ANALOG-TO-DIGITAL CONVERSION TECHNIQUES WITH THE M6800 MICROPROCESSOR SYSTEM

This application note describes several analog-to-digital conversion systems implemented with the M6800 microprocessor and external linear and digital IC's. Systems consisting of an 8 - and 10 -bit successive approximation approach, as well as dual ramp techniques of $31 / 2$ - and $41 /$-digit $B C D$ and 12 -bit binary, are shown with flow diagrams, source programs and hardware schematics. System tradeoffs of the various schemes and programs for binary-to-BCD and BCD-to7 segment code are discussed.

Analog-To-Digital Conversion Techniques with the M6800 Microprocessor System

INTRODUCTION

The MPU (microprocessing unit) is rapidly replacing both digital and analog circuitry in the industrial control environment. It provides a convenient and efficient method of handling data; controlling valves, motors and relays; and in general, supervising a complete processing machine. However, much of the information required by the MPU for the various computations necessary in the processing system may be available as analog input signals instead of digitally formatted data. These analog signals may be from a pressure transducer, thermistor or other type of sensor. Therefore, for analog data an A/D (analog. to-digital) converter must be added to the MPU system.

Although there are various methods of A / D conversion, each system can usually be divided into two sections - an analog subsystem containing the various analog functions for the A / D and a digital subsystem containing the digital functions. To add an A/D to the MPU, both of the sections may be added externally to the microprocessor in the form of a PC card, hybrid module or monolithic chip. However, only the analog subsystem of the A/D need be added to the microprocessor, since by adding a few instructions to the software, the MPU can perform the function of the digital section of the A/D converter in addition to its other tasks. Therefore, a system design that already contains an MPU and requires analog information needs only one or two additional inexpensive analog components to provide the A/D. The microprocessor software can control the analog section of the A / D, determine the digital value of the analog input from the analog section, and perform various calculations with the resulting data. In addition, the MPU can control several analog A / D sections in a timeshare mode, thus multiplexing the analog information at a digital level.

Using the MPU to perform the tasks of the digital section provides a lower cost approach to the A/D function than adding a complete A / D external to the MPU. The information presented in this note describes this technique as applied to both successive approximation (SA) A/D and dual ramp A/D. With the addition of a DAC (digital-to-analog converter), a couple of operational amplifiers, and the appropriate MPU software, an 8 - or 10 -bit successive approximation A / D is available. Expansion to greater accuracies is possible by modifying the
software and adding the appropriate D / A converter. The technique of successive approximation A / D provides medium speed with accuracies compatible with many systems. The second technique adds an MC1405 dual ramp analog subsystem to the MPU system and, if desired, a digital display to produce a 12.15 bit binary or a $31 / 2$ - or $41 / 2$-digit $B C D$ A/D conversion with 7 -segment display readout. This A / D technique has a relatively slow conversion rate but produces a converter of very high accuracy. In addition to the longer conversion time, the MPU must be totally devoted to the A/D function during the conversion period. However, if maximum speed is not required this technique of A / D allows an inexpensive and practical method of handling analog information.

Figure 1 shows the relative merits of each A / D conversoon technique. Listed in this table are conversion time, accuracy and whether interrupts to the MPU are allowed during the conversion cycle.

This note describes each method listed in Figure I and provides the MPU software and external system hardware schematics along with an explanation of the basic A/D technique and system peculiarities. In addition, the MPU interface connections for the external A/D hardware schemes are shown. These schemes are a complete 8 -bit successive approximation and a $31 / 2$-digit dual ramp A/D system, both of which externally perform the conversion and transfer the digtal data into the MPU system through a PIA.

For additional information on the MC6800 MPU system or A/D systems, the appropriate data sheets or other available literature should be consulted.

MPU

The Motorola microprocessor system devices used are the MC6800 MPU, MCM6810 RAM, MCM6830 ROM and MC6820 PIA (peripheral interface adapter). The following is a brief description of the basic MPU system as it pertains to the A/D systems presented later in this application note.

The Motorola MPU system uses a 16 -bit address bus and an 8 -bit data bus. The 16 -bit address bus provides 65,536 possible memory locations which may be either storage devices (RAM, ROM, etc.) or interface devices (PIA, etc.). The basc MPU contains two 8 -bit accumulators, one 16 -bit index register, a 16 -bit program counter, a 16 -bit stack pointer, and an 8 -bit condition code register. The condition code register indicates carry, half carry, interrupt, zero, minus, and 2's complement overflow. Figure 2 shows a functional block of the MC 6800 MPU

The MPU uses 72 instructions with six addressing modes which provide 197 different operations in the MPU. A summary of each instruction and function with the appropriate addressing mode is shown in Appendix A of this note.

Characteristic	Successive Approximation			Dual Ramp			
	8-Bit Software	10-8it Software	8-Bit Hardwars	12-8it Software	3%-Digit Software	4%-Digit Software	3%-Digit Hardware
External Hardware	8-Bit DAC Op Amp Comparator	$\begin{aligned} & \text { 10-Bit DAC } \\ & \text { Op Amp } \\ & \text { Comparator } \end{aligned}$	8-8it DAC SAR* Op Amp Comparator	MC1405	MC1405	MC1405	MC1405 MC14435 MC14558 (for 7-segment display)
Conversion Rate	$\begin{aligned} & 700 \text { us } \\ & \text { Constant } \end{aligned}$	$1.25 \mathrm{~ms}$ Constant	$60 \mu s$ for MPU. plus A/D Conversion Time	$\begin{aligned} & 165 \mathrm{~ms} \\ & \text { (max) } \\ & \text { Variable } \end{aligned}$	$\begin{aligned} & 60 \mathrm{~ms} \\ & \text { (max) } \\ & \text { Variable } \end{aligned}$	$\begin{aligned} & 600 \mathrm{~ms} \\ & \text { (max) } \\ & \text { Variable } \end{aligned}$	183 us (min) for MPU, plus A/D Conversion Time
Interrupt Capability	Allowed	Allowed	Allowed	Not Allowed	Not Allowed	Not Allowed	Allowed
Number of Memory Locations Required (Including PIA Configuration)	106	145	42	84	296	328	58
Serial Output Available	Yes	Yes	Yes	No	No	No	No

*Successive Approximation Register
FIGURE 1 - Relative Merits of A/D Conversion Techniques

The RAMs used in the system are static and contain 1288 -bit words for scratch pad memory while the ROM is mask programmable and contains 10248 -bit words. The ROM and RAM, along with the remainder of the MPU system components, operate from a single +5 volt power supply; the address bus, data bus and PIAs are TTL compatible.

The MPU system requires a 2ϕ non-overlapping clock with a lower frequency limit of 100 kHz and an upper limit of 1 MHz .

The PIA is the interface device used between the address and data buses and the analog sections of the A/D. Each PIA contains two essentially identical 8 -bit interface ports. These ports (A side, B side) each contain three internal registers that include the data register which is the interface from the data bus to the A / D, the data direction register which programs each of the eight lines of the data register as either an input or an output, and the control register which, in addition to other functions, switches the data bus between the data register and the data direction register. Each port to the PIA contains two addition pins, CAI and CA2, for interrupt capability and extra I/O lines. The functions of these lines are programmable with the remaining bits in the control register. Figure 3 shows a functional block of the MC6820 PIA.

Each PIA requires four address locations in memory. Two addresses access either of the two (A or B sides) data/data direction registers while the remaining two addresses access either of the two control registers. These addresses are decoded by the chip select and register select lines of the PIA which are connected to the MPU address bus. Selection between the data register and data direction register is made by programming a " 1 " or " 0 " in the third least significant bit of each control register . A logic " 0 " accesses the data direction register while a logic " 1 " accesses the data register.

By programming " 0 "s in the data direction register each corresponding line performs as an input, while " 1 "s in the data direction register make corresponding lines act as outputs. The eight lines may be intermixed between inputs and outputs by programming different combinations of " 1 "s and " 0 "s into the data direction register. At the beginning of the program the I/O configuration is programmed into the data direction register, after which the control register is programmed to select the data register for $1 / O$ operation.

The printouts shown for each A/D program are the source instructions for the cross assembler from the Motorola timeshare. Since the MPU contains a 16 -bit address bus and an 8 -bit data bus, the hexadecimal number system provides a convenient representation of these numbers. Although the assembler output is in hexadecimal, the source input may be either binary, octal, decimal or hexadecimal. A dollar sign ($\$$) preceding a number in the source instructions indicates hexadecimal, a percent sign (\%) indicates binary and an at sign (@) indicates octal. No prefix indicates the decimal number system.

Only the beginning addresses of the program and labels are shown in the source programs. These beginning addresses may be changed prior to assembling the total system program or the programs may be relocated after assembly with little or no modification.

SUCCESSIVE APPROXIMATION TECHNIQUES

General
One of the more popular methods of A / D conversion is that of successive approximation. This technique uses a DAC (digital-to-analog converter) in a feedback loop to generate a known analog signal to which the unknown analog input is compared. In addition to medium speed conversion rates, it has the advantages of providing not only a parallel digital output after the conversion is completed but also the serial output during the conversion.

Figure 4 shows the block diagram and waveform of the SA-A/D. The DAC inputs are controlled by the successive approximation register (SAR) which is, as presented here, the microprocessor. The DAC output is compared to the analog input (V_{in}) by the analog comparator and its output controls the SAR. At the start of a conversion
the MSB of the DAC is turned on by the SAR, producing an output from the DAC equal to half of the full scale value. This output is compared to the analog input and if the DAC output is greater than the input unknown, the SAR turns the MSB off. However, if the DAC output is less than the input unknown, the MSB remains on. Following the trial of the MSB the next most significant bit is turned on and again the comparison is made between the DAC output and the input unknown. The same criteria exists as before and this bit is either left on or turned off. This procedure of testing each bit continues for the total number of DAC inputs (bits) in the system.

After the comparison of each bit the digital output is available immediately thus providing both the serial output as well as the parallel output at the end of the conversion. The serial output provides the MSB first, followed by the remaining bits in order. The total conversion time for the SA-A/D is the time required to turn on a bit, compare the DAC output with the input unknown and, if required, turn the bit off, multiplied by the total number of bits in the A/D system. The conversion time is hence constant and unaffected by the analog input value.

One SA-A/D shown in this note uses an 8-bit DAC (MC1408) to produce an 8 -bit A/D; a second version uses a 10 -bit DAC (MC3410)* to produce a 10 -bit A/D. Both of these are used in conjunction with the MPU as an SAR. In addition, the MC1408 is shown with the MC14549 CMOS SAR as a convert-on-command system under control of the MPU. All of these A/Ds produce a binary output. However, by adding the appropriate software a BCD output or 7 -segment-display outputs are available. Also by using a BCD-weighted DAC, the BCD output can be produced directly.

8-Bit SA Program

The flow chart for the 8 -bit MPU A/D system is shown in Figure 5; Figures 6 and 7 show the software and the hardware external to the microprocessor. The DAC used is the MC1408L-8 which has active high inputs and a current sink output. An uncompensated MLM301A operational amplifier is used as a comparator while an externally compensated MLM301A or internally compensated MC1741 operational amplifier is used as a buffer amplifier for the input voltage. The output voltage compliance of the DAC is ± 0.5 volt; if the current required by the D/A does not match that produced from the output of the buffer amplifier through R1 and R2, then the DAC output will saturate at 0.5 volt above or below ground, thus toggling the comparator. The system is calibrated by adjusting R1 for 1 volt full scale, and zero calibration is set by adjusting R3.

The first MPU instruction for the 8 -bit A/D is in line 45 of Figure 6. After assembly, this instruction will be placed in memory location $\$ 0 \mathrm{~A} 00$ as defined in the assembler directive of line 42 . The assembled code for this program is relocatable in memory as long as the PIA addresses and storage addresses are unchanged. The program as shown requires 106 memory bytes. Source program lines 45 through 53 configure the PIAs for the proper input/output configuration. PIA1BD is used for various control functions between the MPU system and the external hardware. The exact configuration of this PIA is shown in lines 28 through 33 of Figure 6. PIA1AD provides the 8 -bit output needed for the DAC. Lines 51 through 53 set bit 3 of the PIA control register to access the data register for the actual A / D program.

