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Chapter 1

Introduction

1.1 Radiation therapy

Around half of the patients diagnosed with cancer is treated with radiation therapy in

some stage of the disease. Radiation therapy is a treatment modality that uses ionizing

radiation. The goal is to destroy the malignant cells (i.e. the tumour), while saving

the healthy tissues as much as possible. This can be done by (temporarily) implanting

radioactive sources inside the patient (brachytherapy) or by using an external radiation

source. The latter is called external beam radiation therapy (EBRT). The focus of this

work is on EBRT with X-ray beams (photons).

When a patient is diagnosed with cancer and radiation therapy is a selected treatment,

a computer tomography (CT) scan is made and all regions of interest, i.e. the organs at

risk and the tumour (also referenced to as the target) are delineated. Then a treatment

plan has to be made to specify the settings of the treatment device to deliver enough dose

(ionizing radiation) to the target, while keeping the doses to the healthy tissues below

acceptable levels.

After the treatment plan has been approved, the patient is treated up to 40 days.

Each day, a fraction of the total dose is delivered. This is done to allow repair of healthy

tissues in between the fractions.

It is physically impossible to irradiate a tumour while fully sparing the healthy cells

around it. Consequently, there is generally a risk for treatment related side effects.

Examples of radiation induced injuries are reduced saliva production when the patient

has a tumour in the head-and-neck area, or pneunomitis when a tumour in the lung has

been irradiated. Another type of risk is development of secondary cancer by the applied

ionizing radiation, often appearing more than 10 years after initial treatment. To avoid

serious treatment complications as much as possible and maintain an optimal quality of

life after treatment, it is important to design a treatment plan with a high probability of

1



2 1 Introduction

cure while optimally minimizing dose delivery to (critical) surrounding healthy structures.

The process of designing such a plan is called treatment plan optimization.

1.2 Treatment plan optimization for external beam treatment

with photons

In external beam radiation therapy, a patient is irradiated from several directions with

beams that overlap at the tumour to maximize the tumour dose relative to the surround-

ings. There are mainly 2 sets of physical parameters to configure the treatment device:

1) the directions from which to irradiate (placement of beams) and 2) the shapes and

2D intensity profiles of the fields. If the intensity profiles are not uniform and optimized

for the individual patient, the treatment is called intensity modulated radiation therapy

(IMRT).

Optimizing both beam directions and intensity profiles is a huge mathematical multi-

criteria, non-convex, discrete combinatorial problem that cannot be solved directly. For

example, if a discretized beam angle space has 72 possible positions and one wants to use

9 of them, the number of possible combinations is


72

9


= 85 · 109. For each possible

scenario, a full IMRT optimization has to be performed as well, leading to an impossible

problem to solve even on modern computers. The beam angle optimization problem can

therefore generally not be solved exactly, and an heuristic approach is required to find an

acceptable solution in feasible time. Advanced algorithms for beam angle optimization

are still hardly available, and the potential impact on quality of clinical treatments has

hardly been investigated.

Additionally, treatment plan optimization is a multi-criterial problem, i.e. there are

several treatment objectives. Not only should the tumour be irradiated to a high dose,

also healthy surrounding tissues should be avoided as much as possible. A head-and-

neck case for example may have 10 structures to take into account (tumour, spinal cord,

salivary glands, etc). The number of criteria optimized on may even be larger, as often

more than one criterion per structure may be involved. In multi-criterial optimization,

trade-offs have to be made: some structures are more sensitive to radiation than others,

and sometimes one structure has to be sacrificed in order to keep more important (with

respect to treatment related morbidity or quality-of-life) structures functional.

In current clinical practice, plans are generated with a software application called

treatment planning system (TPS), using an iterative trial-and-error process, called for-

ward planning. In this process, based on experience, a human operator makes a first

choice of beam angles, weighting factors for the various clinical criteria, and other para-

meters. A 3D dose calculation algorithm in the TPS is then used to automatically

optimize beam profiles and calculate the resulting dose distribution, based on the pa-
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tient’s planning CT-scan. If the dose distribution is unacceptable or if the operator and

treating physician see room for improvement, the operator will change some parameters

(again based on experience) to generate a next, hopefully better, dose distribution, and

so on. Reasons for stopping the iterative process may be that the dose distribution is

considered satisfactory and/or the physician and operator may not see how new parame-

ter adjustments could further improve the patient’s dose. With this procedure, the final

dose distribution will generally depend on the skills and available time of the operator

and the physician. In times with an increased workload in the department, final dose

distributions may become less optimal because of lack of available time to do many it-

erations. Whether or not an adequate number of beams with appropriate directions is

used is generally not known. Furthermore, there is no guarantee for an optimal trade-off

between objectives, nor is there a guarantee that for the same tumour dose, dose deliv-

ery to the most important healthy tissues cannot be further reduced. Apart from these

quality issues, the process may be very labour-intensive, taking up to several days for an

individual patient.

In this thesis, we have developed and investigated algorithms for treatment plan

optimization with strong accents on:

1. Fully automated, multi-criterial plan generation, i.e. avoidance of human interac-

tion.

2. Inclusion of beam angle optimization in IMRT plan generation, both for coplanar

and non-coplanar arrangements.

3. Integrated multi-criterial optimization of both beam profiles and angles. Generated

plans are Pareto-optimal for beam profiles, i.e. for a selected beam arrangement,

changing profiles to improve one of the objectives will always result in plan quality

reduction for one or more of the other objectives.

4. Clinically feasible calculation times.

1.3 Outline of the thesis

In chapters 2-4, a new method is presented for automated multi-criterial optimization of

IMRT intensity profiles, constraint levels and voxel-dependent importance factors for im-

posed constraints. Chapter 2 describes the use of a fast mathematical solver for quadratic

dose objective functions and a sparse linear algebra implementation dedicated to solving

these types of radiation therapy problems. Chapter 3 describes a method to automat-

ically adapt voxel-dependent weights in a quadratic dose objective function to satisfy

maximum-dose and dose-volume constraints. Constraints are divided in priority classes,

giving highest priority to avoiding violation of the most important constraints. In chapter
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4, optimization of the constraints is embedded in a multi-criteria optimization approach

that iteratively optimizes imposed constraint levels, again using ascribed constraint pri-

orities.

In chapter 5 a new mathematical optimizer for multi-criterial IMRT optimization,

called the 2-phase ϵ-constraint (2pϵc) approach, is introduced and compared to the widely

applied optimization of weighted-sum objective functions. As in chapter 4, optimization

is again driven by a list of hard constraints and prioritized objectives (called a wish-list).

Steered by the wish-list, a single Pareto-optimal IMRT plan is generated for a preselected

beam configuration.

In chapter 6, the developed optimizer is integrated in a new algorithm for multi-

criterial beam angle optimization in IMRT, called iCycle. The wish-list is used to itera-

tively add optimal beam directions to the plan and then optimize profiles to generate a

Pareto-optimal plan for the selected configuration. Based on the obtained solution, the

Lagrangian (chapter 5) is defined and used for selection of the next beam. As a result,

iCycle outputs a list of Pareto-optimal plans, one for each number of beams, without

any user-interaction. More specifically, plans are generated without interactive tuning of

weights of objectives.

Chapters 7 and 8 describe investigations on the use of iCycle for generating treatment

plans for head-and-neck patients. Chapter 7 describes a planning study on the value

of integrated beam profile and angle optimization for this patient group. Moreover,

iCycle was used to study the importance of nonzero couch angles for VMAT (volumetric

arc therapy). Chapter 8 reports on a prospective clinical study in which patients were

treated either with an IMRT plan generated by dosimetrists, or with an automatically

generated iCycle plan, depending on the physician’s preference. In chapter 9, iCycle is

used to investigate the importance of the non-coplanar beam search space for treatment

of prostate cancer patients with an IMRT plan, mimicking an HDR-brachytherapy dose

distribution. Chapter 10 uses iCycle to investigate the effect of daily plan re-optimization

for liver stereotactic body radiation therapy, with and without beam angle optimization.

Chapter 11 concludes this thesis with a discussion.
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Abstract

Inverse treatment planning for intensity modulated radiotherapy may include time

consuming, multiple minimizations of an objective function. In this paper, methods

are presented to speed up the process of (repeated) minimization of the well-known

quadratic dose objective function, extended with a smoothing term that ensures

generation of clinically acceptable beam profiles. In between two subsequent op-

timizations, the voxel-dependent importance factors of the quadratic terms will

generally be adjusted, based on an intermediate plan evaluation. The objective

function has been written in matrix-vector format, facilitating the use of a recently

published, fast quadratic minimization algorithm, instead of commonly applied

gradient based methods. This format also reduces the calculation time in between

subsequent minimizations, related to adjustment of the voxel-dependent impor-

tance factors. Sparse matrices are used to limit the required amount of computer

memory. For three patients comparisons have been made with a gradient method.

Mean speed improvements of up to a factor of 37 have been achieved.
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2.1 Introduction

In inverse treatment planning, a quadratic dose objective function with terms ηi(di−dpi )
2

(where di is the dose in voxel i, dpi the prescribed dose in voxel i and ηi the importance

factor in voxel i) is often used to optimize the fluence for intensity modulated radiother-

apy. Generally, the importance factors ηi are equal for all voxels in an organ (Bortfeld

et al 1990, Brahme 1995, Spirou & Chui 1998, Wu & Mohan 2000) Another approach

uses voxel-dependent importance factors, which are individually optimized in an iterative

procedure, requiring repeated minimizations of a modified objective function (Cotrutz

& Xing 2002, Wu et al 2003, Yang & Xing 2004). The consequence is that the inverse

planning may become time consuming.

In our institute, an inverse planning algorithm is being developed which directly ac-

counts for geometrical uncertainties using known distributions of geometrical variations,

such as setup errors and internal organ motion (Heijmen et al 2003), thereby avoiding the

use of PTV margins. Apart from the quadratic terms, the objective function also con-

tains a term that ensures the generation of clinically acceptable, smooth fluence profiles

(see section 2.2.2). In an iterative procedure, the voxel-dependent importance factors

are adjusted, each time followed by a minimization of the modified dose objective func-

tion. This paper describes methods to speed up this process of multiple minimizations.

The smoothing term, introduced in the objective function to prevent high frequencies in

the fluence, also yields a well-conditioned Hessian. This, combined with rewriting the

quadratic objective function in canonical form, allows us to use a fast, recently published

algorithm (BOXCQP, Voglis & Lagaris (2004)) to minimize the objective function. BOX-

CQP solves convex quadratic problems with simple bounds, such as fluences f ≥ 0, and

claims to be up to 30 times faster than other quadratic problem solving algorithms. Also,

BOXCQP always finds the exact minimum, while others, especially gradient methods,

need a termination criterion, which needs additional work to determine. The algorithm

relies on solving linear systems. BOXCQP is compared with a gradient based minimiza-

tion algorithm.

2.2 Methods and materials

2.2.1 Dose calculation algorithm

Since the dose distribution is a linear combination of fluence elements, the calculation of

the dose distribution can be written in matrix-vector form (Cho & Phillips 2001, Thieke

et al 2002):

d = Hf , (2.1)

where d is the dose distribution vector, with the dose for each voxel in the patient, H is

the dose deposition matrix, composed of the distribution vectors of all beamlets, and f
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is the fluence vector, with the beamlet weights.

In this paper, the algorithm to calculate H is from Storchi & Woudstra (1996) with

a scatter radius of 3 cm.

2.2.2 Quadratic objective function

The quadratic objective function applied consists of two terms:

s(f) =

v

ξv(Hf − dp
v)

T η̃v(Hf − dp
v) + κ(Mf)T (Mf). (2.2)

The first term is the widely used quadratic dose objective (see the introduction),

modified for use with voxel-dependent importance factors. Hf is the dose resulting from

the fluence f , and dp
v is the dose objective for voxels in volume v. Each volume v has

a volume-wide importance factor ξv and a vector of voxel-dependent importance factors

η̃v. The tilde denotes a diagonal matrix representation of the coefficient vector ηv. In

this approach, the dimension of the coefficient vector equals the number of patient voxels

considered. However, only a subset of the coefficients are unequal to zero, depending on

the choice of the adoption of the voxel-dependent importance factors, but the maximum

number of nonzero coefficients in ηv equals the number of voxels in volume v. This

approach also accounts for overlap between volumes, e.g. a PTV with an OAR.

The second term in equation (2.2) is the smoothing term, regulated by a smoothing

factor κ. This term encourages the fluence f to be smooth. Inspired by Webb et al

(1998), the second derivative of the fluence was used as an indicator for smoothness. If

the second derivative equals zero, the fluence is linear (linearly increasing or decreasing,

like a wedge or constant). For a two-dimensional fluence, the Laplacian of the fluence

f can be discretized using standard difference formulae for a fluence element fi,j . With

resolutions h and k of the fluence in the x− and y direction respectively, we have:

∆f |(ih,jk) =
k2

fi−1,j + fi+1,j


− 2(h2 + k2)fi,j + h2


fi,j−1 + fi,j+1


h2k2

. (2.3)

The ideal case for a smooth fluence is when ∆f = 0. We choose to keep the denominator

h2k2 so the smoothing factor κ is independent of the fluence grid size. The discretization

can be written in a matrix M , such that ∆f = Mf . Figure 2.1 shows an example of the

use of the second derivative to generate a smoothing penalty.

Equation (2.2) can be written in canonical form:

s(f) =
1

2
fTAf + fT b+ c, (2.4)
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Figure 2.1: Example of the smoothing penalty for a one-dimensional fluence (solid line).
The second derivative of the fluence is the dashed line. The square of the area covered
by the second derivative equals the penalty.

where:

A = HTQH + κS, b = HTq, c =

v

ξv(d
p
v)

T η̃vd
p
v, (2.5)

Q = 2

v

ξv η̃v, S = 2MTM, q = −2

v

ξv η̃vd
p
v. (2.6)

The scalar c in equation (2.4) can be neglected for minimization of s(f). At the start

of each new iteration A and b need to be recalculated based on updated Q and q (S does

not change).

Note that A is symmetric and positive definite. In this form, the Hessian A is given

directly and does not need any approximations, or additional calculations. The gradient

is provided by computing Af + b (= ∇f).

2.2.3 Calculation of A and b

The dimensions of H in equation (2.1) are m×n = #voxels×#fluence elements, but

the matrix is usually filled for only 5%− 20%. A typical patient has m = O(105) voxels

and n = O(103) fluence elements. Storage of H in 8 bytes double precision, requires

several gigabytes of memory. Therefore sparse matrices are used, since this format only

stores the nonzero elements of a matrix (appendix 2.A, Cho & Phillips (2001)).

Q is the only matrix that changes with every iteration. The most time consuming
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computation then becomes the third order computation HTQH when calculating A.

An efficient algorithm has been developed to perform this computation based on the

transposition algorithm presented in Pissanetsky (1984) (which is based on Gustavson

(1978)). The idea is to multiply the diagonal of Q (which is sparse in our approach)

with HT while transposing H. Details on how to compute Z = HTQ are presented in

appendix 2.B.

This approach has two advantages: it is not necessary to store HT for a speedup in

the multiplication, and only one matrix-matrix (ZH) computation has to be performed

later. The time needed for transposition and multiplication with the diagonal of Q is

linear in the number of nonzeros in Q (Gustavson 1978).

The computation of the product of two sparse matrices is described by Gustavson

(1978). Algorithms for other sparse operations (e.g. addition of two sparse matrices to

calculate A = ZH + κS and the matrix-vector multiplication to calculate b = HTq) can

be found in Pissanetsky (1984) and Duff et al (1986).

A is usually a relatively full matrix (70% − 80% nonzeros), so we can refrain from

accounting the sparse pointer lists by storing A as a full matrix. This simplifies the

algorithms significantly.

2.2.4 Minimization of s(f) with BOXCQP

The implementation of BOXCQP requires relatively few lines of code. However, the way

the algorithm works is less trivial to understand than gradient based algorithms.

First, equation (2.4) is extended with the associated Lagrangian for f ≥ 0 (i.e. all

elements of f are ≥ 0):

L(f ,λ) =
1

2
fTAf + fT b− fTλ. (2.7)

At the minimum (f∗,λ∗), the Karush-Kuhn-Tucker conditions require that:

Af∗ + b− λ∗ = 0, (2.8)

λ∗ ≥ 0, (2.9)

(f∗)Tλ∗ = 0, (2.10)

f∗ ≥ 0. (2.11)

The steps needed to satisfy these conditions can be found in Voglis & Lagaris (2004).

The BOXCQP algorithm heavily depends on solving linear systems. It is therefore

required that the Hessian A has a proper condition (less than ≈ 1012). The condition

is defined as the quotient between the largest and the smallest eigenvalue. Without the

smoothing term (κ = 0), A is usually ill-conditioned because the smallest eigenvalue is
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usually close to 0 (Carlsson & Forsgren 2006), making this algorithm unusable for these

matrices. A method to improve the condition of A is to add a small identity matrix

(κ small, S = I), increasing the smallest eigenvalue by κ. This changes the solution

minimally, but the condition improves significantly. The same happens when using the

smoothing term S = 2κMTM .

The matrix A is symmetric and positive definite, so it is natural to solve the systems

using the Cholesky decomposition (Golub & van Loan 1989).

2.2.5 Test setup

The algorithms were tested on an Intel Xeon 3.2 GHz running Linux. The routines to

calculate A and b were written in Fortran according to the ideas presented in section

2.2.3. The BOXCQP algorithm for minimization of s(f) (section 2.2.2) was implemented

in Matlab 7.

Matlab’s function quadprog, which is suitable for minimization of functions such as

equation (2.4), was compared with our implementation of the BOXCQP algorithm. The

termination tolerance on the function value was set to 10−15 for quadprog.

To compare the two minimization algorithms, matrices Q and vectors q are needed to

define clinically relevant functions s(f). In our inverse planning algorithm we concentrate

on changing the weight of the individual voxels in each iteration. The volume-wide

importance factors ξv and the planning doses dp
v remain constant.

The planning algorithm was run for three patients, while automatically adapting the

relevant voxels weights in each iteration, with a maximum of 100 iterations. This results

in a unique η̃v for each iteration. To compare the minimization times of BOXCQP

and quadprog, every tenth iteration matrix Q and vector q were recorded. The precise

algorithm used for the adoption of the voxel weights is out of scope for this paper but

will be discussed in a future paper.

The computation times were recorded for three scenarios: no smoothing (κ = 0),

condition improver (κ = 10−6 max
v

ξv and S = I) and with smoothing (κ = 10−2 max
v

ξv).

To show that the differences between using the condition improver and no smoothing are

minimal, DVHs of both solutions are shown.

2.3 Results

Details of the plans used in this study are shown in table 2.1. The head-and-neck patient

has three PTVs of which the primary PTV has a higher dose prescription than the other

PTVs (elective neck glands). Computation times are presented in table 2.2, showing

mean calculation speed enhancements for BOXCQP with factors 5− 37.

Because of the poor condition of matrix A BOXCQP cannot be used without condition

improver or smoothing. As demonstrated in table 2.2, calculation times for the gradient
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Table 2.1: Relevant patient information.
Oesophagus Prostate Head-and-neck

Beam resolution (XY (cm)) 0.5 0.5 0.5
#Beams 5 5 7
#Voxels 163 053 188 153 100 554
#Beamlets 2342 1701 3116
Nonzeros in H (%) 6.0 11.1 19.3

Table 2.2: Comparison between BOXCQP and the gradient based quadprog regarding
times to minimize quadratic objective functions. For each clinical case, data are pre-
sented for no smoothing, condition improver and with smoothing. The mean times in
columns 3 and 4 are averages for ten different combinations of the matrix Q and vec-
tor q. The second column shows the condition of matrix A. The latter three columns
are minimization time ratios that demonstrate the speed enhancement obtained with
BOXCQP.

Mean minimization
time (seconds) Time ratio

Oesophagus Condition A quadprog BOXCQP Mean Min Max
No smoothing 8.9·1036 310.7 — — — —
Condition improver 3.2·105 300.0 12.1 24.3 7.3 36.7
Smoothing 1.7·104 109.8 9.8 22.9 5.2 74.2

Prostate
No smoothing 8.7·1014 198.7 — — — —
Condition improver 4.4·105 206.5 5.6 36.7 11.7 44.6
Smoothing 2.0·104 75.5 5.5 19.5 9.2 83.4

Head-and-neck
No smoothing ∞ 617.8 — — — —
Condition improver 1.4·108 597.3 32.0 18.7 9.3 23.0
Smoothing 1.0·105 201.6 39.8 5.3 2.8 7.2

method without smoothing and with condition improver are very similar. Also, both

approaches result in similar (clinically non-feasible) peaky fluence profiles. Typical results

of using the condition improver and no smoothing are evaluated in DVHs, see figure 2.2.

There is no significant difference between the solutions.

The influence of smoothing is shown in figures 2.3 and 2.4. The unsmoothed flu-

ence shows high intensity peaks, which are unrealistic in practice. With the smoothing

term enabled, an acceptable fluence is generated. But a too strong smoothing results in

parabolic fluences. The amount of smoothing applied influences the solution. No smooth-

ing easily leads to hot spots (up to 500 Gy). Too much smoothing makes it harder to

shape the fluence. A good choice for κ is between 10−3 max
v

ξv and 10−1 max
v

ξv.
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Figure 2.2: DVH comparisons between the solution obtained without smoothing (——)
and with condition improver (◦ ) for the oesophagus (a), the prostate (b) and the head-
and-neck case (c).
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Figure 2.4: Fluence profiles for different smoothing options. (a) is without smoothing,
(b) for κ = 10−3 max

v
ξv, (c) for κ = 10−2 max

v
ξv and (d) for κ = max

v
ξv. Note the

differences in scale on the intensity axes.
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2.4 Discussion

The minimization times can be significantly reduced by using the BOXCQP minimization

algorithm, compared to the gradient algorithm. These times were reduced to the same

order that is needed for the calculation of the matrices. Therefore it became interesting

to also improve the procedure to calculate the matrices.

When using gradient based methods, one has to provide an initial solution for each

minimization. The initial solution used in this paper is the zero vector, but the per-

formance can be increased by roughly a factor of 2 when using the solution f from the

previous Q and q as the initial solution.

The smoothing term is a powerful tool to embed the generation of smooth fluences in

the objective function. A good choice for the smoothing factor κ is between 10−3 max
v

ξv

and 10−1 max
v

ξv. Our experience is that κ = 10−2 max
v

ξv generally generates the best

plans while the fluence is sufficient smooth.

With multi-core processors becoming highly available for workstations in the near

feature, it is interesting to have a look at the scalability of the algorithms presented in

this paper. The BOXCQP algorithm heavily depends on the Cholesky decomposition.

This decomposition algorithm is very suitable for parallelization. Most CPU manufac-

turers offer an optimized and parallelized LAPACK (Anderson et al 1999) library, for

example in Intel’s Math Kernel Library and AMD’s Core Math Library, making a parallel

implementation easy. A simple test on a dual Xeon showed an improvement close to a

factor of 2. In the sparse matrix - sparse matrix algorithm from Gustavson (1978) each

row of the resulting matrix is calculated independently from the others, which should

be well parallelizable. However, the improvement was less than expected: 1.3 times.

Possibly, this is due to our lack of experience in multi-threaded programming. Table 2.3

shows preliminary results of the difference between the use of one or two processors when

smoothing is involved.

Because the Cholesky decomposition requires O(n3) operations, the time required

to minimize the objective function grows polynomial with increasing dimension of the

matrix A (i.e. the number of beamlets used), see figure 2.5. The time to set up the

matrices grows linearly with the dimensions of H and number of nonzero elements (see

section 2.2.3 and Gustavson (1978).

2.5 Conclusions

The quadratic dose objective function with intrinsic fluence smoothing term can be writ-

ten in a canonical quadratic form. This allows the use of a broad scala of quadratic

minimization algorithms. Apart from the generation of clinically acceptable smooth flu-

ence profiles, the smoothing term also considerably improves the condition of the involved

Hessian A, allowing the use of BOXCQP, a recently published algorithm for minimization



16 2 Fast, multiple optimizations of quadratic dose objective functions in IMRT

Table 2.3: Speed comparisons between the use of one CPU and two CPUs. While the
matrix setup times are disappointing, the minimization shows an improvement close to
a factor of 2.

Setup A (seconds) Minimization (seconds)

Sparsity ηv 1 CPU 2 CPUs Ratio 1 CPU 2 CPUs Ratio
Oesophagus 1.6% 5.8 4.4 1.3 15.6 8.1 1.9
Prostate 1.4% 5.9 4.4 1.3 8.7 4.6 1.9
Head-and-neck 5.2% 23.6 17.7 1.3 77.9 40.3 1.9
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Figure 2.5: Time required to minimize the objective function using BOXCQP for different
dimensions of the matrix A by using 1 (△) and 2 (▽) processors. The tail is magnified
in the top-left part of the figure.
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of a quadratic objective function.

For the clinical cases studied in this paper, BOXCQP is 5 − 37 times faster than

the gradient method. Parallelization of BOXCQP is relatively easy and very effective in

further reducing the minimization times.
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2.A Compressed Row Storage format for sparse matrices

In this paper we use the 0-indexed Compressed Row Storage (CRS) for storing sparse

matrices. (0-indexed means that the first element in a vector has index 0.) Consider the

4× 6 sparse matrix A given in equation (2.12). This matrix has 8 nonzero elements and

is therefore 33% sparse:

A =


0 0 0 5 0 9

9 0 3 2 0 0

0 0 0 0 0 0

0 9 2 0 0 6

 . (2.12)

This matrix can be written in CRS using two pointer lists (integer) IA and JA and a

value list (real) AN :

IA =


0 2 5 5 8

,

JA =


3 5 0 2 3 1 2 5

, (2.13)

AN =


5 9 9 3 2 9 2 6

.

Each entry in IA represents a row of the matrix and points to the starting position for

the column indices in JA. AN holds the corresponding values of the nonzero elements.

The vertical delimiters indicate the rows in the matrix. For example, the elements for

the second row in the matrix A are indexed in JA from index IA(1) → (IA(2)− 1). So

JA(2 → 4) holds the column positions for the elements in the second row (column indices

0, 2 and 3). The corresponding values for these elements are stored in AN(2 → 4): 9, 3

and 2 respectively.

Vectors are best stored as row vectors: the row pointer list becomes superfluous.
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2.B Algorithm for calculating Z = HTQ for sparse matrices

% Definitions:

IH, JH, HN pointer lists for matrix H (input)

JQ, QN pointer lists for vector from the diagonal of Q (input)

IZ, JZ, ZN pointer lists for matrix Z (output)

nzmQ, nzmZ number of nonzeros in Q and Z respectively

N number of rows in Z and columns in H

% determine the number of nonzeros in each column of Z

IZ(0→ N) = 0

nzmZ = 0

do IP = 0→ nzmQ− 1

JP = JQ(IP )

do I = IH(JP )→ IH(JP + 1)− 1

J = JH(I) + 2

if J ̸= N then

IZ(J) = IZ(J) + 1

endif

nzmZ = nzmZ + 1

enddo

enddo

% initiate row pointer list

IZ(0→ 1) = 0

if N > 1 then

do I = 2→ N

IZ(I) = IZ(I) + IZ(I − 1)

enddo

endif

% transpose H and perform the multiplication with Q

do IP = 0→ nzmQ− 1

I = JQ(IP )

QNV = QN(IP )

do JP = IH(I)→ IH(I + 1)− 1

J = JH(JP ) + 1

K = IZ(J)

JK(K) = I ←4

ZN(K) = HN(JP ) ∗QNV

IZ(J) = IZ(J) + 1

enddo

enddo

4Statement missing in the original publication.
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Abstract

For IMRT, the goal is to generate fluence maps such that the dose distribution

satisfies the given constraints. This is achieved by optimizing an objective func-

tion, in which the OARs are weighted against each other and the PTV. In clinical

planning, the weighting factors are adapted in a lengthy, manual trial-and-error

process. This approach, using volume-wide importance factors, can be improved

by individual voxel-dependent importance factors. In this paper we present a two-

step algorithm that automatically adapts these voxel-dependent importance factors

for dose-volume and maximum-dose constraints. The constraints are divided into

different sets with different priorities. This allows meeting important constraints

prior to meeting less important constraints. The resulting dose distributions are

highly conformal.
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3.1 Introduction

For IMRT, the goal is to generate fluence maps for each beam such that the dose distribu-

tion satisfies certain constraints, usually dose-volume or maximum-dose. Traditionally,

volumes of interest are weighted against each other by use of volume-wide importance

factors. By assigning the PTV a higher importance than the organs at risk, the objec-

tive of giving the PTV its prescribed dose outweighs the desired zero dose in the OARs.

However, the solution heavily depends on the choice of these volume-wide importance

factors. Generally, manual adaptation is a lengthy trial-and-error process.

A new approach is the use of voxel-dependent importance factors (Cotrutz & Xing

2002). This provides more local control over the dose distribution. In this paper, an

inverse planning algorithm is presented that is based on voxel-dependent importance

factors that are automatically adapted. The constraints are prioritized to ensure correct

PTV dosage and maximum sparing of important OARs, at the expense of less important

OARs. With this approach it is also possible to obtain highly conformal dose distribu-

tions.

3.2 Methods and materials

To meet the imposed constraints a two-step algorithm is used. In the first step beam

profiles are optimized according to a quadratic objective function, with the condition

that the fluence is non-negative. In the second step, the result is evaluated and accord-

ing to violated dose-volume or maximum-dose constraints, the voxel-coefficients for the

objective function are adapted, and the first step is run again. This process is repeated

until all the constraints are satisfied, or for a maximum number of iterations.

3.2.1 Objective function

The relation between the dose and the fluence (represented as a vector of beamlets) is

linear and can be written as a matrix-vector product d = Hf . The matrix H is the dose

deposition matrix composed of the distribution vectors of all beamlets and is stored as a

sparse matrix to reduce memory usage and increase speed when computing matrix-vector

or matrix-matrix products. The quadratic objective function used in the beam profile

optimization can be written as follows (Breedveld et al 2006):

s(f) =

v∈V

ξv(Hf − dp
v)

T η̃v(Hf − dp
v) + κ(Mf)T (Mf), f ≥ 0. (3.1)

This function consists of two terms: a dose objective term and a smoothing term. The

first term records for each voxel in a volume v the difference between the attainable dose

Hf and the prescribed dose dp
v, which is kept constant for all voxels in a certain volume,

usually the prescribed dose for the PTV, and 0 for the organs at risk. The diagonal
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matrix η̃v contains the voxel-dependent importance factors. The different volumes of

interest (representing structures) v ∈ V are weighted by volume-wide importance factors

ξv.

The second term is the smoothing term, regulated by a smoothing factor κ. This

term encourages the fluence to be smooth. The product Mf is a discretization of the

Laplacian (second derivative) of the fluence f .

3.2.2 Beam profile optimization

Equation 3.1 can be written in canonical form:

s(f) =
1

2
fTAf + fT b+ c, (3.2)

where:

A = HTQH + κS, b = HTq, c =

v

ξv(d
p
v)

T η̃vd
p
v, (3.3)

Q = 2

v

ξv η̃v, S = 2MTM, q = −2

v

ξv η̃vd
p
v. (3.4)

The advantage of this formulation is that the calculation of the score requires only

a few matrix-vector computations and that there are many methods available for mini-

mizing this function. The most time consuming computation is that of the first term of

matrix A. We have developed an efficient sparse matrix algorithm to compute Z = HTQ

by only transposing the rows of H if the corresponding element on the diagonal of Q

is nonzero. The number of computations scales linearly with the number of nonzero

elements on the diagonal of Q.

An IMRT problem using an objective function similar to equation 3.1 without the

smoothing term is usually ill-posed because it is possible to obtain nearly identical dose

distributions with different fluence maps (Alber et al 2002b). Without precautions the

resulting fluence will contain high frequencies due to the numerical noise in the problem.

The numerical degeneracy of a matrix depends on the condition number, which is the ratio

between the largest and smallest eigenvalue. By adding a well-conditioned matrix (such

as the identity matrix or Laplacian) the smallest eigenvalue increases, so the condition

decreases, which is favourable.

The Hessian (matrix A in equation 3.2) is positive definite, so minimizing s(f) under

the condition that f ≥ 0 can be solved by any convex quadratic minimization algorithm.

Our algorithm of choice is BOXCQP (Voglis & Lagaris 2004) because this algorithm is

easy to implement and faster than most quadratic programming algorithms. Further-

more it uses the Cholesky decomposition which is suitable for parallelization on SMP

(symmetric multiprocessors) computers. The average speed-up when using 2 CPUs is
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Figure 3.1: Flow diagram of the two-step voxel-coefficients optimization.

over 90%.

3.2.3 Optimization of the voxel-coefficients

After the first beam profile optimization, the result is evaluated and the the voxel-

dependent importance factors ηv (the voxel-coefficients) are adapted according to the

violated constraints. A flow diagram of this algorithm is depicted in figure 3.1.

The constraints are divided into different constraint sets Ck, where k is a priority

index. For example, the minimum PTV dose is usually put into C1, because irradiating

the PTV is the most important objective. The maximum dose in the PTV will usually

be in C2, and the organs at risk in C3, C4, . . . (see table 3.1). In the second step of the

optimization, the voxel-coefficients ηv are adapted only for the constraints in the first set

Ck in which one or more constraints are violated.

Table 3.1: Constraint list for the rectum case with a prescribed dose of 44.65 Gy. Five
constraint sets are used. The smaller k, the higher is the importance of meeting that
particular constraint.

volume type objective critical Ck

PTV DV 100% 42.42 Gy 1
PTV Max 47.78 Gy 2
Body Max 47.78 Gy 2
Bowel DV 25% 35 Gy 3
Bladder DV 10% 40 Gy 3
Colon DV 8% 40 Gy 3
Bowel DV 37% 20 Gy 4
Bladder DV 26% 20 Gy 4
Colon DV 14% 20 Gy 4
Body DV 16% 30 Gy 5
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To select the voxels of which the coefficient is adapted (i.e. increased), the dose of the

particular volume is sorted in ascending order, see figure 3.2 (Bortfeld et al 1997). For a

maximum-dose constraint violation, a subset of the voxels exceeding the maximum-dose

are adapted from high-dose to low-dose.

A dose-volume constraint requires a different approach. To lower a dose-volume

value the voxels exceeding the critical dose are to be minimized. This can be achieved

by increasing the voxel-coefficient of the voxels whose dose just exceeds the critical dose.

This is depicted in the right part of figure 3.2 and visualised in figure 3.3.
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Figure 3.2: One dimensional example of the selection of voxels for adaptation of the
(voxel-dependent) importance factor. The dose distribution (left) is sorted in ascending
order (right). The first voxel exceeding the critical dose Dc is 16. For an OAR, the coef-
ficient of voxels 16, 5, 6, . . . are adapted. For a PTV voxels 4, 17, 3, . . .. If the coefficients
are adapted because of a maximum-dose constraint violation, the voxels 10, 11, 9, . . . are
adapted.

One of the problems with this two-step approach is that the adaption of the voxels-

coefficients does not have a direct relation to the criteria. It is not possible to predict

the result of increasing the coefficient for a single voxel. For the maximum-dose voxel-

adaption algorithm, experience learned that increasing the coefficient of the top 20% of

the voxels violating the maximum-dose constraint by 0.3 proofs to be a good balance

between decreasing the maximum-dose in the volume and over-emphasizing the voxels.

For the dose-volume voxel-adaption algorithm, the coefficient of the first 20 voxels violat-

ing the constraint is increased by 1, unless there are less voxels violating this constraint.

These settings result in a smooth convergence.

3.3 Results and discussion

The algorithm is demonstrated for a rectum cancer case. The prescribed dose is 44.65 Gy

(19 fractions of 2.35 Gy) and the patient is treated with four 18 MV beams and one
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Figure 3.3: 2D example of voxel selection for voxel-coefficient adaption. The isodose line
belongs to the critical dose Dc for the OAR. To reduce the amount of voxels exceeding
the critical dose, the value of the voxel-coefficients of the voxels in the shaded area is
increased. The result is that the isodose line moves closer to the PTV.

6 MV PA beam. 2297 beamlets of size 0.5 × 1.0 cm are used and 234 479 voxels of

0.4 × 0.4 × 0.5 cm are considered in the patient volume. The volume-wide importance

factors (see equation 3.1) for the PTV, bowel, bladder, colon and body are chosen 100,

10, 5, 5 and 1 respectively.

The constraints used are presented in table 3.1. Irradiating the tumour is the most

important objective, so the constraint for the PTV is placed in the first constraint set

(100% of the PTV receives a dose of 95% of the prescribed dose). The maximum PTV

dose is 107% of the prescribed dose and is placed in the second constraint set, together

with the maximum allowable dose in the body tissue (excluding PTV and OARs). After

the constraints in the first two sets are met, the algorithm tries to meet the constraints

in the third set. This set contains the high dose constraints, since high dose in a volume

has a larger impact on biological damage than a lower dose. The fourth constraint set

contains constraints for the lower dose range. The reason that two DVH constraints are

used for the OARs is because the volumes are large. It turned out to be not efficient to

only lower the high dose constraints: a lot could be gained in the low dose range as well.

The last constraint on the body is to enforce more conformity and removes unnecessary

dose in the unspecified tissue.

The optimization required 41 minutes for 273 iterations on a 2.4 GHz Intel Core2

processor. The results are presented in figure 3.4. The dose is highly conformal and

100% of the PTV is irradiated within the 95%− 107% dose constraint.

One of the difficulties in inverse treatment planning is the choice of the constraints and

the corresponding importance factors. If possible, an algorithm will provide a solution

which satisfies the constraints, but not necessarily better. A lot of human interaction

would be required to find the most optimal constraints. This is a result of the multi-
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Figure 3.4: Left figure shows location of the volumes and the 80%, 90% and 95% isodose
lines. The beams are placed at 85, 155, 180, 205 and 275 degrees. Right figure shows the
dose-volume historgram.

criteria origin of the problem. In an upcoming paper we will present an algorithm that

automatically finds the most optimal (i.e. Pareto optimal) constraints for an inverse

planning process.

The time required for this optimization could be further reduced by using a parallel

implementation, as mentioned in section 3.2.2.

3.4 Conclusion

In this paper we have presented an algorithm that effectively adapts voxel-dependent

importance factors, used in combination with a quadratic objective function. This im-

plemented two-step approach is capable of achieving highly conformal dose distributions.
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Abstract

Treatment plan optimization is a multi-criteria process. Optimizing solely on one

objective or on a sum of a priori weighted objectives may result in inferior treatment

plans. Manually adjusting weights or constraints in a trial and error procedure

is time consuming. In this paper we introduce a novel multi-criteria optimiza-

tion approach to automatically optimize treatment constraints (dose-volume and

maximum-dose). The algorithm tries to meet these constraints as well as possi-

ble, but in the case of conflict it relaxes lower priority constraints so that higher

priority constraints can be met. Afterwards, all constraints are tightened, start-

ing with the highest priority constraints. Applied constraint priority lists can be

used as class solutions for patients with similar tumour types. The presented algo-

rithm does iteratively apply an underlying algorithm for beam profile optimization,

based on a quadratic objective function with voxel-dependent importance factors.

