THE SEALED NICKEL CADMIUM BATTERY

by W. D. C. Walker, B.Sc., C.Chem., M.R.S.C.

Sealed, maintenance-free rechargeable batteries are becoming increasingly readily available to the model maker, handyman, radio enthusiast and electronics engineer. Until recently they have served the public in a somewhat hidden way, as components of 'rechargeable' razors, calculators etc. Nowadays they can be obtained off the shelf, and for most purposes only a small amount of knowledge on simple charging techniques is necessary. Single units are referred to as 'cells', and these can be connected together into 'batteries'

We shall be considering the sealed nickel-cadmium cells and batteries, which are the 'maids of all work' in the small power source field.

Probably the most important facts are:1. The cell discharge voltages are essentially the same as those of 'dry', cells, i.e. zinc/carbon or alkaline manganese;
2. Some nickel-cadmium cells have exactly the same dimensions as the common dry cells and can be interchanged;
3. Their discharge currents can be drawn continuously, and very rapidly as required
4. They can be recharged and discharged a great number of times; 500 or 1,000 times, or many more depending on use;
5. They can be left on continuous charge for years, and thereby maintained in a constant, fully charged state of readiness There are, of course, a few 'ifs' and 'buts' relating to the above and we shall consider these below.

There are two basic types of sealed nickel cadmium cell: the 'cylindrical' cells and the 'button' cells. A mixed group is shown in Figure 1, and Figures 2 and 3 illustrate construction differences and similarities. Respectively tables 1 and 2 give details of the available sizes of the two kinds.

Note that the nickel cadmium cells which are interchangeable with dry batteries are to be found amongst the cylindricals, and Table 1 includes references to the nonrechargeable zinc-carbon and alkalinemanganese equivalents. We shall deal with the cylindrical cells first.

Cylindrical Cells

As an example, consider a nickel cadmium cell of penlight size, the AN 50. It can be left permanently on charge at currents of up to 65 mA ; it can deliver 10A for 30 seconds; 5A for 3 minutes; or 0.5A for 1 hour. All this can be done in any position, and cycles of charge and discharge can be repeated hundreds or thousands of times. It has the same dimensions as the penlight HP7 and MN1500, and can be used in temperatures as low as $-30^{\circ} \mathrm{C}$, and as high as $550^{\circ} \mathrm{C}$, and attains at least half capacity at the extremes.

How is this versatility achieved? The main secret is in the 'Oxygen Recombination Reaction', which means that the gas produced internally on overcharge is absorbed continuously and re-used inside the sealed 24

Figure 1. Various Ni-Cad batteries

Figure 2. Construction of a 4.5 Ah cylindrical cell (AN450).
cell in accordance with the reaction:-
$\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cd} \rightarrow 2 \mathrm{Cd}(\mathrm{OH})_{2}$
The oxygen is given off at the positive (nickel) electrode and reacts very quickly with the cadmium in the charged negative electrode. To help this reaction in the cell the two electrodes are separated only by a thin porous membrane. Cylindrical cells are spirally wound (as shown in Figure 2), whereas button cells consist of flat plates (as shown in the sectional drawing in Figure 3). The electrode 'plates' are made containing finely divided 'active' materials, nickel hydroxide for the positive and cadmium hydroxide for the negative. These materials are absorbed into a sintered or an electrodeposited metal matrix, and this type of construction gives the very low internal resistances and the correspondingly high short-circuit currents shown in Figure 4.

Note that the cylindrical cells are fitted with a re-sealing one-way safety vent that relieves any excess internal pressure caused by a fault or abuse. It opens at about 200 psi and closes again at about 175 psi. Typical abuse conditions would be overcharging at too high a current or excessive reverse charging.

The electrical capacity of a secondary (i.e. rechargeable) cell is expressed in Ampere hours (Ah) or for small cells in milliAmpere hours (mAh). It depends on the rate of discharge, and it is common practice to measure it at the 5 'hour rate. It will be seen from Table 1 that the cylindricals come in a wide range of capacities, from 110 mAh to 10 Ah .

Cells can be connected together in series to produce batteries. Only cells of the same capacity should be used. Connecting in series increases the voltage but the resulting battery has the same ampere hour capacity as the individual cells. Thus ten 4 Ah cells connected in series will give a battery of 12

	$\begin{aligned} & \text { IEC } \\ & \text { NO. } \end{aligned}$	Size					$\begin{aligned} & \stackrel{\rightharpoonup}{5} \\ & \frac{00}{00} \\ & \vdots 00 \end{aligned}$		Equivalent 'Dry' Batteries (not rechargeable)	
									Zinc Carbon	Alkaline Manganese
NCC18	KR/11/45	AAA	1.2	0.18	10.5	44.5	10.0	18	HP16	MN2400
NCC12	KR/15/18	1/3AA	1.2	0.11	14.1	17.0	8.0	12		
NCC24		HAA	1.2	0.24	14.3	28.1	14.0	24		
AN45	KR/16/29	1/2A	1.2	0.45	16.7	28.1	19.0	45		
AN50	KR/15/51	AA	1.2	0.50	14.3	50.3	25.0	50	$\begin{aligned} & \text { Penlight } \\ & \text { HP7 } \end{aligned}$	MN1500
AN60	KR/17/51	$\begin{aligned} & \text { super } \\ & A A \end{aligned}$	1.2	0.60	15.6	50.0	30.0	60		
AN140	KR/23/43	RR	1.2	1.40	22.6	42.6	50.0	140		
AN220	KR/27/50	C	1.2	2.20	26.0	49.0	70.0	220	HP11	MN1400
AN260	KR/35/44	1/2D	1.2	2.60	32.5	43.7	100.0	260		
AN400	KR/35/62	D	1.2	4.00	32.5	61.3	140.0	400	HP2	MN1300
AN450	R/35/62	D	1.2	4.50	33.8	61.0	150.0	450	HP2	MN1300
AN700	KR/35/92	F	1.2	7.00	33.8	91.0	225.0	700		
AN1000	KR/44/91	super F	1.2	10.00	41.5	91.0	345.0	1000		

Table 1. Some typical cylindrical cells.

Figure 3. Construction of a 250 mAh button cell (NCB25DA).

Figure 5 Solder tag styles.

Figure 6. Variation of capacity with temperature.
Figure 6. Variation of capacity with tempe
September 1982 Maplin Magazine
volts (1.2 $\times 10$) and the capacity is unchanged at 4 Ah .

The charge or discharge currents (or 'rates') of cells and batteries are usually expressed as multiples or sub-multiples of the ONE HOUR or ' C ' rate. This standard convention makes for easier comparison between batteries of different sizes.

For instance the C/10 rate will discharge any cell or battery in 10 hours; the C/5 hour rate will discharge it in 5 hours and the 20 rate will discharge in $1 / 2$ hour. The C/10 rate is 1 A for a 10 Ah battery and 200 mA for a 2 Ah battery.

It is very important to grasp that the charging/discharging cycle has an efficiency coefficient of about 1.5 , so that the 'C/10' current would in fact need about 15 hours (10×1.5) for a full charge.

It is worth dwelling a little on the cells which have the same dimensions as 'dry' or common non-rechargeable cells. For many purposes e.g. tape recorders, transceivers, torches etc., nickel cadmium cells can take the place of the equivalent battery. They have many advantages. They can give heavier, continuous power if needed, and their voltages are more uniform during discharge. Their rechargeability makes them very economical in use, and many hundreds of recharges can be obtained at a small fraction of a penny each.

Very often nickel cadmium cells are soldered into circuits. This is desirable if high currents are to be taken, or the battery is to be kept on permanent charge in readiness or standby for emergency purposes. Cell manufacturers fit solder tags at no extra cost, and the styles are shown in Figure 5. When ordering cells the designation 'CF', 'HH' or 'HB' should be used. This is easy to remember if associated with the terms 'Contact Free', 'Head-Head', 'Head Base'. Note that soldering directly on to a cel case could severely damage the cell.

From the point of view of the tolerance of electronic circuits, it is very important to realise that the battery on-charge voltage is higher than the discharge voltage. Thus, a circuit may have to tolerate 1.5 volts per cell on charge at the $\mathrm{C} / 8$ rate and a mid-point discharge voltage of 1.25 volts/cell at the C/5 rate.

Sealed (i.e. gas recombining) cells should not be charged in parallel as their very low internal resistances and supressed overcharge voltages can mean that one cell or one row of cells is doing all the work and getting more than its fair share of overcharge current. It is also possible under these parallel conditions for a row of cells to receive very high 'stray' currents from neighbouring rows. Diode protection between rows is sometimes incorporated to reduce this possibility.

Temperature

A battery is by nature a chemical device and therefore it is affected by temperature in a variety of ways. The lower working limit of the nickel-cadmium system is generally taken to be the freezing point of the potassium hydroxide electrolyte at about $-30^{\circ} \mathrm{C}$. At low temperatures the charging process becomes more efficient, and for continuous charging under these conditions an upper charge voltage limit of 1.55 volts per cell is often imposed. By this, it is meant the circuits are designed so that as this voltage is approached the charging current will decrease and the upper voltage limit is not exceeded. This will greatly reduce the possibility of gassing under these very efficient charge conditions.

The battery capacity is also affected by temperature and Figure 6 demonstrates this. Note the differences between the two

Figure 7. Charge retention versus storage temperature.

Figure 9. Charge retention of button cells.
curves. Charging is more efficient at low temperatures and less so at high temperatures. These curves highlight this.

Another important aspect of battery temperature is its influence on the retention of charge on standing. Figure 7 demonstrates the marked self-discharge brought about by storing charged cells at elevated temperatures. Compare, however, with the button-cell performance shown on Figure 9.

Special Cylindrical Cells

When batteries have to be kept on continuous charge under conditions of high temperature, such as in emergency lighting where there are electric lamps, transformers, chokes etc. to generate heat, it is now common practice to use specially formulated cylindrical cells to withstand these arduous conditions and to comply with recent specifications. These batteries need to have an expected life of at least four years in use. (Specification BS 5266 and ICEL 1001.)

Button Cells

These cells are not fitted with a venting mechanism, and their construction means that they have a higher internal resistance. They are very popular for relatively small current, regular cycling, and infrequent or limited overcharge applications. Their capacities range from 60 mAh to 600 mAh , as shown in Table 2. Although their energy densities are somewhat less than that of cylindricals (70 watt-hours per litre compared with 100 watt-hours per litre), this is often compensated for by the compact way in which they can be stacked to form very convenient battery packs, as illustrated in Figure 8.

A cross-section of a button cell is shown in Figure 3. This is of the 250 mAh size and it will be seen to have three electrodes; one positive sandwiched between two negatives. This is a typical so-called 'D.A.' construction. Other variations are the 'Z.A.' type with only two electrodes and the 'V.A.' with four electrodes. The greater the number of electrodes, the lower the internal resistance for a given Ampere hour capacity (see Table 2).

Button cells are of the 'mass plate' type of construction, in which the electrodes are produced by compressing the active chemical ingredients into metal mesh pockets. The big advantage of these pressed plate cells is that they retain their charge longer when stored (compare figures 7 and 9). This very important property of button cells is often utilised for memory protection in electronic circuits.

Figure 8. A selection of button cell batteries.

Figure 10. Simple charging circuits.

	Capacity	Voltage	Maximum Diameter	Maximum Thickness	Approx. Weight	C/10 Charge Rate	Internal Resistance
NCB6ZA	60 mAh	1.2	16 mm	6.1 mm	4 g	6 mA	280 ms
NCB112A	110 mAh	1.2	23 mm	4.5 mm	6 g	11 mA	$140 \mathrm{~m} \Omega$
NCB152A	150 mAh	1.2	25 mm	5.5 mm	9 g	15 mA	$120 \mathrm{~m} \Omega$
NCB252A	250 mAh	1.2	25 mm	9.0 mm	13 g	25 mA	$100 \mathrm{~m} \Omega$
NCB25DA	250 mAh	1.2	25 mm	9.0 mm	13.5 g	25 mA	$70 \mathrm{~m} \Omega$
NCB602A	600 mAh	1.2	35 mm	10.0 mm	30.0 g	60 mA	$70 \mathrm{~m} \Omega$
NCB60VA	600 mAh	1.2	35 mm	10.0 mm	30.5 g	60 mA	$30 \mathrm{~m} \Omega$

Table 2. Some typical button cells.

Continuous charging of button cells is possible at normal temperatures, but it is necessary to limit the charge current to $\mathrm{C} / 100$. Thus, for the 250 mAh cell or battery, the maximum 'trickle' current should be 2.5 mA .

As with other cells, solder joints must not be made directly on to the cell cases, as internal plastic insulators could be damaged. Manufacturers supply cells and batteries with solder tags as requested. Certain packs, for memory protection, are often supplied with tags suitable for fixing directly to PC boards.

Charging

For most purposes a 'constant-current'
charge system is used for sealed cells. Figure 10 gives a couple of simple circuits suitable for this purpose. For a satisfactory constant current it is recommended that the resistances marked ' R ' drop a voltage about equal to that of the battery being charged.

Other types include circuits for charging from vehicle batteries, solar cells and transistorised sources, and there are many techniques employed for controlling such refinements as fast charging, and correcting for extremes of environmental conditions.

Simple, well designed, and convenient chargers are readily available on the retail market, to accept and charge cells and batteries for domestic items such as torches, tape recorders, and toys etc.

PRICE LIST

All prices shown in this price list are valid from 16th August 1982 to 13th November 1982
 Please note new telephone number for Sales Only (0702) 552911

Prices shown in this list include VAT at 15% where applicable. Items marked NV are rated at 0% and the price shown applies both to inland and export orders. Overseas customers should add up the total cost of all items except those marked NV and deduct 13% to arrive at the total price excluding VAT. Alternatively multiplying the total price (except NV items) by 0.87 will give the total price excluding VAT. Please add extra for carriage on all overseas orders. Carriage will be charged at cost.
Although postage charges to customers living in the Republic of Ireland and in the UK, but not on the UK mainland, are the same as to mainland addresses we regret that we must levy an additional charge of $£ 5$ on each order containing any items marked "Delivery by Carrier".
Will customers from the Republic of Ireland please add 40p and then 35\% to the cost of their order now that the Irish pound is not equivalent to sterling, to cover the rate difference and negotiation fees. We will refund any difference; please state cheque or credit note. Alternatively if you pay by bank draft drawn in pounds sterling on a London bank, then you need add nothing extra. Bank drafts drawn in pounds sterling on a London bank should be readily available from your local bank.
All prices are for the unit quantity shown in the catalogue (unless shown otherwise on this list) i.e. each, per pack, per metre etc. All prices include
postage and packing. There is a 30 p handling charge which must be paid on all orders having a total value of under $£ 4.00$.

The price list is intended for use with our 1981 catalogue and applies to all mail orders. Prices in our shop are generally lower on heavy items as mail order prices include postage and packing costs.
Copies of manufacturers' data sheets are available for most IC's - price 40p each.

Notes:	
NYA	Not yet available
NA	Not available
DIS	Discontinued
TEMP	Temporarily out of stock
OOP	Out of print
FEB	Out of stock, new stock expected in month shown
+	While stocks last
*	Item is mentioned in "Amendments to Catalogue" elsewhere in
	this newsletter
NV	Indicates that item is zero rated for VAT purposes
	Price reduced

Prices charged will be those ruling on the day of despatch

1981 Catalogue Page No	VAT inclusive PRICE	$\begin{gathered} 1981 \\ \text { Catalogue } \\ \text { Page No. } \end{gathered}$		$\begin{gathered} \text { VAT } \\ \text { Inclusive } \\ \text { PRICE } \end{gathered}$	$\begin{aligned} & 1981 \\ & \text { Catalogue } \\ & \text { Page No. } \end{aligned}$		inclusive PRICE	$\begin{aligned} & \text { Cata } \\ & \text { Page } \end{aligned}$		$\begin{gathered} \text { VAT } \\ \text { inclusive } \\ \text { PRICE } \end{gathered}$	$\begin{gathered} 1981 \\ \text { Catalog } \\ \text { Page } \end{gathered}$		VAT inclusive PRICE			
Page 11				Page 19				$\begin{aligned} & \text { RE211 } \\ & \begin{array}{l} \text { RHR } 296 \\ \text { RRI9V } \end{array} \end{aligned}$	Book 8 P21. Book BP35 Book NBB6A	C1 45NVE5. 40 NV	xw92a	Book wDXG. Book NB402				
Ts08J	Panst $7 . S$ hin LC	8w54,					65.55NV 5.7NV									
TSTIOL	Pans $7 . S$ hir S S Pant S.Smint M			${ }^{2} 75$			XW999H				(Book T11054					
TS11M				\%259							Book BF222.	E1. 4				
xf12N	Maplin Poster - ¢1 00NV	BW57M T		ce. 65			Page 27		R8260	Book BP226						
			Aeral Swich 75/300 Buiun Attenuatac 12d Atemuator 180 B	$\underset{E 130}{ }$	Paye 24				${ }_{\text {Rrobs }} 2$	Book BP39	f1.90w	Re18U	Book BP43			
AERIALS								R105	Book 8P39Book BP37. Book NB074	${ }_{\text {E1 }} .92 \mathrm{NVV}$	${ }_{\text {X }}^{\text {XO2OC }}$	Book $\begin{aligned} & \text { F714 } \\ & \text { Book } \\ & \text { BP5 }\end{aligned}$				
		¢1 195 c1 95				RLOEFF		E5.99		RQ58N	Book BP55	E2.00NV				
Page 15					RLO2CRHOKRO23	Book NB059800 K BP6.	${ }_{55} 515 \mathrm{NV}$	${ }_{\text {RH36P }}^{\text {R }}$ R 36 P	Book BP203	$\begin{aligned} & \text { £7.24NV } \\ & =. . . \mathrm{DiS} \end{aligned}$	xwaly	ok N	f10.85V			
	Mushulileer fm224........E1		L811m F							cride Rod 810				Book WRV.BookBockP1999.		
$\times{ }^{0} 23$ A	Mushkitler FM234TE16.55			46p		${ }^{\text {Book }}$ 8P53	E3.20NV	RHAOT RHIIV	Book NB345 300k NB35Book 8P207 Book $8 P 25$ Cont BP3	chionv	RW990					
X ${ }^{2} 888$	Mushkilier FM235T - .i....c17.60									O15		Book 1 T933				
$\times{ }^{1}$	Mushuriler FM264T..........17.80					Book BP196 Basic Electronic Se Boon NB454				c1.95NV	XW97F	800k 1868.	DS			
$\times{ }^{\times} 88 \mathrm{~F}$	Mushalleor FM284Tc30.50	Pase 20			\times x53 xw63T		${ }_{\text {EIII }}$	RHISU		${ }_{6}^{2} 5135 \mathrm{NV}$						
\times		1812 N -18100 8854 YB00A	Mw/Lw Aerial Telesco Aenal	35				HYOAE	Book 8 P44	c.170	Paye 31					
x ${ }^{3}$	Incolour TC10 GrpC $/ \mathrm{D}$... E9.95							¢03888	Book NB480	c. 750 NV	RH5SP	Boon NB				
${ }^{\times 0} 932 \mathrm{~K}$	Trucolour TC13 Grp A11.85		Aerial Rotator .ititer Low-Pass RF Filter	$\begin{gathered} C 59.90 \\ 63.95 \end{gathered}$				Re23A				Book NB1				
	Irccolour TC13 Gro 8E12.20									E.	${ }^{1} 1288$	Book N81	cs. 50 NV			
+ $\times 368$	Incolour TC18 Gro A.....13.95	*YG15R	$2 m$ Rubber DuchMag Mount	${ }_{88.50}$	${ }^{\mathrm{RFF} 10 \mathrm{O}}$ xw874	Book BP228 Book NB188 Book AG530	$\begin{aligned} & £ 150 \mathrm{NV} \\ & \text { E6 } 955 \mathrm{NV} \\ & . £ 3.95 \mathrm{NV} \end{aligned}$	$\begin{aligned} & \text { RO66W } \\ & \text { RK7H } \\ & \text { RL44X } \end{aligned}$	Book 8P59,		xW32k	Book AG569	c3.70NV			
	TrucolourTC18 GrpC/0...11325								Book Br	¢5			anv			
$\times \mathrm{P} 375$												Bock				
16								RLO18	Book BP65		${ }^{1+2} 4574$	Boo	NV			
$\times 839 \mathrm{~N}$	Extragain XGB Groupa.	batteries			Page 25							Boon P1042	Is			
XOST		Page 21			RR39N RHOOA RHIIM						${ }^{\text {RPJ7\% }}$					
X	Extragan XGB Wdond...... 21.95				(ex		Page 28 $\times \times 300$ 8	$\begin{aligned} & \text { Boom MM700 } \\ & \text { Boon 8P71 } \end{aligned}$			Book AG353	E6.25NV				
${ }^{\text {x }}$ ¢ 3.30	ExtraguxG14 Groupa . 535.50		Nı Cadat	55		-c2.15NV	RL42V$\begin{aligned} & \text { XWIOL } \\ & \text { R14 } \end{aligned}$		${ }^{\text {c1.05 }}$	RL10L RL140 RH58N		c.45NV				
¢ 645%			$\mathrm{Nu}^{\text {Cad }} \mathrm{C}$	83.95	Ressy	Book [7938		c4.25NV	Book NB346 Book NB383			cios	E5.60NV			
	Extragain XG14 Wdbnd....235.95		NiCad D	E5.99									¢2.80NY			
-	XG21 Groupa ...at		N.CCod ChargerChipsChap	. 87.85				${ }_{\substack{\text { RBIDL } \\ \text { REROW } \\ \hline}}$ RH34M XW46A		${ }_{66.2}$						
	ExtragainX $\mathrm{G}_{2} 1$ Group $8 . . . \varepsilon_{84.90}$ExtragainXG21 GrpC/D.... 84.95 Extragain $X G 21$ Wdbnd.... 84975 Super.Sel TOP W Wh..... 8.59										${ }^{\text {PR } 1.15 R}$	Book N8102				
					$\begin{aligned} & \text { XW566 } \\ & \text { RL25L } \end{aligned}$	${ }^{\text {Book }}$			Book BPGO	${ }_{81} 1.95$						
	Super Set Top............ 88.95	${ }_{\text {HF28F }}$		Page 22			${ }_{E 6}^{25} 5 \mathrm{NV}$									
	Caratenns Ca7				RR17T RR260	Book N 8327, Book NB1619			Book BR220							
\times ¢S2G C		YRSGP YAGOOVR5 HF29G	1.5 V Batt 8 ox 3V Batt Bow.		RL030	Book NBO61.	${ }^{\text {2 }}$	$\begin{aligned} & \text { RH2 } 2 Y \\ & \text { RR23A } \end{aligned}$		cile	Page 32					
				300	${ }^{\text {R13 }} 32 \mathrm{~K}$	Book NB185 Book NE1 30	c11.46NV			¢1.850		Book 18033E10.17NV				
Paye 17			6v batrox				$\begin{gathered} 280 N V \\ 12.55 N V \end{gathered}$	$\begin{aligned} & \text { XW11M } \\ & \text { RHH } \\ & \text { RH51F } \end{aligned}$	Book ${ }^{\text {NB379 }}$Book BP22 Book BP219		RL21X	Book NBI	c11.45NV			
		$\begin{gathered} \mathrm{HFF2GG} \\ \mathrm{HF94C} \end{gathered}$	9r Bat Holder	22						${ }^{\text {a }}$ (10NV	${ }_{\text {R17 }}^{\text {R17 }}$	Booh N8240	12.45NV			
		$\mathrm{H} F 969$ H 97 F		-300						¢1.05NV	RL23A	Boon N8137.				
			HPII Batimox	390		Book NB319...	E5.98NV				RH22t	Bot 8p34	NV			
BW45Y			HP2 Batt Box	9		Book NBO	15	Paxe 29								
	Loshing Kil Type								Boc		RR12N	Book NR236.	015			
	Lashng Kit Type 6 \% E15.95	\%ogk	AC Adaptor ER300						Boo	2.00	RF 149	Book NB274				
$\times \times 58$		Ye238	TV Gmme Mains	${ }^{59.95}$				${ }^{\text {xWOOTH }}$	Book BPr		${ }_{\text {R22 }}$					
		Xx332	Pp3 Battery Molder.	. 11.25				$\mathrm{RO}_{3} \mathbf{3 H}$	Book NB353	65.45N	XW13P	Book NEA29	E7.25NY			
$\times 0000$	Mast D $\quad 8375$	Yx92A	Dummy Eattery	20,	Page			XW526	Book 0°	¢2.05	R+146a	Book BP214	E1.OSNV			
	Mast G				RR21X	Book NB	84.15		Book		R9739	Book 17879				
$\times \mathrm{C} 63 \mathrm{~T}$	Mast M - E5.79					Photocel		RM45Y	Boon EP^{2}			Book N823				
x964U M	Mast R \quad E9.45					Book 8P45		RO808	Book FT9	E5.05NV	xW938	Book AG582	DIS			
	Mastheas UP1300/W 10.90				$\times \mathrm{W} 3 \mathrm{am}$	Book BP67	22.05NV	${ }^{\text {WGOOA }}$	Book 1	26.31						
* 8 W48C	Now Same As EW46A.				XW62s	Book 8P82		66	Bock							
9	masthem UPI 300/V....... 110.95	Page 23			Rro 30			XW76H	Book $\mathrm{Frg}^{\text {ch }}$	8665NY	Page 33					
					RROMK	Book N N 229	ELTONV					Book NB3	${ }^{\text {c.8.65NV }}$			
Pase 18												Book				
${ }^{* 8 W 50 E}$		${ }_{\text {RL29 }}^{\text {RLS }}$	Book NB157	E2.56NV	RR10,	Book N8230	${ }_{\text {cil }}$	xW739	Book $\mathrm{T}_{1} 12$	86.25NV	(0)350	Book N6333.	1.35 NV			
$\mathrm{rx}^{2} 30 \mathrm{x}$		RH24B	Book BP31	DIS		Book ${ }^{\text {cosen }}$						Book AG510...	26.28 N			
		RQ2\%	Book N8245	E. 655 NV	Rroue	Book NB203	E3.55NV	Paze 30			${ }_{\text {RR14 }}$	Book N8238	4.55NV			
	Solitee csion -		Book 1832		xwsox	Book AG475.						book ÁSt 12				
8ws3\%		KW31J	Book MM639	c1.95V		Book ${ }_{\text {BPP }}$					${ }_{\text {RFFIS }}^{\text {RFIS }}$	Book N825	25 NV			
	Merlat Splinem Soll				296	Book 8 P49		Rrosf	Book NE			Book B				
	r	az														