Lines 55 and 56 set the conversion finished flag, which consists of a LED on the hardware schematic, after which the program enters a loop in lines 63.65 which causes the MPU to wait until the cycle input line goes high. (This feature could be eliminated if the program was a subroutine of a larger control program.) In this case, when a conversion was to be made the control program would go to the A/D subroutine and return with the digital results. Lines 08 and 0° clear the P1A.A which is connected to the DAC inputs and an internal memory lesation. This memory location is used as a pointer to keep trach of which bit of the DAC is currently being tested. Next the conversion fimished line is reset indicating a conversion is in process and the carry bit of the condition code register is set. The memory location POINTR is then rotated right in line 79 . moving the carry bit of the condition code register into the MSB of that memory loeation. Line 80 is a conditional branch that determines if all 8 bits of the DAC have been tested. After mine rotations of POINTR the carry bit will again be set indicating all 8 bits have been compared.

Program lines 81 through 83 load the previous DAC value into an accumulator and the next DAC bit is turned on for the comparator test. An 8μ s delay produced by
the NOP mstruction of lines 87 through 90 allows the DAC and comparator to settle to a timal value before the comparator test of lines 91 and 92 . At this point if the comparator was high the Yes loop is executed, which generates a simulated clock pulse and a serial output " 1 ". If the comparator was low. lines 95 through 101 ate executed, resetting the bit under test and generating a simulated clock pulse and a serial output of " 0 ". The three NOP instruetions of the Yes foop equalize the execution time between the lugh and low comparator loops. After completion of either the high or low comparator loop, the A accumulator which contains the new digital number is stored in PIAIAD and in a RAM memory lecation labeled ANS. Then the next bit of the DAC is tested in the same manner and this procedure is continued until all eight DAC imputs have been tested. When this has occurred the program returns to line 55 where the conversion fimished flag is "set" and the MPU awaits the next cycle input from PIAIBD.

The total conversion time is 700μ s for the 8 -bit converter assuming a 1 MHz MPU clock frequency. The simulated clock pulse is $7 \mu \mathrm{~s}$ wide and can be used to indicate when to sample the serial output.

FIGURE 6 - 8-Bit SA Software (Page 3 of 3)

10-Bit SA Program

Figures 8 and 9 show the MPU software and external hardware for a 10 -bit successive approximation A / D using the MC3410 DAC. The operation of this A/D is very similar to that of the 8 -bit A/D. Both the A and B halves of a PIA are required for the DAC output while the control lines (comparator, conversion finished, etc.) are also identical to that of the 8 -bit A/D previously discussed. The pointer for indicating which bit is currently under test is contained in two memory locations, PONTR1 and

PONTR2. The pointer is initialized in lines 63 and 64 and as before, it is continuously shifted to the left as each bit is tested. Lines 72 through 77 and lines 89 through 101 operate on both halves of the PIA, "setting" and "resetting" the DAC bits under test. The final answer is stored in the two PIA memory locations as well as two internal memory locations (ANS1 and ANS2).

By using the appropriate DAC and changing line 63 of the software program, the 10 -bit SA D/A can be modified for $9-16$ bit A/D operation.

113.000	SUB A PINTRE
114.000	STA A PIAEBD
115.000	STA A ANSE
116.000	LDA E $=\$ 20$
117.000	STA E PIA1BD
118.000	CLR E
119.000	STA B PIA1ED
120.000	ERA END
121.000	-
122.000	-
123.000	-
124.000	YES LDA A 3 (\$05
125.000	IELAY DEC A
126.000	bNE DELAY
127.000	LDA E \#\$こ8
128.000	STA E FIA1BI
129.000	LDA B =\%08
130.000	STA E FIA1BI
131.000	NDF
132.000	NDP
133.000	-
134.000	EMI BFA CINVRT
135.000	-
136.000	*
137.000	-
138.000	Man

SERIAL DUTPUT (CLDCK INLY)

CLDCK RESET
-HIGH COMPARATDR LDDP• TIME EQUALIZRTIIAN

SERIAL GUTPUT
CLICK RESET

FIGURE 8 - 10 - Bit SA Software (Page 3 of 3)

External SA System

The third successive approximation program, shown in Figures 10 and 11, uses an MC1408 DAC with the MC14549 CMOS SAR for a convert-on-command A/D system. This system is controlled by the MPU through the CA1 and CA2 PIA pins to start a conversion and store the results of this conversion in memory when the conversion is finished. The 8 -bit data word from the A/D is brought in to the MPU system through PIAIAD. The advantages of this A / D system are that a minimum number of software instructions are required, a higher speed conversion is possible, and the MPU may be performing other tasks during the conversion. The disadvantage is a higher parts count and increased cost.

The program for this A/D, shown in Figure 11, is written as a subroutine of a larger program. This larger program is simulated with the instructions of lines 28
through 31. The subroutine starts in line 34, unmasking the interrupt input on CA1 and setting CA2 high. (For additional information on use of the CA1 and CA2 lines, see the MC6820 data sheet.) CA2 initiates the conversion. Line 35 is a dummy read statement necessary to clear the data register of the interrupt bit associated with the CA1 input line. Then a wait for interrupt instruction stores the stack in anticipation of the A/D conversion being completed. When the conversion is finished the CAI line is toggled by the EOC output of the MC14549 and the program goes to line 43 where CA1 is masked and CA2 is set low, thus stopping any further conversion sequences by the A/D. The digital results are loaded into the A accumulator through PIA-A and stored in memory location TEMP. Then the MPU returns from the interrupt and finally returns from the subroutine.

The entire sequence requires 60μ s plus the conversion time of the A / D.

The dual ramp converters discussed here use the MC1405 analog subsystem in conjunction with the M6800 MPU system. The MC1405 provides the integrator, comparator and reference voltage required for the analog functions of the dual ramp A/D. The analog device also adds an offset current to the integrator input during the ramp up time period to stabilize small voltage readings. The digital section of the A / D must subtract an equivalent number of counts to produce a zero reading display output for a zero input. The interface between the analog and digital subsystems consists of two control lines. These are the comparator output from the analog part, which indicates whether the ramp is above or below the reference level, and a ramp control output from the digital part to switch the integrator input between the input unknown voltage and the reference voltage. The control of these lines, offset subtraction, and calculations with the resulting data must be handled by the digital subsystem, which in this case is the MPU.

For additional information on the dual ramp technique for A/D, consult the data sheet for the MC140S.

12-Bit Dual Ramp Program

This version of the dual ramp A/D generates a 12 -bit binary output from a 1 volt full scale analog input. Fig. ures 13,14 and 15 show the flow chart, MPU software and external hardware. The interface of the PIAs used for this A/D is shown both on the schematic and in lines 16 through 22 of the source program. Lines 25 and 26 indicate the two memory locations where the final 12 -bit binary result is stored. These locations are $\$ 0000$ and $\$ 0001$. The four most significant bits are in location $\$ 0000$ while the remaining eight bits are in $\$ 0001$.

Referring to the software of Figure 14, the first instructions (lines 37 through 42) initialize the PIA for its input/output configuration. Source program lines 46 through 49 set the ramp control line of the MC1405 and check the comparator output from the MC1405 to insure that the integrator output is below the reference level at the start of a conversion. Next the "conversion finished" flag is set indicating a conversion ready status. Then the MPU enters a loop (lines 55 through 57) waiting for a cycle input (PB1) from the PIA. When this condition occurs the conversion finished flag is reset while the
ramp control line (PB2) goes low, thus starting a conversion cycle. In addition, the index register has been loaded with $\$ 2000$ which will be decremented to provide the ramp up timing period. When the ramp crosses the threshold level the comparator (PB7) change from low to high causes the MPU to enter the timing cycle of lines 67 through 69. The index register is continuously decremented until reaching zero, at which point the ramp control line (PB2) to the MC1405 is set high (line 74) and the index register is incremented (line 75). This loop continues until the integrator output again reaches the threshold level. Line 76 of the ramp down cycle is a dummy statement included to equalize the timing between the ramp up and ramp down time periods. The proper timing ratio (2:1 in this example) must be maintained for correct A/D operation.

After the termination of the ramp down time period the content of the index register is stored in memory locations $\$ 0000$ and $\$ 0001$ (line 82). Next the offset counts are subtracted (51210) from this result by subtracting $\$ 01$ from memory location $\$ 0000$. The result is

FIGURE 13 - 12-Bit Binary Dual Ramp A/D Flow Diagram
then stored back into the same memory location. Lines 86 and 87 check the contents of memory location TEST for a number greater than 4095_{10}. If this condition occurs, the overrange, conversion finished, and ramp control bits are set high. Otherwise the MPU branches back to line 50 where only the conversion finished and ramp control bits are set high. The program then checks the status of the cycle input waiting for the next conversion.

When assembled, the first instruction will be located at $\$ 0 \mathrm{~A} 00$ with 8410 memory locations required. The full scale conversion time is 165 ms assuming a 1 MHz clock in the MPU system.

As with all MC1405 designs, the integration capacitor must be large enough to insure that the integrator does not saturate during the ramp up time period. The value of this capacitor depends upon the power supply voltage applied to the MC1405 and the ramp up time period. The MC1405 data sheet contains the equations for calculation of this capacitor. The MC1405 is capable of operating on a single +5 volt power supply; however, $a+15$ volt supply voltage is recommended to decrease the integrator capacitor size. When using 15 volts the comparator output must be clamped at 5 volts to prevent damaging the PIA inputs.

FIGURE 14 - 12-Bit Dual Ramp Software (Page 1 of 2)


```
44.000
45.000
46.000
4 7 . 0 0 0 ~ S T A ~ A ~ F I A 1 E I ~ F A M P ~ C O N T R O L ~ H I G H
48.000 START LIA A FIAIED CDMPAPATOR TEST - INSUIRES RAMF IS IDUI
49.000 BMI START TD START COMVERSIDN
49.000 BMI START 
51.000 STA A FIAIED CUNVERSION RERDY, FAMP CDMTROL HIGH
52.000
53.000
54.000
*
                                    *CYCLE TEST**
55.000 CYCLE LDA A PIA1ED
56.000 AMD F :S$02
57.000 EEQ EYCLE
58.000 LDX #$2000
59.000.
60.000 CLF FIAIRI RESET QVERRANGE RNI CINVERSIDN FINISHEI
61.000
62.000 COMP LDA A FIFIED
62.000 CDMP LDA A
64.000
65.000
66.000
67.000 RAMPUF LDA E $$04
68.000
69.000
70.000
71.000
72.000
73.000
74.000
75.000
    RAMPDN STA E PIALED FI HIGH
    INX
76.000 CFX :0000
                                    DUMMY STATEMENT FDR TIME DELAY
75.000
    CFX :0000
    BMI EAMPDN
78.000
80.
81.000
82.000
        STX TEST
83.000 LDA A TEST
84.000 SUE A =$.02
85.000 STA A TEST
86.000
87.000
88.000
89.000
70.000
91.000
*
*
```



```
LDA F =%.04
*
*
                    INITIALIZATION FDR RAMF UF TIMINIG
CIMP LDA A FIA1ED
                                    AND SET RC LCW
*
*
                                    **RAMF UF TIMING CVLLE**
RAMPUF LDA E =804
    DEX
    ENE RAMPUP
    *
    \bullet
    *
    *
        *
        *
        LDA A TEST 512 CJUNT SUETRE:TIDM
    SUE A #F10 JVCRRAN'SE TEST
    BCS RSTART
        LIA A :FIC
        ER'A CYCLE
        MON
```


FIGURE 14 - 12-Bit Dual Ramp Software (Page 2 of 2)

31/2-Digit Dual Ramp Program

The flow chart, source program and hardware for a $31 / 2$-digit system are shown in Figures 16, 17, and 18 respectively. Referring to Figure 17, the basic conversion routine of lines 96 through 135 in this program is similar to that of the previously discussed 12 -bit binary system. The initialization of the index register in line 108 has been changed to increase the ramp up time period. The basic conversion results in a binary number as did the 12 -bit version previously discussed. This binary result is converted by the software routine in lines 144 through 180 to produce $31 / 2$-digit BCD output. This routine converts up to a 16 -bit binary number to the equivalent $B C D$ value. Also the BCD result is converted to a 7 -segment display code for use in a LED or LCD readout system. Another feature of the $31 / 2$-digit A / D program shown here is a polarity detection scheme. This allows the A / D to handle both positive and negative input voltages.

The external hardware for the $31 / 2$-digit A / D requires two full PIAs; one of the four ports is used for interface to the MC1405, cycle input, overrange flag, etc. An I/O configuration similar to that of the 12 -bit binary A / D is used. The remaining three ports of the PIAs are used for the $31 / 2$-digit display, as shown in Figure 18b.

