Jimson Mathew - Rishad A. Shafik
Dhiraj K. Pradhan Editors

Energy-
Efficient

Fault-Tolerant
Systems

pringer

Energy-Efficient Fault-Tolerant Systems

Jimson Mathew ¢ Rishad A. Shafik
Dhiraj K. Pradhan

Editors

Energy-Efficient
Fault-Tolerant Systems

@ Springer

Editors

Jimson Mathew

Department of Computer Science
University of Bristol

Bristol, UK

Rishad A. Shafik

Department of Computer Science
University of Bristol

Bristol, UK

Dhiraj K. Pradhan

Department of Computer Science
University of Bristol

Bristol, UK

ISBN 978-1-4614-4192-2
DOI 10.1007/978-1-4614-4193-9
Springer New York Heidelberg Dordrecht London

ISBN 978-1-4614-4193-9 (eBook)

Library of Congress Control Number: 2013944573

© Springer Science+Business Media New York 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

Dedicated to our inspirations
Raisa
Alan
Linda
Babita
Sonia

Foreword

Energy efficiency is a prime design objective for embedded systems. Over the years,
various techniques have been proposed highlighting energy-efficient systems de-
sign. These techniques have shown effective ways to reduce energy, while satisfying
the system performance needs. However, due to continued device miniaturization
and technology scaling, reliability in the presence of ever-increasing number of
faults is emerging as an additional design challenge. Incorporating fault tolerance
and energy efficiency is not trivial since they are two conflicting design objectives.
Currently no book exists that gives a complete account of the state-of-the-art and
emerging techniques for design, analysis, and testing of energy-efficient, fault-
tolerant electronic systems. The book at hand is expected to appropriately fill this
gap and will be highly useful for students, researchers, and practitioners working in
relevant areas.

Chalmers University of Technology Georgi N. Gaydadjiev
Gothenburg, Sweden

vii

Preface

Energy efficiency is a widely acknowledged design objective in electronic systems
research and development. With continued technology scaling reliability is an
emerging concern in these systems due to increased device-level vulnerability in
the presence of electromagnetic inductions and process variability. Achieving high
reliability and energy efficiency objectives jointly can, however, be challenging as
energy minimization techniques exacerbate the reliability further. Hence, energy-
efficient fault-tolerant (i.e. reliable) design is currently of high interest to both
industry and academia to address these challenges effectively. The aim of this
book is to introduce state-of-the-art and emerging issues in energy-efficient fault-
tolerant design techniques as applied or prototyped for current or future generations
of system-on-chip (SoC). Although necessary brief background has been provided
in each chapter, fundamental theories have been omitted or avoided. The reader is
expected to have preliminary background of electronic circuits and systems design
and synthesis.

The book consists of nine chapters; five chapters (Chaps. 1-5) are dedicated to-
wards systems modeling and design techniques, while four other chapters
(Chaps. 6-9) delve into emerging systems architectures and design challenges. The
individual chapter outlines are given below.

Chapter 1 (Introduction to Energy-Efficient Fault-Tolerant Systems) provides the
necessary background relevant to this book. Low-power design aspects are briefly
revisited, and concepts related to faults and reliability are reviewed. Underpinning
these basics, challenges of energy-efficient fault-tolerant systems design are high-
lighted showing various techniques.

Chapter 2 (Reliability Evaluation Techniques) gives a comprehensive review of
the reliability models. In particular, methods for evaluating system reliability with
stochastic modeling and other combinatorial methods are discussed in details.

Chapter 3 (Energy-Efficient Design Techniques) presents an overview of power
minimization and power management techniques. The impact of energy-efficient
design techniques on the system reliability is also investigated. Extensive case
studies are presented addressing energy-efficient fault-tolerant design techniques.

ix

X Preface

Chapter 4 (Error Correction Coding for Electronic Circuits) discusses various
existing and emerging error detection and correction (EDAC) codes mainly used
in sequential circuits. Implementation and suitability of various EDAC codes are
detailed with examples, followed by their analyses in terms of fault detection and
tolerance capabilities, overheads, and circuit complexities.

Chapter 5 (System-Level Design Methodology) introduces system-level design
methodology, particularly suitable for multiprocessor system-on-chip (MPSoC).
Various MPSoC design challenges are discussed, highlighting ways to effectively
address them using system-level design methodology. Later, an extensive system-
level design optimization case study is presented investigating into the impact of
application task mapping on MPSoC applications.

Chapter 6 (Fault-Tolerant Reconfigurable On-Chip Network) presents fault-
tolerant reconfigurable on-chip networks, which are infrastructure communication
architectures for future computing platforms. The impact of workload variations
on the fault-tolerance of reconfigurable on-chip network is also studied in details
through a number of case studies.

Chapter 7 (Bio-Inspired Online Fault Detection in NoC Interconnect) deals with
bio-inspired online and low-cost fault detection capabilities for emerging scalable
network-on-chip-based multiprocessor systems. In particular, a novel real-time
strategy for detecting faults in NoC interconnect is demonstrated that uses biological
synapses and neurons to detect temporal and spatial faults effectively. Analysis
of different fault scenarios and results from real-time experiments on an example
FPGA implementation are also provided.

Chapters 8 (Power-Efficient Fault-Tolerant Finite Field Multiplier) and 9 (Low-
Cost C-Testable Finite Field Multiplier Architectures) investigate into emerging
low-complexity techniques for secure and fault-tolerant hardware design. To solve
the problem of an attacker injecting faults into the hardware and then analyzing the
incorrect outputs, different detection and correction mechanism are studied in detail.
The aim is to ensure that the effect of injected errors is not visible at the outputs for
the attacker to be able to intercept and compromise the security and fault-tolerance
of the system. Moreover, new methods for secure error detection and correction
using various type of codes are investigated for scan-based attacks during testing.

We would like to acknowledge the outstanding contributions from our chapter
contributors. Without their valued efforts, this book would not have been possible.
We would also like to gratefully appreciate the efforts of our expert panel of
reviewers, who helped with their useful feedback to improve the overall quality
and coherence of the book.

Bristol, UK Jimson Mathew
Rishad A. Shafik
Dhiraj K. Pradhan

Contents

1 Introduction to Energy-Efficient Fault-Tolerant Systems 1
Rishad A. Shafik, Jimson Mathew, and Dhiraj K. Pradhan

2 Reliability Evaluation Techniquesoooiii 11
Rong-Tsorng Wang

3 Energy-Efficient Design Techniquesoocii 99
Rong Ye and Qiang Xu

4 Error Correction Coding for Electronic Circuits 137
Juan A. Maestro, Pedro Reviriego, and Mark F. Flanagan

5 System-Level Design Methodology...............................eelL L 169
Rishad A. Shafik, Bashir M. Al-Hashimi, and Krishnendu
Chakrabarty

6 Fault-Tolerant Reconfigurable On-Chip-Network 211

Mohammad Hosseinabady and Jose L. Nunez-Yanez

7 Bio-Inspired Online Fault Detection in NoC Interconnect 241
Malachy McElholm, Jim Harkin, Liam McDaid, and Snaider
Carrillo

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 269
Jimson Mathew, A.M. Jabir, R.A. Shafik, and D.K. Pradhan
9 Low Cost C-Testable Finite Field Multiplier Architectures............. 307

Jimson Mathew, H. Rahaman, and D.K. Pradhan

xi

Acronyms

ABB
AHB
AMBA
APB
ASA
ASB
ASIC
AXI
BILP
DCT
DRAM
DSP
DTU
DUT
DVS
EDA
ESL
FER
FI
FIFO
FIR
FIT
FLIT
FPGA
HDL
HW
HW/SW
IDCT
ILP
I1SQ
MC

Adaptive base bias

Advanced high-performance bus
Advanced microprocessor bus architecture
Advanced peripheral bus

Adaptive simulated annealing
Advanced system bus
Application-specific integrated circuit
Advanced extensible interface
Binary integer linear programming
Discrete cosine transformation
Dynamic random access memory
Digital signal processor

Data transaction unit

Device under test

Dynamic voltage scaling
Electronic design automation
Electronic system level

Frame error ratio/rate

Fault injection

First-in first-out

Fault injection rate

Failures in time

Flow control unit

Field programmable gate array
Hardware description language
Hardware

Hardware/software

Inverse discrete cosine transformation
Integer linear programming
Inverse scan and quantisation
Motion compensation

Xiii

Xiv

MCU
MPARM
MPEG
MPSoC
MTBF
MTTF
MTTR
NI

NoC
0OSCI
P2P

PE
PSNR
RAM
RHEL
RTEMS
RTOS
RTL
SA
SER
SEU
SoC
SRAM
SW
VLD
VLSI

Acronyms

Microcontroller unit
Multiprocessor ARM
Moving picture experts group
Multiprocessor system-on-chip
Mean time between failure
Mean time to failure

Mean time to repair

Network interface
Network-on-chip

Open SystemC initiative
Point-to-Point

Processing element

Peak signal-to-noise ratio
Random access memory

Red Hat Enterprise Linux
Real-time executive for embedded systems
Real-time operating system
Register transfer level
Simulated annealing

Soft error rate

Single-event upset
System-on-chip

Static random access memory
Software

Variable length decoder

Very large-scale integration

Chapter 1
Introduction to Energy-Efficient
Fault-Tolerant Systems

Rishad A. Shafik, Jimson Mathew, and Dhiraj K. Pradhan

Embedded systems are making their way into more and more devices, from hand-
held gadgets to household appliances, and from mobile devices to cars. The current
trend is that this growth will continue and the market is expected to experience a
three-fold rise in the demand from 2013 to 2018 [20]. This growth has been possible
due to continued technological advancements in terms of device miniaturization,
feature richness, design cost control and performance improvement, originally
described by the Moore’s Law [32].

Since a vast majority of today’s embedded systems are battery powered, a prime
design objective is to minimize power consumption. Minimized power consumption
can extend the battery operating lifetime of a system with a given energy budget.
Although technology scaling has enabled the fabrication of faster and more power-
efficient devices than their predecessors due to smaller geometry and device
capacitance [3], increased computational demand and packing density has caused
a diminishing effect on the overall power consumption at system- and application-
level. In fact, the overall power consumption of a system-on-chip (SoC) is now
increasing beyond available maximum power density budget at chip-level [12]. This
has necessitated efficient and low power design techniques that have been studied
extensively by researchers in the indsutry and the academia [4, 15,36].

A major challenge for modern SoC design is the increasing number of hardware
faults, such as those caused by imperfect lithographic pattering during manufac-
turing and induced electromagnetic induction during operational lifetime [5, 12].
These faults manifest themselves as logic upsets at circuit-level and can affect
the signal transfers and stored values leading to incorrect execution in embedded
systems. According to ITRS, 1 out of every 100 chips will experience a fault per
day during operational lifetime, while manufacturing defect rate will reach the level
of approximately 1,000 defects/m? in the next few years [20]. Indeed, under the

R.A. Shafik (b)) « J. Mathew ¢ D.K. Pradhan
University of Bristol, Bristol, BS8 1UB, UK
e-mail: rishad.shafik @bristol.ac.uk; jimson@cs.bris.ac.uk; pradhan@cs.bris.ac.uk

J. Mathew et al. (eds.), Energy-Efficient Fault-Tolerant Systems, 1
DOI 10.1007/978-1-4614-4193-9_1, © Springer Science+Business Media New York 2014

mailto:rishad.shafik@bristol.ac.uk
mailto:jimson@cs.bris.ac.uk
mailto:pradhan@cs.bris.ac.uk

2 R.A. Shafik et al.

circumstances, reliable design and testing of current and future generations of SoCs
is of critical importance, in particular for high availability, safety-critical systems
etc. [24]. However, designing energy-efficient reliable systems is highly challenging
due to conflicting design trade-offs between power consumption and reliability
objectives [36]. This is because, reliable design and testing techniques generally
introduce redundant hardware or software resources that can increase the overall
power consumption of the system [15].

The rest of this chapter is outlined as follows. Section 1.1 gives brief introduction
to energy-efficient design. Section 1.2 outlines necessary background on faults and
reliability, highlighting the challenges of energy-efficient reliable design.

1.1 Energy-Efficient Design

The total power dissipated in a CMOS circuit is formed of two major components:
dynamic (Pgy,) and static power (Py,,) dissipation, i.e.

Ptoral = den + Psmr- (11)

Dynamic power is mainly caused by circuit activity. The main contribution of
dynamic power dissipation in (1.1) is incurred by capacitive switching current that
charges and discharges the circuit capacitive loads during various logic changes,
given by

Py =a CLVE f, (1.2)

where Cy, is the average load capacitance per cycle (generally constant for a given
circuit), Vg is the supply voltage, f is the circuit operating frequency and o
is the switching activity factor (i.e. the ratio of switching activity over a given
time). Another contributor of dynamic power is short-circuit current that flows in
the circuit due to direct current (DC) path between the supply and ground when
the output transition is taking place. Compared to switching capacitive switching
power, short-circuit power is small and often it is ignored in total dynamic power
dissipation. Static power, on the other hand, is incurred even without any circuit
activity. The main contribution of static power is from sub-threshold gate leakage
currents. Sub-threshold current arises from the inversion charges that exist at the
gate voltages below the normal circuit threshold voltage. A simpler static power
model of leakage power (Pj4;) can be given by

Preak = VaaNkIjeak, (1.3)
where N is the number of transistors and and [, is the leakage current. The

leakage current (/) depends on technology parameters like threshold voltage,
while k is circuit constant that depends on the number of transistors operating at

1 Introduction to Energy-Efficient Fault-Tolerant Systems 3

Gate Length M Gate Leakage A Dynamic ® SubThreshold / Gate Leakage

1643
1642 +300mm o ®
1E+1 »
1E+0 S, @ L
1€-1
1€-2 o—:
1€-3
1E-4 & -~ 80nm
1E-5 -asnm
1E-6 @ = >
1€-7

1990 1995 2000 2005 2010 2015 2020

150nm

Normalized Power

+

Fig. 1.1 Trends of power dissipations with technology scaling

a given time. Similar to dynamic power, as can be seen from (1.3) leakage power
depends on the supply voltage (V,;) and the number of transistors (N), which is
increasing with technology scaling.

Figure 1.1 shows the normalized power dissipation trends with continued
technology scaling over a span of 30 years (from 1990 to 2020) [34]. As can
be seen, with previous technology nodes dynamic power dissipation dominated
the total power consumption in CMOS circuits. From (1.2) it is evident that the
most effective means of lowering total (dynamic and also static) power dissipation
(Payn) for these technology nodes is to reduce the operating voltage (V). However,
lowering V4, increases circuit propagation delay. This delay eventually restricts the
circuit operating frequency, which requires the operating clock frequency to be
lowereed to tolerate the propagation delay [39]. Dynamic voltage and frequency
scaling (DVFS) is an effective power minimization technique that reduces dynamic
power through lowering V,; and f during runtime [11, 13]. The main working
principle of DVES is to lower Vy; and f during slack times (i.e. time between
early completion of the previous computational task or late starting of the next
computational task) [42]. Over the last decade, power minimization using DVFS-
enabled SoCs has been extensively investigated considering its effects on system
performance [4, 15].

However, with continued technology scaling, static power dissipation is emerg-
ing as a major concern for systems designers (as shown in Fig. 1.1). To reduce static
power dissipation dynamic power management (DPM) is an effective technique.
The main strategy employed in DPM is to control the operational times of supply
voltages in system components. For example, power supply can be shut down for
components within an MPSoC when they are idle and can be switched on when
they are operational (otherwise known as power gating) or supply clock can be
gated off when certain components in a circuit are not active. However, shutting
down supply power or clock for these components can result in delay in retaining
fully operational mode of the circuit. Hence, DPM technique needs to carefully
take into consideration this delay effect to achieve power minimization without

4 R.A. Shafik et al.

compromising the system performance [7]. Often, today’s MPSoCs include both
DVFS and DPM techniques to minimize dynamic and leakage power consumptions.

1.2 Faults and Reliable Design

An emerging challenge in today’s electronic system design is reliability of the
system when it is subjected to different errors or faults [23, 30]. In fact due
to technolgy scaling and aggressive voltage scaling, the number of these faults
occuring in a circuit is increasing exponentially. These faults manifest themselves as
temporary logic upsets, such as single-event upsets (SEUs), and can affect the signal
transfers and stored values leading to incorrect or undesired outcomes in circuit and
systems. Several academic and industrial studies, such as [18,31, 35,43,48], have
investigated the presence and increase of these faults highlighting the impact of
operating environments.

Faults in electronic systems can be classified in two types: permanent and
transient. Permanent faults are related to irreversible physical defects in the
circuit. Major causes of permanent faults include improper lithographic process
or systematic aberrations during manufacturing or post-manufacturing burn-in, or
even burn-in caused by electro-migration and negative bias temperature instability
(NBTI) during operational lifetime etc. Since permanent faults can cause persistent
failures in the circuit, faulty chips are discarded or repaired after post-manufacturing
tests. Transient faults, also known as soft errors, can appear during the operation of
a circuit. Unlike permanent faults, transient faults do not represent a physical defect
in the circuit. Major causes of transient faults include cross-talk, power supply noise
and neutron or alpha radiations during operational lifetime. Radiation induced faults
are generally considered major source of transient faults as they take place during
operational lifetime when a single ionizing radiation event produces a burst of hole-
electron pairs in a transistor that is large enough to cause the circuit to change state.

To evaluate the rate and effect of fault occurrence, different parameters have been
reported to date. Major parameters are briefly defined below:

Fault Density is the measure of number of faults found in a device per unit of data.
For memories, this is generally expressed as the number of faults per megabyte
or gigabyte data. This parameter is used for permanent faults or defects only [9].

Fault injection time (FIT) is the rate at which the faults take place per unit of time
in an electronic component. It is generally denoted as A and expressed in unit of
number of fault per million of operating hours (fault/10° operating hours).

Mean time-to-failure (MTTF) is an estimate of the mean time expected until the
first fault occurs in a component of an electronic system. MTTF is a statistical
value and is meant to be the mean over a long period of time and large number
of units. It is usually expressed in unit of millions of hours. For constant failure
rate systems, MTTF is the inverse of FIT (i.e. MTTF = %) [44].

1 Introduction to Energy-Efficient Fault-Tolerant Systems 5

Mean time-to-repair (MTTR) is described as the time elapsed between a fault
occurrence and its repair is completed, i.e. the system return back to its
operational mode.

Mean time-between-failures (MTBF) is described as the time elapsed before a
component in an electronic system experiences another fault. Unlike MTTF, the
time elapsed in MTBF includes the time required to recover from a fault, i.e.
MTBF = MTTF + MTTR.

Soft error rate (SER) is the rate at which the soft errors take place per unit time
and per unit data. It is generally used to describe the severity of an operating
environment and is expressed as number of soft errors per bit per cycle or number
of soft errors per cycle per chip.

Reliability is the ability of a system to perform a required function under given
conditions for a given time interval. Hence, with a given FIT (A1) and time
interval, reliability can be expressed as R = e™*'.

Availability is the ability of a system to be in a state to perform a required function
at a given instant of time or at any instant of time within a given time interval,
assuming that the external resources, if required, are provided. In other words, it
can also be expressed as the ratio of up time of a system to the total operating
time (up and down time). Since faults can cause failures and down time of a
system, availability can get affected.

Appropriate fault modeling is crucial for systems designers as it describes how a
physical fault in the underlying device affects the circuit-level behavior. Depending
on the nature and impact of occurrence of faults, fault models can be classified in
the following major ones:

Stuck-at Fault Model The most common fault model is the single stuck-at model.
In this model the defects behave like the given circuit line is permanently con-
nected to ground (stuck-at-0) or to power supply (stuck-at-1); and only a single
fault is present in a circuit at anytime. The stuck-at model has several advantages
that include simplicity, logical behaviour, tractability and measurability [2].
The single stuck-at fault model remains the most commonly used, even though
multiple technologies and numerous process shrinks.

Bridging fault An extension of the stuck-at model is the bridging fault model and
this models the short between two lines. This model is appealing because shorts
are generally considered the most common fault in CMOS circuits. Inductive
analysis has shown that the most commonly occurring type of fault resulting from
fabrication defects, modeled as dust particles of various sizes on photo-masks,
is the bridging fault [17]. Much of the earlier work in bridging faults claimed
that either wired-and or wired-or resulted when two nodes were bridged [1,29].
Randomly placed bridging faults are complicated and can not be modeled by a
single fault model. As technology advance to smaller geometries, more metal
layers, reduced design margins and higher frequencies, the effect of these defects
will grow in complexity, increasing the variety of bridging behaviour we need to
detect.

Normalized

R.A. Shafik et al.

Useful Operationa
lifetime

l

Burn-in

Failure Rate

Technology
Scaling

Fig. 1.2 Trends of power dissipations with technology scaling

Stuck Open Fault While shorts remain the most common type of defects in most

CMOS processes, open fault also cause concern. As the number of wiring levels
in circuits increases, the number of vias proliferates. We do not well understood
the effects of missing vias, partial vias and resistive vias on circuit operation [2].
In some cases, the circuit still functions correctly but at a lower speed. The best
known open model is the stuck-open fault model [2]. In this model, the gate to
a given transistor is fixed at the open or ‘off” value. As a result transistor cannot
pull the cell output to its voltage. The length of time that the output remains at
the previous value depends on the length of time required to discharge the load
capacitance. A stuck-open fault requires a two-pattern test [22]. The first pattern
sets up the fault pulling the circuit output to a known state and the second pattern
activates the fault.

Delay Fault Failures causing logic circuits to malfunction at desired clock rates, or

not meeting timing specifications are modeled by what are called delay faults. A
change in the timing behaviour of the circuit, causes incorrect operation only
at certain frequencies. The two broad classes of delay faults are gate delay
fault and path delay faults. Gate delay fault models defects local to individual
circuit elements; whereas path delay fault models distributed failures caused
by statistical process variations and imprecise modeling [37, 41]. Because
delays refers to differences in behaviour over time, delay fault models focus on
transitions in logic values rather than logic values. A test for a delay fault consists
of an initialization pattern, which sets the stage for a transition and a propagation
pattern, which creates a desired transition and propagates it to observable points.

Figure 1.2 shows the trends of device failure rates over their lifetimes, highlight-

ing the impact of technology scaling [34]. As can be seen, due to manufacturing
silicon or metal defects many devices experience early burn-in and get discarded
from the shipment line. The good circuits that are delivered to customers also
experience failures due to mainly transient faults. Note that failure rates during
useful operating lifetime are more or less constant as failures during this period

1 Introduction to Energy-Efficient Fault-Tolerant Systems 7

is dominated by the environmentally induced faults. However, as the devices
experience wearouts due to electromigration effects etc., the number of failures start
to increase. As can be seen, with technology scaling the normalized device failure
rates are also increasing. Moreover, useful operating lifetime is also shortening as
technology scaling increases the rate or device wearouts substantially. These issues
pose serious challenges to systems designers to ensure reliability in the presence of
different faults.

To mitigate the effect of faults, different techniques have been employed over the
years [33,42]. These techniques are briefly outlined in the following.

Hardware Redundancy such as [28], is an effective technique, which employs
extra hardware and incorporates voting from multiple outputs to a single
output to mitigate the effect of transient or permanent faults. Due to usage
of extra hardware resources this technique incurs area and power overheads,
while achieving desired reliability. The trade-off between reliability and system
overheads in hardware redundancy techniques has been extensively studied [28].
An example implementation is Maxwell’s SCS750 supercomputer used in space
applications, which employs triple modular redundancy (TMR) technique for its
IBM’s PowerPC processors [27]. Due to such redundancy, SCS750 achieved
fault-tolerance with more than 180% overall hardware overheads.

Time Redundancy techniques require minimal hardware resources to detect
transient faults. Upon detection of faults, task replication or re-execution is
carried out during idle/slack times. Due to software-dependent nature of time
redundancy techniques, the hardware overhead is generally much lower than
hardware redundancy techniques. But this greatly depends on the availability of
idle or slack times during computation. For example, in [6] it is demonstrated
that the fault-tolerance can be improved without any impact on the execution
time by utilizing idle processors for duplicating some of the computations of
the active processors. However, several studies reported that these techniques
cause overheads in terms of computation and communication performance [25].
Application check-pointing is another effective time redundancy technique. The
fault-tolerance using such technique is achieved by selectively repeating (or
rolling back) an execution interval of an application to realise fault-tolerant
design. However, fault-tolerance using this technique is achieved at the cost of
high complexity of application design. Examples of effective application check-
pointing techniques highlighting such increased cost are, adaptive and non-
uniform online application check-pointing proposed in [47], offline application
check-pointing shown in [19].

Information Redundancy is another effective technique for fault detection and
correction, particularly for memory devices. Using this technique fault detection
and correction (EDAC) codes are integrated with the original logic circuit data
[45]. These extra information codes are generated from the original logic data to
effectively identify the presence of one or more transient or permanent faults and
possibly correct them. Recently, Intel introduced dual-core Xeon-7100 system
with several EDAC features to incorporate fault detection and correction [14].

R.A. Shafik et al.

Combination of time and information redundancy techniques, such as [16], can
also be highly effective in achieving desired fault-tolerance at low cost.

System-level Techniques are highly effective as they can design hardware and

software with combinations of various redundancy techniques to achieve effec-
tive fault detection and tolerance [8]. A number of system-level techniques have
been proposed in past few years showing different fault-tolerance techniques to
extract maximum benefit in terms of fault-tolerance and low power consumption.
For example, pre-emptive online scheduling [46] of failed tasks has been
demonstrated as an effective system-level fault-tolerance technique. However,
the effectiveness of such technique depends upon predictability of slack times.
Fault-tolerance-based optimization of cost-constrained distributed real-time sys-
tems has been proposed [21]. Fault-tolerance in [21] is achieved through
system-level mapping and assignment of fault-tolerance policies to processing
cores. Another approach to fault-tolerant design using process re-execution and
scheduling in available hardware computing resources in an multiprocessor SoC
(MPSoC) application has been proposed in [38]. Highlighting the impact of
faults at application-level, various other researchers [10,26] have shown low-
cost fault-tolerance techniques. The basic principle of these works is that the
faults manifested at architectural-level do not always lead to faults at application
level. Exploiting the relaxed requirements of application-level correctness, low
cost and energy-efficient fault-tolerance techniques have been proposed.

Indeed, energy-efficient fault-tolerant systems design is highly challenging

[40]. The following chapters present state-of-the-art and also emerging issues in
energy-efficient fault-tolerant systems design. Various case studies have also been
illustrated, where necessary, to demonstrate effective means of addressing the design
challenges.

References

1.

2.

3.

M. Abramovici, P. Menon, A practical approach to fault simulation and test generation for
bridging faults. IEEE Trans. Comptut. C-34, 658-663 (1985)

R.C. Aitken, Nanometer technology effects on fault models for ic testing. Computer 32, 46-51
(1999)

B.M. Al-Hashimi (ed.), System-on-Chip: Next Generation Electronics (IEE, London, 2006).
Ch. 17

. E. Angiolini, P. Meloni, S.M. Carta, L. Raffo, L. Benini, A layout-aware analysis of networks-

on-chip and traditional interconnects for MPSoCs. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 26(3), 421-434 (2007)

. R.C. Baumann, Soft errors in advanced semiconductor devices-part i: three radiation sources.

IEEE Trans. Device Mater. Reliab. 1, 17-22 (2001)

. H. Beitollahi, S.G. Miremadi, G. Deconinck, Fault-tolerant earliest-deadline-first scheduling

algorithm, in Proceedings of the IEEE International Parallel and Distributed Processing
Symposium IPDPS, Long Beach, 26-30 Mar 2007, pp. 1-6

. L. Benini, G.D. Micheli, Dynamic Power Management: Design Techniques and CAD Tools

(Springer, USA, 1997)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.
30.

Introduction to Energy-Efficient Fault-Tolerant Systems 9

. L. Benini, G. Micheli, System-level power optimization: techniques and tools. ACM Trans.

Des. Autom. Electron. Syst. 5, 115-192 (2000)

. M.A. Breuer, Multimedia applications and imprecise computation, in Proceedings of Sth

Euromicro Conference on Digital System Design, 2005, Porto, pp. 2-7

M.A. Breuer, H.H. Zhu, Error tolerance and multimedia, in Proceedings of International
Conference on Intelligent Information Hiding and Multimedia Signal Processing, Pasadena,
Dec 2006, pp. 521-524

T. Burd, T. Pering, A. Stratakos, R. Broderson, A dynamic voltage scaled microprocessor
system. IEEE J. Solid-State Circuits 35(11), 1571-1580 (2000)

S. Campagna, M. Violante, An hybrid architecture to detect transient faults in microprocessors:
an experimental validation, in Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition (DATE), Dresden, 2012, pp. 1433-1438

A. Chandrakasan, S. Sheng, R. Brodersen, Low power CMOS digital design. IEEE J. Solid-
State Circuits 27(4), 473-484 (1992)

J. Chang, M. Huang, J. Shoemaker, J. Benoit, S.-L. Chen, W. Chen, S. Chiu, R. Ganesan,
G. Leong, V. Lukka, S. Rusu, D. Srivastava, The 65-nm 16-MB shared on-die 13 cache for the
dual-core Intel Xeon processor 7100 series. IEEE J. Solid-State Circuits 42(4), 846-852 (2007)
F. Dabiri, A. Nahapetian, M. Potkonjak, M. Sarrafzadeh, Lecture Notes in Computer Science:
Power and Timing Modeling, Optimization and Simulation, vol. 4644, Ch. Soft Error-Aware
Power Optimization Using Gate Sizing (Springer, Berlin/New York, 2007), pp. 255-267

A. Ejlali, B.M. Al-Hashimi, M.T. Schmitz, P. Rosinger, S.G. Miremadi, Combined time and
information redundancy for SEU-tolerance in energy-efficient real-time systems. IEEE Trans.
Very Larg. Scale Integr. (VLSI) Syst. 14(4), 323-335 (2006)

F.J. Ferguson, J.P. Shen, Extraction and simulation of realistic cmos faults using inductive fault
analysis, in Proceedings of International Test Conference, Washington, DC, 1988, pp. 475-484
C.J. Gelderloos, R.J. Peterson, M.E. Nelson, J.F. Ziegler, Pion induced soft upsets in 16 mbit
dram chips. IEEE Trans. Nucl. Sci. 44, 2237-2242 (1997)

J. Han, Q. Li, Dynamic power-aware scheduling algorithms for real-time task sets with fault
tolerance in parallel and distributed computing environment, in International Parallel and
Distributed Processing Symposium, Denver, 2005, pp. 6-16

ITRS, International technology roadmap for semiconductors, http://www.itrs.net/

V. Izosimov, P. Pop, P. Eles, Z. Peng, Design optimization of time-and cost-constrained fault-
tolerant distributed embedded systems, in DATE ’05: Proceedings of the conference on Design,
Automation and Test in Europe, Munich (IEEE, Washington, DC, 2005) pp. 864869

B.W. Johnson, Design and Analysis of Fault-Tolerant Digital Systems (Addison-Wesley
Publishing, Reading, 1989)

I. Koren, C.M. Krishna, Fault-Tolerant Systems (Morgan-Kaufman, San Francisco, 2007)

P. Kudva, J. Rivers, Balancing new reliability challenges and system performance at the
architecture level. IEEE Des. Test Comput. 66, 1 (2012 in press)

S.-C. Lai, S.-L. Lu, K. Lai, J.-K. Peir, DITTO processor, in Proceedings of the International
Conference on Dependable Systems and Networks, DSN, Washington, DC, 2002, pp. 525-534
X. Li, D. Yeung, Exploiting application-level correctness for low-cost fault tolerance. J. Instr.-
Lev. Parallel. 10, 1-28 (2008)

L. Longden, R. Thibodeau, C. Hillman, P. Layton, M. Dowd, Designing a single board
computers for space using the most advanced processor and mitigation technologies. Eur.
Space Agency Publ. ESA-SP 507, 313-316 (2002)

A. Maheshwari, W. Burleson, R. Tessier, Trading off transient fault tolerance and power
consumption in deep submicron (DSM) VLSI circuits. IEEE Trans. Very Larg. Scale Integr.
(VLSI) Syst. 12(3), 299-311 (2004)

K.C.Y. Mei, Bridging and stuck-at faults. IEEE Trans. Comptut. C-35, 720-727 (1974)

S. Mitra, N. Seifert, M. Zhang, Q. Shi, K. Kim, Robust system design with built-in soft error
resilience. [EEE Comput. 38, 43-52 (2005)

http://www.itrs.net/

10

31

32.

33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

R.A. Shafik et al.

. S. Mitra, P. Sanda, N. Seifert, Soft errors: technology trends, system effects, and protection
techniques, in Proceedings of 13th IEEE International On-Line Testing Symposium (IOLTS),
Heraklion, 2007, p. 4

G. Moore, Cramming more components onto integrated circuits. Electronics 38(8), (1965).
Ex-Director, Fairchild Semiconductors

S. Mukherjee, Architecture Design for Soft Errors (Morgan Kaufmann, San Diego, 2008)
NASA, National aeronautics and space administration. Scaled CMOS Technology Reliability
Users Guide. Technical report, Mar 2008

M. Olmos, Radiation Results of the SER Test of Actel, Xilinx and Altera FPGA instances.
Technical Report, iRoC, Oct 2004

C. Piguet, C. Schuster, J.-L. Nagel, Static and Dynamic Power Reduction by Architecture
Selection, vol. 4148 (Springer, Berlin/Heidelberg, 2006)

I. Pomeranz, S.M. Reddy, Design-for-testability for path delay fautls in large combinational
circuits using test points. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 17, 333-343
(1998)

P. Pop, K. Poulsen, V. Izosimov, P. Eles, Scheduling and voltage scaling for energy/reliability
trade-offs in fault-tolerant time-triggered embedded systems, in Proceedings of International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), Salzburg,
2007, pp. 233-238

J. Pouwelse, K. Langendoen, H. Sips, Dynamic voltage scaling on a low-power micropro-
cessor, in Proceedings of the 7th Annual International Conference on Mobile Computing and
Networking, Rome, July 2001, pp. 251-259

D.K. Pradhan, Fault-Tolerant Computer System Design (Prentice-Hall, Upper Saddle River,
1996)

A.K. Pramanik, S.M. Reddy, On unified delay fault testing, in Proceedings of the International
Conference on VLSI Design, Bombay, 1993, pp. 265-268

M.T. Schmitz, B.M. Al-Hashimi, P. Eles, System-Level Design Techniques for Energy-Efficient
Embedded Systems (Kluwer, Dordrecht/Boston, 2004)

R.D. Schrimpf, D.M. Fleetwood, Radiation Effects and Soft Errors in Integrated Circuits and
Electronic Device (World Scientific, Singapore, 2004)

Soft Error in Electronic Memory — A White Paper. Tezzaron Semiconductor, Jan 2004, http://
www.tezzaron.com/about/papers/

J. Sosnowski, Transient fault tolerance in digital systems. IEEE Micro 14(1), 24-35 (1994)

Y. Zhang, K. Chakrabarty, Energy-aware adaptive checkpointing in embedded real-time
systems, in DATE '03: Proceedings of the conference on Design, Automation and Test in
Europe (IEEE, Washington, DC, 2003), pp. 10918

Y. Zhang, K. Chakrabarty, A unified approach for fault tolerance and dynamic power
management in fixed-priority real-time embedded systems. IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst. 25(1), 111-125 (2006)

J.E. Ziegler, Terrestrial cosmic rays. IBM J. Res. Dev. 40(1), 19-39 (1996). IBM Corp., USA

http://www.tezzaron.com/about/papers/
http://www.tezzaron.com/about/papers/

Chapter 2
Reliability Evaluation Techniques

Rong-Tsorng Wang

2.1 Introduction

From commercial to life-critical applications, the proliferation of computing systems
in everyday life has substantially increased our dependence on them. Failures in
air traffic control systems, nuclear reactors, or hospital patient monitoring systems
can bring catastrophic consequences. In order to enhance the dependability of
computing systems, an effective evaluation of their reliability is desired. This
chapter presents methods for evaluating system reliability, and indicates that
stochastic modeling has provided an effective and unified framework for analyzing
various aspects of reliability. The content of this chapter is devoted to combinatorial
methods, Markov models, and software models, and equally important is techniques
based on the theory of stochastic processes.

Section 2.1.1 reviews some basic notation and terminology of reliability. In
Sect.2.2.1, we discuss combinatorial methods used in reliability analysis, including
basic system structures, reliability block diagram, and fault tree analysis. When
applying redundancy to improve system reliability, it is commonly assumed that
components work independently and their intrinsic failure time distributions have no
interdependence. In practical situations, however, the reliability of the system could
be significantly affected by components (or subsystems) with dependency, which
often occurs in three ways among others: components subjected to the same stresses,
components sharing the same load, or components failing with common causes [11].
In each case, the random variables of interest tend to act similarly — degrade the
performance and promote the system failure. For example, parallel systems such as
the pair of engines of an aeroplane have components whose lifetimes are dependent.
Thus, it is more realistic to assume certain forms of positive dependence among
components.

R.-T. Wang (b<)
Department of Statistics, Tunghai University, Taichung, Taiwan
e-mail: rtwang @thu.edu.tw

J. Mathew et al. (eds.), Energy-Efficient Fault-Tolerant Systems, 11
DOI 10.1007/978-1-4614-4193-9_2, © Springer Science+Business Media New York 2014

mailto:rtwang@thu.edu.tw

12 R.-T. Wang

In system reliability analysis, dependence concepts of multivariate models
for nonrepairable system have been studied by many authors, e.g., Barlow and
Proschan [11], Joe [43], and Balakrishnan and Lai [10]. For bivariate cases,
for example, the emphasis is either on the relationship between the joint reliabil-
ity function P(T) >1t;,T, > 1) and the product of marginal reliability functions
P(T, > 1) P(T, > 1), or on the conditional reliability functions P (75 > t,|T > t1).
Balakrishnan and Lai [10] investigate various notions of positive dependence
between two random variables. In particular, they study dependence concepts that
are stronger (or weaker) than positive quadrant dependence (PQD), which appears
as a straightforward concept of positive dependence and is givenby P(T) > t;, T, >
1) = P(Ty = 1) - P(T2 = 1p).

One technique for characterizing a system having dependent component failure
rates is to apply the multi-version of exponential distributions. The most cited
bivariate exponential distribution is the one proposed by Marshall and Olkin [67],
known as the BVE distribution. The BVE distribution enable us to model common-
cause failures, and it is obtained by considering a model in which two components
fail separately or simultaneously upon receiving a shock that is governed by a
homogeneous Poisson process. Freund [29] proposed a bivariate extension of the
exponential distribution by allowing the failure rate of the surviving component to
be affected after the failure of another component. Freund’s model is one of the first
to study bivariate distributions from reliability considerations, and it can be used to
model load-sharing systems. In Sect. 2.2.2, we extend the BVE and Freund’s model
to n-components redundant systems for applying redundant system with common-
cause and load-sharing failures.

Fault tree analysis has been used in analyzing safety systems in nuclear power
plants, aerospace, and defense. However, dependencies of various types that do
occur in practice are not easily captured by fault tree models. In contrast, Markov
model is powerful in that it can solve system with dynamic and dependent
behaviors, although Markov model has the significant disadvantage that its size
grows exponentially as the size of the system increases. From the counting process
point of view, the birth process which counts the number of failed components
provides a simple representation for the failure process of a system. This approach,
however, does not help us to analyze the condition when component lifetimes are
dependent. Thus a more general model is required.

In Sect. 2.3, we discuss Markov chains, Poisson processes and nonhomogeneous
Poisson processes, and birth-death processes. Continuous-time Markov chains
can be used to model both nonrepairable and repairable system. By definition
a repairable system is a system which, after failing to perform one or more of
its functions satisfactorily, can be restored to fully satisfactory performance by a
method other than replacement of the entire system [8]. Commonly used models
for a repairable system are renewal processes (perfect repair) and nonhomogeneous
Poisson processes (minimal repair) [54].

In Sect.2.4, we discuss the software reliability models. We aim to extend
common assumptions used in statistical software reliability, classify existing soft-
ware reliability models, and propose mathematical models for describing software

2 Reliability Evaluation Techniques 13

reliability. We begin with the assumptions deduced from Jelinski and Moranda
model [42]. Then, we show relations between the transition failure rates of the
failure process and the conditional failure rates of times between failures, and
specify several common types of software reliability models. A self-exciting and
mixture model is then proposed as a generalization of perfect debugging models.

Section 2.5 discusses three examples. In Sect. 2.5.1, we consider a load-sharing
system with common-cause failures. Specifically, we formulate reliability properties
by introducing a continuous-time Markov chain to characterize systems in which
component lifetimes are dependent in two ways: common-cause failures and
increased failure rates for surviving components. In Sect. 2.5.2 we discuss a model
for a shared-load k-out-of-n:G repairable system studied by Shao and Lamberson
[97]. Specifically, a continuous-time Markov chain is used to create a set of
differential equations. Section 2.5.3 reviews a bivariate birth-death model for a N -
version programming fault-tolerant system proposed by Wang [115].

Effective and optimal techniques may be addressed according to system struc-
tures (e.g., hardware or software or integrated systems, binary-state or multi-state
systems, parallel or k-out-of-n systems, individual or network systems), failure
mechanisms (e.g., independent or common-cause failures), and repair patterns (e.g.,
repairable or non-repairable, perfect or minimal or general repair) [11, 22,48, 64,
69,71,76,78, 84,85,92,100, 111]. Dependence concepts of Markov dependence,
stationarity, and Martingales have been applied for system failure characterizations.
Recent researches indicate that the modern theory of stochastic processes allows
for developing a general reliability model that incorporates time dynamics and
different information levels. More advanced issues can be found in for examples,
Singpurwalla [99], Pefa [82], and Aalen et al. [1].

2.1.1 Definitions of Reliability

The lifetime of a component is usually unknown and is characterized by a non-
negative random variable (r.v.), say T, representing the time to failure of a system
since its inception. Usually 7" is measured from time ¢ = 0. By definition, reliability
is the probability of a device performing its purpose adequately for the period
of time intended under the operating conditions encountered [11]. (Failures can
be defined in terms of degradation reaching a certain level, see, e.g., Meeker and
Escobar [69].) Let F(t) = P(T < t) be the cumulative distribution function (c.d.f.)
of T such that F(0—) = 0 and F(4+o00) = 1. The reliability function (or survival
function) of T is defined by

R(t):= F(t)= P(T >1t), Vt=>0. .1)
For example, the reliability required for aircraft control systems has been specified

as R(t) > 1 — 107 for t = 1h. The corresponding conditional reliability function
(or conditional survival function) of 7' of age x is given by

14 R.-T. Wang

F(x +1)

R(I|X) = W, Vt,x >

0,

provided that F(x) > 0. The expected time of 7', also known as the mean time to
failure (MTTF), is given by

o0 _ o0
E[T] = / F(t)dt = / R(t)dt. (2.2)
0 0
In addition, the second moment of 7 is given by
o0
Euﬁyzzf - R(t)dt.
0

The mean residual life of T of age x is given by

©F@ydi (% F i [
EU—MT>ﬂ=L7%%l=L 5%%?lzé R(|x)dt.

Equation (2.1) may or may not continuous in f. Suppose that Eq.(2.1) is
everywhere differentiable, then the probability density function (p.d.f.) f(¢) of T
exists for all # > 0, and

f(t) - At ~Pr(t <T <t + At),

where At is a small increment of 7. The failure rate (or conditional failure rate) of
the r.v. T at time ¢ is defined as

1
h(t):= lim —Pr(t <T <t+ At|T > 1), t>0. 2.3)
ar—0t+ At

h(t) gives the probability that a component of age ¢ will almost immediately fail.
Since, for those ¢t where A(t) is continuous,

t
h(t) = & vVt > 0. 2.4)
F(r)
h(t) is also known as the hazard rate, the force of mortality, and the intensity rate.
The functions f (), F(t), F (), and h(t) are mathematically equivalent, since

h(x)dx

0

—InF(1),

exp{—/oth(x)dx} .

1
~~
=
p—
I

2 Reliability Evaluation Techniques 15

The function fot h(x)dx is called the cumulative hazard rate function. Many non-
normal univariate distributions have been used in reliability, such as exponential,
Gamma, Weibull and so forth. In particular, these distributions are applied to
three phases of the so-called bathtub curve: the infant mortality phase, the normal
operating phase, and the wear-out phase. The most commonly used distribution is
the exponential distribution.

Example 2.1. If the failure rate is given by i(t) = pt/(1 + Bt), where B > 0,
t > 0. Then

F(t) = exp%—/o h(x)dx} = exp (—/0 |:,3 1 fﬂx:| dx) = (14 Brye .

Observed that 7' has a gamma distribution. The MTTF is

E[T] =/0 F(t)dt =/0 1+ prye ' = %

Example 2.2. 1f T has a Weibull distribution with shape parameter 8 > 0 and scale
parameter n > 0, whose c.d.f. is given by

A\?
F(t)zl—exp[—(ﬁ) :| t>0.

d _ A1
h(t) = o [-InF(1)] = % (%) .

The failure rate is

The hazard rate is increasing for 8 > 1, decreasing for 0 < f < 1, and constant
for g = 1.

2.2 Combinatorial Methods

System failure is modeled in terms of the failures of the components of the system.
Both the system and its components are often allowed to take only two possible
states: a working state and a failed state. The linking of component failures to system
failures can be understood in several ways. Among these are the reliability block
diagram (success-oriented) and the fault tree analysis (failure-oriented). In some
cases, it is possible to convert the fault tree to a reliability block diagram, and vice
versa. In Sect.2.2.1, we review basic system structures, reliability block diagram,
and fault tree analysis.

16 R.-T. Wang

Parallel redundancy is a common method to increase system reliability and
MTTE. Usually components in a reliability structure are dependent as they may
share the same load or may be failed with common-cause failures. Bivariate and
multivariate lifetime distributions play important roles in modeling these dependen-
cies. Many bivariate and multivariate exponential distributions have been proposed
[10], however, only a certain class of multivariate distributions is applicable for
reliability systems. The BVE distribution of Marshall and Olkin [67] is suited
for modeling common-cause failures. Freund’s model [29] can be applied to the
situation that the failed component increases the stress on the surviving component
and consequently increases the other component’s tendency of failure. In Sect. 2.2.2,
we extend the BVE and Freund’s distributions to n-components redundant systems,
and discuss the reliability functions of series, parallel, and k-out-of-n:F structures.

2.2.1 Independent Components

2.2.1.1 Three Basic Structures

Consider a system with n independent components, and the system reliability R(¢)
can be determined by components’ reliability R;(¢). We write R(¢) a function of
Ri(t),..., R,(t) as

R(@) = Y (Ri (1), ..., Ru(1)).

The function v is decided by the structure of the system. We often use reliability
block diagram or network diagram to describe the system reliability structure. Let
Ti, ..., T, be the lifetimes of components. Assume that 77, ..., T, are independent,
there are three common structures:

(1) series: R(t) =]"[R (1), (2.5)
i=1
(2) parallel: R(t) = 1 — [J(1 = Ri(1)). (2.6)

i=1

=~

-1
(3A) k-out-of-n:F: R(t) = (’Z)[Rl(t)]"‘i[l—Rl(t)]’, if R; (1) = Ri(2),
.7

Il
=)

i

=

(3B) k-out-of-n:G: R(t) = (n>[R1(t)]i[1—R1(t)]”_i, if R; (1) = R(2).

= \' 2.8)

2 Reliability Evaluation Techniques 17

Fig. 2.1 A reliability
block diagram of a
complex system

=]

E_.

A series system functions if and only if each component functions, and a parallel
system functions if and only if at least one component functions. A system is said to
be a k-out-of-n:F system if it fails if and only if at least k of the n components fail.
A dual concept called k-out-of-n:G system is defined as that it is good if and only if
at least k of n components are good. A system is a k-out-of-n:F system if and only
ifitis a (n —k + 1)-out-of-n:G system. Likewise, a system is a k-out-of-n:G system
if and only if itis a (n — k + 1)-out-of-n:F system. Apparently,

a system is ‘series’ <= it is a 1-out-of-n:F system (or n-out-of-n:G),

a system is ‘parallel” <= it is an n-out-of-n:F system (or 1-out-of-n:G).

The reliability of a k-out-of-n:F system in (2.7) with independently and identically
distributed (i.i.d.) components is equal to the probability that the number of failing
components is less than or equal to k — 1. As a k-out-of-n:F system is equivalent to
a (n — k + 1)-out-of-n:G system, (2.7) is equivalent to

n

> (j) [RiOV 1= RO

j=n—k+1

If we denote Rg(n,k) the reliability of a k-out-of-n:G system and Rp(n, k) the
reliability of a k-out-of-n:F system, we have

Rg(n,k) = Rp(n,n —k + 1).

2.2.1.2 Reliability Block Diagram

A reliability block diagram is a success-oriented diagram describing a specified
function of a system. Each rectangular block in the diagram represents a function
of a component. If the function is available, we have connection through the block,
and if the function is failed, there is no connection through the block.

Consider the reliability block diagram in Fig.2.1. The system is a parallel
structure of two independent modules: the structure comprising components 1 and 4,

18 R.-T. Wang

block diagram for a

Fig. 2.2 A reliability .
1
2-out-0f-3:G system Em

Fig. 2.3 A bridge
structure

and the structure comprising components 2, 3, and 5. From (2.5) and (2.6), the
reliability of the former structure equals R; R4, whereas the reliability of the latter
equals [1 — (1 — Ry)(1 — R3)]Rs. Thus the system reliability is given by

Rsystem =1- (1 - R1R4){1 - [1 - (1 - RZ)(1 - RS)]RS}

A reliability block diagram of 2-out-of-3:G system is illustrated in Fig. 2.2.

2.2.1.3 A Bridge Structure

The reliability block diagram of a bridge configuration is given in Fig.2.3. Each
block in the diagram denotes a component. For independent components, the system
reliability of the bridge structure can be obtained by using minimal path or minimal
cut sets [11] and is expressed by

Rsystem = RiRy + R4Rs + RiR3Rs + RyR3 R,
—RIRyR3Ry — RiR)R3R5 — RiRyR4Rs — R{R3R4R5
—RyR3R4R5 + 2R Ry R3 R4 R5.

The minimal path sets of the bridge structure are {1, 2}, {4,5}, {1,3,5}, and
{2,3,4}. The minimal path sets may represent the bridge as a parallel-series
structure. The minimal cut sets are {1, 4}, {2, 5}, {1, 3, 5}, and {2, 3, 4}. The minimal
cut sets may represent the bridge as a series-parallel structure. Alternative method to
obtain the system reliability of a bridge structure is the pivot-decomposition method
(or factoring method) [123]. The minimal path sets and minimal cut sets for the
bridge structure are given in Fig. 2.4.

2 Reliability Evaluation Techniques

2]
| Wl
[—5]
Kl Elon El

Fig. 2.4 Minimal path and minimal cut representations for bridge

2.2.14 A Non-i.i.d. k-out-of-n:F System

The reliability of a non-i.i.d. k-out-of-n:F system is given by

k=1 ())
RO =Y S "T] R (A= Ra)™. k=1...n
i=0 j=1m=1

where §,, ; and gm, ; are complementary indicator functions for which

zn:(Sm,j:n—k, Zn:Sm,j:ks
m=1 m=1

and

5 = 1 if the mth component functions
" 0 if the mth component fails.

Myers [77] has studied extensively about k-out-of-7:G systems of this type.

Example 2.3. The reliability of a non-i.i.d. 3-out-of-4:F system is given by

2 ()

4
R=Y"3"T] Rw”’ (1= Ry
i=0 j=1m=1

= RiRR3Rs + RiRyR3(1 — Ry) + RiRyR4(1 — R3) + RiR3R4(1 — Ry)
+RyR3R4(1 — Ry) + RiR2(1 — R3)(1 — Ry) + RiR3(1 — Ry)(1 — Ry)
+RiR4(1 — R2)(1 — R3) + RyR3(1 — Ry)(1 — Ry)
+RyR4(1 — R1)(1 — R3) + R3R4(1 — Ry)(1 — Ry).

20 R.-T. Wang

Fig. 2.5 Common fault
tree symbols Q Q

Basic event AND gate OR gate Resultant event

Fig. 2.6 A fault tree System
diagram failure

2.2.1.5 Fault Tree Analysis

Fault tree analysis is a widely used method in the industrial sector to perform
reliability analysis of systems during their design and development, particularly in
system safety analysis. A fault tree diagram is the underlying top-down graphical
model in fault tree analysis. The starting point of a fault tree is a system failure,
known as a fop event. Fault events that can cause the occurrence of the top event are
generated and connected by logic operators such as ‘AND’ and ‘OR’. The status of
output/top event can be derived by the status of input events and the connections of
the logical gates. The logical meaning of AND(OR) gate is the same as that of the
intersection(union) of events. That is, the AND gate provides a True output (fault)
if all its inputs are True (fault) and the OR gate provides a True output (fault) if
one or more of its inputs are True (fault). In other words, an AND gate in a fault
tree is logically equivalent to a parallel reliability block diagram, and an OR gate
corresponds to a series reliability block diagram. The fault tree is developed by
repeatedly asking which combinations of the component failures will result in a
system failure. Fault events are generated successively until the fault events need
not be developed any further. These lowest level causes are called basic events.
Four commonly used symbols in the construction of fault trees are shown in
Fig.2.5. A fault tree diagram corresponding to Fig. 2.1 is shown in Fig. 2.6.

2 Reliability Evaluation Techniques 21

2.2.1.6 Order Statistics

A r.v. T with d.f. F is said to be exponential distributed with parameter A, denoted
by T ~ Exp(A) or F ~ Exp(A), if the reliability function is given by R(t) = e
fort > 0,1 > 0.

Suppose that 7y, ...,T, are i.i.d. r.v.’s with d.f. F. We index the failure times
chronologicallyby 0 < T}., < --- < T,.,, where Ty, denotes the occurrence time of
the kth failure, fork = 1,...,n. Thatis, Ty.,, ..., T,., are the corresponding order
statistics of T, ..., T,. We also denote the spacings by, fork = 1,...,n, Dy =
Ti:n — Tx—1:n, where Ty, = 0. That is, Dy denotes the time between the (k — 1)th
and the kth failure. The reliability of a system can then be studied through the order
statistics and spacings as an general order statistics model [90]. In particular, if
F ~ Exp(1) the model is called an i.i.d. exponential order statistics [70]. Moreover
the kth order statistic 7., can be considered as the time of failure of a k-out-of-n:F
system [11]. In the case that 7},..., 7T, are i.i.d. r.v.’s with d.f. F, the reliability
function of a k-out-of-n:F system at time ¢ is given by

k—1

P(Ten>1) =Y. (’Z)[F(r)]f[l 0 (2.9)

i=0

Example 2.4. Let T\, ..., T, be i.id. r.v’s with d.f. F.If F ~ Exp(A), then the
spacings Dy are independent exponential distributions with parameters (n—k +1)A,
fork =1,...,n [11]. Since Ty., = Zﬁ;l D;, the p.d.f. of T, is given by

k

Jr, @) =B B > [Wike], (2.10)

i=
where
Bi=n—i+ 1A,
Vil =B =B (Bimi = B)Bit1 — Bi) - (B — Bo).

The distributions of Ty., are Erlang distributions. The reliability functions of T,
are more conveniently obtained from Eq. (2.9) than from the p.d.f. (2.10). Namely,
fork =1,...,n,

k—1

n ‘ 4

P(Tk:n > t) = Z () (1 _ e—)»t)l(e—kt)n—z‘

, i
i=0

In particular, the reliability functions of series and parallel systems are, respectively,

P(Tl:n > t) = e—nlt and P(Tn:n > t) =1- (1 —E_M)n.

22 R.-T. Wang

2.2.1.7 Linear Combinations of Reliability of Series Systems

Consider a parallel system of n components. Let 7 and 7; be the lifetimes of the
parallel system and the component 7, respectively, and consider the events A =
{T > t}and A; = {T; > t}. Then A = |J/_, A;. Apparently, the sum of the
component reliabilities gives an upper bound of the parallel system reliability

P (U Ai) < XH:P(A,).

i=1 i=1

To evaluate P(A), apart from (2.6), we consider the inclusion-exclusion identity:

P(4) =) P(A)—) P(A4iNA4))

i=1 i<j

+ Z P(A;NA; NAg)—-+ (=D)"P (ﬂAi). (2.11)
i<j<k i=l1
Here
PA,NA,N---NA)=P(T; >t T, >t,....T;, >t) = P(U >1),

where U is the lifetime of the series system of components iy, i, . .., ix. Note that
the series system reliability has a lower bound

P (ﬂ Ai) =3 Py~ (1)

i=1 i=1

known as Bonferroni’s inequality.

Equation (2.11) gives that the reliability of a parallel system can be expressed as a
linear combination of the reliability of all possible series systems. Taking integration
in (2.11) and applying (2.2), we have that the MTTF of parallel systems can be found
as a linear combination of the MTTF of all possible series systems. Rade [89] gives
the following theorem.

Theorem 2.1. Let i be the MTTF of a parallel system of n components and let
Wiris..ip be the MTTF of the series system of components iy, ia, ..., I, assuming the
Jjoint distribution of the components’ lifetime is the same as in the parallel system.
Then

==Y it Y =+ (=) . (2.12)

i=1 i<j i<j<k

2 Reliability Evaluation Techniques 23

If all series systems of k components have the same MTTF i), then

u= (T)M(l) - (;)M(z) + (Z)M(,z) — et (= 1)"“()M(n) (2.13)

Rade [89] also generalizes Theorem 2.1 to a series-parallel system and a k-out-
of-n:G system.

Example 2.5. Let the lifetimes T, T3, ..., T, of the components be independent
and exponentially distributed with parameters A1, A,, ..., A,. Then (2.12) gives

" 1
B TRaaed e v

i=l1 ' i<j

In this case, the lifetime of the series system of components with intensities

A1, A2,..., Ak has an exponential distribution with parameter A; + --- + A; and
mean 1/ (Z];’:l A ;). If, furthermore, all A; are equal to A, the formula (2.13) gives
(1) j+l(

=7 Z
A direct calculation from (2.6) yields
/oo [1—(1—e*)"]dt ! Z !
= —_ — e = — —.
2 A 1 -

For large n, u is approximately %(lnn + v), where y = 0.577215664 . .. is Euler’s
constant. If the system is a k-out-of-n:G system, the mean time to failure of the

system is
/OO Z }’l e_j“(l _ e—kt)n—j
0 ; J

Jj=k

AZ_

1
J

>‘ I

L

2.2.2 Dependent Components

2.2.2.1 The Model of Marshall and Olkin

Marshall and Olkin [67] introduced a bivariate exponential distribution (BVE) by
considering a reliability model in which two components fail separately or simulta-
neously upon receiving a shock that is governed by a homogeneous Poisson process.
They derived the BVE in several ways: the bivariate lack of memory property, shock
models, a random sum model, and a minima model. The BVE distribution is the

24 R.-T. Wang

most important bivariate exponential distribution. It contains many properties which
inspire intensive investigations of the bivariate exponential distributions.

We say that (77, T>) has the BVE distribution if the joint reliability function is
given by, for#; > 0 and #, > 0,

F(ll,tz) — e—lltl—lzfz—llzmax(l‘l,tz)’

where A1, A,, A1, are non-negative parameters such that A +115 > 0, A, + 41, > 0.
T; and T, are independent Wh_en Ao =0.For0 <ty <tband 0 < 1, < t; the
density can be obtained by 8% F (t1,t,)/dt,0t>, and then for t > 0

A
Pt<Ti<T) = Tle‘”,

Ao —At
P(t<T2<T1):Te ,

where A = Ay + A, + App. It follows that P(Ty = T5 > t) = 22¢7* . So (T, T»)
has density f on the region {(#,,2;) : t; > 0,2, > 0,1, # t,} with respect to two-
dimensional Lebesgue measure, and a density g on the line {(¢,¢) : # > 0} in the
sense that P(T1 =T, <t) = fot g(u)d u with respect to one-dimensional Lebesgue
measure. Density functions f and g are given by

Ay + ,\lz)e—lltl—(lz-f-/\lz)tz’ 0<t <t
Aa(Ay + App)e”hithn—hi 0 <4y <1y,

[t t) = (2.14)

and
g(t) = Appe™. (2.15)

In addition, P(Ty = T») = [;° g(t)dt = 22 > 0.

The Laplace transform v (s,t) = E(e™*717'2) is given by, from (2.14)
and (2.15),
M+ AR+ A)(A + s+ 1) + stAp

S+t 4+ + 2+ 22 + A2+ A1)

v (s, 1)

It follows that the marginal expectations, variances, and correlation coefficient can
be obtained. In particular, the correlation coefficient p(77, T») = %12 > 0.
For the n-dimensional multivariate exponential distribution (MVE), the joint

reliability function is given by

F(t1,....t)) = exp{— ZA,-I,- + Zkijmax(ti,tj)

i=1 i<j

n
+ Z /\,jkmax(ti,tj,tk)—i—m—}—klmn max(ty,...,1) s

i<j<k

(2.16)

2 Reliability Evaluation Techniques 25

where #; > 0 and the 2" — 1 different A-symbols are non-negative constants. By
setting #;, = 0, we have a (n —1)-dimensional MVE distribution. Hence the marginal
distributions of all order are MVE. For example,

2
F(t1,12,0) = exp { - [Z(Ai + Ai3)ti + (A12 + A123) max(fy, lz)]}

i=1

isa BVE.

We next evaluate the reliability functions for a k-out-of-n:F system whose
components lifetimes are characterized by the MVE. Recall in Sect.2.2.1.2 that
the time of failure of a k-out-of-n:F system may be represented in terms of the
kth order statistic, i.e., Rg:.;(t) = P(Tk:, > t). The system reliability functions
for 1-out-of-2:F and 2-out-of-2:F are R;»(t) = e and Ry, (t) = e~ M1HAt
e~ M)t _ o= regpectively, where A = A + A, 4+ A». The MVE distribution
gives a formidably large task to get the system reliability functions, as there are
2" — 1 different A's in Eq. (2.16). For simplicity, we consider the case of identical
component lifetime distributions. Let

Ai=,31, i=1,...,l’l,
Aj=PBa ij=1,....ni#]

AMon = ,an
then the joint reliability function (2.16) becomes
F(Zl, oty =expy— | Bi Zli + B Zmax(li,tj)
i=1 i<j

n
+83 Z max(f,t;, ty) + -+ Bamax(ti, 1) . 2.17)

i<j<k

The system reliability functions for 1-out-of-n:F and n-out-of-n:F are, respectively,

Rin(t) = F@t,....1) = exp{— [(’f)ﬂl + (;)ﬁz Foeet (Z)ﬂ} z} ,

and
Rn:n(t) =P (U{Tk > t})
k=1

= P(Ty >1)— P(T; >t,T;, >t)+---+(=D)"""P {Ty >1t}).
> > e, e ((m- o)

k=1 1<i|<ir<n k=1

26 R.-T. Wang

Fig. 2.7 Failure
events for a system
with three identical
components when
using the
beta-factor model

From (2.17),fork = 1,...,n, we have

P(Ty>t,....Te > 1)
=P(Ty>t,....Tx >1.Txg1 =0,....T, =0)

ool ()0 ()05)

n—1 k ,
= exp —ZZ(n;])ﬂth ,

i=0j=1

where we use the equality

k .

n—j n n—k
Z = — , r=1,...,n—1,
P r r+1 r+1

where (j) = 0if x < y. Hence

n n—1 k .
Ruin () = ; (=D (Z) expl->)" (” R j)ﬁiﬂt

i=0j=1

Reliability modeling of common cause failures was introduced in the nuclear
power industry more than 30 years ago [108]. According to NEA [79] a common
cause failure is defined as “a dependent failure in which two or more component
fault states exist simultaneously, or within a short time interval, and are a direct
result of a shared cause.” Common cause failures are especially important for
redundant components, and they may be classified in two main types: (i) multiple
failures that occur at the same time due to a common cause, and (ii) multiple failures
that occur due to a common cause, but not necessarily at the same time.

The beta-factor model is the most commonly used common cause failure model.
Figure 2.7 gives failure events for a system with three identical components

2 Reliability Evaluation Techniques 27

when using the beta-factor model. Extensions of the beta-factor model have been
suggested, for example, the binomial failure rate model, the alpha factor model, the
multiple Greek letter model, and the multiple beta-factor model [38].

As for time-varying failure rates, there are considerable studies in the topic of
common cause failures for the system reliability modeling and analysis, such as
models apply to systems with exponential time-to-failure distributions [7, 17, 28];
components being affected by at most a single common-cause [105, 110]; a single
common-cause affects all components of a system [5]. Zhang and Horigome [125]
present a method for analyzing availability & reliability of repairable systems
with common cause failures among components. Xing [117] studies the reliability
analysis of computer network systems by allowing for multiple common cause that
can affect different subsets of system components.

2.2.2.2 Freund’s Model

Freund [29] proposed a bivariate extension of the exponential distribution by
allowing the failure rate of the surviving component to be affected after the failure
of another component. Freund’s bivariate distribution is absolutely continuous and
possesses the bivariate lack of memory property [12]. Suppose components 7}
and T, follow independently exponential distributions with parameters «; and oy,
respectively, until one of components fails. When component 7 (75) has failed, the
parameter of the surviving component 7>(77) changes to o} (rj). 71 and T, are
not independent, since the failure of one component changes the parameter of the
surviving one. Consequently, the joint density of (77, T5) is

—(a1+oar—ab)t—a n
Ollol e 2 2 O0<ti <t
f(tl’IZ) - —a) 1 —(apFax—a))t (2.18)
Q| et 1)2 0<t, <t.
For convenience, we call this distribution the FBVE.

The joint reliability function of (77, T5) is, for 0 < #; < f,,

_ o0 %) , ;o _
F(t1.) = / / ajaye” TR0y gy dy + F(ty, 1)
n

/
— Y ate—dhu—dn + _0TY o @tan

o + oy — o) o) + oy — o)

It is similar for 0 < #, < #;. Thus the joint reliability function of the FBVE is
given by

Kle—(dl-i-az—aé)fl—aéfz + (1 _ Kl)e—(vtl-f-&z)tz7 f <t

F(tla t2) = 26—(()(1"1‘(12—(1{){2—(1{{1 + (1 _ Kz)e_(al+a2)tl , [2 < le

(2.19)

o)
where k; = m and k, = m T, and T, are independent when al =

and oy = a,.

28 R.-T. Wang

The Laplace transform v (s, ¢) is given by

/ /

—sTy— _ o) o
s.) = E@ T ') = () +ap +5 + 1) | 122 4 A% |
v(s.1) ()= (1 + o) o +s ot

We remark that the moment generating function E(e*”1772) given by Freund [29]
was wrong. It follows that the marginal expectations, variances, and correlation
coefficient can be obtained. In particular, the correlation coefficient is

A4
aja) — ooy

o(T, 1) =

\/(ozﬂz + 2a100 + af) (@ + 2010 + oF)

It can be shown that —1/3 < p(T}, T») < 1.
The marginals are not exponentials; each is a mixture of exponentials

fit) = (1 — ko) (ay + ap)e”@tedn 4 /czozie_“{“,

fr(t2) = (1 — k1) (g + ap)e”rtedn 4 Klolﬁe_aétz,

provided that ot} + ; —] # 0 and &; + , — o) # 0. The marginal density f; (¢;)
contains various parameter ranges oy < o, o) = o, @] < o) < & + o and
o +a <ap. Ifo; +or—a) =0and o) + an —) = 0, then

Sit) = (o + Oliazll)e_a{t‘,

fot2) = (02 + i tr)e ™",
Thus f;(z;) is a mixture of an exponential density g;(#;) and a gamma density
gl*(tl)a i'e'7

(231 [0%]
fit) = —gi1(n) + —g1 (1),
o) o)

where g1(1) = ofe ™" and g7 (1) = o "t1e .
From (2.19), the reliability functions for 1-out-of-2:F and 2-out-of-2:F systems

are, respectively, R.»(f) = e~ (ta)t gnd

’ ’
K1e™ 4 e + (1 — k) —kp)e”@He) oy @y # o, b

/
R (1) Kk1e™®" + (1 — ki + apt)e™1He)t o+ = o) F
2:2 = — —
Kpe “1’+(1—K2+a1t)e (a1+a2)t’ o] +012:Ol£7éai
[1+ (a1 +)] e~ @rtet o+ o =a) =a,
— o — (5]
where k| = prer—" and «; prEm—_

2 Reliability Evaluation Techniques 29

Example 2.6. Wheno; = a, = o and of = o) = 2a, the system reliability R.>(f)
is given by

Ron(t) = (1 + 2at)e_2‘”.
From (2.4), the system’s model failure rate function is

4ot
Alt) = ——.
®) 1 + 2at
This system is related to cascading failures models, see Singpurwalla [100].

For a n-component system of this type, the joint density can be formulated in
which the parameters of the surviving components change as components fail. Let

the n components fail at times 77, < Tpy < -+ < Tyy. For j = 1,...,n and
k=1,...,j =1, T;, has failure rate a;k) after k of the components have failed,
ie,forj=1,...,n,
1 failed (1) 2 failed (2) 3 failed (j — D failed (-1
Tip:aj — o« — - .. — a .

The joint density of 71, ..., T, is, similar to (2.18),

n

n
k—1 k—1
f(th cee tn) = l_[Oé]((: l—[xp (_0‘;)(tk:n - tk—l:n)) s
j =k

k=1

where 0 = ty.,, < t1: < --- < t,-. We call this distribution the FMVE.

The formulae become more complicated as the number of components becomes
larger than two. However, if we assume these different components are the same
versions with equal parameters, then the reliability functions have simpler forms. If
k components failed, the conditional distribution of the surviving components will

have exponential distributions with parameters o4+, fork = 0,1,...,n — 1. That
is,forj =1,...,n,
1 failed 2 failed 3 failed (j — 1) failed
Tiy:an — Ay — o3 —> — a;.
The joint density of 71, ..., T, becomes

S t) [o expl—ew(n =k + D)(tkn — i),
k=1

30 R.-T. Wang

where 0 = 1o, < t1;y < -+ =< tyy. The spacings Dy = Ty.y — Tk—1:n are
independent exponential distributions with mean 1/6;, where

O =n—k+ Do, k=1,...,n.

The kth order statistics ., = Zf;l D; can be considered as the time of failure
of a k-out-of-n:F system. Thus the reliability function for the 1-out-of-n:F system
is Ri.y(t) = P(Ty, > t) = e % = ¢ In order to obtain the reliability
function for the n-out-of-n:F system, we need to obtain the p.d.f. of Tj.,. The
Laplace transform of 7., is

0;
0; +s°

k
(o) = E@) =]
i=1

The p.d.f. of Tj., is obtained by expressing the Laplace transform in partial fraction
form as

S n
£ 195+S’
i=l1

where

Thus the p.d.f. of Ty, is

k
Jriu () =Y pi6i exp[—6;1].

i=1

It follows that the reliability function for the n-out-of-n:F system is

Run(t) = P(Tyy > 1) = / Fron)dv =3 pyexpl—6i1],

i=1

that is,
- - (n—j+ Day .
Ryn(t) = —(n— Do),
win (1) Zl ,H#‘(n—j+l)aj—(n—i+l)a,- exp[—(n — i + Dat]
1= j=1,j#i

(2.20)

provided that (n — j + 1)a; — (n —i + 1)a; # 0,for j # i. The reliability function
Ry, () is a mixture of exponentials, since Y ', p; = 1.

2 Reliability Evaluation Techniques 31

Example 2.7. Suppose that a system consists of 7 identical components connected
in parallel. Let us suppose that failures of certain components lead to increase in the
functional load applied to the components still in operation. The failure rate of each
component is independent of time but depends on the number of components that
have not failed. At a given instant, (n —k + 1) components are in operation, then the
failure rate of each of them is equal to o . The reliability function is given by (2.20).
It can be shown that the mean lifetime of the system is [32]

Ly Loy
na; (n—1as a

Load-sharing model is originated from the study of the failure properties of
composite materials using the concept of fiber bundles. The model can be either
static or time-dependent. Experiments usually favor the dynamic failure fiber bundle
models [50]. The load-sharing rule is an important element of the load-sharing
models. It governs how the loads on the working components change after some
components in the system fail. There are equal, local, monotone, and non-monotone
load-sharing rules, and the equal rule is the one most applied. FBVE is a simple
load-sharing model and is applicable to almost all load-sharing rule.

Studies of k-out-of-n system related to FMVE are Scheuer [94], Lin et al.
[53], and Amari and Misra [4]. Amari et al. [6] study tampered failure rate load-
sharing k-out-of-n:G systems. Huang and Xu [41], Liu [62], and Lu [63] study
reliability functions of load-sharing redundant systems with non-exponential or
arbitrary failure distributions. Shao and Lamberson [97] models a load-sharing k-
out-of-n:G system by a continuous-time Markov chain and solves its differential
equations using inverse Laplace transforms. We return to this model in Sect. 2.5.2.

2.3 Markov Models

Markov models are commonly used to perform reliability analysis of engineering
systems and fault-tolerant systems. They are also used to handle reliability and
availability analysis of repairable systems. We first give notations and several
properties of stochastic processes. Next, we explore Markov chains focusing on
criteria of recurrent/transient state, and long-run probabilities. We then discuss
basic properties of the homogeneous Poison process, which is one of the most
important stochastic processes. The nonhomogeneous Poisson process (NHPP) is an
time-dependent variation of the homogeneous Poisson process. NHPP models has
been applied to various fields, such as repairable systems and software reliability
modeling. The discussion is then going to the continuous-time Markov chain,
including the birth, the death, and the birth-death processes. It is not an easy task to
solve the state equations. A number of solution techniques exist, such as analytical
solution [9], Laplace-Stieltjes transforms [92], numerical integration and computer-
assisted evaluation [88].

32 R.-T. Wang
2.3.1 Basic Properties of Stochastic Processes

A stochastic process is a mathematical model for the occurrence, at each moment
after the initial time, of a random phenomenon. Mathematically, a stochastic process
is a collection of random variables { X (¢),¢ € T} defined on a common probability
space indexed by a suitable index set 7" which describes the evolution of some
systems. That is, for each t € T, X(¢) is a random variable. Generally these
random variables X(¢) are dependent. Stochastic processes are then characterized
by different dependency relationships among X (¢). We often interpreted ¢ as time
and call X(¢) the state of the process at time ¢. If T is a countable set, we call
{X(t) : t € T} a discrete-time stochastic process. If T is a continuum, we call
{X(t) : t € T} acontinuous-time stochastic process.

Often T = [0, 0o) if the system evolves in continuous time. For example, X (¢)
might be the number of people in a queue at time #, or the accumulated claims paid
by an insurance company in [0, ¢]. Alternatively, we could have T = {0,1,...}
if the system evolves in discrete time. Then X(n) might represent the number of
arrivals to a queue during the service interval of the nth customer.

Any realization of a stochastic process {X(¢) : t € T} is called a sample path.
The space of the possible values of each X(¢) is called the state space S.1If S is a
countable set, we call {X(¢) : t € T} a discrete state stochastic process. If S is a
continuum, we call {X(¢) : ¢+ € T} a continuous state stochastic process. Several
common properties of stochastic processes are given as follows.

Markov property: A Markov process is a stochastic process having the Markov
property that, given the present state at time s and all past states, the future state
at ¢ + s is independent of the past and depends only on the present state at s.
Formally, if Vs, > 0and 0 < u < s,

P(X(t +5) = j1X(s) = i, X(u) = x(u),0 < u < s) = P(X(t +5) = j|X(s) =).

A Markov process having a countable state space is called a Markov chain.
A discrete-time Markov process is simply called a Markov chain. Random walk
is a Markov chain. The Poisson process and birth-death processes are continuous-
time Markov chains. A Markov process for which all realization are continuous
functions is called a diffusion process. Brownian motion is a diffusion process.
Homogeneous (or Stationary): A stochastic process is said to be homogeneous or
stationary if the transition probability p;(t) = P(X(t +5) = j|X(s) = i) is
independent of 5. Many continuous-time Markov chain we consider will have
homogeneous property. Let t; be the amount of time that the process stays in
state i. By the Markovian property, P(t; > s + t|t; > §) = P(r; > t) for all
s,t > 0. Hence, the random variable 7; is memoryless and must be exponentially
distributed. That is, the amount of time a continuous-time Markov chain spends
in each state, before jumping to the next state, is exponentially distributed.
Independent increments: A continuous-time stochastic process {X(¢),t € T} is
said to have independent increments if, forall 0 <1y < t) < tp < -+ < 1, the

2 Reliability Evaluation Techniques 33

random variables X (#;) — X (%), X(t2) — X(t1), ..., X(¢,) — X(¢,—1) are jointly
independent, where the difference X (#;) — X(¢;—;) is called the increment. That
is, for all n,

P(X(to.t1) = k1, ..., X(ty—1. 1) = k) = l_[P(X(ti-1.t) = ki),

i=1

where X(t;) — X(¢1) = X(t1, ;). If the index set contains a smallest index f, it
is also assumed that X (fp), X (t;) — X(¢9), X(t2) — X (t1), ..., X(t,) — X (t,—) are
jointly independent. Brownian motions, Poisson processes and Lévy processes
have homogeneous independent increments.

Martingale processes: A stochastic process {X, : t € T} is said to be a martingale
process if, for | < -+ <, < ty41,

1. E(|X]) < o0, Vi,
2. E(X | X Xy X,) = X,
3. Forany ¢ € T the random variable X (¢) is F;-measurable.

Taking expectation of (2) gives E(X,,,) = E(X,,), and so E(X,,) = E(X;)
for all ¢’s. For any s < ¢, s,t € T,if E(X(t)|F;) > X(s) P-a.s., then we have
the definition of a submartingale; if E(X(¢)|Fs) < X(s) P-a.s., then we have a
supermartingale.

A martingale is a generalized version of a fair game. Martingale concepts and
methodologies have provided a far-reaching apparatus vital to the analysis of all
kinds of functionals of stochastic processes. In particular, martingale constructions
serve decisively in the investigating of stochastic models of diffusion type.

2.3.2 Markov Chains

2.3.2.1 Transition Probabilities

A Markov chain with discrete-state space S is a collection of random variables X,
with the Markov property

PXpp1 =jlXo=i0. X1 =i1,...., Xnc1 = in—1, Xy = 10)
= P(Xn+1 =]|Xn = i) = PDij»

for all states ig,i1,...,in—1,i,j and all n > 0. p; is called a 1-step transition
probability, representing the probability that a process in state i will next make a
transition into state j. We write p;; instead of p”‘H to represent the homogeneous

i
transition probabilities.

34 R.-T. Wang

We often display the 1-step transition probabilities p; = P(X,4+1 = j|X, = i)
in a matrix P = [p;], called the transition probability matrix (or simply transition
matrix), such that

Poo Por po2 ...
Pio pPuu piz ...

P=[pl=|: © © .|
Pio pit pi2 ...

where p; > 0 Vi, j zO,ande’;opU =1,i=0,1,....

A Markov chain {X,,n = 0,1,2,...} is completely defined by its (1-step)
transition probability matrix and its initial distribution (i.e., the specification of a
probability distribution on the state of the process at time 0):

P(Xo=io Xy =it . Xn=1iy)

= P (Xy = in|Xo=i0, X1 =i1,..., Xyt = in—1)
P (Xo=1ip, X1 =1i1,..., Xpn—1 = in—1)

= Din—rin * Pin—giin—y **""" Piviy * Pio.iy * P(Xo = io),

where P(Xy = i) is the initial probability.

The analysis of a Markov chain concerns mainly the calculation of the probability
of the possible realizations of the process. Central in these calculations are the n-
step transition probability matrices P = [pi(j”)] where pi(;’) is the n-step transition
probability and p{”’ = P(X,4m = j|X, =i),n > 0,i,j > 0. The interest is to

calculate pfn)

;j 1n terms of the transition probability p;;.

2.3.2.2 Chapman-Kolmogorov Equations

The Chapman-Kolmogorov equations calculate the (n + m)-step transition proba-
bility pi(j" +m) by summing over all the intermediate state k at time # and moving to
state j from state k at the remaining time m: P+ = P . P(") A consequence
of the Chapman-Kolmogorov equations is that P®) = P", i.e., the n-step transition
probability matrix is equal to the nth power of the 1-step transition matrix.

The distribution of position at any time, P(X, = j), is given by the initial
distribution and the n-step transition probabilities: (n > 1)

o0 o0
P(Xy=j)=Y P(Xo=DP(X,=jlXo=0)=Y P(Xo=1i)p)".
i=0 i=0

2 Reliability Evaluation Techniques 35

Example 2.8. Consider a system with three state components situated in a shock
environment that generates shocks according to a Poisson process with intensity A.
The three states can be described as 0 or good, 1 or degraded, and 2 or failed. When
a component is hit by a shock it will (independently of the other components) pass
from state O to state 1 with probability p; = 1 — ¢ and from state 1 to state 2 with
probability p» = 1 — g2 (p1 # p2). Let P, be the probability that a component in
state O survives k shocks. Then

k—1 k k
] k—1—j P14, — P2q
Pe=qf +Y qipgs T = B2
— q2 — 41
Jj=0
2.3.2.3 Stationary Distributions
Let w = [wg,wq,ws,...] and Z?io w; = 1. Then w is said to be a stationary

distribution (or equilibrium vector, steady-state vector) for the Markov chain if
w P = w. If w is a stationary distribution, then Vn > 1,

wP' = (WP)P" ! = WP = = WP = w.

The chain is sometimes said to be in equilibrium.
Example 2.9. Consider a two-state Markov chain with the state space S = {0, 1}

lfﬂ},0<a,ﬁ < 1. The

stationary distribution of the Markov chain is (%, ﬁ)

and the transition probability matrix P = |:1 ;0{

2.3.2.4 Classification of States

e Accessible: If p(.n)

i > 0 for some n > 0. That is, the state j is accessible from the
state i if there is positive probability that in a finite number of steps a Markov
chain moves from i to j.

o Communicate: If 3m,n > 0 such that pi(;") > 0 and pﬁ-';) > 0. That is, two states
communicate if each is accessible from the other.

* [rreducible: “Communicate with” is an equivalence relation, which breaks state
space S up into disjoint equivalence classes. Two states that communicate are
in the same class. If there is just one class, the chain is irreducible (all states
communicate with each other), otherwise it is Reducible. A closed class is one
we cannot leave. A closed class containing exactly one state is called absorbing.

e Transient/recurrent. A state is transient if it is not certain we shall return to it

sometime, otherwise it is recurrent. Formally,

. . | =1, statei is recurrent
P(X, =i forsome n > 1|Xy=1) . .
< 1, state i is transient.

36 R.-T. Wang

Fig. 2.8 A six-state
system transitions

N
Vs

* Periodicity: Period d (i) of a state i is the greatest common divisor of those time
n > 1 taken to return to i, given we start there. That is, d(i) = ged{n : n > 1,

pfi”) > 0}. In particular, if d(i) = 1, then the state i is called aperiodic.

Example 2.10. If S = {1,2,3,4,5,6} and the transition probability matrix is
given by

0 1/31/31/3 0 0 |

1/3 0 1/3 1/6 1/6 0
1/31/3 0 0 0 1/3

P:
0 0 0 0 1 0
0 0 0 2/3 0 1/3
0 0 0 0 1 0

Then {1,2,3}: transient, aperiodic; {4, 5, 6}: irreducible closed set, recurrent,
period 2 (Fig. 2.8).

2.3.2.5 First Hitting Probability

The states of a Markov chain are classified independently from two viewpoints:
(i) recurrent and transient states, and (ii) periodic and aperiodic states. The vast
majority of Markov chains we deal with are aperiodic, and criteria for a state to be
recurrent or transient is closely related to the first hitting probability. The first hitting
probability is defined as

" =P =nXo=10), n=>1,

representing the probability that, starting from state 7, the first transition into state j
occurs at time 7. The random variable T'; represents the time (i.e., number of steps)
for the first transition into state j,ie.,7; = min{fn > 1 : X, = j}.IfVn > I,
X, # j,thendefine T; = oco. Define f;; = Y oo, fij(") to be the probability that the

2 Reliability Evaluation Techniques 37

chain ever visits j, starting from i. Fori # j, f; > 0if and only if j is accessible
from i. Of course, f; < 1. Now we have a criterion for a state to be recurrent or
transient.

Definition 2.1. State j is recurrent if and only if fj; = 1, and transient if and only
if fj <1.

If state j is an absorbing state, then P(T; = 1|Xo = j) = 1. This implies that
Ji = 1. Thus an absorbing state is recurrent. If a Markov chain is in state j and j
is recurrent, the probability that the process will return to that state is 1. Since the
process is a Markov chain, this is equivalent to the process beginning once more
from state j, and with probability 1, it will once again return to that state. Repeating
this argument leads to the conclusion that state j will be entered infinitely often.
Hence, a recurrent state has the property that the expected number of time periods
that the process is in state j is infinite. If state j is transient, then the probability of
reentering state j is f;; (< 1) and the probability of not reentering state j is 1 — fj;.
Then the expected number of time periods that the process is in state j is finite and
given by 1—_1f,,

2.3.2.6 A Criterion for Recurrent and Transient

Theorem 2.2. An important formula that connect fij(n) and pi(j") is

p = Z Opt™ Vi jand1 <n < oc.
k=1

Theorem 2.3. A criterion for identifying a state to be recurrent or transient in
terms of the n-step transition probabilities p(”) is: (1) State j is recurrent if and

only if Y 02| p](]") = o0, (2) State j is transient if and only if Y e, p” < 0.

2.3.2.7 Examples of Recurrent/Transient

Example 2.11. Consider a two-state Markov chain with states {0,1} and the

transition probability matrix P = [1}) 1(/) 2i| It is obvious that Y 2| P(()g) =
1414 =ocand Y2 lpi"l) =3 Ly (%)2 + --+ =1 < oo, which implies that

state 0 is recurrent and state 1 is trans1ent.

Example 2.12. Consider a three-state Markov chain with states {1,2,3} and the
transition probability matrix

o l—a O
P = 0 0 1
1-g 0 B

38 R.-T. Wang

Since fir = 302, £ =@+ Y2 (1—a)(1-B)f" = a+(1—) 55 = 1,

then f1; = 1, and consequently the state 1 is recurrent.

2.3.2.8 Ergodic

Ergodic states are important in the classification of chains, and in proving the
existence of limiting probability distributions.

Definition 2.2. The mean recurrence time y;; denotes the expected time of transi-
tions needed to return to state j, starting from state j:

. S nf; if j is recurrent
wij = E(Tj|Xo = j) ===t)
if j is transient.
M may be infinite even if j is recurrent. The recurrent state j is called positive
recurrent if ju; < oo and it is null recurrent if ju; = oo.

It can be shown that for a finite-state Markov chain, all recurrent states are
positive recurrent. Note that p; = E(T}) is the mean first passage time, where
Ty =min{n > 0: X, = j|Xo =i}.

Definition 2.3. Positive recurrent states that are aperiodic are called ergodic states.
A Markov chain is said to be ergodic if all its states are ergodic states.

Example 2.13. Consider a two-state Markov chain § = {1,2} with transition
probability matrix P = [1;2 i;i} Given Xo = 1, the chain enters state 2 as

soon as it leaves state 1. Hence

2 1 n—1
P(lezﬂ)zg(g) , n>1,
and
[} e e} n—1
2 (1 3
wo = onfi) =3 3 (5) =7
n=1 n=1

Likewise, first return to state 1 at the nth step occurs after n — 2 consecutive visits
to state 2, SO

1
P(len):{%’ &
3 n

2 Reliability Evaluation Techniques 39

Hence

o0

1 S 2/3\" %1 11
"ZE:) _ j{: _
P =2 nin _§+?ﬂ”§QO 4 3

n=1

Example 2.14. If the transition probability matrix is given by
a 1—a O
P= 0 0 1
-8 0 B
The state 1 is recurrent and its mean recurrence time is given by

(o]

p = onfi =a+ (I—a)(1=p) Y np'~ =

n=1 n=3

3—20—-28+af
< 00
1-p

Hence state 1 is positive recurrent. Because pY{) > 0 forn > 3, state 1 is aperiodic.
Hence state 1 is ergodic (and also states 2 and 3).

Theorem 2.4. An irreducible chain has a stationary distribution 7 if and only if all
the states are positive recurrent; in this case, 7 is the unique stationary distribution
and is given by w; = 1/ for each j € S, where p;; is the mean recurrence
time of j.

Example 2.15. Consider the Markov chain

0 1/3 2/3
P=1{2/3 0 1/3
1/3 2/3 0

The unique stationary distribution is 7 = (1/3,1/3,1/3). Thus, w1 = n;! = 3,
M2 =T, '=3 and 33 = Ty ' = 3. The mean recurrence time for all states is 3.

Theorem 2.5. If we have an irreducible aperiodic chain:

(1) Ifit is transient, then pi(j") — 0 Vi, j;

(2) If it is positive recurrent, then p;in) — ;= 1/,

(3) Ifitis null recurrent, then p@

i 0 Vi, j, and the mean time to return to any
state is infinite.

2.3.2.9 Limiting Probabilities in Finite-State Markov Chains

For a finite-state Markov chain: (i) not all states are transient, and (ii) there are no
null recurrent states. An irreducible finite chain must be positive recurrent. If the
irreducible finite-state Markov chain is aperiodic, there exists a unique and positive
stationary distribution which is the limiting distribution.

40 R.-T. Wang

For a Markov chain, all states can be classified into several recurrent classes
Cy, ..., Cy, and remaining transient states which form a transient set 7. Then all
sets Cy,...,Cy,, T are disjoint. Rearranging (or relabeling) all the states so that the
irreducible classes are together and transient states are last, the Markov chain can
be rewritten in the form

i G ... Cy T

¢, (P O ... O 0

G| o0 P ... O 0

p=: | oo]

Chnl O 0 ... Py 0

T Ri Ry ... Ry 0
where Pi,..., P, are the transition matrices for recurrent classes Cy,...,Cy,, Q
is a square matrix for describing the transitions among all transient states for T,
and Ry,..., R, are (not necessarily square) matrices describing the transitions
from all transient states to the corresponding recurrent classes Cy,...,C,. Let

us consider the limiting probabilities lim,,—, o Pi;") for all states. Assume that all
positive recurrent states are aperiodic, we have

1
lim p™ = — (i,jeCk=1,....,m),

n—oo0’ Y

129
lim p’ =0 (i €CrjeCrk#I),
n—oo
lim pi’ =0 (i€CpjeT),
n—oo
lim pf" = S (ie€T.jeC,
n—o00 M]j
lim pi” =0 (i.jeT).
n—>o00

Theorem 2.6. For a finite-state Markov chain, the eventual transition probability

fijfrom state i € T to state j € Cy (k = 1,...,m) satisfies
fi= ZPil+ZPilﬁj (i eT,jeC),
1eCy leT

or in a matrix form
—1
[fil =01 — Q] Rk -1,
where I is a identity matrix and 1 is a column vector of all the components’ unity.