These voxel-dependent importance factors are automatically adjusted to reduce

dose-volume and maximum-dose constraint violations.
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4.1 Introduction

Traditionally, irradiating the tumour with the prescribed dose has been the primary goal

in radiotherapy, as long as no critical damage is done to the OARs. Nowadays, with

better planning and treatment tools available, optimal sparing of OARs has also become

a major goal. One of the difficulties in plan optimization is that feasible solutions may

heavily, and rather unpredictably, depend on the selected objectives and constraints, and

their relative weights. In clinical practice, dosimetrists do usually optimize constraints,

objectives, and/or weights in a time-consuming interactive trial-and-error process, to

find some acceptable compromise. Often constraints are implemented as objectives and

optimized in a weighted sum function, making it impossible to make a sharp trade-off

between objectives without violating constraints. Multi-criteria optimization (or multi-

objective optimization) aims at providing tools to steer this process. One approach

includes generation of sets of Pareto efficient solutions (Cotrutz et al 2001, Craft et al

2005, 2006, Halabi et al 2006, Hoffmann et al 2006, Küfer et al 2005, Lahanas et al

2003).

In this paper, a novel approach to multi-criteria optimization is presented. This

algorithm maximizes or minimizes objectives subjected to constraints. An objective is

implemented as a soft constraint, a constraint which is allowed to be violated and adapted

by the algorithm. (To distinguish normal constraints from soft constraints, constraints

which are not allowed to be violated are called hard constraints.) The objectives are

selected and prioritized a priori by the radiation oncologist and grouped together with

the (hard) constraints to a constraint priority list. Soft constraints with a low priority

may be automatically relaxed to meet higher priority or hard constraints (e.g. the volume

allowed to receive more than the critical dose is increased for a dose-volume constraint).

Soft constraints may also be tightened where possible. Finally, for each patient a single

plan is generated with a set of constraints that just avoids constraint violations; tightening

any of the final constraints will result in at least one violation for the other constraints.

The final plan meets all hard constraints and the soft constraints are met as well as

possible.

The proposed algorithm for multi-criteria optimization iteratively applies an in-house

developed algorithm for beam profile optimization. With the latter algorithm, profiles are

optimized using voxel-dependent importance factors in a quadratic dose objective func-

tion. Optimization includes automatic adjustment of these factors in order to reduce

dose-volume and maximum-dose constraint violations. An algorithm for fast minimiza-

tion of quadratic functions has recently been published (Breedveld et al 2006), and is

applied here. Despite that the multi-criteria optimization algorithm is only applied to

our in-house developed beam profile optimization, we believe that the algorithm can
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be applied to a broader range of algorithms for constrained optimization, including, for

example, aperture based optimization.

To weigh the relative importance of OARs and the tumour in inverse planning for

IMRT, a volume-wide importance factor can be used for each volume (Bortfeld et al

1990, Brahme 1995, Spirou & Chui 1998, Wu & Mohan 2000). Because the desired dose

is more easily delivered to some voxels than to others, the volume-wide importance factor

can be refined to voxel-dependent importance factors. This provides more local control

over the dose (Cotrutz & Xing 2002, Wu et al 2003). The weights of the voxels can be

chosen in advance by looking at the depth and position of the organs (Shou et al 2005)

or adapted in an iterative procedure (Cotrutz & Xing 2003, Scherrer et al 2005, Yang &

Xing 2004).

Recently, Wilkens et al (2007) and Jee et al (2007) have also studied the use of

constraint priority lists, using different optimization schemes and different underlying

optimization algorithms. These papers also describe the advantage of goal program-

ming/lexicographic ordering in treatment planning. Wilkens et al formulate a four-step

approach which is used as a class solution for treating head-and-neck patients. The fourth

step incorporates a non-clinical goal: smoothing of the fluence. In our approach, profile

smoothing is an integral part of the optimization procedure, accounted for by a dedi-

cated term in the objective function. Jee et al describe the application of lexicographic

ordering with four levels of priority, applied to a prostate and a head-and-neck case. For

the prostate case they also show the impact of changing the priorities of PTV irradiation

and maximum dose to the rectum wall.

One of the main differences between the approaches of Wilkens et al and Jee et al

and our approach is that their objectives are handled one by one, and in a predefined

order. Our approach first tries to find a solution, fulfilling all constraints. If that is

not possible, limiting (lower-priority) constraints are relaxed. However, after relaxation,

the primary goal of the algorithm becomes meeting all initial constraints (as prescribed

by the radiation oncologist). This process starts with the highest priority constraints

that have been relaxed. If, for example, the dose in the parotid glands is within the

constraints, it may be more important to first lower the dose in the oral cavity. If all

the initial constraints are met (or as well as possible), an attempt is made to tighten

constraints below the initially prescribed levels, again starting with the highest priority

constraints.

4.2 Methods and materials

4.2.1 Global description of optimization routines

The proposed multi-criteria approach is based on algorithms for optimization of (1) beam

profiles, (2) voxel weights and (3) imposed treatment constraints. To define the problem,
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tumour dose prescriptions, dose-volume and maximum-dose constraints, a constraint

priority list, and volume-wide importance factors have to be set. This defines the planning

protocol. Ideally, a single protocol can be applied to patients with similar tumour types.

For the beam profile optimization a quadratic objective function is used to minimize

the difference between the desired or prescribed doses in voxels and the attained doses.

Each voxel has a coefficient η. The higher the coefficient, the more likely it becomes for

that voxel to meet its ideal dose objective, either 0 Gy dose for organs at risk, or the

prescribed dose for the tumour.

The quadratic objective function used has been discussed thoroughly in Breedveld

et al (2006):

s(f) =

v∈V

ξv(Hf − dp
v)

T η̃v(Hf − dp
v) + κ(Mf)T (Mf).

The first term is the quadratic dose objective, modified for use with voxel-dependent

importance factors. Hf is the dose resulting from the fluence f , and dp
v is the dose

objective for voxels in volume v (from the set of all volumes V). The volume-wide im-

portance factors ξv are still used as a priori weighting between volumes. The vector of

voxel-dependent importance factors ηv (which will be abbreviated as the voxel-coefficient

vector η for readability) is written as a diagonal matrix η̃v. In this approach, the dimen-

sion of the coefficient vector equals the number of patient voxels. Only the subset of the

coefficients corresponding to the volume v can be unequal to zero. Because each volume

has its own voxel-coefficient vector, one voxel (in the patient space) can belong to more

than one volume (i.e. volumes can overlap). The second term κ(Mf)T (Mf) represents

the squared second derivative of the fluence and ensures a smooth fluence.

Two types of constraints are used in this paper: dose-volume and maximum-dose

constraints. Each constraint is put into a set Cn according to the priority for meeting

the constraint level. Constraints in set C0 are hard constraints and no relaxation is

allowed. The other constraints are soft constraints. Constraints in set C1 are the first

ones considered for tightening and the last ones to be relaxed, etc. The sets Cn represent

the constraint priority list. Typical examples are given in tables 4.1 and 4.2.

In the case of constraint violations, involved voxel-coefficients are adapted (sections

4.2.2.1 and 4.2.2.2) and a new fluence is calculated by the beam profile optimization.

This procedure, designated as coefficients optimization, is repeated until no constraint is

violated, or for a maximum number of iterations (section 4.2.2).

The four-stage constraint optimization is an iterative multi-criteria optimization mas-

tering the coefficients optimization, based on the constraint priority list. If constraints

are too tight and the coefficients optimization cannot find a feasible solution within a

fixed number of iterations, constraints are first relaxed. When a feasible solution has



32 4 A novel approach to multi-criteria inverse planning for IMRT

been found with relaxed constraints, a process is started to tighten constraints without

exceeding any of the other constraints. If no constraints can be tightened anymore, the

optimization is terminated (section 4.2.3).

4.2.2 Coefficients optimization

The coefficients optimization adapts the voxel-coefficient η for volumes with violated

constraints by increasing the coefficient of one or more voxels. If the minimum dose

constraint (mimicked by a dose-volume constraint with 100% coverage objective) for one

or more PTVs is violated, only the voxel-coefficients for these constraints are adapted.

Otherwise voxel-coefficients for the other violated constraints are adapted. Note that the

coefficient of a voxel can be increased several times in multiple iterations (section 4.2.3,

figure 4.3).

It is also possible to optimize the constraints in prioritized order in this part of

the optimization, as was done in Breedveld et al (2007b). The drawback is that the

constraints will not be relaxed or tightened, which may lead to a suboptimal result

or even present an infeasible problem. With a multi-criteria optimization algorithm as

presented in section 4.2.3, also prioritizing the constraints in this part of the optimization

is superfluous.

After each adaption of voxel-coefficients, the coefficients optimization performs a

beam profile optimization (Breedveld et al 2006) and re-evaluates the constraints. If

no constraints have been violated, or after a maximum number of iterations, the coeffi-

cients optimization is terminated.

4.2.2.1 Adaptation of voxel-coefficients for dose-volume constraints.

To reduce the high dose volume in the OAR, voxels exceeding the critical dose need

to have their doses reduced. Usually, voxels with a high dose are closer to the PTV.

Furthermore, it is easier to decrease the dose in voxels with doses close to the critical

dose than voxels with a higher dose. Therefore voxel-coefficients are increased for OAR

voxels that just exceed the critical dose Dc (figure 4.1).

The selection of voxels to be adapted is illustrated in more detail in figure 4.2 for a

one-dimensional example. The voxels are first sorted in ascending order by dose. For

the voxels exceeding the critical dose Dc, some voxel-coefficients are increased. When

applied to the PTV, the voxels are adapted from the high-dose region just below Dc

to the low dose region. Bortfeld et al (1997) used the same idea applied to a penalty

function. In the approach of Cotrutz & Xing (2002), dosimetrists have to manually select

areas in the DVH that need improvement.
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Figure 4.1: 2D example of voxel selection for iterative voxel-coefficient adaption. Dc is
the critical dose for the OAR. To reduce the amount of voxels exceeding the critical dose,
the value of the voxel-coefficients of the voxels in the shaded area is increased. The result
is that the Dc isodose line moves closer to the PTV, because dose delivery in the shaded
area is penalized.
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Figure 4.2: One-dimensional examples of voxel selection for voxel-coefficients adaption.
The dose distribution (left) is first sorted in ascending order (right). The first voxel
exceeding the critical dose Dc of the dose-volume constraint is 16. For an OAR, the
coefficients of voxels 16, 5, 6, . . . are then adapted. For a PTV voxels 4, 17, 3, . . .. In the
case of a dose-maximum constraint Dm, voxels 10, 11, 9, . . . are adapted.
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4.2.2.2 Adaptation of voxel-coefficients for maximum-dose constraints.

A similar technique is applied to suppress high-dose regions: the coefficients for a subset

of the voxels receiving a dose larger than Dm are adapted, starting with the voxels

receiving the highest doses (see also figure 4.2).

4.2.3 Constraint optimization

The coefficients optimization may be used to generate a solution that meets a set of

constraints, but it fails to come up with an alternative if the constraints are too tight.

On the other hand, if the constraints are too loose, the solution found is sub-optimal,

unless the constraints are set just tight enough.

In our multi-criteria approach, constraint optimization based on the initial constraints

and the constraint priority list is used to generate a plan with the property that improving

a single constraint is only possible if at least one other constraint is violated.

The constraint optimization is a four-stage process (figure 4.3). Each stage calls

the coefficients optimization with a maximum number of iterations (N1, . . . , N4 for

each stage). The coefficients optimization is an evolutionary algorithm, i.e., the voxel-

coefficient vector is updated in each iteration. This property is also used in the constraint

optimization because the solution of a slightly different constraint set (i.e. one constraint

is more tight) lies in the proximity of the current solution. This allows a fast search

through the constraint space because it is not required to start from scratch in each

iteration of the constraint optimization.

4.2.3.1 Stage 1

Before the first stage starts, a single optimization is done of the quadratic objective

function with voxel weights 1 for the PTV(s) and 0 for all OAR. This results in an

initial dose distribution. Then the first stage is started and a maximum of N1 iterations

are done with the coefficients optimization, subjected to the initial constraints. This

populates the voxel-coefficient η with ‘problematic’ voxels.

4.2.3.2 Stage 2

If a plan satisfying all constraints is not found in the first stage, violated soft constraints

are relaxed in the second stage. The constraints in the set Cn with the lowest priority

are selected for relaxation first, if there are one or more constraints violated in that set.

A constraint is relaxed by setting it to the upper rounding of the current solution, so

if the initial objective is 40% and the current solution is 43.21%, the new objective for

the constraint is set to 44%. Then N2 iterations with the coefficients optimization are

performed to search for a solution. These iterations are also done if no constraints are

suitable for relaxation (e.g. only the hard constraints are not satisfied). The second

stage is repeated until a plan is found that fulfils all hard constraints and all (relaxed)
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Figure 4.3: Flow diagram of the four-stage constraint optimization. The first stage
populates the coefficient vector with problematic voxels. If soft constraints cannot be
met, they are relaxed in the second stage. The third stage tries to undo this relaxation,
by tightening relaxed constraints up to the initial constraint levels. Finally, the fourth
stage tightens soft constraints until no further tightening of any of them is possible.
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soft constraints. Here it is assumed that there are no conflicting hard constraints.

4.2.3.3 Stages 3 and 4

In these stages, the stage 2 plan is further optimized by tightening soft constraints one by

one, so a plan is generated such that further tightening of one constraint will always lead

to a violation of at least one other. In stage 3, attempts are made to tighten constraints

that were relaxed in stage 2 with the ultimate goal to reach the initial values, i.e., to

undo the relaxations. The first constraints to be considered are in the highest priority

constraint set (C1). If after a maximum of N3 iterations of the coefficients optimization

all constraints are met, including the tightened constraint, the tightened objective for

the latter is kept. Otherwise, the constraint is reset to its previous objective, the steps

of the coefficients optimization are undone, and the constraint does no longer participate

in the constraint optimization, and becomes virtually a hard constraint for the rest of

the constraint optimization. In this procedure, a constraint is tightened by rounding off

to the lower integer, so if the current solution has a value of 43.21%, the new objective

for this constraint will be 43%. For dose-volume constraints, this results in minimizing

the number of voxels receiving more than the critical dose (Halabi et al (2006) also uses

this concept in a different problem definition).

As mentioned, stage 3 aims at undoing the relaxations done in stage 2 as much as

possible, with the final goal to generate a plan that fulfils to all initial constraints. Stage

4 takes this a step further. In a similar procedure as for stage 3, constraints are tightened

further with an attempt to make them more strict than the initial objectives. Important

to note is that in stages 3 and 4 tightening of important constraints may result in less

favourable results for less important constraints. However, the tightening will never result

in exceeding any of the (current) constraint levels.

4.2.4 Calculations

The algorithm used to calculate the dose deposition matrixH is from Storchi & Woudstra

(1996) and uses inhomogeneity corrections for air cavities and a scatter radius of 3 cm.

The Storchi and Woudstra algorithm for dose calculation is comparable to the one used

in the CadPlan treatment planning system. The bixel grid size is 5 × 10 mm2 and the

voxel grid size is 4×4×5 mm3 for all patients. The numbers of iterations performed with

the coefficients optimization are (N1, N2, N3, N4) = (50, 1, 30, 20). Computations were

performed in Matlab 7 on a 2.4 GHz Intel Core2 workstation running Gentoo Linux.

4.3 Results

The proposed method for multi-criteria inverse planning has been applied to patients suf-

fering from rectum cancer and oropharyngeal cancer, and to a complicated head-and-neck

case. For rectum and oropharyngeal cancer it has been demonstrated that the proposed
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Table 4.1: Constraints and priorities for treatment of rectal cancer. Dose-volume con-
straints are indicated by DV.

Constraint Critical Constraint
No Volume type dose Objective set
1 PTV DV 42.42 Gy 100% 0
2 PTV Max 47.78 Gy 0
3 Body Max 47.78 Gy 0
4 Bowel DV 35 Gy 20% 1
5 Bladder DV 40 Gy 40% 2
6 Colon DV 40 Gy 20% 2
7 Bowel DV 20 Gy 50% 3
8 Bladder DV 20 Gy 75% 3
9 Colon DV 20 Gy 30% 3

10 Body DV 30 Gy 40% 4

approach can be used to generate class solutions for patients with the same tumour type.

To find a constraint list which performs well as a class solution, different lists were tried

and their results and performance were compared for four patients. The final constraint

list was used on four other rectum patients to test the general performance. All gener-

ated plans are compared to the corresponding clinically applied plans made in CadPlan

(referred to as the clinical plan). Here results are presented for the rectum cases and for

the complex head-and-neck case.

4.3.1 Rectum

All patients were to be treated with a prescribed dose of 44.65 Gy (19 fractions of

2.35 Gy). The constraint list (table 4.1) has been tuned to produce desired results on

four patients by defining the dose-volume points and the subdivision into constraint sets.

The importance factors for the PTV, bowel, bladder, colon and body have been chosen

to be 100, 10, 5, 5 and 1, respectively. To make a fair comparison, the beam directions

and energies are chosen identical to the ones used in the clinical plan: five beams of

18 MV around 85, 155, 180, 205 and 275 degrees, where sometimes the beam for 180

degrees was chosen 6 MV . The performance of this protocol was verified for four other

patients.

For patient 3, the resulting dose distribution is displayed in figure 4.4. It shows that

the algorithm is capable of generating highly conformal dose distributions. The dose-

volume histograms in figure 4.5 show that our algorithm for multi-criteria optimization

does not only improve OAR dose volume histograms, but also the PTV dose homogeneity

(avoidance of hot spots).

4.3.2 Complex head-and-neck case

An extensive nasopharyngeal cancer case was selected to investigate the value of the

developed algorithm when a large number of structures are involved. The PTV starts
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Figure 4.4: Volumes and dose distribution for the third rectum case.

halfway the eyes, branches into two neck regions (right neck is positive) and ends in

front of the lung tops (level IV). The PTV length is approximately 28 cm and the total

volume is 800 cc. The optical nerves and optic chiasm do partially overlap with the

primary tumour/positive neck.

The constraint list used is shown in table 4.2, containing 17 constraints for the 16

volumes involved. The whole PTV should receive at least 95% of the prescribed dose

of 46 Gy (43.7 Gy, hard constraint). The volume of the gross tumour (PTV70) should

receive at least 66.5 Gy. However, because at the same time, the organs at risk have

to be protected by hard (maximum-dose) constraints, the criterion to deliver 66.5 Gy to

the PTV70 has been relaxed into a soft constraint with priority 1.

The volume-wide importance factors are 100 for the 70 Gy PTV, 50 for the 46 Gy

PTV, 10 for the sella, optic chiasm, optical nerves and parotid gland, 5 for the brainstem,

pons, eyes, oral cavity and pharynx/trachea and 1 for the myelum, lung tops and body.

The optimized plan is compared to the clinical plan, which took experienced planners 2

weeks to achieve with 16 IMRT and wedged beams. Our setup uses nine equi-angular

6 MV beams.

The results are presented in table 4.2 and figure 4.6. Table 4.2 shows that using

the developed multi-criteria approach all hard constraints could be met. In contrast to

the clinical plan, with the multi-criteria approach the full PTV46 could be irradiated

with the critical dose. Because of this improved tumour coverage, the mean dose in the

parotid gland is slightly higher than in the clinical plan (27.0 Gy mean dose in stead of

25.6 Gy in the clinical plan). The dose in the oral cavity is significantly lower than in

the clinical plan: the mean dose reduces from 55.5 Gy to 30.2 Gy.

Figure 4.7 shows the convergence of some dose-volume constraints. The first stage

ends after 50 iterations without finding a plan meeting all hard constraints. This requires

another 240 iterations (stage 2). Note the decrease in coverage of the 70 Gy PTV which

grows to 100% in the first iterations, but decreases to 93% afterwards. The third stage,
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Figure 4.5: Dose-volume histograms for the eight rectum patients. Histograms are pre-
sented for the clinical IMRT plan (dashed lines) and for the plan generated with the
developed method for automated multi-criteria optimization.
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trying to undo the constraint relaxations of stage 2, starts after 290 iterations (indicated

by (a)). Between (a) and (b), the algorithm minimizes the dose-volume constraints

for the brainstem and pons (not shown in figure). After their initial objective of 0%

overdose is met, the dose-volume constraint for the parotid gland is tightened (b) until

its initial objective of 50% (c). The oral cavity, pharynx/trachea and lung tops are all

in constraint set 4. Since the dose-volume constraint for the lung tops is not violated,

only the constraints for the oral cavity and pharynx/trachea are tightened (in turn)

until the initial objectives are met, (d) and (e) for the pharynx/trachea and the oral

cavity, respectively. Now that all initial constraints have been met (as far as the hard

constraints allow), stage 4 is initiated. Firstly, the constraint for the parotid gland is

tightened which reaches its minimum value after a small reduction (f). Then the oral

cavity, pharynx/trachea, and also the lung tops are considered. When no tightening is

possible anymore, the algorithm tightens the constraints in the last set, containing only

the body/unspecified tissue (g).

A direct comparison between the clinical plan and the automated plan is not possible

for this case. This case is too extreme to be handled efficiently by CadPlan. There are

16 volumes where CadPlan can only handle 10 at a time in an optimization, so it was

not possible to minimize all constraints simultaneously. Further, the 46 Gy plan and

the boost plan were planned separately and combined later. The beam setup differed

as well (16 IMRT and wedged beams in the clinical plan compared to 9 in our plan).

CadPlan also uses a weighted sum function for optimization. A weighted sum function is

inefficient in making sharp trade-offs (e.g. 100% tumour coverage and minimizing dose in

a volume close to the PTV) because it mixes objectives with constraints. These reasons

explain why it was possible to improve the mean dose in the oral cavity by 15 Gy.

4.3.3 Constraint list sensitivity

The final result depends on the initial objectives of the constraints and the constraint

set they are assigned to. In this section we describe how the outcome of the algorithm

reacts to the chosen criteria. Results are shown for the parotid gland and oral cavity of

the complex head-and-neck case in figure 4.8.

When only the priorities for the parotid gland and oral cavity (3 and 4, respectively)

are interchanged, the final dose-volume histograms are almost unchanged. When in the

third stage of the constraint optimization the imposed objective of 50% is reached for

both the parotid gland and oral cavity, the constraint on the parotid gland does not

leave much space to improve the dose to the oral cavity. If the imposed objective for the

parotid gland is increased (relaxed) to 70%, the oral cavity is much better spared.

When the realized objectives of the final solution were used as imposed objectives

for a new optimization, the resulting dose distributions were virtually identical to the
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Table 4.2: Constraints, priorities and results for the complex head-and-neck case. PTV46
is the collection of the primary tumour, positive neck and elective nodes. PTV70 is the
primary tumour and the positive neck.

Clinical
Constraint Critical Realized Mean realized Constraint

No Volume type dose Objective objective dose objective set
1 PTV46 DV 43.7 Gy 100% 100.0% 96.5% 0
2 Sella Max 55 Gy 55.0 Gy 52.6 Gy 0
3 Myelum Max 45 Gy 44.8 Gy 51.6 Gy 0
4 Optic chiasm Max 50 Gy 50.0 Gy 52.5 Gy 0
5 Optical nerve (L) Max 55 Gy 55.0 Gy 47.3 Gy 0
6 Optical nerve (R) Max 55 Gy 52.0 Gy 48.5 Gy 0
7 Eye (L) Max 35 Gy 35.0 Gy 42.9 Gy 0
8 Eye (R) Max 35 Gy 35.0 Gy 42.5 Gy 0
9 PTV70 Max 74.9 Gy 74.8 Gy 78.9 Gy 0
10 PTV70 DV 66.5 Gy 100% 93.2% 89.1% 1
11 Brainstem DV 55 Gy 0% 0.0% 1.2% 2
12 Pons DV 55 Gy 0% 0.0% 2.9% 2
13 Parotid (L) DV 26 Gy 50% 46.1% 27.0 Gy 39.2% 3
14 Oral cavity DV 26 Gy 50% 48.0% 30.2 Gy 100.0% 4
15 Pharynx/trachea DV 40 Gy 40% 24.2% 34.5 Gy 44.3% 4
16 Lung tops DV 18 Gy 20% 6.5% 6.5 Gy 20.0% 4
17 Body DV 40 Gy 90% 18.9% N/Aa 5
a Definition of (external) body contour differs between CadPlan and our algorithm.

0 10 20 30 40 50 60 70 80 90
0  

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

 

 

PTV70

PTV46

parotid

oral cavity

pharynx/trachea

v
o

lu
m

e
 (

%
)

dose (Gy)

Figure 4.6: Left figure shows a CT slice with isodose lines for doses prescribed to PTV70
(66.5 Gy), PTV46 (43.7 Gy), and the 10 Gy isodose line. Right figure shows the dose-
volume histograms for some interesting volumes, where the dashed lines indicate the
results of the clinical plan.
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in the text.

previous distributions. This is an indication that the algorithm is robust, because when

different starting positions (constraint lists) are used, the same result is obtained. None

of the cases could be significantly improved, which demonstrates the optimality of the

constraints.

But interchanging priorities or relaxing imposed objectives does not guarantee that

another solution can be obtained, when the minimum-dose for the PTV is kept as a

hard constraint. The physiology of the patient must also allow the desired trade-offs.

For example, for the rectum patients, interchanging the priorities for the bowel and the

colon, or changing the imposed objectives, does not permit much difference in the final

solution: this is because the volumes are physically correlated. The placement and the

number of beams used play important roles as well.

Another parameter of influence is the volume-wide importance factor for each volume.

Because the voxels belonging to a certain volume are multiplied by their volume-wide

importance factor, the choice of the volume-wide importance factor plays a minor role in

the voxel-dependent approach, and mainly influences the number of iterations required

to obtain the final solution, because it influences the impact of an adapted voxel-weight.

If a volume has a large volume-wide importance factor, the effect of an adapted voxel is

large as well, and the coefficients optimization needs more iterations to obtain a solution

fulfilling all constraints. A rule of thumb for the volume-wide importance factors is

(relative) 100 for the PTV, 50 for elective glands (PTV), 5-10 for important OARs and

1 for other OARs.
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(right). The solid line is the original solution. The dashed line is solution when their
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4.4 Discussion and conclusions

We have developed an algorithm for multi-criteria inverse planning for IMRT. Input is a

constraint priority list, to be provided by the radiation oncologist. In this list, constraints

are ranked in groups, according to the priority for meeting the constraint levels. Con-

straints with the highest priority are considered hard constraints that necessarily have to

be met, i.e., they cannot be relaxed in order to improve compliance with other constraints.

In an iterative procedure, using an algorithm for optimization of voxel-dependent impor-

tance factors for the various dose-volume and maximum-dose constraints, soft constraints

are optimized so that the final list of constraints has the property that if one constraint

is tightened further, it would lead to a violation of at least one other constraint.

For the final constraints, this follows the definition of Pareto optimality. Our four-

stage constraint optimization can be seen as an implementation of the ϵ-constraint

method (Haimes et al 1971, Hoffmann et al 2006, Jee et al 2007). This method mini-

mizes a set of objectives by minimizing one objective at a time, while keeping the others

constrained. The minimum value for that objective is used as a constraint in the next

iteration(s) where another objective is minimized.

In clinical practice, the automated approach is able to reduce the workload because

it is able to come up with satisfactory plans for routine cases, where it is possible to

determine the trade-offs a priori. Of course, there will always remain cases where an

automated approach is not satisfactory. Different constraint lists have to be tried, as well

as possibly different beam setups, requiring a rerun of the optimization. For these special

cases, presenting the radiation oncologist with a set of (Pareto optimal) plans might be

more efficient. Many authors have looked into this (e.g. Craft et al (2005, 2006), Halabi
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Table 4.3: (Average) optimization statistics.
Case Time Iterations Beamlets Time per iteration
Rectum patients 47 (m) 345 2163 8.1 (s)
Complex head-and-neck case 38 (h) 1107 5293 125.2 (s)

et al (2006), Hoffmann et al (2006), Küfer et al (2005)). Our multi-criteria algorithm is

not capable of producing multiple solutions because it was designed to provide only one

solution which is within, or closest to the initial constraints, and may be even obeying

tighter constraints than initially prescribed.

For rectal and oropharyngeal cancer patients, the developed multi-criteria approach

was used for fully automated generation of class solutions. For the rectum patients,

the class solutions were superior to the clinical plans, both regarding obtained tumour

dose distributions, and with respect to OAR sparing. For the oropharyngeal cancer

patients plans were similar (data not shown), but the automated procedure was faster

and required less workload.

For violated constraints, voxel-weights are automatically adapted. Cotrutz & Xing

(2002) use a semi-automatic approach where the dosimetrist manually has to select the

part of the DVH where improvement is desired. Based on the selected areas, relevant

voxel-dependent importance factors are then adjusted, followed by a new optimization.

In this paper we have proposed a scheme for automatic adjustments of voxel-dependent

importance factors, also based on DVH. In a later work, Yang & Xing (2004) propose a

different voxel weight update scheme for automated adaption.

Some optimization statistics are given in table 4.3. The average optimization time

of 47 minutes for rectal cancer is acceptable considering that the final result is a Pareto

optimal solution and there is no human intervention. The optimization time is related

to the number of beamlets and number of soft constraints. The complex, extended

head-and-neck case with 17 constraints for 16 involved organs required almost 40 hours

of calculation time. The obtained plan is superior to the corresponding clinical plan.

Generation of the latter took two weeks of work of a highly experienced dosimetrist.
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Abstract

For multi-criteria optimization of radiation therapy treatment planning, several

methods can be used. The most widely used methods are the weighted-sum method,

in which the different treatment objectives are weighted, and constrained optimiza-

tion methods, in which treatment goals are set and the algorithm has to find the

best plan fulfilling these goals. The constrained method used in this article, the

2pϵc (2-phase ϵ-constraint) method is based on the ϵ-constraint method, which

generates Pareto-optimal solutions.

Both approaches are uniquely related to each other. In this article we will show that

it is possible to switch from the constrained method to the weighted-sum method

by using the Lagrange multipliers from the constrained optimization problem, and

vice versa by setting the appropriate constraints.

In general, the theory presented in this article can be useful in cases where a new

situation is slightly different form the original situation, as e.g. in online treatment

planning, with deformations of the volumes of interest, or in automated treatment

planning, where changes to the automated plan have to be made.

An example of the latter is given where the planner is not satisfied with the re-

sult from the constrained method and wishes to decrease the dose in a structure.

By using the Lagrange multipliers, a weighted-sum optimization problem is con-

structed, which generates a Pareto-optimal solution in the neighbourhood of the

original plan, but fulfils the new treatment objectives.



5.1 Introduction 47

5.1 Introduction

Radiotherapy treatment plan optimization is a multi-criteria problem. To optimize for

different criteria (objectives), an objective function can be used where the objectives are

weighted and summed, as with e.g. quadratic objective functions (Breedveld et al 2006,

Yang & Xing 2004) or power objective functions (Xia et al 2005).

However, determination of the optimal weighting factors for obtaining a good treat-

ment plan is not trivial. Recently, with more computing power becoming available, plans

for different combinations of weights are systematically computed in advance to obtain a

series of plans. For these plans a Pareto front is generated and the best plan is selected

through human interaction (Craft & Bortfeld 2008, Monz et al 2008).

Another approach in multi-criteria optimization is goal-programming, which is a

form of constrained optimization. In goal-programming, objectives have prioritized goals

which are to be met as well as possible (Breedveld et al 2007a, Jee et al 2007, Wilkens

et al 2007). Our algorithm is based on the ϵ-constraint method (Haimes et al 1971)

in which each objective is optimized separately, and then constrained while optimizing

the other (lower prioritized) objectives. This algorithm is extended with goals for each

priority, which we call the 2-phase ϵ-constraint or 2pϵc method. Since the solution of the

2pϵc method has the same properties of the ϵ-constraint method, the term ϵ-constraint

method is used when referenced to the final solution of the 2pϵc method.

While the approaches are substantially different, both methods (i.e. weighted-sum

and ϵ-constraint) are capable of achieving the same (Pareto-)optimal solutions. In this

article we will show the relation between these methods and show how to obtain an equiv-

alent weighted-sum problem from a solution obtained by an ϵ-constraint optimization and

vice versa.

For a unique relation between the weighted-sum and ϵ-constraint method, the objec-

tives have to be convex. Minimizing a convex function guarantees that there is only a

single minimum, and therefore the solution is guaranteed to be optimal.

In the work of Chankong & Haimes (1983b), equivalence between and requirements

for different multi-criteria methods are presented. For going from weighted-sum to ϵ-

constraint, no convexity is required (although it is up to the optimization algorithm to

find a feasible solution). However, in order to find the same solution with the weighted-

sum method from an ϵ-constraint problem, the problem needs to be convex. In this

article, we assume that all optimization problems are convex.

Convex objectives in radiotherapy are e.g. minimum/maximum dose, mean dose,

equivalent uniform dose (EUD) and logarithmic tumour control probability (LTCP) (Al-

ber & Reemtsen 2007). Dose-volume objectives are not convex. Romeijn et al (2004)

and Hoffmann et al (2008) give an overview of transformations to convexify criteria in
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radiation therapy.

A series of applications where switching between the methods is beneficial, is in auto-

mated treatment planning. The 2pϵc method has proven to perform well for automated

treatment planning (Breedveld et al 2007a). However, the planner may not be satisfied

with the result from the automated plan generation (i.e. the original plan), and wishes

to make (minor) alterations to this plan. By using the weights obtained by the 2pϵc

optimization, it is possible to generate plans in the Pareto-optimal neighbourhood of the

original plan, fulfilling the newly requested treatment constraints. One can for example

constrain an objective to a lower value, or introduce new constraints. The planner can

then choose to accept or reject the new plan (see section 5.3.4). Another example is

for daily treatment planning, where the anatomy of the patient differs slightly from the

planning CT scan.

This article is organized as follows. First the weighted-sum, ϵ-constraint and 2pϵc ap-

proaches are introduced, and the translations from weighted-sum to ϵ-constraint method

and vice versa are treated in a theoretical framework. Finally, two examples are given to

demonstrate application of this theory.

5.2 Methods

In this section we introduce the weighted-sum and ϵ-constraint method. The objectives

are denoted by fi, i ∈ {1, . . . , n} and the constraints by gj , j ∈ {1, . . . ,m}. For read-

ability, the constraints are summarized in a vector g(x), for which each element should

be ≤ 0.

5.2.1 Weighted-sum optimization

In the weighted-sum method, the objectives are weighted and summed together. Let

the weights be denoted by w = (w1, . . . , wn). The optimization problem to be solved

becomes:

minimize w1f1(x) + w2f2(x) + · · ·+ wnfn(x)

subject to g(x) ≤ 0
(5.1)

This optimization problem is solved for varying combinations of weights, building a

database of plans (Craft & Bortfeld 2008). With appropriate tools, the user can search

through this database and select the best plan (Monz et al 2008).

Note that the sum of the weights does not necessarily have to be normalized to 1,

but this is usually done because it displays the relative weights more clearly.



5.2 Methods 49

5.2.2 ϵ-constraint optimization

The ϵ-constraint method (Haimes et al 1971) optimizes one objective at a time while

keeping the others constrained. (Similar methods are goal programming and lexico-

graphic ordering, introduced in radiotherapy treatment planning by Wilkens et al (2007)

and Jee et al (2007).) This method optimizes each objective only once.

To allow for more flexibility, this method is extended to a 2-phase ϵ-constraint op-

timization (2pϵc), where a goal can be assigned to each objective. When it is possible

to minimize the dose below a certain threshold (i.e. its goal) for one objective, it is

often more desired to minimize the dose for other (lower priority) objectives first than to

directly minimize the dose for the higher priority objectives to its fullest extent directly.

For example, if the minimum mean dose for a parotid gland drops below 26 Gy (e.g.

15 Gy) it can be considered spared. In the next step, the parotid gland is then limited

to 26 Gy while minimizing the dose to a lower prioritized OAR (e.g. the submandibular

gland). Setting the constraint for the parotid gland higher than its minimum (to 26 Gy

in stead of 15 Gy), increases the probability of sparing the submandibular gland as well.

This idea was introduced in Breedveld et al (2007a) and applied to a specific opti-

mization method. Based on this idea we introduce the 2-phase ϵ-constraint method for

general use here.

The objectives and their priorities and goals are given in a prioritized list, which

we call a wish-list. Each priority contains an objective and a desired goal. So, for n

objectives, objective fi(x) has priority i and goal bi. Furthermore, the list contains

(hard) constraints g(x) which are to be met at all times. See tables 5.1 and 5.3 for

practical examples.

In the first iteration of the first phase, the objective having highest priority is opti-

mized:

minimize f1(x)

subject to g(x) ≤ 0

Depending on the result x∗, the new bound is chosen according to the following rule:

ϵi =

bi fi(x
∗)δ < bi

fi(x
∗)δ fi(x

∗)δ ≥ bi

where δ is a slight relaxation to create some space for the subsequent optimizations,

usually set to 1.03 (3%). Note that in practice this relaxation is mandatory to avoid

the optimization algorithm from stalling due to numerical problems. Despite that a

relaxation of δ = 1 + O(10−4) is often enough to prevent numerical problems, it is still
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desirable to use δ = 1.03 to prevent ending up in one of the end-points of the Pareto-curve

(see section 5.3.3).

The next optimization optimizes f2, keeping f1 constrained:

minimize f2(x)

subject to g(x) ≤ 0

f1(x) ≤ ϵ1

This is repeated for all n objectives.

In the second phase of the multi-criteria optimization all objectives which met their

goals are minimized to their fullest, while keeping all others constrained.

So, for each fi which met its goal bi solve, in order of priority:

minimize fi(x)

subject to g(x) ≤ 0

fk(x) ≤ ϵk, k ∈ {1, . . . , n} \ i

and then set ϵi = fi(x
∗)δ.

Note that this second phase resembles the original ϵ-constraint method, and therefore

the solution of the 2pϵc method has the same properties (i.e. Pareto-optimality) as the

ϵ-constraint method.

5.3 Results

In this section, some theory is introduced for the weighted-sum and ϵ-constraint methods,

and how to obtain the weights from the ϵ-constraint optimization (sections 5.3.1 and

5.3.2).

