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Preface

This book presents topics in discrete biomathematics, by promoting and exploring
new approaches at the borders between biology and discrete mathematics. Its main
claim is that, starting from the general principles of molecular biology discovered
in the last century, an informational perspective could give hints and solutions to
some of the challenges posed by biological problems. This approach is not new in
biology. A remarkable example of deductive reasoning, in biological investigation,
is the booklet written by Schrodinger in 1945 entitled “What is life?”. In a few
pages, by means of a lucid chain of general arguments, Schrodinger deduced that
the information responsible for heredity has to be encoded inside cells by a kind of
molecular structure that he defined “aperiodic crystals” (in essence, a surprising an-
ticipation of what was discovered a few years later). The scientists who discovered
the DNA structure in 1953 were impressed by Schrodinger’s analysis, and surely it
was a strong motivation in the achievement of their results. The current situation of
science encourages a revival of such an approach. In fact, in the last century the cru-
ciality of information in living processes became more and more clear. Mathematics
has been widely used in modeling biological phenomena. However, the molecular
and discrete nature of basic life processes suggests that many aspects underlying the
logic of these processes follow principles which are intrinsically based on informa-
tional mechanisms.

Computer science is essential for the elaboration of huge amounts of biological
data. For example, it was essential in genome sequencing. However, science is not
only data processing. If we want to disclose the deep logic of basic mechanisms of
life, we need new scientific theories, and therefore new conceptual frameworks. Dis-
crete mathematics, algorithms, and computational approaches are good candidates
for introducing new scientific ideas in life sciences. For this reason the discipline
evoked by the title of this text, Infobiotics, is viewed as the reverse side of Bioinfor-
matics. The two roots “info” and “bio” are inverted in these words. In bioinformat-
ics the biologists ask computer scientists to assist them in elaborating the data they
obtain. Conversly, in infobiotics computer scientists and mathematicians provide bi-
ologists with explanations and theories which biologists need to verify by means of
specific experiments. As I like to say, life is too important to be investigated only
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by biologists. Computers are essential for processing data coming from biological
laboratories, but many crucial questions about life can be appropriately answered by
a substantial intervention of mathematicians, computer scientists, and physicists, in
order to complement the work of chemists, biochemists, and biologists, The role of
computer scientists cannot be limited to the use of computers, in the same manner
as physicists are essential to astronomy not only in connection with telescopes.

An example of “mental experiment”, similar to Schrodinger’s approach, is
Galileo’s argument (reported by Alfred Whitehead in his Introduction to Mathe-
matics) against the Aristotelian principle that heavier bodies fall faster than lighter
ones. Galileo’s reasoning is a masterpiece of logical analysis, which was the be-
ginning of mechanics and of the scientific revolution initiated in the 17th century.
Galileo showed that Aristotle was wrong by means of the following argument. Let
H and L be two bodies, such that H is heavier than L. Let us assume that Aristotle
is right, and let us link H with L, by means of very thin string, thus obtaining a
new body H+L, which we drop to the ground from a higher position. If L is slower
to fall, then it provides a force which slows down the fall of H. This means that
H+L falls slower than H. But, this contradicts Aristotle’s claim because, of course,
H+L is heavier than H. This contradiction confutes Aristotle’s claim. Galileo proved
experimentally the validity of his argument (with the famous experiment from the
leaning tower in Pisa), however the motivation of that physical experiment had its
conceptual support in the previous mental experiment.

In many aspects Darwin’s arguments for his theory of evolution, based on natural
selection, have an analogous conceptual rigor in taking into account the evidence of
crucial factors related to species (the fitness principle of living organisms, the geo-
logical transformations, the inheritance of biological characters, and the Malthusian
population growth).

When we read texts of biology describing cell structures and functions, we are
immediately overwhelmed by the huge amount of things and facts. But let us re-
verse the situation, by assuming that we are asked to create life starting from some
basic kinds of organic molecules. How can we manage in order to provide some ba-
sic functions? How can we keep them together by ensuring some transformations?
How can we maintain them, by ensuring some input/output channels, and by inte-
grating them in a stable manner? Any answer to these general questions inevitably
leads to the notions of metabolism and replication, which, in any possible biologi-
cal realization, are logically necessary for basic phenomena on which life relies. A
basic feature of cell function is the genes/proteins duality. Does this duality have
an intrinsic necessity, implied by some more basic principles? Solving such kind
of problems is not an abstract logico-mathematical exercise. Appropriate answers
to these questions could provide important clues to facts which are relevant from a
biological and medical viewpoint. These answers cannot be obtained from millions
of data, or better, they may require a lot of biological and computational experi-
ments, but surely they need to be driven by mental experiments resembling Galilean
analysis of falling bodies.

Paraphrasing Spinoza’s famous masterpiece (“Ethica more geometrico demon-
strata”), infobiotics could be regarded as a a kind of biology “more geometrico
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demonstrata” and should be strictly related to artificial life, computational synthetic
biology, and natural computing. However, these other disciplines follow different
lines of investigation. Artificial life, initiated by John von Neumann and Robert
Langton, concerns the realization of artificial computational systems exhibiting typ-
ical properties of living organisms (von Neumann’s cellular automata were designed
as auto-replicating devices). Computational synthetic biology is more specifically
involved in the simulation, in silico, of life phenomena, while natural computing in-
vestigates the computational capabilities of natural systems. Of course, infobiotics
can take advantage of all these disciplines, but its main aim is the identification of
the informational mechanisms driving life phenomena. We know that life relies on
information, but so far we know very little about the specific aspects of biological
information.

Starting from the basic organic molecules, the first attempts at life appeared only
when some special biopolymers emerged, which were able to encode information.
Thus, if life is based on information, discrete mathematics and informatics must be
crucial in the analysis of biotic systems as forms of life that we know, but also of
forms that we do not know, or that are so far unrealized.

Infobiotics is aimed at considering life, in a wide sense, with the “glasses” of
information. This book tries to show that discrete structures, algorithms, languages,
grammars, and automata are strictly related to life structures and processes, to genes
and proteins, enzymes and ribosomes, species and biological dynamics.

Verona, May 2012 Vincenzo Manca
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Topics in Discrete Biomathematics



Platonic Tetrahedron

Discrete Information and Life

Abstract. Information and life are intrinsically related and many challenges for
a deep understanding of life phenomena require analyzing the role of informa-
tion, and its specific mechanisms, in biological systems. In this chapter, the main
kinds of discrete informational structures will be informally presented in many bi-
ological contexts where they occur: sets, sequences, multisets, trees, and graphs,
which are mathematically defined and analyzed in the second part of the book, are
here seen as fundamental mechanisms of aggregation and organization of biological
components.

1.1 Symbols and Molecules

A univocal and clear definition of information is almost impossible. Information,
as energy, matter, time, space, and life are such pervasive notions that any precise
characterization of them necessarily misses aspects which are crucial for any com-
prehensive understanding of their nature. For this reason, it is useful to start with
an informal idea to which we can anchor our initial intuition. We encounter in-
formation in data, which are physical objects, and can be transformed, stored, and
transmitted. But they are meaningful when seen as containers of some kind of “in-
formation”. This sounds clearly tautological, therefore, we need to add something
to avoid vacuity. Data, recognized by some “agents”, have the capability of direct-
ing and regulating their actions. In other words, they direct actions. When a flag
movement or a trumpet sound is executed, then soldiers attack the enemy. The more
complex are the actions, the more the information system regulating them has to be

V. Manca: Infobiotics, ECC 3, pp. 3-26]
DOI: 10.1007/978-3-642-36223-1 1 (© Springer-Verlag Berlin Heidelberg 2013



4 1 Discrete Information and Life

complex. No system can exhibit a complex behavior, without a reliable system of
data processing. This is the reason why living organisms need sophisticated mecha-
nisms of data manipulation.

Information occurs with data transformations, while energy occurs with states
transformations. Information needs energy for transforming, sending, receiving, and
storing data, but simultaneously, it may control actions. In those cases where it does
not provide a direct control of actions, it can be always located in a chain of effects
which terminates with a control, or a potential control. For example, some keys in
a computer keyboard send signals with direct effects to some device (for example,
a printer), while pushing other keys provides only the memorization of characters
somewhere (by forgetting their side effects on the screen). Typically, a document
does not have a direct effect of data transformation, but it is aimed at provoking
or evoking actions. Moreover, very often, the effects of some data are not easily
definable, because their information can act at different levels. For example, the
production of a book could have effects at the level of the book market, but also
effects in the diffusion of ideas and consequent behaviors.

The term “discrete” in mathematics refers to any aggregation of objects where
components are clearly distinguishable. A finite set of objects is the simplest exam-
ple of a discrete structure. A segment, considered as a subset of points on a line is an
example of “continuous” structure, because the geometrical representation of lines
assumes that in the middle between two points there are other points, and moreover,
that infinite intermediate points can be found with an endless process of resolution
refinement. Space and time are usually modeled as continuous magnitudes. This is
probably an idealization, with respect to the physical reality, but it provides pow-
erful mathematical concepts for their analysis. The surprising results of classical
physics (mechanics and electromagnetism) are based on continuous mathematical
structures (real numbers, limit process, differential calculus). The 19th century con-
cluded (Planck’s famous quantum theory is dated November 1900) with the discov-
ery of the discrete nature of matter and energy (the origin of Dalton’s atomic theory
is dated September 1803).

Information is discrete when data are based on discrete mathematical structures
(the fundamental ones are presented in the second part of this book). Digital infor-
mation is the discrete information, which refers to data realized by sequences of
digits (elements of a finite set).

Data are represented by means of symbols, which are physical entities. Their
physicality is an intrinsic aspect of their nature; even the abstract symbols of math-
ematics introduced for algebraic manipulation need a physical realization, that is, a
quantity of matter/energy in order to be produced and perceived. A finite set of sym-
bols (digits, characters, letters, signs) is called an alphabet. The English alphabet
has 26 letters. Most alphabetic writing systems have around 20-30 characters (Ar-
chaic Latin has 21 letters). The chemistry alphabet of Mendeleev’s table is given by
the symbols of atomic species (around 100 elements): {H,He,Br,...,C,O,N,...}.
The alphabet of amino acids is of 20 symbols (21 including one stop symbol). The
alphabet of the usual Indo-Arabic decimal notation has ten digit symbols.
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The DNA nucleotide alphabet consists of four symbols {A,T,C,G}, while the
RNA nucleotide alphabet is {A,U,C,G}. The binary alphabet has two symbols. A
bit, usually denoted by an element of {0,1}, is an element of a binary alphabet.
Computer keyboards have around 80 keys. Striking them (one, two, or sometimes
three of them) a character is generated belonging to an alphabet of 128 standard
elements (ASCII characters) plus another 128 characters with specific usages. Any
of these 256 characters can be represented by a sequence of eight binary symbols,
called a byte. Table[I.T] collects some important examples of alphabets.

Table 1.1 Important alphabets

Binary Alphabet {0,1}

Number Decimal Alphabet {0,1,...,9}

DNA Alphabet {A,T,C,G}

Archaic Latin Alphabet 21 letters

Amino acids Alphabet 21 letters (including stop symbol)
Chemistry Alphabet Around 100 symbols

Minimal Computer Keyboard Alphabet Around 80 characters (text + control)

A definition of life is even more difficult than that a definition of information.

Life, in a full sense, includes at least seven essential features: i) birth, ii)
nutrition (feeding resources from the environment, expelling degraded sub-
stances), iii) growth, iv) interaction (with stimuli from/to the environment),
v) reproduction, vi) death, and vii) evolution.

The first five features refer to the individual living organisms, seen as particular
instances of life, in time and space. The last two features refer to populations of
living organisms instantiating forms of life, which by means of their cycles of birth-
reproduction-death realize a second level dynamics, providing, along the arrow of
time, a tree of life, that is, a “genealogy” of life species (at least one individual must
reproduce for the survival of the population and all individuals eventually die).

Life exhibits a tremendous complexity of interacting processes which, at dif-
ferent levels, have to communicate for reaching successful realizations of specific
functionalities. The complexity of this underlying dynamics needs information.

Life emerged only when an efficient system of data processing was possible
at molecular level.

In fact, the fundamental discovery of the past century was the molecular struc-
tures and processes which life is based on. Molecules are discrete structures built on
atoms.
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In the middle of the 19th century, the discovery of DNA structure [63]], and its
informational and digital nature, introduced a new level in the analysis of life phe-
nomena [[1]]. From this perspective, discrete information becomes the basis of crucial
molecular processes inside the cell, and it follows that their logics can be completely
understood if their symbolic role is recognized. In fact, DNA molecules represent
symbols, and the discrete nature of these molecules implies the digital nature of pro-
cesses involving them. Biochemistry provides nanotechnological support to sym-
bolic elaborations, which follow principles analogous to those of formal systems
investigated in formal language theory or mathematical logic.

1.1.1 Molecules and Protocells

According to some cosmological evaluations, at very beginning, about 10'° years
ago, and in a time interval between around 10~** and 10735 seconds, at a tempera-
ture near 107 Celsius degrees, matter appeared as subatomic particles. After a very
short fraction of one second, they aggregated into the simplest atoms, from Hydro-
gen to Helium, Lithium, Beryllium, Boron, Carbon, Nitrogen, Oxygen, Fluorine,
and Neon (the list is only an exemplification reporting the first period of Mendeleev’s
table) [3]. Then, the simplest organic molecules of hydrocarbons (carbon aggregated
with hydrogens) appeared. In fact, the carbon atom has a structure which implies an
enormous combinatorial power of aggregations (we do not enter into more details,
but this aspect is related to its specific “tetravalent” nature). From hydrocarbons the
organic molecular evolution starts, which is the basis for the emergence of life.

The more complex organic molecules are constituted by carbon, hydrogen, oxy-
gen, nitrogen, and other crucial atoms (for example, phosphorus, sulfur, iron, cal-
cium, potassium, sodium, chlorine). They are capable of providing a very rich
catalog of chemical aggregations (hydrocarbons, alcohols, ethers, esters, amides,
amines, fatty acids, and other organic groups) [4].

The prebiotic molecular evolution is the process at the end of which, from these
basic organic molecules, more complex molecules emerged, which provided the
basic pieces for the chemical realization of polymers and membranes [6,[199].

Protocells are biomolecular aggregations which:

i) separate an inner region from the external environment, by means of mem-
branes, ii) select within this internal region some kinds of molecules, iii) concen-
trate the molecules which are inside, for a better chemical interaction, iv) protect
the internal space from external disturbances to the internal activity, and v) take
matter from outside and expel matter outside for feeding the internal processes and
eliminating matter which degrades or is dangerous to the internal activity.

These five points, referring to the compartmentalization of molecules, are real-
ized by membranes. However, point ii) is not enough for an efficient realization of
chemical transformation. In fact, vicinity in space is important, but some agents are
necessary which recognize reactants and speed up their reactions, that is, which play
arole of catalysts. This role can be played by complex molecules, able to discrimi-
nate forms. Linear polymers provide a solution to this complex task. By using some
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“ports” controlling the input/output flux of molecules, protocells maintain a stable
flux of in-coming and out-going matter, in order to ensure that internal chemical
species are kept within certain specific quantitative ranges. However, in this kind of
protocell, two essential requirements of life are missing: growth and reproduction.
When protocells exhibit some primitive form of these features, then they are close
to cells.

The basic problem of protocell realization is: keeping the introduction-trans-
formation-expulsion ability, and keeping the membrane structure separating the ex-
ternal environment from the interior space. It is important to realize that even these
easy actions are not as simple as they may appear at a first glance. In fact, they
are performed without any intervention of external agents. This is not so trivial if
only molecules are available for performing all these tasks. In fact, some kinds of
molecules have to be arranged in order to construct membranes, some have to con-
trol selectively the input/output (ensuring that only certain molecules can enter and
only certain others can exit), and some molecules have to direct the chemical trans-
formations. The problem becomes even more challenging if we consider that any
kind of matter aggregation, the more complex it is, the more easily it is subjected to
degradation, therefore, after some time (depending on the kind of aggregation), it is
naturally destined to be destroyed, or to lose its functionality.

1.2 Sequences and Polymers

Sets or classes (in this context we use these terms as synonyms) are collections of
distinct objects. A set is completely specified by the elements which belong to it,
and if it has a finite number of elements, then it is completely described by a list of
them. In this list, the appearance order of the elements is not relevant, and moreover,
each element has to appear once.

Consider the set of decimal digits {0,1,2,3,4,5,6,7,8,9}. If we arrange them in
the following way:

314159265358979

we have the first 15 digits (decimal dot is omitted) of the decimal representation
of m (the ratio between any circle and its diameter). Here, two aspects are different
with respect to sets: some symbols occur many times and the order of symbol oc-
currences is relevant. Structures with a linear arrangement of components, possibly
occurring many times, where the order and the number of occurrences is relevant
are called sequences. They are expressed in many ways, for example, by putting the
occurrences between parentheses and by separating them by commas:

(3,1,4,1,5,9,2,6,5,3,5,8,9.7,9)

however, what is essential is a clear indication of the order and the number of oc-
currences. The total number of the elements occurring in a sequence, counting the
repetitions, constitutes its length. In general, sequences are referred to a preliminary
fixed set. For example, the sequence above is a sequence over the set of decimal digits.
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It is easy to realize that the number of sequences grows exponentially with re-
spect to their length. For example, the number of sequences of length 100 over
20 elements is 20'%, that is, a number overcoming any possibility of enumeration,
within the whole existence of the universe. Therefore, the aggregation of basic kinds
of molecules, in linear arrangements, opens an enormous possibility in the search of
complex molecules. In fact, it provides a space of molecular variability which life
can explore in the search of the complex molecular functions for assembling living
organisms, starting from molecules.

Polymers are sequences over a set of component molecules called
monomers. They have a crucial relevance in fundamental mechanisms of
life, and are the molecular basis of replication, which is essential to life
reproduction.

1.2.1 LUCA and the Sequence Paradox

What we described in Sect.[[.T.1]is more precisely a prebiotic protocell. It is only
able to maintain, for some time, an introduction-transformation-expulsion ability.
However, another feature is missing for the passage from a prebiotic protocell to a
cell in a full sense: the reproduction in two similar organisms which, in turn, are able
to perform the same task. Surely, many attempts of reproduction happened, but over
time, the reproductive ability of descendants degraded in two possible ways: 1) they
lost the reproductive ability due to some internal degradation, or ii) the environment
changed and they were not able to survive. This means that, among a huge number
of attempts, possibly in different places, and in different times, life emerged, in a
full sense, when a protocell was able to produce descendants for a sufficient number
of generations. One lineage acquired the property of generating stable progenies.
Therefore:

Cells originating from that ancestor protocell, called LUCA (Least Universal
Common Ancestor) are the cells of the life we know. This event is dated
around 3.8 billions of years ago.

A different possibility for the origin of life would suggest a different scenario
where the process outlined above happened many times, providing different sources
of life. In this case, it is possible that different LUCAs cooperated, in some way,
by exchanging some molecules, by keeping a sort of similarity, and surely a kind of
competition was established, in sharing common resources [[7]. On the contrary, if no
cooperation/competition had been established among biotic protocells, then almost
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certainly, the lineages originating from them would have followed very different
paths. This situation seems nowadays confuted by the fact that all the known forms
of life exhibit an evident common molecular basis.