Example 2.16. Consider a Markov chain with the state space S = {1, 2,3, 4} and
the transition probability

2 Reliability Evaluation Techniques 41

I 0 0 O
p— 0 0307 0
0 0505 0
02 0 0.1 07

We know that {1} is an absorbing state, {2, 3} are positive recurrent states, and {4}
is a transient state. For the recurrent class {1}, we have P; = [1] and the limiting
distribution 71y = 1/, = 1. For the recurrent class {2, 3}, we have the submatrix

P, = [82 gz:| and the stationary distribution is (7, 73) = (1/u20, 1/u33) =

(5/12,7/12). For the transient set {4},

[- 01" = [10/3],
[1 — 01" Ri -1 =[10/3][2/10][1] = 2/3,

-0 Ry-1=T[10/3]0 1/10] [” —1/3.

That is, f41 = 2/3 and f42 = f43 = 1/3 Thus, P‘ffo) = f41//i11 = 2/3 P4(200) =
far/ iy = 5/36,and P = fi3/ 133 = 7/36. The limiting probability matrix is

1 0 0 0
poo— i pro | O 5/127/12°0
00 0 5/12 7/12 0

2/3 5/36 7/36 0

2.3.3 Poisson Processes

The Poisson process is the simplest stochastic process that arises in many applica-
tions, especially as a model for the ‘counting process’ (or ‘arrival processes’) that
counts the number of failures through time. A stochastic process {N(¢),t > 0} is
said to be a counting process if N(¢) represents the total number of ‘events’ that
have occurred up to time 7.

2.3.3.1 Poisson Process
Definition 2.4. A counting process {N(t),t > 0} is said to be a Poisson process
with rate A > 0 if

@ N(0) =0,
(i) The process has independent increments.

42 R.-T. Wang

(iii) The probability that k events take place for any interval ¢ is Poisson distributed
with mean Az. That is, V s,z > 0,P(N(t + s) — N(s) = k) = e_l’%,
k=0,1,2,....

It follows from condition (iii) that a Poisson process has stationary increments
and also that E[N ()] = At, which explains why A is called the ‘rate’ of the process.
To determine if an arbitrary counting process is actually a Poisson process, we must
show that conditions (i)—(iii) are satisfied. Conditions (i) and (ii) can usually be
verified from our knowledge of the process. However, it is not at all clear how we
would determine that condition (iii) is satisfied, and for this reason we need an
alternative definition of a Poisson process.

Definition 2.5. A counting process {N(¢),t > 0} is said to be a Poisson process
with rate A > 0 if the following conditions are satisfied:
(i N() =0,
(i) {N(¢),t > 0} has stationary (or homogeneous) independent increments,
@iii)) P(N(h) =1) = Ah + o(h),
(iv) P(N(h) =2) = o(h).
From this definition, we derive the probabilities P,(t) = P(N(t) = n),
n = 0,1,2,..., which denotes the probability that n events occur in [0, ¢], and

> o Pu(t) = 1. To find the distribution of N(z), we first derive a differential
equation for Py(t).

Py(t +h) = P(N(t +h)=0)
= P(N(@) =0)P(N({+h)—N()=0|N() =0)
= Py(t)Po(h) = Po(t)[1 — Ah + o(h)],
where the final two equations follow from (ii), (iii), and (iv). Hence

Po(t +h) — Po(r) o(h)
W = —APy(t) + I

Letting 7 — 0 yields P(;(t) = —APy(?). Next, forn > 1,
P,(t +h) = P(N(t +h) =n)
= P(N(t)=n,N(t+h)—N@)=0)
+P(N@t)=n—1,Nt+h)—Nt)=1)
+P(N(t+h)=n,Nt+h)—N@) =2).

By (iv), the last term in the above is 0 (h); hence, by (ii), we obtain

P, (t +h) = P,(t) Po(h) + Py—1(t) P1(h) + o(h)
= (1= AR) P,y (1) + A Py_1(t) + o(h).

2 Reliability Evaluation Techniques 43

Thus,

P,(t + h}g —P,() = —AP,(t) + AP,—1(¢) + OTh)

Letting i — 0 yields Pn/ (t) = —AP,(t)+AP,—(t). Thus, we need to solve a family
of differential equations:

Py(t) = =AP (1),

P (t) = —AP,(t) + AP,_i(t), n=1,2,....

Subject to (i), Po(0) = 1 and P, (0) = O forall n > 1, solving recursively we obtain

e A"
n! "’

P,(t)=e n=20,1,2,....

Thus, for a fixed ¢, N(¢) ~ Poisson(Ar).

From the above results, Definition 2.5 implies Definition 2.4. In fact, two
definitions are equivalent. It is obvious that the process has stationary increment
from (iii) of Definition 2.4. Moreover, from (iii) of Definition 2.4, we have

P{N(h) = 1} = Ahe™" = Ah + o(h),

A

PAN() =k} = 2

=o(h), k=23,...,

where we use

G2 Gy’

- _q
e =1—-Ah+ o 3

o= 1=k +o(h).

Thus Definition 2.4 implies Definition 2.5. A Poisson process implies all properties
in Definitions 2.4 and 2.5.

2.3.3.2 Interarrival Time and Arrival Time Distributions

For a Poisson process with rate A > 0, the interarrival times X,, (n = 1,2,...) are
i.i.d. exponential r.v.s with parameter A:

P(X;>1t) = P(N(t) =0) =e M,
P(X; > t|X, =s) = P(Oeventin (s,s + t]|X; =)
= P(Oeventin (s,s +1]) = e,

i.e., the conditional distribution P(X, > ¢|X; = s) is independent of X, and
X, ~ Exp(A). Repeating the same argument yields the desired results.

44 R.-T. Wang

Fig. 2.9 Interarrival times S

and waiting times
X 1 ‘Xn

Time
0 f -1 Iy trH»l

The assumption of stationary and independent increments is equivalent to
asserting that, at any point in time, the Poisson process probabilistically restarts
itself. In other words, the process has no memory, and hence exponential interarrival
times are to be expected. Thus, we have a third definition for the Poisson process.

Definition 2.6. A Poisson process with rate A > 0 is a renewal process with the
exponential interarrival distribution F(¢) = 1 —e ™.

The arrival time of the nth event, also called the waiting time until the nth event
(from the origin), is S, = Z?:l X;, where Syo = 0 (Fig.2.9). It can be shown that
S, has a gamma distribution with shape parameter n and scale parameter A. Use the
independent increment assumption as follows:

Pt <S,<t+dt)=P(Nt)=n—1)- P(1eventin (t,t 4+ dt)) + o(dt)

_ e_)‘t(/\t)n_l
= oM+ ol

—ar Q)"

Dividing by d¢ and then letting it approach 0, we have fs, (1) = Ae R

2.3.3.3 Some Examples of the Poisson Process

Example 2.17 (Superposition). The pooled process {N(¢) + Na(t),t > 0} of two
independent Poisson processes {Ni(¢),¢ > 0} and {N,(¢),t > 0} with respective
rates A and pu is again a Poisson process with rate A + :

P(Ni(t) + Na(t) = n) =) | P(N1(1) = k. Na(t) = n — k)
k=0
— o=t [(A +)]
n! '

Example 2.18 (Decomposition). Let {N(t),t > 0} be a Poisson process with rate
A and let the consecutive events follow the Bernoulli trials. For instance, each
arrival of failures at an assembly line can be classified as a major and a minor
with probability p and probability 1 — p, respectively. The classified processes

2 Reliability Evaluation Techniques 45

{Ny(t),t > 0} and {N,(¢t),t > 0} of major failures and minor failures are

independent Poisson processes with rates pA and (1 — p)A, respectively:
P(Ni(1) = k. Na(t) = n —k) = P(N1(1) = k. N2(t) = n —k[N(1) = n) - P(N(1) = n)

e Py (L= A
!

k n—k)!

Example 2.19. Let {N(¢),t > 0} be a Poisson process with rate A. For s < ¢ and
k<n

P(N(s) = k, N(t) = N(s) = n — k)
P(N(1) = n)

n\ sk —s)"k o s
= (k)t—” ~ Binomial (n, ;) .

Example 2.20. Given two independent Poisson process {N;(¢),¢ > 0} and {N»(?),
t > 0} with rates A; and A,

P(N(s) = k[N(t) =n) =

P(Ni(t) = k., No(t) = n —k)
P(N{() + Na(0) = n)

) (w) () e (r757)
= ~ momia n, .
k A+ A A+ A A+ A

2.3.3.4 The Order Statistic Property

P(Ni(t) = k|Ni(t) + Na(t) = n) =

Suppose that exactly one event of a Poisson process has taken place by time 7. The
time at which the event occurred is a uniform distribution over [0, ¢]: For s < ¢,

_PING) =1LNO =N =0) _s

This result is generalized as the following order statistic property.

Theorem 2.7. Suppose {N(t),t > 0} is a Poisson process, and let Sy = ZLI X;
be the kth arrival time. Given that N(t) = n, the n arrival times S1, S2,..., Sy
have the same distribution as the order statistics corresponding to n independent
random variables uniformly distributed on the interval [0, t].

Example 2.21 (A Counter Model). Suppose that a device is subject to shocks that
occur in accordance with a Poisson process having rate A. The ith shock gives rise
to a damage D;. The D;,i > 1, are assumed to be i.i.d. and also to be independent
of {N(t),t > 0}, where N(¢) denotes the number of shocks in [0, ¢]. The damage
due to a shock is assumed to decrease exponentially in time. That is, if a shock

46 R.-T. Wang

has an initial damage D, then a time ¢ later its damage is De™*'. If we suppose
that the damage are additive, then D(¢), the damage at ¢, can be expressed as

D(t) = YN D;e=@(=5) where S; represents the arrival time of the ith shock.
The question is to find E[D(t)].

Conditioning on N(¢) yields

E[D(t)|N(t) =n] = E [Z Die ®USDIN(t) = n]

i=1
n
= E[D]e™™E [Z e*SiIN(t) = n:| .
i=1
Letting Uy, ..., U, beii.d. U(0,t) r.v.’s, then, by Theorem 2.7,
n n n n
E as; — — alUin | — ali | — = (o0 _)
[Ze |N(2) n] E |:Ze] E [Ze o (e 1)
i=1 i=1 i=1
Hence,
N(t
EDOING] = 21— e~ E[D)
o
and, taking expectations,

E[D()] = (1—e™).

AE[D]
o

2.3.3.5 Nonhomogeneous Poisson Process

Definition 2.7. The counting process {N(¢),¢ > 0} is said to be a nonstationary or
nonhomogeneous Poisson process (NHPP) with intensity function A(t), t > 0 if:

) N(0) =0,

(ii)) {N(?),t > 0} has independent increments,
(iii)) P(N(t +h)—N(@)=1) = A(@)h + o(h),
@iv) P(N(t +h)—N(t) = 2) = o(h).

The NHPP has independent increments but does not have stationary property.
Thus, there is the possibility that events may be more likely to occur at certain times
than at other times. It can be shown that N(¢ + s) — N(¢) ~ Poisson(m(t + s) —
m(t)), where m(t) = fot A(u)du. Thus, N(¢) is Poisson distributed with mean m(t),

2 Reliability Evaluation Techniques 47

and for this reason m(¢) is called the mean value function of the process. We use
Definition 2.7 to find the probability P,(s) = P(N(t + s) — N(¢) = n). For fix ¢,
Py(s +h)=PWNEt+s+h)—Nt)=0)
= PNt +s)—N(@t)=0)-P(Nt+s+h)—Nt+s)=0)
= Py(s)[1 —A(t + s)h + o(h)].

Hence

PPy

Letting & — 0 yields
Pi(s) = —=A(t + 5) Po(s). (2.21)

By integration and setting Py(0) = 1, we have Py(s) = e "0T)=mO] Similarly,
by the same procedure used in the Poisson process, we have

—p(ts)—m(y M +8) —m(@)]"

P(N(t+s)—N(t)=n)=e !

, n=012,....

In particular,

P(N(Z) = l’l) = e_m(t)[’nfl—t')]n

, n=0,1,2,....

The entire course of a NHPP is determined by the distribution of first failure
time:

P(Xyy1>x|S1=51,...,8, =8,) = P(Xq1 > s, +x| X1 >s,), n=0,1,2,...,

where X’s are interarrival times and S’s are arrival times. In addition, setting t = 0
in (2.21), the intensity function of a NHPP satisfies - EN (1) = “4[—InF(1)], the
failure rate of first failure time. For example, if the first failure time has a Weibull
distribution F(¢) = 1 —exp(—at?) with a shape parameter 8 and a scale parameter
o, then the mean value function of the corresponding NHPP is m(¢) = at?. Such
a NHPP is called a Weibull process, because first failure time has the Weibull
distribution.

A NHPP model also corresponds to what is called minimal repairs, meaning that
the system after repair is only as good as it was immediately before the failure. This
means that the intensity function A(¢) of the failure process immediately after the
failure is the same as it was immediately before the failure, and hence is exactly as
it would be if no failure had ever occurred. Thus we must have A(z) = h(¢), where
h(t) is the failure rate of the first failure time. That is, the intensity function A(¢) of

48 R.-T. Wang

the failure process is completely defined by the failure rate 4(t), and the mean value
function of a NHPP is m(¢t) = fot h(w)dw. Formally,

Fe+X) _ ometn-mo

P(Xy+1>x|S, =) =P X1 >t+x|X| >1) = —
F(1)

(2.22)

Thus, the conditional distribution of time to failure, given S, = ¢, is F;(x|
S, =1) = 1 — e Mt+0)=m®] The conditional expectation is given by

/000[1 — Fi(x|S, =1)]dx = /000 exp |:— /tt+x A(w)dw:| dx.

For example, if A(¢) = ¢ then the conditional expectation is

/Oooexp [_ /t’ﬂ de} dx = /Ooo exp [_% ((t +x)* - [2)}

dx = 2m) 2" 1 — d(1)),

where @ is the standard normal distribution function.
Parzen [81] gives the unconditional distributions of the nth failure time S,,:

n—1

j 0o -l
P(S, > 1) = P(N(t) <n—1) = ;e_m(’)% = /mm %e‘xdx. (2.23)
The p.d.f. of S, is
fs, () = k(t)e"””’%. (2.24)
From (2.22) and (2.24),
P(X,q1 > Xx) = /0 oox(s)e—m““)%ds. (2.25)

By comparing (2.25) with (2.22) we see explicitly that the interarrival times are not
independent, as is stated in Cox and Lewis [20].
From (2.23), the expectation of S, is

xn—l

F(n)e *dx,

ES, = /Ooo P(S, > t)dt = /Ooo m~(x)

2 Reliability Evaluation Techniques 49

where m~! is the inverse function of m. For example, the Weibull process where
m(t) = atP,a > 0, then m~!(x) = (g)l/ﬂ and

o x\1/f x"! L(n+)
Es,= [(= “dx = —
/0 3) T 7 alf T

2.3.3.6 Some Properties of NHPP

1. Like homogeneous Poisson process, NHPPs are closed under superposition, that
is, the sum of a number of NHPPs is also a NHPP. Generally, we may mix the
failure time data from different failure processes assumed to be NHPP and obtain
an overall NHPP with a mean value function which is the sum of the mean value
functions of the underlying NHPP models.

2. Ifeventsoccurat 0 < t; < t, < --- < 1, < t, the likelihood function of a
NHPP is

seeenlpn) = Ai — A d .
Fltreeeoty) {1:[1 (r)}exp{ /0 () u}

Assume that at [s;_,s;), the actual observed cumulative number of detected
faults is n;. The likelihood function is

n n:
Lins...ong) = [[et 2200 M)
i=1 nit

3. Any NHPP can be transformed to a homogeneous Poisson process through
an appropriate time-transformation, and vice versa. Specifically, let m(¢) be a
continuous nondecreasing function of ¢. Then Sy, S», ... are arrival times in a
NHPP {N(z),t > 0} with EN(t) = m(¢) if and only if m(S;),m(S>),... are
the arrival times in a homogeneous Poisson process with rate one. Lindqvist et al.
[55] study the trend renewal process, by allowing above rate one homogeneous
Poisson process to be any renewal process.

4. In software reliability modeling, we are interested in the cumulative number of
failures X (¢) experienced up to time ¢ > 0. We assume that the number of
initial faults in a software is a finite unknown constant N, and {X(z),¢ > 0}
is a pure linear birth process with birth rate ¢. If we write Y (#) = N — X(¢), then
{Y(¢),t > 0} is a linear death process representing the number of remaining
faults or undiscovered faults up to time 7. If N has a Poisson distribution
with parameter 6, then X(¢) and Y(¢) are independent and the unconditional
distribution of X () is a NHPP with the mean value function m(¢) = 6(1 —e~%").

5. (M/G/oo queue) Suppose that customers arrive at a service station in accordance
with a Poisson process with rate A. Upon arrival the customer is immediately

50 R.-T. Wang

served by one of an infinite number of possible servers, and the service times are
assumed to be independent with a common distribution G. We want to find the
distribution of the number of customers that have completed service by time ¢
and the distribution of the number of customers that are being served at time .
Consider an entering customer a type-I customer if it completed its service by
time ¢ and a type-II customer if it does not complete its service by time 7. If the
customer enters at time s, s < ¢, then it will be a type-I customer if its service
time is less than # — s, and since the service time distribution is G, the probability
of this will be G(t — s). Similarly, a customer entering at time s will be a type-II
customer with probability 1 — G (¢ —). Let N; (¢) represents the number of type-
i events that occur by time ¢ (i = 1,2), then N,(¢) and N,(¢) are independent
Poisson random variables having respective mean E[N;(t)] = A fot G(y)dy and
E[N,()] = A fot [l — G(»)]dy, respectively. Details of this example, and further
examples of this type, we refer the readers to Ross [93].

2.3.4 Birth and Death Processes

2.3.4.1 Chapman-Kolmogorov Equations

Definition 2.8. A stochastic process {X(¢),¢ > 0} is a continuous-time Markov
chain if it takes on values in the set S (state space) of nonnegative integers and
satisfies the Markov property:

P(X(ty11) = X1 | X (1) = x1, X(82) = X2, X (1) = x)
= P(X(ty+1) = Xn41|X () = x0),

forO0<ti <ty <---<t, <tyyrand x1,X2,..., Xy, Xp+1 € S.

Definition 2.9. The continuous-time Markov chain is called time-homogeneous or
stationary if the transition probability pji(s,t) = P(X(t +5) = j|X(s) = i) is
independent of s, for all 7, j, s, ¢, and we write

pi(t) = P(X(t +5) = jIX(s) = i) = P(X(t) = jIX(0) = i),

where pj;(t) is the probability that a Markov chain, presently in state i, will be in
state j after an additional time ¢.

By the Markov property and the homogeneity, the amount of time a continuous-
time Markov chain spends in each state is exponentially distributed.

If we put pj;(¢) into the ith row, the jth column of a matrix, then the resulting
matrix P(#) = (p;(¢)) is called the transition matrix of {X(¢),# > 0}. The family
{P(¢),t > 0} is a stochastic semigroup; that is, it satisfies:

2 Reliability Evaluation Techniques 51

(i) P(z) is stochastic (0 < p;(¢) < 1 and row sums equal to 1),
(i) P(0) = I (the identity matrix), (2.26)
(iii) The Chapman-Kolmogorov equation: P(t + s) = P(¢)P(s).

2.3.4.2 Infinitesimal Generator

A matrix Q, called the infinitesimal generator (or generator, Q-matrix, transition
rate matrix), plays a role similar to that of a 1-step transition matrix in discrete-time
Markov chains. Later in (2.30), we will see that there is a one-to-one correspondence
between the infinitesimal generator Q and the transition matrix P(¢).

Assume that the probability of 2 or more transitions in the interval (¢,7 + &) is
o(h). We are interested in the behavior of p;(h) for small . Following (2.26), it
turns out that p;;() is approximately linear in 4 when h is small. That is, there exist
constants {g;;i, j € S} such that

gh i A]

i(h) ~ .
PiM) X 1L it =

It can be shown that each transition probability p;;(¢) is uniformly continuous in
t > 0, and p;(¢) is differentiable with respectto ¢ > 0 [45]. Let us define

. P -1
=P(0 = lim ———.
Q=P+ or Q= ln —
Since P(0) = I, we have
. limpop 2472 = pi;(0) i#j
U I () — .
limy, o+ pl’(:) L= _ijéi p,{j(o) 1=
with g; > Ofori # j and g; = — Zj 2 9ij = 0. We call g;; the transition rate

from state 7 to state j. State i is an absorbing state if g; = 0.

(—gi) is the expected number of times that the process leaves state i per unit of
time spent in state i. It is also called the mean sojourn rate of state i. Thus (—g;)
is the reciprocal of the expected holding time that the process spends in state i per
visit to state . Similarly, g;; is the transition rate from state i to state j in the sense
that g;; is the expected number of times that the process leaves from state i to state
j per unit of time spent in state i. Thus (—g;;) = Zﬁéi qij-

The information of the generator is a combination of the embedded Markov
chain and the mean sojourn rates. Not only can the generator be obtained from
the embedded Markov chain and mean sojourn rates, but the reverse is also true.
For the generator matrix, the absolute value of the diagonal elements gives the mean
sojourn rates. The transition matrix for the embedded Markov chain is then obtained
by dividing the off-diagonal element by the absolute value of that row’s diagonal
element. The diagonal elements of the transition matrix for the embedded Markov

52 R.-T. Wang

chain are zero (except an absorbing state). g;;/ (—gi;), for example, is the conditional
probability of a transition from state i to state j given that a transition from state
i has taken place. If the holding time in each state follows an arbitrary distribution
other than exponential, the involved process is a semi-Markov process.

Example 2.22. Suppose a Markov process with state space {a, b, c} has a generator

-2 2 0
Q=| 2 -4 2
1 4 -5

The mean sojourn rates are A, = 2, A, = 4, and A, = 5, and the transition matrix
for the embedded Markov chain is

0 1 0
P=(050 05
02 08 0

2.3.4.3 Steady-State Probabilities

The steady-state probabilities are obtained directly from the generator Q. Let & be
a vector of steady-state probability matrix, then & is the solution to #Q = 0, with
row sum of m is 1. This equation is similar to xP = x. Since Markov matrices have
row sum of 1, the right-hand side of xP = x is one times m. Since the generator
has row sums of 0, the right-hand side of Q = 0 is zero times .

Example 2.23. A 3-state Markov process S = {0,1,2} with generator Q =
-2 20
2 —3 1 | has the steady-state distribution (7o, 771, m2) = (2/5,2/5,1/5).
0 2-2

2.3.4.4 Eigenvalue Approach

The eigenvalue approach is useful for finding the transition probabilities of a finite
states Markov process. In principle, if we can calculate all the eigenvalues and their
associated column eigenvectors for the generator Q, then we can calculate P(r)
analytically. Assume that wy, ..., w, are eigenvalues of Q and uy, ..., u, are their
associated right eigenvectors. We also assume that all the eigenvalues are different.
We can write Q = UWU™!, where U = [uy,...,u,], U"! is the inverse matrix
of U, and W is the orthogonal matrix with eigenvalues on the main diagonal. Then
Q" = UW"U~L. It follows thats

o (Q) o Uwn'u™! W1
p(z):I+ZT:I+Zi—!:Ue U (2.27)
i=1 i=1

2 Reliability Evaluation Techniques 53

Example 2.24. Consider an electronic device that is either “on standby” or “in use.”
The on-standby period is exponentially distributed with a mean of 20's, and the in-
use period is exponentially distributed with a mean of 12 s. Because the exponential
assumption is satisfied, a Markov process {Y (¢);¢ > 0} with state space £ = {0, 1}
can be used to model the electronic device as it alternates between being on standby
and in use. State 0 denotes on standby, and state 1 denotes in use. The generator is

given by Q = [_3 3 :|, where the time unit is minute. The long-run probability

5 =5
of being in use is % Now, we are interested in the time-dependent probabilities.
Two eigenvalues are w; = 0 and w, = —8, and the corresponding eigenvectors are
(1 1) and (3 —5)/, respectively. Therefore, from (2.27), we have

1 3701 0][0625 0375
P(r) = UeVU™! =
(6) = Ue [1 —5} [0 e—Sf} [0.125 —0.125}

_ [0.625+0.375¢7% 0.375—0.375¢~% -
~ [0.625—0.625¢78% 0.37540.625¢7% |7~ =

The probability that the electronic device is in use at time ¢ given that it started in
use at time O is

P(Y(t) = 1|Y(0) = 1) = 0.375 + 0.625¢%.

Example 2.25. Consider an alternating renewal process whose infinitesimal gener-

ator is
-1 A
o=)
no—p

Two eigenvalues are w; = 0 and w, = —(A + u), and the corresponding
eigenvectors are (1 1)’ and (A — p)’, respectively. Thus, from (2.27), we have

B A v A A G

P()y=| ATH Atm Atp A+p >0
B e Y N LA R =
A+pu A+pu A+u A+pu

2.3.4.5 Kolmogorov Backward/Forward Equations

When the eigenvalue approach is not applicable, we need an alternative method to
find transition probabilities p;(z). Applying the Chapman-Kolmogorov equations
P(t + 5) = P(¢)P(s), then

P(t +h)—P(:) _ P()P(h) —P()
h - h

P(h) —1I

, h>0.
7 >

=P(t)

54 R.-T. Wang
This implies

P(1)=PQ or pit) =Y pul)q;. (2.28)
k
This is Kolmogorov forward differential equation. Similarly, using P(t + s) =
P(s)P(¢), we have

P(t +h)—P(t) _ P(WP()—P(t) P(h) -1
h B h T h

P(), h>0.
This implies

P(1)=QP() or py(t) =) qupk). (2.29)
k

This is Kolmogorov backward differential equation. Subject to the boundary
condition P(0) = I, the unique solution for both forward and backward equations is
given by

P)=e¥ =" (?—f) t>0. (2.30)
— i

2.3.4.6 Birth Process

Poisson Process: A Poisson process discussed in Sect.2.3.3.1 is a pure birth
process. The generator of a Poisson process with state S = {0,1,2,...}is

- A 0 O0...
-1 A 0 ...
0 -2 A

(=)
|
o o

From the Kolmogorov forward equations (2.28), we have

pit) = pi(qy + pij—1()qj-1.; = —=Api(t) + Api j—1(1).

Pure Birth Process: The pure (or simple) birth process is a natural and the simplest
generalization of the Poisson process. It permits the chance of an event occurring
at a given instant of time to depend upon the number of events which have already
occurred.

2 Reliability Evaluation Techniques 55

Definition 2.10. A pure birth process {X(¢z),¢ > 0} is a continuous-time Markov
chain with positive parameters {A;,k = 0, 1,2, ...} called birth rates satisfying the
following statements.

- PX(+h) = X(1) = 1|X(1) = k) = Ach + 01x(h),

. P(X(t 4+ h)— X(1) =0|X(t) = k) =1 — Akh + 024 (h),

- PX(@+h) = X(1) = 2|X(1) = k) = 03, (h),

. X(0)=0.

The infinitesimal generator of a pure birth process {X(¢),7 > 0} is

AW N =

oA 0 00...
0 —A, A, 00...
Q=| 0 0 -1, 10...

To find the distribution of X(¢), we let P,(t) = P(X(¢t) = n). The probability
P, (2) is the transition probability P(X(¢) = n|X(0) = 0). Using the Kolmogorov
forward equations (2.28), we have

Py(t) = =Ao Po(0),
P(1) = A Pu(t) + Ayt Pacy (1), n=1,2,...,

with the initial conditions Py(0) = 1 and P,(0) = 0, n = 1,2,.... Solving
recursively, we have

Po(1) = e,
A e—l()t e—/hf A A
P =
1(1) = 2o v yenwll (Ao # A1),
e—/\()t e—llt e—/\zf
Pr(t) = Aoh + + }
20 = Rk [(xl 3002 —20) T Go— A0z —An T Go— I~ A2

Pu(t) = AoAr ... Ap—y [Wo,ne_kot F e M 4t w,,,ne_xn’f],
where
Vien = [(Ao = Ak) « oo (km1 — M) et — A) oo (A — A)] !

(Aj # Ak unless j = k).

56 R.-T. Wang

To find a general transition probability P;(¢), we again use the Kolmogorov
forward equations (2.28) and yield the differential equations

Pi(t) = —A; Py(1),
Py(t) = Prj1()qj-1; + Pij(0)g;
= AP ja () = A Py0), =0 (j>i; Py(t) =0if j <),
with P;(0) = 1 and P;(0) = 0, j # i. Solving recursively we get
Pi(t) = e,

t
Pi(t) = x,-_I/O e MU P ((s)ds, j o> . (2.31)

Yule Process: The Yule process is a well-known example of a pure birth process
in biology. It characterizes the reproduction of living organisms, in which under
certain conditions (sufficient food, no mortality, no migration, etc.) the probability
of a birth at a given instant is proportional to the population size at that time. That is,
the Yule process is a linear birth process with birth rate A\, = kA (k = 0,1,2,...).

We first start with a single individual at time 0, i.e., X(0) = 1. The infinitesimal
generator with S = {0,1,2,...}is

00 0 00...
02 A 00...
Q=100 —21210...

Let P,(¢) = P(X() = n), given X(0) = 1. The Kolmogorov forward
equations (2.28) is

Py(t) =0,
P, (1) = —nAP,(t) + (n — DAP,_1(t), n=1.2,...,

with the initial conditions P;(0) = 1 and P,(0) = 0 (n = 2,3,...). Solving
recursively we get Py(¢) = 0 and

Pt)y=e M=)y n=12,... (2.32)

Thus, starting with a single individual at time 0, X (¢) is geometric distributed with
mean e* and variance (1 — e™*)e?*

2 Reliability Evaluation Techniques 57

Example 2.26. Applying the binomial theorem into (2.32), we write

n—1
Pn(t) — e—)»t(l _ e—kt)n—l — e—kt i Z (l’l - 1)(—1)k€_kkt.

k=0 k

Let P,(s) = fooo P, (t)e™"dt be the Laplace transform of P, (¢) for the linear birth
process with X(0) = 1. Then

n—1

500 [T n—1 k —aki —s _n_l fn—1 1
Pn(s)—/o e tZ(i)(—1) e Mle tdt—];)(—l) (X)—S—l—(k-i—l))t.

k=0

Next, if the population starts with y individuals, its size at time ¢ will be the
sum of y i.i.d. geometric r.v.’s, and thus have a negative binomial distribution. Let
Pl (t) = P(X(t) = n|X(0) = y), then

PY(t) = (Z : i) (e‘*’)y (1 —e‘*’)n_y, n=ypyy+1,....

To obtain a general transition probability P;(), we substitute A; = jA into (2.31)
and solve them recursively to get the desired results.

The following is an example of the Yule process as a epidemic model, which may
be used to model faults propagation in network or software reliability.

Example 2.27. Consider a population of m individuals that at time O consists of one
“infected” and m—1 “susceptibles”. Once infected an individual remains in that state
forever and suppose that in any time interval / any given infected person will cause,
with probability ¢/ + o(h), any given susceptible to become infected. Let X (¢)=#
of infected individuals at time ¢, the {X(¢),¢ > 0} is a pure birth process with

Py m—-—nna, n=1,...,m—1
"0, otherwise.

Let T be the time until the total population is infected, then T = Z:’:ll T;, where
T; is the time from i infectives to i + 1 infectives i = 1,...,m — 1). Because
T; ~ Exp((m —i)i«), the mean and variance of T are, respectively,

m—1

m—1
1 1 1 1 2log(m — 1)
E[T] = —_ = - | —,
7] Z(m—i)ioc maizz;(m—i+i) mo

i=1

1 m—1 1 2

i=1

58 R.-T. Wang

2.3.4.7 Death Process

Pure Death Process:

Definition 2.11. A pure (or simple) death process {X(¢),¢ > 0} is a continuous-
time Markov chain with parameters {ux,k = 1,2,...,n} called death rates
satisfying the following properties:

@) P(X(t+h)—X(@)=—-1X(@1) = k) = pch + 01k(h),
(i) P(X(t4+h)—X(1t)=0|X(t) =k) =1— urh + 024 (h),
(i) P(X(1+h)—X(1) = -2[X(t) = k) = 03x(h), k >0,
(iv) X(0) =n.

It is natural that in the pure birth process, the events take place infinitely often
for an infinite interval of time. However, in the pure death process, at most n events
take place for any interval of time, since no event take place once the process reaches
state 0, an absorbing state.

Let P(t) = P(X() = k|X(©0) = n), k = 0,1,...,n, be the transition
probability with the initial condition X(0) = n. The Kolmogorov forward equa-
tions (2.28) for the pure death process are

Py(1) = =ty Pa(2),
PU(t) = —pu Pe(t) + st P (0. k=1,2.....n—1,
P(;(f) = w1 P1(2),

subject to the initial conditions P,(0) = 1 and P,(0) = 0 (k = 1,2,...,n —1).
Solving recursively we obtain

Pn(t) = e_ﬂnty

Pyi(t) = pn |:

e_llnflt e_llnt
+ 9

Mn — Mn—1 Mn—1 — MUn

e Hnl e Hn—11

Uit — 1) (2 — 1)+ Gw — P) U2 — i 1)

P, »(t) = Mon fn—1 [

e_ﬂn—Zf i|
+ 9
(,Uvn - ﬂn—Z)(/‘Ln—l - ﬂn—Z)

Po(t) = pnfhn—r - 1 [Ynoe """ + Yur0e M7 4o Y oe T
where
Vo = [(tn — 1) - -« (a1 — s (a—1 — 1) - - (1o — pi)] ™!

(mj # i unless j = k).

2 Reliability Evaluation Techniques 59

Linear Death Process: If uy, = ku (k = 1,2,...,n), i.e., the death rate is
proportional to the number of members alive in a population. With the initial
conditions P,(0) = 1 and P,(0) =0(k =1,2,...,n — 1), we have

Pi(t) = (Z)(e_‘”)k(l —e MYk =0,1,2,...,n.

That is, X(¢) ~ Binomial(n, e *’). The mean and variance are, respectively,

E[X@®)]=ne™ and Var[X(t)] = ne (1 —e™).

2.3.4.8 Birth and Death Processes

Birth and Death Process

Definition 2.12. A birth and death process {X(¢),¢ > 0} is a continuous-time
Markov chain on the states {0,1,2,...} with stationary transition probability
Pi(t) = P(X(t +5) = j|X(s) = i) satisfying

Piit1(h) = Aih + 01, (h),

Pii—1(h) = wih + 02, (h),

Pii(h) = 1—(A; + pi)h + 03;(h),

P;(0) = oy, (i.e., P;i(0) =1, P;j(0) = 0if j #1),
Mo = O,AO > O,A,,',[;Li > O,l = 1,2,...,

Nk

where A; are called the birth rates and y; are called the death rates.

The infinitesimal generator of a birth and death process {X(¢),t > 0} is

—Ao Ao 0 0 0 ...

mr —(Ar+ p) Al 0 0...

Q=] 0 M2 —(A2 + p2) Az 0...
Az ...

0 0 U3 —(A3 + w3)

The amount of time the process in state k before making a transition into a different
state is Exp(Ar + i). From the Kolmogorov forward equations (2.28), we have
P,-;(f) = Pij—1(0)gj—1; + Pi(0)g; + Pij+1(0)qj+1,
=AjPij1(t) = (A +) Py() + pj1 P (1), =1,
Pio(1) = —AoPio(t) + 1 Pi(r), (o = 0,A_; = 0).

60 R.-T. Wang

From the Kolmogorov backward equations: Pi; (1) = Y720 qik Pj (1), we have

Pi;(f) = gii—1Pi—1,j (1) + qi P (t) + qii+1Pit1,(2)
= i Pic1j (1) = Ai + wi) Py(t) + Ai Prgr (1), 1 =1,
P(;j (I) = —A()Poj(l) + AoPlj(Z).

For both cases, the initial conditions are P;;(0) = §;. The transition probabilities
P;j(t) may in principle be calculated from a knowledge of the birth and death
rates, although in practice these functions rarely have nice forms. It is an easier
matter to determine the asymptotic behavior of the process as t+ — oo. There

is a theoretical interest involving the transition probabilities P;(¢) called Karlin-
McGregor representation, see Doom [109].

A Linear Growth Model with Immigration: A birth-death process is called a
linear growth process with immigration if
Mo =np, n>=1,
A =nA+0, n=>0.
Such processes occur naturally in the study of biological reproduction and popu-
lation growth. Each individual is assumed to give birth at an exponential rate A;
in addition, there is an exponential rate of increase 6 of the population due to an
external source such as immigration. Hence, A,, = nA + 6. Deaths are assumed
to occur at an exponential rate u for each member of the population, and hence
Wn = nj. Substitute A, = nA + 0 and u, = nu into the Kolmogorov forward
equations (2.28):
Pio(t) = =0Pio(t) + pPu (1), (Ao = 0),
Pit) = A =D+ 0P j1(t) — (A + w)j + 0)Py(r)
+u(j + DP (), j=1

If X(0) = i and we multiply the jth equation by j and sum, it can be shown that the
expected value M(t) = E[X(¢)] = Z;‘;l JP;i(1) satisfies the differential equation

M'(t) =0+ (A — M),

with the initial condition M (0) = i.

2 Reliability Evaluation Techniques 61

2.4 Software Reliability Models

2.4.1 Introduction

Musa et al. [76] pointed out that three of the most significant software product
characteristics are quality, cost, and time of delivery. It seems unlikely that anyone
can create a software product simultaneously satisfying high quality, rapid delivery,
and low cost, so trade-offs are required among the characteristics. Quantitative
measures exist for cost and schedule, but the quantification of quality is more
difficult. The quality of a software product can be represented by software quality
attributes which are multidimensional properties and even hierarchical structures.
Before a software product is released for service, it is developed through software
development life cycle (SDLC): requirements, design, implementation, testing,
and validation. Determination and measurement of user desirable software quality
attributes is a subject of software engineering which concerns the study of the SDLC
in various aspects.

Software reliability is defined as the probability of failure free software operation
for a specified period of time in a specified environment [76]. Software reliability
is an attribute of software quality and it has proved to be the most readily
quantifiable of the attributes of software quality. Many software reliability models
are applied to the testing or debugging phase of software development. There is
an implicit assumption in most works on software reliability that the failure data
obtained during the test and development phase represents its behaviour in the use
environment [56].

Early software reliability models were deterministic models which are also
called software metrics or complexity metrics. Software metrics are defined by
analyzing the structure of the program or the flowgraph of the program. These
models usually empirically measure the software quality attributes. They are used
in the early phases of the SDLC to predict the number of faults, or are used in the
maintenance phase for assessing and controlling the quality of a software product
[37, 46, 68, 91]. Nowadays software reliability models refer to probabilistic ones
and they have become the mainstream of software reliability study. The subject of
software reliability has rapidly developed and spawned some original probability
models of its own [22].

A fault is defined as a defect in a system that may cause an error during its
operation. If an error affects the service to be provided by a system, a failure occurs.
Because of the characteristics of software products, the operational environments
of software, and the variety of development processes, the definition of software
failure differs from application to application and should be defined clearly in the
specifications. For example, a response time of 30 s could be a serious failure for an
air traffic control system, but acceptable for an airline reservation system.

There is no physical process that determines when a program should fail, rather
there occur in the program certain faults of logic or syntax that might cause the
program to crash or produce results contrary to the specifications. Upon execution

62 R.-T. Wang

of a program, an input state is translated into an output state. Hence, a program
can be regarded as a function mapping the input space (the set of all input states)
to the output space (the set of all output states). Different users have different
operational profiles which will determine the probabilities of selection of different
inputs during execution. Software failures may not be ‘generated’ stochastically but
may be ‘detected’ in a random way [42]. It justifies the use of stochastic models.

A large number of statistical software reliability models have been proposed
over the past decade for evaluating the reliability of computer software. For
reviews of the existing models, see [2, 33,52, 64, 76, 83, 102, 104]. One of the
main approaches of those models is to obtain results from assumptions about the
stochastic behavior of how failures occur during software’s running time. In this
approach, the methods deal with the failure process by characterizing the time
pattern of failure occurrences.

It is of great interest to classify or unify the large amount of software reliability
models. Model classification and unification are useful in research in a sense
that similar models are related to each other, and new and useful models can
be built based on this. Section 2.4.2 reviews classification and unification of
software reliability models. The most cited software reliability models are the
Jelinski-Moranda model [42], henceforth the JM model, and the Goel-Okumoto
model [34], henceforth the GO model. Essentially, the JM model corresponds to
a (bounded) pure birth process, while the GO model corresponds to an NHPP
process. In Sect. 2.4.3, we review the assumptions of the JM model. Sections 2.4.4—
2.4.6 introduce several types of SRGMs by relations between the transition rate
functions and the conditional failure rates, including i.i.d. order statistic models,
time-between-failure models, and NHPP models. In Sect.2.4.7, a more general
setting of self-exciting processes is discussed.

2.4.2 Taxonomy of Software Reliability Models

Software reliability models can be broadly divided into the so-called white-box
and black-box models. The white-box (or architecture-based) models incorporates
information on the structure of the software in the models, while the black-box
models disregard the internal structure of the system and represent solely its
external failure behavior. A good review of architecture-based models is given
by Goseva-Popstojanova and Trivedi [36]. The black-box approach is the most
prevalent approach, and they can be further classified as static and dynamic. Static
models include input-domain related models, complexity models (deterministic),
and error seeding models (probabilistic). Error seeding models are also called
capture-recapture models, and hypergeometric distribution is the basic tool [14].
The dynamic models consider the failure process as a stochastic process, and the
reliability of the software changes at different stages of testing and debugging.
Classifications of black-box software reliability models have been discussed by
Goel [33], Gokhale et al. [35], Musa et al. [76], Pham [83], and Singpurwalla

2 Reliability Evaluation Techniques 63

and Wilson [102]. Recently, Sharma et al. [98] have provide a figure which
thoroughly classifies software reliability model according to SDLC. Models are
classified into six categories: early prediction models, software reliability growth
models (SRGMS), input domain based models, architecture based models, hybrid
black box models, and hybrid white box models.

By unification we mean a mechanism which can generate new models and
accommodate some existing models. Several such unifications had been proposed.
For example, Langberg and Singpurwalla [51] unified some earlier models by
adopting Bayesian method, Miller [70] discussed general order statistic models,
Chen and Singpurwalla [18] unified software reliability models by self-exciting
processes, Pham [86] generalized NHPP by extending the differential equations
of the GO model, Wang [113] generalized existing software reliability models by
considering both properties of mixture and self-exciting, and Huang et al. [40]
presented how several existing software reliability growth models based on NHPPs
can be derived according to the concept of weighted arithmetic, weighted geometric,
or weighted harmonic means.

For many SRGM, it is usually assumed that a fault is removed immediately on
detection and correction, and no new faults are introduced. The so-called perfect
debugging. In addition, the removal time is always assumed to be negligible.
However, it is more practical to consider effect of debugging and timing of
debugging as the imperfect removals happen in practice.

Effect of debugging:

» Perfect removal: detected faults are removed successfully,

* Imperfect removal: detected faults are not removed successfully and no new fault
is introduced,

* Fault introduction: new faults may be introduced by incorrect debugging.

Timing of debugging:

* Immediate: all detected faults instantaneously repaired at time of first
manifestation,
* Time-delayed: a fault may manifest itself repeatedly before being debugged.

The term imperfect debugging is used for both imperfect removal and fault
introduction. In terms of the number of remaining faults, under certain assumptions
(see Sect.2.4.3), the imperfect removal process can be described by a simple death
process [13,33], and the imperfect debugging process can be modeled by a birth-
death process [49].

Intuitively, we may assume a probability p for a fault to be removed successfully,
and consider that there are two types of failures. The first type of failures are
caused by inherent faults and the second type of failures are caused by introduced
faults. A simple way for describing introduced faults is to assume that new faults
are introduced by a homogeneous Poisson process with some parameter 6. For
examples, Tokuno and Yamada [107] assume that failures caused by inherent faults
follow Moranda’s geometric model [72], while Yamada [118] assumes that inherent

64 R.-T. Wang

Table 2.1 Assumptions from the JM model

Initial fault content:

(A1) The number of initial faults is a finite unknown constant, say N
Independent of faults:

(A2) Faults are assumed to be statistically independent
Constant failure rates:

(A3) Each fault has the same constant detection rate, say ¢
Fault removal (debugging) process:

(A4) A fault is removed immediately on detection and correction, and

no new faults are introduced. The removal time is negligible

faults follows NHPP models. Zeephongsekul et al. [124], based on NHPPs, consider
that primary failures generate secondary-faults under imperfect debugging. Pham
et al. [86] propose generalized NHPP models for modeling imperfect debugging.

An intrinsic assumption in most models is that a fault is removed immediately on
detection. Consequently, the failure detected process and the fault corrected process
are regarded as the same. An alternative approach, using queueing theorem, studies
the detection process and the correction process separately, see Yang [122], Dohi
et al. [23], and Huang and Huang [39].

We will not pursue further about imperfect debugging and time-delay correction
models. However, in Sect.2.5.3, a bivariate counting process is applied to a
2-version programming system to illustrating the effect of imperfect debugging.

2.4.3 The JM Model

The JM model [42] is the first software reliability model to be widely known
and used. Assumptions of the JM model are important but seems not realistic.
Many models are proposed hereafter to challenge the JM model. However, most
of them are propagated from the J]M model by extending one or more assumptions.
Assumptions from the JM model are listed in Table 2.1. Assumption (A4) is known
as perfect debugging. A program will exhibit the phenomenon of reliability growth
after fault detection and correction, and thus perfect debugging models are usually
called software reliability growth models (SRGMs). Assumption (A3) is a basic
property of the exponential distribution. Hence the time to failure for each fault has
the exponential distribution with parameter ¢p. From assumption (A2), given N and
¢, the T; are independent exponential distributions with parameters (N — i + 1)¢.
The p.d.f. of T; is given by f;(z|¢,N) = (N —i + 1)¢ - e~ V=07 7 5 0, Let
h;(t) be the conditional failure rate of T}, then h;(t) = (N —i + 1)¢. Thus the
failure rates of the program at any time are proportional to the number of remaining
faults, and the sequence of failure rates shows a decreasing trend. The MTTF of T;
is {(N —i + 1)¢}~', an increasing function of i .

2 Reliability Evaluation Techniques 65

Table 2.2 Five types of software reliability models

Si—1 =t <S;
(a) Specify ri(t) = (N —i + Dy (1) Then h;(r) = (N —i + Dy (r + Si—1)
(b) Specify r; (1) = (N —i + D)y, () Then /;(t) = (N —i + Dy (r + Si—y)
(c) Specify r; (1) = A(¢) Then /;(t) = A(r + Si—1)
0<1t<S8;—S8i—1
@ Specify h; (t) = (N —i + D)¥(r) Then r; (1) = (N — i + Dy(t — Si—1)
(©) Specify hi(r) = ¢i(7) Then r; (1) = ¥ (¢ — Si—1)

Let {X(¢),t > 0} be the software failure process where X (¢) is the cumulative
number of failures experienced up to time ¢ > 0. For the JM model, the failure
process {X(¢),t > 0} is a linear birth continuous-time Markov chain with failure
state space {0, 1, ..., N}. This failure process satisfies two properties: homogeneity
and conditional orderliness. The property of conditional orderliness prevents the
process having multiple simultaneous failures.

For a conditional orderly failure process {X(¢), > 0} with state space
{0, 1, ...}, the transition rate r;(t) is the probability of encountering a new fault
in the next instant of time dt, given that there are (i — 1) failures in [0, ¢), i.e., for
i=1,...,

1
rt)= lim —PXC+A)—-X)=1X@)=i—-1), Si1<t<S§S,.
Ar—0+ At
(2.33)

Recall that the conditional failure rate of T; is defined by

1

hi(t)= lim —P(r<T, <t+4+ At|]T; >1), T=>0. (2.34)
At—0t At

h;(7) is assumed to exist for all the T;. Relations between r;(¢) and h;(t) can be

established in the following theorem.

Theorem 2.8. Let 0 < S| < S, < ... be the indexed failure times and let
T, = S; — Si—1,i = 1,.... The relations between the transition rate r;(t) given
in Eq.(2.33) and the conditional failure rate h;(t) given in Eq.(2.34) are, for
i=1,...,

ri(t) = hi(t —Si—1), Si-1 <t <8, (2.35)
hi(t) =ri(t+ Si—1), 0<t <8-S (2.36)

Thus, if we specify r;(t) then we have h;(t), and vice versa. Five types of
software reliability models are given in Table 2.2. The JM model is a special
example of all cases with r;(t) = h;(r) = (N —i + 1)¢.

Type (a) is the class of i.i.d. order statistic models, type (c) is the class of
NHPP models, types (d) and (e) are the class of time-between-failure models

66 R.-T. Wang

(or concatenated failure rates models), and type (b) seems not be considered by
the existing models. In type (b) we retain the explicit factor (N —i + 1) rather than
subsuming it into v;, because it is more intelligible to do so. Note that types (a),
(b) and (d) have finite fault content while types (c) and (e) may have infinite fault
content.

Theorem 2.9. Let 0 < S| < S, < ... be the indexed failure times and let T; =
Si — Si—1,i = 1,.... The joint density function of T\, ..., Ty is given by

k

]
fn) =]] %hj(tj)expl:—/(; hj(r)dti|},
j=1
and the joint density function of Sy, ..., Sk is
k 8j=8j=1
f(sl,...,sk):n%hj(sj—sj_l)exp[—/ hj(r)dti|},
j=1 0

where the conditional failure rates h;(t) are defined by Eq.(2.34). When the h(7)
are given as types (a), (b) and (d) of Table 2.2, k must be less than or equal to the
initial number of faults.

Theorem 2.9 is useful to obtain the likelihood functions of parameters. We can
then find estimates of parameters by applying the usual estimation techniques, such
as the maximum likelihood approach or the least squares approach.

Example 2.28. The JM model [42]: hj(t) = (N — j + 1)¢

!

f(rl,...,zk)=m¢kexp —¢jz:(zv—j+1)zj , k<N,
or
N! L
f(sl,...,sk):mqﬁkexp —¢ jz::ls,»Jr(N—k)sk ., k<N.

Example 2.29. The Littlewood model [57]: h;(t) = (N —j + Do/ (B+71+S5;-1)
Fork <N,

N e | 1 ot
... ,lf) = ———— ¢ B
fnt) = G jl:[l(ﬂ+n+---+t,-)

1 (N—k+Da+1
X - 9
(,3+t1 +"'+lk)

2 Reliability Evaluation Techniques 67

or
N1 . k—1 | atl 1 (N—k+Da+1
Slyene,Sk) = ———a ¢ .
R Tl].E[l(ﬂﬂj) (75+)

Example 2.30. The Schick-Wolverton model [95]: 4 (t) = (N — j + D¢t
Fork <N,

N1 k k
f(t1,...,tk)=m¢k l—[fj exp —%Z(N—j'i‘l)ljz» ;
j=1 j=1
or
tt—N!kk»- ¢kN'1~-2
f(la"-’ k)_ (N_k)'¢ JEII(SJ_S]_I) exp _E;(_]+)(S]_s]—l) .

Example 2.31. The Littlewood-Verrall model [60]: /;(t) = a/(t + ¥;)

f ' a+1
S, ...) = l_[|:1/% (tj -ll//-jl/fj)]

j=1

or

. . 1//j a+1
f(zl,...,tk)—jl:[l|:¢_j (m) '

2.4.4 LI1.D. Order Statistic Models

Let assumptions (Al), (A2) and (A4) in Table 2.1 hold. Assumption (A3) states
that every fault has the same deterministic effect on the overall failure rate.
However, faults may have different failure rates. To generalize this, we consider two
approaches. First, assumption (A3) can be interpreted by a Poisson shock model.
A fault causes a failure to occur according to a Poisson process with rate ¢. We
may assume that shocks follow a Poisson process with rate ¥ (¢) representing that
faults have different failure rates. Second, recall that failure rates of 7;, time between
failures, in the JM model are h; () = (N — i + 1)¢. Each failure rate of 7; is a
summation of failure rates of remaining faults that are equally ¢. It has been argued
that the detection rates {/;} depend on the size of faults subsets which may not be
of the same size [56]. Faults with larger size tend to be removed first. Thus we may
assume that the sequence {/; } is a stochastic process.

68 R.-T. Wang

Table 2.3 Type (a):r; (t) = (N —i + 1)y (¢); i.i.d. order statistics models

M1 Exponential v(t)=¢ JM model [42]
F(t) =1 —exp(—¢1) (>0
(M2) Pareto v(t)=o/(f+1) Littlewood [57]
F@)=1-=[8/(B + 1) (a,>0)
(M3) Gamma(2,¢) y(t) = ¢’t/(1 + ¢1)
F@) =1—(+ ¢1) exp(—¢1) (¢ >0)
(M4) Logistic V() = ¢/[1 + c exp(—ot)]
F(t) = [1 —exp(=¢1)]/[1 + ¢ exp(—=¢1)] (¢.c>0)
M5) Weibull V() = afth~! Wagoner [112]
F(t) = 1 —exp(—at?) (@ >0,8>0)
(M6) Rayleigh v(t) = ¢t
F(t) = 1—exp(—¢1*/2) (¢ >0)
M7) Parabola V() = ¢p(—at* + bt +¢)
F(t) = 1 —explp(—at3/3 + bt?/2 + ct)] (a,b,c > 0)

In the first approach, we assume that shocks follow a Poisson process with
rate ¥ (¢). This in turn generalizes the exponential distribution by a distribution F
such that

F(t) =1—exp { - /t W(s)ds} . (2.37)
0

One way to obtain a reasonable common distribution F is using the doubly
stochastic process. Assume that time to failures caused by faults are independent
exponential distributions with rates ¢, ¢, ..., ¢y. If the rates ¢ have a mixing
distribution G, then we have i.i.d. mixture distributions given by

o0 o0
F(t) :/ (1—e"?YdG(¢p) = 1—/ e dG(¢). (2.38)
0 0
So that the unconditional failure rates are

_) _ [y 9e?'dG(9)
F@t) [;e?dG(g)

V()

Thus the models become the i.i.d. order statistic models [70]. From Eqgs. (2.37)
and (2.38), the Laplace transform of the mixing distribution G is given by

G*(t) = /000 e dG(¢) = exp{—/ot W(s)ds})

Let X(¢) be the cumulative number of failures up to time ¢, then X(¢) has a
binomial distribution similar to that in the JM model. The mean value function of
X(t) ism(t) = NF(t). Models in this class, listed in Table 2.3, correspond to type
(a) of Table 2.2.

2 Reliability Evaluation Techniques 69

Table 2.4 Type (e): h; (t) = v;(1); time-between-failure-models

(MB) Pareto hi(v) =a/(t + Y1) Littlewood-Verrall [60]
Fi) = 1= [V /(x +)" (@>0,y 1)
(M9) Geometric hi(r) = Dki~! Moranda [72]
Fi(t) = 1 —exp[—Dki~'7] (D>0,0<k<1)
M10) Power hi(r) =¢(N —i+ 1) Xie [116]

Fi(t) =1—exp[=¢(N —i + D)’1] ¢>0.y>1)

Model (M2) is proposed by Littlewood [57]. He assumed the mixing distribution
G to be a gamma distribution with the scale parameter 8 and the shape parameter
a, namely, dG(¢p) = ﬁ—qﬁo‘_le—ﬂq’, o, > 0. Models (M3) and (M4) can be

I'(@)
viewed as variations of Yamada et al. [120, 121] in Table 2.6. ¥(¢) in model (M5)
is decreasing for 0 < 8 < 1, constant for B = 1, and increasing for § > 1.

In model (M6), the distribution function F is known as the Rayleigh distribution,
a Weibull distribution with shape parameter 2. In model (M7), ¥ (¢) is a parabola
which increases and reaches a maximum, then declines. Both models (M6) and (M7)
are variations of Schick and Wolverton [95,96] in Table 2.5.

2.4.5 Time Between Failures Models

In the second approach of extension from assumption (A3), partially due to the
difficulty in defining what a program fault is, the failure rates of the 7;, times
between successive failures, are given by h;(t) = A;,i = 1,2,..., which form a
stochastic process. To describe reliability growth, we may choose {A; } such that the
A; are stochastically decreasing with i, i.e., P(A;+1 < A) > P(A; < 1),VA >0,
or equivalently such that the 7; are stochastically increasing with i, i.e., P(T;4+; >
t) > P(T; > t), Vt > 0. If the A; have a mixing distribution G;, then the mixture
distribution is

Fi(r)=1 —/ e MTdG;i (M).
0

The posterior failure rate is

fooo A,-eAdeGi (A,)
[e tdGi(A)

hi(r) = ¢i(r) =

In some cases, one can simply specify a particular function ¥, (t). This class of
models, listed in Table 2.4, corresponds to type (e) of Table 2.2.

The above approach, however, does not depend on the number of remaining faults
(N —i+1). An alternative way is to assume that /; (t) = (N —i + 1)y (7). This can

70 R.-T. Wang

Table 2.5 Type (d): i; () = (N — i + 1)¥(v); time-between-failure-models

M11) Rayleigh hi(r) = (N —i+ D¢t Schick-Wolverton [95]
Fi(r) =1—exp (— for h,v(s)ds) (¢ >0)

M12) Parabola hi(ty = (N —i + D¢(—at*+ bt +¢) Schick-Wolverton [96]
Fi(r) =1—exp (— for h,-(s)ds) (a,b,c >0)

be explained as that faults are i.i.d. within each 7; with common failure rate ¥ (7).
The distribution functions of 7; are

Fi(r) =1—exp (— /T h,-(s)ds) .
0

This class of models, listed in Table 2.5, corresponds to type (d) of Table 2.2.
In model (MS), Littlewood and Verrall [60, 61] assumed that the A; are
independent gamma random variables with the shape parameter o and the scale

parameter v;, namely, g(A;|a, ¥;) = %A?‘_l exp(—y;A;). Model (M9) is the IM
geometric de-eutrophication model suggested by Moranda [72]. The failure rates
are constant for each T;, but they decrease geometrically in i after each failure. D
is the program failure rate during the first interval and k is a constant such that
the rates form a converging geometric series. When a failure occurs and a fault is
removed, the drop in the failure rates is D(1 — k)k'~!. Since h;(t) — 0 when
i — 00, thus the fault content is infinite. Model (M9) has been generalized to the
so-called proportional models, see Moranda [73], Gaudoin and Soler [30], and
Gaudoin et al. [31].

Model (M10) is a power-type function of the number of remaining faults where
0” = 0 and y > 1 such that /;(¢) is a convex function denoting that early stage of
debugging has higher detection probability than later. Models (M11) and (M12) in
Table 2.5 are different from models (M6) and (M7) in Table 2.3, although with the
same name of distributions. For example, in model (M11) the failure rate drops to 0
immediately after the (i — 1)th failure, while in model (M6) the failure rate drops to
(N —i + 1)¢pt where 7 is the time to the (i — 1)th failure. In both models (M11) and
(M6), the failure rate increases linearly with slope (N — i + 1) until the i th failure.

2.4.6 NHPP Models

Assume that assumptions (A2) and (A4) in Table 2.1 hold, and that the number of
initial faults N in assumption (A1) has a Poisson prior distribution with finite mean
6 > 0. One way of constructing an NHPP is to assume that N is Poisson distributed
in the i.i.d. order statistics models discussed in Sect.2.4.4. Let F' be the common
distribution of faults, usually continuous with positive support. For each fault, given
that we haven’t found it by time s, the conditional probability that we find it in time

2 Reliability Evaluation Techniques 71

Table 2.6 Type (c): r; (t) = A(t); NHPP models with m(co0) < 0o

M13) Exponential At) = Ope 9! GO model [34]
m(t) = 0(1 —e?") (¢ > 0)

M14) Pareto At) = BaBe/(B + 1)*T! Miller [70]
m(r) = 0[1 = (B/(B +1))°] (. > 0)

M15) Gamma(2,¢) A(t) = 0pte™? Yamada et al. [120]
m(t) = 01— (14 ¢t)e %] (¢ > 0)

M16) Logistic At) =01 + c)pe % (1 + ce™9)? Yamada et al. [121]
m(t) =0(1—e) /(1 + ce™?) (¢,c >0)

(M17) Weibull A1) = BaBtP~ ' exp(—atP) Goel [33]
m(t) = 0[1 — exp(—at?)] (@>00<B<1)

(M18) Logistic At) = Opae™? /(1 + ae™?")? Yamada-Osaki [119]
m(t) =0/(1 + ae™?") (o, ¢ > 0)

interval (s,¢]is P(s < T < t|t > s) = 1 — F(t)/ F(s). Then for a fixed number
of faults and n > u, we have, fork =0,1,...,n —u,

- k _ n—u—k
PX(O=X() = kIN =0, X(s) = u) = (" ;”) (1 - ﬁﬁiﬁ) (ﬁﬁﬁ)

which is the probability that we find k of n — u independent faults in time interval
(s, t]. Thus, for0 < s <1,

X(t) — X(s)|N, X(s) ~ Binomial(N — X(s), 1 — F(t)/ F (s)).

In particular, X(t)|N ~ Binomial(N, 1 — F(¢)). If N has a Poisson distribution
with parameter 6, then it can be shown that {X(¢), ¢ > 0} is a NHPP with the mean
value function m(t) = 0F(¢).

In Table 2.6, we list models in which the expected number of initial faults are
finite, m(o0) = limyseom(t) = 6 < oo. Model (M14), mentioned by Miller
[70], is the NHPP version of Littlewood model (M2). Models (M15) and (M16) are
discussed by Yamada et al. [120, 121], and are referred to as the delayed S-shaped
and the inflection S-shaped SRGMs, respectively. Both models have increasing
failure rates ¥ (¢). Model (M17) is proposed by Goel [33] to describe the situation
that the intensity function first increases and then decreases. Model (M18) is the
logistic growth curve model suggested by Yamada and Osaki [119]. However, we
have F(0) = 1/(1 + «) > 0. If we modify F(t) by

F'(6) = (F(z) _ HLO[) ! Za,

such that F/(0) = 0 and F’(c0) = 1, then we have the same model as (M16).

72 R.-T. Wang

Table 2.7 Type (c): r; (t) = A(t); NHPP models with m(co0) — 00

M19) Poisson A)=A Musa-Ackerman [74]
(N — o0 in (M1)) m(t) = At (A > 0)

(M20) Power law process At) = aftP! Crow [21]
(N — oo in (M5)) m(t) = atf (o, B> 0)

M21) Logarithmic Poisson At) = Ao/ (Aot + 1) Musa-Okumoto [75]
(N = oo in (M2)) m(t) = In(Aopt + 1)/¢ (¢, Ao > 0)

Another class of NHPP models can be generated directly from various mean
value functions m(¢) or intensity functions A(¢). Some of them are originally used
in hardware system reliability, and are referred to as reliability growth models.
A growth function (the intensity function or the mean value function) is used
to represent the growth of system reliability after improvement. For the models
listed in Table 2.7, the expected number of initial faults are infinite, i.e., m(c0) =
lim; o0 m(t) — o0.

Model (M19) is the homogeneous Poisson process appeared in Musa and
Ackerman [74]. Model (20) is the Duane model or the Duane process. In light of
Duane’s discovery [24], Crow [21] proposes the model (M20) where the intensity
function A(1) = aBtP~! is the failure rate of a Weibull distribution and the time to
the first failure is Weibull distributed. Hence this model is commonly referred to as
the Weibull process. As Ascher and Feingold [8] point out, the name of the Weibull
process is improper. We refer this model as the power law process according to
them. The logarithm of the mean value function is Inm(t) = Ina + §In¢ which
is consistent with Duane’s empirical observation that the cumulative number of
failures versus cumulative operation hours is approximately linear on the log-log
plot. It is clear that 0 < B < 1 corresponds to the decreasing intensity function. In
this case, the intensity function A(#) — oo as ¢ — 0 is an unrealistic property for
real systems. See Littlewood [58] for a modified Duane model. Model (M14), with
inverse power law intensity function A(t) = @af*(B +)™, can be viewed as a
modified model of (M20).

Model (M21) is Musa and Okumoto’s logarithmic Poisson model [75]. They
postulate that the intensity function A(z) is a exponentially decreasing function
of the mean value function m(t) given by A(t) = Agexp(—¢m(t)), where Ao
represents the initial value of A(¢), and ¢ measures the relative decrease in the failure
intensity that follows every failure. Since A(¢) = dm(t)/dt and m(0) = 0, we have
m(t) = In(Aogpt + 1)/¢ and A(¢) = Ao/ (Aot + 1). By the fact that m(t) is an
NHPP and a logarithmic function of ¢, model (M21) is then called the logarithmic
Poisson model.

In fact, it can be shown that Model (M21) is a limit case of the Littlewood model
(M2), the Poisson model (M19) is a limit case of the JM model (M1), and that the
power law process (M20) is a limit case of the Wagoner model (MS5).

2 Reliability Evaluation Techniques 73
2.4.7 Self-exciting Point Processes

2.4.7.1 Self-exciting Point Process

Let {X(¢),t > 0} be a counting process, which characterizes failure occurrences of
a computer software, defined on a filtered probability space (2, F, (F)i>0, P) with
{X(¢),t > 0} adapted to the filtration (F;),;>0 where F; := o{X(s),0 < s < t}.
A filtration {F;,t > 0} is a family of sub-o-fields of F such that F; € F; for
all s < t in [0, 00). A probability space endowed with such a filtration is called
a filtered probability space. We assume that the filtration is standard. That is, the
filtration satisfies right-continuous: F; = F,+ = ﬂD, Fs, Yt > 0, and complete:
Fo contains all of the P-null sets in F. A counting process {X(¢),¢ > 0} is said to
be adapted to the filtration (F;);>o if X(¢) is F;-measurable for each ¢. Thus X (¢)
is known when F; is known at time ¢, i.e., F; represents the history or information
available up to time ¢.

A counting process is said to be self-exciting if it depends on the entire or some
fractions of its history (F;),>o that affects or excites the intensity function A(¢| F;)
of the process defined as

: 1
Al Fo) = JJm A X+ A = X(@0)] A

Assume that the process does not have failures which occur simultaneously. In other
words, the process satisfies the conditional orderliness property [19]: for any G, C
Frandt > 0,as6 | 0,

P(X(t+38)—X()=2|G) =0@)P(X(t+68)—X()=1]G).

When such is the case, the intensity function becomes

. 1
A Fr) = A,h_I,I(l)Jr EP(X(I + A1) - X(@) =11 F)., Sxu) <t < Sxp)+1,
(2.39)

where §; is the time of occurrence of the i th failure with So = 0. Let T; = S§; —S;_;
be the interarrival time, fori = 1,2,....

A self-exciting point process takes account of the points generated by the failure
times so that, for example, F; = {X(¢), S1,...,Sxq)}. A point process is said to
have no-memory if A(¢| F;) = A(z); ithas O-memoryif A(¢| F;) = A(¢|X(?)); and
it has m-memory if A(t| F;) = A(|X(@), Sxq), - - - Sxt)—m+1), form = 1,2,
It has been shown that if {X(¢),7 > 0} is my-memory then it is m;-memory, for
0 < my < mp < oo, and a counting process is O-memory if and only if it
is a Markov process. In addition, a self-exciting point process is 1-memory with
intensity function

A@|X(1), Sxq) = f(X (@), 1t — Sxr))s

74 R.-T. Wang

for some function f if and only if the times between failures 77, 7»,... are
independent [103]. Note that the intensity function A(¢| F;) is continuous from
the left, and we assume for # > 0 that E[A(¢| F;)] < oo.

Recall that the expectation of X(¢) is called the mean value function, and we
denote it by m(t) = E[X(¢)]. The derivative of the mean value function is called
the rate of occurrence of failures (ROCOF) representing approximate probability
that a failure occurs in (¢,¢ + dt], and we denote it by v(¢) = %E[X(t)]. If the
counting process {X(¢),¢ > 0} does not have failures which occur simultaneously,
the ROCOF is equivalent to

) 1
v(t) = A}E}(l)JF EP(X(I +AH—-X(@)=1). (2.40)

A(t| F;) is the probability of encountering a failure within the next instant of time
dt, given the history available up to the present time ¢. For Poisson processes, due
to the property of independent increments, the ROCOF (2.40) and the intensity
function (2.39) are the same, but in general these two functions are different. When
a system has only one r.v. T and we define X(¢) := I{T < t}, then the intensity
function (2.39) is equivalent to the failure rate function (2.3). Thus, failure rate
function is a special case of intensity function.

2.4.7.2 Classification of SRGMs

Another function which is used in reliability modeling (to include software reliabil-
ity), is the concatenated failure rate function of the failure process. Given JF, it is
defined by Chen and Singpurwalla [18],

. 1
H(r| F) = lim —P@+ Sx¢) < Sxiy+1 < Sxpy + T+ At] F), ©>0.
Ar—0+ At
2.41)

The intensity function (2.39) and the concatenated failure rate function (2.41) can
be viewed as a wilder sense of the transition rate function (2.33) and the conditional
failure rate function (2.34).

Let us consider that a system consists of only one component whose lifetime is 7',
and define X (¢) = I{T < t}; thus, for a I-component system A (¢| F;) is equivalent
to H(t| F;). As might be expected, there is a close relation between A(z| F;) and
H(z| F;), similar to Theorem 2.8, as is shown in the following:

A F) = H(t = Sxy| Fi)s Sxoy =t < Sxy+1,
H(z| F) = At + Sxp|l F1), 0 =7 < Sx@y+1— Sxq)-

2 Reliability Evaluation Techniques 75

Table 2.8 Relations between A (7| F;) and H(z| F;)

(@ ACIF) =N —=X@)y@) = H(| F) =N —Xe)¥(t + Sxp)

® ACF) =N —=XO)Wx@y+1(t) H(z| i) = (N — X(0)¥x)+1(t + Sxq)
(© A@lF) =10 H(z| 7)) = At + Sx»)

(@ H(|F)=N—X(t)y(r) A@| F) = (N — X))yt — Sxw))

(e HElFR)=vxop+1() Al F) = ¥xo+1(t = Sxw)

—
—
—
—

Accordingly, this relation enables us to indicate a method to classify software
reliability models. The implication is that if we can specify A(¢| F;) then we have
H(z| F;), and vice versa. Here we give five cases as examples in Table 2.8, similar
to Table 2.2, where A(-) and v (-) are continuous functions.

Obviously, A(z| F;) is no-memory in case (c), 0-memory in cases (a) and (b),
and 1-memory in cases (d) and (e). Except for case (b), the given cases correspond
to some categories of software reliability models in the context of Chen and
Singpurwalla [18]. Thus, case (a) corresponds to the class of i.i.d. order statistic
models, case (c) corresponds the class of NHPP models, and cases (d) and (e)
correspond to the concatenated failure rate models. For m > 2 memory models,
we refer the readers to Singpurwalla and Soyer [101] and Al-Mutairi et al. [3].

Observe that the relation between the intensity function (2.39) and the concate-
nated failure rate function (2.41) is analogous to the relation of the transition rate
function (2.33) and the conditional failure rate function (2.34). The difference is
on the filtration F; = o{X(s) : 0 < s < t}. Based on these relations, a software
reliability model can be represented simply by the intensity function according to
various filtrations we might choose. Thus, a more general class of models can be
constructed from a more wilder filtration.

2.4.7.3 A Self-exciting and Mixture Model

Apart from the self-exciting, another property for the model in our discussion is
mixture which is assumed that individual faults come with i.i.d. random failure rates
A and that failure times have intensity function ¢ (¢|A, F;). Let X, (¢) be the indicator
function of failure due to faulti up to time # > 0. Therefore, the cumulative number
of software failures up to time ¢ > 0 is given by X(¢) = Zf\ﬁl X;(t), where N is
the unknown initial number of faults in the software.

Now we can discuss an intensity function which have both properties of self-
exciting and mixture. Assumptions are given in the following.

(1) The X; are mutually independent, given Ny, {A; }i>0, and F;,

(i) ¢@|Ai, Fr) = iI'J(Xi(t + A1) — Xi(t) = 1|No, {Ai}izo0. Fr),

lim
Ar—0t At
(2.42)
(iii) The failure process satisfies the conditional orderliness property,

76 R.-T. Wang

where A; is the random failure rate of faults i. The intensity function of the software
can be determined and

1
A(t|No. {Ai}izo, Fr) = lim —P(X(t + A1) — X(1) = 1|No. {Ai}iz0. Fo).
Ar—0+ At
(2.43)
The following results are provided by Wang [113].

Theorem 2.10. Under the conditions of (2.43), if the A; have a mixing distribution
function G, then the intensity function of {X(t),t > 0}, given Ny and F; =
o{X(s5),0<s <t} is

A(t|No, Fy) = (No — X(1)) - v(A, 7, G) (2.44)
where
v(A, F. G) = o ¢(ll:}, Fy) exp[—@(t|A, f,)]dG()L)7
Jo” exp[—=@ (1|4, F)]dG(L)
and

O(1]2) = /0 "b(sIh, F)ds.

Example 2.32 (Littlewood [57]). Assume that the mixing distribution G is gamma
distributed with the scale parameter 8 and the shape parameter . If ¢ (2|4, F;) = A,
then the intensity function is

o

A(t|No) = (No—X(t))ﬂ s

This is an example corresponds to case (a) of Table 2.8.

Example 2.33 (Goel and Okumoto [34]; Miller [70]). Assume that Ny ~ Poisson
(0) and ¢ (¢|A, F;) = A. If the A; degenerate to a constant A¢, then the intensity
function is

A(r) = Orge 0",

Furthermore, if the mixing distribution G is gamma distributed with the scale
parameter B and the shape parameter « then the intensity function is
faf®

A= e

These are examples correspond to case (c) of Table 2.8.

2 Reliability Evaluation Techniques 77

Example 2.34 (Schick and Wolverton [95]). Assume that the A; degenerate to a
constant Ag and ¢ (¢|Ao, F;) = Ao(t — Sx()), then the intensity function is

A(t|No, Fi) = (No — X(£))Ao(t — Sx))-
The concatenated failure rate function is
H(t|No, F;) = (No — X(t))Aot, T >0.

This is an example corresponds to case (d) of Table 2.8.

2.5 Examples

2.5.1 A Model for Load-Sharing System
with Common-Cause Systems

In Sect.2.2.2, we have discussed the MVE and FMVE models. The idea here is
to combine both models together. Consider a system consisting of # components
whose lifetimes have the occurrence of common-cause failures and the increase of
failure rates for the surviving components. Such phenomena happen especially in
redundant systems [76]. A series of Poisson shocks can be used to describe such
failures, where each shock may destroy components separately or simultaneously.
Accordingly, failures of the system can be considered to be n possible transitions
of a Markov chain. One (or more) components fails first, then one (or more) of the
surviving components fails, and so on. Initially there is 2" — 1 independent Poisson
processes that govern the occurrence of the shocks. After the system receives a
shock, which destroys one (or more) of the n components, the surviving components
are subject to shocks governed by another cluster of independent Poisson processes
which may have different parameters (failure rates) from the previous ones due to
an increased load. At this stage the number of processes will depend on the number
of surviving components. The system may continue to function, depending on the
structure of the system (e.g., a k-out-of-n:F system), and is waiting for receiving
another shock.

Let X = (X/)/>0 be the failure process of the system where X, denotes the
number of failed components up to time 7. The state space E consists of 2" states
and we partition it into n 4 1 classes as £ = {Ey, E1, ..., E,}, where the subscript
of E; denotes number i of failed components and the elements of E; indicate (’Z)
combinations of failed components. We denote these classes by the notations: Ey =
{0}, Ey ={1y,...,1,}, ..., E, = {n}, where the permutation of subscript in each
class is in lexicographical order and the cardinality of E; is |E;| = (:’) Class E,, is
the absorbing class containing only one state, and other classes constitute a partition
of the set of transient states. One of the simplest example is a birth process which
passes through all n 4 1 classes by Ey — E; — --- — E,. In our discussions, after
visiting class E;, the next visited class may be any class E; withi < j <n.

78 R.-T. Wang

Let Q be an infinitesimal generator of the failure process X, and the submatrix
from class E; to class E; be denoted by Q; ; which is defined by

1 e
0i; = hlig}r EP{XH_h € Ej|X, € E;}, ifi <,

o1 e .
0i; = hligl E(P{Xt+h €EE;j|X € Eiy—-1), ifi=],

where I is an identity matrix. The submatrix Q; ; is a (:1) X (7) constant matrix

which is a zero matrix if i > j. The entries of Q; ; are denoted by kAL, where

i,j°
k=1,....(")and = 1,...,(;5),andk/\f{i ==Y Yk FAL <O
The permutation of subscripts of the Q; ;’s are again arranged in lexicographical
order. Such arrangement guarantees that Q is a upper triangular matrix. For each
state s, we let Ps(t) = P{X, = s|Xo = 0} as usual. We assemble the functions

Py(t) for s € E; into a row vector with (’}) entries in lexicographical order and
denote it by Pp; (7).

Ey E E - E,o E,— E,

Ey Qoo Qo1 Qo2 .. Qow—az2 Qon-1 Qon
E, 0 Qi1 QOip ... Qin—a Oiaa Oin

E, 0 0 02 ... Qina Qs Oarn
Q= : : : : : : :

Ey— 0 0 0 0 Qn—l,n—l Qn—l,n

E, 0 0 0 0 0 0

In particular, Qoo = OA?J, Onn=0,andforj =1,...,n—1,

191

Ao 0

0 A5, ... 0 0
0= ¢ 1o :
™ IEjl—1, 1Ej|1—1

0 0 A 0

o o .. o Y

isa |E;| x |E;| diagonal matrix where |E;| = (j) the cardinality of the E; class.
The transient state probabilities P, (¢) can be shown to be

PE() (t) = eXP(QO,OZ),

j—1
Pp,)=Y" Y Wy oWiy,o-oW (1)exp(Q) 1), (245)

k=0 0=ip<ij<-<ip<j

2 Reliability Evaluation Techniques 79

forj =1,...,n— 1, where

W) = [0 expl0,(D]0s; exp[— 0, (Dd.

and the function 4 o B(t) is a convolution defined by 4 o B(t) := fot A(t)dB(1).
The proof of (2.45) and related reliability properties are presented by Wang
[114]. To illustrate the usefulness of the infinitesimal generator representation, we
investigate the following 2- and 3-component systems.
For a 2-component system, state O denotes no failure, and State 1;, 1,, 2 denote
the failure of components 1, 2, and both components, respectively. The infinitesimal
generator of the given model is

0 1 1, 2
0 [—(A1+ 224+ A1) Ay Ar A
_ 1 0 —(A/2+Alz) 0 A/2+112
Q= 0 0 S+ An) A4 | @40
2 0 0 0 0

Let P,(t) = P(X, = n|Xo = 0) be the transient state probabilities, given the
initial condition Xy = 0. From the Kolmogorov forward equation (2.28) with initial
condition Py(0) = 1, we have the solution

Po(t) = e,
M| tA -

Py (1) =)»1+Alz—)t§ [e atht —e t], AL+ Ay # A
Ate™™ A+ Ay = AL
M| =+ Y

Py = | Er [e] A da £ 0
Apte ™ A+ A=Al

where A = A; + Ay + Apa.

Py(t) is the probability of no component failing up to time #, and it is equivalent
to the probability that the system is considered as a series structure so that Ry (¢) =
Py(t) = e*". The system reliability for the parallel structure is the probability that
at most one component fails in this 2-component system. It follows that

Ran(t) = Po(t) + Pr1 (1) + P, (2)

Ko WA o= NHA L (1 —) —ip)e ™, Ay + Ay # AL A
Kle—(lé-i-llz)t + /\2[3—(1/1""112” +(1- /cl)e_lt, A+ A= /Vl #* /\/2
Kpe~ AT) pe=(athit 4 (] — jy)e M AM+A =24 #A
[14+ (A + L)1) e M, A+ Ay Z’VI :’VZ’

80 R.-T. Wang

where k; = AH_i—‘z_% and Kk, = When A, = 0, i.e., no common-cause

A
Al+ki—l{ :
occurs, this model reduces to the FBVE model. If there is no change of failure rate
on first failure, i.e., A} = A; and A}, = A, the model reduces to the BVE model.
Let 71(73) be the time at which component 1(2) fails. If the generator is given

as (2.46), then the joint density function of 77 and 7, can be shown to be

AI(AIQ + Alz)e—(ll-f-/\z—lé)tl—(/\§+/\12)t2’ 0<t <t

f.n) = MM, + App)e~GiHin—(a+=ADn 0 < 1, < 1, (247)
for the absolutely continuous part, and
g(t) = Ane™, (2.48)

for the singular part. Equations (2.47) and (2.48) lead to the joint reliability function

/ /
Kle—()ul+k2—kz)t1—(k2+k12)l‘2 + (1 _ Kl)e—)»tz’ tl < 12

F(t,0) = ye~ i H= M= A (1 — j)e™ 1 1y < 1,

(2.49)

where A = A1 + Ay + A1n, k1 = M-&ﬁ and Kk, = Mﬁ For convenience,
we call the distribution of (2.49) the bivariate exponential shared-load distribution
(BVESL).

For a 3-component system, state O denotes no failure, and states 1;, 1, and 13
denote respectively the failure of component 1, 2 and 3, states 2|5, 2,3 and 2,3 denote
respectively the failure of two components 1 and 2, 1 and 3, and 2 and 3, and state 3
denotes the failure of all three components. The infinitesimal generator of the given
model is

0 L I 212 I3 213 223 3
0 —ap A1 A A2 A3 A3 A3 A123
1 0 —op 0 M+2inp 0 A +Ap 0 A2z + Aoz
1o 0 0 —ap A+A O 0 Ay + 23 Az + A3
212 0 0 0 —a2 0 0 0 o2
Q= 13 0 0 0 0 —a3)tll + A3 A/Z + A3 A+ A3
213 0 0 0 0 0 —13 0 13
273 0 0 0 0 0 0 —0)3 o3
3 0 0 0 0 0 0 0 0
where

ap = A1+ A2+ A3 + A + Az + Az + As,
ar = Ay + A5+ A+ Az + Ao + Ao,
@y = A) 4+ A5+ Aip + Ao + Az + Ao,
a3 = A) 4+ A5+ A3 + Ao + Ain + Ao,

2 Reliability Evaluation Techniques 81

a1y = Ay 4+ Az + Az + s,

a3 =AY 4+ A+ Az + Aos,

o3 = A 4+ Aia + Az + Aos.
Note that the upper (2% x 2%) submatrix denotes the failure process of components
1 and 2. In order to obtain the reliability functions of the system, we need
to find the transient state probabilities P;(t) = P(X, = i|Xo = 0),i =

0,1y, 15, 13,212, 213, 223. It follows that the reliability functions are R:3(t) = Py(?),
Ra3(t) = Po(t)+ Y5, Py, (), and Rsa(r) = Po(t)+ Y 0—, Pr, () +3 ;- Pa,(1).

Example 2.35. Assume that the failure rates of a 3-component system are

)L] =)Lz =)L; = 0.01 failure/h,)L]z =)L]3 =)Lz3 = 0.002 fajlure/h, A123 = 0.001 failure/h
Al = A, = 1} = 0.012 failure/h, A} = A5 = 1} = 0.015 failure/h.

The infinitesimal generator of the system is

0 Iy 12 212 13 213 223 3
0 —0.037 0.01 0.01 0.002 0.01 0.002 0.002 0.001
1y 0.0 —0.031 0.0 0.014 0.0 0.014 0.0 0.003
1 0.0 0.0 —00.031 0.014 0.0 0.0 0.014 0.003
21 0.0 0.0 0.0 —0.020 0.0 0.0 0.0 0.020
Q= 13 0.0 0.0 0.0 0.0 —0.031 0.014 0.014 0.003
213 0.0 0.0 0.0 0.0 0.0 —0.020 0.0 0.020
273 0.0 0.0 0.0 0.0 0.0 0.0 —0.020 0.020

3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The transient state probabilities are given by
Poo(t) = e 007"
Po1,(t) = poi,(t) = poi,(t) = —1.6667e %" 1 1.6667¢ 05,
P2, (1) = P2y (1) = Poay (1) = 2.6275e7 07" — 42424700310 1 6157002,
It follows that the system reliability functions are given by
Ris(1) = e 0037
Ro3(r) = 5e~00310 _ 4,=00371,

R33(t) = 4.8449¢7002 _ 77072700311 | 3 88040037

By integrating system reliability functions over the time interval [0, co], we obtain
the MTTFs for i-out-of-3:F systems, i = 1,2, 3:

MTTF,.3 = 27.027 h, MTTF,.;3 = 53.182 h, MTTF;.3 = 97.91 h.

82 R.-T. Wang
2.5.2 A Shared-Load k-out-of-n:G Repairable System

Shao and Lamberson [97] proposed an approach to compute and analyze a shared-
load k-out-of-n:G repairable system. The assumptions of the model are given as
follows:

Assumptions:

1. The failure rate of all functioning components in the system is the same and
constant in each success state. When a component fails, the system state changes
and the failure rate for every functioning component changes. For i components
functioning, every functioning component has the constant failure rate, A;, i =
k,....n.And A, < A, < --- < Ak.

2. A failed component must be detected and disconnected by a controller. The
probability of successful detection and switching of the controller is «, for each
failure event. If the controller cannot detect and disconnect a failed unit or
the controller itself has failed, the system fails. The controller failure rate is a
constant, A.. The controller is never repaired or replaced during a mission.

3. At most r components can be in repair at one time; the constant repair rate is .
The repair rate for j components failed is: u; = - min{j, r}.

4. A repaired component is as good as new and is immediately re-connected to the
system.

5. The switch-over time and the time for re-energizing a repaired component are
negligible.

Based on the above assumptions, a continuous-time Markov chain can be used to
create a set of differential equations. The state space for the system is given below.

State Space:

e State j (j = 0,1,...,n — k) : j components have failed and have been
disconnected from the network, the remaining (# — j) components and the
controller are functioning.

* State n—k +1: The system fails because only (k —1) components are functioning.
However, the system can return to the working state (n — k) at a repair rate
Mn—fk+1-

o State f: The system fails because the controller cannot detect and disconnect a
failed component (Fig.2.10).

The system state space £ = {0,1,...,/j,...,.n—k,n—k+1, f},and E = SUF,
where the failed state space F' consists of failed states n — k + 1 and f, while the
success state space S includes the remaining states.

2 Reliability Evaluation Techniques 83

oNAN oU(N=-1)Axn-1 Kk

a
R _— —
@ @ o
H2

HNg+L

M1

(1-o)(N-1)AN1+AC @

(1-a)NAN+AC (1-o)kAk+Ac

Fig. 2.10 Markov transition diagram for a shared-load k-out-of-n:G
system

Generator: The infinitesimal generator of the given model is

0 1 n—k n—k—+1 f
—ni, — A ank, (1 —a)nk, + A
13 —p1— (n— DAy — Ac (I —=a)(n—DAy—t + A
M2
o= :
alk 4+ DAgk4 (I —a)k + DAggr + A,
—n—k —kAr — Ac akAg (I —)k + Ac
Hn—k+1 —Hn—k+1
0

Differential Equations: The set of differential equations based on the generator is
Py(t) = [=nky — A]Po(t) + p1 Pi(2),
Pi(t) = [a(n — j + DAw—js1] Pj—1(t) + [—1; — (0 = j)Au—j — A]P; (1)
+[,U,j+1]Pj+1(Z‘),] = 1,2,...,n—k,
Pr:—k-i-l(t) = [akkk]Pn—k(t) + [_Mn—k+l]Pn—k+l(t)a

n—k

Pi(t) =) [—a)(n — j)Au—j + A] P (D).

Jj=0

The initial conditions for this set of linear differential equations are: Py(0) = 1 and
P;(0) =0fori € E —{0}.

System Availability & Reliability: The system availability A(¢) is the probability
that the system is surviving at time 7:

i€eS

n—k
A =) Pi()=)_ P;{).
j=0

The P;(t) can be determined by integrating the set of linear differential equations
numerically. Availability can be considered as the generalized reliability when the
system is repairable or component-replaceable.

84 R.-T. Wang

System reliability is the availability of the same system without repair and
replacement. Let u; = 0, for j = 1,2,...,n —k + 1, then the set of linear
differential equations becomes

P(;([) = _(,Bn + Ac)PO(l‘)y
P]/(t) = (O[ﬂn_j+1)Pj_1(t) — (,Bn—j + AC)P]'(Z‘),] = 1,2, . () —k,
P i1 (1) = (@Br) Pai (1), (2.50)

where B; = jA;, j = k,k +1,...,n. Taking the Laplace transform of (2.50), we
have the following expressions:

SPy(s)—1=—(Bn + Ac) Py (s),
5P1*(5) = af, Po*(s) — (B + /\c)Pl*(s)s
SP;(S) (O‘,Bn]+1) 1(S) (IBn—j +AC)P;<(S)’] =2,....n—k.

Thus,

J
off,—; /_ i
Br—j+1 PZL(s) [Tz @Bu—it1

Pr(s) = —2Pnmitl . ,
) s+ :311—] + A {:0(5 + Bu—i + Ac)

J j=12,...,n—k.

Next, we use an inverse Laplace transform to solve the above equations. The
approach is to expand the product fraction into a partial fraction form:

1_[1 0(s+c, =0 | k=0ki
Thus, the result is Py(t) = e~ BT and

e_(ﬂn—i"l‘/lc)t .
Pi(1) —]_[ozﬁn i1 Z - ——. j=L12...n—k 25D
k= Ok;éz(ﬁ"—k Bn—i)

The reliability function of the shared-load system is R(¢) = Z:’;IB P;(1).

Special cases: (1) If the absorbing state is removed from the chain by considering
perfect fault coverage (@« = 1 and A, = 0), the result is a birth-death process.
(2) If we further assumed that the components are nonrepairable and A; = A for
i =0,1,...,n, then the shared-load system reduces to a regular k-out-of-n system.