We demonstrate the relation between the 2pϵc and weighted-sum methods by a sim-

ple example in section 5.3.3. In section 5.3.4 a practical situation is demonstrated for

automated treatment planning where a plan for modified criteria is easily generated by

using the weights from the automated plan.

The optimizations were performed using YARTOS (Yet Another Radiation Therapy

Optimization Suite), an in-house developed optimization package for general non-linear

optimizations and multi-criteria optimizations. It is based on interior-point optimization

methods and tuned specially for radiotherapy optimization problems.

5.3.1 From weighted-sum to ϵ-constraint

The relation for going from the weighted-sum method to the ϵ-constraint method is given

by the following theorem (Miettinen 1999):
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Theorem 1 Let x∗ be the solution of a weighted-sum optimization (5.1). Because the

optimization problem is assumed to be convex, x∗ is unique. Then x∗ is a solution of the ϵ-

constraint problem when ϵk = fk(x
∗) for k ∈ {1, . . . , n}\i and for every fi, i ∈ {1, . . . , n}

as the objective function.

A proof can be found in Miettinen (1999).

5.3.2 From ϵ-constraint to weighted-sum

A proof that for an ϵ-constraint optimal problem there is a corresponding weighted-sum

plan can be found in Chankong & Haimes (1983a). However the proof, which is a simple

application of the generalized Gordon theorem (which is roughly speaking a nonlinear

version of the Farkas lemma) (Mangasarian 1969), does not give us the weights. In their

later work (Chankong & Haimes 1983b), it is mentioned that “the corresponding Kuhn-

Tucker multipliers (...) furnish useful information about trade-offs”. In this section it is

shown that these multipliers are exactly the weights. The trade-off (sensitivity) analysis

is treated by Alber et al (2002a).

The last iteration of an ϵ-constraint problem, as described in section 5.2.2, solves

the following problem (without loss of generality we can assume that the objective with

priority n is the last one optimized on):

minimize fn(x)

subject to g(x) ≤ 0

fi(x) ≤ ϵi, i ∈ {1, . . . , n− 1}

(5.2)

A way to solve a constrained problem is by rewriting the problem as an unconstrained

optimization problem, which is called the Lagrangian (Bertsekas 1995, Wright 1997). The

Lagrangian for problem (5.2) is:

L(x, ν, λ) = fn(x) +
n−1
i=1

νi(fi(x)− ϵi) +
m
j=1

λjgj(x)

which is to be minimized with respect to x, ν and λ, where ν and λ are nonnegative

vectors of Lagrange multipliers. A constraint is called active if its corresponding Lagrange

multiplier is unequal to 0. As a result of the ϵ-constraint optimization all constrained

objectives fi(x), i ∈ {1, . . . , n − 1} are active, so νi > 0. (In this case, the Lagrange

multipliers for the constrained objectives are in fact Kuhn-Tucker multipliers, to relate

to the terminology used by Chankong & Haimes (1983b).)

For finding the optimal triplet (x∗, ν∗, λ∗) many methods are available which will not

be discussed here. The method used in this article is based on interior-point optimization

(see e.g. Wright (1997)).
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We will now introduce and prove the following theorem:

Theorem 2 Choosing the weights for the weighted-sum method equal to the Lagrange

multipliers for the constrained objectives from the last iteration of the ϵ-constraint opti-

mization results in an identical optimal solution.

Proof Let Lϵ(x
∗, ν∗, λ∗) be the Lagrangian for the optimal solution of the final iter-

ation of an ϵ-constraint optimization (5.2):

Lϵ(x
∗, ν∗, λ∗) = fn(x

∗) +

n−1
i=1

ν∗i (fi(x
∗)− ϵi) +

m
j=1

λ∗
jgj(x

∗)

Suppose we choose the weights for the weighted-sum method (5.1) equal to ν∗i and

wn = 1. Then the Lagrangian for the weighed-sum problem becomes:

Lw(x, λ) = fn(x) +

n−1
i=1

ν∗i fi(x) +

m
j=1

λjgj(x)

Adding the constant −
n−1
i=1

ν∗i ϵi to Lw does not change the optimal solution. Introduce:

L̂w(x, λ) = fn(x) +

n−1
i=1

ν∗i (fi(x)− ϵi) +

m
j=1

λjgj(x)

and let L̂w(x̄, λ̄) be the optimal solution for L̂w.

The constraints g(x) can be assumed to be linear independent. In this case the set of

Lagrange multipliers λ is unique (Forsgren et al 2002). Therefore λ̄ ≡ λ∗. Because the

Lagrangian L̂w is convex in x (λ and ν are fixed), we have to conclude that x̄ = x∗. �

5.3.3 Simple example

The relation between the weighted-sum method and the ϵ-constraint method is illustrated

by a simplified head-and-neck case, where sparing of the left and right parotid glands

are the only objectives, and only the PTV is subjected to minimum and maximum dose

constraints (95% and 107% of the prescribed dose of 46 Gy respectively). The wish-list

is given in table 5.1. The treatment setup is 5 IMRT beams.

Using the weighted-sum method (5.1), a Pareto-frontier for the parotid glands can be

generated by setting w1 = α and w2 = 1− α for α ∈ [0, 1] (figure 5.1). The figure shows

that the extremes do not give a sane trade-off: when the dose in the left parotid gland

is minimized to 29.2 Gy, the dose in the right parotid gland is to 37.1 Gy. At the cost

of a slight deterioration from 29.2 to 29.4 Gy (0.7%) for the left parotid gland, the right

parotid gland improves significantly from 37.1 to 23.9 Gy. This is why it is reasonable to
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Table 5.1: Constraints and objectives for simplified head-and-neck case.
Constraints

Nr Volume Type Limit
1 PTV maximum 49.22 Gy
2 PTV minimum 43.7 Gy

Objectives
Priority Volume Type Goal

1 Parotid (R) minimize mean 26 Gy
2 Parotid (L) minimize mean 26 Gy

28 30 32 34 36 38 40
20

22

24

26

28

30

32

34

36

38

R
ig

h
t 
P

a
ro

ti
d
 (

G
y
)

Left Parotid (Gy)

30.1

21.4

Figure 5.1: Pareto frontier. The dots are the different settings for α, starting with α = 0
at the left side of the curve. The intersection denotes the solution of the ϵ-constraint
method, coinciding with α ≈ 0.5.

allow a relaxation larger than numerically required. Experience learned that a relaxation

of 3% results in a good automatic trade-off.

Using the 2pϵc method, the dose in the right parotid gland is minimized up to 26

Gy prior to minimizing the dose in the left parotid gland. Minimizing the dose in the

right parotid gland again (now without a lower limit) yields the results listed in table

5.2. Comparing the result to the Pareto curve in figure 5.1, the resulted weights from

the ϵ-constraint optimization coincide with the choice of α ≈ 0.5 on the Pareto curve.

5.3.4 Oropharyngeal cancer case

To reduce treatment planning time, plans can be generated automatically using a wish-

list (Breedveld et al 2007a). However, it is possible that the planner is not satisfied with

the result, and wants to reduce the dose to a structure. By using the weights from this

final result, a new plan can be generated in only 1 optimization (in contrast to the 2pϵc

method, which takes several optimizations), where one or more objectives have become



54 5 Equivalence of multi-criteria methods

Table 5.2: Results for the ϵ-constraint optimization (table 5.1).

Obtained
Volume Result weights
PTV maximum 49.22 Gy —
PTV mininum 43.7 Gy —
Parotid (R) 21.4 Gy 0.49
Parotid (L) 30.1 Gy 0.51

Table 5.3: Constraints and objectives for the oropharyngeal cancer case.

Constraints
Nr Volume Type Limit
1 PTV Boost maximum 53.5 Gy
2 PTV maximum 53.5 Gy
3 Nerves† maximum 55 Gy
4 Unspecified Tissue maximum 53.5 Gy

Objectives
Priority Volume Type Goal Parameters

1 PTV Boost minimize LTCP 1 α = 0.75, Sufficient = 0.5
2 PTV minimize LTCP 1 α = 0.75, Sufficient = 0.5
3 Eye (L) minimize EUD 15 a = 15
4 Eye (R) minimize EUD 15 a = 15
5 Parotid (L) minimize mean 26
6 Parotid (R) minimize mean 26

† Brainstem, Cord, Sella, Optic Chiasm, Optical Nerves

constraints.

The result from the 2pϵc method is Pareto-optimal. By constraining an objective and

weighting the remaining objectives, a single optimization is done with the weighted-sum

method. This new solution, which is also a Pareto-optimal, lies in the neighbourhood of

the first plan.

We use a oropharyngeal cancer case to demonstrate this idea. The patient is diagnosed

with oropharyngeal cancer with extensions to the nasal cavity. The boost PTV has a

prescribed dose of 50 Gy and the elective neck nodes 37.5 Gy. Both are implemented

as LTCP objectives with cell sensitivity α = 0.75. The other objectives are the left and

right eyes (EUD with parameter a = 15) and the left and right parotid glands (mean

dose). The wish-list is given in table 5.3. An LTCP value of 0.5 is considered sufficient

for the PTVs, because low LTCP values result in overdosing the PTV. In other words:

even if the LTCP value can be lower, 0.5 is set as a lower limit. The treatment setup is

8 IMRT beams.

Using the wish-list given in table 5.3, the 2pϵc method requires 10 iterations (opti-

mizations) to generate a plan (referred to as the original plan). A detailed list of the
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Table 5.4: Step-by-step ϵ-constraint optimization for the oropharyngeal cancer patient.

Iteration Volume Result New constraint
1st phase 1 PTV Boost 0.10 1.00

2 PTV 0.01 1.00
3 Eye (L) 20.11 20.71
4 Eye (R) 18.12 18.66
5 Parotid (L) 19.18 26.00
6 Parotid (R) 19.77 26.00

2nd phase 7 PTV Boost 0.97 1.00
8 PTV 0.01 0.50
9 Parotid (L) 20.95 21.58
10 Parotid (R) 24.33 24.33

Table 5.5: Numerical results for the ϵ-constraint optimization. The weights are extracted
from the Lagrangian using the method presented in section 5.3.2.

Priority Volume ϵ-con Weight
1 PTV Boost 1.00 0.6528
2 PTV 0.50 0.0125
3 Eye (L) 20.71 0.2734
4 Eye (R) 18.66 0.0538
5 Parotid (L) 21.58 0.0050
6 Parotid (R) 24.33 0.0026

iterations is given in table 5.4, the results are presented in table 5.5. The weights are

found by applying the theorem from section 5.3.2.

Now suppose we are in the hypothetical situation where an EUD of 15 Gy to the eye

would spare the eye completely. The planner is not satisfied with the result of 18.66Gy for

the right eye, since this is close enough to 15 Gy, which would spare the eye completely.

By using the weights from the first (original) 2pϵc optimization (table 5.5), the effect

of limiting the EUD to the right eye is easily explored when solving the weighted-sum

problem (5.3) (where i indexes over the priorities as given in table 5.3). The results are

presented in figures 5.2 and 5.3.

minimize


i={1,2,3,5,6}

wifi(x)

subject to f4(x) ≤ 15

g(x) ≤ 0

(5.3)

Another example is to introduce a new constraint to the problem. The planner may

find that the maximum-dose to the left eye is too high (27.63 Gy in the original plan) and



56 5 Equivalence of multi-criteria methods

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

Dose (Gy)

V
o

lu
m

e
 (

%
)

Maximum constraint of 15 Gy EUD to Eye (R)

 

 

Eye (R)

Eye (L)

Parotid (L) Parotid (R)

PTV Boost

PTV

0 5 10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

Dose (Gy)

V
o

lu
m

e
 (

%
)

Maximum dose constraint to Eye (L)

 

 

Eye (R)

Eye (L)

Parotid (L) Parotid (R)

PTV Boost

PTV

Figure 5.2: Dose-volume histograms for the case where the EUD to the right eye is
limited to 15 Gy (left) and where a maximum-dose constraint of 25 Gy is introduced for
the left eye (right). The solid lines represent the original 2pϵc result and the dashed lines
the modified plan.

wants to research the effect of limiting it to 25 Gy. Again, the objectives are weighted

and summed, and a new constraint is added to the problem. The results are also shown

in figures 5.2 and 5.3.

Both results show an improvement for the objectives that were constrained and a

deterioration for the other objectives. However, the DVHs between the original and

adapted plans are not structurally different, in the sense that they still lie close to each

other. This suggests that the adapted plans are indeed in the neighbourhood of the

original plan.

5.4 Discussion and conclusions

In this article, we established the relationship between the weighted-sum and ϵ-constraint

method for multi-criteria optimization and how to switch from one to the other. This

can be of practical use after an automated multi-criteria optimization where fine-tuning

on some objectives is desired, or where a re-planning is required for a slightly different

situation as e.g. new or revised bounds for objectives or constraints, or a re-planning on

a different CT.

The 2-phase ϵ-constraint multi-criteria optimization method presented in this article

can be extended in several ways. One can for example set a maximum constraint on the

objectives, or remove an objective from the optimization when it cannot be minimized

below a certain threshold (e.g. when a parotid or submandibular gland receives a dose

> 40 Gy it is undesired to constrain this organ for subsequent optimizations, since it will

only be limiting while the volume cannot be spared anyhow). Another possibility is to
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Figure 5.3: Isodose lines for the plan with the EUD to the right eye constrained is to
15 Gy (left), the original plan (middle) and the plan where the maximum-dose to the left
eye is constrained to 25 Gy (right). In the left figure, the 15 Gy isodose line lies close to
the PTV. The right figure shows that the 25 Gy isodose line has completely moved out
of the left eye.

mix the weighted-sum and ϵ-constraint method (Chankong & Haimes 1983b, Miettinen

1999).

The theorem to extract the weights from the ϵ-constraint method applies generally to

any optimization problem with constraints. Important is that the constraints of interest

are active and the solution is Pareto optimal. The ϵ-constraint method assures both

qualifications.

However, it can be questioned what influence the relaxation δ has on these qualifica-

tions (section 5.2.2): by relaxing a constraint, the Pareto optimality of the constraint-set

might get lost. This is only a problem if constraints are completely independent. In

radiotherapy treatment planning practice, all constraints (criteria) influence each other.

When ϵ1 is chosen and relaxed, optimizing on f2 will make the constraint on f1 active,

if the relaxation was not too large. Despite the theoretical probability that a constraint

will not be active, we have never seen this in practice.
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Abstract

Purpose: To introduce iCycle, a novel algorithm for integrated, multi-criterial

optimization of beam angles and IMRT profiles.

Methods: A multi-criterial plan optimization with iCycle is based on a prescrip-

tion called wish-list, containing hard constraints and objectives with ascribed pri-

orities. Priorities are ordinal parameters used for relative importance ranking of

the objectives. The higher an objective priority is, the higher the probability that

the corresponding objective will be met. Beam directions are selected from an

input set of candidate directions. Input sets can be restricted, e.g. to allow only

generation of coplanar plans, or to avoid collisions between patient/couch and the

gantry in a non-coplanar setup. Obtaining clinically feasible calculation times was

an important design criterion for development of iCycle. This could be realized by

sequentially adding beams to the treatment plan in an iterative procedure. Each

iteration loop starts with selection of the optimal direction to be added. Then, a

Pareto-optimal IMRT plan is generated for the (fixed) beam setup that includes

all so far selected directions, using a previously published algorithm for multi-

criterial optimization of fluence profiles for a fixed beam arrangement (Breedveld

et al 2009a). To select the next direction, each not yet selected candidate direc-

tion is temporarily added to the plan and an optimization problem, derived from

the Lagrangian obtained from the just performed optimization for establishing the

Pareto-optimal plan, is solved. For each patient, a single 1-beam, 2-beam, 3-beam,

etc. Pareto-optimal plan is generated until addition of beams does no longer re-

sult in significant plan quality improvement. Plan generation with iCycle is fully

automated.

Results: Performance and characteristics of iCycle are demonstrated by generat-

ing plans for a maxillary sinus case, a cervical cancer patient, and a liver patient

treated with SBRT. Plans generated with beam angle optimization did better meet

the clinical goals than equi-angular or manually selected configurations. For the

maxillary sinus and liver cases, significant improvements for non-coplanar setups

were seen. The cervix case showed that also in IMRT with coplanar setups, beam

angle optimization with iCycle may improve plan quality. Computation times for

coplanar plans were around 1-2 hours and for non-coplanar plans 4-7 hours, de-

pending on the number of beams and the complexity of the site.

Conclusion: Integrated beam angle and profile optimization with iCycle may

result in significant improvements in treatment plan quality. Due to automation,

the plan generation workload is minimal. Clinical application has started.
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6.1 Introduction

In radiation therapy treatment planning, the quality of a plan depends on the choice of

the beam directions, and their number. In current practice, the beam angles are either

selected in a trial-and-error procedure by a dosimetrist or based on a template. The

former may be time-consuming with a result dependent on the experience of the planner.

Beam directions based on a template may be sub-optimal for individual patients.

Various methods for automated beam angle selection have been proposed, ranging

from an aid to select suitable beams (e.g. Das et al 2003, Potrebko et al 2008, Pugachev &

Xing 2001) to integrated beam angle optimization and beam weight/IMRT optimizations,

either based on global optimization (e.g. Aleman et al 2008, 2009, Lee et al 2006, Li et al

2005, Rowbottom et al 1999, Wang et al 2004) or sequential beam selection (Azizi Sultan

& Küfer 2006, Meedt et al 2003, De Pooter et al 2008, Woudstra & Storchi 2000). An

analytical approach is given by Ehrgott et al (2008).

In recent years, there has been a vast development in multi-criteria optimization for

intensity modulated radiotherapy (IMRT). The advantage of multi-criteria optimization

is that the user can select a desired solution from a database of Pareto-optimal plans in

an a posteriori setting (e.g. Craft & Bortfeld 2008, Monz et al 2008), or a priori define

a set of criteria which may not be violated (constraints) or have to be met as well as

possible, or better (objectives) (Breedveld et al 2007a, 2009a, Clark et al 2010, Jee et al

2007). Interactive approaches are also possible (Azizi Sultan & Küfer 2006, Ruotsalainen

et al 2010).

For multi-criterial beam angle optimization, an a posteriorimethod has been proposed

by Schreibmann et al (2004) in which the algorithm generates different sets of beam angles

and intensity profiles from which the user can select the plan afterward. A full multi-

beam space Pareto navigation tool for a posteriori plan selection has been developed by

Craft & Monz (2010). An interactive a posteriori method to the beam angle optimization

problem is proposed by Azizi Sultan & Küfer (2006).

In this paper, we introduce a novel a priorimulti-criteria approach to integrated beam

angle and intensity optimization named iCycle (IMRT Cycle). As will be discussed in the

Discussion section, we have found significant advantages of iCycle for generating clinical

plans, and introduction in the clinic has been started. Here we report in detail on the

applied algorithms and features, and for a variety of clinical cases we show the impact

of beam angle optimization on plan quality.

For each patient, plan generation with iCycle is steered by a user-defined wish-list

(Breedveld et al 2007a, 2009a), containing constraints and objectives. Objectives are op-

timized while taking into account ascribed priorities defined in the wish-list. Constraints

have to be strictly met. For iCycle it is not necessary to specify the desired number of
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beams in advance. Beams are sequentially added to the plan and full Pareto-optimal

plans for each number of beam directions are given as output. The planner can therefore

a posteriori make a trade-off between number of beams and plan quality.

The remainder of the paper is organized as follows: section 6.2 describes iCycle and

other materials and methods used, section 6.3 demonstrates iCycle’s performance using

patient cases, in section 6.4 iCycle is discussed, and conclusions are presented in section

6.5.

6.2 Methods

6.2.1 Global description of iCycle

In iCycle, both selection of optimal beam orientations and beam profile optimization are

based on a wish-list with prioritized objectives and constraints (section 6.2.2). Beam

generation for a patient starts with an empty plan, i.e. no beams selected. Sequentially,

optimal beam orientations are selected from a predefined set of candidate input directions

and added to the plan. The process of adding new directions may be stopped if further

improvements in the patient dose distribution are considered clinically irrelevant or if

the number of beams has become impractically large. The input set can be restricted

to allow only coplanar beam arrangements or extended for generation of non-coplanar

plans. Directions with a risk of collisions between the patient/couch and the gantry have

to be excluded from the candidate set (see also section 6.2.5).

Generation of a treatment plan is performed in an iterative procedure. Iteration i

starts with selection of the ith orientation to be added to the plan. To this purpose,

all not yet selected candidate beam directions (section 6.2.5) are evaluated one-by-one

by solving for each of them an IMRT optimization problem for a beam arrangement

consisting of the candidate plus the previously selected i − 1 directions (section 6.2.4).

The orientation with the most favourable scores is selected as the ith orientation. The

2pϵc method (section 6.2.3) is then used to generate the final Pareto optimal IMRT plan

for the setup with the first i selected orientations. The output of this 2pϵc optimization

is then used for definition of the IMRT optimization problems to be solved for selection

of orientation i + 1, and so on. The iterative procedure for plan generation with iCycle

is schematically depicted in figure 6.1.

With iCycle, addition of a beam will always result in a higher objective value for the

highest priority objective that can still be improved on. There is no need to a priori

define the (maximum) number of orientations in a plan. If adding beams does no longer

result in clinically significant plan improvements, the process of generating more plans

with more orientations can be stopped. The user can then select the Pareto optimal plan

with the best trade-off between number of beams used and plan quality.
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add best direction to set
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Single Pareto−optimal plan

for each number of beams

Figure 6.1: Iterative beam angle selection and profile optimization with iCycle. Each
iteration (‘cycle’) starts with selection of a beam direction to be added to the plan,
followed by a multi-criterial optimization of beam profiles, resulting in a Pareto-optimal
plan. The output from the latter optimization is used to define the optimization problem
to be solved for selection of the next beam to be added, and so on.

6.2.2 Wish-lists

Wish-lists have been introduced in Breedveld et al (2007a, 2009a). They contain user

(physician) defined hard constraints and optimization objectives. Each objective has an

ascribed priority. The higher the priority, the more importance is given to minimization

of the objective, within imposed constraints. An example of a wish-list for a maxillary

sinus case is given in table 6.1. For this patient, two PTVs were defined, to be treated

with a simultaneous integrated boost (SIB) technique. The high dose PTV overlaps with

the optical nerves, and the aim was to irradiate as much of the PTV as possible, without

harming the optical nerves (enforced by a constraint, see below). Based on the tumour

shape and its position at the patient’s left, it was upfront decided to fully focus on limiting

dose delivery to right-sided organs at risk. The applied wish-list in table 6.1 contains

8 constraints and 7 objectives. All constraints are maximum-dose constraints. ‘PTV1

Shell’ and ‘PTV2 Shell’ are surfaces (ring with no width) positioned at 10 mm distance

from PTV1 and PTV2, respectively, constructed by computerized volume expansions.

The imposed maximum-dose constraints avoid high doses far from the PTVs. Objectives

with priorities 1 and 2 aim at dose coverage of PTV1 and PTV2, respectively. Priorities

3-5 aim at sparing of right-sided structures.

Tables 6.3 and 6.5 show multi-level wish-lists for the studied cervix and liver cases,

respectively. With a multi-level wish-list, the optimizer gradually reduces dose delivery

in a group of OARs (i.e. in levels), preventing that large, initial reductions for some will

prevent significant reductions for the other. In the first level, all OAR objectives have a

high priority but a relatively low demand on reducing the doses (high goal values, tables

6.3 and 6.5). In lower levels, the priorities are lower but the goal values are lower as

well. Defining multiple levels also allows using a wish-list as a template for a site. As the

location and size of the tumour and organs-at-risk differ significantly between patients

within a certain tumour site, large variations in possibilities of OAR sparing may exist.
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Table 6.1: Wish-list for a maxillary sinus case.
Constraints

Volume Type Limit
PTV1 maximum 55 Gy (=107% of prescribed dose PTV1)
PTV2 maximum 70 Gy (=107% of prescribed dose PTV2)
PTV1 Shell maximum 43 Gy (=85% of prescribed dose PTV1)
PTV2 Shell maximum 56 Gy (=85% of prescribed dose PTV2)
Myelum maximum 50 Gy
Nerves∗ maximum 55 Gy
Eyes (L+R) maximum 60 Gy
Unspecified Tissue maximum 70 Gy

Objectives
Priority Volume Type Goal Sufficient Parameters

1 PTV1 minimize LTCP 1 0.5 Dp = 51 Gy, α = 0.75
2 PTV2 minimize LTCP 1 0.5 Dp = 65.4 Gy, α = 0.75
3 Eye (R) minimize gEUD 15 Gy a = 15
4 Parotid (R) minimize mean 26 Gy
5 Submandibular Gland (R) minimize mean 39 Gy
6 Larynx minimize mean 35 Gy
7 Unspecified Tissue minimize mean −

∗ Brainstem, Sella, Optic Chiasm, Optical Nerves

By including multiple levels, the same wish-list can be used for all patients.

In iCycle, target dose is generally optimized by minimizing LTCP (Logarithmic Tu-

mour Control Probability (Alber & Reemtsen 2007)),

LTCP =
1

m

m
j=1

e−α(dj−Dp) (6.1)

where m is the number of voxels in the target structure, Dp the prescribed dose, dj the

dose in voxel j and α the cell sensitivity parameter (see table 6.1). The LTCP has an

exponential penalty for doses dj lower than Dp, for doses higher than the prescribed dose

the value slowly approaches 0. For a homogeneous dose equal do Dp, the LTCP equals

1.

A higher α results in less voxels with a low dose, and thus a higher percentage of the

PTV receiving 95% of the prescribed dose (PTV coverage). In our practice, for clinically

acceptable plans the PTV coverage is often ≥ 98.5%. The selected value for α is not

very critical. For example, for a group of 20 head-and-neck cancer patients with a high

priority for saving salivary glands, α = 0.5 resulted in a minimum PTV coverage of 96%,

while for α = 0.8 the minimum coverage was 98.5% (Voet et al 2012). As visible in

table 6.1, objectives may or may not have a ‘goal’, and LTCP objectives also have an

ascribed ‘Sufficient’ value. Use of the ‘Goal’ and ‘Sufficient’ values for objectives in the

optimization routine is explained in section 6.2.3.
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6.2.3 Brief overview of the 2pϵc optimization method

The 2pϵc method for multi-criterial optimization of beam intensity profiles is described

in detail in Breedveld et al (2009a). For a selected beam arrangement, the method gen-

erates a single Pareto optimal IMRT plan in an automated way, guided by a user-defined

wish-list (section 6.2.2 and table 6.1). The generated plan strictly meets all imposed

constraints defined in the list. Objectives are optimized while taking into account their

ascribed priorities. The algorithm consists of two phases. In the first phase, objectives

are one after the other minimized within constraints, starting with the highest prioritized

objective. After each objective minimization, and based on its result, a constraint for

the just minimized objective is defined, to be used as an extra constraint in the follow-

ing minimizations of lower prioritized objectives. The added constraints guarantee that

minimization of lower priority objectives will not jeopardize attained objective values for

the higher priority objectives.

As a consequence, the lower the priority of an objective, the more constraints are used

during its minimization. The result of the first phase is a plan in which each objective

with a defined goal (see table 6.1 for examples) has an attained value that is equal to its

goal (even if further minimization would in principle have been possible), or higher than

its goal when further reduction was not allowed for by constraints.

In the second phase, objectives, that could in the first phase have been further min-

imized than their defined goal, are now sequentially further minimized, again starting

with the highest priority objective. Apart from LTCP objectives, in the second phase

all objectives are minimized to their full extent. For the LTCP objectives, minimiza-

tion is stopped at the defined ‘Sufficient’ value (table 6.1), in order to leave room for

minimization of lower prioritized objectives, and not to escalate the dose.

6.2.4 Selection of optimal beam direction to add to the plan; definition of

IMRT optimization problems to be solved

As described in section 6.2.1 for selection of the next beam orientation i, all not yet

selected candidate beam directions are evaluated one-by-one by solving for each of them

an IMRT optimization problem for a beam arrangement consisting of the candidate plus

the previously selected i− 1 directions. In this section, the IMRT optimization problems

to be solved are defined.

Basis of the problem definition is the Lagrangian in equation (6.2), valid for the

optimal solution x∗ of the final iteration of the 2pϵc beam fluence optimization for the

first i− 1 beams (Breedveld et al 2009a):

Lϵ(x
∗, ν∗, λ∗) = fn(x

∗) +
n−1
k=1

ν∗k(fk(x
∗)− ϵk) +

m
j=1

λ∗
jgj(x

∗) (6.2)
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with, fk the objective functions and ϵk the constraint values for objectives k found by

the 2pϵc algorithm (section 6.2.3). ν∗k are the optimal Lagrange multipliers belonging

to objective functions fk. The functions gj are the (hard) constraints defined in the

wish-list, with λ∗
j as their respective optimal multipliers.

In Breedveld et al (2009a) (Theorem 2), it is proven that a single minimization of a

weighted-sum objective function with weights equal to the optimal Lagrange multipliers

will generate a solution that is identical to the solution of a full 2pϵc multi-criteria opti-

mization with multiple minimizations of different objective functions, as briefly described

in section 6.2.2. While the problem with one added beam is different, it is assumed here

that these multipliers still give a good representation for selecting beam i.

The optimization problem to be solved for each beam direction is now defined by:

minimize

n
k=1

ν∗kfk(x)

subject to g(x) ≤ 0

fj(x) ≤ ϵ̂j j ∈ J

(6.3)

where J is the set of objectives {1, . . . , n} excluding the PTV objectives, and their resulting

constraint values ϵ̂j defined as:

ϵ̂j =

bj 0.9fj(x
∗) < bj

0.9fj(x
∗) 0.9fj(x

∗) ≥ bj
(6.4)

with bj the goals as stated in the wish-list. For brevity of notation, ν∗n = 1 is defined.

For selection of the first beam, where no previous 2pϵc optimization has taken place,

the weights ν∗k are set equal to 1 and the bounds ϵ̂j equal the goals for the objectives

as specified in the wish-list. The beam direction with the lowest value for the weighted

objective functions in (6.3) is added to the set of selected orientations.

To speed up the optimization, optimization problems defined by (6.3) and (6.4) are

solved with reduced beamlet resolution and/or scatter radius. If different candidate

beam directions have similar objective function values, the optimization is redone with

the default (high) resolution, and the best candidate beam direction is selected based on

that result.

By using (6.4) to establish OAR constraints for selection of the next beam, the in-

creased degree of freedom is used to lower OAR constraint values that exceed the pre-

defined bj . By excluding constraints resulting from previously obtained PTV objective

values, it is avoided that the combination with a stricter OAR constraint would result in

an infeasible problem.
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Figure 6.2: Non-coplanar candidate beam directions for the maxillary sinus case dis-
cussed in sections 6.2.2 and 6.3.1-6.3.5. The dots represent the focal spots relative to
the treatment isocentre and the treatment couch. All positions can be realized without
collisions, leading to irregularly distributed candidate beams caudally.

The use of a reduced beamlet resolution or scatter radius for beam angle selection

(only) changes the optimization problem. Inclusion of PTV constraints as defined by

(6.4) would have further increase the risk for defining an infeasible problem.

6.2.5 Candidate beam directions

In principle there are no limitations to the choice of candidate directions in the optimiza-

tion problem. In practice, for the axial (coplanar) plane we allow 72 candidate beams

with spacing of 5 degrees.

For non-coplanar setups, candidates are added that are homogeneously distributed

across the part of a sphere for which there are no collisions between the patient/couch

and the gantry. The average angular distance between two neighbouring beams is 10

degrees.

Sometimes the number of non-coplanar beams is restricted by excluding candidates

that are unlikely to be selected in order to save computation time. For example, to

irradiate head-and-neck patients, beams are limited to a 45 degrees cone to the cranial

direction. Figure 6.2 displays the 310 non-coplanar candidate beam directions used for

the maxillary sinus case discussed in sections 6.2 and 6.3, separated at an average of 10

degrees.

6.2.6 Target dose prescription for plans with small beam numbers

If in the LTCP formula (6.1) di is much smaller than Dp, often occurring in 1 or 2 beam

plans, the value gets exponentially large, sometimes leading to numerical problems for

the optimizer. Also, from trials for many cases, we learned that selection of the first few

beams was often almost fully dominated by the drive to reduce the differences between

di and Dp, largely neglecting OAR objectives. This resulted in sub-optimal selections

of the first beams. To avoid this, a parameter N has been introduced, such that the
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prescribed dose DT
i for i < N beams is reduced according to the following formula:

DT
i = min


Dp

arctan 3.6
arctan

3.6i

N
,Dp


(6.5)

So for N = 4, a PTV with 65.4 Gy prescribed dose has 36.9 Gy, 53.5 Gy and 61.2 Gy as

prescribed dose in the first 3 iterations. The fourth iteration (4-beam plan) is the first

which has the full 65.4 Gy prescribed to the PTV.

This formula is a result from tests with constrained (all OARs are constrained) beam

angle optimization: it turned out that the maximum dose which can be delivered to the

PTV behaves similar like equation (6.5). In section 6.3.4 the impact of N is illustrated

with an example.

6.2.7 Optimization details

The size of the beamlets was set to 10×10 mm2 with 30 mm scatter radius. In the beam

selection phase, only 5 mm scatter radius was used. The pencil-beam dose calculation al-

gorithm used has equivalent path length inhomogeneity corrections (Storchi & Woudstra

1996). The CT resolution was 0.98× 0.98× 2.5 mm3. For small structures (like optical

nerves), all voxels took part in the optimization. For larger structures, approximately

5000 voxels were selected based on a Hammersley sequence sampling.

iCycle is part of YARTOS, our in-house developed optimization suite. YARTOS

is written in Matlab, and contains functions for importing DICOM, visualize dose and

dose-volume histograms, compute dose and optimize dose distributions. Our optimizer

is based on primal-dual interior-point optimization and capable of solving general non-

linear non-convex mathematical problems (Benson & Shanno 2007, Shanno & Vanderbei

2000). It is specially tuned for radiotherapy plan optimization and makes full use of

multi-threaded computing.

6.3 Results

In this section, the performance and characteristics of iCycle are demonstrated with

plans generated for a maxillary sinus case (for wish-list, see section 6.2.2 and table 6.1),

a cervix case, and a liver case.

6.3.1 Maxillary sinus case - comparison of optimized coplanar and non-

coplanar plans with equi-angular plans

Figure 6.3 shows dose-volume histograms for 7 and 9 equi-angular beam plans (fixed

beam directions, only optimization of beam profiles with the 2pϵc algorithm in iCycle,

section 6.2.3), and the 7 beam coplanar and non-coplanar plans with both angles and

profiles optimized with iCycle. Numerical data for parameters in the wish-list and dose

distributions are presented in table 6.2 and figure 6.5, respectively. Table 6.2 shows
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Figure 6.3: Comparison of equi-angular and optimized beam setups for the maxillary
sinus case. Most notable is the reduction of dose to the right eye (a) for optimized beam
angles, which was the highest priority OAR objective (table 6.1)

that all constraints in the wish-list were indeed strictly met. The coverage of the two

PTVs is highly comparable for all setups (figure 6.3a, table 6.2). Full coverage of the

boost PTV (PTV2) was impossible to obtain (compare tables 6.1 and 6.2), due to the

overlap with the nerves, which have a maximum-dose constraint of 55 Gy (table 6.1).

The right eye was the highest prioritized organ at risk, and the gEUD is significantly

reduced when using 9 equi-angular beams instead of 7 (table 6.2). The lowest right

eye gEUD was obtained with the 7 beam non-coplanar approach. Compared to the 7

beam equi-angular plan it reduced from 32.9 Gy to 11.8 Gy. With the non-coplanar 7

beam approach the right eye gEUD was almost 50% lower than with the coplanar setup

with optimized angles. Doses to the right parotid and submandibular glands (SMG)

are slightly enlarged for the beam angle optimized plans. However, for both OARs the

attained mean dose is far lower than the goal specified in the wish-list (table 6.1). As

shown in figure 6.6 (to be discussed below), selection of the 9 beam non-coplanar plan

would have reduced the right eye dose somewhat further, accompanied by significantly

reduced doses to the right parotid and submandibular glands. Figure 6.4 shows selected

angles for optimized coplanar and non-coplanar setups.
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Table 6.2: Numerical results for parameters in the wish-list (table 6.1) for the maxillary
sinus case for different beam configurations. For all plans, PTV and OAR constraint
values are basically equal. The 7 beam non-coplanar plan clearly has the lowest right eye
gEUD, the best PTV2 LTCP, at the cost of slightly increased parotid and submandibular
gland doses.

Volume Type 7-equi 9-equi 7 coplanar 7 non-coplanar
PTV1 maximum 55 Gy 55 Gy 55 Gy 55 Gy
PTV2 maximum 70 Gy 70 Gy 70 Gy 70 Gy
PTV1 Shell maximum 43 Gy 43 Gy 43 Gy 43 Gy
PTV2 Shell maximum 56 Gy 56 Gy 56 Gy 56 Gy
Myelum maximum 43.9 Gy 44.7 Gy 43.4 Gy 45.0 Gy
Nerves∗ maximum 55 Gy 55 Gy 55 Gy 55 Gy
Eyes (L+R) maximum 60 Gy 60 Gy 60 Gy 60 Gy
Unspecified Tissue maximum 70 Gy 70 Gy 68.7 Gy 69.3 Gy
PTV1 LTCP 0.5 0.5 0.5 0.5
PTV2 LTCP 157.2 144.3 152.7 139.1
Eye (R) gEUD 32.9 Gy 26.6 Gy 20.4 Gy 11.8 Gy
Parotid (R) mean 2.9 Gy 2.2 Gy 5.4 Gy 8.3 Gy
Submandibular Gland (R) mean 12.6 Gy 7.0 Gy 10.5 Gy 15.1 Gy
Larynx mean 35.0 Gy 35.0 Gy 35.0 Gy 35.0 Gy
Unspecified Tissue mean 5.9 Gy 5.7 Gy 5.8 Gy 5.8 Gy

∗ Brainstem, Sella, Optic Chiasm, Optical Nerves

 

 

 

 

5,3

7

2

9

4

6

1

8

5

7

12

9
3

6

8

4

8

64

7

3

9

2

5
8

1

2

3

4

5

6

79

1
a) b)

c) d)

Figure 6.4: Selected beams for coplanar (a) and non-coplanar (b-d) plans of the maxillary
sinus case. Numbers indicate the order in which the beams were selected. Panels (c) and
(d) show left lateral and caudal views.
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Figure 6.5: Axial CT-slice of the maxillary sinus case with dose distributions and beams
for 4 different beam arrangements: 7 and 9 equi-angular (a) and (b), 7 beam coplanar
with optimized beam setup (c) and 7 beams optimized non-coplanar setup (d). In (c)
and (d) beam numbers are displayed in the order of selection (see figure 6.4). For the
non-coplanar setup, projections of the selected beams on the axial plane are displayed.