A famous paradox related to polymers, attributable to Eigen [137], is called
the sequence paradox and is related to the impossibility of producing replicating
polymers with a length greater than the inverse percentage of replication error. That
implies the impossibility of improving the replication efficiency beyond a fixed
threshold (around 100 units according to Eigen’s theory). In fact, the ability of a
faithful auto-replication improves with the complexity of the polymers, and con-
sequently, with an increment of their length (longer programs are more powerful
than short programs). This means that replicating polymers need to be sufficiently
long in order to replicate without errors, and to keep this special property. But, at
the same time, the longer sequences are, the more errors are cumulated during their
replication (increasing the length of a text, the errors in copying it increase too).

Life had to solve the sequence paradox, and other paradoxes, in order to emerge
from the prebiotic chemistry, and in order to evolve toward more complex
organisms.

However, even if science discloses some important aspects of these paradoxes,
probably no rational reconstruction can completely disclose all the reality of life’s
mystery.

1.3 Multisets and Membranes

The notion of multiset is something between sets and sequences. In fact in a multiset
an element can occur more then once (zero times means that it does not occur), but
the order of occurrences is not relevant. A standard way for denoting this multiset
is the multiset polynomial notation such as:

2a+3b+c.

The non-negative number of occurrences of an element a in a multiset X is also
called the multiplicity of a in X and we denote it by:

X(a).

We write:
aeX

if X(a) > 0, that is, when a occurs in X. Of course, a set is a multiset where all
its elements occur with multiplicity 1. A multiset Y is included in a multiset X if
Y(a) < X(a), for every a € X. In this case, we write also ¥ C X.

Sequences and multisets over a set A, called also the support of these structures,
can be seen as particular functions. In fact, a sequence can be seen as a function from
a subset of natural numbers (position from 1 to the sequence length) to elements of
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a set, while a multiset can be seen as a function from a set to a subset of natural
numbers (the multiplicities assigned to the elements of the set).

A sequence o of length n over A is a function: ¢ : {1,2,...n} — A

A multiset X over A, where any element occurs at most n times, is a function:
X:A—{0,1,2,...n}.

A very useful notation which assumes many meanings, in dependence on the
context where it occurs, is the absolute value sign | |. When it is applied to a (finite)
set, X, then |X| means the number of elements of X, also called cardinality (in set
theory it extends also to infinite sets, providing transfinite cardinal numbers). For a
sequence o, the expression |ct| denotes the length of o, while for a (finite) multiset
X, notation |X| denotes its size, that is, the sum of the multiplicities of all elements
occurring in X.

Given an order among the elements of a finite set A of cardinality n, any finite
multiset X over A, is completely identified by the numeric sequence, of length
n, of the multiplicities that the elements of A have in X (according to the order
fixed over A). In this sense, finite multisets coincide with finite sequences of
numbers.

The main principles of aggregation and selection mechanisms, on which life is
based, rely on the basic discrete mathematical structures of sequences and multisets.
We claim that many choices of life for realizing its strategies of expansion and
development are intrinsic to the informational logic of these fundamental structures.

1.4 Chemistry Multisets

Any molecule is a multiset of atoms providing a stable physical structure. In
molecules, multiplicities are indicated by indexes, thus CO, has the same meaning
of C + 20. Chemical substances are multisets of molecules. In fact, 100 molecules
of CO; correspond to a multiset of molecules (100 copies of the same molecule).
A quantity of 12 grams of Carbon dioxide CO, is a multiset of about 6.2 x 1023 of
CO;, molecules.

Chemistry suggests some natural operation on multisets. Firstly, given two mul-
tisets X, Y over a set A, their multiset sum X + Y can be defined by setting that, for
any a € A, the multiplicity of a in X 4 Y is given by:

(X+Y)(a)=X(a)+Y(a)



1.4 Chemistry Multisets 11

where, for the sake of simplicity, the same symbol +, which aggregates elements in
multiset polynomial notation, here denotes the multiset sum operation.

Multiset sum is, of course, commutative and associative, that is for any multisets
X.,Y.Z:

X+Y=Y+X
X+Y)+Z=X+(Y+2).

The multiset without elements is denoted by @ (which also denotes the empty set).
Multiset multiplication m: - X of a multiset X, over a set A, by a natural number
m is defined by the following equation:

(m-X)(a) =m-X(a)

where symbol - on the right hand denotes the product between numbers. If we
identify an element a as a multiset of a single object (with multiplicity 1), then
m-a = ma, that is, for single multisets, multiplication can be identified with multi-
plicity.

Multiset operations naturally occur in chemistry. In fact, a chemical reaction is
an operation transforming a multiset of molecules (reactants) into another multiset
of molecules (products).

A chemical reaction is usually denoted by an ordered pair of two multisets, with
an arrow between them:

Reactants — Products

A reaction such as:

X+Y =27

can be viewed as an operation which takes the molecules, viewed as multisets of
atoms, X and Y and transforms them into the multiset 2Z. The elements on the left
of the arrow are also called substrates of the reaction.
Let us consider a reaction of n reactants X1, X», ... X,, and m products Y1,Y>,...Y,,:
The so called stoichiometric balance of such a reaction is the procedure which
provides the minimum multiplicities (if they exist) hy,ho, ... hy, k1, ko, .. .k, of reac-
tants and products such that:

(h1~X1) + (hz'Xz) —‘r(han):(kl ~Y1) + (kz ~Y2) —‘r...(km-Ym)

The law of multiple proportions is one of the fundamental laws of stoichiometry
and was first discovered by the English chemist John Dalton in 1803. The law states
that when chemical elements combine, they do so in a ratio of whole numbers:
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In any chemical reaction, the coefficients of the reactants and products are
always multiples of some positive integer coefficients, which are called stoi-
chiometric coefficients.

This principle is a consequence of the fact that molecules are multisets of atoms
and the atoms in each molecule occur with an integer positive multiplicity, therefore,
for the conservation principle, the multisets of atoms corresponding to molecules
have to occur with positive integer multiplicities. The Italian scientist Avogadro
introduced a number as a standard value for indicating a population of molecules.
Its value corresponds to the number of hydrogen molecules contained in one gram
of this substance, its value was estimated as (the two digits between parentheses are
the standard deviation of the last two digits):

6.02214179(30) x 10%.

A concrete example of stoichiometric coefficients, for balancing a chemical reac-
tion, is given by one of the most important reactions for life. The sugar glucose
Ce(H20)6 and oxygen O, are formed from water H,O and carbon dioxide CO;,, by
means of chlorophyll synthesis. In this case, the stoichiometric coefficients which
provide the chemical balance are the following (the light energy is converted into
the chemical energy of glucose, which, burning in presence of oxygen, reverts the
process by producing energy):

6CO, +6H,0 — C6(H20)6 +60,.

1.5 Liposome Membranes

If we need to put together a number of molecules of some types, we need to collect
them in a space containing them. A realization of this compartmentalization is bio-
logically provided by liposomes. They are membranes realized in a very simple and
efficient manner, by using a special kind of organic molecules, called phospholipids,
which, put in the water, are subjected to two opposite forces. In fact, they are asym-
metric, with one head and one tail. The head part is hydrophilic, while the tail part is
hydrophobic. In the water, they can solve the hydrophilicity versus hydrophobicity
contradiction by aggregating each one, side by side, in such a way that all heads re-
main externally in contact with water, while the tail of any phospholipid is opposite
to the tail of another phospholipid (see Fig.[[.T). In this way, a “bilayer” structure is
realized, where tails remain dry, while heads are wet.

The emergence of life requires that a number of reactions may work, and persist
for some time. Reactions need membranes where reactants are collected as multisets
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of molecules, spatially concentrated and protected from external noises. In conclu-
sion, the following statement summarizes the biological cruciality of membranes.

Membranes built by phospholipids need water, and stable reactions need
membranes, therefore life, as we know it, needs water.

.- Hydrophilic head

Aqueous
solution

“Hydrophobic tail

Fig. 1.1 The schema of a liposome (GNU Free Documentation License)
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Fig. 1.2 Aggregation according to phospholipid bonds (top) and to phosphodiester bonds
(bottom)

Figure[T.2 shows the two fundamental kinds of biological aggregations. The one
at the top is typical of biological membranes. The one at bottom refers to DNA
molecules. Both aggregations are based on double links. But, in phospholipids
we have a bilayer schema where firstly bilayer double monomers of type: (head-
tail)+(tail-head) are realized, and then these double monomers become elements
of aggregations along all directions (almost) parallel with the axis passing through
their heads. In this way, two surfaces, having heads externally, are in contact with
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Fig. 1.3 Stylized images of phospholipid aggregation of bilayer monomers around their
head-head axis

Fig. 1.4 A semi-complete liposome aggregation with a tail-uncovered border

water, while double tails are waterproofed by the double tails around them in the
bilayer aggregation. The two surfaces showing the heads of double monomers pro-
vide one internal and one external spherical surface (sphere is the minimum surface
enclosing a given volume). The second arrangement develops according to a bi-
linear schema. In this case, firstly a linear catenative arrangement is realized by
sequences of type: (head-tail)+(head-tail). .. +(head-tail), then two lines are paired
(at least in regular situations). In this case, pairing can be established only between
two corresponding monomers of the paired lines, by means of a specific molecular
bond between them (having complementary types, see Fig. [[LI3). A crucial aspect
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Fig. 1.5 Two semi-complete liposome aggregations that provide a membrane by joining their
tail-uncovered borders

explaining the difference between the spherical and bilinear shapes is given by the
symmetric nature of double monomers with respect to their head-head axis, in op-
position with the asymmetric nature of the head-tail monomers which are catenated
in the two lines. DNA monomers, as will be explained in the next chapter, are asym-
metric with respect to the head-tail axis, and along this direction can be established
a pairing only with another monomer. Therefore, the double DNA arrangement is
a “bilinear concatenation”, in opposition to the liposome arrangement which is a
“bilayer (closed) convolution”. As will be explained in the next chapter, under very
general hypotheses, bilinear catenative arrangements will provide helical shapes.

Another crucial difference between phospholipid and DNA aggregations is due
to the kind of molecules that they aggregate. In the phospholipid case, there is only
one type of head-tail monomers, while in the DNA case there are four different
head-tail monomers. This is the reason for the enormous number of combinatorial
possibilities for DNA molecules.

We conclude with the following statement.

Both aggregations of phospholipids and DNA molecules are based on asym-
metric monomers. Phospholipid aggregation is based on homogeneous bilayer
double monomers, which are symmetric with respect to the head-head axis.
DNA aggregation is based on heterogeneous double linear concatenation of
monomers, which are asymmetric with respect to the head-tail axis.

1.6 Populations and Hypermultisets

Chemistry deals with multisets at two different levels. In fact CO; is a multiset over
the set {C, O}, while 6CO, + 6H,O0 is a multiset over the set {CO,,H,O}. In other
words:

6CO,+ 6H,0 = 6(C+20)+6(2H+ 0).
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In general, the notion of multiset can be considered at any level, because multisets
of second level can be considered as objects which can be aggregated by providing
multisets of third level, and the same kind of construction can be iterated. We re-
serve the word population for denoting multisets of the first level, while the term
hypermultisets is used for multisets at a level greater than one. Therefore, a pop-
ulation over a set A is a multiset of elements which belong to A, and a multiset of
level kK > 0, over a set A, is a multiset of elements which are multisets of levels lower
than k (over A).

Populations are ubiquitous in life phenomena, at any level, from populations of
molecules, to populations of organisms and species. However, the peculiarity of
membranes is that they provide a biochemical counterpart of parentheses of mathe-
matical constructs. In fact, when molecules are put inside membranes, these become
elements of other aggregation levels, where they are elements (possibly occurring
in many copies) of a second level multiset. We note the following statement empha-
sizing the structural role of membranes.

Membranes constitute the biochemical realization of hierarchical multiset ag-
gregation of biological components.

If we consider an atom as a multiset of subatomic particles, that is, protons, neu-
trons, and electrons, then a molecule such as CO; is a multiset of two levels:

CO,=C+20=(6-(p+n+e))+2(8 - (p+n+e)).

Analogously to hypermultisets, we can consider hypersets and hypersequences
(however, this is not standard terminology). A hyperset is a set including sets as
its elements. For example, {a,{a,b}} includes as element {a,b} which is the set
of elements a and b. A hypersequence is a sequence of sequences. For example,
(a,(a,b),(a,(a,b))) is a hypersequence. Any sequence can be represented by a hy-
persequence constituted by pairs (sequences of length 2). For example (a,b,c) can
be represented by ((a,b),c). The notion of level for hypersets and hypersequences
can be defined as in the case of hypermultisets. It is easy to realize that hyperstruc-
tures are expressed, up to here, using parentheses. For example, a hypersequence of
level two has two levels of parentheses. This concept is the basis of hierarchies, and
trees are the mathematical concept behind any notion of hierarchy, as we show in
the next section.

Before considering trees and graphs in basic structures of life, let us conclude
regarding the intertwined roles of membranes and polymers. The basic mathemati-
cal structure underlying molecules and reactions are multisets. Efficient realizations
of chemical reactions require complex molecules facilitating and driving them (en-
zymes), and a compartmentalization of molecules in order to select, concentrate, and
protect all the elements involved in reactions. Membranes provide the biological so-
lution to compartmentalization, and polymers, which are sequences of monomers,
provide the enormous molecular variety and complexity within which molecular
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functionalities can be found for life finalities. Membranes and polymers are gener-
ated by suitable mechanisms of biochemical aggregation. However, only the aggre-
gations that are involved in processes of organisms able to survive, reproduce, and
evolve, are maintained by life genealogies. In conclusion, aggregations in space,
based on the mathematical structures of multiset and sequence, are selected along
time for life propagation and evolution. Tables and [[3] and Fig.[[.6 summarize
and visualize basic aspects of biological aggregation.

Table 1.2 Basic mechanisms of matter organization

Aggregation  Stability in space
Selection Stability in time

Table 1.3 Correspondence between basic mathematical and biochemical aggregations

Multisets Membranes
Sequences Polymers

{?»EL»{}»D&
i

Fig. 1.6 The basic aggregation mechanisms of life: membranes and polymers
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1.7 Trees and Hierarchies

A natural way to express a hypermultiset, built from some initial elements, is by
means of diagrams such as those given in Fig. [[71 Each level of aggregation cor-
responds to a closed plane curve embracing the elements which are aggregated,
possibly occurring in many identical copies. Moreover, the 2-dimensional nature of
this kind of diagram represents adequately the lack of order among the components
inside each closed curve. The diagram at the bottom of Fig. [[.7]is a diagram of a
rooted tree, a typical structure representing genealogies. The root is the node at
the top of the diagram (the origin of the genealogy), and each element that is the
parent of some child node is an internal node (the root is an internal node), while
other nodes, called leaves, do not have child nodes, and the nodes having the same
parent are sibling nodes (some authors use the masculine designation “father, son,
brother”, while others use the feminine designation “mother, daughter, sister” in-
stead of parent, child, sibling”). Terms ancestor and descendant refer to nodes that
are the beginning and the end, respectively, of a chain of parent-child relationship
(another way of expressing a tree is by means of a parent function, assigning to any
node different from the root its parent node).

Life tree represents the hierarchical structure of classification of living organ-
isms. The tree of Fig. [[.8] (http://en.wikipedia.org/wiki/Phylogenetic _tree) is a life
evolution tree.

The trees of Fig. show the difference between prebiotic and biotic trees. The
biotic tree has leaves connected to the Last Universal Common Ancestor by an un-
interrupted genealogical chain going from it down to the current living organisms.

@ @ DCOD S

aab aabaab ac ac 3¢

Fig. 1.7 The membrane diagram of the multiset 3[2a + b] + 2¢ + 3[a + ¢] on the top, and the
tree diagram of the same multiset on the buttom
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Phylogenetic Tree of Life
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Fig. 1.8 Life as a tree, reconstructed by ribosome RNA sequencing (Credit: Nasa Astrobiol-
ogy Institute, Public Domain)
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Fig. 1.9 The left tree is a pre-biotic evolution which ends. The right tree is a biotic evolution
with non-ending paths.
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1.8 Graphs and Interactions

A molecule is built over a multiset of atoms, but this multiset does not provide all
the information about the relations holding among its atoms. In chemistry, the mul-
tiset of a molecule is also called molecular formula, while the structural formula is
a graph, that is a set of nodes connected by edges or arcs (usually drawn by lines
or curves, oriented or not, and possibly tagged with specific data). Two molecules
having the same molecular formula, but different structural formulae are called
isomers.

A graph is the mathematical abstraction of point-line (or point-arrow) diagrams.
In any context where some entities are related, possibly in many different ways,
graphs naturally emerge. Mathematically speaking, a graph is a set of “arrows”
(edges, arcs), each of which connects two nodes (tags, or marks may be associated
to nodes and/or arrows). The terminology of graphs is very intuitive and all the
important features of a graph, such as path, cycle, degree, component can be mathe-
matically expressed by using the basic notions of set, sequence, multiset, operation,
and relation. For example, a path is a sequence of nodes, where consecutive nodes
are connected by an edge. A graph is connected if any two nodes are connected by
some path. A cycle is a path where the first node coincides with the last one. A graph
is acyclic if it does not have cycles. The graphs which are connected and without
cycles are also called unrooted trees.

From an unrooted tree, a rooted tree can be univocally obtained by choosing one
node as root. Connection and absence of cycles ensure this possibility. In fact, any
node has to be connected to some other node. Therefore, from the chosen root we get
its sons and, iteratively, from them we get other nodes until we reach some leaves.
No node can be reached twice, because the graph is assumed without cycles.

1.8.1 Graphs of Molecule Structures

Molecules are graphs where nodes are atoms (or atom aggregates) and edges are the
chemical bonds among atoms (some tags can be added to nodes and/or edges for
expressing specific properties of chemical interest, such as the types or strengths of
bonds). For example, a basic components of RNA and DNA molecules are pentoses,
sugar molecules constituted by carbons and water molecules. Ribose CsH|(Os is a
pentose which includes five carbons and five molecules of water (H,0). The posi-
tions of the five carbons in pentoses are identified by primed numbers. Deoxyribose
CsH 00y derives from ribose by removing an Oxygen in position 2’.

Figure represents the graph of the structural formula of a nucleotide, the
basic component of DNA polymers. It is constituted by three parts:

1. deoxyribose,
2. nitrogenous base (adenine in Fig. [L.10),
3. phosphate group PO;.
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In the graph of Fig. nodes are atoms or groups of atoms, and edges represent
the chemical bonds between them. Table [[L4] gives the complete list of Nitrogen
Bases, which correspond to the letters of DNA and RNA alphabets.

In the deoxyribose molecule, Carbon at position 1’ is connected to the nitroge-
nous base. Position 2’ is where Oxygen is missing, respect to ribose, and position 5’
is the position where Carbon shares an Oxygen with the phosphate group. Bases are
connected by means of a bond between Nitrogen and Carbon (a glycosidic bond)
which is established by liberating a water molecule.