$\begin{aligned} & 1981 \\ & \text { Catalo } \\ & \text { Page } \end{aligned}$	gue VAT inclusive PRICE Vo.
YB36P	Unisound Mic Ema20...... $\mathbf{L 1 9 . 1 7}$
YB37s	Unisound Mic Ema $30220 .85$
e 120	
Hrocg	Super Cardioid Mic..........E23.55 Sterso Electrof Mic......... 219.75
-r830	Unisnd Mic DM13000......E35.45
10950	Scron Ul5e.e. 10.75
TW729	Osneck Mic Stund 8 8in........1.99
Wrich	
W730	
W774R	Metal Gsneck Boun $\mathbf{E 3 . 2 5}$
wF37s	Okit For Gink Stand........... 61.95
Paxe 121	
Le96E Toble Top Mic Stand.........e. 2.25	
XRESY	
musical	
Pade 122	
Ye97\%	ProAmp E92S..............e3.45
Ye30H	Mono Mic Mixer - -
$\times 1296$	Sterno M xar
Les6\%	Mini:Phasar.....-
увзон	Fuzz Box........................615.25
Page 123	
xabiu	Fuzr.Wah Pedal...............529.50
8834M	Vibra Chous .-.
	Echo Chemberso...........87.30
te67k	Echo Chamber Tapoen.99
x 300	B8D Echo Mechina......... $\mathbf{4 7 2 . 5 0}$
Page 124	
remot	Cry Guiter Pich.Up...........83.93
yemiv	Sther MerP.U.UP....... 88.35
Yous	Pickud Trand/M21
YLogk	Pickup Trandi.A51............19.95
Y10L	Pckup Trang. A15 .-........ 0^{15}
	Prekup Swrich -
	Gutar Strines Nylon...........1.85
Sod	Strap Eutionalu..............550
OPTO	
Pare 125	
	Holdon MES Amber II. IS
P<39P	Hodor MES
rat 60	Holder MES Grem............. 21.45
RX61R Holder MES Red 81.45	Holder MES Red -
${ }_{\text {RX7 }} \times 17$	Oma Les Lhidr Groen......350
	Omd LeS Lidar Red.............350
Rxsog omd Les Lhdr Yellow.........35p	
Px67x	FM. Ti LES Lhide Bux........350
RX6BY Fn.Tp LES Lind	
FF66\%	Fivited Lhior Amor........350
Wrozc Les Cower Green 60	
Houe Les cover pue	
YOGG LES Cover Yellow	
Rxalc	
W13P Wire Bulb 12V..................30p	

1981	
Catalogue Page No.	VAT inclusive PRICE

VAT
Inclusive
PRICE

VAT nclusive
PRICE

1981 Catalogue

Pase 152

 8865 V 3600 VCF PCB

Page 146	
$\times \times 12 \mathrm{~N}$	Et
10 L	Eteher
	PCB
Hx03D	Resi
HXOOA	PCB SRBP Smli Single48D
WF38a	PCE SRBP Med Single
WF39N	PCB SRBP Lrs Single...
HXOIB	PCB F.Glass Sm Sngi.
WFAOT	PCB F.Glass
WF4lu	PCB F.Glass Lrg Sng $\mathbf{\$ 2}$. 75
WF42V	PCB F.Glass Mod Dole
xpgox	Frircuit..........
8w21x	Track Tape 31
8W2	Track Tape 40
BW23	Track Tape 50
BW248	Irack Tape 62 $¢ 1$
	Track Tape 80 $£ 1$
8w	Truck Trpe 100 1.32
BW27E	Track Tope 125e. 81.85
BW28F	Track Tape 150 1.85
BW29G	Track Tape 200 11
-wnor	
BW31J	Pad 100
日w32k	Prod 125
BW33L	Pad 150

Page 154

$\begin{aligned} & \text { BY8 } \\ & 8878 \\ & \times 8030 \end{aligned}$	
PF96E	3800 Sp.Ext.1/P.BKt55p
BF98G	3800 VCA
	3800 Int
*8867x	3600 VC
BY85G	3600 Rear Pan
XQOAE	3800 Cabma 49.60
	Carr in UK with $\mathrm{XCO} 9 . . .$.
¢ 414	
xF43W	3800 Patch Chatt 7 deNV
	ET
887	Touch Orgen PC

1981 Catalogue Page No.		VAT
		inclusive
		PRICE
YO19V	LM380 Amp PCB	. 11.25
Yg20w	zow Amp PCB.	c1.50
Yoldi	Tone con PCB	
YQ21X	Snd/Lught Conv PC 5.2 .10
Pase 156		
XH2OW MES25 25pNV		
88165	Orgn/Giar Bess 210.50
$\times \mathrm{XH19V}$	MES49	015
XL13P	Drumsette Kıt	DIS
$\times \times 165$	Drumstte 1 PCB DIS
xx17	Drumstie 2 PCB DIS
1 LV18	Drumsetie Frme Pan DIS
LYO2C	Drumsette Rear Pa DIS
	Dumbate DS
X898G	Drumsette Cabing	DI

Page 157

XH48C	MES33
FL94C	Hifi Amp Sol Mihr PC........en 20
FL950	HiFi Amp Sol PCB 2325
FL96E	HiFi Amp Eql Mthr PC........ $\mathbf{E 2}$. 95
FL97F	Hifi Amp Eql PCB $¢ 1.97$
L298G	Hifi Amp Pk Oex PCB $¢ 1.97$
$\mathrm{Fl99H}$	HiFi Amp PSU PCB...........E2.15
¢032k	H/Phones Skt Brekt........... 599
XY21X	nifi Amp Chessis...........e.22.10
XY22Y	HiFi Amp Screen...............E1.85
xy23A	Hifi Amp Frt Panol............88. 30
XY248	Hifi Amp Cover Black........ 26.95

Page 158

Page 159

Page 160

Page 161	
XH21X	
x $\times 0$	10.
X874R	10.Chl Egls Miwrk
X875S	10.Chl Eqler W
$21 \times$	Clo
Lw30H	Cloc
LW31]	Clock Tim
XY32K	Cassette Mechanism
xY34m	Stereo Tape Mod
Y030w	Tape Swith Board.
	Tape S
	Cassette Parts Kit. \qquad 12.98

Pase 163	
XFO4E	MES41.........................40pNV
X876H	Disco Front Panel...........c11. 50
B8260	Motor Switch PCB.............. $£ 1.15$
8827	Light Mod Bd...................E5. 30
B818U	Heatsink DR274p
x877)	Disco Cabineti.a.....c48.44
$\begin{aligned} & \text { B891C } \\ & \begin{array}{c} 8191 \\ \text { B190 } \end{array} \end{aligned}$	Carr in UK with $\times 87718 .00$
	Disco PSU PCB................ $£ 1.95$
	100W Amp Board $\mathbf{2} .35$
	Heatsink Mis Plate ¢3.95
XY27E	Heatsink Cover.................E6.45
8822Y	FET-Coramic PU Bd -........ $£ 1.69$
88248	Disco Fider Bd.................. 52.20
8B25C	VUM \& HP Amp Bd.......... 22.35
XH23A	MES4225pNV
$\times 8375$	Sound To Light Case........e11.50

Page 164

$\begin{array}{ll}\text { LR13P } & \text { H8 Mixer PCO No. } 2 \ldots96 ~ \\ \text { LR140 } & \text { HO Mixer PCB No. } \\ \text { N }\end{array}$ LR34M HQ Mixer PCB No. 24 1.38

Page 165

$\begin{array}{ll}\text { LR16S } & \text { HO Mixer PCB No. } 5 \\ \text { LR350........ } & \text { E1.10 } \\ \text { R21 }\end{array}$

Page 166
LR24B HO Mixer PCA No. $999 \mathrm{p}$

Page 167
LW35Q 50W Amp Kite14.95
Pate 169

Page 170

$\begin{array}{ll}\text { BY74R } & \text { Michron MkII PCB................ DIS } \\ \text { YB92A } & \text { Mchron MkII CBSE........... DIS } \\ \text { LW37S } & \text { Michron Mkll Clk Kit........ DIS }\end{array}$

Page 172
$\begin{array}{ll}\text { XL07H MA1003 } \\ \text { YLI9V } & \text { L.C.Clock Modul } 13.40\end{array}$

Pase 173

LW39N Burglar Alemm Kit ODS
$\begin{array}{lc}\text { 1981 } & \begin{array}{c}\text { VAT } \\ \text { inclusive } \\ \text { Catalogue }\end{array} \\ \text { Page No. } \\ & \text { PRICE }\end{array}$
Pago 174

Pege	
Rx96E	Saf
RX97\%	Safuseholde
RX490	Chassis F/ H 20m
RX50E	Chassis F/H
WH490	Fuse Clip
RX51F	
WRPOA	Fuse 20mm 100 ma
Whatc	Fuse 20 mm 150 mA
WROIB	Fuse 20 mm 250 m
WRO2C	Fuse 20 mm 500 m
WRO	
WROO	Fuse 20 mm 1.5
	Fuse 20 mm 24
WR06G	Fuse 20
WR074	Fuse
WR18	Fuse A/S 500
WR19V	Fuse
WR2	
WR950	Fuse $1.1 / 450 \mathrm{~mA}$................. 4 p
WROPJ	Fure 1.1/4 100 ma
WRO9K	Fuse 1.1/4 250 ma
WR10L	Fune 1.1/4 500 mA
WR11m	Fuse 1.1/4 1
WR12N	Fuse 1.1/4 1.5
WR13	Fuse
WR140	Fuse 1.1/4
WR15R	Fute 1.1/4
WR16S	Fuse 1.1/4 10A
wR1T	Fuse 1.1/4 15A
H031	Plug Fuse ${ }^{\text {2a }}$
H032k	Plug Fuse 3a
H033L	Plua Fust 5A
H034m	Pug Fuse 13A
HW	AF Supp C
HWOSF	RF Supp Choke 24
HWOGG	RF Supd Chote 3 A

Page 176

HW13P	Mains Trans Supp
HWOOX	
nW46A	Door Comtact Reed...............1.49
YW50E	Window Foul...................... El .25
YW51F	Foil Terms
Yw478	Surlace BA Reed --.i.a.-...... 1.95
W48C	Ooor Loop....................... $£ 1.75$
nwago	BA Junction Box
Ye91Y	Pressure Mat.
XY33L	Smoke Detectr Type 1-.... $\mathbf{1 2 . 7 5}$
RECORD AND TAPE	
Page 177	
$\begin{aligned} & \times 000 \\ & \times 823 A \end{aligned}$	Autochanger $£ 22.50$ Rim Dive Turntable....... $£ 29.90$
* $\times 825 \mathrm{C}$	Belt Drive Turntable......... 534.50
Page 178	
	Cartridge Side MP60
	Cartridge Slide 710 DIS
F019V	Cratide Slice B0S95 DIS
755	Drive Wheel BSR $£ 1.55$
FO20w	Spindle Auto BSR4.4C
	Spondie Manual ASR
	BSR Drwe Bell
$22 Y$	Carrier Kit SL75K............84.85
$23 A$	Cartrde Carrier SL95 63.95
F\%248	Carrier Kt SL95K 55.25
	Crinder Car Zero $100 D I S ~$
26 D	
-	Cartos Crier SP25Vcti. 25
	rrier Kit SP25Vk ${ }^{\text {E }}$ 5.95
	Dr Wheel Garrard Lrg......... 22.55
F930H	Dr Wheel Gar ard Sm......... $£ 2.85$
1	Spindie Man Short..............72p
	Spindle Man Long.............. 79 P
331	Spindle Auto Short............e. 5.50
F¢34M	Spindle Auto Long -............. DIS
	SP25IV Tone ArmDIS
F0359	CB Weight SP25IV -
	Garrard Drive Belt $£ 2.50$
644	SP251II Motor..................... DIS

Page 179

XX34M HRO1B HRO2C HROSF Rrus	
x 76 H	Drive Belt 46 mm 980
xx71	Drive Bell 57 mm98p
Yx78K	Drive Belt 66 mm98p
Yx79	Drive Belt 76 mm98p
$\times \times 808$	Drive Bell 90 mm98p
HROGG	Crad Acos 104
HRO9K	Ctrde ESR SC12M............c3.75
HR10L	Ctede BSR SC12M..........3.65
Yx83E	Ctridge Philps GP215.........c4. 55

Pese 180

FY5s ctrde Rigonda 25B

1981
Catalogue
VAT
inclusive
PRICE

1981
Catalogue
VAT
inclusive
PRICE

1981
Catalogue
VAT nclusive
PRICE

Page 183

Page 184	
Y8478	Recora Care kt C106
- LX030	Musicentre Kit C113
L06GG	Cleaning Arm Clioo.
	Cleaning Arm Clob............ 4.95
FR44X	Roller Pick C93...................35p
rwsob	Roiler Pack C96.................. 48 p
N4alC	Clesmin Cloth Cl04 .-.-......78p
FRasC	Dust-Dff C101
Tw82D	Cleanar C92es. 65
7×938	Stylus Microscope $£ 2.45$
W683E	Stylus Brush C10312p.
WWaf	Stylus Brush C97............ 28 p
FR46A	Stylus Cleaner C95............. 80 p
Ye55k	Claening Kit C116............. $£ 2.42$
Page 185	
FR52G	Anti.Stat Fluid 695
<10L	AntiStat Mat C119.....-..... 81.95
L04	Anti-Stat Gu
FO509	Spirit Level $4423 .65 ~$
FR490	Stylus balance PX12.45
Yw85G	Record Grip C206............. $£ 1.28$
FR50E	
YW86T	Cassette Kit C115.............E1.85
Y 3561	Cassette Kit Clo
RB64E	Cass Head Cinr C118...........1.25
Yw87U	Claaning Stick C10923p
nwsev	Tape Cleaning Fluid 58p
Page 186	
$\begin{aligned} & \text { FR59J } \\ & \text { wr9w } \\ & \text { FR625 } \\ & \text { FO62S } \\ & \text { W990x } \end{aligned}$	Cassette CInr Tape
	Cassette Cin \& Demag....... 82.2
	Straisht Demagretzer....... 83.35
	Curved Demagnetiser 83.85
	Casrette Splicer................. 4.25

\section*{| Page 182 | |
| :---: | :---: |
| P25C | Sylus GP91SC DD... |
| | Styus |
| | stylus G |
| HR31J | |
| HR66W | Stylus Acos SM6................ $\mathbf{4} .95$ |
| Yxosf | Stylus ${ }^{\text {a }}$ |
| n06 | Stylus ADC |
| 07H | Sylus ADC |
| Yx08J | Stylus A16 |
| rx09k | Stylus AT70 |
| 01 | |
| 681 | Stylus VMB |
| 39 | Stylus BS. |
| , | Stylus ESR |
| HR42V | Stylus BSR ST 10 $£ 1.85$ |
| HR45Y | Stylus BSR ST |
| | Styus ESR ST17 |
| R74 | Stylus ESR ST21 |
| HR75S | stylus Dacca |
| X11m | Strus Dual DN201...........c5.50 |
| x12N | Stylus Gorrard Ga150¢10 |
| | |
| | Stilus Dilor |
| HR48C | Stylus D110SR |
| H2490 | Stylus D120SRE2.45 |
| HR78K | Stylus Hitachi S |
| HR79L | Stylus Hrachi ST |
| | Stylus Hitachi ST10 |
| | Stylus JVC DT21S. |
| [054] | Stylus Victor DT33............ 4.95 |
| - Mx15R | Stylus J |
| | |
| | Stylus NP EP |
| | Styus NP EPS52 4.95 |
| Yx16S | Stylus NP EPS53 |
| | Sylus Philip AC3 |
| HR87U | Sty Philips GP200DDE1.85 |
| W | Stylus Philips GP205.........E1.25 |
| Yx18U | Stylus Philips GP213..........11.85 |
| R90x | Styl Philips GP400.............E5. 10 |
| $\begin{aligned} & y \times 19 \mathrm{y} \\ & \mathrm{y} 20 \mathrm{w} \end{aligned}$ | Styl Philes GP400Mk2.......E4.95 Styl Philiss GP401Mk2 |
 Pase 182}

Pase 181

Page 19

	TW W/w............................24p
H	$10 \mathrm{~W} / \mathrm{W}$.-.
P	25 W/W Res
v	HV Res 1M.33M..................120
v	HV Res 47M220
Blgau	Constantan 28 swg............ $\mathbf{E 3 . 3 5}$
	Resnet 100R85p
ri3p	Resnot 220R 850
m140	Resnet 470R -......................85p
YY15R	Resnot 1k.......................... 85 p
YY16S	Resnet 2k2 - .-.....................85p
W17T	Resnet 4k7...n.,..................... 850
misu	Resnem 10k........................85p
W19y	Resnot 22k............................85p
W20w	Resnet 47k.........................85p
W21x	Resnet 100k.........................85p
WP52G	Hor S-Min Prest 100R10p
WRS3H	Hor S.Min Prest 220R.........10D
WR54J	Hor S.Min Prest 470R..........100
WR56k	Hor S.Min Prest 1\%.............10p
	Hor S.Min Prest 2k2
WR57M	Hor S.Min Prest 4k7100
WRS5N	Hor S.Min Prest 10k 100
WR59P	Hor S.Min Prest 22K.........10p
WR600	Hor S.Min Prest 47k10p
	Hor S.Min 100k...............10p
WR62S	
WR63T	Hor S.Min Prest 470k100
WR64U	Hor S.Min Preses 1M.........10p
WR65V	Vrt S.Min Prest 100R11p
WR66w	Vrt S.Min Prest 220R...........11p
WR67X	Vr S-Min Prest 470R 11p
WRG8Y	Vrt S.Min Prest 1h.
WR69A	Vri S.Min Prest 2 k 2
WR70M	Vris-Min Prest $467 \ldots$
WR71N	Vrt S.Min Prest 10k
WR72P	Vrt S.Min Prest 22 k
WR730	Vri S.Min Prest 47k
WR7AR	Vri S.Min Prest 100k.
WR75S	Vrt S.Min Prest 220\%....110
WR76H	Vrt S.Min Prest 470k.......... 110
WR77J	Vert S-Min Prest 1M

Page 192	
WR78k	Hor Skeleton 100R $\quad 1 . \quad 14 \mathrm{D}$
WR79L	Hor Skeleton 220R............ 14.
WR80	Hor Skeleton 470R.............. 260
WR81C	Hor Skelemon 1k
WR82D	Hor Skeltion 26226p
WR83E	Hor Sheleton 4k726p
WR84F	Mor Sketion 10k26p
WR85G	Hor Skeletion 22k...............26p
WRB6	Hor Skeicton 47k26D
WR87U	Hor Sketmon 100k.............26p
wh8sy	Hor Skeiaton 220k.............. 26p
Wrasw	Hor Skeleron 470k.............26p
wR90X	Hor Skeimon 1M...............26p
wh91Y	Hor Skeleton 2M226D
WR92A	Hor Skeluton $4 \mathrm{M7}$..............26p
mwoon	Vrt Skeleton 100R24p
wwois	Vrt Skeleton 220R............ 24D
WWO2C	Vert Sketeton 470R24D
Wwo30	Vit Skeletion 1k..................24p
WWOAE	Vrt Skeletion 2k2................24p
Wwo5F	Vrt Sketeton 4k7..................24p
WW06G	Vri Skeleton 10\%..............24p
WWOTH	Vr Skeleton 22k
WW08	Vrt Skeleton 47k..................24D
wwogk	Vr Sketuton 100k24p
WW10.	Vrt Skeleton 220k................24p
Ww11m	Vrt Skeleton 470k............ 24 p
Wwi2N	Vrt Skeliton 1M...................280
Ww13P	
WW14Q	Vrt Skeleton 4M7................24p
WR38R	Cermet 100R98p
WR39N	Cermet 500R 980
WR40T	Cermet 1k 980
WRAIU	Cermet 5k98p
WR42V	Cermet 10k98p
WR43w	Cermet 50k.......................98p
WR44X	Cermet 100k.......................980
WR45Y	Cermet 1M..........an.... ${ }^{989}$
WR46A	15.Tum Cermet 500R........E1.20
wra78	15. Turn Cermet 1k........... $£ 1.20$
	15.Turn Cermet 5k........... 1.20
WR49D	15.Turn Cormet 10k..........E1.42
WR50E	15.Turn Cormet 50k......... 1.20
WR51F	15.Turn Cermer 100k........ $£ 1.42$
BW06G	Edge Control Pot.................65p
Bwo7H	Edje Knob Small Blk.............8p
awos	Edge Knob Small Grey80
Bwosk	Ede knob Large Bik.............8p
	Edee Knob Laree Grey 8 \%
WOOA	Pot Lin 1 k

RESISTOR

...3p
2p
30
3p
...

