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Background and Purpose: Reliable prediction of pro-arrhythmic side effects of novel

drug candidates is still a major challenge. Although drug-induced pro-arrhythmia

occurs primarily in patients with pre-existing repolarisation disturbances, healthy ani-

mals are employed for pro-arrhythmia testing. To improve current safety screening,

transgenic long QT (LQTS) rabbit models with impaired repolarisation reserve were

generated by overexpressing loss-of-function mutations of human HERG (HERG-

G628S, loss of IKr; LQT2), KCNE1 (KCNE1-G52R, decreased IKs; LQT5), or both trans-

genes (LQT2-5) in the heart.

Experimental Approach: Effects of K+ channel blockers on cardiac repolarisation and

arrhythmia susceptibility were assessed in healthy wild-type (WT) and LQTS rabbits

using in vivo ECG and ex vivo monophasic action potential and ECG recordings in

Langendorff-perfused hearts.

Key Results: LQTS models reflect patients with clinically “silent” (LQT5) or “manifest”

(LQT2 and LQT2-5) impairment in cardiac repolarisation reserve: they were more

sensitive in detecting IKr-blocking (LQT5) or IK1/IKs-blocking (LQT2 and LQT2-5)

properties of drugs compared to healthy WT animals. Impaired QT-shortening capac-

ity at fast heart rates was observed due to disturbed IKs function in LQT5 and

LQT2-5. Importantly, LQTS models exhibited higher incidence, longer duration, and

more malignant types of ex vivo arrhythmias than WT.

Conclusion and Implications: LQTS models represent patients with reduced

repolarisation reserve due to different pathomechanisms. As they demonstrate

increased sensitivity to different specific ion channel blockers (IKr blockade in LQT5

and IK1 and IKs blockade in LQT2 and LQT2-5), their combined use could provide
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more reliable and more thorough prediction of (multichannel-based) pro-arrhythmic

potential of novel drug candidates.

1 | INTRODUCTION

Pro-arrhythmia is a rare but potentially lethal side effect of various

drugs and therefore a major safety concern for pharmaceutical indus-

try during drug development. Most often, pro-arrhythmia is based on

drug-induced prolongation of cardiac repolarisation. This “acquired

long QT syndrome” (LQTS) predisposes to torsades de pointes (TdP)

ventricular tachycardia (VT) that can lead to sudden cardiac death

(SCD). TdP-induced SCD has been associated with a wide range of

commonly used drugs (antipsychotics, antidepressants, antihistamines,

and antibiotics; Fenichel et al., 2004; Haverkamp et al., 2000; Redfern

et al., 2003), and many of them have been withdrawn from the market

(Farkas & Nattel, 2010). Therefore, the need to minimise the pro-

arrhythmic risk of novel drug candidates is overwhelming, although it

remains largely unmet (Farkas & Nattel, 2010; Pugsley, Authier, &

Curtis, 2008).

Roughly 20%–60% of novel chemical entities have the potential

to modulate cardiac ion channels, thereby affecting cardiac

repolarisation (Danker & Moller, 2014). The majority of these com-

pounds inhibit the rapid delayed rectifier potassium current IKr

(HERG); but interference with other ion currents such as the slow

delayed rectifier potassium current IKs or the inward rectifier

potassium current IK1 can also induce serious pro-arrhythmia—

particularly in the setting of reduced repolarisation reserve as demon-

strated for IKs blockers, such as isoflurane, oxytocin, and propionic

acid and for the IK1 blocker, midazolam, in the context of LQTS (Bodi

et al., 2016, 2019; Dunnink et al., 2010; Odening et al., 2008). Despite

this risk, drug effects on IKs or IK1 are not yet routinely assessed in

safety screening (Ponte, Keller, & Di Girolamo, 2010).

Drug-induced TdP are more frequently found in patients with car-

diovascular and metabolic diseases that induce structural and/or elec-

trophysiological remodelling of the heart, leading to reduction of the

“repolarisation reserve,” a term, defined as the ability of

cardiomyocytes to maintain sufficient repolarisation despite

repolarisation-prolonging (IKr, IKs, IK1, and Ito blocking) effects by com-

pensation via non-affected “reserve” outward K+ currents

(Roden, 1998; Varro & Baczko, 2011). In spite of this, preclinical

safety tests are performed in healthy animals or their tissues and cells

(Food et al., 2005a, 2005b). This approach has serious limitations due

to false-positive and false-negative results that are very costly or

highly dangerous. Therefore, novel animal models for safety testing

should ideally mimic the pathophysiological conditions under which

drugs usually display highest pro-arrhythmic risk. Animal models with

remodelled myocardium (Nattel, Maguy, Le Bouter, & Yeh, 2007)

and/or impaired repolarisation reserve (Varro & Baczko, 2011) due to

reduced IKr or IKs appear to be more suitable (Lengyel, Varro, Tabori,

Papp, & Baczko, 2007; London et al., 1998; Salama & London, 2007;

Thomsen et al., 2004; Volders et al., 1999; Vos et al., 1998). Among

them, the rabbit has a prominent place in arrhythmia research for

numerous reasons (Valentin, Hoffmann, De Clerck, Hammond, &

Hondeghem, 2004). Thus, rabbit cardiac physiology resembles that of

humans more closely than that of other small animals like rats or mice

regarding (i) the shape of action potential (Varro, Lathrop, Hester,

Nanasi, & Papp, 1993) and the underlying cardiac ion channels and

currents (Nerbonne, 2000), (ii) the relative effective heart size relating

cardiac mass to the frequency of VF (Panfilov, 2006), and (iii) their

responses to pharmacological interventions (Harken et al., 1981).

Therefore, in this work, several transgenic LQTS rabbit models

(LQT2: HERG-G628S, loss of IKr, Brunner et al., 2008; LQT5:

KCNE1-G52R, decreased IKs, Major et al., 2016; and LQT2-5, con-

taining both mutations) with impairment in cardiac repolarisation due

to different mechanisms were used to model electrophysiological

changes that occur in patients most susceptible for drug-induced

arrhythmias. In these models, genotype differences in response to

challenges on cardiac repolarisation, for example, different K+ channel

blockers and sympathomimetic drugs, were investigated in compari-

son to WT animals. Ultimately, their arrhythmia susceptibility was

tested to estimate their potential use in drug-induced pro-arrhythmia

risk prediction and/or assessment.

What is already known

• For more reliable screening of drug-induced pro-arrhyth-

mia, models with impaired repolarisation reserve are

needed.

What this study adds

• LQT5, LQT2, and LQT2-5 rabbits represent patients with

impaired repolarisation reserve due to different

pathomechanisms.

• LQTS models better detect K+ channel blocker effects on

pro-arrhythmic biomarkers and predict drug-induced

arrhythmias.