When a nucleotide is linked to another nucleotide, then phosphate group becomes
the bridge between the 5" Carbon with the 3’ Carbon of the other nucleotide. In this
link, OH molecule at position 3’ of pentose (deoxyribose in DNA case, or ribose in
RNA case) is replaced by an Oxygen of the phosphate group.

Table 1.4 The nitrogen Bases of DNA. Uracil substitutes Thymine in RNA.

Adenine A Cs5HsNs
Guanine G CsHs5N,0,
Thymine T C5H6N202
Cytosine C C4Hs5N30
Uracil U  C4H4N, O

It is interesting that the nucleotide corresponding to the letter A of the DNA al-
phabet has a crucial role from the point of view of biological energy. In fact, the
Adenosine triphosphate is constituted by the adenine nucleotide, where deoxyri-
bose is replaced by ribose and the phosphate group is a triphosphate (see Fig.[[.12).
This molecule is the so-called unit of energetic currency in biomolecular trans-
formations. When energy is required, then a reaction, from ATP to the molecule
ADT (Adenosine diphosphate, with a diphosphate group) is simultaneously associ-
ated, which liberates both a phosphate group and an energy quantity (7 Kcal/mole
at 37° Celsius). Figure shows this transformation, which is essentially an
operation transforming a connected graph into another one with two connected
components.

RNA structure is similar to that of DNA, with the only difference that in RNA
the basic components are ribonucleotides (in a ribose the Carbon at 2’ binds
H,O0 instead of H;). Ribo-nucleotides concatenate each other, by providing RNA
strands.

DNA nucleotide concatenate in double strands, according to the schema of Fig.
where a nucleotide of a strand is paired with a nucleotide of the other strand
if the two corresponding bases are a complementary pair. The two complementary
pairs are {A,T} and {C,G} (a pairing of a DNA strand with a RNA strand is also
possible, according to the complementarity {A,U }, {C,G}). The three principles of
this molecule arrangement are: bilinearity, complementarity, and antiparallelism.
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Fig. 1.10 The graph of the structural formula of Adenine nucleotide. The atoms of Carbon
in positions 1’,2’,3/ 4’ are not indicated.

1.8.2 Graphs of Reactions

Molecule structures are represented by graphs, but even chemical reactions acting
cooperatively and competitively over some substances are helpfully represented by
reaction graphs. A chemical reaction is naturally represented by means of a multi-
edge, which extends the notion of edge, because it has a set of source nodes and a set
of target nodes (it can be represented by a body with possibly many tails and many ar-
rows, as it is illustrated by Fig.[T.T4). Namely, in a chemical reaction many reactants
are connected to many products. Multigraphs, which are based on Multi-edges, can
be also seen as graphs with two kinds of nodes (circles representing substances and
full circles representing reactions), and with two types of edges (tail edges and head
edges). Figure[[.T4l describes chemical reactions expressed by a multigraph.
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H

Adenine (&) Guanine (&)

Purine bases (two rings)

.
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i T A ’!

H \N/ A \Nf \0 ‘N/ ®0)
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Cytosine (C) Thyrrine (T) Uraul( )

Pyrimidine bases (one ring)

Fig. 1.11 The Nitrogenous bases
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Fig. 1.12 The transformation from ATP to ADT molecule. On the right, an excess of Hydro-
gen ions is present, which is not indicated.

P OH
z A z
P P
z c G z
P P
z G c z
P P
z A z
OH P

Fig. 1.13 The schema of a DNA double strand, where Z denotes the sugar, P the phosphate,
and A, T. C, G the bases

r4

B—e—O

Fig. 1.14 A chemical reaction as a multigraph
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1.8.3 Neuron Graph

The structure of our brain is a graph built on a networks of about 10! nodes (neu-
rons) connected by means of 10'* edges (synapses). Figure reports an origi-
nal drawing by Ramon y Cajal, the Spanish scientist who discovered the neuron,
on the basis of a visualization technique introduced by the Italian scientist Camillo
Golgi (both scientists received the Nobel prize for their discoveries), while Fig.
(http://www.sciencecases.org/split_brain/split_brain.asp) provides a schematic rep-
resentation of its structure.

| ')' 2
[ E g
il

Fig. 1.15 An original drawing of a neuron by Ramon y Cajal

Tendenes

O : g M e

Fig. 1.16 A schematic structure of a neuron (Credit: National Institute on Drug Abuse)
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Dendrytes

Synapse

Fig. 1.17 A kind of graph corresponding to a neuron structure

Fig. 1.18 The structure of an artificial neural network

Neurons suggested one of the first computation models elaborated by McCul-
louch and Pitts in 1943 [9], which was the basis of circuits of the EDVAC com-
puter designed by John von Neumann in 1945 [207]]. Artificial Neural Networks
(ANN) became popular, in many variants, in typical problems of artificial intel-
ligence (recognition, learning, classification, and robotics) [8]]. Fig. shows a
graph representing a general kind of neural network. In this case, nodes are dis-
posed in successive levels (columns of nodes, usually from left to right). Edges
connect nodes of one level to nodes of the next level, and are labeled with numerical
coefficients called weights. A node contains a current value (initially it may be some
default value). The current values of nodes change in time according to the follow-
ing strategy. A activation function is associated to each node. The current value of
a node is passed, to the connected nodes of the next level, after multiplying it by
the corresponding weights of the connecting edges. The weighted values passed to
a node are given as arguments of the activation function of the node, and the result
becomes the new current value of the node. In this way, when some input values
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are given as current values of the leftmost nodes, after a number of steps, depend-
ing on the number of levels of a given ANN, the current values of the rightmost
nodes provide the output values of the ANN in correspondence to the given input
values. In this sense, an ANN with n input nodes and m output nodes computes
a function from numerical n-sequences to numerical m-sequences. A typical prob-
lem of ANNs is the following inverse problem: given a set of k pairs (X;,Y;), for
i=1,2,...,k, where X; and Y; are input and output sequences, finding an ANN able
to provide, in the most faithful way, the given correspondence, that is, providing the
best approximating function that underlies the given input-output pairs.
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Strings and Genomes

Abstract. Strings constitute the mathematical structures of informational biopoly-
mers. Genomes are long strings (hundreds of thousands, or millions, or billions
of characters) built over the four nucleotides, and many typical operations over
genomes are naturally expressed by string operations. In this chapter we present
basic concepts about DNA molecules and genomes in algorithmic terms, by empha-
sizing the roles of strings, formal languages, and multisets of strings in the anal-
ysis of typical biological and biotechnological DNA manipulations. We conclude
by outlining some research lines of genome analysis which are based on genomic
dictionaries. The chapter is mostly based on the author’s published papers (see
References for Chapter 2).

2.1 Biological Monomers and Polymers

Words of written alphabetic languages are the most usual intuition of symbolic lin-
ear forms. However, if we were to create, at a biomolecular level, structures similar
to words, then we would experience an essential difficulty. In fact, letters are ar-
ranged over an external rigid support (paper) maintaining their linear arrangement
stable and robust despite the movements of the support, while molecules are float-
ing in a liquid environment. Therefore, we need a different way to arrange them. In
other words, the linearity has to be implemented by means of a feature internal to
molecules. This is the reason for the following structure which is common to the
most important biological monomers: body, head, tail, flag, and bridge. The body is
the component of the monomer to which head, tail, and flag are connected. The link

V. Manca: Infobiotics, ECC 3, pp. 27-103]
DOI: 10.1007/978-3-642-36223-1 2 (© Springer-Verlag Berlin Heidelberg 2013
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between two monomers is obtained by connecting the head of a monomer with the
tail of another monomer in a resulting component which is the bridge of the com-
posed structure. When the link is performed we get a polymer, or more precisely a
dimer, having a head and a tail: the head is the head of the monomer which fused its
tail in the bridge, while the tail is the tail of the monomer which fused its head in the
bridge (see Fig. Z.land Fig. 2.2). In this construction we have a result the linear ar-
rangement of the two flags of the linked monomers, and we can continue the process
by linking, in the same way, the obtained polymer with another monomer or with
another polymer. This means that the flag is the variable component of monomers,
or what makes its specific role in the construction of polymers.

The reader is invited to verify that this structure is present in the nucleotide given
in Fig. where the body is the sugar, the head and also the bridge is the phos-
phate group, the tail is the oxhydryl group OH in 3’, while flags are the nitrogenous
bases.

For peptides we have that the body is a Carbon-Hydrogen group, the head is the
amine group NH,, the tail is the carboxyl group COOH, the bridge is the group
CONH, and flags are the 20 peptide residues.

\‘\\ bridge

\
\
\
A
\
\

________________

&

Fig. 2.1 The structure of a biological monomer

2.2 DNA Strings and DNA Helix

DNA molecules realize a special structure of strings. For this reason, DNA ma-
nipulation can be formally described in terms of string operations. However, DNA
strings are more precisely double strings and their physical nature implies their spe-
cific geometric form of a helix. In the following section we discuss these aspects.
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Fig. 2.2 The structure of a peptide link. The peptide structure above, the peptide bond below.
The bridge links two peptides, by fusing the head NH, of one peptide with the tail COOH of
the other in CONH (a water molecule H, O is released).

2.2.1 DNA Notation and Double String Operations

Let us recall and extend some standard notation from Formal Language Theory
(see [213]], and Chap. 6) in order to formalize fundamental operations related to the
structure of DNA molecules.

Let us consider the usual alphabet of bases I' = {A,T,C,G}. The set I'* of strings
over this alphabet is comprised of the sequences (words) that can be arranged with
these four symbols (letters). Strings of I'* will be indicated by Greek letters. On
these strings, a binary associative operation of concatenation is defined, that given
two strings of I'* yields a new string where all the symbols of the second sequence
are put, in the given order, after the last symbol of the first one. Concatenation be-
tween two strings o and 8 is denoted by the juxtaposition o3. The length of a string
a is the number of its symbol occurrences (each symbol is counted as many times as
it occurs) and is indicated by |o|. A special string is that of length 0, denoted by A,
that is, the empty string, where no symbol occurs (an abstract notion similar to zero
for numbers). Symbols are special strings of length 1. Mathematically speaking, the
structure I'* is referred to as the free monoid over the alphabet I". Any subset of '*
is a (formal) language over the alphabet I". Since languages are sets, all the usual set
theoretical notions extend to languages (such as membership €, inclusion C, empty
set 0).

The symbol of o that occurs in position i (1 < i < |¢) is denoted by (i), the
sequence of symbols of ¢ occurring (in the given order) from position i to position j
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(1 <i<j<lal)isdenoted by afi, j] and is called a substring of o. In particular, it
is called a prefix if i = 1, and a suffix if j = |a|. A string with prefix o and suffix 8 is
also denoted by ... B. The complementation function, denoted by the superscript
c,isdefinedon I' by A =T,T° =A,C = G,G° = C. It extends naturally to I"* by
the conditions A = A and (af3)¢ = a“B¢. Another operation on I'* is the reverse
operation rev such that, for every X € I', rev(X) = X, rev(aX) = Xrev(o), and
rev(A) =A.

Reversing and complementation operations are involutive and commute, that is:
rev(rev(a)) = o
() =a

and
rev(o) = (rev(e))“.

The mirroring of « is defined by:
mir(o) = rev(a®)

and is an involutive operation. We abbreviate mir(ct) as &.

In DNA molecules, an intrinsic concatenation verse is given which goes from the
Phosphate to the Oxydryl (that respectively correspond to Carbon 5’ and 3’ positions
in the sugar DNA backbone). This verse is symbolically denoted by an arrow at one
side of non-null strings «, as in:

o—

that can be seen as an indication of the extremity where the Oxydryl terminal is
located (while Phosphate is at the other extremity). However, when we omit the
arrow, the usual reading from left to right is assumed, which corresponds to the
5" — 3/ verse.

An exact pairing (symmetric) relation || is defined over I'* such that:

of|B

if B = mir(a).

Let y be the longest string such that o and 8 include y and 7 respectively. Let
hpypr be a non-null length that we call hybridization threshold (it represents a bi-
ological parameter we leave unspecified). If |y| > Ay, then we say that o and 8
pair by hybridizing on 7y (or shortly, that they hybridize) and write:

aly[B.

In this case a double DNA string composed of o and f is defined, that will be

denoted by:
o

rev(B)
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In this fraction notation the following concatenation verses are implicitly assumed:

o —

+ rev(B)

that is, the Oxydryl terminal of the inferior string is located on the opposite side
with respect to that of the superior string. Sometimes, fraction notation is a way to
make explicit the verse of single strings. In fact, we put (superior notation):

Yoo
A

and (inferior notation):

=<0 =rev(X).
, (@)

For notation completeness it is assumed that:

A
1= A
We write:
o[B

if @ and 8 hybridize (with an exact pairing on some internal portions) and

ollB

when they do not hybridize. Pairing is a crucial operation of double strings forma-
tion, where the phenomena of bilinearity, complementarity, and antiparallelism are
jointly involved. It is a partial operation that is defined on two strings only when they
hybridize. The set of single or double DNA strings will be denoted by I'*/T"*. By
the symmetry of the pairing relation, double strings satisfy the following equation:

o B

rev(B)  rev(a)

This is an important aspect of double strings, that formalizes the mobility of DNA
strands in a fluid environment (superior and inferior positions are relative concepts).
On the other hand, any o hybridizes exactly with & by definition of exact pairing,
hence the double string:

o
rev(Q)
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is defined, which is called a blunt double string and is denoted by < o >. We note
that: e a« o o«
~rev(@)  rev(rev(a©))  ac

and, as a consequence of the equations above we obtain:
<a>=<o>

in fact, we have that:

ca»= oo e e @y
~rev(a)  rev(a)  rev(@)  rev(rev(oc)) ’

Operations on DNA strings I'*/T"* are summarized in Table 211

We call strand any object s on which an operation zype is defined which assigns
to it a string in I'*/I"*. In particular, if zype(s) is a single string, then we say that s is a
single strand, while if type(s) is a double string, then we say that s is a double strand.
Intuitively, strands are DNA molecules which, as physical objects, are different from
the base sequence they realize. Therefore, in our terminology, strands having the
same base sequence are strands with the same type. We restrict ourselves to consider
only single or double strands. In fact, for the needs of the following discussion, we
may avoid considering more complex forms of DNA molecules that combine more
than two DNA strands.

We consider a DNA pool P as a set of strands, or equivalently, as a multiset of
single or double strings of I'*/I"*, which is specified by a multiplicity function multp
from I'*/T"* to natural numbers. In fact, multp(1) = n means that the pool P contains
n (indiscernible) strands of type 1. We write P = {n; : M1, na : M, ..., ng: Nk}
when multp(11) = ny,multp(n2) = ny,...,multp(N;) = nx and multp(n) = 0 for
n & {ni,m,-...,Nk}- Mixing and splitting DNA pools correspond to the standard
multiset operations of sum and difference, denoted by +, — ( sum and difference of
their multiplicity functions).

In virtue of these two ways of considering a pool, we can use (ambiguously) both
notations: 1 € P, for a string € I'*/"*, meaning multp(n) # 0, and s € P, when s
is a strand of P. The type of pool P is the set of strings (a language):

Type(P) ={n € I'"/T"" | n € P} = {type(s) € I"/I"" | s € P}.

We remark the difference between 7ype, which assigns a string to a strand, and
Type (with capital T') which assigns, to a pool of DNA strands, the set of types of its
strands. Although strings and strands are different things, very often the two terms
are used almost synonymously. In fact, any string is physically implemented by
strands having its type, and conversely, the expression “a string”, in a given context,
could refer to a physical occurrence of a string, which is just a strand.
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Table 2.1 Basic DNA operations

ofi,j]  Substring

of Concatenation
()¢ Complementation
rev(a) Reversing
mir(a) Mirroring

o] Hybridization

g Pairing

< o> Blunt Pairing

2.2.2 DNA Helix

DNA molecules are constituted by nucleotides arranged in a bilinear structure.
Bilinearity is accompanied by two other features: complementarity and anti-
parallelism. Both these features are consequences of the template driven dupli-
cation of DNA, which seems to be essential to the nature of this molecule. In fact,
template duplication is performed in two basic steps: removing the bonds which tie
the two paired sequences and then using each of them as a template by restoring the
missing paired sequence with the appropriate nucleotides matching the templates. In
this manner the two templates produce two equal double strands. In this procedure,
it is essential that paired strands could be unpaired. For this reason any nucleotide
has to be paired by a weak chemical bond, which is better realized between different
(complementary) molecules. In biological organisms this kind of duplication is per-
formed by a class of enzymes called Polymerase. Their action is essentially called
extension, in fact they extend a strand in the verse 5’ to 3’ by copying the missing
(complementary) nucleotides according to the sequence specified by the template
strand (by using nucleotides floating in the environment). However, their action can
be performed only when an initial part of the missing strand, usually called primer
is already present (see Fig.[2.3).

A bilinear structure which realizes a template driven duplication is described in

Fig.24

From an abstract viewpoint, a monomer M of a bilinear structure is charac-
terized by a triangle, say a monomeric triangle. In fact, let us consider an
internal point P of this monomer, for example its barycenter, which we call its
X-point. Then, the monomeric triangle is defined by the three point P, P', P”
where P’ is the X-point of the monomer M’ concatenated to M, and P” is the
middle point between P and the X-point of the monomer M” paired with M

(see Fig.2.4).
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Fig. 2.3 Template driven sequential duplication

concatenation line

Fig. 2.4 The bilinear arrangement of monomeric triangles

2 Strings and Genomes
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A monomeric triangle defines a Cartesian system where abscissa, or x-axis, goes
from P to P/, ordinate or y-axis goes from P’ to P”, and altitude or z-axis is
orthogonal to the xy-plane and oriented according to a counterclockwise rotation
of x-axis toward y-axis. The pairing has a strictly dual nature: only two monomers
can be paired, because this relationship is exclusive, and when two monomers are
paired, both of them are unavailable to be paired with something else. In conclu-
sion, monomers need to be asymmetric with respect to two distinct directions, the
concatenation direction and the pairing direction. In fact, both these two relations
are intrinsically oriented. For this reason, monomers are chiral (from a Greek term
for hand), that is, each monomer defines univocally a three-dimensional Cartesian
coordinate system.

A monomeric triangle clearly defines a plane. Therefore, we can consider dif-
ferent possibilities for the planes where concatenated and paired monomeric
triangles lie.

Figure[23lshows some possible planar bilinear arrangements of monomers in the
different cases of right, acute, or obtuse monomeric triangles in parallel and antipar-
allel arrangements. Apart from the difficulty of keeping planar structures in a fluid
environment, the space occupancy of these structures would become prohibitive for
long DNA molecules. In all these cases, no rotation of paired monomeric triangles
is allowed around any axis lying in the plane of concatenation. Namely, as indicated
at the bottom of the figure (in the case of a right angle parallel arrangement) such a
kind of rotation would be in conflict with the parallelism (or anti-parallelism) of the
these concatenated structures.

If concatenated triangles, lying on the same or different planes, form an angle
along the concatenation line, then we can have the possibilities illustrated in Fig.
In both possibilities the concatenation angles vary along the concatenation line,
because in a spiral the curvature increases from the periphery to the center (a log-
arithmic spiral could avoid the angular variability, but its space occupancy would
be prohibitive). Therefore, this kind of arrangement is impossible, because it would
imply an angle between two concatenated monomers that depend on their positions
in concatenation line.