Page 190

X
Y
X
X
W
P
L
H
P
V
V
B
r
Y
Y
Y
r
Y
h
h
h

$\begin{aligned} & L \times 17 T \\ & \text { R803D } \\ & \text { FRG00 } \\ & \text { RB018 } \end{aligned}$	
PRe9p YG25C YG26D	
Page 187	
$\begin{aligned} & \text { RBOOF } \\ & \text { RBO7H } \end{aligned}$	Cassette Tray 52A................ DIS
Lheiy	Cassettebox....................... 24.65
Lh92A	Videocassettebox............... 59.68
FQ63T	GF Caswett Head.............512.80
	Mono Cassette Hasc...........84.55
	Cassetie Erase Had....
F067X	Tape Hd Twor Track RP....£15.50

FW41U	Sw
Fw4 21	Sw Por Lin 10
FW43W	Sw Pot Lin 22k.
PW44x	Sw Pot Lin 47k
futsy	Sw Pot Lin 100

fw	
FW4	Sw Pot Lin 470k
FW4aC	Sw Pot Lin
fwus	Sw Por Lin 2m2
FW62S	Sw Pot Log 4k7
FW639	Sw Pot Log
FW6	Sw Pot Los
Fw65V	Sw Por Log 47 k
fw66w	Sw Pot Log 100k
FW67X	Sw Pot Log 220k
PW6	Sw Pot Log 470
FW69A	Sw Pot Lot 1 M
FW7OM	Sw Pot Los 2 M 2
FW50	W/W Pot 10R
FW51F	W/W Pot 20 R
Fw52G	W/W Pot 50R
Fw7	WW Pot 200R
FW730	W/W Pot 500R
FW938	W/W Pot 1k.
FW96E	W/W Pot $2 k$
FW950	w/w pot 10k
$\times 184$	W/W Pot 50k
FW84F	Dual Pox Lin 4 k
FW	Dual Pot Lin
FW86	Dual Pot Lin 22k
FW87u	Dual Por Lin 47k
FW88	Dual Pot Lin 100k
FW89w	Dual Pot Lin 220k
	Dual Pot Lin
FW91Y	Dual Pot Lin 1
FW92A	Dual Pot Lin 2M2
F008J	Dual Pot Log 4k7
Fro9k	Dual Pot Log 10k
	Oual Por Lom
Fxilm	Dual Por Los
F 12 N	Dual Pot Log 100 m
FX13P	Dual Pot Loe 220 k
FXi40	Oual Pot Log 470 k
	Dual Pot Log 1 M
Ex16S	Dual Pot Lour 2 M2
Ex40T	L/S Control 20
Fx97F	L/S Contro 50
FX98G	L/S Contral 100R
	L/5
Ygoue	
YG05F	Rheostat 100Rce
YGO6G	Rheostat 150R …........

Page 194	
${ }^{\text {nu32K }}$	Slude
F333L	Slide Pot Lin 10k
FX34M	Slide Pot LIn 25k
FX350	Slide Pot Lin 50k
FX36 ${ }^{\text {P }}$	Slinde Pot Lin 100k
FX375	Slide Pox Lin 250k
FX38R	Slide Pot Lin 500k
FX53H	Slide Pot Log 5k
PX54J	Slide Pot Log 10k
FX55k	Slude Pot Log 25k
Fx56L	Slide Pot Loe 50k
FX57M	Slide Pot Log 100k
FX58N	Slide Por Los 250 k
Fx59P	Shide Pot Los 500k
- $\times 76 \mathrm{H}$	Dual Slide Lin 5 k $£ 1$
Px77	Dual Slide Lin 10k
Fx800	Duad Slice Lin 100k
HBO2C	Dual Slide Lof 10 k
HBO	Dual Side Log 50k............ $\mathrm{El}^{\text {d }}$
H805F	Dual Slide Lof 100k
	Dual Slide Log 500k.
KXO7H	
X809K	Jo

Page 195

Fx21X	Thermistor VA105s	
Ex22	Thermistor VALO5	
Fx42V	Thermistor VA1066S	
Px43W	Thermistor VA106	
PX62S	Thermistor R53.	
WH23A	Thermistor G16	
WH248	Thermistor G23	
HB10L	LDR DRP1	
Hellm	LDR	
H812N	DR DRF	

SEMICONDUCTORS

g800A	M 119	110
88018	AC126	
¢802C	AC127	
¢8030	AC128.	
¢ $0^{\text {P04E }}$	AC141	
	AC142	
${ }^{\text {c }}$ 806G	AC176	
88074	AC187	
¢808J	AC188	
¢010	ACY19	
8 Bl 2 N	ACY21	
EL30H	AD140	c1.55
8L31)	AD149	C1.35
BL32K	AD161	

NEW ITEMS PRICE LIST

The following is a list of all items introduced prior to this price list. Dut since publication of
our $1981 / 82$ catalogue and incluces all special items for projects that appeared in the March 1981 to August 1982 issues of Electronics \& Music Maker

aERIALS. AMATEUR RADIO AND CB

AF46A CB FM T

HLSAC 30 W Dummy Price E49.95 XG10 $\times 613 P 1.5 \mathrm{~m}$ CB Aerial YGA1U 27 MHz Rubber Deck YKOOA 2 m Scanning Receiver Price $£ 4.75$
 YL42V Filter Choke YL43W TVI Filler YL4 $4 \times$ CC A Aerial Converter Y $\mathrm{P} 73 \mathrm{O} \mathrm{CB} /$ Radio Aerial Couplep Price $\mathrm{\Sigma 7} .25$ YQ74RCB Aerial Matcher Price $E 5.25$ batteries

HW31J Nicad PP3

 HY32K Lare Bat Charger Price $£ 5.95$ YK31J Unive Baltery Holder Price $£ 1.85$ eooks MAGAZImES AMD BOOKS. MAGAZINES AND LEAFLETS GG018 Pracilical Electronics Hand $\mathbf{E 9 . 0 0 N V}$ lan Sinclatirw
E0ctronics Handbook by Prico 84.70 NV
 WG030 Introduction To Pascal by Rodnay WG04E A Basic Approach to Price 10.75 Cy Henry WGOSF Atan BASIC by Albrecht
WG06G Consumers Guide To Personal Com puting \& Microcomputers by Freiberger WG07H Beat The Odds by Hans Sagan WG08J BASIC With Business Applications by Loti Bateman WG10L Basic Electricity by C. Ryan WGIIM Electronits by H. Kybette $£ 6.65 \mathrm{NV}$ WG12N BASIC by Albrecht pice $£ 6.65 \mathrm{NV}$
 Albrech WG14Q TRS8O BASIC by Albrech

Price $£ 7.70 \mathrm{NV}$ Price $£ 6.65 \mathrm{NV}$ wG16S Flowcharting by N. Stern $\begin{aligned} & \text { Price } 86.85 \mathrm{NV}\end{aligned}$ WG17T The $5 \cdot 100$ Bus Handbook by D. Qursky Price $\$ 13.25 \mathrm{NV}$
wG18U Telephone Accessories You Can Build by J. H. Gilder Price $\mathbb{E 6 . 4 5 N V}$
wG19V 60 Challend WG19V 60 Challenging Problems with 8 ASIC
Solutions by 0 Spencer Price $\mathbb{C 5 7 5 N V}$ wG20w The Best Book On CB by E. Herber WG21X 280 \& 8080 Assembly 15.40 NV Programming by K. Spracklen
wg22Y Intel Memory Book Price 16.75 NV WG23A Intel 8080/8085 Book WG24B 8086 Primer by S. Price $£ 16.95 \mathrm{NV}$ wase Wring Price $£ 10.49 \mathrm{NV}$ WG25C Writing Interactive Compilers \&
Interpreters by P Brown Price $£ 13.45 \mathrm{NV}$ WG260 Foundations of Programming with Pascal by L. Moore Price $£ 6.24$ NV
wg27E What To Do Atter You Hit Return by The People's Computer Company WG28F VMOS Projects by R. A. Penfold WG29G Oigital IC Projects by F. G. Rayer WG30H International Transistor Equivalents Guide by Adrian Michaels Price £3.25NV WG31J Fifty BASIC Exercises by J P P wamoitier The Pascal Handbook by Jacques Tiberghien Price $£ 12.15 \mathrm{NV}$ WG33L Learning BASIC With Your Sinclair 2×80 by Robin Norman G34 Oscillosc opes: How To
6350 More Telephone Price \&A.2CNV Can Build by Jules H. Gilder Price £5.46NV WG36P The Joy Of M1nis And Mieros by Philip Stein and Howard Shapiro wG37S Problem Solving Principles For Pro grammers by William E. Lewis 88 WG38R Computer Programs That Work by J. O Lee, G. Beech and T. O Lee GG39N Successful Software for Small Computers by Graham Beech
VG40T Musical Applications of $\mathbf{8 7 . 0 0 \mathrm { NV }}$ cessors by Hal Chambertin
WG41U Apple II Users G4IU Apple II Users Guide by Lon Poole

Wga2v An Introduction To BASIC Program ming Techniques by S. Daly WG43W 50 Simple LED Circuice E2.15NV R. N. Soar
WG $44 x$ I WG44X Introducing Amateur Electronics by
Ian R. Sinclaır Price 3.95 NV lan R. Sinclarr Price $£ 3.95 \mathrm{NV}$
wG45Y 33 Challenging Computer Games For TRS80/Apple/PET by David Chance WG46A Audio Projects by Price $\mathbf{E 6 . 2 5 N V}$ WG77 Robot Intelligence ... With Exper ments by David L. Heiserman 8750 NV WG48C BASIC Computer Programs For Business Vol. 1 by Charies D . Sternberg WG49D Inside BASIC Games by Richard Price £12.99NV WG50E Electronic Propects In Photography by R. A. and J. W. Penfold Price £3.95NV Wg51F More Electronic Projects In The
Home by Andy Flind Price $£ 3.95 \mathrm{NV}$ Home by Andy Flind Price £3.95NV
WG52G Projects In Amateur Radio by F G. WG2G Projects In Amateur Rado by F G.
Rayer
Price $£ 3.95 \mathrm{NV}$ WG53H Electronic Test Equipment Projects by Atan C. Ainslie Price £3.93NV by Owen Bishoprojecis for Price E3.95NV WG55K Atari Basic Learning By USing by
Thomas E, Rowley Thomas E. Rowle

G657M The Gam Han Circuits by Raymond Adook Of Electronic wG58N The Master Co Price E12.99NV Price 88.45 NV WG59P An Introduction To Radio OXing by R. A. Penfold Price $£ 2.15 \mathrm{NV}$
wG600 Model Ralway Projects by R. A WG600 Model Ralway Projects by R. A
Penfold
Price $£ 2.15 N V$ Penfold
wG61R Androld Design by Martin Eradiey Weinstenn Price E9.99NV
WG62S My Micro Speaks BASEX (And Loves It) by Paul Warme Price E8.85NV Tom Swan

WG64U Programs For Beginners On The GG65y by fred Blechman Price E8.25NV csi korel hobot by Richard E. Patis WG66W Introduction To 8080/8085 Assemb ly Language Programming by Fernandez/
Ashley
Pric@ 7.45 NV WG67X Programming in Basic. Plus by Swatiky/Chen Ming Price £11.75NV W688 Introducing Microprocessors by lan R Sinclair Price £8.75NV WG70M The British CB Book by Peter Chippindale
wG71N Electronic Projects For Cars And WG71N Electronic Projects For Cars. And
Boats by R. A. Penfold Price $£ 2.10 \mathrm{NV}$ Boats by R. A. Penfold Price E2. 10 N
wG72P Electronic Timer Projects by F Rayer WG73Q CB Projects by R. A. Penfold Price E2.10NV WG74R 2×81 Basic Book by Robin Norman wG75S Understanding Your ZX81 ROMby Dr an Logan Price E9.95NV WG76H Ouestions \& Answers On Personal Computing by Peter Lafferty Price £2.75NV WG77J Questions \& Answers On Video by Steve Money \quad Frice 22.85 NV WG78K Practucal Microprocessor Systems by
I. R. Sinclair
Price $\mathbf{~ 5 5 . 7 5 N V}$ WG79L Microprocessors: Your Questions Answered by Alec Wood Price £5.75NV WGe0日 How To Tune The Secret Shortwave Spectrum by H. L. Helms Price E5.75N E. R. Teja WG820 Designing. Building \& Testing Your Own Speaker System by D. B. Weems WG83E Byteing Deeper Into Your 2×81 by Mark Harrison Sere Price 85.95 NV wese WG85G Guide To Solar Electricity Price £4.95NV WG86T Popular Electronic Circuits Book 2 by R. A. Penfold Price ez2.2 K.H.Recorr Price 65 pNV wGs8V The 6809 Companion by M. James was9w Servicing Radio. HI FI and TV Equip. ment by Gordon J. King Price £7.93NV wG90K The Giant Book of Computer Software
 Tricks and Experiments by Edi Lanners G92 How Ro Design and Price $\mathrm{C5} .45 \mathrm{NV}$ Custom Robot by Oavid L. Herserman w693B The SWL's Manual of Non-Bromdcast Stations by Harry L. Helms Price $\mathbf{8 9 . 4 5 N V}$ WG94C How To Build A Lie Detector, Brain. Electronic Proyecis by Mike \& Ruth Woluer. ton Joe Kasser puters in Price \&7.45NV

WG96E Don' (Or How To Care for Your Computer) by Rodnay Zaks wG97F The B18 Oummies Guice $£ 11.70 \mathrm{NV}$ CB Radıo
Price $\varepsilon 3.85 \mathrm{NV}$ WG98G The BASIC Conversions Handbook by Brain Bank Price E6.95NV WG99H The Sinclarr 2X81 (Programming For Real Applications) by Randle Hurley Price $£ 7.45 \mathrm{NV}$ WaOOA Computers for People by J. Willis \& WAO1B The Sottside Sampler by WA02C Date Converters by Price E8.25NV Wh030 Peek, Poke. Byte \& RAM! by I. Stewar wion. Jones Price £6.25NV Wh04E 6800 Assembly Language Program. ming by G. Kane. D. Hawkins \& L. Leventhal WA05F 6502 Assembly Language Sub Wansf 6502 Assembly Language Sub-
routines by L. Leventhal \& W. Saville . WA06G The MOS Memory Data Book Wh07H The Bipolar Memory Dala Book Wh08」 The Optoelectronics Price E1.45NV
 Wa09K Optoelectronics Theory \& Practice WA10L The Linear Control Circuits Data Book Wall M The Voltage Regula Price 55.25 NV Price 85.65 NV ponents Data Book Microcomputep Comv Wa13P The Interface Circuits Data Book WA14Q The TTL Data Book Price $£ 10.00 \mathrm{NV}$ WA15R The 9900 Family Data Book
WA16S Software Develoomerice £11.99NV wal7T Microsystems De Price £14.92NV Guide $\begin{aligned} & \text { Circuit Pocke } \\ & \text { Price } 8.50 \mathrm{NV}\end{aligned}$ Wal9y Linear Integrated Circuit Pocket wa20w Understanding Solid.State Electron. ICS $\begin{aligned} & \text { ICS } \\ & \text { Price E3.35NV Understanding Digital Electronics }\end{aligned}$ whonv Undersunding Price £4.95NV Price £4.95NV Wa23A Understanding Calculator Math Wh24B Understanding Communcations Whasc Understanding Computer Sciente Price £4.95NV 1260 Understanding Optrontes Price $\mathbf{\$ 4 . 9 5 N V}$ Wh27E Basic Electricity and OC Circuits Wh28F Basic AC Circuits Price $£ 10.95 \mathrm{NV}$ WA29G How To Use Op.Amps by E A. Parr WA30H IC Projects For Beginners by $F G$. Rayer Price \&1.95NV amming On The VIC WA32K VIC Revealed Price $£ 11.50 \mathrm{NV}$
WA33L VIC Programmers Reference Guide Price $£ 16.50 \mathrm{NV}$ XAOOA Maplin Magazine Subscription Xa01B Mapitn Magazine Vol 1 No 1 Xa02C Maplin Magarine Vol Price 60 pNV xa02C Maplin Magazine Vol 1 No. 2 Price 60 pNV Xa030 Maplin Magazine Voi. 1 No. $3{ }_{\text {Price }} 60 \mathrm{pNV}$ XAO4E Maplin Magazine Vol. 1 No. XF45Y E\&MM March 1981 Issue XF46A E\&MM April 1981 Issue Price $£ 1.00 \mathrm{NV}$ XF47B E\&MM May 1981 Issue XF48C E\&MM June 1981 Issue XF490 E\&MM July 1981 issu XF50E E\&MM August 1981 Issice $£ 1.00 \mathrm{NV}$ XF51F E\&MM September Prica $£ 1.00 \mathrm{NV}$ XF52G EsMM October 1981 Price £1.00NV XF53H E\&MM November 19 Price $£ 1.00 \mathrm{NV}$ XFSAJ E\&MM December 1981 Price £1.00NV XF55K E\&MM January 1982 Price \&1.10NV XFS6L E\&MM February 1982 Issue $£ 1.10 \mathrm{NV}$ XF57M ESMM March 1982 XFFON E\&MM April 1982 Is XF59P E\&MM May 1982 IssuePrice \&1.10NV XF60Q E\&MM June 1982 Issue Price \&1.10NV XF61R E\& MM July 1982 Issue Price $£ 1.10 \mathrm{NV}$

XF62S E\&MM August 1982 issue
H526 Atar, Software Leatiet Price £1. 10 NV XH52G Atar, Software Leaflet (Issue 2) Fre Leaflet XH54J Atarı Hardware Leaflet Price 40pNV Free XH55K Matınee Organ Book Price $\mathbf{2} 2.50 \mathrm{NV}$ XH56L Spectrum Synthesiser Book
xH59p Sequencer Leatlet Price $£ 1.00 \mathrm{NV}$ BOXES
Y25C Oisplay Box Price 11.25
YK248 Calculator Style Verobox Price \&4.45 CABLES
$\begin{array}{ll}\text { RK30H Flexicable 7-way } & \text { Price 54p } \\ \text { RK331 F Flexicable } 10 \text {-way } & \text { Price } 65 \text { p }\end{array}$ Price 65
RR651J Flexicable 10 .way 4 .Wire Phone Cable per metre CAPACITORS
CAP260 Axial 4700 uF 40V Price $£ 1.40$ CONNECTORS
BH61R Minicon Latch Plug 17.Way Price 78p aH64U Miniton Plug 17. Way Price 46p aH65VMinicon Laich Housing 6.Way Price 13p BH66W Minicon Lateh Housing 5. Way BH67X Right.Angie Minicon Plug 15. Way Bx96E Minicon Latch Plug 3.Way Price 23p 8x97F Minic on Latch Housing 3.Way ex986 Jumper Cable 17. Way Price £3.65 Fe99H Right-Angle Latch Minicon Plus FYgiv
4.Way Right-Angle Latch $\left.\begin{array}{c}\text { Price } \\ \text { Minicon Plug } \\ \text { Price } 33 \mathrm{~b}\end{array}\right)$ FV92a Right.Angle Latch Minicon Plus 2.Way
Y93B Minicon Latch Plug 5. Way Price 26
26 FY94C Minicon Housing lo. Way Price 18p HB58N Minicon Latch Housing 4 Way Price 10p HB59P Minicon Latch Housing 2.Way
Price 8 p HF98G Stereo Plastic 3.5 mm Plug Price 25 p HL950 RA PL259 Plug Price 85 40956 Minicon Pug 10.Way Price 99p RKOOA UHF Female T Adaptor Price $£ 1.75$ RK018 UHF Adaptor FFLA Price $£ 1.65$ RKO2C UHF Adaptor FMLA Price $£ 1.75$ RK27E Adaptor L
RK28F RA Flexiconnector 5 .way Dis RK29G RA Flexiconnector 8 -way DIS
YK06G Pedalboard Cableform Price $£ 2.98$ CONSUMER GOOOS
Cilu Othello Video Game Cartridge Price $£ 18.95$
Price $£ 24.95$ AC42V Video Pinball Cartridge Price E24.95 Ac44X War Lords Game Cartridge $\begin{gathered}\text { Price } \\ £ 29.95\end{gathered}$ AC45YLe Stick \quad Price $£ 24.95$ C46A Missite Command Video Game AC478 Flag Capture Video Game Cartridge AC48C Super Breakout Game Cartridge C49D Kaboom! Game Cartridge ${ }_{\text {Price }} £ 19.95$ AC50E Laser Blast Game Cartidge $\begin{gathered}\text { Pice } £ 19.95\end{gathered}$ AC51F Freeway Game Cariridge Price $£ 19.95$ AC52G Dragster Game Cartiridge Price $£ 19.95$ aC53H Single Game Joystick Price $£ 7.50$

AC54J Super Expander Cartridge Price $£ 34.95$ AC55K Programmers Aid Cartridge | Price |
| :---: |
| $\mathbf{C 3}$ |
| .95 | AC56L Machine Code Montor Cartidge AC57M Introduction To BASIC Part 1 AC58N Introduction TO BASIC Part 2 Price $£ 14.95$

AC59P VIC Avenger Game Price $£ 19.95$ AC500 VIC Star Battle Game Price $£ 19.95$
AC61R VIC Super Slot Game Price $£ 19.95$ AC62S VIC Jelly Monsters Game Price £19.95 AC63T VIC Alien Game Price $£ 19.95$ ACSAU VIC Super tander Game Price £19.95 AC65V VIC Road Race Game Price $£ 19.95$
AC66W VIC Rat Race Game Price $£ 19.95$ $\begin{array}{ll}\text { AC66W VIC Rat Race Game Price } £ 19.95 \\ \text { AC67X VIC Blit2 Game } & \text { Price } £ 5.74\end{array}$ $\begin{array}{ll}\text { AC67X VIC Blit2 Gamer } & \text { Price } £ 5.74 \\ \text { AC68Y Pac.Man } & \text { Price } £ 29.95 \\ & \text { Price } £ 18.95\end{array}$ AC70M From Demons To Diamonds

AC71N Yar's Revenge	Price $£ 18.95$
	Price $£ 29.95$
2072 .	

