraction, and molecular analyses have 
been also proposed (Guerra et al. 2019).

Physicochemical characterization analysis was performed to evaluate biological growth; the 
 isolated species produce acids and metabolites capable of causing chemical alterations in mortar 
substrates and physical damages due to the growth of filamentous structures. Kavkler et al. (2015) 
studied the presence of indoor fungi on historical textiles, including the canvases of easel paintings 
stored in museums and religious institutions (churches and cloisters) in Slovenia. Initial observa-
tions revealed that such paintings contain relatively widespread fungal contamination (Kavkler 
et al. 2015). Moreover, examination of the structural and physical changes to the fibers on contami-
nated and non-contaminated objects showed the most pronounced structural changes on flax and 
other cellulosic fibers, while proteinaceous fibers (wool and silk) were generally not affected 
(Kavkler et al. 2015). Surfaces of building materials (plasterboard, mortar, bricks, etc.) are gener-
ally highly porous and rough. In damp environments, these materials can provide favorable condi-
tions for the proliferation and growth of microorganisms. Sampling of microbial communities on 
building materials and in the air is necessary to evaluate its presence and proliferation in indoor 
environments (Verdier et al. 2014).

As discussed earlier, the most commonly found fungal genera on indoor building materials 
include Cladosporium, Penicillium, Aspergillus, and Stachybotrys (Gutarowska and Czyżowska 
2009; Andersen et al. 2011), and various factors such as moisture content, chemical composition, 
pH, and the physical properties of surfaces play important roles in influencing microbial growth on 
such surfaces or materials (Adan and Samson 2011). The particular behavior of porous materials in 
terms of water sorption and the effect of water on microbial proliferation are of prime importance 
(Nielsen et al. 2004; Verdier et al. 2014).
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As mentioned, not only building surfaces or materials, but also quality of air in indoor environ-
ments, especially in food production plants and where heritage documents are kept, also needs to 
be studied. In this context, De Clercq et al. (2014) studied whether the production environment 
and common ingredients of chocolate confectioneries could be potential sources of contamination 
with xerophilic fungal species. In this sense, the relevance of fungal spores for food microbiology 
has been discussed. The function of spores is to disperse fungi to new areas and to get them through 
difficult periods. A number of fungal species form sexual spores, which are exceptionally stress-
resistant and survive pasteurization and other treatments (Dijksterhuis 2019).

Fungi play a considerable role in the deterioration of cultural heritage. Due to their enormous 
enzymatic activity and their ability to grow at low water activity (aw) values, fungi are able to 
inhabit and decay paintings, textiles, paper, parchment, leather, oil, casein, glue, and other materi-
als used for historical art objects (Allsopp et al. 2004). The weathering of stone monuments is 
 significantly increased by epi- and endolithic fungi. In museums and their storage rooms, climate 
control, regular cleaning, and microbiological monitoring are essential in order to prevent fungal 
contamination (Sterflinger 2010; Paiva de Carvalho et al. 2018; Melo et al. 2019). Immunosuppressed 
people exposed to fungi with pathogenic potentials of indoor environments may suffer from myco-
sis, allergies, and asthma (Perez-Nadales et al. 2014; Sardi et al. 2014). The fungi produce mycotox-
ins and other biologically active metabolites when growing in buildings, so influence of 
environmental conditions on the production of these metabolites is intensely investigated (Nielsen 
2003; Täubel and Hyvärinen 2015). It was shown that Stachybotrys chartarum produced a number 
of mycotoxins when growing in buildings; Aspergillus versicolor produced high quantities of the 
carcinogenic mycotoxin, sterigmatocystin; Chaetomium globosum produced high quantities of 
chaetoglobosins; whereas Trichoderma species did not produce detectable quantities of tri-
chothecenes when growing on materials (Nielsen 2002, 2003).

