INFORMATION TO USERS

This manuseript has been reproduced from the microfilm master. UNII films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinet print, colored or poor quality illustrations and photograjhs, print bleedthrough, substandard marging and improper allgnment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuseript and there are missing pagss these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (eg., maps, drawings, charts) are reproduced by sectioning the orfyinal, begiming at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuseript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI

A finited ${ }^{\text {fiffermence model of three-dimensional granular }}$ displacement

Burbey, Thomas J., Ph.D.

University of Nevada, Reno, 1994

University of Nevada
Reno

A Finite-Difffermence Model of Tikree-Dimensional Granular Ditspphrorment

A dissemtation submitted in partial fulfillment of the requifements for the degreee of Doctor of Philosophy in Hydrology/Hydrogeology
by

Thomas J. Burbey

Donald C. Helm, Dissentlation Advuisor

May 1994

The Dissertation of Thomas J. Burbey is approved:

Dissertation Advisor

University of Nevada
Reno

ACKNCOWLIEDGRMEAMIS

I would like to express sincere thanks to the U.S. Geological Survey, my employer, for allowing me to pursue this degree and for their confidence in me and theif e8meritment to the work of this project. The USS. Geological Survey, the Nevada Division 8f Water Resourees and the Las Vegas Valley Water District have funded this research and without their support through this long process, this product would never have E8me te fiuition. Many thanks go to Bill Carswell and Jon Nowlin for believing in me and allewing me to remain here at UNR during the pirsuit of this degree:

In addition I would like to thank my committee members, Steve Wheatcraft, Gene LeMay, Beb Watters, Jim Carf, and particularly Don Helm who served as my advisor and menter: Don has been most gracious during this endeavor, often allowing me to interrupt his work to discuss problems as we filled many-a-blackboard with ideas and developmentas. His continued leadership and faith in me gave me the push I often needed when simulations and boundarysondition problems left me frazzled. Above all, Don has been a true friend.

I want to thank my family; my wife Ingrid who is my very best friend, e日mpanion, and prayer partner, who encouraged me continually through the good and hard times; and my ehildren Rena, Ariel, and Ryan whose cheerful faces and constant exulaeraner allowed me to forget the troubles and problems and to remember what is really important in life.

Above all I must thank my Lord God who is my constant source of strength and hope whe has theight me much about myself and His graciousness to me though this Whele proeess. Thanks also go to all those who prayed for me over these years.

Abstract

ABsRRĀ̃

Recent advanees in aquifer mechanics have shown that the hydrodynamic preeesses assoeiated with land subsidence and earth Assuring due to fluid withdrawal in uncensolidated aquifers are three dimensionta in scope. Previous mathematical and numerieal models that use hydraulic head or volume strain as the principal unknown variable have taditionally been one dimensional with respect to changes in storage and stain beeause they assume no horizontal strain. These one-dimensional models can abeurately simulate the total vertical compaction of interbeds in a confined aquifer, but they have no way of predieting horizontal changes in strain or granular movement, and henee ean not estimate where damaging fissures may occur over time. This report describes a new three-dimensional finute-difference numerical model that has been developed and integrated into the U.S. Geological Survey's modular ground-water flow modeld. The displacement field of solids is the principal unknown variable within the new model. Beeare the displacement field of solids is a vector quantity, granular displaeement resulting from imposed stresses on an imconsolidated aquifer can be simulated in three dimensions. The new model is not limited to confined or homogeneous aquifers, but can be readily applied to unconfined and heterogeneous aquifers with complex boundaries.

The three-dimensidnal governing equation is decoupled and each componeat direetion is solved for, first independently, then corporately with the other principal directions. 且eh of the three decoupled equations is expressed numerically using a Crank-Nieotson seheme. Solution of the set of equations is accomplished with a dualloop sueessive overrelaxation technique, while taking advantage of Chebyshev aceeleration. Simulation of horizontal displacements compare accurately with analytic solutions for homogeneous, isotropic confined aquifer. Simulation of vertical displaeements of fine-grained interbeds within a confined aquifer compare favorably With regult obtained using the one-dimensional interbed storage model. The inclusion of an overlying horizontal barrier to vertical flow results ini aq increase in calculated

subsidence along the edges of the barrier and a decrease in subsidterwe directly above the pumped welh A vertieal barrier to horizontal flow tends to increase subsidence above the pumped well. The horizontal location of the wellbore tends to be drawn toward the barrief resulting in eompressional strain between the barrier and the pumped well. Bisplacement is signifieant on the side of the barrier opposite the pumped well.

TABLE OF CONTIENIS

page
INTRODUCTION1
THEORETICAL DEVELOPMENT. ,3
Darey-Gersevanov-Helm Law. 3
Bulk Flux 4
Governing Equations for the Displacement Field of Solids. 11
N. TiveleleAl APPROXIMATION TO GOVERNING EQUATIONS 18
Generalized Finite-Difference Expressioms 18
Boundary Conditions. 21
Solution Technique. 24
STMULATION OF GRANULAR MOVEMENT IN TWO DIMENSIONS 27
Model Evaluation 27
Noneonstant Pumping, Relaxation, and Injection. 38
ŞMUtATION OF THREE-DIMENSIONAL GRANULAR MOVEMENT 46
Model Evaluation 46
Flow Barriers, Heterogeneity, and Multiple Wells, 52
MODEL LIMITATIONS. 68

- CONCLUSIONS. 67
REFERENCES CITED. 69
ABPENDILX A: MODEL DOCUMENTATIION. 73

TABLE OF CONTIENIS

page
INTRODUCTION1
THEORETICAL DEVELOPMENT. , 3
Darey-Gersevanov-Helm Law. 3
Bulk Flux 4
Governing Equations for the Displacement Field of Solids. 11
N. TiveleleAl APPROXIMATION TO GOVERNING EQUATIONS 18
Generalized Finite-Difference Expressioms 18
Boundary Conditions. 21
Solution Technique. 24
STMULATION OF GRANULAR MOVEMENT IN TWO DIMENSIONS 27
Model Evaluation 27
Noneonstant Pumping, Relaxation, and Injection. 38
ŞMUtATION OF THREE-DIMENSIONAL GRANULAR MOVEMENT 46
Model Evaluation 46
Flow Barriers, Heterogeneity, and Multiple Wells, 52
MODEL LIMITATIONS. 68

- CONCLUSIONS. 67
REFERENCES CITED 69
ABPENDILX A: MODEL DOCUMENTATIION. 73

LIST OF FIGURES

Tigure Page

1. Sehematie diagram illustrating the relation between the initial and ultimate values of bulk fluwx -
3: Sehematie diagram illustrating the permeability ellipse. 7
3: Selematie diagram illustrating the radial and tangential components of strain . 17
2. Ceneralized flow chart of the granular displacement modlell 28
5: Plot ghowing displacement as a function of radial distance from pumping well for constant pumping rate after 10 dayss. 3
6: Blot showing displacement as a function of firme since the onset of pumping 37
7A. Blot showing displacement as a function of radial distance from pumping well for 10 days of pumping followed by 60 days of relanatiom. 39
 39
8A: Plot showing displacement as a function of radial distance from pumping well for cyeles of pumping and relaxation. 40
8B. CodrudatueddrametionnsffromMOUDIFLOW. 49
 after pumping for 2.5 days then injecting for 2.5 days 43
10A. Blot showing displacement as a function of radial distance from pumping well after eycles of pumping and injecting at the same rate 44
10B. CadicdidteddtrawdownssfromMMDIDLOW. 44
3. Cconceqfuadinnodedussedteocerdiuatrevertitialldispplacemments. 49
4. Veetor plot showing simulated displacements of model used to evaluate vertical displacements. 50
5. Blanimetrie vector plot of layer 4 showing simulated displacements in a homogeneous aquifer pumped from the center of the model grid 53
6. Cress-sectional vector plot showing simulated displacements along column 26 in a homogeneous aquifer pumped from layer 4. 54
7. Blanimetrie veetor plot showing simulated displacements due to a vertical linear flow barrierr.55
16: Cfess-seetional vector plot showing simulated displacements due to a vertical Linear flow barrier through layers 2-4 .56
8. Cfoss-seetional vector plot showing simulated displacements due to a horizontal flow barrier through the center of layer \boldsymbol{Z} .57
 isetrepie imeonfined aquifer with two pumping wells.59
19: Planimetrie veetor plot showing simulated displacements in a homogeneous isetrepie uneonfined aquifer with one pumping amdrone injection well60
30: Planimetrie vector plot showing simulated displacements in an aquifer where One half of the aquifer has a hydraulic conductivity that is two orders of magnitude greater than the other side. Horizontal hydraulic conductivity of beth halves is one order of magnitude greater than the vertical hydraullic conductivity.

LIST OF TABLES

Table Page
 displacements. 332
Z. Analytie versus simulated results of horizontal displacement in a homegeneous isotropic confined aquifar. 366
3. Stress period information used for third scenamio. 45
4. Aquifer properties used for evaluation of vertical displacementes 49
5. Comparison of compaction from the interbed storage model with displacements from the granular displacement modell. 50

INTRODUCTION

Inereasing awareness of the connection between horizontal aquifer movement and earth fissures in pumped unconsolidated aquifers has triggered concern over the effectiveness of available hydrologic models to predict such phenomena. While vertical exmpaetion or subsidenee models have been successffilly developed and applied to field settings (Gambolati and Freeze, 1973; Gambolat and others, 1974; Helm, 1972, 1975, 11976; Narasimhan and Witherspoon, 1977: Lewis and Schrefler, 1978; Leake and Prudic, 1988; Leake, 1990), available horizontal or three-dimensional displacement models have been intractable of require significant physical limitations for practical application under field conditions (Biot, 1941, 11955; Safri and Pinder, 1979, 11980: Bear and Corapoioglu, 1981): Helm ($1979,1982,1984,1987$) has developed a fundamental theory of granular movement based on an extersion of Darey's law that has the displacement-field of solids as the lone dependent variable. Helm's approach makes calculating the displacement field more Heatable because it does not require the prior calculation of transient values of hydraulic head, effective stress, or pressure.

Both field and analytical studies have shown that horizontal movement can be of the same order of magnitude as vertical compaction (Poland and Davis, 1969; Yerkes and Castle, 1969; Bear and Corapdioglu, 1981). In fact, field evidence suggests that horizontal mevement of the granular matrix may occur where no vertical compaction is measured (Wolff, 1970): Although geologic influences such as differential movement along buried falits (Bell and others, 1992) and shallow bedrock knobs (Carpenter, 1991) may influence the location of fissure development, hydraslic mechanisms, specifically horizontal mevement, influenee the magnitude and severity of fissure development (Helm, 1993):

The purpese of this dissertation is to develop a model that is capable of simulating time-dependent granular movement in three space dimensions and that is Hactabie at the field seale. Such a model would greatly expand the state-of-the-art and allow for greatef understanding in evaluating displacements in complex geologic settings (anisetrepie and heterogeneous aquifer properties and application of multiple pumping
and recharge weils) and in cases where stresses, such as those caused by pumping, are ehanging in time. From the resulting displacement field one may be able to predict where eafth fissures would most likely occur. Hence, such a tool would benefit not only seientists but water managers who are interested in minimizing potential risks of structural damage from fissure developmentit

This dissertation incorporates Helm's general theory of three-dimensional granular movement into the U.S. Geological Survey's modular finite-difference groundweter flow model (McDonald and Harbaugh, 1988). The result is a fully threedimensional granular displacement model that is semi-mdependent from the groundwater flow equations used in MODFLOW. That is, transient values oflinydiraullic head (MODFLOW output) are not required to obtain the directional components of displacement, but they are used in the specification of tulthe water-table boiundary. The displacements are calculated independently from MODFLOW"s numerical algorithms approximating the groind-water flow equation.

A detailed discussion of the theoretical and numerical developments are presented. Following these developments the model is compared with existing analytic solutions in two space dimensions. Additional three-dimensional simulations are presented and inelude a discussion of the development of the water-table boundary. Model limitations and assumptions are also discussed. Finally, the detailed model documentation is provided in the appendix for the three modules developed for this study; (Da module to calculate the initial and ultimate bulk flux, (2) a module to caleulate displaeement and volume strain in each space dimension, and finally (3) a module to plot vectors of either displacement or bulk flux in order to analyze and review the large amount of data that is produced.

THEOREMICAL DEVELOPMENT

Bargy-Beinevanov-Helm Low

Greund=water hydrologists typically ignore the movement of the granular matrix 8 f the aquifer in their analysis of ground-water flow. Helm (1979, 1984, 1987) has shown that sueh limitations in the evaluation of matrix compression preclude the determination of directional eomponents of the displacement field of solids. The approach taken in this repert invalves developing governing equatireits of granular movement in three dimensions and begins with Darey's Law, which is expressed in vector form by the relation:

$$
\vec{q}=-\bar{K} \nabla h
$$

where \bar{g} is thepesiffe diseharge, $\overline{\mathcal{K}}$ is the hydraulic conductivity tensor, and k is the hydraulie head. Geisevanov (1934) deduced that Darcy's law describes the flow of groimd water felative to the skeletal matrix and should be written more completely as:

$$
\begin{equation*}
\$ \equiv \mu\left(\forall_{W} w-\vec{v}_{3}\right) \equiv-\bar{K} W / \tag{2}
\end{equation*}
$$

Whefe h is the perasity, \vec{v}_{w} is the velocity of water, and \vec{v}_{s} is the velocity of solids (solid phase of the aquifere), Biot (1941,1955) independently deduced eq. 2 as being the correct expression of Darey's law. On the basis of volume fraction, Helm $(1984,1987)$ defined the bulk flux for a saturated medium as:

Using Gersevanov's generalization (eq. 2) wdth Helm's equation for the bulk flux (eq: 3) yields a new Dardan expression in terms of the velocity of solids and the bulk flux, referfed to here as the Darcy-Gersevanov-Helm Law, namely:
or

$$
\begin{equation*}
\hat{\boldsymbol{v}}_{s}^{\wedge}-\bar{x} \nabla h=\vec{q} b \tag{5}
\end{equation*}
$$

Equation 5 is a simple yet powerful expression of Darcy's law describing both the motion of solids and interstitial fluid in an unconsolidated saturated aquifer. For a bulk volume V where no mass is produced or destroyed, Helm (1987, 1994) showed that the divergence of the bulk flux for a two-phase saturated porous media is expressed as

$$
\frac{n}{\rho_{w}}\left[\frac{\partial \rho_{w}}{\partial t}+v_{w} \cdot \nabla \rho_{w}\right]+\frac{1-n}{\rho_{s}}\left[\frac{\partial \rho_{s}}{\partial t}+v_{s} \cdot \nabla \rho_{s}\right] \neq \nabla^{*}\left[n v_{w}^{\wedge}+(1+()) v_{v_{s}}\right]=0
$$

Where ρ_{w} and ρ_{s} is the density of water and the density of the individual solids, respectively. The last bracketed term on the left side of eq. 6 is the definition of the bulk flux. If We assume that the individual solid grains are incompressible, that is \qquad $p_{s}^{\wedge} \equiv$ constant, and that the fluid is also incompressible, that is $p_{w}^{\wedge}=$ constant, then mass conservation for incompressible bulk flow yields

$$
\nabla \bullet \vec{q}_{b} \equiv 0 .
$$

Equation 7 states that if the bulk flux is known along the boundary (such as at a well) it is known at all points within the aquifer. Note that \vec{q}_{b} can be a function of time. In addition, 89. 7 implicitly states that if the divergence of the velocity of solids is nonzero, then the compressibility of the solid particles and interstitial water are much smaller than the compressibility of the skeletal matrix. This is a valid assumption for unconsolidated aquifers. Matrix compressibility for shallow sand-dominated aquifers is one to three orders of magnitude greater than the compressibility of water and is two to four orders of magnitude greater for elay-rich aquitards (Scott, 1963).

Bulk Flux

When a stress such as that caused by pumping is applied to an aquifer system the stress iuiunediately responds as a body force on the incompressible constituent materials throughout the aquifer, At this initial instant of applied stress, $t=$ (f , both fluids and solids move as a single incompressible mass toward the pumping well at the same velocity. This velocity is equal to q_{b} (defined by eq. 3) and is dependent upon the pumping fate and the distance to the point of interest from the pumping well l The initial
bulk flux may also be affected by the ratio of vertical to horizontal hydraullic e日nduetivity：That is，anisotropy may affect the magnitude of the bulk flux for a given fadial distance from the pumping well．The change in bulk flux due to anisotropies can be casily derived and is discussed in the following paragraphs．

Heterageneities sueh as confining beds also aiffect the distribution of bulk flux： FF8日解： 5 one can deduee that once a stressed aquifer system reaches a new steady＝state E8ndition，that is after the solid matrix has come to rest，the final values of bulk flux afe identical te the new steady－state distribution of specific discharge．These final or ultimate values of buik flux will reflect any boundary and initial conditions that influence the frail flow field of water and may therefore be different from the initial values of bulk flux： Empirical evidenee suggests that the transition from the initial to ultimate bulk flux is Fapid（Frands RQey，Us．Geological Survey，oral commun．，1993）and occurs while the aquifef matrix remains physically in motion．This evidence originates from field measurements of water－level reversals in observation wells separated fram a pumping Well by an impermeable fault．The rise in head in the observation well occurs almost instantaneously from the inception of pumping．No ultimate hydraulic gradient exists in the paft of the aquifer separated from the pumping well by the impermeable boundary． What dees exist in this part of the aquifer is an initial strain field writhin the solid matrix fesulting frem the initial bulk flux．The transition from the initial to ultimate bulk flux is feflected in the head fluetuation observed in the observation well．Further research is Reeded to define the time dependency of this transient change in bulk flux from initial to ulimate values．The transient nature of bulk flux is beyond the scope of this study but Hiumerieal simulations suggest that the change may be dependent not only on time but alse on hydrathie diffusivity．Only the initial and final bulk flux values are used in this Study and，based on empirical evidence，the transition is considered to be nearly instantaneous．Figure 1 shows the relative magnitude and direction of initial and ultimate values of bulk flux in a heterogeneous system being pumped from a single well：

Fi'sure 1. Sehematic diagram illustrating how the initial and uhemate values of bulk flux may change for a heterogeneous aquifer system. Arrow lengths indicate relative magnitude of bulk flux The shaded unit hes low hydraulic conductivity relative to the units above and below it.

The utimate bulk flux can be evaluated by determining the steady-state hydrublis head values that are produced from MODFLOW for a steady-state simulation of the aquifer being simulated. From these heads, the ultimate specific discharge or bulik flux values can be evaluated. The ultimate bulk flux is substituted for the initial bulk fux after approximately one minute (this is an arbitrary time that is used to establish an initial field of maximum velocity of solids). These ultimate values of bulk flux are then used throughout the remainder of the simullation.

In a eontiguous three dimensional homogeneous, isotropic incompressible and umdifferentiated media with a single pumping well defined as a point sink, mass balance requires that initially

$$
\begin{equation*}
Q \equiv 4 \pi r^{2} q_{b} \tag{8}
\end{equation*}
$$

Where Q is the pumping rate and r is the radial distance from the well to a point of interest. For spherically symmetric flow

$$
q_{b}=\frac{Q}{4 \pi r^{2}} .
$$

Beense the bulk flux is known at the pumping well, the bulk flux can be determined at any location within the aquifer according to eq. 7 . If we assume $\boldsymbol{K}_{r},{ }^{\prime} \boldsymbol{K}_{\mathbf{z}}$, Where the subseripts r and z refer to the radial and vertical space dimensions, fespectively, then the hydraulic gradient migrates outward from the pumping well elliptieally. The permeability ellipse is expressed as

$$
\begin{equation*}
\frac{b}{a}=\sqrt{\frac{K_{z}}{\overline{K_{r}}}} \tag{10}
\end{equation*}
$$

Where a is the length of the major axis and b is the length of the minor axis (fig: 2):
Whether the aquifer is confined or imconfined does not matter at $t=0^{*}$. At the initial instant when the well is turned on, the aquifer will behave as a confined aquifer until the first pressure transient reaches the water table. After this time the aquifer will behave as an uncenfined aquifer. However, the initial bulk flux is evaluated at the moment the well is furned on: Beease an expression for the bulk flux has been defined at the well it can now be evaluated dreetly for any point in the aquifer system.

R fure z. Sehematie diagram illustrating a permeability ellipse with major axis a and minor axds b. The aquifer is being pumped at a constant rate Q .

The US. Ceolegieal Survey's modular groind-water flow model makes use of a feetangular finite-differenee grid network. Hence, radial or spherical coordinates of initial bulk flux must be transformed to cartesian coordinates. The eccentricity of an ellipse is expressed as:

$$
\tau=\frac{\sqrt{a^{2}-b^{2}}}{a}
$$

Neither a nor b are known explicitly; however, the ratio of a / b (or $b / a)$ is known from eq. 10. Equation 11 can be expressed in terms of this ratio,

$$
\begin{equation*}
x=\left[1-\left(\frac{b}{a}\right)^{2}\right]^{\frac{1}{2}} \tag{42}
\end{equation*}
$$

When the ellipse is aligned such that its rotation is about the major axis (aligned in the radial or hovizonteal direction) the ellipse is said to be oblate. The formula for an oblate spheroid is given by:

$$
\frac{\left.\left(x-x_{-}\right)\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{a^{2}}+\frac{\left(z-z \hat{N}_{0}\right)^{2}}{b^{2}}=1
$$

This equation assumes that the aquifer system is transversely isotropic. That is $K_{x x} \equiv$ Kyyy. Now there are two eqpations and two unknowns so that a and b can be determined explicitly as follows:

$$
a=\left[\left(x-x_{\theta} y^{2}+\left(y-y j z^{2}+\frac{\left(z-z_{o}\right)^{2}}{1-x z^{2}}\right]^{\frac{1}{2}}\right.\right.
$$

and,

$$
b \equiv a \sqrt{1-\tau^{2}}
$$

where x, y, and z are the spatial locations of a point of interest in the acpiifer system (equivalent to the column, row, and layer at a cell center within a finite-difference grid network). The variables $x_{o^{\prime}}^{\wedge} y_{o}^{\wedge}$, and z_{y} represent the spatial locations of the pumping well The surtice area of an oblate spheroid is given by

Equation 9 written in vector form in cartesian coordinates is

$$
\underset{b}{ }=-\frac{Q}{S} \hat{e}
$$

Where erepresents a unit vector. An expression for the bulk flux can be written for each component direction as:

$$
\begin{align*}
q_{b x} & =\frac{-C\left(x \geqslant x_{0}\right)}{\mathbb{S} r}, \text { nd } \\
q_{b y} & =\frac{-Q\left(y y-y_{r} y_{0}\right)}{S r}, \text { and } \\
q_{b z z} & \equiv \frac{-Q\left(i z-z_{b}\right)}{S r}, \tag{20}
\end{align*}
$$

Where frepresents the radial distance from the well (the cell containing the well) to the cell of coneern in cartesian coordinate space, which is defined as

$$
\begin{equation*}
r \equiv\left[\left(\left(x-x_{b}\right)^{2}+6 y-x y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}\right]^{\frac{1}{2}} \tag{21}
\end{equation*}
$$

The bulle flux initial condition is now established for a point source or sink. These expressions ean be applied for any number of point sources or sinks because in general,

$$
\begin{equation*}
q_{b j i,}=\sum_{i=1}^{m} \frac{-Q_{i}\left(\zeta_{i}-\zeta_{o i}\right)}{S_{i} r_{i}} \tag{22}
\end{equation*}
$$

Where is ihe number of pumping wells and $\zeta_{\text {oi }}$ reqpresentstheelhecationoffthessinkoor souree in the coordinate direction of concern, ζ_{i} is the current location within the grid system for the coordinate direction of concern, and i represents the current source or sink.

Equation 22 is valid except at the wellbore where the bulk flux approaches infinity when $x_{i}-x_{o i} \equiv 0$ and $y_{i}-y_{o i} \equiv 0$. The randy components of bulk flux are autematieally set to zero at the wellbore. At the wellbore where no horizontal component of bulk flux existe (and where f is set to unity), unusually large values of bulk flux in the z direction aceur when $z_{i}-z_{i i} \neq 0$ (where $q_{b x}$ and quame zero). To mitigate these problematie values of bulk flux, a five point average of the z component of bulk flux is used by caleulating its value at each edge of the cell and at the cells center at the rand y ceil lecation centaining the well. This averaging of the z component of bulk flux along the

Wellibore ($\mathrm{for} z_{i}-z_{0 i} \neq 0$) smooths the ultimate displacement values obtained by making the zemponent of displacement an average over the entire surface area of the cell instead of at a point.

Equations 16 through 22 are valid for any three dimensional setting. A medifieation to this general expression occurs when only a one-dimensional case is assumed with axial symmetry. In this case the resulting surface area is no longer a spheroid but is modeled rather as a cylinder with one layer. The cylindrical surface area allows no vertical component of bulk flux. That is, only horizontal components of flow and bulk flux are ealeulated and used in the calculation of horizontal displacement. This situation oecurs when simulating a single confined aquifer (a single layer withinafinitedifferenee model) with impermeable top and bottom. For this scenario, mass balance requires that the bulk flux be expressed for axially symmetric flow as follows,

$$
Q B=\frac{p}{2 \pi r b}
$$

Where b is the thiekness of the aquifer in question. In cartesian coordinates the bulk flux for each component direction can be defined as follows:

$$
\begin{gather*}
q_{b x}=\frac{Q\left(x-x x_{0}\right)}{2 \kappa i^{2} b}, \text { and } \\
q_{b y} \equiv \frac{\left.Q y^{\prime}-y d_{o}^{\prime}\right)}{2 m m^{2} b},
\end{gather*}
$$

For this one-dimensional ease with axial symmetry bulk flux does not vary with time. Both the initial and final values are given by eqs. 23 and 24 . The directional components of butk flux are used in the governing equation for the displacement field of solids developed in the next section.

Governing Equations for the Displacement Field of Sollds

The geverning equation for granular displacement can be developed from equations of motion without invoking mass balance. As seen in the proceeding section, mass balance is used essentially for evaluating \vec{q}_{b}.

We begin with the expression for Darcy's law in terms of bulk flux (eq, 5). The ensuing diseussion describes primarily the transformation of dependent variables from the hydraulic head to the displacement field of solids.

In a fixed coordinate system, Hubbert (1940) separated the total hydrauulic head, h, into a pressure head and elevation head assuming irrotational flow as:

$$
\begin{equation*}
h=\frac{p}{\rho_{w} g}+z \tag{K20}
\end{equation*}
$$

Whefe p is pressure, ρ_{w} is the density of the interstitial water, g is the gravity constant, and z^{2} is the elevation from rome known datum. Taking the gradient of each side of this expression and assuming that the density of water is a constant, eq. 26 can be written as

$$
\begin{equation*}
\nabla h \equiv \frac{\nabla R}{P_{W} g} \neq \hat{H} \tag{27}
\end{equation*}
$$

S
Where is a unit normal vector in the vertical direction. Substituting this expression inte eq. 5 yields

$$
\vec{v}_{s}-\bar{K}\left[\frac{\nabla p}{\mathrm{P}_{\mathrm{H}}}+\hat{k}\right]=\vec{q}_{b} .
$$

Pressure if also related to the total and effective stress according to Terzaghi (1960, p. 45), namely

$$
\sigma \equiv \bar{\sigma}^{\prime}+I p_{x}
$$

Whefe $\bar{\sigma}$ and $\bar{\sigma}$ ' represent the total and effective stress tensors, respectively, and I is the identity matitix. The mean normal values for total and effective stress, and pressure, can be obtained from the first invarient (trace) of these tensors to yield

$$
\sigma_{m}=\sigma_{m}^{\prime} \neq p
$$

Where σ_{m} and σ_{m}^{\prime} are the sealar quantities of the mean total and mean effective stresses, fespectively. Taking the gradient of eq. 30 and, rearranging and substituting this expression into eq. 28 yields

$$
h_{\xi}-\boldsymbol{K}\left[\hat{k}+\frac{\nabla\left(\sigma_{m}-\sigma_{m}^{\prime}\right)}{\rho_{w} g}\right]=\vec{q}_{b}
$$

The total and effeetive stress tensors can be decomposed into an initial hydrostatic stress condition and an incremental stress event, namely

$$
\sigma_{m}=\varepsilon \sigma_{b m}+\sigma_{m o}
$$

and

$$
\sigma_{m}^{\prime}=\delta \sigma_{m}^{\prime}+\sigma_{m \theta^{\prime}}^{\prime}
$$

 Eendition, fespeetively; whereas $\delta \sigma_{m}^{\wedge}$ and $\delta \sigma_{m}^{\prime \wedge}$ are the cumulative stress increments of interest.

If we assume an clastie or Hookian stress-strain constitutive relation for the stress increment of interest, then

$$
\begin{equation*}
\boldsymbol{\nabla} \delta \boldsymbol{\sigma}_{m}^{\prime}=-\left[\frac{1}{\alpha_{x x}} \frac{\partial \varepsilon_{\hat{x}}}{\partial x}+\frac{1}{\alpha_{y y}} \frac{\partial \varepsilon_{\hat{y}}}{\partial y}+\frac{1}{\alpha_{z z}} \frac{\partial \varepsilon_{z}}{\partial z}\right] \tag{834}
\end{equation*}
$$

Where ε is the volume strain, $\alpha_{x x^{\prime}} \alpha_{y y^{\prime}}$ and $\alpha_{z z}$ are the bulk compressibilities of the skeletal matrix in the x, y, and z principal stress directions. Because transverse isotropy is assumed with respeet to matrix compressibility, $\alpha_{x x}=\alpha_{y y} \neq \alpha_{z z}$. The minus sign is ineladed beeause ε is positive for expansion and $8 a^{\prime}$ is positive for compression: Suldstiteting these relations into eq. 31 results in the following expressioms

Tetal volume strain, $\boldsymbol{\varepsilon}$, is related to the displacement field of solids, \vec{u}_{s}, as

$$
{ }^{*} \varepsilon \equiv \nabla \propto H_{j} .
$$

By rearranging terms, rewriting the velocity of solids as the time derivative of the displacement field, assuming homogeneous isotropic skeletal compressibility, and incorporating eq. 36, the governing equation now assumes the form:

$$
\frac{\overline{\vec{u}} s}{d t}-\frac{\bar{K}}{\rho_{w} g \tilde{\omega}_{\alpha}}\left[\nabla\left(\nabla \cdot \vec{u}_{s}\right)\right]=\vec{\phi}_{b}+\bar{K}\left[\hat{k}+\frac{\nabla\left(g_{m o}-\sigma_{m o}^{\prime}\right)}{\rho_{w} g}\right]+\frac{\bar{K} \nabla \delta \sigma_{m}}{P_{w} \sigma},
$$

where

$$
\bar{\alpha} \overline{\bar{\pi}} \frac{1}{X+2 G}
$$

and X and G are Lame's constants.
Recognizing that the bracketed term in the right hand side of equ\% is simply the initial hydrestatie gradient of hydraulic head (which equals zero), the fully threedimensienal governing equation for the displacement of solids can be written more simply as

$$
\frac{d \vec{u}_{s}}{d t}-\frac{\bar{K}}{\rho_{w} g \bar{\alpha}}\left[\nabla\left(\nabla \bullet \vec{u}_{s}\right)\right]=\vec{q}_{b}+\frac{\bar{K} \nabla \delta \sigma_{m}}{\rho_{w} g},
$$

The last term on the right hand side of eq. 38 can be neglected if we assume that the change in the gradient of mean total stress is small. Jacob (1950) assumes $\delta \sigma_{\mathrm{m}}$ itself is negligibly siphall. Equation 37 is essentially the same expression as given in Helm (1987, eq. 16) and ean now be written in simplified form as

$$
\frac{d \overrightarrow{\vec{v}}_{s}}{d t}-\frac{\bar{K}_{x}}{\rho_{w} g \overline{\bar{\alpha}}}\left[\nabla\left(\nabla \cdot \vec{x}_{s}\right)\right]=\vec{q}_{b}
$$

In place of assuming

$$
\mathbb{W}\left(8 \sigma_{\dot{m}}\right)\left[\equiv \frac{1}{3} \frac{\partial}{\partial x_{j}}\left(\delta \sigma_{k k}\right)\right]=0
$$

as was done to ge from eq. 38 to eq. 39, we now assume stress equilibrium (Biot, 1941, 1955), namely

$$
\frac{\partial \sigma_{i j}}{\partial x_{j}}=0 .
$$

The fesuting equation of motion for an isotropic homogeneous aquifer matrix (Helm, written commin., 1994) is

$$
\begin{equation*}
\frac{d \vec{u}_{s}}{\overline{d t}}=\frac{\bar{K}}{\bar{P}_{w}^{\wedge} g c_{t}}\left[\nabla\left(\nabla \bullet \vec{\varepsilon}_{s}\right)\right]=\vec{q}_{b} \tag{43}
\end{equation*}
$$

where

$$
\alpha^{\prime}=\frac{3}{3 X+2 G}
$$

In etherwerds, for an isotropic homogeneous poro-elastic aquifer, assumingeeq; 41 ylelds eq: 38 as a physieal interpretation of specific storage per unit weight of water, vitfereas asstuming eq. 42 yields eq. 44.

Equation 38 is similar in form to the groimd-water flow equation. Both are parabelic differential equations. The primary difference is that the principle unknown quantity \dot{H}_{3}, the displaeement field of solids, is a vector. The principal unknown in the ground=water flew equation is hydraulic head, a scalar quantity. One way to simplify eq: 39 se that he dependent variable can be treated as a scalar variable is to decouple the governing equation into three equations, one expression for each component direction. By deeoupling eq. 40, the three expressions are written as
and

$$
\frac{d u_{z}}{d t}-\frac{K_{z z}}{p_{w} \hat{b}}\left[\frac{1}{\alpha_{x *}} \cdot \frac{\partial^{2} u_{x}}{\partial x \partial z}+\frac{1}{\alpha_{y y}} \cdot \frac{\partial^{2} u_{y}}{\partial y \partial z}+\frac{1}{\alpha_{z z}} \cdot \frac{\partial^{2} u_{z}}{\partial z^{2}}\right]=q_{b z}
$$

The left-hand side of equations 45-47 can be further simplified if the cempressibility of the aquifer is transversely isotropic, that is, $\alpha_{h}=\alpha_{z}^{\wedge}=\alpha_{y y}$. The speeifie storage in the horizontal direction can now be written as $S_{s h}=\rho_{w} g \alpha_{h^{\prime}}$ and the speeifie storage in the vertical direction can likewise be written as $S_{s v}=\rho_{w} g \alpha_{z z}$, where We have assumed ineompressible bulk constituents. Typically, hydrologists assume a eompressible interstitial fluid. However, because the matrix compressibility is generally at least twe orders of magnitude greater than fluid compressibility, the specific storage is net signifieantly affected by the omission of fluid compressibility within the expression for bulk fluix. The set of equations is now stated simply as:

$$
\begin{align*}
& \frac{d u_{x}}{d t}-\frac{K_{x x}}{S_{s h}}\left[\frac{\partial^{2} u_{x}}{\partial x^{2}}+\frac{\partial^{2} u_{y}}{\partial x \partial y}\right]-\frac{K_{x x}}{S_{s v}}\left[\frac{\partial^{2} u_{z}}{\partial x \partial z}\right]=q_{b x} \\
& \frac{d u u_{j},}{d t}-\frac{K_{y y y}}{S_{s h}}\left[\frac{\partial^{2} u_{y}}{3 \hat{y}^{2}}+\frac{\partial^{2} u_{x}}{\partial y \partial x}\right]-\frac{K_{y y}}{S_{s v}}\left[\frac{\partial^{2} u_{z}}{\partial y \partial z}\right]=q_{b y}
\end{align*}
$$

and

$$
\frac{d u_{z}}{d t}-\frac{K_{z z}}{S_{s h}}\left[\frac{\partial z u}{\partial z d y}+\frac{\partial^{2} u_{x}}{\partial z \partial x}\right]-\frac{K_{z z}}{S_{s v}}\left[\frac{\partial^{2} u_{z}}{\left[\frac{\partial z z}{z}\right.}\right]=q_{b z}
$$

The lefthand side of each etiontion (eqs. 48-50) contains three dependent variables. The right-hand side contains the directional components of bulk flux which are known. Eak eomponent direction contains cross-product derivatives of the remaining spaee dimensions. The x, y, and z eomponent directions of displacement are required for eath expression. The temptation is to assutme the cross-product derivative terms in each expression are negligible. This would yield three second order diffusion equations in one spaee dimension that would be easy to solve directly. However, the cross-product derivatives can not be ignored as the following discussion will show. For the purposes of example, only two dimensions (x and y) are considered in the following discussion.

Total volume strain is an invariant and can be written for axially symmetric displacement in two dimensions as

$$
£ \equiv \varepsilon_{r r} \neq \varepsilon_{\theta \theta}
$$

where the normal strains are

$$
\varepsilon_{r r}=\frac{\partial w_{r}}{\partial r}
$$

and

$$
\varepsilon_{\theta \theta}=\frac{u_{r}}{\boldsymbol{y}}
$$

Figure 3 illustrates these normal components of strain. The tail length of the arfows senematieally represents the distance the aquifer matrix displaces horizontally during a unit time interval. The radial strain occurs along a flow line and results when, at a specified time of interest, a front grain has moved either a greater or lesser cumulative distanee toward the pumping well than the neighboring grain behind it. If the front grain has moved farther extension or extensional strain has occurred, if it has not moved as far as 辑e baek grain eompression or compressional strain has occurred. In fig. 3 radial e日mpression oceurs inside the circle, while radial extension occurs outside the circle. The Eithe itself represents a cireumference of zero radial strain. That is, the front grain and the neighboring back grain move the same distance along the flow path during the specified time interval. In addition to radial strain, tangential strain also occurs as a result of grains moving eloser together along two converging flow lines. Tangential strain is everywhere compressive in response to pumpprimg.

In cartesian coordinates the relation within brackets expressed in eq. 48

$$
\frac{3 V_{x}}{d x^{2}}+\frac{\partial^{2} u_{y}}{\partial x \partial y}
$$

cean be written in terms of normal strains following eq. 36 as

$$
\frac{\partial}{\partial x}\left(\varepsilon_{x x}\right)+\frac{\partial}{\partial x}\left(\varepsilon_{y y}\right),
$$

where \qquad

Figiire 3. Schematic diagram illustrating the components of radial and tangential strains. tine arrows indicate direction of movement, their tails indieate relative magnitude of strain displacement. Compressional radial strain occurs inside the circle, extensional radial strain occurs outside the circle.

$$
\varepsilon=\varepsilon_{x x}+\varepsilon_{y y}
$$

and where $\mathrm{E}_{\mathrm{jx}}^{\mathrm{N}}$ and $\varepsilon_{y y}$ represent the cartesian coordinate equivalent of the radial and tangential strain eomponents, respectively. Thus, because the coordinate directions do not neeessarily eoineide with the flow lines, the cross-product derivatives of eqs. 48-50 can not be neglected. Equations $48-50$ represent the governing equations used to simulate displaeement in the granular displacement model developed in the next section.
form in the same manner, hence, the numerical approximation to only one space dimension (eq. 50) is given below. The other two dimensions can be easily written on the basis of the spare dimension provided. The central difference approximation to eq, 50 for all interior cells (cells not at the boindary) in the z direction is:

$$
\begin{aligned}
& \frac{K_{z z}}{\oint_{S}}\left(\frac{2\left(u z_{j, i, k+1}-u z_{j, i, k}\right)^{m+1}}{\Delta z_{k}\left(\Delta z_{k+1}^{* *} 1-f \Delta\left(z A_{k}\right)\right.}-\frac{2\left(u z_{j, i, k}-u z_{j, i, k-1}\right)^{m+1}}{\Delta z\left(\left(\Delta z_{k-1}^{*} j_{1}+A \Delta z_{k}\right)\right)} j\right)+\frac{K_{z z}}{S_{s h}}\left(\frac{-u y_{j, i+1, k+1}^{m+1}}{(D W C(D C C, D C F)}-\right. \\
& \frac{u y_{j, i, k+1}^{m+1}}{D V C(D C F,-D C B)}+\frac{u y_{j, i-1, k+1}^{m+1}}{D V C(D C C, D C B)}+\frac{u y_{j, i+1, k i-1}^{m+1}}{D V C(D C C, D C F)}-\frac{u y_{j, i, k-1}^{m+1}}{D V C(-D C F, D C B)}-. \\
& u y_{j, i-1, k-1}^{m+1}-\frac{u u_{j+1, i, k+1}^{m+1}}{} \\
& \omega_{j, i, k+1}^{m+1} \\
& u x_{j-1, i, k+1}^{m+1} \\
& \overline{D V C(D C C, D C B})^{-} \frac{\overline{D V C(D R C, D R F)}}{}-\frac{\left(\frac{1}{D V C(D R F,-D R B)}\right.}{}+\frac{\overline{D V C(D R C, D R B)}}{}
\end{aligned}
$$

$$
\frac{u z_{j, i, k}^{m+1}-u z_{j, i_{i} k}^{m}}{\Delta t}
$$

where,
$u x, u y$, and $u z$ are the displacement in the x, y, and z directions, respectively; $q b \frac{b}{z}$ is the component of bulk flux in the z direction;
j_{j}, i, and k represent the grid spacing in thex, y, and z directions, respectively; m is the time-step indicator,
Δt is the length of the current time step;
DRC $\left.=\Delta x_{j}-f 0.5\left(\Delta x_{j}+1+\Delta x y_{j}-1\right)\right) ;$
$\mathrm{DCF}=\Delta y_{i}=0.5\left(\Delta y_{i+1}+\Delta y_{i}\right) ;$
$\mathrm{DCC}=\Delta \Delta y_{i}+0.5\left(\Delta y_{i} \hat{1}_{1}+\Delta y_{i}=j\right) ;$
$\mathrm{DCB}=\Delta \mathrm{y}_{\mathrm{i}}+0.5\left(\Delta y_{i}+\Delta y_{i=j}{ }^{j}\right) ;$
$\left.D V F=\Delta z j_{k}+0.5\left(\Delta z z_{k} \hat{+}+\Delta z_{k}^{\prime}\right)\right) ;$

$D V B=\Delta z_{k}^{\wedge} \neq 0.5\left(\Delta z j{ }_{k}+\Delta z_{k}^{\hat{1}}-j\right)$.

The comma delimiter in the denominator is synonymous to the word "or". Only one of the two terms in the parentheses is used in the numerical approximation. The term used depends upon whether a boimdary has been encountered in the y or x directions. Boundary conditions are discussed in the following section.

Equation 55 is second-order correct in z but is only first-order correct with respect to time: To make the time derivative second order correct and inconditionally stable the Cfank-Nieolson seheme (Remson and others, 1971) is applied to eq, 50 (and synonymous expressions for the y and x space dimensions). This technique divides the time step into twe parts se that the finite-difference equations are essentially evaluated at the $m+1 / 2$ and the min time intervals. This is accomplished by averaging the secomutorder space derivatives at the m and $m+1$ time steps. Increased accuracy is obtained by such an approximation. Equation 50 written with the Crank-Nicolson scheme results in the expression:

$$
\begin{aligned}
& \frac{K_{z z}}{S_{s v}}\left([A] u z_{j, i, k-1}^{m+1}-[B] u z_{j, i, k}^{m+1}+[C] u z_{j, i, k+1}^{m+1}+[A] u z_{j, i, k-1}^{m}-[B] u z_{j, i, k}^{m}+\right. \\
& \left.[C] u z_{j, i, k+1}^{m}\right)+\frac{K_{2 z}}{S_{s h}}\left(-[D] u y_{j, i+1,1, k^{\prime}+2}^{m+1}\left\lceil[E] u y_{j, j k d+1}^{m+1} \neq[F] u y_{j, i-1, k+1}^{m+1} \neq\right.\right. \\
& +[G] u y_{j, i+1, k-1}^{m+1}-[H] u y_{j, i, k-1}^{m+1}-[I] u y_{j, i-1, k-1}^{m+1}-[D] u y_{j, i+1, k+1}^{m}-[E] u y_{j, i, k+1}^{m}+
\end{aligned}
$$

$$
\begin{aligned}
& -[J] u x_{j+1, i, k+1}^{m}-[K] u x_{j, i, k+1}^{m}+[L] u x_{j-1, i, k+1}^{m}+[M] u x_{j+1, i, k-1}^{m}
\end{aligned}
$$

where,


```
\(C=1 /\left(A \underline{Z_{k}} j_{k}\left(\left(\Delta z_{k+1}^{*} i+\Delta z_{k}^{*}\right)\right)\right) ;\)
\(B \equiv A \neq C ;\)
\(D \geq 1 /((1 D W C(D C C, D C F))) ;\)
T=1/ (2DVC \((D C F,-D C B))\);
\(F=1 /(2 \mathrm{DVC}(D C C, D C B))) ;\)
\(\mathrm{G}=1 /(2 \mathrm{DVC}(\mathrm{DCC}, D C F)) ;\)
\(H \equiv \mathbb{1} /(2 D V C(-D C F, D C B))) ;\)
\(\mathrm{F}=1 /(2 \mathrm{PDVC}(\mathrm{DCC}, \mathrm{DCB})))\);
\(j=1 /\left(2 \mathrm{DVC}\left(\mathrm{DRC}_{\infty} D R F\right)\right)\);
\(\mathrm{K} \equiv 1 / /\left(2 \mathrm{DVC}\left(\mathrm{DFC}_{s},-\mathrm{DRB}\right)\right)\);
\(\left.\mathrm{L}=1 /\left(2 \mathrm{DVC}\left(\mathrm{DRC}^{2}, \mathrm{DRB}\right)\right)\right) ;\)
\(\mathrm{M}=1 /\left(2 \mathrm{DVC}\left(\mathrm{D} \mathrm{CBC}_{6}, \mathrm{DFF}\right)\right)\); \(\quad=\)
\(\mathrm{N}=1 /(2 \mathrm{DVC}(-D R F, D R B))\);
\(0=1 /(2 D V C(D R C, D R B Y))\).
```

The equations for the x and y space dimensions (eqs. 48 and 49) are written in similar falison

Boundary Condifions

After the general expressioits of the finite-difference equations have been developed, boundary eonditions need to be applied. For the granular displacement medel twe types of boundary conditions have been implemented in terms of disphagement: (1) a zerwhdisplacement (or zero solid velocity) boundary, and (2) a water table boimdary whieh is used for all quasi and fully three-dimensional simulations. Other boundaries suda as eonstant or general head are inherently included in the ultimate bulk flux terms.