AC72P Berzerk	Price $£ 29.95$
AC73Q Defender	Price $£ 29.95$

AF40T Epson MX80F/T Mk III Price $\{447.35$ AF41U Centronics Interface for Atar! 400 AF 42 V Centronics Interface for Atarice 800 AF43W Versawriter for Atari 40 Price $£ 59.9$ Atari $400 / 800$ AF44X 48K RAM Module Price $£ 169.00$ AF45Y 48K Upgrade for Atari Af478 YIC20 Colour Comat
 arse Af500 VIC20 Disk Drive Price $£ 230.00$
AFrice $£ 396.00$
 AF52G VIC 8K RAM Price E 44.95 AF53H VIC 16K RAM Price 874.95 HY24B 2.Roll Pack of Paper for Printer DIS Software For Atari 400 and 800 Price 84.95 cover. (Full details are on XH52G and KH54, both free.) Aho see ComputerNows. WY23A Timetouch Electronic Time Switch hardware Price $£ 24.80$ HY30H Isobolt M3 $\times 9 \mathrm{~mm}$ (pk of 10) HY31J Steel Washer 48A (pk of 10) Price 11p KNOBS
gYoon LC Cap Black QYo18 LC Cap Blue
OYo2C LC Cap Green yo30 LC Cap Grey gYo30 LC Cap Grey Youe LC Cap Red orosf LC Cap White G40T Low. Cost Collet Knob

$$
\begin{aligned}
& \text { Price 5p } \\
& \text { Price 5p } \\
& \text { Price } 5 p \\
& \text { Price } 5 p \\
& \text { Price } 5 p \\
& \text { Price 5p } \\
& \text { Price } 5 p \\
& \text { Price 27p }
\end{aligned}
$$

G40T Low Cost Collet Knob Price 27p
MYCROPHONES
HY33L Crystal Mic Insert (metal body) RK03D Power Mic DM313P Price $£ 11.75$ XG11M Base Station Mic DX357 XG12N Base Station Mic BSA610A

Price $£ 33.50$
0 A opto-electrical QR5A, Rectangular Multicolour LED
RK22Y Solar Panel 6V Price $£ 7.95$ RK24B Solar Panel 9V Price E8.95 RRGAN Price $£ 10.25$ ORH4O TMP NENTS BH50E Tablet Rocker Orange BH51F Tablet Rocker Red BH62S Spacer Block Price 96 p BH63T Keyboard Spacer Price 2p BR98G Drawbar Blue Price $\mathbf{\$ 1 . 5 5}$日R99H Drawbar Green FB98G Rubber Coupling
OY07H Contact K8950 Organ Stool $\times 8950$ Organ Stool Xg00A Roli- Top Gundes (paip) Price $£ 29.50$ xG018 Music Stand (par) Price $£ 2.50$ KY89W Switched Swell

Price $£ 4.75$ XY92A Twin Keyboard and Frame
KY97F Keyboard Separator
Price $£ 49.90^{\circ}$
Price $£ 1.95^{\circ}$ XY98G Swell Pedal Housing an

XY99H Roll Top
Price $£ 3.75$
PANEL METERS
RK05F Quick-fit Meter 100-0.100uA
RKOSG Quick-fit Meter 50 uA Price $£ 2.95$
RK07H Ouick.fit Meter 100 uA Price $£ 2.95$ RK08J Quick-fit Meter 500 uA Price $£ 2.95$ RKO9K Quick-fit Meter 1 mA Price $£ 2,95$ RK10L Quick-fit Meter 5 mA Price $\mathbf{\text { E2.95 }}$ RK1 M Quick-fit Meter 10 mA Price $\mathbf{\$ 2 . 9 5}$ RK13P Quick-fit Meter 50 mA Price $\mathrm{E2.95}$ 100 mA Price $£ 2.95$

RK140 Quick.fit Meter 500 mA	Price $£ 2.95$
RK15R Quick.fit Meter 1A	Price 82.95
RK16S Quick-fit Meter 5A	Price $\mathbf{5 2 . 9 5}$
RK17T Quick-fit Meter 25 V	Price $£ 2.95$
RK18U Quick.fit Meter 50V	Price $£ 2.95$
RK19V Quick•fit Meter VU	Price $£ 2.95$
RK21X Quick-fit Meter $50.0 \cdot 50 \sim$	
	Price $\mathbf{\$ 2 . 9 5}$

YQ58N Sequencer Keyboard PCE Y 059 P Sequencer Interface PC日 Price $£ 2.35$ Q72P Magnum Mode Change PCB $£ 2.10$ Price $£ 1.65$ RESISTORS
FX87U Thermistor KR152CW Price 73p
SEMICONOUCTORS SEMICONOUCTORS
QR55K 634SS2 Price $£ 4.95$
QR56L 2SA715 \quad Price e4.95

| QR57M ML926 | Price E2.45 |
| :--- | :--- | OR59P 2SC1162 QY09K LM311N 8-pin OY10L NE570 Price 45 p Pricef4.28 OY11M 2SC2547E Price 38p

Price 340 QY140 UAA170L Price 34p PPEAKERS Price 82.50 OY13P Piezo Transducer 27 mm Price 30 p G02C Lubber Disk 27 mm mom Price 5 p Price $£ 19,75$ X140 Electronic Siren Price $£ 19.95$ SWITCHES
OH58N Co-ax Switch SO239 Price $\mathbf{£ 6 . 9 9}$ 8H59P Co-ax Switch PL259 Price $\mathbf{\$ 6 . 9 9}$ H865 Reset Spring Price 3p HB600 Latchbracket 5-Way Price 27 p Q83E Foot Microswitch HY27E Reset Racket 16.Way HY28F Latchbracket 9-Way HY29G Reset Bar 6-Way HY34M Click Key Black XX45V Switchpot 1 pole 12 way Price 240 YK26D Pedal Switeh Box 12 way Price 85.95 TEST GEAR
YK018 RF Frequency Meter Price $£ 69.95$ YK32K Multimeter DD601 Price $£ 39.95$
T00LS
RK20W Punch for Quick.fit Meters
Yk27E Chassis Punch Set Price $£ 13.45$ WOUND COMPONENTS
YK02C Transformer 2A 32-0.32V

Yk03D Matinee Transformer Price $£ 13.45$ YK07H Transformer 4A 32.0 .32 V Yk08J Toroidal 30VA 0-6, 0-6V Price $£ 7.08$ YK09K Toroidal 30VA 0.9. 0.9V Price $£ 7.08$ YK10L Torod al 30VA 0.12.0.12V Price $£ 7.08$ YK11m Toroidal 30VA $0.15,0.15 \mathrm{~V}$ YK12N Toroidal 30VA $0.18,0.18 \mathrm{~V}$ Price $£ 7.08$ YK13P Toroidal 50VA 0.6, 0.6V Price $£ 7.08$ Yk140 Toroidal 50VA 0.9 0.9V Price 88.05 YK15R Toroidal 50VA 0.12, 0.12V Price 28.05 YK16S Toroidal 50VA 0.15, 0-15V YK17T Toroidal 80VA 0-18, 0.18V Price $£ 8.05$ YK18U Torcidal 80VA $0.22,0.22 \mathrm{~V}$ Pre $£ 8.91$ YK19V Toroidal 80VA $0.30,0.30 \mathrm{~V}$ YK20W Torordal 120VA 0.30. 0.30V Price $£ 8.91$ YK21X Toroidal $160 \mathrm{VA} 0.35,0.35 \mathrm{~V}$ Pre $£ 9.86$ YK22Y Toroidal $300 \mathrm{VA} 0-35,0-35 \mathrm{~V}$ Price $£ 11.02$ YK23A Toroidal 500VA 0.35, 0.35 V YK25C 12VA 15 V Trensformer (PCB mount| Ing |
| :--- |
| YKZ8F Transformer $12 \mathrm{~V} \mathrm{kA} \quad$ Prio $£ 7.49$ |
| Price $£ 4.25$ | -These items are too large to be sent through the ordinary indand mail and they will there. fore be despatched by carrier. Please add E6.00 towards the cont of carriage to any

SPECIAL OFFERS

Low-Cost Multimeter Cheaper than ever

This neat little multimeter is tiny enough to fit in your jacket pocket, and ideal for quick checks on all kinds of electronic, electrical circuits and car electrics.

The meter has a 2 -colour mirrored scale and is supplied complete with operating instructions, one red and one black test lead with probes and one battery (replacement type HP7).

Usual price £4.85. SAVE £1
Order As SP93B (Low Cost Multimeter)
Price £3.85

Pack of 20 BC108C
This most popular transistor guaranteed all selected for the highest gain group is offered in this issue at a saving of 50p off our usual price. Metal can TO18.

Usual price $£ 2.80$ for 20 . Save 50 p Order As SP94C (Pk of 20 BC108C)

Price $£ 2.30$

- offer closes November 30th, 1982 -

NEW BOOKS

Electronics Simplified - Crystal Set Construction by F. A. Wilson
This book is designed especially for those who wish to participate in the intricacies of electronics more through practical construction than by theoretical study. The original crystal set is no longer with us, but it has a modern counterpart and the circuits are still the basis of radio receivers so the reader discovers much about modern radio. Construction of several crystal sets is shown in detail.
1982. 80 pages. $178 \times 110 \mathrm{~mm}$. Illustrated.
Order As WA34M (Book BP92)
Price £1.75NV
Mini-Matrix Board Projects
by R. A. Penfold
A selection of twenty useful and interesting circuits any of which can be built on a small Veroboard type 14354 (FLO6G). Projects include a MW radio, guitar headphone amp, transistor checker, microphone amp, aerial booster, kitchen timer, baby alarm, touch switch, automatic signal, magnetic lock and 10 more. 1982. 112 pages. $178 \times 110 \mathrm{~mm}$. Illustrated.
Order As WA35Q (Book BP99).
Price £1.95NV
Multi-Circuit Board Projects
by R. A. Penfold
The book contains 21 electronic projects, any of which may be constructed on the same specially designed pcb. Ready-made pcb's are available from Maplin (GA79L £1.25). Also the same components have been used in each design where possible so that components and pcb may be used over and over again. 1982. 128 pages. $178 \times 110 \mathrm{~mm}$. Illustrated.
Order As WA36P (Book BP103)
Price £1.95NV

Aerial Projects

by R. A. Penfold
The book contains various practical aerial designs including active, loop and ferrite aerials which give good performances yet are relatively simple and inexpensive to build. Complex theory and mathematics of aerial design have been avoided. Constructional details are given for a number of aerial accessories includ. ing a preselector, attenuator, filters and tuning unit.
1982. 96 pages. $178 \times 110 \mathrm{~mm}$. illustrated.
Order As WA37S (Book BP105)
Price £1.95NV

Understanding Automotive

Electronics

by W. B. Ribbens \& N. P. Mansour (Texas Instruments Data Library) Many automotive functions are now being controlled electronically. Engine performance with good fuel eco-
nomy and low exhaust emissions, cruise control, digital panel, displays - even speech synthesis products are just a few of the practical applications of automotive electronics. This book explains in detail many of the applications of electronics in cars. 1982. 288 pages. $210 \times 134 \mathrm{~mm}$. Illustrated.
Order As WA44X (Understanding Car Electronics)

Price £4.95NV

The Art of Programming The 1K $\mathbf{2 \times 8 1}$

 by M. James \& S. M. GeeThe book shows you how to use the features of the $\mathbf{Z X 8 1}$ in programs that fit into the 1 K machine. The book covers random number generation graphics, moving graphics, PEEK and POKE, the ZX81 timer, and strings and words. There are several ready to-run programs and plenty of hints and tips to help you get even more out of your 1K ZX81.
1982. 96 pages. $178 \times 110 \mathrm{~mm}$ Illustrated.
Order As WA38R (Book BP109)
Price £1.95NV

Advanced 6502 Interfacing

by John M. Holland
For anyone interested in robotics and computer control, here is a collection of design techniques and actual circuits that can be used or adapted to virtually any situation. Thoroughly covered are input and output por design, serial communications, tim ing and timers, A/D and D/A conversion, data acquisition and closedlop control. Though offering advanced solutions to some rather complex and perplexing problems, it is written in an easy-to-understand manner, with clear explanations of circuit applications and operation for those looking for new ideas.
1982. 192 pages. $216 \times 134 \mathrm{~mm}$. Illustrated.
Order As WA41U (Advanced 6502 Interfacing) Price £11.45NV

Beyond Games: Systems Software For Your 6502 Personal Computer by Ken Skier
Use your 6502 -based personal computer for more than games! This book, for Apple, Atari, Ohio Scien. tific and PET, presents a guided tour to your computer. It moves through a fast, but surprisingly complete course in assembly language programming. Having mastered these fundamentals, the reader is introduced to many useful subroutines and programming tools, such as screen utilities, print utilities, a machine language monitor, a hexadecimal dump tool, a disassembler and a simple screen-based text editor.
1981.438 pages. $232 \times 186 \mathrm{~mm}$. Illu. strated.
Order As WA45Y (Beyond Games)
Price £13.00NV

30-Hour BASIC (ZX81 Edition) by Clive Prigmore, Richard Freeman and Robert Horvath
This book has been specially prepared for BBC TV's 'The Computer Program' for use with the ZX81. The book is a simple self-instructional course on the language of microcomputers, but it teaches you good programming techniques. You'll learn how to keep, order and sort files, records and directories; how to print letters and addresses; how to invent your own computer games; how to handle numbers and so on.
1982. 228 pages. $210 \times 148 \mathrm{~mm}$. Illustrated in 2 colours.
Order As WA42V (30-Hour Basic) Price £6.50NV

Practical Programs (for the BBC Com-

 puter \& Acorn Atom)by David Johnson-Davies
The programs in this book illustrate many of the features of the BBC computer and its close relative, the Acorn Atom. They include games, language manipulation, mathematics and sophisticated graphics. Users of the book are encouraged to understand how the programs work so each program is explained in great detail. The programs are listed in both BBC Computer and Acorn Atom formats.
1982. 120 pages. $210 \times 148 \mathrm{~mm}$. Illustrated.
Order As WA43W (Book JW414)
Price £6.95NV

Games For The Atari

by S. Roberts
The book contains a BASIC listing for eight games and a machine code listing for one large game, Gunfight. The book also provides hints and tips for programming your own games. Screen movements are covered along with overlap detection, programming the joystick, sound features and ANTIC. The GTIA, display list inter. rupts and character set redefinition are also described.
1982. 128 pages. $208 \times 136 \mathrm{~mm}$. Illustrated.
Order As WA47B (Games For The Atari)

Price £4.45 NV

Atari Sound and Graphics

by Herb Moore, Judy Lower and Bob Albrecht
A crystal clear guide to the vast creative possibilities of artistic programming to owners of the Atari 400 or 800 , the most visually advanced personal computers on the market. With this self-teaching guide you'll learn how to compose and play melodies, draw cartoons, create sound effects and games and progress to more sophisticated artistic programming.
1982. 240 pages. $252 \times 170 \mathrm{~mm}$. Illustrated.
Order As WA39N (Book JW593)
Price £8.25NV

Your Atari Computer

by Lon Poole with Martin McNiff \& Steven Cook
Here's an invaluable all-in-one guide for Atari 400/800 computer users. The authors provide complete operating instructions and troubleshooting tips on hardware, peripherals and compatible software. Two chapters are devoted solely to the superb Atari graphics capabilities. For beginners there is a tutorial in Atari BASIC plus instructions for use of colour graphics and sound. The book has a comprehensive reference of BASIC statements and functions.
1982. 464 pages. $234 \times 164 \mathrm{~mm}$ lliustrated
Order As WA40T (Your Atari Com. puter)

Price £13.45NV

Atari Computer Operating System User's Manual and Hardware

Manual.

This comprehensive loose-leaf book, covers the operating system of the Atari 400 and 800 in great depth. It also describes the hardware and hardware registers at a highly technical level. There are memory maps and complete circuit diagrams of the computer.
1981. 356 pages. $282 \times 196 \mathrm{~mm}$. Illustrated.
Order As WA46A (Opsys Users
Manul)
Price £16.95NV

De Re Atari

This book is essential for the serious pro. grammer using the Atari 400 or 800 , and unlocks the full amazing possibilities of these incredible machines. De Re (Day Ray) is Latin for 'All About' and this book is precisely that: All About Atari.
The book describes Atari's second micro processor, ANTIC which controls the TV display and whose program is a Display T. dispiay and whose program is a Display List build your own Display List and thus directly create pictures on your TV set instantan cously. The colour registers and character sets are discussed, there is a whole section en Player Missile Graphics that permits rea high.speed arcade.type graphics on your TV set and the powerful potential of Display Lis set and ine powertulporter is of Display Lis he amazies scrolling detai Atari are described propabilities of the described that allow the TV set to appear to described show showing a small portion to picture or map for sampe By just using a pictreck the window can be made using a ysick tilly, vertically and diagonaly over the map smoothly, without steps or flickers. the Apri has tour separ steps or fickers. The atari has four separale sound gene talors each how se requency register degulating the ulume and the noise cogister regulainations are shown aille co vent several options are shown alrowing you to set alternate modes of choose clack bases, set alernite modes operave and polynomiol counters aper your programs. System the Disk ooerating System and the BASIC interpreter showin Sow and the ancher the book ing scheme operacs. .is bor opens oor to the -ras

MAPLIN NEWS

PLACE YOUR ORDERIN YOUR

MAPLIN OPEN A NEW SHOP AT BIRMINGHAM

We are very pleased to announce to our tens of thousands of customers in the Midlands, the opening of our new shop to bring Maplin's personal service to you. The shop which opens on Tuesday 24th August 1982 will be open from 9 a.m. to 5.30 p.m. on Tuesdays to Saturdays. Like all our shops it will be closed on Mondays.

You can find us in the shopping centre opposite Birmingham Polytechnic at the junction of the A34 and A4040. Our full address is Lynton Square, Perry Barr and you can telephone us on (021) 3567292
There is a huge free car park underneath and alongside the shopping centre and being on the junction of an expressway and the outer ring road, we're really easy to reach. When you reach us you'll find that we stock the full range of Maplin's components and kits as well as the Atari and VIC20 computers and all the software.
Come and see us now.
(Please note that all mail orders will still be dealt with by our Rayleigh warehouse. Customers in the Midlands must NOT send mail-orders to the Birmingham shop.) Maplin Electronic Supplies Ltd, Lynton Square, Perry Barr, Birmingham. Telephone (021) 3567292.

A NEW WAY TO BUY FROM MAPLIN

Maplin are proud to introduce MAPCARD a new way of buying from Maplin.
MAPCARD is a fixed payment credit card that can be used in our shops or for mailorder purchases just like Access or Barclaycard. But, unlike Access and Barclaycard that are used for all your general household bills and expenses, MAPCARD will be reserved for your hobby, giving you a fixed expenditure budget.
As soon as you receive your MAPCARD, you can spend up to 24 times your agreed monthly repayment in any of our shops or by mail-order. To order from our mail-order warehouse simply write or phone quoting your MAPCARD number. In our shops simply present your card and sign the sales voucher.
As well as instant credit, MAPCARD offers you many other advantages. Apply now for our leaflet and application form without obligation. The leaflet explains exactly how MAPCARD works and spells out the many

advantages. Or pick up a leaflet in our shops. If you buy regularly from Maplin (or if you'd like to) then become a Privileged Account Holder now. Maplin provides the best service in the country for electronics hobbyists and Atari computer owners. Now MAPCARD makes it even easier to buy from us. (Interest is charged on any outstanding balance at a rate dependent on the method of repayment. Currently APR is either 30.6\% or $38.4 \%, 2.25 \%$ or 2.75% per month.)

THE 5th PERSONAL COMPUTER WORLD SHOW

Come and see all our superb software and Atari hardware at the 5 th Personal Computer World Show to be held at the new Barbican Centre in the City of London. The show will be more than double the size of last year's show. The show will be held on two floors, one for professional and business microcomputing and one devoted to home and hobbyist applications and that's where you'll find us. So here's your chance to visit the marvellous new Barbican centre and see all the latest September 1982 Maplin Magazine
things that are happening in microcomputers at the same time.
In particular we extend a warm welcome to everyone to visit our stand to see some of the spectacular new software titles we have on offer.
The show is open on Thursday, Friday, Saturday and Sunday, the 9th to the 12th of September 1982 and we look forward to meeting you there.

If you're fed up with having to buy Postal Orders then you'll be pleased to hear about TRANSCASH - a new service from the National Girobank.
Simply ask for a form in your Post Office and write your order on it along with our TRANSCASH number. You then pay the amount due to us, to the cashier at the Post Office (plus a small fee to the Post Office) and that's it. No stamps to buy, no letters to post, no fiddly Postal Orders. We receive your order within two days and can despatch it immediately. National Girobank looks after your money, safely and simply.
Next time you go to buy Postal Orders don't! Use TRANSCASH instead. It's a great new service from your National Girobank. Take a note of Maplin's TRANSCASH number now - TRANSCASH 3088065.
Use it at your local Post Office now!

INTEREST FREE CREDIT EXTENDED
 (APR = 0\%)

Following the incredible success of our Interest Free Credit scheme in its first two months of operation, we are pleased to announce its indefinite extension.
So if you have an order containing over $£ 120$ of computer hardware, then buy it on credit - interest free. Here's how it works.

In our shops

1. Phone the branch of your choice and give them your order (must include at least £120 worth of computer hardware). We will also have to ask you some personal financial questions in order to fill up our credit application form.
2. We will phone you back within 48 hours to let you know whether your application has been approved.
3. Any time after this, you may visit the shop to collect the goods. You must bring with you some form of identification (e.g. driving licence, credit card) and sign the form that we filled in on your behalf. A deposit of 10% will be required.
4. A further 10% will be payable every month for a further 9 months equalling the total cash price for the goods.

By mail-order

1. Send your order to us (which must include at least $£ 120$ worth. of computer hardware) and mark clearly on it "Interest Free Credit Terms". Enclose 10\% of the value of the goods with your order.
2. We will send you by return of post, a credit application form.
3. Complete the form and post it in the stamped addressed envelope supplied.
4. When approved we immediately despatch your goods to you.
5. One month after goods despatched the first 10% payment becomes due, and thereafter a further 10% is due monthly for a further 8 months, equalling the total cash price for the goods.

Example

A VIC20 computer could be yours for just £19.99 down and £20 per month for nine months.

Interest free credit terms are only a vailable in the U.K., not in Northem Ireland, Isle of Man and Channel Islands.

THE 8-DIGIT FREOUENCY COUNTER

by Chris Barlow

* Ranges from 100 Hz to 500 MHz
 * Mains or 12V DC operation
 * Clear 8-digit display
 * Easy to build - only two interconnecting wires

This frequency counter offers a superior specification for the first time in kit form. The design is based on the Intersil ICM7216D, and includes electronically switched ranges for greater reliability and ease of construction. Provision has been made for possible future extensions, so this kit can be considered truly flexible.

The integrated circuits used are of an extremely advanced and sophisti-
cated design, including CMOS, ECL, and Schottky TTL. The display uses multiplexed large red 7 -segment LEDs for easy viewing. The functions and ranges are selected by computer-style key switches, and displayed on rows of different coloured LEDS. The input is a single BNC socket, and is switched automatically to the correct input amplifier. The counter will run off either an internal or an external reference oscil-
lator, of either 1 MHz or 10 MHz (programmable). The power supplies are fuse protected on both DC and AC inputs.

The Frequency Counter

ICl (ICM7216D) has multiplexed inputs for function and range select. It also has its own internal reference

Figure 1. Block schematic of counter.

Figure 2. Frequency counter and decimal point logic counter.

oscillator, as well as provision for an external oscillator input (pin 24). Its internal oscillator is controlled by either a 10 MHz or a 1 MHz crystal. A 10 MHz crystal is supplied with the kit. Please note that if you wish to use the 1 MHz option, LKA on the PCB must be fitted. The crystal frequency is set by VCl . The setting of VC1 will determine the accuracy of the displayed frequency, and care should be taken in making this adjustment. ICl provides the digit and segment drive for the 8 -digit 7 -segment displays. The digit drive multiplex signal is also used in the function and gate time selects circuits, to control the function and range inputs of IC1. Pin 2 of ICl provides a gated signal output, which is fed to pin 3 of SK1, for possible future expansion to the system.

The Decimal Point

ICs 2 and 3 (CMOS 4051 and 4008) control the position of the decimal point. This is calculated by looking at the input range and gate time settings. The decimal point occurs at the transitional point between MHz and 100 s kHz , except for the 10 s gate time on L.F. range, where the decimal point occurs between Hz and tenths of Hz .

