
SDK-a5
System Design Kit
Users Manual
Manual Order Number 9800451 B

.....

"'"-----------------I DUlJ~~® .

SDK-a5
System Design Kit
Users Manual
Manual Order Number 9800451B

Copyright © 1978 Intel Corporation

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

ii

Additional-copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to describe Intel products:

i iSBC Multimodule
ICE Library Manager PROMPT
iCS MCS Prom ware
Insite Megachassis RMX
Intel Micromap UPI
Intelevision Multibus !,Scope
Intellec

and the combination of ICE, iCS, iSBC, MCS, or RMX and a numerical suffix.

I A164/0280/25K FL I

CHAPTER 1
DESCRIPTION 1-1

CHAPTER 2
HOW TO ASSEMBLE THE KIT·

GENERAL. 2-1
GETTING ORGANIZED 2-1
SELECTING TOOLS AND MATERIALS 2-2
UNPACKING AND SORTING PARTS. 2-3
A REVIEWOF BASIC ASSEMBLY AND

SOLDERING TECHNIQUES 2-6
ASSEMBLY PROCEDURE. 2-7

CHAPTER 3
FINAL ASSEMBLY AND CHECKOUT

GENERAL 3-1
STRAPPING OPTIONS 3-1
POWER SUPPLY WI RING. . . . 3-1
INSTALLING LARGE IC DEVICES 3-4
STARTING THE FI RST TIME . . 3-6
WHAT I F IT DOESN'T? 3-7
CONNECTING A TELETYPEWRITER 3-8

CHAPTER 4
OPERATING INSTRUCTIONS

WHAT IT DOES.
THE BUTTONS AND DISPLAYS

Reset
Substitute Memory
Examine Registers
Go
Single Step . . .
Vector Interrupt .
Program Debugging -

The Use of Breakpoints
Error Conditions - Illegal Key
Memory Substitution Errors .

TELETYPEWRITER OPERATION
Console Commands.
Use of the Monitor for Programming

and Checkout
Command Structure
Display Memory Command, 0
Program Execute Command, G
I nsert I nstructions into RAM, I

4-1
4-1
4-2
4-2
4-4
4-6
4-8
4-9

4-9
4-9
4-9
4-9
4-9

4-10
4-10
4-10
4-10
4-11

CONTENTS

Move Memory Command, M . .
Substitute Memory Command, S .
Examine/Modify CPU Registers

Command, X
Programming Debugging -

Breakpoint Facility. .
Error Conditions - Invalid Characters.
Address Value Errors

CHAPTER 5
THE HARDWARE

OVERVIEW
SYSTEM COMPONENTS

The 8085 CPU & The System Buses
The 8155
The 8355 & 8755
The 8279
The 8205

SDK-85 MEMORY ADDRESSING.
INPUT/OUTPUT PORT AND

PERIPHERAL DEVICE ADDRESSING.
Accessing the 8279 Keyboard/Display

4-11
.4-12

4-12

4-13
4-13
4-13

5-1
5-1
5-1
5-1
5-2
5-2
5-2
5-3

5-5

Controller 5-5
PROCESSOR INTERRUPT

ALLOCATION 5-7
THE SERIAL DATA INTERFACE. 5-7
CONVERTER CIRCUIT FOR

RS232C SERIAL PORT. . 5-8
ADDITIONAL INTERFACES 5-8

CHAPTER 6
THE SOFTWARE

THE SDK-85 MONITOR. 6-1
PROGRAMMING HINTS 6-1

Stack Pointer 6-1
RAM-I/O Command Status Register (CSR) 6-1
Access to Monitor Routines 6-1

PROGRAMMING EXAMPLES 6-1

APPENDIX A.
MONITOR LISTING

APPENDIX B
DIAGRAMS

iii

Figure 1-1. SDK-85 System Design Kit

1-0

The MCS-85 System Design Kit (SDK-85) contains
all the parts with which you can build a complete
8085 microcomputer system on a single board, and
a library of MCS-85 literature to help you learn to
use it. The finished computer has the following
built-in features:

• High-performance, 3-MHz 8085A cpu (1.3 j1S

instruction cycle)

• Popu lar 8080A I nstruction Set

• Direct Teletypewriter Interface

• Interactive LED Display

• Large Wire-Wrap Area for Custom-Designed
Circuit

• System Monitor Software in ROM

You can assemble the kit in as little as 3 to 5 hours,
depending upon your skill and experience at building
electronic kits. Only a 5 Volt power source capable
of delivering 1.3 Amperes is then needed to make
the computer operate, using its built-in display and
keyboard. If you wish to interface a Teletypewriter
to the SDK-85, you will also need a -10 Volt power
supply. After you have completed the basic kit,
you may expand both memory and I/O by adding
more RAM-I/O or ROM-I/O devices in the spaces
provided for that purpose. Other spaces are allocated
for bus expansion drivers and buffers that allow you
to address and use external devices located either
in the wire-wrap area of the board or off the board.
You can, for example, access up to 64K of external
memory via the expansion bus.

CHAPTER 1
DESCRIPTION

SDK-8S SPECIFICATIONS

Central Processor

CPU: 8085A

Instruction Cycle: 1.3 microsecond

Tcy: 330 ns

Memory

ROM: 2K bytes (expandable to 4K bytes)
8355 or 8755

RAM: 256 bytes (expandable to 512 bytes) 8155

Addressing: ROM 0000-07FF (expandable to OFFF
with an additional 8355 or 8755) RAM 2000-
20FF (2800-28FF available with an additional
8155)

Input/Output

Parallel: 38 lines (expandable to 76 lines).

Serial: Through SID/SOD ports of 8085. Software
generated baud rate.

Baud Rate: 110

Interfaces

Bus: All signals TTL compatible.

Parallel I/O: All signals TTL compatible.

Serial I/O: 20 mA current loop TTY.

Note: By populating the buffer area of the board,
you have access to all bus signals which
enable you to design custom system expan­
sions into the kit's wire-wrap area.

1-'

Interrupts

Three Levels: (RST 7.5) - Keyboard Interrupt
(RST 6.5) - TTL Input
(INTR) - TTL Input

DMA

Hold Request: Jumper selectable. TTL compatible
input.

Software

System Monitor: Preprogrammed 8755 or 8355
ROM

Addresses: 0000-07 F F

I/O: Keyboard/Display or TTY (serial I/O)

Literature

Design Library (Provided with kit):

• SO K-85 User's Manual

• Microcomputer Systems Databook

• MCS-85 User's Manual

• 8080/8085 Assembly Language Programming
Manual

Physical Characteristics

Width: 12.0 in.

Height: 10 in.

Depth 0.50 in.

Weight: approx. 12 oz.

Electrical Characteristics (DC Power Required)

Vee: +5V ± 5% 1.3A -

VTTY : -10V ± 10% 0.3A

(VTTy required only if teletypewriter is to be con­
nected to the kit)

Environmental

Operating Temperature: 0-55° C

Figure 1-2. Finished Computer

1-2

2-1 GENERAL

Don't unpack your parts yet. Do a little reading
first, and you may save yourself time and expense.

I CAUTION I
The metal-oxide-semiconductor (MOS)
devices in this kit are susceptible to static
electricity. Do not remove them from
the protective, black foam backing sheet
until you have read the precautions and
instructions in paragraph 2-4.

This manual was published only after the assembly
of several kits by a number of persons of varying
experience. In this chapter you will find virtually
everything you need to know to put together your
MCS-85 System Design Kit.

There are suggestions for laying out an efficient
work area. All of the tools and materials you need
are described in a checklist. There is a complete
and detailed parts list. Basic assembly and soldering
techniques are reviewed. Following the step-by­
step assembly instructions in this chapter, you
can't go wrong.

If you're an experienced kitbuilder, you already
know that it's not a bad idea to read through this
entire chapter first, before starting the job. That

CHAPTER 2
HOW TO ASSEMBLE THE KIT

way, there won't be any surprises later. Take your
time. Don't rush, and don't skip over quality­
checking each step you perform. Desoldering,
removing, and replacing just one DIP component
because it was not oriented properly when first
installed will cost you more time than double­
checking all of them. Your objective is surely to
produce a working computer, not to win a race.

2-2 GETTING ORGANIZED

Before starting work, it's a good idea to plan and
organize your workplace. Be sure you have room
to accommodate this book, lying open, and also
the circuit board, along with tools and the hot
soldering pencil. Unless you have the cordless,
battery-powered soldering instrument, you'll want
to arrange its cord out of the way to keep from
accidentally pulling the soldering pencil off its
holder. A muffin pan, an egg carton, or some small
boxes could be used to sort parts into, if you don't
have the traditional plastic, compartmented parts
boxes. It might be helpful, too, to write the part
values and reference designators on small cards as
you sort them, and put these with the parts for
quick identification. Arrange everything within
comfortable reach, and you'll do the job quickly
with I ittle chance of errors.

2-1

2-3 SELECTING TOOLS AND
MATERIALS

These tools and materials will be required to
assemble the kit:

o Needle-nose pliers
o Small Phillips screwdriver
o Small diagonal cutters
o Soldering pencil, not more than 30 watts,

with extra-small-diameter tip. (1/16 in. isn't
too small.) You should also have a secure
holder for it.

o Rosin-core solder, 60:40 (60% tin), small
diameter (.05 in. or less) wire

Note: Soldering paste is not needed. The
solder will contain sufficient flux.

o Volt-Ohm-Milliammeter

It is also useful to have the following:

o Soldering aid, with a small-tipped fork at one
end and a reamer at the other, to help in
coaxing component leads into holes and
manipulating small parts.

If you should happen to make a soldering error and
have to remove solder from joints, the job will be
made much, much easier if you have the following:

o Solder sucking device, either the bulb variety
(shown) or the pump variety

o Large-area desoldering tip for your soldering
pencil, to spread heat over several leads of an
I C device at the same time

o Length of copper braid to sop up solder like a
sponge

2-2

Note: It is extremely difficult to remove DIP
components using just a soldering
pencil.

NEEDLE-NOSE
PLIERS

DIAGONAL
CUTTERS

PHILLIPS
SCREWDRIVER

VOL T-OHM-MILLIAMMETER

SOLDER
SUCKER

DESOLDERING

~
SOLDERING

AID

2-4 UNPACKING AND SORTINC
PARTS

The MCS-85 System Design Kit is shipped skin­
packed on a card that includes a conductive
backing to protect its metal-oxide-semiconductor
(MOS) devices from static charge. Don't remove the
four larger-size I ntel devices from the foam backing
until you have completed all of the instructions in
th is chapter and are ready to place them on the
board. As a further protection. against possible
damage, these four devices are to be installed in
sockets, rather than soldered on the board.

With a knife or sharp-pointed scissors, slit the film
around the edges of the small-parts bags in the
lower left corner of the skin-pack and remove
them. First, open the bag of hardware and check to
be sure you have:

o 9 rubber feet •

o 9 Nylon spacers, 7/16 in. long

o 9 screws, 3/4 in. long @iilii@illi!JiljjjmiijijwmyJ

o 18 Nylon washers @

o 9 nuts @

I CAUTION I
Don't remove the other components
from the skin-pack. The black foam
backing is an electrically conductive
material that protects the integrated­
circuit devices from static electricity as
well as from physical damage to their
leads and ceramic substrates.

Underneath the two bags of small parts and
hardware will be found:

o Red plastic window (covered with protective
paper)

o Two strips of double-coated adhesive tape

RED PLASTIC
WINDOW
(FILTER)

ADHESIVE
TAPE

2-3

Next, open the bag of electrical parts and sort
them out by type and value. Give yourself plenty
of unobstructed work space and try not to let tiny
parts skitter away from you. The bag should yield
the following:

Resistors, 1/4 Watt

0

0

0

0

0

0

0

0

0

0

0

2-4

<:JDD
8 24 Ohm (red- R11, 14, 17,20,

yellow-black) .23,26,27,30

47 Ohm (yellow- R5
violet-black)

200 Ohm (red- R33
black-brown)

6 270 Ohm (red- R10, 13, 16, 19,
violet-brown) 22,25

2 1 k (1,000) 0 h m R4,31
(brown-black-red)

1.6k Ohm (brown- R3
blue-red)

2.7k Ohm (red- R6
violet-red)

9 3k Ohm (orange- R7,9, 12, 15, 18,
black-red) 21,24,28,29

3.9k Ohm (orange- R8
white-red)

4.7k Ohm (yellow- R2
violet-red)

51 k Ohm (green- R32
brown-orange)

Resistor Color Code

Resistors are commonly identified by means
of a code using color bands. Each color repre­
sents a number.

The first three bands employ the color code
below:

Black 0 Green 5
Brown 1 Blue 6
Red 2 Violet 7
Orange 3 Gray 8
Yellow 4 White 9

Resistor, 1 /2 Watt

C;;;;;;;;;::==?())))))F=~

o 100 Ohm (brown­
black-brown)

Resistors, 1 Watt

R1

o 200 Ohm (red-black- R34
brown)

o 430 Ohm (yellow- R35
orange-brown)

Capacitor, tantalum

c==~Q)~==
o 221lf, 15V C1

Capacitor, mono

o 2 1 Ilf, 25V C5,20

The fourth band indicates percentage
tolerance of the resistor value.

First significant digit

Second significant digit

Number of following zeroes

Gold = 5%; silver = 10% tolerance

Capacitor, ceramic

o 7 0.1 I.If e11-16,18

Transistor

o 16 2N2907 transistors Q1-16

Crystal, clock

o 1 6.144 MHz Y1

Besides the small-parts bags, the skin-pack contains:

o 4 40-pin DI P (dual in-line package) sockets
for the four large integrated circuits in­
cluded in the kit

o 6 alphanumeric LED (light-emitting diode)
displays

DS1-6

o 24 pushbutton switches, with keycaps labeled

S1-24

Note: It's a good idea to check all switches
with the ohmmeter before installing.
If one is bad, you'll save a lot of work.

Large, 40-pin ICs (integrated circuits)

o 8085A microprocessor (cpu) A 11

o 8355 (or 8755) ROM (read-only A 14
memory) with I/O (input/out-
put) ports

o 8155 RAM (random-access, read- A 16
write memory) with I/O ports
and timer

o 8279 keyboard/display interface A 13

2-5

Small, 16-pin les

D

D

8205 address decoder

74LS156 scan decoder

I CAUTION I
Large-scale integrated circuits are fragile!
Dropping, twisting, or uneven pressure
may break them. The discharge of static
electricity can destroy them internally.
Leave them embedded in the conductive­
foam backing sheet until ready to install
on the board. Never press down hard
upon, twist, or bend the larger devices.
Touch the exposed metal traces of the
board with your hand before inserting
one in its socket. The soldering of large
devices directly on the circuit board is
not recommended.

A10

A12

2-5 A REVIEW OF BASIC
ASSEMBLY AND SOLDERING
TECHNIQUES

The steps to producing a professional quality
assembled circuit board are:

1. Have your work area organized before starting
work, and keep it that way. (See paragraph
2-2.) Sort all parts into bins, cups, trays or
boxes so they will be easily located by value
when needed.

2. To prepare a part for soldering, bend its leads
carefully with needle-nose pliers to make the
part fit exactly the way you want it to.

2-6

It is good practice to orient color-coded resis­
tors so that the codes are readily read, top-to-

bottom or left-to-right, and to form the
leads of parts with values printed on them so
that the values are legible after assembly.

3. Fit each part in place and see that no undue
stress is placed on the leads. Double-check and
be sure you have the correct part inserted in
the correct holes, properly oriented. Don't
trim leads before soldering.

4. When ready to solder, be sure your soldering
pencil is hot enough to melt solder quickly.
Then turn the board face-down on your work
surface. If necessary, hold the parts you are
about to solder in place while turning it over
so they won't fall out, and place something
under the board to hold the parts in position
while you solder on the back surface of the
board. Some people prefer to crimp the leads
to hold the parts in place. That's all right, too.

5. Bring the point of your soldering pencil into
contact with the pad to be soldered, simulta­
neously also touching the lead.

6. At once, touch the end of the solder wire to
the pad and lead, opposite the pencil tip. The
amount of time required to melt the solder
will depend upon the amount of foil surface
there is on the board to carry away heat by
conduction. The smallest pads will heat up in
less than a second with a 25- or 30-watt
pencil; large, ground-plane areas may require
over five seconds.

7. The instant you see and feel the solder start to
melt, withdraw the solder wire from the joint.
Only a tiny drop of solder is needed to make a
good joint.

8. The instant you see the solder draw into the
hole, become shiny, and spread smoothly over
the surface of both pad and lead, withdraw
the soldering pencil. It will take only a
moment for th is to happen after step 7.

9. Don't reheat a joint unless there's something
wrong with it: not enough solder, too much
solder (causing a "bridge" to an adjacent pad
or trace), or a "cold solder joint," which

appears dull on the surface or does not
surround the lead completely and fill the hole.

Note: A little rosin from the solder core,
remaining on the board, does no harm.
Don't try to clean it off.

10. CI ip off the excess length of lead that projects
beyond the solder "bead," within 1/8 inch of
the board. Save cut ends to use for strapping
optional connections. (See paragraph 3-2.)

I WARNING I
Avoid eye injury when clipping excess
lead ends. Hold lead end as you clip it,
so it can't fly up in your face.

There are two important conditions that govern
good soldering technique. They are:

1. Use no more heat than absolutely the mini­
mum that will make a solid joint.

2. Use enough heat to cause solder to flow into
the hole in the board and around the lead
that's being soldered into it.

These conditions are both met simultaneously and
easily only if you are careful, have the proper tools,
and arrange your workplace so that the circuit
board can lie flat while you apply steady, firm (but
not hard) pressure with the soldering pencil without
slipping. A small-diameter soldering tip is a must!
Likewise, small-diameter solder wire is essential to
achieving satisfactory results.

Note: Do not apply soldering paste to the work.
Fluxing is not required in printed-circuit
soldering, as the boards and component
leads are plated or tinned to prevent oxida­
tion of the copper.

Always inspect carefully for cold solder joints,
solder bridges, or (perish the thought!) lifted traces
after each soldering operation. A good way to
check for solder bridges is to hold the newly­
soldered connection up to a light. If you can't see

light between the soldered pad and any adjacent
pads or traces that aren't supposed to be connected
to it, it might be well to sl ip a solder-sucker or wick
over the lead under examination, quickly remelt
the solder and draw off the excess.

2-6 ASSEMBLY PROCEDURE

Follow these instructions in order and make a
check mark in the box opposite each step when it
is completed.

D First, place the board on your work surface,
lettered side up.

D Install the nine rubber feet. Eight go around
the edge of the board, and one goes near the
middle of the board, to the left of the key­
board and display area. At each location, press
a nut into the recess in a rubber foot, string a
washer on a screw, and insert the screw
through the hole in the board from the top.

,

I

~
I
I

®
I
I

• I I

®

Place a spacer, then another
washer on the screw, then
place the nut and foot on
the end of the screw, and
tighten, with the screwdriver,
just enough to hold the foot
firmly.

2-7

o Install capacitor C1 near the top edge of the
board.

o Solder C1 in place. Clip excess lead ends.

I WARNING I
Avoid eye injury. Hold lead ends as you
clip them so they can't fly up at you.

Assembly of TTY Interface Area-

o

o

o

o

o

Install a 100 Ohm, 1/2 Watt resistor (brown­
black-brown) at R 1.

I nstall a 4.7k Ohm resistor (yellow-violet-red)
at R2.

/

Install a 1.6k Ohm resistor (brown-blue-red)
at R3.

Install a 1 k Ohm resistor (brown-black-red) at
R4.

Install a 47 Ohm resistor (yellow-violet-black)
at R5.

o Install a 2.7k Ohm resistor (red-violet-red) at
R6.

o Solder the six resistors in place, then clip their
excess lead ends.

o I nstall a 1 uf capacitor at C5, and solder and
clip it.

o Install a 200 Ohm, 1 Watt resistor (red-black­
brown) at R34.

2-8

POWER o

+'~:J~~
GND J7 'ERS _______ --,

o Install a 430 Ohm resistor (yellow-orange­
brown) at R35.

o Solder these two resistors in place, then clip
thei r excess I ead ends.

o Install transistors 01 and 02, and solder and
clip them.

Assembly of Processing Area

The processing area includes the clock crystal,
address decoder, cpu, RAM-I/O and ROM-I/O areas,
and related components.

D Install the crystal at Y1, with its leads bent so
that the device lies flat on the board in the
space outlined for it.

D

D

D

Take a piece of scrap wire trimmed from a
component previously mounted on the board.
Bend it into the shape of a staple. I nstall it
over the crystal, to hold it firmly in place.

Solder the four connections just made.

I nstall the 8205 address decoder at A 10 and
solder it.

Install three DIP sockets, crimping the corner leads
of each to hold in place, at:

D A 11, for the 8085 cpu.

D A 14, for the PROM (ROM)-I/O device, an
8755 or 8355.

D A 16, for the RAM-I/O device, an 8155.

D Solder the three sockets in, and check carefully
for solder bridges.

LJLJ
J3

II

I
PORT I

~
20 21

I

~

I
PORT 9

~

I
PORT 8

~

M M

LJ 28

n 30 AI5
13 14 ~C17

8755 (8355)

LOC 0800H-OFFFH
I 31

32 ~ PORT PORTS 8H-BH
--.--J 2.3H

"I
33

PORT 22H

~

"I
PORT 21t-!

~

N N

CI9

LJ AI7
J5

II

~ -,
PORT 2BH
---.J

I
PORT 2AH

.-l

I
PORT 29H

.-l
TIMER oUT/IN

LJ

8155

LOC 2800H-28FFH

17 18 19

ClK

PORTS 28H-2DH

C20

~
~
---c=t-

R31

R32

Q'"

RESET

LO'

9 11

?\IO OQ412

V'_N ~
CiCi ii

VECT
INTR

SINGLE
GO

STEP

SUBST EXAM
MEM REG

NEXT EXEC

2-9

o

o

o

Install a 3k Ohm resistor (orange-black-red) at
R7.

Install a 3.9k Ohm resistor (orange-white-red)
at RB.

Solder these two resistors and clip off their
lead ends.

Install three 0.1 uf ceramic capacitors at:

o
o
o
o
o
o
o

o

o

2-10

C11

C12

C13

Solder them and clip off excess lead length.

I nstall a 1 uf capacitor at C20.

Install a 1 k resistor (brown-black-red) at R31.

Install a 51 k resistor (green-brown-orange) at
R32.

Install a 200 Ohm resistor (red-black-brown)
at R33.

Solder these four components in place and
trim their leads.

Install 0.1 uf ceramic capacitors at:

o
o
o

C16

C1B

Now solder the capacitors you have installed,
and clip off their excess lead ends.

~ ~ ADDRESS

~ , 0:" '~;;' "~r:~,~DER] h KEYBD

F " ,,]-u ,,- . "" CPU . -11~A~ ""~~<
.:rT9 C16~
I A14

~
8755 (83551

PROM(ROM) 1/0 9 11

_I

28
2'1 L

lOC OOOOH-07FFH

PORTS 0-3

• 13 14 C) (17

10 12 l) 04

~zD~
LJ n 30 A15 tW)Q))

31
32

I
33

PORT 22H

~

C19 •
CA17

I
PORT 2AH

~

I
PORT 29H

~
TIMER oUT/IN

LJ

~
8755(8355) "

lOC 0800H-OFFFH ()~~/Q ~
PORTS 8H-BH ~~ ~

• 15 16 ~WAM 1/0 ~ n I
lOC 28~;;H_20FFH]1 I '" L

PORTS 20H-25H ,----

8155

lOC 2800H-28FFH]
17 18 19

ClK

PORTS 28H-2DH

C20
c:;:::)

---t:=:53--- R 3 1

~ R32

~'"

RESET

SINGLE
STEP

SUBST
MEM

NEXT

VEer
INTR

GO

EXAM
REG

EXEC

Assembly of Keyboard and Display Area

Find where the row of resistors, R9 through R30,
go. I nstall eight 3k resistors (orange-black-red) at:

D R9

D R12

D R15

D

D

D

D

D

D

R18

R21

R24

R28 (Careful-the location pattern changes
here!)

R29

Now solder all eight resistors in place and clip
their excess lead ends.

)
OL IV Y I A8 \ '~JVV J A.9) '~LJ'~ J LJ' I

~ DATA BUS BUFF U (I (' . .
lESS

J
DER h KEYBOARD AND DISPLAY

)] H AI~ sc~~Sb~~ODER~ Q
• v

1
Iou .. "~3. KEYBOARD DI:~::Y CONTROLLER

.. LOC 1800H
1900H

9 II

RESET
VECT
INTR

SINGLE GO
8

STEP H

SUBST EXAM 4

D

5

A

6

525 ,----,
KEYBOARD: ~122

TTY
SElECT ~ : 23

124

7
MEM REG SPH SPL PCH PC L

NEXT EXEC 0

0

2-11

Install six 270 Ohm resistors (red-violet-brown) at:

0 R10

0 R13

0 R16

0 R19

0 R22

0 R25

0 Solder these six resistors and clip their excess
lead ends.

2-12

A7 ~DATA uS-us BUFF UA~ '~JVV . .
DRESS
CODER 1 h KEYBOARD AND DISPLAY

205] 25 S 74LSl56 l n
;~ Al2e SCAN DECODER~' ;:1

• u

I 11~ A~. ""~:;: :o:~;~:' CON"O""

9 11

DSI
--- DISPLAYS

RESET
VECT
INTR

SINGLE
GO

8 A
STEP H

SUBST
MEM

EXAM
REG

4
SPH

5
SPL

6
PCH

NEXT EXEC o

KEYBOARD
TTY

SELECT

o

S25

7
PC L

23

24

Install eight 24 Ohm resistors (red-yellow-black) at:

o
o
o
o
o
EJ

o

o
o

R11

R14

R17

R20

R23

R26
R27 (Again, note the change in location
pattern.)

R30
Solder these eight resistors and clip their
excess lead ends.

A7!DATA-ius BUFF '1jAf .,,-- y~ ".m J U I
'DRESS

205] 25 ~ 74LS156 l 0 COOER 1 h KEYBOARD AND DISPLAY

J ~ I D~ A 1~3. ~~ "" "'~ 'CAN ",om" ~

SUBST
MEM

NEXT

KEYBOARD DISPLAY CONTROLLER

LOC 1800H

9 11

EXAM
REG

EXEC

1900H

4
SPH

o

5
SPL

6
PCH

KEYBOARDi
TTY

SElECT

S25

7
PCL

o

23

24

2-13

I nstall fourteen 2N2907 transistors in two rows.
Position the seven transistors in the top row so that
their indexing tabs point upward and to the left, at:

o 03

o 04

o 05

o 06

o 07

o 08

o 09

Position the seven transistors in the bottom row so
that their indexing tabs point down and to the
right, at:

o 010

o 011

o 012

o
o
o
o
o

2-14

013

014

015

016

Press all of the transistors down to about
1/8 inch from the surface of the board. Let
them stand approximately straight up. Then,
turn the board over and solder all of their
leads in place and trim the lead ends.

A7 !DATA -ius BUFF tt[,~--- J Af '~Lm J J I
DRESS

205] 25 ~ 74LSI56 l 0 COOER 1 h KEYBOARD AND DISPLAY

;~ A12(SCAN DECODER~ ..

I __ AI3 • v

J OV'

A

I ~ KEYBOARD DI:~::Y CONTROLLER
., LOC IBOOH

sUBsT
MEM

NEXT

9 11

VECT
INTR

GO

EXAM
REG

EXEC

1900H

4
sPH

o

5
sPL

A

6
PCH

o

525

7
PC L

o Install one of the 40-pin DIP sockets, for the
8279 Keyboard-Display Controller, at A 13,
and solder it in.

o Install the 74LS156 scan decoder at A 12, and
solder it.

Be careful to orient the six alphanumeric LED
displays so that the decimal points are even with
the bottom of the digits and install at:

o DS1

o DS2

o DS3

o DS4

o DS5

o DS6

Note: If these components are provided with long,
wirewrap leads, you will probably find it
easiest to insert, solder, and clip them one
at a time because of crowded quarters. The
order shown above with the board turned
bottomside up will be most convenient for
you if you hold the soldering pencil in your
left hand. If you solder right-handed, you
may prefer to work from DS6 to DS 1 .

Note: Don't install the red filter over the display
yet. It's a good idea to wait until after final
assembly and checkout to do this, on the
remote chance that you might have to
remove one of the character displays.

Install two 0.1 uf ceramic capacitors at:

o
o
o

C14

C15

Solder the leads and clip them off close to the
board.

SUBST
MEM

NEXT

9 11

VECT
INTR

GO

EXAM
REG

EXEC

4
SPH

o

5
SPl

A

6
PCH

S25
I-~

KEYBOARD: ~122
SETl~~T '" 123

~ 124

o

7
PC l

2-15

0 Install the twenty-four pushbutton switches
that make up the keyboard. Be sure each
button is rightside up and in its proper position
before solderi ng.

2-16

The easiest method of doing this is to insert each
button in its turn, bend its leads over on the back
of the board to hold it in place, and go on until all
buttons are in place, then solder all of them in one
pass, with the board lying flat on the work surface
and weighted down to make sure the switches are
uniformly held firmly against the front surface of
the board.

o RESET o VECT
INTR DC oD o E o F

o SINGLE
STEP o GO 0 8

H 0 9
l oA o B

o SUBST o EXAM 4 5 6 7
MEM REG oSPH oSPl opCH opCl

o NEXT o EXEC 00 01 o 2 0 3
, I

0 All soldered in place

CHAPTER 3
FINAL ASSEMBLY AND CHECKOUT

3-' GENERAL

Now that most of the components are soldered on
your circuit board, it's time to give your handiwork
a quick visual check to make sure all of the devices
are oriented correctly. The notched ends of the I Cs
shou Id all be toward your left, and the decimal
points of the LED displays should be at the bottom
line of the characters.

It is recommended that the basic kit computer
be checked out using the procedure in this chapter
before adding any external options such as tele­
typewriter or expansion memory. It is well for you
to have the assurance that you have a working cpu
and display-keyboard before you add peripherals
to your system. It is therefore recommended that
you first wire the strapping options in Table 3-1
for the 8355 (or 8755) ROM-I/O that was furnished
with the kit (and contains the SDK-85 System
Monitor). Then install the strap in Table 3-2 for
keyboard operation, and in Table 3-4 for the basic
kit without expansion memory. (See paragraph 3-2.)

Paragraph 3-3 tells you how to hook up power to
the MCS-85 System Design Kit, and paragraph
3-4 tells you how to start it up and see if it's
working right. The subsequent paragraphs list the
add-on options you can use without inventing any
new circuitry on the board or off.

3-2 STRAPPING INSTRUCTIONS

The MCS-85 System Design Kit will accept 8355
or 8755 ROM-I/O devices at positions A 14 and
A 15. These different devices are not completely
electrically interchangeable, so you must make the
strapping connections in Table 3-1, appropriate to
the type of device in each socket.

To make a strapping connection (jumper), bend a
short length of bare wire (such as the excess lead
end cut from a resistor) to fit between the two
holes you wish to strap together, insert the ends
of the wire in the holes, and solder them. Then
clip the remaining excess ends, just as you did with
the components. When you install a jumper and
solder it, be sure it doesn't touch any intervening
traces or pads.

IMPORTANT: For normal operation of the SDK-
85, it is mandatory to strap the following:

1. One of the three options in Table 3-1.

2. One of the two options in Table 3-2.

3. The two jumpers listed in Table 3-3.

4. Either basic kit operation or one of several
expansion options listed in Table 3-4.

The keyboard-teletypewriter selection function may
be done with a miniature printed circuit-board
mount, single-pole, double-throw switch, S25, not
furnished in the kit, or may be strapped with
wire. Table 3-2 lists the connections. Table 3-3
lists keyboard strapping connections always made.

Tables 3-5 through 3-10 list all of the bus and port
expansion connector pinouts. Table 3-11 lists
suggested connector types.

3-3 POWER SUPPLY WIRING
(See Figure 3-6.)

Connect a +5 Volt, regu lated power supply with its
positive output at the +5V POWE R SUPPLY point
on the board. A 6-pin Molex connector will fit the

(Text continues on page 3-4.)

3-'

Device

TABLE 3-1

ROM/PROM STRAPPING

8355 8755 8755A
Location Figure 3-1 Figure 3-2a Figure 3-2b

A14 Strap Strap
(The SDK-85

28-29 29-30 Monitor No Straps
ROM) Required Strap Strap
A15

31-32 32-33

TABLE 3-2
TELETYPEWRITER-KEYBOARD

STRAPPING

TELETYPEWRITER KEYBOARD
Figure 3-3 Figure 3-4

Strap 22-23 Strap 23-24

TABLE 3-3
DISABLING UNUSED KEYBOARD

CONTROLLER FUNCTIONS

Figure 3-5
Always strap 9-10.

Always strap 11-12.

Note: These two straps not usually removed,
since the MCS-85 System Design Kit
does not have SHIFT or CONTROL
keys on its keyboard. These straps
have no effect on operation of the
corresponding key functions on a
teletypewriter or other ASCII terminal
that is connected to the TTY interface.
They are provided for your use if you
wish to modify the SDK-85's key­
board functions and replace its moni­
tor software with your own.

3-2

Figure 3-1 No Strapping Required for 8355 ROMs

Figure 3-2a Strapping Connections for 8755 PROMS

Figure 3-2b Strapping Connections for 8755A PROMS

Figure 3-3 Teletypewriter Strapping Connection

Figure 3-4 Keyboard-Display Strapping Connection

Figure 3-5 Disabling Unused Keyboard Controller Functions

5 VOLT SUPPLY 10 VOLT SUPPLY

+

J 5 A

8216

Figure 3-6 Power Supply Connections

o

T
NTE

3-3

hole pattern on the board (see p. 3-13 for the part
number). If you are going to use a teletypewriter,
connect a -10 Volt power supply with its negative
output at the -10V point on the board. Connect
the positive side of the -10 Volt power supply to
the GND bus.

I CAUTION I
Do not turn on power until instructed to do so.

3-4 INSTALLING LARGE
IC DEVICES

When you've finished all soldering operations on
the board and are ready to fire it up, then it's time
to plug in the large ICs. Once more, please make
note of the precautions for handling these large
MaS devices.

(Text continues on page 3-6.)

TABLE 3-4

3-4

FUNCTION

RST 6.5

HOLD

INTR

Memory
Address

Locations

BUS EXPANSION STRAPPING

BASIC KIT
WITHOUT EXPANSION

MEMORY
(Figure 3-7)

Strap 3-5

Strap 6-8

Strap 20-21

Leave 25-26-27 unstrapped.

AUGMENTED KIT
WITH EXPANSION

MEMORY
(Figure 3-8)

(Also See Paragraph 3-7.)

Strap 3-4 if no input is connected to
J 1-20. Leave 3, 4, and 5 not strapped
if input is to be supplied for this
restart function.

Strap 7-8 if no input is connected to
J 1-14. Leave 6, 7, and 8 not strapped
if input is to be supplied for th is
function.

Strap 20-21 if no input is connected
to J 1-18. Leave 20-21 not strapped
if input is to be supplied for this
function.