The zere-displacement boundary is used at the bottom (base of model grid) and sides (lateral extent) of model grid. Because of the type of settings (namely, sedimentary basins) in which the model would most likely be applied, this boundary is a logical
choice: A zefo-displacement boundary refers to a cell edge (for one space dimension) Where there is ne granular displacement in a direction orthogomtal to the boundary. Such a condition would likely occur at a bedrock contact. Most basin models are designed to extend to the basin fill-bedrock contact; hence the zero-displacement boundary is a hatural choiee for the perimeter of the modeled area. However, the program allows the usef to speeify zero-displacement cells if bedrock zones are to be included in the model. Orthogenal moving lateral or bottom boundaries have not yet been coded inte the program.

Zero-displacement boundaries are implemented perpendicular to the cell edge fepresenting the outer perimeter of the grid. This is accomplished by using-a'centraldifference seheme with image theory in order to specify the zero displacement at the cell boimdary and not at the cell center. For example, if a zero-displacement boimdary is eneountered in the direction, the dependent variable of the image cell become the negative value of the displacement in the active cell adjacent to the boindary as follows.

$$
u x_{0}=-u x_{1}
$$

and
UXUCSOL $+1 \equiv-$ UNCSOL
Where NCOL i今, the total number of columns in the grid. Because the nodes are block eentered, this appreach is needed to establish a zero-displacement boundary at the $f=1 / 2$
 rewritten in the program to include these boundary conditions when $j=1$ or $j=N C O L$ (or for the boundary grid cell in the x direction). Similar expressions are used for the numerieal expression of the governing equation in the y and z directions.

The faet that a boundary has zero displacement in the x direction does not mean that they or zeomponent of displacement is zero. In fact, the tangential components of strain (y and z) are not zero at the boundaries when evaluating displacement in the x
direction, xindess a similar zero-displacement boumdary is encountered in they or z prineipal direetiois. Thus, it is common for granular movement to occur parallel to a nonmoving boundary.

In efder for the zero displacement boimdary to also be an impermeable boundary (that is, $q=0$), the buik flux would also have to be zero at the boundary according to eq: 5 : This type of boimdary as well as any heterogeneity is inherently included in the ultimate bulk flux values that supersede the initial values of bulk flux. Because these ultimate values are identieal to the values of steady-state specific discharge, they contain all beindafy eonditions used within MODFLOW. Hence the ultimate bulk flux values alse contain all the hydraulic-type boundaries of MODFLOW.

The secend type of displacement boundary condition included in the model is a Watef table of free water surface. To adequately approximate this boundary two assumptions must be made. The first assumption is that the observed change of hydraulie head at the water table is a measure of the vertical velocity of a particle of water that lies on the water table and moves relative to the local skeletal frame, namely

$$
\frac{d h}{d t} \equiv V_{w z}-W_{s z}
$$

Where z fafers to the water table. The second assumption is that based on the standard definition of specifie diseharge as a relative velocity term (see eq, 2). In the vertical direction the expression is

$$
\begin{equation*}
\left.Q_{z} \equiv M_{i}\left(\left(W_{w z}, \sim w_{s z}\right)\right)\right)_{0} \tag{58}
\end{equation*}
$$

Where in this water-table easen is the specific yield representing the fraction of water that is drained from the oyerlying aquifer. Equations 57 and 58 can be substituted into eq. 4 to yield the final expression for the water table in the z direction

$$
\frac{d u_{z}}{d t}-n \frac{d h}{d t}=q_{b z}
$$

Equation 59 can be expressed numerically as follows:

$$
u z_{j, i, k}^{m+1}=q b z_{j, i, k} \Delta t \neq n\left(h_{j, i, k}^{m+1}-h_{j, i, k}^{m}\right)+u z_{j, i, k}^{m}
$$

where drawdown is positive because displacement is positive downward and n is the specifie yield. This expression is used only for the z direction in the topmost active layer at the water table. Because block-centered nodes are used the displacement is typically calculated at the center of the cell of question. In order to simulate the total displacement akeurately along the water table and to apply the boundary condition given in eq. 60 appropriately, the finite-difference expression needs to be evaluated at the water table Te aecomplish this, the cell center for the topmost active layer of cells is calculated at the water table. In effeet, the cell center is moved up by one half the thickness of the topmost active layer.

Solution Tectinique

Onee the numerical expressions for all interior and boundary cells have been Writen, a suitable solution algorithm must be used to solve the set of equations that is established for each cell in the finite-difference network. Numerous methods have been developed for solving parabolic finite-difference equations in two and three dimensions: However, viftually all the literature in the physical sciences describes solving for a scalar dependent variable. Vector dependent variables, such as displacement, create complex situations in whieh standard techniques become invalid or essentially intractable numericelyy: Equation 56 (and corresponding equations for thex and y directions) eontain three dependent variables and three equations and where both the initial and utimate values of bulk flux are knowm. With the included boindary conditions this becomes a well posed problem but typical solution techiniques using banded matrices become so large for this type of problem that it becomes inwieldy.

The approaeh taken here is to solve each directional component of displacement independently from the other two directions. In this way, the component directions not being solved for are held constant. A successive relaxation (SOR) solution scheme with Chiebyeher aeceleration is used to solve the directional components of displacement at each model cell location. After each displacement within each component direction has been solved for and convergence met, the three indeqpendent equations are solved
cellectively as a whole. If convergence is not met for this outward iteration loop, each directional eomponent equation is solved independently again. This process is repeated intil outer convergence is met. The procedinre is referred to here as a duall-loop SOR technique.

In the z direction the SOR algorithm can be written as:

$$
u z_{j, i, k}^{n+1}=u z_{j, i, k}^{n}-\omega \cdot \frac{\zeta_{j, i, k}}{\Phi}
$$

Where wis the iteration number, to is the relaxation parameter, $\zeta_{j, ~}^{i, k}$ is the residual at a given cell of coneern, and Φ is the coefficient of the dependent variable of concerm; that
 the \mathbb{Z} and y directions.

The residual ean be easily obtained from eq. 56 by rearranging the expression as follows:

$$
\begin{aligned}
& \zeta_{j, i, k}=\frac{K_{j z} A t}{S_{s v}}\left\{\left([A] u z_{j, i, k-1}^{m+1}-[B] u z_{j, i, k}^{m+1}+[C] u z_{j, i, k+1}^{m+1}+[A] u z_{j, i, k-1}^{m}-[B] u z_{j, i, k}^{m}+\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& +[G] u y_{j, i+1, k-1}^{m+1}-[H] u y_{j, i, k-1}^{m+1}-[I] u y_{j, i-1, k-1}^{m+1}-[D] u y_{j, i+1, k+1}^{m}-[E] u y_{j, i, k+1}^{m}+
\end{aligned}
$$

$$
\begin{align*}
& -[K] u x_{j, i, k+1}^{m+1}+[L] u x_{j-1, i, k+1}^{m+1}+[M] u x_{j+1, i k-1}^{m+1}-[N] u x_{j, i, k-1}^{m+1}-[O] u x_{j-1, i, k-1}^{m+1} \\
& -[J] u x_{j+1, i, k+1}^{m}-[K] u x_{j, i k+1}^{m}+[L] u x_{j-1, i k+1}^{m}+[M] u x_{j+1, i, k-1}^{m} \\
& \left.\left.-[\dot{N}] u x_{j, i, k-1}^{m}-[O] u x_{j-1, i, k-1}^{m}\right)\right\}+q b x_{j, i, k} \Delta t+u x_{j, i, k}^{m}-u x_{j, i, k}^{m+1} .
\end{align*}
$$

The coefficient, Φ, then becomes

$$
\Phi=11+\frac{K_{z v} A t}{S_{s v}}[B]
$$

To hasten convergence, Chebyshev acceleration is implemented as outlined by Press and others (1992 p. 860). In this technique odd-even ordering is used. This process involves dividing the grid into odd and even cells. At each half iteration, $n=1 / 2$, the odd cells are updated. Then during the next half iteration sweep the even cells are updated with the newly ealculated odd values. At each half sweep the relaxation parameter is updated aecording to the following prescriptiom:

$$
\begin{gather*}
\omega^{0}=1 \\
\omega^{1 / 2}=1 /\left(1-\rho_{J a c o b i}^{2} / 2\right) \\
\omega^{n+1 / 2}=1 /\left(1-1 \mathrm{p}-2 \rho_{J a z s \delta i}^{Q} \mathbf{O} / 4\right) \\
\omega^{\infty} \rightarrow \omega_{\text {raptiomal }}
\end{gather*}
$$

where P feacot is the spectral radius of the Jacobi iteration. The spectued radiuis is a number ranging from zero to one. A formal discussion of the approximation of this value for a given problem is given by Press and others (1992) and Remson and others (1971). For most examples illustrated in this study the optimum spectral radius is determined to s. be approximately 0.998 for all component directions.

The SOR iterative method was tested on a one dimensional problem with a direct solution teehnique. The SOR method produced nearly identical values of displacement as the direet method. One drawback to the SOR method as opposed to other possible
iterative methods is that it is not very efficient for large problems. However, because of the veetor dependent variable, it is possible that all iterative solution techniques would be slow to converge.

A generalized flow chart is outlined in fig. 4 showing the formulation and solution seheme used in the computer program for calculation of directioival components of displacement.

SIMULATION OF GRANUULAR MOVVEMIENT IN TWO DIMENSIONS

Moded Evaluation

The numerical model must be analyzed to determine whether it produces aceurate resulte for a given set of initial conditions and aquifer properties. This is aceomplished by comparing the simulation results with analytic solutions of displacement developed for the Theis aquifer. The Theis-type aquifer is a onedimensional radiat or two dimensional cartesian coordinate system where vertical flow is ignored and the aquifer top and bottom is completely impermeable. Analytic solutions have been developed by Helm (1994) for granular displacement in a Theis-type aquifer that is pumped at a constant rate. In a contiguous unconsolidated media where the aquifer is confined and of infinite radial extent, mass balance requires that the bulk flux of incompressible constituent materials responds to a volume rate of discharge as

Where Q is the pumping rate, b is the aquifer thickness and r is the radial distance from the well. For axially symmetric radial flow

$$
q_{b}=\frac{Q}{2 \pi r b} \ldots
$$

Where q_{b} is the radial component of $\vec{q} \vec{q}_{b}$. For the purposes of this report, horizontal flow is assumed, and the aquifer is isotropic and homogeneous. However, the numerical model as written does not require these limiting assumptioms.

Figure 4. Generalized flow chart of granular displacement model. Includes inner= loop flow ehart of Z direction only. X and Y inner loops are synonymous to Z.

The US. Geological Survey's modular ground-water flow model, MODFLOW (MeDonald and Harbaugh, 1988), makes use of a rectangular finite-difference grid Hetwork in eartesian coordinates. Thus, the bulk flux must be transformed from polar to cartesian coordinates. The horizontal component of bulk flux in cartesian coordinates is given by the relations:

$$
s_{l b x} \equiv \frac{Q\left(U-x_{y}\right)}{S r}
$$

and

$$
\begin{equation*}
q_{b y}=\frac{\left(2\left(y-5 y z_{0}\right)\right.}{S r} \tag{668}
\end{equation*}
$$

where $z_{0}-x_{0}$ and $y-1 y_{0}$ represent the distance along the principal coordinate direction frem the pumping well to any point of concern within the aquifer, namely, to each grid cell center. $\$$ represents the surface area of equal values of bulk flux that emanate outward radially from the pumping well. For an idealized Theis aquifer (one that is homogeneous, isotropic, and of constant thickness) pressure transients migrate outward evef time in a cireular fashiom. Therefore, the surface area is expressed as $2 \pi r b$. The radial distanee If fom the pumping well to the point of interest is expressed in cartesian coordinates as

$$
r=\left[\left(\frac{x}{x}-x_{0} j_{0}\right)^{2}+\left(x-x_{0} j_{0}\right)^{2}\right]^{2} .
$$

The bulk flux intial condition is now established for a point source or sink and remains censtant over time as long as Q remains constant. A new biilk flux would need to be calculated if the pumping rate is changed.

Helm (1989) uses the integral form of the Theis solution (Lohman, 1972, p. 8) to develop equations for displacement. By taking the divergence of the Theis solution and using eqs. 5 and 66 he obtains a Theis-Thiem expression for a confined aquifer, The displacement field of solids can be determined by integrating the velocity of solids with respeet to time. Helm's resulting expression for the displacement field of solids is

$$
\begin{equation*}
u_{s}=\frac{Q r S_{s}}{8 x K b}\left(\frac{\eta-e^{-\underline{e}} \mid}{u}+\int_{u}^{E} \frac{\left(e^{-O}\right)}{m} d m\right) \tag{80}
\end{equation*}
$$

where $u=r^{2} S S /(4)$ (19) . Helm (1994) develops expressions of dimensionless displaeement from equation 71 both for a fixed radial distance where time is variable, and for a fixed point in time where the radial distance from the well is allowed to change: For a fixed radial distance from the pumping well the dimensionless displacement, $u_{z d}$ and the dimensionless time, t_{d}, are

$$
\begin{equation*}
y_{u d} \equiv \frac{\operatorname{SnKbuu_{s}}}{\operatorname{DQ^{\hat {s}}}} \tag{为}
\end{equation*}
$$

and

$$
t_{d}=\frac{K t}{S_{s} r^{2}}
$$

Likewise, for a fixed time, the dimensionless displiacemeent $)_{r d} \hat{d}^{\prime}$ and dimensionless distance, r_{d}, are calculated by Helm to be:
and

$$
r_{d} \equiv \frac{\sqrt{S} t}{\sqrt{K t}}
$$

Te compare the numerieal results to these analytic solutions developed by Helm, a finite-difference grid network is first constructed. To take advantage of radial \backslash symmetry, only one-fourth of a radial flow field is simulated to optimize computational time. A 30×30 finite-difference cartesian coordinate grid is used for the simulations in this repert. The grid increases in size geometrically outward from the pumping welll The pumping well is located at grid location $x=1$ and $y=1$ with grid dimensions of 0.328 m .

The geometrie relations that determine the dimensions of the adjacent cell (outward from the pumping well) are $x \neq 0.5 x$ and $y \neq 0.5 y$ where x and y represent the current cell dimensions. The geometrically increasing cell dimensions are used to approximate an infifute radial aquifer (assumed for the Theis solution) and to assure that the zero= displaeement boundary does not affect simulation results near the pumping well.

For purpeses of eomparison to the analytic solutions, arbitrary but realistic initial conditions and aquifer parameters are chosen. Table 1 lists the initial conditions and aquifer parameters used for the simulation. Helm's dimensionless expressions are eonverted to real time and real distance with the data used for the numerical simulation.

Parameter	Value(s)
Pumping rate, Q	2,450 $\mathrm{m}^{3} / \mathrm{day}$
Hydraulic diffusivity, K / S_{s}	$1.866010^{3} m^{2} / / d a y$ $1.866 x 00 x^{2} \lambda^{2} / d d a x y$ 1.86y:110 ${ }^{5} \mathrm{~m}^{2} y / d a y$
Aquifer thickness, b	30 m

Table 1: Intitial conditions and aquifer parameters used for model evaluation

Figure 5 compares the ahalytic solution displacements to the simulated displacementi as a function of distance from the pjumping wadll for the three hydraullic diffusivities listed in table 1 after 10 days of pumping. The results indicate that the numerieal model accurately approximates the governing equations for granular movement (eqs. $5 t$ and 52 without the z cross-product terms). The results are not signifieantly affeeted by time-step size. Only minor differences are noticeable when the 10 day pumping period is divided into two time steps or 50 time steps. The illustration

Figure 5. Plot showing displacement as a function of radial distance from pumping well for analytic solution and simulation with granular $\hat{\gamma}$ displacement model using aquifer properties listed in table 1 .
reveals that the displacement field produces a wave form with respect to distance from the pumping well. This is a wave-like phenomenon because all ïaterials (water and skeletal frame) are moving radially inward. In plan view, the maximum amplitude of this wave represents a circumference centered on the pumping well. This circumference of maximum displacement moves outward as a function of time eis pumping continues. The shape and amplitude of the wave is dependent upon the hydraulic diffusivity, pumping rate, and pumping time. For a specified time the Valime of maximum displacement deereases with an increase in hydraulic diffusivity. Similarly, the point of maximum displacement migrates outward from the well with an increase in hydraulic diffusivity (fig. 5). The slope at any point on the displacement curve represents the radial strain at that point \boldsymbol{r} for a given instant in time. The point of maximum displacement represents a dictunference of zero radial strain. From the pumping well to the point of zero radial strain the aquifer is experiencing radial compression. That is, porosity and hydraulic conductivity decrease as the grains are rearranged to a more closely packed configuration. Beyond the region of zero radial strain the aquifer is experiencing radial extension. For a given point at distance r from the pumping well, however, there will be initially a period of radial extension followed by an instant of zero radial strain, followed by a period of radial compression as the wave of maximum displacement moves outward. The total length of time for the episodes of extension and compression depends upon the pumping rate and the hydraulic diffusivity.

Strictly speaking, for an idealized Theis aquifer no drawudtown (and no change in volume strain) occurs only at an imfinite distance from the well. According to Helm (1994)
 negligibly small. In other words, outward from the boundary identified by r_{o} is a region where porosity volume does not change significantly even though the shape of the pore spaees is changing. This occurs because radial extensional strain in this region is equal to (or nearly so) tangential compressional strain. Beyond r_{o} water does not flow relative to the solid matrix and hence specific discharge, q, remains zero. Consequently, there is no drawdowa; that is, $\hat{q} \equiv-K V h=0$.

From Helm's analytical solution and resulting curve relating dimensionless distance to dimensionless cumulative displacement, the product $u_{r d} \cdot r_{d}$ is approxinnitely equal to unity within this outer region. Thus, from eqs. 73 and 74 a displacement can be calculated for the radius at this outer circumference. That is,

$$
\begin{equation*}
M_{g}=\frac{Q t}{2 \pi b l r_{0}} \tag{75}
\end{equation*}
$$

From equation 75 analytically derived values of displacement can be easily calculated for the three hydraulic diffusivities listed in table Ifor this outermost region where $r \geq r_{0}$.

Table 2 gives radii, r_{0}, to the outer boundary representing zero change in volume strain and zero drawdown. These radii are accompanied by tife analytically derived (eq. 75), and simulated (eqs. 61-64), displacements at this outermost boundary for the three values of hydraulic diffusivity listed in table 1 after 10 days of pumping. The last column in table 2 lists the simulated distance from the pumping well where the drawdown becomes nearly zero (less than 0.15 m) for the three hydraulic diffusivity values after 10 days of pumping. These radil of zero drawdown were simulated from the modular ground-water flow model, which is independent of the displacement model.

Several important observations can be made from the results shown in table \mathbf{Z} First, the aquifer is in motion and displacement does occur in the region of the aquifer beyond what has traditionally been deffned as the "radius of influence" of the pumping well (based on hydraulic head alone). Helm (1994) refers to this outer boundary as the transient radius of influence because this boundary moves outward from the pumping well with the square root of time. It also represents the circumference of maximum radial strain in tension. Field data verify that displacement must occur beyond the "radius of influence" of the well because earth fissures are often known to form beyond where there is any significant drawdown (Anderson, 1989). The simulation results accurately reflect the values obtained from the analytic solutions. Second, the point at which drawdowns were simulated to return to their prepumping state (zero drawdown) closely corresponds to this outer region of zero change in volume strain (at r_{o}^{\wedge}). Hence, not only is the
displacement model able to duplicate the analytic results, but the analytic solutions and displacement model predict where the simulated "radius of influence" will reach in accordance with the ground-water flow model.

Hydraulic Diffusivity $\left(m^{3} / \text { dday }\right)$	Analytically derived distance from pumping well (m)	Analytically derived displacement (m)	Model's calculated displacement (m)	Ground-water model's calculated radius of influence ($<0.15 \mathrm{~m}$ drawdown) (m)
$1.86 \mathrm{k} 10^{3}$	455	0.99	0.97	426
1.86×10^{4}	1,438	0.31	0.30	1,345
1.86×10^{5}	4,547	0.01	0.10	4,264

Table 2: Analytic and simulated values for displacement and "radius of influence "at the boxmdary representing negligibly small change in volume strain after 10 days of pumping.

It is worth emphasizing that this outward moving "radius of influence" corresponds not only to where there is negligible drawdown but also to where there is maximum extensional radial strain which corresponds to the inflection point on the curve in fig. 5. The standard ground-water model can not predict such a correlation, whereas the equation of motion of ${ }^{\gamma}$ quifer material (eq. B9) does.

Figure 6 shows the analytic and simulation results for displacement at a fixed radial distance of approximately 490 m from the pumping well for the three hydraulic diffusivities listed in table 2. Again, the simulation results indicate that the numerical model is capable of accurately approximating the analytic solutions developed by Helm (1994) for displacement versus time. Therefore, the model represents a good numerical - approximation to the partial differential equations that define granular movement. The plot indieates that the grains initially begin from rest and would eventually reach an asymptotic value (ultimate displacement) after a long period of pumping. That is, as total pumping time increases, the velocity of solids decreases. The displacements shown are cumulative

Figure 6. Plot showing displacement as a function of time since the onset of pumping for analytic solution and simulation with the gtanular displacement model using aquifer properties listed in table 1.

Nonconstant Pumping, Relaxation, and Iniection

The analytic solutions of displacement for the Theis-type aquifer (Helm, 1994) are limited to a constant rate of pumping. The numerical displacement model, however, is capable of simulating displacement fields for any Q (pumping, relaxation, or injection) one chooses. Simulation results are presented for three scenarios in which Q is allowed to change. The first scenario uses the evaluation simulation (10 days of pumping) with a hydraulic diffusivity of $1.86 \times 10^{4} \mathrm{~m}^{2} /$ day followed by a 50 day relaxation period (no pumping). The second scenario (presented here) uses a combination of pumping and relaxation periods in order to evaluate how turning the well on and off will affect granular movement. The third scenario uses a combination of pumping and injection periods where the injection rate is equal to the pumping rate. Because injection of potable water is becoming more common in arid-zone cities during seasons of low water use, this scenario will evaluate how such management practices may affect granular movement. The results of these three scenarios are presented below.

Simulation results of the first scenario are shown in figures 7a and 7b. The maximum displacementfor the set of initial conditions after 10 days of pumping occurs at a distance of 541 m from the pumping well. Figure 7 b graphically shows the drawdown curve corresponding to the displacement curve in figure 7a after 10 days of pumpimg. After 10 days of pumping the well is shutpif but the grains do not become stationary. Rather, they begin to return to their prepumping state (fig. 7a). Simulation results indicate that the grains in the aquifer will eventually reach their prepumping state after nearly 2 years of relaxation. The relaxation of the granular matrix reflects the elastic stress-strain constitutive relation used in the theoretical development (eq. 34). Water levels return to their prepumping levels much more rapidlly than the grains do (compare figs. 7 a and 7b).

In the second scenario, the aquifer is subjected to a series of pumpingstresses followed by episodes of relaxation. Figures 8 a and 8 b illustrate how this pumping and relaxation pattern influences the displacement field of solids and drawdown, respectively. The maximum displacement after 2.5 days of pumping at $5.0 \mathrm{~m}^{3} / \mathrm{dthay}$ (stress period 1) is essentially the same as the maximum displacement after 10 days of

Figure 5. Simulation results showing A. displacement as a function of fainal distanee from pumping well for one period of pumping followed by a prolonged period of relaxation; and B. drawdowns as calculated using MODFLOW.
A.

B.

Figure 8. Simulation results showing A. displacement as a finction of radial distanee from pumping well for cycles of pumping and Felaxation; and B. drawdowns as calculated using MODFLOW.
pumping at $2.5 \mathrm{~m}^{3}$ / /thay (fig. 7a). The different pumping rate is reflected in the radial distance at which the maximum displacement occurs. In this scenario the radial distance where this maximum displacement occurs is at 271 m , or one half the distance that occiurs in the first scenario. Of interest is the fact that the displacement at which the drawdown is "zero" is 0.10 m ., the same amoint as observed in the first pumping scenario.
Fiuthermore, the radius representing zero volume strain, $r_{o^{\prime}}^{\wedge}$ is almost identical as in the first pumping scenario after 10 days.

The maximum displacement following the second pumping period (stress period 3) increases to 0.19 m (fig. 8a). The total volume of water pumped after 7.5 days is identical to the volume of water pumped after 10.0 days inlline first scenario (fig. 7a), yet there is 20 percent more displacement. The radial distance at which this iniaximum displacement occurs is approximately 360 m from the pumping well, or nearly 100 m farther than after the first pumping period (stress period 1), but 180 m closer to the pumping well than the radius of maximum displacement in the first scenario (fig. 8a). Note, in figure 9a, that after the second and fourth stress periods (2.5 day relaxation periods) the radius of maximum displacement moves outward to more than twice the distance from the pumping well than that which is simulated after the corresponding pumping period (stress periods 1 and 2). Although the maximum displacement is farther from the pumping well, its maximum displacement is greatly reduced. After 20 days (additional 10 days of relaxation) the displacement curve is nearly the same as that of fig. 8 a for the same simulation time. After 60 days (50 days relaxation), the curves in figs. 7a and 8 a are identical, suggesting that regardless of the pumping patterns, the displacement curves during relaxation will eventually look the same for an equal volume of pumped water.

Figure 8a shows that the practice of turning the well on and off (second scenario) is potentially more damaging to the aquifer (may lead to a higher incidence of fisscire development and shearing of well casings) than leaving the pump on at a lower pumping rate (first scenario). Not only is the maximum disptacement increased in the second scenario, but the granular matitix'is more dymamically active, experiencing greater strain
and movement both toward and subsequently away from the pumping well. This scenario has significance because intermittent pumping is practiced in Las Vegas and other arid and semi-arid regions where water use varies significantly from season to seasor After many years of implementing this practice, the total displacements may be significantly greater than if a constant but lower pumping rate was used. To what effect this practice may have on fissure development is beyond the scope of this report. What is clear however, is that both displacements and strains induced by this practice are greater, amd greater strains and displacements can be expected to ultimately have adverse effects on the aquifer itself and on any structures located on or within the aquifer.

The third scenario is similar to the second one discussed above/The difference is that the 2.5 day relaxation intervals are replaced by injection at the same rate as pumping and the 50 day relaxation period is omitted (table 3). Figure 9 is designed to reveal the rapid influence injection has on granular movement and strain. The top curve is identical to the curve shown in fig. 8a after $\mathbf{2 . 5}$ days (stress period 1). Injection is immediately implemented after the initial 2.5 days of pumping. The remaining curves in fig. 9 show the displacements that occur radially outward from the well as injection proceeds through time. The time slices are small to illustrate how quickly the grains respond to this 2.5 day period of injection (stress period 2). In the immediate vicinity of the well, displacements become negative; that is, they move farther from the well than their initial location (prior to pumping). Within about a hundred meters of the well the grains move dramatically (up to 0.2 meter in less than 2.0 days) and from compressional streiin to extensional strain. Figure 10a shows the displacement curves for 2 cycles of pumping and injection (after 4 stress periods). This illustration reveals the tremendous amount of lateral movement that occurs within 300 m of the pumping well within a short period of time (2.5 days). Combined with the large strains and changes in strain from compressional to extensional and back again, the overall impact on the aquifer can be expected to be great. Figure 10b shows the resulting drawdowns from the ground-water flow model after each of the four stress periods.

Foture Plot showing dispment as a function of distance from the pumping well after 2.5 days of pumping immediately followed by 2.5 days of injection. Incremental time plots are shown during injection to indicate how quickly the aquifer responds to stress reversals.

$$
y \quad r^{\circ}
$$

Figure 10. Simulation results showing A. displacement as a function of racial distance from pumping well for cycles of pumping and injection; and B. drawdowns as calculated using MODFLOW.

Pumping rate $m^{3} / / d a y$	Stress period	Length of stress period (days)	Total simulation time (days)
2.0 (pumping)	1	2.5	2.5
2.0 (injection)	2	2.5	5.0
2.0 (pumping)	3	2.5	7.5
2.0 (injection)	4	2.5	$10.0{ }^{-}$\}

Table 3: Stress period information used for the third scenario.
Such severe granular movements resulting from cycles of pumping and injection, may have long-term consequences. As injection (artificial recharge) becomes a more popular mechanism to store water during seasons of low water demand, increased strain on the granular matrix in the vicinity of the well or wells may not only weaken the soil structure, but,may weaken or rupture nearby well casings and other structures. In Las Vegas, for instance, artificial recharge commenced in 1989 and has increased aimually to a volume of 20,000 acre-ft. in water-year 1993 (Oct.-May), or approximately one third of the total aimual volume pumped. Evidence of buckled and sheared well casings in the vicinity of the main well field in the valley point to horizontal movement or displacement as the potential cause. Although it is not known at this time whether horizontal granular movement is responsible for such failures, more field data and further well casing failures in the future may very well point to this overlooked phenomemon.

GIMULATION OF THRRPETDIMENSIONAL GRANULAR MOVEEMENT

Model Eveluiation

Displacement in a two-dimensional Theis-type aquifer has been accurately simulated using the granular displaeement model. The approximation of the differential equations and numerieal seheme used is adequate for approximating the analytic solutions developed by Helm (1994) for an areally irfinite aquifer. The same approach is used to extend the model to three dimemsions. The numerical approximations are the same as those used for two dimensions. The major difference arises due to the water table boundafy eondition and the use of ultimate values of bulk flux for the water table and"alys heterogeneities present in the aquifer system being evaluated.

No known models exist that use displacement as the principal inknown to evaluate granuilar movement resulting from imposed stresses in a fully three dimensional setuing. Existing models sueh as COMPAC (Helm, 1975, 1976), the interbed storage model (Leake and Prodie, 1988) only evaluate vertical compaction or strain on the basis of effective stress ehanges within finegraimed interbeds. These vertical strain models convert effective stress changes to an equivalent change in thickness of a compressible interbed as follows:

$$
\mathrm{Ab}=\frac{5 \mathrm{a}^{k}}{\rho_{w} g} S_{s k}^{\bar{R}_{b}}
$$

Where Δb is the ehange in thickness of the interbed, $S_{s k}$ is the skeletal specific storage, and b_{0} is the original thiekness of the interbed. The skeletal specific storage may be eias县 of inelastie (vingin) depending upon the previous maximum effective stress impesed on the aquifer. If the stress (measured as drawdown) exceeds its previous maximul value then the skeletal specific storage is in the virgin range, otherwise it is elastic.

These vertieal strain models take each compressible interbed as a sepairate entity and then sums the results (eq. 76 is summed for all interbeds). For example, if a series of doubly draining elay lenses lies within a single aquifer (see layers 4 and 5 of fig. 11), the midplane of eaeh lens (interbed) is represented as impermeable due to vertical symmetry af water flow relative to this midplame. Vertical compression of the interbed (relative to the audiphane) is opposite and equal to the rate of incompressible water that is squeezed out from interbed storage. In other words, for an interbed storage model, the implicit equation for velocity of solids (relative to the interbed midplane) is

$$
\begin{equation*}
v_{s z}=-a_{z}=K_{z z} \frac{\partial \kappa}{\partial z} . \tag{47}
\end{equation*}
$$

Nate that eq. 77 differs from eq. 5 by the bulk flux term, $q_{b z}{ }^{\wedge}$. That is, if $q_{b z}$ was included in this interbed storage model (as it should be) it would specify the rate at which the midplane moves vertieally relative to a regionally specified point that is fixed in space (usually the bedroek bottom beneath the aquifer being simulated, as is done with the granular displacement modell).

For the granular displacement model mass balance is einsured by the bulk flux term \vec{q}_{b} satisfying eq. 6 and strain compatibility is inherently ensured because the dependent variable is the displacement field \vec{u}_{s}. For the interbed storage model, however, although vertical mass balance is ensured within each individual interbed, it is nat neeessarily ensured for the system as a whole. In order to approximate strain eempatibility, the interbed storage model sums the vertical strain of all material (namely, for a werteal staek of N interbeds) that is modeled to be compressible within each vertical eelume from the water table downwards. In other words, the interbed storage model selegts eaeh $i^{\text {th }}$ interbed and N tgtal interbeds within a column of interest where

$$
\alpha_{\text {zthotal }}=\sum_{i=1}^{N} u_{2 i}=\sum_{i=1}^{N} \int \varepsilon_{2 \overline{i z}} d d^{2}
$$

This sum of strains (or "floating" interbeds) is assumed to accumulate at the top of the column and, by implication, to represent the vertical subsidence of the land surface, The vertieal deformation of any material that lies between basement rock and the water table that is not modeled as a compressible interbed will escape being included in the interbed storage calculation of subsidencre.

The vertical velocity of solids for the granular displacement model is expressed as

$$
v_{z}=\frac{K}{S_{s}}\left(\frac{\partial^{2} u_{x}}{\partial z \partial x}+\frac{\partial^{2} u_{y}}{\partial z \partial y}+\frac{\partial^{2} u_{z}}{\partial z^{2}}\right)+q_{b z}
$$

and is expressed relative to a fixed regional boindary. Therefore, not onlycmit a net change in strain within a byer be calcuilated, but the total change rebative to other layers (from a fixed reference) can be calcuilated so that both extensional and compressional strains are simulated and are manifested in the distribution of the displacement field. Varibtions in the strain field relative to a fixed point in space (namely, strain compiatibility requirements) are included in eq. 79 but not with eqs. 77 or 78 . The crossproduet terms in and y are inherently absent in eq. 77 but are included in eq. 79. The influenee of these terms beeomes buge enough near the pumping well that they can not be ignored and result in calouibted vertical displacements that differ from the compaction caleulated from the interbed storage model. The granular displacement model would tend to have lower measured displacements within clay interbeds in a confined aquifer near the pumping well because the strain field (squeezed water volume) is not entirely contained in the vertical component as it is for the interbed storage model. Both horizontal components contain part of the volume strain field, particularly near the pumping well.

In order to use the interbed storage model to evaluate the accuracy of the vertical dispements of the granular displacement model, a suitable simulation must be set up that is not impacted by the limitations, assumptions, and differences between the two models. One possible approach is to evaluate the compaction or displacement within one set of interbeds within a confined aquifer. The elästic and inelastic components of skeletal
speecifie storage must be equal in order to avoid the differences in methods in which inelastie storage is invoked in the two modells. Figure 11 outlines the conceptual model used te evaluate the vertieal displacements calculated using the granular displacement model. Table 4 lists the aquifer properties used for the evaluation. Layer 3 serves as the Eonfining unit with a horizontal hydraulic conductivity four orders of magnitude less than the layers either above or below the confining bed. A constant pumping rate of 24.43 $3 .\left(b^{-3} m^{3}\right.$?/d for a 10 day period was used in the evaluation. A longer time period Was not used because no recharge was implemented to offset the large pumping rate. This was done so that all the water would come from storage of the interbeds.

Fegure 11. Coneeptual model used to evalluate accuracy of vertical displacements caiculated using the granular displacement model. The displacements were eompared with compaetion within a single layer containing interbeds in a confined aquifer using the interbed storage package (Leake and Prudic, 1988).

Property	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5
Horizontal K (m/d)	60.	60.	0.006	6.0	6.0
Vertical K (m/d)	60.	60.	0.0006	6.0	6.0
Specific Storage (1/m)	$3.28 \mathrm{e}-9$	$3.28 \mathrm{e}-9$	$6.5 \mathrm{e}-6$	$6.5 \mathrm{e}-6$	$6.5 \mathrm{e}-7$
Initial layer thickness (m)	15.2	15.2	15.2	15.2	15.2
Vertical conductance ($\mathbb{4} / \mathrm{A})$	4.0	0.00004	0.00004	0.4	$=-$

Table 4: Aquifer properties used for each layer in evaluating the granular displacement model by eomparing vertical displacements of layer 4 with compaction calculated in Layer 4 using the interbed storage package (Leake and Prudic, 1991).

The fegult of the evaluation are shown qualitatively using the vector plotting paekage in fig. 12 where the plot represents a cross section along the y direction at row 26. The aetual measured displacements within the region of concern in layer 4 are listed in table 5.

DISP. VECTORS
 Y Groar-Sadtion, $x=26$

Figure IZ Vector plot showing relative magguitudee (firnow length) and direction of displacement (arrow head) for the conceptual model described in fig. 11 and table 4. The boxes indicate where comparisons where made between the interbed storage model and the granular displacement model as listed in table 5.

Package	Col 19	Col 20	Col 21	Col 22	Col 23	Col 24	Col 25	Col 26
IBS Layer 4	.0120	.0137	.0152	.0215	.0275	.0350	.0488	.0823
GDM Layer 4	.0117	.0135	.0148	.0185	.0256	.0311	.0381	.0540
IBS Subsidence	.0186	.0228	.0277	.0344	.0433	.0554	.0792	.1280
GDM Subsidence	.0280	.0353	.0430	.0542	.0642	.0794	.0929	.1042

Table 5: Downward (z) displacements in centimetters calculated with the gramiolar displacement model (GDM) and the interbed storage model (IBS) for model layer 4 and at the land surface representing total subsidence. Cell spacing is $15 Z 4 \mathrm{~m}$. The pumping well is located in row and column 26.

Net displaeements were compared with compaction of layer 4 by subtracting the calculated displacements of layer 5 from those of layer 4. Net differences had to be used for comparison to compaction values calculated with the interbed storage model. Using the net differenee eliminated the influence of the location of a fixed boundary at depth. Smail differences in the total displacement versus compaction (total strain over a thiekness interval of interest) should be expected because of the differences in which the twe values are calculated. In addition, MODFLOW uses the leakage between layers to determine vertical hydraulic conductivity of a layer. That is to say the harmonic mean of adjoining tayers is used to estimate vertical hydraulic conductivity. The granular displacement model uses the vertical hydraulic conductivity of each layer.without regard of the aquifer properties of adjoining layers. Consequently, low leakage values had to be speerified for both layers 2 and 3 to assure that the proper confinement of layer 3 was simulated. This difference alone could accoint for the differences in the two models reported in table 5.
cancluâeld vertical compaction within layer 4 is nearly identical for the two models (table 5) except near the wellbore where the interbed storage model has larger calualated values of compaction. These larger values are expected due to the volume strain field contained completely within the vertical space dimension for the interbed sterage model (eqs. 77 and 78). The inclusion of the cross product derivatives used for the granular displacement model (eq. 79) distributes the volume strain so that the horizontal components accoint for some of the overall displacement.

At pointis away from the well, larger total differences in subsidence or displacement gire ealeulated with the granular displacement model. This is in part due to the fixed referenee frame (the aquifer bottom) which is used and tends to pull the aquifer toward this underlying fixed plane.

The granular displacement model provides information that can not be obtained with the interbed storage model. Displacement data indicate that vertical compressional strain exists from the confining imit downward while vertical extensional strain exists within the imeonfined aquifer after the 10 day simulation period. As time increases the uneonfined aquifer also becomes dominated by vertical compressional strain.

This numerieal experiment indicates that inder controlled conditions where net ehanges in displaeement (compaction) obtained with the granular displacement model are compared with results of the interbed storage model, nearly identical results are agkieved. Both horizontal and vertical simulated displacements using the newly developed granular displacement model have been evaluated agaijisshexisting analytic and numerieal models. In the following section, various scenarios are developed to analyze how displacement fields are influenced by various boindary conditions and heterogeneities.

Elow Barriess, Heterogeneity, and Multiple Wells

Coimtless variations in aquifer properties and wells can be used to simulate granular movement in three dimensions. Only several will be discussed. In the model evaluation we have already discussed how the granular matrix responds to a confined aquifer beneath an uneonfined aquifer separated by a relatively thick confining unit. In the following discussion, granular matrix response to other confined and imconfined settings will be analyzed. The impact of heterogeneity and multiple pumping and injeetion wells on granular movement will also be discussed briefly. Results will be presented qualitatively as opposed to quamtitatively. That is, actual displacement values will not be diseussed but rather relative displacements (differences between one simulation and another).

Fgures 13 and 14 are vector plots of an unconfined homogeneous aquifer pumped from layer 4. Figure 13 is a plan view of layer 4 showing the radial symmetry of displacement vectors toward the pumping well. The greatest magnitude of the horizontal displaeement oceurs in layer 4. Radially, the greatest radial displacement within layer 4
Figure 13. Planimetric vector plot showing simulated granular displacements
of model layer 4 for a homogeneous aqiifer pumped from the center of the model
grid.

Qecurs about 2500 m from the pumped well. This reflects the length of the pumping period and the value of the hydraulic diffusivity (see discussion on two-dimensional evaluation for explanation for the displacement field shown in fig. 13). Figure 14 shows a eress seetion through the pumping well and indicates that much of the vertical displacement occurs in the vicirity of the pumped well.

DISP. VECTORS
 Cromacsution, $x=26$

Figure 14. Cross-seetional vector plot along column 26 (pumping well is located at fow 26 and column 26) showing granular displacement in a homogeneous aquifer pumped from layer 4.

These two illustrations will serve as reference plots for the four test simulatioins that will follow. The reader should be aware that the vector lengths, representing relative magnitude of displacement, between planimetric and cross sectional plots (as well as from simulation to simulation) can not be compared. The magnitude and subsequent veeter length is calculated for each plot and is independent of other plots. This can be feadily seen in viewing the vector lengths of layer 4 in fig. 14. The lengths are censiderably less than those of fig. 13. This is due to the fact that vertical displacement near the pumping well is much greater than the horizontal displacement of layer 4. Whiphacenent directions can be readily compared between different plots. The author will point out instanees where displacement magnitude is noticeably increased or decreased due to a heterogeneity or implemented barrier.

The first test simulation (figs. 15 and 16) evaluates granular movement with a Vertical flow barrier (zero permeability) through layers 2,3 , and 4 along columns 32 and 33. Simulated displacements along layer 3 (fig. 15) show how greatly the displacement veetors are altered by the impermeable barrier (compare with fig. 13). Displacements

DISP. VECTORS
Planeview, Loyer 3

Figure 15: Planimetrie vector plot showing the effect of a vertical linear flow barrier shewt by the narrow rectangular box) on granular movement along layer 3.
tend to move toward the pumped well. However within about $2,000 \mathrm{~m}$ of the pumped Well displaeements appear to move toward the flow barrier. In fact the location of the welibere itself aetually moves toward the flow barrier causing compressional strain between the wellbore and the barrier. Upon initial inspection this may seem a centradiction. The wellibore, however, is not fixed. The fixed boundaries are at the margins of the grid or basin. The wellbore is actually moving, or being displaced, toward the flow barrier. On the side of the barrier opposite the well, displacements tend to be radially toward the pumped well. This is largely due to the initial values of bulk flux when form a fadial pattern toward the well. Maximum displacement in this area is not near the barfier but at a distance of $2,300 \mathrm{~m}$ from the pumped welk Beyond this distamce, the aquifer is experiencing radial extension.

Figure 16 in the arossectional vector plot along row 26 and is perpendicular to the flow barrier. Because of the large vertical displacements near the wellbore the vector twils in the horizontal direction are subdued, but vertical displacement or subsidence is enhaneed between the well and the flow barrier (not readily seen distinguished on fig. 16). Subsidenee is inereased by over 100 percent in columns 30 and 31 (directly adjacent to the flow barrier). To the right of the flow barrier (opposite the pumped well) displacements tend to move downward and beneath the barrier. However, directly adjagent to the barrier granular movement is vertically upwards parallel to the barrier and over its top.

Figure 16. Cross-sectional vector plot showing relative granular movement with the inaubsion of an impermable flow barrier extending along the length of columns 32 and 33. The box indicates the location of the barrier.

The seeond test simulation involves implementing a horizontal flow barrier along layef 2 within the central part of the model grid of a homogeneous aquifer, In other words the barrier does not extend to the perimeter of the grid but only occupies the middle 27 cells in the row and column directions. Twelve model cells extending inward from the perimeter do not contain the impermeable horizontal barrier. The aquifer is pumped from the grid center in layer 4. Figure 17 shows simulated granular movement after pumping for a 30 day period. The lateral extent of the barrier is also showin.

Resulte show that the greatest downward vertical displacements or subsidence aceur at the edge of the barrier (fig. 17) even though pumping does not occur in the vieinity of greatest subsidemce. This is a classic example'of strain compatibility. Above the flow barrier granular movement is upwards. These seemingly anomalous displacements may simply result from mass balance because the initial bulk flux values above the barfief are mueh greater than the ultimate bulk flux values. The specific discharge after a short period of time is downward, thus requiring the vecocity of solids (and displarement) to be upwards. Another explanation might be that the boundary condition uses hydraulie heads from MODFLOW which are assumed to be correct for the granular displacement model. If pumping were to continue for a longer period of time and a greater speeifie storage value was assigned to the lowest three layers, the displacements above the barrier would ultimately tend downwards.

DISP. VECTORS
X CdisesSotilan, y $=26$

Figure 17. Cross-seetional vector plot showing location of horizontal flow barrier (shaded horizontal rectangle) and pumping well (hachured box in layer 4) and resulting displacement vectors.

This simulation is a generalized depiction of what may be occurring in Las Vegas
Valley, The near-surface aquifer is separated from the principal aquifer by a thick eonfining unit (represented by the barrier in fig. 17). This confining unit covers much of the eastern twe-thirds of the valley but is largely absent or less significant in the western parf of the valley. According to Bell (1981) a significant amount of subsidence has aceurred west of the thick highly-compressible confining unit. Figure 17 indicates that sudh obsefvations are not anomalous or due to over generalization, but represent real physical phenomena.

The third test seenario evaluates the effect of multiple wells. In one simulation twe pumping wells are placed in a homogeneous isotropic aquifer to evatuiate granular mevement when more than one well is involved in stressing the aquifer. In a second simulation, a pumping well and an injection well (equal but opposite rates) are used in the same aquifers. Figures 18 and 19 show the displacement vectors for layer 4 (layer from whieh pumping or injection occurs) for the two-pumping and one-pumping-oneinjection well simulations, respectively.

Results for the first simulation (two pumped wells) indicate that much of the horizontal movement oceurs toward the midpoint of the line comnecting the two wells as opposed to the actual well locations (fig. 18). Little horizontal movement occurs along the line commeting the two pumped wells. This occurs because of the bulk flux established for each individual well tending to cause movement toward each individual well. The sum of the bulk flux for both wells tends to move the center of mass toward the midpoint of the line connecting the two pumpped wells and not towards a single well.

Resulte for the second simulation (one pumped and one injection well) reveal that large horizontal displacements occur along the line connecting the two wells (fig, 19), Based on the loeations of the injection and pumped wells one may cenclude that the vectors (or the wells) do not line up correctly with the magnitude and direction of displarement. To imderstand that these horizontal movements are correct, it is best to analyze the effeet of each individual well on granular movement and then sum the fesults. The pumping well tends to pull the grains towerd it from all locations within the

DISP. VECTORS
 PLen-viev, Loyer 4

Figure 18. Planimetric plot of layer 4 showing granular displacement in a homogeneous isotropic unconfined aquifer with two pumping wells (black dots) located in layer 4.

