
File Number 1130-36
Form Y-26-3714-2

Program Logic

IBM 1130 Disk Monitor Programming System, Version 2
Program Logic Manual

Program Numbers

1130-0 S-005
1130-OS-006

This publication describes the internal logic of the IBM 1130 Disk
Monitor Programming System, Version 2. The contents are intended
for use by persons involved in program maintenance, and for system
programmers who are altering the program design. Program logic
information is not necessary for the use and operation of the program;
therefore, distribution of this manual is limited to those who are
performing the aforementioned functions.

Restricted Distribution

PREFACE

This publication is composed of four parts. Part 1
is a description of each of the components of the
monitor system. Sections of Part 1 are devoted to:

System Communication areas
System Loader
Cold Start Programs
Resident Monitor
Supervisor
Core Image Loader
Core Load Builder
Disk Utility Program (DUP)
Assembler Program
FORTRAN Compiler
System Library
Stand-alone Utilities

Each description includes a discussion of the logical
structure and functional operation of the component,
table formats, and core storage layouts.

Part 2 is a description of the techniques and pro-
cedures for use by personnel involved in system
maintenance and/or modification during error diag-
nosis and program analysis.

Part 3 is the flowcharts for the monitor system
components described in Part 1.

Part 4 is the appendices provided to support
Parts 1 through 3.

CONVENTIONS OBSERVED

The following conventions have been observed in this
publication:
• Numbers written in the form /XXXX are hexa-

decimal numbers; numbers written without a
preceding slash (/) are decimal numbers.

• The diagrams showing the layouts of core storage
are intended to illustrate the contents of core
storage and their relative locations; no exact
representation of size or proportion is intended.

• The use of absolute addresses has been avoided
in this manual; symbolic addresses have been
used instead. The absolute equivalents to these
addresses may be found in the listing in Appen-
dix B.

PREREQUISITE PUBLICATIONS

Effective use of this publication requires that the
reader be familiar with the following publications:

IBM 1130 Functional Characteristics (Form A26-5881)
IBM 1130 Input/Output Units (Form A26-5890)
IBM 1130 Assembler Language (Form C26-5927)
IBM 1130 Subroutine Library (Form C26-5929)

IBM' 1130 Disk Monitor System, Version 2, Program-
ming and Operator's Guide (Form C26-3717)

Third Edition (Feb 1969)

This is a major revision of the previous edition of this manual (Y26-3714-1),
which is now obsolete. The manual has been updated to agree with Modifi-
cation 5 of the 1130 Disk Monitor System, Version 2. The new material
includes information on changes and additions to the Monitor System, which
give the programmer the ability to access the Graphic Subroutine Package
to support the 1130/2250 system in a stand-alone environment. It also
includes information on RPG and Disk Data File Conversion Program (DFCNV)
Text changes are indicated by a vertical line to the left of the affected text.
Figure changes are indicated by a bullet to the left of the figure caption.
Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.
Requests for copies of IBM publications should be made to your IBM repre-
sentative or the IBM branch office serving your locality.
A form is provided at the back of this publication for reader's comments.
If the form has been removed, comments may be addressed to IBM Nordic
Laboratory, Technical Communications, Box 962, Lidings 9, Sweden.

ID International Business Machines Corporation, 1967, 1968

CONTENTS

SECTION 1.	 INTRODUCTION 1 SECTION 7. CORE IMAGE LOADER 27
Flowcharts 27

SECTION 2. COMMUNICATIONS AREAS 3	 Phase 1 27
In-core Communications Area (COMMON) 3	 Phase 2 27
Disk-resident Communications Area (DCOM) 3	 Core Layout 28

Drive- and Cartridge-dependent Parameters 3	 Debugging/Analysis Aids 30

SECTION 3. SYSTEM LOADER 9	 SECTION 8. CORE LOAD BUILDER 33
Flowcharts 9	 Flowcharts 33
Phase 1 9	 General Comments 33

Functions 9	 Overlay Scheme and Core Layout 33
Buffers and I/O Areas 9	 Disk Buffers 34
Communication From Phase 1 to Phase 2 9	 Core Image Buffer (CIB) 34

Phase 2 Load Table 35
Functions, Initial Load and Reload 10 EQUAT Table 35
Functions, Initial Load Only 10 LOCAL, NOCAL, FILES, and G2250 Information 35
Functions, Reload Only 10 ISS Table 35
Buffers and I/O Areas 10 Interrupt Branch Table (IBT) 35

Subphases 11 Incorporating Programs Into the Core Load 36
Subphase 1 11	 Pass 1 36
Subphase 2 12	 Pass 2 36

Subphase 3 13	 LOCALS and SOCALs 37

Core Layout 13	 Interrupt Level Subroutines (ILSs) 37
Cartridge Identification Sector 13	 Transfer Vector (TV) 37
System Location Equivalence Table (SLET) 14	 Linkage to LOCALS 37

Reload Table 14	 Linkage to the System Overlays (SOCALs) 38
DEFINE FILE Table 39

SECTION 4. COLD START PROGRAMS 1 5	 Phase Descriptions 40

Flowcharts 15	 Phase 0 40

Cold Start Loader 15	 Phase 1 40

Cold Start Program 15	 Phase 2 40

Core Layout 15	 Phase 3 41
Phase 4 41

SECTION 5. RESIDENT MONITOR 17	 Phase 5 41

Flowcharts 17	 Phase 6 42

COMMA 17	 Phase 7 42

Skeleton Supervisor 17	 Phase 8 42

CALL LINK, CALL DUMP, CALL EXIT Processor 17	 Phase 9 42

E	 Error Traps 17	 Phase 10 42

ILSs 17	 Phase 11 42

Disk I/O Subroutine 17	 Phase 12 42
Phase 13 42

SECTION 6.	 SUPERVISOR 19	 Debugging/Analysis Aids 42

Flowcharts 19
Monitor Control Record Analyzer - Phase 1 19	 SECTION 9.	 DISK UTILITY PROGRAM (DUP) 43

JOB Control Record Processing - Phase 2 20	 Flowcharts 43

System Update Program 20	 DUP Operatior 43

Delete TEMPLET - Phase 3 21	 Core Storage Layout 43

XEQ Control Record Processor - Phase 4 21	 DUP Control Records 44

Supervisor Control Record Processing - Phase 5 21	 Location Equivalence Table (LET)/Fixed Location
LOCAL/NOCAL Control Record Processing 21	 Equivalence Table (FLET) 44

FILES Control Record Processing 21 I DCOM Values 45

G2250 Control Record Processing 21 IOAR Headders 45

EQUAT Control Record Processing 22	 DUP Concatenated Communications Area (CATCO) 45

Supervisor Control Record Area (SCRA) 22	 DUP Phase Descriptions 49

System Core Dump Program - Phase 6 23	 DUP COMMON (DUPCO) 49

Auxiliary Supervisor - Phase 7 23	 DUP CONTROL (DCTL) 51

G2250 Control Record Processor 24	 STORE 52

Core Layout 24	 FILEQ 54

iii

E■DU MP 55	 Phase 4 83
DUMPLET/DUMPFLET 56	 Phase 5 84
DELETE 57	 Phase 6 84
DEFINE 57	 Phase 7 85
DEXIT 58	 Phase 8 85
2501/1442 Card Interface (CFACE) 59	 Phase 9 86
Keyboard Interface (KFACE) 60	 Phase 10 86
1134/1055 Paper Tape Interface (PEACE) 60	 Phase 11 87
PRECI 62	 Phase 12 88

DUP Diagnostic Aids 63	 Phase 13 89
General 63	 Phase 14 89
PRECI 63	 Phase 15 90
STORE 63	 Phase 16 91

Phase 17 92
SECTION 10.	 ASSEMBLER PROGRAM 65	 Phase 18 93
Flowcharts 65	 Phase 19 94
Introduction 65	 Phase 20 94
Program Operation 65	 Phase 21 95
Assembler Communications Area 66	 Phase 22 95
Overlay Area 66	 Phase 23 95
Symbol Table 66	 Phase 24 96
Intermediate I/O 67	 Phase 25 96
Double-Buffering 67	 Phase 26 96
Phase Descriptions 67	 Phase 27 96

Phase 0 67
Phase 1 67	 SECTION 12. SYSTEM LIBRARY 99
Phase 1A 67	 Flowcharts 99
Phase 2 68	 Contents List 99
Phase 2A 1 68	 Interrupt Level Subroutines 105
Phase 3 68	 ILS 02 105
Phase 4 68	 ILSO4 105
Phase 5 68	 Mainline Programs 105
Phase 6 69	 Disk Initialization Program (DISC) 105
Phase 7 69	 Print Cartridge ID (IDENT) 106
Phase 7A 69	 Change Cartridge ID (ID) 106
Phase 8 69	 Disk Copy (COPY) 106
Phase 8A 69	 Delete CIB (DLCIB) 107
Phase 9 69	 Dump SLET Table (DSLET) 107
Phase 10 70 DISK Data file Conversion Program (DFCNV) 107. 1
Phase 11 71 Flowcharts 107.1
Phase 12 71 General Program Description 107.1
Phase 13 71 Part 1 Entry point 107. 1
ERMSG 71 Part 1	 Internal Subroutines 107.1
ARCV 71.1 Part 2 Entry point 107.1
APCV 71.1 Part 2 Internal Subroutines 107.1

Core Layout 71.1 Part 3 Entry point 107.1
Part 3 Internal Subroutines 107.2

SECTION 11.	 FORTRAN COMPILER 73 Part 4 Field Conversion Subroutines 107.2
Flowcharts 73 Part 4 Internal Subroutines 107. 3
General Compiler Description 73 Part 4 External Subroutines 107. 3
Phase Objectives 73 Synchroneous Communications Adapter (SCAT 1) 108
Core Layout 75 Synchroneous Communications Adapter (SCAT 1) 108. 5
FORTRAN Communications Area 76 Synchroneous Communications Adapter (SCAT 1) 108.12
Phase Area 77
String Area 77	 SECTION 1 3. SYSTEM DEVICE SUBROUTINES 109

Symbol Table 78
Statement String 80	 SECTION 14. STAND-ALONE UTILITIES 111

Compilation 81	 Disk Cartridge Initalization Program (DCIP) 111
Compiler I/O 81	 Disk Initialization 111

Fetching Compiler Phase 81	 Disk Dump 111
Phase Description 82	 Disk Copy 112

Phase 1 82	 UCART 112
Phase 2 82
Phase 3 83	 PROGRAM ANALYSES PROCEDURES 113

iv

Introduction
Program Analysis Procedures Summary
Identification of the Failing Component or Function
Subroutine Error Number/Error Stop Lists
Core Dump Procedure
Core Location Procedure
Core Location Procedures

FAC
Arithmetic and Function Subprogram Error Indicators
LIBF TV
LIBF TV SOCAL Linkage
CALL TV
Disk I/O Subroutine
DFT (DEFINE FILE Table)
Arrys
Constants and Integers
COMMON
In-core Subroutines
LOCAL/SOCAL Flipper (FLIPR)
LOCAL Area
SOCAL Area

Generalized Subroutine Maintenance/Analysis Procedure
Trace Back Procedures
Subroutine Looping Capabilities

System Device Subroutines
Library Subroutines

Subroutine Data Charts
System Device Subroutine for Keyboard/Console
Printer
System Device Subroutine for 1442/1442
System Device Subroutine for 2501/1442
System Device Subroutine for Console Printer
System Device Subroutine for 11 32
System Device Subroutine for 1403
System Device Subroutine for 1134/1055
System Device Subroutine for Disk - DISKZ
CARDZ
PNCHZ
READZ
TYPEZ
WRTYZ
PRNZ
PRNTZ
PAPTZ
CARDO
CARD1

READO	 156
113	 READ1	 157
113	 PNCHO	 1.58

113	 PNCH1	 160
115	 TYPEO	 162
115	 PRNT1	 164
115	 PRNT3	 166
115	 PAPT1	 168
115	 PAPTN	 170
118	 PLOT1	 172

118	 OMPR1	 174

119	 WRTYO	 176

119	 DISK1	 177

119	 DISKN	 180

119
119
119
119	 FLOWCHARTS	 185

119 System Overview	 185
120 System Loader	 1.86

120 Cold Start Programs	 192

120 Supervisor	 1.93

120 Core Image Loader	 203

120 Core Load Builder	 205
120 Disk Utility Program	 207
120 Assembler Program	 220
120 FORTRAN Compiler	 240
125 System Library	 274

125	 APPENDIX A. EXAMPLES OF FORTRAN OBJECT CODING. 307
126
128	 APPENDIX B. LISTINGS	 323

130	 DCOM	 323

132	 Resident Image	 324

134	 Resident Monitor	 324

136	 DISKZ	 329

138 Equivalences	 334

140 Cold Start Program	 336

142 Cross-Reference	 337

144
145 APPENDIX C. ABBREVIATIONS	 339

146
147	 APPENDIX D. MICROFICHE	 345

148
150 APPENDIX E. DISK DATA FORMAT	 349

152
154 INDEX	 350

ILLUSTRATIONS

Figures

1. Core Layout During System Loader Operation 	
2. Core Layout During Cold Start 	
3. Core Layout During Supervisor Operation 	
4. Core Layout on Supervisor Entry at $EXIT (DISKZ

in Core). 	
5. Core Layout on Supervisor Entry at $EXIT (DISKZ

Not in Core) 	
6. Core Layout on Supervisor Entry at $DUMP 	
7. Core Layout on Supervisor Entry at $LINK (Link in

Disk System Format) 	
8. Core Layout on Supervisor Entry at $LINK (Link in

Core Image Format) 	

13	 9. Core Layout During Core Load Builder Operation • . 	 34

16	 10. Layout of the Transfer Vector 	 	 38
25	 11. SOCAL Linkage in the LIBF Transfer Vector 	 	 39

12. CALL Transfer Vector for SOCALs 	 	 39
28	 13. Core Layout during Disk Utility Program Operation.	 43

14. Core Layout During Assembler Program
29	 Operation 	 	 72

29	 15. Core Layout During FORTRAN Compiler
Operation 	 	 76

30	 16. FORTRAN Scan Example 	 93
17. Core Layout During User Core Load

31	 Execution 	 119

Tables

1. The Contents of COMMA 	
2. The Contents of DCOM 	
3. The Contents of the FORTRAN Communications

Area 	
4. The Contents of the FORTRAN Symbol Table

ID Word 	

4	 5. FORTRAN Statement ID Word Type Codes 	 80
6	 6. Conversion of FORTRAN FORMAT

Specifications 	 	 87
77	 7.	 FORTRAN Forcing Table 	 91

8.	 Error Number List. . . . 	 116
79	 9.	 Error Stop List 	 118

Flowdiagrams

1. General Procedure for Program Analysis 	
2. Procedure for Identification of the Failing

Component or Function 	
3. Core Dump Procedure 	

113	 4.	 Generalized Subroutine Maintenance/Analysis
Procedure 	

114	 5.	 Trace Back Procedures 	

115

121
122

Flowcharts

DMS01. Disk Monitor System, System Overview 	 185
SYL1. System Loader, General Flow 	 186
SYL2. System Loader, Phase 1 	 187

SYL3. System Loader, Phase 2 	 188
SYL4. System Loader, Phase 2 	 189

SYL5. System Loader, Phase 2 	 190

CST1.
CST2.
SUP1.
SUP2.
SUP3.
SUPO4.

Cold Start Loader 	
Cold Start Program 	
Supervisor, Skeleton Supervisor
Supervisor, Monitor Control Record Analyzer
Supervisor, Job Processor
Supervisor, Delete (Temporary Items) Let

191
192
193
194
195
196

vii

SUP05„	 Supervisor, XEQ Processing 	 	 197
SUP060	 Supervisor, Control Record Analyzer	 • 198
SUP7„ Supervisor, Control Record Processor 	 	 199
SUP8„ Supervisor, Control Record Processor 	 • •	 200
SUP9„ Supervisor, Control Record Processor 	 	 201
SUP10•	 Supervisor, Auxiliary Supervisor 	 202

CIL1. Core Image Loader, Phase 1 	 203
CIL2. Core Image Loader, Phase 2 	 204
CLB01-	 Core Load Builder, Initialization 	 205
CLB02.	 Core Load Builder, Master Control 	 206
DUP1. Disk Utility Program, CCAT 	 207
DUP2. Disk Utility Program, DCTL 	 208

DUP3. Disk Utility Program, STORE 	 209
DUPO4. Disk Utility Program, FILEQ 	 210
DUP5. Disk Utility Program, FILEQ 	 211
DUP6. Disk Utility Program, FILEQ 	 212

DUP7. Disk Utility Program, DDUMP 	 213
DUP8. Disk Utility Program, DDUMP 	 214

DUP09• Disk Utility Program, DUMPLET/DUMPFLET 	 215

DUP10. Disk Utility Program, DELETE 	 216

DUP11. Disk Utility Program, DEFINE 	 217
DUP12. Disk Utility Program, DEXIT 	 218
DUP13. Disk Utility Program, PRECI 	 219
ASM01. Assembler Program, General Flow 	 220
ASMO2. Assembler Program, Phase 0 	 221

ASM3. Assembler Program, Phase 1 	 222

ASM4. Assembler Program, Phase lA 	 223

ASM5. Assembler Program, Phase 2 	 224

ASM6. Assembler Program, Phase 2A 	 225
ASM7. Assembler Program, Phase 3 	 226
ASMO8. Assembler Program, Phase 4 	 227

ASM9. Assembler Program, Phase 5 	 228

ASM10. Assembler Program, Phase 6 	 229
ASM11. Assembler Program, Phase 7 	 230
ASM12 • Assembler Program, Phase 7A 	 231

ASM13. Assembler Program, Phase 8 	 232

ASM14. Assembler Program, Phase 8A 	 233

ASM15. Assembler Program, Phase 9 	 234

ASM16. Assembler Program, Phase 9 	 235

ASM17. Assembler Program, Phase 9 	 236
ASM18. Assembler Program, Phase 10 	 237
ASM19. Assembler Program, Phase 10A 	 238
ASM20. Assembler Program, Phase 11 	 239
A5M21. Assembler Program, Phase 12 	 240
ASM22 . Assembler Program, Error Message Phase 	 241
ASM23. Assembler Program, Read Conversion Phase 	 242
ASM29 • Assembler Program, Punch Conversion Phase 	 243

I

ASM2S.	 Assembler Program, Phase 1 3 	 	 243.1
ASM26. Assembler Program, Phase 13 	 243.2
FOR1. FORTRAN Compiler, General Flow 	 244
FOR2. FORTRAN Compiler, Phase 1 	 245
FOR3. FORTRAN Compiler, Phase 2 	 246
FOR4. FORTRAN Compiler, Phase 3 	 247
FORDS. FORTRAN Compiler, Phase 4 	 248

FOR6. FORTRAN Compiler, Phase 4 	 249

FOR7. FORTRAN Compiler, Phase 5 	 250

FOR8. FORTRAN Compiler, Phase 5 	 251

FOR9. FORTRAN Compiler, Phase 6 	 252

FOR10. FORTRAN Compiler, Phase 7 	 253

FOR11. FORTRAN Compiler, Phase 8 	 254

FOR12. FORTRAN Compiler, Phase 9 	 255

FOR13. FORTRAN Compiler, Phase 10 	 256

FOR14. FORTRAN Compiler, Phase 11 	 257

FOR15. FORTRAN Compiler, Phase 12 	 258

FOR16. FORTRAN Compiler, Phase 13 	 259

FOR17. FORTRAN Compiler, Phase 14	 260

FOR18. FORTRAN Compiler, Phase 15 	 261

FOR19. FORTRAN Compiler, Phase 16 	 262

FOR20. FORTRAN Compiler, Phase 17 	 262

FOR21. FORTRAN Compiler, Phase 18 	 269

FOR22. FORTRAN Compiler, Phase 19 	 265

FOR23. FORTRAN Compiler, Phase 20 	 266

FOR24. FORTRAN Compiler, Phase 21 	 267

FOR25. FORTRAN Compiler, Phase 22 	 268

FOR26. FORTRAN Compiler, Phase 23 	 269

FOR27. FORTRAN Compiler, Phase 24 	 270

FOR28. FORTRAN Compiler, Phase 25 	 271

FOR29. FORTRAN Compiler, Phase 26 	 272

FOR30	 FORTRAN Compiler, Phase 27 	 273

UTL01	 System Library, ID 	 274

UTL02. System Library, FSLEN/FSYSU 	 275

un03. System Library, ADRWS 	 276

UTL4. System Library, DISC 	 	 • 277

UTL5. System Library, RDREC 	 	 . 278

UTL6. System Library, IDENT 	 	 .. 279

UTL7. System Library, CALPR 	 	 . 280

UTL8. System Library, COPY 	 	 • • 281

UTL9. System Library, DLCIB 	 	 . • 282

UTL10. System Library, DSLET 	 283

UTL11. System Library, MODIF 	 284

UTL12. System Library, MODIF 	 285

UTL13. System Library, MODIF 	 286

DCN10. System Library, DFCNV CHART A 	 286. 1
DCN11. System Library, DFCNV CHART B 	 	 286. 2
DCN12. System Library, DFCNV CHART C 	 286. 3
DCN1 3. System Library, DFCNV CHART D 	 286. 4
DCN14. System Library, DFCNV CHART E 	 286. 5
DCN1 5. System Library, DFCNV CHART F 	 286. 6
DCN16• System Library, DFCNV CHART G 	 286. 7

SCA1. System Library, SCAT2 Call Processing 	 287
SCA2. System Library, SCAT2 Interrupt Processing 	 288
SCA3. System Library, SCAT2 Interrupt Processing 	 289
SCA4. System Library, SCAT3 Call Processing 	 290
SCA5. System Library, SCAT3 Interrupt Processing 	 291
SCA6. System Library, SCAT3 Interrupt Processing 	 292
SCA7. System Library, SCAT3 Interrupt Processing 	
SCA8. System Library, SCAT3 Interrupt Processing. . •293.1
SCA09 •	System Library, SCAT3 Interrupt Processing. , 	 293.2

FIO01.	 System Library, FORTRAN Non-disk I/O 	 294
FI2. System Library, FORTRAN Non-disk I/O 	 295

FI3. System Library, FORTRAN Non-disk I/O 	 296

F1004.	 System Library, CARDZ 	 297
FI5. System Library, CARDZ 	 298
FI6. System Library, PRNTZ 	 299

FI7. System Library, PAPTZ 	 300

FI8. System Library, READZ 	 301

FI9. System Library, WRTYZ 	 302
H010.	 System Library, PRNZ 	 303

F1011.	 System Library, PNCHZ 	 304

FIO12.	 System Library, TYPEZ 	 305

F1013.	 System Library, HOLEZ 	 306

viii

SECTION 1. INTRODUCTION

The 1130 Disk Monitor System, Version 2, consists
of the following components:

Communication Areas

This component consists of the in-core communica-
tion area (COMMA) and the disk-resident communica-
tion area (DCOM).

Generally speaking, COMMA contains only those
parameters required by the monitor system to fetch
a program stored on disk in disk core image format
(DCI).

DCOM contains all the parameters required by
the monitor system that are not found in COMMA.

System Loader

This component provides the means for loading all,
or reloading a part of, the monitor system onto disk.
In other words, the System Loader generates the
monitor system on disk.

Cold Start Programs

This component consists of the Cold Start Loader and
the Cold Start Program.

The Cold Start Loader is the bootstrap loader used
in the IPL procedure to initiate the operation of the
Cold Start Program.

The Cold Start Program reads the monitor system,
i. e. , the Resident Monitor, into core storage and
transfers control to it.

Resident Monitor

This component consists of three intermixed parts:
(1) COMMA, (2) the Skeleton Supervisor, and (3)
one of the three disk I/0 subroutines -- DISKZ,
DISK1, or DISKN.

COMMA is defined above, under Communication
Areas.

The Skeleton Supervisor consists of the core-
resident coding necessary to process CALL DUMP,

CALL LINK, and CALL EXIT statements, and
various I/O traps.

One of the three disk I/0 subroutines is present
in the Resident Monitor at all times. The disk I/O
subroutine in the Resident Monitor is the only such
subroutine in core storage at any one time. Any of
the three disk I/O subroutines can be used by the
user. The DISKZ subroutine is used by the
monitor system programs; DISKZ is initially loaded
when a cold start is performed.

Supervisor

This component consists of the Monitor Control
Record Analyzer (MCRA), the Supervisor Control
Record Analyzer, the Auxiliary Supervisor, and
the System Core Dump program.

The MCRA is the program that reads and analyzes
the monitor control records, initiating the actions
indicated on those control records.

The Supervisor Control Record Analyzer is the
program that reads and analyzes the Supervisor
control records, passing the information on these
control records to the Core Load Builder.

The Auxiliary Supervisor is the program called
to perform specialized supervisory functions for the
monitor system.

The System Core Dump program is the program
used to print all or selected portions of the contents
of core storage on the principal print device. The
dump can be dynamic (execution of the calling core
load is resumed after the completion of the dump) or
terminal (a CALL EXIT is executed after the com-
pletion of the dump).

Core Image Loader

This component consists of two parts, the first being
an intermediate supervisor for the monitor system,
the second being a loader for user and system pro-
grams in core image format.

Phase 1 of the Core Image Loader is fetched into
core storage as the result of an entry to the
Skeleton Supervisor. Phase 1 is the program that
determines the type of entry made and the program(s)

Section 1. Introduction 1

to be fetched as a result.
Phase 2 of the Core Image Loader is the program

that fetches into core storage and, if indicated,
transfers control to the program(s) indicated by
phase 1.

Core Load Builder

This component is the program that converts a main-
line program from disk system format (DSF) to a core
load, a program in disk core image format (DCI);
that is, the Core Load Builder relocates the mainline
program and all the subroutines required and con-
structs the other necessary parts of the core load,
e. g. , the transfer vector, LOCALs, and SOCALs.

Disk Utility Program (DUP.)

This component provides the means for performing
the following functions, largely through the use of
control records only:

• Make available the contents of disk storage in
punched or printed format -- DUMP,
DUMPDATA.

• Print a map of the contents of the variable por-
tions of disk storage -- DUMPLET,
DUMPFLET.

• Store information on the disk in disk system
format (DSF), disk data format (DDF), or disk
core image format (DCI) -- STORE,
STOREDATA, STOREDATACI, STORECI,
STOREMOD.

• Remove information from the User/Fixed Area ---
DELETE.

• Alter the allocation of the Fixed Area on the disk
or delete the Assembler Program and/or the
FORTRAN Compiler from the monitor system --
DEFINE.

• Initialize the Working Storage area on disk --
DWADR.

• Provide file protection for the contents of disk
storage.

Assembler Program

This component is the program that translates the
statements of a source program written in the IBM
1130 Assembler Language into a program in disk
system format (DSF).

FORTRAN Compiler

This component is the program that translates the
statements of a source program written in the IBM
1130 Basic FORTRAN IV Language into a program in
disk system format (DSF).

