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OBJECTIVE

Translate well-known differential equation solutions into a working program to com-
pute propagation in underwater acoustic ducts. Document the program methods, to assist
users of this and similar programs.

RESULTS

1. An effective program for computing propagation loss in a layered ocean by normal
modes has been developed. Complete documentation for the program is contained herein.

2. Sediment layers are modeled as fluids in which densities, sound speeds, and absorp-
tion can be specified. This permits a complete wave solution for bottom reflected sound
energy.

3. A continued fraction technique for evaluating asymptotic series is shown to give
superior results in evaluating the auxiliary functions required in this program, the modified
Hankel functions of order 1/3.

4. A mode follower program given here is useful in tracing eigenvalues. Such traces
are needed to understand the eigenvalue structure.

RECOMMENDATIONS

1. Improve the mode locating ability of this normal-mode program to make it self-
contained. It currently requires user interaction to locate eigenvalues.

2. Investigate methods to incorporate the effect of rough boundaries into this
program.
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INTRODUCTION

This report describes a normal-mode program that has been used successfully for 12
years to compute sound propagation in idealized underwater acoustic ducts. The theory and
considerations used in developing the program are discussed here, and a copy of the FOR-
TRAN statements are included as appendix A. Appendix B consists of sample inputs and
outputs to assist users in gaining familiarity with the program. It is hoped that this report
contains sufficient information to allow a user to run the program and to modify it as desired.

This program follows the methods developed by Furry and Freehoffer (ref 1) to com-
pute electromagnetic propagation in the 1940s. Marsh adapted these methods to underwater
sound in his doctoral thesis (ref 2). Using this material, Pedersen, at NOSC in the late 1950s,
adapted the method to digital computers and developed the programs to compute the auxil-
iary functions. This original program used two layers to define the sound-speed profile (ref 3).
This program was expanded to three layers by DF Gordon and RF Hosmer and finally to the
multiple-layer program reported here. In this program the only constraints on the number of
layers are computer space and running time. The program is normally configured to permit
up to 12 layers.

The earlier programs were used to study sound propagation in ocean surface ducts.
Programs that permit more layers have proven useful also for studying propagation in the
deep ocean, although the number of modes required generally limits computations to fre-
quencies below 300 Hz. The multiple-layer program has also proven useful in modeling sedi-
ment layers and thus in computing shallow-water propagation.

The principal limitation in the application of this program to real-world situations is
the requirement of ideal conditions: boundaries must be smooth and horizontal, and no
variation of boundary conditions with range is permitted. Despite this limitation, the pro-
gram has proven useful in predicting and explaining acoustic propagation and has applications
in a number of related areas. These include checking other types of wave-theory models or
corrections such as caustic corrections; determining group velocities, dispersion curves, and
reflection coefficients; and determining acoustic coupling between ducts.

The following paragraphs describe the specific topics covered by the sections in this
report. In GENERAL SOLUTION are the equations required to solve the wave equation
with the boundary conditions used here. DETERMINANT is part of the basic solution but
is concerned with the particular numerical method used in this program to evaluate the con-
ditions imposed by the boundaries. Other approaches could be used instead. A later section,
NUMERICAL BREAKDOWN, is also part of the basic solution, but deals with special numer-
ical problems that have arisen but are not apparent from the basic equations.

1. The Bilinear Modified-Index Protile, by WH Furry, in Propagation of Short Radio Waves, DE Kerr, ed:
MIT Rad Lab series, vol 13, p 140-168, McGraw-Hill, New York, 1951.

2. Navy Underwater Sound Laboratory Report 111, Theory of the Anomalous Propagation of Acoustic
Waves in the Ocean, by HW Marsh, 1950.

3. Normal-Mode Theory Applied to Short-Range Propagation in an Underwater Acoustic Surface Duct, by
MA Pedersen and DF Gordon; J Acoust Soc Am, vol 37, p 105-118, January 1965.




FINDING EIGENVALUES deals with the philosophy of eigenvalue location employed
by this program, which essentially leaves this function to the user, the program only serving as
a tool. It shows how the program is used to make computations.

Several “automatic” mode finding versions of this program have been developed to
the point of accommodating certain classes of profiles. However, they need further develop-
ment and have not yet been reported.

SOUND SPEED PROFILE indicates the required equations for curve fitting and the
various ways the sound speed can be read in on cards. A continuous water profile can be
entered quite simply, but sediment layers with sound speed discontinuities and absorption
gradients can become complicated.

REFLECTION COEFFICIENTS AND OTHER AUXILIARY OUTPUTS describes a
short subroutine that computes reflection coefficients for any mode at a given profile inter-
face. Intermode interference lengths and mode damping coefficients are also discussed.

COMPUTATION OF THE MODIFIED HANKEL FUNCTIONS gives the analysis
necessary for computing these functions. The use of continued fractions to evaluate an
asymptotic series is discussed. To facilitate running the program on computers of different
word length, this section provides the information required to optimize the functions for
the different word lengths.

MODE FOLLOWER PROGRAM describes a separate but related program for investigating
the eigenvalues themselves rather than using them to compute propagation losses.

GENERAL SOLUTION

The derivation of the normal-mode solution has been discussed from various points
of view (eg ref 1, 4, 5). Only an outline is given here. In general, the time-independent wave
equation is written in polar coordinates and the azimuthal coordinate is dropped under the
assumption that the field is independent of azimuthal direction. Thus

(/1) (3/31) [r(@W/an)] + (29[322) + (w?/ch) ¥ =0, (1)

where  is the velocity potential, ¢ the sound speed, and the independent variables are depth,
z, and range, .

Equation (1) is then separated into range- and depth-dependent parts with a separation
constant . The separation is possible when the sound speed is a function of depth only.
After accounting for the source discontinuity and the outgoing radiation condition, integrating
over all real values of the separation constant, and normalizing, one can find the solution for
a field point in terms of propagation loss H as follows:

4. Naval Air Development Center Report NADC-72002-AE, Normal Mode Solutions and Computer Programs
for Underwater Sound Propagation, by CL Bartberger and LL Ackler, 4 April 1973.

5. A Normal Mode Theory of an Underwater Acoustic Duct by Means of Green’s Functions, by RL
Deavenport; Radio Sci, vol 1, p 709-724, 1966.
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H=-10logpgop ™ > Hy Oy) Up®@ Up(zg)| +eyr, (2)
n=1
where r is the range, z() is the source depth, z is the receiver depth, H% is the Hankel function
of order zero, second type, A, is the nt/ eigenvalue, Uy, is the depth function for mode n,
and pg and pp are the densities at source and receiver. The sum is over the number of modes,

N, making a significant contribution. The final term contains the volume attenuation coeffi-
cient, xA. From Thorp (ref 6), ap in dB/m is computed by the relationship

0.9144 a5 =0.0001 F2/(1 + F2) +0.04 F2/(4100 + F2), 3)

where F is the frequency in kHz. Improved equations or those for specific ocean areas can
be easily substituted. The depth function, Uy, is a solution to the depth-dependent part of
the separated wave equation

d2U/dz? + [w2/c2(z) -A2] U =0, 4)
where

w =2nf
and f is the frequency, in Hz.

A closed-form solution to eq (4) can be obtained when the reciprocal sound speed

squared or squared index of refraction is a linear function of depth. That form is used in
this program, and sound speed in each layer is expressed as follows:

[ei/c@]?=1-27; (z-2)/c;, (5)

where cj, z;, and v; are the sound speed, depth, and sound-speed gradient, respectively, at the
top of layer i. Up to 12 such layers are permitted by the program, for modeling the sound-
speed profile.

With this expression for sound speed, solutions to eq (4) can be expressed in terms
of solutions to Stokes’ equation

h' +zh=0. (6)
Only a simple change in independent variable is required from z to ¢, where
= 3 Doy D 2
Glz)= l:ai (z-2)+w /ci -2 ] [af (7)
and
3_ 2,3
a; =-271; @ /ci ) (8

6. Analytic Description of the Low-Frequency Attenuation Coefficient, by WH Thorp; J Acoust Soc Am,
vol 42, p 270, 1967.




The solutions to Stokes’ equation that are used are the modified Hankel functions of order
1/3,h1(%) and hp($). The depth function is a linear combination of these two independent
solutions:

Fp ()= Ay i1y €p) * By 12 )

where F, is the unnormalized form of Uy,. The coefficients ap j and By j for mode n in layer
i are determined to satisfy boundary conditions, which will be listed below. Values of A, for
which the boundary conditions can be satisfied are the eigenvalues.

The first boundary condition is the radiation condition. It is satisfied by using a nega-
tive sound-speed gradient in the deepest layer, which extends to infinite depth, and by letting
the depth function there be proportional to hy only. That is,

F,(2) = Byhy(5y)- (10)
At the surface the depth function is zero:

F,(0)=0, (1D
and at layer interfaces, pU and its depth derivative are continuous:

piFp i@ = pis1 Fp i+1(2)5 (12)

an’i(z)/dz = an,i+1(Z)/dZ' (13)
Here‘pi is the density in layer i, and the excess acoustic pressure, p, is given by

p=pU.

If U is assumed to be the vertical component of the velocity potential, eq (12) and (13) are
equivalent to requiring that the pressure and the vertical component of particle velocity be
continuous across the layer interface.

Applying these boundary conditions to a sound-speed profile consisting of M layers
results in 2M - 1 linear equations in hj and hy. They are homogeneous in that the constant
is zero in each equation. There are M-1 coefficients Aj to be determined and M coefficients
B;. These coefficients can therefore be determined within a constant of proportionality D,
provided the system of equations is linearly dependent. That is, the 2M - 1 square matrix of
coefficients of A; and Bj must be of rank 2M - 2 or less. Its determinant will then be zero.
This is the eigenvalue condition. Values of \ must be found which make the determinant
sero. This determinant, G, is discussed in more detail in a later section.

Zeroes of the determinant, G, are found by using the secant method. The variable in
this iterative method can as well be some function of A as \ itself, and we use the following
complex phase velocity (v):

A, = @l (14)

n

To find a v that is a root of G requires an initial guess, v, where the subscript 1 refers to the
step in the iteration and a small increment, §1. Each succeeding estimate is given by the
relationship



Vj‘l‘l = Vj + 6]’
where

5] =—(Vj _VJ—I)GJ/(G] _G_]—l) (15)
The details of this iterative process are given in a later section.

When an eigenvalue Ve is found, the coefficients are then evaluated. One coefficient
can be given an arbitrary value, so A is set to p 1h2[$1(0)]. Fromeq (11), By is then
-p1h1[$1(0)]. Pairs of equations (eg (12) and (13)) for each successive interface can then

be used to evaluate the next Aj and Bj as discussed later.

Finally the normalizing factor, Dn, for mode n is obtained by the relationship

| oF2@ (16)
0

This equation follows from the orthogonality of the depth functions. It is not the pressure,
however, which is proportional to pU, but p/ZU that is orthogonal (ref 7). Therefore, D,
must be determined such that the integral of pU2 is 1.

From Stokes’ equation (eq (6)) and eq (7-9), the integral of F2 takes the form

Zi+] Zi+]
[ FXodz= [§i<z) Fz(f%i + F'2(§)/ai3] . (17)
i 2i
Therefore
n-1
By = ‘P';’Wz/al 3 z Pil8i(Zir DI = 38141 (i D/ @11 Pi41)] Fiz(zm)
i=1
+<pi/af - piﬂ/afﬂ) Fz) | (18)

where eq (12) and (13) have been used to combine terms at each interface. The derivative of
F takes the form

Fi(zi4) =3 {Aih'l[fi(ziﬂ)] +Bih'2[§i(zi+1)]} : (19)

The Wronskian, W, is an imaginary constant (see eq (85)) and is the contribution of eq (17) at
the surface:

W =-1.45749544104i.

7. Some Effects of Velocity Structure on Low-Frequency Propagation in Shallow Water, by AO Williams:
J Acoust Soc Am, vol 32, p 363-365, March 1960.




The depth functions are normalized by the relationship
U, (zg) U,(2) = Fo(zg) Fn(z)/Dn. (20)

The functions F and F' used in computing D, are conveniently assembled from the
elements of the determinant and the coefficients A; and Bj. This requires care in developing
the computer code, because F is always multiplied by p and F' has the term a; in it. The sur-
face differs from the other layers in that Fy is zero there and F'l, by eq (19),isa;W. How-
ever, because p] appears as a factor in the coefficients of F1, the actual valu? of F'l at the
surface in the computation is p1 a1 W. This factor of p| together with the p{’“ needed for
orthogonality, when squared, gives the p? of eq (18).

DETERMINANT

Normal modes are determined by finding the eigenvalues of a characteristic equation
which, in turn, is obtained by setting a determinant to zero. The determinant is obtained
from the coefficient matrix of a set of linear, homogeneous equations expressing the bound-
ary conditions as given by eq (10) — (13). Since the method of handling this determinant is
a central feature of this normal-mode program, it is given in detail here.

The first line of the matrix is taken from eq (11) as

At each profile interface, i, where i numbers the interfaces below the surface from 1 to
N-1, the two boundary conditions given by eq (12) and (13) are

B; pi hy [ (2341 *+ Aj i [§ (341 = Byt Pir1 12 [$i+1 Z34)]
= Aiq Pis1 D1 (8541 )] =0 (22)
and
By a; b [ (2 )] + A B [§5(z3 )] — Bir1 81 12 (it (Zip)]

- A1 ape1 0 [Sieg @] = 0 (23)

The coefficients of A; in the first equation and Bj+1 in the second will be the diago-
nal elements of the matrix. The nonzero elements of the matrix will therefore be no more
than two places from the diagonal. The matrix can be stored in the computer in an array of
size (2M-1) X 4, where M is the maximum number of layers in the sound-speed profile. In
the final layer, AN h is omitted, as in eq (10). In the program, the real and imaginary parts
are stored in separate arrays.

The sparseness of the matrix permits efficient evaluation by a triangularization
process of row reduction. For each pair of rows representing a pair of equations given by
eq (22) and (23), the first element from the first equation and the first two from the second
equation must be set to zero by subtracting the proper multiple of preceding rows. The
determinant is then the product of the diagonal elements of the triangularized matrix. The
value of the determinant, G, is used in eq (15) to find the roots by iteration.



Note that a value of v that makes this determinant zero, or near zero, ordinarily is
zero because only one diagonal element is very small. For trapped modes this element is at
the row representing the first interface below the mode, ie the interface just below the layer
of positive gradient in which the sound speed is equal to the mode phase velocity. For
unstrapped modes it is usually the final diagonal element that is small. Thus the layers in
which the sound speed is greater than the phase velocity of a mode do not greatly affect the
eigenvalue. Eigenvalues are determined mainly by those parts of the sound-speed profile
that are less than the phase velocity.

When an eigenvalue is found, the coefficients A; and Bj must next be evaluated. As
mentioned earlier, one coefficient can be arbitrarily chosen. This is done, and eq (21) is satis-
fied by letting

Aq=p1hy[§1(0)]
and

By 5 —pph[6,40)1. (24)

The factor pj is used simply because the number containing it is easily available in the pro-
gram. It is divided out by the normalizing factor, D. Eq (22) and (23) can then be used to
evaluate the remaining coefficients, but the triangularized form of the matrix yields the coef-
ficients with less computation. If gij is the element in the ith row and jth column of the tri-
angularized matrix, then by Cramer’s rule,

B; = Aj_1 82i-2,2i-2 82i-1,2i/Ei
and
Aj = -Aj-1 £2i-2,2i-2 82i-1,2i-1/Eis
where
E;i = £9i-2,2i-1 82i-1,2i ~ 82i-2,2i 82i-1,2i-1- (25)

A simpler form is used for By in the final layer since there is no Ay there.

In certain situations numerical problems can arise in evaluating the determinant.
These require some extra tests in the subroutine that makes the evaluation. The extra tests
will be discussed in the section, NUMERICAL BREAKDOWN. A more routine problem is
the loss of accuracy that can arise in subtractions in the row reduction of the matrix. This
loss results in less sharpness of convergence to a root. The size of the determinant, G, can be
14 orders of magnitude less at a root than at the general background near the root. This
variation occurs because the modified Hankel functions can be computed to about 14-place
accuracy in a computer with 18 decimal places available. Modes usually converge to 10 or
12 places; thus a few places are lost in evaluating the determinant. In some profiles, usually
those with multiple ducts or those in which prepagation through bottom sediments plays a
large part, the convergence can be much poorer. Modes need to converge to about 4 places
to be reliable for computing losses, and convergence occasionally fails to meet this require-
ment. The only current cure for this loss in accuracy is to go to higher-precision arithmetic
or to compute the modified Hankel functions to greater accuracy. For instance, a standard




matrix triangularization routine that uses full row and column pivoting has been tried with
no resultant increase in accuracy.

FINDING EIGENVALUES

There are versions of this program under development that will locate the eigenvalues
and do the entire computation without user intervention. Currently, however, these versions
are reliable only for the simpler types of profiles — usually those with only one duct —and
are not ready to be reported. Locating eigenvalues with the standard version of the program
is discussed here.

The standard version of the program requires the user to find the eigenvalues. In this
version, each time an eigenvalue is determined by iteration, the resulting value is stored and
counted as an eigenvalue. Therefore, the user must ensure that all iterations result in good
roots, that all required modes have been determined, and that no modes are present more
than once. In most cases the user must expect to make more than one computer run to
obtain this result.

CONTROL CARDS

The user controls the eigenvalue determination by using any of four different types
of control cards. The first type specifies an initial value for v and an initial step size, Av.
These are both complex numbers with a real and an imaginary part. G is then evaluated at v
and at v + Av to start the iteration. These are essentially the v; and V41 of eq (15). If these
two trial eigenvalues are in the vicinity of a root, the iteration will converge to that root.

The second type of card specifies a line segment in the complex plane, along which a
search for eigenvalues, v, is made. The end points of the line are given along with the number
of equally spaced points at which the line is to be divided. G is then evaluated at each suc-
cessive division point along the line until a relative minimum in |G2| is found, indicating that
a root is nearby. The iterative process is applied to find the root. The initial step size, Av, is
first computed to bring the second evaluation at v + Av as close as possible to the true root.
This is done by using the point which resulted in minimum iG2| and the points on either side
of it to determine the minimum of the parabola passing through them. If v-h, v, and vt+h
are the three points at which G was evaluated, it follows that the distance from v to the mini-
mum of the parabola

Av = h[G(v + h) - G(v - 1)1/2[2G() - G(v+h)-G(v-h)]. (26)

When the iteration is complete, the eigenvalue is recorded and the program continues
to step along in the direction of the given line, checking again for a minimum. However, the
stepping is resumed from the newly located root rather than from the approximate location
where the minimum was detected. With this correction in position, the designated line does
not have to hug the curve on which the eigenvalues are located because it is corrected at each
eigenvalue.

This method of finding eigenvalues has proven very successful. Its main utility arises,
though, because the eigenvalues of the trapped modes have negligible imaginary parts and the

10



search can be made along the real line. In simple profiles this can often give a successful set
of modes on the first try. Usually, only the three initial eigenvalues need to be located by
this means because further eigenvalues can be located by extrapolation on the previous three.
This is the function of the third type of control card.

The third type of card specifies the number of additional modes to be determined by
extrapolation. The starting value of each eigenvalue is determined by extrapolating from the
three most recently determined eigenvalues to find v. The step size, Av, is chosen as 0.0001
times the distance between the last two eigenvalues. The exact eigenvalue is then determined
by iteration. The extrapolation is the simple parabolic form for equal steps:

v= 3Vn - 3Vn_1 + Vo 0. 227

This method of locating modes works well when the modes lie along a smooth curve,
as usually occurs for single ducts. But this relationship does not always occur for profiles
with multiple ducts.

The final control card is punched by the program when requested and contains the
correct eigenvalue to full precision. Upon encountering this card, the program does not
iterate, but instead evaluates G for this eigenvalue and stores this value of G as the next
eigenvalue. A deck of such completed eigenvalues can be stored, saving the expense of
recomputing the eigenvalues for a given profile and frequency.

ITERATION TERMINATION

A full description of the iteration of eq (15) should include the method of termina-
tion. The usual criterion for stopping is that G fails to become smaller. As G approaches
minimum size, however, round-off error can act as noise so that G is no longer a predictable
function of v. The denominator of eq (15) can then be very small by chance, resultingin a
large value for §;. If this happens, the next value of v, which was as near to the root as pos-
sible, will be far away. A much better convergence criterion is that 8i has reached a minimum
in absolute value. In the program, iteration is stopped when 162| exceeds the previous value
by a factor of 2. However, this criterion is not applied until three iterative steps have been
completed, to permit the process to become well established. An upper limit of 15 iterative
steps is permitted. We have not found an improvement on the root after 15 steps.

SOUND SPEED PROFILE

The normal mode program requires as inputs the depth of each layer and the sound
speed and sound speed gradient at the top of each layer. These variables are mapped into the
dimensionless internal variables of the program by eq (7). The purpose of the sound speed
profile processing portion of the program is to accept the profile parameters in a form con-
venient for the user and to translate them into the required sound speeds and gradients.

The first function of the processing program is to make the sound speed continuous
at interfaces. This is done simply by using the sound speed at the bottom of one layer as the
sound speed at the top of the next. It may be necessary to compute the sound speed at the
bottom of the layer. The necessary parameters will have been given. Occasionally a

11




discontinuity in sound speed is required, as when modeling an interface between water and
sediment. The user indicates this by specifying the sound speed at the top of the layer. If
left blank, the program provides the sound speed necessary for continuity.

A second function of the processing program is to permit a layer to be defined by the
sound speed at top and bottom of the layer rather than by one sound speed and one gradient.
Note that the profile form as given by eq (5) is a two-parameter curve.

The last layer extends to infinite depth, so a gradient must be specified at the top of
it. However, this gradient can be specified by giving a depth and sound speed point below the
last layer. The program handles this by checking to see if the gradient of the last given layer
is unspecified. If it is, the number of layers is reduced by one, which causes the last layer to
be only the required extra point determining the final gradient. This final gradient must
always be negative, as is required by the boundary conditions. The program user must ensure
that this gradient is negative and that no gradient is zero. A zero gradient will appear in the
denominator of eq (7).

These functions of the profile processing program are relatively simple, but an addi-
tional capability used to model sediment bottoms greatly increases the complexity of the
program. The capability required is to specify the absorption in a layer by adding an imagi-
nary part to the sound speed. In older versions of this normal mode program an imaginary
part, expressed as an absorption coefficient, could be added to the sound speed at the top of
the layer. This imaginary part is small compared to the real part. Since the gradient was
assumed real at the top of the layer, the imaginary part was initially not changing with depth
and it usually changed only a minor amount through the depth of the layer. However, this
small change could not always be relied upon. Also Hamilton (ref 8) has published data on
absorption gradients in sediment layers, so more precise control of this part of the sound
speed function is needed to model sediment layers. Therefore, a more comprehensive profile
processing routine has been incorporated in the normal mode program. This curve-fitting
process is described below.