The conversion initially produces a binary result which is stored in memory locations MSB and MSB+1. This result has 100_{10} offset counts subtracted, and then a polarity check is made. If the polarity that is currently being applied to the input of the MC1405 is positive, the
binary number is converted to a BCD number. The technique used for binary-to-BCD conversion is described in Appendix B. The BCD results are stored in memory locations UNTTEN and HNDTHD. Each of these memory locations contains two BCD words. Following the conversion, an overrange test is made in lines 183 through 186 which checks for a maximum of a BCD " 1 " in the upper four bits of memory location HNDTHD. If an overrange condition occurs, the program branches to lines 227 through 234 where a 199910 is placed in the display and the overrange flag in PIAIBD is "set".

After the overrange test the BCD code is converted to a 7 -segment code and stored in the memory location for each PIA port. Segments A through G use PIA outputs 0 through 6 while the half digit output uses PIA2BD output PB7. The conversion technique for BCD-to-7 segment utilizes a look-up table in line 251 with the indexed mode of addressing to access the table. Each of the three full BCD digits is converted to the 7 -segment code by first separating the lower BCD and upper BCD word and using the BCD code as the least significant byte of a two byte address for the look-up table. This address is then loaded into the index register and used to locate the corresponding 7 -segment code. In the case of the upper BCD digit of each BCD, the memory must be shifted left four times for correct addressing of the look-up table. Finally, the half digit output is added to PIA2BD in lines 197 through 226.

Should the MC1405 have the incorrect polarity on its input, a polarity reversing relay is operated by toggling the

CA2 output of PIA1BC control register. Then the conversion is restarted, this time with a positive input polarity. The polarity detection instruction is found in line 131. If after the offset count subtraction in lines 129 and 130 the condition code carry bit is "set", the MC1405 has a negative input voltage. This occurs when the negative input subtracts from instead of adding to the offset current in the MC1405 and does not allow the ramp down time period to reach at least a value of 10010 counts. If the carry bit has been "set" then the program branches to
line 236 where the CA2 line is toggled. Also due to the difference in a positive polarity conversion and a negative polarity conversion a short delay loop has been added in lines 238 and 239 to improve accuracy at very small input voltages.

The entire $31 / 2$-digit A / D requires 296 memory locations but can be reduced if the BCD-to-7 segment decoding is performed external to the MPU system. With a 1 MHz MPU clock frequency this program has a full scale conversion time of 60 ms .


```
73.000 CLR FIAIRC
74.000 CLR FIA1BC
75.000 CLR PIAERC
76.000 CLR PIREBC
77.000 LIA A :$$7E
78.000 STA A FIAIBD
79.000 LDA A :=$0FF
80.000 STA A PIA1AD
81.000 STA A FIRERD
82.000 STA A FIAEEI
83.000 LUA A #$34
84.000 STA A PIA1AL
85.000 STA A FIA1BC
86.000 STA A FIAEAC
87.000 STA A FIAEEC
88.000
89.000 LDA A :30C 
89.000 LDH H #$0U 
91.000.
92.000.
93.000
94.000
95.000 
96.000 LDA A :5%04
97.000 LTA N W%04
98.000 START LDA F FIAIED CDMPARATOF TEST
99.000 ENI START
100.000 CYCLE1 LINA A #$14
101.000 STA A FIA1ED SONVERSIDN READY FNI RC HIGH
102.000
103.000
104.000.
105.000 CYCLE LDA G PIAIED
106.000 ANI A :$202
107.000 BEQ EYCLE
108.000 RESTAR LIX #$07N0
109.000 CLR FIA1EL RESET QVERFANGE, CONVERSIQN FINISHEI ANI SET FIS LDU
109.000 CLR FIA1EI RESET पVERFANGE, CONVERSIDN FINISHEI ANII SET FOS LDW
111.000 BPL CDMP
112.000 * *RRMF IJF TIMING ZYELE**
112.000 * RMMUP LDA E #%.04
114.000 DEX
115.000 ENE RAMPUP
116.000
117.000
118.000
119.000
120.000 RAMPDN STA E PIAIED FC HIGH
```

61.000 PIA1AC RMB 1 62.000 PIA1BD RMB 1 63.000 PIA1BC RMB 1 64.000 PIAEAD RMB 1 65.000 PIAEAC RMB 1 66.000 PIARED RMB 1 67.000 PIAEBC RMB 1 68.000 69.000 70.000 71.000 72.000 ORG SOAOO

A SIDE CONTRUL REGISTER
B SIDE DATA REGISTER
B SIDE CONTRDL REGISTER
A SIDE DATA REGISTER
A SIDE CDNTRIL REGISTER
B SIDE DATA REGISTER
B SIDE CDNTROL REGISTER

INITIALIZATION

* *\&VCLE TEST**
*

SETS FIA CONTROL REFISTER BIT % HIGH
FIRST TWID HEX DIGITS OF LODK -UF
TAELE FDDRESSES
*
PIA ASSEMELY
CLR FIAIAC
*

*
\bullet
INITIALIZATION
CLR FIAIBC

* *

BRSIC F}
97.000 इTA A FIA1PD FC HIGH
*
*N-N
112.000 R-00 RAMPUF LDA E \#%.04

* **RAMF DDINA TIMING CYCLE**
*

```

```

181.000
182.000
183.000 LDA A HNDTHD
184.000 AND A =\$20
185.000 SUB A :\$10
186.000 EHI DVRNGE
187.000
188.000 BRR BCD
189.000 POLRY1 BRA POLARY
190.000 DVRNG1 ERA QVRNGE
191.000
192.000
193.000
194.000
195.000
196.000
197.000
198.000 ECD LDA \& UNTTEN
199.000 AND A :\$0F
200.000 STA A INDEX +1
201.000 LDX INDEX
202.000
203.000
204.000
205.000
206.000
207.000
208.000
209.000 STA A INDEX+1
210.000 LDX INDEX
211.000 LDA A 0,X
212.000 STA A PIAEAD
213.000 LDA HE HNDTHD
214.000 AND A :%.0F
215.000 STA A INDEX+1
216.000 LDX INDEX
217.000 LDA A 0,X
218.000 STA A PIAEBI
219.000 LDA A HNDTHI
220.000 ANMD A =\$10
2e1.000 SUB A :=\$10
22Z.000 ELT END1
2e3.000 LDA A :\$80
224.000 ADN A PIAEED
225.000 STA A PIAEED
226.000 END1 JMP CYCLE1
227.000
228.000 GVRNGE LDH A \#\$1C
229.000 STA A PIA1ED
230.000 LDA A ESF3
231.000 STA A PIAIAD
232.000 STA A PIAEAD
233.000 STA A PIAEED
234.000 JMP CVCLE
235.000
235.000 POLARY LDX =\$0100
237.000 BR IEX
238.000 BNE ER
239.000 LDA A FIF1BC
240.000 CDM A

```

AND \(\mathrm{A}=\$ 08\)
ADD \(\mathrm{H}: \$ 34\)
STA A PIAIBC JMP RESTAR
245.000 246.000 247.000 248.000 249.000 250.000 251.000 252. 000


DRE \(\$ 0 C 00\)
END
MDN

FCB \(\$ 7 E, \$ 30, \$ 6 \mathrm{~L}, \$ 79, \$ 33, \$ 5 \mathrm{~B}, \$ 5 \mathrm{~F}, \$ 70, \$ 7 \mathrm{~F}, \$ 73\)

LIDK-UF TABLE FQR ECD TD 7 SEGMENT CINVERSIDN

FIGURE 17 - \(3 \%\)-Digit Dual Ramp Software (Page 5 of 5)


\section*{41/2-Digit Dual Ramp Program}

The microprocessor software for a \(41 / 2\)-digit dual ramp A/D is shown in Figure 19. This program in an extension of the \(31 / 2\)-digit A/D just discussed and has a full scale input voltage of 1.9999 volts. Due to the addition of the extra digit, a fourth PIA port for the 7 -segment display is required. The PIA port configuration used for ramp control, comparator, etc. is identical to that used in the 31/2-digit A/D.

The addition of the extra digit also implies a longer ramp up time period which is produced by increasing the initialization of the index register in line 115. This longer ramp up time period also requires the change of the extra count subtraction statements of lines 137 and 138 to
maintain the extra count subtraction of \(10 \%\) ramp up time. Also, the longer ramp up time period will require a larger integration capacitor to prevent saturation of the MC1405 integrator. This is of course, assuming the same MPU clock frequency. The remainder of the A/D external hardware is unchanged except for the addition of the fourth full digital display. Figure 18a can be used for the \(41 / 2\)-digit A/D without modification, and Figure 18 b can be used with only the addition of another digit.

The software for the binary-to-BCD converter remains the same for the \(41 / 2\)-digit \(\mathrm{A} / \mathrm{D}\) since it is capable of handling up to 16 bits. The conversion routine for BCD-to-7 segment code must be modified to handle the extra digit although the same basic technique is retained.

FIGURE 19 - 4\%-Digit Dual Ramp Software (Page 1 of 5 )

```

46.000 MSB RMB 1
47.000 LSB RMB 1
48.000 INDEX RME \&
49.000 MSBTEM RMB 1 TEMP STIRAGE DF BINAPY ANSWER
50.000 LSBTEM RMB 1
51.000
52.000
53.000
54.000 DRG \$0010
55.000 UNTTEN RMB 1
56.000 HNDTHD RMB 1
57.000 TENTSD RMB 1
58.000
59.000
60.000 DRG \$4006
61.000 PIR1BD RMB 1 B SIDE, DATA REGISTER
62.000 PIA1BC RMB 1 B SIDE, CONTROL REGISTER
63.000 PIAEAD RMB 1 A SIDE, DATA REGISTER
64.000 PIR\sumAC RMB 1 A SIDE, CDNTROL REGISTER
65.000 PIR2RD RMB 1 B SIDE, DATA REGISTER
66.000 PIR2BC RMB 1 B SIDE, CONTROL REGISTER
67.000 [RG \$4010
68.000 PIA3AD RMB 1 A SIDE, DATA REGISTER
69.000 PIABAC RMB 1 A SIDE, CONTRDL REGISTER
70.000 PIASBD RME 1 B SIDE, DATA REGISTER
71.000 PIA3BC RME 1 E SIDE, CDNTROL REGISTER
72.000
73.000
74.000

```

```

76.000 GFE \$0H00
78.000 CLR FIAEAC
79.000 CLR FIPEBC
80.000 CLR FIA3AC
81.000 CLR PIA3BC
S2.000 LDA A :%\$4D
83.000 STA A FIAIED
84.000 LIAA A :\&OFF
85.000 STA A PIAEAT
86.000 STA A PIAEED
87.000 STA A PIASAD
88.000 STA A PIASET
89.000 LDA A =\$34
80.000 STA A PIA1BC
91.000 STA A PIAEAI
92.000 STA A PIAREC
93.000 STA A PIASAC
94.000 STA A FIASEO
95.000*
96.000 LDA A \#5OC
77.000 STA A INDEX.
98.000
99.000
100.000
101.000
102.000
0
103.000 LIAF A :504
104.000 STA A PIALED DC HIGH
105.000 START LDA A FIA1ED COMPARATUR TEST
FIGURE 19-4%.Digit Duat Ramp Softwars (Page 2 of 5)

```





























