RPG Compiler

This component is the program that translates
specifications written in RPG language into a pro-
gram in disk system format (DSF). 1130 RPG
logic is described in the publication, IBM 1130 RPG
Program Logic Manual, Form Y21-0010.

System Library

This component consists of (1) a complete library
of input/output (except disk I/O), data conversion,
arithmetic, and function subroutines, (2) selective
dump subroutines, and (3) special programs for disk
maintenance.

System Device Subroutines

This component consists of a library of special
subroutines, one for each device (except the disk)
used by the monitor system programs. These sub-
routines and DISKZ are the only device subroutines
used by the monitor system programs.

Utilities

This component consists of the following stand-alone,
self-loading utility programs:

• The Disk Cartridge Initialization Program i DCIP)
• The Core-Dump-to-Printer Program

In general the organization of and flow of control
through the 1130 Disk Monitor System, Version 2,
is shown in Flowchart DMS01.

2

SECTION 2. COMMUNICATIONS AREAS

THE IN-CORE COMMUNICATIONS AREA (COMMA)

COMMA includes, for the most part, only those
system parameters that are required to link from one
core load to another that is stored on disk in disk
core image format (DCI). The exceptions are those
parameters that would create awkward communica-
tion between monitor system programs if they
resided in DCOM.

COMMA is not a single block of locations in the
Resident Monitor; the system parameters that con-
stitute COMMA are intermixed with the various parts
of the Skeleton Supervisor.

Table 1 is a description of COMMA by parameter.
The entries are arranged in alphabetic sequence for
easy reference. See the listing of the Resident
Monitor in Appendix B. Listings for the absolute
addresses associated with the parameters in this
table.

THE DISK-RESIDENT COMMUNICATIONS AREA
(DCOM)

DCOM contains those parameters that must be passed
from one monitor system program to another but are
not found in COMMA.

Table 2 is a description of DCOM by parameter.
The entries are arranged in alphabetic sequence for
easy reference. See the listing of DCOM in Appendix
B. Listings for the relative addresses associated
with the parameters in this table.

DRIVE- AND CARTRIDGE-DEPENDENT
PARAMETERS

Whenever a parameter that is associated with a disk
cartridge is required for system use during a job,
a table of five such parameters (a quintuple), one for
each of the five possible drives, is reserved in
COMMA or DCOM. The first of the five parameters
is assigned a label. Such a parameter is said to be
a drive- or cartridge-dependent parameter, which-
ever term is applicable.

The position in the quintuple indicates the logical
drive number of the drive on which the associated
cartridge is mounted. Thus, the first parameter in
a quintuple is associated with logical drive zero, the
second with logical drive one, etc. The assignment
of logical drive numbers is done during JOB process-
ing; t hat is, the logical drive numbers are assigned
in the sequence specified on the JOB monitor control
record. Thus, the first cartridge specified is
assigned to logical drive zero, the second to logical
drive one, etc. If no cartridges at all are specified,
then the current logical drive zero is defined as
logical drive zero for the job being defined. The
drive- and cartridge-dependent parameters for all
unspecified cartridges are cleared to zero, except
for logical drive zero as noted above.

JOB processing includes the reading of DCOM and
the ID sector from each specified cartridge and the
setting up of the drive- and cartridge-dependent
quintuples in DCOM on the master cartridge.

Initialization of the quintuples is done during cold
start processing, which defines logical drive zero
(and all associated drive- and cartridge-dependent
parameters for logical drive zero) as the physical
drive selected in the Console Entry switches (see
Section 4. Cold Start Programs). All other values
in the drive- and cartridge-dependent quintuples are
cleared to zero.

Section 2. Communications Areas 3

Table 1. The Contents of COMMA

LABEL DESCRIPTION

$ACDE $ACDE contains the device code for the physical disk
through drive assigned as logical disk drive 0. 	 SACDE+ 1 through
SACDE+4 $ACDE+4 contain the device codes for logical disk drives

1, 2, 3, and 4, respectively.	 The device code is
contained in bits 11-15.

$ACEX $ACEX and $ACEX+1 are the locations in which the
and contents of the accumulator and extension, respec-
$ACEX+1 tively, are saved by the Supervisor when entered at

the $DUMP entry point.

$CCAD $CCAD contains the address of the lowest-addressed
word of COMMON to be saved on the Core Image
Buffer (CIB) by the Core Image Loader.

SCH 12 $CH12 contains the address of $CPTR, $1132, or $1403
depending upon the device defined as the principal
print device--the Console Printer, 	 1132 Printer, or
1403 Printer, respectively.

$CIBA $CIBA contains the sector address of the first sector of
the Core Image Buffer (CIB) in use by the monitor
system programs during the current job. The logical
disk drive number is contained in bits 0-3.

$CIBA-1 $CIBA-1 contains 4095 minus the location of $CIBA.
This value is used as the word count (In conjunction
with $CIBA, which contains the sector address of the
CIB) in saving the first 4K of core storage following
an entry at $DUMP.

$CILA $CILA contains the address of the end of the disk I/O
subroutine currently In core storage 	 minus 4.	 $CILA
always points to the word count (followed by the
sector address) of phase 1 of the Core Image Loader.

$CLSW $CLSW Is a switch indicating to phase 2 of the Core
Image Loader the function it is to perform. 	 The switch
settings are as follows:

Setting	 Meaning

Positive	 Load the indicated disk I/O
subroutine

Zero or	 Load the indicated core load
Negative	 and its required disk I/O

subroutine.	 Zero indicates
that the core load has just
been built by the Core Load
Builder; negative indicates
that the core load is stored
in the User or Fixed Area in
core image format.

$COMN $COMN contains the number of words of COMMON
defined for the core load currently in execution.

$CORE $CORE contains a code indicating the number of words
of core storage within which the monitor system pro-
grams are to operate. 	 The codes are as follows:

Code	 Size of Core Storage

/1000	 4096 words
/2000	 8192 words
/4000	 16384 words
/8000	 32768 words

$CPTR $CPTR is a dummy channel 12 indicator for the
Console Printer.

$CTSW $CTSW is a switch indicating that a monitor control
record has been detected by a monitor system program
other than the Supervisor.	 The switch settings are as
fol lows:

Setting	 Meaning

Positive	 Monitor control record detected
Zero	 Monitor control record not detected

LABEL DESCRIPTION

$CWCT $CWCT contains the number of words of COMMON
to be saved on the Core Image Buffer (CIB) by the
Core Image Loader.

$CWCT+1 $CWCT+1 contains the sector address of the first sector
of the Core Image Buffer (CIB) to be used for the saving
of COMMON by the Core Image Loader. 	 The logical
disk drive number is contained in bits 0-3.

$CXR1 $CXR1 is the location in which the contents of index
register 1 are saved by the Skeleton Supervisor.

$CYLN $CYLN contains the sector address of sector C on the
through cylinder over which the access arm on logical disk
$CYLN+4 drive 0 is currently positioned.	 $CYLN+1 through

$CYLN+4 contain analogous sector addresses I or logi-
cal disk drives 1, 2, 3, and 4, respectively.

$DABL $DABL contains the second word of the IOCC used
to reset the Synchronous Communications Adapter.
$DABL is, therefore, aligned on an odd word boundary.
$DABL contains /5540, the bit configuration of an
Initiate Write with modifier bit 9 on.

$DADR $DADR contains the disk block address of the first
sector of the program or core load to be fetched into
core storage and executed.

$DBSY $DBSY is a switch indicating whether or not a disk
I/O operation is in progress. 	 The switch settings are
as follows:

Setting	 Meaning

zero	 Disk I/O not in progress
non-zero	 Disk I/O in progress

$DBSY is simultaneously used as a retry counter by
DISKZ and DISK1.

$DCDE $DCDE contains the number of the logical disk drive on
which the program to be fetched by the Core Image
Loader is to be found.	 The drive number is contained
in bits 0-3.

$DCYL $DCYL through $DCYL+2 contain the defective cyl-
through inder addresses (the contents of words 1, 2, and 3
$DCYL+I4 of sector 0, cylinder 0) for the cartridge mounted

on logical disk drive 0. 	 $DCYL+3 through $DCYL+14
contain analogous addresses for the cartridges on
logical disk drives 1, 2, 3, and 4, respectively.

$DDSW $DDSW contains the device status word (DSW) sensed
during the last disk 1/0 operation performed.

$DMPF $DMPF contains the contents of the word following
the branch to the $DUMP entry point, i.e., the
dump format code.

$DREQ $DREQ is a switch indicating the disk I/O subroutine
that has been requested. 	 The switch settings c re as
follows:

Setting	 Meaning

positive	 DISKN
zero	 DISK I
negative	 DISKZ

$DZ IN $DZ IN is a switch indicating the disk I/O subroutine
presently in core storage.	 The switch settings are as
fol lows:

Setting	 Meaning

negative	 DISKZ is in core
zero	 DISK1 is in core
positive	 DISKN is in core

4

&Table 1. The Contents of COMMA (Continued

LABEL DESCRIPTION

$FPAD $FPAD contains the sector address of the first sector of
through Working Storage on the cartridge mounted on logical
$FPAD+4 disk drive 0.	 The logical disk drive number is con-

tained in bits 0-3. 	 $FPAD+1 through $FPAD+4 contain
analogous sector addresses for the cartridges on logical
disk drives 1, 2, 3, and 4, respectively.

$FPAD through $FPAD+4 are effectively the file-
protection addresses for the cartridges in use. 	 These
addresses are adjusted in non-temporary mode only.

$GCOM $GCOM contains the address of GCOM, the communica-
tion area for the Graphic Subroutine Package (GSP).
GCOM contains common areas, pointers, and indicators
that are used by most of the GSP subroutines. GCOM al-
so contains the system display program for the GSP.

$GRIN SGRIN is the Graphic Initialization program indicator.

$HASH $HASH through $HASH +11 are a work area used vari-
through ously by the monitor system programs.
$HASH + 11

$IBSY $IBSY is a switch indicating whether or not an I/O
operation involving the principal I/O device is in
progress.	 The switch settings are as follows:

Setting	 Meaning

zero	 Principal I/O device not busy
non-zero	 Principal I/O device busy

$IBT2 $IBT2 contains the address of the interrupt branch
table (IBT) for interrupt level 2. 	 Since the disk is the
only device on interrupt level 2, $IBT2 contains the
address of the interrupt entry point in the disk I/O
subroutine currently in core storage.

$IBT4 $IBT4 contains the address of the interrupt branch table
(IBT) for interrupt level 4 used by the program currently
in control.

$IOCT $IOCT is the IOCS counter for I/O operations. 	 $IOCT
is incremented by 1 for each I/O operation initiated.
$IOCT is decremented by 1 for each I/O operation
completed or terminated.	 $IOCT equals zero when
all I/O operations have been completed.

$IREQ $IREQ contains the address of the subroutine servicing
the INTERRUPT REQUEST key on the Keyboard (interrupt
level 4).	 This address is supplied by the user core load
using the INTERRUPT REQUEST key. 	 Unless an address
is supplied $IREQ contains the address of the $DUMP
entry point.

$KCSW $KCSW is a switch indicating whether or not (1) the
Keyboard has been defined as the principal input device
and/or (2) the Console Printer has been defined as the
principal print device.	 The switch settings are as
follows:

Settings	 Meaning

negative	 Either the Console Printer is the princi-
pal print device or the Keyboard is
the principal input device, but not
both

zero	 Neither is the Console Printer the
principal print device nor is the
Keyboard the principal input device

positive	 The Console Printer is the principal
print device and the Keyboard is
the principal input device

Depending on the setting on $KCSW, the system device
subroutine for the Keyboard/Console Printer either
permits or inhibits the overlapping of input and output.

$LAST $LAST is a switch indicating whether or not the last
card has been read by the system device subroutine serv-
icing the card input device.	 The switch settings are as
follows:

Settings	 Meaning

zero	 Last card has not been read
non-zero	 Last card has been read

LABEL DESCRIPTION

$LKNM
and

$LKNM and $LKNM+ I contain the name, in name
code, of the program or core load to be executed next.

$LKNM+1 $LKNM is aligned on an even word boundary.

$LSAD $LSAD contains the absolute sector address of the first
sector of the first LOCAL (or SOCAL if there are no
LOCALS) for the core load currently in core.	 The
logical disk drive number is contained in bits 0-3.

$NDUP $NDUP is a switch indicating whether or not DUP
operations may be performed.	 The switch settings are
as follows:

Setting	 Meaning

zero	 Permit DUP operations
non-zero	 Inhibit DUP operations

$NEND $NEND is equivalent to the address of the end of
DISKN plus 1.

$NXEQ $NXEQ is a switch indicating whether or not exe-
cution of a user core load may be performed. 	 The
switch settings are as follows:

Setting	 Meaning

zero	 Permit core load execution
non-zero	 Inhibit core load execution

$PAUS $PAUS is a switch set by every ISS that does not set
$IOCT when initiating an I/O operation, e.g., SCAT1.
The switch settings are as follows:

Setting	 Meaning

zero	 Exit from the PAUS subroutine
non-zero	 Branch back to the WAIT in the

PAUS subroutine

$PBSY $PBSY is a switch indicating whether or not an I/O
operation involving the principal print device is in
progress.	 The switch settings are as follows:

Setting	 Meaning

zero	 Principal print device not busy
non-zero	 Principal print device busy

$PGCT $PGCT contains the number, in binary, of the page of
the job listing currently being printed.

$PHSE $PHSE contains the SLET ID number (In bits 8-15) of the
phase of the monitor system program currently in con-
trol, excepting the Cold Start Program and the Skeleton
Supervisor.	 $PHSE always contains zero when a user
core load is in control.	 Bits 0-7 of $PHSE sometimes
contain a subphase ID number.

$RMSW $RMSW is a switch indicating the entry point at which
the Skeleton Supervisor was entered and, hence, the
type of CALL causing the Skeleton Supervisor to be
entered.	 The switch settings are as follows:

Setting	 Meaning

positive	 Entry at $DUMP
zero	 Entry at $LINK
negative	 Entry at $EXIT

$RWCZ $RWCZ is a switch indicating the type of operation last
performed by the CARDZ subroutine. 	 The switch settings
are as follows:

Setting	 Meaning

zero	 Last operation a Read
non-zero	 Last operation a Punch

$SCAN $SCAN through $SCAN+7 are an area used by the 1132
through Printer when printing a line.	 This area is also used as
$SCAN+7 a work area by the monitor system programs.

Section 2. Communications Areas 5

"Table 1 . The Contents of COMMA (Concluded)

LABEL DESCRIPTION

$SNLT $SNLT is the location used for sense light simulation
by FORTRAN programs.	 The bits are used as follows:

Bit	 Sense Light

14	 1
13	 2
12	 3
11	 4

$SYSC $SYSC contains the version and modification level
numbers identifying the 1130 Disk Monitor System.
Bits 0-7 contain the version number; bits 8-15 con-
tain the modification level number.

$UFDR $UFDR contains the number of the logical disk drive
on which the unformatted I/O area in use by the
monitor system programs during the current job is to
be found.	 The drive number is contained in bits 0-3.

$UFIO SUF10 contains the displacement, in sectors, from the
start of the unformatted I/O area to the sector at
which the writing or reading of the next logical
record to or from the unformatted I/O area is to begin.

$ULET $ULET contains the sector address of the first sector
through of LET on the cartridge mounted on logical disk drive
$ULET+4 0.	 The logical disk drive number is contained in

bits 0-3.	 $ULET+1 through $ULET+4 contain ana-
logous sector addresses for the cartridges on logical
disk drives 1, 2, 3, and 4, respectively.

$WRD1 $WRD1 contains the address at which the first word of
the core image header of the core load to be/being
executed will/does reside.

$WSDR $WSDR contains the number of the logical disk drive
on which the Working Storage in use by the monitor
system programs during the current job is to be found.
The drive number is contained in bits 0-3.

SXR3X SXR3X contains the setting of index register 3 for the
core load in core.

$ZEND $ZEND Is equivalent to the address of the end of
DISKZ plus 1.

$1END $1END Is equivalent to the address of the end of
DISK1 plus 1.

$1132 $1132 is a switch indicating whether or not channel
12 has been detected on the 1132 Printer. 	 The
switch settings are as follows:

Setting	 Meaning

zero	 Channel 12 not detected or a skip
to channel 1 executed

non-zero	 Channel 12 detected

$1403 $1403 is a switch indicating whether or not channel
12 has been detected on the 1403 Printer. 	 The
switch settings are as follows:

Setting	 Meaning

zero	 Channel 12 not detected or a skip
to channel 1 executed

non-zero	 Channel 12 detected

Table 2. The Contents of DCOM

LABEL DESCRIPTION

#ANDU
through

#ANDU contains the displacement, in disk blocks,
from word 0, sector 0, cylinder 0 on the cartridge

#ANDU+4 mounted on logical disk drive 0 to the last disk block
of the User Area on that cartridge, plus 1 disk block.
#ANDU+1 through #ANDU+4 contain analogous dis-
placements for the cartridges on logical disk drives 1,
2, 3, and 4, respectively.
#ANDU through #ANDU+4 are effectively the ad-
justed addresses of the ends of the User Areas on the
cartridges In use. 	 These addresses are adjusted in-
stead of # BNDU through #13NDU+4 during temporary

mode, in parallel with # BNDU through fiBNDU+4
during non-temporary mode.

BNDU
through

#BNDU contains the displacement, in disk blocks,
from word 0, sector 0, cylinder 0 on the cartridge

BNDU+4 mounted on logical disk drive 0 to the last disk
block of the User Area on that cartridge, plLs 1 disk
block.	 O BNDU+1 through # BNDU+4 contain ana-
logous displacements for the cartridges on logical
disk drives 1, 2, 3, and 4, respectively.
BNDU through # BNDU+4 are effectively the base
addresses of the ends of the User Areas on the
cartridges in use.	 These addresses are adjusted only
during non-temporary mode, in parallel with #ANDU
through OANDU+4.

#CBSW #CBSW is a switch indicating to the Core Load Builder
the type of exit to be made.	 The switch settings are
as follows:

Setting	 Meaning

Zero	 Return to Core Image Loader
non-zero	 Return to DUP

#CIAD OCIAD contains the relative location in sector
@IDAD (within DISKZ) where the address of the
Core Image Loader is to be found.

#CIBA #CIBA contains the sector address of the Core Image
through Buffer (CIB) on the cartridge mounted on logical disk
O CIBA+4 drive 0.	 The logical disk drive number is contained

in bits 0-3.	 #CIBA+1 through #CIBA+4 contain
analogous sector addresses for the cartridges on logical
disk drives 1, 2, 3, and 4, respectively.

#CIDN
through

#CIDN contains the ID (the contents of word 4,
sector 0, cylinder 0) of the cartridge mounted on

#CIDN+4 logical disk drive 0. 	 O CIDN+1 through #CIDN+4
contain the !Ds of the cartridges on logical risk
drives 1, 2, 3, and 4, respectively.

#CSHN #CSHN contains the number of sectors availcble for
through expansion of the monitor system programs on the
O CSHN+4 system	 cartridge mounted on logical disk drive 0.

6 CSHN-F1 through # CSHN+4 contain analogous num-
bers for any system cartridges mounted on logical
disk drives 1, 2, 3, and 4, respectively.

DBCT #DBCT contains the number of disk blocks occupied
by the program, core load, or data file named on a
DUP control record.

DCSW #DCSW is a switch indicating to the ADRWS program
the type of exit to be made. 	 The switch settings are
as follows:

Setting	 Meaning

Zero	 Branch to $EXIT in Skeleton
Supervisor

non-zero	 Return to DUP

ENTY #ENTY contains the address of entry point 1 in the
program placed into system Working Storage oy the
Assembler or FORTRAN Compiler.	 This address is
the address to be placed into word 12 of the DSF pro-
gram header by DUP or the address from which word 1
of the core image header is generated by the Core
Load Builder.

#ECNT #ECNT contains the number of EQUAT records that
have been processed by the Supervisor and ;:cored on
the SCRA.

6

*Table 2. The Contents of DCOM (Continued)

LABEL DESCRIPTION

#FCNT OFCNT contains the number of files defined for the
core load being built or the execution to be init-
ated.

#FHOL #FHOL contains the displacement, in disk blocks,
from word 0, sector 0, cylinder 0 to the first disk
block of the largest unused (1DUMY) area in the
Fixed Area on the cartridge to which a STORE oper-
ation is to be made.

FLET #FLET contains the sector address of the first sector
through of F LET on the cartridge mounted on logical disk
O F LET+4 drive 0.	 The logical disk drive number is contained

in bits 0-3.	 #FLET+1 through O F LET+4 contain
analogous sector addresses for the cartridges on
logical disk drives 1, 2, 3, and 4, respectively.

FMAT #FMAT is a switch Indicating the format of the con-
through tents, if any, of Working Storage on the cartridge
# FMAT+4 mounted on logical disk drive 0. 	 #FMAT+1 through

FMAT+4 are analogous switches for Working Stor-
age on logical disk drives 1, 2, 3 and 4, respectively.
The switch settings are as follows:

Setting	 Meaning

-2	 disk core image format (DCI)
zero	 disk system format (DSF)
+1	 disk data format (DDF)

O FPAD OFPAD contains the sector address of the first sector
through of Working Storage on the cartridge mounted on
O FPAD+4 logical disk drive 0.	 The logical disk drive number

is contained in bits 0-3.	 #FPAD+1 through
FPAD+4 contain analogous sector addresses for the
cartridges on logical disk drives 1, 2, 3, and 4,
respectively.
FPAD through #FPAD+4 are effectively the file-
protection addresses for the cartridges in use. 	 These
addresses are adjusted in non-temporary mode only.

#FRDR #FRDR contains the number of the logical disk drive
on which the cartridge specified by the "FROM"
cartridge ID (in columns 31-34 of the DUP control
record) is mounted.	 The drive number is contained
in bits 12-15.	 A negative number indicates that no
ID was specified.

FSZE #FSZE contains the number of disk blocks contained
in the largest unused (IDUMY) area in the Fixed Area
on the cartridge to which a STORE operation is to be
made.

#GCNT #GCNT contains the number of G2250 subroutines to
be defined for the core load being built or the execu-
tion to be initiated.

JBSW #JBSW is a switch indicating the mode of operation
established by the last JOB monitor control record.
The switch settings are as follows:

Setting	 Meaning

zero	 temporary mode
non-zero	 non-temporary mode.

LCNT #LCNT contains the number of LOCALS specified for
the execution to be initiated or the core load being
built.

LOSW #LOSW is aswitch used by CLB to indicate the
fol lowing.

Setting	 Meaning

zero	 LOCAL may not call a LOCAL
one	 LOCAL may call a LOCAL

LABEL DESCRIPTION

O MDF 1 #MDF1 contains, in bits 8-15, the number of DUP
control records to be processed by DUP when called
by the MODIF program.	 # MDF1 also contains, in
bits 0-7, the number of errors detected by DUP during
the processing of the DUP control records for the
MODIF program.

#MDF2 #MDF2 is a switch indicating to DUP that control
must be returned to the MODIF program. 	 The switch
setting are as follows:

Setting	 Meaning

zero	 Do not return to MODIF
non-zero	 Return to MODIF

MPSW OMPSW is a switch indicating to the Core Load Builder
whether or not a core map is to be printed for each core
load built during the current execution. 	 The switch
settings are as follows:

Setting	 Meaning

Zero	 Do not print a core map
non-zero	 Print a core map

NAME NAME and O NAME+1 contain the name, in name
and code, of the program, core load, or data file currently
NAME+1 being processed by the Supervisor, DUP, Core Load

Builder, or Core Image Loader.	 The name is obtained
from a control record or from a LET/FLET search.
NAME is aligned on an even word boundary.

NCNT #NCNT contains the number of NOCALs specified for
the execution to be initiated or the core load being
bui It.

#PCID #PCID contains the ID (the contents of word 4, sector
through 0, cylinder 0) of the cartridge mounted on physical
O PCID+4 disk drive 0, if that drive is "ready".	 #PCID+1

through #PCID+4 contain the IDs of the cartridges on
physical disk drives 1, 2, 3, and 4, respectively, if
the corresponding drives are "ready". 	 The entries
for "not ready" drives contain zeroes.

PIOD #PIOD is a switch indicating the device defined as the
principal I/O device for the system. 	 The switch
settings are as follows:

Setting	 Principal I/O Device

positive	 2501 with 1442, any model
zero	 1442, Model 6 or 7
negative	 1134 with	 1055

PPTR #PPTR is a switch indicating the device defined as the
principal print device for the system.	 The switch
settings are as follows:

Setting	 Principal Print Device

positive	 1403 Printer
zero	 1132 Printer
negative	 Console Printer

RP67 #RP67 is a switch indicating the type of card I/0
device present on the system.	 The switch settings
are as follows:

Setting	 Card I/0 Device

zero	 2501 with 1442, Model 5
positive	 1442, Model 6 or 7

SCRA #SCRA contains the sector address of the first sector
through of the Supervisor Control Record Area (SCRA) on the
# SCRA+4 cartridge mounted on logical disk drive 0. 	 The logical

disk drive number is contained in bits 0-3. 	 #SCRA+1
through # SCRA+4 contain analogous sector addresses
for any system cartridges on logical disk drives 1, 2,
3, and 4, respectively.

Section 2. Communications Areas 7

Table 2. The Contents of DCOM (Concluded)

LABEL DESCRIPTION

UHOL #UHOL contains the displacement, in disk blocks,
from word 0, sector 0, cylinder 0 to the first disk
block of the largest unused (I DUMY) area in the User
Area on the cartridge to which a STORE operation is
to be made.

ULET #ULET contains the sector address of the first sector of
through LET on the cartridge mounted on logical disk drive 0.
ULET+4 The logical disk drive number is contained in bits 0-3.

ULET+1 through #ULET+4 contain analogous sector
addresses for the cartridges on logical disk drives 1,
2, 3, and 4, respectively.

USZE #USZE contains the number of disk blocks contained
in the largest unused (1DUMY) area in the User Area
on the cartridge to which a STORE operation is to be
made.

#WSCT #WSCT contains the number of disk blocks occupied
through by a program, core load, or data file placed into
O WSCT 1-4 Working Storage on the cartridge mounted on logical

disk drive 0.	 # WSCT+1 through #WSCT+4 contain
analogous disk block counts for the contents of Work-
ing Storage on logical disk drives 1, 2, 3, and 4,
respectively.

8

SECTION 3. SYSTEM LOADER

FLOWCHARTS

General: SYLO1

Phase 1: SYLO2

Phase 2: SYLO3 - SYLO5

PHASE 1

FUNCTIONS

Phase 1 determines which card I/O subroutine is
required, e. , 1442 or 2501. If the 2501 is the card
reader, the System 2501 Subroutine overlays the
System 1442 Subroutine. Both subroutines are
assembled as part of Phase 1 and are naturally
relocatable.