6.3.2 Maxillary sinus case - convergence with number of beams

The lines in figure 6.6 show for coplanar and non-coplanar optimized beam setups, the

obtained objective values for the objectives in the wish-list (table 6.1) as a function of

the number of beams in the plan. The coverage of the boost PTV starts to level off at

4-5 beams but will probably increase also with more than the presented maximum of 12

beams. Up to 9 beams there are clear reductions in OAR doses, after that all further

reductions are small. Compared to the 9 beam coplanar plan, the 9 beam non-coplanar

plan has a right eye EUD that is reduced by 50%.

The diamonds in figure 6.6 allow a comparison between the 9 beam coplanar plan

with optimized beam setup with the equi-angular 9 beam plan. Clearly, with beam angle
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Figure 6.6: Convergence of plan objectives for the maxillary sinus case (table 6.1)
for coplanar and non-coplanar setups. For the PTVs, the coverage with 95% of the
prescribed dose is given (right axis) instead of the abstract LTCP value. For comparison,
the diamonds in the left panel mark the values of the equi-angular 9 beam plan.

optimization the most important OAR for this patient (the right eye) could be better

spared at the price of a somewhat higher dose to the submandibular gland, which had a

lower priority for sparing.

6.3.3 Maxillary sinus case - alternative problem definitions for selecting the

next beam

As explained in sections 6.2.1 and 6.2.4, in iCycle, beams are selected sequentially. In

section 6.2.4 we describe the optimization problems that are solved for selecting beam

orientations. Here, a comparison is made with two alternative definitions for the opti-

mization problems to be solved. Data are provided for 7 beam coplanar plans for the

maxillary sinus case, focussing on sparing of the OAR with the highest priority, i.e. the

right eye (table 6.1). In the first alternative, all objectives are equally weighted in the

score function (figure 6.7, ‘Simple’). The ‘Target Only’ DVH in figure 6.7 displays the

result if only the target objectives participate in the objective function (Das et al 2003).

The sparing of the right eye is superior with the iCycle approach (‘Lagrange’) for defining

the IMRT optimization problems for selection of beam directions.

6.3.4 Maxillary sinus case - target dose prescription for plans with small

beam numbers

As explained in section 6.2.6 for selection of the first N beams, the prescribed tumour

dose is reduced according to equation (6.5). Figure 6.8 shows the influence of choosing

different values for N for 7 beam coplanar optimized plans. When N is set to 1 there are

no reductions of prescribed doses for improving the balance between PTV coverage and

OAR protection in selection of the first beams (section 6.2.6). Clearly, between N = 1, 4

and 7, N = 4 results in the best OAR sparing with equal PTV coverage. For N = 7, it
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Figure 6.7: Comparing different weighted-sum objective functions for selecting beam
orientations for the 7 field coplanar IMRT plan of the maxillary sinus case. DVHs for
the right eye (highest OAR sparing priority, table 6.1) are shown. Lagrange: objective
function as used in iCycle (section 6.2.4), Simple: equal weights, Target Only: only target
objectives in objective function. The dose to the targets (not shown) is comparable.

takes too long before the final problem definition is reached, resulting in a suboptimal

plan.

6.3.5 Maxillary sinus case - runtimes

Optimizations were performed on a modern 8-core computer. The runtimes are shown

in figure 6.9 for the coplanar and non-coplanar optimizations. The runtime shows a

polynomial behaviour with number of beams.

6.3.6 Cervical cancer case - impact of beam angle optimization for coplanar

plans

Table 6.3 shows the wish-list for the cervix case, as also used in clinical practice (see

section 6.4). This is an example of a multi-level wish-list, to gradually minimize the

bowel, sigmoid, rectum and bladder mean doses. This approach is used to enforce a

balanced reduction in doses to various OARs (see also table 6.5 for the wish-list of

the liver case). Figure 6.10 presents DVHs for coplanar iCycle plans generated for the

external beam part of the treatment of a cervical cancer patient, with a prescribed dose

of 46 Gy. Numerical results and dose distributions are shown in table 6.4 and figure

6.11, respectively. The plan labelled with ‘clinical’ was generated with iCycle using the 7

predefined beam orientations as used for generation of the clinical plan in Monaco TPS

(Elekta AB). All three plans have very similar PTV coverage. The plans with beam

angles optimized by iCycle perform better for the OAR compared to the clinical plan,

especially for the bowel and sigmoid. The 9 beam plan has best OAR sparing.
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Figure 6.8: Influence of different N -values for optimization of 7 beam coplanar plans
(sections 6.2.6 and 6.3.4).
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Figure 6.9: Runtimes for optimization coplanar (solid) and non-coplanar (dashed) setups
for the maxillary sinus case. The ticks on the Y-axis correspond to the runtimes for the
non-coplanar setup.
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Figure 6.10: DVHs for the clinical beam setup of the cervical cancer case compared to
optimized setups.

Figure 6.11: Axial CT-slice of the cervical cancer case with dose distributions and beam
directions. a) 7 beam clinical beam arrangement, b) 7 beam optimized coplanar plan, c)
9 beam optimized coplanar plan.
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Table 6.3: Multi-level wish-list for cervical cancer case. Mean doses to the bowel, sigmoid,
rectum and bladder are gradually minimized in 3 steps, i.e. level 1, level 2 and level 3.

Constraints
Volume Type Limit
PTV maximum 49.22 Gy (=107% of prescribed dose)
PTV Shell 1.5 cm maximum 41.4 Gy (=90% of prescribed dose)
PTV Shell 4 cm maximum 36.8 Gy (=80% of prescribed dose)
Unspecified Tissue maximum 49.22 Gy (=107% of prescribed dose)

Objectives
Level Priority Volume Type Goal Sufficient Parameters

1 PTV minimize LTCP 1 0.5 Dp = 46 Gy, α = 0.75
2 Skin Ring 3 cm minimize maximum 32.2 Gy (=70% of prescribed dose)

1 3 Bowel minimize mean 40 Gy
4 Sigmoid minimize mean 40 Gy
5 Rectum minimize mean 40 Gy
6 Bladder minimize mean 40 Gy

2 7 Bowel minimize mean 20 Gy
8 Sigmoid minimize mean 20 Gy
9 Rectum minimize mean 20 Gy
10 Bladder minimize mean 20 Gy

3 11 Bowel minimize mean 10 Gy
12 Sigmoid minimize mean 10 Gy
13 Rectum minimize mean 10 Gy
14 Bladder minimize mean 10 Gy

15 Unspecified Tissue minimize mean −

Table 6.4: Numerical results for parameters in the wish-list (table 6.3) for the cervical
cancer case for different beam configurations. Going from the clinical setup to 7 and 9
beam optimized coplanar setups, mean bowel, sigmoid, rectum and bladder doses grad-
ually decrease. All other parameters values are equal for the three beam arrangements.

Volume Type Clinical 7 coplanar 9 coplanar
PTV maximum 49.22 Gy 49.22 Gy 49.22 Gy
PTV LTCP 0.5 0.5 0.5
PTV Shell 1.5 cm maximum 41.4 Gy 41.4 Gy 41.4 Gy
PTV Shell 4 cm maximum 36.8 Gy 36.8 Gy 36.8 Gy
Skin Ring 3 cm maximum 32.2 Gy 32.2 Gy 32.2 Gy
Bowel mean 14.1 Gy 13.7 Gy 12.9 Gy
Sigmoid mean 16.6 Gy 14.5 Gy 14.3 Gy
Rectum mean 43.3 Gy 43.0 Gy 42.5 Gy
Bladder mean 42.9 Gy 42.8 Gy 41.9 Gy
Unspecified Tissue mean 11.6 Gy 11.9 Gy 11.6 Gy
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Figure 6.12: DVHs for different beam configurations for the liver case. Significant dose
reduction is obtained for the healthy liver by using non-coplanar beams.

6.3.7 Liver case - impact of optimized non-coplanar beam arrangements

Table 6.5 shows the wish-list for SBRT of liver metastases. As in our clinical approach,

we aimed for 3 fractions of 25 Gy in the isocentre and a minimum target dose of 67%.

In the first iterations, the maximum PTV dose is not yet obtained. In those cases,

the minimum PTV dose is 67% of the current maximum dose. Additionally, PTV sub-

volumes are constructed and also prescribed a relative minimum dose to enforce a dose

profile in the PTV similar to previously obtained with 3DCRT (De Pooter et al 2007).

Apart from a dose-volume constraint for the healthy liver (at least 700 cc has to receive

a dose lower than 15 Gy), the highest OAR objective is minimizing the mean dose in

the healthy liver tissue as far as possible. Lower priority objectives used are for the

oesophagus, duodenum, stomach, heart, cord, pancreas, the kidneys, and unspecified

tissues, both in maximum dose and mean dose. For all these organs there were also

hard constraints. For part of the OARs, doses are reduced in a 2-level approach, see also

section 6.3.6.

As can be seen in figures 6.12 and 6.13 and table 6.6, non-coplanar approaches had

clear advantages regarding liver sparing, the most important OAR objectives. Obtained

mean healthy liver doses were 16.4 Gy, 14.1 Gy, 12.1 Gy and 11.1 Gy for 10 coplanar, 15

coplanar, 10 non-coplanar, and 15 non-coplanar plans, respectively. The corresponding

volumes of healthy liver tissue receiving less than 15 Gy were 884 cc, 963 cc, 1058 cc

and 1122 cc. There were also striking differences between the maximum doses in the

700 cc healthy liver receiving the lowest doses, i.e. 8.6 Gy, 8.0 Gy, 3.7 Gy and 3.4 Gy

respectively. Improved liver sparing with the optimized non-coplanar setups resulted

for some other OAR in increased doses. The clinical benefit of the lower liver dose is

considered more important than the observed rises in doses in the other OARs.
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Table 6.5: 2-level wish-list for SBRT of liver metastases.
Constraints

Volume Type Limit
PTV maximum 75 Gy
PTV 40% vol minimum 85% relative to current

PTV maximum
PTV 80% vol minimum 75% relative to current

PTV maximum
PTV minimum 67% relative to current

PTV maximum
Spinal Cord maximum 18 Gy
Heart maximum 30 Gy
Stomach, Oesophagus, maximum 21 Gy
Duodenum, Pancreas, Skin
Healthy Liver dose-volume 700 cc should receive < 15 Gy
Kidney (L) dose-volume 35% should receive < 15 Gy
Kidney (R) dose-volume 35% should receive < 15 Gy

Objectives
Level Priority Volume Type Goal

1 PTV maximize maximum 75
2 Healthy Liver minimize mean 5 Gy

1 3 Oesophagus minimize maximum 21 Gy
4 Duodenum minimize maximum 21 Gy
5 Stomach minimize maximum 21 Gy
6 Pancreas minimize maximum 19 Gy
7 Heart minimize maximum 27 Gy
8 Spinal Cord minimize maximum 17 Gy

2 9 Oesophagus minimize mean 5 Gy
10 Duodenum minimize mean 5 Gy
11 Stomach minimize mean 5 Gy
12 Pancreas minimize mean 5 Gy
13 Heart minimize mean 5 Gy
14 Spinal Cord minimize mean 5 Gy

15 Kidney (L) minimize mean 5 Gy
16 Kidney (R) minimize mean 5 Gy
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Figure 6.13: Axial CT-slice of the liver case with dose distributions and beams. a) and
b): 10 beam optimized coplanar and non-coplanar plans respectively. c) and d) 15 beam
optimized coplanar and non-coplanar plans respectively. For the non-coplanar setups,
projections of the selected beams on the axial slice are displayed.



80 6 iCycle: multi-criteria beam angle optimization

Table 6.6: Numerical results for different beam configurations for the liver cancer case.
With practically equal PTV dose delivery, the 15 beam non-coplanar plan has the largest
healthy liver volume receiving less than 15 Gy and the lowest mean dose delivered to
healthy liver tissue. The low liver dose outweighs occasionally increased doses to other
OARs.

Volume Type 10 coplanar 15 coplanar 10 non-coplanar 15 non-coplanar
PTV maximum 73.7 Gy 75.0 Gy 75.0 Gy 75.0 Gy
PTV 40% vol minimum 62.6 Gy 63.8 Gy 63.8 Gy 63.8 Gy
PTV 80% vol minimum 55.3 Gy 56.3 Gy 56.3 Gy 56.3 Gy
PTV minimum 49.4 Gy 50.0 Gy 50.0 Gy 50.0 Gy
Healthy Liver∗ dose-volume 884.0 cc 962.8 cc 1058.3 cc 1122.0 cc
Kidney (L) dose-volume 0.0% 0.0% 0.0% 0.0%
Kidney (R) dose-volume 4.2% 4.1% 10.0% 12.2%
Healthy Liver mean 15.6 Gy 14.1 Gy 12.1 Gy 11.1 Gy
Oesophagus maximum 20.2 Gy 19.0 Gy 18.6 Gy 19.0 Gy
Duodenum maximum 3.2 Gy 3.1 Gy 14.8 Gy 16.4 Gy
Stomach maximum 15.1 Gy 14.5 Gy 19.0 Gy 18.9 Gy
Pancreas maximum 8.7 Gy 8.8 Gy 19.0 Gy 18.9 Gy
Heart maximum 30.0 Gy 29.7 Gy 30.0 Gy 28.1 Gy
Spinal Cord maximum 17.0 Gy 17.0 Gy 14.2 Gy 11.7 Gy
Oesophagus mean 5.7 Gy 5.0 Gy 3.1 Gy 5.0 Gy
Duodenum mean 0.2 Gy 0.2 Gy 1.7 Gy 1.8 Gy
Stomach mean 3.1 Gy 3.8 Gy 5.0 Gy 5.0 Gy
Pancreas mean 0.7 Gy 0.8 Gy 5.0 Gy 5.0 Gy
Heart mean 2.6 Gy 3.1 Gy 3.3 Gy 5.0 Gy
Spinal Cord mean 1.1 Gy 0.9 Gy 1.4 Gy 0.8 Gy
Kidney (L) mean 0.1 Gy 0.1 Gy 3.4 Gy 2.2 Gy
Kidney (R) mean 1.8 Gy 1.8 Gy 4.7 Gy 4.9 Gy

∗ part of Liver-CTV receiving less than 15 Gy

6.4 Discussion

To our knowledge, the presented iCycle application is the first published algorithm for

integrated, multi-criterial optimization of beam angles and profiles, based on a priori

defined plan criteria, allowing fully automated generation of plans. Optimization times

are in the order of several hours. As discussed below, clinical validation and introduction

has started. Other published algorithms for multi-criterial optimization of beam profiles

and orientations are based on interactive selection of orientations (Azizi Sultan & Küfer

2006) or a posteriori selection of the final plan by Pareto navigation (Craft & Monz 2010,

Schreibmann et al 2004).

As a consequence of the optimization method, plans with more beams are always

superior to plans with fewer beams, in the sense that at least the highest priority ob-

jective that can still be improved on, will improve. Sometimes, adding beams does

only marginally improve plan quality. In the interest of minimal treatment time and/or

pre-treatment dosimetrical QA, it may then be advantageous to choose a plan with a

relatively small number of beams. The final choice of the number of beams has to be

made by the treatment team, balancing plan quality with more practical features like
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workload and treatment time. The method proposed by Azizi Sultan & Küfer (2006)

has some similarities to our use of the Lagrangian in the beam selection phase (section

6.2.4). In their approach, a Pareto front is generated for some intermediate i beam plan.

The user then interactively selects the desired plan from the front, and the corresponding

weights are used to select the next beam for the i+1 beam plan. Our algorithm uses the

weights obtained from the 2pϵc optimization, eliminating the need for user-interaction.

As described in Breedveld et al (2009a), the 2pϵc algorithm, used by iCycle for (re-

)optimizing all beam profiles each time a new orientation is added to the plan, generates

Pareto-optimal plans for fixed beam setups. So for an i beam iCycle plan, a change in

fluence profiles to improve on one of the objectives will always result in a less favourable

output for one or more of the other objectives. It is however not possible to prove

that a certain beam arrangement is Pareto-optimal in the beam space (that is, that

there are no alternative beam arrangements that improve at least the highest prioritized

objective). However, in the studies so far, increasing the degrees of freedom for iCycle

plan generation by extension of the input set of candidate directions (e.g. allowing also

non-coplanar directions), did always result in better plans for equal numbers of beams in

a plan. Moreover, we have noted that it turns out to be very challenging for dosimetrists

to generate plans - including selection of the number of beams and their orientations -

that approach the quality of corresponding iCycle plans (below).

Plan generation with iCycle is highly intuitive. The wish-list is configurable using

clinical criteria and priorities, and there is no need for choosing weighting factors. The

only non-intuitive parameter is the target number of directions (section 6.2.6) to accom-

modate selection of the first few orientations in a plan. Generally 4 is a good choice.

Future work is in progress to eliminate this non-intuitive parameter.

As mentioned above, with the sequential beam selection process in iCycle, there is no

need to specify the number of beams in advance. This has been one of the key design

features as the number of beams required for an acceptable plan varies per patient. Also,

in some cases, the addition of an extra beam may result in significant additional sparing.

For each beam added, the plan improves for (at least) one or more objectives, in order

of priority. One can stop the beam selection process if no further improvement is seen,

or add more beams if further improvement is expected. In a future version we will

implement configurable convergence criteria to automatically stop the process of beam

additions.

Generally, we use the LTCP as the tumour objective (formula (6.1) as it penalizes

underdosage heavily (exponentially rather than polynomially like EUD), but allows still

partial underdosage, in contrast to minimum-dose constraints. However, iCycle is capable

of optimizing the target based on EUD or minimum-dose as well. For the OAR, preference

is given to EUD, mean and maximum-dose constraints and objectives. Dose-volume
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constraints may be used as well, but since they are non-convex, there is the danger

of getting trapped in suboptimal plans. Often, OARs have both a hard maximum-

dose constraint and an objective in the wish-list. This approach ensures that there is a

guaranteed maximum, but also an active mechanism to get as low as possible (as was

used for the liver case in section 6.3.7).

Since the beams are selected based on dose contribution rather than spatial preference,

it is possible to mix different beam energies and/or isocentres and let the algorithm

automatically select the best one. If one overlays a 6 MV beam setup and a 10 MV

beam setup, there is a total of 144 candidate coplanar beams if separated at 5 degrees.

An other option could be integrated photon-electron planning (Das et al 2004).

The Lagrange multipliers used in the objective function (section 6.2.4) fluctuate for

the first few beams, but converge later on as more beams are selected. If a beam opti-

mization is done, and the multipliers and achieved objective values of the e.g. 9-beam

plan are used for all beam selections (i.e. ν∗k and ϵ̂j in problem (6.3) are identical for

all beam selections), suboptimal beam directions are selected (the final 9-beam plan is

worse). Thus the final multipliers and objective values are suboptimal for the first beam

selections. We also investigated how representative the multipliers and objective values

obtained from the i − 1 plan are for selection of the ith beam. This was done by se-

lecting beam i, compute the multipliers and objectives, remove this beam, redefine the

optimization problems based on the newly obtained multipliers and objectives (section

6.2.4) and select a new one in a new iteration. This did not lead to significantly different

final plans, but it doubles the total optimization time.

The purpose of this paper was to present algorithms and features of iCycle, and to

show for a variety of clinical cases the impact of optimized beam angles on plan quality. In

the meantime, we have also started systematic studies on the impact of plan generation

with iCycle for groups of patients, i.e. head-and-neck cancer patients with sparing of

salivary glands as highest priority OAR objective (Voet et al 2012), patients with liver

metastases treated with SBRT, and cervical cancer patients. So far, all these studies

point at the importance of optimized beam angles for generating the highest quality

IMRT plans. Apart from the improvements in plan quality, we have also found that

large reductions in planning workload may be achieved. It turned out that for each

of the three mentioned patient groups, excellent plans could be generated with a single

wish-list to be used for all patients in the group, without any tweaking of parameters in a

trial-and-error process. In other words, iCycle could be used as a push-button system for

generating highly attractive plans without any user interference. The automated push-

button approach rendered plan quality independent of expertise variations among the

dosimetrists working in our department. In all retrospective comparisons with clinically

used plans as generated with our Monaco TPS (Elekta AB), the automatically generated
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iCycle plans turned out at least equal in quality, but generally superior. iCycle was

built as a research application and is not yet ready for direct use in the clinic. As a

first step towards clinical benefit, we have recently introduced an indirect approach for

iCycle assisted clinical plan generation with Monaco. First, a plan is generated with

iCycle. Then, the beam angles found by iCycle and the achieved normal tissue dose-

volume parameters are used to automatically configure Monaco for generation of the

clinical plan. For cervical- and head-and-neck cancer patients, the generated Monaco

plans are very similar in quality compared to the original iCycle plan that was used as

input. This procedure is now in routine use for generating IMRT plans for cervical cancer

patients. For head-and-neck cancer patients, we have recently started a prospective study

to evaluate this procedure. For 50 randomly selected patients, two Monaco plans will

be presented to the attending physician, the first generated by dosimetrists using their

classical trial-and-error approach, the second generated with the automated procedure.

As shown in figure 6.9, typical runtimes with an 8 core computer for generating 9

beam plans were in the order of two hours for coplanar setups and several hours for

non-coplanar plans. The process of selecting the next direction to be added to a plan

can be highly parallelized. Currently, we use a 24 core high performance computer, and

calculation times for non-coplanar plans have reduced by around 50%. To speed up beam

direction selection, we also investigated an approach in which the dose delivered by the

first i−1 beams was kept fixed, i.e. add new beams to an existing plan. It turned out that

in the beam selection phase, the interaction between beams is already very important.

Therefore, plan quality was reduced in this approach. Speeding up plan generation is a

topic for continued research.

In iCycle we have chosen for an iterative sequential procedure for adding beams

to a plan. This choice was made to obtain clinically acceptable calculation times and

was inspired by the success of our algorithm for beam angle selection in 3DCRT, applied

clinically in liver SBRT (De Pooter et al 2007, 2008, Woudstra & Heijmen 2003, Woudstra

& Storchi 2000, Woudstra et al 2005, 2008). Given availability of the previously developed

2pϵc method for generating Pareto optimal plans for fixed beam directions, we could have

decided to base selection of the next beam on generated Pareto optimal plans, one for

each candidate direction added to the already selected directions. However, with this

approach we would still have ended up with unacceptable calculations times. Prior to

make a definitive choice for the procedure described in section 6.2.4, many alternatives

were explored. One was to enforce a minimal dose improvement in the target, comparable

to section 6.2.6, but then for the full number of desired beams. In this case, the prescribed

dose for the first beams is relatively low, and does not ‘push’ any constraints, leading to

a poor selection of initial beams. Also important is the general shape of the target dose

function (6.5): the chosen asymptotic shape works well compared to linear or parabolic
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functions. On the other hand, the exact shape is of minor influence. Strategies to limit

the candidate beam set based on already selected beams were also investigated. One

approach is to remove candidate beams around previously selected beams, effectively

locally enlarging the minimum beam separation. One other approach was to replace an

old beam if the newly selected beam was within 10 degrees. Neither approach led to

significantly better solutions, but the optimization times increased.

At the start of our investigations on multi-criterial beam angle and IMRT profile

optimization we studied an approach that started with a plan with many directions

(≈ 100), aiming at a gradual reduction of the number of beams while maintaining plan

quality. We encountered two major problems: 1) Unfavourable beams were not clearly

distinguishable from favourable beams, i.e. many beams have more or less an equal

contribution (either measured in monitor units or mean target dose). 2)there was a

drastic increase in optimization times due to the larger problem sizes, especially for

non-coplanar setups.

6.5 Conclusions

We have developed a novel algorithm for integrated, multi-criterial optimization of beam

angles and beam profiles, named iCycle. For each patient case, the output is a set of

Pareto-optimal IMRT plans, i.e. one 1 beam plan, one 2 beam plan, one 3 beam plan,

one 4 beam plan, etc. Plans with more beams have, by design of iCycle, higher quality.

Plan generation is fully automated. An important design criterion was clinically feasible

calculations times. In this paper, we describe the algorithms and features of iCycle,

and its performance is illustrated with plans for some clinical cases. Based on the often

observed superiority of iCycle plans compared to plans generated by our dosimetrists with

the clinical TPS, and the reduction in workload due to the automation, introduction of

iCycle in our clinic has started and is expanding fast.
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Abstract

Purpose: To quantify improved salivary gland sparing for head-and-neck cancer

patients using IMRT plans based on integrated computerized optimization of beam

orientations and intensity profiles. To assess if optimized nonzero couch angles also

improve VMAT plans.

Methods: Our in-house developed algorithm iCycle was used for automated gen-

eration of multi-criterial optimized plans with optimized beam orientations and

intensity profiles, and plans with optimized profiles for preselected beam arrange-

ments. For 20 patients, five IMRT plans, based on one ‘wish-list’, were compared:

i), ii) 7- and 9-beam equi-angular coplanar plans (iCycle7equi, iCycle9equi), iii),

iv) 9-beam plans with optimized coplanar and non-coplanar beam orientations

(iCyclecopl, iCyclenoncopl) and v) a 9-beam coplanar plan with optimized gantry

angles and one optimized couch rotation (iCyclecouch). VMAT plans without and

with this optimized couch rotation were evaluated.

Results: iCyclenoncopl resulted in the best salivary gland sparing, but iCyclecouch

yielded similar results for 18 patients. For iCycle7equi, submandibular gland NTCP

values were on average 5% higher. iCycle9equi performed better than iCycle7equi.

iCyclecopl showed further improvement. Application of the optimized couch angle

from iCyclecouch also improved NTCP values in VMAT plans.

Conclusions: iCycle allows objective comparison of competing planning strate-

gies. Integrated optimization of beam profiles and angles can significantly improve

normal tissue sparing, yielding optimal results for iCyclenoncopl.
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7.1 Introduction

Intensity-modulated radiotherapy (IMRT) with computer-optimized beam profiles has

become standard care for curative treatments of head-and-neck cancer patients. Until

now, it has been common practice that a dosimetrist selects the applied number of beams

and their orientations in a trial-and-error process. This is not straightforward, especially

for complex treatment sites involving many organs at risk (OARs). The quality of the

final plan may thus depend on the skills and experience of the planner. Alternatively, a

template solution is often used per target site to derive clinical IMRT plans.

For head-and-neck cancer patients, published data on the impact of (computer) opti-

mized and patient-individualized beam arrangements on the quality of treatment plans

are limited. In most comparative studies for head-and-neck cancer IMRT very few pa-

tients were included and equi-spaced coplanar beam arrangements were used as reference.

Meedt et al (2003) reported on coplanar beam angle-optimization (BAO) for one laryn-

geal cancer patient. BAO plans with six or seven beams were compared to a manually

defined 9-field plan and a plan with 15 equi-angular beams. Target coverage was im-

proved for both BAO plans, and mean doses in OARs were reduced. Djajaputra et al

(2003) used an extensive search from different sets of beams to derive an optimal beam

angle configuration. For one head-and-neck cancer patient they showed that the use of

seven or nine non-coplanar beams with optimized angles improved the plan quality over

that of nine equi-angular coplanar beams. Wang et al (2005) investigated the effective-

ness of non-coplanar BAO in ten paranasal sinus carcinoma patients. Five beams with

optimized beam angles generally performed better than plans with nine equi-angular

coplanar beams. Nutting et al (2001) determined the added value of non-coplanar BAO

plans over coplanar BAO plans for 6 parotid gland carcinoma patients. Each plan con-

sisted of 3 or 4 fields. For the non-coplanar plans, the inhomogeneity in the PTV was

greater, and a higher normal brain volume received a dose of at least 54 Gy. They re-

ported no significant advantage for non-coplanar BAO. A limitation of their study was

the small number of beams used; most studies in the literature suggest that at least 7

beams are required to achieve an optimal IMRT plan.

In previous publications on BAO our group mainly investigated in-house developed

algorithms for beam angle, weight and shape optimization in 3DCRT, with a special

focus on liver SBRT. For IMRT, only a simple segmented approach was investigated

(Woudstra & Storchi 2000), or beam angle and beam profile optimization were performed

consecutively (De Pooter et al 2008). The latter approach started with selection of

optimal beam angles for 3DCRT, using an in-house BAO algorithm. Intensity profiles for

these angles were then optimized with a commercial treatment planning system (TPS).

It was demonstrated that with a non-coplanar beam arrangement OARs could be better
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spared than with coplanar beams only. BAO is now clinically applied for 3DCRT plan

generation in liver SBRT (De Pooter et al 2006). Recently, we developed a multi-criterial

plan optimization algorithm for integrated beam angle and beam intensity optimization,

called iCycle (Breedveld et al 2007a, 2009a, 2012). Outputs of iCycle are Pareto-optimal

IMRT plans with optimized beam setups. With Pareto-optimal we mean that none

of the objectives in the applied ‘wish-list’ (see materials and methods section) can be

improved any further without deteriorating one or more constraints or higher prioritized

objectives. For preselected fixed beam arrangements, iCycle can also be used to optimize

beam profiles only. In this study, iCycle was used to systematically compare IMRT

plans for various beam angle selection strategies in 20 randomly selected head-and-neck

cancer patients. Each plan aimed at maximum salivary gland sparing while obtaining

the prescribed high tumour coverage. Due to the close nearness to the PTV of multiple

OARS, we expected that the use of non-coplanar beam arrangements could be beneficial,

like for liver SBRT patients (De Pooter et al 2008). Variations in the procedure for

beam angle selection resulted in 7- and 9-beam equi-angular coplanar plans, coplanar

plans with optimized gantry angles, fully non-coplanar plans with optimized couch and

gantry angles, and coplanar plans with optimized gantry angles for various nonzero couch

angles. For two patients we used a commercial TPS to compare an optimized volumetric

modulated arc therapy (VMAT) plan for the regular 0◦ couch angle with a similar plan

generated for the couch angle corresponding to the 9-beam coplanar plan generated with

iCycle showing the lowest mean NTCP in the salivary glands.

7.2 Methods and materials

7.2.1 Study patients and clinical treatment plans

Twenty recently treated head-and-neck cancer patients with various tumour sites were

randomly selected from our clinical database (table 7.1). For treatment, IMRT plans

were made using Monaco (version 2.04, Elekta). The intention was to draw up the

best clinically acceptable treatment plan for each patient on the basis of target coverage,

sparing of organs at risk, and number of beams. The main focus was put on minimization

of the mean dose in the salivary glands (both parotid and submandibular glands) with

the intend to maintain salivary flow as much as possible (Dijkema et al 2010, Murdoch-

Kinch et al 2008), while assuring that at least 98.5% of the PTV was treated with at least

95% of the prescribed dose and keeping the maximum dose in critical serial organs below

a fixed threshold value. (e.g., 50 Gy for the spinal cord). In most cases this resulted in

a 7-beam IMRT plan.
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Table 7.1: Characteristics of patients used in this study.
Patient Tumour type TNM Dose interval evaluated Followed by

in this study
1 Palatum Molle Ca. T2N2cMO 46 Gy CyberKnife boost
2 Tonsillar fossa Ca. T2NOMO 46 Gy CyberKnife boost
3 Tonsillar fossa Ca. T3NOMO 46 Gy CyberKnife boost
4 Tonsillar fossa Ca. T2NOMO 46 Gy CyberKnife boost
5 Tonsillar fossa Ca. T2NOMO 46 Gy CyberKnife boost
6 Tonsillar fossa Ca. T2NOMO 46 Gy Brachytherapy boost
7 Tonsillar fossa Ca. T1N2aMO 46 Gy Brachytherapy boost
8 Tonsillar fossa Ca. TxNOMO 46 Gy Brachytherapy boost
9 Tonsillar fossa Ca. T2NOMO 46 Gy Brachytherapy boost
10 Oropharynx Ca. T3NOMO 46 Gy CyberKnife boost
11 Oropharynx Ca. T2NOMO 46 Gy CyberKnife boost
12 Oropharynx Ca. T1NOMO 46 Gy Brachytherapy boost
13 Oropharynx Ca. T2NOMO 46 Gy Brachytherapy boost
14 Base of tongue Ca. T4aN1MO 46 Gy CyberKnife boost
15 Base of tongue Ca. T1N1MO 46 Gy CyberKnife boost
16 Base of tongue Ca. cT1N2bM 46 Gy Brachytherapy boost
17 Cheek Ca. T4aN1MO 46 Gy 24 Gy primary tumour
18 Floor of mouth Ca. pT4aNOMO 66 Gy post operative RT
19 Parotid Ca. pT2NOMO 66 Gy post operative RT
20 Nasopharynx Ca. T1N2MO 70 Gy Brachytherapy boost

7.2.2 iCycle: integrated beam angle and profile optimization

iCycle is a novel in-house developed algorithm for integrated beam angle and beam

profile optimization (Breedveld et al 2007a, 2009a, 2012). The algorithm is described in

detail in (Breedveld et al 2012). Here we will briefly summarize the main characteristics.

Core of iCycle is the 2-phase ϵ-constraint (2pϵc) algorithm for generating optimal IMRT

plans for preselected (fixed) beam arrangements. This algorithm has a multi-criterial

optimization approach that generates a single Pareto-optimal plan for the preselected

beam angles. Basis is a user-defined ‘wish-list’ containing the clinical plan objectives

that all have an ascribed priority and hard constraints to be strictly obeyed during

plan generation (see table 7.2 for an example). In iCycle, beam profile optimization is

integrated in an iterative procedure for selection of optimal beam directions. Starting

with zero beams, new beams with optimal directions are consecutively selected from a

list of candidate beams and added to the plan. For selection of a next beam orientation,

first, all candidate directions not yet selected are temporarily added to the configuration

established in the previous iteration, and the IMRT optimization problem is solved. In

the end, the orientation with the best score is added to the beam configuration. For each

orientation added this results in one new Pareto-optimal IMRT plan. Identical wish-lists

can be used for groups of patients, e.g., for all head-and-neck cancer patients with the

main focus on sparing of salivary glands, making plan generation fully automatic and

user independent.
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Table 7.2: Applied wish-list for all study patients. SMG = submandibular gland.
Constraints

Volume Type Limit
PTV maximum 107% of prescribed dose
Spinal cord maximum 38 Gy (48 Gy)∗

Unspecified Tissue maximum 107% of prescribed dose

Objectives
Priority Volume Type Goal Sufficient Parameters

1 PTV minimize LTCP 1 0.5 α = 0.8
2 Parotid / SMG minimize mean 39 Gy
3 Parotid / SMG minimize mean 20 Gy
4 Parotid / SMG minimize mean 10 Gy
5 Parotid / SMG minimize mean 2 Gy
6 PTV shell 1 cm minimize maximum 35 Gy
7 PTV shell 2 cm minimize maximum 30 Gy
8 PTV shell 3 cm minimize maximum 25 Gy
9 PTV shell 4 cm minimize maximum 20 Gy
10 PTV shell 5 cm minimize maximum 15 Gy

∗ 48 Gy for patients 18-20

The 2pϵc algorithm consists of two phases. First, all objectives are consecutively

minimized within hard constraints, trying to reach their predefined goal values (but not

below), starting with the highest prioritized objective (see table 7.2). After minimization,

the objective is turned into a constraint, applying the attained value. This method

ensures that in the following minimizations of lower prioritized objectives, the attained

value of the just optimized objective will at least be maintained. Another advantage is

that for each patient one can start with the same wish-list with demanding objectives.

In the second phase, objectives that could have been reduced below their defined goal as

used in the first phase are sequentially further minimized, again starting with the highest

prioritized objective. Except for objectives for the target dose, in the second phase

all objectives are minimized to the full extent. Minimization of the target objective is

stopped at a user-defined ‘sufficient’ value, accepting small deviations from 100% coverage

of the PTV with 95% of the prescribed dose to leave room for minimization of lower

prioritized objectives.

Apart from the wish-list, the only input that iCycle requires to generate plans is a

prescribed number of beams, and a list with candidate beam directions that may be

added to the plan. This list may be restricted for generation of coplanar plans with

couch angle 0◦, but it may also contain a large set of orientations with various couch and

gantry angles that can be delivered without crashes between the gantry and the couch

or patient.

As mentioned above, in the process of generating a plan with the prescribed number

of beams, Pareto-optimal plans will also be generated for smaller beam numbers. The
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plan with the highest number of beams has the best plan quality regarding the highest

prioritized objective that is minimized to its full extent (see above). However, differences

with plans with fewer beams may be small, making a plan with fewer beams attractive

because of reduced QA workload or treatment time. On the other hand, if the evaluation

of plan quality as a function of beam number shows that more beams than initially

prescribed would result in a better plan quality, iCycle can easily be instructed to generate

more plans with higher beam numbers.

7.2.3 iCycle plan generation for the study patients

The applied wish-list is depicted in table 7.2. It contains hard constraints on the max-

imum allowed dose in the PTV, spinal cord and unspecified tissue. For patients 1-17,

the maximum allowed dose in the spinal cord was set to 38 Gy, i.e., lower than our

clinically used constraint, to leave sufficient room for optimizing the subsequent boost

plan. The objective with priority 1 was to achieve adequate target coverage. The target

dose was optimized by minimizing the Logarithmic Tumour Control Probability (LTCP)

as described by Alber & Reemtsen (2007). A prescription dose and an alpha parameter,

affecting the penalty given to underdosed voxels in the tumour, are inputs to derive the

LTCP. On the basis of the first five study patients, alpha was set at 0.8, which ensured

that at least 98.5% of the PTV volume received at least 95% of the prescribed dose for all

treatment plans. Objectives 2-5 aimed at a balanced reduction of the mean dose in each

of the individual salivary glands. Since the PTV objective was higher prioritized, target

dose-coverage never reduced. Finally, to achieve a steep dose fall off outside the target

volume, maximum dose objectives were defined for a set of shells with 0.3 cm thickness

at 1, 2, 3, 4 and 5 cm of the PTV.

For coplanar BAO, beams were selected from 72 equi-angular spaced candidate beams.

For non-coplanar BAO, we added non-coplanar candidate beams with a 10 degree sep-

aration, resulting in approximately 320 beams in total. The coarser separation of the

non-coplanar candidate beams reduced the time required for BAO without compromis-

ing plan quality. In this study, we used a maximum non-coplanar beam angle in cranial

direction of 45 degrees. Beams outside this range would never be selected due to the

applied maximum dose objectives outside the PTV (objectives 6-10 in table 7.2). We

also omitted candidate beams at both sides of the sphere that could result in collisions

between the gantry and the patient or the treatment couch. Consequently, the list of

feasible candidate beams used by iCycle for non-coplanar BAO depends on target site

and treatment machine.

Using iCycle, the following plans were derived for the patients in this study:

(i) a 7-beam coplanar equi-angular plan at couch angle 0◦ (iCycle7equi).