1

Figure 19. Planimetric plot of layer 4 showing granular displacement in a homogeneous isotropic aquifer with one pumped well and one injection well (blalk dot is pumping well, open dot is injection well) located in layer 4.
aquifer, so immediately the grains in the vicinity of the injection well have already been displaced toward the pumping well without considering injection. Now when coupling injeetion with the effects of pumping, movement away from the injection well is exacerbated making it appear as though the well should be located farther to the right edge of the boundary. In a similar way, the injection well tends to push the grains and wellibore farther from the pumped well. Hence, the final result is the correct displacement configuration for a pumped- and injection-well setting.

The fourth and final test simulation involves using a similar pumping pattern and loeation of the first simulation of test simulation three; that is, two pumping wells located along row 26. However, the hydraulic conductivity and vertical leakage of the right half of the aquifer is two orders of magnitude less than the left hallf, and pumping is from layer 3. Each half of the aquifer is homogeneous and anisotropic (vertical hydraulic conduetivity is one order of magnitude less than the horizontal hydraulic conductivity), yet the system as a whole is heterogeneous because of the sharp hydraulic conductivity contrast of the two halves. This test is done to inquire as to how granular movement may respond to abrupt facies changes in alluvial basims.

Simulation results (fig. 20) indicate that horizontal granular movement is largely influeneed by the pumped well within the half of the aquifer with the lower hydraullic veonductivity (skeletal specific storage has been kept uniform for both halves of the aquifer). In the left half of fig. 20, note that the simulated vectors tend toward the pumped well on the left side but then are pulled toward the pumped well on the right side forming a type of rounded-step pattern. Displacement vectors tend to be nearly orthogonal to the bounary (faqies change). By way of contrast, vertical displacements are lateger on the side of the aquifer with the larger hydraulic conductivity (20-80 percent greater dapeending on location relative to the pumped well). This may be due to the gradient of hydraulic head calculated by way of MODFLOW.

From a practical standpoint, these results suggest that pumped wells from aquifers of lower hydraulic conductivity (or in aquifers with lithologies that inhibit horizontal ground-water flow) will tend to exacerbate horizontal displacement leading to

DISP. VECTORS

PLon-viev, Loyor 4

Figure 20. Planimetric plot showing relative granular movement and direction due to an abrupt facies change where the hydraulic conductivity is decreased by two orders of magnitude (right-hand side is lower). Each well is pumped the same rate. The dots indicate the location of the pumped wells. Wells are pumped from layer 3.
a potentially higher likelihood of fissure development in the vicinity of the well pumped frem low=transmissivity half of the aquifer. Although vertical displacements were greater in the more highly transmissive part of the aquifer, had skeletal specific storage values been inereased for the half of the aquifer with lower transmissivity, vertical displacements would probably be greater on the side of the aquifer with lower transmissivity as well. Eliminating the dependency of the gradient of hydraulic head from MODFLOW may also influence the vertical displacements.

MODEL LIMITATIONS

Bue te the complex nature of the mathematical and numerical models developed te simulate three-dimensional gramiolar movement, several limitations amd caveats are inherent in the mathematical model and computer programt Understanding the basis of these limitations will help the user avoid certain pitfalls arid erroneous assumptions in developing a conceptual model designed for evaluating granular movement.

As with any numerical model, the quality of the data that goes into the model fefleets the data that is produced by the model. Great care should be taken in properly developing the eoneeptual model for granular displacement. Unlike MODFLOW which is eemmonly used as a quasi three-dimensional model, the granular displacement model produee more aecurate results when a more detailed fully three-dimensional model is used: That is, confining beds and other low permeable units are best treated as individual layers as opposed to employing only a leakage term for estimating vertical hydraullic eonduetivity. Thus, it is better to simulate the upper layer as a water table regardless of the nature of the topmost hydroologic unit being simulated. One drawback to this approaeh is that more data is needed for the simulation. When specifying a LAYCON $=0$, the user ardy needs to know the transmissivity of the unit but does not explicitly need to know he hydraulie eonduetivity or the thickness of the unit being simulated. When specifying this layer type (completely confined) for the granular displacement model, hewever, the user must enter the top and bottom elevations of the unit as well as the hydraulife conductivity of the unit. The granular displacement model is based on a fixed
coordinate system and therefore requires the exact volume extent of each cell for all layers. This may be problematic in poorly defined systems where only estimates of transmissivities are known. In addition, information on the thickness and horizontal and vertieal hydraulie conductivities are rarely known because aquifer-test data, when available, does not usually provide information about these low permeable units unless they were specifically designed for this purpose. The granular displacement model requires more detailed data about the system; and a fully three-dimensional model with these more detailed data provide more accurate displacements within all units of the system.

A seeond timitation with the granular displacement model is that it requires the user to simulate at least two layers to obtain vertical displacements or subsidence, Many two-dimensional groimd-water models have been developed for specific aquifer systems and are properly calibrated to field data. To extend these existing models by applying the granular displaeement program would require the user to either add another layer to the system which would take considerable time for conceptual reevalioation and implementation, or to simply use the granular displacement model to calculate only horizontail displacements while using the interbed storage package (Leake and Prudic, 1991) to simulate subsidence (vertical displacements). This latter approach is the recommended method for two-dimensional planimetric models.

The water-table boundary condition developed for the granular displacement model presently requires newly updated values of hydraulic head to calculate vertical displaements. In regions where thick units of highly compressible clay interbeds occur the standard MODFLOW program would estimate erroneous values of hydraulic head. Poland and others (1975, p. H38) report that an average of one third of the total water pumped from wells in the San Joaquin Valley of California comes from the compaction of these elay interbeds. The standard MODFLOW program does not consider subsidence and would therefore produce greater drawdowns than would be measured in the field. To overeome this problem, the user is recommended to use the interbed storage package and implement the necessary specific storage values to simulate the improved values of
hydraulie head. These boundary heads at the water table are presently used in the granular displaeement model. The advantage of this approach is that subsidence and eompaetion data are available to compare with displacements. The disadvantages are that (1) the heads calculated with the interbed storage package are likely to be somewhat different than heads calculated with a granular displacement mathematical model beeause of the three-dimensional nature of the model. In particular, (2) reversal in water levels that are observed in the field can not be simulated by the stamdlard version of MODFLOW or the interbed storage model. Hence, under in situ conditions when the water table would physically rise initially (when a pump is turned on), the water table boundary condition will be in error. (3)NAditional data are needed due to the implementation of an additional package (or set of subroutimes). Not only does this add development time, but also computer processing time is increased. In the future, a watetable boundary condition will be developed that is contained intirely within the granular displacement model and permits initial water-table reversals to occur.

The granular displacement model requires that steady-state hydraulic heads be caleulated for a given stress period and used to calculate the ultimate specific discharge or bulk flux values. For complex settings this may prove to be quite cumbersome as a new set of steady-state heads are required for each stress period being simulated. Depending on the nature of the pumping patterns invoked, the set of steady-state hydralie heads calculated during one stress period may be able to be used with another stress period if cyelic stress periods are used. This would eliminate the need for additional steady-state simulations. However, once these ultimate values are calculated and the input data set is developed, the granullar displacement becomes a powerful tool for evaluating three-dimenisional displacements, strains, and head reversals in a complex aquifer system. One powerful aspect of the use of ultimate bulk flux is that these values contain all boimdary conditions and heterogeneities present in the conceptual and numerical model.

Buring die lengthy testing proeess for the granular displacement model, it was discervered that the z eross-product terms in the x and y directions (last term on left-hand side ef egs. 48 and 49) eause symmetry problems with the calculated displacements in the X and y direetions. In addition, the inclusion of these z cross-product terms increases simulation time by as much as 15 times. Therefore, they have been omitted from the simulations presented in this dissertation but they have been retained in the program decumentation. These zeross-product terms can be easily removed or added as the usef desires simply by adding or removing the + ZCON term from the expression for RESDD fi caleulations for displaeement in the x and y directions. Although this problem was evaluated extensively, the reasons for the non-symmetry and increased compute proeessing time is not eompletely inderstood. The problem may reside not in the mathematical model but rather in the numerical model and may be related to the implementation of the Crank-Nieolson scheme used. The đrank-NKicolson scheme is known to produee aeeurate and stable results for two dimensional problems, but it is uncertain if this same approach is completely valid for three-dimensional problems: The weighting factor of 0.5 uised for two dimensional problems may need to be reduced to one third of some other weight for three-dimensional problems.

CONCTHSIONS

Granular movement in unconsolidated aquifers is typically associated with vertifeal eompaetion of fine-grained interbeds. The significance of granular horizontal movement if often overlooked or ignored. The occurrence and location of earth fissures resulting from overdratt of imeonsolidated aquifer systems in many arid and semiarid fegions ean not be explained or predicted with currently available hydrologic or subsidenee models. These models are one-dimensional in scope with respect to strain (vertieal only) and are not capable of calculating the total strain or displacement based on a fixed point in space because they use hydraulic head as the prindipal unknownind do not ineorporate the bulk flux. Earth fissures are known to be controlled by horizontal granular movement. Thus, to accurately describe the strain and displacement fields due to applied stresses within an aquifer system of interest, a unified model is needed that aceounts for changes in volume strain based on a fixed point or plane such as the bedrock basin-fill contact at the base of the aquifer system.

This study presents the development and documentation of a fully threedimensiohal granular displacement model that has the displacement field of solids as the dependent variable and ineorporates the initial and ultimate bulk flux values to account for boimdaries and heterogeneities within the aquifer system of interest.
\# Evaluation of the model is accomplished by first comparing horizontal granular movement in a homogeneous isotropie cordined aquifer with available analytic solutions, seeondly, 年est simulation is developed to compare net change in vertical strain (displacement within a model layer) within fine-grained interbeds using the already published interbed storage model and the granular displacement model. Simulation results from the granular displacement model compare favorably with those of the , interbed storage model for the test simulation.

Simulation results of horizontal granular movement within a confined aquifer have shown that large displacements can occur in the vicinity of the pumping well. These displarements are exacerbated by cydically turning the well on and off. When a well is
pumped and then followed by an episode of injection, the aquifer experiences a rapid change from eompressional strain to extensional strain. In addition, large displacements tan geeuf within 目 short period of time. The change in the rate of pumping or injection plaees immense strain on the aquifer matrix which over time may weaken the granular structure making it susceptible to failure, particularly along planes of weakness such as preexisting lineaments, faults, or other subvertical heterogeneities.

In distal regions from the main pumping center, where drawdowns are minimal or nonexistent, extensional radial strains are at their maximum during pumping and horizontal displacements may be surprisingly large. However, the driving mechanism remains the same as in regions near the pumping center, namely, the bulk force that operates on both the interstitial fluid and granular matrix. Horizontal granular movement beyond the radius of influence (determined by hydraulic head) is likely to be responsible for most fissure development along the perimeter of heavily pumped aquifers. In this outer area the change from extensional to compressional strain may net be the controlting factor for fissure development. The main factor may be the increasing magnitude of radial displacement itself coupled with geologic influences such as shallow bedreek knobs and subvertical range-front faults that create potential plains of diseontinuity where the front grain (closest to pumping well) freely moves while the rear grain remains stationary. The important concept to remember is that the granular matrix beyond where drawdowns occur in heavily pumped aquifers is vary much in motion.

Vertieal and horizontal flow barriers were incorporated into a homogeneous uneonfined aquifer system to evaluate how these impermeable barriers may influence granular movement. The vertical linear barrier tends to increase vertical and horizontal movement in the viciruty of the pumped well. The net displacement of the well is toward the barfiet (compressional strain) yet some radially convergent horizontal displacement oceurs oh the side of the barrier awray from the pumped well. The simulated displaeement field indieates that pumped wells near hydrologic barriers tend to increase subsidenee between the well and the flow barrier. Potential fissuring is most likely to oceur away from the barrier in the region of zero racilial strain.

A horizontal flow barrier within the interior cells of the model in layer two resulted in large vertical displacements at the edge of the barrier even though pumping was at the center of the grid network far from the edge of the barrier. This finding tends to confirm what is oceurring in Las Vegas Valley where a large amoint of subsidence has been measured in the region where a thick confining units transition into coarser grained materials in the western part of the valley. Typical subsidence models would not predict subsidence to occur in this region.

Simulation resudts from multiple pumping or injection wells reveals clearly that the locations of greatest displacements do not occur at intuitively obvious locations. The displaeement field from each individual well are addifitive. The result is a displacement field that does not tend to move directly toward or away from any single well.

This work points to the need to focus data collection efforts on both horizontal and vertieal displaeements within a complex hydrogeologic setting. These data will help to further evaluate the effectiveness of the granular displacement model in calculating the displacement field of solids and potential for fissure development in heavily pumped arid-zone aquifers. Although fissure development is typically an arid-zone phenomenon, horizontal movements in uneonsolidated aquifers are a consequence of Darcy's law regardless of climatic conditions.

References

Anderson, M.P., and H.E. Wang, Introduction to groundwater modeling, San Francisco, W.H. Freeman and Co., 237 pp., 1982

Anderson, S.R., Potential for aquifer compaction, land subsidence, and earth fissures in Avfa Valley, Pima and Pinal Cointies, Arizona, US. Geol. Sur. Hydro. Inv. Atlas HA718, 1:250,000), 3 sth., 1989.

Beaf, J_{2}, and M.Y. Corapcioglu, Mathematical model for regional land subsidence due to pumping z. Integrated aquifer subsidence equations for vertical and horizontal displacements, Water Resour. Res., 17, 947-958, 1981.

Bell,, J.W., \ddagger. G. Priee, and M.D. Mifflin, Subsidence-induced fissuring along pre-existing faults in Las Vegas Valley, Nevada, in Engineering Geology into the 21st Century, pp. $66=75$, Proceedings of the 25 th Annual Meeting of the Assoc, of Eng. Geol., Long Beach, Calif., 1992.

Biot, M.A., General theory of three-dimensional consolidation,J. of Apppp. Phys., 12(2), 155= 164,11941.

Biot, M.A., Theory of elasticity and consolidation for a porous anisotropic solid, $J_{\text {, of }}$ Appp. Phy., 26(2), 182-1855,1955.
Carpenter, M.C., Earth-fissures movements associated with fluctuations in groind-water levels near the Pieacho Mointains, southreentral Arizona,Ti980-84, U.S. Geol. Surv. Open File Rep. 90-561,62 pp., 1991.

Gambelati, G., and R.A. Freeze, Mathematical simulation of the subsideike of Venice, 1;
Theory, Water Resour. Res., 9, 721-733,11973.
/ Gambolati, C., P. Catto, and R.A. Freeze, Mathematical simulation of the subsidence of Venice, 2; Results, Water Resour. Res., 10, 563-577, 11974.

Cersevanov, N.M., The foumdation of dymamics of soils, (in Russian), Stroiizdat, Leningrad, 1934

Helm, D.C., A postulated relation between granular movement and Darcy's law for
$\hat{\imath}$ transient flow, in Evaluation and Prediction of Subsidence, S.K. Saxena (ed.), p, 417-
440, American Society of Qivil Engineers, New York, 1979.
Helm, D.C., One-dimensional simulation of aquifer system compaction near Pbdey,
Calif., 1 : eonstant parameters, Water Resour. Res., 11, 465-478, 11975.
Helm, D.C., One-dimensioral stimulation of aquifer system compaction near Pbdey,
Calif., 2: Gtress-dependent parameters, Water Resour. Res., 12, 375-391, 1976.
Helm, D.C., Simulation of aquitard compaction due to châmges in stress, Trans. Am.
Geophys. Union, 53(11), $979,1972$.
Heim, D.C., Coneeptual aspects of subsidence due to fluid withdrawal, in Recent trends in hyydrageology, T.N. Narasimhan (ed.), pp. 103-139, Geol. Soc. Amer. Spec. Paper 189, 1982.

Helm, D.C, Aitulysis of sedimentary skeletal deformation in a confined aquifer and the resulting drawdown, in Groundwater hydraulics, J.S. Rosenshein and G.D. Bennett, (eds.), ppr. 29-82, Am. Geophys. Union Water. Resour. Mono, 9, 11984.

Helm, D.C., Three-dimensional consolidation theory in terms of the velocity of solids, Geotechnigue, 37(3), 369-392, 1987.
Helm, D.C, Hydraulic fores that play a role in generating fissures at depth, Bull. Assoc. Eng. Geologists, (in print), 1993.

Helm, D.C., Caleulation of horizontal aquifer movement, within a Theis-Thiem confined system, Water Resour. Res., 30(4), p. 953-964, 11994.
Hubbert, M.K, The theory of groind-water motion, J. of Geell, 48,7\%5-944, 11969
jaeob, C.E., Flow of groundwater, in Engineering Hydraulics, H. Rouse, ed., 321-386, John Wiley, New York, 1950.
Leake, S.A., and D.E. Prudic, Documentation of a computer program to simulate aquifersystem compaction using the modular finite-difference ground-water flow modell, U.S. Geol. Suro. Open File Rep. $88-482_{n} 80$ pp. 1988.

Leake, S.A., Interbed storage changes and compaction in models of regional groundwater flow, Water Resour. Res., 26, 1939-1950, 11990.

Lewis R.W., and B. Schrefler, A fully coupled consolidation model of the subsidence of Yenice, Water Resour. Res ${ }_{2}, 14$, 223-230, 11978 .
Lohman, S.W., Groumod-water hydraulics, U.S. Geol. Surv. Prof. Paper 708, 70 pp., 1972
MeDonald, M.C., and A.W. Harbaugh, A modular three-dimensional finite-difference groind=water flow model, U.S. Geol. Surv. Tech. Water Resour. Invest,, Book 6 Chap. A1, 586 pp., 1988.
Narasimhan, T.N., and P.A. Witherspoon, Numerical model for land subsidence in shallow groundwater systems, Land Subssidence, A.I. Johtipion (ed.), pp. 131-144. International Association of Sd. Hydro. Publ. 121, New York; Unipulbl., 1977.

Peaeeman, D.W., Fumdamentals of nummerical reservoir simulation, New York, Elsevier Sci. Pub. С0., 176, 11977.

Poland, J.F., B.E. Lofgren, R.L. Ireland, and R.G. Pugh, Land subsidence in the San Joaquin Veilley, California, as of 1972, U.S. Geol. Surv. Prof. Paper 437-H, 78 p., 1975.
Poland, J.F., and G.H. Davis, Land subsidence due to fluid withdrawal of fluids, Rev. Eng. Geol., 2,118720269,11969.

Press, W.H., S.A. Teulolsky, W.T.Vetterling, and B.P. Flannery, Nwmerical recipes in Fortran, Second Ed., Cambridge Univ. Press, 963 pp.
Safri, N.M., aind G. Pinder, Vertical and horizontal land deformation in a desaturating porous medium, Adv. Water Resour., 2, 19-25, 1979.
Seot, R.F., Principles of soil mechanics, Palo Alto Calif., Addison-Wesley Pub. Co., Inc., 550 p., 1963

Terzaghi, K., From theory to practice in soil mechanics, New York, Wiley, 425 pp., 1960.
Verfuift, A., Elastic storage of aquifers, in Flow through Porous Media, R.J.M. DeWiest (ed.). New York, Academic Press, p. 331-377, 1969
Wolff, R. G., Relationship between horizontal strain near a well and reverse water level $^{\text {a }}$ fluctuation, Water Resour. Res., 6, 1721-1728, 1970.

Yerkes, RF, and RO. Castle, Surface deformation associated with oil and gas field operations in the Uivted States, mLIJ. Tison, ed., Land subsidence, v. 1: Internat. Assec. Sci. Hydro. Pubb. 88, 55-66., 1969

APPENDIX A:

MODEL DOCUMEENTATION

The doeumentation of the granular displacement model includes a complete diseussion of each of the three modules written. The order of each module discussion is as followes: (1) bulk flux module, (2) displacement module, and (3) vector plotting medule: Each module ineludes an in depth description of subroutines used, design, all variables and parameters, and flow paths outlining each routine. Also included are input instruetions for using the modules. Finally, the main program of MODFLOW is included because modifications were made to this segment of the code. All sections of the main program written in small letters are additions required by the granular displacement model. The portions of the main program in capital letters are part of the standard code and published modules already available. No documentation for the main code is ineluded. The user is referred to the MODFLOW instruction manuel (McDonald and Harbaugh, 1988) for further discussion of the main program.

Bulk Flux Package Input

Input for Bulk Flux Package (QBK)is read from the unit specified in IUNIII(1615).
FOR EACH SIMULATION

QBKKAL

1. Data: IQBKOC IQBTYP IQBSS

Format; I10 I10 I10

QBKIRP
2. Data: IQBKFM IQBKUN

Format: I10 I10
The following arrays (items 3-5) describe eachithyer. Whether an array is read depends on the layer type code (LAYCON) FOR ALL LAYER TYPE CODES
3. Data: RATIO

Module: U2DREL
IF THE LAYER TYPE CODE IS ZERO OR TWO
4. Data: BASE

Module: U2DREL
5. Data: QSURF

Module: U2DREL

Explanation of Fields Used in Input Instructions

1OBEOC-is a flag for printing or saving displacement values
If $\mathrm{IQBKKOC} \geqslant 0$ Bulk flux data will be read and printed or saved.
If IQ BKOC $\varepsilon=0$ Bulk flux data will not be calculated, printed, or saved.
10 ESS $=$ is the flag for reading and using ultimate specific dischaige or bulk flux values
If $\mathrm{IQBSS}=0$ Ultimate values of bulk flux are not read or used.
If $\mathrm{IQBSS} \geqslant 0$ Ultimate values of bulk flux are read and used.
10 BTy 配-is a flag for the part of an aquifer simulated when only one pumping well loeation is used. This flag adjusts the bulk flux values acconding to adjusted pumping fates for simulations using one half or one quarter of the areal extent of the aquaifer.

If $\mathrm{IQBTYP}=0$ the entire aquifer is simulated. This type is used when multiple pumping well locations are used.
If $\mathrm{I}_{\mathrm{Q}} \mathrm{B}^{\mathrm{B}} \mathrm{PY} \mathrm{P}=\mathrm{h}$ one half o^{2} the aquifer is simulated and the pumping location
is centered along one boundary: .
If $\mathrm{IQBTYP}=\mathbf{2}$ one quarter of the aquifer is simulated and the pumping location is centered at the comer of two converging boundaries.
10 KKPM -is the print format code for the bulk flux values in all three component direetions. The print eodes are listed in the modular model documentation p. 14-3. 10BKind-is the unit number where bulk flux values will be saved

If $\mathrm{IQBKUN}=0$ bulk flux values will not be saved
If IQBKUN $\geqslant 0$ bulk flux values will be saved on the unit number specified according to the time step flag IQBKSV described belows
RATIG-is the ratio of vertical to horizontal hydraulic conductivity of the layer being simulated. RATIO can not be greater than 1.0. For a single layer simulation use 1.0 . BASE-is the elevation of the bottom of the layer, It is synonymous to BOT but is used with layer types zero and two.
Qsunde-is the elevation of the top of the layer. It is synonymous to TOP but is used with layer types zero and two.
HSS-are the ultimate steady-state hydraulic head values obtained by simulating steadyptate conditions with the current aquifer properties while assuming either a constant Hicad of constant recharge rate to the topmost active layer. If a rate is used it must be equal to the total discharge from the modeled area.
10 BKPR-iis the output flag for printing bulk flux values If 1 QBBKPR $\geqslant 0$ bulk flux values for each layer will be printed If IQBKPR $\varepsilon=0$ bulk flux values will not be printed
OBKSW-is the output flag for saving bulk flux values.
If $\ddagger Q B K S V \varepsilon \equiv 0$ bulk flux values are not saved for all layers
If $£ Q B K S V \geqslant 0$ bulk flux values are saved for all layers

Module Documentation for the Bulk Flux Package
The bullk flux package (QBK) has four primary modules and three submodulles. All the primary modules are called by the MAIN program.

Primary Modulles.
QBKIAL Allocates space for data arrays. Reads bulk flux calculation flag and type of simulation invoked.
QBKIRP Reads print and save flags. Sets active cells for displacement. Initializes bulk flux arrays to zero. Reads information needed to calculate eccentricity and cell thiekness. Calls submodule SQBK1L.
QBKIFM Caleulates cell centers where pumping and injection oceurs. Calls SQBK1E. Calculates the bulk flux for each cell where recharge is specified.
QBKIST Reads ultimate steady-state heads and calls submodule SQBK1U.
QBK1OT Reads print and save flags for bulk flux. Prints or saves bulk flux values for all three component directions after eaeh stress period when print or save flags are set.

Submodules
SQBKIL Caleulates initial thickness of all cells in the grid, even those where transmissivity has been specified.

SQBKIW Caleulates adjustment to bulk flux in z direction at the wellbore.
SQBKIU Caleulates the ultimate specific discharge which is equivalent to the ultimate bulk flux^_

Narrative for Module OBK1AL

This module allocates space for data arrays for the bulk flux package. It also reads flag for caleulating bulk flux terms and whether a single well quadrant or half space if simulated, or whether a full aquifer simulation is to be simulated.

1. Identify package
2. Read flags for calculation of bulk flux terms, and type of simulation.
3. Print the type of simulation.
4. Caleulate total number of cells in the model grid.
5. Allocate storage for the following arrays:

QBX Bulk flux in the X direction for each cell in the grid.
QBY Bulk flux in the Y direction for each cell in the grid.
QBZ Bulk flux in the Z direction for each cell in the gridd.
SPX Specifie discharge in the X direction for each cell in the grid.
SPY Specific discharge in the Y direction for each cell in the grid.
SPZ Specifie diseharge in the Z direction for each cell in the grid.
QX Volume fluid flux in the X direction for each cell in the grid.
QY Volume fluid flux in the Y direction for each cell in the grid. QZ Volume fluid flux in the Z direction for each cell in the grid. HSS Ultimate steady-state heads for each cell in the grid.
RATIO Ratio of vertical to horizontal hydraullic conductivity for all cells.
BASE The bottom altitude of the cell where transmissivities are specified.
©Stefr The top altitude of the cell where transmissivities are specified.
DELL Cell thickness.
IACT Bourridary array for displlacement.
6. Print amoimt of storage used by the birlk flux package.
7. RETURN.

Flow Chart for Module USLIAL

QBKIOC is the bulk flux calculation flag. If $\mathrm{QBK} 10 \mathrm{C} \geqslant 0$ Bulk flux calculations will be made.
If QBKIOC $\approx=0$ Bulk flux calculations will not be made.

IQBTYP is the flag identifying the type of simulation

If $\mathrm{IQBTYP}=0$ A full aquifer for single or multiple wells is simulated. If $\mathrm{IQBTYP}=1$ The aquifer is represented as a half circle with the well at the center of the half circle. This is a single well simulation omly. $\mathrm{If} \mathrm{IQBTYP}=2$ The aquifer is represented as a quarter dircle with the well at the center of the wedge. This is a single well simulation onlly. This approach is used to save space for symmetric single well simulations.

IQBSS is the flag indicating whether ultimate steady-state heads are read.

SUbROUTINE QBK1AL(ISUM,LENX,LCQBX,LCQBY,UCCQBZZLCRAXICBASE,

C ALLOCATE ARRAY STORAGE FOR QBULK PACKAGE

C
C SPECIFICATIONS:
C
C
C
C1——IDENTIIY PACKAGE WRITE(AOUT』1)IN
1 FORMAATR(/X/QBK1 - QBULK PACKAGE SETS UP INITAL CONDITIONS 1 FOR GRANULAR FLOW MODEL, INPUT READ FROM'413)
C
C2--RRAD FLAG FOR CALCULATING BULK FLUX TERMS TYPE OF 1 StMULATION, AND WHETHER ULTTMATE HEADS ARE NEEDED. REAp(IN,2) IQBKOC,IQBTYP:IQBSS
2 FORMAT(3MIC) IF@OBKCC(TIO) WRITEROUIT,10)
10 FORMAT(1X,'OUTPUT CONTROL RECORDS FOR QBK1 PACKAGE WILL
1 BE READ EACH TIME STEP.') HF(IQBSS.EQ.0) WRIFE(ÍOTI,8)
\& FORMAT (1X,"UTHIMATE HEADS ARE NOT READX)
IF(IQBSS.NE(0) WRITE(OUUIT,9)
9 FORNMAII(HX, 'ULTTMATE HEADS ARE READ FOR EACH STRESS PERIODX)
C
C3__PRINT TYPE OF SIMULATION
IF(IQBTYP.GT:2) IQBTYP=0
IT(IQBTMPPEQ(0) WRITE(OOUT,12)
12 FORNMAT(HX,'FULL CIRCLE SIMULATION') IF(QBTYP.EQ.1) WRITE(OUUT,14)
14 FORMAT(1X,'HALF CIRCLE SIMULATION') IF(IQBTYP.EQ.2) WRTEGOUT;16)
16 FORMAT(1X,'QUARTER CIRCIE ṠIMULATION')

C

C4-COULCULITE TOTAL NUMBER OF CELLS

 NRCL=NROWWNCCITNLAYC
C5-AULILCATE STORAGE FOR ARRAYS IQBLK=ISUM LCQBX=ISUM ISUM $=$ ISUM \ddagger NRCL LCQBY=ISUM ISCMM $=\mathbb{B} U M$ M $=$ NRCL LCQBZ=ISUM ISUM $=$ ISUM $\#$ NRCL LCRAT=ISUM ISUM $=$ ISUM + NRCL LCBASE=SUUM LEUM $=\mathbb{I S U M}=\mathrm{NRCL}$ LCQSURF=ISUM ISUM $=$ ISUM $\#$ NRCL LCDELL=ISUM ISUM $=$ ISUM $\#$ NRCL LCIACT=ISUM ISUM $=$ ISUM $\#$ NRCL LCHSS=ISUM LSUM $=$ BUM $\#$ NRCL LCQX=ISUM ISUM $=$ ISUM $\#$ NRCL
LCQY=ISUM ISUM $=$ ISUM $\#$ NRCL
LCQZ $=$ ISUM
ISUM $=$ ISUM $\#$ NRCL
LCSPX=ISUM
ISUM $=$ ISUM $\#$ NRCL
LCSPY=ISUM
ISUM $=$ ISUM $\#$ NRCL
LCSPZ $=$ ISUM
ISUM $=$ ISUM $\#$ NRCL
C
CG ISP=ISUM-IQBLKWRITE(OOUT,4)ISP
4 FORMAT(1X,I8,'tLEMENTS USED IN QBULK PACKAGE') ISUM1=ISUM-1 WRITEGOUX,5)ISUML,UENX
5 FORMAT (1X,18,ELEMENTS IN X ARRAY USED OUT OF"I\&)C-A WARNING MESSAGE.IFGSUM1.GTLENX) WRTEGOUIT,6)
6 FORMATI(X)*** ARRAY MUST BE DIMENSIONED LARGIER***)CC7-HEETURNRETURN
END

List of Variables for Module OBKIAL

Variable	Range	Definition
IN	Haadkage	Primary init number from which input for this package will be read
tout	Qisbladl	Primaty unit number for all printed output. IOUT $=6$.
IQBKOC	Package	Plag for calculating bulk flux terms. $\geqslant 0$ calculate bulk flux terms. $\varepsilon \equiv 0$ do not calculate bulk flux terms.
IQBLK	Module	Before this module allocates space, IQBLK is set equal to ISUM. After allocation, IQBLK is subtracted from BUM to get ISP, the amount of space in the X array allocated by this module.
IQBTYP	Package	Flag indicating type of simulation. $\equiv 0$ Full aquifer is simulated $\equiv 1$ One half aquifer is simulated with well at center of circle. $\equiv 2$ One quarter of aquifer is simulated with well at center of aquifer wedge.
IBP	Module	Number of words in the X array allocated by this module
BUM	Global	Index number of the lowest element in the X array which has not yet been allocated. When space is allocated for an anray, the size of the array is added to BUM.
BUM1	Module	BUMM-11
LCBASE	Package	Loeation in the X array of the first element of array BASE,
LCDELL	Global	Loeation in the X array of the first element of array DELL.
LCHSS	Package	Location of the first element of array HSS.
LCIACT	Global	Loeation in the X array of the first element of array LACT.
LCSPX	Global	Loeation in the X array of the first element of array SPX.
LCSPY	Global	Loeation in the Y array of the first element of array SPYY
LCSPZ	Qlobal	Loegtion in the Z array of the first element of array SPZ
LCQBX	Qlobal	Location in the X array of the first element of array QBX.
LCQBY	Qlobal	Location in the Y array of the first element of array $Q B B Y$.
LCQBZ	Qlobal	Location in the Z array of the first element of array QBZ.
LCQSURF	Package	Location of the first element of array QSURRF,
LCQX	Package	Loeation in the X array of the first element of array QX,
LCQY	Package	Location in the Y array of the first element of array $Q \times Y$.
LCQZ	Package	Loeation in the Z array of the first element of array QZ.
LCRAT	Qlobal	Location of the first element of array RATIO.
LENX	Qlabal	Length of the X array in words. This should always be equal to the dimension of X specified in the MAIN program.
NCOL	Cribual	Number of columns in the grid.
NLAY	Qlubal	Number of layers in the grid.
NRCL	Module	Number of celts in the grid.
NROW	Qlobal	Number of rows in the grid.

Narrarive for Module OBKIRP

This module reads the format and unit numbers for printing and saving the bulk flux terms at the end of each stress period. It also sets the boimdary array for displacement, initializes bulk flux arrays, reads the ratio of vertical to horizontal hydraulie corcduetivity and altitudes of the top and bottom of cells when transmissivity is used. These altitudes are used along with those specified in the BCF package to calculate cell thickness.

Module QBKIRP calls submodule SQBKIL and performs its tasks in the following order:

1. Read format and unit numbers for printing or saving bulk flux values, respectivedy.
2. Set active boundary cells for displacement.
3. Inutialize bulk flux vadues to zero.
4. Read the ratio of vertical to horizontal hydraulic conductivity for all cells in the grid. Read the top amd bottom cell elevations when LAYQQN $=0$ or LAYCON $\equiv \mathbf{Z}$
5. Calculate the initial thickness of all cells in the grid.
6. RETURN.

Flow Chart for Module OBKIRP

IQBKFM is the flag identifying the format type for printing bulk flux values. The flag number is identified in McDonald and Harbaugh (1988, pg. 14-5).

IQBKUN is a flag and unit number to which the bulk flux terms will be written.

If $\mathrm{IQBKUN} \mathrm{N}=0$ the bulk flux terms are not saved.
If $\mathrm{IQBKUN} \geqslant 0$ the bulk flux terms are saved on the unit number specified.

LAYCON is a layer-type code (one for each layer).

0 -confined
1 - unconfined
2 - confineed/umconfined but transmissivity is constant
3 - confined/imconfined
RATIO is the ratio of vertical to horizontal hydraulic conductivivitys. It must not exceed 1.0.

BASE is the elevation of the bottom of the celll. It is read only when the LAYCON is Dorz

QSURF is thealtitude of the top ofthe cell. It is read only when the LAYCON is 0 or \mathbf{Z}

 2 DELRDELL, TORBOXHNEW)
c $\operatorname{INTTLALLZE~QBULK}$ ARRAYS AND READ KV/KH RATIO, BASE AND C SLfRFACE ELEVATIONS
C C
C SPECIHCAMTIONS:
C-
DOUBLE PRECISION KNEW
CHARACTIE ANAME

 3NJAY), BOTNCOL,NROWZ,NLAY),HNEWNCOLLNBKOWZNLAY), 4 BELC(NROW), DELR(NCOL),DELL(NCOL_NRTOWNNAMY)

C

C
COMMON/月LWCOM/LAMCON(80)

c
Cl - - READ FORMAT AND UNIT NUMBER FOR PRINTING OR SAVING QBULK 1 TERMS.
IF(OUHKCIIEO) GO TO 500
READ(IN,5) IQBKFM,IQBKUN
5 FORMAT(210)
WRITEGOUT,6) IQBKFM
(6) FORMATT(XX,' QBULK PRINT FÖRMAT IS NUMBBERT,,44)

7 FORMAT(4X,UNJTH FOR SAVING QBULK VALUES IS, 14)
$\mathrm{C}=$ CALCLILATE NUMBER OF CELLS PER LAYER
500 NRC=NCOL *NROW
C

DO $251=1$, NODDES

IF(IBOUND(1).EQ.9) IACT(1)=0
25 CONTINUE
c
C3-_DNTTAALITE QB(X,Y;Z) ARRAYS TOSEHRO
DO2ZUKK11NNLAY
DO2661F=1,NROW
DO 26.J. $=1, \mathrm{NCOL}$
QBXG, 1 K $)=0$.
$Q B Y(, 1, K)=0$.
QBZ(itk $)=0$.
26 CONTINUE
c
C4-FOR EACH LAYER IN THE GRD:
C4A - READ IN KZZ/KKHH RATIO DATA FOR EACH CELL
KR=0
DO $50 \mathrm{~K}=1, \mathrm{NL}$ LAY
IF(LAYCON(K) . $\mathbb{E}(0 . O R$. LAYCON(K).EQ.2) $\mathrm{KR}=\mathrm{KRR}+\mathbb{1}$
$\mathrm{KK}=\mathrm{K}$
LOC $=1+(\mathbb{K}-1))^{*}$ NRC
LOCR $=1+(\mathbb{K R}-1))^{*}$ NRC

IF(LAYCON(K).EQ.1. OR LAYCON(Q).EQ. 3) GOTO 50
E4B-----READ THFSUTRFACE AND BASE ELEVATIONS OF CELL WHHERE
C LAYCCONLSOOR2

50 CONTINUE
C

$\mathrm{KB}=0$
$\mathrm{KT}=0$
$\mathrm{KR}=0$

KK $=$ K
世 (LAYCON(K).EQ. 3 .OR. LAYCON(K).EQ.2) KT=KT+11
IF(LAYCON(K).EQ.3 OR. LAYCON(K) $\mathbb{E Q} Q .1) \mathrm{KB}=\mathrm{KB}+\mathbb{1}$ IF(LAYCON(K),EQ.O.OR. LAYCON(K).EQ.2) KR=KR+』

C CRRID
 1 NLAY,HNEW)
150 CONTINUE
C
C6-R-RETURN RETURN
END

List of Variables for Module OBKIRP

$\left.\begin{array}{lll}\text { Variable } & \text { Range } & \text { Definition }\end{array}\right\}$

List of Variables for Module OBKIRP (Continued)

Variable	Ranse	Definition
		2 - Layer confined/amconfined (transmissivity is constant). 3 - Layer confined/immconfined (transmissivity is variable).
LOC	Module	Pointer to parts of the RATIO arrays corresponding to particular layers.
LOCZR	Module	Pointer to parts of the elevation arrays corresponding to particular layers.
NCOL	Global	Number of columns in the grid.
NLAY	Global	Number of layers in the grid.
NODES	Module	Number of cells in the grid.
NRC	Module	Number of cells in a layer.
NROW	Global	Number of rows in the grid.
QSURF	Package	DIMENSION (NCOL,NiROWW,NLAY), Elevation of cell top of each cell in layers where LAYCON is 0 or 2.
QBX	Global	DIMENSION (NCOL, NRROWW,NLAY), Bulk flux in the X direction.
QBY	Global	DIMENSION (NCOL,NRROWV,NLAY), Bulk flux in the Y direction.
QBZ	Global	DIMENSION (NCOL, NRROW, NLAY), Bulk flux in the Z direction.
RATIO	Global	DIMENSION (NCOL,NROWW,NLAY), Ratio of vertical to horizontal hydraulic conductivity specified for all LAYCON types.
TOP	Global	DIMENSION (NCOL,NRROWNONLAY), Elevation of the top of each cell in layers where LAYCON is 2 or 3.

[^0]
Narrative for Module OBKIST

This module reads the ultimate steady-state heads if IQBSS is set. These heads are ultimately used to calculate the steady-state specific discharge or ultimate bulk flux values which is done in submodule SQBKIU which is called by this module.

This module performs its tasks in the following order:

1. Check IQBSS flag
2. Read steady-state heads if IQBSS is set.
3. Call SQBKIU if IQBSS is set.
4. RETURN

Flow Chart for Module OBKIST

IQBSS is a flag indicating whether ultimate steady-state heads are read and ultimate bulk fluxes are calculated. $=0$ HSS not read and ultimate bulk fluxes not calculated半 0 HSS read and ultimate bulk fluxes are calculated HSS is the ultimate steady-state head arrany. One array is read for each layer


```
C
C *4*********************************************************************
C THIS SUBROUTINE READS THE STEADY STATE HYDRAULIC HEAD
C VALUES FOR THE IMPOSED STRESSES ON THE SYSTEM. THIS
C ROUTINE ALSO CALLS THE ROUTINE TO CALCULATE ULTIMATE
C BULK FLUX VALUES.
C ************************************************************************
C
C SPECIFICAIIIONSS:
C
    CHARACTEN ANAME
C
    DIMENSION HSS(NODESS),HBOUNWNNCODINROWH,NILAY),TRAN(NCOL,
```



```
    2TOP(NCCOL,NWPOWONIAOY),BOT(NCOOL,NRRONW,NLAY),DELL(NCOL,
    6NNROW,NLAYY),DELR(NCOL),DELC(NROW),STP(NNCOL,NNROW,NLAY),
```



```
    8 QY(NCOLL,NROWWNLAY),QZ(NCOL,NRROW,NILAY),ANAMIE(6,1)
C
        DATA ANAME(1,1),ANNAWHE(2,1),AAMAMB(3),IA,ANANHE(4,11),ANAME(5,1),
        1 ANAMME(6,1) /' '/ '/ UL",TIMA"/TE H'/昏ADS7
C
        COMMON /AFLWCOM/LAMYCON($0)
C____________________________
C1--CHECK TO SEE IF ULTIMATE HEADS ARE READ AND ULTIMATE QBULK
C VALUES CALCULATED
    IF(IQBSSSHCDOO)GOTO70
C2-READ ULTIMATE STEADY STATE HEAD VALUES FOR THIS STRESS PERIOD
    NCR=NCOL*NROW
    DO 15 K=1,NLAY
    KK\equivK
    LOC=1 +($K7)4NCCR
```



```
    15 CONTINUE ?..
```

C
C3-CALL ROUTINE TO CALCULATE ULTIMATE BULK FLUX VALUES
 1 NCOL_NROW,NLAXSPX,SPYYSPZ,OX,(OY,QZ)

C
C4-RETURN
70 RETURN END

List of Variables for Module OBKIST

Variable	Range	Definition
ANAME	Module	Lab
BOX	Global	DIMENSION (NCOL,NROW,NBOT), Elevation of the bottom of each layer. (NBOT is fite number of layers for which LAYCON \equiv 1 ©r 3.$)$
CV	Global	DIMENSION (ONCOL,NIROW,NLLAY), Conductance in the layer direction. CV (J, I, K) contains conductance between nodes (J, L, K) and $\left.6 \operatorname{cin}_{1} \mathbb{1}+1\right)$.
DELC	Global	DIMENSION (NROW), Cell dimension in the column direction. DELC(I) contains width of row I.
DELL	Global	DIMENSION (NCOL,NROWN,NLAY), Cell dimension in the layer directiom.
DELR	Global	DIMENSION (NCOL), Cell dimension in the row dineectiosh. DELR(B contains width of coluinn J.
HSS	Package	DIMENSION (NCOL,NROUW,NUAY), Ultimate steady-state heads used to calculate the ultimate bulk flux values.
HY	Global	DIMENSION(NCOIL,NRROWNLAY), Hydraulic conductivity in layers specified as LAYCON $=1$ or 3 .
IN	Package	Primary unit number from which input for this package will be read.
IOUT	Global	Primary xmit number for all printed output. IOUT $=6$.
IQBSS	Package	Flag indicating whether ultimate steady-state heads are read and ultimate bulk fluxes are calculated and used.
K	Module	Index for layers
KK	Module	Temporary variable set equal to K .
LAYCON	Global	DIMENSION (80) Layer type code: 0 - Layer strictly coirfined 1 - Layer strictly imconfined.
	y	2- Layer confined/umeonfinned (transmissivity constant) 3 - Layer confined/umeomfined (transmissivity variable).
LOG	Module	Pointer to parts of the HSS arrays corresponding to particular layers.
NCOL	Global	Number of columns in the grid.
NCR	Module	Number of cells in a layer.
NLAY	Global	Number of layers in the grid.
NROW	Global	Number of rows in the grid.
SPX	Global	DIMENSION (NCOL,NBROWUNLAY), Ultimate speciific discharge or ultimate bulk flux in the X direction.
SPY	Global	DIMENSION (NCOL,NRROWWNLAY), Ultimate spedific discharge or ultimate bulk flux in the Y direction.
SPZ	Global	DIMENSION (NCOL,NROW,NLAY), Ultimate specific discharge or ultimate bulk flux in the \mathbf{Z} direction.

List of Variables for Module OBKIST fContinued)

Variable Ranee
Definition
QX Package
DIMENSION(NCOILNRROMW,NLAY), Volume fluid flux across the right cell face in the X direction
QY Package DIMENSION(NCOIL,NBR(OWNNLAY), Volume fluid flux across the front cell face in the Y direction
QZ Package DIMENSION (NCOL,NRROWNWLAMY), Volume fluid flux across the bottom cell face in the \mathbf{Z} direction.
TRAN Global DIMENSION(NCOIL,NRROWNNLAY), Transmissivity specified whenLLAYCON \equiv Oor2

N

$$
\mathrm{r}^{\alpha}
$$

Narrative for Module OBKIFM

This module performs the calculations for the bulk flux terms that are needed at the start of each stress period. The initial stresses that produce a bulk flux within the aquifer are pumping, injection, or recharge. For pumping, a bulk flux is determined on the basis of the pumping rate and the eccentricity at each well location. The calculated bulk flux for each well is summed to produce a final bulk flux value that is used in the displacement model. For recharge, only the z component of bulk flux is affected because it is assumed that recharge occurs from the top of the cell. If recharge is desired along a different face then the Well Package should be used to simulate recharge.

Module QBKIFM calls submodule SQBKIE and performs its tasks in the following order:

1. Reset bulk flux values to zero at the start of each new stress period.
2. Check to see if initial stress conditions exist.
3. Loop through each well and calculate a bulk flux term for each component direction for each well.
4. Make correction in pumping rate for the type of simulation
5. Calculate the actual well location in model units
6. Calculate the total bulk flux for each component direction due to pumpimg.
7. Check to see if recharge is present. If recharge exists add bulk flux components resulting from recharge.
8. RETURN.
$+>$

Flow Chart for Module OBKIFM

NWELLS is the number of wells specified in the Well Package for the current stress period.

