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1. Chapter 01.01 Introduction to Numerical Methods 

PRE-REQUISITES (ön koşullar) 
1. Be able to find integrals of a function (Primer for Integral Calculus). 
2. Understand the concept of curve fitting. 

 

OBJECTIVES (hedefler) 
1. understand the need for numerical methods, and 
2. go through the stages (mathematical modeling, solving and implementation) of 

solving a particular physical problem. 
 
After reading this chapter, you should be able to: 

1. understand the need for numerical methods, and 
2. go through the stages (mathematical modeling, solving and implementation) of 

solving a particular physical problem. 
 
Mathematical models are an integral (ayrılmaz/bütünü) part in solving engineering problems.  
Many times, these mathematical models are derived (türetilmiş) from engineering and science 
principles, while at other times the models may be obtained (elde edilmiş/toplanmış) from 
experimental data.   
 Mathematical models generally result in need of using mathematical procedures that 
include but are not limited to (matematiksel modellerde matematiksel işlemlere gereksinim 
vardır) 

(A) differentiation, (değişiklik/farklılaşma) 
(B) nonlinear equations, (çizgisel olmayan eşitlikler) 
(C) simultaneous linear equations, (aynı anda çözülen çizgisel eşitlikler) 
(D) curve fitting by interpolation or regression, (interpolasyon/regresyon ile eğri uydurma) 
(E) integration, (toplama) and 
(F) differential equations (diferensiyel eşitlikler). 

These mathematical procedures may be suitable to be solved exactly as you must have 
experienced in the series of calculus courses you have taken, but in most cases, the procedures 
need to be solved approximately using numerical methods (derslerde matematik problemlerini 
analitik çözerken kesin sonuçlar elde etmişsinizdir, sayısal yöntemlerde ise yaklaşık çözümler 
elde edilir). Let us see an example of such a need from a real-life physical problem.   
 To make the fulcrum (dayanak/mesnet noktası) (Figure 1) of a bascule bridge (basküllü 
köprü), a long hollow steel shaft (içi boş çelik şaft) called the trunnion (mafsal/dayanak) is shrink 
fit into a steel hub. The resulting steel trunnion-hub assembly is then shrink fit into the girder 
(kiriş) of the bridge. 
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 Figure 1 Trunnion-Hub-Girder (THG) assembly (mafsal-yuva-kiriş işlemi). 
 
 This is done by first immersing (daldırılmış) the trunnion (mafsal) in a cold medium such 
as a dry-ice/alcohol mixture.  After the trunnion reaches the steady state temperature of the cold 
medium, the trunnion outer diameter contracts.  The trunnion is taken out of the medium and slid 
through the hole of the hub (Figure 2) (mafsal kuru buz/alkol karışımı ortamında kararlı bir 
sıcaklığa ulaşana kadar soğutulduktan sonra yuvasına/deliğe geçirilir. Deliğin içine tam oturması 
sağlanır).   

                               
Figure 2 Trunnion (mafsal) slided through the hub after contracting (mafsal uygun 
haldeyken yuvasına yerleştirilir). 

 When the trunnion heats up, it expands and creates an interference fit with the hub 
(mafsal ısındıktan sonra genişler ve yuvasına oturur). In 1995, on one of the bridges in Florida, 
this assembly procedure did not work as designed. Before the trunnion could be inserted fully 
into the hub, the trunnion got stuck (sıkışmıştır). Luckily, the trunnion was taken out before it got 
stuck permanently. Otherwise, a new trunnion and hub would needed to be ordered at a cost of 
$50,000. Coupled with construction delays, the total loss could have been more than a hundred 
thousand dollars.   

Why did the trunnion get stuck (mafsal yuvada neden sıkışmıştır)?  This was because the 
trunnion had not contracted enough to slide through the hole.  Can you find out why? 
 A hollow trunnion  (mafsalın) of outside diameter (dış çapı) "363.12  is to be fitted in a 
hub of inner diameter (iç çapı) "358.12  (olan hub-yuva içine sokulmak istenmiştir). The trunnion 
was put in dry ice/alcohol mixture (temperature of the fluid - dry ice/alcohol mixture is 

F108 = –42.2 °C) to contract the trunnion so that it can be slid through the hole of the hub. To 
slide the trunnion without sticking (yapışma olmadan), a diametrical clearance of at least "01.0  is 
required between the trunnion and the hub (delik ve mafsal arasındaki açıklık). Assuming the 

Trunnion-mafsal 

Hub-yuva 

Girder-kiriş 
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room temperature is F80  (=26.7°C), is immersing the trunnion in dry-ice/alcohol mixture a 
correct decision? (mafsalı kurubuz/alkol karışımına daldırmak çapını küçültmek adına doğru bir 
karar mıdır?) 
 To calculate the contraction (daralma) in the diameter of the trunnion (mafsal), the 
thermal expansion coefficient at room temperature is used. In that case the reduction D  in the 
outer diameter of the trunnion (mafsal) is 
 TDD             (1) 
where 

D = outer diameter of the trunnion, 
 coefficient of thermal expansion coefficient at room temperature, and  
T change in temperature, 

Given 
 D = "363.12  
 Fin/in/1047.6 6    at F80  

T roomfluid TT  = 80108  F188  ( = –122.2°C) 

where  

fluidT = temperature of dry-ice/alcohol mixture 

roomT = room temperature 

the reduction in the outer diameter of the trunnion is given by 
  1881047.6)363.12( 6  D = "01504.0  

 So the trunnion (mafsal) is predicted to reduce in diameter by "01504.0 . But, is this 
enough reduction in diameter?  As per specifications, the trunnion needs to contract by 
 = trunnion outside diameter – hub inner diameter + diametric clearance 
 = mafsalın dış çapı – deliğin iç çapı + arada kalan boşluk  
 = 12.363 – 12.358 + 0.01= "015.0  
 So according to his calculations, immersing the steel trunnion in dry-ice/alcohol mixture 
gives the desired contraction of greater than "015.0  as the predicted contraction is "01504.0 .  
But, when the steel trunnion was put in the hub, it got stuck.  Why did this happen?  Was our 
mathematical model adequate for this problem or did we create a mathematical error? 
 As shown in Figure 3 and Table 1, the thermal expansion coefficient of steel decreases 
with temperature and is not constant over the range of temperature the trunnion goes through.  
Hence, Equation (1) would overestimate the thermal contraction (bu nedenle, Eşitlik (1) ısısal 
daralma ile ilgili olarak yeterli olacaktır.). 
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Figure 3  Varying thermal expansion coefficient as a function of temperature for cast (döküm) 
steel. 
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The contraction (daralma) in the diameter of the trunnion (mafsal) for which the thermal 
expansion coefficient varies as a function of temperature is given by 


fluid

room

T

T

dTDD                                             (2) 

So one needs to curve fit the data to find the coefficient of thermal expansion as a function of 
temperature.  This is done by regression where we best fit a curve through the data given in 
Table 1.  In this case, we may fit a second order polynomial 

2
210 TaTaa          (3) 

Table 1 Instantaneous (anlık) thermal expansion coefficient (ısısal genleşme sabiti) as a function 
of temperature. 

Temperature 
Instantaneous 

Thermal Expansion 
F  Fμin/in/  

80 6.47 
60 6.36 
40 6.24 
20 6.12 
0 6.00 

-20 5.86 
-40 5.72 
-60 5.58 
-80 5.43 
-100 5.28 
-120 5.09 
-140 4.91 
-160 4.72 
-180 4.52 
-200 4.30 
-220 4.08 
-240 3.83 
-260 3.58 
-280 3.33 
-300 3.07 
-320 2.76 
-340 2.45 

The values of the coefficients in the above Equation (3) will be found by polynomial regression 
(we will learn how to do this later in Chapter 06.04).  At this point we are just going to give you 
these values and they are 
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to give the polynomial regression model (Figure 4) as 
2

210 TaTaa   

   21196 T101.2278T106.1946106.0150    
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Knowing the values of 0a , 1a  and 2a , we can then find the contraction in the trunnion diameter 

as 

dTTaTaaDD
fluid

room

T

T

)( 2
210   

]
3
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)([      

33
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22
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roomfluidroomfluid
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a
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aTTaD





                          (4) 

which gives 
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Figure 4   Second order polynomial regression model for coefficient of thermal expansion as 
a function of temperature. 

 
What do we find here?  The contraction (daralma/kasılma) in the trunnion (mafsal) is not enough 
to meet the required specification of "015.0 .  
 So here are some questions that you may want to ask yourself? 

1. What if the trunnion were immersed in liquid nitrogen (boiling temperature F321  = –
196.11°C)? Will that cause enough contraction in the trunnion? (mafsal sıvı azot içine 
daldırılırsa ne olur? Mafsalın yeteri kadar daralmasını sağlar mı?)  

2. Rather than regressing the thermal expansion coefficient data to a second order 
polynomial so that one can find the contraction in the trunnion OD, how would you use 
Trapezoidal rule of integration for unequal segments?  What is the relative difference 
between the two results? (mafsalın ısısal genleşme sabitini ikinci derecen polinoma fit 
etmek yerine eşit olmayan segmanlara sahip yamuk yöntemi kullanılabilir mi? İki sonuç 
arasındaki bağıl farkı nedir?)  

3. We chose a second order polynomial for regression.  Would a different order polynomial 
be a better choice for regression?  Is there an optimum order of polynomial you can find? 
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(Burada ikinci dereceden polinom seçilerek regresyon yapılmıştır. Başka polinomlar 
seçilmesi daha iyi sonuç alabilir misiniz? En uygun polinom derecesi nedir?) 

 As mentioned at the beginning of this chapter, we generally see mathematical procedures 
that require the solution of nonlinear equations, differentiation, solution of simultaneous linear 
equations, interpolation, regression, integration, and differential equations. A physical example 
to illustrate the need for each of these mathematical procedures is given in the beginning of each 
chapter. You may want to look at them now to understand better why we need numerical 
methods in everyday life. 

INTRODUCTION, APPROXIMATION AND ERRORS 
Topic Introduction to Numerical Methods 
Summary Textbook notes of Introduction to Numerical Methods 
Major General Engineering 
Authors Autar Kaw 
Date Aralık 8, 2016 
Web Site http://numericalmethods.eng.usf.edu 

 
1.1.1 Multiple-Choice Test Chapter 01.01 Introduction to Numerical Methods 
 
1. Solving an engineering problem requires four steps.  In order of sequence, the four steps 

are 
(A) Formulate (formüle etmek), solve, interpret, implement 
(B) Solve (çözmek), formulate, interpret, implement 
(C) formulate, solve, implement (uygulamasını yapmak), interpret 
(D) formulate, implement, solve, interpret (yorum yapmak) 

 
2. One of the roots of the equation 033 23  xxx  is 

(A) –1       (B) 1         (C) 3          (D) 3 
 
3. The solution to the set of equations 
  2525  cba  
  71864  cba  
  15512144  cba  
 most nearly is   cba ,,  

(A) (1,1,1)     (B) (1,-1,1)      (C) (1,1,-1)    (D) does not have a unique solution. 
 

4. The exact integral of 
4

0

2cos2



xdx  is most nearly 

(A) –1.000      (B) 1.000      (C) 0.000       (D) 2.000  
 

5. The value of  0.1
dx

dy
, given  xy 3sin2  most nearly is 

(A) –5.9399      (B) –1.980     (C) 0.31402      (D) 5.9918 
 
6. The form of the exact solution of the ordinary differential equation 
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 xey
dx

dy  532 ,   50 y  is 

(A) xx BeAe  5.1   (B) xx BeAe  5.1    (C) xx BeAe 5.1    (D) xx BxeAe  5.1  
 
For a complete solution, refer to the links at the end of the book. 
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1.2 Chapter 01.02 Measuring Errors (ölçme hataları) 
 

PRE-REQUISITES 
1. Know the definition of a secant and first derivative of a function (Primer for 

Differential Calculus). 
2. Understand the representation of trigonometric and transcendental functions as a 

Maclaurin series (Taylor Series Revisited). 
 

OBJECTIVES 
1. find the true and relative true error, 
2. find the approximate and relative approximate error, 
3. relate the absolute relative approximate error to the number of significant digits at 

least correct in your answers, and 
4. know the concept of significant digits (anlamlı haneler). 

 
After reading this chapter, you should be able to: 

1. find the true and relative true error, 
2. find the approximate and relative approximate error, 
3. relate the absolute relative approximate error to the number of significant digits at 

least correct in your answers, and 
4. know the concept of significant digits. 

 
 In any numerical analysis, errors will arise during the calculations. To be able to deal 
with the issue of errors, we need to  

(A) identify where the error is coming from, followed by 
(B) quantifying the error, and lastly 
(C) minimize the error as per our needs.   

In this chapter, we will concentrate on item (B), that is, how to quantify errors. 
 
Q: What is true error? 
A: True error denoted by tE  is the difference between the true value (also called the exact value) 

and the approximate value. 
True Error   True value – Approximate value 

 

Example 1 
The derivative of a function )(xf  at a particular value of x  can be approximately calculated by 

h

xfhxf
xf

)()(
)(


  

 of )2(f   For xexf 5.07)(   and 3.0h , find 
 a) the approximate value of )2(f   
 b) the true value of )2(f   
 c) the true error for part (a) 

Solution 
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a)  
h

xfhxf
xf

)()(
)(


  

For 2x  and 3.0h ,  

3.0

)2()3.02(
)2(

ff
f


  

          
3.0

)2()3.2( ff 
  

                     
3.0

77 )2(5.0)3.2(5.0 ee 
  

          
3.0

028.19107.22 
   265.10  

b) The exact value of )2(f  can be calculated by using our knowledge of differential calculus. 
xexf 5.07)(   

xexf 5.05.07)('   xe 5.05.3  
So the true value of )2('f  is 

)2(5.05.3)2(' ef   5140.9  
c) True error is calculated as 
 tE = True value – Approximate value 

                265.105140.9   75061.0  
The magnitude of true error does not show how bad the error is. A true error of 722.0tE  

may seem to be small, but if the function given in the Example 1 were ,107)( 5.06 xexf  the 

true error in calculating )2(f   with ,3.0h  would be .1075061.0 6tE   This value of true 

error is smaller, even when the two problems are similar in that they use the same value of the 
function argument, 2x  and the step size, 3.0h .  This brings us to the definition of relative 
true error. 
 
Q: What is relative true error? 
A:  Relative true error is denoted by t  and is defined as the ratio between the true error and the 

true value. 

Relative True Error 
Value True

Error True
  

Example 2 
The derivative of a function )(xf  at a particular value of x  can be approximately calculated by 

h

xfhxf
xf

)()(
)('


  

For xexf 5.07)(   and 3.0h , find the relative true error at 2x . 

Solution 
From Example 1,  

tE = True value – Approximate value 

                265.105140.9  75061.0  
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Relative true error is calculated as 

Value True

Error True
t  

     
5140.9

75061.0
 078895.0  

Relative true errors are also presented as percentages. For this example, 
%1000758895.0 t %58895.7  

Absolute relative true errors may also need to be calculated. In such cases, 
|075888.0| t  

                  = 0.0758895 = %58895.7  
 
Q: What is approximate error? 
A: In the previous section, we discussed how to calculate true errors.  Such errors are calculated 
only if true values are known.  An example where this would be useful is when one is checking if 
a program is in working order and you know some examples where the true error is known.  But 
mostly we will not have the luxury of knowing true values as why would you want to find the 
approximate values if you know the true values.  So when we are solving a problem numerically, 
we will only have access to approximate values. We need to know how to quantify error for such 
cases. 
        Approximate error is denoted by aE  and is defined as the difference between the present 

approximation and previous approximation. 
       Approximate Error Present Approximation – Previous Approximation 
 

Example 3 
The derivative of a function )(xf  at a particular value of x  can be approximately calculated by 

h

xfhxf
xf

)()(
)('


  

For xexf 5.07)(  and at 2x , find the following 
 a) )2(f   using 3.0h  
 b) )2(f   using 15.0h  
 c) approximate error for the value of )2(f   for part (b)  

Solution 
a) The approximate expression for the derivative of a function is 

 
h

xfhxf
xf

)()(
)('


 . 

For 2x  and 3.0h ,  

3.0

)2()3.02(
)2('

ff
f


  

           
3.0

)2()3.2( ff 
  

                      
3.0

77 )2(5.0)3.2(5.0 ee 
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3.0

028.19107.22 
 265.10  

b) Repeat the procedure of part (a) with ,15.0h  

h

xfhxf
xf

)()(
)(


  

    For 2x  and 15.0h ,  

15.0

)2()15.02(
)2('

ff
f


  

          
15.0

)2()15.2( ff 
  

          
15.0

77 )2(5.0)15.2(5.0 ee 
  

          
15.0

028.1950.20 
 8799.9  

c) So the approximate error, aE is  

             aE Present Approximation – Previous Approximation 

                   265.108799.9  38474.0  
The magnitude of approximate error does not show how bad the error is .  An approximate error 
of 38300.0aE  may seem to be small; but for xexf 5.06107)(  , the approximate error in 

calculating )2('f  with 15.0h  would be 61038474.0 aE . This value of approximate error 

is smaller, even when the two problems are similar in that they use the same value of the 
function argument, 2x , and 15.0h  and 3.0h . This brings us to the definition of relative 
approximate error. 
 
Q: What is relative approximate error? 
A: Relative approximate error is denoted by a  and is defined as the ratio between the 

approximate error and the present approximation. 

             Relative Approximate Error 
ionApproximatPresent 

Error eApproximat
  

 

Example 4 
The derivative of a function )(xf  at a particular value of x  can be approximately calculated by 

h

xfhxf
xf

)()(
)('


  

For xexf 5.07)(  , find the relative approximate error in calculating )2(f  using values from 
3.0h  and 15.0h . 

Solution 
From Example 3, the approximate value of 263.10)2( f  using 3.0h  and 

8800.9)2(' f using 15.0h . 

aE Present Approximation – Previous Approximation 
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                    265.108799.9   
                    38474.0  
The relative approximate error is calculated as  

a ionApproximatPresent 

Error eApproximat
 

                 
8799.9

38474.0
 038942.0  

Relative approximate errors are also presented as percentages. For this example, 
%100038942.0 a  

                 = %8942.3  
Absolute relative approximate errors may also need to be calculated.  In this example 

|038942.0| a 038942.0  or 3.8942% 

 
Q: While solving a mathematical model using numerical methods, how can we use relative 
approximate errors to minimize the error? 
A: In a numerical method that uses iterative methods (yinelemeli yöntem), a user can calculate 
relative approximate error a  at the end of each iteration.  The user may pre-specify a minimum 

acceptable tolerance called the pre-specified tolerance, s .  If the absolute relative approximate 

error a  is less than or equal to the pre-specified tolerance s , that is,  || a s , then the 

acceptable error has been reached and no more iterations would be required. 
 Alternatively, one may pre-specify how many significant digits they would like to be 
correct in their answer.  In that case, if one wants at least m  significant digits to be correct in the 
answer, then you would need to have the absolute relative approximate error, m

a
 2105.0|| %. 

(alternatif olarak cevabınızı anlamlı basamak/hane sayısı ile belirleyebilirsiniz. Bu durumda 
mutlak göreli yaklaşık hata % cinsinden m

a
 2105.0||  denklemini kullanarak m istenilen 

anlamlı basamak sayısı belirlenebilir.) 
 

Example 5 
If one chooses 6 terms of the Maclaurin series for xe  to calculate 7.0e , how many significant 
digits can you trust in the solution? Find your answer without knowing or using the exact 
answer. 

Solution 

.................
!2

1
2


x

xe x  

Using 6 terms, we get the current approximation as  

!5

7.0

!4

7.0

!3

7.0

!2

7.0
7.01

5432
7.0 e 0136.2  

 Using 5 terms, we get the previous approximation as 

!4

7.0

!3

7.0

!2

7.0
7.01

432
7.0 e 0122.2  

The percentage absolute relative approximate error is 
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100
0136.2

0122.20136.2



a %069527.0  

Since %105.0 22a , at least 2 significant digits are correct in the answer of  

 0136.27.0 e  
 
Q: But what do you mean by significant digits (anlamlı basamak ile ne anlatılmak isteniyor)?   
A: Significant digits are important in showing the truth one has in a reported number (anlamlı 
basamaklar ifade edilmek istenilen sayıyı gerçek anlamında ifade edebilir). For example, if 
someone asked me what the population of my county is, I would respond, “The population of the 
Hillsborough county area is 1 million” (Örneğin birisi size yaşadığınız şehrin nüfusunu sorsa ona 
çok yaklaşık bir değer -1 milyon- söylersiniz).  But if someone was going to give me a $100 for 
every citizen of the county, I would have to get an exact count (her yurttaş için 100$ verileceği 
söylense bu durumda kesin rakam -2003 yılı için 1,079,587 kişi şeklinde- belirtmek durumunda 
kalırsınız).  That count would have been 1,079,587 in year 2003.  So you can see that in my 
statement that the population is 1 million, that there is only one significant digit, that is, 1, and in 
the statement that the population is 1,079,587, there are seven significant digits (1 milyon 
şeklinde söylediğinizde 1 anlamlı basamağı olan nüfus sayısı 1,079,587 rakamında 7 anlamlı 
nüfus sayısı ile ifade edilir).  So, how do we differentiate the number of digits correct in 
1,000,000 and 1,079,587?  Well for that, one may use scientific notation. For our data we show 

6

6

10079587.1587,079,1

101000,000,1




 

to signify the correct number of significant digits. 

Example 5 
Give some examples of showing the number of significant digits. 

Solution 
(a) 0.0459 has three significant digits 
(b) 4.590 has four significant digits 
(c) 4008 has four significant digits 
(d) 4008.0 has five significant digits 
(e) 310079.1   has four significant digits 
(f) 3100790.1   has five significant digits 
(g) 31007900.1   has six significant digits 

 
INTRODUCTION, APPROXIMATION AND ERRORS 
Topic Measuring Errors 
Summary Textbook notes on measuring errors 
Major General Engineering 
Authors Autar Kaw 
Date Aralık 8, 2016 
Web Site http://numericalmethods.eng.usf.edu 
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1.2.1 Multiple-Choice Test Chapter 01.02 Measuring Errors 
 
1. True error is defined as 

(A) Present Approximation – Previous Approximation 
(B) True Value – Approximate Value 
(C) abs (True Value – Approximate Value) 
(D) abs (Present Approximation – Previous Approximation) 

 
2. The expression for true error in calculating the derivative of  x2sin  at 4/x  by using 

the approximate expression  

     
h

xfhxf
xf


  

 is 

(A) 
 
h

hh 12cos 
        (B) 

 
h

hh 1cos 
        (C) 

 
h

h2cos1
        (D) 

 
h

h2sin
 

 
3. The relative approximate error at the end of an iteration to find the root of an equation is 

%004.0 .  The least number of significant digits we can trust in the solution is 
(A) 2               (B) 3                (C) 4              (D) 5 

 
4. The number 31001850.0   has ________ significant digits  

(A) 3              (B) 4                 (C) 5              (D) 6  
 

5. The following gas stations were cited for irregular dispensation by the Department of 
Agriculture.  Which one cheated you the most? 

Station Actual gasoline dispensed Gasoline reading at pump 
Ser 
Cit 
Hus 
She 

9.90 
19.90 
29.80 
29.95 

10.00 
20.00 
30.00 
30.00 

(A) Ser          (B) Cit               (C) Hus         (D) She 
 
6. The number of significant digits in the number 219900 is 

(A) 4             (B) 5                  (C) 6               (D) 4 or 5 or 6 
For a complete solution, refer to the links at the end of the book. 
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1.3 Chapter 01.03 Sources of Error 
 

PRE-REQUISITES 
1. Binary representation of numbers (Binary representation of numbers) 
2. Know the definition of a secant and first derivative of a function (Primer for 

Differential Calculus). 
3. Know the Riemann sum concept of integration (Primer for Integral Calculus). 
4. Understand the representation of trigonometric and transcendental functions as a 

Maclaurin series (Taylor Series Revisited). 
 

OBJECTIVES 
1. know that there are two inherent (tabiatından) sources of error in numerical methods 

– round-off (yuvarlama hatası) and truncation error (kesme hatası),  
2. recognize the sources of round-off and truncation error, and 
3. know the difference between round-off and truncation error. 

 
After reading this chapter, you should be able to: 

1. know that there are two inherent sources of error in numerical methods – round-off 
and truncation error,  

2. recognize the sources of round-off and truncation error, and 
3. know the difference between round-off and truncation error. 
 

 Error in solving an engineering or science problem can arise due to several factors. First, 
the error may be in the modeling technique. A mathematical model may be based on using 
assumptions that are not acceptable. For example, one may assume that the drag force on a car is 
proportional to the velocity of the car, but actually it is proportional to the square of the velocity 
of the car. This itself can create huge errors in determining the performance of the car, no matter 
how accurate the numerical methods you may use are. Second, errors may arise from mistakes in 
programs themselves or in the measurement of physical quantities. But, in applications of 
numerical methods itself, the two errors we need to focus on are 

1. Round off error 
2. Truncation error. 

 
Q: What is round off error? 

A: A computer can only represent a number approximately.  For example, a number like 
3

1
 may 

be represented as 0.333333 on a PC.  Then the round off error in this case is 

30000003.0333333.0
3

1
 . Then there are other numbers that cannot be represented exactly. 

For example,   and 2  are numbers that need to be approximated in computer calculations. 
 
Q:  What problems can be created by round off errors? 
A: Twenty-eight Americans were killed on February 25, 1991. An Iraqi Scud hit the Army 
barracks in Dhahran, Saudi Arabia. The patriot defense system had failed to track and intercept 
the Scud.  What was the cause for this failure?  
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25 şubat 1991’de Irak’tan fırlatılan bir scud füzesi Suudi Arabistan’ın Dahran kentindeki abd’nin 
askeri kışlasına düşmüş, 28 amerikalı asker ölmüş ve 100’nü yaralamıştır. Abd’nin Patriot 
savunma sistemi scud’ları izleyememiş ve scud’ları havada tahrip edememiştir. Bu hatanın aslı 
ne idi?  
 
The Patriot defense system consists of an electronic detection device called the range gate (erim 
kapısı). It calculates the area in the air space where it should look for a Scud. To find out where it 
should aim next, it calculates the velocity of the Scud and the last time the radar detected the 
Scud. Time is saved in a register that has 24 bits length. Since the internal clock of the system is 
measured for every one-tenth of a second, 1/10 is expressed in a 24 bit-register as 0.0001 1001 
1001 1001 1001 100. However, this is not an exact representation. In fact, it would need infinite 
numbers of bits to represent 1/10 exactly. So, the error in the representation in decimal format is 
Patriot savunma sistemi menzil aralığı/kapısı denilen elektronik algılama sistemidir. Bu 
elektronik sistem havada bir scud’un olup olmadığını belli bir alanı tarayarak hesaplamalar 
yapmaktadır. Sistemin amacı scud’un hızını belirlemek ve radarda tanımlanan füzenin en son 
anını kayıt etmektir. O an/zaman yani saniyenin 1/10’i 24 bitlik 0.00011001100110011001100 
uzunlukta bir veri olarak sisteme kayıt edilmekteydi. Sistemin kendi saatine göre bu kayıtları 
saniyenin 1/10 zaman aralıklarında arka arkaya tekrarlanmakta ve kayıt altına alınmaktaydı 
(1/10’ları toplamaktaydı). Onluk sisteme göre her kayıtta  

   
Figure 1   Patriot missile (Courtesy of the US Armed Forces, 
http://www.redstone.army.mil/history/archives/patriot/patriot.html) 

 

8

2423224321

10537.9

)202021...21202020(
10

1








 

büyüklüğünde bir zaman farkı ortaya çıkmaktaydı. Sistemin akülü güç kaynağı 100 saat 
(yaklaşık 4 gün) boyunca sürekli kayıt yapıyordu. 100 saat sonunda (başlama anına göre) ortaya 
çıkan zaman farkı ise aşağıdaki gibidir: 
The battery was on for 100 consecutive hours, hence causing an inaccuracy of  

  

s3433.0
hr1

s3600
hr 100

s1.0

s
10537.9 8
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Patriot sistemi havada belirli bir açı içindeki kısmın taramasını (araştırma safhasısearch action) 
yapar (1) ve belirli bir süre (1/10 saniye) sonra aynı genişlikteki açı ile tekrar tarama (onama 
safhası-validation action range gate-menzil geçit genişliği belirlenir) yapılır (2). Bu taramalardan 
(yani scud’tan) sinyal gelirse bu sinyaller kayıt edilir. Bu iki taramadan yararlanarak Scud’un 
olası yerini (range gate area) tespit eder/tanımlar ve patriotları oraya yönlendirir (3) (Figure 3). 
 
İsrailliler Patriot Projesi Ofisi’nden aldıkları verileri incelediklerinde sistemin 8 saat sürekli 
çalışınca menzil kapısı aralığında %20’lik bir hata yaptığını anladılar. Bu hata scud’un menzil 
kapısı aralığının merkezinde olmadığını gösteriyordu. Scud menzil aralığının merkezinde ise 
sistem başarılı olabiliyordu. Scud füzesi patriot sisteminin menzilinde ise patriotlar hemen 
ateşleniyordu (Figure 4).  
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Patriot Projesi Ofis çalışanları patriot sisteminin menzil kapısı aralığında %50’lik sapma 
durumunda scudları takip etmediğini belirtmişlerdir. %50’lik menzil kapısı merkezleme hatasına 
20 saat sonra ulaşılmaktaydı. 20 saat sonra radar scud füzelerinin olası yerini yanlış yerde 
gösteriyor ve sistem harekete geçmiyord. Scudlar Patriot sisteminin radarlarının menzil kapısı 
aralığının dışında kalıyordu (Figure 5). 
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The shift calculated in the range gate due to s3433.0  was calculated as 583.61m. For the Patriot 
missile defense system, the target is considered out of range if the shift was going to more than 

m137 . 
Scud’ların hızı yaklaşık 1700 metre/saniye civarındadır (https://pediaview.com/openpedia/Scud).  
Hesaplamadaki kapı aralıklarından kaynaklanan toplam kayma 0.3433 saniye ise bu 
583.61metre’lik bir range-gate (kapı genişliği/menzil geçit genişliği) ile tarama yapılması 
demektir. Oysa Patriot füzeleri hedef 137m’den büyük kapı genişliği dışında ise etkisiz 
kalıyordu.  
(https://www.ima.umn.edu/~arnold/disasters/patriot.html,  
http://fas.org/spp/starwars/gao/im92026.htm) 
Patriot sisteminin sürekli çalışması sonucu elde edilen değerler : 
 

Hours Seconds 
Calculated Time 

(Seconds) 
Inaccuracy  
(Seconds) 

Approximate Shift In 
Range Gate (Meters) 

0 0 0 0 0 

1 3600 3599.9966 .0034 7 

3 28800 28799.9725 .0275 55 

20a 72000 71999.9313 .0687 137 

48 172800 172799.8352 .1648 330 

72 259200 259199.7528 .2472 494 

100b 360000 359999.6667 .3433 687 

a Sistem sürekli çalışırsa 20 saat sonra hedef menzil aralığının dışında kalıyor. 
b Alfa aküleri 100 saat boyunca sürekli çalışırsa 
United States General Accounting Office, GAO/IMTEC-92-26, February 1992. 
 
Q: What is truncation error (Kesme hatası nedir)? 
A: Truncation error is defined as the error caused by truncating a mathematical procedure. For 
example, the Maclaurin series for xe is given as  

....................
!3!2

1
32


xx

xe x  

This series has an infinite number of terms but when using this series to calculate xe , only a 
finite number of terms can be used.  For example, if one uses three terms to calculate xe , then 

.
!2

1
2x

xex   

the truncation error for such an approximation is 

Truncation error = ,
!2

1
2











x
xe x  

       .......................
!4!3

43


xx
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But, how can truncation error (kesme hatası) be controlled in this example? We can use the 
concept (kavram) of relative approximate error to see how many terms need to be considered. 
Assume that one is calculating 2.1e  using the Maclaurin series, then 

...................
!3

2.1

!2

2.1
2.11

32
2.1 e  

Let us assume one wants the absolute relative approximate error to be less than 1%.  In Table 1, 
we show the value of 2.1e , approximate error and absolute relative approximate error as a 
function of the number of terms, n . 

n  2.1e  aE  %a  

1 12.1 e =1 - - 
2 2.112.1 e =2.2 1.2 54.546 

3 
!2

2.1
2.11

2
2.1 e =2.92 0.72 24.658 

4 3.208 0.288 8.9776 
5 3.2944 0.0864 2.6226 
6 3.3151 0.020736 0.62550 

   
Using 6 terms of the series yields a a < 1%. 

Q: Can you give me other examples of truncation error? 
A: In many textbooks, the Maclaurin series is used as an example to illustrate truncation error.  
This may lead you to believe that truncation errors are just chopping a part of the series.  
However, truncation error can take place in other mathematical procedures as well. For example 
to find the derivative of a function, we define 

     
x

xfxxf
xf

x 



0

lim  

But since we cannot use ,0x we have to use a finite value of x , to give 

x

xfxxf
xf




 )()(
)(  

So the truncation error is caused by choosing a finite value of x as opposed to a .0x  
       For example, in finding )3(f   for 2)( xxf  , we have the exact value calculated as follows. 

2)( xxf   
From the definition of the derivative of a function,  

x

xfxxf
xf

x 





)()(
lim)(

0
 

          
x

xxx
x 
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This is the same expression you would have obtained by directly using the formula from your 
differential calculus class 

 1)(  nn nxx
dx

d
 

By this formula for  
2)( xxf   
xxf 2)(   

The exact value of )3(f   is 
32)3( f  

         6  
If we now choose 2.0x , we get 

2.0

)3()2.03(
)3(

ff
f


  

           
2.0

)3()2.3( ff 
  

            =
2.0

32.3 22 
 

            
2.0

924.10 
  

            
2.0

24.1
  

            2.6  
We purposefully chose a simple function 2)( xxf   with value of 2x and 2.0x  because 
we wanted to have no round-off error in our calculations so that the truncation error can be 
isolated.  The truncation error in this example is 

.2.02.66   
Can you reduce the truncate error by choosing a smaller x ? 
Another example of truncation error is the numerical integration of a function, 


b

a

dxxfI )(  

 Exact calculations require us to calculate the area under the curve by adding the area of 
the rectangles as shown in Figure 2.  However, exact calculations requires an infinite number of 
such rectangles.  Since we cannot choose an infinite number of rectangles, we will have 
truncation error. 
 For example, to find  

 dxx
9

3

2 ,  

we have the exact value as 

 
9

3

2dxx
9

3

3

3 









x
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            234  
If we now choose to use two rectangles of equal width to approximate the area (see Figure 2) 
under the curve, the approximate value of the integral  

)69()()36()(
6

2

3

2
9

3

2 
 xx

xxdxx  

                       3)6(3)3( 22   
                       10827   
                       135  

        

y = x
2 
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Figure 2   Plot of 2xy   showing the approximate area under the curve from 3x  to 

9x  using two rectangles. 
 
 Again, we purposefully chose a simple example because we wanted to have no round off 
error in our calculations.  This makes the obtained error purely truncation.  The truncation error 
is 

99135234   
Can you reduce the truncation error by choosing more rectangles as given in Figure 3?  What is 
the truncation error? 
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Figure 3  Plot of 2xy   showing the approximate area under the curve from 

3x  to 9x  using four rectangles. 
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1.3.1 Multiple-Choice Test Chapter 01.03 Sources of Error 
 
1. Truncation error is caused by approximating 

(A) irrational numbers (B) fractions  (C) rational numbers  (D) exact mathematical procedures 
 
2. A computer that represents only 4 significant digits with chopping would calculate 

66.666*33.333 as 
(A)  2220    (B)  2221    (C)  2221.17778    (D)  2222 

 
3. A computer that represents only 4 significant digits with rounding would calculate 

66.666*33.333 as 
(A) 2220       (B) 2221       (C)  2221.17778         (D)  2222 
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4. The truncation error in calculating  2f   for   2xxf   by  

     
h

xfhxf
xf


   

with 2.0h  is 
(A) –0.2      (B) 0.2        (C) 4.0          (D) 4.2 

5. The truncation error in finding 


9

3

3dxx  using LRAM (left end point Riemann 

approximation) with equally portioned points 96303   is 
(A) 648        (B) 756      (C) 972        (D) 1620 

 
6. The number 1/10 is registered in a fixed 6 bit-register with all bits used for the fractional 

part. The difference gets accumulated every 1/10th of a second for one day.  The 
magnitude of the accumulated difference is  
(A) 0.082        (B) 135      (C) 270       (D) 5400 
 

For a complete solution, refer to the links at the end of the book. 
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1.4 Chapter 01.04 Binary Representation  

PRE-REQUISITES 
1. Long Division 

 

OBJECTIVES 
1. convert a base-10 real number to its binary representation, 
2. convert a binary number to an equivalent base-10 number. 

 
After reading this chapter, you should be able to: 
 

3. convert a base-10 real number to its binary representation, 
4. convert a binary number to an equivalent base-10 number. 

 
 In everyday life, we use a number system with a base of 10.  For example, look at the 
number 257.56.  Each digit in 257.56 has a value of 0 through 9 and has a place value.  It can be 
written as 

21012 10610710710510276.257    
In a binary system, we have a similar system where the base is made of only two digits 0 and 1. 
So it is a base 2 system.  A number like (1011.0011) in base-2 represents the decimal number as 

 
1875.11

)21212020()21212021()0011.1011( 10
43210123

2



 

 

in the decimal system. 
 To understand the binary system, we need to be able to convert binary numbers to 
decimal numbers and vice-versa.   
 We have already seen an example of how binary numbers are converted to decimal 
numbers. Let us see how we can convert a decimal number to a binary number. For example take 
the decimal number 11.1875.  First, look at the integer part: 11. 

1. Divide 11 by 2.  This gives a quotient of 5 and a remainder of 1.  Since the remainder 
is 1, 10 a . 

2. Divide the quotient 5 by 2.  This gives a quotient of 2 and a remainder of 1.  Since the 
remainder is 1, 11 a . 

3. Divide the quotient 2 by 2.  This gives a quotient of 1 and a remainder of 0.  Since the 
remainder is 0, 02 a . 

4. Divide the quotient 1 by 2.  This gives a quotient of 0 and a remainder of 1.  Since the 
remainder is , 13 a . 

Since the quotient now is 0, the process is stopped.  The above steps are summarized in Table 1. 
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Table 1   Converting a base-10 integer to binary representation.  
 

 Quotient Remainder 
11/2 5 01 a  

5/2 2 11 a  

2/2 1 20 a  

½ 0 31 a  

Hence 

 
2

2012310

)1011(

)()11(


 aaaa

 

For any integer, the algorithm for finding the binary equivalent is given in the flow chart on the 
next page. 
Now let us look at the decimal part, that is, 0.1875. 

1. Multiply 0.1875 by 2.  This gives 0.375.  The number before the decimal is 0 and the 
number after the decimal is 0.375.  Since the number before the decimal is 0, 01 a . 

2. Multiply the number after the decimal, that is, 0.375 by 2.  This gives 0.75.  The number 
before the decimal is 0 and the number after the decimal is 0.75.  Since the number 
before the decimal is 0, 02 a . 

3. Multiply the number after the decimal, that is, 0.75 by 2.  This gives 1.5.  The number 
before the decimal is 1 and the number after the decimal is 0.5.  Since the number before 
the decimal is 1, 13 a . 

4. Multiply the number after the decimal, that is, 0.5 by 2.  This gives 1.0.  The number 
before the decimal is 1 and the number after the decimal is 0.  Since the number before 
the decimal is 1, 14 a .   

Since the number after the decimal is 0, the conversion is complete.  The above steps are 
summarized in Table 2. 
 
Table 2.  Converting a base-10 fraction to binary representation. 
 

 Number 
Number after 

decimal 
Number before 

decimal 
0.18752 0.375 0.375 10  a  

0.3752 0.75 0.75 20  a  

0.752 1.5 0.5 31  a  

0.52 1.0 0.0 41  a  
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Hence 

 
2

2432110

)0011.0(

)()1875.0(


  aaaa

 

The algorithm for any fraction is given in a flowchart on the next page. 
Having calculated  
 210 )1011()11(    

and  
 210 )0011.0()1875.0(  ,  

we have 

210 )0011.1011()1875.11(  . 

In the above example, when we were converting the fractional part of the number, we were left 
with 0 after the decimal number and used that as a place to stop.  In many cases, we are never 
left with a 0 after the decimal number.  For example, finding the binary equivalent of 0.3 is 
summarized in Table 3. 
 
Table 3.  Converting a base-10 fraction to approximate binary representation. 
 

 Number 
Number after 

decimal 
Number before 

decimal 
0.3 2 0.6 0.6 10  a  

Start 

Input (N)10 

i = 0 

Divide N by 2 to get 
quotient Q & remainder R 

ai = R 

Is Q = 0? 

n = i 
(N)10 = (an. . .a0)2 

STOP 

Integer N to be converted 
to binary format 

i = i+1 

No 

Yes 
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0.6 2 1.2 0.2 21  a  

0.2 2 0.4 0.4 30  a  

0.4 2 0.8 0.8 40  a  

0.8 2 1.6 0.6 51  a  

 
As you can see the process will never end. In this case, the number can only be approximated in 
binary format, that is, 

225432110 )01001.0()()3.0(   aaaaa  

Q: But what is the mathematics behinds this process of converting a decimal number to binary 
format? 
A: Let z  be the decimal number written as 

yxz .  
where  
 x  is the integer part and y  is the fractional part. 
We want to find the binary equivalent of x .  So we can write 
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Start 

Input (F)10 

1i   

Multiply F by 2 to get 
number before decimal, S 
and after decimal, T 

ai = S 

Is T = 0? 

n = i 
(F)10 = (a-1. . .a-n)2 

STOP 

Fraction F to be converted 
to binary format 

1ii   

No 

Yes 
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 0

0
1

1 2...22 aaax n
n

n
n  

  

If we can now find naa .,.,.0 in the above equation then  

20110 )...()( aaax nn   

We now want to find the binary equivalent of y .  So we can write 
m

mbbby 






  2...22 2

2
1

1  

If we can now find mbb  .,.,.1 in the above equation then  

22110 )...()( mbbby   

Let us look at this using the same example as before.   
 

Example 1 
Convert 10)1875.11(  to base 2. 

Solution 
To convert 10)11(  to base 2, what is the highest power of 2 that is part of 11.  That power is 3, as 

823   to give  
3211 3   

What is the highest power of 2 that is part of 3.  That power is 1, as 221   to give 
123 1   

So 
1223211 133   

What is the highest power of 2 that is part of 1.  That power is 0, as 120   to give 
  021   
Hence 

2
012301313

10 )1011(21212021222122)11(   

To convert 10)1875.0(  to the base 2, we proceed as follows.  What is the smallest negative power 

of 2 that is less than or equal to 0.1875.  That power is 3  as 125.02 3  . 
So 

0625.021875.0 3    
What is the next smallest negative power of 2 that is less than or equal to 0.0625.  That power is 

4  as 0625.02 4  . 
So 

43 221875.0    
Hence 

2
4321433

10 )0011.0(21212020220625.02)1875.0(    

Since 

210 )1011()11(   

and 

210 )0011.0()1875.0(   

we get  



32 
 

210 )0011.1011()1875.11(   

Can you show this algebraically for any general number? 
 

Example 2 
Convert 10)875.13(  to base 2. 

Solution 
For 10)13( , conversion to binary format is shown in Table 4. 

 
Table 4.  Conversion of base-10 integer to binary format. 

 Quotient Remainder 
13/2 6 01 a  

6/2 3 10 a  

3/2 1 21 a  

1/2 0 31 a  

 
So  
 210 )1101()13(  . 

Conversion of 10)875.0(  to binary format is shown in Table 5. 

 
Table 5.  Converting a base-10 fraction to binary representation. 
 

 Number 
Number after 

decimal 
Number before 

decimal 
0.8752 1.75 0.75 11  a  

0.752 1.5 0.5 21  a  

0.52 1.0 0.0 31  a  

 
So  
 210 )111.0()875.0(   

Hence 

210 )111.1101()875.13(   
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1.4.1 Multiple-Choice Test Chapter 01.04  Binary Representation 
 
1.     210 ?25   

(A) 100110        (B) 10011         (C) 11001        (D) 110010 
 
2.    102 ?1101   

(A) 3          (B) 13       (C) 15          (D) 26 
 
3.    210 ?.?375.25   

(A) 100110.011        (B) 11001.011       (C) 10011.0011      (D) 10011.110 
 

4. Representing 2  in a fixed point register with 2 bits for the integer part and 3 bits for the 
fractional part gives a round-off error of most nearly 

(A) -0.085709         (B) 0.0392         (C) 0.1642          (D) 0.2892 
 
5. An engineer working for the Department of Defense is writing a program that transfers 

non-negative real numbers to integer format.  To avoid overflow problems, the maximum 
non-negative integer that can be represented in a 5-bit integer word is 

(A) 16         (B) 31         (C) 63         (D) 64 
 
6. For a numerically controlled machine, integers need to be stored in a memory location.  

The minimum number of bits needed for an integer word to represent all integers between 
0 and 1024 is 

(A) 8          (B) 9          (C) 10         (D) 11 
 

For a complete solution, refer to the links at the end of the book. 
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1.5 Chapter 01.05 Floating Point Representation 
 

PRE-REQUISITES 
1. Know how to represent numbers in binary format (Binary representation of numbers).  
2. Know the definition of true error (Measuring Errors) 
 

 

OBJECTIVES 
 

1. convert a base-10 number to a binary floating point representation, 
2. convert a binary floating point number to its equivalent base-10 number, 
3. understand the IEEE-754 specifications of a floating point representation in a typical 

computer, 
4. calculate the machine epsilon of a representation. 
 
After reading this chapter, you should be able to: 

2. convert a base-10 number to a binary floating point representation, 
3. convert a binary floating point number to its equivalent base-10 number, 
4. understand the IEEE-754 specifications of a floating point representation in a typical 

computer, 
5. calculate the machine epsilon of a representation. 

 
Consider an old time cash register that would ring any purchase between 0 and 999.99 units of 
money. Note that there are five (not six) working spaces in the cash register (the decimal number 
is shown just for clarification).  
Q: How will the smallest number 0 be represented? 
A: The number 0 will be represented as 

0 0 0 . 0 0 
 
Q: How will the largest number 999.99 be represented? 
A: The number 999.99 will be represented as 

9 9 9 . 9 9 
 
Q: Now look at any typical number between 0 and 999.99, such as 256.78.  How would it be 
represented? 
A: The number 256.78 will be represented as 

 2 5 6 . 7 8 
 
Q: What is the smallest change between consecutive numbers? 
A: It is 0.01, like between the numbers 256.78 and 256.79.   
 
Q: What amount would one pay for an item, if it costs 256.789? 
A:  The amount one would pay would be rounded off to 256.79 or chopped to 256.78.  In either 
case, the maximum error in the payment would be less than 0.01.   
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Q: What magnitude of relative errors would occur in a transaction? 
A: Relative error for representing small numbers is going to be high, while for large numbers the 
relative error is going to be small.   
 For example, for 256.786, rounding it off to 256.79 accounts for a round-off error of 

004.079.256786.256  .  The relative error in this case is 

100
786.256

004.0



t %001558.0 . 

 For another number, 3.546, rounding it off to 3.55 accounts for the same round-off error 
of 004.055.3546.3  .  The relative error in this case is 

100
546.3

004.0



t %11280.0 . 

 
Q: If I am interested in keeping relative errors of similar magnitude for the range of numbers, 
what alternatives do I have? 
A: To keep the relative error of similar order for all numbers, one may use a floating-point 
representation of the number.  For example, in floating-point representation, a number  
 256.78 is written as 2105678.2  ,  
 0.003678 is written as ,10678.3 3  and  

 789.256  is written as 21056789.2  .  
The general representation of a number in base-10 format is given as 

exponent10  mantissa sign   
or for a number y , 

emy 10  
Where 

1-or  1  number,   theofsign   
10   1 mantissa,   mm  

exponent integer   e (also called ficand) 
Let us go back to the example where we have five spaces available for a number.  Let us also 
limit ourselves to positive numbers with positive exponents for this example.  If we use the same 
five spaces, then let us use four for the mantissa and the last one for the exponent.  So the 
smallest number that can be represented is 1 but the largest number would be 910999.9  .  By 
using the floating-point representation, what we lose in accuracy, we gain in the range of 
numbers that can be represented.  For our example, the maximum number represented changed 
from 99.999  to 910999.9  .   
 What is the error in representing numbers in the scientific format?  Take the previous 
example of 256.78.  It would be represented as 210568.2   and in the five spaces as 
 

2 5 6 8 2 
Another example, the number 78.576329  would be represented as 510763.5   and in five spaces 
as 

5 7 6 3 5 
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 So, how much error is caused by such representation.  In representing 256.78, the round 
off error created is 020825678256 ...  , and the relative error is  

%0077888.0100
78.256

02.0



t ,  

In representing 78.576329 , the round off error created is 78.2910763.578.576329 5  , and 
the relative error is  

%0051672.0100
78.576329

78.29
t .   

What you are seeing now is that although the errors are large for large numbers, but the relative 
errors are of the same order for both large and small numbers.  
 
Q: How does this floating-point format relate to binary format?   
A: A number y would be written as 

emy 2   
Where 

 = sign of number (negative or positive – use 0 for positive and 1 for negative), 
m = mantissa,    22 101  m  , that is,    1010 21  m , and 

e = integer exponent. 
 

Example 1 
Represent  1075.54 in floating point binary format.  Assuming that the number is written to a 

hypothetical word that is 9 bits long where the first bit is used for the sign of the number, the 
second bit for the sign of the exponent,  the next four bits for the mantissa, and the next three bits 
for the exponent,  
 

Solution 

    10)5(21011011.1)11.110110(75.54 2210   

The exponent 5 is equivalent in binary format as  
   210 1015   

Hence  

    2)101(21011011.175.54 210   

The sign of the number is positive, so the bit for the sign of the number will have zero in it. 
0  

The sign of the exponent is positive.  So the bit for the sign of the exponent will have zero in it. 
The mantissa 

1011m   
(There are only 4 places for the mantissa, and the leading 1 is not stored as it is always expected 
to be there), and 
the exponent 

101e . 
we have the representation as 
 



37 
 

0 0 1 0 1 1 1 0 1 
 

Example 2  
What number does the below given floating point format 

0 1 1 0 1 1 1 1 0 
represent in base-10 format.  Assume a hypothetical 9-bit word, where the first bit is used for the 
sign of the number, second bit for the sign of the exponent, next four bits for the mantissa and 
next three for the exponent.  

Solution 
Given 

Bit Representation Part of Floating point number 
0 Sign of number 
1 Sign of exponent 
1011 Magnitude of mantissa 
110 Magnitude of exponent 

 
The first bit is 0, so the number is positive.   
The second bit is 1, so the exponent is negative. 
The next four bits, 1011, are the magnitude of the mantissa, so  

     1010
43210

2 6875.121212021211011.1  m  

The last three bits, 110, are the magnitude of the exponent, so 
     1010

012
2 6202121110 e  

The number in binary format then is  

    2110
2 21011.1   

The number in base-10 format is  
= 626875.1  0.026367 

 

Example 3 
A machine stores floating-point numbers in a hypothetical 10-bit binary word.  It employs the 
first bit for the sign of the number, the second one for the sign of the exponent, the next four for 
the exponent, and the last four for the magnitude of the mantissa. 

a) Find how 0.02832 will be represented in the floating-point 10-bit word. 
b) What is the decimal equivalent of the 10-bit word representation of part (a)? 

Solution 
a) For the number, we have the integer part as 0 and the fractional part as 0.02832 
Let us first find the binary equivalent of the integer part 

Integer part    210 00   

Now we find the binary equivalent of the fractional part 
 Fractional part:   202832.   