Phase 1 also reads the Console Entry switches to
get the physical drive number (0-4) for the cartridge
to be loaded. It sets up the PROGRAM STOP key
interrupt trap. The Keyboard INTERRUPT REQUEST
key is made non-effective until the monitor system
programs have been loaded.

Phase 1 reads the Resident Monitor and DISKZ
object decks into core storage and initializes them
preparatory to loading phase 2 of the System Loader
to disk.

Phase 1 picks up defective track data from sector
@IDAD on the cartridge to be used to initialize the
disk I/O subroutine.

Phase 1 loads phase 2 to cylinders 198 and 199
(sectors /0630 through /063D) on disk. (These
sector addresses are absolute; they are assembled
as part of the phase 2 deck.) If an initial load is
being performed, subphase 1 is loaded to sector
/0635 , overlaying a part of the reload processing
subroutine. Subphases 2 and 3 are loaded to sectors
/063A and /063C.

Phase 1 stores the Resident Image on sector
&RIAD. (DISKZ is stored on disk by phase 2.)

On reload operations, the SLET and Reload Table
are tested for agreement with the checksum resid-
ing in the last word of the Reload Table sector. If
no checksum is present, the cartridge is assumed
to have been loaded by a modification level 0 System
Loader. Consequently the first two sectors of SLET
will be packed, and the third SLET sector cleared.

Phase 1 processes the System Configuration
records, saving the data obtained in the phase 1

communications area for use by phase 2. At the
end of the Configuration records processing, the
accumulated data is checked for errors and consoli-
dated for phase 2. If a CORE control record is
present, its contents are processed and replace the
calculated core size.

Phase 1 processes the PHID control record(s),
checks for errors, and saves the data obtained for
use by phase 2. The version and modification
level number is taken from the first PHID control
record and saved.

Phase ID pairs must be in ascending order on the
PHID record(s) with no intervening blank fields. If
two PHID records are present, the second may con-
tain blank fields after the last phase ID pair.

Phase 1 fetches phase 2 from disk into core
storage and transfers control to it at BA000.

BUFFERS AND I/0 AREAS
Card Input

AA904: an 80-word buffer that contains card images
in left-justified 12 bit/word format, as read by the
1442 or 2501 card I/0 subroutine.

AA902: a 60-word buffer that contains the 12 bit/
word data from buffer AA904 after it has been
compressed to 16 bits/word.
Paper Tape Input

A: an 80-word buffer for PTTC/8 records.

B: a 60-word buffer into which binary data from
buffer BIGCB is compressed.

C: a 1-word buffer used for the DEL character
test when reading binary paper tape records.
BIGCB: a 108-word buffer for binary paper tape
records, 108 frames, left-justified.

Disk Input and Output

BUFFR: a 640-word buffer used in all disk I/O
operations.
BUFR1: a 320-word buffer, used only for the SLET/
RELOAD table checksum calculation.

COMMUNICATION FROM PHASE 1 TO PHASE 2

The Console Printer Subroutine (WRYTZ) and the
System I/O Subroutine (1442 or 2501) are in a low
core position not overlayed by Phase 2. Phase 2 is
then able to use these subroutines.

Section 3. System Loader 9

Likewise, information acquired by Phase 1 that
must be passed on to Phase 2 and error messages re-
quired by both phases reside in a low core position
so as not to be overlayed by Phase 2.

PHASE 2

FUNCTIONS, INITIAL LOAD AND RELOAD

Phase 2 checks the phase ID number sequence for
ascending order and completeness throughout an
initial load, and during the addition of one or more
programs during a reload. At other times during
a reload, the phases present should be in ascending
order, but omissions are allowed.

Phase 2 performs a checksum test on all type A
(data) records.

Phase '2 builds the Reload Table in core storage
as the monitor system program phases are loaded.
Each 3-word entry in the table consists of the ID
number of a phase requesting SLET data, the rela-
tive location within the requesting phase where the
SLET data is to be stored, and the number of SLET
items to be supplied by the System Loader. On an
initial load, this Reload Table is written to disk in
sector nRTBL.

If so indicated in columns 12 through 15 of the
Load Mode control record, phase 2 bypasses the
programs described by phase ID pairs 2, 3, 8 and/
or 9 from the PHID control record(s).

Phase 2 updates the version and modification level
numbers in the parameter #SYSC in sector (9.,D DCOM
of the cartridge. These numbers are taken directly

I from the first PHID control record. No comparison
with previous version and modification level numbers
is made.

Phase 2 determines from the data obtained from
the System Configuration records which devices are
the principal I/0 and principal print devices. Phase
2 builds five special sets of SLET entries for the
specified devices as well as for the principal I/0 and
print device conversion subroutines.

Phase 2 steps through the Reload Table and
searches out every phase requesting SLET data.
It then searches out the SLET data that is requested,
places it in the requesting phase, and writes that
phase back to disk. This continues until the end of
the Reload Table (/F FEE) is reached.

Phase 2 substitutes zeros for the SLET data re-
quested by a phase if that phase requested a program
described by phase ID pair 2, 3, 8 or 9 and that
program is not present on the cartridge. For examp:le,
the Assembler Program (represented by phase ID pair
3) may have been deleted or never loaded.

At the conclusion of either an initial load or re-
load, the SLET and Reload Tables are checksummed
and the result stored in the last word of the Reload
Table sector.

Phase 2 displays appropriate error messages, as
I necessary, using the WRTYZ subroutine in core
storage.

FUNCTIONS, INITIAL LOAD ONLY

Phase 1 has cleared to zero the sectors that will
become the SLET table. The SLET entries are
filled in as each monitor system program is stored.

Phase 2 checks for missing phases. All phases
specified in the PHID control record must be present,
except when one or more programs are bypassed.

Phase 2 keeps a record of the highest sector loaded
so that the sector addresses for the Supervisor Control
Record Area (SCRA), Core Image Buffer (CIB), Loca-
tion Equivalence Table (LET), and User Area (UA) on
disk may be correctly established.

Phase 2 checks the data obtained from the I,oad
Mode control record, and if a program is bypassed,
no gap is left in SLET. The next program loaded
follows immediately on the cartridge and the SLET
entry for its first phase fills the first available
location in SLET.

FUNCTIONS, RELOAD ONLY

Phase 2 verifies that the file-protection address is
not greater than /062F. (Otherwise, phase 2 cannot
be temporarily stored on disk.)

Each time a phase with a positive phase ID number
is reloaded, the Reload Table is searched. If that
phase ID is present, it is removed and the table
repacked.

Phase 2 updates the SLET entries for each phase
as that phase is reloaded.

Phase 2 provides for expansion of the system into
the Cushion Area when required. If a phase grows
by more than one sector, it is expanded accordingly.
All subsequent SLET entries are updated each time
an expansion occurs. A check is made to see that
the Supervisor Control Record Area (SCRA) is not
overlayed.

The phase ID range of an existing program may be
expanded at the 'upper end' to permit addition of one
or more phases to that program. In such a case,
the phase whose ID is one less than the first phase to
be added must be present so that a pointer can locate
the position in SLET where data for the added phase
will be inserted. SLET entries above the added
phase will be shifted to provide 4 SLET words for

10

the new phase. System programs above the added
phase will be shifted toward and into the cushion
area as necessary.

System programs may be added to the system pro-
gram area if each such program meets the following
requirements:

1. It is described by a phase ID pair in the
second PHID record.

2. It is described by a phase ID pair whose
lower limit is greater than any phase ID
in SLET.

3. No fixed area exists on the cartridge.

Before the program is stored, the SCRA, CIB, LET
and UA will be shifted so that the 'high' end adjoins
the system loader storage area at the end of the
cartridge. When the type '81' record is processed,
the SCRA, CIB, LET and UA will be shifted back
from their temporary location to new sector address-
es determined by the length of the program(s) added.
A new cushion area will be established. User Area
and chain addresses in LET are updated.

Once a program addition has started, the system
loader reload operation is similar to an initial load.
All phases must be present and in sequence from
the first phase of the added program up to and
including the last phase ID present in the second
PHID record. The additional disk storage area re-
quired will be equivalent to the length of the added
program(s), plus up to 15 sectors to rebuild the
cushion area.

Since the System Loader resides on the last two
cylinders during its operations, working storage
should be at least equal to the length of the added
program(s) plus 31 sectors before performing the
addition.

Phase 2 constructs an in-core Reload Table. At
the end of the monitor system program reload, the
data that was accumulated as one or more phases
were reloaded is first compared with the existing
Reload Table on disk. Entries are replaced or
added to the Reload Table as necessary. Then the
updated Reload Table is processed as described
above.

BUFFERS. AND I/O AREAS

Card Input

I
CARD1: an 80-word buffer that contains card images
in left-justified 12 bit/word format, as read by the
1442 or 2501 card I/O subroutine.

CARD2: an 80-word buffer used in conjunction with
buffer CARD1 for double buffering capability. This
buffer is used only by the 2501 card I/0 subroutine.

PKBFR: a 60-word buffer into which 12 bits/word
data is compressed from buffer CARD1 when a 1442
is used as the input device, or from buffers CARD1
and CARD2 when a 2501 is used.

Paper Tape Input

B: a 60-word buffer into which binary data from
buffer BIGCB is compressed.

C. a 1-word buffer used for the DEL character
test when reading binary paper tape records.

BIGCB: a 108-word buffer for binary paper tape
records, 108 frames, left-justified.

Disk Input and Output

BUFR1: a buffer that is used to gather the data that
will become the Reload Table. Its length is variable,
up to 320 words. The word count (never over /0140)
may be found in location BUFR1. This buffer is
also used in calculating the SLET/RELOAD Table
checksum.

BUFR2: a 320-word buffer used in disk I/O opera-
tions.

BUFR3: 320 words + core above 4K buffer used for
reading or writing a SLET sector. During a reload
operation that requires expansion into the Cushion
Area of the cartridge, a sector of SLET from BUFR3
is saved by writing it on the first sector of the CIB.
The CIB is not cleared afterward.

SUBPHASES

Subphase 1

Subphase 1 contains the subroutines that are used
only during an initial load. Phase 1 determines from
the Load Mode control record the type of load being
performed, and either overlays subphase 0 or by -
passes the subphase 1 portion of the phase 2 deck.

Most of the functions of this subphase involve the
checking of the ID number of eacn phase as it is en-
countered. An error message is displayed when-
ever a phase ID is encountered that is out of sequence
or was not specified on the PHID control record.

Section 3. System Loader 11

Subphase 2

Subphase 2 contains the procedures for system
initialization prior to the loading of the System
Library. After the type 81 (end-of-system) record

1

 has been read, phase 2 fetches this subphase into
the overlay area.

Subphase 2 reads the Resident Image from disk in-
to the buffer BUFR2 and initializes or updates the
following:

Subphase 2 modifies the coding for the processing
of those types of records that are no longer expected,
so that if one of these records is encountered, an
error message is printed.

A SLET search is performed for the word count
and sector address of the Core Image Loader to be
stored at the end of the Disk I/0 Subroutine, DISKZ.

Subphase 2 reads DCOM into the buffer BUFR3
and initializes or updates the following:

Value Inserted

version and modification level from
PHID control record

a positive value if a 1442, Model 6 or
7 is present, zero otherwise

the value indicating the principal I/0
device, as determined from REQ control
records (+=2501/1442, 0=1442/1442,
- =1134/1055)

	

4IPPTR	 the value indicating the principal print
device, as determined from REQ control
records (+=1403, 0=1132, - =Console
Printer)

	

If CIAD	 relative location in sector @IDAD where
CIL word count and sector address is
maintained

	

IIANDU	 file-protection disk block address

	

#BNDU	 file-protection disk block address

	

#FPAD
	 file-protection or Working Storage

sector address

	

CIBA	 sector address of CIB

	

#SCRA	 sector address of Supervisor Control
Record Area

	

#ULET	 sector address of LET

	

#CSHN	 number of unused sectors between last
system program and Supervisor Control
Record Area.

Location	 Value Inserted

$CH12	 address of channel 12 indicator for
the principal print device, as deter-
mined from REQ control records, i. e. ,
$1403, $ 1132, or $ CPTR

$CORE	 core size (may be actual, or set by
CORE control record)

$DREQ	 a negative value (indicating DISKZ)

Location

1) SYSC

#RP67

liPIOD

$IREQ	 address of DUMP entry point ($DUMP)

$ULET	 sector address of LET for logical
drive 0

$C1LA	 address in which the word count and
sector address of Phase 1 and the Core
Image Loader is to be phaced ($ V, END-4)

$DZIN	 a negative value (indicating DISKZ)

$FPAD	 file-protection sector address for
logical drive 0

$DCYL	 table of defective cylinders (from
sector @IDAD)

$IBT2	 address of level 2 interrupt branch
table

On an initial load the first sector of LET is
established and initialized with a 1DUMY entry,
Working Storage disk block address, User Area sec-
tor address, and the number of unused words in the
first sector of LET. All other words in LET are
set to zero until the System Library is loaded.
On a reload in which one or more programs are
called, the chain addresses in LET are updated
to reflect the new position of LET on the disk due
to the shift to make room for the new programs(s).

Subphase 2 fetches and transfers control to sub-
phase 3.

12

Subphase 3

Subphase 3 clears the sign bits from all sector
addresses in SLET and resets them according to the
data obtained from the System Configuration records.
(The sign bits are used to indicate which, if any, I/O
devices are not present on the system.)

Subphase 3, on a reload operation, compares all
entries in the Reload Table built in core storage with
the Reload Table on disk. Phase ID numbers in the
Reload Table on disk that match phase ID numbers in
the Reload Table in core storage are replaced by
those from the table in core storage. Any additional
phase ID numbers from the table in core storage
that are not present in the table on disk are added to
the table on disk. At the conclusion of this update
of the Reload Table on disk, it is completely re-
processed by the RLTBL subroutine in phase 2.

Subphase 3 places the word count and sector
adress of phase 1 of the Core Image Loader,
obtained from SLET, into DISKZ in core storage
and into DISKZ on cylinder 0.

If a normal reload is being performed, subphase 3
prints "END RELOAD" to the console printer and
branches to $ EXIT. If the '81' record was followed
by a "// XEQ MODIF" record, subphase 3 branches
to the Auxiliary Supervisor with a minus 6 parameter
causing a "// XEQ MODIF" record to be placed in
the Supervisor buffer. The Supervisor then executes
MODIF.

On an initial load, subphase 3 branches to the
Auxiliary Supervisor with a parameter of minus 5,
causing a dummy DUP monitor control record to be
placed in the Supervisor buffer and the Monitor
Control Record Analyzer to be called via the EXIT
entry point in the Skeleton Supervisor. The Monitor
Control Record Analyzer then calls DUP to store
the System Library.

CORE LAYOUT

Figure 1 shows the layout of the contents of core
storage during System Loader operation.

C \—(2' C
1442/2501

Bootstrap Loader Res Monitor Res Monitor

//. . / /.: / /
DISKZ DISKZ

LDPH2 LDPH2 LDPH2

Communications
Area

Communications
Area

Communications
Area

Console Printer
Subroutine

Console Printer
Subroutine

Console Printer
Subroutine

System 1442
Subroutine

Card I/O
Subroutine

Card I/O
Subroutine

System 2501
Subroutine

7	

/,/,/,,
Phase

2

Phase
1

Phase
1

Subphase
Area

(0,1,2,3)

BUFFR BUFFR BUFR1
(Reload Table)

BUFR2

BUFRT BUFR1

BUFR3
(SLET)

Extends
to fill

available
core

•Figure 1. Core Layout During System Loader Operation

CARTRIDGE IDENTIFICATION SECTOR

On an initial load, the System Loader uses the con-
tents of the cartridge ID sector (sector OIDAD) as
follows:

The first three words of the sector (the defective
cylinder table for the cartridge, initialized by the
DCIP program) are placed into its disk I/O subroutine

0

4

Section 3. System Loader 13

prior to performing any disk operations, and into
locations $DCYL through $DCYL+2 in the Resident
Image.

The fourth word of the sector (the cartridge
identification word, initialized by the DCIP or DISC
program) is placed into location #CIDN in DCOM.

The seventh word of the sector is the cartridge
load status word. Minus 2 indicates that an initial-
ization has been performed and an initial load only is
permitted. Plus 2 indicates that the cartridge has
been initial-loaded and a reload only is permitted.

SYSTEM LOCATION EQUIVALENCE TABLE (SLET)

SLET occupies three adjacent sectors on the system
cartridge. Its functions are:

• To provide a convenient means for locating each
monitor system program that has been stored on
the system cartridge.

• To indicate which are the principal I/0 devices
for the system.

• To indicate which devices, if any, are not present
on the system.

When the System Loader initially stores a phase
of a monitor system program on the disk, it makes
a 4-word entry in SLET for that program consisting
of:

1. The phase identification (phase ID) number.
2. The core loading address of the phase. This is

the address in which the word count is to be
stored prior to fetching the phase from the disk.

3. The word count of the phase, not including the
two words occupied by the word count and sector
address used in fetching the phase from disk.

4. The sector address of the phase.

During an initial load, the SLET sectors are
cleared to zero. The 4-word entries describing
each phase are built into the table, phase by phase,
as the monitor system programs are loaded. (A
program or phase not included during an initial load
cannot later be included in a reload operation unless
the program to be reloaded meets the requirements
described under FUNCTIONS, RELOAD ONLY.
Otherwise a new initial load must be performed.)

All phase ID numbers in SLET are in ascending
order. No duplications exist. The only jumps in
sequence are between programs, not between phases
within a nroaram.

The five 4-word entries describing the principal
I/O devices and the corresponding conversion sub-
routines are built by the System Loader and do not
come directly from program decks.

The contents of SLET can be obtained at any time
by an execution of the DSLET program (see the
description of DSLET under Mainline Programs
in Section 12. System Library).

RELOAD TABLE

The Reload Table occupies one sector on the system
cartridge. It contains a 3-word entry for each phase
that requests SLET information. Word 1 of each
entry contains the phase ID number of the requesting
phase. Word 2 of each entry contains the address of
the location, relative to the beginning of the phase,
where the SLET entries are to be inserted into the
requesting phase. Word 3 of each entry contains the
number of 4-word SLET entries to be inserted into
the requesting phase. The phase ID number of the
requesting phase itself is in 2's complement form
to indicate to the System Loader that SLET data is
requested by that phase.

When completed at the end of an initial load or
reload operation, the Reload Table consists of a
string of 3-word entries, as described above, except
that the phase ID numbers have been recomplemented
by the System Loader. At the end of the string is
/FFFF. It may be at an odd or an even address,
depending upon the length of the string. The lest
word of the Reload Table is used for the SLET and
Reload Table checksum. At the end of an initial
load, the phase ID numbers are in ascending order.
After one or more reload operations the phase ID
numbers may or may not be in ascending order.

When a DEFINE VOID ASSEMBLER or DEFINE
VOID FORTRAN operation is performed by DUP,
all phase ID numbers belonging to the voided pro-
gram(s) are removed from the Reload Table. The
remaining 3-word entries in the Reload Table are
packed together and terminated with /FFFF.

14

SECTION 4. COLD START PROGRAMS

FLOWCHARTS

Cold Start Loader: CSTO1
Cold Start Program: CSTO2

COLD START LOADER

The Cold Start Loader is the one-card bootstrap used
to initiate the operation of the Cold Start Program,
which in turn initiates the operation of the monitor
system.

Since it is loaded by the IPL procedure, all
instructions in the Cold Start Loader are in IPL
format. Hence, the program must construct all
IOCCs as well as any long instructions required
by it.

The first word set up after entering the program
is the second word of the IOCC for reading the Con-
sole Entry switches. After this is done, the number
of the physical drive to be assigned as logical drive
0 is obtained from the Console Entry switches. The
program then checks to see if the number obtained
is valid (0-4, inclusive). If it is not, the program
comes to a WAIT from which the user may restart
by entering a valid number and pressing the START
key. Once a valid number has been obtained, the
device code for the drive specified is constructed
and saved (for use by the Cold Start Program as well
as the Cold Start Loader).

After setting up the second word of the IOCC for
sensing the disk (with reset), the program senses the
disk. All bits except the not-ready bit (bit 2) are
masked out. If the drive is not ready, the program
comes to the same WAIT mentioned above.

Four long instructions are built, and the final
steps in the setting up of the IOCC for seeking are
performed. The word count of the Cold Start Pro-
gram plus the word count of DISKZ plus 27 is stored
in DZ000-29, the 27 being the number of words
reserved in sector @MAD for parameters.

After setting up the second word of the IOCC
for reading the disk, the program initiates a
seek toward the home position, one cylinder at a
time. When the seek is complete, sector zero on
the cylinder currently under the read/write heads
is read from the disk„ If no disk error occurs

during this read and if the sector address is that of
sector @IDAD, then a branch is made to $ZEND,
which is the address of the first word of the Cold
Start Program.

If the sector address is not that of the Cold Start
Program, another seek toward the home position is
initiated. This seek-and-read process is repeated
until the proper sector address is found. (There-
fore,a cartridge with invalid sector addresses causes
the program to function improperly.) Any disk
error results in the program coming to a WAIT with
a /3028 in the storage address register.

COLD START PROGRAM

The Cold Start Program is fetched from the disk
and given control by the Cold Start Loader.
Using the same device code that was set up by
the Cold Start Loader for the physical drive as-
signed as logical drive 0, the Cold Start Program
reads the Resident Image into its normal location in
core storage. Once this operation is performed,
location zero is initialized with an MDX to $DUMP+1
and the Auxiliary Supervisor is entered with a
parameter of minus 1, causing it to place a dummy
JOB monitor control record into the Supervisor
buffer and execute a CALL EXIT.

CORE LAYOUT

Figure 2, panel 1, shows the layout of the contents
of core storage after the Cold Start Loader has been
loaded and, in turn, has fetched sector @IDAD from
logical drive 0 into core storage. This sector is
read into core such that the DISKZ subroutine
resides at DZ000, followed by the Cold Start Pro-
gram.

Figure 2, panel 2, shows the layout of the contents
of core storage after the Cold Start Program has
fetched the Resident Image from sector @RIAD
from logical drive 0 into core storage. The
Resident Image, like DISKZ, is fetched in such a
fashion that all locations occupy their permanent
positions in core storage.

Section 4. Cold Start Programs 15

Cold Start
Loader

Resident
Image

Parameters

DISKZ	 DISKZ

Cold Start	 Cold Start
Program	 Program

71gure 2. Core Layout During Cold Start

16

Page Blank In Original

Page Blank In Original

SECTION 6. SUPERVISOR

FLOWCHARTS

Monitor Control Record Analyzer: SUP02 - SUP05
Supervisor Control Record Analyzer: SUP06-SUP08
Auxiliary Supervisor: SUP10
System Core Dump Program: SUP09

MONITOR CONTROL RECORD ANALYZER -
PHASE 1

The Monitor Control Record Analyzer is the program
that decodes monitor control records and takes the
specified action.

The Monitor Control Record Analyzer is entered
via the EXIT entry point in the Skeleton Supervisor.
This entry causes phase 1 of the Core Image Loader
to fetch the Monitor Control Record Analyzer and
transfer control to it.

The Monitor Control Record Analyzer utilizes the
system I/O device subroutines. Three of these sub-
routines (an input, an output, and the appropriate
conversion subroutine) are fetched into core storage
by the Monitor Control Record Analyzer itself,
using SLET information provided by the System
Loader.

The Monitor Control Record Analyzer reads
monitor control records from the principal input
device into the Supervisor buffer, which occupies
locations @SBFR through @SBFR+79 and contains a
monitor control record in unpacked, right-justified
EBCDIC format.

The principal conversion subroutine checks for
monitor control records. If the principal conversion
subroutine detects a monitor control record during
the execution of a monitor system program other
than the Monitor Control Record Analyzer, $CTSW
in COMMA is set to a positive non-zero value, the
monitor control record is converted to unpacked,
right-justified EBCDIC format, and the record is
passed to the Monitor Control Record Analyzer in
the locations assigned as the Supervisor buffer.

If a JOB record is recognized Phase 2 is fetched
and control passed to it.

Upon detecting an ASM, FOR or RPG monitor
control record the Monitor Control Record Analyzer
fetches the first phase of the specified program using
SLET information provided by the System Loader,
and transfers control to it.

Upon detecting a DUP monitor control record,
the Monitor Control Record Analyzer tests $NDUP,

the non-DUP switch, in COMMA. If $NDUP is zero,
the Monitor Control Record Analyzer fetches and
transfers control to the first phase of DUP. Other-
wise, an error message is printed and the next
control record is read for processing.

Upon detecting a PAUS monitor control record,
the Monitor Control Record Analyzer comes to a
WAIT at $PRET. When the PROGRAM START key
is pressed, the Monitor Control Record Analyzer
reads and processes the next control record.

Upon detecting a TYP monitor control record,
the Monitor Control Record Analyzer replaces the
SLET information used to fetch the principal input
device subroutine and its associated conversion
subroutine with the SLET information for the Key-
board input subroutine and its associated conversion
subroutine. These subroutines are then fetched and
used for the reading and converting of subsequent
input records from the Keyboard.

Upon detecting a TEND monitor control record,
the Monitor Control Record Analyzer replaces the
SLET information used to fetch the principal input
device (the Keyboard) subroutine and its associated
conversion subroutine with the SLET information
for the device subroutine and conversion subroutine
used with the device normally assigned as the
principal input device, i. e. , not the Keyboard.
These subroutines are then fetched and used for the
reading and converting of subsequent input records.

Upon detecting a CPRNT monitor control record,
the Monitor Control Record Analyzer replaces the
SLET information used to fetch the principal print
device subroutine with the SLET information for the
Console Printer output subroutine. (This replace-
ment is permanent and can be changed only by
System Loader with a reload function.) This sub-
routine is then fetched and used for the printing
of subsequent output records on the Console
Printer.

Upon detecting an EJECT monitor control record,
the Monitor Control Record Analyzer ejects the page
on the principal print device, prints the current
page heading, and reads and processes the next
monitor control record.

Upon detecting an XEG monitor control record,
the Monitor Control Record Analyzer tests $NXEQ,
the non-execute switch, in COMMA. If $NXEQ is
zero, the Monitor Control Record Analyzer fetches
and transfers control to PHASE 4 (see below).
Otherwise, the Monitor Control Record Analyzer
prints an error message and reads the next control

Section 6. Supervisor 19

Page Blank In Original

Page Blank In Original

blank (the mainline is in Working Storage) the name
in the SCRA is set zero.

EQUAT Control Record Processing

The pair(s) of subroutine names found in the EQUAT
Control Record are converted to name code and
stored to sector 7 of the SCRA.

Subroutine Name
Word Count (sign bit is set to indicate that this is

the last word count)
Mainline Name

Subroutine Name

Subroutine Name

Not Used

Section 2 I !MIMI	 If	

SUPERVISOR CONTROL RECORD AREA (SCRA)

Sectors 0 and 1 of the SCRA are occupied by the
LOCAL information for the core load or execution
currently in progress (see diagram, below). The
first word of sector 0 contains the word count of the
information stored in the two LOCAL sectors.