NRCHOP is the recharge option code specified in the Reehlarge Package.
$\equiv 1$ Recharge is only to the top grid layer.
$\equiv 2$ Vertical distribution of recharge is specified in array IRCH.
$\equiv 3$ Recharge is applied to the highest active cell in each vertical columm. Acconstiantlheardmodteiintercoppts nerthangeeardlypreveantssdteeppear infilitration.

Flow Chart for Module OBKIFM (Continued)

SUBROUTINE QBK1FM(NWHELLS,DFHR, DFELC,DHELL,MWHUL,OPX,OBY,QBZ,
1 RATIO,IBOUND,NROW,NCOL,NLAY,NRCHOP,IRCH,RECH,UACT,TOTIM,
2 KPER,(OBTYP)
C

C CALCULATE DIRECTIONAL COMPONENTS OF QBULK AS INFLUENCED
C BY PUMPING AND RECHARGE

C
C SPECRHCATIONS:
C-_
C
DOUBLE PRECISION HNIEW
DIMENSION WELL(4,NWELLS),QBX(NCOL,NROW,NLAY),QBY(INCOL,
1 NROW,NLAY),QBZ(NCOL,NROW,NLAY),RATIO(NCOL,NROWW,NLAY),
2 IBOUND(NCOLL,NRIOWN,NLLAY),DELR(NCOL),DELC(NROW),DELL(NCOL,
3 NROW,NLAY),RRECHONCOL,NROW),IRCH(NCOL,NROW),
4 IACT(NCOL,NROW,NLAY)
C
COMMON /HRLLWCOM/LAAYCON(80)
C
C
C1——RESET QBULK VALUES TO ZERO EACH TIME STEP
DO 23K $=1, N L L A Y$

ED) $23 \mathrm{~J}=1, \mathrm{NCOL}$
QBX $(\boldsymbol{H}, \mathbf{K})=0$.
QBY($(\mathbb{L}, \mathbf{K})=0$.
QBZ(JIK)=0.
23 CONTINUE
C
C2-_CHIECK TO SEE IF INITIAL STRESS CONDITIONS EXIST
|t'..' IF(NWELLS.LE. 0 .AND. NRCHOPP.LE.0) RETURRNO
C
C3-_LOOP THROUGH NWELLS AND CALCULATE BULK FLUX TERMS IF(NWHHUSIIIE(0) GOTO 1000 DO 50 LL=1,NWELLS

```
    ITR=WNELL(2,LL)
    IC=WELL(3,LL)
    IL=WELL(1,LL)
    Q=WELL(4,LL)
C
C4--WWULEE CORRECTION FOR TYPE OF SIMULATION
    IF(IQBTYP.EQ1) Q=Q*Z
    IF(IQBTYP.EP.2)Q=O*4.
C
C5- CAALCOULATE ACTUAL WELL LOCATION IN MODEL UNITS
    DC =0.
    DR=0.
    DL =0.
C
    DO20I=1, IR
    DC=DC+DELC(I)
    20 CONTINUE
        DO2SST=1,1,\
        DR=DR+DELR()
    25 CONTINUE
        DO30K=1,ll
        DL=DL\ddaggerDELLAC,IRKK)
    30 CONTINUE
C
    YO1=DC-[п#HIC(IMR)
        YO2=DC
        XO1=DR-DEELRAC)
        XO1=DR
        ZOh=DL - DELL(IC,IR,IL)
        ZO2=DL
C
C6-COULL SUBROUTINE TO CALCULATE QBULK FOR AN ELLIPSOID
```



```
    50 CONTINUE
C
C7-_NOW ADD EFFECTS OF RECHARGE TO QBULK DEPENDING ON
```

```
        C NRRCHOPP.
        1000 IF(NRCHOP.GT.3 .OR. NRCHOP.LT.1) GOTO 2000
        DO2|RR=1,NNR(OW
        DO 2IIC=1,NMCOL
        C
```



```
            IF(NRCHOPNE.1) GOTO 100
            IF(IBOUNND(IIC,IR,,I).FP(Q) GOTO 2
            IF(RECH4C,IW)H(Q(0.) GOTO 2
            QBZ(IC,IR_1)=QBZ(IC,IR,1)-RECH(1C,\IR))/(DBEIRR(ICC)*DEELC(IR))
            GOTO 2
\varepsilon
```



```
        100 IF(NRCHOPP.NE.2) GOTO 200
            IL=IRCHH(IC,IR)
            IF(IBOUND(1CO,RRN,II))IIE(0) GOTO 2
            IF(RECH(ICIIR)H(Q0.) GOTO 2
```



```
            GOTO2
C
```



```
    200 DO 4ILL=1,NULAY
            IF(IBOUNDPIIC,WR1II)ITIO) GOTO 2
            IF(IBOUND(IC,/IR,\IL))IE(O) GOTO 4
```



```
            GOTO 2
C
    4 CONTINUE
    2 CONTINUE
E
C8--m-RETURN
2000 RETURN
            END
```

List of Variables for Module OBKIFM

Variable	Fange	Definition
DC	Module	Location of the well in model units in the column directio
DELC	Global	DIMENSION (NROW), Cell dimension in the column direction. DEICCC(D contains width of row I.
DELL	Global	DIMENSION (NCOL,NROOWNNLAY), Cell dimension in the layer direction.
DELR	Global	DIMENSION (NCOL), Cell dimension in the row direction. DELIR(D) contains width of column J.
DL	Module	Location of the well in model units in the layer direction.
DR	Module	Location of the well in model units in the row direction.
1	Module	Index for rows.
IACT	Global	DIMENSION (NCOL,NRROWN,NLAY), Bouñztay array identifying active cells in which displacement is calculated:
IBOUND	Global	DIMENSION (NCOIL,NRROWN,NNLAY), Status of each cell. $\leqslant 0$ constant-head cell $=0$ inactive cell $\geqslant 0$ variable-head cell
IC	Module	Index for column location of pumping or discharging well.
IL	Module	Index for layer location of pumping or discharging welll.
LQBTYP	Package	Flag indicating type of simulation. $\Rightarrow 0$ Full aquifer is simulated $\equiv 1$ One half aquifer is simulated with well at center of circle. $=2$ One quarter of aquifer is simulated with well at center of aquifer wedge.
F8	Module	Index for row location of pumping or discharging well.
J	Module	Index for columms.
K	Module	Index for layers.
KPER	Global	Stress peririod counterr:
NCOL	Global	Number of colutrms in the grid.
NLAY	Global	Number of layers in the grid.
NRCHOP	Global	Recharge optiom: =1 Recharge is to the top grid layer: $=2$ Recharge is to the grid layer specified in array IRCH. $\equiv 3$ Recharge is to the highest variable-head cell which is not below a constant-head cell.
NROW	Global	Number of rows in the grid.
NWELLS	Global	Number of wells active during the current sfress period.
Q	Global	Rate at which the well adds water to the aquifer (negative for' discharging wells).
QBX	Global	DIMENSION (NCOL,NR(OWN,NLAY), Bulk flux in the X-direction.
QBY	Global	DIMENSION (NCOL,NR(OW,NLAY), Bulk flux in the Y-direction.
QBZ	Global	DIMENSION (NCOL,NR2(WW,NLAY), Bulk flux in the Z-direction.
RATIO	Qlobal	DIMENSION (NCOLSNR(OWWNLAY), Ratio of vertical to

List of Variables for Module OBKIFM fContinued)

Yariabls Range

Definition

horizontal hydraullic conducttimitys.
RECH Global DIMENSION (NCOL, NROW), Recharge flow rate. Recharge flux is read into RECH and then multiplied by cell area to obtain recharge flow rate
TOTIM Global Total simulation time.
WELL Global DIMENSION (4, MXWELL), For each well: layer, row, column, and recharge rate of the well.
XO1 Module Distance in the X direction to the left edge of the cell containing the well.
X02 Module Distance in the Q direction to the right edge of the cell containing the well
YO1 Module Distance in the Y direction to the front edge of the cell containing the well.
Y02 Module Distance in the Y direction to the back edge of the cell containing the well.
ZO1 Module Distance in the \mathbf{Z} direction to the top edge of the cell containing the well
Z02 Module Distance in the \mathbf{Z} direction to the bottom edge of the cell containing the well

Narrative for Module OBKIOT

This module prints or saves bulk flux terms in all three component directions according to flags set by the user for each stress period. If flag IQBKPR is set for a stress period, then bulk flux values will be printed according to the format set by flag IQBAKIM. First the X component values of bulk flux will be printed, followed by the Y and then Z component values, respectively. Similarly, if flag IQBKSV is set for a stress period, then unformated bulk flux values will be saved to disk.

Module QBKIOT is called each stress period and performs its functions in the following order

1. Read flags for printing and saving bulk flux terms
2. Print bulk flux terms if flag IQBKPR is set.
3. Save bulk flux terms if flag IQBKSV is set.
4. RETURN.

Flow Chart for Module OBKIOT

IQBKPR is the print flag for the current stress period.
$\geqslant 0$ print bulk flux terms $\varepsilon=0$ do not print bulk flux terms.

IQBKSV is the save flag for the current stress period.
$\geqslant 0$ save bulk flux terms $\leqslant=0$ do not save bulk flux terms

SUBROUTINE QBKIOT(QBX,QBXQBZ,NCOL,NROWY,NLAY,IQBKOC,I

C
C. *************************มเ***********************

C PRINTS DIRECTIONAL COMPONENTS OF QBULK

C
C SPECITICATIIONS:
C
CHARACTERMTEXT
DIMENSION QBX(NCOL,NRQMWNLAYY),QBY(NCOLLNEQWWILAYYX, 1 QBZ(NCOL,NROW, NLAY),TEXIT(43) DATA TEXT(1,10$),$ TIEXTR $(2,1), \operatorname{TEXT}(3,1), \operatorname{TEXT}(4,1) / / \quad / \%$

3' V '/Z-Q'/BULK'7
C
C
C1——READ FLAGS FOR PRINTING AND SAVING IF(IQBKOCLIEO) GOTO 500 READ(ON(5) IQBKPRJUBBKSV
5 FORMAT(210)
WRITEAOUIT,6) IQBKPRJQBKSV
6 FORMATR(/,1X/\{FLAGS FOR PRINTING AND STORING QBULK VALUESS: 7
4 1' IQBKPR IQBKSV 7
2'-_-7
3 16,110)
C
C2—PRINT QBULKK VALUES IF IQBKPR IS SET
IFIQBKPPRUEO) GOTO 20 -
DO $10 \mathrm{~K}=1$, NLLAY
IF(IQBBKFHMIITO) THEN
CALL ULAPPRS(OBX (11,1, ,KK $)$,TIEXT (1,11),KSTP,IKPEI,NVCOL,NROW,K,-IQBKFM,
1 IOUT)
CALL ULAPRS(QBY(1,1,40,TEXT(1,2),KSTP,ISP跟,NCOL,NROW,K,-IQBKFM, 1 IOUT)


```
            1 IOUT)
            ENDIF
            IFCIOBKGFMM(GFO) THEN
            CALL ULAPRW(QBX(L,N,K),TEXT(1,1),KSTP,,KPERR,NCOL,NROW,K,IQBKFM,
            1 IOUT)
            CALLULLAPPRW(OBY(LhIK),TEXT(URKISSTP)KPPERNNCOL,NRCOWIK,IQBKFMM,
            1 IOUT)
            CALL ULAPPRW(OBZZ(1,n,N,K),TEXIT(LA))KSSITP,KPER,NCOL,NROWW,K,IQBKFM,
            1 IOLJD
            ENDIF
            10 CONTINUE
    C
    C3___SAVE QBULK VALUES IF IQBKSV IS SET
        20 IF(IQBKSSWLEEO) GOTO 500
            DO 15 K=1,NLAYY
            CALL ULASAV(QBX(1,1,K),TEXT(1,1),KSTP,KPPER,PERITIM\,TOTIM_NCOL,
            1 NROW,K,IQBKUN)
            CALLULASAV(QBY(1,hJK),TEXT(IL),MSSTBMPPEPRPPETRTM,TOTIM,NCOL,
            1 NROW,K,IQBKUN)
            CALLUUASSAV((QBZZ(1,LLK),TEXT(13),HSSTPP,KPPER,PERTIM,TOTTM,NCOL,
            1 NROW,K,IQBKUN)
    15 CONTINUE
C
C4--m-RETURN
    900 RETURN
        END
```


List of Variables for Module OBKIOT

Yariable Range
IN Package Primary unit number from which input for this package will be read.
IOUT Global Primary unit number for all printed output. IOUT $\equiv 6$.
IQBKFM Package Flag for identifying what format to use to print bulk flux values
IQBKOC Package Flag for calculating bulk flux terms.
$\geqslant 0$ calculate bulk flux terms.
$\leqslant=0$ do not calculate bulk flux terms.
IQBKPR Module Flag for printing after current stress period. $\geqslant 0$ print bulk flux values. $\leqslant=0$ do not print bulk flux values.
IQBKSV Module Flag for saving after current stress period. $\geqslant 0$ save bulk flux values. $\leqslant=0$ do not save bulk flux values.
IQBKUN Package Flag identifying unit number to which bulk flux terms will be saved.
K Module Counter for layers.
KPER Global Stress period counter.
KSTP Global Time step counter.
NCOL Global Number of columns in the grid.
NLAY Global Number of layers in the grid.
NROW Global Number of rows in the grid.
PERTIM Global Elapsed time during current stress period.
QBX Global DIMENSION (NCOL,NRROWW,NLAYY), Bulk flux in the X directiom
QBY Global DIMENSION (NCOL,NRYOIW,NLAY), Bulk flux in the Y dinection.
QBZ Global DIMENSION (NCOL,NBROMW,NLAY), Bulk flux in the Z direction.
TEXT Module Label for printout of input anamye
TOTIM Global Elapsed time in the simulation.
$+$

Narrative for Module SOBKIL

This submodule is called by QBK1RP once for each layer in the grid to calculate the thickness of all the cells in the active grid. Modflow only caltoulates cell thickness when the LAYCON type is 1 or 3 . This module assigns thickness to cells where the LAYCON type is 0 and 2 because the displacement model requires that cell thickness be known. The initial thickness for the water table layer (when LAYCON $=1$) is set to be the difference between the steady-state water level in the cell minus the base elevation of that cell. Hence, it is assumed that the steady-state water levels have already been established before the displacement model is used. It should also be noted that if the water level rises above this initial thickness, thie adjustment is made in the displacement package

The Module SQBKIL performs its tasks in the following onder.

1. Calculate cell thickness based on LAYCON type for the given layer.
2. RETURN.

Flow Chart for Module SQBKIL

LAYCON is a layer-type code (one for each layer).

0 - confined
1 - unconfined
2 - confined/umcomfined but transmissivity is constant
3 - confined/umcomfined


```
SUBROUTINE SQBK1L(KK,KT,KB,KR,TOP,BOT,BASE,QSURF,DELL_NCOL,
        1 NROWW,NLLAY,HNEW)
C
E
C COMPUTE VERTICAL GRID SPACING AT ROW AND COLUMN LOCATIONS
```



```
C
C SPECIHICADIONNS:
C- DOUBLE PRECISION HNEW
DIMENSION TOP(NCOL,NMOWL,NDAYB,ODUNUODE IRROOWDNIAAY),
1 BASE(NCOL,NROW,NIAY),QSURF(NCOL,NROW,NLAY),DELH(NNGOL,
2 NROW,NLAY),HHNEW(NCOLNNR(OWMNLAY)
C
    COMMON //RLWCOM/ILAYCON(SOO)
```



```
C
Cl____CALCULATE THICKNESS OF EACH CELL IN THE LAYER.
        D02SSIf=11,N|ROW
        D0253j]=1,
        IF(LAYCON(KKK).EQ(O .OR. LAYCON(KK).EQ. 2) GOTO 100
        IF(LAYCCON(KK).EQ.1) GOTO 40
        IF(KK.IP.1I)THEN
```



```
        ELSE "
                        ~
            DELL(GIJ<<K)=TOP(ILKT)-BOTGIKKB)
        ENDIF
        GOTO 25
        40 DELL(%,I,KK)=WNEWGjiKKM)
        GOTO 25
C
```



```
    25 CONTINUE
C
C2-_RETURN
        RETURN
        END
```

List of Variables for Module SOBKIL
:
VariaMls Range
Definition
BASE Package DIMENSION (NCOL,NRXOWWNLAY), Elevation of the bottom of cells in layers where LAYCON is 0 or 2
BOX Global DIMENSION (NCOL,NRROWMNLAYY), Elevation of the bottom of cells in layers where LAYCON is 1 or 3.
DELL Global DIMENSION (NCOL_NRZOWWNLAY), CeUl dimension in the layer direction.
HNEW Global DIMENSION (NCOL,NRROWW,NLAY), Initial steady-state head value initially assigned in the Basic Package.
I Module Index for rows.
J Module Index for columns.
KB Module Counter for layers where BOX is needed (wihen LAYCON is 1 or 3).
KK Module Index for layers
KR Module Counter for layers whete BASE and QSURF are needed (when LAYCON is 0 or 2).
KT Module Counter for layers where TOP is needed (when LAYCON is 2 or 3).
LAYCON Global DIMENSION (80), Layer type code:
0 - Layer is strictly confined.
t-Layer is strictly unconfined.
2 - Layer is confined/umcomfined (transmissivity is constant
3 - Layer is confimed/unconfined (transmissivity is variablle).
NCOL Global
Number of columns in the grid.
NLAY Global Number of layers in the grid.
NROW Global Number of rows in the grid.
QSURF Package DIMENSION (NCOL_NRROWNULAY), Elevation of the top of cells in layers where LAYCON is 0 or 2
TÓP Global DIMENSION (NCOL,NRROMWNLAY), Elevation of the top of cells in layers where LAYCON is 2 or 3

Flow Chart for Module SQBKIE

QBX is the component of bulk flux in the X direction.

QBY is the component of bulk flux in the Y direction.

QBZ is the component of bulk flux in the Z direction.

1 NCOLLNROWU,NLAYRATIO,DELLR,DELC,DELLL,ILIR,IC)
C
C
C ***
C CALCULLATE QBULK IN THREE DIMENSIONS ASSUMING A PROLATE
C SPHEROID AT THE CENTER OF EACH CELL. EXCEPTION IS AT THE WATER
C TABLE WHERE QBULK IS CALCULATED AT THE BOUNIDARY
C

C
C SPECIICATIONS:
X
c
DIMENSION QBX(NCOL,NROW,NLAY),QBY(NCOL,NIROW/NLAY), 1 QBZNCOL,NR(OW,NLAY),IACT(NCOL,NROW,NLLAY),RATIO(NCOL, 2 NROW,NLAY),DELLR(NCOL),DELC(MNROW),DELLINCOL,NROWNLAY)
C
Pl=4.*ATAN(1.0)
C
C
C1-_SET INITIAL SPACING TO ZERO
$D C \equiv 0$.
$\mathrm{DR} \equiv 0$.
$\mathrm{DL} \equiv 0$.
e-
C2--_ILOOP THROUGH ENTIRE ACTIVE GRID AND CALCULLATE QBULK DO $60 \mathrm{KK} \equiv 1$, NLLAY
DO $60 \mathrm{H}=1$,NROW
DO $60.0 \mathrm{JJ}=\mathrm{L}, \mathrm{NCOL}$
C -
C3-__-CHECK TO SEE IF THE CELL IS ACTIVE
IF(IACT(JJ, H1KKK)) E(D(Q) GOTO 60
C
C4----CCAUCCULIATE THE ECCENTRICITY AT EACH CELL
ECC=SQRT(1.0-(RATIOOOJIM,KKK)))
ESQR=1.0-ECC*ECC
D0335L $=\mathrm{L}, \mathrm{II}$

```
            DC=DC+DELC(L)
    35 CONTINUE
            DO 45 M=1,\J
        DR=DR+DELR(M)
    45 CONTINUE
        DO 55 N=1,KK
        DL=DL`DELL(J,H,N)
    55 CONTINUE
C
C5-COMPUTE CELL-CENTER LOCATIONS
    Y=DDC-DHILC(H)}/
    X=DR-DELR(IID)/2.
```



```
        Z=DL-DELL(JJ,II,KK)
        ELSE
            Z=DL-DELL(O),N,KK)/2
            ENDIF
            IF(NLAY.EQ.1) Z=DL-DELL(JJIII,KK)/2.
            DC=0.
            DR=0.
            DL=0.
C
C6-__-_CALCULLATE THE DISTRANCE FROM THE WELL TO THE CELL OF
C INTEREST AND CALCULATE ITS SQUARE
    IFOHHLTIKCOTHEN
    XXO=X-XOI
    ELSEIHOM.OTTCOTHEN
    XXO=X-XO2
    ELSE
    XXO=0.
    ENDIF
    IF(ILLTIRR)THEN
    YYO=Y-YOI
    ELSEIF(IIIGIIRQ)THEN
    YYO=Y-YO2
    ELSE
    YYO=0.
```

```
ENDIF
IF(KK.LII1))THEN
ZZOZZZO1
ELSEIF(KKKGIII)THEN
ZZO=Z-ZO2
ELSE
ZZO \(=0\).
ENDIF
C
XSQR=XXOHXXO
YSQR \(=\) YYO \({ }^{*} Y Y O\)
ZSQR=ZZO*ZZO
C
C7——CALCULATE THE AXES LENGTHS OF THE OBLATE SPHERIOD
\(R A D=S Q R T(X S Q R \neq Y S Q R+Z S Q R)\)
IF(RAD.LT.0.01) RAD=1.0
IF(NLAXXEQQ) 1cFOTO 7
IF(ZZOLT.DELL(D,n,IL) .AND. DELL(J,Hi,IL).GT.RAD) RAD=DELL(JJ,I,IL)
GOTO 8
7 RAD \(=\) DELLOJMKK)
```



```
IF(AMAJIIT:0.OI) AMAJ=1.0
\(B M I N=A N K A J J S Q R T T(E S Q R)\)
C
C8- - DETERMINE THESURFACE AREA OF THE OBLATE SPHERIOD
IF(ECCLLT.0.0001) THEN
SA=4*PI*AMAJ*AMAJ
ELSE
\(\mathrm{XECC}=A L O C I((11+\operatorname{HCC})) /(1-E C C))\)
```



```
ENDIF
IF(NLAY.齿Q1) SA=2 2 PI*AMAJ*AMAJ
C
C9-_CALCULATE BULK FLUX FOR THIS WELL IN EACH COMPONENT
C DIRECTION. THEN ADD THE VALUE TO ANY PREVIOUS BULK FLUX
C FROM OTHER WELLS.
```



```
            QBY(aim)(Md))=(QBYY(D,n,MSKK)+Q*YYO/(SA*RAD)
            IF(ZZO.EOO) GOTO 100
            IFOXXO.EQ.0 .AND. YYO.EQ(O) THEN
            CALLSQBKHW(ZZOQQEESQR,DELR(J),DHLC((A),HCC,ZOBZ)
                QBZ(J)\Pi,KKK)=QBZ(J),\Pi,KK) }=0.80*ZQBZ*0.20*(Q*ZZZO)/(SA*RAD)
                GOTO }6
                ENDIF
```



```
        6 0 ~ C O N T I N U E ~
C
ClO--_RETURN
        RETURN
        END
```


List of Variables for Module SOBKIE

Variablig Range
AMAJ Module Length of the major axis of the oblate spheroid. The major axis is aligned in the X and Y directions. Thus it is assumed that there is no horizontal anisotroppy.
BMIN Module Length of the minor axis of the oblate spheroid. The minor axis is aligned in the \mathbf{Z} direction.
DC Module Distance to cell of interest along a column.
DELC Global DIMENSION (NROW), Cell dimension in the column direction. DELC(I) contains the width of row I.
DELL Global DIMENSION (NCOL,NROWN,NLAY), CeUl dimension in the layer direction.
DELR Global DIMENSION (NCOL), Cell dimention in the row direction. DELR(J) contains the width of column J .
DL Module Distance to cell of interest along a layer.
DR Module Distance to cell of interest along a row.
ECC Module Eccentricity of the cell.
ESQR Module 1-ECC ${ }^{2} 2$
IACT Global DIMENSION (NCOL,NRROWNNLAY), Boundary array for displacement.
>0 cell is active $<\equiv 0$ cell is inactive
II Module Index for rows.
S IC Package Column identifying location of pumping well.
IL Package Layer identifying location of pumping well
IR Package Row identifying location of pumping well.
J Module Index for columns.
KK Module Index for layers.
L Module Index for current row number.
M Mödule Index for current column niumblber.
N Module Index for current layer numiber.
NCOL Global Number of columns in the grid.
NLAY Global Number of layers in the grid.
NROW Global Number of rows in the grid.
PI Module Equivalent to Jt .
Q Global Pumping or injection rate.
QBX Global DIMENSION (NCOL,NRROWW,NLAY), Bulk flux in the X-directiom.
QBY Global DIMENSION (NCOL,NRROWN,NLAY), Bulk flux in the Y-direction.
QBZ Global DIMENSION (NCOL,NRROWV,NLAY), Bulk flux in the Z-directiom.
RAD Module Radial distance from the center of the cell containing the well to the center of the cell of interest.
RATIO Global DIMENSION (NCOL,NR(OWONLAY), Ratio of vertical to horizontal hydraulic conductetivisity.
SA Module Surface area of the oblate spheroid.

List of Variables for Module SOBKIE (Condnued)

Variable X	Range XECC		
Module			
Module			Distance in the X direction to the center of the cell of interest
:---			
Termporay variable to combine log-transformed eccentricity values			
for computing the surface area			

Narrative for Module SOBKIW

Module SQBK1W is called by module SQBK1E if a correction to the bulk flux in the z direction needs to be made at the wellbore. An adjustment is made at the row and column location containing the well so that the bulk flux is not calculated for simply a point, but rather is adjusted taking into accoint the area of the cell containing the pumping well. This correction keeps the calculated displacements from becoming uinrealistically large at the wellbore.

This submodule performs its tasks in the following onder.

1. Determine distance from wellbore center to cell edge containing the pumping well.
Z. Calculate directional component of radius from wellbore to cell edge.
2. Calculate radial distance to cell edge and spheroid axes lengths.
3. Determine surface area of prolate spheroid.
4. Determine adjusted bulk flux in z direction
5. RETURN

Flow Chan for Module SOBKIW

ZQBW is the adjusted value of bulk flux in the Z direction at the wellbore.

List of Variables for Module SOBKIW

Variable	Reosel	Definition
AMAJ	Module	Length of the major axis of the oblate spheroid. The major axis is aligned in the X and Y directions. Thus it is assumed that there is no horizontal anisotropyy.
BMIN	Module	Length of the minor axis of the oblate spheroid. The minor axis is aligned in the \mathbf{Z} direction.
DCWELL	Module	Width of the column containing the pumping well
DRWELL	Module	Width of the row containing the pumping well.
ECC	Package	Eccentricity of the cell.
ESQR	Package	1-ECCM2.
PI	Module	Equivalent to $\%$.
Q	Global	Pumping or injection rate.
RAD	Module	Radial distance from the center of the cell containing the well to the edge of the cell containing the well.
SA	Module	Surface area of the spheroid.
XECC	Module	Tomporary variable to combine log-transformed eccentricity values for computing the smface area
XSQR	Module	XXOZ ${ }^{\text {² }}$ (XOZ
XXOZ	Module	Radius of cell containing well in the X direction.
YSQR	Module	YYOZ*'YYOZ
YYOZ	Module	Radius of cell containing well in the Y direction.
ZQBW	Module	Adjusted value of bulk flux in the z direction at the wellbore.
ZSQR	Package	ZZO'ZZO

Narrative for Module SOBKIU

This module calculates the ultimate steady-state specific discharge for a given set of stresses applied to the aquifer system. This ultimate specific discharge field is identical to the ultimate bulk flux field according to the Damy-Gersewanov-Helm law. That is, at the new steady-state the velocity of solids is equal to zero. These new ultimate bulk flux values are substituted into the governing equation for the bulk flux after approximately 5 minutes of simulation time. The true distribution between the mitial and ultimate bulk flux values needs to be determined empirically and is beyond the scope of this studly.

This module is caillled by QBK1ST and performs its tasks in the following onder.

1. Calculate volume flux through right face of cell
2. Calculate volume flux through front face of cell
3. Calculate volume flux through lower face of cell.
4. Calculate cell thickness
5. Calculate ultimate values of specific discharge in the X direction
6. Calculate ultimate values of specific discharge in the Y direction.
7. Calculate ultimate values of specific discharge in the \mathbf{Z} direction.
8. RETURN

QX is the volume fluid flux through the right cell face in the X direction.

QY is the volume fluid flux through the front cell face in the Y direction.

QZ is the volume fluid flux through the lower cell face in the \mathbf{Z} direction.

SPX is the ultimate steady-state specific storage values in the X direction

SPY is the ultimate steady-state specific storage values in the Y direction.

SPZ is the ultimate steady-state specific storage values in the \mathbf{Z} direction.

DO $11 \mathrm{~K}=1, \mathrm{NLLAY}$
DO $11 \mathrm{~J}=1, \mathrm{NCOL}$
DO 11 I=L,NROW

$\mathrm{QY}(\mathrm{fi} 1 \mathrm{~K})==(\mathrm{a}$.
QZdIIK) $=0$.
11 CONTINUE
C
NCM1 $=$ NCOL- 1
IF(NCM1.LT..1) GOTO 105

C
C1-FOR EACH CELL CALCULATE FLOW THROUGH RIGHT FACE AND STORE
C INQX
$\mathrm{KB}=0$
$\mathrm{KT}=0$

```
KR=0
DO1 DOCKE E1,NNLAYY
BP(LL)
IF(LAYCON(K).EQ.3 OR. LAYCON(K).EQ.2) KT=KT %11
IF(LAYCON(K).EQ20 OR. LAYCON(K).EQ.2) KR=KR+11
DO }100\mathrm{ I=1,NRROW
DO1000手1,NCCMM
IF((IBOUNDGIKK)LE.O).AND.(IBOUNDO+L,\KX)UEE(0)) GOTO 100
HDIFF=HESSM,NW-HSS(0+1,1KS)
IF(LAYCON(K).EQ.3 .OR. LAYCONOO.EQ.1) THEN
```



```
IF(LAYCCON(K).EQ.1) GOTO 5i
IF(HD.GT:TOHP\,KT)) HD=TOPG\,M,KT)
51 Th=:HTCOI\WB)*(HD-BOTGIJKB))
T2=HY(0+11,I,KB)*(HD-BOT(,|KB))
ELSEIF(LAYCON(OK).EDOO .OR. LAYCON(K).EQ.2) THEN
Tl=TRANOMKRR)
T2=TRAN(G+1/KKR)
ENDIF
IF(TITHIQ(Q. .OR. T2.EQ.0.) GOTO 100
CR=2T4F2%*DELC(II)/(TTYDELR(I*L))+12*DELR(#))
QX(0,I,K)=HIDHIFPP'CR
100 CONTINUE
C
105 NRM1=NROW-1
IF(NRM1.LT.1) GOTO 205
C
C2--HOR EACH CELL CALCULATE FLOW THROUGH FRONT FACE AND STORE
C INQY
    KB=0
    KT=0
    KR=0
    DO2O0KE=1,WNLAXY
    IF(LAYCON(K).EQ.3 .OR. LAYCON(K).EQ. 1) KB=KB*|
    IF(LAYCON(K).EQ.3 .OR. LAYCON(K).EQ.2) KT=KT 
    IF(LAYCON(K).EQSO.OR. LAYCON(K).EQ.2) KR=KR+11
    DO200I=h,NRROW
```

DO200.J $=1, \mathrm{NCOL}$
HDIFF=HSS(IIK) $-1+5 S(0, I+1,1 K)$
IF(LAYCON(K).EQ. 3 .OR. LAYCCON(K).EQ.1) THEN
HD=HSS(JiLK)
IF(LAYCON(K) IM. 1) GOTO 52
IF(HD.GT.TOP(), L, KT)) HD=TOP(JU,KT)

ELSEIF(LAYCON(KK).EQ.O .OR. LAYCON(K).EQ.2) THEN
T1=TRANG4,KR)
T2 $=$ TRAN(JJI $+11, K R R)$
ENDIF
IFCI1.EQ0. .OR T2.EQ.0.) GOTO 100

QY(J,I,K)=HDIIFF*CC
200 CONTINUE
C
205 NLLMLI=NILANK-1
IFONLMMI.LT.1) GOTO 500
C
C3---FOR EACH CELL CALCULATE FLOW THROUGH LOWER FACE AND STORE
C INQZ
KT=0
vDO $300 \mathrm{~K}=1, \mathrm{NLM1}$,
IF(LAYCON(K).EQ. 3 .OR. LAYCON(K).EQ.2) KT $=$ KT $* \mathbb{1}$
DO $300[=1$,NROW
DO300.J=L,NCOL

$\mathrm{HD}=\mathrm{HSSO}, \mathrm{L}, \mathrm{K}+1)$
\rightarrow
IF(LAYCCON(KK+1).NE. 3 .AND. LAYCCON(K+1).NE.2) GOTO 350
TMP $=\mathrm{HD}$
IF(TMP.LT.TOPO,LKT +1) $\mathrm{HD}=110 \mathrm{H}\left(\frac{1}{1 / K} \mathbf{T}+1\right)$
350 HDIFF=HSSg,L,K)-HD

300 CONTINUE
C4-CALCULATE CELL THICKNAESS
$500 \mathrm{~KB}=0$
KT $=0$
DO201K
IF(LAYCON(K).EQ.2 .OR. LAYCON(K).EQ.3) KT=KT +1
IF(LAYCON(K).EQ.1 .OR. LAYCON(K).EQ.3) KB=KB\#11
DO20II=h, NRROW
DO20.J $=1, \mathrm{NCOL}$
IF(IBOUNDAIIIK)IIE(0) GOTO 20
IF(LAYCON(KK)NFE (OND. LAYCON(K).NE.2) GOTO 30
THCK $=$ DELL $(, \ldots, 1,1)$
GOTO 25
$30 \mathrm{HD}=\mathrm{HSS}(\mathrm{d}, \mathrm{K})$
BP(CLAYCONN(KDHQ1) GOTO 28

28 THCK=HD-BOT(JIKKB)
C5-CALCULATE ULTIMATE SPECIFIC DISCHARGE IN X

QX1 $=0$.
QX2 $=0$.

XAREA= DILLC(M)THCK
SPX $\left.\|_{,}, 1, K\right)=0.5^{*}($ Q $2 / 2 / X A R I E A+Q X 1 / X A R E A)$
C6--CALCULATE ULTIMATE SPECIFIC DISCHARGE IN Y
v 26 IF(NROW.EQ. 1 KIOTO 27
QY1 $=0$.
QY2 $=0$.
IFa.NE. 1 .AND. ($-1 \mathbf{N}$ NE O. ANDII
IF(NELENROW) QY2=QY(, $, \mathrm{L}, \mathrm{K})$

C7-CALCULATE ULTIMATE SPECIFIC DISCHARGE IN z
27 IF(NLAYHQ1)SOTO20
$Q Z 1=0$.
QZ2 $=0$.

IF(K.NE.NILAY) QZ2 $=$ QZOUKK)

ZAREA=DELR (J)*DEELCA 20 CONTINUE
 C
 C8-RETURN RETURN
 END

V

List of Variables for Module SOBKIU

Variabla	Range	Definition
BOT	Global	DIMENSION (NCOL,NIROW,NBOT), Elevation of the bottom of each layer. ONBOT is the number of layers for which LAYCON = 1@r 3.)
CC	Module	Temporary variable for conductance in the column direction.
CR	Module	Temporary variable for conductance in the row direction.
CV	Global	DIMENSION (NCOL,NRKOW,NLAY), Conductance in the layer direction. CVO, I,, K) contains conductance between nodes $0, \mathrm{I}, \mathrm{K}$) and $(6 i K(t+1))$.
DELC	Global	DIMENSION (NROW), Cell dimension in the column direction. DELC(I) contains width of row I.
DELL	Global	DIMENSION (NCOLL,NRROWO,NLAM), Cell dimension in the layer direction.
DELR	Global	DIMENSION (NCOL), Cell dimension in the row direction. DHIRP() contains width of column J.
HD	Module	Temporary variable for HSS.
HDIFF	Module	Head difference between adjacent rows, columns, or layers.
HSS	Package	DIMENSION (NCOL,NROWN,NLAY), Lutimate steady-state heads used to calculate the ultimate bulk flux values.
I	Module	Index for rows.
IBOUND	Global	DIMENSION (NCOIL,NRROWU,NLAY), Status of each cell $\leqslant 0$, constant-head cell $=0$, inactive cell $\geqslant 0$, variable-head cell.
J	Module	Index for columns.
K	Module	Index for layers
KB	Module	Counter for the number of layers for which the bottom elevation is needed (LAYCON $=1$ or 3).
KT	Modmulbed	Counter for the rtititiber of layers for which the top elevation is needed (LAYCON $\equiv 2$ or 3).
KR	Module	Coimter for the number of layers for which the transmissivity is needed (LAYCON $=0$ or 2).
LAYCON	Global	DIMENSION (80) Layer type code: 0 - Layer strictly confined 1 - Layer strictly umconfined. 2 - Layer confined/umcomfined (transmissivity constant). 3 - Layer confined/umeonfinned (transmissivity variable).
NCM1	Module	NCOL-1.
NCOL	Qlobal	Number of columns in the grid.
NLAY	Global	Number of layers in the grid.
NLM1	Module	NLAK-1.
NRM1	Module	NROW-1.

List of Yariables for Module SOBKIU (Continued)

VariaMe	Ranee	Definition
NROW	Global	Number of rows in the grid.
QX	Package	DIMENSION(NCOLSWRROW,NLAYY), Vollume fluid flux across the right cell face in the X direction
QX1	Module	Volume fluid flux at lowest active colvmn with variable head.
QX2	Module	Volume fluid flux at highest active coluirm with variable head.
QY	Package	DIMENSION(NCCOL,NRROW,NLAYY), Volume fluid flux across the front cell face in the Y direction
QY1	Module	Volume fluid flux at lowest active row with variable head.
QY2	Module	Volume fluid flux at highest active row with variable head.
QZ	Package	DIMENSHONCOL,NROW,NLAY), Volume fluid flux across the bottom cell face in the \mathbf{Z} direction.
QZ1	Module	Voliume fluid flux at lowest active layer with variable head.
QZ2	Module	Volume fluid flux at highest active layer with variable head.
SPX	Global	DIMENSION (NCOLL,NROWWNULAY), Ultimate specific discharge or ultimate bulk flux in the X direction.
SPY	Qloblbal	DIMENSION (NCOLL,NROWWNLAY), Ultimate specific discharge or ultimate bulk flux in the Y direction.
SPZ	Global	DIMENSION (NCOLL,NROUW,NLAY), Ultimate specific discharge or ultimate bulk flux in the \mathbf{Z} direction.
T1	Module	Temporary variable for transmissivity at I or J location
T2	Module	Temporary variable for transmissivity at $\mathrm{I}+1$ or $\mathrm{J} \neq 1$ location.
THCK	Module	Thickness of cell.
TMP	Module	Temporary variable for HD.
XAREA	Module	Cross-sectional area of cell perpendicular to the X direction.
YAREA	Module	Cross-sectional area of cell perpendicular to the Y direction.
!," 2 APRP	Module	Cross-sectional area of cell perpendicular to the Z direction.

Displacement Package Input

Input for Brispitecerment Package (USD) is read from the unit spedilied in IUNIIII((133).
FOR EACH SIMULATION

USLIAL

1. Data: IUSLOC KUNIT

Format no no
2. Data: 8 STIEP XCLOSE IOSTP TCLOSE

Format no Firo.0 no Hmo
USLIRP
Data arrays (items 3 and 4) are readdfor each layerr.
3. Data: "SSE

Module: U2DREL
4. Data: SSV

Module: U2DREL
Data array (item 5) is read for LAYCON type zero or two. Item 5 is read after all of items 3 and 4 have been read
5. Data: TRAN

Module: U2DREL
If IUSLOX >0 then read item 6
6. Data: NMAGFMNUUSXFM NUSYFM NUSZFM NVSTFM

NMAGUNNUSXUN NUSYUN NUSZUN NVSTUN
Format 1015
FOR EACH TIME STEP
USLIOT
7. Data: NMAGPR NUSXPR NUSYPR NUSZPR NVSTPR NMAGSVINUSXSV NUSYSV NUSZSV NVSTSV
Format: 1015

Explanation of Fields Used in Input Instructions

TUSILOG－is the output control flag for displacement
If IUSLOC >0 displacement values will be written or saved according to
flags specified in item 6.
If IUSLOC $\leqslant=0$ displacement values will not be written or saved．
KUNIII－is the length unit used in the simulation
If KUNIT $\equiv 0$ meters are used
If KUNIT $\mathbf{*}$ feet are used．
ISTHETis the maximum number of times through the inner iteration loop in one time step in an attempt to solve the system of finite－difference equations．Two hundred iterations is generally sufficient．
XCLOSE－iis the individual directional component of displacement change criterion for convergence．When the maximum absolute value of residual from all nodes during an iteration is less than or equal to XCLOSE，iteration stopiss，
1OSTR ${ }^{2}$ is the maximum number of times through the outer iteration loop in one time step in an attempt to solve the system of finite－difference equations．Fifty iterations is generally sufficient
TCLOSE－is the total directional component of displacement change criterion for convergence．When the maximum absolute value of ctimulative displacement change from all nodes during an iteration is less than or equal to TCLOSE，íteration stops． S． 8 霊－is the elastic specific storage value in the vertical direction
S．SW－is the inelastic or virgin specific storage value in the vertical direction．
TRANL－is the transmissivity specified in the BCF package for laycon types of zero or two．It is repeated here because the TRAN read by the BCF package is immediately changed to a harmonic mean so these values are never passed to another subroutine． NMAGFM－is the output format code for magnitude of displacement．
NILSSXANA－is the output format code for X－direction displacement．
NUSY雷XL－is the output format code for Y－direction displacement．
NIJSZ雨XI－is the output format code for Z－direction displacement．
NVST 501 －is the output format code for volume strain．
NMAGLDN－is the unit number for saving magnitude of displacement
NUSXUN－is the unit number for saving X－direction displacement NUSYCW－is the unit number for saving Y－direction displacement NUSZUN－is the unit number for saving Z－direction displacement NVSTUNL－is the unit number for saving volume strain． NMAGBR－is the print flag for magnitude of displacement of solids． If NMAGPR $<=0$ magnitude of displacement is not printed If NMAGPR $\geqslant 0$ magnitude of displacement is printed．
NUSXWW－is the print flag for X－direction displacement If NUSXPR $\approx=0$ X－direction displacement is not printed If NUSXPR >0 X－direction displacement is printed
NUSYFM－iis the print flag for Y－dlirection displacement
If NUSXPR <0 Y－direction dispbecement is not printed If NUSXPR >0 Y－direction displacement is printed
NUSZFM－iis the print flag for Z－direction displacement．
If NUS X fer $R<=0$ Z－direction displacement is not printed

If NUSXPR $\geqslant 0$ Z-direction displacement is printed
NVSTEM-is the print flag for volume strain
If NUSXPR $<=0$ voliume strain is not printed If NUSXPR >0 volume strain is paintota.
NMACN-is the save flag for magnitude of displacement If NMAGSV $\varepsilon=0$ magnitude of displacement is not saved. If NMAGSV $\geqslant 0$ magnitude of displacement is saved.
NUSXSX -is the save flag for magnitude of displacement
If NUSXSV $<=0$ X-direction displacement is not saved.
If NUSXSV $\geqslant 0$ X-direction displacement is saved.
NUSYSY-is the save flag for magnitude of displacement
If NUSYSV $<=0$ Y-direction displacement is not saved.
If NUSYSV $\geqslant 0$ Y-direction displacement is saved.
NUSZSYK-is the save flag for magnitude of displacement
If NUSZSV $\leqslant=0$ Z-direction displacement is not saved.
If NUSZSV $\geqslant 0$ Z-directionidisplacement is saved.
NVSTSK-is the save flag for magnitude of displacement
If $\mathrm{NVSTSV} \leqslant=0$ volume strain is not saved.
If NVSTSV $\geqslant 0$ volume strain is saved.

Module Documentation for the Displacement Package

The displacement package (USL1) has four primary modules, three submodules, and two utility modules. All the primary modules are called by the MAIN program.

Primary Modules
USLIAL Allocates space for data arrays. Reads output control flags, iteration and convergence information, and length units flag.
USLIRP Initializes displacements, strains, and print flags. Reads specific storage values, trainsmissivity if needed, and reads format information for printing or saving displacements and volume straims.
USLIFM Formulates anidedikes numerical approximations to governing equations describing the displacement of solids using a dual loop successive overrelaxation technique with Chebyshev acceleratiom. Applies all boundary conditions, and calculates volume strains.
USLIOT Reads print and save flags for displacement and volume strain. Prints or saves displacement values in each component direction, magnitude of displacement, or volume strains after each stress period when the print or save flags are set.

Submodules
SUSLIX Calculates strain in the X direction.
SUSLIY Calculates strain in the Y direction.
SUSL1Z Olkculates strain in the \mathbf{Z} direction.
©

Utility Modules
UBCUSL Calculates magnitude of displacement if print or save flag set
U2USLR Reads transmissivity information if LAYCCON $=0$ or 2.

Narrative for Module USL1AL

This module allocates space for data arrays for the displacement package. It also reads the output control flag, iteration and convergence information, and length units flag. This module performs its tasks in the following onder.

1. Identify package
2. Read flags for calculation and printing or saving displacements, and length units.
3. Print statements for output control, length umits, and space allocation
4. Calculate number of cells and direction with maximum number of cells.
5. Allocate storage for the following arrays:

USLX Displacement in the X direction for each cell in the grid.
USLY Displacement in the Y direction for each cell in the grid.
USLZ Displacement in the Z direction for each cell in the grid.
TEMPX Temporary storage for displacement in X direction
TEMPY Temporary storage fordisisplacement in Y direction.
TEMPZ Temporary storage for displacement in Z direction.
UOLDX Old value of displacement in the X direction.
UOLDY Old value of displacement in the Y direction.
UOLDZ Old value of displacement in the Z direction.
HC Hydraulic conductivity of each cell in the grid.
STRNX Strain in the X direction for each cell in the grid.
STRNY Strain in the Y direction for each cell in the grid.
STRNZ Strain in the Z direction for each cell in the grid.
VSTRN Volume strain for each cell in the grid.
PS Preconsolidation strain for each cell in the grid.
SSE Elastic specific storage for each cell in the grid.
SSV Virgin specific storage for each cell in the grid.
TRAN Transmissivity for cells where LAYCON $=0$ or 2.
SSK Horizontal specific storage for each cell in the grid.
MAG Magnitude of displacement for each cell in the grid.
UX single precision displacement in X direction for plotting.
UY single precision displacement in Y direction for plottimg.
UZ single precision displacement in \mathbf{Z} direction for plotting.
6. Print amount of storage used by the displacement package.
7. RETURN

Rlow Chart for Module USTULAL

IUSLOC is the flag indicating whether displacement is calculated and printed or saved.