In the cases of acute or obtuse monomeric triangles, parallel arrangements are
impossible, as indicated in Fig.[2.7] because the bilinear structure cannot be realized.

When monomeric triangles are acute or obtuse, they can be arranged in antipar-
allel way (see Fig.[2.8)), and the arrangement of both concatenation lines in the same
plane can be avoided by means of a rotation along the pairing line, as indicated at
the bottom of the figure. Of course, acute monomeric triangles realize more compact
arrangements than obtuse monomeric triangle, therefore are preferable.
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Fig. 2.5 Parallel and antiparallel arrangements of bilinear monomeric triangles

Fig. 2.6 Impossible linear arrangement of right monomeric triangles with a rotation an-
gle between concatenated monomers: Top: rotation of concatenated triangles around z-axis;
Bottom: rotation of concatenated triangles around y-axis (xyz, the Cartesian system of the
monomeric triangles)
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Fig. 2.7 Parallel arrangement of acute (top) or obtuse (bottom) monomeric triangles are im-
possible

Figures and are different looks of the same structure, where paired
monomeric triangles form a rotation angle around the pairing line. This implies
that they can be located inside a cylinder shape that is completely characterized by
a radius and by three angles: the rotation angle p, between two concatenated trian-
gles, the rotation angle @ between two paired triangles, and the angle 7 between
the concatenation segment of the triangle with the cylinder axis. From an evaluation
of these values, and of cylinder radius, the average length of edges of monomeric
triangles can be estimated (fractions of a nanometer) [44].

When many modules of the kind given in Fig. are arranged, we obtain the
bilinear structure with a spiral shape, which grows internally to a cylinder, as shown
in Fig. 2.T1] that is, the DNA double helix structure appears in its pure geometrical
form.

In Figure we can see the empty internal cylinder formed by the paired
monomeric triangles along the DNA helix.
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Fig. 2.8 Planar arrangement of acute or obtuse monomeric triangles is possible in an antipar-
allel way

Fig. 2.9 Two paired monomers inside a cylinder



2.2 DNA Strings and DNA Helix

Fig. 2.11 The helix of paired monomers inside a cylinder

39
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Fig. 2.12 A view of the helix from upstairs

We know that DNA helix presents two groves: a major grove and a minor grove.
Figure 2. 13| presents a stylized view of this structure, as a consequence of the double
rotation of the two paired lines around the same cylinder axis. This is the ideal
geometric structure underlying the fundamental discovery by Watson and Crick in

1953 [63].

Fig. 2.13 A stylized representation of DNA groves

In conclusion, anti-parallelism is a direct consequence of the bilinear nonpla-
nar arrangement of nucleotides, as deduced by the analysis developed in terms
of monomeric triangles. Moreover, the chirality of monomers joined to their anti-
parallelism implies that if they have the same chirality, then a reading agent can
read both the two concatenation lines along the same reading plane. Therefore,
DNA structure is implied by algorithmic arguments related to the fundamental
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duplication mechanism of this molecule, and DNA helix is implied by simple ge-
ometrical principles aimed at satisfying economy in space occupancy and an effi-
cient associative mechanism based on hybridization. An important consequence of
the helix arrangement of the two strands is the possibility of a second level of DNA
packing where the DNA “rope”, packed in the helix cylinder, can be again wound by
wrapping it around some support (histone proteins, where DNA is wrapped around
forming spherical packing units, glued by chromatin proteins, called nucleosomes).
As is well, known in the craft of rope-making, even since ancient times, a “screw
thread” is a helical ridge on the outside of a screw, or bolt, or on the inside of a
cylindrical hole, to allow two parts to be screwed together. The same logic underlies
a DNA formation, where strands are twisted together along a helix. This structure,
not only provides the bilinearity postulated by the template driven duplication, but
increases the robustness of the linear structure, making it able to keep its integrity in
spite of its length, and in spite of other wrapping levels. Another illuminating com-
parison regarding DNA anti-parallelism can be found in folk dances where many
dancers are arranged in two paired rows. Each dancer D corresponds to the dancer
D’ in front of him/her in the paired row, but due to the chirality of the human body,
the dancer who is on the right of D corresponds to the dancer who is on the left
of D’. It is surprising that rope technology and the art of dancing share important
aspects with DNA structure.

Figure 2.14] shows 10 different forms of double DNA strings, where parallelism
between lines refers to hybridization between strings, while Y forms correspond to
the cases where extremal parts of single strings do not hybridize (in YY forms this
happens on both sides). Of course, these forms do not cover all possible DNA forms,
but they identify all the possibilities of pairing two different strands. Circular forms,
hetero-duplex and hairpins are considered in Fig.[2.15l

A DNA simple branch is formed by three linear strands such that each of them
hybridize with the other two. Such kinds of branches can produce any kind of graph,
if we identify a cycle of branches as a single node. Figure 2.17] shows the way
branches are combined for producing a node with degree five.

Table 2.2 Basic Requirements in DNA Pool Operations

mix(Pl,Pz) =P +P

split(P) = (P1,Py) < P = Pi+ Py, Type(P) = Type(Ps) = Type(P)
length(P) ={[n| | <n>¢€ Type(P)}

separate(P,n) = {s € P| [type(s)| = n}

Type(denature(P)) 2 {a | g € Type(P)}

Type(hybridize(P)) D{rev | o ﬁ eType(P),c][B}
Type(extend(P)) 2 { arp €P}
(

(57B)c | (57P):
Type(infix(P,y,6)) 2{< yad > | < a> € Type(P)}
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Fig. 2.14 Ten bilinear antiparallel forms
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Fig. 2.15 Linear, circular, hairpin and heteroduplex DNA
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Fig. 2.16 A composition of heteroduplex, hairpin, and circular DNA

S

Fig. 2.17 Branching DNA and a composition of five branches

2.3 DNA Pool Operations

A pool of DNA molecules can be mathematically simplified by a multiset of double
or single strings. In Table 2.2] some DNA pool operations are defined which have to
be considered as high level mechanisms, analogous to the basic operations of a high
level programming language. This implies that the algorithms we specify by means
of them are not exactly experimental protocols, but rather computational procedures,
implementable by laboratory procedures. These DNA algorithms are naturally ex-
pressed in terms of a Test Tube register Language (TTL for short), where registers
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are Test Tubes which contain DNA pools, rather than numbers, and DNA pool oper-
ations apply to them. The symbol := denotes the usual assignment command typical
of imperative languages. In an assignment P := op(Q), the operation op is intended
to be applied to the content of the test tube Q and the resulting DNA pool becomes
the content of the test tube P.

The exact “microscopic” effect of operations in Table 2.2]is not defined, because
in many cases it is hard to say exactly what are the multisets before and/or after the
application of these operations. However, despite such a kind of incomplete knowl-
edge at a microscopic level, DNA algorithms can be designed which are based on
these operations. In fact, it is enough to assume that, after performing a given DNA
operation, an input pool P is transformed into a pool P’ where a specific relationship
holds between the types of P and P’ (see Table[2.2]and Figs. 220).

The realization of operations in Table[2.2is performed by means of standard labo-
ratory procedures based on physical and biological phenomena. Operations mix and
split are simply obtained by merging the content of two test tubes, or by splitting the
content of one test tube in two different test tubes. Operations length and separate
are realized by means of gel-electrophoresis, a specific electrochemical tool for dis-
criminating DNA strands according to their length. The operation hybridize is ob-
tained by raising temperature, while renature by (slowly) decreasing it. Operations
extend, ligate, and in fix are realized by Polymerase and Ligase enzymes (see Figs.

22112.22).

Fig. 2.18 Split operation (Mix is realized in the inverse way)

In Gel-electrophoresis DNA strands are put over a plate with a gel producing
resistance to the movement of DNA molecules. An electrical field is applied be-
tween the two extremal borders of the plate (see Fig. 2.19). In column 1, strands
of different (known) length are located at different levels. In the other columns,
strands of unknown lengths stop at some level after the effect of the electrical field
(DNA is negatively charged). Their positions, compared with the position of refer-
ence strands, provide a precise estimation of their lengths. The strands at a given
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Fig. 2.19 Gel-electrophoresis implementing Length operation
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Fig. 2.21 Polymerase extension (Garret & Grisham: Biochemistry, Saunders College Pub-
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Fig. 2.22 Ligase joins 5’ phosphate to 3’ hydroxyl

position can be extracted from the plate, by cutting the gel slice where they are
located, and, after removing the gel by washing the selected strands, the separate
operation, providing strands of a required length, can be performed.
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2.3.1 Writing and Reading DNA

A DNA clone is a multiset of DNA strands constituted by many copies of the same
DNA molecule, or equivalently, a set of DNA strands or double strands having the
same type. Two important aspects of DNA manipulation are the basic operation
of any system of information representation: writing and reading. Writing DNA
consists in generating a clone of DNA molecules having as type a given string over
the alphabet of nucleotides. Reading means the inverse operation, that is, given a
clone of DNA molecules, discovering which is the string of bases corresponding to
their type.

The first operation, which is called DNA synthesis, is now a routine operation
and is based on the following principle. Consider nucleotides where one of the two
extremities is removed, say the 5" of the phosphoric group. Let us group in different
vessels containing a given number of each nucleotide deprived of the P-terminal:
a vessel A containing Apy (instead of pApg), a vessel T containing Ty, a ves-
sel C containing Cpp, and a vessel G containing Gogy. Let us write, for example,
the sequence ATTCG. We start with a nucleotide (or better, a clone of nucleotides)
pGopg bound to a solid support S by means of some affinity mechanism, which an-
chor them to S, say it S+ pGop. Then we put S+pGop in the vessel C. The loss
of P-extremity of nucleotides in this vessel ensures that when S+ pGppy is put in
the vessel only S+Cpg pGoy can be formed, where C nucleotides are without the
P-terminal. Therefore, we add to S+Cpn pGon the missing P-terminal. by obtaining
molecules S+pCor pGog- The same process can start again with sequences CG an-
chored to the support S and having both the extremities, for completing the process,
by adding the remaining TCG part. In general, writing is performed by anchoring to
a solid support S the last nucleotide of the sequence we want to write (3’ terminal),
and then, by proceeding in the verse 3’ — 5/, by iterating the cycle of: i) introducing
the solid support S in the right vessel for linking molecules inside it to the OH-
terminal of molecules anchored to S, ii) extracting S from the vessel, and iii) adding
the P-terminal to the molecule anchored to S.

Reading DNA is the process usually indicated as DNA sequencing. In fact, it
provides the sequence bases corresponding to the type of a given DNA clone. In the
reading process, it is essential to assume that DNA which has to be read is provided
as a clone. We will explain the main idea of sequencing by using a metaphor. Let us
assume the availability of a sequence of balls of four colors, say A, T, C, and G. Let
us assume also that these balls are so small that we cannot distinguish their colors.
However, let us suppose that we are able to obtain many copies of the given original
sequence of balls. Then, we can distribute these copies in four different vessels. In
each vessel we use some special scissors S4,S7,S¢c,S¢ such that S4 cuts after A, S
cuts after T, S¢ cuts after C, and Sg cuts after G. Moreover, in order to keep the right
analogy with DNA, our balls are asymmetric, with a left part and a right part, in such
a way that scissors can act only once for each strand, by cutting and by keeping in
the vessels only the left parts. In these hypotheses, after using the corresponding
scissors in each vessel, we get some strands which are copies of prefixes of the
original sequence. If scissors perform their task in a completely random way, then
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in each vessel, say in A, we get sequences of different lengths which correspond
to the positions where a ball of color A is located in the original sequence. In this
manner, by measuring the lengths of the sequences obtained in the four vessels,
we can discover the positions of the original sequence where A are located, those
where T are located, those where C are located, and those where G are located. In
conclusion, the structure of the original sequence can be completely deduced. This
process was realized by Sanger, who won his second Nobel Prize for it, by using
in each vessel a small part of nucleotides without the Oxydryl, in such a way that
when polymerase enzyme uses one of them, then the extension process stops. It is
important that the amount of these nucleotides is not so big and not so small. In fact
in the first case only short fragments are obtained, while in the second case only
long fragments are obtained. However, in almost all sequencing methods the role of
polymerase extension is essential. In a new class of methods each step is constituted
by four sub-steps, where polymerase can use only one of the four nucleotides, and
its use is made evident by coupling to it a phenomenon which produces some effect.
In this way according to which sub-step provides the effect, the kind of nucleotides
added by polymerase can be deduced; therefore all the extended sequence can be
deduced.

2.3.2 Plasmide Cloning Algorithm

DNA cloning of double strands is a process that produces many identical copies of
a given double DNA molecule. Plasmid cloning is performed by means of bacteria.
In fact, in many bacteria there are some double circular forms of DNA, called plas-
mids. Therefore, the main idea of plasmid cloning procedure consists in inserting
a target DNA molecule inside a bacterium plasmid and then letting the bacterium
proliferate in many cells which, being descendant of the same cell, have the same
DNA and consequently the same plasmid including the target DNA molecule. In
this way, we can get many copies of the initially inserted DNA, just by recovering
all these plasmids and by extracting from them the copies of the target molecule.
The following is the detailed (abstract) procedure.

1. Choose a plasmid, called also vector which includes a gene encoding the re-
sistance to an antibiotic A and a second gene encoding the resistance to an
antibiotic B.

2. Cut this circular vector by means of a suitable restriction enzyme occurring once
in the plasmid and in the middle of the sequence of gene A (see Fig. 2.23). As
indicated in the figure, the cut of the restriction enzyme realizes two specific
single strand flanking terminals.

3. Extend the target molecule in a such way that it begins and ends with sticky
ends that can hybridize with the sticky ends provided by the restriction enzyme

(see Fig. 2.24).
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VYO LYY

Fig. 2.23 Cutting the plasmid

Fig. 2.24 Extending target DNA with suitable sticky ends

4. Let the target molecule hybridize with the broken plasmid, and use Ligase en-
zyme in order to obtain a circular double strand DNA molecule (see Fig. 2.23).

1119
VYvoLLIvY

Fig. 2.25 Inserting the target DNA molecule into the plasmid
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5. Infect bacteria that are not resistant to the antibiotics A and B with the plasmids
obtained at the end of the previous step. The adopted technology (by suitable
electrical impulses) ensures that only one plasmid can enter in one bacterium.
In this operation three possible results can occur for each bacterium: i) one
plasmid including the target molecule enters in the bacterium, ii) one plasmid
without the target molecule enters in the bacterium, iii) no plasmid enters in the
bacterium (the first situation occurs usually only for one in 10,000 bacteria).

6. Put bacteria obtained at the previous step in a microbial culture (each bacterium
is put alone in one compartment) where the antibiotic B is put with the nutrient.
In this way only bacteria including the plasmid can survive.

7. Select the bacteria which survive at the previous step and construct a mir-
ror bacterial colony by choosing from each compartment one bacterium and
putting it in a compartment having the same position it has in the original cul-
ture plate.

8. After a growing phase, put the antibiotic A in the mirror colony and observe
in which position bacteria die. These positions are those where in the original
colony there are bacteria hosting the plasmid which includes the target DNA
molecule. In fact in these plasmids the resistance to the antibiotic A was re-
moved. For example, if in the mirror colony bacteria in wells 2,5,8 die, then
we deduce that in the original colony these bacteria include the altered plasmid.

9. In the original colony keep only bacteria which correspond to dead bacteria,
in the mirror colony. They include the plasmids hosting the target molecule.
Remove the external membrane of these bacteria. and recover their plasmids.

10. Put in the obtained pool of plasmids the same restriction enzyme used at
the second step. In this way copies of the target molecules, which were in-
cluded in the plasmids, are recovered and can be selected by length with a
gel-electrophoresis.

2.4 DNA Computing

In 1994 Leonard Adleman started the new research field of DNA Computing. [11}
[12]]. He showed that an instance of a famous combinatorial problem can be translated
in terms of DNA strands, put in a test tube in such a way that, by means of typical
laboratory manipulations, a final DNA pool is obtained where the solution of the
problem is encoded. Since then, a great deal of research has been carried out, and
many technical and theoretical achievements have been reached in DNA computing
[39 [75]]. Recently, new research perspectives have emerged that widen the
possibilities of this field, among them: DNA self-assembly [61}, [55] [58], and DNA
automata [13} [14]], as well as tools for DNA and RNA manipulation inspired by
algorithmic analyses. [55} [13]].

In the attempt to implement algorithms over a DNA-based “bioware”, along with
the DNA computing trend, it became increasingly apparent that the logic of DNA
operations presents deep combinatorial and algorithmic aspects.
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2.4.1 Adleman’s Experiment

The main idea of Adleman’s experiment is the representation of a graph in a DNA
pool. To this end, it is enough to encode nodes with single DNA strands and edges
as other strands in such a way that when an edge f connects two nodes a and b, then
it is encoded by a strand which hybridizes with one half of the strand encoding a
and one half of the strand encoding b. Figure illustrates this idea of realizing
connections with hybridization of single DNA strands. In this manner, when many
copies of strands encoding all the nodes and edges of a graph are put in a DNA pool,
then, in a very short time, they hybridize by providing all the possible paths which
can be formed in the graph. Some specific operations involving the ligase and poly-
merase enzymes are necessary for having stable and abundand strands. Ligase fuses
all the strands in the paths by performing the missing OH-P bonds between consec-
utive strands which are linearly arranged, while polymerase provides a generation of
many copies of the formed paths, according to the polymerase chain reaction which
we will study in a following section.

The question posed by Adleman, solved by DNA operations, was the determi-
nation of a Hamiltonian path connecting a start node with an end node (a path
passing exactly once for each node of the graph). In terms of DNA strands, this
corresponds to finding a DNA strand beginning with a given prefix and end-
ing with a given suffix, having a given length (nk length if in the graph there
are k nodes, all encoded by strands of length n) and where the encoding of
each node is included. The solution (only one solution was possible in the prob-
lem considered by Adleman) was found by selecting by electrophoresis all the
strands of the required length, and then by keeping only those which are com-
plete, in the sense of including the encoding of all nodes. The check of com-
pleteness is performed by the crucial operation of extraction. Given a DNA pool
P, the extraction of its y-strands, provides strands of P having a type includ-
ing the string y. In Adleman’s experiment, if 0,0,...,0; are the strings en-
coding the nodes, then the strands solving the problem have to include types
ay,0p,...,0k. Let us consider k probes, that is, strands having types comple-
mentary to the strings o, 0,..., 0. Therefore, by using the first probe, all the
strands are selected, by complementarity (we avoid the biochemical details), with
types including the string ¢, then, from this selection, with a second probe, the
strands can be selected which include oy, and by proceeding in this way, after
k steps (k the number of nodes of the graph), the required solution can be ob-
tained. Sequencing the final strands, the required Hamiltonian path can be easily
determined.

Bj Ai Bi

Bj Al

Fig. 2.26 Adleman experiment
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The main steps of Adleman’s experiments are synthesized in the following list.