12.3  Conventional Approach Used for the Control 
of Indoor Fungi

Various antimicrobial compounds such as disinfectants and biocides are commonly applied to con-
trol growth of indoor fungi and bacteria. The most commonly used indoor bioactive compounds can 
be classified according to their mechanisms of action into two major groups: electrophiles and 
membrane-active (Chapman 2003). The electrophiles react with nucleophilic groups from biomol-
ecules such as enzymes and nucleic acids present in microbial cells. Some of the most commercially 
used biocides (electrophiles) in antimicrobial paints are: formaldehydes, formaldehyde releasers, 
isothiazolinones, carbamates, and metal salts of silver and cooper (Falkiewicz-Dulik et al. 2015a). 
Among electrophiles, oxidizers like sodium hypochlorite (bleach) have been used for a long time 
due to their low cost and efficiency (Pereira et al. 2015). These kind of compounds oxidize organic 
matter in general, but they are being questioned and limited in use due to their toxicity.

On the other hand, the membrane-actives react with the cell membrane leading to its disruption 
or have ability to change cytoplasmic conditions (Chapman 2003). This group generally includes 
compounds like alcohols, phenolic derivatives, quaternary ammonium salts and pH actives (e.g. 
organic acids, parabens, and pyrithiones). Moreover, the control of the indoor fungi can be achieved 
by maintaining the hygiene by the periodic cleaning with disinfectants and controlling the indoor 
conditions (temperature, humidity, ventilation, and water leaks) (Adan and Samson 2011; Weber 
and Rutala 2013). On the other hand, antimicrobial or hygienic coatings having active antifungal 
ingredients can be used to control indoor fungi and bacteria growth, and therefore biofilm develop-
ment (Johns 2003; Stobie et al. 2010).
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In recent decades, attention has increasingly been paid to the environmental effect of the  biocides 
used, leading to the emergence of new legislation that seeks to restrict their use, especially in North 
America and Europe (Ribeiro et al. 2018). Some additives are no longer allowed to be used, such as 
phenylmercurials, however, some others have been restricted in relation to their concentration in 
formulations (Paulus 2004; Falkiewicz-Dulik et al. 2015a). Some examples of these are  aromatic and 
halogenated derivatives. Conventional biocides commonly added in commercial  formulations 
include 5-Chloro-2-(2,4-dichlorophenoxy) phenol (Triclosan), 2-octyl-4-isothiazolin-3-one (OIT), 
dichlorooctylisothiazolone (DCOIT), methyl-2-benzimidazolecarbamate (Carbebendazim), and 
3-(3,4-dichlorophenyl)-1,1-dimethylurea (Diuron) (Allsopp et al. 2004).

Usually, combinations of biocides are used to improve the spectrum of antifungal activity. 
However, the efficacy of such combinations, which are commonly determined in terms of mini-
mum inhibition concentration (MIC) varies depending on the type and concentration of combina-
tion used. Therefore, more effective (“booster”) compositions of biocides have been investigated in 
order to reduce the concentration of the active ingredients that would be used separately (Bellotti 
et al. 2012; Falkiewicz-Dulik et al. 2015a). For example, 2-methyl-4-isothiazolin-3-one (MIT) has 
relatively low antimicrobial activity, but it has shown a significant synergistic activity when com-
bined with 1,2-benzisothiazolin-3-one (BIT) (Karsa and Ashworth 2002).

The addition of biocides in paints during the dispersion process is often not satisfactory, due to 
the fact that biocidal activity can be lost before the end of life of the coating (Sørensen et al. 2010; 
Mardones et al. 2019). It has been recorded that paint films in buildings, which should maintain 
their biocidal functionality for more than 10 years, actually do it for less than two years in extreme 
conditions (Eversdijk et al. 2012). The reasons that limit the efficiency of antimicrobial paints and 
coatings are: loss of biocidal efficacy of the film on the surface due to leaching or engaged in reac-
tions with resin, pigment, and additives; degradation of the bioactive component by environmen-
tal factors; incompatibility between biocides within the paint; and commercial organic biocides 
could be used as a nutrient source by some microorganism (Edge et al. 2001; Falkiewicz-Dulik 
et al. 2015a; Andersson-Trojer et al. 2015; Kakakhel et al. 2019). The architecture of the paint films 
must be considered for a better understanding of this issue. Waterborne acrylic paints, most com-
monly used in buildings, are constituted by aqueous dispersion of polymer lattices, which after 
drying leads to the emergence of macroscopic pores. Therefore, this porosity favors the release of 
the biocides which reside in the pores or are adsorbed on particles (Andersson-Trojer et al. 2015).