IUSLOC >1 Displacements are calculated and printed or saved. IUSILCX $;=0$ Displacements are not calculated, printed, or saved.

KUNIT is the length units flag. KUNIT $=0$ Meters are the units for length
KUNIT=1 Feet are the units for length

ISTEP is the number of inner-loop iterations used to obtain a solution.

XCLOSE is the inner-loop closure criterion. This value should be at least one order of magnitude smaller than the smallest displacement value calculated.

IOSTP is the number of outer-loop iterations used to obtain a solution

TCLOSE is the outer-loop closure criteriom. This value should small enough so that at least 5 outer iterations are performed before closure.

SUBROUTINE USLIAL(ISUM,LENX,LCUSLX,LCUSLY,LICUSSLZ,ICSTRNZ,LCPS,
1 NCOL,NRROWUNLAY,NMAX,LCUMAG,IN,IOUXXUSLOC, KUUNNXILCSMEILCSSV,
2 LCSTRNX,LCSIRNXLCVSITRN,LCTRAN,LCHC,LCSSK,LCCUOLDX,LCUOLDY,
3 LCUOLDZ,ISTEPXCLLOSE,NOSMP?LCCFEMPX,LCTEMPY,LCTEMPZ,
4 TCLOSE,LCUX,LCUY,LCUZ)
C

C ALLOCATE ARRAY STORAGE FOR DISPLACCEMENT PACKAGE
C
c
C SPECTHCATIONS:
C
c
C
C1-HIDEITFIFPREKGGE
WRITE(IOUT,I)IN
FORMAT(1HO,USLLI - DISR PACKAGE CALCULATES HORIZONTAL AND
1 VERTICAL AND HORIZONTAL DISPLACEMENTS AND VELOCITIES OF
2 SOLIDS FROM UNIT NUMMBERY(4)
C
C2--RREADCOUPPUTCCONTREDLHFORIDSSFIAACEBMAENT,AANDUNNTICOF

C CAMIBRION
READ(IN,s) IUSLOC,
5 FORMAT(2110)
READ(IN,9) ISTEP,XCLOSE,IOSTP,TCLOSE
9 FORMAIT(10,F10.0, $\mathbf{1 1 0}$ (10) 10.0)
 IFIUSLOCGIT(0) WRITE(GOUXIS)-
15 FORMAT(1X,'OUTPUT CONTROL RECORDS WILL BE READ EACH TIME 1 STEP)
IF(IUSLOCLILE(0) WRITE(IOUT,17)
17 FORMMAT(IX,'DISPLACEMENT INFORMATION WILL NOT BE WRITTEN')
IF(KUNTT:EQ.O) WRITE(OUUT,19)
IFOONITNEO) WRITE円OUT,21)
19 FORMMAT(//IX','METERS WILL BETJSED AS THE SPACE DIMENSION')

21 FORMAT(/,,1X/,1HEET WILL BE USED AS THE SPACE DIMENSION') WRITE(IOUT, 7) ISTEP,IOSTP IF(NLAKY.LT.2) WRITE (IOUT;80)
80 FORMAIT(dX,NWLAY MUST BE AT LEAST 2. USE IBS PACKAGE FOR FEWER
1 LAYERS THAN 2.'/,/迤, ONILY HORIZONTAL DISPLACEMENT WILL BE
2 SIMUUATITHEX)
7 FORMAII(IX, THE MAXIMUM NUMIBER OF INNER ITERATIONS FOR
 WRITE(IOUT,8) XCLOSE,TCLOSE
8 FORNMAT(1 X,'THE CLOSURE FOR INNER DISPLACEMENT IS',E15.\&.,,
$11 X_{n}^{\prime}$ THE CLOSURE FOR OUTER DISPLACEMENT IS',E15.8)
C
C4-CALCULLATE TOTAL NUMBER OFCHELLS AND DIRECTION WITH MAX
C CELLS

$\mathrm{NRC}=\mathrm{NRO} \mathrm{W}^{*} \mathrm{NCOL}$
NMAX $=$ MLAXO(NCOL,NRROW,NUAY)
C
C5-_ALLOCATE SPACE FOR STORAGE
IUSL=ISUM
LCUSLX $=$ ISUM
ISUM $=$ ISUM + NRRCIL*2
LCUSLY=ISUM
ISUM $=$ ISUM + NRRCL ${ }^{2} 2$
LCUSLZ $=$ ISUM
ISUM=ISUM \ddagger NRRCL +2
LCTEMPX=ISUM
ISUM $=$ ISUM + NRRCL*2
LCTEMPY=ISUM
ISUM $=$ ISUM + NRCIL*2
LCTEMPZ=ISUM
ISUM $=$ ISUM + NRRCIL*2
LCUOLDX $=$ ISUM
ISUM $=$ ISUM + NRRCIL ${ }^{2}$
LCUOLDY \equiv ISUM
ISUM=ISUM + NRRCL +2
LCUOLDZ=ISUM

```
ISUM=1SUMM+NRCCL*2
LCHC=ISUM
ISUM=ISUM #NRCL
LCSTRNZ=ISUM
ISUM=ISUM+NRCL
LCSTRNX=ISUM
LSUM=ISUM }+\mathrm{ NRCL
LCSTRNY=ISUM
ISUM=ISUM+NRCL
LCVSTRN=ISUM
ISUM=ISUM*NRCL
LCPS =ISUM
ISUM=ISUM#NRCL
LCSSE=1SUM
ISUM=ISUM*NRCL
LCSSV=ISUM
ISUM=ISUM}+NRC
LCTRAN=ISUM
BUM=1SUM*NRCL
LCSSK=ISUM
ISUM=1SUM*NRCL
LCUX=ISUM
ISUM=ISUM+NRCL
LCUY=ISUM
r ISUM=ISUMHNRCL
LCUZ=ISUM
ISUM=ISUM*NRCL
IF(UUSIOCLIEO) GOTO 20
LCUMAG=ISUM
ISUM=ISUM*NRCL--
C
C6--_-_PRINT NUMMBER OF SPACES IN X ARRAY USED BY USL PACKAGE
20 ISP=ISUM-IUSL
    WRITE(IOUT,4) ISP
    4 FORNMAT(1X,N// ELEMENTS USED IN USL PACKAGE')
    ISUM1=ISUM-11
    WRITE(IOUT;3)\SUMILILENN
```


C
IFOSUM1.GTT.LENX) WRITEGOUX,6)
6 FORMAIT(XX/***X ARRAY MUST BE DIMENSIONED LARGER ${ }^{\text {ª*** }}$)
C7-_-RETURN
RETURN
END

List of Variables for Module USLIAL

Variable	Range	Definition
IN	Package	Primary unit number from which input for this package will be
read.		

List of Variables for Module USL1AL fContinued)

Variable	Bange	Definition
LCUSLZ	Package	Location in the X array of the first element of array USLZ.
LCUX	Package	Location in the X array of the first element of array UX.
LCUY	Package	Location in the X array of the first element of array UYY.
LCUZ	Package	Location in the X array of the first element of array UZ.
LCVSTRN	Package	Location in the X array of the first element of array VSTRN.
LENX	Global	Length of the X array in words. This should always be equal to the dimension of X specified in the MAIN program.
NCOL	Global	Number of columns in the grid.
NLAY	Global	Number of layers in the grid.
NMAX	Package	Number of cells in either the row, column or layer directionwhichever is greatest.
NRC	Module	Number of cells in a layeirt
NRCL	Module	Number of cells in the grid.
NROW	Global	Number of nows in the grid.
TCLOSE	Package	Qlosure criterion for outer-loop convergemce.
XCLOSE	Package	Qlosure criterion for inner-loop convergemce.

Narrative for Module USILIRP

This module sets the initial values of displacement and strain amd initializes flags for printing and saving displacements and heads. It also reads the elastic and virgin specific storage values for each layer. Transmissivity is also read if LAYCON $\equiv 0$ or 2. Finally, the format for printing and saving displacements and strains is read if IUSLOC is set.

Module USLIRP calls utility modules U2DREL and U2USLR and performs its tasks in the following order:

1. Initializes displacements and strains to zero.
2. Initializes flags for printing and saving displacements and strains to zero.
3. Reads elastic and virgin specific storage values for each layer:
4. If LAYCON $=0$ or 2 read transmissivity values.
5. Read formats and unit numbers for printing or saving displacements and volume strain
6. RETURN

Flow Chart for Module USLIRP
LAYCON is the layertype code (one for each layer).

0 -confined
1 - unconfined
2 - confiimed//uncomfined but transmissivity is constant
3 - confined/umeromfined transmissivity varies

IUSLOC is the flag for printing or saving displacement or volume strain information.
$\geqslant 0$-displacements or volume strains are printed or saved according to specified flags
$\leqslant=0$ - no displacements or volume strains are calculated written or saved

 I NODES, NCOLL,NRRW,NLAYY,IN,IOUTI,IUSLLOC,NMAGFM,NUSXFM,NUSYFM, 2 NUSZZMM,NMAGUNJNUSXUN,NUSYUN,NUSZUN,NVSTFM,NVSTUN, 3 VSTRN,TRAN,NMAX)

c

C INHIULZUSS DISPLACEMENT AND STRAIN ARRAYS BY ASSUMING c UNSTRAINED CONDITIONS. ALSO READS IN TRANSMISSIVITY VALUES IF
C NEEDED

C SPECIFICATIONS:

CHAR ACTIER*4 ANAME
DOUBLE PRECISION USLX,USLY,USLZ
C

1 SSe (NODES) M MUMWHE 6Ω SRSIIENX(NODES)STRNY(NODES)STRNZ(NODIES),
2 PS(NODES),VSTRN(NODES),TRAN(NODES)
C

1 ANAME($(6,1) /$ /HELAS','TIC '/SPEC', /TFC'/' STO'/RAGE'/

C
COMMON / $\mathrm{HLLWCOM} / \mathrm{HAWCON}(80)$
C
C
Cl-SET ARRAYS TO ZERO INITIAL DISPLACEMENT, VELOCITY OF SOLIDS,
C STRAIN AND STRAIN RATE. ALSO ASSUME THAT
C PRECONSOLIDATION STRAAN IS ZERO.
DO 10 OK $=1$ NOMDES
USLX(K)=0.D0
y USLY(K) $=0 . \mathrm{DO}$
USLZ(K) $=0 . \mathrm{D} 0$
STRNX(K)=0.
STRNY(K) $=0$.
STRNZ(K) $=0$.

```
        VSTRN(K)=0.
        PS(K)=0.
    10 CONTINUE
C
C2_-_INITIALIZE FLAGS FOR PRINTING AND SAVING DISPLACEMENTS AND
C STRAINS
        NMAGFM=0
        NUSXFM=0
        NUSYFM=0
        NUSZFM=0
        NVSTFM=0
        NMAGUN=0
        NUSXUN=0
        NUSYUN=0
        NUSZUN=0
        NVSTUN=0
C
C3-__READ IN SPECIFIC STORAGE VALUES
        NCR=NCOL/$NROW
        DO100%KEI1,NLAM
        LOC=1*(RX-1)**NCR
        CALLUUIDRPRL[SSE(LOC),ANAME(1,1),NRR(OWW,NCOL,IK,IN,IOUT)
        CALLU2DREL(SSU(MOC),ANANELR,,NROOWMNCCOL,K,NNJOUT)
        100 CONTINUE
C *
```



```
        ITEST=0
        DOS3YKE11,NDAYY
            IF(LAYCON(K)) IEQO OR. LAYCON(K).EQ2) ITEST=11
        33 CONTINUE
            IFGMBSTLE(0) GOTO 200
C
C4-_-READ TRANSMMISSIVITY DATA IF LAYCON =0 OR 2
    KR=0
    DO 72BEn,NLAY
    IF(LAYCON(K) ELOO .OR. LAYCON(K).EQ.2) KR=KR+|
    LOCR=1*(RRR-1)**NCR
```

IF(LAYCON(K).EQ. 3 .OR. LAYCON(K)) $\mathbb{E Q}$.1)GOTO 72
CALL U2USLR(TRAN(LOCR),NROW,NCOL,K,IN)
72 CONTINUE
C

C DISPLACEMENT, AND MAGNITUDE OF DISPLACEMENT IF IUSLOC IS C GREATER THAN ZERO.
200 IF(IUSLOCLIEE) GOTO 300
READ(IN,25) NMAGFM,NUSXFM,NUSYFM_NUSZFM,NA(STIFMM,NMAGUN,
1 NUSXUN,NUSYUN,NUSZUN,NVSTUN
25 FORMMATI(IOIS)
 30 FORMATT $/ /$ 'MACNUTUTDE OF DISP. PRINT FORMAT IS NUMBER', $14 /$
1 ' X-DISPLACEMENT PRINT FORMAT IS NUMBER',14/
2 ' Y-DISPPLACEMENT PRINT FORMAT IS NUMBER',14/
3 ' Z-DBPPLLACEMENT PRINT FORMAT IS NUMBER',14//
4 ' VOLUME STRAIN PRINT FORMAT IS NUMBBEER', II4)
IF(NMAGUN.GTI.0) WRITE(IOUTI,40) NMAGUN
40 FORMATI($/, 1 X$, 'UNIT FOR SAVING MAGNITUDE OF DISPLACEMENT IS',14) IF(NUSXUUN(GIO) WRITE(IOUIT,45) NUSXUN
45 FORIMAATI(//,IX,' UNIT FOR SAVING X-DIRECTION DISPLACEMENT IS',I4) IF(NUSYUNN(GITO) WRITE(IOUT'50) NUSYUN
50 FORMAATR(/,1X,' UNIT FOR SAVING Y-DIRECTIION DISPLACEMENT IS',I4) Hf(ANUSZUN(GIT0) WRITE(IOUTI,55) NUSZUN
55 FORMATI $乡 / /, 1 X$, UNIT FOR SAVING Z-DIRECTION DISPLACEMENT IS',14) IF(NVSTUN(GIT0) WRITE(IOUTI,60) NVSTUN
60 FORMAATR(//,1X,' UNIT FOR SAVING VOLUME STRAIN IS',I4)
C
C6-_RETURN
300 RETURN
END

List of Variables for Module USLIRP

Variable	Rance	Deffinition
ANAME	Module	Label for printout of input arrays.
	Module	Index for rows
IN	Package	Primary unit number from which input for this package will be read.
IOUT	Global	Primary unit nimber for all printed output. IOUT $\equiv 6$.
ITEST	Module	Flag for indicating whether transmissivities are read or not. $=0$ Transmissivities are not read = 1 Transmissivities are read
IUSLOC	Package	Flag for calculating, printing or saving displacements and volume strains.
J	Module	Index for columns.
K	Module	Index for layers
KR	Module	Counter for number of layers for which TRAN is read (LAYCON $\equiv 0$ or 22).
LAYCON	Qlobbal	DIMENSION (80), Layer-type code: 0 - Layer strictly confined. 1 - Layer strictly unconfined. 2 - Layer confined/imeconfined (transmissivity is constant) 3 - Layer confined/urcomfined (transmissivity is variable).
LOC	Module	Pointer to parts of the SSE and SSV arrays corresponding to particular layers.
LOCR	Module	Pointer to parts of the TRAN array corresponding to particular layerss
NCOL	Qublbal	Number of columns in the grid.
NCR	Module	Number of cells in a layer.
NLAY	Global	Number of layers in the grid.
NMAGFM	Package	Code for format in which magnitude of displacement should be printed.
NMAGUN	Package	Unit number on which âk unformated record containing magnitude of displacement should be recorded.
NODES	Module	Number of cells in the grid
NROW	Qlabal	Number of rows in the grid.
NUSXFM	Package	Code for format in which X-displacements should be printed.
NUSXUN	Package	Unit number on which an unformated record containing Xdisplacements should be recorded.
NUSYFM	Package	Code for format in which Y-dilisplacements should be printed.
NUSYUN	Package	Unit number on which an unformated record containing Y displacements should be recorded.
NUSZFM	Package	Code for format in which Z-displacements should be printed.
NUSZUN	Package	Unit number on which an unformated record containing Zdisplacement should be recorded.
NVSTFM	Package	Code for format in which volume strains should be printed.
NVSTUN	Package	Unit number on which an unformated record containing volume strains should be recorded.

List of Variables for Module USLIRP fcontinued)

Natable	Range	Definition
PS	Package	DIMENSION (NCOL,NRROWN,NLLAY), Preconsolidation volume strain used to determine whether elastic or virgin specific storage should be used.
		Package

V

V

Narrative for Module USLIFM

This module represents the major part of the granular displacement model. This module assembles the numerical approximations to the governing equations and calculates displacements and volume strains for each active cell in the model grid. In addition, this module contains the solution algorithm using a dual-loop successive overrelaxation iterative scheme with Chebyshev acceleration to solve the system of equations. This module performs other tasks such as calculation of hydraulic conductivity, and determines the correct value of specific storage for a given cell on the basis of the past maximum volume strain.

This module is called by the MAIN program and calls the submodules SUSLIX, SUSLIY and SUSLIZ. Module USLIFM performs it's tasks in the following onder:

1. Set constants.
2. Set estimate of spectral radius.
3. Set current displacement equal to old values.
4. Determine hydraulic conductivity for each cell.
5. Begin outer iteration loop.
6. Set current displacement values to temporary values for error check.
7. Check if displacement for layers is necessary

If displacement is calculated perform tasks A-O (below).
8. Check if displacement for columns is necessaryy.

If displacement is calculated perform tasks A-O (below).
9. Check if displacement for rows is necessany.

If displacement is calculated perform tasks A-O (below).
10. Check if outer loop convergence is met. If not return to step 5.
11. Print number of outer iterations necessary for convergence.
12. Move doubléprecision displacements to single precision storage for plotting.
13. RETURN
A. Set initial omega.
B. Begin inner iteration loop.
C. Set norm of residual to zero, use odd-even ordering.
D. Loop through cells in component directions not being catcoulated.
E. Calculate strain in component direction of concern.
F. Loop through cells along component direction being evaluated.
G. Check for non-active cells.
H. Make correction to hydraulic conductivity (Z-direction only).
I. Calkullatecocomect wedueoff sppecifificsttoraye.
J. Set up coefficients for left-most or topmost active cells.
K. Set up coefficients for right-most or bottommost active cells.
L. Set up coefficients for interior cells.
M. Calculate norm of true error and new displacements.
N. Calculate omega.
O. Check if inner-loop convergence met. If not, go to step B.

GO TO NEXT COMPONENT DIRECTION OR NEXT OUTER LOOP CHECK

Flow Ohiart for Module USLIFM (first of 3 pages)

Rlow Chart for Module USLIFM (second of 3 pages)

Flow Chart for Module USLIFM fthird of 3 paces)

Steps 1 and 2 apply to the \mathbf{Z} direction onlly.

SUBROUTINE USLIFMM(QBX,QBXQBZ,MCTIDELRR,DELC,DELL,NCOL,NROW, 1 NLAXSC1,HY,USLX,USLY,USSLZ,STRNZ,PS,IOUT,IUSLOC,DDHIT, 2 TOTIM,RATIO,KSTMESHSSV,KANIXSTRNXZOIIRNKY,VSTRN,

 § SPX, SPY,SPZ,NBULK)
c THIS SUBROUTINE CALCULATES THE DISPLACEMENT OF SOLIDS
C THROUGH TIME FOR EACH COMPONENT DIRECTION USING A
C DUAL HHERATIATIVE SOR SOLVER WITH A CRANK-NICOLSON
c APPROXIMATION. CHEBYSHEV ACCELERATION IS ALSO USED TO SPĒED
C CONVERGENCE. THIS ALGORITHM ASSUMES FIXED BOUNDAREY
C CONDITIONS AND USES A WATER TABLE BOUNDDAFKK.
c
C
C SPECTHCAMIONS:
c-
C
DOUBLE PRECISION USLX,USLYUSSZZ,ANYORMI ANNORMF,UOOLDX,UOLDY,
 2 XCON, YCON WCON,HNEW

C
DIMENSION IACT(NCOL,NROW,NLAY),DELR(NCOL),HY(NCOL,NROW,
 2NROW,NLAY), QBY(NCOL,NROW,NLLAY),USLZ(NCOL,NROW,NLLAY),QBZ 3 (NCOL_ARROWWNLLAY),DELC(NROW),SC1(NCOL,NROWW,NLAY),DELL(NCOL,
 6 TIEMMPXNCOL,NIROW,NLAY) SSH(NCCOL,NROWMNIAM) SSV(NCOL, 7NROW,NLASY)RATIO(NCOL,NR(OWINLAY),STRNY(NCOL,NROW,NLLAY), BSITRNX(NCOL,NRROWINIAAY), VSTRN(NCOL,NBHOWNLAY),TEMPY(NCOL, 9 NROW,NLAY),IROUND(NCOL,NROW,NLAY),TRAN(NCOLL, *NROW,NLAY),SCZ(NCOL,NNROW, ILAYY),TEMPZ(NCOLL,NROIWNLAY),
 2NRROW,NLAAM), UOLDY(NCOL,NROW,NLAY),UOLDZ(NCOL,NROWW,NLAY), 3UX(NCCOL,NRRW,NLAMY),UY(NCOL,NROW,NLAY),UZ(NCOL,NROW,NLAY), 4THNEW(NCOL,NXROWANLAY),BOT(NCOL,NROW,NLAY),HOLD(NCOUL,

5 NROW,NTLAY), SPX(NCOL,NROW,NLAY)SPY(NCOL,NRROMW,NLAY),

6 SPZ(NCOL,NROW,NLAY),NBULK
C
COMMON / $\mathrm{FLLWCOM} / \mathrm{LIAYCON}(80)$
C
C
C1—SEST CONSTANTS TDOLD=1.E8

C
C2——SET INITIAL SPECTRAL RADIUS
RJACX $=0.998$
RJACY $=0.998$
RJACZ $=0.998$
C
C3_SET CURRENT DISPLACEMENT VALUES EQUAL TO OLD VALUES
DO 68 I=1,NRROW
DO 68.J $=1, \mathrm{NCOL}$
DOGOKKINNLAY

UOLDY $(, 1, \mathrm{~K})=\mathrm{USLX}(\mathrm{HL}, \mathrm{K})$
UOLDZ(GIKK)=USLZGIIK)
68 CONTINUE
C
IF(NBULK. ${ }^{\text {EQ.11)THEN }}$

DO 61 J=1, 1 CCOL
DO66KKE11,NIIAY
$\mathrm{QBX}(\mathrm{J}, \mathrm{K}, \mathrm{K})=\mathrm{SPX}(, \mathrm{l}, \mathrm{K})$
$\mathrm{QBY}(\mathrm{H} \| \mathrm{AR})=\operatorname{SP} \mathrm{P} Y(\mathrm{O}, \mathrm{I}, \mathrm{K})$
QBZ $(140)=S P Z(1,1, K) C=\cdots$
61 CONTINUE
ENDIF

C EITHER 0 OR 2, SO THAT K VALUES ARE KNOWN FOR EVERY LAYER. SET
C KB TO THE PROPER LAYER. MAKE CORRECTION TO DELL IF UNCONRINED.
D02J $=11, N R O W$
DO2 $3 f=\eta_{2} \mathrm{NCOL}$

```
\(K B=0\)
\(K R=0\)
DO4KK 41, NILAXY
IF(LAYCON(K)).EQ(0 OR. LAYCON(K).EQ.2) KR=KR+11
IF(LAYCON(K).NE. 1 .AND. LAYCON(K).NE. 3) GOTO 3
KB=KB+11
IF(K.EQ.1 .OR. (K.GTII .AND. IBOUNDGД,
```



```
ENDIF
```



```
GOTO 4
```



```
4 CONTINUE
2 CONTINUE
C
C5-BEGIN OUTER ITERATION LOOP FOR ALL THREE DIMENSIONS NUMOUT: \(=0\)
100 TDIFF=0.D0
NUMOUT \(=\) NUMOUT +1
C
```



```
DO OOKE \(=11\), NLAXY
DO80ח=1,NRKOW
DO80 J In TMMCOL
TEMPX (JIK) \(=\) USIL \(X(山, K)\)
```



```
TEMPZすJIK) \(=\) =USILZ(U, IK)
80 CONTINUE
C
C7-CGHECK IF LAYER DIRECTION ITERATION NECESSSARY
IFNLLAYYLTT.2) GOTO 1000
C
C7A-SHET INITIAL OMEGA
OMEGA=1.D0
C
C7B--ITERATE TO SOVE FOR DISPLACEMENT IN Z DIRECTION
```

```
        NUMIT=0
    16 DIFFZ=0.
    ANORPMF&&IDO
    NUMITT=NUMMIIIT+11
C
C7C—SET NOIRM FORR RESIDUALTOTIERO ANDDBEGINOIDIDEVIENORIDEERING
    ANORNWEODIDO
    IJSW=11
    DOM9MPASSS =11,2
    KSW=[\SW
C
C7D-_LLDOPTITHFOUGHHRGOMSSANDDCOHLUMANS
    DO90IEl,NWKOW
    DO90.J=LINCOL
    KB=0
    ZADJ=0.
C7E--CALCULATE STRAIN IN THE Z DIRECTION, UPDDATE EACH INNER LOOP
C ITERATION
```



```
C
C7F-_INNER LOOP FOR LAYERS
    DOO2KKKRSW,NIAOYY,2
C
C7G---CHECK FOR NON-ACTIIVE CELLS AND BOUNIDARRY
    IF(K.EQr1 .AND. IACT(0,|,K+11).EQ.0) GOTO }9
```



```
    1 GOTO 92
        IF(K+1.GT.NLAY .AND. IBOUND(IIIK-1), EQ(O)GOTO92
        IF(IACT{JIK)E(Q(0 .AND. IBOUNID(M,HK).H(Q(0) GOTO }9
        IF(ZADJ.EQ.OD) בZADIJ=USLZ(I,I,K)
C
C7H--MAKE CORRECTION FOR VERTICAL HYDRAULIC CONIDUCTIIVITY
        HV =HC(,I,I,K)*RASTOCOaj,K)
C
C71-DETERMINE WHETHER SPECIFIC YIELD, OR ELASTIC OR INELAASTIC
C SPECIFIC STORAGE VALUES ARE TO BE USED
    VSTRN(,I,K)=STQNX(,I,K)+STRNY(JIH$)(+STRNZ(,I,K)
```

IF（VSTRNGHKM，LUNPS（G，I，K））THEN
SSZ＝SSV®，I，LK）

ELSE
SSZ＝SSE（，っ，I，K）
ENDIF
SSK $(0,1, K)=$ SSZ
IF（LAYCON（K）ERQ1）SS＝SSE（0，I，K）

IF（KUNTEIE（O ．AND．SS．LT．4．32E－6）SS＝4．32E－6
IF（KUNUIINE（0 ．AND．SS．LT．1．36E－6） $\mathrm{SS}=1.36 \mathrm{E}-6$
C
C SET CONSTANT COEFFICIENTS
FAC＝HV＊DELTT／（CON＊SSK（』，
FACH $=\mathrm{HV}{ }^{*}$ DELT／（CONNSS）
C
C711—CHECK FOR TOPMOST ACTIVE CELL ALONG A LAYER
IF（K．EQ．1 ．OR．（K．GT．II AND．IBOUNDOUKK－11）．E（O））THEN
C
C7J2－＿APPPLY WATER TABLE BOUNDARY AND GO TO NEXT CELL

IF（LAYCON（K）．EQ． 2 ．OR．LAYCON（K）．EQ．3）THEN
$K B=K B \neq 11$
$\mathrm{CON}=\mathrm{SC} 2$（ILIKBB）$/(\mathrm{DERLC(G)}(\mathrm{D}) * \mathrm{DELR}(7))$
ENDIF r
ベ
IF（LAYCON（CK）IROO） $\mathrm{CON}=15$
C
 1 UOLDZ（jјIK）
GOTO 92
＊ENDIF
C
CTK1－SET UP BOUNDARRY COEFRICIENTS FOR BOTTOMMOST AC＇TIVE CELL
C ALONG A LAYER
IF（K．EQ．NLAY ．OR．（K．LT．NLAY ．AND．IACTO，
C
C DETERMINE THE VALUES OF THE COEFFHCIENTS

IF(

DVB= $\mathbb{D H} H L(h i, K-1) \neq 0.5^{*} \mathrm{DELL}(, \Perp, K)$
ELSE
DVM=DELL 61
DVB $=0.5 *(\mathbb{D} \mathbb{L} L \mathcal{L}(0, I, K)+D E L L(0, I, K-1))$
ENDIF
C
$\mathrm{ACOEFF}=1 . /$ /IDVM
BCOEF=1/ $($ OFHLLCOU
$\mathrm{FACl}=1 \mathrm{H}+\mathrm{FA} \mathrm{C} * \mathrm{BCOEF}$
C

QCOEF=PCOEF
RCOEF=0.
GCOEF=PCOEF
HCOEF=-PCOEF
OCOEFF=0.
C

$\mathrm{DCB}=\mathrm{DELC}(\mathrm{a})+0.5^{*}(\mathrm{DHH} \mathrm{D}(\mathrm{C}(\mathrm{b})+\mathrm{HEHLC}(\mathrm{a}-1))$
PCOEF=0.
QCOTFP 47 ($2(2 E D N B E T D C B)$
RCOEF $=-$ QCOEF
GCOEF=0.
HCOEF $=-Q C O E F$
OCOEF $=-$ QCOEF
C
ELSE
$\mathrm{DCC}=\mathrm{DELC}(\mathrm{D})+0.5^{*}(\mathrm{DELC}(a+1)+\mathrm{DELC}(\mathrm{A}-\mathrm{D}))$

QCOEFF=0.
RCOEF $=$ PCOEF
GCOEF=PCOEF
HCOEFFO.

OCOEF=PCOEF
ENDIF
C
IFG.EQ.1 .OR. (.GT.1 .AND. IACT($(1,1, \mathrm{I}, \mathrm{K})$.EQ.(O)))THEN

Q2COEF=P2COEF
R2COEF=0.
G2COEF=P2COEF
$\mathrm{H} 2 \mathrm{COEF}=-\mathrm{P} 2 \mathrm{COEF}$
O2COEF=0.
C

DRB=DELR(J)+0.5*(DELR(J) + DELR(F-1))
P2COEF $=0$.

R2COEF $=-\mathrm{Q} 2 \mathrm{COEF}$
G2COEF $=0$.
H2COEF $=-$ Q2COEF
$02 \mathrm{COHF}=-\mathrm{Q} 2 \mathrm{COEF}$
C
ELSE

P2COEF=1./(2^{*} DVB \geqslant DRC $)$
Q2COEFF=
R2COEF $=$ P2COEF
G2COEF=P2COEF
H2COEF=0.
O2COHFF=P2COEF
ENDIF
C
C7K4-NOW PUT COEFFICIENTS INTO NUMERICAL APPROXIMATION TO
C GOVERNING EQUATION

$402 C O E P U C O I D X(S-H, I K-1 D)$
C

 4UOLDY(,I-1,K-D)
C

C
CTK5-CALCULATE SOURCE TERMS AND CONSTANTS

C
GOTO 91
ENDIF
C
CIL - SET UP COEHHGIENTS FOR ALL INTERIOR CELLS THROUGH A LAYER
C
C DETERMINE THE VALUES OF THE COEFRICIENTS
IF(K-1.EQ.1 .OR. (K-1.GT.1 .AND. IBOUNHD(J,I,K-2).EQ(0)) THEN
DVM=2*DELLO.

ELSE

ENDIF
DVP=DELLQU,
C
ACOEF=1./(DVM
CCOEF=1./DVP
BCOEF=ACOEF + CCOEF
$\mathrm{FACl}=1 \mathrm{FFA} \mathrm{CH}^{4} \mathrm{BCOEF}$
C

$D C O E F=1 . K\left(2^{*} D_{V C *}{ }^{2} \mathrm{DCF}\right)$
$\mathrm{ECOEF}=\mathrm{DCOEF}$
$\mathrm{FCOEF}=0$.
GCOEF=DCOEF
HCOEF=-DCOEF
OCOEF=0.
C
ELSEIF(A.EQ.NROW .OR. (ILT.NROW .AND. IACT(J,I $+11 / \mathrm{K})$)H(20)) THEN

DCOEF=0.
ECOEF $\left.=-1 /\left(\text { R }^{*}-1 D\right)^{2} \cdot C^{*} D C B\right)$
FCOEF=-ECOEF
GCOEF=0.
HCOEF=-ECOEF
OCOEF=-ECOEF
C
ELSE

DCOEF=1. $/\left(2^{*}+\mathrm{D} V \mathrm{C}^{*} \mathrm{DCC}\right)$
ECOEF=0.
FCOEF=DCOEF
GCOEF=DCOEF
HCOEFF=0.
OCOEF=DCOEF
ENDIF
C
IF(J.EQ.1 OR. O.GT.1 .AND. IACT(I-1,I,I,K).EQ.0)) THEN
DRF=DELR($)+0.5^{*}($ (DEELRR(D) $\left.)+D E L R(0+1)\right)$
D2COEF=1./(22 ${ }^{*} D V C^{*}$ DRF)
$\mathrm{E} 2 \mathrm{COEF}=\mathrm{D} 2 \mathrm{COEF}$
$\mathrm{F} 2 \mathrm{COEF}=0$.
G2COEF=D2COEF
H2COEF=-D2COEF
O2COEF=0.
C
ELSEIFQ.EQ.NCOL .OR. Q.LINCCOL .AND. IACT($1+h I I K)$ IR(Q(0)) THEN

$\mathrm{D} 2 \mathrm{COEF}=0$.
E2COEF $=-1 /\left(22+D W C^{*} \cdot D_{1 R B}\right)$
F2COEF=-E2COEF
G2COEF=0.
$\mathrm{H} 2 \mathrm{COEF}=-\mathrm{E} 2 \mathrm{COEF}$
O2COHF=-E2COEF
C
ELSE

D2COEF=17(R2*DVC*DRC)
$\mathrm{E} 2 \mathrm{COEF}=0$.
F2COEF=D2COEF
G2COEF=D2COEF
H2COEFF=0.
O2COHF=D2COEF
ENDIF
C
CTA- - NOW PUTTCOEFFGUEVTS INTIONUMHEXICAIL APFPROXMMATIONSTIC
C GOVERNING EQUATION

1USXX

C

 4 HCOEPPUOLDY(, IIKK-1) + OCOEPUOLDY(,I-1, (K-U)
C

3USLZ(A), IN)
C
C7LS-CALCULATE SOURCE TERMS AND CONSSTANMNE

```
    Hf(CuMIT.EQ.1) COEF=XCON+YCON+(QBZZIMK)*IDELT
C
C7M--CNILCULAIIEINORNOOFIIRUEE EIRROR ANDDNEWW WALUNOF
C DISPLACEMENT
    91 ANORMNF=ANORRMFHABS(COEEF)
        ANORM=ANNORNGHABSS(RESID)
        USLZ(IIK\)=USSLZOIIKS)-OMMEGA*RESIDD/(-FAC1)
    9 2 \text { CONTINUE}
C
        KSW=3-KSW
C
C MAKE ADJUSTMENT TO VERTICAL DISHLAAGMENETIN DRY CELLS
        KN=0.
        DO 885%}
```



```
    8 8 \text { CONTINUE}
        IFOCN.EQ.O .OR. KN+h(GINNLAY) GOTO }9
        DO 89KKK=1,KN
        USLZ(&,KK)=USLZ@,I,KK) =(USLZQ,IMKN+1-ZADP)
        8 9 \text { CONTINUE}
        90' CONTINUE
C
C7N--CALCULATE OMEGA
        I]SW=3-IJSW
    * IF(NUMIT:HQ1;AND. IPASS.EQ.1) THEN
        OMEGA=1.D0/((1.DO-0.5D0*RJACZ*)
        ELSE
        OMEGA=1.D0/((1.D0-0.25D0*RJACZ**2%OMEGA)
        ENDIF
    99 CONTINUE
C
C7O-_-_CHECK TO SEE IF CONVERGENCE IS MET.
        IF(ANORMMLEXCLOSE*ANORMF) THEN
        WRITE(IOUIT,72) NUMIT
    72 FORMAIT(XX,NUUMBER OF INNER ITERATIONS IN Z IS',I5)
        GOTO 3000
        ENDIF
```

IF(ANORM.GT.XCLOSE*ANORMF .AND. NUMIIT.LT.ISTEP) GOTO 16 IF(NUMIITI.GE.ISTEP) WRITE(IOUX,49) ISTEP,KSTP,
1 KPER,ANORM,ANORMMF,NUMOUT

1 INNER ITERATIONS, AT TIME STEP ${ }^{\prime \prime} 15,{ }^{\prime}$ OF STRESS PERIOD',15,/, $21 X$, ' IN Z. FINAL NORM OF RESIDUAL CALCULLATED TO BE',G126. $/$, 3 IX,' IN Z. FINAL TRUE ERROR CALCULATED TO BE',G126., 3 1X,'OUTER ITERATIION NUMBER',IS,

C
C8--CCHECKKIFRCOIIUNWNDDRFCIIIOONITHERAIIIONNEEEESSARYY
1000 IF(NCOL.EQ.1) GOTO 2000
C
C8A—SET INITIAL OMEGA
OMEGA=1.D0
C
C8B---ITEREATE TO SOLLVE FOR THE DISPLACEMENT IN THE X DIRECTION NUMITT=0.
15 DIFFX $=0$.
ANORMF=0.D0
NUMIT $=$ NUUMIII +11
C
C8C--SET NORM OF RESIDUAL TO ZERO, AND BEGIN ODD-EVEN ORDERING
ANORM=0.D0
IKSW=11

- DOPSPPASS $=1,2$

JSW $=\mathbf{I K S W}$
C
C8D-_LOOP THROUGH LAYERS AND ROWS
18 DO20KK=1,NWLAY
DO2RIIF=1,NROW
C
C8E--CALCULATE THE STRAIN IN THE X DIRECTION
IF(NLAY.EQ.1) GOTO 11
CALLSUSLLX (USSLX,LACT,NCOL,I,K,DELR,STIRNX,NROWH,NLLAY)
C
C8F--INNNER LOOP FOR COLUMNS
11 DO400) fushw,NCOL,2

C

C8G-CHHECK FOR NONAACTINECHHUS
C CHECK FOR ACTIVE CELLS AND LOOP THROUGH CELLS WHERE IACT=1,
C BUT WE WANT TO KEEP ANY CELLS THAT MAY HAVE GONE DRY IF(ACT(O),IK) EQ(O) GOTO 40
C
C8I--MAKKE CORRECTION FOR PROPER SPECIFIC STORAGE VALUE. THIE
C HORIZONTAL DISPLACEMENT USES A STORAGE COEFFICIENT DIVIDED BY
C THICKNESS, SET CONSTANTS
IF(LAMCCON(IK).EQ.1) SS=SSE§,I,K)
IF(LAYCCNN(K) NE.1) SS=SC(CI(XK))
1 (DELL(O,I,K)*DELR(J)*DELC(I))
IFOKUNTT.EQ.0 .AND. SS.LT.4.32E-6) SS=4.32E-6
IFKKUNIT.NE:(.AND. SS.LT.1.36E-6) SS=1.36E-6
C
C CALCULATE STORAGE FOR ALL LAYCON VALUES

C
C SET CONSTANT COEFRICIENTS FOR ALL CELLS REGARDLESS OF BOUNDARY
$\mathrm{H}=\mathrm{HC}(\ldots, \mathrm{K})$
FAC $=\mathrm{H}^{*}$ DELT/(CONN:
FACV=H*DELT/(CON $\mathbf{N S S K}(\ldots, 1, K)$)
C
C8j1--SET UP BOUNDARY COEFFICIENTS FOR LEFTMOST ACTIVE CELL
C ALONG A ROW
IF(IEQ.1 .OR. 0.GT.1 AND. IACT($(-1, \mathrm{I}, \mathrm{K})$.EQ.(0))THEN
C
C THEN DETERMINE THE VALUES OF THE COEFFICIENTS
DRP=DELR(f)*(DELR(0H1)+DELR(7))

C
CCOERF=1/IDIRP

C
IFa.EQ.1 .OR. (a.GT.1 .AND. IACT(IIIIIKぬ) IED(0)) THEN

DCOEF=1. (22 DRRIF*DCF)
ECOEF $=D C O E F$
FCOEF=0.
PCOEF=DCOEF
QCOEF $=-D C O E F$
RCOEF=0.
C

DCOEF=0.
ECOEF=-1. $/\left(22^{2}+D P B=1 D C B\right)$
FCOEF $=-E C O E F$
PCOEF=0.
QCOEF=-ECOEF
RCOEF=-ECOEF
C
ELSE
$\mathrm{DCC}=\mathrm{DXELC}(1)+4(5)(\mathrm{DELC}(1+1)+\mathrm{DELCC}(2-1))$
DCOIF $=1 . /(2 * D R P P C C)$
ECOEF=0.
FCOEF=DCOEF
PCOEF=DCOEF
QCOEIF=0.
RCOEF $=$ DCOEF
ENDIF
C
ZCON=0.
IF(NLAY.HQ.1) GOTO 33

C
IF(K.EQ.1 .OR. (K.CTLII AND. IBOUNDOUKK-1) .EQ(O)) GOTO 33
C

IF(K-1.EQ.1 .OR. (K-1.GT.1 .AND. IBOUND(JIIK22) H(Q(0)) THEN

ELSE


```
ENDIF
SCOEF=0.
UCOEF=1.\(R24DRPF*DVB)
VCOEF=UCOEF
X2COEF=0.
Y2COEF=UCOEF
Z2COEF=UCOEF
C
ELSE
IF(K-1.EQ.1 .OR. (K-1.GT.1 .AND. IBOUNDAJIIK-2))H(Q(0)) THEN
DVC=DELI(G.L,K)+(0)5}|EELUQ,K
ELSE
DVC=DELL(fiIK)+(0.5*(DELL)(O)K
ENDIF
SCOEF=1./\(**DRP*DVC)
UCOEF=0.
VCOEF=SCOEF
X2COEF=SCOEF
Y2COEF=0.
Z2COEF=SCOEF
ENDIF
C
```



```
1(07+1\IWK-1)+X2COEPPUSLZ(GiIK*+1))+Y2COEPPUSLZ(GIIK)+
~ 2 Z2COEPPUSLZ(,,KK-1)+SCOHPUOLDZO+1,IK
```



```
C
C&2--NOW PUT COE|FICIENTS INTO NUMIERICAL APPROXIMATION TO
C GOVERNING EQUATION
    33 YCON=FAC`(DCCOHPUSLY($+1,I+1,K)+ECOEPPUSLLY(%+1,I,K)-
```



```
    4 #RCOEPU(OIDYY,I-1,K))
C
```



```
    2 UOLDXG,I,K)-USSLX(Gi,M)
C
C83--CALCULATE SOURCE TERMS AND CONSTANTS
    IF(NUMIT.EQ.1)COEF=YCON+ZCON+(OBXOJ,HMy%DHLT
C
    GOTO 39
    ENDIF
C
C8K1-_SET UP BOUNDAARY COEFFICfFNTS FOR RIGHTMOST ACTIVE CELL
C ALLONGACCOILUNN
    IF(.EQ.NCOL .ORv(0.LTINMCOL .AND. IACT(0+LILK)M(Q.O)) THEN
C
C THEN DETERMINE THE VALUES OF THE COEFFICIENTS
    DRM=DFEILR(J)*(DELR(J-1)+DELR(J))
    DRB=0.5\(DEELRR(D)+DDHIR(1-1))
C
    ACOEF=1//D/RM
```



```
    FACl=11-HFACC*BCOEF
C
IF(.EQ.1 .OR. ( (.GT.1 .AND. IACT(JIH1, \()\) H((0)) THEN
\(\mathrm{DCF}=\mathrm{DELC}(\mathrm{I})+0.5^{*}(\mathrm{DDHLCC}(\mathrm{D})+\mathrm{DDH} \mathrm{HC}(\mathrm{h}+1))\)
GCOEF=1. \(/\left(22^{*} D \mathrm{DR}^{2} \mathrm{~B}^{*} \mathrm{DCF}\right)\)
HCOEF \(=-G C O E F\)
OCOEFF=0.
PCOEF=GCOEF
QCOEF=GCOEF
RCOEF=0.
- C
```



```
GCOEF=0.
HCOEF \(=\mathbb{L} /(2 \& F D R B M D C B)\)
OCOEF=HCOEF
PCOEF=0.
QCOEF \(=-H C O E F\)
```

```
RCOEF=HCOEF
C
    ELSE
    DCC=DELC(I ) +0.5*(DHHCC(+4D)+1DHLCC(3-1))
    GCOEF=1//(2%#PRB*DCC)
    HCOEIF=0.
    OCOEF=GCOEF
    PCOEF=GCOEF
    QCOEF=0.
    RCOEF=GCOEF
    ENDIF
C
    ZCON=0.
    IF(NLAYEOOI)\COMLO34
```



```
C
IF(K.EQ.1 .OR. OCGT.1 .AND. IBOUNDD,I,K-1).EQ.(O)))GOTO34
C
IF(K.EQ.NLAY .OR. (K.LT.NLAY .AND. IACTGiKK@LEED(O)) THEN
IF(K-1.EQ.1 OR. (K-1.GT.1 .AND. IBOUNDP(UNKK-2)).EQ(0)) THEN
```



```
ELSE
```



```
ENDIF
XCOHETi./(2*DRB*DVB)
YCOEF=0.
ZCOEF=XCOEF
\(\mathrm{X} 2 \mathrm{COEF}=0\).
Y2COEF \(=X C O E F\)
Z2COEF=XCOEF
C
ELSE
IF(K-1.EQ.1 .OR. (K-1.GT.1 .AND. IBOUNID(O),
DVC=DELL \((6)\)
ELSE
```



```
ENDIF
```

```
XCOEF=0.
YCOEF=1. K(2*DRRB*DVC)
ZCOEF=YCOEF
X2COEF=YCOEF
Y2COEF=0.
Z2COEF=YCOEF
ENDIF
C
    ZCON=-FACV*(N2CCOHFEUSEZ)
```



```
    2 ZCOEP4UsSIZ2G+11IK<-1)+X2CCOHFPUOLDDZO,\KK+1)-
```



```
    4XCOEPUULDZ(G-1,I,NK)+ZCOHHPUOLDZ(G)IIK-D)
C
C8K2---NOW PUT COEFGICIENTTS INTO NUMMERICAL APPROXIMATION TO
C GOVERNING EQUATION
    34 YCON=FACC(PCOEPHSSMYIL+1]KL+QCOHEPUSLY(OI,K)-RCOHP
```



```
        2USLYY(g-L,M,\Q)+PPCOEP+UOUDY(G,I+h,K) +QCOEPU(OLDY(
```



```
        4OCOEPPUOLDY(0-1,-H,K))
C
    RESID= =AC**(ACCOEPUSLX(0-1,IK)*BCOEPPUSLXX,N,K)+
    1 ACOEIPUOLDX(G-1,I,X)BCCOEPUUOIDDX\,KX))+YCON+ZZCON+
```



```
C
C8K3- CCAILCULLAIESSOURCHETIERRNSSANDDCOONSSTANNISS
    IF(NUMIT.EQ.1) COEF=YCON+ZCONH(OHXOIIK)&DELT
C
    GOTO 39 ~ =
    ENDIF
C
C8L1-mSET UP COEFRTCIUENTS FOR ALL INTERIOR CELLS ALONG A ROW
C
C DETERMINE VALUES OF THE COEFFICIENTS
```


C
CCOEF=1/DDRP
ACOEFF=1/IDRM
$\mathrm{BCOEF}=\mathrm{ACOEF}=\mathrm{CCOEF}$
$\mathrm{FACl}=11+\mathrm{FA} A \mathrm{C}^{*} \mathrm{BCOEF}$
C
IF(.EQ.1 .OR. (G.GT.1 .AND. IACTAd, 1
$\mathrm{DCF}=\mathrm{DELC}\left(\mathrm{D}+0.5^{*}(\mathrm{D}) \mathrm{HLC}(\mathrm{O})+\mathrm{H} H \mathrm{CC}(\mathrm{h}+1)\right)$
$\mathrm{DCOEF}=\mathrm{I} / / / \mathrm{R} 2 \mathrm{~T} \mathrm{DR}\left(\mathrm{C}^{*} \mathrm{DCF}\right)$
ECOEF=DCOEF
$\mathrm{FCOEF}=0$.
GCOEF=DCOEF
HCOEF=-DCOEF
OCOEF $=0$.
C

$\mathrm{DCB}=\mathrm{DELC}(\mathrm{A}) \div 0.5 *(\mathrm{D}$ सHIC($(\mathrm{a})+\mathrm{DELC}(\mathrm{A}-\mathrm{D})$
DCOEF=0.
ECOEF=-1/ $/$ R $2-1$ DRC $\left.{ }^{*} D C B\right)$
FCOEF=-ECOEF
GCOEF=0.
HCOEF=-ECOEF
OCOEF=-ECOEF
C
ELSE
$\mathrm{DCC}=\mathbb{D} \mathrm{FLC}(\mathrm{D})+\left(0.5^{*}(\mathrm{DELC}(1+1) \neq \mathrm{DELC}(I-1))\right.$
DCOEF=1. $\left(Q^{2}+\mathrm{DR}^{2} \mathrm{C} \cdot \mathrm{DCC}\right)$
$\mathrm{ECOEF}=0$.