2 Reliability Evaluation Techniques 85

Fig. 2.11 Software
faults in the
2-version software
system

Version1 Version 2

2.5.3 A Dependent Model for Fault-Tolerant Software Systems
During Debugging

N-version programming (NVP) is one of the most important software fault-
tolerance techniques. Numerous researchers have studied the effect of NVP for
the improvement of software reliability on fault correlation theoretically [25, 27,
53,59, 80, 87, 106] as well as empirically [15, 16, 26, 44, 47, 65, 66]. However,
only a few of them consider this issue during the testing and debugging part of
the software development life cycle. During testing and debugging, faults may
not be successfully removed. Imperfect debugging may result in unsuccessful
removal, and the introduction of new faults. In this example we review a model
proposed by Wang [115], who developed a bivariate counting process for a 2VP by
assuming positive dependency among versions. Considering imperfect debugging,
this bivariate process characterizes dynamic changes of fault contents for each
version during testing and debugging. Further explanations for the assumptions and
proofs of the given model, see Wang [115].

2.5.3.1 Model Assumptions

The fault content of a 2VP system is divided into three components, according to
their independence. That is, the system is composed of three mutually exclusive
components, as depicted in Fig.2.11. Here A; and A, represent independent faults
which do not cause failing of the other version, and A, represents related faults that
affect both versions.

Assumptions:

1. Both software versions can fail on the sample input, which can be caused by
either the related faults (A;,) or the independent faults (A; and A,).

2. Related and independent faults are mutually exclusive.

3. When a failure occurs at a version, a debugging effort occurs immediately. The
fault content of that version is instantaneously reduced by one, increased by
one, or remains the same.

4. An independent fault can be successfully removed with high probability.

86 R.-T. Wang

5. Debugging of a related fault may result in successful removal (reduce size of
Ay, by one), introduction of a new related fault (increase size of A, by one),
or unsuccessful removal (size of 4}, has no change).

6. In terms of unsuccessful debugging of a related fault in A5, it can become an
independent fault in either A or Aj.

7. The version-failure detection rate at any time is proportional to its current fault
content (the number of faults remaining in the version at that time).

8. The fault removal rate of version 1 (2) is proportional to the current fault content
of version 1 (2).

9. The fault introduction rate of version 1 is proportional to the current fault con-
tent of version 2, and vice versa. This mainly reflects the common assumption
of positive correlated failures.

10. The removal rate per fault and introduction rate per fault are constant.
11. The simultaneous occurrences of multiple failures in a version are not allowed
(i.e., the ‘orderly property’).

2.5.3.2 The Proposed Model

According to the assumptions, the model developed here is a bivariate counting
process. Let N;(¢) be the fault content (total number of faults) of version i at time ¢.
The transition probabilities in (N, (¢), N2(¢)) during the time interval (¢, ¢ + dt) are

P(N\(t +dt) = Ni(1) = i, Na(t + dt) = No(t) = jINi(t) = x, Na(t) = y)
= fi(x, y)dt,

where i and j are not both zero and fj;(x, y) are suitable non-negative functions of
x and y. Assume that

Foro(x.y) = onx, fo1(x.y) = a2y, 2o
froy) = By, foa(x.y) = Pax. (2.52)

where o, a3, B and 8, are unknown constants, although it is possible to let them be
functions of time. Let the joint state probability of N;(¢) and N,(¢) at time ¢ be given
by P, ,(t) = P(Ni(t) = m, Ny(t) = n). The fundamental equations governing
this bivariate counting process are the following Kolmogorov forward equations [9]

P,;,,n(f) =aim+ D)Pyuiin+oo(n+)Pyt + BinPu_in
+BomPy -1 — [(a1 + B2)m + (a2 + B1)n]Pmn, form,n > 0.

Let M (0, ¢, 1) be the moment generating function and it is given by

M@©.¢.1) =" " tP, @)

m=0n=0

2 Reliability Evaluation Techniques 87

It can be shown that [9]

aM(0,¢,1) i0+is (i i)

where i and j are not both zero. From (2.52) and (2.53), the partial differential

equation of the moment generating function is given by

oM
ot

_ oM _ oM
=[an(e™ = 1) + Bale? = D] — + [ea(e™ = 1) + Bi(e’ = D] —,
a0 ¢
with initial condition M(6, ¢,0) = e?9+22¢ Tt is sometimes easier to work with
the cumulant generating function, K (6, ¢, t), which is defined by K = log M. The
partial differential equation of the cumulant generating function is

oK
ot

- [al(e“’ — 1)+ Bae” = 1)] 83_19{ + [ea(e™® —1) + Bi(e? — 1] g_I;
(2.54)

with initial condition K(6,¢$,0) = b0 + by¢. Express the cumulant generating
function into a Taylor expansion

o' ¢/

i

K©O,¢,1) = Y Ky(t)

i,j=0

where Kj;(¢) are cumulants and Koo = 0. It can be shown that the first and second
order cumulants correspond to the expected number, variances, and covariance of
fault contents as [9]

Kio(1) = E[N:(1)], Koi(t) = E[Na2(2)],
K»(1) = Var[N;(1)], Koa(t) = Var[Ny(1)],
Ki1(t) = Cov[Ni(t), Na(2)].

To obtain the desired cumulants, we use the following procedure. Taking the first
and second order cumulants and equating coefficients of 6, ¢, 02, 6¢, and ¢> on
both sides of (2.54) give the following differential equations

- K Kor,
7 a1 Ko + B1 Ko
dKo

= B,K0— a2 Ky,
77 B2K10 — a2 Ko
dK>

T —201 K20 + o1 K10 + B1 Koi + 281 K1,

88 R.-T. Wang

dK
dtll = BrKr — (01 + a2) K11 + B1 Koo,
dK
dtoz = BoKio+ 2 Koy +28:K11 — 20, K. (2.55)

These equations can be solved by the general ordinary differential equation method,
using the initial conditions K1o(0) = b; and K;(0) = by, and all other cumulants
being ZEro. SO]Vil’lg dKlo/dl = —a; Ko+ /31 Ko and dK()l/dl = /32K10 —ar Ko,
we have

Kio(t) = AjeM + Aye, (2.56)
Koi(t) = BieM' + Bye, (2.57)

where A, A,, B; and B, are constants and

_ —(o1 +) + V(1 —)2 + 415>

N : (2.58)
3y o) = \/(Z‘ —a) + 48Py (2.59)

Let C = A1 — Ay = \/(al — y)? + 4B1B,, then coefficients of A1, A, By and
B, are

b1 (C —a; +az) +2B1b

A = = (2.60)
Ay = bi(C + ay 2—C052) — 2,311?2’ 2.61)
B, = %Al, (2.62)
B, = %Az. (2.63)

Parameters a1, a, B and B, can be expressed as, by substituting (2.56) and (2.57)
into (2.55),

Ale/ll —AzBllz

= , 2.64
% A,B, — A, B, (2.64)
AsBiA; — A1 By
- , 2.65
@ A, B, — A B, (2.65)
A, 4,C
B = —12 (2.66)

AxBy — A1 By’

2 Reliability Evaluation Techniques 89

BB, C

B2 = A,B, — A,B;

(2.67)

Thus, if we have numerical estimates for values of A1, A>, Bi, B> and A1, A,, then
a1, o, B1 and B, are given by (2.64)—(2.67), respectively.

Since B and B, are all positive, the roots A and A, given in (2.58) and (2.59)
are always real. If oy, < B1f2, then one of the A; is positive and the other is
negative. If «jay > B18,, both A1 and A, are negative. This suggests that the result
of eventually extinguishing the faults is certain, if o102 > 1 82.

Special case 1. Let oy = o = o and f; = B, = B. This case describes the
situation that both versions affect each other in a ‘symmetric’ fashion. It can
be shown that the expected number of faults are Kjo(t) = }"—42'}’26_(“_’3 "4+
@e_(‘”ﬂ)t and Ko (z) = b‘—;bze_(“_ﬂ)’ — @e_(‘“'ﬂ)’.

Special case 2. Let f1 = 0 and o) # «. In this case, only version 2 is affected by
version 1. The expected number of faults are Ko(t) = bje™" and Ko (¢) =
bye™" + % [e~! — ¢~1], Further, if «; = a, = «a, the expected number
of faults are Ko(t) = bie™" and K1 (t) = bre™ + b Bote™.

Special case 3. Let B = 0 and B, = 0. This case describes that the failure
behavior of both versions are s-independent. As such the expected number of
faults are Ko(t) = bie™™" and Ko (t) = bye™®". In fact, this is the M model
[42] for two independent versions.

2.5.3.3 Expectation of Failures

The bivariate counting process by itself cannot fully describe the debugging process,
for example it cannot provide the total number of failures up to time 7. We need
to consider both failure content and fault content. A failure occurs when the actual
output deviates from the expected output as a result of executing the faulty program.
For each version, when a failure has occurred it can reduce one fault, increase one
fault, or give no change of the fault content. The associated fault content and failure
content can also be studied by a multivariate processes. Let

N;(t) = the fault content of version i at time ¢,i = 1,2,

M; (t) = the number of observed failures of version i up to time ¢,i = 1, 2.
Set

P(Ny(t +dt) — Ny (t) = i, Na(t + dt) — No(t) = j, My (¢t + dt) — M(t) =k,
My(t +dt) — My(t) =1 | Ni(t) = x, Na(t) = y) = fijka(x, y)dt.

90 R.-T. Wang

Then we assume that

Joron0(x,y) = aix, fioro(x,y) = Biy,
Jo—101(x,) = a2y, fo101(x,y) = Bax.

Follow the similar procedure discussed in Sect. 2.5.3.2, we get the partial differential
equation of the cumulant generating function K (6, 65, 05, 04)

oK — —01+03 _ 0r+04 oK
e IR B e e
0K

+ [Bi T — 1) + an(e” T — 1)] —.
36

In addition to (2.56) and (2.57), the expected numbers of failures are
t
E[M(t)] = / [(@1A41 + B1B1)e™ ™ + (a1 A2 + B1Br)e™"] d,
0

E[My(1)] = /0 [(B241 + a2B1)e™' ™ + (B2Az + a2 By)e™] dr,

where A, Ay, By and B, are expressed in (2.60)—(2.63), respectively. Moreover,

a1 41+p1 B a1 A2+B1 By if A 0 and A 0
lim E[M(1)] =3 T o HArsfandiz< (2.68)
=00 oo} otherwise,
and
BaA1+a2 By BrArtar By if A 0 and A 0
lim E[Ms(1)] = { o T HAr<DandAr < (2.69)
1—00 00 otherwise.

2.5.3.4 Reliability

Suppose that n; faults of version 1 and n, faults of version 2 still remain in the
program at time t,. The overall failure rate at that time would be n(o;(z.) +
Ba(t.)) + na(az(t.) + Bi(2.)). If the system fails when one of its versions fail, then
the reliability of the entire system as a function of time ¢ takes the form

Rpep(tlte) = [Ri(t[t)]" [Ra(t]2e)]™

if the system fails only when both its versions fail, the reliability of the entire
system is

Rpep(tlte) = 1= (1= [Ri(tlee)]™) (1 = [Ra(e]te)]™) (2.70)

2 Reliability Evaluation Techniques 91

where R;(t|t,) = exp{—(ai + B2)t} and Ry(t|t,) = exp{—(o2 + B1)t}. The
function Ry(z|t,) and R,(t|t.) can be viewed as reliabilities attributable to each
of the individual faults of versions 1 and 2, respectively.

2.5.3.5 Estimation of Parameters

In fact, the actual fault contents for each version cannot be observed. However, the
number of failures can be observed. Thus, we use the number of observed failures to
estimate the unknown parameters, o, &, f; and B,. We can minimize the objective
function

m

§ =Y {(Mw) - EMi(1)” + (Fat) = EMa(0))')

i=1

i.e., the sum of two least squares functions, where M, (t;) and A//I\z(t,-) represent the
number of observed failures of versions 1 and 2 up to time #;, respectively. However,
the estimates for a1, a;, B1 and 8, may not be very reliable since a small change in
A1 and A, may magnify the effect in these estimates.

2.5.3.6 Example

We illustrate the proposed model by using the observed failure data of the water
reservoir control (WRC) system [106]. Water is supplied via a source pipe controlled
by a source valve and removed via a drain pipe controlled by a drain valve. The
WRC system achieves fault-tolerance and high reliability by using NVP software
control logic with N = 2. This 2VP system application assumes that the reliability
of the voter is 1, and that the voter can identify exactly which version(s) is failed
when a failure occurs [106]. Following these assumptions, the 2VP system fails
only when both its software versions fail at the same input data. This WRC system
data set is listed in Table 2.9.

Apply the method in Sect.2.5.3.5 to the WRC data set, the LSEs of «y, oz, 1
and B, are

&, = 0.00568, B, = 0.000399,
& = 0.00735, B, = 0.000874.

Based on estimated values of «; and §;, related measurements can be obtained.
Since @&, > B 1 ,32, the perfect debugging (elimination of all faults) is certain.
Substituting &; and ,3,- into (2.56) and (2.57) and setting ¢ = 0, we have the initial
fault contents for both versions

by =29.594 and by = 25.004.

92 R.-T. Wang

Table 2.9 Failure-time normalized-data of WRC 2VP system

Failure time Failure time
Failure no. Version 1 Version 2 Failure no. Version 1 Version 2
1 1.2 3.6 14 39.2 34.8
2 2.8 8.4 15 40.0 36.4
3 8.4 12.8 16 44.0 36.8
4 10.0 14.4 17 44.8 38.0
5 16.4 17.2 18 54.0 39.2
6 20.0 18.0 19 56.0 41.6
7 24.4 20.0 20 62.4 42.0
8 28.0 23.2 21 80.0 46.4
9 29.2 25.2 22 92.0 59.6
10 31.2 28.0 23 99.6 62.4
11 34.0 28.4 24 98.8
12 36.0 30.8 25 99.6
13 36.8 31.2 26 100.0

This shows that the initial number of faults in version 1 is bigger than that
in version 2. The expected numbers of failures eventually encountered for both
versions are obtained by substituting estimated values of parameters into (2.68)
and (2.69). The numbers are 32.826 and 34.608 for version 1 and version 2,
respectively. This shows that we expect that more failures occur in version 2 than
that in version 1. Initially the number of faults in version 1 is bigger than version
2. However, we expect that version 1 has less failures eventually encountered than
version 2. This shows that version 1 may have a better debugging performance than
version 2. Part of the reason may be attributed to dependency between versions.
From (2.56) and (2.57), we have the expected numbers of remaining faults for
versions at time ¢

E[Ni(t)] = (—2.162)e "0 4 (31.755) 00054
E[N>(1)] = (10.083)e™00075% 4 (14.921)e 000549

If these two versions are assumed to be independent of each other, then the expected
numbers of remaining faults at time ¢ are given by E;[N; ()] = (31.697)e~0-00564
and E;[N,(1)] = (33.600)e~%%62% Erom (2.70), the reliability for the 2VP system
when 7, = 250 1is

Rpep(t]250) =1 — (1 — 005060y (] _ o=0.04117r

References

1. 0.0. Aalen, @. Borgan, H.K. Gjessing, Survival and Event History Analysis: A Process Point
of View (Springer, New York, 2008)

2. A.A. Abdel-Ghaly, P.Y. Chan, B. Littlewood, Evaluation of competing software reliability
predictions. IEEE Trans. Softw. Eng. 12, 950-967 (1986)

2 Reliability Evaluation Techniques 93

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

217.

28.

. D. Al-Mutairi, Y. Chen, N.D. Singpurwalla, An adaptative concatenated failure rate model
for software reliability. J. Am. Stat. Assoc. 93, 1150-1163 (1998)

. S.V. Amari, R.B. Misra, Closed-form expressions for distribution of sum of exponential
random variables. IEEE Trans. Reliab. 46(4), 519-522 (1997)

. S.V. Amari, J.B. Dugan, R.B. Misra, Optimal reliability of systems subject to imperfect fault
coverage. IEEE Trans. Reliab. 48(3), 275-284 (1999)

. S.V. Amari, K.B. Misra, H. Pham, Tampered failure rate load-sharing systems: status and
perspectives, in Handbook on Performability Engineering, ed. by K.B. Misra (Springer,
London, 2008)

. PM. Anderson, S.K. Agarwal, An improved model for protective-system reliability. IEEE
Trans. Reliab. 41(3), 422-426 (1992)

. H. Ascher, H. Feingold, Repairable Systems Reliability: Modeling, Inference, Misconceptions
and Their Causes (Marcel Dekker, New York, 1984)

. N.T.J. Bailey, The Elements of Stochastic Processes (Wiley, New York, 1964)

N. Balakrishnan, C.D. Lai, Continuous Bivariate Distributions (Springer, New York, 2009)

R.E. Barlow, F. Prochan, Statistical Theory of Reliability and Life Testing: Probability Models

(To Begin With, Silver Spring, 1981)

H.W. Block, A.P. Basu, A continuous bivariate exponential extension. J. Am. Stat. Assoc. 69,
1031-1037 (1974)

P.J. Boland, N.N. Chuiv, Optimal times for software release when repair is imperfect. Stat.

Probab. Lett. 77, 1176-1184 (2007)

L.C. Briand, K.E. Emam, B.G. Freimut, A comprehensive evaluation of capture-recapture

models for estimating software defect content. IEEE Trans. Softw. Eng. 26(6), 518-540

(2000)

S.S. Brilliant, J.C. Knight, N.G. Leveson, Analysis of faults in an N-version software

experiment. I[EEE Trans. Softw. Eng. 16(2), 238-247 (1990)

X. Cai, M.R. Lyu, M.A. Vouk, An experimental evaluation on reliability features of N-version

programming, in Proceeding of the 16th International Symposium on Software Reliability

Engineering, Chicago, 2005

K.C. Chae, G.M. Clark, System reliability in the presence of common-cause failures. IEEE

Trans. Reliab. 35(1), 32-35 (1986)

Y. Chen, N.D. Singpurwalla, Unification of software reliability models by self-exciting point

processes. Adv. Appl. Probab. 29, 337-352 (1997)

D.R. Cox, V. Isham, Point Processes (Chapman & Hall, London, 1980)

D.R. Cox, PA.W. Lewis, The Statistical Analysis of Series of Events (Chapman & Hall,

London, 1966)

L.H. Crow, Reliability analysis for complex repairable systems, in Reliability and Biometry:

Statistical Analysis of Lifelength, ed. by F. Proschan, R.J. Serfling (SIAM, Philadelphia, 1974)

M.J. Crowder, A.C. Kimber, R.L. Smith, T.J. Sweeting, Statistical Analysis of Reliability Data

(Chapman & Hall, London, 1991)

T. Dohi, S. Osaki, K.S. Trivedi, An infinite server queueing approach for describing software

reliability growth: unified modeling and estimation framework, in Proceedings of the 11th

Asia-Pacific Software Engineering Conference, Busan, 2004

J.T. Duane, Learning curve approach to reliabilitymonitoring. IEEE Trans. Aerosp. 2,

563-566 (1964)

D.E. Eckhardt, L.D. Lee, A theoretical basis for the analysis of multiversion software subject

to coincident errors. IEEE Trans. Softw. Eng. 11(12), 1511-1517 (1985)

D.E. Eckhardt, A K. Caglavan, J.C. Knight, L.D. Lee, D.F. McAllister, M.A. Vouk, J.P. Kelly,

An experimental evaluation of software redundancy as a strategy for improving reliability.

IEEE Trans. Softw. Eng. 17(7), 692-702 (1991)

M. Ege, M.A. Eyler, M.U. Karakas, Reliability analysis in N-version programming with

dependent failures, in Proceedings of the 27th Euromicro Conference, Warsaw, 2001

K.N. Fleming, N. Mosleh, R.K. Deremer, A systematic procedure for incorporation of

common cause events into risk and reliability models. Nucl. Eng. Des. 93, 245-273 (1986)

94

29

30

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44,

45.

46

47.

48.

49.

51.

52.

53.

54.

55.

56.

R.-T. Wang

. J.E. Freund, A bivariate extension of the exponential distribution. J. Am. Stat. Assoc. 56,
971-977 (1961)

. O. Gaudoin, J.L. Soler, Statistical analysis of the geometric de-eutrophication software-

reliability model. IEEE Trans. Reliab. 41(4), 518-524 (1992)

O. Gaudoin, C. Lavergne, J.L. Soler, A generalized geometric de-eutrophication software-

reliability model. IEEE Trans. Reliab. 43(4), 536-541 (1994)

B.V. Gnedenko, Y.K. Belyayev, A.D. Solovyev, Mathematical Methods of Reliability Theory

(Academic, New York, 1969)

A.L. Goel, Software reliability models: assumptions, limitations, and applicability. IEEE

Trans. Softw. Eng. 11(12), 1411-1423 (1985)

A.L. Goel, K. Okumoto, Time-dependent error-detection rate model for software reliability

and other performance measures. IEEE Trans. Reliab. 28(3), 206-211 (1979)

S.S. Gokhale, PN. Marinos, K.S. Trivedi, Important milestomes in software reliability

modeling, in Proceedings of Software Engineering and Knowledge Engineering (SEKE) ’96,

Lake Tahoe, 1996

K. Goseva-Popstojanova, K.S. Trivedi, Architecture-based approaches to reliability assess-

ment of software systems. Perform. Eval. 45, 179-204 (2001)

M.H. Halstead, Elements of Software Science (North-Holland, Amsterdam, 1977)

P. Hokstad, M. Rausand, Common cause failure modeling: status and trends, in Handbook of

Performability Engineering, ed. by K.B. Misra (Springer, London, 2008)

C.Y. Huang, W.C. Huang, Software reliability analysis and measurement using finite and

infinite server queueing models. IEEE Trans. Reliab. 57(1), 192-203 (2008)

C.Y. Huang, M.R. Lyu, S.Y. Kuo, A unified scheme of some nonhomogenous Poisson process

models for software reliability estimation. IEEE Trans. Softw. Eng. 29(3), 261-269 (2003)

L. Huang, Q. Xu, Lifetime reliability for load-sharing redundant systems with arbitrary failure

distributions. IEEE Trans. Reliab. 59(2), 319-330 (2010)

Z. Jelinski, P.B. Moranda, Software reliability research, in Statistical Computer Performance

Evaluation, ed. by W. Freiberger (Academic, New York, 1972)

H. Joe, Multivariate Models and Dependence Concepts (Chapman & Hall, London, 1997)

PK. Kapur, A. Gupta, P.C. Jha, Reliability growth modeling and optimal release policy under

fuzzy environment of an N-version programming system incorporating the effect of fault

removal efficiency. Int. J. Autom. Comput. 4(4), 369-379 (2007)

M. Kijima, Markov Processes for Stochastic Modeling (Chapman & Hall, London, 1997)

. B.A. Kitchenham, B. Littlewood, Measurement for Software Control and Assurance (Elsevier,

London, 1989)

J.C. Knight, N.G. Leveson, An experimental evaluation of the assumption of independence in

multiversion programming. IEEE Trans. Softw. Eng. 12(1), 96-109 (1986)

K.A.H. Kobbacy, D.N.P. Murthy, Complex System Maintenance Handbook (Springer,

London, 2008)

W. Kremer, Birth-death and bug counting. IEEE Trans. Reliab. 32(1), 37-47 (1983)

. PH. Kvam, E.A. Pefa, Estimating load-sharing properties in a dynamic reliability system.

J. Am. Stat. Assoc. 100, 262-272 (2005)

N. Langberg, N.D. Singpurwalla, A unification of some software reliabilitymodels. SIAM

J. Sci. Stat. Comput. 6, 781-790 (1985)

J. Ledoux, Software reliability modeling, in Handbook of Reliability Engineering, ed. by

H. Pham (Springer, London, 2003)

H.H. Lin, K.H. Chen, R.T. Wang, A multivariate exponential shared-load model. IEEE Trans.

Reliab. 42(1), 165-171 (1993)

B.H. Lindqvist, On the statistical modeling and analysis of repairable systems. Stat. Sci. 21(4),

532-551 (2006)

B.H. Lindqyvist, G. Elvebakk, K. Heggland, The trend-renewal process for statistical analysis

of repairable systems. Technometrics 45, 31-44 (2003)

B. Littlewood, Theories of software reliability: how good are they and how can they be

improved? IEEE Trans. Softw. Eng. 6(5), 489-500 (1980)

2 Reliability Evaluation Techniques 95

57

58

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.
69.
70.

71

72.

73.

74.

75.

76.

7

78.
79.

80.

81.
82.

83.
84.

85

. B. Littlewood, Stochastic reliability-growth: a model for fault-removal in computer-programs
and hardware-designs. IEEE Trans. Reliab. 30(4), 313-320 (1981)

. B. Littlewood, Rationale for a modified Duane model. IEEE Trans. Reliab. 33(2), 157-159

(1984)

B. Littlewood, D. Miller, Conceptual modeling of coincident failures in multiversion software.

IEEE Trans. Softw. Eng. 15(12), 1596-1614 (1989)

B. Littlewood, J.L. Verrall, A Bayesian reliability growth model for computer software. J. R.

Stat. Soc. C 22, 332-346 (1973)

B. Littlewood, J.L.. Verrall, A Bayesian reliability model with a stochastically monotone

failure rate. IEEE Trans. Reliab. 23(2), 108-114 (1974)

H. Liu, Reliability of a load-sharing k-out-of-n:G system: non-iid components with arbitrary

distributions. IEEE Trans. Reliab. 47(3), 279-284 (1998)

J.C. Lu, Weibull extensions of the Freund and Marshall-Olkin bivariate exponential models.

IEEE Trans. Reliab. 38(5), 615-619 (1989)

M.R. Lyu, Handbook of Software Reliability Engineering (McGraw-Hill, New York/IEEE

Computer Society, Los Angeles, 1996)

M.R. Lyu, Y. He, Improving the n-version programming process through the evolution of a

design paradigm. IEEE Trans. Reliab. 42(2), 179-189 (1993)

M.R. Lyu, Z. Huang, K.S. Sze, X. Cai, An empirical study on testing and fault tolerance

of software reliability engineering, in Proceedings of the 14th International Symposium on

Software Reliability Engineering (ISSRE 2003), Denver, 2003

A.W. Marshall, I. Olkin, A multivariate exponential distribution. J. Am. Stat. Assoc. 62,

3044 (1967)

T.J. McCabe, A compexity measure. IEEE Trans. Softw. Eng. 2(4), 308-320 (1976)

W.Q. Meeker, L.A. Escobar, Statistical Methods for Reliability Data (Wiley, New York, 1998)

D.R. Miller, Exponential order statistic models of software reliability growth. IEEE Trans.

Softw. Eng. 12(1), 12-24 (1986)

. K.B. Misra, Handbook of Performability Engineering (Springer, London, 2008)

P.B. Moranda, Predictions of software reliability during debugging, in Proceedings Annual

Reliability and Maintainability Symposium, Washington, DC, 1975

P.B. Moranda, Event-altered rate models for general reliability analysis. IEEE Trans. Reliab.

28(5), 376-381 (1979)

J.D. Musa, A.F. Ackerman, Quantifying software validation: when to stop testing? IEEE

Softw. 6, 19-27 (1989)

J.D. Musa, K. Okumoto, A logarithmic Poisson execution time model for software relia-

bility measurement, in Proceedings 7th International Conference on Software Engineering,

Orlando, 1984

J.D. Musa, A. Iannino, K. Okumoto, Software Reliability: Measurement, Prediction, Appli-

cation (McGraw-Hill, New York, 1987)

. A. Myers, Complex System Reliability: Multichannel Systems with Imperfect Fault Coverage

(Springer, London, 2010)

T. Nakagawa, Maintenance Theory of Reliability (Springer, London, 2005)

NEA, International common-cause failure data exchange. ICDE general coding guidelines.

Technical note NEA/CSNI/R(2004)4. Nuclear Energy Agency (2004)

V.E. Nicola, A. Goyal, Modelling of correlated failures and community error recovery in

multiversion software. IEEE Trans. Softw. Eng. 16(3), 350-359 (1990)

E. Parzen, Stochastic Processes (Holden Day, San Francisco, 1962)

E.A. Pena, Dynamic modeling and statistical analysis of event times. Stat. Sci. 21(4), 487-500

(2006)

H. Pham, Software Reliability (Springer, New York, 2000)

H. Pham, Handbook of Reliability Engineering (Springer, London, 2003)

. H. Pham, Recent Advances in Reliability and Quality in Design (Springer, London, 2008)

. H. Pham, L. Nordmann, X. Zhang, A general imperfect-software-debugging model with
s-shaped fault-detection rate. IEEE Trans. Reliab. 48(2), 169-175 (1999)

96

87

88

90.

91.

92.

93.
94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

R.-T. Wang

. PT. Popov, L. Strigini, J. May, S. Kuball, Estimating bounds on the reliability of diverse
systems. IEEE Trans. Softw. Eng. 29(4), 345-359 (2003)

. P. Pukite, J. Pukite, Modeling for Reliability Analysis (IEEE, New York, 1998)

. L. Rade, Expected time to failure of reliability systems. Math. Sci. 14, 24-37 (1989)

A.E. Raftery, Inference and prediction for a general order statistic model with unknown

population size. J. Am. Stat. Assoc. 82, 1163-1168 (1987)

S. Ramani, S.S. Gokhale, K.S. Trivedi, in Computer Performance Evaluation: Modelling

Techniques and Tools, SREPT: Software Reliability Estimation and Prediction Tool, ed. by

R. Puigjaner et al. Lecture Notes in Computer Science (LNCS 1469) (Springer, New York,
1998)

M. Rausand, A. Hgyland, System Reliability Theory: Models, Statistical Methods, and

Applications (Wiley, Hoboken, 2004)

S.M. Ross, Introduction to Probability Models, 9th edn. (Academic, London, 2007)

E.M. Scheuer, Reliability of an m-out-of-n system when component failure induces higher

failure rates in survivors. IEEE Trans. Reliab. 37(1), 73-74 (1988)

G.J. Schick, R.W. Wolverton, Assessment of software reliability, in Proceedings of the

Operations Research (Physica, Wirzberg-Wien, 1973). September 1972 in Hamburg

G.J. Schick, R.W. Wolverton, An analysis of competing software reliability models. IEEE

Trans. Softw. Eng. 4, 104—120 (1978)

J. Shao, L.R. Lamberson, Modeling a shared-load k-out-of-n:G system. IEEE Trans. Reliab.

40(2), 205-209 (1991)

K. Sharma, R. Garg, C.K. Nagpal, R.K. Garg, Selection of optimal software reliability growth

models using a distance based approach. IEEE Trans. Reliab. 59(2), 266-276 (2010)

N.D. Singpurwalla, Foundational issues in reliability and risk analysis. SIAM Rev. 30(2),

264-282 (1988)

N.D. Singpurwalla, Reliability and Risk: A Bayesian Perspective (Wiley, New York, 2006)

N.D. Singpurwalla, R. Soyer, Non-homogeneous autoregressive processes for tracking

(software) reliability growth, and their Bayesian analysis. J. R. Stat. Soc. B 54, 145-156

(1992)

N.D. Singpurwalla, S.P. Wilson, Software reliability modeling. Int. Stat. Rev. 62, 289-317

(1994)

D.L. Snyder, M.I. Miller, Random Point Processes in Time and Space, 2nd edn. (Springer,

New York, 1991)

H.S. Son, M.C. Kim, Software faults and reliability, in Reliability and Risk Issues in Large

Scale Safety-Critical Digital Control Systems, ed. by PH. Seong (Springer, London, 2009)

Z. Tang, J.B. Dugan, An integrated method for incorporating common cause failures in system

analysis, in Proceedings of the 50th Annual Reliability and Maintainability Symposium, Los

Angeles, 2004

X. Teng, H. Pham, A software-reliability growth model for N -version programming systems.

IEEE Trans. Reliab. 51(3), 311-321 (2002)

K. Tokuno, S. Yamada, An imperfect debugging model with two types of hazard rates for

software reliability measurement and assessment. Math. Comput. Model. 31, 343-352 (2000)

U.S. Nuclear Regulatory Commission, Reactor Safety: An Assessment of Accident Risks

in U.S. Commercial Nuclear Power Plants. WASH-1400, NUREG-75/014 (U.S. Nuclear

Regulatory Commission, Washington, DC, 1975)

E.A. van Doom, On the a-classification of birth-death and quasi-bith-death processes. Stoch

Model 22, 411-421 (2006)

J.K. Vaurio, An implicit method for incorporating common-cause failures in system analysis.

IEEE Trans. Reliab. 47(2), 173-180 (1998)

AK. Verma, S. Ajit, M. Kumar, Dependability of Networked Computer-Based Systems

(Springer, London, 2011)

W.L. Wagoner, The final report on a software reliability measurement study. TOR-

0074(4112)-1. Aerospace Corporation, El Segundo (1973)

2 Reliability Evaluation Techniques 97

113.

114.

115.

116.

117

118.

119.

120.

121.

122.

123.

124.

125.

R. Wang, A mixture and self-exciting model for software reliability. Stat. Probab. Lett. 72,
187-194 (2005)

R.T. Wang, A reliability model for multivariate exponential distributions. J. Multivar. Anal.
98, 1033-1042 (2007)

R.T. Wang, A dependent model for fault tolerant software systems during debugging. IEEE
Trans. Reliab. 61(2), 504-515 (2012)

M. Xie, Software Reliability Modelling (World Scientific, Singapore, 1991)

. L. Xing, Fault-tolerant network reliability and importance analysis using binary decision

diagrams, in Proceedings of the 50th Annual Reliability and Maintainability Symposium, Los
Angeles, 2004

S. Yamada, Software reliability growth models incorporating imperfect debugging with
introduced faults. Electron. Commun. Jpn. Part 3 81(4), 33—40 (1998)

S. Yamada, S. Osaki, Software reliability growth modeling: models and applications. IEEE
Trans. Softw. Eng. 11(12), 1431-1437 (1985)

S. Yamada, M. Ohba, S. Osaki, S-shaped reliability growth modeling for software error
detection. IEEE Trans. Reliab. 32(5), 475-478 (1983)

S. Yamada, M. Ohba, S. Osaki, S-shaped software reliability growth models and their
applications. IEEE Trans. Reliab. 33(4), 289-292 (1984)

K.Z. Yang, An infinite server queueing model for software readiness assessment and related
performance measures. Ph.D. Dissertation, Syracuse University, 1996

S. Zack, Introduction to Reliability Analysis: Probability Models and Statistical Methods
(Springer, New York, 1992)

P. Zeephongsekul, G. Xia, S. Kumar, Software reliability growth models: primary failures
generate secondary-faults under imperfect debugging. IEEE Trans. Reliab. 43(3), 408-413
(1994)

T. Zhang, M. Horigome, Availability and reliability of system with dependent components
and time-varying failure and repair rates. IEEE Trans. Reliab. 50(2), 151-158 (2001)

Chapter 3
Energy-Efficient Design Techniques

Rong Ye and Qiang Xu

3.1 Introduction

While the relentless scaling of CMOS technology has brought digital IC designs
with enhanced functionality and improved performance in every new generation, at
the same time, the associated ever-increasing on-chip power and temperature densi-
ties make them suffer from more severe reliability threats [6,93]. For example, as
demonstrated in [94], the average mean-time-to-failure (MTTF) of a contemporary
superscalar processor drops by about 4x from 180 to 65 nm technology node. In
fact, the failure rates for today’s electrical systems can be quite high, e.g., as high as
16.4 % for the Microsoft Xbox 360 within 10 months [90].

On the one hand, from the circuit level up to the system level, numerous
power- and energy-efficient techniques have been proposed in the literature to
achieve high energy efficiency. On the other hand, these solutions have high
impact on system reliability, which needs to be addressed together with system
performance and energy consumption in a holistic manner. For example, one of the
most widely-used power minimization techniques, dynamic voltage and frequency
scaling (DVFS) reduces power dissipation by scaling down supply voltage and
operational frequency at runtime. By trading off performance for power, high energy
efficiency can be achieved. As DVFS facilitates to reduce circuit temperature, it
is also helpful for the lifetime reliability of the system. However, lowering down
supply voltage inevitably leads to the increase of soft error rate due to the reduction
of critical charge.

The remainder of this chapter is organized as follows. In Sect. 3.2, we present
the preliminaries and background knowledge of this chapter. Various circuit-level
and system-level energy-efficient design techniques are then introduced in Sects. 3.3
and 3.4, respectively. Next, Sect. 3.5 discusses the impact of power minimization

R. Ye « Q. Xu (B4)
The Chinese University of Hong Kong, Hong Kong, China
e-mail: rye,qxu@cse.cuhk.edu.hk

J. Mathew et al. (eds.), Energy-Efficient Fault-Tolerant Systems, 99
DOI 10.1007/978-1-4614-4193-9_3, © Springer Science+Business Media New York 2014

mailto:rye,qxu@cse.cuhk.edu.hk

100 R. Ye and Q. Xu

techniques on system reliability and Sect. 3.6 focuses on some emerging energy-
efficient design solutions. Finally, Sect. 3.7 concludes this chapter.

3.2 Preliminaries

This section reviews the background knowledge in energy-efficient designs to make
clear the definitions and models used in this domain.

3.2.1 Optimization Objectives

Before introducing the various sources of IC power dissipation, it is worth spending
some efforts discussing the typical metrics used to evaluate the quality of a
circuit design. The optimization objective during the design of complex chips has
undergone a series of revolutions in the past several decades. As shown in Fig. 3.1,
hardware area, circuit performance, and power dissipation are three important
design factors that IC designers are familiar with. To be specific, for a circuit, its
silicon cost is proportional to its size. Path delay distribution (in particular, critical
path delay) determines its operational frequency, the most intuitive and commonly-
used metric to evaluate circuit performance. As for power dissipation, it is not only
related to the battery endurance of portable electronic devices but also affecting the
reliability of the circuit. Therefore, IC design optimization is to explore the solution
space to achieve an optimized tradeoff among the above three factors.

Thanks to the continuous scaling of CMOS technology, billions of transistors
can be integrated onto a single chip nowadays, rendering hardware area no longer a
serious concern. However, many other challenges emerge, among which reliability
is probably the most critical one due to the ever-decreasing transistor feature size
and the ever-increasing power and temperature density of the circuit. In fact, it is
imperative for designers to explore the tradeoff among power, performance and
reliability nowadays, as shown in Fig. 3.2.

"/ -f - \\'\ - "// \\\
Fig. 3.1 Design tradeoff in u,_\Per oImance /’I <7> \ Ales /

conventional IC design - e

3 Energy-Efficient Design Techniques 101

Fig. 3.2 Design tradeoff in
today’s IC design

A LK
%f ”\}_ﬂ]

{ Performance > Reliability
/ —)

e

Fig. 3.3 Power versus 4+ Power
energy

Case 1

Case 2

3.2.2 Power Versus Energy

It is essential to understand the difference between power and energy. Simply put,
energy is the integral of power over time. As shown in Fig. 3.3, power is represented
by the curve stretching with respect to time while energy is the area under the power
curve. With low-power design techniques, we can lower the height of the power
curve of Task 1 from Case I to Case 2 (see Fig.3.3), but the energy consumptions
in these two cases may be the same. For example, suppose the power consumptions
of Task 1 in Case I and Case 2 are 8 and 4 W respectively and the times spent on
executing it in these two cases are 1 and 2 s, respectively, the energy consumption
in both Case I and Case 2 would be 8J.

As for the impacts of power and energy, there are many factors and each
of them has its specific role. For example, average power dissipation largely
determines circuit operational temperature; peak power dissipation is one of the
most significant factors to be considered when designing IC power distribution
network. Energy consumption, on the other hand, determines the operating time of
battery-powered portable device. Nevertheless, many low-power design techniques
are indeed helpful to improve system energy efficiency, and in the rest of this
chapter, we do not differentiate them much and the terms (e.g., power-efficient and
energy-efficient) are often used interchangeably.

102 R. Ye and Q. Xu

Fig. 3.4 Dynamic power due Supply Voltage
to signal transition N

' Current
Input | Output
cL——|

4|

II}T!-

3.2.3 Power Models

Modeling the power consumption of circuits and systems is essential towards
establishing measures to compare the quality of alternative designs in terms of the
power needed for its operation. Generally speaking, the total power consumption
of an electronic system consists of two components: dynamic power and static
power [67,82, 114]. Dynamic power is the power dissipation when devices are
switching, while static power is caused by leakage currents (primarily caused by
subthreshold leakage current) that are present even when no logic operations are
performed.

3.2.3.1 Dynamic Power Dissipation

In a digital CMOS circuit, there are two sources of dynamic power dissipation. The
first one results from charging and discharging of the load capacitance with signal
transitions, wherein current flows through transistor channels and electrical energy
gets converted into heat and dissipated away, as shown in Fig. 3.4. Such dynamic
power is called switching power dissipation.

Instantaneous switching power dissipation P;,,(¢) can be modeled as

Py (1) = Vaa - Laa (1), (3.D
where V4 is the supply voltage and 1, is the current without considering leakage

current. As for the average dynamic power dissipation, we can first have the energy
consumed in each transition £ ,; as follows:

Ey,=Cp-V},, (3.2)

3 Energy-Efficient Design Techniques 103

Fig. 3.5 Dynamic power due Supply Voltage

to short-circuit currents

Input

Current

|

Output

I

dreeccerennne

where E,; is the energy per transition and Cy is the load capacitance. Finally, we
have

Py =a-C,- Vi -f (3.3)

where « is the switching activity and f is the operational clock frequency.

The second source of dynamic power dissipation comes from the short-circuit
currents as shown in Fig.3.5, flowing directly from the power supply to the
ground when the n-subnetwork and p-subnetwork of a CMOS gate are in on-state
simultaneously. With input to the gate stable at either logic level, only one of the
two subnetworks conducts and no short-circuit flows. However, when the output
of a gate switches in response to changing inputs, both subnetworks are in on-
state simultaneously for a short interval, resulting in short-circuit current flows. The
duration of the interval depends on the input and the output transition times and
hence the short-circuit dissipation also depends on it.

Both of the above sources of power dissipation in CMOS circuits are related to
transitions at gate outputs and therefore collectively referred to as dynamic power
dissipation. Because the ramp time of the input signal is usually quite short, the
short-circuit current lasts for only a short time interval in each transition. Therefore,
the switching power is usually the dominating one in dynamic power dissipation
while short-circuit power is only of interest in some cases.

3.2.3.2 Static Power Dissipation

Static power is caused by leakage currents, which flow even when the input and
output of a gate are not changing. One of the main reasons why CMOS technology
becomes the dominating semiconductor technology is due to the fact that static
power dissipation in CMOS circuits is much lower than that in other technologies.

104 R. Ye and Q. Xu

However, as supply voltage reduces with technology scaling, transistors with low
threshold voltages have to be used to maintain performance and reliability, yet the
lower the threshold voltage, the greater the standby leakage current. In fact, for some
high-performance circuits, the contribution of static power dissipation already has a
dominant share of the total power dissipation.

In the near future, subthreshold leakage and gate leakage will be the dominant
types of leakage current [64,76]. Consequently, static power dissipation can be
roughly modeled as follows:

WYy Vps 0
Pleakage = I - T?.e r

+ |Vbs| : Ijm (34)
wherein I, is the reference leakage current at reference temperature, 7' is tempera-
ture, Vj; is the body bias voltage, I}, is the junction leakage current, and u, y and
0 are all curve fitting parameters depending on fabrication technology.

3.2.4 Power Minimization Methodology

As power minimization is one of the most important optimization objectives in
today’s IC designs, numerous energy-efficient design techniques at various steps of
the design flow have been proposed in the literature and realized in industry designs,
targeting at dynamic and/or static power dissipation. Many design parameters can be
adjusted to achieve power reduction. Some of them are continuous, such as supply
voltage and threshold voltage; while some others are discrete, such as different logic
styles, topologies, and micro-architectures.

Ideally, designers would like to consider all parameters at the same time, and
to define a single optimization problem to minimize power from the viewpoint
of the entire system. However, the complexity of such an optimization problem
with all the parameters included would be practically unsolvable. Consequently, IC
design methodologies rely on some important concepts to help manage complexity:
abstraction and hierarchy. Abstraction is used to hide the details, while hierarchy is
for building larger entities through a composition of smaller ones. The abstraction
and hierarchy in design process of ICs is shown in Fig. 3.6. There have been many
techniques employed to perform energy-efficient computing at these different levels.
For example, at device level, we can employ multi-threshold devices to reduce
power dissipation of certain logic gates; at circuit level, clock gating can be used
to turn off the clock tree for inactive parts of the circuit to reduce dynamic power;
at logic level, low-power logic synthesis can be used to reduce power dissipation; at
architecture level, some techniques like architecture synthesis and transformation
can be used; and at system level, designers can perform task scheduling and
allocation to optimize power consumption for processors. In this chapter, we mainly
discuss power optimization techniques at circuit level and system level.

3 Energy-Efficient Design Techniques 105

Fig. 3.6 Abstraction and

hierarchy in design process of Circuit Level

ICs 5
Logic Level

<z

Architecture Level

<z

System Level

3.3 Circuit Level Power Minimization Techniques

In this section, we discuss some representative low-power design techniques at
circuit level.

3.3.1 Transistor Sizing

Transistor sizing, the operation to manipulate the width of the channel of a transistor,
is an effective technique to improve the timing performance and/or power efficiency
of CMOS circuits [10]. That is, by increasing the width of the channel and hence the
transistor size, the driving capability of the transistor increases with reduced signal
rise/fall times at the gate output.

Earlier works in transistor sizing focus on minimizing the area of the circuit
subject to a certain delay constraint [14,78]. With aggressive technology scaling,
silicon area is of less concern and sizing transistors for power minimization has been
popular [32,54].

Theoretical analysis for transistor sizing usually assumes a continuous sizing
model, which is only possible for full custom design. For standard cell based
IC designs, transistor sizes are pre-determined in the cell library and with some
discrete values only. In the early days, the number of library cells were quite
small, ranging between 50 and 100 cells. Further optimization needs for power-
performance tradeoff have changed this situation substantially. With the need for
more sizing options for each logical cell, today’s libraries usually have up to 1,000
cells.

106 R. Ye and Q. Xu
3.3.2 Technology Mapping

Technology mapping is an optimization technique that selects library cells for the
implementation of a given logic function, serving as the final step of logic synthesis.
The logic network, resulting from technology-independent optimizations, is mapped
with given library cells to generate an optimized circuit while satisfying design
constraints.

Technology mapping is the step in IC design flow where transistor/gate sizing
is actually performed. Besides choosing between the same kind of cells with
different sizes, it also chooses between different gate mappings: either simple
cells with small fan-in logic or complex cells with large fan-in logic. Generally
speaking, simple gates are good from a performance perspective due to the quadratic
relationship between delay and fan-in logic, while complex gates with smaller
intrinsic capacitance are attractive from the energy perspective. Consequently,
designers tend to replace simple gates with complex ones in non-critical timing
paths for power reduction.

Technology mapping is usually formulated as a directed acyclic graph (DAG)
covering problem [99, 100]. To be specific, the Boolean function to be mapped
is represented in canonical form as a subject DAG. Similarly, gates in the library
are represented as gate DAGs. Technology mapping is then to find an optimized
covering of the nodes of the subject DAG using the available gate DAGs.

While conventional technology mapping focuses on minimizing area and/or
circuit delay, the graph covering formulation of technology mapping has been
extended to integrate power optimization as an important objective [26, 62, 99—
101]. For instance, in [99, 100], the subject DAG is created for the Boolean function
to be mapped using a basis function consisting of two-input NAND/NOR gates
and inverters, and the overall algorithm flow of technology mapping for low power
follows along the algorithm for area and delay.

3.3.3 Supply Voltage Scaling

Supply voltage scaling is probably the most effective technique used for power re-
duction, due to the quadratic dependency of dynamic power on supply voltage [114].
Moreover, it also facilitates to reduce leakage power since leakage currents decrease
as supply voltage scaling down. Both static voltage scaling (SVS) and dynamic
voltage scaling (DVS) have been widely used in today’s IC designs, which achieve
power reduction with small performance penalty.

With SVS, we have a multiple supply voltage (MSV) design, wherein circuits are
partitioned into multiple “voltage islands” and each island operates at a specified
supply voltage that satisfies its own performance requirement. In such designs,
to meet the timing requirement of each voltage island, the corresponding supply
voltage has to be high enough to drive the most timing-critical cell, even though

3 Energy-Efficient Design Techniques 107

the rest of cells may have much more relaxed timing requirements. Consequently,
the voltage assignment to a certain island is dominated by the required voltage of
the most timing-critical path, and designers tend to group cells with similar timing
requirement together as voltage islands. Numerous works have been presented to
achieve an optimized MSV design at various design stages, e.g., floorplanning [67—
69, 82], post-floorplanning [60, 61], placement [34,63], and post-placement [17,
55,106-108]. Note that, wherever an output from a low V;, island needs to drive
an input to a high V,, island, a level shifter is required at the interface, resulting
in extra power overhead. Because of this, more islands do not always imply better
energy efficiency, as shown in [69].

With DVS, supply voltage is adaptively changed according to runtime per-
formance demands [38, 45, 88]. When relatively low performance is sufficient,
supply voltage and clock frequency are both lowered at runtime, delivering reduced
performance with substantial power reduction. Similar to most control systems,
there are three key components to implement a DVS system: a targeted system
that supports operation at multiple voltages, a management centre that generates
commands to control the behavior of the targeted system, and a control loop that
delivers the commands and collects system status at runtime.

3.3.4 Clock Gating

Up to 50 % or even more of dynamic power is spent in clock distribution network,
driving clock buffers with extremely high toggle rates. Clock gating is an effective
technique to address this problem, which disables a portion of inactive clock tree and
its relevant logic elements. The dynamic power consumption is hence dramatically
reduced (leakage power dissipation remains) [72].

Clock gating is usually implemented at register-transfer level (RTL) [57], which
identifies the clusters of FFs that share a common enable control signal, and uses
this enable signal to control such a clock gating circuit that is connected to the clock
ports of all these FFs. Consequently, as long as the enable signal is de-asserted, these
FFs under control are clock-gated to have no switching activities and consume no
dynamic power. Generally speaking, EDA tools are able to identify fine-grained
clock gating opportunities while module-level clock gating is conducted manually.

3.3.5 Input Vector Control

The input vector control (IVC) problem is to find input vector combinations that
minimize the leakage current of a circuit, taking advantage of stacking effect, the
phenomenon that subthreshold leakage current flowing through a stack of series
connected transistors is greatly reduced if some of them are turned off. Simply
speaking, the subthreshold leakage through a logic gate depends on the applied

108 R. Ye and Q. Xu

Supply Voltage

Sleep c{

Low Threshold Voltage Logic

| High Threshold
| Voltage Device

Virtual Ground

Fig. 3.7 An example to show MTCMOS circuit structure

input vector, making the total leakage current of a circuit depend on primary input
combinations. Consequently, by applying proper input vectors, the circuit can work
in a low leakage state.

The most straightforward method to find low-leakage input vectors is to enumer-
ate all combinations of primary inputs. Clearly, such an exhaustive method is only
applicable to those circuits with a small number of primary inputs. For large circuits,
a more efficient and effective method is to use some probabilistic metaheuristic
algorithms that can exploit historical information in order to speculate on new
search points to obtain a near optimal solution. With the ever-increasing impact of
leakage power in nanometer devices, IVC techniques have attracted lots of attention
(e.g., [1,30,47,71]). For example, a stack transistor insertion technique is presented
in [47], wherein the authors first identify circuit input vectors, putting most of the
circuit into a low-leakage state, and then insert transistors to enable leakage control
of those leakage paths that are not able to turn off series transistors.

3.3.6 Multi-threshold Designs

Multiple threshold CMOS (MTCMOS) circuit, which has both high and low
threshold transistors in a single chip, can be used to tradeoff circuit performance
and leakage power.

A common implementation of MTCMOS for reducing power makes use of
sleep transistors. That is, low V; transistors are used as logic cells to provide high
performance while high V; transistors with low leakage serve as sleep transistors,
disconnecting logic cells from power supply network. As shown in Fig.3.7,

3 Energy-Efficient Design Techniques 109

MTCMOS involves high V; transistors to gate the power supply of a logic block
constructed using low V; transistors [53]. When high V; sleep transistors are turned
on, low V; logic works as usual, and switching is performed through fast low V;
devices. When the circuit is in inactive mode, high V; transistors are turned off,
disconnecting the gates from the ground and resulting in low subthreshold leakage
current.

Compared to MSV designs, which require level shifters and special layout
strategies, introducing multiple thresholds has relatively smaller impact on the
design flow. Existing designs can be modified into MTCMOS blocks by simply
adding high V; transistors as power supply switches. However, by introducing
an extra series device to the power supply network, MTCMOS circuits incur a
performance penalty when compared to regular CMOS circuits, if these devices
are not sized properly. Moreover, retention registers need to be added to hold the
data of main register of the power-gated block.

3.4 System Level Power Minimization Techniques

Managing power dissipation at system level is able to considerably decrease energy
consumption because we have a better view on application needs at this level.
Various energy-efficient design techniques, such as dynamic power management
(DPM), dynamic voltage scaling (DVS) and task migration, have been explored in
the literature and applied in state-of-the-art low-power system designs.

DPM for electronic systems, which trades off performance for power savings
in a controlled fashion, is one of the most successful techniques used for energy-
efficient computing [7]. By taking system workloads into account, DPM reduces
power dissipation via selectively shutting down (or lowering the performance of)
inactive system components. For example, a microprocessor can be put in sleep
mode for power reduction when it is idle for some time and it is waken up when
new tasks arrive. Consequently, the system can be modeled as a power state machine
[110]. The transitions between states are controlled by commands issued by a power
manager (PM) that observes the workload of the system and decides when and how
to force power state transitions. The power manager makes state transition decisions
according to the power management policy implemented in the system a priori.
The choice of DPM policy that minimizes power under performance constraints
(or maximizes performance under power constraint) is a constrained optimization
problem.

To be specific, a power-manageable system can be modeled as shown in Fig. 3.8
[7,97], which includes three components: service requester (SR), service queue (SQ)
and service provider (SP). SR issues requests as the event source, while SP processes
requests. SQ buffers requests that cannot be processed at once, if SP is too busy. SR
has several operational states to represent different service request rates, which can
roughly be considered as the possible request number issued in a time unit. SP can
have different modes, such as run mode to process requests, and sleep mode to save

110 R. Ye and Q. Xu

Service Provider

Service Queue

®

Requester

Service d> 4' N

&=

SR state SQ state SP state
observer observer observer Command

Power Manager

Fig. 3.8 Abstract structure of DPM system model

power in case of no requests. As for SQ, its state can be simply described as the
stored request number. The power manager observes system states (consisting of
SR, SQ and SP states), and controls the behavior of SP, to achieve power savings at
certain performance penalty. This is a general framework and in practice designers
should detail this framework to make it more applicable and efficient.

System level DPM effectively reduces power consumption by shutting down
during the idle periods between application workloads. DVS, on the other hand,
reduces energy consumption by changing processor speed and voltage at run-time
depending on the needs of the executed applications [88]. Early DVS algorithms
simply set processor speed based on the processor utilization of fixed intervals;
while more sophisticated voltage scaling techniques consider the individual re-
quirements of running tasks. The approaches presented in [45] assume that all
tasks run at their worst case execution time (WCET). The workload variation slack
times are exploited on a task-by-task basis in [84], and are fully utilized in [59].
Pering et al. [73] introduces a voltage scheduler that determines the operating
voltage by analyzing application requirements. The scheduling is done at task
level, by setting processor frequency to the minimum value needed to complete all
tasks. For applications with high frame-to-frame variance, such as MPEG video,
schedule smoothing is done by scheduling tasks to complete twice the amount
of work in twice the allocated time. In most DVS approaches presented in the
literature, scheduling is done at the task level, assuming multiple threads. The
prediction of task execution times is done either using worst case execution times, or
heuristics. Such approaches neglect that DVS can be done within a task or for single-
application devices. For instance, in MPEG decoding, the variance in execution time
on frame basis can be very large.

Note that, conducting system level power optimization can be quite different in
different types of targeted systems. In this section, we introduce system level power

3 Energy-Efficient Design Techniques 111

Fig. 3.9 Power states of
StrongARM SA1100 RUN

P=400mw

y \Ou\s
10us 160ms

SLEEP

P=0.16mw

—_—
90us

management technique based on two important types of computing devices: general
purpose processors and embedded systems. Generally speaking, in general purpose
processors, the arrivals of tasks are unknown and hence how to predict task arrivals
is quite important for effective DPM, while in embedded systems some preliminary
information about tasks is assumed to be acquired in advance.

3.4.1 General Purpose Processors

Due to the unknown task characteristics in general purpose processors, state
transitions in DPM usually involve non-trivial performance penalty and power cost.
An eager power management policy that turns off system components as soon as
they are idle may even increase the system power dissipation and degrades its
performance at the same time. Consequently, how to optimize the DPM policy, the
procedure that takes decision on the state of the system components, is a rather
complex constrained optimization problem, especially considering the fact that a
component may have multiple operational modes with different power benefits and
transition costs [18]. For example, a processor in deep sleep state has lower power
consumption but requires more transition time and transition power when waken up,
compared to that in light sleep state.

For a complex electronic system that supports DPM, we can model it as a
finite-state machine with multiple power modes [18], as shown in Fig. 3.9, taking
StrongARM SA-1100 processor as an example. This processor has three operational
modes: run mode, idle mode, and sleep mode. In each mode, the processor has
different power dissipation, and the mode transition would induce both performance
penalty and power cost. As systems typically experience non-uniform workloads
(manifested as idle periods among tasks), we can still obtain power savings from
selective shutdown even after compensating the non-trivial transition cost.

There are numerous related works in dynamic power management in the
literature. From the aspect of conducting effective power state transitions, generally
speaking, existing DPM policies can be classified into two categories [27]: heuristic
policies and stochastic policies. Time-out policy [56] is one of the most widely-used

112 R. Ye and Q. Xu

heuristic policies, which simply turns off a component when the duration time, for
which the component has been in idle period, exceeds a pre-defined time interval.
Time-out policies are simple and robust, but they may be too fast or too slow to
react. Stochastic policies, on the other hand, model system state changes and request
arrivals as stochastic processes. Markov decision process [7] and Semi-Markov
decision process [87] are often adopted to derive an optimal DPM policy according
to these models.

In the above works, DPM policies are determined at design stage and they may
not work well with varying workload characteristics and environment conditions.
Learning-based DPM solutions are thus attractive since they are able to adapt
to varying system conditions and workloads. Srivastava et al. [91] explored a
shutdown mechanism to predict the length of idle time based on real-life traces
and recent computation history. In [43], Hwang et al. predicted the current idle
period length using exponential average approach based on previous idle periods.
In [96], Steinbach proposed reinforcement learning-based DPM policy to perform
mid-level power management in wireless network cards. Theocharous et al. [98]
considered user annoyance as a performance constraint and presented a user-based
adaptive power management technique. In [27], Dhiman and Rosing proposed to
dynamically select the best DPM policy from a set of candidate policies. In [97],
Tan et al. presented an approach for system-level power management in a partially
observable environment, based on model-free constrained reinforcement learning.

There are also some recent works that consider DPM in multi-core processors,
which can be categorized into per-core approach [44, 49, 50] and chip-wide
approach [31, 38]. In [44], Canturk et al. proposed an approach to set the
power mode of each core to meet a power budget. Jung et al. [49, 50] presented
a supervised learning-based DPM framework for multi-core processors. Their
approach, however, determines power management actions for each core based on
their individual workload prediction and hence is not a “true” multi-core power
management scheme. In [38], Sebastian et al. utilized a control theory based
controller to apply DVFES technique, but the task-to-core allocation is fixed in their
approach. In [31], Mohammad et al. proposed a hierarchical DPM framework under
given throughput constraint, which employs core consolidation, coarse-grained
DVFS and task allocation at the CMP level and fine-grained DVFS based on closed-
loop feedback control at the individual core level. This work required to obtain task
characteristic a priori for task allocation.

3.4.2 Embedded Systems

In response to today’s competitive electronics market, when designing complex
embedded systems, it is increasingly popular to employ pre-designed multiprocessor
system-on-a-chip (MPSoC) platforms and map applications onto them to reduce
design risk and achieve short time-to-market [77]. Various platforms with specific

3 Energy-Efficient Design Techniques 113

functionalities reflecting the need of the expected application domain have been
developed in the industry recently, e.g., ARM PrimeXsys platform [2].

When building platform-based embedded systems, a basic issue is to conduct
task allocation and scheduling for applications, in which the allocation of tasks
is to effectively utilize the available processors while scheduling is to meet
various requirements. One major trend in embedded system design is towards
energy-efficient computing based on the concept of performance on demand, by
dynamically adjusting the operational voltage and frequency of processors based on
instantaneous processing requirement. There is a rich literature on energy-efficient
design methodologies (e.g., [46]), which mainly resort to DVS and slack reclaiming
to cut down the energy consumption of embedded processors. In particular, Schmitz
et al. [81] proposed an energy-efficient co-synthesis framework for multi-mode
embedded systems under the consideration of mode execution probabilities, in
which a single execution mode occupies the entire MPSoC at a time.

Both DVS and DPM can be used to achieve energy-efficient scheduling for
embedded systems. When both solutions are available, it is advocated to consider
DVS first [46]. The input specification of low power system scheduling problem is
usually given in terms of a set of task graphs. A typical problem formulation based
on MPSoCs can be developed as follows:

Problem: Given

¢ The floorplan of the platform-based MPSoC embedded system that consists of £
processor cores;

* 1 execution modes. Each mode i is represented by a directed acyclic task graph
G; = (V;,E;), wherein each node in V; indicates a task in G;, and E; is the set
of directed arcs that represent precedence constraints;

+ The joint probability density function! that the system is in various modes
Sy v v, V1, Y2, ¢+, yn), Where y; represents the probability that the system
is in execution mode i;

* The execution time w; ;x of task j of mode i on processor k under maximum
supply voltage V44

* The power consumption P; ;i of task j of mode i on processor k under
maximum supply voltage V;4;

* Deadline d; ; of task j of mode i, meaning that task j in G; should be finished
before d; ;;

e Other design constraints, e.g., target service life L and the corresponding
reliability requirement 1%;

* System parameters, e.g., failure mechanism parameters (e.g., activation energy
E, of electromigration) and the corresponding failure distributions;

to determine a periodical task allocation and schedule on the given MPSoC platform
for each execution mode such that the expected energy consumption is minimized,

The mode execution probabilities can be estimated as in [81].

114 R. Ye and Q. Xu

under the performance constraints that real-time tasks are finished before deadlines
and some other design constraints.

3.5 Impact of Power Minimization Techniques on Reliability

With technology scaling, reliability has emerged as a major design constraint for
high-performance IC designs. As energy-efficient design techniques change the
power/temperature densities of a circuit, it is imperative to take their impact on
reliability into consideration. In this section, we discuss the above issue from three
aspects: hard errors that affect circuit lifetime reliability (Sect. 3.5.1); soft errors that
cause flipping of values in circuit storage elements (Sect. 3.5.2); and timing errors
that appear on circuit critical paths (Sect. 3.5.3).

3.5.1 Hard Error

No doubt to say, designers need to ensure the lifetime reliability of IC products
so that their failure rates would not exceed customers’ expectations. This has
become a challenging task with relentless technology scaling [93]. On the one
hand, some well-known failure mechanisms such as time dependent dielectric
breakdown (TDDB) in the gate oxides and electromigration (EM) on interconnects
have increasing adverse effects due to shrinking feature size. On the other hand,
degradation of device parameters over the circuit’s lifetime has emerged as a major
threat to system reliability. In particular, circuit wearout resulting from negative
bias temperature instability (NBTI) and random telegraph noise (RTN) that cause
electrical parameter shift (e.g., transistor threshold voltage increase) is of particular
concern with technology scaling and it is shown that they could result in significant
performance degradation of the circuit over its service life [90].

Energy-efficient design techniques generally are helpful to improve circuit
lifetime reliability as they facilitate to reduce circuit power/temperature density.
However, as functional blocks in a system age differently, without explicitly taking
their aging rates into consideration, IC designs may still not meet their lifetime
reliability requirement. As discussed earlier, DVS reduces power consumption by
scaling down voltage and frequency of operation at runtime. As reducing circuit
power facilitates to lower device temperature while most circuit failure mechanisms
exacerbate themselves under high temperature, circuit lifetime reliability is usually
improved implicitly. On the other hand, aggressive power management policies
may also decrease circuit lifetime reliability because of the degradation effect that
temperature cycles have on modern IC materials [92]. Rosing et al. [75] plot
the tradeoff between mean time to failure (MTTF) and power saving in Fig. 3.10,
wherein they present three common failure mechanisms: EM, TDDB, and thermal
cycling (TC). These values are obtained from a particular test core that has only one

3 Energy-Efficient Design Techniques 115

Fig. 3.10 MTTF vs. power
savings

Power Savings

sleep state but no DVS capability with 95 nm technology. Although more aggressive
power management policies improve MTTF due to EM and TDDB, the circuit suffer
from significant thermal cycling due to frequent shutdowns. As a result, the overall
MTTF in fact decreases as more power savings are obtained.

Many widely-accepted reliability models for the above failure mechanisms at
device and circuit level have been proposed and empirically validated by academia
and industry [8,9,48,95]. They are usually quite complex and involve a number of
parameters. Let us take MTTF due to EM as an example [48]:

A “aE
L o (3.5)
Jn

MTTFry =

where Ag) is a constant determined by the physical characteristics of the metal
interconnect, J is the current density, E,g)sis the activation energy of electromi-
gration, n is an empirically-determined constant, k is Boltzmann’s constant, and T
is the temperature.

Circuit lifetime reliability can be improved at various design levels. At de-
vice/gate level, we can employ gate resizing and threshold voltage tuning to make
device less vulnerable [21,74,109]. At circuit level, we can give more design margin
to those frequently-stressed circuit paths. For example, in [15], a variable-latency
adder design is presented for NBTI tolerance, wherein the proposed VL-adder
can automatically shift data capturing clock edge to tolerate NBTI-induced delay
degradation on critical timing paths. In [105], a novel input vector control technique
is proposed to minimize NBTI effects. In [16], the minimum cost reliability driven
routing is considered and an iterative rounding-based integer linear programming
algorithm is proposed to mitigate EM effects. At micro-architectural level, block-
level redundancy can be introduced to protect those functional units that are prone
to wearout failures. In [25], a tool capable of evaluating NBTI vulnerabilities early
in the design cycle was developed to facilitate architectural level aging analysis,
which can be used to guide redundancy allocation. In [23], by judiciously binding
and scheduling applications onto the buses in the microarchitecture, the activities
on some critical wires can be reduced to mitigate EM degradation. In [86], the

116 R. Ye and Q. Xu

Fig. 3.11 Interaction of an
alpha particle or a neutron
with silicon crystal

Alpha or neutron strike

source drain

+ bulk

Fig. 3.12 Strike on a storage
device can flip the bit stored

authors proposed to use the inherent redundancy available in microarchitectures to
handle hard failures and enable graceful performance degradation in fail-in-place
systems. Finally, at architectural and OS level, reliability-driven task allocation
and scheduling techniques and dynamic reliability management (DRM) policies
can be employed to balance the stress on different processor cores on an MPSoC
design. In [39-42], several task allocation and scheduling techniques are presented
to tradeoff lifetime reliability and energy consumption for MPSoC designs.

From the above, we can see that although energy-efficient design techniques
can lower system power dissipation and thus implicitly increase circuit lifetime
reliability for some failure mechanisms, its impact to the overall system lifetime
reliability is not certain. Without a systematic solution, today’s IC designs either take
arather conservative approach that employs many of the above solutions to mitigate
reliability threats, which results in non-trivial hardware/performance overhead, or
simply rely on power/thermal control techniques to improve reliability, which may
not be sufficient to meet lifetime requirement [41].

3.5.2 Soft Error

Radiation-induced transient faults arise from energetic particles, such as alpha
particles from packaging material and neutrons from the atmosphere, generating
electron-hole pairs (directly or indirectly) as they pass through a semiconductor
devices, as demonstrated in Fig.3.11. Transistor source and diffusion nodes can
collect these charges. A sufficient amount of accumulated charge may invert the
state of a logic device, such as a latch, static random access memory (SRAM) cell,
or gate, thereby introducing a logical fault into the circuit’s operation (Fig. 3.12).
Because this type of fault does not reflect a permanent malfunction of the device, it
is termed soft or transient.

3 Energy-Efficient Design Techniques 117

As a fundamental parameter to reflect soft error vulnerability of an electronic
device, critical charge (Q.,;,) describes the minimum charge that must be deposited
by particle strike to cause a device to malfunction. It is usually computed using
integrated circuit simulators, such as SPICE, by injecting current pulses into
the sensitive nodes of device. These pulses represent the current generated from
electron-hole pairs created by an alpha particle or neutron strike. Because the
charge value has the following quadratic relationship with respect to the supply
voltage Vy4:

Qcharge =Cx dedy (36)

where C is capacitance, it is clear to observe that the soft error vulnerability of a
device, represented by critical charge Q.,;;, will also quadratically increase with
respect to V4. For example, Hazucha et al. [36] showed that reducing the supply
voltage from 3.3 to 2.2V for an SRAM cell in a 0.6 um technology decreases the
Qrir from 91.4 to 51.5fC. As many energy-efficient techniques achieve power
saving by reducing supply voltage, it is inevitable that they are associated with
higher soft error rate [83].

In order to mitigate the impact of soft errors, we have to rely on redundancy, i.e.,
either by duplicating hardware component or by performing redundant computa-
tion. With redundancy, computational results are compared, and the disagreement
between redundant components indicates the occurrence of soft error. Clearly,
without a careful vulnerability analysis, this redundancy-based protection would
lead to significant area/performance overhead and cause more energy consumption.
Consequently, when pursuing power minimization with reduced supply voltage, the
increase of soft error rate and its associated overhead should be carefully taken into
account.

3.5.3 Timing Error

In a synchronous design, the delays of combinational logic paths must not exceed
the operational clock period; otherwise, timing errors occur. To be specific, in a
synchronous circuit, let S;; represent the timing slack of a certain path between two
flip-flops (FF; and FF;), we have

Sij = Tcp - Tsetup - Dij7 (3.7

where T, is the clock period, Ty, is the setup time of FFs, and D;; is the
maximum path delay. If the timing slack S;; is not positive, we say timing error
occurs on this path.

With the continuous downscaling of transistor feature size, there is an increasing
uncertainty for the timing behavior of today’s ICs, often manifesting themselves as
infrequent timing errors on speed-paths, i.e., critical or near-critical paths. There are

118 R. Ye and Q. Xu

multiple factors that contribute to this effect: (i) inevitable static process variation
caused by manufacturing imperfection leads to the mismatch of timing performance
between the designed value and the actual one; (ii) dynamic variations in supply
voltage, temperature, and multiple-input switching cause varying circuit delay at
runtime; (iii) circuit aging mechanisms such as NBTI lead to gradual increase of
circuit delay over its lifetime. Considering these variation effects, the path delay
becomes a random variable, therefore we have

Sij = TCp - Tsetup - Dijy 3.8)

where S;; is the random variable of timing slack and D;; is the random variable of
the maximum path delay. The probability for S ; being negative is considered as the
timing error probability. Traditionally, a large timing guard band has to be reserved
to tolerate the above variation effects.

With supply voltage scaling down to reduce power consumption, there are some
other side-effects, e.g., the delay increase of logic gates, thereby increasing the
possibility of timing violation. To be specific, we have the delay model as follows:

__Ki-Vaa (3.9)
(Vaa = Vin)®

where D is gate delay, K; and o are fitting parameters as defined in [82].
That is to say, power consumption is reduced with voltage scaling down at the
expense of reduced timing performance or increased timing error probability. From
this perspective, the tradeoff between power and performance must be carefully
considered when conducting power minimization. For example, in the region-based
multi-supply voltage (MSV) design, one of the most critical problems is to identify
those non-critical circuit blocks and group them together as an individual voltage
island, so that low supply voltage can be applied to these blocks for power reduction
while timing performance of the entire system would not be reduced.

3.6 Emerging Energy-Efficient Design Techniques

The quest for better energy efficiency is never ending, even after decades of research
and practice. In this section, we discuss three emerging energy-efficient design
techniques: timing speculation (TS) at circuit level, approximate computing at logic
level and adaptive power management at system level. Both timing speculation and
approximate computing achieve power savings by allowing errors to occur, while
adaptive power management is a robust power management technique that can
work under variable system environment (e.g., workloads and usage patterns). In
Sect. 3.6.1, we introduce timing speculation and show how it enables the tradeoff
among performance, power and reliability by allowing infrequent timing errors to
occur. In Sect. 3.6.2, we discuss approximate computing techniques, which are able

3 Energy-Efficient Design Techniques 119

Energy
Efficiency

Error Rate

| Design |
Guardband

A B C Lower Voltage/ A B C Lower Voltage/
Higer frequency Higer frequency

Fig. 3.13 Motivation for timing speculation

to trade off computation quality (e.g., accuracy) and computational effort (e.g.,
energy consumption). In Sect.3.6.3, we introduce adaptive power management
techniques. A case study on learning-based power management is shown in
Sect.3.6.4.

3.6.1 Timing Speculation

Conventional IC designs try all means to achieve error-free computation, even under
worst-case combinations of process, voltage, and temperature (PVT) variations and
wearout effects [12,29]. As the above circuit non-idealities inevitably worsen with
technology scaling [11], more design guardband has to be incorporated to ensure
IC timing correctness. Consequently, such worst-case design methodology results
in pessimistic designs with considerable power and performance overheads [5],
lessening the benefits provided by technology scaling. As can be seen in Fig.3.13,
even though a particular circuit may operate at point B without timing errors,
during the design phase, we have to conservatively let the circuit work at point A
with lower frequency and/or higher supply voltage to ensure its timing correctness
throughout its service life. To address the above problem, better-than-worst-case
(BTWC) design methodology that allows reliability to be traded off against power
and performance was proposed to dramatically improve the energy efficiency of
computation [4,37]. The basic idea behind BTWC design methodology is that, since
circuit non-idealities mainly manifest themselves as infrequent timing errors on
critical paths of the circuit (if sufficient design guardband is not incorporated) [79],
we can over-clock the chip and/or reduce the supply voltage of the chip to a point
that timing errors occur and achieve resilient computation (instead of error-free
computation) by performing timing error detection and correction. This approach
is generally referred to as timing speculation. As can be seen in Fig. 3.13, a timing
speculative circuit can operate at point C with much higher frequency or much less
supply voltage, thus greatly improving the circuit’s energy efficiency. Due to this

120 R. Ye and Q. Xu

at L f

|

1
Logic
DI] op] Main Ql R StEIzge

1 Flip-flop -
Error L
L ol Shadow _\) >
latch

Comparator

4 Razor flip-flop Error

ik delay—3 L5

Fig. 3.14 The design of Razor-FF

significant benefit, TS techniques have attracted lots of research interests from both
academia and industry [3].

Without loss of generality, let us discuss one of the most representative TS
techniques, Razor [22, 28], to illustrate how resilient computation can be achieved
with timing speculation. To detect timing errors on critical paths, the receiving ends
of critical paths, referred to as suspicious flip-flops, are replaced with Razor flip-
flops (Razor-FFs), which includes a main flip-flop, an additional shadow latch and
some control logic (see Fig.3.14). The main flip-flop latches the output signal at
the clock edge with possible timing error, while the shadow latch, controlled by a
delayed clock signal, latches the signal a fraction of a cycle later, which guarantees
to receive the correct value. Consequently, when the shadow latch and the main
FF values do not agree, indicated by the comparator, the timing error is detected.
For microprocessors, timing error recovery can be achieved with microarchitectural
support [89]. That is, when a timing error is detected, the processor pipeline
is flushed and the correct result from the shadow latch is returned back into
the pipeline. Then, by replaying instructions (at possibly lower frequency), the
processor is able to recover from the timing error [13].

Timing error recovery inevitably incurs some performance loss and extra energy
consumption. As can be observed in Fig. 3.13, further increase of frequency and/or
decrease of voltage beyond point C will lead to too many rollbacks and hurt system
performance/energy efficiency. Therefore, it is essential to reduce timing error rate
(TER) to optimize timing speculative circuits [24]. However, there is usually a “wall
of critical paths” in the final implementation of the circuit from the traditional worst-
case design flow. This is due to the nature of today’s IC design and optimization
flow, e.g., gates on those initially non-critical paths are often downsized to tradeoff
for power and area, making many such paths to be critical too. This suggests that,

3 Energy-Efficient Design Techniques 121

given a fixed circuit design, the effectiveness of timing speculation techniques is
limited by a fixed threshold beyond which the circuit will become unusable.

To address the above issue, various optimization techniques were presented
for timing speculative circuits in the literature. The key issue in this optimiza-
tion problem is to reshape the path delay distribution of the circuit so that
those frequently-exercised timing paths are optimized with more timing slack
while other paths are allowed to have timing errors. EVAL [80] proposes a so-
called high-dimensional dynamic adaptation technique that trades error rate for
processor frequency by tilting, shifting, or reshaping the path distributions of
various functional units. Blueshift [33] identifies and optimizes the most frequently
exercised critical paths by on-demand selective biasing and path constraint tuning.
DynaTune [104] optimizes the most frequently-sensitized critical paths of the circuit
by assigning low threshold voltage to those critical gates that are strongly related to
the occurrence of timing errors. Kahng et al. [52] proposed a slack redistribution
strategy to increase the level of voltage overscaling under a given TER constraint
to minimize the power consumption. Ye et al. conducted pre-silicon clock skew
scheduling [112] and post-silicon clock skew tuning [111] to manipulate timing
slacks at circuit level to reduce timing error rate in timing-speculative circuits.
In [113], the authors studied the voltage island generation problem to achieve better
energy efficiency in timing-speculative circuits.

The above techniques are helpful for TER reduction, but one common limitation
is that they conduct optimization on top of a given circuit netlist and hence are
not capable of manipulating the logic structure of the circuit. In [19], the authors
attempted to conduct logic synthesis for BTWC designs. They constructed a simple
timing error probability model and used it to guide the “balance” logic optimization
step, which is a logic decomposition method initially used for delay minimization
[20]. The effectiveness of this solution, however, is not very impressive from their
experimental results, likely due to the lack of accuracy of the unvalidated timing
error model and the simple strategy to include timing errors into optimization cost
function only. In [66], the proposed logic synthesis technique manipulates circuit
structures from the ground up and dramatically reduces timing error rates. In [65],
cost-efficient re-synthesis solutions are proposed to reduce the number of suspicious
FFs and pad the short paths.

3.6.2 Approximate Computing

A large and growing number of applications are inherently error-tolerant, which
do not require “strict” correctness but rather approximate correctness. Applications
of such kind include multimedia, DSP, wireless communication, data mining and
synthesis. They may process noisy data sets and the associated algorithms are
stochastic or involve a human interface with limited perceptual capability. For these
applications, approximate computing, being able to trade off computation quality

122 R. Ye and Q. Xu

Fig. 3.15 A motivational } Power Consumption
example for approximate
computing [T T T T -~ 7 i
I Accuracy Requirement Time

Time

(e.g., accuracy) and computational effort (e.g., energy), has attracted lots of attention
recently (e.g., [51,58,85,102,103]).

Generally speaking, approximate hardware designs implement a slightly differ-
ent yet more energy-efficient and/or faster Boolean function. Various approximate
designs for specific arithmetic components were presented in the literature, taking
advantage of the structural properties of these components. In [35], the authors
proposed to design approximate full adder cells with reduced complexity at the
transistor level and utilized them to design approximate multi-bit adders. In [58],
the authors presented a 2 x 2 approximate multiplier block by elaborately revising
the K-map of 2 x 2 multiplier. By using this inaccurate multiplier with simpler logic
design, significant power savings can be achieved. The above works try to substitute
original computation components with approximate ones at design stage, while
in [51], the authors illustrated how power benefits can be obtained at runtime with
an accuracy-configurable design. As shown in Fig. 3.15, the dashed line represents
the case with accurate computation while the solid line represents the case with
approximate computing. In accurate computation, we always have a relatively high
power consumption while in approximate computing we can adjust the system
setting and hence consume less power according to varying accuracy requirement
of different system workloads. Motivated by the above, [51] proposes a pipelined
adder and an error correction mechanism. By selectively turn on/off the correction
component in different pipeline stages of the approximate adder, the computation
accuracy can be controlled to satisfy system requirement.

Instead of designing certain arithmetic components, [102] presents a systematic
methodology for logic synthesis of functionally approximate circuits. As shown in
Fig.3.16, the concept “quality constraint circuit” is used to formulate the problem
of approximate synthesis, which consists of three components: the original circuit,
the approximate circuit and the quality function. The original circuit represents the
structural description of circuit specification that needs to be approximated while the
quality function defines the acceptable accuracy constraint. By using the primary
outputs of both original circuit and approximate circuit, the quality function can
output one bit Q-value to indicate whether the accuracy constraint is satisfied.
Consequently, by taking primary inputs into the original circuit, we can utilize
quality function to obtain the output range of approximate circuit that would not

3 Energy-Efficient Design Techniques 123

Primary Input Primary Output
> Original Circuit P>

Quality
Function

Approximate Circuit

Approximate
Primary Output

Fig. 3.16 Logic synthesis framework of quality constraint circuit

Fig. 3.17 Conceptual
framework of adaptive power
management 4

Control Action

Power Manager Environment

A

State Information

affect the value of Q. These input combinations can be used to obtain a simplified
approximate design to achieve power savings or performance improvement.

3.6.3 Adaptive Power Management

Adaptive power management (APM) techniques reduce power dissipation by
turning off certain idle components adaptively according to the characteristics of
runtime workloads. As discussed in Sect. 3.4, when designing power management
policies, the main challenge is that it is difficult, if not impossible, to know which
components should be shut down and when is the opportune moment.

APM is an example of autonomic system, where autonomic control is applied
for regulation of processes without direct human intervention. Conceptually, au-
tonomics is derived from human body’s autonomic nervous system that controls
individual organ function. The objective of autonomic computing is to create
systems that are self-managing, self-healing, and self-protecting. It promises to
reduce expenditures associated with operations, and to significantly improve the
end user’s experience [98].

As shown in Fig.3.17, an APM system [98] consists of two components at
least: power manager and environment. Usually, power manager monitors the
environment states and uses this information as inputs to determine a power control
action that adapts to current environment condition. After applying the generated
action to environment, the environment under control can tune itself to meet varying
condition. From this perspective, an APM system needs to be able to reason about

124 R. Ye and Q. Xu

I I
| I]
+
Core 1 | I | Task n+1 |
| =
| +
Core 2 ! | Task n+1 |
!
I
Core 3 Task n |
| I
I I
Core 4 | |
| 1 | t2

Fig. 3.18 A motivational example for task allocation on multi-core processors

the environment uncertainty, due to the fact that user context cannot be directly
observed from sensors in a completely accurate manner, such as temperature and
current sensors.

To deal with the above uncertainties, artificial intelligence and machine learning
techniques can be employed in APM systems, which facilitate to understand the
environmental behavior and then take proper management actions under a self-
improved control policy.

3.6.4 Case Study

In this subsection, we take a learning-based power management technique on multi-
core processors as an example to show how to utilize machine learning algorithm to
realize APM.

3.6.4.1 Motivation

In multi-core processors, we have the flexibility to assign a task to any processor
core and hence the idle periods on processor cores become partially controllable,
which can be exploited for power savings. Note that, for the sake of simplicity, we
assume that each task is executed on only one core and there is no dependency
between tasks. In addition, we mainly consider dynamic power consumption for
task execution.

Figure 3.18 presents the motivational example. In this 4-core processor, when
task,+1 arrives, allocating it to different cores for processing may lead to very

3 Energy-Efficient Design Techniques 125

Fig. 3.19 Q-learning N
evel Agent
ycle [70] I
Reward ry | State S; Action ay
I
L Environment
—]

different results. Suppose the task is assigned to core 2. Since this core has been
idle for some time, it might be in sleep mode at this time point, and we have to
wake it up to process this task, causing extra power dissipation and performance
penalty. If, however, the task is assigned to core 1, we are able to save the above
cost without incurring much performance penalty since it is about to finish the task
assigned to it earlier. Ideally, if we can assign a new task to a processor core that has
just finished its earlier-assigned task at that time point, we do not need to suffer from
any cost.

Motivated by the above, we develop a novel learning-based DPM framework for
multi-core processors that judiciously allocate tasks on processor cores to achieve a
better tradeoff between power dissipation and system performance, as discussed in
the following.

3.6.4.2 Background on Q-Learning

Q-learning, as one of the prevalent reinforcement learning algorithms, has been
applied in many scientific and engineering fields. Since it is also used in our
proposed DPM solution, we briefly introduce it in the following.

The basic idea of Q-learning [70] is to decide on what action to take based on
current system state information in order to maximize the expected reward in the
future by mapping states to actions. In standard Q-learning framework (as shown
in Fig.3.19), an agent is connected to its environment via perception and actions.
In each step ¢, the agent observes the system state s;, chooses an action a; to
perform, and then receives r(s;, a;) from the environment and observes new state
S;+1. Formally, the model consists of

¢ A discrete set of environmental states, S = {s;};
* A discrete set of agent actions, A = {a,};
¢ A reward function R={r(s;,a;)}: S x A — R.

In each state, there is a Q-value associated with each action. The definition of
Q-value is the sum of the reinforcements received when performing the associated
action and then following the given policy thereafter. Given the definition, it is easy
to derive the equivalent of the Bellman equation for Q-learning:

Q(s,,a,) = r(s,,a,) +y- 1315’1_)1(Q(st-l-lsat-i-l)v (310)

126 R. Ye and Q. Xu

which is the objective to be maximized in Q-learning. According to this definition,
when receiving reward in each learning cycle, we update Q-value according to the
following equation:

0" (s;,a,) = Q(s,,a,)—}-,u-[r(st,a,)—i-)/'l(}tli?l(O(st41.ar41)—Q(se, ar)]. (3.11)

Here r(s;, a,) is the reward received in state s, with action a, taken; u is learning
rate; and y is discount rate. It should be noted that

e The learning rate p determines what extent the newly acquired information
will override the old information to, while the discount rate y determines the
importance of future rewards;

e The number of possible system states and actions must be finite, and as the
number of states and actions increases, the Q-table gets bigger and thus the
learning accuracy deteriorates quickly;

» If the agent always just takes the action with the highest Q-value for a given state,
it might end up in a local maximum, because one action might be repeatedly
taken without exploring new actions.

3.6.4.3 System Framework

As discussed earlier, we can model the targeted power-manageable system as shown
in Fig. 3.8 with three components: SR, SQ and SP. The power manager observes
system states (consisting of SR, SQ and SP states), and controls the behavior of SP,
to achieve power savings at certain performance penalty. Based on the above, we
setup our Q-learning model for DPM problem in multi-core processors.

State Space

In our Q-learning model, system states are composed of the states of SQ and SP
only, because the state of SR is unknown a priori. To simplify the problem, we
firstly consider how to describe the state space of a single-core system, and then
extend it to multi-core processors.

For single-core processors, we use a vector with two dimensions to describe its
state (s, q;). Therein, s, stands for the processor power state, e.g., run mode or
sleep mode. g; represents the queue status, which indicates how many task requests
are stored in queue to wait for processing. Suppose we consider ¢; = 0, 1, and 2
respectively for the cases that the number of requests in the queue is 0, 1 and larger
than 1. There are as many as (1. -n,) states, where 7. is the number of power states,
and ng is the number of queue states. Let (s;41, ¢;+1) represent the next state and a;

. a
represent the taken action, we have (s;.¢;) = (S/+1. i +1)-

3 Energy-Efficient Design Techniques 127

To represent system states in multi-core processors with n cores, we can extend
the state vector from two dimensions to 27 dimensions. Hence, we have the state
representation (S;1, /2, ---,Sm; 411,412, - - - »qin), Wherein s,; and ¢;; are the core
power state and the waiting queue state for core i, respectively. With the above
representation, however, the size of the state space increases to (n. - n4)". Such a
huge state space is a critical problem for learning-based approaches, because in this
case many more training samples are needed, and learning accuracy deteriorates
quickly. To solve this problem, we utilize neural network to approximate Q-values.

Action Space

In our model, we sample the system state at each time point when a task request
arrives. The power manager then observes the current system state, and determines
an action for SP to operate. As shown in Fig.3.18, when task,;; arrives, its
arrival time can determine the time point #,. At that time point, power manager
samples system state, and chooses an action to apply. The action is composed of
two components: not only the core that task,+; is assigned to, but also the power
state of the assigned core after finishing this task. In other words, the power manager
presets the power modes for all the cores. If idle time slots appear in the cores, they
will transfer to the appointed power modes.

The action can be represented as (core;,mode;). The variable mode, stands for
the preset mode for assigned core, and core; is the core index to indicate which core
to assign this task to. In this case, the action space size is (1, - n), where n, is the
number of power modes for each core and r is the number of cores.

Reward

The objective of DPM techniques is usually to achieve the maximum power savings
at slight performance penalty cost. To achieve a tradeoff between the two items, the
reward function used in our Q-learning model is expressed as below:

R(st,ar) = —(P(st,ar) + B+ RT (st, ar)), (3.12)

where R is reward, P is mean power dissipation, RT is response time and 8 is
the coefficient to trade off power and performance. If S-value is changed, the
weights of mean power and response time in reward function are adjusted to satisfy
system demand. A larger S-value means that response time is more important to our
concern.

At the time point with system state s;, the power manager chooses action ay.
Then the system state transfers from s to s, 1, and corresponding reward value can
be received.

128 R. Ye and Q. Xu

Q((Dl, sy Cbp, (Dp+1,) ¢p+q)
Output Layer

Hidden Layer

(D1 q)p ¢p+1 q)p+q

Fig. 3.20 Multi-layer sigmoid approximation neural network

3.6.4.4 Learning Algorithm
Q-Function Approximation

One of the most challenging issues in our work is the huge system space size ((n. -
ng)" - (n. - n)), which is exponentially increased with respect to processor core
number n. Q-learning at its simplest version uses tables to store Q-values. This
not only costs insufferable memory, but also requires a huge amount of training
samples to learn the Q-table accurately. For example, if we describe core with up
to 3 power states and 2 queue states, a 8-core processor would have (3 - 2)% system
states and (3 - 8) actions. Suppose that 5 training samples are needed for each table
cell, ((3-2)%-(3-8)-5) = 201,553,920 training samples are required, which is
almost impossible.

To address the above issue, we use neural network (NN) [70] to approximate the
Q-function. Hence, the key task in the Q-learning for our problem becomes how to
estimate the mapping Q (s, a) : sxa — Q. We adopt the feedforward neural network
to model the mapping Q (s, a) and represent the value function of state-action pair
(s7, a;). There are a variety of neural networks that are applicable to function
approximation, and we consider back propagation neural network (BPNN) [70], one
of the most prevailing neural algorithms in dealing with function approximation.