    205664.0   

    211328.0   

    222656.0   
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    245312.0   

    290624.0   

    281248.1   

    262496.1   

    224992.1   

    249984.0   

    299968.0   

    99936.1  
Hence 

   210 10000011100.002832.0   

   6
2 211001.1   

   6
2 21100.1   

The binary equivalent of exponent is found as follows 
 Quotient Remainder 
6/2 3 00 a  

3/2 1 11 a  

1/2 0 21 a  
So 

   210 1106   

So 

     2110
210 21100.102832.0   

                      20110
2 21100.1   

  
Part of Floating point number Bit Representation 
Sign of number is positive 0 
Sign of exponent is negative 1 
Magnitude of the exponent 0110 
Magnitude of mantissa 1100 

 
The ten-bit representation bit by bit is 

0 1 0 1 1 0 1 1 0 0 
 
b) Converting the above floating point representation from part (a) to base 10 by following 
Example 2 gives 

   20110
2 21100.1   

 43210 2020212121     0123 202121202    

   106
10 275.1   

02734375.0  
Q: How do you determine the accuracy of a floating-point representation of a number? 
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A: The machine epsilon, mach  is a measure of the accuracy of a floating point representation and 

is found by calculating the difference between 1 and the next number that can be represented.  
For example, assume a 10-bit hypothetical computer where the first bit is used for the sign of the 
number, the second bit for the sign of the exponent, the next four bits for the exponent and the 
next four for the mantissa. 
We represent 1 as 

0 0 0 0 0 0 0 0 0 0 
and the next higher number that can be represented is  

0 0 0 0 0 0 0 0 0 1 
The difference between the two numbers is  

    22 )0000(
2

)0000(
2 20000.120001.1   

 20001.0  

10
4 )21(    

10)0625.0( .   

The machine epsilon is  
0625.0mach .   

The machine epsilon, mach is also simply calculated as two to the negative power of the number 

of bits used for mantissa.  As far as determining accuracy, machine epsilon, mach  is an upper 

bound of the magnitude of relative error that is created by the approximate representation of a 
number (See Example 4).   
 

Example 4 
A machine stores floating-point numbers in a hypothetical 10-bit binary word.  It employs the 
first bit for the sign of the number, the second one for the sign of the exponent, the next four for 
the exponent, and the last four for the magnitude of the mantissa.  Confirm that the magnitude of 
the relative true error that results from approximate representation of 0.02832 in the 10-bit 
format (as found in previous example) is less than the machine epsilon.  

Solution 
From Example 2, the ten-bit representation of 0.02832 bit-by-bit is 

0 1 0 1 1 0 1 1 0 0 
Again from Example 2, converting the above floating point representation to base-10 gives 

   20110
2 21100.1     106

10 275.1   1002734375.0  

The absolute relative true error between the number 0.02832 and its approximate representation 
0.02734375 is 

02832.0

02734375.002832.0 
t 034472.0  

which is less than the machine epsilon for a computer that uses 4 bits for mantissa, that is, 

0625.0

2 4


 

mach
. 

Q: How are numbers actually represented in floating point in a real computer? 
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A: In an actual typical computer, a real number is stored as per the IEEE-754 (Institute of 
Electrical and Electronics Engineers) floating-point arithmetic format.  To keep the discussion 
short and simple, let us point out the salient features of the single precision format. 
 A single precision number uses 32 bits.   
 A number y is represented as 

  eaaay 2.1 2321    

where 
 = sign of the number (positive or negative) 

23,..,1 1,or  0only  becan  mantissa,  theof entries  iai  

e =the exponent 
 Note the 1 before the radix point. 
 The first bit represents the sign of the number (0 for positive number and 1 for a negative 

number).   
 The next eight bits represent the exponent.  Note that there is no separate bit for the sign 

of the exponent.  The sign of the exponent is taken care of by normalizing by adding 127 
to the actual exponent.  For example in the previous example, the exponent was 6.  It 
would be stored as the binary equivalent of 1336127  .  Why is 127 and not some 
other number added to the actual exponent?  Because in eight bits the largest integer that 
can be represented is   25511111111 2  , and halfway of 255 is 127.  This allows 

negative and positive exponents to be represented equally.  The normalized (also called 
biased) exponent has the range from 0 to 255, and hence the exponent e has the range of 

128127  e .   
 If instead of using the biased exponent, let us suppose we still used eight bits for the 

exponent but used one bit for the sign of the exponent and seven bits for the exponent 
magnitude.  In seven bits, the largest integer that can be represented is   1271111111 2   

in which case the exponent e  range would have been smaller, that is, 127127  e .  
By biasing the exponent, the unnecessary representation of a negative zero and positive 
zero exponent (which are the same) is also avoided.   

 Actually, the biased exponent range used in the IEEE-754 format is not 0 to 255, but 1 to 
254.  Hence, exponent e  has the range of 127126  e .  So what are 127e  and 

128e  used for?  If 128e  and all the mantissa entries are zeros, the number is   ( 
the sign of infinity is governed by the sign bit), if 128e  and the mantissa entries are not 
zero, the number being represented is Not a Number (NaN).  Because of the leading 1 in 
the floating point representation, the number zero cannot be represented exactly.  That is 
why the number zero (0) is represented by 127e  and all the mantissa entries being 
zero.   

 The next twenty-three bits are used for the mantissa. 
 The largest number by magnitude that is represented by this format is 

    1272322210 22121212121    381040.3   
  The smallest number by magnitude that is represented, other than zero, is 
    1262322210 22020202021    381018.1   
 Since 23 bits are used for the mantissa, the machine epsilon, 
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7

23

1019.1

2






mach . 

 
Q: How are numbers represented in floating point in double precision in a computer? 
A: In double precision IEEE-754 format, a real number is stored in 64 bits.   
 The first bit is used for the sign,  
 the next 11 bits are used for the exponent, and  
 the rest of the bits, that is 52, are used for mantissa.   

Can you find in double precision the  
 range of the biased exponent, 
 smallest number that can be represented,  
 largest number that can be represented, and 
 machine epsilon? 
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1.5.1 Multiple-Choice Test Chapter 01.05 Floating Point Representation 
 
1. A hypothetical computer stores real numbers in floating point format in 8-bit words.  The 

first bit is used for the sign of the number, the second bit for the sign of the exponent, the 
next two bits for the magnitude of the exponent, and the next four bits for the magnitude 
of the mantissa.  The number 718.2e  in the 8-bit format is () 
(A) 00010101     (B) 00011010     (C) 00010011       (D) 00101010 

 
2. A hypothetical computer stores real numbers in floating point format in 8-bit words.  The 

first bit is used for the sign of the number, the second bit for the sign of the exponent, the 
next two bits for the magnitude of the exponent, and the next four bits for the magnitude 
of the mantissa.  The number that 2)10100111(  represented in the above given 8-bit 
format is 
(A) -5.75        (B) -2.875      (C) -1.75      (D) -0.359375 

 
3. A hypothetical computer stores floating point numbers in 8-bit words.  The first bit is 

used for the sign of the number, the second bit for the sign of the exponent, the next two 
bits for the magnitude of the exponent, and the next four bits for the magnitude of the 
mantissa.  The machine epsilon is most nearly 
(A) 82          (B) 42       (C) 32         (D) 22  

 
4. A machine stores floating point numbers in 7-bit word.  The first bit is used for the sign 

of the number, the next three for the biased exponent and the next three for the magnitude 
of the mantissa.  The number 2)0010110(  represented in base-10 is 
(A) 0.375       (B) 0.875       (C) 1.5        (D) 3.5 
 

5. A machine stores floating point numbers in 7-bit words.  The first bit is stored for the 
sign of the number, the next three for the biased exponent and the next three for the 
magnitude of the mantissa.  You are asked to represent 33.35 in the above word.  The 
error you will get in this case would be 
(A) underflow      (B) overflow      (C) NaN       (D) No error will be registered. 
 

6. A hypothetical computer stores floating point numbers in 9-bit words.  The first bit is 
used for the sign of the number, the second bit for the sign of the exponent, the next three 
bits for the magnitude of the exponent, and the next four bits for the magnitude of the 
mantissa.  Every second, the error between 0.1 and its binary representation in the 9-bit 
word is accumulated.  The accumulated error after one day most nearly is 
(A) 0.002344     (B) 20.25       (C) 202.5      (D) 8640 
 

For a complete solution, refer to the links at the end of the book. 
 



43 
 

1.6 Chapter 01.06 Propagation of Errors 
 

PRE-REQUISITES 
 

1. Know the definition of first derivative of a function (Primer for Differential Calculus). 
2. Know how to find partial derivatives 
 

OBJECTIVES 
 

1. Find how errors propagate in arithmetic operations. 
2. Quantify the errors based on individual components of an arithmetic operation or a 

mathematical formula. 
 
 
If a calculation is made with numbers that are not exact, then the calculation itself will have an 
error.  How do the errors in each individual number propagate through the calculations. Let’s 
look at the concept via some examples. 
 

Example 1 
Find the bounds for the propagation error in adding two numbers. For example if one is 
calculating YX  where  

05.05.1 X ,  
04.04.3 Y  . 

Solution 
By looking at the numbers, the maximum possible value of X and Y are 

55.1X  and 44.3Y  
Hence 

99.444.355.1 YX   
is the maximum value of YX  . 
The minimum possible value of X and Y are 

45.1X  and 36.3Y .  
Hence  

36.345.1 YX  
            81.4  
is the minimum value of YX  .  
Hence 

.99.481.4  YX  
 
One can find similar intervals of the bound for the other arithmetic operations of 

YXYXYX /and,*, .  What if the evaluations we are making are function evaluations instead?  
How do we find the value of the propagation error in such cases.  
 If  f  is a function of several variables nn XXXXX ,,.......,,, 1321  , then the maximum 

possible value of the error in f  is 
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Example 2  
The strain in an axial member of a square cross-section is given by 

Eh

F
2

  

where  
F =axial force in the member, N 
h = length or width of the cross-section, m 
E =Young’s modulus, Pa 

Given 
N9.072F  

mm1.04 h  
GPa5.170E  

Find the maximum possible error in the measured strain. 
Solution 

)1070()104(

72
923 

 
 

   610286.64   
   286.64  

E
E

h
h

F
F













  

EhF 2
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933923
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)1070()104(

72

0001.0
)1070()104(

722
9.0

)1070()104(
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                 667 103776.1102143.3100357.8    
                 6103955.5   
      3955.5  
Hence 

)3955.5286.64(    
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implying that the axial strain,   is between  8905.58  and 6815.69  
 

Example 3  
Subtraction of numbers that are nearly equal can create unwanted inaccuracies.  Using the 
formula for error propagation, show that this is true. 

Solution 
Let 

yxz   
Then 

y
y

z
x

x

z
z 








  

    yx  )1()1(  

   yx   

So the absolute relative change is 

yx

yx

z

z







 

As x  and y  become close to each other, the denominator becomes small and hence create large 
relative errors. 
For example if 

001.02 x  
001.0003.2 y  

|003.22|

001.0001.0







z

z
 

        = 0.6667 
        = 66.67% 
 
INTRODUCTION TO NUMERICAL METHODS 
Topic Propagation of Errors 
Summary Textbook notes on how errors propagate in arithmetic and 

function evaluations 
Major All Majors of Engineering 
Authors Autar Kaw 
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Web Site http://numericalmethods.eng.usf.edu 

 



46 
 

 
1.6.1 Multiple-Choice Test Chapter 01.06 Propagation of Errors 
 
1. If 05.056.3 A  and 04.025.3 B , the values of BA  are 

(A) 90.681.6  BA   (B) 90.672.6  BA  

(C) 81.681.6  BA   (D) 91.671.6  BA  
 
2. A number A  is correctly rounded to 3.18 from a given number B .  Then CBA  , 

where C  is 
(A) 0.005        (B) 0.01     (C) 0.18         (D) 0.09999 

 
3. Two numbers A   and B  are approximated as C  and D , respectively.  The relative error 

in DC   is given by  

(A) 





 







 

B

DB

A

CA
 

(B) 
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B

DB

A

CA
 

(C) 





 







 







 







 

B

DB

A

CA

B

DB

A

CA
 

(D) 





 







 

B

DB

A

CA
 

4. The formula for normal strain in a longitudinal bar is given by 
AE

F
  where 

  F = normal force applied 
  A = cross-sectional area of the bar 
  E = Young’s modulus 
 If N5.050 F , 2m002.02.0 A , and Pa10110210 99 E , the maximum 
 error in the measurement of strain is 

(A) 
1210

              (B) 
111095.2          (C) 

91022.1            (D) 
91019.1       

 
5. A wooden block is measured to be 60 mm by a ruler and the measurements are 

considered to be good to 1/4th of a millimeter.  Then in the measurement of 60 mm, we 
have ________ significant digits. 

(A) 0                 (B) 1                  (C) 2                   (D) 3 
 
6. In the calculation of the volume of a cube of nominal size "5 , the uncertainty in the 

measurement of each side is 10%.  The uncertainty in the measurement of the volume 
would be 

(A) 5.477%      (B) 10.00%         (C) 17.32%        (D) 30.00% 
 
For a complete solution, refer to the links at the end of the book. 
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1.7 Chapter 01.07 Taylor’s Theorem Revisited 

 

PRE-REQUISITES 
1. Know the definition of derivatives of a function (Primer for Differential Calculus). 
2. Know the derivatives of trigonometric and transcendental functions (Primer for 

Differential Calculus). 

OBJECTIVES 
1. understand the basics of Taylor’s theorem, 
2. write transcendental (karışık) and trigonometric functions as Taylor’s polynomial, 
3. use Taylor’s theorem to find the values of a function at any point, given the values of the 

function and all its derivatives at a particular point, 
4. calculate errors and error bounds of approximating a function by Taylor series, and 
5. revisit the chapter whenever Taylor’s theorem is used to derive or explain numerical 

methods for various mathematical procedures. 
 

After reading this chapter, you should be able to 
 

1. understand the basics of Taylor’s theorem, 
2. write transcendental and trigonometric functions as Taylor’s polynomial, 
3. use Taylor’s theorem to find the values of a function at any point, given the values of the 

function and all its derivatives at a particular point, 
4. calculate errors and error bounds of approximating a function by Taylor series, and 
5. revisit the chapter whenever Taylor’s theorem is used to derive or explain numerical 

methods for various mathematical procedures. 
 
The use of Taylor series exists in so many aspects (yönleri) of numerical methods that it is 
imperative to devote (uzun süreçte) a separate chapter to its review and applications (Taylor 
serilerinin bütün yönleriyle sayısal yöntemlerde kullanıldığını görmek için ayrıntılı özetinin ve 
uygulamalarının ayrı bir bölüm halinde hazırlanması gerekmektedir). For example, you must 
have come across expressions such as (aşağıdaki ifadelerle karşılaşabilirsiniz) 


!6!4!2

1)cos(
642 xxx

x                               (1) 


!7!5!3

)sin(
753 xxx

xx                               (2) 


!3!2

1
32 xx

xex                                (3)  

All the above expressions are actually a special case (özel durumu) of Taylor series called the 
Maclaurin series.  Why are these applications of Taylor’s theorem important for numerical 
methods?  Expressions such as given in Equations (1), (2) and (3) give you a way to find the 
approximate values of these functions by using the basic arithmetic operations of addition, 
subtraction, division, and multiplication (toplama, çıkarma, çarpma ve bölme gibi basit aritmetik 
işlemleriyle fonksiyonların – iki sayı sisteminde işlem yapılabilecek şekilde - yazılması sağlanır).   
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Example 1 
Find the value of 25.0e  using the first five terms of the Maclaurin series (Maclaurin serisinin ilk 
beş terimi ile 25.0e  değerini hesaplayınız ). 

Solution 
The first five terms of the Maclaurin series for xe is 

!4!3!2
1

432 xxx
xex   

!4

25.0

!3

25.0

!2

25.0
25.01

432
25.0 e 2840.1  

The exact value of 25.0e  up to 5 significant digits is also 1.2840.   
But the above discussion and example do not answer our question of what a Taylor series is.   
Here it is, for a function  xf  

          





 32

!3!2
h

xf
h

xf
hxfxfhxf                  (4) 

provided all derivatives of  xf  exist and are continuous between x  and hx  .   
 

What does this mean in plain English?   
As Archimedes would have said (without the fine print), “Give me the value of the function at a 
single point, and the value of all (first, second, and so on) its derivatives, and I can give you the 
value of the function at any other point”.   
            It is very important to note that the Taylor series is not asking for the expression of the 
function and its derivatives, just the value of the function and its derivatives at a single point.   
           Now the fine print:  Yes, all the derivatives have to exist and be continuous between x  
(the point where you are) to the point, hx   where you are wanting to calculate the function at.  
However, if you want to calculate the function approximately by using the thn  order Taylor 
polynomial, then thndst n,....,2,1 derivatives need to exist and be continuous in the closed interval 

],[ hxx  , while the thn )1(   derivative needs to exist and be continuous in the open interval 
),( hxx  . 

 

Example 2 

Take    xxf sin , we all know the value of 1
2

sin 







.  We also know the    xxf cos  and 

0
2

cos 







.  Similarly   )sin(xxf   and 1
2

sin 







.  In a way, we know the value of  xsin  

and all its derivatives at 
2


x .  We do not need to use any calculators, just plain differential 

calculus and trigonometry would do.  Can you use Taylor series and this information to find the 
value of  2sin ? 

Solution 
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2


x  

2 hx  
xh  2  

2
2


  

42920.0  
So 

          
!4

)(
!3!2

432 h
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h
xf

h
xfhxfxfhxf  
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x  

42920.0h  

   xxf sin , 
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f 1  

   xxf cos , 0
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   xxf sin , 1
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f  

  )cos(xxf  , 0
2







 

f  

  )sin(xxf  , 1
2







 

f  

Hence 










































 

!42!32!22222

432 h
f

h
f

h
fhffhf


 

        





 

!4

42920.0
1

!3

42920.0
0

!2

42920.0
142920.00142920.0

2

432
f  

        00141393.00092106.001  
       90931.0  
The value of  2sin  I get from my calculator is 90930.0 which is very close to the value I just 
obtained.  Now you can get a better value by using more terms of the series.  In addition, you can 
now use the value calculated for  2sin  coupled with the value of  2cos  (which can be 

calculated by Taylor series just like this example or by using the 1cossin 22  xx  identity) to 
find value of  xsin  at some other point.  In this way, we can find the value of  xsin  for any 

value from 0x  to 2  and then can use the periodicity of  xsin , that is 

    ,2,1,2sinsin  nnxx   to calculate the value of  xsin   at any other point. 
 

Example 3 
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Derive the Maclaurin series of   
!7!5!3

sin
753 xxx

xx  

Solution 

In the previous example, we wrote the Taylor series for  xsin  around the point 
2


x .  

Maclaurin series is simply a Taylor series for the point 0x . 
   xxf sin ,   00 f  

   xxf cos ,   10 f  

   xxf sin ,   00 f  

   xxf cos ,   10 f  

   xxf sin ,   00 f  

  )cos(xxf  ,   10 f  
  
Using the Taylor series now, 

              
54!3!2

5432 h
xf

h
xf

h
xf

h
xfhxfxfhxf  

              
5

0
4

0
!3

0
!2

0000
5432 h

f
h

f
h

f
h

fhffhf  

              
5

0
4

0
!3

0
!2

000
5432 h

f
h

f
h

f
h

fhffhf  

          
5

1
4

0
!3

1
!2

010
5432 hhhh

h  

        
!5!3

53 hh
h  

So 

  
!5!3

53 xx
xxf  

  
!5!3

sin
53 xx

xx  

 

Example 4 
Find the value of  6f  given that   1254 f ,   744 f ,   304 f ,   64 f  and all other 

higher derivatives of  xf  at 4x  are zero. 

Solution 

          
!3!2

32 h
xf

h
xfhxfxfhxf  

4x  
46 h  

     2  
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Since fourth and higher derivatives of  xf  are zero at 4x . 

         
!3

2
4

!2

2
424424

32

fffff   

    


















!3

2
6

!2

2
302741256

32

f  

        860148125  341  
Note that to find  6f  exactly, we only needed the value of the function and all its derivatives at 
some other point, in this case, 4x .  We did not need the expression for the function and all its 
derivatives.  Taylor series application would be redundant if we needed to know the expression 
for the function, as we could just substitute 6x  in it to get the value of  6f . 
             Actually the problem posed above was obtained from a known function 
  523 23  xxxxf  where   1254 f ,   744 f ,   304 f ,   64 f , and all other 

higher derivatives are zero. 
 

Error in Taylor Series 
As you have noticed, the Taylor series has infinite terms.  Only in special cases such as a finite 
polynomial does it have a finite number of terms.  So whenever you are using a Taylor series to 
calculate the value of a function, it is being calculated approximately.   
 
The Taylor polynomial of order n  of a function )(xf  with )1( n  continuous derivatives in the 
domain ],[ hxx   is given by  

             hxR
n

h
xf

h
xfhxfxfhxf n

n
n 

!!2
''

2

  

where the remainder is given by 

       cf
n

h
hxR n

n

n
1

1

)!1(





 . 

where 
hxcx   

that is, c  is some point in the domain  hxx , . 
 

Example 5 
The Taylor series for xe at point 0x  is given by 


!5!4!3!2

1
5432 xxxx

xe x  

a) What is the truncation (true) error in the representation of 1e  if only four terms of the series 
are used?   
b) Use the remainder theorem to find the bounds of the truncation error. 

Solution 
a) If only four terms of the series are used, then 
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!3!2
1

32 xx
xe x   

!3

1

!2

1
11

32
1 e 66667.2  

The truncation (true) error would be the unused terms of the Taylor series, which then are 


!5!4

54 xx
Et  

      
!5

1

!4

1 54

0516152.0  

b) But is there any way to know the bounds of this error other than calculating it directly?  
Yes,  

           hxR
n

h
xfhxfxfhxf n

n
n 

!
  

where 

   
 

   cf
n

h
hxR n

n

n
1

1

!1





 , hxcx  , and  

c  is some point in the domain  hxx , .  So in this case, if we are using four terms of the Taylor 

series, the remainder is given by  3,0  nx  

   
 

   cfR 13
13

3 !13

1
10 




  

             cf 4

!4

1
  

          
24

ce
  

Since  
hxcx   
100  c  

10  c  
The error is bound between 

 
24

1
24

1

3

0 e
R

e
  

 
24

1
24

1
3

e
R   

  113261.01041667.0 3  R  

So the bound of the error is less than 113261.0  which does concur with the calculated error of 
0516152.0 .  

 

Example 6 
The Taylor series for xe at point 0x  is given by 
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!5!4!3!2

1
5432 xxxx

xe x  

As you can see in the previous example that by taking more terms, the error bounds decrease and 
hence you have a better estimate of 1e .  How many terms it would require to get an 
approximation of 1e  within a magnitude of true error of less than 610 ? 

Solution 
Using  1n  terms of the Taylor series gives an error bound of  

   
 

   cf
n

h
hxR n

n

n
1

1

!1





  

xexfhx  )(,1,0  

   
 

   cf
n

R n
n

n
1

1

!1

1
1 




  

          
 
 

c
n

e
n !1

1 1






 

Since  
hxcx   
100  c  

10  c  

 
)!1(

1
)!1(

1




 n

e
R

n n  

So if we want to find out how many terms it would require to get an approximation of 1e  within 
a magnitude of true error of less than 610 , 

610
)!1(


n

e
 

en 610)!1(   

310)!1( 6 n   (as we do not know the value of e but it is less than 3). 
9n  

So 9 terms or more will get 1e  within an error of 610  in its value.   
 
 We can do calculations such as the ones given above only for simple functions.  To do a 
similar analysis of how many terms of the series are needed for a specified accuracy for any 
general function, we can do that based on the concept of absolute relative approximate errors 
discussed in Chapter 01.02 as follows. 
 We use the concept of absolute relative approximate error (see Chapter 01.02 for details), 
which is calculated after each term in the series is added.  The maximum value of m , for which 
the absolute relative approximate error is less than m 2105.0 % is the least number of significant 
digits correct in the answer.  It establishes the accuracy of the approximate value of a function 
without the knowledge of remainder of Taylor series or the true error. 
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INTRODUCTION TO NUMERICAL METHODS  
Topic Taylor Theorem Revisited 
Summary These are textbook notes on Taylor Series 
Major All engineering majors 
Authors Autar Kaw 
Date Aralık 8, 2016 
Web Site http://numericalmethods.eng.usf.edu 

 
 
1.7.1 Multiple-Choice Test Chapter 01.07 Taylors Series Revisited 
 
1. The coefficient of the 5x  term in the Maclaurin polynomial for  x2sin  is 

(A) 0                (B) 0.0083333            (C) 0.016667           (D) 0.26667 
 
2. Given   63 f ,   83 f ,   113 f , and that all other higher order derivatives of 

 xf  are zero at 3x , and assuming the function and all its derivatives exist and are 

continuous between 3x  and 7x , the value of  7f  is 
(A) 38.000         (B) 79.500               (C) 126.00               (D) 331.50 

 

3. Given that  xy  is the solution to 23  y
dx

dy
, 3)0( y  the value of  2.0y  from a 

second order Taylor polynomial written around 0x  is 
(A) 4.400           (B) 8.800                (C) 24.46            (D) 29.00 

 

4. The series  





0

2

4
)!2(

1
n

n
n

n

n

x
 is a Maclaurin series for the following function 

(A)  xcos             (B)  x2cos            (C)  xsin        (D)  x2sin  
 
5. The function  

   
x

t dtexerf
0

22


 

is called the error function.  It is used in the field of probability and cannot be calculated 
exactly for finite values of x .  However, one can expand the integrand as a Taylor 
polynomial and conduct integration.  The approximate value of  0.2erf  using the first 
three terms of the Taylor series around 0t  is 

(A) -0.75225          (B) 0.99532          (C) 1.5330          (D) 2.8586 
 
6. Using the remainder of Maclaurin polynomial of thn order for  xf  defined as 

     
   xcncf

n

x
xR n

n

n 


 


0  ,0    ,
!1

1
1
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 the least order of the Maclaurin polynomial required to get an absolute true error of at 
most 610  in the calculation of  1.0sin  is (do not use the exact value of )1.0sin( or 
cos(0.1) to find the answer, but the knowledge that 1)sin( |x|  and 1|)cos(| x ). 

(A) 3             (B) 5                (C) 7              (D) 9 
 
For a complete solution, refer to the links at the end of the book. 
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2 Chapter 02.01 Primer on Differentiation (Diferensiyelin başlangıç bilgileri) 

 

PRE-REQUISITES 
1. High School Algebra, Trigonometry and Geometry. 

 

OBJECTIVES 
1. understand the basics of differentiation, 
2. relate the slopes (eğim) of the secant line (kiriş çizgisi) and tangent line (teğet çizgisi) to 

the derivative of a function, 
3. find derivatives of polynomial, trigonometric and transcendental functions, 
4. use rules of differentiation to differentiate functions, 
5. find maxima and minima of a function, and 
6. apply concepts of differentiation to real world problems. 

 
After reading this chapter, you should be able to: 
 

1. understand the basics of differentiation, 
2. relate the slopes of the secant line and tangent line to the derivative of a function, 
3. find derivatives of polynomial, trigonometric and transcendental functions, 
4. use rules of differentiation to differentiate functions, 
5. find maxima and minima of a function, and 
6. apply concepts of differentiation to real world problems. 

  
 In this primer (bu başlangıçta, girişte), we will review the concepts of differentiation you 
learned in calculus (matematik derslerinden gördüğünüz diferensiyel kavramları konusunda 
temel düzeyde kavramlar gözden geçirilecektir). Mostly those concepts are reviewed that are 
applicable in learning about numerical methods. These include the concepts of the secant line to 
learn about numerical differentiation of functions, the slope of a tangent line as a background to 
solving nonlinear equations using the Newton-Raphson method, finding maxima and minima of 
functions as a means of optimization, the use of the Taylor series to approximate functions, etc. 
  
2.1 Introduction 
 The derivative of a function represents the rate of change of a variable with respect to 
another variable. For example, the velocity of a body is defined as the rate of change of the 
location of the body with respect to time.  The location is the dependent variable while time is 
the independent variable.  Now if we measure the rate of change of velocity with respect to time, 
we get the acceleration of the body.  In this case, the velocity is the dependent variable while 
time is the independent variable.  
 Whenever differentiation is introduced to a student, two concepts of the secant line and 
tangent line (Figure 1) are revisited. 
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Let P  and Q  be two points on the curve as shown in Figure 1.  The secant line is the straight 
line drawn through P  and Q .   

 
 
The slope of the secant line (Figure 2) is then given as 

 
aha

afhaf
mPQ 




)(

)()(
secant,  

     
h

afhaf )()( 
  

As Q  moves closer and closer to P , the limiting portion is called the tangent line.  The slope of 

the tangent line tangent,PQm  then is the limiting value of secant,PQm  as 0h . 

 
h

afhaf
m

h
PQ

)()(
lim

0
tangent,





 

 

Example 1 
Find the slope of the secant line of the curve 24xy   between points (3,36) and (5,100).  
 

Q 

P 

f(x) 

x  

secant line 

tangent 
line 

Figure 1  Function curve with tangent and secant lines. 

x

P

Q 

a a+h 

)(xf  

Figure 2  Calculation of the secant line. 
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Figure 3  Calculation of the secant line for the function 24xy  . 

Solution 
The slope of the secant line between (3,36) and (5,100) is 

 
35

)3()5(





ff

m  

    
35

36100




  

     32  
 

Example 2 
Find the slope of the tangent line of the curve 24xy   at point (3,36). 

Solution 
The slope of the tangent line at (3,36) is 
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Figure 4  Calculation of the tangent line in the function 24xy  . 

 
The slope of the tangent line is 

 h

fhf
m
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Derivative of a Function 
Recall from calculus, the derivative of a function )(xf  at ax   is defined as 
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Example 3 
Find )3(f   if 24)( xxf  . 
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Solution 
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Example 4 

Find 
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f  if )2()( xsinxf   

Solution 
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Second Definition of Derivatives 
There is another form of the definition of the derivative of a function.  The derivative of the 
function )(xf  at ax   is defined as 

 
ax

afxf
af

ax 





)()(
lim)(  

As ax  , the definition is nothing but the slope of the tangent line at P . 

 
 

Example 5   
Find )3(f   if 24)( xxf   by using the form  

 
ax

afxf
af

ax 
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lim)(  

of the definition of a derivative. 

Solution 
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Finding equations of a tangent line 
One of the numerical methods used to solve a nonlinear equation is called the Newton-Raphson 
method.  This method is based on the knowledge of finding the tangent line to a curve at a point.  
Let us look at an example to illustrate finding the equation of the tangent line to a curve. 
 

)(xf  

P 

Q 

))(,( afa  

a 

))(,( xfx  

ax   

)()( afxf   

x 

   Figure 5 Graph showing the second definition of the derivative. 

x
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Example 6 
Find the equation of the line tangent to the function  
 43 10993.3165.0)(  xxxf  at 05.0x . 

Solution 
The line tangent is a straight line of the form 
 cmxy   
To find the equation of the tangent line, let us first find the slope m  of the straight line. 

 165.03)( 2  xxf  
 165.0)05.0(3)05.0( 2 f     
                1575.0  
 1575.0m  
To find the value of the y -intercept c  of the straight line, we first find the value of the function 
at 05.0x . 
 43 10993.3)05.0(165.0)05.0()05.0( f  
   0077257.0  
The tangent line passes through the point )0077257.0,05.0(  , so 

  
c

cm




)05.0(1575.00077257.0

)05.0(0077257.0
 

 0001493.0c  
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x
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Figure 6  Graph of function f(x) and the tangent line at x = 0.05. 
 
Hence, 
 cmxy   
    0001493.01575.0  x  
is the equation of the tangent line. 
 

Other Notations of Derivatives 
Derivates can be denoted in several ways.  For the first derivative, the notations are  

 
dx

dy
andyxf

dx

d
xf     ,   ),(   ),(   

For the second derivative, the notations are 

 
2

2

2

2

    ,  ),(  ),(
dx

yd
andyxf

dx

d
xf   

For the thn  derivative, the notations are 

 
n

n
n

n

n
n

dx

yd
yxf

dx

d
xf   ,  ),(  ),( )()(  

 

Theorems of Differentiation 
Several theorems of differentiation are given to show how one can find the derivative of different 
functions. 
 

Theorem 1 
The derivative of a constant is zero.  If kxf )( , where k  is a constant, 0)(  xf . 
 

Example 7 
Find the derivative of 6)( xf . 

Solution 
 6)( xf  
 0)(  xf  
 

Theorem 2 
The derivative of nxxf )( , where 0n  is 1)(  nnxxf . 
 

Example 8 
Find the derivative of 6)( xxf  . 

Solution 
 6)( xxf   

 166)(  xxf  

           56x  
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Example 9 
Find the derivative of 6)(  xxf . 

Solution 
 6)(  xxf  

 166)(  xxf  

           76  x  

           
7

6

x
  

 

Theorem 3 
The derivative of )()( xkgxf  , where k  is a constant is )()( xgkxf  . 
 

Example 10 
Find the derivative of 610)( xxf  . 

Solution 
 610)( xxf   

 )10()( 6x
dx

d
xf   

         610 x
dx

d
  

         )6(10 5x  

         560x  
 
Theorem 4 
The derivative of )()()( xvxuxf   is )()()( xvxuxf  . 
 

Example 11 
Find the derivative of 83)( 3  xxf . 

Solution 

 83)( 3  xxf  

 
)83()( 3  x

dx

d
xf

 

           
)8()3( 3

dx

d
x

dx

d


 

           
0)(3 3  x

dx

d

 

           )3(3 2x  
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29x  

 

Theorem 5 
The derivative of  
 )()()( xvxuxf   
 is 

 )()()()()( xu
dx

d
xvxv

dx

d
xuxf  .  (Product Rule) 

 

Example 12 
Find the derivative of )83)(62()( 32  xxxf  

Solution  
Using the product rule as given by Theorem 5 where, 
 )()()( xvxuxf   

 )()()()()( xu
dx

d
xvxv

dx

d
xuxf   

 )83)(62()( 32  xxxf  

 62)( 2  xxu  

 83)( 3  xxv  
Taking the derivative of )(xu , 

 )62( 2  x
dx

d

dx

du
 

       )6()2( 2

dx

d
x

dx

d
    

      0)(2 2  x
dx

d
 

       )2(2 x  
       x4  
Taking the derivative of )(xv , 

 )83( 3  x
dx

d

dx

dv
 

       )8()3( 3

dx

d
x

dx

d
  

       0)(3 3  x
dx

d
 

       )3(3 2x  

       29x  
Using the formula for the product rule 

 )()()()()( xu
dx

d
xvxv

dx

d
xuxf   
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Theorem 6 
The derivative of  
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  (Quotient Rule) 

 

Example 13 

 Find the derivative of 
)83(

)62(
)(

3

2





x

x
xf . 

Solution 
Use the quotient rule of Theorem 6, if  
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we have 
 62)( 2  xxu  

 83)( 3  xxv  
Taking the derivative of )(xu , 
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Taking the derivative of )(xv , 
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       29x  
Using the formula for the quotient rule, 
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Table of Derivatives 

)(xf  )(xf   

0, nxn

 
1nnx  

nkx , 0n  
1nknx  

)(xsin  )(xcos  

)(xcos  )(xsin  

)(xtan  )(2 xsec  

)(xsinh  )(xcosh  

)(xcosh  )(xsinh  

)(xtanh  )(1 2 xtanh  

)(1 xsin
 21

1

x  

)(1 xcos 
 21

1

x



 

)(1 xtan
 21

1

x  
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)(xcsc  )()( xcotxcsc  

)(xsec  )()( xtanxsec  

)(xcot  )(2 xcsc  

)(xcsch  )()( xcschxcoth  

)(xsech  )()( xsechxtanh  

)(xcoth  )(1 2 xcoth  

)(1 xcsc
 1

||
22 


xx

x
 

)(1 xsec
 1

||
22 xx

x
 

)(1 xcot   21

1

x


 
xa  

xaaln )(  

)(xln  x

1

)(xloga  )(

1

axln  
xe  

xe  
 

Chain Rule of Differentiation (diferensiyelin zincir kuralı) 
Sometimes functions that need to be differentiated do not fall in the form of simple functions or 
the forms described previously.  Such functions can be differentiated using the chain rule if they 
are of the form ))(( xgf .  The chain rule states (zincir kuralı aşağıdaki gibidir) 

 )())(())((( xgxgfxgf
dx

d   

For example, to find )(xf   of 42 )23()( xxxf  , one could use the chain rule. 

 )23()( 2 xxxg   
          26)(  xxg  

 3))((4))(( xgxgf   

            )26()23(4))23(( 3242  xxxxx
dx

d
 

 

Implicit Differentiation (kapalı diferensiyel alma) 
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Sometimes, the function to be differentiated is not given explicitly (bağımsız değişkene bağlılık 
açık değildir) as an expression of the independent variable.  In such cases, how do we find the 
derivatives?  We will discuss this via examples. 
 

Example 14 

Find 
dx

dy
 if xyyx 222   

Solution 
 xyyx 222   

)2()( 22 xy
dx

d
yx

dx

d
  

)2()()( 22 xy
dx

d
y

dx

d
x

dx

d
  

y
dx

dy
x

dx

dy
yx 2222   

xy
dx

dy
xy

xy
dx

dy
x

dx

dy
y

22)22(

2222




 

1

22

22








dx

dy

xy

xy

dx

dy

  

Example 15 
If 522  yxyx , find the value of y . 

Solution 

 522  yxyx  

 
)5()( 22

dx

d
yxyx

dx

d


 

 
0)()()( 22  y

dx

d
xy

dx

d
x

dx

d

 

 
022 

dx

dy
yy

dx

dy
xx

 

 
yx

dx

dy
yx  2)2(

 

 xy

xy

dx

dy





2

2

 

 xy

xy
y





2

2
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Higher order derivatives 
So far, we have limited our discussion to calculating first derivative, )(xf   of a function )(xf .  
What if we are asked to calculate higher order derivatives of )(xf .   
A simple example of this is finding acceleration of a body from a function that gives the location 
of the body as a function of time.  The derivative of the location with respect to time is the 
velocity of the body, followed by the derivative of velocity with respect to time being the 
acceleration.  Hence, the second derivative of the location function gives the acceleration 
function of the body. 
   

Example 16 
Given 723)( 3  xxxf , find the second derivative, )(xf   and the third derivative, )(xf  . 

Solution 
Given  
 723)( 3  xxxf  
we have 
 2)3(3)( 2  xxf  

           29 2  x  

 ))(()( xf
dx

d
xf   

           

x

x

x
dx

d

18

)2(9

)29( 2






 

 ))(()( xf
dx

d
xf   

           

18

)18(



 x
dx

d
 

 

Example 17 
If 522  yxyx , find the value of y  . 

Solution 
From Example 15 we obtain 

 
xy

xy
y





2

2
, 

 xyyxy 2)2(    

 )2())2(( xy
dx

d
yxy

dx

d
  

 )2()()2()()2( x
dx

d
y

dx

d
xy

dx

d
yy

dx

d
xy   
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 2)12()2(  yyyxyy  

 
xy

yy
y





2

222 2

  

After substitution of y , 

 
xy

xy

xy

xy

xy

y


















2

2

2
22

2

2
2

2

 

      
3

22

)2(

)(6

xy

xxyy




  

Finding maximum and minimum of a function 
 The knowledge of first derivative and second derivative of a function is used to find the 
minimum and maximum of a function.  First, let us define what the maximum and minimum of a 
function are.  Let )(xf  be a function in domain D , then 

(D) )(af  is the maximum of the function if )()( xfaf   for all values of x  in the domain 
D . 

(E) )(af  is the minimum of the function if )()( xfaf   for all values of x  in the domain 
D . 

The minimum and maximum of a function are also the critical values of a function. 
An extreme value can occur in the interval ],[ dc  at 
end points dxcx  , . 
a point in ],[ dc  where 0)(  xf . 
a point in ],[ dc  where )(xf   does not exist. 
These critical points can be the local maximas and minimas of the function (See Figure 8). 
 

Example 18  
Find the minimum and maximum value of 52)( 2  xxxf  in the interval ]5,0[ . 
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Solution 
52)( 2  xxxf  

 22)(  xxf  
 0)(  xf  at 1x . 

)(xf   exists everywhere in ]5,0[ . 

f(x) 

● 

● 

● 

● 

● 

● 

● 

x 

    Figure 8 The plot shows critical points of )(xf in ],[ dc  . 

Absolute Minimum 

Local Minimum 

Local 
Minimum 

Local Maximum  
(f´′(x) does not exist) 

Absolute Maximum 

Local Maximum 

c d 

maximum 

minimum 

 

x 
  Figure 7 Graph illustrating the concepts of maximum and minimum. 

Domain = [c,d] 

c d
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So the critical points are 5,1,0  xxx . 

 5)0(2)0()0( 2 f  5  

 5)1(2)1()1( 2 f  6  

 5)5(2)5()5( 2 f  10  
Hence, the minimum value of )(xf  occurs at 1x , and the maximum value occurs at 5x . 

 
Figure 10 shows an example of a function that has no minimum or maximum value in the 
domain ),0(  . 

 
Figure 11 shows the maximum of the function occurring at a singular point.  The function )(xf  
has a sharp corner at ax  . 

x 

xxf /1)(   

)(xf  

 

      Figure 10 Function that has no maximum or minimum. 

-8

-6

-4

-2

0

2

4

6

8

10

12

0 1 2 3 4 5 6

x

f(
x)

 

minimum 

maximum 

   Figure 9 Maximum and minimum values of 52)( 2  xxxf  over interval [0,5]. 



74 
 

 

 

Example 19 
Find the maximum and minimum of xxf 2)(   in the interval ]5,0[ . 

Solution 
 xxf 2)(   
 2)(  xf  

0)(  xf  on ]5,0[ . 
So the critical points are 0x  and 5x . 
 xxf 2)(   

 
10)5(2)5(

0)0(2)0(




f

f
 

So the minimum value of xxf 2)(   is at 0x , and the maximum value is at 5x . 
 The point(s) where the second derivative of a function becomes zero is a way to know 
whether the critical point found in the first derivative test is a local minimum or maximum.  Let 

)(xf  be a function in the interval ),( dc  and 0)( af .  
)(af  is a local maximum of the function if 0)(  af . 
)(af  is a local minimum of the function if 0)(  af . 

If 0)(  af , then the second derivative does not offer any insight into the local maxima or 
minima. 
 

Example 20 
Remember Example 18 where we found 0)(' xf at 1x  for 52)( 2  xxxf  in the interval 

]5,0[ .  Is 1x  a local maxima or minima of the function? 

Solution 

)(xf  

x 

)(af   

ax   

Figure 11 Graph demonstrates the concept of a singular point with 
discontinuous slope at ax   
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 52)( 2  xxxf  
 22)(  xxf  
 0)(  xf  at 1x  

 
02)1(

2)(




f

xf
 

So the )1(f  is the local minimum of the function. 
 

Applications of Derivatives 
Below are some examples to show real-life applications of differentiation. 
 

Example 21 
 A rain gutter cross-section is shown below. 

 
  
What angle of   would make the cross-sectional area of ABCD maximum?  Note that common 
sense or intuition may lead us to believe that 4/   would maximize the cross-sectional area 
of ABCD.  Question your intuition. 
 

Solution 

 CEADBCArea  )(
2

1
 

  )(sinCDCE   
         )(3 sin  

             3BC  

  )()cos(  cosABCDBCAD   

  )(3)(33  coscosAD   

  )(63 cosAD   

 ))(3))((633(
2

1  sincosArea   

          )()(9)(9  cossinsin   

A

  

3 

B C 

D E 

  
3 

3 

           Figure 12 Gutter dimensions for Example 21. 
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          )2(
2

9
)(9  sinsin   

   )2(2
2

9
)(9 


coscos

d

dA
  

        )2(9)(9  coscos   
When is  

0
d

dA
? 

  0)2(9)(9   coscos  

  
3

   

The angle at which the area is maximum is  60 . 

 





























3
2

2

9

3
9

3


sinsinArea  

      

3
4

27

2

3

2

9

2

3
9






















 

For the interval of ],0[   , the area at the end points is 

 
0)(

0)0(




Area

Area
 

 

Example 22 
A classic example of the application of differentiation is to find the dimensions of a circular 
cylinder for a specific volume but which uses the least amount of material.  Do this classic 
problem for a volume of 39m . 

Solution 
The total surface area, A  of the cylinder is 
 A  = top surface + side surface + bottom surface 
      22 2 rrhr    
      rhr  22 2   
The volume, V  of the cylinder is  
 hrV 2  
since 
 39mV  . 
We can write 

 
2

2

9

9

r
h

hr








 

This gives the surface area just in terms of r  as 
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2
2 9

22
r

rrA


  

      
12

2

182

18
2





rr

r
r




 

 

To find the minimum, take the first derivative of A  with respect to r  as 

 2)1(184  rr
dr

dA   

       
2

18
4

r
r    

Solving for  

 0
dr

dA
, 

 

0184

0
18

4

3

2





r

r
r




 

 
4

183 r  

 

m12725.1

4

18 3

1












r  

Since  

 
2

9

r
h


 , 

                 Figure 13 Cylinder drawing for Example 20. 

r 

h 

3m 9V  
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2)12725.1(

9


h m25450.2  

But does this value of r  correspond to a minimum? 

 3
2

2

)2(184  r
dr

Ad   

          

5025.44
12725.1

36
4

36
4

3










r

 

This value 0
2

2


dr

Ad
 for m12725.1r .  As per the second derivative test, m12725.1r  

corresponds to a minimum. 
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Multiple-Choice Test Chapter 02.01 A Primer on Differentiation 
 
1. The definition of the first derivative of a function )(xf  is 

(A) 
x

xfxxf
xf





)()(

)('               (B) 
x

xfxxf
xf





)()(

)('  

(C) 
x

xfxxf
xf

x 





)()(
lim)('

0
       (D) 

x

xfxxf
xf

x 





)()(
lim)('

0
 

 

2. Given ,sin5 3 xey x   
dx

dy
 is 

(A) xe x cos5 3       (B) xe x cos15 3       (C) xe x cos15 3        (D) xe x cos666.2 3   
 

3. Given 
dx

dy
xy ,2sin at 3x is most nearly 

(A) 0.9600     (B) 0.9945      (C) 1.920     (D) 1.989 
 

4. Given 
dx

dy
xxy ,ln3  is 

(A) xx ln3 2      (B) 22 ln3 xxx      (C) 2x         (D) x3  
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5. The velocity of a body as a function of time is given as   45 2   tet , where t  is in seconds, 

and   is in m/s.  The acceleration in 2m/s  at 6.0t  s is 
(A) -3.012       (B) 5.506       (C) 4.147       (D) -10.00 

 

6. If 22 2 yxyx  , then 
dx

dy
 is 

(A) 
xy

yx




       (B) yx 22        (C) 
y

x 1
     (D) x  

 
For a complete solution, refer to the links at the end of the book. 
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2.2 Chapter 02.02 Differentiation of Continuous Functions 

PRE-REQUISITES 
1. Know the definition of a secant, tangent to a function, and derivative of a function 

(Primer for Differential Calculus). 
2. Understand the representation of trigonometric and transcendental functions as a 

Maclaurin series (Taylor Series Revisited). 
 

OBJECTIVES 
1. derive formulas for approximating the first derivative of a function, 
2. derive formulas for approximating derivatives from Taylor series, 
3. derive finite difference approximations for higher order derivatives, and 
4. use the developed formulas in examples to find derivatives of a function. 

 
After reading this chapter, you should be able to: 
 

1. derive formulas for approximating the first derivative of a function, 
2. derive formulas for approximating derivatives from Taylor series, 
3. derive finite difference approximations for higher order derivatives, and 
4. use the developed formulas in examples to find derivatives of a function. 

 
The derivative of a function at x  is defined as 

      
x

xfxxf
xf

x 



 0

lim  

To be able to find a derivative numerically, one could make x  finite to give, 

      
x

xfxxf
xf




 . 

Knowing the value of x  at which you want to find the derivative of  xf , we choose a value of 

x  to find the value of  xf  .  To estimate the value of  xf  , three such approximations are 
suggested as follows. 
 

Forward Difference Approximation of the First Derivative 
From differential calculus, we know 

      
x

xfxxf
xf

x 



 0

lim  

For a finite x , 

      
x

xfxxf
xf




  

The above is the forward divided difference approximation of the first derivative.  It is called 
forward because you are taking a point ahead of x .  To find the value of  xf   at ixx  , we 

may choose another point x  ahead as 1 ixx .  This gives 

      
x

xfxf
xf ii

i 


 1  
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ii

ii

xx

xfxf









1

1  

where  
 ii xxx  1  

                  

Figure 1  Graphical representation of forward difference approximation of first derivative. 
 

Example 1 
The velocity of a rocket is given by 

   300 ,8.9
21001014

1014
ln2000 4

4












 tt

t
t  

where   is given in m/s and t  is given in seconds.  At s16t , 

a) use the forward difference approximation of the first derivative of  tν  to calculate the 
acceleration.  Use a step size of s2t . 
b) find the exact value of the acceleration of the rocket. 
c) calculate the absolute relative true error for part (b). 
 

Solution 

(a)      
t

tt
ta ii

i 


   1  

 16it  

 2Δ t  
 ttt ii Δ1   

 216  
                   =18 

      
2

1618
16

 
a  

)(xf  

xx   x  x  
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      188.9
1821001014

1014
ln200018

4

4












  

          m/s 02.453  

      168.9
1621001014

1014
ln200016

4

4












  

          m/s 07.392  
Hence 

      
2

1618
16

 
a  

             
2

07.39202.453 
  

                      2m/s474.30  
 
(b) The exact value of  16a  can be calculated by differentiating 

   t
t

t 8.9
21001014

1014
ln2000

4

4












  

as 

     tν
dt

d
ta   

Knowing that 

   
t

t
dt

d 1
ln   and 

2

11

ttdt

d






 

   8.9
21001014

1014

1014

21001014
2000

4

4

4

4
























tdt

dt
ta   

              8.92100
21001014

1014
1

1014

21001014
2000

24

4

4

4




























t

t
 

        
t

t

3200

4.294040




  

    
 163200

164.294040
16




a  

          2m/s674.29  
(c) The absolute relative true error is 

 100
Value True

Value eApproximatValue True



t  

         100
674.29

474.30674.29



  

                  %6967.2  
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Backward Difference Approximation of the First Derivative 
We know 

      
x

xfxxf
xf

x 



 0

lim  

For a finite x , 

      
x

xfxxf
xf




  

If  x  is chosen as a negative number, 

      
x

xfxxf
xf




  

          
   

x

xxfxf

Δ

Δ
  

This is a backward difference approximation as you are taking a point backward from x .  To 
find the value of  xf   at ixx  , we may choose another point x  behind as 1 ixx .  This 

gives 

      
x

xfxf
xf ii

i 


 1  

           
   

1

1









ii

ii

xx

xfxf
 

where  
 1Δ  ii xxx  

 

 
Figure 2  Graphical representation of backward difference approximation of first derivative. 
 

Example 2 
The velocity of a rocket is given by 

   300,8.9
21001014

1014
ln2000

4

4












 tt

t
t  

)(xf  

x       xx   x  
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(a) Use the backward difference approximation of the first derivative of  tν  to calculate the 
acceleration at s16t .  Use a step size of s 2t . 
(b) Find the absolute relative true error for part (a). 

Solution 

      
t

tt
ta ii




 1
 

 16it  

 2Δ t  
 ttt ii Δ1    

       216  
                   = 14 

      
2

1416
16

 
a  

      168.9
1621001014

1014
ln200016

4

4












  

                     m/s07.392  

      148.9
1421001014

1014
ln200014

4

4












  

             m/s24.334  
 

      
2

1416
16

 
a  

           
2

24.33407.392 
  

          2m/s 915.28  
(b) The exact value of the acceleration at s16t  from Example 1 is 

   2m/s 674.2916 a  
The absolute relative true error for the answer in part (a) is 

 100
674.29

915.28674.29



t  

                  %5584.2  
 

Forward Difference Approximation from Taylor Series 
Taylor’s theorem says that if you know the value of a function )(xf  at a point ix  and all its 

derivatives at that point, provided the derivatives are continuous between ix  and 1ix , then 

            


 
2

111 !2 ii
i

iiiii xx
xf

xxxfxfxf  

Substituting for convenience ii xxx  1Δ  
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2

1 Δ
!2

Δ x
xf

xxfxfxf i
iii  

           






  x
xf

x

xfxf
xf iii

i !2
1  

        xO
x

xfxf
xf ii

i 



 1  

The  xO   term shows that the error in the approximation is of the order of x . 
Can you now derive from the Taylor series the formula for the backward divided difference 
approximation of the first derivative? 
 As you can see, both forward and backward divided difference approximations of the first 
derivative are accurate on the order of  xO  .  Can we get better approximations?  Yes, another 
method to approximate the first derivative is called the central difference approximation of the 
first derivative. 
From the Taylor series 

               






32

1 Δ
!3

Δ
!2

Δ x
xf

x
xf

xxfxfxf ii
iii    (1) 

and 

               






32

1 Δ
!3

Δ
!2

Δ x
xf

x
xf

xxfxfxf ii
iii    (2) 

Subtracting Equation (2) from Equation (1) 

            


 
3

11 Δ
!3

2
Δ2 x

xf
xxfxfxf i

iii  

           






  211

!32
x

xf

x

xfxf
xf iii

i  

 
     211

2
xO

x

xfxf ii 



   

hence showing that we have obtained a more accurate formula as the error is of the order of 

 2xO  . 