What is the clinical significance

• LQTS rabbits provide better prediction of pro-arrhythmic

potential of drug candidates than wild-type animals.
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2 | METHODS

2.1 | Animals

All animal care and experimental procedures were performed in com-

pliance with EU legislation (directive 2010/63/EU), the German

(TierSchG and TierSchVersV), and Hungarian animal welfare laws,

after approval by the local Institutional Animal Care and Use Commit-

tees in Germany (Regierungspraesidium Freiburg; approval number

G14/111) and Hungary (Department of Animal Health and Food Con-

trol of the Csongrád County Government Office; approval number

XIII/4227/2016). Animal housing and handling was in accordance with

good animal practice as defined by the Federation of European Labo-

ratory Animal Science Association, FELASA. Animal studies are

reported in compliance with the ARRIVE guidelines (Kilkenny, Browne,

Cuthill, Emerson, & Altman, 2010) and with the recommendations

made by the British Journal of Pharmacology (McGrath & Lilley, 2015).

New Zealand white WT female (purchased from Charles River

Laboratory in Châtillon, France), transgenic LQT2 male and LQT5 male

and female rabbits (Oryctolagus cuniculus), from our own colonies

were used for breeding to generate littermate control and transgenic

LQT5, LQT2, and LQT2-5 animals. Generation of the “founder” trans-

genic LQT2 and LQT5 rabbits was described earlier in detail (Brunner

et al., 2008; Major et al., 2016). Rabbits were individually housed in

stainless steel cages that fulfilled the legal requirements in terms of

size and environmental enrichments. The animals were kept at stan-

dard temperature, humidity, and lighting. Food and drinking water

were provided ad libitum.

2.2 | Description of model systems

Adult (aged 4–5 months, approximately 3–3.5 kg) transgenic long QT

syndrome type 2 (LQT2; HERG-G628S; Brunner et al., 2008), type

5 (LQT5; G52R-KCNE1; Major et al., 2016), double transgenic long QT

2-5 (LQT2-5), and wild-type (WT) littermate control New Zealand

white rabbits of both sexes were used for experiments. In LQT2 rab-

bits, the dominant-negative loss-of-function mutation in HERG—the

α-subunit conducting IKr currents—leads to a complete loss of IKr as

the co-assembly of one or more mutant HERG subunits even with up

to three normal HERG subunits will cause a malfunctioning channel.

In LQT5, the loss-of-function mutation in the β-subunit KCNE1, which

may co-assemble with KCNQ1 or HERG, leads predominantly to an

alteration in IKs.

The rabbit is an ideal model system for the purpose of this study

since (in contrast to other frequently utilised species such as mouse

and rat) it demonstrates close similarities to human (patho)physiology

in repolarising ion currents, action potential shape, and arrhythmia

mechanisms (as detailed in Section 1).

2.3 | Drug treatments

For in vivo and ex vivo experiments, the following “selective” K+ chan-

nel blockers were used: dofetilide to inhibit the rapid delayed rectifier

potassium current (IKr), HMR-1556 to inhibit the slow delayed rectifier

potassium current (IKs), and barium chloride (BaCl2) to inhibit the

inward rectifier potassium current (IK1; Figure S1C). PEG-400

(0.125 ml�kg−1) was used as solvent to dissolve HMR-1556. The

ex vivo and in vivo doses of dofetilide, HMR-1556, and BaCl2 were

determined based on published data dosages described in the litera-

ture (for references, see Figure S1C) with minimal or no effect in

healthy, WT animals, but with expected repolarisation prolonging

effects in the set of reduced repolarisation reserve in long QT models.

Therefore, no dose-finding experiments were performed. For IKs acti-

vation, the sympathomimetic drug isoprenaline (Isuprel 0.2 mg�kg−1,
Hospira Inc., USA) was continuously perfused intravenously in a dose

of 6–12 μg�h−1 (3–6 ml�h−1) to increase the baseline heart rate by

20%–30%. S-ketamine (Pfizer, USA) and xylazine (Bayer, Germany)

were used for anaesthesia (12.5 ml�kg−1/3.5 ml�kg−1 i.m., followed by

intravenous infusion) during ECG transmitter implantation, surface

ECG recording, and prior to heart extraction, as this combination does

not affect cardiac repolarisation (Odening et al., 2008).

2.4 | Genotype and phenotype verification

The presence of transgene(s) in the offspring was verified by PCR per-

formed on genomic DNA obtained from blood taken at the age of

2–3 months as described earlier (Brunner et al., 2008; Major

et al., 2016). The following primer pairs were used: LQT2: 50- GAA

CCA GCT TCT TCC GCT CAC TAC AGG TAC AG -30 and 50- GGG

CAC ATC CAC CAG ACA TAG GAA GCA -30; LQT5: 50- ATG ATC

CTG TGT AAC ACC ACA GAG-30 and 50- TTA GCC AGT GGT GGG

GTT CA -30.

The phenotypes were verified by conventional surface ECG in

sedated rabbits at the age of 3–4 months. QT indexes were calculated

(QTi; QTi (%) = (QT observed/QT expected) * 100) as published previ-

ously (Brunner et al., 2008). Rabbits from all genotypes (WT, LQT5,

LQT2, and LQT2-5) with QTi of at least 95% or higher were used for

further experiments (predetermined exclusion criteria; similarly as

predefined in all previous studies with these transgenic LQTS rabbit

models).

2.5 | ECG monitoring

For ECG monitoring of awake, unrestrained, free-moving animals,

WT (n = 11), LQT5 (n = 11), LQT2 (n = 10), and LQT2-5 (n = 8)

rabbits were subjected to ECG transmitter implantations (triple-lead

ECG D70-EEE; Data Sciences International; Brunner et al., 2008;

Odening et al., 2012). Subcutaneous ECG transmitter implantations

were performed under general anaesthesia with ketamine and

xylazine (induced with intramuscular administration of

12.5/3.75 ml�kg−1 ketamine/xylazine; maintained with intravenous

administration of 2.5–5 ml�kg−1�h−1 ketamine/xylazine) as described

in detail in (Brunner et al., 2008; Odening et al., 2012). ECG

recordings were started at least 2 weeks after device implantation
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to ensure adequate recovery and good healing for artefact-free

ECG signals.

Following 24-h baseline recordings, dofetilide (0.02 μg�kg−1),
BaCl2 (0.3 mg�kg−1), PEG-400 (0.125 ml�kg−1), HMR-1556 (0.1 μg�kg−1
in 0.125 ml�kg−1 PEG400), and combinations of HMR-1556 and BaCl2

were administered intramuscularly in 0.5 ml�kg−1 BW final injection

volume, one drug per subsequent day in all monitored animals. ECGs

were continuously recorded for 24-h following each injection to moni-

tor the changes in conventional ECG parameters.

To calculate the QT/RR relationship for each individual rabbit,

pairs of QT and RR intervals were averaged over 5 s every 30 min dur-

ing the 24-h baseline recording period (48 pairs per animals). These

QT-RR pairs were plotted, and a linear regression formula was

obtained for each animal. Using this individual heart rate correction

formula (QT (y) = a * RR (x) + b), individual QT expected (QT exp.

(y) = a * RR (x) + b) and QT index (QTi (%) = 100 * (QT observed/QT

expected)) were calculated for each animal (Brunner et al., 2008). For

heart rate-corrected QT intervals (QTc) calculation, a modified version

(QTc = QT observed − (a * (RR − 250), where “a” represents the slope

of the individual QT/RR relationship) of the original Carlsson equation

(QTc = QT observed − (0.175 * (RR − 300); Carlsson, Abrahamsson,

Andersson, Duker, & Schiller-Linhardt, 1993) was used to better

match the heart rate range of our telemetrically monitored rabbits.