As shown in Fig. 3.20, there are three layers in the used neural network, namely,
input, hidden, and output layers, respectively. In the input layer, the input vector is

3 Energy-Efficient Design Techniques 129

the composite of state vector (Sy,. . . ,Sp) and action vector a. We use binary encoding
scheme to denote the input vectors for every possible system state and action. In the
hidden layer, the hidden nodes H; employs the following sigmoid function,

H; =1/(1+ e—zl'pif]q’i'wi»j)’ (3.13)

where w; ; and u; are the parameters of neural network, ®; denotes one bit of binary
input, p denotes the bit number of binary input for system state, while ¢ denotes the
bit number of binary input for action. In the output layer, the approximated Q-value
function is given by

h
O(s.a) =Y Hi-uj. (3.14)

i=1

As a whole, this neural network describes a non-linear mapping Q(s,a). At
each time ¢, the parameters of the network (wy 1,..., Wp4¢n5 U1,...,4;) are updated
in a gradient manner with the help of the back-propagation algorithm [70]. The
errors propagate backwardly from the output nodes to the inner nodes to adjust the
network’s weights. When it is applied to Q-learning, the input of back propagation
neural network is the state-action pair and its output is the Q-value corresponding to
the state-action pair.

Action Selection

The action selection mechanism is an important component of Q-learning. There
are two problems to tackle in our action selection phase.

First, if the agent always takes the action with the highest Q-value for a given
state, it might end up in a local maximum, because one action might be repeatedly
taken without exploring new actions, which prevents us from finding other solution.
In other words, action selection may greatly affect learning effectiveness, due to
the tradeoff between exploitation and exploration. To balance these two aspects,
we employ e-greedy method for action selection, so that the agent can reinforce the
evaluation of the known actions to be good and also explore unknown actions, which
helps in avoiding local maximum. We gives the action that owns the highest Q-value
a high selected probability (1 — ¢), and all the actions equally share the remaining
probability e. The probability for choosing a certain action «¢; is presented as below:

P — (1 — &) + (¢/num) if the Q value of action a; is the highest; (3.15)
" | e/num otherwise. '

130 R. Ye and Q. Xu

1. Initialization()
Set neural network parameters to random values
between 0 and 1.0
Initialize system state s
Repeat for each step of the current episode
Select action a using e-greedy
Take action a
Observe next state and receive reward R
Update back propagation neural network parameters
using gradient descent algorithm
9. Set system state s <— s’
10. Until there are no more episodes

I

® N kAW

Fig. 3.21 Q-learning algorithm based on back propagation neural network

We consider ¢ = 10 % here, and num is action number. That means, we have the
probability of 10 % to select another action instead of the action with highest Q-
value, to void local maximum.

Second, since one of the motivations is to reduce unnecessary power state
transitions to avoid transition costs, our algorithm has the trend to allocate tasks
successively to certain cores. This may induce temperature stress on certain
cores and cause reliability concerns. To tackle this problem, our action selection
mechanism is further modified. Each time, if the temperature of the core chosen is
higher than a pre-defined temperature threshold, we would give up this action and
try to select another action from the remaining cores by e-greedy again.

Overall Flow

To sum up, the Q-learning algorithm is illuminated in Fig. 3.21, which starts with
initialization (Line 1). The procedure is repeated until there are no more episodes.
For every episode, the Q-values are computed via back propagation neural network.
We then select an action in the ¢-greedy manner (Line 5), and take the action to
transfer system state from s to 8’ and receive reward value (Line 7). When we get the
reward as feedback, we update the parameters of back propagation neural network
using gradient descent algorithm (Line 8), and update state s using next state s’
(Line 9).

Note that, an off-line training phase with a convergence criterion (e.g., the
normalized error of approximated Q-value is less than 5 %) can be used to improve
the solution quality during the beginning of task execution, if necessary. We perform
online training to both Q-learning and neural network by considering each task as
one training sample.

3 Energy-Efficient Design Techniques 131

3.7 Conclusion

The quest for high energy efficiency is never ending. A large amount of works in
this area have been presented in the literature and implemented in industrial designs.
In this chapter, we first introduce background knowledge in low power designs.

We

then discuss some classic energy-efficient design techniques and their impact

on circuit reliability. Finally, some emerging energy-efficient design techniques are
introduced.

References

1

2.

10.

I1.

12.

13.

14.

15.

. A. Abdollahi, F. Fallah, M. Pedram, Leakage current reduction in CMOS VLSI circuits by

input vector control. IEEE Trans. Very Large Scale Integr. Syst. 12(2), 140 (2004)

ARM, ARMI11 PrimeXsys Platform, http://www.jp.arm.com/event/images/\forum2002/02-

print_arm11_primexsys_platform_ian.pdf

. T. Austin, Diva: a reliable substrate for deep submicron microarchitecture design, in
Proceedings of the International Symposium on Microarchitecture (MICRO), Haifa, 1999

. T. Austin, V. Bertacco, Deployment of better than worst-case design: solutions and needs, in
Proceedings of the International Conference on Computer Design (ICCD), San Jose, 2005

. T. Austin, V. Bertacco, D. Blaauw, T. Mudge, Opportunities and challenges for better
than worst-case design, in Proceedings of the IEEE Asia South Pacific Design Automation
Conference (ASP-DAC), Shanghai, 2005

. T. Austin, V. Bertacco, S. Mahlke, Y. Cao, Reliable systems on unreliable fabrics. IEEE Des.
Test Comput. 25(4), 322-332 (2008)

. L. Benini, A. Bogliolo, G. Paleologo, G. De Micheli, Policy optimization for dynamic power
management. IEEE Trans. Comput. Aided Des. 18(6), 813-833 (2001)

. S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, S. Vrudhula, Predictive modeling of the NBTI
effect for reliable design, in Proceedings of the Custom Integrated Circuits Conference, San
Jose, 2006

. J.R. Black, Electromigration — a brief survey and some recent results. IEEE Trans. Electron

Devices 16(4), 338-347 (1969)

M. Borah, R.M. Owens, M.J. Irwin, Transistor sizing for low power CMOS circuits. IEEE

Trans. Comput. Aided Des. Integr. Circuits Syst. 15(6), 665-671 (1996)

S. Borkar, Designing reliable systems from unreliable components: the challenges of

transistor variability and degradation, in Proceedings of the International Symposium on

Microarchitecture (MICRO), Barcelona, 2005

S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, V. De, Parameter variations

and impact on circuits and microarchitecture, in Proceedings of the ACM/IEEE Design

Automation Conference (DAC), Anaheim, 2003

K. Bowman, J. Tschanz, N.S. Kim, J.C. Lee, C.B. Wilkerson, S.-L. Lu, T. Karnik, V.K.

De, Energy-efficient and metastability-immune timing-error detection and instruction-replay-

based recovery circuits for dynamic-variation tolerance, in Proceedings of the International

Solid State Circuits Conference (ISSCC), San Francisco, 2008

H.Y. Chen, S.M. Kang, iCOACH: a circuit optimization aid for CMOS high-performance

circuits, in Proceedings of the International Conference on Computer-Aided Design (ICCAD),

Santa Clara, 1988

Y. Chen, H. Li, C. Koh, G. Sun, J. Li, Y. Xie, K. Roy, Variable-latency adder (VLAdder)

designs for low power and NBTI tolerance. IEEE Trans. Very Large Scale Integr. Syst. 18(11),

1621-1624 (2010)

http://www.jp.arm.com/event/images/�orum2002/02-print_arm11_primexsys_platform_ian.pdf
http://www.jp.arm.com/event/images/�orum2002/02-print_arm11_primexsys_platform_ian.pdf

132

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

R. Ye and Q. Xu

. X. Chen, C. Liao, T. Wei, S. Hu, An interconnect reliability-driven routing technique for
electromigration failure avoidance. IEEE Trans. Dependable Secur. Comput. 9, 770-716
(2010)

.R. Ching, E. Young, K. Leung, C. Chu, Post-placement voltage island generation, in

Proceedings of the International Conference on Computer-Aided Design (ICCAD), San Jose,

2006

E. Chung, L. Benini, G. Micheli, Dynamic power management using adaptive learning tree, in

Proceedings of the International Conference on Computer-Aided Design (ICCAD), San Jose,

1999

J. Cong, K. Minkovich, Logic synthesis for better than worst-case designs, in Proceedings of

the International Symposium on VLSI Design, Automation and Test, Hsinchu, 2009

J. Cortadella, Timing-driven logic bi-decomposition. IEEE Trans. Comput. Aided Des. 22(6),

675-685 (2003)

M.B. da Silva, V.V.A. Camargo, L. Brusamarello, G.I. Wirth, R. da Silva, NBTI-aware

technique for transistor sizing of high-performance CMOS gates, in /0th Latin American

Test Workshop, Rio de Janeiro, 2009

S. Das, C. Tokunaga, S. Pant, W.-H. Ma, S. Kalaiselvan, K. Lai, D.M. Bull, D.T. Blaauw,

RazorIl: in situ error detection and ccorrection for PVT and SER tolerance. IEEE J. Solid

State Circuits 44(1), 32-48 (2009)

A. Dasgupta, R. Karri, Electromigration reliability enhancement via bus activity distribution,

in Proceedings of the Design Automation Conference (DAC), Las Vegas, 1996

M. de Kruijf, S. Nomura, K. Sankaralingam, Unified model for timing speculation: evaluating

the impact of technology scaling, CMOS design style, and fault recovery mechanism,

in Proceedings of the IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), Chicago, 2010

M. Debole, W. Wang, Y. Wang, Y. Xie, V. Nayaranan, Y. Cao, A framework for estimating

NBTI degradation of microarchitectural components, in Proceedings of the Asia-South Pacific

Design Automation Conference (ASP-DAC), Yokohama, 2009

S. Devadas, S. Malik, A survey of optimization techniques targeting low power VLSI circuits,

in Proceedings of the Design Automation Conference (DAC), San Francisco, 1995

G. Dhiman, T. Rosing, Dynamic power management using machine learning, in Proceedings

of the International Conference on Computer-Aided Design (ICCAD), San Jose, 2006

D. Emst, N.S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K.

Flautner, T. Mudge, Razor: a low-power pipeline based on circuit-level timing speculation,

in Proceedings of the International Symposium on Microarchitecture (MICRO), San Diego,

2003

D. Frank, R. Puri, D. Toma, Design and CAD challenges in 45 nm CMOS and beyond, in

Proceedings of the International Conference on Computer-Aided Design (ICCAD), San Jose,

2006

F. Gao, P. Hayes, Exact and heuristic approaches to input vector control for leakage power

reduction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(11), 2564 (2006)

M. Ghasemazar, E. Pakbaznia, M. Pedram, Minimizing the power consumption of a chip

multiprocessor under an average throughput constraint, in Proceedings of the International

Symposium on Quality Electronic Design (ISQED), San Jose, 2010

L.A. Glasser, L.P. Hoyte, Delay and power optimization in VLSI circuits, in Proceedings of

the Design Automation Conference (DAC), Albuquerque, 1984

B. Greskamp, L. Wan, U.R. Karpuzcu, J.J. Cook, J. Torrellas, D. Chen, C. Zilles, Blueshift:

designing processors for timing speculation from the ground up, in Proceedings of the

International Symposium on High Performance Computer Architecture (HPCA), Shanghai,

2009

L. Guo, Y. Cai, Q. Zhou, X. Hong, Logic and layout aware voltage island generation for low

power design, in Proceedings of the Asia and South Pacific Design Automation Conference

(ASP-DAC), Yokohama, 2007

3 Energy-Efficient Design Techniques 133

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

V. Gupta, D. Mohapatra, S.P. Park, A. Raghunathan, K. Roy, IMPACT: IMPrecise adders for
low-power approximate computing, in Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED), Fukuoka, 2011

P. Hazucha, C. Svensson, S.A. Wender, Cosmic-ray soft error rate characterization of a
standard 0.6 wm CMOS process. IEEE J. Solid State Circuits 35(10), 1422-1429 (2000)

R. Hegde, N.R. Shanbhag, Energy-efficient signal processing via algorithmic noise-tolerance,
in Proceedings of the International Symposium on Low Power Electronics and Design
(ISLPED), San Diego, 1999

S. Herbert, D. Marculescu, Analysis of dynamic voltage/frequency scaling in chip-
multiprocessors, in Proceedings of the International Symposium on Low Power Electronics
and Design (ISLPED), Portland, 2007

L. Huang, Q. Xu, Energy-efficient task allocation and scheduling for multi-mode MPSoCs
under lifetime reliability constraint, in Proceedings of the Design, Automation, and Test in
Europe (DATE), Dresden, 2010

L. Huang, F. Yuan, Q. Xu, Lifetime reliability-aware task allocation and scheduling for
MPSoC platforms, in Proceedings of the Design, Automation, and Test in Europe (DATE),
Nice, 2009

L. Huang, F. Yuan, Q. Xu, On task allocation and scheduling for lifetime extension of
platform-based MPSoC designs. IEEE Trans. Parallel Distrib. Syst. 22(12), 2088-2099 (2011)
L. Huang, R. Ye, Q. Xu, Customer-aware task allocation and scheduling for multi-mode
MPSoCs, in Proceedings of the Design Automation Conference (DAC), San Diego, 2011

C. Hwang, A. Wu, A predictive system shutdown method for energy saving of event-driven
computation, in Proceedings of the International Conference on Computer-Aided Design
(ICCAD), San Jose, 1997

C. Isci, A. Buyuktosunoglu, C. Cher, P. Bose, M. Martonosi, An analysis of efficient multi-
core global power management policies: maximizing performance for a given power budget,
in Proceedings of the of International Symposium on Microarchitecture (MICRO), Orlando,
2006

T. Ishihara, H. Yasuura, Voltage scheduling problem for dynamically variable voltage
processors, in Proceedings of the International Symposium on Low Power Electronics and
Design (ISLPED), Monterey, 1998

N.K. Jha, Low power system scheduling and synthesis, in Proceedings of the International
Conference on Computer-Aided Design (ICCAD), San Jose, 2001

M.C. Johnson, D. Somasekhar, K. Roy, Leakage control with efficient use of transistor stacks
in single threshold CMOS, in Proceedings of the Design Automation Conference (DAC), New
Orleans, 1999

J.S.S.T. Association, Failure Mechanisms and Models for Semiconductor Devices (JEP122-
B) (JEDEC, Solid State Technology Association), Arlington, VA 22201-2107 United States
(2009)

H. Jung, M. Pedram, Improving the efficiency of power management techniques by using
Bayesian classification, in Proceedings of the International Symposium on Quality of
Electronic Design (ISQED), San Jose, 2008

H. Jung, M. Pedram, Supervised learning based power management for multicore processors.
IEEE Trans. Comput. Aided Des. 29(9), 1395-1408 (2010)

. A.B. Kahng, S. Kang, Accuracy-reconfigurable adder for approximate arithmetic design, in

Proceedings of the Design Automation Conference (DAC), San Francisco, 2012

A.B. Kahng, S. Kang, R. Kumar, J. Sartori, Slack redistribution for graceful degradation under
voltage overscaling, in Proceedings of the Asia South Pacific Design Automation Conference
(ASP-DAC), Taipei, 2010

J. Kao, A.P. Chandrakasan, Dual-threshold voltage techniques for low-power digital circuits.
IEEE J. Solid State Circuits 35(7), 1009-1018 (2000)

J. Kao, A. Chandrakasan, D. Antoniadis, Transistor sizing for low power CMOS circuits, in
Proceedings of the Design Automation Conference (DAC), Anaheim, 1997

Z. Karimi, M. Sarrafzadeh, Fine-grained post placement voltage assignment considering level
shifter overhead, in Proceedings of the IEEE/IFIP VLSI System on Chip Conference (VLSI-
SoC), Madrid, 2010

134

56

57

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

R. Ye and Q. Xu

. A. Karlin, M. Manesse, L. McGeoch, S. Owicki, Competitive randomized algorithms for
nonuniform problems. Algorithmica 11, 542-571 (1994)

. J. Kathuria, M. Ayoubkhan, A. Noor, A review of clock gating. Int. J. Electron. Commun.

Eng. 1(2), 106-114 (2011)

P. Kulkarni, P. Gupta, M. Ercegovac, Trading accuracy for power with an underdesigned

multiplier architecture, in Proceedings of the Annual Conference on VLSI Design, Chennai,

2011

S. Lee, T. Sakurai, Run-time voltage hopping for low-power real-time systems, in Proceedings

of the International Symposium on Low Power Electronics and Design (ISLPED), Rapallo,

2000

W. Lee, H. Liu, Y. Chang, An ILP algorithm for post-floorplanning voltage-island generation

considering power-network planning, in Proceedings of the International Conference on

Computer-Aided Design (ICCAD), San Jose, 2007

W. Lee, D. Marculescu, Y. Chang, Post-floorplanning power/ground ring synthesis for

multiple-supply-voltage designs, in Proceedings of the International Symposium on Physical

design (ISPD), San Diego, 2009

B. Lin, H.D. Man, Low-power driven technology mapping under timing constraints, in

Proceedings of the International Conference on Computer Design (ICCD), Cambridge, 1993

B. Liu, Y. Cai, Q. Zhou, X. Hong, Power driven placement with layout aware supply voltage

assignment for voltage island generation in dual-vdd designs, in Proceedings of the Asia and

South Pacific Design Automation Conference (ASP-DAC), Yokohama, 2006

Y. Liu, H. Yang, R. Dick, H. Wang, L. Shang, Thermal vs energy optimization for dvfs-

enabled processors in embedded systems, in Proceedings of the International Symposium on

Quality Electronic Design (ISQED), San Jose, 2007

Y. Liu, F. Yuan, Q. Xu, Re-synthesis for cost-efficient circuit-level timing speculatio, in

Proceedings of the Design Automation Conference (DAC), San Diego, 2011

Y. Liu, R. Ye, F. Yuan, R. Kumar, Q. Xu, On logic synthesis for timing speculation, in

Proceedings of the International Conference on Computer-Aided Design (ICCAD), San Jose,

2012

Q. Ma, E. Young, Multivoltage floorplan design. IEEE Trans. Comput. Aided Des. Integr.

Circuits Syst. 29(4), 607-617 (2010)

Q. Ma, Z. Qian, E. Young, H. Zhou, MSV-driven floorplanning. IEEE Trans. Comput. Aided

Des. Integr. Circuits Syst. 30(8), 1152-1162 (2011)

W.K. Mak, J.W. Chen, Voltage island generation under performance requirement for SoC

designs, in Proceedings of the Asia and South Pacific Design Automation Conference,

Yokohama, 2007

S. Marsland, Machine Learning: An Algorithmic Perspective (CRC, Boca Raton, c2009)

S. Mukhopadhyay, C. Neau, R.T. Cakici, A. Agarwal, C.H. Kim, K. Roy, Gate leakage

reduction for scaled devices using transistor stacking. IEEE Trans. Very Large Scale Integr.

(VLSI) Syst. 11(4), 716-730 (2003)

PR. Panda, B.V.N. Silpa, A. Shrivastava, K. Gummidipudi, Power-efficient System Design

(Springer New York Dordrecht Heidelberg London, 2010)

T. Pering, T. Burd, R. Brodersen, Voltage scheduling in the IpPARM microprocessor system,

in Proceedings of the International Symposium on Low Power Electronics and Design

(ISLPED), Rapallo, 2000

Z.Qi, R.S. Mircea, NBTI resilient circuits using adaptive body biasing, in Proceedings of the

ACM Great Lakes Symposium on VLSI (GLSVLSI), Orlando, 2008

T.S. Rosing, K. Mihic, G.D. Micheli, Power and reliability management of SoCs. IEEE Trans.

Very Large Scale Integr. (VLSI) Syst. 15(4), 391 (2007)

K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimand, Leakage current mechanisms and

leakage reduction techniques in deep-submicrometer CMOS circuits. Proc. IEEE 91(2), 305—

327 (2003)

A. Sangiovanni-Vincentelli, et al., Benefits and challenges for platform-based design, in

Proceedings of the Design Automation Conference (DAC), San Diego, 2004

3 Energy-Efficient Design Techniques 135

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91

92.

93.

94.

95.

96.

97.

98.

S.S. Sapatnekar, V.B. Rao, P.M. Vaidya, S.M. Kang, An exact solution to the transistor sizing
problem for CMOS circuits using convex optimization. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 12, 1621-1634 (1993)

S.R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, J. Torrellas, VARIUS:
a model of process variation and resulting timing errors for microarchitects. IEEE Trans.
Semicond. Manuf. 21(1), 3—-13 (2008)

S. Sarangi, B. Greskamp, A. Tiwari, J. Torrellas, EVAL: utilizing processors with variation-
induced timing errors, in Proceedings of the International Symposium on Microarchitecture
(MICRO), Lake Como, 2008

M.T. Schmitz, B.M. Al-Hashimi, P. Eles, Cosynthesis of energy-efficient multimode embed-
ded systems with consideration of mode-execution probabilities. IEEE Trans. Aided Des.
Integr. Circuits Syst. 24(2), 153-169 (2005)

D. Sengupta, R.A. Saleh, Application-driven voltage-island partitioning for low-power
system-on-chip design. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(3), 316—
326 (2009)

N. Shanbhag, Reliable and efficient system-on-chip design. IEEE Trans. Comput. 37(3), 42—
50 (2004)

Y. Shin, K. Choi, Power conscious fixed priority scheduling for hard real-time systems, in
Proceedings of the Design Automation Conference (DAC), New Orleans, 1999

D. Shin, S.K. Gupta, Approximate logic synthesis for error tolerant applications, in Proceed-
ings of the Design, Automation, and Test in Europe (DATE), Dresden, 2010

P. Shivakumar, S.W. Keckler, C.R. Moore, D. Burger, Exploiting microarchitectural redun-
dancy for defect tolerance, in Proceedings of the International Conference on Computer
Design (ICCD), San Jose, 2003

T. Simunic, L. Benini, G. Micheli, Event-driven power management of portable systems, in
Proceedings of the International Symposium on System Synthesis, San Jose, 1999

T. Simunic, L. Benini, A. Acquaviva, P.W. Glynn, G. DeMicheli, Dynamic voltage scaling for
portable systems, in Proceedings of the Design Automation Conference (DAC), Las Vegas,
2001

R. Sproull, I. Sutherland, C. Molnar, The counterflow pipeline processor architecture. IEEE
Des. Test Comput. 11(3), 48 (1994)

SquareTrade, Report on Xbox 360 failure rates (2008), http://blog.squaretrade.com/2008/02/
xbox-fail-rates.html

. M. Srivastava, A. Chandrakasan, R. Brodersen, Predictive system shutdown and other

architectural techniques for energy-efficient programmable compuation. IEEE Trans. Very
Large Scale Integr. Syst. 4(1), 42-55 (1996)

J. Srinivasan, S.V. Adve, P. Bose, J. Rivers, C.K. Hu, RAMP: A Model for Reliability Aware
Microprocessor Design (IBM, Poughkeepsie, 2003)

J. Srinivasan, S.V. Adve, P. Bose, J.A. Rivers, The case for lifetime reliability-aware
microprocessors, in Proceedings of the International Symposium on Computer Architecture
(ISCA), Munich, 2004

J. Srinivasan, S.V. Adve, P. Bose, J.A. Rivers, Lifetime reliability: toward an architectural
solution, in Proceedings of the International Symposium on Microarchitecture (MICRO),
Barcelona, 2005

J.H. Stathis, Reliability limits for the gate insulator in CMOS technology. IBM J. Res. Dev.
46(2/3), 265-283 (2002)

C. Steinbach, A Reinforcement Learning Approach to Power Management. Al technical re-
port, M.Eng thesis, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
2002

Y. Tan, W. Liu, Q. Qiu, Adaptive power management using reinforcement learning, in
Proceedings of the International Conference on Computer-Aided Design (ICCAD), San Jose,
2009

G. Theocharous, et al., Machine learning for adaptive power management. Intel Technol. J.
10, 4 (2006)

http://blog.squaretrade.com/2008/02/xbox-fail-rates.html
http://blog.squaretrade.com/2008/02/xbox-fail-rates.html

136

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

R. Ye and Q. Xu

V. Tiwari, P. Ashar, S. Malik, Technology mapping for low power, in Proceedings of the
Design Automation Conference (DAC), Dallas, 1993

V. Tiwari, P. Ashar, S. Malik, Technology mapping for low power in logic synthesis. VLSI J.
Integr. 20(3), 243-268 (1996)

C. Tsui, M. Pedram, A.M. Despain, Technology decomposition and mapping targeting low
power dissipation, in Proceedings of the Design Automation Conference (DAC), Dallas, TX,
USA, 1993

S. Venkataramani, A. Sabne, V. Kozhikkottu, K. Roy, A. Raghunathan, SALSA: systematic
logic synthesis of approximate circuits, in Proceedings of the Design Automation Conference
(DAC), San Francisco, 2012

R. Venkatesan, A. Agarwal, K. Roy, A. Raghunathan, MACACO: modeling and analysis
of circuits for approximate computing, in Proceedings of the International Conference on
Computer-Aided Design (ICCAD), San Jose, 2011

L. Wan, D. Chen, Dynatune: circuit-level optimization for timing speculation considering
dynamic path behavior, in Proceedings of the International Conference on Computer-Aided
Design (ICCAD), San Jose, 2009

Y. Wang, H. Luo, K. He, R. Luo, Y. Xie, H. Yang, Temperature-aware NBTI modeling
and the impact of input vector control on performance degradation, in Proceedings of the
International Conference on Design Automation and Test in Europe (DATE), Nice, 2007

H. Wu, M. Wong, Incremental improvement of voltage assignment. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 28(2), 217-230 (2009)

H. Wu, M. Wong, 1. Liu, Timing-constrained and voltage-island-aware voltage assignment.
In Proceedings of the Design Automation Conference (DAC), San Francisco, 2006

H. Wu, M. Wong, L. Liu, Y. Wang, Placement-proximity-based voltage island grouping under
performance requirement. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(7),
1256-1269 (2007)

X. Yang, K. Saluja, Combating NBTI degradation via gate sizing, in Proceedings of the
International Symposium on Quality Electronic Design (ISQED), San Jose, 2007

R. Ye, Q. Xu, Learning-based power management for multi-core processors via idle period
manipulation, in Proceedings of the Asia and South Pacific Design Automation Conference
(ASP-DAC), Sydney, 2012

R. Ye, F. Yuan, Q. Xu, Online clock skew tuning for timing speculation, in Proceedings of the
International Conference on Computer-Aided Design (ICCAD), San Jose, 2011

R. Ye, F. Yuan, H. Zhou, Q. Xu, Clock skew scheduling for timing speculation, in Proceedings
of the Design, Automation, and Test in Europe (DATE), Dresden, 2012

R. Ye, E Yuan, Z. Sun, W.-B. Jone, Q. Xu, Post-placement voltage island generation for
timing-speculative circuits, in Proceedings of the Design Automation Conference (DAC),
Austin, 2013

K. Yeo, K. Roy, Low-Voltage, Low-Power VLSI Subsystems. McGraw-Hill Professional
Engineering, McGraw-Hill, Inc., New York, NY, USA, 2004

Chapter 4
Error Correction Coding for Electronic Circuits

Juan A. Maestro, Pedro Reviriego, and Mark F. Flanagan

4.1 Introduction

Digital electronic circuits are subject to many types of error. Considering the effect
of such errors on the circuit functionality, they can be classed as permanent, transient
or intermittent. Permanent (or “hard”) errors disrupt the functionality of the circuit
for its entire lifetime [1]. An example of a hard error is a stuck at one/zero fault in a
logical gate, in which the output is fixed to a logical value regardless of the values of
the inputs. Permanent errors can be caused, for example, by manufacturing defects,
aging, or radiation effects. Transient (or “soft”) errors only affect the functionality
of the circuit for a short time. An example of a transient error is a radiation-induced
soft error, in which a particle impacts the circuit and changes the logical value of
one circuit node [2]. Transient errors can also be caused by noise or crosstalk. The
circuit functions correctly after the error event, but if an incorrect value is stored in
a register or memory then the system state can be erroneous. Intermittent errors are
those which affect a circuit node in such a way as to cause errors frequently but not
constantly [3]. These errors are commonly caused by marginal or unstable behavior,
which may or may not cause an error, depending on the conditions.

A wide range of techniques can be used to deal with errors in electronic circuits.
Permanent faults which occur during the manufacturing process can be identified
in the test phase, and the defective parts can be discarded [1]. In some circuits, it
may be more cost-effective to include redundant elements that are used to repair
the errors detected in the test phase. This is commonly the case for memories,
where redundant rows/columns are used to replace those with permanent errors [4].

J.A. Maestro (P<) * P. Reviriego
Universidad Antonio de Nebrija, Madrid, Spain
e-mail: jmaestro@nebrija.es; previrie@nebrija.es

M.F. Flanagan
University College Dublin, Dublin, Ireland
e-mail: mark.flanagan @ieee.org

J. Mathew et al. (eds.), Energy-Efficient Fault-Tolerant Systems, 137
DOI 10.1007/978-1-4614-4193-9_4, © Springer Science+Business Media New York 2014

mailto:jmaestro@nebrija.es
mailto:previrie@nebrija.es
mailto:mark.flanagan@ieee.org

138 J.A. Maestro et al.

For permanent errors caused by aging, discarding the defective part is not an option
as the part is already working in the system. Therefore, preventive actions are taken
in the design phase to ensure that the parts will be operational for the specified
lifetime. One example of aging effects is Negative Bias Temperature Instability
(NBTI), which tends to degrade the circuit speed [5]. Therefore, in the design
phase some additional delay margin is added so that when the speed degrades over
time, the circuit still meets the delay requirements. Intermittent errors are typically
a symptom of a marginal failure which can degenerate into a permanent error.
Therefore, the same techniques as those described for permanent errors can be used,
the main challenge being the identification of the errors during the testing phase. To
mitigate transient errors, some techniques can be used during the manufacturing
phase to improve noise immunity or to reduce the probability of particle impacts
causing soft errors. However, ensuring that no errors will occur may not be possible
or may have an unacceptable cost. When that is the case, some transient errors
will occur. In addition, in many cases the error is caused by an external source
that can affect any circuit node and therefore no screening can be done at the test
phase. To mitigate the effects of these transient errors, redundancy can be added
to the design so that the errors are detected and corrected [6]. A typical solution
is to replicate the design; with duplication, an error can be detected, and with
triplication, corrected. Replication requires a large overhead in terms of circuit area
and energy consumption, which limits its application. In some specific applications
it is possible to design ad-hoc redundancy schemes that provide efficient protection
at a lower cost. One example is that of signal processing circuits whose algorithmic
properties can be used to implement fault-tolerance [7]. For memories, registers and
interconnections, another option is to use Error Correction Codes (ECCs) [8]. While
replication can be viewed as a primitive ECC, ECCs in general represent a more
sophisticated way of adding redundancy, enabling more powerful error correction
capabilities with a lower overhead. There are different types of ECCs; one important
category is that of block codes [9]. In a block code, a set of k bits is used to generate a
larger block of n bits. The n-k additional bits, called parity bits, enable the detection
and correction of errors. The operation of generating the block of bits is known as
encoding and the operation of decoding extracts the k original bits from the n coded
bits. Another type of code, known as a convolutional code, operates on a sequence
of bits for which there is no fixed length. The overheads associated with an ECC
are mainly the number of added parity bits (n-k), the encoder, and the decoder. The
purpose of this chapter is to provide an overview of the use of ECCs to protect
electronic circuits from errors.

Most existing work on error correction coding has been carried out in the area of
communications. Error Correction Codes have in fact played a fundamental role in
the development of modern communication systems [9]. The use of error correction
enables transmission over noisy channels and makes it possible to approach the
capacity of the channel. The use of ECCs in electronic circuits started decades ago,
focusing on the protection of memories [8]. In this case, the design requirements for
the ECC are different from those in communication systems. This has led to different

4 Error Correction Coding for Electronic Circuits 139

solutions being used in memories to those used in communications. The same
reasoning applies to other electronic circuits. For example, in communications the
received signal is typically quantized with more than two levels. This provides
additional information (called soft information) on the reliability of each of the
bits, which is then used in the decoding process. For electronic circuits, this
additional information is available only in a few cases, as for example in some Flash
memories [10]. In most electronic circuits, the values read from a memory or register
are simply equal to zero or one. Therefore, the decoding algorithm is different.
Another difference is that in electronic circuits, the decoding latency typically has
to be smaller. For example, in a processor register file or cache, the access to a
value has to be done typically in one clock cycle, or else in a few clock cycles.
In communications, even if the link speed is high, larger decoding latencies are
allowed as the main concern is to ensure that the decoder throughput meets the link
speed. These latency requirements influence the algorithms and architectures for
the encoder and decoder. In electronic circuits, the data divides naturally into blocks
such as a memory word or a register which stores a value. In communications, data
is typically received serially and the concept of block, when used, is introduced
somewhat artificially. Therefore, in this context serial decoding algorithms are
commonly used. However, in circuits the decoding of a block is typically done in
parallel as the complete block is accessed in a single operation. From this discussion,
the specifics of the use of ECCs to protect electronic circuits become apparent.
The objective of this chapter is to provide an overview of ECCs used for circuit
protection, focusing on their implementation and describing which codes are most
suited for each circuit type. To this end, the rest of the chapter is divided into two
parts. In the first part, the requirements of different types of electronic circuit are
described. This analysis focuses on the protection requirements in terms of the types
of error that the circuit suffers and also on the performance requirements in terms
of circuit energy consumption, area and delay. The second part of the chapter then
describes the different ECCs that are commonly used to protect circuits, as well
as some which have been recently proposed in research papers. The description
provides a basic introduction to the codes used, and then focuses on describing the
error correction capabilities and the implementation overheads. This is then linked
at the end of the chapter with the first part by highlighting, for each type of circuit,
the ECCs which are most suitable.

4.2 Protection Requirements of Electronic Circuits

There are many different types of electronic circuits and when considering protec-
tion against errors, each one has its own set of requirements. In the following, these
requirements are discussed for the circuits in which Error Correction Codes (ECCs)
are commonly used. The parameters considered are the type of error that needs to
be corrected, and the area and latency constraints for the ECCs.

140 J.A. Maestro et al.
4.2.1 Registers

In digital circuits, it is common to find a set of flip-flops that are grouped to store
a value. This is the case, for example, in Finite State Machines (FSMs) where a
register is used to store the state [11]. A soft error that affects a register can cause
a system malfunction, requiring a reset to recover the correct functionality. Error
Correction Codes are used to protect registers, so that even when a soft error affects
the register, the correct value can be recovered. The most common assumption is
that errors will affect only a single bit in the register. This can be reasonable, as flip-
flops have a larger size than memory cells and therefore it is less likely that a particle
impact affects more than one register bit. However, as technology scales, multiple
bit errors may become an important issue. The requirements in terms of latency are
typically such that encoding and decoding must take place in a fraction of a clock
cycle. Larger latencies would make it impossible to decode, use a value, and encode
the new value within a clock cycle. The duration of a clock cycle is design-specific
and can vary significantly. For a very high speed circuit, the use of ECCs may not
even be possible, while for a low speed design, complex ECCs may not impact the
overall latency. In any case, the complexity of the encoder and decoder also has to
be low, since otherwise it may be more cost-effective to use replication. The same
reasoning applies to the number of parity bits. Another important parameter for
an ECC is the block size. In the case of registers, the block can have any number
of bits depending on the specific design. In many cases, the number of bits in the
block should be a power of two, and typically does not exceed 64 bits. All these
requirements restrict, in most cases, the use of ECCs in registers to simple codes.
The requirements are summarized below:

* Correct single bit errors.

» Latency equal to a fraction of a clock cycle.

* Complexity of encoder/decoder equal to or smaller than that of the register.

e Number of added bits (parity bits) is smaller than the number of bits in the
register.

* Variable register length, typically equal to or smaller than 64 bits.

4.2.2 Register Files

Another structure that is commonly found in digital circuits is a set of registers, or
a register file. This is the case for example in processors and controllers [12]. Many
other circuits also have a set of registers for configuration and monitoring. The ECC
requirements of a register file are similar to those of a single register, but there are
two main differences. The first difference is that in register files, the bit width is
almost always a power of two. The second difference deals with the complexity of
the ECC, and may be explained as follows. For a register file, the area cost of the

4 Error Correction Coding for Electronic Circuits 141

encoder and decoder can be larger, as it is shared among a set of registers. On the
other hand, the number of parity bits has a larger impact as the bits are added to
each of the registers. This means that ECCs with more complex encoding/decoding
can be used if they reduce the number of parity bits. Finally, regarding the type of
errors which affect the register file, in most studies single bit errors are considered,
but multi-bit errors are also starting to become an issue [13]. The requirements are
summarized below:

* Correct single bit errors (multiple bit errors starting to become an issue).

» Latency equal to a fraction of a clock cycle.

e Complexity of encoder/decoder should be a small fraction of that of the
register file.

e Number of parity bits is significantly smaller than the number of bits in the
register.

* Block size is a power of two; typical values are 16, 32 and 64 bits.

4.2.3 Caches

Memory caches are an important element in modern processors and computing
systems [14]. Since they are intended to improve the speed of access to data stored
in the memory, they work at high speed. This imposes tight constraints on the
latency of any ECC. The size of caches becomes larger with every new technology
generation and is commonly in the order of Megabytes. This means that the encoder
and decoder complexity can be significant and yet still have a small impact on the
circuit area of the cache. The number of parity bits, on the other hand, should be
minimized as it impacts directly the size of the cache (this is because these parity
bits are added to each cache entry). The block sizes in caches are typically larger
than those in register files, with values that are also powers of two. Block sizes of
512, 1024 and 2048 bits are commonly used. It is important to note that in addition
to radiation-induced errors, there is another source of transient errors in caches that
is important, which may be explained as follows. Energy consumption is a large
issue in caches, and one way to reduce it is to lower the voltage supply; this can
cause some random transient errors that are then corrected by the ECC [14]. This
type of error, as well as radiation-induced errors, can affect single or multiple bits
in caches [15]. The requirements for caches are summarized below:

* Correct single bit errors and multiple bit errors.

» Latency equal to a fraction of a clock cycle.

* Significant complexity of encoder/decoder can be acceptable.

* Number of parity bits significantly smaller than the number of bits in an entry.
* Block size is a power of two; typical values are 512, 1024 and 2048 bits.

142 J.A. Maestro et al.
4.2.4 SRAM Memories

The transient errors in Static Random Access Memories (SRAMs) can affect a
single bit or multiple bits in a memory word. As technology scales, the proportion of
multiple bit errors increases [16]. This means that the ECC must be able to correct
multiple bits unless interleaving is used. Interleaving consists in placing the bits that
belong to the same logical word physically apart. This ensures that a particle impact,
even if it affects multiple memory cells, will only corrupt one bit per memory word.
Interleaving can however have an impact on memory area and power consumption
[17]. Latency has to be a fraction of the memory access time to ensure that the
impact of the ECC on the memory speed is small. The complexity that can be
afforded in the encoder and decoder depends largely on the size of the memory.
For a large memory, a complex decoder can represent only a small fraction of the
memory area, while for a small memory the overhead may be unacceptable. The
impact of the number of redundant bits is independent of the memory size, as the
bits are added in each word. The word size of the memory is in most cases a power
of two with common values being 16, 32 and 64 bits. This value coincides, in most
cases, with the data bus and register file width. The requirements for SRAMs are
summarized below:

* Correct single bit errors and multiple bit errors.

» Latency equal to a fraction of a clock cycle (although larger than in the case of
register files and caches).

* Acceptable complexity of encoder/decoder depends on the memory size.

e Number of parity bits is significantly smaller than the number of bits in a word.

* Block size is a power of two; typical values are 16, 32 and 64 bits.

4.2.5 DRAM Memories

Dynamic Random Access Memories (DRAMs) suffer from errors of a specific type:
these are known as data retention failures. In DRAM memories, the contents of
the cells have to be refreshed periodically to avoid data loss. To minimize the
probability of data loss, frequent refreshes can be used. This however increases
power consumption, which is an important issue in modern computing systems. This
leads to a tradeoff between reliability and power consumption. DRAMs also suffer
radiation-induced soft errors which can affect multiple bits as in SRAMs. A recent
study on a large number of DRAMs operating in computing systems shows that
permanent errors are also frequent during the device lifetime [18]. Therefore, Error
Correction Codes in this case have to deal with both transient and permanent errors.
DRAM devices are commonly grouped in memory modules with larger bit widths.
In this case, the correction of errors due to the failure of one of the devices is also an

4 Error Correction Coding for Electronic Circuits 143

important issue. This can be achieved by using interleaving as proposed in [19] or
more sophisticated non binary codes like for example Reed-Solomon (RS) codes.
The latency of the ECCs used has to be a fraction of a clock cycle, but in this case
the memories are slower than caches, so that larger latencies can be tolerated. The
size of the DRAM modules is typically large, and therefore significant complexity
can be allowed in the encoder/decoder with little impact on the cost of the module.
The data bit width of the modules is typically a power of two, with values of 64 bits,
128 bits or more. The total number of bits in the module is typically larger to allow
the implementation of ECCs. The requirements for DRAMs are summarized below:

* Correct single bit errors and multiple bit errors. Multiple bit errors include failure
of an entire DRAM device in a memory module.

» Latency equal to a fraction of a clock cycle.

* Significant complexity of encoder/decoder is acceptable.

* Number of parity bits is significantly smaller than the number of bits in a word.
In many cases, the number of parity bits is restricted by the configuration of the
memory module.

* Block size is a power of two; typical values are 64 and 128 bits.

4.2.6 Content Addressable Memories (CAMs)

Content Addressable Memories (CAMs) are a special type of memory used in a
variety of applications in computing and communications [20]. A CAM stores keys,
together with their associated values, in pairs (key, value), and when a search key
is presented to the memory, the address of the key that matches the search key
is obtained. Using that address, the associated value can be read from a standard
memory where the values are stored. A CAM includes additional logic to compare
the stored keys with the key presented to the memory. This is done in parallel for
all the memory words, using comparators for each cell and merging the results of
all bits in a word to determine if there is a match. The need to merge the results
of the individual cells of a word limits the use of interleaving to deal with multiple
errors. Another important consideration is that errors in CAMs have different effects
than in standard memories. Errors in a CAM can cause two effects: false positives
and false negatives [21]. A false positive occurs when the key stored in the word
affected by errors matches a search key presented to the memory. In this case, an
incorrect value is returned by the CAM. A false negative occurs when the search
key presented to the memory should match the key stored in the word, but does not
since the latter contains errors. In this case, the corrupted entry will not match the
search key and no match will be found. Error correction codes can be used to avoid
false positives by storing the key and the additional parity bits in each CAM entry.
Also, to avoid false negatives, the circuit which merges the results of the individual
bits can be modified to allow for mismatches in some bits [22].

144 J.A. Maestro et al.

Content Addressable Memories (CAM) can suffer single as well as multiple
bit errors. Latency is not a critical issue for CAMs because the decoder is not
needed (the comparison is done directly with the coded key). Therefore, only the
encoder is used when accessing the CAM, to encode the presented key and compare
it with the encoded keys stored in the CAM. The same reasoning applies to the
encoder/decoder complexity, as the most complex block is typically the decoder,
which is not used in CAMs. The number of parity bits has to be small, since
it impacts directly the power consumption of CAMs as well as the area. Power
consumption is an important issue for CAMs as they perform many comparisons in
parallel which results in large power consumption. The bit width of CAM memories
depends on the application, but the most common values are powers of two. The
requirements for CAMs are summarized below:

* Detect and/or correct single and multiple bit errors.

» Latency equal to a fraction of a clock cycle (only applies for the encoder).

* Complexity is only that of the encoder.

e Number of parity bits is significantly smaller than the number of bits in a word.
* Block size is a power of two.

4.2.7 Flash Memories

Flash memories provide non-volatile storage and are used in a wide range of
applications. They are characterized by the use of large block sizes of several
thousands of bits. This enables the use of more complex ECCs [23, 24]. Also, the
information retrieved when the memory is read is not simply a binary value, but an
analog voltage. The value of the voltage provides an indication of the reliability of
the bit read, and can be used to improve the performance of the ECCs [25, 26]. This
is similar to the case of communications [9]. Therefore, the use of ECCs in Flash
memories is quite different from the case of the other circuits considered. In this
case, advanced codes such as Low-Density Parity-Check (LDPC) are used [10, 27]
and the decoding resembles that used in a communication system. At the same time,
there are some salient differences regarding data representation and coding for this
application which make it an active area of current research [26]. The use of ECCs
in Flash memories is not considered in the rest of this chapter. For further reading
on this topic, the reader is referred to [25].

4.2.8 Interconnections

As the complexities of electronic circuits increase, an Integrated Circuit (IC)
typically incorporates more and more blocks. Interconnections are needed to
connect those blocks and also to connect the IC with other ICs in the system [28].

4 Error Correction Coding for Electronic Circuits 145

These interconnections can suffer errors due to noise and crosstalk, and therefore
ECCs are used to protect them [29]. As with memories, interconnections can suffer
from single and multiple bit errors. The number of bits is also typically a power
of two, with values of 32 and 64 being common. Most of the time, this is also the
width of a memory word. The latency of the ECC is important as it impacts the
speed of the interconnection. The same is true of the complexity of the encoder and
decoder, which impacts area and power consumption. Therefore, both latency and
complexity should be small. The number of parity bits should be a fraction of the
number of data bits, but this number is not as critical as in memories.

Apart from noise and crosstalk (mentioned previously), combinational logic
provides another source of errors affecting interconnections. An error in a logic
gate would produce an incorrect output which would be transmitted forward by
an interconnection. All combinational modules (multiplexers, gates, arithmetic
modules, etc.) are subject to error, and therefore they are a potential hazard for the
reliability of the system.

Moreover, errors may be produced in the combinational logic which forms the
encoding and decoding processes associated with the ECCs themselves, which
would produce a major breakdown of the protection system.

There are many mechanisms which prevent errors in combinational logic, but
these are outside the scope of this chapter.

The requirements for interconnections are summarized below:

* Correct single bit errors and multiple bit errors.

» Latency should be small.

* Complexity of encoder/decoder should be small.

* Number of parity bits is smaller than the number of data bits.

* Block size is typically a power of two, with values of 32 and 64 being common.

4.3 Error Correction Codes for Electronic Circuits

There are two main types of Error Correction Code: convolutional codes and
block codes. Both types are widely used in digital communications. Convolutional
codes have been traditionally preferred due to the availability of efficient decoding
algorithms which can use soft-input decoding [30]. Soft-input decoding uses not
only the value of the received bit, but also the value of the received signal as an
indication of the reliability of that bit. As mentioned previously, this improves the
performance of the decoder. In recent years, algorithms for block and convolutional
codes, which are based on the principle of processing soft inputs and producing
soft outputs, have led to extremely advanced codes such as Turbo Codes and
Low Density Parity Check (LDPC) codes; these codes are now commonly used in
communication systems. For circuits, although the use of convolutional codes has
been proposed to protect memories [31] and state machines [32], in most cases block

146 J.A. Maestro et al.

codes are used [0, 8]. This is because in memories and circuits, typically no soft
information is available, i.e., a register or memory cell takes a value of zero or one
with no indication of its reliability. The concept of block is also natural to memories
and flip-flops which are typically organized in words and registers. Therefore, in
what follows, convolutional codes are not considered.

There are many different types of block code. Most codes used to protect circuits
are linear block codes and many of them are also binary. A binary (n,k) linear block
code takes k data bits and produces (by encoding) a larger block of #n bits such that
each of the »n bits is equal to the exclusive-OR (XOR, or modulo-2 sum) of some
subset of the k original data bits. This means that the coded block can be obtained
by multiplying the original data block by a Generator Matrix G. If u is the block (or
vector) containing the k data bits, then the coded block v is obtained as follows:

v =uG 4.1)

The Hamming distance between two binary blocks is defined as the number of
bits that are different in the two blocks. Also, the minimum distance of the code,
written dp,in, is defined as the minimum over all Hamming distances between pairs
of different valid coded blocks. If a code has minimum distance dp;,, then by adding
the additional n-k parity bits, the code ensures that any two coded blocks have
different values in at least dy,, positions. For a code with minimum distance dp;n,
errors affecting up to dnin-1 bits will be detected. To correct errors, the optimal
approach is to assume that the original data was that corresponding to the valid
coded block closest (in Hamming distance) to the block read. A code with minimum
distance dpi, can correct errors that affect up to (dpin-1)/2 bits. Therefore, the main
parameters of the code are n, k and dy,;,. In circuits, k is typically given by the
bit width of the memory word or register that needs to be protected. The values of
n-k and dp, are correlated, so that generally speaking, to achieve larger minimum
distances, more parity bits need to be added to the original k data bits. The relative
overhead to achieve a given minimum distance decreases with larger block sizes,
lowering the protection cost. As discussed previously, other important parameters in
the selection of an ECC for a circuit are the latency and complexity of the encoder
and decoder, and the ability to correct multiple errors, especially correlated multiple
errors. In the rest of this section, different ECCs used for circuit protection are
described and their features are related to the needs of each circuit type described
in the previous section. The results of the analysis are summarized at the end of the
section in a table (Table 4.7) which lists suitable ECCs for each circuit category.

4.3.1 Single Parity Check (SPC) Codes

The simplest type of linear code is a Single Parity Check (SPC) code which
computes the exclusive-or (XOR, or modulo-2 sum) of the k data bits, and appends
this single parity bit to the data block to form the overall coded block. In this case,

4 Error Correction Coding for Electronic Circuits 147

n-k =1 and dyi, = 2. A Single Parity Check code can detect single errors and the
encoding and error checking procedures are trivial. The G matrix is formed by an
identity matrix of size k to which a column containing ones in all positions is added.
In spite of its simplicity, a Single Parity Check is used in many circuits in which
error detection is sufficient. Those include register files in processors [33], state
machines [34] and arithmetic circuits [35, 36]. In the latter case, parity prediction
can be used to detect errors in the combinational logic that computes the arithmetic
operation [35]. Parity bits can also be used to correct errors in memories when they
are combined with other techniques such as Built-in Current Sensors (BICS). In this
case, the parity bit identifies the word in error and the BICS identifies the bit affected
[37]. A Single Parity Check can be also used in Content Addressable Memories to
avoid false positives due to a single bit error. The main features of SPC codes are
summarized below:

* Detect single errors.

* The number of additional (parity) bits is always equal to one.

¢ There are no restrictions on the size of the data block (k).

* Encoding and decoding latency is approximately equal to the delay of log,(n)
two-input XOR gates.

* The area of the encoder/decoder is approximately that of n two-input XOR gates.

4.3.2 Single Error Correction Double Error Detection
(SEC-DED) Codes

When error detection is not sufficient, codes that can correct errors can be used.
Single Error Correction (SEC) codes which can correct a single bit error in a block
are commonly used to protect memories and circuits [0, 8]. There are different types
of SEC codes, a famous example being the class of Hamming codes [38]. SEC
codes have a minimum distance of three. This means, however, that a double error
can be miscorrected into another valid coded word. For this reason, Single Error
Correction Double Error Detection (SEC-DED) codes are preferred [8]. SEC-DED
codes have a minimum distance of four, guaranteeing that a word with two errors
cannot be at a Hamming distance of one from a valid coded word. A SEC-DED
code can be constructed from a Hamming code by adding a parity bit; this parity
bit is used to identify single errors and avoid miscorrection (this is often referred
to as an extended Hamming code [9]). Other SEC-DED codes have been proposed
over the years to reduce the implementation cost [39] or to minimize the probability
of miscorrection when a triple error occurs [40]. Another extension of SEC-DED
codes are SEC-DED-DAEC codes that can also correct double errors when they are

148 J.A. Maestro et al.

Fig. 4.1 Encoder for a
SEC-DED code with n =22
and k=16

Check
Bits

Data
Bits

adjacent [41]. This is interesting to protect against correlated errors such as Multiple
Cell Upsets (MCUs). This approach has recently been extended in order to develop
SEC codes that also correct double/triple adjacent errors and double almost-adjacent
errors [42].

For a block of k data bits, the number of redundant bits (n-k) required by typical
SEC-DED codes is log,(k) 4 2. Therefore, the relative overhead is smaller for larger
data blocks. SEC-DED codes can be used to protect blocks of any size by using code
shortening, but they are typically used for block sizes which are equal to a power
of two. The encoder for a SEC-DED code is simply a set of parity equations, each
covering some subset of the data bits. As an example, the G matrix of a SEC-DED
code with n =22 and k = 16 proposed by Hsiao in [39] is shown in Eq. 4.2. Note that
here the original data bits appear in the coded word unchanged; such an encoder is
called systematic. The final six columns contain the parity-check equations for each
of the n-k = 6 parity bits. One possible implementation of the encoder is presented
in Fig. 4.1; it can be observed that some XOR gates can be shared in the computation
of several parity bits. The number of two-input XOR gates required to implement
the encoder is related to the number of ones in the G matrix and to the amount of
sharing between parity bits. As an example, the number of required XOR gates for
the SEC-DED codes proposed by Hsiao is 48, 96 and 208 for k = 16, 32 and 64
respectively [41].

4 Error Correction Coding for Electronic Circuits 149

[1000000000000000 1110007
0100000000000000 110010
0010000000000000 110001
0001000000000000 100011
0000100000000000 101001
0000010000000000 100101
0000001000000000 011100
G = 0000000100000000 011010 4.2)
0000000010000000 011001
0000000001000000 010110
0000000000100000 100110
0000000000010000 000TI111
0000000000001000 010011
0000000000000100 001110
0000000000000010 101100
L0000000000000001 001101 4

The decoding of a systematic SEC-DED code starts by re-computing the parity
bits from the data bits read, and checking these against the parity bits read. The
vector obtained is known as the syndrome [39]. This process is similar to that of
the encoder and is illustrated in Fig. 4.2. Whenever there are nonzero-valued bits
in the syndrome, at least one error must have occurred. In this case, the value of
the syndrome is used to identify if the error has affected a single bit or two bits.
This is done by comparing the value of the syndrome with each one of the values
that correspond to single bit errors. If one of those patterns match, the error is
corrected; otherwise an uncorrectable error is signaled. The structure of the decoder
is illustrated in Fig. 4.3. The syndrome decoding consists of a set of k AND gates
each having n-k inputs. Each gate checks if the syndrome matches the syndrome
caused by one of the k possible single bit errors. The syndrome decoding and
correction make the decoder more complex than the encoder — this is typically the
case for ECCs in general.

The latencies of both the encoder and decoder grow with the data block size (k),
but the increments are small. They are typically measured using the logic depth in
number of gates. As a summary of the complexity of SEC-DED codes, the gate
count and logic depth are presented in Table 4.1. This is a simplification, as the
area and delay of different gate types can vary significantly. However it provides
a useful first estimate. It can be observed that the gate count grows approximately
linearly with k£ while the delay has a much smaller increment. Comparing with a
Single Parity Check, both the gate count and the delay are increased significantly.

The main features of SEC-DED codes are summarized below:

* Can correct single bit errors and detect double errors.
¢ The number of parity bits, n-k, is log, (k) + 2.
* They are designed for blocks where the number of data bits (k) is a power of two.

150 J.A. Maestro et al.

Fig. 4.2 Syndrome computation for a SEC-DED code with n =22 and k =16

* Encoding and decoding latency is moderate.
¢ The area of the encoder/decoder is also moderate.

4.3.3 Multi-bit Error Correction Codes

When single error correction is not enough, multi-bit error correction codes are
needed. For electronic circuits, the appearance of soft errors which affect multiple
bits is becoming increasingly common, and is expected to grow even further in
the coming years [16]. Manufacturing defects or errors due to low-power/reliability
tradeoffs can also cause multiple bit errors [14]. For environments in which the
error arrival rate is high, multiple bit errors caused by the accumulation of single
bit errors over time can also be a concern [43]. In some cases, such as a radiation-
induced multiple error, the bits affected are correlated [44], while in others, such as
the accumulation of single bit errors, they are not. In the first case, codes that can
correct large bursts of errors are useful [9]. This will be discussed in more detail in
the rest of this section. The main issues associated with multi-bit error correction
codes in electronic circuits are related to their complexity. For the same data block
size k, they require a larger number of additional parity bits. The decoding is also
more complex and slower, which can result in large latencies.

4 Error Correction Coding for Electronic Circuits 151

Error Correction

o0, ERLC)S
o1, ot 5D
ﬁ, 2 szD
_bs, | s S
b4, ot P
b5, | so| | o5 P>
Data % e = Decoded
Bits —' Syndrome | 2, Syndrome D Bits
Y81 Computation | s3,] Decoding e B
ﬁ' ﬂ, 9 b9 :j;
m ﬁ, c10 b10 jD
ﬁl c11 b1 jD
ﬂ% c12 b12 :j >
ﬂ c13 b13 :j)
m c14 b14 :j>
_b1g) c15 P15 -
‘5’r ‘é‘ﬁ ‘8T ?ST “<3‘r Uncorrectable Error
L »
Check
Bits
Fig. 4.3 Structure of the decoder for a SEC-DED code
:si?r:f att.sl fo(r?%rgrél:ergyD n k Gate count Logic depth
codes 22 16 180 8
39 32 369 8
72 64 728 9
137 128 1705 11

As mentioned previously, advanced ECCs are commonly used in communication
systems [9]. Those include Reed-Solomon (RS), Bose-Chaudhuri-Hocquenghem
(BCH) and Low-Density Parity-Check codes. However, for electronic circuits the
design parameters are different, as in most cases the latency and complexity has
to be smaller; also, no soft information is available in the decoding. RS, BCH and
LDPC codes have been proposed to protect some circuits like caches and memories
[45-48]. The implementation of BCH decoders has also been optimized to the needs
of memory protection [49]. Since RS, BCH and LDPC codes are well known and
described in detail in many textbooks, we focus in this chapter on specific codes
that have been proposed to protect electronic circuits. These include Orthogonal
Latin Square (OLS) codes, Euclidean Geometry (EG) codes and Difference Set
(DS) codes. In all of these cases, a simple decoding algorithm can be implemented
with low latency which is an important feature for circuit applications. In the
following, each of the codes is described in detail, focusing on the features of the
code that are relevant for circuit protection. Finally, at the end of the section several

152 J.A. Maestro et al.

enhancements in the use of multi-bit ECCs are discussed. These enable low power
implementations, additional error detection capabilities and the correction of burst
of errors.

4.3.3.1 Orthogonal Latin Square (OLS) Codes

Orthogonal Latin Square codes for memory protection were introduced in [50].
They are based on the concept of a Latin Square, which has seen many applications
[51]. A Latin square of size m is an m-by-m matrix, each of whose rows and columns
are permutations of the digits 0, 1, ..., m — 1. Two Latin squares are orthogonal if,
when one is superimposed on the other, every ordered pair of digits appears exactly
once. An OLS code with k = m? is derived from a set of 4 mutually Orthogonal Latin
Squares of size m as follows. Each Latin square is used to compute m parity check
bits, such that each parity check involves the bits that have the same digit value in the
Latin Square. This means that each parity check is computed from exactly m bits.
The total number of parity checks is then equal to mh, and each bit participates in
exactly & parity checks. Also, any two bits share at most one parity check equation.
Therefore, using the & parity checks, & independent error checks can be done for
each bit. Each other bit can only corrupt one of those checks. Therefore decoding
can be done by inverting the bit when the majority of the /& checks takes a value of
one. This will correct errors affecting up to ¢ = h/2 bits. This decoding algorithm
is known as One-Step Majority Logic Decoding (OS-MLD) and can be used only
for certain classes of codes [9]. Its simplicity results in a low latency which, as
mentioned previously, is important in many circuits. An interesting property of OLS
codes is that for a given data block size k, a code that can correct ¢ 4 1 errors has a
parity check matrix that contains that of a code that can correct ¢ errors, and so on.
This enables a modular construction and usage of these codes, which can be useful
to provide schemes in which the error correction capability is adaptive [29].

The main parameters of an OLS code are the data block size k =m? and the
number of parity bits n-k = 2mt. This number of parity bits is large compared with
other codes, such as for example BCH codes for which n-k <t logy(n). In many
designs the block size is a power of two, and for these cases OLS codes are limited
to values which are a power of four, e.g. k =16, 64, 256, etc. For a code with data
block size k = m? that can correct ¢ errors, the decoding latency is logy(m 4 1) ~ 0.5
log, (k) two-input XOR gates plus a 2¢-input majority gate, as well as the final XOR
gate to perform correction. The number of gates required to implement the decoder
is 2m’t = 2kt two-input XOR gates plus k 2t-input majority gates. The decoder
structure is very regular and therefore amenable to implementation optimizations
using full-custom or semi-custom designs. The implementation of the majority vote
can also be optimized using a voltage sense amplifier instead of a logic design
to reduce latency. In [14], a latency similar to that of a two-input XOR gate was
mentioned for this optimized majority gate implementation. Assuming this result,
the total decoding latency would be that of logy(m + 1) 4 2 two-input XOR gates.

4 Error Correction Coding for Electronic Circuits 153

Table 4.2 Parameters of X

OS-MLD decodable z !

Euclidean Geometry codes 15 7 4 2
63 37 8 4
255 175 16 8
1023 781 32 16

Finally, it is worth mentioning that OLS codes can also be extended to correct
bursts of errors that affect multiple adjacent bits. This has been studied in [52],
showing that for k = 256, large bursts can be corrected by adding a few additional
parity check bits to the code.

The main features of OLS codes are summarized below:

e Can correct a variable number of errors ¢; furthermore, these codes can be
extended to also correct bursts of adjacent errors.

¢ The code construction is modular, so that a code that can correct r + 1 errors
includes a code that can correct ¢ errors.

* The block sizes are typically a power of four, i.e., k = 16, 64, 256.

« The number of additional bits is 2+/k?.

* Encoding and decoding latency is moderate. With an optimized majority vote
implementation, the decoding latency can be approximately that of logz(\/E +1)
+ 2 two-input XOR gates. Encoding latency is Ing(\/E) two-input XOR gates.

* The area of the encoder/decoder is moderate. The decoder requires 2kt two-input
XOR gates plus k 2t-input majority gates.

4.3.3.2 Euclidean Geometry (EG) Codes

Finite geometries have been used to derive many error-correcting codes [9]. One
example is the class of Euclidean Geometry (EG) codes; these codes are based on
the structure of Euclidean Geometries over a Galois Field. For circuit applications,
it is interesting that among EG codes there is a subclass of codes that is one-step
majority logic decodable (OS-MLD) [9]. As discussed in the context of OLS codes,
this enables a simple decoder implementation with low latency. This subclass of EG
codes has been proposed to protect memories [53-56].

The parameters of EG codes are limited to a small number of options, which are
shown in Table 4.2 for block sizes up to 1023 bits. The parameter J is the number
of MLD equations for each bit and ¢ denotes the number of errors that the code can
correct. It can be observed that as the data size k grows, so too does the number
of correctable errors. It is also interesting to note that here k is not a power of two.
Therefore, shortening should be used to adjust the data block size when it has to be
a power of two. The construction of the codes is not modular as with OLS codes,
but the number of parity bits is lower. The number of parity bits, n-k, is given by
3°—1, where the parameter s is related to the coded block size vian = 2%-11[9].

154 J.A. Maestro et al.

:)D_.‘ Co ‘ C1 ‘ Cz ‘ Cs ‘ 04‘ Cs ‘ Cs‘ C7 ‘ Cs ‘ Co ‘C1o‘C11‘C12‘C13‘C14}J

Correction
Gate CB c1 C|2014 01 CS C|3014 CO CZ CB C14 C7 CE C|DC|4

TUUY

Fig. 4.4 Serial type-1I one-step majority logic decoder for the (n = 15, k =7) EG code

The decoding can be implemented using OS-MLD. For EG codes, there are two
alternatives to implement OS-MLD, called type-I and type-II decoders [9]. In both
cases, traditional implementations are serial, i.e., bits are decoded one at a time. This
is suitable for communications systems, where the bits are received serially, but not
for circuit or memory protection, where in most situations correction needs to be
done for the complete block at one time. For circuit protection, the type-II decoder
has been considered, as it is amenable to a parallel implementation [56]. The serial
type-1II decoder for the EG code with n =15 and k=7 is shown in Fig. 4.4. The
logic needed to implement the decoder is very simple. However, the number of
cycles required for serial decoding is equal to n, which results in a large latency. A
parallel implementation can be obtained by replicating the combinational logic in
Fig. 4.4 for each of the n bits [56]. The properties of EG codes enable an optimized
implementation of the parallel decoder, as some equations are shared for different
bits. This reduces the number of required MLD equations to n instead of nJ, as
discussed in [57].

The decoding complexity is best expressed as a function of J=2% where s
is related to the block size via n=2>—1=J°—1. For large values of n, the
approximation J =~ ./n can be used in the complexity estimations. The complexity
of the combinational logic needed in a serial decoderis only J (J — 1)+1 ~ n—./n
two-input XOR gates plus a J-input majority gate.! For a parallel decoder, the
complexity increases to approximately nJ two-input XOR gates plus n J-input
majority gates. The decoding latency is that of logx(J) 41 two-input XOR gates plus
a majority gate. As discussed previously in the context of OLS codes, it has been
reported that majority gates can be implemented with low latency using a voltage
sense amplifier [14]. In that case, latency would be approximately log,(J) 4 2 two-
input XOR gates. Given the reduced number of choices for the code parameters, the

'For EG codes, J = +/n +1=2°.

4 Error Correction Coding for Electronic Circuits 155

Table 4.3 Number of

. . Majority Correction
two-input gates required to losi Equati A Total
implement a parallel decoder n OgIC quations gare o
for EG codes 15 105 45 15 165

63 1,701 441 63 2,205
255 23,205 3,825 255 27,285
Table 4.4 Logic depth, in — -
number of two-input gates, of Ma..] ority . Correction
a parallel decoder for EG n logic Equations gate Total
codes 15 3 2 1 6
63 6 3 1 10
255 10 4 1 15

complexity estimates are summarized in Tables 4.3 and 4.4. In this evaluation, the
implementation of the majority gate was done using logic gates as proposed in [56].
Therefore, a detailed breakdown among majority gates, parity check equations and
correction gates is provided to enable the evaluation of alternative majority gate
implementations [14]. This is important, as in our evaluation majority gates are
the major component in both area and latency, especially for large data blocks.
Comparing the results with those for SEC-DED codes in Table 4.1, it can be
observed that the circuit area is significantly larger but the increase in delay is small.

The main features of OS-MLD EG codes are summarized below:

* Can correct a variable number of errors ¢, depending on the block size.

* The block sizes are limited and the values are not a power of two.

+ The number of parity bits for a coded block of size n = 2%—1 is 3°—1.

* Encoding and decoding latency is moderate. With an optimized majority vote
implementation, the decoding latency can be approximately that of s+ 2 two-
input XOR gates.

* The area of the encoder/decoder is moderate and can be reduced by optimizing
the majority gate implementation. The decoder requires n2° two-input XOR gates
plus n 2°-input majority gates.

4.3.3.3 Difference Set (DS) Codes

Another class of codes that are OS-MLD decodable is that of Difference Set (DS)
codes. These codes are based on the concept of a perfect difference set [9]. Their
use to protect memories has been recently studied [58, 59]. As with EG codes, the
number of options is limited as regards block sizes and error correction capabilities.
The available parameters for block sizes up to 1057 bits are shown in Table 4.5. The
number of choices is the same as that for EG codes and the values of the parameters
are also similar. DS codes have one more MLD equation than their EG counterparts
for the same value of ¢ (the value of the parameter J is greater by one). This can

156 J.A. Maestro et al.

Table 4.5 Parameters of

difference set codes n k J !
21 11 5 2
73 45 9 4
273 191 17 8
1057 813 33 16

% Co [C1 [C2 ‘ Cs[C4 [Cs[Ce [C7[Cs [Co [C1o[C11[C12[C1s‘C14‘015‘C16[C17[C18[C19[Czo‘

Correction
Gate o €5 €7C17C20 ©1C41C14Cis G0 C2 O C5CioCa0 Ca C C16C19C20 Co Cr2CraCra Cao

Fig. 4.5 Serial type-1I one-step majority logic decoder for the (n =21, k = 11) DS code

be used to provide additional error detection capabilities, as will be discussed in the
next subsections. The number of parity bits, n-k, is given by 3° + 1 where s is related
to the coded block size vian = 2% + 2° + 1. This is similar to the case of EG codes.

The decoding of DS codes is also similar to that of OS-MLD EG codes. The
type-1I decoder for the code with n =21 and k=11 is illustrated in Fig. 4.5. An
important difference is that in a DS code, every bit participates in exactly one of
the MLD equations, except the bit being decoded (which participates in all of the
equations). By contrast, in an EG code, some bits do not participate in any of the
MLD equations at a given iteration.

The complexity and latency of the decoder for a DS code is similar to that of an
EG code with corresponding parameters. The complexity is better expressed as a
function of J = 2° + 1 (recall that s is related to the block size via n = 2% + 25 + 1).
For large values of n, the approximation J = /1 can be used in the complexity
estimations. The serial decoder requires J*(J—1) 4+ 1 two-input XOR gates and a
majority gate. The parallel decoder can be implemented with nJ ~ n </n two-input
XOR gates and n majority gates. The latency of decoding is that of logy(J) + 1 two-
input XOR gates plus a majority gate. All these values are in line with those of EG
codes. Therefore, DS codes provide additional code parameter choices with similar
decoding complexity and latency.

However, Difference Set codes have some particular features which can be used
to correct burst of errors. This has been recently studied in [60]. The results show
that by judiciously placing the bits in the memory/circuit and correspondingly
modifying the OS-MLD decoding algorithm, large bursts of adjacent errors can be
corrected.

4 Error Correction Coding for Electronic Circuits 157

The main features of DS codes are summarized below:

* Can correct a variable number of errors ¢, depending on the block size. Burst
error correction capabilities can also be implemented with no additional bits.

* The block sizes are limited and the values are not a power of two.

* The number of parity bits for a coded block of size n = 2% 4 2%+ 1is 3* + 1.

* Encoding and decoding latency is moderate. With an optimized majority vote im-
plementation, the decoding latency can be approximately that of log,(2° + 1) + 2
two-input XOR gates.

* The area of the encoder/decoder is moderate and can be reduced by optimizing
the majority gate implementation. The decoder requires n(2° + 1) two-input XOR
gates plus n majority gates each having 2° 4 1 inputs.

4.3.3.4 Enhancing the Use of Multi-bit ECCs for Circuit Protection

This subsection presents several enhancements in the use of multi-bit ECCs for cir-
cuit protection. These are related to power consumption and latency optimizations,
additional error detection capabilities, and the correction of burst of errors.

Reducing Decoding Power Consumption and Latency

The discussion of multi-bit ECC has so far focused on the use of OS-MLD codes
which enable decoding with moderate complexity and low latency. This is because
latency is a critical factor in many circuit and memory designs. Power consumption,
which is also important, has however not been addressed so far. It could be argued
that power consumption is directly related to encoder/decoder complexity and to the
number of parity bits, and therefore complexity estimates could also provide a first
indication of power consumption. However, there are some enhancements which
can be used to reduce the power consumption of ECCs. One approach is to perform
error detection first, and to then proceed with the rest of the decoding only when
there are detected errors. The rationale is that in most cases the decoded block will
be error-free, and therefore the rest of the decoding process can be spared. This
will reduce power consumption and may also lower the latency when the block is
error-free.

The method by which error detection is performed varies with the ECC code.
Checking for any non-zero bit in the syndrome is a simple alternative which is
especially suitable for ECCs in which the syndrome is computed as part of the
decoding process. This is the case for BCH and OLS codes. For BCH codes, the
use of this approach has been proposed to optimize the implementation of ECCs in
caches [45]. For codes such as OLS codes which have a modular construction, this
approach can be further optimized by noting that an ECC that can correct ¢ errors
contains in its parity check matrix, the parity check matrix of a code that corrects

158 J.A. Maestro et al.

[¢/2] errors.? Therefore the syndrome for the code that corrects [¢/2] errors can be
used to detect errors affecting ¢ or fewer bits. This optimization can also be used for
BCH codes (which have a modular structure for the parity check matrix); this has
been evaluated recently in [61].

For EG and DS codes, when the type-II OS-MLD decoder is used, the syndrome
is not computed as part of the decoding. In these cases, it may be more interesting
to perform error detection as part of the OS-MLD process. For a serial decoder,
the first decoding cycles can be used to detect errors. This has been studied for DS
codes in [57] and for EG codes in [62], showing that three decoding cycles can detect
most errors. In fact, all errors affecting five or fewer bits were detected for the case
of DS codes. For EG codes, all errors affecting four or fewer bits were detected.
This method can also be used in a parallel decoder to reduce power consumption
significantly.

Improving the Error Detection Capability

For memories and circuits, it is important to avoid undetected errors, as these may
lead to silent data corruption. This is the main reason why SEC-DED codes are
preferred over SEC codes. For multi-bit error correction codes, it is interesting that
a code which corrects ¢ errors can also detect ¢ 4 / or more errors. For t + [errors
this requires a minimum distance of 27+ 2, such that block with 7+ I errors is at
least at distance ¢ 4+ / from any valid coded word and no miscorrection takes place.
For the codes considered, DS codes have precisely a minimum distance of 2 + 2
and therefore can provide additional error detection. This is not the case for EG
codes, while for OLS codes, since code construction is modular it can be achieved
by adding more parity bits. Some techniques can be used to also detect some of the
errors which affect more than ¢ + / bits. For example, the number of corrected bits
can be checked to see whether it is larger than 7.

The additional error detection for DS codes has been studied in [63], showing that
detection of ¢4 I errors can be achieved by modifying the OS-MLD process. The
error detection enhanced decoder is shown in Fig. 4.6 for the code with n =21 and
k =11. The modifications are (i) that now correction is only done when there is a
majority of four (in general, # + 2) among the MLD equations and (ii) that an OR of
all the MLD equations is used to detect errors. The modification of the majority vote
threshold to # + 2 avoids miscorrections when there are ¢ + / errors. Once the OS-
MLD is completed, if there were ¢ + [errors there could still be errors in the coded
block. Therefore those errors are detected by repeating the first OS-MLD iterations
as described in the previous subsection. This scheme was also extended to detect
more than 7+ / errors by counting the number of corrected errors and checking for
specific values in the majority votes.

2Here [x] denotes the smallest integer greater than or equal to x.

4 Error Correction Coding for Electronic Circuits 159

:)D_.‘ Co [C1 [(07 [Cs[C4 [Cs[Cs [C7[Cs [Co [C1o[C11[C12[C13[C14]C15[C16[C17[C18[C19[Czo\

Correction
Error
g : detected

Gate CoC ©7C17Ca0 C1C11C14CisCa0 Cp G5 G5 CioCao G4 C C1eCr G0 Co CroC1sCis Cao

L

Esss=
SN SS

NITFRNEIFRNARY
l?i

et output to 1
when 4 or 5
inputs are 1

Fig. 4.6 Error detection enhanced type-II one-step majority logic decoder for the (n =21,k =11)
DS code

For OLS codes, error detection of ¢4/ errors can be implemented by adding
additional parity bits. For a data block of size k and a code that can correct ¢ bits,
2tk parity bits are required in an OLS code. By adding a further Vk bits the code
will have a minimum distance of 27+ 2, and 2t + / MLD equations can be used
to correct each bit. Then a similar approach as that proposed for DS codes can be
used. In this case, the error detection after the modified OS-MLD decoding can be
implemented using the syndrome computation. Therefore, enhanced error detection
OLS codes can also be efficiently implemented.

Correction of Bursts of Errors

There are many different sources of errors in electronic circuits, which cause both
random and correlated errors. An example of random errors is the accumulation of
single radiation-induced soft errors, and an example of correlated errors is multiple
radiation-induced soft errors. The codes described so far can correct t random errors,
but when correlated errors are present, it is also important to consider whether the
codes can correct bursts of adjacent or physically close errors. The correction of
burst of errors has been considered for OLS and DS codes, while no study has yet
been presented for EG codes.

For OLS codes, the correction of bursts of adjacent errors was considered in [52].
The proposed scheme adds a few additional bits to the coded block to achieve the
correction of burst of errors. For example, the correction of triple adjacent errors for
a double error correction OLS code is achieved with few additional bits. Correction
of larger bursts is also studied, showing that only slightly more additional bits are
needed. However, no analysis of the impact of the modifications on the decoder
latency and complexity has been presented.

For DS codes, the correction of bursts of errors has been considered in [60]. In
this case, no additional parity bits are added to the coded block. The scheme relies
on placing bits that belong to the same MLD equation together, in order that bursts

160 J.A. Maestro et al.

MCU 1 MCU 2

W, \w1 w, A w,

Word 1 | Co | Cs5 | C7 |C17| C1 |C1q|CH4 C2|C3|Cs|C10{ C4 | Cs |C16|C19| Co [C12|C13|C18|C20
Word2 | Co | Cs | C7 |C17| CH 1|C44|C15| C2| C3|Cs C10\C4 Ce [C16|C19| C9 |C12|C13|C18|C20
Word 3 | Co | Cs | C7|C17| C1|C11|C14|C15/ C2| C3| Cs C16[C19| Co |C12{C13|C18|C20
Word 4 | Co | Cs|C7|C17|C1|C11{C14|C15/C2| C3 | Cs Ca C16|C19| Co |C12|C13|C18|C20

Fig. 4.7 Proposed bit placement for the bits in the (n =21, k= 11) DS code

of errors affect bits in only one or two MLD equations. This is illustrated in Fig. 4.7,
where two examples of burst errors are shown. In this case, the errors are Multiple
Cell Upsets (MCUs) caused by radiation. It can be observed that the first MCU
affects only bits that belong to equation w;, while errors in the second MCU affect
both w, and w;. The key observation is that errors which lie in one MLD equation
when decoding a given bit will also be in one MLD equation when decoding each of
the bits of the original equation. This is a consequence of the properties of perfect
difference sets which are used to derive DS codes, and enables the correction of
bursts of errors. To see how correction can be achieved, let us consider that there are
t, errors in a single MLD equation, for example w;. Then when decoding the bits
that formed part of w; in the beginning, all errors will be in one MLD equation. This
means that the majority vote will take a value of at least J—1, and the errors will be
corrected. However, previous to that other bits will be decoded and for these, errors
can appear in different MLD equations causing the vote to take a value of up to 7.
This means that if a simple majority of J/2 is used for correction, miscorrection
can take place when t, > J/2. Therefore, to effectively correct bursts of errors, the
decoding is done first with a large threshold for the majority vote (/—1), and then
repeated with values decreasing down to J /2. The proposed algorithm is illustrated
in Fig. 4.8. This modified decoding procedure has an impact on latency which, as
mentioned previously, can be mitigated by first checking whether there are errors,
in which case we proceed with the rest of the decoding stages.

The proposed scheme is able to correct up to J—2 errors in a single MLD equation
and a variable number of additional errors in the other equations. If the number
of errors in one equation is denoted by C and the number of the other errors by
R, then the error correction capabilities of the proposed scheme are those shown
in Table 4.6. For the code with n = 1057, only values of R up to 8 are presented.
It can be observed that significant burst error correction capabilities are achieved,
especially for codes with large n.

4.3.4 Emerging Codes and Error Correction Schemes

The codes described or mentioned so far are linear codes; this means that the
computation of each of the parity check bits is achieved via modulo-2 summation

4 Error Correction Coding for Electronic Circuits

Fig. 4.8 Modified OS-MLD
procedure to correct bursts of
errors

Set Correction
Threshold to J-1

161

OS-MLD decoding [«
A
Decrement
Correction
Threshold
No

Threshold <
ceil(J/2)

End of
decoding

Table 4.6 Error correction capabilities for the DS codes with the burst correction algorithm

N J R=0 R=1 R=2 R=3 R=4 R=5 R=6 R=7 R=8
21 5 ¢c=3 C=1 C=0 - - - - -
73 9 ¢c=7 C=5 (C=3 (C=1 C=0 - - - -
2713 17 C=15 C=13 C=11 C=9 C=7 C=5 (=3 = Cc=0
1057 33 C=31 C=29 C=27 C=25 C=23 C=21 C=19 C=17 C=15

(or XOR operation) of some of the data bits. This ensures that when the receiver
computes the syndrome to perform error detection and/or correction (as explained
in Sect. 4.3.2), this syndrome does not depend on the values of the data bits stored,
but only on the set of bit positions in which the errors have occurred. This property
allows for low-complexity syndrome-based error detection and correction schemes.
Recently, the use of nonlinear codes has been proposed to protect memories. For
example, in [64] the use of nonlinear SEC-DED codes is analyzed, showing that
they can reduce the number of undetected or miscorrected errors. The area and

162 J.A. Maestro et al.

delay results presented suggest that these codes are more complex to implement
than traditional linear SEC-DED codes. In any case, the use of nonlinear codes for
circuit protection is an interesting area for future research.

Another topic that has gained interest in recent years is the development of
adaptive ECC schemes that can provide a variable ECC solution depending on the
observed error rate. One example is the adaptive ECC presented in [65] in which
the block size is adapted dynamically. Another interesting idea was presented in
[66] where the ECC is decoupled from the physical memory implementation, thus
enabling greater flexibility. Taking advantage of that flexibility while maintaining
performance in terms of area, power and speed is also an interesting research
problem.

4.4 Selection of Error Correction Codes
for Electronic Circuits

This chapter began by first presenting an overview of the main circuits for which
error correction codes are used. The goal was to summarize, for each of these, the
protection requirements and the implementation constraints. Subsequently, several
error correction codes capable of meeting these requirements have been discussed.
Now these parts are linked together by discussing which codes are most suitable to
protect each circuit type.

4.4.1 Registers

In registers, encoding and decoding complexity is a limiting factor as the encoder
and decoder are used to protect a single register and are not shared among many
words as in the case of memories. Latency is also an important constraint. These
factors in most cases limit the use of ECCs in registers to Single Parity Check (SPC)
and SEC/SEC-DED codes. The use of multi-bit error correction codes has a large
impact on performance and other alternatives like triplication (commonly known as
Triple Modular Redundancy or TMR) may be more effective.

4.4.2 Register Files

Similarly to registers, register files impose tight latency constraints on the ECC.
The limits to the complexity of the encoder and decoder are however relaxed, as
they are shared among all the registers. This again makes SPC and SEC/SEC-DED
codes good options for protection. When the cost of the additional bits is acceptable,
OLS codes are also an attractive option which fit well with common register sizes
(64 bits).

4 Error Correction Coding for Electronic Circuits 163
4.4.3 Caches

A distinct feature of caches is the use of large data blocks (512, 1024, etc.). Large
blocks reduce the relative overhead of the ECC, making the use of multi-bit ECCs
more attractive. At the same time, the encoder and decoder complexity is shared
among a large number of blocks, reducing the impact on overall cost. Latency is an
important issue as only low delay decoders can be used.

In addition to SPC and SEC/SEC-DED codes, OLS and BCH codes are good
options to protect caches. The use of DS or EG codes for block sizes of 512 can also
be of interest when the number of errors to correct is large (>10).

4.4.4 SRAM Memories

For memories, the cost of the encoder and decoder is shared among many words,
making it less critical. On the other hand, the number of parity bits has a direct
impact on the cost and must therefore be minimized. To deal with multiple errors
which are physically correlated, interleaving can be used [17]. Interleaving spreads
the multiple errors among different words to try to ensure that each word contains
only one bit error. The use of interleaving impacts area, delay and power, and
complicates the memory design. Therefore, whether it is better to use interleaving
and a simple ECC, or no interleaving with a more complex ECC, depends on the
specific design. The block sizes for memories are smaller than for caches, with
typical values of 16, 32 and 64 bits.

The large number of parity bits for these block sizes means that OLS codes are
not an attractive option for SRAM memories. Shortened versions of DS and EG
codes can be a good option for data blocks of 32 bits when strong error correction is
required. However, SPC for error detection and SEC-DED codes for error correction
remain the default choices for SRAM protection.

4.4.5 DRAM Memories

The considerations for DRAM memories are similar to those for SRAMs. The main
difference is that in DRAMs, memory modules that are composed of a number
of memory ICs are commonly used. In this case, the protection against a device
failure is an interesting problem and can be solved by the use of SEC combined
with interleaving [19] or by the use of more advanced codes like DS or RS codes.
The extension of SEC-DED codes to protect against device failures has also been
studied in [67].

164 J.A. Maestro et al.

Table 4.7 Suitable error correction codes for different circuit types

Circuit type Error correction codes

Registers SPC, SEC,SEC-DED

Register file SPC, SEC,SEC-DED,OLS
Caches SPC, SEC,SEC-DED,OLS.EG,DS
SRAM/DRAM memories SPC, SEC,SEC-DED,EG,DS
Content Addressable Memories (CAMs) SPC, SEC,SEC-DED
Interconnections SEC,0OLS

4.4.6 Content Addressable Memories (CAMs)

The protection of CAMs is different than that of SRAM and DRAM memories
as discussed before. A parity bit (i.e., SPC code) can be used to provide single
error protection against false positives. The use of ECCs has to be combined with
a modified match line to also protect against false negatives [22]. In this case, SEC
codes can be used. More complex codes can be used when multiple error correction
is needed. In this regard, it is important to note that decoder latency and complexity
are not an issue for CAMs, as the decoder is not needed in the scheme proposed
in [22]. This means that codes with large decoding complexity or latency could
eventually be used if the correction of more errors is required.

4.4.7 Interconnections

The correction of single and multiple errors has been considered for interconnec-
tions. In this case the data block sizes are similar to those of memories, with
common values being 16, 32 and 64. The decoding has to be simple and must also
have low latency. This makes OLS codes an attractive option, while shortened DS
or EG codes can be a good option for interconnections of 32 bits. When a lower
degree of error protection is sufficient, SEC codes are a good option.

4.4.8 Summary

Table 4.7 summarizes the ECCs which are suitable for the different circuit types. It
can be observed that while SPC and SEC/SEC-DED codes are suitable for many of
these circuits, the multi-bit ECCs described above can also be useful in a wide range
of circuits.

4 Error Correction Coding for Electronic Circuits 165

4.5 Conclusions

This chapter has presented an overview of the use of error correction codes
to protect digital circuits. First, the protection and performance requirements of
different circuits have been discussed. Then several error correction codes have
been presented. The description of the codes has focused on their error correction
capabilities and their implementation. The objective is to provide the reader with
an understanding of which codes can be used to protect which circuits, as well as
the tradeoffs involved. To this end, estimates of decoding complexity and latency
are provided for the different codes where possible. The more theoretical aspects of
these codes are not discussed as they require a strong mathematical background and
our focus here is on facilitating the practitioner who wishes to select an appropriate
ECC to protect a given circuit.

The discussion above has covered commonly used SEC or SEC-DED codes as
well as more advanced multi-bit error correction codes. In the latter case, codes
which can be implemented with low latency have been selected for the exposition,
as this is an important requirement in many circuits.

References

1. J. Segura, C.F. Hawkins, CMOS Electronics: How It Works, How It Fails (IEEE Press/Wiley
Interscience, Hoboken, 2004)

2. R.C. Baumann, Radiation-induced soft errors in advanced semiconductor technologies. IEEE
Trans. Dev. Mat. Rel. 5(3), 301-316 (2005)

3. C. Constantinescu, Intermittent faults and effects on reliability of integrated circuits. Annual
Reliability and Maintainability Symposium (RAMS), (2008), pp. 370-374

4.]J.-F. Li, J.-C. Yeh, R.-F. Huang, C.-W. Wu, A built-in self-repair design for RAMs with 2-D
redundancies. IEEE Trans. Very Large Scale Integr. Syst. 13(6), 742-745 (2005)

5.Z.Ji, L. Lin, J.FE. Zhang, B. Kaczer, G. Groeseneken, NBTTI lifetime prediction and kinetics
at operation bias based on ultrafast pulse measurement. IEEE Trans. Electron Dev. 57(3),
228-237 (2010)

6. M. Nicolaidis, Design for soft error mitigation. IEEE Trans. Device Mat. Rel. 5(3), 405418
(2005)

7. A. Reddy, P. Banarjee, Algorithm-based fault detection for signal processing applications.
IEEE Trans. Comput. 39(10), 13041308 (1990)

8. C.L. Chen, M.Y. Hsiao, Error-correcting codes for semiconductor memory applications: a
state-of-the-art review. IBM J. Res. Dev. 28(2), 124-134 (1984)

9. S. Lin, D.J. Costello, Error Control Coding, 2nd edn. (Prentice-Hall, Englewood Cliffs, 2004)

10. G. Dong, N. Xie, T. Zhang, On the use of soft-decision error-correction codes in NAND flash
memory. IEEE Trans. Circuits Syst. I Regular Papers 58(2), 429-439 (2011)

11. J. E. Wakerly, Digital Design Principles and Practices, 4th edn. (Prentice Hall, Upper Saddle
River, NJ, USA, 2006)

12. M. Fazeli, S. N. Ahmadian, S. G. Miremadi, A low energy soft error-tolerant register
file architecture for embedded processors. 11th IEEE High Assurance Systems Engineering
Symposium, (2008), pp. 109-116

13. S. Esmaeeli, M. Hosseini, B. V. Vahdat, B. Rashidian, A multi-bit error tolerant register file
for a high reliable embedded processor. 18th IEEE International Conference on Electronics,
Circuits and Systems (ICECS), (2011), pp. 532-537

166

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

J.A. Maestro et al.