(ii) a 9-beam coplanar equi-angular plan at couch angle 0◦ (iCycle9equi).
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(iii) a 9-beam coplanar plan with optimized gantry angles at couch angle 0◦ (iCyclecopl).

(iv) a 9-beam non-coplanar plan with optimized gantry and couch angles (iCyclenoncopl).

(v) a 9-beam coplanar plan with optimized gantry angles and an optimal couch angle

(iCyclecouch). This plan was selected from 9 sequentially optimized iCycle plans,

generated for fixed couch angles at 340◦, 345◦, 350◦, 355◦, 5◦, 10◦, 15◦, 20◦, or 0◦

(i.e., iCyclecopl), based on the lowest mean NTCP for the salivary glands.

iCyclecouch was investigated because this plan requires one single couch rotation at the

start of treatment only; next, all beams can be delivered without the technicians having to

enter the treatment room in between. In contrast, treatment of fully non-coplanar plans

is more labour-intensive and time-consuming, as technicians have to enter the treatment

room to manually execute prescribed couch rotations.

7.2.4 Impact of couch angle on VMAT plans

For the two study patients who benefited most from using an optimized couch angle for

the coplanar plan (i.e., showing the largest difference in mean salivary gland NTCP when

comparing iCyclecopl and iCyclecouch), we investigated whether VMAT plans could be

improved by using this optimized couch angle, instead of the commonly used zero couch

angle. Single, full-arc VMAT-plans were generated with Monaco for both situations.

Differences in salivary gland sparing were quantified.

7.2.5 Comparison of treatment plans

Like in our clinically used plans, plan evaluation was mainly focused on the achieved

salivary gland sparing. We compared mean doses in each of the glands. Moreover, these

mean doses were converted into NTCP values, using published dose-response models for

parotid (Dijkema et al 2010) and submandibular glands (Murdoch-Kinch et al 2008).

Both NTCP models are based on the probability of Grade 4 toxicity (i.e., salivary flow

rate < 25% of baseline pre-radiotherapy). A two-sided Wilcoxon matched-pair signed-

rank test (McDonald 2009) was used to compare the different iCycle plans for the patient

group.

7.3 Results

7.3.1 Comparison of iCycle plans

With the applied wish-list, at least 98.5% of the PTV received 95% of the prescribed

dose for all plans. For most plans this applied for even more than 99% of the PTV. Due

to applied hard constraint in the wish-list, observed maximum doses in the spinal cord

remained below 38 Gy for patients 1-16, and below 48 Gy for patients 17-20. For patient

20, the observed maximum dose for brainstem was 48 Gy, while the maximum doses in
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the optical chiasm, optical nerves and eyes were less than 40 Gy. In all other patients

the maximum doses in the brainstem were below 38 Gy.

Figure 7.1 compares mean salivary gland doses for iCyclenoncopl with the corre-

sponding doses in the other iCycle plans. Figure 7.2 shows the NTCP differences be-

tween iCyclenoncopl and the other plans. In table 7.3, these differences are summarized.

The lowest mean salivary gland doses were observed for iCyclenoncopl. Differences with

iCycle7equi, iCycle9equi, and iCyclecopl were statistically significant (p < 0.001, table 7.3).

Compared to iCyclecouch, only the differences in mean submandibular gland dose were

statistically significant (p = 0.05). For iCycle7equi, iCycle9equi and iCyclecopl, the ob-

served increases in mean salivary gland doses compared to iCyclenoncopl also translated

in statistically significant increased NTCPs (table 7.3). iCycle7equi yielded higher mean

salivary gland doses and NTCPs than each of the 9-beam techniques. BAO for iCyclecopl

resulted in better salivary gland sparing than achieved with iCycle9equi.

The observed mean NTCP differences between different planning techniques are small.

However, one should keep in mind that the mean NTCP values for iCyclenoncopl were 7%

for the parotid glands and 30% for the submandibular glands. Therefore, in a relative

sense, iCyclenoncopl had a far lower risk for damaging parotid glands than e.g., iCycle7equi.

Moreover, the gain of applying a more advanced planning technique was patient depen-

dent (see table 7.3). For example, the mean difference in NTCP for the submandibular

glands between iCycle7equi and iCycle9equi was 2.2%; whereas, in patient 5 the use of

9-beams reduced the NTCP for the right submandibular gland from 40% to 29%. For

the parotid glands, the mean NTCP difference between iCycle9equi and iCyclecopl was

0.9%, but in patient 20 the NTCPs reduced from 53% to 47% and 44%, respectively.

Compared to iCyclecopl, use of the optimal couch angle (iCyclecouch) improved the

NTCP for parotid glands by up to 4% and for submandibular glands by up to 3%. For

18 of the 20 patients, NTCPs for iCyclecouch were similar to the values for iCyclenoncopl.

7.3.2 Calculation times for generating iCycle plans

The calculation time for the beam angle optimization phase in iCycle scales linearly with

the number of candidate beams. For the multi-criterial optimization, the required time

grows to the power of three with the number of beams. Moreover, it depends on the

number of constraints and objectives in the wish-list. For this part, calculation times are

similar for coplanar and non-coplanar iCycle plans.

Using a modern 8-core server, calculation times were typically 3 hours for the 9-beam

coplanar BAO plans and 12 hours for the non-coplanar plans.

7.3.3 Impact of couch optimization on VMAT plans

Patients 4 and 18 had the largest reduction in mean salivary gland NTCP when changing

from iCyclecopl to iCyclecouch. For these patients, the optimal couch angle was 340◦ and



94 7 Beam angle optimization for head-and-neck IMRT

iCyclecopl vs iCyclenoncopl

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

mean dose iCyclenoncopl (Gy)

m
ea

n 
do

se
 iC

yc
le

co
pl

 (G
y)

Right parotid gland
Left parotid gland
Right submandibular gland
Left submandibular gland
unity line

C

iCyclecouch vs iCyclenoncopl

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
mean dose iCyclenoncopl (Gy)

m
ea

n 
do

se
 iC

yc
le

co
uc

h (
G

y)

Right parotid gland
Left parotid gland
Right submandibular gland
Left submandibular gland
unity line

D

iCycle7equi vs iCyclenoncopl

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

mean dose iCyclenoncopl (Gy)

m
ea

n 
do

se
 iC

yc
le

7e
qu

i (
G

y)

Right parotid gland
Left parotid gland
Right submandibular gland
Left submandibular gland
unity line

A

iCycle9equi vs iCyclenoncopl

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
mean dose iCyclenoncopl (Gy)

m
ea

n 
do

se
 iC

yc
le

9e
qu

i (
G

y)
Right parotid gland
Left parotid gland
Right submandibular gland
Left submandibular gland
unity line

B

Figure 7.1: Mean salivary gland doses for all coplanar techniques compared to
iCyclenoncopl.
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Figure 7.2: Differences in NTCP values for all plans relatively to iCyclenoncopl, visualized
per salivary gland. NTCP values of glands that could not be spared, because they were
entirely enclosed in the PTV, were omitted.
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Table 7.3: Differences between iCyclenoncopl and all other plans in mean salivary gland
dose and NTCP, averaged over the 20 study patients, for both parotid and submandibular
glands. For iCyclenoncopl, the mean parotid and submandibular gland doses were 17.5 Gy
(range: 0.8 − 38.7 Gy) and 24.5 Gy (range: 2.0 − 41.0 Gy), respectively. Mean NTCPs
were 7% (range: 1 − 47%) and 30% (range: 10 − 65%).

Parotid glands iCycle7equi iCycle9equi iCyclecopl iCyclecouch
mean dose∗ (Gy) 2.5 1.4 0.7 0.1
SD (Gy) 2.2 1.9 1.2 0.7
Range (Gy) -0.2 to 9.1 -0.6 to 7.7 -0.8 to 4.4 -1.2 to 2.3
p-value∗ <0.001 <0.001 <0.001 0.203
NTCP∗ (%) 2.8 1.6 0.7 0.1
SD (%) 3.5 2.7 1.4 0.8
Range (%) -0.2 to 14.4 -0.7 to 12.0 -1.1 to 6.7 -1.5 to 2.8
p-value∗ <0.001 <0.001 0.005 0.629

Submandibular glands iCycle7equi iCycle9equi iCyclecopl iCyclecouch
mean dose∗ (Gy) 3.1 1.7 1.2 0.6
SD (Gy) 2.6 1.5 2 1.7
Range (Gy) -0.5 to 8.8 -0.0 to 5.3 -1.1 to 8.6 -1.5 to 7.9
p-value∗ <0.001 <0.001 <0.001 0.05
NTCP∗ (%) 5 2.8 1.5 0.5
SD (%) 5.1 2.7 2 1.5
Range (%) 0 to 20.0 0 to 8.5 0 to 8.5 -2.0 to 6.0
p-value∗ <0.001 <0.001 <0.001 0.085

∗ Compared to iCyclenoncopl

350◦ respectively. Table 7.4 shows salivary gland doses for VMAT plans with couch

angles 0◦ and 340◦/350◦. Like observed for iCyclecouch, use of the optimal couch angle

improved the salivary gland sparing for VMAT plans as well.

7.4 Discussion

To our knowledge, this is the first systematic study on the impact of beam angles on sali-

vary gland sparing in head-and-neck cancer patients, based on integrated computerized

optimization of beam angles and intensity profiles. By using a single wish-list with plan

objectives and constraints for all patients and techniques, plan generation became fully

Table 7.4: Mean doses in salivary glands (Gy) for VMAT plans with a couch angle of 0◦

and with the optimized couch angle from iCyclecouch. Submandibular glands for patient
18 were omitted in the table since they were fully included in the PTV.

Patient 4 Patient 18
VMAT 0◦ VMAT 350◦ VMAT 0◦ VMAT 340◦

Right parotid 22.7 20.6 13.9 9.2
Left parotid 26.6 24.8 42.5 39.1
Right submandibular gland 44.3 42.7 - -
Left submandibular gland 35.6 35.2 - -
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user independent, ensuring objective plan comparisons. Plans with 9 beams performed

better than plans with 7 beams, and coplanar plans with optimized gantry angles had

better gland sparing than equi-angular plans. Non-coplanar plans with optimized gantry

and couch angles had the lowest gland NTCPs, although differences with coplanar plans

with an optimized couch angle were negligible for most patients.

iCycle generates multi-criterial optimized treatment plans. Other algorithms for

multi-criterial plan optimization have been evaluated clinically, showing a benefit for

plan quality and plan efficiency (Craft et al 2012, Thieke et al 2007). But in these stud-

ies the number of treatment beams and their orientations were still manually selected.

The regular labour-intensive trial-and-error process for selecting beam orientations and

number of beams in IMRT treatment planning may result in variations in plan qual-

ity, depending on the skills and experience of the dosimetrist. Class solutions for beam

arrangements may be suboptimal for individual patients. iCycle is an algorithm for

fully automated generation of plans with optimized beam angles and intensity profiles.

Therefore, the workload for generating plans is almost negligible. Prior to the start of

the investigations described in this paper, for 10 of the 20 selected patients we compared

the clinical plan as generated with the Monaco TPS with the coplanar iCycle plan with

optimized gantry angles (iCyclecopl). For each of these patients, salivary gland sparing

in the iCycle plan was superior. On average, the mean gland NTCP reduced from 29.2%

to 19.4%.

iCycle has been developed in a research setting and not for clinical use; a segmentation

algorithm is currently lacking. However, it turned out that using the optimal beam angles

and mean gland doses as established with iCycle as input, Monaco could be steered to

generate a clinically acceptable plan that was almost identical to the iCycle plan with

respect to the obtained gland NTCPs. The procedure for converting an iCycle plan

into a Monaco plan has recently been automated. As a result, high quality IMRT plans

for head-and-neck cancer patients can now be generated in two automated steps. The

first step is generation of a plan in iCycle; the second is the conversion into a clinically

deliverable Monaco plan. We recently performed a prospective study for head-and-neck

patients, showing a clear benefit for this automated plan generation approach (Voet et al

2013). In that study, we took into account more relevant critical structures, like oral

cavity, larynx and swallowing muscles, during plan optimization.

We demonstrated that iCyclecouch plans were sometimes superior to the corresponding

plans for couch angle 0◦. This was especially true in unilateral neck treatments, in which

rotation of the couch often resulted in a free projection of the contra-lateral salivary

glands, yielding reductions in delivered gland doses. As demonstrated for two patients,

also with VMAT the optimal nonzero couch angles resulted in lower salivary gland doses

than plans for couch angle 0◦.
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All iCycle plans in this study were automatically generated based on one identical

wish-list. This allows for an objective comparison of competing treatment strategies for

individual patients. For none of them, clinically relevant plan improvements were ob-

served when using more than 9 beams. Patients with unilateral targets showed very little

improvement in plan quality after adding beams eight or nine. However, adding extra

beams never deteriorated plan results. The investigations revealed that the gain of more

complex or time-consuming treatment techniques was patient dependent. As planning

with iCycle is fully automated, a possible future clinical application is to generate for

each patient 9-beam coplanar plans for couch angle 0◦ and several nonzero angles, and

a 9-beam non-coplanar plan. Based on the differences in NTCP and involved treatment

time, one could then choose for each individual patient the most appropriate treatment

technique.

7.5 Conclusions

iCycle is a novel plan optimization algorithm for user-independent generation of treat-

ment plans with optimized beam angles and intensity profiles, allowing objective compari-

son of competing planning strategies. For head-and-neck cancer patients, plan generation

with iCycle can result in improved salivary gland sparing with a largely reduced plan-

ning workload. Observed sparing was best for fully non-coplanar plans. VMAT with an

optimized couch angle can improve salivary gland sparing compared to the commonly

applied zero couch angle.
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Abstract

Purpose: To prospectively compare plans generated with iCycle, an in-house de-

veloped algorithm for fully automated multi-criterial IMRT beam profile and beam

orientation optimization, with plans manually generated by dosimetrists with the

clinical treatment planning system.

Methods and Materials: For 20 randomly selected head-and-neck cancer pa-

tients with various tumour locations (of whom 13 received sequential boost treat-

ments) we offered the treating physician the choice between an automatically gen-

erated iCycle plan and a manually optimized plan following standard clinical pro-

cedures. While iCycle used a fixed ‘wish-list’ with hard constraints and prioritized

objectives, the dosimetrists manually selected the beam configuration and fine-

tuned the constraints and objectives for each IMRT plan. Dosimetrists were not

informed in advance whether or not a competing iCycle plan was made. The two

plans were simultaneously presented to the physician, who then selected the plan

to be used for treatment. For the patient group, differences in PTV coverage and

sparing of critical tissues were quantified.

Results: In 32/33 plan comparisons the physician selected the iCycle plan for

treatment. This highly consistent preference for automatically generated plans was

mainly caused by improved sparing for the large majority of critical structures.

With iCycle, the NTCPs for parotid and submandibular glands were reduced by

2.4%±4.9% (maximum: 18.5%, p = 0.001) and 6.5%±8.3% (maximum: 27%, p =

0.005), respectively. The reduction in mean oral cavity dose was 2.8 Gy ± 2.8 Gy

(maximum: 8.1 Gy, p = 0.005). For swallowing muscles, oesophagus and larynx,

the mean dose reduction was 3.3 Gy ± 1.1 Gy (maximum: 9.2 Gy, p < 0.001). In

addition, for 15 of the 20 patients, target coverage was improved as well.

Conclusions: In 97% of cases, automatically generated plans were selected for

treatment because of superior quality. Apart from improved plan quality, automatic

plan generation is economically attractive because of reduced workload.
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8.1 Introduction

Intensity modulated radiotherapy (IMRT) is commonly applied as curative radiotherapy

treatment for head-and-neck cancer patients. As input for computerized optimization

of the beam profiles, the number of beams, their configuration, the constraints and the

objectives need to be defined by the dosimetrist. It is often difficult for dosimetrists

to select these input parameters and to assess whether and how a plan can be further

optimized by modifying them for a second optimization attempt. This may result in a

time-consuming trial and error process. Moreover, the realized plan quality may highly

depend on the complexity of the case, the time available for plan generation, and the

skills and ambition of the dosimetrist.

In a previous study on head-and-neck cancer patients we compared IMRT plans with

computer-optimized beam arrangements with plans based on equi-angular set-ups (Voet

et al 2012). All plans were automatically generated with iCycle (Breedveld et al 2007a,

2009a, 2012), an in-house developed algorithm for multi-criterial optimization of beam

profiles and gantry angles. Compared to equi-angular arrangements, we demonstrated

improved salivary gland sparing for optimized beam set-ups. Nine beam plans were often

superior to seven field plans.

In this study we prospectively compared for a group of randomly selected head-

and-neck patients two plans: one generated by dosimetrists using our clinical treatment

planning system Monaco (Elekta AB, Sweden), the other based on automatic plan gener-

ation by iCycle. iCycle optimized both beam profiles and coplanar beam arrangements.

Patients were treated according to the best plan, as selected by the treating physician.

Plans were compared based on physicians’ preferences and quantitative assessments.

8.2 Methods and materials

8.2.1 Patients

Table 8.1 gives an overview of the 20 patients included in our study. Treatments for

the indicated dose intervals were delivered at an Elekta Synergy linear accelerator using

6 MV photon beams. For 17 of the 20 patients, a sequential boost followed the initial

treatment up to 45 or 46 Gy. Since boosts delivered with brachytherapy or CyberKnife

were excluded in our analyses, the treating physicians made in total 33 plan comparisons

and selections.

Prior to plan generation, the treating physician contoured the CT-scan of the patient,

largely assisted by the auto-contouring program ABAS (Teguh et al 2011). Apart from

the clinical target volumes (CTV), the parotid and submandibular glands, oral cavity,

swallowing muscles, first centimetre of the oesophagus (Levendag et al 2007), larynx,

spinal cord, and brain stem were delineated. For planning, CTVs were extended with a
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Table 8.1: Characteristics of patients included in this study.
Patient Tumour type TNM Dose intervals evaluated (Gy) Followed by

1 Hypopharynx cancer T4aN2bM0 0-66
2 Oral cavity cancer T4aN0M0 0-46 + 46-66
3 Tonsil cancer T2N0M0 0-46 Brachytherapy
4 Larynx cancer T4N2bMx 0-46 + 46-70
5 Larynx cancer T4aN1M0 0-46 + 46-70
6 Nasopharynx cancer T1N1Mx 0-46 + 46-70
7 Oral cavity cancer T2N0M0 0-46 CyberKnife boost
8 Base of tongue cancer T2N2bM0 0-46 CyberKnife boost
9 Hypopharynx cancer T2N2bM0 0-46 + 46-70
10 Sinus piriformis cancer TxN2bMx 0-46 + 46-66
11 Tonsil cancer T3N2bMx 0-46 CyberKnife boost
12 Hypopharynx cancer T4aN0M0 0-46 + 46-70
13 Hypopharynx cancer T2N0M0 0-46 + 46-70
14 Tongue cancer T4N2cM0 0-46 + 46-66
15 Larynx cancer T3N0M0 0-46 + 46-70
16 Base of tongue cancer T2N0M0 0-46 + 46-70
17 Lip cancer TxN0M0 0-45 + 45-62.5
18 Left neck (mesothelioma) 0-44
19 Oral cavity cancer T2N0M0 0-66
20 Larynx cancer T3N0M0 0-46 + 46-70

5 mm margin to generate planning target volumes (PTV).

8.2.2 Study design

The design of our study is schematically presented in figure 8.1. During the study

period, the standard protocol for IMRT included “manual” generation of treatment plans

(IMRTdos) by dosimetrists using Monaco version 2.04. For each IMRT plan the beam

configuration was manually selected and the constraints and objectives were fine-tuned.

For the study patients, a second plan (IMRTiCycle) was generated, based on an automated

plan generation with iCycle (Breedveld et al 2012, and next section). Neither the involved

dosimetrist, nor the treating physician knew in advance whether a competing iCycle plan

would be developed.

iCycle is not commissioned for clinical use. Therefore, one of the investigators (PV)

used Monaco for conversion of iCycle plans into highly similar, clinically deliverable plans

(IMRTiCycle). First, a Monaco plan-template was automatically generated including the

optimized beam angles and achieved plan-parameters for organs at risk (OAR) in iCycle.

With minimal user interference, these values could then be reproduced in Monaco within

1 Gy difference for all OARs. To prevent any bias, PV did not have access to the IMRTdos

plan while generating IMRTiCycle.

IMRTdos and IMRTiCycle were together presented to the treating physician for plan se-

lection, using identical lay-outs of plotted dose distributions and dose-volume histograms.

Seven experienced dosimetrists, experienced in IMRT planning, generated the standard
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MONACO

iCycle

IMRTdos

iCycle optimization

IMRTiCycle

plan evaluation
by physician

best plan = 
treatment plan

Figure 8.1: Workflow of study. Note that the intensity modulated radiation therapy plans
generated manually (IMRTdos) and those generated with iCycle, an in-house-developed
algorithm (IMRTiCycle) were presented to the treating physician in the same program
(Monaco).

plans with Monaco. Seven head-and-neck radiation oncologists entered patients and eval-

uated competing IMRTiCycle and IMRTdos plans to select the best plan for treatment.

In addition to physicians’ preferences, we compared plans based on quantitative analy-

ses of achieved PTV coverage and OAR sparing. For patients with a sequential boost, not

delivered with brachytherapy or CyberKnife, summed dose distributions were evaluated.

Target coverage was quantified by the dose delivered to 99% of the PTV (D99%). For the

spinal cord and brainstem, maximum doses were compared. Mean doses were evaluated

for the other OARs. For salivary glands, mean doses were converted into NTCP values,

using published dose-response models for parotid (Dijkema et al 2010) and submandibu-

lar glands (Murdoch-Kinch et al 2008). Both models are based on the probability of

Grade 4 toxicity (i.e., salivary flow rate < 25% of baseline pre-radiotherapy). For the

group of patients, two-sided Wilcoxon matched-pair signed-rank tests were used to derive

the statistical significance of observed differences in plan parameters.

For both IMRTdos and IMRTiCycle, the required hands-on planning time was logged.

Time for optimization, segmentation and dose calculation, which did not require any

manual interference, was excluded.

8.2.3 iCycle plan generation

iCycle is an algorithm for multi-criterial optimization of both beam orientations and

IMRT fluence profiles. Its features have been described in detail in (Breedveld et al

2012). Here a brief summary is provided. Basis for a plan optimization is an a priori
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defined ‘wish-list’ containing hard constraints to be strictly obeyed and prioritized objec-

tives. Per patient category, a fixed wish-list is used. Treatment plan generation is fully

automated, i.e. without any user interaction such as tweaking of objective weights. Core

of iCycle is the 2-phase ϵ-constraint (2pϵc) algorithm for generating Pareto-optimal plans

for preselected (fixed) beam arrangements (Breedveld et al 2007a, 2009a). In the gener-

ated Pareto-optimal plans none of the objectives can be improved any further without

deteriorating one or more constraints or higher prioritized objectives.

In iCycle, beam profile optimization is integrated in an iterative procedure for se-

lection of optimal beam directions. Starting with zero beams, new beams with optimal

directions are consecutively selected from a list of candidate beams and added to the

plan. For selection of a next beam orientation, all candidate directions not yet selected

are temporarily added to the configuration established in the previous iteration, and the

IMRT optimization problem is solved. In the end, the orientation with the best score

is added to the beam configuration. For each orientation added this results in one new

Pareto-optimal IMRT plan. Addition of a new beam improves plan quality regarding

the highest prioritized objective that can still be improved on. In this study, in total

9 directions were used for plan generation for each of the patients, resulting in Pareto

optimal plans with 9, 8, 7, . . . beams. With more than 9 beams, clinically relevant plan

improvements were not observed (Voet et al 2012). Based on a minimum gain of 0.5 Gy

per added beam in at least one of the objectives, we decided on the number of beams for

generating IMRTiCycle plans.

In this study iCycle was used for generating Pareto-optimal coplanar plans at couch

angle 0◦. Beam directions were automatically selected from 72 equi-spaced candidate

directions (5◦ separation), including 0◦.

Table 8.2 shows the applied wish-list for the first dose interval of each patient. It was

established using the clinical protocol, previous experiences (Voet et al 2012), trial runs

of iCycle for a small group of patients, and discussions with two of the seven involved

clinicians. iCycle has a mechanism to reduce, if possible, the objective functions in the

wish-list to values lower than the indicated goal values, with an accent on the objectives

with the highest priorities. PTV coverage had the highest priority. To enforce that the

PTV D99% was at least 95% of the prescribed dose, the Logarithmic Tumour Control

Probability (LTCP) was used (Alber & Reemtsen 2007, Breedveld et al 2012). For a

homogeneous target dose, equal to the prescribed dose, LTCP = 1. A lower target dose

results in a strongly enhanced LTCP, while higher target doses decrease the LTCP to a

minimum value of 0 for a clinically infeasible, infinite dose. To guarantee good target

coverage, an alpha value of 0.8 was used. A higher alpha puts a higher penalty on cold

spots in the PTV. Reduction of the mean salivary gland doses was performed using a

multi-level approach (Breedveld et al 2009a), i.e., by repeated use of the objective func-
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Table 8.2: Applied wish-list for first dose interval of each patient, containing hard con-
straints and prioritized objectives.

Constraints
Volume Type Limit
PTV maximum 107% of prescribed dose
Spinal cord maximum 48 Gy∗

Unspecified Tissue maximum 107% of prescribed dose

Objectives
Priority Volume Type Goal

1 PTV minimize LTCP 1
2 Parotid / SMG minimize mean 39 Gy
3 Parotid / SMG minimize mean 20 Gy
4 Oral cavity minimize mean 39 Gy
5 Spinal cord / brain stem minimize maximum 30 Gy
6 External ring † minimize maximum 90% of prescribed dose
7 Larynx + swallowing muscles minimize mean 75% of prescribed dose
8 PTV shell 1 cm ‡ minimize maximum 75% of prescribed dose
9 Parotid / SMG minimize mean 10 Gy
10 PTV shell 4 cm ‡ minimize maximum 40% of prescribed dose
11 Parotid / SMG minimize mean 2 Gy

∗ For patients treated with a sequential boost technique, a spinal cord constraint of 38 Gy was applied
to leave room for optimizing the boost plan.
† Structure 2 cm distance interior from patient surface, preventing high superficial doses in incident
beams.
‡ PTV shells 1 cm and 4 cm from PTV to control dose gradient outside PTV.

tion with decreasing priorities and goal values (table 8.2). iCycle first tried to minimize

the mean dose in each of the salivary glands to 39 Gy (corresponding to an NTCP of

about 50%, objective 2), and then to 20 Gy (NTCP of about 10%, objective 3). Before

minimizing the dose in the salivary glands even further (priorities 9 and 11), the mean

oral cavity dose (priority 4), the maximum dose in spinal cord and brainstem (priority

5) and the mean dose in the larynx and swallowing muscles (priority 7) were optimized.

When for instance the dose in the oral cavity would not be considered first, the sali-

vary glands might be spared at the cost of an unacceptable high dose in the oral cavity.

The volumes External ring, PTV shell 1 cm and PTV shell 4 cm aimed at reducing the

entrance dose, and steering the dose gradient outside the PTV, respectively.

For patients with a sequential boost (see table 8.1) we used the same wish-list for

the boost phase. Only the constraints for the spinal cord and brain stem were adjusted

according to the dose interval.

8.3 Results

IMRTiCycle and IMRTdos plans consisted of 6-9 beams (average 8.6), and 5-9 beams (av-

erage 7.3), respectively. In 32/33 plan comparisons, the physician selected IMRTiCycle for

treatment, in the vast majority of cases due to reduced dose delivery to OARs with neg-
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Figure 8.2: Differences in OAR mean doses between IMRTdos and IMRTiCycle for the 20
study patients with at the right end (‘all’) the patient group averages. Positive values
indicate lower OAR doses for IMRTiCycle. Results for OARs that could not be spared,
because they are completely embedded in the PTV, were omitted. MCS = musculus
constrictor superior; MCM = musculus constrictor medius; MCI = musculus constrictor
inferior; MCP = musculus constrictor cricopharyngeus. SMG = submandibular gland.

ligible loss in PTV coverage, equal coverage, or even improved coverage. For patient 11,

IMRTiCycle was selected notwithstanding the higher OAR doses. In this case, IMRTdos

had a too low PTV coverage, which was avoided in IMRTiCycle.

Figure 8.2 compares obtained OAR doses. In case a patient had plans for two dose

intervals (see table 8.1), data for the summed plan are provided. For the iCycle plans the

mean NTCP was reduced by 2.4% (maximum: 18.5%, p = 0.001) for the parotid glands

and by 6.5% (maximum: 27%, p = 0.005) for submandibular glands. The mean dose in

the oral cavity reduced by on average 2.8 Gy (maximum: 8.1 Gy, p = 0.005). The mean

dose reduction in the swallowing muscles, oesophagus and larynx was 3.3 Gy ± 1.1 Gy

(maximum 9.2 Gy, p < 0.001). For IMRTiCycle the maximum doses in the spinal cord and

in the brain stem were well below tolerance with average values of 34.8 Gy and 21.8 Gy,

respectively. Relative to IMRTdos the maximum doses in the spinal cord and the brain

stem were reduced by 3.3 Gy ± 4.0 Gy (p = 0.04) and 1.1 Gy ± 6.4 Gy (p = 0.531),

respectively.

Figure 8.3 illustrates the balance between target coverage and NTCP for the salivary
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Figure 8.3: Differences between IMRTdos and IMRTiCycle in D99% and NTCP values for
the individual salivary glands, for the 20 study patients. Results for salivary glands that
could not be spared, because they were completely embedded in the PTV, were omitted.
For points in the upper right quadrant, IMRTiCycle showed both a better target coverage
and improved OAR sparing.

glands. Overall, the target coverage was slightly better for the IMRTiCycle plans. The

mean improvement in D99% was 0.24 Gy ± 0.4 Gy (p = 0.07). 75% of salivary glands

had lower NTCPs in the IMRTiCycle plan (upper left and right quadrants in figure 8.3).

59% of the glands are in the upper right quadrant, indicating that IMRTiCycle had both

the lowest mean gland dose and improved target coverage.

For each patient, we estimated both for IMRTdos and IMRTiCycle the probability

that the function of at least one parotid gland could be preserved, and the probability

that at least one submandibular gland could be spared. These probabilities, P , were

calculated according to P = (1−NTCPleft ·NTCPright). Figure 8.4 clearly shows that

this probability is higher for the IMRTiCycle plans, except for patient 11 (see also above).

In case IMRTdos has already a high sparing probability (i.e., close to 100%), there is

naturally limited room for improvement with IMRTiCycle. But for patients with a lower

probability of sparing at least one of the glands, sparing could be substantially enhanced

by IMRTiCycle.

The average hands-on time spent by dosimetrists on generating IMRTdos plans was

3.3 hours (range 1−6.5 hours). As described in the Methods and Materials section (8.2),

generating an iCycle plan is fully automated. Conversion into a Monaco plan to arrive

at the clinically applicable IMRTiCycle plan, as performed in this study, took on average

1.5 hours (range 1− 2.5 hours).



108 8 Prospective study

30

40

50

60

70

80

90

100

30 40 50 60 70 80 90 100

probability sparing IMRTmanual (%)

pr
ob

ab
ili

ty
 s

pa
rin

g 
IM

R
T iC

yc
le

 (%
)

parotid glands
unity line
submandibular glands

Figure 8.4: Probability of sparing at least one of the salivary glands when using either
IMRTiCycle or IMRTdos.

8.4 Discussion

To our knowledge, this is the first prospective clinical study, evaluating possibilities

for automated treatment plan generation. We included patients with a broad range of

head-and-neck tumour sites in this study. For each study patient/dose interval, a plan

generated with iCycle, our in-house algorithm for automated, multi-criterial optimiza-

tion of beam angles and profiles, was compared with a plan manually generated by the

dosimetrists, following the routine clinical protocol. In 32 out of 33 cases, physicians

selected the automatically generated plan for treatment. Generally, IMRTiCycle plans

showed higher quality for a very broad range of plan parameters (see figure 8.2). This

could explain the high consistency in the physicians’ preferences for the automatically

generated plans. Only once, a physician selected the IMRTdos plan for treatment (patient

9; 0 − 46 Gy). In this case, IMRTiCycle showed larger hotspots (107% of the prescribed

dose) in parts of the PTV adjacent to the parotid glands. The fact that these hotspots

resulted in reduced parotid gland mean doses was considered less important. With some

minor adjustments in the standard wish-list used by iCycle, these hotspots could have

been avoided (Breedveld et al 2007a). For the sequential boost of this patient, the

physician preferred the IMRTiCycle plan for treatment.

As demonstrated in previous studies, iCycle can also be used for optimizing fully non-

coplanar IMRT plans (Breedveld et al 2012, Voet et al 2012). Compared to coplanar

beam arrangements, minor improvements in OAR sparing were observed for the majority

of head-and-neck cancer patients. Because delivery of non-coplanar plans would be more

labour-intensive and time-consuming, as technicians have to enter the room to manually

execute prescribed couch rotations, coplanar beam arrangements were used in this study.
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Due to the applied wish-list, with multi-level objectives for the salivary glands, the

sparing of different OARs was better balanced with IMRTiCycle. For some patients, this

resulted in less sparing for a lower-prioritized OAR, in benefit of higher prioritized ones.

As an example, in patient 1, the mean dose in the oral cavity was 1.7 Gy higher for

IMRTiCycle, but the sparing of both the parotid glands and left submandibular gland

was improved (mean dose reductions of 2.2 Gy, 3.5 Gy and 4.4 Gy, respectively).

For the patient group, differences between IMRTdos and IMRTiCycle, appear to be

small. Nevertheless, individual patients may highly benefit from automated plan genera-

tion with iCycle, as shown by differences in NTCP values up to 18.5% for parotid glands

and up to 27% for submandibular glands (see figure 8.3).

The basis of automated plan generation with iCycle is the automated steering of

plan optimizations, using a wish-list with plan criteria that is identical for all patients.

The observed high clinicians’ preference and the favourable plan parameters for the

IMRTiCycle plans demonstrate that automated plan generation can indeed be successfully

performed. As mentioned also in the Methods and Materials section (8.2), the wish-list

used in this study was compiled based on discussions with two of the seven clinicians

participating in the study. Obviously, with the input of only two of the clinicians, it was

possible to generate a wish-list that served the needs of the others as well.

Other recent papers also addressed the possibility of (semi-)automatic treatment plan-

ning. Thieke et al (2007) described a multi-criterial optimization technique with an in-

teractive plan navigation tool. They automatically generated a database with Pareto

optimal IMRT plans. By interactively exploring this database the optimal treatment

plan was identified. Teichert et al (2011) enhanced this algorithm such that the user

could also navigate between plans with different beam configurations. In contrast to

iCycle, the number of treatment beams and the beam configurations were manually pre-

defined. Craft et al (2012) reported on multi-criterial plan generation for glioblastoma

and pancreatic cancer patients, showing clear benefits in treatment planning efficiency

and plan quality compared to manually generated treatment plans. Also in this work the

beam arrangement was predefined. Another limitation of both multi-criterial optimiza-

tion approaches is that manually selecting an optimal plan from the Pareto front might

be very difficult and subjective, especially when many OARs are involved.

Zhang et al (2011) described an algorithm for automatic intensity-modulated radia-

tion treatment planning for lung cancer. In their work the beam angle configuration was

selected from an expert database, depending on tumour size and position. A drawback

of this approach is that it remains unclear whether this configuration is optimal for a

next patient.

As mentioned in the Methods and Materials section (8.2), iCycle can currently not

be used in a direct way for generating clinical plans. Therefore, in this study, fully auto-
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matically generated iCycle plans were “manually” converted into corresponding Monaco

plans (IMRTiCycle) of highly similar quality. Based on the superiority of IMRTiCycle

plans compared to manually generated plans (IMRTdos), we conclude that fully auto-

mated planning with iCycle becomes feasible, once the system has been prepared for

direct clinical use. For the current study, there was however also an advantage of the

conversion of iCycle plans. As both plans were in the end available in Monaco, the lay-

out of presented dose distributions and dose-volume histograms was equal for IMRTiCycle

and IMRTdos, avoiding plan selection bias.

In an on-going project we aim at direct use of iCycle plans in the clinic, avoiding

conversion into Monaco plans. In the meantime we have started to routinely apply

iCycle for treatment of head-and-neck cancer patients as described in this paper, i.e.

use of iCycle for generation of an IMRT plan, followed by conversion into a deliverable

plan with highly similar quality in Monaco. More comparative studies are needed to

investigate the importance of automated treatment planning for other tumour sites.

8.5 Conclusions

Compared to plans generated by dosimetrists with Monaco, plans automatically gener-

ated with iCycle were highly preferred by treating physicians. Quantitative plan analyses

were in line with this preference. By routinely applying iCycle, optimized, patient spe-

cific treatment plans can be generated for large groups of patients with minimal user

interaction.
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Abstract

In a recent paper we have published a new algorithm, designated ‘iCycle’, for fully-

automated multi-criteria optimization of beam angles and intensity profiles. In

this study, we have used this algorithm to investigate the relationship between

plan quality and the extent of the beam direction search space, i.e. the set of

candidate beam directions that may be selected for generating an optimal plan.

For a group of 10 prostate cancer patients, optimal IMRT plans were made for

Stereotactic Body Radiation Therapy (SBRT), mimicking High Dose Rate (HDR)

brachytherapy dosimetry. Plans were generated for 5 different beam direction input

sets, a coplanar set and four non-coplanar sets. For coplanar (CP) treatments,

the search space consisted of 72 orientations (5◦ separations). The non-coplanar

CK-space contained all directions available in the robotic CyberKnife treatment

unit. The fully non-coplanar (F-NCP) set facilitated the highest possible degree of

freedom in selecting optimal directions. CK+ and CK++ were subsets of F-NCP to

investigate some aspects of the CK-space. For each input set, plans were generated

with up to 30 selected beam directions. Generated plans were clinically acceptable,

according to an assessment of our clinicians. Convergence in plan quality occurred

only after around 20 included beams. For individual patients, variations in PTV

dose delivery between the 5 generated plans were minimal, as aimed for (average

spread in V95%: 0.4%). This allowed plan comparisons based on organ at risk

(OAR) doses, with the rectum considered most important. Plans generated with

the non-coplanar search spaces had improved OAR sparing compared to the CP

search space, especially for the rectum. OAR sparing was best with the F-NCP,

with reductions in rectum DMean, V40Gy, V60Gy and D2% compared to CP of 25%,

35%, 37%, and 8%, respectively. Reduced rectum sparing with the CK search

space compared to F-NCP could be largely compensated by expanding CK with

beams with relatively large direction components along the superior-inferior axis

(CK++). Addition of posterior beams (CK++ → F-NCP) did not lead to further

improvements in OAR sparing. Plans with 25 beams performed clearly better than

11-beam plans. For coplanar plans, an increase from 11 to 25 involved beams

resulted in reductions in rectum DMean, V40Gy, V60Gy and D2% of 39%, 57%, 64%,

and 13%, respectively.
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9.1 Introduction

SBRT involves hypofractionated delivery of high radiation doses and requires highly con-

formal treatment plans and optimal geometrical precision in daily dose delivery (Blom-

gren et al 1995). Hypofractionation may result in a treatment benefit for prostate cancer,

as the α/β ratio could be as low as 1.5 (Brenner & Hall 1999, Fowler et al 2001, King &

Fowler 2001, Miralbell et al 2012). Several randomized studies have demonstrated ad-

vantages of moderate hypofractionation in prostate cancer (Arcangeli et al 2011, Norkus

et al 2009, Pollack et al 2006, Yeoh et al 2011).