As we observed no significant circadian alteration in the individ-

ual's QTc and QTi values, their 24-h averaged values during baseline

were used as control to assess the effect of dofetilide and BaCl2 on

QTc/QTi. For HMR-1556 and HMR-1556 + BaCl2, the averaged QTc

and QTi values measured within 5 h after intramuscular injection of

PEG 400 vehicle administration were used as “vehicle control” values.

To obtain genotype-specific heart rate correction formulas, linear

regression curves were fitted to all QT/RR pairs measured in all ani-

mals per genotype (Brunner et al., 2008).

Conventional 12-lead surface ECG was recorded to monitor

changes in pro-arrhythmic biomarkers in sedated WT (n = 6), LQT5

(n = 9), LQT2 (n = 8), and LQT2–5 (n = 8). Sedation was performed

with ketamine/xylazine (12.5/3.75 ml�kg−1 i.m.). ECG was recorded at

baseline and after 20 min of intravenous administration of dofetilide

(0.02 μg�kg−1), BaCl2, (0.3 mgkg−1), HMR-1556 (0.1 μg�kg−1), and com-

bination of HMR-1556 and BaCl2 (Figure S1C). Tpeak–Tend (Tp–e) and

beat-to-beat variability of QT (short-term variability of the QT interval

[STVQT]) were calculated to assess changes in spatial and temporal

heterogeneity of repolarisation. Tpeak–end was measured in V3 as dura-

tion (ms) from the peak to the end of the T wave. For STVQT, 31 con-

secutive QT were measured, and STVQT was calculated using the

following equation: STVQT =
P

|Dn+1 − Dn|(30 × √2)−1, where D is the

duration of the QT intervals (Berger et al., 1997).

As the sympathetic nervous system plays a major role in trigger-

ing arrhythmias in (drug-induced and acquired) LQTS—particularly in

the setting of absent or impaired IKs—we aimed at investigating if simi-

lar phenomenon could be observed in the LQT-5 and LQT5 models

(with mildly reduced IKs). For these experiments, we used the sympa-

thomimetic isoprenaline as it mimics the effect that an activation of

the sympathetic nervous system will have in LQTS patients. Changes

in QTi (%) resulting from intravenous administration of IKs activator

isoprenaline followed by the IKs blocker HMR-1556 were measured to

assess IKs function in vivo.

2.6 | Monophasic action potential measurement and
ex vivo arrhythmia study

WT (n = 13), LQT5 (n = 15), LQT2 (n = 12), and LQT2-5 (n = 11) rabbits

were anaesthetized with ketamine and xylazine (as described above).

After additional injection of heparin (500 IE i.v.), animals were killed by

intravenous administration of thiopental-sodium (40 mg�kg−1 i.v.).

Immediately afterwards, beating hearts were excised, attached to a ver-

tical Langendorff apparatus (Model IH5, Hugo Sachs Elektronik,

Hugstetten, Germany), and paced at basic cycle length (CL) of 500 ms

(Ziupa et al., 2014).

Monophasic action potentials (MAPs) were recorded by four epi-

cardial contact MAP electrodes positioned onto different regions of

the heart: MAP 1, apico-anterior; MAP 2, mid-anterolateral; MAP

3, base-inferolateral; and MAP 4, base-inferior positions (Figure 3).

After an average of 20–30 min of equilibration, MAPs were recorded

at 500 and 250 ms CLs of stimulation (2 and 4 Hz) at baseline and

during the perfusion with dofetilide (1 nM), HMR-1556 (100 nM),

BaCl2 (10 μM), or with combination of BaCl2 (10 μM) + HMR-1556

(100 nM) (Figure S1C).

The ex vivo arrhythmia setting was developed based on a method

described by Eckardt, Haverkamp, Borggrefe, and Breithardt (1998), in

which bradycardia, low K+ concentration, and a K+ channel blocker

were combined to prolong repolarisation and favour arrhythmias.

Arrhythmia (AR) development was provoked in atrioventricular (AV)-

ablated hearts (n = 7 WT, n = 8 LQT5, n = 6 LQT2, and n = 7

LQT2–5)—beating spontaneously in stable ventricular escape rhythm

(VER) at a constant rate of 60–80 beats per minute—by perfusion with

the following solutions: 5.4-mM K+ Krebs–Henseleit (KH; baseline I,

10 min), 2.0-mM K+ KH (5 min), 5.4-mM K+ KH (baseline II, 10 min),

5.4-mM K+ KH + 10-μM BaCl2 (10 min), and 2.0-mM K+ KH + 10-μM

BaCl2 (5 min). ECG was continuously recorded, and the duration (% of

perfusion time) and incidence (as average number of AR events as well

as % of total number of experiments) of arrhythmias were measured

offline. Arrhythmias were categorised by “The Lambeth Conventions

(II)” (Curtis et al., 2013) as ventricular extra beats (VEBs; ventricular

“premature” extra beat(s)—ranging from a simple ventricular extrasys-

tole to couplets or triplets in terms of complexity), bigeminy, VT, and

ventricular fibrillation (VF).

2.7 | Data and statistical analysis

The data and statistical analysis comply with the recommendations of

the British Journal of Pharmacology on experimental design and analy-

sis in pharmacology (Curtis et al., 2018). All data that support the find-

ings of this study are available from the corresponding author upon

reasonable request. Data are expressed either as mean ± SEM or

median with the lower (25th percentile) and upper (75th percentile)

quartiles and the minimum and maximum values. Statistical and Power
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analyses were performed by Prism 8.0 (Graphpad, San Diego, USA)

and Prism StatMate. Graphs were created by Prism 8.0.

Power analyses were performed to determine sample sizes: the

minimal number of animals per groups (WT, LQT5, LQT2, and

LQT2-5) required for detecting a minimum difference of 15 (ms) in

APD or QTc between genotypes (unpaired t test, expected SD = 8 ms)

at a 90% power level was N = 8, and at an 80% power level N = 6. To

detect a minimum change in QTc or APD of 10 ms in response to drug

administration (paired t test, expected SD = 8 ms) at a 90% power

level, a minimum of N = 8 animals per groups were required, and at an

80% power level N = 6. To detect significant difference in arrhythmia

occurrence (chi-square test) between WT and LQTS (at arrhythmia

rates of 5% in WT and 75% in LQTS), a minimum of N = 5 animals per

groups were needed at 80% power level. On the basis of such consid-

erations, we planned a sample size of six to eight animals for each

genotype group. Slight differences among genotypes resulted mainly

from variable availability of offspring with the different genotypes.

Experiments were not designed to perform statistical analyses on

potential sex differences.

Experiments were performed by several qualified and experi-

enced operators. No randomisation was performed, as the same

study protocol and the same procedures were performed in a

standardised manner on each rabbit for every genotype group.