Considering the facts mentioned here, several efforts are currently seeking to improve the bioac-
tive ingredients used in formulation to prolong their useful life, to replace the toxic conventional 
ones, to decrease the concentrations used, and prevent their loss from the film. In this context, the 
emergence of nanotechnology presents an extensive field of study for new functional materials 
with size-dependent properties. Some strategies are based on finding free nanoparticles with anti-
microbial activity, while others are based in associate antimicrobial agents to nanomaterials to 
protect them and control their release.

12.4  Nanotechnology for the Control of Fungal Growth

Nanotechnology has developed as one of the most groundbreaking scientific fields in the last few 
decades, since it exploits the enhanced reactivity of materials at a nanoscale. Currently, most 
 scientists believe that nanomaterials are one of the mainstays of developing science and technology 
in the twenty-first century.

Materials with at least one dimension lower than 100 nm are considered “nano,” and these mate-
rials have different physical and chemical properties from those in the microscale or bulk form 
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(Haupert and Wetzel 2005; Singh 2016b). They have surface/volume ratio higher than bulk ones, 
which is reflected in the fact that the majority of the atoms are located on the surface (Morones 
et al. 2005; Mathiazhagan and Joseph 2011). A large number of public domain investigations pro-
posed that properties of nanoparticles (NPs) fundamentally depend on their size and shape. 
Similarly, the antimicrobial activity of NPs can be changed if they are modified (Morones et al. 
2005; Raza et al. 2016).

NPs can be prepared using two major approaches: top-down (reduce in size to a suitable mate-
rial) and bottom-up (build them from elemental entities like atoms and molecules) (Mittal et al. 
2013). The top-down approach uses physical or chemical methods, which frequently have high-
energy demand and produce NPs with surface imperfections; milling is a typical example of this 
approach (Landge et al. 2017; Thakkar et al. 2010). Bottom-up approaches are based on chemical 
or biological synthesis and usually produce colloidal dispersions of the NPs with fewer defects and 
more homogeneous chemical composition (Cao and Sun 2009; Singh et al. 2016).

Antifungal activity of nanomaterials depends on their properties, such as surface charge, com-
position, size, shape, and partial oxidation capacity (Kumar et al. 2013; Mittal et al. 2013; Singh 
et al. 2016). Studies that attempt to explain the mechanism of action of NPs are focused on assays 
that intrude the inhibition of spore germination, radial mycelial growth, and aflatoxin synthesis 
(Kasprowicz et al. 2010; Kairyte et al. 2013; Mitra et al. 2017). Taking into account the chemical 
nature of the NPs that were probed to be active against fungal strains, they can be classified into 
three main groups: metal, non-metal, and hybrid (metal/non-metal). Table  12.1 shows various 
nanomaterials which can be effectively used in the management of different fungi. Figure 12.1 
shows NPs adhered to silica filler after the green synthesis process (Figure  12.1a,b). Visible 
 differences between the surfaces of the siliceous material decorated with NPs and the original are 
indicated in Figure 12.1 c1 and c2.