The following quantities can be input for each layer depth starting at the surface:

Depth of top of the layer
Sound speed at top of layer
Sound speed at bottom of layer
Real part of sound speed gradient at top of layer
Attenuation in loss per km at the top of the layer
A similar attenuation at the bottom of the layer
Density in the layer
The density is a constant in the layer and as such requires no further curve fitting. Redun-

dant parameters are left blank on input cards. In some cases negative values serve as flags to
indicate specific treatment. For instance a negative value of absorption at the top of a layer

8. Sound Attenuation as a Function of Depth in the Sea Floor, by EL Hamilton; J Acoust Soc Am, vol 59,
p 528-535, March 1976.
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directs the program to use the same imaginary part of sound speed as occurred at the bottom
of the previous layer. Similar flags at the bottom of a layer are discussed later.

Absorption per Hz is given in units of decibels per km (or kiloyard). The quotient of
absorption over frequency is used because Hamilton (ref 8) usually considers absorption (or
attenuation) as proportional to frequency with a coefficient k. We use the symbol h instead.
That is,

o = hf.

We interpret o to be in units of dB per km and f in Hz, whereas Hamilton uses dB per m and
kHz; but the coefficients h and k remain equal.

The complex wave number in layer i is represented as

= wReC|C|™2 - iwImC|C|2. (28)
A plane wave will be attenuated « dB per km if

Imk; = - /(20 000 log e)

= - mAf, (29)
where
A =h/(20000 7 log e).
By equating the imaginary part of ki in eq (28) and (29), the imaginary part of C; is found to
be as follows:

ImC; = 1/A - [1/A2 - (ReCp?] % (30)

If « is zero, which is the case usually used in water layers, eq (30) cannot be used; but the
imaginary part of C is then simply zero. These two cases are treated separately in the program.

When sound speed is given at the top and bottom of layer i, the imaginary parts of
the sound speeds are determined by eq (30) and the only curve fitting task is to determine the
gradient ;. Solving eq (5) for v;,

2 2 2
The gradient is a complex number since the C’s here are complex. The z’s are real.

A second version of this computation arises if the gradient is required to be a real
number. In this case, which is used to match older versions of the program, an additional
parameter must be left unspecified and this parameter is Im Cj4+. This is equivalent to having
the sound absorption at the bottom of the layer unspecified. Therefore, a negative number
input for this parameter is used as a flag to call for this particular fitting procedure.
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For this situation, given Re Ci, Im Ci’ Re Ci+l , and making v; real, the determination
of v; and Im Cj41 is not éimple. When v is eliminated from the real and imaginary parts of
eq (31), a quartic equation in Im Cj41 results. Rather than derive an algebraic solution to
this equation, it is solved by iteration under Newton’s method. A good first guess at the
solution is Im Cj4+1 = Im C;. Four iterations usually give an accurate root. The equation is

Im C; (Im Cip % + [Im(Ci)?’ +2(Re Cpyp)? Im ci] (Im Cyy1)?
4 2 2o

The root is then found:

(Im Ciyp), = (m Ci),_ - /1.

The gradient, v, is next given by the relationship
7= [Im G [(Re Ci41)? - (Im C1+1)2] +2Re C; Re Gy p ImCiyq - Im(C? )} /
[4 Re Cjyq Im Ciyp (7441 - )] (58)

Because the root of eq (32) may not be exact, Im 7j may not be exactly zero. This slight
error can be transferred to Cj4] by using the computed real v; to recompute Cj4+1. Thisis
done in the program by transferring to a portion of the program already designed to do this.

When sound speed and gradient at the top of the layer are given, the parameters
required by the program are all given. The sound speed at the bottom of the layer is rou-
tinely computed, however, because it may be required to make the next layer continuous.
Equation (5) is used to determine the sound speed at depth zj4+1, which is the depth of the
bottom of the layer. This is straightforward, but several complications arise. Only the real
part of the gradient at the top of the layer is used as an input because situations have not
arisen that require that the imaginary part of the gradient be specified. Often the attenua-
tion is given at both top and bottom of the layer. That is, Re Cj, ImCj and Re 7j are given,
plus a relationship between Re Ci+1 and Im Cj41. The imaginary part of the gradient, Im 7j,
must be determined as well as both real and imaginary parts of the sound speed at the layer
bottom. The derivation of this case is not trivial.

One relationship between the real and imaginary parts of the sound speed is given by
eq (28) and (29). From these equations at C;; 1 we derive

A(T = i) = 2/Ci+1 5 (34)
where

Substituting this expression for Cj+1 into eq (31) and equating real parts gives a quadratic
expression for T which has a usable root of

14



1
Re(cf)T = —Im(cf) - [ [Im(Ci3)] o Re(cf)B] , (35)

where

B=Re(C}) - 8 Re (2441 - 2)/A2 + 4 Re Cj/A2.
From eq (34),

Re Cpyq = 2T/A(T2 + 1)
and (36)

The gradient can now be evaluated by eq (31) to find its imaginary part.

Equations (34) and (35) cannot be used if the attenuation at the bottom of the layer
is given as zero. Therefore an alternate form must be used. This form is much simpler than
the previous case, since Cj4+] isreal.

3 Y
Ciyg = Re(Ci ) [ [Re C;~2 Re % (23 =2))] 37)

Im y; = [Im G - Im(C;)/C2, 1 (202341 - 217 (38)

Finally, if the special case, v; real, is specified by inputting a negative value for
absorption, eq (31) can be used directly to give

2

C1+1 =C13/[C1—2’)/1(Zl+1 _Zl)] (39)

To evaluate the square root, let

Qa5 ¥ ]
Ci+1 =a+ bi.
Then
Y, )
Re Cjy; = [[w (@2 +b2) J / 2’ (40)
and
Im Ci+1 =b/2 Re Ci+1' (41)

NUMERICAL BREAKDOWN

A situation arises frequently in which a very small depth function must be computed
from the difference of two large numbers. A wrong answer results if this accuracy loss
exceeds the word size of the computer. The best way that has been found to avoid this is to
check for it within the program and arbitrarily replace the wrong number. In checking for
this, a constant, called T-lim in the computer program, is compared to the argument of the
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modified Hankel functions or to the argument of the exponential function within modified
Hankel functions. A T-lim value of 25.0 is used in the program, but a smaller number occa-
sionally is required. The program user can alter T-lim by appropriate input cards (Key 8 =1
followed by a new value of T-lim). The next few paragraphs demonstrate the symptoms of
this problem, so as to assist a user in recognizing the problem. The remainder of this section
describes the modifications that have been made to the computer program to correct this
loss of accuracy.

The solid line of figure 1 shows a simple surface duct and the phase velocities of the
first three modes at 3 kHz. For this profile, the depth function of mode 1 is shown in fig-
ure 2. The solid line is the depth function as computed by a program that does not correct
for numerical breakdown. The dashed line shows the correct depth function below a depth
of 71 m. This result was determined from Airy functions, not from the program. Between
depths of 71 to 100 m, the program cannot compute the depth function accurately. In the
second layer, which starts at a depth of 100 m, the function can be computed accurately but
it is incorrectly placed by the boundary condition that requires the depth functions to be
continuous at interfaces. The slope of the depth function was correctly computed as indi-
cated by the identical shape of the three depth functions in the second layer. The shape is
such as to make the correct depth function continuous in slope across the interface.

The breakdown in accuracy at a depth of 71 m occurred when § had a value of -8.4.
(¢ is given by eq (7) and is the argument of the modified Hankel functions.) A negative value
of ¢ occurs when the mode phase velocity is less than the speed of sound. Since the ray of
the same phase velocity cannot reach such a region, the sound field there is a diffracted field.
The mode depth function is therefore small at such depths. In the figure, the depth func-
tion amplitude at the breakdown point is about 7 orders of magnitude (or in terms of propa-
gation loss, 140 dB) down from its maximum. Equations (62), (66), and (68), which will be
given for the modified Hankel functions, indicate that the argument of the exponential term
is 2/3(8.4)3/2, or 16.2. The functions hq and hy will thus be about 107 in magnitude at a
depth of 71 m. These large values and their small difference account for the approximate
accuracy loss of 14 decimal places, which is the general accuracy of the modified Hankel

functions.

Incorrect behavior in the depth function usually occurs when § is about -8.4. In
some more complicated profiles, however, where accuracy is lost in row reduction of the
determinant, the depth functions may become incorrect at values of { that are less in abso-
lute value. When this problem occurs it can be diagnosed by plotting the depth function of
the mode and noting the steep positive slope through some depth interval as in figure 2.
When that occurs, the value of T-lim should be decreased.

Incorrect depth functions can cause errors in propagation loss computations in two
ways. In figure 2, the solid-line depth function, because of its large size, can cause losses to
be too low at a depth of around 100 m. The second error would occur if the duct were
deeper, say 110 m. At this depth the erroneous segment of depth function in figure 2 would
reach a value of about 10’1, where it would be larger than the correct lobe of the depth
function near the surface. With this extra area under the curve, the normalizing factor would
be increased significantly and would reduce the size of this entire depth function. Thus,
losses near the surface would be larger because of the loss in size of mode 1.
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Figure 1. A two-layer sound speed profile for a
surface duct. The phase velocities of the first
three modes at 3 kHz are marked. The broken
line shows a modification of the upper layer to
prevent numerical breakdown in mode 1.
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Figure 2. Depth function of mode 1 at 3 kHz, showing error in the computed
function. The true function cannot be computed without increasing computer
word length, but the corrected value can and it will not cause a large error in
the mode sum.
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The standard correction to mode 1 is shown in figure 2 by the dot-dashed line. In the
depth interval where § < -8.4, the function is set to zero. The values of the depth function
at greater depths result from a modification in the values used in the determinant.

The corrected values in figure 2 are not equal to the true value of the depth function,
but they are small enough that they do not alter the propagation loss to a tenth of a decibel
when a full set of modes is used. When the source Or receiver is at a depth where such cor-
rections are necessary, the mode can be omitted from the computation. Thus, properly
omitting modes would solve the above problems except for the cases where the normalizing
factor, D, is affected. In these cases, losses cannot be computed accurately without the
corrections.

PROGRAM MODIFICATIONS

The modification is approximately equivalent to modifying the sound speed profile
as shown by the broken line in figure 1. In effect, the sound speed is not allowed to become
enough greater than the phase velocity of the mode being considered to cause problems.

The limitation on ¢ is accomplished at three different places in the normal mode pro-
gram. It is not clear that this is the best way to handle the problem and it may be redundant,
but it appears to be an adequate solution. These three corrections will be described next.
Finally a correction to the determinant program is described which is necessary because the
limiting of ¢ can cause false zeroes in the determinant.

In the subroutine SETUP the elements of the determinant are computed by deter-
mining ¢ at the top and bottom of each layer and then calling the modified Hankel function
program. At the top of each layer, Re ¢ is set to =7.5 if its value was less. However, this is
done in an iterative loop in which the real part of w/C;j in eq (7) takes on a sufficiently larger
value while its imaginary part is fixed. This is done to retain the absorptive properties of a
layer when its sound speed is in effect being reduced. It has been found unnecessary to make
the above constant, =7.5, a function of T-lim which the user can vary, because an oversized
value at the top of a layer is not as critical as at the bottom. At the bottom of a layer, several
tests are made. If the real part of { has decreased past the limit at some depth between the
top and bottom of the layer, it is set at the limit. This limit, called S-lim in the program, is
related to T-lim by the relationship

s=-(T)2/3 (42)

where S and T are the two limits. If Re ¢ is less than -7.5 throughout the layer, it is simply
set at -=7.5. Such a layer has negligible effect on a mode.

In program MAIN at the location where depth functions are computed for given
depths, a process similar to that above is used. To evaluate the depth functionina given
layer, ¢ is first evaluated at the top of the layer. The real part of { is then limited as in the
program SETUP above. Next ¢ is evaluated at the given depth by adding the depth-dependent
part onto the value at the top of the layer which may be the modified value. If this final
value is less than S-lim, the depth function is set to zero. If it is greater than S-lim, the func-
tion is computed in the usual way.
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The imaginary part of ¢ can be large if the eigenvalue has a large imaginary part or if
the speed of sound in the layer has a large imaginary part. When this happens the imaginary
part of 2/3 §3/ 2, which appears as an exponential in the modified Hankel functions, may
become large in absolute value even though Re ¢ has been limited. A final check is therefore
made before the exponential is computed. If Im §’3/2 is greater than T-lim, ¢ is reduced in
amplitude to the size at which it will equal T-lim. The angle of { in the complex plane is
preserved.

This limitation of the exponential can be viewed in another way. In a following sec-
tion the two components of the modified Hankel functions, F and F», eq (68) and (69),
have exponential terms whose arguments are equal and opposite in sign. When these argu-
ments have magnitude of 2/3 T-lim, they differ in size by 15 decimal places, which is near
the 18-decimal-place word size of the machine. The ability to compute the difference in
these two terms is essentially the same as the ability to compute the depth function accurately.

PREVENTING ZEROES IN THE DETERMINANT

Placing limits on { can cause problems in the determinant because ¢ may be set equal
to S-lim at several interfaces. The equations that arise for matching boundary conditions
may then be identical for these interfaces and may therefore fail to be linearly independent.
The triangularized determinant will thus have zeroes on the diagonal at positions equivalent
to interfaces that do not have real physical importance for the mode. These will prevent
location of the significant “‘zeroes” or roots. These artificial zeroes must be removed.

The artificial zeroes are detected and removed in the subroutine DET, which evaluates
the determinant. If four elements from the matrix have the configuration

a b
c d

and c is to be set to zero by row reduction, d will be replaced by a value, x, as follows:
x=d - bc/a.

If d is located on the diagonal, complete loss of accuracy is checked for by computing

s= {x2|/|d2|.

If s is less than 10'34, X is not used; instead, d is replaced by 10_17d. Note that this substi-
tution will occur when x is zero, thus preventing zeroes on the diagonal. The power of ten,
-17,1is chosen to be near the total word size of 18 decimal places.

The above substitution prevents sudden jumps in the value of the determinant when
all precision is lost at one step in the evaluation. This is important for the mode search rou-
tine which detects roots by looking for minima in a series of values of the determinant while
one parameter is incremented slowly. A sudden jump will often produce a relative minimum
which will be falsely interpreted as a root. At true roots, one or more elements along the
diagonal are small, but not as small as those checked for here.
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REFLECTION COEFFICIENTS AND OTHER AUXILIARY OUTPUTS

Once the depth functions of a mode have been determined, it is relatively easy to
compute reflection coefficients at any interface. Therefore, a subroutine called RCOEF has
been added to the program which will compute and print out reflection coefficients if
requested by the use of control key 3. If key 3 is set to 1, the reflection coefficients at all
interfaces are computed. If set to a number, n, greater than 1, the coefficient is computed
at the n#h interface only, where the surface is the first interface.

The printout includes the phase as well as the amplitude of the reflection coefficient
and the grazing angle. The grazing angle, 0, of the equivalent rays is computed from the
mode phase velocity and the sound speed, c, at the bottom of the layer, by Snell’s law:

0= cos! (c/v).

The grazing angle is computed only if the phase velocity is greater than the sound speed at
the interface, since otherwise the equivalent ray does not reach the interface.

The reflection coefficient is derived, following Bucker (ref 9), by assuming that an
isospeed layer exists for a small depth just above the interface. In this layer the depth func-
tion can be written as

f(z) = Aell? + Be™17, (43)
where 1, the vertical component of the mode wave number, is given for mode n by

1121 = k12 - )\Izl (44)
and

ki = w/cpi,

where cpj is the sound speed at the bottom of layer i. The derivation now consists of identi-
fying A and B as the pressures of the upgoing and downgoing waves at the bottom of the
layer; thus the reflection coefficient

R =A/B.

A and B are evaluated by making f and its derivative at the interface between this small iso-
speed layer and the regular profile continuous with the normal mode depth functions. The
thickness of the isospeed layer is then allowed to approach zero, giving the desired value of
R. If F and F' are the normal mode function and its depth derivative at the interface depth
defined by eq (9) and (19), the reflection coefficient resulting from the above derivation is

as follows:

R = (ilF + F")/(IF - F"). (45)

This coe fficient is a complex number. Loss per reflection is given by 20 times the
log of the absolute value. The phase gives the phase shift that an equivalent ray would

9. Sound Propagation in a Channel with Lossy Boundaries, by HP Bucker; J Acoust Soc Am, vol 48,
p 1187-1194, November 1970.
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experience upon reflection. Figure 3 is an example of the use of this computation. It shows
phase and amplitude of the reflection coefficient in shallow water over a sandy-silt sediment
lying over rock. The frequency is 1500 Hz. Reflections are given only at discrete points
determined by the individual modes.

The model in figure 3 is for a liquid bottom. That is, no rigidity is supplied in this
program and the sound speed, density, and attenuation determine the reflection coefficients.

The reflection coefficients computed by eq (45) can be closely approximated by
dividing the mode attenuation by the loop length of the corresponding ray. The loop length
must be determined from ray theory for the ray of the same phase velocity or vertexing veloc-
ity. However, an interesting analog of the ray loop length is the intermode interference length.
This is discussed by Guthrie (ref 10). Specifically,if the difference between eigenvalues, Re A,
for two adjacent modes is A\, the interference length 1= 2w/AN. This distance will usually
equal the ray loop length for some ray with phase velocity between that of the two modes.

As each mode after the first is computed, the length, 1, is computed and printed out.
Also routinely printed out for each mode is the mode damping or mode attenuation coeffi-
cient, in units of dB per km. This attenuation, ¢, is computed from the relationship

o; =-1000 Im ?\i logloe
=- 8686 Im A
This quantity multiplied by range gives the damping of mode i, in dB.

10. The Connection Between Normal Modes and Rays in Underwater Acoustics, by KM Guthrie; J of Sound
and Vibration, vol 32, no 2, p 289-293, 1974.
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Figure 3. A shallow-water profile with resulting phase and amplitude of the reflection coefficient at 1.5 kHz.
Parameters at the top of the sediment layers are as follows: 1st layer — ¢ = 1606.45 m/s, y = 1.5s~1, a =
0.18 dB/m, p = 1.68; 2nd layer — ¢ = 1684.0 m/s, y = 1.5s~1,a = 1.10 dB/m, p = 1.91; final layer — y = -0.1.
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COMPUTATION OF THE MODIFIED HANKEL FUNCTIONS

Most of the computer time required to determine eigenvalues and compute depth
functions is spent in evaluating the modified Hankel functions of order 1/3. For this reason,
minimizing computer time in evaluating these functions is desirable. Gaining as many places
of accuracy as possible is even more important. The average normal mode computation will
have many modes that can be determined to far greater accuracy than is required to obtain
0.1 dB accuracy in the propagation loss. However, there are usually some and often many
modes in which many places of accuracy are lost in evaluating the determinant. Therefore,
maximum accuracy in the modified Hankel functions is required to extend the range of
cases for which computations can be carried out successfully.

Optimization of the program is a function of the computer word length. The pro-
gram given in this report is for the UNIVAC 1110 with 60 bits word length in double preci-
sion or 18.1 decimal places. This section gives the equations and computational techniques
that are required to optimize this program for different computer word lengths. Complete
details of the functions are given in reference 11.

The Airy functions Ai(Z) and Bi(Z) can be used instead of the modified Hankel
functions hy and hy. However, since h is ideally suited to matching the boundary condi-
tions at great depth as formulated in this normal mode program, hy and hy are used here.
The relationship between them is as follows:

h{(z) = k [Ai(-2) - iBi (-2)] (46)

k* [Ai (-z) +iBi(-2)] , 47)

hy (z)
where

k = (3/2)2/3 (1- i\/3—/3), and k¥ is the complex conjugate of k.

In this section z will be the argument of the functions hq and hy. For small values
of |z|, hy and h, are computed by power series expansions. For large values, an asymptotic
expansion is used. In the past the asymptotic series was expanded directly. However, a
continued fraction expansion has been found to give both shorter running time and better
accuracy.

Figure 4 shows a line in the complex plane which divides the plane into two parts.
For values of z within the line, the power series method is used. When z is outside the line,
the continued fraction method is used. This line is a function of computer word length, and
the method of determining it will be given after the two methods have been treated. The
accuracy of the methods is also treated.

The program has a parameter called IH in the FORTRAN call statement which con-
trols which functions are computed. If IH isset to zero, both functions and their derivatives
are computed. If [Hisset to 1, only the functions are computed. Ifitissetto 2, only hyp
and its derivative are computed.

11. Tables of the Modified Hankel Functions of Order One-Third and their Derivatives, Harvard University
Computation Laboratory; Harvard University Press, Cambridge MA, 1945.
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Figure 4. Line in complex plane dividing the arguments for which the
modified Hankel functions are computed by (1) power series (inside)
and (2) asymptotic expansion evaluated by continued fractions
(outside).

POWER SERIES EXPANSION

In this expansion hy and hy are given by two auxiliary functions f and g as

hy @ = g+iG3y /2 (g-25) (48)
hy (2) = g-i 3712 (g-2p) . (49)
The auxiliary functions are given by the expressions
M
f=A > ayXm (50)
m=0
M
g= By S h (51)
=0

where X = 23, A =21/3/[1(2/3)] and B =21/3/[32/3 T (4/3)]. The derivatives b} (z) and
h'2 (z) can be derived by straightforward differentiation of eq (50) and (51) to give
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M
f=-az? Dy o X7 . (52)
m=0

oQ
1]

M
'=B z dy XM . (53)
m=0

The coefficients of eq (50) - (53) are given by recursion relations where ag = l,a1 = 1/3!,
ay=+1-4/6!, a3 =-1-4-17/9!

a = -ag_1/(3m) (3m-1) (54)

m

bg=1,by =-2/4l,by=+25/7,b3=-2"5 " 8/10!

b, = -b_1/(3m) (Gmt1) (55)

m

cg=3/3!,¢c; ==6+1"4/6!

Cy = —Cpp-1/3m (3m+2) (56)

m

dg=1,dy =-4 " 2/4!

[ —dm_1/3m (3m-2) 57

It is important for efficient computation that the number of terms M be no larger
than necessary. In the current program the same value of M is used in all four sums. This is
done because the optimum number never differs by more than one in the four cases and the
determination by table look-up of four M’s often would take longer than computing any
unnecessary terms. M for each series is determined so that adding additional terms will not
change the answer. Then the most stringent of the four conditions is tabulated and used.