          
Figure 3 Graphical representation of central difference approximation of first derivative. 
 

Example 3 
The velocity of a rocket is given by 

   300,8.9
21001014

1014
ln2000

4

4












 tt

t
t . 

)(xf  

xx   x  xx   x 
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(a) Use the central difference approximation of the first derivative of  t  to calculate the 
acceleration at s 16t .  Use a step size of s 2t . 
(b) Find the absolute relative true error for part (a). 

Solution 

      
t

tt
ta ii

i 


 

2
11 

 

 16it  

 2t  

 

18

216
1



 ttt ii

 

 

14

216
1



 ttt ii

 

      
 22

1418
16

 
a  

          
   

4

1418 νν 
  

      188.9
1821001014

1014
ln200018

4

4












  

          m/s02.453  

      148.9
1421001014

1014
ln200014

4

4












  

           m/s24.334  
 

      
4

1418
16

 
a  

           
4

24.33402.453 
  

          2m/s 694.29  
(b) The exact value of the acceleration at s 16t  from Example 1 is 
   2m/s 674.2916 a  
The absolute relative true error for the answer in part (a) is 

 100
674.29

694.29674.29



t  

       %069157.0  
The results from the three difference approximations are given in Table 1. 
 

Table 1 Summary of  16a  using different difference approximations 
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Type of difference 
approximation 

 16a   

 2m/s  
%t  

Forward 
Backward 

Central 

30.475 
28.915 
29.695 

2.6967 
2.5584 
0.069157 

 
 Clearly, the central difference scheme is giving more accurate results because the order of 
accuracy is proportional to the square of the step size.  In real life, one would not know the exact 
value of the derivative – so how would one know how accurately they have found the value of 
the derivative?  A simple way would be to start with a step size and keep on halving the step size 
until the absolute relative approximate error is within a pre-specified tolerance. 
 Take the example of finding  tv  for  

   t
t

t 8.9
21001014

1014
ln2000

4

4












   

at 16t  using the backward difference scheme.  Given in Table 2 are the values obtained using 
the backward difference approximation method and the corresponding absolute relative 
approximate errors. 
 
Table 2 First derivative approximations and relative errors for different t  values of backward 
difference scheme. 
 

t   tv  %a  

2 
1 
0.5 
0.25 
0.125 

28.915 
29.289 
29.480 
29.577 
29.625 

 
1.2792 
0.64787 
0.32604 
0.16355 

 
 From the above table, one can see that the absolute relative approximate error decreases 
as the step size is reduced.  At 125.0t , the absolute relative approximate error is 0.16355%, 
meaning that at least 2 significant digits are correct in the answer. 
 

Finite Difference Approximation of Higher Derivatives 
One can also use the Taylor series to approximate a higher order derivative.  For example, to 
approximate  xf  , the Taylor series is  

                






32

2 Δ2
!3

Δ2
!2

Δ2 x
xf

x
xf

xxfxfxf ii
iii                (3) 

where 
 xxx ii Δ22    

                32
1 !3!2

x
xf

x
xf

xxfxfxf ii
iii 





     (4) 

where 
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 xxx ii Δ1   

Subtracting 2 times Equation (4) from Equation (3) gives 

             32
12 ΔΔ2 xxfxxfxfxfxf iiiii    

 

        
 

   


  xxf
x

xfxfxf
xf i

iii
i Δ

Δ

2
2

12  

        
 

 xO
x

xfxfxf
xf iii

i 



 

2
12 2

       (5) 

Example 4 
The velocity of a rocket is given by 

   300,8.9
21001014

1014
ln2000

4

4












 tt

t
t  

Use the forward difference approximation of the second derivative of  t  to calculate the jerk at 
s 16t .  Use a step size of s 2t . 

Solution 

        
 2

12 2

t

ttt
tj iii

i 


  
 

 16it  

 2t  

 

18

216
1



 ttt ii

 

 

 
 

20

2216

22




 ttt ii

 

        
 22

1618220
16

 
j  

      208.9
2021001014

1014
ln200020

4

4












  

          m/s35.517  

      188.9
1821001014

1014
ln200018

4

4












  

          m/s02.453  

      168.9
1621001014

1014
ln200016

4

4












  

          m/s07.392  
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4

07.39202.453235.517
16


j  

  3m/s 84515.0  
 
The exact value of  16j  can be calculated by differentiating 

   t
t

t 8.9
21001014

1014
ln2000

4

4












  

twice as 

     tν
dt

d
ta   and  

     ta
dt

d
tj   

Knowing that 

   
t

t
dt

d 1
ln   and  

 
2

11

ttdt

d






 

   8.9
21001014

1014

1014

21001014
2000

4

4

4

4
























tdt

dt
ta   

              8.92100
21001014

1014
1

1014

21001014
2000

24

4

4

4




























t

t
 

        
t

t

3200

4.294040




  

Similarly it can be shown that 

     ta
dt

d
tj   

  
2)3200(

18000

t
  

 
 

3

2

m/s77909.0         

)]16(3200[

18000
16




j

 

The absolute relative true error is 

 100
77909.0

84515.077909.0



t  

      %4797.8  
 
The formula given by Equation (5) is a forward difference approximation of the second 
derivative and has an error of the order of  xO  .  Can we get a formula that has a better 
accuracy?  Yes, we can derive the central difference approximation of the second derivative. 
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The Taylor series is  

                   ...
!4!3!2

432
1 








 x

xf
x

xf
x

xf
xxfxfxf iii

iii               (6) 

where 
 xxx ii Δ1   

                   









432

1 !4!3!2
x

xf
x

xf
x

xf
xxfxfxf iii

iii               (7) 

where 
 xxx ii Δ1   

Adding Equations (6) and (7), gives 

             
...

12
2

4
2

11 
 

x
xfxxfxfxfxf iiiii  

        
 

  
...

12

2 2

2
11 







  xxf

x

xfxfxf
xf iiii

i  

 
     

 
 2

2
11 2

xO
x

xfxfxf iii 



   

Example 5 
The velocity of a rocket is given by 

   300 ,8.9
21001014

1014
ln2000

4

4












 tt

t
t , 

(a) Use the central difference approximation of the second derivative of  tν  to calculate the jerk 
at s 16t .  Use a step size of  s 2t . 

Solution 
The second derivative of velocity with respect to time is called jerk.  The second order 
approximation of jerk then is 

        
 2

11 2

t

ttt
tj iii
i 


  

 

 16it  

 2t  

 

18

216
1



 ttt ii

 

 

14

216
2



 ttt ii

 

 

        
 22

1416218
16

 
j  
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      188.9
1821001014

1014
ln200018

4

4












  

          m/s02.453  

      168.9
1621001014

1014
ln200016

4

4












  

          m/s07.392  

      148.9
1421001014

1014
ln200014

4

4












  

          m/s24.334  

        
 22

1416218
16

 
j  

          
 

4

24.33407.392202.453 
  

          3m/s 77969.0  
The absolute relative true error is 

 100
77908.0

77969.077908.0



t  

      %077992.0  
 

DIFFERENTIATION  
Topic Differentiation of Continuous functions 
Summary These are textbook notes of differentiation of continuous functions 
Major General Engineering 
Authors Autar Kaw, Luke Snyder 
Date Aralık 8, 2016 
Web Site http://numericalmethods.eng.usf.edu 

 
 
2.3 Multiple-Choice Test Chapter 02.02 Differentiation of Continuous Functions 
 
 
1. The definition of the first derivative of a function )(xf  is 

(A) 
x

xfxxf
xf





)()(

)('       (B) 
x

xfxxf
xf





)()(

)('  

(C) 
x

xfxxf
xf

x 





)()(
lim)('

0
   (D) 

x

xfxxf
xf

x 





)()(
lim)('

0
 

 
2. The exact derivative of 3)( xxf  at 5x is most nearly 

(A) 25.00     (B) 75.00   (C) 106.25     (D) 125.00 
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3. Using the forwarded divided difference approximation with a step size of 0.2, the 
derivative of xexf 3.25)(   at 25.1x  is 

(A) 163.4      (B) 203.8      (C) 211.1    (D) 258.8 
 

4. A student finds the numerical value of 220.20)( xe
dx

d
 at 3x  using a step size of 0.2.  

Which of the following methods did the student use to conduct the differentiation?  
(A) Backward divided difference     (B) Calculus, that is, exact 
(C) Central divided difference    (D) Forward divided difference 

 

5. Using the backward divided difference approximation, 3715.4)( xe
dx

d
 at 5.1x for a 

step size of 0.05.  If you keep halving the step size to find )( xe
dx

d
at 5.1x  before two 

significant digits can be considered to be at least correct in your answer, the step size 
would be (you cannot use the exact value to determine the answer) 

(A) 0.05/2     (B) 0.05/4    (C) 0.05/8       (D) 0.05/16 
 
6. The heat transfer rate q  over a surface is given by 

  
dy

dT
kAq   

 where 

  k  = thermal conductivity 







 Kms

J
  

A  = surface area  2m   

  T  = temperature  K  

  y  = distance normal to the surface  m  
 Given   

Kms

J
025.0


k  

2m 3A  
the temperature T  over the surface varies as 

  500107622001493 23  yyyT  
The heat transfer rate q  at the surface most nearly is 

(A) -1076 W  (B) 37.5 W      (C) 80.7 W       (D) 500 W 
 
For a complete solution, refer to the links at the end of the book. 
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2.4 Chapter 02.03 Differentiation of Discrete Functions 
 

PRE-REQUISITES 
1. Know the definition of a secant, tangent to a function, and derivative of a function 

(Primer for Differential Calculus). 
2. Understand the representation of trigonometric and transcendental functions as a 

Maclaurin series (Taylor Series Revisited). 
 

OBJECTIVES 
 

1. find approximate values of the first derivative of functions that are given at discrete 
data points, and 

2. use Lagrange polynomial interpolation to find derivatives of discrete functions. 
 
 
After reading this chapter, you should be able to: 
 

1. find approximate values of the first derivative of functions that are given at discrete 
data points, and 

2. use Lagrange polynomial interpolation to find derivatives of discrete functions. 
 
To find the derivatives of functions that are given at discrete points, several methods are 
available.  Although these methods are mainly used when the data is spaced unequally, they can 
be used for data that is spaced equally as well. 
 

Forward Difference Approximation of the First Derivative 
We know 

      
x

xfxxf
xf

x 



 0

lim  

For a finite x , 

      
x

xfxxf
xf




  

   
Figure 1 Graphical representation of forward difference approximation of first derivative. 

 

)(xf  

xx   x  x  
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So given 1n  data points        nn yxyxyxyx ,,,,,,,, 221100  , the value of )(xf   for 

1 ii xxx , 1,...,0  ni , is given by 

      
ii

ii
i xx

xfxf
xf









1

1  

 

Example 1 
The upward velocity of a rocket is given as a function of time in Table 1. 
 

Table 3 Velocity as a function of time. 

(s) t  )m/s( )(tv  

0 0 
10 227.04 
15 362.78 
20 517.35 

22.5 602.97 
30 901.67 

 
Using forward divided difference, find the acceleration of the rocket at s 16t . 

Solution 
To find the acceleration at s 16t , we need to choose the two values of velocity closest to 

s 16t , that also bracket s 16t  to evaluate it. The two points are s 15t  and s 20t  
 

      
t

ttv
ta ii
i 


  1  

 15it  

 201 it  

 

5     

1520     
1



  ii ttt

 

 
     

5

1520
16

 
a

 

          5

78.36235.517 


 
           = 2m/s 30.914   
 

Direct Fit Polynomials 
In this method, given 1n  data points        nn yxyxyxyx ,,,,,,,, 221100  , one can fit a thn  

order polynomial given by 
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   n
n

n
nn xaxaxaaxP  


1
110   

To find the first derivative, 

     12
121 12

)( 
  n

n
n

n
n

n xnaxanxaa
dx

xdP
xP   

Similarly, other derivatives can also be found. 
 

Example 2 
The upward velocity of a rocket is given as a function of time in Table 2. 
 

Table 4 Velocity as a function of time. 
(s) t  )m/s( )(tv  

0 0 
10 227.04 
15 362.78 
20 517.35 

22.5 602.97 
30 901.67 

Using a third order polynomial interpolant for velocity, find the acceleration of the rocket at 
s16t . 

 

Solution 
For the third order polynomial (also called cubic interpolation), we choose the velocity given by 
   3

3
2

210 tatataatv   

Since we want to find the velocity at s16t , and we are using a third order polynomial, we need 
to choose the four points closest to 16t  and that also bracket 16t  to evaluate it. 
The four points are ,15 ,10 10  tt 202 t  and 5.223 t . 

   04.227,10 00  tvt  

   78.362,15 11  tvt  

   35.517,20 22  tvt  

   97.602,5.22 33  tvt  

 
such that 

        33
2

210 10101004.22710 aaaav   

        33
2

210 15151578.36215 aaaav 

        33
2

210 20202035.51720 aaaav   

        33
2

210 5.225.225.2297.6025.22 aaaav   

Writing the four equations in matrix form, we have 
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97.602

35.517

78.362

04.227

1139125.5065.221

8000400201

3375225151

1000100101

3

2

1

0

a

a

a

a

 

 

 
Figure 2 Graph of upward velocity of the rocket vs. time. 

 
Solving the above four equations gives 
 3810.40 a  

 289.211 a  

 13065.02 a  

 0054606.03 a  

Hence 
   3

3
2

210 tatataatv   

          5.2210  ,0054606.013065.0289.213810.4 32  tttt  
The acceleration at 16t  is given by 

    
16

16



t

tv
dt

d
a  

Given that   5.2210  ,0054606.013065.0289.213810.4 32  tttttv , 

   tv
dt

d
ta     
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 32 0054606.013065.0289.213810.4         ttt
dt

d
  

      5.2210,016382.026130.0289.21   2  ttt  

     216016382.01626130.0289.2116 a  

         2m/s 664.29  
 

Lagrange Polynomial 
In this method, given    nn yxyx ,,,, 00  , one can fit a thn  order Lagrangian polynomial given 

by 





n

i
iin xfxLxf

0

)()()(  

where n  in )(xfn  stands for the thn  order polynomial that approximates the function )(xfy   

and  



 




n

ij
j ji

j
i xx

xx
xL

0

)(  

)(xLi  is a weighting function that includes a product of 1n  terms with terms of ij   omitted. 

Then to find the first derivative, one can differentiate  xfn  once, and so on for other derivatives. 

For example, the second order Lagrange polynomial passing through 
     221100 , and ,,,, yxyxyx  is  

 

     
       

       
    2

1202

10
1

2101

20
0

2010

21
2 xf

xxxx

xxxx
xf

xxxx

xxxx
xf

xxxx

xxxx
xf












  

 
Differentiating the above equation gives 
 

    
      

      
    2

1202

10
1

2101

20
0

2010

21
2

222
xf

xxxx

xxx
xf

xxxx

xxx
xf

xxxx

xxx
xf













  

 
Differentiating again would give the second derivative as 

                 2
1202

1
2101

0
2010

2

222
xf

xxxx
xf

xxxx
xf

xxxx
xf








  

 

Example 3 
The upward velocity of a rocket is given as a function of time in Table 3.  

 
Table 3  Velocity as a function of time. 

(s) t  )m/s( )(tv  

0 0 
10 227.04 
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15 362.78 
20 517.35 

22.5 602.97 
30 901.67 

Determine the value of the acceleration at s16t  using second order Lagrangian polynomial 
interpolation for velocity. 

Solution 

  )()()()( 2
12

1

02

0
1

21

2

01

0
0

20

2

10

1 tv
tt

tt

tt

tt
tv

tt

tt

tt

tt
tv

tt

tt

tt

tt
tv 


































































  

    
    0

2010

212
t

tttt

ttt
ta 





 

    1
2101

202
t

tttt

ttt






 

    2
1202

102
t

tttt

ttt





  

 

      
    04.227

20101510

2015162
16




a
   

    78.362
20151015

2010162




  

                             
   

    35.517
15201020

1510162




  

               35.51714.078.36208.004.22706.0   

                     2m/s784.29  

DIFFERENTIATION  
Topic Differentiation of Discrete Functions 
Summary These are textbook notes differentiation of discrete functions 
Major General Engineering 
Authors Autar Kaw, Luke Snyder 
Date Aralık 8, 2016 
Web Site http://numericalmethods.eng.usf.edu 

2.5 Multiple-Choice Test Chapter 02.03 Differentiation of Discrete Functions 
 
1. The definition of the first derivative of a function )(xf  is 

(A)  
x

xfxxf
xf





)()(

)('      (B)
x

xfxxf
xf





)()(

)('  

(C)
x

xfxxf
xf

x 





)()(
lim)('

0
    (D) 

x

xfxxf
xf

x 





)()(
lim)('

0
 

 
2. Using the forward divided difference approximation with a step size of 0.2, the derivative 

of the function at 2x  is given as 
   

x
 

1.8 2.0 2.2 2.4 2.6 
 xf

 

6.0496 7.3890 9.0250 11.023 13.464 

 
(A) 6.697     (B) 7.389     (C) 7.438     (D) 8.180 
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3. A student finds the numerical value of 220.20)(  xf  at 3x  using a step size of 0.2.  

Which of the following methods did the student use to conduct the differentiation if  xf  
is given in the table below? 

 
x

 

2.6 2.8 3.0 3.2 3.4 3.6 
 xf

 

6.2e
 

8.2e
 

3e
 

2.3e
 

4.3e
 

6.3e
 

   
(A) Backward divided difference        (B) Calculus, that is, exact 
(C) Central divided difference             (D) Forward divided difference 

 
4. The upward velocity of a body is given as a function of time as 
  
 
 
 To find the acceleration at 17t s, a scientist finds a second order polynomial 
 approximation for the velocity, and then differentiates it to find the acceleration.  The 
 estimate of the acceleration in 2m/s at 17t s is most nearly 

(A) 060.4     (B) 200.4       (C) 157.8     (D) 498.8  
 
5. The velocity of a rocket is given as a function of time as 

s ,t  0 0.5 1.2 1.5 1.8 
m/s ,v  0 213 223 275 300 

Allowed to use the forward divided difference, backward divided difference or central 
divided difference approximation of the first derivative, your best estimate for the 

acceleration 





 

dt

dv
a of the rocket in 2m/s  at 5.1t  seconds is 

(A) 33.83     (B) 33.128      (C) 33.173     (D) 33.183  
 
6. In a circuit with an inductor of inductance L , a resistor with resistance R , and a variable 

voltage source )(tE ,  

  Ri
dt

di
LtE )(  

 The current, i , is measured at several values of time as 
Time, t (secs) 1.00 1.01 1.03 1.1 
Current, i  (amperes) 3.10 3.12 3.18 3.24 

 If 98.0L  henries and 142.0R  ohms, the most accurate expression for )00.1(E  is 

(A) )10.3)(142.0(
1.0

10.324.3
98.0 






 

 

(B) 10.3142.0   

(C) )10.3)(142.0(
01.0

10.312.3
98.0 






 

 

(D) 





 

01.0

10.312.3
98.0  

s ,t  10 15 20 22 
m/s ,v  22 36 57 10 
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For a complete solution, refer to the links at the end of the book. 
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3 Chapter 03.01 Cubic Equations - Solution of Quadratic Equations 

3.1 Solution of Quadratic Equations 
 

PRE-REQUISITES (ön koşullar) 
1. High School Algebra – Equations 
2. Complex Algebra – Concept of complex numbers, Euler’s formula 

 

OBJECTIVES (hedefler) 
1. find the solutions of quadratic equations, 
2. derive the formula for the solution of quadratic equations, 
3. solve simple physical problems involving quadratic equations. 

 
After reading this chapter, you should be able to: 
 

1. find the solutions of quadratic equations, 
2. derive the formula for the solution of quadratic equations, 
3. solve simple physical problems involving quadratic equations. 

 
 

What are quadratic equations and how do we solve them? 
A quadratic equation has the form 

02  cbxax , where 0a  
The solution to the above quadratic equation is given by 

a

acbb
x

2

42 
  

So the equation has two roots, and depending on the value of the discriminant, acb 42  , the 
equation may have real, complex or repeated roots. 
 If 042  acb , the roots are complex. 
 If 042  acb , the roots are real. 
 If 042  acb , the roots are real and repeated. 
 

Example 1 
Derive the solution to 02  cbxax . 

Solution 
02  cbxax  

Dividing both sides by a ,  0a , we get 

02 
a

c
x

a

b
x  

Note if 0a , the solution to  
 02  cbxax  
is  
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b

c
x   

Rewrite 

02 
a

c
x

a

b
x  

as 

0
42 2

22







 

a

c

a

b

a

b
x  

a

c

a

b

a

b
x 






 

2

22

42
  

       
2

2

4

4

a

acb 
  

2

2

4

4

2 a

acb

a

b
x


  

 
a

acb

2

42 
  

a

acb

a

b
x

2

4

2

2 
  

    
a

acbb

2

42 
  

 

Example 2 
A ball is thrown down at 50 mph from the top of a building.  The building is 420 feet tall.  
Derive the equation that would let you find the time the ball takes to reach the ground. 

Solution 
The distance s  covered by the ball is given by 

2

2

1
gtuts   

where 
u = initial velocity (ft/s) 
g = acceleration due to gravity ( 2ft/s ) 
t  = time )(s  

Given 

mile 1

ft  5280

s 3600

hour 1

hour

miles
50 u  

s

ft
 73.33      

2s

ft
32.2g  

ft 420s  
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we have 

  2 2.32
2

1
  73.33  420 tt   

04203373116 2  t.t.  
The above equation is a quadratic equation, the solution of which would give the time it would 
take the ball to reach the ground.  The solution of the quadratic equation is 

 

870.7,315.3   

)1.16(2

)420(1.16433.7333.73 2




t

 

Since ,0t  the valid value of time t  is s  3.315 . 
 

NONLINEAR EQUATIONS  
Topic Solution of quadratic equations 
Summary Textbook notes on solving quadratic equations 
Major General Engineering 
Authors Autar Kaw 
Date Aralık 8, 2016 
Web Site http://numericalmethods.eng.usf.edu 

 
 

3.1.1 Multiple-Choice Test Chapter 03.01 Background Nonlinear Equations 
 
1. The value of x  that satisfies   0xf  is called the 

(A) root of an equation   0xf    (B) root of a function  xf  

(C) zero of an equation   0xf    (D) none of the above 
 
2. A quadratic equation has ________ root(s). 

(A) one     (B) two     (C) three    (D) four 
 
3. For a certain cubic equation, at least one of the roots is known to be a complex root.  

How many total complex roots does the cubic equation have? 
(A) one     (B) two     (C) three    (D) cannot be determined 

 
4. An equation such as xx tan  has _________ root(s). 

(A) zero    (B) one    (C) two      (D) infinite 
 
5. A polynomial of order n  has __________ zeros. 

(A) 1n       (B) n        (C) 1n        (D) 2n  
 
6. The velocity of a body is given by 45)(  tetv , where t  is in seconds and v  is in sm .  

The velocity of the body is 6 sm  at t  = _____ seconds. 
(A) 0.1823     (B) 0.3979     (C) 0.9163     (D) 1.609 

For a complete solution, refer to the links at the end of the book.   
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3.2 Chapter 03.02 Solution of Cubic Equations 

 

PRE-REQUISITES 
 

1. Know how to manipulate equations.  
2. Know how to find solution of quadratic equations (Solution of Quadratic Equations) 
3. Know basics of complex numbers (Complex numbers – Trusted External link) 
4. Know Euler’s formula (Euler’s formula – Trusted External link) 

 

OBJECTIVES 
 

1. find the exact solution of a general cubic equation. 
 
 
After reading this chapter, you should be able to: 
 

1. find the exact solution of a general cubic equation. 
 
 

How to Find the Exact Solution of a General Cubic Equation 
In this chapter, we are going to find the exact solution of a general cubic equation 

023  dcxbxax                                (1) 
To find the roots of Equation (1), we first get rid of the quadratic term  2x  by making the 
substitution 

a

b
yx

3
                                  (2) 

to obtain 

0
333

23







 






 






  d

a

b
yc

a

b
yb

a

b
ya                             (3) 

Expanding Equation (3) and simplifying, we obtain the following equation 

0
327

2

3 2

32
3 



















a

bc

a

b
dy

a

b
cay                              (4) 

Equation (4) is called the depressed cubic since the quadratic term is absent.  Having the 
equation in this form makes it easier to solve for the roots of the cubic equation (Click here to 
know the history behind solving cubic equations exactly). 
First, convert the depressed cubic Equation (4) into the form  

0
327

21

3

1
2

32
3 



















a

bc

a

b
d

a
y

a

b
c

a
y  

03  feyy                                 (5) 
where 
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a

b
c

a
e

3

1 2

 











a

bc

a

b
d

a
f

327

21
2

3

 

Now, reduce the above equation using Vieta’s substitution 

z

s
zy                                   (6) 

For the time being, the constant s  is undefined.  Substituting into the depressed cubic Equation 
(5), we get  

0
3







 






  f

z

s
ze

z

s
z                                (7) 

Expanding out and multiplying both sides by 3z , we get 
    033 32346  szessfzzesz                              (8) 

Now, let 
3

e
s   ( s  is no longer undefined) to simplify the equation into a tri-quadratic equation. 

0
27

3
36 

e
fzz                                 (9) 

By making one more substitution, 3zw  , we now have a general quadratic equation which can 
be solved using the quadratic formula. 

0
27

3
2 

e
fww                               (10) 

Once you obtain the solution to this quadratic equation, back substitute using the previous 
substitutions to obtain the roots to the general cubic equation. 

xyzw   
where we assumed 

3zw                                             (11) 

z

s
zy   

3

e
s                                 (12) 

a

b
yx

3
   

         
Note: You will get two roots for w  as Equation (10) is a quadratic equation. Using 

(11)Equation  would then give you three roots for each of the two roots of w , hence giving you 
six root values for z . But the six root values of z  would give you six values of y  
( (6)Equation ); but three values of y  will be identical to the other three.  So one gets only three 
values of y , and hence three values of x . (Equation (2)) 
 

Example 1 
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Find the roots of the following cubic equation. 
080369 23  xxx  

Solution 
For the general form given by Equation (1) 

023  dcxbxax  
we have 

1a , 9b , 36c , 80d  
in 

080369 23  xxx                          (E1-1) 
Equation (E1-1) is reduced to  

03  feyy  
where 











a

b
c

a
e

3

1 2

 

   
 
  







 


13

9
36

1

1 2

 

   9  
and 











a

bc

a

b
d

a
f

327

21
2

3

 

     
 
 

  
  







 





13

369

127

92
80

1

1
2

3

 

     26  
giving 

02693  yy                           (E1-2) 
For the general form given by Equation (5) 

03  feyy  
we have 

9e , 26f  
in Equation (E1-2). 
From Equation (12) 

3

e
s   

   
3

9
  

   3  
From Equation (10) 

0
27

3
2 

e
fww  
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0
27

9
26

3
2  ww  

027262  ww  
where 

3zw   
and 

z

s
zy   

   
z

z
3

  

      
 12

27142626 2 
w  

    1,27   
The solution is 

271 w  

12 w  
Since 

3zw   
wz 3  

For 1ww   

1
3 wz   

     27  
      027 ie  
Since  

3zw   

   iii euuere 333
  

    3sin3cossincos 3 iuir   
resulting in 

3ur   
 3coscos   
 3sinsin   

Since sin  and cos  are periodic of 2 , 
k 23   

3

2 k 
  

k  will take the value of 0, 1 and 2 before repeating the same values of  . 
So, 

2 ,1 ,0 ,
3

2



 k

k  

31
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3

2
2

 
  

 
3

4
3

 
  

So roots of 3zw   are 







 

3
sin

3
cos3

1

1


irz  







 





3

2
sin

3

2
cos3

1

2


irz  







 





3

4
sin
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4
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0
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     3  

  





 





3

20
sin

3

20
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2
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2
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1
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2

33

2

3
i  
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4
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4
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1
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z
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3
  

1
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3

z
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3

3
3  
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     2  

2
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3

z
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3

3

2
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i

i  

     
31
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i
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31

31

31

335

i
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i
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     321 i  

3
33

3

z
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2
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2

3

3

2

33

2

3

i

i  

    
31

335

i

i




  

    
31

31

31

335

i

i

i

i








  

    321 i  
Since 

3 yx  

311  yx  
     32   
     5  

322  yx  

       3321  i  

     322 i  
333  yx  

       3321  i  

     322 i  
 
The roots of the original cubic equation 

080369 23  xxx  
are , , 21 xx  and 3x , that is, 

5 , 322 i , 322 i  
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Verifying 
        03223225  ixixx  

gives 
080369 23  xxx  

Using 
12 w  

would yield the same values of the three roots of the equation.  Try it. 
 
 

Example 2 
Find the roots of the following cubic equation 
 0104.203.0 623  xx  

Solution 
For the general form 

023  dcxbxax  
6104.2 ,0 ,03.0 ,1  dcba  

Depress the cubic equation by letting (Equation (2)) 

a

b
yx

3
  

 
 13

03.0
   


 y  

01.0    y  
Substituting the above equation into the cubic equation and simplifying, we get 

    0104103 743   yy  

That gives 4103 e  and 7104 f  for Equation (5), that is, 03  feyy . 
Now, solve the depressed cubic equation by using Vieta’s substitution as 

z

s
zy   

to obtain 
      010331041033 32437446   szsszzsz  

Letting 

4
4

10
3

103

3








e

s  

we get the following tri-quadratic equation 
  0101104 12376   zz  

Using the following conversion, 3zw  , we get a general quadratic equation 
    0101104 1272   ww  

Using the quadratic equation, the solutions for w  are 

    
 12

10114104104 12277  
w  
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giving 
 77

1 1037979589711.9102   iw   

 77
2 1037979589711.9102   iw  

Each solution of 3zw   yields three values of z .  The three values of z  from 1w  are in 
rectangular form. 
Since 

3zw   
Then 

3

1

wz   
Let 

   ireirw  sincos  
then 

   iueiuz  sincos  
This gives 

3zw   

   iii euuere 333
  

    3sin3cossincos 3 iuir   
resulting in 
 3ur   
  3coscos   
  3sinsin   
Since sin  and cos  are periodic of 2 , 

k 23   

3

2 k 
  

k  will take the value of 0, 1 and 2 before repeating the same values of  . 
So, 

2 ,1 ,0 ,
3

2



 k

k  

31

   

 
3

2
2

 
  

 
3

4
3

 
  

So the roots of 3zw   are 







 

3
sin

3
cos3

1

1


irz  







 





3

2
sin

3

2
cos3

1

2


irz  



112 
 







 





3

4
sin

3

4
cos3

1

3


irz  

So for 
 77

1 1037979589711.9102   iw  

   2727 1037979589711.9102  r  

   6101   

7

7
1

102

1037979589711.9
tan 







  

   772154248.1  (2nd quadrant because y (the numerator) is positive and x  (the 
denominator) is negative) 

  





  

3

772154248.1
sin

3

772154248.1
cos101 3

1
6

1 iz  

     350055695756.0170083054095.0 i  

  





 




 

3

2772154248.1
sin

3

2772154248.1
cos101 3

1
6

2


iz  

     150044079078.0460089760987.0 i  

  





 




 

3

4772154248.1
sin

3

4772154248.1
cos101 3

1
6

3


iz  

     480099774834.03130006706892.0 i  
Compiling 

340055695756.0180083054095.01 iz   

140044079078.0460089760987.02 iz   

480099774834.01057068922852.6 4
3 iz    

Similarly, the three values of z  from 2w  in rectangular form are 

340055695756.0180083054095.04 iz   

140044079078.0460089760987.05 iz   

480099774834.01057068922852.6 4
6 iz    

Using Vieta’s substitution (Equation (6)),  

z

s
zy   

 
z

zy
4101 

  

we back substitute to find three values for y . 
For example, choosing 

340055695756.0180083054095.01 iz   
gives 

340055695756.0180083054095.0

101
340055695756.0180083054095.0

4

1 i
iy
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40055695763.0180083054095.0

40055695763.0180083054095.0

40055695763.0780083054090.0

101
    

340055695756.0180083054095.0
4

i

i

i

i











  

 40055695763.0180083054095.0
101

101
     

340055695756.0180083054095.0

4

4

i

i











  

360166108190.0  
The values of 1z , 2z  and 3z  give 

360166108190.01 y  

90179521974.02 y  

570013413784.03 y  

respectively. The three other z  values of 4z , 5z  and 6z  give the same values as 1y , 2y  and 3y , 

respectively. 
Now, using the substitution of 

01.0 yx  
the three roots of the given cubic equation are 

01.0360166108190.01 x  
     360266108190.0  

01.090179521974.02 x  
     90079521974.0  

01.0570013413784.03 x  

     570113413784.0  
 
 

NONLINEAR EQUATIONS  
Topic Exact Solution to Cubic Equations 
Summary Textbook notes on finding the exact solution to a cubic 

equation. 
Major General Engineering 
Authors Autar Kaw 
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3.3 Chapter 03.03 Bisection (ikiye bölme) Method of Solving a Nonlinear Equation 
 

PRE-REQUISITES 
1. Know what a function of one variable is. 
2. High School Algebra. 

 

OBJECTIVES 
1. follow the algorithm of the bisection method of solving a nonlinear equation, 
2. use the bisection method to solve examples of finding roots of a nonlinear equation, and 
3. enumerate the advantages and disadvantages of the bisection method. 

 
 
After reading this chapter, you should be able to: 
 

1. follow the algorithm of the bisection method of solving a nonlinear equation, 
2. use the bisection method to solve examples of finding roots of a nonlinear equation, and 
3. enumerate the advantages and disadvantages of the bisection method. 

 
 
 

What is the bisection method and what is it based on? (İkiye bölme yöntemi nedir ve neye 

dayanır?) 
One of the first numerical methods developed to find the root of a nonlinear equation 0)( xf  
was the bisection method (also called binary-search method). The method is based on the 
following theorem.  
İkiye bölme yöntemi ilk sayısal yöntemlerden birisi olarak f(x)=0 şeklindeki çizgisel olmayan 
eşitliklerin köklerini bulmak için geliştirilmiştir (aynı zamanda ikili-arama yöntemi olarakta 
isimlendirilir). Yöntem aşağıdaki teoreme dayandırılır.  

Theorem 
An equation 0)( xf , where )(xf  is a real continuous function, has at least one root between 

x  and ux  if 0)()( uxfxf   (See Figure 1).     

Note that if 0)()( uxfxf  , there may or may not be any root between x  and ux  

(Figures 2 and 3).  If 0)()( uxfxf  , then there may be more than one root between x  and ux  

(Figure 4).  So the theorem only guarantees one root between x  and ux . 

 

Bisection method 
Since the method is based on finding the root between two points, the method falls under the 
category of bracketing (aralık) methods. 
Since the root is bracketed between two points, x  and ux , one can find the mid-point, mx  

between x  and ux .  This gives us two new intervals  

1. x  and mx , and  
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2. mx  and ux . 

 

                                           
Figure 1   At least one root exists between the two points if the function is real, continuous, 
and changes sign. 

 
 

                                            
Figure 2   If the function )(xf  does not change sign between the two points, roots of 
the equation 0)( xf  may still exist between the two points. 

 
 

Figure 3   If the function )(xf  does not change sign between two points, 
there may not be any roots for the equation 0)( xf  between the two points. 

 

 
Figure 4   If the function )(xf  changes sign between the two points, more than one root for the 
equation 0)( xf  may exist between the two points. 

f (x) 

xℓ 
xu 

x 

f (x) 

xℓ xu 
x 

f (x) 

xℓ xu 

x 

f (x)

xℓ xu 
x 

f (x) 

xℓ 
xu 

x 
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Is the root now between x  and mx  or between mx  and ux ?  Well, one can find the sign of 

)()( mxfxf  , and if 0)()( mxfxf   then the new bracket is between x  and mx , otherwise, it is 

between mx  and ux .  So, you can see that you are literally halving the interval. As one repeats 

this process, the width of the interval  uxx ,  becomes smaller and smaller, and you can zero in 

to the root of the equation 0)( xf .  The algorithm for the bisection method is given as follows. 
 

Algorithm for the bisection method 
The steps to apply the bisection method to find the root of the equation 0)( xf  are 

1. Choose x  and ux  as two guesses for the root such that 0)()( uxfxf  , or in other 

words, )(xf  changes sign between x  and ux . 

2. Estimate the root, mx , of the equation 0)( xf  as the mid-point between x  and ux  as 

 
2

 
 = u

m

xx
x

  

3. Now check the following 
a) If 0)()( mxfxf  , then the root lies between x  and mx ; then  xx   and mu xx  .    

b) If 0)()( mxfxf  , then the root lies between mx  and ux ; then mxx   and uu xx  . 

c) If 0)()( mxfxf  ; then the root is mx .  Stop the algorithm if this is true. 

4. Find the new estimate of the root 

 
2

 
 = u

m

xx
x

  

            Find the absolute relative approximate error as 

 100  
 - 

 = 
new

oldnew


m

mm
a x

xx
 

where 
           new

mx  = estimated root (tahmini kök) from present iteration (yinelemek) 

           old
mx = estimated root from previous iteration 

5. Compare the absolute relative approximate error a  with the pre-specified relative error 

tolerance s .  If sa  , then go to Step 3, else stop the algorithm.  Note one should 

also check whether the number of iterations is more than the maximum number of 
iterations allowed.  If so, one needs to terminate the algorithm and notify the user about 
it. 

 

Example 1 
You are working for ‘DOWN THE TOILET COMPANY’ that makes floats for ABC commodes 
(klozet). The floating ball has a specific gravity of 0.6 and has a radius of 5.5 cm. You are asked 
to find the depth to which the ball is submerged when floating in water. 

The equation that gives the depth x  to which the ball is submerged under water is given by 
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010993.3165.0 423  xx  
Use the bisection method of finding roots of equations to find the depth x  to which the ball 
is submerged under water.  Conduct three iterations to estimate the root of the above 
equation. Find the absolute relative approximate error at the end of each iteration, and the 
number of significant digits at least correct at the end of each iteration. 
 

Solution 
From the physics of the problem, the ball would be submerged between 0x  and Rx 2 ,  
where  

ball,  theof radiusR  
that is 

Rx 20   
)055.0(20  x  

11.00  x  
 

 
                                                Figure 5   Floating ball problem. 
 

Lets us assume 
11.0 ,0  uxx  

Check if the function changes sign between x  and ux . 
4423 10993.310993.3)0(165.0)0()0()(   fxf   

4423 10662.210993.3)11.0(165.0)11.0()11.0()(   fxf u  

Hence  
 0)10662.2)(10993.3()11.0()0()()( 44  ffxfxf u  

So there is at least one root between x  and ux , that is between 0 and 0.11. 

Iteration 1 
The estimate of the root is 

2
u

m

xx
x


   

      
2

11.00 
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                 055.0   

        5423 10655.610993.3055.0165.0055.0055.0   fxf m  
   010655.610993.3)055.0()0()()( 44  ffxfxf m  

Hence the root is bracketed between mx  and ux , that is, between 0.055 and 0.11.  So, the lower 

and upper limit of the new bracket is 
11.0 ,055.0  uxx  

At this point, the absolute relative approximate error a  cannot be calculated as we do not have 

a previous approximation. 

Iteration 2 
The estimate of the root is 

2
u

m

xx
x


   

      
2

11.0055.0 
  

      0825.0  
 4423 10622.110993.3)0825.0(165.0)0825.0()0825.0()(   fxf m  

             010622.110655.60825.0055.0 45  ffxfxf m  

Hence, the root is bracketed between x  and mx , that is, between 0.055 and 0.0825.  So the 

lower and upper limit of the new bracket is 
0825.0 ,055.0  uxx  

The absolute relative approximate error a  at the end of Iteration 2 is 

100
new

oldnew





m

mm
a x

xx
 

      100
0825.0

055.00825.0



  

      %33.33  
None of the significant digits are at least correct in the estimated root of 0825.0mx  because 

the absolute relative approximate error is greater than 5%. 

Iteration 3 

2
u

m

xx
x


   

     
2

0825.0055.0 
  

     06875.0  
5423 10563.510993.3)06875.0(165.0)06875.0()06875.0()(   fxf m  

0)105.563()10655.6()06875.0()055.0()()( 55  ffxfxf m  

Hence, the root is bracketed between x  and mx , that is, between 0.055 and 0.06875.  So the 

lower and upper limit of the new bracket is 
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06875.0 ,055.0  uxx  

The absolute relative approximate error a  at the ends of Iteration 3 is 

100
new

oldnew





m

mm
a x

xx
 

       100
06875.0

0825.006875.0



  

       %20  
Still none of the significant digits are at least correct in the estimated root of the equation as the 
absolute relative approximate error is greater than 5%. 
Seven more iterations were conducted and these iterations are shown in Table 1. 
 
      Table 1   Root of 0)( xf  as function of number of iterations for bisection method. 

Iteration x  ux  mx  
a % )( mxf  

1 0.00000 0.11 0.055 ----------   510655.6   
2 0.055 0.11 0.0825 33.33 410622.1   
3 0.055 0.0825 0.06875 20.00 510563.5   
4 0.055 0.06875 0.06188 11.11   610484.4   
5 0.06188 0.06875 0.06531 5.263 510593.2   
6 0.06188 0.06531 0.06359 2.702 5100804.1   
7 0.06188 0.06359 0.06273 1.370 610176.3   
8 0.06188 0.06273 0.0623 0.6897   710497.6   
9 0.0623 0.06273 0.06252 0.3436 610265.1   
10 0.0623 0.06252 0.06241 0.1721 7100768.3   

 
At the end of 10th iteration (10.yinelemenin sonunda), 

%1721.0a  

Hence the number of significant digits at least correct is given by the largest value of m  for 
which (Bu durumda doğru olarak verilebilecek anlamlı hane sayısı m’nin alacağı en büyük değer 
kadardır) 

m
a

 2105.0  
m 2105.01721.0  

m 2103442.0  
m 2)3442.0log(  

463.2)3442.0log(2 m  
So 

2m  
The number of significant digits at least correct in the estimated root of 06241.0  at the end of the 

th10  iteration is 2. 
 

Example 2 (Mechanical Engineering) 
A trunnion has to be cooled before it is shrink fitted into a steel hub.  
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Figure 1  Trunnion to be slid through the hub after contracting. 

 
The equation that gives the temperature fT  to which the trunnion has to be cooled to obtain the 

desired contraction is given by 
010 88318.010 74363.010 38292.010 50598.0)( 2427310    T T T Tf ffff

Use the bisection method of finding roots of equations to find the temperature fT  to which the 

trunnion has to be cooled. Conduct three iterations to estimate the root of the above equation. 
Find the absolute relative approximate error at the end of each iteration and the number of 
significant digits at least correct at the end of each iteration. 
 

Solution 
From the designer’s records for the previous bridge, the temperature to which the trunnion was 
cooled was F108 . Hence assuming the temperature to be between F100 and  

F150 , we have 

F150, fT , F100, ufT  

Check if the function changes sign between ,fT  and ufT , . 

 

   

24

27310

,

10 88318.0)150(10 74363.0

)150(10 38292.0)150(10 50598.0

150











  

             

 fTf f 

              

              310 2903.1    
 

24

27310

,

10 88318.0)100(10 74363.0

)100(10 38292.0)100(10 50598.0

)100(











  

              

fTf uf

              

             310 8290.1   
Hence  

           010 8290.110 2903.1100150 33
,,     ffTfTf uff   

So there is at least one root between ,fT  and ufT ,  that is between 150  and 100 . 
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Iteration 1 
The estimate of the root is 

2
,,

,
uff

mf

TT
T


   

         
2

)100(150 
  

         125   
   

24

27310

,

10 88318.0)125(10 74363.0

)125(10 38292.0)125(10 50598.0

125











  

  

fTf mf

              

                         4102.3356    
           010 3356.210 2903.1125150 43

,,     ffTfTf mff   

Hence the root is bracketed between ,fT  and mfT , , that is, between 150  and 125 .  

So, the lower and upper limits of the new bracket are 
125,150 ,,  uff TT   

At this point, the absolute relative approximate error a  cannot be calculated, as we do not have 

a previous approximation. 

Iteration 2 
The estimate of the root is 
 

2
,,

,
uff

mf

TT
T


   

        
 

2

125150 
  

        5.137  
   

       10 88318.0)5.137(10 74363.0

)5.137(10 38292.0)5.137(10 50598.0 

5.137

24

27310

,











  

  

fTf mf

                                       

             410  5.3762 = 
            010 3356.210 3762.51255.137 44

,,     ffTfTf ufmf  

Hence, the root is bracketed between mfT ,  and ufT , , that is, between 125  and 5.137 .   

So the lower and upper limits of the new bracket are 
 125,5.137 ,,  uff TT   

The absolute relative approximate error a  at the end of Iteration 2 is 

 100
new
,

old
,

new
, 




mf

mfmf
a T

TT
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                   100
5.137

)125(5.137





  

                   %0909.9  
None of the significant digits are at least correct in the estimated root of 

5.137, mfT  

as the absolute relative approximate error is greater that %5 . 

Iteration 3 
The estimate of the root is 

2
,,

,
uff

mf

TT
T


   

         
2

)125(5.137 
  

         25.131  
   

   10 88318.0)25.131(10 74363.0

)25.131(10 38292.0)25.131(10 50598.0

25.131

24

27310

,











  

  

fTf mf

                                     

               410  1.54303 =   
           010 5430.110 3356.225.131125 44

,,     ffTfTf mff   

Hence, the root is bracketed between ,fT  and mfT , , that is, between 125  and 25.131 .   

So the lower and upper limits of the new bracket are 
 125,25.131 ,,  uff TT   

The absolute relative approximate error a  at the ends of Iteration 3 is 

 100
new
,

old
,

new
, 




mf

mfmf
a T

TT
 

       100
25.131

)5.137(25.131





  

       %7619.4  
The number of significant digits at least correct is 1. 
Seven more iterations were conducted and these iterations are shown in the Table 1 below. 
 

Table 1 Root of   0xf  as function of number of iterations for bisection method. 
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Iteration ,fT  ufT ,  mfT ,  %a   mfTf ,  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

−150 
−150 
−137.5 
−131.25 
−131.25 
−129.69 
−128.91 
−128.91 
−128.91 
−128.81 

−100 
−125 
−125 
−125 
−128.13 
−123.13 
−123.13 
−128.52 
−128.71 
−128.71 

−125 
−137.5 
−131.25 
−128.13 
−129.69 
−128.91 
−128.52 
−128.71 
−128.81 
−128.76 

--------- 
9.0909 
4.7619 
2.4390 
1.2048 
0.60606 
0.30395 
0.15175 
0.075815 
0.037922 

   4102.3356   
4105.3762   
4101.5430   

   5103.9065   
5105.7760   
6109.3826   

   5101.4838   
   6102.7228   

6103.3305   
7103.0396   

 

 
At the end of the th10  iteration, 
 %037922.0a  

Hence, the number of significant digits at least correct is given by the largest value of m  for 
which 
 m

a
 2105.0  

 m 2105.0037922.0  
 m 210075844.0  
   m 2075844.0log  

   1201.3075844.0log2 m  
So 

3m  
The number of significant digits at least correct in the estimated root of 76.128  is 3. 
 

Example 3 (Industrial Engineering) 
You are working for a start-up computer assembly company and have been asked to determine 
the minimum number of computers that the shop will have to sell to make a profit. 
The equation that gives the minimum number of computers n  to be sold after considering the 
total costs and the total sales is      

03500087540)( 5.1  nnnf  
Use the bisection method of finding roots of equations to find the minimum number of 
computers that need to be sold to make a profit. Conduct three iterations to estimate the root of 
the above equation. Find the absolute relative approximate error at the end of each iteration and 
the number of significant digits at least correct at the end of each iteration. 
 

Solution 
Let us assume 
 100,50  unn  

Check if the function changes sign between n  and un . 
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   1.539235000)50(875)50(4050)( 5.1  fnf   

 1250035000)100(875)100(40)100() 5.1  ff(nu  

Hence  
           0125001.539210050  ffnfnf u  

So there is at least one root between n  and un , that is, between 50 and 100. 

Iteration 1 
The estimate of the root is 

2
u

m

nn
n


   

         
2

10050 
  

       75   
    35.1 10 6442.435000)75(875)75(4075   fnf m  

            010 6442.41.53927550 3   ffnfnf m  

Hence the root is bracketed between n  and mn , that is, between 50 and 75.  So, the lower and 

upper limits of the new bracket are 
 75,50  unn  

At this point, the absolute relative approximate error a  cannot be calculated, as we do not have 

a previous approximation. 

Iteration 2 
The estimate of the root is 

2
u

m

nn
n


   

       
2

7550 
  

                  5.62  
     735.7635000)5.62(875)5.62(405.62 5.1  fnf m  

            0735.761.53925.6250  ffnfnf m  

Hence, the root is bracketed between mn  and un , that is, between 62.5 and 75.  So the lower and 

upper limits of the new bracket are 
 75,5.62  unn  

The absolute relative approximate error, a at the end of Iteration 2 is 

 100
new

oldnew





m

mm
a n

nn
 

                   100
5.62

755.62



  

                   %20  
None of the significant digits are at least correct in the estimated root  
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 5.62mn  

as the absolute relative approximate error is greater that 5%. 

Iteration 3 
The estimate of the root is 

2
u

m

nn
n


   

       
2

755.62 
  

       75.68  
     35.1 10 3545.235000)75.68(875)75.68(4075.68   fnf m  

            010 3545.2735.7675.685.62 3   ffnfnf m  

Hence, the root is bracketed between n  and mn , that is, between 62.5 and 68.75.  So the lower 

and upper limits of the new bracket are 
 75.68,5.62  unn  

The absolute relative approximate error a  at the end of Iteration 3 is 

 100
new

oldnew





m

mm
a n

nn
 

       100
75.68

5.6275.68



  

       %0909.9  
Still none of the significant digits are at least correct in the estimated root of the equation, as the 
absolute relative approximate error is greater than 5%. The estimated minimum number of 
computers that need to be sold to break even at the end of the third iteration is 69. Seven more 
iterations were conducted and these iterations are shown in the Table 1. 
 

Table 1 Root of   0xf  as a function of the number of iterations for bisection method. 

Iteration n  un  mn  %a   mnf  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

50 
50 

62.5 
62.5 
62.5 
62.5 
62.5 
62.5 
62.5 

62.598 

100 
75 
75 

68.75 
65.625 
64.063 
63.281 
62.891 
62.695 
62.695 

75 
62.5 
68.75 
65.625 
64.063 
63.281 
62.891 
62.695 
62.598 
62.646 

---------- 
20 

9.0909 
4.7619 
2.4390 
1.2346 
0.62112 
0.31153 
0.15601 
0.077942 

3104.6442  
76.735 

3102.3545  
3101.1569  

−544.68 
−235.12 
−79.483 
−1.4459 
37.627 
18.086 

 

At the end of the th10  iteration, 
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 %077942.0a  

Hence the number of significant digits at least correct is given by the largest value of m  for 
which 
 m

a
 2105.0  

 m 2105.0077942.0  
 m 21015588.0  
   m 215588.0log  

   8072.215588.0log2 m  
So 

2m  
 

The number of significant digits at least correct in the estimated root 62.646 is 2. 
 
 

Example 1 (Electrical Engineering) 
Thermistors are temperature-measuring devices based on the principle that the thermistor 
material exhibits a change in electrical resistance with a change in temperature.  By measuring 
the resistance of the thermistor material, one can then determine the temperature. 
For a 10K3A Betatherm thermistor, 
  

 
 

Figure 1  A typical thermistor. 
 
 
the relationship between the resistance R  of the thermistor and the temperature is given by  

  3843 ln10775468.8)ln(10341077.210129241.1
1

RR
T

   

where T  is in Kelvin and R  is in ohms. 
 