12.4.1 Metal Nanoparticles

Metal (and metal oxide) NPs can be fine-tuned with several chemicophysical properties, size, sur-
face to volume ratio, structural stability, and target affinity, for better efficiency and to facilitate 
their application in different fields (Elbourne et al. 2017). The most widely used synthesis method 
for metal NPs is wet-chemical, where NPs are formed from respective metal ions using a liquid 
system which contains reducing (e.g. sodium borohydride, methoxy polyethylene glycol, or hydra-
zine) and stabilizing agents (e.g. sodium dodecyl benzyl sulfate, polyvinyl pyrrolidone, or citrate) 
(Badawy et al. 2010; Singh 2016b). The chemical methods have been questioned due to the use of 
toxic solvents and the generation of hazardous by-products, which has increased interest in eco-
friendly alternatives framed in green syntheses like bioreduction or biological methods (Singh 
et al. 2016).

The most studied metal NPs with antimicrobial activity are: silver (Ag), copper (Cu), zinc oxide 
(ZnO), and titanium dioxide (TiO2) (Ruffolo et al. 2010; El Saeed et al. 2016; Nguyen et al. 2019). 
Without a doubt, AgNPs are the best known for their antimicrobial activity and their synthesis 
typically occurs by reduction of soluble silver salts in the presence of reducing agents such as cit-
rate, glucose, ethylene glycol, or sodium borohydride (Badawy et al. 2010; Singh et al. 2016). AgNPs 
with different shapes have been produced besides the most common spherical ones, including 
pyramids, rods, triangular prisms, and cubes (Pal et al. 2007; Raza et al. 2016). Silver is able to 
control various pathogens with relative safety, if compared to synthetic fungicides, and it displays 
multiple modes of inhibitory action to microorganisms (Ogar et al. 2015). Hitherto, AgNPs have 
been shown to be effective biocides against Aspergillus niger, Alternaria alternata, Alternaria bras-
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sicicola, Alternaria solani, Botrytis cinerea, Fusarium oxysporum, Penicillium spp., Rhizoctonia 
solani, and Colletotrichum spp. (Sardella et al. 2019).

AgNPs liberate silver ions in the fungal cells, which could attack the respiratory chain and cell 
division leading to cell death (Moritz and Geszke-Moritz 2013). In addition, they interact with the 
thiol groups of several enzymes, inactivating them and affecting processes such as nutrition 
(Chung and Toh 2014). Silver can also generate reactive oxygen species (ROS) that have high cyto-
toxic activity and can cause cell death (Morones et al. 2005; Singh et al. 2016). Silver ions can cause 
denaturation of proteins and DNA, which affects the replicative machinery in the fungal cell 
(Dananjaya et al. 2017). During the formation of the germ tube, the wall of the hypha is thinner 
and more fragile in the apical part; this may be the moment that allows the interaction of AgNPs 
in the cell wall, causing an increase in the permeability of the membrane, and with it an alteration 
in conidial viability (Jo et al. 2009; Mahmoud et al. 2014).

ZnONPs and their mechanism of action against two post-harvest pathogenic fungi B. cinerea and 
Penicillium expansum, were investigated (He et al. 2011). In this case, P. expansum was found to be 
more sensitive to treatment with ZnONPs than B. cinerea; NPs inhibited the growth by affecting 
cellular functions, which caused deformation in fungal hyphae, and prevented the development of 
conidiophores and conidia of P. expansum (He et  al. 2011). In addition, Kairyte et  al. (2013) 
obtained similar results against a B. cinerea strain when exposed to these NPs in suspension. 
Similarly, Sharma et al. (2010) studied the antifungal activity of ZnONPs against Fusarium sp. and 

(a) (b)

(c1) (c2)

100 nm
100 nm

100 nm

100 nm

Figure 12.1 TEM micrographs of: (a) nanoparticles adhered to silica filler during the synthesis process; 
(b) free nanoparticles obtained by green synthesis; (c1) Siliceous filler before decorating with nanoparticles, 
and (c2) result of decorating with silver nanoparticles by green synthesis.
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12.4  Nanotechnology for the  ontrol of Fungal  rooth 243

proposed the fungal growth inhibition was due to the rupture of the cell membrane, resulting in 
the possible decrease in fungal enzymatic activity.