The Gate Time Function

This uses the CMOS 4093 (IC11) and 4017 (IC5) to select the gate times. The 4017 controls the CMOS bilateral switch CMOS 4016 (IC4). This selects the appropriate multiplex data line, which controls the range input (pin 14 of IC1). ICs 9 and 10 are the LED drivers for the four LEDs used in the display.

The Function Circuit

This is almost identical in operation to the Gate Time Circuit, but the multiplex data selected is fed to the control pin of IC1 (pin 1). In addition, the function circuit feeds signals to the input select, gate time select, and +10 V control circuits. This disables the input select and gate time select in every mode except COUNT, also the +10 V control is shut down in the DISPLAY OFF mode. A hold signal is generated in the function circuit which is fed to pin 27 of IC1, so that the frequency displayed can be stored for as long as is required. The display LEDs are driven by IC10 (CMOS 4049).

The Input Range Select Circuit

This functions similarly to the previous two, but features the control of Schottky TTL gates, which select either direct frequency, divide by ten, or divide by a hundred ranges. This is necessary because the maximum frequency that ICl can handle is 10 MHz , therefore, for HF and UHF, division of the input signal is necessary. IC13 is the divide by ten chip used for HF and UHF ranges. In the UHF mode the
prescaler IC14 divides by ten, which is then fed into IC13, making a total division of one hundred. IC9 drives the display LEDs.

The UHF Input Amplifier/Prescaler

The UHF input stage uses a ZTX326 (TR3) broad band, high frequency amplifier in the common base mode. The UHF signal is fed to TR3 via the input relay circuit. It is then fed to the input pins (15 and 16) of IC14. The IC divides the signal by a factor of ten, and the signal is then fed to the input select circuit.

The LF/HF Amplifier
 The input to the amplifier is a FET

 source follower, TR5, to provide a high input impedance. This feeds the signal into pin 5 of IC16, a three stage broadband amplifier. The output on pin 15 is a 1 V peak-to-peak signal, which is fed to the base of TR4. This then converts the signal into a TTL switching level, which is fed to pin 1 of IC15. This provides a clean switching waveform to drive the input select circuit. The output is on pin 8.
Power Supply and Relay Control

This consists of a standard transformer/bridge rectifier network, which provides an unregulated 12 V supply for the CMOS circuits. REG 1 is a $+5 \mathrm{~V}, 1 / 2 \mathrm{~A}$ regulator, and has a 1 N4148 diode in its common return to increase the output voltage to +5.6 V . This gives a brighter display and more reliable TTL switching. The 10 V controlled output feeds the display LEDs on GATE TIME and INPUT ranges. The IOV is shut down in the DISPLAY BLANK mode, by ICll controlling TR1. The relay RLA is controlled by TR2/IC9, and is active when UHF is selected. The relay controls the voltage and signal feed to either the LF/HF amplifier, or the UHF input amplifier/prescaler.

The Input Protection Circuit

This provides DC isolation to 500 V , and $A C$ protection up to a 5 V peak-to-peak signal. This is achieved with limiting diodes and DC isolation capacitors on the input.

Construction

This project has been designed to fit into the aluminium instrument case XY45Y. Holes have to be drilled for the transformer, regulator, mains input socket, and fuse, as they are all mounted on the back of the box. Holes also have to be drilled to allow access to the PCB mounted power connector and auxiliary socket. The front of the case requires holes drilling for the BNC input socket, the three key switches, the

Figure 3. Function select circuit.

Figure 4. Gate time circuit.

Figure 5. Input select circuit.
three rows of LEDs, and a rectangular window needs cutting for the display. The holes are already provided on the bottom of the box to fit the main PCB on $1 / 8^{\prime \prime} 6$ BA spacers. The CMOS ICs are all provided with sockets, and care should be taken when handling these devices.

The Main PCB

First, fit all track pins, making sure
that they are all soldered on both sides. Then insert and solder the Vero pins into their correct positions, and fit all resistors and diodes, including BR1, checking for correct polarity on all the diodes.

Fit the two PDB mounting connectors and the fuse clips. Fit all capacitors, including VCl. Make sure that all the electrolytics and tantalums are
correctly polarised. Fit the relay RLA and all IC sockets. These are only provided for CMOS ICs. Sockets should not be fitted to the ECL and TTL devices, as these can operate at frequencies that make the use of sockets undesir. able. Fit the transistors, including the input FET, and solder the regulator into a position enabling it to be bolted to the back panel when the PCB is fitted into the case. Fit the crystal, taking care not to overheat this component. Clean the underside of the PCB, and check soldering for possible dry joints etc.

The Display PCB

Fit all track pins. Fit all 7-segment displays, ensuring correct orientation with markings towards the bottom of the board. Fit all display LEDs, and then the three push switches as shown in Figure 10. Check your soldering!

Fitting the Display PCB to the Main Board

The display PCB must be mounted at an angle of 90 degrees to the main board, and the bottom edge must run parallel to the front edge of the main PCB. Solder the inter-PCB connecting links to the main board.

All CMOS chips with the exception of ICl should now be fitted. Normal CMOS precautions should be observed. Fit the BNC socket and glue the red filter to the front panel (as shown in Figure 11). The main PCB should now be tested (see the setting up procedure). After testing, mount the PCB with spacers (Figure 11), and bolt the regulator (using the mica washer), the mains transformer, the fuseholder, and the mains input socket to the back panel (Figure 12), and wire up as shown. Fit the capacitors to the back of the BNC socket as shown in Figure 11.

Figure 6. LF/HF input circuit.

Setting Up

Before fitting into the case, the voltage regulator and CMOS control logic can be tested. A 12 V DC supply is needed. This can be a battery, C.B. power supply, or similar. Fit a meter capable of reading 1 A fsd across the PCB fuseclips, with the negative lead on the side of the fuseclip which connects to the anode of D3. Fit a tem: porary heatsink (e.g. a croc clip) to the metal tab of the regulator. Connect the 12 V supply via the PCB mounted power input socket. A current of no more than 200 mA should be observed. If there is more than 200ma, disconnect immediately and check the construction. If there is zero current, you may have incorrect polarity on the power supply. If all is correct the bottom LED in each row should be lit, but none of the 7 . segment displays. Press each switch in turn, and check that the LEDs illuminate in sequence. The function should be kept in COUNT mode whilst checking the ranges. When the function is in any mode other than COUNT, the other two switches should have no effect. In 'DISPLAY OFF' mode, the range LEDs will extinguish. Remove the meter and replace the fuse FS2. The regulator output should now be measured, using a voltmeter connected with the negative lead to 0 V , and the positive lead to test point 1 . A reading of approximately 5.5 V should be obtained. Ensure that there is no DC present on pins 1,13 , and 14 of ICl holder, and that when the function is on HOLD, there should not be more than 6 V on pin 27 . Remove the power and carefully insert IC1. Re-apply the power and a display should be visible, as

Figure 7. UHF input and relay circuit.

Figure 8. Power supply circuit.

Figure 9. Display circuit.

MAIN PARTS LIST
Resistors: All $1 / 3 W 5 \%$ Carbon unless specified.

A complete kit of parts is available for this project including anattractive printed and punched adhesive aluminium front panel.
Order As LW79L (Frequency Counter Kit) Price $£ 85.00$

Figure 10. Mounting of switches and LEDs.

Figure 12. Back panel assembly.

Figure 11. Suggested assembly.

2TX326

UA78MO5UC

Figure 14. Pin designations.

Figure 13. Display conditions.
shown in Figure 13a. Switch through the ranges, and check that the display varies as in Figures 13b to 13h. At this stage the counter is fully working, and frequency measurement is possible.

When the function is in the TEST position, no more than 320 mA should be drawn from the DC supply. The counter should now be assembled as described in Construction Details, and the AC feed wires should be connected to the PCB.

Plug in the mains, and check that all functions are correct as before. A DC voltage measurement should be taken between OV and TP2. Not more than +15 V , and not less than +11 V should be present. The trimming capacitor VCl should be adjusted for correct reading using an input of known frequency.

NEW MAPLIN CATALOGUE

The new Maplin Catalogue for 1983 will be published in November 1982. Expanded to 384 pages, the new catalogue contains hundreds of interesting new lines, an enlarged Computing section and a new section titled Communications.
As always, the whole catalogue is completely rewritten and updated where necessary, and forms a superb reference book for the home constructor. This is the only book every home constructor must have. And it's an incredible best-seller. Our 1981 cata. logue has now sold well over 160,000 copies. Our new catalogue will be available at the Electronics Hobbies Fair at the Alexandra Pavilion from 18 th to 21 st November; it will be available in all branches of W.H. Smith by 19th November and mail-ordered copies will be posted out on the 30th November.

Prices are as follows:
Electronics Hobbies Fair £1
W.H. Smith and Maplin shops £1.25
Mail Order:
UK
£1.50
Europe surface mail
Europe air mail
$£ 1.90$ £3.06
Outside Europe surface mail $£ 1.90$
Outside Europe air mail (depending on distance):
(A) $£ 4.32$
(B) $£ 5.76$
(C) $£ 6.48$

For surface mail anywhere in the world you can send ten International Reply Coupons.
LOOK OUT FOR THE NEW MAPLIN CATA. LOGUE. Place your order with W. H. Smith or Maplin NOW!

The Electronics Hobbies Fair

An exciting new electronics show is being launched in November this year. The Electronics Hobbies Fair will be at the new Alexandra Pavilion from the 18th to the 21 st of November 1982.
The Alexandra Pavilion is a brand new exhibition hall that offers the best possible modern facilities. There are three cafes and two bars and the superb natural lighting and air conditioning make strolling around the exhibition a pleasure. And you can bring the whole family - there's even a baby changing room!

Getting There

Getting to the exhibition will be really easy too. The organisers have laid on a shuttle bus service that will run regularly from Alexandra Palace British Rail station to the Pavilion. The BR station is right alongside Alexandra Palace Underground station (by the way this station used to be called Wood Green - and probably still is on most maps). If you come by car there is lots of FREE car parking space in Alexandra Palace park and a free shuttle bus service will run from the car park through the grounds to the Pavilion. The fair is being sponsored by 'Practical Electronics', 'Practical Wireless' and 'Everyday Electronics' who are arranging lots of special extras. There will be special discounts for those travelling by British Rail and full details will be given in all three magazines in their October or November issues. In addition there will be lots of special exhibits and demonstrations as well as some fascinating items that you will be able to operate. Unfortunately we can't be more specific at this time, but we can assure you that there will be lots of things to do.

The MAPLIN Stand

Maplin's own big stand at the exhibition will be split into three sections. The first section will be a display of the amazing Atari computers. We will have a whole bank of computers and TV sets, each set running a different piece of software and you will be able to play with them yourself or just stand back and watch. We will also be demonstrating the VIC20 computers.
The second section will be an active display of the best of our projects. Our 2X81 keyboard will be connected up so that you can try it out, and you will also be able to play with our new telephone exchange, the frequency counter, the stereo amp with its remote control unit, and the Matinee organ. You will also be able to see lots of our other projects including the digital model train controller, the burglar alarm and all the peripherals so far described for it, the
universal timer, the stopwatch, the comboamp, the modem, the super-fast ni-cad charger, the inverter, the 5600S and 3800 synthesisers, the Spectrum synthesiser and the touch-sensitive piano.
The final section of the stand will be dedicated the new Maplin catalogue. This fantastic new catalogue for 1983 contains nearly 400 pages of useful information. By post, the catalogue will be $£ 1.50$ and from all branches of W.H. Smith it will cost $£ 1.25$. But for the Electronics Hobbies Fair only, the price will be just $£ 1$. Renowned as the very best electronics catalogue in the country, £1 for nearly 400 pages is outstanding value for money.
So whether your main interest is electronics, amateur radio, radio control, practical hi-fi or CB this is the only show in the year for you. The Electronics Hobbies Fair is going to be a great day out for you and the whole family. Don't miss it !

Prices and Times

Entrance to the exhibition will be $£ 2$ for adults and $£ 1$ for children, OAP's and parties. However, vouchers will be printed in the monthly magazines 'PE', 'PW' and 'EE' in the near future that will allow you 50 p off the entrance fee. The exhibition will be open from 10 a.m. to 6 p.m. on Thursday, Friday and Saturday and from 10 a.m. to 5 p.m. on Sunday.
The exhibition will cover electronics, computing, amateur radio, CB, practical hi-fi and radio control modelling. So there will be a part of the show dedicated to your particular interest.

MAPLIN'S TOP TWENTY BOOKS

1. (-) De Re Atari (WG56L) (See note).
2. (2) 280 IC's Data Sheets (RQ54J) (Cat. P35).
3. (-) How To Identify Unmarked IC's by K. H. Recorr (WG87U) (See note).
4. (1) Atari Basic - Learning By Using by T. E. Rowley (WG55K) (See note).
5. (5) Power Supply Projects by R. A. Penfold (XW52G) (Cat. P29).
6. (19) Newnes Radio And Electronics Engineers' Pocket Book (RL06G) (Cat. P24).
7. (-) The 6809 Companion by M. James (WG88V) (See note).
8. (8) Programming The 6502 by Rodnay Zaks (XW80B) (Cat. P35).
9. (12) IC555 Projects by E. A. Parr (LY04E) (Cat. P27).
10. (6) Electronic Synthesiser Projects by M. K. Berry (XW68Y) (Cat. P33).
11. (3) Towers' International Transistor Selector Update 2 by T. D. Towers (RR39N) (Cat. P25).
12. (7) Remote Control Projects by Owen Bishop (XW39N) (Cat. P29).
13. (-) Cost Effective Projects Around The Home by John Watson (XW30H) (Cat. P28).
14. (-) Projects For The Car And Garage by Graham Bishop (XW31J) (Cat. P23).
15. (-) The TTL Data Book (WA14Q) (See note).
16. (-) Practical Repair And Renovation Of Colour TV's by Chas. E. Miller (RH27E) (Cat. P32).
17. (-) How To Use Op-Amps by E. A. Parr (WA29G) (See note).
18. (-) Popular Electronic Circuits Book 2 by R. A. Penfold (WG86T) (See note).
19. (10) How To Make Walkie-Talkies by F. G. Rayer (RF18U) (Cat. P30).
20. (14) CB Projects by R. A. Penfold (WG73Q) (See note).

Note. For prices see page 36 of this magazine. Full details of books WG55K and WG73Q were published in issue 1 of this magazine, details of books WA14Q, WA29G, WG86T, WG87U and WG88V were published in issue 3 and WG56L is described in this issue.

These are our top twenty best-selling books based on mail-order and shop sales during May, June and July 1982. Our own publica. tions and magazines are not included. We stock over 375 different books relating to electronics or computing and the full range is shown on pages 23 to 37 of our 1981/2 catalogue plus page 37 in this magazine and the new books described in this magazine.

STARTING POINT

by R. Penfold

Introducing the fundamentals of electronics for the constructor.

Inductance

An inductor is one of the most simple types of electronic component, and even a short piece of wire acts as an inductor having a very low value. However, most practical inductors are in the form of a coil of wire wound on a special core that gives a high value for the length of wire used. In theory an inductor is assumed to have zero resistance, but practical inductors do, of course, have significant resistances. It is for this reason that special cores which enable a minimal length of wire to be used for a given inductance are an asset, since the shorter the length of wire used, the lower the resistance of the component. Even so, high value R.F. inductors (or "chokes" as they are often called) are usually wound using a considerable length of thin wire, and consequently have a resistance of a few tens or even hundreds of ohms.

Although an inductor allows a D.C. signal to pass readily, the situation is very different if an inductor is fed with an A.C. signal. As we saw in an earlier "Starting Point" article, a magnetic field is generated around a piece of wire if it is fed with an electric current, and an electric current is generated in a wire if it is placed in a magnetic field of varying strength. These two effects are used in a transformer to couple an A.C. signal from one winding to another.

With a simple inductor fed with an A.C. signal it is not the effect of the generated magnetic field on another inductor that is of importance, it is the effect of this magnetic field on the inductor which receives the signal that is of interest. One might reasonably expect the magnetic field produced to either generate a signal within the inductor that aids the input signal, or opposes it, and in practice the polarity of the magnetic field is such that it opposes the input signal.

If a voltage source is applied to an inductor the current flow gradually increases, and (for a theoretically perfect inductor) is only limited ultimately by maximum current that the signal source can provide. Inductarıce is specified in "henrys", and a change in current flow of one amp per second is produced when one volt is applied to a one henry inductance. As one henry is an extremely high inductance value most practical inductors, have their value specified in millihenrys (mH) or microhenrys (uH). A millihenry is one thousandth of a henry, and a microhenry is one millionth of a henry.

Like a capacitor an inductor has reactance, and it is this property that is exploited in electronic circuits, and it is unusual for an inductor to be used in a timing circuit as capacitors are usually much more convenient in such applications. It is important to realise that capacitive inductance and inductive reactance are very different. The reactance of a capacitor falls as the input 48

figure 1(a). A single section L - R low pass filter, (b) a single section high pass L-R filter.
frequency is increased, whereas the reactance of an inductor increases as the frequency of the applied signal is raised. As a capacitor has a very high resistance and an inductor has an extremely low resistance, these two types of component are complementary to each other rather than true alternatives, and are definitely not direct substitutes for one another.

Reactance rising with increased frequency is caused by the limiting effect the inductance has on changes in current flow. With a very low input frequency the current flow would rise and fall very slowly anyway, but with a high input frequency even quite a modest inductance value will severely limit changes in current flow and provide a difficult path for the signal to negotiate. The greater the inductance of a component, the more it opposes changes in current flow, and the higher its reactance at any given fre quency.

Filters

Simple filters using capacitors were discussed in an earlier "Starting Point" article, and inductors can be used in similar filters. Figure 1(a) shows the circuit of a simple L-R low pass filter, and Figure 1 (b) gives the circuit of a simple high pass $L-R$ filter. These diagrams also show the circuit symbol for an air cored inductor. Figure 2 shows the circuit symbols for iron cored and adjustable inductors.

Operation of these two filters is quite straight forward, and if we consider the low pass type first, at low frequencies L1 will have a reactance which is low in comparison

Figure 2(a). The circuit symbol for an iron or ferrite cored inductor, (b) the circuit symbol for a variable inductance with an adjustable iron or ferrite core.
to the resistance of R1. The losses through Ll due to a potential divider action are consequently very low. At higher frequencies the reactance of L 1 is higher, and at some point losses through Ll start to rise to significant proportions. A doubling of frequency causes a doubling in the reactance of an inductor, and this gives a single stage $L-R$ filter an ultimate attenuation rate of 6 dB per octave (i.e. a doubling of input frequency causes the output signal to be reduced by 50%). This is the same roll-off rate as that obtained using a simple C-R filter.

The high pass filter operates in the same basic way, except that it is at high frequencies where the reactance of Ll is high that low losses are produced, and at low frequencies where Ll has a low reactance that large losses are produced through R1.

figure 3(a). An L-C low pass filter, (b) an L-C high pass filter.

Like the low pass filter, the high pass one has a 6 dB per octave attenuation rate.

It is possible to use both capacitors and inductors in filters to give an increased roll off rate, and Figure 3(a) shows the circuit of a simple L-C low pass filter which uses one capacitor and a single inductor. The equivalent high pass filter circuit is provided in Figure 3(b).

With these filters there is not just the attenuation provided by the doubling in the reactance of the inductor with a doubling of the input frequency, but also an attendant halving in the reactance of the capacitor. This gives a roll-off rate of 12 dB per octave, with a doubling or halving of frequency (as appropriate for the type of filter) giving a 75% reduction in the amplitude of the output signal.

L-C filters are much used in cross-over networks in loudspeaker systems, and it is quite common for high pass and low pass filters to be connected in series to give a simple bandpass filter which directs middle audio frequencies to the appropriate drive unit. It is also quite common for L-C filters to be employed in transmitters and receivers to prevent R.F. signals breaking through to parts of the circuit where they could cause instability. Another application for L - C filters is at the output of transmitters where a low pass type can reduce harmonics which could otherwise cause radio and T.V. interference. However, in most other applications C - R filters are used.

The reactance of an inductor can be calculated using the following formula:-

$X L=2 \pi \mathrm{FL}$

Parallel Tuned Circuit

A parallel tuned circuit simply consists of a capacitor and an inductor connected in parallel, as shown in Figure 4. At most frequencies this arrangement has a fairly low reactance with the capacitor providing

Figure 4. A parallel tuned circuit.
an easy signal path at high frequencies and the inductor providing a low reactance path at low frequencies. At a certain frequency though, the reactance of a parallel tuned circuits peaks at a very high level, and in theory there is actually infinite reactance at this "resonant frequency" as it is known. The resonant frequency is the one at which the inductor and capacitor have the same reactance value.

If we assume that the capacitor is given a charge, when the signal source is removed the capacitor will discharge into the inductor so that a new magnetic field builds up. When the capacitor has discharged, the magnetic field collapses and produces a voltage in the inductor. This voltage is of opposite polarity to the original input signal, and it charges up the capacitor. The capacitor then discharges into the inductor again, and this process continues indefinitely with an A.C. signal at the resonant frequency being produced across the tuned circuit.

In practice the oscillations do in fact rapidly die away due to losses caused by factors such as resistance in the wire used in the winding of the inductor, and leakage September 1982 Maplin Magazine
through the capacitor. In theory any signal fed into the tuned circuit remains in the tuned circuit so that no output is obtained if the circuit is inserted in a signal path, and the tuned circuit has infinite reactance. A practical tuned circuit will obviously not achieve this, but may still have a reactance of a few hundred kilohms or more.

Parallel tuned circuits are often used as bandpass filters, especially in radio equipment where only small and inexpensive inductors are required. The operating frequency of a filter of this type is easily varied by using a variable capacitor in the tuned circuit, or by adjusting the core of a variable inductance (the latter being known as permeability tuning). A filter of this type is thus ideal for use in the tuning circuits of radio receivers.

The basic method of using a parallet tuned circuit as a bandpass filter is shown in Figure 5. The input signal is provided by a

Figure 5. A parallel tuned circuit used as a band. pass filter.
fairly high impedance source, so that at most frequencies the low impedance of the filter seriously loads the source and gives little output. At and near the resonant frequency of the tuned circuit there is no significant loading of the signal source due to the very high reactance of the tuned circuit, and the signal can pass through to the output. A high impedance load must be present at the output since this is in parallel with the tuned circuit, and a low impedance here would effectively eliminate the high impedance of the tuned circuit at resonance and give very poor results. It is possible to use a filter of this type with a low impedance source and load if the tuned circuit is used as part of a transformer, and one method of doing this is illustrated in Figure 6. Another method is to

Figure 6. A low impedance bandpass filter using a tuned circuit.
use the tuned circuit as a single wound transformer with the input and output sig. nals connected to tappings on the inductor.

Series Tuned Circuit

There is an alternative type of tuned circuit known as the "series tuned circuit", and as one might expect, this simply consists of an inductor and a capacitor wired in series instead of in parallel (see Figure 7). This provides a low impedance at most frequencies, like a parallel type, but at

Figure 7. A series tuned circuit.
resonance it theoretically has zero impedance rather than an infinite impedance.

This type of tuned circuit is not as useful in practical applications as the parallel type, and it is not often encountered in electronic circuits.

The formula for calculating resonant frequency is the same for both the parallel and series types, and is as follows:-

$$
f=\frac{1}{2 \pi \sqrt{ }(L C)}
$$

Figure 8. A low Q tuned circuit (a) gives a flatter

Q Factor

Although no practical tuned circuits quite achieve theoretical perfection, some are closer to this than others. The efficiency of a tuned circuit is known as its " Q ", and the higher the Q value the more efficient the tuned circuit. The Q value is very important when a tuned circuit is used as a bandpass filter since it has a very large effect on the frequency response obtained.