A precise determination of the number of terms to use requires a knowledge of the
size of the largest single term in the sum. When a term is smaller than this by a factor which
is the power of 10 equal to the number of decimal places in the computer word size, it
cannot affect the sum. We ignore the fact that a sum of small terms might be significant.
This, then, defines the truncation point. Letm be the number of the largest term in the
sum, k the number of terms to be used, and h the number of decimal digits in the machine
word. Then for a given k, the largest absolute value of the argument z that can be used to
compute g’ is given as

K
Bt a = 1231 dp - 10" , (58)

The power of ten can be replaced by 2 raised to a power of the number of binary bits in the
computer word if preferred. The coefficient d of eq (57) is used. Each of the other three
should also be tried, to find the smallest number of the group for a given k. Equation (58)
can be solved for |z], giving

log |z| = (logdy —logdpy + h)/(3m - 3k) . 59)
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A simple computer program given in appendix C will find |z| for each value of k from 1 up
to the maximum number of terms desired. The largest term, m, is easily determined because
from one k to the next m will remain the same or increase by 1, so it is only necessary at
each step to check term m+1 to see if it is larger than term m.

The FORTRAN subroutine HANKEL given in appendix A uses the above power
series method to compute hj and hy for small arguments. The coefficients a, b, c, and d are
given in lists by that name. The truncation points are given in the list called ZMLA?2, which
lists values of Izl2 determined by eq (59) or the three similar equations.

ASYMPTOTIC SERIES EXPANSION USING CONTINUED FRACTIONS

When the argument z falls outside the curve in figure 4, h1 and hy can be computed
more efficiently or more accurately by asymptotic series than by power series methods.
Reference 11 gives information on branch cuts and regions of validity of the two forms of
the asymptotic solution (Stokes’ phenomenon). Here we will give computing formulas that
comply with these requirements, without discussing them further.

Since a given expansion is valid in one or more quadrants, we choose complete quad-
rants as regions. For z in quadrants 1, 3, or 4 use

hy (2) ~ exp (57 i/12) F5 (2) (60)

h'2 (z) ~exp (-mi/12) Gy (2 61)
For z in quadrant 2 use

hy (2) ~ exp (57i/12) F5 (2) + exp (117 1/12) F{ (2) (62)

hy (2) ~ exp (- 1/12) Gy (z) + exp (77 i/12) Gy (2) (63)
For z in quadrants 1, 2, or 4 use

hy (2) ~ exp (-571/12) F{ (2) (64)

h'l (z) ~exp (mi/12) Gy (2) (65)
For z in quadrant 3 use

hy (z) ~exp (-57i/12) Fi (@) texp (-117i/12) F5 (z) (66)

h'l (z) ~exp (mi/12) G| (z) +exp (Tmi/12) Gy (2) 67)

The four auxiliary functions follow:

M
Fi @ =KzMexp2iz223) S cyxm (68)
m=0
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M
P, () = ke Wexp (-2i3/23) D Cp Y™ 69)
m=0
M
G, @ = k2l exp @i23/23) > Dy X© (70)
m=0
M
Gy @ = kel exp 2i323) > Dy Y™ (71)
m=0

where X and Y equal + 773 /2 respectively, and
K = 21/331/6 =1/2 = 0,853 667 218838951

The coefficients Cp, and Dy, are again computed by recursion relations where Cg = D = 1:
Cpy = Cppg [9 @m-1)% -41/48m (72)

and

D = D [9(2m-1)% - 161/48m . (73)

m

Square roots of z are to be taken so that the real part of the root is always positive and the
imaginary part has the same sign as the imaginary part of z. This applies also to fourth
roots. The three-halves power is obtained as the product of z and its square root.

The summations in eq (68) - (71) can be done as indicated or evaluated by contin-
ued fractions. When done as indicated they are asymptotic series, and care must be taken to
truncate them at the term of smallest magnitude, if this term is reached, because adding
more terms will reduce the accuracy. Since the largest term in these series will always be 1,
the series can be truncated if the terms become less than 1071 in magnitude, where h is the
number of decimal digits in the computer word.

Continued Fraction Expansion

The method of continued fractions is more effective in evaluating these asymptotic
series, and it is used in subroutine Hankel in the FORTRAN program in this report. The
coefficients are stored in lists entitled C4, C5, D4, and D5. In the remainder of this section
the continued fraction technique is presented, along with the method of determining
coefficients.

The continued fraction has the form

F(x) = bgtay
x+by tay . (74)
X+b2+...
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It is to be used to evaluate a polynomial
BNl s Gy B, (75)

This polynomial can represent any of eq (68) - (71). One of three standard forms for con-
tinued fractions, this form is used because it has two coefficients at each stage and therefore
is equivalent to an asymptotic series of twice as many terms. This reduces by half the num-
ber of divisions required. Since complex divisions are lengthy, requiring six real multiplica-
tions and two divisions, this is the only standard form of the continued fraction that can
compete in computer time with the asymptotic series.

The coefficients aj and bj of eq (74) must be determined from the coefficients Cn-
The usual technique is to express P as a rational function, then use the continued fraction to
evaluate the rational function. The determination of the coefficients can be done in these
two steps or by a second method which goes directly from power series to continued frac-
tion coefficients. The second method is preferable because the loss of accuracy is more in
the first. But since the first method is more easily understood, each method will be given: a
computer program is included in appendix C which will determine coefficients by the sec-
ond method.

Let M in eq (75) be an even number so that 2N = M. (An additional unnecessary
term of the series can always be used.) The rational function will have the form

N N
ROO ~ k > &) > fixd (76)
=0 =

where e = f = 1 and k = Cy. The coefficients 31 and ?i are evaluated from a set of linear
equations which can be described by displaying a particular case. For N =3 they are as
follows:

i 0 i OB Oisis 0 Fkél— —cl—
DhiyirLiiunl (G Caalis |utiatsy C,
0 0 -1 ¢ ¢ G ki3 _ |G e
o PO P f Cy
0 00 Gy G G|k Cs
L0 0 0 C5 ¢4 ¢z | Ty %)

With e; and f; thus determined, R (x) is equivalent to P(x) through the first M + 1 terms.
R(x) can now be evaluated exactly (except for round-off error) using a continued fraction
of the form F (x) of eq (74).
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Rather than R(x), however, a similar expressioniny =1 /x is the form that is well
suited to evaluating asymptotic series. This expression is obtained by dividing each term of
R(x) by XN, The order of the coefficients can now be reversed and a simple algebraic oper-
ation can yield a value of 1 for each of the two initial coefficients and a new value for k. We
will call this new rational function with renamed coefficients Ii(y). It will have the form of
eq (76) but different coefficients, say e and f instead of € and f.

The coefficients a; and bj are determined from e; and fj by a recursive formula which
involves constructing an n X n triangular matrix Q with elements qj j as follows:

bo=¢g

ql,i=(ei—e0fi)/a1 1= L2 0aaN 5
where = 1, giving a1, and

b1 = 059152
The second row:

ay; = (fi-ap 41 ~b191,9/22 =2 8 SN
where 4,2= 1, giving a5, and

by = Qp2 0.8
Elements outside the matrix are assigned a value of zero. The remaining rows form = 3to
N are as follows:

ami = @m-2,i~ 9m-1,it1 ~ Pm-1 9m-1,0/%m i=mmtl,....N,
where dm,m =1, giving ay,, and

bn = 9m-1,m ~9m,m+1 -

The second method determines the continued fraction coefficients aj and bj directly
from the asymptotic series coefficients ¢j. This method is preferable to the first because the
loss of accuracy in inverting the matrix in eq (77) can be more than the loss in this second
method.

It has been pointed out® that the second method is probably a variant of the
Viskovakoff algorithm described by Khovanskii (ref 12) and as such is unstable — subject to
accumulation of errors. However, it is sufficiently stable to obtain the required coefficients.

*Private communication with AN Stokes, CSIRO, Wembley, Western Australia.
12. The Application of Continued Fractions and their Generalizations to Problems of Approximate Analy-
sis, by AN Khovanskii; a monograph in Russian, 1956.
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The coefficients are derived as follows. The well-known recursive relations that give
the Nrh stage of a continued fraction as a rational function are used (ref 13).

FN(Y) = ANG)/BNG) (78)
where
N
AN = Z &; y1
i=0
= (y + bN) AN—] 9F aN AN—2 (79)
N
BN = Z fl yl
i=0
= (y+bN) BNop Tan By (80)

inwhich A_;1 =1, Ag=bg,B_; =0, and Bg =1. Againy = 1/x. The long division indicated
in eq (78) is then carried out, giving a quotient in terms of aj, bj, and y that can be equated,
term by term, to the first 2N-1 terms of the asymptotic series.

The long division is carried out with AN and By written in descending powers of y.
The quotient is then in descending powers of y or ascending powers of x. Fortunately, the
first 2N+1 terms determined for any N are identical to the same initial terms for any larger
value of N. This will be proven later. The first few equations obtained from the division are
as follows:

bg = Cg
a; = ¢

-apbp = G

aj (bf—a2> = C3

aj <2 ay by —b‘;’+a2b2> s 81)

From these equations a; and b; can be determined, since the coefficients C; are
known. However, a simpler method is available.

The long division indicated in eq (78) can be carried to 2N+ 1 valid places; but be-
yond N+1 places, terms from the original dividend are no longer entering the remainder.
Therefore terms in the later part of the quotient have a simplified form. Since term n+1 of

13. Handbook of Mathematical Functions with F ormulas, Graphs, and Mathematical Tables, ed by M
Abramowitz and IA Stegun; National Bureau of Standards Applied Mathematics Series, vol 55, p 19,
1964.
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the quotient is equal to the nzh asymptotic coefficient, designate it Cp,. Note that the C’s
are numbered from O to N. Let the coefficient of y™ in By be By m. Then

N

Gl == z By Noi CNei 1<j<N . (82)
i=1

Here the C’s are numerical constants. The unknowns, the a’s and b’s, are in the terms of B.
Suppose that these unknowns have been determined up ton = N-1. Then eq (82) will
contain two unknowns, ay and by. By usingeq (82) for j = N-1 and N, the unknowns can
be evaluated. The index N can then be increased by 1 and the process repeated. The
process can start with N =2 ifay, bg, and b1 are provided, but these are easily determined
from eq (81). The terms of By are determined from eq (80), which gives for each term

Bn,m = Bn—l,m—l +tby Bn—l,m+an Bn—2,m . (83)

Any By  is zeto if m is greater than n.

When j = N-1 is used in eq (82) in the process described above, the coefficient of
the (2N-1) power of x is being evaluated. This term is expected to contain ay and by, but
— as will be proven later — because the coefficient of by is zero, ay is the only unknown in
a linear equation and can be easily evaluated. The next term determined with j = N contains
aN and by, but now only by is unknown and is easily evaluated.

As an example, the Cn’s through n = 10 are listed in table 1. These are the asymp-
totic series coefficients given by eq (72). The corresponding a,,’s and by’s as determined
above are also listed. A more complete list of the a’s and b’s can be obtained from the
FORTRAN program in appendix C.

Table 1. Asymptotic series coefficients, C,,, and the corresponding
continued fraction coefficients, aj and by,.

n ¢n ap by
0 L. 0 L.
1 0.10416 0.10416 -0.80208
2 0.08355 -0.58764 -2.28555
3 0.12823 -2.29072 -3.77864
4 0.29185 -5.11525 -5.27462
5 0.88163 -9.06285 -6.77193
6 3.32141
7 14.99576
8 78.92301
9 47445154

10 3207.49009

30



A FORTRAN program to compute the continued fraction coefficients for the series
given by eq (72) is given in appendix C. This program can be easily modified to determine
the other set.

Two Proofs

In this section proofs will be given of two facts used in the previous section. Follow-
ing this, the number of terms required, the accuracy, and similar topics will be discussed.
To prove that the first 2N+1 terms of the quotient AN/BY are equal to the same terms
when N is a larger integer, use long division on eq (79) and (80) to obtain

AN/BN = AN-1/BN-1 * 2, (AN_p BN-1 - AN_1 BN_2)/(BN Br.)) - (84)

If the first quotient on the right is to have terms equal to the quotient on the left up
through term 2N- 1, the remainder must have no terms with y to a higher power than
=(2N-1). The final divisor, B\y BN, contains y to the (2N-1) and lower powers. There-
fore, the proof is complete if the numerator of the remainder is a constant. To show this,
use eq (79) and (80) to evaluate BN-1 and AN_1;it can be shown that

AN-2 BN-1 - AN-1 BN—2 = -an-1 (AN_3 BN~ An_2 BN-3)
= (—I)N aN-1 aN-2 - - - 8]

The right-hand product is obtained by repeatedly applying the middle result. The product
of a’s is a constant, completing the proof.

The second proof required is that in the quotient of AN/BN, CyN (the coefficient of
y'zN) will contain no aj or bj to higher than term N and CoN+1 (the coefficient of y=2N-1)
will involve no aj to higher than term N+1 and no bj to higher than term N.

The first part is intuitively obvious. Since from the preceding proof CoN will be the
same when derived from the ratio Ay /By for any x as long as it is N or greater, we need
consider only the case where x is N. But since from eq (79) and (80) Ay and By contain no
a’s or b’s of greater than term N, CyN cannot contain a’s or b’s of higher terms.

By the same argument CoN+1 can contain no a’s or b’s to higher terms than N+1.
There remains to be proven only that b4+ cannot exist in CoN+1 or that its coefficient,
which we will call E, is zero. Applying eq (82) for N+1 and j = N gives

N+1

CN+1+N = - Z BN+1,N+1-1 ON+1+N+ -
i=1

E, the coefficient of bp+1 in this expression from eq (83), takes the form
N+1

E=- Z BN, N+1-i CoN+14i -
i=1
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But by choosing j = N in eq (82) we see that terms 1 to N for Co\ equal terms 2toN+lin
E, so

E =-BNNCNtOON -

However, since BN,Na the coefficient of y* in By, is always 1 by eq (80), E=0. Therefore
bN+] does not exist in CoN+1-

Number of Terms

The number of terms or stages to use in the continued fraction was arrived at by a
trial and error process. For a given number of terms, a real positive argument was decreased
until the accuracy began to drop. The magnitude just before this drop was considered to be
the optimum point to increase the number of stages by one. Because the argument to the
continued fractions is 23/ 2 we took the larger of the magnitudes of the real and imaginary
parts of 73/2 as the test number. This number is then compared to the 3/2 power of the
points determined along the real axis by trial and error.

The above method appears to work well although it involves no thorough under-
standing of the way complex numbers affect the successive convergents of a continued
fraction. Table 2 shows the points down to which a given number of stages gives full accu-
racy for positive real arguments and lists the 3/2 power of these numbers as used in the
FORTRAN program list called ZMLAS5.

Division Lines

The power series method is now to be used for small arguments and the continued
fraction method for large arguments. The exact dividing line between them is needed. The
division line of figure 4 was arrived at by computing the functions along rays from the ori-
gin, using both power series and continued fractions. The number of decimal places to
which the functions determined by the two methods agree tends to reach a maximum at
some distance from the origin along each ray. At distances short of this maximum we can
assume that the continued fraction method is less accurate than the power series. At dis-
tances beyond the maximum, the power series is assumed to be less accurate. The maxi-
mum therefore indicates the ideal place to change from one method to the other if the
decision is to be based solely on accuracy. This method was used to determine figure 4.

A complication arises, however. Along certain rays from the origin, h and its deriva-
tive reach a maximum number of places at very different distances from h7 and its deriva-
tive. The principal problem is at £60° but persists from about 30° to 90°. At 60°, hyis
small in magnitude and hy is large. The power series method cannot compute the small
values accurately due to loss in accuracy in subtraction in eq (48). The accuracy of the
continued fraction for hy is poor at 60° because eq (69) becomes a nonalternating series and
continued fraction approximations are not known to improve the accuracy of nonalternat-
ing asymptotic series as they do for alternating series.

A reasonable solution to this problem is to compute h1 by continued fractions and
hy by power series for arguments at these angles and magnitudes from 4 to 10. However, as
will be shown later, the above solution has not been employed at this time since this area is
not of great importance for normal mode computations. Instead, the argument was chosen
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Table 2. Cut-off points for determining the number of stages in the continued fractions.

Real Argument Program Test Value

Number of Stages X x3/2
1 10° 10°
2 80 715.0
3 35 207.0
4 22 103.0
5 13 47.0
6 11 364
7 9 27.0
8 8 22.6
9 7 18.5
10 6.5 16.6
11 6 14.7
12 5.8 14.0
13 5.5 129
14 53 122
15 5.1 11.5
16 4.9 10.8
17 4.5 9.5
18 4.4 9.2

that gave equivalent accuracy for the two methods. Along 60° this minimum accuracy is 9
decimal places.

The following relationship exists between h 1 and hy for positive and negative values
of the imaginary part of the arguments:

hy (%) = [hy 1%,

where the * means complex conjugate. Thus, the above discussion at 60° can be translated
to ~60°. Also, the functions actually need to be computed only in quadrants I and II. They
could then be evaluated in quadrants III and IV by the above relationship. The above rela-
tionship explains the symmetry of figure 4 about the real axis.
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COMPARATIVE ACCURACY

The accuracy of the three methods — power series, asymptotic series and continued
fractions — has been determined on a CDC computer with 48 bits or 14.4 decimal places of
accuracy in the floating point word. Since this differs from the double precision word
length of 60 bits or 18.1 decimal places that applies to the preceding part of this report,
these results are for comparative and illustrative purposes only.

Accuracy is determined by computing the functions and either comparing the an-
swers for the several different computing methods or computing the wronskian. The
wronskian is a constant given by the relationship

hy by -hy b} = -1.45749544104i = -i961/3/r . (85)

The wronskian will determine the accuracy of the functions if it can be computed without
loss of accuracy. If the two products in it are large, though, accuracy will be lost in the
subtraction. This generally happens for arguments near the negative real axis. Here accura-
cy must be determined by comparing answers from different methods. The accuracy of the
functions and their derivatives will generally be about equal.

Figure 5 illustrates the accuracy that is obtained in different parts of the complex
plane of the argument, z, by using the power series method. On the inner contour, the
functions h and hy and their derivatives have 12 places of accuracy. On the outer contour,
the accuracy is 11 places. As expected, the accuracy is best for arguments of small magni-
tude. The accuracy remains best in directions from the origin in which the functions are
large in magnitude. This is because less accuracy is lost in subtraction. Accuracy must be
lost when individual terms of the series are large but the sum is small.

Figure 6 shows accuracy contours for the asymptotic expansion with both the direct
and continued fraction evaluation of the series. Here, the best accuracy is obtained for large
arguments, and accuracy decreases toward the origin. As can be seen, each of the two meth-
ods is better in some directions from the origin. The choice of methods then depends upon
which directions are of most value to the normal mode program. The dots on the figure
show the locations at which the functions were evaluated in a typical surface duct run.
Although arguments can lie anywhere in the plane, most of them follow this pattern. They
lie just above the negative real axis and in a narrow angle above the positive real axis. The
continued fraction method is distinctly better on this positive side. Since computing time
also favors the continued fraction method, it is clearly the method to use.

If the 12-place accuracy contour from figure 6 lies inside that for figure 5 at some
angle from the origin, 12 places can be obtained at any range along this angle by using either
power series or asymptotic expansion in the interval of overlap. If the asymptotic expan-
sion contour lies outside the other, there is an interval in which 12 places cannot be ob-
tained. Only some lesser number of places can be obtained in this interval. These contours
apply when both functions and their derivatives are all computed by a single method. As
mentioned earlier, increased accuracy could be obtained in some areas by computing the
two functions by different methods.
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12 PLACE ACCURACY

11 PLACE ACCURACY

Figure 5. Locus of arguments for which the power series evaluation of the
modified Hankel functions gives 12 and 11 decimal places of accuracy for
a computer word length of 14.4 decimal places.

—— CONTINUED FRACTION
— — SERIES Pis
-

12 PLACE
ACCURACY

Figure 6. Locus of arguments for which the direct and continued fraction
evaluation of the asymptotic series gives 11 and 12 decimal place accuracy.
The arguments at which the modified Hankel functions were evaluated in a

typical normal-mode run are shown.
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MODE FOLLOWER PROGRAM

Appendix D lists the Mode Follower Program in FORTRAN. It is not a part of the
general normal mode program, but is related in that it uses some parts of the general pro-
gram. The purpose of the mode follower is to trace a given eigenvalue as some parameter is
varied. This parameter is usually frequency, but any profile parameter can also be varied.
The eigenvalues at a given set of parameters are discrete points. By permitting the parame-
ter to vary, the eigenvalues become a set of lines, and this often clarifies their behavior at the
fixed points. Figures 7-9 illustrate this.

Figure 7 is a sound speed profile consisting of two ducts. Figures 8 and 9 show the
real and imaginary parts of some eigenvalues of the profile over a range of frequencies. The
imaginary parts are expressed as mode attenuations. The figures show a region where both
ducts are exerting an influence on the eigenvalues. The broken lines show the location of
eigenvalues for a profile that consists of only the upper duct of figure 7. Considerable time
could be spent studying the interaction between the two ducts, but since the purpose here is
to illustrate eigenvalues as functions of a parameter, only a brief description will be given.

Modes are numbered by the real parts of their eigenvalues. This numbering is con-
sistent with the number of beats or changes of 7 in the phase of the depth functions. Thus
the eigenvalue of a mode numbered 1 in a profile consisting of only the upper duct lies
exactly over the eigenvalues of a mode in the double duct in figures 8 and 9, but this mode
in the double duct changes number each time it crosses the real part of another mode. The
depth function actually gains an additional beat each time this happens. The background of
modes that are being crossed consists of the higher order, untrapped modes associated with the
lower duct.

Mode 2, of the upper duct only, does not have a single mode in the double duct that
overlies it exactly. Instead, a mode attempts to follow it at frequencies above 1350 Hz.
Below this frequency, successive modes follow its path for short intervals. This interplay
between modes occurs when mode 2 of the upper duct is in some sense equally as untrapped
as the modes associated with the lower duct.

The imaginary parts of the modes follow similar patterns; but because the mode
numbering is not determined by the imaginary parts, the mode numbers sometime jump
from one line to another. An important feature of these two plots is that if the real parts of
the eigenvalues cross, the imaginary parts do not; and vice versa. Thus two eigenvalues do
not tend to become equal at a point which would make them degenerate.

The mode follower program will tend to follow the continuous curves. Thus if start-
ed in the right direction on mode 59 at 1450 Hz, it will follow along the continuous mode
which becomes successively mode 58, 57, 56, and 55.

Figures such as 8 and 9 can be drawn by computing the eigenvalues at a sufficient
number of frequencies to determine the lines. The mode follower does this for a given
eigenvalue while adjusting the step size so the mode will not be lost, or so the program will
correctly follow the mode. The step size is permitted to become large where the eigenvalue
can be approximated by a parabolic curve, but it shortens when extrapolation to the next
point becomes less accurate.
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Figure 7. A five-layer approximation to the sound speed

of a surface duct overlying a refractive duct.
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Figure 8. The real part of the eigenvalues as continuous
functions of frequency for the profile of figure 7.