A.R. Alameldeen, Z. Chishti, C. Wilkerson, W. Wu, S.-L. Lu, Adaptive cache design to enable
reliable low-voltage operation. IEEE Trans. Comput. 60(1), 50-63 (2011)

H. Sun, N. Zheng, T. Zhang, Leveraging access locality for the efficient use of multibit error-
correcting codes in L2 cache. IEEE Trans. Comput. 58(10), 1297-1306 (2009)

E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, T. Toba, Impact of scaling on neutron-induced soft
error rate in SRAMs from a 250 nm to a 22 nm Design Rule. IEEE Trans. Electron Dev. 57(7),
1527-1538 (2010)

S. Baeg, S. Wen, R. Wong, SRAM interleaving distance selection with a soft error failure
model. IEEE Trans. Nucl. Sci. 56(4 (part 2)), 2111-2118 (2009)

B. Schroeder, E. Pinheiro, W. -D. Weber, DRAM Errors in the wild: a large-scale field study.
ACM SIGMETRICS/Performance (2009)

T.J. Dell, A White Paper on the Benefits of Chipkill-Correct ECC for PC Server Main Memory.
IBM Microelectronics, (1997)

K. Pagiamtzis, A. Sheikholeslami, Content-addressable memory (CAM) circuits and architec-
tures: a tutorial and survey. IEEE J. Solid-State Circ. 41(3), 712-727 (2006)

S. Mukherjee, Architecture Design for Soft Errors (Morgan Kaufmann, Amsterdam, 2008)

K. Pagiamtzis, N. Azizi, F. N. Najm, A soft-error tolerant content-addressable memory
(CAM) using an error-correcting-match scheme. IEEE Custom Integrated Circuits Conference,
pp- 301-304, Sept 2006

S. Gregori, A. Cabrini, O. Khouri, G. Torelli, On-chip error correcting techniques for new-
generation flash memories. Proc. IEEE 91(4), 602-616 (2003)

Y. Maeda, H. Kaneko, Error control coding for multilevel cell flash memories using nonbinary
low-density parity-check codes. IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems, (2009), pp. 367-275

A. Jiang, J. Bruck, Data representation for Flash memories, book chapter in Data Storage.
ISBN: 978-953-307-063-6, In-Tech Publisher, (2010)

Q. Huang, S. Lin, K.A.S. Abdel-Ghaffar, Error correcting codes for flash coding. IEEE Trans.
Inform. Theory 57(9), 6097-6108 (2011)

J. Wang, T. Courtade, H. Shankar, R. D. Wesel, Soft information for LDPC decoding in flash:
mutual-information optimized quantization. IEEE Global Telecommunications Conference,
(2011)

A. Ganguly, P.P. Pande, B. Belzer, Crosstalk-aware channel coding schemes for energy-
efficient and reliable NOC interconnects. IEEE Trans. Very Large Scale Integr. (VLSI) Syst.
17(11), 1626-1639 (2009)

S.E. Lee, Y.S. Yang, G.S. Choi, W. Wu, R. Iyer, Low-power, resilient interconnection with
Orthogonal Latin Squares. IEEE Des. Test. Comput. 28(2), 30-39 (2011)

R.H. Morelos-Zaragoza, The Art of Error Correcting Coding, 2nd edn. (Wiley, Chichester,
2006)

J.J. Metzner, Convolutionally encoded memory protection. IEEE Trans. Comput. 31(6),
547-551 (1983)

K. Rokas, Y. Makris, D. Gizopoulos, Low cost convolutional code based concurrent error
detection in FSMs. IEEE International Symposium on Defect and Fault Tolerance in VLSI,
(2003), pp. 344-351

E.S. Fetzer, D. Dahle, D.C. Little, K. Safford, The Parity protected, multithreaded register files
on the 90-nm itanium microprocessor. IEEE J. Solid-State Circ. 41(1), 246-255 (2006)

Z. Chaohuang, N. Saxena, E. J. McCluskey, Finite state machine synthesis with concurrent
error detection. International Test Conference, (1999), pp. 672-679

M. Nicolaidis, R.O. Duarte, Fault-secure parity prediction Booth multipliers. IEEE Des. Test.
Comput. 16(3), 90-101 (1999)

G. C. Cardarilli, M. Ottavi, S. Pontarelli, M. Re, A. Salsano, Error detection in signed digit
arithmetic circuit with parity checker. IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, (2003), pp. 401-408

F. Vargas, M. Nicolaidis, SEU-tolerant SRAM design based on current monitoring. Twenty-
Fourth International Symposium on Fault-Tolerant Computing, (1994), pp. 106115

38.

39.

40.

4

—

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

6

—_

Error Correction Coding for Electronic Circuits 167

R.W. Hamming, Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147-160
(1950)

M.Y. Hsiao, A class of optimal minimum odd-weight column SEC-DED codes. IBM J. Res.
Dev. 14(4), 395-401 (1970)

M. Richter, K. Oberlaender, M. Goessel, New linear SEC-DED codes with reduced triple bit
error miscorrection probability. IEEE On-Line Testing Symposium, (2008), pp. 37-42

. A. Dutta, N. A. Touba, Multiple bit upset tolerant memory using a selective cycle avoidance

based SEC-DED-DAEC Code. 25th IEEE VLSI Test Symposium, (2007), pp. 349-354

X. She, N. Li, D.W. Jensen, SEU tolerant memory using error correction code. IEEE Trans.
Nucl. Sci. 59(1), 205-210 (2012)

M.A. Bajura et al., Models and algorithmic limits for an ECC-based approach to hardening
sub-100-nm SRAMs. IEEE Trans. Nucl. Sci. 54(4), 935-945 (2007)

S. Satoh, Y. Tosaka, S.A. Wender, Geometric effect of multiple-bit soft errors induced by
cosmic ray neutrons on DRAMs. IEEE Electron Dev. Lett. 21(6), 310-312 (2000)

C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar. S. Lu, Reducing cache
power with low cost, multi-bit error-correcting codes. International Symposium on Computer
Architecture, pp. 83-93, June 2010

P. Ankolekar, S. Rosner, R. Isaac, J. Bredow, Multi-bit error correction methods for Latency-
Contrained flash memory systems. IEEE Trans. Dev. Mat. Rel. 10(1), 33-39 (2010)

G.C. Cardarilli, A. Leandri, P. Marinucci, M. Ottavi, S. Pontarelli, M. Re, A. Salsano, Design
of a fault tolerant solid state mass memory. IEEE Trans. Rel. 52(4), 476-491 (2003)

S. Jeon, E. Hwang, K. V. Kumar, M. K. Cheng, LDPC codes for memory systems with
scrubbing. IEEE Global Telecommunications Conference (GLOBECOM), (2010)

D. Strukov, The area and latency tradeoffs of binary bit-parallel BCH decoders for prospective
nanoelectronic memories. Proceedings of 2006 Asilomar Conference on Signals Systems and
Computers, pp. 1183-1187, Oct 2006

M.Y. Hsiao, D.C. Bossen, R.T. Chien, Orthogonal Latin Square codes. IBM J. Res. Dev. 14(4),
390-394 (1970)

J. Dénes, A.D. Keedwell, Latin Squares and Their Applications (Academic, New York, 1974)
R. Datta, N. A. Touba, Generating burst-error correcting codes from orthogonal Latin Square
codes — A Graph Theoretic Approach. IEEE International Symposium Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), (2011), pp. 367-373

S. Ghosh, P. D. Lincoln, Dynamic low-density parity check codes for fault-tolerant nano-scale
memory. Proceedings of Foundations of Nanoscience (FNANO ‘07) (Snowbird, Utah, 2007)
S. Ghosh, P. D. Lincoln, Low-density parity check codes for error correction in nanoscale
memory. SRI Computer Science Laboratory Technical Report, CSL-0703, (2007)

H. Naeimi, A. DeHon, Fault secure encoder and decoder for memory applications. Proceedings
of the IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, (2007)
H. Naeimi, A. DeHon, Fault secure encoder and decoder for nanoMemory applications. IEEE
Trans. Very Large Scale Integr. Syst. 17(4), 473-486 (2009)

P. Reviriego, M. Flanagan, J. A. Maestro, Efficient multibit error correction for memory
applications using Euclidean Geometry codes. Proceedings of the RADECS 2011 Conference,
(2011), pp. 160-163

S. Liu, P. Reviriego, J.A. Maestro, Efficient majority logic fault detection with difference-
set codes for memory applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(1),
148-156 (2012)

P. Reviriego, M. Flanagan, J.A. Maestro, A (64, 45) triple error correction code for memory
applications. IEEE Trans. Dev. Mat. Rel. 12(1), 101-106 (2012)

P. Reviriego, M. Flanagan, S. Liu, J.A. Maestro, Multiple cell upset correction in mem-
ories using difference set codes. IEEE Trans. Circuits Syst. I 59(11), 2592-2599 (2012).
ISSN:1549-8328

. P. Reviriego, C. Argyrides, J.A. Maestro, Efficient error detection in double error correction

BCH codes for memory applications. Microelectron Rel. 52(7), 1528-1530 (2012)

168 J.A. Maestro et al.

62. P. Reviriego, J.A. Maestro, M. Flanagan, Error detection in majority logic decoding of
Euclidean geometry low density parity check (EG-LDPC) codes. IEEE Trans. Very Large Scale
Integr. Syst. 21(1), 156159 (2013)

63. P. Reviriego, M. Flanagan, S. Liu, J.A. Maestro, Error-detection enhanced decoding of
difference set codes for memory applications. IEEE Trans. Dev. Mat. Rel. 12(2), 335-340
(2012)

64. Z. Wang, M.G. Karpovsky, K. Kulikowski, Design of memories with concurrent error detection
and correction by non-linear SEC-DED codes. J. Electron. Test. 26, 559-580 (2010)

65. C. Chen, C. Wu, An adaptive code rate EDAC scheme for random access memory Design,
Automation & Test in Europe Conference & Exhibition (DATE), (2010), pp. 735-740

66. D. Yoon, M. Erez, Virtualized ECC: flexible reliability in main memory. IEEE Micro 31(1),
11-19 (2011)

67. S. Pontarelli, G. C. Cardarilli, M. Re, A. Salsano, Error correction codes for SEU and SEFI
tolerant memory systems. IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, (2009), pp. 425-430

Chapter 5
System-Level Design Methodology

Rishad A. Shafik, Bashir M. Al-Hashimi, and Krishnendu Chakrabarty

5.1 Multiprocessor System-on-Chip

Continued technology scaling has enabled the fabrication of ever more efficient
and low power electronic devices for current and future generation of embedded
systems. Examples of such devices include IBM’s 22-nm [33] and Intel’s emerging
16-nm [63] devices with promises to provide with unprecedented integration capac-
ity and performance. However, with these technological advances, design complex-
ity is also increasing significantly with emerging challenges related to performance,
power and reliability. To address the design complexity while meeting power and
performance requirements of modern applications, recently multiprocessor system-
on-chip (MPSoC) has emerged as a popular embedded systems platform [44]. An
MPSoC contains multiple processing elements on a single piece of silicon, each
with an assigned task to define an expected application domain. The inclusion of
multiple processing elements in MPSoCs has a number of benefits. These include
parallel processing, low clock speed, low power consumption, etc. [72].
Depending on the type of processing elements and nature of application,
MPSoCs can be either homogeneous or heterogeneous. Figure 5.1 shows example
homogeneous and heterogeneous MPSoCs with processing elements and memories.
As can be seen, the homogeneous MPSoC has three RISC processors (Fig. 5.1a).

R.A. Shafik (B<)
University of Bristol, Bristol, BS8 1UB, UK
e-mail: rishad.shafik @bristol.ac.uk

B.M. Al-Hashimi

School of Electronics and Computer Science, University of Southampton, Southampton,
SO17 1BJ, UK

e-mail: bmah@ecs.soton.ac.uk

K. Chakrabarty

Department of Electrical and Computer Engineering, Duke University of Bristol,
Durham, NC, USA

e-mail: krish@ee.duke.edu

J. Mathew et al. (eds.), Energy-Efficient Fault-Tolerant Systems, 169
DOI 10.1007/978-1-4614-4193-9_5, © Springer Science+Business Media New York 2014

mailto:rishad.shafik@bristol.ac.uk
mailto:bmah@ecs.soton.ac.uk
mailto:krish@ee.duke.edu

170 R.A. Shafik et al.

8 Voltage Island #1
RISC Processor Private
" Memory Shared Memory
On-Chip Communication Architecture
~
RISC Processor RISC Processor |, ~ Private
#3 #2 - ¥ Memory
Voltage Island #2 Voltage Island #3
b
Voltage Island #1
Application-
Digital Signal RISC Processor Specific
Processor (DSP) #1 Integrated Circuit
(AsIC)
On-Chip Communication Architecture
)\
Shared RISC Processor Private
Memory #2 Memory
7
Voltage Island #2 Voltage Island #3

Fig. 5.1 Example MPSoCs with processing elements inter-connected by on-chip communication
architectures: (a) a homogeneous MPSoC with similar RISC processors, (b) a heterogeneous
MPSOC with different processing elements, both organized in different voltage islands

Due to similar instruction set architectures (ISA) homogeneous processing cores
have the advantage of easier inter-core communication and mapping or migration
of tasks between them. However, depending on the nature of applications often
MPSoCs have different processing elements in a single piece of silicon, known
as heterogeneous MPSoC. From Fig.5.1b it can be seen that the heterogeneous
MPSoC has two different kinds of processors: digital signal processor (DSP)

5 System-Level Design Methodology 171

and RISC processors. Due to different ISAs between DSP and RISC processors,
communication between them can be non-trivial. Moreover, mapping and migration
of tasks among the processors may require sophisticated task based modeling and
virtualization techniques [51]. From Fig. 5.1 it can also be seen that depending on
computational and communication requirements of the processing cores, memories
can be allocated as either private (i.e. mapped and used by a particular processing
core) or shared (i.e. used by multiple processing cores).

The interconnection of processings elements and memories within the MPSoC
is controlled by on-chip communication architecture, which defines how inter-
component communication takes place (Fig. 5.1). Since inter-component communi-
cation is crucial for system functionality and parallelism, on-chip communication
architecture greatly influences the underlying performance of the system. Major
MPSoC on-chip communication architectures are briefly introduced in Sect.5.1.1.

Since MPSoCs enable modular design and layout, it is often advantageous to
allow one or more processing and memory cores to share a common operating volt-
age, otherwise known as voltage islands. These voltage islands can be conveniently
controlled in MPSoCs to reduce power consumption through dynamic voltage and
frequency (DVFS) scaling. Operating at various supply voltages is very common in
today’s MPSoCs, which are designed specifically with low power requirements [52].
To achieve low power and high performance objectives, MPSoCs are carefully
designed with higher inter-core parallelism. However, low power design of these
systems can be highly challenging as reliability is seriously degraded due to
significant increase in the number of hardware faults caused by electromagnetic
radiations, among others [58]. MPSoC design challenges and system-level design
methodologies to effectively address them are further described in Sect. 5.1.2.

5.1.1 On-Chip Communication Architectures

On-chip communication architecture facilitates communication between compo-
nents within an MPSoC. Depending on how inter-component connections are laid
out, on-chip communication architectures can be of three major types, as shown
in Fig.5.2: point-to-point (P2P), on-chip shared bus and network-on-chip (NoC).
P2P on-chip communication architecture provides with dedicated interconnection
between each communicating component within an MPSoC (Fig.5.2a). Such
interconnection gives high performance as inter-component communications are
non-blocking. However, scalability of P2P architecture is poor as adding extra
components can make inter-component connectivity complex, often introducing
prohibitively higher layout overheads [39]. Hence, the use of P2P architectures
is limited in MPSoCs [59]. On-chip bus provides with a shared communica-
tion architecture between number of MPSoC components (Fig. 5.2b). Unlike P2P
architectures, on-chip shared bus provides with higher scalability and connectiv-
ity as adding more components can be easily incorporated through further bus
extensions. However, due to shared and blocking communication with mutually

172

Fig. 5.2 Block diagram
different MPSoC on-chip

communication architectures:

(a) point-to-point (P2P),
(b) shared bus and (c)
network-on-chip (NoC)

Processor
#1

Private
Memory

Master
#1

Slave
#1

Processing
Element
#1

Switch+
router+
NI

Memaory
#1

Switch+
router+
NI

Processor
#2

Shared
Memory
#1

Master
H2

Shared bus

Slave #2

Processing
Element
#2

Switch+
router+
NI

DSP
Processor
Core

Switch+
router+
NI

R.A. Shafik et al.

Processor
#3

Shared
Memory
#2

Master
#3

Slave
#3

Processing
Element
#3

Switch+

1 routers

NI

Memory
#2

Switch+
router+
NI

exclusive access to the interconnect, on-chip bus introduces performance overheads
for inter-component communication in MPSoCs. This performance overhead can
increase further as the number of communicating components in MPSoC scale
higher. The Advanced Microprocessor Bus Architecture (AMBA) [5] and Advanced
eXtensible Interface (AXI) [6] are dominant, industrial standard on-chip bus
architectures for today’s MPSoCs. To meet the demand of increased performance
and scalability of current and future generations of MPSoCs, recently network-on-

5 System-Level Design Methodology 173

chip (NoC) communication architectures have been proposed. NoCs are similar
to P2P except that they organize the connections through modular packet-based
link-to-link interfaces with switches and routers laid in between them. Due to high
level of modularity, NoCs have advantages of high scalability and performance at
the expense of silicon area and complexity [20,49]. To date a great deal of research
works have already been carried out to explore efficient and reliable NoC topologies
and routing techniques [38, 58, 68].

5.1.2 MPSoC Design Challenges

MPSoCs are becoming de facto standards for system-on-chip design due to its
various advantages related to performance and modularity [34]. The performance
advantage is realized through overlapped processing among the processing el-
ements, which depends on the underlying on-chip communication architecture
(see Sect.5.1.1). These interconnected processing elements together with the
memories and other peripherals are often organized in a modular design hierarchy in
MPSoCs with an aim to facilitating design scalability and reducing time-to-market.
However, despite these advantages, design of MPSoCs is highly challenging. In the
following major challenges are discussed in further detail.

5.1.2.1 System Gap

Traditional system development introduces system gap due to separate hardware and
software design and synthesis flow as shown in Fig.5.3. As can be seen, initially
the target system in partitioned into hardware and software components after
systematic evaluations. The development of hardware components involves initial
specifications, followed by simulations with hardware description language (HDL)
modeling. The HDL model is then sufficiently validated for its functionality and
then synthesized to generate actual hardware prototype. To meet the initial hardware
specifications, the development steps may involve iterations between HDL based
design, design validation and synthesis. Similar to hardware, software development
also starts with initial specifications. Based on these specifications, initial software
prototype is developed using systematic application models (e.g. task graphs and
algorithmic models). The prototype is then tested and validated with sufficient
constraints and portability checks with the target hardware. With both hardware
and software prototypes, the system implementation proceeds with further testing
and validations. This is then followed by iterative system optimizations to meet the
original system constraints. Finally, when system constraints are met, market-ready
system design is delivered for fabrication and customer shipment. As expected, due
to separate hardware and software design and synthesis, a system gap exists in the
early design stages. This system gap makes the design of MPSoCs highly time-
consuming and challenging later in the design stage to optimize the design according

174 R.A. Shafik et al.

Harldware System partition: Software
Defr_e t_:nprrent hardware and software DEV‘?!OE'_“E"‘:
Hardware '\ & 4/ Software
_Specifications | _ Specifications |
- y e 4
1 System Gap 1
Functional ™\ Taskgraph \
| Hi-level | and)
. Simulations _/ . Algorithms _/

/" wobased | T\ Implementation /< | /Il
> Figes | e e | Software |-
\ g Y S _ Model /
Y [System Test .

»[Designand) \ and Validation / /Portability and ™
| validation R . Constraints &
& i HW/sSW " Test, \
[Synthesis | . optimization | Verification |-
y s 4 N\ 2nd Debug _/
(RIS B /' Market-ready L{ softwaretp }—
. Prototype / | A) \
. > Q¢ system design / ¢ J

Fig. 5.3 Traditional system development steps showing separate hardware and software design
and synthesis flow

to the original specifications and objectives. To make matters worse, this system gap
is widening further with ever evolving complexity of hardware and software design
and synthesis. Clearly, bridging this gap through system-level design methodology
is a major challenge for MPSoCs, which requires extensive design space exploration
early in the design phase to expedite the design optimization and integration.

5.1.2.2 Programming Model and Prototyping

The demand of performance-oriented parallel multiprocessing in MPSoCs have
necessitated a design paradigm shift from computation-centric to communication-
centric approaches. In communication-centric approaches, software routines and
their inter-dependence need to be explicitly modeled considering the impact of un-

5 System-Level Design Methodology 175

derlying hardware resources (i.e. processing elements and on-chip communication
architectures). Modeling such impact is critical for achieving concurrency between
different software routines. However, programming such model can be tricky for the
following reasons [25,44]:

¢ Traditional programming tools are invariably sequential in their nature. Hence,
modeling concurrency between software routines can be non-trivial.

e In symmetric multiprocessing (SMP) systems, multiple processing elements
share a common view of memory. Modeling memory and interconnect arbitration
for such systems can be tricky.

e In asymmetric multiprocessing (AMP) systems, processing elements tend to be
loosely coupled from each other with local memories. Modeling communication
between processing elements for AMPs require emulating complicated interface
protocols.

* To avoid all possible unwanted on-chip communication scenarios leading to
asynchronizations, deadlocks, livelocks etc. programming model must reflect
the actual on-chip communication behaviour. In particular, this can be highly
daunting when processing elements have different on-chip interconnects and
arbitration requirements between them.

* Debugging and validation in such programming model are other major chal-
lenges. To account for all possible physical scenarios, it is important that
sufficient debugging and validation is carried out with the system model.
Currently, there is a need for multiprocessing-enabled debugging and validation
environment for MPSoCs.

e Accurate computation and communication modeling and prototyping of het-
erogeneous MPSoCs is highly complex. In particular, modeling computation
and communication tasks with various scenarios and possibilities can be highly
challenging for design space exploration.

5.1.2.3 Design Optimization

Low power consumption is a prime design requirement for MPSoCs. Dynamic
voltage and frequency scaling (DVES) is an effective power minimization technique
often employed in hand-held devices to extend the battery life [2]. DVFES technique
works by lowering the processor voltage and frequency according to its workload to
achieve power reduction [3,57]. However, it has been reported that the reduction of
supply voltage causes an exponential increase in the rate of soft errors, particularly
that of single-event upsets (SEUs), leading to degradation of reliability [14,15]. This
is further exacerbated by device miniaturization and continuing technology scaling,
which causes hardware faults due to systematic abberations (e.g. imperfections in
lithographic patterning and random effects like dopant density fluctuations) during
manufacturing process [73] and electromigration during operating lifetime [18].
As a result, reliable design of MPSoCs is an emerging challenge that has been
acknowledged widely [14, 15,43,45,64,76].

176 R.A. Shafik et al.

Traditionally power-aware fault-tolerance or soft error hardening have been em-
ployed in MPSoCs using redundancy based techniques. This technique is generally
effective in that the redundant resources provide a voting system from multiple
resources to produce a single output in the presence of soft errors or faults [69]. Over
the years, a number of redundancy-based techniques have been reported at various
levels of design abstraction. The triple modular redundancy (TMR) is the most basic
circuit-level redundancy technique, such as [1,69]. The fault-tolerance is achieved
through TMR technique using three hardware elements to incorporate voting a
single output from multiple outputs. Due to the increase in hardware resources,
large overhead in terms of power consumption and chip area is incurred using such
technique [4, 8]. Another effective technique in terms of power consumption is the
time redundancy, such as [10,47]. Such technique employs multiple instances of
execution to achieve fault-tolerance. Although no overhead in terms of hardware
resources or area is caused, this technique has overhead in terms of performance.
Information redundancy proposed in [54,71] is also an effective fault-tolerance
technique. The main idea is to append error-detection and error-correction codes
along with the usual information bits to increase reliability of the system [54]. The
addition of these extra codes add to the communication and computation overhead,
while improving the reliability in the presence of soft errors [23]. Recently joint
time and information redundancy-based technique has been proposed in a number
of publications, such as [22, 35]. Using such technique has advantages of high
reliability or fault-tolerance at low cost and low overhead.

Alternatives to the redundancy-based technique are the re-execution and replica-
tion of computational tasks among idle processing elements. Using this technique,
no overhead in incurred in terms of extra execution time. For example, in [16, 65]
low power fault-tolerance technique has been presented utilizing the idle processing
elements for duplicating some of the computations. Other flexible techniques to
achieve high fault-tolerance are the pre-emptive on-line scheduling, such as [75]
and check-pointing during slack times between tasks, such as [36]. Using these
techniques, high fault-tolerance can be achieved at the cost of increased complexity
in the design of MPSoC application. However, the effectiveness of these techniques
depends upon predictability of slack times, which incur large overheads and often
leads to problems related to unschedulability [31]. Also, achieving fault-tolerance
using check-pointing technique is limited by the schedulability and the number
of check-points. The optimal number of check-points that can be inserted and
scheduled in the presence of a given number faults is determined by the worst case
execution time of a task [42].

Recently, researchers have shown combination of different fault-tolerance tech-
niques to reduce system overhead for fault-tolerant and low power design. For
example, fault-tolerance-based optimization of cost-constrained distributed real-
time systems has been proposed in [31]. The fault-tolerance in [31] is achieved
through mapping and assignment of different fault-tolerance policies to processes.
Another fault-tolerant design using process re-execution and re-scheduling of low
power heterogeneous MPSoC applications has been proposed in [52]. The power
minimization is achieved through scheduling of voltage levels to different processes

5 System-Level Design Methodology 177

and the fault-tolerance is achieved by deciding the start times of processes and
the transmission times of messages in the presence of faults. In [27] a dynamic
fault-tolerance technique is presented using independent task sets scheduling with
precedence relationship in MPSoC systems. Due to the use of such scheduling, the
fault-tolerance technique in [27] benefits from less communicational complexity
and better scheduling performance in terms of power consumption.

Traditionally power-aware fault-tolerant design techniques consider low power
and reliability as two separate objectives [16,31,75]. For effective design optimiza-
tion with low power and improved reliability as a joint objective, further studies
are needed to understand reliability of applications, particularly from system- and
application-level design perspective.

5.1.2.4 Runtime System Management

Operating conditions in many applications often require managing the MPSoC
hardware and software resources during runtime. For example, when a particular
task in an application is performance critical, higher voltage and frequency scaling
may need to applied, or task may need to be mapped dynamically on a processing
core with higher performance. Likewise, when a particular task requires high
reliability, it may need to be mapped in multiple processing cores to ensure efficient
fault detection and tolerance. With such requirements, runtime system management
is of crucial importance in MPSoCs to ensure system requirements are met at all
times. Various studies suggest that runtime system management has the potential to
reduce the system overheads during runtime and increase system adaptability and
lifetime substantially [48,74]. However, such management often requires runtime
optimization in NP-hard decision space and can potentially incur large management
overheads [56].

A crucial aspect in runtime system management is the ability to accurately
estimate the power, performance and reliability of the MPSoC and its different com-
ponents [13]. Such estimation can be carried out by using separate sensors [74] or
by using monitor modules alongside original components [46]. Runtime estimation
gives an insight into comparative analysis of different components and identifies
different scenarios for system adaptation and management [12]. Estimation at
circuit- or device-level [46], or at architectural-level [4,66] can be computationally
extensive for complex circuits. Hence, there is increased interest in system-level
estimation of different system metrics for MPSoCs [30, 62].

5.2 Hardware/Software Co-design

Over the years, various system-level design techniques and methodologies have
been devised both by academia [11] and industries [17, 67]. Among them,
hardware/software (HW/SW) co-design is particularly of high interest as MPSoCs

178 R.A. Shafik et al.

TARGET EMBEDDED SYSTEM

e ~
DSP MCU
(%] =
%] ¥ sy : o
w On-Chip Communication Architecture 3
I o
= <
=2
>.
7,
ASIC ASIC
\. J
MCU DSP FPGA ASIC
@ N ' Y
Instruction Set Simulator HDL Simulator
(1SS)
S V. . o
Z 'y
2 |
(72]
g ~ s g
Software Model Hardware Model
(CIC++ elc.) (VHDL, Verilog, SystemC, etc)
y, \. J
N J

t

HW/SW Partitioning

Fig. 5.4 Block diagram of hardware/software co-design and co-synthesis

are intrinsically based on software routine executing on a set of hardware resources,
including processing elements and on-chip communication resources. HW/SW
co-design describes the techniques for simultaneous design and synthesis with
systematic combination and co-operation between hardware and software com-
ponents [37]. Such design process extracts the benefits of both hardware- and
software-based design and reduces time-to-market greatly [21,26].

Figure 5.4 shows a block diagram illustrating major steps involved in HW/SW
co-design. The process is initiated by partitioning of the HW/SW tasks within the
embedded system (Fig.5.4). Once a required partitioning is found, specifications
for hardware (FPGA, ASIC, etc.), software (MCU, DSP, etc.) and their interfaces

5 System-Level Design Methodology 179

Fig. 5.5 Flowchart of r 3
hardware/software co-design Overall System Specification
steps)
P oo IS
r "

Architecture Allocation

v

- o
r 7]) " Eo
> Application Task Mapping and =
Scheduling o
. J lq:
t
o
o
i 1 g
Energy/Power Management ~§.
7 T

Evaluation

—

Software Hardware
Specification Specification

are defined to enable design of the prototype hardware and software components
(Fig.5.4). During design phase, software based implementations are co-simulated
and interfaced with hardware based implementations. Often this is done within a
real-time operating system (RTOS) environment, which emulates a multi-tasking
environment for real-time applications. Finally, the target architecture is found by
HW/SW co-synthesis process, which derives a mixed HW/SW implementation from
the high-level hardware and software specification. To achieve optimization for
target embedded system with different objectives, the whole process in Fig.5.4
may need to be repeated several times. HW/SW co-design requires a combination
of instruction set simulators and hardware emulators to effectively enable design
space exploration. Over the years a number of HW/SW co-design tools have been
proposed, such as COSYN [21], POLIS [9], MPARM [11].

HW/SW co-design process involves various system-level design steps to effec-
tively allocate and partition the hardware/software communication and computation
tasks and schedule them, as shown in Fig.5.5. In the following, these steps are
briefly detailed.

180 R.A. Shafik et al.
5.2.1 Overall System Specification

Accurate system specification is crucial for identifying the target system require-
ments in terms of power, performance and reliability. System specification affects
the following design steps depending on the evaluated requirements.

5.2.2 Architecture Allocation

Architecture allocation deals with allocation of different design components for a
target MPSoC application [57]. This may involve selection of number and types of
processors, memories and interconnections for the application under concern. The
overall goal of the architecture allocation process is to identify the most suitable
architecture, which provides the best performance and cost under given constraints.

5.2.3 Application Partitioning and Task Mapping

Application task mapping describes the process of distributing the computation
and communication tasks among the allocated processing and communicating
elements [40]. The mapping considerations may include different performance
and cost involved with each task. The mapping process explicitly determines
the implementation related issues in hardware and software. Determining a good
mapping is of crucial importance as inappropriately mapped tasks for a given
allocated architecture may under-utilize its performance and increase the system
costs [7,29].

5.2.4 Task Scheduling

Task scheduling generally follows task mapping, which defines the order of execu-
tion of the different tasks, such that timing constraints are satisfied. It is generally
carried out through operating system routines. Various scheduling algorithms have
been proposed over the years considering various design objectives, including
energy [57], performance [28] and reliability [31].

5.2.5 Energy Management and Evaluation

Architecture allocation, application task mapping and task scheduling have direct
impact on performance and power consumption of MPSoC [57, 61]. Further

5 System-Level Design Methodology 181

power minimization can be achieved using DVFS technique and dynamic power
management using slack time management (see Chap. 3). The power management
is then followed by system evaluation, which may repeat the previous design steps
to achieve optimized HW/SW partitioning and design.

5.3 Case Study: Power- and Reliability-Aware
Design Optimization

To demonstrate the effectiveness of system-level design methodology in MPSoC
application optimizations, a case study is investigated in detail. In particular, the
impact of application task mapping, which is a crucial system-level design step
of MPSoCs, is extensively studied in terms of MPSoC reliability (see Sect.5.2.3
for details related to application task mapping). Based on this study, a system-
level design optimization technique for MPSoC application through joint power
minimization and reliability improvement is developed. Power minimization in the
design optimization is carried out using voltage scaling technique, while reliability
improvement is achieved through careful choice of application task mapping on
the homogeneous MPSoC processing cores. The case study is outlined as follows.
Section 5.3.1 presents MPSoC system model used, which is then followed by the
study of application task mapping impact on reliability of MPSoC application
in Sect.5.3.2. Section 5.3.3 outlines a design optimization technique based on
this study and Sect.5.3.4 demonstrates the effectiveness of the technique through
experimental observations.

5.3.1 System Model

In this section, the models of the system architecture, application and fault injection
used in this study are introduced.

5.3.1.1 Architecture Model

In this study, an MPSoC architecture, 4, based on 2D-mesh network-on-chip
(NoC) with C processing cores is considered. Due to its high performance and
scalability [39], NoC-based MPSoC architecture is gaining popularity and a number
of academic or industrial designs have been proposed to date, such as xPIPES [19],
Intel 80-core [70]. Figure 5.6 shows an example MPSoC architecture consisting
of four processing cores. As shown, each block (or NoC tile) consists of a
processing core and switch (Fig.5.6). Each processing core consists of, among
others, ARM7TDMI processor, an instruction cache (8 kbits), a data cache (16 kbits)
and a dedicated private memory (256 kbits). Network interface attached to each

182 R.A. Shafik et al.

)
, fy
ARMT7
Processor |
% % S
Cache | Mem. || l f“ ‘é
N — - w
c
[}
o
@
(— | — | ol
>
L=
| °
fz o
ARM7 ARM7)
Processor | Processor J
o) | |
Cache | Mem | Cache | Mem.
S Switch
NI Network Interface

, Inbound/Outbound Link

Fig. 5.6 MPSoC architecture with four processing cores and power minimization support through
clock tree generator

processor (Fig. 5.6) incorporates packet-based communication with 32-bit payload
and switches carry out inter-core packet-based communication with XY routing,
chosen due to its performance and simplicity [39]. The cache and memory sizes
have been chosen to provide high availability of data and parallelism among the
processing cores. To introduce power minimization through voltage scaling in the
MPSoC architecture, a clock tree generator has been included to provide different
clock frequencies for the processing cores through voltage scaling (Fig. 5.6).

For a given voltage scaling, the dynamic power, P, of a processing core is
given as

P =aCy f Vs> (5.1)

where C; is the processor load capacitance per cycle, V4 is the supply voltage,
f is the operating frequency and « is the processor activity factor (0 < o < 1).
The voltage scaling technique effectively reduces the power consumption, defined
by (5.1), by reducing V4 and f through scaling. For ARM7TDMI processor, the
relationship between V4 (in volts) and f (in MHz) is given by [53] as

5.2)

Vaa(f.5) = [0.1667+ M}

103 x s

5 System-Level Design Methodology 183

Table 5.1 Operating

frequency, f', and supply Scaling, 5 J, MHz Vaa, V
voltage, V4, for different 1 200 1.00
voltage scaling of 2 100 0.58
ARMT7TDMI processor 3 66.7 0.44

1(10) t2(15)

Decode
Macroblock
Sequences

Decode Frame/
Slice Headers

{r1, rz, r3} {rs, rs}

Decode Header
Sequences

T3, 14, Is}

15(39) t5(25) t14(21)

Run-length
Decode Block
Data

Store/Display
Frame

Inverse Scan
Blocks

Inverse
Quantize Blocks

{rs, r7, rs} {r1, re, 17} {ra, rs, re} {r11, r2}

ts(61) t9(48) t10(41)

Motion
Compens. Blocks

Inverse Discrete
Cos. By column

Inverse Discrete
Cos. By row

Add Blocks

{rs, rs, ro} {rs, rs, ro} {rs, ro, r10} {rs, r10, F11}

Fig. 5.7 MPEG-2 video decoder task graph with 11 tasks and associated register resources

where s is the frequency scaling constant. Table 5.1 shows the three voltage scaling
options (with s = 1,2 and 3 in (5.2)) used in this study. The impact of choice of
voltage scaling levels on design optimization is discussed in Sect. 5.3.4.

5.3.1.2 Application Model

An application is modelled as a directed, acyclic task graph 4 (7, &) with N nodes.
Each node ¢; € ¥ represents j-th computational task within the application and
each edge djx € & represents inter-task communication and data dependency
between j-th and k-th tasks (j, k = 1:N, where N is the number of computational
tasks in the task graph). An application is realized on the MPSoC architecture
by distributing the computation and communication tasks among the processing
cores and their interconnects through application task mapping. Figure 5.7 shows an
example task graph of MPEG-2 video decoder using 11 tasks and their associated
register resources. The computational and communication costs of tasks are shown
with numbers on the nodes and edges, Fig.5.7. The computational cost represents
execution time of each task and the communication cost represents the time required
to transfer data between tasks (actual costs are approximate multiples of 5.5 x 10°
clock cycles). The computational and communication costs are obtained using
SystemC cycle-accurate simulations assuming 32-bit inter-core transfer. The com-
putational tasks are modelled as separate task processes, while the communication
between tasks is modelled as message passing queues. The communication cost

184 R.A. Shafik et al.

Table 5.2 Register usage of MPEG-2 video decoder tasks (Fig. 5.7) and their approximate sizes

Size,
Register set Type bits/cycle
r Scan tables and variables 4,132
) Sequence types 1,124
r3 Header sequence variables (before decoding) 640
rs VLC tables and variables 5,124
s Header sequence variables (after decoding) 2,134
e Video blocks (coded) 12,288
ry Scanned video blocks 13,218
rg Quantized video blocks 13,132
ry Picture ready video blocks (before motion compensation) 13,274
r1o Motion compensated video data and variables 13,326
ri Decoded and motion compensated video data 13,174
T2 Display/storage ready video data structure 12,288

is found by dividing the size of inter-task queue by the bandwidth of the channel
(in bits per cycle). Similar evaluation of computation and communication costs has
also been used in [31,50].

Also attached with each node is a set of application registers showing the register
usage by the computational tasks. Due to inter-dependent nature of the tasks of
an application, the tasks share register resources among themselves. For example,
the task #; uses the set of registers ry, r» and r3, while the task #, uses the set
of registers r3 and r4. Note that between these two tasks, r3 is shared. Table 5.2
shows the different register sets used by the MPEG-2 video decoder tasks along
with their types and approximate sizes (obtained by using variable or signal type
tags within the SystemC simulation environment). The actual register usage of the
i-th processing core (i = 1 : ¥, where ¥ is the number of processing cores of
an MPSoC), R;, is found through SystemC simulation after the application tasks
and their associated registers (Table 5.2) are mapped on the processing cores of an
MPSoC. The R; is given as

T.
1 1
R; = T Z Ri;, (5.3)

t=1

where R;; is the register usage (in bits) at 7-th clock cycle of the i-th processing
cores. The R;, in (5.3) depends on the number of tasks mapped with associated
resources (Table 5.2).

5.3.1.3 Fault Injection Model

In this study, fault injection is carried out using SEU-based fault model employing
the fault injection simulator proposed in [60]. Using this technique the injection
of SEUs is initiated through replacement of variable or signal types in the original

5 System-Level Design Methodology 185

SYSTEM CLOCK
_, Base soft error rate (SER)
-
Processing | with fault injection __ SER factor due to scaling
Core 1 ~
with (Vdds, f;) enabler types Inject faults at actual SER
Fault locations
database 1
o Base soft error rate (SER)
< £
Processing | , with fault injection _ SER factor due to scaling 8
Core 2 N Inject faults at actual SER =
t; with (Vdd,, f2) enabler types g
Al
Q -
c Fault locations v
c database 2 <
8 f 5 2
Base soft error rate (SER =]
g « o g
£ Processing with fault injection . SER factor due to scaling)
- Core 3 o -
with (Vddy, f5) enabler types v Inject faults at actual SER -
=]
- (T
Fault locations .
database 3
_, Base soft error rate (SER)
-
Processing with fault injection _ SER factor due to scaling
Core 4 V ~
with (Vdds, f,) enabler types Inject faults at actual SER
Fault locations
database 4
N \/

Fig. 5.8 Fault injection setup for MPSoC architecture with four processing cores

design specification to equivalent fault injection enabler types. These fault injection
enabler types help form fault locations database for the device under test, which
contains the target registers for SEU injection. The fault injection simulator injects
SEUs in these target registers based on the specified soft error rates and probability
distribution for determining fault locations. Figure 5.8 shows the fault injection
setup used for the MPSoC architecture with four processing cores as an example.
As can be seen, four fault locations databases are formed for four processing cores
through replacement of variable/signal types to fault injection enabler types. For a
given base soft error rate (SER, A4, in SEUs per bit per cycle considering no scaling),
the actual SERs (A, in SEUs per bit per cycle after scaling) for processing cores are
found by the corresponding voltage settings used. For these actual SERs, the SEUs
are injected at random locations determined by Poisson’s distribution within the
register space of the fault locations database. To control fault injection timings the
system clock is connected to the fault injection simulator. Using SystemC monitor
modules in cycle-accurate simulations, register usage and the number of SEUs
experienced are found (Fig. 5.8).

186 R.A. Shafik et al.
5.3.2 Impact of Task Mapping on Reliability

Reliability of an MPSoC application in the presence of SEUs is related to the total
number of SEUs experienced [41]. For a soft error rate (SER) of A; (SEUs per bit
per clock cycle), the total number of SEUs experienced, I", by an MPSoC with &
processing cores is given as

4 4
r =:§E:i%7}ki== thjzjlhcnki, (54)

i=1 i=1

where 7; is the execution time, R; is the register usage of i-th processing core
and Ty is the multiprocessor execution time (in clock cycles, V;:T; = «;Tuy)
of the i-th processing core. The register usage of a processing core, defined
by (5.3), depends on the nature of processing being carried out by the tasks
mapped, data dependency and resource sharing among them. The Tj in (5.4)
affects multiprocessor performance and depends on the number of mapped tasks
on a processing core and the data dependency among them. As a result, when
more related tasks are mapped on a processing core, Ty, increases for a given
operating frequency but the register resources related to tasks are localized reducing
the overall register usage (R =) _,R;). On the other hand, when tasks are distributed
among processing cores to achieve higher parallelism, T, decreases at the expense
of increased R due to higher duplication of shared register resources among tasks.
Examples of this trade-off follow. In the MPEG-2 decoder (Fig.5.7), the tasks 5
and 7¢ share about 13 kbits registers (r7 is shared between them), while the tasks
t6, 17 and fg share approximately 15kbits registers among them (rs and fg are
shared among them). To reduce register usage, for example it is possible to map
tasks s, f6, t7 and tg on a processing core through localization of the registers.
However, due to computationally intensive nature of these tasks, 73y will be high
(with total computation cost of 188). To reduce T}, an alternative option is to map
tasks 75 and 7 on a processing core, while the tasks #; and g can be mapped on
another core. However, this gives a duplication of about 15 kbits registers (increased
register usage) between the processing cores. Because of this register usage (R)
and multiprocessor execution time (7)) trade-off, the MPSoC experiences varying
number of SEUs (I") for different task mappings given by (5.4). The I" also depends
on the voltage scaling of the MPSoC processing cores as it affects A; in (5.4).
To demonstrate the impact of application task mapping and voltage scaling on the
number of SEUs experienced (I"), a total of 120 random task mappings were carried
out using the MPEG-2 decoder (Fig.5.7) on the MPSoC architecture (Fig.5.6).
Figure 5.9 shows the Ty, R and I" obtained through SystemC simulation and fault
injection (Sect. 5.3.1.3) using an SER of 10~ SEU per bit per cycle (i.e. 1 SEU per
10 ms for 1 kbits register bank) as an example. Three key observations are made:

Observation 1: Figure 5.9a shows the trade-off between multiprocessor execution
time (7, ms) and overall register usage (R). As can be seen, when tasks are

5 System-Level Design Methodology 187

013400

m

1

-

MP. Execution Time

80 90 100 110 120
Register Usage, kbits/cyc.

d T
bt
'y
m
+
L4

2.0E+5
1.8E+5 |

1.7E+5

SEUs Expenence

1.5E+5
5400 7400 9400 11400 13400
Multiprocessor Execution Time, ms

4.9E+5
4.6E+5
4.4E+5
4.1E+5
3.9E+5

3.6E+5
10800 14800 18800 22800 26800
Multiprocessor Execution Time, ms

SEUs Expenenced 0

Fig. 5.9 (a) Trade-off between multiprocessor execution time (in ms) and register usage (in
kbits/cycle), (b) SEUs experienced and multiprocessor execution time (in ms) when no scaling
is used for MPSoC cores, and (¢) SEUs experienced and execution time when MPSoC cores are
scaled by 2; all for different task mappings of MPEG decoder with four processing cores

mapped to reduce R by localization of tasks, T)s increases. On the other hand,
as tasks are mapped to reduce Ty, register resources shared among tasks are
duplicated, leading to increased register usage, R.

188 R.A. Shafik et al.

Observation 2: Figure 5.9b shows the total number of SEUs experienced (I") and
multiprocessor execution time, 7T (in ms), when all the decoder processing
cores are scaled by 1 (f = 200MHz and V;; = 1V). It can be seen that
when tasks are distributed among processing cores to reduce T}y, the decoder
experiences more higher I" given by (5.4) due to higher R (Fig.5.9a). When
tasks are localized to reduce R, the decoder also experiences higher number of
SEUs due to increased T (Fig. 5.9a). This results in a concave curve for I" given
by (5.4), with the minimum I located around the middle of 7 range.

Observation 3: Figure 5.9c shows the total number of SEUs experienced (I") and
multiprocessor execution time (77, in ms) when all the decoder processing cores
are scaled by 2 (f = 100 MHz and V;; = 0.58 V). As can be seen, I” increases
by approximately 2.5 times due to V;; scaling from 1 to 0.58 V (found through
V44 and A relationship shown in [32]) and T}y is increased by a factor of 2 due to
reduced f from 200 to 100 MHz. For example, for an application task mapping
I increases from 1.71 x 10° to 4.12 x 10°, while T, increases from 9.5 to 18.2 s
due to scaling of V;4 from 1 to 0.58 V.

The above observations demonstrate the impact of application task mapping and
voltage scaling on the MPSoC decoder reliability in the presence of SEUs. Hence,
an interesting design optimization problem is to identify suitable voltage scaling
of the MPSoC processing cores to minimize power consumption and to improve
reliability through application task mapping, while meeting a real-time constraint.

5.3.3 Proposed Design Optimization

To solve the problem of joint power minimization and reliability improvement of an
application, a novel design optimization is proposed. Figure 5.10 shows flowchart
of the proposed design optimization with three major steps: power minimization
(step 1), soft error-aware application task mapping (step 2) and iterative assessment
(step 3).

For a given SER and real-time constraint, the design optimization is initiated
by power minimization (step 1) through voltage scaling of the MPSoC cores. This
is followed by soft error-aware application task mapping (step 2) to minimize the
number of SEUs experienced for the chosen voltage scalings in step 1. These two
steps are repeated and assessed in step 3 to find a design with minimized power
consumption and improved reliability in terms of SEUs experienced, while meeting
the real-time constraint. The design optimization steps are discussed next.

5.3.3.1 Power Minimization
Power minimization in the proposed design optimization is performed using the

voltage scaling algorithm, Fig.5.11a. The voltage scaling algorithm, nextScaling,
starts with the lowest voltage scaling on all identical cores and generates the next

5 System-Level Design Methodology 189

(e Y«——— Soft error rate
STEP 1 J Power Minimization:

through voltage scaling ¢ Real-time constraint

(" Soft Error-Aware Task Mapping:)
to minimize SEUs experienced

STEP2 <

Application

Stage 1 [Initial Mapping J Task Graph

v
Stage 2 (Optimized Mapping j
J

-

Iterative Assessment:
Power & SEUs minimum
meeting time-constr.?

NO

STEP3 <

YES

Optimized
Design

Fig. 5.10 Flowchart of the proposed design optimization

set of higher voltage scaling, nextS, based on the previous set of coefficients, prevS
(Fig.5.11a). In each iteration, nextS is updated as the prevS reduced by 1 on a
processing core until the voltage scaling on the core reaches the nominal voltage
scaling level (s = 1, lines 3—6). When the nominal level (s = 1) is reached, nextS
of the core is updated by increasing voltage scaling of the core by 1 (line 9) and
reducing the voltage scaling of the next processing core by 1 in steps (lines 7-11).
The aim is to generate non-repetitive combinations and reduce the number of voltage
scalings that need to be investigated. For example, for a homogeneous architecture
with four processing cores (Fig.5.6) and three scaling options (Table 5.1), the
voltage scaling algorithm, Fig. 5.11a, generates 15 unique combinations, Fig. 5.10b,
compared to a total of 3* = 81 possible combinations. As can be seen, the voltage
scaling starts with the highest scaling coefficient of 3 for all cores, followed by
3 for core 1, core 2, core 3, and 2 for core 4 as the next scaling combination
(Fig.5.11b). As core 4 reaches nominal value of 1, the next combination is generated
by nextScaling algorithm as 3 for core 1, core 2, and 2 for core 3 and core 4. This

190 R.A. Shafik et al.

a b Scaling Coefficients
//C =no of cores, prevS = previous scaling Iter. Core 1,Core 2,Core 3,Core 4,
[nextS] = nextScaling(prevS): begin # S1 S2 S3 S4
1: copy prevS into nextS 1 3 3 3 3
2: fori:=1to C 2 3 3 3 2
3: if prevS[i] > 1: begin //1is lowest scale 3 3 3 3 1
4: nextS[i] := prevS[i]-1; 4 3 3 2 2
5: break; 5 3 3 2 1
6: endif 6 3 3 L L
7: else / 3 2 2 2
X . 8 3 2 2 1
8: fork:=itoC 9 3 5 1 1
9: nextS[k] = prevS[k]+1; 10 3 1 1 1
10: end for 1) 2 2 2
11: end else 12 2 2 2 1
12: end for 13 2 2 1 1
13: return nextS; 14 2 1 1 1
end 15 1 1 1 1

Fig. 5.11 (a) Voltage scaling algorithm used for power minimization, (b) example of voltage
scaling coefficients for four processing cores using voltage scaling algorithm shown in (a)

is followed by 3 for core 1, core 2, 2 for core 3, and 1 for core 4. The voltage
scaling algorithm, thus, effectively generates all possible combinations. For a set of
scaling coefficients from voltage scaling algorithm (Fig. 5.11a), the dynamic power
consumption, P, of the MPSoC with € processing cores can be expressed as a
function of voltages scaling coefficient, s;, as

4

P =CLY o fils)Viy, (o), (5.5)

i=1

where f; (s;) and Vg4, (s;) take values depending on the voltage scaling coefficient s;
(Table 5.1). For each set of voltage scaling coefficients, soft error-aware application
task mapping is carried out (step 2, Fig.5.10) to minimize the number of SEUs
experienced.

5.3.3.2 Soft Error-Aware Application Task Mapping

The problem of application task mapping on MPSoC cores to minimize SEUs
experienced (I") is an NP-complete problem ([31]. In this section, a soft error-
aware application task mapping is developed in two stages (step 2, Fig.5.10): the
stage 1 is the initial soft error-aware application task mapping, followed by stage 2
of search-based optimized application task mapping. Figure 5.12 shows the initial
soft error-aware application task mapping algorithm (stage 1), InitialSEAMapping,
which aims to simplify the optimization process by reducing the number of
task movements. The InitialSEAMapping starts with mapping the task with no
predecessor in task graph (G) (line 1). The dependants of the currently mapped

5 System-Level Design Methodology 191

Fig. 5.12 Initial soft //C:no of cores, G: application task graph with N tasks, ¢ is the current task
error-aware mapping / /M: mapping of all cores, A: MPSoC arch., Q: task queue, L: temporary list
im0 4 e
ae . N pus. e first task nto
InitialSEAMapping 2: fori:=1to C-1 and Q is not empty
3: t:= Q.front(); M[i].map(t); delete all mapped tasks from Q
4: while Ti < Turr and no. of unmapped tasks in G > (C-i)
5: L : = dependents of t //(sorted by minimum SEUs)
6 if L is empty and Q is not empty
7 swap last two elements in Q
8 else if Q is not empty
9 t = first element in L/ /task with minimum SEUs and Time
10: M[i].map(t); delete t from L; move tasks in L into Q and empty L
11: else break while; end if
12: t= Q.front();

13: end while
14: end for
15: return M;
end
List Schedule M
Mbest := M
@ ")

Time not over or
Tm(M) > Tirer OF
unSchedulable(M

© ®)

Mbest is the
optimized mapping

SEUs(M)<SEUs(Mbest)
and TM(M)<=TMr91

4
[Task movement in M for]

neighbouring solution List Sheduling M

(©) |

Fig. 5.13 Flowchart of optimized mapping, OptimizedMapping

task in G are then sorted by SEUs experienced if they are to be mapped with the
current task. The sorted list of dependants is stored in L (line 5). The task that
gives the minimum SEUs in L is then mapped next (lines 6-10). This is continued
until the execution time of the current core does not exceed the real-time constraint
(Tm,,,) and the number of unmapped tasks left in task graph G is higher than the
number of remaining cores to ensure that tasks are mapped in all cores (lines 4—13).
The unmapped tasks are stored in a queue, Q (line 10), which are then mapped
gradually to the other cores using the same criteria. After all tasks are mapped, the
initial mapping (M) is returned by InitialSEAMapping (lines 6-15).

After the initial soft error-aware task mapping (InitialSEAMapping, Fig.5.12),
the design optimization is continued further through optimized mapping (stage 2,
step 2, Fig.5.10). The optimization is carried out through iterative search-based
mapping algorithm, OptimizedMapping, Fig. 5.13, employing the list scheduling for

192 R.A. Shafik et al.

mapped tasks. The aim of such scheduling is to make an ordered grouping of tasks in
processing cores to accommodate different constraints and task dependencies [31].
The OptimizedMapping starts with scheduling the initial task mapping, M (step A,
Fig.5.13). The mapping M is then checked to see if it violates the schedulability
requirements or real-time constraints (step B). If any such violation is found
within the search time, the optimization proceeds with generating neighbouring task
movements to find out a possible next mapping solution (step C). With neighbouring
task movement, the new mapping (M) is then list scheduled, if schedulable (step D).
This is followed by comparison with the previous best solution, Mbest. If M is better
than Mbest in terms of lower number of SEUs experienced and meets the given real-
time constraint, it is then updated as the new Mbest (steps E-F). The optimization
steps C—F are repeated until the specified search time is not over (step B). Once the
search time is over, Mbest is returned as the optimized design for the chosen voltage
scalings (step G).

In OptimizedMapping, the multiprocessor execution time (7}, in seconds) for
an application task mapping is found by the dividing the total number of execution
cycles of all mapped tasks by the effective number of cycles executed by processing
cores per second for chosen voltage scaling (step B, E, Fig.5.13), i.e.

ii(’ +Zd) /[iafﬁ(s,-)] (5.6)

i=1j=1 i=l1

where t; is the execution time (in clock cycles) of the j-th task mapped on i-th
processing core, d]’k is the dependency cost (in clock cycles) between j-th and k-
th task (j,k = 1 : N) due to selection of j-th task on i-th processing core. The
total number of SEUs experienced (I") for an application task mapping with chosen
voltage scaling on MPSoC processing cores is found in InitialSEAMapping (line 5,
Fig.5.12) and OptimizedMapping (step E, Fig.5.13) through (5.4). The per core
execution time (73, in clock cycles) and register usage (R;, in bits per cycle) in (5.4)
are given in terms of mapped tasks as

V; T=§j<t+2d) (5.7)

j=1

Vi : R,’ = AVg

N
U : (5.8)

||C2

where r} « 18 the set of registers shared between j -th and k-th tasks for being mapped
on i-th processing core (j = k defines the local register usage of j-th task). As
can be seen in (5.8), R; is given by average cardinality of the register set over the
execution time arizing out of union of register usages of mapped tasks (r}’k) in
i-th processing core. The proposed optimization is carried out by iterative search
through N tasks, with each iteration generating maximum two task movements

5 System-Level Design Methodology 193

T + * c
a _ b | Reg.Set | Size, bits |€ oo jling (TMyey) = 75 ms
t:(5) LT | 4036 | : :
1< 2 | 2 | 2048 | | Task | Register Usage |
» N L fs | 2048 | | t; | Ry=[ry,rz ra] |
t2(4)) ts(4)) T | ié:g [t [Ro=[r, ra, 15, 6]
_ o3 |t | ts | Ra=[r4, rs, re]
1 2 . re 2048 3
v v A [, T aoas | | Rl e 1]
) »s6), »6@) | r, | 4006 | |5 Re=le el
| fy 2048 | te Re=[r7, rs, re]
d o= i} e
RECAN LQ—_{t{tg} t(5) LQ={t2}
: : -~ =il ~ =
Core 1: t;)1' . ?\ B Core 1: t tat)1 v 2’\ B, Ve
$o=1 | @) [ts(4)) s;=1 | 1329 [Gah Ml
Core 2: SN = N3 Core 2: . 2
€2=§ I y g W s=2 L y 249
ore 3: .| | |
\ ' Core 3: A,
£ U(5)— s(6)— »{ts(4) =2 | (t05)its(6))
g (5) Q={t} g o) o
_ 12 L={u} . 12 ?:{}
Core 1: t ts S A Core 1: b tat A a L7 0
51 = 1 12(4}'-\ t:!(‘”' = 11315 | |
s1=1]| I (4) ta(4)
Core 2 t ' < Ta 3 Core 2: : ~—
052:% 2 vy ‘a W g=2| U ly 2.4 A
ore ; o |
§3=2 U(S)7 P (6)— >tel4), csjr: 3 ts 1(5)— {ts(6)— »-{ts(4)
h [
Core1: 5 ts Core 1: ¢, ts ts
s1=1 L1 il I s1=1 L1 1 |
Core 2: I I I Core 2: I
.= [2 | b | 1 s=2]| L b |
Core 3: . T Core 3:
S3 = t6 S3= 2 t5

Fig. 5.14 Example illustration of the soft error-aware application task mapping (a) example
application task graph, (b) sets of registers and their sizes, (c) register usage of different tasks of
the application, (d) and (f) initial soft error-aware application task mapping (InitialSEAMapping,
Fig. 5.12) steps, and (g) optimized mapping (OptimizedMapping, Fig. 5.13) step

out of maximum search space of (N — 1) dependent tasks. This is followed by
second stage search through maximum (N — 1) tasks for minimum number of
SEUs experienced. As a result, OptimizedMapping has worst-case complexity of
OQRN(N — 1)(N — 1)) ~ O(N?).

An example illustrating the proposed soft error-aware application task mapping
algorithm is shown in Fig.5.14. In Fig. 5.14a, an application task graph with six
tasks is shown (all costs are multiples of 60 x 10* cycles) and in Fig.5.14b,
c the application registers and their distribution for different tasks are shown.
Figure 5.14d—g show the incremental task mapping using InitialSEAMapping
algorithm, Fig. 5.12, and finally, Fig. 5.14h, i show scheduling and task movements
using OptimizedMapping, Fig.5.13.

194 R.A. Shafik et al.

The chosen voltage scaling for the processing cores are: s; = 1, 55 = 2 and
s3 = 2 and deadline is assumed to be T),,, = 75ms. As can be seen, after the first
task, 1, in the application task graph, Fig. 5.14a, is mapped to processing core 1, the
Initial SEAMapping mapping algorithm selects 3, followed by #¢ from dependency
list, L. This is because task #3 gives the least number of SEUs experienced compared
to 1, and f5 shown in gray, Fig. 5.14d, with the r;; values from Fig. 5.14c. Note that
after allocating #;, #3 and 75 on core 1, the deadline constraint cannot be satisfied
with further allocation of tasks and the mapping algorithm carries on with mapping
of tasks #, and #4 in core 2, which give minimum SEUs experienced, Fig.5.14f.
Finally, the unmapped task #s in queue (Q) is mapped to core 3, Fig.5.14g. After
InitialSEAMapping (Fig.5.12) is completed, OptimizedMapping list schedules the
tasks, Fig. 5.14h, found through step A, Fig. 5.13. However, with the chosen voltage
scalings for the architecture processing cores, this mapping cannot satisfy the real-
time constraint of 75ms. The OptimizedMapping swaps ts with #¢ in the fourth
iteration as a neighbouring task mapping (step C, Fig. 5.13) and gives the minimum
number of SEUs experienced for the chosen voltage scaling, while meeting
Tm,,, = 75ms.

5.3.3.3 Iterative Assessment

With each set of voltage scaling coefficients resulting from the voltage scaling algo-
rithm (step 1, Fig. 5.10) soft error-aware application task mapping (step 2, Fig. 5.10)
is carried out to minimize the number of SEUs experienced through application
task mapping. The resulting power consumption (P) and SEUs experienced (") are
then iteratively assessed using a score function, Z, to produce an optimized design
in terms of minimized power consumption and improved reliability, such that real-
time constraints are met (similar score function for joint optimization is also used
in [24]). The optimization score function, Z, is defined by a linear combination of
normalized power consumption and number of SEUS experienced, given by

Z=05Zp+05Zr, (5.9

where Zp is the score related to power consumption (P), Z is the score related
to reliability improvement in terms of total number of SEUs experienced (/") and
0.5 is the weighting factors for Zp and Z to give joint optimization with equal
weight to power consumption and reliability improvement. The Zp value of a
design is found by normalizing power consumption (P, defined by (5.5)) due to the
chosen voltage scaling (Sect. 5.3.3.1) and soft error-aware application task mapping
(Sect. 5.3.3.2) by the maximum power consumption, P,,,, with the highest voltage
settings, (i.e. s; = 1) i.e.

5 System-Level Design Methodology 195

€
» CL Zaifi(si)vdzdi (s1)
Zp = ==l) (5.10)

€
Cp Z fmux Vn%uxi

i=1

where fin,x and Vi, are maximum operating frequency and supply voltage (for
example V. = 1V, fiax = 200 MHz for the given scaling options in Table 5.1).
The score function related to SEUs experienced, Z, in (5.9) of the same design
is defined by the ratio of SEUs experienced (I”, given by (5.4)) to the maximum
number of SEUs experienced (1,4, assuming maximum activity factor « = 1 and
highest voltage scaling, s; = 3, in (5.4)), i.e.

€
TM ZR,‘O[,’A,‘
r i=1
Zr = = = . (5.11)
TM Z Rikmax

i=1

where A4, is the maximum soft error rate due to highest voltage scaling (for
example V;; = 0.44V, f = 66.7 MHz for the given scaling options in Table 5.1).
Using the optimization score function, Z, defined in (5.9), the iterative assessment
(step 3, Fig.5.10) identifies the design that gives the minimum Z value. Note that
due to normalization of the power consumption of a design, (P) by the maximum
power consumption (P,,) in (5.10) Zp is reduced for low power consumption.
However, due to normalization of SEUs experienced (/") by the maximum possible
SEUs experienced (1,45) in (5.11) Z is increased for such design. Similarly, when
power consumption increases Zp is increased at the cost of reduced Zr. As a
result of this Zp and Z relationship, the optimization score function Z gives the
minimum value for a design that gives the best trade-off between P and I". The
design that gives minimum Z value and meets the real-time constraint is chosen as
the optimized design. Figure 5.15 shows an example of iterative assessment using
score function, Z, to effectively find an optimized design for the MPEG-2 video
decoder (Fig.5.7) using MPSoC architecture with four processing cores (Fig. 5.6).
The horizontal axis shows the subsequent voltage scaling iterations arizing from
voltage scaling algorithm (Fig.5.11a) and vertical axis gives the Zp, Zr and Z
values defined by (5.10), (5.11) and (5.9). As can be seen, the voltage scaling
starts with scaling by 3 on each processing core (Fig.5.11b). For such low voltage
scaling, Z is high with higher SEUs experienced (1) but Zp but Zp is low due
to minimum power consumption. Higher Z results in a higher score function, Z,
for this design. As the voltage scaling proceeds with next set of voltage scaling
coefficients (Fig.5.11b), Z value also varies due to the trade-offs between Zp and
Z . Note that due to the voltage settings on processing cores (with Vg = 1V,

196 R.A. Shafik et al.

50 - =#— Optimization Score
—&— Power Optimization Score
—-A—- SEU Optimization Score
- -
£ 40
2
c Optimised
=1 30 - \\.‘,f Desi
L \\ & esign /‘\..,_
o \ B h""*—— 4 A
s 20 Nl =
1]
w \\"".__-
10 - A
™ B N D RN R DR R Ry Ay N R R R
S e T NS S S G L K
,b‘b n;b n;b Q;b ,,;b ,b"l« Q;b Q‘L ,,;L ,b'\ q:'b q"b "1:]’ "l:\ o
,\‘\v (\q’\ (\rbx (\'b\" (\fo\ q)\' A - @ (\q\ \Q& ,\l\. \q,x \fbx ,\b.\w \6)«\
‘b.\\o(\ I‘5;\0 6\\0 -'b-\\O e—,}\o "b‘-\\o ‘b‘\\D K'\Q "b’“o q\;\\oo §0(.\ é,}}o(\ @,\‘\\00 %‘_\\‘OQ I‘b‘,\\o(\

Fig. 5.15 Example iterative assessment for design optimization using MPEG-2 video decoder
with four processing cores

f = 200MHz on all processing core), design produced in iteration 15 results in the
highest score function, Z. The design produced in iteration 7 (with Vz; = 0.58V,
f = 100MHz on 3 processing cores and V;; = 0.44V, f = 66.7MHz on a
processing core) gives the best design in terms minimized Z value. Since real-time
constraints are met for this design, it is returned as the optimized design for MPEG-
2 video decoder (Fig.5.7) using MPSoC architecture with four processing cores
(Fig.5.6).

5.3.4 Experimental Results

In this section, the effectiveness of the proposed soft error-aware design optimiza-
tion is evaluated using four experiments, Table 5.3. The experiments are carried out
using MPEG decoder implemented with the architecture of Fig. 5.6. The first three
experiments, Exp:1, Exp:2 and Exp:3, are soft error-unaware optimization with dif-
ferent design objectives using application task mapping obtained through simulated
annealing [50]. Exp:4 is the proposed design optimization. In all experiments, power
minimization is obtained through iterative voltage scaling (step 1, Fig.5.10) after
application task mapping with an aim to meet the real-time constraint of decoding
a tennis video sequence' of 437 frames at 29 frames per second (fps). The mapped
tasks, voltage scaling on processing each core (s;), per core execution time (7;) and

!ftp://ftp.tek.com/tv/test/streams/Element/

197

5 System-Level Design Methodology

£'¢eT 6°0C T Sty gy ¥ 210D
70T 8°¢C C 81 € 210D
8C €6l 4 1y <01y TRI0D (uoneziundo
€6'¢ 8'1¢ 68 S 4 L1 I'vl € 61 [910D pasodoiq) y:dxg
16l 6°L1 [A A A ¥ 210D Em%_mwvm
(44 8'1C T 49 ga10) 29 oSesn
6'LT L0t 4 g ony T 910D 19151801 10]
8I'y 6°0¢ 6 Sl'y 9°¢T 1€ € 6181 1210 poziundQ) ¢:dxg
8¢ 1°0¢ C 1y <oty ¥ 210D
€67 Tt 4 591 € 910D (log]
7’61 S8l € 8 710D wsra[ered 10§
s 98¢ 148! % L'LE 9'vC € AL A A [210D paziundQ) z:dxg
LT 8'8C 1 017 %63 %8 %L1 %9 ¥ 210D ([os] @Sesn
161 L91 (4 Y € 210D 1981301
791 ¥'1C C 171 210D padnpail 10)
Ir'¢ 1'8¢ 08 €5°6 €Ll 4! C gy [e10) pezrwndQ) 1:dxg
(c01%) ‘T 919kd SpAoSIQY MW ‘g SPKosHAY Y 9okd (0 x ‘i s ‘Sureos syse) paddejy 2100 DOSJIN syuowrtadxy
(g01x) ‘W 'y L=y ‘o3esn 19)SIF9Y ‘OuII) UOIINJAXH B (N

$QI00 INOJ YIIM DOSJIN 19p023p DFJIA Sursn suonezrundo areme-10119 3jos pasodoid oy pue aremeun-I1011o 3jos jo uosuedwo) ¢S d[qel,

198 R.A. Shafik et al.

per core register usage (R;) are shown in column 3-6, while the power consumption
(P, mW), register usage (R, kbits/cycle), the multiprocessor execution time (7},
clock cycles) and the number of SEUs experienced (/") are given in columns 7-10
(Table 5.3). For each voltage scaling of the MPSoC processing cores, a time-limit of
30 min to search the design space is imposed. All experiments are carried out on an
Intel(R) Core(TM)2 2 GHz CPU running RHELS. The number of SEUs experienced
(column 7, Table 5.3) is found by fault injection technique (Sect. 5.3.1.2) assuming
an arbitrary SER of 10~ SEUs/bit/cycle (i.e. 1 SEU per 10 ms for 1kbits register
bank). The power values are obtained by (5.1), with the « values found with the
multiprocessor execution time (7)) and execution times (7;) of processing cores
from Table 5.3 (note that switching activity factor, « = 7?—;4).

Exp:1 demonstrates the impact of design optimization with minimized register
usage, R. As expected, the design produced gives the least register usage (R =
3. R;) when compared to the other three experiments. The reduced R in Exp:1
is obtained at the expense of the highest multiprocessor execution time (73s) of
38.1 x 10® clock cycles (as explained in Sect. 5.3.2). This makes it harder to scale
down the voltages of the decoder cores. As a result, Exp:1 gives a design that has
higher power consumption (9.53 mW) than the optimized design produced in Exp:4
(4.25mW). However, the design produced in Exp:1 experiences lower SEUs than
that in Exp:4 (3.46 x 10° SEUs compared 3.93 x 10° SEUs). This is because, the
proposed design optimization in Exp:4 gives lower voltages of the decoder cores,
and hence lower power consumption compared to the design produced in Exp:1.
The design produced in Exp:2 is optimized for high parallelism. This gives reduced
multiprocessor execution time (7},) of 28.6 x 10® clock cycles, which allows the
voltages of the decoder processing cores to be scaled down. As a result, Exp:2
gives lower power consumption (4.04 mW) than Exp:4 (4.25mW). Note that this
reduction in multiprocessor execution time (7)) in Exp:2 is achieved at the expense
of the highest register usage (R = 114 kbits per cycle). Due to lower voltage
scaling of the decoder cores and higher register usage, the design optimized for high
parallelism, Exp:2, experiences the highest number of SEUs (I" = 5.22x 10°) when
compared to the other three experiments. In Exp:3, the design has been optimized for
both register usage (R) and high parallelism. Such optimization gives a good trade-
off between multiprocessor execution time and register usage, and minimizes the
product: Ty, X R in (5.4). However, this does not necessarily minimize of the number
of SEUs experienced since optimization is carried using soft error-unaware task
mapping. The design produced in Exp:4 employs soft error-aware task mapping (and
minimizes I” in (5.4) by carefully mapping the tasks to minimize the product 7; x R;
on each core) and therefore gives less number of SEUs experienced than the design
produced in Exp:3 (3.93 x 10° SEUs for Exp:4 compared to 4.18 x 10° SEUs for
Exp:3). Note that, although the voltage scaling of the decoder cores are similar, the
proposed design optimization (Exp:4) gives about 3% higher power consumption
compared to the design produced in Exp:3 due mapping of computation intensive
tasks #7, tg in core 3 and #,—¢ in core 4 of the decoder. For all design optimization
approximate number of SEUs experienced can also be found by (5.4) using the 7;
and R; values shown in columns 5 and 6 (Table 5.3).

5 System-Level Design Methodology 199

70.00% -#- Comparative SEUs, % —8— Comparative Power Consumption, %

45.00%
*
20.00% - i
*
.5.00% '/‘\‘
-30.00%

Exp:1 Exp:2 Exp:3

Fig. 5.16 Comparison of power consumption (P, in mW) and SEUs experienced (") of Exp:1,
Exp:2 and Exp:3 when compared with Exp:4

To highlight the advantages of using the proposed design optimization (Exp:4),
Fig.5.16 shows comparison of power consumption (P) and SEUs experienced (1)
of the decoder design in Exp:1, Exp:2 and Exp:3 compared to that of Exp:4. All
experiments are carried out with same voltage scaling coefficients (s; = 2, s, = 2,
s3 = 3 and s; = 2) for an SER of 107°. As can be seen, the design produced
in Exp:4 reduces the number of SEUs experienced by upto 38% compared to the
optimized design in Exp:2, while consuming 9% lower power. When compared
with the design produced in Exp:1, the optimized design in Exp:4 reduces SEUs
experienced by 28%, while consuming only 7% higher power.

The design optimizations in Table 5.3 were carried out using MPEG-2 decoder.
To demonstrate the effectiveness of the proposed design optimization with other
applications, random task graphs of 20, 40, 60, 80 and 100 tasks are also used.
The random task graphs are generated using the random task and resource graph
tool [55]. The cost and the number of dependants in the random task graphs are
generated using uniform probability distribution with computation cost between
1 and 30, communication cost between 1 and 10 (all costs as multiples of 3.5 x
10 clock cycles), task register usage between 1 and 5kbits and the number of
dependants was found by exponential distribution between 0 and N/2, where N
is the number of tasks. The deadline for random task graphs are set to 15, 20, 30,
40 and 50's for random task graph with 20, 40, 60, 80 and 100 tasks, respectively.
For these task graphs, the design optimization is carried out with imposed time
limits of 20, 30, 40, 50 and 60 min for 20, 40, 60, 80 and 100 tasks, respectively.
Table 5.4 shows the results of using the proposed design optimization (Exp:4) on
the MPSoC using four processing cores (Fig.5.6) with the random task graphs.
The voltage scalings on MPSoC processing cores, per core execution time (7;) and
per core register usage (R;) are shown in columns 3-5. The power consumption
(P), overall register usage (R), multiprocessor execution time (73,) and the total
number of SEUs experienced (I") are shown in columns 6-9 (Table 5.4). As can
be seen, depending on the application and its deadline the voltage scaling and
the corresponding power consumption (P, in mW) vary (Table 5.4). However, the
total register usage (R) arizing from per core register usage (R;) increases as the
number of tasks in the random task graphs increases. Also, the multiprocessor
execution time (7T}, in clock cycles) and per core execution time (7;, in clock
cycles) increase as the number of tasks in the task graphs increase. Due to the

R.A. Shafik et al.

(a4 9’61 4 ¥ 210D
'8¢ 6'8¢ 4 € 210D
9°¢e L'8C € ¢RIop
ST'8 L'€S (94! 8V e 6°S1 € [210D syse) 001
8°¢¢ v'or I ¥ 210D
6'6C 9'¢C 4 [A200)
L'8¢ 4! € [0
€19 (384 6Cl 1744 4% (Y € [210D sysel1 08
9°¢C £0¢ 4 ¥ 210D
£0¢ Sol 4 [A20)
6°LC 7'l 4 [4200]
(404 Tle LOT I's (Y4 9'¢l C [210D syse1 09
[Ye 8°6C 1 ¥ 910D
€1e €6 4 [A20)
1°0C 86 € ¢RIop
L8'C 9°¢€C 06 4 6'9C 601 € [210D sysel1 Of
L1 'l 4 ¥ 210D
(Y 8Tl 4 [A20)
L1 '8 € ¢RI
LTC 8°Cl 99 14904 1ol [€ [210D Syse1 0T
(01x) ‘T (501x) S[2Ao/sIqY Mg o[RKo/sIqY Ty 9[2Kd (OTX L s ‘Surpess 2103 uoneorddy
Q[oko* N Y4 .NHN =y ‘a3esn ‘3oy ‘o 09xH B (N DOSJIN

200

:dxqg Sursn suoneordde juarapip 10y () peoudrradxa sNHS pue (Y) 28esn 19351321 ‘(7) uondwnsuod 1omod $°S dqeL

5 System-Level Design Methodology 201

a @ SEUs Experienced, Exp: 3 B SEUs Experienced, Exp: 4
1E+6 -
9E+5
2 8E+5
2 T7E+5
2 6E+5
L]
S 5E+5
':;: 4E+5
> 3E+5
» 2E+5
1E+5
0E+0 - ; :

20 Tasks 40 Tasks 60 Tasks 80 Tasks 100 Tasks

@ Power Consumption (mW), Exp: 3 B Power Consumption (mW), Exp: 4

oIIIII

20 Tasks 40 Tasks 60 Tasks 80 Tasks 100 Tasks

Power (mW)
e R 7 I

Fig. 5.17 Comparison of power consumption (P, in mW) and SEUs experienced (/") between
Exp:3 and Exp:4 for different random task graphs

increased per core register usage (R) and per core execution time (7;), the total
number of SEUs experienced (/) also increases as the number of tasks in the
random task graphs increases. For example, the random task graph with 100 tasks
experiences the highest number of SEUs (i.e. 8.25 x 10° SEUs), while the random
task graph with 20 tasks experiences the lowest number of SEUs (i.e. 2.27 x 10°).
Figure 5.17a, b show the comparisons of power consumption (P) and the number
of SEUs experienced (I") using the design optimizations in Exp:3 and Exp:4 for
the different random task graphs. As can be seen, the design optimization in Exp:4
consistently outperforms the design optimization in Exp:3 in terms of the number
of SEUs experienced (I") due to soft error-aware application task mapping carried
out in Exp:4 (Sect.5.3.3.2). For example, for the random task graph with 80 tasks
the proposed design optimization (Exp:4) reduces the SEUs experienced by 9.6%
compared to the design optimization in Exp:3. This reduction in SEUs experienced
is achieved with only 5% increase in the power consumption (P).

202 R.A. Shafik et al.

Fig. 5.18 Power —=— Power Consumption (mW)
consumption (P, in mW) and —+— SEUs Experienced
SEUs experienced (I") for 7 [2
different scaling levels using e . §
the proposed design % 6 | 5
optimization technique 5 E
z; | 4E+5 @
o]
7]
4 ! ! - 3E+5

Voltage Scaling Levels

To show the impact of choice of voltage scaling levels, Fig.5.18 shows the
power consumption (mW) and the number of SEUs experienced (/") by the
optimized designs produced in Exp:4 with different voltage scaling levels. The
design optimizations are carried out using MPSoC with 4 processing cores with
random task graph of 60 tasks and employing the following voltage scaling levels: 2
levels (with 1 V=200 MHz, and 0.58 V—100 MHz), 3 levels (Table 5.1) and 4 levels
(introducing 1.2 V—236 MHz in Table 5.1). As can be seen, with 4 scaling levels
the proposed design optimization (Exp:4) is able to minimize power further by 4%
with only 3% increase in the number of SEUs experienced compared to 3 scaling
levels. This is because with more scaling options, the power minimization (step 1,
Fig. 5.10) has higher flexibility with more combinations of voltage scaling generated
by the voltage scaling algorithm (Fig. 5.11a). With 2 scaling levels, it is possible to
reduce the number of SEUs experienced by 42% at the cost of 28% higher power
consumption compared to 3 scaling levels due to limited voltage scaling options
(Fig.5.18).

5.3.5 Architecture Allocation

Architecture allocation is a system-level design step for MPSoCs that deals with
allocation of processing elements and their interconnections into the architecture.
In this study, architecture allocation is referred to as the allocation of number of
processing cores in the MPSoC architecture. Table 5.5 shows the mapped tasks using
the optimized mapping in Exp:4 for different allocations from two cores to six cores
using MPEG-2 video decoder task graph (Fig.5.7). The architecture allocation is
shown in column 1 and per core mapped tasks of the decoder task graph (Fig.5.7)
are shown in columns 2 and 3 (Table 5.5). To demonstrate the impact of architec-
ture allocation, Fig.5.19 shows the multiprocessor execution time (7}, in clock
cycles) and register usage (R, in kbits per cycle) using MPEG decoder MPSoCs.
The voltage scaling of processing cores is carried out using three scaling levels
(Table 5.1) and application task mapping is performed with the optimized mapping
algorithm, OptimizedMapping, of the proposed design optimization (Exp:4). The
Ty and R are found while decoding a fennis video sequence of 437 frames at 29

5 System-Level Design Methodology 203

Table 5.5 Task distribution

of MPEG-2 video decoder Allocation Core Mapped tasks
(Fig. 5.7) among cores for 2 cores Core 1 1y, Iy, 13, 14, 19, L10, I11
different architecture Core 2 Is, 1, 17, 13
allocations using the 3 cores Core 1 t, ta, ts, ta, t5
optimize(:ld dtas'k mapping in'the Core 2 te, 17, Iy
roposed design optimization
?eclll)nique (Figg. 5.1I())) Core 3 fo f10- it
4 cores Core 1 1, ty, 13, 1y, t5, tg
Core 2 t7, tg
Core 3 ty
Core 4 to, ti1
5 cores Core 1 1, b, 13, 1
Core 2 15, tg
Core 3 t7, t3
Core 4 ty
Core 5 to, 11
6 cores Core 1 1, b, 13, 1y
Core 2 ts, tg
Core 3 ty
Core 4 13
Core 5 ty
Core 6 to, t1
a_ 130 b .
~§ 15 % BE+9
% 100 % ¢ i
g 70 E E 4E+9
Z g5 §° 364
& 40 f: 2E+9
2Cores 3 Cores 4Cores 5Cores 6Cores < 2Cores 3Cores 4Cores 5Cores 6Cores

Fig. 5.19 (a) Register usage (R, in kbits/cycle), and (b) multiprocessor execution time (7, in
clock cycles) of the MPEG-2 decoder MPSoC for different architecture allocations

frames per second. The architecture allocation is varied from two processing cores to
six processing cores. As can be seen, with increase in the number of allocated cores,
the register usage increases (Fig. 5.19a). This is because with increased number of
allocated cores the tasks mapping or distribution causes more duplication of the
shared register resources among tasks. Also, as expected with increased number of
allocated cores in the MPSoC architecture, the multiprocessor execution time (7s)
decreases with higher parallelism among the mapped tasks on processing cores
(Fig.5.19b). Table 5.6 shows the impact of architecture allocation on the power
consumption (P) and the number of SEUs experienced (") using the optimized
design produced in Exp:4. A number of applications, including MPEG decoder
and random task graphs of 20, 40, 60, 80 and 100 tasks were used. The power

R.A. Shafik et al.

204

(AN €9 €88 ¥6'S ¢T3 8t 8SY 8¥'C 0¥'C 01 sysel 001
€16 699 yoL ¥1'9 €19 A4 oL’e 19 S6'1 [an! syse1 08
SI'L €s LS 6t (424 s sTe ey L8'1 8L SYse1 09
S84 1L 9 91’9 L8T 4 8L'1 s LO'T 79 sysel O
(4% 9¢'9 €LT 9r'¢ LTT 144 (AN} STy LYo 1°01 s3se1 0T
9¢'¢ yoL S6'y €9 €6'¢ STy LTe 6'¢ €1'C I'e (syse3 11) DIdIN
01 X . J Mg 01 X . J Mg 01 X . J Mg 01 X . J Mg 01 X T MAu g uonedr[ddy
$9I00 9 $9I00 G S9I00 4 S9I00 ¢ S9I00 7

SUONBOO[[B INJOSIIYDIE JUAISHIP pue suonedridde JuaIofIp 10§ (01X ‘ J) PAOUSLIdXd SNHS pue (Aw ul ‘) uondwnsuod 10mod 9°S IqRL

5 System-Level Design Methodology 205

8 s— Exp:4 (power) —e—Exp:3 (power)
- L | — -« —Exp:4 (SEUs) —s«—Exp:3 (SEUs) 7E+5
z 7 z
6E+5
[o
E 8 4E+5 W)
5.5 g
w
5 3E+5 P
4.5
4 1E+5

2 Cores 3 Cores 4 Cores 5 Cores 6 Cores

Fig. 5.20 Comparison of power consumption (P, in mW) and SEUs experienced (I") between
Exp:3 and Exp:4 for different architecture allocations using random task graph of 60 tasks

consumption (P, in mW) and the number of SEUs experienced (") for different
architecture allocations are shown in columns 2-6 (Table 5.6). Two observations
are made. Firstly, the architecture allocation with minimum power consumption
(P) depends on the application and given real-time constraint. For example, in
the case of the MPEG decoder, the least power consumption is found with four
cores for the given real-time constraint of decoding fennis video sequence at
29 fps. Secondly, with increased number of architecture cores, the number of SEUs
experienced increases. The increased number of SEUs can be explained as follows.
With higher number of cores, multiprocessor execution time (73) reduces and
the overall register usage (R) increases (Fig.5.19). Due to reduced multiprocessor
execution time, there is more opportunity for voltage scaling to reduce power
consumption, which eventually increases the SER and the SEUs experienced. This
is further exacerbated by the increased register usage caused by distribution of tasks
with increased number of cores in MPSoC architecture (Fig. 5.19a). For example,
the decoder with six processing cores experiences the highest number of SEUs,
compared to the lowest for the decoder with 2 processing cores (row 2, Table 5.6).
Similar observations for power consumption and the number of SEUs experienced
are also observed with the random task graphs.

To compare between the soft error-aware and soft error-unaware design optimiza-
tions for different architecture allocations, Fig. 5.20 shows the power consumption
(P, in mW) and the SEUs experienced (I") by the optimized designs produced in
Exp:4 and Exp:3 using the random task graph of 60 tasks. As can be seen, the
proposed optimization, Exp:4, consistently outperforms the design produced using
joint optimization of reduced R and high parallelism, Exp:3, with upto 7% reduction
of SEUs experienced for an SER of 10™°. This reliability improvement is achieved
with only 3% higher power consumption using an MPSoC with six processing cores.

206 R.A. Shafik et al.
5.3.6 Concluding Remarks

Increasing design complexity of current and future generations of embedded
systems, particularly of MPSoCs, has necessitated design paradigm shift from
traditional separate hardware and software design to electronic system-level (ESL)
design methodology. Using modular and well-defined design steps early in the
design phase, design space can be drastically reduced, while meeting different re-
quirements in terms of power, performance and reliability. Moreover, using holistic
system modeling, ESL design methodology can effectively address various MPSoC
design challenges effectively. A case study of system-level design optimization has
also been presented based on the study of impact of application task mapping on the
reliability of MPSoC application (Sect. 5.3.2). Trade-off analyses of other system-
level design steps have also been illustrated in detail, underlining ways to achieve
joint system optimization in terms of low power consumption and high reliability.