- $\mathrm{FCOEF}=\mathrm{DCOEF}$

GCOEF=DCOEF
HCOEF=0.
OCOEF=DCOEF
ENDIF
C
ZCON=0.

- IF(NLAY.EQ.1) GOTO 35

```
IF(K+1.GT.NLAY .AND. IBOUND(J,I,K-1).EQ.0) GOTO 35
C
    IF(K.EQ.1 .OR. (K.GT.1 .AND. IBOUND(J,I,K-1).EQ.0)) GOTO 35
C
    IF(K.EQ.NLAY .OR. (K.LT.NLAY .AND. IACT(,I,K+1).EQ.0)) THEN
    IF(K-1.EQ.1 .OR. (K-1.GT.1 .AND. IBOUND(J,I,K-2).EQ.0)) THEN
    DVB=1.5*DELL(J,I,K)+DELL(J,I,K-1)
    ELSE
    DVB=DELU(GiIN)++0.5*(DELL(0,LK)+DELL(0,I,K-1))
    ENDIF
SCOEF=0.
UCOEF=1./(<2%DRC*DVB)
VCOEF=UCOEF
XCOEF=UCOEF
YCOEF=0.
ZCOEF=UCOEF
C
ELSE
IF(K-1.EQ.1 .OR. (K-1.GT.1 .AND. IBOUND\JIIK-2))H(Q(0)) THEN
DVC=DELU(dILK)+0.5*DELIL(%,I,K+11)+DELL(G,L,K-1)
ELSE
DVC=DELL(G,IM&)
ENDIF
SCOEF=1. (<2*DRRC*DVC)
UCOEEF=0.
VCOEF=SCOEF
XCOEF=0.
YCOEF=SCOEF
ZCOEF=SCOEF
ENDIF
C
```



```
2ZCOEPUSLZ(-LIKK-1))+SCOEPPUOLDZ($+1,,K+1)-UCOEPPUOLDZ($+1\,K)
```



```
C*
```

```
C8L2--NOW PUT COEEFFICIENTS INTO NUNMEERICAL APPPROXIMATION TO
C GOVERNING EQUATION
```



```
        3-FCOEPMUOLDY(9+1,NA1,K)-GCOEP(UOLDY(-1,N+1,K)+
```



```
C
```



```
        IUSIX(OHU,U,K)+CCOAFPUOLDX(1,|,K)-BCOEPPUOLDX(GILK)+
```



```
        3USLX(ji,K)
C
C8L3-_CALCULATE SOURCE TERMS AND CONSTTANTS
```



```
C
```



```
C DISPLACEMENT
    39 ANORMMF=ANOPSNF7ABSS(COEEF)
    ANORM=ANNORNH-ABBS(RRESID)
    USLX(fIIK))=USLX(|,|,K)-OMEGA*RESsID/(-FAC1)
    40 CONTINUE
C
    JSW=3-JSW
    20 CONTINUE
C
C8N-CALCULATE OMEGA
    HRSW=3-IKSW
    IF(NUMIT.EQ.1 .AND. IPASS.EQ.1) THEN
--= OMEGA=1DDOO(.DIDO.SESDORRMACCN%2)
    ELSE
    OMEGA=1.DOK(1.D0-0.25DO%RJACX**2)OMEGA)
        ENDIF
    98 CONTINUE
C
C8O--CHHCKKFORCOONMHERGENCOE
    2. -FH(ANNORMIIEXCLOSE*ANORMF) THEN
```

WRITE(IOUIL,70) NUMIT
70 FORMAIT(XX,NUMMBER OF INNER ITERATIONS IN X IS',IS)
GOTO 1000
ENDIF
HR(ANOMGIDCLOSE*ANORMF .AND. NUMIILLTT.ISTEP) GOTO 15 IFOMUMIT.GE.ISTEP) WRITE(AOUT,48) ISTER,KSTP,
1 KPER,ANORM,ANORMENUMOUT

1 INNER ITERATIONS, AT TIME STEPP,I5,' OF STRESS PERIODD'IS,/
21X,' IN X. FINAL NORM OF RESIDUAL CALCULATED TO BE",FIQ6./,
3 1X,' IN X. FNAL NORM OF TRUE ERROR CALCULATED TO BE', FII $0.6_{r} /$, 41X,'OUTER ITERATION NUMMBEER', 15 ,

C
C9-CHECK IF ROW DIRECTION ITERATION NIECHESSAARY 2000 IF(NROW.EQ.1) GOTO 3000
C
C9A-SET INITIAL OMEGA

$$
\mathrm{OMEGA}=1 . \mathrm{D} 0
$$

C
C9B-ITERATE TO SOLVE FOR THE DISPLACEMENT IN THE Y DIRECTION NUMITT=0.
17 DIFFY=0.
ANORMIF=0.D0
NUMITT=NUMMITIT +1
$\gamma \quad \mathrm{C}$

ANORM $=0 . \mathrm{DO}$
$\mathrm{JKSW}=\mathbb{1}$
DO997PRASSB=1,2
ISW $=$ IKSW
C
C9D-LOOP THHROUGHH LAYERSS ANDDCOILUMNNS
B() $253=1, N L A Y$
DO225ij $=11, \mathrm{NCOL}$
C
C9E-COALCCULAATESTIRANININNTHHEYIDREBCIION
IF(NLAY.EQ.1) GOTO=12

```
CALLSUSILY(USDY,IACTJ,NBMW,SEDELC,STRNY,NCOL,NLAY)
C
C9F-IDNWIRRLLCOMPFEORRROWSS
    12 DO44S利SW,NROW,2
C
C9G-CHHFCKFFORNON ACINWECPHHSS
C CHECK FOR ACTIVE CELLS AND LOOP THROUGH CELLS WHERE IACT= \(=\mathbb{1}\) IF(IACT(),IKK) H(O) GOTO 45
C
```



``` BP(DAYCONODIB.1) SS=SSEOAIK)
IF(LAMCOON(XXNSH)ISSSSC(Z)I,K)/
```



```
IF(KUNIT.EQ.0 .AND. SS.LT.4.32E-6) SS \(=4.32 \mathrm{E}-6\)
IFCKUNIT.NE(0 .AND. SS.LT.1.36E-6) SS=1.36E-6
C
C CALCULATE STORAGE FOR ALL LAYCON VALUES
IF(NLAY.WQ.1 OR. USLY(
C
C SET CONSTANT COEFFICIIENTS FOR ALL CELLS REGARDLESS OF BOUNDAARY \(\mathrm{H}=\mathrm{HC}\) (IK)
FAC=H*DIEITT/(CON*SS)
FACV=H*DRLIT/(CON*SSKO,L,K))
C
```



```
C ALONG A COLUMN
IF(.EQ.1 .OR. (.GT.1 .AND. IACT(0,ll1,K).EQ.0)) THEN
C
C DETERMINE VALUES OF THE COEFHCIENTIS
```



```
c
CCOEFF=1/DCP
BCOEF=CC(CHF+1/(DELC(2)*DELC(1))
\(\mathrm{FACl}=14 \mathrm{HACO} \mathrm{BCOEF}\)
C
```



```
    DRF=DELR(D)+(0.5"*(DHLRR(P)DPHLR(ha+1))
DCOEF=1./(2*DCPIDRRF)
ECOEF=DCOEF
FCOEF=0.
PCOEF=DCOEF
QCOEF=-DCOEF
RCOEF=0.
C
ELSEIFG.EQ.NCOL .OR. (J-LT.NCOL .AND. IACTO+LIK\)H(Q(0)) THEN
DRB=DELR(0)+0.5*(DELIR(6))+DEHLR(D-1))
DCOEF=0.
```



```
FCOEF=-ECOEF
PCOEF=0.
QCOEF=-ECOEF
RCOEF=-ECOEF
C
ELSE
DRC=DELR(0)*CO.5*(DELLR(0+1) #DELR(G-1))
DCOEF=1. ((2*DCPF*DRC)
ECOEF=0.
FCOEF=DCOEF
PCOEF=DCOEF
QCOEF=0.
RCOEF=DCOEF
ENDIF
C
ZCON=0.
IF(NLAY.EQ1) GOTO 36
IF(K+I.GTINTLAY .AND. IBOUND((ILK-II).EO(0) GOTO 36
C
IF(K.EQ.1 .OR. (K.GTIII .AND. mBOUND(fIIK-11)),EQ.0))GOTO36
C
IF(K.EQ.NLAY .OR. (KILT.NLLAY .AND. IACTGiKK&\LE(QO)) THEN
```



```
DVB=1.5`0\EL(\g,K,K)DPEL(0,diK-1)
ELSE "**
```

DVB=DELL
ENDIF
SCOEF=0.

VCOEF=UCOEF
$\mathrm{X} 2 \mathrm{COEF}=0$.
Y2COEF=UCOEF
Z2COEF=UCOEF
C
ELSE
IF(K-1.EQ.1 .OR. (K-1.GT.1 .AND. IBOUND(IIIK-2)EQ.O)) THEN

ELSE

ENDIF
SCOEF=1. ($2 *$ DCPDVC)
UCOEF=0.
WCOEFF=SCOEF
$\mathrm{X} 2 \mathrm{COEF}=\mathrm{SCOEF}$
$\mathrm{Y} 2 \mathrm{COEF}=0$.
Z2COEF=SCOEF
ENDIF
C

$2+Z 2 C O$ EPUSLZ(,I,K-1) + SCOHEPUOLDZA, $1+1, K+1$)

C
C9j2--mOW PUT COEFFICIENTS INTO NUMIERICAL APPROXIMATION TO
C GOVERNING EQUATION

 2RCOEP
 4 \#RCORPUOLDX(-h„』К))
C


```
    2 UOLDY(,I,K)-USLY(7,|,NK)
C
C,\3--CALCULATE SOURCE TERMS AND CONSTANTS
```



```
C
    GOTO 44
    ENDIF
C
C9K1 - SET UP BOUNDARY COEFFICIENTS FOR RIGHTMOST ACTIVE CELL
C ALONG A COLUMN '^
    IFa.EQ.NROW .OR. (ILTT.NROW .AND. IACT(#,I+h,K).EQ.O()))THEN
C
C DETERMINE VALUES OF THE COEFFICIENTS
    DCM=DELC(())*(DEEIC(($-1)+DELC(1))
    DCB=0.5*(DHIC(a-1)+DELC(A)
C
    ACOEF=1/DCM
    BCOEF=ACOEF+1/(IDHELC(II)*DELC(E))
    FACl=1HFPACC*BCOEF
C
    IFG.EQ.1 .OR. (.GIL1 .AND. IACT(O-LJIK).E(Q(O)) THEN
    DRF=DELR(D)+(0.5*(DELR(0)+DELR(G;H1))
    F-"(GCOEF=1./\R"DCB*DRFF)
        HCOEF=-GCOEF
        OCOEF=0.
        PCOEF=GCOEF
        QCOEF=GCOEF
        RCOEF=0.
C
    ELSEIFG.EQ.NCOL .OR. (GULINCOL .AND.IACT(##)IK))E(O(0)) THEN
    DRB=DELLR(G)+0.5%(DELR()})+DELR(J-D) (
    GCOEF=0.
    HCOEF=h/(ROFLCB3MDRBB)
    OCOEF=HCOEF
    PCOIEF=-B.
```

QCOEF=-HCOEF
RCOEF=HCOEF
C
ELSE

HCOEF $=0$.
OCOEF=GCOEF
PCOEF=GCOEF
QCOEF=0.
RCOIHECCOEF
ENDIF
C
ZCON $=0$.
IF(NLAXEQR1) (ccolio 37
IF(K $=1$. GT.NLAY .AND. IBOUND(JIIK-1)IPQ(0) GOTO 37
C
IF(K.EQ.1 .OR. (K.GT.1 .AND. IBOUND』IISK-1)) H(Q(0)) GOTO 37
C
IF(K.EQ.NLAY .OR. (K.LT.NLAY .AND. IACTGiKKEDUEEQ(0)) THEN
IF(K-1.EQ.1 .OR. (K-1.GT.1 .AND. IBOUNDGIIIK-22) H(Q)) THEN

ELSE

ENDIF
N
XCOEF=1/(R24TCCBMDVB)
YCOEF=0.
ZCOEF=XCOEF
X2COEF=0.

ZZCOEF=XCOEF
C
ELSE
IF(K-1.EQ.1 .OR. (K-1.GT.1 AND. IBOUND(OX\&

ELSE


```
    ENDIF
    XCOEF=0.
    YCOEF=1./(2*DCB*DVC)
    ZCOEF=YCOEF
    X2COEF=YCOEF
    Y2COEF=0.
    Z2COEF=YCOEF
    ENDIF
C
    ZCON=-FACW*(XCOQEPIS5LZJHK+1)-Y2COEP(USLZ4,IK)-
```



```
    4 XCOHPUOLDZ(a,M,K)+ZCOHPUOLDZG,MM,KK-D))
C
C9K2-m-NOW PUT COLEFFICIENTS INTO NUMMIERICAL APPROXIMATION TO
    GOVERNING EQUATION
```



```
C
```



```
C
C9K3-CALCULATE SOURCE TERMS AND CONSTANTS
    IF(NUMIT.EQ.1) COEF=XCON+ZCONN.OHMOULK)+DELT
C
    GOTO 44
    ENDIF
C
C9L1-SET UP COEFRICIENTS FOR ALL INTERIOR CELLS ALONG A COLUMN
C
C DETERMINE VALUES OF THE COEFFICIENTS
    DCM=DELC(A)*(DELCC(-1)+DELCC(1))
```


C
CCOEFF＝1／DCP
ACOE $=1 / \mathrm{DCM}$
$\mathrm{BCOEF}=\mathrm{ACOEF}=\mathrm{CCOEF}$
$\mathrm{FACl}=1-\mathrm{F}=\mathrm{AC} \cdot \mathrm{CBCOEF}$
C
IF（IEQ．1 ．OR．O．GT．1 ．AND．IACT（ $(1,1, \mathrm{I}, \mathrm{K})$ ．EQ．（O）））THEN
DRF＝DELR（0）$+0.5^{*}(\operatorname{DDELRR}(0)+\operatorname{DELR}(0+1))$
DCOEF $=1 / / /\left(22+D C\left(C D^{2} D R F\right)\right.$
ECOEF＝DCOEF
FCOEF＝0．
GCOEF＝DCOEF
HCOEF＝－DCOEF
OCOEFP＝0．
C

$\mathrm{DRB}=\mathrm{DELR}(\mathrm{f})+0.5^{*}(\mathrm{DELR}(\mathrm{f})+\mathrm{DELR}(-\mathrm{D})$
DCOEF＝0．
BCOEF＝－1．$/$ R $2-1 D C C=1 D R B)$
FCOEF＝－ECOEF
GCOEF＝0．
HCOEF＝－ECOEF
OQOEF＝－ECOEF
C
ELSE
DRC＝DELR（ ()$+(0.5 *(D H L R(1+1)+D E L R(0-1)))$

ECOEF＝0．
FCOEF＝DCOEF
GCOEF＝DCOEF
HCOEF＝0．
OCOEF＝DCOEF
ENDIF
C
ZCON $=0$.

IF(NLAXEEQI)COIO 38

C

C
IF(K.EQ.NLAY .OR. (K.LT.NLAY .AND. IACT(U,HK+1).EQ.0)) THEN
IF(K-1.EQ.1 .OR. (K-1.GT.1 .AND. IBOUNDOUKK-2).I(2)) THEN
DVB $=1.5 * \operatorname{DELL}(0, \mathrm{I}, \mathrm{K}) \mp \mathrm{DELL}(\mathrm{O}, \mathrm{I}, \mathrm{K}-1)$
ELSE
DVB=DELL(O)U,
ENDIF
SCOEF=0.
UCOEF=1. $/(2 \% D C C * D V B)$
VCOEF=UCOEF
XCOEF=UCOEF
YCOEF=0.
ZCOEF=UCOEF
C
ELSE
IF(K-1.EQ.1 .OR. (K-1.GT.1 .AND. IBOUNDROJIIK-2).E(2)(0)) THEN
DVC $=$ DELL($(1, \mathrm{~K})+0.5^{*} \mathrm{DELL}(9, \mathrm{I}, \mathrm{K}+1) \div \mathrm{DELL}(9, \mathrm{I}, \mathrm{K}-1)$
ELSE
DVC $=$ DELL $(0,1, K) \neq 0.5^{*}(\mathrm{DELL}(7, \mathrm{~L}, \mathrm{~K} \neq 1) \neq \mathrm{DELL}(\mathbf{d}, \mathrm{I}, \mathrm{K}-1))$
ENDIF
$\psi S C O E F=1 /(2 *-1 D C C H M C)$
UCOEF=0.
VCOEF=SCOEF
$\mathrm{XCOEF}=0$.
YCOEF=SCOEF
ZCOEF=SCOEF
ENDIF
C
ZCON=-FACW *
1 VCO

3 -VCOHPUOLDZ(,1+1,K-1)+XCCHHPUOLDZ(,M,K)-
4 YCOHPUOLDZ $(, I-1, \mathrm{~K}+1)$) ZZ (cco

```
C
C9L2--NOW PUT COEFHICIENIIS INTO NUMMIERICAL APPPROXIMATION TO
C GOVERNING EQUATION
```



```
C
```



```
        2U(OIDMOTIHKK))+\MCOON+TZCONN+(DHNOJUK\)*DELT+UOLDYOX,K)-
        3UUSLY(0,|,K)
C
C9L3-_CALCULATE SOURCE TERMS AND CONSTANTS
        IF(NUMIT.EQ.II) COEF=XCON+2ACON+@QOA(JIIK)乡DFELT
C
C9M-_CALCULATE NORM OF TRUE ERROR AND NEW VALUE OF
C DISPLACEMENT
        44 ANO/RMF=ANORSNFF+MPBS(COEEF)
            ANORM=ANORNH+ABBS(RESID)
            USLY(GiIK))=USLY(G,I,K)-OMEGA*RISSTDD/(-FAC1)
        45 CONTINUE
    C
        ISW=3-ISW
        25 CONTINUE
C
C9N-CALCULLATE OMEGA
        JKSW=3-JKSW
        IF(NUMIT.EQ.1 .AND. IPASSERQ.1) THEN
```



```
        ELSE
        OMEGA=1.D0/((1,D0-0.25D0**RJACY***OMEGA)
        ENDIF
    97 CONTINUE
C
C9O-\PsiTCHECK FOR CONVERGENCE
```

```
IF(ANORMLEEXCLOSE»ANORMF) THEN WRITE(2OUIT,71) NUMIT
71 FORMAII(dX/NUUMBER OF INNER ITERATIONS IN Y IS',I5) GOTO 2000 ENDIF IF(ANORMM.GT.XCLOSE*ANORMF .AND. NUWIIT.LT.ISTEP) GOTO 17 IF(NUMMITT.GE.ISTEP) WRITE(IOUT,43) ISTERIKSTP, 1 KPER,ANORM,ANORMF,NUMOUT
43 FORMAT( 1 WX,*WARNING** CONVERGENCE NOT MET AFTER',15, 1 INNER ITERATIONS, AT TIME STEP", \(15,{ }^{\prime}\) OF STRESS PERIOD', \(15, /\), 21X,' IN Y. FINAL NORM OF RESIDUAL CALCULATED TO BE \({ }^{n}\), F 10.6 , , 31X,' IN Y. FINAL NORM OF TRUE ERRORR CALCULATED TO BE \({ }^{n}\) 。F10.6 \(/\),
```


C

```
ChO---LOOP THROUGH ALL THE COMPONENT DIRECTIONS AGAIN UNITIIL C CONVERGENCE
3000 DO \(81 \mathrm{KK}=1, \mathrm{NLAY}\)
DO 81 I=1,NRROW
DO \(81 \mathrm{~J}=1, \mathrm{NCCOL}\)
```



```
1TBENPYY(J,
IF(ERR-GT.TDIFF) TDIFF=ERR
81 CONTINUE
IF(IIIDOLD.LT.TDIFF) GOTO 4000
TDOLD=TDIFF
WRITE(IOUT,85)TDIFF
85 FORMAT(1X,'TOTAL DIFFERENCE IS',E15.8)
IFGroilin GT.TCLOSE .AND. NUMOUTLLT.IOSTP) GOTO 100
IF(TDIFF.LE.TCLOSE) GOTO 4000
IF(TDIFF.GT.TCLOSE .AND. NUMOUTI.EQ.IOSTP) WRITE(IOUT,82) NUMOUT, 1 KSTP,KPER
82 FORMATI ( \(1 \mathrm{X}_{0}^{\prime * * * W A R N I N G, ~ O U T E R ~ L O O P ~ C O N V E R G E N C E ~ N O T ~ M E T ~}\)
1 AFTER',I5,'OUTER ITERATIONS AT TTME STEP \({ }^{\prime} 15\),' OF STRESS PERIOD',15) GOTO 4000
C
C11_-_PRINT NUMIBER OF OUTER ITERATIONS NEEDED FOR CONVERGENCE 4000 WRITEATOETT-83) NUMOUT
```


C
C12-MOVE DOUBLE PRECISION VALUES TO SINGLE FOR PLOTING DOIOKK 41 ,NTIAY
DOLIMI 1 In, NRTOW
DO19 ${ }^{5}=1,1, \mathrm{NCOL}$
UX(gIJK) =USLXMiKK)
UY(
UZ(GIIX) =USL ZQ,IKK)
19 CONTINUE
C
C13-_RETURN
RETURN
END

List of Variables for Module USLIFM

Yadable	Range	Definidion
ACOEF	Module	Coefficient of the cell to the left or above in principal direction.
ANORM	Module	True error of residual based on L1-type norm.
ANORMF	Module	L1 norm of source terms.
BCOEF	Module	Coefficient of the cell of concern in the principal direction.
BOX	Global	DIMENSION (NCOL,NROWWNLAY), Elevation of bottom of each layer. (NBOT is the number of layers for which LAYCON \equiv 1 ©r 3.$)$
CCOEF	Module	Coefficient of the cell to right or below in principal direction.
COEF	Module	Sum of source terms and constants of cell being evaluated.
CON	Module	Multiplication factor (not used for this governing equation).
DCB	Module	Grid spacing component of coefficient of cell to left for columns along rows or layers; ${ }^{* * A r}$
DCC	Module	Grid spacing component of coefficient of cell for columns along rows or layers.
DCF	Module	Grid spacing component of coefficient of cell to right for columns along rows or layers.
DCM	Module	Grid spacing component of coefficient of cell to left along columns.
DCOEF	Module	Coefficient of USLY($14+1, \mathrm{~K}+1)$, USLY($)+-1(1+1, K)$, and USLX($+1,1+4 \mathrm{LK}$).
DCP	Module	Grid spacing component of coefficient of cell to right along columms.
DELC	Global	DIMENSION (NROW), Cell dimension in the column direction. DELC(D) contains width of row I.
DELL	Global	DIMENSION (NCOL,NROWN,NLAY), Cell dimension in the layer direction.
DELR	Global	DIMENSION (NCOL), Cell dimension in the row direction. DIEIR(O) contains width of column J.
DELT	Global	Length of ciurrent time step.
DRB	Module	Grid spacing component of coefficient of cell to left for rows along columns or layyens.
DRC	Module	Grid spacing component of coefficient of cell for rows along columns or layers.
DRF	Module	Grid spacing component of coefficient of cell to right for rows along columns or layers.
DRM	Module	Grid spacing component of coefficient of cell to left along rows.
DRP	Module	Grid spacing component of coefficient of cell to right along rows
DV	Module	Grid spacing component of coefficient of cell along layers.
DVB	Module	Grid spacing component of coefficient of cell above for layers along rows or columns.
DVC	Module	Grid spacing component of coefficient of cell for layers along rows or columms.

List of Variables for Module USLIFM (Continued)

Variable		Definition
DVM	Module	Grid spacing component of coefficient of cell below for layers along rows or columns.
D2COEF	Module	Coefficient of USLX ($\ddagger+1,1, \mathrm{~K}+1)$. Coeffirdent of USLY $(1,1, K \neq 1$),
ECOEF	Module	
ERR	Module	Error of cell measured for each outer iteration.
E2COEF	Module	Coefficient of USLX $(1, I, K+1)$.
FAC	Module	Constant equal to correct hydraulic conductivity times DELT divided by specific storage times CON.
FACH	Module	Same as FAC but specific storage is for horizontal direction.
FACV	Module	Same as FAC but specific storage is for vertical direction.
FAC1	Module	1+FAC*BCOEF
FCOEF	Module	Coefficient of USLY(f)dill
F2COEF	Module	
GCOEF	Module	
G2COEF	Module	
H	Module	Temporary value of horizontal hydraulic conductaivitys.
HC	Package	DIMENSION (NCOLL,NROUW,NLAY), Horizontal hydraulic conductivity evaluated for each cell in the grid.
HCOEF	Module	
HNEW	Global	DIMENSION (NCOL,NRROUNXLAY), Most recent estimate of head in each cell.
HOLD	Global	DIMENSION (NCOL;MROW,NLAY), Head at the start of the current time step.
HV	Module	Vertical hydraulic conductivity equal to HC*RATIO.
HY	Global	DIMENSION(NCOLL,NRROWNNLAY), Horizontal hydraulic conductivity for cells where LAYCON $\equiv 1$ or 3 .
H2COEF	Module	Coefficient of USLX $(\mathbb{y}, \mathrm{I}, \mathrm{K}-1)$.
	Module	Index for rows.
IACT	Global	DIMENSION (NCOL,NROOW,NULAY), Boundary array identifying active cells in which displacement is calculated.
IBOUND	Global	DIMENSION (NCOLL,NRROWN,NLAY), Status of each cell $\leqslant 0$, constant-head cell $=0$, inactive cell $\geqslant 0$, variable-head cell
IJSW	Module	Counter in column direction for odd-even ordering.
IKSW	Module	Counter in column direction for odd-even ordering.
IOSTP	Module	Number of outer-loop iterations.
IOUT	Global	Primary unit number for aill printed output. IOUT $\equiv 6$.
IPASS	Module	Index for odd-even ordering.
ISW	Module	Index in row direction for odd-even ordering
J	Module	Index for columns.
JKSW	Module	Counter in row direction for odd-even ordering.
JSW	Module	Index for columns for odd-even ordering.

List of Variables for Module USLIFM fContinuedI

Variable	Range	Definition
K	Module	Index for layers.
KB	Module	Counter for layers for which bottom elevation is needed.
KN	Module	Counter for layers that have gone dry for USLZ adjustment.
KPER	Global	Stress period counterr.
KR	Module	Counter for layers for which hydraulic conductivity is needed.
KSTP	Global	Time step coimter. Reset at the start of each stress period.
KSW	Module	Index for layers for odd-even ordering.
KT	Module	Counter for layers for which top elevation is needed.
KUNIT	Package	Flag indicating whether english or metric units are used for length.
		$=0$ Meters are used as units of length. $\equiv 1$ Feet are used as units of length.
LAYCON	Global	DIMENSION (80), Layer type code: 0 - Layer strictly confined. 1 - Layer strictly umconfined. 2 - Layer confimed/rumcomfined (transmissivity is constant).
		3 - Layer confined/umionfined (transmissivity va
NB	Global	Flag indicating whether initial or ultimate bulk flux
N	Glob	Number of columns in the grid.
NLAY	Global	Number of layers in the grid.
NMAX	Package	Number of cells in either the row, column or layer directionwhichever is greatest.
NROW	Global	Number of rows in the grid.
NUMIT	Module	Counter for inner-loop iterations.
NUMOUT	Module	Counter for outer-loop iterations.
OCTOEF	Module	
OMEGA	Package	Relaxation parameter for successive overrelaxation.
O2COEF	Module	Coefficient of USLX (J-1,I,K-1).
PCOEF	Module	Coefficient of USLY($1+1, \mathrm{~K}$) and USLXX $(\ddagger+1, \mathrm{I}, \mathrm{K})$.
PS	Package	DIMENSION (NCOL,NROW,NLLAY), Preconsolidation straim. Used to determine whether specific storage is elastic or virgin.
P2COEF	Module	Coefficient of USLX(J+1,I,K).
QBX	Global	DIMENSION (NCOL,NR(SW,NLAY), Bulk flux in X direction.
QBY	Global	DIMENSION (NCOL,NR(OWW,NLAY), Bulk flux in Y direction.
QBZ	Global	DIMENSION (NCOL,NRROWV,NLAM), Bulk flux in Z direction.
QCOEF	Module	Coefficient of USLY($1+1, \mathrm{~K}$) and USLX $(1+1,1, K)$.
Q2COEF	Module	Coefficient of USLXXIIKK).
RATIO	Global	DIMENSION (NCOL,NROWN,NLAY), Ratio of vertical to horizontal hydraulic conducttikityy.
RCOEF	Module	Coefficient of USLY $\left({ }_{6}, \mathrm{I}-1, \mathrm{~K}\right)$ and USLX($(1-1,1, K)$).
RESID	Module	Residual which defines the error at the cell during inner-loop iteration.

List of Variables for Module USLIFM fContinued)

Variable	Range	Definition
RJACX	Module	Estimate of the spectral radius of the Jacobi iteration in X.
RJACY	Module	Estimate of the spectral radius of the Jacobi iteration in Y.
RJACZ	Module	Estimate of the spectral radius of the Jacobi iteration in Z .
R2COEF	Module	Coefficient of USLX $(\mathbb{J}-1, \downarrow \mathbb{K})$.
SCOEF	Module	
SCl	Global	DIMENSION (NCOL,NRR(IWU,NLAY), Primary storage capacity of each cell (S * DELC**DELR).
SC2	Global	DIMENSION (NCOL,NRROWNONLAY), Secondary storage capacity of each cell in the grid.
SPX	Global	DIMENSION (NCOL,NR(OWW,NLAY), Ultimate specific discharge values in X, equivalent to the ultimate bulk fluxes in X
SPY	Global	DIMENSION (NCOL,NRROWW,NLAY), Ultimate specific discharge values in Y, equivalent to the ultimate bulk fluxes in Y
SPZ	Global	DIMENSION (NCOLL,NRROWWNLAY), Ultimate specific discharge values in \mathbf{Z}, equivalent to the ultimate bulk fluxes in \mathbf{Z}
S5	Module	Current value of specific storage at the cell being evaluated.
SSE	Package	DIMENSION (NCOL,NR(OWW,NUAY), Elastic specific storage.
SSK	Package	DIMENSION (NCOLL,NROWW,NULAY), Specific storage in the Z direction
SSV	Package	DIMENSION (NCOL NRWWW,NLAY), Virgin specific storage.
SSZ	Module	Temporary specific storage in \mathbf{Z} direction.
STRNX	Package	DIMENSION (NCOL, NRROW,NLAY), Strain in the X direction.
STRNY	Package	DIMENSION (NCOL,NRROUWV,NLAY), Strain in the Y direction.
STRNZ	Package	DIMENSION (NCOL, NRROW/NJAY), Strain in the Z direction.
TCLOSE	Package	Closure criterion for outer-loop convergence
TDIFF	Module	Total error for outer-loop iteration at current time step.
TDOLD	Module	Total error for outer-loop iteration at previous time step.
TEMPX	Package	DIMENSION (NCOL,NROWWNLAY), Displacement in X direction at previous outer iteration.
TEMPY	Package	DIMENSION (NCOL,NROWWNLAY), Displacement in Y direction at previous outer iteration.
TEMPZ	Package	DIMENSION (NCOLLNROWN,NLAY), Displacement in Z direction at previous outer iteration.
TOTIM	Global	Total simulation time.
TRAN	Package	DIMENSION (NCOL,NRROWW,NLAY), Transmisssiwity.
UCOEF	Module	Coefficient of USLZ $(1+1, K)$ and USLZO $+1, \mathbb{E}, \mathrm{~K})$.
UOLDX	Package	DIMENSION (NCOL,NRROW,NLLAY), Displacement in X direction at previous time step.
UOLDY	Package	DIMENSION (NCOL,NROUW,NLAM), Displacement in Y direction at previous time step.
UOLDZ	Package	DIMENSION (NCOL,NRROWNUAY), Displacement in Z direction at previous time step.
USLX	Package	DIMENSION (NCOILSNROW,NILAY), Displacement in X

List of Variables for Module USLIFM (Continued)

Varisde	Range	Deffinition
USILY	Package	DIMENSION (NCOLJNRAW,NLAY), Displacement in Y
USLZ	Package	DIMENSION (NCOL, NR(OWU,NLAY), Displacement in Z
UX	Package	DIMENSION (NCOLL,NROUW,NLAY) Single precision displacement in X direction used for plotting.
UY	Package	DIMENSION (NCOL,NREOWV,NLAY) Single precision displacement in Y direction used for plotting.
UZ	Package	DIMENSION (NCOLL,NRROWW,NLAY) Single precision displacement in \mathbf{Z} direction used for plotting.
VCOEF	Module	
VSTRN	Package	DIMENSION (NCOL, NRR(WUN,NLAY), Volume strain.
XCLOSE	Package	Closure criterion for irmer-loop convergence.
XCOEF	Module	
XCON	Module	Contribution of cross-product derivatives of USLX for displacement in the Y or Z directions.
X2COEF	Module	
YCOEF	Module	Coefficient of USLZ $(9) 1-1 / K+1)$ and USLZ($-1 . L, K+1$).
YCON	Module	Contribution of cross-product derivatives of USLY for displacement in the X or Z directions.
Y2COEF	Module	
ZAD.	Module	Amount of displacement in the \mathbf{Z} direction added to previously active cells.
ZCOEF	Whodude	
ZCON	Noodulde	CContrititulitionoffornssspproduact displacement in the X or Y directions.
ZIM	Package	DIMENSION (NCOL,NROW), Displacement in the layer of image cells above the water table.
ZOM	Package	DIMENSION (ANCCOL,NXROW), Displacement in the layer of image cells above the water table at the previous time step.
Z2COEF	Module	Coefficient of USLZQ $+1 / \mathbb{I}, \mathbb{K})$.

Narrative for Module USLIOT

This module prints or saves magnitude of displacement, directional components of displacement, and volume strain according to flags set by the user for each stress period. If flag IUSLOC is set in Module USL1AL then flags are read for printing or saving these data. If the flags are greater than zero the data are saved for the stress period. The data are printed or the data saved to disk according to flags set in Module USL1AL. Each directional component of displacement has its own flag for printing or saving so that the user does not have to print out all component directions if this should be undlesirable

Module USLIOT is called each stress period by the MAIN program and calls utility modules ULAPRS and ULASAV (see McDoinald and Harbaugh, 1988). Module USL1OT performs its functions in the following onder.

1. Initialize print and save flags
2. Read print and save flags if IUSILCXI is set
3. Print magnitude of displacement if NMAGPR >0, Save magnitude of displacement if NMAGSV 50 .
4. Print X-displacements if NUSXPR >0.

Save X-displacements if NUSXSV >0.
5. Print Y -displacements if NUSYPR >0. Save Y -didisplacements if NUSYSV >0.
6. Print Z-displacements if NUSZPR >0.

Save Z-displacements if NUSZSV $\geqslant 0$.
7. Print volume strain If NVSTPR $\geqslant 0$. Save voliume strain if NVSTSV >0.
8. RETURN

Rlow Chart for Module USLIOT

IUSLOC is the flag to determine whether displacements are calculated and whether displacements and volume strain are printed or saved.

NMAGFM and NMAGSV are the flags indicating whether the magnitude of displacement is printed or saved for the stress period, respectivelly. $\geqslant 0$ values are printed or saved $\xi=0$ values are not printed or saved.

NUSXPR and NUSXSV are the flags indicating whether the X -displacements are printed or saved for the stress period, respectivedly.
$\geqslant 0$ values are printed or saved $\leqslant=0$ values are not printed or saved.

NUSYPR and NUSYSV are the flags indicating whether the Y -dilisplacements are printed or saved for the stress period, respectivedyy.
$\geqslant 0$ values are printed or saved $\leqslant \equiv 0$ values are not printed or saved.

NUSZPR and NUSZSV are flags indicating whether the Z-displacements are printed or saved for the stress period, respectivivelly. $\geqslant 0$ values are printed or saved. $\leqslant=0$ values are not printed or saved.

NVSTPR and NVSTSV are flags indicating whether volume strain is printed or saved for the stress period. $\geqslant 0$ values are printed or saved. $\leqslant=0$ values are not printed or saved.


```
SUBROUTINE USL1OTI(USLXX,USLMUSSIZZ,UNAACO,NCCOL,NROW,NLLAY,IOUT,IN, 1 IUSLOC,LACX,NSTR,KPPER,KSTP,NMAGFM,NUSXFM,NUSYFM,NUSZFM,
2 NVSTFM, \(\mathbb{N M A G U N , N U S X U N , N U S Y U N , N U S Z U N ; M V S T U N , ~ P E R T I M A , T O T I M , ~}\) 3 VSTRN,BUFF)
c
C *****************************************************************************
C PRINT AND RECORD DISPLACEMENT OF SOLIDS INFORMATION
c
c
C SPECIFICATIONS:
C
CHARACTERE TEXT * DOUBLE PRECISION USLX;USLY,USLZ
C
DIMENSION USLX(NCOL,NR(OWW,NLAY),USLY(NCOL,NROWW,NLLAY), 1 I:JSLZ(NCOL,NROW,NLAY), UUMAG(NCOL,NROW,NLAY),IACT(NCOL, 2 NROW,NLAY),TEXII(45),WSTIRN(NXCOL,NROW,NLAY),BUFFF(NCOL, 3 NIROW,NLLAY)
C
DATA TEXT( 1,11\()\),TEXT( 2,11\(), \operatorname{TEXT}(3,11)\) TEXT \((4,1)\)
```



``` 6 'RAIIN7
c
c
C1--INITTLALIZE FLAGS FOR PRINTING AND SAVING SUBSIDENCE, MAGNITUDE
C OF DISPLACEMENT, AND DIRECHONAL COMPONENTS OF
C DISPLACEMIENTIT
NMAGPR \(=0\)
NUSXPR=0
NUSYPR=0
NUSZPR=0
NVSTPR \(=0\)
NMAGSV \(=0\)
```

NUSXSV $=0$
NUSYSV $=0$
NUSZSV $=0$
NVSTSV $=0$
C
C2——READ FLAGS FOR PRINTING AND SAVING IF IUSLOC IS SET IF(IUSLOCIIEE) GOTO 170
READ(ON(3) NMAGPR,NUSXPR,NUSYPR,NUSZPR,NVSTPR,NMAGSV,
1 NUSXSV,NUSYSV,NUSZSV,NVSTSV
3 FORMATATOIS)
WRITEA(OUTL,6) NMAGPR,NUSXPR,NUSYPR,NUSZPR,NVSTPR, 1 NMMCSSV,NUSXSV,NUSSUSW,NUUSESW,NVSTSV "
6 FORMATI $/ / 1$,1X/FLAGS FOR PRINTING AND STOWNIG MAGNITUDE OF 1DISPLACEMENT, AND DIRECTIONAL COMPONENTS OF DISPLACEMENT:' $2 /{ }^{\prime}$ NMAGPR NUSXPR NUSYPR NUSZPR NVSTPR NMAGSV NUSXSV 3NUUSHSV NUSZSV NVSTSW'/

/ c

'TF(NMMAGHRIIEE(0) GOTO 80
CALLUBrCUSSI(USILX,USLY,USLZ,NCOL,NROW,NLAY,IACT,UMAG,IUSLOC) DOSKKE11,NILAY

$\downarrow 1$ NCOL,NROW,K, K , $\mathrm{MAGFM}, 1 O U T$)
 1 NCOL_NROW,K,NMAGFM,IOUT)

8 CONTINUE

C
C——SAVE MAGNITUDE OFIDISPPLACEMENT FOR ALL LAYERS
80 IF(NMAGSV.LEEOO)GOTO90
 DOOKK $=1$ 1,NILAY
 1 NROW,K,NMAGUN)
9 CONTINUE
C


```
    90 IF(NUUSXPPRILEO) GOTO 100
        DO2OKK=1,NLLAY
        DO20IF=h,NROW
        DO20.J=L,NCCOL
        UX=USLX(J,l,K)
        BUFF(,N,K)=UX
    20 CONTINUE
        DO 11 K=1,NLLAY
```



```
        1 NCOL,N+NOW,K,_-NUUSXFM,IOUT)
```



```
        1 NCOL,NROWMKNKUSXEMMOIONDINA`
        11 CONTINUE
C
```



```
    100 IF(NUUSXSVIUE.0) GOTO }11
        DO21KKE11,NISAY
        DO 21I I=1,NRROW
        DO 21 J=1,NCOL
        UX=USLLXHI,K
        BUFFQ,I,K)=UX
    2\ CONTINUE
        DO1REKK41,NIAAY
```



```
        1 NROW,K,NUSXUN)
    12 CONTINUE
C
C5-mmPRINT Y COMPONENT OF DISPLACEMENT FOR ALL LAYERS
    110 IF(NUSYPR.LE.0) GOTO }12
        BN)22K=h,NLAYY
        DO22D系=1, NROW
        DO22DJ=1,NCOL
        UY=USLY(,I,K)
        BUFF(0,L,K)=UY
    2 2 ~ C O N T I N U E ~
    DO1 BYK+77,NLAYY
```

 1 NCOLL,NROWW,
 1 NCOL 2 NTROW,K,NUSYFM,IOLIT) 13 CONTINUE
C

120 BFI(NUSYSV.LED.0) GOTO 130
DO2SKKE41,NLAY
D0233 $=11, \mathrm{NROW}$
DO230J $=11, \mathrm{NCOL}$
UY=USLY(Z̈LI,K)
BUFF($\left(\mathrm{jI} \mathrm{I}_{\mathrm{K}}\right)=\boldsymbol{U} \mathbf{Y}$
23 CONTINUE
DO1 H1KK 41 ,NLIAY
CALLULASAV(BUFF(1,hKd), TEXT(L) 1 NROW,X,NUSYYUN)
14 CONTINUE
C
C6-- PRINT ZCOIMPONENIIOFIDISPLACEMMENIT POR ANLLLAYEERS
130 IF(NUSZARRILE(0) GOTO 140
DO234K $=11$,NLAY
DO22II $=11$, NROW
DO $A J=h, N C O L$
UZ $=$ USLZ $(\mathbb{1}, \mathrm{L}, \mathrm{K})$
BUHFH(IIK) $=\mathbf{U Z}$
24 CONTINUE
DOI FKKE 41 ,NLIAY
IF(NUSTHWUITO) CALL ULAPPRS(BUFF(1,1,K),TEXT(1,4),KSTP,KPER,
1 NCOL,NROWW,K,-NUSZFM,IOUT)
 1 NCOL,NIROW,K,NUSZFM,IOUT)
15 CONTINUE
C

140 IF(NUSESW.LE.OFGOTO 150

```
DO2ZHKK41,NLAYY
D022SI#=11,NROW
D0225%j=1,NCOL
UZ=USILZ(JIIK)
BUFFG,L,K)=UZ
    25 CONTINUE
        DO16GK&11,NLAYY
        CALLULASSAV(BUFF(1,hK),NEXT(L,4)KKSTP,KPEER,PFERTIM,TOTIM,NCOL,
        1 NROW,K,NUSZUN)
    16 CONTINUE
C
C7---PHEINIT WOUUMESTIRRAMNHFORSNLLILAMYERSS
    150 IF(NVSTPPRLEEO) GOTO 160
            DO1THKEINNLIAY
            IF(NVSTIPMMIM(0) CALL ULAPRSS(VSTRN(11,11,K)),IIEXI(11,5),KSTP,KPER,
            1 NCOL,NBROW,K,_-NVSTFM,IOUT)
            IF(NVSTTM(GEE0) CALL ULAPRW(VSTRN(1,1,K),TEXT(1,5))KSSIP,KPER,
            1 NCOL,NBKWW,K,NVSTFM,IOUT)
            17 CONTINUE
C
C-_SAVFEIWOILUNGESTRRANNNFORAIULILAWHERSS
    160 IFNNVSTSSVILEO) GOTO 170
        DO1PKK =11NNIAYY
        CALL ULASAV(WSTMPN(1,1,K),TEXT(1,5),KSTP,KPER,PPERIIMM,TROIIMW,NCOU,
        ULDWIROW,K,NVSTUN)
        18 CONTINUE
C
C8-_-RETURN
    170 RETURN
        END
```

\qquad

List of Variables for Module USLIOT

Vrouible	Range	Definition
BUFF	Global	DIMENSION (NCOL,NRROW,NLAY), Buffer used to accumulate information before printing or recording it.
I	Module	Index for rows
IACT	Package	DIMENSION (NCOLL,NRROWUNLLAY), Boundary array identifying active cells in which displacement is calculated.
IN	Package	Primary imit number from which input for this package will be read.
IOUT	Global	Primary unit number for all printed output. IOUT $\equiv 6$.
IUSLOC	Package	Flag indicating whether displacements are calculated and displacements and volume strain printed or saved.
J	Module	Index for columns
\mathbf{K}	Module	Index for layers
KPER	Global	Cotinter for number of stress periods.
KSTP	Global	Counter for number of time steps.
NCOL	Global	Number of columns in the grid.
NLAY	Global	Number of layers in the grid.
NMAGFM	Package	Code indicating format for printing magnitude of displacementt
NMAGPR	Module	Flag indicating whether magnitude of displacement is printed.
NMAGSV	Module	Flag indicating whether magnitude of displacement is saved.
NMAGUN	Package	Unit number indicating where magnitude of displacement data are to be recorded.
NUSXFM	Package	Code indicating format for printing X-displacements.
NUSXPR	Module	Flag indicating whether X -displacements are printed.
NUSXSV	Module	Flag indicating whether X -displacements are saved.
NUSXUN	Package	Unit number indicating where X -displacement data are to be recorded.
NUSYFM	Package	Code indicating format for printing Y-dilisplacements.
NUSYPR	M ${ }^{\text {deddule }}$	Flag indicating whether Y-disisplacements are printed.
NUSYSV	Module	Flag indicating whether Y-displacements are saved.
NUSYUN	Package	Unit number indicating where Y-displacement data are to be recorded.
NUSZFM	Package	Code indicating format for printing Z-displacements.
NUSZPR	Module	Flag indicating whether Z -displacements are printed.
NUSZSV	Module	Flag indicating whether Z-displacements are saved.
NUSZUN	Package	Unit number indicating where Z-displacement data are to be recorded.
NVSTFM	Package	Code indicating format for printing volume straim.
NVSTPR	Module	Flag indicating whether volume strain is printed.
NVSTSV	Module	Flag indicating whether volume strain is saved.
NVSTUN	Package	Unit number indicating where volume strain data are to be recorded.
TEXT	Module	Label for printout of input anuyy.
TOTIM	Global	Total simulation time..:

List of Variables for Module USLIOT

Variable	Range	IReffimition
UMAG	Package	DIMENSION (NCOL,NRROXUN,NLAYY), Magnitude of displacement.
USLX	Package	DIMENSION (NCOL,NROUW,NLAY), Displacement in the X direction.
USLIY	Package	DIMENSION (NCOL,NROWW,NLAY), Displacement in the Y direction.
USLZ	Package	DIMENSION (NCOL,NROXIN,NLAYY), Displacement in the Z direction.
UX	Module	Temporary variable for displacement in the X direction.
UY	Module	Temporary variable for displacement in the Y direction.
UZ	Module	Temporary variable for displacement in the \mathbf{Z} direction.
VSTRN	Package	DIMENSION (NCOL,NROUN,NLAY), Volume straim.