Some mode numbers are given. The first three modes
for the surface duct only (SD) are shown as broken
lines. That for mode 1 coincides with an existing line.

37



10

MODE ATTENUATION COEFFICIENT, dB/km

/1SD
——

0 ] ] ] 1 I
1150 1200 1250 1300 1350 1400 1450

FREQUENCY, Hz

Figure 9. The imaginary parts of the modes whose
real parts are shown in figure 8 expressed as mode
attenuation. To avoid confusion, they are not
shown across the full frequency interval.

When frequency is the variable parameter, the group velocity of the mode can be
computed easily since a numerical derivative can be computed. Group velocity is given by
the relationship

C dw/d (Re k)

g
=~ Aw/A (Re k)
=~ - Afv3fAv ,

where k is the horizontal wave number of the mode and v is the real phase velocity. The
mode follower prints this value out at each step, along with the eigenvalue.

IMPLEMENTATION OF THE MODE FOLLOWER

The mode follower was originally implemented for a two-layer normal mode which
differed from the n-layer program in that the derivative dG/dv of the characteristic equation
was evaluated along with G. The iteration for roots of G was thus Newton-Raphson and is
given by the relationship

Vi+1 = v-G/G' . (86)
This is simpler than the secant iteration of eq (15), in which G’ must be evaluated numeri-

cally. Because of the simpler iteration, an effective scheme for mode following was available.
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Since considerable effort was required to develop a similar scheme for the n-layer case, the
two-layer mode follower will be briefly described to serve as an introduction to the n-layer
case.

The two-layer mode follower employs one iterative step of eq (86) at each point
where G is evaluated. Thus, a root that is inexact but sufficiently exact is obtained. The
original estimate is obtained by extrapolating from the three most recent roots. If this esti-
mate is sufficiently close to the true root, the single iterative step will make a small correc-
tion, G/G', that will bring the estimate very close to the true root. By using the size of this
correction to control the step size, the program is self-regulating. The program works well
when a permissible value of G/G' of 10-6 to 10~4 is used. Outside this interval the step size
is either doubled or halved.

The multiple-layer program differs from this in several details. The extrapolation
from the previous three points is done not only for the phase velocity but also for the nu-
merical derivative,

Dl = Av/AG.
Lagrange three-point interpolation is used, given by the form
v(x) (x-Xy) (x=X3)  v(xp) (x-xp) (x-x3) vxz) (x-xq) X~ X7)
- +
& -%xp (X1 -x3)  (xp-x) (xp-x3)  (x1-%3) (xg=X3)
(87)

where x is the new value of the parameter that is being varied (usually frequency) and x1,
X7, and x3 are the three previous values, x| being the most recent. To extrapolate the
derivative, v is replaced by D-1lin eq (87). Both quantities are complex numbers.

v(x) =

The determinant is now evaluated at this new phase velocity to give a value Go.
Next a corrected value of phase velocity, v(, is obtained:

vg = v-Gg D! . (88)

In the two-layer case, the size of the correction, GD"I, is used to control the step size.
Because the numerical derivative is less precise, we evaluate G once more at this new posi-
tion, obtaining G1. A new numerical derivative is next calculated:

Dyl = (vo -G} -Gy -

This derivative is now compared with the extrapolated value to determine whether the step
size should be changed. To do this an error

E = [1-Dgy/DI?

is computed. Good results have been obtained by keeping E between 107> and 1072, IfE
becomes larger than this, the step size is halved and the extrapolation is tried again. Should
halving the step size five times fail to obtain a value of E less than 10‘2, the mode is pre-
sumed to be lost and the program halts.
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If E is less than 10-2, the step is successful and the stored values are updated for the
next step. Before v is stored, though, the iterative step of eq (88) is applied one more time
to obtain a more precise value of v. This requires little extra effort because the quantities
G1 and Dy~ are already available.

If the error E is less than 10'5, the next step size is doubled.

It is possible for the extrapolation to be too successful. That is, if v is very near the
true root, G and Av will be very small. The numerical derivative may then be inaccurate.
Therefore, before the error term E is computed, a quantity

F = |v/Av|?

is computed. If F is greater than 1028, the extrapolated derivative is used rather than the
computed derivative and the program proceeds to the next step. If F is greater than 1034,
the step size is doubled before proceeding to the next step.

The other principal part of the program is the initialization which must evaluate v at
three values of x to obtain the numbers needed for the first extrapolation, eq (87).

INPUT AND OUTPUT

The first input card contains the maximum number of steps allowed, the limits
applied to E and F, and keys which control both the amount of detail in the printout and
whether the profile parameters are to be read in or retained from the previous run. Default
values are supplied when these items are left blank. Next the profile parameters are read in.
These are an older style and only permit specification of the absorption loss at the top of a
layer. The sound speed gradient is assumed to be real at the top of any layer.

A final card indicates which variable — frequency, sound speed, depth, gradient,
absorption, or density — will be varied, by specifying a number called nx in the program,
from 1 to 6. The next number, ny, specifies which layer the variable will be in. This layer
number is not needed if frequency is selected. A third number, nz, indicates, if zero, that
the profile will remain continuous as the selected parameter is varied. If nz is not zero, the
selected parameter moves alone without a compensating motion in other profile parameters.
The card next gives the initial and final value of the parameter to be varied and the initial
step size. Finally, the particular mode to be followed is indicated by giving an approximate
phase velocity and an initial step size. These must be chosen such that the subsequent itera-
tion will converge on the correct mode.

The principal output of this program is the print statement at line 314. Each line of
output contains the value of the parameter being varied, the complex phase velocity, the
determinant G, the derivative D‘l, the error term E, the mode attenuation, the mode group
velocity (if frequency is the parameter being varied), and the step number. After the final
step, the profile in its final form is printed out.
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CONCLUSIONS

1. An effective program for computing propagation loss in a layered ocean by nor-
mal modes has been developed. Complete documentation for the program is contained
herein.

2. Sediment layers are modeled as fluids in which densities, sound speeds, and ab-
sorption can be specified. This permits a complete wave solution for bottom reflected
sound energy.

3. A continued fraction technique for evaluating asymptotic series is shown to give
superior results in evaluating the auxiliary functions required in this program, the modified
Hankel functions of order 1/3.

4. A mode follower program given here is useful in tracing eigenvalues. Such traces
are needed to understand the eigenvalue structure.

RECOMMENDATIONS

1. Improve the mode locating ability of this normal-mode program to make it self-
contained. It currently requires user interaction to locate eigenvalues.

2. Investigate methods to incorporate the effect of rough boundaries into this
program.
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APPENDIX A: NORMAL MODE PROGRAM IN FORTRAN

This program consists of the main program and seven subroutines. The main pro-
gram handles the input and output and performs much of the computation. This includes
profile preparation, mode search, determination of depth function coefficients, normaliza-
tion, computation of depth functions, and summation of modes. Auxiliary functions are
performed by the subroutines SETUP and DET, which set up the determinant, then evaluate
it. This is the determinant from which eigenvalues are determined. The subroutine HZERO
determines the Hankel functions of order zero, second type, which gives the range depend-
ence of the modes. Only a single term of the asymptotic expansion is needed for this
function.

Subroutine HANKEL evaluates the modified Hankel functions of order 1/3, by
which the depth dependence of the modes is expressed. The majority of computing time is
usually expended in this subroutine. Subroutine CFR is used by subroutine HANKEL to
evaluate continued fractions. Subroutine RCOEF evaluates and prints reflection coeffi-
cients when they are requested.
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CONOAUTH WN -

THIS IS THE MAIN PART OF NLAYNM
IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DOUBLE PRECISION LAMBDA, LAMBDI

INTEGER COL

REAL R ATTEN, T RE, RX

DIMENSION LOSPCH(5,25)

COMMON /HAN/ H2R,H2I,H1R,H1I,H2PR,H2PI,H1PR,H1PI,R
COMMON/INPUT/ Z(12), N, OMEGA, V, VI, CON(12), GSQ(12),

1 CAY(12), LAMBDA, LAMBDI, G(12)
2,RHO(12), GI(12), G SQI(12), CAYI(12)

COMMON /EXPO/ EXSUM, CNTR, RATIO(25)

COMMON/DETMNT/ A(25,4), Q(25,4)

COMMON/PARTS/ ZT{(12),ZT1(12),ZB(12),ZBI(12)

COMMON/REFL/ AF(12,200), AG(12,200), BF(12,200), BG(12,200),
2 EIGEN(350), EIGENI(350), B (25,4), BI(25,4), CB(12), CBI(12),
3 CAYSQ(12), CAYSQI(12), NN

DIMENSION D(350), DI(350), F(100), FI(100), HZERD2(350),
* DA(350), SRES(350), GAMMAI(12), BLPK(12),
4 HZER2I(350), DPK(12), GCU(12), GCUI(12), CI(12),
3 PHASE V(350), PHASI V(350), UU(2000), UUI(2000)

COMMON /LIMIT/ TLIM, EXPONT, SLIM

DIMENSION LOSS(101)

DIMENSION C(12), DEPTH(52), DBLOSS(350), COL(120),

1CONTR(10), EF(2), FMAG(350), FANG(100),
2GAMMA(12),JSMBL(10).dCDUNT(S),dCOU(S),LEVEL(41),PLEV(S),RLOSS(100)

)

3 , RLOS(101),RECVRS(51),TEST(3), ING(11
EQUIVALENCE (FF,EF(1)),(DEPTH(1),SOURCE).(DEPTH(2),RECVRS(1)).
1 (RLOS(2),RLOSS(1))

COMMON /AHZERO/ HZEROR,HZEROIL
DATA ( CONTR(I1), I=1,4) /110.DO,95.00,80.00,-1000.00/,
1 (J SmBL(I), I=1,3) /1H1, 1H*  1H8/,

¥*(ING(I), I = 1,10)/1HO,1H1,1H2,1H3,1H4,1H5,1H6,1H7,1H8,1H9/,
2 (TEST(L), I=1,3) /.200,1.D0,5.D0/
TLIM = 25,

SLIM = -8.54988

C READ IN PARAMETERS

1

READ 11, K1, K2, K3, K4, K5, K6, K7, K8, K9

C KEYS& 1-DEPT FN PRINTOUT, 2-L0SS PRINTOUT, 3-REFLECTION COEFF PRINTOUT

c 4-

11

13

434

CHANGE CONTOURS, 5-CONTINUE MODES
FORMAT (1014)
FRINT 13, K1, K2, K3, K4, K5, K6, K7, K8, K9
FORMAT (6H1KEYS , 10I4)
IF (K1 .LT. 7) GO TO 5
READ 11, M
READ 434, (SRES(I), I = 1,M)
FORMAT (5D16.7)
IF (K8 .NE. 1) GO TO 8
READ 20, T LIM
SLIM = -DCBRT(TLIM*%2)
PRINT 30, TLIM, SLIM
EXPONT = DEXP((TLIM + TLIM) / 3
K6 = K6 + 1
INSUR = 0
IF (K2 .LT. 10) GO TO 16
K2 = K2 - 10
INSUR = 1
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113

16

17

- WwhH

12

20

18
19
14

30

MPCH = O
\E (K5 .LT. 10) GO TO 17

K5 = K5 - 10

MPCH = 1

1F (K4 .NE. 1) GO TO 3

READ 20, (CONTR(I), I =1,9)
CONTR(10) = -1000.D0

READ 4, (J SMBL(I), I =1,9)
FORMAT (9A1)

READ 10, N, FREQ

FORMAT (12, D10.1)

IF (N.EQ.0) GO TO 999

PRINT 12, N, FREQ

FORMAT (13, 8H LAYERS, ,F10.1,
READ 20, (Z(I), I=1,N)
PRINT30, (Z(1), I=1,N)

READ 20, (C(I), I = 1.N)
FORMAT * (8D10.4)
PRINT30, (C(I), I = 1,N
READ 20, (CB(I), ;
PRINT30, (CB(I), i
RFAD 20, (GAMMA(T =

(
PRINT30, (GAMMA(
READ 20, (DPK(I
PRINT 30, (DPK(I
READ 20, (BLPK(IL
PRINT30, (BLPK(I
READ 20, (RHO(I
PRINT 30, (RHO(I
IF (FREQ .GT. 0.
FREQ = - FREQ
ATTEN = O.

GO TO 19

F SQ = (FREQ / 1000.)**2

wZZZ2ZZZ
s e i et

e @ - o - =

—S 0w oun

ATTEN = .1 * F SQ / (1. + F SQ) + 40. * F SQ / (4100. + F SQ)

ATTEN = ATTEN * 1.0936

PRINT 14,ATTEN

FORMAT (8H ATTEN = ,G10.5, SHD
ATTEN = ATTEN / 1000.00

FORMAT (9F14.5)

C COMPLETE PROFILE

31

32

34

36

po 33 1 = 1,N

IF (RHO(I) .EQ. ©0.) RHO(I) =1
IF (CB(1) .NE. 0.) GO TO 31
CB(I) = C(I+1)

IF (C(1) .NE. 0.) GO TO 32
C(1) = CB(I-1)

IF (DPK(I) .GE. 0.) GO TO 34
GI(I) = CBI(I-1)

GO TO 36

cI(1) = O.

IF (DPK(I) .EQ. 0.) GO TO 36
T = 27287.52708 / DPK(I)

CI(I) = T - SQRT((T = C(1)) *
CBI(1) = O.

IF (GAMMA(I) .NE. 0.) GO TO 38
++*BOTH SOUND SPEEDS GIVEN

3H HZ)

B/KM )

.02

(T + ¢(1)))
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114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
14R
147
148
149
150
151
152
153
154
155
156
157
158

160
161
162

164
165
166
167
168
169
170

37

39

41
43

42

‘a8

28

* (Z(I+1) =

Z(
0.5
¥ (Z(I+1) - Z(1)
N) G

* (CB(I)

IF (BLPK(I) .LE. 0.) GO TO 37
T = 2/287.52708 / BLPK(I)

CBI(I) = T - SQRT ((T - CB(I)) * (T + CB(I)))

T =C(I) * (C(I)*+2 - 3, = CI(I)*%2)

TI = CI(I) * (3. % C(I)%%2 = CI(I)*%2)

IF (BLPK(I) .LT. 0.) GO TO 39
TEMP = CB(I)**2 - CBI(I)*x*2
TEMP1 = 2, % CB(I) * CBI(I)
DENOM = TEMP*%2 + TEMP1%%2

TEMP = TEMP / DENOM
TEMP1 = -TEMP1 / DENOM

GAMMA(I) = 0.5 * (C(I) - (T * TEMP - TI =* TEMP1)) /

1))

GAMMAI(I) = * (CI(I) - (T * TEMPI
)

Ik (I JEQ. 0 10 27

GO TO 33

**SPECIAL CASE, GRADIENT REAL NUMBER

IF (CI(I) .EQ. 0.) GO TO 42

TEMP = CB(I)%*%2

TEM = TEMP*%2

TEMP1 = CI(1I)

COEF1 = CI(1I)

COEF2 = 2. % TEMP x CI(I) + TI1
COEF3 = 2. * T = CB(I)

COEF4 = TEM * CI(I) - TEMP * TI
OLDFN = 1.D20

DO 41 J = 1,10

FN=(((C

FP = ((4.

TEMP1 = TEMP{1 - FN / FP

IF (FN .GE. OLDFN) GO TO 43
OLDFN = FN

CONTINUE

CBI(I) = TEMP1

+ TI * TEMP)) /

OEF1 * TEMP1) + COEF2) * TEMP1 + COEF3) * TEMP1 + COEF4
* COEF1 * TEMP1) + 2. * COEF2) * TEMP1 + COEF3

GAMMA(I) = .5 x(.5 = (CI(I) *(TEMP - CBI(I)*%2) - TI) /

GO TO 28

* TEMP1) + C(I)) / (Z(I+1) - 2(1))

GAMMA(I) = C(I) = T / (CB(I)*#2 « (Z(I+1) = Z2(1)) * 2.)

GO TO 33

**SOUND SPEED AND GRADIENT GIVEN

IF (I .EQ. N) GO TO 33

T = C(I) * (C(I)*%2 = 3, = CI(I)*%x2)

TI = CI(I) * (3. * C(I)%%2 - CI(I)*x%2)

IF (BLPK(I) .EQ. 0.) GO TO 29
IF (BLPK(I) .LT. 0.) GO TO 28

TEMP = (BLPK(I) / 54575.05416) %2 / (Z(I+1) - Z(1)) * 0.5

T =T * TEMP
TI = TI * TEMP

TEMP = .5 = C(I) / (Z(I+1) = Z(1)) - GAMMA(I) + T

T = =(TI = SQRT( TI * TI + T » TEMP))

/T

CB(I) = 54575.05416 * T / BLPK(I) / (1. + T % T)

CBI(I) = CB(I) / T
GO TO 37

**SPECIAL CASE, GRADIENT REAL NUMBER
TEMP = C(I) = 2. x GAMMA(I) * (2(I+1)
TEM = TEMP**2 + CI(I)**2
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171 XRE = (T * TEMP + TI * CI(I)) / TEM

172 XIM = =(T * CI(I) - TI * TEMP) / TEM

173 TEM = XRE**2 + XIM**2

174 cB(I) = SQRT( (XRE + SQRT(TEM)) * .5)

175 CBI(I) = .5 * XIM / CB(I)

176 GAMMAI(I) = O.

177 GO TO 33

178 29 TEMP = C(I) = 2. * GAMMA(I) * (Z(I+1) - 2(1))

179 CB(I) = SQRT (T / TEMP)

180 GAMMAI(I) = .5 * (cI(r)y - 71 / CB(I)%%*2) / (Z(I+1) - 2(1))
181 GO TO 33

182 27 N =N-1

183 33 CONTINUE

184 C COMPUTE USEFULL QUANTITIES

185 PRINT 58

186 58 FORMAT (7X,6H RE M ,8X,6H IM M ,9X,5H L/KM,8X,6H RE C ,BX,
187 * 6K IM C ,5X,12H RE C BOTTOM,4X,12H IM C BOTTOM,10X,9H GRADIENT )
188 OMEGA = 6.283185307D0 * FREQ

189 Do 40 I = 1,N

190 TEMP = C(I)**2 + CI(I)*%2

191 CAY(T) = OMEGA * c(I) / TEmMP

192 CAYI(I1) = -OMEGA * cI(I) / TEMP

193 CAY SQ(I) = CAY(I)**2 = CAYI(I)**2

194 CAY SQI(I) = 2.D0 * CAY(I) * CAYI(I)

195 TEMDR = -2. * (GAMMA(I) * CAY =5Q((1) = GAMMAI(I) = CAY SQI(I))
196 TEMDI = -2. * (GAMMA(I) * CAY SQI(I) + GAMMAI(I) = CAY SQ(I))
197 G CU(I) = (TEMDR * C(I) + TEMDI =* CI(I)) / TEMP

198 G CUI(I) = (TEMDI * C(I) - TEMDR * cIi(I)) / TEMP

199 TEM{1 = DCBRT(-DSQRT( GAMMA (I1)**2 + GAMMAI (1) *%2) =* 2.*0OMEGA**2)
200 TEM1I = DATAN (ABS (GAMMAI (1) / GAMMA(I)))/ 3.

201 CRTG = TEM1 * DCOS (TEM1I)

202 CRTGI = TEM1 * DSIN(TEM1I)

203 IF (GAMMA(I) .LT. 0.) CRTG = =CRTG

204 IF (GAMMAI(I).LT. 0.) CRTGI = =-CRTGI

205 G(I) = (C(I) * CRTG + CI(I) * CRTGI) / TEMP

206 GI (1) ="(C(L)* CRTGI - CI(1) * CRTG) / TEMP

207 CON(I) = G(I) * C(I) - GI(I) * CI(I)

208 CON(I) = OMEGA**2 / CON(1)*x2

209 XMI = -GI(I) * (Z(I+1) - Z(1))

210 XM = =G(I) * (Z(I+1) = 2(1))

21 1 DPK(I) = -8686.D0 * CAYI(I)

212 PRINT 30, XM, XMI, DPK(I), C(I1), cI(Il), CB(I), CBI(I)

213 * ,GAMMA(I), GAMMAI (1)

214 G SQI(1) = 2. * G(I) = GI(I)

215 40 G SQ(I) = G(I)**2 = GI(I)*x*2

216 C FIND MODES

217 NXTRA=0

218 IJ FLAG=0

219 NN = NN + 1

220 IF (K5 .EQ. 1) GO 70 15

221 DO 50 NN = 1,350

222 15 1F (IJ FLAG .EQ. 1) GO TO 53

223 52 1F (NXTRA .GT. 0) GO TO 44

224 READ 60, V.VI,STEP,STEPI,NXTRA

225 60 FORMAT (4D10.4,110)

226 IF (NXTRA .GE.O0) GO TO 62

227 V =V + VI * 1.0-10
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228 VI = STEP + STEPI * 1.D-10

229 GO Tu 85
230 62 IF (V) 142,301,70

231 142 IF(STEP) 44,44,143

232 C SEARCH FOR MODE

233 143 SIZE3 = -1.

234 SIZE2=0

235 1J FLAG=1

236 V==V

237 IF (NXTRA) 55,55,54

238 55  NXTRA = 20

239 54  XTRA = NXTRA

240 HOP = (STEP - V) / XTRA

241 HOPI=0.

242 IF(STEPI.NE.O.) HOPI=(STEPI-VI)/XTRA

243 DO 47 I1J = 1,NXTRA

244 CALL SETUP

245 DET = VEL

246 DETI = VELI

247 CALL DETNT(N,VEL,VELI)

248 DELTA = VEL

249 NEITT - vEIT

250 SIZE = DELTA*DELTA + DELTI*DELTI

251 PRINT 56, V, VI, SIZE, VEL, VELI

252 56  FORMAT (2F12.3, 3D17.5)

253 IF ((SIZE2.LT.SIZE3).AND.(SIZE.GT.SIZE2)) GO TO 45
254 46 SIZE3=SIZE2

255 SIZE2=SIZE

256 V = V + HOP

257 VI=VI+HOPI

258 GO TO 47

259 45 V= v - HoP

260 TEMP = HOP / (SIZE - SIZE2)

261 DELTI = TEMP * (DET * VELI - DETI * VEL)

262 TEMP = .5D0 * (SIZE3 - SIZE) / (SIZE3 + SIZE - SIZE2 - SIZE2)
263 DELTA = HOP * TEMP

264 IF(HOPI.EQ.0) GO TO 49

265 VI=VI-HOPI

266 DELTAI=HOPI*TEMP

267 GO TO 49

268 47  CONTINUE

269 IJ FLAG=0

270 NXTRA=0

271 GO TO 52

272 53 SIZE 2=-1.