Strap 25-26 if all memory locations
are external, i.e., addressed via bus
expansion drivers. * (See Figure 3-9.)
Strap 25-27 to enable the bus expan­
sion drivers only when the upper 32K
memory locations (8000H-FFFFH)
are addressed. (See Figure 3-10.)

* Note: No devices may be installed in positions A 13, A 14, A 15, A 16, and A 17 if this option
is strapped.

10 iii AI
DU.::> C,,,r-,...,I,,...,IVI'I vnlyc.n..:>

&15

~ 1
HlDA .

8212

(1A
HOLD

A8 - A 15 ADDRESS
INTR DRIVER
RST6.5

RSTINI 1 07
!

A6

I

8212

'I AO -A7 ADDRFSS

EO AO
DRIVER

~ . ~ ';

o~~:~:' J
~l~
f :- TTY '--___ ... y INTERFACE

~ L-J n

8085

74LSI56 I (I
SCAN DECODER_I U

KEYBOARD DISPLAY CONTROLLER

LOC 1800H
1900H

l
I

J

..
u

Figure 3-7 Strapping Required for Basic Kit (No Bus Expansion)

~l r
IjA8) 74S00

Figure 3-8 Strapping Options for Bus Expansion Control Lines

S15

j
~EYBOARDI

J7

525

,12

Figure 3-9 Strapping Options for all External Memory Figure 3-10 Strapping Options for I nternal/External Memory

3-5

I CAUTION I
Large-scale integrated circuits are fragile!
Dropping, twisting, or uneven pressure
may break them. The discharge of static
electricity can destroy them internally.
Leave them embedded in the conductive­
foam backing sheet until ready to install
on the board. Never press down hard
upon, twist, or bend the larger devices.
Touch the exposed metal traces of the
board with your hand before inserting
one in its socket. The soldering of large
devices directly on the circuit board is
not recommended. If your Kit is pro­
vided with 8755 EPROM, do not remove
the opaque sticker covering the window.
Ultraviolet radiation including sunlight,
can erase the monitor software contained
in the device.

I nspect each I C to see that its leads are reasonably
straight. (It's okay for the device to be a bit bow­
legged.) The forked end of the soldering aid is a
good tool for straightening bent leads. Carefully
place an I C on its intended socket, oriented pro­
perly, with one row of its pins resting lightly in
the socket holes. With your fingers or with the sol­
dering aid, gently tease the other row of pins into
their socket holes. Be sure no single pins have es­
caped. Once all pins have started, press down
gently with fingers or with something flat to seat
the device in its socket.

Each device must be oriented properly in its socket
or it won't work. Every DIP device made has either
a notch of some kind or a dot at one end. On the
SDK-85 board, each notch or mark must face to
the left. The markings on the board indicate this
orientation. They also show which device type

goes where. (See the pictorials on pages 2-9 and
2-15.)

3-6

3-5 STARTING THE FIRST TIME

Once you are certain that all parts are properly
installed, the correct strapping options are soldered,
and the power supplies connected, you are ready
to start your MCS-85 System Design Computer.
Clear the surface of your work table of any tools
or wire that could come in contact with the under­
side of the circuit board and short it, and be sure
there aren't any wire clippings on top of the board
by accident.

Peel the coverings from the red window and lay it
on the display. (Don't stick it down yet.)

Energize the +5 Volt power supply.

Press the B button on the keyboard. The display
should respond by reading out "_ 80 85."

I f the above readout appears, go on to Chapter 4 of
this book and tryout each button and function.
Verify that each command produces the specified
result, and that all segments of each 7-segment
character display light.

Once you know the displays are all working right,
peel the backing from the two strips of double­
sided tape and use them to stick the red window in
place.

3-6 WHAT I F IT DOESN'T?

I f there is no response to the 8 command,

D Use the multimeter to check for the presence
and proper polarity of +5 Volts on the board.

D Check all of the strapping connections, and
be sure they are in the right places for the
configuration you chose.

D Check carefully the seating of each and every
pin of each of the four large ICs. Be sure no
pins have accidentally bent over and missed
the socket.

D Go back over the Chapter 2 assembly proce­
dure and scan and check off all of the com­
ponent values and all of the solder connec­
tions.

D Check the orientation of all semiconductor
devices.

D I nspect for solder bridges or loose solder
joints.

If all devices are properly soldered or firmly in
their sockets and still there's no result, it can be
presumed that there is a bad part somewhere. The
keyboard switches can be checked using the multi­
meter, as mentioned in Chapter 2. If all switches are
closing positively when pressed, and opening when
released, further effective troubleshooting can be
accomplished if you have a dual-trace oscilloscope
of at least 5 M Hz bandwidth, or a logic analyzer.

D Pin 37 of cpu All (8085) should show a
clock output of 3.072 MHz (326 ns period).
If it doesn't, there's something wrong with the
8085 or the crystal.

D Pin 30 of A 11 should have a positive-going
pulse about 160 ns wide every IlS or so. This
is the ALE pulse that indicates that the cpu is
executing instructions.

D Pin 1 of address decoder A 10 (8205) should
pulse. If not, your 8085 is probably bad.

D If pin 1 of A 10 pulses, check pin 15 of A 10. If
A 10-15 doesn't follow A 10-1, or has bad out­
put voltage levels, the 8205 is either bad or in­
stalled wrong.

D If all else fails, call the Intel Service Hotline and
describe the results of the foregoing procedure.

The numbers are:

(800) - 538-8014 when calling from out­
(800) - 538-8015 side California

(800) - 672-3507 California only

Note: The Service Hotline is available to pro­
vide limited support to help you get
your kit running. If we can't help you
over the phone, you may be directed
to return your kit to us and we'll fix it
for a flat fee and send it back to you.
The Service Hotline is available Mon­
day through Friday, between 8 AM
and 3: 30 PM, Pacific time.

IMPORTANT: The Service Hotline is not able
to provide help to you in writing programs for
your kit or in making hardware modifications.
Please rely on the documentation provided with
your kit for assistance.

PIN

1
14

2
15

3
16

4
17

5
18

6
19

7
20

8
21

9
22

10
23

11
24

12
25

13

TABLE 3-5
INTERFACE CONNECTOR J7

PIN ASSIGNMENTS

MARKING ASSIGNMENT

- Open
- Open
- Open
- Open
- Open
- Open
- Open
- Open
- Open
- Open
- Open
- Open
- Ground
- Open
- Open
- Open
- Open
- Open
- Open
- Open
- Open

RX- Receive Return (-)
RX+ Receive (+)
TX- Transmit Return (-)
TX+ Transmit (+)

3-7

3-7 CONNECTING A
TELETYPEWRITER

If you wish to use a teletypewriter with your
SDK-85 computer, connect it at I nterface Con­
nector J7 as shown in Table 3-5. You may use either
a male connector or a female connector. (See

Table 3-11.) Only four pins of this connector
are assigned for Teletypewriter use; the remain­
ing pins may be wire-wrapped to serve any
function you choose.

TABLE 3-6
BUS EXPANSION CONNECTOR Jl PIN ASSIGNMENTS

ASSIGNMENT PIN PIN MARKING ASSIGNMENT I/O

GND 1 2 - OPEN -

GND 3 4 ClK Buffered ClK 0

GND 5 6 S1 Buffered S1 0

GND 7 8 SO Buffered SO 0

GND 9 10 ALE Buffered ALE 0

GND 11 12 HlDA Buffered H lDA 0

GND 13 14 HOLD Buffered HO lD I
--

GND 15 16 INTA/ Buffered I NT A 0

GND 17 18 INTR INTR I

GND 19 20 RST 6.5 Buffered RST 6.5 I

GND 21 22 RST Buffered RESET OUT 0

GND 23 24 RSTIN/ RESET INPUT I

GND 25 26 D7 Buffered D7 I/O

GND 27 28
I

Buffered D6 I/O

GND 29 30 Cf) Buffered D5 I/O

GND 31 32
:::>
co Buffered D4 I/O

GND 33 34
e::(

Buffered D3 I/O l-
e::(

I/O GND 35 36 0 Buffered D2

GND 37 38 I Buffered D1 I/O

GND 39 40 DO Buffered. DO I/O

3-8

TABLE 3-7

BUS EXPANSION CONNECTOR J2 PIN ASSIGNMENTS

ASSIGNMENT PIN PIN MARKING ASSIGNMENT I/O

GND 1 2 ROY READY I
-

GND 3 4 WRI Buffered WR 0
-

GND 5 6 RDI Buffered RD 0

GND 7 8 101M Buffered 101M 0

GND 9 10 A15 Buffered A 15 0

GND 11 12 Buffered A 14 0

GND 13 14 Buffered A 13 0

GND 15 16 Buffered A 12 0

GND 17 18 Buffered A 11 0

GND 19 20 Buffered A 10 0

GND 21 22
CJ)

Buffered A9 0 :::>
co

GND 23 24 CJ) Buffered A8 0
CJ)

GND 25 26 w Buffered A7 0 a:
GND 27 28

0 Buffered A6 0 0

GND 29 30
« Buffered A5 0 I

GND 31 32 Buffered A4 0

GND 33 34 Buffered A3 0

GND 35 36 Buffered A2 0

GND 37 38 Buffered A 1 0

GND 39 40 AO Buffered AO 0

3-9

TABLE 3-8
1/0 PORT CONNECTOR J3 PIN ASSIGNMENTS

ASSIGNMENT PIN PIN MARKING ASSIGNMENT

P1-6* 1 2 l P1-7

P1-4 3 4 P1-5
PORT 1

P1-2 5 6 J P1-3

P1-0 7 8 P1-1

PO-6 9 10 l 7 PO-7

PO-4 11 12 f PO-5
PORT 0

PO-2 13 14 J t PO-3

PO-O 15 16 P PO-1
f
r

P9-6 17 18 l P9-7

P9-4 19 20 P9-5
PORT 9

P9-2 21 22 J P9-3

P9-0 23 24 P9-1

P8-6 25 26 l P8-7

P8-4 27 28 P8-5
PORT 8

P8-2 29 30 J P8-3

P8-0 31 32 P8-1

GROUND 33 34 GROUND

*Note: 1. Pn-m stands for PORT n Bit m (e.g. P9-6 means PORT 9H Bit 6).

2. Ports 0 & 1 are Ports A and B of 8355 (A 14).

3. Ports 8 & 9 are Ports A and B of 8755 (A 15).

3-10

TABLE 3-9
I/O PORT CONNECTOR J4 PIN ASSIGNMENTS

ASSIGNMENT PIN PIN MARKING ASSIGNMENT

P23H-4 1 2 l P23H-5

P23H-2 3 4 PORT 23H P23H-3

P23H-0 5 6 J P23H-1

P22H-6 7 8 l P22H-7

P22H-4 '9 10 P22H-5
PORT 22H

P22H-2 11 12 J P22H-3

P22H-0 13 14 P22H-1

P21 H-6 15 16 l P21 H-7

P21 H-4 17 18 P21 H-5
PORT 21 H

P21 H-2 19 20 J P21 H-3

P21 H-O 21 22 P21 H-1

OPEN 23 24 OPEN

GROUND 25 26 GROUND

Note: Port 21 H is Port A I
Port 22H is Port B of 8155 (A16).
Port 23H is Port C

3-11

TABLE 3-10
I/O PORT AND TIMER CONNECTOR J5 PIN ASSIGNMENTS

ASSIGNMENT PIN PIN MARKING ASSIGNMENT

P2BH-4 1 2 l P2BH-5

P2BH-2 3 4 PORT 2BH P2BH-3

P2BH-0 5 6 J P2BH-1

P2AH-6 7 8 l P2AH-7

P2AH-4 9 10 P2AH-5
PORT 2AH

P2AH-2 11 12

J
P2AH-3

P2AH-0 13 14 P2AH-1

P29H-6 15 16 l P29H-7

P29H-4 17 18 P29H-5
PORT 29H

P29H-2 19 20

J
P29H-3

P29H-0 21 22 P29H-1
-

Timer OUT 23 24 TIMER Timer In
OUT/IN

GROUND 25 26 GROUND

Note: Port 29H is Port A }
Port 2AH is Port B of expansion RAM 8155 (A 17).
Port 2BH is Port C
Timer is on the same 8155 (A 17).

3-12

REFERENCE
DESIGNATION

J1

J2

J3

J4

J5

J6

J7

-

TABLE 3-11
SUGGESTED CONNECTOR TYPES

FUNCTION NO.OF MFR.
PINS

Bus Expansion 40 Spectra Stri p

Bus Expansion 40 Spectra Strip

I/O Ports· 34 Spectra Strip

I/O Ports 26 Spectra Strip

I/O Ports and Timer 26 Spectra Strip

Not Used

TTY Interface 25

Female} Optional
AMP

Male AMP

Power Supply 6 Molex

Recepticle

Plug

MFR'S.
PART NO.

800-576

800-576

800-579

800-583

800-583

206584

206604

Model No. 1261

03-09-1064

03-09-2062

3-13

4-1 WHAT IT DOES

The things you can do with the basic SDK-85 kit
are:

• Examine the contents of all memory and reg­
ister locations

• Deposit program steps or data in RAM or
register locations

• Execute programs or subroutines upon
command

• Reset (start) the monitor upon command

• I nterrupt and start operation at a location
you specify upon command

You may select either the keyboard and display on
the board or a teletypewriter as the console device
by operating a switch or by placing a jumper wire
at the appropriate place on the board. (See Chapter
3.) Keyboard/display operation and teletypewriter
operation are described separately in the following
paragraphs.

Two of the keyboard buttons continue to function
in teletypewriter mode, as well as in keyboard/dis­
play mode. These are the 8 and the @ill keys.

4-2 THE BUTTONS AND DISPLAYS

Keyboard/display operation is done by pressing
keys on the keypad. Responses are displayed either
by echoing the key pressed or by prompting you
with a message or prompt. When the 8 button is
pressed, the monitor is ready to accept commands.
For numeric arguments, the valid range is from 1
to 4 hexadecimal digits for address information and
1 to 2 hex digits for register and memory data.

Longer numbers may be entered, but such numbers
will be evaluated modulo 2 16 or 28 respectively,

CHAPTER 4
OPERATING INSTRUCTIONS

i.e., only the last four or the last two digits en­
tered wi II be accepted.

As noted, the number system being used in the
SDK-85 is the hexadecimal, or base-16 number
system. Table 4-1 lists the hexadecimal, decimal
(base 10), and binary (base two) equivalents. The
table also shows how each hex digit will appear in
the seven-segment LE D displays.

HEX

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

TABLE 4-1
NUMBER SYSTEMS

DECIMAL BINARY

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

11 1011

12 1100

13 1101

14 1110

15 1111

LED
DISPLAY

,-,
L' , ,
-, ,= -, =,

L/ ,-=, ,-,=, -, , ,-, ,=, ,-, -, ,-, ,-,
/=, ,-
L

,-I ,-,-
,-,-

4-1

Whenever the monitor expects a command, the dis­
play shows a dash ("-") at the left edge of the
address field (possibly along with an error mes­
sage). When the monitor expects a parameter, a
decimal point will be displayed at the right edge of
the field into which the argument will be placed. A
parameter wi II be either an address or a byte of
data which is used during the execution of a
command.

In the descriptions of the command modes, upper
case letters and numbers enclosed in boxes repre­
sent keyboard keys. Words or phrases in lower case
enclosed in brackets "<>" describe the nature of
the command parameters you may input.

The () in the Format Statement indicates an op­
tional argument.

Reset:

The EJ key causes a hardware reset, and starts
the monitor. The message "-80 85" will be dis­
played across the address and data field of the dis­
play if you are in display-keyboard mode. If in
teletypewriter mode, the sign on message "SDK-85
VE R X.X" will be printed. The monitor is ready to
accept a command after a reset, and saves no infor­
mation about the state of any user program before
the reset.

4-2

Substitute Memory:

~<address> ~«data»~«data» ... ~

The substitute memory command allows you to
read the contents of ROM memory and to examine
and modify the contents of RAM memory
locations.

The address argument denotes the contents of the
memory address to be examined, and may be from
1 to 4 hex digits. If you enter longer numbers, only
the last 4 digits entered are used). As soon as the
number is terminated by the ~ key, the contents
of that location are shown in the data field, along
with a decimal point at the right edge of the field.
Entering a new number will cause that number to
be displayed in the data field; however, the con­
tents of the memory location will not be changed
until an ~ or ~ key is pressed.

Pressing B:J will place the contents displayed in the
data field into the displayed memory address. Then
the address and contents of the next higher mem­
ory location will automatically be shown. Pressing
~ will place the contents displayed in the data
field into the memory address displayed in the ad­
dress field, and will also terminate the command.

Pressing B:J while the address FFFF is being dis­
played will cause address 0000 to be displayed.

Whenever the command changes the contents of a
memory location, it also verifies that the change
has occurred correctly. If the contents of the loca­
tion do not agree with what the new value should
be (i.e., if the memory location is in ROM or is
nonexistent), an error message is generated.

SUBSTITUTE MEMORY EXAMPLE 1

Using ~ to list the first few Monitor
locations:

KEY
ISuBSTI
~

~
~
~
~
~

ADDR

0000.

0000

0001

0002

0003

DATA

3E.

00.

32.

00.

SUBSTITUTE MEMORY EXAMPLE 2

Using ~ to enter a small program:

KEY ADDR DATA

~ MEM

0 0002.

[£] 0020.

[£] 0200.

[£] 2000.

~ 2000 **

rn 2000 03.

0 2000 3E.

~ 2001 **

G1J 2001 04.

~ 2001 47.

~ 2002 **

[I] 2002 oc.

0 2002 CF.

E1
NOTE: ** represents unpredictable values.

After loading the above program, use ~
again to go back and check locations 2000-
2002 to see that they contain:

CORRESPONDING
8085 ASSEMBLY

LANGUAGE
ADDRESS DATA INSTRUCTIONS --

2000 3E MVI A,47H

2001 47

2002 CF RST 1

This program will load the A register with the
number 47 and jump back to the monitor.

4-3

Examine Registers:

~ <reg> ~ «data» ~ «data» ... ~

The examine command allows you to display and
modify the contents of the 8085 CPU registers.
Pressing the ~ key blanks both the address and
data fields, and displays a decimal point at the right
edge of the address field. At this point, you must
press a register key (register names are denoted by
legends on the keyboard). Any other key will gen­
erate an error response.

If a register key is pressed, the name of the register
will appear in the address field, and the contents of
the register will appear in the data field, along
with a decimal point at the right hand edge.
Entering a number will cause the number to be
displayed in the data field; however, the contents
of the register will not be changed until an ~ or
~ key is pressed.

Pressing ~ will place the contents displayed in the
data field into the register named in the address
field, then will display the name and contents of
the next register in sequence (See Table4-2). Pressing
~ will place the contents displayed in the data
field in the register named in the address field, and
will also terminate the command.

Pressing ~ while register PCl is being displayed
has the same effect as pressing ~ .

The format for the I register is the lower 4 bits of
the accumulator following execution of a RIM
instruction. A "1" in an interrupt mask field de­
notes a masked condition. A "0" must be entered
to use that interrupt.

The format for the I register is:

7 o

I 0 I 0 I 0 I 0 I ~ 17~ 16~ 15~51

4-4

t --. INTERRUPT MASK

INTERRUPT ENABLE FLAG

TABLE 4-2
REGISTER DISPLAY SEQUENCE

KEY/DISPLAY
CODE REGISTER

A CPU register A

B CPU register B

C CPU register C

0 CPU register 0

E CPU register E

F CPU flags byte

I interrupt mask

H CPU register H

l CPU register l

SPH most significant byte of
stack pointer

SPl least significant byte of
stack pointer

PCH most significant byte of
program counter

PCl least significant byte of
program counter

The flag byte contains the 8085 CPU's condition
flags.

The format for the flag byte is:

7 0

Islzlxl~lxlplxlcl

I I t L CARRY

~PARITY
~-------------- AUXCARRY

~--------------------- ZERO
L-. ___________________ SIGN

X = UNDEFINED

For more information about the 8085's flags and
interrupt mask feature, consult the MCS-85 User's
Manual.

EXAMINE REGISTER EXAMPLE 1

Using ~ to initialize the 8085's stack pointer
to 20C2:

KEY

IUAM1
~

ADDR

SPH

SPH

SPH

SPl

SPl

SPl

DATA

**

02.

20.

**

OC.

C2.

EXAMINE REGISTER EXAMPLE 2

Using ~ to examine the contents of the
8085's Registers:

KEY ADDR DATA

~ REG

0 A **

~ b **

~ C **

~ d **

~ E **

~ F **

~ **

~ H **

~ l **

~ SPH **

~ SPl **

~ PCH **

~ PCl **

EJ or ~
NOTE: ** represents the contents of the

register whose name is in the address
field of the display.

4-5

Go:

G «address» ~

Pressing the B key causes the contents of the pro­
gram counter (PCH and PCl) to be displayed in
the addressed field, along with a decimal point at
the right edge of the field. The program counter is
available for change, and any number entered (a
number is optional) becomes the new contents of
the program counter.

Pressing the ~ key transfers control of the CPU
to the address in the address field (contents of the
program counter). Before the transfer of control,
the address and data display fields are cleared, and
an 'E' is displayed at the left edge of the address
field.

Pressing any other key but ~ generates an error
message.

The monitor regains control of the CPU only after
a 8 or after execution of an RST 0, RST 1, or
JMP a instruction in program.

IMPORTANT:

Note that because of the way the GO and SINGLE
STEP commands are implemented in the Monitor,
Band S~~~~E will not work unless the 8085's stack
pointer is pointing to an existing portion of RAM
memory. If at any time these two commands don't
seem to be working, set SPH to 20 and SPl to C2
using ~ , then try it again. (locations 20C2 to
20F F are reserved for the monitor program, there­
fore the stack pointer must be set to 20C2 or lower
so as not to interfere with the monitor.)

4-6

GO COMMAND EXAMPLE

Now you can execute the program you en­
tered in Example 2 of the ~ command.
First, check to make sure the 3- location pro­
gram is in memory, then the program will be
executed.

KEY

ISuBsTl
~

~
~
~
El

ADDR

0002.

0020.

0200.

2000.

2000

2001

2002

0002.

0020.

0200.

2000.

- 80

DATA

85

3E.

47.

CF.

**

COMMENTS

MVI A, 47

RST 1

NOTE: * * * * denotes "don't care" values

Recall that this small program loads the A
register with the number 47 and restarts the
monitor. To verify that the A register now
holds 47 and to get more practice using ~,
try the following sequence:

KEY

rruMl
~

rruMl
~

ADDR

A

A

0002.

0020.

0200.

2000.

- 80

A

DATA

47.

00.

**

85

47

COMMENT

A reg now
holds 47.

Now A holds
o

Run the small
Program again

Now A holds
47 again

Now try placing other values in location 2001
using ~ and use 0 to execute the program
again, seeing how those values are loaded into
the A register after execution.

4-7

Single Step:

Pressing the sJ~W key causes the contents of the
program counter (PCH and PCl) to be displayed
in the address field of the display along with a deci­
mal point at the right hand edge of the field. The
data field contains the contents of the address
denoted by the contents of the program counter.
The program counter is made available for change,
and any number entered (a number is optional)
becomes the new contents of the program counter.

Pressing the ~ key causes the CPU to execute the
one instruction pointed to by the program
counter. After execution the monitor regains con­
trol of the CPU, and the address and data fields
show the new contents of the program cou nter
(address of next instruction to execute) and con­
tents of the byte addressed by the program
counter, respectively. The decimal point is turned
on at the right hand edge of the address field, indi­
cating that the program counter is available again.

If the ~ key is pressed, no instruction is executed.
The address displayed in the address field is made
the contents of the program counter and the single
step command is terminated. You may now exam­
ine or modify registers and memory locations to
verify program execution. Pressing the Sm~E key
takes you back to the single step mode, and sub­
sequent pressing of the ~ key allows you to con­
tinue, instruction by instruction, through your
program.

4-8

Single stepping is implemented in the SOK-85
hardware by repeatedly interrupting the processor.
Since interrupts cannot be recognized during the
EI and 01 instructions of the 8085, single step will
not stop at either of these instructions.

SINGLE STEP EXAMPLE

Single stepping through the SOK-85 Monitor.
This is what you should see on the display:

KEY ADDR DATA

SINGLE **** ** STEP

rn OOOa.

~ OOOb. E1

~ OOOC. 22

~ OOOF. F5

~ 0010. E1

To resume full speed operation at this point,
do the following:

~
G 0010. E1

~ - 80 85

Vector Interrupt:

The ~ key is similar to the 0 key in the respect
that it takes control away from the monitor and
gives it to another program. The interrupt key
causes immediate recognition of RST 7.5 interrupt
and control passes to location 3C in the monitor.
This location contains an unconditional branch to
instruction location 20CE in user RAM. You may
place any instruction you wish in Locations 20CE
thru 20DO (e.g., a branch to a keyboard interrupt
routine). The monitor does not regain control with­
out specific action (a 8 command, or a RST 0,
RST 1, or JMP 0 program instruction). I n branching
back to the monitor, unless the RST 1 instruction is
executed, the monitor loses all past information
about the user program.

Since an interrupt is recognized by the hardware,
the monitor cannot clear the display; thus the dis­
play may remain unchanged after interrupt.

I MPORTANT: Two conditions must be satisfied
for the Vector I nterrupt feature to be enabled:

1. I nterrupts must be enabled (by executing an
EI instruction).

2. RST 7.5 must be unmasked (mask reset by
the SI M instruction or by modifying the
1- Register).

Program Debugging - The Use of Breakpoints

Along with the "cold start" reset caused when the
8 button is pressed, the monitor also implements
a tlwarm start" procedure. Execution of an RST 1
instruction will cause the monitor to enter this
"warm start" routine. The monitor will display the
same message as a 8 ('-80 85'), but all registers
and user memory will be preserved in the state they
were in at the time of execution of the RST 1. No
system reset or initialization will be performed.

By placing RST 1 instructions at key RAM loca­
tions where you want to examine the CPU status,
you can break from your program and then exam­
ine and set memory locations and registers, or
single-step a portion of your program.

To resume execution of the user program, press
G. The PC value of the next instruction appears
in the address field of the display. Then press ~
to continue execution.

Error Conditions - Illegal Key

If a key is pressed which is illegal in its context
(e.g., a command key is pressed when the monitor
is expecting a number), the command is aborted
and an error message is generated. Th is message
takes the form "-Err", displayed in the address
field. The monitor is then ready to accept a com­
mand. The error message will be cleared when a
command key is pressed. Therefore, you can cancel
a command before you press ~ or ~ by pressing
any illegal key instead.

Memory Substitution Errors

If the substitute memory command determines
that the contents of a memory location were not
changed correctly (i.e. location is in ROM or is
nonexistent), the command is aborted and an error
message is generated. This message also takes the
form "-Err", displayed in the address field. The
monitor is then ready to accept a new command.
The error message will be cleared when a command
key is pressed.

4-3 TELETYPEWRITER OPERATION

Console Commands

This portion of the SDK-85 monitor communicates
via a teletypewriter (console). Operation consists
of dialogue between the operator and the monitor
in the monitor's command language. After you
press the 8 button on the SDK-85 keypad, the
monitor begins the dialogue by typing a sign-on
message on the console ("MCS-85 Kit") and then
requests a command by typing a prompt character
("."). Commands are in the form of a single alpha­
betic character specifying the command, followed
by a list of numeric or alphabetic parameters.
Numeric parameters are entered as hexadecimal
numbers. The monitor recognizes the characters 0
through 9 and A through F as legal hexadecimal
digits. Longer numbers may be entered, but only
the last four digits will be retained.

4-9

The only command requiring an alphabetic param­
eter is the "X" command. The nature of such
parameters will be discussed in the section explain­
ing the command.

Use of the Monitor for Programming and Checkout

The monitor allows you to enter, check out, and
execute small programs. It contains facilities for
memory display and modification, 8085 CPU regis­
ter display and modification, program loading from
the console device, and program initiation with a
breakpoint facility. In addition, the ~ key on the
keyboard may be used to initiate your own key­
board interrupt routine.

Command Structure

In the following paragraphs, the monitor command
language is discussed. Each command is described,
and examples of its use are included for clarity.
Error conditions that may be encountered while
operating the monitor are described on page 4-13.

The monitor requires each command to be termi­
nated by a carriage return. With the exception of
the "S" and 'X" commands, the command is not
acted upon until the carriage return is sensed.
Therefore, you may abort any command, before
entering the carriage return, by typing any illegal
character (such as RUBOUT).

Except where indicated otherwise, a single space is
synonymous with the comma for use as a delimiter.
Consecutive spaces or commas, or a space or
comma immediately following the command letter,
are illegal in all commands except the "X" com­
mand (see below).

Items enclosed in parentheses "()" are optional.

D COMMAND EXAMPLE

09,26

0009 EF 20 E1 22 F2 20 F5

0010 E1 22 ED 20 21 00 00

0020 05 C3 3F 00 C3 57 01

4-10

39

Display Memory Command, D:

o <low address>, <high address>

Selected areas of addressable memory may be
accessed and displayed by the 0 command. The
o command produces a formatted listing of the
memory contents between <low address> and
<high address>, inclusive, on the console. Each
line of the listing begins with the address of the
first memory location displayed on that line,
represented as 4 hexadecimal digits, followed by
up to 16 memory locations, each one represented
by 2 hexadecimal digits.

Program Execute Command, G:

G «entry point>)

Control of the CPU is transferred from the moni­
tor to the user program by means of the program
execute command G. The entry point should be an
address in RAM which contains an instruction in
the program. If no entry point is specified, the
monitor uses, as an address, the value on top of
the stack when the monitor was entered.

G COMMAND EXAMPLE

G2000

Control is passed to location 2000.

22 F4 20 21 ED 20 F9 C5

Insert Instructions into RAM, I:

I <address>
<data>

Single instructions, or an entire user program, are
entered into RAM with the I command. After
sensing the carriage return terminating the com­
mand line, the monitor waits for the user to enter a
string of hexadecimal digits (O to 9, A to F). Each
digit in the string is converted into its binary value,
and then loaded into memory,. beginning at the
starting address specified and continuing into se­
quential memory locations. Two hexadecimal digits
are loaded into each byte of memory.

Separators between digits (spaces, commas, car­
riage returns) are ignored; illegal characters, how­
ever, will terminate the command with an error
message (see page 4-13). The character ESC or AL T­
MODE (which is echoed to the console as "$")
terminates the digit string.

I COMMAND EXAMPLE 1

12010

112233445566778899$

This command puts the following pattern into
RAM:

2010 112233 44 55 66 77 88 99

I COMMAND EXAMPLE 2

12040

123456789$

This command puts the following pattern into
RAM:

2040 12 34 56 78 90

Note that since an odd number of hexadeci­
mal digits was entered initially, a zero was
appended to the digit string.

Move Memory Command, M:

M <low address>, <high address>, <destination>

The M command moves the contents of memory
between <low address> and <high address> inclu­
sive, to the area of RAM beginning at <destina­
tion>. The contents of the source field remain
undisturbed, unless the receiving field overlaps the
source field.

The move operation is performed on a byte-by-byte
basis, beginning at <low address>. Care should be
taken if <destination> is between <low address>
and <high address>. For example, if location 2010
contains 1 A, the command M2010, 201 F 2011
will result in locations 2010 to 2020 containing
"1 A 1 A 1 A .. . ", and the original contents of mem­
ory will be lost.

The monitor will continue to move data until the
source field is exhausted, or until it reaches address
FFFF. If the monitor reaches FFFF without
exhausting the source field, it will move data into
this location, then stop.

M COMMAND EXAMPLE

M2010,204F,2050

64 bytes of memory are moved from 2010-
204F to 2050-208F by this command.

4-11

Substitute Memory Command, S:

S <address> «data»

The S command allows you to examine and op­
tionally modify memory locations individually.
The command functions as follows:

1. Type an S, followed by the hexadecimal ad­
dress of the first memory location you wish to
examine, followed by a space or comma.

2. The contents of the location are displayed,
followed by a dash (-).

3. To modify the contents of the location dis­
played, type in the new data, followed by a
space, comma, or carriage return. If you do
not wish to modify the location, type only
the space, comma, or carriage return. The
next higher memory location will automati­
cally be displayed as in step (2).

4. Type a carriage return. The S command will
be terminated.

S COMMAND EXAMPLE

S2050 AA- BB-CC 01-13 23-24
~

Location 2050, which contains AA, is un-
changed, but location 2051 (which used to
contain BB) now contains CC, 2052 (which
used to contain 01) now contains 13, and
2053 (which used to contain 23) now con­
tains 24.

Examine/Modify CPU Registers Command, X:

x «register identifier»

Display and modification of the CPU registers is
accomplished via the X command. The X command
uses <register identifier> to select the particular
register to be displayed. A register identifier is a
single alphabetic character denoting a register,
as defined in Table 4-3.

4-12

TABLE 4-3
X COMMAND REGISTER IDENTIFIERS

IDENTIFIER REGISTER
CODE

A Register A

B Register B

C Register C

D Register D

E Register E

F Flags byte

I I nterrupt Mask

H Register H

L Register L

M Registers H and L com-
bined

S Stack Po inter

P Program Counter

The command operates as follows:

1. Type an X, followed by a register identifier or
a carriage return.

2. The contents of the register are displayed (two
hexadecimal digits for A, B, C, D, E, F, I, H,
and L, four hexadecimal digits for M, S, & P),
followed by a dash (-).

3. The register may be modified at this time by
typing the new value, followed by a space,
comma, or carriage return. If no modification
is desired, type only the space, comma, or
carriage return.

4. If a space or comma is typed in step (3), the
next register in sequence will be displayed as
in step 2 (unless P was just displayed which
case the command is terminated). If a carriage
return is entered in step 3, the X command is
term i nated.

5. If a carriage return is typed in step (1) above,
an annotated list of all registers and their con­
tents is displayed.

Note: The bits in the flag byte (F) and inter­
rupt mask (I) are encoded as follows:

The format for the F register:

7 0

Islzlxl~lxlplxlcl

I I t L CARRY

L..=PARITY

~--------------AUXCARRY

~--------------------ZERO
L.-_______________________ SIGN

X = UNDEFINED

The format for the I register:

7 0

I 0 I 0 1 0 I 0 I ~ 17 ~ I :'515~51
t - i INTERRUPT MASK

INTERRUPT ENABLE FLAG

Note: For more information on the 8085's inter­
rupt masks, please consult the MCS-85
User's Manual.

Program Debugging - Breakpoint Facility

The monitor treats the RST 1 instruction (CF) as
a special sequence initiator. Upon execution of an
RST 1 instruction the monitor will automatically
save the complete CPU status and output the sign­
on message "MCS-85 Kit" to the console. You may
at that time display the contents of the CPU status
register by initiating an "X" command. After
examining the machine status and making any
necessary changes you can resume execution of
the program by inputting "G" and Carriage Return
on the console. You can step through large por­
tions of your program by inserting RST 1 instruc­
tions at key locations.

Error Conditions - Invalid Characters

Each character is checked as it is entered from the
console. As soon as the monitor determines that
the last character entered is illegal in its context, it
aborts the command and issues an "*,, to indicate
the error.

INVALID CHARACTER EXAMPLE

D2000,205G*

The character G was encountered in a param­
eter list where only hexadecimal digits and
delimiters are valid.