Sectors 2 and 3 of the SCRA are occupied by the
NOCAL information for the core load or execution
currently in progress (see diagram, below). The
first word of sector 2 contains the word count of
the information stored in the two NOCAL sectors.

Sectors 4 and 5 of the SCRA are occupied by the
FILES information for the core load or execution
currently in progress (see diagram, below). The
first word of sector 4 contains the word count of the
information stored in the two FILES sectors.

Sector 6 is occupied with G2250 information for
the core load or execution currently in progress.

The format of information in the LOCAL/NOCAL
sectors is as follows:

Word Count, one word specifying the number of words
occupied by LOCAL/NOCAL information
inclusive from A to B.

Mainline name, two words in name code format (blanks
if no mainline name is specified)

Subroutine Name, two words in ndme code for-
mat specifying a LOCAL,/
NOCAL subroutine assoc-
iated with the preceding
mainline

Subroutine Name
Subroutine Name
	

Mainline

1	 Word Count, from B to the next	 Name

4	 I
word count.

Mainline and Subroutine Names "'

Sector 1 WIWI II
	

—SS	
A

The format of information in the FILES sectors
is as follows:

Word Count, one word specifying the number of words in the Iwo
FILES sectors occupied by FILES information, including the
word count.

File Number, one word specifying in binary the number
assigned to the file in a FORTRAN DEFINE FILE
statement and by which the file is referenced

File Name, two words in name code format specifying the
name of the file as it appears in LET/FLET (zeros
if no file name is specified) .

Cartridge ID, one word specifying in binary the ID
of the cartridge containing the preceding
named file (zero if no cartridge ID is
specified) .

File Number
File Name

Cartridge ID

File Number

File Name

1 Cartridge ID

Sector

2	 I	

The information in the EQUAT sectors
is as follows:

First pair	 Last pair

	

Word Original	 m	I 	 New	 Original	 New

d

	

Subroutine Subroutine

Count Name	

NSuatoeutSubrout ine Subroutine

C Name	 Nana
=,n+1

II01 I 2	 I 3	 I 4 . 1 	 In 3 In 2 In	 n	 ISector 7

n is equal to 4 (number of pairs)
n must be less than or equal to 40

1

Not Used

22

The format of the information in the G2250 sector
is as follows.

Word Count, one word specifying the number of words one
G2250 information record occupies in the G2250
sector, including the word count. A word count
is included for each G2250 record.

Mainline Name, two words of blanks in name code format.
(blank if mainline program is executed from
working storage).

GCOM, two words in name code format specifying
the graphic communication control block.

Subroutine Name, two words in name code
format.

-1 indicates
word following
last entry

Subroutine Names

SYSTEM CORE DUMP PROGRAM - PHASE 6

If an entry was made to the Skeleton Supervisor at
.$Dump, the Skeleton Supervisor writes the contents
of location $CIBA+1 through 4095 on the CIB, then
fetches and transfers control to phase 1 of the Core
Image Loader. If $DMPF (the dump format indica-
tor) is zero or positive, the Core Image Loader
fetches into core storage and transfers control to
the System Core Dump program.

The Dump program requires the principal print
device subroutine. This subroutine is fetched into
core storage by the Dump program itself utilizing
SLET information provided by the System Loader.

If dump limits are specified, these checks are
made:

• If both limits are zero, the lower limit is left
zero and the upper limit is set to core size.

• If a limit is larger than core size, the limit is
subtracted from the core size and the difference
is used as the limit.

• If the lower limit is greater than the upper limit,
a wrap-around dump is given. That is, core
storage between the lower limit and the end of
core storage is dumped, then core storage
between location 0 and the upper limit is dumped.

The lower dump limit is checked to determine
which, if any, sections of the CIB must be read into
the dump buffer. If any or all of the contents of the
CIB are to be dumped, the CIB is read into core
storage in sections; sectors 0-3 constituting section
1, sectors 4-7 constituting section 2, and sectors
8-12 constituting section 3. Since the first six words
of core storage were not stored to the CIB, the
contents of the dump buffer are offset by six words.
These six words are filled in from words 0-5 in the
case of section 1 and are saved from the end of the

previous section in the cases of sections 2 and 3.
Locations greater than 4095 were not stored to the
CIB and are dumped from their original locations.

If $DUMP contains no return address (i. e. , is
zero), the Dump program executes a CALL EXIT.

If $DUMP contains a return address (i. e. is
non-zero), the Dump program restores the con-
tents of core storage in three stages. First, the
locations between $CIBA+1 and the beginning of the
disk I/O subroutine are restored from the CIB.
Second, the locations between the beginning of the
disk I/O subroutine and the beginning of the principal
print device subroutine are restored. Third, the
locations between the beginning of the principal print
device subroutine and location 4095 are restored
from the CIB. Control is then returned to the res-
tored core load at the location following the dump
parameters.

AUXILIARY SUPERVISOR - PHASE 7

If an entry was made to the Skeleton Supervisor at
$DUMP and $DMPF (the dump format indicator)
is negative, phase 1 of the Core Image Loader
fetches into core storage and transfers control to
the Auxiliary Supervisor.

The Auxiliary Supervisor has these functions:

• It writes dummy monitor control records in
the Supervisor buffer for processing by the
Monitor Control Record Analyzer.

• It prints error messages for errors detected by
the Core Image Loader.

• It aborts a JOB.

The Cold Start Program calls the Auxiliary
Supervisor with a parameter of minus one (-1). This
parameter causes the Auxiliary Supervisor to place
a dummy JOB monitor control record in the Super-
visor buffer, convert from binary to EBCDIC the
cartridge ID of the cartridge from which the cold
start was made and store it in the Supervisor
Buffer, set $CTSW non-zero, and executes a CALL
EXIT.

The ILSO4 subroutine calls the Auxiliary Super-
visor with a parameter of minus two (-2) if an
interrupt occurs from the Keyboard INTERRUPT
REQUEST key and the user has not provided a servic-
ing subroutine for that interrupt. This parameter
causes the Auxiliary Supervisor to set $IOCT, $IBSY

Sector I
6 	

Section 6. Supervisor 23

Page Blank In Original

Page Blank In Original

Page Blank In Original

SECTION 7. CORE IMAGE LOADER

FLOWCHARTS

Phase 1: CIL01

Phase 2: CIL02

PHASE 1

Phase 1 of the Core Image Loader handles the three
entries to the Skeleton Supervisor - LINK, DUMP,
and EXIT, The Core Image Loader is assigned this
task in order to minimize transfer time (via CALL
LINK) from one link to another.

Phase 1 of the Core Image Loader is naturally
relocatable. It is read into core storage by the
Skeleton Supervisor immediately following whichever
disk I/O subroutine is currently in the Resident
Monitor. (This can be done by the Skeleton Super-
visor with minimal core requirement because the
word count and sector address of this phase per-
manently reside at the end of each disk I/0 sub-
routine.)

If the Skeleton Supervisor was entered at
$DU1V1P ($RMSW is positive), phase 1 tests
$DUMPF, the dump format code indicator. If
$DMPF is negative, phase 1 fetches and transfers
control to the Auxiliary Supervisor. If $DMPF is
not negative, phase 1 fetches and transfers control
to the System Core Dump program.

If the Skeleton Supervisor was entered at $ EXIT
($RMSW is negative), phase 1 tests $DZIN to deter-
mine whether DISKZ is in the Resident Monitor. If
DISKZ is in the Resident Monitor, phase 1 fetches
and transfers control to the Monitor Control Record
Analyzer. If DISKZ is not in the Resident Monitor,
phase 1 fetches phase 2 of the Core Image Loader.
Using phase 2 as a subroutine, phase 1 overlays
DISK1 or DISKN with DISKZ.. Phase 1 then fetches
and transfers control to the Monitor Control Record
Analyzer.

If the Skeleton Supervisor was entered at $LINK
($RMSW is zero), phase 1 tests $COMN in COMMA
to determine if COMMON was defined by the core
load just terminated. If $COMN is non-zero, phase
1 saves Low COMMON on the CIB. (Low COMMON
is the lowest 320 words that could have been de-
fined as COMMON by the core load just terminated.)
Depending on the disk I/O subroutine currently in
the Resident Monitor, Low COMMON is defined as
follows:

Low COMMON

Disk I/0 Subroutine	 Decimal	 Hexadecimal

DISKZ 896 - 1215 /0380 - /04BF
DISK1 1216 - 1535 /04C0 - /05FF
DISKN 1536 - 1855 /0600 - /073F

The area occupied by Low COMMON is used by
phase 1 as a disk I/O buffer during the LET/FLET
search and/or as the area into which phase 2 is
fetched when phase 2 is to be used to fetch DISKZ.

Once Low COMMON has been saved, or if no
COMMON was defined by the core load just ter-
minated, phase 1 searches LET/FLET for the name
of the program or core load to be executed next.
The name of tile link has been saved in $LKNM by the
Skeleton Supervisor.

If the link is in disk system format (DSF), phase
1 saves any COMMON defined below 4096 on the
CIB. It then fetches phase 2, uses phase 2 as a
subroutine to overlay DISK1 or DISKN with DISKZ,
fetches phase 0/1 of the Core Load Builder, and
transfers control to phase 1 of the Core Load
Builder.

If the link is in disk core image format (DCI),
phase 1 fetches and transfers control to phase 2 to
fetch the link and the required disk I/O subroutine,
if necessary, and to transfer control to that link.

Special Techniques. Phase 1 of the Core Image
Loader places a disk call subroutine in COMMA at
$HASH+8 through $HASH+19. Using this disk call
subroutine, phase 1 is able to overlay itself when
fetching phase 2, the Monitor Control Record
Analyzer, etc.

PHASE 2

Phase 2 of the Core Image Loader is naturally
relocatable. It is read into core storage (by phase
1) immediately following the end of phase 1 if it is
to be used by phase 1 to fetch DISKZ, or (by either
phase 1 or the Core Load Builder) following the end
of the disk I/O subroutine currently in the Resident
Monitor if it is to fetch and transfer control to a
core load. Phase 2 provides two functions: (1)
to overlay the disk I/O subroutine currently in the
Resident Monitor with the requested disk I/O sub-

Section 7. Core Image Loader 27

Page Blank In Original

Page Blank In Original

0 0 0 0
COMMA, COMMA, COMMA, COMMA,
Skeleton Skeleton Skeleton Skeleton

Supervisor Supervisor Supervisor Supervisor

DISK1
Or

DISK]
or

DISKZ DISKZ

pr Core LoadDISKN DISKN
4 Builder,

PhaseCore Image Core Image
Loader,
Phase 1

Loader
Phase
Loader, 0/1

LET/FLET LET/FLET
Buffer Buffer

Low Low
COMMON COMMON

COMMON
Below
4096,
Saved A

COMMON
Above
4096,
Not

Saved

Figure 7. Core Layout on Supervisor at $LINK (Link in Disk System
Format)

has been saved by phase 1, and the LET/FLET
search buffer has been allocated. In panel 2, phase
2 of the Core Image Loader has been fetched by
phase 1; the core image header buffer has been
allocated by phase 2. In panel 3, the disk I/0 sub-
routine required by the program being linked to has
been fetched into the Resident Monitor. Panels
4, 5, and 6 represent three different cases. In
panel 4 the program being linked to is a DC[pro-
gram, whereas in panels 5 and 6 it is a DSF pro-
gram. Although the Core Load Builder is called
into core in the DSF cases, it is not shown here
in order to simplify the diagram. In panel 4, the
program being linked to has been fetched by phase
2. In panel 5, COMMON defined by the previous
core load below location 4096, previously saved
on the CIB by phase 1 of the Core Image Loader,
as well as the program being linked to, has been
fetched by phase 2. In panel 6, the portion of
the program being linked to that is contained in
the CIB (the portion below location 4096, placed
in the CIB by the Core Load Builder) has been
fetched by phase 2.
DEBUGGING/ANALYSIS AIDS

To facilitate the finding of errors in and associated
with the Core Image Loader, NOP instructions have
been placed at critical locations in the Core Image
Loader; they are: CM000+1, CM118-5, CM180,
LD000+1, GETCL, and LD100+8. These NOPs can
be replaced by WAIT instructions so that core dumps
can be taken at various stages during Core Image
Loader execution. An analysis of the core dump(s)
may provide enough information to locate the problem.

Bear in mind that the Core Image Loader is
naturally relocatable. Thus, all modifications
made to it must be executable irrespective of core
location.

30

0 0 0 0 0 0
COMMA,
Skeleton

Supervisor

COMMA,
Skeleton

Supervisor

COMMA,
Skeleton

Supervisor

COMMA,
Skeleton

Supervisor

COMMA,
Skeleton

Supervisor

COMMA,
Skeleton

Supervisor

DISKZ DISKZ Required Required Required Required
Disk I/0 Disk I/0 Disk I/O Disk I/O

Core Image ///////
Subroutine Subroutine Subroutine Subroutine

Loader'
Phase 1 Core Image Core Image

Loader,
Phase 2

Loader,
Phase 2

LET/FEET
Buffer

CI Header
Link
Core That

LowL
Buffer Load Portion

oof
COMMON Core Load

Loaded
From

C IB

Link
Core COMMON
Load Below

4096,
Restored

COMMON That
Above
4095,
Not

Portion
of

Core Load
Saved Above

But
Not

4095,
Placed

Overlaid In
Core By

Core Load
Builder

Figure 8. Core Layout on Supervisor Entry at $LINK (Link in Core Image Format)

Section 7. Core Image Loader 31

SECTION 8. CORE LOAD BUILDER

FLOWCHARTS

Phase 1 (IN): CLBO1

Phase 2 (MC): CLB02

The Core Load Builder builds a specified mainline
program into an executable core load. The main-
line program, with its required subroutines (LOCALs
and SOCALs included), is converted from disk
system format (DSF) to a format suitable for execu-
tion. During the conversion, the Core Load Builder
also builds the core image header record and the
transfer vector. The resulting core load is suitable
for immediate execution or for storing on the disk in
disk core image format (DCI) for future execution.

GENERAL COMMENTS

Each phase of the Core Load Builder has been
broken up into a series of relatively small, self-
contained subroutines. After initialization (phase 1)
control remains in the Master Control subroutine,
which is a part of phase 2. (The labels in this sub-
routine all start with "MC".) In other words, the
basic control logic is found in the Master Control
subroutine.

The labels assigned to constants and work areas
within subroutines are in the range 900-999. When-
ever noted, even-numbered labels are on even
boundaries, and odd-numbered labels are on odd
boundaries. Constants and work areas in RCOM
(phase 0) are mnemonic and are arranged in four
groups, each ordered alphabetically. Double-word
cells are in one group, indexed cells are in a second;
constants are in a third; and switches and work areas
are in a fourth. The labels of switches are of the
form "LSWx", where "x" is a number. The labels
of constants are of the form "Kx", where "x" is
either the number, in decimal, defined in the con-
stant or the four hexadecimal digits defined in the
constant.

Patch areas are usually found at the end of a phase.
Each one is defined by a BSS followed by a DC.

OVERLAY SCHEME AND CORE LAYOUT

The overlays (phases) of the Core Load Builder have
been organized to allow maximum core storage for
the Load Table while minimizing the flip-flopping of
phases. "Minimizing" here means that, during a
one-pass building process (no LOCALs or SOCALs),
the phases are executed serially from 1 through 6
(excluding 5). During a two-pass building process
(LOCALs and/or SOCALs required), there is some
flip-flopping of phases 3 and 5.

Phase 0 is never overlaid. It contains the sub-
routines that must never be overlaid, as well as
work areas and constants required by more than one
subroutine.

Phase 1 is fetched along with phase 0. The only
difference is that phase 2 overlays phase 1 but not,
of course, phase 0. Phases 3, 4, 5, 6, and 12 over-
lay the last part of phase 2.

Phases 7-10 contain messages. They all require
that the principal print subroutine be in the data
buffer; these phases themselves are executed from
the LET/FLET search buffer.

Phase 11 prints the file map and phase 12 the core
map. Both of these phases require that the principal
print device subroutine be in the LET/FLET search
buffer. Phase 11 is executed from the data buffer.

Figure 9, panel 1 shows the layout of the contents
of core storage after phases 0 and 1 of the Core Load
Builder have been fetched into core storage by phase
1 of the Core Image Loader or the STORE function
of DUP.

Figure 9, panel 2 shows the layout of the contents
of core storage after phase 1 has fetched phase 2,
overlaying itself. Phase 2 has allocated the areas for
the Load Table and the disk I/O buffers.

Figure 9, panel 3 shows the layout of the contents
of core storage after any one of the overlay phases
has been fetched by phase 2.

Phase 1 includes the subroutines called by the in-
itialization subroutine. In this way, phase 2 can over-
lay phase 1 completely. Phase 2 includes the sub-
routines called by the relocation subroutine, RL. The
order of the subroutines in this phase is important.
Those that are required only during the relocation of
the mainline (MV, ML, CK, DC, DF, and FM) come

Section S. Core Load Builder 33

0 U) ®

COMMA,
Skeleton
Supervisor

COMMA,
Skeleton
Supervisor

COMMA,
Skeleton
Supervisor

DISKZ DISKZ DISKZ

Phase
0

Phase
0

Phase
0

Phase
1

Phase
2

Phase
2

Phases
3,4,5,6,12,13

Disk
I/0

Buffers

Phase
7,8,9,10,11

Load
Tab le

Load
Table

That
Portion

of
Core Load

Above
5056

That
Portion

of
Core Load

Above
5056

Figure 9. Core Layout During Core Load Builder Operation

last so that they may be overlaid by phase 3. Phase 3
includes the subroutines required to choose a sub-
routine (as opposed to a mainline) from the Load
'Table and relocate it. Phases 4 and 6 round out the
one-pass core load building process. Phase 4
determines whether or not SOCALs are required,
and, if so, whether or not they can be employed to
make the core load fit into core storage. It also
processes ILSs. Phase 6 performs the miscellaneous
jobs, such as creating the transfer vector, that can
be done only at the end of the process of building a
core load. Phase 5 is executed only during pass 2
in a two•pass building process. It organizes the
LOCALs and SOCALs for relocation, including their
special linkages.

DISK BUFFERS

There are three buffers used by the Core Load
Builder. Each is 320 words long, not counting the
word count and sector address, and each has a
primary use, although it may be used temporarily
for something else. For example, the LET search
buffer is used primarily to hold a sector of LET/
FLET when searching that table. However, it con-
tains one of the message phases (phases 7-10)
whenever a message is printed.

The data buffer is a buffer for the User Area.
The program currently being incorporated into the
core load is read into this buffer, one sector at a
time. For example, after a sector of the mainline
is read into this buffer from the User Area or
Working Storage, the relocation of the mainline can
begin. When this sector of the mainline has been
relocated, another sector (if any) is fetched, and
so on until the entire mainline is relocated.

The main use of the CIB buffer is to contain the
CIB, one sector at a time. For example, if a core
load is to occupy locations 1000 - 1639, then the first
sector of the CIB contains the part of the core load
that is to occupy 1000 - 1319 and the second sector
1320 - 1639. As the core load is built, the Location
Assignment Counter (LAC) reflects the ultimate core
address of the data word currently being relocated.
In this example, the LAC would start at 1000, thus
causing sector 1 of the CIB to be read into the CIB
buffer. This first word of the core load would be
placed in the first word of the CIB buffer and the
LAC advanced by 1. Assuming no data breaks, the
LAC will eventually be incremented to 1320. Then
the contents of the CIB buffer will be written out
on sector 1 of the CIB, and sector 2 will replace
sector 1 in the CIB buffer. In short, each word or
a core load is always transferred to the CIB via the
CIB buffer.

The data and CIB buffers are combined into a
single 640-word buffer for the purpose of fetching
the LOCAL, NOCAL, FILES, and G2250 information
from the SCRA.

CORE IMAGE BUFFER (CIB)

The Core Image Buffer is used by the Core Load
Builder, the Core Image Loader, and the Skeleton
Supervisor. The Core Load Builder uses it to store
any part of the core load that is to reside (when the

34

core load is executed) below location 4096 if the size
of core is 4K, otherwise the part of the core load
below 5056. The first word of the mainline is stored
in the first word of the CIB following the core image
header, and subsequent words follow similarly. Thus,
the mainline must be relocated first, and a subse-
quent ORG that would set the Location Assignment
Counter below its first value is not allowed.

LOAD TABLE

The Load Table is used by the Core Load Builder
primarily to tell what subprograms to include in the
core load as well as at what time during the process
of core load building to include a given subprogram.
Other uses of the table are discussed below. It
exists only during the building of a core load.

There is an entry in the Load Table for (1) every
LOCAL/NOCAL entry point specified for a given
mainline and (2) for each subprogram entry point
referenced in a core load, via CALL or LIBF. For
example, even though subprogram A is called five
times, there is only one entry in the Load Table for
A. On the other hand, if A and B are different
entry points to the same subprogram and both are
referenced, then there will be an entry for A and
another for B.

Each of the Load Table entries is four words in
length. The first entry occupies locations 4086 -
4089, the second 4082 - 4085, etc if core size is
4K, otherwise locations 5046-5049, 5042-5045, etc.
The first two words of each entry contain the name
(in name code) of the subprogram that caused the
entry to be made. Bit zero of the first word is set
if the entry is that of a LOCAL, bit one is set if the
entry is that of a CALL. Mainlines and interrupt
level subroutines never appear in the Load Table.

Words three and four of each entry are zero when
the entry is first made. As the relocation of a given
subprogram begins, word three is set with the entry
point, i.e. , the absolute, address. In this way, the
Core Load Builder can tell by looking at its Load
Table entry whether or not a subprogram has been
relocated and where it has been relocated to.

Word four is put to several uses, most of which
involve LOCAL processing. The use of this word at
a given time is dependent upon the pass (1 or 2) and/
or whether the subprogram associated with the Load
Table entry is a LOCAL that was specified in the
LOCAL information in the SCRA. As an explana-
tion, suppose that A and B are entry points to the
same subprogram, and A (but not B) appears in
the LOCAL information in the SCRA. Both A and
B can be called in the core load:, in such a case
A is said to be specified and B unspecified. These
terms are useful in the following context.

The values stored in word four at various times
are: (1) the class code (for a non-LOCAL), (2) the
address of the Flipper Table entry, (3) /008 for
every subroutine called by a LOCAL, (4) the word
count of a LOCAL, (5) the address of the Load Table
entry for the specified entry point for the LOCAL
currently being relocated, and (6) the address of the
LIBF TV that corresponds to the entry in the Load
Table.

Since locations 4097-5056 are reserved for the
Load Table (core size greater than 4K) CLB has to
read in that part of the core load pr ior to exit to
CIL or DUP.

EQUAT TABLE

The Equat Table consists of at most ten pairs of
names of subroutines or names of files defined in a
DSA statement. The first name in each pair is the
subroutine or the file to be substituted with the
second name of each pair. This checking is done
during relocating of a mainline or its subroutines.
Thus no name is added to the Load Table before it
has been checked against the Equat Table.

LOCAL, NOCAL, FILES, and G2250 INFORMATION

LOCAL, NOCAL, FILES, and G2250 information is
obtained from the Supervisor Control Record Area
(SCRA). This information is supplied by the Super-
visor Control Record Analyzer (see Section 6:
Supervisor) or the STORE CI function of DUP (see
Section 9: Disk Utility Program). For the format
of LOCAL, NOCAL, FILES, and G2250 information
in the SCRA, see Section 6: Supervisor or Section 9:
Disk Utility Program.

EQUAT information is obtained from the SCRA.
This information is supplied by the Supervisor
Control Record Processing phase of the Supervisor
(see Section 6: Supervisor). For the format of
EQUAT information in the SCRA, see Section 6:
Supervisor.

ISS TABLE

The ISS Table is used by the Core Load Builder as it
constructs Interrupt Branch Tables for ILSs. When
the address to which an ISS is to be relocated be-
comes available, that address is stored in the
appropriate entry in the ISS Table. For example, if
an ISS for the 1132 Printer (ISS number 6) is being
relocated to location /1000, then /1000 is stored in

Section 8. Core Load Builder 35

constructed by the Core Load Builder and stored in
the core image header record. When the Core
Image Loader fetches a core load (including the core
image header), the address of the IBT for level 4
is stored in location $IBT4, from which it is accessed
by ILSO4, The IBT for ILSO2 is a single word,
$IBT2, which contains the address of DZ000+4,
regardless of the disk I/0 subroutine present in the
Resident Monitor. This address is stored in $IBT2
by the Core Image Loader as it fetches the requested
disk I/0 subroutine. The IBTs for the remaining
ELSs are constructed and stored in the ILSs them-
selves by the Core Load Builder.

After all subprograms have been relocated, the
Core Load Builder constructs the IBTs. The IBTs
for all ILSs except ILSO2 are constructed as des-
cribed below. Bear in mind that these ILSs are
written with special constants stored in each IBT
entry. These constants, which will be overlaid by
the Core Load Builder, are as follows: The first
eight bits of each constant represent the increment
to be added to the loading address of the correspond-
ing ISS to get the address of the interrupt service
entry point; for IBM-supplied ISSs, this value is
four, except for the "operation complete" entry point
for the 1442 subroutines, for which the value is
seven. The second eight bits are @ISTV plus the
ISS number; thus, each IBM entry has an identifier
to relate it to a specific ISS.

The Core Load Builder fetches one word at a time
from the IBT, e. , one of the special constants
occupying the IBT locations in the ILS. The second
eight bits of the word fetched are used to compute
the address of the ISS Table entry for the ISS
number indicated. If the ISS Table entry is non-zero,
it contains the loading address of the ISS itself,
which is then incremented by the value stored in the
first eight bits of the word fetched. The resulting
address, which is the address of the interrupt
service entry point, replaces the special constant
that supplied the two eight-bit values. If the ISS
Table entry is zero, the special constant is replaced
with the address of $STOP, the PROGRAM STOP
key trap in the Skeleton Supervisor. This process
of replacing special constants continues until a zero
is fetched from the IBT, indicating that the entire
IBT has been processed. Except for ILSO4, this
zero is the entry point to the ILS itself.

INCORPORATING PROGRAMS INTO THE CORE
LOAD

PASS 1
The mainline is relocated first. Any calls found
during this relocation are compared with the Equate
Table and if no match is found they are put in the
Load Table, But if a match is found the original
subroutine name is replaced with the new subroutine
name before putting it in the Load Table, Hence
the Load Table will contain the name of subroutines
that will be loaded rather than the subroutines that
are called, After the mainline has been converted,
each subprogram represented in the Load Table is
relocated, generally in the order found in the table
itself. An entry is flagged as having been relocated
by storing the address of the entry point in the third
word of the entry. Before an entry is relocated,
the names of all the entry points to the entry being
considered for relocation are compared with the
name of each entry preceding it in the Load Table.
A match indicates that the current entry is simply
another entry point to a previously relocated sub-
program. Thus, the current entry is not relocated;
instead, the absolute address of the entry point is
determined and stored in the third word of the entry
to signify that it has already been relocated.