Narrative for Module SUSLIX

This module calculates the strain in the X direction. This value is used to calculate the volume strain which is used to determine whether elastic or virgin specific storage is used for a given cell in the model grid.

Module SUSL1X is called by USL1FM and performs the following tasks

1. Check to see if NCOL >1.
2. Check for active cells in the grid
3. Calculate strain in the X direction.
4. RETURN

Flow Chart for Module SUSLIX

NCOL is the number of columns in the grid.

IACT is the boindary array indicating the cells where displacement is calculated.


```
SUBROUTINE SUSLIX(USLX,IACX,NCOL,I,K,DELR,STRENX,NROM,NNLAY') C
```



```
C CALCULATE THE STRAIN IN THE X DIRECTION
e ****************************************************
C
C SPECIFICATIONS:
C
        DOUBLE PRECISION USLX
        DIMENSION USLX(NCOL,NROWW,NLLAY),IACT(NCOLL,NROOW,NLLAY),
        1 DELR(NCOL),STIRNN(NNCCL,NRHOWNNLAYM)
C
C
Cl___LLOOP THROUGH ACTIVE CELLS FOR EACH COLUMN
        IF(NCOLCGII.)COHOOn
        GOTO 23
    1hDEOM 00j¥1,NCCOL
C
C2-_-CHEBCK FOR ACTIVE CELLS
        IF(IACTGi\Hy)H(#0) GOTO 10
C
C3-_--_FOR CELLS ALONG A COLUMN CALCULLATE STRAIN
C LOWEST ACTIVE COLUMN
        IF(-EQ-1 .OR. O.GT.1 .AND. IACT(0-L|KD).E(20)) THEN
```



```
        1 (DELRO+D+DELLR(O)))
        GOTO 10
        ENDIF
    C HIGHEST ACTIVE COLUMN
        IF(.EQ.NCOL .OR. O.ILINCOL .AND. IACT(1)+U|\\)H(0(0)) THEN
        STRNX(g,LK)\equiv(-USLX(fIIK)-USLXX-H,IKK))
        1 (DELR(0)+DELRR(J-1)))
        GOTO 10
        ENDIF
C INTERIOR ACTIVE CELLS ALONG A COLUMN
```



```
        STRNX(J,HKK)=(USSLX(%+L,I,K)-USLX(OP1,I,K)))/
```

 ENDIF
10 CONTINUE
C
C4-RETURN
23 RETURN
END
$/$

List of Variables for Module SUSLIX

Variable	Bange	Deffiritote
DELR	Global	DIMENSION (NCOL), Cell dimension in the row direction. DELR() contains the width of column J .
I	Module	Index for rows.
IACT	Global	DIMENSION (NCOL,NRSOWNLAYY), Boundary array for displacement. $\geqslant 0 \mathrm{cell}$ is active. $\varepsilon=0$ cell is inactive.
J	Module	Index for columns.
K	Module	Index for layers
NCOL	Global	Number of columns in the grid.
NLAY	Global	Number of layers in the grid.
NROW	Global	Number of rows in the griidtr"
STRNX	Package	DIMENSION (NCOL, NBR(OWUNLAY), Strain in the X direction.
USLX	Package	DIMENSION (NCOL,NR(OWDNLAY), Displacement in the X direction.

V

Narrative for Module SUSLIY

This module calculates the strain in the Y direction. This value is used to calculate the volume strain which is used to determine whether elastic or virgin specific storage is used for a given cell in the model grid.

Module SUSLiY is called by USLIFM and performs the following tasks

1. Check ${ }^{\text {Cohseadifonran }}$ ROW >1.
2. Check for active cells in the grid
3. Calculate strain in the Y direction.
4. RETURN

Flow Chart for Module SUSLIY
NROW is the number of rows in the grid.
LACT is the boundary array indicating the cells where displacement is calculated.

C
C CALCULATE THE STRAIN IN THE Y DRECTIONCC SPECDFICATIONS:
CDOUBLE PRECISION USLLY1 DELC(NIROW),STIRNY (NCOL,NRTOW,NIAYY)
C CCl __LOOP THROUGH ACTIVE CELLS FOR EACH ROW23 IF(NROW(GII))GOTO 22
GOTO 33
22 DO20IIn, NRTOW
C
C2-CHECK FOR ACTIVE CELLS
IF(IACT(U)LK) EODO) GOTO 20
CC3-FOR CELLS ALONG A ROW CALCULATE STRAIN
C LOWEST ACTIVE ROW
IFG.EQ.1 .OR. (L.GT.1 .AND. IACT(J,M1K) H(D)) THEN

1 (DELC(+1 1) + DELC(1))))
GOTO 20
ENDIF
C HIGHIEST ACTIVE ROW
IF(LEQ.NROW .OR Q.LTINROW .AND. IACTGiH $+1,12$ EEQ(0)) THEN

1 (DELC(1) + DELC(I-1)))
: GOTO 20
ENDIF
C INTERIOR ACTIVE CELLS ALONG A ROW

1 (DELC(A) $+0.5^{\circ}($ (DEHC($a+11)+$ DELCC(-1$\left.)\right)$)
ENDIF
20 CONTINUE C

C4-_-RETURN
33 RETURN
END

List of Variables for Module SUSLIY

Yariable	Range	Definition
DELC	Global	DIMENSION (NCOL), Cell dimension in the column direction. DELC(I) contains the width of row L
1	Module	Index for rows.
IACT	Global	DIMENSION (NCOL_NRZOWUNLAY), Boundary array for displacement. $\geqslant 0$ cell is active. $\leqslant=0$ cell is inactive.
J	Module	Index for columns.
K	Module	Index for layers
NCOL	Global	Number of columns in the grid.
NLAY	Global	Number of layers in theogxth.
NROW	Global	Number of rows in the grid.
STRNY	Package	DIMENSION (NCOL_NRXOW,NLAY), Strain in the Y direction.
USLY	Package	DIMENSION (NCOL,NROMW,NLAY), Displacement in the Y direction.

Narrative for Module SUSLIZ

This module calculates the strain in the \mathbf{Z} direction. This value is used to calculate the volume strain which is used to determine whether elastic or virgin specific storage is used for a given cell in the model grid.

Module SUSLIZ is called by USLIFM and performs the following tasks

1. Check to see ifindlay >1.
2. Check for active cells in the grid
3. Calculate strain in the Z direction.
4. RETURN

Flow Chart for Module SUSLIZ
NLAY is the number of layers in the grid.
IACT is the boimdary array indicating the cells where displacement is calculated.


```
            SUBROUTINE SUSLTZ(USUZZ,IACCT,I,NL,NAY,DELLSSITRNZ,IBOUND,
            1 NCOU,NROW)
        C
    C ************m*************************************************
    C CALCULATE THE STRAIN IN THE Z DIRECTION
```



```
    C
    C SPECIFICATIONS:
    C
            DOUBLE PRECISION USLZ
            DIMENSION USLZ(NCOLLINR(OW,NLLAY),IACT(NCOIL,NROMW,NLAY),
            1DHILI(NCOL,NROW,NLAM)STHENZ(NCOLLNOOW,NLAYY),IBCUND(NCOL,
            2NNROW,NLAYY)
    C
    C
    C1__LOOP THROUGH ACTIVE CELLS FOR EACH LAYER
        33 IF(NLAYGTII).GOHO }3
            GOTO 41
        32 DO3OKK=1,\NLAYY
    C
    C2_-CHECK FOR ACTIVE CELLLS
        IF(IACTGJMK)I(D(0) GOTO 30
        IF(DELL(IIJK).E(2)(0) GOTO 30
    C
# C3--_FOR CELLS THROUGH A LAYER AND CALCULLATE STRAIN
    C UPPERMOST LAYER
        IF(K.EQ.1 .OR. (K.GT.1 .AND. IBOUND(II&<-1))H(O.O)))THEN
        STRNZO,I,K)=(USLZQ,IK$1)-USLZZO,IIK))/
        1(0.5*DELII(%),4,K+1)+DELLO|,KK))
        GOTO 30
        ENDIF
    C HIGHEST ACTIVE LAYER
        IFOKHQNLAY .OR. (K.LT.NLAY .AND. IACT(J,L,K+1).EQ.0)) THEN
        IF(K-1.EQ.1 .OR. (K-1.GT.1 .AND. IBOUND\IIIN22)H(10)) THEN
```



```
        1 DELL(fiHM)*DHILIO,HK-D)
    ELSE
```



```
    ENDIF
    GOTO 30
        ENDIF
C INTERIOR ACTIVE CELLS THROUGH ALL LAYERS
        IF(IACT{JI&-H)(GTTO .AND. IACT(4)LIK+1)(GTO) THEN
        IF(K-1.EQ.1 .OR. (K-1.GT.1 .AND. IBOUND(IXIKE-2))H(D(0)) THEN
```



```
        ELSE
```



```
        ENDIF
        ENDIF
    30 CONTINUE
C
C4--_RETURN
    41 RETURN
        END
            s
        v
```

List of Variables for Module SUSLIX

Variable	Range	Definition
DELL	Global	DIMENSION (NCOLL,NRROWUNLLAY), Cell dimension in the layer direction. DELLO, $1, \mathrm{~K}$) contains the thickness of layer K.
1	Modkule	Index for rows.
IACT	Global	DIMENSION (NCOL,NRROWU,NLAY), Boundary array for displacement. $\geqslant 0$ cell is active. $\leqslant=0$ cell is inactive.
IBOUND	Global	DIMENSION (NCOL,NBZOWNLAY), Status of each cell $\leqslant 0$ cell is constant head $=0$ cell is inactive $\geqslant 0$ cell is variable head
J	Module	Index for columis.
K	Module	Index for layers
NCOL	Global	Number of columns in the grid.
NLAY	Global	Number of layers in the grid.
NROW	Global	Number of rows in the grid.
STRNZ	Package	DIMENSION (NCOL, NREOWKNLAY), Strain in the Z direction.
USLZ	Package	DIMENSION (NCOL,NROUW,NLAY), Displacement in the Z direction.

Narrative for Uility Module UBCUSL
This utility module calculates the magnitude of displacement from the already calculated directional components of displacement if IUSLOC >0. This utility module is called by USL1OT and performs its tasks in the following order:

1. Check to see if IUSLOC >0
2. Loop through all cells in the grid checking to see if they are active
3. Calculate magnitude of displacement from USLX, USLY, and USLZ values.
4. RETURN.

Flow Chart for Utility Module UBCUSL

IUSLOC is the flag indicating whether displacement is calciilated or not. $\geqslant 0$ displacement is calculated and printed or saved.
$\varepsilon=0$ displacement is not calculated, printed or saved.

IACT is the boundary array flag for calculating displacement $\geqslant 0$ cell is active $<=0$ cell is inactive

USLX is the displacement in the X direction.

USLY is the displacement in the Y direction.

USLZ is the displacement in the \mathbf{Z} direction.

UMAG is the magnitude of displacement calculated as the square root of the sum of squares of USLX, USLYY, and USLZ


```
            SUBROUTINE UBCUSL(USLX,USLY,USLZ,NCOL,NROW,NLAY,
            1 IACT,UMAG,IUSLOC)
```



```
C UTILITY SUBROUTINE TO CALCULATE THE MAGNITUDE OF
C DISPLACEMENT WHEN IUSLOC FLAG IS SET
C *******************************************************************
C
C SPECIFICATIONS:
C
    DOUBLE PRECISION USLX,USLY,USLZ
C
        DIMENSION USLX(NCOL,NROW,NLAY),USLY(NCOL,NROW,NLAY),
        1 USLZ(NCOL,NROW,NLAY,IACT(NEOLL,NROW,NLAY),
        2 UMAG(NCOL,NROW,NLAY)
C
C
C1__-CALUCATE THE MAGNITUDE OF DISPLACEMENT IF
C IUSLOC IS GREATER THEN O.
        IF(IUSLOC.LE.0) GOTO 100
C
C2-_LOOP THROUGH ENTIRE GRID OF ACTIVE CELLS
        DO }8\textrm{K}=1\mathrm{ ,NLAY
        DO }8\mathrm{ I=1,NROW
        DO8J=1,NCOL
        IF(IACT(J,I,K).EQ.0) GOTO }
C
C3-CALCULATE MAGNITUDE OF DISPLACEMENT
        UMAG(J,I,K)=SQRT(USLX(J,I,K)*USLX(J,I,K)+USLY(J,I,K)*USLY(J,I,K)+
        1 USLZ(J,I,K)*USLZ(J,I,K))
        8 \text { CONTINUE}
C
C4-_-RETURN
    100 RETURN
        END
```

List of Variables for Utility Module UBCUSL

Variable	Range	Definition
I	Module	Index for ro
IACT	Global	DIMENSION (NCOLL,NRROIWV,NLAY), Boundary array identifying active cells in which displacement is calculated. >0 cell is active $<=0$ cell is inactive
tusilcx	Package	Flag indicating whether displacement and volume strain is calculated $\geqslant 0$ displacements and volume strains are calculated $\leqslant=0$ displacements and volume strains are not Galduilated
J	Module	Index for columns.
K	Module	Index for layers.
NCOL	Global	Number of colurimain the grid.
NILAY	Global	Number of layers in the grid.
NROW	Global	Number of rows in the grid.
UMAG	Package	DIMENSION (NCOL,NRXOWU,NLAYY), Magnitude of displacement.
USLX	Package	DIMENSION (NCOL,NRROW,NLAY), Displacement in the X direction.
USILY	Package	DIMENSION (NCOL,NRRONW,NLAY), Displacement in the Y direction.
USLZ	Package	DIMENSION (NCOL_NRROMW,NLAY), Displacement in the Z direction.

Narrative for Utility Module U2USLR

This module reads transmissivity values if LAYCON $\equiv 0$ or 2 . Although these veilues are read in the BCF package of MODFLOW the values are modified within the BCF package and are not usable for the puuposes of the displacement model. This utility module functions much like U2DREL of MODFLOW.

This module is read by USL1AL and performs its tasks in the following onder. 1. Read array control record.
2. Use LOCAT to see where array values come from.
3. If LOCAT $\equiv 0$ set all array values equal to CNSTNT.
4. If LOCAT $\geqslant 0$ read formatted records using format FMTIN.
5. If LOCAT $\& 0$ read unformated record containing array values.
6. RETURN

LOCAT indicates the location of the data which will be put in the arrany.
$\geqslant 0$ Represents the unit number from which data values will be read in the format specified in the thind field of the array -control record (FMTIN).
$=0$ Every element in the anfay wdll be set equal to the value CNSTNIT.
$\leqslant 0$ The sign reversed to give the unit number from which an unformated record wfll be read.

QASTNT is the value that each element in the array is set to when LOXIAT $\equiv 0$.

FMTIN is the format used to read the array values.


```
SUBROUTINE U2USLR(A,U,J,K,K,IN)
```



```
C THIS SUBROUTINE READS TRANSMMISSIVITY DATA THAT CAN NOT
C BE OBTAINED FROM THE BCF PACKAGE BECAUSE IT IS ALTERED
```



```
C
C SPECIHCCAIIONS:
C
    CHARRACTERM16 FMTIN
    DIMENSION A(NJII)
C
C
C1___READ ARRAY CONTROL RECORD
        READ(IN,1) LOCAT,CNSTNT,FMTIN
        1 FORMATGiOOFIO.OA20)
C
C2----USE LOCAT TO SEE WHHERE ARRAY VALUES COME FROM
        IF(ICCAT) 200,50,90
C
C3__IF LOCAT=0 THEN SET ALL ARRAY VALUES EQUAL TO CNSTNT, RETURN
    50 DO80I=1,I
        DO80.J=h,\
    80 A(D)=CNSTNT
        RETURN
C
```



```
    90 DO100I=1,II
        READ(LOCAT/FANTIN(A)(D)J=1J]
    100 CONTINUE
        GOTO 300
C
```



```
C WHLLISS
200 LOCAT=-LOCAT
    READ(LOCAT)
    READ(LOCAT) A
300 IF(CNSTNTLE(O)O) GOTO 320*i
```

DO 310 I=1,II
DO $310 \mathrm{~J}=1$, ग
$\mathrm{A}\left(\mathrm{J}, \mathrm{D}=\mathrm{A}(\mathrm{J}, \mathrm{D})^{*} \mathrm{CNSTNT}\right.$
310 CONTINUE
C
C5-_RETURN
320 RETURN
END
\checkmark

Uist of Variables for Utility Module U2USLR

$\left.\begin{array}{ll}\text { Variable } & \begin{array}{c}\text { Range } \\ \text { M }\end{array} \\ \text { Module }\end{array} \begin{array}{l}\text { Definition } \\ \text { DIMENSION (NCOL,NROW), Represents the array of values } \\ \text { being read. For this module this array represents transmissivities. }\end{array}\right]$

Vector Plot Package Input
Input for Vector Plot Package (PILT) is read from the unit specified in IUNIT(16).

s,

Explanation of Fields Used in Input Instructions

HLOTV-is the flag indicating whether vectors for bulk flux or displacement will be made at the end of each stress period.

If IPLOTV $=1$ a bulk flux vector plot will be made
If BPLOTV $=2$ a displacement vector plot will be made
If IPLOTV <1 or >2 no plot will be made.
IMANTY-is the number of plots that will be made at the end of each stress period.
Determines how many times item 2 will be read.
ID EV-is the device that the vector plots will be plotted to.
If IDEV $=1$ then the plot will be drawn as an X-WINDOW on the Data General Aviion Workstations.
If $\mathrm{IDEV}=2$ then the plot will be stored as a postscript file and named post\# where\# is the number of the plot in the order designated by item 2
If IDEV $=3$ then the plot will be stored as a CGM META file that can be imported directly into FLAMEMAKER.
(Note: The subroutine that calls the various platforms or file conventions can be readily modified to include the platform or file type needed by the user). IVEC-is the flag indicating whether vector heads (arrows) will be printed

If IVEC $=0$ no arrow heads are drawn
IfIVEC \# 0 vector heads are drawn
ITYPE-is the flag indicating the type of plot drawn
If ITYPE $=1$ a planimetric plot will be made ($\mathrm{x}-\mathrm{y}$ plot)
If ITYPE $=2$ a cross-sectional plot will be made ($x-z$ plot)
If ITYPE $=3$ a cross-sectioneal plot will be made ($y-z$ plot) If ITYPE\&ll or $\geqslant 3$ no plot will be made.
LPXXI-is the row, column, or layer designation through which a plot is drawm. For example, if ITYPE is 1 and LPXY is 3, a planimetric plot of layer three will be drawn. If ITYPE is 2 and LPXY is 25 then a cross sectional plot along plane X-Z through row 25 (Y) will be drawn. are made aftereach stress period when the flag is set. If more than 40 stress periods are used, continue item three on the following line.

If ISTR $\geqslant 0$ plots will be made for the stress period indicated If ISTR $\in=0$ plots will not be made for the stress period indicated.

Module Documentation for the Vector Plotting Package

This plotting package plots vectors at each grid cell location identifying the magnitude and direction of either bulk flux or displacement. The length of the vector tail represents the relative magnitude of bulk flux or displacement.

The Plotting package (PLT) has three primary modules, one submodule, and one function. All the primary modules are called by the MAIN program. This package uses the graphics kernel system (GKS) to plot the data; therefore, numerous calls are made in the PLTIFM subroutine to GKS routines not described in this documentation.

Primary Modules
PLTIAL Allheattessppaceeffordhataarnyss.Rezedsttheetyppeard amount of plots that will be made each stress period.
PLTIRP Reads all dathareeded by the package. Prints the type of plots that are made after each stress period.
PLTIFM Prepares data and graphics for plotting either the bulk flux or displacements along user defined lines of section. Calls SPLTID submodule and STR_LEN function subprogram.

Submodule

SPLTID Makes a CGM meta file, a postscript file, or makes a plot in the X -window environment, of the bulk fluxes or displacements according to user defined parameters.

Function
STR_LEN Calculates the exact string length of file names or labels.

Narrative for Module PLT1AL

This module allocates space for data arrays for the Plotting package. It also reads the number and type of plots to be made. These are done in the following order.

1. Set up size parameters for array sizes.
2. Read plot type, number of plots per stress period, how plot is to be stored or. printed, and whether arrowheeald are to be added to vector plots.
3. Allocate storage for the following arrays.

XANG_ARR Angle of vector for $y-z$ plot at each cell location.
YANG_ARR Angle of vector for $x-z$ plot at each cell location.
ZANG_ARR Angle of vector for $x-y$ plot at each cell location.
XMAX_ARR Magnitude of vector in $y-z$ plane for each cell location.
YMAX_ARR Magnitude of vector in $x-z$ plane for each cell location.
ZMAX_ARR Magnitude of vector in $x-y$ plane for each cell location.
XCNTR Center of each grid cell in $y-z$ plane.
YCNTR Center of each grid cell in $x-z$ plane.
ZCNTR Center of each grid cell in $x-y$ plame.
LPXY Line of section along which plot is made.
PITYPE Type of plot: planimetric or cross section.
ISTR Flag indicating whether plots are made after each stress period.
4. Print amount of space used for Plotting package.
5. RETURN

Flow Chart for Module PLTIAL

IPLOTV is the plotting flag. If IPLOTV=1 bulk fluxes are plotted. If IPLOTV $=2$ displacements are plotted.
If IPLOTV $\leqslant 1$ or >2 no plots are made.
IMANY is the number of plots that are made after each selected stress period.

IDEV is the device or type of file that the. plot is written to for plotting or printing. If IDEV $=\|$ the plot is drawn to an X window on the DG workstation. If IDEV $=2$ the plot is written to a postscript file with the prefix POST followed by the plot number designated by the program. If $\operatorname{IDEV}=3$ the plot is written to a CGM meta file with the prefix META followed by the plot number designated by the program.

IVEC is a flag Indicating whether arrow heads are drawn at the end of the vectors plotted.

If IVEC $=0$ no arrow heads are drawn. If IVEC $\hat{\boldsymbol{1}} 0$ arrow heads are drawn.

```
SUBROUTINE PLT1AL(HESUMILERXXUCXXANGL,CCANG,LCZANG,LCCXMAX,
```



```
C
C *************************************************
C ALLOCATE ARRAY STORAGE FOR PLOTTING PACKAGE
```



```
C
C SPECTHICAMIONS:
```

\qquad

```
c
C
Cll-SET UPSIZE PARAMETERS
BOLD \(=\) ISUM
\(\mathrm{NRC}=\mathbb{N} \mathbf{N O} \mathrm{N}^{\mathrm{N}} \mathbf{N C O L}\)
NRL=NROW NNLAY
NCL \(=\) NCCOL \(* N L A Y\)
NRCL=NCOL *NROW/NLAY
C
C2__-READ IN TYPE OF PLOT, HOW MANY PLOTS, AND OUTPUT DEVICE
C THE OUTPUT DEVICES ARE \(1=X W I N D O W ; 2=\) POSTSCRIPT; \(3=\) MIETAFILE;
C \(4=\) EXif WITHOUT A PLOT AND WHETHER VECTOR ARROWS ARE
C ADDED.
READ(IN,7) IPLOTV,IMANY,IDEDVIVEC
7 FORMAT(4I10)
C
C3---ALLOCATE STORAGE FOR ARRRAYS
LCXANG=ISUM
LSUM \(=1 S U M \neq N R L\)
LCYANG=ISUM
ISUM \(=\) ISUM \(\#\) NCL
LCZANG=ISUM
ISUM \(=\mathbf{I S U M} \neq\) NRC
LCXMAX \(=\) ISUM
BUM \(=\) ISUM \(\ddagger\) NRCL
LCYMAX \(=\) ISUM
ISUM \(=\mathbf{1 S U M} \neq \mathrm{NRCL}\)
```

```
LCZMAX=ISUM
ISUM \(=\) ISUM \(\ddagger\) NRCL
LCLPXY三ISUM
LSUM \(=\) ISUM \(\#\) IMANY
LCITYPE=ISUM
ISUM \(=\mathrm{IS} U M=\mathrm{IMANY}\)
ISP=ISUM-ISOLD
LCXCNTR=ISUM
ISUM \(=\) ISUM + NCOL
LCYCNTR=ISUM
ISUM \(=\) ISUM + NROW
LCZCNTR=ISUM
ISUM \(=\) ISUM+NLAXY
LCISTR=ISUM
ISUM \(=\) ISUM + NPER
C
C4-_-_PRINT AMOUNT OF SPACE USED ISP=ISUM-ISOLD
WRITH(aOUT,2)ISP
2 FORMAT(1X)/ ELEMENTS IN X ARRAY ARE USED BY PLT')
ISUM1=ISUMA-1
WRITE(aOUT,3) ISUM1,LENX
3 FORMAT( \(\mathbf{1 X}\), \(18 /\) ELEMENTS OF X ARRAY USED OUT OF', 18 )
IF(ISUMI.GT.LENX) WRITE(IOUX,4)
* 4 FORMAT(IX/A** ARRAY MUST BE DIMENSIONED LARGER ***)
C
C5-_-RETURN
RETURN
END
```


List of Variables for Module PLTIAL

Variable	Range	Definition

List of Variables for Module PLTIAL

Variable Range Definition

NROW Cuddbal Numbearoffrawssinttheggiith.

Narrative for Module PLTIRP

This module prints the number and type of vector plots that will be made after specified stress periods. This module ailso reads the information dealing with the line of seetion where the plot will be taken from. In addition, the module reads the flag to determine after which stress periods the vector plots will be drawi.

Module PLTIRP performs its tasks in the following onder:

1. Print plotting information. Prints whether plots will be bulk fluxes or displacements, and prints the number of plots that will be made for the stress period.
2. Set cointer for stress period plots
3. Read line-of-section information for each plot that will be made.
4. Read stress period plotting flag to determine whether plots are made for this stress period.
5. RETURN

ITYPE is a line-of-section flag.
If ITYPE $=1$ a planimetric plot will be made (x - y plot).
If ITYPE $=2$ a cross-sectional plot will be made ($\mathrm{x}-\mathrm{z}$ plot).
If ITYPE $=3$ a cross sectional plot will be made ($y-z$ plot).
If ITYPE $\geqslant 3$ or <1 no plots are made
LPXY is the row, column, or layer designation through which a plot is drawn. For ITYPE = LPXY represents a layer numbiber. For ITYPE $\equiv 2$ LPXY represents row number. For ITYPE $\equiv 3$ LPXY represents a column number.

IMANY is the number of plots that are drawn for the stress period when ISTR is set

ISTR is a flag indicating that IMANY plots will be made for the stress period If $15 T R \geqslant 0$ vector plots are made for this stress period.
If ISTR $<=0$ plots will not be made for this stress period.

NPER is the number of stress periods spedified in the Basic Package Input.


```
            SUBROUTINE PLT1RP(IPLOTV,ITYPE,LPXXIMANY,IN,IOUT,IDEV,ISTR,NPER,
        1KPPE)
```



```
C PRINT TYPE OF VECTOR PLOT TO BE MADE
C READ AND INTITHLLIZEE DATA FOR THE TYPE OF PLOTS DESIRED
C *********************************************************************
C
C SPECIFICATIONS:
C
    DIMENSION IITYPTE(WMANM)\LPXYY(IMANNY),ISTR(NPEER)
C
C
C1——PPRINT OUT PLOTTING INFORMATION
        IF(IPLOMWLLEDO .OR. IPLOTV.GE.3) THEN
        WRITE(IOUT;8)
    8 FORMMAT(IX/NO PLOTS WILL BE MADE')
        ENDIF
        IF(OPLOTV.EQ.1) THEN
        WRITE(OUUT;9) IMANY
        9 FORMAT(1X,I5/ QBULK VECTOR PLOT(S) WILL BE MADE')
        ENDIF
        IF(IPLOTV.HQ22)THEN
        WRITE(IOUTr10) IMANY
    10 FORMAT(1X,15/' DISPLACMENT VECTOR PLOT(S) WILL BE MADE')
    f^-ENDDF
C
C2-_S$ETCCODNNERRFEORSSRRESSSPRRUODDPRCOSS
            KPE=0
C
C3___RRAD ITYPE AND LPXY (SECTION LINE) IMANY TIMES.
        DO5OIF=IJIMGANY
        READ(ONNS) ITYPE(D,LPXY(D) ^
        5 FORMAT(2I10)
        50 CONTINUE
C
C4-_SET FLAG FOR PRINTING AFTER SPECIFIED STRESS PERIODS
        READ(IN,55)(ISTR(K),K=1,NPER)
```

55 FORMAT(4012)
c
C5-RETURN RETURN
END

List of Variables for Module PLTIRP

Va	Range	Deffimition
$\begin{aligned} & \text { I } \\ & \text { IDEV } \end{aligned}$	Module Index for number of plots (IMANY) per stress period.	
	Package Flag for device that the vector plots will be plotted to.	
	=2 plot will be stored as a postscript file.	
	$\equiv 3$ plot will be stored as a CGM meta file.	
IMAN	Package Number of plots that will be made after specified stress periods.	
IN	Package Primary unit number from which input for this package will be read.	
IOUT	Global Primary unit number for all printed output. IOUT $=6$.	
IPLOTV	Paekage Flag indicating whether vector plots will be made.	
	=1 bulk flux vector plots will be made.	
	$\equiv 2$ displacement vector plots will be made.	
ISTR	Package DIMENSION (NPER), Flag indicating whether plots are to be maide for the specified stress period.	
	If 1STR $\geqslant 0$ plots are made for this stress period.	
	If ISTR $<=0$ plots are not made for this stress period.	
ITYPE	Package DIMENSION (IMANY), Flag indicating whether plot is planimetric or cross sectional in x or y.	
	If ITYPE $=1$ planimetric plot will be made ($\mathrm{x}-\mathrm{y}$ plot).	
	If ITYPE $=2$ cross-sectional plot will be made ($\mathrm{x}-\mathrm{z}$ plot).	
	If rTYPE $=3$ cross-sectional plot will be made ($\mathrm{y}-\mathrm{z}$ plot).	
K	Module Index for number of stress periods	
KPE	Package Counter for stress periods where plots are to be made.	
LPXY	Package DIMENSION (IMANY), Row, column or layer designation through which plot is drawa. Whether LPXY is a row, column or layer depends on the value of ITYPE.	

Narrative for Module PLTIFM

This module makes two dimensional plots of either displacements or bulk fluxes. This is accomplished by calculating the magnitude and direction of each vector relative to the maximum displacement or bulk flux in the grid; hence the vector tails represent the relative magnitude of the value of bulk flux or displacement. The user can make a plot along any user defined line of section. IMANY plots are made after each stress period where ISTR is set. The plots can be drawn directly to the screen in the Xwindows environment, or they can be directed to a postscript or CGM meta file.

Module PLTIFM calls submodule SPLTID and function STR_LEN. Module PLTIFM performs its tasks in the following onder:

1. Set coistants.

Z Check to see if plots are made for this stress period.
3. If plot flag is set write plot number amd plot type.
4. Calculate the maximum displacement for each plane in the grid.
5. Determine the real world dimeinsions of the grid.

7. Detemine titles for each IMANY plots for each stress period.
8. Set plot number counter. This is to distinguish file names when writing to disks.
9. Check ITYPE to determine the line of section where plot is made. If ITYPE $=1$ make a planimetric ($x-y$ plot). If ITYPE $=2$ make a cross-sectional plot ($\mathrm{x}-\mathrm{z}$ plot). If ITYPE $\equiv 3$, make a cross-sectional plot ($y-z$ plot). Items $10-15$ below are read for each ITYPE specified.
10. Set up box and labels by using the GKS software routimes.
11. Determine angle for each vector in the grid.
12. Print the maximum displacement for the plane of interest.
13. Determine location for drawing each vector relative to grid size.
14. Calculate magnitude of each vector in the grid.
15. Draw the vectors.
16. RETURN.
, r^{-}

Flow Chart for Module PLTIFM

ISTR is a flag indicating whether plots are made for the current stress period. $\leqslant=0$ no plots are made $\geqslant 0$ plots are made.

IMANY is the number of plots to be made for each stress period.

IJK is the index for the plot number for the entire simulatiom.

ITYPE is a flag indicating whether plot is planimetric or cross sectional in x or y. =1 planimetric plot will be made ($x-y$ plot).
$=2$ cross-sectional plot will be made ($\mathrm{x}-\mathrm{z}$ plot).
$=3$ cross-sectional plot will be made ($y-z$ plot).

XANG_ARR, YANG_ARR, and ZANG_ARR are arrays of angles of bulk flux or displacements for each component direction.

XMAX, YMAX, AND ZMAX are the largest values of bulk flux or displacement in thi x, y, and z directions, respectivelly.
XCNTR, YCNTK, and ZCNTR represent the locations of each grid center in the x, y, and z directions, respectionedly.

XVCTR, YVCTR, and ZCTR represent the location of each vector endpoint whose origin is the grid cell center.

Flow Chart for Module PLTIFM (Comuinuedt)

1 ZANG_ARR,XMAX_ARR,YMAX_ARR,ZMAX_ARR,DELL,NCOL,NROW,NLAX,
 3 ZCNTIR,ISTR,NPPER,KPPER,KPE)
C

C THIS SUBROUTINE WILL PLOT QBULK OR DISPLACEMENT VECTORS ALONG
C A USER DEFINED LINE OF SECTION.


```
C
C SPECIFICATIONS:
C._
    1 ZVAL(NCOL,NROW,NIAY),DELR(NCOL),DELCANROW),
    2 XANG_ARR(NRROW,NLAY),YANG_ARR(NCOL,NLAY)),ZANG_ARR(NCOL,
    3 NROW),ZMAX_ARR(NCOL,NROW,NLAY), XMAX_ARR(NCOL,NROWW,NLAY),
    4 YMAX_ARR(NCOL,NROWW,NLAY),ITYPPE(IMANNY),UPXY(IMANY),
    5 DELL(NCOL,NROW,NLAY)\IACT(INCOL,NROW,NLAY),
    6 XCNTR(NCOL),YCNTR(NROW),XCNTR(NWIAY)/SSTR(NPER)
C
C
            PARAMETER!
    A XORG \equiv0.,
    A YORG }=0.
    A ZORG =0.,
    A XLEN =10.,
    A YLEN \equiv10.,
    A ZLEN =2.0,
    A PENTHK \equiv.000n,
    A HHEIGHIT = 25,
    A PAGEX \equiv 12.,
    A PAGEY \equiv12.,
    A PAGEZ \equiv11.
    A )
C
```



```
C
```

DOUBLE PRECISION PI
C
C
Cl-SET CONSTANTS DCYNUAL =AMMAX1(NCOL,NROW)
PUBER=XLEN/EECAT(IMMAX)
PI=4.*ATAN(1.)
C
C2-_GHECK STRESS PERIOD TO SEE IF PLOTS ARE TO BE MADE. IF ISTR=0
C RETURN,
C IIFISTIR $\triangle O$ INMCRXEMEENTIKHPE.
IF(ISTR(KPPER) ILEO) GOTO 99999
KPE $=$ RPE +11
WRITE(IOUXC99) KPER

C
C3-PRINT PLOT NUMIBER, SECTION TYPE, AND LOCATION OF PLOT
DO $501 \mathrm{I}=1,1 \mathrm{M}$ MNY
$1 \mathrm{JK}=(\mathrm{KPE}-1) *$ *MANY $\ddagger \mathrm{I}$
WRITE(IOUT,12) IJK
12 FORMAT(dX,' PLOT NUMBBER ${ }^{\prime \prime}$,13,' WILL BE A')
IF(TTYPCET)IIEO .OR. ITYPE(1).GTI.3) GOTO 50
IFOTYPFE(G)EQ.1) THEN
WRITE(IOUT,6) LPXY(I)
6 FORMAT(dX,' PLANIMETRIC X-Y PLOT ALONG LAYER", „I3)
ENDIF
IF(ITYPEq).EQ.2) THEN
WRITE(IOUX,7) LPXY(I)
7 FORMAT(dX,' X-Z SECTION PLOT ALONG ROW',
ENDIF
IF(TYYPE(I).EQ3) THEN
WRITEKOUXXIDILPXY(I)
11 FORMATIXX,' Y-Z SECTION PLOT ALONG COLUMN",B)
ENDIF
50 CONTINUE
C
C4--CALCULATE THE MAXIMUM DISPLACEMENTS FOR EACH PLANE

```
    ZMAX=0.
    YMAX =0.
    XMAX=0.
    DO 35KK=1,NLAY
    E#)35 =1,NROOW
    DO335J=11,NCOL
    IF(IACT(GIK\)HE(O)GOTO 35
    ZMAX_ARR(1,LKK) = SQRTMXWAI(AIK)**2 + YVALO,\KS)*2)
    ZMAX = AMAX1(ZMMAX,#WLAX_ARRGJHK))
```



```
    YMAX = AMAX1(YMAX,MWHAX_AERRRJai,K))
```



```
    XMAX = AMAX1(XIMAXXMAX_ARTR(IIIK))
    35 CONTINUE
C
C5--DETERMINE THE REAL WORLD DIMENSIONS OF THE GRID
        SUMR=0.
        SUMC=0.
        SUML=0.
```



```
        *SUMR=SUMR+DELR(!)
        36 CONTINUE
        DO33/Iz=11,NROW
        SUMC=SUMC+DELC(ID
V 37CONTINUE
    DELB=0.
    DO }38\mathrm{ I=1,NROW
    DO3OMJ=11,NCOL
    IF(DELLGXNNIAM).GIT.DELB) THEN
    DELB=DELL(G,NNLAY), 1
    DW=]
    #E=i
    ENDIF
38 CONTINUE
    DO 39 K=1,NLAY
    SUML=SUML+DELL(DJ,IF,K)
39 CONTINUE =--*
```


C

C OBTAIN A SCALE
XRAT= =HIM/SUMR
YRATI=YLBNV/SUMC
ZRAT=ZULN/SUML

C7-DETERMINE TITLES FOR PLOTS
DO 210 finhJMLANY
IF (IITYPR(II).EQ.1)TIHEN
VIEW \equiv TLLAN-VIEW $/$
ELSE
IF (OTYPE(II) .EQ. 2) THEN VIEW $\equiv=\mathbf{X}$ CROSS-SIECIIONU
ELSE
IF (ITYPEEID :EQ. 3) THEN
VIEW $\equiv{ }^{~}{ }^{Y}$ Y CROSS-SECTIION
ENDIF
END IF
ENDIF

LENV \equiv STR_LEN(VIEW)
C
C8-SET PLOT NUMBER COUNTER
IJK $=($ KPE 4 PIMANY + II
C
C9A--IF ITYPE IS 1 THEN MAKE AN X-Y PLOT ALONG A SPECIFIED LAYER Z
CLOA-SET UP BOX AND LABELS
IFQIIYPREOID .EQ.DTIHEN
WRITE(CNCHAR,'(I2)') LPXY(II)

LEN $=$ STR.LIEN(OITTLEP)

CALL SPLTID (IJK, IN, IOUT, IDEV, 99999)
CALLNOBRDR
CALL PHYSOR (.9,1.)
CALL PAGE (PAGEX,PAGEY)

CALL AREA2D (PAGEX,PAGEY)
CALL HEIGHT (HHEIGHT)
IF(RPLOTV.EQ1) THEN
CALL MESSAG ('QBULK VECTORS\$M3/3.7,110.65)
ENDIF
IF(IPLOTV.HQ22)THEN
CALL MESSAG (DISSP. VECTORS\$13/377100.65)
ENDIF
CALL HEIGHT (HHEIGHT * .6)
CALL MESSAG (IITLEP(1:ILEN), $H E N(3,3,10.3)$
CALL STRTPT (XORG,YORG)
CALL CONNPT (XLEN,XORG)
CALL CONNPT (XLEN,YLEN)
CALL CONNPT (XORG,YLEN)
CALL CONNPT (XORG,YORG)
C
C11A--DDEIIERMINE ANGLE FOR EACH VECTOR IN THE GRID
DO $10084 \mathrm{~N}=\mathrm{LPXY}$ (I) $)$ LPXY(II)
DO 10088 M $=1$, NR 2 OW
DO 10088 L=1,NCOL
$\operatorname{IF}(\mathrm{IACT}(\mathrm{L}, \mathrm{N}, \mathrm{N})$). EQ .0$) \mathrm{O}) \mathrm{GOTO} 10088$
IF (XVAUL(h_{2},M,N) .EQ. 0. OR. YVAL(L,M,N) .EQ. 0.) THEN
IF (XVALILM,N) .EQ. 0.) THEN
IF (YVALL (L,M,N) .GT. 0.) THEN
ZANG_ARR $(L, M) \equiv P I / 2$
ENDIF
IF (YVAL(L,M,N) .LT. 0) THEN
ZANG_ARR(L,M) $\equiv 3^{*}$ PII/2.
ENDIF
ENDIF
IF (YVALL(L,M,N) .EQ. 0.) THEN
IF (XWALI $\left.\mathrm{H}_{3}, \mathrm{M}, \mathrm{N}\right)$.GE. 0.) THEN
ZANG_ARRR(L,M) $\equiv 0$.
ENDIF
IF (XVALI(L, M,N) .LT. 0.) THEN
ZANG_ARRR(L,M) \equiv PI
ENDIF

END IF
ELSE
IF (XWALL(G,M,N) .GT. 0. .AND. YWALL($6, M, \mathrm{M}$) .GT. 0.) THEN

END IF
If (XWALL(b,M,N) .LT. 0 .AND. YVAL(L,M,N) .NE. 0.) THEN

END IF
IF (XVAL(L,M,N) .GTT. O. .AND. YVAL(L, M,N) .LT. 0.) THEN
ZANG $A R R(L, M) \equiv 2 * P I \neq A T A N(Y W A L(L, M, N) / X X W A L(L L, M, N))$
END IF
END IF
10088 CONTINUE
10084 CONTINUE
C
C12A--_PRINT THE MAXIMUM DISPLACEMENT
WRITE(IOUIT,124) ZMAX
124 FORMATI(dX,MAXIMUM DISPLACEMENT IN THE X-Y PLANE IS',1PE12.5)
C
C13A=-DETERMINE LOCATION FOR DRAWING EACH VECTOR RELATIVE TO
C GRID SIZE
XUINTE=0.
YLINEE=0.
D0S5n J=1; NCOL
XSTEP=XRAT*DELR(f)
XLINE $=X L I N E+X S T E P$
XCNTIR(D) =XLINIE (XSTEP*0.5)
51 CONTINUE
DO 52I=1,NROW
$\therefore Y S T E P=Y R R A T P D E L C(A)$
YLINE $=$ YLINE + YSTEP
YCNTR (D) $=$ YIUINE-(YSIIHPP0.5)
52 CONTINUE
C
C14A-CALCULATE MAGNITUDE OF EACH VECTOR IN THE GRID DO $10060 \mathrm{~N}=\mathrm{LPXY}($ III) $)$, $\mathrm{LPXXY}(\mathrm{UL})$
"•吕O $10040 \mathrm{M}=1, \mathrm{~N}$ ROW