Address Value Errors

Some commands require an address pair of the
form <low address>, <high address>. If, on these
commands, the value of <low address> is greater
than or equal to the value of <high address>, the
action indicated by the command will be per­
formed on the data at low address only. Addresses
are evaluated modu 10 216. Thus, if a hexadecimal
address greater than F F F F is entered, only the last
4 hex digits will be used. Another type of address
error may occur when you specify a part of
memory in a command which does not exist in the
hardware configuration you are using.

I n general, if a nonexistent portion of memory is
specified as the source field for an instruction, the
data fetched will be unpredictable. If a nonexistent
portion of memory is given as the destination field
in a command, the command has no effect.

4-13

5-1 OVERVIEW

This portion of the SDK-85 User's Manual should
provide you with sufficient knowledge to write
programs to exercise the basic system as well as
providing capability to use the basic kit as a nu­
cleus around which you can build larger systems.

Figure 5-1 is a functional block diagram of the
SDK-85. The components enclosed in dashed boxes
have places in the SDK-85 printed circuit board,
but these are not needed for a minimum system
and are not included in the kit. I n addition, some
control lines have been omitted from the block
diagram for the sake of simplicity. The full SDK-
85 schematic diagrams have been included in an
appendix for your reference.

The text to follow describes each of the elements
in the system:

5-2 SYSTEM COMPONENTS

The 8085 CPU & The System Buses

The 8085 CPU is an evolutionary enhancement of
I ntel's industry standard 8080A. It is 100% soft­
ware compatible with the 8080A while offering the
benefits of single power supply, higher integration,
higher performance, and improved system timing.

The 8085 CPU is fully described in the Intel®
MCS-85™ User's Manual so a detailed description
wi II not be repeated here.

As the system block diagram shows, the 8085
derives its timing inputs directly from a crystal.
In addition the 8085 drives the system with con­
trol signals available on-chip. No additional status
decoding circuitry is required for most small- to

CHAPTER 5
THE HARDWARE

medium-sized systems. The 8085 multiplexes its
data bus with the low 8 bits of its address bus.
The 8155 and 8355/8755 Memory I/O components
in the kit are designed to be compatible with this
bus structure, precluding the need for external bus
latches.

Four vectored interrupt inputs are available in
addition to the standard 8080A-type interrupt.
There is also a serial input and serial output data
line pair that is exercised under program control to
provide the SDK-85's simple teletype I/O.

The basic clock frequency of the 8085 in the kit is
3.072 MHz (internally divided by 2 from the 6.144
MHz crystal input).

The 8155

The 8155 is a highly integrated chip designed for
compatibility with the 8085's bus structure. It con­
tains 256 bytes of static RAM memory, 22 pro­
grammable I/O lines, and a 14-bit timer/counter.
The function of the 8155 is described in detail in
the Intel MCS-85 User's Manual.

One 8155 is included with the SDK-85 kit and
space for another has been provided on the ci rcu it
board. The RAM memory in the 8155 is available
for storage of user programs as well as for tempo­
rary storage of information needed by system
programs.

The 8155's timer is used by the SDK-85 monitor's
Single Step routine to interrupt the processor fol­
lowing the execution of each instruction.

5-1

The 8355 & 8755

The 8355 and 8755 are two more chips specially
designed for compatibility with 8085 systems. The
8355 contains 2048 bytes of mask programmed
read only memory (ROM) and 16 I/O lines. The
8755 has an identical function and pinout to the
8355, but contains ultraviolet erasable and repro­
grammable read only memory (EPROM) instead of
the ROM.

The SDK-85 contains either one 8355 or one 8755
that is programmed with the system monitor.
Space for a second 8755 or 8355 has been allocated
on the PC board.

CPU

1
1
I
I
I
I

SERIAL I
I/~T~O I

I
I

ADDRESS
DECODER

I
I

I

I
I

I

I

ROM/IO (8355)
EPROM/IO (8755)

I

I

I
I
1

I

RAM/IO/COUNTER

10 LINES

The 8279

The 8279 is a keyboard/display controller chip
that handles the interface between the 8085 and
the keypad and LED display on the SDK-85 board.
The 8279 refreshes the display from an internal
memory while scanning the keyboard to detect
keyboard inputs. The 8279 is described in detail
in the MeS-85 User's Manual.

The 8205

The basic SDK-85 also contains an 8205 chip (one­
out-of-8 decoder) that decodes the 8085's memory
address bits to provide chip enables for the 8155,
the 8355/8755, and the 8279.

KEYBOARD DISPLAY FOR BUS EXPANSION

ADDRESS DATA
FIELD FIELD

I ~,-, n n.I,n CI. ,=,. C/. D.

I
1-' '-'.1 D.CI.

SDK·85 KEYBOARD LAYOUT

I
RESET ~NEg C D E F

I ~ SINGLE GO 8 9 A B
STEP H L

I rY SUBST EXAM 4 5 6 7
MEM REG SPH SPL PCH PCL

I NEXT EXEC 0 1 2 3

~
I

I L ~

r-----'
I

I Y 74LS156j ,DTI--,: rD1 I
I 7 8755

~ 'D
r-.; ~- -.., {r 8155 " 7

DATA
BUS

INTERRUPT
INPUTS 8085 I: 1

8205

1:1
8355 : II II

1
I

.II 8155 ..II 8279

L ~ L ~ ~I
.~

I{ ~ L ;:,. L ~ I/~ L ~ I ,(';:.. L ~ L ;:,.

5-2

DA
ADDR

TA/" ./
ESS I
BUS

ADDR :~I

CONT ~~~ I

I I J
I I

I 1"/ I" 7 I V
I

I I I I

I I
I I

~7 I I I 1
I I I

I
I

I I I
I I I I

" 71 I " 7 " '\ 7
I 1

1 I I

r - - ~ OPTIONAL. A PLACE HAS BEEN PROVIDED ON THE PC BOARD FOR THE DEVICE BUT THE
L __ DEVICE IS NOT INCLUDED.

Figure 5-1 SDK-85 Functional Block Diagram

I I
8216

I L.. _____ ..1

I

I

I~ 7t-

I X
y

r
I

...
I :x

Y

I

r----'

8212 JP L ____ .J

16 ADDRESS
BUS

r----'
8212

L... ____ ..I

I
r

I ~
I'

TABLE 5-1
8205 CHIP ENABLES

OUTPUT ACTIVE ADDRESS RANGE SELECTED DEVICE

CSO 0000-07FF 8755/8355 MONITOR ROM (A 14)

CS1 0800-0FFF 8755/8355 EXPANSION ROM (A 15)

CS2 1000-17FF N/C

CS3 1800-1 FFF 8279 KEYBOARD/DISPLAY CONTROLLER (A13)

CS4 2000-27FF 8155 BASIC RAM (A16)

CS5 2800-2FFF 8155 EXPANSION RAM (A17)

CS6 3000-37FF N/C .
CS7 3800-3FFF N/C

AXX = I C# on schematic diagram in Appendix

N/C = not connected - avilable for user expansion

5-3 SDK-85 MEMORY
ADDRESSING

Each memory/I/O chip in the basic SDK-85 System
of Figure 5-1 is enabled by a signal coming from
the 8205 address decoder. Table 5-1 lists each chip
enable output accompanied by the address space
over which it is active and the SDK-85 device that
is selected.

Note that the 8279 is really an-input/output device
that is communicated with by the 8085 as though
it were a series of memory locations.

The above chip enable table can be expanded to
form a memory map that illustrates the active por­
tions of the SDK memory (see Figure 5-2). Using
the terminology of Figure 5-2, the basic SDK-85
with no additional memory/I/O chips provides the
memory blocks marked MONITOR ROM and
BASIC RAM. You must confine your programs
to a subset of the space available in the BASIC
RAM, the remainder of BASIC RAM being required
for monitor storage locations. A list of the monitor­
reserved RAM locations is provided in Table 5-2.

Note that RAM memory locations 20C2 through
2000 are places for jump instructions pointing to
the places in memory for the computer to go
following the execution of an RST 5 instruction, an
RST 6 instruction, an interrupt signal on the
RST 6.5 input, etc. If you do not use any of these
instructions or interrupt lines, then this RAM area
is available for other programming.

When you add an expansion 8155 in the space pro­
vided on the SDK-85 board, the RAM locations
shown in Figure 5-2 as EXPANSION RAM are
made available for programming. The monitor
reserves no space in the EXPANSION RAM, so
all 256 locations are available for programming.

An extra 8355 or 8755 device when plugged into
the appropriate spot on the board gives you pro­
gram memory space in the area denoted EXPAN­
SION ROM in the memory map.

The areas marked "FOLD BACK" in Figure 5-2
indicate address space that is unused, but unavail­
able for expansion, because these locations are
mUltiple mappings of the basic locations.

5-3

LOC.

20C2

20C5

20C8

20CB

20CE

20D1-20E8

20E9

20EA

20EB

20EC

20ED

20EE

20EF

20FO

20F1

20F2

20F3

20F4

20F5

20F6

20F8

20F9-20FC

20FD

20FE

20FF

5-4

TABLE 5-2
MONITOR-RESERVED RAM LOCATIONS

CONTENTS

User may place a JMP instr. to a RST 5 routine in
locs 20C2 - 20C4.

JMP to RST 6 routine

JMP to RST 6.5 routine (hardwired user interrupt)

JMP to RST 7 routine

JIVP to "VECT I NTR" key routine

Monitor Stack (temporary storage used by monitor)

E Register
,

D Register

C Register

B Register

Flags

A Register

L Register > storage for user register

H Register

I nterrupt Mask

Prog. Cntr. - Low byte

Prog. Cntr. - HI byte

Stack Ptr. - Low byte

Stack Ptr. - Hi byte
~

Current Address

Cu rrent Data

Output buffer & Temp Locs.

Register Pointer

I nput Buffer

8155 Command/Status Register image

,

> Loaded
by
user

,

images

MEMORY ADDRESS

FFFFl 1 MEMORY SPACE WHERE
EXPANSION BUFFERS

I ARE ENABLED r
8000 ~------t
7FFF

i-'/

3000
2FFF

2900
28FF

2800
27FF

2100
20FF

2000
1FFF

1800
17FF

1000
OFFF

0800
07FF

0000

OPEN ,.

EXPANSION RAM (FOLD BACK)

EXPANSION RAM
(256 LOC.)

BASIC RAM (FOLD BACK)

BASIC RAM
(256 LOC.)

1900 - KEYBD/DISPL Y CTLR
COMMAND LOC.

1800 - KEYBD/DISPLY CTLR
DATA LOC.

OPEN (2K)

EXPANSION ROM (2K)

MONITOR ROM (2K)

ACTIVE 8205
CHIP ENABLE

}C~

}~
} CS3

} CS2

} CSl

}C~
Figure 5-2 SDK-85 Memory Map

Any of the areas marked "OPEN" in Figure 5-2 are
free for expansion. You may mount extra memory
chips in the wire-wrap area of the SDK-85 board
or on other circuit boards. The 8205 address
decoder has 3 uncommitted chip select lines to
allow the addition of three 2048-byte memory
blocks without additional decoding circuitry.

If you want to expand on the basic SDK-85 you
don't have to stick to the multiplexed-bus MCS 85
memory/I/O family. Mounting pads are present on
the circuit board that accommodate an 8212 latch
for address/data bus demultiplexing. To provide
the current drive capability to operate much larger
systems, spaces are also allocated for another 8212
to buffer the unmultiplexed half of the address and
five 8216 buffer/drivers to buffer the data bus, and
control signals. The function of these components
is described in detail in the 8085 manual. The func­
tional positioning of the optional latch, buffers,

and drivers in the SDK-85 system structure is
shown in Figure 5-1.

IMPORTANT:
As Figure 5-2 indicates, the optional expansion
buffers leading to the SDK-85 board's prototyping
area are enabled only over the address range
8000- F F F F. I f you desi re to use any of the" OP EN"
expansion areas shown in Figure 5-2 (enabled by
the 8205 chip selects), you will have to become
familiar with the SDK-85 schematics at the back
of this manual and implement custom modifica­
tions to the SDK-85 circuitry.

5-4 INPUT/OUTPUT PORT
AND PERIPHERAL
DEVICE ADDRESSING

As mentioned before, the 8155 and 8355/8755
that come with the SDK-85 Kit have on-board
input/output ports. These ports are accessed using
the I N and OUT instructions of the 8085. Each
individual port being referenced has a unique 8-bit
address. Table 5-3 contains all the port addresses
for an expanded SDK-85 containing two 8155's
and two 8355/8755's.

Please consult the MCS-85 User's Manual for the
use of the various special purpose registers referred
to in the table (Direction Registers, Command/
Status Registers, etc.), and for complete instruc­
tions for exercising the memory-I/O chips (8155/
8355/8755) .

Hardware Note: The timer/counter of the first
8155 (RAM) is dedicated as a timer. It is hardwired
to receive the 8085's system clock (3.072 MHz
ClK) as its count input. This timer is used by the
keyboard monitor's SI NG lE STEP function, so
you should beware of timer conflicts if you desire
to count and use the SI NG lE STEP function at
the same time. (See paragraph 6-2.)

Accessing the 8279 Keyboard/Display Controller

As was mentioned in the memory addressing sec­
tions, the 8279 is a peripheral chip that is selected
using memory-mapped I/O. Table 5-4 shows the
two memory locations that are used to communi­
cate with the 8279. Consult the MCS-85 User's
Manual for detailed operating instructions.

5-5

PORT

00

01

02

03

08

09

OA

OB

20

21

22

23

24

25

28

29

2A

2B

2C

2D

TABLE 5-3
SDK-85 I/O PORT MAP

FUNCTION

Monitor ROM PORT A

Monitor ROM PORT B

Monitor ROM PORT A
Data Direction Register

Monitor ROM PORT B
Data Direction Register

Expansion ROM PO RT A

Expansion ROM PO RT B

Expansion ROM PO RT A
Data Direction Register

Expansion ROM PO RT B
Data Direction Register

BASIC RAM COMMAND/STATUS
Register

BASIC RAM PORT A

BASIC RAM PORT B

BASIC RAM PORT C

BASI C RAM Low Order Byte
of Ti mer Cou nt

BASI C RAM High Order Byte
of Ti mer Cou nt

EXPANSION RAM
COM MAN D/ST ATUS Register

EXPANSION RAM PORT A

EXPANSION RAM PORT B

EXPANSION RAM PORT C

EXPANSION RAM Low Order Byte
of Ti mer Cou nt

EXPANSION RAM High Order Byte
of Ti mer Cou nt

The data format for character bytes being dis­
played by the 8279 is one bit corresponding to
each of the seven LE D segments plus one bit for
the decimal point. Figure 5-3 shows the bit
configuration.

5-6

MSB

a

fl'b
~/Z/~

d d.p.

LSB 8279 DISPLAY

I A31 A21 AI I AO I B31 B21 Bl I BO I ~- ~~~g~:;~TN
deb a d.p. 9 e 'III SEGMENT

Figure 5-3 Data Format

The hardware is designed so that writing a zero into
a bit position turns on the corresponding LED
segment.

Example; a "4" would be represented as
1001 1001 = 99 (Hex)

These are six active LED displays available for use.
They are configured in a four-place address field
and a two-place data field as in Figure 5-4.

ADDRESS FIELD DATA FIELD

1 1
1

2
1

3
1

4 1 OJ
Figure 5-4 Display Configuration

TABLE 5-4
ACCESSING THE 8279

KEYBOARD DISPLAY CONTROLLER

LOCATION
READ/ FUNCTION
WRITE

1800 Read Read Keyboard
FIFO

Write Write Data to
Display

1900 Read Read Status
Word

Write Write Command
Word

The display digits are stored within the 8279 dis­
play RAM in the locations listed in Table 5-5.

TABLE 5-5

8279 DISPLAY RAM

5-5

LOCATION PURPOSE

0 Address digit 1
1
2
3

4 Data Digit
5

6 UNUSED
7 UNUSED

PROCESSOR INTERRUPT
ALLOCATION

2
3
4

1
2

The 8085 has four Vector Interrupt input pins in
addition to an 8080A-compatible interrupt input.
The name of each interrupt and its function in the
SDK-85 hardware is listed in Table 5-6.

The function of the on-chip interrupts is described
in detail in the 8085 Manual.

TABLE 5-6
8085 ON-CHIP INTERRUPT ALLOCATION

INPUT FUNCTION

RST 5.5 Ded icated to 8279

RST 6.5 Avai lable User Interrupt

RST 7.5 @ill button interrupt

TRAP 81 55 Ti mer I nterru pt

INTR Available User Interrupt

5-6 THE SERIAL DATA
INTERFACE

The SDK-85 has the capability of communicating
with a teletype, using the 8085 serial input and
serial output data lines (SI D and SOD respectively)
to send and receive the serial bit strings that encode
data characters.

To send data to the teletype, the 8085 must toggle
the SOD line in a set/reset fashion controlled by
software timing routines in the SDK-85 monitor.

Input data is obtained by monitoring and timing
changes in the level of the SI D pin. Again, a moni­
tor routine is called upon to do the job.

These teletype communications routines are acces­
sible to the user.

Both subroutines communicate at a data rate of
110 baud, the standard rate for teletypewriters.

Since the 8085 serial input and output lines are
designed for communicating with other integrated
circuits, additional electronic circuitry is needed
before they can be connected to a terminal. The
TTY interface in the top right corner of the board
allows the SDK-85 to be connected to any tele­
type that uses 20 mA "current-loop" input and
output.

5-7

5-7 CONVERTER CIRCUIT FOR
RS232C SERIAL PORT

If you are fortunate enough to have a CRT termi­
nal that can operate at a 110-baud rate, and wish
to use it with the SDK-85 computer, you may
find that it is compatible only with "RS232c"
voltage-level serial ports and not with current
loops. If this is the case,

o Wire the MC1488 and MC1489 converter
circuit (shown in Figure 5-5) into the wire­
wrap area of the SDK-85 board.

o Remove R6, and connect the input line of
the converter circuit to its lower pad. (You
could put a switch in this line if you wanted
to.)

o Open both the TTY and KEYBOARD jump­
ers, and connect the output line of the con­
verter to the middle pad, which is strapping

SID

JUMPER
PIN 23

11
REMOVE .---+--f

8085 C?
J

<..
>

<
?

R6

+5V

14

MC1489

7

13

4 CONVERTER INPUT LINE
SOD

+(9 TO 15)V -(9 TO 15)V

GND 20

2 3

MC1488

7

point 23. (If you are using a switch, one with
a center off position could be used.)

o Connect your CRT as shown in Figure 5-5.

o Connect the 3 different voltages to the
circuit.

5-8 ADDITIONAL INTERFACES

Additional interface considerations are discussed in
Intel Application Note AP-29, which also describes
a low-cost cassette tape-recorder interface, that
can be added to your SO K-85 kit. AP-29 can be
ordered by sending $1.00to: Literature Department,
I ntel Corp., 3065 Bowers Ave., Santa Clara, Ca.
95051.

330pF

CRT
TERMINAL

DDDCJDDDDDDDD
000000000000
000000000000

Figure 5-5 Modification for RS-232c Operation

5-8

6-1 THE SDK-85 MONITOR

The SDK-85 monitor program provides utility
functions employing either a teletypewriter or the
kit's on-board keyboard and display as console.
The program resides in 2k (k = 1024) bytes of the
ROM memory, between location 0 and location
7 F F. the routines that service each console de-
vice are independent; the two devices do not func­
tion simultaneously. You may select either the
keyboard and display or the teletypewriter as the
console device by actuating a switch (not furnished)
or by changing strapping connections. Both can be
used to perform substantially the same tasks. (See
Chapter 4.)

6-2 PROGRAMMING HINTS

Stack Pointer

The 8085 makes use of a 16-bit internal register
called the Stack Pointer to point to an area of
memory called the stack. The 8085's stack is
used for saving many things, such as memory
addresses for returns from subroutines.

It is important always to define the stack pointer
at the beginning of your program to avoid storing
data in the wrong place. Locations 20C2 through
2000 in RAM are reserved by the monitor for
jump instructions when all interrupts are used.
Thus, you should set the stack pointer initially at
20C2 (by the use of the program instruction
LXI SP, 20C2H (31 C2 20), the keyboard command

~ [;1J(20) ~ (C2) EJ, or the teletypewriter
"XS" command) in order to keep your own stack
clear of data and programs you want to protect.
If less than the full complement of interrupts is

CHAPTER 6
THE SOFTWARE

utilized, some or all of the unused space above
20C2 can be allocated to stack as described above.
Remember that the stack must still occupy an un­
broken string of contiguous memory locations.

RAM-I/O Command Status Register (CSR)

The basic 8155 command status register (port 20)
is used to set up the on-chip I/O ports and timer.
It can only be written to; it cannot be read. You
can write to this register in your programs, but
there is a precaution you should take: at any time
when you write to the CSR in the basic RAM, you
should also write the same pattern to RAM location
20FF. The reason is this: The S~~~~E command causes
the monitor to change the CSR in order to set
up the timer for execution of the command. If it
is not told what value you previously put there (by
saving the value in 20FF), that value will inevitably
be overwritten and lost. Following each single step,
the monitor reads location 20FF, logically DRs its
timer command to the content of that location, and
writes the CSR with the new command, thereby
retrieving your previous configuration.

Access to Monitor Routines

You may "borrow" several of the SDK-85 monitor
routines to simplify your programming task. Table
6-1 provides descriptions and calling addresses for
these routi nes.

6-3 PROGRAMMING EXAMPLES

The programming examples presented at the end of
this chapter demonstrate how to use the monitor
routines to operate the keyboard and display.

6-1

Calling Address

07FD

07FA

05EB

06C7

0363

036E

02E7

05F1

6-2

TABLE 6-1
MONITOR ROUTINE CALLING ADDRESSES

Mnemonic

CI

co

CROUT

NMOUT

UPDAD

UPDDT

RDKBD

DELAY

Description

Console Input

This routine returns a character (in ASCII code - see 8085/8080
reference card for codes) received from the teletype to the caller
in the A register. The A register and CPU condition codes are
affected by this operation

Console Output

This routine transmits a character (in ASCII code), passed from
the caller in the C register, to the teletypewriter. The A and C
registers, and the CPU condition codes are affected.

Carriage Return, Line Feed

CROUT sends carriage return and line feed characters to the
teletype. The contents of the A, B, and C registers are destroyed
and the CPU condition codes are affected.

Hex Number Printer

NMOUT converts the 8-bit unsigned integer in the A register into
2 ASCII characters representing the 2 hex digits and prints the
two digits on the teletypewriter. The contents of the A, Band C
registers and the condition code flags are affected.

Update Address

Update address field of the display. The contents of the D-E
register pair are displayed in the address field of the display.
The contents of all the CPU registers and flags are affected.

Update Data

Update data field of the display. The contents of the A register
are displayed in hex notation in the data field of the display.
The contents of all of the CPU registers and flags are affected.

Read Keyboard

This routine waits until a character is entered on the hex keypad
and upon return places the value of the character in the A regis­
ter. The A, H, and L registers and the flag flip flops are affected.

NOTE: For RDKBD to work correctly, you must first:

1. Unmask RST 5.5 using the SIM instruction.

Time Delay

This routine takes the 16-bit contents of register pair DE and
counts down to zero, then returns to the calling program. The
A, D, and E registers and the flags are affected.

Calling Address

02B7

TABLE 6-1
MONITOR ROUTINE CALLING ADDRESSES (CONT'D)

Mnemonic

OUTPT

Description

Output Characters to Display

The routine sends characters to the display with the parameters
set up by registers A, B, Hand L.

Reg A = 0 = use address field
= 1 = use data field

Reg B = 0 = decimal point off
= 1 = decimal point at right edge of field

Reg H L = starting address of characters to to sent.

Hexadecimal memory
Character content pointed to
Displayed by the H L register

0 00

1 01

2 02

3 03

4 04

5 05

6 06

7 07

8 08

9 09

A OA

b OB

C OC

d 00

E OE

F OF

H 10

L 11

P 12
13

r 14

S 05
Blank 15

6·3

PROGRAM EXAMPLE - RDKBD

After executing 02000, the program waits until a key is pressed. Then the value of the key is placed
in the A register and the monitor is restarted. Use ~ to see that the key value is now in the A register.

ADDRESS DATA

2000 31
2001 C2
2002 20
2003 3E
2004 08
2005 30
2006 CD
2007 E7
2008 02
2009 CF

PROGRAM EXAMPLE - UPDDT

Display FF in data field of display.

ADDRESS DATA

2000 31
2001 C2
2002 20
2003 3E
2004 FF
2005 CD
2006 6E
2007 03
2008 76

SYMBOLIC

LX I SP, 20C2H

MVI A, 08H

SIM
CALL RDKBD

RST 1

SYMBOLIC

LXI SP, 20C2H

MVI A, FFH

CALL UPDDT

HLT

COMMENTS

; define stack pointer

; unmask interrupt
; read keyboard value
; into Reg A

; break point, go back to monitor

COMMENTS

; define stack pointer

; load F F into Reg A

; output Reg A to data field

; HALT

To change the display value use ~ to vary the content of location 2004

PROGRAM EXAMPLE - RDKBD, UPDDT

Putting the two preceding examples together into one program causes the display to show the key value.

ADDRESS DATA SYMBOLIC COMMENTS

2000 31C220 LXI SP, 20C2H ; define stack pointer
2003 3E08 MVI A, 08H
2005 30 SIM ; unmask interrupt
2006 CDE702 LOOP: CALL RDKBD ; read keyboard value into Reg A
2009 CD6E03 CALL UPDDT ; output Reg A to data field
200C C30620 JMP LOOP ; keep looping

6-4

PROGRAM EXAMPLE - ADD TWO NUMBERS IN HEX NOTATION

This program is an adaptation of the program above. The computer reads in two one-digit numbers
using RDKBD. Then it adds them, and displays the sum (base 16) on the LED display using UPDDT.

ADDRESS DATA SYMBOLIC COMMENTS

2000 31C220 LXISP,20C2H ; initialize stack pointer
2003 3E08 MVI A, 08H
2005 30 SIM ; unmask interrupts
2006 CDE702 LOOP: CALL RDKBD ; get first number
2009 47 MOV B,A ; save nu mber in B reg.
200A CDE702 CALL RDKBD ; get second number
2000 80 ADD B ; add the two nu mbers
200E CD6E03 CALL UPDDT ; display the su m
2011 C30620 JMP LOOP ; keep looping

Note: for decimal (base10) addition of digits 0-9, insert the DAA instruction (opcode 27) between
ADD B and CALL UPDDT in the above program.
Additional Suggestion: Try modifying this program to perform 2-digit decimal number addition.
(Hint: use the 8085's R LC instruction.)

PROGRAM EXAMPLE - 4-DIGIT HEX COUNTER

This program displays a 4-digit hexadecimal (base 16) count in the address field of the display using
the UPDAD routine from the monitor.

ADDRESS DATA SYMBOLIC COMMENTS

2000 31C220 LXI SP 20C2 ; initialize stack pointer
2003 13 LOOP: INX D ; add 1 to the 16-bit count
2004 D5 PUSH D ; save the count in the stack
2005 CD6303 CALL UPDAD ; display the count
2008 110018 LXID,1800 ; set delay count
200B CDF105 CALL DELAY ; wait out the delay
200E D1 POP D ; restore the cou nt to D & E regs
200F C30320 JMP LOOP ; keep counting

6-5

PROGRAM EXAMPLE - DECIMAL COUNTER

The following program displays a count in the data field of the display. The count may be stopped by
pressing the @ill button. The count resumes when any other key (except 8) is pressed. The liE" in
the address field of the display signifies that a user program is executing.

ADDRESS DATA

2000 31
2001 80
2002 20
2003 3E
2004 08
2005 30
2006 FB
2007 78
2008 3C
2009 27
200A 47
200B C5
200C CD
2000 6E
200E 03
200F 16
2010 18
2011 CD
2012 F1
2013 05
2014 C1
2015 C3
2016 06
2017 20

20CE FB

20CF 76
2000 C9

SYMBOLIC

LXI SP, 2080H

MVI A, 08

SIM
LOOP: EI

MOV A, B
INR A
DAA
MOV B, A
PUSH B
CALL UPDDT

MVI 0, 18H

CALL DELAY

POP B
JMP LOOP

EI

HLT
RET

To execute the program, type in 0 2000 ~.
Try to stop the count right at 00 using the ~ key.

COMMENTS

; INITIALIZE STACK POINTER.

; USE THE 8085's SIM INSTR TO
; ENABLE THE VECT INTR BUTTON.

; INCREMENT AND ADJUST THE COUNT
; FOR DECIMAL COUNTING.

; DISPLAY COUNT IN DATA FIELD OF
; DISPLAY.

; WAIT OUT A PROGRAMMABLE DELAY
; PERIOD BEFORE CONTINUING.

; GO BACK TO THE BEGINNING.

; CONTROL BRANCHES TO LOCATION
; 20CE WHEN VECT INTR IS PRESSED.
; WAIT HERE FOR KEY DEPRESSION.
; RESUME THE COUNT.

Change the speed of the count by using ~ to vary the contents of location 2010.

Additional Suggestions:

This counter can be turned into a digital stopwatch second counter by inserting the following instruc­
tions between DAA and MOV B, A in the above program:

200A
200C
200F

FE60
C21020
AF

CPI A,60
JNZ 2010
XRAA

; check to see if count = 60
; continue if count =f 60.
; if count = 60 then set the
count = 0

In addition, you will have to insert another MVI 0 and CALL DE LAY before POP B and vary both
delay counts in order to get exactly one second between counts on the LED display.

Additional Programming Idea: Expand on the digital stopwatch program by displaying hours and
minutes in the address field of the LE 0 display.

6-6

PROGRAM EXAMPLE - FLASH HELP

Load into Locations 2000 through 2007 (use the Substitute Memory command) the following
data: 10, OE, 11, 12, 15,15,15,15. Then load and execute the following program (G2010~),
The display will flash "HELP".

ADDRESS DATA

2010 31C220
2013 3E01
2015 0600
2017 210620

201A CD8702

201D 3EOO
201F 0600
2021 210020

2024 CD8702

2027 11FFFF
202A CDF105

202D 3EOO
202F 0600
2031 210420
2034 CD8702

2037 11FFFF
203A CDF105
203D C31D20

SYMBOLIC

LXI SP~ 20C2H
MVI A, 1
MV18,0
LXI H, 2006H

CALL OUTPT

DPY:
MVI A,O
MV18,0
LXI H, 2000H

CALL OUTPT

LXI D,OFFFFH*
CALL DELAY

MOV A, 0
MOV 8,0
LXI H, 2004H
CALL OUTPT

LXI D,OFFFFH
CALL DELAY
JMP DPY

COMMENTS

; define stack pointer
; use data field
; no decimal indicator
; use characters starting
; at Location 2006
; output the two characters
; to data field

; use address field
; no decimal indicator
; use characters starting
; at Location 2000
; output the four characters
; to address field

; set up delay value
; time delay

; output 8 LAN KS to
; Display

; time Delay
; REPEAT

* Delay time proportional to value. Any number from 1 through F F F F may be chosen.

Additional Suggestions:

You may select any other 4-letter word from the characters on p. 6-3 and place the hex codes for
those letters in memory locations 2000-2003. Then restart the program from location 2010 and
your new word will flash on the display.

In addition, you may place the hex codes from p. 6-3 for a 2-letter word (like "HI") in memory
locations 2004 and 2005, and the 2-letter word will flash in between the flashes of the 4-letter word.

6-7

PROGRAM EXAMPLE - USING THE 8155 AND 8355 DEVICE OUTPUT PORTS

ADDRESS DATA SYMBOLIC COMMENTS

2000 31C220 LXI SP, 20C2H ; initialize stack pointer
2003 3E03 MVI A,03 ; put 8155 command in A reg.
2005 0320 OUT 20H ; program the 8155 CS R
2007 3EFF MVI A, FF ; put 8355 DDR value in A reg.
2009 0302 OUT 02 ; program PORT A DDR
2008 0303 OUT 03 ; program PORT 8 DDR
2000 03 LOOP: INX8 ; increment 16-bit count
200E 79 MOV A, C
200F 0321 OUT 21 ; send low byte of count
2011 0300 aUTO ; to 8155 PORT A and

; to 8355 port A
2013 78 MOV A, 8
2014 0322 OUT 22 ; send hi byte of

; count to 8155 port 8
2016 0301 OUT01 ; send hi byte of

; count to 8355 port 8
2018 C30D20 JMP LOOP ; loop back.

This program is an example showing how to configure the input/output ports of the 8155 and 8355
devices as output ports. The command register of the 8155 is loaded with the value 03 at the begin­
ning of the program to signify that both 8155 ports A and 8 will be outputs. Likewise, both ports
A and 8 of the 8355 are programmed to be outputs by writing all one's (FF) to both Data Direction
Registers in the 8355.

The program increments a 16-bit binary count and sends the cou nt out through the ports of the 8155
and 8355. If you have a logic probe or oscilloscope, you can look at the corresponding outputs on
connector pads J3 and J4 on the SDK-85 PC board.

6-8

APPENDIX A
MONITOR LISTING

ASMe8 :Fl:SDK85.SRC MACROFILE MOD85 XREF PRIN·r(:Fl:SDK85.LS1·)

ISIS-II 8888/8885 MACRO ASSEMBLER, X108 SDK85 PAGE 1

LOC OBJ

lUI

20U

SEQ

1
2
3
4
5
6
7
8
9

11
11
12
13
14
15
16
17
18
19
21
21
22
23
24
25
26
27
28
29
38
31
32
33
34
35
36
37
38
39
U
41
42
43
44
45
46
47
4rl
49
51
51
52
53
54
55
56
57
58
59
68
61
62
63
64
65
66
67
68
69
78
71
72
73
74
75
76
77
78
79
88
81
82
83
84
85
86
87
88
89
98
91
92
93
94
95
96
97

SOURCE STATEMENT

1***···****···*·*****************************··***··******* •• *.*.***.*.

PROGRAM: SDK-85 MONITOR VER 2.1

COPYRIGHT (C) 1977
INTEL CORPORATION
3865 BOWERS AVENUE
SANTA CLARA, CALIFORNIA 95851

I
;***.********.****.**************.****.**.**.** ••••••• ******* ••• *.*****

I

ABSTRACT
THIS PROGRAM IS A SMALL MONITOR FOR THE INTEL 8885 KIT AND
PROVIDES A MINIMUM LEVEL OF UTILITY FUNCTIONS FOR THE USER EMPLOYING
EITHER AN INTER-ACTIVE CONSOLE (I.E. TELETYPE) OR TKE KIT'S
KEYBOARD/LEO DISPLAY. THE KEYBOARD MONITOR ALLOWS THE USER TO PERFORM
SUCH FUNCTIONS AS MEMORY AND REGISTER MANIPULATION, PROGRAM LOADING,
PROGRAM EXECUTION, INTERRUPTION OF AN EXECUTING PROGRAM, AND
SYSTEM RESET •.