A thermistor error of no more than C01.0   is acceptable. To find the range of the resistance 
that is within this acceptable limit at C 19  , we need to solve  

  3843 ln10775468.8)ln(10341077.210129241.1
15.27301.19

1
RR  


 

and 

  3843 ln10775468.8)ln(10341077.210129241.1
15.27399.18

1
RR  


 

Use the bisection method of finding roots of equations to find the resistance R  at C99.18  .  
Conduct three iterations to estimate the root of the above equation. Find the absolute relative 

Thermally 
conductive epoxy 
coating 

Tin plated copper 
alloy lead wires 
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approximate error at the end of each iteration and the number of significant digits at least correct 
at the end of each iteration. 
 

Solution 
Solving 

  3843 ln10775468.8)ln(10341077.210129241.1
15.27399.18

1
RR  


 

we get 

   3384 10293775.2ln10775468.8)ln(10341077.2)(   RRRf  
Lets us assume 
 14000,11000  uRR  

Check if the function changes sign between R  and uR . 

  
5

3384

104536.4

10293775.211000ln10775468.8)11000ln(10341077.2

)11000()(









 fRf 

  

  
5

3384

107563.1

10293775.214000ln10775468.8)14000ln(10341077.2

)14000()(









 fRf u

 

Hence  
           0107563.1104536.41400011000 55  ffRfRf u  

So there is at least one root between R  and uR , that is, between 11000  and 14000 . 

 

Iteration 1 
The estimate of the root is 

2
u

m

RR
R


   

       
2

1400011000 
  

       12500   
  

  
5

3384

101655.1

10293775.212500ln10775468.8)12500ln(10341077.2

)12500()(









 fRf m

           0101655.1104536.41250011000 55  ffRfRf m  

Hence the root is bracketed between mR  and uR , that is, between 12500  and 14000 . So, the 

lower and upper limits of the new bracket are  
14000,12500  uRR  
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At this point, the absolute relative approximate error a  cannot be calculated as we do not have 

a previous approximation. 
 

Iteration 2 
The estimate of the root is 

2
u

m

RR
R


   

       
2

1400012500 
  

       13250  
  
   

    
6

3384

103599.3

10293775.213250ln10775468.813250ln10341077.2

13250









 fRf m

           0103599.3101655.11325012500 65  ffRfRf m  

Hence, the root is bracketed between R  and mR , that is, between 12500  and 13250 .   

So the lower and upper limits of the new bracket are 
 13250,12500  uRR  

The absolute relative approximate error a  at the end of Iteration 2 is 

 100
new

oldnew





m

mm
a R

RR
 

                   100
13250

1250013250



  

                   %6604.5  
None of the significant digits are at least correct in the estimated root  
 13250mR  

as the absolute relative approximate error is greater than %5 . 
 

Iteration 3 

2
u

m

RR
R


   

       
2

1325012500 
  

       12875  

   

   
    

6

3384

100403.4

10293775.212875ln10775468.812875ln10341077.2

12875









 fRf m

             0100398.4101654.11287512500 65  ffRfRf m  
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Hence, the root is bracketed between mR and uR , that is, between 12875  and 13250 .   

So, the lower and upper limits of the new bracket are 
 13250,12875  uRR  

The absolute relative approximate error a  at the end of Iteration 3 is 

 100
new

oldnew





m

mm
a R

RR
 

       100
12875

1325012875



  

       %9126.2  
One of the significant digits is at least correct in the estimated root of the equation as the absolute 
relative approximate error is less than %5 . 
Seven more iterations were conducted and these iterations are shown in the Table 1. 

 
Table 1  Root of   0xf  as a function of the number of iterations for bisection method. 

Iteration R  uR  mR  %a   mRf  

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

11000 
12500 
12500 
12875 
13063 
13063 
13063 
13063 
13074 
13074 

14000 
14000 
13250 
13250 
13250 
13156 
13109 
13086 
13086 
13080 

12500 
13250 
12875 
13063 
13156 
13109 
13086 
13074 
13080 
13077 

---------- 
5.6604 
2.9126 
1.4354 
0.71259 
0.35757 
0.17910 
0.089633 
0.044796 
0.022403 

5101.1655   
6103.3599   

6104.0403   
7103.1417   

6101.5293   
7106.0917   
7101.4791   

8108.3022   
8103.2470   

8102.5270   
 
 

At the end of the th10  iteration, 
 %022403.0a  

Hence the number of significant digits at least correct is given by the largest value of m  for 
which 
 m

a
 2105.0  

 m 2105.0022403.0  
 m 210044806.0  
   m 2044806.0log  

   3487.3044806.0log2 m  
So 

3m  
The number of significant digits at least correct in the estimated root 13077 is 3. 
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Advantages of bisection method (ikiye bölme yönteminin avantajları) 
a) The bisection method is always convergent.  Since the method brackets the root, the 

method is guaranteed to converge. 
b) As iterations are conducted, the interval gets halved.   So one can guarantee the error 

in the solution of the equation. 
 

Drawbacks of bisection method (ikiye bölme yönteminin dez avantajları) 
a) The convergence of the bisection method is slow as it is simply based on halving the 

interval (ikiye bölme yöntemiyle sonuca yaklaşmak/yakınsamak uzun zaman alabilir).   
b) If one of the initial guesses is closer to the root, it will take larger number of iterations 

to reach the root (Köke çok yakın başlangıç tahmininde bulunulursa, köke ulaşmak 
için daha fazla yineleme yapmak gerekebilir ). 

c) If a function )(xf  is such that it just touches the x -axis (Figure 6) such as 

 0)( 2  xxf  

      it will be unable to find the lower guess, x , and upper guess, ux , such that 

 0)()( uxfxf   

d) For functions )(xf  where there is a singularity1  and it reverses sign at the 
singularity, the bisection method may converge on the singularity (Figure 7).  An 
example includes 

x
xf

1
)(   

                 where 2x , 3ux  are valid initial guesses which satisfy 

0)()( uxfxf   

However, the function is not continuous and the theorem that a root exists is also not 
applicable. 

 

  

f (x) 

x 
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          Figure 6   The equation 0)( 2  xxf  has a single root at 0x  that cannot be bracketed. 
 
 
 
 A singularity in a function is defined as a point where the function becomes infinite.  For example, for a function 
such as x/1 , the point of singularity is 0x  as it becomes infinite. 

 

                  Figure 7   The equation   0
1


x
xf  has no root but changes sign. 

 
NONLINEAR EQUATIONS  
Topic Bisection method of solving a nonlinear equation 
Summary These are textbook notes of bisection method of finding roots of 

nonlinear equation, including convergence and pitfalls. 
Major General Engineering 
Authors Autar Kaw 
Date Aralık 8, 2016 
Web Site http://numericalmethods.eng.usf.edu 

 
3.3.1 Multiple-Choice Test Chapter 03.03 Bisection Method 
 
1. The bisection method of finding roots of nonlinear equations falls under the category of a (an) 

_________ method. 
(A) open    (B) bracketing    (C) random     (D) graphical 
 
2. If )(xf  is a real continuous function in ],[ ba , and   0)( bfaf , then for   0xf , there is 

(are) ____________ in the domain ],[ ba . 
(A) one root      (B) an undeterminable number of roots      (C) no root     (D) at least one root 
 

f (x) 

x 
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3. Assuming an initial bracket of  5,1 , the second (at the end of 2 iterations) iterative value of 

the root of 03.0 tte  using the bisection method is 
(A) 0     (B) 1.5     (C) 2     (D) 3 
[1.00,5.00] birinci kök değeri  : 3.000  
 fonksiyonun xl değeri          : 0.068  
 fonksiyonun değeri             : -0.151  
 kök hesabındaki hata           : ----  
 [1.00,3.00]  ikinci kök değeri : 2.000  
 fonksiyonun xl değeri          : 0.068  
 fonksiyonun xm değeri          : -0.029  
 kök hesabındaki hata           : 50.000 

 
4. To find the root of 0)( xf , a scientist is using the bisection method.  At the beginning of an 

iteration, the lower and upper guesses of the root are lx  and ux .  At the end of the iteration, 

the absolute relative approximate error in the estimated value of the root would be 

(A) 
xx

x

u

u


    (B) 





xx

x

u 
     (C) 





xx

xx

u

u




   (D) 




xx

xx

u

u




 

 
5. For an equation like 02 x , a root exists at 0x .  The bisection method cannot be adopted to 

solve this equation in spite of the root existing at 0x  because the function   2xxf   
(A) is a polynomial                 (B) has repeated roots at 0x       
(C) is always non-negative     (D) has a slope equal to zero at 0x  
 
6. The ideal gas law is given by   
  RTpv   
 where p  is the pressure, v  is the specific volume, R  is the universal gas constant,  and 

T is the absolute temperature. This equation is only accurate for a limited range  of 
pressure and temperature. Vander Waals came up with an equation that was  accurate for 
larger ranges of pressure and temperature given by 

    RTbv
v

a
p 






 

2
 

 Where a  and b  are empirical constants dependent on a particular gas.  Given the value of 
08.0R , 592.3a , 04267.0b , 10p  and 300T  (assume all units are consistent), one 

is going to find the specific volume, v , for the above values.  Without finding the solution 
from the Vander Waals equation, what would be a good initial guess for v ? 

(A) 0       (B) 1.2      (C) 2.4        (D) 3.6 
 
For a complete solution, refer to the links at the end of the book. 
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3.4 Chapter 03.04 Newton-Raphson Method of Solving a Nonlinear Equation 

 

PRE-REQUISITES 
 

1. Know the definition of a derivative of a function (Primer for Differential Calculus). 
2. Be able to find derivatives of function (Primer for Differential Calculus). 
3. Know what a tangent to a curve is and how to find the tangent line (Primer for 

Differential Calculus). 
 

OBJECTIVES 
 

1. derive the Newton-Raphson method formula, 
2. develop the algorithm of the Newton-Raphson method, 
3. use the Newton-Raphson method to solve a nonlinear equation, and 
4. discuss the drawbacks of the Newton-Raphson method. 

 
 
 
After reading this chapter, you should be able to: 
 

1. derive the Newton-Raphson method formula, 
2. develop the algorithm of the Newton-Raphson method, 
3. use the Newton-Raphson method to solve a nonlinear equation, and 
4. discuss the drawbacks of the Newton-Raphson method. 

 

Introduction 
Methods such as the bisection method and the false position method of finding roots of a 
nonlinear equation 0)( xf  require bracketing of the root by two guesses (f(x)=0 şeklindeki 
çizgisel olmayan bir eşitliğin bisection ve false position gibi yöntemlerde çözüm aralığının 
tahmin edilmesi gerekmektedir).  Such methods are called bracketing methods (aralık yöntemi).  
These methods are always convergent since they are based on reducing the interval between the 
two guesses so as to zero in on the root of the equation (eşitliği sıfıra yaklaştıracak aralığı 
daralttıkça bu yöntemlerle bir sonuca ulaşılabilir). 

In the Newton-Raphson method, the root is not bracketed (Newton-Raphson yönteminde 
kök bölgesi yoktur).  In fact, only one initial guess of the root is needed to get the iterative 
process started to find the root of an equation (aslında bir başlangıç tahmini kök değeri 
yinelemeyi başlatmak için yeterli olacaktır).  The method hence falls in the category of open 
methods (yöntem açık yöntem kategorisine alınabilir).  Convergence in open methods is not 
guaranteed but if the method does converge, it does so much faster than the bracketing methods. 

 

Derivation 
The Newton-Raphson method is based on the principle that if the initial guess of the root of 

0)( xf  is at ix , then if one draws the tangent to the curve at )( ixf , the point 1ix  where the 
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tangent crosses the x -axis is an improved estimate of the root (Figure 1) (Newton-Raphson 
yöntemi f(x)=0’ın başlangıç kökü için xi’yi alır ve bu noktadaki tanjantının/teğetinin yatay 
ekseni kestiği yeri xi+1 olarak daha iyi bir kök değerini bulmaya çalışır).  
Using the definition of the slope of a function, at ixx   

  θ = xf i tan  
1

0




ii

i

xx

xf
 = , 

which gives 
 
 i

i
ii xf

xf
 = xx


1        (1) 

Equation (1) is called the Newton-Raphson formula for solving nonlinear equations of the form 
  0xf .  So starting with an initial guess, ix , one can find the next guess, 1ix , by using 

Equation (1). One can repeat this process until one finds the root within a desirable tolerance. 
 

Algorithm 
The steps of the Newton-Raphson method to find the root of an equation   0xf   are 

1. Evaluate  xf   symbolically 

2. Use an initial guess of the root, ix , to estimate the new value of the root, 1ix , as 

             
 
 i

i
ii xf

xf
 = xx


1  

3. Find the absolute relative approximate error a  as 

            010
1

1 







i

ii
a x

 xx
 =  

4. Compare the absolute relative approximate error with the pre-specified relative error 
tolerance, s .  If a > s , then go to Step 2, else stop the algorithm.  Also, check if 

the number of iterations has exceeded the maximum number of iterations allowed.  If 
so, one needs to terminate the algorithm and notify the user. 

 

                        
                           Figure 1  Geometrical illustration of the Newton-Raphson method. 
 

Example 1 

f (x) 

f (xi) 

f (xi+1) 

    xi+2     xi+1     xi 
    x 

    θ 

[xi,  f (xi)] 
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You are working for ‘DOWN THE TOILET COMPANY’ that makes floats for ABC commodes.  
The floating ball has a specific gravity of 0.6 and has a radius of 5.5 cm.  You are asked to find 
the depth to which the ball is submerged when floating in water. 
 

                                       
                                          Figure 2   Floating ball problem. 

 
The equation that gives the depth x  in meters to which the ball is submerged under water is 
given by 

010993.3165.0 423  xx  
Use the Newton-Raphson method of finding roots of equations to find  

a) the depth x  to which the ball is submerged under water.  Conduct three iterations to 
estimate the root of the above equation.   

b) the absolute relative approximate error at the end of each iteration, and  
c) the number of significant digits at least correct at the end of each iteration. 

Solution 
  423 10993.31650  x.xxf  

  x.xxf 3303 2   

Let us assume the initial guess of the root of   0xf  is ..x m 0500    This is a reasonable guess 

(discuss why 0x  and m 11.0x  are not good choices) as the extreme values of the depth x  
would be 0 and the diameter (0.11 m) of the ball.   

Iteration 1  
The estimate of the root is 

 
 0

0
01 xf

xf
xx


  

    
   

   0503300503

10993.30501650050
050

2

423

...

...
.







 

    
3

4

109

10118.1
050 






 .  

     01242.0050  .  
                062420.   
The absolute relative approximate error a  at the end of Iteration 1 is 
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100
1

01 



x

xx
a  

      

19.90% 

100
062420

050062420







.

..
 

        
The number of significant digits at least correct is 0, as you need an absolute relative 
approximate error of 5% or less for at least one significant digit to be correct in your result. 

Iteration 2 
The estimate of the root is 

 
 1

1
12 xf

xf
xx


  

     
   

   0624203300624203

10993.30624201650062420
062420

2

423

...

...
.







 

     
3

7

1090973.8

10977813
062420 







.

.  

      5104646.4062420  .  
     062380.  

The absolute relative approximate error a  at the end of Iteration 2 is 

100
2

12 



x

xx
a  

      100
062380

062420062380





.

..
 

       %07160.  
The maximum value of m  for which m

a
 2105.0  is 2.844.  Hence, the number of 

significant digits at least correct in the answer is 2. 

Iteration 3 
The estimate of the root is 

 
 2

2
23 xf

xf
xx


  

    
   

   0623803300623803

10993.30623801650062380
062380

2

423

...

...
.







 

    
3

11

1091171.8

1044.4
062380 






 .  

      9109822.4062380  .  
     062380.  
The absolute relative approximate error a  at the end of Iteration 3 is 
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100
062380

062380062380





.

..
a  

       0  
The number of significant digits at least correct is 4, as only 4 significant digits are carried 
through in all the calculations. 
 

Drawbacks of the Newton-Raphson Method 
1. Divergence at inflection points (dönüm noktalarındaki ıraksamalar)  
 If the selection of the initial guess or an iterated value of the root turns out to be close to the 
inflection point (see the definition in the appendix of this chapter) of the function  xf  in the 

equation   0xf , Newton-Raphson method may start diverging away from the root (Başlangıç 
tahmin değeri veya iterasyon sonucunda elde edilen bir değer f(x)=0 eşitliğindeki fonksiyonun 
dönüm noktasına gelebilir, Newton-Rapson yöntemi ıraksamaya başlarsa kökten uzaklaşılabilir).  
It may then start converging back to the root (Sonra tekrar köke doğru yakınsayabilir).  For 
example, to find the root of the equation 

    0512.01 3  xxf  
the Newton-Raphson method reduces to 

2

33

1 )1(3

512.0)1(





i

i
ii x

x
 = xx  

Starting with an initial guess of 0.50 x , Table 1 shows the iterated values of the root of the 

equation.  As you can observe, the root starts to diverge at Iteration 6 because the previous 
estimate of 0.92589 is close to the inflection point of 1x  (the value of  xf '  is zero at the 
inflection point). Eventually, after 12 more iterations the root converges to the exact value of 

2.0x . 
Table 1   Divergence near inflection point. 

Iteration 
Number ix  

0 5.0000 
1 3.6560 
2 2.7465 
3 2.1084 
4 1.6000 
5 0.92589 
6 –30.119 
7 –19.746 
8 –12.831 
9 –8.2217 
10 –5.1498 
11 –3.1044 
12 –1.7464 
13 –0.85356 
14 –0.28538 
15 0.039784 
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16 0.17475 
17 0.19924 
18 0.2 

 
Figure 3   Divergence at inflection point for     01 3  xxf . 

 
2. Division by zero  
For the equation  

  01042030 623  .x.xxf  
the Newton-Raphson method reduces to  

ii

ii
ii

xx

.x.x
 = xx

06.03

1042030
2

623

1 





  

For 00 x  or 02.00 x , division by zero occurs (Figure 4).  For an initial guess close to 0.02 

such as 01999.00 x , one may avoid division by zero, but then the denominator (payda) in the 

formula is a small number.  For this case, as given in Table 2, even after 9 iteration, the Newton-
Raphson method does not converge (Çizelge 2’de verildiği gibi buradaki durumda, 9 yinelemeye 
rağmen Newton-Raphson yöntemi köke yakınsamamaktadır). 
 

Table 2   Division by near zero in Newton-Raphson method. 
Iteration  
Number ix  )( ixf  %a  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

 0.019990 
–2.6480 
–1.7620 
–1.1714 
–0.77765 
–0.51518 
–0.34025 
–0.22369 
–0.14608 
–0.094490 

-6101.60000  
18.778 
 –5.5638 
 –1.6485 
 –0.48842 
 –0.14470 
 –0.042862 
 –0.012692 
 –0.0037553 
 –0.0011091 

 
100.75 
 50.282 
 50.422 
 50.632 
 50.946 
 51.413 
 52.107 
 53.127 
 54.602 
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-1.00E-05

-7.50E-06

-5.00E-06

-2.50E-06

0.00E+00

2.50E-06

5.00E-06

7.50E-06

1.00E-05

-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

x

f(x)

0.02

 
         Figure 4   Pitfall of division by zero or a near zero number (Sıfıra bölme veya sıfıra 
yakın sayı tuzağı). 

 
3. Oscillations near local maximum and minimum (maksimum ve minimum çevresinde 
salınım) 
Results obtained from the Newton-Raphson method may oscillate about the local maximum or 
minimum without converging on a root but converging (yaklaşma) on the local maximum or 
minimum. Eventually (sonunda), it may lead to division by a number close to zero and may 
diverge (sapma). 
For example, for 

  022  xxf  
 the equation has no real roots (Figure 5 and Table 3). 

-1

0

1

2

3

4

5

6

-2 -1 0 1 2 3

f(x)

x

 3

 4

 2

 1

 -1.75  -0.3040 0.5 3.142

 
        Figure 5   Oscillations around local minima for   22  xxf . 

 
Table 3   Oscillations near local maxima and minima in Newton-Raphson method. 
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Iteration  
Number ix  )( ixf  %a  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

–1.0000 
  0.5 
–1.75 
–0.30357 
 3.1423 
 1.2529 
–0.17166 
 5.7395 
 2.6955  
 0.97678 

3.00 
2.25 
5.063  
2.092 
11.874 
3.570 
2.029 
34.942 
9.266 
2.954  

300.00 
128.571 
 476.47 
109.66 
150.80 
829.88 
102.99 
112.93 
175.96 

 
4. Root jumping (kökü atlamak) 
In some case where the function )(xf  is oscillating and has a number of roots, one may choose 
an initial guess close to a root.  However, the guesses may jump and converge to some other 
root.  For example for solving the equation 0sin x  if you choose  539822.74.20  x  as an 

initial guess, it converges to the root of 0x  as shown in Table 4 and Figure 6. However, one 
may have chosen this as an initial guess to converge to 283185362 .x   . 
 
                     Table 4   Root jumping in Newton-Raphson method. 

Iteration  
Number ix  )( ixf  %a  

0 
1 
2 
3 
4 
5 

 7.539822 
 4.462 
 0.5499 
–0.06307 

410376.8   
131095861.1   

 0.951 
–0.969 
  0.5226 
–0.06303 

510375.8   
131095861.1   

 
68.973 
711.44 
971.91 

41054.7   
101028.4   
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-1.5

-1

-0.5

0

0.5

1

1.5

-2 0 2 4 6 8 10

x

f(x)

 -0.06307 0.5499 4.461  7.539822

 
Figure 6   Root jumping from intended location of root for   0sin  xxf . 

 
Appendix A. What is an inflection point? (dönüm noktası nedir) 

For a function  xf , the point where the concavity (çukurluk) changes from up-to-down 

or down-to-up is called its inflection point. For example, for the function    31 xxf , the 
concavity changes at 1x  (see Figure 3), and hence (1,0) is an inflection point.    

An inflection points MAY exist at a point where 0)(  xf  and where )('' xf  does not 
exist.  The reason we say that it MAY exist is because if 0)(  xf , it only makes it a possible 

inflection point.  For example, for 16)( 4  xxf , 0)0( f , but the concavity does not change 

at 0x . Hence the point (0, –16) is not an inflection point of 16)( 4  xxf . 

For    31 xxf , )(xf  changes sign at 1x  ( 0)(  xf  for 1x , and 0)(  xf  for 
1x ), and thus brings up the Inflection Point Theorem for a function )(xf  that states the 

following. 
“If )(' cf  exists and )(cf   changes sign at cx  , then the point ))(,( cfc  is an inflection 

point of the graph of f .” 
 

Appendix B. Derivation of Newton-Raphson method from Taylor series (Newton-Raphson 

yönteminin Taylor serilerinden Elde edilmesi) 
Newton-Raphson method can also be derived from Taylor series.  For a general function  xf , 
the Taylor series is 

      iiiii xxxfxfxf   11 + 
    

2
1!2 ii

i xx
xf"

  

As an approximation, taking only the first two terms of the right hand side, 
      iiiii xxxfxfxf   11  

and we are seeking a point where   ,xf 0  that is, if we assume 
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  ,xf i 01   

    iiii xxxfxf  10  

which gives 
 
 i

i
ii xf'

xf
xx 1  

This is the same Newton-Raphson method formula series as derived previously using the 
geometric method. 

 
NONLINEAR EQUATIONS  
Topic Newton-Raphson Method of Solving Nonlinear Equations 
Summary Text book notes of Newton-Raphson method of finding roots of 

nonlinear equation, including convergence and pitfalls. 
Major General Engineering 
Authors Autar Kaw 
Date Aralık 8, 2016 
Web Site http://numericalmethods.eng.usf.edu 

 
3.4.1 Multiple-Choice Test Chapter 03.04 Newton-Raphson Method 
 
1. The Newton-Raphson method of finding roots of nonlinear equations falls under the 

category of _____________ methods. 
(A) bracketing        (B) open        (C) random    (D) graphical 

 
2. The Newton-Raphson method formula for finding the square root of a real number R  

from the equation 02  Rx is, 

(A) 
21

i
i

x
x         (B) 

2

3
1

i
i

x
x         (C) 










i
ii x

R
xx

2

1
1       (D) 










i
ii x

R
xx 3

2

1
1  

 
3. The next iterative value of the root of 042 x using the Newton-Raphson method, if 

the initial guess is 3, is  
(A) 1.5      (B) 2.067        (C) 2.167     (D) 3.000 

 
4. The root of the equation 0)( xf  is found by using the Newton-Raphson method.  The 

initial estimate of the root is 30 x ,   53 f .  The angle the line tangent to the function 

)(xf  makes at  3x  is 57  with respect to the x-axis.  The next estimate of the root, 1x  
most nearly is 

(A) –3.2470      (B) −0.2470     (C) 3.2470        (D)  6.2470 
 
5. The root of 43 x  is found by using the Newton-Raphson method.  The successive 

iterative values of the root are given in the table below. 
Iteration 
Number 

Value of Root 

0 2.0000 
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1 1.6667 
2 1.5911 
3 1.5874 
4 1.5874 

 
 The iteration number at which I would first trust at least two significant digits in the 
 answer is 

(A) 1       (B) 2      (C) 3     (D) 4 
 
6. The ideal gas law is given by   
  RTpv    
 where p  is the pressure, v  is the specific volume, R  is the universal gas constant, 
 and T  is the absolute temperature.  This equation is only accurate for a limited range 
 of pressure and temperature.  Vander Waals came up with an equation that was 
 accurate for larger ranges of pressure and temperature given by 

    RTbv
v

a
p 






 

2
 

 where a  and b  are empirical constants dependent on a particular gas.  Given the value  
of 08.0R , 592.3a , 04267.0b , 10p  and 300T  (assume all units are 
consistent), one is going to find the specific volume, v , for the above values.  Without 
finding the solution from the Vander Waals equation, what would be a good initial guess 
for v ? 

(A) 0    (B) 1.2     (C) 2.4      (D) 3.6 
 
For a complete solution, refer to the links at the end of the book. 
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3.5 Chapter 03.05 Secant Method of Solving a Nonlinear Equation 
 

PRE-REQUISITES 
 

1. Know the definition of a derivative of a function (Primer for Differential Calculus). 
2. Be able to find derivatives of function (Primer for Differential Calculus). 
3. Know what a secant line is and how to find the equation of the secant line (Primer for 

Differential Calculus). 
 

OBJECTIVES 
1. derive the secant method to solve for the roots of a nonlinear equation, 
2. use the secant method to numerically solve a nonlinear equation. 

 
 
After reading this chapter, you should be able to: 
 

1. derive the secant method to solve for the roots of a nonlinear equation, 
2. use the secant method to numerically solve a nonlinear equation. 

 
What is the secant method and why would I want to use it instead of the Newton-Raphson 
method? 
The Newton-Raphson method of solving a nonlinear equation 0)( xf  is given by the iterative 
formula 

)(

)(
1

i

i
ii xf

xf
 = xx


          (1) 

One of the drawbacks (dez avantajları) of the Newton-Raphson method is that you have to 
evaluate the derivative of the function.  With availability of symbolic manipulators such as 
Maple, MathCAD, MATHEMATICA and MATLAB, this process has become more convenient.  
However, it still can be a laborious process, and even intractable if the function is derived as part 
of a numerical scheme. To overcome these drawbacks, the derivative of the function, )(xf  is 
approximated as (Newton-Raphson yönteminin dez avantajlarından biri fonksiyonun türevinin 
olması gerektiğidir. Sembolik programlama dili kullanan Maple, MathCAD, MATHEMATICA 
ve MATLAB gibi programlar ile kök kolayca bulunabilir. Ancak, Newton-Raphson yönteminin 
uygulaması zahmetli ve fonksiyonun türevinin alınması gerektiğinden dolayı zordur. Bu 
dezavantajı ) 

1

1 )()(
)(









ii

ii
i xx

xfxf
xf         (2) 

Substituting Equation (2) in Equation (1) gives 

)()(

))((

1

1
1




 




ii

iii
ii xfxf

xxxf
xx         (3) 

The above equation is called the secant method.  This method now requires two initial guesses, 
but unlike the bisection method, the two initial guesses do not need to bracket the root of the 
equation.  The secant method is an open method and may or may not converge.  However, when 
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secant method converges, it will typically converge faster than the bisection method.  However, 
since the derivative is approximated as given by Equation (2), it typically converges slower than 
the Newton-Raphson method. 
 
The secant method can also be derived from geometry, as shown in Figure 1.  Taking two initial 
guesses, 1ix  and ix , one draws a straight line between )( ixf  and )( 1ixf  passing through the 

x -axis at 1ix .  ABE and DCE are similar triangles.  

Hence 

DE

DC

AE

AB
  

11

1

1

)()(





 


 ii

i

ii

i

xx

xf

xx

xf
 

On rearranging, the secant method is given as 

)()(

))((

1

1
1




 




ii

iii
ii xfxf

xxxf
xx  

                      
                         Figure 1  Geometrical representation of the secant method. 

 

Example 1 
You are working for ‘DOWN THE TOILET COMPANY’ that makes floats (Figure 2) for ABC 
commodes.  The floating ball has a specific gravity of 0.6 and a radius of 5.5 cm.  You are asked 
to find the depth to which the ball is submerged when floating in water. 

The equation that gives the depth x  to which the ball is submerged under water is given by 
010993.3165.0 423  xx  

Use the secant method of finding roots of equations to find the depth x  to which the ball is 
submerged under water. Conduct three iterations to estimate the root of the above equation.  
Find the absolute relative approximate error and the number of significant digits at least 
correct at the end of each iteration. 
 

Solution 
   423 10993.31650  x.xxf  

Let us assume the initial guesses of the root of   0xf  as 0201 .x   and 0500 .x  . 

f (x) 

f (xi) 

f (xi–1) 

    xi+1     xi–1     xi 
    x 

B 

  C 

A D E 
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                 Figure 2   Floating ball problem. 

Iteration 1 
The estimate of the root is 

 1x  
  
   10

100
0









xfxf

xxxf
x  

     
   

   42
1

3
1

42
0

3
0

10
42

0
3
0

0
10993.3165.010993.3165.0

10993.3165.0













xxxx

xxxx
x  

                
    

     423423

423

10993.302.0165.002.010993.305.0165.005.0

02.005.010993.305.0165.005.0
05.0








   

                06461.0  
 
The absolute relative approximate error a  at the end of Iteration 1 is 

100
1

01 



x

xx
a  

100
06461.0

05.006461.0
      


  

       %62.22  
The number of significant digits at least correct is 0, as you need an absolute relative 
approximate error of 5% or less for one significant digit to be correct in your result. 
 

Iteration 2 
  
   01

011
12 xfxf

xxxf
xx




  

     
   

   42
0

3
0

42
1

3
1

01
42

1
3
1

1
10993.3165010993.31650

10993.31650
 










x.xx.x

xxx.x
x  

    
     423423

423

10993.305.0165.005.010993.306461.0165.006461.0

05.006461.010993.306461.0165.006461.0
06461.0










 
06241.0  
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The absolute relative approximate error a  at the end of Iteration 2 is 

100
2

12 



x

xx
a  

      100
06241.0

06461.006241.0



  

      %525.3   
The number of significant digits at least correct is 1, as you need an absolute relative 
approximate error of 5% or less. 
 

Iteration 3 

     
  
   12

122
23 xfxf

xxxf
xx




  

         
   

   42
1

3
1

42
2

3
2

12
42

2
3
2

2
10993.3165.010993.3165.0

10993.3165.0









xxxx

xxxx
x  

    
     423423

423

10993.306461.0165.006461.010993.306241.0165.006241.0

06461.006241.010993.306241.0165.006241.0
06241.0










         06238.0  
The absolute relative approximate error a  at the end of Iteration 3 is 

100
3

23 



x

xx
a  

      100
06238.0

06241.006238.0



  

                  %0595.0  
The number of significant digits at least correct is 2, as you need an absolute relative 
approximate error of 0.5% or less.  Table 1 shows the secant method calculations for the results 
from the above problem. 
 
              Table 1   Secant method results as a function of iterations. 

Iteration 
Number, i 1ix  ix  1ix  %a  

 1ixf  

1 
2 
3 
4 

0.02 
0.05 
0.06461 
0.06241 

0.05 
0.06461 
0.06241 
0.06238 

0.06461 
0.06241 
0.06238 
0.06238 

   22.62 
   3.525 
   0.0595 

41064.3   

5109812.1   
7102852.3   

   9100252.2   
13108576.1   

 

Example 2 (Computer Science) 
To find the inverse of a number a , one can use the equation  

0
1

)( 
c

acf  
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where c  is the inverse of a . 
Use the secant method of finding roots of equations to find the inverse of 5.2a . Conduct three 
iterations to estimate the root of the above equation. Find the absolute relative approximate error 
at the end of each iteration and the number of significant digits at least correct at the end of each 
iteration. 
 

Solution 

0
1

)( 
c

acf  






































1

1

1
11

)(
1

ii

ii
i

ii

c
a

c
a

cc
c

a

cc  

       

ii

ii
i

i

cc

cc
c

a

c
11

)(
1

1

1



















 

                   

1

1

1

)(

)(
1





















ii

ii

ii
i

i

cc

cc

cc
c

a

c  

       







 

i
iii c

accc
1

1  

                  )1(1   iii accc  

 
Let us take the initial guesses of the root of   0cf  as 1.01 c  and .c 6.00   

 

Iteration 1 
The estimate of the root is  
            )1( 0101   acccc  

                 1)6.0(5.2)1.0(6.0   
                55.0  
The absolute relative approximate error a  at the end of Iteration 1 is 

 100
1

01 



c

cc
a  

 100
55.0

6.055.0
      


  

 %0909.9        
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The number of significant digits at least correct is 0, as you need an absolute relative 
approximate error of less than %5  for one significant digit to be correct in your result. 
 

Iteration 2 
The estimate of the root is 

            )1( 1012  acccc  
                  1)55.0(5.2)6.0(55.0   
                 325.0  
The absolute relative approximate error a  at the end of Iteration 2 is 

 100
2

12 



c

cc
a  

 100
325.0

55.0325.0
      


  

       %231.69  
The number of significant digits at least correct is 0.  
 

Iteration 3 
The estimate of the root is 
            )1( 2123  acccc  

                 1)325.0(5.2)55.0(325.0   
                42813.0  
The absolute relative approximate error a  at the end of Iteration 3 is 

 100
3

23 



c

cc
a  

 100
42813.0

325.042813.0
      


  

 %088.24        
The number of significant digits at least correct is 0.  
 

Example 3 (Civil Engineering) 
You are making a bookshelf to carry books that range from 8½" (21.59cm) to 11" (27.94cm) in 
height and would take up 29" (73.66cm) of space along the length. The material is wood having 
a Young’s Modulus of Msi667.3 , thickness of 3/8" (0.9525cm) and width of 12" (30.48cm). 
You want to find the maximum vertical deflection of the bookshelf. The vertical deflection of the 
shelf is given by  
 

xxxxxv 018507.010  66722.010  13533.010  42493.0)( 465834    
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where x  is the position along the length of the beam. Hence to find the maximum deflection we 

need to find where 0)( 
dx

dv
xf  and conduct the second derivative test.  

                 

x 

 Books 

 Bookshelf 
 

Figure 1  A loaded bookshelf. 
 
The equation that gives the position x  where the deflection is maximum is given by 
 

0018507.010 12748.010  26689.010 67665.0 233548   x xx  
 
Use the secant method of finding roots of equations to find the position x  where the deflection is 
maximum. Conduct three iterations to estimate the root of the above equation.   
Find the absolute relative approximate error at the end of each iteration and the number of 
significant digits at least correct at the end of each iteration. 
 

Solution 
Let us take the initial guesses of the root of   0xf  as 101 x  and .x 150   

Iteration 1 
The estimate of the root is 

1x  
  
   10

100
0









xfxf

xxxf
x  

  018507.010 12748.010  26689.010 67665.0 2
0

33
0

54
0

8
0   x xx xf  

                018507.01510 12748.01510  26689.01510 67665.0 233548      

           4102591.8   
  018507.010 12748.010  26689.010 67665.0 2

1
33

1
54

1
8

1  








 x xx xf  

                 018507.01010 12748.01010  26689.01010 67665.0 233548       

           3104956.8   
   

   34

4

1 104956.8102591.8

1015102591.8
15 






x  

    557.14  
The absolute relative approximate error a  at the end of Iteration 1 is 
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 100
1

01 



x

xx
a  

 100
557.14

15557.14
      


  

 %0433.3        
The number of significant digits at least correct is 1, because the absolute relative approximate 
error is less than %5 . 

Iteration 2 
The estimate of the root is 

 
  
   01

011
12 xfxf

xxxf
xx




  

  018507.010 12748.010  26689.010 67665.0 2
1

33
1

54
1

8
1   x xx xf  

                     
   
  018507.0557.1410 12748.0

557.1410  26689.0557.1410 67665.0
23

3548








 

 
 

         5109870.2   
   
   45

5

2 102591.8109870.2

15557.14109870.2
15 






x  

     572.14  
The absolute relative approximate error a  at the end of Iteration 2 is 

100
2

12 



x

xx
a  

       100
572.14

557.14572.14



  

       %10611.0  
The number of significant digits at least correct is 2, because the absolute relative approximate 
error is less than %5.0 . 
 

Iteration 3 
The estimate of the root is 

  
   12

122
23 xfxf

xxxf
xx




     

  018507.010 12748.010  26689.010 67665.0 2
2

33
2

54
2

8
2   x xx xf  

          
   
  018507.0572.1410 12748.0

572.1410  26689.0572.1410 67665.0
23

3548








 

 
 

          9100676.6   
   
   59

9

3 109870.2100676.6

557.14572.14100676.6
572.14 






x  

    572.14  
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The absolute relative approximate error a  at the end of Iteration 3 is 

 100
3

23 



x

xx
a  

                  100
572.14

572.14572.14



  

                  %10  1559.2 5  
The number of significant digits at least correct is 6, because the absolute relative approximate 
error is less than %00005.0 . 
 
Exercise . The average energy of vibration E of a molecule with frequency f depends on the 
temperature T according to the equation  
E =  hf/(ehf/kT –1) + hf  
Here, h = 6.626×10–27 erg/sec. is Planck's constant and k=1.38×10–16 erg/°K is Boltzmann's 
constant. Find the frequency f of a molecule for which E = 3.97×10–14 erg and T = 31O°K.  
 
 

NONLINEAR EQUATIONS  
Topic Secant Method for Solving Nonlinear Equations. 
Summary These are textbook notes of secant method of finding roots of nonlinear 

equations.  Derivations and examples are included. 
Major General Engineering 
Authors Autar Kaw 
Date Aralık 8, 2016 
Web Site http://numericalmethods.eng.usf.edu 

 
3.5.1 Multiple-Choice Test Secant Method Chapter 03.05 
 
1. The secant method of finding roots of nonlinear equations falls under the category of 

_____________ methods. 
(A) bracketing       (B) graphical       (C) open        (D) random 

 
2. The secant method formula for finding the square root of a real number R  from the 

equation 02  Rx is 

(A) 
1

1








ii

ii

xx

Rxx
      (B) 

1

1





 ii

ii

xx

xx
       (C) 










i
i x

R
x

2

1
      (D) 

1

1
22








ii

iii

xx

Rxxx
 

 
3. The next iterative value of the root of 042 x  using secant method, if the initial 

guesses are 3 and 4, is 
(A) 2.2857      (B) 2.5000       (C) 5.5000      (D) 5.7143 
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4. The root of the equation   0xf  is found by using the secant method.  Given one of the 

initial estimates is 30 x ,   53 f , and the angle the secant line makes with the x-axis is 

57 , the next estimate of the root, 1x , is 
(A) –3.2470       (B) –0.24704        (C) 3.247       (D) 6.2470 

 
5. For finding the root of 0 sin x  by the secant method, the following choice of initial 

guesses would not be appropriate. 

(A) 
4


 and 

2


      (B) 

4


 and 

4

3
      (C) 

2


  and 

2


      (D) 

3


 and 

2


 

 
6. When drugs are given orally to a patient, the drug concentration c  in the blood stream at 

time t  is given by a formula 
  atKtec   
 where K  is dependent on parameters such as the dose administered while a  is 
 dependent on the absorption  and elimination rates of the drug.  If  2K  and 
 25.0a , and t  is in seconds and c  is in mlmg , the time at which the maximum 
 concentration is reached is given by the solution of the equation 

(A) 02 25.0  tte     (B) 022 25.025.0   tt tee      (C) 05.02 25.025.0   tt tee   (D) 22 25.0  tte  
 
For a complete solution, refer to the links at the end of the book. 
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3.6 Chapter 03.06 False-Position Method of Solving a Nonlinear Equation 
 
After reading this chapter, you should be able to 

1. follow the algorithm of the false-position method of solving a nonlinear equation, 
2. apply the false-position method to find roots of a nonlinear equation. 

 

Introduction 
In Chapter 03.03, the bisection method was described as one of the simple bracketing methods of 
solving a nonlinear equation of the general form (bölüm 03.03’te basit aralık yöntemlerinden 
ikiye bölme yöntemi ile genel formu aşağıda verilen çizgisel olmayan fonksiyonların köklerinin 
hesaplanması gösterilmişti.) 

0)( xf                                                                                                                       (1) 

 Uxf

Ux
rx

 Lxf

Lx

O

 xf

x

 
Figure 1 False-Position Method 

 
The above nonlinear equation can be stated as finding the value of x such that Equation (1) is 
satisfied (yukarıdaki çizgisel olmayan eşitlikte x değerinin bulunması yeterli olacaktır).  
In the bisection method, we identify proper values of Lx  (lower bound value) and Ux  (upper 

bound value) for the current bracket, such that (ikiye bölme yönteminde xL (alt değer) ve xU (üst 
değer) değerleri ile aralık tanımlanarak aşağıdaki durumun sağlanması yeterli olacaktır) 
  0)()( UL xfxf .                                                                                                     (2) 

The next predicted/improved root rx  can be computed as the midpoint between Lx  and Ux  as 

(aralık belirlendikten sonra xr kök değeri xL ile xU’nun tam ortasındaki noktadır) 

2
UL

r

xx
x


                                                                                                               (3) 
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The new upper and lower bounds are then established, and the procedure is repeated until the 
convergence is achieved (such that the new lower and upper bounds are sufficiently close to each 
other). (bu aşamadan sonra alt ve üst sınır değerleri yeniden tanımlanarak kök değerine 
yaklaşılır). 
However, in the example shown in Figure 1, the bisection method may not be efficient because it 

does not take into consideration that )( Lxf  is much closer to the zero of the function )(xf  as 

compared to )( Uxf . In other words, the next predicted root rx  would be closer to Lx  (in the 

example as shown in Figure 1), than the mid-point between Lx  and Ux  .  The false-position 

method takes advantage of this observation mathematically by drawing a secant from the 

function value at Lx  to the function value at Ux , and estimates the root as where it crosses the x-

axis. (Şekil 1’den görüleceği gibi ikiye bölme yönteminde f(xL) fonksiyonunun değeri sıfıra çok 
yakınsa f(x) fonksiyonunun değeri f(xU)’ya doğru yaklaşmasından dolayı bu yöntem doğru kökü 
bulmada yeterli olmayabilir. Başka bir deyişle xL ile xU arasında olması gereken xr kök değeri 
xL’ye doğru yaklaşacaktır. False-position yöntemi bu aşamada xL’deki fonksiyon değerinden 
xU’daki fonksiyon değerine yatay ekseni kesen bir kiriş çizerek daha avantajlı olmaktadır.) 
 

False-Position Method 
Based on two similar triangles, shown in Figure 1, one gets 

Ur

U

Lr

L

xx

xf

xx

xf







 )(0)(0
                                                                                               (4) 

From Equation (4), one obtains 
       LUrULr xfxxxfxx   

        ULrULLU xfxfxxfxxfx   

The above equation can be solved to obtain the next predicted root mx  as 

   
   UL

ULLU
r xfxf

xfxxfx
x




                                                      (5)                               

The above equation, through simple algebraic manipulations, can also be expressed as 
 

   













UL

UL

U
Ur

xx

xfxf

xf
xx                               (6) 

or 
 

   













LU

LU

L
Lr

xx

xfxf

xf
xx                     (7) 

Observe the resemblance of Equations (6) and (7) to the secant method. 
 

False-Position Algorithm 
The steps to apply the false-position method to find the root of the equation   0xf are as 
follows. 
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1. Choose Lx and Ux  as two guesses for the root such that     0UL xfxf , or in other words, 

 xf  changes sign between Lx  and Ux . 

2. Estimate the root, rx  of the equation   0xf as  
   
   UL

ULLU
r xfxf

xfxxfx
x




  

3. Now check the following 
If     0rL xfxf , then the root lies between Lx  and rx ; then LL xx   and rU xx  . 

If     0rL xfxf , then the root lies between rx  and Ux ; then rL xx   and UU xx  . 

If     0rL xfxf , then the root is rx .  Stop the algorithm. 
4. Find the new estimate of the root 

   
   UL

ULLU
r xfxf

xfxxfx
x




  

Find the absolute relative approximate error as 

100



new
r

old
r

new
r

a x

xx
 

where 
new
rx = estimated root from present iteration 
old
rx = estimated root from previous iteration 

5. Compare the absolute relative approximate error a with the pre-specified relative error 

tolerance s . If sa  , then go to step 3, else stop the algorithm. Note one should also check 

whether the number of iterations is more than the maximum number of iterations allowed. If so, 
one needs to terminate the algorithm and notify the user about it. 
Note that the false-position and bisection algorithms are quite similar. The only difference is the 
formula used to calculate the new estimate of the root rx  as shown in steps #2 and #4! 
 

Example 1 
You are working for “DOWN THE TOILET COMPANY” that makes floats for ABC 
commodes. The floating ball has a specific gravity of 0.6 and has a radius of 5.5cm. You are 
asked to find the depth to which the ball is submerged when floating in water.  The equation that 
gives the depth x  to which the ball is submerged under water is given by 

010993.3165.0 423  xx  
Use the false-position method of finding roots of equations to find the depth x  to which the ball 
is submerged under water. Conduct three iterations to estimate the root of the above equation. 
Find the absolute relative approximate error at the end of each iteration, and the number of 
significant digits at least correct at the end of third iteration. 
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Figure 2   Floating ball problem. 

 

 

Solution 
From the physics of the problem, the ball would be submerged between 0x  and Rx 2 ,  
where  
           ball,  theof radiusR  
that is 
           Rx 20   
           )055.0(20  x  
           11.00  x  
Let us assume 

11.0,0  UL xx  

Check if the function changes sign between Lx  and Ux  

       
        4423

4423

10662.210993.311.0165.011.011.0

10993.310993.30165.000








fxf

fxf

U

L  

Hence 
           010662.210993.311.00 44  ffxfxf UL  

Therefore, there is at least one root between Lx  and Ux , that is between 0 and 0.11. 

Iteration 1 
The estimate of the root is 

   
   

 
 

0660.0

10662.210993.3

10662.2010993.311.0
44

44
















UL

ULLU
r xfxf

xfxxfx
x

 

   
     

5

423

101944.3

10993.30660.0165.00660.0

0660.0









 fxf r

 

           00660.00  ffxfxf rL  
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Hence, the root is bracketed between Lx  and rx , that is, between 0 and 0.0660. So, the lower and 

upper limits of the new bracket are 0660.0,0  UL xx , respectively. 

 
Iteration 2 
The estimate of the root is 

   
   

 
 

0611.0

101944.310993.3

101944.3010993.30660.0
54

54
















UL

ULLU
r xfxf

xfxxfx
x

 

The absolute relative approximate error for this iteration is  

%8100
0611.0

0660.00611.0



a  

 
   

     
5

423

101320.1

10993.30611.0165.00611.0

0611.0









 fxf r

 

           00611.00  ffxfxf rL  

Hence, the lower and upper limits of the new bracket are 0660.0,0611.0  UL xx , respectively. 

 
Iteration 3 
The estimate of the root is 

   
   

 
 

0624.0

101944.310132.1

101944.30611.010132.10660.0
55

55
















UL

ULLU
r xfxf

xfxxfx
x

 

The absolute relative approximate error for this iteration is  

%05.2100
0624.0

0611.00624.0



a  

  7101313.1 rxf  

           00624.00611.0  ffxfxf rL  

Hence, the lower and upper limits of the new bracket are 0624.0,0611.0  UL xx  

All iterations results are summarized in Table 1.  To find how many significant digits are at least 
correct in the last iterative value  

m

m
a








2

2

105.005.2

105.0
 

387.1m  
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The number of significant digits at least correct in the estimated root of 0.0624 at the end of 3rd 

iteration is 1. 
 
Table 1 Root of   010993.3165.0 423  xxxf for false-position method. 

Iteration 
Lx  Ux  rx  %a  

 mxf  
1 0.0000 0.1100 0.0660 ---- 5101944.3   
2 0.0000 0.0660 0.0611 8.00 5101320.1   
3 0.0611 0.0660 0.0624 2.05 7101313.1   

 
 

Example 2 
Find the root of       024 2  xxxf , using the initial guesses of 5.2Lx  and 

,0.1Ux and a pre-specified tolerance of %1.0s . 

Solution 
The individual iterations are not shown for this example, but the results are summarized in Table 
2.  It takes five iterations to meet the pre-specified tolerance. 

Table 2 Root of       024 2  xxxf for false-position method. 
Iteration 

Lx  Ux   Lxf   Uxf  rx  %a   mxf  

1 -2.5 -1 -21.13 25.00 -1.813 N/A 6.319 
2 -2.5 -1.813 -21.13 6.319 -1.971 8.024 1.028 
3 -2.5 -1.971 -21.13 1.028 -1.996 1.229 0.1542 
4 -2.5 -1.996 -21.13 0.1542 -1.999 0.1828 0.02286 
5 -2.5 -1.999 -21.13 0.02286 -2.000 0.02706 0.003383 

To find how many significant digits are at least correct in the last iterative answer, 

m

m
a








2

2

105.002706.0

105.0
 

2666.3m  
Hence, at least 3 significant digits can be trusted to be accurate at the end of the fifth iteration. 

FALSE-POSITION METHOD OF SOLVING A NONLINEAR EQUATION 
Topic False-Position Method of Solving a Nonlinear Equation 
Summary Textbook Chapter of False-Position Method 
Major General Engineering 
Authors Duc Nguyen 
Date Aralık 8, 2016 

 
3.6.1 Multiple-Choice Test Chapter 03.06 False-Position Method of Solving a Nonlinear 

Equation 
 
1. The false-position method for finding roots of nonlinear equations belongs to a class of a 

(an) ____________ method. 
(A) open      (B) bracketing     (C) random      (D) graphical 
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2. The newly predicted root for false-position and secant method can be respectively given 

as (tahmini kök değerleri false-position ve kiriş yöntemleri sırasıyla aşağıdaki gibi 
verilmektedir) 

  
   LU

LUU
Ur xfxf

xxxf
xx




  

 and 
  
   1

1
1




 




ii

iii
ii xfxf

xxxf
xx ,  

While the appearance of the above 2 equations look essentially identical, and both 
methods require two initial guesses, the major difference between the above two formulas 
is 

(A) false-position method is not guaranteed to converge. 
(B) secant method is guaranteed to converge 
(C) secant method requires the 2 initial guesses ii xandx 1 to satisfy     01  ii xfxf  

(D) false-position method requires the 2 initial guesses UL xandx  to satisfy 

    0 UL xfxf  

 
3. Given are the following nonlinear equation 

0364 22  xe x  
two initial guesses, 1Lx and 4Ux , and a pre-specified relative error tolerance of 

0.1%.  Using the false-position method, which of the following tables is correct rx( = 
predicted root)? 
 