Furthermore, the names of all the entry points
to the entry being considered for relocation are com-
pared with the name in each entry in the Load Table
following it. If a match occurs, the third words of
both entries are filled in with the absolute address
of the entry point. Thus, the Load Table is scanned
forward and backward for other entry points to the
subprogram currently being considered for re-
location.
PASS 2

The Load Table is scanned during pass 2 in the same
way as during pass 1. The only difference is that
subprograms are relocated in a certain order during
pass 2, thus necessitating multiple passes through
the Load Table; in fact, one pass is required for each
class of subprograms. Thus, all the in-cores (class
0) are relocated first, followed by LOCALs, sub-
programs in SOCAL 1 (class 1), subroutines in
SOCAL 2 (class 2), and subroutines in SOCAL 3
(class 3), in that order,

36

LOCALs AND SOCALs

If during the first pass the Core Load Builder
(phase 4) determines that an Assembler core load
will not fit into core storage even with any LOCALs
that have been specified, the core load building
process is terminated. However, for a FORTRAN
core load special overlays (SOCALs) of parts of the
core load will be created during a second pass if
this will make the core load fit. The decision of
whether to proceed with a second pass is made after
phase 4 accounts for the sizes of the LOCAL area,
if any, the flipper and its table, and each of the
SOCALs. If the check shows that SOCAL option 1
(SOCAL 1 and SOCAL 2) will be insufficient, then
a further check is made for option 2 (all three
SOCALs). If option 2 is still insufficient, process-
ing is terminated; otherwise, a second pass is made.

During pass 2, the entire core load is built
again, but, unlike during pass 1, subprograms are
relocated in a special order. First, the mainline
and the in-core (class 0) subprograms are relocated,
followed by: the flipper; the LOCALs, if any; the
arithmetic and function (class 1) subprograms; the
non-disk FIO (class 2) subroutines; and, if
necessary, the disk FIO (class 3) subroutines.

The same procedure described above is necessary
if LOCALs are employed without SOCALs. In other
words, LOCALs, as well as SOCALs, require two
passes.

INTERRUPT LEVEL SUBROUTINES (ILSs)

After all other subprograms have been relocated,
the Interrupt Transfer Vector (ITV) in the core
image header is scanned. Except for the entries
for interrupt levels 2 and 4, a non-zero entry
causes the corresponding ILS to be incorporated
into the core load. (ILSO2 and ILSO4, unless
supplied by the user, are a part of the Resident
Monitor.) See Interrupt Branch Table, above,
for a description of the processing of that part of
an ILS.

TRANSFER VECTOR (TV)

The transfer vector consists of two parts: the
LIBF TV and the CALL TV, The former provides
the linkage to LIBF subprograms, the latter to
CALL subprograms. The LIBF TV was created to

enable the LIBF statement to require only one
storage location during execution. This is desirable
because 1130 FORTRAN object code contains a very
high percentage of calls to subprograms. Long
branches to those subprograms would greatly in-
crease core requirements for core loads over a
method that employs short branches. By replacing
the LIBF statement with a short BSI, tag 3, to a
transfer vector entry, which could then supply the
long branch to the desired subprogram, this problem
is solved. The cost, of course, is that XR3 is taken
away from the user and the transfer vector is limited
to 255 words, This means the LIBF TV has a
maximum of 85 3-word entries, two of which become
the real-number pseudo-accumulator (FAC) and an
indicator for certain arithmetic subroutines. Thus,
the user is limited to LIBFs to not more than 83
separate subprogram entry points per core load.

There is no theoretical limit on the number of
CALL entry points per core load, for the CALL
statement is replaced by an indirect BSI to the
desired subprograms. However, the number of
CALL and LIBF references combined must not
exceed the capacity of the Load Table, which is
approximately 150 entries.

The CALL TV entry is one word only, the address
of the subprogram entry point. This makes it pos-
sible to replace a CALL statement with an indirect
BSI to the corresponding CALL TV entry, even though
the address of the subprogram itself may not be
known at the time the CALL is processed.

When stored on disk in disk core image format
(DCI), the LIBF TV follows the last word of the last
subprogram in the core load. It may leave one word
vacant between it and the CALL TV in order to
make the pseudo-accumulator (FAC) begin on an
odd boundary. The CALL TV immediately follows
the indicator entry in the LIBF TV. During execu-
tion the TV extends downward in core storage from
the lowest-addressed word in COMMON.

Whereas the CALL TV entry consists of only one
word (the address of the subprogram), the LIBF TV
entry consists of three words. The first is a link
word (initially zero), and the second and third are a
long BSC to the subprogram entry point.

Figure 10 shows the layout of the transfer vector
in core storage.

Linkage to LOCALs

The LOCAL/SOCAL flipper (FLIPR) is included in a
core load if that core load requires LOCALs and/or
SOCALs. The flipper transfers control to a LOCAL,

Section 8. Core Load Builder 37

Dummy one - word entry in CALL TV
(if necessary) to ensure odd address
for FAC

Last
	

Second	 First	 Indicators	 FAC
	

Last	 Second First
LIBF
	

LIBF	 LIBF
	

CA LL	 CALL CALL

151 I-	 I	 I	 I	 I	 I I	 I	 Jf	
.48— Low

Core 	 tt_
High
Core

LIBF TV
	

CALL TV	 COMMON

L_
Transfer Vector

Figure 10. Layout of the Transfer Vector

fetching it first, if necessary. It does likewise for
a SOCAL, except that it is never entered if a sub-
program is called that is a part of the SOCAL current-
ly in the SOCAL area (see Linkage to the System
Overlays).

The Flipper Table immediately precedes the
flipper. It consists of a 6-word entry for each entry
point specified in the LOCAL information in the SCRA
(for a given mainline) that is referenced by a CALL
and a 5-word entry for each entry point referenced by
a LIBF'. If a subprogram has more than one entry
point but only one is specified in the LOCAL informa-
tion (a specified LOCAL), there is a Flipper Table
entry for each entry point referenced in the core
load.

The format of a 5-word (LIBF) entry in the
Flipper Table is as follows:

Word	 Description

1-2	 BSI L FL000
3	 Word count of the subprogram
4	 Sector address of the subprogram
5	 Entry point address in the sub-

program

The format of a 6-word (CALL) entry in the
Flipper Table is as follows:

Word
	

Description

1	 Link word
2-3	 BSI L FLO10

4	 Word count of the subprogram
5	 Sector address of the subprogram
6	 Entry point address in the sub-

program

Linkage to the System Overlays (SOCALs)

In order to assure very fast transfer to a subprogram
that is a part of a SOCAL that is in core storage at
a given time, special transfer vector entries are
made for SOCAL subprograms. They are different
from the standard LIBF and CALL linkages, and they
are different from the linkage to a LOCAL. The
SOCAL transfer time is approximately 20 micro-
seconds, compared to 150-180 microseconds 'to a
LOCAL. (Both timings assume a 3.6 microsecond
storage cycle.)

Figure 11 shows an entry in the LIBF TV for an
in-core subprogram (entry 2) and the special Linkage
in the LIBF TV for SOCAL subprograms (entries
3-8). Entry 1 is the LIBF TV entry for a SOCAL
subprogram. The "disp" is a displacement to the
second word of the linkage for the SOCAL in which
the subprogram is found.

The example represented in Figure 11 is one that
requires SOCAL option 2; TV entries 5 and 8 would
not appear if option 1 were used. Entry 1 is the
last entry in the LIBF TV, i. e. , the highest-
addressed word of the transfer vector. Suppose that
(1) a LIBF to FADD were made and (2) SOCAL 1 were
not in core. The LIBF would be a BSI to the first
word of entry 1, which would then BSI to the second
word of entry 3. Entry 3 would MDX to the first
word of entry 6, which would transfer control to the
LOCAL/SOCAL flipper subroutine (FLIPR) at
FL230, the entry point in FLIPR for fetching the
arithmetic subprograms. The flipper would fetch
SOCAL 1, change the third word of entry 3 to MDX
to *-3, and BSC to the first word of entry 3, which
then transfers control to FADD. The flipper would
also ensure that the third words of entries 4 and 5
were both MDX to *-12.

38

FABS	 FSQR A
SubroutinesFunction 'Function	 I I

LOW
CORE

./‘.	 BSC L	 FL210	 BSS 1 ENTRY 8 - a branch to the entry point
in the flipper for fetching SOCAL 3;
an unused word

I	 I

BSC L	 FL220	 BSS 1 ENTRY 7 - a branch to the entry point
in the flipper for fetching SOCAL 2;
an unused word

I I

BSC L	 FL230	 BSS 1 ENTRY 6 - a branch to the entry point
in the flipper for fetching SOCAL It
an unused word

I

the first word of entry 3, followed by a transfer of
control to FADD. The transfer has required only 2
short BSIs, a short MDX, and an indirect BSC.

The linkage for a CALL to a function is somewhat
different from that just described. Suppose that
(1) SOCAL option 2 was used and (2) each SOCAL
consists of two subprograms, FABS and FSQR being
the functions in SOCAL 1,

Figure 12 shows SOCAL 1, SOCAL 2, and SOCAL
3 as they are stored on the disk. The first 2 words
of each of these SOCALs are the CALL TV for
the subprograms in that SOCAL.

A CALL to FSQR, for example, would be an
indirect BSI to the second word of whichever SOCAL
happened to be in the SOCAL area. If this were
SOCAL 1, control would be immediately transferred
to FSQR. Otherwise, control would first be given to
the LOCAL/SOCAL flipper at FL200, the entry point
in FLIPR for fetching the function subprograms.
The flipper would fetch SOCAL 1 and re-execute the
original CALL to FSQR.

BSC	 I MDX "-12 I ENTRY 5 - a branch to a subroutine in
SOCAL 3 via word 3 of LIBF TV
entry; a branch to fetch SOCAL 3

DEFINE FILE TABLE

The processing of the DEFINE FILE Table normally
consists of filling in word 5 (the sector address) for
each entry in the DEFINE FILE Table preceding the
mainline program.

However, additional processing is required when
a file must be truncated, i.e. , the space available
on the disk is insufficient to store the number of
records defined in the file. If the file is in the User /
Fixed Area, or if it is the only file in a particular
Working Storage, then the Core Load Builder attempts
to truncate it enough to fit.

I BSC	 I I	 I MDX *-12 ENTRY 4 - a branch to a subroutine in
SOCAL 2 via word 3 of LIBF TV
entry; a branch to fetch SOCAL 2

I BSC MDX *-12 I ENTRY 3 - a branch to a subroutine in
SOCAL 1 via word 3 of LIBF TV
entry; a branch to fetch SOCAL 1

I DC
*I BSC	 L I FLOAT	 I ENTRY 2 - a link word; a branch to

an in-core subroutine, i.e.,
FLOAT

I DC *-* I BSI 3 disp I DC FADD I \ ENTRY 1 - a link word; a branch to
the SOCAL linkage for a subroutine
in SOCAL 1; the address of a sub-
routine in SOCAL I, i.e., FADD

HIGH
CORE

ALL TV for FABS,
consisting of the
entry point address
of FABS

CALL TV for FSQR,
consisting of the
entry point address
of FSQR

L200, the address of 	 FL200
the entry point in
the flipper for
fetching SOCAL 1

Figure 11. SOCAL Linkage in the LIBF Transfer Vector

Suppose now that FADD were called again before
some subprogram in either SOCAL 2 or SOCAL 3
were called. This time the LIBF would cause a
BSI to the first word of entry 1 and then to the
second word of entry 3, The MDX would then be to Figure 12. CALL Transfer Vector for SOCALs

Section 8. Core Load Builder 39

First, the entire DEFINE FILE Table is fetched
and stored in the unoccupied area allocated to the
Load Table. If the Core Load Builder determines
that a file can be truncated, the number of records
and the disk block count in the appropriate DEFINE
FILE Table entry are modified accordingly. As
each entry is completed, all seven words are relocat-
ed in the same manner as the other words of the
core load.

The processing consists of comparing the file
number of a DEFINE FILE Table entry with each of
the file numbers in the FILES information in the
SCRA, if any. If a match occurs, the name of the
disk area associated with the file number obtained
from the FILES information is found in LET/FLET,
and the absolute sector address of that disk area
is placed in word 5 of the DEFINE FILE Table
entry. If none of the file numbers from the FILES
information match the file numbers in the DEFINE
FILE Table, the file is set up in Working Storage,

e. , the relative (to beginning of Working Storage)
sector address is stored in the DEFINE FILE
Table. The sign bit is set to indicate that this is
a relative address. In either case, the system
cartridge is assumed unless a cartridge ID has
been specified in the FILES information.

The format of a DEFINE FILE Table entry is as
follows:	 Symbolic

Word
	

Description	 Reference

RH000	 Fetch the mainline program header
record

NW000	 Fetch the next word in sequence fro
from the data buffer, reading a
new sector when nexessary

BT000	 Add an entry to the Load Table
PM000	 Fetch one of the message phase

and transfer control to it
GP000	 Read from or write to the disk
TL000	 Terminate Loading
EX000	 Print a message and exit
CN000	 Test a subroutine name for disk I/O

PHASE 1

Phase 1 performs the initialization functions that
must be done prior to the relocation of the mainline.
Initialization consists of, principally, fetching DCOM
and extracting the parameters stored there that -
are needed by the Core Load Builder and fetching the
mainline leader record and saving the information
therein.

In addition, phase t makes an entry in the Load
Table for each LOCAL, NOCAL and G2250 specified
in the LOCAL, NOCAL and G2250 information in the
SCRA, if any.

The following is a list of the subroutines that
comprise phase t and the functions they perform.

1	 File number
2	 Number of records in the file
3	 Number of words per record
4	 Address of the associated

variable
5	 Sector address of the file;

initially zero, filled in by
the Core Load Builder

6	 Number of records per sector
7	 Disk block count of the file

@FLNR
@RCCT
@WDR C

@ASOC

@SCAD
@RCSC
@BCNT

Subroutine	 Function

IN000	 Initialize the Core Load Builder, process
the mainline header process LOCAL,
NOCAL and G2250 names from the SCRA.

LN000 Enter LOCAL, NOCAL and G2250 names
in the Load Table.

PHASE 2

PHASE DESCRIPTIONS

PHASE 0

Phase 0 always remains in core. It consists of two
main sections, (1) the basic subroutines required by
all other phases and (2) the constants and work areas
shared by two or more subroutines. The latter
section is known as RCOM.

The following is a list of the subroutines that
comprise phase 0 and the functions they perform.

Subroutine	 Function

LK000
	 Fetch a phase

LS000
	 Search LET/FLET

After the execution of Phase 1, part of Phase 2
remains in core until the core load is completed.
Phase 2 contains the Master Control subroutine,
the relocati on subroutine, and the transfer sub-
routine, among others (see below). Master Con-
trol supplies the basic logic for the Core Load
Builder. The relocation subroutine supplies the lo
logic for relocating a program, i. e. , incorporating
rating it into the core load. The transfer sub-
routine provides the logic for transferring a
relocated word of the core load to the CIB, the
CIB buffer, or Working Storage, whichever is
appropriate. These three subroutines are basic
to the process of building a core load.

The following is a list of the subroutines that
comprise Phase 2 and the functions they perform.

40

Subroutine

MC000

RL000

Function

Master control for the Core Load
Builder

Relocate a program; convert it
from disk system format to
core image format

The data and CIB buffers are combined into a
single 640-word buffer for the purpose of fetching
the *LOCAL, *NOCAL, *FILES and *G2250 infor-
mation from the SCRA.

40. 1

The transfer subroutine provides the logic for trans-
ferring a relocated word of the core load to the CIB,
the CIB buffer, or Working Storage, whichever is
appropriate. These three subroutines are basic to
the process of building a core load.

The following is a list of the subroutines that
comprise phase 2 and the functions they perform.

Subroutine	 Function

Subroutine
	 Function

HR000
	 Process the program header

record for subroutines
00000
	 Control the loading of subroutines

by type
TY000	 Verify subroutine references
SV000	 Scan Load Table for multiple

references

M C000

RL000

TS000
CQ000

TR000

XC000

DC000
MV000
ML000

CK000

DF000

FM000

PHASE 3

Master control for the Core Load
Builder

Relocate a program; convert it
from disk system format to disk
core image format

Process the IBT
Check name of subroutines or files

defined in a DSA statement
against the Equate Table.

Output one data word to core or
disk

Fill in exit control cells during
pass 2

Process DSA statements
Output the DEFINE FILE Table
Check mainline loading address

for validity
Check for overlay of core load and

COMMON
Process the DEFINE FILE Table

entries
Print a map of the DEFINE FILE

Table

Phase 3 performs four functions. It checks the
information in subroutine header records (except
ILSs) and stores it in RCOM. It also ensures that
during pass 2 the subprograms are relocated by
class, i.e. , class 0 first, LOCALs second, class 1
third, class 2 fourth, and class 3 fifth. It compares
the reference to each subprogram, i.e., CALL or
LIBF, with the type (from the program header
record). Lastly, as a subprogram is chosen for
relocation, phase 3 checks whether or not it has
already been relocated under a different name, i. e. ,
another entry point.

The following is a list of the subroutines that
comprise phase 3 and the functions they perform.

PHASE 4

Phase 4 performs two functions. It incorporates
ILSs into the core load and it determines whether or
not a core load fits in core storage or can be made
to fit with SOCALs by computing the core that can
be saved by employing SOCALs.

The following is a list of the subroutines that
comprise phase 4 and the functions they perform,

Subroutine	 Function

IL000	 Fetch and relocate an ILS
ET000	 Calculate core load size

PHASE 5

Phase 5 creates the Flipper Table if LOCALs have
been specified, sees to it that the flipper is relocated,
and provides the logic for building each SOCAL.
This phase is flip-flopped with phase 3. It is brought
into core storage once if there are LOCALs and once
for each SOCAL, which implies a maximum of four
times.

The following is a list of the subroutines that
comprise phase 5 and the functions they perform.

Subroutine	 Function

PL000
	 Process LOCAL subprograms

PS000
	 Process SOCAL subprograms

FF000
	 Relocate the LOCAL/SOCAL

flipper, FLIPR

Section 8. Core Load Builder 41

PHASE 6

Phase 6 performs several miscellaneous functions
that must follow the actual building of most of the
core load. The most important of these is the con-
struction of the transfer vector from the Load Table,
Other functions performed in phase 6 are filling in
exit control cells and completing the core image
header.

The following is a list of the subroutines that
comprise phase 6 and the functions they perform,

Subroutine	 Function

TV000	 Build the transfer vector
TP00 ,0	 Complete core image header, fill

in exit control cells, etc.

PHASE 7

Phase 7 formats and prints (via the principal print
device subroutine) all messages from 1100-R10.
These messages contain no variables.

PHASE 8

Phase 8 formats and prints (via the principal print
device subroutine) all messages from R16-1/23.
These messages contain a 5-character name follow-
ing "R XX".

PHASE 9

Phase 9 formats and prints (via the principal print
device subroutine) all messages from 1139-1147.
These messages contain a hexadecimal address
following "R XX".

PHASE 10

Phase 10 formats and prints (via the principal print
device subroutine) all messages from R64-R68.
These messages contain a 5-character name follow-
ing "R XX".
PHASE 11

Phase 11 formats and prints (via the principal print
device subroutine) the files portion of the map. It
is entered only if (1) a map is requested and (2) there
are files defined.

PHASE 12

Phase 12 formats and prints (via the principal print
device subroutine) the allocations of core storage.
It is entered only if a map is requested.

PHASE 13

Phase 13 is entered from phase 2 when a GSB, GBE,
or GBCE order is encountered. The GSB processing
adds the relocation factor to the GSB address to insure
that it is below core location 8192. The GBE and GBCE
processing enters the name of the external subroutine
in the Load Table. The GBE or GBCE order is then
replaced with a GB or GBC Indirect through the trans-
fer vector entry.

DEBUGGING/ANALYSIS AIDS

Stopping the Core Load Builder at the prope r time
is often the key to pinpointing problems in monitor
system and, in some cases, user programs. There
are NOP instructions in several critical locations in
the Core Load Builder; they are: LK000+1, PM000+1,
IN000+1, MC000, E1000+1, E2000+1, E3000+1, and
E4000+1. These NOPs can be replaced by WAIT
instructions so that core dumps can be taken at
various stages of the core load building process.
A WAIT replacing the NOP at PM000+1 is often the
most useful, for it can be used to stop the Core Load
Builder just before an error message is printed.

Bear in mind that, even though an error is detect-
ed by the Core Load Builder, it may well be due to a
failure somewhere else in the monitor system. The
message printed may not be a very good indication of
the error; many checks are present in the Core Load
Builder simply to keep it from destroying itself.
For example, a common message is 1116, and the
name given in the message may well be something
that makes no sense or was not referenced in the
core load. The problem may well be erroneous
output from the FORTRAN Compiler or Assembler
Program or a destroyed User Area. In such a case
an analysis of the contents of the data buffer BUFLO
usually provides the clue to the error.

To facilitate path tracing through the Core Load
Builder, all subroutines in the Core Load Builder
are entered with BSI instructions.

42

SECTION 9. DISK UTILITY PROGRAM (DUP)

FLOWCHARTS
	

CORE STORAGE LAYOUT

CCAT:	 DUP01
DCTL:	 DUP02
STORE:	 D UP03
FILEQ:	 D UPO4-06
DDUMP:	 D UP07 -08
DUMPLET: D UP09
DELETE: DUP10
DEFINE: DUP11
DEXIT:	 DUP12
PRE CI:	 DUP13

The Disk Utility Program (DUP) is actually a group
of programs provided by IBM to perform certain
frequently required operations involving the disk
such as storing, moving, deleting, and dumping
data and/or programs. These operations are called,
for the most part, by user-supplied DUP control
records.

DUP OPERATION

When DUP is called, the phases CCAT and DUPCO
are brought into core storage. CCAT forms the re-
quired DUP I/O subroutine sets (phases 14, 15, 16)
and records them. CCAT also forms the balance of
UPCOR, including CATCO and the principal print
device subroutine, and is completely overlaid by
part of UPCOR, leaving only the DUPCO part of
phase 1 in core storage as part of UPCOR.

Control is passed to REST (of DUPCO) and REST
in turn calls DCTL into core storage.

In general, DCTL reads, prints, decodes and
checks the control records, and then calls in the re-
quired phase to continue processing as the function
requires.

The called phase completes the function, includ-
ing the printing of the terminal message. Control
is then passed to REST (of DUPCO), which restores
CATCO areas to zero as required for initialization,
fetches DCTL if it is not already in core (4K system),
and branches to DCTL to read the next record.

When a monitor control record is read, a CALL
EXIT is executed by DEXIT.

Figure 13 shows the layout of core storage during
DUP operation. Panel 1 shows the overlay scheme
used for 4K systems, panel 2 for 8K systems, panel
3 for 16K systems, and panel 4 for 32K systems.

0 0 0 0

COMMA,
Skeleton
Supervisor

COMMA,
Skeleton
Supervisor

COMMA,
Skeleton
Supervisor

COMMA,
Skeleton
Supervisor

DISKZ DISKZ DISKZ DISKZ

Overlay
Area

Overlay
Area

Overlay
Area

Overlay
Area

STORE/DUMP
Buffer

STORE/DUMP
Buffer

STORE/DUMP
Buffer

STORE/DUMP
Buffer

UPCOR
Phase DCTL DCTL DCTL

UPCOR
Phase

STORE
Phase

STORE
Phase

UPCOR
Phase DUMP

Phase

UPCOR
Phase

Figure 13. Core Layout During Disk Utility Program Operation

Section 9. Disk Utility Program (DUP) 43

DUP CONTROL RECORDS

In the table below, DUP control records are classi-
fied by type according to the phases required to com-
plete their processing.

Type Phases R	 uired
STORE
STOREMOD
STOREDATA DCTL, STORE , DUPCO
STOREDATACI

STORECI DCTL, FILEQ, STORE,
DEXIT, Core Load
Builder, PRECI, DCTL,
STORE, DUPCO

DUMP

DUMPDATA DCTL,DDUMP,DUPCO

DELETE DCTL,DLETE,DUPCO

DEFINE FIXED AREA
DEFINE VOID
ASSEMBLER DCTL,DFINE,DUPCO
DEFINE VOID FORTRAN
DEFINE VOID RPG

DUMPLET

DUMPFLET DCTL,DMPLT,DUPCO

DWADR DCTL,DEXIT,ADRWS
Program, DUPCO

LOCATION EQUIVALENCE TABLE (LET)/FIXE:D
LOCATION EQUIVALENCE TABLE (FLED

LET is the table through which the sector addresses
of programs and data files stored in the User Area
may be found. Each entry in this table consists of
three words, the first two of which are the program
or file name in name code. The third word is the
disk block count of the program or file. Bits 0 and 1.
of the first word denote the format of the entry, i. e. ,
DSF, DCI, or DDF. The corresponding bit patterns
are 00, 10, and 11. The 01 pattern is reserved for
future use. For a DSF subroutine having multiple

entry points, the disk block count is zero for all
entry points except the first.

Padding is inserted wherever a DCI or DDF
entry is preceded by a DSF entry, and is re-
flected in LET as if a program called "1DUMY"
were stored. That is, each instance of padding
generates a 1DUMY entry in LET, and the block
count for each of these entries is the number of
disk blocks to the nearest sector boundary (may
be zero). The last entry in LET is always a
1DUMY entry that reflects the number of disk
blocks from the end of the last program stored in
the User Area to the end of the disk.

Each sector of LET contains a header, w'nch
occupies the first five words of the sector. The first
word contains the sector number, which is 0, 1, 	 ,
or 7. The second contains the sector address of the
User Area for this cartridge. The third is reserved
for future use. The fourth contains 315 minus three
times the number of LET entries found in this sec-
tor, i.e., the number of words unused (avai.lable) in
this sector. If this is not the last sector of LET on
this cartridge, then the fifth word contains the ad-
dress of the next sector of LET. If it is the last
sector of LET and if there is no FLET on this car-
tridge, this word contains zero; otherwise, it con-
tains the address of the first sector of FLET. In
other words, this fifth word (chain address) is used
to chain from LET through FLET, sector by sector.
Bits 0-3 of the fifth word are always zeros. Note
that, when referring to a dump of LET, the above
header words are expressed in hexadecimal.

FLET is the table through which the sector ad-
dresses of programs and data files stored in the
Fixed Area may be found. FLET is analogous to
LET in the format of its entries and its use by the
monitor system programs.

LET/FLET is searched by LETSR of DCTL for
the name decoded from DUP control records of the
STORE, DUMP, and DELETE types. The informa-
tion required by other DUP phases is recorded in
CATCO. If a DSF program is being stored, then
LETSR also searches LET/FLET for the secondary
entry point names as well.