A low Q tends to give a very "flat" response of the type shown in "a" of Figure 8. A high Q gives a very "sharp" response of the type shown in "b" of Figure 8. In order to obtain a reasonably high Q it is necessary for the inductor to be wound on a special core (usually made from a ferrite material) which gives a high inductance value for a winding of a given size, and sometimes special wire such as "Litz" wire is used in the winding. Litz wire is basically just a number of thin enamelled copper wires held together by a cotton covering. Radio frequency signals tend to flow down the outer part of wires and not along the centre of the wire, and this is known as the "skin effect". Litz wire gives a greater surface area and therefore a lower resistance than single strand wire of a comparable thickness, and thus gives higher Q in R.F. tuned circuits (but is of no benefit at low frequencies).

In some applications it is not possible to produce normal tuned circuits of sufficiently high Q, and it is then necessary to use alternatives such as crystal or mechanical filters which have similar electrical characteristics to ordinary L - C tuned filters, but are in other respects very different.

THEULTRASONIC INTRUDER DETECTOR
 by Dave Goodman

* Range up to 20 feet (400 sq. ft. area)

* Adjustable sensitivity
* Direct connection to the Maplin Home Security System via our ultrasonic interface plug-in module
Single PCB construction with no setting up required * Up to three may be used on any Maplin Home Security System

T
he new ultrasonic intruder detector is a worthwhile addition to your Maplin Home Security System. It will function over a much wider area than conventional switch contacts, it is highly portable, can be used almost
anywhere, and can offer total security of a fairly large room.

The ultrasonic detector works on the Doppler Effect Principle (see issue 3, page 7), which in this case means transmission of a 40 kHz carrier signal,
and reception of the fundamental carrier along with additional frequency shifted signals. These extra signals can vary in frequency by up to 200 Hz either side of the fundamental, and are quite small in amplitude. Several stages of

Figure 1. Circuit diagram of the Ulirasonic Transceiver.

Figure 2. Component layout of the Ultrasonic Transceiver.

Figure 3. Circuit diagram of the Ultrasonic Interface.
filtering are required to remove the carrier, spurious r.f., and mains interference. The remaining signals are amplified, and, if they are sufficiently large, the alarm will be triggered. The level of triggering is dependent on the sensitivity setting. In this design the transmitter and receiver are both September 1982 Maplin Magazine
mounted on the same PCB, along with their associated circuitry, and signals are 'bounced' around the room.

The Transmitter

As an improvement over conventional systems, in which the oscillator may require many tedious hours of
alignment, we have designed a system in which the transducer determines the oscillator frequency, i.e. the circuit needs NO setting up at all.

The circuit TR4,5,6 and 7, allows the transducer to oscillate at its self-resonating point. C20 at switch-on-discharges through the transducer, causing it to resonate. The produced signal is amplified by TR6 and 7, and a constant current circuit comprising TR4, 5 and D4, allows the necessary feedback for sustained oscillation. From this it can be seen that the normal operating frequency becomes dependent on the transducer.

The Receiver

Ultrasonic signals transmitted in an enclosed area will reflect and bounce off hard surfaces, and be absorbed by soft surfaces. A percentage of these signals (called nodes and anti-nodes) are reflected back at the receiver transducer. The transmitter and receiver being matched pairs means that the receiver has a greater affinity for signals transmitted by its partner than for those produced by anything else. Because we are dealing with audio signals, it is possible for low frequency signals of sufficient amplitude (e.g. the rumble of a lorry going past) to trigger the intruder system, so filtering is required. Tests have shown that beat frequencies of between 5 Hz and 100 Hz can be produced by objects moving through
the ultrasonic field. C 1 and C 2 remove unwanted r.f. signals present at the input of ICId. This stage has a gain of 300 , and high rejection of signals above the ultrasonic band. ICla amplifies the received ultrasonic signals only, and has a first order response. D1 allows only the positive portion of the signal through, and the carrier part of the signal is removed by C6/R7, leaving only the lower frequency content of the signal. IC1b amplifies all low frequency (I.f.) signals, also filtering any possible remaining high frequency (h.f.) content. R10/11/12 and C10/11 form a low pass filter, which only allows signals below 50 Hz to pass through to the final amplifying stage of IClc . We should now be looking (on pin 8) at what is a stable threshold voltage of about $+3 v$, modulated by I.f. signals of 5.50 Hz , and up to $5 v$ in amplitude.

The stage comprising TR1, RV1, and R16/17 determines the overall sensitivity of the receiver, with a range from unity to $\times 100$. Amplified signal peaks are coupled to the diode pump D2/3, C18, R19, so that when the voltage across C18 develops more than 0.7 v , sufficient current is produced to bias TR2 into conduction. LEDI illuminates. This has been included to give the user a means of visibly testing the circuit range and coverage (see setting-up procedure).

IC2a inverts and buffers the output from TR2. IC2c and IC2d form a monostable triggered by IC2a. IC2b is a control gate switching the 40 kHz carrier from the transmitter oscillator to TR3.

With the working system in a stable condition the 40 kHz carrier is coupled via R25 to the incoming supply rail. If the system is triggered the carrier is removed. Note that the supply rails connect to the burglar alarm via a plugin module (the u / s interface PCB, GB01B).

A stand by battery (PP3-9V) is shown connected, positive terminal to pin 3, and negative terminal to pin 4. Charging or 'topping up' facilities have not been added to this part of the circuit, so periodical checks on battery conditions are advisable. Note that the battery will not be required when using the transceiver in conjunction with a u/s interface PCB and our Home Security System, although it will be necessary to increase the NiCad battery pack from 7.8 v to 9 v . This can be accomplished with a total of eight NiCads (1.2v nominal) and two 6 v battery holders (HF29G).

Ultrasonic Interface PCB

This simple circuit identifies the carrier signals transmitted by the ultrasonics module. These signals appear between each 2 ms current pulse (used for powering the transceiver), and allows monitoring of the two wire supply connection.

ICla and b form a 500 Hz CMOS oscillator, and switch the buffer transistor TR2 at this rate. The regulator D1, TR1, applies 8.6 V d.c. to TR3, which is

Figure 4. Component layout of the Ultrasonic Interface.

pulsed on and off by TR2, producing an $8.6 \mathrm{~V}, 500 \mathrm{~Hz}$ signal across R10. This signal is rectified by D7 and C22 (figure 1) in the transceiver, producing 8.2 V on the positive rail.

ICld has a 500 Hz clock pulse on pin 13 , and an in-phase signal of 500 Hz on pin 12. The two signals cancel at the output, pin 11, producing an inverted trigger signal, which fires the burglar alarm. However, under normal conditions a carrier signal will be present across R10, appearing between each 2 ms pulse. R6, R9, D2, and C3 filter and limit this composite signal, and ICld output remains low. Either disconnection of the supply, or triggering the transceiver will remove the 2 ms 'carrier' from across R10, sending ICld output high (+5 V), and setting off the alarm.

Constructional Details for Ultrasonic Intruder Detector

Refer to the parts list and figure (2). Mount D1 to D7 ensuring correct orien-

Figure 5. Pin Designations.
tation. Mount resistors R1 to R28, and capacitors C 1 to C 22 . Check that the electrolytics C14, C15, C17, C18 and C22, also tantalums C10, C11 and C19 are mounted with correct polarisation. Electrolytics are marked at the negative end but tantalums at the positive. Fit the I.C. sockets, and all transistors. TR1, TR6, and TR7 have their emitters marked with a pip on the case, and should line up with the legend marked on the PCB. If a metal case is used, it is important that the transducers do not touch the chassis. The transducers each have one pin connected directly to their case, and this pin should be connected to the hole marked \downarrow (figure 2).

Assembly of Ultrasonic Trigger

Observe the usual precautions when mounting components. Use an I.C. holder, for ICl , and double-check all solder joints. Plug the module into any channel on the main PCB of the Home Security System (issue 2, figure 5), and apply power. If you have a voltmeter, check across pins OV and I/P 1 on the main PCB. This should read approx. 5.0 V dc. Also the selected channel should trigger, and the monitoring LED will light.

Setting Up

Set RV1 anti-clockwise. Connect a 9 V battery across pin 3 (positive) and pin 4 (negative). LED 1 should come on for a few seconds and then extinguish. Allow 30 seconds settling time, and then wave your hand about six inches away from the transducers. Response to movement should be indicated by LED 1 illuminating, and it should remain so for a few seconds. If there is no response, turn RV1 to approximately $1 / 4$ travel to increase sensitivity, and repeat check. If the LED now stays on, move away to a point where the LED is still visible, and keep completely still. After a few seconds the LED should go out. If the circuit still does not work, try dis. connecting the battery, and repeating the above checks. If all is satisfactory remove the battery and connect the transceiver to the Maplin Home

Security System main PCB.
Use either bell wire, or our 4-wire phone cable (XR66W) to connect the transceiver to the main PCB (burglar alarm). Pin 2 will connect to OV and Pin 1 will connect to I/P 1 .

Whatever channel is used for this project, ensure that a u/s interface module is plugged in to this position only.

At switch-on the burglar alarm channel LED will flash. Allow about a minute for the transceiver to stabilise. Turn the sensitivity control RV1 clockwise, to suit conditions, and set the key switch for 'ARM'. Don't forget to switch in the selected channel (switches 3 to 8).

If stand-by batteries are to be used, remove the mains supply, then reconnect. Check that the system does not trigger. If all is well, experiment with RV1 settings for optimum results before putting into service.

Using Ultrasonics

The module is best placed in a corner of the room to be protected, preferably just below ceiling level, and inclined at an angle of 30 to 45 degrees downwards. Keep as far away as possible from windows, radiators, central heating thermostats, and telephones and bells. Remember that anything that moves (e.g. curtains, telephone bells) can set off the alarm, dependent on sensitivity. RV1 must now be adjusted for required sensitivity. Obviously, the more sensitive the system, the greater the possibility of false triggerings occurring. If areas greater than 400 square feet need covering, then two or more devices may be used. Note that each transceiver will draw 24 mA , and up to three may be used on one system, dependent on what else is connected to the system.

ULTRASONIC TRANSCEIVER PARTS LIST

Resistors: All $1 / 3 \mathrm{~W} 5 \%$ carbon			
$\begin{array}{r} \text { R1,8,10-12 } \\ \text { inc, } 23,27 \end{array}$	10k	(7 off)	(M10K)
R2	1 k		(M1K)
R3	330 K		(M330K)
R4	3k9		(M3K9)
R5	220k		(M220K)
R6	2k2		(M2K2)
R7	47k		(M47K)
R9,13,22	1M	(3 off)	(M1M)
R14,15,19	100k	(3 off)	(M100K)
R16,17,24	4 k 7	(3 off)	(M4K7)
R18	6 k 8		(M6K8)
R20	33k		(M33K)
R21	1 k 5		(M1K5)
R25	470 R		(M470R)
R26	15k		(M15K)
R28	1M2		(M1M2)
RV1	1M hor sub-min preset		(WR64U)
Capacitors			
Cl	33 pF ceramic		(WX50E)
C2	100 pF ceramic		(WX56L)
C3,21	10 nF disc ceramic	(2 off)	(BX00A)
C4	330 pF ceramic		(WX62S)
C5	47 pF ceramic		(WX52G)
C6,7,12,16	100 nf disc ceramic	(4 off)	(BX03D)
C8	470 pF ceramic		(WX64U)
C9.13	3300 pF ceramic	(2 off)	(WX74R)
C10,11	3 u 5 F 35 V tantalum	(2 off)	(WW63T)
C14	68 uF 6 V 3 axial electrolytic		(FB44X)
C15,17	4u7F 63 V axial electrolytic	(2 off)	(FB18U)
C18	10 uF 25 V axial electrolytic		(FB22Y)
C19	1 uF 35 V tantalum		(WW60Q)
C20	47 nf minidisc		(YR74R)
C22	220uF 10 V axial electrolytic		(FB60Q)
Semiconductors			
D1-6 inc.	1 N4148	(6 off)	(QL808)
D7	1N4002		(QL74R)

BASICALLY BASIC
 Graham Hall, B.Sc.

This month we continue to describe the string functions available in BASIC. Table 1 provides a summary of the common string functions and explains their use.

LEFT\$ Function

The LEFT\$ function creates a substring from a main string specified as an argument to the function. The general format of the LEFT\$ function is:
LEFT\$ (X\$, n)
where $X \$$ is the main string and n specifies the length of the substring. The argument n can be an integer or an expression. If the expression evaluates to a non-integer value BASIC truncates the result to an integer. The substring is formed from the first character (left-most character) of the main string to the boundary specified by n. If n is greater than the number of characters in the main string the entire string is returned. If n is zero or less than zero, a blank (null or empty) string is returned.

The following program demonstrates the use of the LEFT\$ function: 10 LET X\$ = "MAPLIN ELECTRONIC SUPPLIES LTD"
20 LET A $\$=\operatorname{LEFT} \$(X \$, 6)$
30 PRINT A \$
40 LET B\$ = LEFT\$ $(X \$, \varnothing)$
50 PRINT B\$
60 PRINT LEFT $\$(X \$ 33)$
70 END
RUN
MAPLIN

MAPLIN ELECTRONIC SUPPLIES LTD

RIGHT\$ Function

The RIGHT\$ function is similar to LEFT\$ function in that it creates a substring from a main string. The substring is formed from a boundary specified as an argument to the function, to the last (right-most) character in the main string. The general format of the RIGHT\$ function is:
RIGHT\$ ($X \$, n$)
where $X \$$ is the main string and n is the position of the first character in the substring. The argument n can be aninteger or an expression. If the expression evaluates to a non-integer value BASIC truncates the result to an integer. If n is greater than the number of characters in the main string a null string is returned.

The following program demonstrates the use of the RIGHT\$ function:
10 LET X\$ = "MAPLIN ELECTRONIC SUPPLIES LTD"
20 LET A\$ = RIGHT\$ (X $\$, 8$)
30 PRINT A\$
40 PRINT RIGHT\$ (X\$,31)
50 PRINT RIGHT\$ (X\$,1)
60 END
RUN

ELECTRONIC SUPPLIES LTD

MAPLIN ELECTRONIC SUPPLIES LTD

The substring returned by the RIGHT\$ function on line 40 is a null string because the position of the first character in the substring (specified as an argument to the function) is greater than the number of characters in the main string.

MID\$ Function

The MID\$ (middle) function creates a substring from a specified main string within boundaries specified to the function as arguments. The general format of the MID\$ function is:
MID\$ (X\$,n1,n2)
where $X \$$ is the main string, $n 1$ is the starting position of the substring and $n 2$ is the number of characters in the substring. The arguments nl and n 2 can be integers or expressions the results of which are

LENGTH OF STRING $=15$
M
MA
MAP
MAPL
MAPLI
MAPLIN
MAPLIN
MAPLIN S
MAPLIN SU
MAPLIN SUP
MAPLIN SUPP
MAPLIN SUPPL
MAPLIN SUPPLI
MAPLIN SUPPLIE
MAPLIN SUPPLIES
Line 10 assigns the string 'MAPLIN SUPPLIES' to the string variable $\times \$$ Line 20 prints the message within double quotes followed by the length of the string assigned to $X \$$, returned by the LEN function. The space

Function	Application
ASC(X\$)	Converts the first character in the string. $\mathrm{X} \$$, to its equival ASCII value.
	Converts the ASCII code number, X , to its equivalent characte
LEFT\$(X\$.n)	Creates a substring from the string $X \$$ in a range from the leftmost character to the nth character.
LEN(X\$)	Returns the number of characters in the string $\mathrm{X} \$$
MID(X\$,	Creates a substring from the string $\times \$$, that begins at position n 1 and is n2 characters long.
RIGHT(X\$,n)	Creates a substring from the string $X \$$ in a range from n to the right-most character.
STR\$(X)	Converts the contents of numeric variable X to the ASCII charac. ter string equivalent.
VAL(X\$)	Converts a specified string of numeric characters to a numeric value.

Table 1. BASIC string functions.
September 1982 Maplin Magazine
between the word 'MAPLIN' and the word 'SUPPLIES' is counted as a significant character so the length of the string is fifteen. The FOR statement, lines 30,40 and 50 , initialises the variable 'l' to one and sets the limit of the loop to the value returned by the LEN function. Its corresponding NEXT statement is on line 50 . Each time the loop is executed a substring is created and printed. The LEFT\$ function on line 40 is given the loop variable ' 1 ' as the argument which determines the length of the substring.

Each time the loop is executed ' I ' is incremented by one, subsequently the substring printed is increased by one character. The output from the program is shown following the RUN command Line 60 - the END statement signifies the finish of the program.

STR\$ Function

The STR\$ function is used to convert a numeric variable to a string of ASCII characters. The string is the character equivalent of the numeric content of the variable. The general format of the STR\$ function is:
STR\$ (variable)
The following program demonstrates the use of the STR $\$$ function: 10 LET $A=365$
20 LET $X \$=$ STR $\$(A)$
30 PRINT X\$
40 PRINT MID\$(X\$,2,1)
50 END
RUN
365
6

The integer 365 is assigned to the numeric variable ' A '. Line 20 uses the STR $\$$ function to convert the contents of ' A ' to its equivalent ASCII string, which is then assigned to the string variable $\times \$$. Line 30 prints X $\$$. To demonstrate that an ASCII string has been created, line 40 uses the MID\$ function to extract the middle character from the string $X \$$ This is printed on the terminal.

VAL Function

The VAL (value) function converts a string of numeric characters to a numeric value. This is the opposite of the STR $\$$ function. The general format of the VAL function is:
VAL (string)
where the argument is a character string or string variable. If the argument string contains a non-numeric character an error message will be output.

The following program demonstrates the use of the VAL function:
10 LET $X \$=" 1234 "$
20 LET $A=V A L(X \$)$
30 PRINT A
40 END
RUN

1234

String Concatenation

Some versions of BASIC include a concatenation symbol $(+)$ which can be used to combine string variables or string constants to generate a new string. For example the command PRINT "HEL" + "LO" will output the string HELLO on the terminal. Consider the following program:
10 LET A $\$=$ "MAPLIN "
20 LET B $\$=$ "ELECTRONIC "
30 LET C $\$=$ "SUPPLIES"
40 LET D $\$=A \$+B \$+C \$$
50 PRINT D\$
60 END
RUN

MAPLIN ELECTRONIC SUPPLIES

The concatenation symbol is used on line 40 to concatenate the strings assigned to the string variables $A \$, B \$$ and $C \$$. The new string is assigned to the string variable $O \$$ and printed by the statement on line 50. If the concatenation symbol is used illegally, such as on the left side of an assignment statement, an error message will be output to the terminal. For example, 10 LET $W \$+2 \$=Y \$$ is illegal and returns an error message.
In response to the many enquiries we have received about this extremely popular article, we will shortly be making the complete series available in book form at low cost. Watch this space for further details!

ZX81 INPUT-OUTPUT

 PORTby A. Daykin
> \star Two ‘bi-directional’ ports for a total of 16 input or 16 output lines
> * One buffered output port which can interface directly to CMOS
> * Able to be used with the MAPLIN digital train controller
> * On board address selection allows for expansion to 6 ports with two PCBs

This project for the Sinclair ZX81 will give you access to the outside world with your '81'
The 1/O port, shown in figure 1 , gives many possible modes of operation. For the purposes of this article examples are given for only the simplest, although the 8255 used here has a total of three programmable operations.

MODE 'O' provides 3x8bit ports, two of which can be programmed to function either as inputs or outputs, and one (port B), as a buffered output only, which can directly drive the MAPLIN DIGITAL TRAIN CONTROLLER (issue three) or, indeed, many other forms of hardware with a minimum of interfacing.

Circuit Description

Figure 1 shows a complete circuit diagram of the board, and Figure 5 shows the alternative address decoder circuitry. The MP8255 (IC4) has two address lines, pins 8 and 9 , which are connected directly to the ZX81 address lines A1 and $A \emptyset$. The remainder of the address decoding is performed by ICs 1,2 , and 3 , which enables the MP8255 with a logic \emptyset at pin 6 (CS).

Data lines D0 to D7 are connected directly to IC4, a long with write and read lines WR and RD. The RESET line, P35, has been tied directly to 0 v . Should an external reset be required, the track will have to be broken here, and an external reset pin fitted to P35. Two possible address groups are provided on the PCB, which can be selected at the construction stage, by inserting appro-
priate pins through the PCB. Addresses used are 16360 to 16363 , which are designated by a square symbol on the legend, and 16380 to 16383 , which are designated by a circle on the legend. All other track pins have a broken circle for designation. If two PCBs are used, they should be constructed for two different address groups.

IC5 and 6 are 7407 buffers, with open collector outputs capable of sinking up to 40 mA at a maximum of 30 v

Construction

Commence by inserting all track pins into the holes marked with a broken circle. Decide which address group you require, and insert all track pins into their appropriate holes (see circuit description). Fit R1 to R8, and D1 (note polarity). Insert all 26 Vero pins and push home. Solder all pins and components, remembering that the track pins will need soldering to both sides of the PCB. Fit the 40 pin IC socket and ICs 1, 2, 3,5, and 6. Solder these
components in place and, finally, insert IC4 in the socket. Cut off any protruding leads and clean flux off the PCB with a stiff brush and thinners. Check all components and joints before connecting to your computer. If you are using a mother board the PCB will plug straight in, but if you are using the port direct into the ZX81 a 23 -way socket (RK35Q) will be required. Place this socket over the edge connector, aligning pin 3 with the slot cut in the PCB, and solder all 44 pins to both sides of the board.

Testing And Using The Ports

With the power off, plug the port PCB into your ZX81. Switch on and ensure that the command cursor appears. If not, or if the screen fills with lines, switch off and re-check your assembly.

A few lines of BASIC program are now required for use. The highest address (16363 or 16383), used for the

Control	D7	D6	D5 D		4 D3	D2	D1 D0		$\begin{aligned} & \text { Port } \\ & \text { A } \end{aligned}$	Port C	Port C	$\begin{aligned} & \text { Port } \\ & \text { B } \end{aligned}$
Word										Upper	Lower	
128	1	0	0	0	0	0	0	0	Output	Output	Output	Output
129	1	0	0	0	0	0	0	1	Output	Output	Input	Output
136	1	0	0	0	1	0	0	0	Output	input	Output	Output
137	1	0	0	0	1	0	0	1	Output	Input	Input	Output
144	1	0	0	1	0	0	0	0	Input	Output	Output	Output
145	1	0	0	1	0	0	0	1	Input	Output	Input	Output
152	1	0	0	1	1	0	0	0	Input	Input	Output	Output
153	1	0	0	1	1	0	0	1	Input	Input	Input	Output

[^0]

Figure 1. Circuit diagram of I/O Port.

CONTROL WORD, will set MODE and program which ports are to be input and output (see table 1).
PORTA can be used as either input or output, but all the DATA lines will be in the same mode.
PORT B on our PCB can only be used as an output, because of the buffers.
PORTC can be either input or output, and may also be split into two parts, upper and lower halves, which can be changed independently.
Table 1 gives a complete list of the CONTROL WORDS available, along with DATA BUS state and a definition of PORT USE.