Analyses could not remain completely blinded as the genotype dif-

ferences (at least between LQT2/LQT2-5 and LQT5/WT) were

immediately apparent when measuring QT or APD due to pro-

nounced phenotype differences.

Measured data were reported as absolute values; QTi, QTc,

STVQT, duration, and incidence of ex vivo arrhythmias were calculated

as described in detail above. Normal distribution of all data was

checked prior to statistical analysis. To analyse normally distributed

data, the following parametric tests were used: paired t test for

comparisons before and treatment: one-way ANOVA for

genotype-specific comparisons; repeated-measure ANOVA for

intragroup comparisons (e.g., for regional comparisons between MAP

1-4 parameters).

Post hocTukey tests were conducted only if F was significant and

there was no variance inhomogeneity. For not normally distributed

data, nonparametric tests were used: Wilcoxon rank-sum test for

comparisons before and after treatment; Kruskal–Wallis test for

genotype-specific comparisons. Chi-square tests were used to com-

pare arrhythmia incidences between different genotypes. A level of

P<.05 was taken to show statistically significant differences between

group means.

2.8 | Materials

The compounds used in these studies were supplied as follows: BaCl2

and dofetilide by Sigma-Aldrich (Munich, Germany); heparin by Braun

(Germany); HMR-1556 by Tocris Bioscience (Bristol, UK); isoprenaline

by Hospira Inc., (USA); S-ketamine by Pfizer (USA); thiopental-sodium

by Inresa (Germany); xylazine by Bayer (Germany).

2.9 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to PHARMA-

COLOGY (Harding et al., 2018), and are permanently archived in the

Concise Guide to PHARMACOLOGY 2019/20 (Alexander,

Christopoulos et al., 2019; Alexander, Mathie et al., 2019).

3 | RESULTS

3.1 | Baseline characteristics of different (LQTS)
rabbit models with impaired repolarisation reserve

3.1.1 | ECG characteristics in vivo

For in vivo phenotypic characterisation of the different rabbit models

with reduced repolarisation reserve, 24-h telemetric ECGs were

recorded at baseline (drug-free) in awake, free-moving WT, LQT2,

LQT5, and LQT2-5 rabbits. LQT2 and LQT2-5 rabbits showed pro-

longed QT intervals compared to WT or LQT5 animals (Figure 1a)—

despite similar heart rates (Figure 1b and Table 1A). Similarly, heart

rate-corrected QT interval was prolonged in LQT2 and LQT2-5 rabbit

models, compared with that in WT or LQT5 animals — but did not

differ between LQT5 and WT (Figure 1b and Table 1A).

Importantly, LQT2 and LQT2-5 rabbits also showed an increased

QT/RR ratio steepness compared to WT or LQT5 (Figure 1c and

Table 1A), indicating a particularly pronounced QT prolongation at

lower heart rates. Of note, in LQT2-5 rabbits, flatter QT-RR regression

curve with slightly higher QT values at high heart rates could be

observed compared to LQT2, which may be the consequence of the

impaired IKs function in LQT2-5, compared with LQT2.

Similarly to the free-moving animals, no genotype differences

were seen in RR, PQ, or QRS in anaesthetised animals. Heart rate-

corrected QTc and pro-arrhythmia markers SVTQT and Tpeak–Tend

(Tp–e), however, were significantly prolonged in LQT2 and LQT2-5 as

compared with those in WT and LQT5 rabbits (Table 1B).

3.1.2 | Global and regional MAP characteristics
ex vivo

MAP durations (APDs) recorded ex vivo in Langendorff-perfused

hearts were also significantly longer in hearts from LQT2 and LQT2-5

animals than in those from WT or LQT5 animals (Figure 2a). LQT2 and

LQT2-5 hearts showed prolonged APD75 compared to those from

WT or LQT5 rabbits, particularly at longer stimulation CL, resulting in

steeper APD/CL ratio in LQT2 and LQT2-5 hearts, than in those from

WT or LQT5 animals (Figure 2b,c and Table 2). This phenomenon

could be observed in all different left ventricle (LV) regions

(Figure S2A).
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Triangulation of the action potential (mean APD90-30), an impor-

tant marker of pro-arrhythmia (Hondeghem, Carlsson, & Duker, 2001;

Hondeghem & Hoffmann, 2003), was also more prominent in LQT2

and LQT2-5 than in WT or LQT5 (Figure 2d and Table 2).

In addition to genotype differences in overall repolarisation char-

acteristics (mean APD, mean APD90-30), genotype differences in

regional heterogeneities of APD and AP-triangulation were observed.

In the ex vivo isolated hearts from all transgenic rabbits with reduced

repolarisation reserve, shorter apical (MAP 1) than basal APD75 (MAP

3/4) was measured, but not in hearts from WT animals (Figure 3a).

Furthermore, triangulation of APD (APD90-30) was more pronounced

in LV apex than in base only in LQT5 and LQT2-5 hearts (Figure 3b).

In summary, baseline AP parameters (APD75, APD90-30, and

APD75/CL ratio) were not significantly different in hearts from LQT5

rabbits, compared to those from WT animals but were similarly pro-

longed in LQT2 and LQT2-5 models. Assessment of regional AP

parameters revealed further repolarisation disturbances, and in LQT5,

LQT2, and LQT2-5 hearts, an apico-basal heterogeneity of

repolarisation (APD) was detected. Regional heterogeneity in APD/CL

ratio was measured in LQT2 but not in LQT2-5 hearts, whereas

regional differences in AP triangulation were detected in LQT2-5

hearts but was absent in LQT2 hearts.

3.2 | Utility of different (LQTS) rabbit models with
impaired repolarisation reserve to detect K+ channel
blocking effects

3.2.1 | K+ blocker effects on QTc, STVQT, and
Tpeak–Tend in vivo

To investigate the sensitivity of the different models with impaired

repolarisation reserve to further drug-induced reduction of rep-

olarising potassium currents, different “selective” K+ channel blocking

drugs were administered.

In awake, free-moving animals, slight IKr blockade by low-dose

administration of dofetilide prolonged QTc only in LQT5 but not in

healthy WT, nor in LQT2 and LQT2-5 rabbits that both lack IKr

(Figure 4a). The IK1 blocker BaCl2 prolonged QTc in all groups

(Figure 4a) and this effect was particularly pronounced in LQT2

F IGURE 1 Baseline ECG characteristics in vivo. (a) Telemetric ECG: representative telemetric ECG recordings (lead II) in WT, LQT5, LQT2,

and LQT2-5 rabbits at comparable RR intervals. (b) ECG parameters: RR, QRS, PR, QT, and QTc intervals of awake, free-moving rabbits during
24-h baseline (drug-free) telemetric ECG recordings in WT (n = 11), LQT5 (n = 11), LQT2 (n = 10), and LQT2-5 (n = 8) animals. *P < .05, significant
differences between genotypes. Data are shown as box and whisker plots, with median, the lower (25th percentile) and upper (75th percentile)
quartiles and the minimum and maximum values. (c) QT/RR relationship: QT/RR relationships of WT (n = 11), LQT5 (n = 11), LQT2 (n = 10), and
LQT2-5 (n = 8) rabbits. Colour-coded lines indicate linear regression curves best-fit to all data points per genotype. Linear regression formulas
with QT/RR ratio steepness (as colour coded numbers) are also shown. AP < .05 significantly different from WT; BP < .05 significantly different
from LQT5; CP < .05 significantly different from WT
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TABLE 1 ECG parameters at baseline