DO $10040 \mathrm{~L}=1, \mathrm{NCOL}$

VCTRLEN $\equiv 0$.
ELSE

END IF
IF(VCTRLEN .GT. $2 *$ PLIER) VCTRLEN $=2 *$ PLIER
C
XVCTR $=$ XCNTR(L) + COS(ZANG_ARR(L,M)) * VCTRLEN
YVCTR $=\mathrm{YCNTR}(\mathrm{M})+\operatorname{SN}\left(Z A N G _A R R(L, M)\right) *$ VCTRLEN
C
C15A--DRAW THE VECTORS
IF(IVEC. $\mathbb{E Q} Q(0)$ THEN
CALL STRTPT(XCNTR(L), YCNTR(M))
CALL CONNPFTCXVCTR, YVCTR)
ELSE
CALL VECTOR(XCNNTR(L),YCNTR(M),XWCTIEYUCOTR,1101)
ENTDIF
C
10040 CONTINUE
10060 CONTINUE
ELSE
C
\therefore C9B--IF ITYPE IS 2 THEN MAKE A X-Z PLOT ALONG A GIVEN SECTION OF Y
CLOB---SETUP UROX AND LLABBFILS
IF (ITYPE(II) .EQ. 2) THEN
WRITE(CNCHAR,'(I2)') LPXY(II)
TTTLEY \equiv VIEWV(ILUENWV)// $/$ Y $\equiv 7 / /$ RCXCCHAR

- LEN \equiv STR.ILEN(TITILEY)

CALL SPLTID (TJK, IN, IOUT, IDEV, *99999)
CALLNOBRDR
CALLPHYSOR(1.,5.)
CALL PAGE (PAGEX,PAGEZ)
CALL AREA2D (PAGEX,PAGEZ)
CALL HEIGHT (HHEIGHT)
IFQPLOTV:EQIDTHEN

CALL MESSAG ('QBULK VECTORSS\$, MB3.3,2.2.6)
ENDIF
If(IPLOTV.齿Q.2)THEN
CALL MESSAG (TIISP. VECTORSSPMB3 3.3,2.6)
ENDIF
CALL HEIGHT (HHEIGHT * .6)
CALL MESSAG (TITHEY(ILLEN),LEN3 3,2,23)
CALL STRTPT (XORG;ZORG)
CALL CONNPT (XORG,ZILEN)
CALL CONNPT (XLEN,ZLEN)
CALL CONNPT (XLEN,ZORG)
CALL CONNPT (ZORG)XORG)
C
CUB_-CALCUTATE ANGLE OF VECTORS FOR EACH CELL IN THE GRID DO 10095 M $=$ LPXY(II), LPXY(II)
DO $10099 \mathrm{~N}=1, \mathrm{NLL}$ AY
DO 10099 L=1,NCOL
$\operatorname{IF}(\operatorname{IACT}(L, M, N), E Q .0)$ GOTO 10099
IF (XVVAL(G,M,N) .EQ. O. .OR. ZVAL(L,M,N) .EQ. O.) THEN
IF (XVALI (L, M, N).EQ. 0.) THEN
IF (ZVAL(L,M,N) .GTI. 0.) THEN
$Y A N G=A \mathbb{R R}(\mathbb{C} ; \mathbb{N})=-\mathrm{PI} / 2$.
ENDIF
IF (ZVALL(LL,M,N) .LT. 0) THEN
YANG_ARR $(L, N) \equiv-3^{*} \mathbb{P I} / 2$
ENDIF
ENDIF
IF (ZVAL (L, M,N) .EQ. 0.) THEN
IF (XWAL($-, M, N$) .GE. 0.) THEN
$\rightarrow \quad$ YANG_ARR $(L, N) \equiv 0$.
ENDIF
IF (XWAUL($\mathrm{L}, \mathrm{M}, \mathrm{N}$) .LT. 0.) THEN
YANG_ARPR $(\mathrm{H}, \mathrm{N}) \equiv-\mathrm{Pl}^{\prime}$
ENDIF
END IF
ELSE

YANG_ARR(L,N) $\equiv-A T A N\left(Z X A L\left(I a_{n} M, N D\right) / X V A L(L, M, N)\right)$
END IF
IF (XVAL(L, M,N) .LT. 0 .AND. ZVAL(L, M,N) .NE. 0.) THEN
YANG_ARR $(L, N) \equiv-\operatorname{PI}-\operatorname{ATAN}(Z W A L I(a, M, N) / X X W A L(L L, M, N))$
END IF
IF (XVAL(L,MIS) .GT. 0. .AND. ZVAIL($4, M, N$) .LT. 0.) THEN

END IF
END IF
10099 CONTINUE
10095 CONTINUE

WRITE(IOUX, 122) YMAX
122 FORMATI(dX,MLAXIMUM DISPLACMENT IN THE X-Z PLANE IS $\$ 1 P E 125)$
C13B--DETERMINE LOCATION FOR DRAWING EACH VECTOR RELATIVE TO
C GRID SIZE
XLINE $=0$.
ZLINE $=0$.
DO $61 \mathrm{~J}=1, \mathrm{NCOL}$
XSTEP=XRATPDELR($)$
XUNNE=XLINIE $+X S T E P$
XCNTR(J) $=$ XLINE-(XSTEPFin).5)
61 CONTHEUE
DOVRXK 1 1,NIAY
$\mathrm{KK}=\mathrm{NL} A Y \neq 1-\mathrm{K}$

ZUNFE=ZUNNE $+\mathbb{Z S T E P}$
ZCNTIR(KK) =ZLINE $($ ZSSTIHEB 0.5$)$
62 CONTINUE
C
C14B-CALCULATE VECTOR MAGNITUDE kOR EACH CELLIN THE GRID
DO 10071 I=LPXY(II),LPXY(II)
DO 10073 J=1,NLAY
DO $10073 \mathrm{~K}=1$, NCOL
IF(IACT(K,I,) .EQ:Q)GOTO 10073
IF (MMAX_ARR(K,IJ)).IQ(O. .OR. YMAX_ARR(K,In).EQ.YMAX) THEN
VCTRLEN $\equiv 0$.
ELSE
VCTRLEN = PLIER*(II. (AALOG(MMAX/MMAX_ARR(K,I,I))))
END IF
IF(VCTRLEN .GT. $2 *$ PLIER) VCTRLEN $=2 * P L I E R$
C
XVCTR $=$ XCNTR(K) + COS(YANG_ARR(K, $)$) ${ }^{*}$ VCTRLEN
ZVCTR $=$ ZCNIIR(O) + SIN(YANG_ARR(KJ)) * VCTRLEN
C
Cl5B--_DRAW THE VECTORS
IF(IVECHOM) THEN
CALL STRTPT(XCNTR(K), ZCNTRR(J))
CALL CONNPPI(XVCTR, ZVCTR)
ELSE
CALLWIECTOR(XCNTR(K),ZCNYRROIXWRCTRZZVCCTRR/1101)
ENDIF
10073 CONIIISNGE
10071 CONTINUE
ELSE
C
C9C--m-IIF IITYPEISS 3 THHEN MAKKEA Y-ZPILOTI ALONG A GIVENSECTIONX
CIOC-C9FITUPEOXANNDILABBHISS
样 (ITYPE(II) .EQ. 3) THEN
WRITE(CNCHAR/(II2)') LPXY(II)

LEN = STR_ILENQTITIEX)
CALL SPLTID (IJK, IN, IOUTT, IDEV, *99999)
CALLNOBRRDR
CALL PHTHSOR(1.,5.)
CALL PAGE (PAGEX, PAGEY)
CALL AREEA2TD (PAACEEXPPAGEY)
CALL HEIGHT (HHEIGHT)
IF(OPLOTVEZQ1DTHEN
CALL MESSAG ('QBULK VECTORS $\$ 133,3.5,2.6$)
ENDIF

```
    IF(IPLOTV.EQ.2) THEN
        CALL MESSAG (TIISP. VECTORS$NUS3.5,2.6)
        ENDIF
        CALL HEIGHT (HHEIGHT * .6)
        CALL MESSAG CIITLEX(ILLENO),LPNX3.4,23)
        CALL STRTPT (ZORG;XORG)
        CALL CONNPT (ZORG,\LLEN)
        CALL CONNPT (XLEN,ZLEN)
        CALL CONNPT (XLEN,XORG)
        CALL CONNPT (ZORG,XORG)
        C
        C11C--CALCULLATE ANGLE OF EACH VECTOR IN THE GRID
    DO 10077 L=LPXY(II),LPXY(II)
    DO 10075 N=1,NLAM
    DO 10075 M=1,NRROW
        IF(IACTALMMAN(EERCO)GOTO 10075
        IF (YWAL(h,M,N) .EQ. O. .OR. ZVALL(4,M,N) .EQ. O.) THEN
        IF (YWAL(G,M,N) .EQ. O.) THEN
            IF (ZVALL(G,M,N) .GT. O.) THEN
                XANG_ARR(M,N) \equiv-PI/2.
                ENDIF
                IF (ZVAL(L,M,N) .LT. 0) THEN
                XANG_ARR(M,N) =-3`PI/2.
                ENDIF
            ENDIF
            IF"(ZVAL(ILM,N).EQ. O.) THEN
            IF (YVAL(LMM,N) .GE. 0.) THEN
                XANG_ARR(M,N) =0.
                    ENDIF
                    IF (YVAL(L_M,N) .LT. 0.) THEN
                XANGrARR(M,N) \equiv-PI
            ENDIF
                ENDIF
            ELSE
            IF(YVAL(L,M,N) .GT. O. .AND. ZVALL(L,M,NN) .GT. 0.)THEN
            XANG_ARR(M,N) \equiv-ATAN(ZVAL(L,MM,N)/MNAL(L,M,N))
            ENDIF
```

IF(YVAL(L, M, N) .LT. 0 .AND. ZVALI (L,M,N) .NE. O.) THEN

END IF
IF(YVAL(L,M,N) .GT. 0. .AND. ZVAL(L, M,N) .LT. O.)THEN

END IF
END IF

10075 CONTINUE
10077 CONTINUE
C
C12C-PRINT THE MAXIMUM DISPLACMENT
WRITE(IOUTT,126)XMAX 'W'
126 FORMAT(IX/MAXIMUM DISPLACHWHNYIINTHE Y-Z PLANE IS',1PE12.5)
C
C13C-DETERMINE LOCATION FOR DRAWING EACH VECTOR RELATIVE TO
C GRID SIZE
YLINE $=0$.
ZLINE $=0$.
DO 63I=1,NROW
YSTEP=YRAT*DEELC(A)
YLINE=YLINE+YSTEP
YCNTR(II)=YLINE.(MSTEEP*0.5)
63 CONTINUE
Dp $64 \mathrm{~K}=\mathrm{L}, \mathrm{NLAY}$
${ }^{\wedge} 1 K \mathbb{C}=\mathbb{N} L A Y+1-K$
ZSTEP=ZRAT*DELL(JJT,HI,KK)
ZLINE=ZLINE + ZSTEP
ZCNIITR(CKKK) $=$ ZIIIINE
64 CONTINUE
C
C14C--CALCULLATE THE MAGNITUDE OF EACH VECTOR IN THE GRID
DO 10070 L=LPXY(II),LPXY(I)
DO 10072 J $=1$, NILAY
DO $10072 \mathrm{~K}=1$, NTROW
IF(IACT(L,KJ))EE(D) GOTO 10072
IF (XWAXAARRR(K,K)IEEDCO. OR. XMAX_ARR(L,K,J).EQ.XMAX) THEN
VCTRLEN $=0$.
ELSE

END IF
IF(VCTRLEN .GT. 2*PLIER) VCTRLEN $=22^{*}$ PLIER
YVCTR $=$ YCNTROO + COS(XANG_ARR(K,J)) * VCTRLEN
ZVCTR $=$ ZCNITR(G) + SIN(XANG_ARR(K,J)) * VCTRLEN
C
C15C-DRRAW THE VECTORS
IF(IVEC.EQ.O)THEN
CALL STRTPT(YCNTR(K), ZCNITR(O))
CALL CONNNPTCYVCTR, ZVCTTR
ELSE
CALL VECTOR(YCNTR(K);ZCNTRO)),ZVCIRR,ZVCIIR,,1101)
ENDIF
10072 CONTINUE
10070 CONTINUE
ENDIF
ENDIF
ENDIF
C
CALL ENDPL (0)
210 CONTINUE
CALLDONEPPL
C
C16-_RETURN
99999 RETURN
END

List of Variables for Module PLTIFM

Variabieg Range
 Definition

CNCHAR Module String length for label defining location of line-of-seeton for plots.

DELC Global DIMENSION (NROW), Cell dimension in the colimm direetion. DELC(I) contains the width of row 1 .
DELL Global DIMENSION (NCOLL,NROIN,NLLAY), Cell dimension in the layer direction.
DELR Global DIMENSION (NCOL), Cell dimension in the row direction. DELR(J) contains the width of column J .
HHEIGHT Module Height in inches of labels for plots
I Module Index for rows and number of plots
IACT Global DIMENSION (NCOL,NROW,NLAY)LStatus of each celli for displacement.
$\leqslant=0$ inactive
$\geqslant 0$ active
IDEV Package Rlag for device that the vector plots will be plotted to
$=\mathbb{1}$ plot will be displizyed in an X -window on the DX.
$=2$ plot will be stored as a postscript file.
$=3$ plot will be stored as a CGM meta file.
II Module Index for IMANY plots.
II Module Index for row location of cell with maximum thiekness.
IJK
Module Index for plot number (all stress periods).
IMANY Package Number of plots that will be made after specified stress periods.
Package Primary unit number from which input for this paekage will be read.
IOUT Global Primary unit number for all printed output. IOUT $\equiv 6$.
IPLOTV Package Rlag indicating whether vector plots will be made.
$=11$ bulk flux vector plots will be made.
$=2$ displacement vector plots will be made.
<1 or >2 no vector plots will be made.
ISTR Package DIMENSION (NPER), Rlag indicating whether plots are to be made for the specified stress period.
>0 plots are made for this stress period.
<0 plots are not made for this stress period.
ITYPE Package DIMENSION (IMANY), Rlag indicating whether plot is planimetrie or cross sectioital in x or y.
$=1$ planimetric plot will be made ($x-y$ plot).
$=2$ cross-sectional plot will be made ($\mathrm{x}-\mathrm{z}$ plot).
$=3$ cross-sectional plot will be made ($y-z$ plot) .
IVEC Package Rlag indicating whether vector arrow heads are to be drawn >0 draw arrow heads
$\ll 0$ no arrow heads are drawn
IXYMAX Module Constant equal to the largest value of either NCOL of NROW
J Module Index for columns or layers.

List of Variables for Module PLTIFM fContinuedi)

Variabl	Range Definipipn
JJJ	Module Index for column location of cell with maximum thickness
K	Module Index for layers or columns
KK	Module NLAY+1-K.
KPE	Module Coxmter for stress periods where plots are to be made.
KPER	Global Stress period counteri
L	Module Index for columns, LPXY(11).
LEN	Module Character length of title for plot.
LENV	Module Location of last character in title string.
LPXY	Package DIMENSION (IMANY), Row, column or layer designation through which plot ISdrawn. Whether LPXYY is a tow, column or layer depends on the vadufe of ITYPE.
N	Module Index for LPXY(II) or number of layers.
NCOL	Global Number of columns in the grid.
NLAY	Global Number of layers in the grid.
NROW	Global Number of rows in the grid.
PAGEX	Module Page size in inches in X direction for plots.
PAGEY	Module Page size in inches in Y direction for plots.
PAGEZ	Module Page size in inches in Z direction for plots.
PENTHK	Module Parameter identifying line thickness for plots.
PI	Module Constant equal to 7.
PUIER	Module Constant identifying the ratio of plot length in inches divided by IXYMAX.
SUMC	Module Sum of length of all DELC(I) in the grid.
SUML	Module Sum of length of all DELL $(\mathrm{J}, 1, \mathrm{~K})$ in the grid.
SUMR	Module Sum of length of all DELR(J) in the grid.
TITLEP	Module Title for planimetric plot ($\mathrm{x}-\mathrm{y}$ plot).
TITLHX ${ }^{\text {a }}$	Module Title for cross-sectional plot ($\mathrm{y}-\mathrm{z}$ plot).
UIIILEY	Module Title for cross-sectional plot (x-z plot).
VCTRLEN	Module Length of vector multiplied by angle to obtain vector endpoint.
VIEW	Module Character string containing title for plots.
XANG_ARR	Package DIMENSION (NCOL,NROWNLAY), Angle in radians of XVAL for each vector in the grid.
XCNTR	Packege DIMENSION (NCOL), Center of each cell in the grid in the X direction.
XLEN	Module Length of plotting window in X direction.
XLINE	Module Cumulative distance to center of each grid cell in X direction.
XMAX	Module Maximum magnitude of displacement or bulk flux in $\mathrm{y}-\mathrm{z}$ plame.
XMAX_ARR	Package DIMENSION (NCOLL,NROWONLAY), Magnitude of displacement or bulk flux in y-z plame.
XORG	Module Origin of plotting window in X direction.
XRAT	Module Ratio of XLEN to SUMR.
XSTEP	Module Length between cell centers in X direction.

List of Variables for Module PLTIEM fContinued)

Variable	Ratage	Definition
XVAL	Module	DIMENSION (NCOL,NRROWW,NLAY), X-direction component of displacement or bulk flux
XVCTR	Module	Location of vector endpoint in X direction for each cell in the grid.
YANG_ARR	Package	DIMENSION (NCOL,NROM,NLAY), Angle in radians of YVAL for each vector in the grid.
YCNTR	Package	DIMENSION (NROW), Center of each cell in the grid in the Y direction.
YLEN	Module	Length of plotting window in Y direction.
YLINE	Module	Cumulative distance to center of each grid cell in Y direction.
YMAX	Module	Maximum magnitude of displacement or bulk flux in $\mathrm{x}-\mathrm{z}$ plane.
YMAX ARR	Package	DIMENSION (NCOLL,NROUN,NLAY), Magnitude of displacement or bulk flux in $x-z$ plane.
YORG	Module	Origin of plotting window in Y direction.
YRAT	Module	Ratio of YLEN to SUMC
YSTEP	Module	Length between cell centers in Y direction.
YVAL	Package	DIMENSION (NCOLL,NROWW,NLAY), Y-direction component of displacement or bulk flux.
YVCTR	Module	Location of vector endpoint in Y direction for each cell in the grid.
ZANG ARR	Package	DIMENSION (NCOL,NROW,NLAY), Angle in radians of ZVAL for each vector in the grid.
ZCNTR	Package	DIMENSION (NCOL), Center of each cell in the grid in the \mathbf{Z} direction.
ZLEN	Module	Length of plotting window in Z directiom.
ZLINE	Module	Cumulative distance to center of each grid cell in \mathbf{Z} direction.
ZMAX	Module	Maximum magnitude of displacement or bulk flux in $x-y$ plane.
ZMAX_ARR	Package	DIMENSION (NCOL,NRIOW,NLAY), Magnitude of displacement or bulk flux in x-y plame.
ZORG	Module	Origin of plotting window in X directiom.
ZRAT	Module	Ratio of ZLEN to SUML.
ZSTEP	Module	Length between cell centers in Z direction.
ZVAL	Package	DIMENSION (NCOL,NROW,NLAY), Z-direction component of displacement or bulk flux.
ZVCTR	Mordule	Levation of vector endpoint in X direction for each cell in the grid.
Variable	Range	Definition of GKS Graphics Subroutines Called by PLTIFM
AREA2D	Module	Defines the subplot area based on axis length.
CONNPT	Module	Connects successive points with straight lines.
DONEPL	Module	Signs off the plotting device and ends plotting.
ENDPL	Module	Terminates a plot page.
HEIGHT	Nodiduté	

List of Variables for Module PLTIFM (Continued)

Variable	Rance	Definition
MESSAG	Module	Draws the specified string at specified distance from physical origin.
PAGE	Module	Sets the page dimensions wherein the plot is centered and draws a page border.
PHYSOR	Module	Defines the plhysical origin.
STRTPT	Module	Moves the point without drawing a line.
VECTOR	Module	Draws a vector with the end points specified in inches from the physical origin.

Narrative for Module SPLTID

This subroutine sets the variables and parameters to make plot into one of three type. They include, a CGM meta file for importation into FRAMEMAKER, a PS postseript file that can be printed from the B)G to a postscript printer or other software paekage that can read postscript files, or to an X-window that is automatically opened on Data General Aviion Workstations. These devices can be modified or exprendeda as needed.

Module SPLTID is called by module PLTIFM and makes numerous GKS graphics subroutine calls to make graphics files or plots to an X -window screen. The module SPLTID performs these functions in the following onder.

1. Check IDEV type.
2. If IDEV $\equiv 1$ the plot is drawn to an X -window environment on the DG workstation. IMANY plots are made after each stress period. Each successive plot will be made by pressing the ENTER key on the terminal keyboard.
3. If IDEV $\equiv 2$ then make a postscript file with the file name beginning with POST followed by a suffix representing, 何, the number of the plot for the simulation.
4. If IDEV $\equiv 3$ then make a CGM meta file with the file name begining with META followed by a suffix representing, IK , the number of the plot for the Simulation.
5. RETURN

Flow Chart for Module SPLTID

IDEV is the device or type of file that the plot is written to for plotting or printing, If IDEV $=1$ the plot is drawn to an X -window on the DC workstation If IDEV $=2$ the plot is written to a postscript file with the prefix POST followed by the plot number designated by the variable IIK If IDEV $=3$ the plot is written to a CGM meta file with the prefix META followed by the plot number designated by the variable IJK.


```
    SUBROUTINE SPLTIID(9]KK, IN, IOUT, IDEV, *)
C
C ******************************************************
C SETS THE VARIABLES AND PARAMETERS TO MAKE PLOT INTO ONE OF THIREE
C TYPES. COM META RILE FOR IMPORTATION INTO FRAME, PS POSTSCRIPT
C FILE THAT CAN BE PRINTED FROM THE DG TO A POSTSCRIPT PRINTER OR
C ON THE SCREEN USING GS (GHOSTSCRIPT),OR THE PLOT CAN BE PLOTTED
C DIRECTILY TO THE DG SCREEN IN X-WINDOWS. THESE DEVICES CAN BE
C MODIFIED OR EXPANDED AS NEEDED.
```



```
C
C SPECIFICATIONS:
C -___
    INTEGER LXARRG(10), I_BUF(16),J_BUF(16)
C
    CHARAACTIER**6 PSTFIL, MTAFIL
    CHARACTIER*2SUIHFX
C
    EQUIVALENCE @_BUF(1),PSTRIL)
C
C
C1-_-_IF IDEV =\ THEN MAKKE THE PLOT DIIRECCIILY TO THE X-WINDOW
C ENVIRONMENT
        IF (IDEV .EQ.1) THEN
    ^^\IEXARG(1) \equiv112
        I_XARC(2)=11
        I_XARG(3) =1
        I_XARG(4) =6
        I_XARG(5) \equiv6
        I_XARG(6) =0
        I_XARG(7) =3
        I_XARG(8) =-11
        I_XARG(9) \equiv0
        CALL XWNDOW(h,I_XARGG,9)
C
C2-_--IF IDEV =2 THEN MAKKE A POSTSCRIPT FILE
    ELSE
```

```
IF(IDEW.EQ. 2) THEN
I_BUF(1) \(=5\)
CALL IOMGR(I_BUE-102)
IF(T)
WRITE(झSURFXX(Gi)') IJK
ELSE
WRITE(SUFFX/(I2)') IJK
ENDIF
PSTHILL=-HROSTT 7 /SSUAFFX
INQUIRE (FILE=PSTFL, EXISSI=-LCCGFIL, OPENED=LOGOPN)
IF(LOGFIL)THEN
WRIITEIOUTYOOO\}
RETURN 1
ENDIF
CALL IOMGGR(O_BUTF,-103)
I_BUF(1) \(\equiv 1\)
CALL IOMGRR(II_BUF,-104)
CALL PSCRPT \((0,0,0)\)
```


C

```
C3- IF IDEV \(\equiv 3\) THEN MAKE A CGM META FILE FOR IMPORT TO FRAME ELSE
IF (IDEV .EQ. 3) THEN
IF(IIK.ITID10) THEN
WRITE(SUMHEXX'(GiT)') IJK
ELSE
WRITE(SUFFX \(\left.{ }^{\prime}{ }^{\prime}(12)^{\prime}\right)\) IJK
ENDIF
MTAFIL='METAA7/SSUHHEX
INQUIRE (FILE=MTAFIL, EXISTI=LCOCFIL, OPENED=LOGOPN)
IF(LOGFIL) THEN
WRITE(IOUTI,100)
RETUN:
ENDIF
LEN.MTA = STR_LEN(MTAFIL)
CALL CGMBO (MTAFIL(1;LEN_MTA),LEN_MTA,0)
ENDIF
- . ENDIF
```

END IF

C
C4-RETURN
RETURN
END

List of Variables for Module

Variable	Rance	Definition
I_BUF	Module	DIMENSION (16), Integer array used by GKS graphics subroutine IOMGR to prepare postscript file.
IDEV	Package	Flag for device that the vector plots will be plotted to. $\equiv 1$ plot will be displayyed in an X-window on the DG. $=2$ plot will be stored as a postscript file. $\equiv 3$ plot will be stored as a CGM meta file.
IJK	Pack	Index for plot numibers.
IN	Module	Primary unit number from which input for this package will be read.
IOUT	Global	Primary imit number for all printed output. IOUT $\equiv 6$.
I_XARG	Module	DIMENSION (10), Integer array used by (3 KS graphics subroutine XWNDOW to prepare X-Whimdow enviroingeht for plotting.
J_BUF	Module	DIMENSION (16), Integer array used by GKS graphics subroutine IOMGR to prepare postscript file.
LEN_MTA	Module	Length in bytes of meta file name.
LOGFIL	Module	Temporary file assigned in parameter list for INQUIRE statement. If LOGFIL exists (representing already existing POST or META file) return without writing plot file.
LOGOPN	Module	Temporary file opened by INQUIRE statement.
"NTAFIL	Module	Name of ciurrent CGM meta file being writtem.
PSTFIL	Module	Name of current postscript file being written.
Varaisble		Definitiom of CHS Graplics Subrouthes Called by SPLTID
CGMBO	Module	Stores plot information in CGM metafile.
10MGR	Module	Sets up and queries I/O environment for graphic output.
PSCRPT	Module	Stores plot information in postscript file.
XWNDO	Modul	Setsup-X-Window environment for plotting to the screen.

Narrative and Flow Chart of Function STR LEN

This funetion subprogram calculates the character string length in bytes of labels and file names. It is called by modules PLTIFM and SPLTID. It perfoms its tasks in the following order:

1. Set constants.
2. Calculate exact string length.
3. Return.

CHAR_N is the length in bytes of the character string. It resides in a do loop that is NBYTE long (specified in character declaration statement). The do loop subtracts one byte through each pass of the loop tutil CHAR_N is the exact length of the string.

C JOHN C WATSON, SNVCRS, $9 / 15 / 88$
C DETERMINE THE CHARACTER STRING LENGTH

C
C SPECTHCATIIONS:
C ——___
CHARRACTIERR*() STRBUF
CHARRACTER*1 CHAR_N, BLNK
C
C
CII-_SET CONSTANTS
BLNK \equiv "
NBYTE \equiv LEN(STRBUF)
STR_LEN = NBYTE
C
C2-DETERMINE EXACT LENGTH OF STRING
DO 100 IBYTE \equiv NBYTE, $1,-1$
CHAR_N = STRBUF(IBYTE:IBYTE)
IF (CHAR_N .NE. BLNK .AND. ICHAR(CHAR_N) .NE. 0) RETURN STR_LEN = STR_LEN-1
100 CONTINUE
C
C3-RETHENN
END

List of Variables for Function STR LEN

Vardable	Bante	Deffinition
BLNK	Module	Null or blank byte
CHAR N	Module	Current string length in bytes.
IBYTE	Module	Index for bytes.
NBYTE	Module	Number of bytes initially assigned to character string by character dedaration statement.
STRBUF	Module	Buffer for holding file or label name passed into STR_LEN. If the file or label are less than the character string length specified by the character declaration statement then the string contains null characters.
STR_LEN	Package	Exact length of desired character string in bytes.

v

C MAIN CODE FOR MODULAR MODHL- 7/2/92
C BY MUCHHAFELG. MCDONALD ANDD ARLEN WW. HHARBAUGHH
C modified by Thomas J. Burbey
C--VERSION 0212 Feb. 18, 11994; MAIN1

C
C SPECIFICATIONS:
C
COMMON X(1200000)
COMMON /FFLWCOM/LLAYYCON(80)
CHARRACTIERR*4 HEADNNG,VBNM
DIMENSION HEADNCG(3)ABNM(4,20),VBVL $(4,20)$,IUNIT (24)

DOUBLE PRECISION DUMMY
EQUIVALENCE (DUMMMY,X(1))
C
C
C1——SET SIZE OF X ARRAKY. REMEMBER TO REDIMENSION X.
LENX $=1200000$
C
C2-ASSIGN BASIC INPUT UNIT AND PRINTER UNIIII.
INBAS $=5$
IOUT $=6$
C
C3--DEFINE PROBLEM_ROWSCOLUWSLAYERS,STIRESS PERIODS,PACKAGES

1 NODES,INBAS,IOUTI,IUNNIf)
C
C4Y \wedge AALCOCANTE SPACE IN " X " ARRRAYY.

2 INBAS,ISTRII,NTCOL,NRROW,NIAYY,IOUTT)
IF(IUNTT(H).GT.0) CALL BCF1AL(ISUM,LENX,LCSCL,LCHHY,
1 LCBOT,LCTOP,ICSC2,LCTRPY,IUNIT(1),ISS,

* H (IUNiff (2)) (dT(0) CALL WEL1AL(ISUM,LENX,LCWELL,MXWELL,NWELLS,

	(2)MOUTLIWWELCB)
F(IUNiNf(B))(efi(0) CALL DRNIALISUM,LENX,LCDRAI,NDRAIN,MXDRN, 	
IFF(IUNIT(5).GT!0) CALL EVTIAL(ISUM,LENX,HCMEVT,LCEVTR,LCEXDP,	
CSUREE)	
IF(IUNJIT((4))(GHO) CALL RTV1AL(ISUM,LENX,LCRIVR,MXRIVR,NRIVER, 	
	NDW,ICALC,CONSSLUCTBAR
	LCHDCG LCL
(9),10	
IFPUNIM(PAXCTO) CALL SOR1AL	
IF(IUSNIT(44),GH0) CALL PCG2AL(ISUMUHENXXICV,LCSS,LCP,LCCD	
1 LCHCHG,LCLHCHДCRCHG,	
IUNIT(14),HOUTINMPCOND)	
$\underline{2}$ ^	
3 lchss,qiqbs)	
1 lestmadeps,meel,nrow,nlay,ntnax, leumag,iumir(17),	
1 lexmax, leymax, lezmax, iplotv, innahy, ldelpxy,lcitype,ncol,nrow,	
2 nlaydunit(16), iout, ideew, ivec,lexentr,leycntr,1/czentr,	
3 Idstut,nper)	
If (IUNITT(19).GT:0) CALL IBSIAL(ISUM,LENX,LCHCDCSSCELCSCW,	
	LCSUB,NCOL,NROWUNLAY,17BSCB, mBSOC,1SS,duNIT(19),1OUT


```
        1 IOUNTT(211),OOUTT
        IF(IINTT(M),GTLO) CALL TLK2AL(ISUM,LIENX,NUMCNCCOL,NWROW,NLANYY,
        1 LCRAT,LCZCB,LCTLK,LCTL,ICSLU,ICSSLD,LCAA,LCBB,LCALPH,
        2 LCBET,LCPMMILLCRMLILCHRMBILCPRM4,NODHSIINMAI,NMD,
```



```
C
```



```
    IF(ISUM-1.GT.LENX) STOP
C
C6--READ AND PREPARE INFORMATION FOR ENTIRE SIMULATION.
```



```
        1 ISTRT,INGASSHIEADNG,NCOL;NNROWNLAMY,NODPES,WBVL,X(LCIOFL),
        2 IUNTW(I)N,HRIDFMIIDDNFMMMHHEDUN,IDDNUN,IOUT)
        IF(IUNITH(1))(CTHO) CALL BCFHRP(X(LCIBOU),X(LCHNEW),X(LCSC1),
```



```
        3 IUNIT(1)]IES%,NCCOL,NROWWNLANNODESTIDUD
        IF(IUNII(())(GTM0) CALL SIP1RP(NPARM,MXITER,ACCL,HCLOSiE,X(LCW),
```



```
        IF(IUNIT(11))(GTIO) CALL SORIRP(MXITER,ACCL,HCLOSE,NUNOII(I1),
        1 IPARSORJOUTI)
        IF(IUNNII(H4))GTMO) CALL PCG2RP(MXITER,ITERL,HCIOSSE,RCLOSE,
    1 NPCONDD,NBPPOHAHLLAX,IPRPCG,IUNIT(14),IOUX,MUTPCG,
    3. NNTHR)
```



```
    1 x(lerat),x(Pcthase))x(0.qfurf),modes,ncol,nrow,miny,
    2 iunit(d5),iouppx(Cidact),x(aidbou),iqbkoc,iqbkfrm,iq|ikun,
```



```
    1 x(costmx),x(cstmyy)),((arstmm))
    2 nodes,ncol,mmownilayiduriti(y)Hioutt,insloc,
    3magfm,nusxfm,miniyyffin,musiffm,nmagun,nusxun,nusyun,nuszum,
```



```
    IF(IUNHF(19))(CTM) CALL IBSIRP(X(RCDELLR)X(CDELC))X(LCHNEW),
```



```
2 NODES,NBSOC,ISUBFMM,ICOMMFM,MHCFMM,HSUHUNN,ICOMMUN,IHCUN,
3 IUNIT(19),IOUT)
    IF(IUNNII(OZZ)(GT10) CALL TLK2RP(X(LCRAT),X(LCZCB),
```



```
4 X(LCDELR),TOTIM,DELTMLIUNNM(22),IOUT)
IF(IUNII(21))(GIO) CALL HYD3RP(X(LCHYD3)NHYD3,NUMMHIHFMDSIUN,
```



```
2 LCHC,IUNIT(21),IOUT)
C
C-_WRITE STARTING HYDRCOKRAPH RECOTED
    IF(IUNJIT(2H))(GTO) CALL HYD3OT(X,ISUMOXXCHHYD3),NUMH,
    1 IHYD3UN,0.0)
C
C7- STMMULADE EEMCHMSTITHSSSHHETTOD.
    DO300KPPERR=LNNPER
    KKPER=KPER
C
    nbullk=0
```



```
    1 x(Chy)A(cev)pa(Oatop))x(lcbot),x(cdelll)pa(floder),
    2 x(0cdelc),ncol,,nowwmilyyx((lcspx),x(cspy),x(0cspz),
    3 x(lagx()),((luqu(b))(0equ))\umit(15),iout,iqbss)
c
C7A-READ STRESS PERIOD TIMING INFORMATION.
    CALLBMSSSTMNSPHDHI[T,TSMMULT,PERTIM,KKPER,INBAS,IOUT)
C
C7B-READ KAD PREPARE (formulate) INFORMATION FOR STRESS PERIOD.
    IF(IUNIIT(Q)(GITO) CALL WELIRP(XACOWHBLL),NWWELLS,MXWHELLIUNIIT(2),
```



```
    3 NROW,NCOLL,NLAMY,NILMC,DELT,TOTIM,DELTMM,
    4 NM1,NM2,NTM1,IUNIT(22),1OUT)
C
C7C2-ITERATIVELY FORMULATE AND SOLVE THE EQUATIONS.
    DO }100\mathrm{ KTTEREL,MNXITER
```

```
    KKITER=KMTER
C
C7C2A-FORMULATE THE FINITE DIFFERENCE EQUATIONS.
    CALL BAS1FM(X(LCHCOF);X(LCRHS),NODES)
    IF(IUNNIT(1))(GIT0) CALL BCF1FM(X(LLCHICOH))
```



```
    N NROW,NLAY,IOUT)
    IF(IUNII(2)(GIT0) CALL WEL1FM(NWHELMS,MXWELL,X(LCRHS),X(LCWELL),
    1 XAC(BBEUONYCODL,NRTOOWANLAAYO)
        IF(IUNNIT(3))(GT50) CALL DRN1FM(NDRAIN,MXDRNNX(LCDRAD,X(LCHNEW),
    1 X(LCHCOF)%(UCORHS),X(LCMROU))NCOL,NROWN,NLAY)
        IF(IUNIII(8))(GIT0) CALL RCH1FM(NRCHOPP,X(aCIIRCH),XIICCRECH),
        1 (CERBISX, (COBBOONNODINRRCWNNEAY)
        IF(IUNIII(G))(GIT0) CALL EVT1FWN(NMEXIROP,X(ILCIEVT),X(ICCENTIR),
        1 X(CBEXDP),\(LCSURF),XACPH&SS), (LCHHCOH),X(LCIBOU),
        1 M(ILCHNWEW)SNCCOLIRRCHWNNAAY)
        IF(IUNIII(4))(GII(0) CALL RIV1FM(NRIVER,MXRIVR,X(LCRIVR))X(ICHNNEW),
```



```
        IF(IUNIIT(133)(GTH0) CALL STR1FM(NSTREM,X(LICSSTRAM)XGCSSIRMM),
        1 X(ILCHNERM, (GCHCOH),XGICRHS),X(CCHEOU),
        2 MXSTRM,NCOLL,NROW,NIAMY,IOUTT,NSS,X(LCTBAR),
        3 NTRIB,X(ILCCITRBB) }X(UCCUARR,),NLCFGAR)ICALC,CONST)
        IF(IUNNII(V)(GIT0) CALL GHB1FMM(NBOUND,MXBND,XIICCB)NDSS),X(LCHCOFF),
        1 XUCERHISXXCOBBOUNNODINRROWNNAAY)
```



```
        1 X(LCHOOLD))
        2 NCOLLNRROW,NIAAY,DHLT)
        IF(IUNIII(22))(GIO) CALL TLK2FM(X(LLCOIL))X(LCTLK),X(ICSSLUL),X((LLCSLD),
        1 XecceV),X(LCHCOF))X(UCRRISSM,NROMNSOMONLAX,NUMC,
        2 X(a(CUBOU)),X(CRRANI))
    C
    C7C2B-MAKE ONE CUT AT AN APPROXIMATE SOLUTION.
        IF(IUNIIm(())(GIO) CALL SIP1AP(X(LCHNIEWI,X(LCIBOU),X(LCCR),X(LCCC),
```



```
        2 X(LCWN), XIICHHDECG))X(ILCIIRCIH),NPARM,IKKITER,HCLOSE,ACCL,ICNVG,
```

3 KKSTP, $\mathbb{K} K P P E R, \mathbb{P C C A L C , \mathbb { I P R P S I P } , M X I T E R , N S T P , N C O L , N R O W , N L L A Y , N O D E S , ~}$
4 IOUD
IF(IUNIT(Ul))(GITO) CALL SOR1AP(X(LCHNEW),X(ILCIROUT)X(LCCR),

2 XGCH日CC
3 IPRSOR,MXITER,NSTPP,NCOL,NROW,NLAY,NSSLICE,MBW,IOUT) IF(IUNTTA4)COT0) CALL PCG2AP(CXUCHEEEW)X(ICCIBOU), (IICCCR),

 3 NITER,HCLOSE,RCLOSE,ICNVG,KIKSTP,KKPER_UPRPCG,MXITER,IITEIR1, 4 NPCOND,NBBPOL,NSTP,NCOL,NROW,NLAXNODES_RELAXXIOUXMUTPCG) C
C7C2C-IF CONVERGENCE CRITERION HAS BEEN MET STOP ITERATING.
IF(ICNVG.EQ.1) GO TO 110
100 CONTINUE
KITER=MXITER
110 CONTINUE
C
C7C3--DETERMINE WHICH OUTPUT IS NEEDED.
CALL BAS1OC(NSSIPP,KKSTP,ICNVG, (IICITOHI)),NIAMY,
1 IBUDFL,ICBCFL,IHDDFL,IUNIT(12),IOUT)

C

C7C4-CALCULATE BUDGET TERMS. SAVE CELL-BY-CELL FLOW TERMS. MSUM=11

1 X(LCSLLU)) X (LCSSLD) ,X 2 MSUM,NUMC,NCCOL,NRTWW,NLAMIDHLXKKSTPMKPERJITILKCB,ICBCFL,
3 XGC(BUTFFLIOUT)

2 X(LCTOP) (LCSC2))DDELTHASS,NCOIL,NROW,NLAM,KKKSTP,KKPER,
3 IBCRCBIICEREELX (LCBULFF)

1 X(LCWELL),X(LCIBOU),DELT,NCOL,NROUW,NLAYY,KKSTP,KKPER,,WWELCB,
2 ICBCFL, ((ICBBU
IF(IUNIII(3))(GT10) CALL DRNIBDXNMRAIN,MXDRN,VBNM,VBVL,MSUM,
1 X


```
        IF(IUNIT(8))GT!0) CALL RCHIBID(ONRCCHOP,X(ILCIRCH),X(LCRECH),
        1 X(LCBBOU),NROWW,NCOL,NLAX,DELT,VBVI,W沮NM,MSUM,KRSTP,KKPER,
        2 IRCHCB,ICBCFL,X(LCBUFF),IOUT)
        IF(IUNTI(G))(GT!0) CALL EVT1BD(NNEVTOPXUICCBMID))X(ILCEVITR),
        1 X(LCEXDDH))X(LCSURF))((LCTBOU),X(UCCHNUEW,NNCOLL,NROOW,NNLAYY,
```



```
        1 X(LCHN杖W),NCOLL,WROOW,WIEAY,DHELT,VBVL,VBNM,MSUM,
        2 KKETP,KKMPER,IRIVCB,ICBCFL,X(LCBUFF),IOUT)
        IF(IUNTIT(H3)([TT@) CALLSTR1BD(NSTREM,X(LCSSIRNM)X(ICSTRM), XGCCBBOU),
        1 MXSTHMMXCHRINNWNNOGNRCUWJNAMMDHLLT,BEVL,VBNM,MSUM,
```



```
        3 X(LCTIRTB)\times(LCTBAR)),(ICTWARPX(ICFGAR2),ICALCCCOSSTLIPTIFLG)
        IF(ILNIT(%).GIL:0) CALL GHBUBID(NBOUNDD,NXXBND,VBNM,VBVL,MSUM,
        1 X(LCBNDS),DELIDX(LCHNNEW),NCODLXWROWANDAKYX(LCIBOU),KKSSTP,
        2 KKPPER,IGHBCB,ICBCHL,X(LCBUFFP),IOUT)
        IF(IUNII(199)(GIIO) CALL IBS1BD(XNaCIBOU),XIICHHNBEW),X(LCHOLD),
```



```
        2 NCOL,NBOW,NLAMY,D蔍T,VBVL,VBNM,MSUM,KSTP,KPER,HIBSCB,
        3 ICBCFL,(a(CBUFFF),IOUT)
    C
    C--WRITE HYDROGRAPH RECORD
        IF(IUNitI21)(CGT0) CALL HYDSOT(X,ISHDM,XACCHMMD3),NUMH,
    v 1 -WHFLSUNDOMM)
    C
    c---Perform calculations for dinectional components of displacement
```



```
        1 xQdact) )s(ledebr)pa(Dedealco),x(Pectellil),mcol_nrow,nlayy,
        2x(0.se1),x(lehy),x(leusks),x(0cusly),x(lcusiz),x(lcstmz),
        3 x(Oeps)),ioutjiusloc,delt,totimx(llerat)&dsetpw,(lcse),
        4x(Dessw),kunit,x(lostmx),x(lestmy),x(levstm),
        5x(letran),x(losc2),x(lehc),x(llessk)),x(0cuoldx),x(lcuoldy),
        6 x(Cewoldz),istep,xclose,lostplklqparx(letempx),
        7x(letempy),x(letempz),delosex(leux),x(leuy),x(lcuz),x(lochnew),
```


c
c---_print and or save subsidence, magnitude of displacement and
e---directional components of displacement.

1 (leumag), ncol,nrow,nlay, iout, iunit(17), iusloc, x(0diact),
2 nstp,kper,kkstp,nmagfm,nusxfm,nusyfm,nuszfm,nvstfm,

4 x(0cbuff)
C7C5-PRINT AND OR SAVE HEADS AND DRAWDOWNS. PRINT OVERALL
C BUDGETT.

z PERTIM,TOTIM,ITMUNI,NCOL,NRÓW,NILAY,ICNVG,
3 IHDDFL,IBULDFL, IH
C
C7C5A-PPRINT AND OR SAVE SUBSIDENCE, COMPACTION, AND CRITICAL HEAD.
IF(IUNTITq9)(TT0) CALL IBSIOT(NCOL,NRPOW,NLAAY)PERTIM,TOIIMMIKSITP,
1 KPER,NSTP, X(aCRBUFF), X(LCSUB),X(LCHC),IBSOC,ISUBFM,ICOMFM,
2 IHCEM,ISUBUN,ICOMUN,IHCUN, IUNNIT(49),IOUT)
C
C7C6-IF ITERATION FAILED TO CONVERGE THEN STOR.
IF(ICNVG.EQ.O)STOP

200 CONTINUE

c-_-print and or save qbulk terms to output

2 kper,kkstp,peattim,ftrotim, (lldbuffi)
c
c---plot bulk fluxes (iplotv=1) or displacements (iplotw=2)
if(iphlodevilee(0 .or.iplotv.ge.3) goto 205

- if(iunit(1155))lbe(0 .and. iumit(OIV)lle(0) goto 205
if(iplotv.eq-1) then

2 x(lcymax), x (lezmax), x(lcdell),ncol,nrow,nlayy, iplotv,x(Ocitype),
3 x(Qclpxy), imany,iunit(16),iout, idew, idev, x (lciact), $x($ lcxcntr),

\cdots - endif
if(iplotw.eq-2) then if(iumit(1)(6)) gtt(0) call pltifinn(b(llmus)), ,(lacuy), x(lcuz),
1 x(Dedelr),x(ecdelc),x(lexang) $x(l$ cyamg) x (Oczang),x(0cxinax),

4 x(leyentr),x(Ciezentr), x(lloistro), mper,kper,kpe)
endif
205 continue
300 CONTINUE
C
C7C7—WRITE RESTART RECORDS
C7C7A - WRITTE RESTART RECORDS FOR TLK2 PACKAGE

1 X(CCRWB3)), (C(CRRENA4))NWM1,NWK,IDELLTM1,TOTIM,IOUT)
C
C8-EEND PROGRAM
STOP
C
END

[^0]: V