273 SIZE=0

274 GO TO 46

275 44  NXTRA = NXTRA - 1

276 V = 3. * (PHASE V(NN-1) = PHASE V(NN-2)) + PHASE V(NN-3)
277 VI = 3.* (PHASI V(NN=1) = PHASI V(NN-2)) + PHASI V(NN-3)
278 STEP = (PHASE V(NN=1) = PHASE V(NN-2)) * .0001
279 70  CALL SETUP

280 CALL DETNT(N,DET,DETI)

281 80  FORMAT (/, 2D20.11, 4D13.4)

282 VEL = DET

283 VELI = DETI

284 DELTA = STEP
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c

49

48

82

71
81
72

*

92

DELTI = STEPI

IF (DELTA .NE.O.) GO TO 49

IF (DELTI .EQ.0.) DELTA = .01
SIZE2 = 100.

RX = DET*%*2 + DETI**2

1F (K6 .LT. 3) PRINT 80, V, vi, DET, DETI, SIZE, CNTR

J =0

J = J + 1

IF (J .GT. 15) GO TO 51
= V + DELTA

v

VI = VI + DELTI

1F (vI) 83,84,85
DELTI = DELTI - VI
VI = 1.D-18

CALL SETUP

NNN = N + N - 1

DO 82 IA = 1,NNN

po 82 1B = 1,4
BI(IA,IB) = Q(IA,IB)

B(IA,IB) = A(IA,IB)

CALL DETNT(N,DET,DETI)

IF (K6 .NE. 1) GO 7O 72

PRINT 81, Vv, VI, DET, DETI, SIZE, CNTR
FORMAT (2D20.11, 4D13.4)

IF (NXTRA .LT. 0) GO TO 51

TEMNR = DET * DELTA - DETI * DELTI
TEMNI = DETI = DELTA + DET * DELTI
TEMDR = VEL - DET

TEMDI VELI - DETI

TEMDEN = TEMDR*TEMDR + TEMDI*TEMDI
IF (TEMDEN .EQ. 0.) GO TO 51
TEMRNU = TEMNR*TEMDR + TEMNI*TEMDI
TEMINU = TEMNI*TEMDR = TEMNR*TEMDI
DELTA TEMRNU/TEMDEN

DELTI = TEMINU/TEMDEN

%« THE NEXT CONSTANT DEPENDS ON WORD LENGTH AND SIZE OF PHASE VELOCITY =* x*

IF (ABS(DELTA) .LT. 1.D-14) GO TO 51

SIZE = DELTA*DELTA + DELTI*DELTI

LE ((SIZE.GT.SIZEQ).AND.(J.GT.S)) GO TO 51
SIZE2 = SIZE * 2.

VEL = DET
VELI = DETI
GO TO 48

FIND DEPTH FUNCTIONS

51

998

61

IF (INSUR .EQ. 0) GO TO 61

TRE = (DET*%2 + DETI*%2) / RX
IF (TRE .LT. 1E-10) GO TO 61
PRINT 998, NN, TRE

FORMAT (5H MODE ,14,23H FAILED T0 CONVERGE --
GO TO 999

IF (MPCH .EQ. 0) GO 710 63

IF (NXTRA .LT. 0) GO TO 63
TEM1 = V * 1.D4

coL(1) = TEM1

TEMP = COL(1)

coL(2) = (TEM1 - TEMP) * 1.D10
TEM1 = VI * 1.D4
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342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
262
363
364
365
366
367
368
369
370

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398

c

64
63

74
73

96

97

1
98

95

1

1

10

COL(3) = TEM1

TEMP = COL(3)

COL(4) = (TEM1 - TEMP) * 1.D10
COL(5) = =NN

PUNCH 64, (COL(I), I = 1,5)
FORMAT (5110)

AF(1,NN) = A(1,3)
AG(1,NN) = Q(1,3)

BF(1,NN) ==A(1,4)

BG(1,NN) ==-Q(1,4)

PHASE V(NN) = V

PHASI V(NN) = VI

IF (K6 .EQ. 1) GO TQ 73

PRINT 81, V, VI, DET, DETI, SIZE, CNTR
LL = N - 1

IF (LL-1) 95,96,97

I =0

GO TO 98

DO 110 U = 2,LL

I = g4 u -2

TEMN® = A(I,2)+AF( J=1 ,NN) - Q(I,2)*AG( J-1 ,NN)

TEMNI = Q(I,2)+AF( J=1 ,NN) + A(I,2)*AG( J=1 ,NN)

TEMODR = A(I,3)*A( I+1 ,4) = Q(I,3)*Q( I+1 ,4) -
A(I,4)*A( I+1 ,3) + Q(I,4)*Q( I+1 ,3)

TEMDI = Q(I,3)*A( I+1 ,4) + A(I,3)*Q( I+1 ,4) -

Won

Q(I,4)*A( I+1 ,3) - A(1,4)xQ( I+1 ,3)
TEMDEN = TEMDR*TEMDR + TEMDI*TEMDI
TEMRNU = TEMNR*TEMDR + TEMNI*TEMDI
TEMINU = TEMNI*TEMDR - TEMNR*TEMDI

TEMP = TEMRNU / TEMDEN
TEMPI = TEMINU / TEMDEN

BF(J,NN) = —(TEMP+A( I+1 ,4) - TEMPI*Q( I+1 ,4))
BG(U,NN) = =(TEMPI*A( I+1 ,4) + TEMP*Q( I+1 ,4))
AG(U,NN) = TEMPI*A( I+1 ,3) + TEMPxQ( I+1 ,3)

AF(J,NN) = TEMP*A( I+1 ,3) - TEMPI*Q( I+1 ,3)

TEMNR = -(A(1+2,2) * AF(LL,NN) -Q(I+2,2) * AG(LL,NN))
TEMNI = -(Q( I+2 ,2)*AF(LL,NN) + A( I+2 ,2)*AG(LL,NN))
TEMDEN = A( I+2 ,3)*A( I+2 ,3) + Q( I+2 ,3)*Q( 1+2 ,3)
TEMRNU = TEMNR*A( I+2 ,3) + TEMNI*Q( I+2 ,3)

TEMINU = TEMNI*A( I+2 ,3) - TEMNR*Q( I+2 ,3)

BF(N,NN) = TEMRNU / TEMDEN

BG(N,NN) = TEMINU / TEMDEN

AF(N,NN) = 0.

AG(N,NN) = 0.

FIND NORMALIZING FACTOR

1
1

D(NN) = 2,12429296D0 * RHO(1)#*%3 / G(1)

DI(NN) = 0.

DO 111 I = 2,N

TEMRSP = AF( I-1 ,NN)*B( 2#I-2 ,2) - AG( I-1 ,NN)*BI( 2+I-2 ,2)
BF( I-1 ,NN)*B( 2+I-2 ,1) = BG( I-1 ,NN)*BI( 2*I-2 ,1)

TEMISP = AG( I=1 ,NN)*B( 2%I1-2 ,2) + AF( I-1 ,NN)*BI( 2#I-2 ,2)

BG( I-1 ,NN)x*B( 2*I-2 ,1) + BF( I=1 ,NN)*BI( 2*I-2 W 1)
AX1 = TEMRSP*TEMRSP - TEMISP*TEMISP.

AX11 = TEMRSP * TEMISP
AX1I = AX11 + AX1I

TEMDR = (G(I-1)%x2 + GI(I-1)%%2)
TEMDI = G(I)**2 + GI(I)#**2
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399 TEMP = (RHO(I-1) / RHO(I)) / TEMDI

400 TEM! =(28 (1-1) * G(I-1) + 2BI(I1-1) * GI(I-1)) / TEMOR

401 « =(2T (1) * G(I) + ZTI(I) * GI(I)) * TEMP

402 TEMIT =(2ZBI(I-1) * G(I-1) = 2B (I-1) * GI(1-1)) / TEMDR

403 « =(2TI(1) * G(I) - ZT (I) * GI(I)) * TEMP

404 TEMRSP = AF( I-1 ,NN)#B( 2*I-1 ,2) - AG( I=1 ,NN)*BI( 2+I-1 v2)
405 1 BF( I-1 ,NN)*B( 2*I-1 ,1) = BG( I-1 ,NN)*BI( 2xI=1,1)

406 TEMISP = AG( I-1 ,NN)*B( 2*I-1 ,2) + AF( I=1 ,NN)*BI( 2*I-1 ,2)
407 1 BG( I-1 ,NN)*B( 2*¥I-1 ,1) + BF( I=1 ,NN)*BI( 2*I=1 ,1)

408 AX2 = TEMRSP*TEMRSP - TEMISP*TEMISP

409 AX21 = TEMRSP * TEMISP

won

410 AX21 AX21 + AX2I

411 TEMDR = RHO(I-1) / (G CU(I-1)**2 + G CUI(I-1)%%*2)
412 TEMDI = RHO(I ) / (G CU(I )*x*x2 + G CUI(I ) %%2)
413 TEM2 = G CU(I-1) * TEMDR = G Cu(Il) * TEMDI

414 TEM2I = G CUI(I) * TEMDI - G cul(i-1) = TEMDR
415 TEMR1 = AX{i1*xTEMi1 - AX1I*TEM1I

416 TEMI1 = AX1I*TEM1 + AX1*TEM1I

417 TEMR2 = AX2 * TEM2 = AX2I * TEM21

418 TEMI2 = AX2I * TEM2 + AX2 * TEM21I

419 D(NN) = D(NN) + TEMR1 / RHO(I-1) + TEMR2

420 PT(NN) = DPT(NN) + TEMI1 / RHO(I-1) + TEMI2

421 111 CONTINUE

422 IF ( Kt .GT. 3) DA(NN) = DSQRT((D(NN)**Q + DI(NN)**2) * FREQ /
423 * PHASE V(NN))

424 EIGEN(NN) = LAMBDA

425 EIGENI(NN) = LAMBDI

426 IF (K6 .GT. 2) GO TO 131

427 L=20

428 K = 24

429 po 112 1 = 1,N

430 L=L + 1

431 coL(L) = SNGL(ZT(I)) * 100.

432 L =L =1

433 coL(L) = SNGL(ZTI(I)) * 1000.

434 K=K+ 1

435 COL(K) = SNGL(ZB(I)) *= 100.

436 K=K+ 1

437 COL(K) = SNGL(ZBI(I)) * 1000.

438 112 CONTINUE

439 PRINT 130, (COL(I), LIi=1,L)

440 PRINT 130, (COL(I), 1=25,K)

441 130 FORMAT (4H Z2 = , 11(16,15))

442 M =N+ N

443 PRINT 132, (RATIO(I), I = 1,M)

444 132 FORMAT (11(1X,2F5.3))

445 131 DB LOSS(NN) = - LAMBDI =* 8686.D0

446 PHINV = V * PHASE V(NN=-1) /((V - PHASE V(NN=-1))* FREQ)
447 PRINT 109, NN,EIGEN(NN),EIGENI(NN),D(NN).DI(NN).PHINV,DB LOSS(NN)
448 109 FORMAT (3H N=,I15,10H LAMBDA =,2E15.7,4H D= 2E15.7,
449 * 12H INT RANGE = ,F8.0, 6H L/K =, F8.5)

450 IF (K3 .EQ. 0) GO TO 50

451 CALL RCOEF (K3)

452 50 CONTINUE

453 C READ IN SOURCE AND RECEIVERS DEPTHS

454 301 NRT = NR

455 NR = 0
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456 NN = NN - 1

457 K1P1 = K1 + 1

458 IF (K1 .NE. 3) GO TO 321

459 NR = NRT

460 GO TO 501

461 321 READ 20, SOURCE

462 320 NR = NR + 1

463 READ 20, RECVRS(NR), FINAL, STEPP

464 IF (NR.GT.50) GO TO 300

465 350 IF (RECVRS(NR) .EQ.0.) GO TO 300

466 310 IF (FINAL .EQ.0.) GO TO 320

467 330 RECVRS(NR+1) = RECVRS(NR) + STEPP

468 IF (RECVRS(NR+1) .GT. FINAL) GO TO 320

469 340 NR = NR + 1

470 IF(NR .GT. 50) GO TO 300

471 GO TO 330

472 300 PRINT 303

473 303 FORMAT (/21H SOURCE AND RECEIVERS )

474 PRINT 21,(DEPTH(I), I = 1,NR)

475 21 FORMAT (8F10.2)

476 C COMPUTE DEPTH FUNCTIONS

477 DO 500 I = 1,NN

478 LOC = 1

479 DO 305 J = 1,NR

480 IF ((J .EQ. 1) .AND. (K1 .GT. 5)) GO TO 305
481 LCTR = 0

482 380 IF((DEPTH(J) .GE. Z(LOC)).AND.(DEPTH(J) .LT. Z(LOC+1)))GO TO 360
483 371 IF (LOC .GE. N) GO TO 385

484 370 LOC = LOC + 1

485 GO TO 380

486 385 IF (DEPTH(J) .GE. Z(LOC)) GO TO 360

487 390 LOC=1

488 LCTR=LCTR+1

489 IF (LCTR .GT. 2) GO TO 305

490 GO 7O 380

491 360 X1 = CAY (LOC) - EIGEN (I)

492 X2 = CAY (LOC) + EIGEN (I)

493 X3 = CAYI(LOC) - EIGENI(I)

494 X4 = CAYI(LOC) + EIGENI(I)

495 TEMP = X1 % X2 —- X3 * X4

4QR TEMPT - X1 * X4 + X3 * X2

497 TEMDEN = G SQ(LOC) *x*2 + G SQI(LOC)**2

498 ZE = (TEMP * GSQ(LOC) + TEMPI % G SQI(LOC)) / TEMDEN
499 ZEI = (TEMPI * GSQ(LOC) + TEMP % GSQI(LOC)) / TEMDEN
500 TEM1 = ZE

501 IF (ZE .GT. -7.5) GO TO 438

502 S = CAY(LOC)

503 T = CAYI(LOC)

504 DO 437 K = 1,20

505 TEMP = S*%2 + T*x2

506 TEMPI = (EIGENI(I) * S - EIGEN(I) * T) / TEMP
507 TEMP = (EIGEN(I) = S + EIGENI(I) * T) / TEMP
508 ZE = ((1. + TEMP) * (1. - TEMP) + TEMPI*%*2) =x CON(LOC)
509 ZEI = -2. * TEMPI * TEMP * CON(LOC)

510 ZR = Z2E / =7.5

511 IF (DABS(ZR-1.) .LT. 1.D-3) GO TO 438

512 S = EIGEN(I) + (S - EIGEN(I)) / ZR
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513

529
530
531
532
532
534
535
536
537
538

540
541
542
543
544
545
546
547
548
549
550
55
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

437 CONTINUE
438 IF (G(LOC) .LT. 0.) GO TO 439
ZE = G(LOC) * (DEPTH(J) = Z(LOC)) + TEMI
IF (ZE .GT. -7.5) GO TO 442
F(J) = 1.D-12
FI(J) = O.
GO TO 305
439 ZE = G(LOC) * (DEPTH(J) - Z(LOC)) + ZE
IF (ZE .GT. SLIM) GO TO 442
F(J) = 1.D-12
FI(J) = O.
GO TO 305
442 ZEI =GI(LOC) * (DEPTH(JY) - Z(LOC)) + ZEI
302 CALL HANKEL(ZE,ZEI,1)
F(J) =(AF(LOC,I)*H1R = AG(LOC,I)*H1I + BF(LDC,I)*H2R - BG(LOC,1)
1 ¥H21) * RHO(LOC)
FI(J) =(AG(LOC,I)*H1R + AF(LOC,I)*H1I + BG(LOC,I)*H2R + BF(LOC,1)
1 %H21) * RHO(LOC)
305 CONTINUE
IF (K1 .EQ. 2) GO TO 451
G0 T2 432
451 PRINT 270, DEPTH(NR)
270 FORMAT(7HIDEPTH ,F5.1,6X,3HE-8,17X,3HE-6,17X,3HE=4,17X, 3HE=2,
* 17X,3HE 0 )
432 IF (K1 .LT. 4) GO TO 431
IF (K1 .GT. 5) GO TO 433
SRES(I) = (F(1)**2 + FI(1)**2) / DA(I)
GO TO 500
431 TEMDEN = D(I)*D(I) + DI(I)*DI(I)
TEMRE = F(1)*D(I) + FI(1)*DI(I)
FD = TEMRE/TEMDEN
FDI = (D(I1) * FI(1) = DI(I) * F(1)) / TEMDEN
433 DO 400 K = 2,NR
Jd o= K= 1
L =J* NN=-NN#+I
IF (Ki .LT. 6) GO TO 435
FF = SRES(I) * (F(K)#**2 + FI(K)*%2) / DA(I)
GO TO 436
435 FF = FD * F (K) = FDI * FI(K)
FFI = FD * FI(K) + FDI * F(K)
436 UU(L) = FF
UUI(L) = FFI
452 GO TO (400,410,420,400,400,400,400,400), K1P1
C PLOT DEPTH FUNCTIONS
420 DO 210 II = 1,120
210 COL(II)= 1H
DO 220 I1I= 20,100,20
220 COL(II)= 1HI
FE = FF * FF + FFI * FFI
IF ((FE.GT.1E-20).AND.(FE.LT.10000.)) GO TO 240
GO TO 250
240 INT = 100.DO + 2.17147D0 * DLOG(FE)
COL(INT) = 1H*
GO TO 225
250 COL(2) = 1Hx*
225 PRINT 260, COL
260 FORMAT (120A1)
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570
571
572
573
574

576
577
578
579
580
581

582
583
584
585
586
587
588
589
590
591

592
593
594
595
596
597
598
599
600
601

602
603
604
605
606
607
608
609
610
611

612
613
614
615
616
617
618
619
620
621

622
623
624
625
626

GO TO 400

C PRINT DEPTH FUNCTIONS

410
430
440
450
170
180
400
441

500

F MAG(J) = SQRT (FF * FF + FFI * FFI)
IF (FF) 430,440,450

F ANG(J) = ATAN(FFI / FF) * 57.29577951D0 + 180.D0
GO TO 400

F ANG(J) = 90.

GO TO 400

F ANG(J) = ATAN(FFI / FF) * 57.29577951D0
FORMAT ( 10F12.4)

FDRMAT(/1OE12.3)

CONTINUE

IF (K1.EQ.1) GO TO 441

GO TO 500

PRINT 180, (F MAG(K), K = 1,J)

PRINT 170, (F ANG(K), K = 1,J)

CONTINUE

C CALCULATE ATTENUATION AND READ IN RANGES

562

772
561

524

563

564

560
550

*

IF ((K1 .EQ. 4).0R.(K1 .EQ. 5)) PRINT 180, (SRES(K), K= 1,NN)

IF (K1 .EQ. 5) PUNCH 434, (SRES(K), K = 1,NN)

NR=NR-1

IF (K2 IT. 3) GO TO 501

IF (K2 .EQ. 4) K8 = 3

IF (K2 .EQ. 3) KB = 2

K2 = 0

KX = K2 + 1

GO TO (561,551,551), KX

PRINT 533, NN,N, C(1), Z2(2), C(2), 2(3), c(2), z2(4), c(4),
SOURCE, RECVRS(40), FREQ

FORMAT (1H1, 2I5, 10F10.4)

ICTR=0

R LOS(1) = 120.

LEVEL(1) = 1

DO 562 1 = 1,5

P LEV(I)=40.

J COU(I)=4

J COUNT(I)==-6

CONTINUE

IF((K2 .EQ. 2).AND.(NR .GT. 5))G0 TO 772

GO TO 561

NR = 5

NL = NN

PRINT 524, NL

FORMAT (I8, 13H MODES IN SUM )

LL = 4

IF (K9 .GT. 0) NL = K9

READ 20, RANGE, FINAL R, STEP R

IF (K8 .EQ. 3) PUNCH 30, RANGE, FINAL R, STEP R

IF (RANGE) 563,1,564

NN = NN + 1

READ 11, K1, K2, K3, K4, K5, K6, K7, K8, K9

PRINT 11, K1, K2, K3, K4, K5, K6, K7, K8, K9

GO TO 301

IF (FINALR .LE. 0.) GO TO 550

FINAL R = FINAL R + 1.D-3

IF (RANGE .GE. FINALR) GO TO 561

R ATTEN = RANGE * ATTEN - 9.9429946
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627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

6R7
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

521
522

523

520
536

537

534

530

535

545

903

538

IF (K1 .GT. 5) RATTEN = 0.D0

iF (Ki .wi. 5) GO TO 536

IF (K7 .EQ. 2) RATTEN = 4.3429448D0 * DLOG ( FREQ)
IF (RANGE * DB LOSS(NL) .LT. 15.D4) GO TO 522
NL = NL - 1

DO 520 1 = 1,NL

IF (K7 .LT. 2) GO TO 523

FMAG(1) = PHASE V(I)

GO TO 520

TEMP RE = EIGEN(I) * RANGE

TEMPIM = EIGENI(I)*RANGE

CALL HZERO(TEMPRE, TEMPIM)

HZERO2(I) = HZEROR

IF (K7 .EQ. 0) GO TO 520

FMAG(I) = HZEROR**2 + HZEROI**2

HZER2I(1) = HZEROI

L=0

DO 540 J = 1,NR
FF = 0

FFI = 0

TEMP = 0.DO

DO 530 I = 1,NL
K=L+I

IF (K1 .LT. &) GO TO 537

TEMP = TEMP + UU(K)

GO TO 530

IF (K7 .EQ. 0) GO TO 534

TEMP = TEMP + FMAG(I) * (UUI(K)*#*2 + UU(K)*%*2)
GO TO 530

TEMIM = UUI(K) * HZERO2(I) + UU(K) =* HZER2I(1I)
TEMRE = UU(K) =* HZERO2(I) - UUI(K) * HZER2I(I)
FF = FF + TEMRE

FFI = FFI + TEMIM

CONTINUE

IF (K1 .GT. 5) GO TO 535

IF (K7 .GT. 0) GO TO 535

TEMP = FF**2 + FFI*x2

T RE = TEMP

RX = —4.3429448 * ALOG(T RE) + R ATTEN

R LOSS(J) = RX

1TF (k4 ,LT. 2) GO TO 545

T RE = -4.3429448 * ALOG(UU(K)**2 + UUI(K)**2)
PRINT 170, RECVRS(J), RX, T RE

IF (K4 .NE. 3) GO TO 545

CONTINUE

L =L+ NN

IF (K8 .LT. 2) GO T0 540

IF (K8 .EQ. 3) GO TO 538

LPCH = -RLOSS(J) * 10.DO + 1400.5D0

IF (LPCH .LT. 0) LPCH =0

IF (LPCH .GT. 999) LPCH = 999

LOSPCH(J,LL) = LPCH

IRNG = RANGE / 1000.DO

IF (LL .EQ. 25) PUNCH 903, IRNG, (LOSPCH(J,LLL),LLL = 1,25)
FORMAT (15,2513)

GO TO 540

CONTINUE
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684

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740

c

C

540

LOSS(J) = (140.05 - RX) * 10.
IF (LOSS(J) .LT. 0) LOSS(J) =
IF (LOSS(J)

CONTINUE

GO 1O (770,780,716),KX

PLOT DB LOSSES

712

783

776

786

778

779
781
782
777
784

785

787

COL(15)=1HI
COL(39)=1HI

COL(63)=1HI

COL(87)=1HI

COL(111)=1HI

COL(27)=1HX

COL(51)=1HX

COL(75) = 1HX

COL(99)=1HX

I PLACE = 135

DO 787 J = 1,NR

1 PLACE = I PLACE - 24

IPLOT = P LEV(J) - R LOSS(U)
IF (I PLOT .GT. 10) GO TO 776

G0 T2 777

P LEV(J) = P LEV(J) - 20.