```

166.000
167.000 LDA A HNDTHD
168.000 TAB

169.000 AND A \#$$
0F
170.000 SUB A #$05
171.000 BMI CT
172.000 ADD B :#$03
173.000 CT TBA
174.000 AND A }#$0F
175.000 SUB A }=$5
176.000 BMI DT
177.000 ADI B =$30
178.000 DT STA B HNDTHD
179.000
180.000 LDA A TENTSI
181.000 TAB
182.000 SUE A :% 05
183.000 BMI ET
184.000 ADD B =$03
185.000 ET STA B TENTSD
186.000
187.000
188.000 ASL LSETEM
189.000 ROL MSETEM
190.000 ROL UNTTEN
191.000 ROL HNDTHD
192.000 ROL TENTSD
193.000 DEX
194.000 BNE BEGIN
195.000
196.000 BRA ECD
197.000 [VRNG1 BRA [VRNGE
198.000 BRA BCD
199.000
200.000
201.000
202.000
203.000
204.000
205.000
PDLRY1 ERA PCLARY
*
*
*
BCD LIAF A UNTTEN
206.000 FND A #50F
207.000 STA A INDEX+1
20S.000 LDX INDEX
209.000 LDA A 0,X
210.000 STA A PIAEAT
211.000 LDA A UNTTEN
212.000 LSR A
213.000 LSR A
214.000 LSR A
215.000 LSR A
216.000 STA A ININEX+1
217.000 LDX INDEX
218.000 LDA F 0,X
219.000 STA A FIAEEI
2巳0.000 LDA त HNDTHI
2巳1.000 9ND A #%,0F
2\sum2.000 STA A INDEX+1
223.000 LDX INDEX
224.000 LIF F 0,X
225.000 STA A PIAYAU
```
```
226.000
227.000
228.000
229.000
230.000
231.000
232.000
233.000
234.000
235.000
236.000
237.000
238.000
239.000
240.000
241.000 END JMP CYCLE
242.000
243.000
244.000
245.000
246.000
247.000
248.000
249.000
250.000
251.000
252.000
253.000 PQLARY LDX =$30100
254.000 BR DEX
255.000 BNE BR
256.000 LDA A PIA1BC
257.000 CDM A
258.000 AND A =$08
259.000 FDD A #$34
260.000 STA A PIAIBC
261.000 JMP RESTAR
262.000
263.000
264.000
265.000
267.000 ENI
268.000 MDN
LDA A HNDTHD
LSR A
LSR A
LSR A
LSR A
STA A INDEX+1
LDX INDEX
LDA A 0,X
STA A PIA3BD
LDA A TENTSD
SUB A :
$$01

BLT END
LDA A =$80
ADD A PIA3BD
STA A PIA3BD
END JMP CYCLEI
*
DVRNGE LDA A =SOD ; DVERRANGE,RC HIGH, CON F
STA A PIA1BD
LDA A :#$F3
STA A PIMEAD
STA A PIARBD
STA A PIRBAD
STA A PIA3BD
JMP CYCLE
*
*
*
*
DRG saC00
FCE \$7E,\$30,\$6D,\$79,\$33,\$5E,\$5F,\$70,\$7F,\$73
ENII
MDN

SUMMARY

Many MPU systems require analog information, which necessitates the use of an A/D converter in the microprocessor design. This note has presented two popular A/D techniques used in conjunction with the M6800 microprocessor system. These techniques, successive approximation and dual ramp, were shown using the MPU as the digital control element for the A/D system. This required dedication of the MPU to the A/D function during the conversion. Also shown were systems using the MPU to control the flow of data from an external A/D allowing the MPU to perform other tasks during the conversion.

The variety of programs presented allow the designer to make a selection based upon hardware cost, conversion speed, memory locations and interrupt capability. Although the A/D programs shown here are complete designs, they are general designs and may be tailored to fit each individual application. Also a variety of digital outputs are available including binary, BCD, and 7 -segment. In conjunction with the BCD output a 16 -bit binary to BCD conversion routine is presented in Appendix B.

REFERENCES

Aldridge, Don: "Autopolarity Circuits for the MC1405 Dual-Slope A-D Converter System", EB-35, Motorola Semiconductor Products Inc.
Aldridge, Don: "Input Buffer Circuits for the MC1505 Dual Ramp A-to-D Converter Subsystem", EB-24, Motorola Semiconductor Products Inc.
Kelley, Steve: " $41 / 2$-Digit DVM System Using the MC1505
Dual-Slope Converter", EB-36, Motorola Semiconductor Products Inc

M6800 Microprocessor Applications Manual, Motorola Semiconductor Products Inc.
M6800 Microprocessor Programming Manual, Motorola Semiconductor Products Inc

MC1505/1405 Data Sheet, Motorola Semiconductor Products Inc.
MC6800, MC6820 Data Sheets, M6800 Systems Refer. ence and Data Sheers, Motorola Semiconductor Prod ucts Inc.

APPENDIX A
MPU INSTRUCTIONS

OP	Operation Code (Hesuderimal).	*	Bookan Inclutive OR:
\sim	Number of upu Cydim,	\bigcirc	Boolean fadurive OR,
\%	Number of Hogam Biytes:	\square	Complement of M.
*	Avithmatic Ruic.	\rightarrow	Tanater leto.
-	Avithmetic Minus	0	$\mathrm{Bat}=2 \mathrm{ero}$.
-	Bodmen AMD:	∞	Byte-2ero:
Msp	Contents of memory focation peinted to be seack Pointr:		

CONDITIOM CODE SYusols:

```
Mallcary flombor)
Interrupt mask
Mogatree lugn bit
Zuno (bym)
Overtion, I't complement
Cerry trambit?
Kewt Almay:
    Sec Alway:
    Tett and unt if trev, diered ethermm
    Nol Atfoctec
```

POIMTER OPEBATIOMS	manmomic	нamed			DIRECT			impex			ExTmo			IMPLIED			SOLLEAM/ARITHMETIC OPERATION		4	1	2	1		
		or	~	*	OP	\sim	*	or	-	\#	OP	\sim	a	0 P	\sim	\pm		H	1	n	z	v		
Compars Index Ros	CPX	${ }^{\text {c }}$	3	3	3 C	4	2	AC	6	2	BC	5	3				$\mathrm{x}_{\mathrm{H}}-\mathrm{M}, \mathrm{X}_{\mathrm{L}}-1 \mathrm{M}+11$	-	-	(1)		(1)		
Decrement Index Rey	OEX													08	4	1	$x-1+x$	-	-	-		-		
Decremant Suact Pnut	DES													3	4	1	$5 p-1-5 p \quad+m$	-	-	-		-		
Incremant index Mop	Inx													08	4	1	$x+1-x \quad-8$	\bullet	-	\bullet	1	-		
Incremment Stuck Putu	Ins													31	4	1	SP $+1-$ SP	-	*	\bullet	-	-		
tose Inder Amp	10x	CE	3	3	DE	4	2	EE	5	2	FE	5	3					-	-	(9)	!	R		
Loud Stuck Pats	Los	BE	3	3	$9 E$	4	2	AE	6	2	BE	5	3					\bullet		(1)	:	R		
Stors Inder Res	STX				OF	5	2	Ef	7	?	55	6	3				$\mathrm{x}_{\mathrm{H}} \rightarrow \mathrm{M}, \mathrm{x}_{\mathrm{L}} \rightarrow$ (M +1$)$	-		(3)	t	,		
Store Suct Phts	575				97	5	2	AF	1	2	BF	5	3				$5 \mathrm{SP}_{\mathrm{H}}-\mathrm{M}, \mathrm{SPL}-(\mathrm{M}+1)$	-		(3)	:	A		
	TXS													35	4	1	$x-1+5 p$	-	-	-	-	-		
Sack Patr \rightarrow lodx Anen	TSX													10	4	1	SP + $1-x$	-	-	-				

Jump and Branch Instructions																				
OPERATIONS	mMEmomic	Relative			ImDEX			ExTw			implied			aramch test	5	4	1	2	1	0
		Or	-	\#	OP	-	$\#$	or	-	a	0 F	\sim	\#		H	1	N	2	v	c
Branch Alwey	BRA	20	4	2										None	-	-	-	-	-	
Branch it Cany Claser	8 CC	24	4	2										$\mathrm{c}=0$	-	-	\bullet	-	-	*
Branch it Cary Set	${ }^{\text {cs }}$	25	4	2										C-1	-	*	-	-	-	*
Branch II - Zero	8 EO	27	4	2										2-1	-	-	*	-	-	*
Branch H $>$ 2ero	86E	2 C	4	2										N (9) $\mathrm{V}=0$	-	-	-	-	-	*
Branch if $>$ Zero	BGT	2 E	4	2										$z *(N \oplus v)=0$	-	-	-	\bullet	-	*
Branch it Mipher	8 HI	22	4	2										c. $2=0$	-	-	-	-	-	*
Branch Hi < 2 wro	818	$2 F$	4	2											-	*	-	*	-	-
Branch il tower Or Sarme	Bts	23	4	2										$\mathrm{c}+2=1$	-	-	-	-	-	-
Branch il < Zaro	BLT	20	4	2										$N \odot V=1$	-		-	-	-	-
Branch it Mirua	Hm	28	4	2										$\mathrm{N}=1$	-	*	-	$*$	-	-
Branch if Mot Equal Zero	SME	28	1	2										$2=0$	-	-	-	\bullet	-	-
Brasch HI Owrflow Cowr	sve	28	4	2										$v=0$	-	*	-	-	-	-
Branch it Owertiow Set	evs	29	4	?										$v=1$	-	-	-	-	-	-
Branch if Mus	8PL	2A	4	$?$										$\mathrm{H}=0$	-	-	-		-	-
Branch Ta Subroutine	B5R		8	2											-	-	-	\bullet	-	-
Jump	Jup				${ }^{6 E}$	4	2	1 E	3	3				Ser Spreal Operations	-	-	-	-	-	-
Jump To Subroutiose	JSA				AD	8	2	80	9	3					-	-	-	*	\bullet	-
Mo Opmation	mop										${ }^{02}$	2	1	Adranctiras Colt. Onir	-	*	-	-	-	*
Aetura From interupt	RTI										38	10	1							
Auturn From Subroutine	RTS										39	5	1		-				-	*
Soltiere loternupt	SWi										3 F	12	t	Ser Special Operation	\because	(1i)	-	-	-	*
Weit for Intarupt	WAI										3 E	9	1		\bullet	(11)	-	-	-	

Condition Code Register Manipulation Instructions

or Manipulation Instructions						CONO. CODE REG.					
OPERATIOMS	MnEmonic	maplied			booleam operation	5	4	1	2	1	0
		or	-	z		H	1	${ }^{4}$	2	v	c
Cow Cary	cte	oc	2	1	$0 \rightarrow \mathrm{C}$	-	\bullet	-	-	-	R
Oawr interrupt Met	cu	OE	2	1	$0 \rightarrow 1$	-		-	*	-	*
Dasic 0werliow	civ	OA		1	$0 \rightarrow \mathrm{v}$	-	-	-	-	-	\cdots
Sen Carry	SEC	00	$?$	1	$1+c$	-	-	-	-	-	s
Set Interiopt Mant	SE1	OF	2	1	$1 \rightarrow 1$	-		-	*	-	-
Sen Ownitiom	SEV	08	2	1	$1 \rightarrow y$	-		-	.	5	-
Acmitr $A \rightarrow C C R$	TAP	06	2	1	$\mathrm{A} \rightarrow \mathrm{CCH}$						
CCA - Acminc A	TPA	07	2	1	$\mathrm{CCR} \rightarrow \mathrm{A}$	-		-	-	-	-

CONDITION CODE REGISTER MOTES


```
Terr: Amull = 10000000
Tent Rnulf = 10000000
```



```
Thit: Operand = 10000000 prioc to mercution?
Tht Operand = 10000000 prioc Io mercution?
Tht: Set soual to muil of N@C atere thitt has occuatred
    Terr Sige bit of mort sonilicant (MS) byte = 17
    Ten: 2's complement overflom from wbiraction of MS bytm?
    Trit Herilimuthan mro) (8, 15 - 1)
    Load Consilion Code Amegitw from Such. ISer Sorcisl Opmationa)
```



```
    Ser kccording to the contents of Actumulatoc A.
```


APPENDIX B

BINARY-TO-BCD CONVERSION

A standard technique for binary-to-BCD conversion is that of the Add 3 algorithm. Figures B1 and B2 show a flow diagram and example of this algorithm. The technique requires a register containing the N-bit binary number and enough 4 -bit BCD registers to contain the maximum equivalent BCD number for the initial binary number. The conversion starts by checking each BCD register for a value of 5 or greater. If this condition exists in one or all of these registers (initially this condition cannot exist), then a 3 is added to those registers where this condition exists. Next the registers are shifted left with the carry out of the previous register being the carry in to the next register. Again each BCD register is checked for values of 5 or greater. This sequence continues until the registers have been shifted N times, where N is the number of bits in the initial binary word. The BCD registers then contain the resulting BCD equivalent to the initial binary word. The example in Figure B2 starts with an 8 -bit binary word consisting of all " 1 's." This word is converted to the BCD equivalent of 255 by this technique. After 8 shifts the last binary bit has been shifted out of the binary register and the hundreds, tens, and units registers contain a 255.

Figure B3 shows an MC6800 software routine for performing this technique of binary to BCD conversion. The initial binary number is a 16 -bit number and occupies memory locations MSB and LSB; this binary number is converted to the equivalent BCD number in memory locations TENTSD, HNDTHD and UNTTEN, Each of these memory locations contains two BCD digits. Eightythree memory locations are required for program storage with a maximum conversion taking 1.8 ms .