(A) 

Iteration 
Lx  Ux  rx  

1 1 4 ? 
2 ? ? 2.939 

(B) 
Iteration 

Lx  Ux  rx  

1 1 4 ? 
2 ? ? 2.500 

 
 (C) 

Iteration 
Lx  Ux  rx  

1 1 4 ? 
2 ? ? 1.500 

 
 (D)  

Iteration 
Lx  Ux  rx  

1 1 4 ? 
2 ? ? 2.784 
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clear all 
xL=1.0; % baslangic tahmin degerleri 
xU=4.0;  
i=1; 
eA=100.0 
xr_old=xU; 
fxL=exp(-2.0*xL)+4.0*xL*xL-36.0; 
fxU=exp(-2.0*xU)+4.0*xU*xU-36.0; 
xr=(xU*fxL-xL*fxU)/(fxL-fxU); 
xr_new=xr; 
fxr=exp(-2.0*xr)+4.0*xr*xr-36.0; 
fprintf(' Yineleme fxL    fxU    Tahmini      Hata   \n'); 
fprintf(' Sayisi                 Kök degeri   Degeri \n'); 
fprintf('--------------------------------------------\n'); 
if(fxL*fxr<0) 
    xU=xr; 
else  
    xL=xr; 
end; 
eA=abs((xr_new-xr_old)*100/xr_new); 
fprintf(' %3d     %5.3f  %5.3f   %5.3f      %5.3f      \n', i, fxL, fxU, xr, eA); 
while (i<7) 
  i=i+1; 
  xr_old=xr; 
  fxL=exp(-2.0*xL)+4.0*xL*xL-36.0; 
  fxU=exp(-2.0*xU)+4.0*xU*xU-36.0; 
  xr=(xU*fxL-xL*fxU)/(fxL-fxU); 
  fxr=exp(-2.0*xr)+4.0*xr*xr-36.0; 
  if(fxL*fxr<0) 
      xU=xr; 
  else  
      xL=xr; 
  end; 
  xr_new=xr; 
  eA=abs((xr_new-xr_old)*100/xr_new); 
fprintf(' %3d     %5.3f  %5.3f   %5.3f      %5.3f      \n', i, fxL, fxU, xr, eA); 
end; 
x = 1.0 : 0.2 : 4.0; 
y = exp(-2.0*x)+4.0*x.*x-36.0; 
plot(x, y) 
 
yukarıdaki MatLab kodunun çalıştırılması sonucunda aşağıdaki veriler elde edilmiştir: 
 
Yineleme fxL    fxU    Tahmini      Hata    
 Sayisi                 Kök degeri   Degeri  
-------------------------------------------- 
   1     -31.865  28.000   2.597      54.034       
   2     -9.020  28.000   2.939      11.634       
   3     -1.453  28.000   2.991      1.750       
   4     -0.211  28.000   2.999      0.252       
   5     -0.030  28.000   3.000      0.036       
   6     -0.004  28.000   3.000      0.005       
   7     -0.001  28.000   3.000      0.001       

 
 
4. Given are the following nonlinear equation 

0364 22  xe x  
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two initial guesses, 1Lx and 4Ux , and a pre-specified relative error tolerance of 

0.1%.  Using the false-position method, which of the following tables is correct rx( = 

predicted root, || a = percentage absolute relative approximate error). 

(A)  
Iteration 

Lx  Ux  rx  | a | % 

1 1 4 ?          ? 
2 ? ? ? 11.63 

 
(B)    

Iteration 
Lx  Ux  rx  | a | % 

1 1 4 ?          ? 
2 ? ? ? 6.11 

 
(C) 

Iteration 
Lx  Ux  rx  | a | % 

1 1 4 ? ? 
2 ? ? ? 5.14 

 
(D)  

Iteration 
Lx  Ux  rx  | a | % 

1 1 4 ? ? 
2 ? ? ? 4.15 

 

5. The root of     024 2  xx was found using false-position method with initial guesses 

of 5.2Lx  and 0.1Ux , and a pre-specified relative error tolerance of 610 %. The 

final converged root was found as 9999997.1rx , and the corresponding percentage 

absolute relative approximate error was found as %107610979.8|| 5a .  Based on the 

given information, the number of significant digits of the converged root rx  that can be 
trusted at least are 

(A) 3        (B) 4       (C) 5      (D) 6 
 
6. The false-position method may have difficulty in finding the root of 

  069.134.72  xxxf because 

(A)  xf  is a quadratic polynomial 
(B) )(xf  a straight line 

(C) one cannot find initial guesses Lx and Ux  that satisfy     0UL xfxf  

(D) the equation has two identical roots.  
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4 Chapter 04.01 Introduction to Matrix Algebra 

 

PRE-REQUISITES 
 

1. This is a primer.  So all you need to know is high school algebra.  If you had exposure 
to matrices, you may already know many of the concepts presented here. 

 

OBJECTIVES 
1. define what a matrix is. 
2. identify special types of matrices, and 
3. identify when two matrices are equal. 
4. add, subtract, and multiply matrices, and 
5. apply rules of binary operations on matrices. 
6. know what unary operations means, 
7. find the transpose of a square matrix and it’s relationship to symmetric matrices, 
8. setup simultaneous linear equations in matrix form and vice-versa, 
9. understand the concept of the inverse of a matrix.  

 
4.1 Chapter 04.01 Introduction 
 
After reading this chapter, you should be able to 
 

1. define what a matrix is. 
2. identify special types of matrices, and 
3. identify when two matrices are equal. 

What does a matrix look like (Matris nasıl bir şeydir)? 
Matrices are everywhere.  If you have used a spreadsheet such as Excel or written numbers in a 
table, you have used a matrix.  Matrices make presentation of numbers clearer and make 
calculations easier to program.  Look at the matrix below about the sale of tires in a Blowoutr’us 
store – given by quarter and make of tires (Matrisler her yerde karşımıza çıkar. Excel çalışma 
sayfası açtıysanız veya sayılardan çizelge oluşturmuşsanız matris kullanıyorsunuzdur. Matrisler 
sayıların daha yalın görünmesini ve programın hesaplamaları kolayca yapmasını sağlar. 
Aşağıdaki çizelgeye/matise bakarsanız Blowout r’us mağzalarında yılın çeyreklerinde lastik 
ürünlerin satış miktarları verilmektedir) . 
                             Q1     Q2     Q3    Q4 

Copper

Michigan

Tirestone

    









6

5

25

     

16

10

20

     

7

15

3

    









27

25

2

 

 
If one wants to know how many Copper tires were sold in Quarter 4, we go along the row 
Copper and column Q4 and find that it is 27 (Copper marka lastiklerin yılın 4.cü çeyreğindeki 
satış adetini öğrenmek istersek matriste önce Copper markasının olduğu satıra gelip daha sonra 
Q4 yani dördüncü çeyreğin hizasındaki rakama bakılır).  
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So what is a matrix? 
A matrix is a rectangular array of elements.  The elements can be symbolic expressions or/and 
numbers.  Matrix ][A  is denoted by 





















mnmm

n

n

aaa

aaa

aaa

A

.......

.......

.......

][

21

22221

11211


 

Row i of ][A  has n  elements and is  

 inii aaa ....2      1   

and column j  of ][A  has m  elements and is  





















mj

j

j

a

a

a


2

1

 

Each matrix has rows and columns and this defines the size of the matrix.  If a matrix ][A  has m  
rows and n  columns, the size of the matrix is denoted by nm .  The matrix ][A  may also be 

denoted by nmA ][  to show that ][A  is a matrix with m  rows and n  columns. 

 
Each entry in the matrix is called the entry or element of the matrix and is denoted by ija  where 

i  is the row number and j  is the column number of the element. 
 
The matrix for the tire sales example could be denoted by the matrix [A] as 

 


















277166

2515105

232025

][A . 

There are 3 rows and 4 columns, so the size of the matrix is 43 .  In the above ][A  matrix, 

2734 a . 

What are the special types of matrices? 
Vector: A vector is a matrix that has only one row or one column.  There are two types of vectors 
– row vectors and column vectors. 
 

Row Vector:  
If a matrix ][B  has one row, it is called a row vector ][][ 21 nbbbB  and n  is the dimension 

of the row vector. 

Example 1 
Give an example of a row vector. 

Solution 
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]0232025[][ B  
is an example of a row vector of dimension 5. 
 

Column vector: 
If a matrix ][C  has one column, it is called a column vector 

 





















mc

c

C


1

][   

and m  is the dimension of the vector. 
 

Example 2 
Give an example of a column vector. 

Solution 


















6

5

25

][C   

is an example of  a column vector of dimension 3. 
 

Submatrix:   
If some row(s) or/and column(s) of a matrix ][A  are deleted (no rows or columns may be 
deleted), the remaining matrix is called a submatrix of ][A . 

Example 3 
Find some of the submatrices of the matrix 












213

264
][A  

Solution 

    
























 2

2
,4,264,

13

64
,

213

264
 

are some of the submatrices of ][A . Can you find other submatrices of ][A ? 
 

Square matrix:   
If the number of rows m  of a matrix is equal to the number of columns n  of a matrix ][A , that 

is, nm  , then ][A  is called a square matrix.  The entries nnaaa ,...,, 2211  are called the diagonal 

elements of a square matrix.  Sometimes the diagonal of the matrix is also called the principal or 
main of the matrix. 

Example 4 
Give an example of a square matrix. 
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Solution 


















7156

15105

32025

][A   

is a square matrix as it has the same number of rows and columns, that is, 3.  The diagonal 
elements of ][A  are 7,10,25 332211  aaa . 

 

Upper triangular matrix:   
A nn  matrix for which jiaij  ,0  for all ji, is called an upper triangular matrix.  That is, 

all the elements below the diagonal entries are zero. 

Example 5 
Give an example of an upper triangular matrix. 

Solution 




















1500500

6001.00

0710

][A    

is an upper triangular matrix. 
 

Lower triangular matrix:   
A nn  matrix for which ijaij  ,0  for all ji, is called a lower triangular matrix.  That is, all 

the elements above the diagonal entries are zero. 
  

Example 6  
Give an example of a lower triangular matrix. 

Solution 


















15.26.0

013.0

001

][A    

is a lower triangular matrix.   
 

Diagonal matrix:   
A square matrix with all non-diagonal elements equal to zero is called a diagonal matrix, that is, 
only the diagonal entries of the square matrix can be non-zero,  ( jiaij  ,0 ). 

Example 7  
Give examples of a diagonal matrix. 

Solution 
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500

01.20

003

][A  

is a diagonal matrix. 
Any or all the diagonal entries of a diagonal matrix can be zero.  For example 


















000

01.20

003

][A  

is also a diagonal matrix. 
 

Identity matrix:   
A diagonal matrix with all diagonal elements equal to 1 is called an identity matrix, 
( jiaij  ,0 for all ji,  and 1iia  for all i ). 

Example 8 
Give an example of an identity matrix. 

Solution 





















1000

0100

0010

0001

][A   

is an identity matrix. 
 

Zero matrix:   
A matrix whose all entries are zero is called a zero matrix, ( 0ija  for all i  and j ). 

Example 9  
Give examples of a zero matrix. 

Solution 


















000

000

000

][A  











0    0    0

 0    0    0
   [B]  


















0

0

0

    

000

000

000

][C  

 000][ D  
are all examples of a zero matrix. 
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Tridiagonal matrices:   
A tridiagonal matrix is a square matrix in which all elements not on the following are zero - the 
major diagonal, the diagonal above the major diagonal, and the diagonal below the major 
diagonal. 

Example 10 
Give an example of a tridiagonal matrix. 

Solution 





















6300

2500

0932

0042

][A   

is a tridiagonal matrix. 

Do non-square matrices have diagonal entries? 
Yes, for a nm  matrix ][A  , the diagonal entries are kkkk aaaa ,...,, 1,12211   where },min{ nmk  . 

 

Example 11 
What are the diagonal entries of 





















8.76.5

2.39.2

76

52.3

][A  

Solution 
The diagonal elements of ][A  are .7 and 2.3 2211  aa  
 

Diagonally Dominant Matrix:   
A nn  square matrix ][A  is a diagonally dominant matrix if  

 




n

ji
j

ijii aa
1

||  for ni ,.....,2,1  and  

 




n

ji
j

ijii aa
1

||  for at least one i ,  

that is, for each row, the absolute value of the diagonal element is greater than or equal to the 
sum of the absolute values of the rest of the elements of that row, and that the inequality is 
strictly greater than for at least one row.  Diagonally dominant matrices are important in ensuring 
convergence in iterative schemes of solving simultaneous linear equations. 
 

Example 12 
Give examples of diagonally dominant matrices and not diagonally dominant matrices. 
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Solution  

















623

242

7615

][A   

is a diagonally dominant matrix as 
 

13761515 131211  aaa  

42244 232122  aaa  

52366 323133  aaa  

 
and for at least one row, that is Rows 1 and 3 in this case, the inequality is a strictly greater than 
inequality. 
 























001.523

242

9615

][B  

is a diagonally dominant matrix as 
 
 15961515 131211  bbb  

 42244 232122  bbb  

 523001.5001.5 323133  bbb  

The inequalities are satisfied for all rows and it is satisfied strictly greater than for at least one 
row (in this case it is Row 3). 

 

















112144

1864

1525

C   

is not diagonally dominant as 
6516488 232122  ccc  

 
When are two matrices considered to be equal? 
Two matrices [A] and [B] are equal if the size of [A] and [B] is the same (number of rows and 
columns of [A] are same as that of [B]) and ijij ba   for all i and j. 

Example 13 
What would make  











76

32
][A  

to be equal to  
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22

11

6

3
][

b

b
B  

Solution 
The two matrices ][A and ][B  ould be equal if 211 b  and 722 b . 
 
 

Key Terms: 
Matrix 
Vector 
Submatrix 
Square matrix 
Equal matrices 
Zero matrix 
Identity matrix 
Diagonal matrix 
Upper triangular matrix 
Lower triangular matrix 
Tri-diagonal matrix 
Diagonally dominant matrix 
 
 
 
 
 
 
4.2 Chapter 04.02 Vectors 
 
After reading this chapter, you should be able to: 
 

1. define  a vector, 
2. add and subtract vectors, 
3. find linear combinations of vectors and their relationship to a set of equations, 
4. explain what it means to have a linearly independent set of vectors, and 
5. find the rank of a set of vectors. 

 
 

What is a vector? 
A vector is a collection of numbers in a definite order.  If it is a collection of n  numbers, it is 

called a n -dimensional vector.  So the vector A


 given by 
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na

a

a

A



2

1

 
is a n -dimensional column vector with n  components, naaa ,......,, 21 .  The above is a column 

vector.  A row vector ][B  is of the form ],....,,[ 21 nbbbB 


 where B


 is a n -dimensional row 

vector with n  components nbbb ,....,, 21 . 

 

Example 1 
Give an example of a 3-dimensional column vector. 

Solution 
Assume a point in space is given by its ),,( zyx  coordinates.  Then if the value of 

5,2,3  zyx , the column vector corresponding to the location of the points is 


































5

2

3

z

y

x

. 

 

When are two vectors equal? 
Two vectors A


 and B


 are equal if they are of the same dimension and if their corresponding 

components are equal. 
Given 





















na

a

a

A



2

1

  

and  





















nb

b

b

B



2

1

 

then BA


  if niba ii ,......,2,1,  . 

 

Example 2 
What are the values of the unknown components in B


 if  
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1

4

3

2
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and  





















4

1

4

3

b

b

B


  

and BA


 . 

Solution 
   1 ,2 41  bb  
 

How do you add two vectors? 
Two vectors can be added only if they are of the same dimension and the addition is given by 
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Example 3 
Add the two vectors 





















1

4

3

2

A


  

and 






















7

3

2

5

B


 

Solution 
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34

23

52

 

          





















8

7

1

7

 

 

Example 4 
A store sells three brands of tires: Tirestone, Michigan and Copper.  In quarter 1, the sales are 
given by the column vector 


















6

5

25

1A


 

where the rows represent the three brands of tires sold – Tirestone, Michigan and Copper 
respectively.  In quarter 2, the sales are given by 


















6

10

20

2A


 

What is the total sale of each brand of tire in the first half of the year? 

Solution 
The total sales would be given by 

21 AAC
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20
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25

 

     






















66

105

2025
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12

15

45

 

So the number of Tirestone tires sold is 45, Michigan is 15 and Copper is 12 in the first half of 
the year. 
 

What is a null vector? 
A null vector (also called zero vector) is where all the components of the vector are zero. 
 

Example 5 
Give an example of a null vector or zero vector. 

Solution 
The vector  

 



















0

0

0

0

 

is an example of a zero or null vector. 
 

What is a unit vector? 
A unit vector U


 is defined as 





















nu

u

u

U



2

1

  

where  

122
3

2
2

2
1  nuuuu   

 

Example 6 
Give examples of 3-dimensional unit column vectors. 

Solution 
Examples include 

 ,

0

1

0

,

0
2

1
2

1

,

0

0

1

,

3

1
3

1
3

1













































































etc. 
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How do you multiply a vector by a scalar? 
If k  is a scalar and A


 is a n -dimensional vector, then 





















na

a

a

kAk



2

1

 

       





















nka

ka

ka


2

1

 

 

Example 7  
What is A


2  if 

 


















5

20

25

A


 

Solution 


















5

20

25

22A


  

               






















52

202

252

 

       


















10

40

50

 

 

Example 8  
A store sells three brands of tires: Tirestone, Michigan and Copper.  In quarter 1, the sales are 
given by the column vector 

 


















6

25

25

A


 

If the goal is to increase the sales of all tires by at least 25% in the next quarter, how many of 
each brand should be sold? 
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Solution 
Since the goal is to increase the sales by 25%, one would multiply the A


 vector by 1.25, 


















6

25

25

25.1B


 

   


















5.7

25.31

25.31

 

Since the number of tires must be an integer, we can say that the goal of sales is 


















8

32

32

B


 

 

What do you mean by a linear combination of vectors? 
Given  

mAAA


,......,, 21  

as m vectors of same dimension n, and if mkkk ,...,, 21  are scalars, then  

mm AkAkAk


 .......2211  

is a linear combination of the m  vectors. 
 

Example 9 
Find the linear combinations 

a) BA


  and 

b) CBA


3  
where 




















































2

1

10

,

2

1

1

,

6

3

2

CBA


 

Solution 

a) 



































2

1

1

6

3

2

BA


 

              






















26

13

12
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4

2

1

 

b) 




















































2

1

10

3

2

1

1

6

3

2

3CBA


   

                      






















626

313

3012

  

                      


















2

1

27

 

 

What do you mean by vectors being linearly independent? 

A set of vectors mAAA





,,, 21  are considered to be linearly independent if  

0.......2211


 mm AkAkAk  

has only one solution of 
0......21  mkkk  

 

Example 10 
Are the three vectors  
 




















































1

1

1

,

12

8

5

,

144

64

25

321 AAA


  

linearly independent? 

Solution 
Writing the linear combination of the three vectors 




































































0

0

0

1

1

1

12

8

5

144

64

25

321 kkk  

gives 






































0

0

0

12144

864

525

321

321

321

kkk

kkk

kkk
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The above equations have only one solution, 0321  kkk .  However, how do we show that 

this is the only solution?  This is shown below. 
The above equations are  
 0525 321  kkk        (1) 

 0864 321  kkk        (2) 

 012144 321  kkk        (3) 

Subtracting Eqn (1) from Eqn (2) gives 
 0339 21  kk  

            12 13kk          (4) 
Multiplying Eqn (1) by 8 and subtracting it from Eqn (2) that is first multiplied by 5 gives 
 03120 31  kk  

             13 40kk          (5) 

Remember we found Eqn (4) and Eqn (5) just from Eqns (1) and (2). 
Substitution of Eqns (4) and (5) in Eqn (3) for 1k  and 2k  gives 

 040)13(12144 111  kkk   

 028 1 k  

 01 k  

This means that 1k  has to be zero, and coupled with (4) and (5), 2k  and 3k  are also zero.  So the 

only solution is 0321  kkk .  The three vectors hence are linearly independent. 

 

Example 11 
Are the three vectors 

 




















































24

14

6

,

7

5

2

,

5

2

1

321 AAA


 

linearly independent? 

Solution 
By inspection, 

213 22 AAA


  

or 

022 321


 AAA  

So the linear combination 

0332211


 AkAkAk  

has a non-zero solution 
1,2,2 321  kkk  

Hence, the set of vectors is linearly dependent. 
What if I cannot prove by inspection, what do I do?  Put the linear combination of three vectors 
equal to the zero vector, 
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0

0

0

24

14

6

7

5

2

5

2

1

321 kkk  

 to give 
 062 321  kkk        (1) 

 01452 321  kkk        (2) 

 02475 321  kkk        (3) 

Multiplying Eqn (1) by 2 and subtracting from Eqn (2) gives 
 02 32  kk  

            32 2kk          (4) 

Multiplying Eqn (1) by 2.5 and subtracting from Eqn (2) gives 
 05.0 31  kk  

             31 2kk          (5) 

Remember we found Eqn (4) and Eqn (5) just from Eqns (1) and (2). 
Substitute Eqn (4) and (5) in Eqn (3) for 1k  and 2k  gives 

     0242725 333  kkk  

 0241410 333  kkk  

 00   
This means any values satisfying Eqns (4) and (5) will satisfy Eqns (1), (2) and (3) 
simultaneously. 
For example, chose  
 63 k , then 

 122 k  from Eqn (4), and 

  121 k  from Eqn (5). 

Hence we have a nontrivial solution of    61212321 kkk .  This implies the three 

given vectors are linearly dependent.  Can you find another nontrivial solution? 
 
What about the following three vectors? 

 

















































25

14

6

,

7

5

2

,

5

2

1

 

Are they linearly dependent or linearly independent?  
Note that the only difference between this set of vectors and the previous one is the third entry in 
the third vector.  Hence, equations (4) and (5) are still valid.  What conclusion do you draw when 
you plug in equations (4) and (5) in the third equation: 02575 321  kkk ?  What has 

changed? 
 

Example 12 
Are the three vectors 
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2

1

1

,

13

8

5

,

89

64

25

321 AAA


 

linearly independent? 

Solution 
Writing the linear combination of the three vectors and equating to zero vector 




































































0

0

0

2

1

1

13

8

5

89

64

25

321 kkk  

gives 






































0

0

0

21389

864

525

321

321

321

kkk

kkk

kkk

 

In addition to 0321  kkk , one can find other solutions for which 321 ,, kkk are not equal to 

zero.  For example, 40,13,1 321  kkk  is also a solution as 




































































0

0

0

2

1

1

40

13

8

5

13

89

64

25

1  

Hence 321 ,, AAA


 are linearly dependent. 

 

What do you mean by the rank of a set of vectors? 
From a set of n -dimensional vectors, the maximum number of linearly independent vectors in 
the set is called the rank of the set of vectors.  Note that the rank of the vectors can never be 
greater than the vectors dimension. 
 

Example 13 
What is the rank of  




















































1

1

1

,

12

8

5

,

144

64

25

321 AAA


? 

Solution 
Since we found in Example 2.10 that 321 ,, AAA


 are linearly independent, the rank of the set of 

vectors 321 ,, AAA


 is 3.  If we were given another vector 4A


, the rank of the set of the vectors 

4321 ,,, AAAA


 would still be 3 as the rank of a set of vectors is always less than or equal to the 

dimension of the vectors and that at least 321 ,, AAA


 are linearly independent. 
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Example 14 
What is the rank of  

 




















































2

1

1

,

13

8

5

,

89

64

25

321 AAA


? 

Solution 
In Example 2.12, we found that 321 ,, AAA


 are linearly dependent, the rank of 321 ,, AAA


 is hence 

not 3, and is less than 3.  Is it 2?  Let us choose two of the three vectors 



































13

8

5

,

89

64

25

21 AA


 

Linear combination of 1A


 and 2A


 equal to zero has only one solution – the trivial solution.  
Therefore, the rank is 2. 
 

Example 15 
What is the rank of 

 




















































5

3

3

,

4

2

2

,

2

1

1

321 AAA


? 

Solution 
From inspection, 

12 2AA





,  
that implies 

.002 321


 AAA  

Hence  

.0332211


 AkAkAk  

has a nontrivial solution. 

So 321 ,, AAA


are linearly dependent, and hence the rank of the three vectors is not 3.  Since 

 12 2AA


 ,  

21 and AA


 are linearly dependent, but 

 .03311


 AkAk  

has trivial solution as the only solution.  So 31 and AA


are linearly independent.  The rank of the 

above three vectors is 2. 
 
Prove that if a set of vectors contains the null vector, the set of vectors is linearly 
dependent. 
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Let mAAA


,,........., 21  be a set of n -dimensional vectors, then 

02211





 mm AkAkAk  

is a linear combination of the m vectors.  Then assuming if 1A


 is the zero or null vector, any 

value of 1k  coupled with 032  mkkk  will satisfy the above equation.  Hence, the set of 

vectors is linearly dependent as more than one solution exists. 
 

Prove that if a set of m vectors is linearly independent, then a subset of the m vectors also 

has to be linearly independent. 
Let this subset of vectors be 

 apaa AAA





,,, 21  

where mp  . 
Then if this subset of vectors is linearly dependent, the linear combination 

02211





 appaa AkAkAk  

has a non-trivial solution. 
So  

00.......0 )1(2211





  ampaappaa AAAkAkAk  

also has a non-trivial solution too, where   ampa AA





,,1 are the rest of the )( pm   vectors.  

However, this is a contradiction.  Therefore, a subset of linearly independent vectors cannot be 
linearly dependent. 
 

Prove that if a set of vectors is linearly dependent, then at least one vector can be written as 

a linear combination of others. 

Let mAAA





,,, 21  be linearly dependent set of vectors, then there exists a set of scalars 

mkk ,,1   not all of which are zero for the linear combination equation 

02211





 mm AkAkAk . 

Let pk be one of the non-zero values of  miki ,,1,  , that is, 0pk , then  

.1
1

1
1

2
2

m
p

m
p

p

p
p

p

p

p
p A

k

k
A

k

k
A

k

k
A

k

k
A








 




  

and that proves the theorem. 
 

Prove that if the dimension of a set of vectors is less than the number of vectors in the set, 

then the set of vectors is linearly dependent. 
Can you prove it? 
 

How can vectors be used to write simultaneous linear equations? 
If a set of m  simultaneous linear equations with n  unknowns is written as 
 11111 cxaxa nn   



183 
 

 22121 cxaxa nn   

       


 

 nnmnm cxaxa 11  

where 
 nxxx ,,, 21  are the unknowns, then in the vector notation they can be written as  

CAxAxAx nn





 2211  

where 


















1

11

1

ma

a

A 


 

where 


















1

11

1

ma

a

A 


 


















2

12

2

ma

a

A 


 


















mn

n

n

a

a

A 
 1

 


















mc

c

C 
 1

1  

 
The problem now becomes whether you can find the scalars nxxx ,.....,, 21  such that the linear 

combination  

nn AxAx


 ..........11  

is equal to the C


, that is 

CAxAx nn


 ..........11  

 

Example 16 
Write 

8.106525 321  xxx  

2.177864 321  xxx  

2.27912144 321  xxx  

as a linear combination of set of vectors equal to another vector. 
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Solution  






































2.279

2.177

8.106

12144

864

525

321

321

321

xxx

xxx

xxx

 




































































2.279

2.177

8.106

1

1

1

12

8

5

144

64

25

321 xxx  

 
What is the definition of the dot product of two vectors? 

Let  naaaA ,,, 21 

  and  nbbbB ,,, 21 


  be two n-dimensional vectors.  Then the dot 

product of the two vectors A


 and B


 is defined as 





n

i
iinn babababaBA

1
2211 


 

A dot product is also called an inner product. 
 

Example 17 
Find the dot product of the two vectors A


 = [4, 1, 2, 3] and B


 = [3, 1, 7, 2]. 

Solution 

]2,7,1,3[.]3,2,1,4[BA


 
         = (4)(3)+(1)(1)+(2)(7)+(3)(2) 
         = 33 

 

Example 18 
A product line needs three types of rubber as given in the table below. 

Rubber Type Weight (lbs) Cost per pound ($) 
A 
B 
C 

200 
250 
310 

20.23 
30.56 
29.12 

 
Use the definition of a dot product to find the total price of the rubber needed. 

Solution 
The weight vector is given by  

]310,250,200[W


 
and the cost vector is given by  

]12.29,56.30,23.20[C


.  

The total cost of the rubber would be the dot product of W


 and C


. 

]12.29,56.30,23.20[]310,250,200[ CW


 
          )12.29)(310()56.30)(250()23.20)(200(   
          2.902776404046   
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          20.20713$  
 

Key Terms: 
Vector 
Addition of vectors 
Rank 
Dot Product 
Subtraction of vectors 
Unit vector 
Scalar multiplication of vectors 
Null vector 
Linear combination of vectors 
Linearly independent vectors 
 
 
 
 
 
 
4.3 Chapter 04.03 Binary Matrix Operations 
 
After reading this chapter, you should be able to 

1. add, subtract, and multiply matrices, and 
2. apply rules of binary operations on matrices. 

 

How do you add two matrices? 
Two matrices ][A  and ][B  can be added only if they are the same size. The addition is then 
shown as  

][][][ BAC    
where  

ijijij bac   

 

Example 1 
Add  the following two matrices. 

 









721

325
][A  







 


1953

276
][B  

Solution 
][][][ BAC   

      






 











1953

276

721

325
 

     











1975231

237265
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2674

1911
 

 

Example 2 
Blowout r’us store has two store locations A  and B , and their sales of tires are given by make 
(in rows) and quarters (in columns) as shown below. 


















277166

2515105

232025

][A  


















20714

211563

04520

][B  

where the rows represent the sale of Tirestone, Michigan and Copper tires respectively and the 
columns represent the quarter number: 1, 2, 3 and 4.  What are the total tire sales for the two 
locations by make and quarter? 

Solution 
][][][ BAC   

       =

















277166

2515105

232025

+

















20714

211563

04520

 

       =

       
       
       




















20277711646

2125151561035

02435202025

 

      


















47141710

4630168

272545

 

So if one wants to know the total number of Copper tires sold in quarter 4 at the two locations, 
we would look at Row 3 – Column 4 to give .4734 c  

 

How do you subtract two matrices? 
Two matrices ][A  and ][B  can be subtracted only if they are the same size. The subtraction is 
then given by  

][][][ BAD   
Where 

ijijij bad   

 

Example 3 
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Subtract matrix ][B  from matrix ][A . 











721

325
][A  








 


1953

276
][B  

Solution 
][][][ BAD   

      






 











1953

276

721

325
 

      











)197()52()31(

))2(3()72()65(
 

      












1232

551
 

 

Example 4 
Blowout r’us has two store locations A  and B  and their sales of tires are given by make (in 
rows) and quarters (in columns) as shown below. 


















277166

2515105

232025

][A  


















20714

211563

04520

][B  

where the rows represent the sale of Tirestone, Michigan and Copper tires respectively and the 
columns represent the quarter number: 1, 2, 3, and 4.  How many more tires did store A  sell than 
store B  of each brand in each quarter? 

Solution 
][][][ BAD   

 =


































20714

211563

04520

277166

2515105

232025

 






















20277711646

2125151561035

02435202025
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70152

4042

21155

 

So if you want to know how many more Copper tires were sold in quarter 4 in store A  than store 
B , 734 d .  Note that 113 d  implies that store A  sold 1 less Michigan tire than store B  in 

quarter 3. 
 

How do I multiply two matrices? 
Two matrices ][A  and ][B  can be multiplied only if the number of columns of ][A  is equal to 
the number of rows of ][B  to give 

nppmnm BAC   ][][][  

If  ][A  is a pm  matrix and ][B  is a np  matrix, the resulting matrix ][C  is a nm  matrix. 
So how does one calculate the elements of ][C  matrix? 





p

k
kjikij bac

1

 

    pjipjiji bababa  2211  

for each mi  ,,2 ,1  and nj  ,,2 ,1  . 

To put it in simpler terms, the thi  row and thj  column of the ][C  matrix in ]][[][ BAC   is 

calculated by multiplying the thi  row of ][A  by the thj  column of ][B , that is, 

 

.

2

1

21

pj ip2ji21ji1

pj

j

j

ipiiij

ba ........ b a   b a      

b

b

b

aaac





























 

           



p

k
kjikba

1

 

 

Example 5 
Given 











721

325
][A  






















109

85

23

][B  

Find 
    BAC   
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Solution 

12c can be found by multiplying the first row of ][A  by the second column of ][B , 

 





















10

8

2

32512c  

      )10)(3()8)(2()2)(5(   
      56  

Similarly, one can find the other elements of ][C  to give 













8876

5652
][C  

Example 6 
Blowout r’us store location A and the sales of tires are given by make (in rows) and quarters (in 
columns) as shown below 


















277166

2515105

232025

][A  

where the rows represent the sale of Tirestone, Michigan and Copper tires respectively and the 
columns represent the quarter number: 1, 2, 3, and 4.  Find the per quarter sales of store A  if the 
following are the prices of each tire. 
Tirestone = $33.25 
Michigan = $40.19 
Copper = $25.03 

Solution 
The answer is given by multiplying the price matrix by the quantity of sales of store A .  The 
price matrix is  03.2519.4025.33 , so the per quarter sales of store A  would be given by 

 

















277166

2515105

232025

 03.2519.4025.33][C  





3

1k
kjikij bac  





3

1
1111

k
kkbac  

           311321121111 bababa   

                         603.25519.402525.33   
     38.1182$           

Similarly 
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06.1747$

81.877$

38.1467$

14

13

12





c

c

c

 

Therefore, each quarter sales of store A  in dollars is given by the four columns of the row vector  
   06.174781.87738.146738.1182C  

Remember since we are multiplying a 13 matrix by a 34 matrix, the resulting matrix is a 14 
matrix. 

What is the scalar multiplication of a matrix (matrisilerin skaler çarpımı nedir)? 
If ][A  is a nm  matrix and k  is a real number, then the multiplication ][A  by a scalar k  is 
another nm  matrix ][B , where  

ijij akb   for all i, j. 

 

Example 7 
Let   











615

231.2
][A  

Find ][2 A  

Solution 











615

231.2
2][2 A  

          











621252

22321.22
 

          









12210

462.4
 

 

What is a linear combination of matrices (matrisin çizgisel kombinasyonu nedir)? 
If ][],.....,[],[ 21 pAAA  are matrices of the same size and pkkk ,.....,, 21  are scalars, then  

][........][][ 2211 pp AkAkAk   

is called a linear combination of ][][][ 21 pA,...,A,A . 

 

Example 8 

If 



























65.33

22.20
][,

615

231.2
][,

123

265
][ 321 AAA  

find 
][5.0][2][ 321 AAA   

Solution 
][5.0][2][ 321 AAA   
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65.33

22.20
5.0

615

231.2
2

123

265
 





























375.15.1

11.10

12210

462.4

123

265
 











1025.25.11

59.102.9
 

 

What are some of the rules of binary matrix operations (İkili matris işlemlerinin kuralları 

nelerdir)? 
Commutative law of addition (yerdeğiştirme özelliği) 
If ][A  and ][B  are nm  matrices, then 

][][][][ ABBA   
 

Associative law of addition (birleşme özelliği) 
If [A], [B] and [C] are all nm  matrices, then 

    ][][][][][][ CBACBA    
 

Associative law of multiplication (çarpma kuralı) 
If ][A , ][B  and ][C  are rppnnm   and  ,  size matrices, respectively, then 

    ][]][[]][[][ CBACBA   
and the resulting matrix size on both sides of the equation is .rm  
 

Distributive law (dağılma kuralı) 
If ][A  and ][B  are nm  size matrices, and ][C  and ][D  are pn  size matrices 

  ]][[]][[][][][ DACADCA   

  ]][[]][[][][][ CBCACBA   
and the resulting matrix size on both sides of the equation is .pm  
 

Example 9 
Illustrate the associative law of multiplication of matrices using  





































53

12
][,

69

52
][,

20

53

21

][ CBA  

Solution 

]][[ CB 

















53

12

69

52
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3936

2719
 



























3936

2719

20

53

21

])][]([[ CBA  

                                


















7872

276237

10591

 



























69

52

20

53

21

]][[ BA  

           


















1218

4551

1720

 



























53

12

1218

4551

1720

]])[][([ CBA  

                    


















7872

276237

10591

 

The above illustrates the associative law of multiplication of matrices. 
 

Is [A][B] = [B][A]? 
If ][A ][B  exists, number of columns of ][A  has to be same as the number of rows of ][B  and if 

]][[ AB  exists, number of columns of ][B  has to be same as the number of rows of ][A .  Now for 
]][[]][[ ABBA  , the resulting matrix from ]][[ BA  and ]][[ AB  has to be of the same size.  This is 

only possible if ][A  and ][B  are square and are of the same size.  Even then in general 
]][[]][[ ABBA   

 
 

Example 10 
Determine if  

]][[]][[ ABBA   

 for the following matrices  




















51

23
][,

52

36
][ BA  
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Solution 

]][[ BA  

















51

23

52

36
 

             = 










291

2715
 

]][[ AB 

















52

36

51

23
 

            









2816

114
 

]][[]][[ ABBA   
 

Key Terms: 
Addition of matrices 
Subtraction of matrices 
Multiplication of matrices 
Scalar Product of matrices 
Linear Combination of Matrices 
Rules of Binary Matrix Operation 
  
 
 
 
 
 
 
4.4 Chapter 04.04 Unary Matrix Operations (Tekil matris işlemleri) 
 
 
After reading this chapter, you should be able to: 

1. know what unary operations are, 
2. find the transpose of a square matrix and its relationship to symmetric matrices, 
3. find the trace of a matrix, and 
4. find the determinant of a matrix by the cofactor method. 

 

What is the transpose of a matrix? 
Let ][A  be a nm  matrix.  Then ][B  is the transpose of the ][A  if ijji ab   for all i  and j .  

That is, the thi  row and the thj  column element of ][A  is the thj  row and thi  column element of 

][B .  Note, ][B  would be a mn  matrix.  The transpose of ][A  is denoted by T][A . 
 

Example 1 
Find the transpose of  
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277166

2515105

232025

][A    

Solution 
The transpose of ][A  is 

 




















27252

7153

161020

6525

TA  

Note, the transpose of a row vector is a column vector and the transpose of a column vector is a 
row vector. 

Also, note that the transpose of a transpose of a matrix is the matrix itself, that is,     AA 
TT .  

Also,     TTTTT ; cAcABABA  . 

What is a symmetric matrix (Simetrik matris nedir)?   
A square matrix ][A  with real elements where jiij aa   for ni ,...,2,1  and nj ,...,2,1  is called 

a symmetric matrix.  This is same as saying that if T][][ AA  , then T][A  is a symmetric matrix. 
 

Example 2 
Give an example of a symmetric matrix. 

Solution 


















3.986

85.212.3

62.32.21

][A  

is a symmetric matrix as 623 31132112  a, a.aa  and 83223  aa . 

 

What is a skew-symmetric matrix (çapraz-simetrik matris nedir)? 
A nn  matrix is skew symmetric if jiij aa   for ni ,...,1  and nj ,...,1 .  This is same as 

     .TAA   
 

Example 3 
Give an example of a skew-symmetric matrix. 

Solution 



















052

501

210

 

is skew-symmetric as 
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5 ;2;1 322331132112    a  a  a  a  a  a .  Since iiii aa   only if 0iia , all the 

diagonal elements of a skew-symmetric matrix have to be zero. 
 

What is the trace of a matrix (Matrisin İzi Nedir)?  
The trace of a nn  matrix ][A  is the sum of the diagonal entries of ][A , that is,  

      



n

i
iiaA

1

tr  

 

Example 4 
Find the trace of 


















623

242

7615

][A  

Solution 

  



3

1

tr
i

iiaA  

        )6()4()15(   
        17  

 

Example 5 
The sales of tires are given by make (rows) and quarters (columns) for Blowout r’us store 
location A , as shown below. 


















277166

2515105

232025

][A  

where the rows represent the sale of Tirestone, Michigan and Copper tires, and the columns 
represent the quarter number 1, 2, 3, 4. 
Find the total yearly revenue of store A  if the prices of tires vary by quarters as follows. 


















95.2203.2702.2203.25

23.3803.4102.3819.40

05.3002.3501.3025.33

][B  

where the rows represent the cost of each tire made by Tirestone, Michigan and Copper,  and the 
columns represent the quarter numbers. 
 

Solution 
To find the total tire sales of store A  for the whole year, we need to find the sales of each brand 
of tire for the whole year and then add to find the total sales.  To do so, we need to rewrite the 
price matrix so that the quarters are in rows and the brand names are in the columns, that is, find 
the transpose of ][B . 
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T][][ BC   

      

T

95.2203.2702.2203.25

23.3803.4102.3819.40

05.3002.3501.3025.33
















  





















95.2223.3805.30

03.2703.4102.35

02.2202.3801.30

03.2519.4025.33

 

Recognize now that if we find ]][[ CA , we get 

    CAD   

      




































95.2223.3805.30

03.2703.4102.35

02.2202.3801.30

03.2519.4025.33

277166

2515105

232025

 

      


















131121691736

132521521743

119319651597

 

The diagonal elements give the sales of each brand of tire for the whole year,  
that is 
  1597$11 d  (Tirestone sales) 

  2152$22 d  (Michigan sales) 

  1311$33 d  (Cooper sales) 

The total yearly sales of all three brands of tires are  

131121521597
3

1


i

iid  

           5060$  
and this is the trace of the matrix ][D . 

Define the determinant of a matrix. 
The determinant of a square matrix is a single unique real number corresponding to a matrix.  
For a matrix ][A , determinant is denoted by A  or )det(A .  So do not use ][A  and A  

interchangeably. 
For a 22 matrix, 











2221

1211][
aa

aa
A  

21122211)det( aaaaA   
 

How does one calculate the determinant of any square matrix? 
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Let ][A  be nn  matrix.  The minor of entry ija  is denoted by ijM  and is defined as the 

determinant of the )1(1(  nn  submatrix of ][A , where the submatrix is obtained by deleting 

the thi  row and thj  column of the matrix ][A .  The determinant is then given by  

   


 
n

j
ijij

ji niMaA
1

,,2,1anyfor1det   

or 

   


 
n

i
ijij

ji njMaA
1

,,2,1anyfor1det   

 
 
Coupled that with   ][matrix11afordet 11 AaA  , we can always reduce the determinant of a 

matrix to determinants of 11  matrices.  The number ij
ji M )1(  is called the cofactor of ija  and 

is denoted by ijc .  The formula for the determinant can then be written as 

  



n

j
ijij niCaA

1

,,2,1anyfordet   

or 

  



n

i
ijij njCaA

1

,,2,1anyfordet   

Determinants are not generally calculated using this method as it becomes computationally 
intensive for large matrices.  For a nn  matrix, it requires arithmetic operations proportional to 
n!. 
 

Example 6 
Find the determinant of  


















112144

1864

1525

][A  

Solution 

Method 1: 

   


 
3

1

3,2,1anyfor1det
j

ijij
ji iMaA  

Let us choose 1i  in the formula 

   



3

1
11

11det
j

jj
j MaA  

                 1313
31

1212
21

1111
11 111 MaMaMa    

           131312121111 MaMaMa   
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112

18
11 M  

                   4  

1144

164
12 M  

       80  

12144

864
13 M  

       384  

131312121111)det( MaMaMaA   

                             3841805425   
                        384400100   
                         84  
Also for 1i , 

  



3

1
11det

j
jjCaA  

  11
11

11 1 MC   

      11M  
      4  

  12
21

12 1 MC   

      12M  
      80  

  13
31

13 1 MC   

      13M  

      384   
  313121211111det CaCaCaA   

                            384)1(80)5(4)25(   
                       384400100   
                       84  
 

Method 2: 

   



3

1

1det
i

ijij
ji MaA for any 3,2,1j  

Let us choose 2j  in the formula 

   



3

1
22

21det
i

ii
i MaA  

                             3232
23

2222
22

1212
21 111 MaMaMa    

                       323222221212 MaMaMa   
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1144

164
12 M  

       80   

1144

125
22 M  

        119  

164

125
32 M  

        39  

323222221212)det( MaMaMaA   

            )39(12)119(8)80(5   
            468952400   
            84  

In terms of cofactors for 2j , 

  



3

1
22det

i
ii CaA  

  12
21

12 1 MC   

       12M  
       80  

  22
22

22 1 MC   

       22M  
       119  

  32
23

32 1 MC   

       32M  

        39  
  323222221212det CaCaCaA   

                39)12(119)8(80)5(   
           468952400   
        84  

 

Is there a relationship between det(AB), and det(A) and det(B)? 
Yes, if ][A  and ][B  are square matrices of same size, then 

)det()det()det( BAAB   
 

Are there some other theorems that are important in finding the determinant of a square 

matrix? 
Theorem 1: If a row or a column in a nn  matrix ][A  is zero, then 0)det( A . 
Theorem 2: Let ][A  be a nn  matrix.  If a row is proportional to another row, then 0)det( A . 
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Theorem 3: Let ][A  be a nn  matrix. If a column is proportional to another column, then 
0)det( A . 

Theorem 4: Let ][A  be a nn matrix. If a column or row is multiplied by k  to result in matrix 
k , then )det()det( AkB  . 

Theorem 5: Let ][A  be a nn  upper or lower triangular matrix, then ii

n

i
aA

1
)det(


 . 

 

Example 7 
What is the determinant of 





















1250

5940

4730

3620

][A  

Solution 
Since one of the columns (first column in the above example) of ][A  is a zero, 0)det( A . 
 

Example 8  
What is the determinant of 





















18359

10245

6723

4612

][A  

Solution 
)det(A  is zero because the fourth column 

  



















18

10

6

4

 

is 2 times the first column 

  



















9

5

3

2

 

 

Example 9 
If the determinant of 
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112144

1864

1525

][A  

is 84 , then what is the determinant of 


















12.25144

18.1664

15.1025

][B  

Solution 
Since the second column of ][B  is 2.1 times the second column of ][A  

)det( 2.1  )det( AB   
            )84)(1.2(   

             176.4  
 
 

Example 10  
Given the determinant of 


















112144

1864

1525

][A  

is 84 , what is the determinant of 


















112144

56.18.40

1525

][B  

Solution 
Since ][B  is simply obtained by subtracting the second row of ][A  by 2.56 times the first row of 

][A , 
 det(A)  det(B)    

                       84  
 
 

Example 11 
What is the determinant of 


















7.000

56.18.40

1525

][A  

Solution 
Since ][A  is an upper triangular matrix 
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3

1

det
i

iiaA  

            332211 aaa   

            7.0)8.4(25   
            84  

 
 

Key Terms: 
Transpose 
Symmetric Matrix  
Skew-Symmetric Matrix 
Trace of Matrix 
Determinant  
  
 
 
 
 
 
 
4.5 Chapter 04.05 System of Equations 
 
 
After reading this chapter, you should be able to: 

1. setup simultaneous linear equations in matrix form and vice-versa, 
2. understand the concept of the inverse of a matrix, 
3. know the difference between a consistent and inconsistent system of linear equations, and 
4. learn that a system of linear equations can have a unique solution, no solution or infinite 

solutions. 
 
Matrix algebra is used for solving systems of equations.  Can you illustrate this concept 
(Matris cebiri eşitliklerin çözümünde kullanılabilir. Bunu tanımlayabilir misiniz)? 

Matrix algebra is used to solve a system of simultaneous linear equations.  In fact (aslında), for 
many mathematical procedures such as the solution to a set of nonlinear equations, interpolation, 
integration, and differential equations, the solutions reduce to a set of simultaneous linear 
equations.  Let us illustrate with an example for interpolation. (Matris cebiri çizgisel eşitliklerin 
aynı anda çözümünde kullanılabilir. Aslında birçok matematiksel işlemde örneğin çizgisel 
olmayan eşitliklerin çözümünde, interpolasyonda, integral alma işleminde, diferensiyel 
eşitliklerde ve çizgisel eşitliklerin aynı anda çözümünde denklem sayılarının azaltılmasında 
kullanılabilir. Matrislerin interpolasyonda kullanımına bir bakalım.) 
 

Example 1 
The upward velocity of a rocket is given at three different times on the following table. 
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                                 Table 5.1. Velocity vs. time data for a rocket 
Time, t Velocity, v 

(s) (m/s) 
5 106.8 
8 177.2 
12 279.2 

The velocity data is approximated by a polynomial as 
  12.t5   , 2  cbtattv  

Set up the equations in matrix form to find the coefficients cba ,,  of the velocity profile. 

Solution 
The polynomial is going through three data points      332211 ,t and ,, ,, vvtvt  where from table 

5.1. 
8.106,5 11  vt  

2.177,8 22  vt  

2.279,12 33  vt  

Requiring that   cbtattv  2  passes through the three data points gives 

  cbtatvtv  1
2
111  

  cbtatvtv  2
2
222  

  cbtatvtv  3
2
333  

Substituting the data      332211  ,and , , , , vtvtvt  gives 

    8.106552  cba  

    2.177882  cba  

    2.27912122  cba  
or 

8.106525  cba    
2.177864  cba  

2.27912144  cba  
This set of equations can be rewritten in the matrix form as 






































2.279

2.177

8.106

12144

864

525

cba

cba

cba

 

 The above equation can be written as a linear combination as follows 




































































2.279

2.177

8.106

1

1

1

12

8

5

144

64

25

cba  

and further using matrix multiplication gives 
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2.279

2.177

8.106

 

112144

1864

1525

c

b

a

 

The above is an illustration of why matrix algebra is needed. The complete solution to the set of 
equations is given later in this chapter. (Yukarıdaki gösterim matris cebirine neden ihtiyaç 
olduğunu göstermektedir. Eşitliklerin çözümü ile ilgili bilgiler bölümün sonuna doğru 
verilecektir.) 
 
A general set of m  linear equations and n  unknowns, 

11212111 cxaxaxa nn    

22222121 cxaxaxa nn    

…………………………………… 
……………………………………. 

mnmnmm cxaxaxa  ........2211  

can be rewritten in the matrix form as 









































































mnmnmm

n

n

c

c

c

x

x

x

aaa

aaa

aaa

2

1

2

1

21

22221

11211

..

..

..


  

Denoting the matrices by  A ,  X , and  C , the system of equation is  

    CXA  , where  A  is called the coefficient matrix,  C  is called the right hand side vector 

and  X  is called the solution vector.  

Sometimes     CXA   systems of equations are written in the augmented form.  That is 

 

























n
mnmm

n

n

c

c

c

a......aa

a......aa

a......aa

  CA
2

1

21

22221

11211








  

A system of equations can be consistent or inconsistent.  What does that mean? (eşitlikler 
sistemi tutarlı veya tutarsız olabilir. Bu ne anlama gelir?) 

A system of equations     CXA   is consistent if there is a solution, and it is inconsistent if 
there is no solution.  However, a consistent system of equations does not mean a unique solution, 
that is, a consistent system of equations may have a unique solution or infinite solutions (Figure 
1). 
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            Figure 5.1. Consistent and inconsistent system of equations flow chart. 

 
 

Example 2 
Give examples of consistent and inconsistent system of equations. 

Solution 
a) The system of equations 


























4

6

31

42

y

x
 

is a consistent system of equations as it has a unique solution, that is, 


















1

1

y

x
. 

b) The system of equations 


























3

6

21

42

y

x
 

is also a consistent system of equations but it has infinite solutions as given as follows. 
Expanding the above set of equations,  

32

642




yx

yx
  

you can see that they are the same equation.  Hence, any combination of  yx,  that satisfies  
642  yx  

is a solution.  For example    1,1, yx  is a solution.  Other solutions include   )25.1,5.0(, yx , 

  )5.1  ,0(, yx , and so on. 
c) The system of equations 


























4

6

21

42

y

x
 

is inconsistent as no solution exists. 
 

How can one distinguish between a consistent and inconsistent system of equations? 

Consistent System Inconsistent System 

Unique Solution Infinite Solutions 

[A][X]= [B] 
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A system of equations     CXA   is consistent if the rank of A  is equal to the rank of the 

augmented matrix  CA  

A system of equations     CXA   is inconsistent if the rank of A  is less than the rank of the 

augmented matrix  CA .   
 
But, what do you mean by rank of a matrix?  
The rank of a matrix is defined as the order of the largest square submatrix whose determinant is 
not zero. 
 

Example 3 
What is the rank of  

 

















321

502

213

A ? 

Solution 
The largest square submatrix possible is of order 3 and that is ][A  itself. Since ,023)det( A  
the rank of .3][ A  
 

Example 4 
What is the rank of  

 

















715

502

213

A ? 

Solution 
The largest square submatrix of ][A  is of order 3 and that is ][A  itself.  Since 0)det( A , the 
rank of ][A  is less than 3.  The next largest square submatrix would be a 22 matrix.  One of the 
square submatrices of ][A  is 

  









02

13
B  

and 02)det( B .  Hence the rank of ][A  is 2.  There is no need to look at other 22  
submatrices to establish that the rank of ][A  is 2. 
 

Example 5 
How do I now use the concept of rank to find if 


















































2.279

2.177

8.106

112144

1864

1525

3

2

1

x

x

x

 

is a consistent or inconsistent system of equations? 



207 
 

Solution 
The coefficient matrix is 

 

















112144

1864

1525

A  

and the right hand side vector is 

 

















2.279

2.177

8.106

C  

The augmented matrix is 

 

















2.279112144

2.1771864

8.1061525





B  

Since there are no square submatrices of order 4 as ][B  is a 34 matrix, the rank of ][B  is at 
most 3.  So let us look at the square submatrices of ][B  of order 3; if any of these square 
submatrices have determinant not equal to zero, then the rank is 3.  For example, a submatrix of 
the augmented matrix ][B  is 


















112144

1864

1525

][D  

has 084)det( D . 
Hence the rank of the augmented matrix ][B  is 3.  Since ][][ DA  , the rank of ][A  is 3.  Since 
the rank of the augmented matrix ][B  equals the rank of the coefficient matrix ][A , the system 
of equations is consistent. 
 