PROGRAM ORGANIZATION

THE PROGRAM IS ORGANIZED AS FOLLOWS :-
1) COLD START ROUTINE (RESET)
2) WARM START - REGISTER SAVE ROUTINE
3) INTERRUPT VECTORS
4) KEYBOARD MONITOR
5) TTY MONITOR
6) LAYOUT OF RAM USAGE

THE KEYBOARD MONITOR BEGINS WITH THE COMMAND RECOGNIZER, FOLLOWED BY
THE COMMAND ROUTINE SECTION, UTILITY ROUTINE SECTION AND MONITOR
TABLES. THE COMMAND AND UTILITY ROUTINES ARE IN ALPHABETICAL ORDER
WITHIN THEIR RESPECTIVE SECTIONS.
THROUGHOUT THE KEYBOARD MONITOR, A COMMENT FIELD BEGINNING
WITH "ARG - • INDICATES A STATEMENT WHICH LOADS A VALUE INTO
A REGISTER AS AN ARGUMENT FOR A FUNCTION. WHEN THE DESIRED VALUE
LIST OF KEYBOARD MONITOR ROUTINES

CMMND

EXAM
GOCMD
SSTEP
SUBST

CLEAR
CLDIS
CLOST
DISPC
ERR
GTHEX
HXDSP
ININT
INSDG
NXTRG
OUTPT
RDKBD
RETF
RETT
RGLOC
RSTOR
SETRG
UPDAD
UPDDT

NAME SDK85

, •••••••••• *** •••••••••• **.**.**.********.****.***** •••• ****.****.*.*.*.

SET CONDITIONAL ASSEMBLY FLAG
I
,***************.************************************ ••••• ** •• ** •••••••

I
WAITS SET llaNO WAIT STATES

I

11-A WAIT STATE IS GENERATED FOR EVERY M CYCLE
ITHE APPROPRIATE DELAY TIME MUST BE USED FOR

ITTY DELAY OR SET UP SINGLE
ISTEP TIMER FOR EACH CASE

,** •••••••• ****.**.***** •• *****.*****.**.** ••••• ***.** •••• *.*.******* ••

MONITOR EQUATES
I , •••• ** ••• ******.**.**.***.**** •••• **.**.****.*** •••••••••• ** ••••••••••

RAMST EQU 2181H I START ADDRESS OF RAM - THIS PROGRAM ASSUMES
THAT 256 BYTES OF RANDOM ACCESS MEMORY BEGIN AT THIS ADDRESS.
THE PROGRAM USES STORAGE AT THE END OF THIS SPACE FOR VARIABLES,
SAVING REGISTERS AND THE PROGRAM STACK

ISIS-II 8188/8185 MACRO ASSEMBLER, X118 SDK85 PAGE 2

LOC OBJ

0817

8818

880F

1980

0011
8300
0020
0094

0001
1800
0081
0808
0080
08CC

0000

20E9
0880

0UB
80FB
0040

0825
0824
0048
00C0
080E
20C2

00C5

0000 3E00
8802 328819
0005 C3F101

0808

8808 22EF28
000B El
088C 22F228
000F F5
8818 El
0011 22ED28
0014 210000
0817 39
0018 22F420
0UB 21ED20
8UE F9
0UF C5
0020 05
8021 C33F88

0024
0024 C35701

002ij

SEg

98
99

100
101
182
103
104
105
106
107
108
109
110
III
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
168
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
188
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

SOURCE STATEMENT

RMUSE

I
SKLN
I
UBRLN
I
AD FLO
ADISP

CNTRL

COMMA
CSNIT
CSR
DDISP

DOT
OS PLY
DTFLD
DTMSK
EMPTY
KBNIT

KMODE

EgU

EOU

EOU

EOU
EOU

EOU

EOU
EQU
EOU
EOU

EOU
EOU
EOU
EOU
EOU
EOU

EOU

23

24

15

8
90H

1980H

11H
8
20H
94H

1
1888H
1
08H
80H
0CCH

8

RAM USAGE - CURRENTLY, 23 BYTES ARE USED FOR
/SAVING REGISTERS AND VARIABLES

MONITOR STACK USAGE - MAX OF 12 LEVELS

5 USER BRANCHES - 3 BYTES EACH

INDICATES USE OF ADDRESS FIELD OF DISPLAY
CONTROL CHARACTER TO INDICATE OUTPUT TO
/ADDRESS FIELD OF DISPLAY
ADDRESS FOR SENDING CONTROL CHARACTERS TO
/DISPLAY CHIP

I COMMA FROM KEYBOARD
I'INITIAL VALUE FOR COMMAND STATUS REGISTER

OUTPUT PORT FOR COMMAND STATUS REGISTER
CONTROL CHARACTER TO INDICATE OUTPUT TO
/DATA FIELD OF DISPLAY
INDICATOR FOR DOT IN DISPLAY
ADDRESS FOR SENDING CHARACTERS TO DISPLAY
INDICATES USE OF DATA FIELD OF DISPLAY
MASK FOR TURNING ON DOT IN DISPLAY
HIGH ORDER 1 INDICATES EMPTY INPUT BUFFER
CONTROL" CHARACTER TO SET DISPLAY OUTPUT TO
/ALL ONES DURING BLANKING PERIOD
CONTROL CHAR. TO SET KEYBOARD/DISPLAY MODE

I (2 KEY ROLLOVER, 8 CHARACTER LEFT ENTRY)
MNSTK EOU RAMST + 256 - RNUSE ISTART OF MONITOR STACK
NODOT EOU 0 INDICATOR FOR NO DOT IN DISPLAY

NUM8ER OF COMMANDS INUMC - DEFINED LATER
INUMRG - DEFINED LATER NUMBER OF REGISTER SAVE LOCATIONS

PERIOD FROM KEYBOARD PERIO EOU 10H
PRMPT EOU BFBH PROMPT CHARACTER FOR DISPLAY (DASH)

CONTROL CHARACTER TO INDICATE INPUT FROM
/KEYBOARD

READ EOU 40H

TIMHI
TIMLO
TMODE
TSTRT
UNMSK
USRBR

'fIMER

TIMER

EOU
EOU
EOU
EOU
EOU
EOU

IF
EOU
ENDIF
IF
EOU
ENDIF

25H
24H
UH
8C0H
0EH
RAMST +

OUTPUT PORT FOR HIGH ORDER BYTE OF TIMER VALUE
OUTPUT PORT FOR LOW ORDER BYTE OF TIMER VALUE
TIMER MODE - SOUARE WAVE, AUTO RELOAD
START TIMER

I UNMASK INPUT
256 - (RMUSE +

INTERRUPT
SKLN + UBRLN) I START OF USER

I /BRANCH LOCATIONS
I-WAITS ITIMER VALUE
197

FOR SINGLE STEP IF NO WAIT STATE

WAITS
237

ITIMER VALUE FOR SINGLE STEP IF ONE WAIT STATE INSERTED

1*··*********······**······****·*******·······********_.-.- •••• _-_ •••• -

MONITOR MACROS

, ... _-_ _ .. _ _._ _--... __ ._ _-_.-.- ..•....... _--_
I
TRUE

I
FALSE

I

MACRO
JC
ENDM

MACRO
JNC
ENDM

WHERE
WHERE

WHERE
WHERE

I BRANCH IF FUNCTION RETURNS TRUE

BRANCH IF FUNCTION RETURNS FALSE

,._ _._ _ .. _._.-.... _._------_._._-_.-.--_._.--_._._._.----._.
--... ----.

CLDBK:

._.

.. RESE1'" KEY ENTRY POINT - COLO START
RST 0 ENTRY POINT

MVI
STA
JMP

A,KMODE
CNTRL
CLOST

GET CONTROL CHARACTER
SET KEYBOARD/DISPLAY MODE
GO FINISH COLO START
THEN JUMP BACK HERE

RST 1 ENTRY POINT - WARM S'rART

ORG 8
SAVE REGISTERS
SHLD LSAV SAVE H & L REGISTERS
POP H GET USER PROGRAM COUNTER FROM TOP OF STACK
SHLD PSAV /AND SAVE IT
PUSIl PSW
POP H
SHLD FSAV SAVE FLIP/FLOPS & REGISTER A
L~I H, 0 CLEAR H & L
DAD SP GET USER STACK POINTER
SIlLD SSAV I /AND SAVE IT
LXI Il,BSAV+l I SET STACK POINTER FOR SAVING
SPHL I /REMAINING REGISTERS
PUSH B I SAVE B & C
PUSH 0 I SAVE 0 & E
JMP RES10 I LEAVE ROOM FOR VECTORED INTERRUPTS

TIMER INTERRUPT (TRAP) ENTRY POINT (RST 4.5)
ORG 24H
JMP STP25 BACK TO SINGLE STEP ROUTINE

RST 5 ENTRY POINT

ORG 281l

ISIS-II 8080/8~85 MAcao ASSEMBLER, Xl08 SDK85 PAGE 3

LOC OBJ

0020 C3C220

002C
002C C38E02

8830
0138 C3C520

0134
0034 C3C820

·8838
H1138 C3CB20

083C
083C C3CE20

003F 28
0848 E60F
0842 32F128
0845 3E0E
0147 30
0848 F3

H1149 28
884A 87
884B DAFA03

804E AF
0114F 0600
0051 21A603

0054 CDB702
11057 3E01
0059 06B8
005B 21AA03

H115E CDB702
0061 3E80
0063 32FE20

0066 21£920
0069 F9

00bA 210019
0060 369~
006F 25
0070 36FB
0072 CDE702
0075 010400
0078 217603

007B BE
007C CA8700
007F 23
01180 00
0881 C27B00

0084 C31502

0087 217C03
008A 80

U8B 09
008C 09
8880 7E
808E 23
088F 66
0190 6F

0091 E9

SEQ SOURCE STATEMENT

.****

*.***

*.***

.*.*.

JMP aSET5 ; BRANCH TO aST 5 LOCATION IN RAM

INPUT INTERRUPT ENTRY POINT (RST 5.5)

ORG
JMP

2CH
ININT BRANCH TO INPUT INTERRUPT ROUTINE

RST 6 ENTRY POINT

ORG
JMP

38H
RSET6 ; BRANCH TO RST 6 LOCATION IN RAM

HARD WIRED USER INTERRUPT ENTRY POINT (RST 6.5)

ORG
JMP

34H
RST65 BRANCH TO RST 6.5 LOCATION IN RAM

RST 7 ENTRY POINT

ORG
JMP

38H
RSET7 ; BRANCH TO RST 7 LOCATION IN RAM

..... "VECTORED INTERRUPT" KEY ENTRY POINT (RST 7.5)
ORG 3CH
JMP USINT BRANCH TO USER INTERRUPT LOCATION IN RAM

~ESU:

197
198
199
200
201
202
203
204
205
206
207
2118
209
218 I
211
212
213
214 I
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
26t1
269
278
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295

; CONTINUE SAVING USER STATUS
RIM
ANI
STA
MVI
SIM
01

RIM
RLC

8FH
ISAV
A,UNMSK

JC GO

GET USER INTERRUPT STATUS AND INTERRUPT MASK
KEEP STATUS , MASK BITS
SAVE INTERRUPT STATUS & MASK
UNMASK INTERRUPTS FOR MONITOR USE

INTERRUPTS DISABLED WHILE MONITOR IS RUNNING
(EXCEPT WHEN WAITING FOR INPUT)
TTY OR KEYBOARD MONITOR ?
IS TTY CONNECTED ?
YES - BRANCH TO TTY MONITOR
NO - ENTER KEYBOARD MONITOR

,
1***···**··****··**************··****·*·**********··** **.******~**.*.**

BEGINNING OF KEYBOARD MONITOR CODE
I
,.*** ••• **** ••••• ***********.*** ••••••••••• **.** •••••••• * ••••••• *******

;

OUTPUT
XRA
MVI
LXI

CALL
MVI
MVI
LXI

CALL
MVI
STA

SIGN-ON MESSAGE
A ARG - USE ADDRESS FIELD OF DISPLAY
B,NODOT ARG - NO DOT IN ADDRESS FIELD
H,SGNAD ARG - GET ADDRESS OF ADDRESS FIELD PORTION OF

OUTPT
A,DTFLD
B,NODOT
H,SGNDT

OUTPT
A,EMPTY
IBUFF

ISIGN-ON MESSAGE
OUTPUT SIGN-ON MESSAGE TO ADDRESS FIELD
ARG - USE DATA FIELD OF DISPLAY
ARG - NO DOT IN DATA FIELD
ARG - GET ADDRESS OF DATA FIELD PORTION OF
ISIGN-ON MESSAGE
OUTPUT SIGN-ON MESSAGE TO DATA FIELD

SET INPUT BUFFER EMPTY FLAG

~********** •• ** •• *****.*.***.*.* •••• *.**.*.*.** •• **.*********** ••• *****

FUNCTION: CMMND - COMMAND RECOGNIZER
INPu'rs: NONE
OUTPUTS: NONE
CALLS: RDKBD,ERR,SUBST,EXAM,GOCMD,SSTEP
DESTROYS: A,B,C,D,E,H,L,F/F'S

;
CMMND:

CMDU:

CMD15:

LXI
SPHL

LXI
MVI
OCR
MVI
CALL
LXI
LXI

CMP
JZ
INX
OCR
JNZ

JMP

LXI
OCR

DAD
DAD
MOV
INX
MOV
MOV

PCHL

H,MNs'rK

H,CNTRL
M,ADISP
H
M,PRMPT
RDKBD
B,NUMC
H,CMDTB

M
CMD15
H
C
CMDU

ERR

H,CMDAD
C ;
; COUNTER
B I
B I
A,M
H
H,M
L,A :

COMMAND

INI'l'IALIZE MONITOR STACK POINTER

OUTPUT PROMPT CHARACTER TO DISPLAY
GET ADDRESS FOR CONTROL CHARACTER
OUTPUT CONTROL CHARACTER TO USE ADDRESS FIELD
ADDRESS FOR OUTPUT CHARACTER
OUTPUT PROMPT CHARACTER
READ KEYBOARD
COUNTER FOR NUMBER OF COMMANDS IN C
GET ADDRESS OF COMMAND TABLE

RECOGNIZE THE COMMAND ?
YES - GO PROCESS IT
NO - NEXT COMMAND TABLE ENTRY
END OF TABLE ?
NO - GO CHECK NEXT ENTRY
YES - COMMAND UNKNOWN
DISPLAY ERROR MESSAGE AND GET ANOTHER COMMAND

GET ADDRESS OF COMMAND ADDRESS TABLE
ADJUST COMMAND COUNTER
ACTS AS POINTER TO COMMAND ADDRESS TABLE
ADD POINTER TO TABLE ADDRESS TWICE BECAUSE
TABLE HAS 2 BYTE ENTRIES
GET LOW ORDER BYTE OF COMMAND ADDRESS

GET HIGH ORDER BYTE OF COMMAND ADDRESS IN H
PUT LOW ORDER BYTE IN L
ROUTINE ADDRESS IS NOW IN H , L
BRANCH TO ADDRESS IN H & L

~IS-Il ij~d0/8085 MACRO ASSEMBLER, X198 SDK85 PAGE

LOC O~J

U92 8681
8194 CDD781
8897 CDU83

189A 021582

8190 CD8983
UAI CDFCI2
81A3 7E
88A4 32F821
88A7 8681
I8A9 CD6B83
88AC 8681
88AE CD2B82

8881 D2B888
88B4 CDFC82
8IB7 73

88B8 FE18
UBA CAE981
8180 FEll
UBF C21582
88C2 CDASa2

8IC5 DUD.I
IICS C3E91l

88CB CDIU2
88CE CDE712
8801 FEll
1103 CAEC88

88D6 32FE28
88D9 1681
88DB CDD781
leDE 8688
88£1 CD2BI2
88E3 FEll
81E5 C21582
18£S EB
88£9 22F228

llEC 8688
88EE CDD781
88F1 AF
88F2 8688
UF4 21A283
88F7 CDB782
eeFA C31B83

00FD CD0002
8180 CDE702
0103 FEU
0185 CAE901
0U8 FEll
011A CA2601

0100 32FE20
0110 0601
8112 COD701
0115 8600
0117 CD2B02

SEQ SOURCE STATEMENT

296 ;********************.*********************** •• ********.***** •••••• *.**
297
29S
299 ,

COMMAND ROUTINES

388 :************.**** •• **********************************.*****.**.*******
381
382
383
384
385
386
307 ;

FUNCTION: EXAM - EXAMINE AND MODIFY REGISTERS
INPUTS: NONE
OUTPUTS: NONE
CALLS: CLEAR,SETRG,ERR,RGNAM,RGLOC,UPDDT,GTHEX,NXTRG
DESTROYS: A,B,C,D,E,H,L,F/F'S

31S EXAM:
319
311
311
312
313
314
315+
316 EXMI5:
317
318
319
321
321
322
323
324
325
326+
327
32S
329 EXM11:
331
331
332
333
334
335
336
337
33S+
339
348 I

MVI
CALL
CALL

FALSE
JNC

CALL
CALL
MOV
STA
Mn
CALL
Mvi
CALL
FALSE
JNC
CALL
MOV

CPI
JZ
CPI
JNZ
CALL

TRUE
JC
JMP

B,DOT
CLEAR
SETRG

ERR
ERR

RGNAM
RGLOC
A,M
CURDT
B,DOT
UPDDT
B,DTFLD
GTHEX
EXMlI
EXMlB
RGLOC
M,E

PERIO
CLDIS
COMMA
ERR
NXTRG

EXM05
EXMS5
CLDIS

; ARG - DOT IN ADDRESS FIELD OF DISPLAY
; CLEAR DISPLAY
; GET REGISTER DESIGNATOR FROM KEYBOARD
;/SET REGISTER POINTER ACCORDINGLY

WAS CHARACTER A REGISTER DESIGNATOR?
NO - DISPLAY ERROR MSG. AND TERMINATE

OUTPUT REGISTER NAME TO ADDRESS FIELD
GET REGISTER SAVE LOCATION IN H & L
GET REGISTER CONTENTS

AND

COMMAND

STORE REGISTER CONTENTS AT CURRENT DATA
ARG - DOT IN DATA FIELD
UPDATE DATA FIELD OF DISPLAY
ARG - USE DATA FIELD OF DISPLAY
GET HEX DIGITS - WERE ANY DIGITS RECEIVED?
NO - DO NOT UPDATE REGISTER CONTENTS

YES - GET REGISTER SAVE LOCATION IN H & L
UPDATE REGISTER CONTENTS

WAS LAST CHARACTER A PERIOD ?
YES - CLEAR DISPLAY AND TERMINATE COMMAND
WAS LAST CHARACTER ',' ?
NO - DISPLAY ERROR MSG. AND TERMINATE COMMAND

; YES - ADVANCE REGISTER POINTER TO
;/NEXT REGISTER

ANY MORE REGISTERS ?
YES - CONTINUE PROCESSING WITH NEXT REGISTER

NO - CLEAR DISPLAY AND TERMINATE COMMAND

341 ;** ••• ******** •• ********************.******************** •••• **********
342 I
343
344
345
346
347
348

FUNCTION: GOCMD - EXECUTE USER PROGRAM
INPUTS: NONE
OUTPUTS: NONE
CALLS: DISPC,RDKBD,CLEAR,GTHEX,ERR,OUTPT
DESTROYS: A,B,C,D,E,H,L,F/F'S

349 GOCMD:
351 CALL

CALL
CPI
JZ

DISPC
RDKBD
PERIO
GIS

DISPLAY USER PROGRAM COUNTER
READ FROM KEYBOARD 351

352
353
354
355
356
357
358
359
361
361
362
363
364 GlB:
365
366
367
36S
369
370
371
372
373 ;

STA
MVI
CALL
MVI
CALL
CPI
JNZ
XCHG
SHLD

MVI
CALL
XRA
MVI
LXI
CALL
JMP

IBUFF
B,DOT
CLEAR
B,ADFLD
GTHEX
PERIO
ERR

PSAV

B,NODOT
CLEAR
A
B,NODOT
H,EXMSG
OUTPT
RSTOR

IS CHARACTER A PERIOD ?
YES - GO EXECUTE THE COMMAND
NO - ARG - CHARACTER IS STILL IN A
REPLACE CHARACTER IN INPUT BUFFER
ARG - DOT IN ADDRESS FIELD
CLEAR DISPLAY
ARG - USE ADDRESS FIELD
GET HEX DIGITS
WAS LAST CHARACTER A PERIOD
NO - DISPLAY ERROR MSG. AND TERMINATE COMMAND
PUT HEX VALUE FROM GTHEX TO H & L
HEX VALUE IS NEW USER PC

YES - ARG - NO DOT IN ADDRESS FIELD
CLEAR DISPLAY
ARG - USE ADDRESS FIELD OF DISPLAY
ARG - NO DOT IN ADDRESS FIELD
GET ADDRESS OF EXECUTION MESSAGE IN H & L
DISPLAY EXECUTION MESSAGE

, RESTORE USER REGISTERS INCL. PROGRAM COUNTER
;/I.E. BEGIN EXECUTION OF USER PROGRAM

374 ;*********************.****************** •• ******* •• *******************
375
376
377
378
379
380
381 ;

FUNCTION: SSTEP - SINGLE STEP (EXECUTE
INPUTS: NONE
OUTPUTS: NONE
CALLS: DISPC,RDKBD,CLEAR,GTHEX,ERR
DESTROYS: A,B,C,D,E,H,L,F/F'S

ONE USER INSTRUCTION)

382 SSTEP:
383 CALL

CALL
CPI
JZ
CPI
JZ

DISPC
RDKBD
PERIO
CLDIS
COMMA
STP20

DISPLAY USER PROGRAM COUNTER
READ FROM KEYBOARD 384

385
386
387
388
389
390
391
392
393
394
395

; NO -
STA
MVI
CALL
MVI
CALL
FALSE

CHARACTER
IBUFF
B,DOT
CLEAR
B,ADFLD
GTHEX
ERR

WAS CHARACTER A PERIOD ?
YES - CLEAR DISPLAY AND TERMINATE COMMAND
WAS LAST CHARAC'rER ,'?
YES - GO SET TIMER

FROM KEYBOARD WAS NEITHER PERIOD NOR COMMA
REPLACE THE CHARAC'rER IN THE INPUT BUFFER
ARG - DOT IN ADDRESS FIELD
CLEAR DISPLAY
ARG - USE ADDRESS FIELD OF DISPLAY
GET HEX DIGITS - WERE ANY DIGI1'S RECEIVED ?
NO - DISPLAY ERROR MSG. AND TERMINA'fE COMMAND

ISIS-II 8888/8885 MACRO ASSEMBLER, X108 SDK85 PAGE

LOC OBJ

8llA 021502
0llD EB
0llE 22F220
0121 FE10
0123 CAE901

0126 3AF120
0129 E608
0l2B 32FD20
012E 2AF220
U3l 7E
0132 FEF3
0134 C23B01
0137 AF
0138 C34201

013B FEFB
BUD C24501
B140 3E08

B142 32FD20

BUS 3E48

B147 0325
8149 3EC5
BUB 0324
B14D 3AFF20
8150 F6C0
0152 0320
8154 C31B03

8157 F5
8158 3AFF2B
USB E63F
8150 F648
U5F 0320
8161 Fl
8162 22EF20
8165 £1
8166 22F22B
8169 P5
816A El
816B 22ED20
1l6E 211180
8171 39
8172 22F421
8175 21ED20
8178 P9
8179 C5
817A 05
1l7B 21
817C E687
817E 2lPD2.
1181 B6
1182 32r12.
8185 3EU
1187 3.
8188 C3FD8B

Bl8B 16Bl
8180 CDD781
8191 BU8
8192 CD2BB2

8195 021582
0198 EB
8199 22F620

019C FEll
019E C2CF01
01Al 060B
81A3 CD5F03
0lA6 2AF628
BlA9 7E
UAA 32F820
01AD 0601
01AF CD6B03
01B2 8691
01B4 CD2B02
01B7 F5

01B8 D2C401
UBB 2AF620
UBE 73

01BF 7B

SEQ

396+
397
398
399
408
401
482
403
404
405
406
407
488
409
410
411
412
413
414
415
416
417
418
419
428
421
422
423
424
425
426
427
428
429
438
431
432
433
434
435
436
437
438
439
441
441
442
443
444
445
446
447
448
449
45.
451
452
453
454
455
456
457
458
459
468
461
462
463
464
465
466
467
468
469
470
471
472
473+
474
475
476
477
478
479
488
481
482
483
484
485
486
487
488
489
490+
491
492
493
4H
495

STP20:

STP21:

STP22:

STP23:

;
STP25:

;

SOURCE STATEMENT

JNC
XCHG
SHLD
CPI
JZ

LOA
ANI
STA
LHLD
MOV
CPI
JNZ
XRA
JMP

CPI
JNZ
MVI

STA

ERR

PSAV
PERIO
CLDIS

ISAV
88H
TEMP
PSAV
A,M
(01)
STP21
A
STP22

(EI)
STP23
A,08H

TEMP

HEX VALUE FROM GTHEX TO H & L
HEX VALUE IS NEW USER PC
WAS LAST CHARACTER FROM GTHEX A PERIOD ?
YES - CLEAR DISPLAY AND TERMINATE COMMAND
NO - MUST HAVE BEEN A COMMA

GET USER INTERRUPT MASK
KEEP INTERRUPT STATUS
SAVE USER INTERRUPT STATUS
GET USER PC
GET USER INSTRUCTION
01 INSTRUCTION ?
NO
YES - RESET USER INTERRUPT STATUS

EI INSTRUCTION
NO
YES - SET USER INTERRUPT STATUS

SAVE NEW USER INTERRUPT STATUS

MVI A,(TIMER SHR 8) OR TMODE ; HIGH ORDER BITS OF TIMER VALUE

OUT
MVI
OUT
LOA
ORI
OUT
JMP

PUSH
LOA
ANI
oaI
OUT
POP
SHLD
POP
SHLD
PUSH
POP
SHLD
LXI
DAD
SHLD
LXI
SPHL
PUSH
PUSH
RIM
ANI
LXI
ORA
STA
MVI
SIM
JMP

TIMHI
A,TIMER
TIMLO
USCSR
TSTRT
CSR
RSTOR

PSW
USCSR
3FH
40H
CSR
PSW
LSAV
H
PSAV
PSW
H

; /OR'ED WITH TIMER MODE

AND 0FFH ; LOW ORDER BITS OF TIMER VALUE

GET USER IMAGE OF WHAT'S IN CSR
SET TIMER COMMAND BITS TO START TIMER
START TIMER
RESTORE USER REGISTERS

; BRANCH HERE WHEN TIMER INTERRUPTS AFTER
;/ONE USER INSTRUCTION

SAVE PSW
GET USER IMAGE OF WHAT'S IN CSR
CLEAR 2 HIGH ORDER BITS
SET TIMER STOP BIT
STOP TIMER
RETRIEVE PSW
SAVE H , L
GET USER PROGRAM COUNTER FROM TOP OF STACK

; SAVE USER PC

FSAV SAVE FLIP/FLOPS AND A REGISTER
H,0 CLEAR H & L
SP GET USER STACK POINTER
SSAV ; SAVE USER STACK POINTER
H,BSAV+l ; SET MONITOR STACK POINTER

B
o

B7H
H,TEMP
M
ISAV
A,UNMSK

;/SAVING REMAINING USER REGISTERS
SAVE B & C
SAVE 0 & E
GET USER INTERRUPT MASK
KEEP MASK BITS
GET USER INTERRUPT STATUS
OR IT INTO MASK
SAVE INTERRUPT STATUS & MASK
UNMASK INTERRUPTS FOR MONITOR USE

FOR

SSTEP GO GET READY FOR ANOTHER INSTRUCTION

:*** ••• **** ••• ***************

FUNCTION: SUBST - SUBSTITUTE MEMORY
INPUTS: NONE
OUTPUTS: NONE
CALLS: CLEAR,GTHEX,UPDAD,UPDDT,ERR
DESTROYS: A,B,C,D,E,H,L,F/F'S

SUBST:

SUB05:

MVI
CALL
MVI
CALL
FALSE
JNC
XCHG
SHLD

cn
JNZ
MVI
CALL
LHLD
MOV
STA
MVI
CALL
MVI
CALL
PUSH
FALSE
JNC
LHLD
MOV

MOV

B,DOT
CLEAR
B,ADFLD
GTHEX
ERR
ERR

CURAD

COMMA
SUB15
B,NODOT
UPDAD
CURAD
A,M
CURDT
B,DOT
UPDDT
B,DTFLD
GTHEX
PSW
SUB18
sualS

ARG - DOT IN ADDRESS FIELD
CLEAR THE DISPLAY
ARG - USE ADDRESS FIELD OF DISPLAY
GET HEX DIGITS - WERE ANY DIGITS RECEIVED?
NO - DISPLAY ERROR MSG. AND TERMINATE COMMAND

ASSIGN HEX VALUE RETURNED BY GTHEX TO
/ CURRENT ADDRESS

WAS', THE LAST CHARACTER FROM KEYBOARD?
NO - GO TERMINATE THE COMMAND
ARG - NO DOT IN ADDRESS FIELD
UPDATE ADDRESS FIELD OF DISPLAY
GET CURRENT ADDRESS IN H & L
GET DATA BYTE POINTED TO BY CURRENT ADDRESS
STORE DATA BYTE AT CURRENT DATA
ARG - DOT IN DATA FIELD
UPDATE DATA FIELD OF DISPLAY
ARG - USE DATA FIELD
GET HEX DIGITS - WERE ANY HEX DIGITS RECEIVED?
(SAVE LAST CHARACTER)
NO - LEAVE DATA UNCHANGED AT CURRENT ADDRESS

CURAD YES - GET CURRENT ADDRESS IN H & L
M,E STORE NEW DATA AT CURRENT ADDRESS
; MAKE SURE DATA WAS ACTUALLY STORED IN CASE
;/CURRENT ADDRESS IS IN ROM OR IS NON-EXISTANl
A,E ; DATA TO A FOR COMPARISON

ISIS-II 8080/d085 MACRO ASSEMBLER, X108 SDK85 PAGE

LOC OBJ

01C0 BE
01Cl C21502

01C4 2AF620
01C7 23
01ca 22F620
0lCB Fl
0lCC C39C01

01CF FEa
0101 C21502
0104 C3E901

0107 AF

0108 219A03
01 DB CDB702
0lDE 3EU
8lE8 8688
8lE2 219A83
81E5 CDB782
81E8 C9

8lE9 8688
8lEB CDD781
8lEE C36688

81Fl 3ECC
UF3 328819
UIi'6 3E88
8U8 0328
81Ii'A 32FIi'28
UIi'D C38888

8288 2AF228
8283 22F628
8286 7E
8287 32F828
828A 8681
020C CD5F03
828F 0688
8211 CD6B83
0214 C9

SEQ

496
497
498
499
500
501
502
503
504
585
506
507
508
509
518
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
548
541
542
543
544
545
546
547
548
549
558
551
552
553
554
555
556
557
558
559
568
561
562
563
564
565
566
567
568
569
578
571
572
573
574
575
576
577
578
579
588
581
582
583
584
585
586
587
588
589
598
591
592
593
594
595

SOURCE STATEMENT

CMP M WAS DATA STORED CORRECTLY?
JNZ ERR NO - DISPLAY ERROR MSG. AND TERMINATE COMMAND

SUB10:
LHLD CURAD INCREMENT CURRENT ADDRESS
INX H
SHLD CURAD
POP PS\'I RETRIEVE LAST CHARAcrER
JMP SUB05

SUB15:
CPI PERIO WAS LAST CHARACTER '.' ?
JNZ ERR NO - DISPLAY ERROR MSG. AND TERMINATE COMMAND
JMP CLOIS YES - CLEAR DISPLAY AND TERMINATE COMMAND

i**·***···**************······*************··*****···* ••••• *****.* •••• *

UTILITY ROUTINES
;
:******* ••• *********.*.* ••• ** ••• *********** •• ******************** •• *.*.

FUNCTION: CLEAR - CLEAR THE DISPLAY
INPUTS: B - DOT FLAG - 1 MEANS PUT DOT IN ADDRESS FIELD OF DISPLAY

- 0 MEANS NO DOT
OUTPUTS: NONE
CALLS: OUTPT
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: CLEAR SENDS BLANK CHARACTERS TO BOTH THE ADDRESS FIELD

AND THE DATA FIELD OF THE DISPLAY. IF THE DOT FLAG IS
SET THEN A DOT WILL APPEAR AT THE RIGHT EDGE OF THE
ADDRESS FIELD.

CLEAR:

,

XRA

LXI
CALL
MVI
MVI
LXI
CALL
RET

A

H,BLNKS
OUTPT
A,DTFLD
B,NODOT
H,BLNKS
OUTPT

ARG - USE ADDRESS FIELD OF DISPLAY
ARG - FLAG FOR DOT IN ADDR. FIELD IS IN B
ARG - ADDRESS OF BLANKS FOR DISPLAY
OUTPUT BLANKS TO ADDRESS FIELD
ARG - USE DATA FIELD OF DISPLAY
ARG - NO DOT IN DATA FIELD
ARG - ADDRESS OF BLANKS FOR DISPLAY
OUTPUT BLANKS TO DATA FIELD
RETURN

;******** ••• *** •••••• ******.****** •••• *.*******************************

FUNCTION: CLDIS - CLEAR DISPLAY AND TERMINATE COMMAND
INPUTS: NONE
OUTPUTS: NONE
CALLS: CLEAR
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: CLDIS IS JUMPED TO BY COMMAND ROUTINES WISHING TO

TERMINATE NORMALLY. CLDIS CLEARS THE DISPLAY AND
BRANCHES TO THE COMMAND RECOGNIZER.

CLDIS:

;

MVI
CALL
JMP

B,NODOT
CLEAR
CMMND

ARG - NO DOT IN ADDRESS FIELD
CLEAR THE DISPLAY
GO GET ANOTHER COMMAND

;*.********* ••• *** •• ********* •• ******** ••• **** ••••••• * •• ** ••••• *** •••••

- COLD START FUNCTION: CLOST
INPUTS: NONE
OUTPUTS: NONE
CALLS: NOTHING
DESTROYS: A
DESCRIPTION: CLOST IS JUMPED TO BY THE MAIN COLD START PROCEDURE,

COMPLETES COLD START INITIALIZATION, A~ JUMPS BACK
TO THE MAIN COLD START PROCEDURE.

I
CLOST:

;

MVI
STA
MVI
OUT
STA
JMP

A,KBNIT
CNTRL
A,CSNIT
CSR
USCSR
CLDBK

GET CONTROL CHARACTER
INITIALIZE KEYBOARD/DISPLAY BLANKING
INITIAL VALUE OF COMMAND STATUS REGISTER
INITIALIZE CSR
INITIALIZE USER CSR VALUE
BACK TO MAIN PROCEDURE

,*********** ••• ** •• ******* •••• *************** •••• ***** ••••• ************

FUNCTION: DISPC - DISPLAY PROGRAM COUNTER
INPUTS: NONE
OUTPUTS: NONE
CALLS: UPDAD,UPDDT
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: DISPC DISPLAYS THE USER PROGRAM COUNTER IN THE ADDRESS

FIELD OF THE DISPLAY, \'11TH A DOT AT THE RIGHT EDGE

DISPC:
LHLD
SHLD
MOV
STA
M·/I
CALL
MVI
CALL
RET

OF THE FIELD. THE BYTE OF DATA ADDRESSED BY THE PROGRAM
COUNTER IS DISPLAYED IN THE DATA FIELD OF THE DISPLAY.