STORE inserts the required entries into LET/
FLET (one entry for each entry point). If a DCI
program or data file is being stored and padding
is required, then a 1DUMY LET/FLET entry is
inserted prior to the named LET/FLET entry. All
secondary entry points have their entries on the
same sector as the LET/FLET entry for the primary
entry point.

44

Location
Relative Address

(decimal)

#ANDU 35
#BNDU 40
#CBSW 10
#CIAD 27
#CIBA 60
#CIDN 55
#CSHN 90
#DBCT 6
#DCSW 24
#ENTY 16
#FCNT 7
#FHOL 20
#FLET 75
#FMAT 70
#FPAD 45
#FRDR 19
#FSZE 21
#GCNT 30
#JBSW 9

LCNT 11

DUP CONCATENATED COMMUNICATIONS
AREA (CATCO)

CATCO contains the following elements:

• DCOM values that are read from DCOM and
placed in CATCO by CCAT of DUPCO.

• IOAR headers (word counts and sector addresses)
required by DUP, furnished to COAT by the
System Loader, converted by CCAT to two-word
entries each, and placed in DCOM by CCAT of
DUPCO.

• Words used only by DUP for switches, small
work areas, and communications between various
DUP phases.

• I/O addresses used by DUP, initialized by CCAT
of DUPCO.

DCOM VALUES

DCOM is read from the master cartridge by CCAT
of DUPCO whenever DUP is called by the Monitor
Control Record Analyzer. The following parameters
in DOOM are used by DUP:

These parameters are referred to by an index regis-
ter that contains the address of the first word of
DOOM plus the displacement given above.

Whenever a parameter in DCOM has been changed
by DUP and control is being relinquished to another
monitor system program, DUP writes the DCOM
values in CATCO to DCOM on the master cartridge
before exiting. If a change has been made that
refers to a satellite cartridge, the DOOM values are
also written to DOOM on the affected cartridge.

See the description of DOOM in Section 2. Com-
munication Areas for details regarding the above
parameters.

IOAR HEADERS

CATCO contains the IOAR header for each phase of
DUP required by other phases during the execution of
the various DUP functions; they are:

Location
	

Phase Name	 Phase Number

DCHDR
	

DCTL
	

2
STHDR
	

STORE	 3
FLHDR
	

FILEQ
	

4
D MHDR
	

DDUMP	 5
DLHDR
	

DMPLT	 6
DTHDR
	

DLETE	 7
DFHDR	 D FINE	 8
DXHDR
	

DEXIT	 9
UCHDR
	

UPCOR	 10

Section 9. Disk Utility Program (DUP) 45

Relative Address
Location (decimal)

#MDF1 13
#MD F2 14
#MPSW 12
#NAME 4
#NCNT 15
#PCID 50
#PIOD 25
#PPTR 26
#RP67 17
#SCRA 65
#TODR 18
#UHOL 22
#ULE T 80
#US ZE 23
#WSCT 85

Location

PIHDR
SIHDR
PTHDR
CIHDR

Phase Name

KFACE
C FACE
PFACE
PRECI

Phase Number

11
12
13
17

ASMSW -- Set non-zero by DFCTL of DCTL when a
DEFINE control record indicates that the Assem-
bler Program is to be deleted from the master
cartridge. Used by DFINE for functional flow
control.

These headers are initialized by CCAT of DUPCO
whenever the Monitor Control Record Analyzer calls
DUP. The contents of these headers are not altered
by any phase of DUP.

Each. IOAR header consists of two words, word 1
containing the word count and word 2 containing the
sector address of a phase. Each pair is aligned on
an even boundary.

SWITCHES

The following DUP switches are initialized by CCAT
of DUPCO and not altered by any function of DUP.

ADDR2 -- Keyboard interrupt address, to be put in
location $IREQ by MASK of DUPCO so that during
a masked operation, the Keyboard interrupt is
delayed by DUP until a critical operation is
completed.

KBREQ -- Contents of location $IREQ, saved by
CCAT of DUPCO when DUP is given control, and
restored by DEXIT of DUP when leaving DUP.

INOUT -- Indicator for the principal I/O device
when DUP was called by the Monitor Control
Record Analyzer.
Negative = Paper Tape.
Zero = Cards.
Positive = Keyboard.

PTPON -- A non-zero value if paper tape devices are
are present on the system.

IBT -- Nine locations containing the interrupt branch
table for level 4, initialized by CCAT of DUPCO
and the card and paper tape interface phases.

The following locations are used by DUP for in-
ternal communication, and are initialized to zero
by REST before each DUP control record is proc-
essed.

BITSW -- Set non-zero by RE015 of DCTL to allow
the MDUMP subroutine in DUPCO to call the
System Core Dump program while executing var-
ious DUP phases. It is set on the basis of the
contents of column 35 of the DUP control records.
This column is not normally used, but it may be
used to obtain snap-shot core dumps while per-
forming DUP operations. A zero punched in this
column causes all possible DUP dumps to occur.
Other numbers cause core dumps to be taken
when the phase with the same phase ID is in con-
trol (See DUP Diagnostic Aids.).

BLKSW -- Set by the DUP I/O interface subroutine
(in IOBLK) when reading control records if the
record is neither a monitor control record (//) or
a DUP control record (*D or *S). If turned on,
DCTL turns it off and returns to the GETHO entry
of the DUP I/0 interface subroutine. This permits
DUP to pass non-control records, including blanks,
at the maximum rate of 1000 per minute with a
single buffer.

CIERR -- Set to a DUP error code for an error
detected by PRECI during a STORECI operation.
DCTL checks CIERR when entered from PRECI
(CISW is non-zero) and goes to DEXIT thru
LEAVE of DUPCO with the specified error code.
PRECI cannot go directly to LEAVE because DUP
UPCOR may not be in core storage at this time
due to the possibility of being overlaid by the core
load being built.

CISW -- Set by DCTL when *STORECI is the function
specified on the DUP control record. Used by
DCTL to detect an entry from PRECI (during a
*STORECI function). Used by STORE to determine
the functional path to be used.

CLBSW Set non-zero by PRECI. Used by STORE
to indicate an entry from PRECI after the Core
Load Builder has built the core load for the
STORECI function.

46

CL1, CL2 -- The addresses of the lower and upper
limits, respectively, of parameters in CATCO
to be cleared to zero by REST of DUPCO.

CNTNO -- Used by GETBI of the DUP I/O interface
subroutine (in IOBLK) to record the count of
binary records being read or punched. Permits
checksum and sequence check operations.

DATSW The binary equivalent of the decimal
value in the count field of the DUP control rec-
ord. Entered by DACNT of DCTL. A non-zero
value represents either STOREDATA,
DUMPDATA, DEFINE FIXED AREA count, or
STORECI with *FILES, *LOCAL, and *NOCAL
control records following. Contents are in disk
blocks if the input is from disk, records if from
an I/0 device. Used by DUMP, STORE, DEFINE
and FILEQ as a count; also used to control func-
tional flow. FILEQ clears DATSW before calling
STORE.

DBADR -- Set by LETSR of DCTL to the disk block
address of the program represented by the last
LET/FLET entry searched. Used by DUMP and
DELETE to indicate the disk block address of the
desired program or data file.

DELSW Set by LETSR of DCTL to point to the re-
quired entry in LET/FLET.minus one word.
Actually contains a value somewhere in the buffer
LETAR. Used by DMPLT when dumping the
entry point(s) or name of a single program. Used
by DELETE to point to an entry in LET/FLET
that is to be deleted. Used by STORE to point to
an entry in LET/FLET where the entry point(s)
is to be inserted.

DFNSW -- Set by DFCTL of DCTL to indicate a
DEFINE FIXED AREA operation. Used by
FRLAB of DCTL to bypass the decoding of the
FROM field.

DKSAD -- Set by DUP30 and DUP34 of DUPCO to
indicate the sector address (without a logical drive
code) of the current GET or PUT operation.

DUMPP -- Two words located on even boundary, set
by all DUP phases requiring special monitoring
dumps. Used by MDUMP of DUPCO to specify
lower and upper limits to be dumped to the
printer.

EBCSW -- Set non-zero by DCTL when a STOREDATA
or a DUMPDATA control record contains an E in
column 11. Used by STORE when input data is to
be stored in packed EBCDIC format, i. e. 80 card
columns to 40 words, and by DUMP when such
data is to be converted and dumped to cards or
printer.

FRWS -- Set non-zero by SC130 if the FROM field
is Working Storage. Used by DCTL for functional
flow control and error checking.

FXSW -- Set non-zero by SC130 or SC170 of DCTL
when either the FROM or the TO field, respec-
tively, of the DUP control record specifies the
Fixed Area or when the control record specifies
DEFINE FIXED AREA. Used by DCTL for error
checking and functional flow control. Used by
DFINE, STORE and DUMP for functional flow
control.

FORSW -- Set non-zero by DFCTL of DCTL when a
DEFINE control record indicates that the
FORTRAN Compiler is to be deleted from the
master cartridge. Used by DFINE for functional
flow control.

IOSW -- Set non-zero by either SC130 or SC170 of
DCTL when any I/O device is specified in the
FROM or TO field of the DUP control record.
Used by DCTL for error checking and functional
flow control. Used by DUMP and STORE for func-
tional flow control.

LETSW -- Set positive by LECTL and negative by
FLCTL of DCTL. Used by DUMPLET to indicate,
respectively, a full LET/FLET dump or a FLET
dump only.

LSTLF -- Set by LETSR of DCTL to the sector ad-
dress (with a logical drive code) of the last LET/
FLET sector searched. If only one sector was
searched, then the address of that sector is
entered in LSTLF. Used by DUMP and DELETE
to identify the logical drive required.

MODSW -- Set non-zero if STCTL of DCTL detected
a STOREMOD function specified by the DUP con-
trol record. Used by STORE for functional flow
control.

NAMSW -- Set non-zero by LETSR of DCTL when a
name is found in LET/FLET that matches the name

Section 9. Disk Utility Program (DUP) 47

specified on the DUP control record. Used by
DCTL for error detection and functional flow con-
trol. Used by DUMPLET to indicate that only the
specified LET/FLET entry is to be dumped.

NEGSW -- Set non-zero by DFCTL of DCTL when a
minus sign is detected in column 31 of a DEFINE
FIXED AREA control record. Used by DEFINE
to indicate expansion (zero) or contraction (non-
zero) of the Fixed Area.

PGMHL -- Word count (length) of the program head-
er in DSF programs. Set by RDHDR of DCTL to
the actual program header length. Used by
STORE to start the placement of the first data
header in the DSF output. Set by DUMP from the
program header. Used by STORE to update LET
with the required number of entries.

P1442 Set by CCAT of DUPCO to contain the word
count and sector address of the System 1442 sub-
routine. Used by DDUMP to read the System
1442 subroutine into core when dumping to cards.

PHDUP -- Duplicate of $PHSE to permit printed
identification of the DUP phase requesting a core
dump.

PRPAR -- Two words specifying the default limits
to be dumped by MDUMP. Set by any module of
DUP desiring to use MDUMP for monitoring DUI3's
status. Usually set to point at key parameters
and work areas.

PRSW -- Set non-zero by SC170 of DCTL when
printing is specified as the desired output on the
DUP control record. Used by DCTL for error de-
tection and by DUMP for functional flow control.

PTSW -- Set non-zero by SC130 or SC170 when
paper tape is specified in the FROM or TO field
of the DUP control record. Used by DCTL for
error detection and functional flow control. Used
by DUMP for functional flow control.

I RPGSW -- See ASMSW and FORSW.

SDWDS -- The number of words yet to search in the
current LET/FLET sector. Set by LETSR of
DCTL. Used by LETSR of DCTL to test for the
sector search complete condition.

STCSW -- Set non-zero by ST400 of DCTL when the
CI is detected in columns 11 and 12 of the

STOREDATACI control record. Used by STORE
for functional flow control.

STSW -- Set non-zero by STCTL of DCTL when a
STORE control record is found. Set by LETSR of
DCTL to the sector address (with a logical drive
number) of the LET/FLET sector that contains the
1DUMY entry that may be replaced by the entry
for the program to be stored. Used by DCTL for
functional flow control. Used by STORE to hold
the LET/FLET sector address and drive code
prior to inserting the LET/FLET entry for the
program or data file to be stored.

TEMPI, TEMP2 -- Two words, on an even boundary,
used by various phases of DUP for miscellaneous
purposes; e. , DUP10 of DUPCO returns four
EBCDIC characters in TEMPI and TEMP2 as the
result of converting from binary to hexadecimal
for purposes of printing.

TOWS -- Set non-zero by SC170 if the TO field is
Working Storage. Used by DCTL for error check-
ing and functional flow control.

T3MSW -- Set non-zero by STCTL of DCTL when a
type 3 or 4 subroutine contains a SOCAL level
number specified on the DUP control record. Used
by STORE to modify the type field in the program
header before storing the subroutine to disk.

UASW -- Set non-zero by SC130 or SC170 of DCTL
when either the FROM or TO field of the DUP
control record specifies the User Area. Used by
DCTL for error checking and functional flow control.
Used by STORE for functional flow control.

WSSW -- Set non-zero by SC130 or SC170 of DCTL if
the FROM or TO field of the DUP control record
specifies Working Storage. Used by DCTL for er-
ror detection. Used by DUMP and STORE for
functional flow control.

XEQSW -- Set non-zero by PLUS2 of DCTL when
calling in the required DUP phase to indicate that
execution of that phase is desired rather I,han re-
turning to PLUS2. Set non-zero by any other DUP
phase using GET of DUPCO to fetch other phases
from the disk that are to be executed immediately.
Used by GET of DUPCO to determine whether to
return to the link address (zero) or to execute
the phase just fetched (non-zero).

48

The following switches are initialized to zero by
CCAT of DUPCO, set by PLUS2 of DCTL, and not
reset by REST of DUPCO. These are cleared by
DEXIT before UPCOR is saved in preparation to
calling the Core Load Builder. This forces DCTL
on return from the Core Load Builder via PRECI to
fetch STORE again as it may have been overlaid by
the core load being built.

2112 -- Set non-zero by PLUS2 of DCTL when fetch-
ing another DUP phase. Used by REST of
DUPCO: if zero, DCTL must be fetched from
disk; if non-zero, DCTL has already been
fetched.

PH3 -- Set non-zero by PLUS2 of DCTL when fetch-
ing STORE. Used by PLUS2 of DCTL: if zero,
STORE must be fetched from disk; if non-zero,
STORE has already been fetched.

2114 -- Set non-zero by PLUS2 of DCTL when fetch-
ing DDUMP. Used by PLUS2 of DCTL: if zero,
DDUMP must be fetched from disk; if non-zero,
DDUMP has already been fetched.

IOREQ -- Set non-zero by PLUS2 of DCTL in case
I/O other than from the specified I/O device is
required (i.e. , Keyboard input when the DUP
operation is a STORE from cards). Checked by
READ of DCTL, and, if still non-zero, the princi-
pal I/O section (DUP phase 14) is brought back
into core storage.

I/O ADDRESSES

The following are the I/O addresses required by the
various DUP phases. They are initialized by CCAT
of DUPCO when DUP is given control. All except
THIS and NEXT remain as initially set. All (except
SDBUF) contain the address of an I/O buffer in
UPCOR. Thus, the locations of the referenced
buffers are dependent on core size; in any case, they
always reside in the upper 4K of core storage.
SDBUF always resides in the first 4K of core storage.

CRBUF -- Set to the address of an 81-word buffer
used for reading DUP control records in unpacked
EBCDIC.

HDBUF -- Set to the address of the buffer used for
printing the page heading after each page restore

performed during any DUP operation. The con-
tents of this buffer are in packed EBCDIC.

IOBLK -- Set to the starting address for the I/0
block portion of UPCOR. The I/O block contains
one of phases 14, 15, or 16 of DUP.

SDBUF -- Set to the address of the 322-word buffer
used by the STORE, DDUMP, and DELETE func-
tions of DUP. This buffer always resides in the
first 4K of core storage.

LETAR -- Set to the address of the 322-word buffer
used for the LET/FLET search of DUP. This
buffer is also a one-sector buffer, or the second
half of a two-sector buffer used in disk I/O oper-
ations.

PEBUF -- Set to the address of a buffer used for
printing the DUP control records (41 words in
packed EBCDIC) or for printing a LET dump, a
FLET dump, a program dump, or a data dump
(61 words in packed EBCDIC).

THIS -- Set to the address of one of two buffers used
for double buffering of binary input (see NEXT).
The buffer is 81 words long.

NEXT -- Set to the address of one of two buffers
used for double buffering of binary input (see THIS).
The buffer is 81 words long.

DUP PHASE DESCRIPTIONS

DUP COMMON (DUPCO)

• Initializes the I/O phases required by DUP and
builds the DUP Communications Area (CATCO).

• Performs functions commonly required by other
DUP phases.

The initialization function of DUPCO is performed
by a subroutine known as CCAT. CCAT resides in an
area reserved for the System print subroutine, but is
not overlaid by it until all other initialization has been
completed. This initialization includes:

• Construction of the DUP paper tape I/O phase if
paper tape is attached. This phase is written to

Section 9. Disk Utility Program (DUP) 49

the disk area reserved for DUP phase 16 at
System generation time.

• Construction of the DUP principal I/0 phase
(without Keyboard). This phase is written to the
disk area reserved for DUP phase 15 at System
generation time.

• Construction of the DUP principal I/O phase.
This phase is written to the disk area reserved
for DUP phase 14. This phase is left in core
storage at IOADR.

• Initialization of all I/O-dependent switches in
CATCO.

• Incorporation of DCOM from the master cartridge
into CATCO.

• Incorporation of IOAR headers (word counts and
sector addresses) of other DUP phases into
CATCO. This information is supplied to CCAT
by the System Loader.

• Initialization of DUP's page heading buffer with
the heading contained in sector @HDNG.

• Fetching the System device subroutine for the
principal print device. This subroutine over-
lays all but a few words of CCAT. These last
words are cleared to zero just before branching
to REST.

The functions that are common to all DUP phases
are included in the non-overlaid section of DUPCO.
These functions are provided by the following sub-
routines:

WRTDC -- This subroutine is used by STORE,
DELETE, and DEFINE when it is necessary to
update DCOM. This includes the updating of
DCOM on any affected satellite cartridge as well
as on the master cartridge.

PHIDM -- This subroutine is used to modify the
next-to-high-order hexadecimal digit of $PHSE
in COMMA. It is used primarily by DUP's I/O
functions to illustrate in a core dump the I/O
operation last performed. The modifications are:

1	 Read from disk
2	 Write to disk

4
	

Convert binary to EBCDIC
5
	

Print terminal messages
8
	

Read cards
9
	

Read paper tape
A
	

Read Keyboard

PHID -- This subroutine is used to record the phase
ID of the phase in execution in $PHSE of COMMA.
It is also used by some DUP phases to illustrate
the progress of execution from one section of the
phase to the next. When used for this purpose,
the high-order digit of $PHSE is changed to the
appropriate phase section modifier. A core dump
indicates the last section of the phase that was
executed.

MASK -- This subroutine is used to prevent recogni-
tion of the INTERRUPT REQUEST key. The func-
tion of this key is to terminate the current job,
but DUP must not allow this termination to take
place while in a critical operation. Therefore,
functions that affect LET/FLET, the User or Fixed
Area, the CIB, and DCOM delay its recognition
(STORE, DELETE, DEFINE).

LEAVE -- This subroutine is used to fetch DUP's
exit phase (DEXIT) to print an error message or
service a special exit, such as an exit to the Core
Load Builder (STORE CI function), an exit to the
ADRWS program (DWADR function), or an exit to
the Supervisor following the trapping of a monitor
control record.

MDUMP -- This subroutine makes selective calls to
the System Core Dump program. See DUI) Diag-
nostic Aids.

BINEB -- This subroutine is used to convert binary
numbers to EBCDIC hexadecimal characters. It
is used primarily to convert a number for inser-
tion into a phase termination message, e. g. ,
a cartridge ID, a disk block count.

PRINT -- This subroutine is used to print a line on
the principal print device. It interfaces with the
System principal print device subroutine.

PAGE -- This subroutine is used to skip to channel 1
and print a page heading if the principal print de-
vice is the 1132 or 1403 Printer. If the Console
Printer is the principal print device, five carriage
returns are executed before the page heading is
printed.

SO

READ Subroutine

This is the entry point into DCTL. It performs the
following functions:

• Reads and prints DUP control records.

• Flushes invalid DUP subjobs.

• Checks for a monitor control record and exits
when one is detected.

• Ensures that the required DUP I/O subroutine
set is in core storage.

• Decodes the function field of the DUP control
record into the various DUP types.

• Goes to one of the subroutines in the second logical
part of DCTL to continue the decoding and process-
ing of the specified type of DUP control record as
follows:

Control Record	 Subroutine Called

*STORE
*DUMP
*DUMPDATA
*DUMPLET
*DUMPFLET
*DELETE
*DE FINE
*DWADR

STCTL
DUCTL
DACTL
LECTL
FLCTL
DLCTL
DFCTL
WACTL

LINE -- This subroutine is used to single-space the
principal print device.

REST -- This subroutine is used to chain from one
DUP function to the next. When a function is
completed without errors, the DUP phase in con-
trol prints its termination message and exits to
REST. REST determines whether or not it is
necessary to bring DCTL into core storage (i. e. ,
core size is 4K, or DCTL has not yet been loaded),
and, if necessary, fetches DCTL. REST then
exits to DCTL.

ENTER -- This subroutine is used to save the ac-
cumulator and extension, the overflow and status
indicators, as well as XR1, XR2, and XR3. XR1
is then loaded with the address of the CATCO
pointer.

RTURN -- This subroutine is used to restore the
contents of the accumulator and extension, the
overflow and carry indicators, as well as XR1,
XR2, and XR3, as saved by the ENTER subrou-
tine.

GET -- This subroutine is used to read the disk using
DISKZ. XR3 points to the IOAR header for this
read when GET is entered, and XR1 contains the
address of the CATCO pointer.

PUT -- This subroutine is used to write to the disk
using DISKZ. XR1 and XR3 are initialized in the
same manner as described for the GET subrou-
tine. Some error checking is done of the word
count and sector address in the case of GET and
PUT. No check is made in GET or PUT as to the
validity of the logical drive code associated with
the sector address. GET and PUT assume the
proper logical drive code has been included with
the sector address.

Errors Detected

The following DUP errors are detected in DUPCO by
the GET and PUT subroutines: D92 and D93.

DUP CONTROL (DCTL)

• Reads, prints and decodes DUP control records.

• Sets switches in CATCO to reflect the parameters
specified on the DUP control record.

• Searches LET for the name specified on STORE,
DUMP, DUMPLET and DELETE type control
records.

• Detects errors in the fields of the DUP control
records.

• Calls into core storage the required DUP phase
and exits to it.

DCTL remains in core storage during DUP opera-
tions for configurations of 8K or larger, except dur-
ing STORECI. DCTL is executed after the REST
function of DUPCO for each DUP control record as
well as after PRECI during the processing of a
STORE CI control record.

PUP Control (DCTL) may be considered in three
logical parts: the READ subroutine, the DCTL sub-
routines, and the PLUS2 subroutine.

Section 9. Disk Utility Program (DUP) 51

DCTL Subroutines

These subroutines make up the second logical part
of DCTL. These subroutines perform the following
functions for their particular control record type.

• Decode the balance of the Function field as
required.

• Decode the FROM and TO device or area fields.

• Decode the Name field and perform a LET/FLET
search if the name is required.

• Decode the Disk I/O subroutine required with
STORECI.

• Decode and record the Count field as required.
If the operation is a STORECI, FILEQ is brought
into core storage using the PLUS2 subroutine,

• Decode the FROM and TO Cartridge ID fields.

• Check the validity of all fields and go to the
DEX1T phase if any errors are detected.

• Prevent restricted phases from being called in
and executed during Temporary mode of operation.

• Record all required data in CATCO for use by the
required phase.

• Go to the appropriate entry point in the PLUS2
subroutine to fetch and transfer control to the
DUP phase required to finish the processing of
the specified DUP subjob.

PLUS2 Subroutine

This subroutine is the third logical part of DCTL
and is the normal-exit subroutine. The various entry
points to PLUS2 set up respective IOAR headers that
cause the desired DUP phase to be called into core
storage and executed. This subroutine performs the
following functions:

• Sets up the IOAR header if the required DUP
phase is not already in core storage.

• Fetches and/or executes the required DUP phase.

Buffers Used By DCTL

Control records are read into the area defined by
CRBUF and converted to packed EBCDIC in the area
defined by PEBUF. It is from PEBUF that the control
record is printed by the principal print device sub-
routine and from which the various fields are decoded.

Binary records read for STORE are placed into the
two buffers specified by THIS and NEXT in order to
process secondary entry points that are on the header
record.

LET/FLET sectors are read one at a time into
the area specified by LETAR to be searched for the
name specified on the control record.

Errors Detected

The following DUP errors are detected in DCTL:
D01, D02, D03, D05, D06, D12, D13, D14, D15,
D16,
D25,

D17, D18, D19,
D26, and D27.

D20, D21, D22, D23, D24,

STORE

The STORE phase of DUP resides in the DUP phase
overlay area if the core size is 4K or 8K, (yr. in the
overlay area plus 8K if the core size is 16K or 32K.
This phase is read into core storage the first time
DCTL recognizes a STORE control record. It re-
mains in core storage on a 16K or 32K machine as
long as DUP has control of the system (i. e. must be
brought back into core storage when performing a
STORECI operation).

STORE may be considered in seven logical parts,
each of the following subroutines constituting one
logical part.

ST000 Subroutine

This is the entry point to STORE. It serves as a
master control for STORE, causing various other
sections of STORE to be executed as they are required
for various STORE operations.

52

IOWS Subroutine

This subroutine is executed whenever a STORE op-
eration is from card or paper tape. It provides the
following functions:

• Reads card or paper tape records punched in
system, data, or core image format.

• Moves data from card or paper tape buffer(s) to a
disk buffer.

• Writes the disk buffer to Working Storage (or to
the User Area or Fixed Area if the operation is a
STOREDATA or STOREDATACI to the User
Area or Fixed Area). If the operation is to Work-
ing Storage, Working Storage of the cartridge de-
fined as the TO cartridge is used. By default,
this is the System Working Storage.

• Updates the Working Storage disk block count and
format when operation is to, or through, Working
Storage.

WD000 Subroutine

This subroutine is executed whenever a STORE op-
eration (except STORECI, STOREDATA, or
STOREDATACI from cards or paper tape) is to the
User Area or the Fixed Area. It performs the fol-
lowing functions:

• Adjusts the destination User Area or Fixed Area
disk block address to the next sector when not at
a sector boundary, if the operation is a STORE-
DATA or STOREDATACI.