References

1. J.A. Abraham, D.P. Siewiorek, An algorithm for the accurate reliability evaluation of triple
modular redundancy networks. IEEE Trans. Comput. 23(7), 682-692 (1974)

2. B.M. Al-Hashimi (ed.), System-on-Chip: Next Generation Electronics, chap. 17 (IEE Circuits,
Devices and Systems, London, 2006)

3. S. Aminzadeh, A. Ejlali, A comparative study of system-level energy management methods
for Fault-Tolerant hard real-time systems. IEEE Trans. Comput. 60(9), 1288-1299 (2011)

4. L. Anghel, D. Alexandrescu, M. Nicolaidis, Evaluation of a soft error tolerance technique based
on time and/or space redundancy, in Proceedings of the International Symposium on Integrated
Circuit Design and System Design, Manaus (IEEE Computer Society, Los Alamitos, 2000),
p. 237

5. ARM, Advanced microprocessor bus architecture (AMBA) specification, v2.0 (1999), http://
www.arm.com

6. ARM, Advanced eXtensible Interface (AXI) specification, AMBA v3.0 (2007), http://www.
arm.com

7. G. Ascia, V. Catania, M. Palesi, An evolutionary approach to network-on-chip mapping
problem. in /IEEE Congress on Evolutionary Computation, Edinburgh, vol. 1, 2-5 Sept 2005,
pp. 112-119

8. J.R. Azambuja, F. Sousa, L. Rosa, F.L. Kastensmidt, Evaluating large grain TMR and selective
partial reconfiguration for soft error mitigation in SRAM-based FPGAs, in Proceedings of the
15th IEEE International On-Line Testing Symposium (IOLTS), Sesimbra-Lisbon, 24-26 June
2009, pp 101-106

9. E Balarin, P.D. Giusto, A. Jurecska, M. Chiodo, C. Passerone, A.S.-V. Harry Hsieh, E. Sen-
tovich, B. Tabbara, L. Lavagno, K. Suzuk, Hardware-Software Co-design of Embedded
Systems: The POLIS Approach (Springer, USA, 1997)

10. H. Beitollahi, S.G. Miremadi, G. Deconinck, Fault-tolerant earliest-deadline-first scheduling
algorithm, in Proceedings of the IEEE International Parallel and Distributed Processing
Symposium IPDPS 2007, Long Beach, 26-30 Mar 2007, pp. 1-6

11. L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, M. Olivieri, MPARM: exploring the multi-
processor SoC design space with SystemC. J. VLSI Signal Process. 41(2), 169-182 (2005)

http://www.arm.com
http://www.arm.com
http://www.arm.com
http://www.arm.com

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

System-Level Design Methodology 207

J.B. Bernstein et al., Electronic circuit reliability modeling. Microelectron. Reliab. 46(12),
1957-1979 (2006)

D. Brooks et al., Power, thermal, reliability modeling in nanometer-scale microprocessors.
IEEE Micro 27, 49-62 (2007)

V. Chandra, R. Aitken, Impact of technology and voltage scaling on the soft error susceptibility
in nanoscale CMOS, in Proceedings of the IEEE International Symposium on Defect and Fault
Tolerance of VLSI Systems, Boston, 2008, pp. 114-122

V. Chandra, R. Aitken, Impact of voltage scaling on nanoscale SRAM reliability, in Proceed-
ings of the DATE’09. Design, Automation and Test in Europe Conference and Exhibition, Nice,
20-24 Apr 2009, pp. 387-392

G. Chen, M. Kandemir, E. Li, Energy-aware computation duplication for improving reliability
in embedded chip microprocessors, in Proceedings of the Asian and South Pacific Design
Automation Conference (ASPDAC), Yokohama, Japan, 2006, pp. 134-139

CoCentric, Designware System-level Library (2008), http://www.synopsys.com/Tools/SLD/
VirtualPlatforms/Pages/SLLibrary.aspx

F. Dabiri, N. Amini, M. Rofouei, M. Sarrafzadeh, Reliability-aware optimization for DVS-
enabled real-time embedded systems, in Proceedings of the 9th International Symposium on
Quality Electronic Design (ISQED), San Jose, 17-19 Mar 2008, pp. 780-783

M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, L. Benini, xPIPES: a latency insensitive
parameterized network-on-chip architecture for multi-processor SoCs, in ICCD’03: Proceed-
ings of the 21st International Conference on Computer Design, San Jose (IEEE Computer
Society, Washington, DC, 2003), p. 536

W. Dally, Performance analysis of k-ary n-cube interconnection networks. IEEE Trans.
Comput. 39(6), 775-785 (1990)

B.P. Dave, G. Lakshminarayana, N.K. Jha, COSYN: hardware-software co-synthesis of em-
bedded systems, in DAC’97: Proceedings of the 34th Annual Design Automation Conference,
Anaheim (ACM, New York, 1997), pp. 703-708

A. Ejlali, B.M. Al-Hashimi, M.T. Schmitz, P. Rosinger, S.G. Miremadi, Combined time and
information redundancy for SEU-tolerance in energy-efficient real-time systems. IEEE Trans.
Very Large Scale Integr. Syst. 14(4), 323-335 (2006)

A. Ejlali, B.M. Al-Hashimi, P. Rosinger, S.G. Miremadi, Joint consideration of fault-tolerance,
energy-efficiency and performance in on-chip network, in Proceedings of the Conference on
Design, Automation and Test in Europe (DATE), Nice, 2007, pp. 1647-1652

S. Ghosh, S. Basu, N.A. Touba, Joint minimization of power and area in scan testing by scan
cell reordering, in Proceedings of the Annual Symposium on VLSI (ISVLSI), Tampa, 2003,
p. 246

E. Gutiérrez, O. Plata, E.L. Zapata, Optimization techniques for parallel irregular reductions.
J. Syst. Archit. 49(3), 63-74 (2003)

R. Gupta, G. De Micheli, Hardware-software cosynthesis for digital systems. IEEE Des. Test
Comput. 10(3), 29-41 (1993)

J. Han, Q. Li, Dynamic power-aware scheduling algorithms for real-time task sets with fault
tolerance in parallel and distributed computing environment, in International Parallel and
Distributed Processing Symposium, Denver, 2005, pp. 6-16

C.-C. Han, K.G. Shin, J. Wu, A fault-tolerant scheduling algorithm for real-time periodic tasks
with possible software faults. IEEE Trans. Comput. 52(3), 362-372 (2003)

J. Hu, R. Marculescu, Energy- and performance-aware mapping for regular NoC architectures.
IEEE Trans. Comput Aided Des. Integr. Circuits Syst. 24(4), 551-562 (2005)

A. Israr, S.A. Huss, Specification and design considerations for reliable embedded systems, in
Proceedings of the DATE’08, Munich, 2008, pp. 1111-1116

V. Izosimov, P. Pop, P. Eles, Z. Peng, Design optimization of time-and cost-constrained
fault-tolerant distributed embedded systems, in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE), Munich, 7-11 Mar 2005, pp. 864-869

T. Karnik, P. Hazucha, Characterization of soft errors caused by single event upsets in CMOS
processes. IEEE Trans. Dependable Secur. Comput. 1(2), 128-143 (2004)

http://www.synopsys.com/Tools/SLD/VirtualPlatforms/Pages/SLLibrary.aspx
http://www.synopsys.com/Tools/SLD/VirtualPlatforms/Pages/SLLibrary.aspx

208 R.A. Shafik et al.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

R.H. Kim et al., 22 nm technology node active layer patterning for planar transistor devices, in
Proceedings of the Optical Microlithography XXII, San Jose, vol. 7274, ed. by H.J. Levinson,
M.V. Dusa (SPIE, Bellingham, 2009) pp. 72742X-72742X~-6

T. Kogel, R. Leupers, H. Meyr (eds.), System level design principles, in Integrated System-
Level Modeling of Network-on-Chip Enabled Multi-processor Platforms (Springer, Dordrecht,
2006), pp. 33-42

D. Kwai, B. Parhami, Fault-tolerant processor arrays using space and time redundancy, in
Proceedings of the IEEE Second International Conference on Algorithms and Architectures
for Parallel Processing, ICAPP, Singapore, 11-13 June 1996, pp. 303-310

D. Kwai, B. Parhami, A unified approach for fault tolerance and dynamic power management
in fixed-priority real-time embedded systems. IEEE Trans. Comput Aided Des. Integr. Circuits
Syst. 25(1), 111-125 (2006)

M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, A. Sangiovanni-Vincentell, A case study
on modeling shared memory access effects during performance analysis of HW/SW systems,
in Proceedings of the International Workshop on Hardware-Software Codesign, San Diego,
March 1998, pp. 117-121

H. Lee, U.Y. Ogras, R. Marculescu, N. Chang, Design space exploration and prototyping for
on-chip multimedia applications, in Proceedings of the Design Automation Conference (DAC),
San Francisco, 24-28 July 2006

H. Lee, N. Chang, U. Ogras, R. Marculescu, On-chip communication architecture exploration:
a quantitative evaluation of point-to-point, bus, and network-on-chip approaches. ACM Trans.
Des. Autom. Electron. Syst. 12(3), 1-20 (2007)

C. Lee, H. Kim, H.-W. Park, S. Kim, H. Oh, S. Ha, A task remapping technique for
reliable multi-core embedded systems, in Proceedings of the International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), Scottsdale, 24-29 Oct
2010, pp. 307-316

X. Li, D. Yeung, Exploiting application-level correctness for low-cost fault tolerance. J
Instrum. Level Parallel. 10, 1-28 (2008)

G. Li, F. Hu, L. Yuan, An energy-efficient fault-tolerant scheduling scheme for aperiodic
tasks in embedded real-time systems, in Proceedings of the Third International Conference
on Multimedia and Ubiquitous Engineering MUE’09, Qingdao, 4-6 June 2009, pp. 369-376
A. Maheshwari, W. Burleson, R. Tessier, Trading off transient fault tolerance and power
consumption in deep submicron (DSM) VLSI circuits. IEEE Trans. Very Large Scale Integr.
Syst. 12(3), 299-311 (2004)

G. Martin, Overview of the MPSoC design challenge, in Proceedings of the 43rd Annual
Conference on Design Automation, San Francisco, 2006, pp. 274-279

R. Melhem, D. Mosse, E. Elnozahy, The interplay of power management and fault recovery in
real-time systems. IEEE Trans. Comput. 53(2), 217-231 (2004)

N. Miskov-Zivanov, D. Marculescu, Circuit reliability analysis using symbolic techniques.
IEEE Trans. CAD 25(12), 2638-2649 (2006)

M. Nicolaidis, Time redundancy based soft-error tolerance to rescue nanometer technologies,
in Proceedings of the 17th IEEE VLSI Test Symposium, San Diego, 25-29 Apr 1999, pp. 86-94
V. Nollet, D. Verkestt, A quick Safari through the MPSoC run-time management Jungle,
in IEEE/ACM/IFIP Workshop on Embedded Systems for Real-Time Multimedia, ESTIMedia,
Salzburg, 2007, pp. 41-46

U. Ogras, J. Hu, R. Marculescu, Key research problems in NoC design: a holistic perspective,
in Proceedings of the CODES+ISSS, Jersey City, 2005, pp. 69-74

H. Orsilla, T. Kangas, E. Salminen, T. Himélédinen, D. Timo, M. Hénnikdinen, Automated
memory-aware application distribution for multi-processor system-on-chips. J. Syst. Archit.
Euromicro J. 53(11), 795-815 (2007)

L. Ost, Luciano, S. Varyani, L.S. Indrusiak, M. Mandelli, G.M. Almeida, E. Wachter, F.
Moraesm, G. Sassatelli, Enabling adaptive techniques in Heterogeneous MPSoCs based on
virtualization. ACM Trans. Reconfigurable Technol. Syst. 5(3), 1936-7406 (2012)

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

System-Level Design Methodology 209

P. Pop, K. Poulsen, V. Izosimov, P. Eles, Scheduling and voltage scaling for energy/reliability
trade-offs in fault-tolerant time-triggered embedded systems, in Proceedings of the Interna-
tional Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
Salzburg, 2007, pp. 233-238

J. Pouwelse, K. Langendoen, H. Sips, Dynamic voltage scaling on a low-power micropro-
cessor, in Proceedings of the 7th Annual International Conference on Mobile Computing and
Networking, Rome, July 2001, pp. 251-259

I. Profeta, J.A., N.P. Andrianos, B. Yu, B. W. Johnson, T.A. DeLong, D. Guaspart, D. Jamsck,
Safety-critical systems built with COTS. Computer 29(11), 54-60 (1996)

RTRG, Random task and resource graph tool (2010), http://www.zepler.net/~ras06r/rtrg.
Accessed 23 Apr 2010

M. Ruggiero, Dynamic power management techniques for system-on-chip. Ph.D. thesis,
University of Bologna, 2008

M.T. Schmitz, B.M. Al-Hashimi, P. Eles, System-Level Design Techniques for Energy-Efficient
Embedded Systems (Kluwer, Dordrecht, 2004)

R.A. Shafik, B.M. Al-Hashimi, Reliability analysis of on-chip communication architectures:
an MPEG-2 video decoder case study. Microprocess. Microsyst. 35(2), 285-296 (2011)

R. A. Shafik, P. Rosinger, B. M. Al-Hashimi, MPEG-based performance comparison between
network-on-chip and AMBA MPSoC, in IEEE Design and Diagnostics of Electronic Circuits
and Systems (DDECS), Bratislava, Slovakia, Apr 2008, pp. 98-103

R.A. Shafik, P. Rosinger, B.M. Al-Hashimi, SystemC-based minimum intrusive fault injection
technique with improved fault representation, in Proceedings of the International On-Line
Testing Symposium (IOLTS), Rhodes, July 2008, pp. 99-104

R.A. Shafik, B.M. Al-Hashimi, S. Kundu, A. Ejlali, Soft error-aware voltage scaling technique
for power minimization in application-specific MPSoC. J. Low Power Electronics. 5(2),
145-156 (2009)

R.A. Shafik, B.M. Al-Hashimi, J. Mathew, D.K. Pradhan, S.P. Mohanty, RAEF: a power
normalized system-level reliability analysis and estimation framework, in IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), Amherst, 2012, pp. 189-194

S.R. Shenoy, A. Daniel, Intel architecture and silicon cadence: the catalyst for industry
innovation. Technical report, Intel Corp., 17 Apr 2009

N. Soundararajan, N. Vijaykrishnan, A. Sivasubramaniam, Impact of dynamic voltage and
frequency scaling on the architectural vulnerability of GALS architectures, in ISLPED’08:
Proceedings of the 13th International Symposium on Low Power Electronics and Design,
Bangalore (ACM, New York, 2008), pp. 351-356

D.J. Soudris, P. Poechmueller, E.D. Kyriakis-Bitzaros, M.K. Birbas, C.E. Goutis, M. Glesner,
Design methodology for systematic derivation of fault-tolerant array processors, in Pro-
ceedings of the CompEuro’92 Computer Systems and Software Engineering, The Hague,
Netherlands, 4-8 May, 1992, pp. 562-567

J. Srinivasan et al., The case for lifetime reliability-aware microprocessors, in Proceedings of
the 31st International Symposium on Computer Architecture, ISCA’04, Washington, DC, 2004,
p. 276

Synposys, Primetime (2008), http://www.synopsys.com/Tools/Implementation/SignOff/Pages/
PrimeTime.aspx

R.R. Tamhankar, S. Murali, G.D. Micheli, Performance driven reliable link design for networks
on chips. in Proceedings of the Conference on Asia South Pacific Design Automation, Shanghai,
2005, pp. 749-754

W.J. Van Gils, A triple modular redundancy technique providing multiple-bit error protection
without using extra redundancy. IEEE Trans. Comput. C-35(7), 623—631 (1986)

S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Schanz, D. Finan, P. Iyer, A. Singh,
T. Jacob, S. Jairr, S. Venkataramarr, Y. Hoskote, N. Borkar, An 80 tile 1.28 tflops network-
on-chip in 65 nm CMOS, in Proceedings of the International Solid State Circuit Conference
(ISSCC), San Francisco, CA, USA, 2007, pp. 98-100

http://www.zepler.net/~ras06r/rtrg
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx

210 R.A. Shafik et al.

71. S. Wang, J. Hu, S.G. Ziavras, On the characterization and optimization of on-chip cache
reliability against soft errors. IEEE Trans. Comput. 58(9), 1171-1184 (2009)

72. W. Wolf, The future of multiprocessor systems-on-chips, in Design and Automation Confer-
ence (DAC), San Diego, 2004, pp. 681-685

73. B. Wong, FE. Zach, V. Moroz, A. Mittal, G. Starr, A. Kahng, Nano-CMOS Design for
Manufacturability (Wiley, Hoboken, 2009)

74. F. Zanini, D. Atienza, C.N. Jones, G. De-Micheli, Temperature sensor placement in thermal
management systems for MPSoCs, in Proceedings of the IEEE International Symposium on
Circuits and Systems (ISCAS), Bangkok, Jun 2003, pp. 1065-1068

75. Y. Zhang, K. Chakrabarty, Energy-aware adaptive checkpointing in embedded real-time
systems, in Proceedings of the International Conference on Design, Automation and Test in
Europe (DATE), Munich, 2003, p. 10918

76. D. Zhu, R. Melhem, D. Mosse, The effects of energy management on reliability in real-
time embedded systems, in IEEE/ACM International Conference on Computer Aided Design
(ICCAD), San Jose, 2004, pp. 35-40

Chapter 6
Fault-Tolerant Reconfigurable
On-Chip-Network

Mohammad Hosseinabady and Jose L. Nunez-Yanez

Fault-tolerant reconfigurable on-chip networks are infrastructure communication
architectures for the future computing platforms that can run many applications with
dynamic work-load in the presence of different types of faults in the system. This
chapter introduces the architecture of such platforms and studies their fault-tolerant
features.

6.1 Introduction

With ever increasing number of transistors available on a single die, designers are
able to embed different types of computational and communicational resources in
a single chip to cope with insatiable demand for running different complex ap-
plications with different constraints. Therefore, designers propose Multi-Processor
Systems-on-Chip (MPSoC) frameworks [1, 2] which contain many different types
of components such as processors, memories, communication modules, accelerators
and even Field Programmable Gate Arrays (FPGAs).

According to the International Technology Roadmap for Semiconductors (ITRS)
predictions [3], shown in Fig. 6.1, the number of processing elements in Systems-
on-Chip (SoC) consumer portable products will grow rapidly in the future. More-
over, the amount of memory will also increase proportionally with the number of
processing elements.

M. Hosseinabady (><)

Institute of Electronics, Communications and Information Technology (ECIT)
Queens University Belfast, Belfast, Northern Ireland, UK

e-mail: m.hosseinabady @qub.ac.uk

J.L. Nunez-Yanez
Department of Electrical and Electronic Engineering, University of Bristol, UK
e-mail: j.].nunez-yanez@bristol.ac.uk

J. Mathew et al. (eds.), Energy-Efficient Fault-Tolerant Systems, 211
DOI 10.1007/978-1-4614-4193-9_6, © Springer Science+Business Media New York 2014

mailto:m.hosseinabady@qub.ac.uk
mailto:j.l.nunez-yanez@bristol.ac.uk

212 M. Hosseinabady and J.L.. Nunez-Yanez

@
=]

7,000

-
(7]
-

6,000

e
o
I

||
4838 5,000
=

@
@
I

g
l
I

324 1 4.000

1 3.000

|
I

[

2,000

Logic, Memory Size (Normalized to 2009)
o
|
of Processing Engines

=]

700 B 1,000

266 343 al
R NIl

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

o
En
n
o

ENumber of Processing Engines —& Total Logic Size 8- Total Memory Size
(Right ¥ Axis) [i to 2011, Left ¥ Axig) [N, lized to 2011, Left ¥ Axis)

Fig. 6.1 SoC consumer portable design complexity trends [1]

As the number of components increases in an MPSoC, the communication
architecture among them plays the main role in determining the speed of the
system. The traditional bus-based architectures as the simplest way to connect
components become the main bottleneck because of its poor scalability and high
amount of power consumption. As the number of components connected to a bus
increases, the length of the bus and the number of interfaces between the bus and
components increase which in turn increase the capacitance of the wire constituting
the bus. This capacitance is the main parameter in determining the bus speed [4].
In addition, using buses on a chip to connect many components results in layout
issues in manufacturing the whole chip [5]. Coping with these issues, researchers
have augmented the traditional bus architecture with new techniques such as bus
segments [6], crossbar switches [7], arbiters [7, 8], buffer [9], and asynchronous
transactions [10].

However, these new bus architectures cannot fully cope with the scalability
problem. For example, although, using multi-level or hierarchical bus structures can
handle the communication among a few cores, still a regular mechanism is required
to scale up the communication structure towards multi- and many-core MPSoCs.

Addressing the scalability problem and alleviate the power consumption in the
communication structure, researchers have proposed Network-on-Chip (NoC) [11,
12]. This new on-chip interconnection scheme utilizes identical routers to connect
components through a network topology such as Mesh. In addition, a packet based
communication performs the transaction among components. The main benefit of
the NoC which makes that scalable is the regularity in topology, routing and router
architecture.

6 Fault-Tolerant Reconfigurable On-Chip-Network 213

Static NoC-based MPSoCs, which their parameters and structures are determined
at design time, are the first group of these computational platforms. However, a
general static NoC-based MPSoC cannot be efficient because of dynamic behavior
of applications and high-probability of occurring faults in the chip during its
life time. While such an MPSoC can efficiently execute a group of applications,
it may not show high performance in running other types of applications because
of their different functionality constraints or different types of traffic that they may
inject into the NoC. In addition, a statically designed NoC-based MPSoC may be
unable to run applications or lose its performance in running application in the
event of permanent, transient or intermittent faults which are very common in new
advanced nanotechnologies.

Adding dynamic reconfigurable features in terms of software or hardware
reconfigurability can provide a versatile NoC-based SoC which can be used in
different scenarios by adapting itself to different constraints required by appli-
cations. Employing software program running on processor components in an
MPSoC is a well-known technique to add software versatility enhancement to
MPSoCs. However, this kind of programmability is not enough to adapt the
communication network to different traffics. Therefore, hardware reconfigurability
can be considered as a solution to provide an adaptable NoC-based MPSoC which
can be used for efficiently executing different applications with wide verity of
computational and communicational constraints.

This chapter studies different approaches for dynamic reconfigurable NoC-based
MPSoCs and explains the benefits and drawbacks of each approach by focusing
on their fault-tolerant feature. The rest of this chapter is organized as follows.
The next section, explains the details of NoC-based MPSoC and introduces some
terminologies that will be used in the rest of the chapter. Sect. 6.3 explains some
of the key issues and problems in designing a NoC. The reconfigurable NoCs are
discussed in Sect. 6.4. Finally, Sect. 6.5 explains a fault-tolerant stochastic task
mapping technique on a Network on Reconfigurable Chip (NoRC).

6.2 NoC-Based MPSoC

The network-on-chip has been proposed as an alternative to on-chip bus and point-
to-point communication architectures to cope with ever increasing demand for bus
bandwidth and power consumption in new SoCs with many heterogeneous cores
[11,12].

Figure 6.2 shows a typical NoC-based MPSoC platform in which cores commu-
nicate together through a network of routers. This MPSoC comprises of two main
components: cores and Network-on-Chip (NoC). These components are explained
in the sequel.

214 M. Hosseinabady and J.L.. Nunez-Yanez

Fig. 6.2 A typical
NoC-based MPSoC platform

Router

Network Interface

6.2.1 Cores

Cores consist of processors such as general-purpose processor, Graphics Processing
Units (GPUs) or Digital Signal Processors (DSPs), accelerators, memories, and
controllers and so on which provide storage and computational components in the
platform. Different architectures have been proposed for cores in an MPSoC that
can be categorized as homogeneous and heterogeneous cores.

In a homogeneous MPSoC, cores are of the same type which usually consists
of at least a processing element (PE) and a local memory which may be connected
via a local bus. TeraFLOPS is a homogeneous NoC-based MPSoC manufactured by
Intel [13] consisting of 80 identical processors. Figure 6.3 depicts the processor in
this MPSoC which is called processor engine. The processor engine consists of two
independent fully-pipelined single-precision floating-point multiply-accumulator
units, 3 KB single-cycle instruction memory, and 2 KB of data memory.

Cores in a heterogeneous MPSoC are not identical and each of which can
efficiently executes different types of tasks. Xpipes [14] is a homogeneous NoC-
based MPSoC comprises of general-purpose processors, DSPs, Reduced Instruction
Set Computing (RISC) processors, memories and other modules as cores. Figure 6.4
depicts a heterogeneous NoC-based MPSoC for the MPEG4 decoder which consists
of different types of cores connected together through a NoC.

A comparison between homogeneous and heterogeneous MPSoC has been
done in [15] and [16]. Using Spidergon NoC topologies, Saponara and Fanucci
[15] compare two heterogeneous and homogenous architectures for some real
applications including H.264/MPEG AVC video codec and a low-distortion digital
audio amplifier. Based on their results, the heterogeneous architecture shows less
power consumption and lower area occupation. However, homogeneous architecture
is more flexible to run different applications and standards. Taking 4G baseband mo-
dem applications, which require high computing power with real-time constraints

6 Fault-Tolerant Reconfigurable On-Chip-Network 215

Mesochronous
= Interface 3
3915 .,
——{= Crossbar 4
=

2GB/s Link
4_5_ Router }3 GB/s Links _.' "o

64

6-read, 4-write 32 entry RF |

[Normalize]
H | S—

3KB Inst. memory (IMEM)

g[Normalize|
i i]
i FPMACO / % FPMAC1 /

Processing Engine (PE)

Fig. 6.3 Core architecture in TeraFLOPS NoC-based SoC [13]

and low-power consumption as well as their rapid evolution of different standards,
Jalier et al. [16] show that the homogeneous technique can be more efficient and
flexible than the heterogeneous technique.

In summary, since heterogeneous MPSoCs use different types of cores (i.e.,
processing elements) and usually application specific cores, they can provide a high
power efficiency and smaller area occupation for specific applications. However,
using identical cores, homogeneous MPSoCs provide high flexibility and regularity
which make them more scalable and reconfigurable at run-time to cope with faults
and dynamic workloads.

6.2.2 NoC

A packet-based communication scheme is used to transfer data from a source core
to a destination core. In this scheme, the source core encapsulates the data into
some packets and sends them to the underlying communication platform to be
delivered to the destination core. A packet comprises of data, routing information,
error detection or correction codes, quality of service information or even some
configuration data. Some of the information in the packets is used by the destination
core and some of them are used by the communication platform. To provide a
communication infrastructure to be used in different scenarios and applications
a communication protocol such as Open Systems Interconnection (OSI) model
[17], a multi-level communication protocol used in computer network, should be

216 M. Hosseinabady and J.L.. Nunez-Yanez

SRAM
vu Baster Media
s1] lze] CPU
= | s2 s s2}
I—s2_I
BAB 52
Samp | |LL
N
s3 :
1 s1
Audio iDCT,
DSP etc S2H
|]
52 il SRAM
| s1—3x3 s2—4x4 s3—5x5 |

Fig. 6.4 A heterogeneous NoC configurations for the MPEG4 decoder [14]

used to formally define the communication protocol in a NoC. Therefore, some
researchers have proposed and used such protocols [18-21]. In a common protocol,
cores send/receive the data in the form of messages. Then, the messages transmitted
over NoC divided into packets which in turn partitioned into flow control units
called flits [22]. In addition, a switching technique determines how packets traverse
from one point to another. Many different switching techniques are proposed in
NoC including wormhole, store and forward, and Virtual-Cut-Through (VCT) [21].
The wormhole switching is the most promising technique used in NoCs due to the
limited availability of buffering resources and low latency requirements.

A typical NoC consists of Network Interface (NI) and routers connected together
through links which are explained in the sequel.

Network Interfaces (NIs): An NI is used to connect a core to the NoC. The main
role of an NI is to form packets from data and retrieve data from packets. It also
should split the generated packet to flits to be sent to the attached router and

6 Fault-Tolerant Reconfigurable On-Chip-Network 217

merge the received flits from router to create the packet. Despite of the data, NI
should encapsulate the routing information to the packets. Based on the addressing
technique used in the NoC, NI can have a significant area contribution in the NoC.
For example, the NIs in a TV companion chip redesigned with a NoC as the
interconnect fabric [23] shows 78% of increase in chip area.

Routers: Routers are the main components in NoC which have been the focus of
most of the research in NoC area. A router consists of a few input and output ports
with some amount of buffers, a switch fabric to create the path between input ports
and output ports, and a routing algorithm which determines the output port for the
received packets (or flits). A router usually performs mechanisms for quality of
service, fault-detection and fault correction. Based on the switching techniques and
rooting algorithm different structure for a router have been proposed in the literature
[20, 21].

Network topology: Network topology defines how to connect routers in a NoC.
This topology determines all the potential paths between source and destination
cores which will be established by routers between the cores for data transfer.
If the topology cannot provide enough paths between cores in a NoC to support
the bandwidth requirement of cores, then routers and other parts of NoC cannot
efficiently transfer data between cores. Therefore, topology has a key role to provide
the required bandwidth in an NoC which has been studied by researchers [20, 21].

The next section explains the NoC design techniques and some of the issues and
problems in designing a NoC.

6.3 NoC-Based MPSoC Design

Based on the NoC structure and types of cores and applications, different scenarios
have been proposed for designing a NoC-based MPSoC. One of the common design
flows [24, 25] is shown in Fig. 6.5 which consists of three stages: task mapping, task
scheduling and core mapping. This design flow starts with an application (described
by a task graph) and finishes by mapping the application on NoC-based MPSoC.

¢ Ml e T
Scheduling { *

LnkC:> G | oot ot | |

Fig. 6.5 A typical NoC design flow

218 M. Hosseinabady and J.L.. Nunez-Yanez

Task-graph is a traditional technique to model concurrency in an application. In
this technique, each application is divided into tasks which usually represent the
computation parts of the application. These tasks are connected through links which
denote the data or control dependency among tasks. Therefore, vertices in a task-
graph show the tasks in the application and links between two tasks represent the
dependency between them. A task-graph is able to model different constraints in an
application such bandwidth, throughput, power consumption, execution time and so
on by augmenting tasks and links by numbers and weights.

Choosing suitable cores to run tasks is the first step in the design-flow shown in
Fig. 6.5. Different factors such as instruction set in cores, area of core; amount of
work required in a task can be used to make this decision. The chosen cores can be
modeled by a graph called core-graph which its nodes represent the cores and its
links represent the dependency among cores. It is possible to map more than one
task to a core during the task mapping step. In this case, a scheduling algorithm
should define the order of task execution in the core which hosts more than one
core as well as the order of data transaction on the links used by more than one
task to send their data. After, mapping and scheduling the tasks in an application,
the resulted core graph should be mapped on NoC architecture. Each core should
be connected to a router such that all constraints in the application graph are met.
Different objectives such as communication power consumption, packet latency, and
throughput are considered to efficiently map cores in this step [26].

6.3.1 Design-Time Synthesis

Scalability and modularity of NoC structure can be used to synthesis and adapt the
communication architecture to performance, bandwidth, power consumption and
area constraints of specific use cases. These adaptations can be performed at design
time by utilizing static design techniques. These techniques mostly try to synthesis
the NoC architecture by finding a suitable topology or by finding proper values
for different parameters in the NoC, such as the amount of buffers in the routers
or NIs, the number and size of flits or packets and so on. A design exploration of
application-specific MPSoCs in order to find a NoC with optimal cost-performance
trade-offs design constrains, such as power, area, and wire-length is explained in
[27]. Focusing on application specific NoCs, a linear programming based techniques
for topology synthesis is proposed in [28] generating irregular NoC topology to
minimize the power and area. This technique divides the synthesis problem into
two stages: floor planning and interconnection network generation. The results of
this research show that mesh and QNoC [29] based topologies consume 2.3 and
1.75 times more power than their irregular topology. Using the multi-commodity
flow approach, Hu et al. [30] study the trade-off between NoC power and latency.
The results of this synthesis technique show the improvement of 52.1%, 29.4% and
35.6% in power latency product compared with mesh, torus and hypercube topology,
respectively.

6 Fault-Tolerant Reconfigurable On-Chip-Network 219
6.3.2 Major Problems in Statically Designed NoC

Since, statically designed NoCs are synthesized and configured for specific use-
cases and platform conditions, as long as these conditions and use cases are
not changed the designs show a good performance. However, faults occurring
in the system may change the platform architecture or emerging new standards
or algorithms in the applications can drastically reduce the efficiency of these
platforms. Three main sources of issues in statically designed NoC-based SoCs are
as follows:

* Dynamism in applications
* Platform efficiency degradation after using the system for a while
* High probability of faults in the system

Each of these issues is explained in the sequel.

6.3.2.1 Dynamism in Applications

The number and types of applications running on a SoC platform are increasing
rapidly which makes the platform difficult to satisfy all their requirements and
constraints in terms of bandwidth and latency. For example, TI OMAP™ 4 platform
[31]1is a general purpose SoC targeted for future mobile phones and mobile-Internet-
devices (MIDs) to support different types of applications such as web-browsing, HD
video, location-based services and social networking with diversity of bandwidth
and quality of service requirements. This platform consists of ARM Cortex-A9
processors, graphics accelerator, image signal processor and a few controllers of
other modules. The Philips Nexperia™ digital video platform [32] is another SoC
for vide variety of image, video and signal processing applications.

The dynamism in applications can be categorized into two groups: inter-
application dynamism and intra-application dynamism. Example of applications
with inter-application dynamism are MPEG-4 [33] and Reconfigurable Video Cod-
ing (RVC) [34] which consist of many features and encoding/decoding techniques
that some of them do not have a clear definition and not proposed yet. Any
implementation of these applications should be compatible with different number
of standards even with those which are not developed yet. In addition, running
multiple applications with different constraints and behavior on a NoC-based
MPSoC results in an inter-application dynamism. Considering inter- and intra-
application dynamisms, a design exploration technique is explained in [35].

6.3.2.2 Platform Efficiency Degradation

NoC-based platforms lose their efficiency and system utilization (up to 60% [36])
mainly because of task dispersal and resource fragmentations issue after mapping
and releasing applications [37, 38].

220 M. Hosseinabady and J.L.. Nunez-Yanez

s @ oL

d 0 1 2 3 4
a
o @ @ 0 Pea(1Xea(1 1 1 (1
R R
2 3 1
O 68 % QOXL
App X App Y App Z time t1
e ¢ 1 H 3 4 f o 1 2 3 4 g 0 1 2 3 4
° PO OO0
¢ GtBGquEzn[z;glEz;{z@'}.{EK i mDEHBZz: 2) EEZJE,EL{EZ it G@ (2K (2
2 Zz:[zgglﬁx,{ng 2 31} %Eiz:mg 2@2{12 2(2]

time t2 time t3 time t3

Fig. 6.6 Task dispersal [37]

Figure 6.6 illustrates an example which shows the task-dispersal in a NoC
which results in external contention (contention between the traffics of two different
applications) in a non-contiguous task mapping scheme which in turn reduces
the system efficiency [37]. Three simple applications, App X, App Y and App Z,
described by task graphs are shown in Fig. 6.6a—c, respectively. Figure 6.6d shows
a 3 x5 mesh-based NoC at time #/ which runs two instances of App X and two
instances of App Z. Let us assume, at time 72 the instance one of App Z and instance
two of App X finish their execution and release the allocated resources and a new
request for App Y arrives. As it can be seen, the available resources spread in three
disjoint convex regions which are {(0,0), (0,1), (0,2),(0,3),(0,4)}, {(2,0),(2,1)} and
{(2,4)}. Figure 6.6(f) and (g) show two different tile allocations for the requested
application. Two communicating tasks mapped into two different regions cause
external contention. For example, Fig. 6.6f shows the mapped App Y in which
tasks y, and y; communicate with tasks ys and y;3, respectively. Because these
communications should cross the regions, they cause external contention with the
traffic of other mapped applications. Figure 6.6g illustrates the other tile allocation
which shows less external contention because only the communication between
tasks yp and y, cross the regions [37].

6.3.2.3 Fault

As the critical dimensions in technology of manufacturing NoC shrink and the
number of devices on a chip increases the reliability of NoCs decreases drastically.
Note that, faults in a NoC can bring the entire system to a complete halt. Therefore,

6 Fault-Tolerant Reconfigurable On-Chip-Network 221

techniques are required to keep the system alive even in the event of faults. The
highly scaled NoC designs are very vulnerable to different types of faults including
permanent, intermittent and transient faults. Permanent faults occurring due to
transistor wear-out [33] and electro-migration [39] of a conductor can make a NoC
erroneous during its life time. Intermittent fault can at random moments exhibit its
erroneous effect, or not. Transient faults [40] including caused by neutron radiations
from cosmic rays or alpha particles from packaging materials pose a major challenge
to the design of memories and logic circuits in nanometer technologies.

To cope with aforementioned issues, researchers propose reconfigurable NoC-
based MPSoC in which dynamic techniques can be used to adapt the system to
the changes in the application and architecture. The next section explains dynamic
NoCs and their design techniques.

6.4 Reconfigurable NoC

This section studies the reconfigurable NoCs [41, 42] with a specific focus on fault-
tolerant techniques. NoC reconfiguration techniques are the schemes which tune
the initial design of a NoC to cope with the dynamic behavior of applications or
any changes in the NoC structure at runtime. A typical reconfigurable technique
changes the state of the NoC in terms of its structure, components, parameters, or
software. These reconfigurable techniques can be done in two ways with and without
stalling the system [43]. The former techniques apply a stall in the system before
applying the reconfiguration techniques. Therefore, it guaranteed that packets do
not deliver to a wrong destination during reconfiguration process. However, the idea
with the latter techniques is to allow applications and traffic continue their tasks
without interruption during reconfiguration process. In this case, it is possible that
some packets are delivered to the wrong destination. Therefore, the reconfiguration
techniques also should guarantee that packet will be delivered to their destinations.

Reconfigurable techniques can be applied on different components in a NoC
which can be categorized as application-level, protocol-level, and hardware-level
reconfigurable schemes. The details of these techniques are explained in the sequel.

6.4.1 Application-Level

Application level also known as system-level reconfigurable techniques usually
change the state of a NoC-based MPSoC in terms of the tasks mapped on processors.
Dynamic task mapping, task scheduling and task migration are some of the
techniques in this category [44, 45]. Usually a dedicated core in the NoC as the
manager controls the status of the entire system via a specific controller [46] or
operating system [47] and perform the application-level reconfiguration techniques.

222 M. Hosseinabady and J.L.. Nunez-Yanez

The fault-tolerant NoC based on application-level reconfiguration techniques
primarily consist of three parts: a dynamic fault detection technique [48, 49], a
group of system assessment metrics [50] and a fault-aware resource management
[50].

Considering redundant and spare resources in a system to be used as replace-
ments for faulty resources is a well-known technique to provide fault-tolerant
feature. Shamshiri and Cheng [51] have shown that using spare cores and wires in
a NoC-based SoC can significantly improves reliability of the system. This idea has
been the motivation of some application-level fault-tolerant techniques for NoCs.

Considering permanent, transient and intermittent faults in NoC-based SoCs, an
application-level fault-aware resource management technique is proposed in [50]
in order to optimize the entire system performance and communication energy
consumption. This technique is considers a network of routers connected through
a mesh topology with deadlock-free, minimal-path routing and virtual-channels.
Attached to each router is a core which can be a processor or memory. A specific
core called manager runs a platform OS to detect fault and to manage applications
and resources in the NoC. It also assumes that applications have been analyzed
statically and the core graph (Sect. 3) for each application is available. This research
studies three different distributions for spare cores which are side assignment (in
which spare core are assigned to the boundary cores), random assignment and
uniform assignment. If there is a faulty core in the system, optimizing Manhattan
distance among cores [52], core fragmentation and link contentions this work finds
a proper spare core to run tasks in the faulty core.

Stochastic task mapping [38] is another group of application-level fault-tolerant
techniques in NoC [53, 54]. A stochastic fault-tolerant technique based on [38] will
be discussed as a case study in Sect. 5.

6.4.2 Protocol-Level Reconfigurability

Using adaptable routing algorithms, flow control techniques and dynamic quality
of service (QoS) schemes, protocol-level reconfigurable techniques provide a
reconfigurable NoC to cope with the dynamic behavior of application and occurring
fault in the system [55]. A fault-tolerant routing scheme is proposed in [56] for 2D
mesh NoCs which combines the North-last and South-last turn models to create a
robust hybrid NoC routing scheme.

6.4.3 Hardware-Level Reconfigurability

Using the concept of partial reconfiguration available in new FPGAs [57], can
be used to reconfigure hardware components in a NoC-based MPSoC without
interrupting the tasks in the rest of the system.

6 Fault-Tolerant Reconfigurable On-Chip-Network 223

An FPGA-based NoC called Programmable NoC (PNoC) has been proposed
by [58] in which a lightweight router, requiring a few FPGA resources, has been
used as its key feature. The PNoC is reconfigurable at design time and runtime.
At design time, different network architecture can be constructed, whereas, some
parameters including communication path width, flow control and timeout handling
can be determined for tuning the entire system. At runtime, reprogramming the
routing tables, it is possible to add and remove nodes dynamically with support
of partial reconfiguration in FPGAs. Using dynamically reconfigurable FPGAs,
Jovanovic et al. [59] have proposed a scalable dynamic NoC. Nollet et al. [60]
proposes a heterogeneous NoC-based MPSoC comprising of general-purpose pro-
cessors (GPPs), specialized processors (DSPs and accelerators), and reconfigurable
hardware tiles with different sizes. Using partial dynamic reconfigurable FPGAs, a
run-time reconfigurable NoC framework has been proposed in [61]. This framework
dynamically can change the number of links between cores in the NoC as well as
the routing table in routers in order to reduce the latency in the system.

6.5 Case Study: Network on Reconfigurable Chip

This section studies the stochastic fault-tolerant task mapping technique on Network-
on-Reconfigurable-Chip (NoRC) [38]. First, a brief explanation of the NoRC
architecture and then the stochastic task mapping technique will be discussed.

6.5.1 NoRC Architecture

Figure 6.7a shows an overview of the NoRC architecture model consisting of eight
tiles connected through a 2 x 4 mesh topology. Each tile consists of a router, a run-
time reconfigurable region (such as the regions that can be created in Virtex-5 or

a b
Mapped cores e.g.,

processor, encoder, ...) Logic cell
e e

NeRC Processign
v n

Elemellus
R ‘ i[Host
AR 1

N

Dynamic Part

I
5 R :
e
®
@ Compute Unit Compute Device
Application External
request Memory
module (ARM) (EM)
Nework-on-Reconfigurable-Chip (NoRC) architecture OpenCL architecture

Fig. 6.7 Network-on-Reconfigurable-Chip (NoRC) architecture

224 M. Hosseinabady and J.L.. Nunez-Yanez

Table 6.1 Analogy between

NoRC and OpenCL NoRC OpenCL
framework ARM + EM Host
Tile Compute device

Dynamic part Compute unit
Mapped core Processing elements

Virtex-6 FPGAs using the partial reconfiguration design flow) that can implement
different types of cores (e.g. processors, communication cores etc.), a small local
memory and a network interface. The small local memory in a tile is used to save
the portion of the code and data needed for the task in that tile. Because of the
structure of the tiles in the proposed NoRC architecture, the mesh interconnection
topology is selected because of its simplicity, regularity and suitability for VLSI
implementation. The routers provide an XY routing algorithm with a wormhole
switching technique. An external module called application request module (ARM),
which can access the tiles using a simple control network, sends application requests
to the platform while an external memory (EM) keeps all configuration data for the
applications that need to be mapped and run. In the general case, the ARM could
be mapped in a host processor and the NoRC platform used as a reconfigurable
COProcessor resource.

The proposed architecture is conceptually similar to OpenCL [62] platform
model shown in Fig. 6.7b. The model consists of a host connected to one or
more OpenCL devices. An OpenCL device is divided into one or more compute
units (CUs) which are further divided into one or more processing elements (PEs).
Computations on a device occur within the PEs. Table 6.1 summarises the analogy
between NoRC platform components and their OpenCL equivalents. However, cores
in the proposed platform utilise message passing to communicate together. In this
analogy, ARM and EM play the role of host processor which controls the task
mapping. A tile is a compute device in the OpenCL model that can consists of a few
dynamic parts. The dynamic part corresponds to the compute unit of OpenCL that
can host a few core. Finally, a core is the processing element in the OpenCL. The
main advantage of the proposed architecture in compared with the OpenCL model is
the communication among cores. Whereas, global and local memories are used as a
shared communication medial among kernels (i.e., processing elements) in OpenCL
which is not scalable and restricts the communication due to the limited memory
bandwidth, in the proposed NoRC, cores are communicate through a NoC which is
scalable and distributed.

6.5.2 Stochastic Routing Algorithm

Applications to be mapped on the NoRC architecture are described by a task
graph in which nodes represent the computational tasks and a link between two
tasks denotes the data communication among them. Because of its inherent and

6 Fault-Tolerant Reconfigurable On-Chip-Network 225

a o b

i I, r To2 1
: Tfrj,rj L1 T’r” o1 T{”‘? 14 ni {
™
@ m H Tl Fip Th iy Tl iz Tl LN

Tl \L A T N\ T \L 24 TT;

c Task-graph example Task request message (TRM)

: Tl ied m 0 (m e Tly; . 1 :&_ iked Tly,; G Tl s Tly; b) =1
™ : ™ ;

T N AT N T NPT\ EA 10, N ST\) T N AT\

T \CA T AT NEL T N\EL 1 N AT\ T N 2L T\ A

Task acknowledge message (TAM) Task mapping message (TMM)

Fig. 6.8 Task mapping scheme

high capability of fault-tolerance, a stochastic routing algorithm is used to map
applications (which consist of tasks) on the NoRC platform. In this scheme, for each
application to be mapped on the platform there is a special task called task manager
that is responsible for mapping and monitoring the tasks of that application. The
task manager is mainly performs the task mapping, fault-detection, task migration
and energy management.

The task mapping algorithm consists of three parts each of which run on ARM,
task manager, and network interfaces. In the request of mapping an application,
first, the ARM randomly finds a free tile to map a task manager. Then, using a
stochastic routing, the task manager will be responsible to map the tasks in the
given application, sequentially. For this purpose, each network interface in a tile has
a clear contribution in this stochastic task mapping. Taking a simple example, we
explain the stochastic task mapping algorithm.

Figure 6.8a shows an application represented by its task graph which comprises
of five tasks. When ARM receives a request to map this application, it randomly
selects a tile to map a task manager. For example tile 7'/1; is selected as shown in
Fig. 6.8b. Then the task manager maps the tasks sequentially using a three-phase
random walk search scheme.

226 M. Hosseinabady and J.L.. Nunez-Yanez

0NN kW=

Send task request message: In this step, the task manager creates a task request
message (TRM) consisting of task information and a message life time. The
message life time is a counter which determines the number of routers as the
length of the random walk. Then, it sends that to the tile’s network interface.
The network interface randomly selects one of its neighbouring tiles and sends
it the message (e.g., T L, in Fig. 6.6(b)). The network interface in that tile (i.e.,
T'l1,) checks the capability of hosting the task and modifies the message by this
information and decrements the life time counter. Then it sends the modified
message to a randomly selected tile around itself (e.g., Tly,), except the tile
which has sent the TRM. This mechanism is repeated by network interface while
the life time is not zero.

Receive task acknowledge message: The network interface that receives a
TRM with life time of zero, modifies the message and changes its type to task
acknowledge message (TAM) and sends it to the task manager using the XY
routing algorithm (Fig. 6.8c). Task manager examines the received TAM, and
selects a proper tile from the randomly visited ones that can host the task. In one
scenario, the tile which is close to the previously mapped task can be selected to
reduce the task dispersion.

Send task mapping message: When the task manager selects the proper tile to
host the task, it sends a task mapping message (TMM) to that tile using the XY
routing algorithm (Fig. 6.8d). Then, the network interface which receives this
message communicates with ARM for other information such as bitstream, code
and data required realizing the task.

Algorithm 1 ARM routine

Data: app an application
Data: NoRC platform
Result: mapped app on NoRC
while app_retry < APP_RETRY do
while manager_retry < MANAGER_RETRY do
tl = randomly select a tile on the NoRC
if ¢l can host a task manager then
Map manager in #/
manager_map _success = true
Break
else

manager_map_success = false
manager_retry—+-—+
end
end
if manager_map _success == false then

application_retry++;
app-map _success = false;
Continue;

6

20
21
22
23
24
25
26
27
28
29
30
31
32

0NN B W=

e

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Fault-Tolerant Reconfigurable On-Chip-Network

end
wait for response from manager;
if app is rejected by task manager then
application_retry+—+
app-map _success = false;
else
app-map_sucess == true;
Break;
end
end
if app_map_success == false then
Reject the app
end

Algorithm 2 Task manager routine

Data: app an application
Result: mapped app on NoRC
while app! = NULL do
tsk = selectT ask(app)
app = app — {tsk}
bool task_map _sucess = false
while task_retry < TASK_RETRY do
msg = TRM, tsk, LIFE_TIME
p =randomly selected an output port
Send out msg through p;
wait for response
mdg = received message
if rmsg is TAM then
Tl = findT ile(rmdg)
if 7! = NULL then
msg = TMM, tsk
Send out msg to tile 71
task_map_success = true
Break;
else
task_retry++;
end
end
if task_map _success == false then
Reject the application
end
end
end

227

228 M. Hosseinabady and J.L.. Nunez-Yanez

Algorithm 3 Network interface routine

1 Data: msg received message

2 Result: modify msg or map a task

3 if msg is a task request message then

4 if the tile can host the requested task then
5 msg = msg + (tile_id)

6 end

7 if msg.life_time! = 0 then

8 msg.life_time——;

9 p = arandomly selected output port

10 Send out msg though p

11 else

12 Change the msg type to TAM

13 Send back the msg to manager by using XY routing
14 end

15 end

Algorithm 1-Algorithm 3 show the ARM, task manager and network interface
contributions in the stochastic task mapping techniques. In order to increase the
probability of mapping tasks and applications, ARM and task manager use a retry
mechanism in the event of any failure to map a task or an application. Three pa-
rameters restrict the number of retries in ARM and task manager. The ARM retries
MANAGER_RETRY times (Line 5 in Algorithm 1) if the randomly selected tile
cannot host the task manager. In addition, the ARM retries APP_RETRY times
(Line 4 in Algorithm 1) if mapping the application fails. In addition, the mask
manager retries TASK_RETRY times (Line 7 in Algorithm 2) if it fails to find
a proper tile to host a task.

6.5.3 Dynamically Fault-Tolerance in NoRC

Different types of permanent or temporary dynamic faults can occur at run-time dur-
ing the system’s lifetime due to component wear-out (caused by electromigration)
[63] or cosmetic radiations [64]. In this section, we consider faults that may occur
on links; routers and tiles (consist of network interfaces and reconfigurable areas).
The major causes of faults on links are electromigration and stress-induce defects
[65] which may occur at manufacturing time or at runtime.

FPGAs usually implement the combinational and sequential logic in pro-
grammable complex logic blocks (CLBs), which are customized by loading configu-
ration data (bitstream) in the SDRAM memory cells. These memories are vulnerable
to charged particle strikes to the cells which can modify the function of the task
mapped on the reconfigurable part.

6 Fault-Tolerant Reconfigurable On-Chip-Network 229

6.5.3.1 Fault Detection

Fault detection is an important step in a fault-tolerant platform. There are two
mechanisms in detecting a fault in the platform.

* Regular fault detection: This mechanism is run by routers in which a router
regularly checks its connections to its neighboring routers, and sends the results
to the ARM, regularly. For this purpose, each router sends a test-packet to its
neighboring routers. The router that receives this test-packet sends back a test-
acknowledge-packet and informs the sender of its status. If the sender receives
an incorrect acknowledge massage or does not receive the acknowledge massage
then it reports the ARM of the probability of fault in the target router or
communicating link. Otherwise, it reports the ARM that the target router and the
link are non-faulty. The ARM has a database to keep track of all these reports.
Algorithm 4 shows that how ARM manage these reports.

Algorithm 4 Updating fault database in ARM

1 Data: repi received reports from rith router

2 Result: updated fault database

3 if repi received then

4 if repi reports router rj is non-faulty then

5 Mark router rj and communication link between routers ri and 7j as non-
faulty

6 else

7 if repi reports a faulty router rj then

8 Mark the router rj as faulty router

9 else

10 Mark the communication link between routers ri and rj as faulty
11 end

12 end

13 else

14 Mark router ri as faulty

15 End

16 forall the ri do

17 if all its communication links are faulty then
18 Mark ri as a faulty router

19 end

20 end

The ARM checks if all router connected to a specific router report a link fault
then that router marked as faulty. For example, let’s consider the faulty platform
shown in Fig. 6.9 in which router r3; is faulty. In this case, routers sy, r42, 133, and
), report to the ARM that their link to the router r3, is faulty. Then, ARM mark

230 M. Hosseinabady and J.L.. Nunez-Yanez

Fig. 6.9 A faulty platform

Tlgg _l':’“/ Tl \r[”/ Tly; \r{ai/ i \.1'03.“
15} s

™

i N AT T o s "‘D

tf‘ tj txfs
I‘ﬂ\\ I 1'“-1\ I3
T!‘,_“r; ‘_Oj T{lj; “ Tf}_’ _y T-l_’} \‘_-’

A - 2\ N
113 JU/ Tl; \ Jl_ Tl3; _/ Il;3 \

r\ I. T'4o
Tl \ ./ Tly \ ') Tl;y \ 2 Tl

the router as a faulty router. This platform also contains a faulty link between
tiles Tlp; and T'l3;. In this case, two routers rp; and r3; reports that link as a
faulty link.

* Run time fault detection: The second mechanism is performed by the mapped
tasks in an application. Since tasks are communicating together through an
acknowledgement scheme, if there is any problem in this scheme the destination
tiles will be reported to the task manager as the faulty tile. Then the task manager
migrates the task in the faulty tile to another tile and reports the ARM about
the fault in the tile. For example, let’s consider the faulty platform in Fig. 6.9
in which the application shown in Fig. 6.8a is mapped and tile 7,3 becomes
faulty during running the application. In this case, tasks #, and #4 are connected
together and mapped on tiles 7'/13 and T lp3. As the tile T'lp; is faulty, the task #,
does not receive any acknowledgement from task 74, therefore, it informs the task
manager of this fault. Then the task manager tries to remap the task 74 on another
non-faulty tile.

The ARM information about the faulty routers, tiles and links has two impacts
on the task mapping algorithm. First, the ARM probability to find a tile for mapping
a task manager will be decreased. Second, TRM life-time will be increased in order
to compensate the reduction in the number of tiles and paths available to map a task.
The next section explains and calculates these effects.

6 Fault-Tolerant Reconfigurable On-Chip-Network 231
6.5.4 Fault Effects

This section explains the effect of faults on the mapping algorithm explained in
Sect. 5.3. A fault adds some overhead to the application mapping problem and
reduces the probability of mapping the applications. This overhead will be analyzed
in this section.

6.5.4.1 Mapping a Task Manager

Faulty tiles reduce the probability of mapping a task manager by ARM. Considering
a uniform distribution for the occupied and faulty tiles, the probability of finding a
free tile to map a task manageris = 1 — (u+4uy), in which u is the tiles utilization
factor (i.e., percentage of the occupied tiles) and u s is percentage of faulty tiles.
Therefore, ARM will find a free tile after r,,,, retries with the probability of

Prmg(M)=1—=(1—q)™ =1~ (u+us)™ (6.1)

6.5.4.2 Mapping a Task

Let’s assume p is the probability of mapping a task after a random-walk with /-
steps, then the probability of mapping a task after r. retry is as Eq. 6.2

P, (@) =1-(1~-p)™* 6.2)

Note that, the value of p depends on the platform utilisation, the TRM life-time
and percentage of the faulty tiles (i.e., ur).

The probability of mapping an application, shown by Eq. 6.3 is equal to
probability of mapping the task manager multiply by the probability of mapping
tasks in the application provided that the task manager has been mapped. Assuming
that the probability of mapping tasks in an application are independent and the same
and the probability of mapping a task after ry -retry is P, (¢) then Eq. 6.5 shows
the probability of mapping an application consists of |A| tasks. Equation 6.6 shows
this probability after substituting Eqgs. 6.1 and 6.2.

Pi(A) = P (M) P (A|M) (6.3)

= P(M) (1‘[Py, <t)) (6.4)
YteA

= P(M) (P, (1)) " (6.5)

= (1= (u+ up)™)(1 — (1 — p)'s)! ! (6.6)

232 M. Hosseinabady and J.L.. Nunez-Yanez

Fig. 6.10 Search space with
lifetime / around a tile
(N =2l(l +1))

coe D B ——

Therefore, the probability of mapping an application with 4, -retry is as Eq. 6.7

PrApp (A) =1- Pl (A)rAW
; (6.7)
=1—-(1—u")(1—-(1- p)rmk)\Al A””'

Note that increasing the three retry factors (i.e., 7yugr, 715t and r,p,) can improve
the probability of mapping an application in the event of fault. However, it
drastically increases the consumed energy to map an application. Life-time which
determines the probability p in Eq. 6.7 is another factor to increase this probability
and decrease the retry factors. To find the minimum life-time to get the best
probability of mapping an application, the search space of a TRM with life-time of
[should be investigated. Figure 6.10 shows the search space for life-time / around a
tile. The number of tiles in this space is 2x[1 +34+5+...+(2[—=1)+2] = 2[(I+1).
Therefore, an application with maximum number of task |A| = 2/(I + 1) can be
mapped in this area. Solving this, Eq. 6.8 shows the minimum life-time.

SXAFI-1
> V2xIAl+ 6.8)

- 2

This lower bound is correct for a blank platform (i.e., with not previously mapped
application or faulty tile). Considering the uniform distribution for occupied and
faulty tiles, the number of free tile in the search space of Fig. 6.10 reduces to (1 —
u—uy)(21(l 4+ 1)) which means that the application size should be less than |A| =
(I —u—uys)(2[(+ 1)). Therefore, Eq. 6.8 will be changed to

6 Fault-Tolerant Reconfigurable On-Chip-Network 233

4]
2Xm+1—1

| >
- 2

(6.9)

. . . . 1
Therefore, the lower bound life time is directly related to /| A| and T

Reference [66] has shown that the probability of reaching tills which are away from
the task manager, using the proposed random walk is very low. It has also shown that
the random walk contains all lattice points of the ball of radious (1 — 6)\/7 where
0 </ < 1and ! is the number of steps or lifetime. Therefore, we need [= d? steps
to travel a distance of d in a mesh topology. Hence, we increase the lifetime lower
bound to Eq. 6.10 meaningfully increase the chance of finding a free tile to map a
task.
2

4] 4]

/] > ————— >
- -2

1—(u+uf)

(6.10)

This shows that lower bound lifetime is proportional to |A| and we explained also
it is proportional to) therefore, Eq. 6.11 show the lower bound lifetime in

N S
1= (utuy

which B is a constant and has shown in [38] that it is about 1.
|A|

[> ————
=X VI—(u+uy)

6.11)

6.5.4.3 Energy Model

We use bit energy model described in [52] to evaluate the energy overhead caused by
faulty tiles. In this model, the energy is determined by the number of bits transferring
between a source core and a destination core. According to this definition, Eq. 6.12
shows the energy consumption for sending a bit from a source to the destination.

Ehit = ExrcNIBi, + nERouterB,-, + (}’l - 1) EWireB,-, + EdesNIB,-, (612)

where Egeniy,s ERoutergys ERouters;, and Egesniy, denote the bit energy dissipated in
the source network interface, a router, a communication link and the destination
network interface, respectively.

6.5.5 Experimental Results

A SystemC simulation has been used to model the NoRC platform and evaluate
its fault-tolerant features. The SystemC NoRC model is based on the technique
proposed in [67], a fast SystemC-based transaction level modeling simulator for
large NoCs.

234 M. Hosseinabady and J.L.. Nunez-Yanez

Fig. 6.11 263 decoder mp3
decoder task graph

For the evaluation process, five groups of applications have been considered as
the benchmarks. Each of the first four benchmarks which generated using the task
graph for free (TGFF) package [68] contains 50 task graphs. The last one contains
two task graphs of real applications including 263 decoder mp3 decoder (Fig. 6.11)
[28] and a multi-window display (MWD) (Fig. 6.12) [69].

Table 6.2 shows the statistics of the synthetic benchmarks. Benchmark_1,
Benchmark 2, and Benchmark_3 contain small, medium, large size task graphs.
Benchmark 4 contains a mixture of small and large task graphs.

We have sent 2,000 requests to map and release randomly selected task graph
from each benchmark to a NoRC platform consisting of 64 x 64 tiles. In addition, 50
faulty tiles have been considered during the simulation. Table 6.3 shows the number
of rejected applications in the non-faulty and faulty NoRC. As it can be seen, the
faulty routers have a very small impact on the stochastic task mapping.

Table 6.4 shows the number of steps required to map the requested applications.
As it can be seen, the faulty NoRC required more steps than that of the non-faulty
NoRC to map applications. According to the bit energy model, the number of steps
can directly determine the energy consumption during task mapping process. The
last three columns in this table show the overhead of task mapping in the faulty
NoRC for three different value of f.

We have sent 2,000 requests to randomly map and release selected applications
from 50 instances of real task graphs of Figs. 6.11 and 6.12 to the 64 x 64 NoRC

6 Fault-Tolerant Reconfigurable On-Chip-Network

Fig. 6.12 Multi-window

display (MWD) task graph

Table 6.2 Synthetic
benchmarks statistics

OO OO a6

BB

235

Min Max Ave

#oftask #oftask # of task
Benchmark_1 2 6 2.32
Benchmark_2 9 46 23.35
Benchmark 3 23 114 60.71
Benchmark_4 2 119 23.56

Table 6.3 Number of rejected applications in synthetic benchmarks application

mapping

Non-faulty NoRC Faulty NoRC

=05 p=10 p=15 p=05 p=10 pL=15
Benchmark_1 5 0 0 6 0 0
Benchmark_2 459 440 425 461 441 429
Benchmark-3 1,203 1,199 1,188 1,213 1,234 1,348
Benchmark_4 36 12 10 37 13 11

M. Hosseinabady and J.L.. Nunez-Yanez

236

8E'L1 v'$T 68°9S S9TL60'C SYOPIET TEE9TIT €OI°6SST SYOPILT 9IL9I6 R SULGIETs |

SE0T 3114 €8°9S OTH6EL'ES SEV'SPISE LTEL6SVE €ISTOSTY SEV'SYO'LT 68T9¢6bT £ yewyoudg

8¢'81 86T PO'LS SOE98E'S 9SHTLY'E TEL'SES'E 6LE96EY 9SYTLET 6V6'61ST TOMewyoudg

89°G1 061 TIIS PE9IE 6L1VT STYYT ¥L9°9T 6LS°61 8¢6°11 [Spewyoudg
S1=¢ o1=¢9 ¢so=¢ S1=9¢ or=¢ so=4¢ S1=¢ or=¢ so=¢
% PeIYIAQ DYON ANneg D¥ON Ai[ney-uoN

Surddew ysey syrewyouaq o1y uAs ur sdajs Jo Joquinu [B10], $°9 dqeL,

6 Fault-Tolerant Reconfigurable On-Chip-Network 237

Table 6.5 Real task graph simulation results

Non-faulty NoRC Faulty NoRC

of rejected # of total # of rejected # of total # of total steps
Apps steps Apps steps overhead %
15 1,123,457 18 1,357,834 17.26

Table 6.6 Average MDpL for mapped applications
Non-faulty NoRC Faulty NoRC Overhead %

Benchmark_1 4.36 4.47 2.46
Benchmark_2 4.72 4.93 4.25
Benchmark_3 6.34 7.21 12.06
Benchmark_4 4.10 4.33 5.31
Real task graphs ~ 3.94 4.1 391

platform. Also, we have injected 50 faulty tiles in the platform. Table 6.5 shows the
number of rejected applications and total number of steps for non-faulty and fault
NoRC.

As it can be seen, the proposed stochastic task mapping is almost successful to
map the request applications with 17.26% overhead in the total number of steps
which is a representative for the overhead of extra consumed energy.

To evaluate the effects of faulty tiles on the mapped application average Man-
hattan Distance per Link (MDpL) as defined in [38] for each mapped application
is computed for non-faulty and faulty NoRC. MDpL is defined by the sum of all
Manhattan distances between two connected tasks in the application divided by the
total number of links in the application.

Table 6.6 shows the results. To get a sense of this number, let’s consider the real
application results, as the average distance between two tasks is 3.94 and 4.1 in the
non-faulty and faulty NoRC, respectively and average distance between tasks in the
ideal case is (15 + 12)/2 = 13.5 (average number of links in the two task graphs
of Figs. 6.11 and 6.12), then the total average distance overhead between tasks is
(4.1 % 13.5 — 3.94 % 13.5)/(4.1 % 13.5) = 3.91% which is acceptable with the
assumption of 50 faulty tiles.

Note that, based on the proposed bit energy model in which the consumed energy
is proportional to the Manhattan distance, the overheads represented in the last
column of Table 6.1 also show the average overheads of consumed energy in the
presence of faults in the NoRC.

References

1. A. Jerraya, W.Wolf, Multiprocessor Systems-on-Chips. (Morgan Kaufmann Publishers, San
Francisco, CA 94111, 2004)

2. W.Wolf, A.A. Jerraya, G. Martin, Multiprocessor System-on-Chip (MPSoC) technology. IEEE
Trans. Comput-Aided Des. Integr. Circuits Syst. 27(10), 1701-1713 (2008)

238 M. Hosseinabady and J.L.. Nunez-Yanez

3. ITWG, International Technology Roadmap for Semiconductors: System Drivers. (Semiconduc-
tor Industry Association, 2011) [online]. http://www.itrs.net/Links/20111TRS/2011Chapters/
2011SysDrivers.pdf

4. R. Mehra, L.M. Guerra, J.M. Rabaey, A partitioning scheme for optimizing interconnect power.
IEEE J. Solid-State Circ. 32(3), 433-443 (1997)

5. P. H. Wu, T. Y. Ho, Thermal-aware bus-driven floorplanning, in Proceedings of International
Symposium on Low Power Electronics and Design (ISLPED), (2011), pp. 205-210

6. J.Y. Chen, J. Wen-Ben, W. Jinn-Shyan, L. Hsueh-I, T.F. Chen, Segmented bus design for low-
power systems. IEEE Trans. VLSI Syst 7(1), 25-29 (1999)

7. ARM Ltd., International technology roadmap for semiconductors: system drivers, ARM
Limited, ARM IHI 0011A, (1999)

8. R. Lu, Cheng-kok Koh, AMBA-Bus, a high performance bus architecture for system-on-chips,
in Proceedings of International Conference Computer-Aided Design, (2003), pp. 8—12

9. STMicroelectronics, STBus communication system concepts and definitions, STMicroelec-
tronics, 14178 Rev 2, (2012)

10. AJ. Martin, M. Nystrom, Asynchronous techniques for system-on-chip design. Proc. IEEE
94(6), 1089-1120 (2006)

11. L. Benini, G. De Micheli, Networks on Chips: Technology and Tools (Morgan Kaufmann
Publishers, Amsterdam, 2006)

12. W. Dally, B. Towles, Route packets, not wires: on-chip interconnection networks, DAC’01,
(2001), pp. 684-689

13. S.R. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, A. Singh, T.
Jacob, S. Jain, V. Erraguntla, C. Roberts, Y. Hoskote, N. Borkar, S. Borkar, An 80-tile sub-
100-W TeraFLOPS processor in 65-nm CMOS. IEEE J. Solid-State Circ. 43(1), 29-41 (2008)

14. D. Bertozzi, L. Benini, Xpipes: a network on chip architecture for gigascale systems-on-chip.
IEEE Circ. Syst. Mag. 4(2), 18-31 (2004)

15. S. Saponara, L. Fanucci, Homogeneous and heterogeneous MPSoC architectures with
Network-On-Chip connectivity for low-power and real-time multimedia signal processing,
Hindawi Publishing Corporation, VLSI Design, vol. 2012, Article ID 450302

16. C. Jalier, D. Lattard, A. A. Jerraya, G. Sassatelli, P. Benoit, L. Torres, Heterogeneous vs
homogeneous MPSoC approaches for a mobile LTE modem, /IEEE Design, Automation and
Test in Europe (DATE’10), (2010), pp. 184-189

17. “Information technology — open systems interconnection — basic reference model: the basic
model,” ISO/IEC 7498-1:1994(E)

18. L. Benini, D. Bertozzi, Network-on-chip architectures and design methods. IEE Proc.-Comput.
Digit. Tech. 152(2), 261-271 (2005)

19. M. Coppola, S. Curaba, M. D. Grammatikakis, G. Maruccia, F. Papariello, OCCN: A Network-
On-Chip modeling and simulation framework, in Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition Designers’ Forum (DATE’04), (2004), pp. 174-179

20. A. Agarwal, C. Iskander, R. Shankar, Survey of network on chip (NoC) architectures &
contributions. J. Eng. Comput. Archit. 3(1) (2009) [online]. http://www.scientificjournals.org/
journals2009/articles/1423.pdf

21. T. Bjerregaard, S. Mahadevan, A survey of research and practices of network-on-chip. ACM
Comput. Surv. 38(1), 1-51 (2006)

22. S. Pasricha, N. Dutt, On-Chip Communication Architectures: System on Chip Interconnect
(Morgan Kaufmann Publishers, Amsterdam, 2008)

23. F. Steenhof, H. Duque, B. Nilsson, K. Goossens, R. P. Llopis, Networks on Chips for high-end
consumer electronics TV system architectures, IEEE Design, Automation and Test in Europe
(DATE’06), (2006), pp. 148-153

24. J. Hu, R. Marculescu, Communication and task scheduling of application-specific networks-
on-chip. IEE Proc. Comput. Digit. Tech. 152(5), 643-651 (2005)

25. R. Marculescu, U.Y. Ogras, L.S. Peh, N.E. Jerger, Y. Hoskote, Outstanding research problems
in NoC design: system, microarchitecture, and circuit perspectives. IEEE Trans. Comput.-
Aided Des. Integr. Circ. Syst. 28(1), 3-21 (2009)

http://www.itrs.net/Links/2011ITRS/2011Chapters/2011SysDrivers.pdf
http://www.itrs.net/Links/2011ITRS/2011Chapters/2011SysDrivers.pdf
http://www.scientificjournals.org/journals2009/articles/1423.pdf
http://www.scientificjournals.org/journals2009/articles/1423.pdf

26.

217.

28.

29.

30.

3

—_

32.

33.

34.

35.

36.

37.

38.

39.

40.

4

—

42.

43.

44,

45.

46.

47.

48.

Fault-Tolerant Reconfigurable On-Chip-Network 239

S. Murali, G. De Micheli, Bandwidth-constrained mapping of cores onto NoC architectures, in
Proceedings of Design, Automation and Test in Europe Conference, pp. 896-901, Feb 2004
C. L. Chou, R. Marculescu, U. Ogras, S. Chatterjee, M. Kishinevsky, D. Loukianov, System
interconnect design exploration for embedded MPSoCs, in Proceedings of International
Workshop on System Level Interconnect Prediction (SLIP’11), (2011), pp. 1-8

K. Srinivasan, K. S. Chatha, G. Konjevod, Linear programming based techniques for synthesis
of network-on-chip architectures, in Proceedings of IEEE International Conference on Com-
puter Design: VLSI in Computers and Processors, (ICCD’04), (2004), pp. 422-429

E. Bolotin, I. Cidon, R. Ginosar, A. Kolodny, Cost considerations in network on chip. Integ.
VLSI J. 38(1), 19-42 (2004)

Y. Hu, Y. Zhu, H. Chen, R. Graham, C. Cheng, Communication latency aware low power NoC
synthesis, in Proceedings of Design Automation Conference (DAC’06), (2006), pp. 574-579

. Texas Instruments Inc., OMAP 4: mobile applications platform, (2011) [Online]. http://www.

ti.com/lit/ml/swpt034b/swpt034b.pdf

J. A. de Oliveira, Nexperia computing architecture for connected consumer applications, in
Proceedings of the 20th International Conference on VLSI Design, (2007)

O. Avaro, A. Eleftheriadis, C. Herpel, G. Rajan, L. Ward, MPEG-4 systems: overview. Signal
Process. Image Commun. 15, 281-298 (2000)

S.S. Bhattacharyya, J. Eker, J.W. Janneck, C. Lucarz, M. Mattaveli, M. Raulet, Overview of the
MPEG reconfigurable video coding framework. J. Signal Process. Syst. 63(2), 251-263 (2009)
P. v. Stralen, A. Pimentel, Scenario-based design space exploration of MPSoC, in Proceedings
of IEEE International Conference on Computer Design (ICCD), (2010), pp. 305-312

Y. Zhu, Efficient processor allocation strategies for mesh connected parallel computers.
J. Parallel Distrib. Comput. 16(4), 328-337 (1992)

M. Hosseinabady, J. L. Nunez-Yanez, and A. M. Coppola, Task dispersal measurement in
dynamic reconfigurable NoCs. IEEE Annual Symposium on VLSI, (2010), pp. 167-172

M. Hosseinabady, J.L. Nunez-Yanez, Run-time stochastic task mapping on a large scale
network-on-chip with dynamically reconfigurable tiles. IET Comput. Dig. Tech. 6(1), 1-11
(2012)

C. Constantinescu, Trends and challenges in VLSI circuit reliability. IEEE Micro 23(4), 10-19
(2003)

M. Hosseinabady, P. Lotfi-Kamran, J. Mathew, S. Mohanty, D. Pradhan, single-event transient
analysis in high speed circuits, in Proceedings of International Symposium on Electronic
System Design (ISED’11), (2011), pp. 112-117

. R. Dafali, J-Ph. Diguet, M. Sevaux, Key research issues for reconfigurable network-on-chip, in

Proceedings of International Conference on Reconfigurable Computing and FPGAs, (2008),
pp. 181-186

C. Killian, C. Tanougast, F. Monteiro, A. Dandanche, A new efficient and reliable dynamically
reconfigurable network-on-chip. J. Electrical Comput. Eng. Article ID 843239 (2012)

T. Pionteck, R. Koch, C. Albrecht, Applying partial reconfiguration to networks-on-chips, in
Proceedings of Field Programmable Logic and Applications (FPL’06), (2006), pp. 1-6

E.L.S. de Carvalho, N.L.V. Calazans, F.G. Moraes, Dynamic task mapping for MPSoCs. IEEE
Des. Test Comput. 27(5), 26-35 (2010)

S. Manolache, P. Eles, Z. Peng, Fault and energy-aware communication mapping with
guaranteed latency for applications implemented on NoC, in Proceedings of 42nd Annual
Design Automation Conference (DAC 05), (2005), pp. 266-269

C. Chou, U.Y. Ogras, R. Marculescu, Energy and performance aware incremental mapping for
network on chip with multiple voltage levels. IEEE Trans. Comput.-Aided Des. Integr. Circ.
Syst. 27(10), 18661879 (2008)

V. Nollet, T. Marescaux, D. Verkest, Operating-system controlled Network-on-Chip, in
Proceedings of Design Automation Conference (DAC’04), (2004), pp. 256259

C. Grecu, A. Ivanov, R. Saleh, E. S. Sogomonyan, P. P. Pande, On-line fault detection
and location for NoC interconnects, in Proceedings of IEEE International On-Line Testing
Symposium, (2006), pp. 145-150

http://www.ti.com/lit/ml/swpt034b/swpt034b.pdf
http://www.ti.com/lit/ml/swpt034b/swpt034b.pdf

240

49.

50.

SI.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67

68.
69.

M. Hosseinabady and J.L.. Nunez-Yanez

C. Killian, C. Tanougast, F. Monteiro, A. Dandanche, Online routing fault detection for
reconfigurable NoC, in Proceedings of Field Programmable Logic and Applications (FPL’06),
(2010), pp. 183-186

C. Chou, R. Marculescu, FARM: fault-aware resource management in NoC-based multiproc-
ssor platforms, in Proceedings Design, Automation & Test in Europe Conference & Exhibition
(DATE’11), (2011), pp.1-6

S. Shamshiri, K.-T. Cheng, Modeling yield, cost, and quality of a spare-enhanced multicore
chip. IEEE Trans. Comput. 60(9), 1246-1259 (2011)

T. T. Ye, L. Benini, G. De Micheli, Analysis of power consumption on switch fabrics in network
routers, in Proceedings of Design Automation Conference (DAC’02), (2002), pp. 524-529

P. Bogdan, T. Dumitras, R. Marculescu, Stochastic communication: a new paradigm for fault-
tolerant networks-on-chip, Hindawi Publishing Corporation VLSI Design Volume (2007),
Article ID 95348.

W. Song, D. Edwards, J. L. Nunez-Yanez, S. Dasgupta, Adaptive stochastic routing in
fault-tolerant on-chip netwroks, in Proceedings of ACM/IEEE International Netwrok-on-Chip
(NoCS’9), (2009), pp. 32-37

S. Murali, D. Atienza, L. Benini, G. De Micheli, A multi-path routing strategy with guaranteed
in-order packet delivery and fault-tolerance for networks on chip, in Proceedings of 42nd
Annual Design Automation Conference (DAC 06), (2006), pp. 845-848

S. P. Yong Zou, Ns-ftr: a fault tolerant routing scheme for networks on chip with permanent
and runtime intermittent faults in Design Automation Conference (ASP-DAC), pp. 443-448.
IEEE, Jan 2011

Xilinx, Partial reconfiguration user guide, UG702 (v12.3) October 5, (2010)

C. Hilton, B. Nelson, PNoC: a flexible circuit-switched NoC for FPGA-based systems. IEE
Proc. Comput. Dig. Tech. 153(3), 181-188 (2006)

S. Jovanovic, C. Tanougast, S. Weber, C. Bobda, CuNoC: A scalable dynamic NoC for dynam-
ically reconfigurable FPGAs, in Proceedings of Field Programmable Logic and Applications
(FPL’07), (2007), pp. 753-756

V. Nollet, P. Avasare, H. Eeckhaut, D. Verkest, H. Corporaal, Run-time management of a
MPSoC containing FPGA fabric tiles. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 16(1),
24-33 (2008)

V. Rana, D. Atienza, M. D. Santambrogio, D. Sciuto, G. De Micheli, A reconfig-
urable Network-on-Chip architecture for optimal multi-processor SoC communication, /6th
IFIP/IEEE International Conference on Very Large Scale Integration, (2008), pp.321-326
“The OpenCL Specification,” Khronos OpenCL Working Group, Version 1.1, (2011)

S. Borkar, Designing reliable systems from unreliable components: the challenges of transistor
variability and degradation. IEEE Micro 25(6), 10-16 (2005)

M. Hosseinabady, P. Lotfi-Kamran, Pejman, J. Mathew, S. Mohanty, D. Pradhan, Single-event
transient analysis in high speed circuits, in Proceedings of the 2011 International Symposium
on Electronic System Design (ISED ‘11), (2011), pp. 112-117

T. Tonegawa, M. Hiroi, K. Motoyama, K. Fujii, H. Miyamoto, Suppression of bimodal stress-
induced voiding using high-diffusive dopant from Cu-alloy seed layer, in Proceedings of the
International Interconnect Technology Conference, (2003), pp. 216-218

M.B.G. Lawler, D. Griffeath, Internal diffusion limited aggregation. Ann. Probab. 20(4),
216-218 (1992)

. M. Hosseinabady, J.L. Nunez-Yanez, Fast and low overhead architectural transaction level

modeling for large-scale network-on-chip simulation. IET Comput. Dig. Tech. 6(6), 384-395
(2012)

K. Vallerio, Task graph for free (2003) [Online], http://ziyang.eecs.umich.edu/dickrp/tgff/

K. Srinivasan, K. S. Chatha, A low complexity heuristic for design of custom network-on-
chip architectures, in Proceedings of the conference on Design, automation and test in Europe
(DATE’06), (2006) pp. 130-135

http://ziyang.eecs.umich.edu/ dickrp/tgff/

Chapter 7
Bio-Inspired Online Fault Detection
in NoC Interconnect

Malachy McElholm, Jim Harkin, Liam McDaid, and Snaider Carrillo

7.1 Introduction

Guaranteeing fault-free design of modern electronic systems is becoming increas-
ingly difficult as we scale to high density chips and many-core systems, where
variations in the silicon manufacturing process means living with failure is a reality
as faulty conditions can occur post deployment. The presence of unreliability
requires modern systems to be adaptive to faulty conditions post deployment. To
address this reliability challenge researchers have looked to building brain-inspired
computing architectures, based on Spiking Neural Networks, which aim to mimic
the efficient and self-adaptive information processing capabilities of the human
brain; i.e. provide greater levels of fault-tolerance through flexible self-adaption to
identified faults.

The high level of fine-grained parallel processing in the brain via synapses and
neurons is one aspect that enables fault-tolerance. Several brain inspired computing
approaches have explored the use of Network-on-Chip (NoC) technology as a
mechanism to facilitate the parallelism between neurons, such as EMBRACE [15].
The NoC is similar to a computer network and uses an array of routers to time-
multiplex discrete packets of data across shared routers on the chip. However,
ultimately such NoC structures are realised, like any other circuit, using existing
silicon manufacturing processes and therefore are susceptible to permanent faults
from wear-out effects, but also from exponentially increasing numbers of temporary
faults caused by radiation. A key fundamental task in any fault-tolerant system is the
detection of faults, in particular the ability to sense temporary as well as permanent
faults.

M. McElholm (<) J. Harkin ¢ L. McDaid ¢ S. Carrillo

Intelligent Systems Research Centre, University of Ulster, Magee Campus,

Derry, North Ireland, UK

e-mail: m.mcelholm@ulster.ac.uk; jg.harkin@ulster.ac.uk; lj.mcdaid @ulster.ac.uk;
Carrillo_Lindado-S @email.ulster.ac.uk

J. Mathew et al. (eds.), Energy-Efficient Fault-Tolerant Systems, 241
DOI 10.1007/978-1-4614-4193-9_7, © Springer Science+Business Media New York 2014

mailto:m.mcelholm@ulster.ac.uk
mailto:jg.harkin@ulster.ac.uk
mailto:lj.mcdaid@ulster.ac.uk
mailto:Carrillo_Lindado-S@email.ulster.ac.uk

242 M. McElholm et al.

To advance current NoC-based systems including brain inspired computing
paradigms requires the capability to initially detect such fault types within the
NoC interconnect. A major challenge is the development of a fault detection
architecture that can offer adequate fault coverage during real-time operation (i.e.
online) without incurring substantial cost in terms of area and power consumption;
the latter are the limiting factors in achieving scalable interconnect. This chapter
presents SMART a low-cost, online strategy for detecting hardware faults in NoC
interconnect using biological synapses and neurons. The chapter is structured
as follows with Sect.7.2 providing a review of existing work in the area of
fault detection and approaches used in NoC. Section 7.3 proposes the SMART
strategy with Sect. 7.4 providing analysis of the strategy through circuit simulation.
Section 7.5 details a Hardware implementation of the Fault Detection Unit with
results and area/power comparison to existing Fault detection approaches.

7.2 Related Work

This section outlines related work in fault detection techniques and approaches used
in NoC, with a summary on the key remaining challenges. In addition, background
on the function of synapses and neurons is also provided.

Research into fault-tolerant architectures has attempted to categorize faults as
either data or control flow errors. Data errors occur when the content of a variable
stored in memory or controller is altered. Errors occurring in the data transmission
between processing elements, i.e. in NoCs, can also be classified as data errors.
Control flow errors occur when the content of a memory cell or register storing an
instruction is altered. For a processor this results in executing an incorrect sequence
of instructions with the potential to induce fatal program errors. Within this context,
both data and control faults can be classified at a circuit level into either permanent
or transient faults.

Examples of permanent faults include open faults, which occur when the con-
nection between two test points no longer exists or high resistance is experienced.
Short circuit faults display the opposing characteristics where a low resistance
connection between two isolated test points is encountered. Concatto et al. describe
a test methodology for both AND-short and Or-short faults [6]. Stuck at faults can
be characterised as nets or wires that are permanently connected to, or stuck at a
particular value or voltage. At sub-micron device level non-permanent or transient
faults are becoming increasingly common. For example, crosstalk is a transient fault
condition that can occur across several wires and can have a detrimental effect on
an individual signal path. These effects may include signal glitches as well as rise
and fall time delays or speed-ups that can induce system errors [12]. Similarly [26]
identify other transient fault conditions such as Single Event Upset (SEU) that can
be caused by electromagnetic interference or cosmic radiation, and has been shown
to lead to eventual failure. Many approaches have been investigated in exploring the
detection of such faulty conditions in electronic computing systems.

7 Bio-Inspired Online Fault Detection in NoC Interconnect 243
7.2.1 Fault Detection Techniques

Common Built-In Self Test (BIST) programs can detect hard failures in processors,
memories and interconnect. Such programs are usually run at power up or on
demand and involve sequencing a known set of test vectors into the circuit and
testing the results for fault indicators. Built-In Self Test (BIST) is a diagnostic
technique that has been applied to NoC architectures [12]. Such diagnostic programs
can detect permanent faults however they are unable to detect transient and
intermittent faults during run-time operation.

7.2.1.1 Circuit Level Approaches

Transient and intermittent faults have been traditionally protected against by using
error detection and error correction mechanisms. Parity codes is a popular coding
techniques that operates by adding a bit to the data packet to indicate if the number
of 1 bits in the packet is odd or even. A Cyclic Redundancy Check (CRC) enabled
device calculates a fixed length sequence based on the input code and attaches this
CRC code to the transmitted block. Upon receipt, the device repeats the calculation
and if the CRC do not match corrective action is taken. This error detection code
usually results in a request for the source to resend the data, but is unable to
determine the fault type or location.

Hamming Codes can be use as a Single Error Correction code where any given
bit is represented by a unique set of parity bits. Therefore, if any bit has an error, the
bit position can be determined by the parity bits. If an additional overall Parity bit
is added, the hamming code can be used to detect, but not correct, any 2 bit error.
This is known as a Single Error Correction- Double Error Detection code. Dual Rail
Code is another technique that effectively doubles the physical lines required as both
the signal and its complement are transmitted.

Using Delayed Sampling registers is another method of detecting transient faults.
In this scenario three sampling registers are added to the input stage and incoming
data is sampled three times at different moments, all derived from the system clock
edge. A majority voter defines the correct data that will pass through the router based
on the results from the three sampling registers [7]. However, the major drawback
to these approaches is both additional hardware resources and computing time.

7.2.1.2 System Level Approaches

Whilst circuit level solutions employ techniques at a local level or at individual
sections of a system, several higher level system solutions utilise additional
hardware/software to provide the overall system with a level of fault protection.
Some of the popular techniques employed in this area are outlined below.

244 M. McElholm et al.

* Redundancy

Hardware redundancy uses multiple instances of the system hardware, or part of it,
to as a back up in the event of failure or detected faults. By replicating the hardware
element the system can function correctly by effectively ignoring the faulty element.
For example, the Triple Mode Redundancy (TMR) technique replicates the same
computation in three identical modules with the output of each passed to a voter
mechanism where the majority output of the three identifies the module which is
faulty [22]. The obvious disadvantage of hardware redundancy is the excessive
hardware costs associated with replicating hardware elements to facilitate fault-
tolerance. N-version programming is another variation of redundancy aimed at
detecting errors in the design by employing parallel or sequential executions of
the same program and comparing the results [10]. This approach is restricted to
software based designs with requirement for additional program area and time for
sequential program executions.

* Control Flow Checking (CFC)

Control flow checking monitors for control flow errors that may cause a software
program to deviate from its normal instruction flow. Nodoushan et al. [27] describes
the basic idea of most CFC techniques as partitioning a program into basic blocks.
Each block contains a set of instructions in which the program flow is not changed
by a branch instruction. Therefore the program should enter the first instruction
in the block and exit the last in a fault free situation. Branch instructions appear
between these blocks. There are numerous different CFC methods that adopt
slightly different strategies such as using signatures associated with blocks and the
relationship between signatures is used to test the program flow [11]. Although this
approach can detect both permanent and temporary faults, this method of Control
Flow Checking only targets the detection of faults in software program flow, whilst
this research is concerned with detecting and diagnosing faults in hardware systems.

* Watchdog Processor

Although CFC may be implemented in software, it is more common to use
dedicated hardware such as Watchdog Processors to implement the CFC tasks.
Benso et al. [2] refer to a Watchdog processor as a simple coprocessor used to
perform concurrent system level error detection by monitoring the main processor
behaviour. The Watchdog processor is an extension of the basic watchdog timer used
in microprocessor devices to provide a method of reverting to a known good state
if the program becomes unstable. Error detection is done by comparing concurrent
information with that provided during setup. The disadvantages of the Watchdog
processor is the significant area overhead required in realising the additional co-
processor in the system.

7 Bio-Inspired Online Fault Detection in NoC Interconnect 245
7.2.2 Fault Detection in Networks-on-Chip (NoC)

In the context of NoCs, fault types can be localised as link errors (physical lines
between routers) errors and router errors. Faults are mostly attributed to open
connections, shorts, stuck-at, bridging, Single Event Upset (SEU), and crosstalk,
where the duration of the fault identifies its classification as either permanent or
temporary [16]. The link errors align closely with data errors [25] and occur
during packet transfer from router to router. Router errors occur within the router
architecture and can be classified under control flow errors. Hosseinabady et al. [18]
propose a method of self testing focused on the router. It passes the same vectors to
all NoC routers and detects hard faults by comparison of router outputs with each
other. More recent comparison based approaches have explored the use of traditional
artificial neural networks in testing outputs of routers for faults [23]. These methods
only targets faults in the router and cannot be used to diagnose interconnect link
errors, in addition they do not lend themselves to online testing as time is incurred
due to the propagation of test vectors.

Grecu et al. [12] suggest a BIST for NoC interconnect that targets the potential
for cross talk effects due to inter wire coupling. Monitoring a single wire (victim)
whilst manipulating all other wires in the link (Aggressors), allows for detection
of crosstalk induced errors as well as short or open connections. Herve et al. [17]
propose a method to diagnose pair wise short faults within a defined neighbourhood
of a mesh NoC. Each processing element interface is equipped with a Test Data
Generator (TDG) and Test Error Detector block, which are used to implement
a Walking-One Sequence to step test patterns through the network. The main
limitation of such self test mechanisms in their inability to detect in-line faults
during run-time operation due to the reliance of specific test data patterns in the
system. Extensions to these approaches include token-based techniques for online
diagnostics however routers are tested sequentially which incurs a large overhead in
time and area due to TDGs [19].

Other work by Murali et al. [24] considers the use of error detection codes
to implement self checking NoC routers. They define two categories for NoC
applications which are switch-to-switch and end-to-end. In switch-to-switch all
switches located in the transmission path between source node and destination
node check the packet to detect probable faults. In the end-to-end case just the
send and receive nodes check the validity of the packet. Obviously the switch-
to-switch implementation gives a more accurate representation of potential fault
location, whereas end-to-end cannot determine the fault location but can detect the
presence of a fault. However the main disadvantage of this method is the area
overhead required, with switch to switch method adding 70% to the NoC area
thus making this technique unsuitable for scalable NoC architectures [1] extends
this work and employ varied techniques to determine the best online switch fault
detection, targeting the control elements of NoC as opposed to the more common
link errors. Alaghi et al. confined their fault detection strategy to stuck at direction
faults (stuck-at-north, stuck-at-processor) for an x-y routing mesh and proposed a

246 M. McElholm et al.

number of self testable switch architectures to help fault detection under this model.
Fault coverage under this strategy is limited because of the narrow fault model
targeting only control errors.

Work by Grecu et al. [12] proposes a scheme for detection and location of
faults based on the concept of code-disjoint error detection. Data paths are used
to implement code disjoint technique where the incoming parity bit is compared
to the calculated parity at input stage. This scheme claims to improve the results
obtained by the switch-to-switch strategy outlined by Murali et al. [24], because
it can differentiate between faults occurring in the network routers from faults in
the communication channels between switches. A similar approach to the error
detecting unit at each router input and output is proposed by Kohler et al. [20].
Although Fault coverage and area/power consumption are improved using these
techniques the area overhead encountered limit the suitability for highly scalable
NoC architectures.

Benso et al. [2] propose a watchdog monitor with strategies to address data,
control flow and bus errors. Data protection is achieved by storing a local copy
of some processor critical variables in the Watchdog, and checking the write and
read operations to this variable. Control flow checking is implemented by splitting
the program code into branch free blocks with single entry using a signature based
scheme as the CFC method. To avoid modifying the application, bus protection
is implemented using Automatic Repeat Requests (ARR). In this scenario the
watchdog requests multiple transmissions of data until two transmissions are the
same. The ARR however introduces a very high time overhead and does not identify
the fault location. Moreover, the dedicated watchdog processor uses supplementary
hardware resources. The approach by Giaconia et al. [28] suggests an alternative use
for the watchdog with on-the-fly acquisition of data leaving the watchdog processor
completely independent of the rest of the hardware/software. They propose a
reasonableness check to determine if significant variables are within set constraints
and program flow check controlling if some segments of code are executed within
predefined time intervals. The Watchdog is configured to detect read or writes
to these addresses and interrupt the main processor accordingly. As with many
watchdog based approaches, this technique provides a degree of fault-tolerance
but does not provide any method of fault diagnosis and necessitates a dedicated
hardware resource to implement the watchdog function. Harkin et al. [13] suggests a
method of fault detection targeted at self repairing NoC systems where two types of
Watchdog, a Master and Slave/Router Watchdog (RW) are explored. The approach
provides good detection capabilities however the logic RW module exhibits a 13%
area overhead in comparison to the existing Router and standard processing element,
which adversely affects its suitability for scalable NoC architectures. More recently
Dai et al. [29] proposed a NoC monitoring circuit using the rate of successful
ACK (Acknowledge) and NACK (negative ACK) signal from the link of a NoC
router to detect and diagnose fault types. The frequency of ACK versus NACK
events over a defined period is used to classify faults as either transient or non-
transient/permanent faults. The proposed system uses an accumulator controlled by
a timer mechanism to add the number of events until a threshold is reached, or resets

7 Bio-Inspired Online Fault Detection in NoC Interconnect 247

the accumulated events after a certain period. This is predominantly a check for
the link interconnects but storing a cumulative result for the link failures attached
to each router. If a pattern emerges surrounding the link errors associated with a
router that router can be assumed faulty. This work provides a useful model for
distinguishing between transient and permanent faults but is once again targeting
a parallel data path comprising a number of individual wires. The major drawback
with this approach is the need to include a large timer for each router on hardware
which is expensive in terms of area, and therefore not scalable for large NoC-based
system implementations.

In summary, many approaches to fault detection have been proposed with good
fault coverage however the key requirements for NoC-based systems which have
not been fully addressed to date include; online capabilities (i.e. detect in real-time
and in a non-intrusive manner with NoC traffic) and maintaining NoC scalability.

7.2.3 Spiking Neural Networks and EMBRACE

7.2.3.1 Spiking Neural Networks

Research has shown that we can learn a lot from biology, in particular from
neuroscience, as to how synapses and neurons in the brain process and commu-
nicate information in a robust and power-efficient manner. The robust information
processing capability in the brain comes from the vast parallel density of synapses
and neurons, where the brain contains an estimated 10'° neuron cells and almost
10'° synapses [8]. Various abstract models of the brain have been investigated over
the last 60 years with Spiking Neural Networks (SNNs) being the most promising
neural network model to date. SNNs aim to emulate information processing and
communication capabilities of the brain by mimicking the efficient function of
excitatory and inhibitory synapses and threshold neurons. SNN have been used in
many application areas including pattern classification, dynamic control and signal
processing where, unlike traditional neural networks, the temporal nature of input
data is exploited.