Based on promising results with the strongly hypofractionated prostate HDR brachy-

therapy (Demanes et al 2005, Grills et al 2004), interest has grown in developing non-

invasive external beam radiotherapy (EBRT) techniques with as little as four fractions.

Several of these studies were based on the robotic CyberKnife treatment unit (Accuray,

Inc) with its image-guided tumour tracking technology and easy use of non-coplanar

beams (Aluwini et al 2010, Freeman & King 2011, Freeman et al 2010, Fuller et al 2011,

2008, Jabbari et al 2012, Katz & Santoro 2009, Kilby et al 2010, King et al 2003, 2011,

Townsend et al 2010).

The impact of beam angle optimization on the quality of treatment plans has been

investigated in many studies (Aleman et al 2009, De Pooter et al 2008, Pugachev &

Xing 2001, Voet et al 2012, Van de Water et al 2011a, Woudstra & Storchi 2000). To

our knowledge, very little is known on the importance of the extent of the beam angle

search space in computer optimization of beam orientations, especially for non-coplanar

techniques.

Computer optimization of beam angles has been investigated for many years in our

institution (De Pooter et al 2008, Voet et al 2012, Van de Water et al 2011a, Woudstra

& Storchi 2000). Most papers relate to 3D conformal techniques (De Pooter et al 2008,

Voet et al 2012, Woudstra & Storchi 2000), or to CyberKnife treatments with circular

cones, (Van de Water et al 2011a). Recently, we developed a new algorithm, designated

‘iCycle’, (Breedveld et al 2012), for multi-criterial optimization of beam angles and IMRT

fluence profiles. In this study we have used iCycle to investigate the importance of the

beam angle search space in computer optimization of prostate SBRT plans that mimic

HDR brachytherapy dose distributions. Plan comparisons were made for 5 different

search spaces, including one with only coplanar directions, and one with the orientations

available at the CyberKnife.
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9.2 Methods and materials

9.2.1 Patients

Planning CT-scans of ten prostate cancer patients, previously treated in our institution

with the CyberKnife, were included in this study. Patients were treated with a dose of

38 Gy, delivered in 4 fractions with a dose distribution that resembled prostate HDR

brachytherapy. The CT-scan slice distances were 1.5 mm, the average scan length was

47.4 ± 6.7 cm (range: 35.7-55.7 cm). PTVs included the entire delineated GTV plus a 3

mm margin. The average volume was 90.8 ± 23.1 cc (range: 69.5-145.4 cc). Within the

GTV, the peripheral zone (PZ) was defined with the help of MR-images. Patients had

4 implanted markers for image guidance and were treated supine with their feet towards

the robotic manipulator.

9.2.2 iCycle

All treatment plans were generated with iCycle, our novel in-house developed algorithm

for automated, multi-criterial optimization of beam angles and IMRT fluence profiles.

The algorithm is described in detail in Breedveld et al (2012). Here a brief summary of

its features is provided.

Fully-automated plan generation with iCycle is based on a ‘wish-list’, defining hard

constraints that are strictly met and prioritised objectives (Breedveld et al 2007a). The

higher the priority of an objective, the higher the chance that the goal will be approached

closely, reached or even exceeded. Furthermore, a list of candidate beam orientations for

inclusion in the plan is needed. The beam direction search spaces and wish-list used in

this study are described in detail below in the sections 9.2.3 and 9.2.4, respectively. A

plan generation starts with zero beams. Optimal directions are sequentially added to the

plan in an iterative procedure, up to a user-defined maximum number of beams. After

each beam addition, iCycle generates a Pareto optimal IMRT plan including the beam

directions selected so far. Consequently, plan generation for a patient always results

in a series of Pareto optimal plans with increasing numbers of beams. For example,

in this study the selected maximum number of beams is 30, resulting for each case in

Pareto optimal IMRT plans with 30, 29, 28, 27, . . . beams. By design, addition of a

beam improves plan quality regarding the highest prioritized objective that can still be

improved on (Breedveld et al 2012).

9.2.3 Investigated beam direction input sets (search spaces)

In this study, the isocentre was placed in the centre of the tumour. Beam directions were

defined by straight lines (beam axes) connecting the isocentre with focal spot positions

situated on a sphere centred around the isocentre. The five investigated beam direction

search spaces were defined as follows:
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Figure 9.1: CyberKnife (CK) search space. Dots represent focal spot positions.
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1. CP (coplanar): 72 equi-angular orientations in the axial plane through the isocen-

tre, covering 360◦ around the patients (angular separation 5◦).

2. CK (used by the CyberKnife robotic treatment unit): graphical presentation shown

in figure 9.1. The set consists of 117 directions. Interesting features are the absence

of beams with a large posterior component (right upper panel in figure 9.1: available

directions in the axial plane are limited to [-110◦,110◦]), and the asymmetry in the

beam direction set (left lower panel in figure 9.1) related to the asymmetric position

of the robotic manipulator relative to the treatment couch.

3. F-NCP (fully non-coplanar): largest set of all 5, theoretical, i.e. not related to

a particular treatment device. Ideally, it should represent the search space as

defined by all focal spots on a complete sphere around the isocentre. In the axial

plane, through the isocentre, the angular distance between directions is 5◦ (F-

NCP includes CP). Non-coplanar directions are separated by 10◦. However, iCycle

removes the non-coplanar treatment beams that enter (partially) through the end

of the CT dataset, which limits the available number of beam directions due to the

finite lengths of the CT data sets (section 9.2.1). Because of this limitation, the

maximum deviation from the AP-axis in the sagittal plane is around 55◦. F-NCP

includes around 500 beam orientations, depending on the patient.

4. CK++: as F-NCP, however excluding (only) directions with a posterior component

outside the borders of the CK search space. In the axial plane this results in

exclusion of beams outside the [-110◦,110◦] range (figure 9.1, upper right panel).

Depending on the patient, CK++ has around 300 beam directions.

5. CK+: as F-NCP, however excluding all directions outside the borders of the CK

search space (figure 9.1). Because of the higher focal spot density, the number of

available directions in CK+ is higher than for CK, i.e. 186 vs. 117.

9.2.4 iCycle generation of prostate SBRT plans

iCycle was used to optimize beam angles and intensity profiles for high quality SBRT

plans, mimicking HDR brachytherapy dose distributions. Table 9.1 shows the applied

wish-list with planning constraints and objectives in the upper and lower parts, respec-

tively. The wish-list was established in a trial-and-error procedure to ensure for this

patient population, generation of high quality plans with the desired balance between

the clinical objectives (see also Breedveld et al (2012), Voet et al (2012)). Most important

clinical goals were adequate PTV coverage and a maximally reduced rectum dose.

The two highest priority objectives, defined with Logarithmic Tumour Control Proba-

bility (LTCP) functions (Alber & Reemtsen 2007) aimed at adequate PTV dose delivery.



9.2 Methods and materials 117

Table 9.1: Applied wish-list for all study patients. For definition of Ring 1, 2 and 3 see
section 9.2.4.

Constraints
Structure Type Limit
PTV maximum 59-69 Gy
Rectum maximum 38 Gy
Urethra maximum 40 Gy
Bladder maximum 41.8 Gy
Penis Scrotum maximum 4 Gy
Penis Scrotum mean 2 Gy
Ring 2 maximum 15 Gy
Ring 1 maximum 20 Gy

Objectives
Priority Structure Type Goal Parameters
1 PTV LTCP 1 Dp = 34-38 Gy, α = 0.7,

Sufficient = 0.003-0.20
2 PTV LTCP 4 Dp = 55-60.8 Gy, α = 0.1-0.2,

Sufficient = 4-26
3 Rectum mean 0 Gy
4 PZ LTCP 1 Dp = 45 Gy, α = 0.9
5 Urethra mean 0 Gy
6 Bladder mean 0 Gy
7 Ring 3 maximum 15 Gy
8 Rectum maximum 30 Gy
9 Bladder maximum 35 Gy
10 Penis Scrotum maximum 0 Gy
11 Left and right Femur head maximum 24 Gy

The first focused on control of PTV doses around 34-38 Gy, while the second mainly

steered PTV doses around 55-60.8 Gy. For each patient, the goal was to generate, for all

5 beam angle search spaces (section 9.2.3), plans with highly similar PTV dose delivery,

all close to the dose delivered in the clinical plan, allowing comparison of search spaces

based on OAR plan parameters. To this purpose, prior to the final plan generations for

a patient, trial plans were generated to fine-tune the LTCP sufficient and α parameters

(Breedveld et al 2009a) for a PTV maximum dose constraint (table 9.1) equal to the

maximum dose in the clinical plan. For each patient, a fixed set of sufficient, α, and

PTV maximum dose values was used for the final plan generation for all five search

spaces.

As in clinical practice, reduction of rectum dose delivery was the most important

OAR objective (priority 3 in table 9.1), aiming at a mean dose of 0 Gy. With this choice,

the optimizer would only reduce doses to other OARs to the extent that this would

not compromise reaching the lowest possible mean rectum dose. Other OAR considered

with lower priorities were urethra, bladder, penis, scrotum and femoral heads. Other

structures, Rings, were defined to control and reduce the dose to healthy tissues: ‘Ring

1’ includes all tissue between 2 and 3 cm from the PTV, ‘Ring 2’ was all tissue between
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the body contour and the body contour-2cm and ‘Ring 3’ referred to all tissue in between

Ring 1 and Ring 2. Hard constraints on Ring 1 and Ring 2 had to enforce a steep dose

fall-off outside the target and to limit the entrance dose, respectively. The priority 7

objective on Ring 3 aimed at dose reduction to healthy tissues, also if not part of an

OAR.

For all beam direction search spaces considered in this study, the simulations assumed

that beam collimation was performed with a dynamic multi-leaf collimator (MLC) with a

5 mm leaf width. Maximum field size was 10×12 cm2 and leaves had full interdigitation

and overtravel. For dose calculations, percentual depth dose curves and profiles of an

Elekta Synergy 6 MV beam, collimated with an MLCi2, were used. Pencil beam kernels

for optimization were derived as described in Storchi & Woudstra (1996). Equivalent

path length correction was used for inhomogeneity correction.

9.2.5 Details on plan evaluation and comparison

The plans in this study were evaluated by a clinician (SA) to check clinical acceptability.

In accordance with the ICRU-83 report (ICRU Report 83 2010), D2% and D98% were

reported instead of maximum and minimum doses, respectively. In line with QUAN-

TEC findings (Michalski et al 2010), rectum dose delivery reporting included V40Gy and

V60Gy, calculated by first converting delivered doses to a 2 Gy/fraction regime using an

alpha/beta parameter of 3 Gy. Apart from doses delivered to the PTV, PZ and OARs,

we also analyzed V10Gy, V20Gy, and V30Gy, the patient volumes receiving more than 10,

20, and 30 Gy, respectively. Evaluations also included the conformity index (CI) cal-

culated as the ratio of the total tissue volume receiving 38 Gy or more and the PTV

(almost 100% of the PTV received 38 Gy, see Results section). Hard constraints on dose

delivery to the penis and the scrotum guaranteed negligible doses to these structures in

all plans (table 9.1), which are not reported in the Results section.

As described in section 9.2.4, for each patient we aimed at highly similar PTV doses

for all five search spaces. In the Results section it is demonstrated that differences were

indeed very small. For this reason comparison of plans and search spaces could be based

on doses delivered to healthy tissues with the rectum being the most important one. The

two-sided Wilcoxon signed-rank test was used to compare plan parameters in the various

search spaces. A p-value of <0.05 was defined as statistically significant.

9.2.6 Treatment time calculation for the CK search space

We calculated treatment times for the hypothetical situation that the CyberKnife would

be equipped with an MLC. Treatment times consist of beam-on time, linac travel time,

and imaging time. For calculation of beam-on times, we used a leaf sequencing algorithm

described in van Santvoort & Heijmen (1996), assuming a linac output of 1000 MU/min

(as available for the current CyberKnife), a maximum leaf speed of 2.5 cm/s and full
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Figure 9.2: Axial dose distribution for the 25-beam plan generated with the CK search
space for the first study patient. For definition of Ring 1 see section 9.2.4.
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Figure 9.3: DVH comparison for patient 1 for five 25-beam plans, each generated for one
of the five studied search spaces.

leaf interdigitation and overtravel (see also section 9.2.4). Leaf synchronization was

not applied. The linac travel time is the time to travel through all selected focal spot

positions. However, CyberKnife movements are not totally free, i.e. it cannot freely

travel from each spot position to any other, but it sometimes has to pass unselected

(but allowed, figure 9.1) positions to reach a next selected position. The applied travel

time calculation algorithm selects the shortest path, considering all possible movements

between spot positions (Van de Water et al 2011a). For the treatment time calculations,

we assumed that prior to dose delivery from a focal spot position, images were acquired

to verify, and if needed, correct alignment of the beam to be delivered with the current
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tumour position. Imaging time takes only 2 seconds. However, CK has some node

positions from which it is not possible to take an image. To handle this, the machine has

to travel to the nearest node position from which imaging is allowed and come back to

the delivery position. This aspect was also considered in the calculation of the treatment

times.

9.3 Results

9.3.1 Generated plans

In this section, plans and analyses performed for the first study patient are described in

some detail to provide examples of the investigations performed for all 10 patients.

Figure 9.2 shows an axial dose distribution for the 25-beam plan generated with the

CK search space. Clearly visible are the high degree of rectum sparing, the reduced dose

in the urethra, and the increased dose in the peripheral zone (PZ), as enforced by the

applied wish-list (table 9.1).

Figure 9.3 shows DVHs for the 25-beam plans generated with each of the 5 search

spaces in this study. As aimed for (section 9.2.4), PTV coverages for the 5 plans were

highly similar (upper left zoom). Rectum sparing was best for F-NCP and CK++, while

for the coplanar (CP) plan, rectum dose was clearly highest (lower left zoom). F-NCP

was best for bladder and CK++ for urethra, with F-NCP second. Obviously, plans for

the the non-coplanar search spaces with the largest extents (F-NCP and CK++) were

most favourable for this patient.

Figure 9.4 shows plan parameters as a function of the number of beams in the plan.

For all beam numbers, PTV coverage was very similar for the 5 search spaces. The second

row shows that for all search spaces, rectum dose parameters improved with increasing

numbers of beams, with some levelling off between 15-20 beams. Also bladder DMean,

urethra DMean, V10Gy, V20Gy, and V30Gy improved with increasing numbers of beams. A

very similar behaviour of plan quality on numbers of involved beams was seen for all 10

patients in this study. In the next section, population data will be provided for PTV and

rectum.

9.3.2 Plan quality vs number of beams in plans, PTV and rectum

The left panel in figure 9.5 shows the average PTV V95% and PTV D98% for the 10

study patients, as a function of the number of beams in the plans, normalized to the

CP 10-beam plan. For each search space, these quantities are largely independent of the

number of beams (normalized values differ up to 0.8% and 2% for average PTV V95% and

D98%, respectively). The trend to slightly reduced PTV dose delivery with increasing

number of beams is (partly) related to enhanced urethra sparing with more beams (no

data presented). For all beam numbers, these PTV dose parameters are also highly
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similar for the 5 search spaces with variations up to less than 0.5%. The right panel

demonstrates substantial differences between the search spaces in population averaged

rectum DMean and rectum V60Gy, with lowest values for F-NCP and least favourable

values for CP. For 20 beams, F-NCP averaged rectum DMean and V60Gy were 29% and

45% lower compared to CP. For all 5 search spaces, rectum dose improved with increasing

number of beams. None of the curves in the right panel fully levels off, but reductions

with beam number are clearly most prominent up to around 20 beams. In the remainder

of this paper, data for 25-beam plans will be reported, unless stated otherwise.

9.3.3 25-beam plans - Coplanar (CP) vs non-coplanar beam direction search

spaces

Table 9.2 provides a comparison of the CP search space with the four non-coplanar spaces

regarding plan parameters of the generated 25-beam plans.

As aimed for (section 9.2.4), differences in PTV DMean, PTV V95% and PTV D98%

between the 5 search spaces were clinically and/or statistically insignificant. Compared

to CP, only PTV D2% was around 3% higher for non-coplanar set-ups (p <0.05), but

clinically these increases were considered unimportant. No relevant differences were

observed in the PZ parameters. Because of this high similarity in target dose for the

5 search spaces, in the remainder of this paper, plan comparisons are focused on organs

at risk and especially on the rectum.

The rectum population mean plan parameters were clearly lowest for the 4 non-

coplanar search spaces (table 9.2). For the largest search space, F-NCP, population mean

reductions relative to CP in rectumDMean, V40Gy, V60Gy, andD2% were as large as 25.0%,

34.9%, 36.5%, and 7.5%, respectively. For CK, these reductions were smallest but still

highly relevant (18.5%, 23.2%, 21.4% and 3.9%, respectively). Figure 9.6 demonstrates

that the superiority of the non-coplanar search spaces holds for all individual patients.

Patient 7 had the highest CP rectum dose parameters, while percentual reductions with

the non-coplanar set-ups were also highest (figure 9.6). Regression analyses showed, for

all 4 non-coplanar search spaces, increasing percentual reductions in rectum dose para-

meters for increasing CP parameters (p=0.001-0.03), i.e. patients with less favourable

CP rectum parameters had largest reductions when switching to a non-coplanar plan.

Population mean urethra doses were equal for all 5 search spaces (table 9.2). Dif-

ferences between non-coplanar spaces and CP in mean bladder dose were highly patient

specific. F-NCP and CK++ had on average ≈9% lower mean bladder doses, while for

CK+ and CK, mean bladder doses were around ≈11% higher compared to CP. None of

these differences were statistically significant. With CP, doses in the femoral heads were

already low, but substantial percentual reductions were seen for the non-coplanar beam

sets. Also V10Gy and V20Gy were lowest for the non-coplanar sets.
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Figure 9.4: Dosimetrical results for patient 1 for plans with 10 up to 30 beams for the 5
studied input beam sets.
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Figure 9.5: Population averaged PTV (left) and rectum (right) plan parameters as func-
tion of beam number, for 10-30 beam plans. All percentages are relative to absolute pop-
ulation mean values of the CP 10-beam plan, i.e. PTV V95%=99.5%, PTV D98%=37.8
Gy, Rectum DMean=11.3 Gy and Rectum V60Gy=8%.

V30Gy, the total delivered number of MU and the conformity index (CI) were the

only parameters for which CP plans did on average (slightly) better than non-coplanar

set-ups. V30Gy and MU were 3-5% and 8% lower in the CP plans. The mean CI in

the CP plans for the 10 study patients was 1.2, which increased to 1.27-1.31 for the

non-coplanar sets.
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9.3.4 25-beam plans - Comparison of non-coplanar search spaces

As described in detail in section 9.2.3, non-coplanar search spaces increased in extent

when going from CK to CK+ to CK++ and finally to F-NCP. Briefly, CK+ had the same

boundaries as CK but a higher spot density, CK++ was an expansion of CK+ with beams

with relatively large direction components along the superior-inferior axis and F-NCP

was an extension of CK++, making it the only non-coplanar search space with posterior

beams. In this section, changes in plan parameters related to these increases in degree

of freedom for selecting optimal non-coplanar beam angles are discussed.

CK → CK+ As also visible in table 9.2, CK has the highest mean rectum dose para-

meters of the 4 non-coplanar beam direction search spaces. Increasing the focal spot

density did only marginally improve rectum dose delivery, although reductions in DMean

of 2.2% and in V40Gy of 3.2% were statistically significant. For urethra and bladder, dif-

ferences in delivered dose were negligible (table 9.2). Significant differences were found

for femoral head doses. With CK+, DMean and D2% for right and left head decreased

by 15%, 9%, 11% and 10%, respectively (p-values: 0.02, 0.04, 0.04, 0.03). Small, but

statistically significant, differences were found for V20Gy (CK+ 1% lower, p=0.01), V30Gy

(CK+ 1.1% higher, p=0.02), and for CI (CK+ 1.5% higher, p=0.01).

CK+ → CK++ With this increase in search space, population mean rectum DMean,

V40Gy, V60Gy and D2% were reduced by as much as 6.8%, 12.0%, 16.9%, and 3.5%, re-

spectively (p=0.002). Large improvement was also found for the bladder with a reduction

in DMean of 26.9% (p=0.01). V20Gy was also improved with CK++ (1.7%, p=0.002). CI

was slightly better for CK+ (2.3%, p=0.001).

CK++ → F-NCP Adding posterior beams by going from CK++ to F-NCP did not

result in relevant further reductions in rectum dose (table 9.2). Very small improvements

were seen for V20Gy (1.5%, p=0.006), V30Gy (1.6%, p=0.001), and CI (2.0%, p=0.004).

9.3.5 25-beam plans - Distribution of selected beam orientations

Figure 9.7 shows selected beam directions for the 25-beam F-NCP plan of each individual

study patient. Clearly, there is a preference for beams with a large lateral component.

Comparison of the right panels of figures 9.7 and 9.8 shows that most high-weight beams

in the F-NCP plans are within the CK++ search space. Apparently, beams with a large

posterior component are not frequently selected or have low weights.
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Figure 9.6: Comparison of the CP search space with the four non-coplanar spaces for
four rectum plan parameters. On the right of each panel, the CP absolute values for
each patient are reported. The four columns on the left report the percentage differences
for non-coplanar search spaces with the CP plan. For all patients and all parameters,
differences ∆[%] are below zero, showing the improved rectum sparing with non-coplanar
beam search spaces. All plans are with 25 beams.

9.3.6 25-beam plans - Treatment times for the CK search space

Treatment times for the 25-beam CK plans were on average 18.1±0.5 minutes, including

dose delivery, robot motion and imaging and set-up correction prior to delivery of each

beam (section 9.2.6).

9.3.7 11 vs 25-beam coplanar plans

As visible in figure 9.4 for patient 1 and in the right panel of figure 9.5 for the patient

population, OAR plan parameters may substantially improve with increasing numbers

of beams in the plans. On regular treatment units, IMRT plans are generally delivered

with coplanar beam set-ups with ≤11 beams. Table 9.3 compares coplanar plans with

11 and 25 beams. Although differences in PTV parameters are statistically significant,

they are small, and clinically the obtained PTV doses are considered highly comparable.

An important consideration here is that the difference in PTV V95%, our most important

parameter for PTV dose evaluation, is very small. The most striking differences were

found for the rectum with improvements in DMean, V40Gy, V60Gy and D2% of 39.2%,

57%, 63.7%, and 12.6% (p=0.002), when increasing the number of beams from 11 to 25.

Bladder DMean and D2% reduced by 14.4% (p=0.002) and 5.3% (p=0.004), respectively,

and V10Gy improved by 11.1% (p=0.002). When switching to 25-beam plans, the MU

increased on average by 75.7% (p=0.002).
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Figure 9.7: Selected focal spots/beams by iCycle for 25-beam F-NCP plans for all 10
patients in a 3D (left) and an axial view (right). Colours refer to different patients, beam
weights are proportional to the dot diameters.

Figure 9.8: Selected focal spots/beams by iCycle for 25-beam CK++ plans for all 10
patients in a 3D (left) and an axial view (right). Colours refer to different patients, beam
weights are proportional to the dot diameters.
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Table 9.3: Results for 10 patients for 11 and 25 coplanar beam plans. The first col-
umn reports the results obtained with the 11 beam coplanar configuration. In the next
columns, the percentage decrease from the 11 beams CP results are shown. (∗) refers to
all tissues receiving >10, >20 or >30 Gy.

11 beams, CP 25 vs 11 beams, CP (%)
Mean ± 1SD [Range] ∆Mean ± 1SD [Range] p-value

Target
PTV DMean 45.1 ± 1.0 (Gy) [43.4,46.7] 3.4 ± 3.1 [0.2,9.1] .002
PTV V95% 99.4 ± 0.4 (%) [98.7,99.9] -0.5 ± 0.5 [-1.8,0.3] .01
PTV D98% 37.8 ± 0.5 (Gy) [37.1,38.6] -1.5 ± 1.4 [-3.9,1.6] .02
PTV D2% 52.8 ± 1.8(Gy) [49.5,56.1] 7.0 ± 4.2 [1.6,13.2] .002
PZ DMean 48.1 ± 0.9 (Gy) [46.5,48.9] 4.6 ± 4.5 [-0.8,11.5] .006
PZ D98% 42.5 ± 1.0 (Gy) [39.8,43.3] -12.4 ± 2.8 [-16.4,-5.4] .002

Rectum
DMean 10.2 ± 2.9 (Gy) [5.5,13.7] -39.2 ± 9.0 [-48.0,-18.6] .002
V40Gy 15.2 ± 4.9 (%) [7.8,22.2] -57.0 ± 9.2 [-63.3,-34.3] .002
V60Gy 6.5 ± 2.4 (%) [3.2,10.9] -63.7 ± 9.3 [-78.1,-46.9] .002
D2% 33.7 ± 1.5 (Gy) [31.3,35.4] -12.6 ± 4.2 [-19.0,-7.4] .002

Urethra
DMean 33.1 ± 3.3 (Gy) [27.5,36.9] -2.6 ± 1.2 [-4.7,-0.9] .002
D2% 40.0 ± 0.2 (Gy) [39.7,40.5] -0.2 ± 0.5 [-1.2,0.7] NS

Bladder
DMean 10.2 ± 2.3 (Gy) [5.1,13.7] -14.4 ± 9.1 [-28.1,-2.5] .002
D2% 36.3 ± 3.0 (Gy) [27.9,37.9] -5.3 ± 3.7 [-9.8,0.6] .004

Femural Heads
R DMean 7.8 ± 2.5 (Gy) [4.7,12.3] 19.9 ± 30.1 [-14.0,92.1] NS
R D2% 15.3 ± 2.0 (Gy) [12.9,18.4] 3.5 ± 13.0 [-11.0,27.4] NS
L DMean 8.0 ± 1.7 (Gy) [6.0,10.8] 12.7 ± 17.3 [-19.5,44.5] .03
L D2% 15.2 ± 1.3 (Gy) [13.8,17.3] 2.0 ± 8.7 [-12.2,12.5] NS

Other
V10Gy

∗ 2274 ± 382 (cc) [1824,3163] -11.1 ± 2.6 [-15.2,-6.9] .002
V20Gy

∗ 365 ± 67 (cc) [295,520] -3.4 ± 2.7 [-7.4,2.2] .006
V30Gy

∗ 178 ± 33 (cc) [143,257] -4.8 ± 3.0 [-9.4,0.2] .004
CI 1.2 ± 0.1 [1.1,1.3] -2.5 ± 4.5 [-10.0,3.1] NS
MU 24791 ± 1302 [22624,26844] 75.7 ± 9.2 [56.8,91.7] .002



9.4 Discussion 129

9.3.8 Calculation times

iCycle simulations were done in Matlab 7.12, R2011a, The Mathworks Inc., on a 4 socket

10-core Intel Xeon E7. Plan optimization required ≈35 hours to generate for one patient

F-NCP plans with up to 25 beams, i.e. 25 complete plans have been generated and all

data are individually available, and around ≈45 hours for up to 30 beams. These times

reduced to ≈15 and ≈25 hours to generate coplanar treatment plans.

9.4 Discussion

Recently, we have presented iCycle, our in-house developed algorithm for integrated,

multi-criterial optimization of beam angles and profiles (Breedveld et al 2012). For plan

generation, iCycle uses a priori defined plan criteria (wish-list, section 9.2.4 and table 9.1)

and a beam direction search space. The wish-list is used to fully automatically generate

high quality plans without interactive tweaking of parameters such as weighting factors in

the cost function. For a plan with N selected orientations, the solution is Pareto optimal

regarding the generated beam profiles (Breedveld et al 2009a, 2012). To ensure generation

of clinically acceptable plans with favourable balances in the outcomes for the various

plan objectives, wish-lists are developed in close collaboration with treating clinicians.

This study is based on 1500 treatment plans generated with iCycle (10 patients, 5 beam

sets, 30 beams). Due to the automation, the plan generation workload was minimal and

plan quality was independent of the experience and skills of human planners. To our

knowledge, this is the first paper investigating in details the impact of the extent of the

beam angle search space in computer optimization of IMRT dose distributions.

For each individual patient, PTV doses in the iCycle generated plans for the five

investigated search spaces were highly similar (figures 9.3, 9.4, 9.5 and table 9.2), and

tuned to be in close agreement with the clinically delivered dose. This allowed focusing

plan comparisons on OARs, and specifically on the highest priority OAR, the rectum.

Rectum doses for all four non-coplanar beam direction search spaces were clearly superior

when compared to doses obtained with the coplanar search space (figures 9.3, 9.4, 9.5,

9.6 and table 9.2). Also for the femoral heads, V10Gy and V30Gy, non-coplanar plans

performed better (table 9.2). Coplanar plans had (slightly) improved V30Gy, CI and

MU .

The CK+ and CK++ search spaces were used to study dosimetrical consequences of

limitations in the extent of the CK space (figure 9.1, sections 9.2.3, 9.3.4 and 9.3.5).

The data presented in section 9.3.4 do clearly demonstrate that extension of the CK

space to include beams with larger direction components along the superior-inferior axis

could substantially enhance plan quality (CK+ → CK++). On the other hand, further

addition of beams with larger posterior components did not improve plans (CK++ →
F-NCP). Comparison of the right panels in figures 9.7 and 9.8 shows that also in case of



130 9 Beam direction search space in non-coplanar beam angle optimization

availability of the posterior beams (F-NCP), most selected high-weight beams are within

the borders of the CK++ space that lacks posterior beams. As plan quality for F-NCP

and CK++ is highly similar, it may be concluded that omission of posterior beams does

not limit the quality of generated plans.

As demonstrated in figures 9.4 and 9.5, for all search spaces, plan quality continued

to improve with increasing numbers of involved beams, with some levelling off for >20

beams. Table 9.3 details the very significant improvements that can be obtained with 25

coplanar beam configurations compared to 11 coplanar beams. This observation might

seem in striking contrast with the broadly applied ≤9 beams for prostate in clinical

practices. However, it has to be considered here that HDR like dose distributions were

investigated in this paper, aiming at highly inhomogeneous PTV doses with some sparing

of the urethra and enhanced dose delivery in the peripheral zone. In an on-going study

we are investigating the use of large numbers of beams for more regular prostate IMRT

dose distributions.

Also for very large beam numbers, non-coplanar configurations performed clearly

better than coplanar set-ups (figures 9.5, 9.6, table 9.2). On conventional treatment units

with L-shaped gantries, delivery of non-coplanar plans with many beams would result in

impractically long treatment times and a high workload because of the involved couch

rotations. The latter would also limit treatment accuracy. The performed treatment

time calculations for a robotic CyberKnife equipped with an MLC (sections 9.2.6 and

9.3.6) demonstrated that treatment times of around 18 minutes could be obtained with

such a system, including intra-fraction imaging and position correction prior to delivery

of each of the 25 beams.

As mentioned in section 9.2.4, for each patient, PTV doses in iCycle plans were highly

similar to the dose in the plan generated with the clinical treatment planning system for

actual treatment with the CyberKnife. On the other hand, it was observed that rectum

doses in iCycle plans were highly superior to corresponding doses in the clinical plans

(not described in detail in this paper). This may seem unexpected for the CK search

space that contains the feasible beam directions of the CyberKnife treatment unit. A

possible explanation may be that clinical plans were generated with 3 circular cones

per patient, while for the iCycle simulations it was assumed that beam collimation was

performed with an MLC. These observations are now being investigated in great detail,

to be reported in a separate paper.

In this study, minimization of the mean rectum dose was used as the highest priority

objective, aiming at rectum sparing (table 9.1). Many studies have been performed to

establish plan parameters that correlate most with rectum toxicity, see Michalski et al

(2010) for an overview. The QUANTEC group suggests V60, but using this objective

directly in the optimization leads to less desirable results because of the focus on a single
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dose-point. Instead we used rectum DMean as an objective in the optimizations, while

V60 was included in plan evaluations.

In iCycle, the wish-list is used to generate plans with favourable balances between

the various treatment goals. In our investigations we imposed a very strong drive for

minimization of the mean rectum dose (table 9.1: priority 3, Goal: 0 Gy). Such a focus on

rectum dose minimization has a danger that slightly higher rectum doses could potentially

result in (unobserved) much improved doses to other OAR. In the trial plan generations

for creating the applied wish-list (section 9.2.4), no evidence was found that this would

actually occur. In the near future, we will however study the value of navigation tools

(Craft & Bortfeld 2008, Monz et al 2008, Thieke et al 2007) for exploring the solution

space around iCycle generated plans. Anyway, as in this study the same wish-list was

used for all search spaces, numbers of involved beams and patients, it is believed that the

impact of not performing navigation on main conclusions of the work will be minimal.

In this paper we compared plan quality of treatments with up to 30 optimized coplanar

beam directions with optimized non-coplanar techniques. There is no existing machine

that can deliver treatments for all investigated beam search spaces. The CyberKnife

search space does not include 72 equi-angular coplanar beams, neither does it contain all

directions defined for CK+ and CK++. The fully non-coplanar (F-NCP) space cannot

be realized with any of the commercially available systems, e.g. because of linac-bunker

floor collisions, gantry-couch collisions, or beams going through heavy couch elements.

However, the F-NCP dose distributions give an upper limit of what could theoretically

be obtained with optimized non-coplanar set-ups. To make conclusions on the impact

of the beam search space on plan quality independent of the applied optimizer, the type

of beam shaping, and the beam characteristics, all optimizations were performed with

the iCycle optimizer, using the same dose calculation engine for the same MLC (section

9.2.4).

Optimization results may depend on dose calculation accuracy (Jeraj et al 2002).

It is well known that dose calculations using pencil beams and equivalent path length

correction have limited accuracy, especially in low density tissues. In this study on

prostate cancer, these tissues were largely absent in the treatment fields. Moreover, the

same dose calculation algorithm was used for all beam direction search spaces. Therefore,

we believe that limitations in the applied dose calculation engine do not jeopardize our

main conclusions on ranking of the beam search spaces.

As described in section 9.3.8, optimization times were long, especially for the largest

non-coplanar search spaces. There are many possibilities for substantial reductions and

this is an area of active research in our group. On the other hand, based on an a

priori defined, fixed wish-list per patient group, iCycle optimized plans are generally of

very high quality, and do not require further iterations with new iCycle runs (Breedveld
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et al 2012) (as explained in section 9.2.4, in this study, PTV constraints and objectives

were tuned per patient to reproduce different clinical PTV dose distributions). In a

recent prospective clinical study for evaluation of iCycle in head-and-neck IMRT, for

each patient the treating physician was presented a plan based on iCycle and a plan

made by dosimetrists with the clinical treatment planning system. In 32 out of 33 plan

selections, the treating physician selected the iCycle based plan. Also objectively, the

latter plans were clearly of higher quality (Voet et al 2013).

This study focused on generation of prostate SBRT plans that mimicked HDR brachy-

therapy dose distributions. Conclusions on the importance of non-coplanar beams, on

the favourable use of large numbers of beams (>20), and on the limited importance of

posterior beams may not be valid in other circumstances. Recently, we demonstrated

for a group of head-and-neck cancer patients that inclusion of non-coplanar beams in

the search space did only marginally improve IMRT plans (Voet et al 2012). Studies for

other treatment sites are on-going.

9.5 Conclusion

For prostate SBRT, IMRT plans generated with all four investigated non-coplanar search

spaces had clearly improved organ at risk (OAR) sparing compared to the coplanar

(CP) search space, especially for the rectum which was the most important OAR in this

study. OAR sparing was best with the fully non-coplanar search space (F-NCP), with

improvements in rectum DMean, V40Gy, V60Gy and D2% compared to CP of 25%, 35%,

37%, and 8%, respectively. Reduced rectum sparing with the CyberKnife (CK) search

space compared to F-NCP could be largely compensated by extending the CK space

with beams with relatively large direction components along the superior-inferior axis

(CK++). Further addition of posterior beams to define the F-NCP search space, did not

result in plans with clinically relevant further reductions in OAR sparing. Plans with 25

beams performed clearly better than plans with only 11 beams. For coplanar set-ups,

an increase in involved number of beams from 11 to 25 resulted in reductions in rectum

DMean, V40Gy, V60Gy and D2% of 39%, 57%, 64%, and 13%, respectively.
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Abstract

The purpose if this study was to investigate how dose distributions for liver Stereo-

tactic Body Radiation Therapy (SBRT) can improve by automated, daily plan re-

optimization to account for anatomy deformations, compared to set-up corrections

only. For 12 tumours, three different strategies for dose delivery were simulated. In

the first strategy, CT-scans made before each treatment fraction were used only for

patient re-positioning prior to dose delivery for correction of detected tumour set-

up errors. In the adaptive second and third strategies, in addition to the isocentre

shift, IMRT beam profiles were re-optimized, or both intensity profiles and beam

orientations were re-optimized, respectively. All optimizations were performed with

a recently published algorithm for automated, multi-criteria optimization of both

beam profiles and beam angles. In six of 12 cases, violations of organs at risk (OAR;

heart, stomach, kidney) constraints of 1− 6 Gy in single fractions occurred in case

of tumour re-positioning only. With the adaptive strategies these could be avoided

(< 1 Gy). For one case, this needed adaptation by slightly underdosing the PTV.

For two cases with restricted tumour dose in the planning phase to avoid OAR

constraint violations, fraction doses could be increased by 1 and 2 Gy due to more

favourable anatomy. Daily re-optimization of both beam profiles and beam angles

(third strategy) performed slightly better than re-optimization of profiles only, but

the latter required only some minutes computation time while full re-optimization

took a few hours. This simulation study demonstrated that re-planning based on

daily acquired CT-scans can improve liver SBRT dose delivery.
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10.1 Introduction

SBRT for liver metastases has a high local control rate with acceptable toxicity (Dawson

et al 2006, Kavanagh et al 2006, Méndez Romero et al 2006, Van der Pool et al 2009, Rule

et al 2011, Wulf et al 2006). To allow large radiation doses in only a few fractions, PTV

margins have to be small, requiring high accuracy in daily tumour set-up. The patients

in this study were treated in a stereotactic body frame with abdominal compression.