J COUNT(J) = J COUNT(J) - 2

J COU(J)=J COU(uU)-2

COL(I PLACE + 1) = 1HO

IF (P LEV(J) - 100.) 778,779,7
JC = J COU(J) + 1

COL(IPLACE) = ING(JC)

GO TO 783

COL(I PLACE) = 1HoO

GO TO 782

JC = J COUNT(J) + 1
COL(IPLACE) = ING(JC)

COL(I PLACE = 1) = 1H1

GO TO 783

IF (I PLOT .LT. -9) GO TO 784
GO TO 785

P LEV(J) = P LEV(J) + 20.

J COU(J)=d COU(U)+2

J COUNT(J) = J COUNT(J) + 2
GO TO 786

IPP = I PLACE + IPLOT
COL(IPP) = 1H+

CONTINUE

GO TO 750

CONTOUR LOSS FIELD

780
590

620
600

DO 590 JUJ = 1,120
COL(JJ) = 1H
COL(31)=1HI
COL(61)=1HI
COL(91)=1HI

DO 640 uJ = 2,41
LEV = 1

0

.GT. 999) LOSS(J) = 999

81

IF (RLOS (JJ) .LT. CONTR(LEV)) GO TO 600

GO TO 610
LEV=LEV+1
GO TO 620
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741 610 IF (LEV .EQ. LEVEL(JJ)) GO TO 640

742 650 1F (LEvV .GT. LEVEL(JJ)) GO TO 660
743 GO TO 670

744 660 Il = LEVEL(JY)

745 GO TO 680

746 670 11 = LEV

747 680 JJJ = 124 - 3*JJ

748 COL(JJJ) = J SMBL(II)

749 LEVEL(JJ) = LEV

750 640 CONTINUE

751 coL(1) = 1HI

752 PRINT 261, (COL(I1), I1 = 1,119)
753 716 DO 690 JJ = 1,120

754 690 COL(JJ) = 1H

755 ICTR = ICTR + 1

756 IF (ICTR .EQ. 10) GO TO 700

757 GO TO 714

758 700 TEMP = (RANGE + 1.) / 10000.
759 IND = TEMP

760 COL(2) = ING(IND+1)

761 TEMP1 = IND

762 TFMP = (TFMP = TEMD1) * 10.

763 IND = TEWP

764 COL(3) = ING(IND+1)

765 TEMP1 = IND \

766 IND = (TEMP - TEMP1) * 10.

767 COL(S5) = ING(IND+1)

768 coL(4)=1H.

769 COL(6)=1HK

770 COL(7)=1HY

771 COL(8)=1HD

72 coL(9) = 1HS

773 ICTR=0

774 714 GO TO (710,712),K2

775 710 COL(31)=1HI

776 COL(61)=1HI

777 COL(91)=1HI

778 DO 720 JJ = 1,40

779 TEMP = LEVEL(JJ)

780 TEMPI = 0.

781 830 IF (LEVEL(JJ) .GT. LEVEL(JUJ+1)) GO TO 730
782 GO TO 740

783 730 II = LEVEL(JJ) - 1

784 KK = 1

785 860 EX = (CONTR(II) = R LOS (uJ) )/ (RLOS (JJ+1) = CONTR(II))
786 DO 760 LL = 1,3

787 IF (EX .LT. TEST(LL)) GO TO 800
788 760 CONTINUE

789 LL = 4

790 800 JJLL = 125 - 3*JJ - LL

791 COL(JJLL) = J SMBL(II)

792 GO TO (810,820),KK

793 810 LEVEL(JJ) = LEVEL(UJ) = 1

794 GO TO 830

795 740 1F (LEVEL(JJ) .LT. LEVEL(JU+1)) GO TO 840
796 GO TO 720

797 840 II = LEVEL(UJ)
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798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818

c

KK=2
GU U Bbou
820 LEVEL(JJ) = LEVEL(JJ) + 1
GO TO 740
720 LEVEL(JJ) = TEMP
COL(1) = 1HI
750 PRINT 261, (COL(I1), I1 = 1,119)
261 FORMAT (1X, 119A1)
GO TO 581
PRINT DB LOSSES
770 PRINT 580, RANGE, (R LOSS(K), K = 1,NR)
LL = LL + 1
IF (LL +GTs 25) LL = 9
580 FORMAT (F9.0, 2X, 18F6.1)
581 RANGE = RANGE + STEP R
IF (K8 .NE. 3) GO TO 560
PUNCH 980, (LOSS(I), I= 1,NR)
980 FORMAT (2613)
GO 70 560
999 STOP
END
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CONOOUTHWN =

25

26

30

35

SUBROUT INE SETUP
IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DOUBLE PRECISION LAMBDA, LAMBDI
COMMON /HAN/ H2R,H2I,H1R,H1I,H2PR,H2PT H1PR,H1PT, EXPONT
COMMON /EXPO/ EXSUM, CNTR, RATIO(25)
COMMON/DETNNT/ A(25,4),Q(25,4)
COMMON/ INPUT/ Z(12), N, OMEGA, V, VI, CON(12), GSQ(12),
1 CAY(12), LAMBDA, LAMBDI, G(12)
2,RHO(12), GI(12), G SQI(12), CAYI(12)
COMMON /LIMIT/ TLIM, EXPON , SLIM
COMMON/PARTS/ 2T(12),2TI(12),2B(12),ZBI(12)
DENOM = V * V + VI * VI

LAMBDA = OMEGA * V / DENOM
LAMBDI = -OMEGA * VI/ DENOM
M =N-1

DO 10 1 = O,M

IF (I .EQ. 0) GO TO 35

IF (ZR .GT. -7.4) GO TO 25

IF (G(1) .LT. 0.) GO TO 25

7E = G(1) * (Z(I+1) = Z(1)) + ZE
IF (ZE .LT+ =7.5) ZE = =75

GO TO 26

CONTINUE

ZE = G(I) * (Z(I+1) = Z(1)) + ZR
IF (ZE .LT. SLIM) ZE = SLIM
CONTINUE

ZQ = GI(1) * (Z(I+1) = Z(1)) + ZI
ZB(1) = ZE

ZBI(I) = ZQ

CALL HANKEL(ZE,ZQ,0)

ZB(1) = ZE

ZBI(I) = ZQ

RATIO(2*1) = EXPONT

A(2%I,1) = H2R * RHO(I)

Q(2*1,1) = H2I * RHO(I)

A(2%1,2) = HIR * RHO(I)

Q(2*I,2) = H1I * RHO(I)

A(2*I+1,1) = H2PR * G(I) = H2PI * GI(I)
Q(2+I+1,1) = H2PL * G(I) + H2PR * GI(I)
A(2%I+1,2) = HIPR * G(I) = H1PI * GI(I)
Q(2%1+1,2) = HIPL * G(I) + H1PR * GI(I)
CONTINUE

GSABS = G SQ(I+1)x%*x2 + G SQI(I+1)%%*2

X1 = CAY(I+1) - LAMBDA

X2 = CAY(I+1) + LAMBDA

X3 =CAYI(I+1) - LAMBDI

X4 =CAYI(I+1) + LAMBDI

X = X1 * X2 - X3 *x X4

Y = X1 * X4 + X3 *x X2

2T(I+1) = (X * G SQ(I+1) + Y *x G SQI(I+1)) / GSABS
ZTI(I+1) = (Y * G SQ(I+1) = X = G SQI(I+1)) / GSABS

ZR = ZT(I+1)
Z1 = ZTI(I+1)
ZE = ZR
2Q = ZI
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36
41

40

45

IF (ZR .GT. =-7.5) GO TO 40

S = CAY(i+1)

T = CAYI(I+1)

CON = (G(I+1) * S + GI(I+1) * T) / (S*x*2 + T*%2)
CON = 1. / CONxx*2

DO 36 J = 1,20

TEMP = S*%2 + T*x2

TEMPI = (LAMBDI * S - LAMBDA * T) / TEMP

TEMP = (LAMBDA * S + LAMBDI * T) / TEMP

ZR = ((1. + TEMP) * ( 1. - TEMP) + TEMPI**2) * CON(I+1)
R =2R / -7.5

IF (DABS(R-1.) .LT. 1.D-3) GO TO 41

S = LAMBDA + (S - LAMBDA) / R

CONTINUE

ZI = -2. * TEMPI = TEMP x CON(I+1)

ZT(I+1) = ZR

ZTI(I+1) = Z1

CONTINUE

CALL HANKEL(ZR,ZI,O0)
ZT(I+1) = ZR

ZTT1(T+1) = 77
RATIO(2+I+4+1) = EXPONT
IF (I .NE. 0) GO TO 45

A(1,3) = H2R * RHO(1)
Q(1,3) = H2I * RHO(1)
A(1,4) = HIR * RHO(1)
Q(1,4) = H1I * RHO(1)
GO TO 10
CONTINUE

A(2%1,3) =-H2R * RHO(I+1)

Q(2%I,3) =-H2I * RHO(I+1)

A(2*1,4) =-H1R * RHO(I+1)

Q(2*I,4) =-H1I * RHO(I+1)

A(2*I+1,3) =-H2PR * G(I+1) + H2PI =x GI(I+1)
Q(2*I+1,3) =-H2PI * G(I+1) = H2PR * GI(I+1)
A(2+I+1,4) =—=H1PR * G(I+1) + H1PI * GI(I+1)
Q(2+I+1,4) ==H1PI * G(I+1) = H1PR * GI(I+1)
CONTINUE

A( 2*N-2 ,4) = 0.
Q( 2*N-2 ,4) = 0.
A( 2+N-1 ,4) = 0.
RETURN

END
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10

30

40

50

60

70

500
80

600

SUBROUI LNE DETNT(N,DET,DETI)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

DOUBLE PRECISION DET, DETI

COMMON /EXPO/ EXSUM, CNTR, RATIO(25)

COMMON/DETMNT/ A(25,4), Q(25,4)
DLOSS = 1.

CNTR = 0.
DET = A(1,
DETI = Q(1
LIM = N +
DO 100 I=1

3)

3)
-3

LIM,2

o) P

x
wounounn
wr— b

.EQ. LIM) GO TO 70

K

11 = 2

GO TO 700
c (L,M)*A(L,M) + Q(L,M)*Q(L
B

won
-~

A(J,K)*A(L,M) + Q(J,K)*Q(

L
BI = (Q(J,K)*A(L,M) = A(JK)*Q(L

Go TO (10,50), II

M

)
M

))
M)

/ C
)/¢

TD = A(J,K) - (A(L,M)*B - Q(L,M)*BI)

TDI
TEM = TD**2 + TDI**2

TEMP = A(J,K)**2 + Q(J,K)*x*2
TEMP = TEM / TEMP

1F (Il .EQ. 2) GO TO 92

IF (I1 .EQ. 4) GO TO 92
Q(J,K) = Q(J,K) * 10.D-18
A(J,K) = A(J,K) * 10.D-18

IF (TEMP .GT. 10.D-35) GO TO 92
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100

GO TO 90

A(J,K) = TD

Q(J,K) = TDI

GO TO (700,40,60,70),11

c = DET*A(J,K) - DETI*Q(J,K)
DETI = DET*Q(J,K) + DETI*A(J,K)
DET = C

GO TO (30,100), II

CONTINUE

RETURN

END
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102

103

10

104

105

SUBROUTINE RCOEF (K3)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/ INPUT/ Z(12), N, OMEGA, v, VI, GCU(12), GSQ(12),
{ CAY(12), LAMBDA, LAMBDI, G(12)
2,RHO(12), GI(12), G SQI(12), CAYI(12)

DIMENSION RR(12), RI(12), RA(12), RT(12), CcYSQ(12), CYSQI(12)
COMMON/REFL/ AF(12,200), AG(12,200), BF(12,200), BG(12,200),
2 EIGEN(350), EIGENI(350),BR(25,4), BI(25,4), CB(12), CcBI(12),

3 CAYSQ(12), CAYSQI(12), NN

NM = N - 1

I = K3

IF (I .GT. NM) I = NM

d = L # el

K=dJ + 1

IF (NN .NE. 1) GO TO 102
=1+ 1

L
TEMP = CB(I)**2 + CBI(I)**2
CY = OMEGA * CB(I) / TEMP
CYl = -OMEGA * CBI(I) / TEMP
CYSQ(I) = CY*%x2 — CYI**2
€ TR = Y e GY]
CYSQI(I) = CYSQI(1) + CYSQI(I)
= C YSQ(I) - EIGEN(NN)**2 + EIGENI (NN)*%2
= C YSQI(I) - 2.D0 * EIGEN(NN) * EIGENI(NN)
TEMP = ELSQ + DSQRT (ELSQ**2 + ELSQI**2)
IF (TEMP .LE. 0.DO) GO TO 107
EL = DSQRT (TEMP % .5DO0)
ELI = ELSQI / (EL + EL)
A = AF(I,NN)*BR(J,2) - AG(1,NN)*BI(J,2)
* + BF(I,NN)*BR(J,1) = BG(I,NN)*BI(J,1)
B = AF(I,NN)*BI(J,2) + AG(I,NN)*BR(J,2)
x + BF(I,NN)*BI(J,1) + BG(1,NN)*BR(J,1)
E = AF(I,NN)#*BR(K,2) - AG(I,NN)*BI(K,2)
x + BF(I,NN)*BR(K,1) - BG(I,NN)*BI(K,1)
F = AF(I,NN)*BI(K,2) + AG(I,NN)*BR(K,2)
*x + BF(I,NN)*BI(K,1) + BG(I,NN)*BR(K,1)

C = (F = EL - E * ELI) / (ELSQ + ELSQI)

D =-(E * EL + F * ELI) / (ELSQ + ELSQI)
TEMP = (A 4+ C)**2 + (B + D)*%x2

RR(I) (Ax%x2 = Cxx%2 + Bx*x2 - Dx*2) / TEMP

RI(I) -2.00 * (A *xD=-Bx*C)/ TEMP
FORMAT (10D13.5)

RA(I) = O

IF (CB(I) .GT. V) GO TO 104

RX = CB(I) / V

RA(I) = ACOS(RX) * 57.296

RT(I) = RR(I)**2 + RI(I)*xx2

RT(I) = 1.DO / RT(I)

RI(I) = -DATAN2 (RI(I), RR(I)) * 57.29600
RR(I) = -4.34294D0 * DLOG (RT(I))
IF (K3 .NE.1) GO TO 108

1 =141

IF (I .LT. N) GO 71O 110

CONTINUE

PRINT 106, (RR(I), I = 1,NM)
PRINT 106, (RI(I), I = 1,NM)
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106

108
109

107

PRINT 106, (RT(I), I
PRINT 106, (RA(I), I
FORMAT (9G13.4)
RETURN

PRINT 109, Z(L), RR(I), RT(I), RI(I
FORMAT (9H AT DEPTH, F7.0,8H YD, R

1,NM)
1,NM)

* 8H, PH A = ,F9.3,16H DEGREES, GR A
RETURN

EL = 0.DO

ELI = DSQRT ( DABS (ELSQ))

GO TO 103

END
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1

SUBROUTINE HANKEL (ZR, ZI
COMMON /HAN/ H2R,H2I,H1R,
INTEGER FLPS, FLQUAD
DOUBLE PRECISION ZMLA2, T
COMMON /LIMIT/ TLIM,EXPON
DOUBLE PRECISION ZR,Z1,
A,B0,B,C0,C,DO,D, ca
STORE3,STORE4,STORES, ST
STOR12,STOR13,STOR14,ST
CTP,FR,FI,FPR,FPI,
G1I,G2R,G2I,H11R,H11I,H
H21PR,H21PI,H22PR,H22PI
SPL,52, THR, X, XR,XI,X

» IH)
H11,H2PR,H2PI ,H1PR,HIPI,R

LIM, R

T

H2R,H2I,H1R,H1I,H2PR,H2PI,H1PR,H1PI,A0.

' D4,K.K1.K2,CON4,STORE1.STORE2.

OREG,STORE7.STOREB.STORE9,5TOR10,STOR11,

DR15,STOR16,STOR18,C1.C2,C3,CPR,CPI,CTHR,
F1R,F1I,F2R.F2I.GR.GI.GPR,GPI,G1R.

12R,H121,H11PR,H11PI ,H12PR,H12PI,

,H21R,H211,H22R,H221I, PI,SR,SI,SPR,

PR,XPI,YR,YI, ZM, ZMSQ,ZM1R,ZMI T,

EXPONT,ABK, ZRTM2R.ZRTM2I.ZRTM4R,ZRTM4I.ZRT2R,ZRT2I,ZRT2M,ZRT4R,

ZRT41, Z32R,2321,S
DIMENSION A(40),B(40),C(4
XPR(40), XPI(40), C5(20)

TP,STOR17,STHR,C5,D5,FP112
0),D(40),C4(20),D4(20),ZMLA2(40),
, D5(20), ZMLA5(20)

DATA (
=7
=2
=2/
=5.
=5
=3,
~8.
=
=1
=
-6.
=2
=5
=it
=1
-1
=1

TOTMMOOTPOONIOUDWN -+ %

DATA (

=1
-3.
~2..
=55
=5
=25,
=6
-1
=
=75
=3
=1
=-2.
=5,
=T
=8,
-6.

IO'ﬂmOOUJPtD(D\l(Dmwa—“*

A(l),I=1,36)

/
-1.5507278615487157D-001,
.17929565531812830D0-05,

58993349758951237D0-09,
01519879986734545D-14,
20045934975470047D-20,
66054875234532879D-26,
03137585006604588D-32,
890812451067 13441D-39,

.54547567290139313D-45,
.69172458673478018D-52,
.223472353654655730-59,

07825428023425146D-67,
14237275311729034D-74,
50471327313964415D0-82,

.05526034966989126D-89,
.53977168218007537D-97,
.74020422875830830D-105,
.54687790339646370D0-113,

B(1),1=1,36)

/4
-5.6524893762022989D-002,

49536755984187802D-05,
99403728590245199D-10,
52780770480649350D0-15,
57276830865629078D-21,
34066309073303316D-27,
57019668261195482D-33,
87508809232765398D-40,

.10221782500302268D-46,
.12255630004727929D-53,

606879255893286000-61,
56156318721341813D-68,

.18880450319548524D-75,

90462369773880309D-83,
31361078500669380D-91,
42155714529676224D-99,
05038914195299455D-107,
884688783453903250-115,

5.16909287182905237D-03,
5.438860344937975980-07,
8.46383495944285089D0-12,
3.65072246352779973D0-17,
5.97753948247666720D-23,
4.49249900979787999D-29,
1.76038086531129261D-35,
3.94096296589855249D0-42,
5.39998488085741835D-49,
4.77888301337508527D-56,
2.85191690828591078D-63,
1.18901687798009614D-70,
3.56705420099448941D-78,
7.89545793623012643D-86,
1.31742865127327249D-93,
1.68834614274131072D-101,
1.68919067050893836D-109,
1.33859285513712678D-117/

1.34583080385769022D-03,
9.5856894861658R476N-NA ..
1.16784715962060000D-12,
4.21301284134415583D-18,
5.992223987802463200-24,
4.00950682487464952D-30,
1.42314323511182437D-36,
2.92308167120801615D-43,
3.71117112785630532D-50,
3.06709371597617291D-57,
1.72023501942408096D-64,
6.77618566821426585D-72,
1.92925106003811301D-79,
4.068100417001124770-87,
6.48792525641842955D-95,
7.96988525053346460D0-103,
7.66265861598419431D0-111,
5,.84835948305632284D-119/
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IOTMMOOTP>POONOUDWN = %

TOTMMOOTP>OONOUDWN = *

L B R

* K K K

DATA (

=6
=i
=8
=17
=
=7
=iry
=2
=2.
=1
=81
=2
=6
1S
=i:
=17
=15

DATA ¢

=%
-6.
~5%
=1
=1
=1.
=3
=3
-6.
=4,
=25
=91
=2.
-4.
=6
=83
=T

DATA(C

DATA(D

C(I),1=1,36) /

-3.1014557230974314D-002, 6.461366089786315470-04,
52663241392557118D-06, 3.88490024538426856D-08,
52349029269971316D-10, 4.23191747972142544D-13,
76173391246671935D-16, 1.40412402443376913D-18,
79326184474300016D-21, 1.86798108827395850D-24,
617299564352723680D-27, 1.18223658152575789D-30,
39359963430742897D~-34, 4.00086550298021048D-37,
89166222363130519D-40, 7.88192593179710497D-44,
91599183566300591D-47, 9.64283014438824705D-51,
86732980802505116D-54, 7.70787582802433108D-58,
88226515946870112D-61, 4.19399545336163351D-65,
56092152145669220D-69, 1.60677956483796775D-72,
78230227677570174D-76, 4.45881775124311176D-80,
63218466643330621D-84, 9.18076504212805399D-88,
18568578614594524p-91, 1.43198766442747010D-95,
62081229703165829D-99, 1.72280218647072522D-103,
72297448391911713D-107, 1.62422179856628689D-111,
44568028354809692D-115, 1.21690259557920616D-119/
ReTY 1=1,36) 7

-2.2609957504809195D-001, 9.42081562700383155D-03,
49536755984187802D-04, 1.24613963320156502D-06,
39045965744392318D-09, 2.21890960327913999D-11,
56117895057428569D-14, 1.05325321033603896D-16,
56037512642376142D-19, 1.85758943621876359D-22,
81582545084923127D-25, 1.48351752520362032D-28,
02807857304478193D-31, 6.11951591098084481D-35,
16254052247072083D-38, 1.43231001923492791D-41,
73153269001571794D-45, 2.04114412037596793D-48,
51082654027421986D-52, 1.87092716674546548D-55,
86840272377170304D-59, 1.15255746301413424D-62,
49309423104939269D-66, 4.94661553779641407D-70,
03491422428568780D-74, 1.52410833743010928D-77,
38179143214581853D-81, 3.45788535445095606D-85,
67597749080589054D-89, 5.90401198334077089D-93,
97626371657895650D-97, 7.73078869301746066D-101,