1. Encode nodes and edges of the graph under investigation by means of suitable
linear strands which hybridize by providing double strands encoding all the pos-
sible paths of the graph;

2. Add Ligase enzyme in order to transform hybridization paths into double strands
(by concatenating contiguous strands);

3. Amplify, that is, realizes many copies (by using PCR, as will be explained later)
of the double strands starting with the start node and ending with the end node of
the graph;

4. Separate by length the double strands of the previous step encoding paths with 7
nodes (all the nodes of the graph);

5. Extract, from the paths of the previous step, those where all the nodes occur (each
node once, because paths of the previous step contain 7 nodes);

6. The double strands remaining, after the extraction of the previous step, encode
Hamiltonian paths of the given graph.

The procedure of Adleman’s experiment has a general validity. In fact, in any combi-
natorial problem we can distinguish two different phases (see Fig. 2.27): the gener-
ation of a solution space where all possible solutions are produced, and a following
phase where the true solution of the given problem is selected. Selection requires
tools for discriminating between false and true solutions. The conceptual strength
of DNA computing relies in the possibility of nature in performing massive string
recombination processes, on the basis of the massive parallelism of strand hybridiza-
tion in DNA pools with billions of billions of strands. The extraction operation is
technologically more complex, expensive, and usually not very reliable. We will
consider an extraction method in a following section. However, in principle, both
generation and extraction operations can be performed in linear time, with respect
to the size of the combinatorial problems. This general model of DNA computation,
usually called Adleman-Lipton extract model was tested and applied in many
specific cases. After almost 10 years of research in this context, the initial enthu-
siasm about the computational efficiency of DNA computing sensibly diminished,
but many aspects and many related fields of investigation were pushed by the Adle-
man’s experiment and by all the research following it. We want only to mention the
problem 3-SAT, on which a great deal of research effort was spent in recent years,
for its centrality in the theory of combinatorial problems and for its natural setting
in the context of DNA computing.

The problem 3-SAT consists in the determination of boolean assignments, to the
variables X1,X>, ..., X,, which satisfy a number of boolean equations Cy,C>,...,Cy,
involving X1,X5,...,X,. It can be easily shown that without loss of generality
boolean equations can be put in the form of clauses, that is, boolean sums of at
most 3 literals (this explains the name 3-SAT) implicitly equated to the truth value
true, where each literal can be a boolean variable or the negation of a boolean vari-
able. For example, the system of boolean equations 211 ( = 1 is implicit in every
line) is a 3-SAT problem of 4 variables and three clauses which has, for example,
the assignment (X;,X,,—X3,X4) as solution.
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Possible
Solutions
True
Solutions
o — ’,’:', . i\
Solution
Extraction
In linear time
Space
Generation
In linear time
Fig. 2.27 The extract model
Xi+-X+X; (2.1)
X + X3+ Xy
X+ X2+ X3
X1 +-X0+X3
X5 + X3+ Xy.

A natural way for generating a DNA space representing all possible assignments of
a 3-SAT is the Mix-and-split method, which is based on a very simple idea depicted
by Fig.[2.28and expressed in TTL notation in Table 2.3l

Table 2.3 Mix-and-split procedure

Mix X1 and —X 1 in a tube T’

ForJ:=2to N do
Split T into A and B
Extend strands of A with X j
Extend strands of B with —X j
Mix A and Binto T

By using a split-and-mix procedure all assignments of a 3-SAT problem can be
generated and by applying to them m consecutive selection steps for filtering the
assignments satisfying all the clauses, then the required solution can be found. The
algorithm given in Fig. 2Z29)is due to Lipton and provides 3-SAT solutions by means
of 3m extraction steps.
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Fig. 2.28 Mix-and-split method

Generate N-space solutions in T

Ford=1ToM

T1 := Extract [T, L(1,J)]

T=T-T1

T2 := Extrtact[T , L(2,J)]

Ti=T-T2

T3 := Extract[T , L(3,J)]

T := Merge(T1, T2)

T := Merge(T, T3)
o if T= J, then take a clone and sequence it (Solution)
o else “Unsolvable Problem”

Fig. 2.29 Lipton’s algorithm for 3-SAT. Expression 7 — T’ denotes the strands of 7 where
the extracted strands of 7’ are removed.

We conclude by mentioning another three different ideas for solving 3-SAT in
terms of DNA computing. The first one due to Jonoska et al. represents a given in-
stance of the 3-Sat problem by producing, by means of DNA branches, a graph of
the type given in Fig. where clauses are represented by joining double DNA
encodings of clauses (by means of branches as depicted in Fig.2.17). Given a great
number of DNA structures representing the graph of a 3-SAT problem, we can pro-
ceed in m steps (j = 1,m) by splitting, at step j, the pool of graphs in two pools and
cutting (by using specific enzymes able to recognize some strings and to cut them)
the literal X; in the first pool and the literal —X;, in the second pool, and then, by
mixing again the two pools. It is easy to verify that if the problem has solutions,
then a connected graph remains linking all the clauses, where each path of literals
represents a solution of the original problem.

An algorithm due to Sakamoto et al. yields solutions according to an idea similar
to that of Jonoska’s algorithm. Let us suppose to order the clauses of a given prob-
lem. Let us encode the literals of every clause in such a way that they are linkable
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X =Y X X
T(C1) T(C2) T(C3)
s(c2) S(C3) $(C4)
z X z =Z

Fig. 2.30 3-SAT solutions represented by graphs encoding assignments

by means of two sticky ends (left and right) with the literals of the previous clause
(on the left) and with the literals of the next clause (on the right, see Fig. Z.31).
Moreover, for every variable X, let the literal =X be encoded with a string that is the
the mirror of the encoding of X. Of course, literals of the first clause are linkable
only with those of the second, while literals of the last clause are linkable only with
those of clause of order m — 1 (m number of clauses). In this way, if a a path, of
linked literals, is formed where a variable and its negation are encoded, then a DNA
hairpin is formed. Therefore, in general with n variables, the true solutions are the
paths encoding 7 literals that are not DNA hairpin.

T(C1) T(C2) T(C3)
sCH@g———@ —o o———o o—— @
X € Lit(C1) s(c2) /geLit(Cz) $(C3) b’e Lit(C3) §(C4) 6€|_n(c4)

Fig. 2.31 3-SAT solutions represented by sequences encoding literals

S(X1)  Cla(X1) TXN $(X2) Cla(X2) T(x2) S(X3) Cla(X3) T(X3)

o o
Cla(=X1) Cla(=X2) Cla(=Xx3)

.

S(X1) T(X1) S(X2) T(X2) S(X3) T(X3)

Fig. 2.32 3-SAT solutions represented by sequences encoding clauses

An algorithm due to Manca and Zandron [46] provides 2n strings (n number of
boolean variables) Cla(X;) and Cla(—X;), for 1 <i < n. The string Cla(X;) is a
sequence (double string with sticky ends) of DNA encodings of all clauses having
the literal X;, and Cla(—X;) is a sequence of DNA encodings of all clauses having
the literal —X;. Moreover, Cla(X;) and Cla(—X;) are left-linkable to Cla(X;_) and
to Cla((—X;_1), while they are right-linkable to Cla(X;,)and to =Cla((—X;+1) (by
means of suitable sticky ends, see Fig. 2.32)). It is easy to show that the solutions
of a 3-SAT problem are represented by those strands which encode sequences of
n strings of type Cla(——) containing the encodings of all the clauses of the given
problem. In the case of m clauses, m extractions are sufficient to solve a 3-SAT
problem.
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2.5 PCR and XPCR Protocols

Polymerase Chain Reaction process (PCR) is one of the most important and efficient
tools in biotechnological manipulation and analysis of DNA molecules, where the
polymerase enzyme implements a very simple and efficient duplication algorithm
on double oriented strings. Kary Mullis discovered this method in 1983 [36], and
for this reason, the Nobel Prize in chemistry 1993 was awarded to him (jointly with
Michael Smith for contributions to site-directed mutagenesis).

The main result of PCR is the exponential amplification of target double strands
having a given sequence of bases. As will be explained in this section, in the PCR
process, an initial number of target double strands (even only one of them) provides
a final number of them which is a product of the initial number by a multiplicative
factor consisting of a power of the times a basic PCR step is repeated. The bilinearity
of DNA molecules and the antiparallel orientation of their two linear components
are essential aspects of the logic underlying PCR. The computational schema of
PCR in TTL notation is given in Table[2.4] while its combinatorial schema in terms
of string transformations is given in Fig. 2.33l

Polymerase Chain Reaction
Target molecule with two primers
i R —
— +—
Denaturatlon — ‘_ =
_—
—
—
Primer Hybridization
_—
oomne e —
—p e +
— e
 Polymerases Extension
_—» [

Fig. 2.33 The schema of Polymerase Chain Reaction
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A substantial improvement in the efficiency and reliability of PCR was obtained
when the process was realized by means of heat-stable DNA polymerase, such
as Taq polymerase (an enzyme isolated from the bacterium Thermus aquaticus).
Namely, in this way the three phases realizing the denaturation, primer hybridiza-
tion, and polymerase extension can be realized by alternately heating and cooling
the PCR sample to a defined series of temperature steps (depending on the length
and nucleotide composition of the hybridization regions of the involved strands).

Polymerase Chain Reaction, which is a milestone in DNA recombinant technol-
ogy [1]], shows many interesting combinatorial properties. In fact, it is in some cases
a complicated process, and, when it is used in non-standard ways, it yields very
complex behaviors. Very often, anomalies are ascribed to experimental noise, but,
if we frame PCR within a rigorous symbolic notation, then non-trivial combinato-
rial aspects appear and, under suitable hypotheses, a formula can be derived which
describes the general form of sequences that are exponentially amplified. This ap-
proach is not of merely mathematical interest. On the contrary, it can suggest new
methods that enjoy biological relevance for in vitro DNA manipulation. In fact,
starting from DNA computing problems [46]], we investigated specific methods for
DNA extraction and recombination [28], 30, 26]]. In these attempts, where theoretical
issues were supported by the experiments, we realized that a special kind of PCR,
called Cross Pairing PCR or XPCR for short, can be the basis for new algorithms
that solve a wide class of DNA extraction and recombination problems. Within a
basic DNA symbolic notation, we will show a crucial computational property of
Polymerase Chain Reaction, we call PCR Lemma, which suggested to us the idea of
Cross Pairing PCR.

Table 2.4 PCR Algorithm

PCR(P,n) =
let Type(P) = {<y...8 >, v, 8}, n integer;
input P;
fori=1,ndo
begin
P := denature(P);
P := hybridize(P);
P :=extend(P);
end;

output P.

We denote by PCR(P,n) the DNA pool obtained by applying to the pool P
the procedure of Table 2.4] (the usual PCR process). The parameter n denotes the
number of the fundamental PCR steps (also called PCR cycles, which we avoid
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Table 2.5 Combinatorial Schema of Polymerase Chain Reaction

)Z é 566 — Y;CLS e C)LL S template denaturation
yié C e éc s }{ , élt — )); cese ng( primer hybridization
]}; cese }’C:; — ; ch ge ; ; CC“ ge polymerase extension

mentioning when its value is not essential in the discussion). It is well-known that if
Type(P) = {< Y8 >,7,8}, then PCR(P,n) generates an exponential amplification
of the target molecule < y@d >, that is, copies of this molecule in a number that
is exponential with respect to the number n of steps, and only a minor quantity of
strands in P have types different from < 0 >.

Polymerase extension ext, depicted in Fig.[2.21] of a single string a7y, according
to a template 1, is defined as:

ext(ay, By) = oy

(assuming that y does not occur as a substring of a, and ), that is:

ext(ay,

A
)=oyp
rpe
If ay Jfn, then we set ext(ay,n) = ocy.
It is useful to consider another extension operation, which we continue to denote
by ext, having a double string as argument, by setting (if the argument has a form
different from that here considered, this ext leaves it unchanged):

a7 _ ayB
Yl ocype

PCR processes are easily representable by diagrams like that in Fig. 2.34] where
dotted arrows represent ext operation performed by polymerase enzymes.

All the possible PCR diagrams which result from the different forms of target
strings and from the different positions where primers may hybridize, are close to
100. Therefore, a natural question arises: in which cases does PCR provide exponen-
tial amplification? And, in these cases, is it possible to characterize, in general terms,
the form of strings that are exponentially amplified? Our DNA notation allows us to
answer these questions with the following lemma, which identifies important cases
of exponential amplification by PCR processes.

We say that single DNA strings ¢ and y overlap when they hybridize according
to the pattern depicted in Fig. We define their overlap concatenation, by
setting:

ext(

<@><y>= ext(y(fc)



2.5 PCR and XPCR Protocols

Frame 1
%

€

59

Frame 2

(—>

Frame 3

-« >

A

Frame 4

A) >

A

B) -
S ’
_F_rame 5
-

>

Fig. 2.34 PCR on a 3’3’ form along with one internal and one external primer. Reading
from the top: after the hybridization of the primers (short arrows), and the formation of
their extensions, these extensions overlap and, with the further extensions of the overlapping
strings, a blunt string is formed where primers correspond to the two (forward and backward)

extremities.
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which produces the DNA string < ¢'yy’ > depicted in Fig. where ¥ is the
substring of @, 7 of y, and ¢, ¥’ are the strings ¢ and W without the substrings y
and 7, respectively.

P -
-
-
1]
Fig. 2.35 Two DNA single strings that overlap
—>

<<

Fig. 2.36 The overlap concatenation of two strings < ¢ > and < y > from the (overlap)
hybridization displayed in Fig.[2.3]]

Lemma 2.1 (PCR Lemma). Let P be a DNA pool such that Type(P) =
{rev‘)(‘ﬁ), Y, 0} and let:

TI.

VI8,

o][ o

In the following cases:

i) y_][ext(s,a),
ii) 8 |[ext(v,B),
iii) ext (7, B) and ext (8, o) overlap,

PCR(P,n) exponentially amplifies blunt strings, where primers hybridize at extremal
regions of their single strands, having the following forms, respectively:

ext(8,ext(y,ext(5,0))) (2.2)
ext(y,ext(8,ext(y,B))) (2.3)
<ext(y,B) > < ext(8,0) > . (2.4)

Proof. By the hypotheses, in the cases i) and ii) the extensions (2.2) and (Z.3) have
to be proper (giving results different from the primers). It is easy to check that they
are blunt double strings including the primers in the extremal parts of their strands,
therefore they are seeds of exponential amplifications. In the last case iii), the sit-
uation of Fig. occurs, then the overlap concatenation (2.4) (realized by the
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polymerase extension) yields a blunt string (with extremal primers) that is a seed of
exponential amplification. ad

The phenomenon of the blunt form of PCR exponential amplification is empirically
well-known, but it is interesting that it is a mathematical consequence of the com-
binatorial mechanism on which PCR is based. The following corollary is a direct
consequence of PCR lemma.

Corollary 2.2. In the PCR process of lemma above where an exponential amplifi-
cation occurs, then, at most at the third step of the process, a blunt string appears
which is a seed of an exponential amplification.
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Fig. 2.37 PCR with two internal primers, where curved lines represent pairing
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In Fig. 2371 a PCR process is displayed, where the first two steps are completely
represented, while, for easier reading, only two double strands of the third step
are shown. One of them is a blunt double strand that is a seed of exponential
amplification.

We remark that PCR lemma presented here is different from the analogous lemma
given in [45]]. Namely, here we do not claim to cover all the possible cases of am-
plification. In fact, some laboratory experiments have shown cases of exponential
amplification with Y'Y forms, where primers hybridize with flanking regions (and
produce amplifications having patterns different from those given in Egs. 23l
2.4). Here we do not analyze all the cases of PCR with YY forms. The example of
Fig. shows the complexity of the combinatorial patterns related to PCR amplifi-
cation. In this figure, starting with a YY molecule M1 and two primers that hybridize
on two flanking regions, the molecule M2 is realized, which consists of the exten-
sions of the two primers. Molecules M3 and M4 are obtained by hybridization of
molecules of type M2 with the two strands of M1. In these molecules, it easy to
realize that the extensions of the primers stop when polymerase reaches the other
flanking regions. The resulting extensions hybridize and produce the molecule M5,
that, after polymerase extension, becomes the blunt molecule M6, which is seed of
an exponential amplification.

An example where PCR lemma does not apply is displayed in Fig. 238

\/

—»

<

Fig. 2.38 A case where PCR lemma does not apply
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Fig. 2.39 An exponential amplification based on a YY form
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2.5.1 XPCR

The role of the overlap concatenation in PCR amplification suggested to us an inter-
esting form of PCR where, rather than just one target string, we put two target DNA
double strings of types < @y > and < Yy > in a test tube.

Let us analyze what happens if a PCR is performed, starting from such a pool,
extended with primers o, 8

<opy>, <ywB>,a,p

In this case, after denaturation the following strings will be present in the pool:

oQy A B A o B
Ao (agy) T AT (ywB) T

If the temperatures at which o, 8, and y hybridize with their mirror strings are ‘close
enough’, then the following hybridizations can occur, where the first string, in the
pool given above, overlaps with the fourth one, while the strings in second and third
positions hybridize with the primers (other hybridizations are possible, but it is easy
to realize that they are not “productive” in terms of amplification, because they can
only delay the effect of these “canonical” hybridizations, see Fig. 2.40):

oQy o Yv B
(ryB)e " (a@yr ' B
At this point polymerase can extend strings:

ooy ), ext(

YV B)
(ywB)*

ﬂc

ext( )+ ext(

o
(aoy*

that become:

<oaeyyB >, <apy>, <yyB>

in such a way that the blunt string < a.@yyf3 > is produced, which results from the
overlap concatenation of < oty > and < yyf3 > with two more strings equal to the
initial target strings. We call this special kind of PCR cross pairing PCR or X PCR
for short; its combinatorial schema implements an operation, which theoretically
can be seen as a special kind of Tom Head’s null context splicing rule, given in the
seminal paper where a Formal Language Theory perspective of DNA strings
was introduced (see also [43])). In conclusion, if

Type(P) ={< apy>, <yyB >}
then
Type(PCR(P, ., B)) ~ {< acpywB >}.

Types of strands different from < o@ywf > are present in a minor quantity,
moreover, recombinations different from those considered above are possible (for
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example, that of type 3’ — 3’ between strands y%ﬁ and aé}y)(, ). Figure 2.40| displays
the possibility of hybridizations in a pool with two target strings and two extremal
primers (boxes includes the equal substrings in the two target molecules). It is easy
to check that the overall effect, in any case, is the amplification of the overlap con-
catenation of the two target molecules. In fact, either the doubling of the two target
molecules plus a seed of overlap concatenation, or two seeds of overlap concatena-
tion plus the initial pair of target molecules is obtained after hybridization.

Fig. 2.40 Possible hybridizations of XPCR

We tested XPCR in several different experimental conditions and every time it
provided correct results [28,[30]]. In most cases, the amplification signal is very clear
and a small noise consisting of unspecific products is reported in the electrophoresis
results. Surprisingly enough, on the basis of the simple mechanism of XPCR, we
have been able to build more sophisticated procedures, which find two main kinds
of applications in DNA extraction and DNA recombination.