(A) Mean RR, QRS, PR, QT, and QTc intervals and QT/RR steepness of awake, free-moving rabbits during 24-h baseline (drug-free) telemetric ECG
recordings

Genotype (no. of animals) RR QRS PR QT QTc QT/RR steepness

WT (11) 265.5 ± 10.9 33.2 ± 1.2 64.4 ± 1.9 136.5 ± 2.9 136.8 ± 1.6 0.23 ± 0.007

LQT5 (11) 248.9 ± 11.9 31.6 ± 0.9 66.1 ± 1.3 129.1 ± 2.9 131.6 ± 1.7 0.20 ± 0.005

LQT2 (10) 239.4 ± 9.3 29.0 ± 1.1 62.6 ± 1.7 153.9a,b ± 6.1 165.4a,b ± 2.9 0.65a,b ± 0.013

LQT2-5 (8) 230.2 ± 9.3 28.0 ± 0.9 59.0 ± 3.1 151.7a,b ± 4.7 165.7a,b ± 4.2 0.48a,b ± 0.017

(B) Mean RR, QT, and QTc intervals, STVQT, and Tpeak–Tend of anaesthetized rabbits at baseline ECG recordings

Genotype (no. of measurements; no. of animals) RR QT QTc STVQT Tp–e

WT (18; 6) 347.2 ± 10.4 159.3 ± 3.5 137.0 ± 2.4 1.9 ± 0.1 29.8 ± 0.8

LQT5 (27; 9) 359.9 ± 6.0 167.7 ± 1.6 145.7 ± 1.2 1.9 ± 0.1 30.6 ± 0.6

LQT2 (20; 8) 357.8 ± 7.7 233.1a,b ± 8.2 163.0a,b ± 5.2 2.8a,b ± 0.1 40.9a,b ± 1.4

LQT2-5 (20; 8) 354.0 ± 8.0 218.1a,b ± 5.6 168.2a,b ± 3.2 2.5a,b ± 0.1 39.2a,b ± 1.2

Note. Number of animals are indicated in the table. Data are shown as mean ± SEM.
aP < 0.05 versus WT.
bP < 0.05 versus LQT5.

F IGURE 2 Baseline action potential parameters ex vivo. (a) Monophasic action potentials: representative MAP recordings in isolated hearts

from WT, LQT5, LQT2, and LQT2-5 rabbits, recorded at 500-ms cycle length (CL) of stimulation. (b) APD/CL relationship: CL dependence of
averaged APD75 (representing the averaged APD75 values measured simultaneously by four epicardial electrodes of n = 15 WT, n = 17 LQT5,
n = 14 LQT2, n = 11 LQT2-5). Data are shown as mean ± SEM. (c) Regional action potential duration: action potential durations were defined as
APD75. WT, n = 15; LQT5, n = 17; LQT2, n = 13; and LQT2-5, n = 11. (d) Regional AP triangulation: AP triangulation was defined as APD90-
APD30. WT, n = 12; LQT5, n = 15; LQT2, n = 13; and LQT2-5, n = 9. *P < .05, significant differences between genotypes. Data are shown as box
and whisker plots, with median, the lower (25th percentile) and upper (75th percentile) quartiles, the minimum and maximum values.
Abbreviations: MAP 1, apico-anterior; MAP 2, mid-anterolateral; MAP 3, base-inferolateral; and MAP 4, base-inferior positions
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rabbits, compared with data from WT, LQT5 or LQT2-5 animals. IKs

blockade alone (HMR-1556) did not have any significant effect on

QTc in any genotype. Combined blockade of IK1 (BaCl2) and IKs (HMR-

1556), in contrast, prolonged QTc in all groups (Figure 4a).

In anaesthetised animals, similar changes in QTc were observed

(Figure 4b). IK1 blocker BaCl2 prolonged QTc significantly in all

genotypes, but this effect was more prominent in LQT2 and

LQT2-5 than in WT or LQT5. HMR-1556 and HMR-1556 + BaCl2

effects were similar to those observed in free-moving animals.

Dofetilide prolonged QTc in LQT5 but, surprisingly, it also pro-

longed QTc in LQT2-5 rabbits. Pro-arrhythmia markers STVQT and

Tpeak–Tend were more pronouncedly affected by K+ channel

blockers in LQTS rabbits with impaired repolarisation reserve. Thus,

dofetilide and HMR-1556 increased STVQT and prolonged Tpeak–

Tend only in LQT5 and LQT2-5 rabbits (Figure 4c,d). BaCl2-induced

and combined HMR-1556 and BaCl2-induced increases in STVQT

and Tpeak–Tend were more pronounced in all LQTS animals than in

WT (Figure 4c,d).

It is important to note that series of VEBs and nonsustained VTs

were observed in one LQT2 rabbit and one LQT2-5 rabbit—which

both had exceptionally severe phenotype (QTi > 110%) even at

baseline—during BaCl2 exposure, demonstrating increased susceptibil-

ity in vivo to arrhythmia induced by K+ channel blockers (Figure 4e).

3.2.2 | IKs function in the different models with
reduced repolarisation reserve

The sympathomimetic isoprenaline was administered to activate IKs

and to investigate differences in cardiac repolarisation, which may

occur upon sympathetic activation in the different LQTS rabbit

models. Normally, QT shortening is observed as a consequence of

physiological QT adaptation, a process in which the interplay between

simultaneously activated repolarising IKs (QT shortening) and dep-

olarizing ICa,L (QT prolongation) plays a major role (Liu et al., 2012).

Due to the presence of the mutant KCNE1 (KCNE1-G52R) encoding

an abnormal β-subunit of the IKs-conducting channel complex in LQT5

and LQT2-5, the malfunctioning IKs could not counterbalance the QT-

prolonging effect of activated ICa,L, thus resulting in significantly more

pronounced QT prolongation in LQT5 and LQT2-5 than in WT and

LQT2 with normally functioning IKs (Figure 5a). On the other hand,

the IKs blocker HMR-1556-induced QT prolongation was much more

prominent in WT or LQT2 rabbits, in which the normally functioning

IKs was properly “pre”-activated by isoprenaline, than it was in LQT5

or LQT2-5 rabbits, in which IKs could not be “pre”-activated

(Figure 5b).