05038914195299455D-105,
29777011046113744D-113,

4(I), I=1,19)" /

.1041666666666666666D000,
.2290716053934337712D001,
.9062847663874030839D001,
.2032967817611733257D002,
.3609376712592949187D002,
.5635611849738394099D002,
.8111724483308463849D002,
.1103774469890957246D003,
.1441391353710093869D003,
-.1826444261146441383D003/

4(1), I=1,19) /

-.1458333333333333333D000,
-.2190010740010626122D001,
-.8910269876251375731D001,
-.2013810597032928847D002,

66

7.89253837446372014D-109,
6.37471183653139190D-117/

.5876374421296296294D000,
.51152469146043830390001,
.1413420435039637896D002,
.2764948541118776109D002,
=-.4566262114618547916D002,
-.681743126232733303€6D002,
.9518494701182174927D002,
.1266948822584689090D003,
.1627327073751970376D003,

-.5242693865740740734D000,,
.4986228080782250417D001,
-.1396107513192384956D002,
-.2744104880120119211D002,



114 * -.3586970305443466737D002, -.4542393171194671533D002,
115 = -.5b10363044805757000D002, -.6790874395729851569D002,
116 * -.8083919802992951438D002, -.9489495581082038481D002,
117 * -.1100759893558574910D003, -.1263823305425793323D003,
118 * -.1438158255226323270D003, ~-.1624125356051020867D003,
119 * .1826430810500566861D003/

120 DATA(C5(I), I=1,19)

121 * .8020833333333333322D000, -.2285545023696682453D001,
122 * -.3778635359389885240D001, -.5274623160711059862D001,
123 * -.6771926170404923857D001, -.82699549413402740750D001,
124 * -.9768433620097970692D001, -.1126721374768006806D002,
125 * -.1276620743800279721D002, -.1426535892246475774D002,
126 * -.1576463088778327385D0002, -.1726399730395179650D002,
127 * -.1876343942052581175D002, -.2026294344140785724D002,
128 * -.2176249668603070326D002, -.2326204842605378820D002,
129 * -.2476104285001339985D0002, -.2625430055269059493D002,
130 * .2772097924164600240D002/

131 DATA(DS(I), I=1,19) /
-.6770833333333333322D000,

132 * -.2202914798206278015D001,
133 * -.3712590308861503947D001, -.5218010289498877822D001,
134 * -.6721592615807936173D001, -.8224186533352991837D001,
135 * -.9726176955678393129D001, -.11227766967105/8781D002,
136 * -.1272907520499096141D002, -.1423017624892113601D002,
137 * -.1573111965670700007D002, -.1723193982027220702D002,
138 * -.1873266140557309258D002, -.2023330232819351955D002,
139 * -.2173387494048982910D002, ~-.2323435992394561375D002,
140 * -.2473404635295374440D002, -.2622252877088035571D002,
141 * -.2758686258346552864D002/

142 DATA (ZMLAS(I), I=%,17) / 1.E9,715., 207., 103., 47., 36.4, 27.,
143 x 22.6, 18.5, 16.6, 14.7, 14., 12.9, 12.2, 11.5, 10.8, 9.2 /
144 DATA LA2, LAS /36,17/

145 DATA (ZMLA2(I),I=1,40) /

146 12.6944301D-12,4.7348244D~6,7.0803713D-4,9.6398932D-3,

147 24.9271494D-2,1.5267301D-1,3.5324772D-1,6.7835277D-1,

148 31.1475215D0,1.7731141DO,2.561774900,3.9957181DO,5.2159327DO,
149 46.602070200,8.1490972D0,9.8514112DO,1.2320405D1,1.4917923D1,
150 51.7163634D1,1.954030901,2.303024601,2.644684401,2.929282001,
151 63.3549744D1,3.754124601,4.080298001,4.578493301,5.028713301,
152 75.391716601,5.958228501,6.453785801,7.070137701,7.597847201,
153 88.0163399D1,8.6945766D1,9.2594255D1,9.983446D1,

154 01,05751223D2,1.1039828D2,1.1820169D2/

155 DATA C1 / 0.57735 026918962576D0 /

156 DATA C2 / 0.66666 666666666666D0 /

157 DATA c3 / 0.86602 540378443864D0 /

158 DATA Pl / 3.14159265358979324D0 /

159 DATA FPI12 / 1.30899693899574718D0/

160 DATA CON4 / .7071067811865475244D0/

161 A0 = 9.30436716929229427D-01

162 BO = 6.78298725144275871D-01

163 CO = 4.65218358464614714D-01

164 DO = 6.78298725144275871D-01

165 K = 0.85366721883895156D0

166 ZMSQ = ZR*ZR +ZI*ZI

167 RZR = ZR

168 TEMP = ZI

169 1F (TEMP .LT. O0.) TEMP = -TEMP

170 IF (RZR .LE. 0.) GO TO 5t
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171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

51

53

55
62

65

72

120

125

IF (RZR .GT. 4.4) GO TO 120
TEM1 = 7. = ,2632 * RZR*%2

IF (TEMP .GT. TEMi1) GO TO 120
GO TO 53

IF (RZR .LT. -9.) GO TO 120
TEM1 = 4.4 + ,1375 * RZR

IF (TEMP .GT. TEMi) GO TO 120
FLPS = 1

STORE1 ZR*ZR-Z1%Z1

STORE2 2.%xZR*Z1

XR = STORE1*ZR ~-STORE2*ZI

XI = STORE1*ZI +STORE2*ZR

DO 55 MLS=1,LA2

IF (ZMSQ - ZMLA2(MLS)) 62,62,55
CONTINUE

FR = A0

FI = 0.0
XPR(1) = XR
XPL(1) = XI

DO 65 M = 1,MLS
FR=FR+A(M)*XPR(M)
FI=FI+A(M)*XPI(M)
XPR(M+1)=XR*XPR(M)=XI*XPI (M)
XPI(M+1)=XI*XPR(M)+XR*XPI (M)
CONTINUE

GR=BO

GI=0.0

DO 72 M = 1,MLS
GR=GR+B (M) *XPR (M)
GI=GI+B(M)*XPI(M)

CONTINUE

X =ZR+GR-ZI*GI

GI=ZR+*GI+ZI*GR

GR=X

SR=-C1+%(GI-FI~FI)
SI=C1+(GR-FR-FR)

H2R=GR-SR

H21=GI-SI

GO TO 317

FLPS = 0

ZM = DSQRT(ZMSQ)

ZRT2M = DSQRT(ZM)

IF (ZR .LT. 0.D0) GO TO 125
ZRT2R = DSQRT (0.5D0 * (ZR + ZM))
ZRT2I = ZI / (ZRT2R + ZRT2R)
Z32R = ZR*ZRT2R - ZI*ZRT2I

Z321 = ZR*ZRT2I + ZI*ZRT2R

GO TO 130

ZRT2I = DSQRT (0.5D0 * (ZM - ZR))
IF (ZI .LT. 0.D0) ZRT2I = =-ZRT2I
ZRT2R = ZI1 / (ZRT2I + ZRT2I)

Z32R = ZR*ZRT2R - ZI*ZRT2l1
Z321 = ZR*ZRT2I + ZI*ZRT2R
ZM1R = DABS(Z32I)

IF (ZM1R .LT. TLIM) GO TO 130
R = (TLIM / ZMI1R)
Z32R = Z32R * R
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228 R = DCBRT(R)

229 ZRT2R = ZRi2R * R

230 ZRT2I = ZRT2I * R

231 ZRT2M = ZRT2M * R

232 R =R * R

233 ZM = ZM * R

234 ZMSQ = ZM*%2

235 ZR = ZR * R

236 21 = 21 * R

237 130 ZRT4R = DSQRT (0.5D0 * (ZRT2R + ZRT2M))
238 ZRT41 = 0.5D0 * ZRT2I / ZRT4R
239 ZRTM4R = ZRT4R/ZRT2M

240 ZRTM4I = -ZRT4I/ZRT2M

241 1F (ZR .GT. 0.) GO TO 210

242 IF (ZMiR .LT. TLIM) GO TO 210
243 ABK = ABS(K2)

244 IF (2321 .GT. 0.) GO TO 205

245 K1 = K * EXPONT

246 K2 = K / EXPONT

247 Z321 = =TLIM

248 GO TO 220

249 205 K2 = K *» FXPONT

250 K1 = K / EXPONT

251 2321 = TLIM

252 GO TO 220

253 210 K2 = C2 * Z321

254 S2 = DEXP(K2)

255 K2 = KxS2

256 K1 = K/S2

257 220 THR = FPI12 - C2 * Z32R

258 STHR =DSIN(THR)

259 CTHR =DCOS(THR)

260 STP = -C3*CTHR +0.5*STHR

261 CTP = —-C3*STHR -0.5*CTHR

262 TEMP = DABS (Z32R)

263 TEM1 = DABS (Z32I)

264 IF (TEMP .LT. TEM1) TEMP = TEM1
265 230 DO 235 ML = 1,LAS5

266 IF (TEMP .GT. ZMLAS(ML)) GO TO 250
267 235 CONTINUE

268 250 CONTINUE

269 YR = 2321

270 Y1 = =Z32R

271 CALL CFR (YR, YI, F2R, F21, c4, C5, ML)
272 CPR = F2R

273 CPl = F2I1

274 STORE3=K2*(ZRTM4R*F2R-ZRTM4I*F2I)
275 STORE4=K2*(zRTM41*F2R+ZRTM4R*F2I)
276 H22R =STORE3*CTHR-STORE4*STHR
277 H221 -STORE3*STHR+STORE4*CTHR
278 IF (ZR) 280,270,270

279 270 FLQUAD =0

280 GO TO 300

281 280 IF (2I) 290,310,310

282 290 FLQUAD = 1

283 300 H2R = H22R

284 H21 = H22I
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285
288
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

329
330
331
332

334
335
336
337
333
39
340
341

317
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320
330

340

350

92

94

380

GO TO 317

FLQUAD = —)

YR = -7321

YI = Z32R

CALL CFR (YR, YI, F1R, F1I, C4, C5, ML)
CPR = F1R

CPI = F11

STORE5=K1*(ZRTM4R*F1R—ZRTM4I*F1I)
STORE6=K1*(ZRTM4R*F1I+ZRTM4I*F1R)
H21R=STORE5*CTP-STORE6*STP
H21I=STORE5*STP+STORE6*CTP
H2R=H21R+H22R

H2I=H211+H221

IF (IH .EQ. 2)GO TO 80

IF (FLPS .NE. 1) GO TO 320

H1R = GR+SR

H1I = GI+SI

GO TO 362

IF (FLQUAD .LT. 0)GO TO 340

YR = -Z321

YI = Z32R

CALL CFR (YR, YI, F1R, F11I, C4, C5, ML)

STORE7:K1*(ZRTM4R*F1R—ZRTM4I*F1I)
STORE8=K1*(ZRTM4I*F1R+ZRTM4R*F1I)
H11R=STORE7+CTHR+STORE8*STHR
H11I=STORE7*(~STHR )+STORES*CTHR
IF (FLQUAD .LE. 0) GO TO 360
STOREQ:KQ*(ZRTM4R*F2R-ZRTM4I*F2I)
STOR10:K2*(ZRTM4I*F2R+ZRTM4R*F2I)

H12R = STORE9*CTP+STOR10*STP
H121 = STORE9*(=STP)+STOR10%CTP
H1R = H11R+H12R

H1I = H11I+H121I

GO TO 362

H1R = H11R

H1I = H111

IF (IH .EQ. 1)GO TO 999
IF (FLPS .NE. 1) GO TO 380
FPR = CO

FPI = 0.0

DO 92 M = 1,MLS
FPR=FPR+C (M) *XPR (M)
FPI=FPI+C(M)*XPI(M)

X =-(STORE1*FPR-STORE2*FPI)
FPI=-(STORE1*FPI+STORE2*FPR)
FPR = X

GPR = DO

GPI = 0.0

DO 94 M = 1,MLS
GPR=GPR+D (M) *XPR(M)
GPI=GPI+D(M)*XPI(M)
SPR==C1*(GPI-FPI-FPI)
SPI=C1x(GPR-FPR-FPR)
H2PR=GPR-SPR

H2PI=GPI-SPI

GO TO 414

YR = 2321
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342 YI = -Z32R

343 CALL CFK (YR, YI, G2R, G21, D4, DS, ML)
344 STOR11 = K2*(ZRT4R*G2R-ZRT4I*G21I)
345 STOR12 = K2%(ZRT4R*G2I+ZRT4I*G2R)
346 H22PR=STOR11*STHR+STOR12*CTHR

347 H22PI=STOR11*(~-CTHR) +STOR12*STHR
348 390 IF (FLQUAD .LT. 0) GO TO 410

349 400 H2PR = H22PR

350 H2PI = H22PI

351 GO TO 414

352 410 YR = -Z321

353 YI = Z32R

354 CALL CFR (YR, YI, GiR, G1I, D4, D5, ML)
355 STOR13 = Ki1*(ZRT4R*G1R-ZRT4I*G11I)
356 STOR14 = K1*(ZRT4R*G1I+ZRT4I*G1R)
357 H21PR=STOR13* (-STP) =STOR14x*CTP
358 H21PI=STOR14*(-STP) +STOR13*CTP
359 H2PR = H21PR+H22PR

360 H2PI = H21PI+H22PI

361 414 1IF (IH .EQ. 2) GO TO 999

362 100 IF (FLPS .NE. 1) GO TO 420

363 110 H1PR = GPR+SPR

364 H1PI = GPI+SPI

365 GO TO 999

366 420 IF (FLQUAD .LT. 0) GO TO 440

367 430 YR = -Z32I

368 YI = Z32R

369 CALL CFR (YR, YI, GiR, Gi1, D4, DS, ML)
370 440 STOR15 = K1x(ZRT4R*G1R -ZRT4Ix*G11I)
371 STOR16 = K1x(ZRT4R*G1I +ZRT4I*G1R)
372 H11PR = STOR15*STHR =STOR16*CTHR
373 H11PI = STOR15*CTHR +STOR16*STHR
374 450 IF (FLQUAD .GT. 0) GO TO 470

375 460 HIPR = H11PR

376 H1PI = H11PI

377 GO T0O 999

378 470 STOR17 = K2x(ZRT4R*G2R -ZRT4IxG21I)
379 STOR18 = K2+ (ZRT4R*G2I +ZRT4I*G2R)
380 H12PR = STOR17*(-STP) +STOR18*CTP
381 H12PI = STOR17*(-CTP) =STOR18*STP
382 H1PR = H12PR+H11PR

383 H1PI = H12PI+H11PI

384 999 CONTINUE

385 RETURN

386 END

@PRT,S J.CFR
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OCONOUI D WN =

10

SUBROUTINE CFR(X, Y, SR, SI, A, B, M)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION A(1), B(1)

SR = 0.DO

SI = 0.DO

DO 10 U = 1,M

I =M-uU+ 1

TEMR = X + SR + B(1I)

TEMI = Y + SI

TEMP = A(I) / (TEMR**2 + TEMIx*%2)
SR = TEMR * TEMP

SI = -TEMI % TEMP

CONTINUE

SR = SR + 1.D0O

RETURN

END
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CONOUDHWN =

- h b b ok b b a
ONOUDBWN—-O

10
11

SUBROUTINE HZERO(PARTR,PARTI)

IMPLICIT DOUBLE PRECISION(A-H,0-2Z)
DOUBLE PRECISION PARTI, PARTR, K2, IMZ12
COMMON /AHZERO/ HZEROR,HZEROIL

D2 = PARTR**2 + PARTI**2

K2 = .7978845608*EXP(PARTI)

D = SQRT(D2)

RLZ12

(SQRT((PARTR + D)/2.))/D

IF(D - PARTR) 9,9,10

IMZ12

GO TO 11

IMZ12
COST =

HZEROR
HZEROI
RETURN
END

0

(SQRT((D - PARTR)/2.))/D

COS(PARTR)
SINT =-SIN(PARTR)

K2% (RLZ12*COST = IMZ12*SINT)
K2*(IMZ12%COST + RLZ12%*SINT)
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APPENDIX B: SAMPLE RUN

This appendix gives a brief discussion of the input-output, then lists an input deck
and shows the resulting output. The input deck is really three separate runs that are stacked
to run consecutively. The input to a single run consists of several parts given in table B1.
The table gives the number of cards and the location of the FORTRAN input statements in
Program MAIN. The last three of these are open-ended. That is, more modes, receiver
depths, or ranges are read in until a blank card specifies the end of the list. A blank range
card sends the program back to the beginning. A negative range sends the program back to
read a new source and new receivers after reading another key card. The program halts
when a blank “n and freq” card is encountered.

Table B2 gives most of the functions of the key card by which integers are read into
control keys 1-9. Some of these will require additional information, which is read in imme-
diately following the key card.

The output of the program is usually printed through FORTRAN print statements.
Cards are also punched when key 5 is 10 or key 8 is 2, 3, or 4. In the first case each card
contains a complete eigenvalue that can be read into future runs.

When key 8 = 2, propagation losses for 25 consecutive ranges per card are punched
for each receiver depth, with a maximum of 5 receiver depths. The losses can be read into a
plot program with a format of (5X,25F3.1). Each loss must then be subtracted from 140.
This format allows losses to tenths of a dB from 40.1 to 140.0 dB.

When key 8 is 3, losses for up to 26 receiver depths are punched on one card for

each range. These cards can be used in a contour plotting program. They can be read with a
format of (26F3.1) and must also be subtracted from 140.

Table B1. Input cards to the normal mode program.

Location
in Program
Input Function Number of Cards MAIN
Control keys Selects options 1 or more 37-65
n and freq Determines number of layers and fre- 1 66
quency; also halts program
Profile Specifies depths, sound speeds, gradients, 7 71-85
attenuations, and densities
Modes Searches for or specifies modes 1 or more 224
Source and receivers | Specifies a source depth and one or 2 or more 461-463
more receiver depths
Ranges Specifies a sequence of ranges; also 1 or more 616
directs continuation
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Table B2. Functions of the control keys.

Key Setting Effect Function Affected
1 0 No output Depth functions
Print
Plot on printer
2 0 Print losses Propagation losses
1 Contour on printer
3 0 No output Reflection coefficients
1 Print all interfaces
k>1 Print interface k
& k>0 Change levels and symbols Contour on printer
5 0 Sum only those given Number of modes
1 Add to existing sum
k+10 Punch modes on cards
6 0 Long print Steps in mode iteration
1 Short print
2 Shortest print
7 0 Phased addition Mode sum
1 Random-phase addition
8 1 Change T-lim
2 Punch losses for up to 5 Loss plot input
receivers
3 Punch losses for up to 26 Contour plot input
receivers
9 0 No effect Number of modes
k Use only 1st k modes

The first profile in the input-output is a surface duct, 100 m deep. For the 500 Hz
frequency, 3 modes are found by searching from a phase velocity of 1520.5-1523 m/s. Two
additional modes are found by extrapolation. Forty receiver depths are then specified from
3 to 120 m, and propagation loss contours are drawn for a source at a depth of 20 m. The
modes are added in random phase, and loss contours of 80, 90, and 100 dB are requested to
be represented by the symbols 8, 9, and 0. A negative range then causes the program to read
new control keys, source and receivers. The depth functions are then printed out as ampli-
tudes and phase angles and propagation losses are computed.

The second profile consists of two negative gradients over two layers of sediments in
shallow water. A velocity discontinuity exists at the top of each sediment layer. Negative
numbers in the input for the attenuation at the bottom of the sediment layers serve as flags
to request that the gradients at the top of the layers have no imaginary parts and that the
attenuation at the bottom will be whatever results from this. The change in ImC from 37.9
to 23.7 in the deeper sediment layer indicates that the attenuation changed by about 60
percent through the layer.
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A final layer of negative sound speed gradient must always be added. A gradient of
-0.1 is chosen here for the top of this layer.

The first three modes are determined by reading in approximate values. The magni-
tudes of the depth functions are plotted on a log scale at 2-m depths from 30 to 80 m.
Reflection coefficients are computed at interface 2, which is the water-sediment interface.

The final profile is a deep-water profile with a 40-m deep sediment layer. The atten-
uation increases from 2 dB/km to 2.5 dB/km through this layer. The first mode, the first
bottom-reflected mode, and a higher bottom-reflected mode are found. Each step of the
mode iteration is printed out. Reflection coefficients are again computed. The amplitudes
and phase of the depth functions are printed out at 500-m depth and at each even 1000-m
depth for a 100-m source depth.

On the last two profiles, a much larger set of modes is required to compute correct
propagation losses.

The sample run given here required 6 seconds on a UNIVAC 1 110, Exec 8 operating
system. The cost of the run was $1.20.
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NORMAL*MODE(0) . INPUT

INPUT DECK STARTS AT LINE 3, ENDS AT LINE 65.

1
2 123456789 123456789 123456789 123456789 123456789 123456789 123456789 123456789
3 1 1 1 1 2
4 100. 90. 80. -1000.
5 0
6 098
7 2 500.
8 100.
9 1520.
10 0
11 .017 = |
12 o]
13 0
14 0
15 -1520.5 1523. 30
16 =1 2
17 0
18 10.
19 3. 120. 3.
20 0
21 4000. 100000. 4000.
22 =14
23 1
24 10.
25 30. 120. 30.
26 0
27 5000. 100000. 5000.
28 0
29 2 2 1
30 5 1500.
31 0. 51. 73. 73.3 373.3
32 1542.2 1536.8 1606.45 1684.
33 1523.42
34 1.5 1S =1
35 .12 .73 .73
36 =i.. =1%
37 1.68 1.91 1.91
38 1527.18 .16
39 1530.64 .13
40 1533.49 .11
a1 0
42 60.
43 30. 80. 2.
44 0
45 0
46 1 6
47 8 100.
48 55. 146. 402. 960. 2286. 4390. 4430.
49 1544.9 1542.6 1517.9 1495.0 1483.2 1497.8 1541.7
50 1533.4
51 1. =.1
52 .02 .025
53 .025
54 1.54 2.5
55 =1483.5 1484.5 10
56 -1533.4 .1 1534.4 10
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APPENDIX C: HANKEL FUNCTION PARAMETERS

This appendix gives the FORTRAN statements for two programs associated with the
modified Hankel functions. Program PWRTRN computes the power series coefficients, dp,,
from eq (57), then determines the truncation points from eq (59). The truncation points
for the other three sets of coefficients can be determined by changing line 9. Different com-
puter word lengths can be accommodated by changing line 16.