Iron oxide NPs were evaluated for their antifungal activity against the following: Trichothecium 
roseum, Cladosporium herbarum, Penicillium chrysogenum, A. alternata, and A. niger. The maxi-
mum inhibition in spore germination was caused against T. roseum (~88%) followed by C. herbarum 
(~85%) (Parveen et al. 2018). Iron oxide NPs cause oxidative stress through the generation of ROS 
and Fenton reaction. Since iron is a strong reducing agent, it induces the decomposition of func-
tional groups in membrane proteins and lipopolysaccharides. Iron-based NPs also cause oxidation 
by intracellular oxygen, leading to oxidative damage via Fenton reaction. These NPs penetrate 
through disrupted membranes causing further damage and death of cells (Parveen et al. 2018).

Antimicrobial NPs obtained from aqueous plant extracts are reported to be very promising 
because these are accessible, effective, low cost, and eco-friendly (Mittal et al. 2013; Singh et al. 
2016). AgNPs synthesized using aqueous extracts from different plants (Schinus molle, Equisetum 
giganteum, and Ilex paraguariensis Saint Hilaire) have been studied by Barberia et al. (2019) against 
fungal strains, i.e. A. alternata and Chaetomium globosum. These filamentous fungi are known to 
deteriorate indoor waterborne acrylic paints (Bellotti et al. 2013). Suspension with AgNPs from 
E. giganteum proved to be the most active, with a minimum inhibitory concentration of 3.3 and 
67.5 μg ml−1, respectively (Barberia-Roque et al. 2019). Biosynthesis of NPs is considered an eco-
nomical and eco-friendly approach; moreover, it can be a novel substitute for NPs obtained by 
chemical synthesis (Xue 2016; Malkapur et al. 2017). The enhanced antifungal activity was reported 
for AgNPs biosynthesized by cell-free filtrate of Trichoderma viride (MTCC 5661) compared to 
chemically synthesized AgNPs of similar shape and size (Kumari et al. 2019). In this sense, 
biosynthesized AgNPs enhanced the reduction in dry weight by 20% and 48.8% of F. oxysporum 
and A.  brassicicola, respectively, in comparison to their chemical counterparts; A. brassicicola 
revealed that osmotic imbalance and membrane disintegration are the major cause for fungal cell 
death after treatment with the biosynthesized AgNPs (Kumari et al. 2019).

12.4.2 Non-metal and Hybrid (Metal/Non-metal) Nanoparticles

Due to its structure, Kraft lignin formed by phenyl propanol and aryl-alkyl ether bonding can be a 
good source of polyols. The multiple hydroxyl groups present in the lignin’s structure are essential 
raw materials for polyurethane production. Also, for polyolefins, polyethylene terephthalate (PET), 
and polycarbonate production, the plastics can be either replaced or enriched with bio-based 
 components (Brodin et al. 2017). Considering sustainability concerns and the fact that petroleum 
products are commonly used in the polyurethane industry, bio-based polyols and lignopolyols 
could be an environmentally friendly solution (Mahmoud et al. 2014). Although a bioplastic is 
characterized as being produced from a renewable source, bioplastics are not necessarily biode-
gradable. As an example, biopolyethylene (BioPe) is similar to the fossil-based polyethylene and 
thus is not biodegradable. Hence, plastic biodegradability is determined by the chemical structure 
rather than origin (Brodin et al. 2017).