These results suggest impaired IKs function in LQT5 and LQT2-5

animals, a fact that should be taken into consideration when testing

TABLE 2 APD75, APD90-30, and APD75/CL ratio values at baseline

Genotype (no. of animals)

Cycle lengths of stimulation

250 ms 500 ms

APD75 APD90-30 APD75 APD90-30 APD75/CL steepness

WT (13) 86.4 ± 3.0 62.8 ± 1.9 121.2 ± 3.7 78.4 ± 2.7 0.14 ± 0.018

LQT5 (15) 79.5 ± 2.7 58.5 ± 1.0 112.5 ± 3.7 73.0 ± 2.0 0.13 ± 0.017

LQT2 (12) 102.3a,b ± 4.6 70.4b ± 3.5 152.6a,b ± 6.3 94.9a,b ± 4.1 0.20a,b ± 0.029

LQT2-5 (11) 98.6a,b ± 5.2 66.0a,b ± 1.4 152.5a,b ± 5.2 82.1 ± 2.7 0.22a,b ± 0.029

Note: Number of animals are indicated in the table. Data are shown as mean ± SEM.
aP < 0.05 versus WT.
bP < 0.05 versus LQT5.

F IGURE 3 Regional heterogeneities of baseline action potential parameters ex vivo. Regional differences in (a) action potentials (APD75) and
(b) AP triangulation. WT, n = 13–15; LQT5, n = 15–17; LQT2, n = 13–14; and LQT2-5, n = 9–12. *P < .05, significant differences between regions.
Data are shown as box and whisker plots, with median, the lower (25th percentile) and upper (75th percentile) quartiles, the minimum and
maximum values. Abbreviations: MAP 1, apico-anterior; MAP 2, mid-anterolateral; MAP 3, base-inferolateral; and MAP 4, base-inferior positions
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pro-arrhythmic potential of drugs at different sympathetic activity

levels of the animal models.

3.2.3 | Effects of K+ channel blockers on MAP
characteristics ex vivo

To investigate global and regional sensitivity of the different hearts

with impaired repolarisation reserve to further drug-induced reduc-

tion of K+ currents, hearts were Langendorff-perfused with different

“selective” potassium channel blockers.

Following perfusion with a very low concentration of the IKr

blocker dofetilide (1 nM), a slight prolongation of mean APD75 was

observed in all groups (Figure 6a). However, as this prolongation was

very slight, below a “threshold” of 10 ms, it is likely to be due to the

experimental set-up and not of clinical relevance. The IKs blocker

HMR-1556 (100 nM) induced a more pronounced APD75 prolonga-

tion in LQT2 and LQT2-5, than in WT or LQT5 hearts (Figure 6a). Sim-

ilarly, the IK1 blocker BaCl2 (10 μM) or combined IK1/IKs blockade by

BaCl2 (10 μM) + HMR-1556 (100 nM) prolonged APD75 significantly

more in LQT2 and LQT2-5 than in WT or in LQT5 hearts (Figure 6a).

This prolongation of APD was particularly pronounced at slower rates,

F IGURE 4 IK blocker-induced changes in ECG parameters and arrhythmia formation in vivo. (a) Changes in QTc in awake, free-moving
animals. N = 6–8 in each genotype. Changes in QTc (b), STVQT (c), and Tpeak–Tend (d) in anaesthetised animals. Box and whisker graphs show
maximal changes in the indicated parameters after intramuscular injection of IKr, IK1, IKs, and IKs + IK1 blockers dofetilide, BaCl2, HMR-1556, and
HMR + BaCl2, respectively in WT, LQT2, LQT5, and LQT2-5 rabbits. *P < .05, significant differences between genotypes; #P < .05, significantly
different from baseline, n = 6–9 in each genotype. Data are shown as median, the lower (25th percentile) and upper (75th percentile) quartiles,
the minimum and maximum values. (e) Examples of ECG recordings demonstrate IK1 blocker BaCl2 induced ventricular extra beat (VEB) with
R-on-T phenomenon in LQT2-5 (I) and VEB and non-sustained ventricular tachycardia (nsVT) in LQT2 (II) rabbits in vivo
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leading to an increased APD/CL ratio steepness upon IK1, IKs, or com-

bined IK1/IKs blockade in LQT2 and LQT2-5 hearts (Figure 6b).

Importantly, mean AP triangulation (APD90-30) was more pro-

nounced following IK1 or combined IK1/IKs blockade in LQT2 and

LQT2-5 hearts than in those from WT rabbits (Figure 6c).

3.2.4 | Regional differences in response to combined
IK1/IKs blocker effects on MAP characteristics ex vivo

APD changes induced by combined IK1/IKs inhibition were region-

ally different and varied in the different LQTS models. While pro-

longation of APD was more pronounced in hearts from LQT2 and

LQT2-5 than in those from WT animals, in most MAP positions,

this difference was not found in base-inferolateral (MAP 3) region

at 2 Hz in LQT2-5 hearts (Figure 7a), leading even to a less pro-

nounced steepness of APD/CL ratio in LQT2-5, than in LQT2

hearts, in this region (Figure 7b). IK1/IKs blocker-induced increased

AP triangulation was also more pronounced in LQT2 and LQT2-5

than in WT hearts, in nearly all regions, except the apico-anterior

area (MAP 1; Figure 7c). The LQT5 hearts, in contrast, were, in

general, equally sensitive to IK1/IKs inhibition as WT hearts. The

extent of APD prolongation in LQT5, however, was significantly

higher in base-inferolateral (MAP 3) position as in any other

regions (Figure S3). Quite uniquely, such regional heterogeneity in

the extent of APD prolongation was only present in hearts from

LQT5 rabbits.

3.2.5 | Effects of low [K+]o and K+ channel blockers
on arrhythmia development ex vivo

To test our hypothesis of an increased sensitivity of models with

reduced repolarisation reserve to drug-induced pro-arrhythmia, AV-

ablated hearts were perfused with low [K+]o KH solution and/or IK1

blocker BaCl2. At baseline (5.4 mM [K+]o KH I), the AV-ablated hearts

were beating on their own stable VER (heart rates in average

69.1 ± 3.5 in all groups). No major arrhythmia events were observed.

Five-minute perfusion with 2.0-mM [K+]o KH resulted in longer

duration of bigeminy and VTs in transgenic animals with reduced

repolarisation reserve than in healthy WT (% of perfusion time;

bigeminy: LQT2 38.8 ± 11.7, LQT2-5 37.9 ± 7.0 compared with WT

11.1 ± 6.8; VT: LQT2 25.0 ± 11.1, LQT2-5 30.2 ± 10.5 compared with

WT 1.7 ± 1.1; Figure 8a). The effects were reversible, and the original

VER was regained in all group after 10-min perfusion with normal KH

solution (5.4 mM [K+]o KH II as second baseline).

F IGURE 5 IKs function in vivo. Change of heart rate-corrected QT (QT index (QTi) = 100 * (QTobserved/QTexpected)) after intravenous
administration of isoprenaline (a) and HMR-1556 + isoprenaline (b) in WT, LQT5, LQT2, and LQT2-5 animals. *P < .05, significant differences
between genotypes; n = 6–9 in each group. Data are shown as box and whisker plots, with median, the lower (25th percentile) and upper (75th
percentile) quartiles, and the minimum and maximum values

F IGURE 6 IK blocker-induced changes in action potential parameters ex vivo. Bar graphs of mean (average MAP 1-4) changes in (a) action
potential duration (ΔAPD75), (b) APD/CL ratio (ΔAPD/CL ratio), and (c) triangulation of action potential (ΔAPD90-30).