FIGURE B2 - Binary to BCD Conversion

FIGURE B3 - Binary-to-BCD Conversion Software (Page 1 of 2)

AUTORANGING DIGITAL MULTIMETER USING THE MC14433 CMOS A/D CONVERTER

This application note describes an autorange digital multimeter using the MC14433. The multimeter includes ac and dc voltage ranges from 200 mV to 200 V, ac and dc current from 2 mA to 2 A full scale, and resistance ranges from $2 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$ full scale.

AUTORANGING DIGITAL MULTIMETER USING THE MC14433 CMOS A/D CONVERTER

This article describes.ah autorange digital multimeter using the MC14433. The multimeter includes ac and dc voltage ranges from 200 mV to 200 V , ac and dc current from 2 mA to 2 A full scale, and resistance ranges from $2 \mathrm{k} \Omega$ to $2 \mathrm{M} \Omega$ full scale. The MC14433 DVM chip used provides a $3-1 / 2$-digit A / D converter with autopolarity, autozero and a high input impedance. The chip has overrange and underrange information available to simplify the design of the autoranging meter. Only two input jacks are required for all ranges and functions, eliminating the need for changing leads on the instrument when changing ranges or functions. Although only four ranges are provided for each function, the technique used may be expanded to more ranges if desired.

Range switching is done with the use of mechanical relays. The relays may be replaced with solid-state analog switches; however it was felt that the mechanical relays would provide a higher degree of reliability due to the high voltage and currents being measured with the multimeter.

MC14433 A/D CONVERTER

The MC14433 is a single-chip 3-1/2-digit A/D converter using a modified dual ramp technique of A / D conversion. Housed in a 24 -pin package, it features autopolarity, autozero and a high input impedance. Figure 1 shows the pin diagram of the MC14433.

FIGURE 1 - MC14433 Pin Assignment
The output of the MC14433 is 3-1/2-digit multiplexed BCD with the MSD containing not only the half digit but also the polarity of the input, overrange and underrange information. Figure 2 shows the decoding for the MSD. The digit selects for the multiplexed BCD have interdigit blanking to ensure correct BCD data during the time that the digit select is true.

The converter is ratiometric and requires an external

Coded Condition of MSD	03	Q2	Q1	Q0	$\begin{array}{r} \text { BCD to } 7 \\ \text { Deco } \end{array}$	Segment ding
+0	1	1	1	0	Biank	
-0	1	0	1	0	Blank	
+OUR	1	1	1	1	Blank	
-O UR	1	0	1	1	Blank	
+1	0	1	0	0	$4 \rightarrow 1]$	
-1	0	0	0	0	$0 \rightarrow 1$	only seg b
+1 OR	0	1	1	1	$7 \rightarrow 1$	and c to
$-10 R$	0	0	1	1	$3 \rightarrow 1$)	MSD

Notes for Truth Table
Q3 - $1 /$ digit, low for "1", high for "0"
02 - Polarity: $" 1 "=$ positive, $" 0 "=$ negative
QO - Out of range condition exists if $\mathrm{QO}=1$. When used in conjunction with $\mathrm{O3}$ the type of out of range condition is indicated, i.e., $\mathrm{O} 3=0 \rightarrow O R$ or $\mathrm{O}=1 \rightarrow$ UR.

When onily segment b and c of the decoder are connected to the $1 / 2$ digit of the display, $4,0,7$ and 3 appear as 1 .

FIGURE 2 - MSD Coding

reference voltage. This voltage is 2.000 volts for the 1.999 volt range and 200 mV for the 199.9 mV full scale input. Both the unknown and reference inputs and analog ground are high-impedance inputs. External components required are two resistors and two capacitors.

The MC14433 has an End of Conversion (EOC) pin for indicating the end of one conversion and the start of the next conversion by a positive pulse $1 / 2$ clock period long. The device also contains a display update pin which allows the data to be strobed into the output latches. If at least one positive edge is received prior to the ramp down cycle, new data is strobed to the display. Normally this pin is tied to EOC to allow a data update each conversion cycle.

The MC14433 requires two power supplies. The total voltage must not exceed 18 volts. Pin 13 is the reference level for the output of the MC14433. If this pin is tied to 0 volts, the BCD output, digit selects and EOC will swing from 0 volts to V_{DD}. If, however, pin 13 is tied to V_{EE}, the output swing will be from $V_{E E}$ to $V_{D D}$.

The clock for the MC14433 is internal to the chip, requiring only a single external resistor to set the frequency. An external clock may be used by driving pin 10. The total conversion time for the MC14433 is approximately 16400 clock periods. This conversion time includes the autozero cycle and the unknown input measurement cycle.

AUTORANGING CIRCUITRY

Figure 3 shows the autoranging DMM. The heart of the autoranging circuitry is an MC14035B CMOS shift

FIGURE 3 - 3-1/2-Diolt Autoranging Multimeter
register which can be configured to shift either right or left. The direction of the shift is dependent upon whether an overrange or underrange signal is received at the end of each conversion. If the meter is in range, no shift signal is received. For an overrange condition, a high level is clocked to the right, and for an underrange condition the high level is clocked to the left (see Figure 4). The Exclusive OR gates decode the shift register output to produce only one output high. This output is used to turn on the corresponding range relays.

FIGURE 4 - Shift Register Operation for Autoranging DMM
If at the end of the next conversion the MC14433 is still either overrange or underrange, the shift register receives another clock pulse and thus the next range is selected. When an extreme overrange or underrange condition occurs the register is filled with all "ones" or all "zeros" which selects continuously either the highest or lowest range. Input voltages that exceed 200 volts as well as complete overrange conditions for the other functions cause the display to blink on and off. This feature is provided by the second half of the MC14013 flip-flop. The blinking rate is at half the conversion rate.

Figure 5 describes the functional operation for each range and function for the multimeter. The 2 -volt reference is used for the ohms function, which means that 2 volts are developed across the unknown resistors at full scale. All current ranges use the $200-\mathrm{mV}$ reference, while for voltage both the $200-\mathrm{mV}$ and the 2 -volt reference are used.

MC14066B transmission gates are used to switch between the 2 -volt reference and the $200-\mathrm{mV}$ reference. A transmission gate is also used to reduce the integrator resistor for the $200-\mathrm{mV}$ range. In the current mode, transmission gates are used to switch the input of the MC14433 to the appropriate current-measuring resistor. This is necessary to eliminate the problem of measuring the voltage across the contact resistance of the function switch and relays in addition to the voltage across the current resistor. MRS01 rectifiers are placed across the current resistors to limit the power dissipation during overrange conditions.

A ± 6-volt power supply is used for the multimeter, with the logic sections referenced to the -6 -volt level. This power supply is shown in Figure 6 and uses the MC7806 and MC7906 three-terminal regulators.

FIGURE $6- \pm 6$-Volt Power Supply

	Voltage					Current					Resistance				
Relay	Range	dp	Ref Used	Function Display	Resistor Divider	Range	dp	$\begin{gathered} \text { Ref } \\ \text { Used } \end{gathered}$	Function Display	Measurement Resistor	Range	dp	Ref Usad	Function Display	Currant Source
R1	200 mV	199.9	200 mV	mV	1:1	2 mA	1.999	200 mV	mA	100Ω	$2 \mathrm{k} \Omega$	1.999	2 V	$\mathrm{k} \Omega$	1 mA
R2	2 V	1.999	2 V	V	1:1	20 mA	19.99	200 mV	$m A$	10Ω	$20 \mathrm{k} \Omega$	19.99	2 V	$\mathrm{k} \Omega$	$100 \mu \mathrm{~A}$
R3	20 V	19.99	2 V	V	10:1	200 mA	199.9	200 mV	mA	1Ω	$200 \mathrm{k} \Omega$	199.9	2 V	$\mathrm{k} \Omega$	$10 \mu \mathrm{~A}$
R4	200 V	199.9	2 V	V	100:1	2 A	1.999	200 mV	A	0.1Ω	$2000 \mathrm{k} \Omega$	1999	2 V	k Ω	$1 \mu \mathrm{~A}$

FIGURE 5 - Functional Operation

FIGURE 7 - Ohms Section Circuitry

The circuitry for the ohms section is in Figure 7. The outputs of the ohms section connect to the function switch at points $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z . One-fourth of a quad op amp and a transistor are used to create a current source for each of the four ranges. The $20-\mathrm{k} \Omega$ pot is adjusted so that 1 volt is across the reference resistor. This provides current sources of $1 \mathrm{~mA}, 100 \mu \mathrm{~A}, 10 \mu \mathrm{~A}$, and $1 \mu \mathrm{~A}$. A single pot may be used as shown, or four individual pots may be used to provide more accuracy by adjusting out the amplifier offset.

For ac operation, an operational amplifier is switched in between the MC14433 and its preceding circuitry. The op amp configuration in Figure 8 is a precision ac rectifier that is calibrated to produce the RMS reading for a sine wave. Following the precision rectifier a single-pole filter is used to provide a dc level for the MC14433. Upper
and lower frequency limits for ac operation are 30 kHz and 20 Hz .

A switch is placed in the clock line for a range hold switch. When in the hold mode, clock pulses are prevented from clocking the MC14035B shift register. This feature allows several measurements to be made on a high range without the multimeter switching back to the low range between measurements.

The meter must not only be protected from destroying itself during overrange conditions but must also continue to make proper overrange measurements so that the next range may be selected. The analog input to the MC14433 is internally diode protected. The multimeter has a $100-\mathrm{k} \Omega$ resistor in series with this input to limit the current during overvoltage measurements.

DATA ACQUISITION NETWORKS WITH NMOS AND CMOS

This article describes an eight-channel data acquisition network (DAN) using the Motorola MC14433 CMOS A/D converter and the M6800 microprocessor family. The A/D conversion technique used with the MC14433 is a modified dual ramp featuring auto-zero, auto-polarity, and high input impedance. Both hardware and M6800 software are shown for the DAN.

DATA ACQUISITION NETWORKS WITH NMOS AND CMOS

LSI technology is making it easier and less expensive to design and build complex electronic systems. This fact holds true for Data Acquisition Networks (DANs) due to the new single chip $A / D s$ and microprocessor systems. Thus, it is now feasible to build your own data acquisition network instead of buying a completed system, and thereby save money.

This article discusses an eight-channel DAN using the Motorola MC14433 CMOS A/D converter and the M6800 microprocessor. The number of channels can be expanded or reduced very simply. In addition to the eight channel DAN the program for a single channel system is shown. The inputs to the system, positive or negative polarity, are multiplexed with a CMOS analog multiplexer.

MC14433 A/D CONVERTER

The MC14433 is a single chip $31 / 2$ digit A/D converter using a modified dual ramp technique of A / D conversion. Housed in a 24 pin package it features auto-polarity, autozero and a high input impedance. Figure 1 shows the pin diagram of the MC14433.

The output of the MC14433 is $31 / 2$ digit multiplexed BCD with the MSD containing not only the half digit but also polarity of the input, overrange and underrange information. Figure 2 describes the decoding for the MSD. The digit selects for the multiplexed BCD have interdigit blanking to ensure correct BCD data during the time that the digit select is true.

The A/D converter is ratiometric and requires an external reference voltage. This reference voltage is 2.000 volts for the 1.999 volt range and 200 mV for a 199.9 mV
full scale input. Both the unknown and reference inputs and analog ground are high impedance inputs. Other external components required are clock resistor, integrator resistor and capacitor, and offeet capacitor. Precision components are not required.
Of particular interest for the data acquisition systems are the display update (DU) and the end of conversion (EOC) pins. The EOC pin indicates the end of one conversion cycle and the start of the next conversion by a positive pulse one-half clock period long. The display update pin is an input to the chip which allows the data to be strobed into the output latches. If at least one positive edge is received prior to the ramp down cycle, new data is strobed to the display. In a stand alone A/D system, EOC is connected to DU.

Also of significance to the data acquisition network is the input polarity detection sequence for the MC14433. Polarity for the current conversion cycle is determined in the previous conversion cycle. Thus if the polarity is reversed, a second conversion cycle must be made in order to obtain a correct measurement.
The MC14433 requires two power supplies. The total voltage across the device must not exceed 18 volts. Pin 13 is the reference level for the output circuitry of the MC14433. If this pin is tied to 0 volts, the BCD output, digit select and EOC will swing from 0 volts to V_{DD}. If however, pin 13 is tied to V_{EE}, the output swing will be from $V_{E E}$ to $V_{D D}$

The clock for the MC14433 is internal to the chip, requiring only a single external resistor to set the frequency. An external clock may be used by driving pin 10 .