Before each treatment fraction, a contrast enhanced CT-scan was acquired to verify

and correct tumour set-up, resulting in a good treatment accuracy with individualized

margins (Wunderink et al 2004, 2006, 2007). In a recent dosimetrical study (Méndez

Romero et al 2009), adequate PTV coverage for this procedure was confirmed, but it

was also demonstrated that daily tumour re-positioning could sometimes not avoid large

deviations in OAR doses, caused by anatomical deformations, an observation that is

comparable to that of Velec et al (2012) who observed that the majority of patients had

accumulated dose deviations > 5% relative to the static plan. Li et al (2011) and Liu

et al (2012) observed that for pancreatic cancer the internal organ configuration in the

abdomen varied over time and that an online adaptive re-planning technique based on

a daily respiration-gated diagnostic-quality CT could effectively correct for those inter-

fraction variations.

In the current study we investigate to what extent automated, daily re-optimization

of IMRT profiles and beam angles, based on a daily CT-scan, can improve SBRT dose

delivery for liver metastases.

10.2 Methods and materials

10.2.1 Patients

For this study we retrospectively used contrast-enhanced helical CT-scans of 8 liver

metastasis patients with in total 12 targets, previously treated in our institution with

liver SBRT (table 10.1). In case more than one target was present in a patient, the

simulations in this study were performed independently for each of the targets.
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Apart from the planning CT-scan, 3 repeat contrast-enhanced helical CT scans were

available for each patient, each acquired prior to dose delivery of one of the 3 treatment

fractions. For all scans, patients were positioned in a Stereotactic Body Frame (Elekta

Instrument, Stockholm, Sweden) with abdominal compression, as during treatments.

Details of this technique can be found in the study of Méndez Romero et al (2009). OAR

in repeat scans were delineated retrospectively by a single radiation oncologist (AMR).

The PTV in the planning CT was copied into each repeat scan and repositioned to the

correct tumour position, taking into account the clinically established (grey value 3D

matching) tumour shift in the repeat scan (Méndez Romero et al 2009), hereby avoiding

effects of intra-observer variance in tumour delineation, while presuming that tumour

shrinkage or deformation was absent during the short overall treatment time.

10.2.2 Study design

Computer simulations were performed retrospectively for three planning strategies. The

first was the current clinical approach using daily Tumour Set-up corrections Only (TSO).

In this strategy, for each repeat scan the dose optimized on the corresponding planning

CT-scan (see next paragraph) was shifted to the tumour position in that fraction. For the

second and third adaptive strategies, additional to tumour repositioning, beam intensity

profiles were re-optimized based on the fraction CT-scan (Adapt-I), or both intensities

and beam angles were re-optimized (third strategy, designated Adapt-IA). Strategies

were compared regarding single fraction dose distributions.

10.2.3 Optimization of dose distributions

All treatment plan optimizations, including the planning phase, were performed with an

in-house developed algorithm for automated multi-criterial optimization of beam intensi-

ties and beam directions that is based on a prescription called wish-list, containing hard

constraints and objectives (iCycle; Breedveld et al (2012)). Optimal beam directions are

selected from an input set of candidate directions, that can be restricted e.g. to avoid

collisions between patient/couch and the gantry in a non-coplanar setup. Generated

plans are Pareto-optimal for optimized profiles. In this study, optimized plans consisted

of around 10 IMRT beams in a non-coplanar configuration.

In planning and re-optimization, the goal for each of the 3 fractions was that at least

95% of the PTV would receive a dose of 67% of the prescribed 25 Gy isocentre dose.

The OAR constraints and treatment objectives as used by iCycle for plan optimization

(Breedveld et al 2009a, Méndez Romero et al 2009) are summarized in table 10.2. When

25 Gy could not be delivered without constraint violations (deviation > 1 Gy), the

prescribed dose was reduced such that violations could just be avoided.
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Table 10.2: Constraints and objectives for automated generation of plans for the complete
treatment (3 fractions).

Constraints
Volume Type Limit
PTV minimum 0.67 · 75 Gy
Liver-CTV maximum D33% 21 Gy
Liver-CTV maximum D50% or D700cc 15 Gy
Heart maximum D1cc 30 Gy
Spinal Cord maximum D99% 18 Gy
Duodenum maximum D1cc 21 Gy
Oesophagus maximum D1cc 21 Gy
Stomach maximum D1cc 21 Gy
Kidneys maximum D35% 15 Gy
Unspecified Tissue maximum D1cc 21 Gy

Objectives
Priority Volume Type Goal

1 Liver minimize mean 0 Gy
2 Heart minimize maximum 5 Gy
3 Stomach minimize maximum 5 Gy
4 Duodenum minimize maximum 5 Gy
5 Oesophagus minimize maximum 5 Gy
6 Heart minimize mean 0 Gy
7 Stomach minimize mean 0 Gy
8 Duodenum minimize mean 0 Gy
9 Oesophagus minimize mean 0 Gy

10.3 Results

For TSO, 5 of the 36 fraction dose distributions showed OAR constraint violations ≥
1 Gy, table 10.1. Such violations did not occur in Adapt-I and Adapt-IA. The ≥ 3 Gy

OAR constraint violations of the heart (target 1) and the kidney (targets 6 and 11) for

TSO (table 10.1, figure 10.1) were all related to anatomy deformations, moving the OAR

in the high dose area. With the 6 Gy kidney constraint violation for target 6 in the

first fraction, TSO would have resulted in a dose more than double the constraint dose

of 5 Gy (table 10.2). For patient 1, avoidance of heart constraint violation with the

adaptive approaches was obtained by slightly underdosing the PTV.

In the planning phase, the prescribed PTV dose could not be attained for 3 out of 12

targets due to an unfavourable position of the surrounding OARs, resulting in a lower

prescribed dose, that stayed at the same low level for the TSO strategy. For target 2, in

each of the fractions the patient anatomy had changed in a way that provided more room

to deliver the required tumour dose; re-planning with Adapt-I and Adapt-IA improved

the PTV D95 by 15% and 18% respectively compared to the TSO PTV D95, without

compromising the OARs. For target 5 the target dose could be up scaled by 1 Gy in all

fractions, while the adaptive strategies could not reduce target underdose in target 3.

To get an overall quantitative impression of the impact of the adaptive strategies,
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Figure 10.1: Plan comparisons for the three studied treatment strategies for two targets
per fraction. Dosimetric parameters correspond to the constraints, except for the PTV
where the D95 is evaluated. For the OAR, the bars show how much delivered doses were
below the imposed constraint values. A negative value for an OAR indicates constraint
violation, while a negative bar for the PTV means that PTV dose delivery was better
than prescribed. PTV95 means PTV D95 and Liver50 and Liver33 refers to the 50% dose
and 33% dose of the Liver respectively.
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Figure 10.2: For the 12 targets, differences between the sum of all OAR dose parameters
for the clinical strategy and the sum for Adapt-I and Adapt-IA respectively. Dose dis-
tributions for Adapt-I and Adapt-IA were normalized for equal PTV coverage in the
clinical strategy. The lower the value, the less total dose organs received. Open circles
represent the patients with remaining constraint violations (all ≈ 1 Gy) in the adaptive
plans; dose to all the organs of the plans with a higher total dose parameter value than
the TSO plan stayed below the constraint value.

we added for each strategy all dose values of all OARS after the PTV coverage of the

Adapt-I and Adapt-IA plans were normalized to the PTV D95 of the TSO plan. In this

way the influence of dissimilar tumour doses was eliminated and the cumulative effect

on the OARS could be compared between the strategies; the smaller the value, the less

dose the OARs received. The results as presented in figure 10.2 assume that all organs

are of equal importance. Clearly, the adaptive strategies resulted in a significantly lower

total dose to the OARs (p = 0.001 and p = 0.006 without the outlier and p = 0.190

and p = 0.003 with the outlier for Adapt-I and Adapt-IA, respectively, in a two-tailed

paired t-test). The outlier in figure 10.2 was caused by a beam that was directed through

the spinal cord that initially had a low weight, gained a relatively high weight (but not

reaching the spinal cord constraint) in the Adapt-I plan due to constraints to the other

OARs. In the Adapt-IA plan, the beam directions were changed and thus not directed

through the spinal cord anymore.

10.4 Discussion

To our knowledge this is the first paper systematically investigating potential advantages

of fully automated daily re-planning in liver SBRT compared to tumour set-up correction

only. In five of the studied 12 targets, OAR constraint violations ≈ 1 Gy occurred in

one of the fractions when tumour set-up only (TSO) was used. By using adaptive RT



10.4 Discussion 141

with re-optimization of the IMRT fluence patterns and/or beam directions, this could be

avoided. In two cases, when the prescribed dose to the PTV could not be reached in the

planning to avoid OAR constraint violation, daily re-optimization resulted in a higher

dose in the PTV.

Plan (re-)optimization in iCycle is fully automated, based on the prescription wish-

list (above). The calculation time for re-optimization of beam profiles only (Adapt-I)

was 6-15 minutes, while the time needed for re-optimization of both beam profiles and

beam orientations (Adapt-IA) was quite long (up to till 5 hours). Dose distributions were

only slightly better for Adapt-IA. Certainly for Adapt-IA, current calculation times are

prohibitively long for on-line clinical use. Both for Adapt-I and Adapt-IA, investigations

on reductions of computation times are on-going. It is expected that for Adapt I this

will soon result in 1-2 minutes calculation time.

In this retrospective study, iCycle was used to automatically generate IMRT plans

for all planning CT- and repeat scans. The quality of obtained dose distributions for the

planning CT-scans was clearly enhanced compared to the clinically applied 3D confor-

mal plans, especially regarding conformality. This might explain the sometimes modest

improvements of the adaptive strategies relative to TSO. Due to the high conformality,

there is some space for repositioning of OARs without exceeding tolerance doses. The

high quality of iCycle dose distributions has been demonstrated in several studies (Breed-

veld et al 2012, Rossi et al 2012, Voet et al 2013). Currently, iCycle is clinically used for

all liver SBRT patients.

Although the results above are promising, this study has a few limitations. Dose

variations caused by respiratory motion in the SBF were not explicitly taken into account.

However, the expected impact of respiratory effects is very limited (Eccles et al 2011, Wu

et al 2008), because with abdominal compression the breathing motion generally reduces

to < 5 mm (Wunderink et al 2008). The study of Velec et al (2012) showed that organ

deformation can cause changes in the intended dose distribution, even if the planning

corrected for breathing motion.

The re-optimizations in this study were performed without taking into account doses

delivered in previous treatment fractions (dose accumulation), as this is not yet featured

in iCycle. With such a procedure, the impact of daily re-planning could be further

enhanced for example by boosting underdosed areas in the last fraction, requiring on-

line non-rigid registration of CT datasets. The algorithm we have available for non-

rigid registration (Bondar et al 2010, Vásquez Osorio et al 2009) looks promising and

validation of non-rigid dose addition is under current investigation (Vásquez Osorio et al

2011).

Daily re-planning requires fast and accurate segmentation of the tumour and OARs.

As manual delineation would be too time consuming, auto-segmentation is essential.
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There are a few auto-segmentation algorithms available used for head-and-neck cases

(Sims et al 2009, Teguh et al 2011, Wang et al 2008, Zhang et al 2007). There are also

some algorithms available for liver cases (Campadelli et al 2010, Freiman et al 2011), but

there is no auto-segmentation algorithm available yet that is accurate and fast enough

to use it for online adaptive planning in daily clinical practice.

10.5 Conclusion

Daily automated re-optimization of dose distributions, additional to tumour set-up cor-

rections, can improve liver SBRT dose delivery by accounting for inter-fraction anatomy

variations. Clinical implementation requires availability of a fast and accurate auto-

segmentation routine and (preferably) a fast and reliable non-rigid registration algorithm.

Further research is needed, including assessment of clinical relevance.
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Chapter 11

Discussion

11.1 Introduction

During this work, basically two multi-criterial algorithms have been developed for au-

tomated plan generation, the first described in chapters 2-4, the second, called iCycle,

described in chapters 5 and 6 and investigated for clinical treatment planning in chapters

7-10. iCycle is clearly the more general and powerful one, suited for multi-criterial op-

timization of not only IMRT profiles but also beam angles. In a multi-criterial problem

there is no single optimal solution, but a front is constructed out of so-called Pareto op-

timal plans (Miettinen 1999). A key feature of iCycle is that for each patient plan with

n optimized angles, it will pick a single Pareto optimal IMRT plan, based on a wish-list

with clinical hard constraints and prioritized treatment objectives. In this Discussion

section we will focus on iCycle.

11.2 iCycle automated plan generation and plan quality

As described in chapters 5-10, a single wish-list is used for automated generation of plans

for all patients in a group, e.g. all head-and-neck cancer patients with a main focus on

sparing of salivary glands, while obtaining a high tumour coverage (chapter 8). So there

is no need for manual fine-tuning for individual patients to obtain high quality plans; the

full process is automatic. A very powerful proof for this statement is delivered in chapter

8, describing a prospective clinical study comparing plans generated in the traditional

way by dosimetrists with automatically generated iCycle plans. In 32 of 33 cases, the

treating physician selected the iCycle plan. Also in chapter 9 we noted that our clinical

plans were of much lower quality than the plans generated by iCycle. More examples

are give in section 11.3 below. To achieve this, fine-tuning of the wish-list is of utmost

importance. This is done in close collaboration between dosimetrists and physicians in

an iterative trial-and-error process generating plans for a small group of patients for an

143
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evolving wish-list. An advantage of automated planning based on a wish-list is also that

the number of objectives and constraints may easily be chosen larger than used in clinical

treatment planning. In the latter, an overload of criteria will confuse the planner. In

recent years we have gained confidence that the quality of iCycle plans is indeed very

high. On the other hand, tools for easily checking this on a per patient basis are currently

lacking. In a future work, we will add Pareto navigation tools (Craft & Bortfeld 2008,

Monz et al 2008, Teichert et al 2011, Thieke et al 2007) to iCycle to investigate the space

around the proposed Pareto optimal plan. These tools may also aid in the construction

of a general wish-list, but also other aspects may be helpful, like quantifying the most

effective decision criteria (Holdsworth et al 2011, Moore et al 2012).

11.3 iCycle for optimizing beam angles and generation of non-

coplanar plans

Planning systems for integrated, multi-criterial beam profile and angle optimization are

hardly available. As a consequence, the value of beam angle optimization in IMRT and

the value of optimized non-coplanar beam arrangements have hardly been investigated.

In this thesis we have demonstrated that beam angle optimization may result in highly

improved plans, compared to beam angles selected clinically or equi-angular set-ups. The

added value of non-coplanar set-ups became especially clear for prostate cancer patients

(chapter 9) and for some head-and-neck cancer patients (chapter 7). In a recent study

on liver SBRT, we also saw large plan improvements for optimized non-coplanar set-ups

(one example in section 6.3.7 in chapter 6, article in preparation). It is well known that

delivery of non-coplanar treatments on regular L-shaped linacs may result in seriously

prolonged treatment times. This is especially problematic if many fields (> 20) are

clearly more favourable than e.g. 10 fields, as observed for the prostate cancer patients

studied in chapter 9. For these non-coplanar treatments, a robotic treatment unit such as

the CyberKnife (but preferentially equipped with an MLC) might be a better option. A

point of caution with introduction of non-coplanar treatments is the need of delineating

and constraining more structures. Without this, high dose might unexpectedly appear

in places that were previously not at risk. The extra contouring will currently result in

some increase in workload. Fortunately, a lot of development is going on in the field of

auto-segmentation of images (Anders et al 2012, Bondar et al 2012, Gu et al 2010).

11.4 iCycle automated plan generation to reduce workload and

enhance treatment efficiency

Apart from enhanced and consistent plan quality (above), automated plan generation

also reduces workload, making it an economically attractive feature. As described in

chapter 8, iCycle plans cannot yet be used directly in the clinic because of technical and
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QA issues. Currently, generated iCycle plans are used to generate a template for plan

generation with our commercial TPS. The template is used for reverse engineering of the

high quality iCycle plan. Due to this procedure, workload reduction is compromised but

still considerable. In an on-going project, we are preparing iCycle for direct generation

of clinical plans.

In the coming decennia the number of patients that will be treated with radiation

therapy will grow world-wide. This is a result of aging of the population, or growth in

prosperity, or both. For The Netherlands, the number of patients newly diagnosed with

cancer is expected to increase by 40% from 87.000 in 2007 to 123.000 in 2020. For patients

who have been diagnosed with cancer, these numbers are 420.000 and 660.000 respectively

(Dutch Cancer Society 2011). Incidences of other diseases are expected to grow as well.

There is a general concern that it may become difficult to get enough (young) and

well-trained people employed in health care. Workload reduction by automated plan

generation might be a way to circumvent this problem in radiotherapy and maintain a

high quality of treatment plans.

An interesting question is whether a Nash-equilibrium (Osborne 2003) exists for ra-

diotherapy. Suppose the whole trajectory of contouring, planning and verification is

automated and does not have a limit on quantity. In that case, only the treatment

device capacity is the limiting factor. Can we then improve individual treatments (in

the sense of quality-of-life) by not delivering the ultimate best plan for that individual

patient, but avoiding a waiting list?

The rationale here is that if a patient is treated directly after diagnosis, the tumour

is smaller and easier to irradiate than when a patient has to wait several weeks before

starting with the treatment. Murai et al (2012) showed for non-small-cell lung cancer

that for 21% of the patients waiting for more than 4 weeks, the stage progressed from

T1 to T2. If the treatment is easier to deliver, it will take less time, and therefore more

patients can be treated with the same treatment device capacity. An important condition

is that adding complexity to the treatment plan (and thereby adding treatment time) is

indeed stopped if only minor improvements would result. For example, a dose reduction

from 15 Gy to 5 Gy in a parotid gland only results in an NTCP reduction of 5.5% to

3% (Houweling et al 2010), while the treatment time may be increased by as much as

10% to obtain the 1.5% gain. In the end, 10 of such patients a day creates time for

treatment of another patient. To study this, plan quality in relation to treatment time

and tumour growth due to waiting time should first be quantified, and later be considered

in treatment planning.

Despite the seemingly contradictionary origin of this hypothesis – not delivering the

best treatment plan while the patient is treated better –, more patients can be treated

while the probability of complications should reduce. Striking observations are in the field
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of transportation planning. Examples include that closing 42nd street in New York for

maintenance resulted in a higher throughput (Kolata 1990); South Korea even invested

$380 million to tear down one of the three main bridges to Seoul (Easley & Kleinberg

2008).

11.5 iCycle in treatment planning studies

A severe caveat in many treatment planning studies is that the quality of generated plans

may be dependent on the skills and ambitions of the planner(s), and the allotted time for

generating plans may be limited and variable. With iCycle automated plan generation,

all these issues can be avoided. The investigations in chapter 9 are based on a total

of 1500 automatically generated plans with beam angle and profile optimization. For a

human planner, generating this amount of plans would be infeasible.

11.6 iCycle in clinical practice

As described in section 11.4, iCycle automated plan optimization is nowadays used in an

indirect way to generate for each patient a template for design of a plan of equal high

quality with the clinical TPS. This results in higher quality plans and reduced planning

workload. Currently, this procedure is performed for the major part of head-and-neck

cancer patients, and the percentage is still increasing. Also all liver SBRT patients are

planned using iCycle and iCycle is also used to automatically generate treatment plans

for cervix cancer patients treated with an adaptive protocol (Ahmad et al 2011, Bondar

et al 2011, Vásquez Osorio et al 2009). For these patients, treatment is based on a

library of plans. Based on a daily cone beam CT scan, the plan best fitting the anatomy

of the day is selected for treatment. Studies on the clinical implementation for other

major tumour sites are in progress. With this approach, the department is aiming for

more consistent high plan quality and a reduction in planning workload. It is believed

that the majority of patients will in the end be treated with an automatically generated

plan. Due to the reduced planning efforts for these patients, more time will become

available for difficult, rare cases, for whom a tuned wish-list is not available. Moreover,

advanced adaptive treatment might in the future require more highly skilled manpower

at the treatment units.

11.7 Plan quality control

When plans are automatically generated, the planner has less affinity with the patient’s

anatomy and resulting plan. It can be helpful to have a tool which looks more global to

the treatment plan, and gives the planner a list of “questionable” items which eases plan

verification (Buettner et al 2010, Yang & Moore 2012, Zhao et al 2010). This is essential

for online treatment planning, where the time to verify a plan is very limited.

Even if all plans generated fulfil the clinical constraints, it may still occur that a
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plan is significantly worse than it could be, due to bugs or flaws in the software. If the

majority of the plans are generated automatically, and are of high-quality, the planner

may lose insight in what is achievable for an individual patient, and may therefore not

detect the lower quality. One other danger is that people may become trustworthy to

the generated plans, and therefore less critical.

To counterfeit this, all plans should ideally be re-planned using a completely different

and independent approach. This goes much further than recomputing only the dose with

an independent dose-engine. These “shadow” plans could be simplified versions of the

actual planning, e.g. without beam angle optimization and with coarse beamlet and dose

resolution, but should still result in an acceptable plan.

A more lightweight approach is given by Petit et al (2012), where a database of plans

of previously treated patients is used to predict achievable doses in organs at risk for a

new patient, based on distances of the organ to the target. If the achieved dose of the

generated plan lies outside the confidence interval computed by the model, the plan is

likely non-optimal.

11.8 The optimizers

In the first part of this work (chapters 2-4), an optimizer was used that uses voxel-

dependent importance factors to optimize a plan. In our later work (chapters 5-10) the

switch was made to a more general optimizer. In this section we will discuss some aspects

of the different optimizers.

11.8.1 Iterative constrained optimizer

The first optimizer is a very good method if one can pinpoint the voxels where the dose

should be changed for the highest yield. If one wants to reduce the maximum dose,

reduce the dose in the voxels receiving the highest amount of dose. Also for dose-volume

constraints the approach is very intuitive (see figure 4.1). As a result, this method is

very effective in optimizing on traditional dose-volume criteria, but is not capable of

optimizing on more global criteria, like mean dose or EUD.

This optimizer only works for constrained optimization, but lacks a check for optimal-

ity conditions. The feasibility checking is iteratively performed by increasing weights to

individual voxels, and solve a quadratic subproblem. This is the inner-loop, and due to

the iterative nature there is no hard guarantee whether a problem is feasible or not. For

the multi-criteria optimization, the problem is even worse: as there is no “objective”, the

multi-criteria optimization is done by iteratively reducing the constraints step-by-step

(e.g. 1 Gy or 1%) in an outer-loop.
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11.8.2 Interior-point optimizer

For the development of iCycle it was necessary to use a more transparent and flexible

optimizer. iCycle now uses an interior-point based optimizer (Nocedal & Wright 2000,

Wright 1997). This optimization method is considered to be one of the top-performing

optimizers for medium-scale problems, and is very flexible in the criteria which can be

optimized on. All smooth and convex criteria should work flawlessly, and also non-

convex problems are usually solved well. As often applied dose-volume objectives are

non-convex, this is an important aspect.

As the optimizer will only be used for the field of radiotherapy, it was decided to

implement this ourselves, in order to exploit the field-specific elements to its maximum,

and tune all parameters. We have mainly followed the work of LOQO by (Benson &

Shanno 2007, Shanno & Vanderbei 2000, Vanderbei 1999, Vanderbei & Shanno 1999),

improved with predictor-corrector techniques (Gondzio 1996, Mehrotra 1992).

The field-specific implementation includes:

• preprocessing: this is done on a much higher level than in general purpose op-

timizers, namely on the wish-list level. For example, redundant constraints will

never occur (unless the wish-list is purposely misleading or ill-constructed). Not

preprocessing at all saves time for every optimization.

• warmstarting: helps to reduce the number of iterations. Warmstarting is more

problematic in interior-point methods than for simplex-based methods, but there is

still active research ongoing (Gondzio & Grothey 2008, Pagèsa et al 2009, Yildirim

& Wright 2002). We are able to effectively warmstart by solving a least-squares

problem that only irradiates the tumour with the prescribed dose balanced with

smoothing. Warmstarting in a multi-criteria phase is still not as efficient as with

simplex methods, but decreasing/increasing the dose by a few percent already takes

off a few iterations, keeps the problem stable (when non-convex dose-volume criteria

are part of the problem) and is much cheaper than solving a least-squares problem.

• derivatives: as only a limited set of criteria is used (mean, minimum, maximum,

EUD, LTCP, etc.) all criteria have hard-coded first- and second derivatives. As a

by-effect, the expensive matrix-matrix multiplication for construction of the dual-

norm matrix requires only 1 multiplication per structure, even if that structure has

more than 1 constraint or objective.

• efficient memory management and computation: the dose matrices may be sparse

or dense, depending on the structure it represents. Storing all matrices together

(e.g. for the linear constraints) in a single storage scheme, results in a highly

inefficient storing and computation. Instead, the matrices are stored individually,
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and are reordered and pre-tiled. A matrix-vector product is computed matrix-free

on demand. Our own matrix-matrix multiplication has become highly efficient: it

is twice as fast on average (but with extremes over 10 times faster) compared to

naive methods (which either uses dgemm (Anderson et al 1999) for dense matrices

or our own (OpenMP) implementation (Gustavson 1978, section 2.B in this thesis)),

which already takes into account that the resulting matrix is a dense matrix. It

also improves scaling when using more threads.

• Newton-system: the mixed-density of the matrices prevents construction of the a

reduced Karush-Kuhn-Tucker system (as most optimizers do). The further reduced

dual-norm matrix is a dense matrix. Our sparse algorithms can therefore skip the

symbolic multiplication.

• feasibility checks: when the optimizer is run in the 1st phase of the 2-phase ϵ-

constraint optimization, the optimizer terminates as soon as the goal is found fea-

sible, but continues to optimize to optimality otherwise. This early termination

saves a lot of iterations.

• dose-volume objectives: these are non-smooth non-convex, but can be used under

certain conditions and some safeguards (see section 11.9).

Aleman et al (2010) also researched optimal settings for an interior-point optimizer in

the field of radiation therapy.

Another nice property of interior-point optimizers is that optimality conditions can

be measured: it is known whether or not a problem is feasible, and how far the solution is

from optimality. This is interesting for the 2-phase ϵ-constraint multi-criteria optimiza-

tion, where the optimizer can terminate as soon as a problem is feasible. In the rare case

that a problem cannot be solved to optimality (this can happen in difficult problems),

one can still accept the (intermediate) non-optimal solution if it is rendered feasible. La-

grange multipliers are used internally in the optimizer to find a solution, but also furnish

information about relative sensitivity between objectives (Alber et al 2002a), making it

possible to rewrite an ϵ-constraint formulation to a weighted-sum problem (Breedveld

et al 2009a, chapter 5 in this thesis). This feature was used to improve beam selection

in iCycle (figure 6.7 on page 73).

11.9 The dose-volume problem

Computer optimization using dose-volume criteria is (still) used a lot in modern treat-

ment planning. The main problem from a mathematical point of view is that dose-volume

criteria are not convex and not smooth. The non-convexity was analysed by Deasy (1997),

Wu et al (2003) for 3D conformal radiotherapy, but later research for IMRT showed that
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Figure 11.1: Sigmoid approximations for the Heaviside step function. The turn-point is
at the critical dose level. Steeper sigmoid functions result in a better approximation.

local minima are hardly significantly different from the global minimum (Llacer et al

2003). This is a result of the degeneracy of the IMRT problem (Alber et al 2002b) and

the fact that (physical) dose is continuous and differentiable.

There has been active research in incorporating dose-volume objectives in modern op-

timizers, including mixed-integer programming (Halabi et al 2006), conditional variables

at risk (CVaR) (Romeijn et al 2003) or using a series of gEUD constraints (Zinchenko

et al 2008). We have adopted the more direct approach by Alber & Reemtsen (2007) in

which the dose-volume objective is represented at first as a summation of Heaviside step

functions, and then smoothed into a sigmoid function, making the function differentiable.

Figure 11.1 shows the Heaviside function and approximations with different steep-

nesses. A steep sigmoid function provides the best approximation, but is also hard to

optimize on as the gradient becomes too large. A shallow sigmoid works fine, but is a

bad approximation to the Heaviside function. In our approach, we adapt the steepness

of the approximation during the interior-point iterations. In the beginning, the steepness

is gradually increased, until a certain accuracy is reached, currently set to be within 1

percent-point of the real dose-volume value. Later on the steepness is decreased again as

a steep gradient may become problematic later on during convergence. This “folding” of

the solution search-space during the optimization disturbs the behaviour of the default

path-following-based algorithm. However, by using some safeguards for a more robust

optimization over speed, carefully increasing/decreasing the steepness of the approxi-

mation and proper warmstarting strategies in a multi-criteria optimization makes this

approach a very well working one.

A drawback of the sigmoid approximation to the Heaviside step function is that it

can only be used for protection of organs at risk, but not for target coverage. The reason
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is that around the critical dose point, there is a large error (area between sigmoid and

step function, figure 11.1). If voxels are far away from this point, the error is negligible.

Normally, for an organ at risk, the dose in the voxels range between 0 Gy and the

prescribed dose. However, for a target, most voxels have a dose very close to the critical

dose point, and thus results in a high accumulated error between the approximation

and the real function. Another implication of the sigmoid approximation is that 100%

coverage is never possible. This impossibility leads to an ill-conditioned and ill-posed

problem definition. Thus, for partial target coverage, a different method should be

applied.

11.10 Calculation times and online re-planning

Current calculation times range between 5 minutes for a 9-beam plan with fixed gantry

angles to 15 hours for a 30-beam plan with optimized directions. The main factor that

determines the optimization time is the number of beamlets participating in an optimiza-

tion, which has a quadratic relation to the optimization time. The number of beamlets

is influenced by the number of beams, size of the PTV and the resolution of the beamlet

grid. The number of participating volumes of interest and resolution (or generally: vox-

els), the number of prioritized objectives in the wish-list, and the number of candidate

beam directions have a linear relation to the optimization time. The linear-quadratic

relation is a result of the design of the interior-point optimizer. Reducing the Newton

system to the dual-norm equations results in a series of matrix-matrix computations (see

section 11.8.2), where the inner dimensions are equal to the number of voxels and the

outer dimension to the number of beamlets. As roughly 80% − 90% of the runtime is

consumed by this operation, the scalability of the algorithm is largely determined by

the number of beams. It also explains why adding a single beam to a 10 beam plan is

much faster than adding one beam to a 30 beam plan. Figure 11.2 shows runtimes for a

prostate cancer patient treated with up to 30 beams.

The algorithm for generation of Pareto-optimal plans is multi-threaded, and scales

well up to 20 threads. The beam selection phase is distributed into single-threaded jobs,

each of them evaluating a single beam direction. On a modern server with 40 CPU

cores, a full iCycle optimization for 9 coplanar beams takes between 1 and 3 hours for

clinical head-and-neck patients, and 15 hours for a 30-beam (non-coplanar) plan. Our

cluster currently consists of 3 machines with 130 CPU cores in total, including scheduling

software that optimally distributes the computations over the cluster.

Currently, these calculation times are acceptable as plans can be generated automat-

ically during the night. Certainly for online re-planning, a speed increase is required.

There are 3 levels where things can be improved: the beam angle optimization, the 2pϵc

multi-criteria plan optimization and the interior-point optimizer.
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Figure 11.2: Runtimes for a prostate cancer patient treated with up to 30 IMRT beams.
“Other” accounts for dose computation, segmentation, patient import, and all other
overhead.

Improvement on the highest level, the beam angle optimization, is the most difficult,

but possibly not very relevant for online treatment planning. In the study described in

chapter 10 (Leinders et al 2013), re-optimization of the beam angles for each fraction

resulted in only slightly better doses.

Reducing the number of optimizations in the 2-phase ϵ-constrained multi-criteria op-

timization directly results in a significant speed-up: rather than optimizing each objective

individually, the idea is to perform a single optimization to optimize all criteria at once.

In Breedveld et al (2009b) this was attempted by optimizing the Lagrangian, obtained

from the reference plan, for each fraction. This worked for simple sites with few objec-

tives, but behaved unpredictably on more complex cases. Our future research on this

includes aspiration-based methods (Granat & Makowski 2000, Ogryczak & Kozlowski

2011).

More fundamental is improvement of the interior-point optimizer itself, as all other

functions utilize it (multi-criterial beam selection and/or plan optimization) directly

benefit. As described above, the main difficulty is construction of the dual-norm matrix.

In order to speed-up the required matrix-matrix multiplication, the numerical subroutines

should be revised. There are many different approaches possible: more efficient machine

implementation (e.g. (manually) utilizing vector registers like VMX), a mixed precision

arithmetic (MPA) or utilizing Strassen’s matrix multiplication algorithm (Strassen 1969).

Within the bounds of the current interior-point algorithm, a GPU can be useful to offload

the (default) matrix-matrix multiplications with the GPU BLAS (Basic Linear Algebra

Subsystem), or use an advanced library like MAGMA (2011), which has a highly efficient

scheduling algorithm included in the BLAS operations. On the other hand, there is a
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possibility to eliminate the matrix-matrix multiplication altogether by using a matrix-

free implementation, such as quasi-Newton methods like L-BFGS-B (limited memory

Broyden-Fletcher-Goldfarb-Shanno for bounded problems) (Byrd et al 1995), or solve

the reduced Karush-Kuhn-Tucker system (so not building the dual-norm matrix) by

an iterative direct solver (Gondzio 2012, Sonneveld & van Gijzen 2008), utilizing only

matrix-vector operations. Both approaches risk an increase in the number of interior-

point iterations, but the computational cost per iteration should be significantly lower,

and the scalability of the algorithm becomes linear rather than quadratic with the number

of beamlets.

11.11 Direct aperture optimization

The current implementation of iCycle is based on fluence map optimization, followed by a

segmentation for delivery with dynamic multileaf collimation (Rossi 2012, van Santvoort

& Heijmen 1996). Direct Aperture Optimization (DAO) may hold several advantages

such as faster delivery and higher plan quality, as the optimized dose corresponds to

deliverable fluence. Profile smoothing during fluence optimization (Alber & Nüsslin

2001, Breedveld et al 2006, Zhu et al 2008) may also keep delivery times low and largely

prevent loss in plan quality due to differences between optimized profiles and profiles

after sequencing. Unfortunately, such smoothing can only be applied globally, while

better treatment times can be obtained when smoothing is done locally (Matuszak et al

2008). As a consequence, optimizing a treatment plan with smoothing can never use all

degrees of freedom in dose or delivery time, and thus may produce suboptimal treatment

plans.

As DAO is a non-convex and NP-hard optimization problem (Baatar et al 2005),

different heuristics have been developed (Bedford & Webb 2006, Gunawardena et al

2006, Men et al 2007, Shepard et al 2002, Süss et al 2007). Jin et al (2010) were the

first to model dynamic leaf sequencing into a convex optimization problem.

The work of Men et al (2007) makes it possible to perform a full what you see is

what you get optimization. The problem is separated in a pricing and a master problem,

which are called sequentially in an iterative loop. The pricing problem determines the

optimal apertures to be added to the problem and, if the machine and collimator are

fully modelled, the chosen apertures reflect the physical capabilities of the treatment

device including tongue-and-groove design of the collimator (Salari et al 2011), account

for leaf and interleaf leakage, and can also model the treatment head. Dose computation

can be done using the actual equivalent field-size, or use more sophisticated methods

like Monte-Carlo. With the generated apertures, the master problem performs a normal

optimization, based on treatment goals. A single pricing problem can be solved within

a second using a GPU (Men et al 2010), and grows linear in the number of beamlets
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(Romeijn et al 2005). The master problem only optimizes apertures, which is a rela-

tively small amount (20-200) compared to beamlet based optimizations (300-5000). As

this DAO is exact, has low computation times and is accurate, this approach will be

implemented in iCycle in the future.

A powerful extension of direct aperture optimization is that the delivery time may

also be actively optimized on (Craft et al 2007). If the treatment time can be accurately

incorporated in the optimization (as an objective), one can look for an optimal treatment

that is deliverable using the full time available in a time-slot.

11.12 iCycle for other treatment modalities

As the optimizer is a general purpose optimizer, it is straightforward to use for other

treatment modalities, such as circular cone based CyberKnife treatments or intensity

modulated proton therapy (IMPT). The degrees of freedom are much larger for these

treatment modalities, so the iCycle optimizer cannot be efficiently used directly. Van de

Water et al (2011a) introduced a method for dimensionality reduction for CyberKnife

treatments and IMPT.

For circular cone based treatments with the CyberKnife, there are 117 fixed node

positions, and 12 fixed cone sizes. However, from each node position, target points

can be freely chosen (i.e. there is no fixed isocentre). As travelling to a new node

position requires a considerable amount of time while targeting a new target point can

be done almost instantaneously, the number of node positions should be as small as

possible. Van de Water et al (2011a,b) generated samples of candidate beams and used

the multi-criteria optimizer from iCycle (Breedveld et al 2009a, chapter 5 in this thesis),

including all 117 node positions and 12 cone sizes at once. Then, beams that fell below a

certain MU level were removed. Also and an additional 5% of the beams with the least

contribution were removed. This iterative procedure was repeated until the plan quality

degraded. The iterative procedure was part of a larger loop where new candidate beams

were added and node positions were removed (based on their contribution to the plan),

repeated until the desired number of node positions was reached.

For proton therapy, the large dimensionality originates from the required multiple

energy levels and dense proton spot grid, as dose deposition of the Bragg-peak is very

localized (compared to photon therapy). An iterative re-sampling procedure, similar to

the one used for the CyberKnife, was used to reduce the dimensionality for intensity

modulated proton therapy planning (Van de Water et al 2012). For a fixed beam setup,

≈ 5000 spots are randomly sampled (spatially in the target, which automatically includes

different energy levels). A full multi-criteria optimization was performed, and spots with

a low number of MU were removed from the set. Additionally, 5% of the spots with the

least contribution to the objectives were removed as well. Then, new spots were added
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to the problem. In this loop of iterative optimization and re-sampling, plan quality

strictly improved as the beams selected in the previous iteration were optimized together

with newly selected spots. After several iterations, the plan quality converged, and the

optimization finished. An additional result of the re-sampling is that the final number

of proton spots was relatively low, resulting in a shorter treatment time.

The next step is to optimize the beam angles for proton therapy, which is currently

under active research.