The second program, CFC, determines the asymptotic series coefficients Cyy, from

eq (72), then determines the continued fraction coefficients as indicated by eq (81)-(83).
The second set of coefficients can be determined by changing the 4 in line 11 to a 16.
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C #** THIS PROGRAM DETERMINS TRUNCATION POINTS F

50

60

30

20

40
10

PROGRAM PWRTRN

IMPLICIT DOUBLE PRECISION(A-H,0-Z)
DIMENSION D(50), ALOGD(59)

D(1) = 1.

ALOGD(1) = 0.

P = 3.

IF (D(I) :LE 0.) GO TO 50
ALOGD(I) = ALOG10(D(I))

- ALOGD(M+1) = 3.

CONTINUE

PRINT 60, D, ALOGD
FORMAT (10E12.6)

DH = 18.

M =1

DO 10 K = 2,50

P=M=-K

Z =

IF (P .GT. -1.1) GO TO 20
A = ALOGD(M)

IF (A .GT. 0.) GO TO 20
M=M=+ 1

GO TO 30

L= K= 1

MM =M - 1

AZ = EXP (Z * 2.3025851)

AZSQ = AZ *
PRINT 40, L,
FORMAT (215,
CONTINUE
END

AZ
M™m, Z,
4E15.8)

AZ, AZSQ

ALOGD(K) - ALOGD(M) + DH) / 3. / P

* Z
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PROGRAM CFC

C *x THIS PROGRAM COMPUTES A SET OF SERIES COEFFICIENTS AND THEN

C =*x COMPUTES THE CORRESPONDING CONTINUED FRACTION COEFFICIENTS.
IMPLICIT DOUBLE PRECISION(A-H,0-Z)
DIMENSION COEF(21,23,3), CHECK(20), C(82), S(10), A(20), B(20)

VONOUIH WA =

20

100

110

120

150

130

C(1) = 1.

BOTTOM = 1.
TOP = 1.
DO 21 = 1,45

X = 48 * 1

Y =9 % (I +1 = 1)%%x2 -4
C(I+1) =C(I) Y / X
CONTINUE

PRINT 20, (C(I), I = 1,40)
FORMAT (5G20.9)

FORMAT (/)

DO 100 I = 1,1
COEF(I,I,3) =
COEF(I,I+1,3)
COEF(I,I+42,3)
CONTINUE

A(1) = C(2)
COEF(2,2,3) = 1.
DO 140 I 3,21
DO 110 J = 2
COEF(I,J,1)
COEF(I,J,2)
COEF(I,J,3)
CONTINUE

IF (I .EQ. 3) GO TO 150
CON = 0.

AT 0.

BT 0.

K I = 3

DO 120 U = 3,1

K=K+ 1
CON = C(K) = COEF(I,J-1,3) + CON
AT = C(K) = COEF(I,Ju=-1,2) + AT
BT = C(K) = COEF(I,J-1,1) + BT
CONTINUE

PRINT 160, CON, AT, BT
CHECK(I-2) = BT

A(I-2) = —(CON + C(K+1)) / AT
CONTINUE

CCN = 0.

nno-—

[}

- N

o n- -
(9]
o
m
m
—

]
i

- ) -

CI_CL

- Www

-~

K=K+ 1

CON = C(K) * COEF(I,J=1,3) + CON
C(K) = COEF(I,J=-1,2) + AT
BT C(K) = COEF(I,J-1,1) + BT
CONTINUE

PRINT 160, CON, AT, BT

PRINT 11
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B(I-2) = —(CON + A(I-2) * AT + C(K+1)) / BT
DO 140 J = 2,1
COEF(1,J,3) = COEF(I,J,3) + A(I-2) * COEF(I,J,2) + B(I=-2) =*
* COEF(I,J,1)
140 CONTINUE
PRINT 20, A, B, CHECK
160 FORMAT (5G20.9)

K = =2

J =0

po 30M=1,18,3

J =J + 3

K =K+ 3

PUNCH 200, (A(I), I = K, J)
PUNCH 200, (B(I), I = K, J)

30 CONTINUE
200 FORMAT (5X, 1H*, 3(E21.15, 1H, ))
END
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APPENDIX D: MODE FOLLOWER PROGRAM IN FORTRAN

The FORTRAN statements of the Mode Follower program are given here. This is
the main body of the program. The following auxiliary subroutines from appendix A are
required: SETUP, DET, HANKEL, and CFR.
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PROGRAM MFOLLO
IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON /INPUT/ Z(10),N,OMEGA,V,VI,GCU(10),GSQ(10),CAY(10),LAMBDA,L

1AMBDI,G(10),RHO(10),GI(10),GSQI(10),CAYI(10)
COMMON /DETMNT/ A(21,4),Q(21,4)
REAL INCA, INCB, INCC, INCD, INCE, LAMBDA, LAMBDI

DIMENSION T(4), PV(4), W(8B), WI(8), CB(10), CBI(10), C(10),

1 CAY SQ(10), GAMMA(10), DPK(10), GCUI(10), CI(10), CR(10),PVI(4)

2 , CAYSQI(10), SR(4), SI(4)

CHNG = 1. / 8192.

CHMNGI = 0.
4 CONTINUE
L++ w0 - TOTAL STEF LIMIT, K1, K2 PRINT KEYS, K3 = i AEEPS SAME PRUriLE
Cxx FOR NEXT RUN.

READ 10, KO, K1, K2, K6, K3, TLIM, BLIM, RATIO, EX
PRINT 10,K0, K1, K2, K6, K3, TLIM, BLIM, RATIO, EX

10 FORMAT (514, 4E10.1)

IF (TLIM .EG. O0.) TLIM
IF (BLIM .EQ. 0.) BLIM
IF (EX .EQ. 0.) EX = 28.
RLIM = 10.*x*EX
IF (RATIO .EQ. 0.) RATIO = 2.
IF (KO .EQ. 0) KO = 300
IF (K3 .NE. 0) GO TO 128

30 READ 1240, N, FREQ ,ATTEN

C** STOP IF N = 0. THIS IS THE ONLY PROGRAMED STOP.
IF (N.EQ.C) GO TO 1200
PRINT 1250, N,FREQ

1 +E=b
1 «E=2

won

C** PARAMETERS READ IN BELOW ARE THOSE AT THE TOP OF EACH LAYER.

C** READ IN VELOCITIES.
READ 1260, (C(I),I=1,N)
PRINT 1280, (C(I),I=1,N)
C*+ READ IN DEPTHS.
READ 1260, (Z(I),I=
PRINT 1280, (Z(I),I
C** READ IM GRADIENTS
READ 1260, (GAMMA(I),I=1
PRINT 1280, (GAMMA(I),I=
C** READ IN ATTENUATION FACTOR
READ 1260, (DPK(I),I=1,N)
PRINT 1280, (DPK(I),I=1,N)

1,N)
=1,N)

IN)
1,N)
IN LOSS PER KILOMETER.

Cx* READ IN DENSITIES (BLANK INPUT IMPLIES SEA WATER DENSITY).

READ 1260, (RHO(I),I=1,N)
PRINT 1280, (RHO(I),I=1,N)
128 CONTINUE
NUMEBER = 1
JxX = 0
C** NX = VARIABLE, NY = LAYER NUMBER, NZ = CONTINUITY

READ 119, NX, NY, NZ, PK, VALL,DP, VvV, VI, STEP, STEPI
PRINT 21, NX, NY, NZ, PK, VALL,DP, Vv, VI, STEP, STEPI

119 FORMAT (312, 4X, 7010.2)
21  FORMAT (10H VARIABLE ,I2, 10H
x 12, / 7G15.5)
PK = PK - DP
C** START NEW CYCLE BY INCREMENTING VARIABLE.
107 PK = PK + DP

LAYER NO , I2,12H
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IF (DP) 108,999,109
C*x CHECK IF DESIRED LIMIT OF VARIABLE HAS BEEN REACHED.
108 IF (PK .LT. VALL) GO TO 3
GO 70 133
109 IF (PK .GT. VALL) GO TO 3
133 GO 1O (131,101,102,103,104,105) ,NX
131 FREQ = PK
GO TO 106
101 C(NY) = PK
IF (NZ .NE. 0) GO TO 106
134 IF (NY .EQ. N) GO TO 135
GAMMA(NY) = 0.
IF (Ny .LT. 2) GO TO 106
135 GAMMA(NY-1) = 0.
GO TO 106
102 Z(NY) = PK
IF (NZ .EQ. 1) GO TO 106
IF (NY .LT. N) GO TO 134
IF (NUMBER .EQ. 1) GO TO 106
C(NY) = 0.
GO TO 106
103 GAMMA(NY) = PK
IF (NZ .NE.O) GO TO 106
J = NY + 1
DO 121 I. = J,N
C(I) = 8.
121 CONTINUE
104 DPK(NY) = PK
GO TO 106
105 RHO(NY) = PK
106 CONTINUE

C+3 COMFLETC PROFILE *x
DO 100 I=1,N
Cxx SET UNSPECIFIED DENSITIES TO 1.02 (SEA WATER).
IF (RHO(I).NE.O.) GO TO 40

RHO(I)=1.02
40 IF (I.EQ.1) GO TO 50
C*x* COMPUTE VELOCITY AT BOTTOM OF PREVIOUS LAYER.

TEMP=CI (I-1)*%2

TEMDR=C(I-1)*%2

TEMDI=(TEMDR+TEMDR+TEMDR-TEMP)*CI(I-1)

TEMDR= ( TEMDR-TEMP-TEMP-TEMP)*C (1-1)

TEMP= (GAMMA (I—1)+GAMMA(I=1))*(Z(I)~Z(I=-1))=C(I=1)

TEMDEN=TEMP**2+CI (I=1)%%2

TEM1=(TEMDI*CI(I-1)~-TEMDR*TEMP)/TEMDEN

TEM11=(-TEMDI*TEMP-TEMDR*CI(I~1))/TEMDEN
CB(I)=SQRT(.5%(TEM1+SQRT(TEM1**2+TEM1I*%2)))

CBI(I)=TEM1I/(CB(I)+CB(I))

50 IF (C(I).NE.O) GO TO 60

Cx* IF VELOCITY WAS UNSPECIFIED USE VELOCITY AT BOTTOM OF PREVIOUS LAYER
C(I)=CB(I)

60 IF (DPK(IY.NE.O.) GO TO 70
CI(I)=0.
GO TO 80

C*x* IF ATTENUATION IS TO BE APPLIED TO A LAYER, COMPUTE COMPLEX VELOCITY
C*x KEEP ABSOLUTE C EQUAL TO GIVEN REAL C FOR SIMPLICITY.
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114 70 TEMP=5457&. *FREQ

115 TEMDI=DPK(1)*C(1I)

116 TEMDR=TEMP**2+TEMDI**2

117 CI(I)=TEMDI*TEMP*C(I)/TEMDR

118 C(I)=TEMP**2+C(1)/TEMDR

119 80 IF (GAMMA(I).NE.O.) GO TO 100

120 IF (1.EQ.N) GO TO 90

121 C** COMPUTE GRADIENT IF NOT GIVEN.

122 GAMMA(I):(C(I+1)**2—C(I)**2)*C(I)/(2.*C(I+1)**2*(Z(I+1)-Z(I)))
123 IF (1.EQ.N) GO TO 90

124 GO TO 100

125 C+% REDUCE LAYERS BY ONE IF FINAL POINT ONLY DEFINES GRADIENT IN LAST LAYER.
126 90 N=N-1

127 100 CONTINUE

128

129 C** COMPUTE USEFULL QUANTIES **

130 OMEGA=6.283185307«FREQ

131 DO 120 1=1,N

132 TEMP=C(I)**2+CI(1)*%2

133 CAY(1)=OMEGA*C(1)/TEMP

134 CAYI(I)=-OMEGA+CI(I)/TEMP

135 CAYSQ(I)=CAY(I)**2-CAYI(I)*x2

136 CAYSQI(1)=2.%CAY(I)*CAYI(I)

137 TEMDR=-2.+GAMMA (1)*CAYSQ(I)

138 TEMDI=-2.*GAMMA (I)*CAYSQI(I)

132 GCU(I)=(TEMDR*C(I)+TEMDI*CI(1))/TEMP

140 GCUI(1)=(TEMDI*C(I)=-TEMDR*CI(I))/TEMP

141 TEMP=EXP (ALOG(GCU( I)**2+GCUI(1)**2)/6.)

142 GI(1)=TEMP*SIN(ATAN2(GCUI(I),ABS(GCU(T)))/3.)
143 G(1)=SQRT(TEMP*#*2-GI(1)**2)

144 IF (GAMMA(I).LT.0.) GO TO 110

145 G(I1)=-G(I)

146 110 GI(I)=-GI(I)

147 fes va IS A LavCR STRENGH PARAMETER USED ONLY TO COMPARE WiTh OTHER WSSt
148 XMI=~GI(I)*(Z(I+1)-2(1))

149 XM==G(1)*(Z(I+1)-2(1))

150 GSQI(1)=2.*G(1)=GI(I)

151 120 GSQ(1)=G(I)**2-GI(I)**2

152 IF (JX .GT. 0) GO TO 113

153 C#* GO TO INITIAL 3 STEPS OR TO THE STANDARD STEP.
154 IF (NUMBER - 4) 71,111,122

155 71 CALL SETUP

156 CALL DETNT(N,DET,DETI)

157 VEL=DET

158 VELI=DETI

159 DELTA=STEP

160 DELTI=STEPI

161 IF(DELTA.NE.0.)GO TO 250

162 IF(DELTI.EQ.O.)DELTA=.01

163 250 SIZE2=100.

164 IF (K6.LT.3) PRINT 1320, V,VI,DET,DETI,A(21,4),Q(21,4)
165 C** ITERATE FOR MODE UP TO 7 STEPS.

166 DO 310 U=1,12

167 V=V+DELTA

168 VI=VI+DELTI

169 C#% DO NOT PERMIT IMAGINARY PART TO BECOME NEGATIVE.
170 IF (VI) 260,270,280
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171 260 DELTI=DELTI-VI

172 270 VI=1.E-18
173 Cx*x SET UP DETERMINANT FOR PHASE VELOCITY V + VI

174 280 CALL SETUP

175 CALL DETNT (N,DET,DETI)

175 IF (K6.NE.1) GO TO 300

177 PRINT 1330, V, VI, DET, DETI, SLR, SLI

178 300 TEMNR = DELTA

179 TEMNI = DELTI

180 TEMDR=VEL-DET

181 TEMDI=VELI-DETI

182 TEMDEN=TEMDR* TEMDR+TEMDI*TEMDI

183 IF (TEMDEN.EQ.0.) GO TO 320

184 TCMANU-TCMNR*TEMDR+TEMNI*TEMDI

185 TEMINU=TEMNI *T EMDR-TEMNR*TEMDI

186 SLR = TEMRNU / TEMDEN

187 SLI = TEMINU / TEMDEN

188 2 IF (J .GT. 3) GO TO 125

189 SR(4-NUMBER) = SLR

190 SI(4-NUMBER) = SLI

191 125 DELTA = DET * SLR - DETI * SLI

192 DELTI = DET * SLI + DETI * SLR

193 SIZE=DELTA*DELTA+DELTI*DELTI

194 C*x DISCONTINUE ITERATION AFTER 2ND STEP IF CORRECTION STEP IS MORE THAN
195 C**x PREVIOUS STEP.

196 IF ((SIZE.GT.SIZE2).AND.(J.GT.2)) GO TO 320
197 SIZE2=SIZE*2.

198 VEL=DET

199 VELI=DETI

200 310 CONT INUE

201 320  CONTINUE

202 51  PV(4-NUMBER) = V

203 PVI(4~NUMBER)= VI

204 NUMBER = NUMBER + 1

205 GO TO 107

206 C** START STANDARD STEP, EXTRAPOLATE PHASE VELOCITY AND SLOPE.
207 111 INCA = DP

208 INCB = DP

209 INCC = DP

210 122 INCD = -INCB - INCC

211 T(1) INCB * INCD

212 T(2) = INCB * INCC
213 T(3) = INCD * INCC

214 DO 112 IS = 1,3

215 W(IS+4) = =-SR(IS) / T(IS)
216 WI(IS + 4) = =SI(IS) / T(IS)
217 W(IS) = -PV(IS) / T(IS)

218 112 WI(IS) = -PVI(IS) / T(IS)
219 113 INCD = INCA + INCB

220 INCE = INCD + INCC

221 T(1) = INCD * INCE

222 T(2) = INCA * INCE

223 T(3) = INCA * INCD

224 SLOP = 0.

225 SLOPI = 0.

226 SUM = 0.

227 SUMI = 0.
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228 po 114 1S = 1,3

229 SLOP = SLOP + W(IS + 4) * T(IS)

230 SLOPI = SLOPI + WI(IS+4) * T(1S)

231 SUM = SUM + W(IS) * T(IS)

232 114 SUMI = SUMI + WI(IS) * T(IS)

233 vV = SUM

234 VI = SUMI

235 CALL SETUP

236 CALL DETNT (N,DET,DETI)

237 C** EVALUATE DETERMINANT AT THE EXTRAPOLATED POINT.
238 VEL = DET

233 VELI = DETI

240 Cxx ITERATE FOR THE ROOT USING EXTRAPOLATED SLOPE.
241 DELTA DET * SLOP - DETI * SLOPI

non

242 DELTI DET * SLOPI + DETI = SLOP

243 IF (K1 .EQ. 1) PRINT 1330, v, vI, DET, DETI, DELTA, DELTI
244 V = V + DELTA

245 VI = VI + DELTI

246 IF (VI .GE. 0.) GO TO 124

247 DELTI = DELTI = VI

248 CHNGI = CHNGI = VI

249 vl = 0.

250 C** RE-EVALUATE AT NEW POINT.

251 124 CALL SETUP

252 CALL DETNT (N, DET, DETI)

253 TEMNR = DELTA

254 TEMNI = DELTI

255 TEMDR=VEL-DET

256 TEMDI=VELI-DETI

257 TEMDEN:TEMDRJTEMDR+TEMDI*TEMDI

258 IF (TEMDEN .EQ. 0.) GO TO 123

253 TEMRNU=TEMNR*TEMDR+TEMNI*TEMDI

260 TtMINU:TEMNI*TEMDR-TEMNR*TEMDI

261 Cx* EVALUATE SLOPE (RECIPROCAL ACTUALLY USED).
262 SLR = TEMRNU / TEMDEN

263 SLI = TEMINU / TEMDEN

264 DELTA = DET * SLR - DETI * SLI

265 DELTI = DET * SLI + DETI * SLR

266 IF (K1 .EQ. 1) PRINT 1330, V, VI, DET, DETI, DELTA, DELTI
267 C** CORRECT PHASE VELOCITY TO BEST VALUE.

268 V = V + DELTA

269 VI = VI + DELTI

270 TEMP = Vxx2 / (TEMNR**2 + TEMNI*x2)

271 C** WAS INCREMENT LARGE ENOUGH TO PERMIT EVALUATION OF SLOPE.
272 IF (TEWP .LT. RLIM) GO TO 123

273 IF (TEMP .LT. 1.E34) GO TC 141

274 SLR = SLOP

275 C** IF NOT, USE EXTRAPOLATED SLOPE.

276 SLI = SLOPI

277 GO TO 141

278 123 CONTINUE

279 C*x IF SO, FIND 1 - RATIO OF SLOPES.

280 TEMDEN = (SIR**2 + SLI**2)

281 TEMDR = SLR * SLOP + SLI * SLOPI = TEMDEN
282 TEMDI = SLR * SLOPI - SLI * SLOP

283 TEMP = (TEMDR**2 + TEMDI*x*2) / TEMDEN**2
284 IF (TEMP .GT. TLIM) GO TO 116
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285 C*x SLOPE RATIO TOO GOOD. DOUBLE STEP.

286 141 DP = DP % RATIO
287 GO TO 117

288 116 IF (TEMP .LT. BLIM) GO TO 117

289 PRINT 130, PK,V,VI,DET,DETI,SLR,SLI,TEMP,DBLOSS,NUMBER
290 130 FORMAT (1X,E14.6,E16.9,E13.7,6E10.3,15)

291 C** SLOPE RATIO TOO POOR. HALVE STEP,

292 IF (NUMBER .LT. 7) GO TO 126

293 PK = PK - DP

294 DP = DP / RATIO

295 INCA = DP

296 JX = JX + 1

297 IF (K2 .EQ. 1) PRINT 118, PK, V, VI, DET, DETI
298 C*x* STOP ON 5 SUCCESSIVE FAILURES. MODE IS LOST.
299 IF (JX .LT. 5) GO TO 107

300 PRINT 810, N, FREQ

301 810 FORMAT (14, G12.5)

302 3 DO 801 I = 1,N

303 PRINT 800, C(I), z(I), GAMMA(I), DPK(I), RHO(I), G(I)
304 800 FORMAT (10G12.5)

305 801 CONTINUE

306 GO TO 4

307 126 PRINT 127 , N, TEMP

308 127 FORMAT (7H NUMBER, I3, 22H FAILED, SLOPE RATIO ,F10.6)
309 Cxx UPDATE ALL QUANTITIES FOR NEXT STEP.

312 117 INCC = INCB

311 INCB = INCA

312 INCA = DP

313 PV(3) = PV(2)

314 PVI(3) = PVI(2)

315 PV(2) = PV(1)

316 PVI(2) = PVI(1)

317 PV(1) = v

3te PRI, = Wi

319 JX = 0

320 DENOM = V * V + VI * VI

321 LAMBDI = -OMEGA * VI / DENOM

402 DB LOSS = -8686. * LAMBDI

323 SR(3) = SR(2)

324 SR(2) = SR(1)

325 SR(1) = SLR

326 SI(3) = SI(2)

327 SI(2) = SI(1)

328 SI(1) = SLI

329 GV = Vx*2 / (V - FREQ * (V-PV(2)) / INCB)

330 PRINT 118, PK,V,VI,DET,DETI,SLR,SLI,TEMP,DBLOSS,GV,NUMBER
331 118 FORMAT (E15.7,E16.9,E13.7,6E10.3,F11.5,15)

332 NUMBER = NUMBER + 1

333 C** CHECK TOTAL NUMBER OF STEPS.

334 IF (NUMBER .GT. KO) GO TO 3

335 GO TO 107

336 999 STOP

337 1250 FORMAT (13,8H LAYERS,,F10.1,3H HZ)

338 1260 FORMAT(6E10.4)

339 1270 FORMAT (8H ATTEN =,G10.5,5HDB/KM)

340 1280 FORMAT (8F14.5)

341 1320 FORMAT (/,6E18.9)
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342

344
345
346
347

1330 FORMAT (6E18.9)

1240 FORMAT(I2,E10.1, E10.2)

1290 FORMAT (7X,6H RE M

,8%,6H IM M ,8X,6H L/KYD,8X,6H RE C ,8X,6H IM C

4 ,5X,12H RE C BOTTOM,4X,12H IM C BOTTOM)

1200 CONTINUE
END
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