PSAV
CURAD
A,M
CURDT
B,DDT
UPDAD
B,NODOT
UPDDT

GET USER PROGRAM COUNTER
MAKE IT THE CURRENT ADDRESS
GET THE INSTRUCTION AT THAT ADDRESS
MAKE IT THE CURRENT DATA
ARG - DOT IN ADDRESS FIELD
UPDATE ADDRESS FIELD OF DISPLAY
ARG - NO DOT IN DATA FIELD
UPDATE DATA FIELD OF DISPLAY

ISIS-II a8a8/a8a5 MACRO ASSEMBLER, X18a SDK85 PAGE 7

LOC OBJ

0215 AF
0216 0600
0218 219E03
021B CDB702
021E 3EU
0220 0680
0222 219A03
0225 CDB702
0228 C36600

822B BEU
8220 C5
822E 118888
8231 05

8232 CDE782
8235 FEU
8237 025582

823A 01
823B CD9F82
823E C1
823F BEll

8241 C5
1242 05
8241 78
1244 IF
8245 0249112

1248 53

1249 CD6C82

824C 78
8240 8611
824F CDB782
8252 C33282

8255 01
8256 Cl
8257 FEll
8259 CA6782
825C FEU
825E CA6782

8261 118888
.264 C3F782

8267 47
11268 79
8269 8F
826A 78
826B C9

SEg

596
597
598
599
688
681
682
603
604
605
606
607
608
609
618
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
638
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
65B
651
652
653
654
655
656
657
658
659
66B
661
662
663
664
665
666
667
668
669
671
671
672
673
674
675
676
677
678
679
68B
681
682
683
684
685
686
687
688
689
698
691
692
693
694
695

SOURCE STATEMENT

;*.****** ••••• *****.**.i*.** ••• * •• ~~.~*i ••• **i** ••••••••• ******.**.*~.*

FUNCTION: ERR - DISPLAY ERROR MESSAGE
INPUTS: NONE
OUTPUTS: NONE
CALLS: OUTPT
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: ERR IS JUMPED TO BY COMMAND ROUTINES WISHING TO

TERMINATE BECAUSE OF AN ERROR.
ERR OUTPUTS AN ERROR MESSAGE TO THE DISPLAY AND
BRANCHES TO THE COMMAND RECOGNIZER. ,

ERR:

,

XRA
MVI
LXI
CALL
MVI
MVI
LXI
CALL
JMP

A
B,NODOT
H,ERMSG
OUTPT
A,DTFLD
B,NODOT
H,BLNKS
OUTPT
CMMND

ARG - USE ADDRESS FIELD
ARG - NO DOT IN ADDRESS FIELD
ARG - ADDRESS OF ERROR MESSAGE
OUTPUT ERROR MESSAGE TO ADDRESS FIELD
ARG - USE DATA FIELD
ARG - NO DOT IN DATA FIELD
ARG - ADDRESS OF BLANKS FOR DISPLAY
OUTPUT BLANKS TO DATA FIELD
GO GET A NEW COMMAND

;--_ _._._-_._ -........ _ _ ... __ ._._-_ _.-------_._._-_.-.

I

FUNCTION: GTHEX - GET HEX DIGITS
INPUTS: B - DISPLAY FLAG - 0 MEANS USE ADDRESS FIELD OF DISPLAY

- 1 MEANS USE DATA FIELD OF DISPLAY
OUTPUTS: A - LAST CHARACTER READ FROM KEYBOARD

DE - HEX DIGITS FROM KEYBOARD EVALUATED MODULO 2**16
CARRY - SET IF AT LEAST ONE VALID HEX DIGIT WAS READ

- RESET OTHERWISE
CALLS: RDKBD,INSDG,HXDSP,OUTPT
DESTROYS, A,B,C,D,E,H,L,F/F'S
DESCRIPTION: GTHEX ACCEPTS A STRING OF HEX DIGITS FROM THE KEYBOARD,

DISPLAYS THEM AS THEY ARE RECEIVED, AND RETURNS THEIR
VALUE AS A 16 BI'C INTEGER. IF MORE THAN 4 HEX DIGITS
ARE RECEIVED, ONLY THE LAST 4 ARE USED. IF THE DISPLAY
FLAG IS SET, THE LAST 2 HEX DIGITS ARE DISPLAYED IN THE
DATA FIELD OF THE DISPLAY. OTHERWISE, THE LAST 4 HEX
DIGITS ARE DISPLAYED IN THE ADDRESS FIELD OF THE
DISPLAY. IN EITHER CASE, A DOT WILL BE DISPLAYED AT THE
RIGHTMOST EDGE OF THE FIELD. A CHARACTER WHICH IS NOT
A HEX DIGIT TERMINATES THE STRING AND IS RETURNED AS
AN OUTPUT OF THE FUNCTION. IF THE TERMINATOR IS NOT
A PERIOD OR A COMMA THEN ANY HEX DIGITS WHICH MAY HAVE
BEEN RECEIVED ARE CONSIDERED TO BE INVALID. THE
FUNCTION RETURNS A FLAG INDICATING WHETHER OR NOT ANY
VALID HEX DIGITS WERE RECEIVED.

GTHEX:

GTHB5:

GTH1B.

GTH2B:

GTH25:

,

MVI
PUSH
LXI
PUSH

CALL
CPI
JNC

POP
CALL
POP
MVI

PUSH
PUSH
MOV
RRC
JNC

MOV

CALL

MOV
MVI
CALL
Ji4P

POP
POP
CPI
JZ
CPI
JZ

LXI
JMP

MOV
MOV
RRC
MOV
RET

C,0 RESET HEX DIGIT FLAG
B SAVE DISPLAY AND HEX DIGIT FLAGS
D,B SET HEX VALUE TO ZERO
o SAVE HEX VALUE

RDKBD
18H
GTH2B

o
INSDG
B
C,l

B
o
A,B

GTHlll

D,E

HXDSP

A,B
B,DOT
OUTPT
GTHB5
, LAST
D
B
COMMA
GTH25
PERIO
GTH25
I NO -
D,B
RETF

B,A
A,C

A,B

READ KEYBOARD
IS CHARACTER A HEX DIGIT?
NO - GO CHECK FOR TERMINATOR
YES - ARG - NEW HEX DIGIT IS IN A
ARG - RETRIEVE HEX VALUE
INSERT NEW DIGIT IN HEX VALUE
RETRIEVE DISPLAY FLAG

I SET HEX DIGIT FLAG
I/(I.E. A HEX DIGIT HAS BEEN READ)

SAVE DISPLAY AND HEX DIGIT FLAGS
I SAVE HEX VALUE

TEST DISPLAY FLAG
SHOULD ADDRESS FIELD OF DISPLAY BE USED ?
YES - USE HEX VALUE AS IS
NO - ONLY LOW ORDER BYTE OF HEX VALUE SHOULD
/BE USED FOR DATA FIELD OF DISPLAY
PUT LOW ORDER BYTE OF HEX VALUE IN D

ARG - HEX VALUE TO BE EXPANDED IS IN D , E
I EXPAND HEX VALUE FOR DISPLAY

ARG - ADDRESS OF EXPANDED HEX VALUE IN H , L
ARG - PUT DISPLAY FLAG IN A
ARG - DOT IN APPROPRIATE FIELD
OUTPUT HEX VALUE TO DISPLAY

IGO GET NEXT CHARACTER
CHARACTER WAS NOT A HEX DIGIT

RETRIEVE HEX VALUE
RETRIEVE HEX DIGIT FLAG IN C
WAS LAST CHARACTER ',' ?
YES - READY TO RETURN
NO - WAS LAST CHARACTER '.' ?

, YES - READY TO RETURN
INVALID TERMINATOR - IGNORE ANY HEX DIGITS READ

SET HEX VALUE TO ZERO
RETURN FALSE

SAVE LAST CHARACTER
, SHIFT HEX DIGIT FLAG TO
,/CARRY BIT
, RESTORE LAST CHARACTER
I RETURN

,-------_._. __ _ _._ ... _ __ _ .. _ .. _ .. _.--*--_._ ... __ -

ISIS-II d0B0/d085 MACRO ASSEMBLER, X108 SDX85 PAGE 8

LOC OBJ

B26C 7A
026D IF
126E 0F
026F 0F
S270 0F
0271 E6BF
0273 2IF920
0276 77
0277 7A
0278 E60F
027A 23
0278 77
027C 7B
027D 0F
027E 0F
027F 0F
0280 0F
0281 Eb0F
0283 23
0284 77
0285 7B
0286 E60F
0288 23
0289 77
028A 21F920
028D C9

028E E5
028F F5
0290 210819
0293 3648

0295 25
S296 7E
B297 E63F
1299 32FE20
129C "PI
029D El
129E C9

029F EB
S2A0 29
02Al 29
12A2 29
02A3 29
12A4 85
02A5 6F
02A6 EB
02A7 C9

SEQ

696
697
698
699
780
781
782
713
704 I
7.5
706
707
718 I

SOURCE S'I'ATEMENT

FUNCTION: HXDSP - EXPAND HEX DIGITS FOR DISPLAY
INPUTS: DE - 4 HEX DIGITS
OUTPUTS: HL - ADDRESS OF OUTPUT BUFFER
CALLS: NOTHING
DESTROYS: A,H,L,F/F'S
DESCRIPTION: HXDSP EXPANDS EACH INPUT BYTE TO 2 BYTES IN A FORM

SUITABLE FOR DISPLAY BY THE OUTPUT ROUTINES. EACH INPUT
BYTE IS DIVIDED INTO 2 HEX DIGITS. EACH HEX DIGIT IS
PLACED IN THE LOW ORDER 4 BITS OF A BYTE WHOSE HIGH
ORDER 4 BITS ARE SET TO ZERO. THE RESULTING BYTE IS
STORED IN THE OUTPUT BUFFER. THE FUNCTION RETURNS THE
ADDRESS OF THE OUTPUT BUFFER.

709 HXDSP:
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736 I

MOV
RRC
RRC
RRC
RRC
ANI
LXI
MOV
MOV
ANI
INX
MOV
MOV
RRC
RRC
RRC
RRC
ANI
INX
MOV
MOV
ANI
INX
MOV
LXI
RET

A,D

SFH
H,OBUFF
M,A
A,D
0FH
H
M,A
A,E

0FH
H
M,A
A,E
SFH
H
M,A
H,OBUFF

GET FIRST DATA BYTE
CONVERT 4 HIGH ORDER BITS
/TO A SINGLE CHARACTER

GET ADDRESS OF OUTPUT BUFFER
STORE CHARACTER IN OUTPUT BUFFER
GET FIRST DATA BYTE AND CONVERT 4 LOW ORDER
/BITS TO A SINGLE CHARAC'rER
NEXT BUFFER POSITION
STORE CHARACTER IN BUFFER
GET SECOND DATA BYTE
CONVERT 4 HIGH ORDER BITS
/TO A SINGLE CHARACTER

NEXT BUFFER POSITION
STORE CHARACTER IN BUFFER
GET SECOND DATA BYTE AND CONVERT LOll ORDER
/4 BITS TO A SINGLE CHARACTER
NEXT BUFFER POSITION
STORE CHARACTER IN BUFFER
RETURN ADDRESS OF OUTPUT BUFFER IN H , L

737 ;************.********** •••••• **************************.*.************
738
739
740
741
742
743
744
745
746
747
748
749
750 I

FUNC'rION: ININT - INPUT INTERRUPT PROCESSING
INPUTS: NONE
OUTPUTS: NONE
CALLS: NOTHING
DESTROYS: NOTHING
DESCRIPTION: ININT IS ENTERED BY MEANS OF AN INTERRUPT VECTOR (IV2C)

IIHEN THE READ KEYBOARD ROUTINE IS WAITING FOR A
CHARACTER AND THE USER HAS PRESSED A KEY ON THE
KEYBOARD (EXCEPT "RESET" OR ·VECTORED INTERRUPT").
ININT STORES THE INPUT CHARACTER IN THE INPUT BUFFER AND
RETURNS CONTROL TO THE READ KEYBOARD ROUTINE.

751 ININT:
752 PUSH

PUSH
LXI
MVI

H SAVE H , L
753
754
755
756
757
758
759
76B
761
762
763
764 I

DCR
MOV
ANI
STA
POP
POP
RET

PSII
H,CNTRL
M,READ

H
A,M
3FH
IBUFF
PSW
H

SAVE F/F'S , REGISTER A
ADDRESS FOR CONTROL CHARACTER OUTPUT
OUTPUT CONTROL CHARACTER FOR READING
/FROM KEYBOARD
ADDRESS FOR CHARACTER INPUT
READ A CHARACTER
ZERO 2 HIGH ORDER BITS
STORE CHARACTER IN INPUT BUFFER
RESTORE F/F'S , REGISTER A
RESTORE H , L

765 ;*** •• ***************************
766
767
768
769
77B
771
772
773
774
775
776
777
778 ,

FUNCTION: INSDG - INSERT HEX DIGIT
INPUTS: A - HEX DIGIT TO BE INSERTED

DE - HEX VALUE
OUTPUTS: DE - HEX VALUE IIITH DIGIT INSERTED
CALLS: NOTHING
DESTROYS: A,F/F'S
DESCRIPTION: INSDG SHIFTS THE CONTENTS OF D , E LEFT 4 BITS

(1 HEX DIGIT) AND INSERTS THE HEX DIGIT IN A IN THE LOll
ORDER DIGIT POSITION OF THE RESULT. A IS ASSUMED TO
CONTAIN A SINGLE HEX DIGIT IN THE LOll ORDER 4 BITS AND
ZEROS IN THE HIGH ORDER 4 BITS.

779 INSDG:
780 XCHG PUT D & E IN H & L
781
782
783
784
785
786
787
788
789
790
791
792
793
794

DAD H SHIFT H , L LEFT 4 BITS
DAD H
DAD H
DAD H
ADD L INSERT LOW ORDER DIGIT
MOV L,A
XCHG PUT H , L BACK IN D & E
RET

****** •• ******** •• ************************************.*.**** •••• *.*.*

FUNCTION: NXTRG - ADVANCE REGISTER POINTER TO NEXT REGISTER
INPUTS: NONE
OUTPUTS: CARRY - 1 IF POINTER IS ADVANCED SUCCESSFULLY

ISIS-II 8181/8185 MACRO ASSEMBLER, X188 SDK85 PAGE 9

LOC OBJ

02A8 3AFD20
02AB FE0C
02AD D2F702
02B0 3C
0281 32FD20
02B4 C3FA02

02B7 0F
02B8 DAC202
02BB 0E04
0280 3E90

02BF C3C602

02C2 0E02
02C4 3E94

02C6 320019

02C9 7E
02CA EB
12CB 218413
02CE 85
12CF 6F
0201 7E
1201 61
1202 25
11203 C2DC02
8206 85
8207 C2DC02
12DA F688

.2DC 2F
0200 328018
82EB EB
02El 23
112E2 80
02E3 C2C902
12E6 C9

12E7 2UE21
820 7E

12EB B7
I2BC F2F3B2
12EF FB
lUI C3E712

12F3 3681
82F5 F3
12F6 C9

SEQ

795
796
797
798
799
d00
801
802
883
804
885
806
887
888
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
878
871
872
873
874
875
876
877
878
879
881
881
882
883
884
885
886
887
888
889
898
891
892
893

,

SOURCE STATEMENT

- 0 OTHERWISE
CALLS: NOTHING
DESTROYS: A,F/F'S
DESCRIPTION: IF THE REGISTER POINTER POINTS TO THE LAST REGISTER IN

THE EXAMINE REGISTER SEQUENCE, THE POINTER IS NOT
CHANGED AND THE FUNCTION RETURNS FALSE. IF THE REGISTER
POINTER DOES NOT POINT TO THE LAST REGISTER THEN THE
POINTER IS ADVANCED TO THE NEXT REGISTER IN THE SEQUENCE
AND THE FUNCTION RETURNS TRUE.

NXTRG:
LOA
CPI
JNC
INR
STA
JMP

RGPTR
NUMRG-1
RETF
A
RGPTR
RETT

GET REGISTER POINTER
DOES POINTER POINT TO LAST REGISTER?
YES - UNABLE TO ADVANCE POINTER - RETURN FALSE
NO - ADVANCE REGISTER POINTER
SAVE REGISTER POINTER
RETURN TRUE

;
i***********··*********************······************* .*.**************

FUNCTION: OUTPT - OUTPUT CHARACTERS TO DISPLAY
INPUTS: A - DISPLAY FLAG - 0 = USE ADDRESS FIELD

1 = USE DATA FIELD
B - DOT FLAG - 1 s OUTPUT DOT AT RIGHT EDGE OF FIELD

o s NO DOT
HL - ADDRESS OF CHARACTERS TO BE OUTPUT

CALLS: NOTHING
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: OUTPT SENDS CHARACTERS TO THE DISPLAY. THE ADDRESS

OF THE CHARACTERS IS RECEIVED AS AN ARGUMENT. EITHER
2 CHARACTERS ARE SENT TO THE DATA FIELD, OR 4 CHARACTERS
ARE SENT TO THE ADDRESS FIELD, DEPENDING ON THE
DISPLAY FLAG ARGUMENT. THE DOT FLAG ARGUMENT DETERMINES
WHETHER OR NOT A DOT (DECIMAL POINT) WILL BE SEN'r
ALONG WITH THE LAST OUTPUT CHARACTER.

;
OUTPT:

Rac
JC
MVI
MVI

OUT05
C,4
A,ADISP

JMP OUT10

USE DATA FIELD ?
YES - GO SET UP TO USE DATA FIELD
NO - COUNT FOR ADDRESS FIELD
CONTROL CHARACTER FOR OUTPUT TO ADDRESS
/FIELD OF DISPLAY

OUT85:
MVI
MVI

C,2
A,DDISP

COUNT FOR DATA FIELD
CONTROL CHARACTER FOR OUTPUT TO DATA FIELD
/OF DISPLAY

OUTU:
STA CNTRL

OUT15:
MOV
XCHG
LXI
ADD
MOV
MOV
MOV
OCR
JNZ
OCR
JNZ
ORI

A,M

H,DSPTB
L
L,A
A,M
H,C
H
OUT20
B
OUT28
DTMSK

GET OUTPUT CHARACTER
SAVE OUTPUT CHARACTER ADDRESS IN 0 & E
GET DISPLAY FORMAT TABLE ADDRESS
USE OUTPUT CHARACTER AS A POINTER TO
/DISPLAY FORMAT TABLE
GET DISPLAY FORMAT CHARACTER FROM TABLE
TEST COUNTER WITHOUT CHANGING IT
IS THIS THE LAST CHARACTER ?
NO - GO OUTPUT CHARACTER AS IS
YES - IS DOT FLAG SET ?
NO - GO OUTPUT CHARACTER AS IS
YES - OR IN MASK TO DISPLAY DOT WITH
/LAST CHARACTER

OUT20:

I

C;o\A
STA
XCHG
INX
OCR
JNZ
RET

DSPLY

H
C
OUTi5

COMPLEMENT OUTPUT CHARACTER
SEND CHARACTER TO DISPLAY
RETRIEVE OUTPUT CHARACTER ADDRESS

I NEXT OUTPUT CHARACTER
ANY MORE OUTPUT CHARACTERS ?
YES - GO PROCESS ANOTHER CHARACTER
NO - RETURN

;******************************* ••• ** ••• *************.*****.*.*********

I

FUNCTION: RDKBD - READ KEYBOARD
INPUTS: NONE
OUTPUTS: A - CHARACTER READ FROM KEYBOARD
CALLS: NOTHING
DESTROYS: A,H,L,F/F'S
DESCR·IPTION: RDKBD DETERMINES WHETHER OR NOT THERE IS A CHARACTER IN

THE INPUT BUFFER. IF NOT, THE FUNCTION ENABLES
INTERRUPTS AND LOOPS UNTIL THE INPUT INTERRUPT
ROUTINE STORES A CHARACTER IN THE BUFFER. WHEN
THE BUFFER CONTAINS A CHARACTER, THE FUNCTION FLAGS
THE BUFFER AS EMPTY AND RETURNS THE CHARACTER
AS OUTPUT.

RDKBD:
LXI
MOV

ORA
JP
EI
JM~

RDKlI'
MVI
01
RET

H,IBUFF I GET INPUT BUFFER ADDRESS
A,M I GET BUFFER CONTENTS
; HIGH ORDER BIT • 1 MEANS BUFFER IS EMPTY
A ; IS A CHARACTER AVAILABLE ?
RDKll1 I YES - EXIT PROM LOOP
I NO - READY FOR CHARACTER FROM KEYBOARD
RDKBD

M,EMPTY SET BUFFER EMPTY FLAG
RETURN WITH INTERRUPTS DISABLED

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK85 PAGE

LaC OBJ

82F7 37
82F8 3F
112F9 C9

82FA 37
82FB C9

02FC 2AFD28
02FF 2600
0381 01ED03
0394 99
8385 6E
0386 2628

0308 C9

9389 2AFD28
838C 2699
838E 29
038F 29
0318 81B983
8313 89

8314 AF
9315 8688
8317 CDB702
831A C9

SEQ

894
895
896
897
898
899
988
911
982
983
904
985
986
987
9118
989
918
911
912
913
914
915
916
917
918
919
928
921
922
"23
924
925
926
927
928
929
930
931
932
~33
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
968
961
962
963
964
965
966
967
968
969
978
971
972
973
974
975
976
977
978
979
988
981
982
983
984
985
986
987
988
989
998
991
992
993

SOURCE STA'fEMENT

I
;**.** ••••• **.*********.*****.**.** ••• ****************.**********.*.**.

FUNCTION: RETF - RETURN FALSE
INPUTS: NONE
OUTPUTS: CARRY - 8 (FALSE)
CALLS: NOTHING
DESTROYS: CARRY
DESCRIPTION: RETF IS JUMPED TO BY FUNCTIONS WISHING TO RETURN FALSE.

RETF RESETS CARRY TO 0 AND RETURNS TO THE CALLER OF
THE ROUTINE INVOKING RETF.

I
RETF:

,

STC
CMC
RET

SET CARRY TRUE
-COMPLEMENT CARRY TO MAKE IT FALSE

,.***** •••••••••••• *** •••• *** •••••• ***.**** ••• **.**** •• **********.* ••• *

FUNCTION: RETT - RETURN TRUE
INPUTS: NONE
OUTPUTS: CARRY· 1 (TRUE)
CALLS: NOTHING
DESTROYS: CARRY
DESCRIPTION: RETT IS JUMPED TO BY ROUTINES WISHING TO RETURN TRUE.

RETT SETS CARRY TO 1 AND RETURNS TO THE CALLER OF
THE ROUTINE INVOKING RETT.

I
RETT:

STC
RET

I SET CARRY TRUE

;.**.****** •••• ***.***********.** •••••••• ** •• ******* •• *****.******.*.*.

FUNCTION: RGLOC - GET REGISTER SAVE LOCATION
INPUTS: NONE
OUTPUTS: HL - REGISTER SAVE LOCATION
CALLS: NOTHING
DESTROYS: B,C,H,L,F/F'S
DESCRIPTION: RGLOC RETURNS THE SAVE LOCATION OF THE REGISTER

INDICATED BY THE CURRENT REGISTER POINTER VALUE.

RGLOC:

,

LHLD
MVI
LXI
DAD
MOV
MVI

RET

RGPTR GET REGISTER POINTER
H,0 /IN H & L
B,RGTBL GET REGISTER SAVE LOCATION TABLE ADDRESS
B POINTER INDEXES TABLE
L,M I GET LOW ORDER BYTE OF REGISTER SAVE LOC.
H, (RAMST SHR 8) GET HIGH ORDER BYTE OF

/REGISTER SAVE LOCATION

i*********·********************··**··*****·*********** .******** ••• * ••••

,

FUNCTION: RGNAM - DISPLAY REGISTER NAME
INPUTS: NONE
OUTPUTS: NONE
CALLS: OUTPT
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: RGNAM DISPLAYS, IN THE ADDRESS FIELD OF THE DISPLAY,

THE REGISTER NAME CORRESPONDING TO THE CURRENT
REGISTER POINTER VALUE.

RGNAM:

I

LHLD
MVI
DAD
DAD
LXI
DAD

XRA
MVI
CALL
RET

RGPTR
H,0
H
H
B,NMTBL
B

A
B,NODOT
OUTPT

I GET REGISTER POINTER

I MULTIPLY POINTER VALUE BY 4
I/(REGISTER NAME TABLE HAS 4 BYTE ENTRIES)
I GET ADDRESS OF START OF REGISTER NAME TABLE
I ARG - ADD TABLE ADDRESS TO POINTER - RESULT IS
I/ADDRESS OF APPROPRIATE REGISTER NAME IN H & L

ARG - USE ADDRESS FIELD OF DISPLAY
ARG - NO DOT IN ADDRESS FIELD
OUTPUT REGISTER NAME TO ADDRESS FIELD

, •••••••• ** ••• *** ••• ******** •••

FUNCTIO,I: RSTOR - RESTOR USER REGISTERS
INPUTS: NONE
OUTPUTS: NONE
CALLS: NOTHING
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: RSTOR RESTORES ALL CPU REGISTERS, FLIP/FLOPS,

INTERRUPT STATUS, INTERRUPT MASK, STACK POINTER
AND PROGRAM COUNTER FROM THEIR RESPECTIVE

SAVE LOCATIONS IN MEMORY. BY RESTORING THE PROGRAM
COUNTER, THE ROUTINE EFFECTIVELY TRANSFERS CONTROL 'ro
THE ADDRESS IN THE PROGRAM COUNTER SAVE LOCATION.

THE TIMING OF THIS ROUTINE IS CRITICAL TO THE
CORRECT OPERATION OF THE SINGLE STEP ROUTINE.
IF ANY MODIFICATION CHANGES THE NUMBER OF CPU
STATES NEEDED TO EXECUTE THIS ROUTINE THEN THE
TIMER VALUE MUST BE ADJUSTED BY THE SAME NUMBER.

***** THIS IS ALSO THE ENTRY POINT FOR THE TTY MONITOR
TO RESTORE REGISTERS.

RSTOR:

ISIS-II 8181/8885 MACRO ASSEMBLER, X118 SDK85 PAGE 11

LOC OBJ

831B 3AFl21
13lE P618

8328 31

8321 3AP121
8324 E6I8
1326 CA2DIl
8329 PB
132A C33113

132D 31
832E D23113

1331 21E921
1334 P9
1335 D1
1336 C1
1337 Fl
1338 2AF421
133B F9
1133C 2AF221
1l3F E5
1341 2AEF28
11343 C9

1344 CDE712
1347 FE18
8349 D2F782

834C D683

034E DAF702
0351 4F
0352 0b00
0354 21AC03
8357 09
0358 7E
0359 32FD20
035C C3FA82

1135F 2AF620
8362 EB
8363 CD6C82

8366 AF

8367 CDB782
136A C9

1136B 3AF821
1368 51
836F CD6CII2

1312 3EIl

1314 CDB112

SEQ

994
995
996
991
998
999

1 .. 1
11111
1182
1813
1114
18115
1116
1111
1888
1889
1818
lUI
1812
1813
1814
1815
1816
1817
1818
1819
1828
1821
1822
1823
1824
1825
1826
1827
1828
1829
18311
1831
1832
1833
11134
1835
1836
1837
1838
1839
18U
1841
1842
1043
1044
1045
1046
1047
1848
1049
1050
1051
1852
1853
1854
1855
1856
1857
1858
1859
1861
1861
1862
1863
1864
1865
1866
1861
1868
1869
1811
1871
1872
1873
1814
11115
11116
1871
1818
1879
11181
11181
11182
11183
11184
1885
1.1186
1881
1888
1889
11191
1891
1892

SOURCE STATEMENT

LDA ISAV GET USER INTERRUPT MASK
ORI 18H ENABLE SETTING OF INTERRUPT MASK AND

/RESET RST1.5 PLIP FLOP
SIM I RESTORE USER INTERRUPT MASK
RESTORE USER INTERRUPT STATUS
LDA ISAV GET USER INTERRUPT MASK
ANI 88H SHOULD USER INTERRUPTS BE ENABLED 7
JZ RSRI5 NO - LEAVE INTERRUPTS DISABLED
EI YES - ENABLE INTERRUPTS FOR USER PROGRAM
JMP RSR18

RSRI5:
STC DUMMY INSTRUCTIONS - WHEN SINGLE STEP ROUTINE
JNC RSR18 /IS BEING USED, THE TIMER IS RUNNING AND

/EXECUTE TIME FOR THIS ROUTINE MUST NOT
/VARY.

RSR18:
LXI H,MNSTK SET MONITOR STACK POINTER TO START OF STACK
SPHL /WHICH IS ALSO END OF REGISTER SAVE AREA
POP D RESTORE REGISTERS
POP B
POP PSW
LilLD SSAV RESTORE USER STACK POINTER
SPHL
LHLD PSAV
PUSH H PUT USER PROGRAM COUNTER ON STACK
LHLD LSAV RESTORE H & L REGISTERS
RET JUMP TO USER PROGRAM COUNTER

I
#******** ••• **** ••• *******************.*******************************.

I

FUNCTION: SETRG - SET REGISTER POINTER
INPUTS: NONE
OUTPUTS: CARRY - SET IF CHARACTER FROM KEYBOARD IS A REGISTER DESIGNATOR

RESET OTIlERWISE
CALLS: RDKBD
DESTROYS: A,B,C,H,L,F/F'S
DESCRIPTION: SETRG READS A CHARACTER FROM TilE KEYBOARD. IF TilE

CIlARACTER IS A REGISTER DESIGNATOR, IT IS CONVERTED TO
THE CORRESPONDING REGISTER POINTER VALUE, THE POINTER IS
SAVED, AND THE FUNCTION RETURNS 'TRUE'. 01'HERWISE, THE
FUNCTION RETURNS 'FALSE'.

SETRG:
CALL RDKBD READ FROM KEYBOARD
CPI 10H IS CHARACTER A DIGIT?
JNC RETF NO - RETURN FALSE - CHARACTER IS NOT A

/REGISTER DESIGNATOR
SUI YES - TRY TO CONVERT REGISTER DESIGNATOR TO

/ INDEX INTO REGISTER POINTER TABLE
WAS CONVERSION SUCCESSFUL?

JC RETF NO - RETURN FALSE
MOV C,A INDEX TO B & C
MVI B,0
LXI H,RGPTB GE1' ADDRESS OF REGISTER POINTER TABLE
DAD B INDEX POINTS INTO TABLE
MOV A,M GET REGISTER POINTER FROM TABLE
STA RGPTR SAVE REGISTER POINTER
JMP RETT RETURN TRUE

;************** •• ***** ••• ***** •• **********************.****************

FUNCTION: UPDAD - UPDATE ADDRESS FIELD OF DISPLAY
INPUTS: B - DOT FLAG - 1 MEANS pu'r DOT AT RIGHT EDGE OF FIELD

8 MEANS NO DOT
OUTPUTS: NONE
CALLS: HXDSP,OUTPT
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: UPDAD UPDATES THE ADDRESS FIELD OF THE DISPLAY USING

THE CURRENT ADDRESS.
I
UPDAD:

I

LHLD
XCHG
CALL

XRA

CALL
RET

CURAD

HXDSP

A

OUTPT

GET CURRENT ADDRESS
I ARG - PUT CURRENT ADDRESS IN D & E

EXPAND CURRENT ADDRESS FOR DISPLAY
ARG - ADDRESS OF EXPANDED ADDRESS IS IN H & L
ARG - USE ADDRESS FIELD OF DISPLAY
ARG - DOT FLAG IS IN B
OUTPUT CURRENT ADDRESS TO ADDRESS FIELD

J.* •• ************.*****.*~ •• *****.**.* •• ***.********** •• *****.*****.***

FUNCTION: UPDDT - UPDATE DATA FIELD OF DISPLAY
INPUTS: B - DOT FLAG - 1 MEANS PUT DOT AT RIGHT EDGE OF FIELD

• MEANS NO DOT
OUTPUTS: NONE
CALLS: HXDSP,OUTDT
DESTROYS. A,B,C,D,E,H,L,F/F'S
DESCRIPTION. UPDDT UPDATES THE DATA FIELD OF THE DISPLAY USING

THE CURRENT DATA BYTE.
I
UPDDT:

LDA
MOV
CALL

MVI

CALL

CURDT
D,A
HXDSP

A,DTFLD

OUTPT

GET CURRENT DATA
ARG - PUT CURRENT DATA IN D
EXPAND CURRENT DATA FOR DISPLAY
ARG - ADDRESS OF EXPANDED DATA IS IN H , L
ARG - USE DATA FIELD OF DISPLAY
ARG - DOT PLAG IS IN B
OUTPUT CURRENT DATA TO DATA FIELD

ISIS-II 8080/6065 MACRO ASSEMBLER, X108 SDK85 PAGE 12

LOC OBJ

1377 C9

8378 12
8379 13
837A 14
837B 15
8884

837C FDII8
837E 9288
11388 8BIIl
8382 CB88

8888
0384 F3
8385 68
0386 B5
8387 F4
8388 66
8885
1885
8389 D6
838A D7
838B 78
8v88
838C F7
1138D 76
8BBA
838E 77
8BBB
1138F C7
BBIIC
113911 93
11811D
0391 E5
888E
11392 97
II1111F
0393 17
0010
0394 67
0~ll
0395 83
0012
0396 37
0013
0397 60
0014
0398 05
0015
0399 00

039A 15
039B 15
039C 15
039D 15
039E 15
939F 0E
03A0 14
03A1 14
03A2 0E
03A3 15
03A4 15
03A5 15

03A6 15
03A7 15
03A8 08
03A9 00
03AA 08
83AB 85

SEQ SOURCE STATEMENT

1893 RET
1094 ;
1095 1***···****··*********··***·**************·*····****·*****.*******.***.
1096
1897 MONITOR TABLES
1098
1899
1181
1181
ll82
1183
1184
1185
1186
1187
1188
1189
1118
1111
1112
1113
1114
1115
1116
1117
1118
1119
1128
1121
1122
1123
1124
1125
1126
1127
1128
1129
1131
1131
1132
ll33
ll34
ll35
ll36
ll37
1138
ll39
ll4B
ll41
ll42
ll43
1144
1145
ll46
ll47
1148
1149
1150
1151
ll52
ll53
ll54
ll55
ll56
ll57
ll5~
1159
ll60
1161
ll62
1163
ll64
1165
1166
ll67
ll68
ll69
1170
ll71

;
;** ••• ** •••• *.****.**** ••• *.******* ••• ************ •••• *****.*.** ••••• **

; COMMAND TABLE
COMMAND CHARACTERS AS RECEIVED FROM KEYBOARD

CMDTB:

NUMC
;

DB
DB
DB
DB
EQU

12H
13H
1411
ISH
$-CMDTB

GO COMMAND
SUBSTITUTE MEMORY COMMAND
EXAMINE REGISTERS COMMAND
SINGLE STEP COMMAND
NUMBER OF COMMANDS

;.***** ••• *** ••• ************** •• ********* •••••• ***********.**********.*

; COMMAND ROUTINE ADDRESS TABLE
(MUST BE IN REVERSE ORDER OF COMMAND TABLE)

CMDAD:

;

DW
DW
DW
DW

SSTEP
EXAM
SUBST
GOCMD

ADDRESS OF SINGLE STEP ROUTINE
ADDRESS OF EXAMINE REGISTERS ROUTINE
ADDRESS OF SUBSTITUTE MEMORY ROUTINE
ADDRESS OF GO ROUTINE

;.**** •••••• * ••• ********* ••• *****.******* •• ******.****.**************.*

DSPTB: TABLE FOR TRANSLATING CHARACTERS FOR OUTPUT

ZERO

FIVE
LETRS

EIGHT

LETRA

LETRB

LETRC

LETRD

LETRE

LETRF

LETRII

LETRL

LETRP

LETRI

LETRR

BLANK

EQU
DB
DB
DB
DB
DB
EQU
EQU
DB
DB
DB
EQU
DB
DB
EQU
DB
EQU
DB
EQU
DB
EQU
DB
EQU
DB
EQU
DB
EQU
DB
EQU
DB
EQU
DB
EQU
DB
EQU
DB
EQU
DB

DISPLAY
FORMAT CHARACTER

$ - DSPTB
0F311

60H
0B5H
0F4H

66H
$ - DSPTB
$ - DSPTB
0D611
0D7H

7011 ;
$ - DSPTB

o
1
2
3
4

5 AND S
6
7

0F7H 8
7611 ; 9

$ - DSPTB
77H ; A

$ - DSPTB
0C7H
$ - DSPTB

93H
$ - DSPTB
0E511
$ - DSPTB

B (LOWER CASE)

C

D (LOWER CASE)

9711 ,E
$ - DSPTB

17H
$ - DSPTB

67H
$ - DSPTB

83H
$ - DSPTB

3711
$ - DSPTB

60H
$ - DSPTB

05H ,
$ - DSPTB

0011

F

II

L

P

R (LOWER CASE)

BLANK

i·****······***·**······**··****·*****·*****··**······ .********** •••• *.