2.5.2 DNA Extraction by X PCR

DNA extraction is a fundamental procedure where the “good solutions” are discrim-
inated in a space of possible solutions. For example, given a DNA pool consisting
of a family of genes with an indefinite identity (their sequences are not known),
one might be interested in extracting the subfamily of those genes where a given
subsequence y occurs, which, for instance, refers to an important biological prop-
erty. The classic extraction procedure by affinity uses a probe ¥ which is “marked”
in such a way that, after denaturation, single strands where 7y occurs hybridize with
the probe, and so are selected from the original pool. Here we show a different way
of performing extraction, based on XPCR, outlined in TTL notation, in Table
(P — separate(P,n) denotes the pool P after removing its strands of length n).

The main idea of the algorithm is as follows. Consider all the lengths of strands
in a given pool. For each length n, pieces of strands which include the substring
v in their types are copied. This is performed by means of usual PCR to amplify
both strands of type < ay > and < yf >. Strings shorter than n are then separated
by length and finally joined by an overlapping concatenation performed by X PCR.
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Table 2.6 A DNA extraction algorithm providing the strings of length n including y as sub-
string, in a given a pool P

XPCR — Extract(P,n,7y)
1. P:=infix(P,a,p);

2. Py:=separate(P,n);

3. (P,P) :=split(Ry);

4. P :=PCR(P,,0,7);

5. Py:=PCR(P,7,B):

6 Py := P, —separate(Py,n);
7 P, := Py —separate(P,n);
8

9

Q :=mix(Py,P,);
Q:=PCR(Q. o, B);
10. Q:=separate(Q,n);
11. output Q.

In the joining process, pieces which do not have length n are removed. For this rea-
son, the process must be iterated for each length of strings of the initial pool. The
algorithm reported in Table provides all the strings where ¥ occurs, previously
elongated by the prefix o and by the suffix . This algorithm was tested in vitro
where, in a very heterogeneous DNA pool, all the types of strands including sub-
strands of a given type, and only they, were extracted. Therefore, X PCR extraction
proved to be correct and complete [28].

A useful warning about the X PCR-Extract algorithm is given by the follow-
ing observation. If in a family of initial genes there are two different genes, say
< @Yy > and < oyp >, that have the same length and where the substring ¥ oc-
curs in exactly the same position, then the method will give, as extracted genes, also
their chimeric combinations < oyy > and < @yp >. In other words, if we define
Recombine(L,y) = {< ayB > | < ayd > ,< nyPp > € L}, then Extract(P,y) co-
incides with Recombine(Type(P), 7). In this case, further checks are necessary for
realizing a reliable extraction.

2.5.3 DNA Recombination by X PCR

Let P a DNA pool of type {01, 00, . .., o, } and Q a pool of type {B1, B2, - - ., Bn}- The
problem of generating all possible recombinations of pools P and Q is that of obtain-
ingapoolof type L={mna... Ny | M1 € {0, B1},m2 € {00, Ba}... Mw € {0t Bu}}-
Of course L contains 2" different strings; we call it the n dimensional complete re-
combination of P and Q. In DNA Computing this is an important step for encoding
all the possible solutions of a combinatorial problem. For example, if o, B; encode
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the two possible values of a Boolean variable x;, then any string of L usually encodes
a possible solution of the problem. True solutions are obtained by generating L and
then by extracting strings which satisfy the requirements of the problem. But, apart
from this DNA computing interest, DNA recombination has an important biological
meaning. For example, in the immunological system recombination is a key feature
for generating the antibody repertory which is essential to the security system pre-
serving the biological identity. However, in general, DNA pools generated by X PCR
recombination could be very useful in the analysis of many aspects related to DNA
hyper-variability.

Let us present a DNA recombination method based on X PCR. We show that a
simple and efficient algorithm based on X PCR can provide the n dimensional com-
plete recombination of P and Q. Let us consider the following four initial sequences,
where n is an odd number (if 7 is even, the roles of o, and 3, are inverted in the last
two sequences):

Positive: N1 =< 01000304 ... 04 >
Negative: My =< B1B2f3Ba ... Bn >
Positive-Negative: 13 =< o o3y . .. 04 >
Negative-Positive: Ny =< Bropfsoy ... B, > .

Let us call a-string any element of {0y, 0,...,0,} and B-string any element of
{B1,B2,---,Bn} The language L is the set of all the possible ordered combinations of

n o-strings and B-strings. We call X PCR rule ry, and write it as &1, &, AN g, the re-
lation between strings &1, &, § that holds when & =< ady... >, & =< ...y0B >,
and { =< a0y >. Any string that is a combination of o-strings and f3-strings
can be obtained from 1, 72, 13, 74 by suitable XPCR rules r, where ¥ is an «-
string or a B-string. For example, with n = 7, the string oy 0 8304858637, can be
obtained in the following way:

o, B
M, Na —> 01 0aP30uPs06B7, M —> o 02304 PsBepBr-

It can be easily shown that the order of application of the rules is not relevant,
because the same string can be also obtained by permuting the order of application
of the rules (from the same initial strings).

Let us consider the set of XPCR rules R = {ro,,Tay,- Ty, 15 ys TB3s-+- Ty, }-
A “quaternary X PCR recombination” which produces L from {1;,12,13, 14} is ef-
fectively specified by the algorithm displayed in Table2.7l A completeness claim of
our quaternary X PCR recombination method is given by the following proposition,
which is an easy consequence of X PCR definition and of the particular structure of
the pool to which we apply this recombination method [30].

Proposition 2.3 (Recombination Method). If all the X PCR rules of R are applied
to a DNA pool of Type {N1, N2, N3, Na}, then a final DNA pool is obtained of Type

{&i& .. &ul & e{au,Bi}, & e{on,Bo} ... & € {ow, But ).
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Table 2.7 The Quaternary Recombination Algorithm

XPCR — Recombination({ay,,... 0 },{B1,B2,...Bu}) =

let Type(P) = {n1,m2, M3, M4 };

P:=infix(P,a,pB);

fori=2n—1do

begin

P:=PCR(P, ., &%);

P:=PCR(P,o;, 8);

P:=PCR(P, o, )
(
(

s

P := PCR(P,B;, B);
P:=PCR(P,o, B);
end;
output P.

The quaternary recombination algorithm has the additional advantage of being
equipped with a couple of special strings, called recombination witnesses, such that,
if they are present in the final pool then the whole library of possible recombinations
is present too. Namely, let us consider a pool P including the four strings of quater-
nary recombination (prefixed by the string o and suffixed by the string ), then a
set W of stings is a X PCR witness set, if when all the strings of W are included into
P, then all the possible XPCR recombinations where realized from the four initial
strings. Let us call i-trio-factor any substring of three components ¥;_1%;%+1 where
exactly two consecutive components are positive (o strings) or negative (8 strings),
then the following lemmas can be shown [30} 26]].

Proposition 2.4. The recombination according to the XPCR rule ry, (y = o or
Y= Bi for 1 <i< n)was realized in the pool P, at the end of the quaternary recom-
bination algorithm starting with the four initial strings, if the i-trio-factor including
as component Y is present in some string of P.

Proposition 2.5. The set consisting only of the following two strings is a XPCR
witness set (n > 6): w; = 0.0y 062[33[34065066 .. ﬁ and wy = aﬁ1ﬁ2a3a4[35[36 .. [3

2.6 L-Systems and Morphogenesis

L-systems, introduced by Aristid Lindenmayer in 1968 [213], are grammars
with parallel rewriting. In particular, EOL is the class of L-systems which can be de-
fined as CF grammars where rules are applied, by a parallel rewriting of all the sym-
bols occurring in the string. It is really surprising that a wide class of developmental
processes can be described by suitable L-systems, possibly extended with elements
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Table 2.8 An EOL system generating the tri-somatic language

S — ABC
A — AA
B — BB’
c — CcC
A — a

B — b

C — ¢

AN - A
B —- B
cC - C
A — a
B — b
C = c

a — F

b — F

¢ — F

F — F

conveying important morphological parameters (e. g., lengths, angles, sizes). The
EOL system of Table [2.8] generates the tri-somatic language.

The first application of L-systems were the developments of some algae (red
alga). In these organisms all cells grow, at each developmental step. This means that,
in symbols, this mechanism corresponds to a parallel rewriting of all the symbols
occurring in a string.

A DOL system (Deterministic OL system) is defined by a triple (A, i, o) where
A ={ay,ay,--- ,a,} is the alphabet, o is the initial word over the alphabet A, and
U is a string morphism over A, that is a function from A to A* which extends to a
function from A* to A* by the condition

p(oB) = p(a)u(B).

The following is the usual representation of a DOL system, where the morphism is
expressed in a evident arrow notation.

ay ar - a
u=1{ 411 {
Bi B2 Bn

When u : A — Z(A*), we call it a poly-morphism, and the system is said to be
an OL system. This means that each symbol can be rewritten with many possible
strings, and, at any (parallel) rewriting step, one of the strings of (i (a) is chosen to
replace the symbol a (for any symbol a of the rewritten string).



70 2 Strings and Genomes

The strings generated by L-systems are translated into forms, according to the
turtle interpretation, where symbols are associated to segments, and other control
symbols are used, say +,—,[,]. In this case, a symbol F stands for a segment hav-
ing a given initial length and angle og. The turtle encoding of strings is obtained
by translating symbols into movements of a point (the turtle) that can draw while
it moves. When an L-rewriting is applied, the segment of given length /, associated
to the symbol F, is replaced by a poly-segment of sub-segments of length //k. The
fractal dimension of a rule is given by log; n where n is the number of sub-segments
of the poly-segment replacing the original segment. This means that, at each rewrit-
ing of the rule, the segment associated to symbol F is resized by the factor 1/k.
The symbols + and — stand for a positive or negative deviations of some prefixed
angle . Brackets represent mechanisms of internal rewriting. In fact, when an open
bracket appears, a form is generated which encodes the string between the open and
closed brackets. After that, the turtle goes back to the same position and angle it had
before the open bracket. In other words, we can assume that during its movement
the turtle can move and draw or can only move (movement without drawing could
be denoted by putting a special symbol F'). With these assumptions, a string within
brackets encodes the generation of a curve such that, after its generation, the turtle
moves back along this curve with the inverse movement it performed in its genera-
tion, but without drawing (all its symbols F become F"). In Figs.2.41][2.43] and2.44]
forms generated by L systems are expressed by means of the turtle interpretation.

n=0 n=1 n=2

n=3 n=4 n=5

Fig. 2.41 Example of forms generated by L systems
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/N

Start

& Rule

VA

Fig. 2.42 Start string F — —F — —F and L-rule F — F + F — —F + F with 6 = 60°

Fig. 2.43 An L form generated by the L system of Fig.

The classes EDOL and EOL are obtained by adding to the classes DOL and
EOL the feature “D” of determinism and the feature “E” of extended alphabet (with
nonterminal symbols).

Example 2.6. The following EOL system generates the tri-somatic language (lower
case symbols are terminal). In fact, the only case of producing terminal strings is
when symbols A, B,C or A’,B’,C’ are rewritten in a synchronized way. The mor-
phism u is given below, terminals are {a,b,c}, and abc is the initial word.

A B C A’ B’ C'" abcF
{ { L+ 11l
{AA',a} {BB',b} {CC',c} {A',a} {B',b} {C',c} FFFF
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ap =90,8 = 25.7°, n=5 ag = 90,8 =20°, n=>5
w : F w : F
p : F—FHFF[-FIF p : F— FHF|F[-F|[F]

(a) (b)

ap = 90,8 = 22.5°, n=4

w  F

p + F=FF-[-F+F+F|+[+F-F-F]
(c)

Fig. 2.44 Example of other forms generated by L systems



2.6 L-Systems and Morphogenesis 73

ETOL-systems and EDTOL-systems are EOL-systems and EDOL-systems, re-
spectively, where instead of a poly-morphism, a set of morphisms is given, which
is called a table. In this case, at each rewriting step, one morphism of the table is
chosen.

Example 2.7. The following EDTOL-system, with a table of two morphisms, gen-
erates the tri-somatic language.

A B Cabc ABCabc
wm=1 4+ 4 L4l lm={I4idld
aAbBcCabc abcabc

2.6.1 String Models and Theories

A string model is a relational structure (see Chap. 5) having a set of strings as do-
main. A powerful way of expressing rewriting rules and generation strategies is by
means of logical formalisms [204].

A string theory or a monoidal theory .7, over the alphabet A, is a theory in-
cluding, as terms, the free monoid generated by the alphabet A. This means that the
signature of .7 includes the symbols of A (as individual constants), a symbol for the
empty string A, and a symbol for concatenation, which we denoted in the usual way
(by juxtaposition), and its axioms include the monoid axioms (X, y, z variables of
strings):

(xy)z = x(yz)
XA =Ax=x.

In a string theory over the alphabet A terms, possibly with variables, include the
symbols of A and variables ranging over strings of A*.

A language L is a set of strings, therefore L can be defined by means of a formula;
within a string theory ¢(x) (with a free variable x):

L={a| 7 | p(a)).

In this case |= is the logical consequence relation that can be computed by any
logical calculus of predicate logic.

Given a grammar G = (A, T, S, R), the string theory of Table[2.9] over the alphabet
A, provides the logical deduction of a formula Generate() if and only if ¢ € L(G)
(the language generated by the grammar G).

The following example is an (equational) monoidal theory that deduces the de-
velopment R(n) at stage n of a Red Alga, a primitive organism that grows according
to the following law.
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Table 2.9 A string theory associated to a Chomsky grammar G

Derive(S)
Terminal(a) foreverya €T
Rule(o., ) forevery o — 8 €R

Vx((Terminal (x) A Terminal (y)) — Terminal (xy))
Vx,y,z((Derive(xyz) A Rule(y,w)) — Derive(xwz))
Vx((Derive(x) A Terminal (x)) — Generate(x))

Cells of this organism are indicated by the symbol F', cells inside brackets are
“branches”, inclined (alternatively in opposite verses) with respect to a main grow-
ing axis. For n > 5 we distinguish in R(n) two parts B(n),A(n) called a basal part
and an apical part. Every second cell in the basal part carries a non-branching fila-
ment. These filaments develop linearly in time, they add at each stage one new cell.
At stage 6 the lengths of these filaments are 3, 2, 1, respectively. The apical part
at stage 6 consists of four cells without any branches. In the following stages, the
apical part is a repeat of the apical part at the previous stage, together with two new
cells at the end of the apical part. The second of these new cells carries a branch,
identical to the whole organism six stages before.

e R(0O)=F

e R(1)=FF

e R(2)=FFFF

o R(3)=FF[F|FF

e R(4) = FF|FF|FF[F|FF

e R(5) = FF[FFF|FF[FF|FF|F|FFFF
e R(x+6)=B(x+06)A(x+6)

e A(5)=FF

e A(x+6)=FF[R(x)]A(x+5)

e B(x+6)=FF[L(x+3)|FF[L(x+2)]FF[L(x+1)]
e L(0O)=2A

o L(x+1)=FL(x)

The following derivation is based on the equations defining Red Algae structure:

R(10) = ( 0)A(10)

A(10) = FF[R(4)|A(5) = FF[R(4)|FF =
FF[FF[FF} F[F||FF

B(10) = FF[L(7)]FF[L(6)]FFL(5) =

FF[FL(6)]FF[FL(S)|FFL(5) =
FF[F'|FF[FO|FFF?
R(10) = FF[FF|FF|FF[F)|FFFF[F'|FF[FS|FFF>.
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Apical n-1

/

NEah
\ o

\/

Basal n-1

Fig. 2.45 The development of Red Alga

2.7 Membrane Computing

Membranes are one of the basic ingredients in the organization of living organ-
isms. They determine a space partition in internal and external points, separated by
a surface, called skin. Biomolecules inside a membrane are selected, protected, and
concentrated. In this way, the specificity and efficiency of biochemical reactions
is guaranted. Membrane systems are mathematical objects where abstract struc-
tures of membrane organization are investigated in the perspective of information
processing.

Objects and membrane are dual concepts which can be reciprocally reduced (an
analogous situation arises in set theory duality between elements and sets). This
duality is a special case of the space/matter duality formulated in the context of a
discrete framework. In fact a physical object, having a spatial extension comprises
a portion of space, the space occupied by it, that can be delimited by an implicit
membrane delimiting its internal region. Conversely, a membrane is an object with
an internal region which can include other objects. Therefore, we may consider an
object of type a as equivalent to an empty membrane | ],. Analogously an object a
inside the membrane of label j, [a];, is represented by an object a; with the index
denoting the localization of a. In general, we may reverse the relationship of con-
tainment of membranes and objects, by expressing the localization of an object by
labeling it with a membrane address (a string of membrane labels). Here we do not
enter into further details. However, many aspects deserve a careful analysis.

Membrane computing, introduced by Gheorghe Piun in 1998 [49, 50, [31],
develops an analysis of computations and languages in terms of multisets of objects
and their localization inside compartments. The class of membrane systems he in-
troduced are also referred as P systems (P is the initial letter of Pdun). Differently
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from classical Formal Language theory, which is based on strings, in this framework
multisets are the basic structure, and multiset rewriting rules are usually applied in
a maximal parallel way (a set of rules which can be simultaneously applied must
be applied). Rules are located into membranes and can be applied only to objects
inside the membranes where they are located, even if results produced by the rule
applications can be moved into other membranes. Figure shows a membrane
system and one step of computation applied to a configuration where contents are in-
dicated for each membrane (0 is the index of the skin, the most external membrane).
In standard membrane computing, multisets are denoted by commutative strings
(strings where the order of symbols is not relevant), however, here for notational co-
herence with the other chapters, we adopt the multiset polynomial notation. We refer
to the books cited above for the main results and application fields of this theory.
Here, after a short definition of a membrane system, we want to list some aspects,
related to the notion of membrane, that show its capability of modeling biological
phenomena.

Membrane structure

Membrane 0
Content 2a+b+c

Rules a+b —c c—d:5
Membrane 1

Content a+c

Rule a—>b;:;4

Membranes 2, 3, 4
No content
No rule

Membrane 6
Content 2a +2b+2c
Rules a-—>b;3 b—>c;2

System Configuration after one step

Fig. 2.46 A membrane system

Membrane configurations and rules can be easily represented by bracket expres-
sions. For example, the membrane structure given in Fig.[2.46l can be written in the
following way:

olilalali+Is]s +lel2l2+ [313]6]o

and the system given in Fig.[2.46[(membrane structure with initial configuration and
membrane rules) is synthetically expressed in Table[2.10
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Table 2.10 The bracket representation of the membrane system of Fig. [2.46]

[02a+b+c+ [1ate+ [a]ali+s]s+l62a+2b+2c+ ]2+ [3]3]6o

[0a+b—>[oc
bc—[sd
la—[sb
ca—[3b
cb—[c

Usually, membrane systems are represented by means of Venn diagrams with
symbols and rules inside them. Many different notations can be used, very often
with a natural interpretation. However, when a multiset m inside a membrane of
index i is denoted by [m];, then we mean that m is all the content of [];, while we
write [;m for indicating that m is a sub-multiset of the content of [ ];.

This notation is also called boundary notation and was introduced [65]] in order
to cope with more general membrane rules. In fact, in Paun’s original formulation,
rules are inside membranes and everything outside the membrane where a rule is lo-
cated remains unknown to the rule. But, in many cases a wider visibility is required.
The essential point of boundary representation is the idea of rules with a greater
level of localization knowledge about the objects which they apply to. An important
case of this situation is present in anti-port rules which postulate to consider objects
inside and outside membranes.