Example 6 
Use the concept of rank of matrix to find if 


















































0.284

2.177

8.106

 

21389

1864

1525

3

2

1

x

x

x

 

is consistent or inconsistent? 

Solution 
The coefficient matrix is given by 

 

















21389

1864

1525

A  

and the right hand side 
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0.284

2.177

8.106

C  

The augmented matrix is 

 

















0.284:21389

2.177:1864

8.106:1525

B  

Since there are no square submatrices of order 4 as ][B  is a 43 matrix, the rank of the 
augmented ][B  is at most 3.  So let us look at square submatrices of the augmented matrix ][B  
of order 3 and see if any of these have determinants not equal to zero.  For example, a square 
submatrix of the augmented matrix ][B  is 

 

















21389

1864

1525

D  

has 0)det( D .  This means, we need to explore other square submatrices of order 3 of the 
augmented matrix ][B  and find their determinants. 
That is, 

 

















0.284213

2.17718

8.10615

E  

0)det( E  

 

















0.2841389

2.177864

8.106525

F   

0)det( F  
 

 

















0.284289

2.177164

8.106125

G  

0)det( G  
All the square submatrices of order 33 of the augmented matrix ][B  have a zero determinant.  
So the rank of the augmented matrix ][B  is less than 3.  Is the rank of augmented matrix ][B  
equal to 2?. One of the 22  submatrices of  the augmented matrix ][B  is 

  









864

525
H  

and 
0120)det( H  
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So the rank of the augmented matrix ][B  is 2.   
Now we need to find the rank of the coefficient matrix ][B . 

  

















21389

1864

1525

A  

and 
0)det( A  

So the rank of the coefficient matrix ][A  is less than 3.  A square submatrix of the coefficient 
matrix ][A  is 

  









18

15
J  

03)det( J  
So the rank of the coefficient matrix ][A  is 2.   
Hence, rank of the coefficient matrix ][A equals the rank of the augmented matrix [B].  So the 
system of equations ][][][ CXA   is consistent. 
 

Example 7 
Use the concept of rank to find if 


















































0.280

2.177

8.106

 

21389

1864

1525

3

2

1

x

x

x

 

is consistent or inconsistent. 

Solution 
The augmented (artan) matrix is 

 

















0.280:21389

2.177:1864

8.106:1525

B  

Since there are no square submatrices of order 44 as the augmented matrix  ][B  is a 43 
matrix, the rank of the augmented matrix ][B  is at most 3.  So let us look at square submatrices 
of the augmented matrix (B) of order 3 and see if any of the 33 submatrices have a determinant 
not equal to zero.  For example, a square submatrix of order 33 of  ][B  

 

















21389

1864

1525

D  

det(D) = 0 
So it means, we need to explore other square submatrices of the augmented matrix ][B  
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0.280213

2.17718

8.10615

E  

00.12)det( E . 
So the rank of the augmented matrix ][B  is 3. 
The rank of the coefficient matrix ][A  is 2 from the previous example. 
Since the rank of the coefficient matrix  ][A  is less than the rank of the augmented matrix ][B , 
the system of equations is inconsistent.  Hence, no solution exists for ][][][ CXA  . 
 

If a solution exists, how do we know whether it is unique? 
In a system of equations ][][][ CXA   that is consistent, the rank of the coefficient matrix ][A  is 

the same as the augmented matrix ][ CA .  If in addition, the rank of the coefficient matrix ][A  is 

same as the number of unknowns, then the solution is unique; if the rank of the coefficient matrix 
][A  is less than the number of unknowns, then infinite solutions exist. 

 

Unique solution if
rank (A) = number of unknowns

Infinite solutions if
rank (A) < number of unknowns

Consistent System if
rank (A) = rank (A.B)

Inconsistent System if
rank (A) < rank (A.B)

[A] [X] = [B]

 
 Figure 5.2. Flow chart of conditions for consistent and inconsistent system of equations. 

 
 

Example 8 
We found that the following system of equations 


















































2.279

2.177

8.106

 

112144

1864

1525

3

2

1

x

x

x

 

is a consistent system of equations.  Does the system of equations have a unique solution or does 
it have infinite solutions? 

Solution 
The coefficient matrix is 

 

















112144

1864

1525

A  

and the right hand side is 
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2.279

2.177

8.106

C  

While finding out whether the above equations were consistent in an earlier example, we found 
that the rank of the coefficient matrix (A) equals rank of augmented matrix  CA  equals 3. 
The solution is unique as the number of unknowns = 3 = rank of (A). 
 

Example 9 
We found that the following system of equations 


















































0.284

2.177

8.106

 

21389

1864

1525

3

2

1

x

x

x

 

is a consistent system of equations.  Is the solution unique or does it have infinite solutions. 

Solution 
While finding out whether the above equations were consistent, we found that the rank of the 
coefficient matrix ][A equals the rank of augmented matrix  CA  equals 2 
Since the rank of 2][ A  < number of unknowns = 3, infinite solutions exist. 
 
If we have more equations than unknowns in [A] [X] = [C], does it mean the system is 
inconsistent? 
No, it depends on the rank of the augmented matrix  CA  and the rank of ][A . 
a)  For example 






















































0.284

2.279

2.177

8.106

 

21389

112144

1864

1525

3

2

1

x

x

x

 

is consistent, since 
rank of augmented matrix = 3 
rank of coefficient matrix = 3 

Now since  the rank of (A) = 3 = number of unknowns, the solution is not only consistent but 
also unique. 
b)  For example 






















































0.280

2.279

2.177

8.106

 

21389

112144

1864

1525

3

2

1

x

x

x

 

is inconsistent, since 
rank of augmented matrix  = 4 
rank of coefficient matrix = 3 

c)  For example 
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0.280

6.213

2.177

8.106

 

21389

21050

1864

1525

3

2

1

x

x

x

 

is consistent, since 
rank of augmented matrix  = 2 
rank of coefficient matrix = 2 

But since the rank of ][A  = 2 < the number of unknowns = 3, infinite solutions exist. 
 
Consistent systems of equations can only have a unique solution or infinite solutions.  Can a 
system of equations have more than one but not infinite number of solutions? 
No, you can only have either a unique solution or infinite solutions.  Let us suppose 

 ][][ ][ CXA  has two solutions ][Y  and ][Z  so that 
][][ ][ CYA    
][][ ][ CZA   

If r  is a constant, then from the two equations  
    CrYAr   

      CrZAr  1 1  
Adding the above two equations gives 

            CrCrZArYAr  1 1  

         CZrYrA  1  
Hence 

    ZrYr  1  
is a solution to 

    CXA   
Since r  is any scalar, there are infinite solutions for ][][][ CXA   of the form 

    ZrYr  1  
 

Can you divide two matrices? 

If ][][][ CBA   is defined, it might seem intuitive that 
 
 B

C
A ][ , but matrix division is not 

defined like that.  However an inverse of a matrix can be defined for certain types of square 
matrices.  The inverse of a square matrix ][A , if existing, is denoted by 1][ A  such that 

][][][][][ 11 AAIAA     
Where ][I  is the identity matrix. 
In other words, let [A] be a square matrix.  If ][B  is another square matrix of the same size such 
that ][][][ IAB  , then ][B  is the inverse of ][A . ][A  is then called to be invertible or 

nonsingular.  If  1][ A  does not exist, ][A  is called  noninvertible or singular. 
If ][A  and ][B  are two nn  matrices such that ][][][ IAB  , then these statements are also true 

 [B] is the inverse of [A] 
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 [A] is the inverse of [B] 
 [A] and [B] are both invertible  
 [A] [B]=[I]. 
 [A] and [B] are both nonsingular 
 all columns of [A] and [B]are linearly independent 
 all rows of [A] and [B] are linearly independent. 

 

Example 10 
Determine if 











35

23
][B  

is the inverse of  














35

23
[A]  

Solution 

]][[ AB 
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23
 

             
10

01








  

            ][I  
Since  
 ][][][ IAB  ,  

][B  is the inverse of [A] and ][A  is the inverse of ][B .  
But, we can also show that  

]][[ BA 




















35

23

35

23
 

            









10

01
 

            I][  
to show that ][A  is the inverse of ][B . 
 

Can I use the concept of the inverse of a matrix to find the solution of a set of equations [A] 

[X] = [C]? 
Yes, if the number of equations is the same as the number of unknowns, the coefficient matrix 

][A  is a square matrix.   
Given 

][][][ CXA   

Then, if 1][ A  exists, multiplying both sides by 1][ A .  

][][]][[][ 11 CAXAA    
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][][][][ 1 CAXI   

][][][ 1 CAX   

This implies that if we are able to find 1][ A , the solution vector of ][][][ CXA   is simply a 

multiplication of 1][ A  and the right hand side vector, ][C .  
 

How do I find the inverse of a matrix?  
If ][A  is a nn  matrix, then 1][ A  is a nn  matrix and according to the definition of inverse of 
a matrix 

][][][ 1 IAA   
Denoting  
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][I  

Using the definition of matrix multiplication, the first column of the 1][ A  matrix can then be 
found by solving 
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Similarly, one can find the other columns of the 1][ A  matrix by changing the right hand side 
accordingly. 
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Example 11  
The upward velocity of the rocket is given by 

                        Table 5.2. Velocity vs time data for a rocket 
Time, t (s) Velocity, v  (m/s) 
5 106.8 
8 177.2 
12 279.2 

In an earlier example, we wanted to approximate the velocity profile by 
  125   ,2  tcbtattv  

We found that the coefficients cba and,,  in  tv  are given by 


















































2.279

2.177

8.106

c

b

a

 

112144

1864

1525

 

First, find the inverse of 

 

















112144

1864

1525

A  

and then use the definition of inverse to find the coefficients .and,, cba  

Solution 
If   
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is the inverse of ][A , then 


















































100

010

001

112144

1864

1525

'
33

'
32

'
31

'
23

'
22

'
21

'
13

'
12

'
11

aaa

aaa

aaa

 

gives three sets of equations 
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13

a

a

a

 

Solving the above three sets of equations separately gives 
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11

a

a

a
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571.4

9524.0

04762.0

 

















'
32

'
22

'
12

a

a

a
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000.5

417.1

08333.0

 


































429.1

4643.0

03571.0

'
33

'
23
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a

a
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Hence 























429.1000.5571.4

4643.0417.19524.0

03571.008333.004762.0

][ 1A  

Now 
    CXA   

where 

 

















c

b

a

X  

 

















2.279

2.177

8.106

C  

Using the definition of    ,1A  

                         11 CAXAA    

     CA  X 1  






































2.279

2.177

8.106

429.1000.5571.4

4643.0417.19524.0

03571.008333.004762.0

 

Hence 
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086.1

69.19

2905.0

c

b

a

 

So  
  125 ,086.169.192905.0 2  ttttv  

 

Is there another way to find the inverse of a matrix? 
For finding the inverse of small matrices, the inverse of an invertible matrix can be found by 

     Aadj
A

A
det

11   

where 
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22221

11211
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where ijC  are the cofactors of ija .  The matrix  
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n
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CCC
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1

22221

11211

 

itself is called the matrix of cofactors from [A].  Cofactors are defined in Chapter 4. 
 

Example 12  
Find the inverse of 

 

















112144

1864

1525

A  

Solution 
From Example 4.6 in Chapter 04.06, we found 

  84det A  
Next we need to find the adjoint of ][A .  The cofactors of A  are found as follows. 

The minor of entry 11a  is 

112144

1864

1525

11 M  

                   
112

18
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                   4   
The cofactors of entry 11a  is 

  11
11

11 1 MC   

                   11M  
                   4  
The minor of entry 12a  is 

112144

1864

1525

12 M  

       
1144

164
  

       80  
The cofactor of entry 12a  is 

   12
21

12 1 MC   

       12M  
                  )80(  
       80   
Similarly 
 38413 C  

 721 C  

 11922 C  

 42023 C  

 331 C  

 3932 C  

 12033 C  

Hence the matrix of cofactors of ][A  is 

 






















120393

4201197

384804

C  

The adjoint of matrix ][A  is T][C , 

   TCAadj   

                       























120420384

3911980

374

 

Hence 

     Aadj
A

A
det

11   
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120420384

3911980

374

84

1
 

         























429.1000.5571.4

4643.0417.19524.0

03571.008333.004762.0

 

 
If the inverse of a square matrix [A] exists, is it unique? ( bir kare [A] matrisinin tersi 
varsa denklem sistemininçözümü de var mıdır? ) 
Yes, the inverse of a square matrix is unique, if it exists.  The proof is as follows.  Assume that 
the inverse of ][A  is ][B  and if this inverse is not unique, then let another inverse of ][A  exist 
called ][C . 
If ][B  is the inverse of ][A , then 

][][][ IAB   
Multiply both sides by ][C , 

][][][][][ CICAB   
][][][][ CCAB   

Since [C] is inverse of ][A , 
][][][ ICA   

Multiply both sides by ][B , 
][][][ CIB   

][][ CB   
This shows that ][B  and ][C  are the same. So the inverse of ][A  is unique. 
 
 

Key Terms: 
Consistent system 
Inconsistent system 
Infinite solutions 
Unique solution 
Rank 
Inverse  
 
4.5.1 Multiple-Choice Test Chapter 04.01 Background Simultaneous Linear Equations 
 

1. Given  A  =



















6000

5400

3210

9326

 then  A  is a (an) ______________  matrix. 
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(A) diagonal     (B) identity    (C) lower triangular    (D) upper triangular 
2. A square matrix  A  is lower triangular if 

(A) ijaij   ,0     (B) jiaij   ,0    (C) jiaij   ,0    (D) ijaij   ,0  

 
3. Given 

  























3.123.113.10

3.113.103.11

3.203.123.12

][A ,  




















2011

65

42

][B  

 
 then if  
      BAC  , then   

 31c _____________________ 

 
(A) 2.58    (B) 6.37  (C) 219.4   (D) 259.4 

 
 
4. The following system of equations has ____________ solution(s).  
  2 yx    (x=0, y=2; x=1, y=1; x=2, y=0; x=4, y=-2, x=6, y=-4...) 
  1266  yx  

(A) infinite     (B) no   (C) two   (D) unique 
 
5. Consider there are only two computer companies in a country.  The companies are named 

Dude and Imac.  Each year, Dude keeps 1/5th of its customers, while the rest switch to 
Imac.  Each year, Imac keeps 1/3rd of its customers, while the rest switch to Dude.  If in 
2003, Dude had 1/6th of the market and Imac had 5/6th of the market, what will be the 
share of Dude computers when the market becomes stable? (bir şehirde 2 bilgisayar 
şirketinin olduğunu kabul edelim. Bu şirketlerin adları Dude ve Imac olsun. Dude şirketi 
her yıl müşterilerinin 1/5’ni korumakta, geri kalanlar Imac’i tercih etmektedir. Imac 
firması ise her yıl müşterilerinin 1/3’nü koruyabilmekte geri kalan müşteriler Dude 
şirketini tercih etmektedir. 2003 yılında Dude pazarın 1/6’sına sahipken Imac 5/6’sına 
hakimdir. Pazar kararlı hale geldiğinde Dude şirketinin payı aşağıdakilerden hangisi 
olabilir?) 

(A) 37/90   (B) 5/11   (C) 6/11   (D) 53/90 
 
6. Three kids - Jim, Corey and David receive an inheritance of $2,253,453.  The money is 

put in three trusts but is not divided equally to begin with.  Corey's trust is three times 
that of David's because Corey made an A in Dr. Kaw’s class.  Each trust is put in an 
interest generating investment.  The three trusts of Jim, Corey and David pays an interest 
of 6%, 8%, 11%, respectively.  The total interest of all the three trusts combined at the 
end of the first year is $190,740.57.  The equations to find the trust money of Jim ( J ), 
Corey (C ) and David ( D ) in a matrix form is (Jim, Corey ve David 2,253,453$’lık 
mirasa konmuşlardır. Para, çocuklar arasında eşit paylaştırılmamaktadır. Corey Kaw’ın 
dersinden A notunu aldığı için David’in payının 3 katı kadar para almaktadır. Her pay 
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faiz veren bir şirkete yatırılmıştır. Bu şirket Jim’e %6, Corey’e %8, ve David’e 11 kar 
vermektedir. )  

(A) 



















































57.740,190

0

453,253,2

11.008.006.0

130

111

D

C

J

 (B) 



















































57.740,190

0

453,253,2

11.008.006.0

310

111

D

C

J

 

(C) 



















































57.740,190

0

453,253,2

1186

310

111

D

C

J

    (D) 



















































057,074,19

0

453,253,2

1186

130

111

D

C

J

 

 
For a complete solution, refer to the links at the end of the book. 
 
 
4.6 Chapter 04.06 Gaussian Elimination (Gauss eleme yöntemi) 

 

PRE-REQUISITES 
 

1. Matrix Algebra Basics: Binary operations on matrices and inverse of a matrix (Primer for 
Matrix Algebra). 

 

OBJECTIVES 
1. solve a set of simultaneous linear equations using Naïve Gauss elimination (basit Gauss 

eleme), 
2. learn the pitfalls of the Naïve Gauss elimination method (Gauss eleme yönteminde 

düşülen hatalar), 
3. understand the effect of round-off error when solving a set of linear equations with the 

Naïve Gauss elimination method (basit Gauss eleme yöntemi ile çizgisel denklemler 
çözülürken yuvarlama hatalarının etkisinin belirlenmesi), 

4. learn how to modify the Naïve Gauss elimination method to the Gaussian elimination 
with partial pivoting method to avoid pitfalls of the former method (basit Gauss eleme 
yönteminin kısmen pivotlamalı Gauss eleme yöntemine dönüştürülmesi),  

5. find the determinant of a square matrix using Gaussian elimination, and (Gauss eleme 
yönteminde kullanılacak olan kare matrisin determinantının hesaplanması)  

6. understand the relationship between the determinant of a coefficient matrix and the 
solution of simultaneous linear equations (katsayılar matrisinin determinantının ve 
çizgisel eşitliklerin aynı anda çözümü arasındaki ilişkinin anlaşılması). 

 
After reading this chapter, you should be able to: 

1. solve a set of simultaneous linear equations using Naïve Gauss elimination, 
2. learn the pitfalls of the Naïve Gauss elimination method, 
3. understand the effect of round-off error when solving a set of linear equations with the 

Naïve Gauss elimination method, 
4. learn how to modify the Naïve Gauss elimination method to the Gaussian elimination 

with partial pivoting method to avoid pitfalls of the former method,  
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5. find the determinant of a square matrix using Gaussian elimination, and 
6. understand the relationship between the determinant of a coefficient matrix and the 

solution of simultaneous linear equations. 
 
How is a set of equations solved numerically (bir grup eşitliğin sayısal çözümü nasıl 
yapılır)? 
One of the most popular techniques for solving simultaneous linear equations is the Gaussian 
elimination method.  The approach is designed to solve a general set of n  equations and n  
unknowns 

11313212111 ... bxaxaxaxa nn   

22323222121 ... bxaxaxaxa nn    

     .                 . 
     .                 . 
     .                 . 

nnnnnnn bxaxaxaxa  ...332211  

Gaussian elimination consists of two steps 
1. Forward Elimination of Unknowns: In this step, the unknown is eliminated in each 

equation starting with the first equation.  This way, the equations are reduced to one 
equation and one unknown in each equation. 

2. Back Substitution:  In this step, starting from the last equation, each of the unknowns is 
found. 

 

Forward Elimination of Unknowns (bilinmeyenlerin ileri yönde elenmesi):   
In the first step of forward elimination, the first unknown, 1x  is eliminated from all rows below 

the first row.  The first equation is selected as the pivot equation to eliminate 1x .  So, to eliminate 

1x  in the second equation, one divides the first equation by 11a  (hence called the pivot element) 

and then multiplies it by 21a .  This is the same as multiplying the first equation by 1121 / aa  to 
give  

1
11

21
1

11

21
212

11

21
121 ... b

a

a
xa

a

a
xa

a

a
xa nn   

Now, this equation can be subtracted from the second equation to give  

1
11

21
21

11

21
2212

11

21
22 ... b

a

a
bxa

a

a
axa

a

a
a nnn 

















   

or 

22222 ... bxaxa nn   

where  

nnn a
a

a
aa

a
a

a
aa

1
11

21
22

12
11

21
2222
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This procedure of eliminating 1x , is now repeated for the third equation to the thn  equation to 
reduce the set of equations as 

11313212111 ... bxaxaxaxa nn   

22323222 ... bxaxaxa nn   

33333232 ... bxaxaxa nn   

 .                 .  . 
 .                 .  . 
 .                 .  . 

nnnnnn bxaxaxa  ...3322  

This is the end of the first step of forward elimination. Now for the second step of forward 
elimination, we start with the second equation as the pivot equation and 22a  as the pivot element.  

So, to eliminate 2x  in the third equation, one divides the second equation by 22a  (the pivot 

element) and then multiply it by 32a .  This is the same as multiplying the second equation by 

2232 / aa   and subtracting it from the third equation.  This makes the coefficient of 2x  zero in the 

third equation.  The same procedure is now repeated for the fourth equation till the thn equation 
to give 

11313212111 ... bxaxaxaxa nn   

22323222 ... bxaxaxa nn   

33333 ... bxaxa nn   

  .               . 
  .               . 
  .               . 

nnnnn bxaxa  ...33  

The next steps of forward elimination are conducted by using the third equation as a pivot 
equation and so on.  That is, there will be a total of 1n  steps of forward elimination.  At the 
end of 1n  steps of forward elimination, we get a set of equations that look like 

 212111 xaxa 11313 ... bxaxa nn   

            22323222 ... bxaxaxa nn   

                        33333 ... bxaxa nn   

                                  .             . 
                                  .             . 
                                  .             . 
                                           11   n

nn
n

nn bxa     

 

Back Substitution (geriye yerine koyma):   
Now the equations are solved starting from the last equation as it has only one unknown.   

)1(

)1(






n

nn

n
n

n a

b
x  



224 
 

Then the second last equation, that is the th)1( n  equation, has two unknowns: nx  and 1nx , but 

nx  is already known.  This reduces the th)1( n  equation also to one unknown.  Back 

substitution hence can be represented for all equations by the formula 
   

 1

1

11




 


i
ii

n

ij
j

i
ij

i
i

i a

xab
x      for 1,,2,1  nni   

and  

)1(

)1(






n

nn

n
n

n a

b
x  

1. Başla  
2. denklem sisteminin derecesini giriniz, n 
3. a(n,n) tanımlayınız  
4. katsayılar matrisinin değerlerini giriniz, 
5. for i=1,n 
6.  for j=1,n+1 
7.   a(i,j)’ye değerleri oku 
8.  next j 
9. next i 
10. pivot denklem (k=1)  
11. for k=1,n-1  
12.  for i=k+1,n 
13.   for j=k, n+1 
14.    a(i,j)=a(i,j)-a(k,j)*a(i,k)/a(k,k)  
15.   next j  
16.  next i 
17. next k 
18. x(n)=a(n,n+1)/a(n, n) 
19. for i=n-1, 1, -1 
20. t=0.0 
21. for j=i+1, n 
22. t=t+a(i,j)*x(j)  
23. end 
24. x(i)=(a(i,n+1)-t)/a(i,i) 
25. end 
  
clear all; 
% Defining the augmented matrix [a].  
a = [25 5 1 106.8; 64 8 1 177.2; 144 12 1 279.2]; 
c = [25 5 1 106.8; 64 8 1 177.2; 144 12 1 279.2]; 
n=3 
%Conducting k, or (n-1) steps of forward elimination.  
for k=1:(n-1)  
 %Defining the proper row elements [c] .  
 for i=k+1:n  
  %Generating the value that is multiplied to each equation.  
  r=c(i,k)/c(k,k)  
  for j=k:n+1  
   %Subtracting the product of the multiplier and  
   %pivot equation from the ith row to generate new rows of [c] matrix.  
   c(i,j)=c(i,j)-r*c(k,j)  
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  end 
 end  
end 
x(n)=c(n,n+1)/c(n, n); 
for i=n-1:-1:1 
 t=0.0; 
 for j=i+1:n 
  t=t+c(i,j)*x(j);  
 end 
 x(i)=(c(i,n+1)-t)/c(i,i); 
end 
fprintf(' ', k, c);  
fprintf('\n');  
for i=1:n 
fprintf('%3d = %0.3f \n',i, x(i)); 
end 
 
c = 
 
   25.0000    5.0000    1.0000  106.8000 
         0   -4.8000   -1.5600  -96.2080 
         0         0    0.7000    0.7600 
 
  
  1 = 0.290  
  2 = 19.690  
  3 = 1.086  

 

Example 1 
The upward velocity of a rocket is given at three different times in Table 1. 
 

                            Table 1  Velocity vs. time data. 

Time, t  (s) Velocity, v  (m/s) 

5 106.8 
8 177.2 
12 279.2 

 
The velocity data is approximated by a polynomial as 

  125           , 32
2

1  tatatatv  

The coefficients 321 and a, , aa  for the above expression are given by 


















































2.279

2.177

8.106

 

112144

1864

1525

3

2

1

a

a

a

 

Find the values of 321 and  a,, aa  using the Naïve Gauss elimination method.  Find the velocity at 

11 ,9 ,5.7 ,6t  seconds. 
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Solution 

Forward Elimination of Unknowns  
Since there are three equations, there will be two steps of forward elimination of unknowns. 

First step 
Divide Row 1 by 25 and then multiply it by 64, that is, multiply Row 1 by 2.5664/25  . 

     56.28.106  1525   gives Row 1 as 

   408.27356.28.1264  
Subtract the result from Row 2  

 

   
   

208.9656.18.40     

408.27356.28.1264   

2.1771     864     




 

to get the resulting equations as 



















































2.279

208.96

8.106

 

112144

56.18.40

1525

3

2

1

a

a

a

  

Divide Row 1 by 25 and then multiply it by 144, that is, multiply Row 1 by 5.76144/25  . 
     76.58.106 1525   gives Row 1 as 

   168.61576.58.28144  
Subtract the result from Row 3  

 

   
   

968.33576.48.16  0       

168.61576.58.28144  

2.2791    12144    




 

to get the resulting equations as 























































968.335

208.96

8.106

 

76.48.160

56.18.40

1525

3

2

1

a

a

a

 

Second step 
We now divide Row 2 by –4.8 and then multiply by –16.8, that is, multiply Row 2 by 

3.54.816.8/  . 
     5.3208.96 56.18.40    gives Row 2 as 

   728.33646.58.160   
Subtract the result from Row 3 

 

   
   

76.0         7.0     0     0 

728.33646.58.160   

968.3354.768.160     




 

to get the resulting equations as 
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76.0

208.96

8.106

 

7.000

56.18.40

1525

3

2

1

a

a

a

 

 
Back substitution 
From the third equation 

76.07.0 3 a  

70

760
     3 .

.
a   

       1.08571         
Substituting the value of 3a  in the second equation, 

208.9656.18.4 32  aa  

8.4

56.1208.96 3
2 




a
a  

  
4.8

08571.11.5696.208
    




  

  690519.      
Substituting the value of 2a  and 3a  in the first equation, 

8.106525 321  aaa  

25

58.106
 32

1

aa
a


  

  
25

08571.16905.1958.106
     


  

  290472.0       
Hence the solution vector is 


































08571.1

6905.19

290472.0

3

2

1

a

a

a

 

The polynomial that passes through the three data points is then 
  32

2
1 atatatv   

125 ,08571.16905.19290472.0      2  ttt  
Since we want to find the velocity at 11 and 9 ,5.7 ,6t  seconds, we could simply substitute each 

value of t  in   08571.16905.19290472.0 2  tttv  and find the corresponding velocity.  For 
example, at 6t  

     
m/s686.129       

08571.166905.196290472.06 2


v

 

However we could also find all the needed values of velocity at t  = 6, 7.5, 9, 11 seconds using 
matrix multiplication. 
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1

  0857116905192904720

2

t

t

.     .    .tv  

So if we want to find        ,11 ,9 ,5.7 ,6 vvvv  it is given by  

          

















1111

1195.76

1195.76

  08571.1   6905.19   0.290472 11 9  5.7 6 

 
2222

vvvv
 

 

















1111

1197.56

1218156.2536

  1.08571     19.6905     290472.0  

 252.828     201.828      165.104     686.129  
m/s 686.129)6( v  

m/s 041.165)5.7( v  
m/s 828.201)9( v  
m/s 828.252)11( v  

 

Example 2 
Use Naïve Gauss elimination to solve 

45101520 321  xxx  

751.17249.23 321  xxx  

935 321  xxx     

Use six significant digits with chopping in your calculations. 

Solution 
Working in the matrix form  


















315

7249.23

101520

















3

2

1

x

x

x

 = 

















9

751.1

45

 

Forward Elimination of Unknowns 

First step 
Divide Row 1 by 20 and then multiply it by –3, that is, multiply Row 1 by 15.020/3  . 

     15.045101520   gives Row 1 as 

   75.65.125.23   
Subtract the result from Row 2  

 

   
   

  501.8    5.8  001.0   0        

75.65.125.23   

751.17 249.23     
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to get the resulting equations as 

















315

5.8001.00

101520

















3

2

1

x

x

x

=

















9

501.8

45

 

Divide Row 1 by 20 and then multiply it by 5, that is, multiply Row 1 by 25.020/5   
     25.045101520   gives Row 1 as 

   25.115.275.35  
Subtract the result from Row 3  

 

   
   

2.25  .5075.20     

25.115.2 75.3   5   

93       1   5     




 

to get the resulting equations as 

















 5.075.20

5.8001.00

101520

















3

2

1

x

x

x

=

















 25.2

501.8

45

 

Second step 
Now for the second step of forward elimination, we will use Row 2 as the pivot equation and 
eliminate Row 3: Column 2.  
Divide Row 2 by 0.001 and then multiply it by –2.75, that is, multiply Row 2 by 

2750001.0/75.2  . 
     2750501.85.8001.00   gives Row 2 as 

   75.233772337575.20   
Rewriting within 6 significant digits with chopping 

   7.233772337575.20   
Subtract the result from Row 3  

 

   
   

3375.452 5.23375        0      0    

7.2337723375 2.75   0   

25.2.50       75.2   0     




 

Rewriting within 6 significant digits with chopping 
    4.233755.2337500   
to get the resulting equations as 

















5.2337500

5.8001.00

101520

 

















3

2

1

x

x

x

= 

















4.23375

501.8

45

  

This is the end of the forward elimination steps. 

Back substitution 
We can now solve the above equations by back substitution.  From the third equation, 

4.233755.23375 3 x  
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5.23375

4.23375
3 x  

                  999995.0  
Substituting the value of 3x  in the second equation 

501.85.8001.0 32  xx  

0.001

0.999995585018
     

001.0

5.8501.8 3
2







..

x
x

 

     
001.0

49995.8501.8 
  

     
001.0

00105.0
  

     05.1  
Substituting the value of 3x  and 2x  in the first equation, 

45101520 321  xxx  

20

10 1545 32
1

xx
x


  

 
20

999995.01005.11545
    


  

     

20

2500.19
20

99995.925.29
20

99995.975.1545









 

    9625.0    
Hence the solution is 


















3

2

1

][

x

x

x

X  

      


















999995.0

05.1

9625.0

 

 
Compare this with the exact solution of 

 

















3

2

1

x

x

x

X  
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1

1

1

 

 
Are there any pitfalls of the Naïve Gauss elimination method? (Yalın Gauss eleme 
yönteminde karşılaşılabilecek sıkıntılar/tuzaklar) 
Yes, there are two pitfalls of the Naïve Gauss elimination method. 
Division by zero: It is possible for division by zero to occur during the beginning of the 1n  
steps of forward elimination. 
For example 

1165 32  xx  

16754 321  xxx  

15329 321  xxx  

will result in division by zero in the first step of forward elimination as the coefficient of 1x  in 
the first equation is zero as is evident when we write the equations in matrix form. 

 


















































15

16

11

329

754

650

3

2

1

x

x

x

 

But what about the equations below: Is division by zero a problem? 
18765 321  xxx  

2531210 321  xxx  

56191720 321  xxx  

Written in matrix form, 

 


















































56

25

18

191720

31210

765

3

2

1

x

x

x

 

there is no issue of division by zero in the first step of forward elimination. The pivot element is 
the coefficient of 1x  in the first equation, 5, and that is a non-zero number. However, at the end 
of the first step of forward elimination, we get the following equations in matrix form (ileri 
yönde elemede sıfıra bölme sorunu yoktur. İlk eşitliğin pivot elemanı yani x1’in katsayısı 5’tir. 
Ancak ilk aşamanın sonunda aşağıdaki gibi bir matris elde edilir) 

 























































16

11

18

970

1100

765

3

2

1

x

x

x

 

Now at the beginning of the 2nd step of forward elimination, the coefficient of 2x  in Equation 2 
would be used as the pivot element. That element is zero and hence would create the division by 
zero problem. 
So it is important to consider that the possibility of division by zero can occur at the beginning of 
any step of forward elimination. 
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Round-off error:  The Naïve Gauss elimination method is prone to round-off errors (basit Gauss 
eleme yöntemi yuvarlama hatasının oluşmasına eğilimlidir).  This is true when there are large 
numbers of equations as errors propagate (bu durum büyük sayıda eşitliklerin olduğunda hata 
daha başat olmaktadır).  Also, if there is subtraction of numbers from each other, it may create 
large errors.  See the example below. 
 

Example 3 
Remember Example 2 where we used Naïve Gauss elimination to solve 

45101520 321  xxx  

751.17249.23 321  xxx  

935 321  xxx  

using six significant digits with chopping in your calculations?  Repeat the problem, but now use 
five significant digits with chopping in your calculations. 

Solution 
Writing in the matrix form 


















315

7249.23

101520

 

















3

2

1

x

x

x

=

















9

751.1

45

 

Forward Elimination of Unknowns (bilinmeyenlerin ileri yönde elenmesi) 

First step 
Divide Row 1 by 20 and then multiply it by –3, that is, multiply Row 1 by 15.020/3  . 

     15.045101520   gives Row 1 as 

   75.65.125.23   
Subtract the result from Row 2  

 

   
   

  501.8    5.8  001.0   0        

75.65.125.23   

751.17 249.23     




 

to get the resulting equations as 

















315

5.8001.00

101520

















3

2

1

x

x

x

=

















9

501.8

45

 

Divide Row 1 by 20 and then multiply it by 5, that is, multiply Row 1 by 25.020/5  . 
     25.045101520   gives Row 1 as 

   25.115.275.35  
Subtract the result from Row 3  

 

   
   

2.25  .5075.20     

25.115.2 75.3   5   

93       1   5     




 

to get the resulting equations as 
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 5.075.20

5.8001.00

101520

















3

2

1

x

x

x

=

















 25.2

501.8

45

 

Second step 
Now for the second step of forward elimination, we will use Row 2 as the pivot equation and 
eliminate Row 3: Column 2.  
Divide Row 2 by 0.001 and then multiply it by –2.75, that is, multiply Row 2 by 

2750001.0/75.2  . 
     2750501.85.8001.00   gives Row 2 as 

   75.233772337575.20   
Rewriting within 5 significant digits with chopping 

   233772337575.20   
Subtract the result from Row 3  

 

   
   

 33742   23375        0      0    

2337723375 2.75   0   

25.2.50       75.2   0     




 

Rewriting within 6 significant digits with chopping 
    233742337500   
to get the resulting equations as 

















2337500

5.8001.00

101520

 

















3

2

1

x

x

x

= 

















23374

501.8

45

  

This is the end of the forward elimination steps. 

Back substitution 
We can now solve the above equations by back substitution.  From the third equation, 

2337423375 3 x  

23375

23374
3 x  

99995.0      
Substituting the value of 3x  in the second equation 

501.85.8001.0 32  xx  

0.001

0.99995585018
     

001.0

5.8501.8 3
2







..

x
x

 

     

001.0

4995.8501.8
001.0

499575.8501.8
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001.0

0015.0
  

     5.1  
Substituting the value of 3x  and 2x  in the first equation, 

45101520 321  xxx  

20

10 1545 32
1

xx
x


  

 
20

99995.0105.11545
    


  

     

20

500.12
20

5005.12
20

9995.95.22
20

9995.95.2245











 

    625.0    
Hence the solution is 

 

















3

2

1

x

x

x

X  

      


















99995.0

5.1

625.0

 

Compare this with the exact solution of 

 

















3

2

1

x

x

x

X


















1

1

1

 

 

What are some techniques for improving the Naïve Gauss elimination method? 
As seen in Example 3, round off errors were large when five significant digits were used as 
opposed to six significant digits.  One method of decreasing the round-off error would be to use 
more significant digits, that is, use double or quad precision for representing the numbers.  
However, this would not avoid possible division by zero errors in the Naïve Gauss elimination 
method.  To avoid division by zero as well as reduce (not eliminate) round-off error, Gaussian 
elimination with partial pivoting is the method of choice. 
 

How does Gaussian elimination with partial pivoting differ from Naïve Gauss elimination? 
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The two methods are the same, except in the beginning of each step of forward elimination, a 
row switching is done based on the following criterion.  If there are n  equations, then there are 

1n  forward elimination steps.  At the beginning of the thk  step of forward elimination, one 
finds the maximum of  

kka , kka ,1 , …………, nka  

Then if the maximum of these values is pka  in the thp  row, npk  , then switch rows p  and 

k .  
The other steps of forward elimination are the same as the Naïve Gauss elimination method.  The 
back substitution steps stay exactly the same as the Naïve Gauss elimination method. 
 

Example 4 
In the previous two examples, we used Naïve Gauss elimination to solve 

45101520 321  xxx    

751.17249.23 321  xxx  

935 321  xxx  

using five and six significant digits with chopping in the calculations.  Using five significant 
digits with chopping, the solution found was 

 

















3

2

1

x

x

x

X  

      


















99995.0

5.1

625.0

 

This is different from the exact solution of 
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2

1

x

x

x

X  


















1

1

1

        

Find the solution using Gaussian elimination with partial pivoting using five significant digits 
with chopping in your calculations. 

Solution 


















315

7249.23

101520

 

















3

2

1

x

x

x

  =   

















9

751.1

45

 

Forward Elimination of Unknowns 
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Now for the first step of forward elimination, the absolute value of the first column elements 
below Row 1 is 

20 , 3 , 5  

        or 
20, 3, 5 

So the largest absolute value is in the Row 1.  So as per Gaussian elimination with partial 
pivoting, the switch is between Row 1 and Row 1 to give 


















315

7249.23

101520

 

















3

2

1

x

x

x

  =  

















9

751.1

45

 

Divide Row 1 by 20 and then multiply it by –3, that is, multiply Row 1 by 15.020/3  . 
     15.045101520   gives Row 1 as 

   75.65.125.23   
Subtract the result from Row 2  

 

   
   

  501.8    5.8  001.0   0        

75.65.125.23   

751.17 249.23     




 

to get the resulting equations as 

















315

5.8001.00

101520

















3

2

1

x

x

x

 = 

















9

501.8

45

 

Divide Row 1 by 20 and then multiply it by 5, that is, multiply Row 1 by 25.020/5  . 
     25.045101520   gives Row 1 as 

   25.115.275.35  
Subtract the result from Row 3  

 

   
   

2.25  .5075.20     

25.115.2 75.3   5   

93       1   5     




 

to get the resulting equations as 

















 5.075.20

5.8001.00

101520
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2

1

x

x

x

  =  

















 25.2

501.8

45

 

This is the end of the first step of forward elimination. 
Now for the second step of forward elimination, the absolute value of the second column 
elements below Row 1 is 

001.0 , 75.2  

          or 
0.001, 2.75 

So the largest absolute value is in Row 3.  So Row 2 is switched with Row 3 to give 
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5.8001.00

5.075.20

101520

  

















3

2

1

x

x

x

  =  


















501.8

25.2

45

 

Divide Row 2 by –2.75 and then multiply it by 0.001, that is, multiply Row 2 by 
00036363.075.2/001.0  . 

     00036363.025.25.075.20   gives Row 2 as 

   00081816.000018182.000099998.00   
Subtract the result from Row 3  

 

   
   

.500181848  50018182.8                      0   0     

00081816.00.00018182 .000999980   0   

501.8.58              .0010   0     


 

Rewriting within 5 significant digits with chopping 
   5001.85001.800  

to get the resulting equations as 


















5001.800

5.075.20

101520
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2

1

x

x

x

  =  


















5001.8

25.2

45

 

Back substitution 
5001.85001.8 3 x  

           
5001.8

5001.8
3 x  

                 =1 
Substituting the value of 3x  in Row 2 

25.25.075.2 32  xx  

75.2

5.025.2 2
2 




x
x  

  
75.2

15.025.2
   




  

  
75.2

5.025.2
   




  

75.2

75.2
     




  

1       
Substituting the value of 3x  and 2x  in Row 1 

45101520 321  xxx  

20

101545 32
1

xx
x


  

     
20

11011545 
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20

1030
 

20

101545
 







 

     
20

20
  

     1  
So the solution is  

 

















3

2

1

x

x

x

X  

      = 

















1

1

1

 

This, in fact, is the exact solution.  By coincidence only, in this case, the round-off error is fully 
removed. 
 

Can we use Naïve Gauss elimination methods to find the determinant of a square matrix? 
One of the more efficient ways to find the determinant of a square matrix is by taking advantage 
of the following two theorems on a determinant of matrices coupled with Naïve Gauss 
elimination. 
 

Theorem 1:  
Let ][A  be a nn  matrix.  Then, if ][B  is a nn  matrix that results from adding or subtracting 
a multiple of one row to another row, then )det()det( BA  (The same is true for column 
operations also). [A]’nın nxn şeklinde bir matris oldupunu kabul edelim. [B] matrisinin’de nxn 
şeklinde bir matris olduğunu kabul edelim ve bir satırının diğer satırı ile toplandığında veya 
çıkarıldığında det(A)=det(B) şeklinde bir sonuç veribilir.   
 

Theorem 2:  
Let ][A  be a nn  matrix that is upper triangular, lower triangular or diagonal, then 

nnii aaaaA  ......)det( 2211   

                  



n

i
iia

1

 

This implies that if we apply the forward elimination steps of the Naïve Gauss elimination 
method, the determinant of the matrix stays the same according to Theorem 1.  Then since at the 
end of the forward elimination steps, the resulting matrix is upper triangular, the determinant will 
be given by Theorem 2. [A]’nın nxn şeklinde üst üçgen, alt üçgen veya diyagonal bir matris 
olduğunu kabul edelim. Bu durumda  
det(A)=a11xa22xa33x…xann = aii 
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ifadesi yazılabilir. Bunun anlamı denklem sisteminin çözümü için basit gauss  eleme yöntemi 
kullanılıyorsa matrisin determinantının Teorem 1’e göre aynı kalacağını göstermektedir.   
 

Example 5 
Find the determinant of  


















112144

1864

1525

][A  

Solution 
Remember in Example 1, we conducted the steps of forward elimination of unknowns using the 
Naïve Gauss elimination method on ][A  to give 

 

















7.000

56.18.40

1525

B  

According to Theorem 2 
)det()det( BA   

           7.0)8.4(25   
           00.84  
 

What if I cannot find the determinant of the matrix using the Naïve Gauss elimination 
method, for example, if I get division by zero problems during the Naïve Gauss elimination 
method? 
Well, you can apply Gaussian elimination with partial pivoting.  However, the determinant of the 
resulting upper triangular matrix may differ by a sign.  The following theorem applies in addition 
to the previous two to find the determinant of a square matrix. 
 

Theorem 3:  
Let ][A  be a nn  matrix.  Then, if ][B  is a matrix that results from switching one row with 
another row, then )det()det( AB  . 
 

Example 6 
Find the determinant of  























515

6099.23

0710

][A  

Solution 
The end of the forward elimination steps of Gaussian elimination with partial pivoting, we would 
obtain 
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002.600

55.20

0710

][B  

  002.65.210det B  
            05.150  

Since rows were switched once during the forward elimination steps of Gaussian elimination 
with partial pivoting, 

  )det(det BA   
            05.150  
 

Example 7 
Prove  

 1det

1
)det( 

A
A  

Solution 

   
   
   1

1

1

1

det

1
det

1detdet

det det

][]][[

















A
A

AA

IAA

IAA

 

If ][A  is a nn  matrix and 0)det( A , what other statements are equivalent to it? 
1. ][A  is invertible. 

2. 1][ A  exists. 
3. ][][][ CXA   has a unique solution. 

4. ]0[][][ XA  solution is ]0[][


X . 

5. ][][][][][ 11 AAIAA   . 
 
 

Key Terms: 
Naïve Gauss Elimination  
Partial Pivoting  
Determinant 
 
 
4.6.1 Multiple-Choice Test Chapter 04.06 Gaussian Elimination 
 
1. The goal of forward elimination steps in the Naïve Gauss elimination method is to reduce 

the coefficient matrix to a (an) _____________ matrix. 
(E) diagonal 
(F) identity 
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(G) lower triangular 
(H) upper triangular 

 
2. Division by zero during forward elimination steps in Naïve Gaussian elimination of the 

set of equations     CXA  implies the coefficient matrix  A  
(A) is invertible     
(B) is nonsingular 
(C) may be singular or nonsingular 
(D) is singular 

 
3. Using a computer with four significant digits with chopping, the Naïve Gauss elimination 

solution to  

  
23.47123.7239.6

12.5823.550030.0

21

21




xx

xx
 

 is 
(A) ;66.261 x  051.12 x  

(B) ;769.81 x  051.12 x  

(C) ;800.81 x  000.12 x  

(D) ;771.81 x 052.12 x  
 
4. Using a computer with four significant digits with chopping, the Gaussian elimination 

with partial pivoting solution to 

  
23.47123.7239.6

12.5823.550030.0

21

21




xx

xx
 

 is 
(A) ;66.261 x  051.12 x  

(B) ;769.81 x  051.12 x  

(C) ;800.81 x  000.12 x  

(D) ;771.81 x  052.12 x  
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5. At the end of the forward elimination steps of the Naïve Gauss elimination method on the 

following equations 



















 















































0

007.0

0

10887.7

106057.3102857.400

15384.05.615384.05.6

104619.5102857.4104619.5102857.4

00102307.9102857.4 3

4

3

2

1

57

5757

57

c

c

c

c

 

 the resulting equations in matrix form are given by 










































































4

2

3

3

4

3

2

1

5

575

57

1090336.1

1019530.1

10887.7

10887.7

1062500.5000

579684.09140.2600

104619.5102857.4107688.30

00102307.9102857.4

c

c

c

c

 

 The determinant of the original coefficient matrix is 
(A) 0.00 
(B) 7102857.4   
(C) 1910486.5   
(D) 20104452  .  

 
6. The following data is given for the velocity of the rocket as a function of time.  To find 

the velocity at s 21t , you are asked to use a quadratic polynomial, cbtattv  2)( to 
approximate the velocity profile. 

t  )s(  0 14 15 20 30 35 
)(tv  )s/m(  0 227.04 362.78 517.35 602.97 901.67 

 The correct set of equations that will find a , b  and c  are 

(A) 


















































35517

78362

04227

120400

115225

114176

.

.

.

c

b

a

  

(B) 


















































97.602

35.517

78.362

130900

120400

115225

c

b

a

  

(C) 


















































35517

78362

0

120400

115225

100

.

.

c

b

a

  

(D) 


















































67.901

97.602

35.517

1351225

130900

120400

c

b

a

  

For a complete solution, refer to the links at the end of the book. 
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4.7 Chapter 04.07 LU Decomposition (LU ayrıştırması) 
 
After reading this chapter, you should be able to: 

1. identify when LU decomposition is numerically more efficient than Gaussian elimination, 
2. decompose a nonsingular matrix into LU, and 
3. show how LU decomposition is used to find the inverse of a matrix. 

 
I hear about LU decomposition used as a method to solve a set of simultaneous linear 
equations.  What is it?(LU ayrıştırmasınınçizgisel denklem sistemlerin aynı anda 
çözümünde kullanıldığı söylenmektedir. Bu ne demektir?) 
We already studied two numerical methods of finding the solution to simultaneous linear 
equations – Naïve Gauss elimination and Gaussian elimination with partial pivoting.  Then, why 
do we need to learn another method?  To appreciate why LU decomposition could be a better 
choice than the Gauss elimination techniques in some cases, let us discuss first what LU 
decomposition is about. (şimdiye kadar çizgisel denklem sistemlerinin çözümü için basit Gauss 
eleme ve kısmi pivotlu Gauss eleme yöntemlerini kullandık. Öyleyse başka yöntemlere neden 
gerek var dır?)  
For a nonsingular matrix  A  on which one can successfully conduct the Naïve Gauss 
elimination forward elimination steps, one can always write it as (singülerliği olmayan [A] 
matrisi için yalın Gauss eleme yöntemi denklemlerin çözümü için başarılı bir şekilde 
kullanılabilir.) 

    ULA    
where 

 L = Lower triangular matrix (alt üçgen matris) 

 U  = Upper triangular matrix (üst üçgen matris) 
Then if one is solving a set of equations 

][]][[ CXA  ,  
then 

     CXUL    as    ULA  ][   

Multiplying both sides by   1L , 

         CLXULL    11      

   XUI =    CL 1  as     ][1 ILL   

      CLXU 1  as    ][UUI   
Let 

     ZCL 1  
then 

    CZL         (1) 
and 

    ZXU         (2) 
So we can solve Equation (1) first for ][Z  by using forward substitution and then use Equation 

(2) to calculate the solution vector  X  by back substitution. 
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This is all exciting but LU decomposition looks more complicated than Gaussian 
elimination.  Do we use LU decomposition because it is computationally more efficient than 
Gaussian elimination to solve a set of n equations given by [A][X]=[C]? (Yukarıdakiler 
Gauss eleme yöntemine göre ilginç gelebilir ama daha karmaşık bir algortitmaya sahiptir. 
Gauss eleme yöntemine göre daha etkili olan LU ayrıştırma yöntemi ile [A][X]=[C] 
şeklindeki denklemler çözülebilir mi?) 
For a square matrix ][A  of nn   size, the computational time1 DECT |  to decompose the ][A  
matrix to ]][[ UL  form is given by 

DECT |  = 









3

20
4

3

8 2
3 n

n
n

T ,  

where  
 T = clock cycle time2.  
The computational time FSCT |  to solve by forward substitution     CZL   is given by 

FSCT |  =  nnT 44 2   

The computational time BSCT |  to solve by back substitution     ZXU   is given by 

BSCT |  =  nnT 124 2   

So, the total computational time to solve a set of equations by LU decomposition is 

LUCT | = DECT | + FSCT | + BSCT |  

           = 
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T +  nnT 44 2  +  nnT 124 2   

           = 
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Now let us look at the computational time taken by Gaussian elimination.  The computational 
time FECT |  for the forward elimination part, 

FECT | = 
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3 n

n
n

T ,  

and the computational time BSCT |  for the back substitution part is 

BSCT |  =  nnT 124 2   

So, the total computational time GECT |  to solve a set of equations by Gaussian Elimination is 

GECT | = FECT | + BSCT |  

                                                 
1 The time is calculated by first separately calculating the number of additions, subtractions, 
multiplications, and divisions in a procedure such as back substitution, etc.  We then assume 4 
clock cycles each for an add, subtract, or multiply operation, and 16 clock cycles for a divide 
operation as is the case for a typical AMD®-K7 chip. 
http://www.isi.edu/~draper/papers/mwscas07_kwon.pdf 
2 As an example, a 1.2 GHz CPU has a clock cycle of ns833333.0)102.1/(1 9   
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= 
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T +  nnT 124 2   

= 
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The computational time for Gaussian elimination and LU decomposition is identical. 
 
This has confused me further!  Why learn LU decomposition method when it takes the 
same computational time as Gaussian elimination, and that too when the two methods are 
closely related.  Please convince me that LU decomposition has its place in solving linear 
equations!  

We have the knowledge now to convince you that LU decomposition method has its 
place in the solution of simultaneous linear equations.  Let us look at an example where the LU 
decomposition method is computationally more efficient than Gaussian elimination.  Remember 
in trying to find the inverse of the matrix ][A  in Chapter 04.05, the problem reduces to solving 
n  sets of equations with the n  columns of the identity matrix as the RHS vector.  For 
calculations of each column of the inverse of the ][A  matrix, the coefficient matrix ][A  matrix in 

the set of equation     CXA   does not change.  So if we use the LU decomposition method, 

the     ULA   decomposition needs to be done only once, the forward substitution (Equation 1) 
n  times, and the back substitution (Equation 2) n  times. 