; MESSAGES FOR OUTPUT TO DISPLAY

BLNKS: Dil BLANK,BLANK,BLANK,BLANK FOR ADDRESS OR DATA FIELD

11 72 ERMSG: DB BLANK,LETRE,LETRR,LETRR ERROR MESSAGE FOR ADDR. FIELD

1173 EXMSG: DB LETRE,BLANK,BLANK,BLANK EXECU'rION MESSAGE

1174 /FOR ADDRESS FIELD
ll75 SGNAD: DB BLANK,BLANK,EIGHT,ZERO SIGN ON MESSAGE (ADDR. FIELD)

1176 SGNDT: DB EIGHT,FIVE ; SIGN ON MESSAGE (DATA FIELD)

1177 ;
1178 ;**.*** ••••• ******.*********.** •• **** •••••••••••••••••••••••••••• *.*.**

ISIS-II 8181/8885 MACRO ASSEMBLER, X108 SDK85 PAGE 13

LOC OBJ

13AC 86
83AD 89
13AE IA
83AF 8B
13B8 8C
83B1 117
83B2 88
83B3 811
83B4 81
83B5 82
83B6 83
83B7 84
83B8 85

13B9 15
IlBA 15
13BB 15
IlBC IA
IlBD 15
83BE 15
13BF 15
83C8 8B
83C1 15
83C2 15
83C3 15
83C4 8C
13C5 15
83C6 15
13C7 15
83C8 ID
83C9 15
83CA 15
13CB 15
13CC 8E
13CD 15
13CE 15
13CF 15
83DI 8F
83D1 15
83D2 15
13D3 15
83D4 13
83D5 15
113D6 15
83D7 15
83D8 18
83D9 15
83DA 15
83DB 15
03DC 11
83DD 15
83DE 85
03DF 12
03E0 1 ~
83E1 15
83E2 85
83E3 12
03E4 11
03E5 15
03E6 12
~3E7 ~C
83Eij 10
83E9 15
13EA 12
03EB 8C
83EC 11

83ED EE
03EE EC
03EF EB
83F0 EA
03F1 E9
83F2 ED
03F3 F1
03F4 F0
83F5 EF
03F6 F5
83F7 N
13FS F3

SEQ

1179
11811
1181
1182
1183
1184
1185
1186
1187
1188
1189
1198
1191
1192
1193
1194
1195
1196
1197
1198
1199
1288
1281
1212
1283
12114
1285
1286
1287

1218

1289

1218

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

SOURCE STATEMENT

,
RGPTB:

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
03

I

REGISTER POINTER TABLE

6
9
18
11
12
7
8
e
1
2
3
4
5

THE ENTRIES IN THIS TABLE ARE IN THE SAME ORDER
AS THE REGISTER DESIGNATOR KEYS ON THE KEYBOARD.
EACH ENTRY CONTAINS THE REGISTER POINTER VALUE WHICH
CORRESPONDS TO THE REGISTER DESIGNATOR. REGISTER
POINTER VALUES ARE USED TO POINT INTO THE REGISTER
NAME TABLE (NMTBL) AND REGISTER SAVE LOCATION
TABLE (RGTBL).

INTERRUPT MASK
SPH
SPL
PCR
PCL
H
L
A
B
C
0
E
FLAGS

;**** ••• ************* ••• *************.******.*.*.****************.* •• *.
I
NMTBL: I REGISTER NAME TABLE

I NAMES OF REGISTERS IN DISPLAY FORMAT
DB BLANK,BLANK,BLANK,LETRA I A REGISTER

DB BLANK,BLANK,BLANK,LETRB B REGISTER

DB BLANK,BLANK,BLANK,LETRC C REGISTER

DB BLANK,BLANK,BLANK,LETRD o REGISTER

DB BLANK,BLANK,BLANK,LETRE E REGISTER

DB BLANK,BLANK,BLANK,LETRF FLAGS

DB BLANK,BLANK,BLANK,LETRI INTERRUPT MASK

DB BLANK,BLANK,BLANK,LETRH H REGISTER

DB BLANK,BLANK,BLANK,LETRL L REGISTER

DB BLANK,LETRS, LETRP, LETRH STACK POINTER HIGH ORDER BYTE

DB BLANK,LETRS,LETRP,LETRL STACK POINTER LOW ORDER BYTE

DB BLANK,LETRP,LETRC,LETRH PROGRAM COUNTER HIGH BY'I'E

DB BLANK,LETRP,LETRC,LETRL PROGRAM COUNTER LOW BYTE

:**.**********.************** •••• *** •••••••• *****************.*.*****.*

REGISTER SAVE LOCATION TABLE
I ADDRESSES OF SAVE LOCATIONS OF REGISTERS IN THE ORDER IN WHICH
I THE REGISTERS ARE DISPLAYED BY THE EXAMINE COMMAND
I
RGTBL:

DB ASAV AND 8FFH A REGISTER
DB BSAV AND eFFH B REGIS'rER
DB CSAV AND 0FFH C REGISTER
DB DSAV AND 8FFH D REGISTER
D3 ESAV AND eFFH E REGISTER
DB FSAV AND 8FFH FLAGS
DB ISAV AND 8FFH INTERRUPT MASK
DB HSAV AND eFFH H REGISTER
DB LSAV AND 8FFH L REGISTER
DB SPHSV AND 0FFH STACK POINTER HIGH ORDER BYTE
DB SPLSV AND 8FFH STACK POINTER LOW ORDER BYTE
DB PCRSV AND eFFH PROGRAM COUNTER HIGH ORDER BYTE

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK85 PAGE 14

LOC OBJ

03F9 F2
0000

001B
07FA
0000
0UB
000F
0aFF
~00A
0000

000F
007F

SEQ

1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1258
1251
1252
1253
1254
1255
1256
1257
1258
1259
1268
1261
1262
1263
1264
1265
1266
1267
1268
1269
1278
1271
1272
1273
1274
1275
1276
1277
1278
1279
1288
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1388
1301
1302
1303
1384
1305
1386
1387
1388
1389
1318
1311
1312
1313
1314
1315
1316
1317
1318
1319
1328
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339

SOURCE STATEMENT

PCLSV AND 0FFH ; PROGRAM COUNTER LOW ORDER BYTE
NUMRG

DB
EQU ($ - RGTBL) ; NUMBER OF ENTRIES IN

; /REGISTER SAVE LOCATION TABLE
;
:****** •••••• ********.*.* ••• ** ••• *********** ••••••• ******.*.**** ••• ****
;*** ••• ******** •••••• *** ••••••• ********************* •• *** ••• ****.*.*.*.

SDK-85 TTY MONITOR
;
; •••• ***.** •• **** •• ******* ••••• **.*** •••••••••••••••••• *.*********.****
; •• *** ••• ** ••••• **** ••• ***.** ••••••• ** ••• **.***.********* ••• **********.

ABSTRACT

THIS PROGRAM WAS ADAPTED, WITH FEW CHANGES, FROM THE SDK-80 MONITOR.
THIS PROGRAM RUNS ON THE 8885 BOARD AND IS DESIGNED TO PROVIDE
THE USER WITH A MINIMAL MONITOR. BY USING THIS PROGRAM,
THE USEa CAN EXAMINE AND tHANGE MEMORY OR CPU REGISTERS, LOAD
A PROGRAM (IN ABSOLUTE HEX) INTO RAM, AND EXECUTE INSTRUCTIONS
ALREADY IN MEMORY. THE MONITOR ALSO PROVIDES THE USER WITH
ROUTINES FOR PERFORMING CONSOLE I/O.

PROGRAM ORGANIZATION

THE LISTING IS ORGANIZED IN THE FOLLOWING WAY. FIRST THE COMMAND
RECOGNIZER, WHICH IS THE HIGHEST LEVEL ROUTINE IN THE PROGRAM.
NEXT THE ROUTINES TO IMPLEMENT THE VARIOUS COMMANDS. FINALLY,
THE UTILITY ROUTINES WHICH ACTUALLY DO THE DIRTY WORK. WITHIN
EACH SECTION, THE ROUTINES ARE ORGANIZED IN ALPHABETICAL
ORDER, BY ENTRY POINT OF THE ROUTINE.

MACROS USED IN THE TTY MONITOR ARE DEFINED IN THE KEYBOARD MONITOR.

LIST OF FUNCTIONS

GETCM

DCMD
GCMD
ICMD
MCMD
SCMD
XCMD

CI
CNVBN
CO
CROUT
DELAY
ECHO
ERROR
FRET
GETCH
GETHX
GETNM
HILO
NMOUT
PRVAL
REGDS
RGADR
SRET
STHF0
STHLF
VALDG
VALDL

;*****************.*********************** •••••• *****.*******.*.*.

MONITOR EQUATES

;***.**.****** •••• *** ••••• *** •••••••••••••••• ***.*** •••••••• *** •••

BRCHR EQU
BRTAB EQU
CR EQU
ESC EQU
HCHAR EQU
INVRT EQU
LF EQU
LOWER EQU
;LSGNON EQU
;MNSTK EQU

;NCMDS EQU
NEWLN EQU
PRTY0 EQU
;RAMST EQU

IBH
07FAH
0DH
IBH
0FH
0FFH
0AH
o

iFH
07FH

CODE FOR BREAK CHARACTER (ESCAPE)
LOCATION OF START OF BRANCH 'TABLE IN ROM
CODE FOR CARRIAGE RETURN
CODE FOR ESCAPE CHARACTER
MASK 1'0 SELECT LOWER HEX CHAR FROM BYTE
MASK TO INVERT HALF BYTE FLAG
CODE FOR LINE FEED
DENOTES LOWER HALF OF BYTE IN ICMD
LENGTH OF SIGNON MESSAGE - DEFINED LATER
START OF MONITOR STACK - DEFINED IN
/KEYBOARD MONITOR
NUMBER OF VALID COMMANDS - DEFINED LATER
MASK FOR CHECKING MEMORY ADDR DISPLAY
MASK TO CLEAR PARITY BIT FROM CONSOLE CHAR
START ADDRESS OF RAM - DEFINED IN
KEYBOARD MONITOR

ISIS-II S0S0/S0S5 MACRO ASSEMBLER, X10S SDK85 PAGE 15

LOC OBJ

e0S0
0040
e0ce
0UB
00FF

04SC
04SC
123e
e246

13FA 218C07
83FD 1614

13FF 4E
lUI CDC4B5
1413 23
1414 IS
0405 C2FF03

IUS 21E920
UIB F9
0UC 0E2E
0UE CDFS05
0411 C31404

0414 CDIF06
1417 CDFS05
041A 79
041B 010600
041E 21AE07

0421 BE
~422 CA2D04
~425 23
0426 0D
0427 C22104
042A C311e6

042D 21A007

SEQ

1341
1341
1342
1343
1344
1345
1346
1347
134S
1349
1350
1351
1352
1353
1354
1355
1356
1357
135S
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1317
137S
1379
13S1
13S1
1382
1383
1384
1385
1386
1387
1388
1389
1391
1391
1392
1393
1394
1395
1396
1397
1398
1399
1408
1411
1402
1413
1484
1415
1416
1407
140S
1419
1410
1411
1412
1413
1414
1415
1416
1417
141S
1419
1421
1421
1422
1423
1424
1425
1426
1427
142S
1429
1430
1431
1432
1433
1434
1435
1436
1437
143S
1439

SOURCE STATEMENT

:RTABS EQU
SSTRT EQU
STOPB EQU
STRT EQU
TERM EQU
UPPER EQU

S0H
40H
0C0H
IBH
0FFH

SIZE OF ENTRY IN RTAB TABLE
SHIFTED START BIT
STOP BIT
UNSHIFTED START BIT
CODE FOR ICMD TERMINATING CHARACTER (ESCAPE)
DENOTES UPPER HALF OF BYTE IN ICMD

:DELAY VALUES IF NO WAIT STATE

IBTIM
OBTIM
TIM4
WAIT

:

IF
EQU
EQU
EQU
EQU
ENDIF

I-WAITS
1164
1164
4656
582

:INTER-BIT TIME DELAY
:OUTPUT INTER-BIT TIME DELAY
:4 BIT TIME DELAY
:DELAY UNTIL READY TO SAMPLE BITS

:DELAY VALUES IF ONE WAIT STATE

IBTIM
OBTIM
TIM4
WAIT

:

IF
EQU
EQU
EQU
EQU
ENDIF

WAITS
930
930
3720
465

:INTER-BIT DELAY
:OUTPUT INTER-BIT TIME DELAY
:4 BIT TIME DELAY
:DELAY UNTIL READY TO SAMPLE BITS

;*************.******.***** ••• ******* ••• ** •• ***.****** •••• ***** •••

RESTART ENTRY POINT

:
, •••••• ** ••••• ** •••• ** ••••••• ****.** ••••• ***.***.**.**.*****.*****

; ••• ********* •• ************* •• *****.***** ••••• * ••• ***.** ••• *.

PRINT SIGNON MESSAGE

:
, ••• **.**.** •••••••• *** •••••••• ** ••••••••• ****** •• ***********

GO:

MSGL:

LXI H,SGNON : GET ADDRESS OF SIGNON MESSAGE
MVI B,LSGNON ; COUNTER FOR CHARACTERS IN MESSAGE

MOV
CALL
INX
OCR
JNZ

C,M
CO
H
B
MSGL

FETCH NEXT CHAR TO C REG
SEND IT TO THE CONSOLE
POINT TO NEXT CHARACTER
DECREMENT BYTE COUNTER
RETURN FOR NEXT CHARACTER

;*** •• *** ••• **.**.** ••• **.**.*** •••• ** •••• ***.*****.***.* •••• *****

COMMAND RECOGNIZING ROUTINE

:
; •••• *** •••• ******** ••••••• **.***** ••••• ****** •• *** ••• ** ••••••• **.

FUNCTION: GETCM
INPUTS: NONE
OUTPUTS: NONE
CALLS: GETCH,ECHO,ERROR
DESTROYS: A,B,C,H,L,F/F'S
DESCRIPTION: GETCM RECEIVES AN INPUT CHARACTER FROM THE USER

GETCM:

GTC03:

GTC05:

G'rClb:

LXI
SPHL
MVI
CALL
JMP

CALL
CALL
MOV
LXI
LXI

C1P
JZ
INX
DCR
JNZ
JMP

LXI

AND ATTEMPTS TO LOCATE THIS CHARACTER IN ITS COMMAND
CHARACTER TABLE. IF SUCCESSFUL, THE ROUTINE
CORRESPONDING TO THIS CHARACTER IS SELECTED FROM
A TABLE OF COMMAND ROUTINE ADDRESSES, AND CONTROL
IS TRANSFERRED TO THIS ROUTINE. IF THE CHARACTER
DOES NOT MATCH ANY ENTRIES, CONTROL IS PASSED TO
THE ERROR HANDLER.

H,MNSTK

C,
ECHO
GTC03

GETCH
ECHO
A,C
B,NCMDS
H,CTAB

M
GTC10
H
C
GTC05
ERROR

H,CADR

ALWAYS WANT TO RESET STACK PTR TO MONITOR
/STARTING VALUE SO ROUTINES NEEDN'T CLEAN UP
PROMPT CHARACTER TO C
SEND PROMPT CHARACTER TO USER l'ERMINAL
WANT TO LEAVE ROOM FOR RST BRANCH

GET COMMAND CHARACTER TO A
ECHO CHARACTER TO USER
PUT COMMAND CHARACTER INTO ACCUMULATOR
C CONTAINS LOOP AND INDEX COUNT
HL POINTS INTO COMMAND TABLE

COMPARE TABLE ENTRY AND CHARACTER
BRANCH IF EQUAL - COMMAND RECOGNIZED
ELSE, INCREMENT TABLE POINTER
DECREMENT LOOP COUNT
BRANCH I F NOT AT TABLE E"D
ELSE, COMMAND CHARACTER IS ILLEGAL

If GOOD COMMAND, LOAD ADDRESS Of TABLE
/OF COMMAND ROUTINE ADDRESSES

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK85 PAGE 16

LOC OBJ

0430 09
0431 09
0432 7E
0433 23
0434 66
0435 6F
0436 E9

0437 0E02
0439 CD5B06
043C 01
0430 El

043E CDEB05
0441 7C
0442 CDC706
0445 70
0446 CDC706

0449 0E20
044B CDF805
044E 7E
044F CDC706
0452 CDA006

0455 D25E04
0458 CDEB05
045B C30804

045E 23
045F 70
0460 E60F

0462 C24904
0465 C33E04

0468 CD2606

046B 027004
046E 7A
046F FE0D
0471 C21106
0474 2lF220
0477 71
0478 23
0479 78
047A C38304

0470 7A
047E FEeD
0480 C21196

0483 C31B93

0486 0E01

SEQ SOURCE STATEMENT

DAD B ADD WHAT IS LEF'f OF LOOP COUNT
DAD B ADD AGAIN - EACH ENTRY IN CADR IS 2 BYTES LONG
MOV A,M GET LSP OF ADDRESS OF TABLE ENTRY TO A
INX H POINT TO NEXT BYTE IN TABLE
MOV H,M GE'f MSP OF ADDRESS OF TABLE ENTRY TO H
MOV L,A PUT LSP OF ADDRESS OF TABLE ENTRY INTO L
PCHL NEXT INSTRUCTION COMES FROM COMMAND ROUTINE

:*********.****** ••• **** ••• ********** ••• ************ ••••• ********.*****

COMMAND IMPLEMENTING ROUTINES

i*··******************··*******····****************·*· *.****** ••••••• **

FUNCTIOi/: DCMD
INPUTS: NONE
OUTPUTS: NONE
CALLS: ECHO,NMOUT,HILO,GETCM,CROUT,GETNM
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: DCMD IMPLEMENTS THE DISPLAY MEMORY (D) COMMAND

DCMD:

DCM05:

DCM10:

MVI
CALL
POP
POP

CALL
MOV
CALL
MOV
CALL

MVI
CALL
MOV
CALL
CALL

FALSE
JNC
C'\LL
JMP

C,2
GETNM
o
H

CROUT
A,H
NMOUT
A,L
NMOUT

c, I I

ECHO
A,M
NMOUT
HILO

DCM15
DCM15
CROUT
GETCM

GET 2 NUMBERS FROM INPUT STREAM

ENDING ADDRESS TO DE
STARTING ADDRESS TO HL

ECHO CARRIAGE RETURN/LINE FEED
DISPLAY ADDRESS OF FIRST LOCATION IN LINE

ADDRESS IS 2 BYTES LONG

USE BLANK AS SEPARATOR
GET CONTENTS OF NEXT MEMORY LOCATION
DISPLAY CONTENTS
SEE IF ADDRESS OF DISPLAYED LOCATION IS
/GREATER THAN OR EQUAL TO ENDING ADDRESS
IF NOT, MORE TO DISPLAY

CARRIAGE RETURN/LINE FEED TO END LINE
ALL DONE

DCM15:

1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484+
1485
1486
1487
1488
1489
1499
1491
1492
1493
1494
1495
1496
1497
1498
1499
1509
1591
1502
1503
1594
1505
1506
1507
1508
1509+
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538

INX
MOV
ANI

JNZ
JMP

H
A,L
NEWLN

DCMl0
DCM05

IF MORE TO GO, POINT TO NEXT LOC TO DISPLAY
GET LOW ORDER BITS OF NEW ADDRESS
SEE IF LAST HEX DIGIT OF ADDRESS DENOTES
/START OF NEW LINE
NO - NOT AT END OF LINE
YES - START NEW LINE WITH ADDRESS

:* ••••••• ** ••• *.************ •• ********************** •• * ••• ********

FUNCTION: GCMD
INPUTS: NONE
OUTPUTS: NONE
CALLS: ERROR,GETHX,RSTTF
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: GCMD IMPLEMENTS THE BEGIN EXECUTION (G) COMMAND.

GCMD:
CALL GETHX GET ADDRESS (IF PRESENT) FROM INPUT STREAM
FALSE GCM05 BRANCH IF NO NUMBER PRESENT
JNC GCM05
MOV A,D ELSE, GET TERMINATOR
CPI CR SEE IF CARRIAGE RETURN
JNZ ERROR ERROR IF NOT PROPERLY TERMINATED
LXI H,PSAV • WANT NUMBER TO REPLACE SAVE PGM COUNTER
MOV M,C
INX H
MOV M,B
JMP GCMl0

GCM05:
MOV A,D IF NO STARTING ADDRESS, MAKE SURE THAT
CPI CR /CARRIAGE RETURN TERMINATED COMMAND
JNZ ERROR ERROR IF NOT

GCMle:
JMP RSTOR RESTORE REGISTERS AND BEGIN EXECUTION

(RSTOR IS IN KEYBOARD MONITOR)

,
i···***·····********···**··**··**********··***·******* * •••• **.*.**

FUNCTION: ICMD
INPUTS: NONE
OUTPUTS: NONE
CALLS: ERROR,ECHO,GETCH,VALDL,VALDG,CNVBN,STHLF,GETNM,CROUT
DESTROYS: A,B,C,D,E,H,L,F/P'S
DESCRIPTION: ICMD IMPLEMENTS THE INSERT CODE INTO MEMORY (I) COMMAND.

ICMD:
MVI C, 1

ISIS-II S8S8/S8S5 MACRO ASSEMBLER, x11S SDK85 PAGE 17

LOC OBJ

0488 CD5B06
040B 3EFF
84SD 32FD28
8491 D1

8491 CDlFI6
1494 4F
1495 CDFSI5
849S 79
8499 FE1B
849B CAC784
149E CD7917

84'\1 DA9lU
84A4 CD5E87

I4A7 D2CU4
I4AA CDBB85
8UD 4F
84AE CD3FI7
84B1 3AFD28
84B4 B7
8485 C2B984
I4B8 13

84B9 EEFF
84BB 32FD28
84BE C39U4

84C1 CD3417
84C4 C3lU6

84C7 CD3417
14CA CDEBI5
84CD C31S14

I4DI 0E03
9402 CD5B06
84D5 C1
04D6 El
1407 01

14D8 E5
0409 62
14DA 6B

84DB 7E
84DC 61
84DD 69
84DE 77
84DF 13
84E0 7S
84El Bl
84E2 CA8884
0U5 13
IU6 El
84E7 CDA806

8UA D28884
84ED C3DSI4

04F0 CD2606
04F3 C5
04F4 El

04F5 7A
04F6 FE20
04FS CA0015
04FB FE2C
84FD C20804

1500 7E
0501 CDC706
1504 0E2D
0506 CDF815
0509 CD21>06

SEQ

1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552+
1553
1554
1555+
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
156S
1569
1578
1571
1572
1573
1574
1575
1576
1577
1578
1579
1581
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595

1596
1597
1598
1599
1680
1681
1612
1603
1604
1605
1606
1607
1608+
1619
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637

SOURCE STATEMENT

CAL', GETNM GET SINGLE NUMBER FROM INPUT STREAM
MVI A, UPPER
STA TEMP TEMP WILL HOLD THE UPPER/LOWER HALF BYTE FLAG
POP 0 ADDRESS OF START TO DE

ICMI5:

ICMU:

ICM21:

ICM25:

I

CALL
MOV
CALL
MOil
CPI
JZ
CALL
TRUE
JC
CALL
FALSE
JNC
CALL
MOV
CALL
LDA
ORA
JNZ
INX

XRI
STA
JMP

CALL
JMP

CALL
CALL
JMP

GETCH
C,A
ECHO
A,C
TERM
ICM25
VALDL
ICM05
ICM05
VALDG
ICM20
ICM20
CNVBN
C,A
STHLF
TEMP
A
ICMU
o

INVRT
TEMP
ICMI5

STHFI
ERROR

STHFI
CROUT
GETCM

GET A CHARACTER FROM INPUT STREAM

ECHO IT
PUT CHARACTER BACK INTO A
SEE IF CHARACTER IS A TERMINATING CHARACTER
IF SO, ALL DONE ENTERING CHARACTERS
ELSE, SEE IF VALID DELIMITER
IF SO SIMPLY IGNORE THIS CHARACTER

ELSE, CHECK TO SEE IF VALID HEX DIGIT
IF NOT, BRANCH TO HANDLE ERROR CONDITION

CONVERT DIGIT TO BINARY
MOVE RESULT TO C
STORE IN APPROPRIATE HALF WORD
GET HALF BYTE FLAG
SET F/F'S
BRANCH IF FLAG SET FOR UPPER
IF LOWER, INC ADDRESS OF BYTE TO STORE IN

TOGGLE STATE OF FLAG
PUT NEW VALUE OF FLAG BACK
PROCESS NEXT DIGIT

ILLEGAL CHARACTER
MAKE SURE ENTIRE BYTE FILLED THEN ERROR

I HERE FOR ESCAPE CHARACTER - INPUT IS DONE
ADD CARRIAGE RETURN

, ••• *****************.******* ••• **** ••••• *.*******.*** •• *.*.****.*

FUNCTION: MCMD
INPUTS: NONE
OUTPUTS: NONE
CALLS: GETCM,HILO,GETNM
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: MCMD IMPLEMENTS THE MOllE DATA IN MEMORY (M) COMMAND.

I
MCMD:

MCM05:

I

MVI
CALL
POP
POP
POP

PUSH
MOV
MOil

MOV
MOV
MOV
MOV
INX
MOV
ORA
JZ
INX
POP
CALL
FALSE
JNC
JMP

C,3
GETNM
B
H
o

H
H,D
L,E

A,M
H,B
L,C
M,A
B
A,B
C
GETCM
D
H
HILO
GETCM
GETCM
MCMI5

GET 3 NUMBERS FROM INPUT STREAM
DESTINATION ADDRESS TO BC
ENDING ADDRESS TO HL
STARTING ADDRESS TO DE

SAVE ENDING ADDRESS

SOURCE ADDRESS TO HL

GET SOURCE BYTE

DESTINATION ADDRESS TO HL
MOVE BYTE TO DESTINATION
INCREMENT DESTINATION ADDRESS

TEST FOR DESTINATION ADDRESS OVERFLOW
IF SO, CAN TERMINATE COMMAND
INCREMENT SOURCE ADDRESS
ELSE, GET BACK ENDING ADDRESS
SEE IF ENDING ADDR>=SOURCE ADDR
IF NOT, COMMAND IS DONE

MOVE ANOTHER BYTE

; ••• **** •• ****.************************ ••• *.*******.*.****,r* •••• *.*

FUNCTION: SCMD
INPUTS: NONE
OUTPUTS: NONE
CALLS: GETHX,GETCM,NMOUT,ECHO
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: SCMD IMPLEMENTS THE SUBSTITUTE INTO MEMORY (S) COMMAND.

SCMD:

SCM05:

SCMI0:

CALL
PUSH
POP

MOV
CPI
JZ
CPI
JNZ

MOV
CALL
MVI
CALL
CALL

GETHX
B
H

A,D

SCM10 , ,
GETCM

A,M
NMOUT
C,I_'
ECHO
GETHX

GET A NUMBER, IF PRESENT, FROM INPUT

GET NUMBER TO HL - DENOTES MEMORY LOCATION

GET TERMINATOR
SEE IF SPACE
YES - CONTINUE PROCESSING
ELSE, SEE IF COMMA
NO - TERMINATE COMMAND

GET CONTENTS OF SPECIFIED LOCATION TO A
DISPLAY CONTENTS ON CONSOLE

USE DASH FOR SEPARATOR
GET NEW VALUE FOR MEMORY LOCATION, IF ANY

1515-11 ~080/d085 MACRO ASSEMBLER, X108 SDK85 PAGE 18

LOC OBJ

050C D21005
050F 71

0510 23
0511 C3F504

0514 CDIF06
0517 4F
0518 CDF805
051B 79
051C FE0D
051E C22705
0521 CDEA06
0524 C30804

0527 4F
0528 CDIB07
052B C5
052C El
052D 0E20
052F CDF805
0532 79
0533 32FD20

0536 3AFD20
0539 FE20
053B CA4305
053E FE2C
0540 C20804

0543 7E
0544 B7
0545 C24E05
0548 CDEB05
054B C38804

054E E5
054F 5E
0550 1620
0552 23
0553 46
0554 D5
0555 D5
0556 El
0557 C5
0558 7E
0559 CDC706
055C Fl
055D F5
055E B7
055F CA6705
0562 2B
8563 7E
0564 CDC706

8567 0E20
0569 CDF885
856C C02606

056F 028785
0572 7A
8573 32F020
0576 Fl
0577 El
0578 B7
8579 CA7E85
857C 70
0570 2B

057E 71

857F 110308
0582 El
0583 19
8584 C33605

8587 7A
8588 32FD28
058B Dl
058C 01
8580 C37 F05

SEQ SOURCE STATEMENT

1638
1639+
1648
1641
1642
1643
1644

SCMI5:

,

FALSE
JNC
MOV

INX
JMP

SCM15
SCM15
M,C

H
SCM05

IF NO VALUE PRESENT, BRANCH

ELSE, STORE LOWER 8 BITS OF NUMBER ENTERED

INCREMENT ADDRESS OF MEMORY LOCATION TO VIEW

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659

i····**············**········**····**········***······ *.** ••• ***.*

FUNCTION: XCMD
INPUTS: NONE
OUTPUTS: NONE
CALLS: GE'rCH, ECHO, REGDS, GETCM, ERROR, RGADR, NL'lOUT, CROUT, GETHX
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIP'rION: XCMD IMPLEMENTS THE REGISTER EXAMINE AND CHANGE (X)

COMMAND.

1060
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1708
1701
1782
1783
1704
1785

XCMD:

XCM05:

XCMI0:

XCMI5:

XCMI8:

1786 XCM28:
1707
1708
1709
1718
1711+
1712
1713
1714
1715
1716
1717
1718
1719
1720 XCM25:
1721
1722 XCM27:
1723
1724
1725
1726
1727 XCM30:
1728
1729
1730
1731
1732
1733
1734

CALL
MOV
CALL
MOV
CPI
JNZ
CALL
JMP

MOV
CALL
PUSH
POP
MVI
CALL
MOV
STA

LOA
CPI
JZ
CPI
JNZ

MOV
ORA
JilZ
CALL
JMP

PUSH
MOV
MVI
INX
MOV
PUSH
PUSH
POP
PUSH
MOV
CALL
POP
PUSH
ORA
JZ
DCX
MOV
CALL

MVI
CALL
CALL
FALSE
JNC
MOV
STA
POP
POP
ORA
JZ
MOV
DCX

MOV

LXI
POP
DAD
JMP

MOV
STA
POP
POP
JMP

GETCH
C,A
ECHO
A,C
CR
XCM05
REGDS
GETCM

C,A
RGADR
8
H
C,
ECHO
A,C
TEMP

TEMP

XCM15

GETCM

A,M
A
XCM18
CROUT
GETCM

H
E,M

,. GET REGISTER IDENTIFIER

ECHO IT

BRANCH IF NOT CARRIAGE RETURN
ELSE, DISPLAY REGISTER CON'rENTS
THEN TERMINATE COMMAND

GET REGISTER IDENTIFIER 1'0 C
CONVERT IDENTIFIER INTO RTAB TABLE ADDR

PUT POINTER 'ro REGISTER EN'I'RY INTO HL

ECHO SPACE TO USER

PUT SPACE INTO TEMP AS DELIMITER

GET TERMINATOR
SEE IF A BLANK
YES - GO CHECK POINTER INTO TABLE
NO - SEE IF COMMA
NO - MUST BE CARRIAGE RETURN TO END COMMAND

SET FIF'S
BRANCH IF NOT AT END OF TABLE
ELSE, OUTPUT CARRIAGE RE'rURN LINE FEED
AND EXIT

PUT POINTER ON STACK

D,RAMST SHR 8
H

; ADDRESS OF SAVE LOCATION FROM TABLE

B,M
o
o
H
B
A,M
NMOUT
PSW
PSW
A
XCM20
H
A,M
NMOUT

c, I_I

ECHO
GETHX
XCM30
XCM38
A,D
TEMP
PSW
H
A
XCM25
M,B
H

M,C

D,RTABS
H
D
XCMU

A,D
TEMP
o
o
XCM27

FETCH LENGTH FLAG FROM TABLE
SAVE ADDRESS OF SAVE LOCATION

MOVE ADDRESS TO HL
SAVE LENGTH FLAG
GET 8 BITS OF REGISTER FROM SAVE LOCATION
DISPLAY IT
GET BACK LENGTH FLAG
SAVE IT AGAIN
SET F/F'S
IF 8 BIT REGISTER, NOTHING MORE TO DISPLAY
ELSE, FOR 16 BIT REGISTER, GET LOWER 8 BITS

DISPLAY THEM

USE DASH AS SEPARATOR
SEE IF THERE IS A VALUE TO PUT INTO REGISTER
NO - GO CHECK FOR NEXT REGISTER

ELSE, SAVE THE TERMINATOR FOR NOW
GET BACK LENGTH FLAG
PUT ADDRESS OF SAVE LOCATION INTO HL
SET F/F'S
IF 8 BIT REGISTER, BRANCH
SAVE UPPER 8 BITS
POINT TO SAVE LOCATION FOR LOWER a BITS

STORE ALL OF 8 BIT OR LOWER 1/2 OF 16 BIT REG

SIZE OF ENTRY IN RTAB TABLE
POINTER INTO REGISTER TABLE RTAB
ADD ENTRY SIZE TO POINTER
DO NEXT REGISTER

GET TERMINATOR
SAVE IN MEMORY
CLEAR STACK OF LENGTH FLAG AND ADDRESS
IOF SAVE LOCATION
GO INCREMENT REGISTER TABLE POINTER

ISIS-II 8888/8885 MACRO ASSEMBLER, X188 SDK85 PAGE 19

LOC OBJ

0590 F3
0591 D5

0592 20
~593 17
~594 DA9205
0597 114602
059A CDF105
059D C5
059E 010800

05A1 118C04
05114 CDFl05
05A7 20
05A8 17
05A9 78
05AA IF
05AB 47
05AC 0D
05AD C2A105
05B0 118C04
05B3 CDF105
05B6 78
05B7 Cl
05B8 Dl
05B9 FB
05BA C9

05BB 79
05BC D630
85BE FE8A
05C8 F8
05C1 D607
85C3 C9

85C4 F3
85C5 C5
85C6 D5
85C7 3EC8
85C9 8687

85CB 38
85CC 118C84
85CF CDFl05
85D2 79
85D3 IF
85D4 4F
85D5 3E88
85D7 IF
85D8 £E88
85DA 85
85DB F2CB85
85DE 3E48
85E8 38

SEQ

1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
17i16
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
18111
1811
1812
1813
1814
1815
1816
1817
1818
1819
1828
1821
1822
1823
1824
1825
1826
1827
1828
1829
18311
1831
1832
1833
1834

SOURCE STATEMENT

i*····**·················****·***··t** ** ••• **. ****.*.* •• **

UTILITY ROUTINES

; ••• ****** ••••• *****.**.**.**.** ••••••••••••••••••••••••• *.*.****.