There are several examples of organic NPs obtained by encapsulation with various polymers 
such as chitosan, alginate, and poly(lactic-co-glycolic acid) (Pan et  al. 2019; Safaei et  al. 2019; 
Yilmaz et al. 2019). Bioactive biogenic compounds obtained from plants as essential oils or some 
of their components have been used. For example, chitosan nanoparticles (ChNPs) loaded with 
clove essential oil (CEO) were developed with the emulsion ionic gelation technique to improve 
the antifungal efficacy of CEO (Hasheminejad et al. 2019). The ChNPs demonstrated a superior 
performance against A. niger, isolated from spoiled pomegranate, compared with free CEO being 
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active with a minimum concentration of 1.5 mg ml−1. Similarly, López-Meneses et  al. (2018) 
 prepared polymeric ChNPs loaded with S. molle essential oil (SEO). These NPs have been studied 
as a possible substitute for fungicides against Aspergillus parasiticus and showed significant inhibi-
tion on spore germination (>80%) and aflatoxin production (>59%) at a concentration of 
500 mg ml−1. Antifungal agents such as ketoconazole and amphotericin B loaded in chitosan- 
gellan gum and poly(lactide-co-glycolide) NPs, respectively, were assessed against A. niger (Kumar 
et al. 2016; Moraes Moreira Carraro et al. 2017).

A large number of nanofiber fabrication methods have been reported, including template syn-
thesis, molecular self-assembly, and hydrothermal methods. Spinning methods, including electro-
spinning, blow spinning, centrifugal spinning, and draw spinning, allow researchers to fabricate 
nanofibers from a precursor solution. A variety of polymeric nanofibers can be obtained by spin-
ning methods. Compared with other techniques, spinning allows easier integration into industrial 
large-scale production (Huang et al. 2019). Polymer nanofibers fabricated via the facile electro-
spinning technique, mainly biopolymers, have ease of processing, excellent biocompatibility, and 
non-toxicity (Ambekar and Kandasubramanian 2019). Chitin nanofibers with AgNPs have been 
synthesized by Ifuku et al. (2015) and tested against 11 fungal strains. These hybrid AgNPs/chitin 
films showed an inhibition of spore germination >90% with 8 of the strains used.

Roopan et al. (2019) synthesized the bioactive hybrid CuO/C nanocomposite using sucrose as a 
capping agent. The antifungal activity of CuO/C nanocomposite was tested against A. niger and 
A. flavus at 1000 ppm and about 70% and 90% of inhibition, respectively, was reported. The authors 
proposed that this nano-complex causes interrupted transmembrane e− transport, cell membrane 
disruption, mitochondria damage, and cytoplasm leakage.

Other examples are metal-organic framework (MOF) nanosheets which have attracted great 
attention due to their distinctive characteristics such as nanoscale and tunable thickness, high-
aspect-ratio, large surface area, more exposed accessible active site, favorable mechanical flexibility, 
and optical transparency (Li et al. 2019). Recently, nanostructured MOFs, as a kind of crystalline 
material, were also constructed by the diversified interconnection of the organic linkers and metal 
nodes. These features endow MOF nanosheets with enhanced applications in gas separation, 
catalysts, sensing, energy storage and transfer, and enzyme inhibition.

12.4.3 Nanotechnological Management of Indoor Fungi

As mentioned, nanotechnology in general and NPs (nanomaterials) in particular play a key role in 
the control of growth of various fungi-causing infections in humans, plants, and other life forms. 
Colonization of fungi in indoor environments is considered a major concern because they have 
ability to cause many health-related issues. Therefore, management of indoor fungi is extremely 
important to avoid the ill effects caused by them. As discussed earlier, conventional approaches are 
available for the control of indoor fungi, but they have certain limitations. In this context, consider-
ing the antifungal potential of various NPs as discussed earlier, it is believed that such NPs can be 
effectively used in the management of indoor fungi. It is most unfortunate that very few reports are 
available on the management of indoor fungi using nanotechnological solutions. However, avail-
able reports revealed that NPs can be used as novel, effective, and eco-friendly alternative antifun-
gal agents to chemical fungicides. Some of the nanotechnological applications that have been 
reported to the management of indoor fungi include the adoption of nano-enabled disinfectants, 
surface biocides, air filters, packaging, and rapid detection methods for contaminants (Vance et al. 
2015; He and Hwang 2016; Chen et al. 2017).