156



References

Ahmad, R., Hoogeman, M.S., Bondar, M.L., Dhawtal, V., Quint, S., de Pree,

I., Mens, J.W. & Heijmen, B.J.M. (2011). Increasing treatment accuracy for cervi-

cal cancer patients using correlations between bladder filling changes and cervix-uterus

displacements; proof of principle. Radiother. Oncol., 98, 340–346, . 146

Alber, M. & Nüsslin, F. (2001). Optimization of intensity modulated radiotherapy

under constraints for static and dynamic MLC delivery. Phys. Med. Biol., 46, 3229–

3239, . 153

Alber, M. & Reemtsen, R. (2007). Intensity modulated radiotherapy treatment plan-

ning by use of a barrier-penalty multiplier method. Optim. Methods Softw., 22, 391–

411, . 47, 64, 91, 104, 116, 150

Alber, M., Birkner, M. & Nüsslin, F. (2002a). Tools for the analysis of dose opti-

mization: II. sensitivity analysis. Phys. Med. Biol., 47, N265–N270, . 51, 149

Alber, M., Meedt, G. & Nüsslin, F. (2002b). On the degeneracy of the IMRT

optimization problem. Med. Phys., 29, 2584–2589, . 22, 150

Aleman, D.M., Kumar, A., Ahunja, R.K., Romeijn, H.E. & Dempsey, J. (2008).

Neighborhood search approaches to beam orientation optimization in intensity modu-

lated radiation therapy treatment planning. J. Glob. Optim., 42, 587–607, . 61

Aleman, D.M., Romeijn, H.E. & Dempsey, J.F. (2009). A response surface approach

to beam orientation optimization in intensity modulated radiation therapy treatment

planning. INFORMS J. Comput., 21, 62–76, . 61, 113

Aleman, D.M., Glaser, D., Romeijn, H.E. & Dempsey, J.F. (2010). Interior point

algorithms: guaranteed optimality for fluence map optimization in IMRT. Phys. Med.

Biol., 55, 5467–5482, . 149

Aluwini, S., van Rooij, P., Hoogeman, M., Bangma, C., Kirkels, W.J., In-

crocci, L., & Kolkman-Deurloo, I.K. (2010). Cyberknife stereotactic radiother-

apy as monotherapy for low- to intermediate-stage prostate cancer: early experience,

feasibility and tolerance. J. Endourol., 24, 865–869, . 113

157

http://dx.doi.org/10.1016/j.radonc.2010.11.010
http://dx.doi.org/10.1088/0031-9155/46/12/311
http://dx.doi.org/10.1080/10556780600604940
http://dx.doi.org/10.1088/0031-9155/47/19/402
http://dx.doi.org/10.1118/1.1500402
http://dx.doi.org/10.1007/s10898-008-9286-x
http://dx.doi.org/10.1287/ijoc.1080.0279
http://dx.doi.org/10.1088/0031-9155/55/18/013
http://dx.doi.org/10.1089/end.2009.0438


158 References

Anders, L.C., Stieler, F., Siebenlist, K., Schäfer, J., Lohr, F. & Wenz, F.
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Summary

When a patient is diagnosed with cancer and the choice of treatment is radiation ther-

apy, a treatment plan has to be designed which is intended to effectively destroy the

tumour while sparing surrounding healthy tissues as much as possible. In current clinical

practice, plans are generated using an iterative trial-and-error procedure, called forward

planning. Each iteration consists of a selection of plan parameters, such as gantry angles,

and of weighting factors for the objective functions by a dosimetrist, followed by a com-

puter optimization to establish remaining parameters. With forward planning, the final

dose distribution will generally depend on the skills and available time of the involved

dosimetrist and physician. Moreover, the iterative process may be labour-intensive, tak-

ing up to several days for an individual patient. In this thesis, we have developed and

investigated algorithms for treatment plan optimization aiming at full automation (i.e.

avoidance of human interaction), inclusion of optimization of beam angles (both coplanar

and non-coplanar arrangements), multi-criteria optimization resulting in Pareto-optimal

plans for beam profiles, and clinically feasible calculation times. The investigations in

chapters 2-5 have led to development of iCycle (chapters 6-10), an optimization algorithm

with all these features incorporated.

In chapter 2 a solver for inverse treatment planning is presented. Inverse treatment

planning for intensity modulated radiotherapy may include time consuming, multiple

minimizations of an objective function. In this chapter, methods are presented to speed

up the process of (repeated) minimization of the well-known quadratic dose objective

function, extended with a smoothing term that ensures generation of clinically acceptable

beam profiles. In between two subsequent optimizations, the voxel-dependent importance

factors of the quadratic terms will generally be adjusted, based on an intermediate plan

evaluation. The objective function has been written canonical matrix-vector format,

facilitating the use of a recently published, fast quadratic minimization algorithm, instead

of commonly applied gradient based methods. This format also reduces the calculation

time in between subsequent minimizations, related to adjustment of the voxel-dependent

importance factors. Sparse matrices are used to limit the required amount of computer

memory. For three patients comparisons have been made with a gradient method, where
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mean speed improvements of up to a factor of 37 have been achieved.

Chapter 3 describes how to adapt voxel-dependent importance factors for quadratic

objective functions, to generate dose distributions that satisfy given constraints. In the

quadratic objective function, the OAR are weighted against each other and the PTV.

In clinical practice, volume-wide weighting factors are generally adapted manually with

the above described forward planning procedure. Voxel-dependent importance factors

increase the flexibility for generating optimal plans. A two-step algorithm is introduced

that automatically adapts these voxel-dependent importance factors for dose-volume and

maximum-dose constraints. The constraints are divided into different sets with different

priorities. This allows meeting important constraints prior to meeting less important

constraints.

This method is further expanded in chapter 4 for multi-criteria optimization. Opti-

mizing solely on one objective or on a sum of a priori weighted objectives may result in

inferior treatment plans. Manually adjusting weights or constraints in a trial-and-error

procedure is time-consuming. In this chapter we introduce a novel multi-criteria op-

timization approach to automatically optimize treatment constraints (dose-volume and

maximum-dose). The algorithm tries to meet these constraints as well as possible, but

in case of conflict it relaxes lower priority constraints so that higher priority constraints

can be met. Afterwards, all constraints are tightened, starting with the highest priority

constraints. Applied constraint priority lists (a predecessor of the wish-list, see below)

can be used as class solutions for patients with similar tumour types. The presented

algorithm does iteratively apply an underlying algorithm for beam profile optimization,

as described in chapters 2 and 3.

To overcome the limitations of the algorithms described in previous chapters, in

chapter 5 the 2-phase ϵ-constraint (2pϵc) algorithm is introduced and compared to the

weighted-sum multi-criteria optimization. 2pϵc is a novel method for fully automated

multi-criteria optimization of beam profiles for a pre-selected set of beam directions,

based on a wish-list with constraints and prioritized objectives. Priorities are ordinal

parameters used for relative importance ranking of the objectives. The higher an objec-

tive priority is, the higher the probability that the corresponding goal for the objective

will be met. Beam profile optimization with 2pϵc results in Pareto-optimal treatment

plans. Weighted-sum optimization and 2pϵc are uniquely related to each other. It is

demonstrated that it is possible to switch from the (constrained) 2pϵc method to the

weighted-sum method by using the Lagrange multipliers from the constrained optimiza-

tion problem, and vice versa by setting the appropriate constraints. In general, the theory

presented in this chapter can be useful in cases where a new situation is slightly different

form the original situation, as e.g. in automated treatment planning, where changes to

the automated plan have to be made. An example is given where the planner is not
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satisfied with the result from the 2pϵc and wishes to decrease the dose in a structure.

By using the Lagrange multipliers, a weighted-sum optimization problem is constructed,

which generates a Pareto-optimal solution in the neighbourhood of the original plan,

fulfilling the new treatment objectives.

iCycle, our novel algorithm for integrated, multi-criteria optimization of beam angles

and IMRT profiles is described in chapter 6. Again, optimization is based on a wish-list

(chapter 5), containing hard constraints and objectives with ascribed priorities. Beam

directions are selected from an input set of candidate directions. Input sets can be

restricted, e.g. to allow only generation of coplanar plans, or to avoid collisions between

patient/couch and the gantry in a non-coplanar setup. Obtaining clinically feasible

calculation times was an important design criteriom for development of iCycle. This

could be realized by sequentially adding beams to the treatment plan in an iterative

procedure. Each iteration loop starts with selection of the optimal direction to be added.

Then the 2pϵc method (chapter 5) is used to generate a Pareto-optimal IMRT plan for

the (fixed) beam setup that includes all so far selected directions. To select the next

direction, each not yet selected candidate direction is temporarily added to the plan and

an optimization problem, derived from the Lagrangian obtained from the just performed

optimization for establishing the Pareto-optimal plan, is solved. For each patient, a

single 1-beam, 2-beam, 3-beam, etc. Pareto-optimal plan is generated until addition of

beams does no longer result in significant plan quality improvement. Plan generation

with iCycle is fully automated and steered by the wish-list. Fine-tuning of the wish-list is

of utmost importance for generation of optimal plans. This is done in close collaboration

between dosimetrists and physicians in an iterative trial-and-error process, generating

plans for a small group of patients to gradually improve the quality of the wish-list.

Performance and characteristics of iCycle are demonstrated by generating plans for a

maxillary sinus case, a cervical cancer patient, and a liver patient treated with SBRT.

Plans generated with beam angle optimization did better meet the clinical goals than

equi-angular or manually selected configurations. For the maxillary sinus and liver cases,

significant improvements for non-coplanar setups were seen. The cervix case showed that

also in IMRT with coplanar setups, beam angle optimization with iCycle may improve

plan quality. Computation times for coplanar plans were around 1-2 hours and for non-

coplanar plans 4-7 hours, depending on the number of beams and the complexity of the

problem.

In chapter 7, iCycle is used to investigate the dependence of salivary gland sparing

in head-and-neck patients on applied beam numbers and directions, and to study the

impact of optimized nonzero couch angles on the quality of VMAT plans. For 20 pa-

tients, five IMRT plans, based on one wish-list, are compared: i), ii) 7- and 9-beam

equi-angular coplanar plans (iCycle7equi, iCycle9equi), iii), iv) 9-beam plans with opti-
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mized coplanar and non-coplanar beam orientations (iCyclecopl, iCyclenoncopl) and v) a

9-beam coplanar plan with optimized gantry angles and one optimized couch rotation

(iCyclecouch). VMAT plans without and with this optimized couch rotation were eval-

uated. iCyclenoncopl resulted in the best salivary gland sparing, but iCyclecouch yielded

similar results for 18 patients. For iCycle7equi, submandibular gland NTCP values were on

average 5% higher. iCycle9equi performed better than iCycle7equi. iCyclecopl showed fur-

ther improvement. Application of the optimized couch angle from also improved NTCP

values in VMAT plans. In conclusion, iCycle allows objective comparison of competing

planning strategies. Integrated optimization of beam profiles and angles can significantly

improve normal tissue sparing, where iCyclenoncopl showed the best results.

The next step was to evaluate iCycle for daily treatment planning, which was done

in a prospective clinical study (chapter 8). Plans automatically generated with iCycle

were compared to plans generated manually by dosimetrists with the standard forward

planning procedure using the clinical treatment planning system. For 20 randomly se-

lected head-and-neck cancer patients with various tumour locations (of whom 13 received

sequential boost treatments) we offered the treating physician the choice between an au-

tomatically generated iCycle plan and a manually optimized plan following standard clin-

ical procedures. While iCycle used a fixed wish-list with hard constraints and prioritised

objectives, the dosimetrists manually selected the beam configuration and fine-tuned the

constraints and objectives for each IMRT plan. Dosimetrists were not informed in ad-

vance whether or not a competing iCycle plan was made. The two plans were simultane-

ously presented to the physician, who then selected the plan to be used for treatment. In

32/33 plan comparisons the physician selected the iCycle plan for treatment. This highly

consistent preference for automatically generated plans was mainly caused by improved

sparing for the large majority of critical structures. With iCycle, the NTCPs for parotid

and submandibular glands were reduced by 2.4% ± 4.9% (maximum: 18%, p = 0.001)

and 6.5% ± 8.3% (maximum: 27%, p = 0.005), respectively. The reduction in mean

oral cavity dose was 2.8 Gy ± 2.8 Gy (maximum: 8.1 Gy, p = 0.005). For swallowing

muscles, oesophagus and larynx, the mean dose reduction was 3.3 Gy ± 1.1 Gy (max-

imum: 9.2 Gy, p < 0.001). In addition, for 15 of the 20 patients, the target coverage

was improved as well. So, in 97% of cases, the automatically generated plan was selected

for treatment because of superior quality. Apart from improved plan quality, automatic

plan generation is economically attractive because of reduced workload.

In chapter 9, the impact of the (non-coplanar) beam direction search space (i.e. the

set of candidate beam directions that may be selected for generating an optimal plan) on

plan quality was assessed. For a group of 10 prostate cancer patients, optimal IMRT plans

were made for Stereotactic Body Radiation Therapy (SBRT), mimicking High Dose Rate

(HDR) brachytherapy dosimetry. Plans were generated for 5 different beam direction
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input sets, a coplanar set and four non-coplanar sets. For coplanar (CP) treatments,

the search space consisted of 72 orientations (5◦ separations). The non-coplanar CK-

space contained all directions available in the robotic CyberKnife treatment unit. The

fully non-coplanar (F-NCP) set facilitated the highest possible degree of freedom in

selecting optimal directions. CK+ and CK++ were subsets of F-NCP to investigate

some aspects of the CK-space. For each input set, plans were generated with up to 30

selected beam directions. Generated plans were clinically acceptable, according to an

assessment of our clinicians. Convergence in plan quality occurred only after around 20

included beams. For individual patients, variations in PTV dose delivery between the 5

generated plans were minimal, as aimed for (average spread in V95%: 0.4%). This allowed

plan comparisons based on organ at risk (OAR) doses, with the rectum considered most

important. Plans generated with the non-coplanar search spaces had improved OAR

sparing compared to the CP search space, especially for the rectum. OAR sparing was

best with F-NCP, with reductions in rectum DMean, V40Gy, V60Gy and D2% compared

to CP of 25%, 35%, 37%, and 8%, respectively. Reduced rectum sparing with the CK

search space compared to F-NCP could be largely compensated by expanding CK with

beams with relatively large direction components along the superior-inferior axis (CK++).

Addition of posterior beams (CK++ → F-NCP) did not lead to further improvements

in OAR sparing. Plans with 25 beams performed clearly better than 11-beam plans.

For coplanar plans, an increase from 11 to 25 involved beams resulted in reductions in

rectum DMean, V40Gy, V60Gy and D2% of 39%, 57%, 64%, and 13%, respectively.

In chapter 10, iCycle was used to investigate how dose distributions for liver Stereo-

tactic Body Radiation Therapy (SBRT) can be improved by automated, daily plan re-

optimization to account for anatomy deformations, compared to set-up corrections only.

For 12 tumours, three different strategies for dose delivery were simulated. In the first

strategy, CT-scans made before each treatment fraction were used only for patient re-

positioning prior to dose delivery for correction of detected tumour set-up errors. In

the adaptive second and third strategies, in addition to the isocentre shift, IMRT beam

profiles were re-optimized, or both intensity profiles and beam orientations were re-

optimized, respectively. All optimizations were performed with iCycle. In six of 12

cases, violations of organs at risk (OAR; heart, stomach, kidney) constraints of 1− 6 Gy

in single fractions occurred in case of tumour re-positioning only. With the adaptive

strategies these could be avoided (< 1 Gy). For one case, this needed adaptation by

slightly underdosing the PTV. For two cases with restricted tumour dose in the planning

phase to avoid OAR constraint violations, fraction doses could be increased by 1 and 2 Gy

due to more favourable anatomy. Daily re-optimization of both beam profiles and beam

angles (third strategy) performed slightly better than re-optimization of profiles only,

but the latter required only some minutes computation time while full re-optimization
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took a few hours. This simulation study demonstrated that re-planning based on daily

acquired CT-scans can improve liver SBRT dose delivery.



Samenvatting

Wanneer bestralingstherapie is gekozen als behandeling voor kanker, dient er een be-

stralingsplan te worden gemaakt. Het doel van bestralingstherapie is om de tumor vol-

doende te bestralen, zodat deze verdwijnt, maar daarnaast het gezonde weefsel zoveel

mogelijk spaart. In de huidige klinische praktijk worden de bestralingsplannen hand-

matig gemaakt, via een herhaaldelijk trial-and-error proces (voorwaarts plannen). De

parameters, zoals bundelhoeken, gewichtsfactoren, dosimetrische doelen e.d. worden

handmatig ingesteld, waarna de computer een optimalisatie doet om de resterende para-

meters te bepalen en de dosis te berekenen. Indien deze dosis niet voldoet aan de wensen

van de planner, worden de parameters aangepast en nogmaals geoptimaliseerd. Met deze

voorwaartse planmethode hangt de kwaliteit van het uiteindelijke plan erg af van de

kundigheid van de planner en de beschikbare tijd. Voor complexe sites kan dit voor een

individuele patiënt zelfs enkele dagen in beslag nemen. In dit proefschrift presenteer ik

mijn onderzoek naar de ontwikkeling en validatie van een volledig geautomatiseerde plan-

ning. Het algoritme optimaliseert zowel bundelhoeken (coplanair als niet-coplanair) als

intensiteit gemoduleerde fluentieprofielen, in een multi-criteria setting wat resulteert in

Pareto optimale plannen. De rekentijden zijn klinisch acceptabel. De voorgaande onder-

zoeken (hoofdstukken 2-5) hebben geleid tot de ontwikkeling van iCycle (hoofdstukken

6-10), een algoritme dat al deze elementen omvat.

In hoofdstuk 2 wordt er een nieuwe solver gëıntroduceerd. Bij het maken van een

IMRT (Intensity Modulated Radiation Therapy) plan wordt vaak gebruik gemaakt van

een kwadratische doelfunctie die herhaaldelijk wordt geoptimaliseerd. Dit kost veel tijd,

en in dit hoofdstuk worden methoden gepresenteerd om de snelheid voor het herhaaldelijk

minimaliseren van de kwadratische doelfunctie te verbeteren. Deze functie bevat ook

een smoothing term die ervoor zorgt dat het resultaat een realiseerbaar plan oplevert.

Tussen twee opeenvolgende optimalisaties worden de voxel-afhankelijke gewichtsfactoren

aangepast, op basis van een tussentijdse planevaluatie. De doelfunctie is omgeschreven

in een canonieke matrix-vector vorm, waardoor het mogelijk is gebruik te maken van een

recent gepubliceerde oplosmethode voor kwadratische minimalisatie, in plaats van ge-

bruikelijke gradiëntmethoden. Deze vorm vermindert ook de rekentijd bij opeenvolgende

185



186 Samenvatting

minimalisaties ten gevolge van het aanpassen van de voxel-afhankelijke factoren. Om het

geheugengebruik beperkt te houden worden ijle matrices gebruikt. Voor drie patiënten is

er een vergelijking gemaakt met een gradiënten methode, waarbij onze nieuwe methode

tot 37 keer sneller was.

Hoofdstuk 3 beschrijft een methode hoe de voxel-afhankelijke gewichten aangepast

kunnen worden om de gewenste dosisverdeling te krijgen. Dit wordt bereikt door het

herhaaldelijk optimaliseren van de kwadratische doelfunctie, waarbij de tumor en de

risico-organen gewogen worden. In de hedendaagse klinische praktijk worden de gewichts-

factoren handmatig aangepast, wat uitmondt in een langdurig proefondervindelijk proces

(waarbij het nooit duidelijk is hoe goed het uiteindelijke plan is). Deze gewichtsfactoren

werken voor een geheel volume. De werking kan sterk worden verbeterd door gewichten

aan individuele voxels toe te kennen, zodat er op lokaal niveau gestuurd kan worden. In

dit hoofdstuk wordt een twee-staps algoritme gëıntroduceerd dat automatisch de voxel-

afhankelijke gewichtsfactoren aanpast op basis van vooraf ingestelde dosis-volume- en

maximum-dosis constraints. De constraints zijn ingedeeld in verschillende categorieën

met verschillende prioriteiten. Hiermee wordt getracht om aan de belangrijkste con-

straints te voldoen voordat er gewerkt wordt aan minder belangrijke constraints. De

uiteindelijke dosisverdelingen zijn erg conform.

Deze methode wordt verder uitgebreid in hoofdstuk 4 voor multi-criteria optima-

lisatie. Het optimaliseren van één objective of een gewogen opsomming van verschillende

objectives kan resulteren in inferieure bestralingsplannen. In dit hoofdstuk introduceren

we een nieuwe vorm van multi-criteria optimalisatie waarmee automatisch aan constraints

(zoals dosis-volume en maximum-dosis) wordt voldaan. Het algoritme tracht zo goed mo-

gelijk hieraan te voldoen, maar wanneer deze conflicterend zijn krijgen de constraints met

hogere prioriteit voorrang op de lagere. Daarna worden alle constraints iteratief verlaagd

(of verhoogd voor een PTV (Planning Target Volume, de tumor)), te beginnen met de

hoogste prioriteiten. Een dergelijke geprioriteerde lijst met constraints (een voorloper

van de wish-list) kan worden gebruikt als generieke lijst voor een groep patiënten. Het

hier gëıntroduceerde algoritme is gëıntegreerd in het eerder beschreven algoritme voor

fluentie-optimalisatie (hoofdstukken 2 en 3).

In hoofdstuk 5 wordt de multi-criteria optimalisatie methode die in hoofdstuk 4 is

gëıntroduceerd verder gegeneraliseerd, en uitgezet tegen de gewogen-som multi-criteria

methode. Ook is er een nieuwe optimizer gebruikt. In de gewogen-som methode worden

verschillende objectives gewogen en opgesomd. In de geconstrainde optimalisatiemethode

(vergelijkbaar met die in hoofdstuk 4), zijn de doelstellingen (objectives) voor het be-

handelplan a priori gedefinieerd in een wish-list, en het doel is om een plan te vinden

dat hieraan zo goed mogelijk voldoet, dan wel beter is. De geconstrainde optimalisatie

methode die wordt gebruikt in dit hoofdstuk, de 2pϵc (2-fase ϵ-constraint) methode is
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gebaseerd op de ϵ-constraint methode, die resulteert in Pareto-optimale oplossingen.

Beide benaderingen hebben een unieke relatie tot elkaar. In dit hoofdstuk laten we

zien dat een gewogen-som resultaat omgeschreven kan worden naar een geconstraind

probleem, en vice versa, het resultaat van de 2pϵc methode naar een gewogen-som func-

tie omgeschreven kan worden met behulp van de Lagrangiaan. Praktijk toepassingen

worden behandeld, bijvoorbeeld wanneer de planner niet tevreden is met het resultaat

van de 2pϵc methode en de dosis in een structuur wil verlagen. Met behulp van de

Lagrange multipliers wordt een gewogen-som probleem gedefinieerd, welk een Pareto-

optimale oplossing gegenereert in de nabijheid van het oorspronkelijke plan, maar wel

voldoet aan de nieuwe doelstellingen.

iCycle, ons algoritme voor het optimaliseren van bestralingshoeken (bundelhoeken),

wordt beschreven in hoofdstuk 6. Dit is een nieuw algoritme voor een gëıntegreerde,

multi-criteria optimalisatie van de bundelhoeken en IMRT profielen. Een multi-criteria

planoptimalisatie met iCycle is gebaseerd op het concept van de wish-list (hoofdstuk

5). De lijst bestaat uit een geprioriteerde lijst met objectives (doelstellingen) en con-

straints. Hoe hoger de prioriteit, hoe groter de kans dat de desbetreffende doelstelling zal

worden gehaald. Bundelrichtingen worden gekozen uit een vooraf gegenereerde lijst van

richtingen. De richtingen in deze lijst kunnen coplanair zijn of niet-coplanair. Richtingen

waarbij de gantry mogelijk de patiënt/tafel raakt zijn uitgezonderd. Een belangrijke doel-

stelling in het ontwikkelen van iCycle waren klinisch haalbare rekentijden. Dit kan worden

gerealiseerd door iteratief bundels aan een plan toe te voegen. Elke iteratie begint met de

selectie van de optimale richting, en wordt vervolgens toegevoegd aan de lijst met actieve

bundels. Vervolgens wordt één Pareto-optimaal IMRT plan gegenereerd voor de actieve

bundelconfiguratie, met het algoritme uit hoofdstuk 5. Voor de volgende bundelselectie

wordt elke nog niet geselecteerde richting tijdelijk toegevoegd aan de actieve set, en

wordt een optimalisatieprobleem opgelost, gebaseerd op de Lagrangiaan uit de vorige 2pϵc

multi-criteria optimalisatie. Voor elke patiënt wordt een Pareto-optimaal 1-bundelplan,

2-bundelplan, 3-bundelplan, etc. gegenereerd totdat het toevoegen van meer bundels

niet langer resulteert in een significante verbetering van het bestralingsplan. Het gene-

reren van plannen met iCycle is volledig geautomatiseerd. De werking van iCycle wordt

gedemonstreerd voor een patiënt met een hoofd-hals tumor, een patiënt met baarmoeder-

halskanker en een patiënt met leverkanker. Plannen waarvoor de bundelhoeken zijn geop-

timaliseerd voldoen beter aan de klinische doelstellingen dan equidistante of handmatig

gekozen hoeken. Voor de hoofd-hals patiënt en de lever patiënt werden aanzienlijke

verbeteringen voor niet-coplanaire opstellingen gezien. Voor de baarmoederhals patiënt

bleek dat ook met coplanaire opstellingen de plannen verbeterd zijn door bundelhoek-

optimalisatie met iCycle. Rekentijden voor coplanaire plannen waren in de orde van

1-2 uur en voor niet-coplanaire plannen 4-7 uur, afhankelijk van het aantal bundels en
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de complexiteit. Er kan worden geconcludeerd dat gëıntegreerde IMRT en bundelhoek-

optimalisatie met iCycle tot aanzienlijke verbeteringen leiden in de plankwaliteit. Als

gevolg van het automatiseren is de werklast minimaal.

Of iCycle in staat is om klinische plannen te produceren is onderzocht in hoofdstuk 7.

In dit hoofdstuk wordt gekeken naar speekselklier sparing voor hoofd-hals patiënten. Er is

ook onderzocht of VMAT (Volumetric Modulated Arc Therapy) plannen verbeterd kun-

nen worden door de tafelhoek te optimaliseren. iCycle is gebruikt voor het automatisch

genereren van multi-criteria IMRT plannen met geoptimaliseerde bundelhoeken en is

vergeleken met plannen waarbij de bundels equidistant gekozen zijn. Voor 20 patiënten

zijn vijf verschillende IMRT plannen vergeleken, op basis van één enkele wish-list: i), ii) 7

- en 9-bundel equidistante coplanaire plannen (iCycle7equi, iCycle9equi), iii), iv) 9-bundel

plannen met geoptimaliseerde coplanaire en niet-coplanaire bundelhoeken (iCyclecopl,

iCyclenoncopl) en v), een 9-bundel coplanair plan met geoptimaliseerde bundelhoeken

èn tafelrotatie (iCyclecouch). De VMAT plannen zijn geëvalueerd met en zonder deze

geoptimaliseerde tafelrotatie. iCyclenoncopl resulteerde in de beste sparing voor de speek-

selklier, maar iCyclecouch leverde vergelijkbare resultaten op voor 18 patiënten. Voor

iCycle7equi waren de NTCP (Normal Tissue Complication Probability) waarden voor de

kleine speekselklier gemiddeld 5% hoger. iCycle9equi presteerde beter dan iCycle7equi,

waarbij iCyclecopl een verdere verbetering liet zien. Een geoptimaliseerde tafelhoek van

iCyclecouch liet ook verbeterde NTCP waarden zien voor VMAT plannen. iCycle maakt

het mogelijk om een objectieve vergelijking te maken van verschillende planningsstrate-

gieën. De gëıntegreerde optimalisatie van de IMRT profielen en bundelhoeken leidt tot

een aanzienlijke verbetering in de sparing van gezond weefsel, waarbij de beste resultaten

met iCyclenoncopl behaald worden.

Om te beoordelen of iCycle geschikt is voor de dagelijkse klinische planning is er een

prospectieve studie gestart (hoofdstuk 8). Hiervoor zijn er voor 20 willekeurige hoofd-hals

patiënten (waarvan er 13 een sequentiële boost kregen) twee plannen gemaakt: een iCycle

plan, en een handmatig plan, gemaakt volgens de huidige klinische procedures, waarbij

de laborant zelf de bundelhoeken en objectives moet bepalen. De laborant werd niet van

te voren gëınformeerd of er ook een iCycle plan zou worden gemaakt. Het iCycle plan is

berekend volgens één enkele wish-list, en het resultaat is in het klinische planningssysteem

gereconstrueerd. De behandelend arts kreeg (blind) beide plannen voorgelegd. Voor de

groep patiënten hebben we verschillen in dosiscoverage voor het PTV en het sparen van

kritieke weefsels bekeken. In 32 van de 33 plannen heeft de arts het iCycle plan gekozen

voor de behandeling. Deze zeer consistente voorkeur voor de automatisch gegenereerde

plannen werd vooral veroorzaakt door een betere sparing voor het merendeel van de

kritieke organen. Met iCycle zijn de NTCP’s voor de grote en kleine speekselklieren

verminderd met respectievelijk 2, 4%± 4, 9% (maximum: 18%, p = 0, 001) en 6, 5% ±
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8, 3% (maximum: 27%, p = 0, 005). De daling van de gemiddelde dosis in de mondholte

was 2, 8 Gy ± 2, 8 Gy (maximum: 8, 1 Gy, p = 0, 005). Voor de slikspieren, slokdarm en

strottenhoofd was de gemiddelde verlaging van de dosis 3, 3 Gy ± 1, 1 Gy (maximum:

9, 2 Gy, p < 0, 001). Verder is voor 15 van de 20 patiënten de dosiscoverage van de tumor

ook verbeterd. Dus in 97% van de gevallen is het automatisch gegenereerde plan gekozen

voor de behandeling vanwege de superieure kwaliteit. Naast de verbeterde kwaliteit van

de plannen is automatisch plannen ook economisch aantrekkelijk vanwege verminderde

werkdruk.

In hoofdstuk 9 wordt de impact onderzocht van verschillende sets (niet-coplanaire)

bundelrichtingen. Voor een groep van 10 patiënten met prostaatkanker zijn IMRT plan-

nen gemaakt voor Stereotactische Body RadioTherapie (SBRT) waarbij High Dose Rate

(HDR) brachytherapie dosimetrie is nagebootst. De plannen zijn gegenereerd voor 5

verschillende bundelrichting zoekruimten: een coplanaire set en vier niet-coplanaire. De

coplanaire (CP) zoekruimte bestaat uit 72 oriëntaties (5◦ afstand). De niet-coplanaire

CK-zoekruimte bevat alle standaardrichtingen van de CyberKnife. De volledig niet-

coplanaire (F-NCP) zoekruimte biedt de meeste vrijheidsgraden aan. CK+ en CK++

zijn een deelverzameling van de F-NCP om een aantal aspecten van de CK-zoekruitme

te onderzoeken. Voor elke set zijn plannen gegenereerd met maximaal 30 bundels. De

gegenereerde plannen waren klinisch relevant. De plankwaliteit convergeerde na ongeveer

20 bundels. Voor de individuele patiënten waren de variaties in PTV dosis tussen de

5 gegenereerde plannen minimaal, zoals was nagestreefd (gemiddelde spreiding V95%:

0,4%). Hierdoor konden plannen worden vergeleken op basis van dosis in risico-organen,

waarbij het rectum het meest belangrijk was. Plannen gegenereerd met de niet-coplanaire

zoekruimte hadden een betere sparing ten opzichte van de CP zoekruimte, vooral voor

het rectum. Sparing was het beste met de F-NCP zoekruimte: in vergelijking met de

CP zoekruimte waren de reducties in de rectum DMean, V40Gy, V60Gy en D2% van res-

pectievelijk 25%, 35%, 37% en 8%. Verminderde rectum sparing met de CK zoekruimte

in vergelijking tot de F-NCP zoekruimte zou grotendeels gecompenseerd kunnen wor-

den door de CK zoekruimte uit te breiden met bundels langs de superieure-inferieure

as (CK++). Het toevoegen van posterieure bundels (CK++ → F-NCP) leidde niet tot

een verdere verbetering in het sparen van de risico-organen. Plannen met 25 bundels

deden het duidelijk beter dan plannen met 11 bundels. Voor coplanaire plannen leidden

meerdere bundels (van 11 naar 25) in een vermindering van de dosis in het rectum van

de DMean, V40Gy, V60Gy en D2% met respectievelijk 39%, 57%, 64% en 13%.

In het laatste hoofdstuk, hoofdstuk 10, is iCycle gebruikt om te onderzoeken hoe

dosisverdelingen voor Stereotactische Body Radiation Therapy (SBRT) van de lever ver-

beterd kunnen worden door automatische, dagelijkse heroptimalisatie van plannen om

rekening te houden met anatomische vervormingen, in vergelijking met herpositioner-
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ing alleen. Er zijn plannen gemaakt voor 12 tumoren en drie verschillende strategieën.

In de eerste strategie werden de CT-scans voor elke behandel-fractie alleen gebruikt

voor herpositionering voorafgaande aan de bestraling. In de tweede en derde adaptieve

strategie is naast het herpositioneren van het isocentrum ook opnieuw fluentie (IMRT)

geoptimaliseerd, of zowel fluentie als bundelhoekoptimalisatie. Alle optimalisaties zijn

uitgevoerd met iCycle. Voor herpositionering alleen kregen de risico-organen (hart, maag,

nieren) in 6 van de 12 gevallen 1 tot 6 Gy meer dan toegestaan. Met de adaptieve strate-

gieën kon dit worden vermeden (tot < 1 Gy). Voor één geval leidde dit tot een lichte

onderdosering in het PTV. Echter, voor twee andere gevallen waar eerst een beperkte

tumor dosis was gepland, kon de fractie-dosering worden verhoogd met 1 en 2 Gy van-

wege een gunstigere anatomie. Dagelijkse heroptimalisatie van zowel de fluentie inclusief

bundelhoeken (derde strategie) leidde tot iets betere plannen, maar vereist een paar

uur rekentijd, terwijl heroptimalisatie van fluentie alleen slechts enkele minuten reken-

tijd kost. Deze studie toont aan dat herplannen op basis van de dagelijkse CT-scans de

fractiedosis sterk verbetert.
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Propositions pertaining to the thesis
Towards Automated Treatment Planning in Radiotherapy

Sebastiaan Breedveld, March 13th, 2013

1. Non-coplanar IMRT treatment plans do generally outperform coplanar techniques, when both 
plans are automatically generated with an algorithm that performs integrated beam angle 
optimization with IMRT. (this thesis)

2. Automated generation of high quality IMRT plans with optimized beam set-ups can be 
performed with clinically feasible calculation times. (this thesis)

3. Lack of algorithms for automated and integrated optimization of beam profiles and beam angles 
has severly hampered fair comparisons between fast coplanar techniques (including VMAT) and 
IMRT with optimized non-coplanar set-ups. (this thesis)

4. Automated treatment plan generation allows an increase in the number of treatment objectives 
to be considered in the optimization (e.g. reducing dose in the swallowing structures) with an 
appropriate balance and without increasing the planning workload. (this thesis)

5. Even with limitations in the non-coplanar beam delivery space (e.g. for the CyberKnife) 
optimized non-coplanar set-ups may highly outperfom coplanar beam arrangements regarding 
plan quality. (this thesis)

6. In contrast to meat, it is not advisable to eat vegetables that walked.

7. Selling a product as “dermatologically tested” is not very logical, as it does not tell anything 
about the result of the test.

8. Old ideas, generated without tunnel vision, reviewed years later with an increased amount of 
experience and insight, may result in innovatory ideas and findings.

9. Starting researchers should be motivated to spend at least 1 hour a day to read literature. This 
does not only improve knowlegde about their research area and subject, but also increases the 
probability that it becomes a habit.

10. “An idea that is developed and put into action is more important than an idea that exists only as 
an idea.” (Buddha)

11. (xkcd.com)



Stellingen behorende bij het proefschrift 
Towards Automated Treatment Planning in Radiotherapy

Sebastiaan Breedveld, 13 maart 2013

1. IMRT plannen met een niet-coplanaire bundelopzet zijn in het algemeen kwalitatief beter dan 
plannen met een coplanaire bundelopzet, wanneer beide automatisch zijn geoptimaliseerd met 
een algoritme voor gecombineerde bundelhoekoptimalisatie en IMRT. (dit proefschrift)

2. Het automatisch genereren van kwalitatief hoogstaande IMRT plannen met geoptimaliseerde 
bundelrichtingen kan binnen klinisch aanvaardbare rekentijden. (dit proefschrift)

3. Het gebrek aan algoritmen voor geautomatiseerde en gecombineerde IMRT en 
hoekoptimalisatie heeft goed vergelijkend onderzoek tussen snelle coplanaire technieken 
(inclusief VMAT) en niet-coplanaire technieken ernstig belemmerd. (dit proefschrift)

4. Geautomatiseerd plannen maakt het mogelijk om meer criteria te beschouwen in de 
optimalisatie (zoals het reduceren van dosis in de slikspieren) zonder de belangrijkste criteria te 
compromitteren, en zonder de werklast te verhogen. (dit proefschrift)

5. Zelfs met beperkte grootte van de niet-coplanaire zoekruimte (b.v. voor de CyberKnife) is het 
nog zo dat plannen met niet-coplanaire bundelrichtingen het veel beter kunnen doen dan 
plannen met slechts coplanaire bundelrichtingen. (dit proefschrift)

6. In tegenstelling tot vlees, is het niet aan te raden groente te eten die gelopen heeft. 

7. Een product aanprijzen als “dermatologisch getest” is niet dermate logisch, aangezien het niets 
zegt over de uitkomst van de test. (Vervolgens wordt zo'n product “als beste getest”.)

8. Het teruglezen van oude schetsen voor de aanpak van een probleem kan tot vernieuwende 
ideeën en inzichten leiden, aangezien je in het begin nog geen tunnelvisie had, maar jaren later 
wel veel inzicht en ervaring rijker bent. 

9. Beginnende onderzoekers zouden zoveel mogelijk gemotiveerd moeten worden zich elke dag 
ten minste 1 uur in te lezen in vakliteratuur. Dit is niet alleen goed om kennis op te doen en 
inzicht te krijgen in de stand van zaken in het vakgebied, de kans is ook groter dat dit een 
gewoonte wordt. 

10. “Een idee dat is uitgewerkt en uitgevoerd is belangrijker dan een idee dat slechts bestaat als 
idee.” (Buddha)

11. Vertaling: “Het keuzeaxioma leert ons om één element uit elke 
verzameling te selecteren – en terecht te stellen als voorbeeld voor de 
anderen.”
Onderschrift: “Mijn wiskundeleraar was een groot voorstander van 
bewijs door intimidatie.” 
(xkcd.com)
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