*P < .05, significant
differences between genotypes; #P < .05 significantly different from baseline; n = 6–7 in each group. Data are shown as box and whisker plots,
with median, the lower (25th percentile) and upper (75th percentile) quartiles, and the minimum and maximum values
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IK1 blocker BaCl2 induced longer duration and higher incidence of

arrhythmias in LQT2 and LQT2-5 rabbits than in WT (Figure 8a,b).

Combined BaCl2 and 2-mM [K+]o perfusion resulted in even more pro-

nounced (longer duration and higher incidence of) arrhythmia forma-

tion in transgenic animals than in WT (total duration of all AR events

as % of perfusion time: LQT5 53.7 ± 11.3, LQT2 86.3 ± 5.3, LQT2-5

83.0 ± 5.1, compared with WT 16.2 ± 5.9; average incidence [No.] of

all AR events; LQT2 52.0 ± 16.1, LQT2-5 46.9 ± 13.2 compared with

WT 3.6 ± 1.6; Figure 8a,b).

Overall, a more malignant type of arrhythmia development

(VT and VF) was seen in LQT2 and LQT2-5 than in LQT5 or WT

(occurrence of AR: BaCl2: LQT2 [VT: 100%] and LQT2-5 [VT: 86%,

VF: 57%] compared with WT [VT: 0%, VF: 0%]; BaCl2 + 2-mM [K+]o:

LQT2 [VT: 100%, VF: 60%] and LQT2-5 [VT: 83%, VF: 57%] com-

pared with WT [VT: 0%, VF: 0%]; Figure S4).

4 | DISCUSSION

4.1 | Animal models with reduced repolarisation
reserve

Several in vivo models with reduced repolarisation reserve have

been developed—such as the chronic AV-block model in dogs (Vos

et al., 1998) with reduced IKs currents due to electrical remodelling

and increased susceptibility to TdP arrhythmias (Thomsen

et al., 2004; Volders et al., 1999) and anaesthetised rabbit and

conscious dog models with impaired repolarisation reserve follow-

ing pharmacological inhibition of IKs (by HMR-1556; Lengyel

et al., 2007); but none of them are routinely used in pro-

arrhythmia research. Another approach to reduce repolarisation

reserve is the generation of transgenic LQTS animals with genetic

alteration of cardiac ion channels. The first LQTS rabbit models

were generated by overexpression of human mutant KCNQ1/

KvLQT1 (KvLQT1-Y315S, loss of IKs, LQT1) or KCNH2/HERG

(HERG-G628S, loss of IKr, LQT2) in the heart (Brunner et al., 2008).

These LQT1 and LQT2 models mimic human LQTS with severely

prolonged QT, spontaneous TdP, and in rare cases SCD (in LQT2).

It is important to note, however, that in a relatively stress-free

housing environment, nearly no spontaneous TdP/SCD occurred—

especially within the first year of their life—rendering them a suit-

able tool for the assessment of drug-induced pro-arrhythmia.

Later, the LQT5 transgenic rabbit model was generated by over-

expression of human mutant KCNE1 (KCNE1-G52R, impaired IKs;

Major et al., 2016). This model reflects “silent” LQTS, in which the

slight reduction of repolarisation reserve does not lead to clinically

manifested QT prolongation but increases vulnerability to

repolarisation-prolonging drugs (Major et al., 2016).

In this work, we investigated the potential benefits of using dif-

ferent transgenic LQTS rabbit models with reduced repolarisation

reserve in pro-arrhythmia research. We demonstrated that transgenic

LQT5, LQT2, and the newly generated double-transgenic LQT2-5

models more reliably detected IK-blocking properties of drugs, for

example, blockade of IKr, IK1, and IKs. Importantly, transgenic LQTS

rabbit models also demonstrated increased drug-induced arrhythmia

susceptibility, compared with healthy animals. Therefore, LQTS rab-

bits could be used to assess the pro-arrhythmic potential of drug can-

didates in a more complex and more reliable manner.

4.2 | Baseline characteristics of LQTS rabbit models
with impaired repolarisation reserve

Several electrophysiological features are important for arrhythmia for-

mation in (acquired and genetic) LQTS patients. Among them,

(i) increased temporal instability and regional heterogeneity of

repolarisation form the electrical “substrate” that facilitates re-entry

formation, and (ii) increased sympathetic nervous system activity

serves as “trigger” for early afterdepolarizations and mediates addi-

tional acute effects on IKs and ICa,L currents (Antzelevitch, 2007;

Brunner et al., 2008; Ziv et al., 2009).

LQT2 and LQT2-5 rabbits demonstrated a pronounced LQTS

phenotype and pro-arrhythmic substrate even at baseline: pro-

longed QTc/APD, steeper QT/RR slope, increased temporal insta-

bility (STVQT), transmural (Tpeak–end), and apico-basal heterogeneity

of repolarisation and more AP triangulation—similar to those

F IGURE 7 Differences in combined IKs + IK1 blocker-induced regional changes in action potential parameters ex vivo. Bar graphs of regional
changes (in all different MAP leads) in (a) action potential duration (ΔAPD75), (b) APD/CL ratio (ΔAPD/CL ratio), and (c) triangulation of action
potential (ΔAPD90-30).

*P < .05, significant differences between genotypes; n = 6–9 in each group. Data are shown as box and whisker plots, with

median, the lower (25th percentile) and upper (75th percentile) quartiles, and the minimum and maximum values. Abbreviations: MAP 1, apico-
anterior; MAP 2, mid-anterolateral; MAP 3, base-inferolateral; and MAP 4, base-inferior positions
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observed in human LQTS patients. These characteristics all favour

increased re-entry-based arrhythmias, especially during bradycardia.

The overall severity of the phenotype was similar in LQT2-5

and LQT2 at baseline. Only IKs function was more impaired in

LQT2-5 rabbits with decreased QT-shortening capacity at higher

heart rates.

LQT5 rabbits showed no overall QT prolongation but increased

apico-basal heterogeneity of APD and AP triangulation compared to

WT— results similar to those from the model's first characterisation

(Major et al., 2016), in which accelerated IKs and IKr deactivation kinet-

ics and only slightly increased baseline STVQT were described.

Therefore, LQT5 rabbits could be a model to mimic “silent” LQTS con-

dition with nearly normal baseline phenotype.

4.3 | LQTS rabbit models with impaired
repolarisation reserve detect K+ channel blocking
effects on pro-arrhythmia markers

LQTS patients with reduced repolarisation reserve are more sensitive

to drugs that (further) disturb cardiac repolarisation than normal indi-

viduals, and are more prone to develop drug-induced ventricular

F IGURE 8 Low potassium- and drug-induced ex vivo arrhythmia development. Graphs indicating the (a) duration (% of perfusion time) and
(b) incidence (average number of events) of arrhythmias provoked by perfusing the AV-ablated non-stimulated hearts with low [K+]o (2 mM) KH,
IK1 blocker BaCl2 (10 μM), or with their combination in WT (n = 7), LQT5 (n = 8), LQT2 (n = 6), and LQT2-5 (n = 7) animals. Insets show

representative left ventricular pressure curves and ECG recordings of ventricular escape rhythm (VER), ventricular extra beats (VEB), bigeminy,
ventricular tachycardia (VT), and ventricular fibrillation (VF). *P < .05, significant differences between genotypes
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arrhythmias (Schwartz & Woosley, 2016). Similarly, we observed an

increased sensitivity to QT/APD-prolonging side effects of known K+

channel blockers in different LQTS rabbits mimicking human LQTS

characteristics.