SNNs communicate through pulses (spikes), the timing of which is used to
transmit information and perform computations. SNNs model the biological neuron
which consists of a cell body (i.e. soma) that possesses many input branches called
dendrites that carry information from other neuron cells, see Fig.7.1a. The output
of the neuron is called an axon, which communicates information to other neurons
in form of action potential or spikes (pulses). Figure 7.2 illustrates some examples
of pulsing (spiking) patterns. Spikes are transmitted between neurons via weighted
synaptic connections called synapses, see Fig.7.1b. Excitatory and inhibitory are
two basic types of synapses used in the current SNN paradigm which closely model
biology. The excitatory and inhibitory weighted synapses have the basic operation
of facilitating (strengthening the spike input activity) and depressing (suppressing
the activity), respectively. Adjusting the weights of the synapse enables particular

248 M. McElholm et al.

a \\) . P— b
N4 /
-.len-_jri:._-\;{c, dendrites

\
/

tr

\

I

action ™,
potential™,

Jiomyv

1 ms

o
J |

)

7

WA

e - -
—

axon —

axon

synapse
electrode ™.,

Fig. 7.1 Biological neuron cell (a) shows the soma, axon and dendrites; (b) an action potential
transmission between neurons j and i [8]

a M/ b

\Y
J d;/[/
Fig. 7.2 Example spiking patterns (a) Regular-spiking neurons (b) bursting-spiking neurons
(c) fast-spiking neurons and (d) rebound-spiking neurons [8]

sequences of spikes (pulse frequencies) to be effectively filtered, where the spikes
are either communicated to a neuron or suppressed. The combined effect from the
facilitating and depressing actions is reflected in the neuron output where a neuron
will generate an output spike when the sum of its weighted input spikes (from the
synapses) exceeds a firing threshold value. A neuron will maintain the generation
of spike outputs (pulse train) while its input is maintained above this threshold. It
is the integration of the synapse outputs with neurons which provides the abstract
basis for information processing [3].

7.2.3.2 Embrace

To achieve real-time processing of SNNs, hardware implementations have been
explored to fully exploit the high levels of parallelism between synapses and
neurons. One recent hardware architecture, EMBRACE (EMulating Biologically-
inspiRed ArChitectures in hardwarE), which achieves real-time acceleration, uses
Network-on-Chip (NoC) and analogue spiking neuron cell structures as building

7 Bio-Inspired Online Fault Detection in NoC Interconnect 249

Two-layer SNN network Archileciure Neural Tile

Fig. 7.3 EMBRACE architecture (a) shows a regular N X M SNN (b) the corresponding 2D NoC
implementation using EMBRACE, and (c) shows the neural tile composed of a digital router and
an analogue synapse cell and neuron

F1g 7.4 EMBRACE Tile EMBRACE Neuri e~ ~ i _____ |
with the neural cell and
adaptive NoC router

| |
| |
| |
[|
| |

Inputioutput linas 41 |
: w : — |
IBuay.'cmeam lines > E

-

| |
| |
| |
| |
| |
| |
| ; |
| |
I i s s i 1

blocks [4, 14] to provide a scalable implementation solution for SNNs. The
EMBRACE architecture is composed of a 2D array of Neural Tiles where each
tile contains the neural cell and NoC router. Figure 7.3 illustrates the architecture
and method for realising SNNs across the array of neural tile.

Novel hardware blocks have been developed including an adaptive NoC router
[5] and efficient excitatory and inhibitory hardware synapses [21]. Figure 7.4
illustrates the adaptive NoC router of EMBRACE's tile structure which facilitates
the interconnect between neurons. The router has four channel links including
North, East, South and West directions. Neurons and synapses are connected to
the NoC router via a dedicated network interface (NI), i.e. fifth link. These routers
are then interconnected via point to point data links that enables time-multiplexing

250 M. McElholm et al.

of discrete packets of data (spike events) from source to destination across several
links. The EMBRACE NoC router is a key building block in facilitating the large-
scale implementation of SNNs in hardware and has two key aspects, namely the
adaptive routing module and adaptive arbitration policy.

Adaptive routing module: The adaptive routing scheme is composed of three
main components; (1) an XY routing algorithm which receives the packet from
the adaptable arbitration policy module, (2) a channel congestion detector (CCD)
which, based on the information received from neighbouring routers, selects an
output port direction and passes this information to (3) the adaptive routing decision
module. The CCD provides a means of detecting the current state of traffic in any
given direction.

Adaptive arbitration policy: As the traffic pattern of a spiking neuron is highly
non-uniform and asynchronous, the adaptive router uses a hybrid arbitration policy
which combines the strong fairness policy of the round-robin arbiter and the priority
scheme of a first-come first-serve approach. The arbitration policy uses an event
register to store information regarding each spike event for each router input buffer,
and five distributed control units, i.e. one for each port. This allows the scheduler
to manage thread communication without incurring task-switching overhead. Only
the input buffers that contain information are serviced, thus avoiding wasted clock
cycles. Similarly when a heavy load traffic scenario occurs, all ports are serviced,
based on the same approach as the round-robin.

The long term goal of EMBRACE is to support the exploitation of SNNs in
providing future bio-inspired processing paradigms which can perform self-repair
under the presence of faults. Therefore, it is important that faults can be detected in
the dominant component of EMBRACE, the NoC interconnect.

7.2.4 Key Challenges

The key challenges for NoC fault detection is the ability to detect temporary and
permanent faults during runtime (online), without impacting on the NoC throughput
while under the constraints of low area and power implementations. The area/power
constraint is imposed due to the scalability criteria for NoCs, and is critical for
large scale implementations as we approach the target of +250 processing cores
per chip in 2015 (+1,000 within the decade). Considering the discrete event based
nature of digital systems and that the discerning difference between temporary and
permanent faults is the frequency of occurrence over time, it is possible to use
the pulse filtering properties of excitatory and inhibitory synapses and neurons to
detect temporary and permanent faults. Therefore, SMART aims to address these
challenges by exploiting the temporal and spatial capability of biological synapses
and neurons, which exhibit low area/power, in detecting faults. No work to date has
explored the concept of using SNN synapses and neurons in this manner before,
and given the availability of hardware synapses and neurons [9] with low area and
power requirements, it is now possible to realise such a strategy in hardware.

7 Bio-Inspired Online Fault Detection in NoC Interconnect 251
7.3 SMART Strategy

Information in SNNs is communicated through sequences of pulses or frequencies
where synapses act as filters to allow selected frequencies to be transmitted
between neurons. We can view this process of encoding information in the brain
as temporal/spatial filtering and if we look into digital multiprocessing systems,
a similar analogy can be applied to data communication and processing between
interconnected components in the NoC. For example, as digital data passes along
NoC channel wires certain frequencies are exhibited. When faults occur the
communication frequencies change as data communication is perturbed by the
faults. Using synapses at either end of a NoC channel to detect when data arrives (or
fails to arrive), enables a neuron to generate a corresponding output frequency and
signify the occurrence of a fault.

The SMART strategy has the basic principle of using biologically inspired neural
network based models for online fault detection in NoC based multiprocessor
systems. The strategy is based on the novel Fault Detection Unit (FDU) which
uses available hardware synapse models with excitatory (facilitation) and inhibitory
(depression) responses as a method for fault detection. In effect the FDU detects
faults and draws a correlation between fault types and their temporal behaviour.
For example, Fig.7.5 illustrates the FDU where two points A and B on a NoC
channel wire are connected to a single excitatory (ES) and inhibitory (IS) synapse,
respectively, and their outputs connected to a summing neuron. The excitatory
synapse is activated to represent a signal event (logic 0-1 transition), and a paired
inhibitory synapse is also stimulated on receipt of the signal event at another location
in the signal path.

Under non-faulty conditions, as shown in Fig.7.5, the wire can communicate
digital pulses where a pulse experienced at point A initiates the ES to produce
an excitatory (facilitation) response, while at point B the pulse initiates the IS to
produce an inhibitory (depressing) response. The right of Fig.7.5 illustrates the
output current of facilitation and depression from stimulus at points A and B,
respectively. The ES and IS have reciprocal responses and therefore when both are
activated they have mirrored outputs. The role of the neuron, D, is to sum both ES
and IS currents and produce a pulsing, digital output frequency if the sum, S, exceeds
a defined detection threshold, Nth (S > Nth is the basis for detection of a fault).

Detection(D)
A
Excitatory (ES) + Summing neuron
synapse . s L A f N Excitatory
(IS) Inhibitory response
synapse B Inhibitory
Digital ..., | = o response
pulse i ""-'el I i e ORI Neuron Output
A Non faulty Channel Link B (No Fauit Detected)

Fig. 7.5 FDU applied to a single channel

252 M. McElholm et al.

Detection(D)
A
ES) (4
; Excitatory
'. {|5} A _&Tmnse
q g ———Inhibitory
response

Digital

puise._{ 1y § - \gropue LI Newron Output (Freq)
A B (Fault Detected)

Faulty Channel Link

Fig. 7.6 FDU applied to a single faulty channel

Qutputs
f'r.".' 3:2,-,',., ;n+ - n™ Fault Detection Unit
Router a 1‘ 09 00 -; & T Router b
West - n
channel 1-:-Ra y 1 @Rb I :hEaan‘-:el
! S 2
East
'l channel =~ ET—— cnannei

Fig. 7.7 SMART applied to example NoC channel

In Fig. 7.5 where no fault is present, the summing of the ES and IS output currents
cancel each other producing a net sum which is below the threshold (S > Nth),
and therefore no fault is detected as the neuron output remains at zero. However, in
Fig. 7.6 a fault is illustrated which stops the signal from propagating between points
A and B (due to a temporary/permanent fault, e.g. stuck-at, transient, open-circuit
etc.), only the ES synapse is activated as the IS synapse at point B does not receive
the pulse stimulus. This results in the neuron accumulating the full current from the
facilitating (ES) synapse which causes the sum to exceed the threshold (S > Nth),
and therefore identifies a fault by producing a pulsing output from the neuron.

Figure 7.7 illustrates how the SMART strategy can be applied to detect faults
on the example East-to-West channel between two NoC routers, Ra and Rb. To
facilitate online detection each of the n wires in the channel is connected to a single
FDU and NoC traffic on the wires stimulate the FDUs. As traffic passes from Ra
to Rb on the channel, a fault on wire 1 causes FDU 1 to generate a frequency
output for a period of time. Figure 7.8 illustrates four example outputs that the
FDU produces when the NoC traffic pattern on the wire is alternating (e.g. walking
ones = 0 — 1 — 0 — 1). Using the walking one example pattern we can see in
Fig. 7.8 that temporary and permanent faults can be identified by the temporal nature
(duration) of the frequency output from the FDU. Number (1) shows a zero FDU
output when no fault is detected and numbers (2)—(4) show examples for detected
permanent, transient and temporary faults. This information can be used further
to assist in diagnostics however the current information on the nth location of the
FDU indicates which actual line in the channel is faulty. This can be applied to each
channel of the router.

7 Bio-Inspired Online Fault Detection in NoC Interconnect 253

Uy, Example traffic on the channel

(1) No fault

Qutput

‘I__-l_-_ - (gﬁ_ru—u—L_" |—[" Permanent fault

:° .: <>
FiEE A @ LI Transient fault
Detection Unit Time {pulse train duration)

| —————»
@I Temporary fault

Output of Detection Unit

Fig. 7.8 Example outputs from FDU

The key advantage of SMART is the ability to use the existing traffic communi-
cating across a channel to detect faults, thereby providing online detection which
is non-intrusive to the throughput of the channel. Therefore, SMART does not
require the generation or injection of test patterns which can incur a time penalty or,
the management thereof to perform tests during non-busy periods of the channel.
These are key to maintaining NoC scalability cross the time and area domains.

7.4 Analysis

The online fault detection capability of the FDU is analysed in this section.
Simulink models have been developed that apply the FDU to a number of circuit
configurations to evaluate faulty and non-fault conditions. For example, the FDU is
applied to a single channel wire model and this is extrapolated to detect faults on a
multiple wire channel structures such as a parallel bus. The FDU is also modelled
to detect faults across a synchronous logic block such as a Flip-flop. Finally the
FDU is applied across a number of lines in a channel to determine if a fault detected
is a result of crosstalk between adjacent lines. The diagrams provided have been
generated by Matlab simulink models of the FDU in the described scenarios.

7.4.1 Single Channel Wires

Figure 7.9 illustrates the Simulink simulation of the single wire Fault Detection
Unit model shown in Fig. 7.5 where no fault is present or detected. Plots (a) and
(b) in Fig. 7.9 represent the digital pulse detected at points A and B respectively.
A digital pulse at point A initiates an excitatory synapse (ES) response shown
in subplot (c). A corresponding pulse at point B produces an inhibitory synapse

254 M. McElholm et al.

1
f No Fault Detected
= 10 1% ™ 0 o %0 a0 80 o0

Fig. 7.9 Single channel wire FDU simulation

(IS) response illustrated in subplot (d). As the initiation of the inhibitory response
was sufficiently close to the excitatory response (1nS delay) the summation of
both synapse responses, S, does not reach its predefined fault threshold value,
as shown in plot (e). Thus no fault is detected and the neuron output remains
low as shown in plot (f). The fault threshold value, Nth, has been configured to
allow a maximum 15nS propagation delay between the initiation of excitatory
and inhibitory responses before there is risk of false positives where a fault can
be detected unintentionally. A propagation time less than 15nS will not produce
false-positives however the maximum propagation time can be re-configured to
accommodate longer propagation times. Figure 7.10 depicts the simulation output
for the same single channel wire Fault Detection Unit model when a fault is injected.
Plots (a) and (b) of Fig. 7.10 represent the digital pulses detected at points A and B
respectively in the FDU model (see Fig.7.6). A digital pulse at point A initiates
the ES response shown in plot (c) however, as no pulse is detected at point B
(simulated fault), no inhibitory response is provide to counteract the excitatory
response. Therefore, the summation of both responses matches the excitatory
synapse response. At time step 100 the summed value starts to increment due to
the ES response and this progressively raises the summation value, S, above the
predefined fault threshold value shown in plot (e). At this point the neuron output
starts to fire producing a pulsing output as shown in plot (f). As the ES response
decays the value, S, falls below the defined fault threshold value and the pulsing
output stops. The pulsing out signifies a fault has been detected on the line, i.e. the
connection between point A and B is compromised.

7 Bio-Inspired Online Fault Detection in NoC Interconnect 255

ta M
A o
| [
b
B
o4 c ___._.._____h__‘___
s © / i
L T 1 R — -
d
IS -2
o4
o e . E — ___ : s
Sum / - e T
T AN
5 ‘o |~|||Hi I!||| {||| Fault Detected
¢)) . 11:” S :;:I. 1% o 1% a0 ©0 300

No Fault Fault on Wire 2

Fig. 7.11 Example of fault detection in multiple-wire channels

7.4.2 Multiple Channel Wires

Figure 7.11 illustrates how SMART can fault detect for a multiple wire channel
structure (four lines are used as an example). In multiple wire channels each line
uses a single fault detection unit, where the output of each FDU provides a status
on an individual line. The example in Fig. 7.11 illustrates a scenario where no fault
is detected, Fig.7.11a, and a fault is injected on line 2 of the channel, Fig.7.11b.
Figure 7.11b illustrates the output from FDU #2 pulsing under the faulty condition.

256 M. McElholm et al.

Figure 7.12 represents the simulated output from the example 4-bit channel
scenarios of Fig.7.11. For clarity the inhibitory and excitatory synapse responses
and the summation neuron responses have been removed from the simulation
output. Figure 7.12a, b depicts the four input signals to each FDU (A1A4) and the
summation neuron output signal associated with each FDU (D1D4). In Fig.7.12a
no fault is identified in the network (all excitatory responses in the FDU’s were
cancelled out by their inhibitory response), therefore no output neuron reached its
threshold and did not cause the output to pulse. Alternatively, in Fig. 7.12b where a
fault is simulated on wire #2, the same 4 bit input pulse train is used however, due
to the fault on wire #2 no inhibitory response is generated and therefore the output
from neuron D2 reaches its threshold after signal A2 is received, causing output
D2 to fire its pulse train as shown in plot (f) of Fig.7.12b. Furthermore, Fig.7.13
illustrates the simulation output when multiple faults are injected in the channel. For
example, plots (f) and (h) show neurons D2 and D4 pulsing, respectively, when the
injected faults on wires #2 and #4 are detected.

7.4.3 Synchronous Registers Under Faulty Conditions

Figure 7.14 illustrates how a FDU can be applied across the input/output of a generic
logic block such as the common D-type flip flop (FF). The Excitatory synapse is
initiated by the pulse on the Din terminal of the FF, with the Inhibitory synapse
connected to the Dout output and initiated by clocked output signal from the FF. In
normal operation, shown in Fig. 7.14a, both synapses are activated and cancel each
other as the signal at the input of the FF is clocked to the output correctly; therefore
no fault and subsequently no pulse output at the summation or detection neuron are
generated. In Fig. 7.14b the scenario is illustrated where a faulty logic block could
prevent the input signal to the FF from propagating to the output, thereby preventing
the signal from Dout from asserting the Inhibitory synapse. This process results in
the summation value, S, exceeding the threshold and a pulse train being produce at
the output of the neuron to signify a fault in the flip-flop.

Simulations were conducted with the clock frequency operating at the target
speed of 100 MHz. Parameters for excitatory, inhibitory synapse responses and
summation neuron thresholds have been configured to operate at this frequency.
The plots (b) and (c) in Fig. 7.15 illustrate the function of the FF where data at Din,
which is connected to the excitatory synapse of the FDU, appears at Dout after one
clock cycle. In this example the maximum propagation delay between Din and Dout
(FF delay) is 10nS, which is exaggerated for illustration purposes and is normally
in the order of pico seconds.

The simulated output of Fig. 7.16 illustrates a detected error across a flip flop as
no Dout signal pulse is generated. As no inhibitory response can then be initiated,
the summation neuron threshold is reached and a pulse train evident at the Detect
output indicating fault detection.

7 Bio-Inspired Online Fault Detection in NoC Interconnect 257
- I e
Al asl-g) i ﬂ E .
A2 o) b) I ﬂ ! 4-bitinput pattern i
W= : T T : T T T =
A3 osi-q) ' ﬂ | -
Mo || :]
W I__T__________T[___I T T T =
D1 os-g) 4
D2 osi-f) 9
D3 os-g) 4
D4 os-h) .
' » o o £ 0 0
Scenario with no Faulty wires
b
AT ol a) il |]
A2 ' b) ! ﬂ i 4-bit input pattern |
1= : T T % T T T 3
A3) i ﬂ : .
A4 osl-d) i ﬂ 1
D1 as-g) -
D2 0::,) I I éFauItonwi're2 i
D3 os-g) i
D4 os-h) g
. » 0 0 0 o s
Single Fault scenario

Fig. 7.12 FDU simulations with multipl

e channel wires

258 M. McElholm et al.

Al s

A2 b TE 4-bitinput pattern

A3 os
A4 o

D1 s

D2 f '|P.‘| N |ﬁ| NN l_l| (1 Fault on wire 2
IRVAVEVATRNAVALY

03 4]

" || I_-| -—l " Faulton wire 4

N _m .)) 200 20 00

Fig. 7.13 Multiple channel FDU simulation — 2 faults

Fig. 7.14 FDU applied a Detect
across D flip-flop (a) no fault (ES) ——(i§) +
(b) faulty logic block D, »@ ’.";'.‘._
e o g) LTV 1
b
Detect
——®

:mf'. "Din Sl @ Dout V.Nopulss

7.4.4 Channels with Crosstalk

Another potential application for the FDU is detection of crosstalk faults, where
a signal transmitted on one line in a channel can induce an undesired effect or
glitch on another adjacent line in the same channel. In its simplest form, a FDU
implementation to detect crosstalk faults utilizes one detection neuron connected
to three neighbouring lines in a channel. Figure 7.17 demonstrates how this can

7 Bio-Inspired Online Fault Detection in NoC Interconnect 259

ANTNAANNN

- —

I -

+F T T T T T T T T 7
Do 1
out os - ¢) -
aul il
o2l 4

o 'l L | | ' L L L
o T T T T T T T T T -
Det l“_d} "
sl =4
il No Fault Detected i
s -

- I L L L I I 1 | L
i 0 w0 @ 0 100 1w 1w [18 00

1
o8
o8
K
ar
L}
M T T T T T T T T T =)
sl il
ost-b) B
Din “_) i
- -
o 1 1 1 1 Il L L L L
WE T T T T T T T T T]
=l A
DOIII ost-€) .
= -
oz2f- _
o 1 1 1 1 1 ' L L L
.F T T T T : T ' -
Sl il
o8 -d) Fault Detected 1
Detect o} .
&l Il
o i 1 | I I Il I L I
w 0 o0 a0 00 L) 140 160 L 00

Fig. 7.16 FDU applied across D flip-flop — fault

260 M. McElholm et al.

Detect

(Ea1) — +
- s
g2l Aeapdfly

e e

(h) . ;E‘J //

p—

No pulse V1

________ » .

Fig. 7.17 FDU applied to a crosstalk model

be achieved using a sequence of Excitatory (ES) and Inhibitory (IS) synapses.
In this scenario the detection neuron is sensing for crosstalk faults on the middle
line, VI, know as the victim line. The lines Al and A2 are in close proximity to the
victim line and therefore are more likely to induce a crosstalk error on channel V1.
These lines are identified as Aggressor 1 (A7) and Aggressor 2 (A2).

In previous FDU scenario when no fault is present the transmitted signal initiated
a positive or excitatory synapse response followed by a negative or inhibitory
response at the receive point to cancel out the positive excitatory response. In order
to detect crosstalk errors on the victim line (V1) the response synapses are reversed,
with an inhibitory response event (/y;) at the input to the wire and an excitatory
response evident (Ey) if the input pulse traverses the signal path. The inhibitory,
Iy, and excitatory, Ey;, synapses on victim line, V1, are also configured with
larger weight values than the Aggressor synapses, E 41 and E 4,. This ensures the
magnitude of the synaptic response of the Iy and Ey; are greater than the aggressor
responses. Configuration of the synapse strengths (weighting) and Detection neuron
threshold value, N7, permits the following rules to be formulated to ensure correct
detection of crosstalk on a victim line. The four rules are used to aid in configuring
the synapse strength and neuron threshold values.
Crosstalk model Rules:

E 41 + E4» < Nry (sum of both strengths must be > the neuron threshold)
Eq+Ey1r > Nty

Ep+Eyr > Nty

|Evi| & |Iy1] (strength of ES and IS on victim line must be balanced)

Eqn <Eyi>Ep

SRRy

(1) The derived rule defines that with a signal event or pulse on both Aggressor
lines Al and A2, the resultant summation in the detection neuron will not
exceed the pre-defined threshold, N7y .

7 Bio-Inspired Online Fault Detection in NoC Interconnect 261

:a 1‘.|
— . AL Lo
EAl . F
L Bl
Ib (Eus)
Iy o ®
. n,
c
Evi|
d
Exz|
e

D * No Fault Detected

o

Fig. 7.18 Simulation of the FDU applied to the crosstalk model — no fault

(2-3) A signal event on either Aggressor line, Al or A2, combined with a pulse or
glitch on the Victim line, V1, will trigger the Excitatory response Ey, which
will exceed the neuron threshold N7y and trigger a pulse train indicating a
crosstalk error. This fault condition should only occur if no associated input
pulse is detected on the Victim line, which would fire an inhibitory response
(Iy1) of equal but opposite magnitude to the excitatory response Ey;.

(4) Thus to satisfy the crosstalk model the victim line synaptic responses /y; and
Ey 1 must be of equal magnitude (Eqn 1e) and this response magnitude must
be greater than that of the aggressor line synaptic responses E 41 + E 45 . The
weight parameters that affect these responses are configured in the existing
synapse models.

To summarise, any pulse signal received on either aggressor input (E 41 or E 4»)
combined with a pulse signal or glitch at on victim line at Ey, without a pulse
at the input 7y; will result in a genuine crosstalk error at the detection neuron.
Figures 7.18 and 7.19 illustrate the output signals from the four synapses, shown
in Fig.7.17, that feed into the detection neuron. In Fig.7.18 a pulse is detected at
the input of all three lines, indicative of a synchronised bus switching multiple data
lines at the same instance in time. In this case the larger excitatory response of Ey
is cancelled out by the inhibitory response from [y.

In Fig. 7.19 the inhibitory response of Iy is not present indicating no input signal
received, although the victim excitatory response is fired due to crosstalk coupling
between the victim line and an adjacent aggressor line, Al. The magnitude of the
summation in the detection neuron is now greater than the threshold value, and
therefore initiates a fault detection pulse train.

262 M. McElholm et al.

| a (€
Eatl » AL
b &)
r p— f ‘..
b
I } (Eas)
Vi @
c
F‘\'I | crosstalk on victim line
d
Epz|
e
D Fault Detected

Fig. 7.19 Simulation of the FDU applied to the crosstalk model — fault induced

7.5 Hardware Implementation of the FDU

To validate the FDU model functionality in hardware, an Altera Cyclone 4 FPGA
was targeted with an implementation of the circuit shown in Fig.7.20. RTL
hardware models of the excitatory synapse, inhibitory synapse, and integrate and
fire neuron was used in the hardware demonstration of the FDU detection capability.
The device under test (DUT) is an example synchronous Flip Flop (FF). This is used
to underpin the core capability in detecting faults experienced in components and
not just channel wires.

In this circuit configuration, an input train generator is used to generate a steady
stream of pulses to the FF logic block. The generator is used to emulate digital
traffic patterns feeding to the logic component and control the test conditions.
During normal operation the output data, Q, of the FF would propagate the value
present at the input data, D, on the positive edge of clock frequency. An excitatory
synapse with facilitation response is connected to the input signal at point A, and
an inhibitory synapse with depression response connected to the output signal at
point B. The synapse responses are fed into the integrate and fire neuron. The neuron
generates an output spike if the threshold level is reached, i.e. fault detected within
the FF under test. Faults are injected into the FF path by using a switch to break the
connection between the input and output of the FF. The switch is opened to emulate
a fault in the FF, which prohibits the input from propagating to the output.

Figure 7.21 shows the plot from real-time data obtained via Altera’s SignalTap
on-chip analyser. The analyser output was obtained from the FPGA development
board. Plot (a) in the figure shows the input train to the FF under test. Plot (b)

7 Bio-Inspired Online Fault Detection in NoC Interconnect 263

o \ Detect
. S‘J“apse Output Spike

7 (ES) asy 7

J — \---
' Tioite
{ X\ Vgyneese

H
"
: Output Port)
Input Train i A - A, B _
G »1 D Q >
enerator .,\ Output Data
utpu!

Switch to simulate

Clock ——pp anopenbusiine Hardware
Device Under Test implementation

Fig. 7.20 Block diagram of the hardware model

illustrates the potential or voltage level of the excitatory synapse. From this plot it is
evident that the synapse initially accumulates with each input pulse. It builds up to
the maximum value that the synaptic hardware model can reach, and remains at this
level due to the constant train of input pulses. Plot (c) shows the potential or voltage
level of the inhibitory synapse. This also reaches a minimum level in response to the
constant input pulses as all input pulses are propagating to the output of the FF, as
shown in plot (f). This is shown between time 0 and 500 when the switch is closed
(no fault present). Plot (e) presents the output from the neuron and between time
step 0 and 500, and the plot illustrates there are no spike outputs as the switch is
closed as the threshold level, Nth, has not been exceeded. However, when a fault
is injected after time step 500 by opening the switch, the value of the inhibitory
synapse starts to increase (becomes less negative in value and migrates towards 0 V).
This causes the net value accumulated in the neuron to exceed the threshold level as
the excitatory synapses is still receiving pulses at the input and maintaining its value.
At this point the neuron starts to fire, generating pulses at the output as shown in plot
(e). The value of the inhibitory synapse remains high (less negative) until the fault is
removed by closing the switch again. For the duration of time that the pulses do not
activate the inhibitory synapse, the neuron maintains its pulsing output. This provide
data to a user that the fault is detected and active for the duration of time that the
pulsing remains at the output of the neuron. Plot (d) shows the inhibitory synapse
value decrease (become more negative) when the fault is removed by closing the
switch again. This restores the balance in the accumulated value in the neuron to
just below the threshold level and therefore stops the neuron from producing pulses
at its output. This is shown in plot (e) just after time step 1,000. The remainder of
the time steps in plots (a—f) show three other examples when a fault is injected and
then removed.

This hardware implementation demonstrates that real-time fault detection can
be achieved using the SMART strategy, where no active testing of the component

M. McElholm et al.

264

i
J

1osATeue diyo-uo de] eusigS s ey y woly eiep jo[d own [eay 7L 91

upes) 1ndino yeaiq o) wadQ) YNIug

o e o ook o 05 00 05 2,
0
L} h
vty reG
e oot o 05 o0 s 9
T T T °
: a___ ML ___E____)L
- 1 1 1 1 b
L R o |
e oxw E o o L) Rl %
T T T T T e T Hom
- e aﬂ
g’ T sl ; " g’ 3 e 7 oo 3
5t Loren
Ll axy Lild Rils oS e XA A ki
T T T T T T T T T =0 <
b e L1
ey VI SRS i e ST o iy mu
1 1 1 1 i 1 1 1 1
g amaay
% e e o oo o o s a0 s
T T T T T T T T T " §
= \\1&9.— ﬂ
1
kicd

7 Bio-Inspired Online Fault Detection in NoC Interconnect 265

or channel wires are required. Moreover, although digital implementations of the
excitatory synapse, inhibitory synapse, and integrate and fire neuron has been
used in this hardware verification experiment, highly optimised CMOS-based
implementations have been developed for the synapses and neuron. For example,
the area/power consumption [21] of the CMOS-based synapses (24 x 10~8 mm?
and power consumption/cycle of 1nW) and neuron (9 x 10~® mm?) are very low
and therefore SMART is highly scalability. Using the example EMBRACE NoC
router (discussed in Sect.7.2.3.2), which exhibits a total area of 0.056 mm? with
48 lines per channel and four channel directions, the additional area overhead from
implementing the hardware FDU, shown in Fig.7.20, for all four channels is only
1.896 x 1073 mm?; this represents less than 4% increase in total router area which
is significantly lower in cost than existing approaches [1, 12, 23]. Scalability is a
critical aspect to any fault detection solution and this is particularly pertinent to NoC
interconnect as any added functional benefit must not significantly increase its area
and power costs. The SMART strategy clearly adheres to the scalability constraint
while providing real-time fault detection.

7.6 Summary

Technology scaling has facilitated the integration of multiple processing cores on
a single chip, with Network-on-chip (NoC) becoming an important strategy to
alleviate the interconnect problem associated with communication between many
processing elements. However, further advances in technology scaling are resulting
in device components, including NoC components, that are more susceptible to
faults. This chapter has provided an introduction to SMART, a novel online strategy
for detecting faults in NoC interconnect by using biological synapses and neurons
to identify temporal and spatial faults. Analysis of the SMART strategy has been
provided which simulates the FDU monitoring signal wires in a number of different
circuit configurations applicable to NoC architectures. These include single and
multi-wire channels, and crosstalk between adjacent wires. To validate the SMART
strategy in real time, a hardware model of the FDU has been developed and
implemented on an Altera Cyclone 4 FPGA. A simple fault injection mechanism
has been used to induce faults into the system and real-time fault detection using
SMART has been demonstrated on the FPGA. In particular, analysis from synthesis
results demonstrated that SMART provides a low area and power overhead, thereby,
sustaining scalability criteria for large-scale NoC systems. Future work will explore
the use of intelligent techniques in the classification of temporary and permanent
faults using the temporal and spatial data provided by multiple FDUs across a
complete NoC system.

266 M. McElholm et al.

References

1. A. Alaghi, N. Karimi, M. Sedghi, Z. Navabi, Online NoC switch fault detection and diagnosis
using a high level fault model, in 22nd IEEE International Symposium on Defect and Fault
Tolerance in VLSI Systems, Rome, 2007

2. A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto, A watchdog processor to detect data and
control flow errors, in IEEE Online Testing Symposium, Greece, 2003

3. H. Paugam-Moisy and S.M. Bohte. Computing with Spiking Neuron Networks, In G.
Rozenberg, T. BAuck and J.N. Kok, Eds, Handbook of Natural Computing. Springer Verlag:
Heidelberg, 2011

4. S. Carrillo, J. Harkin, L. McDaid, S. Pande, S. Cawley, F. Morgan, Adaptive routing strategies
for large scale spiking neural network hardware implementations, in 21st International
Conference on Artificial Neural Networks (ICANN), Finland, 2011

5. S. Carrillo, J. Harkin, L. McDaid, S. Pande, S. Cawley, B. McGinley, F. Morgan, Advancing
interconnect density for spiking neural network hardware implementations using traffic-aware
adaptive network-on-chip routers, in Neural Networks Elsevier Science, pp. 42-57 (2012)

6. C. Concatto, J. Almeida, G. Fachini, M. Herve, F. Kastensmidt, E. Cota, M. Lubaszewski,
Improving the yield of NoC-based systems through fault diagnosis and adaptive routing.
J. Parallel Distrib. Comput. 71(5), 664—674 (2011)

7. A. Frantz, M. Cassel, F. Kastensmidt, E. Cota, L. Carro, Crosstalk- and SEU-aware networks
on chips. IEEE Des. Test Comput. 24, 340-350 (2007)

8. W. Gerstner, W. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity
(Cambridge University Press, Cambridge, 2002)

9. A. Ghania, L. McDaid, A. Belatreche, S. Hall, S. Huang, J. Marsland, T. Dowrick, A. Smith,
Evaluating the generalisation capability of a CMOS based synapse, Neurocomputing, 83, 188—
197 (2012)

10. I. Golubev, R. Tsarev, T. Semenko, N-version software systems design. Proceedings of the
11th International Scientific and Practical Conference of Students, Post-graduates and Young
Scientists, Boston, USA, 2007

11. O. Goloubeva, M. Rebaudengo, M. Reorda, M. Violante, Improved software-based processor
control-flow errors detection technique, in Reliability and Maintainability Symposium, 2005

12. C. Grecu, A. Ivanov, R. Saleh, E. Sogomonyan, P. Pande, On-line fault detection and location
for NoC interconnects, in Proceedings of the 12th IEEE International Symposium on On-Line
Testing (IOLTS), Spain, 2006

13. J. Harkin, P. Dempster, B. Cather, T. McGinnity, Fault detection for self repairing systems, in
IEE SMC, UK, 2007

14. J. Harkin, F. Morgan, L. McDaid, S. Hall, B. McGinley, S. Cawley, A reconfigurable and
biologically inspired paradigm for computation using network-on-chip and spiking neural
networks. Int. J. Reconfigurable Comput. (2009)

15. FMorgan, S.Cawley, P.McGinley, S. Pande, L. McDaid, B. Glackin and J. Harkin Exploring the
Evolution of NoC-Based Spiking Neural Networks on FPGAs. In: IEEE Field Programmable
Technology Conference, Sydney, Australia, pp. 24-27 (2009)

16. C. Hernandez, A. Roca, R. Flich, S. Duato, Characterizing the impact of process variation on
45 nm NoC-based CMPs. J. Parallel Distrib. Syst. 71, 651-663 (2011)

17. M. Herve, E. Cota, F. Kastensmidt, M. Lubasewski, Diagnosis of interconnect shorts in mesh
NoCs, in 3rd ACM/IEEE International Symposium on Networks-on-Chip, San Diego, USA,
2009

18. M. Hosseinabady, A. Banaiyan, M. Bojnordi, Z. Navabi, A concurrent testing method for noc
switches, in IEEE Design, Automation and Test in Europe, 2006

19. M. Kakoee, V. Bertacco, L. Benini, A distributed and topology-agnostic approach for on-line
NoC testing, in IEEE/ACM International Symposium on NoCs, Pennsylvania, USA, 2011

20. A. Kohler, G. Schley, M. Radetzki, Fault tolerant network on-chip switching with graceful
performance degradation. IEEE Trans. Comput. Aided Des. Integr. Circuit. Syst. 29, 883-896
(2010)

21.

22.

23.

24.

25.

26.

217.

28.

29.

Bio-Inspired Online Fault Detection in NoC Interconnect 267

L. McDaid, S. Hall, P. Kelly, A programmable facilitating synapse device, in IEEE Inter-
national Joint Conference on Neural Networks (IEEE World Congress on Computational
Intelligence), Hong Kong, China, 2008

S. Mitra, E.J. McCloskey, Design of redundant systems protected against common-mode
failures, in Proceedings of the IEEE VLSI Test Symposium, California, USA, 2001

E. Mourad, A. Nayak, Comparison-based system level fault diagnosis: a neural network
approach. IEEE Trans. Parallel Distrib. Syst. 23(6), 1047-1059 (2012)

S. Murali, G. De Micheli, L. Benini, T. Theocharides, N. Vijaykrishnan, M. Irwin, Analysis of
error recovery schemes for networks on chips. IEEE Trans. Des. Test Comput. 22(5), 434442
(2005)

P. Reviriego, C. Argyrides, J. Maestro, D. Pradhan, Improving memory reliability against soft
errors using block parity. IEEE Trans. Nucl. Sci. 58(3), 981-986 (2011)

P. Yaghini, A. Eghbal, H. Pedram, H. Zarandi, Investigation of transient fault effects in an
asynchronous NoC router. J. Syst. Archit. 57(1), 61-68 (2011)

Nodoushan M, Miremadi S, and Ejlali A. Control Flow checking using Branch Instructions,
IEEE International Conference on Embedded and Ubiquitous Computing, Vol 1, 6672 (2008)
Giaconia, G.C., Di Stefano, A., Capponi, G. FPGA-based concurrent watchdog for real time
control systems. Electronic Letters, 39(10) 769-770 (2003)

Dai, L., Shang, D., Xia, F,, Yakovlev, A. Monitoring circuit based on threshold for fault-tolerant
NoC. Electronics Letters, 46 984—5 (2010)

Chapter 8
Power-Efficient Fault-Tolerant Finite
Field Multiplier

Jimson Mathew, A.M. Jabir, R.A. Shafik, and D.K. Pradhan

As integrated circuit density increases, digital circuits characterized by high
operating frequencies and low voltage levels will be increasingly susceptible to
faults. Furthermore, it has recently been shown that for many digital signature
and identification schemes an attacker can inject faults into the hardware and the
resulting incorrect outputs may completely expose their secrets. On-chip error
masking techniques such as error correction could be one of the options to mitigate
the above problems. To this end, this chapter presents a framework of techniques to
design error correcting circuits. Fault attacks are based on injecting some faults into
a cryptosystem and observing any leak of secret information, primarily by analyzing
erroneous results produced by the cryptosystem due to the faults. For example, in
[2] Boneh et al. presented the first fault-based attacks on public key cryptosystems,
namely RSA and Rabin signature scheme. Since RSA is usually implemented using
the Chinese Remainder theorem (CRT), having one correct signature and one faulty
signature of the same massage can lead to the modulus factorization [3]. In order
to avoid such fault-based attacks, the cryptosystem can be designed to detect errors
and correct computations. Therefore, if we can correct errors the module will not
produce any erroneous results as output.

Since, majority of the error correction techniques described in this chapter is
based on finite field circuits, finite field arithmetic is reviewed. First, the basic
definitions and properties of finite fields are introduced, which are relevant to
the material treated later in this chapter. All the statements are given without
proof because of space constraints. A detailed treatment of the subject can be

J. Mathew (P<)) » R.A. Shafik « D.K. Pradhan
Department of Computer Science, University of Bristol, Bristol, UK
e-mail: jimson@cs.bris.ac.uk; Rishad.Shafik@bristol.ac.uk; pradhan @cs.bris.ac.uk

A.M. Jabir
Oxford Brookes University, Oxford, UK
e-mail: ajabir@brookes.ac.uk

J. Mathew et al. (eds.), Energy-Efficient Fault-Tolerant Systems, 269
DOI 10.1007/978-1-4614-4193-9_8, © Springer Science+Business Media New York 2014

mailto:jimson@cs.bris.ac.uk
mailto:Rishad.Shafik@bristol.ac.uk
mailto:pradhan@cs.bris.ac.uk
mailto:ajabir@brookes.ac.uk

270 J. Mathew et al.

found in [17]. Most of the structures proposed in this chapter are based on the
Polynomial Basis (PB), therefore more emphasis is given on PB representation.
Moreover, PB representation is by far the most versatile and offers suitable solutions
to most computational problems. Here we discuss various design approaches for
error correction finite field multiplier. Faults causing single error at the output bits
of the multiplier is corrected on-line. Hence, on-line error correction results in
more robust hardware modules against fault attacks. Also presented a systematic
method for designing multiple detection and correction techniques for multiplier
circuits for Galois fields over GF(2™). We used multiple parity predictions to
detect multiple errors applying popular error correcting codes. The expressions
for the parity prediction are derived from the input operands, and are based on
the primitive polynomials of the fields. For multiple bit error correction we use
Reed Solomon codes. Comparison with traditional techniques, shows better area
and power performance.

8.1 Introduction

This section provides the background material relevant to this chapter and the
following chapter. Since, majority of the error correction techniques described here
are based on finite field circuits, finite field arithmetic is reviewed.

8.1.1 Finite Field

Definition of fundamental algebraic structures are first introduced.

Definition 8.1 ([16]). A group is a set G together with a binary operation o on G
such that:

1. Binary operator o is associative; i.e., forany a, b, ¢ € G,ao(boc)=(aob)oc

2. There is an identity (or unity) element e in G such that forallae G aoe = eo
a=a.
3. For each a € G there exits an inverse element ¢! € G suchthata oa™! = e

Definition 8.2 ([16]). A Ring (R, +, e) is a set R together with two binary
operation + on e such that:

1. R is abelian group with respect to +

2. Binary operator e is associative i.e. (ae b)ec = (aeb)ecforalla, b, c € R.

3. The distribution law holds; that is, for all a, b, ¢ € R wehave ae(b+c)=a e
b+aecand(b+c)ea=bea+tcea.

Definition 8.3. A finite field F is a set F' together with two binary operations
denoted by + and e such that

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 271

1. F is a commutative ring under + and e.
2. Non-zero elements of F' form a group under eo.

Definition 8.4. The order of a field is the number of its elements.

Theorem 8.1 ([16]). The order q of a field must be a power of a prime; g = p™, p
is a prime.

Theorem 8.2 ([16]). There exists a unique field of order p™, for any prime and any
positive integer m.

A
Definition 8.5. The smallest positive integer A for which " 1 = 0 in a field is
i=1
called the field’s characteristic.

The architectures proposed here are based on finite fields of characteristic two.

Definition 8.6. Let a be an element of GF(q). The smallest positive integer s for
which a* = 1is called the order of the element.

Definition 8.7. Elements that have order s =q — 1 are called primitive elements.

It can be shown that elements with maximum order exists for every finite
field. A primitive element and its powers generate the entire multiplicative group
{1,a,0?...,0" 1} of a field.

8.1.2 Polynomials Over Finite Fields

Finite fields over the set GF(2") can be generated with monic irreducible poly-
nomials of the form P(x) = x"~! + Z:”Z_OZ cix!, where ¢; € GF(2) [18]. It
is conventional to represent the elements of GF(2") as a power of the primitive
element denoted by «, where « is the root of P(x), i.e. P(e) = 0. The set
{l,a,az...,am_l} is referred to as the polynomial basis. Each element A €
GF(2™) can be expressed with respect to the PB as a polynomial of degree m over
GF(2), i.e. as A(x) = Z?:ol a;x', where a; € GF(2). Given any two elements A
and B over GF(2").

Example 8.1. Consider the Galois field GF(2*) generated by the polynomial
P(x) = x* + x + 1 with « as a primitive root. The Elements of GF (2*) generated
by P(x) with primitive root « is shown in Table 8.1

Definition 8.8 ([13]). A polynomial A(x) is irreducible over GF(q) if A(x) is only
divisible by ¢ or cA(x) where ¢ € GF(q)

In this thesis, a|b denotes “a divides b”, where a and b can either be number or
polynomial.

Definition 8.9. Let P(x) be a polynomial of degree m over GF(q) with P(0) =0.
The smallest positive integer s for which P(x)(x* + 1) is called the order of P(x).

272 J. Mathew et al.

Table 8.1 Field elements

Element Representation
GF(2*) with 5 5000
Px)=x*+x +1
1 0001
o 0010
o? 0100
o? 1000
at=a+1 0011
=+« 0110
a® = a3 + o2 1100
= +a+1 1011
ad=a?+1 0101
a®=a?+1 0101
=0+« 1010
al'=a?>+a+1 0111
=04+’ +a 1110
aB=a*4+a’+a+1 1111
aB=o*+a?+1 1101

Definition 8.10. A monic polynomial of degree m with maximum order s = ¢ —1
is said to be a primitive polynomial.

A primitive polynomial of degree m over GF(q) exist for any field GF(q).

8.1.3 Bases of Finite Field

In general, there are three different bases widely used in the literature which are
standard, normal and dual. An extension of GF(g™) of the field GF(g) can be viewed
as m-dimensional vector space over GF(g). Each element of GF(¢") can be repre-
sented as a linear combination of the m elements of the base o, 1, -+, Bm—1}-

Definition 8.11. Theset {1, o, o?, ..., ™'}, where « is a root of the irreducible
polynomial P(x) of degree m over GF(g), is called standard or canonical or
polynomial basis.

m—1

Definition 8.12. The set {«, of, oﬂz, ..., a?" '}, where o is a root of the
irreducible polynomial P(x) of degree m over GF(g), is called normal base if the
m elements are linearly independent.

Definition 8.13. Let B=pfy, B ---, Bm—1 be a base of GF(¢™) the dual base B
is a base satisfying

T, (B yi) = {10" ’l’; il. ;]’ . It can be shown that there exits a dual base for every
base ‘

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 273
8.2 Polynomial Basis Addition and Multiplication

Consider a finite field of K = GF(2) and its extension field F = GF2". Then F
can be considered as m dimensional vector space over K and if {1, o, a2, ..., am_l}
is a basis of F over K, each element A € F can be uniquely represented in
polynomial form as

A(x) = ap + a1x + axx?,..., +a,x"", a; € GF(Q). Let B(x) = by +
bix + byx?, ..., +b,x""', b; € GF(2) be another element in F. Then addition
or subtraction of A and B is given by

A+ B =uayxby+a +bx+ azxz, o tan— bm_lx’"_l

Addition can be easily realized using m EXOR gates.

A Polynomial Basis (PB) multiplication of A and B over GF(2") is defined as
W(x) = A(x) - B(x) mod P(x). It is nothing but a algebraic multiplication of
the two polynomials and a modulo reduction with P(x). The following example
illustrates the basic polynomial multiplication.

Example 8.2. A multiplier structure over GF(2*) defined by the primitive polyno-
mial P(x) = x* 4+ x* + 1 is illustrated as follows.

The two inputs of the multiplier are A = (ag, a1, a2, a3) and B = (b, by, by, b3).
The polynomial form of these elements are: A(x) = ao + a;x + arx? + azx3, and
B(x) = by + bix + byx? + b3x3, where A, B € GF(2*). The product C(x) =
A(x) - B(x).

Now, C(x) = (ap + ai1x + a»x> + azx3) - (b + by x + byx? + b3x3) = aphy +
(aohy + aob1)x + (aohy + a1by + azbo)x* + (aobs + aiby, + axby + azbo)x® +
(a1b3 + azby + azby)x* + (azbs + azby)x® + azbsx°.

Let us denote the lower order m coefficients as dy, di, . .., d,—1, and the higher
order m — 1 coefficients as eg, ey, ..., en—s. Then, C(x) = dy + dix + dox? +
d3x3 + epx* + e1x° + e,x%. Here, we define product over the primitive polynomial
P(x) = x* 4+ x>+ 1 as W(x) = A(x) - B(x) mod P(x). Hence, we have, x* =
XBHL X =x(3+D) =x*+x =x3+x+1Landx® = x(x°) = x (X3 +x+1) =
XX+ x=x34+14+x2+x=x3+x2+x+1.

Substituting for x*, x>, and x® and then simplifying we get: W(x) = C(x) =
(do+ep+e+e)+(di+e+e))x+ (dy + ez)xz +(ds+eg+e + 62))63. The
general structure of the multiplier is shown in Fig. 8.1.

Mastrovito has proposed an algorithm, along with its hardware architecture, for
PB multiplication [12], popularly known as the Mastrovito algorithm/multiplier.
There are many reasons for choosing this architecture as representative for standard
base multipliers. First, it has one of the lowest gate counts among traditional PB
multipliers. Secondly, it gives a systematic method for design finite field multiplier
for a given field and P(x).

The standard basic multiplication can be represented as

A(X)B(x)modP(x) = (co + c1x + c2x?,...,+cnx™ Y = (ap + arx +
arx?, ..., +aux" "V (by + bix + byx?, ..., +b,x""modP (x)

J. Mathew et al.

274
—
— B [
™ Elm-) | % dy
BTX, 1> %
5 4,
| —
> BQ) d
> B(m-2) |_4 BT, H*a
. -
i . d.-g'. d.—_, -
— Bm=1 [e | i
—-—h- 1B(1) Cu-2 d,
; BT, He e
i n-l
’l fﬂ(ﬂ) —> ~ T
Al 8| IP-network 1B Q-network

Fig. 8.1 Architecture of the BP multiplier over GF(2") [21]

The elements B(x) and C(x) can be represented as column vectors containing
polynomial coefficients. By using the new Z matrix where Z = f(A(x), P(x)) the

multiplication can be formulated as:

o by
e Joo 0 fa by
- Jn=1,0 *** fm—1m—1 -

The matrix Z is called product matrix. Its coefficients f; ; € GF(2) depend on a;
and on the coefficients g; ; of the Q matrix which is given in Eq. 8.2

f' a;)]:O i=0---n—1
YV uli = ai-; + Xy qjm1—ti@mer— 3 j =1-m—1i=0--n—1
where the step function u is defined as
f1u=0
u(ﬂ)_{0u>0.}
The Equation 8.1 represents the entire Mastrovito multiplication. The Q matrix

which is required to build Z is a function of the binary primitive polynomial P(x) of
degree m, generating GF(2") Its binary entries g; ; are defined as

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 275

x" q00 qo1 * qom—1 1
X q910 411 X
= . . mod P (x) (8.2)
xm—2 Am—2,0 m=2,1 *** Gm—20 xml

The Q matrix describes the representation of the polynomials x™, xmtto
x2™=2 in the equivalence classes mod P(x), i.e. after the modulo P(x). The following
example shows the construction of Q matrix and field multiplication by Mastrovito
Example 8.3. Let P(x) = x* + x + 1 be the primitive polynomial generating
GF(2*) Considering the equivalence classes mod P(x), the polynomial x*, x>, x°
are as follows:

x*=(0+x)modx* +x +1
X =x+x)modx*+x+1 (8.3)
x0 =2+ xHmodx* +x+1

Equation 8.3 can be written in matrix form as

x* 1100 !
X
x*]=]0110 2 mod P (x) (8.4)
x6 0011 3
The final product can be written as
ap a as as bo
C—7B— ayap+aza; +aza; +a by
a a apg+az a, + as b,
as a ay aop+as b3

The implementation complexity of the above matrix vector product depends on
the primitive polynomial P(x).

In [21], based on the Mastrovito algorithm, a new formulation for PB multipli-
cation and generalized bit-parallel hardware architecture has been presented. Their
formulation is summarized below for completeness, which we have used in the rest
of the thesis.

Consider a multiplier with @ and b inputs where A = (a) = [ag, a1,4a2, ..., dn—1]
and B = (b) = [bo, b1, b2, ...,bu—1]. The a; and b;, where 0 <i < m — 1, are the
coordinates of a and b respectively. The formulation is based on the three matrices:
(i) an m — 1 by m reduction matrix Q, (ii) the L matrix, and (iii) the U matrix. The
L and U matrices are formed for implementation of this multiplication scheme. The
L is a lower triangular matrix and the U is an upper triangular matrix. The outputs
(d’s and e’s) of the IP-network are defined by the following two vectors, which are
functions of A and B.

276 J. Mathew et al.

d=Lb (8.5)
e = Ub, (8.6)
where b = [bg, by, b, ... ,by_1]T, a vector column of the coordinates and x”

represents the x transpose. The matrices L and U are defined as follows.

a9 0 0 ...0]
aq ap 0...0
a a; ag...0
L =
Apm—2 Apm—3 ... Ao 0
_am_l aAp—2 ... A} a()_
(0a,u—1 am— ... 0 a
0 0 aAdm—1 - .- 0 a
U=
0 0 0 am—1 Am—2
L0 0 ... 0 0 amp

The multiplication outputs are given by the equation:
c=d+Q’e, (8.7)

where the matrix Q, which is dependent on the irreducible polynomials, can be
derived as shown in [21] and ¢ = [co, ¢1. Ca, ..., Cm—1]T is the output bits.

The above polynomial multiplication and modulo reductions can be represented
in the matrix form as follows.

Example 8.4. Consider the Example 8.2, using the above formulation we have

Co d() 111 e

c|_fdi| |0l eO

6 d> 001 el

e ds 111 2
1001
whereQ=11101
1111

eo = azby + axby + a1 b;
e1 = asb, + azb,
€ = a3b3

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 277

do aobo

- d aiby + aob;

d = = 8.8
ds arby + a1by + apbs (8.8)
ds asby + axby + a1by + apbs

N eo asby + axby + a1b3
e =|e | =| azby + arbs (8.9)
e asb;

Definition 8.14. Hamming weight of N!(c) is defined as the number of non-zero
components of c. The Hamming Distance between v and w is defined as the number
of places in which they differ.

Definition 8.15. The parity check matrix H of a code consists of all the non-zero
r-tuples as its columns. In the systematic form, the columns of H are arranged as
H = [HH,], where H; is the systematic part and Hj, the parity part.

Lemma 8.1 ([22]). Let A and B be two field elements and S be their multiplication
without modulo reduction. Then the parity of S is given by ps = pa - pp, where py
and pp are the parity of A and B respectively.

8.3 SEC Multiplier: Based on Hamming Code

In this section, a systematic method for designing single error correcting bit parallel
polynomial basis (PB) multipliers over GF(2") is proposed. In [22] the authors have
considered the detection of single stuck at faults in the PB multipliers over GF(2™).
They use simple parity prediction technique for error detection. The main problem
with their approach is that for a low complexity bit parallel multiplier the delay
overhead is 69.2%. For performance critical applications this delay overhead may
be critical. Our technique fundamentally differs from this technique in two critical
issues. Firstly, our technique addresses the problem of single error correction.
Secondly, and more importantly, since our parity prediction circuit runs parallel with
the multiplier, delay penalty comes only in the decoding and correction logic. While
most of the previous work provides fault detection techniques, this work proposes
error correction techniques and investigates the hardware cost and performance.

A number of approaches exist, e.g. [4]. One way to detect errors in finite
field multipliers is to use parity prediction techniques [22]. The problem with
this approach is that no error correction can be performed. Furthermore, we can
not distinguish between error in multiplier and parity prediction logic. A second
approach is to scale the inputs of the multiplier by a factor and at the end of the
multiplication, the correctness of the result is checked by one or two divisions [6].
The main techniques that can be used for single error correction are (1) error

278 J. Mathew et al.

Bt ’\ ‘ —— — —
N\ N/ Ny J\—/H\— V) N, —, —, — J\—/_/\— V) N—, N, &}
¢i§=¢w*~:ﬁ wuw vwiw.wi ivwiwﬁwﬁ

\/

dy d d2 da eo a les
T U7 |
VAV

»
|
»

C(——
=

Fig. 8.2 A bit parallel GF(16) multiplier

detection and retry, and (2) error masking. Error detection and retry involves
using concurrent error detection (CED) circuitry that monitors the outputs of a
circuit for the occurrence of an error. If an error is detected, the system recovers
through rollback and retry thereby preventing a failure. Error masking involves
using circuitry that masks (i.e. corrects) errors using schemes such as the triple
modular redundancy (TMR) [14].

Next, we present a novel technique for designing Single Error Correction (SEC)
bit parallel multipliers over GF(2"). The basic structure of the multiplier is shown
in Fig. 8.1. The classical bit-parallel multiplier is designed by the method described
in Sect.8.2 (see e.g. Fig.8.2). The modified single error correcting architecture
is shown in Fig.8.3. Apart from the functional unit of the multiplier, it consists
of a parity prediction unit, output parity generation unit, and the comparison and
decoding logic. For error detection and correction we use the parity prediction,
which is based on Hamming’s principles. Hamming codes are the simplest of a
group of codes known as linear block codes [8]. The advantage of the Hamming
codes is that the number of parity bits grows logarithmically as the number of
output bits increases. However, the complexity of the encoding and decoding
logic grows linearly as the number of data bits increases in memory based error
correction. In the proposed approach, we consider parity prediction based encoders.
For memory based Hamming encoders, the bits are encoded with a tree of exclusive-
OR (XOR) operations. The principal difference between Hamming codes applied

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 279

Fig. 8.3 Proposed SEC

. e m B m
multiplier over GF(2™) + 9
Galois Field Multiple Parity
Multiplier Prediction
Circuit
g ; 1
Cm-1 | S Clo Co plo +p0 p1 Pr1
output | P i 4 ...
| | parities : 0
plr-l

decoder

Q’# G? . &
Cm-1 |Cm-2 Co

to memory and our approach is that, in our approach, instead of encoders we
have parity prediction circuits. The sizes of the parity prediction circuits depend
on the number of input bits. At the output side the error correction steps include
computing the syndrome, finding the error pattern and correcting error in the code
word. Mathematically, the syndrome computation is similar to the one in [8]. In
the implementation, the syndrome vector is generated by bit XOR operation of
predicted parity bits and output generated parities. Error pattern is identified by
the decoding the syndrome vectors. Finally, the correction is applied by the XOR
operation of decoder output and output from the multiplier. These steps are shown
in Fig. 8.3. Next, we derive the closed form expressions for the predicted parity bits.

-1 1 .1 .1 1 T s e
Let ¢ = [c¢y,¢y,¢5,...,¢,_;]" be the output of the multiplier and ¢ =
[co,c1,¢25. .., cm_l]T the corrected output. Also let » be the number of parity bits,

> _ T =L 1 9T :
and p = [po,p1,...,pr—1]" and p = [pg. py,..., P,_;]" respectively be the
predicted and the parity bits generated from the output bits. Let H,, be the parity
check matrix associated with the proposed single error correction scheme.

Lemma 8.2. Ler A and B be two field elements and p be the predicted parity bits
of their product. We have,

p = ps + Hyd + K, (8.10)

where K = HPQT, and the superscript ¢ represents the complementary set.

Proof. From the fundamentals we have the parity check equations

p = Hpe. (8.11)

280 J. Mathew et al.

Substituting ¢ from Eq. (8.7) into Eq. (8.11),
p=H,d+H,Q e (8.12)
Using Lemma 8.1, Eq. (8.11) can be rewritten as,
p = ps + Hy°d + KC. (8.13)

Hence the proof.

8.3.1 Design Procedure Parity Prediction Bits

* Determine the number of parity bits (r) required to satisfy the equation m + r +
1 <2,

e Construct the H matrix, with (m + r) non-zero r-bit column vectors. The
dimension of the resulting matrix is r x (m + r).

* A column vector with a single 1 is assigned to parity P;.

* The column vector with all 1s is assigned to output bit ¢,,,—;.

* The remaining m columns are assigned the output bits ¢;, without any constraints.

* Generate predicted parity expressions in terms of a;s and b;s from Eq. (8.10).

Example 8.5. Consider the multiplier structure over GF(2*) constructed in Exam-
ple 8.2. Here we have m = 4. Therefore, we need three parity bits to correct single
errors. We have,

Po P, P2Co C1 C2C3
1 001101
H:
01 01011
00101T11
’1”(’)"82 1101 011
Therefore, Hy = ;Hy=11011 [;andK=]001
010 0111 101
001

The predicted parity bit outputs based on Eq.(8.12), where 0 < i < 3, are as
follows. (Here, the ‘+’ sign represents EXOR operation.)

po=do+d +ds+e +e (8.14)

pr=di+dr+ds+e (8.15)

pr=di+dy+ds+ey+e (8.16)

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 281

Fig. 8.4 SEC bit parallel as - g by - by
multiplier over GF(2*) ¥V APV VY Uinininininininininininininininininini i !
(A !
|
[
| l
|
GF(16) [Elady !
Multiplier | I
: d, e |
L~ dz () :
T |
|
|
|

predicted parity bits

j output correction

¢ €1es 6
Applying Eq. (8.13) we have,
0010 100
H=[0100 [;K°=[110
1000 010

Moreover, we have p; = e, + e; + eg + d3 + da + dy + dy. Therefore, the final
equations are

Po = ps +dr+ e (8.17)
pr=ps+di+e+ e (8.18)
P2 = ps +do+ e (8.19)

The d and e outputs of the network are given below.

do = aobo; di = a1by + aoby; dr = arbo + ai1by + aoby; dz = azby + arby +
ayby + aobs; eg = azby + axby + a1bs; ey = azby + axbs; ex = azbs.

The implementation of this example is shown in Fig. 8.4. Here only the parity
prediction and error correction logic units are shown. The idea of using the parity of
input operands reduces the overall implementation complexity. For instance, in the
above example to implement the final parity expression (Egs. 8.14-8.16) we need
11 XOR gates whereas the modified expression (Eqs. 8.17-8.19) we need only 7
gates. This method also saves one XOR gate delay in the critical path.

Lemma 8.3. Any single stuck-at faults in the parity prediction circuits, produce a
non-zero syndrome vector with single one.

282 J. Mathew et al.

Table 8.2 Comparison with other concurrent error detection schemes

Multiplier [22] [15] Proposed

Structure Bit parallel Bit parallel systolic ~ Bit parallel

Basis Polynomial Dual Polynomial

Area overhead (m) - A, @em?+m)- A, (m*>—m)- A,
(4m—2)- A, (m> 4+ 4m) - A, [(m*—3m +2) +

N'(H®)+NY(H)+
re27 4 m]- A,

@2m?2—2)- A Ay
Delay overhead [log,(m+)] T, T, + 2T, r+1)-To+ T,
Fault coverage (%) 100 100 100
Single error correction No No Yes

1
Proof. Let r be the number of parity bits, and Z = [po, p1,..., pr—1)7 and ; =
[pd. pi, ..., pl_,]" respectively be the predicted and the parity bits generated from
the output bits. The output syndrome vector is given by

S =1[po+pypr+plse o+l (8.20)

Here, the ‘+’ sign represents EXOR operation. Assume that outputs are correct and

1

. . — . .
hence the output generated parity bits p . Now from the Eq.8.20 it is clear than
any error in predicted parity bit produce a non-zero syndrome with single one at the
erroneous parity position. Hence the proof.

Example 8.6. Consider the Example 8.8, assume that the output bits are 0110; the
output generated parity bits are pg =0+14+0=1; p(l) =04+140=1;
pé = 14140 = 0; If there is no error in the parity prediction circuit the predicted

parity bit should be ;0 = [110]7. Let us assume that the third parity bit is in error,

thatis p = [111]7. Then from Eq.8.20 S = [1 + 1,1+ 1,0 + 1]7 = [001]”.
Hence the syndrome indicates third predicted parity bit is in error. On the other
hand, if there is an error in the multiplier, it is clear from the parity check equation,
two or more bits in the syndrome bits will indicate the error. Hence indicating the
functional circuit is in error.

8.3.1.1 Comparisons with Other Approaches

Table 8.2 shows the comparison. Here, 7, T, and T, denote the delays of the XOR,
AND, and decoder circuits. Similarly, A,, A, and A, denote their areas respectively.
Ay represents the latch area. N'!(H®) denotes the Hamming weight of HC. Since in
the proposed parity prediction function we are not implementing the d,,,—; output,
we save m AND gates. It is a well known fact that in a bit parallel multiplier

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 283

e a 2 a bnbbb a a a4 a 'Jobbb
|1\0 0\0||1 oo|o||1\o 00||1000
A4 /’49 A4 A4

= Multiple Parity Prediction
GF Multiplier Circuit
e P’ =0 %n-l P -TTp -0
A— =2 D 2"

g P =1 -

sg =1 's-l s =1

&w%r

|1 0 [0 |0 & XOR
€ € € € ® AND
o INV

Fig. 8.5 Example showing permanent fault on multiplier and output bit is corrected by the
proposed approach

the number of AND gates is m? [22]. The disjoint parity prediction circuits we
considered here requires all the members of the vectors e and d, except d,;—;.
Therefore the total number of AND gates is m?—m. For generating e and d from the
inner products we require m*—3m +2 XOR gates. Apart from this, additional XOR
gates are required to implement Eq. (8.10), which depend on N!(H¢) and N !(K¢).
The delay overhead is contributed by the r — 1 XOR gates in the output parity
generator plus one XOR gate delay for the correction, together with the decoder
delay, T,. Thus, the total delay overheadis (r +1)- T + Ty. As we can see, the area
of the parity prediction circuit is close to that of the multiplier. The delay penalty is
mainly due to the output parity generation, decoder, and correction circuits.

8.3.2 Permanent Faults

Let us analyze various error scenarios on the proposed architecture and their effects.
First, a permanent fault on the multiplier block is considered. We concentrate only
on the multiplier block with the proposed error correction approach. Figure 8.5

284 J. Mathew et al.

% a 2 a bnbbb a a a a bobbb
010 1/0(0 |0

[t][ofofo]| [1]o0 | [1[o]o]o] |
1 A A A4
GF Multiplier Multiple PCimuifrediction

n
-

1 Do - -1
po -1 éﬂ 1 ®=%p,
: ®P -1 |
D 3 l @
_EBJ:-— 1

’0 -0 " -U $ =1

ol) @@%%
LT

1 0 |0 |0 & XOR
g © ¢ ¢ ® AND
o INV

Fig. 8.6 Example showing permanent fault on PP. No correction required at the output as
multiplier gives the right result

shows an error in the multiplier. Here we refer to Example 8.8 with the single error
correcting H matrix. Let the two inputs of the multiplier be A = (ag,a;,az,a3) =
(1000) and B = (bo, by, by, b3) = (1000). The correct multiplier output bits are
C = (co,c1,¢2,¢3) = (1000). Let us assume that, an error in the multiplier
causes an erroneous output C = (co,c1,¢2,¢3) = (1001). However, the Parity
Prediction(PP) part is not effected. Upon comparing the output parities and the
PP bits gives the syndrome (111) and the bit corresponding to this syndrome is c3
(see the H matrix). Therefore, the third bit gets automatically corrected as shown.
Second, a permanent fault on the PP block is considered. Figure 8.6 shows an
error in the parity prediction. In this case an attack/error on the PP block would
cause no error in the functional output and the syndrome generated will be one
of the following (001), (010), (100). Since these syndromes are not decoded and
no correction is applied. With a similar argument any error in the input register that
causes single bit error in the output can be corrected by the above technique, whereas
in the errors in the PP register that causes signal error in the predicted parities are not
corrected. Therefore, by introducing the PP logic will not compromise reliability.

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 285
8.4 Fault-Tolerant Multiplier Using LDPC Code

In this section, we present a novel technique for designing fault-tolerant bit parallel
multipliers over GF(2™). The classical bit-parallel multiplier is designed by the
method described in [21]. The modified single error correcting architecture is shown
in Fig. 8.3. Apart from the functional unit of the multiplier, it consists of a parity
prediction unit, output parity generation unit, and the comparison and decoding
logic. For error detection and correction we use multiple parity predictions, which
is based on LDPC codes. Recently, LDPC codes have been received much attention
because of their excellent performance and large degree of parallelism [5]. The
advantage of the LDPC codes is that it has reduced decoding complexity. In
Hamming code based correction the complexity of the encoding and decoding logic
grows linearly as the number of data bits increases. In the proposed approach, we
consider parity prediction based encoders. In conventional encoders, the bits are
encoded with a tree of exclusive-OR (XOR) operations. The principal difference
between LDPC code applied to other applications and our approach is that, in
our approach instead of encoders we have parity prediction circuits. The sizes of
the parity prediction circuits depend on the number of input bits and number of
predicted parity bits. Next, a systematic method for designing fault-tolerant scheme
using LDPC code is described.

e . . —
Let ¢ = [c},¢l,c5,....¢l_|]T be the output of the multiplier and ¢ =
[co,c1,¢2s. .., cm_l]T the corrected output. Also let » be the number of parity bits,

— —1
and p = [po.p1,....pr—1)" and p = [pl.pl.....pl_|]" respectively be the
predicted and the parity bits generated from the output bits. Let H be the parity
check matrix associated with the proposed scheme.

8.4.1 Design Procedure

* Determine the number of parity bits (r) required to satisfy the given LDPC code.

¢ Construct the H matrix, with m non-zero r-bit column vectors with number of
ones is 2 and r column vectors with a single 1. The dimension of the resulting
matrix is ¥ X (m + r).

* A column vector with a single 1 is assigned to parity p;.

* The remaining m columns are assigned the output bits ¢;, without any constraints.

* Generate predicted parity expressions in terms of a;s and b;s from the parity
check equations.

Example 8.7. A multiplier structure over GF(2*) defined by the primitive polyno-
mial P(x) = x* + x + 1 is shown in Fig. 8.7.

286 J. Mathew et al.

Fig. 8.7 Single error a - ag

correcting GF(2) multiplier YN S N N\ % At

using LDPC code 20T =T t

€]
GF(8)
Multiplier
L’Ul Cll
Multiple
Parity
Predictions

Ckt .

m Syndrom decoder

The two inputs of the multiplier are A = (ag,a;,az) and B = (by, b1, by). The
polynomial form of these elements are: A(x) = ao + a;x + a>x?, and B(x) =
bo + by x + byx?, where A, B € GF(2%). The product C(x) = A(x) - B(x).

Now, C(x) = (ap +a1x +a>x?)- (bg+ b1 x + b>x?) = aphy + (aphy +a1by)x +
(aohs + aiby + azbo)x* + (ar1by + azby)x* + arbrx*.

Let us denote the lower order 3 coefficients as dy, d; and d; and the higher order
2 coefficients as ey and e;. Then, C(x) = dy + di1x + dox? + epx® + e;x*. Here,
we define product over the primitive polynomial P(x) = x3 + x + 1 as W(x) =
A(x) - B(x) mod P(x). Hence, we have, x> = x 4+ 1 and x* = x? + x.

Substituting for x> and x*, and then simplifying we get: W(x) = C(x) = (do +
o) + (di + e + e1)x + (da + €1)x>.

The above polynomial multiplication and modulo reductions can be represented
in the matrix form as follows.

c=d+ QTe, (8.21)

where Q = |:(1) i (1):|

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 287

Example 8.8. Consider the multiplier structure over GF(2%) constructed in Example
8.7. Here we have m = 3. Therefore, we need 3 parity bits to correct single errors.
We have,

Po Py P2Co C1 C2
I_I:100101
01 0110
001011

The predicted parity bit outputs based on the parity check matrix can be derived
as follows: (Here, the ‘+’ sign represents EXOR operation.)

po=cot+ca=do+dr+ey+ e (8.22)
p1 =co+cp=do+d+e (8.23)
pp=ci+c=d +d+e (8.24)

The d and e outputs of the network are given below.
do = aobo; di = arby + aob1; dy = axby + a1by + aoba; eg = axby + aiby;
ey = azbz.

The implementation of this example is shown in Fig.8.7. Here also the parity
prediction and error correction logic units are shown. In the above example the
delay overhead is 3 XOR delay plus one AND gate delay.

8.5 Experimental Results

The Four versions, classical, LDPC, Hamming and TMR multipliers over GF(2"),
have been designed and coded in VHDL. The analysis presented here are for
multipliers over different primitive polynomials for the fields over GF(2*), where
7 < k < 26. However, the technique can be easily extended to higher order fields.
The designs were simulated using Modelsim™. The designs were synthesized
using the Synopsys tools in the UMC technology library, using the 0.18 um
CMOS technology. Synopsys Power Compiler™ was used to estimate the power
consumptions. The area, delay and power estimates for the basic circuits are shown
in Figs. 8.8-8.10. The x-axis shows the decimal representation of the primitive
polynomials and the normalized hardware overheads are shown on the y-axis. For
example, the primitive polynomial P(x) = x’ + x! + 1 can be represented as
10000011 in binary and its decimal equivalent 131 is shown on the x-axis. As
expected, the overhead varies depending on the primitive polynomials. The areas
of multiplier and its parity prediction part are more or less the same. Therefore, the
overhead comes to about 100%. Also, as the number of output bits increases, that
is for larger multipliers, the overhead slightly goes down. Design examples show

288 J. Mathew et al.

Area Analysis

w
w»

w
I
|
|
I
I
[
I
I
|
[
I
|
[
|
I
I

N
[
|
|
|
I

Normalized Area

© =
o Ul = 0N
— [I
= [I
— [I

“)

\ /\\ q;\
12 A Q
® ‘??’ ‘b\

Primitive Polynomial

o Classical m LDPC o Hamming o TMR

i

,\é

Fig. 8.8 Area analysis: classical, LDPC, Hamming and TMR

|

Q/Q

Delay Analysis

—_

Normalized Delay

cooo

Q N N
N \Qq;
RS

oMb MR DN
L
) e e e s |

P

S,
&
<2

CH
&
2,

Primitive Polynomlal

o Classical mLDPC oHamming o TMR

Fig. 8.9 Delay analysis: classical, LDPC, Hamming and TMR

that single error correction with Hamming based Multiple parity prediction requires
an average area overhead of 109% accompanied by an increase of 54.5% in the
critical path, whereas using LDPC the respective figures are 113.1 and 32.6%. Power
analysis shows that there is on average 106.2% increase in power consumption in
Hamming based technique and 109.2 for LDPC, whereas the corresponding figure
for TMR based designs is 212.07%.

8.5.1 Comparisons Delay Overhead

The disjoint parity prediction circuits we considered here requires all the members
of the vectors e and d. Therefore the total parity prediction logic comes to slightly

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 289

Power Analysis

Normalized Power
O —
(<K< I I N
1 1 1 1
\# ‘

& N N A A N
S (GRS A SR NS
D 2 @,"r‘b g ¢
o :

¥ 9
Primitive Polynomial
mClassical mLDPC oHamming o TMR

Fig. 8.10 Power analysis: classical, LDPC, Hamming and TMR

Table 8.3 Delay overhead in correction for various multiplier sizes

of outputs r LDPC r Hamming Delay Hamming Delay LDPC
2-3 3 3 2te0r + 2tana + tiw 3twor + tana
4 4 3 St)mr + ztand + tiny 4txor + Land
5-6 4 4 Steor + 3tana + tiny Atror + tana
7-10 5 4 Styor + 3tana + tiny Styor T+ tana
11 6 4 Steor + 3tana + tiny Styor + tand
12-15 6 5 Otyor + 4tuna + tiny Styor + tand
16-21 7 5 Oteor + 4tuna + tiny Styor T+ tana
22-26 8 5 Otyor + 4tuna + tiny Styor + tand

above 100%. Apart from this, additional XOR gates are required to implement the
parity check equations, which depend on Hamming weight of the rows of H. The
delay overhead is contributed by the output parity generator, syndrome decoding
plus one XOR gate delay for the correction. Table 8.3 shows the comparison the
proposed LDPC based scheme and Hamming based approach for various multiplier
sizes. As we can see, the delay penalty is minimum in LDPC based design, this
is mainly due to sparse matrix structure of LDPC, moreover only single AND is
required for syndrome decoding.

8.6 SEC and DED Multiplier: Automated Synthesis

In this section, we present the proposed design of Single Error Correction (SEC)
and Double Error Detection (DED) bit parallel multipliers over GF(2"). The basic
structure of the multiplier is shown in Fig. 8.11. The classical bit-parallel multiplier
is designed by the method described in Sect. 8.2. Similar to previous proposals sizes

290 J. Mathew et al.

Fig. 8.11 Galois field bit

A B
parallel multiplier with SEC " “ ﬁ E
and DED

GF Multiplier Multiple Pgnty Prediction
ircuit
P P P ... P
1
op (B Comparison
parity | : and Decoding
—
Pr
S P B -
G g €

of the parity prediction circuits depend on the number of input bits. Next, we present
the algorithm for designing the proposed scheme with an example.

e 1 .1l 17 ioli e
Let ¢ = [¢y,¢y.¢5,...,¢,_;]" be the output of the multiplier and ¢ =

[co,c1,¢2s. .., cm_l]T the corrected output. Also let » be the number of parity bits,

> _ T =L 1 9T :
and p = [po,p1,...,pr—1]" and p = [pg. py,..., P,_;]" respectively be the
predicted and the parity bits generated from the output bits. Let H be the parity
check matrix associated with the proposed single error correction scheme.

Design Procedure:

* Determine the number of parity bits (r) required to satisfy the equation m + r +
1<2".

e Construct the H matrix, with (m + r) non-zero r-bit column vectors. The
dimension of the resulting matrix is r X (m + r).

* A column vector with a single 1 is assigned to parity P;.

e The column vector with all 1s is assigned to output bit ¢,,—;.

* The remaining m columns are assigned the output bits ¢;, without any constraints.

* Generate predicted parity expressions in terms of ¢;s. Next, substitute expres-
sions for ¢; and simplify to get the final expression in terms of a;s and b;s .

* For DED choose the parity check matrix such that the output bits are assigned to
the columns with odd number of ones. In this case additional parity bits maybe
required.

* Finally, combine the multiplier, PP, output encoder, decoder, and the correction
logic as shown in Fig. 8.11.

The following example illustrates the above design procedure.

Example 8.9. Consider the multiplier structure over GF(2*) constructed in Example
8.2. Here we have m = 4. Therefore, we need 3 parity bits to correct single errors.
We have,

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 291

Therefore, the parity check equations are: pg = co +c; +¢3;p1 = co + 2 +
¢3; p2 = c1+c2+c3. Substituting for ¢y, ¢y, ¢3, and c¢3, the final predicted parity bits
are: po = do+di+ds+ei+ey; pr = di+drtds+er; pp = di+dr+ds+eg+er.

The d and e are as follows: dy = apbo; di = a1by + aob1; dr» = arby + a1by +
aogby; d3 = azbo+azby +a1by+aobs; eg = azby +axby+aibs; e; = azby +azbs;
€) = a3b3.

The modified expression for double error detection is as follows.

Example 8.10. Consider the multiplier structure over GF(2*) constructed in Ex-
ample 8.2. The parity check matrix H that satisfies the double error detection
condition is

Po P, P2 D3 Co C1 C2C3
100 010T171
H=01001101.
00101110
00O0T1TO0O1T1T1

Therefore, the parity check equations are: pg = co + ¢2 + ¢3;p1 = ¢co + ¢1 +
c3;pp = ¢co+ c¢1 + ¢ p3 = ¢1 + ¢ + c3. The final predicted parity bits for
this case are: pg = do + do +ds +ex;p1 = do+di +ds +e1 +exp2 =
co+c1+cr+ e+ er; p3s =di + dy + ds + eg + e;. In the DED architecture in
some cases we need additional parity bits, as in the above case, which is associated
with an increase in area.

8.6.1 Area Overhead

In the proposed parity prediction we need to generate the d and e from the input
operands. Apart from this we have the decoding and correction circuitry. Hence,
the total hardware overhead is greater than that of the multiplier hardware. The
delay overhead is contributed by the EXOR gates in the output parity generator
plus one EXOR gate delay for the correction, together with the decoder delay.
As we can see, in the above structural approach we did not optimize the overall
hardware requirement. Instead, we employ a synthesis tool, specifically targeted
for the polynomials over GF(2"), to optimize the hardware. We synthesized the
multipliers and PP logic separately, and determined the area overhead of the PP
logic to be less than 100%. The synthesis and optimization technique is presented
in the following.

292 J. Mathew et al.
8.7 Synthesis and Optimization

We present a technique for synthesis and optimization of the multiple-output,
multivariate polynomials over GF(2"). The circuits with and without the error
correction schemes have been represented in terms of these polynomials, which we
have synthesized with this technique. The polynomials are represented as the Shared
Galois Polynomial Decision Diagrams (SGPDDs) [10]. For example, Fig.8.12a
shows the SGPDD representation of the polynomial f(a, b, c) = a+ Bbc? + Ba’*c?
over GF(4), where {a, B} € GF(4).

If the initial specification is not over finite fields, e.g. over Boolean or MIN-MAX
post algebra, then the technique of [10] is applied for computing the coefficients of
the polynomials and storing them as the SGPDDs.

Once the SGPDDs are obtained, circuits are synthesized by decomposing and
factoring the SGPDDs based on finding cuts within the SGPDDs. A cut is a
partitioning of the nodes in the SGPDD into two sets 7' and B, where T contains
internal nodes and the root and B contains external, internal, and the last nodes, i.e.
internal nodes which have the external nodes as their children. Effectively a cut can
factorize an SGPDD realizing a function f in GF(2") as f = D - Q + R. Cut
based algorithms have been used for synthesis in the Boolean domain, e.g. [24]. In
this approach we quickly factorize a polynomial over GF(2") based on cuts on their
SGPDDs to construct an expression DAG based multiple output shared netlist. The
netlist constitutes two types of nodes: internal nodes which can either be GF(2")
adders or multipliers, or external nodes which can only be constants and variables
over GF(2"). The internal nodes can have two children. The netlists are further
synthesized based on additional factorization and optimization.

b’ +B«/ /

Fig. 8.12 Decomposition—an example

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 293
8.7.1 Decomposing from SGPDD

Given a variable x and a SGPDD for a function f, there are two types of
decomposition possible: (i) multiplicative, which represents f as f = X x Y,
and (ii) additive, which represents f as f = W + Z. Here X, Y, W, and Z
are SGPDDs. To perform a decomposition a cut is performed above the nodes
representing x. Let v, be a node representing x. To obtain the multiplicative
decomposition all the paths in the original SGPDD from nodes above the cut leading
to v, are reconnected to the terminal node 1 and the result is reduced. This gives X .
Y is simply the SGPDD rooted at v,. To obtain the additive decomposition all the
paths in the original SGPDD from nodes above the cut leading to v, are reconnected
to the terminal node O and the result is reduced. This gives W. Z is obtained by
reconnecting all the paths from the nodes above the cut that do not pass through
vy to the terminal node 0 and reducing the result. The proof for this reasoning is
straight forward and has been left out for brevity.

The netlists are obtained by decomposing the SGPDDs with a fast greedy
heuristic algorithm based on the decomposition rules stated above. The algorithm
recursively decomposes a function f, represented as an SGPDD rooted at f, as
f = D-Q+R,where D, Q, and R are SGPDDs also. Then each of the components,
D, O, and R are again decomposed until we reach a point where we cannot
decompose the function further. The results are then added to the netlists, which
are optimized with an efficient netlist optimization algorithm. Figure 8.12 shows an
example. The cuts are shown with horizontal broken lines. Figure 8.12a performs
an additive decomposition, Fig. 8.12b performs a multiplicative decomposition, and
finally, Fig. 8.12c performs another additive decomposition to obtain the final result
((a) + ((Bc?) x ((@*) + (b)))), which is added to the netlist. This requires one
multiplier and two adders over GF(2™). The terms with the exponents, i.e. Bc® and
a®, can be implemented in two ways: either using shared square and multiply, or
by using a 2-input 2-output look-up-table (LUT) for each of the terms since we
are dealing with GF(4). Our technique can do either depending on which option
is given. In %eneral if the LUT option is given, then the polynomials of the form

p(x) = Z 01 cix' over GF(2™), where ¢; € GF(2™), are generated as a single
m-input m-output LUT.

8.7.2 Factorizing Netlists

Once the netlists are obtained, common factors are determined by walking through
chains of multipliers following chains of adders. Figure 8.13a shows the netlist
corresponding to a general structure of the form Z = ((AX + Y) + BX). Clearly,
X is factorizable. To factorize X, Z is restructured as Z = ((AX + BX) +7Y)
(Fig. 8.13b) and then the factorization is carried out as Z = ((X(A + B)) + Y)
(Fig. 8.13c). The structure within the circle in Fig. 8.13b is the network of Fig. 8.13a

294 J. Mathew et al.

Fig. 8.13 Factorizing from
netlist

after its pointers have been readjusted. After restructuring the netlists an efficient
optimization technique, presented in the following, is applied to obtain the final
optimized netlist.

The algorithm for factorization proceeds by trying out all the possible factoriza-
tions, and only stops when there are no more terms which can be factored out.

8.7.3 Optimizing Netlists

Netlists are optimized by processing them recursively from the external (i.e. variable
or constant) nodes towards the root node. Each node is visited exactly once. For each
node u the following is done. If u is already processed then its reference is returned
so that it can be shared; otherwise its information is stored in a hash table for sharing.
If u is an internal (i.e. GF(2"") multiplier/adder) node, then let vy and v; be its two
children. If both vy and v, are constants, then replace u with vy op v; where op is
either addition or multiplication over GF(2™), i.e. perform constant propagation.
Replace u with v; (i € {0,1}),ifu = v; x 1 or u = v; + 0. Replace u with 0, if
u = v; x 0 or u = v; + v;. This algorithm can be shown to be optimal w.r.t. two
input addition and multiplication over GF(2™) under a fixed netlist transformation.

For example, given the netlist of Fig. 8.13b this algorithm will yield the netlist of
Fig.8.13c.

8.8 Experimental Analysis

Our experiences suggest that the industrial tools such as the Synopsys compilers
seem to be incapable of efficiently optimizing the circuits over GF(2"). This
has motivated us in considering our own automatic synthesis and optimization
techniques for the multipliers and PP logic. Therefore, in this section we include
comparison with the Synopsys tools as well.

The techniques presented here have been implemented in Gnu C++ 3.2.2-5
on a computer with 640MB RAM and a 600 MHz Athlon processor running

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 295

Table 8.4 Multipliers over GF(2%) for all the 16 primitive polynomials

Synopsys only Proposed technique

(area, delay, power) (area, delay, power)
Prim Poly (wm?, ns, mW) (a,m) (wm?2, ns, mW)
285 (141,689.3, 18.8, 130.9) (87,64) (2,628.9, 1.6, 4.2)
299 (152,603.3, 14.6, 125.7) (85,64) (2,609.5,1.7,4.1)
301 (132,595.5, 15.0, 125.4) (84,64) (2,580.5, 1.5, 4.0)
333 (140,896.3, 15.2, 129.3) (84,64) (2,574.0, 2.0, 4.1)
351 (135,107.6, 17.9, 121.5) (100,64) (2,757.9, 1.5,4.3)
355 (143,195.4, 17.4, 126.0) (88,64) (2,612.7, 1.8, 4.2)
357 (144,472.7, 14.8, 133.5) (84,64) (2,548.2, 1.5, 4.0)
361 (135,227.9, 16.3, 125.6) (88,64) (2,628.9,1.7,4.2)
369 (132,405.8, 17.6, 130.2) (89,64) (2,722.4,1.9,4.3)
391 (130,577.4, 15.9, 126.5) (79,64) (2,441.8,2.2,3.8)
397 (139,992.8, 14.4, 122.3) (87,64) (2,532.1,2.0,4.0)
425 (141,879.6, 15.6, 118.9) (94,64) (2,690.2, 2.0, 4.3)
451 (139,612.7, 17.6, 123.9) (79,64) (2,493.4,1.8,3.9)
463 (141,228.2, 17.8, 122.9) (90,64) (2,661.1,1.9,4.1)
487 (150,703.6, 16.7, 138.8) (92,64) (2,632.1, 1.9, 4.1)
501 (129,935.6, 16.0, 119.2) (104,64) (2,906.3,2.3,4.7)

RedHat Linux with kernel-2.4.20-43.9. The Synopsys design compiler was run on
a dual processor Pentium 4 Linux machine with 2 GB RAM and kernel-2.4.21-
20.EL. The benchmarks were stored as two-level AND-OR PLAs to enable us
to determine how effective the proposed technique is in optimizing area, power,
and delay. Also the Synopsys design compiler understands this format. After the
synthesis and optimization the results were saved in the VHDL format, which were
passed to the Synopsys design compiler (power was estimated with the Synopsys
power compiler). The PLAs were also passed directly to the Synopsys compiler for
optimizing without the aid of the proposed technique.

We have minimized multipliers over GF(2™) (2 < m < 8) for all the 51
primitive polynomials in 0.18 pm CMOS technology. Table 8.4 shows results for the
8-bit multipliers. Column 1 represents the primitive polynomials, while Column 2
represents the area, delay, and power reported by the Synopsys design compiler
without the aid of the proposed technique. The column with the heading “Proposed
Technique” shows the result of applying the proposed technique first, and then
applying the Synopsys compiler on the resulting VHDL files. The letters ‘a’ and
‘m’ represent 2-input EXOR and AND gates respectively. Here area, delay, and
power are in 10~® mm?, nano seconds, and mW respectively. Power was estimated
at 1.8 V. Significant area, delay, and power reduction is observable. Clearly the
number of AND gates is m? for all the cases. The number of EXOR gates is
m? + k, where k is a constant. As compared with [9], which reports 2m? — 1
2-input AND gates and 2m? — 3m + 1 EXOR gates, the proposed technique
produced better results. For the 8-bit multipliers this technique reports maximum
area of 0.002906 mm?2, whereas [9] reported 0.0128 mm?, i.e. about 4.4 times better

296 J. Mathew et al.

Table 8.5 Parity prediction over GF(2%) for all the 16 primitive polynomials

Synopsys only Proposed technique

(area, delay, power) (area, delay, power)
Prim Poly (uwm?, ns, mW) (a, m) (um?, ns, mW)
285 (52,925.58, 14.41, 58.32) (90,32) (1,986.96, 1.70, 3.47)
299 (52,623.49, 13.40, 56.23) (89,32) (1,974.09, 1.69, 3.33)
301 (49,006.48, 11.54, 56.62) (98,32) (2,003.09, 2.02, 3.36)
333 (49,680.62, 9.14, 53.52) (99,32) (2,077.28, 1.58, 3.61)
351 (55,173.80, 10.93, 61.20) (104,32) (2,119.21, 1.80, 3.75)
355 (50,380.56, 10.10, 55.11) (95,32) (1,948.26, 1.82, 3.42)
357 (48,406.52, 11.25, 54.37) (96,32) (2,025.67, 1.61, 3.59)
361 (52,715.91, 11.86, 58.40) (101,32) (2,212.75, 1.57, 3.80)
369 (52,622.36, 10.76, 64.88) (84,32) (1,851.49, 1.74, 3.09)
391 (53,164.29, 14.66, 62.55) (96,32) (1,799.80, 1.58, 3.03)
397 (53,661.00, 12.11, 62.41) (89,32) (1,957.93, 1.56, 3.24)
425 (47,367.86, 9.29, 52.96) (89,32) (1,935.35, 1.65, 3.33)
451 (50,512.83, 10.86, 55.84) (100,32) (2,151.47, 1.66, 3.76)
463 (53,261.04, 12.45, 59.48) (88,32) (2,025.67, 1.62, 3.43)
487 (51,354.72, 13.45, 57.15) (99,32) (2,077.28, 2.00, 3.73)
501 (51,045.23, 13.30, 56.12) (101,32) (2,067.61, 1.83, 3.74)

(5.2 times better for polynomial 391). Also, it reports about two times reduced
delay. For the 4-bit case the proposed technique reports about 0.000522 mm? area
with the primitive polynomial 25, i.e. over five times better. It is not possible to
directly compare this technique with [7,21] because these techniques have reported
only theoretical results, with m? 2-input AND gates and approximately m? + k
EXOR gates depending on the number of terms in the polynomials and their
positions, without any implementation. However, clearly our technique is capable of
closely matching the theoretical limits reported by these techniques, despite being a
heuristic synthesis technique for the polynomials over GF(2"), where as techniques
such as [7,21] are designed only for hand synthesizing the multipliers over GF(2").