The example of Fig. 2.47is not standard in membrane computing, but it is very
intuitive because it constitutes a membrane representation of a classical abacus for
performing sums.

Multiset rewriting with maximal parallel strategy means that at any step a set
of rules is chosen in a maximal way, because they can be simultaneously applied,
and no other rule can be applied together with them (and rules have to consume as
many objects as they can). This rewriting strategy provides universal computation
even in the case of only one membrane. The proof of this statement is given by
means of a membrane representation of register machines, in a formulation due
to Minsky (which are proved to be computationally universal). They use only two
types of instructions. Any instruction has a number as label (indicated on the left),
and applies when this label is equal to the content of the program counter (a special
register). Instruction i : incyj increments the content of the register R; and sets to
Jj the value of the program counter. The instruction i : condecy j,h decrements the
content of the register Ry, by putting j as the value of the program counter, if the
content of Ry, is different from zero, while it does not alter any register, and sets to &
the value of the program counter, if the content of Ry, is zero.

Let us represent the register R; containing the value m with the multiset of m
copies of symbol ry, and let us represent by the presence of symbol P, the fact
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[a,], —Ic],
[a,], —Ic],
[a,], —=I[c];

[b,], —Icl,
[b,], —Ic],
[b,], —Ic],

[10c]l,—> [c],
[1Oc]2——> [c],

Initial state
o O ©
3a, + 2a, + 5a,

input
0

Final state

Fig. 2.47 A membrane system which realizes the sum of two decimal numbers of three digits.
Input numbers are represented by multisets of three symbols (a1, ap, a3 for the first input and
b1, by, b3 for the second input). The output is obtained after three steps (by maximal parallel
applications of rules) by the multiplicities of ¢ in membranes []1, []2, []3. The case of the sum
325 +478 is indicated in the Venn diagram of the initial and final state of the computation.

that instruction of order i is the current instruction. With this representation of the
computation states, the instructions of the register machine will be given by the
following multiset rules.

1. Aninstruction i : incy j is expressed by the rule P; — rx + P;.
2. Aninstruction i : condecy, j,h is expressed by the rules:

P — S;+#
Si+r.— O;
#—$

Qi+$—>Pj
Si+$— P,

It is easy to realize that, with maximal parallel rewriting, the above translation pro-
vides, in the membrane register representation, the effects of the corespondent Min-
ski’s instructions in the original registers.

Many features of biological membranes were introduced in membrane computing
in order to analyze their computational relevance; moreover many different mem-
brane systems were introduced for expressing a great variety of distributed, paral-
lel, and non-deterministic computations [49] 50, [51]]. Many of them were an-
alyzed in specific papers of membrane computing (see http://ppage.psystems.eu).
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A great deal of research in membrane computing was devoted to results estab-
lishing the computational universality of specific classes of membrane systems.
Many applications of membrane formalisms consist in discrete models of biological
phenomena.

The following list summarizes some important aspects of membrane that are rel-

evant to biological discrete modeling.

1.

10.

11.

Membrane or object polarities (positive, negative, and neuter) can be consid-
ered. Therefore, rules can be applied according to the presence of certain polar-
ities and may also transform polarities.

Membrane thickness can prevent the membrane permeability, that is, exit/
entrance of objects from/to a membrane and rules may change a membrane
thickness.

Rule priorities can establish an order among the rules of a membrane, and rules
with a lower priority can be applied only if no rule with a higher priority can be
applied.

Catalysts are objects that participate in a rule as reactant and products, which
are not transformed during its application. They can play an important role as
controllers. In fact, if a catalyst is not available the rule cannot be applied, and
the amount of a catalyst determine the level of activity of a rule where it is
involved.

Synport/antiport rules realize the entrance/exit of objects from/to membranes
only in a synchronized way among pair of objects (a can enter/exit only if b
enters/exits or vice versa).

Promoters/Inhibitors may be associated to the rules: their presence can be used
for allowing or for avoiding the application of some rules.

Multi-membranes may be considered, that is, membranes which occur in many
copies with possibly different contents. In this case when a rule is associated to
this kind of membrane, it may be applied to all its copies, or only to some of
them (a specific strategy has to be defined).

. Parameters could be useful in representing physical variables which are not

objects, but may influence the applicability of rules (temperature or pressure, or
electrical potential).

Deterministic strategies could be imposed in several ways, for example, by
combining priority among rules with promoters and inhibitors, or even pro-
grams could be added to membranes which at each step activate at most one
rule, or groups of independent rules. The metabolic P systems, which will be
introduced in the next chapter, are a special case of deterministic P systems.
Non-deterministic strategies can be used in a completely free manner or with
some specific criteria. In the original formulation maximal parallelism was
adopted; however, intermediate forms of non-determinism could be considered,
where maximal parallelism could be confined to some membranes or to some
kinds of rules.

Movement of objects could be considered only from a membrane to an imme-
diately included or immediately including membrane.
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12.

13.

14.

15.

16.

17.

18.

19.

2 Strings and Genomes

Special rules may change the membrane structure, for example by removing
a membrane (releasing its content in the membrane including it), or by creat-
ing membranes, or by including a membrane (with its content) inside another
membrane, or expelling a membrane (with its content) from a membrane which
includes it. These operations correspond to basic biological phenomena (dis-
solution, vesiculation, endocytosis, exocytosis). They are easily described in
terms of bracket expressions, and may be extended and specialized in many
ways.

Porters or carriers of objects could be used which control the object movement
according to some transport/addressing mechanisms.

Many levels of membrane skins could be useful for internal localizations. For
example, only objects which are at the first level could have some kind of inter-
action with external objects.

Membrane structures could assume relations which are different from mem-
brane containment; for example, specific channels or communication lines
could be assumed and rules changing these connections dynamically could be
postulated.

Hyper-rules refer to rules which involve not only multisets, but more generally
substructures. For example a rule such as [,c[;a[;b — [;b[;a[sc acts on three
membranes and implies a complex transformation where the existence of three
specific objects in the three membranes changes their containment relationship.
In general, it would be very useful to introduce the notion of P-term, realized
by a bracket expression possibly including variables of multisets or membrane
structures. In this way, some very general operations could be represented in a
very synthetic and powerful way, For example, let X,Y,Z be variables of mul-
tisets, then the following rule changes radically the inclusion structure and the
content of some membranes:

ia+X+[jb+Y]);Z); = [b+Y + [ja+X];Z;

Structured objects like strings or trees could replace the simple objects of the
original membrane systems, allowing specific operations over these structures
in the transformations described by rules.

Input/output strategies establish where to put the multisets which encode the
input data (according to some encoding mechanism) and where outputs of a
terminating computation have to be read. However, instead of focusing on ter-
minating computations which provide some kind of results, some external rules
(outside the skin) may yield resources, by modeling the typical interactions of
cells with the environment. In this case, the behavior of the system is intended
to cope with the realization of some dynamical regimes of interest, keeping
some variables within certain intervals, while external rules satisfy some spe-
cific constraints [[63]].

Termination strategies could be defined in many ways; for example, the pres-
ence or the absence of some symbols in some membranes could denote the end
of computation, but even the absence of applicable rules can play the same role.
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20. Loci (Latin word for “places”) as localization mechanisms more general than
membranes, could be added. For example, if specific zones of membrane skin
are defined, the position of objects could be given in terms of coordinates which
refer to them. Moreover, implicit forms of localization could be based on con-
centration gradients along some directions.

By using some of the features mentioned in the list above it is possible to prove a
great number of results of computational universality [50]. We will mention only
two results of this kind:

NRE = NOP; (cat,)

that is, the recursively enumerable sets of natural numbers coincide with the set
of numbers which can be generated by P systems with one membrane and rules
allowing at most two catalysts. Moreover:

NRE = NOPs(symy,antiy)

that is, the recursively enumerable sets of natural numbers coincide with the set
of numbers which can be generated by P systems with three membranes and rules
allowing one symport rule and one antiport rule.

2.8 Informational Analysis of Genomes

Genomes are containers of biological information, they direct the functions of the
organisms and they are what is transmitted to the generations of their organisms.
During their transmission variations are introduced, which change the organisms
hosting them. Therefore, according to the evolutionary mechanisms, genomes are
selected indirectly through the effects they produce in the organism they direct.
The selective force driving this process pushes genomes of organisms with the best
capacity of spreading in the environments and of reproducing abundantly. From
this point of view, we could see organisms as means for selecting genomes, instead
of genomes as means for realizing organisms. The situation is a typical case of
duality, in the sense that each of the two realities needs the other one. However,
what it is essential to stress here, is the specific informational nature of genomes.
If they are responsible for the most important part of biological information, then
they have to follow the general rules which information mechanisms follow. This
simple statement implies some important informational perspectives in the analysis
of genomes, which we will outline in the following.

Many seminal works were developed in recent years where concepts from in-
formation theory and computer science [64] 22]], formal language theory
[213], and linguistics [[16] were used in the investigation of genomes considered as
particular texts ([19} [59] 60, 24, [54])). These researches applied
information theoretic notions (information, entropy, mutual information, encoding,
compressibility, complexity measures, and randomness), or formal language theory
(grammars, automata, patterns), or linguistic concepts (words, dictionaries, lexical
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categories, distributional classes) for recognizing and analyzing functional roles of
DNA fragments.

Here we briefly outline an approach, which we call Infogenomics [20, 27,
under development, where we apply methods of informational text analysis specif-
ically conceived for genome analysis. Infogenomics is aimed at devising and com-
puting informational indexes able to provide systematic “localization” of genomes
in many-dimension spaces where these indexes may vary. If these indexes are de-
fined in an adequate manner, then the genome characterization by means of them
could correspond to important biological or evolutive properties which reflect their
internal organization, and could provide profiles for comparing genomes of different
species or even of different physiological/pathological situations.

Bioinformatics had a crucial role in the analysis of biopolymers by means of
the notion of sequence similarity and sequence alignment. In this field, many algo-
rithms on strings were essential in a huge number of important applications. The
epochal sequencing of complex genomes was surely impossible without the ex-
istence of these algorithms and of their efficient implementation. However, now
many genomes, of different types of organisms, are available as files in public sites.
The number of sequenced genomes is near to 1000, from bacteria to Homo sapiens
(without counting viruses). They are treasures and an integrated analysis of their
informational, mathematical, and linguistic features could reveal new clues in the
challenge of understanding their languages. This perspective requires a systemic
approach where genomes are considered not only strings, but structures based on
strings and the components and features of these structures could be discovered by
comparing them. This emerging perspective [35} 36} 34} [62] is based on alignment
free methods of genome analysis, where global properties of genomes are investi-
gated, rather than local similarities based on classical methods of string alignment.

On the side of molecular biology and biochemistry many international projects
are active for deciphering genomes, in order to pass from the knowledge of genome
sequences to their biological functions. In particular, the project ENCODE (ENCy-
clopedia Of DNA Elements) is mainly aimed to extract lexicons, and catalogs
of biochemically annotated DNA elements, in the human genome. In this context,
biochemical functions were assigned to 80% of the genome, mainly outside the
protein-coding regions (with a clear evidence of their crucial role in regulation of
gene expression). A very complex dynamics of interactions results among DNA re-
gions, proteins, and RNAs, with a lot of newly identified elements, and with a huge
number of data (see websites: http://nature.com/encode, http://epd.vital-it.ch). This
scenario has certainly an informational basis, linked to the DNA strings related to
these elements. Therefore, an integration between biochemical and informational
perspective could provide important synergies, with new possibilities for interpret-
ing data and for discovering principles of genome organizations and functions.

A simple argument can show the crucial aspect that dictionaries play in the anal-
yses of genomes. Let us consider a genome G with a length of 10 bases. All
the sequences of length 40 which we encounter by scanning all the genomes are
(10 — 39), moreover possibly many of them occur many times. However, the num-
ber of possible different words of four letters having length 40 is 4** which is a value
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greater than 10%*. This means that the part of sequences of length 40 which occur in
that genome is a portion 10~!® smaller than the whole set of possible words. This
simple numerical evaluation tells us that surely sequences of length 40 have to be
meaningful. In fact if they occur, surely they were selected among a huge number
of other possible sequences. The real sequences of this length which we meet in a
genome are a small part of those which were evaluated, during the evolutive process.
In other words, the meaning of words is related to the relationship between the real
words and all possible words.

Let us denote by I" the genomic alphabet of four symbols (characters, or letters,
associated to nucleotides): I' = {A,T,C, G} (then I'*, as usual, denotes the set of all
possible words over I').

A genome G is representable by a sequence over I, that is, a table assigning a
symbol of I" to each position (from 1 to the length of G). Symbols are written in a
linear order, from left to right, according to the standard writing system of western
languages, and to the chemical orientation 5’ — 3’ of DNA molecules.

We remark that other equivalent representations of sequences are possible. For
example, we could represent G, by a function associating to each symbol of I" the set
of positions where it occurs. In this way G is identified by four sets of numbers, say
N(A), N(T), N(C), N(G). It is also important to distinguish between subsequences
and substrings (also called words, factors, k-mers) of G. Indeed, a subsequence
is a sequence of symbols occurring on a set of positions (considered in their order),
while a substring is a subsequence of symbols which are (contiguously) associated
to all the positions between an initial and a final position (of course, any string is
also a sequence). If a genome has length n, then according to the Gauss triangular
formula, it has at most n(n — 1)/2 different factors (n factors of length 1, n — 1
of length 2, and so on, up to only one factor of length n), while all the possible
subsequences are 2" (the different ways of choosing sets of positions).

A dictionary D of a genome G is a factorization of G when the concatenation of
all the elements of D, possibly with overlapping sub-strings, yields G (the overlap-
ping concatenation of oy with ¥ is ayB). It is intended that in this concatenation
the elements of D may occur at least once, but possibly more than once. We re-
mark that the problem of genome sequencing can be expressed in the following
way. Given a genomic dictionary D (consisting of words of G, called reads, usu-
ally of average lengths under 1000 bp), find the most probable genome G such
that D is a factorization of G, and where the concatenation of elements is always a
proper overlapping concatenation. Despite this simple formulation, this problem is
computationally complex and its solution is not uniquely defined, in mathematical
terms, but can be found, with a certain probabilistic belief (supported by the em-
pirical evidence) by means of different and repeated reconstruction experiments of
G from different factorizations of it. Nowadays, many different sequencing meth-
ods are available, which are based on different technologies. Crucial parameters of
these sequencing methods are the average length of reads and the number of hi-
erarchical phases of string assembling (where fragments of increasing lengths are
reconstructed from factorizations of these fragments).
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Dictionary Based Indexes

We denote by D(G) the set of all factors of a genome G, while we call k-genomic
dictionary of G (for some k < |G|), denoted by Dy (G), the set of all the k-long sub-
strings of genome G. Starting from dictionary Dy (G), the k-genomic table 7;(G),
which mathematically corresponds to a multiset, is defined by equipping the words
of Dy (G) with their multiplicities, that is, the number of their respective occurrences
in G. Let o (G) denote the multiplicity of & in a genome G, and posg(a:) give the set
of positions of o in G (that is, the positions where the first symbol of o is placed).
Of course, it holds o(G) = |posg(c)|. The table T;(G) may be represented by a
list of associations of strings to their corresponding multiplicities: o — o¢(G), with
o € Di(G). The sum of all the multiplicities of elements in Dy (G) is called size of
Ti(G), denoted by |T;(G)]|. It is easy to realize that:

7(G) = |G| —k+1.

In general, the multiset 7;(G) associated to the genome G does not univocally indi-
viduate G. In fact, let us assume that G has the following string structure:

G=—— =Y~ XX ————h——— N = — = =YW~ ———Pp— ——

Now, if we exchange the two fragments included between 7; and 7, and if their lengths
are equal to, or longer than k, the resulting genome G’ is such that T;(G) = T;(G),
because the k-factors of these two genomes are the same. In fact, the & strings which
occur internallyin y; — — — —xxxxx — — — — — Yandiny, ————yyyyy————9
do not depend on the positions of these strings, while those which are partially inside
and partially outside to the (left and right) borders depend on the k — 1-contexts, that
is, the strings of length k£ — 1 which they have on the right and on the left. But, these
contexts in this case are exactly the same, because |y;| > k and || > k.

We say that two genomes G| and G, are multiset k-equivalent when 7;(G) =
Ti(G?).

Given a dictionary D of a genome G, the Multiplicity-Comultiplicity distribu-
tion MC, relative to D and G, may be defined by means of a graphical profile, where
in the abscissa the multiplicities are given, in increasing order (0, 1, 2, ...), and in
the ordinate the number of words of D having a given multiplicity of occurrence in
G is indicated.

All the typical parameters of distributions (mean value, standard deviation, me-
dian, mode, ...) also determine specific values of distribution MC.

The same information of a multiplicity-comultiplicity distribution may be ex-
pressed as a rank-multiplicity Zipf map (usually employed to study word frequen-
cies in natural languages). Zipf’s distributions have in the abscissa the words in
decreasing order of frequency (in alphabetical order when they have the same fre-
quency), say this order rank, and in the ordinate the value of frequency associated to
a rank. Zipf’s curves prove to be sensibly different for different genomes, but in all
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cases, there are few elements with maximal multiplicity, indeed Zipf curves initially
slope down steeply.

Selectivity, Lexicality, and Forbidden Words

We call k-lexical fraction of a genome G the value |D(G)|/4%, which is the per-
centage of different k-mers occurring in G with respect to all the possible ones. Of
course, |T;(G)|/4¥ is an upper bound for |D (G)|/4¥. A better evaluation for such an
upper bound is given by the value 1/(1+4*/|G|) which approximates |Dy(G)|/4*
for a random sequence over I' having length |G|. In fact, let us assume that G is
random, then if ¢ is the fraction of k-mers occurring at least once in G, then the
fraction of k-mers occurring at least twice in G is ¢, and in general the fraction of
k-mers occurring at least i times is ¢', therefore, assuming g < 1, for a very long
genome G, its length can be approximated in the following way [23]:

Gl =4g++...4...) :4"1361.
Therefore,
Gl(1—g) =4

that is:
G| = q(|G|+4%)

which implies:
1/q= (|G| +4"/IG]|

or equivalently, the fraction of k-mers occurring in a random genome of length |G|
(of length sensibly shorter than 4F) is:

1/q=(1+4%/|G)). (2.5)

The computations of |Dy(G)|/4* for the genomes of Table 2.1 are in all cases
sensibly under this estimation. For example, for H. sapiens chr. 19, 1/(1+4'2/|G|)
is equal to 0.791, while |D15|/4'? is equal to 0.639. We define for a genome G its
k-dictionary selectivity DS;(G) as the following difference:

DS (G) = 1/(1+4*/|G|) — |Du(G)| /4. (2.6)

Dictionary selectivity very often proves more indicative than the k-empirical entropy
of Ex(G), which can be defined as:

E(Ti(G))

by applying to 7;(G) the following general definition of entropy E (X ) of a multiset
X of size n with m elements of multiplicities ny,no, ..., n,:
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(X)=—-% " 'log

j=1 "

The k-co-entropy coEy(G) is a measure of the distance from the maximum value
of the empirical k-entropy of a genome with the same dictionary D(G):

coE(G) =1g(|Dk(G)|) — Ex(G). (2.7

On the basis of genomic k-entropy, many other genomic concepts can be developed
which could have a great relevance in the analysis of genomes, such as mutual in-
formation or entropic divergence.
Another related index for a genome G is given by its k-lexicality, that is, the
ratio:
ID(G)|/|Ti(G)] (2.8)

which expresses the percentage of distinct k-factors of G with respect to the all the
k-factors present in G. It is clear that the k-lexicality increases with the word length
k, and does not exhibit any regularity with the genome length. Of course, the inverse
of this ratio provides an average repeatability of the k-factors of G.