LQT1 rabbits—with complete lack of IKs—were proposed as useful

tools for better detection of IKr-blocking properties of drug candidates

(Odening et al., 2010). Similarly, LQT5 animals with mild impairment in IKs

were also more sensitive to the IKr blocker dofetilide than healthy WT

rabbits, demonstrating increased QTc, Tpeak–end, and STVQT. These results

are in line with earlier findings (Major et al., 2016).

It is known that inhibition of IK1 can result in prolonged APD,

increased resting membrane potential and early and delayed

afterdepolarisations (Maruyama et al., 2011; Varro & Baczko, 2011;

Zhang et al., 2005), Despite of this, current safety tests still do not con-

centrate on detecting IK1−blocking properties of drug candidates.

According to our findings with the IK1 blocker BaCl2, LQT2 and LQT2-5

rabbits could be ideal models to detect such IK1-blocking side effects of

drugs. This is in line with our previous work, in which increased QT pro-

longation and VEBs were observed only in LQT2, but not in WT animals,

following midazolam administration—a well-known sedative-anxiolytic

drug with IK1-blocking properties (Odening et al., 2008).

In our in vivo experiments, application of the sympathomimetic

(IKs and ICa,L activating) isoprenaline resulted in less IKs activation and,

therefore, in more pronounced QTi prolongation in LQT5 and LQT2-5

than in WT or LQT2, suggesting that LQT5 and LQT2-5 animals could

be especially sensitive to adrenoceptor agonist-induced arrhythmias.

Having both decreased IKs and lack of IKr, the new LQT2-5 model may

provide additional insights into arrhythmias caused by sympathetic

stimulation in the setting of impaired repolarisation reserve. In this

regard, LQT2-5 may serve as an important model (i) for diseases with

high arrhythmic risk due to (remodelling-based) impaired IKs

function—such as heart failure and diabetes—and (ii) to investigate the

effect of pharmacological reduction or increase of IKs in clinically man-

ifest LQTS. Of note, in contrast to the isoprenaline-induced (slight)

lengthening of heart rate-corrected QT index in LQT2 rabbits in our

present study, a shortening of this parameter was observed in some

of our earlier work (Brunner et al., 2008; Odening et al., 2010), due to

differences in anaesthetic regimens and resulting differences in the

effects on the autonomic nervous system and cardiac ion currents.

4.4 | LQTS rabbit models with impaired
repolarisation reserve detect drug-induced
arrhythmias

Pro-arrhythmic effects of various extrinsic (anaesthetics; Odening

et al., 2008) and intrinsic (sex hormones; Odening et al., 2012) factors

have been demonstrated in transgenic LQTS rabbits. The direct

assessment of arrhythmias in response to provocation factors—such

as bradycardia, hypokalaemia, or K+ channel blockers that are crucial

for drug-induced pro-arrhythmia in the clinical setting—however, has

not been completely performed to date. In this project, we have

closed this gap.

We chose the IK1 blocker BaCl2 in our experimental setting, (i) as

IK1 plays an important role in repolarisation reserve (Varro &

Baczko, 2011) and (ii) as only this drug caused prolongation of

repolarisation in all genotypes, therefore making it possible to com-

pare sensitivities.

Application of BaCl2 increased the incidence and duration of com-

plex VEBs and more malignant arrhythmias such as VT and VF in

LQT2 and LQT2-5, while in LQT5, only bigeminy occurred; and no

serious arrhythmias were observed in WT. In LQTS hearts, the pre-

existing temporal and regional heterogeneity in repolarisation prolon-

gation, which was even further aggravated by the provocation factors,

increased the sensitivity for re-entry formation.

These observations are in good agreement with earlier findings

(Frommeyer, Brucher, et al., 2016; Frommeyer, von der Ahe,

et al., 2016), demonstrating no arrhythmias in AV-ablated Langendorff-

perfused WT hearts either at baseline or during hypokalaemia and seri-

ous VT only when repolarisation-prolonging drugs were added. Similarly,

increased arrhythmia susceptibility was demonstrated in various LQTS

models: spontaneous VT and SCD in LQT2 rabbits (Brunner et al., 2008),

increased TdP development in pharmacologically (dofetilide + HMR-

1556) induced acquired LQTS rabbit and dog models (Lengyel

et al., 2007), and increased dofetilide-induced TdP in LQT5 rabbits

(Major et al., 2016).

It is important to note that during ex vivo experiments, LQTS

hearts were much more sensitive to arrhythmia development than

in vivo since pro-arrhythmic factors were present: (1) the hearts were

beating with a stable—very slow—VER after AV ablation, and (2) low

potassium concentrations were used for the perfusion.

5 | CONCLUSIONS

LQT2 and LQT2-5 rabbits with lack of IKr (and decrease in IKs in case of

LQT2-5) demonstrate increased sensitivity to IK1- and IKs-blocking drugs

and drug-induced ventricular arrhythmias. Phenotypically, the new

LQT2-5 model closely resembles LQT2. However, it also shows charac-

teristic differences due to its impaired IKs function. LQT5 rabbits with

reduced IKs demonstrate increased sensitivity to IKr-blocking drugs.

This increased sensitivity of different LQTS models to specific ion

channel blockers could be utilised for more reliable prediction of the

(multichannel-based) pro-arrhythmic potential of novel drug candi-

dates. Here, these models could play a role in safety testing, using

ex vivo whole perfused hearts and in vivo, following the detailed

in vitro determination of multichannel blocking properties in cells; by

which the ideal combination of LQTS types for further assessment of

drug effects on QT/APD and ex vivo pro-arrhythmia can be

determined.

5.1 | Limitations

Previous studies demonstrated that females—both in patients

(Lehmann, Hardy, Archibald, Quart, & MacNeil, 1996) and in LQTS
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rabbits (Odening et al., 2008)—may be more susceptible to

drug-induced QT prolongation/pro-arrhythmia. In this study, sex pro-

portions within groups were equal in most experiments. The signifi-

cant male dominance in telemetric ECG and ex vivo Langendorff

experiments, however, might have caused less pronounced changes in

pro-arrhythmia markers as could have been detected if sex ratio had

been the same or had shown female dominance.

In general, our in vivo and ex vivo results were in good agreement.

However, some differences were observed in HMR-1556 effects that

may due to (i) the effect of the anaesthetics on the sym-

pathetic/parasympathetic tone in vivo and (ii) differences in used drug

concentrations.

In these proof-of-principle experiments, LQTS rabbit models

detected pro-arrhythmia with increased sensitivities compared to ani-

mals with normal repolarisation—which from a clinical point of view is

particularly important to prevent drug-induced SCD. We are aware,

however, that further detailed assessment of their sensitivity and

specificity would be mandatory prior to its use for pro-arrhythmia

screening.
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