FUNC1'ION: CI
INPUTS: NONE
OUTPUTS: A - CHARACTER FROM TTY
CALLS: DELAY
DESTROYS: A,F/F'S
DESCRIPTION: CI WAITS UNTIL A CHARACTER HAS BEEN ENTERED AT THE

. TTY AND THEN RETURNS THE CHARACTER, VIA THE A
REGISTER, TO THE CALLING ROUTINE. THIS ROUTINE
IS CALLED BY THE USER VIA A JUMP 'rABLE IN RAM.

CI:
DI
PUSH D SAVE DE

CI05:
RIM
RAL
JC
LXI
CALL
PUSH
LXI

CI05
D,WAI1'
DELAY
B
B,8

GET INPUT BIT
INTO CARRY wITH IT
BRANCH IF ,,0 STAR1' 81'1'

WAIT UNTIL MIDDLE OF BIT

SAVE BC
B<--0, C<--' BITS TO RECEIVE

C1l0:
LXI
CALL
RIM
RAL
MOV
RAR
MOV
DCR
JNZ
LXI
CALL
MOV
POP
POP
EI
RET

D,IBTIM
DELAY

A,B

B,A
C
Cll0
D,IBTIM
DELAY
A,B
B
D

WAIT UNTIL MIDDLE OF NEXT BIT
GET THE BIT
INTO CARR~
GE'r PARTIAL RESULT
SHIFT IN NEXT DATA BIT
REPLACE RESULT
DEC COUNT OF BITS TO GO
BRANCH IF MORE LEFT
ELSE, WANT TO WAIT OUT STOP BIT

GET RESULT

RESTORE SAVED REGISTERS

THAT'S IT

i**··**···***·**···········**·**·········**····***···· .•.. ****** •••

FUNCTION: CNVBN
INPUTS: C - ASCII CHARACTER '0'_'9' OR 'A'-'F'
OUTPUTS: A - 8 TO F HEX
CALLS: NOTHING
DESTROYS: A,F/F'S
DESCRIPTION: CNVBN CONVERTS THE ASCII REPRESENTATION OF A HEX

CNVBN INTO ITS CORRESPONDING BINARY VALUE. CNVBN
DOES NOT CHECK THE VALIDITY OF ITS INPUT.

;
CNVBN:

;

MOV
SUI
CPI
RM
SUI
RET

A,C
'0 '
18

SUBTRACT CODE FOR '8' FROM ARGUMENT
WANT TO TEST FOR RESULT OF 8 TO 9
IF SO, THEN ALL DONE
ELSE, RESULT BETWEEN 17 AND 23 DECIMAL
SO RETURN AFTER SUBTRACTING BIAS OF 7

i**************···***···**··********·*·*·······****·*· ••••• ***** ••••• **

FUNCTION: CO
INPUTS: C - CHARACTER TO OUTPUT TO TTY
OUTPUTS: C - CHARACTER OUTPUT TO TTY
CALLS: DELAY
DESTROYS: A,F/F'S
DESCRIPTION: CO SENDS ITS INPUT ARGUMENT TO THE TTY.

CO:

C085.

DI
PUSH
PUSH
MVI
MVI

SIM
LXI
CALL
MOV
RAR
MOV
MVI
RAR
XRI
DCR
JP
MVI
SIM

B
D
A,STRT
B,7

D,OBTIM
DELAY
A,C

C,A
A,SSTRT

88H
B
C005
A,STOPB

SAVE BC
SAVE DE
START BIT MASK
B WILL COUNT BITS TO SEND

SEND A BIT
WAIT FOR TTY TO HANDLE IT

PICK UP BITS LEFT TO SEND
LOW ORDER BIT TO CARRY
PUT REST BACK
SHIFTED ENABLE BIT
SHIFT IN DATA BIT
COMPLEMENT DATA BIT
DEC COUNT
SEND IF MORE BITS NEED TO BE SENT
ELSE, SEND STOP BITS

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK85 PAGE 20

LOC OBJ

85El 113812
8SE4 CDF185
85E7 01
05E8 Cl
05E9 FB
05EA C9

05EB 0E0D
05ED CDFd05
0SF0 C9

0SFI IB
;J5F2 7A
0SF3 B3
0SF4 C2Fl0S
05F7 C9

0SF8 41
0SF9 3ElB
0SFS B8
05FC C20106
0SFF 0E24

0601 CDC405
0604 3E0D
0606 B8
0607 C20F06
060A 0E0A
060C CDC405

060F 48
0610 C9

0611 8E2A
0613 CDF885
0616 CDEB05
0619 C38884

SEQ

1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1&63
1864
1865
1866
1867
1868
1869
1870
1~71

1872
1873
1874
1~7S
1876
1877
1876
1879
1880
1881
1882
1883
1884
1685
1886
1887
1888
1889
1890
1891
1892
1893
18H
1895
1896
1897
1898
1899
1900
1991
1902
1903
1984
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933

SOURCE STATEMENT

LXI
CALL
POP
POP
EI
R2T

D,TIM4
DELAY
o
B

WAIT 4 BIT TIME (FAKE PARITY + 3 STOP BITS)

RESTORE SAVED REGISTERS

ALL DONE

i*·*************···*****·*·*····******··************** **** ••• *****

FUNCTION CROUT
INPUTS: NONE
OUTPUTS: NONE
CALLS: ECHO
DESTROYS: A,B,C,F/F'S
DESCRIPTION: CROUT SENDS A CARRIAGE RETURN (AND HENCE A LINE

FEED) TO THE CONSOLE.

CROUT:

,

MVI
CALL
RET

C,CR
ECHO

;*****.**.*** •• ***.******.******.********.******.*~ •• * .************.

FUNc'rION: DELAY
INPUTS: DE - 16 BIT INTEGER DENOTING NUMBER OF TIMES TO LOOP
OUTPUTS: NONE
CALLS: NOTHING
DESTROY3: A,D,E,F/F'S
DESCRIPTION: DELAY DOES NOT RE'rURN TO CALLER UNl'lL INPU'r ARGUMENT

IS COUNTED DOWN TO 0.

DELAY:
DCX
MOV
ORA
JNZ
RET

D
A,D
E
DELAY

DECREMENT INPUT ARGUM~~T

IF ARGUMENT NOT 0, KEEP GOING

i***·**********************************·************** ************.*

FUNCTION: ECHO
INPUTS: C - CHARACTER TO ECHO TO TERMINAL
OUTPUTS: C - CHARACTER ECHOED TO TERMINAL
CALLS: CO
DESTROYS: A,B,F/F'S
DESCRIPTION: ECHO TAKES A SINGLE CHARACTER AS INPUT AND, VIA

THE MONITOR, SENDS THAT CHARACTER TO THE USER
TERMINAL. A CARRIAGE RE'I'URN IS ECHOED AS " CARRIAGE
RETURN LINE FEED, AND AN ESCAPE CHARACTER IS ECHOED AS S.

ECHO:
MOV B,C SAVE ARGUMENT
MVI A,ESC
CMP B SEE IF ECHOING AN ESCAPE CHARACTER
JNZ ECH0S NO - BRANCH
MVI C, 1$' YES - ECHO AS S

ECH0S:
CALL CO DO OUTPUT THROUGH MONITOR
MVI A,CR
CMP B SEE IF CHARACTER ECHOED wAS A CARRIAGE RETURN
JNZ ECH10 NO - NO NEED TO TAKE SPECIAL ACTION
MVI C,LF YES - WANT TO ECHO LINE FEED, TOO
CALL CO

ECHlB :
MOV C,B RESTORE ARGUMENT
RET

;*.************** ••• ******.**** ••• *** ••• **** •• ***** •••• *.*.*********.*.

FUNCTION: ERROR
INPUTS: NONE
OUTPUTS: NONE
CALLS: ECHO,CROUT,GETCM
DESTROYS: A,B,C,F/F'S
DESCRIPTION: ERROR PRINTS THE ERROR CHARACTER (CURRENTLY AN ASTERISK)

ON THE CONSOLE, FOLLOWED BY A CARRIAGE RETURN-LINE FEED,
AND THEN RETURNS CONTROL TO THE COMMAND RECOGNIZER.

ERROR:

l

MVI
CALL
CALL
J;4P

c, .• -
ECHO
CROUT
GETCM

SEND • TO CONSOLE
SKIP TO BEGINNING OF NEXT LINE
TRY AGAIN FOR ANOTHER COMMAND

;************* •• ************** ••• *** ••• ********** ••••• ****.*.*.* •• *****

FUNCTION: FRET
INPUTS: NONE

ISIS-II S8S0/S8S5 MACRO ASSEMBLER, X10S SDK85 PAGE 21

LOC OBJ

861C 37
0610 3F
061E C9

061F CD9005
0622 E67F
0624 4F
0625 C9

0626 E5
0627 210000
062A 1E00

062C CDIF06
062F 4F
0630 CDF805
0633 CD7907

0636 024506
0639 51
0b3A E5
063B Cl
063C El
0630 7B
063E B7
063F C23207
0642 CAIC06

0645 CD5E07

0648 021106
064B CDBB05
064E lEFF
0650 29
0651 29
0652 29
0653 29
0654 0600
0656 4F
0657 09
0658 C32C06

SEQ

1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
19H1
1982
In3
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000+
2001
20~2
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012+
2013
20H
2015
2016
2017
2018
2919
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2831
2032
2033

SOURCE STATEMENT

OUTPUTS: CARRY - ALWAYS 0
CALLS: NOTHING
DESTROYS: CARRY
DESCRIPTION: FRET IS JUMPED TO BY ANY ROUTINE THAT WISHES TO

INDICATE FAILURE ON RETURN. FRET SETS THE CARRY
FALSE, DENOTING FAILURE, AND THEN RETURNS TO THE
CALLER OF THE ROUTINE INVOKING FRET.

FRET:

;

STC
CMC
RET

FIRST SET CARRY TRUE
THEN COMPLEMENT IT TO MAKE IT FALSE
RETURN APPROPRIATELY

;********* •• ***.************ ••• **************************** ••• *.*****.*

FUNCTION: GETCH
INPUTS: NONE
OUTPUTS: C - NEXT CHARACTER IN INPUT STREAM
CALLS: CI
DESTROYS: A,C,F/F'S
DESCRIPTION: GETCH RETURNS THE NEXT CHARACTER IN THE INPUT STREAM

TO THE CALLING PROGRAM.

GETCH:

;

CALL
ANI
MOV
RET

CI
PRTY0
C,A

GET CHARACTER FROM TERMINAL
TURN OFF PARITY BIT IN CASE SET BY CONSOLE
PUT VALUE IN C REGISTER FOR RETURN

~** •• **.*.**.**** •• ** •• * •• **.**** ••• *.* ••• ******.***** .*.*******.*.****

FUNCTION: GETHX
INPUTS: NONE
OUTPUTS: BC - 16 BIT INTEGER

o - CHARACTER WHICH TERMINATED THE INTEGER
CARRY - 1 IF FIRST CHARACTER NOT DELIMITER

- 0 IF FIRST CHARACTER IS DELIMITER
CALLS: GETCH,ECHO,VALDL,VALDG,CNVBN,ERROR
DESTROYS: A,B,C,D,E,F/F'S
DESCRIPTION: GETHX ACCEPTS A STRING OF HEX DIGITS FROM THE INPUT

STREAM AND RETURNS THEIR VALUE AS A 16 BIT BINARY
INTEGER. IF MORE THAN 4 HEX DIGITS ARE ENTERED,
ONLY THE LAST 4 ARE USED. THE NUMBER TERMINATES WHEN
A VALID DELIMITER IS ENCOUNTERED. THE DELIMITER IS
ALSO RETURNED AS AN OUTPUT OF THE FUNCTION. ILLEGAL
CHARACTERS (NOT HEX DIGITS OR DELIMITERS) CAUSE AN
ERROR INDICATION. IF THE FIRST (VALID) CHARACTER
ENCOUNTERED IN THE INPUT STREAM IS NOT A DELIMITER,
GETHX WILL RETURN WITH THE CARRY BIT SET TO I;
OTHERWISE, THE CARRY BIT IS SET TO 0 AND THE CONTENTS
OF BC ARE U~DEFINED.

GETHX:
PUSH
LXI
MVI

H
H,0
E,0

SAVE HL
INITIALIZE RESULT
INITIALIZE DIGIT FLAG TO FALSE

GHX05:
CALL
MOV
CALL
CALL
FALSE
JNC
MOV
PUSH
POP
POP
MOV
ORA
JNZ
JZ

GETCH
C,A
ECHO
VALDL
GHX10
GHX10
D,C
H
B
H
A,E
A
SRET
FRET

GET A CHARACTER

ECHO THE CHARACTER
SEE IF DELIMITER
NO - BRANCH

YES - ALL DONE, BUT WANT TO RETURN DELIMITER

MOVE RESULT TO BC
RESTORE HL
GET FLAG
SET F/F'S
IF FLAG NON-0, A NUMBER HAS BEEN FOUND
ELSE, DELIMITER WAS FIRST CHARACTER

GHxI0:

;

CALL
FALSE
JNC
CALL
MVI
DAD
DAD
DAD
DAD
MVI
MOV
DAD
JMP

VALDG
ERROR
ERROR
CNVBN
E,0FFH
H
H
H
H
B,0
C,A
B
GHX05

IF NOT DELIMITER, SEE IF DIGIT
ERROR IF NOT A VALID DIGIT, EITHER

CONVERT DIGIT TO ITS BINARY VALUE
SET DIGIT FLAG NON-0
*2
*4
*8
*16
CLEAR UPPER 8 BITS OF BC PAIR
BINARY VALUE OF CHARACTER INTO C
ADD THIS VALUE TO PARTIAL RESULT
GET NEXT CHARACTER

i*************·· •••..•••.•••
FUNCTION: GETNM
INPUTS: C' - COUNT OF NUMBERS TO FIND IN INPUT STREAM
OUTPUTS: TOP OF STACK - NUMBERS FOUND IN REVERSE ORDER (LAST ON TOP

OF STACK)
CALLS: GETHX,HILO,ERROR
DESTROYS: A,B,C,D,E,H,L,F/F'S

ISIS-II 8080/8085 MACRO ASSEMBLER, X108 SDK8S PAGE 22

LOC OBJ

865B 2E83
8650 79
865B E683
8668 C8
8661 67

8662 CD2686

8665 021186
8668 C5
8669 20
866A 25
866B CA7786
866E 7A
866F FE8D
8671 CA1186
8674 C36286

8677 7A
8678 FE8D
867A C21186
8670 0lFFFF
0688 70
0681 B7
8682 CA8A86

0685 C5
0686 20
8687 C28586

868A C1
868B 01
868C El
8680 CDA886

8690 029506
8693 54
8694 50

8695 E3
8696 05
8697 C5
8698 E5

8699 3D
069A F8
869B El
069C E3
8690 C39906

06A0 C5
06Al 47
06A2 E5
86A3 7A
86M B3
86A5 CAC106
06A8 23
86A9 7C
86AA B5
86AB CACU6
86AE E1
86AF 05
86B8 3EFF
86B2 AA
86B3 57
86B4 3EFF
86B6 AB
86B7 SF
86B8 13
86B9 70
86BA 83
86BB 7C
86BC 8A
86BD 01

SEQ SOURCE STATEMENT

2034
2035

DESCRIPTION.

21136
2837
2838
2839
2848 ,
21141
2842
2843 GETNM.
2844
2845
21146
2847
2848
2849 GNM85.
21158
21151
21152+
21153
2054
21155
2856
2857
21158
2059
2060
2861 GNMU.
2062
2863
2064
2865
2866
2867
2068
2069 GNM15.
2070
2071
2072
2873 GNM20.
2074
2875
2076
2077
2078
2879+
2888
2881
2082 GNM25.
2083
2884
2885
2886
2887 GNM38.
2888
2889
2898
2091
2092
2093

;

MVI
MOV
ANI
RZ
MOV

CALL
FALSE
JNC
PUSH
DCR
OCR
JZ
MOV
CPI
JZ
JMP

MOV
CPI
JNZ
LXI
M;)V
ORA
JZ

PUSH
DCR
JNZ

POP
POP
POP
CALL
FALSE
JNC
MOV
MOV

XTHL
PUSH
PUSH
PUSH

DCR
RM
POP
XTHL
JMP

GETNM FINDS A SPECIFIED COUNT OF NUMBERS, BETWEEN
AND 3, INCLUSIVE, IN THE INPUT
STREAM AND RETURNS THEIR VALUES ON THE STACK. IF 2
OR MORE NUMBERS ARE REQUESTED, THEN THE FIRST MUST BE
LESS THAN OR EQUAL TO THE SECOND, OR THE FIRST AND
SECOND NUMBERS WILL BE SET EQUAL. THE LAST NUMBER
REQUESTED MUST BE TERMINATED BY A CARRIAGE RETURN
OR AN ERROR INDICATION WILL RESULT.

L,3
A,C
3

H,A

GETHX
ERROR
ERROR
B
L
H
GNM10
A,D
CR
ERROR
GNM0S

A,D
CR

PUT MAXIMUM ARGUMENT COUNT INTO L
, GET THE ACTUAL ARGUMENT COUNT

FORCE TO MAXIMUM OF 3
IF 8, DON'T BOTHER TO DO ANYTHIING
ELSE, PUT ACTUAL COUNT INTO H

GET A NUMBER FROM INPUT STREAM
ERROR IF NOT THERE - TOO FEW NUMBERS

, ELSE, SAVE NUMBER ON STACK
DECREMENT MAXIMUM ARGUMENT COUNT
DECREMENT ACTUAL ARGUMENT COUNT
BRANCH IF NO MORE NUMBERS WANTED
ELSE, GET NUMBER TERMINATOR TO A
SEE IF CARRIAGE RETURN
ERROR IF SO - TOO FEW NUMBERS
ELSE, PROCESS NEXT NUMBER

WHEN COUNT 8, CHECK LAST TERMINATOR

ERROR ,
B,0FFFFH
A,L

ERROR IF NOT CARRIAGE RETURN
HL GETS LARGEST NUMBER

GET WHAT'S LEFT OF MAXIMUM ARG
CHECK FOR 8

COUNT
A
GNM20

B
L
GNM15

B
o
H
HILO
GNM25
GNM2S
D,H
E,L

D
B
H

A

H

GNM30

IF YES, 3 NUMBERS WERE INPUT

IF NOT, FILL REMAINING ARGUMENTS WITH 0FFFFH

, GET THE 3 ARGUMENTS OUT

SEE IF FIRST >D SECOND
NO - BRANCH

YES - MAKE SECOND EQUAL TO THE FIRST

PUT
PUT

, PUT
PUT

FIRST ON STACK - GET RETURN
SECOND ON STACK
THIRD ON STACK
RETURN ADDRESS ON STACK

DECREMENT RESIDUAL COUNT

ADDR

, IF NEGATIVE, PROPER RESULTS ON STACK
ELSE, GET RETURN ADDR
REPLACE TOP RESULT o'II1'H RETURN AD DR
TRY AGAIN

2094
2095
2896
2097

j* ••• **** ••• ********* ••••••• **** •••••• ********* ••• *.* • •• **********

2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2118
2111
2112
2113
2114
2115
2116
2117
2118
2119
2128
2121
2122
2123
2124
2125
2126
2127
2128
2129
2138
2131
2132
2133

FUNCTION: HILO
INPUTS. DE - 16 BIT INTEGER

HL - 16 BIT INTEGER
OUTPUTS. CARRY - 0 IF HL(DE

- 1 IF HL>-DE
, CALLS. NOTHING
, DESTROYS. F/F'S

DESCRIPTION. HILO COMPARES THE 2 16 BIT INTEGERS IN HL AND DE. THE
INTEGERS ARE TREATED AS UNSIGNED NUMBERS. THE CARRY
BIT IS SET ACCORDING TO THE RESULT OF THE COMPARISON.

HILO.
PUSH
MOV
PUSH
MOV
ORA
JZ
INX
MOV
ORA
JZ
POP
PUSH
MVI
XRA
MOV
MVI
XRA
MOV
INX
MOV
ADD
MOV
ADC
POP

B
B,A
H
A,D
E
HIL0S
H
A,H
L
HIL05
H
D
A,0FFH
o
D,A
A,8FFH
E
E,A
o
A,L
E
A,H
o
D

SAVE BC
SAVE A IN B REGISTER
SAVE HL PAIR
CHECK FOR DE • 8080H

WE'RE AUTOMATICALLY DONE IF IT IS
INCREMENT HL BY 1
WANT TO TEST FOR 0 RESULT AFTER
/INCREMENTING
IF SO, HL MUST HAVE CON1'AINED 0FFFFH
IF NOT, RESTORE ORIGINAL HL
SAVE DE
WANT TO TAKE 2'S COMPLEMENT OF DE CONTENTS

2'S COMPLEMENT OF DE TO DE

ADD HL AND DE

, THIS OPERATION SETS CARRY PROPERLY
RESTORE ORIGINAL DE CONTENTS

ISIS-II 8888/8885 MACRO ASSEMBLER, X188 SDK85 PAGE 23

LOC OBJ

86BE 78
86BF C1
86C8 C9

86C1 E1
86C2 78
86C3 C1
86C4 C33287

06C7 E5
86C8 F5
86C9 8F
86CA 8F
86CB 8F
06CC 8F
86CD E60F
86CF 4F
8600 CDE286
0603 CDF805
8606 F1
8607 E60F
0609 4F
86DA CDE206
8600 CDF805
86E8 E1
06E1 C9

06E2 21B407
06E5 0600
e6E7 0~
06ES 4E
06E9 C9

06EA 21C407

06ED 4E
06EE 79
06EF B7
86F8 C2F706
06F3 CDEB05
86F6 C9

06F7 CDF8B5
86FA 8E3D
86FC CDF8B5
B6FF 23
B7BB 5E
0781 1628
8783 23
8784 1A
B785 CDC706
8788 7E
8789 B7
87M CA1287

SEQ

2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2158
2151
2152
2153
2154
2155
2156
2157
2158
2159
2168
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233

SOURCE STATEMENT

MOV
POP
RZT

A,B
B

RESTORE ORIGINAL CONTENTS OF A
RESTORE ORIGINAL CONTENTS OF 8C
RETURN WITH CARRY SET AS REQUIRED

HIL05:

,

POP
MOV
POP
JMP

H
A,B
B
SRET

IF HL CONTAINS 0FFFFH, THEN CARRY CAN
/ONLY BE SET TO 1

RESTORE ORIGINAL CONTENTS OF REGISTERS
SET CARRY AND RETURN

;** •• **** •••••• *** •• ****.****.** •• ** •••••• **** •• ** ••••••••••• ***** •••••

FUNCTION: NMOUT
INPUTS: A - 8 BIT INTEGER
OUTPUTS:. NONE
CALLS: ECHO,PRVAL
DESTROYS: A,B,C,F/F'S
DESCRIPTION: NNMOUT CONVERTS THE 8 BIT, UNSIGNED INTEGER IN THE

A REGISTER INTO 2 ASCII CHARACTERS. THE ASCII CHARACTERS
ARE THE ONES REPRESENTING THE 8 BITS. THESE TWO
CHARACTERS ARE SENT TO THE CONSOLE AT THE CURRENT PRINT
POSITION OF THE CONSOLE.

NMOUT:
PUSH
PUSH
RRC
RRC
RRC
RRC
ANI
MOV
CALL
CALL
POP
ANI
MOV
CALL
CALL
POP
RET

H
PSW

HCHAR
C,A
PRVAL
ECHO
PSW
HCHAR
C,A
PRVAL
ECHO
H

SAVE HL - DESTROYED BY PRVAL
SAVE ARGUMENT

GET UPPER 4 BITS TO LOW 4 Bl'r POSITIONS
MASK OUT UPPER 4 BITS - WANT 1 HEX CHAR

CONVERT LOWER 4 Bl'rS TO ASCII
SEND TO TERMINAL
GET BACK ARGUMENT
MASK OUT UPPER 4 BITS - WANT 1 HEX CHAR

RESTORE SAVED. VALUE OF HL

; •• *.* •• * ••••• * •• * •• * •• ** •• *.** •• * •• * •••• ~.*.* •• *.* ••• •••• ** •••••••••••

FUNCTION: PRVAL
INPUTS: C - INTEGER, RANGE I TO F
OUTPUTS: C - ASC II CHARACTER
CALLS: NOTHING
DESTROYS: B,C,H,L,F/F'S
DESCRIPTION: PRVAL CONVERTS A NUMBER IN THE RANGE 0 TO F HEX 'ro

THE CORRESPONDING ASCII CHARACTER, 1-9,A-F. PRVAL
DOES NOT CHECK THE VALIDITY OF I1'S INPUT ARGUMENT.

PRVAL:
LXI
MVI
DAD
MOV
RET

H,DIGTB
B,0
B
C,M

ADDRESS OF TABLE
CLEAR HIGH ORDER BITS OF BC
ADD DIGIT VALUE TO HL ADDRESS
FETCH CHARACTER FROM MEMORY

; ••••••••••• ** •••••• ** •••••••• ** ••••••••• **** ••••••• ** •••••• * ••• *.* ••

FUNC1'ION: REGDS
INPUTS: NONE
OUTPUTS: NONE
CALLS: ECHO,NMOUT,ERROR,CRUUT
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: REGDS DISPLAYS THE CONTEN1'S OF 'rHE REGISTER SAVE

LOCATIONS, IN FORMATTED FORM, ON THE CONSOLE. THE
DISPLAY lIS DRIVEN FROM A TABLE, RTAB, WHICH CONTAINS
THE REGISTER·S PRINT SYMBOL, SAVE LOCATION ADDRESS,
AND LENGTH (8 OR 16 BI1'S).

REGDS:

REG05:

REG10:

LXI

MOV
MOV
ORA
JNZ
CALL
RET

CALL
MVI
CALL
INX
MOV
MVI
INX
LDAX
CALL
MOV
ORA
JZ

H,RTAB

C,M
A,C
A
REG10
CROUT

ECHO
C, '.'
ECHO
H
E,M
D,RAMST
H
o
NMOUT
A,M
A
REGIS

LOAD HL WITH ADDRESS OF START OF TABLE

GET PRINT SYMBOL OF REGISTER

TEST FOR 0 - END OF TABLE
IF NOT END, BRANCH
ELSE, CARRIAGE RETURN/LINE FEED TO END
/DISPLAY

ECHO CHARACTER

OUTPUT EQUALS SIGN, I.E. A=
POINT TO START OF SAVE LOCATION ADDRESS
GET LSP OF SAVE LOCATION ADDRESS TO E

SHR 8 ,PUT MSP OF SAVE LOC ADDRESS INTO 0
POINT TO LENGTH FLAG
GET CONTENTS OF SAVE ADDRESS
DISPLAY ON CONSOLE
GET LENGTH FLAG
SET SIGN F/F
IF 0, REGISTER IS 8 BITS

ISIS-II 8~80/8005 MACRO ASSEMBLER, Xl~8 SDK85 PAGE 24

LOC OBJ

070D IB
070E lA
070F CDC706

0712 0E20
0714 CDF805
0717 23
0718 C3ED06

07lB 21C407
071E 110308

0721 7E
0722 B7
0723 CA1106
0726 B9
0727 CA2E07
072A 19
072B C32107

072E 23
072F 44
0730 4D
0731 C9

0732 37
~733 C9

0734 3AFD20
~737 B7
"730 C~
"739 "E00
073B CD3F07
073E C!J

SEQ

2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333

SOURCE STATEMENT

DCX D ELSE, 16 BIT REGISTER SO MORE TO DISPLAY
LDAX D GET LOWER 8 BITS
CALL NMOUT DISPLAY THEM

REGIS:
MVI C,

,
CALL ECHO
INX H POINT TO START OF NEXT TABLE ENTRY
JMP REG05 DO NEXT REGISTER

,
;.**.**** •••••••• ** •••• ** ••••••••••••••••••• ** •• ** •••• *.*******.*.

FUNCTION: RGADR
INPUTS: C - CHARACTER DENOTING REGISTER
OUTPUTS: BC - ADDRESS OF ENTRY IN RTAB CORRESPONDING TO REGISTER
CALLS: ERROR
DESTROYS: A,B,C,D,E,H,L,F/F'S
DESCRIPTION: RGADR TAKES A SINGLE CHARACTER AS INPUT. THIS CHARACTER

DENOTES A REGISTER. RGADR SEARCHES THE TABLE RTAB

RGADR:

RGA85:

RGAI0:

LXI
LXI

MOV
ORA
JZ
CMP
JZ
DAD
JMP

INX
MOV
MOV
RET

FOR A MATCH ON THE INPUT ARGUMENT. IF ONE OCCURS,
RGADR RETURNS THE ADDRESS OF THE ADDRESS OF THE
SAVE LOCATION CORRESPONDING TO THE REGISTER. THIS
ADDRESS POINTS INTO RTAB. IF NO MATCH OCCURS, THEN
THE REGISTER IDENTIFIER IS ILLEGAL AND CONTROL IS
PASSED TO THE ERROR ROUTINE.

H,RTAB
D,RTABS

A,M
A
ERROR
C
RGAa
D
RGA05

H
B,H
C,L

HL GETS ADDRESS OF TABLE START
DE GET SIZE OF A TABLE ENTRY

GET REGISTER IDENTIFIER
CHECK FOR TABLE END (IDENTIFIER IS 0)
IF AT END OF TABLE, ARGUMENT IS ILLEGAL
ELSE, COMPARE TABLE ENTRY AND ARGUMENT
IF EQUAL, WE'VE FOUND WHAT WE'RE LOOKING FOR
ELSE, INCREMENT TABLE POINTER TO NEXT ENTRY
TRY AGAIN

IF A MATCH, INCREMENT TABLE POINTER TO
/SAVE LOCATION ADDRESS
RETURN THIS VALUE

i·········**·····**·······***····**···············**·· ****** •• ****

FUNCTION: SRET
INPUTS: NONE
OUTPUTS: CARRY
CALLS: NOTHING
DESTROYS: CARRY
DESCRIPTION: SRET IS JUMPED TO BY ROUTINES WISHING TO RETURN SUCCESS.

SRET SETS THE CARRY TRUE AND THEN RETURNS TO THE
CALLER OF THE ROUTINE INVOKING SRET.

SRET:
Sl'C
RET

SET CARRY TRUE
RETURN APPROPRIATELY

i*···········*****·**·····****····**·**········******· ... * •••• ****

FUNCTION: STHF0
INPUTS: DE - 16 BIT ADDRESS OF BYTE TO BE STORED INTO
OUTPUTS: NONE
CALLS: STHLF
DESTROYS: A,B,C,H,L,F/PIS
DESCRIPTION: STHF0 CHECKS THE HALF BYTE FLAG IN TEMP TO SEE IF

IT IS SET TO LOWER. IF SO, STHF0 STORES A 0 TO
PAD OUT THE LO~ER HALF OF THE ADDRESSED BYTE;
OTHERWISE, THE ROUTINE TAKES NO ACTION.

STHF0:
LDA
ORA
RNZ
MVI
CALL
RET

TEMP
A

C,0
STHLF

GET HALF BYTE FLAG
SET F/F'S
IF SET TO UPPEN, DON'T DO ANYTHING
ELSE, "ANT 1'0 STORE THE VALUE 0
DO IT

;* ••••• **.*~ ••••••• *.* ••••••••••••••• ** •••••• ******.** ******.*****

FUNCTION: STHLF
INPUTS: C - 4 BIT VALUE TO BE STORED IN HALF BYTE

DE - 16 BI'. ADDRESS OF BYTE TO BE STORED INTO
OUTPUTS: NONE
CALLS: NOTHING
DESTROYS: A,B,C,H,L,F/F'S
DESCRIPTION: STHLF TAKES THE 4 BIT VALUE IN C AND STORES IT IN

HALF "OF THE BYTE ADDRESSED BY REGISTERS DE. THE
HALF BYTE USED (EITHER UPPER OR LOwER) IS DENOTED
BY THE VALUE DF THE FLAG IN TEMP. STHLF ASSUMES
THAT THIS FLAG HAS BEEN PREVIDUSLY SET
(NOMINALLY BY ICMD).

ISIS-II 8881/8885 MACRO ASSEMBLER, Xl18 SDK85 PAGE 25

we OBJ

073F D5
0740 El
0741 79
0742 E60F
0744 4F
0745 3AFD20
0748 B7
0749 C25207
074C 7E
074D E6F0
074F B1
0750 77
0751 C9

0752 7E
0753 E60F
0755 47
0756 79
0757 0F
0758 0F
0759 IF
875A 0F
175B B0
075C 77
175D C9

175E 79
175F FE31
8761 FAIC06
1764 FE39
8766 FA3207
1769 CA3217
176C FEU
176E FA1CI6
1771 FE47
1773 F21C06
1776 C33217

0779 79
177A FE2C
077C CA3207
077F FE0D
07dl CA3207
17d4 FE20
0786 CA3207
0789 C31C06

07dC 0D
078D 0A
078E 5344482D
0792 38352020
0796 20564552
0HA 20322E31
079E 0D
0HF 0A
0014

SEQ

2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2371
2371
2372
2373
2374
2375
2376
2377
2378
2379
2381
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423

SOURCE STATEMENT

STHLf':
P;)SH
POP
MOV
ANI
MOV
LDA
ORA
JNZ
MOV
ANI
ORA
MOV
RET

D
H
A,C
0FH
C,A
TEMP
A
STH05
A,M
0F0H
C
M,A

MOVE ADDRESS OF BYTE INTO HL
GET VALUE
FORCE TO 4 BIT LENGTH
PUT VALUE BACK
GET HALF BYTE FLAG
CHECK FOR LOWER HALF
BRANCH IF NOT
ELSE, GET BYTE
CLEAR LOWER 4 BITS
OR IN VALUE
PUT BYTE BACK

STH05:

•

MOV
ANI
MOV
MOV
RRC
RRC
RRC
RRC
ORA
MOV
RET

A,M
0FH
B,A
A,C

B
M,A

IF UPPER HALF, GET BYTE
CLEAR UPPER 4 BITS
SAVE BYTE IN B
GET VALUE

ALIGN TO UPPER 4 BITS
OR IN ORIGINAL LOWER 4 BITS
PUT NEW CONFIGURATION BACK

;******.*.******** ••••••• *** •••• *.* ••••••• *********** •••••••••••••

FUNCTION: VALDG
INPUTS: C - ASCII CHARACTER
OUTPUTS: CARRY - 1 IF CHARACTER REPRESENTS VALID HEX DIGIT

- I OTHERWISE
CALLS: NOTHING
DESTROYS: A,F/F'S
DESCRIPTION: VALDG RETURNS SUCCESS IF ITS INPUT ARGUMENT IS

AN ASCII CHARACTER REPRESENTING A VALID HEX DIGIT
(1-9,A-F) , AND FAILURE OTHERWISE.