Table 8.5 shows the parity prediction counterpart of Table 8.4. Table 8.5 reports
more or less the same performance improvements for the PP logic (area, delay,
power) compared to Table 8.4. Figures 8.14-8.16 show the comparison between
the multipliers and PP logic. Mostly, the area of the PP logic is less than that
of the multipliers. On an average, for the designs considered here based on the
proposed technique, the total area overhead is about 98.5%. As opposed to this, the
structural designs required slightly over 100% area overhead. The improvement, we
believe, could be because of the highly effective optimization done by the proposed
technique. The delay penalty is about 55% of that of the multipliers. The power
overhead is approximately 103%. Compared to the traditional techniques such as
the TMR, which is associated with an overhead of more than 200%, the proposed
technique is much better. Figure 8.17 shows the error correction scheme for the
serial architecture.

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 297

Area: Multiplier vs. PP

4000
g 3000 »f.f'“w‘\,»«’
=1
< 2000 QMAAM'
8
21000*
0 +r—rrrr T
O O - ® - O NNIWLW®M O ® O N — — —
- < 0 O O M ;0 0 O M . M ;O o u o
- - - - A N N O O O F o0

Primitive Polynomial

—e— Classical Design Area —s— Multiple PP Design Area

Fig. 8.14 Area: bit parallel multiplier vs. PP

Delay: Multiplier vs. PP

25
2
2
c 15
>
I 1 \
0] ¥
(=]
0.5 1o
o rrrTrTrTrTT
O O = O = O N N O 0O 0O 0O O NN - -
- < 0O O O ™M I 0O O MmO 1O M U o Wu O
- - -~ -~ AN N N O O O < w

Primitive Polynomial
—e— Classical Design Delay —s— Multiple PP Design Delay

Fig. 8.15 Delay: bit parallel multiplier vs. PP

Power: Multipher vs. FP

Power in mw

2 = W a0

LJECITCORP SO IR RN I IR IR - SO
Pnmive Polynomial

| —— Classical Design Power —s— Muitiple PP Design Power |

Fig. 8.16 Power: bit parallel multiplier vs. PP

298 J. Mathew et al.

Fig. 8.17 Error correction in - .
serial architecture shiftleft shiftright shiftleft shiftright

...... e
[[dy] [2]er]ed]] L4
/ [i

1 L
dfd] [2feifed]

7

Multiple
parities

- H
+ +(+ +) Qretwo

€3¢ ¢ €

8.9 Multiple Error Detection

In this section, a systematic method for designing multiple bit error detection and
correcting bit parallel polynomial basis (PB) multipliers over GF(2") is proposed.
One of the problems in the approaches presented in the previous section is that the
design can not correct multiple bit errors at the output. Due to the nature of faults in
the cryptographic context and their potential effects on the security of the system, in
certain cases multiple bit error detection is more important than correction. Fault-
tolerance in finite filed multiplier have been addressed in [1,20]. However, these
techniques are specific to one particular multiplier structure.

First, presented a multiple error detection using Low Density Parity Check
Codes (LDPC). The expressions for the parity prediction are derived from the input
operands, and are based on the primitive polynomials of the fields. For multiple
bit error correction we use Reed Solomon codes. Comparison with traditional
techniques, shows better area and power performance.

In this section, a technique for designing bit parallel multipliers with multiple
error detection is proposed. The basic structure of the multiplier is shown in
Fig.8.1. The classical bit-parallel multiplier is designed by the method described
in Sect. 8.2. The modified single error correcting architecture is shown in Fig. 8.18.
Apart from the functional unit of the multiplier, it consists of a parity prediction
unit, output parity generation unit, and the comparison and error detection logic.

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 299

Fig. 8.18 Proposed multiple

. T A B A B
error detection multiplier over
GF(2™) A L ™ [m

. Multiple Parity
i biifzler Prediction Circuit
]) P PL P
——+ o/p tP— | Comparison
| |parity| : land Decoding
P
¢ el Jem MED

For error Multiple Error Detection (MED), we use the parity prediction, which is
based on LDPC code. The advantage of the LDPC codes is that the complexity of
the encoding and decoding logic is simple. We give more emphasis on the error
detection, rather than correction, of fault. The reason is that the number of faults
detectable (d — 1) is larger than the number of correctable faults (L%J), where d is the
minimum distance of the error correction code used. Furthermore, due to the nature
of faults in the cryptographic context and their potential effects on the security of
the system, the detection of the errors is more important than correction. The sizes
of the parity prediction circuits depend on the number of input bits. Next, we derive
the closed form expressions for the predicted parity bits.

For the LDPC codes proposed in the previous section the hamming distance is
3. Now if we add an overall parity the overall hamming distance will be 4. Hence

N
we could detect any three errors. Let ¢ = [cg, ¢y, ¢2, .- -, cm—1]" be the output of
the multiplier and the corrected output. Also let r be the number of parity bits,

— —1
and p = [po, p1,....pr—1)T and p = [pd, pl,..., pl_|]" respectively be the
predicted and the parity bits generated from the output bits. Let H be the parity
check matrix associated with the proposed single error correction scheme.

8.9.1 Design Procedure

* Determine the number of parity bits (r) required to satisfy the required hamming
distance and hence the number of detectable errors.

* Construct the H matrix based on the approach proposed in the previous section
with an overall parity check bit added.

* A column vector with a single 1 is assigned to parity P;.

* The remaining m columns are assigned the output bits ¢;, without any constraints.

* Generate predicted parity expressions in terms of a;s and b;s.

300 J. Mathew et al.

Example 8.11. Consider the multiplier structure over GF(2°), with primitive poly-
nomial. Here we have m = 6. Therefore, we need 4 parity bits to detect three errors.
We have,

Co C1 C2 €3 C4C5 Po P1 P2 P3 P4
11111110000
H = 10010101O0O0O0
/11001000100
0111000O0O0T1TO0
100101100001 |
The predicted parity of outputs based on the above H matrix is given by
Po =¢co+cr+ce3+cq+cs (8.25)
prL=cCo+c3+cy (8.26)
Pr=c¢Co+c1+c (8.27)
p3=c1+c+c3+tc (8.28)
pa=C2+cs+ 5 (8.29)
(Here, the ‘4’ sign represents XOR operation.)
po = do+di +ds+ds+ds (8.30)
pr=do+ey+dy + ex+ds+oey (8.31)
pr=do+di +e +di+estes (8.32)
p3=ci+c+c+c (8.33)
ps=dr+er+e +ds+e3+ds (8.34)

where, the d and e outputs of the network are given below.

do = apbo; di = a1by + aoby; dr = arbo + ai1by + aopby; dz = azby + arby +
arby + apbs; dy = ashy + aszby + arby + a1bs + apbs; ds = asby + asby + azb, +
axby + aybs + apbs;

ey = asby + asby + azbs + arby + a\bs; e = asby + asbs + asbs + axbs;
e> = asby 4 asby 4 azbs; e3 = asby + asbs; es = asbs.

Table 8.6 shows the comparison of the area overhead for various multiplier sizes.
On average the overhead is about 100%.

8.10 Multiple Bit Error Correction

In this sect a systematic method for designing multiple detection and correction
techniques for multiplier circuits for Galois fields over GF(2™) which is one of the
key building blocks in many crypto architectures is considered. We used multiple
parity predictions to detect multiple errors applying popular error correcting codes.

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 301

Table 8.6 Details of hardware overhead for different multipliers for
multiple error detection

Multiplier PP and other circuitry
Field size area in um? area in um? % Overhead
GF(210) 3,844.20 4,154.448 108.0
GRQ2'!) 4,656.90 49415 106.1
GFR(2'?) 5,547.00 5,805.968 104.6
GF(2'%) 6,514.50 6,747.852 103.5
GF(2'%) 7,559.40 7,767.152 102.7
GR(2'5) 8,681.70 8,863.868 102.0

8.10.1 Reed-Solomon Code

Reed-Solomon codes belong to a family of Forward Error Correction (FEC) codes
known as linear block codes. Linear block codes encode message as a block and
the redundant information is unique per block i.e. the whole message block is
passed into the encoder one block at a time and the encoder has no memory of
any information from the previous block. This is different to convolutional codes
which encode continuously. One can think of this style of encoding as a window
sliding over the information bits. In conventional Reed Solomon encoder, the bits
inside the window are encoded, and therefore the encoded bits depend on previous
bits, i.e. the encoder has memory. In the proposed technique a different approach is
taken, that is a parallel encoder which does not have any memory is used.
Reed-Solomon (RS) codes were first proposed by Reed and Solomon in 1960
[19]. They are known to be very efficient algebraic codes, i.e. can correct a large
number of errors with a low overhead. By the very nature of their structure, RS
codes are well suited to FEC in bursty noise environments [11,17,23]. The codes
have the power to correct errors that occur in a cluster. Decoding RS codes is a non-
trivial task. There are two fundamental types of decoding. Hard Decision Decoding
(HDD) first thresholds the received data, effectively making a hard decision for each
bit (0 or 1). Then, using the properties of the code, the decoder detects and corrects
the bits that are in error. In contrast, Soft Decision Decoding (SDD) uses all the
information received from the channel, i.e. no thresholding of the received data.

8.10.2 Parallel Encoder

Reed-Solomon codes operate over an extended binary field GF(2™) and each symbol
in a RS code word is an element from the corresponding Galois field. RS codes
have the following parameters: n = 2" — 1 symbols in a code word k = the number
of message symbols n —k = 2t redundant symbols. t = the number of errors to be
corrected.

Apin = 2t + 1

302 J. Mathew et al.

Fig. 8.19 Proposed multiple A B A B
error correcting multiplier m
over GF(2'%) m m m
Reed-Solomon Check
GF Multiplier Symbol Prediction
Circuit
[rp; [rP,

Syndrom Genration

I—‘SZ Si

S,1S:3 |S,.8.1

- 4
A 7

P99

GGGG

C

FN

To construct the generator for a Reed Solomon code, we need to select the
appropriate finite field and choose roots. Let the roots be ' to i +2/~!, the generator
polynomial will be g(X) = (X+B)(X + BT ... (X 4+ B2y (X + pit¥
where t is number of symbol errors that can be corrected.

In this section, a systematic method for designing multiple bit error correcting
bit parallel polynomial basis (PB) multipliers over GF(2") is proposed. Here we
use Reed Solomon based scheme for error correction. The basic structure of the
multiplier is shown in Fig. 8.1. The classical bit-parallel multiplier is designed by the
method described in Sect. 8.2. The modified multiple error correcting architecture
for a GF (2'°) multiplier is shown in Fig. 8.19. Apart from the functional unit of the
multiplier, it consists of a reed Solomon check bits generation, syndrome generator,
and correction logic. The sizes of the parity prediction circuits depend on the number
of input bits. Next, we derive the closed form expressions for the predicted parity
bits.

The basic principle of multiple bit error correction is explained by considering
the following motivating example. Here we consider a GF(2)" bit multiplier. Let
the roots be 8 and B2, the generator polynomial will be g(X) = (X+8)(X + p?).i.e.
g(X)=X? + B*X + B The symbols encoded with above g(x) could correct one
symbol error.

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 303

Table 8.7 Field elements

GF(8) with Element Representation
Px)=x>+x +1 0 000
1 001
B 010
B 100
B=B+1 011
Bt=p>+8 110
B =p*+p+1 111
S=p2+0+1 101
g =1 001
Let ¢ = [co.c1,Ca.. ... c14]T be the output of the multiplier. The 15 bit output is

divided into 5 three bit symbols over GF(23). Table 8.7 shows the field elements of
GF(2®) with P(x) = x> + x + 1.

Let RP; and RP, denotes the two Reed Solomon check symbols which is
generated from the input operand.

RPy = BCy + BCs + B3Cy + C + B3Cy

RP; = B*Cy + B°C5 + B°Co + C1 + B*Cy

Cy = (c14, 13, C12)

Cs = (c11, c10, €9)

Co = (cs, €7, C6)

C1 = (cs, ¢4, ¢3)

Co = (c2, c1, co)

BCs = (c13, c14 + c12, C14)

BCs = (cr0, c11 + c9, c11)

B3Cy = (cs +¢7, cg + ¢74 ¢, cs + C6)

Ci= (cs5, ¢4, €3)

B*Co = (ca +c1 +co, €1 + co, 2+ 1)

RPy = (rpo2, rpot. TPoo)

rpp = €13+ cClo+cg+c7+c¢s+cr+ci+corpor = Ciga +Cip+cp +
co+ ¢c3 + ¢7+ ce+ca4+ c1 + corpoo =Clat+cCi1+ g+ C6+ 3+ 2+ €1

rpox = diz+ei3+enn+dio+ewn+eo+dy+es+dr+es+ds+es+ e+
dy + dy + dy + e

rpor =dis+es+diyp+ennt+eot+dotes+ ds++dr+ de+es+dy+
es+ex+ diy+e + dy

rpoo = dis+eu+ez+diten+eng+ ds+es+er+ do+es+es+ ds+
es+ dy+e + di+e +e

Deriving the bit level details of the RP;, we have RP; = B*C, + B°C3 + B°C, +
C1 + B*Co

B*Cs = (cra+ 13+ c12, 13 + c12. c1a + €13)

B°Cs = (c10 + ¢o.co, c11 + 10+ €9)

IBSCZ = (cg + 7, C6, €8, €7+ C6)

Ci = (cs, ¢4, ¢3)

B4Co=(ca+ci+ co, c1 + co, 2+ c1)

304 J. Mathew et al.

Table 8.8 Hardware overhead for GF(2!'%) multiplier with multiple error

correction

Multiplier PP and other circuitry
Field size area in um? area in um? % Overhead
GF(2") 8,681.70 15,958.868 184.82

RP; = (rp12, rp11.7P10)

rpi2 = cis+ciz+cintciptcotes+er+es+(ca+cr+ corpu = ciz+epp+
co+ C6 + ¢4+ cr1+co rpro = cratciztcri+ o+ cot cg+ ¢+ cs+ c3+ 2+ cq)

rpio =diy+en+do+entes+doteg+er+d;+es+er+ds+es+
+esdr+di+do+eyrpn =diztesten+doteotes+do+ez+er+
de+ec+es+di+es+ +esdi +di+dorpio =diu+enn+diz+en+dn+
en+do+dot+es+di+er+es+dit+est+er+d+e+e

Let the output of the multiplier be
C(X)=C4X®+ C3X° + C,X*+ C1 X3 + CoX?> + RPX + RPy
Syndrome S; = (s12, S11, S10) is generated by

S1 = C4B + C38° 4+ CrB* + C1 B> + CoB*> + RP1B + RP,

BOCs = (12, 14,13 + €12) B°C3 = (c10 + ¢9.¢9.¢11 + 10 + ¢0) B*Cy =
(cg + c7 4 cg.c7 + c6,c8 + ¢7) BPC1 = (c5 + c4,¢5 + ¢4 + 3,05 + ¢3) B2Co =
(c2 + co,c1 + co,c1)

B'RP = (rpi1.rpi2 + rpio. 7p12)

RPy = (rpo2. 7Pot. 7 Poo)

S;2 = cnpt+cio+ces+cr+ce+cs+catcatco+ rpu+rpn) su =
cutcot+cr+ce+cs+ca+c3+ci+co+ rpi2+rpo+ rpor) sio = ci3 +
cio+ i+ co+co+cg+ 74 s+ ez 4 rpo+ rpia + rpoo)

Syndrome S, = (522, 21, $20) is generated by evaluating the output polynomial

at B2

Sy = CyB'2 + G380 + Cof% + C1B° + Cop* + RP1S% + RPy

Sy = Cuf® + C3° + Cof' + C1 S + Cop* + RPS* + RPy

BCys = (c13+c12, c1a, clatciz+c12) B2Cs = (cr1+cro, 11 +C10+C9, €11 4¢9)
B1C> = (c7.cs+co, c3) BSC1 = (c2,¢5,ca+¢3) B*Co = (ca+c1+co, ¢1 +co, 02+
¢1) B*RPy = (rpi2 + rpio. rpi2 + rput. i) RPo = (rpoa, rpot. rpoo)

s = ci3+cip+cn +cot+ e+ e+ e+ rpi+ rpo + rpe) s =
Cla +¢11 +¢Cio+¢co+¢g + ¢+ ¢C5+cC1 + co+ rpi2+ rpin + rpor S20 =
Clat+cpz+cnn+cir+cog+cg+ca+c3+ca+c1r+rpi+rpo

The above check symbols are used for generating the syndrome. Table 8.8 shows
area analysis of the above design example. The overhead is about 185%, however it
is much less than a N modular error correction. The above design can correct three
errors (one symbol error).

8 Power-Efficient Fault-Tolerant Finite Field Multiplier 305
8.10.3 Improvement in Robustness

As discussed previously, for security reasons, especially to provide resistance
against fault-based attacks, it is very important to verify the correctness of com-
putations in cyptographic computations. Error detection may be a countermeasure
for many security applications. However, error correction (in other words fault-
tolerant characteristic) enables a module to perform its normal operation in spite
of faults. Therefore, the above error detection and correction will result in more
reliable modules.

8.11 Chapter Summary

Error correction is an effective way to mitigate fault related attacks in cryptographic
hardware. Commonly, higher level mechanisms are adapted to protect the archi-
tecture. This chapter proposes an alternative hardware architecture compared to
the existing approaches. Furthermore, the proposed technique can also be applied
to tackle the problem of soft errors in logic circuits. The experimental results
suggest that there is approximately, on an average, slightly over 100% area/power
overhead and 54.5% delay penalty over the conventional designs. The delay penalty
is mainly due to the output parity generation, decoding, and correction circuitry.
Also presented in this chapter an automatic synthesis approach for designing SEC
and DED finite field multipliers. Also presented a heuristic gate- as well as word-
level synthesis and optimization technique for the polynomials over GF(2™) for
designing the SEC and DED multipliers. The experimental results suggest that this
technique can significantly reduce area, delay, and power compared to the industrial
tools and also closely match the theoretical limits. The performance figures also
closely match those of the structural technique presented in this chapter. Therefore,
we can conclude that using our technique near optimal SEC and DED multiplier
circuits can be designed for the polynomials over GF(2™).

References

1. S. Bayat-Sarmadi, M.A. Hasan, On concurrent detection of errors in polynomial basis multi-
plication. IEEE Trans. Very Large Scale Integr. VLSI Syst. 15(4), 413-426 (2007)

2. D. Boneh, R. Demillo, R. Lipton, On the improtance of checking cryptographic protocols
for faults, in International Conference on the Theory and Applications of Cryptographic
Techniques (Eurocrypt), Konstanz, 1997, pp. 37-51

3. D. Boneh, R.A. DeMillo, R.J. Lipton, On the importance of eliminating errors in cryptographic
computations. J. Cryptol. 14(2), 101-120 (2001)

4. S. Fenn, M. Gossel, M. Benaissa, D. Taylor, Online error dection for bitseial multipliers in
GF(2"). J. Electron. Test. Theory Appl. 13, 29-40 (1998)

5. R. Gallager, Low-Density Parity-Check Codes (MIT, Cambridge, 1963)

306

6.

10.

11.
12.

13.
14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

J. Mathew et al.

G. Gaubatz, B. Sunar, Robust finite field arithmetic for fault-tolerant public-key cryptography,
in 2nd Workshop on Fault Tolerance and Diagnosis in Cryptography (FTDC), Edinburgh, UK,
2005, pp. 196-207

. A. Halbutogullari, C.K. Koc, Mastrovito multiplier for general irreducible polynomials. IEEE

Trans. Comput. 49(5), 503-518 (2000)

. W. Hamming, Error detecting and error correcting codes. Bell Syst. Tech. J. 29, 147-160

(1950)

. N. Iliev, J.E. Stine, N. Jachimiec, Parallel programmable finite field GF(2"") multipliers, in

Proceedings of the IEEE Computer Society Annual Symposium on VLSI Emerging Trends
(ISVLSI’04), Tampa, Feb 2004, pp. 299-302

A. Jabir, D. Pradhan, A graph-based unified technique for computing and representing coeffi-
cients over finite fields. IEEE Trans. Comp. 56(8), 1119-1132 (2007)

Mario Blaum, A course on error correcting codes. IBM Research Division IBM Corp, 1997
E.D. Mastrovito, VLSI architectures for computation in Galois fields. PhD thesis, Linkoping
University, Linkoping, 1991

R.J. McEliece, Finite Fields for Computer Scientists and Engineers (Kluwer, Boston, 1987)
M. Nicolaidis, Y. Zorian, Online testing for VLSI a compendium of approaches. J. Electron.
Test. Theory Appl. 11, 7-10 (1998)

C.Y. Lee, C.W. Chiou, J.M. Lin, Concurrent error detection in a bitparallel systolic mulitplier
for dual basis of GF(2"). J. Electron. Test. Theory Appl. 21, 539-549 (2005)

R. Lidl, H. Niederreiter, Finite Fields (Addison-Wesley, Reading, 1983)

S. Lin, D.J Costello, Error Control Coding: Fundamentals and Applications (Prentice-Hall,
Englewood Cliffs, 1983)

D.K. Pradhan, A theory of Galois switching functions. IEEE Trans. Comp. 27(3), 239-249
(1978)

S. Reed, G. Solomon, Polynomial codes over certain finite fields. SIAM J. Appl. Math. 8,
300-304 (1960)

A. Reyhani-Masoleh, M.A. Hasan, Towards fault-tolerant cryptographic computations over
finite fields. ACM Trans. Embed. Comput. Syst. 3(3), 593-613 (2004)

A. Reyhani-Masoleh, M.A. Hasan, Low complexity bit parallel architectures for polynomial
basis multiplication over gf(2m). IEEE Trans. Comput. 53(8), 945-959 (2004)

A. Reyhani-Masoleh, M.A. Hasan, Fault detection architectures for field multiplication using
polynomial bases. IEEE Trans. Comput. 55(9), 1089-1103 (2006)

A. Vardy, Y. Beery, Bit level soft-decision decoding for reed-solomon codes. IEEE Trans.
Commun. 39, 440-444 (1991)

C. Wang, V. Singal, M. Ciesielski, BDD decomposition for efficient logic synthesis, in
International Conference on Computer Aided Design Aided Design (ICCAD), San Jose, 1999,
pp- 626-631

Chapter 9
Low Cost C-Testable Finite Field Multiplier
Architectures

Jimson Mathew, H. Rahaman, and D.K. Pradhan

9.1 Motivation

Design for Test (DFT) techniques attempt to improve access to the internal state
of the crypto hardware either by improving control of internal nodes from the
primary inputs or by improving observation capability of values on internal nodes
at the primary outputs or both. Scan-based test is a powerful Design-For-Testability
(DFT) technique. Scan DFT technique improves controllability and observability of
internal circuit nodes. In scan DFT some internal registers and flip-flops are tied
together into one or more scan chains and connected possibly to a five-pin serial
JTAG boundary scan interface for external test [1]. In the JTAG interface, TCK is
the test clock signal while TMS selects normal mode or test mode. TRST is the reset
signal for test controller. During testing, test vectors can be scanned in via the TDI
input pin and internal registers can be scanned out via TDO output pin [17]. Scan
chains are typically automatically inserted into the design by test synthesis tools.
A scan chain is classically organized according to the physical positions of the flip-
flops. During chip packaging, scan chains are either connected to the external JTAG
interface pins to provide on-chip debug and maintenance in field capabilities [6]
or left unbound to prevent access. However, unbound scan chains can still be
accessed as discussed [19]. Recently scan-based testing has been demonstrated
to assist in non-invasive attacks to steal important information such as intellectual
property (IP) and/or secret keys [5, 8, 15,20]. Such scan testing based attacks have
added to an already growing customer concern of hardware security [7,13,18]. As
more information security measures are implemented on chip additional security
measures must be implemented to defend from the multitude of intrusive and side-
channel attacks.

J. Mathew (<)) » H. Rahaman ¢ D.K. Pradhan
Department of Computer Science, University of Bristol, Bristol, UK
e-mail: jimson@cs.bris.ac.uk; hafizur@cs.bris.ac.uk; pradhan@cs.bris.ac.uk

J. Mathew et al. (eds.), Energy-Efficient Fault-Tolerant Systems, 307
DOI 10.1007/978-1-4614-4193-9_9, © Springer Science+Business Media New York 2014

mailto:jimson@cs.bris.ac.uk
mailto:hafizur@cs.bris.ac.uk
mailto:pradhan@cs.bris.ac.uk

308 J. Mathew et al.

Based on the test terminology used above, security of a chip can be defined as
the extent to which the controllability and observability of its internal registers are
restricted. Clearly, a scan based testability approach compromises the security of
the internal hardware, which can lie in the scan data paths. Consequently, from a
security perspective, cryptographic hardware should minimize controllability and
observability of the internal state to a minimum. In this chapter we will investigate
security aware DFT techniques which tests block on-chip. In particular, finite
field multiplier which is one of the key block, is considered. Different testability
approaches are investigated.

9.2 Introduction

First, a testability approach without any hardware modification of multiplier struc-
ture is considered. Second, two approaches with extra control pins are illustrated. C
testability is important in cryptographic architectures because traditional scan based
techniques are prone to side channel attacks [13, 19,20].

To date, the testability issues of these multipliers have not been fully explored,
despite their applications in critical areas such cryptography, error control and
reliability, etc. First a structural approach is presented. Second, a C-testable designs
of PB multipliers over GF(2") is considered. For an m-bit multiplier, a constant
test set of length 8 is sufficient to detect all the single stuck-at faults. This method
requires 3 control inputs. We also present another method which requires fewer
control inputs and constant 7 vectors, but at the cost of about 33% extra hardware.
We have observed that this test length is much lower than that required by the
Automatic Test Pattern Generation (ATPG) techniques of the industrial tools such
as the Synopsys™ tools. The gate counts and the associated hardware, area, delay,
and power of the proposed testable multipliers over different values of m are also
analyzed. Finally, a simple Built In Self Test (BIST) architecture is proposed for
generating the 8 constant test vectors. The area and delay of proposed testable and
BIST circuits using a UMC 0.18 pm CMOS technology library have been presented.
This test set provides 100% fault coverage and also detects single bit error in the Test
Pattern Generator (TPG) itself. Owing to the possible applications of these circuits
in sensitive areas such as the ECC systems, the BIST structure can also provide an
added level of security.

Definition 9.1. A Boolean AND-EXOR function F(xj, X3, ..., Xy) is in the Posi-
tive Polarity Reed Muller (PPRM) if only positive polarities are allowed for each
input variable. For example F; = x;x; + xpx3 is a PPRM. Several testable
techniques for AND-EXOR circuits have appeared in [2, 10,11, 14].

Definition 9.2. A circuit is constant (or C)-testable if it can be tested with a constant
number of vectors independent of the circuit’s complexity.

9 Low Cost C-Testable Finite Field Multiplier Architectures 309

IPds

€€

BTX3 BTX, BTX, BTX,

€3 5} ‘ c ‘Co

Fig. 9.1 Architecture of the polynomial basis multiplier over GF(2*) with P(x) = x* + x3 + 1

A general structure of the multiplier is shown in Fig.8.1. An example over
GF(2*) is shown in Fig. 9.1.

The proposed technique presented in the next section requires (2m + 1) vectors
for detecting all the single stuck-at faults in the AND part and multiple stuck-at
faults in the EXOR part of the multipliers without incorporating any extra hardware.
The test set is generated from the expressions of the inner product variables of the
multiplication directly without the aid of any ATPG.

9.3 Fault Detection Technique

Although the multipliers over GF(2") are multiple output PPRM circuits, these are
not conventional PPRM circuits. We can derive the test vectors without GF(2™)
any extra hardware. The fault detection technique is also different from those of
the conventional PPRM circuits. We can derive directly from inner product variable
expressions. As this is the most important part as far as testability is concerned,
we first consider the EXOR part. The EXOR part is implemented with the tree
structure resulting in high-speed operations. This technique detects multiple stuck-at
faults in the EXOR part and single stuck-at faults in the AND part of the multiplier
circuits [1].

310 J. Mathew et al.

Fig. 9.2 Test vectors and
responses in an EXOR-tree

9.3.1 Tests for the EXOR Part

Deriving a testing technique with reduced universal test sets in AND-EXOR circuits
having tree based XOR parts is an open problem. In this section we derive the test
sets for the detection of the faults from the U, L, and Q matrices of the multipliers
(explained in Sect. 8.2). We have applied the multiple fault detection assumption [2]
in the EXOR part for testing the EXOR part of the multiplier circuits. It is shown
that the (n + 1) test vectors are sufficient to detect multiple stuck-at fault in n input
single output parity circuit as shown in Fig. 9.2.

Theorem 9.1 ([2]). The vectors ty, 11,15 .. .1, is a test for detecting multiple stuck-
at faults in an EXOR network realizing a parity function f = x1+x3+x3+... Xy,
where

to Xo X1+ Xp
t 00--0
L|l=110200 9.1)
1y 00 01

Example 9.1. For the AND-EXOR circuit realizing f = x; + x5 + x3 + x4 the test
for detecting multiple stuck-at faults in the EXOR part is (0, 0, 0, 0), (1, 0, 0, 0), (O,
1,0,0), (0,0, 1, 0), (0, 0, 0, 1). The multiple stuck-at faults in the EXOR tree are
detected by this test.

This method is simple and directly applicable to linear EXOR circuits, but this
concept cannot be applied directly for testing the multiplier circuits. For example
consider the inner product circuit IPd(3) of the IP net-work as shown in Fig.9.3.
The input vectors as described in Example 9.1 cannot be applied to the EXOR part
directly, since AND gates exist between the input terminals and the EXOR part. It is
also shown in [14] that if [t1,f,...,t,]7 isa non-singular matrix, then this test can

9 Low Cost C-Testable Finite Field Multiplier Architectures 311

Fig. 9.3 IPd(3) part of
GF(16) multiplier

detect the multiple stuck-at faults in the EXOR part of the AND-EXOR circuits. If
the input set T is applied to the inputs of the circuit of Fig. 9.3, the output vectors of

¢ _aoalazag,boblbzbg,_ _X1XQX3X4_
[0 00000000 §° 0000
1 1
10000001 1000
;2 01000010]85 0100 ©-2)
[3 00100100]|]|% 0010
1 looo11000 L] {0001]

The IP-network has m number of d outputs and (m-1) number of e outputs. The d
outputs are independent to each other, i.e. no two d outputs are feeding as inputs to
the same c output in the Q-network. The faults in the IPd(j) block will be observed
by the respective ¢; output where (0 < j < m — 1). Each IPd block behaves as a
single output AND-EXOR circuit provided that all the e out-puts are zeroes. From
Eq. 8.5 we can derive the d and e outputs as follows.

d() a()b()
di arby + aph
— ds arbg + aiby + aphy
d = . = .) 9.3)
din—2 am—2bo + am—3by + -+ + aoby—
| dw—1 | [am—1bo + am—2by + -+ -+ + aobm—1 |
eo Am—1br + apoby + - + aiby—
e am—br + - + aybm—»
e=| e |=| ansbh + - 4+ aiby 9.4)

€m—2 Am—1bp—1

312 J. Mathew et al.

m ag ay -+ @; +++ p—z Ay bo by =+ bi <+ by by_y |
t° 00--0 0 0 00--0-- 0 0
tl 11 --1--- 1 1 10--0--+ 0 0
’ 11--1 1 0 01000 0 O
Ta=|:|= : : : : : 9.5)
L 111 01 0 0
t' Do 000 :
Lo | 10000 O 0O 00O0O0OO O 1

For the input vector #; in td, all the AND outputs in the first column in Eq. 9.3
produce 1, i.e. ag.by = a1.by = az.byp = au—2by = a—1bp = 1. Similarly for the
vector 7, all the AND outputs in the jth column produce 1’s. For the vector £, all
the AND outputs in the mth column produce 1, i.e. ag.h,,—; = 1. Each IPd block
in the IP-network is independent of each other. Hence each IPd block is considered
as a single output circuit. From Eq. 9.3, it is shown that the IPd(m-1) consists of a
maximum number of AND terms in the expression. The expression for d,,—; is given
asdy,—1 = am—1bo+am—b1 +a,—3br+...+a1by—+aob,,—1. The AND outputs
of d,,—; for application of the Td inputs are derived in Gdm-1 which will be applied
to the inputs of the XOR gates of IPd3 block. The [g1. g2, 83.- ... 8m—1.&m]" isa
nonsingular matrix.

[am=1bo am—by -+ am—1by am—1bo |
80 0 0O --- 0 0
81 1 0O --- 0 0
82 0 1 e 0 0

Ga,—y = : = : : .. : : 9.6)

8i 0 o - 1 0
e : : : :

| 0 o --- 0 1]

The expression for d,,,—; is given as d,,—» = a,y—2bo + ayp—3b1 + ... +a1bpy—3 +
aobm—>. The AND outputs of d,,—, for application of the T, inputs are given in
Gd,,—, which is an non-singular matrix.

_ _ [am—bo am—3bi -+ am—3bo am—bo |
80 0 0O --- 0 0
81 1 0O --- 0 0
82 0 1 e 0 0

Gioy=| ' | = : S : : 9.7

8i 0 0o --- 1 0
_gm] . . e . .

| 0 o - 0 1]

9 Low Cost C-Testable Finite Field Multiplier Architectures 313

Similarly the AND outputs for all other IPd blocks form a nonsingular matrix
with the application of the 7, set. From Eqgs. 9.3 and 9.4, it can be observed that
when the d outputs receive a 1 for the vectors Td, all the e outputs remain 0. Hence
the set Td is sufficient to detect the multiple stuck-at faults in the IPd blocks.

teg Ao ay -+ @i+ Ap— Ay bo by <+~ b; -+ by bp—y |
¢ 00 10 11
tewa| | 1400 0 00000 O 1 |
(9.8)
oo] [ap—1by @m—2by apm—3b3 -+ arby—s arby—1; |
ge‘) 0 0 0 - 0 0
gel 1 0 0 0 0
ge2 0 1 0 - 0 0
Go=| 83 |=] 0 0 0 (9.9)
gZ’"‘Z 0 0 0 1
LEem—td o 0 0 - 0 1

For the vector teq in T, all the AND terms in the 1st column for the expressions
corresponding to the e’s in Eq. 9.4 receive a 1, i.e. a,,—1h) = ay—1by = apm—1b3 =
... =am—1bm— = an—1b,—1 = 1. Similarly for the vector ¢; all the AND terms in
the j” columns receive a 1. For the vector #,,_» all the AND. terms in the (m — 1)
columns receive a 1, i.e. a;b,,—; = 1. IPe(0) constitutes a large number of AND
terms in the expression. The expression for ey is given as €0 = a,,—1b; + am—2bs +
...+ ajby—1. The AND outputs of the ey for T, inputs are derived in the matrix
Gey. The T, is a (m — 1) x 2m matrix. From the Eq. 9.4, it is shown that a(or b
is not part of any expression in the row. There is no need of any vector which sets
either ag = 1 or by = 1. The matrix [ge;, ges, ges, ..., gem_2, gem—1]7 is a
nonsingular. From Eqgs. 9.3 and 9.4 we observe that when the e outputs are 1 for
the 7, inputs, all the d outputs remain 0. Hence the T, set is sufficient to detect the
multiple stuck-at faults in the [Pe(0) block. Similarly the AND outputs for all other
IPe blocks form a non-singular matrix for the 7, inputs. In all the IPe blocks the
vector Te is sufficient to detect the multiple stuck-at faults.

314 J. Mathew et al.
9.3.2 EXOR Partin the Q-Network

The EXOR part in the Q-network is tested by the 7; and T, test sets. When the
d outputs are 1s and the e’s are Os, the EXOR gates, whose one of the inputs is
connected to one of the d’s outputs and the other input is connected to one of the
e’s out-puts, are receiving (1, 0) at their inputs. The other XOR gates are receiving
(0,0) at their inputs. When the d outputs are Os and e’s are 1s, the XOR gates whose
one input is connected with one of the d’s and another input is connected with
one of the e’s outputs are receiving- (0, 1) signals at their inputs and other gates
are receiving (1, 1) signal or (1, 0) at their inputs depending on the values of the e’s.
Due to the applications of the T; and T, test sets each BTX block in the Q-network
receives the input vectors from the d and e outputs. As we see from Eq. 8.7, each
c constitutes one d output and all or some of the e; where (0 < j < m — 2).
From Eq. 9.4 €0 contains the maximum number of AND terms. If we consider one
of the ¢ expressions, say ¢; = d; + ey—2 + ... + ep, assuming ¢; constitutes the
maximum number of the e inputs, we can form the following test matrix for that
BTX block, which is non-singular. Hence the vectors in this matrix detect multiple
stuck-at faults in the BTX block realizing the ¢; expressions. Similarly every BTX
block receives from T, and T, input vectors, which forms a non-singular matrix.

di em— em—3 -+ € -+ e e |
0O O 0 -0 - 0
1 0 0 -0 -0 0
0 1 1 1 e 11
Xo=| - (9.10)
0 0 0 1 11
L0 0 0 -+ 0 -0 1]

Lemma 9.1. The multiple stuck-at faults in XOR part of the multipliers are detected
by the test set TXOR, where TXOR =T, U T,

Proof. Follows from Sect. 9.3.1

9.3.3 Test Set for the AND-Part of IP-Network

The multiplier network is multiple output positive polarity AND-EXOR network.
Here,a conventional walking zero sequence is not required to detect stuck-at fault in
the input/output of the AND gates. To test a stuck-at-1 fault at an input of an AND

9 Low Cost C-Testable Finite Field Multiplier Architectures 315

gate, we set it to 0 and set the other line of this gate to 1. Similarly, to test a stuck-
at-0 fault in these gates, we set the other lines accordingly to 1. Hence Lemma 9.2
follows:

Lemma 9.2. All single stuck-at faults in the AND-part of the IP network of the
multiplier circuits are testable at the functional outputs by Tyq = Ty U T, U
TaObO, where TaObO = aoal ceedjo am_zam_lbobl e bj .. -bm—me—l = 00...
0...0010...0...00

Proof. The AND part is tested for single stuck-at-1 faults by 7,y = Ty U T,. Due
to the test vectors in 7, (excluding #y vector), all the 2-input AND gates receive the
(1, 0) combination at the inputs. Again for test vectors in 7, (excluding #, vector)
all the 2-input AND gates receive the (0, 1) combination at the inputs. From T
test set the AND term (aobo) receives (0, 1). Hence, any single stuck-at-1 fault in
the input/output of any AND gate is detected by the combination (0, 1) or (1, 0).
It can be verified from Eqs.9.3 and 9.4 that all the AND gates receive (1, 1) at
their two inputs by T, and 7,. Any single stuck-at-0 fault at the input/output of any
AND gate will propagate to the functional outputs and will be detected. Hence the
complete test set T,nd (excluding the # vector) detects all the single stuck faults at
the primary inputs/outputs of the AND gates in the IP-network.

Theorem 9.2. Any single stuck-at fault in the AND part and multiple stuck-at faults
in the EXOR part in the multiplier circuits is testable by the function independent
test set T of length (2m+ 1), where T = Tz U T, U T,op0. Proof: Follows from
Lemmas 9.1 and 9.2.

Example 9.2. The complete test set of length 9 for GF(2*) multiplier with P(x) =

_a0a1a2a3b0b1b2b3
000O0O0OO0OO0O0O0
11111000
11100100
4 3 . | 11000010
x* + x° + 1 is formulated as follows. T = 1000000 1
00010111
00100011
01 0000O0O0T1
LOOO0OO0O10O0 0]

9.4 Experimental Analysis

Table 9.1 shows experimental results. As our algebraic test set is dependent only
on the primitive polynomial, this scheme eliminates the need for test generation
programs, e.g. the ATPG tool. Table 9.1 gives the number of test vectors obtained
from different schemes for detecting single stuck-at faults to achieve 100% fault

316 J. Mathew et al.

Table 9.1 Number of tests

Number of test ired
required for achieving 100% Himiher o7 Tests requwre

coverage Size (m) ATPG SIS [12] Proposed
4 13 16 12 9
6 20 23 16 13
7 24 26 18 15
8 27 29 20 17
9 30 32 22 18
16 51 51 36 33
20 63 66 44 41
24 75 71 52 49
32 99 101 68 65

coverage although our algebraic test set detects single stuck-at faults in the AND
part. The table compares our test scheme with ATPG based test generation and with
algorithmic test generation schemes (SIS tool [16]). SynopsysTM (TetraMAX) tool
is used to generate ATPG based test patterns. Clearly from the above table both the
ATPG-based test generation and algorithmic test generation schemes require more
test patterns compared to the proposed schemes for achieving 100% fault coverage.

9.5 C-Testable Scheme

The proposed testable design of PB multiplier over GF(2") is shown in Fig.9.4.
Basically it consists of two parts: IP-network and Q-network. The IP-network
constitutes AND-parts followed by trees of EXOR gates. The Q-network constitutes
trees of EXOR gates only. To achieve 100% testability, the IP-network has been
augmented as shown in Fig.9.4. AND parts of the IP-network are modified with
three control lines ko, k| and k. All two inputs AND gates have been replaced by
three input AND gates.

9.5.1 Testability in Single Output EXOR Tree

Testing of single stuck-at fault in single output general EXOR tree can be performed
by exactly 4 tests, which exhaustively applies all the 4 input combinations (00,
01, 10, 11) to each of 2-inputs EXOR gate. In this design, we need three control
inputs ko, k1 and k;, to achieve this. This is based on the following observation:
in Fig. 9.5, the inputs to the last EXOR gate require 00, 11, 10, 01 to generate the
output sequence s: 0011. Thus, its two inputs should receive the sequence q: 0110
and r: 0101. Similarly, q: 0110 and s: 0011 arriving at the two inputs of an EXOR
gate will generate the output sequence r: 0101. Again, input sequences r: 0101 and
s: 0011 will generate q: 0110 as the output sequence. There exist the following

9 Low Cost C-Testable Finite Field Multiplier Architectures 317

Fig. 9.4 Block Schematic of k AB
C-testable GF multiplier

¢

\
L

: EXOR EXOR
)
v

|
|
|
|
|
|
|
I -
network : network
-
|
|
|
|
|
|
|

Fig. 9.5 Test vectors and
responses in an EXOR-tree

relations among the vectors (q, 1,8): ¢ @ r=s,q ® s =r,r &s = q. Hence, by
applying the three sequences (q, r, s) to the inputs of a tree, any one of the above
three combinations can be applied to the inputs of each EXOR gate in the tree

Example 9.3. In the EXOR tree shown in Fig.9.2, we assign sequence vectors ¢,
S, q, 1S, q,TI ...(ie. by repeating the pattern (q, 1, s)) to the inputs of the
EXOR tree from left-to right until all of them are assigned. The outputs of the
first level are propagated down to the root, i.e. the final output of the tree. Thus,
each EXOR gate in the tree receives the desired input combination from the above
three combinations. Three constant test vectors that are to be applied to the inputs
of the tree of Fig.9.2 are shown as a matrix Ttree. This matrix has four (constant)
rows and y columns, where y is the number of leaf nodes of the tree, and is equal
to the number of AND outputs (,?) in the multiplier circuits. The columns of the
matrix, if seen from left-to-right, will correspond to the sequence vectors: q, 1, s,
g, 1, S, g, 1, and so on. The number of distinct columns in the matrix is only four
(constant), regardless of the size of the tree. Since EXOR-trees are embedded in
the overall designs of the single output AND-EXOR circuits, the inputs of the trees
are not directly accessible. In the IP network of Fig. 9.2, each AND output feeds an
EXOR input. Hence, by applying the following four test vectors vy, v, v3, and va,
to the primary inputs of Fig.9.2, all the three sequences q, 1, s can be produced
at the outputs of the AND-part. Note that in Fig. 9.6 the original function can be
obtained by setting the three control inputs to 1 (ko, k1 and k;). In this design, the
AND outputs are partitioned into three groups based on the sequence vectors g, 1,

318 J. Mathew et al.

.
99 Y Y

Fig. 9.6 EXOR-tree with a control level

and s. The output lines of the AND gates connected with kg, k| and k, control
lines receive the sequence vectors q: 0110, r:0101, and s:0011 respectively. Note
that only the two input AND gates in the IP-networks have been replaced by three
input AND gates and no additional hardware is required to gain C-testability.

ko kl kz ag dy - Apm— 1b0 b1 "'bm—l
vi=0000O0- 0 00-- 0
vw=11011": 1 11 1
w=10111--1 11-:w- 1
vs=11111": 1 11 1

9.5.2 Embedding EXOR-Tree in Multi-output
Multiplier Circuit

The technique we have discussed above is applicable to single output AND-EXOR
circuits. In this section we extend this idea to multiple output AND-EXOR circuits.
To achieve 100% testability in multiplier circuits, the inputs of the EXOR gates of
the IP- and Q-networks will be properly mapped. We assume that the IP-network
would generate the following sequence from left-to-right:q, r,s,q,...,q,r,5,q ...
and so on at the outputs e;, where 0 < j < m — 2. To propagate these e; outputs of
the IP-network at the outputs of the Q-network, the d; outputs, where 0 < i < m,
will be properly mapped with the sequences g, 1, and s. After assigning all the root
nodes d;, and e; of the IP-network, the input nodes of each EXOR gate in the IP-
networks will be activated from the AND outputs with the proper sequences so that

9 Low Cost C-Testable Finite Field Multiplier Architectures 319

) AND Plane
q ¢ s qr 9 rJqr § r/qe” S R q/"é
S 1/q s r/q r q/r q r
T
1 q/I' 1Pd3 q q/r r q/r K
74 e d I d
a3 EXOR Plane. ! 0
IP-Network
e € dy e e
L. . A /
N R RN
: s
BTX; | BTX,
BTX ¢ / ¢ p
0 @t ’ O-Network !

Fig. 9.7 Tree representation of nodes of Fig.9.1

no two inputs of each EXOR gate receive the same sequence vector. Figure 9.7
shows the sequence in which the vectors are applied in the circuit of Example 8.4
and how the test signals propagate through to the primary output. The following
algorithms outline this process.
Step-1: Assignment of the sequences g, r, and s to e;, where (0 < j <m —2).
Algorithm_seq_assignment_e

for (j =2:j =m:j++)
{
em—j) = 4:
em—(j+1) = T3
Cm—(j+2) =S

Example 9.4. For the multiplier circuit over GF(2*) shown in Fig. 9.8, the sequence
values at e, where 0 < j < 2 are assigned as follows: e; = g, e; =r, ey = s.

Step-2: Assignment of the sequences q, r, and s to d;, where (0 < i < m —1). After
assigning the sequences at the e; nodes in step-1, the sequences at di nodes, where
0 <i < m — 1, will be assigned in a such way that no two input nodes of each
EXOR gate receive same sequence vector in the Q-networks.

Example 9.5. Consider the BTX3 block of the Q-network in Fig. 9.7. As shown in
this figure, the nodes e, e, ¢p are assigned q, r, and s respectively. The nodes e,
and e; produce s at the output node. To propagate the signal value at c¢3 output node
q or r will have to be assigned at other input node of the gate connected with c;.

320 J. Mathew et al.

ky - ko

I(((l[

—
ay-day —

IPd,

e - ¢

BTX3 BTX, BTX; *% BTX,

s [[« Co

Fig. 9.8 Testable design of GF(16) multiplier

As e is already assigned s, d3 will have to be assigned either q or r to achieve either
r or q at the output node of the gate connected to the inputs ey and d5. In this way
the sequences at the d; nodes, where (0 < i < m — 1), are assigned as shown in
Fig.9.7.

Step-3: Assignment of the sequences q, 1, and s to the internal nodes of the IP-
network

After assigning the sequences at d;’s and e ;9, assign the input nodes of the
EXOR gates in the IP-network with proper sequence vectors so that no two inputs
of an EXOR gate receive the same sequence vector. To propagate the signal from
the d3 output to the final output c3, the d5 input is assigned either the sequence q or
s. Similarly d» = s orr; dy =ror q, dy = q or r. After assigning ¢;(0 < j < 2) and
d; (0 < i < 3) outputs, every EXOR gate in the IP-network is mapped. If the test
sequence 11, f, 13, t4 is applied, then the output lines of the AND gates connected to
control lines kg, k; and k; receive the sequence vectors q: 0110, r: 0101, and s:
0011 respectively.

Example 9.6. Consider the IPd3 block in the IP-network of Example 9.3 (see
Fig.9.7). The d3 node is already assigned with either q or r. If d3 is assigned with q,
then the input nodes of the associated gate with d as the output node will have to
be assigned with s and r respectively. If d5 is assigned r, then the input nodes of the
associated gate with d3 as output will have to be assigned s and q respectively. In this

9 Low Cost C-Testable Finite Field Multiplier Architectures 321

way the input nodes of the EXOR gates of all the IPd blocks are assigned with the
proper sequence vectors. After assigning the sequence vectors to each input node of
the EXOR gates at the first level, we will have to determine the proper connection
of control inputs kg, kj, and k,. In the AND plane 3-input AND gates are used,
instead of 2-input ones. One input of each AND gate is connected with one of the
control inputs ko, ki, and k, and the other two inputs are connected with the A
and B inputs respectively. One of the input nodes of each AND gate generating the q
sequence will be connected to the control input k. Similarly one of the input nodes
of each of AND gate generating the r sequence will be connected to the control input
k1. Again, one of the input node of each of AND gate generating the r sequence will
be connected to the k, control input.

Example 9.7. The internal mapping of the interconnections in the IP and Q-
networks of Example 9.7 is shown in Fig. 9.8, which is also the testable design
of the multiplier designed from the irreducible polynomial P(x) = x* + x> + 1.
The complete assignment mapping of the sequence vectors for this circuit appears
graphically Fig.9.7.

9.5.3 Constant Test Set

The output functions are the same as the original functions, i.e. the circuit will
perform in its normal mode, when ky = k; = k; = 1. EXOR part: All single
stuck-at faults can be tested by applying just four vectors at the inputs of Fig.9.4,
and by observing the circuit responses at the circuit outputs.

Lemma 9.3. Any single stuck-at fault in the EXOR-part of the network is testable
by vi,v2, V3, v4 tests.

Proof. Follows from the discussions in Sect. 9.5.2

AND-part, primary inputs, and control inputs: To test for a s-a-1 fault at an input
line of an AND gate, we set it to 0 and set the other two lines of this gate to 1 (each
AND gate has 3 inputs). Similarly to test for a s-a-0 fault in these gates, we set all
the inputs to 1.

Lemma 9.4. All single stuck-at faults in the AND-part, at the primary inputs,
are testable at the functional outputs of the multiplier circuit by the test set
(vs, ve, v7,8) of length 4 as follows, kokik,aoa ...au—1boby ... bypy—y = (vs5 :
0001...1...111...1, v¢ : 1110...0...011...1 v; : 1111...1...100...0,
vg=1111...1...111...1).

Proof. The AND part is tested for single stuck-at-1 faults by the first three vectors
(vs, vg, v7). Due to vg, v7, and vs all the 3-input AND gates receive the combinations
(1,0, 1), (1, 1, 0), and (0, 1, 1) respectively at their inputs. It can be seen that any
single s-a-1 fault at any input and output of any AND gate will propagate to the
functional outputs. The vector vs, i.e. the all-1 vector, detects any single stuck-at-0

322 J. Mathew et al.

Table 9.2 Gate count for different polynomial basis

Original implementation Testable implementation

of 2 inputs # of 2 inputs # of 3 inputs # of 2 inputs
Type of poly. AND gate EXOR gate AND gate EXOR gate
ESP m? m?—s m? m?—s
Trinomial m? m?—1 m? m?—1
Pentanomial m? m?+m m? m?+m

fault at the inputs and output of any AND gate. Hence the test set (vs, vg, V7, vg)
detects all the single stuck-at faults at the primary inputs and outputs of the AND
gates, and control inputs of the IP-network.

Theorem 9.3. Any single stuck-at fault in the proposed Multiplier network is test-
able by the constant test set Ty of length 8, where Ty = (v, v2, v3, V4, Vs, Vg, V7, Vg).

Proof. Follows from Lemmas 9.3 and 9.4.

Example 9.8. The constant test set of length 8 for the multiplier over GF(2*) with
the irreducible polynomial P(x) = x* + x3 + 1 is given as follows:kok kraoa aras
bob1bybs = (vi : 00000000000, v, : 11011111111, vz : 10111111111, vy :
OI111111111, v5 : 00011111111, vg : 11100011111, v; : 11111100000, vg :
I1111111111).

9.5.4 Gate Complexities

The gate complexities of the testable multiplier for different types of polynomials
are given in the Table 9.2. In this table, the value of s is 1 for All One Polynomial
(AOP) and m /2 for trinomial of the form (x™ 4 x* 4 1) where k = m/2. For
k # m/2, s = 1 for trinomial.

9.5.5 Experimental Analysis

We performed area, delay, power and test set size analysis on various GF(2")
multipliers based on different polynomial bases. The area, power and delay analysis
is based on UMC 0.18 pm CMOS technology library. All area measurements are
expressed in cell units, excluding the interconnection wires. The two versions
(classical and C- Testable Design) of Galois multipliers have been designed and
coded in VHDL. The design was simulated using Modelsim™ and was tested for
functionality by giving various inputs. The designs were synthesized using the
Synopsys tools. Synopsy’s Power Compiler™ was used to estimate the power
consumption. The comparative analysis of area, delay and power is shown in

9 Low Cost C-Testable Finite Field Multiplier Architectures 323

Area Analysis

- Original Design

- C-Testable Design
5000 | 9 ;

6000 T

4000 | -

um?)

~ 3000 | R

Area

2000 R

1000 R

4 8 16 32 64 128 256 512 1024
Galois Field Size

Fig. 9.9 Area analysis: original vs. C-testable version

Figs. 9.9-9.11 respectively. On an average there is 6% increase in area and power.
The delay overhead is negligible, when the overall delay of the multiplier is
considered.

The test set is constant of length 8, which eliminates the need for test generation
programs. Table 9.3 gives the number of test vectors obtained from different
schemes for single stuck-at faults to achieve 100% fault coverage. It shows that
our test set is much smaller than either the pseudo-random or the ATPG based test
patterns. Synopsys™ tools are used to generate the ATPG based test patterns. For
example, in both the schemes, the multiplier circuit over GF(23?) requires more than
68 patterns of length 64 bits to achieve 100% fault coverage, whereas our scheme
requires only 8 test patterns of length 64 bits. This also ensures reductions in test
application time and the associated power consumption.

9.5.6 Reduction of Control Pins

To achieve C-testability in the multiplier circuits, our proposed scheme discussed
in Sect. 9.5 requires three additional control pin. We can eliminate one of the pin
by introducing the following scheme. This requires only 7 vectors for detecting
all the single stuck-at faults, which is independent of the multiplier sizes, at the
cost of at most (2/3)m? extra 2-input EXOR gates (33% extra hardware overhead)
and two control inputs. This C-testable scheme for the GF(16) multiplier circuits
is shown in Fig.9.13. The EXOR part of the IP-network has been augmented

324 J. Mathew et al.

Delay Analysis
-9
2 X 10 T T T T T T T T T

18} I Original Design B
I C-Testable Design

1.6 R

1.4} g

12+ B

Delay (ns)

0.8} E

0.6 i

0.4} ,

0.2} i

4 8 16 32 64 128 256 512 1024
Galois Field Size

Fig. 9.10 Delay analysis: original vs. C-testable version

x10™ Power Analysis

[Original Design
I C-Testable Design

Power (uw)

4 8 16 32 64 128 256 512 1024
Galois Field Size

Fig. 9.11 Power analysis: original vs. C-testable version

9 Low Cost C-Testable Finite Field Multiplier Architectures 325

Table 9.3 Number of tests required for achieving 100% fault coverage

GF ATPG Pseudo Proposed
Multiplier #of i/ps, (Synopsys) random (C-testable)
GF(2%) 8,4 12 14 8
GF(2°) 10,5 14 17 8
GF(2%) 12,6 15 20 8
GF(27) 14,7 18 22 8
GF(2%) 16,8 20 24 8
GF(2°) 18,9 23 26 8
GF(2'%) 32,16 36 39 8
GF(2?%) 36,18 44 47 8
GF(2*) 48,24 52 55 8
GF(2%?) 64,32 68 71 8
Fig. 9.12 Testable GF A
multiplier with two control
inputs B
IP-Network : j
k1 lL_. - —,
ks
EXOR tree
Q-network
EXOR tree
Cm-1 Cm2 7 €1 €0

C

with some additional EXOR gates and two control lines, k; and k;. This scheme
exhaustively applies all the 4 input combinations (00, 01, 10, 11) to each of 2-
inputs EXOR gate. The generation of three-sequence vectors g, r, and s in single
output EXOR tree was explained in [11]. We have extended this concept in this
multi-output EXOR tree. The interconnection mapping of the IP- and Q-networks
has been done using the mapping technique in Sect.9.5.2. Figure 9.12 shows the
general structure of the testing scheme with two control inputs. By applying a
test apajazaszbob1bybs = t; : 00000000(#, : 11111111) to the primary inputs of
Fig.9.13, an all-zero (all-one) vector can be produced at the outputs of the AND-
part. If a test sequence 71, f, #1, 1 is applied, then all the EXOR gates at the first level
of the EXOR tree of the IP-network will receive the sequence q: 0110. To generate
the other two sequence vectors r: 0101 and s: 0011, we use a control level with a
few additional EXOR gates and two control inputs k; and k.

326 J. Mathew et al.

%) ‘1 €

Fig. 9.13 Testable design of GF(16) multiplier with two control pins

In the EXOR tree shown in Fig. 9.5, we assign sequence vectors q, 1, s, q, T, S, q,
r,... (by repeating the pattern (q, 1, s) to the inputs of the EXOR tree from left-to
right until all of them are assigned. The outputs of the first level are propagated down
to the root (final output of the tree). Thus, each EXOR gate in the tree receives the
desired four combinations 00, 01, 10, 11 as an input. The four universal test vectors
that are to be applied to the inputs of the tree are shown as a matrix Ttree in Fig. 9.5.
This matrix has four (constant) rows and y columns, where y is the number of leaf
nodes of the tree, which in our case, is equal to the number of AND outputs (m?)
in the multiplier circuit. The columns of the matrix, if seen from left-to-right, will
correspond to the sequence vectors: q, 1, S, g, I, S, (, I, and so on. The number
of distinct columns in the matrix is only three (constant), regardless of the size of
the tree.

9.5.7 Embedding an EXOR-Tree in the Single-Output
AND-EXOR Circuit

Since the EXOR-tree is embedded in the overall design as in Fig.9.12, the inputs
of the tree are not directly accessible. In the IP network, each AND output feeds
an EXOR input. Hence, by applying a test aod;...am—1bob1...bypy—1 = 1

00...000...0 (t, : 11...111...1) to the primary inputs of the Fig.9.12, an all-
zero (all-one) vector can be produced at the outputs of the AND-part. So, if a test
sequence f1,1,1,1, is applied, all the EXOR gates at the first level of the tree
will receive the sequence q: 0110. To generate the other two sequence vectors r:
0101 and s: 0011, we use a control level with a few additional EXOR gates and
two control inputs k; and k, as shown in Fig.9.12. By setting these control inputs
to 0, the original function can be obtained. In this design, the AND outputs are

9 Low Cost C-Testable Finite Field Multiplier Architectures 327

Table 9.4 Control logic for the EXOR-tree

O/p of Desired Value O/p of Desired Value

AND Tree o/p of k) AND Tree o/p of ky
0 0 0 0 0 0
1 1 0 1 0 1
1 0 1 1 1 0
0 1 1 0 1 1

partitioned into 3 groups based on sequence vectors q, r, s. The output lines of
the first group receiving the sequence vector q: 0110 are allowed to pass directly
through the control level to reach inputs of the EXOR tree. The AND outputs for
the other two groups (r and s) are passed through an additional EXOR gate, using
control input k; and k; respectively. By controlling the values of k; (k,) the desired
sequence vector r(s) can be obtained from q (Table 9.4. The modified EXOR-tree
(Fig.9.12) requires < [(2y/3)] additional EXOR gates for the control level.

9.5.8 Embedding XOR-Tree in Multi-output Multiplier Circuit

The above technique is applicable to single output AND-EXOR circuits. This
concept has been extended to the multi-output AND-EXOR circuits. To get 100%
testability, the inputs of the EXOR gates of the IP-network and Q-network will be
properly mapped. The mapping of the interconnections of the IP-network and Q-
network has been done on basis of the following steps.

e First, assign e,—»=q, €y—3 =1, ep—a=S, €y — 5=q, ey—c=T1, ey—7=S5,
en—g = (. It is assumed that e;, where 0 = j = m — 2 of IP-network (from
left) will generate the sequences q, 1, s, q, 1, S, q, €tc.

e Then map d;, where 0 = i = m-1, with proper sequence in such way that no two
inputs of each EXOR gate get the same sequence vector in the Q network.

* Assign inputs of EXOR gates in IP-network with proper sequence vectors so
that no two inputs of each EXOR gate of IP-network receive the same sequence
vector.

* The column vector with all 1s is assigned to output bit ¢,,—

We assume that the [P-network would generate the following sequence from the
left side: g, 1, 8, Q... , g, I, s, q and so on at the outputs ¢;, where 0 = j = m-2.
To propagate these e; outputs of IP-network at the outputs of Q-network, the d;
outputs, where (0 = i = m-1) will be properly mapped with the sequences of q,
1, s. After assigning all the root nodes of the IP-network d;, and e}, the inputs of
each EXOR gate in the IP-network will be activated from the AND outputs with
the proper sequences so that no two inputs of each EXOR gate receive the same
sequence vector.

328 J. Mathew et al.

Table 9.5 Details of

T f Pol ial # of AND # of EXOR
hardware for different ype ol -0 yToma 20 > >
polynomial basis ESP m [1.67m* —s]

Trinomial m? [1.67m?—1]

Pentanomial m? [1.67m? + m]

9.5.8.1 Constant Test Set

If we put kl = k2 = 0, then the output functions are the same as the original
functions. All the single stuck-at faults can be tested by applying just following
four vectors at the inputs of Fig.9.11, and by observing the circuit responses at the
functional outputs: kikyapaiarazbob1byby = (0000000000, O111111111,1011111
111, 11 00000000). All the single stuck-at faults at the control inputs k| and k; are
testable at the functional outputs of the multiplier circuits by the above test set. The
multipliers are multiple output positive polarity AND-EXOR networks. To test a
stuck-at-1 fault at an input line of an AND gate, we set it to 0 and set the other lines
of this gate to 1s. Similarly to test a stuck-at-0 fault in these gates, we set all the
inputs to 1s. All the single stuck-at faults in the AND-part at the primary inputs are
testable at the functional outputs of the multiplier circuit by the following test set
T2 of length 3: k1k2 a0ala2a3 bOb1b2b3 = (000000 1111,00 1111 0000, 00 1111
1111). Any single stuck-at fault in the proposed Multiplier network is testable by the
above constant test set of length 7. Gate Complexities: The gate complexities of the
testable GF multiplier for different types of polynomials are given in Table 9.5. This
C-testable design with two control pins requires approximately (2m?/3) EXOR
gates i.e., the upper bound of the extra hardware overhead is approximately 33%.

9.5.9 BIST Circuit

In this section, we present a simple on-chip BIST scheme for our proposed C-
testable design. The BIST scheme generates the required 8 vectors internally.
This BIST structure provides two benefits: firstly it eliminates the need for the
three control inputs necessary for fully testing the multipliers, and secondly it
provides an added level of security. Figure 9.14 shows the basic schematic of the
proposed BIST hardware. It constitutes 3 flip-flops and some combinational logic
to generate 8 test vectors. Area, delay and power of the BIST hardware are shown
in Table 9.6. The circuit is synthesized using the Synopsys™ design compiler based
on the 0.18 wm technology library from UMC. Note that for higher fields the logic
will remain same because the pattern remains the same. Only word length varies
depending upon m. For instance to generate the test set for GF(2""), only two
combinational logic block is necessary to generate a; and b;. In other words, all
the logic blocks for generating @; (0 < i < m — 1) remain the same, therefore the
logic can be reused with additional buffers to drive the inputs ;. Hence only 5 logic
blocks (ko, k1, k2, a; and b;) are necessary as shown in Fig.9.14. As an additional

9 Low Cost C-Testable Finite Field Multiplier Architectures 329

Fig. 9.14 Schematic of the
proposed BIST hardware

— bm-1
Table 9.6 Details of area, Technol A Del b
delay and power for BIST cchnology rea clay ower
hardware 0.18 216 um? 0.61ns 81.56 LW

advantage, instead of inserting additional buffers to drive @; and b; one could build
additional a; and b;, and a simple comparison of the a; (b;) will detect 1 bit errors.
The “enable” signal is used to activate the test process. The strength of the proposed
scheme is that it facilitates the detection of any potential error in the TPG itself
without compromising its performance in terms of fault coverage of the circuit.

Since we need 8 test vectors regardless of the size of the multiplier, both test
and response data are very small. Then the collected response can be analyzed with
a small on-chip hardware, or by a traditional Multiple-Input Signature Registers
(MISRs) [3,4,9] which can provide with a simple true or false response depending
on whether the circuits are faulty or not. Hence both the test pattern generation and
response evaluation can be embedded within the systems, thus eliminating the ATE.
Since the ATEs could require information on the internal structure of the systems,
or at least a reasonable amount of probing, this could be eliminated completely with
the added BIST scheme.

9.6 Chapter Summary

In this chapter, first, technique for generating test vectors for bit-parallel PB multi-
plier circuits over GF(2™). For an m-bit multiplier circuit a function independent
test set of length (2m+ 1) is sufficient to detect all the single stuck-at faults
in the AND part and multiple stuck-at faults in the EXOR part of multiplier
circuits. All the test patterns can be determined readily from the corresponding
algebraic forms, without any need of running an ATPG. The test set provides 100%
single stuck-at fault coverage. The test set being very short in length, reduces
test application time and test power. Also presented is a C-testable design of bit

330 J. Mathew et al.

parallel polynomial basis multipliers over GF(2"). The testable design requires
approximately 6% extra hardware compared to original mulitplier design without
testability and 3 control inputs. The only 8 constant test vectors are required for
achieving 100% testability of stuck-at faults. Since these multipliers have found
critical applications in cryptographic systems (e.g. Elliptic Curve Crypto (ECC)
systems) and requires public-key secure testing, we also presented BIST structures
for efficiently generating the required test vectors internally. The BIST structure
eliminates the need for the three control inputs necessary for testing the multipliers.

References

1. M.L. Bushnell, V.D. Agrawal, Essentials of Electronic Testing (Kluwer, New York, 2000)

2. H. Fujiwara, On closedness and test complexity of logic circuits. IEEE Trans. Comput 30(8),
556-562 (1981).

3. S.K. Gupta, D.K. Pradhan, A new framework for designing and analyzing bist techniques and
zero aliasing compression. IEEE Trans. Comput. 40(6), 743-763 (1991)

4. S.K. Gupta, M. Karpovsky, D.K. Pradhan, Aliasing probability for a multiple-input signature
analyzer and a new compression technique. IEEE Trans. Comput. 39(6), 586-591 (1990)

5. D. Hely, M.-L. Flottes, F. Bancel, B. Rouzeyre, N. Berard, M. Renovell, Scan design and secure
chip, in Proceedings of the 10th IEEE International On-Line Testing Symposium, Funchal,
2004

6. D. Josephson, S. Poehhnan, Debug methodology for the mckinley processor, in IEEE
International Test Conference, Baltimore, 2001, pp. 451-460

7. P. Kocher, R. Lee, G. McGraw, A. Raghunathan, S. Ravi, Security as a new dimension in
embedded system design, in Proceedings of the 41st Annual Conference on Design Automation,
San Diego, 2004, pp. 753-760

8. J. Lee, M. Tehranipoor, C. Patel, J. Plusquellic, Securing scan design using lock and key
technique, in IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems,
Monterey, 2005

9. D.K. Pradhan, Glfsr: a novel method for test generation in bist environment. IEEE Trans. CAD
239-247 (1999)

10. H. Rahaman, D.K. Das, B.B. Bhattacharya, Easily testable realization of grm and esop
networks for detecting stuck-at and bridging faults, in International Conference on VLSI
Design (VLSID 2004), Mumbai, Jan 2004

11. H. Rahaman, D.K. Das, B.B. Bhattacharya, Testable design of grm network with exor-tree for
detecting stuck-at and bridging faults, in ASPDAC 2004, Yokohama, 2004, pp. 224-229

12. H. Rahaman, J. Mathew, A.M. Jabir, D.K. Pradhan, Easily testable implementation for bit
parallel multipliers in GF(2"), in International Conference High Level Validation and Test
(HLDVT), Monterey, Nov 2006

13. S. Ravi, A. Raghunathan, S. Chakradhar, Tamper resistance mechanisms for secure embedded
systems, in Proceedings of the 17th International Conference on VLSI Design, Mumbai, 2004,
pp- 605-611

14. T. Sasao, Easilytestable realizations for generalized reed-muller expressions. IEEE Trans.
Comput. 46(6), 709-716 (1997)

15.S. Scheiber, The best-laid boards, http://www.reed-electronics.com/tmworld/article/
CAS513261 (2005)

16. E.M. Sentovich, Sis: A Sequential System for Sequential Circuit Synthesis. Technical Report
UCB/ERLm92/41, Electronic Research Laboratory, University of California, Berkeley, May
1992

http : //www.reed - electronics.com/tmworld/article/CA513261
http : //www.reed - electronics.com/tmworld/article/CA513261

9 Low Cost C-Testable Finite Field Multiplier Architectures 331

17. Standard test access port and boundary-scan architecture. IEEE Standard, 1149.1-2001

18. K. Tiri, I. Verbauwhede, A vlsi design flow for secure side-channel attack resistant ics, in
Proceedings of the Design, Automation and Test in Europe, Munich, 2005, pp. 58-63

19. B. Yang, K. Wu, R. Karri, Scan based side channel attack on dedicated hardware imple-
mentations of data encryption standard, in International Test Conference, Charlotte, 2004,
pp. 339-344

20. B. Yang, K. Wu, R. Karri, Secure scan: a design-for-test architecture for crypto chips,
in Proceedings of the 42nd Annual Conference on Design Automation, San Diego, 2005,
pp. 135-140

Index

A
Advanced microprocessor bus architecture
(AMBA), 172
Application task
mapping, 180, 181, 183, 186, 188,
190-194, 196, 201, 202, 206, 217,
218, 221
scheduling, 217, 218, 221
Approximate computing, 118, 121-123
Architecture allocation, 180, 202-205
ATPG. See Automatic test pattern generation
(ATPG)
Automated synthesis, 289-291
Automatic test pattern generation (ATPG),
308, 309, 315, 316, 323, 325, 329
Availability, 2, 5,7

B

Bio-inspired systems, 241-265

Biological synapses, 242, 250, 265

Birth and death process, 12, 31, 32, 60, 84

Bit parallel multiplier, 277, 278, 281, 282, 285,
289, 290, 297, 298

Bridging fault, 5

Built-In Self Test (BIST) circuit, 308, 328-329

C

Caches, 139, 141-143, 151, 157, 163, 164

CAM. See Content addressable memory
(CAM)

CED. See Concurrent error detection (CED)

CFC. See Control flow checking (CFC)

Clock gating, 104, 107

Common-cause system, 77-81

Concurrent error detection (CED), 278, 282

Constant failure rate, 64, 82

Constant test set, 321-322, 328

Content addressable memory (CAM),
143-144, 147, 164

Control flow checking (CFC), 244, 246

Control pins, 308, 323-326

Core mapping, 217

Crosstalk, 242, 245, 253, 258-262, 265

C-testable, 307-330

D

DED. See Double error detection (DED)

Delay fault, 6-7

Delay model, 118

Design-for-test (DFT), 307, 308

Design optimization, 174-177, 181-206

Design-time synthesis, 218

Design trade-offs, 100, 101

Difference set (DS) codes, 151, 155-161, 163,
164

Digital signal processor (DSP), 170, 171, 178

Double error detection (DED), 289-291, 305

DPM. See Dynamic power management
(DPM)

DRAM. See Dynamic random access memory
(DRAM)

DS codes. See Difference set (DS) codes

DSP. See Digital signal processor (DSP)

DVES. See Dynamic voltage frequency scaling
(DVES)

Dynamic power dissipation, 102-103

Dynamic power management (DPM), 3, 4

Dynamic random access memory (DRAM),
142-143, 163-164

Dynamic voltage frequency scaling (DVES), 3,
4,99, 112,171, 175, 181

J. Mathew et al. (eds.), Energy-Efficient Fault-Tolerant Systems, 333
DOI 10.1007/978-1-4614-4193-9, © Springer Science+Business Media New York 2014

334

E

EG codes. See Euclidean geometry (EG) codes

Electronic system-level (ESL), 206

Embedded systems, 1

ESL. See Electronic system-level (ESL)

Euclidean geometry (EG) codes, 151, 153-156,
158, 159, 163, 164

F
Factorizing netlists, 293-294
Failures in time, 5
Fault
correction, 137-165
coverage, 242, 246, 247
detection, 217, 222, 225, 229, 309-315
detection techniques, 242-244
injection, 181, 184185, 198
models, 5, 6
tolerant design, 211-237
tree analysis, 11, 12, 15, 20
Field programmable gate arrays (FPGAs), 211,
222-224, 228
system, 262, 265
Finite field multipliers, 269-305, 307-330
Flash memory, 139, 144
Forward error correction (FED), 301
FPGAs. See Field programmable gate arrays
(FPGAs)
Freund’s model, 12, 16, 27-31

G
Galois field, 270, 271, 279, 290, 300, 301

H

Hamming codes, 147, 278

Hardware description language (HDL), 173

Hardware implementation, 242, 248,
262-265

Hardware redundancy, 2, 7

Hardware/software co-design, 177-179

HDL. See Hardware description language
(HDL)

Heterogeneous cores, 213, 214

I

Information redundancy, 7-8

Instruction set architecture (ISA), 170, 171
Intelligent techniques, 265

ISA. See Instruction set architecture (ISA)

Index

J
JTAG boundary, 307

K
k-out-of-n systems, 13, 31, 84

L

LDPC. See Low density parity codes (LDPC)

Load-sharing system, 12, 13, 77-81

Low density parity codes (LDPC), 285-289,
298, 299, 305

Low power design, 1

M

Many-core systems, 241

Markov chains, 12, 13, 3141, 50-52, 58, 59,
65,77, 82

Markov model, 11, 12, 31-60

Mean time-between-failures (MTBF), 5

Mean time-to-failure (MTTF), 4, 5, 99, 114,
115

Mean time-to-repair (MTTR), 5

MPSoC. See Multiprocessor system-on-chip
(MPSoC)

Multi-bit error correction codes (ECCs),
150-152, 157, 158, 162-165

Multiple channel system, 255-258

Multiple error detection, 298-301

Multiple-input signature registers (MIARs),
329

Multiple V4 design, 106

Multiplier architectures, 307-330

Multiprocessor system-on-chip (MPSoC),
169-177, 180-190, 192, 196-200,
202, 203, 205, 206

N

Network interfaces (NIs), 216-218,
225,228

Network-on-chip (NoC), 212-224

Network topology, 212, 217

NIs. See Network interfaces (NIs)

NoC-based multiprocessor, 251

NoC interconnect, 241-265

(0]

OLS codes. See Orthogonal latin square (OLS)
codes

On-chip communication architecture, 170-173,
175

Index

OpenCL framework, 224
Orthogonal Latin square (OLS) codes,
151-154, 157-159, 162-164

P

Parallel encoder, 301-304

Parallel systems, 11, 21, 22

Parity prediction, 270, 277-285, 287, 288, 290,
291, 296, 298-300, 302

PB. See Polynomial basis (PB)

Permanent faults, 4, 7, 283-284

Platform efficiency, 219-220

Poisson process, 12, 23, 31-33, 35, 41-50, 54,
63, 67,68,72,74,77

Polynomial basis (PB), 270-277, 298, 302,
309, 322, 328, 330

Power gating, 104

Power minimization, 3, 99, 104-111, 114-118

Primitive polynomials, 270, 273-275, 286,
287, 295, 296, 298

R

Real-time systems, 242, 247, 248, 262, 263,
265

Reconfigurable systems, 211-237

Reed-Solomon (RS) codes, 143, 151, 163,
301

Registers, 137-142, 146, 147, 162, 164

Reliability, 2, 4, 5,7

Reliability model, 12, 13, 23, 61-77

Reliable design, 2, 4-8

Routers, 212, 213, 216-218, 222-224, 226,
228-230, 233, 234

RS codes. See Reed-Solomon (RS) codes

Run time fault detection, 230

S

Scan chain, 307

SEC-DED codes. See Single error correction
and double error detection
(SEC-DED) codes

SER. See Soft error rate (SER)

Series systems, 17, 22-23

SEUs. See Single event-upsets (SEUs)

Single channel system, 251, 253-255

Single error correcting codes, 277, 278, 285,
286, 298

Single error correction and double error
detection (SEC-DED) codes,
147-151, 155, 158, 161-165

335

Single event-upsets (SEUs), 4, 175, 184—188,
190-195, 198-205

Single parity check (SPC) codes, 146-147,
162, 164

SMART strategy, 251-253, 263, 265

SoC. See System-on-chip (SoC)

Soft error rate (SER), 5

Software reliability models, 12, 13, 61-77

SPC. See Single parity check (SPC) codes

Spiking neural networks, 241, 247-250

SRAM. See Static random access memory
(SRAM)

Static power (Py,) dissipation, 2, 3, 103-104

Static random access memory (SRAM), 142,
163, 164

Stochastic process, 11, 13, 31-33, 41, 50, 62,
67-69

Stuck-at fault, 5, 308-311, 313-316, 321-323,
328-330

Stuck open fault, 6

Synthesis, 289-296, 305, 307

System gap, 173-174

System-level technique, 8

System-on-chip (SoC), 1-3, 211-213, 215,
219,222

T
Task graph, 217, 218, 220, 225, 234, 235, 237
Technology scaling, 1, 3, 6, 7, 104, 105, 114,
119, 265
Test
set, 308-310, 314-316, 321-323, 328, 329
vector, 307-310, 315, 317, 323, 326,
328-330
Time redundancy, 7
Timing error, 114, 117-121
Timing speculation (TS), 118-121
Transient fault, 4, 6, 7
TS. See Timing speculation (TS)

\'%

Voltage island(s), 170, 171

Voltage island design, 106

Voltage scaling, 181-183, 186, 188-190, 192,
194-200, 202, 205

W
Watchdog processor, 244, 246

	Foreword
	Preface
	Contents
	Acronyms
	Chapter
1 Introduction to Energy-Efficient Fault-Tolerant Systems
	1.1 Energy-Efficient Design
	1.2 Faults and Reliable Design
	References

	Chapter
2 Reliability Evaluation Techniques
	2.1 Introduction
	2.1.1 Definitions of Reliability

	2.2 Combinatorial Methods
	2.2.1 Independent Components
	2.2.1.1 Three Basic Structures
	2.2.1.2 Reliability Block Diagram
	2.2.1.3 A Bridge Structure
	2.2.1.4 A Non-i.i.d. k-out-of-n:F System
	2.2.1.5 Fault Tree Analysis
	2.2.1.6 Order Statistics
	2.2.1.7 Linear Combinations of Reliability of Series Systems

	2.2.2 Dependent Components
	2.2.2.1 The Model of Marshall and Olkin
	2.2.2.2 Freund's Model

	2.3 Markov Models
	2.3.1 Basic Properties of Stochastic Processes
	2.3.2 Markov Chains
	2.3.2.1 Transition Probabilities
	2.3.2.2 Chapman-Kolmogorov Equations
	2.3.2.3 Stationary Distributions
	2.3.2.4 Classification of States
	2.3.2.5 First Hitting Probability
	2.3.2.6 A Criterion for Recurrent and Transient
	2.3.2.7 Examples of Recurrent/Transient
	2.3.2.8 Ergodic
	2.3.2.9 Limiting Probabilities in Finite-State Markov Chains

	2.3.3 Poisson Processes
	2.3.3.1 Poisson Process
	2.3.3.2 Interarrival Time and Arrival Time Distributions
	2.3.3.3 Some Examples of the Poisson Process
	2.3.3.4 The Order Statistic Property
	2.3.3.5 Nonhomogeneous Poisson Process
	2.3.3.6 Some Properties of NHPP

	2.3.4 Birth and Death Processes
	2.3.4.1 Chapman-Kolmogorov Equations
	2.3.4.2 Infinitesimal Generator
	2.3.4.3 Steady-State Probabilities
	2.3.4.4 Eigenvalue Approach
	2.3.4.5 Kolmogorov Backward/Forward Equations
	2.3.4.6 Birth Process
	2.3.4.7 Death Process
	2.3.4.8 Birth and Death Processes

	2.4 Software Reliability Models
	2.4.1 Introduction
	2.4.2 Taxonomy of Software Reliability Models
	2.4.3 The JM Model
	2.4.4 I.I.D. Order Statistic Models
	2.4.5 Time Between Failures Models
	2.4.6 NHPP Models
	2.4.7 Self-exciting Point Processes
	2.4.7.1 Self-exciting Point Process
	2.4.7.2 Classification of SRGMs
	2.4.7.3 A Self-exciting and Mixture Model

	2.5 Examples
	2.5.1 A Model for Load-Sharing System with Common-Cause Systems
	2.5.2 A Shared-Load k-out-of-n:G Repairable System
	2.5.3 A Dependent Model for Fault-Tolerant Software Systems During Debugging
	2.5.3.1 Model Assumptions
	2.5.3.2 The Proposed Model
	2.5.3.3 Expectation of Failures
	2.5.3.4 Reliability
	2.5.3.5 Estimation of Parameters
	2.5.3.6 Example

	References

	Chapter
3 Energy-Efficient Design Techniques
	3.1 Introduction
	3.2 Preliminaries
	3.2.1 Optimization Objectives
	3.2.2 Power Versus Energy
	3.2.3 Power Models
	3.2.3.1 Dynamic Power Dissipation
	3.2.3.2 Static Power Dissipation

	3.2.4 Power Minimization Methodology

	3.3 Circuit Level Power Minimization Techniques
	3.3.1 Transistor Sizing
	3.3.2 Technology Mapping
	3.3.3 Supply Voltage Scaling
	3.3.4 Clock Gating
	3.3.5 Input Vector Control
	3.3.6 Multi-threshold Designs

	3.4 System Level Power Minimization Techniques
	3.4.1 General Purpose Processors
	3.4.2 Embedded Systems

	3.5 Impact of Power Minimization Techniques on Reliability
	3.5.1 Hard Error
	3.5.2 Soft Error
	3.5.3 Timing Error

	3.6 Emerging Energy-Efficient Design Techniques
	3.6.1 Timing Speculation
	3.6.2 Approximate Computing
	3.6.3 Adaptive Power Management
	3.6.4 Case Study
	3.6.4.1 Motivation
	3.6.4.2 Background on Q-Learning
	3.6.4.3 System Framework
	3.6.4.4 Learning Algorithm

	3.7 Conclusion
	References

	Chapter
4 Error Correction Coding for Electronic Circuits
	4.1 Introduction
	4.2 Protection Requirements of Electronic Circuits
	4.2.1 Registers
	4.2.2 Register Files
	4.2.3 Caches
	4.2.4 SRAM Memories
	4.2.5 DRAM Memories
	4.2.6 Content Addressable Memories (CAMs)
	4.2.7 Flash Memories
	4.2.8 Interconnections

	4.3 Error Correction Codes for Electronic Circuits
	4.3.1 Single Parity Check (SPC) Codes
	4.3.2 Single Error Correction Double Error Detection (SEC-DED) Codes
	4.3.3 Multi-bit Error Correction Codes
	4.3.3.1 Orthogonal Latin Square (OLS) Codes
	4.3.3.2 Euclidean Geometry (EG) Codes
	4.3.3.3 Difference Set (DS) Codes
	4.3.3.4 Enhancing the Use of Multi-bit ECCs for Circuit Protection

	4.3.4 Emerging Codes and Error Correction Schemes

	4.4 Selection of Error Correction Codes for Electronic Circuits
	4.4.1 Registers
	4.4.2 Register Files
	4.4.3 Caches
	4.4.4 SRAM Memories
	4.4.5 DRAM Memories
	4.4.6 Content Addressable Memories (CAMs)
	4.4.7 Interconnections
	4.4.8 Summary

	4.5 Conclusions
	References

	Chapter
5 System-Level Design Methodology
	5.1 Multiprocessor System-on-Chip
	5.1.1 On-Chip Communication Architectures
	5.1.2 MPSoC Design Challenges
	5.1.2.1 System Gap
	5.1.2.2 Programming Model and Prototyping
	5.1.2.3 Design Optimization
	5.1.2.4 Runtime System Management

	5.2 Hardware/Software Co-design
	5.2.1 Overall System Specification
	5.2.2 Architecture Allocation
	5.2.3 Application Partitioning and Task Mapping
	5.2.4 Task Scheduling
	5.2.5 Energy Management and Evaluation

	5.3 Case Study: Power- and Reliability-Aware Design Optimization
	5.3.1 System Model
	5.3.1.1 Architecture Model
	5.3.1.2 Application Model
	5.3.1.3 Fault Injection Model

	5.3.2 Impact of Task Mapping on Reliability
	5.3.3 Proposed Design Optimization
	5.3.3.1 Power Minimization
	5.3.3.2 Soft Error-Aware Application Task Mapping
	5.3.3.3 Iterative Assessment

	5.3.4 Experimental Results
	5.3.5 Architecture Allocation
	5.3.6 Concluding Remarks

	References

	Chapter
6 Fault-Tolerant Reconfigurable On-Chip-Network
	6.1 Introduction
	6.2 NoC-Based MPSoC
	6.2.1 Cores
	6.2.2 NoC

	6.3 NoC-Based MPSoC Design
	6.3.1 Design-Time Synthesis
	6.3.2 Major Problems in Statically Designed NoC
	6.3.2.1 Dynamism in Applications
	6.3.2.2 Platform Efficiency Degradation
	6.3.2.3 Fault

	6.4 Reconfigurable NoC
	6.4.1 Application-Level
	6.4.2 Protocol-Level Reconfigurability
	6.4.3 Hardware-Level Reconfigurability

	6.5 Case Study: Network on Reconfigurable Chip
	6.5.1 NoRC Architecture
	6.5.2
	6.5.3 Dynamically Fault-Tolerance in NoRC
	6.5.3.1 Fault Detection

	6.5.4 Fault Effects
	6.5.4.1 Mapping a Task Manager
	6.5.4.2 Mapping a Task
	6.5.4.3 Energy Model

	6.5.5 Experimental Results

	References

	Chapter
7 Bio-Inspired Online Fault Detection in NoC Interconnect
	7.1 Introduction
	7.2 Related Work
	7.2.1 Fault Detection Techniques
	7.2.1.1 Circuit Level Approaches
	7.2.1.2 System Level Approaches

	7.2.2 Fault Detection in Networks-on-Chip (NoC)
	7.2.3 Spiking Neural Networks and EMBRACE
	7.2.3.1 Spiking Neural Networks
	7.2.3.2 Embrace

	7.2.4 Key Challenges

	7.3 SMART Strategy
	7.4 Analysis
	7.4.1 Single Channel Wires
	7.4.2 Multiple Channel Wires
	7.4.3 Synchronous Registers Under Faulty Conditions
	7.4.4 Channels with Crosstalk

	7.5 Hardware Implementation of the FDU
	7.6 Summary
	References

	Chapter
8 Power-Efficient Fault-Tolerant Finite Field Multiplier
	8.1 Introduction
	8.1.1 Finite Field
	8.1.2 Polynomials Over Finite Fields
	8.1.3 Bases of Finite Field

	8.2 Polynomial Basis Addition and Multiplication
	8.3 SEC Multiplier: Based on Hamming Code
	8.3.1 Design Procedure Parity Prediction Bits
	8.3.1.1 Comparisons with Other Approaches

	8.3.2 Permanent Faults

	8.4 Fault-Tolerant Multiplier Using LDPC Code
	8.4.1 Design Procedure

	8.5 Experimental Results
	8.5.1 Comparisons Delay Overhead

	8.6 SEC and DED Multiplier: Automated Synthesis
	8.6.1 Area Overhead

	8.7 Synthesis and Optimization
	8.7.1 Decomposing from SGPDD
	8.7.2 Factorizing Netlists
	8.7.3 Optimizing Netlists

	8.8 Experimental Analysis
	8.9 Multiple Error Detection
	8.9.1 Design Procedure

	8.10 Multiple Bit Error Correction
	8.10.1 Reed-Solomon Code
	8.10.2 Parallel Encoder
	8.10.3 Improvement in Robustness

	8.11 Chapter Summary
	References

	Chapter
9 Low Cost C-Testable Finite Field Multiplier Architectures
	9.1 Motivation
	9.2 Introduction
	9.3 Fault Detection Technique
	9.3.1 Tests for the EXOR Part
	9.3.2 EXOR Part in the Q-Network
	9.3.3 Test Set for the AND-Part of IP-Network

	9.4 Experimental Analysis
	9.5 C-Testable Scheme
	9.5.1 Testability in Single Output EXOR Tree
	9.5.2 Embedding EXOR-Tree in Multi-output Multiplier Circuit
	9.5.3 Constant Test Set
	9.5.4 Gate Complexities
	9.5.5 Experimental Analysis
	9.5.6 Reduction of Control Pins
	9.5.7 Embedding an EXOR-Tree in the Single-Output AND-EXOR Circuit
	9.5.8 Embedding XOR-Tree in Multi-output Multiplier Circuit
	9.5.8.1 Constant Test Set

	9.5.9 BIST Circuit

	9.6 Chapter Summary
	References

	Index