Reliable operation with PORT C in split mode can be difficult when using BASIC, and it is advisable to use only the control words $128,137,144$, and 153. Port A is located at address 16360 or 16380, and if used as an output POKEing to this address will output data on the port pins. PEEKing at the same address will read data in from the same pins. Port B is located at address 16361 or 16381 , and can only be POKEd here. September 1982 Maplin Magazine

I/O PORT PARTS LIST

Resistors - all 1/8W 5\% carbon unless specified R1. $8 \quad 4 \mathrm{k} 7$	8 off	(U4K7)
Semiconductors		
D1 IN4148		(QL80B)
IC1 74LS10		(YF08.)
IC2 74LSO2		(YFO2C)
IC3 74LS30		(YF20W)
IC4 8255A PIA		(YH50E)
IC5,6 7407	2 off	(QX76H)
Miscellaneous		
40-pin DIL socket		
Veropin 2145	1 pkt	(FL24B)
Track pin PCB	2 pkt	(FL82D)
PCB		(GA90X)
Test Components		
2 k 2 resistors	4 off	(M2K2)
220R resistor		(M220R)
LED red	8 off	(WL27E)
or Red bargraph display		(BY65V)

A complete kit is available for this project. It does NOT include the Test Components.

Order As LW76H (I/O Port Kit) Price $£ 9.25$

Port C is located at address 16362 or 16382, and can be POKEd or PEEKed as for port A. Printed here are two demo programs which will quickly check out your board. For demo 1 a number of discrete LEDs or a bar-graph display can be connected to $0 v$ via a 220 ohm resistor, and then to the outnuts of port B (see figure 4). Remember ، s connect the positive supply pin (next to port B pin 0) to a $+5 \mathrm{v} / 30 \mathrm{v}$ supply.

For the demo 2 program the LEDs can be left connected, and will give a display similar to that of the previous program. Input coding can be set up by wiring port A and C pins to either Ov or $+5 v$, as required, but for test purposes connect the 0 v and +5 v via 2 k 2 resistors (figure 5) in case the MP8255 is set in the output mode. This should be done before running the program.

For constructors who may wish to use the I/O port with external hardware, a mother board is available for the ZX81 (GB08J) and will accept the Sinclair 16k RAM pack and up to three plug-in modules. You will need four PC edge connectors 2×23 way (RK35Q) and the pcb. See page 47 for prices.

Figure 2. Component layout of I/O Port pcb.

DEMO 1

1
10
$=8$
$=5$
40
50
60
78
80
80
20
1 FEM An DAYKIN

- FEM PQRT DEMO NO. 1

$E 5$ EET $R=$
30 FRINT
40 FOR $L=1$ TO 5 ㅇ
5E PDKE $1 E 3 E I, A$
$E B$ NEXT L
70 LET $P=A+1$
80 SNOLL
SD IF $A>=15$ THEN GOTD EB
106 EOTO 50

DEMO 2


```
    REM REDAYKIN. NO. E
    PEKE A=0
    SCROLL
    FRINT "PORT E OUTPUT IS "IS
    SCROLL
    FOR L=1 TO 50
    POKE 16SE1,A
    NEXT
    LET A&=AG+1}\mathrm{ THEN GOTO ES
    SCROLL" "PORTS A AND C WILL ET"
    SCROLL
    PRINT "TESTED AS INFUTS"
    LET E=PEEK 15360
    5CROLL
    PRINT "PORT A READS ":E
    SCROLL
        LET C=FEEK 153ES
        SCROLL
        FRINT "PORT C REROS ":C
        STOP
```


Figure 5. Circuit diagram of I/O Port with alternative address decoding.

MAPLIN TRAIN CONTROLLER PROGRAM FOR ZX81

by Dave Goodman

This program has been designed for use with the ZX81 1k or 16k RAM and our 1/O port interface PCB.
Port address used is "16361", and the POKE command in line 3 simulates a track supply fail, bringing on the LED and stopping all trains.

Table 1 shows the decimal value (which, of course, appears as a binary number between 0 and 255) on the data lines.

	A	B	C	D
F	$0-9$	32.41	64.71	$96-105$
R	16.25	$48-57$	$80-89$	$112-121$

Table 1. Direction and speed.

So, if controller " A " is required to move a train in a forward direction at a 'snails pace' speed of 1 , then the decimal code set up will be 1 .

Similarly, to select controller "D" with reverse direction and speed at maximum (9), the required decimal code will be 121.

Type in the program, followed by RUN and NEW LINE. Two statements are printed. The first, EMERGENCY STOP E, allows key E, when pressed, to stop all trains running at any time, and the second, CONTROLLER A-D?, X TO CHANGE, allows you to select the required train control unit A, B, C, or D. Pressing key X allows you to re-select a control unit.

Select a control unit (A-D) and note that a third statement is added, DIRECTION F/R?. September 1982 Maplin Magazine

1 POKE 16363,128
16 IF $\mathrm{E} \$=$ "R" THEN LET $\mathrm{H}=16$
17 PRINT "Speed $\varnothing \cdot 9$?"
18 GOSUB 100
19 IF C $\$$ <"Ø" OR C\$>"9" THEN GOTO 18
20 IF $D \$=" A$ " THEN POKE $E, V A L C \$+H$
21 IF D $\$=$ " B " THENPOKE E, VAL $C \$+H+32$
22 IF $D \$=" C$ " THENPOKE E, VALC $\$+H+64$
23 IF $\mathrm{D} \$=$ "D" THEN POKE E, VAL $\mathrm{C} \$+\mathrm{H}+96$
24 GOTO 4
100 iF INKEY $\$ \gg$ """ THEN GOTO 100
101 IF INKEY $\$$ ="" THEN GOTO 101
102 LET C $\$=$ INKEYS
103 IF C $\$=$ "E" THEN GOTO 3
104 IF C $\$=$ "X" THEN GOTO 4
105 RETURN

Now that you have selected a controller the direction of travel is needed. Press key F for forward, key R for reverse.

Finally a fourth statement is added, SPEED 0-9?. Now that control and direction are set, train speed must be chosen. Note that speeds minimum (0 , stopped) to maximum (9) are set by keys \emptyset to 9 in either forward or reverse. Press a number, and the code corresponding to all variables will set the train running. The screen will then return to the first two statements, waiting for A-D, F-R, and $0-9$ to be input again. Remember that E (panic), and X (train controller) can be pressed at any stage, and that NEWLINE is not required during the program. Under normal conditions the program should be found to be crashproof, and entry to the program is made by pressing the BREAK key (D/101) and NEWLINE.

Connections from the 1/O port PCB to the train control remote latchboard are as follows:-

1/O port	Remote data B pins 0
1	$28-85$
2	$27-86$
3	$30-84$
4	$31-80$
5	$32-81$
6	$33-82$
7	$34-83$
$0 V$	$26-87$
latch PCB pins	

The +5 V supply for the $1 / 0$ port buffers IC5 and 6 can betaken from the ZX81 +5 V supply.

COMPUTER NEWS

K-DOS
 A better disk operating system for your Atari computer.

Have you been programming with an ATARI disk based system for some time? Are you irritated by the need to load the second stage of DOS II even to look at the directory of a diskette? Are you frustrated by seeing the screen fill with a menu that you already know? If so, read on.

K-DOS is an exciting new disk-operating system for the ATARI 400/800, which can transform your ATARI from a machine which treats you and the novice as equals into a professional-style system.

K-DOS, from K-Byte, is supplied with a concise manual, which has all the functions laid out in an easily understood format. Booting up the supplied disk will load K-DOS in the usual manner. A successful boot is indicated by the K-Byte identification header. The BASIC cartridge, if present, is then initialised, and control is transferred to it, with the appropriate READY sign. The usual format AUTO RUN.SYS file is supported, and would have been loaded and executed by this stage. Assuming that BASIC is present, one may simply type the usual DOS command to enter DOS control. The immediate confirmation of this is the echoing of DOS two lines down in lower case characters. The two obvious advantages at this stage are:-

1. There is no delay in entering DOS, as it is present in its entirety.
2. The screen is not blanked, then filled with a redundant menu; the screen simply scrolls when the cursor reaches the bottom line.

A directory is obtained by typing 'DIRECT' or its abbreviation ' D ', then hitting the return. This results in the listing as normally produced by ATARI's own DOS. Returning to BASIC is just a matter of typing 'BACK' or its abbreviation ' B ', whereon BASIC is entered as usual, but with the difference that the screen is not cleared - a very useful point for those of us with memories like sieves, and who, like myself, are continually forgetting filenames!

Just as it is possible to return to BASIC by hitting (SYSTEM RESET), so is it also possible to go to K-DOS by holding down the (START) key and simultaneously pressing (SYSTEM RESET). This is a nice fast method of entering K-DOS, and is very cleverly done; great if you do not require the contents of the screen to be retained.

K-DOS not only supports all the usual functions of DOS II, i.e. copy file, rename file, delete file, lock and unlock, write DOS file (WBOOT), format disk etc., but also provides

COMMAND SUMMARY

Disk Mantenance	INIT n FORMAT n WBOOT \{n\} - DISKdup \{scr \{\{, \}dest\}\{/A\}\|MW\}
File Control	Direct \{filespec $\}\{$,output \} Copy input \{,output \} DELete filespec $\{/ \mathrm{N}\}$ LOCk filespec UNlock filespec REName fille.filename $\overline{A P p e n d}$ \{sourcefile, \} destfile *TRansfer filename $\{/ \mathrm{SIRG}\}$ \{, filename \} $/ /$ SIRG \}
Program Control	Beck WARM COLD Xit UNLOAD LOMem DC \{character\}
Mechine Monitor	Run file $\{/ \mathrm{M}\}\{/ \mathrm{N}\}\{/ \mathrm{P}\}$ Load file $\{/ M\}\{/ N\}\{/ P\}$ Save file $\{/ \mathrm{A}\}$ beg end $\{\{1 \mathrm{nit}\}$ start $\}$ Go \{hhth\} Froceed \{hhth\} Examine $\{$-first $=\{$, -last $=1\}$ Alter \{adr \}\{ \} hex.... or "asci REgister $\{r-h\}$
Device Control	RESET Text Close ERror nn
DUP Special	-UDC Ident KILL REVIVE
	ates the minimum abbrevation. ates a UDC command that normally es in a disk fle.

a whole host of additional ones, which are listed here.

As you can see, commands consist of logical English words. Most of these will have an abbreviation, usually of one or two characters (the minimum abbreviation is shown underlined). Many of the commands shown will have option switches, which may alter the way in which the command is executed. One example of this is the LOAD command. This loads a binary file into memory from disk, and the three option switches are:-
/M which causes the printing to the screen of the area of memory into which the file is loading, as well as the INIT. and RUN addresses.
/N will prevent the file from being run. and
/P will allow the file to overlay an area of DOS, an event which would normally produce an error trap.

Speaking of errors, another of the K-DOS features is the production of proper English error messages, e.g. ERROR 138, DEVICE TIMEOUT, or ERROR 1, ILLEGAL COMMAND. The text for these error reports can be changed easily by using one of the utility files on the supplied disk (CHERROR.SYS), allowing the creation of highly amusing and lively error statements!

One of the nice facilities for large business systems is the ability to define a command to run a particular machine code program. The 'UDC' (User Defined Command) program supplied permits the assignment of one or more character names, which when typed call up and run the designated file - pretty neat, eh?

Another interesting function of K-DOS is its disk duplicate utility. Whereas the DOS II DUPDISK command does not actually duplicate an entire disk, merely its file structure. DUPDISK with K-DOS has an option switch, /A for ALL, which causes the duplication of every single sector of a disk - a true disk duplicate.

A similarly well-written file utility is also supplied, and this is called TRANSFER. This is a file transfer utility primarily for copying files from one device to another, and files from one disk to another using the same drive. A special feature is that it will load from cassette to disk, a file or program written with short inter-record gaps e.g. autoboot cassette programs, as well as reading and writing those with long IRGs.

These are just a few of the functions that K-DOS offers, but as can be seen from the list they represent only a small part of what is available. All of these commands can actually be used from BASIC without actually going 'into' DOS. Simply type a comma before the command, and hey presto!, it is executed from BASIC (e.g., D will produce a directory listing whilst still under BASIC cartridge control).

K-DOS, it seems, represents a major step forward for the serious ATARI programmer, in that:-

1. It provides a very powerful set of monitor and disk commands and 2. It is fast and logical to use, thus giving the user big machine features on a personal computer.

It is highly recommended by myself, indeed, I have not used ATARI's own DOS for at least three months!

NEW SOFTWARE FOR THE VIC20

AC77J (Sargon II Chess Cartridge)
AC78K (Another VIC In The Wall Cassette)
AC79L (VIC Panic Cassette)
AC80B (Cosmiads Cassette)
AC81C (Backgammon Cassette) requires at least 3k expansion
AC82D (VIC-Men Cassette)
AC83E (VIC Asteroids Cassette)
Price $£ 24.95$
Price $£ 7.00$
Price $£ 7.00$
Price $£ 7.00$
Price $£ 7.00$

THE ATARI 400800

ARE THE BEST HOME COMPUTERS
AVAILABLE and here's why! by Ron Levy

The majority of microcomputer purchasers are buying for the first time. When they look at what is available, they find a vast bewildering range of machines to choose from. Each manufacturer claims his is the ultimate personal computer system and most are better than all the others. But these advertisements rarely give any thought to the requirements of the home user or to the practicalities of using a system at home.
The three main purposes of a home computer are education, personal software development and entertainment. The educational aspect requires that the machine be well-designed in terms of ease of use, with good documentation and tutorials with the appropriate software back-up to make learning enjoyable. For personal software development, the machine needs to be fully expandable to a complete system with disk drive, printer and cassette recorder etc. without masses of interfacing circuitry, wiring looms or the need for extra chips to be added.
The entertainment aspect is usualiy of equal importance (certainly when impressing friends or getting the rest of the family interested) and can be the most difficult to fulfill in terms of the complexity of the hardware and software involved.
To achieve these ends a home computer must be designed as a system rather than just a processor with the other parts left to be designed later. The Atari was the first personal computer to be designed specifically for home use. It was conceived as a complete system. Many people purchase low-priced personal computers only to find that to make it do anything worthwhile involves great expense for memory or hardware expansion. Memory for the Atari is relatively inexpensive and hardware expansion does not require expensive interface units. Everything just plugs directly one into another.

Graphics

But the one outstanding virtue of the Atari computers, both in terms of personal software development, education and entertainment is its graphics capabilities. These are quite simply unrivalled on any machine costing under $£ 3,000$.
The ZX Spectrum and The BBC micro uses Ferranti's Uncommitted Logic Arrays (ULA) to extend the power of the main processor (6502). These are quite powerful chips, but they do not approach the power of a real microprocessor. The reasor they are used is because they are many many times cheaper to design than a complete microprocessor, but clearly if it was a viable proposition a microprocessor would be far more powerful. Atari are owned by the giant Warner Bros. Corporation who spared no expense in the design of the Atari computers. They designed a microprocessor (and called it 'ANTIC'), specifically to control the TV display, and the Atari therefore has two microprocessors and, as we said, the most bril-
liant graphics as a result.
But Atari didn't stop there. On top of that there is still another chip that has a hand in the control of the TV display. This chip, called a GTIA, provides a function known as Player Missile Graphics, and it's this concept that makes those amazing arcade games so clever.
With the GTIA, the programmer is able to create an object on the screen in any desired shape and simply designate the shape, a player and missile number. This object does not, however, exist as part of the screen memory known to ANTIC, but is in fact an entirely separate entity having its own separate area of memory which can then be manipulated and superimposed on the display by the GTIA.
These player/missiles can then be assigned a priority relative to the background or other objects so that they move behind or in front of different objects without further intervention. The colours, positions and even the shapes of these player/missiles can also be changed and on the display, the changes appear instantaneously while the 6502 and ANTIC get on with their jobs uninterrupted. It is these major advantages of the Atari computers, that put Atari graphics leagues ahead of any other computer under $£ 3,000$. The Atari makes graphics control easy, colourful and above all permits objects to move with incredible speed and smoothness around the screen, or complex objects to be repositioned instantaneously. The story does not end there, however, for the Atari has yet another specially designed extremely powerful IC called POKEY. This amazing chip deals with serial input/output, keyboard scan, audio generation, random number generation and analogue to digital conversion.
The Atari has four separate sound generators and on each one the pitch and volume are controllable. Any may be used to produce noises, squawks, bangs, rattles, hisses etc. No other personal computer in the Atari's price range has such a versatile sound generator system.
A look at the front of the machines shows the four joystick ports. As well as being joystick ports, these present one of the easiest methods of interfacing to a computer because they are bi-directional (i.e. they can be used as inputs or outputs) and can be addressed simply as memory locations. Each socket also has two analogue to digital converter inputs (giving a total of eight) that could be used by those wishing to experiment with add-on hardware for robot control for example.
On the side of the machine is the serial input/output port (SIO) to which the periphals, disk drive, printer, etc. can be connected. And again, this has been designed with the home user primarily in mind, for from this one neat little socket, peripherals may be connected, each extra one just plugging into the one before, obviating the need for interface boxes or dozens of cables.

Each device has its own command data frame so that even though they are all connected together there are no problems with the software talking to the particular device required.
One of the major criticisms levelled against the Atari computers by manufacturers and owners of other machines is that the Atari $400 / 800$ s are "just games machines". It is a comment given exclusively by people who haven't the faintest idea what they're talking about.

Atari Cassette System

Those who know the Atari will find the comment devoid of any serious consideration, for how many other machines can control up to four disk drives, a printer, a professional multi-channel RS232/Centronics (i.e. non-Atari) interface and communications box and a cassette recorder, simultaneously without further interfacing or hardware and without any hardware or software conflicts or problems of any sort? Another unique feature of the Atari computer is the way it handles its cassette recorder. The Atari cassette recorder is in fact a two-track device. One track is the data signal as with all other computers, but the other track is used for storing a soundtrack. This brilliant, yet simple idea puts the Atari's educational capabilities in a class of its own!
In Atari's own software, it is used to great effect in the 'Learn Programming' and language learning cassettes. With a single POKE statement, it is possible to transfer the audio track to the TV speaker, thus making controlled commentary a possibility with learning programs on the Atari. I wonder how many people realise that the first "Bonjour" you hear in Atari's TV advertisement is actually spoken by the computer! Another key feature of the Atari cassette system is that it is possible to increase or slow down the tape drive speed through several times its normal speed without affecting data loading. Data will still load correctly because at the start of every 128 . byte block of data there are two additional bytes that are used by the operating system in a very smart piece of software that calculates the baud rate of the tape being loaded. The result is that manufacturing tolerances in the speed and construction of the tape unit and the tapes, have no detrimental effect upon reliability of operation. The physical construction of the Atari 400 and 800 is very attractive and modern. A heavy-duty plastic moulding is used for the external cabinet and will withstand a good deal of rough treatment unlike the majority of micros currently available. A look inside the machine reveals the fact that the entire CPU and its RAM cards are encased in a diecast aluminium alloy moulding. Consequently there is very little radiation or interference from the computers and conversely Atari computers do not suffer from system crashes caused by external interference.

The quality and quantity of software for the Atari also far exceeds that of any other personal computer for two very good reasons. Firstly, since the machine is so com prehensive in its graphics facilities, it attracts the best programmers and secondly because the Atari makes it easy to protect software very well against unauthorised copying, producers of software are able to invest time and money developing good programs knowing they will get a fair return from it.
There is already masses of software available for the Atari, from the latest arcade games to complex languages like LISP and FORTH. Over 30 software houses in America are busily writing software for the Atari and others are adapting Apple software. The Atari's are currently America's best-selling computer - the Americans at least have found out how good it really is!

Sinclair's Advertising

Finally, let's take a look at Sinclair's six-page advertising brochure which has been inserted in most of the computer magazines in recent months. In the leaflet, there is a table comparing the $Z X$ Spectrum with the BBC micro, VIC20, Atari 400, TI99/4A and TRS80 Colour computers.
Taking the chart line by line, the first point to note is that the Atari 400 is now a little cheaper than shown, but is still about twice the price of the Spectrum both for the 16 k and 48 k versions. Nevertheless, we still believe that if you can afford it, the Atari gives you more for your money. When you're fed up with the relatively low quality and quantity of Spectrum software and fed up with the much lesser capabilities of the Spectrum, you'll still be finding new, exciting things to do on the Atari.
The line showing standard RAM available using hi-res graphics is a cunning way of making a bad point look good. The reason the Spectrum has more RAM left than the BBC or Atari is that its highest resolution is less than the BBC or Atari so naturally it has more RAM left.

The highest resolution on the Spectrum, Atari and BBC is as follows respectively: 256 $\times 192,320 \times 198$, and 640×256. The BBC machine looks very good here, but using its highest resolution you do only have 3k of RAM left and you can only use two colours on the screen, soyou can't doa lot with it. Even on the BBC model B you only have about 10k of RAM left. On the 48 k Atari you have 30 k of RAM left (nearly 40 k if you're not using BASIC) and with this or 16k RAM you can have at least six colours at once. But, in any case, the ability of a computer is not directly related to its highest possible resolution. On the Atari, most of the best games use low resolution graphics modes. The next line on Sinclair's chart compares maximum memory and although Sinclair could not have known at the time Maplin can now supply Atari 400's with 48k RAM fitted. To directly compare the Atari or BBC's sound generators with the Spectrum is ridiculous. Both are far and away superior to the Spectrum's one sound generator. The BBC has three and a noise channel and the Atari has four with volume and noise software adjustable on all four.

The number of colours available on the Atari is 16 , but each can be displayed in 16 intensity levels which does give the impres. sion of being different colours and it is in fact possible, though not easy, to display all 256 colours and levels on the screen simultaneously.
This fact then makes the next line on Sinclair's chart look pretty ridiculous since he claims you can only have 5 colours on the screen at one time. This is simply not true. Even in the highest resolution mode you can have six colours on the screen at once (there is usually a trade off between resolution and numbers of colours available). Another major advantage with the Atari is that different parts of one picture can actually be in different resolution modes simultaneously! - So the possibilities with the Atari really are far in advance of any other machine on this table. To be fair, comparing the graphics on the Spectrum with the graphics on the Atari is like comparing Meccano with the Empire State Building.
Flash is not available from the keyboard on the Atari, but is so easily implemented in software that it's not a factor worthy of serious consideration when choosing a computer.
Surprisingly Sinclair do not think the Atari has user-definable graphics characters, but don't worry, it has - and what you can do with them on the Atari is of course far, far better than on the Spectrum.
The only other point worthy of note is that the Atari cannot interface a normal cassette recorder, but as we've pointed out, the advantages of the Atari system far outweighs this fact.
The Atari is a very clever computer and if we had more space we could go into even more detail about its amazing capabilities. It can be used as a business machine, but it's not ideal; it wasn't designed to be. It was designed to be a home computer and this is where it excels. It was designed to be a complete system. It has got an enormous amount of software back-up.
It is the world's best home computer - and that's a fact!

NEW SOFTWARE FOR ATARI
This month we're pleased to announce another massive selection of titles available for the Atari computers.