• VALDG:
MOV
CPI
J;~

CPI
JM
JZ
CPI
JM
CPI
JP
JMP

A,C
'0 '
FRET
'9 '
SRET
SRET
'A'
FRET
'G'
FRET
SRET

TEST CHARACTER AGAINST '0'
IF ASCII CODE LESS, CANNOT BE VALID DIGIT
ELSE, SEE IF IN RANGE '0'-'9'
CODE BETWEEN '0' AND '9'
CODE EQUAL '9'
NOT A DIGIT - TRY FOR A LETTER
NO - CODE BETWEEN '9' AND 'A'

NO - CODE GREATER THAN 'F'
OKAY - CODE IS 'A' TO 'F', INCLUSIVE

i···-········· ***** •••••••

FUNCTION: VALDL
INPUTS: C - CHARACTER
OUTPUTS: CARRY - 1 IF INPUT ARGUMENT VALID DELIMTER

- 0 OTHERWISE
CALLS: NOTHING
DESTROYS: A,FIF'S
DESCRIPTION: VALDL RETURNS SUCCESS IF ITS INPUT ARGUMENT IS A VALID

DELIMITER CHARACTER (SPACE, COMMA, CARRIAGE RETURN) AND
FAILURE OTHERWISE.

VALDL:
MOV
CPI
JZ
CPI
JZ
CPI
JZ
JMP

A,C

S~ET •
CR
SRET

SRET
FRET

CHECK FOR COMMA

CHECK FOR CARRIAGE RETURN

CHECK FOR SPACE

ERROR IF NONE OF THE ABOVE

: ••• ** •••••••••••• ****.** ••••••••••••••••••••••••••• ** ••••••••••••

MONITOR TABLES

; •••• ** ••••••• ***** •••••••••••••• ** •••••••••••••• *** •• * •• * ••••• *.*

SGNON:
DB

SIGNON MESSAGE
CR,LF,'SDK-85 VER 2.1',CR,LF

2424 LSGNON EQU
2425

$-SGNON LENGTH OF SIGNON MESSAGE

2426 CADR: TABLE OF ADDRESSES OF COMMAND ROUTINES

ISIS-II ~0S~/a085 MACRO ASSEMBLER, X108 SDK85 PAGE 26

LOC OBJ

07A0 00~~
07A2 1405
07A4 FII04
87A6 0004
07A8 8604
07AA 6804
07AC 3704

07AE 44
07AF 47
07B0 49
07Bl 40
07B2 53
07B3 58
0006

07B4 30
07B5 31
07B6 32
07B7 33
0738 34
07B9 35
07BA 36
07BB 37
07BC 38
07BD 39
87BE 41
87BF 42
"7C0 43
87Cl 44
87C2 45
87C3 46

07C4 41
07C5 EE
07C6 0B
0803
07C7 42
07C8 EC
87C9 98
07CA 43
07CB EB
87CC 08
87CD 44
87CE EA
07CF 88
0700 45
8701 E9
0702 08
0703 46
8704 ED
8705 88
8706 49
0707 Fl
0708 80
0709 48
87DA F8
07DB 0B
07DC 4C
8700 EF
07DE 00
07DF 40
07E8 F0
07El 01
07E2 53
07E3 F5
07E4 01
07E5 50
07E6 F3
07E7 81
87E8 00
07E9 00

07FA

07FA C3C405
07FD C39005

20C2

20C2 00
2~C3 08
20C4 00
20C5 00
20C6 00
20C7 00
20C8 00
20C9 00
28CA 00

SEQ

2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2458
2451
2452
2453
2454
2455
2456
2457
2458
2459
2468
2461
2462
2463
2464
2465
2466
2467
2468
2469
2478
2471
2472
2473
2474
2475
2476
2477
2478
2479
2488
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2581
2502
2503
2504
2505
2506
2507
2588
2589
25lB
2511
2512
2513
2514
2515
2516
2517
2518

CTAB:

NCMDS
;
DIGTB:

;
RTAB:

RTABS

SOURCE STATEMENT

0\0
Ow
Ow
Ow
Ow
OW
Ow

DB
DB
DB
DB
DB
03
EQU

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

DB
DB
DB
EQU
DB
03
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
03
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

ORG

JMP
JMP

o
XCl'ID
SCMD
MCMD
ICMD
GCMD
DCMD

'0'
'G'
, I '

'M'
'S'
'X'
$-CTAB

'0 '
'1 '
'2 '
, 3'
, 4'
, 5'
'6 '
'7 '
'8 '
'9 '
'A'
'B'
'c'
'0'
'E'
, F'

DUMMY

TABLE OF VALID COMMAND CHARACTERS

NUMBER OF VALID COMMANDS

TABLE OF PRINT VALUES OF HEX DIGITS

; TABLE OF REGISTER INFORMATION
; REGISTER IDENTIFIER 'A'

ASAV AND 8FFH ; ADDRESS OF REGISTER SAVE LOCATION
; LENGTH FLAG - 8-8 BITS, 1-16 BITS 8

$-RTAB ; SIZE OF AN ENTRY IN THIS TABLE
'B'
BSAV AND 0FFH
o
'c'
CSAV AND 0FFH
o
'0'
DSAV AND 8FFH
8
'E'
ESAV AND 8FFH
8
'F'
FSAV AND eFFH
8
'I'
ISAV AND 8FFH
8
'H'
HSAV AND 8FFH
8
'L'
LSAV AND 8FFH
8
'1'1'
HSAV AND 8FFH
1
'S'
SSAV+l AND 8FFH
1
'P'
PSAV+l AND 0FFH
1
8 END OF TABLE MARKERS
o

BRTAB

CO
CI

BRANCH TABLE FOR USER ACCESSIBLE ROUTINES

TTY CONSOLE OUTPUT
TTY CONSOLE INPUT

: •••• ** ••••••• *** •••• **.** ••• ** ••••••• ** ••• ** ••••• ** ••• *** •••• **** ••• *.

;

IN THE FOLLOWING LOCATIONS, THE USER MAY PLACE JUMP INSTRUCTIONS TO
ROUTINE~ FOR HANDLING THE FOLLOWING:-

A) RST 5,6 & 7 INSTRUC'l'IONS
B) HARDwIRED USER INTERRUPT (RST 6.5)
C) KEYBOARD "VECTORED INTERRUPT"" KEY (RST 7.5)

ORG USRBR START OF USER BRANCH LOCATIONS

RSET5: DB 0,0,0 JUMP TO RST 5 ROUTINE

2519 RSE'f6: DB 0,0,0 JUMP TO RST 6 ROUTINE

2520 RST65: DB 0,0,0 JUMP TO RST 6.5 (HARDwIRED USER INTERRUPT)

ISIS-II 8181/8185 MACRO ASSEMBLER, X1II8 SDK85 PAGE 27

LOC OBJ SEQ SOURCE STATEMEIIT

20CB 00 2521 RSE'I'7: 0;) 8,0,0 JUMP TO Rs'r 7 ROUTINE
20CC 00
20C[: !~
20CE 00 2522 USINT: DB 0,0,0 JUMP TO "VECTORED INTERRUPT" KEY ROUTINE
20CF 00
2000 00

2523 ;
2524 ;.*.******************************** ••• ***** ••• **************.*********
2525 ;
2526 ; SPACE IS RESERVED HERE FOR THE MONITOR STACK
2527 ;
2528 ;****.******** ••• **************************************.***** •• ********
2529

20E9 2530 ORG MNSTK ; START OF MONITOR STACK
2531
2532 SAVE LOCATIONS FOR USER REGISTERS
2533 ;

21E9 00 2534 ESAV: DB E REGISTER
20EA 0B 2535 DSAV: DB 0 REGISTER
20EB 811 2536 CSAV: DB C REGISTER
28EC' 10 2537 BSAV: DB B REGISTER
20ED 0B 2538 FSAV: DB FLAGS
20EE 00 2539 ASAV: DB A REGISTER
20EF 0B 2548 LSAV: DB L REGISTER
21FI 0B 2541 HSAV: DB H REGISTER
28F1 011 2542 ISAV: DB INTERRUPT MASK

2543 PSAV: PROGRAM COUNTER
28F2 B0 2544 PCLSV: 03 LOW ORDER BYTE
21F3 80 2545 PCHSV: DB HIGH ORDER BYTE

2546 SSAV: STACK POINTER
21F4 18 2547 SPLSV: DB LOW ORDER BYTE
28F5 18 2548 SPHSV: DB HIGH ORDER BYTE

2549 ;
2551 ;**.*****.**.**.**.**.**.***.** •••••• **.**.**.**** •••• *** ••• ********.**
2551 ;
2552 ; MOIiITOR STORAGE LOCATIOIIS
2553 ;

28F6 188B 2554 CURAD: OW 8 CURRENT ADDRESS
21F8 10 2555 CURDT: DB 0 CURRENT DATA
1814 2556 OBUFF: OS 4 OUTPUT BUFFER

2557 TEMP: TEMPORARY LOCATIOII FOR TTY MOIiITOR
2558 TEMPORARY LOCATION FOR SIIiGLE STEP ROUTIIiE

21FD III 2559 RGPTR: DB II REGISTER POINTER
21FE 10 2561 IBUFF: DB 0 IIiPUT BUFFER
21FF 18 2561 USCSR: DB II USER SHOULD STORE IMAGE OF CSR HERE EACH TIME

2562 I /CSR IS CHAIIGED. OTHERWISE, SINGLE STEP
2563 /ROUTINE WILL DESTROY CSR CONTEIITS.
2564 EIID

PUBLIC SYMBOLS

EXTERNAL SYMBOLS

USER S,YMBOLS

ADFLD A 1188 ADISP A 8891 ASAV A 2IEE BLAIIK A IllS BLNKS A 13910 BRCHR A IIUB BRTAB A 17FA
BSAV A 21EC CADR A 117101 CI A 1598 CI85 A 8592 CUI A 05101 CLDBK A 8888 CLDIS A 8lE9
CLOST A UF1 CLEAR A 1107 CMDU A 887B CMD15 A 11187 CMDAD A 1137C CMDTB A 1378 CMMIID A 111166
CNTRL A 1988 CNVBN A 15BB CO A 15C4 COl5 A 15CB COMMA A 1811 CR A B0I1D CROUT A 15EB
CSAV A 2UB CSNIT A 1888 CSR A U211 CTAB A 07AE CURAD A 21F6 CURDT A 21F8 DCM85 A 143E
DCMlII A IU9 DCM1S A 845E DCMD A 1437 DDISP A 8B94 DELAY A 115F1 DIGTB A 117B4 DISPC A 1121111
DOT A 8811 DSAV A UEA DSPLY A 18B1l DSPTB A 11384 DTFLD A 011 I! DTMSK A BIlll8 ECHII5 A 1611
ECHU A I68F ECHO A 15F8 EIGHT A 81118 EMPTY A 88811 ERMSG A 1139E ERR A 1215 ERROR A 1611
ESAV A 21E9 ESC A IIlB EXAM A 8892 EXMII5 A 1190 EXMlI A IIlB8 EXMSG A 13A2 FALSE + 8811
FIVE A 1885 FRET A IUC FSAV A 2IED GlB A IIEC GCMII5 A 8470 GCMlI A 1483 GCMD A 8468
GETCH A .UF GETCM A 1418 GETHX A .626 GETNM A 1165B GHXI5 A 162C GHXlI A 11645 GNMII5 A 1662
GNMlI A 1677 GNM15 A 11685 GIIM21 A 86810 GNM25 A 1695 GIIM3" A 8699 GO A 113FA GOCMD A BIICB
GTel3 A 1414 GTe.5 A 8421 GTeU A 8420 GTH85 A 1232 GTH111 A 8249 GTH28 A 8255 GTK25 A 1267
GTHEX A 122B HCHAR A .I.F HILlS A 16C1 KILO A 16101 HSAV A 211FII HXDSP A 1126C IBTIM A 148C
IBUFF A 21n ICM.5 A .491 ICMU A 84B9 ICM211 A 114C1 ICM25 A I4C7 ICMD A 11486 INIIiT A 1128E
IIISDG A 129' IIIVRT A IIFF ISAV A 21F1 KBNIT A BlCC KMODE A 111811 LETRA A IIBA LETRB A I88B
LETRC A IIIC LETRD A 1880 LETRE A IUE LETRF A Bl8F LETRH A 8111 LETRI A 11813 LETRL A IBll
LETRP A 1112 LETRR A 1114 LETRS A 1185 LF A II II IIA LOWER A 1188 LSAV A 211EF LSGIION A 1814
MCM.s A UD8 MCMD A 840' MNSTK A 28£9 MSGL A 83FF NCMDS A 111186 IIEiilLII A BIIIF IIMOUT A 16C7
NMTBL A 83B9 NODOT A 188. IIUMC A .0114 IIUMRG A .1180 IIXTRG A 112A8 OBTIM A 1148C OBUFF A 20F9
OUTlls A 12C2 OUTlil A 112C6 OUT1s A 112C9 OUT20 A 82DC OUTPT A 11287 PCHSV A 20F3 PCLSV A 28F2
PERIO A 11111 PRMPT A 88FB PRTlt'I A 1117F PRVAL A 86E2 PSAV A 28F2 RAMST A 211118 RDKlil A 82F3
RDKBD A 112E7 READ A 8141 REGII5 A 116ED REGlil A 06F7 REGIS A 11712 REGDS A 16EA RESU A 883F
RETF A 112F7 RETT A 82FA RGAils A 0721 RGA18 A I172E RGADR A 17lB RGLOC A 82FC RGIIAM A 113119
RGPTB A .3AC RGPTR A 20FD RGTBL A 113ED RMUSE A lIB 17 RSET5 A 20C2 RSET6 A 211C5 RSET7 A 21CB
RSRII5 A 8320 RSRlil A 1331 RST6s A 28C8 RSTOR A 8llB RTAB A 117C4 R1'ABS A 811113 SCMII5 A 114F5
SCMle A 1511 SCM1s A 1518 SCMD A 114FII SETRG A 8344 SGNAD A 03106 SGIIDT A 113M SGIIOII A 078C
SKLII A IIll8 SPHSV A 21Fs SPLSV A 28F4 SRET A 8732 SSAV A 28F4 ss'rEP A 88FD SSTRT A 11881
STHas A 11752 STHF8 A 8734 STHLF A 173F STOPB A 01148 STP211 A 8126 STP21 A 813B STP22 A 11142
STP23 A 1145 STP25 A 8157 STRT A IIBCI SUBils A 1ll9C SUB18 A 8lC4 SUB15 A 8lCF SUBST A Bl8B
TEMP A 28'0 TERM A 81lB TIM4 A 1238 TIMER A 811C5 TIMHI A 8825 TIMLO A 8024 TMODE A 8848
TRUE + 111011 TSTRT A nCI UBRLII A 8011F UIIMSK A ll18E UPDAD A 135F UPDDT A 1136B UPPER A I18FF
USCSR A 21FF USIIiT A 28CE USRBR A 28C2 VALDG A 87sE VALDL A 8779 wAIT A 11246 iilAITS A 11188
XCMII5 A 1527 XCMlII A 11536 XCM15 A 8543 XCM18 A 854E XCM211 A 11567 XCM2s A IIs7E XCM27 A IIs7F
XCM3. A 11587 XCMD A 8514 ZERO A 1801

ASSEMBLY COMPLETE, 110 ERRORS

ISIS-II ASSEM~LER SYMBOL CROSS REFERENCE, X108 PAGE

ADFLD 105# 358 393 470
ADISP 106# 269 835
ASAV 1228 2464 <539#
BLANK 11641 1171 1171 1171 1171 -1172 1173 1173 1173 1175 1175 1207 1207 1207 1208 120d

1208 1209 1209 1209 1210 1210 1210 1211 1211 1211 1212 1212 1212 1213 1213 1213
1214 1214 1214 1215 1215 1215 1216 1217 1218 1219

BLNKS 530 534 615 11711
BRCHR 13241
BRTAB 1325. 2503
BSAV 184 446 1229 2468 2537#
CADR 1438 24261
CI 17541 1960 2506
CI05 17571 1760
Cll0 1765' 1774
CLDBK 169. 571
CLDIS 331 339 386 400 507 5491
CLDS1' 168 565.
CLEAR 31~ 357 366 392 469 527# 551
CMD10 275# 280
CMD15 277 283.
CMDAD 284 11141
CMDTB 274 1103, 1108
CMMND 264# 552 617
CNTRL 108# 167 268 567 754 843
CNVBN 1556 1796' 2013
CO 1390 1815. 1899 1904 2505
C005 18211 1832
COMMA 1101 332 387 477 680
CR 13261 1511 1520 1662 1855 1900 2058 2063 2406 2423 2423
CROUT 147.1 1485 1572 1685 18541 1925 2219
CSAV 1230 2471 2536'
CSNIT llH 568
CSR 1121 426 435 569
CTAB 1429 24351 2442
CURAD 475 481 491 499 501 587 1065 25541
CURDT 320 483 589 1086 25551
DCM05 14701 1493
DCM10 1476' 1492
DCM15 1484 14871
DCMD 1465. 2433
DDISP 113. 840
DELAY 1762 1767 1776 1824 1836 18711 1875
DIGTB 2191 24441
DISPC 350 383 585'
DOT lIS. 309 321 356 391 468 484 590 674
DSAV 1231 2474 2535'
DSPLY 116. 860
DSPTB 847 11221 1128 1134 1135 1139 1142 1144 1146 1148 1150 1152 1154 1156 1158 1160

1162 1164
DTFLD 1171 248 323 486 532 613 1090
DTMSK 118' 856
ECH05 1896 18981
ECHU 1902 1905.
ECHO 1422 1426 1478 1546 1636 1660 1672 1708 1856 1892' 1924 1997 2168 2173 2222 2224

2239
EIGHT 11391 1175 1176
EMPTY 119. 253 891
ERMSG 611 1172.
ERR 282 315 333 361 396 473 497 506 6081
ERROR 1436 1512 1521 1569 1922' 2012 2052 2059 2064 2267
ESAV 1232 2477 25341
ESC 13271 1894
EXAM 308. 1116
EXM05 316. 338
EXMlB 326 329.
EXMSG 369 1173.
FALSE 156. 314 325 395 472 489 1483 1508 1554 1607 1638 1710 1999 2011 2051 2078
FIVE 11341 1176
FRET 1942' 2088 2378 2383 2385 2410
FSAV 180 442 1233 2488 2538.
GIl 353 3641
GCM85 1589 1518'
GCMII 1517 1522.
GCMD 1586. 2432
GETCH 1425 1544 1658 1959' 1995
GETeM 1418. 1486 1573 1683 1608 1631 1665 1680 1686 1926
GETHX 1587 1623 1637 1789 19981 2058
GETNM 1467 1539 1588 2843.
GHX8S 19941 2822
GHXII 2888 2889'
GNM85 28491 2868
GNMlB 2056 20611
GNM15 2069' 2072
GNM20 2068 20731
GNM25 2079 20821
GNM30 208H 2092
GO 233 1385.
GOCMD 349' 1118
GTC03 1423 14241
GTC05 14301 1435
GTC10 1432 14371
GTH05 65H 676
GTH10 665 6691
GTH20 654 6771
GTH25 681 683 6871
GTHEX 324 359 394 471 487 646'
HCHAR 1328. 2165 2170
HIL05 2115 2119 21371
HlLO 1481 1606 2077 21091
HSAV 1235 2486 2492 254H
HXDSP 671 709. 1067 1088
IBTIM 13591 1766 1775
lBUFF 254 355 390 760 883 25601

ISIS-II ASSEMBLER SYMBOL CROSS REFERENCE, X108 PAGE 2

ICM05 1543. 1552 1566
ICM10 1561 15631
ICII20 1555 15671
ICM25 1549 15701
ICMD 15371 2431
ININT 202 7511
INSDG 657 779.
INVRT 13291 1564
ISAV 226 403 454 994 999 1234 2483 25421
KBNIT 1201 566
KIIODE 1221 166
LETRA 1142. 1207
LE'I'RB 11441 1208
LETRC 1146* 1209 121~ 1219
LE1'RD 1148. 1210
LE'rRE 11501 1172 1173 1211
LETRF 1152' 1212
LETRH 11541 1214 1216 1218
LETRI 11601 1213
LETRL 11561 1215 1217 1219
LETRP 1158. 1216 1217 1218 1219
LETRR 11621 1172 1172
LETRS 1135. 1216 1217
LF 13301 1903 2423 2423
LOWER 13311
LSAV 175 437 1019 1236 2489 25401
LSGNON 1387 24241
MCM05 15921 1609
IICIID 15861 2430
IINSTK 1241 265 1010 1419 2530
IISGL 1388' 1393
NCIIDS 1428 2442'
NEWLN 13361 1490
NMOUT 1473 1475 1480 1634 1698 1785 21581 2230 2236
NMTBL 962 12851
NODOT 125' 244 249 365 368 479 533 550 592 610 614 966
NUMC 273 11881
NUMRG 807 12411
NXTRG 334 8051
OBTIM 13511 1823
OBUFF 716 734 2556'
OUT85 833 838'
OUT10 837 8421
OUT15 844' 864
OUT28 853 855 858'
OUTPT 247 252 370 531 535 612 616 675 8311 967 1071 1092
PCHSV 1239 2545'
PCLSV 1248 25441
PERIO 128. 330 352 360 385 399 585 682
PRMPT 129. 271
PRTY0 13371 1961
PRVAL 2167 2172 21901
PSAV 177 363 398 406 439 586 1817 1513 2498 25431
RAMST 93. 124 137 942 1690 2227
RDK18 887 8901
RDKBD 272 351 384 652 882' 889 1037
READ 1301 755
REG85 22141 2241
REG10 2218 22211
REGIS 2233 22371
REGDS 1664 2212'
RES 18 188 223.
RETF 686 888 9861 1039 1844
RETT 811 922' 1051
RGA85 22641 2271
RGA18 2269 2272'
RGADR 1668 22611
RGLOC 318 327 936'
RGNAII 317 957'
RGPTB 1847 1188'
RGPTR 886 818 937 958 1058 25591
RGTBL 939 12271 1241
RHUSE 981 124 137
RSBT5 197 2518'
RSBT6 217 2519'
RSET7 217 25211
RSR85 1881 10841
RSRlI 1883 1886 1889'
RST65 212 25281
RSTOR 371 427 993' 1523
RTAB 2213 2262 2462' 2466
RTABS 1723 2263 2466'
SCMI5 16261 1643
SCMlI 1629 1632'
SCM15 1639 16411
SCMD 1622' 2429
SDU5 71
SBTRG 311 18361
SGNAD 245 1175.
SGNDT 25. 11761
SGNOII 1386 2422' 2424
SltLN lilt 137
SPHSV 1237 25481
SPLSV 1238 25471
SRST 2887 2141 229lt 2388 2381 2386 2405 2487 2489
SSAV 183 445 1115 2495 25461
SSTEP 382' 457 1115
SSTRT 1341' 1828
STH85 2342 2348'
STHF8 1568 1571 2389'
STHLF 1558 2314 23341
STOPB 1342' 1833
STP28 388 482'

ISIS-II ASSEMBLER SrMBOL CROSS REFERENCE. X19S PAGE 3

STP21 489 412'
STP22 411 416'
STP23 414 418'
STP25 192 4291
STRT 13431 1819
SUB85 476' 583
SUBlil 498 498'
SUB15 478 5841
SUBST 4671 1117
TEMP 485 417 452 1541 1559 1565 1674 1676 1713 1729 2310 2340 25571
TERM 13441 1548
TIM4 1352' 1835
TIMER 1481 419 422
TIMHI 132' 421
TIMLO 133' 423
TMODE 1341 419
TRUE 1521 337 1551
TSTRT 135. 425
UBRLN 183' 137
UNMSK 136. 227 455
UPDAD 488 591 18641
UPDDT 322 485 593 1085.
UPPER 1345. 1540
USCSR 424 432 570 25611
USINT 221 25221
USRBR 137' 2516
VALDG 1553 2018 2375'
VALDL 1550 1998 2482'
WAIT 1353' 1761
WAITS 801 139 1349
XCM05 1663 16661
XCM10 1675. 1726
XCM15 1678 16811
XCMl~ 1684 16871
XCM20 1702 17061
XCM25 1717 17201
XCM27 1722' 1732
XCM3~ 1711 17271
XCMLl lb571 2428
ZERO 1128. 1175

CROSS REFERENCE COMPLETE

ISIS-II ASSEMBLER SYMBOL CROSS REFERENCE, x108 PAGE 4

RGNAM 317 957#
RGPTB 1047 1180#
RGPTR 806 810 937 958 1050 2559/1
RGTBL 939 122711 1241
RMUSE 98# 124 137
RSET5 197 2518#
RSET6 207 2519#
RSET7 217 2521#
RSR05 1001 1004#
RSR10 1003 1006 1009#
RST65 212 2~2011
RSTOR 371 427 99311 1523
RTAB 2213 2262 246211 2466
RTABS 1723 2263 2466#
SCM05 1626# 1643
SCM10 1629 1632#
SCM15 1639 1641#
SCMD 162211 2429
SDK85 71
SETRG 311 1036#
SGNAD 245 117511
SGNDT 250 117611
SGNON 1386 2422# 2424
SKLN lOll 137
SPHSV 1237 2548#
SPLSV 1238 2547#
SRET 2007 2141 2291# 2380 2381 2386 2405 2407 2409
SSAV 183 445 1015 2495 2546#
SSTEP 382# 457 1115
SSTRT 1341# 1828
STH05 2342 234811
STHFO 1568 1571 230911
STHLF 1558 2314 2334#
STOPB 1342# 1833
STP20 388 40211
STP21 409 412#
STP22 411 416#
STP23 414 418#
STP25 192 429#
STRT 1343# 1819
SUB05 476# 503
SUB10 490 498#
SUB15 478 504#
SUBST 467# 1117
TEMP 405 417 452 1541 1559 1565 1674 1676 1713 1729 2310 2340 2557#
TERM 1344# 1548
TIM2 1352# 1835
TIMER 140# 419 422
TIMHI 13211 421
TIMLO 133# 423
THODE 134# 419
TRUE 152# 337 1551
TSTRT 135# 425
UBRLN 10311 137
UNMSK 136# 227 455
UPDAD 480 591 1064#
UPDDT 322 485 593 108511
UPPER 1345# 1540
USCSR 424 432 570 2561#
USINT 221 2522#
USRBR 137# 2516
VALDG 1553 2010 2375#
VALDL 1550 1998 240211
WAIT 1353# 1761
WAITS 80# 139 1349
XCM05 1663 1666#
XCM10 1675# 1726
XCM15 1678 1681#
XCM18 1684 1687#
XCM20 1702 1706#
XCM25 1717 1720#
XCM27 1722# 1732
XCM30 1711 1727#
XCMD 1657# 2428
ZERO 1128# 1175

CROSS REFERENCE COMPLETE

APPENDIX B
DIAGRAMS

o

c

B

A

8

.- ICe .--. .--. -:=: ---. :=:: :::: e __ e

e_ ~!I

.: .. :: ::
:: =i :- :. • __ e
• __ e

:= =i .: ~~

.- III. .- -. :: :: -- -. := ::
:: =i
e_ :e
e_ !!

.:~ :: ::
:: =i := ;: := :. .- -:
.: ~!

7 6

MCS .15 SYSTIM DESIGN KIT

::::::::::::::::::::::::::::
(0001 00

:: -
:: -
:: -
:: -
00

:: -
:: -
:: -
00

:: -
:: -
:: -
00

:: -
:: -
00

:: -
:: -:: :: -
00 -

:: -
:: -

o
o ------

--

o
o ---

-

:!.:'R ::t:
0 ... • ..., _.,oa

:=~:'::"t " , -e..,s' __ _-'!
i:r::! .

00

:: -:: - -- -- -- -- =LJ
=~ i: -

00 -
00

i: = :: -
00

:: -
:: -
00

:: -
:: -
is -
is -
:: -
:: -
00

:: -
00
00 0

::

----------------------------.. " 0 ...

--- --- --- ---------- --- -------------- ----
...................................

7 6

:...10
©~~'8I

5 4 3 2

DFT CHK ENGR

A PRiD REL ~

o

c

B

, .
".

QUANTI1'YP[RDA$HNO A
NOtuE _.,.1111,",[.

....,.AClMA ,., "" CAdI 1

CHKa'f:J"B.t:'/fATlNl
PWA

---- '3Y'3TEt-A DESIG/J KIT =. ,,'
''', 501:. !IS AUTH8Yd-\..:l~ ."

------ .. I

5 4 3 2

o

-

c

-4

B

-

A

• 1 7 6

~I , ~ .. 7

GND :> " '3 '5 , , 27 2.!) :51 .. , !II' 3~

JZ
I -35"7
., .&

G~D 17 I 2.1 '2.5
~ z.'!t I

13 !lIS ~1 3~

J"
<.:;.D ~ -

5J\D ~~.

"~
GND 25 z

S ':"

E.XEC "NEXT" -CO" 'S,UB5T" ~E"",,,,,,"'511"'G",_E"
., ME"'" REG ~"EP

_IOV

I\.CJTe:;:

LWLESS OTH£RVVI"lE SPEC I FI ED~

1. RESISTOR VALLJE5 A~E 1 N
OHMS) .JaW" ± 5°.0. POWER 5UPPL '-(

THIS Plt-J OUT ~RQ"NGEMEto.IT'
REPRE SEJoJTS '" INDtVIDUF\L '7
'5EGMENT LED DI~PL"'Y'5. (TI L ~1'3).
ALL ANOOe. CONNEc:.TIO~S OF' THE
CORRESPONDING SEGMENTS A~E WIRED
TOGETHER. CATHODES ARE WI~ED
SEP"RATELY T.Q EA.CH TRANS1SToIiiJ (QIO - QIS)

.-8 I 7 I 6

1

I

5

A3 e,l

A'
"'" A3

4

""'.~_,"~~ '" .. " re
BD ~

I

.

3 1 2 I

A PKOD REL Shj jJJllD.il·"7

RS1 ~.15 'El=.
00

l~'-
,

D?

7

5 T 4 I 3 ! 2'1 1 ---

D

c

B

D

c

8

A

8 7 6 5

~J~~ ________ ~ ________________ ~r
READ< lLJ-

r 1~
REo I""i:t

RJ~7l===::==~ __ ~4~7r-_J~: 2~~~ TX R~f ~ Gil2.

: : $~~IW
I 1 r
I : -lEW

I
RX •

RX RET ~

~

R3' I jSV SI I.

P~T' R3~ lelO 5',,-J !jJ.f

I~

7

R7
314

6

eLK
'NRI

I
RESET T

o

5

4 3

•~;!~ I ~ ~
I 7

ift~~~~~13 T/IN

WRI
ROt I
RSTIN ~

(ALE PC.3

_"" ~~M <I-
£1·........ T/OOVP'l

4 3

2

,'96 I

2

--

...

.J4
, i!l

rn 1

I ~

" q.

'" 15 Go
, 7

" '" 14 , , "­
I .3 · " 10 ~

1 '" ?

5 " ,

JS

" Z2
,~

'" ,
2

PORT~2H

PORT ~3H

"" , I. ~ RJRr ~'2)H
eo

15

~
4

" ,. .,
10
7

· b

-t , · .,
2

....

'" 7

" , "-
.3

" eo

'" 7

'" 1

~ PORT mH
<1-
5
"T1"'1ER OUT/
TIMe~ IN

D

c

B

A

o

-

c

B

-

A

.~ ... ,~,

8 I 7 I 6 I 5 4 I 3 I 2

(_~",O:d..!'~~'--_--J~:Lj~~
ALE OJ Dll

____ SEE Sl-'£E.T i

'NR/ 12tl;

r-___ ++~-_+--------------------------------~R~C~T~~~.S~ ~
~~~-+---------------------------------~H~8~L~DL-_~5 

JI 
,,~, 6.5 ""'12l!i1-----+ T------J+I-+-~DI5 

04 

r 1J55~ 
AS I~ 
i2IG 

31 
HOLD lJ.1j-[HJ-1~---_-I+f++-'4:YDII2! 

7 

DB0l3~--~-----, 
(X)I2!~ 

't 

8 I 

(

'-""'--S2J --++++-+-'-17 \)11 

-,H,-,l.bDA"'--+++-H+~~'-iDI2 

~1~NUT~A~/++++4~~12~DI3 

0BI~~--~------
001 ~ 
DB2~~'OL-_~ ______ ~ 
Co2p.t, 

De3,~'3~-~------~ 
D03~ 

I "SS~ 

-=-~I (S A3' I ~ 
J; LD_'_E>! __ -=eJ-=2:...1:..."'---c 

• 
7 I 6 I 

D1 4 DI0 

20--

~I 

5 4 I 3 I 2 

I 

OFT \ CHII I ENGR 

o 

t--

c 

B 

A 

I 1 .'- -", 



Manual Order Number 98004518 

REQUEST FOR READER'S COMMENTS 

The Microcomputer Division Technical Publications Department attempts to provide documents that meet 
the needs of all Intel product users. This form lets you participate directly in the documentation process. 

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of 
this document. 

1. Please specify by page any errors you found in this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for your needs? Is it at the right level? What other types of 
documents are needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. 

NAME _____________________________________________ DATE __________________ _ 

TITLE ____________________________________________________________________ _ 

COMPANYNAME/DEPARTMENT ________________________________________________ ___ 
ADDRESS ________________________________________________________________ _ 

CITY __________________________ _ STATE ____________ _ ZIP CODE ______ _ 

Please check here if you require a written reply. 0 



WE'D LIKE YOUR COMMENTS ..• 

This document is one of a series describing Intel products. Your comments on the back of this form will 
help us produce better manuals. Each reply will be carefully reviewed by the responsible person. All 
comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 1040 SANTA CLARA, CA 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
Attn: Technical Publications MIS 6-2000 
3065 Bowers Avenue 
Santa Clara, CA 95051 

IIIIII NO POSTAGE 
NECESSARY 

IF MAILED 

IN U.S.A. 



i, 
i 

INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, CA 95051 (408) 987-8080 


	000
	001
	002
	003
	1-00
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	A-00
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	B-01
	B-02
	B-03
	B-04
	B-05
	replyA
	replyB
	xBack