Although the fate and potential toxicity of nanomaterials are not fully understood at this time 
and scientific risk assessments are required, it is evident that there have been significant advances 
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in their applications (Brincat et  al. 2016; King et  al. 2018; Jogee and Rai 2020). Peanuts are 
 vulnerable to fungal infections during long-term storage. Fungi infecting peanuts are toxigenic and 
cause health hazards. Further, the antifungal potential of AgNPs was evaluated and showed ability 
to inhibit fungal growth. Cymbopogon citratus leaf extract-mediated AgNPs were found to have 
prominent antifungal potential against all test fungi and its MIC was found to be 20 μg ml−1 (Jogee 
et  al. 2017). Pokhum et  al. presented a facile and cost-effective approach to remove airborne 
microbes from indoor air by employing silver (Ag) and zinc oxide (ZnO) to decorate fibrous air 
filters (Pokhum et al. 2018). This method successfully led to homogeneous coating of active nano-
materials on the filter’s surface. The developed Ag/ZnO air filter reduced the airborne psychro-
trophic germ concentrations by ∼50% and its efficiency increased to ∼70% when combined with 
UVA illumination. Based on these results, a simple and low-cost ZnO/Ag air filter was successfully 
introduced as an effective strategy for removal of psychrotrophic microbes from indoor air.

Household cleaning products have been incorporating antimicrobial agents for past several dec-
ades, and they have achieved overwhelming success in gaining the confidence of the consumers. 
The staggering customer demands have motivated the industrial sector to constantly look for new 
effective antimicrobial products. For example, Microban® is a combination of polyvinylidene dif-
luoride coating matrix along with silver as an active ingredient. Microban® technology offers pro-
tection from the deterioration of the coating from mold and mildew. The silver-based particles, on 
contact with microbes, do not allow the reproduction of microbes by interfering with metabolism 
and disrupting/damaging the cell walls. Moreover, the active ingredient interferes with the conver-
sion of nutrients into energy, thereby inhibiting the reproductive process. This product, when used 
in waterborne or solvent-borne paint or coating, provides excellent protection in both indoor and 
outdoor environments (Tiwari and Chaturvedi 2018).

12.5  Hygienic Coatings and Nanotechnology

In order to inhibit or prevent the growth of microorganisms, including fungi, on building materi-
als, the disruption of their vital processes is required. Figure 12.2 shows microscopic pictures of 
three mold strains commonly found in indoor spoilage materials growing on coatings in controlled 
conditions.

Hygienic paints are important tools to avoid indoor biological colonization and prevent biodete-
rioration which creates health problems in people and pets (Stobie et al. 2010; Falkiewicz-Dulik 
et al. 2015b). These functional paints can be used for painting in dwellings and hospitals. They can 
be also used in the food industry because in this sector they must deal with microbial growth as 
one of the most critical issues affecting production, processing, transport, and storing. Several 
applications of metal NPs in food safety are currently available (e.g. packaging material, air filter 
coatings) (Souza and Fernando 2016). Nanotechnology applied for the design of antimicrobial sur-
faces can eliminate pathogens in close proximity to the surface, preventing biofilm formation 
(Kaiser et al. 2013). The precise biocidal mechanism arising from these materials is complex in 
nature and is dependent on both the microbe and nanomaterial used (Bapat et al. 2018).

Additive paints and coatings with antimicrobial NPs have been studied (Kumar et  al. 2008; 
Jo et al. 2009; Zielecka et al. 2011; Holtz et al. 2012; Dominguez-Wong et al. 2014; Barberia-Roque 
et al. 2019; Machado et al. 2019). There are two possible ways to incorporate NPs into a paint for-
mulation: free or supported in other material. The direct use of metal NPs such as Ag, Cu, and ZnO 
in waterborne paints (latex type) can result in the decrease of their antimicrobial activity due to 
their reactivity with other components present in the formulation or their agglomeration (Zielecka 
et al. 2011; Bellotti et al. 2015; Arreche et al. 2017). Taking this into account, there are several 

c12.indd   245 7/10/2020   6:15:23 PM



12  Role of Nanotechnology in the Management of Indoor Fungi246

works performed that showed the efficient incorporation of bioactive nano-additives (in supported 
or immobilized form) in other materials to be applied in paints (Zielecka et al. 2011; Arreche et al. 
2019; Machado et al. 2019).