Therefore, the total computational time LUinverseCT |  required to find the inverse of a 

matrix using LU decomposition is  

LUinverseCT | = DECT |1 + FSCTn | + BSCTn |  

      = 
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                              = 
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In comparison, if Gaussian elimination method were used to find the inverse of a matrix, the 
forward elimination as well as the back substitution will have to be done n times.  The total 
computational time GEinverseCT |  required to find the inverse of a matrix by using Gaussian 

elimination then is  

GEinverseCT | = FECTn | + BSCTn |  

      = n 
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T + n  nnT 124 2   

                 = 
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Clearly for large n , GEinverseCT | >> LUinverseCT |  as GEinverseCT |  has the dominating terms of 4n  and 

LUinverseCT | has the dominating terms of 3n .  For large values of n , Gaussian elimination method 

would take more computational time (approximately 4/n  times – prove it) than the LU 
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decomposition method.  Typical values of the ratio of the computational time for different values 
of n  are given in Table 1. 
 
Table 1 Comparing computational times of finding inverse of a matrix using LU decomposition 
and Gaussian elimination. 

n  10 100 1000 10000 

GEinverseCT | / LUinverseCT |  3.28 25.83 250.8 2501 

 
Are you convinced now that LU decomposition has its place in solving systems of equations?  
We are now ready to answer other curious questions such as  
1)  How do I find LU matrices for a nonsingular matrix ][A ?  
2) How do I conduct forward and back substitution steps of Equations (1) and (2), respectively? 
 
How do I decompose a non-singular matrix ][A , that is, how do I find     U LA  ? 
(singüler olmayan bir [A] matrisini [L][U] matrislerine nasıl ayrıştırabilirim?) 
If forward elimination steps of the Naïve Gauss elimination methods can be applied on a 
nonsingular matrix, then  A  can be decomposed into LU as (İleri yönde basit Gauss eleme 
yöntemi singüler olmayan bir matrise uygulanabilir ve matris LU şekline ayrıştırılabilir) 
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222

11211
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21  

The elements of the  U  matrix are exactly the same as the coefficient matrix one obtains at the 
end of the forward elimination steps in Naïve Gauss elimination ([U] matrisi ileri yönde yalın 
Gauss eleme yönteminde elde edilen matrise benzemektedir.). 
The lower triangular matrix  L  has 1 in its diagonal entries.  The non-zero elements on the non-

diagonal elements in  L  are multipliers that made the corresponding entries zero in the upper 

triangular matrix  U  during forward elimination (alt tarafı üçgen [L] matrisinin köşegen 
elemanları 1’dir ve köşegen üzerindeki elemanları ise sıfırdır). 
Let us look at this using the same example as used in Naïve Gaussian elimination. 
 

Example 1 
Find the LU decomposition of the matrix 

 

















112144

1864

1525

A  
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Solution 
    ULA    
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2322

131211

3231

21
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1

01

001

u

uu

uuu


  

The  U  matrix is the same as found at the end of the forward elimination of Naïve Gauss 
elimination method, that is 

 

















7.000

56.18.40

1525

U  

To find 21  and 31 , find the multiplier that was used to make the 21a  and 31a  elements zero in 

the first step of forward elimination of the Naïve Gauss elimination method.  It was 

25

64
21   

      56.2  

25

144
31   

      76.5  
To find 32 , what multiplier was used to make 32a  element zero?  Remember 32a  element was 

made zero in the second step of forward elimination.  The  A  matrix at the beginning of the 
second step of forward elimination was 




















76.48.160

56.18.40

1525

 

So 

8.4

8.16
32 


  

       5.3  
Hence 
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001

L  

Confirm     AUL  . 
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UL  
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Example 2 
Use the LU decomposition method to solve the following simultaneous linear equations. 
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Solution 
Recall that 

    CXA       
and if 

    ULA    
then first solving 

    CZL   
and then 

    ZXU   

gives the solution vector  X . 
Now in the previous example, we showed 

    ULA   
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First solve 
    CZL   


















































2.279

2.177

8.106

15.376.5

0156.2

001

3

2

1

z

z

z

 

to give 
8.1061 z   

2.17756.2 21  zz  

2.2795.376.5 321  zzz  

Forward substitution starting from the first equation gives 
106.8 1 z  

12 56.22.177 z z   
            8.10656.22.177   
             208.96  
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213 5.376.52.279 zzz   

           208.965.38.10676.52.279   
     76.0  

Hence 
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z
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Z    

           


















76.0

208.96

8.106

 

This matrix is same as the right hand side obtained at the end of the forward elimination steps of 
Naïve Gauss elimination method.  Is this a coincidence? 
Now solve 

    ZXU   
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8.106525 321  aaa  

208.9656.18.4 32  aa  

76.07.0 3 a  

From the third equation 
76.07.0 3 a  

70

760
3 .

.
a   

     1.0857  
Substituting the value of 3a  in the second equation, 

208.9656.18.4 32  aa  

8.4

56.1208.96 3
2 




a
a  

  
4.8

0857.11.5696.208
    




  

  69119.      
Substituting the value of 2a  and 3a  in the first equation, 

8.106525 321  aaa  

25

58.106
 32

1

aa
a


  

  
25

0857.1691.1958.106
     


  

  29048.0       



250 
 

Hence the solution vector is 
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1

a
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a

 

How do I find the inverse of a square matrix using LU decomposition? 
A matrix  B  is the inverse of  A  if 

       ABIBA    .   
How can we use LU decomposition to find the inverse of the matrix?  Assume the first column 
of  B  (the inverse of  A ) is  

T
11211 ]......[ nbbb  

Then from the above definition of an inverse and the definition of matrix multiplication 
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Similarly the second column of  B  is given by 
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A  

Similarly, all columns of  B  can be found by solving n  different sets of equations with the 
column of the right hand side being the n  columns of the identity matrix. 
  

Example 3 
Use LU decomposition to find the inverse of  
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Solution 
Knowing that 

    ULA   
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1.564.80

1525

 

15.376.5

0156.2

001

 

We can solve for the first column of   1][  AB by solving for 
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First solve 
    CZL  ,  

that is 
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z
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z

 

to give 
11 z   

056.2 21  zz  

05.376.5 321  zzz  

Forward substitution starting from the first equation gives 
1 1 z  

12 5620 z. z   

      156.20   
     56.2  

213 5.376.50 zzz   

        56.25.3176.50   
     2.3  

 Hence 
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Now solve 
    ZXU   

that is 
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7.000
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31

21

11

b

b

b

 

1525 312111  bbb  

56.256.18.4 3121  bb  

2.37.0 31 b  

Backward substitution starting from the third equation gives 
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7.0

2.3
31 b  

      571.4  

8.4

56.156.2 31
21 




b
b  

      
8.4

)571.4(56.156.2




  

      9524.0  

25

51 3121
11

bb
b


  

      
25

571.4)9524.0(51 
  

      04762.0  
Hence the first column of the inverse of  A  is 
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Similarly by solving  
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and solving 


















































1

0

0

 

112144

1864

1525

33

23

13

b

b

b

 gives 


































429.1

4643.0

03571.0

33

23

13

b

b

b

 

Hence 

 






















429.1000.5571.4

4643.0417.19524.0

03571.008333.004762.0
1A  

Can you confirm the following for the above example?   

        AAIAA 11    
 
 

Key Terms: 
LU decomposition 
Inverse   
 
4.7.1 Multiple-Choice Test Chapter 04.07 LU Decomposition Method 
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1.The   UL  decomposition method is computationally more efficient than Naïve Gauss 
elimination for solving 
(A) a single set of simultaneous linear equations. 
(B)  multiple sets of simultaneous linear equations with different coefficient matrices and the 
same right hand side vectors. 
(C) multiple sets of simultaneous linear equations with the same coefficient matrix and different 
right hand side vectors. 
(D) less than ten simultaneous linear equations. 
 
2.The lower triangular matrix  L  in the   UL  decomposition of the matrix given below 
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3.The upper triangular matrix  U  in the   UL  decomposition of the matrix given below 
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is 
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 240.400

4000.210

16000.02000.01

 

 
4.For a given 20002000 matrix  A , assume that it takes about 15 seconds to find the inverse of 

 A  by the use of the   UL  decomposition method, that is, finding the   UL  once, and then 
doing forward substitution and back substitution 2000 times using the 2000 columns of the 
identity matrix as the right hand side vector.  The approximate time, in seconds, that it will take 
to find the inverse if found by repeated use of the Naive Gauss elimination method, that is, doing 
forward elimination and back substitution 2000 times by using the 2000 columns of the identity 
matrix as the right hand side vector is most nearly 
(A) 300         (B) 1500      (C) 7500     (D) 30000 
 
5.The algorithm for solving a set of n  equations     CXA  , where     ULA   involves 

solving     CZL   by forward substitution.  The algorithm to solve     CZL   is given by 

       (A)  1111 / lcz                                
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                for i  from 2 to n  do 
                      sum = 0 
                          for j  from 1 to i  do 

                          sum = sum + jij zl *  

                          end do 
                          iiii lsumcz /)(   

                          end do 
       (B)  1111 / lcz                               
                for i  from 2 to n  do 
                       sum = 0 
                          for j  from 1 to )1( i  do 

                          sum = sum + jij zl *  

                          end do 
                      iiii lsumcz /)(   

                          end do 
       (C)  1111 / lcz                                
               for i  from 2 to n  do 
                          for j  from 1 to )1( i do 

                          sum = sum + jij zl *  

                          end do 
                         iiii lsumcz /)(   

                          end do 
       (D)  for i  from 2 to n  do 
                         sum = 0 
                          for j  from 1 to )1( i  do 

                          sum = sum + jij zl *  

                          end do 
                         iiii lsumcz /)(   

                          end do 
 
6.To solve boundary value problems, a numerical method based on finite difference method is 
used.  This results in simultaneous linear equations with tridiagonal coefficient matrices.  These 
are solved using a specialized   UL  decomposition method.   
Choose the set of equations that approximately solves the boundary value problem  

  2
2

2

5.06 xx
dx

yd
 ,   00 y ,   012 y , 120  x  

 The second derivative in the above equation is approximated by the second order accurate 
central divided difference approximation as learned in the differentiation module (Chapter 
02.02).  A step size of 4h  is used, and hence the value of y can be found approximately at 
equidistantly placed 4 nodes between x=0 and x=12. 
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(B) 




























































0

0.16

0.16

0

1000

0625.0125.00625.00

00625.0125.00625.0

0001

4

3

2

1

y

y

y

y

 

(C) 
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(D) 
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For a complete solution, refer to the links at the end of the book. 
 
 
4.8 Chapter 04.07 Gauss-Seidel Method 

 
PRE-REQUISITES 

 
Matrix Algebra Basics: Matrix multiplication, Diagonally dominant matrices (Primer for Matrix 
Algebra). 

 
OBJECTIVES 

1. solve a set of equations using the Gauss-Seidel method, 
2. recognize the advantages and pitfalls of the Gauss-Seidel method, and 

determine under what conditions the Gauss-Seidel method always converges. 
 
After reading this chapter, you should be able to: 

1. solve a set of equations using the Gauss-Seidel method, 
2. recognize the advantages and pitfalls of the Gauss-Seidel method, and 
3. determine under what conditions the Gauss-Seidel method always converges. 

  0x    4x    8x  

1i  2i  3i  4i  

  12x  
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Why do we need another method to solve a set of simultaneous linear equations? (çizgisel 
eşitlikleri çözmek için başka yönteme ihtiyacımız var mıdır?) 
In certain cases, such as when a system of equations is large, iterative methods of solving 
equations are more advantageous.  Elimination methods, such as Gaussian elimination, are prone 
to large round-off errors for a large set of equations.  Iterative methods, such as the Gauss-Seidel 
method, give the user control of the round-off error.  Also, if the physics of the problem are well 
known, initial guesses needed in iterative methods can be made more judiciously leading to 
faster convergence (bazı durumlarda örneğin denklem sistemi çok büyükse yineleme yöntemleri 
diğer yöntemlere göre daha avantajlıdır. Eleme yöntemlerinden Gauss eleme yöntemi yuvarlama 
hatalarını eklemelerle artırır. Yineleme yöntemlerinden Gauss-Seidel yöntemi yuvarlama 
hatalarının kontrolünde çok etkindir. Fizik problemi anlaşılırsa ve yineleme yöntemi 
kullanılıyorsa başlangıç için epey sayıda tahmini değer hazırlanarak sonuca daha kolayca 
ulaşılabilir). 
What is the algorithm for the Gauss-Seidel method?  Given a general set of n  equations and n  
unknowns, we have (Gauss-Seidel yönteminin algoritması nasıldır? N bilinmeyenli n tane 
denklemden oluşan bir sistem aşağıdaki gibidir:) 

11313212111 ... cxaxaxaxa nn   

22323222121 ... cxaxaxaxa nn   

.                 . 

.                 . 

.                 . 

nnnnnnn cxaxaxaxa  ...332211  

If the diagonal elements are non-zero, each equation is rewritten for the corresponding unknown, 
that is, the first equation is rewritten with 1x  on the left hand side, the second equation is 

rewritten with 2x  on the left hand side and so on as follows (diyagonal elementleri sıfırdan farklı 
ise eşitlikler bilinmeyenlere göre yeniden düzenlenir. yani x1 eşitliğin sol tarafında yalnız 
kalacak şekilde ve diğer terimlerde eşitliğin sağ tarafında kalacak şekilde yazılır. x2 eşitliğin 
solunda ve diğer terimler eşitliğin sağında olacak şekilde yeniden yazılır. Diğer bilinmeyenlerde 
benzer şekilde yazılarak denklem sisteminin bilinmeyenleri aşağıdaki çözülür.) 
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These equations can be rewritten in a summation form as 
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Hence for any row i , 
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Now to find ix ’s, one assumes an initial guess for the ix ’s and then uses the rewritten equations 

to calculate the new estimates.  Remember, one always uses the most recent estimates to 
calculate the next estimates, ix .  At the end of each iteration, one calculates the absolute relative 

approximate error for each ix  as (artık xi’leri belirleyebilmek için xi’ler için başlangıç tahmin 

değerlerine ihtiyaç vardır ve bu değerlere göre yeni hesaplamalar yapılır. Her yineleme sonunda 
xi’ler için mutlak bağıl yaklaşık hata hesabı yapılır:) 

100
new

oldnew





i

ii

ia
x

xx
 

where new
ix is the recently obtained value of ix , and old

ix  is the previous value of ix . 

When the absolute relative approximate error for each xi is less than the pre-specified tolerance, 
the iterations are stopped. 
 

Example 1 
The upward velocity of a rocket is given at three different times in the following table 

 
                            Table 1  Velocity vs. time data. 

Time, t  (s) Velocity, v  (m/s) 
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5 106.8 
8 177.2 
12 279.2 

 
The velocity data is approximated by a polynomial as 

  125           , 32
2

1  tatatatv  

Find the values of 321  and ,, aaa  using the Gauss-Seidel method.  Assume an initial guess of the 

solution as  


































5

2

1

3

2

1

a

a

a

 

and conduct two iterations. 

Solution 
The polynomial is going through three data points      332211 , and ,, ,, vtvtvt  where from the 

above table 
8.106    ,5 11  vt  

2.177    ,8 22  vt  

2.279  ,12 33  vt  

Requiring that    32
2

1 atatatv  passes through the three data points gives 

  312
2
1111 atatavtv   

  322
2
2122 atatavtv   

  332
2
3133 atatavtv   

Substituting the data      332211 , and ,, ,, vtvtvt  gives 

    8.10655 32
2

1  aaa  

    2.17788 32
2

1  aaa  

    2.2791212 32
2

1  aaa  

or 
8.106525 321  aaa    

2.177864 321  aaa  

2.27912144 321  aaa  

The coefficients 321  and , , aaa  for the above expression are given by 


















































2.279

2.177

8.106

 

112144

1864

1525

3

2

1

a

a

a

 

Rewriting the equations gives 

25

58.106 32
1

aa
a
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8

642.177 31
2

aa
a


  

1

121442.279 21
3

aa
a


  

Iteration #1 
Given the initial guess of the solution vector as 
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1

a

a

a

 

we get 

25

)5()2(58.106
1


a  

     6720.3  
   
8

56720.3642.177
2


a  

     8150.7  
   

1

8510.7126720.31442.279
3


a  

     36.155  
The absolute relative approximate error for each ix  then is 

100
6720.3

16720.3
1




a  

        %76.72  

100
8510.7

28510.7
2





a  

        %47.125  

100
36.155

536.155
3





a  

        %22.103  
At the end of the first iteration, the estimate of the solution vector is 

  




































36.155

8510.7

6720.3

3

2

1

a

a

a

 

and the maximum absolute relative approximate error is 125.47%. 
 

Iteration #2 
The estimate of the solution vector at the end of Iteration #1 is 
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36.155

8510.7

6720.3

3

2

1

a

a

a

 

Now we get 
 

25

)36.155(8510.758.106
1


a  

     056.12  
 

8

)36.155(056.12642.177
2


a  

     882.54  
   

1

882.5412056.121442.279
3


a  

     = 34.798  
The absolute relative approximate error for each ix  then is 

100
056.12

6720.3056.12
1




a  

        %543.69  
 

100
882.54

8510.7882.54
2





a  

        %695.85  
 

100
34.798

36.15534.798
3





a  

        %540.80  
At the end of the second iteration the estimate of the solution vector is 




































54.798

882.54

056.12

3

2

1

a

a

a

 

and the maximum absolute relative approximate error is 85.695%. 
Conducting more iterations gives the following values for the solution vector and the 
corresponding absolute relative approximate errors. 
 
 
 

Iteration 1a  %
1a  2a  %

2a  3a  %
3a  

1 
2 
3 
4 
5 
6 

3.6720 
12.056 
47.182 
193.33 
800.53 
3322.6 

72.767 
69.543 
74.447 
75.595 
75.850 
75.906 

–7.8510 
–54.882 
–255.51 
–1093.4 
–4577.2 
–19049 

125.47 
85.695 
78.521 
76.632 
76.112 
75.972 

–155.36 
–798.34 
–3448.9 
–14440 
–60072 
–249580 

103.22 
80.540 
76.852 
76.116 
75.963 
75.931 
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 As seen in the above table, the solution estimates are not converging to the true solution of 
29048.01 a  

690.192 a  

0857.13 a  

The above system of equations does not seem to converge.  Why? (yukarıdaki denklem 
sistemi bir sonuca yakınsamadı. Neden?) 
Well, a pitfall of most iterative methods is that they may or may not converge.  However, the 
solution to a certain classes of systems of simultaneous equations does always converge using 
the Gauss-Seidel method.  This class of system of equations is where the coefficient matrix ][A  
in ][]][[ CXA   is diagonally dominant, that is (yineleme yöntemlerinin birçoğunda olduğu gibi 
bir tuzaktan dolayı bir sonuca ulaşmayabilir. Bununla birlikte belli sınıflardaki eşitlikler 
sistemlerinin Gauss-Seidel öteleme yöntemi ile bir sonuca yakınsanır/yaklaşılır. [A][X]=[C] 
şeklinde bu eşitlikler sistemlerinin [A] katsayılar matrisinin diyagonalleri diğer terimlere göre 
baskındır/dominanttır:) 






n

ij
j

ijii aa
1

 for all i  






n

ij
j

ijii aa
1

 for at least one i  

If a system of equations has a coefficient matrix that is not diagonally dominant, it may or may 
not converge.  Fortunately, many physical systems that result in simultaneous linear equations 
have a diagonally dominant coefficient matrix, which then assures convergence for iterative 
methods such as the Gauss-Seidel method of solving simultaneous linear equations (diyagonal 
elemanları diğer elemanlarına göre baskın olmayan katsayılar matrisinin kullanılmasıyla yapılan 
denklem sistemlerinin çözümleri bizi bir sonuca ulaştırabilir veya ulaştırmayabilir. Neyse ki 
birçok fiziksel sistemin katsayılar matrisi dominanttır ve Gauss-Seidel yöntemiyle çizgisel 
denklem sistemlerinin aynı anda çözümünde bir sonuca ulaşılır.). 
 

Example 2 
Find the solution to the following system of equations using the Gauss-Seidel method. 

15312 321   xx  x       

2835 321  x  x  x    

761373 321   x  x  x  

Use 


































1

0

1

3

2

1

x

x

x

 

as the initial guess and conduct two iterations. 

Solution 
The coefficient matrix 
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1373

351

5312

A  

is diagonally dominant as 
8531212 131211  aaa  

43155 232122  aaa  

10731313 323133  aaa  

and the inequality is strictly greater than for at least one row.  Hence, the solution should 
converge using the Gauss-Seidel method. 
Rewriting the equations, we get 

12

531 32
1

xx
x


  

5

328 31
2

xx
x


  

13

7376 21
3

xx
x


  

Assuming an initial guess of 


































1

0

1

3

2

1

x

x

x

 

Iteration #1 
   
12

15031
1


x  

     50000.0  
   

5

1350000.028
2


x  

     9000.4  
   

13

9000.4750000.0376
3


x  

     0923.3  
The absolute relative approximate error at the end of the first iteration is 

100
50000.0

150000.0
1




a  

        %00.100  

100
9000.4

09000.4
2




a  

        %00.100  

100
0923.3

10923.3
3




a  
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        %662.67  
The maximum absolute relative approximate error is 100.00% 

Iteration #2 
   

12

0923.359000.431
1


x  

     14679.0  
   

5

0923.3314679.028
2


x  

     7153.3  
   

13

7153.3714679.0376
3


x  

     8118.3  
At the end of second iteration, the absolute relative approximate error is 

100
14679.0

50000.014679.0
1




a  

        %61.240  

100
7153.3

9000.47153.3
2




a  

        %889.31  

100
8118.3

0923.38118.3
3




a  

        %874.18  
The maximum absolute relative approximate error is 240.61%.  This is greater than the value of 
100.00% we obtained in the first iteration.  Is the solution diverging?  No, as you conduct more 
iterations, the solution converges as follows. 
 

Iteration 1x  %
1a  2x  %

2a  3x  %
3a  

1 
2 
3 
4 
5 
6 

0.50000 
0.14679 
0.74275 
0.94675 
0.99177 
0.99919 

100.00 
240.61 
80.236 
21.546 
4.5391 
0.74307 

4.9000 
3.7153 
3.1644 
3.0281 
3.0034 
3.0001 

100.00 
31.889 
17.408 
4.4996 
0.82499 
0.10856 

3.0923 
3.8118 
3.9708 
3.9971 
4.0001 
4.0001 

67.662 
18.874 
4.0064 
0.65772 
0.074383 
0.00101 

 
This is close to the exact solution vector of  


































4

3

1

3

2

1

x

x

x

 

 

Example 3 
Given the system of equations 



264 
 

761373 321   x  x  x   

2835 321   x  x x   

15312 321   x - x x     

find the solution using the Gauss-Seidel method.  Use  


































1

0

1

3

2

1

x

x

x

 

as the initial guess. 

Solution 
Rewriting the equations, we get 

3

13776 32
1

xx
x


  

5

328 31
2

xx
x


  

5

3121 21
3 




xx
x  

Assuming an initial guess of 


































1

0

1

3

2

1

x

x

x

 

the next six iterative values are given in the table below. 
 

Iteration 1x  %
1a  2x  %

2a  3x  %
3a  

1 
2 
3 
4 
5 
6 

21.000 
–196.15 
1995.0 
–20149 
2.0364105 
–2.0579106 

95.238 
110.71 
109.83 
109.90 
109.89 
109.89 

0.80000 
14.421 
–116.02 
1204.6 
–12140 
1.2272105 

100.00 
94.453 
112.43 
109.63 
109.92 
109.89 

50.680 
–462.30 
4718.1 
–47636 
4.8144105 
–4.8653106 

98.027 
110.96 
109.80 
109.90 
109.89 
109.89 

 
You can see that this solution is not converging and the coefficient matrix is not diagonally 
dominant.  The coefficient matrix 

 



















5312

351

1373

A  

is not diagonally dominant as 
2013733 131211  aaa  

Hence, the Gauss-Seidel method may or may not converge. 



265 
 

However, it is the same set of equations as the previous example and that converged.  The only 
difference is that we exchanged first and the third equation with each other and that made the 
coefficient matrix not diagonally dominant. 
Therefore, it is possible that a system of equations can be made diagonally dominant if one 
exchanges the equations with each other.  However, it is not possible for all cases.  For example, 
the following set of equations 

3321  xxx  

9432 321  xxx  

97 321  xxx  

cannot be rewritten to make the coefficient matrix diagonally dominant. 
 
 
 

Example 8  (Chemical Engineering) 
A liquid-liquid extraction process conducted in the Electrochemical Materials Laboratory 
involved the extraction of nickel from the aqueous phase into an organic phase. A typical set of 
experimental data from the laboratory is given below (Elektrokimyasal Malzemeler 
Laboratuvarı’nda sıvı-sıvı karışımındaki nikel organik fazı ile nikel su fazı ayrıştırma işlemi 
yapılmaktadır. Deneyle ilgili olarak Laboratuvardan aşağıdaki veri seti verilmektedir). 

Ni aqueous phase,  lga  2 2.5 3 

Ni organic phase,  lgg  8.57 10 12 

Assuming g  is the amount of Ni in the organic phase and a  is the amount of Ni in the aqueous 
phase, the quadratic interpolant that estimates g  is given by (g’nin sıvı organik fazdaki nikelin 
ve a’nın da sıvı su fazındaki nikel değerlerini göstersin. Bu iki değer arasındaki ilişkinin g(a) 
şeklinde ikinci dereceden bir polinom olarak aşağıdaki gibi verildiğini kabul edelim)    

32,32
2

1  axaxaxg  

The solution for the unknowns 1x , 2x , and 3x  is given by 


















































12

10

57.8

 

139

15.225.6

124

3

2

1

x

x

x

 
Find the values of 1x , 2x , and 3x  using the Gauss-Seidel method.   Estimate the amount of 

nickel in the organic phase when 2.3 g/l is in the aqueous phase using quadratic interpolation. 
Use 

            

































1

1

1

3

2

1

x

x

x

 
as the initial guess and conduct two iterations. 
 

Solution 
Rewriting the equations gives 
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 4

257.8 32
1

xx
x




 

 5.2

25.610 31
2

xx
x




 

 1

3912 21
3

xx
x




 

Iteration #1 
Given the initial guess of the solution vector as 

 

































1

1

1

3

2

1

x

x

x

 
we get 

 4

11257.8
1


x

 
               3925.1  

 5.2

13925.125.610
2


x

 
         11875.0  

 1

11875.033925.1912
3


x

  
                 88875.0  
The absolute relative approximate error for each ix then is 

 100
3925.1

13925.1
1




a  

 %187.28  

 100
11875.0

111875.0
2




a  

                    %11.742  

 100
88875.0

188875.0
3





a  

        %52.212  
At the end of the first iteration, the estimate of the solution vector is 

 



































88875.0

11875.0

3925.1

3

2

1

x

x

x

 
and the maximum absolute relative approximate error is %11.742 . 

Iteration #2 
The estimate of the solution vector at the end of Iteration #1 is 
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88875.0

11875.0

3925.1

3

2

1

x

x

x

 
Now we get 

 4

)88875.0(11875.0257.8
1


x

 
         3053.2  

 
 

5.2

88875.03053.225.610
2


x  

         4078.1  

 
 

1

4078.133053.2912
3


x   

         5245.4  

The absolute relative approximate error for each ix  then is 

 100
3053.2

3925.13053.2
1




a  

         %596.39  

 100
4078.1

11875.04078.1
2





a  

         %44.108  

 100
5245.4

)88875.0(5245.4
3





a  

        %357.80  
At the end of the second iteration, the estimate of the solution vector is 

 




































5245.4

4078.1

3053.2

3

2

1

x

x

x

 

and the maximum absolute relative approximate error is %44.108 . 
Conducting more iterations gives the following values for the solution vector and the 
corresponding absolute relative approximate errors. 
 

Iteration 
1x  %

1a  2x  %
2a  3x  %

3a  
1 
2 
3 
4 
5 
6 

1.3925 
2.3053 
3.9775 
7.0584 
12.752 
23.291 

28.1867 
39.5960 
42.041 
43.649 
44.649 
45.249 

0.11875 
–1.4078 
–4.1340 
–9.0877 
–18.175 
–34.930 

742.1053 
108.4353 
65.946 
54.510 
49.999 
47.967 

–0.88875 
–4.5245 
–11.396 
–24.262 
–48.243 
–92.827 

212.52 
80.357 
60.296 
53.032 
49.708 
48.030 

 
After six iterations, the absolute relative approximate errors are not decreasing much. In fact, 
conducting more iterations reveals that the absolute relative approximate error converges to a 
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value of %070.46  for all three values with the solution vector diverging from the exact solution 
drastically. 
 

Iteration 1x  %
1a  2x  %

2a  3x  %
3a  

32  8101428.2   0703.46  8103920.3   0703.46  8101095.9   0703.46  
 
The exact solution vector is 

 


































55.8

27.2

14.1

3

2

1

x

x

x

 

To correct this, the coefficient matrix needs to be more diagonally dominant. To achieve a more 
diagonally dominant coefficient matrix, rearrange the system of equations by exchanging 
equations one and three. 


















































57.8

10

12

 

124

15.225.6

139

3

2

1

x

x

x

 

Iteration #1 
Given the initial guess of the solution vector as 

 

































1

1

1

3

2

1

x

x

x

 
we get 

 9

11312
1


x

 
        88889.0  

 
5.2

188889.025.610
2


x  

         3778.1  

 
1

3778.1288889.0457.8
3


x   

         2589.2  
The absolute relative approximate error for each ix  then is 

 100
88889.0

188889.0
1




a  

 %5.12  

 100
3778.1

13778.1
2




a  

                   %419.27  
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 100
2589.2

12589.2
3




a  

  %730.55  
At the end of the first iteration, the estimate of the solution vector is 

 


































2589.2

3778.1

88889.0

3

2

1

x

x

x

 

and the maximum absolute relative approximate error is %730.55 . 

Iteration #2 
The estimate of the solution vector at the end of Iteration #1 is 

 


































2589.2

3778.1

88889.0

3

2

1

x

x

x

 

Now we get 

 9

2589.213778.1312
1


x

 
           62309.0  

 
5.2

2589.2162309.025.610
2


x  

         5387.1  

 
1

5387.1262309.0457.8
3


x   

         0002.3  
The absolute relative approximate error for each ix  then is 

 100
62309.0

88889.062309.0
1




a  

         %659.42  

 100
5387.1

3778.15387.1
2




a  

        %460.10  

 100
0002.3

2589.20002.3
3




a  

        %709.24  
At the end of the second iteration, the estimate of the solution is 

 


































0002.3

5387.1

62309.0

3

2

1

x

x

x

 

and the maximum absolute relative approximate error is %659.42 . 
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Conducting more iterations gives the following values for the solution vector and the 
corresponding absolute relative approximate errors. 
 

Iteration 1x  %
1a  2x  %

2a  3x  %
3a  

1 
2 
3 
4 
5 
6 

0.88889 
0.62309 
0.48707 
0.42178 
0.39494 
0.38890 

12.5 
42.659 
27.926 
15.479 
6.7960 
1.5521 

1.3778 
1.5387 
1.5822 
1.5627 
1.5096 
1.4393 

27.419 
10.456 
2.7506 
1.2537 
3.5131 
4.8828 

2.2589 
3.0002 
3.4572 
3.7576 
3.9710 
4.1357 

55.730 
24.709 
13.220 
7.9928 
5.3747 
3.9826 

 
After six iterations, the absolute relative approximate errors seem to be decreasing. Conducting 
more iterations allows the absolute relative approximate error decrease to an acceptable level. 
 

Iteration 1x  %
1a  2x  %

2a  3x  %
3a  

199 
200 

1.1335 
1.1337 

0.014412 
0.014056 

–2.2389 
–2.2397 

0.034871 
0.034005 

8.5139 
8.5148 

0.010666 
0.010403 

 
This is close to the exact solution vector of 


































55.8

27.2

14.1

3

2

1

x

x

x

 

The polynomial that passes through the three data points is then 

      32
2

1 xaxaxag   

               5148.82397.21337.1      2  aa  
where g  is the amount of nickel in the organic phase and a  is the amount of nickel in the 
aqueous phase. 
 
When l3.2 g  is in the aqueous phase, using quadratic interpolation, the estimated amount of 
nickel in the organic phase is 
 

        5148.83.22397.23.21337.13.2 2 g  

                       lg3608.9  
 

Example 9 (Civil Engineering) 
To find the maximum stresses in a compound cylinder, the following four simultaneous linear 
equations need to be solved.  



















 















































0

007.0

0

10887.7

106057.3102857.400

15384.05.615384.05.6

104619.5102857.4104619.5102857.4

00102307.9102857.4 3

4

3

2

1

57

5757

57

c

c

c

c

 



271 
 

In the compound cylinder, the inner cylinder has an internal radius of "5a , and an outer radius 
"5.6c , while the outer cylinder has an internal radius of "5.6c  and an outer radius of 

"8b . Given 61030E psi, 3.0 , and that the hoop stress in the outer cylinder is given by  

  













 





2432

1
1

1 r
cc

E 


 ,  

find the stress on the inside radius of the outer cylinder. 
Find the values of 1c , 2c , 3c  and 4c  using the Gauss-Seidel Method. Use 

            






































03.0

0002.0

001.0

005.0

4

3

2

1

c

c

c

c

 
as the initial guess and conduct two iterations. 

Solution 
Rewriting the equations gives 

 
 

7
432

53

1 1028574

001023079108877





.

ccc..
c  

 
 

5
4

5
3

7
1

7

2 1046195

1046195102857410285740





.

c.c.c.
c  

 
   

56

153840153840560070 421
3 .

c.c.c..
c


  

            
5

3
7

21
4 1060573

1028574000





.

c.cc
c  

Iteration #1 
Given the initial guess of the solution vector as 

 






































03.0

0002.0

001.0

005.0

4

3

2

1

c

c

c

c

 
we get 

 
 

7

53

1 1028574

00101023079108877





.

...
c  

 4106249.1   

   
5

5747

2 1046195

0301046195000201028574106249110285740







.

......
c

3105569.1   

 
     

56

03015384010556911538401062491560070 34

3 .

.......
c






 

 4104125.2   
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5

47

4 1060573

104125210285740







.

..
c  

 2108675.2   
 
The absolute relative approximate error for each ic  then is 

 
 

100
106249.1

005.0106249.1
4

4

1





 



a  

 %1.2977  

 100
105569.1

001.0105569.1
3

3

2





 



a  

               %770.35  

 100
104125.2

002.0104125.2
4

4

3





 



a  

 %098.17  

 100
108675.2

03.0108675.2
2

2

4





 



a  

           %6223.4  
At the end of the first iteration, the estimate of the solution vector is 

 




















































2

4

3

4

4

3

2

1

108675.2

104125.2

105569.1

106249.1

c

c

c

c

 
and the maximum absolute relative approximate error is %1.2977 . 

Iteration #2 
The estimate of the solution vector at the end of Iteration #1 is 

 




















































2

4

3

4

4

3

2

1

108675.2

104125.2

105569.1

106249.1

c

c

c

c

 
Now we get 

 
 

7

353

1 1028574

10556911023079108877







.

...
c  

     4105050.1   

   

5

25

4747

2 1046195

10867521046195

10412521028574105050110285740























.

..

....

c           

 
3100639.2   
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56

1086752153840

10063921538401050501560070
2

34

3 .

..

.....

c




















   

 
4109892.1   

            
5

47

4 106057.3

109892.1102857.40







c
 

  
2103643.2   

The absolute relative approximate error for each ic  then is 

 
 

100
105050.1

106249.1105050.1
4

44

1





 



a  

           %9702.7  

 100
100639.2

105569.1100639.2
3

33

2





 



a  

                %44.175  

 100
109892.1

104125.2109892.1
4

44

3





 



a  

 %281.21  

 100
103643.2

108675.2103643.2
2

22

4





 



a  

         %281.21  
At the end of the second iteration, the estimate of the solution vector is 

 




















































2

4

3

4

4

3

2

1

103643.2

109892.1

100639.2

105050.1

c

c

c

c

 
and the maximum absolute relative approximate error is %44.175 . 
At the end of the second iteration the stress on the inside radius of the outer cylinder is calculated 
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1
1

1 r
cc

E 


  

                  
 

 
  


















 





 
2

24
2

6

5.6

3.01
103643.23.01109892.1

3.01

1030
 

                  psi21439   
Conducting more iterations gives the following values for the solution vector and the 
corresponding absolute relative approximate errors. 

Iteration 1c  %
1a  2c  %

2a  

1 
2  

4106249.1   
4105050.1   

2977.1 
7.9702 

3105569.1   
3100639.2   

35.770 
175.44 



274 
 

3  
4  
5  
6  

4102848.2   
4109711.3   
4100755.8   
3106874.1   

34.132 
42.464 
50.825 
52.142 

3108931.9   
2108949.2   
2109799.6   
1107015.1   

79.138 
65.826 
58.524 
58.978 

 

Iteration 3c  %
3a  4c  %

4a  

1 
2  
3  
4  
5  
6  

4104125.2   
4109892.1   
5104716.5   

4105927.1   
4103454.9   
3100085.2   

17.098 
21.281 
263.55 
134.35 
82.957 
53.472 

2108675.2   
2103643.2   
3105035.6   
2108931.1   
1101108.1   
1103873.2   

4.6223 
21.281 
263.55 
134.35 
82.957 
53.472 

After six iterations, the absolute relative approximate errors are not decreasing. In fact, 
conducting more iterations reveals that the absolute relative approximate error does not approach 
zero or converge to any other number. 
 
 

Gauss-Seidel Method – More Examples Computer Engineering 

Example 1 
To infer the surface shape of an object from images taken of a surface from three different 
directions, one needs to solve the following set of equations. 






















































239

248

247

9428.02357.02357.0

9701.02425.00

9701.002425.0

3

2

1

x

x

x

 

The right hand side values are the light intensities from the middle of the images, while the 
coefficient matrix is dependent on the light source directions with respect to the camera.  The 
unknowns are the incident intensities that will determine the shape of the object. 
Find the values of 1x , 2x , and 3x  using the Gauss-Seidel method. Use 

             

































10

10

10

3

2

1

x

x

x

  
as the initial guess and conduct two iterations. 
 

Solution 
Rewriting the equations gives 

 
 

2425.0

9701.00247 32
1

xx
x


  

 
 

2425.0

9701.00248 31
2

xx
x
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9428.0

2357.02357.0239 21
3 




xx
x        

Iteration #1 
Given the initial guess of the solution vector as 

 


































10

10

10

3

2

1

x

x

x

 

we get 

 
 

0.2425

100.9701100247
1


x  

              6.1058  

 
 

2425.0

109701.06.10580248
2


x  

    7.1062  

 
   

9428.0

7.10622357.06.10582357.0239
3 


x  

     81.783  

The absolute relative approximate error for each ix  then is 

 100
6.1058

106.1058
1




a  

 %055.99  

 100
7.1062

107.1062
2




a  

                    %059.99  

 100
81.783

1081.783
3





a  

        %28.101  
At the end of the first iteration, the estimate of the solution vector is 

 




































81.783

7.1062

6.1058

3

2

1

x

x

x

 

and the maximum absolute relative approximate error is %28.101 . 

Iteration #2 
The estimate of the solution vector at the end of Iteration #1 is 

 




































81.783

7.1062

6.1058

3

2

1

x

x

x

 

Now we get 
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2425.0

8116.7839701.0685.10620247
1


x  

      0.2117  

 
     

2425.0

81.7839701.00.21170248
2


x  

                9.2112  
       

9428.0

9.21122357.00.21172357.0239
3 


x  

                98.803  

 The absolute relative approximate error for each ix  then is 

 100
0.2117

6.1058)0.2117(
1





a  

 %00.150  

 100
9.2112

7.1062)9.2112(
2





a  

                    %30.150  

 100
98.803

)81.783(98.803
3




a  

                   %49.197  
At the end of the second iteration, the estimate of the solution vector is 

 




































98.803

9.2112

0.2117

3

2

1

x

x

x

 

and the maximum absolute relative approximate error is %49.197 . 
Conducting more iterations gives the following values for the solution vector and the 
corresponding absolute relative approximate errors. 
 

Iteration 
1x  %

1a  2x  %
2a  3x  %

3a  

1 
2 
3 
4 
5 
6 

1058.6 
–2117.0 
4234.8 
–8470.1 
16942 
–33888 

99.055 
150.00 
149.99 
150.00 
149.99 
150.00 

1062.7 
–2112.9 
4238.9 
–8466.0 
16946 
–33884 

99.059 
150.295 
149.85 
150.07 
149.96 
150.01 

–783.81 
803.98 
–2371.9 
3980.5 
–8725.7 
16689 

101.28 
197.49 
133.90 
159.59 
145.62 
152.28 

 
After six iterations, the absolute relative approximate errors are not decreasing. In fact, 
conducting more iterations reveals that the absolute relative approximate error does not approach 
zero but approaches %99.149 . 
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Gauss-Seidel Method – More Examples Electrical Engineering 

Example 1 
Three-phase loads are common in AC systems. When the system is balanced the analysis can be 
simplified to a single equivalent circuit model. However, when it is unbalanced the only practical 
solution involves the solution of simultaneous linear equations.  In one model the following 
equations need to be solved (üç-fazlı elektrik ile bir AC sistemi yüklenmektedir. Sistem dengeye 
geldiğinde bir eşdeğer devre modeli üzerinden devre analizi yapılabilir. Devre dengesiz olduğu 
durumda olsa bile denklem sisteminin pratik çözümü vardır. Bu modelde aşağıdaki denklem 
sisteminin çözümlenmesi gerekmetedir:). 



























































































9.103

00.60

9.103

00.60

000.0

120

8080.06040.00100.00080.00100.00080.0

6040.08080.00080.00100.00080.00100.0

0100.00080.07787.05205.00100.00080.0

0080.00100.05205.07787.00080.00100.0

0100.00080.00100.00080.07460.04516.0

0080.00100.00080.00100.04516.07460.0

ci

cr

bi

br

ai

ar

I

I

I

I

I

I

 

Find the values of arI , aiI , brI , biI , crI , and ciI  using the Gauss-Seidel method. Use 

            























































20

20

20

20

20

20

ci

cr

bi

br

ai

ar

I

I

I

I

I

I

 

as the initial guess and conduct two iterations.  
 

Solution 
Rewriting the equations gives 

     
7460.0

0080.00100.00080.00100.04516.0120 cicrbibrai
ar

IIIII
I


  

74600

01000008000100000800451600000

.

I.I.I.I.I..
I cicrbibrar

ai


  

     
77870

00800010005205000800010000060

.

I.I.I.I.I..
I cicrbiaiar

br


  

77870

01000008005205001000008009103

.

I.I.I.I.I..
I cicrbraiar

bi


  

     
80800

60400008000100000800010000060

.

I.I.I.I.I..
I cibibraiar

cr
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80800

60400010000080001000008009103

.

I.I.I.I.I..
I crbibraiar

ci


  

Iteration #1 
Given the initial guess of the solution vector as 

 























































20

20

20

20

20

20

ci

cr

bi

br

ai

ar

I

I

I

I

I

I

 

Substituting the guess values into the first equation 
     

74600

0080001000008000100045160120

.

I.I.I.I.I.
I cicrbibrai

ar


  

      86172.  
Substituting the new value of arI  and the remaining guess values into the second equation 

74600

01000008000100000800451600000

.

I.I.I.I.I..
I cicrbibrar

ai


  

     61105.  

Substituting the new values of arI , aiI , and the remaining guess values into the third equation 

     
77870

00800010005205000800010000060

.

I.I.I.I.I..
I cicrbiaiar

br


  

      03967.  
Substituting the new values of arI , aiI , brI , and the remaining guess values into the fourth 

equation 

77870

01000008005205001000008009103

.

I.I.I.I.I..
I cicrbraiar

bi


  

     49989.  

Substituting the new values of arI , aiI , brI , biI , and the remaining guess values into the fifth 

equation 
     

80800

60400008000100000800010000060

.

I.I.I.I.I..
I cibibraiar

cr


  

     54862.  

Substituting the new values of arI , aiI , brI , biI , crI , and the remaining guess value into the sixth 

equation 

80800

60400010000080001000008009103

.

I.I.I.I.I..
I crbibraiar

ci


  

    71176.  
 
The absolute relative approximate error for each I  then is 
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%430.88

100
86.172

2086.172
1






a  

 

%94.118

100
61.105

2061.105
2







a  

 

%83.129

100
039.67

20039.67
3







a  

 

%35.122

100
499.89

20499.89
4







a  

 

%98.131

100
548.62

20548.62
5







a  

 

%682.88

100
71.176

2071.176
6






a  

At the end of the first iteration, the estimate of the solution vector is 

 




























































71176

54862

49989

03967

61105

86172

.

.

.

.

.

.

I

I

I

I

I

I

ci

cr

bi

br

ai

ar

 

and the maximum absolute relative approximate error is %98.131 . 

Iteration #2 
The estimate of the solution vector at the end of Iteration #1 is 

 




























































71176

54862

49989

03967

61105

86172

.

.

.

.

.

.

I

I

I

I

I

I

ci

cr

bi

br

ai

ar

 

Substituting the values from Iteration #1 into the first equation 
     

74600

0080001000008000100045160120

.

I.I.I.I.I.
I cicrbibrai

ar
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      60099.  
Substituting the new value of arI  and the remaining values from Iteration #1 into the second 

equation 

74600

01000008000100000800451600000

.

I.I.I.I.I..
I cicrbibrar

ai


  

    073.60  

Substituting the new values of arI , aiI , and the remaining values from Iteration #1 into the third 

equation 
     

77870

00800010005205000800010000060

.

I.I.I.I.I..
I cicrbiaiar

br


  

      15.136  
Substituting the new values of arI , aiI , brI , and the remaining values from Iteration #1 into the 

fourth equation 

77870

01000008005205001000008009103

.

I.I.I.I.I..
I cicrbraiar

bi


  

    299.44  

Substituting the new values of arI , aiI , brI , biI , and the remaining values from Iteration #1 into 

the fifth equation 
     

80800

60400008000100000800010000060

.

I.I.I.I.I..
I cibibraiar

cr


  

    259.57  

Substituting the new values of arI , aiI , brI , biI , crI , and the remaining value from Iteration #1 

into the sixth equation 

80800

60400010000080001000008009103

.

I.I.I.I.I..
I crbibraiar

ci


  

               441.87  
The absolute relative approximate error for each I  then is 
  

            

%552.73

100
600.99

86.172600.99
1






a  

 
 

%796.75

100
073.60

61.105073.60
2







a  

 
 

%762.50

100
35.136

039.6735.136
3







a  

 
 

%03.102

100
299.44

499.89299.44
4







a  
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%24.209

100
259.57

548.62259.57
5






a  

 

%09.102

100
441.87

71.176441.87
6






a  

 
At the end of the second iteration, the estimate of the solution vector is 

 



























































441.87

259.57

299.44

15.136

073.60

600.99

ci

cr

bi

br

ai

ar

I

I

I

I

I

I

 

and the maximum absolute relative approximate error is %4087.141 . 
Conducting more iterations gives the following values for the solution vector and the 
corresponding absolute relative approximate errors. 
 

Iteration arI  aiI  brI  biI  crI  ciI  

1 
2 
3 
4 
5 
6 

172.86 
99.600 
126.01 
117.25 
119.87 
119.28 

–105.61 
–60.073 
–76.015 
–70.707 
–72.301 
–71.936 

–67.039 
–136.15 
–108.90 
–119.62 
–115.62 
–116.98 

–89.499 
–44.299 
–62.667 
–55.432 
–58.141 
–57.216 

–62.548 
57.259 
–10.478 
27.658 
6.2513 
18.241 

176.71 
87.441 
137.97 
109.45 
125.49 
116.53 

 
 

Iteration %
1a  %

2a  %
3a  %

4a  %
5a  %

6a  

1 
2 
3 
4 
5 
6 

88.430 
73.552 
20.960 
7.4738 
2.1840 
0.49408 

118.94 
75.796 
20.972 
7.5067 
2.2048 
0.50789 

129.83 
50.762 
25.027 
8.9631 
3.4633 
1.1629 

122.35 
102.03 
29.311 
13.053 
4.6595 
1.6170 

131.98 
209.24 
646.45 
137.89 
342.43 
65.729 

88.682 
102.09 
36.623 
26.001 
12.742 
7.6884 

 
After six iterations, the absolute relative approximate errors are decreasing, but are still high. 
Allowing for more iteration, the relative approximate errors decrease significantly. 
 

Iteration arI  aiI  brI  biI  crI  ciI  

32 
33 

119.33 
119.33 

–71.973 
–71.973 

–116.66 
–116.66 

–57.432 
–57.432 

13.940 
13.940 

119.74 
119.74 
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Iteration %
1a  %

2a  %
3a  %

4a  %
5a  %

6a  

32 
33 

7100666.3   
7107062.1   

7100047.3   
7106718.1   

7102389.4   
7103601.2   

7107116.5   
7101801.3   

5100941.2   
5101647.1   

6108238.1   
6100144.1   

 
After 33 iterations, the solution vector is 

 



























































74.119

940.13

432.57

66.116

973.71

33.119

ci

cr

bi

br

ai

ar

I

I

I

I

I

I

 

The maximum absolute relative approximate error is %101647.1 5 . 
 

Gauss-Seidel Method – More Examples Industrial Engineering 

Example 1 
To find the number of toys a company should manufacture per day to optimally use their 
injection-molding machine and the assembly line, one needs to solve the following set of 
equations.  The unknowns are the number of toys for boys, 1x , the number of toys for girls, 2x , 

and the number of unisexual toys, 3x . 


















































 0

1260

756

00.000.105.1

3333.06667.01667.0

6667.01667.03333.0

3

2

1

x

x

x

 

Find the values of 1x , 2x , and 3x  using the Gauss-Seidel method. Use  


































1000

1000

1000

3

2

1

x

x

x

  

as the initial guess and conduct two iterations. 

Solution 
Rewriting the equations gives 

 
3333.0

6667.01667.0756 32
1

xx
x


  

 
6667.0

3333.01667.01260 31
2

xx
x


  

 
0

)00.1(05.10 21
3

xx
x


  

The equation for 3x  is divided by 0 which is undefined. Therefore the order of the equations will 

need to be changed. Equation 3 and Equation 1 will be switched. By switching Equations 3 and 
1, the matrix will also become diagonally dominant. 
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The system of equations becomes 
















































 

756

1260

0

6667.01667.03333.0

3333.06667.01667.0

00.000.105.1

3

2

1

x

x

x

 

Rewriting the equations gives 

 
 

05.1

000.10 32
1

xx
x


  

 6667.0

3333.01667.01260 31
2

xx
x




 

 6667.0

1667.03333.0756 21
3

xx
x




 
 

Iteration #1 
Given the initial guess of the solution vector as 

 

































100

1000

1000

3

2

1

x

x

x

 
we get 

 
 

05.1

1000100000.10
1


x  

        38.952  

 
6667.0

1003333.038.9521667.01260
2


x  

            8.1601  

 
6667.0

8.16011667.038.9523333.0756
3


x   

         32.257  

The absolute relative approximate error for each ix  then is 

 100
38.952

100038.952
1




a  

 %5  

            100
8.1601

10008.1601
2




a  

                    %570.37  

 100
32.257

10032.257
3




a  

 138.61  
At the end of the first iteration, the estimate of the solution vector is 
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32.257

8.1601

38.952

3

2

1

x

x

x

 

and the maximum absolute relative approximate error is %138.61 . 

Iteration #2 
The estimate of the solution vector at the end of Iteration #1 is 

 


































32.257

8.1601

38.952

3

2

1

x

x

x

 

Now we get 

 
 

05.1

32.25708.160100.10
1


x  

               5.1525  

 
6667.0

32.2573333.05.15251667.01260
2


x  

         8.1379  

 
6667.0

8.13791667.05.15253333.0756
3


x   

         295.26  

The absolute relative approximate error for each ix  then is 

 100
5.1525

38.9525.1525
1




a  

                    %570.37  

 100
8.1379

8.16018.1379
2




a  

         %085.16  

 100
295.26

32.257295.26
3




a  

        %59.878  
At the end of the second iteration, the estimate of the solution vector is 

 


































295.26

8.1379

5.1525

3

2

1

x

x

x

 

and the maximum absolute relative approximate error is %59.878 .  
Conducting more iterations gives the following values for the solution vector and the 
corresponding absolute relative approximate errors. 
 