FIGURE 1 - MC14433 Pin Assignment

Coded Condition of MSD	03 020 a1 00				BCD to 7 Segment Decoding	
+0	1	1	1	0	Blank	
-0	1	0	1	0	Blank	
+O UR	1	1	1	1	Blank	
-OUR	1	0	1	1	Blank	
+1	0	1	0	0	$4 \rightarrow 1$ 0	Hook up
-1	0	0	0	0	${ }_{0} \rightarrow 1$	onir seg b
+1 OR	0	1	1	1	$7 \rightarrow 1$	and c to
$-10 \mathrm{O}$	0	0	1	1	$3 \rightarrow 1$	MSD

Notes for Truth Table
Q3 - Y/ digit, low for " 1 ", high for " 0 "
$\mathrm{O} 2-$ Polarity: $" 1 "=$ positive, $" 0 "=$ negative
OO - Out of range condition exists if $\mathrm{OO}=1$. When used in conjunction with Q3 the type of out of range condition is indicated, i.e., $Q 3=0 \rightarrow O R$ or $Q 3=1 \rightarrow$ UR

When only segment b and c of the decoder are connected to the $1 / 2$ digit of the display, $4,0,7$ and 3 appear as 1 .

FIGURE 2 - MSD Coding

The total conversion time for the MC14433 is approximately 16400 clock periods. This conversion time includes the auto-zero cycle and the unknown input measurement cycle. The clock frequency may be operated up to about 400 kHz producing a conversion time of 40 ms .

MPU

The Motorola microprocessor system devices used are the MC6800 MPU, MCM6810 RAM, MCM6830 ROM and MC6820 PIA (peripheral interface adapter). The following is a brief description of the basic MPU system as it pertains to the A/D systems presented later in this application note.

The Motorola MPU system uses a 16 -bit address bus and an 8 -bit data bus. The 16 -bit address bus provides 65,536 possible memory locations which may be either storage devices (RAM, ROM, etc.) or interface devices (PIA, etc.). The basic MPU contains two 8 -bit accumulators, one 16 -bit index register, a 16 -bit program counter, a 16 -bit stack pointer, and an 8 -bit condition code register. The condition code register indicates carry, half carry, interrupt, zero, minus, and 2's complement overflow. Figure 3 shows a functional block of the MC6800 MPU

The MPU uses 72 instructions with six addressing modes which provide 197 different operations in the MPU. A summary of each instruction and function with the appropriate addressing mode is shown in the MC6800 data sheet.

The RAMs used in the system are static and contain 1288 -bit words for scratch pad memory while the ROM is mask programmable and contains 10248 -bit words. The ROM and RAM, along with the remainder of the MPU system components, operate from a single +5 volt power supply; the address bus, data bus and PIAs are TTL compatible.

The MPU system requires a 2ϕ non-overlapping clock such as the MC6875* with a lower frequency limit of 100 kHz and an upper limit of 1 MHz .
*MC6875 to be introduced second quarter 1977

FIGURE 3 - MPU Pin Functions
The PIA is the interface device used between the address and data buses and the analog sections of the A/D. Each PIA contains two essentially identical 8 -bit interface ports. These ports (A side, B side) each contain three internal registers that include the data register which is the interface from the data bus to the A / D, the data direction register which programs each of the eight lines of the data register as either an input or an output, and the control register which, in addition to other functions, switches the data bus between the data register and the data direction register. Each port to the PIA contains two addition pins, CA1 and CA2, for interrupt capability and extra I/O lines. The functions of these lines are programmable with the remaining bits of the control register. Figure 4 shows a functional block of the MC6820 PIA.

Each PIA requires four address locations in memory. Two addresses access either of the two (A or B sides) data/ data direction registers while the remaining two addresses access either of the two control registers. These addresses are decoded by the chip select and register select lines of the PIA which are connected to the MPU address bus. Selection between the data register and data direction register is made by programming a " 1 " or " 0 " in the third least significant bit of each control register. A logic " 0 " accesses the data direction register while a logic "I" accesses the data register.

By programming " 0 " s in the data direction register each corresponding line performs as an input, while " 1 "s in the data direction register make corresponding lines act as outputs. The eight lines may be intermixed between inputs and outputs by programming different combinations of

FIGURE 4 - PIA Functions
" 1 "s and " 0 "s into the data direction register. At the beginning of the program the I / O configuration is programmed into the data direction register, after which the control register is programmed to select the data register for $1 / 0$ operation.

8-CHANNEL DATA ACQUISITION NETWORK

Figures 5 and 6 are the flow diagram for the 8 -channel data acquisition network. Figure 5 shows the basic operation of the program while Figure 6 provides more detail on the A / D conversion routine. These flow diagrams relate to the actual software shown in Figure 8. The hardware required for the data acquisition is shown in Figure 9; as can be seen, it is fairly simple, consisting of the MC14433, MC1403* reference, MC14051B analog multiplexer, and an MC6820 PIA. The PIA is used as the interface between the microprocessor address and the data bus to the A/D. The microprocessor and associated memory are not shown due to a wide variety of forms possible depending upon the task that the total system is performing.

The reference for the MC14433 is an MC1403 bandgap reference which provides an output voltage of 2.5 volts. This voltage is divided down by the $20 \mathrm{k} \Omega$ pot to the 2.000 volt reference required by the MC14433. If a 200 mV reference is used, full scale for the DAN will be 199.9 mV .

The analog multiplexing required to handle the eight input channels is provided by a MC14051B CMOS multiplexer. This device selects one of eight inputs with a 3 -bit binary code. The device is capable of switching dual polarity (plus or minus inputs) with a single polarity control voltage.
*MC1403 to be introduced first quarter 1977

The MC14433 BCD output and digit select outputs are connected to the B side of the PIA as shown in lines 21-28 of the software routine. These lines of the software are comment lines only and do not result in code for the microprocessor. The B side data register of the PIA is labeled throughout the program as PIA1BD while the control register is labeled PIA1BC. The control I/O lines (CB1 and CB2) of the B side PIA are connected to EOC and DU of the MC1433.

FIGURE 5 - Basic Operation of 8 Channel DAN

FIGURE 6 - A/D Conversion Subroutine Flow Chart

The first executable instruction for the program is in line 55 and starts a section called PIA assembly. The PIA sets the A side data register as all outputs and the B side data register as all inputs. From there the program goes to the main program simulation which, as its name implies, is a simulation of the user's main program. At such time in the user's program that some analog information is required, the A/D conversion subroutine starting in line 75 is executed. This routine synchronizes the program with the A/D conversion cycle and selects the first channel to be measured.

After the A/D conversion cycle for the first channel is completed the microprocessor is interrupted by the EOC of the MC14433. The interrupt program of line 88 is then executed; this demultiplexes the BCD output of the MC14433 and stores the data in memory. After completing he interrupt program the microprocessor returns to the

A/D conversion subroutine and the next channel is selected. When the measurement of channel 2 is completed, the interrupt program is then executed and the resulting data stored away in memory. This procedure is repeated until all eight channels are read, after which the MPU returns to the main program. At this point the data obtained in the A/D conversion subroutine may be processed as required.

Looking at the software for the 8 -channel data acquisition network in more detail, program storage of the final results begins in memory location $\$ 0010$. Each BCD character is stored in the four LSBs of these memory locations. See Figure 7 for explanation of data storage. Each of the eight channel readings requires four memory

Channel Number	Memory Address	Digit	Data Example	Input Voltage
1	0010 0011 0012 0013	MSD LSD	$\begin{aligned} & 01 \\ & 07 \\ & 02 \\ & 09 \end{aligned}$	1.729 V
2	0014 0015 0016 0017	MSD LSD	$\begin{aligned} & \text { F1 } \\ & 09 \\ & 09 \\ & 09 \end{aligned}$	Overrange
3	0018 0019 001A 001B	MSD LSD	$\begin{aligned} & 08 \\ & 01 \\ & 03 \\ & 00 \end{aligned}$	-0.130 V
4	001C 001D 001E 001F	MSD LSD	$\begin{aligned} & 09 \\ & 01 \\ & 03 \\ & 00 \end{aligned}$	$-1.130 \mathrm{~V}$
5	$\begin{aligned} & 0020 \\ & 0021 \\ & 0022 \\ & 0023 \end{aligned}$	MSD LSD	$\begin{aligned} & 00 \\ & 00 \\ & 00 \\ & 00 \end{aligned}$	0.000 V
6	$\begin{aligned} & 0024 \\ & 0025 \\ & 0026 \\ & 0027 \end{aligned}$	MSD LSD	$\begin{aligned} & 01 \\ & 00 \\ & 00 \\ & 00 \end{aligned}$	1.000 V
7	$\begin{aligned} & 0028 \\ & 0029 \\ & 002 A \\ & 002 B \end{aligned}$	MSD LSD	$\begin{aligned} & \text { F1 } \\ & 09 \\ & 09 \\ & 09 \end{aligned}$	Overrange
8	$\begin{aligned} & 002 \mathrm{C} \\ & 002 \mathrm{D} \\ & 002 \mathrm{E} \\ & 002 \mathrm{~F} \end{aligned}$	MSD LSD	$\begin{aligned} & 09 \\ & 00 \\ & 00 \\ & 00 \end{aligned}$	$-1.000 \mathrm{~V}$

FIGURE 7 - Data Storage Definition
cycie the index register points to the MSD of that channel. This address is also stored at memory location called STORL.

Memory location TEST has two purposes; the first is for keeping track of which WAI was executed when the MPU was in the interrupt routine. This is required since more than one A/D conversion cycle is required for each channel. For the first channel three EOC pulses are required, while the remaining channels require only two A/D conversion cycles. The extra A/D conversion cycle in the first channel is used to synchronize the A/D converter to the MPU system. The second A/D conversion cycle in the first channel and the first conversion cycle of the remaining channels ensure that the polarity is correct for the current input. This is required since the MC14433 determines polarity in the previous conversion cycle.

Since the display update pin is edge triggered it must be taken high and low again in each conversion cycle when the data is to read by the MPU. The DU pin is taken high prior to the WAI for the measurement and low in the interrupt routine after the EOC occurs.

As mentioned previously, the multiplexed BCD data from the MC14433 is demultiplexed in the interrupt routine. A " 1 " is placed in bit 4 of POINTR which is
select occurs to look for the next successive digit select line.
After all four digits are placed in memory the MSD is checked for overrange. If this condition occurs an \$F1 is placed in the MSD for this channel. Otherwise the half digit and polarity are decoded. Memory location TEST is now used as a temporary storage location to decode the polarity. The half digit is placed in the LSB of the MSD and negative polarity is indicated by placing a " 1 " in the MSB of the MSD.

The 8 -channel DAN conversion time is approximately 320 ms with a 400 kHz clock frequency on the MC14433.

SAMPLE AND HOLD

The dual ramp A/D conversion process requires that the input to the A / D remain constant during the conversion cycle. If it does not, a sample and hold circuit must be used to insure a constant input.

SINGLE-CHANNEL DAN

Figure 10 contains the software for a single-channel DAN. The hardware will be the same as Figure 8 except for the analog multiplexing. The program is the same except for the analog multiplexer control.