• Makes the required disk block adjustment when
moving a system format program to the User
Area.

• Moves data or a program in Working Storage to
the User Area or the Fixed Area. If the opera-
tion is from Working Storage, Working Storage
of the cartridge defined as the FROM cartridge
is used. By default, this is the System Working
Storage. If the operation is a STORE from cards
or paper tape, System Working Storage is used.

DOLET Subroutine

This subroutine is executed whenever a STORE oper-
ation is to the User Area or Fixed Area (except
STOREMOD). It performs the following functions:

• Reads the LET or FLET sector to which the entry
point name (or names) is to be added.

• Checks if a 1DUMY padding entry is required be-
fore the name is entered when storing data or core
image programs to the User Area.

• If a LET sector cannot contain the entry, updates
the header words of the LET sector and writes the
completed LET sector to disk.

• Enters a name (or names) in a LET or FLET sec-
tor and updates the. "words available" entry in
the header. In the case of a LET sector, the
terminal 1DUMY disk block size is decremented
by the number of disk blocks stored.

• Decrements the 1DUMY size in the FLET sector
by the number of disk blocks stored. All entries
that follow this FLET entry are pushed to the right
by the size of one entry (3 words).

UPDCM Subroutine

This subroutine is executed whenever the STORE op-
eration is to the User Area (except STOREMOD). It
updates DOOM as follows:

• Clears the Working Storage disk block count
(#WSCT) of the TO drive in DOOM to zero.

• Puts the disk block address of the end of the User
Area (plus one disk block) into #ANDU in DCOM
(in the entry in the drive-dependent parameter for
the cartridge affected by the STORE operation).

• Determines if the STORE operation is in Tempo-
rary mode; does not put the disk block address
of the end of the User Area into #BNDU of the TO
drive during Temporary mode.

• Updates the base file-protection address in DCOM
(#FPAD) of the TO drive if the STORE operation
is not during Temporary mode.

Section 9. Disk Utility Program (DUP) 53

SNOFF Subroutine
	

Fixed Area is the buffer specified by SDBUF. It is
one sector long if the core size is 4K; otherwise,

This subroutine is executed by all STORE operations. 	 it is seven sectors long.
It terminates the STORE function as follows. 	 LET/FLET sectors are read and written one at

a time, using the buffer specified by LETAR.
• Moves the cartridge ID of the TO drive into the 	 When STORE reads binary records, it reads them

STORE terminal message. 	 into the area specified by THIS and NEXT. If storing
from cards, double buffering is used; THIS and NEXT

• Moves the disk block address where the data or 	 are each considered to be 80 words long. If .s toring
program was stored into the STORE terminal	 from paper tape, double buffering is not used; THIS
message.	 and NEXT are considered to be an extended buffer,

large enough to contain the maximum length record
• Moves the disk block count of the program or data 	 (108 words).

into the STORE terminal message.

• Uses the PRINT subroutine in DUPCO to print
the terminal message.

Errors Detected
• Exits to the REST subroutine in DUPCO to clear

the CATCO switches and restore DCTL if it is not
	 The following DUP errors are detected in STORE:

in core storage.	 D30, D31, D33, D90, and D93.

ST700 Subroutine

This subroutine is executed when performing a
STOREMOD operation. It performs the following
functions:

• Computes the location within the User Area or
Fixed Area sector at which the old version of the
program begins.

• Moves the new version of the program into the
buffer to replace the old version, one word at a
time.

When an output sector is completed, it is written
to the User Area or Fixed Area. The next User or
Fixed Area sector is then read into the buffer to
allow the word by word replacement to continue.

The entire STOREMOD process is under control
of the disk block count. The number of disk blocks
replaced by the new version is determined by the
disk block count of the old version, as found in LET/
FLET. STOREMOD does not alter this count.

Buffers Used By STORE

The disk buffer used for moving data or programs
between Working Storage and the User Area or the

FILEQ

This phase of DUP is read into core storage by DCTL
when the Count field (27-30) of the STORECI control
record is non-zero. The function of FILEQ is to
process the records following the STORECI control
record and place the processed records into the
SCRA for use by the Core Load Builder. Four types
of STORECI control records are processed by this
phase; *LOCAL, *NOCAL, *FILES, and G2250.
FILEQ consists of the subroutines LC000, FR000,
GR200, and LF200.

LC000

This subroutine processes *LOCAL and *NOCAL
control records. A mainline name is not specified
on these records when they follow the STORE CI
control record; an error is indicated if one is speci-
fied. Thus, the mainline name is set to blanks. All
subroutine names specified in *LOCAL or *NOCAL
control records are converted to name code.

LOCAL/NOCAL information for the core load
to be built is stored in the SCRA.

The format of LOCAL/NOCAL information in the
SCRA is shown on page 22.

54

Subroutine Na

last entry	 1

rne

FR000	 DDUMP

This subroutine processes *FILES control records.
File numbers are converted to binary. File names,
if specified, are converted to name code; if unspeci-
fied, the name is set to blanks. Cartridge IDs, if
specified, are converted to binary; if unspecified,
the ID is set to zeros.

FILES information for the core load to be built
is stored in the SCRA.

The format of FILES information in the SCRA is
shown on page 22.

GR000

This subroutine processes *G2250 records. A main-
line name is not specified on these records when they
follow the STORE CI control record. An error is
indicated if a mainline name is specified. Thus, the
mainline name is set to blanks. All G2250 sub-
routine names determined from G2250 control record
information are converted to name code.

G2250 information for the core load to be built is
stored in sector 6 of the SCRA. The format of G2250
information in the SCRA is shown below.

Word Count, one word specifying the number of words one
G2250 information record occupies in the G2250
sector, including the word count. A word count
is included for each G2250 record.

Mainline Name, two words of blanks in name code format.

GCOM, two words in name code format specifying
the graphic communication control block.

Subroutine Name, two words in name code
format.

II I

The following subroutine names will be entered in the G2250
sector of the SCRA if they were specified in the G2250 informa-
tion record.

GCHAR or GUPER, the character stroke table.
GSP12, the verification direct entry subroutine.
GSP06, the scissoring subroutine.
GSP05, the ICA area expansion subroutine.
GSP11, the indexed entity scan subroutine.

Note: As each subroutine is specified, it will occupy the next
available position.

The DDUMP phase of DUP resides in part of the
first or fifth 4K block of core storage, depending
on whether the core size is 4K, 8K, 16K, or 32K.
Only on a 32K machine does the DDUMP phase
reside in the fifth 4K block of core storage.

This phase is read into core storage when
DCTL recognizes a DUMP control record. This
phase uses all the subroutines in DUPCO that are
needed, e. g. , disk reading and writing.

DD000

This is the mainline of the DDUMP phase. It
initializes the parameters of the subroutines, sets
up the IOAR headers for the areas used for input/
output, and directs the execution of the subroutines.

XG000

This subroutine gets the words from the disk and, if
the program is in DSF, the words are typed as to
data, header indicator, or last data word.

LF200

This subroutine provides the exit for FILEQ. When
all *LOCAL, *NOCAL, *FILES, and G2250 control
records have been processed, DCTL is read into
core storage using the GET subroutine in DUPCO
with the execute switch (XEQSW) set. DCTL begins
the processing of the header of the mainline program
that is to be stored in core image format.

Buffers Used By FILEQ

The buffer used for writing the processed control
records to the SCRA is referred to as SCRAB.
SCRAB is another name for BUF7, known indirectly
through CATCO as SDBUF.

Errors Detected

The following DUP errors are detected in FILEQ:
D41, D42, D43, D44, D45, D46, D47, and D48.

-1 indicates
word following

Section 9. Disk Utility Program (DUP)	 55

Sector
6

XW000

This subroutine places the data or program in
Working Storage.

XF000

This subroutine formats the data into a system or
data record to be punched.

XP000

This subroutine checksums, unpacks, and punches
the record formatted by XF000 on either cards or
paper tape as specified.

XL000

This subroutine prints the data or program on the
principal print device.

XC000

This subroutine clears the print area as directed
by XL000.

XI000

This subroutine inserts the data or program words
into the print area as directed by XL000.

XE000

This subroutine converts from packed EBCDIC to
card code and places the data in a buffer for punch-
ing.

Errors Detected

The following DUP error is detected in DDUMP: D50.

DUMPLET/DUMPFLET

This phase of DUP prints the contents of the Location
Equivalence Table (LET) and/or the Fixed Area Lo-
cation Equivalence Table (FLET) in an easily readable
format on the principal print device. The extent of
the dump depends on the setting of the following three
DUPCO switches:

LETSW. When this switch is positive, both LET
and FLET are to be dumped; when negative, only
FLET is dumped.

DRIVE. When this switch is negative, LET and/
or FLET from all cartridges are dumped; when not
negative, LET and/or FLET is dumped from the
cartridge specified only.

NAMSW. If this switch is on, only the LET or
FLET entry corresponding to the name in #NAME
is printed.

One sector of LET/FLET is printed per page.
Each sector of LET/FLET dumped is preceded by
two lines of header information. The first header
line contains the contents of the following locations
from COMMA/DCOM: #CIDN, $FPAD, #FPAD,
#CIBA, #ULET, and #FLET.

Following this line is a second header line that
reflects information concerning the LET/FLET
sector being dumped, i. e. , the

sector number (SCTR NO.),
User Area/Fixed Area (UA/FXA),
words available (WORDS AVAIL), and
chain address (CHAIN ADR).

Following these two header lines are the LET/
FLET entries. Twenty-one lines of entries are
printed, made up of five entries per line but se-
quenced by column.

Once LET and/or FLET have been dumped ac-
cording to LETSW, DRIVE, and NAMSW, DUMPLET
prints a terminal message and exits to the REST
subroutine in DUPCO.

NEXT -- 111-word buffer from which the output
is punched.	 Buffers Used By DUMPLET/DUMPFLET

LETAR -- 322-word buffer to be used to get data	 PRNTA 61-word buffer in UPCOR used for
from disk.	 printing a line.

SDBUF -- 320-word buffer to be used to place data 	 LETAR -- 322-word buffer in UPCOR used for
in Working Storage.	 reading a sector of LET/FLET.

Buffers Used By DDUMP

PEBUF	 61-word buffer to hold printed output.

THIS --- 81-word buffer to read in cards to check
to see if they are blank.

56

DELETE

The DELETE phase removes programs and data
files from either the User or Fixed Area, along
with their corresponding LET/FLET entries.

DCTL passes control to DELETE after having
read a DELETE control record and having found
the specified entry in LET/FLET. This sector
of LET/FLET is left in the buffer LETAR with
DELSW pointing to the location previous to the
specified entry. DBADR is set with the User or
Fixed Area disk block address of the program to
be deleted.

DELETE compresses LET/FLET by the number
of words made available by the deleted entry. If
the deletion is to be from the Fixed Area, the
specified entry is replaced by a 1DUMY entry of
the same size. If there are adjacent 1DUMY en-
tries, they are combined to form a single 1DUMY
entry and FLET is compressed by 0, 3, or 6 words
depending upon whether there are 0, 1, or 2 adjacent
1DUMY entries.

If the deletion is to be from the User Area, the
amount of the compression of LET is dependent
upon the number of words made available by the
specified LET entry. This number varies since
DSF programs with multiple entries may be stored
in the User Area. As in the case of FLET, adjacent
1DUMY entries may cause additional compression
of 3 or 6 words.

The packing of LET/FLET begins in the sector
containing the entry to be deleted and continues
throughout the remainder of LET/FLET. Since
multiple entries must reside in a single LET sector,
they are moved across a LET sector boundary only
when room exists in the previous sector for all the
entry points. LET is packed until a DCI program
or data file is encountered. The 1DUMY entry,which
normally precedes this entry, is updated to reflect
the number of disk blocks required to make the DCI
program or data file start at a sector boundary after
it is moved the appropriate number of sectors. If
a 1DUMY entry did not precede the DCI program or
data file, one of the appropriate size is inserted to
sectorize the DCI program or data file. The shrink-
age or packing continues until the last 1DUMY entry
of LET is found.

Packing of the User Area begins with the sector
containing the program to be deleted. Subsequent
DSF programs are shifted by disk blocks into the

area made available until a DCI program or data
file is encountered. If the User Area is being
packed by an amount equal to or greater than one
sector, the remaining programs are moved by
whole sectors.

After all required disk movement of the specified
DELETE operation is complete, DELETE prints a
terminal message to signify completion.

Buffers Used By DELETE

LETAR -- used for storage of LET/FLET sectors.
Up to 2 sectors may reside in core storage with
the addresses of the first word of each saved in
DE918 and DE919.

SDBUF -- used to process the User Area. Two or
eight sectors of core storage are used depending
upon core size.

Errors Detected

The following DUP errors are detected in DELETE:
D70, D71, and D72.

DEFINE

To initially provide a Fixed Area on a system
cartridge or to increase its size, the Core Image
Buffer (CIB), LET, and the User Area are moved
toward and partly into Working Storage. Working
Storage is reduced by the increased size of the
Fixed Area. The sector address of the CIB is
updated in DCOM and the Resident Image on the
updated system cartridge. If a Fixed Area is
defined on a non-system cartridge, LET is not
shifted because it precedes the Fixed Area sector
address.

To decrease the size of the Fixed Area on a
system cartridge, the Core Image Buffer (CIB),
LET, and the User Area are moved away from
Working Storage and into a part of the existing
Fixed Area. Working Storage is increased by the
amount of the decrease in the size of the Fixed Area.
DCOM and the Resident Image on the updated
system cartridge are updated with the new sector
address of the CIB. If the size of the Fixed Area
is decreased on a non-system cartridge, LET is not
shifted, as it precedes the Fixed Area sector address.

Section 9. Disk Utility Program (DUP) 57

I

To delete the FORTRAN Compiler, the RPG
Compiler and/or the Assembler Program from a
system cartridge, all succeeding programs and
special purpose areas on the disk are moved away
from Working Storage toward the voided area.
Working Storage is increased by the size of the
voided program(s).

Once a program has been eliminated, it cannot
be restored without an initial load of the disk cart-
ridge, including all the programs in the User or
Fixed Area.

DEFINE determines if a system or non-system
cartridge is being processed by testing DCOM for
the presence of the version and modification level
number, which is zero on non-system cartridges.

I

If the FORTRAN Compiler and/or the Assembler
Program or the RPG Compiler is deleted, all SLET
entries for that program(s) are cleared to zero.
SLET is also revised to reflect the new sector ad-•
dresses of those programs that are shifted.

All entries in the Reload Table indicating SLET
lookups requested by the deleted program(s) are
removed and the remaining Reload Table entries
are packed together. The revised Reload Table is
then reprocessed to generate new sector addresses
where necessary in the monitor system programs.

Buffers Used By DEFINE

LETAR -- a disk I/O buffer.

SDBUF --- a disk I/O buffer.

Switches and Indicators

FORSW -- non-zero when the FORTRAN Compiler
is to be deleted.

ASMSW -- non-zero when the Assembler Program
is to be deleted.

FXSW -- non-zero when the Fixed Area is to be
defined or modified.

DATSW -- indicates the disk block adjustment of
the Fixed Area.

NEGSW -- non-zero when the Fixed Area is to be
decreased.

1 RPGSW — non-zero when the RPG Compiler
is to be deleted

Errors Detected

The following DUP errors are detected in DEFINE:
D15, D70, D80, D81, D82, D83, D84, D85, D86
and D87.

DEXIT

This phase is brought into core storage and executed
by the LEAVE subroutine in DUPCO. DEXIT per-
forms the following functions:

• Prints DUP error messages

• Traps monitor control records and exits to the
Supervisor

• Links to the System Library program ADRWS
for DWADR

• Passes control to the Core Load Builder for
STORECI

• Returns control to MODIF when a modification
includes changes to the System Library.

• Exits to the Supervisor upon recognition of the
INTERRUPT REQUEST key interrupt.

DEXIT is called with an indirect branch via
LEAVE. Following the branch instruction is a
parameter that specifies the function to be per-
formed by DEXIT.

If the parameter is a positive integer, DEXIT
prints a DUP error message. The message printed
corresponds to the integer parameter.

If the parameter is zero, DEXIT moves a trapped
monitor control record from the buffer CRBUF to
the Supervisor buffer @SBFR. $CTSW in COMMA
is Set to minus one (/FFFF) to indicate to the Super-
visor that the next monitor control record has already
been read.

DEXIT checks to see if control should be returned
to the System Maintenance program, MODIF. If
#MDF2 in DCOM is non-zero, DEXIT reads DUP
phase 18 into core storage and transfers to it. This
phase contains part of MODIF, written on this sector
when MODIF was last in control. In this manner
MODIF is able to use DUP to delete an old version
of a program or subroutine from the System Library,
and then use DUP to store the new version.

58

If control is not given to MODIF, DEXIT trans-
fers to $EXIT in the Skeleton Supervisor.

If the parameter is minus two (-2), the interrupt
caused by the INTERRUPT REQUEST key is recog-
nized, causing the Supervisor to read records from
the principal input device until the next JOB monitor
control record is encountered. DEXIT exits via the
$DUMP entry point in the Skeleton Supervisor with
a dump format code of minus two (-2).

If the parameter is minus three (-3), DEXIT
transfers control to the Core Load Builder so that
the DSF program currently in Working Storage can
be converted to core image format for the STORECI
operation. Before DEXIT transfers control to phase
0/1 of the Core Load Builder, the area in core
storage bounded by IOADR and the end of core stor-
age is written to DUP phase 13 (UPCOR). DUP
phase 17 (PRECI) restores this area to core stor-
age after the DCI program has been moved to the
User or Fixed Area.

If the parameter is minus four (-4), DEXIT
initiates a CALL LINK to the System Library pro-
gram ADRWS to complete the DUP DWADR oper-
ation. DEXIT enters the Skeleton Supervisor at
the SLINK entry point with the name ADRWS speci-
fied in name code. The ADRWS program initializes
the Working Storage sector addresses on the
cartridge whose logical drive code is found in
#TODR in DCOM. ADRWS causes control to be
returned to DUP by placing a dummy DUP moni-
tor control record into the Supervisor buffer (SBFR
before returning control to the Skeleton Supervisor
via the $EXIT entry point.

All DEXIT functions write DUP's DCOM buffer to
sector @DCOM on the master cartridge before
exiting.

Buffers Used By DEXIT

CATCO -- used to write DCOM on sector @DCOM of
the master cartridge. The buffer size is 112
words.

IOADR -- used to write UPCOR on DUP phase 13.
The buffer size is approximately 1528 words.

B -- used to read phase 0/1 of the Core Load
Builder into core storage. This read is exe-
cuted from core locations 32-39. Approximately
480 words are read.

@SBFR - /0140 -- used to read the MODIF phase
(DUP phase 18) into core storage. This read
is executed from core locations $SCAN-$SCAN+7.
The number of words read is 320.

2501/1442 CARD INTERFACE (CFACE)

This phase serves as an interface between DUP
programs and the system device subroutine for
card I/O. CFACE consists of four subroutines;
they are listed below along with their primary
functions:

GETHO -- Reads a card and converts from IBM
Card Code to unpacked EBCDIC.

GETBI -- Reads a binary card.

PACKB Converts from card binary (1 column
per word) to packed binary (4 columns per 3
words), with checksumming.

PCHBI -- Punches a card from an 80-word buffer.

The phase has four entry points, one correspond-
ing to each of the functions listed above. Each sub-
routine is entered by an indirect BSI instruction to
the symbolic name listed above. Upon entry to each
subroutine, the registers and status conditions of
the calling program are saved using the ENTER
subroutine in DUPCO. The PHIDM subroutine in
DUPCO records the phase identification of CFACE.

Upon completion of the required function and
prior to returning to the calling program, the orig-
inal conditions of the calling program are restored
using the RTURN subroutine in DUPCO.

GETHO

This subroutine is used by DCTL to read DUP control
records. The system device subroutine for the 2501
or the 1442 is used to read the card. An 81-word
buffer specified by CRBUF in CAT CO is used for card
input. GETIIO examines each card for either // in
columns 1 and 2 or * in column 1. If this informa-
tion is not found in the first two columns of the card,
the subroutine returns immediately to DCTL. in
this way, invalid records can be bypassed at maximum
card speed without using a double-buffering technique.

Section 9. Disk Utility Program (DUP) 59

If // or * is found in column 1, the subroutine
loops till the whole card is read, then converts it
from IBM Card Code to unpacked EBCDIC using
the system conversion subroutine CDCNV.

GETHO packs the unpacked EBCDIC data from
the 81-word input buffer to a 41-word packed
buffer specified by :PEBUF.

The subroutine then exits to DCTL.

GETBI

This subroutine reads a binary card into an 81-word
buffer specified by THIS. The system device sub-
routine for the 2501 or 1442 is used to read the card.

PACKB

This subroutine converts card binary (one word
per column) in an 81-word input buffer (NEXT)
to packed binary (four columns per three words)
in a 55-word output buffer (NEXT). The packed
data overlays the unpacked data.

After packing, the checksum of the 54 words
is verified. If the checksum is correct, the sub-
routine returns to the calling program. A check-
sum error causes an exit to LEAVE in DUPCO
with an error parameter.

PCHBI

This subroutine., using the system device subrou-
tine for the 1442, punches a card from an 81-word
buffer specified by NEXT.

PEBUF -- 41-word buffer used to hold the packed
EBCDIC control record, converted from the
unpacked EBCDIC in CRBUF.

KEYBOARD INTERFACE (KFACE)

KFACE serves as an interface for DUP programs
when the principal input device is the Keyboard.
KFACE is used by DCTL to read DUP control
records from the Keyboard.

The PHIDM subroutine in DUPCO is used to
record the KFACE phase identification. The ENTER
subroutine in DUPCO is used to save the conditions
of the calling program. A control record of up to
80 characters is read and converted from Keyboard
code to unpacked EBCDIC by the system device
subroutine for the Keyboard.

An EOF character causes the termination of
input and the filling of the remainder of the buffer
with blanks or a word count of 80, whicheve:c is first.

The record is read into the 81-word buffer speci-
fied by CRBUF in CATCO in unpacked EBCDIC,
then converted to packed EBCDIC and stored in the
41-word buffer specified by PEBUF in CATCO. The
RTURN subroutine in DUPCO is used to restore the
conditions of the calling program.

Buffers Used By KFACE

CRBUF 81-word input buffer used to hold a
control record in unpacked EBCDIC.

PEBUF 41-word buffer used to hold the packed
EBCDIC control record, converted from the
unpacked EBCDIC in CRBUF.

Buffers Used By CFACE

THIS -- 81-word input buffer used by GETBI for
reading binary records.

NEXT -- 81-word buffer used by PACKB for pack-
ing binary records (4 columns per 3 words).
The packed data overlays the unpacked data.
Also used by PCHBI for outputting to the punch.

CRBUF -- 81-word input buffer used by GETHO
for reading control records in unpacked
EBCDIC.

1134/1055 PAPER TAPE INTERFACE (PFACE)

This phase serves as an interface between DUP
programs and the system device subroutine for
paper tape I/O. PFACE consists of four subrou-
tines; they are listed below along with their primary
functions:

GETHO -- Reads a paper tape record punched in
PTTC/8 code and converts it to both unpacked
and packed EBCDIC.

GETBI -- Reads a binary paper tape record,

60

PACKB -- Converts from unpacked binary (two
frames per word) to packed binary, with
checksumming.

PCHBI -- Punches a binary paper tape record.

The phase has four entry points, one corre-
sponding to each of the functions listed above.
Each subroutine is entered by an indirect BSI
instruction to the symbolic name listed above.
Upon entry to each subroutine, the registers
and status conditions are saved using the ENTER
subroutine in DUPCO. Another DUPCO subrou-
tine, PHIDM, modifies the phase identification
with the PFACE identification.

Upon completion of the requested function and
prior to exiting to the calling program, the orig-
inal conditions of the calling program are restored
using the RTURN subroutine in DUPCO.

GETHO

This subroutine is used by DCTL to read DUP
control records. The system device subroutine
for the 1134/1055 is used to read the record. An
81-word buffer specified by CRBUF in CATCO is
used to contain each record read. All conversion
from PTTC/8 code to EBCDIC is performed by
the system device subroutine. When the control
record has been read, it is converted to packed
EBCDIC within the 41-word buffer specified by
PEBUF in CATCO. The subroutine then exits
to DCTL.

GETBI

This subroutine reads a binary paper tape record
into a 109-word buffer specified by THIS in CATCO.
The system device subroutine for the 1134/1055 is
used to read the record.

Note that THIS and NEXT are reversed for each
record read when reading binary cards. When
reading paper tape DCTL places the address of the
buffer having the lowest core address into THIS,
since the reading of binary paper tape records
requires an extended buffer. The system device
subroutine reads each frame (eight bits of data)
into one word of the buffer.

The word count preceding each binary paper tape
record is punched into a single frame, and is read
separately from the body of the record. After the
word count is read, it is checked for validity. If it is
valid, it is used to read the record that follows.
If it is not valid, the next frame is read to deter-
mine if it is a word count. In this way, delete
characters and other special codes may appear
between binary records or between a control record
and the first binary record.

PACKB

This subroutine packs the binary record as read by
GETBI into normal binary data. The packed data
overlays the unpacked data.

After packing, the checksum of the words read
is verified. If the checksum is correct, the sub-
routine returns to the calling program. A check-
sum error causes an exit to LEAVE in DUPCO with
an error parameter.

PCHBI

This subroutine uses the system device subroutine
for the 1134/1055 to punch a binary paper tape
record from a 109-word buffer specified by NEXT.

Buffers Used By PFACE

THIS -- 109-word buffer used by GETBI for reading
binary paper tape records.

The two buffers THIS and NEXT, used for
double buffering when reading binary cards,
constitute one extended buffer when reading
binary paper tape records. Double buffering
is not used for binary paper tape records.

NEXT -- 109-word buffer used by PCHBI for punch-
ing binary paper tape records, consisting of
THIS and NEXT taken as consecutive buffers.

CRBUF	 81-word input buffer used to hold a control
record in unpacked EBCDIC.

PEBUF 41-word buffer used to hold the packed
EBCDIC control record, converted from the
unpacked EBCDIC in CRBUF.

Section 9. Disk Utility Program (DUP) 61

PRECI

This phase is read into core storage by the Core
Load Builder after a core load has been built for
a STORECI function. This phase resides in the
DUP overlay area. It moves the core load to the
User Area or Fixed Area before restoring DUP
phase 13 (UPCOR). Since UPCOR is not available
to PRECI, copies of the DUPCO subroutines PHID,
PIIIDM, GET, and PUT have been incorporated
into PRECI.

PRECI is composed of five sections or logical
parts -- PC000, PC040, PC100, PC180, and PC240.

PC000

This is the entry point to PRECI from the Core
Load Builder. DCOM from the master cartridge
is read into PRECI's work area, as is the core
image header from the CIB. If the inhibit DUP
function switch ($NDUP) has not been set by the
Core Load Builder, PRECI proceeds. Otherwise,
the PC240 section is used to exit to DCTL after indi-
cating an error has occurred.