Often the biocidal activity of the organic compounds ends long before the lifetime of the coating 
due to its low retention or degradation (Edge et al. 2001; Mardones et al. 2019). Therefore, usually 
they are loaded in natural or synthetic NPs that act as carriers (Hendessi et al. 2016; Kamtsikakis 
et al. 2017; Nguyen-Tri et al. 2018). However, some nanostructures have been developed which can 
be used as carriers in organic or inorganic matrix associated to the bioactive compound by electro-
static or covalent bonds (Hendessi et al. 2016; Kamtsikakis et al. 2017). For example, carvacrol, the 
active agent of essential thyme oil, has been loaded in halloysite nanotubes as a natural carrier to 
be applied in paints and coatings (Hendessi et al. 2016; Alkan Tas et al. 2019).

In the specific case of the paints, nanofunctionalized components commonly used, such as resins, 
pigments, fillers, and additives, have been reported (Kumar et al. 2008; Stobie et al. 2010; Dominguez-
Wong et al. 2014; Fernández and Bellotti 2017; Machado et al. 2019). In this sense, conventional 

(a) (b)

(c)

Figure 12.2 Active fungal growth on coatings: (a) Chaetomium globosum (KU936228), (b) Aspergillus 
versicolor (MG725821), and (c) Alternaria alternata (KU936229).
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 pigments such as TiO2 and CaCO3 have been modified at nanoscale level to gain antimicrobial 
 functionality (Ferreira et al. 2013; Dominguez-Wong et al. 2014). Another example of a paint nano-
functionalized component is acrylic resin associated to ZnONPs which have both anti-electrostatic 
and antibacterial functionalities at a concentration of ~ 5 wt% (Xu and Xie 2003). Siliceous matrix has 
been used in coating technology by the application of natural clays such as halloysite nanotubes; 
other aluminosilicates intensively studied are zeolites, which were associated with Ag and Zn to 
incorporate in waterborne acrylic formulations and probed to be efficient against fungal growth 
(Pereyra et  al. 2014; Machado et  al. 2019). On the other hand, synthetic matrix based in sol-gel 
 technology have been incorporated to architectural paints (Arreche et al. 2017; Arreche et al. 2019). 
The synthesized nano-spheres by sol-gel method with Ag and Cu NPs were assessed in controlled 
conditions, showing a broader spectrum of antimicrobial activity (Zielecka et al. 2011).

12.6  Conclusion

The search for alternatives to control fungi in indoor environments has been nourished by the 
great impulse that nanotechnology has shown in recent decades. Antifungal nanoparticles that 
seek to replace commercial active compounds have led to the production of a large number of 
published works, but fewer publications are found in relation to specific applications of these. In 
relation to articles that deal specifically with this topic, it can be observed that there is diversity in 
assessment methods (e.g. agar diffusion, dilution in solid or liquid cultured medium, antibiofilm 
test, resistance to biodeterioration of films) and fungal strains selected as target. Mostly, the tests 
performed are carried out in controlled laboratory conditions.

The development of “smart” surfaces in nanotechnology, capable of responding to microbial cell 
interaction and avoid the biofilm development, is still a challenge. Eco-friendly biogenic com-
pounds are intensely investigated; their incorporation in paint formulation largely requires the 
application of nanotechnology to the design of the nanostructured carriers. It is worth mentioning 
that it would be interesting in the future to count research works that faced the application and the 
assessment of these materials in more realistic conditions.
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