FIGURE 8 - 8-Channel Data Acquisition Network

```
    83.000 LDA B =:$07
    84.000 N STA B PIA1AL
    85.000 LDA A :503
    86.000 STA A TEST
    87.000 LDA A =$$37
    85.000 STA A PIA1BC
    89.000 WAI
    90.000 NBF
    91.000 WAI
    92.000 DEC B
    93.000 BPL N
    94.000 RTS
    95.000
    96.000
    97.000
    98.000 JRG $0350
    99.000 LDA A :33F
100.000 STA A FIA1EO
101.000 LSR TEST
102.000 ECC FIRST
103.000 LIA A :354
104.000 STA A FIR1BC
105.000 BEGIN LDA A =$10
106.000 STA A FOINTR
107.000 LDX $0000
108.000 NEXT LDA A PIF1ED
109.000 RDR TEST
110.000 ADD B TEST
111.000 TAE
112.000 AMD A POINTR
113.000 EEQ NEXT
114.000 ASL PDINTR
115.000 AND B =$0F
116.000 STA E 4,X
117.000 INX
118.000 BCC NEXT
119.000 LDA A 0,X JVERRANGE TEST
120.000 TAE
121.000 AND 9 # #$0B
122.000 CMP 9 #$03
123.000 BEQ DVRNGE
124.000 CLR TEST
125.000 AND E #&0C
126.000 LSR E
127.000 LSR B
128.000 LSR E
129.000 RUR TEST
130.000 ADD E TEST
131.000 CDM B
132.000 AND E :%$81
133.000 STA E 0,X
134.000 BRA FINE
135.000 वVRNGE LDA A #FF1 DVERRRNGE RDUTINE
136.000 STA A 0, X
```


DUMMY LGAI TD CLF INTERRUPT

140.000 RTI
141.000 QRE \$0550
142.000 FDE \$03F0
143.000 MDN

FIGURE 8 - 8-Channel Data Acquisition Network

FIGURE 9 - 8-Channel Data Acquisition Hardware

FIGURE 10 - Single-Channel Data Acquisition Network

FIGURE 10 - Single-Channol Data Acquisition Network

3-103

109.000	BEQ LVRNGE	
110.000	CLR TEST	HALF DIGIT AND PDI_ARITY
111.000	AND E $\because 50 \mathrm{C}$	AL IGMMENT
112.000	LSR B	
113.000	LSR B	
114.000	LSR B	A19
115.000	RUR TEST	
116.000	ADD E TEST	
117.000	COM B	
118.000	AND $\mathrm{B}=\$ 81$	
119.000	STA B \$0010	
120.000	ERA FINE	
121.000	DVRNGE LDF A :3F1	JVミRRANGE RDUTIME
122.000	STA A 50010	
123.000	FINE STX STDRL	
124.000	RTI	
125.000	DELAY LDA H PIA1BD	
126.000	RTI	
127.000	पFG \$08F8	
128.000	FDE $\$ 0850$	
129.000	MDN	

FIGURE 10 - Single-Channel Data Aequisition Network

REFERENCES

Aldridge, Don: "Analog-To-Digital Conversion Techniques with the M6800 Microprocessor System", AN757,Motorola Semiconductor Products Inc.
M6800 Microprocessor Applications Manual, Motorola Semiconductor Products Inc.
M6800 Microprocessor Programming Reference Manual, Motorola Semiconductor Products Inc.
MC6800, MC6820 Data Sheets, M6800 Microcomputer System Design Data, Motorola Semiconductor ProductsInc.

MC1403/1503 Data Sheet, Motorola Semiconductor Products Inc.
MC14051B Data Sheet, Motorola Semiconductor Products Inc.
MC14433 Data Sheet, Motorola Semiconductor Products Inc.

Interfacing The MC6108 A/D To a Microprocessor

 It's Easier Than You Think!
Prepared by

Dennis R. Morgan
Motorola, Inc. Analog IC Division

INTRODUCTION

This application note will supplement information in the MC6108 data sheet by describing the detailed requirements for interfacing the Analog-to-Digital converter to a microprocessor. The hardware requirements, and the programming necessary to execute a conversion and read the data, in several different configurations, will be discussed. The microprocessor used in developing this application note is the MC6802 (operating off a 3.58 MHz crystal), a representative sample of the MC6800 family.
Because of the short conversion time of the MC6108, "Wait" states and "Wait for Interrupt" instructions are generally not needed with most microprocessors. The microprocessor can issue a CONVERT instruction, and immediately thereafter, issue a READ instruction, regardless of whether the MC6108 is read through a port (MC6821), or read off the bus directly.

MC6108 OPERATION

The MC6108 is a high-speed, 8 -bit, A/D converter using the familiar Successive Approximation technique. Referring to the block diagram in Figure 1, the device includes the SAR, 8 -bit DAC, comparator, 2.5 volt precision reference, matched resistors for $+10,+5$ and ± 5 volt inputs, and control logic.

By connecting the internal temperature stable 2.5 volt reference to the Gain R pin, a reference current of $=1$ $m A$ is supplied to the DAC. That current is gained up by $\times 4$ by the DAC, and then attenuated by the digital code from the SAR. The analog input signal is applied to $R_{\text {in }}$ (for 0 to +10 volts), or $R_{\text {off }}$ for 0 to +5 volts, and the current from that signal is compared with the DAC's output current by the comparator during the successive approximation process. The converter will accept a ± 5 volt input by connecting the 2.5 volt reference to $R_{\text {off }}$.

Figure 1. Block Diagram
and the input to R_{in}. Other input voltages can be accommodated by using external resistors at Ref In and +Comp, instead of the internal resistors, and grounding Gain R, $\mathrm{R}_{\text {in }}$, and $\mathrm{R}_{\text {off. }}$. In the circuits tested for this application note, the analog side of the MC6108 was configured as shown in Figure 2.

Figure 2. Analog Connections

Proper operation with a 5 MHz clock is guaranteed, although with careful attention to detail, clock rates as high as 10 MHz can be used. The control signals include Chip $\overline{\text { Select }}(\overline{\mathrm{CS}})$, Clock, $\overline{\text { Read }}(\overline{\mathrm{R}}), \overline{\text { Start }}(\overline{\mathrm{S}})$, Conversion Complete (CC), Data/Status (D/ST), and Code Select (CodeSel). The digital inputs and outputs are TTL compatible, with 3 -state capability controlled by the above inputs.

Figure 3 shows the timing of the MC6108 during a conversion. The clock need not be synchronous with the other signals, and can run continuously. CS enables the device, and $\overline{\mathrm{S}}$ must receive an active low pulse to initiate the conversion. The timing requirements are two: 1) CS, $\overline{\mathrm{S}}$, and Clock must be simultaneously low for a minimum of 50 ns (they may go low in any sequence); and 2) at least one low-to-high clock transition must occur during the $\overline{\mathrm{S}}$ low time. After $\overline{\mathrm{S}}$ switches high, the conversion starts on the next clock rising edge. The conversion requires 7 clock cycles thereafter.
$\overline{\mathrm{CC}}$ (Conversion Complete) switches high at the beginning of the conversion process (when $\overline{\mathrm{S}}, \overline{\mathrm{CS}}$, and Clk are low) to indicate "busy," and switches low at the clock's rising edge corresponding to the end of the conversion. The data outputs ($\mathrm{D} 7-\mathrm{DO}$) are in a high impedance (3state) mode during the conversion, and go active (within 40 ns) after $\overline{\mathrm{CC}}$ switches low. The outputs are also in the 3 -state mode whenever $\overline{\mathrm{CS}}$ is high.

Not shown in Figure 3 is the effects of the $\overline{\mathrm{R}}$ ($\overline{\text { READ }}$) input. \bar{R} affects the state of the outputs in that when \bar{R} is low, the outputs are active (if $\overline{\mathrm{CS}}$ is low and the MC6108 is not converting), and taking \bar{R} high puts the outputs into the 3 -state mode. The difference between $\overline{\mathrm{R}}$ and $\overline{\mathrm{CS}}$ is that $\overline{\mathrm{CS}}$, when high, inhibits a conversion, whereas $\overline{\mathrm{R}}$ does not affect the conversion process. Therefore, in the following examples where the MC6108 is connected directly to the microprocessor bus, $\overline{\mathrm{CS}}$ is hard-wired low, $\overline{\mathrm{S}}$ will initiate the conversions, and \bar{R} will be controlled by the address decoder when data is to be read. Where the MC6108 is read through a port, $\overline{\mathrm{R}}$ is hard-wired low.

ADDRESS DECODING

In order for the MC6802 microprocessor to read data from memory or memory-like devices (the MC6108 is a "read only" device), the timing requirements of Figure 5 must be satisfied. The requirements are that the data from the MC6108 must be valid while R/W is high, while VMA (Valid Memory Address) is high (which ensures the address to the decoder is valid), and while the E clock is high.

Figure 3. Timing Diagram

Figure 4. Address Decoder

In the microprocessor circuit used to develop the following examples, the address block $E 800 \mathrm{H}-E F F F_{H}$ was unused, and so the address EB01H was chosen for the MC6108. Since the entire block of 1 K bytes was free, an incomplete decoding was possible, simplifying the decoder. Figure 4 is the schematic of the decoder, which uses three LS ICs, plus two inverters. Address lines A15 through A7, and A0, are used to activate the MC6108 at address $\mathrm{EB01} \mathrm{H}$, although any address satisfying the code $111010110 \times x \times$ xxx1 will work. If other addresses satis-
fying that code interfere with other devices in the system, then a more complete decoding involving A6-A1 is necessary.
R/W, E (phase 2 clock), and VMA are also included in the decoder to satisfy the requirements of the MC6802 microprocessor. The LS155 (along with the LS20) provides a decode (active low) for each of the 1 K blocks from $E 000_{H}$ through FFFF $_{H}$. The LS30 provides the rest of the decoding, and provides an active low output which is connected directly to the $\overline{\mathrm{R}}$ input on the MC6108.

Figure 5. MC6802 Read Data From Memory

CIRCUIT EXAMPLES

The following seven examples include:

- The MC6108 directly on the microprocessor bus, controlled from a port (MC6821), and clocked from an independent, asynchronous clock (examples 1 and 2).
- The MC6108 directly on the microprocessor bus, controlled from a port (MC6821), and clocked from the microprocessor system clock (example 3).
- The MC6108 directly on the microprocessor bus, controlled with discrete logic rather than a port, and using an asynchronous clock (example 4).
- The MC6108 data outputs and control lines on a port, and using an asynchronous clock lexamples 5 and 6).
- The MC6108 data outputs and control lines on a port, and using the microprocessor system clock (example 7).
All of the examples involve initializing the port where necessary, reading the MC6108 1024 times, and storing the 1 K bytes in memory. The port (MC6821 PIA) is at the following address locations: Port ADData Direction Reg. A @ E480H, Control Reg. A @ E481H, Port B/ Data Direction Reg. B@E482H, and Control Reg. B @ E483H. The 1 K bytes of data are stored at $\mathrm{E} 000 \mathrm{H}-$ E3FFH , and those beginning and ending addresses are stored at $007 \mathrm{C}_{\mathrm{H}}-007 \mathrm{~F}_{\mathrm{H}}$ (for use with the Index Register). The addresses used for the instructions in the listings are for reference only

EXAMPLES 1-4

Examples 1-3 use the MC6821 PIA (Peripheral Interface Adapter) to provide the start pulse ($\overline{\mathrm{S}}$) to the MC6108. Examples 1 and 3 make use of the PIA's ability to output a single active low pulse at CB2 in response to a "write" operation to the B port, by loading the B control register (CRB) bits 5, 4 and 3 with a 101. The pulse width is one E clock cycle ($1.117 \mu \mathrm{~s}$). Example 2 uses bit 7 of port A (PA7) to provide the $\overline{\mathrm{S}}$ pulse for those cases where the CB2 pin is not available. The pulse width is seven E clock cycles ($7.8 \mu \mathrm{~s}$) as a result of the instructions used.

Example 4 eliminates the need for a port, instead using an address decoding technique to provide both the Start pulse, and the reading of the data.

EXAMPLE \#1

Since port B of the PIA may be used for other peripherals, with some or all lines as outputs, this program sequence involves first reading port B's Peripheral Data Register, and then writing back the same information, so as to not disturb the outputs. The write operation creates the pulse at the CB2. The data from the MC6108 is read immediately thereafter. See Figure 6 for the schematic, and Figure 7 for the timing involved.

Address	OpCode	Mnemonic	Notes
		Wh	Start Initialization-
01	86	LDAA \#\$2C	
02	2 C		
03	87	STAA SE483	Set CB2 to Output
04	E4		
05	83		
			-Start Read/Store Program-
06	86	LDAA \#SEO	Load 007C, 7D with E000
07	EO		1
08	97	STAA \$7C	1
09	7 C		1
OA	7 F	CLR \$70	1
OB	00		,
${ }^{0} \mathrm{C}$	7 D		
OD	DE	LDX \$7C	Set Index Register to $\mathrm{EOOO}_{\mathrm{H}}$
OE	7 C		
OF	86	LDAA \#SE4	Load 007E, 7F with E400
10	E4		
11	97	STAA \$7E	,
12	7E		i
13	7 F	CLR \$007F	1
14	00		1
15	7F		
16	B6	LDAA SE482	Read Data at Port B
17	E4		
18	82		
19	B7	STAA \$E482	
1 A	E4		for one E Cycle ($\overline{\mathrm{S}}$ pulse).
1 B	82		
1 C	B6	LDAA \$EB01	Read 6108 Data
1D	EB		
1 E	01		
1 F	A7	STAA \$00, X	Store 6108 Data
20	00		

Figure 7. Example \#1 Timing volves writing to the A port to bring PA7 low, then high, and then reading the data from the MC6108. See Figure 8 for the schematic, and Figure 9 for the timing involved.