When I'* = D (G) we say that a genome G is k-complete, meaning that all the
possible genomic k-long strings occur (at least once) in G. If G is not k-complete,
a non-empty set Fi(G) of “non-appearing”, say forbidden k-words (also called
“nullomers” [34]]), is given by the difference of sets:

F(G) = T'"\Dy(G). (2.9)

Of course, genomic k-completeness is related to the genome length. In fact, it is easy
to find a genome length such that surely genomes of that length are k-complete. In
fact we can construct such a genome by concatenating, in any order, all the k-mers.
Therefore, we have 4% genomes k-complete of length k4*. The search for the mini-
mum length providing genomic k-completeness, and of algorithms for constructing
such minimal genomes, is a non-trivial theoretical investigation of some possible
interest.

For each G, we can define its minimal forbidden length, denoted by MF (G), as
the minimum k such that G is not k-complete.

The cardinality of Fy(G), for k greater than MF (G) and within a small range over
MF(G), seems to be a very specific feature of each genome. It is indeed remarkable
that in all genomes we considered MF (G) is at least 6 and below 12 (see Table2.13),
and it does not appear directly related to the biological complexity of corresponding
organisms. Another interesting character of genomes is the factor length selectiv-
ity LS(G), which expresses the gap between the length of factors which in principle
could be all accommodated in a genome G, and the length of those which are actu-
ally present in G (according to the value of its minimal forbidden length):

LS(G) = |1g, |Gl | — (MF(G) — 1) (2.10)
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where |x] is the floor (greatest integer less than the real value) of x. The value of
LS(G) is around 5 in all the unicellular and primitive multicellular organisms, and
is around 10 in the two human chromosomes we analyzed. A clear understanding
of this behavior should be investigated in more general terms; however, LS(G) is
surely related to an evolution selectivity action over the strings constituting genomic
dictionaries.

Hapax and Repeat Analysis

Two important types of factors of genomes are hapaxes and repeats. A hapax of a
genome G is a factor o of G such that a(G) = 1. The term hapax (from a Greek
word meaning once) came from the analysis of literary texts (for stylistic analysis
and text authorship attribution); however, now it is also used in informational text
analysis [64].

A repeat of G is a factor o of G such that a(G) > 1. Of course, the set H(G) of
hapaxes of G and the set R(G) of repeats of G constitute a bipartition of D(G) (at
least one element of I is a repeat and G is a hapax, therefore H(G) and R(G) are
non-empty, also disjoint sets, such that their union is D(G)). We set:

H(G)=T*NH(G) (2.11)

Ri(G) =T*NR(G) (2.12)

where N is the set-theoretic intersection. Therefore, given a genome G of length n,
for any k < n we canread it according to the bi-partition of its k-genomic dictionaries
Hi(G) and R;(G).

A more refined measure for the average k-factors repeatability in G may be

now given as:
| T(G)\Hi(G)]

AR, (G) IR(G)| (2.13)
where k-hapaxes have been excluded by both the k-genomic multiset and the
k-genomic dictionary (the symbol\represents the set-theoretic difference). Index
AR (G) counts the proper (average) repeatability of k-repeats in genome G.

The concepts of hapax and repeat provide a great number of related notions.
In the following section we will discuss experimental data, reported in tables, di-
agrams, and figures, which include the measure of the ratio between |Hy(G)| and
|Ri(G)| as a function of k (that is, how the number of hapax words of a given length
increases or decreases with respect to the number of repeats of that length). An im-
portant phenomenon guided us in the choice of the string lengths for the computed
dictionaries. In fact, we observed a sort of transition phase effect in the passage
from D1»(G) to D13(G), in almost all genomes of Table 2111 where a clear inver-
sion appears in the ratio hapax-cardinality/repeat-cardinality.

Let us mention briefly other relevant indexes, related to hapax and repeat con-
cepts, that will be reconsidered in the following (for definitions see Table [2.13):
minimal hapax length, denoted by MH, maximal repeat length MR, repeat
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positions RP. An important concept is the maximal k-repeat distance, defined
as (symbols 1 and T denote respectively minimum and maximum over sets of
numbers):

MDy(G) =T{|j—1i|: o € Re(G),i € posg(ar), j= L{k:k € posg(ct),k >i}}.

In Table .11l some genomes are reported as case studies of infogenomics analyses.
In Table .17 sizes of some genomic dictionaries are reported. In Table 213l some
infogenomics indexes were collected, while in Tables 2.14] 217 numerical
values of these indexes are reported which were computed for genomes of Table
2111 [20]. Sequences were downloaded as fasta files from NCBI genome database,
UCSC Genome Bioinformatics website, EMBL-EBI website, or KEGG Kyoto En-
cyclopedia of Genes and Genomes website. They constitute biological models
of remarkable relevance in the genomic analyses. A most detailed description of
these genomes may be found in: http: //users.rcn.com/jkimball .ma. -
ultranet/BiologyPages/G/GenomeSizes.html.

Table 2.11 A list of genomes

Organism genome Length Genes Type

Nanoarchaeum equitans 490,885 536 Minimal archaeum
Mycoplasma genitalium 580,076 476 Minimal bacterium
Mycoplasma mycoides 1,211,703 1,016  Venter’s experiment bacterium
Haemophilus influenzae 1,830,138 1,717  First sequenced bacterium
Escherichia coli 4,639,675 4,685 Bacterium model (K-12)

Pseudomonas aeruginosa 6,264,404 5,566  Ubiquitous bacterium
Saccharomyces cerevisiae 12,070,898 6,275  Unicellular eukaryote (Yeast)
Sorangium cellulosum 13,033,779 9,700 Longest genome bacterium

Homo sapiens chr. 19 63,800,000 2,066 Highest gene density H. chromosome
Caenorhabditis elegans 100,267,63219,000 Worm (around 1000 cells)
Drosophila melanogaster 129,663,327 14,000 Insect (Fruit fly)

Homo sapiens chr. 1 247,000,0003,511 Longest Human chromosome

For all our genomes of Table listed according to the increasing genome
length, we report in Tables 2.14] and 2.17] numerical data related to the com-
putation of Dy(G), Fi(G),Hy(G),Ri(G) for k=6, 12, and 18, respectively.

It is easy to see that any genomic factor containing a hapax as a substring is a
hapax as well. Hence a hapax within the genome may be elongated (by keeping its
property of being a hapax) up to reach the genome itself, which is of course a hapax.
It is then interesting to evaluate, for each genome G: i) how |Hy(G)| varies with k, ii)
the k-hapax positions (that is, how densely hapax words fall in the genetic regions),
and iii) the shortest length of a hapax. Also, a k-similarity between genomes G and
G’ could be measured by |H;(G) N H(G')| (we have some work in progress on the
computation of dictionary intersections).
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Table 2.12 Sizes of genomic dictionaries
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1

— = = e e e

Dy /412

0.025
0.029
0.038
0.089
0.207
0.175
0.393
0.23

0.639
0.83

0.947

Table 2.13 Genomic indexes, dictionaries, and tables

Indexes/Dictionaries/Tables

Genomic Dictionary
k-Genomic Dictionary
k-Genomic Table
k-Lexicality
k-Dictionary Selectivity

Multiplicity-coMultiplicity k-distribution

Forbidden k-Factors
Minimal Forbidden Length
Factor Length Selectivity

Hapaxes

k-Hapaxes
k-Hapax-factor ratio
Minimal Hapax Length

Repeats

k-Repeats

Maximal Repeat Length

Repeat Positions
Length-Multiplicity Repeatability
Average k-Repeatability
k-Repeat-factor ratio

Notation

D(G)
Dy(G)
Ti(G)
Ly (G)
DSi(G)
MC(G)

F(G)
MF(G)
LS(G)
H(G)
Hi(G)
HD(G)
MH(G)
R(G)
R(G)
MR(G)
RP(G)
LM(G)
AR(G)
RDy(G)
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|1—‘24| :424
> 281x10'2

|Dyg| /418

~7 x107°

~8 x1079
~14 x107°
~26 x107°
~67 x107°
~90 x107°
~169 x107°
~185 x107°
~610 x107°
~1,315 x107°
~1,712 x107°

Definition

{a el : aCG}
r“nb(G)

o— o(G) : o€ Di(G)

IDi(G)|/|Tk(G)]
1/(1+44/|G|) — D (G)| /4
J= {o € Di(G) - a(G) = j}
rM\Dy(G)
L{k:T* Z D(G)}

llg4|Gl] = (MF(G) +1)

{a eD(G): a(G) =1}
'"nH(G)

\H (G)| /1D (G)]

Hla| : a€H(G)}

{a eD(G): a(G) > 1}
'*NR(G)

T{lo|: € R(G)}

o — posg(a) : o € R(G)
j—=o(G):|la|=j, o € R(G)
|Te(G)\Hi(G)|/ R (G)]|
IRe(G)|/IDk(G)]



90

Table 2.14 Indexes related to D¢ dictionaries

Genomic sequences

Nanoarchaeum equitans
Mycoplasma genitalium
Mycoplasma mycoides

Haemophilus influenzae

|Ds|

4,094
4,082
4,076
4,096

Lg

0.008
0.007
0.003
0.002

|H |

35
39

]

Escherichia coli

0

0.0009

Table 2.15 Genomic forbidden lengths and words

Genomic sequences

Nanoarchaeum equitans
Mycoplasma genitalium
Mycoplasma mycoides
Haemophilus influenzae
Escherichia coli
Pseudomonas aeruginosa
Saccharomyces cerevisiae
Sorangium cellulosum
Homo sapiens chr. 19

C. elegans

D. melanogaster

Homo sapiens chr. 1

MF |Fg| |F|

2 552

851

N —
S &

12
1

O — —= O 1O JIIADN
— o

[NeloNoNoRoloNeoX=]
NNl e lel

1,269

|Fs|

13,294
14,196
18,498
1,077
176
276

0
683

[=Nelelo)

Table 2.16 Indexes related to Dy, dictionaries

Genomic sequences

Nanoarchaeum equitans
Mycoplasma genitalium
Mycoplasma mycoides
Haemophilus influenzae
Escherichia coli
Pseudomonas aeruginosa
Saccharomyces cerevisiae
Sorangium cellulosum
Homo sapiens chrl9

C. elegans

D. melanogaster

|Dp2|

431,046
496,194
646,965
1,495,701
3,478,923
2,949,852
6,597,259
3,863,399
10,735,683
13,929,915
15,891,212

Ly

0.87
0.85
0.53
0.81
0.74
0.47
0.54
0.29
0.19
0.13
0.12

|Fo|

130,705
126,707
141,646
33,891
5,617
21,387
99
23,327
53

0

0

1

|Hiz|

385,146

435,502

442,836

1,256,043
2,675,846
1,799, 637
3,977,392
1,924,969
3,359,705
3,099,744
1,632,045
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|Re|

4,086
4,047
4,037
4,096
4,096

|Fol

802,658
779,814
791,717
442,572
150,468
326,432

31,619

299,079

12,763
38

0
2,698

[Ri2]

45,900
60,692
204,129
239,658
803,077

1,150,215
2,619,867
1,938,430
7,375,978
10,830,171 0.78
14,259,167 0.9

HRq

1.468 x1073
8.65 x1073
9.661 x1073

0

0

[Fi1] |F12]

3,837,340
3,789,892
3,747,529
3,083,682
1,997,469
2,536,746
1,007,904
2,296,098
469,379
54,011
3214
149,365

16,346,170
16,281,022
16,130,251
15,281,515
13,298,293
13,827,364
10,179,957
12,913,817
6,041,533
2,847,301
886,004
2,830,885

RDyp; HRyz ARy

0.11
0.13
0.32
0.17
0.24
0.39
0.40
0.51
0.69

8.39
7.175
2.169
5.240
3.331
1.564
1.518
0.993
0.455 6.99
0.286 8.97
0.114 8.89

2.30
2.38
3.76
2.39
2.44
3.88
3.08
5.73



2.8 Informational Analysis of Genomes 91

Table 2.17 Indexes related to Dg dictionaries

Genomic sequences |Dyg| Lig |Hig| |Rg] RDg HRig AR;g
Nanoarchaeum equitans 489,465 0.99 488,802 663 0.001 737.253.11
Mycoplasma genitalium 569,202 0.98 563,045 6,157 0.01 91.44 2.76

Mycoplasma mycoides 987,645 0.81 913,599 74,046 0.07 12.33 4.025
Haemophilus influenzae 1,795,492 098 1,775,531 19,964 0.01 88.93 2.64
Escherichia coli 4,557,590 0.98 4,518,585 39,005 0.008 115.843.10
Pseudomonas aeruginosa 6,183,215 098 6,117,968 65,247 0.01 93.76 2.24
Saccharomyces cerevisiae 11,499,795 0.95 11,307,098 192,697 0.01 58.67 3.96
Sorangium cellulosum 12,640,960 0.96 12,340,846 300,114 0.02 41.12 2.30

Homo sapiens chrl9 41,529,106 0.75 39,256,297 2,272,809 0.05 17.27 691
C. elegans 89,444,661 0.89 85,157,627 4,287,034 0.04 19.86 3.52
D. melanogaster 116,446,6270.90 112,977,0463,469,581 0.02 32.56 4.45

Table 2.18 MR index, positions of the only twice repeating word of length MR, and relative
distance between the two occurrences (with respect to the genome lengths)

Genomic sequences MR  MDyg/|G]|

Nanoarchaeum equitans 139 96.95%
Mycoplasma genitalium 243 0.15 %
Mycoplasma mycoides 10,963 0.019 %
Haemophilus influenzae 5,563  8.05%
Escherichia coli 2,815 0.89 %
Pseudomonas aeruginosa 5,304 1237 %
Saccharomyces cerevisiae 8,375  0.07%
Sorangium cellulosum 2,720  27.68 %

Homo sapiens chrl9 2,247 0.02%
C. elegans 38,987 0.10 %
D. melanogaster 30,892 0.02 %

The phenomenon regarding hapax statistical distribution may be observed pass-
ing from 12- to 18-genomic dictionaries (see Tables2.141 2.16 and2.17)). For all the
genomes, by enlarging the k value, the number of hapax increases, even relatively to
the number of repeats (roughly speaking, “most of the 12-words are repeats while
most of 18-words are hapax”). Indeed, by computing HR),, we see that repeatability
generally almost disappears for k = 18, with respect to the number of hapaxes.

More interestingly, the (relative) amount of hapaxes increases by some order of
magnitude with k passing from 12 to 18. Based on this observation coming from
computational analyses, one could suppose that by increasing the word size, ge-
nomic dictionaries composed by only hapaxes may be computed. This intuition
has been invalidated (see Table 2.18). In fact, repeats having lengths of several
thousands have been found within each of our genomes, and 12 — 18 represents
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a sort of transition phase from scarce to abundant hapax/repeat distribution. This
phenomenon would surely deserve a more detailed and generalized analysis.

Any substring of a repeat word is still a repeat, with its own multiplicity along
the genome, and inside the repeat word itself. A further index is thus defined over
genomes G, called MR(G) (maximal repeat length), as the maximal length of
words y such that ¥(G) > 1. An algorithmic way to find it (for our genomes) starts
from repeats out of Dig(G) (that are less than the hapaxes) and checks how much
they may be elongated on the genome by keeping their status of repeat words. Data
related to the MR index computed over our genomes are reported in Table 2Z.18]
where the only MR-long repeat of each genome exhibits a non-trivial structure (that
is, different than polymers with a same nucleotide or similar patterns), and complex
repeats are obtained for many lengths.

The importance of word repeatability is crucial to understanding the information
content of texts. A genome analysis in terms of (shortest) hapaxes and (maximal)
repeats, providing their relative distribution within the genome, highlights the asso-
ciative nature of DNA as a container of information. Localization and frequency of
specific DNA fragments is indeed crucial to understand the information organiza-
tion of genomes. Hapaxes, occurring once in the genome, by their nature have a role
of address for the specific retrieval of functional elements, characterized by redun-
dancy and repeatability. On the other hand, an important characterization of repeats
may be given by means of their internal structure, that is, by the non-maximal re-
peats which compose them. These represent a second level repeatability, possibly
exhibiting various and rich genomic structural properties of functional sequences
(such as the presence of power strings).

Indexes, dictionaries, and tables given in this section identify a kernel of about
20 basic concepts, and many other notions may be derived from them. Namely, for
any numerical index [; with parameter k, the distribution k +— [; can be defined,
and its classical statistical parameters (mean, standard deviation, median, mode,
etc.) may be derived as further indexes (the same possibility holds for multiplicity-
comultiplicity factor distribution). Moreover, extending Shannon’s notion of typical
sequence in information theory, for any index /, a minimal /-typical sequence, for
a given genome G, is a portion of G such that the index I, restricted to this portion,
assumes (approximates) the same value which I assumes over the whole G. The
length and number of these sequences are other genomic indexes. The power of
some indexes in characterizing properties, which are relevant in specific contexts,
is a kind of research requiring computational experiments, mathematical analyses,
and biological interpretations and comparisons.

Bipartition of a genomic dictionary in hapax and repeat words emphasizes the
roots of precise string categories which are related to the functional organization of
genomes. The set of 18-repeats in our genomes has a size which is a couple of or-
ders smaller than the whole genome, and it seems to have a role of “lexical” coding.
Other elements, with a notably bigger size, seem to have a role of addressing, delim-
iting, coordinating, just like position-identification tags. While the lexical nature of
repeated elements points out their semantic value, the “relative localization” nature
of the others gives importance to their unrepeatability along the genomic sequence.
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This phenomenon explains, at an informational level, what is apparent in complex
genomes, where it is well-known that the DNA “coding portion” is much smaller
than the rest. Understanding the logic of such a reality is a crucial challenge in
genome analyses. We would like to remark here that such a dichotomy corresponds
to statistical-informational evidence. On the basis of the hapax/repeat distinction,
we started a genome analysis for building synthetic gene networks, called repeat
sharing gene networks where genes (of a given genome) are the nodes, and two
genes are connected by a labeled edge if they share a repeat, which is put as label
of the edge. This procedure has so far been applied to small genomes, but many im-
portant phenomena were individuated and in some cases groups of genes strongly
connected (often as complete subgraphs) correspond to genes which are related to a
specific cell function.

Figures 2.48] 231 and 2.33] are relative to gene networks ob-
tained by connecting genes having some common words (repeats) in N. equitans
and E. coli (for different lengths of words).

Fig. 2.48 The repeat-sharing whole network of Nanoarchaeum equitans (repeat length 16)

The definition, comp