 

Iteration x1 %
1a  

x2 %
2a  

x3 %
3a  
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1 
2 
3 
4 
5 
6 

952.38 
1525.5 
1314.1 
1474.5 
1406.0 
1451.9 

5 
37.570 
16.085 
10.874 
4.8686 
3.1618 

1601.8 
1379.8 
1548.2 
1476.3 
1524.5 
1501.9 

37.570 
16.085 
10.874 
4.8686 
3.1618 
1.5021 

257.32 
26.295 
89.876 
27.694 
49.863 
32.554 

61.138 
878.59 
70.743 
224.53 
44.459 
53.170 

After six iterations, the absolute relative approximate errors are decreasing, but they are still 
high. Allowing for more iterations, the absolute relative approximate errors decrease 
significantly. 

Iteration x1 %
1a  

x2 %
2a  

x3 %
3a  

20 
21 

1439.8 
1439.8 

0.00064276 
0.00034987 

1511.8 
1511.8 

0.00034987 
0.00019257 

36.115 
36.114 

0.0091495 
0.0049578 

This is close to the exact solution vector of  

 


































113.36

8.1511

8.1439

3

2

1

x

x

x
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Topic Gauss-Seidel Method – More Examples 
Summary Examples of the Gauss-Seidel method 
Major Civil Engineering 
Authors Autar Kaw 
Date Aralık 8, 2016 
Web Site http://numericalmethods.eng.usf.edu 

 
 
 

Key Terms: 
Gauss-Seidel method 
Convergence of Gauss-Seidel method 
Diagonally dominant matrix 
  
 
4.8.1 Multiple-Choice Test Chapter 04.08 Gauss-Seidel Method 
 
1. A square matrix   nnA   is diagonally dominant if  

A) ,
1





n

ji
j

ijii aa  ni ,...,2,1   

(B) ,
1





n

ji
j

ijii aa  ni ,...,2,1  and ,
1





n

ji
j

ijii aa  for any ni ,...,2,1  
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(C) ,
1




n

j
ijii aa  ni ,...,2,1  and ,

1




n

j
ijii aa  for any ni ,...,2,1  

(D)  ,
1




n

j
ijii aa  ni ,...,2,1  

 
2. Using ]5,3,1[],,[ 321 xxx  as the initial guess, the values of ],,[ 321 xxx  after three iterations in 

the Gauss-Seidel method for  

  


















































 6

5

2

1172

151

3712

3

2

1

x

x

x

 

 are 
(A) [-2.8333    -1.4333     -1.9727]    (B) [1.4959     -0.90464    -0.84914] 
(C)[0.90666   -1.0115      -1.0243]     (D) [1.2148     -0.72060    -0.82451] 

 
3. To ensure that the following system of equations, 

  

17257

52

61172

321

321

321






xxx

xxx

xxx

 

 converges using the Gauss-Seidel method, one can rewrite the above equations as 
 follows: 

(A) 
















































 

17

5

6

257

121

1172

3

2

1

x

x

x

 (B) 


















































 6

5

17

1172

121

257

3

2

1

x

x

x

 (C)


















































 17

5

6

1172

121

257

3

2

1

x

x

x

 

(D) The equations cannot be rewritten in a form to ensure convergence. 
 

4. For 




















































 2

7

22

1172

151

3712

3

2

1

x

x

x

and using    121321 xxx  as the initial guess, the 

values of   321 xxx  are found at the end of each iteration as 

       
Iteration # 1x  2x  3x  

1 0.41667 1.1167 0.96818 
2 0.93990 1.0184 1.0008 
3 0.98908 1.0020 0.99931 
4 0.99899 1.0003 1.0000 

 
 At what first iteration number would you trust at least 1 significant digit in your 
 solution? 

(A) 1      (B) 2       (C) 3       (D)4 
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5. The algorithm for the Gauss-Seidel method to solve [A][X]=[C] is given as follows when 
using nmax iterations. The initial value of [X] is stored in [X]. 

   
   
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
6. Thermistors measure temperature, have a nonlinear output and are valued for a limited 

range.  So when a thermistor is manufactured, the manufacturer supplies a resistance vs. 
temperature curve.  An accurate representation of the curve is generally given by  
(termistörler sıcaklık ölçerler, çizgisel olmayan bir çıkış verirler ve sınırlı aralıktaki 
değerleri okuyabilirler. Bir termistör üretildiğinde üretici dirence bağlı olarak sıcaklık 
grafiğini de vermektedir. Eğrinin doğru bir şekilde fonksiyonu aşağıdaki gibi verilmektedir:) 

  
     3

3
2

210 lnln)ln(
1

RaRaRaa
T


 

 where T  is temperature in Kelvin, R  is resistance in ohms, and 3210 ,,, aaaa  are 

 constants of the calibration curve.  Given the following for a thermistor (denklemdeki T 
Kelvin cinsinden sıcaklık değerlerini, R Ohm biriminde direnci temsil etmekte ve a0, a1, a2 ve a3 
kalibrasyon grafiği sabitlerini göstermektedir. Aşağıdaki çizelgeyi kullanarak direnci 900 Ohm 
olarak ölçülen termistörün ölçtüğü sıcaklık aşağıdakilerden hangisi olabilir:) 

R  T  
ohm C  

1101.0 
911.3 
636.0 

25.113 
30.131 
40.120 

(A)  Sub Seidel(n,a,x,rhs,nmax) 
     For k=1 To nmax 
     For i=1 To n 
     For j=1 To n 
     If (i<>j) Then 
     Sum = Sum + a(i,j)*x(j) 
     endif 
     Next j 
     x(i)=(rhs(i)-Sum)/a(i,i) 
     Next i 
     Next j 
     End Sub 
 

(B)   Sub Seidel(n,a,x,rhs,nmax) 

      For 1k  To nmax 

      For 1i  To n 
      Sum = 0 
      For j=1 To n 
      If (i<>j) Then 
      Sum = Sum + a(i,j)*x(j) 
      endif 
      Next j 
      x(i)=(rhs(i)-Sum)/a(i,i)  
      Next i 
      Next k 
      End Sub 

(C)  Sub Seidel(n,a,x,rhs,nmax)  
     For k=1 To nmax 
     For i=1 To n 
     Sum = 0 
     For j=1 To n 
     Sum = Sum + a(i,j)*x(j)  
     Next j 
     x(i)=(rhs(i)-Sum)/a(i,i)  
     Next i 
     Next k 
     End Sub 
 

(D)  Sub Seidel(n,a,x,rhs,nmax) 
     For k=1To nmax  
     For i=1 To n 
     Sum = 0 
     For j=1 To n 
     If (i<>j) Then 
     Sum = Sum + a(i,j)*x(j)  
     endif 
     Next j 
     x(i)=(rhs(i)-Sum)/a(i,i)  
     Next i 
     Next k 
     End Sub 
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451.1 50.128 
the value of temperature in C  for a measured resistance of 900 ohms most nearly is 

(A) 30.002    (B) 30.473    (C) 31.272      (D) 31.445 
 
For a complete solution, refer to the links at the end of the book. 
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5 Chapter 05.01 Background of Interpolation 

5.1 Chapter 05.01 Background of Interpolation 
 
PRE-REQUISITES 
1. Know simple co-ordinate geometry and graphing.  

 
OBJECTIVES 
1. Understand what Interpolation is. 
 

 Definition of Interpolation 
 
After reading this chapter, you should be able to: 
1. Understand what Interpolation is. 
 

What is Interpolation? 
Many a times, a function y=f(x) is given only at discrete points such as (x0,y0), (x1,y1), (x2,y2),... 
(xn-1,yn-1), (xn,yn). How does one find the value of y at any other value of x ?  Well, a continuous 
function f(x) may be used to represent the n+1 data values with f(x) passing through the n+1 
points.  Then one can find the value of y at any other value of x.  This is called interpolation. Of 
course, if x  falls outside the range of x for which the data is given, it is no longer interpolation 
but instead is called extrapolation. 

 
Figure 1   Interpolation of discrete data (kesikli verilerin interpolasyonu) 
 

INTERPOLATION  
Topic Definition of Interpolation 
Summary Textbook notes on the definition of interpolation, with graph. 
Major All Majors of Engineering 
Authors Autar Kaw 
Last Revised Aralık 8, 2016 

 (xo, yo) 

 (x1, y1) 

 (x2, y2) 

 (x3, y3) 

 y 

x 

 f(x) 
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Web Site http://numericalmethods.eng.usf.edu 

History of Interpolation 
 
After reading this chapter, you should be able to: 
1. Know the history of Interpolation and its current uses by the HNMI. 
 

History 
 Sir Edmund Whittaker, a professor of Numerical Mathematics at the University of 
Edinburgh from 1913 to 1923, observed “the most common form of interpolation occurs when 
we seek data from a table which does not have the exact values we want.”  Throughout history, 
interpolation has been used in one form or another for just about every purpose under the sun. 
Speaking of the sun, some of the first surviving evidence of the use of interpolation came from 
ancient Babylon and Greece.  Around 300 BC, they were using not only linear, but also more 
complex forms of interpolation to predict the positions of the sun, moon, and the planets they 
knew of.  Farmers, timing the planting of their crops, were the primary users of these predictions.  
Also in Greece sometime around 150 BC, Hipparchus of Rhodes used linear interpolation to 
construct a “chord function”, which is similar to a sinusoidal function, to compute positions of 
celestial bodies (1913-1923 yılları arasında Edinburg Üniversitesi Sayısal Matematik bölümünde  
çalışan profesörü Sir Edmund Whittaker interpolasyonu “bir çizelgede olmayan veriye ihtiyaç 
duyulması” şeklinde açıklamıştır. Tarihte interpolasyonun çok değişik şekilde kullanıldığı 
görülmektedir. Antik Babil’de ve Yunan’da interpolasyonun kullanıldığı bilinmektedir. MÖ 
300’lü yıllarda sadece çizgisel değil çizgisel olmayan formlara sahip interpolasyon kullanılarak 
güneşin, ayın ve gezegenlerin konumlarının belirlendiğini biliyoruz. Çiftçiler tohum ekme 
zamanlarını interpolasyon ile belirliyorlardı. MÖ 150’li yıllarda Rodoslu Hipparchus gök 
cisimlerinin konularını belirlemek için kullanılan sinüsel fonksiyonlar gibi çizgisel 
interpolasyonla “akor fonksiyonu” 'nu hesaplıyordu.). 
 Farther east, Chinese evidence of interpolation dates back to around 600 AD.  Liu Zhuo 
used the equivalent of second order Gregory-Newton interpolation to construct an “Imperial 
Standard Calendar”.  In 625 AD, Indian astronomer and mathematician Brahmagupta introduced 
a method for second order interpolation of the sine function and, later on, a method for 
interpolation of unequal-interval data (MS 600’lü yıllarda daha doğuda Çinlilerin interpolasyonu 
kullandığı biliniyordu. Liu Zhuo ikinci dereceden Gregory-Newton interpolasyonu ile 
“İmparatorluk Standart Takvimi”’ni oluşturmuştu. MS 650 yıllarda Hindli astronom ve 
matematikçi Brahmagupta ikinci dereceden sinüs interpolasyon formülünü kullanmış ve eşit 
aralıklı olmayan verilerin interpolasyonunu geliştirmiştir.). 
 Many similar land-based purposes were found for interpolation over the ages, but ocean 
navigation was found to be one of the most important applications for centuries.  Tables of 
special function values were constructed using numerical methods, and seafarers used certain 
ones to determine latitude and longitude values.  The French government started production on 
an extensive set of such tables when the metric system was introduced.  Ideally, one would want 
mathematicians to construct a large set of tables due to their proficiency at the subject.  However, 
the primary source of work on the project ended up being hairdressers who had lost their gaudy-
wigged customers to the guillotine (topraklarla ilgili birçok yerde interpolasyon kullanılmış, 
fakat denizlerdeki kullanımı ise daha önemlidir. Özel fonksiyonların değerleri sayısal yöntemler 
kullanılarak çizelgeler halinde hazırlanmış, denizciler tarafından enlem ve boylam değerlerini 
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belirlemek için kullanılmıştır. Metrik sisteme geçildikten sonra fransız hükümeti bu çizelgelerin 
hazırlanmasını sağlamıştır. Matematikçilerden bu tür çizelgeler hazırlanması istenmişttir. Ancak 
projelerde çalışanların matematikçilerin çoğu giyotinle başlarını kaybetmişlerdi.). 
 The unfortunate truth about special function tables is that most of them were plagiarized.  
Since the “computers”, the workers who carried out and recorded the calculations, were prone to 
making many errors during the creation of these daunting tables, plagiarism only propagated 
more errors.  Charles Babbage tried to solve this problem with the invention of his “difference 
engine”, a mechanical computer programmed by the use of punch cards.  On the side, Babbage 
also tried inventing a system that would choose winning horse race numbers, hoping to raise 
extra money.  Although he was not short of funds, his life ran short and never saw the 
completion of the invention.  Over a century and a quarter later, as we plunge into the nano-
technology era, Babbage is now considered the grandfather of modern computing. (bu 
çizelgelerle ilgili en talihsiz durum bunların çoğunn başkalarının yaptıklarından aşırma 
olmalarıydı. Bilgisayarlar yani bu zor çizelgeleri elle hazırlayanların bilgileri başka kaynaklardan 
aşırmaları daha fazla hataya neden olmuştur. Charles Babbage bu problemi delikli kartlarla 
programlanmış/kullanan mekanik bilgisayar olan “fark makinesi” ile çözmeye çalışmıştır. Ayrıca 
Babbage yaptığı makineyi para kazanmak için at yarışı tahminlerinde kullanmıştır. Sadece 
makinesine fon bulmakta zorlanmamış hayatı boyunca kıt kanaat geçinmiş ve buluşunun 
tamamlanmasını göremeden ölmüştür. Ölümünden 125 yıl sonra nano teknoloji çağında Babbage 
modern bilgisayarların atası kabul edilmektedir.) 
 During the Great Depression, one final burst of manual table-making found its way into 
the United States.  The Works Progress Administration began the Mathematical Tables Project 
shortly before World War II.  As with the French project, the desired “mathematician” workers 
ended up being unskilled—this time to the point that negative numbers were puzzling.  The 
solution: black pencils for positive numbers and red ones for negative numbers.  Having each 
calculation in this project iterated twice (each by a different person), and extensive proof reading 
carried out, these tables were “possibly the most accurate ever produced”.  Many of them were 
collected in a book by Milton Abromowitz and Irene Stegun, which is still in worldwide use 
today.  With computers (not the people type, either), tables are no longer manually constructed, 
but the Australian Government produces life tables which describe mortality rates.  Relevant to 
the life insurance industry and the study of demography, “these tables are extended using modern 
interpolation methods.”  No matter how advanced or extensive, interpolation will always be 
needed to find values in modern tables due to their nature.  Since they aren’t continuous 
functions, there will be infinitely many missing values. 
 Two of the methods of interpolation taught at the HNMI are credited to Newton and 
Lagrange.  Newton began his work on the subject in 1675, which “laid the foundation of 
classical interpolation theory”.  In 1795, Lagrange published the interpolation formula now 
known under his name, despite the fact that Waring had already produced the same formula 
sixteen years earlier. (HNMI’da Newton ve Lagrange yöntemleri olmak üzere kredisi olan 2 
interpolasyon yöntemi öğretilmektedir. Newton 1675’te “klasik interpolasyon teorisinin 
oluşturulması” çalışmasını yayınlamış, 1795’te  Lagrange kendi ismiyle anılan interpolasyon 
yöntemini geliştirmiştir.) 
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5.2 Chapter 05.02 Direct Method of Interpolation (Doğrudan yöntemli interpolasyon) 

 
PRE-REQUISITES 

 
1. Introduction to matrix algebra – setting up equations in matrix form (Primer for Matrix 
Algebra). 
2. Solving a set of simultaneous linear equations by methods such as Gauss elimination. 
(Gaussian elimination) 
 

 
OBJECTIVES 

 
1. apply the direct method of interpolation, 
2. solve problems using the direct method of interpolation, and 
3. use the direct method interpolants to find derivatives and integrals of discrete functions. 
 
 
After reading this chapter, you should be able to: 
1. apply the direct method of interpolation, 
2. solve problems using the direct method of interpolation, and 
3. use the direct method interpolants to find derivatives and integrals of discrete functions. 
 

What is interpolation? (interpolasyon nedir?) 
Many times, data is given only at discrete points such as (x0,y0), (x1,y1), ...,(xn-1,yn-1), (xn, yn).  
So, how then does one find the value of y  at any other value of x?  Well, a continuous function 
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f(x) may be used to represent the n+1 data values with f(x) passing through the 1n  points 
(Figure 1).  Then one can find the value of y at any other value of x.  This is called interpolation 
(çoğu zaman veriler noktalar şeklinde (x0, y0), (x1, y1), ...,(xn-1, yn-1), (xn, yn) verilir. Herhangi bir x 
noktasına ait y değeri nasıl hesaplanabilir? Sürekli bir f(x) fonksiyonu n+1 veriden geçen bir 
fonksiyonu temsil etsin (Figure 1). Fonksiyon belirlendikten sonra herhangi bir x noktasındaki y 
değeri hesaplanabilir. Buna interpolasyon denir.).  
 Of course, if x falls outside the range of x for which the data is given, it is no longer 
interpolation but instead is called extrapolation (tabi x değeri sınır değerlerinin dışında olabilir. 
Bu durumda yapılacak işleme ekstrapolasyon denir).   
 So what kind of function f(x) should one choose?  A polynomial is a common choice for 
an interpolating function because polynomials are easy to (nasıl bir f(x) fonksiyonu seçilmelidir? 
Bir polinom bu seçim için aşağıdaki nedenlerden dolayı iyi olabilir:)  

(A) evaluate, (geliştirilebilir) 
(B) differentiate, and (türevlenebilir) 
(C) integrate (integre edilebilir) 

relative to other choices such as a trigonometric and exponential series.  
 Polynomial interpolation involves finding a polynomial of order n that passes through the 
n+1 points. One of the methods of interpolation is called the direct method.  Other methods 
include Newton’s divided difference polynomial method and the Lagrangian interpolation 
method.  We will discuss the direct method in this chapter. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1   Interpolation of discrete data. 

Direct Method 
The direct method of interpolation is based on the following premise.  Given 1n  data points, 
fit a polynomial of order n  as given below  (doğrudan interpolasyon yöntemi aşağıdaki 
denklemdeki gibi verilebilir. n+1 noktadan geçen polinomun derecesi n olmalıdır:) 
 y=a0+a1x+...+anxn                                                                         (1) 
through the data, where a0, a1,..., an are n+1 real constants. Since n+1 values of y are given at 
n+1 values of x, one can write n+1 equations.  Then the n+1 constants, a0, a1,..., an can be found 
by solving the n+1 simultaneous linear equations.  To find the value of y at a given value of x, 

 00, yx  

 11, yx

 22 , yx  

 33, yx

 xf  

x

y  
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simply substitute the value of x in Equation 1. (Polinomun veri noktalarından geçmesini sağlayan 
a0, a1,..., an nicelikleri n+1 tane gerçel sabiti tanımlar ve seçilen noktalar arasında değişmezler. 
n+1 tane x değerinden ve n+1 tane y değerinden n+1 tane eşitlik yazılabilir. Böylece a0, a1,..., an 
nicelikleri n+1 tane çizgisel denklem kullanılarak çözülebilir. Çözümleme işleminden sonra 
herhangi bir x değeri için y hesaplanabilir.)   
 But, it is not necessary to use all the data points.  How does one then choose the order of 
the polynomial and what data points to use?  This concept and the direct method of interpolation 
are best illustrated using examples. (bütün veri noktalarının kullanılmasına gerek yoktur. Bu 
durumda polinomun derecesi nasıl seçilmeli ve bu polinomun için hangi veri noktaları 
kullanılmalıdır? Bu kavramlar ve doğrudan interpolasyon polinom yöntemi aşağıda örneklerle 
anlatılmaktadır.) 
 

Example 1 
The upward velocity of a rocket is given as a function of time in Table 1. 
 

Table 1  Velocity as a function of time. 
t (s) v(t) (m/s) 
0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
 

 
Figure 2   Graph of velocity vs. time data for the rocket example 
(roket örneğinin zamana bağlı hız grafiği verileri.). 
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Determine the value of the velocity at t=16 seconds using the direct method of interpolation and 
a first order polynomial. 
 

Solution 
For first order polynomial interpolation (also called linear interpolation), the velocity given by 
 v(t)=a0+a1t 

 
         Figure 3   Linear interpolation. 

 
Since we want to find the velocity at t=16, and we are using a first order polynomial, we need to 
choose the two data points that are closest to t=16 that also bracket t=16 to evaluate it.  The two 
points are t0=15 and t1=20.  
 Then 
 t0=15,  v(t0)=362.78  
 t1=20,  v(t1)=517.35 
gives 
 v(15)=a0+a1(15) = 362.78 
 v(20)=a0+a1(20) = 517.35 
Writing the equations in matrix form, we have 

 
























35.517

78.362

201

151

1

0

a

a
 

Solving the above two equations gives 
 a0=–100.93 
 a1=30.914 
Hence 
 v(t)=a0+a1(t) 
 = –100.93+30.914t, 15 ≤ t ≤ 20 
At 16t , 
   16914.3092.10016 v  
           =393.7 m/s 

 00, yx

 11, yx

 xf1

x

y  
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Example 2 
The upward velocity of a rocket is given as a function of time in Table 2. 

     Table 2   Velocity as a function of time. 
t  (s) )(tv  (m/s) 

0 0 
10 227.04 
15 362.78 
20 517.35 
22.5 602.97 
30 901.67 

 
Determine the value of the velocity at 16t  seconds using the direct method of interpolation 
and a second order polynomial. 

Solution 
For second order polynomial interpolation (also called quadratic interpolation), the velocity is 
given by 
   2

210 tataatv   

 
        Figure 4   Quadratic interpolation. 

 
Since we want to find the velocity at 16t , and we are using a second order polynomial, we 
need to choose the three data points that are closest to 16t  that also bracket 16t  to evaluate 
it.  The three points are 20 and ,15,10 210  ttt . 

Then 
   04.227,10 00  tvt  

   78.362 ,15 11  tvt  

   35.517,20 22  tvt  
gives 

 00 , yx  

 11, yx
 22 , yx  

 xf2  

y  

x  
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       04.227101010 2
210  aaav  

       78.362151515 2
210  aaav  

       35.517202020 2
210  aaav  

Writing the three equations in matrix form, we have 

 


















































35.517

78.362

04.227

400201

225151

100101

2

1

0

a

a

a

 

Solving the above three equations gives 
 05.120 a  

 733.171 a  

 3766.02 a  
Hence 
   2010,3766.0733.1705.12 2  ttttv  
At 16t , 

      2163766.016733.1705.1216 v  
          m/s 19.392  
The absolute relative approximate error a  obtained between the results from the first and 

second order polynomial is 

 100
19.392

70.39319.392



a  

        %38410.0  
 

Example 3 
The upward velocity of a rocket is given as a function of time in Table 3. 
  

    Table 3   Velocity as a function of time. 
t  (s) )(tv  (m/s) 

  0.0 0 
10.0 227.04 
15.0 362.78 
20.0 517.35 
22.5 602.97 
30.0 901.67 

 
a) Determine the value of the velocity at 16t  seconds using the direct method of interpolation 
and a third order polynomial.  
b) Find the absolute relative approximate error for the third order polynomial approximation. 
c) Using the third order polynomial interpolant for velocity from part (a), find the distance 
covered by the rocket from s11t  to s16t . 
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d) Using the third order polynomial interpolant for velocity from part (a), find the acceleration of 
the rocket at s16t . 
 

Solution 
a) For third order polynomial interpolation (also called cubic interpolation), we choose the 
velocity given by 
 v(t)=a0+a1t+a2t2+a3t3 

        Figure 5   Cubic interpolation. 
 
Since we want to find the velocity at 16t , and we are using a third order polynomial, we need 
to choose the four data points closest to 16t  that also bracket 16t  to evaluate it. 
The four points are 20 ,15  ,10 210  ttt  and 5.223 t . 

Then 
   04.227   ,10 00  tvt  

   78.362    ,15 11  tvt  

   35.517   ,20 22  tvt  

   97.602,5.22 33  tvt  

gives 

         04.22710101010 3
3

2
210  aaaav  

         78.36215151515 3
3

2
210  aaaav

         35.51720202020 3
3

2
210  aaaav  

         97.6025.225.225.225.22 3
3

2
210  aaaav  

Writing the four equations in matrix form, we have 

 00, yx  

 11, yx

 22 , yx  

 33, yx

 xf3  

x  

y  
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97.602

35.517

78.362

04.227

1139125.5065.221

8000400201

3375225151

1000100101

3

2

1

0

a

a

a

a

 

Solving the above four equations gives 
 2540.40 a  

 266.211 a  

 13204.02 a  

 0054347.03 a  

Hence 
   3

3
2

210 tatataatv   

        5.2210,0054347.013204.0266.212540.4 32  tttt  

        32 160054347.01613204.016266.212540.416 v  
          m/s06.392  

b) The absolute percentage relative approximate error a  for the value obtained for )16(v  

between second and third order polynomial is 

 100
06.392

19.39206.392



a  

                   %033269.0  
c) The distance covered by the rocket between s11t  and s16t  can be calculated from the 
interpolating polynomial 
   5.2210,0054347.013204.0266.212540.4 32  tttttv  
Note that the polynomial is valid between 10t  and 5.22t  and hence includes the limits of 
integration of 11t  and 16t . 
So  

      
16

11

1116 dttvss  

                     dtttt 
16

11

32 )0054347.013204.0266.212540.4(  

                               =
16

11

432

4
0054347.0

3
13204.0

2
266.212540.4 










ttt
t  

                     m 1605  
d) The acceleration at 16t  is given by 

    
16

16



t

tv
dt

d
a  

Given that  
   5.2210,0054347.013204.0266.212540.4 32  tttttv  
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    tv
dt

d
ta   

         32 0054347.013204.0266.212540.4 ttt
dt

d
  

                   5.2210,016304.026408.0266.21 2  ttt  

      216016304.01626408.0266.2116 a  

          2m/s665.29  
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5.2.1 Multiple-Choice Test Chapter 05.01 Background on Interpolation 
 
1. The number of polynomials that can go through two fixed data points  11, yx  and  22 , yx  is 

(A) 0    (B) 1    (C) 2   (D) infinite 
 
2. A unique polynomial of degree __________________ passes through 1n  data points. 

(A) n+1   (B) n+1 or less  (C) n     (D) n or less  
 
3. The following function(s) can be used for interpolation: 

(A) polynomial    (B) exponential  (C) trigonometric    (D) all of the above 
 
4. Polynomials are the most commonly used functions for interpolation because they are easy to 

(A) evaluate    (B) differentiate    (C) integrate    (D) evaluate, differentiate and integrate 
 
5. Given n+1 data points        nnnn yxyxyxyx ,,,,......,,,, 111100  , assume you pass a function 

)(xf  through all the data points.  If now the value of the function )(xf  is required to be found 
outside the range of the given x -data, the procedure is called 

(A) extrapolation     (B) interpolation    (C) guessing    (D) regression  
 

6. Given three data points (1,6), (3,28), and (10, 231), it is found that the function 
132 2  xxy  passes through the  three data points.  Your estimate of y  at 2x  is most 

nearly 
(A) 6    (B) 15     (C) 17     (D) 28 

 
7. A unique polynomial of degree ________________ passes through n+1 data points. 

(A) n+1    (B) n+1 or less   (C) n     (D) n  or less 
 
8. The following data of the velocity of a body is given as a function of time. 
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Time (s) 0 15 18 22 24 
Velocity (m/s) 22 24 37 25 123 

The velocity in m/s at s 16  using linear polynomial interpolation is most nearly 
(A) 27.867     (B) 28.333    (C) 30.429     (D) 43.000  

 
9. The following data of the velocity of a body is given as a function of time. 

Time (s) 0 15 18 22 24 
Velocity (m/s) 22 24 37 25 123 

Using quadratic interpolation, the interpolant v(t)=8.6667t2–349.67t+3523, 18≤t≤24  
approximates the velocity of the body.  From this information, the time in seconds at which the 
velocity of the body is 35 m/s during the above time interval of t=18 s to t=24 s is 

(A) 18.667    (B) 20.850     (C) 22.200    (D) 22.294 
 
10. The following data of the velocity of a body is given as a function of time. 

Time (s) 0 15 18 22 24 
Velocity (m/s) 22 24 37 25 123 

One of the interpolant approximations for the velocity from the above data is given as 
v(t)=8.6667t2–349.67t+3523, 18≤t≤24. Using the above interpolant, the distance in meters 
covered by the body between s 19t  and s 22t  is most nearly 

(A) 10.337     (B) 88.500   (C) 93.000     (D) 168.00 
 
11. The following data of the velocity of a body is given as a function of time. 

Time (s) 0 15 18 22 24 
Velocity (m/s) 22 24 37 25 123 

If you were going to use quadratic interpolation to find the value of the velocity at 9.14t  
seconds, what three data points of time would you choose for interpolation?   

(A) 0, 15, 18    (B) 15, 18, 22    (C) 0, 15, 22     (D) 0, 18, 24 
 

Example 1 Direct Method of Interpolation – More Examples Chemical Engineering 
To find how much heat is required to bring a kettle of water to its boiling point, you are asked to 
calculate the specific heat of water at C61 . The specific heat of water is given as a  function of 
time in Table 1.  
 

Table 1  Specific heat of water as a function of temperature. 
Temperature, T  

 C  
Specific heat, pC  

 







 Ckg

J
 

22 
42 
52 
82 
100 

4181 
4179 
4186 
4199 
4217 
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Determine the value of the specific heat at C61T  using the direct method of interpolation 
and a first order polynomial. 
 

 
 

                        Figure 1  Specific heat of water vs. temperature. 
 

Solution 
For first order polynomial interpolation (also called linear interpolation), we choose the specific 
heat given by 
   TaaTC p 10   

 

 00, yx  

 11, yx  

 xf1

x

y  
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         Figure 2   Linear interpolation. 
 
Since we want to find the specific heat at C61T , and we are using a first order polynomial, 
we need to choose the two data points that are closest to C61T  that also bracket C61T  to 

evaluate it. The two points are 520 T  and 821 T .   

Then 
  4186,52 00  TCT p  

             4199,82 11  TCT p  

gives 

 
    41865252 10  aaC p  

 
    41998282 10  aaC p  

Writing the equations in matrix form, we have 

 
























4199

4186

821

521

1

0

a

a
 

Solving the above two equations gives 
 5.41630 a  

 43333.01 a  
Hence 
   TaaTC p 10   

 8252,43333.05.4163            TT  
At 61T , 
              6143333.05.416361 pC  

            
Ckg

J
9.4189


  

 

Example 2 Direct Method of Interpolation – More Examples Chemical Engineering 
To find how much heat is required to bring a kettle of water to its boiling point, you are asked to 
calculate the specific heat of water at C61 . The specific heat of water is given as a function of 
time in Table 2.  
 

Table 2  Specific heat of water as a function of temperature. 
Temperature, T  

 C  
Specific heat, pC  

 







 Ckg

J
 

22 
42 
52 
82 
100 

4181 
4179 
4186 
4199 
4217 
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Determine the value of the specific heat at C61T  using the direct method of interpolation 
and a second order polynomial. Find the absolute relative approximate error for the second order 
polynomial approximation. 

Solution 
For second order polynomial interpolation (also called quadratic interpolation), we choose the 
specific heat given by 
   2

210 TaTaaTC p   

 

        Figure 3   Quadratic interpolation. 
 
Since we want to find the specific heat at C61T , and we are using a second order 
polynomial, we need to choose the three data points that are closest to C61T  that also 

bracket C61T  to evaluate it. The three points are .82 and ,52,42 210  TTT   

Then 
  4179,42 00  TCT p  

   4186,52 11  TCT p  

   4199,82 22  TCT p  

gives 

      4179424242 2
210  aaaC p  

      4186525252 2
210  aaaC p  

      4199828282 2
210  aaaC p  

Writing the three equations in matrix form, we have 

 


















































4199

4186

4179

6724821

2704521

1764421

2

1

0

a

a

a

 

Solving the above three equations gives 

 00 , yx  

 11, yx
 22 , yx  

 xf2  

y  

x  
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 0.41350 a  

 3267.11 a  

 3
2 106667.6 a  

Hence 
    8242,106667.63267.10.4135 23   TTTTC p  

At 61T , 

     23 61106667.6613267.10.413561 pC  

             
Ckg

J
2.4191


  

The absolute relative approximate error a  obtained between the results from the first and 

second order polynomial is 

100
2.4191

9.41892.4191



a  

        %030063.0  
 

Example 3 Direct Method of Interpolation – More Examples Chemical Engineering 
To find how much heat is required to bring a kettle of water to its boiling point, you are asked to 
calculate the specific heat of water at 61°C. The specific heat of water is given as a function of 
time in Table 3.  (bir su ısıtıcısındaki suyu kaynama noktasına çıkarabilmek için suyun  
61°C’deki öz ısısının hesaplanması gerekmektedir. Çizelge 3’de suyun öz ısısı ile ilgili bilgiler 
verilmektedir.) 
 

Table 3  Specific heat of water as a function of temperature. 
Temperature, T  

 C  
Specific heat, pC  

 







 Ckg

J
 

22 
42 
52 
82 
100 

4181 
4179 
4186 
4199 
4217 

 
Determine the value of the specific heat at C61T  using the direct method of interpolation 
and a third order polynomial.  Find the absolute relative approximate error for the third order 
polynomial approximation. 

Solution 
For third order polynomial interpolation (also called cubic interpolation), we choose the specific 
heat given by Cp(T)=a0+a1T+a2T2+a3T3  
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         Figure 4  Cubic interpolation. 

 
Since we want to find the specific heat at T=61°C, and we are using a third order polynomial, we 
need to choose the four data points closest to T=61°C that also bracket T=61°C to evaluate it. 
The four points are 82,52,42 210  TTT  and .1003 T  (Choosing the four points as 

220 T , 421 T , 522 T  and 823 T  is equally valid.) 

Then 
  4179 ,42 00  TCT p  

   4186  ,52 11  TCT p  

   4199  ,82 22  TCT p  

   4217,100 33  TCT p  

gives 

        417942424242 3
3

2
210  aaaaC p  

        418652525252 3
3

2
210  aaaaC p

         419982828282 3
3

2
210  aaaaC p  

        4217100100100100 3
3

2
210  aaaaC p  

Writing the four equations in matrix form, we have 

 































































4217

4199

4186

4179

10100001001

105137.56724821

104061.12704521

104088.71764421

3

2

1

0

6

5

5

4

a

a

a

a

 

Solving the above four equations gives 

y  

 00 , yx  

 11, yx
 xf3

 22 , yx  

 33 , yx  

x  
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0.40780 a  

 4771.41 a  

 062720.02 a  

 4
3 101849.3 a  

Hence 
  3

3
2

210 TaTaTaaTC p   

                       10042,101849.3062720.04771.40.4078 342   TTTT  

       342 61101849.361062720.0614771.40.407861 T  

                      
Ckg

J
0.4190


  

The absolute relative approximate error a  obtained between the results from the second and 

third order polynomial is 

100
0.4190

2.41910.4190



a  

        %027295.0  
 

Example 4 Direct Method of Interpolation – More Examples Civil Engineering 
To maximize a catch of bass in a lake, it is suggested to throw the line to the depth of the 
thermocline.  The characteristic feature of this area is the sudden change in temperature.  We are 
given the temperature vs. depth data for a lake in Table 1. (bir gölde levrek balığı avlama 
olasılığını artırmak için oltanın ucundaki yemin thermocline derinliğe kadar inmesi 
gerekmektedir. Bu bölgenin-derinliğin-karakteristiği göl sıcaklığının ani değiştiği alan olmasıdır. 
Çizelge 1’de gölün derinliğine bağlı olarak sıcaklığın değişimi verilmektedir. ) 
                                          
                                         Table 1  Temperature vs. depth for a lake. 

Temperature,  C  T  Depth,  m  z  

19.1 0 
19.1 –1 
19 –2 

18.8 –3 
18.7 –4 
18.3 –5 
18.2 –6 
17.6 –7 
11.7 –8 
9.9 –9 
9.1 –10 
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                          Figure 1  Temperature vs. depth of a lake. 
 
Using the given data, we see the largest change in temperature is between m8z  and 

m7z . Determine the value of the temperature at m5.7z  using the direct method of 
interpolation and a first order polynomial. 

Solution 
For first order polynomial interpolation (also called linear interpolation), we choose the 
temperature given by 
   zaazT 10   

 

 
         Figure 2   Linear interpolation. 

 00, yx  

 11, yx  

 xf1

x

y  
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Since we want to find the temperature at m5.7z , and we are using a first order polynomial, 
we need to choose the two data points that are closest to m5.7z  that also bracket 

m5.7z  to evaluate it. The two points are 80 z  and 71 z . 

Then 
  7.11,8 00  zTz  

  6.17,7 11  zTz  
gives 
     7.1188 10  aaT  

     6.1777 10  aaT  

Writing the equations in matrix form, we have 

 



























6.17

7.11

71

81

1

0

a

a
 

Solving the above two equations gives 
  9.580 a  and  9.51 a  

Hence 
  zaazT 10   

  78,9.59.58  zzzT  

   5.79.59.585.7 T  
               C65.14   
 

Example 5 Direct Method of Interpolation – More Examples Civil Engineering 
To maximize a catch of bass in a lake, it is suggested to throw the line to the depth of the 
thermocline. The characteristic feature of this area is the sudden change in temperature. We are 
given the temperature vs. depth data for a lake in Table 2. (bir gölde levrek balığı avlama 
olasılığını artırmak için oltanın ucundaki yemin thermocline derinliğe kadar inmesi 
gerekmektedir. Bu bölgenin-derinliğin-karakteristiği göl sıcaklığının ani değiştiği alan olmasıdır. 
Çizelge 2’de gölün derinliğine bağlı olarak sıcaklığın değişimi verilmektedir. ) 
 
                                         Table 2  Temperature vs. depth for a lake. 

Temperature,  C  T  Depth,  m  z  

19.1 0 
19.1 –1 
19 –2 

18.8 –3 
18.7 –4 
18.3 –5 
18.2 –6 
17.6 –7 
11.7 –8 
9.9 –9 
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9.1 –10 
 
Using the given data, we see the largest change in temperature is between m8z  and 

m7z . Determine the value of the temperature at m5.7z  using the direct method of 
interpolation and a second order polynomial.  Find the absolute relative approximate error for the 
second order polynomial approximation. 
 

Solution 
For second order polynomial interpolation (also called quadratic interpolation), we choose the 
velocity given by 

  2
210 tataatv   

 

 
        Figure 3   Quadratic interpolation. 
 

Since we want to find the temperature at 5.7z , and we are using a second order polynomial, 
we need to choose the three data points that are closest to 5.7z  that also bracket 5.7z  to 
evaluate it. The three points are 90 z , 81 z  and 72 z . (Choosing the three points as 

80 z , 71 z  and 62 z  is equally valid.) 

Then 
  9.9,9 00  zTz  

   7.11,8 11  zTz  

   6.17,7 22  zTz  
gives 

      9.9999 2
210  aaaT  

      7.11888 2
210  aaaT  

      6.17777 2
210  aaaT  

Writing the three equations in matrix form 

 00 , yx  

 11, yx
 22 , yx  

 xf2  

y  

x  
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6.17

7.11

9.9

4971

6481

8191

2

1

0

a

a

a

 

and the solution of the above three equations gives 
 7.1730 a  

 65.361 a  

 05.22 a  
Hence 
   79,05.265.367.173 2  zzzzT  
At z= –7.5, 

T(–7.5)=173.7+36.65(–7.5)+2.05(–7.5)2  
               =14.138°C 
The absolute relative approximate error |єa| obtained between the results from the first and 
second order polynomial is 

100
138.14

65.14138.14



a  

      %6251.3  
 

Example 6 Direct Method of Interpolation – More Examples Civil Engineering 
To maximize a catch of bass in a lake, it is suggested to throw the line to the depth of the 
thermocline. The characteristic feature of this area is the sudden change in temperature. We are 
given the temperature vs. depth data for a lake in Table 3. (bir gölde levrek balığı avlama 
olasılığını artırmak için oltanın ucundaki yemin thermocline derinliğe kadar inmesi 
gerekmektedir. Bu bölgenin-derinliğin-karakteristiği göl sıcaklığının ani değiştiği alan olmasıdır. 
Çizelge 3’de gölün derinliğine bağlı olarak sıcaklığın değişimi verilmektedir. ) 
 
                                         Table 3  Temperature vs. depth for a lake. 

Temperature,  C  T  Depth,  m  z  

19.1 0 
19.1 –1 
19.0 –2 
18.8 –3 
18.7 –4 
18.3 –5 
18.2 –6 
17.6 –7 
11.7 –8 
9.9 –9 
9.1 –10 

 
Using the given data, we see the largest change in temperature is between z=–8 m and z=–7 m.   
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a) Determine the value of the temperature at z=–7.5 m using the direct method of 
interpolation and a third order polynomial. Find the absolute relative approximate error 
for the third order polynomial approximation. 

b) The position where the thermocline exists is given where 0
2

2


dz

Td
. Using the expression 

from part (a), what is the value of the depth at which the thermocline exists? 
 

Solution 
a) For third order polynomial interpolation (also called cubic interpolation), we choose the 
temperature given by 
 T(z)=a0+a1z+a2z2+a3z3  
 

 
         Figure 4  Cubic interpolation. 

 
Since we want to find the temperature at 5.7z , and we are using a third order polynomial, 
we need to choose the four data points closest to 5.7z  that also bracket 5.7z  to evaluate 
it. The four points are 90 z , 81 z , 72 z  and 63 z . 

Then 
  9.9,9 00  zTz  

   7.11,8 11  zTz  

   6.17,7 22  zTz  

   2.18,6 33  zTz  

gives 

        9.99999 3
3

2
210  aaaaT  

y  

 00 , yx  

 11, yx
 xf3

 22 , yx  

 33 , yx  

x  
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        7.118888 3
3

2
210  aaaaT

         6.177777 3
3

2
210  aaaaT  

        2.186666 3
3

2
210  aaaaT  

Writing the four equations in matrix form, we have 

 






























































2.18

6.17

7.11

9.9

2163661

3434971

5126481

7298191

3

2

1

0

a

a

a

a

 

Solving the above four equations gives 
9.6150 a  

 58.2621 a  

 55.352 a  

 5667.13 a  

Hence 
  3

3
2

210 zazazaazT   

                    69,5667.155.3558.2629.615 32  zzzz  

       32 5.75667.15.755.355.758.2629.6155.7 T  
                          C725.14   

The absolute relative approximate error a  obtained between the results from the second and 

third order polynomial is 

100
725.14

138.14725.14



a  

        %9898.3  
 
b) To find the position of the thermocline, we must find the points of inflection of the third order 

polynomial, given by 0
2

2


dz

Td
 

69,5667.155.3558.2629.615)( 32  zzzzzT  

69,7.410.7158.262 2  zzz
dz

dT
 

69,4.91.71
2

2

 zz
dz

Td
 

Simply setting this expression equal to zero, we get 
0= –71.10–9.4z   
z=–7.5638 m 

This answer can be verified due to the fact that it falls within the specified range of the third 
order polynomial and it also falls within the region of the greatest temperature change in the 
collected data from the lake. 
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Example 7 Direct Method of Interpolation – More Examples Mechanical Engineering 
For the purpose of shrinking a trunnion into a hub, the reduction of diameter ΔD of a trunnion 
shaft by cooling it through a temperature change of ΔT is given by 
 ΔD =D α ΔT  
where  
            D= original diameter  in.  

 α= coefficient of thermal expansion at average temperature  Fin/in/  
The trunnion is cooled from F80  to F108 , giving the average temperature as F14 .  The 
table of the coefficient of thermal expansion vs. temperature data is given in Table 1. 
 
                    Table 1  Thermal expansion coefficient as a function of temperature. 

Temperature, T (°F) Thermal Expansion Coefficient,  Fin/in/    

80 6.47 610  
0 6.00 610  

–60 5.58 610  
–160 4.72 610  
–260 3.58 610  
–340 2.45 610  

 

 
Figure 1  Thermal expansion coefficient vs. temperature. 
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If the coefficient of thermal expansion needs to be calculated at the average temperature of 
F14 , determine the value of the coefficient of thermal expansion at F14T  using the 

direct method of interpolation and a first order polynomial. 
 

Solution 
For first order polynomial interpolation (also called linear interpolation), we choose the 
coefficient of thermal expansion given by 
   TaaT 10   

 

 
         Figure 2   Linear interpolation. 

 
Since we want to find the coefficient of thermal expansion at F14T , and we are using a first 
order polynomial, we need to choose the two data points that are closest to F14T   that also 

bracket F14T  to evaluate it. The two points are F00 T  and F601 T .  

Then 
              6

00 1000.6    ,0  TT   

              6
11 1058.5,60  TT   

gives 

               6
10 1000.600  aa   

               6
10 1058.56060  aa  

Writing the equations in matrix form, we have 

 



























 



6

6

1

0

10  58.5

10  00.6

601

01

a

a
 

Solving the above two equations gives 
 6

0 1000.6 a  

 6
1 10007.0 a  

Hence 

 00, yx  

 11, yx  

 xf1

x

y  
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   TaaT 10   
 060,10 007.01000.6         66   TT  
At F,14T  

               1410 007.010 00.614 66                 

                        Fin/in/10902.5 6    
 

Example 8 Direct Method of Interpolation – More Examples Mechanical Engineering 
For the purpose of shrinking a trunnion into a hub, the reduction of diameter ΔD of a trunnion 
shaft by cooling it through a temperature change of T  is given by (ΔD çapındaki mafsal 
şaftının ΔT kadar sıcaklığı değiştirilerek büzüşmesi amaçlanmaktadır. ) 
 ΔD =Dα ΔT  
where  
            D= original diameter  in.  

 α= coefficient of thermal expansion at average temperature  Fin/in/  
The trunnion is cooled from F80  to F108 , giving the average temperature as F14 .  The 
table of the coefficient of thermal expansion vs. temperature data is given in Table 2. 
 
                    Table 2  Thermal expansion coefficient as a function of temperature. 

Temperature, T (°F) Thermal Expansion Coefficient, α (in/in/°F) 
80 6.47 610  
0 6.00 610  

–60 5.58 610  
–160 4.72 610  
–260 3.58 610  
–340 2.45 610  

 
If the coefficient of thermal expansion needs to be calculated at the average temperature of 

F14 , determine the value of the coefficient of thermal expansion at F14T  using the 
direct method of interpolation and a first order polynomial. 
 

Solution 
For second order polynomial interpolation (also called quadratic interpolation), we choose the 
coefficient of thermal expansion given by 
   2

210 TaTaaT   
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        Figure 3   Quadratic interpolation. 

 
Since we want to find the coefficient of thermal expansion at F14T , and we are using a 
second order polynomial, we need to choose the three data points that are closest to F14T  

that also bracket F14T  to evaluate it. These three points are F800 T , F01 T  and 

F602 T . 
Then 
              6

00 1047.6  ,80  TT    

   6
11 1000.6    ,0  TT    

   6
22 1058.5,60  TT   

gives 

                  62
210 1047.6808080  aaa  

                  62
210 1000.6000  aaa  

                  62
210 1058.5606060  aaa  

Writing the three equations in matrix form, we have 

 





















































 





 

10  58.5

10  00.6

10  47.6

3600601

001

6400801

6

6

6

2

1

0

a

a

a

 

Solving the above three equations gives 

 
6

0 1000.6 a  

 
9

1 105179.6 a   

 
12

2 100357.8 a  
Hence 
   8060,100357.8105179.610  00.6 21296   TTTT  
At F,14T  

 00 , yx  

 11, yx
 22 , yx  

 xf2  

y  

x  
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                 21296 14100357.814105179.610  00.614    

                        Fin/in/109072.5 6    

The absolute relative approximate error a  obtained between the results from the first and 

second order polynomial is 

            
100

109072.5

10902.5109072.5
6

66





 



a

 
       %087605.0  
 

Example 9 Direct Method of Interpolation – More Examples Mechanical Engineering 
For the purpose of shrinking a trunnion into a hub, the reduction of diameter ΔD of a trunnion 
shaft by cooling it through a temperature change of ΔT  is given by 
 ΔD =DαΔT  
where  
            D= original diameter  in.  

 α= coefficient of thermal expansion at average temperature  Fin/in/  
The trunnion is cooled from F80  to F108 , giving the average temperature as F14 .  The 
table of the coefficient of thermal expansion vs. temperature data is given in Table 3. 
 
                    Table 3  Thermal expansion coefficient as a function of temperature. 

Temperature,  F  T  Thermal Expansion Coefficient,  Fin/in/    

80 6.47 610  
0 6.00 610  

–60 5.58 610  
–160 4.72 610  
–260 3.58 610  
–340 2.45 610  

 
a) If the coefficient of thermal expansion needs to be calculated at the average temperature 

of –14°F, determine the value of the coefficient of thermal expansion at T= –14°F  using 
the direct method of interpolation and a first order polynomial. Find the absolute relative 
approximate error for the third order polynomial approximation. 

b) The actual reduction in diameter is given by 

            
f

r

T

T

dTDD   

where   Tr= room temperature (°F) 
  Tf= temperature of cooling medium (°F) 
Since 
 Tr=80°F 
 Tf= –108°F 
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108

80

dTDD   

Find out the percentage difference in the reduction in the diameter by the above integral formula 
and the result using the thermal expansion coefficient from part (a). 
 

Solution 
a) For third order polynomial interpolation (also called cubic interpolation), we choose the 
coefficient of thermal expansion given by 
   3

3
2

210 TaTaTaaT   

 

 
         Figure 4  Cubic interpolation. 

 
Since we want to find the coefficient of thermal expansion at F14T , and we are using a 
third order polynomial, we need to choose the four data points closest to F14T  that also 

bracket F14T  to evaluate it. Then the four points are F80T0  , F0T1  , F602 T  

and F1603 T . 

              6
00 1047.6    ,80  TT    

   6
11 1000.6       ,0  TT   

   6
22 1058.5  ,60  TT   

   6
33 1072.4,160  TT   

gives 

                   63
3

2
210 10  47.680808080  aaaa  

                   63
3

2
210 10  00.60000  aaaa  

y  

 00 , yx  

 11, yx
 xf3

 22 , yx  

 33 , yx  

x  
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                  63
3

2
210 10  58.560606060  aaaa  

                   63
3

2
210 10 72.4160160160160  aaaa  

Writing the four equations in matrix form, we have 

 















































































6

6

6

6

3

2

1

0

6

5

5

10  72.4

10 58.5

10  00.6

10 47.6

10096.4256001601

1016.23600601

0001

1012.56400801

a

a

a

a

 

Solving the above four equations gives 

            
6

0 1000.6 a  
 a1=6.4786×10–9  
 a2=–8.1994×10–12  
 a3=8.1845×10–15 
Hence 
 (T)=a0+a1T+a2T2+a3T3 
            80160,101845.8101994.8104786.610 00.6 31521296   TTTT  

                 31521296 14101845.814101994.814104786.61000.614     

                      Fin/in/109077.5 6    

The absolute relative approximate error a  obtained between the results from the second and 

third order polynomial is 

             100
109077.5

109072.5109077.5
6

66





 



a  

       %0083867.0  
 
b) In finding the percentage difference in the reduction in diameter, we can rearrange the integral 
formula to 

 
 f

r
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and since we know from part (a) that 
80160,101845.8101994.8104786.61000.6)( 31521296   TTTTT  we 

see that we can use the integral formula in the range from F108fT  to F80rT  

Therefore, 

 
 f

r

T

T

dT
D

D   

        


 
108

80

31521296 101845.8101994.8104786.610 00.6 dTTTT  

       
108

80

4
15

3
12

2
96

4
101845.8

3
101994.8

2
104786.61000.6














TTT
T          



321 
 

                   
6109.1105   

So in/in109.1105 6

D

D
 using the actual reduction in diameter integral formula. If we use 

the average value for the coefficient of thermal expansion from part (a), we get 

 T
D

D


   

         rf TT    

         80108109077.5 6    

        6106.1110    

and in/in106.1110 6

D

D
 using the average value of the coefficient of thermal expansion 

using a third order polynomial. Considering the integral to be the more accurate calculation, the 
percentage difference would be 
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