Address	OpCode	Mnemonic	Notes
1 B	86	LDAA \#\$E4	Load 007E, 7f with E400 H
1 C	E4		Load I
1D	97	STAA \$7E	I
1E	7 E		1
1 F	7 F	CLR \$007F	i
20	00		i
21	7F		1
22	7F	CLR \$E480	Set PA7 $=0$
23	E4		
24	80		- \bar{S}
25	86	LDAA \#\$80	- $\overline{\mathbf{S}}$ pulse
26	80		
27	B7	STAA \$E480	Set PA7 $=1$
28	E4		
29	80		
2A	B6	LDAA \$EB01	Read 6108 Data
2 B	EB		
2 C	01		
2D	A7	STAA \$00, X	Store 6108 Data
2E	00		
2 F	08	INX	Increment Index Register
30	9 C	CPX \$7E	Compare Index Reg. with 7E/7FH (E400H)
31	7 E		
32	2C	BGE \$03	Branch IF $\geqslant 0$ to $\$ 0037$
33	03		
34	7E	JMP \$0022	Jump to \$0022 - Read Next Byte
35	00		
36	22		
37	??	$?$	1K Bytes stored - Next Instruction

Figure 8. Reading Data Off The Bus - Example \#2

Figure 9. Example \#2 Timing

EXAMPLE \#3
This example is similar to example \#1, except that the microprocessor's system clock (E) is used by the MC6108, rather than the faster 5 MHz clock. Because of the clock cycles required by the MC6108 to complete its conversion, 3 No Op instructions (6 clock cycles) are inserted between the start command ($\overline{\mathrm{S}}$ pulse), and the reading
of the data. The program sequence involves reading port B , and then writing back the same information so as to not affect any outputs. The write operation creates the $\overline{\mathrm{S}}$ pulse at the CB2 output. The data is then read (after the 3 No Ops). See Figure 10 for the schematic, and Figure 11 for the timing involved.

Figure 11. Example \#3 Timing

EXAMPLE \#4
This example does not use a PIA port for either the start ($\overline{\mathbf{S}}$) or the Read ($\overline{\mathrm{R}}$) operation, but instead uses some gates in addition to the address decoder of Figure 4. Address line A0 is removed from its place in Figure 4, and instead implemented as shown in Figure 12 so as to provide decoding at two addresses (EB00H and EB01H). The microprocessor is made to read address EB00H , creating an active low pulse at $\overline{\mathrm{S}}$. The width of the pulse is 0.56 $\mu \mathrm{s}$ ($1 / 2 \mathrm{E}$ clock cycle), which is wide enough when using
a 5 MHz clock for the MC6108. Due to the requirements of the MC6108, the minimum clock frequency usable in this configuration is $2 \times$ E clock frequency. Reading the data, by means of the \bar{R} input is the same as in the previous examples. The two LS04 inverters in series with the lower OR gate provide a propagation delay to allow for the propagation delay of the address decoder block, thus preventing glitches at the $\overline{\mathrm{S}}$ input. Figure 13 shows the timing involved.

Figure 13. Example \#4 Timing

EXAMPLES 5-7

Examples 5-7 use the MC6821 PIA for reading the data (through its B port) from the MC6108, as well as for the control. Examples 5 and 7 make use of the PIA's ability to output a single active low pulse at CB2 in response to a "write" operation to the B port, by loading the B control register (CRB) bits 5, 4, and 3 with a 101. The pulse width is one E clock cycle ($1.117 \frac{\mu}{\mathrm{~S}}$). Example 6 uses bit 7 of port $\mathrm{A}(\mathrm{PA} 7)$ to provide the $\overline{\mathrm{S}}$ pulse for those cases where the CB2 pin is not available. The pulse width is seven E
clock cycles ($7.8 \mu \mathrm{~s}$) as a result of the instructions used.
EXAMPLE \#5
The program sequence for this example is to write a 00 H to the B port to create the pulse at CB2 (writing to inputs does not affect them), and then reading the same port to obtain the MC6108's data. The conversion sequence requires one No Op before the read instruction due to the setup time required by the PIA. See Figure 14 for the schematic, and Figure 15 for the timing involved.

Address	OpCode	Mnemonic	Notes
			-Start Initialization-
01 02	$\begin{aligned} & 7 \mathrm{~F} \\ & \text { E4 } \end{aligned}$	CLR \$E483	Access PIA's DDRB
03	83		
04	7F	CLR \$E482	Set PB7-0 $=$ Inputs \quad Initialize
05	E4		PIA
06	82		
07	86	LDAA \#S2C	
08	2 C		
09	87	STAA \$E483	Access Per. Data Reg. B,
OA	E4		Set CB2 to Output
OB	83		-End Initialization-
			-Start Read/Store Program-
10	86	LDAA \#SEO	Load 007C, 7D with E000H
11	E0		
12	97	STAA S7C	,
13	7 C		I
14	7 F	CLR \$7D	I
15	00		
16	70		
17	DE	LDX \$7C	Set Index Register to $\mathrm{EOOO}_{\mathrm{H}}$
18	7 C		
19	86	LDAA \#SE4	Load 007E, 7F with E400H
1 A	E4	STAA \$7E	-
1 C	7 E		I
1 D	7F	CLR \$007F	,
1 E	00		,
1 F	7 F		
20	7 F	CLR \$E482	Write ${ }^{00} \mathrm{H}$ to Port B; CB2 pulses low for
21	E4		one E Cycle ($\overline{\mathrm{S}}$ pulse)
22	82		
23	01	No Op	Required for PIA's setup time
24	B6	LDAA \$E482	Read port B (Read MC6108)
25	E4		
26	82		
27	A7	STAA \$00, X	Store Port B Data
28	00		
29	08	INX	Increment Index Reg.
2 A	9 C	CPX \$7E	Compare Index Reg. with 7E/7FH (E400H)
$2 \mathrm{2B}$	7 l		
2 D	2 C 03	BGE \$03	Branch IF $\geqslant 0$ to $\$ 0031 \mathrm{H}$
2 E	7 E	JMP \$0020	Jump to \$0020H - Read Next Byte
2 F	00		
30	20		
31	??	?	1K Bytes stored - Next Instruction

Figure 14. Reading Data Through a Port Example \#5

EXAMPLE \#6

The program sequence for the conversion is to write to the A port to bring PA7 low, and then high, and then read the B port to obtain the MC6108's data. The conversion occurs within the cycle time between PA7 switch-

Figure 15. Example \#5 Timing
ing high and reading the data, requiring no WAIT or NOOP instructions in between. See Figure 16 for the schematic, and Figure 17 for the timing involved.

Address	OpCode	Mnemonic	Notes
01	7F	CLR \$E481	-Start InitializationAccess PIA's DDRA
02	E4		
03	81		
04	86	LDAA \#\$80	
05	80		
06	B7	STAA \$E480	Set PA7 $=$ Output (PA7 will provide $\overline{\mathbf{S}}$ pulse)
07	E4		
08	80		
09	86	LDAA \#\$04	
OA	04		
OB	B7	STAA \$E481	Access Per. Data Reg. A
OC	E4		
OD	81		
OE	86	LDAA \#\$80	
OF	80		
10	B7	STAA \$E480	Set PA7 $=1$
11	E4		
12	80		
13	7 F	CLR \$E483	Access PIA's DDRB
14	E4		
15	83		
16	7F	CLR \$E482	Set PB7-0 = Inputs
17	E4		
18	82		
19	86	LDAA \#\$04	
1 A	04		
1 B	B7	STAA \$E483	Access Per. Data Reg. B
1 C	E4		
1D	83		-End Initialization-
			-Start Read/Store Program-
20	86	LDAA \#\$E0	Load 007C, 7D with E000H
21	E0		I
22	97	STAA \$7C	I
23	7 C		

EXAMPLE \#7
The program sequence for this example (using the system E clock rather than a 5 MHz clock for the MC6108) is to write a 00_{H} to the B port to create the $\overline{\mathrm{S}}$ pulse at CB2 (writing to inputs does not affect them), and then reading the same port to obtain the MC6108's data. Between

OTHER EXAMPLES
Figure 20 illustrates a method for controlling several MC6108 A/D converters. The four devices are permanently enabled ($\overline{\mathrm{CS}}=$ low) as shown in Figure 2. The PIA is set up to output a single active low pulse at the CB2 pin, as described prior to Example \#1 in this application note, to initiate the conversion. The convert command ($\overline{\mathrm{S}}$ pulse) is provided to all four converters simultaneously. The address decoder, composed of the 74LS30, LS04s, LS11, and LS155, results in one of the four converters being read by the microprocessor, depending on which address (EB00 through EB03) is selected. It should be
noted that the decoder shown in this example is incomplete, as address lines A7-A2 are not included. Each individual application will determine the need for more complete decoding.

Some variations of the circuit shown are:

1) Extend the decoder to include address line A2, and use one line of the other half of the LS155 (only the " A " half is shown) to provide the \bar{S} pulse to the converters, eliminating the need for the PIA.
2) Use the other half of the LS155 to provide individual $\overline{\mathrm{S}}$ pulses to each converter.

Figure 20. Handling Multiple MC6108s

Figure 21 illustrates an additional configuration for controlling several MC6108 A/D converters. In this case, the MC6821 PIA is used to both initiate the conversion, and read the data. The active low pulse at CB2 is provided to all the converters simultaneously. The selected MC6108 is then activated by bringing its $\overline{R E A D}$ pin low, by means of the appropriate line at the A port. The data is then read through the B port, and then the READ input is taken high. The remaining pins of each MC6108 are connected as shown in Figure 2.
Figure 22 illustrates the circuitry for reading in an analog signal, processing it according to the system requirements, and then producing an analog signal out by means of the DAC-08 D/A converter. The digital data to be converted to analog is stored in the 74LS273 octal latch when its CP input receives an active low pulse from the address decoder. In Figure 22, the latch is considered a "write only" location at address EB01. On the rising edge of the CP pulse, the data is transferred to the DAC08 by means of the Q outputs. The output of the DAC is a current proportional to the reference current and the digital data presented to it. The op amp converts that current to an output voltage by means of the feedback resistor $R_{X}\left(M a x V_{\text {out }}=R_{X} \times 2 \mathrm{~mA}\right)$.
The reference current for the DAC-08 is supplied from
the MC6108's reference supply ($\mathrm{V}_{\text {ref }}$). Settling time of the output voltage is approximately $1 \mu \mathrm{~s}$ with any of the currently available fast op amps, such as the MC34001 family, MC33070 family, MC34074 family, or the MC34080 family. The DAC-08 can be powered from the same +5 and -5.2 volt supplies used for the MC6108.
The MC6108 receives its Start command ($\overline{\mathrm{S}}$ pulse) from an MC6821 PIA's CB2 output, as described in Example \#1. Since the MC6108 can be considered a "Read Only" memory location, and the 74LS273 latch a "Write Only" location, they are placed at the same address (EB01 in Figure 22), but set to respond to Read and Write commands (LDAA and STAA for the MC6802 MPU). In Figure 22, the address decoder is the same as in Figure 4, except that the $R \bar{W}$ line has been relocated. Reading the MC6108 is the same as in previous examples. When writing to the 74LS273 latch, the output pulse from the decoder (at the upper LS32 gate) is shortened to 300 ns to ensure that its rising edge occurs while data on the data bus is still valid.

CONCLUSION

The examples have shown that interfacing the MC6108 A/D converter to a microprocessor is a relatively simple process. The flexibility associated with the various control

Figure 21. Handling Multiple 6108s

Figure 22. The MC6108 A/D and DAC-08 D/A
lines allow several combinations of a port and address decoder to be used for controlling the converter, and for reading the data.

The examples indicate there is an inverse relationship between the amount of hardware and the length of programming required. Each individual application will determine the right combination of the two.

The MC6108's high speed ($1.8 \mu \mathrm{~s}$) facilitates programming the system since interrupts and long wait states are
generally not required. In most cases, the READ instriction can immediately follow the CONVERT instructions.

REFERENCES

- MC6108 Data Sheet, 1986
- MC6802 Data Sheet, 1979
- MC6821 Data Sheet, 1978
- DAC-08 Data Sheet, 1986