Adventure Games						Dodge Racer		
Ali Baba \& The Forty Thieves	-D-32K-(BQ78K)	£27.95				Dodge Racer	-D-24K-(BG30H)	
Star Warrior	-D-32K-(BQ79L)	£28.95	Wip $=$ LOCKEDDOORA	AD		Matchracer		
Rescue At Rigel	-D-32K-(B080B)	¢22.45	Uhila.			Matchracer	-D-16K-(BG32K) -D-32K-(BG33L)	¢23.95 ¢27.95
Invasion Orion	-D-32K-(8Q81C)	¢18.95				Deluxe Invaders	-D-16K-(BG34M)	£29.95
Crush. Crumble and Chomp	-C-32K-(BO83E)	£22.48				Raster Blaster	-D-32K-(BG35Q)	£22.95
Crush, Crumble and Chomp	-D-32K-(BQ84F)	¢22.48				Bug Attack	-C-24K-(BG36P)	£23.95
Temple of Apshai (Part 1)	-C-32K-(BQ85G)	£28.95				Bug Attack	-0-40K-(BG37S)	£23.95
Temple of Apshai (Part 1)	-D-32K-(BQ86T)	£28.95				Haunted Hill	-C-16K-(BG38R)	£16.95
Upper Reaches of Apshai (Part 2	-C-32K-(BQ87U)	£14.95				Haunted Hill	-D-16K-(BG39N)	£19.95
Upper Reaches of Apshai (Part 2)-D-32K-(BQ88V)	¢ 14.95				Time Bomb	-C-16K-(BG40T)	£10.95
Curse of Ra (Part 3)	-C-32K-(BQ89W)	£14.95				Time Bomb	- ${ }^{\text {C-16K-(GG4V) }}$	¢ 11.95
Curse of Ra (Part 3)	-0-32K-(BQ90X)	¢14.95				Space Chase	-C-16K-(BG42V)	${ }_{\text {¢ }}$ ¢12.95
Mission: Asteroid	-D-40K-(BQ91Y)	¢17.19 ¢ 20.64				Canyon Climber	-C-16K-(BG44X)	¢24.95
Ulysses \& The Golden Fieece Softporn Adventure	$\begin{aligned} & \text {-D-40K-(BQ92A) } \\ & \text {-D-40K-(BQ93B) } \end{aligned}$	¢20.64				Canyon Climber	-D-16K-(BG45Y)	£24.95
Zork I: The Great Underground Empire	-D-32K-(BQ94C)	£29.95	Mini Word Processor	- D-32K-(BGO9K)	$£ 11.95$	Tumble Bugs Ricochet	$\begin{aligned} & \text { - } 0-24 \mathrm{~K}-(\mathrm{BG} 46 \mathrm{~A}) \\ & -\mathrm{C}-16 \mathrm{~K}-(\mathrm{BG} 47 \mathrm{~B}) \end{aligned}$	$\begin{aligned} & £ 24.95 \\ & £ 14.95 \end{aligned}$
Zork II: The Wizard of Frobozz	-D-32K-(BQ950)	£29.95		-D-48K-(BG10L)	¢ $¢ 9.95$	Ricochet	-0-32K-(BG48C)	£.14.95
Deadline	-2D-32K-(BQ96E)	£34.95	Bob's Business (14 programs)	-0-32K-(BG12N)		Lunar Lander	-D-24K-(BG49D)	¢14.95
The Battle of Shiloh (war game)	-D-40K-(BQ97F)	£29.95	Bob's Business (14	-0-32K-(bGl2N)		Angle Worms	-C-8K-(BG50E)	£10.95
The Shattered Alliance	-D-48K-(BQ98G)	£29.95	Arcade Games			K-Star Patrol	-E-8K-(BG52G)	£29.95
Toach Yourself Programs			Pacific Coast Highway Pacific Coast Highway	$\begin{aligned} & \text {-C-16K-(BG13P) } \\ & \text {-D-16K-(BG14Q) } \end{aligned}$	$\begin{aligned} & £ 24.95 \\ & £ 24.95 \end{aligned}$	Home Programs		
Kids 1 (3 programs)	-C-16K-(BGOOA)	$£ 9.95$	Shooting Arcade	-C-16K-(BGI5R)	£24.95	Poker Solitaire	-D-16K-(BG53H)	£ 14.95
Kids 1 (3 programs)	-D-24K-(BGO1B)	£9.95	Shooting Arcade	-D-16K-(BG16S)	£24.95	Reversi	-D-16K-(BG54J)	£.19.95
Kids 2 (3 programs)	-C-16K-(BGO2C)	£9.95	Jawbreaker	-C-16K-(BG17T)	£20.64	Gomaku	-D-16K-(BG55K)	£19.95
Kids 2 (3 programs)	-D-24K-(BG03D)	£9.95	Threshold	-D-40K-(BG18U)	£27.54	Micro Painter	-D-48K-(BG56L)	£29.95
Learn Progrmmming			Race In Space	-D-16K-(BG2OW)	£16.95	Utilities		
Sound	-C-16K-(BG04E)		Ghost Hunter	-0-16K-(BG21X)	£22.95	Disk Detective	-D-16K-(BG57M)	£24.95
Sound	$-\mathrm{D}-24 \mathrm{~K}-(\mathrm{BG} 05 \mathrm{~F})$	£11.95	Crosstire	-C-16K-(8G22Y)	£20.64	Disk Manager	-D-32K-(BG58N)	£22.95
Tricky Tutorials (all 6 in binder)	-C-32K-(BG06G)	¢59.95	Crosstire	-D-32K-(BG23A)	£22.64	Filemanager 800	-0-40K-(BG59P)	£74.95
Tricky Tutorials (all 6 in binder)	-D-32K-(BG07H)	£59.95	Protector Protector	$\begin{aligned} & -\mathrm{C}-32 \mathrm{~K}-(\mathrm{BG} 24 \mathrm{~B}) \\ & -\mathrm{D}-32 \mathrm{~K}-(\mathrm{BG} 25 \mathrm{C}) \end{aligned}$	$£ 22.95$	Programming Aids Package 1	-C-16K-(BG60Q)	$£ 9.95$
			Star Trek 3.5	-D-40K-(BG26D)	£18.95	Computer Languages		
Text Wizard	-D-32K-(BQ99H)	£69.95	Chicken	-C-16K-(8G27E)	£22.95	Inter-LISP 2.0	-D-48K-(BG61R) -D-48K-(BG62S)	$\begin{aligned} & £ 87.00 \\ & £ 64.95 \end{aligned}$
62						September 1982	Maplin Mag	gazine

CLASSIFIED

MUSICAL FOR SALE

KORG KR55 digital mythm, latest model, as new, sell, $£ 145$ or swop Yamaha PS keyboard or Korg WTi 12 Chromatic tuner. K. Ritch, Deerness, Orkney Isles 0856 74-206.
TRANSCENDANT DPX multi voice synthesiser. Fully operational PO Wertran piano/string ensemble, little used, £290 o.n.o. Phone 021-706 9465, ask for John.
ALLEN MDC II digital theatre organ with all extras, rhythm, piano, walking base. Real organ sound, excellent flutes and reeds. 2 years old, still under. 5 year warranty. A very high quality instrument, condition as new, $£ 2,300$. Billericay, Essex 53307. MAPLIN MES22 electronic piano for sale. Completely built and working. Black cabinet, pedals, £200 (cost of components) o.v.n.o. Buyer must collect (North London). Phone 01-805 6475 after 7 p.m.

MATINEE ORGAN, professionally built, fully assembled and tested. Excellent condition, £485. Tel. Bourne End (06285) 25541.
WERSI COSMOS ORGAN to option level 3 plus percussion, drawbars and transposer, one year guarantee. Price $£ 1,995$. Contact P. J. Keyte, 25, Dakland Drive, Dawlish, Devon. Telephone 0626 865271 evenings.
MAPLIN MATINEE ORGAN for sale. Fully assembled, updated and working, unemployment forces sale of this superb instrument. Tel. (0532) 673251 Leeds.
MATINEE ORGAN, comptete and fully working, £300. Rayleigh 747314.
FOR SALE Transcendant D.Px. and Maplin 5600 S synthesisers, both complete and set up, any reasonable offers considered. Phone Norwich 407150 after 7 p.m
FOR SALE Maplin Matinee Organ Two 49 note manuals, 13 note pedal board, 30 rhythms etc. As specified in March 1981 issue of this magazine. Perfect order, £300. Telephone Hornchurch 45446.

CHOROSYNTH P.C.B. from 'Elektor' March 1980. Brand new, excellent condition. Tel. Sunderland 284117.

COMPUTERS FOR SALE

2×81 TOUCH-TYPING course. Learn at home at your own speed. I can guarantee from experience that results are excellent. Cassette based for 1 K machines. Even professional typists have problems with Sinclair board system. Complete for $£ 20$. Post paid. Mr. Moover, 5, Brook Road, Southville, Bristol, BS3 IAJ.
2X81 + 16K memory pack, with over 40 programs on cassette, leads, extras. Only $£ 85$ o.n.o. V.g.c. Also ZX80 with reset switch plus screen reversal control. 1k with manual, mains adaptor. Ring with others 01-363 0286. Enfield in London.
CASIO FX602P for sale, almost new, with program library. Offers? Mr. Stone, 8, Boulton Grove, Hull HU9 3ED or phone (0482) 781517 after 7 p.m. (not Sundays).
VIC-20 HOME Computer + C2N cassette deck. Colour, sound, full size keyboard, $£ 220$ o.n.o. VziC Revealed £8. Tei: $01-488$ 0707, ext 2120 (daytime), Luton 391725 (evening).
TEXAS INSTRUMENTS T1-99/4A computer, 3 software command modules, cassette interface cable, unused. £150. 051-263 3599. 24 Oakdene Road, Anfield, Liverpool, Merseyside, L4-2SR.
ZX81+16K RAM+4K Graphic ROM+ User definable graphics + PSU, including $£ 38$ worth of tape programmes. Excellent condition. Total worth £195. Selling price £99. 01-672 9883. Steve, evenings only.
ZX81 SOFTNARE - 1K Pack One: Moonlander, Dodgems, Mastermind, £1. Pack Two (1K): Hangman, Sub Hunt, Super-Bowl, Bomber Attack, £1. Both as listings + instructions. Also 16 K : Nightmare Park $12 \mathrm{~K}, £ 3.50$; Nibblers 4K, £1.50; Bomb. ber Attack 3K, £1; Zombies 5K, £2; Galactic War 10K, £3; Tank $4 \mathrm{~K} ; £ 2$. On tape + instructions. G. Smith, Brynllwyd, Capelseion, Aberystwyth.
ZX81 INVERSE Video M/C routine controlled by basic requires 8 K ROM +16 K RAM. Send $90 \mathrm{p}+$ s.a.e. K. E. Rayner; 25, Mill View, Gazeley, Newmarket, Suffolk, CB8 8RN.

ROCKWELL AIM65. 16K Static Ram. 8K Monitor/ Editor, 8K Basic. 4K Assembler, Printer, PSU, Cased. £350 o.n.o. Paper tape punch plus PSU $£ 100$ o.n.o. Optical tape reader with PSU £50 o.n.o. Buyer collects Darlington (0325) 64477
NEW ATOM software: Snapper, Minotaur, Babjes £7; Star Trek, Four Row, Space Attack, £7; 747 flight simulator, £5; Getting Acquainted With Your Atom, £6. For details tel. (0455) 610046.
CREED MODEL 75 printer/keyboard. Non-operable but good for spares; including motor. Also 500 W variac. Any offers to: T. Harris, "Weldings", School Lane, Headbourne Worthy, Hants, SO23 7JX.
MICROTAN 65 PLUS Tanex 10K basic, 8K Ram, new Tanbug Xbug, full keyboard, Hex keypad, cased, $£ 250$ o.n.o. Ring 0726850725 evenings.

VARIOUS FOR SALE

MAPLIN, EMM projects and kits, built or completed. Setting up and alignment to specification. Tel. Basildon (0702) 727487.
ELECTRIC FRUIT machine, Wild Cat, $2 p+10$ p play, 25 p max. payout, with circuit diagram, list of parts and book of special features! Buyer collects. 01 3630286 Enfield/N. London area.
CLEARING TRANSFORMERS, rack-unit drawers, various power supplies, all must go!! Safely use and test old electrolytics with a capacitor reforming unit, only $£ 10$! Phone (0743) 59492 after 7 p.m. evenings.
JAPANESE I.C.s, £1; transistors, coils, motors, transformers, sockets, tape heads, variable capacitors, switches, all brand new, under 50p! S.a.e. for information: N. Vaghadia, 25, Kingsland Court, Luton, Beds.
ALTEK ALT 3 B.F.O. metal detector, £12. R. England, Marshwood, Bridport, Dorset.
SEVERAL'HIGH and low voltage transformers, AC and DC relays, KT66 PX4 etc. SAE for details. J. H. Dial, 2, Station Road, Aspatria, Cumbria, CA5-2AL. SEAVOICE RT. 660 Multi-Channel dual watch marine transceiver, as new, £150. Also 12 channel marine band scanning monitor, $£ 50$. Phone Clac-ton-on-Sea 860903.
CLEAROUT: Wireless Worlds $74-81$, £10; TEAC AN180 Dolby 'B' Unit, £25; Garrard BatteryT/Deck £5; Brennel Mk 5 T/Deck (old), £5; 3 pairs Atari h/phones, new, £2 each; 3 radio spares, mic stands with booms, £20 each, 1 Ortofon VMS 20E, £15; 1 Prokit mixer (modified) with PSU, £95. Ring Dave, Erith (03224) 33190 office hours.

HI-FI FOR SALE

SONY SU92 Audio Cabinet, walnut finish, satin chrome trim, tinted door. Takes all $17^{\prime \prime}$ wide audio units (3), base holds plus 100 LPs, invisible castors. Immaculate. New Dec. '81. Offers around £70. Also Garrard AP76 Transcription Deck, teak plinth smoked dust cover. Fitted "Shure" mag.cart, "M95EJ", Elliptical Diamond Stylus with 60" heavy sheathed twin Goldwire phono lead and goldplated phono/plugs each end. Immaculate. New Aug., ' 81 Stylus, unused. Offers around, £85. Total

If you would like to place an advertisement in this section then here's your chance to tell Maplin's 120,000 customers what you want to buy or sell, absolutely free of charge. We will publish as many advertisements as we - have space for. To give everyone a fair share of the limited space, we will print 30 words free of charge. Thereafter the charge is $10 p$ per word.
Please note that only private individuals will be permitted to advertise. Commercial or trade advertising is strictly prohibited in the Maplin Magazine.
Please print all advertisements in bold capital letters. Box numbers are available at $£ 1.50$ each. Please send your advertisement with any payment necessary to: Classifieds, Maplin Mag, P.O. Box 3, Rayleigh, Essex SS6 8LR.
For the next issue your advertisement must be in our hands by 6th October 1982.

A superb kit that contains absolutely every. thing you need to turn your own or printed artwork into perfect, professional-looking pcb's. Full details were given in issue 3 of the Maplin Magazine. Various parts of the kit can be topped up as they run out as indicated below.
Complete kit.
Order As XG20W (CM100 PCB Kit)
Price $£ 69.95$
Autopositive film (12 sheets).
Order As RK40T (Film FPF012) Price £9.95
Copper etchant (including rods and clamps) and neutraliser.
Order As RK41U (Etching Kit CM100E)
Price £4.95
PCB boards (copper clad, double sided) (6 per pack).
Order As RK42V (PCB006 Pack)
Price $£ 7.95$
Chemicals kit (comprises Photoresist, Photoresist developer, Flux Laquer, Fixer, Developer A, Developer B, Clearing solution, Foam strip).
Order As XG21X (Chemicals Kit CM100C)
Price £16.95
both £149, will split. Ring Hardaker BFD., 0274. 394073 to 21.00 any day.
ADC LMF-1 carbon-fibre arm + SME adaptor; looks and sounds like the new Linn LV.X, £35. Quad valve amplifiers, $£ 60$. Praktika $S L R+28 \mathrm{~mm}+200 \mathrm{~mm}+$ 3XT. conv etc, offers. Write: Chris, 9, Wilton Grove, Leeds LS6 4ES.
ONE CASSETTE, brand new portable recorder and mains. Send for details please, £40 o.n.o. Please send for details car stereo, auto reverse, radio car cassettes for sale, AM CBradio. Send for details, no callers, Albert, 6, Haig Avenue, Chatham, Kent, ME45UP.
SONY TAF45 stereo amplifier, 50W, 3 months old, perfect, £85. King Tempo Bb clarinet, immaculate, £90. Ring Stuart Ibbotson, Kendal (0539) 21818. POWERTRAN T30+30 stereo amplifier. Completed and working project, all IC's replaced by LF351. Jones, 134, Ayelands, New Ash Green, Dartford, Kent. (0474 873169).
HP-65 MAGNETIC card programmable calculator, $£ 40$. Programmes, manual, recharger and etc., are all included. Phone Doncaster (0302) 721456 any time after 6 p.m. Ask for Tim.
DECCA LONDON Blue Cartridge. Excellent condition, only £15. Phone (025 75) 4238 evenings.
LINN SONOEX LP12 turntable with Basik LVV Arm \& Cartridge, boxed and unused. Offers around $£ 300$ or exchange crimson amplifiers. Telephone Norwich 610708, evenings.
MAPLIN 40 W STEREO amplifier, part built. Consists P.S.U. P.C.B., Equalizer P.C.B.'s, Equalizer Mother Board, Peak Detector Boards, Selector Boards, Selector Mother Board, one 50W amp built, £45. Phone 0792842411 after 4.30 p.m.

WANTED

SERVICE MANUAL for Grundig Radio Model 2035 W/3D/GB AM/FM. L. J. Channing, 8, Brymore Close, Bridgwater, Somerset TA6 7PL.
WANTED. E421 TRANSISTOR, also information on U441 Transistor, which is not listed in "Towers" F.E.T. Handbook. Box No. 3.

CASH WAITING for fair offer of "Leak TL/25 Plus" Mono Power Amplifier and/or spare valve set (preferably new). Telephone D. Bradly on Welwyn Garden 23308 (after 4 p.m.).

Figure 11. The quadrature oscillator.

The Sine-Square Converter

Having produced the required sinewave, the next step is to square it off. A very simple way of doing this is to use the op-amp comparator, shown in Figure 10. The inverting input is tied to OV and the sinewave input is applied to the non-inverting input. Every time the input goes positive, even by a
fraction of a milli-volt, the output goes into positive saturation, and for negative halfcycles at the input, the output goes into negative saturation. So the sinewave is very efficiently converted into a square-wave, which can then be integrated, using a standard op-amp integrator, to develop the triangular waveform.

The Quadrature Oscillator

Having dealt now with several circuits that produce different time-related waveforms, it is interesting to consider a circuit in which the waveforms are identical but differ by a fixed phase angle, whatever the frequency. The actual phase angle is 90° so that the sinewaves are in 'quadrature', hence the name of the circuit, which appears in Figure 11. Two integrators are used, ICl and IC2, the former being a non-inverting type and the latter an inverting type. The frequency of the output waveforms is determined by the time constants obtained from three resistors and three capacitors,
known as R and C respectively on the basis that they are nominally equal. In practice, one of the resistors is a potentiometer RV, which is carefully adjusted until the given outputs A and B are obtained, best viewed on a double-beam CRO. If RV is turned too far one way, the circuit stops oscillating, and if too far the other way, the waveforms become a triangle and a square-wave! However, the correct setting of RV is easily found and the sinewaves are then quite stable and of excellent waveform. An amplitude limiter is included in the form of two zener diodes connected back to back.

The formula for the frequency of operation is that $f=1 /(2 \pi R . C)$ and, with the values given in Figure 11, the circuit oscillated at 33 Hz . It will work quite happily over a wide range of frequencies. For example, with $R=47 \mathrm{k}$; $\mathrm{C}=220 \mathrm{n}$, the frequency is as low as 14 Hz and with $\mathrm{R}=1 \mathrm{k} ; \mathrm{C}=47 \mathrm{n}$, the frequency is then 3.7 kHz . At the higher frequencies a smaller value of RV makes the setting less critical.

AMENDMENTS TO CATALOGUE

The following points have come to our notice since the last issue of this magazine.	Page 125 Pan Neon Amber (RX82D) now has a small square face.
Page 20	
The picture of the 2mRubber Duck (YG15R)	Page 145 Photo-Etch PCB (BW19V) is now being
shows a UHF plug. but the item is supplied with a BNC plug as stated in the text.	supplied in a smaller size: $160 \times 100 \mathrm{~mm}$ (Eurocard size).
Page 47	
The Lift-off Hinge (YLO4E) is now cad-	
mium-plated, not chrome-plated.	For WQ18U we are now supplying AY-3. 1015D. This IC is directly equivalent to AY-
Page 84	5.1013A except that it requires only a single
Euroboard 4-way (WY16S) does not have a neon indicator.	5 V supply. Therefore no connection must be made to pin 2.

SUBSCRIBE NOW!

For just $£ 2.40$ a year we'll deliver every issue of the Maplin Magazine to your door.
We've got dozens of exciting projects and features coming in the next four issues. And more amazing special offers like the ones in this issue. Plus, of course, all our new products and our complete price list.

ALL THIS FOR JUST £2.40 A YEAR! (Overseas: surface mail $£ 2.76$, airmail $£ 5.88$) Don't delay - send your cheque or postal order now!! P.S. Don't forget to renew your subscription, either! ISSUE FIVE ON SALE 12th NOVEMBER 1982

Send this coupon with your cheque/PO to: Maplin Magazine Subscriptions Dept., Maplin Electronic Supplies Ltd., P.O. Box 3, Rayleigh, Essex SS6 8LR I enclose $£ 2.40$ (plus post overseas) for 1 year's subscription to the Maplin Magazine.

Customer No. (if known)
Name
Address \qquad

CORRIGENDA

ZX81 KEYB0ARD KIT AMENDMENT

Additions To 'Connecting To 2X81'
Before connecting the keyboard to your ZX81, use a meter set to read d.c. volts and measure between OV and pins 1 to 8 (SK2), and pins 1 to 5 (SK1) in turn. This test must be performed with the power supply plug. ged in and switched on, and without the keyboard connected to the ZX81. There should be no voltage present at these pins until a key is depressed.
VIC20 Programs Corrected
Colour Demonstration Program
10 PRINT 7
20 FOR D $=$
NEXT O
C $=$ INT $($ RND (1) $\times 506)+38400$ 50 POKE C. A: GOTO 30

Joystick Demonstration Program
10 PRINT : $X=7680: Z=0: V=1$: POKE 37154, 127
20 FOR C $=38400$ TO $38960:$ POKE C. 6 NEXT C
$30 \mathrm{~A}=$ PEEK (37151) : POKE X, 224
40 IF $A=122$ THEN $X=X-22: V=V-1$ IF $V<1$ THEN $x=x+22: V=V+1$ 50 IF $A=118$ THEN $X=X+22: V=V+1$ IF $V>23$ THEN $X=x \cdot 22: V=V-1$ 60 IF $A=110$ THEN $X=X \cdot 1: Z=Z-1$
IF $Z<0$ THEN $X=X+1: Z=Z+1$ 70 IF $\operatorname{PEEK}(87152)=119$ THEN $X=X+1$ $Z=Z+1$
IF $Z>21$ THEN $x=x \cdot 1: Z=Z-1$ 80 GOTO 30

Other Amendments

Issue 3 Page 20 Figure 5a
R5 should be a 47 k , not a 100 k as shown. R16 should be an 820 R . not a 4 k 7 as R16 shoun.
shown

MAPLIN ELECTRONICS SUPPLIES LTD.

require a

SHOP MANAGER IN HAMMERSMITH

This rare opportunity now exists at our London shop. We need a person who has a good understanding of electronics, has had management experience and has preferably been involved in the retail trade. Applications are invited from people aged between 30 and 55 approx. who are prepared to accept the challenge of an interesting career with an expanding company. There is an excellent salary, a company pension scheme and other employee benefits plus plenty of opportunity for self-expression. If you think this vacancy might suit you, take the initiative now by sending details of your experience and qualifications to Mr. D. M. Snoad, MAPLIN ELECTRONIC SUPPLIES LTD., P.O. Box 3, Rayleigh, Essex, SS6 8LR.

[^0]: Table 1. List of Control Words.