DCOM is used to determine the logical drive
code of the destination drive, as well as the start-
ing sector address to which the program is to be
moved. From the core image header the total
length of the core load in sectors is determined.
A check is then made to determine if the program
can be contained in the User Area or Fixed Area.
If the core load is too large, the PC240 section is
used to exit to DCTL after indicating an error has
occurred.

"PC040

This section moves LOCAL/SOCAL sectors (if
any) from Working Storage to their position at the
end of the core load after it has been moved to the
User Area or Fixed Area. The Working Storage
sector address from which the LOCALs/SOCALs
are moved includes an adjustment for Working
Storage files when they are present. LOCALs/
SOCALs are moved to the User or Fixed Area one
sector at a time. The number of sectors required
for Working Storage files and the number of LOCAL/
SOCAL sectors are obtained from the core image
header.

PC100

This section moves that part of the core load (in-
cluding the core image header) that resides i:a the
CIB to its destination in the User Area or Fixed
Area. The length of the program (in words) and
the starting address of the core load are used to
control the number of sectors moved from the CIB
to the User Area or Fixed Area. The core image
header also indicates if the core load exceeds the
4K boundary; i. e. , the core load's load address
plus the number of words in the core load produces
a number greater than 4095.

The core load residing in the CIB is moved to
the User Area or Fixed Area four sectors at a time.
This move continues until the CIB sector containing
that part of the core load that resides at location
4095 has been moved.

PC180

This section moves that part of the core load that
resides in core storage above location 4095 to the
User or Fixed Area. The last sector of the core
load written to the User or Fixed Area from the
CIB is read into core storage so as to be contiguous
with the part of the core load residing in core, i.e. ,
above location 4095. The remainder of the core
load, starting with the first word read into core
storage from the User or Fixed Area, is then writ-
ten to the User or Fixed Area, starting at the sector
read into core storage.

PC240

This section restores DUP phase 13 (UPCOR),
DCTL (phase 2), and then exits to DCTL. Before
exiting to DCTL, however, termination data is
placed in the DCOM buffer in CATCO, and in CATCO
itself. The interrupt locations in low core si,orage
are restored for DUP operation, and phase switches
are cleared in order to ensure that DDUMP and
STORE are reloaded from disk. If any error s have
been detected during PRECI operation, the DUP
error message number is communicated back to
DCTL through CIERR in CATCO.

Buffers Used By PRECI

The disk I/0 buffer used to move all parts of the
core load to the User Area or Fixed Area is located

62

at BUF7. All references are direct, rather than
indirect through SDBUF in CATCO, since UPCOR
is not in core storage during the operation of PRECI.

DUP DIAGNOSTIC AIDS

GENERAL

DUP has provided a selective, dynamic dump of
various core storage areas to facilitate problem
analysis. The core dumps are under the control
of column as of individual DUP control records.
In general, to obtain a dump of a particular DUP
phase, column 35 should contain the phase ID
number of that phase. If column 35 contains
zero, all DUP phases associated with the function
named on the control record yield a core dump,
starting with the execution of DCTL. The column
35 codes and the corresponding DUP phase yielding
core dumps are shown below.

CATCO -- This area of core storage is dumped in
conjunction with any dump mentioned above.

If a dump (or dumps) is desired during CCAT
execution, the next to the last card (i. e. , the last
type A card) of DUPCO should be removed before
reloading this phase with a System Loader reload
function. This change in DUPCO causes all possible
core dumps within DUP to occur regardless of the
contents of column 35 in any DUP control record.

Core dumps are not allowed when the DEFINE or
PRECI phase is in execution. The System Core
Dump program uses the CIB to save the contents of
core storage, and, since the CIB moves during a
DEFINE operation and the core load to be stored by
PRECI is in the CIB, serious errors occur if core
dumps are taken when executing either DEFINE or
PRECI.

PRECI

Code in column 35

0

2
3
4
5
6
7
9

Phase(s) dumped

All associated phases, starting
with DCTL

DCTL
STORE
FILEQ
DDUMP
DUMPLET
DELETE
DEXIT

When PRECI is entered from the Core Load Builder,
the phase identification word in COMMA ($PHSE) is
initially set to /0011 by the PHIDP subroutine in
PRECI. As each subroutine of PRECI is executed,
$PHSE is modified by PHIDP as follows:

Subroutine in execution 	 Contents of $PHSE

PC040 /1011
PC100 /2011
PC180 /3011
PC240 /4011

The core dumps include the following:

Disk I/O Areas -- The buffer area used for the
disk I/O operation, including the area into
which DUP phases are read, is dumped. The
number of words dumped is dependent on the
number of words read or written.

Buffer Areas -- The buffers between BUF4 and
PRPNT are dumped in DCTL execution. This
dump occurs when the LET search begins,
when the LET search on one cartridge is
complete and the next cartridge LET search
begins, and before the required DUP phase
(STORE, DUMP, or DELETE) is read.

In addition, the second hexadecimal digit of $PHSE
is modified by the IMP subroutine in PRECI each
time a disk I/O operation is performed.

Digit 2 of $PHSE
	 Disk I/O Operation

1
	 Read from Disk

2
	 Write to Disk

STORE

When STORE is entered from DUP control, the
phase identification word in COMMA ($PHSE) is
initially set to /0003 by the PHID subroutine in
DUPCO. As each subroutine of STORE is exe-
cuted, $PHSE is modified by PHID as follows:

Section 9. Disk Utility Program (DUP) 63

Subroutine in execution
	

Contents of $PIISE	 subroutine in DUPCO each time an I/0 operation
is performed.

POWs	 /1003
WD000	 /2003	 Digit 2 of $PHSE	 I/O operation
DOLET	 /3003
UPDCM	 /4003	 1	 Read from Disk
ST700	 /5003	 2	 Write to Disk
SNOFF	 /6003	 4	 Convert Binary to EBCDIC

5	 Print Terminal Message
In addition, the second hexadecimal digit of 	 8	 Read Binary Cards

the phase identification is modified by the PHIDM 	 9	 Read Binary Paper Tape

64

SECTION 10. ASSEMBLER PROGRAM

FLOWCHARTS

General:	 ASMO1
Phase 0:	 ASMO2
Phase 1:	 ASMO3
Phase 1A:	 ASMO4
Phase 2:	 ASMO5
Phase 2A:	 ASMO6
Phase 3:	 ASMO7
Phase 4:	 ASMO8
Phase 5:	 ASMO9
Phase 6:	 ASM10
Phase 7:	 ASM11
Phase 7A:	 ASM12
Phase 8:	 ASM13
Phase 8A:	 ASM14
Phase 9:	 ASM15-ASM17
Phase 10:	 ASM18
Phase 10A: ASM19
Phase 11:	 ASM20
Phase 12:	 ASM21
ERMSG:	 ASM22
@ARCV
	

ASM23
@APCV:	 ASM24
Phase 13:	 ASM25 -ASM26

The Assembler Program is designed to translate the
statements of a source program written in 1130
Assembler Language into a format that may be
dumped and/or stored by DUP or executed directly
from Working Storage.

Basically, the functions of the Assembler are:

1. Convert the mnemonic to machine language
(except for Assembler control records).

2. Assign addresses to statement labels.
3. Insert the format and index register bits into

the instruction, if applicable.
4. Convert the instruction operands to addresses

or data.

INTRODUCTION

The Assembler Program is structurally divided into
two parts, the resident portion and the overlay por-
tion. The resident portion consists of the Assembler
Communications Area (ASCOM), part of phase 0,

phase 9, and the phase 9 Communications Area
(PHSCO). All of the other phases are called into
core storage as overlays.

The Assembler Program is functionally divided
into two parts, pass 1 and pass 2. The source pro-
gram is read and processed, one statement at a
time, during each of the two passes. During pass 1,
the source program is read into core storage from
the principal I/0 device. Unless the user specifies
by control record that two-pass mode is in effect,
the source program is stored on the disk, from
which it is reentered for pass 2 processing. If two-
pass mode is specified or required, the source pro-
gram is reentered via the principal I/O device for
pass 2 processing. (If a list deck or paper tape
object program is desired, the assembly must be
made in two-pass mode.)

PROGRAM OPERATION

When the Monitor Control Record Analyzer detects
an ASM monitor control record, it reads the first
sector of the Assembler Program (phase 0) into
core storage and transfers control to it.

Phase 0 reads into core storage all the subrou-
tines required during assembly processing for I/O,
and phase 9. The word counts and sector addresses
of all the buffers and major overlay phases are init-
ialized in ASCOM and in phase 9, and the boundary
conditions are set for the Symbol Table. Phase 1
is then fetched and control is passed to it.

Phase 1 reads and analyzes control records, set-
ting the appropriate switches in ASCOM for the options
specified. Upon detection of the first non-control
record, phase 1A is fetched and given control.

Phase 1A initializes the core addresses for the
buffers, then fetches and transfers control to phase
2 to start statement processing.

Statement processing is performed by an op code
search in phase 9 arid a transfer through a branch
table (that precedes every major overlay) to the
overlay phase currently in core storage. If the re-
quired overlay phase is in core storage, execution
of the phase proceeds. If it is not in core storage,
the branch table causes a return to phase 9 to fetch
the required overlay phase. The op code search is
performed again and control is passed to the overlay

Section 10. Assembler Program 65

phase. When the overlay phase completes the nec-
essary processing, another record is read and the
entire process is repeated.

All overlays exit by branching to either the
LDLBL or the PALBL subroutines within phase 9 and
then to STRT9 (the op code search). A branch is
taken to LDLBL when the statement just processed
is permitted to have a label. A branch is taken to
PALBL when a label is not permitted or is to be ig-
nored. Both LDLBL and PALBL branch to the
RDCRD subroutine (within phase 9) to read the next
record just prior to their return to the overlay phase
that called them.

ASSEMBLER COMMUNICATIONS AREA

The Communications Area (ASCOM) consists of all
the indicators and switches referenced by more than
one phase of the Assembler Program. All communi-
cation between phases is done through ASCOM.
ASCOM resides in core storage following DISKZ and
preceding the Overlay Area.

Refer to the program listings for details regarding
the contents of ASCOM.

OVERLAY AREA

The Overlay Area is the area in core storage into
which the statement processing (overlay) phases are
loaded as required. Phase 0 is initially loaded into
this area by the Monitor Control Record Analyzer
(see Section 6. Supervisor). Phases 1, 1A, and 2
are sequentially loaded into this area at the start of
passes 1 and 2. Phases 2A, 5, 6, 7, 7A, 8, 8A, 13,
@ARCV, and @APCV are loaded into, this area during
passes 1 and 2 as they are required to process
specific mnemonics and constants, to handle output
options, etc. Phase 12 is loaded into this area when
the END statement is encountered in passes 1 and 2.
Phase 4 is loaded into this area at the completion of
pass 2. Phases	 9, 10, 10A, 11, and ERMSG
are not loaded into the Overlay Area.

The Overlay Area resides in core storage follow-
ing ASCOM and preceding phase 9.

SYMBOL TABLE

As the source program is read and processed in
pass 1, the Symbol Table is built. An entry is made

in the Symbol Table for each valid symbol defined
in the source program. Each entry in the Symbol
Table consists of three words. The first word con-
tains the value of the symbol. Words 2 and 3 contain
the symbol itself in name code. The following
example shows the conversion of the symbol 'START'
to name code for a Symbol Table entry:

Symbol Table Entry	 2.	 2	 8	 C	 I	 6	 6	 3
..—...—..,..—.....---„—...--,,—.....--,,...—......—,..---.,—,..—/nr--......--^--..
10 . 011,010 . 011 , 011 . 010 . 011 , 110 . 010 . 010 , 110 . 111 00 . 111 , 010 .011.11

Multiply-defIned indicator
Relocation mode indicator

Input	 EBCDIC	 EBCDIC
Choracter (hexadecimal) 	 (binary)

5	 E2	 11110
E3	 III/0

A	 C/	 11100

D9	 11 :01
T	 E3	 11,10

"Digit I caries depending on the settings of the Relocation mode and
Multiply-defIned indicator).

The Symbol Table is built starting at the high-
addressed end of core storage. Entries are added
to the Symbol Table (see below) until its lower limit,
the end of the principal print device subroutine, is
reached. If symbols are added to the Symbol Table
after the in-core Symbol Table has been filled (I. e. ,
the lower limit has been reached), the overflow
Symbol Table is saved, one sector at a time. in
Working Storage on the disk. Note that Symbol
Table overflow is possible only if the Assembler
control record *OVERFLOW SECTORS reserving
the required sectors on disk is present in the
source program; otherwise, the assembly is ter-
minated at the point of Symbol Table overflow.

Third Entry	 Second Entry	 First Entry

Symbol
Value Symbol Name

II---J

Low
	 High t

Core
	 Core

As the source program is again read and proc-
essed in pass 2, the Symbol Table is searched each
time a reference to a symbol is encountered. The
in-core Symbol Table is searched first. If the sym-
bol is not found in the in-core Symbol Table and

0010 	
0011 	
0001 	
1001
0011

66

Symbol Table overflow has been written on disk,
Phase 10A is fetched into core storage to perform
the search of the overflow sectors.

A binary search technique is used in the Symbol
Table search.

INTERMEDIATE I/0

During pass 1 of an assembly made in one-pass
mode the source program statements are saved on
disk for input to pass 2. Each source statement is
saved starting at column 21 and ending with the
rightmost non-blank column. As saved on disk each
statement consists of a prefix word containing the
number of words up to and including the prefix word
for the following statement and the source statement
packed two EBCDIC characters per word.

The intermediate I/0 is written on disk in Working
Storage, starting at the first sector of Working
Storage if no OVERFLOW SECTORS were specified,
or starting at the first sector following the last sec-
tor of Symbol Table overflow.

If a LIST Assembler control record is not present
in the source program, comments statements are not
saved in the intermediate I/O.

During pass 2 of an assembly in one-pass mode,
the intermediate I/O is read into core storage, one
sector at a time. The source statements are unpacked
and placed into the two I/0 buffers such that they are
indistinguishable from statements read from the prin-
cipal I/0 device.

DOUBLE-BUFFERING

All card, paper tape, or Keyboard input to the
Assembler Program is double-buffered, with one
exception; if the assembly is being made in two-pass
mode and the LIST DECK or LIST DECK E option has
been specified, input during pass 2 is single-buffered
to facilitate punching.

The Assembler Program uses two 80-word buffers
for double-buffering. While a record is being read
into one buffer, the record in the other buffer is being
converted and processed.

Two locations in ASCOM are used to point to the
two input buffers. One location (RDBFR) always con-
tains the address of the buffer in which a record is
being processed. The other location (RDBFR+1)
always contains the address of\the buffer into which
a record is being read. The RDCRD subroutine in
phase 9, which interfaces with the principal I/O de-
vice subroutine, exchanges the buffer addresses in
RDBFR and RDBFR+1 after each record is read.

PHASE DESCRIPTIONS

PHASE 0

Phase 0 serves as the Assembler Program's loader.
First, the Communications Area (ASCOM) is initial-
ized by phase 0, and the required I/O device subrou-
tines are fetched into core storage. Phase 9, the
resident portion of the Assembler Program, is also
fetched into core storage. Phase 0 initializes the
sector addresses and word counts of the various
buffers utilized by the Assembler Program, and the
boundary conditions for the System Symbol Table
are established. Phase 0 then fetches phase 1 into
the overlay area and transfers control to it.

The switches $NDUP and $NXEQ (in COMMA) are
set non-zero to inhibit program execution and/or
DUP functions in the event the assembly is termina-
ted before completion.

A Master Overlay Control subroutine (P0130), the
subroutine interfacing with DISKZ (DISK1), and the
index register restoring subroutines (STXRS and
LDXRS) are part of phase 0 and remain in core
storage during the entire assembly; the rest of phase
0 is overlaid by phase 1. The Master Overlay Control
subroutine performs the fetching of all the overlay
phases and transfers control to the phase just read
into core storage.

PHASE 1

Phase 1 reads, analyzes, and lists the Assembler
control records. As each control record is analyzed,
the various options specified by the control record
are indicated in the Assembler Program's Communi-
cations Area (ASCOM). When the first non-control-
type record is encountered, phase 1 transfers to the
Master Overlay Control subroutine to fetch phase 1A
and transfer control to it.

PHASE 1A

Phase 1A determines the address of the DSF buffer
and initializes its IOAR header information in the
Assembler Program's Communications Area
(ASCOM). If the principal input device is either the
1134 Paper Tape Reader or the Keyboard, the cur-
rent record is moved over 20 positions to the right
and the read-in address is set for position 21 of the
I/0 area.

The number of overflow sectors assigned is
checked for a maximum of 32 and the adjusted Work-
ing Storage boundary for the disk output of the source
and object programs is initialized. Phase 1A then
transfers control to the Master Overlay Control sub-
routine to fetch phase 2, which begins statement
processing.

Section 10. Assembler Program 67

PHASE 2

Phase 2 handles the processing of all ENT, ISS,
LIBR, ABS, EPR, SPR, ILS, and FILE statements.
These statements are header mnemonics and must
appear as the first non-control-type statements if
they are included in the source program. For tills
reason phase 2 is the first overlay phase loaded into
core storage to begin statement processing. As each
particular header mnemonic is processed, the nec-
essary indicators are set in the Assembler Program's
Communications Area (ASCOM). The ordering and
compatibility of the various header mnemonics is
checked, and the program header record information
is built and saved in ASCOM. When a mnemonic not
handled by phase 2 is detected, control is transferred
to the op code search (STRT9) in phase 9.

PHASE 2A

Phase 2A is called into core storage when a FILE
statement is detected by phase 2. Phase 2A is loaded
by a flipper routine within phase 2 and overlays part
of phase 2. Phase 2A obtains the file information
from the FILE statement and builds the 7-word
DEFINE FILE Table. At the completion of phase 2A
processing, control is returned to the flipper routine
in phase 2. The flipper routine restores the over-
laid portion of phase 2 and branches to the op code
search (STRT9) in phase 9.

PHASE 3

Phase 3 is called into core storage as part 1 of the
Assembler Program's exit to the Supervisor. Due
to the size of phase 3, it overlays part of phase 9
instead of the Overlay Area.

The options of printing, punching, or saving the
Symbol Table, as requested by the user on Assembler
control records, are performed. At the completion
of the Symbol Table options processing, phase 4 is
fetched into core storage and control is transferred
to it.

DCOM of the master cartridge, and DOOM of the
cartridge defined to contain System. Working Storage
is updated as follows:

• The first entry point name of a Type .3, 4, 5, or
6 subroutine is placed into the two words speci-
fied by 4 NAME, in internal 1130 NAME code.

• The execution address (or first entry point
address) is placed in ENTY.

• The length of the program in disk blocks is
placed in one word of the # WSCT quintuple
corresponding to the logical drive that contains
System Working Storage.

• A zero is placed in one word of the # FMAT
quintuple corresponding to the logical drive
that contains System Working Storage to indi-
cate that this Working Storage contains DSF.

The last record read by the Assembler Program,
the record following the END statement, is moved
to the Supervisor buffer.

In terminating the assembly, phase 4 prints four
sign-off messages:

1. The number of errors flagged in the assembly
2. The number of symbols defined
3. The number of overflow sectors specified
4. The number of overflow sectors required

Phase 4 then exits to the Skeleton Supervisor at the
$EXIT entry point.

PHASE 4

Phase 4 performs the final processing for the Assem-
bler Program and is called into core storage by
phase 3. If overflow sectors were specified by
Assembler control record, and if Symbol Table over-
flow occurred in assembling the program, the object
program, which is residing on the disk, is moved
back to the sector boundary at the start of Working
Storage.

PHASE 5

Phase 5 is called into core storage to process HDNG,
ORG, BSS, BES, EQU, LIST, EJCT, or SPAC
statements, These mnemonics are all non•imperative
type statements requiring similar processing and
are all grouped, therefore, in the same overlay
phase.

68

PHASE 6

Phase 6 processes all imperative instructions and
the DC statement. Since these mnemonics are used
most frequently, the processing for them was
grouped into one overlay phase.

PHASE 7

The two mnemonics processed by phase 7 are
XFLC and DEC. The conversion of the data in the
statement operands to binary is handled in phase
7A. Upon completion of the conversion, the data is
formatted into the appropriate floating, fixed, or
decimal format.

PHASE 7A

Phase 7A is fetched into core storage by a flipper
routine within phase 7. Phase 7A converts the man-
tissa of a decimal integer, a fixed- or floating-point
number to the binary equivalent.

Phase 7A contains a scanning process that con-
verts the operand to its binary equivalent and a post-
scanning process that converts from powers of 10
to powers of 2.

The converted decimal data is saved in a buffer
that is part of the flipper routine. When the conver-
sion is completed, phase 7A returns to the flipper
routine that restores phase 7 and transfers control
to it.

PHASE 8

Phase 8 processes the LIBF, CALL, EXIT, LINK,
EBC, DSA, and DN statements. The processing of
the program linking mnemonics -- LIBF, CALL,
EXIT and LINK -- is combined with the processing
of the data definition mnemonics -- EBC, DSA, and
DN -- since otherwise they would constitute two
small phases. This is satisfactory in terms of
assembly time since EBC, DSA, and DN are not
frequently used mnemonics.

PHASE 8A

Phase 8A processes the DMES statement. The DMES
processing is performed by a scanning subroutine and
a conversion subroutine. The scanning subroutine

scans and evaluates the operand field, one character
at a time. The conversion subroutine contains a
table of packed Console Printer codes and a table of
packed 1403 Printer codes. The conversion is per-
formed using an algorithm.

PHASE 9

The phase 9 communications area (PHSCO) consists
of the entry addresses of the common subroutines
within phase 9. Immediately following PHSCO is the
op code search.

STRT9

The op code obtained from the input record is saved
in ASCOM. All possible op codes are resident in a
table, which has for each op code a two-word indica-
tor followed by a corresponding one-word machine
language mnemonic. The op code search is per-
formed by means of a table lookup. When a match
is found, the corresponding machine language
mnemonic is picked up and saved in OPCNT in
ASCOM. Bits 13-15 of OPCNT form a branch table
displacement. Using this displacement, an indirect
branch is taken thru the table to the overlay prepared
to process this op code. If the overlay is in core
storage, execution proceeds. If it is not, a return
is made to the op code search to fetch the required
overlay phase into core storage. Control is then
passed to the overlay and statement processing
continues.

If the search is terminated due to an invalid op
code, it is determined whether the graphics phase
is in core. If it is in core, control is passed to it,
otherwise the instruction is processed as an invalid
op code.

BTHEX

BTHEX is a binary-hexadecimal conversion subrou-
tine. The binary data is entered in the accumulator
left-justified, and the hexadecimal output is stored
by index register 1. The number of characters to be
converted is in index register 2.

B4HEX

The B4HEX subroutine is entered when four hexadec-
imal output characters are desired. Index register 2
is set to four and a branch is made to BTHEX.

Section 10. Assembler Program 69

SCAN

The SCAN subroutine collects the elements of the
operand field, character by character, performs
any arithmetic functions necessary, and evaluates
the operand.

GTHDG

GTHDG is the new page subroutine. Branches are
made to the principal print subroutine to skip to
channel 1, and print the heading as specified in the
last HDNG statement encountered.

LDLBL

The LDLBL subroutine scans the label field of the
statement. In pass 1, valid labels are added to the
Symbol Table if they do not already appear there.
The record is saved in the intermediate output buffer
by INT1 and a branch is made to read the next record
(RDCRD). When the next record is in core, a check
is made for the last card. If the last card has been
detected, a branch is made to the principal conver-
sion routine (CVADR), and control is returned to
the calling program.

In pass 2, the record is listed, if a listing has
been requested or the record is in error. The next
record is fetched and control is returned to the
calling program.

PALBL

The PALBL subroutine is a secondary entry to the
LDLBL subroutine. PALBL is entered when a label
is not permitted on a statement being processed.

GETER

A branch is made to GETER when an error occurs
during the assembly. GETER fetches the error mes-
sage phase (ERMSG) into the first disk buffer (BUFI).

RDCRD

RDCRD is the interface subroutine for the principal
input device subroutine. The input buffer is cleared

to EBCDIC blanks, the input buffer addresses in
ASCOM are exchanged, and a branch is made to the
principal input device subroutine to read a record.
Index register 1 is set to point at the current input
buffer and control is transferred back to the calling
program.

If the record previously read was a monitor con-
trol record, phase 4 is fetched into core storage and
control is transferred to it.

P9MVE

The P9MVE subroutine moves the input record from
the input buffer to the print buffer. As it moves the
record, each character is checked for validity. At
the completion of the move, a branch is made to the
principal print device subroutine to list the cecord
and control is returned to the calling program.

INT1

INT1 is the subroutine used in pass 1 to pack the in-
put record into two EBCDIC characters per word and
save it in the intermediate output buffer. INT1 is
overlaid by phase 11 for pass 2 processing. INT2 is
the entry address for phase 11 during pass 2.

PHASE 10

Phase 10 consists of two subroutines: DTHDR and
WRDFO. Phase 10 is fetched by phase 12 in pass 2
processing. Phase 10 overlays that section of phase
9 dealing with the inserting of labels into the Symbol
Table.

DTHDR

DTHDR enters a data header into the object program
output in disk system format (DSF) when required and
completes the previous data header.

WRDFO

This subroutine writes one sector of disk system for-
mat (DSF) output when the DSF buffer is full. After the
sector is written, those words past the 320th word of
the buffer are moved back to the beginning a the buffer.

70

In the event the buffer is not full and WRDFO is
entered from phase 12 END statement processing,
the DSF buffer is written to Working Storage.

PHASE 10A

Phase 10A is fetched into core storage whenever
necessary to handle Symbol Table overflow. When a
symbol is to be added to an overflow sector in pass 1
or when the overflow sectors are to be searched
for a symbol in pass 2, phase 10A is called. Phase
10A overlays the INT1 subroutine in phase 9 when
called during pass 1; it overlays phase 11 (the INT2
subroutine) when called in pass 2 of an assembly in
one-pass mode.

PHASE 11

Phase 11 is fetched into core storage in pass 1 during
phase 12 END statement processing if the assembly
is in one-pass mode. The function of phase 11 is to
read the source statements from the disk during
pass 2. The source statements saved in pass 1 are
read back onto core storage in pass 2 in such a way
that they are indistinguishable from statements read
from the principal I/0 device.

PHASE 12

In pass 1, phase 12 builds the program header record
in the DSF buffer. Several counters are reinitialized
in ASCOM and the buffer pointers are reset for disk
system format (DSF) output. Phase 10 is fetched
into core storage.

If the assembly is in two-pass mode, phase 1 is
fetched and control is passed to it. If the assembly
is in one-pass mode, the END statement is saved in
the intermediate I/O buffer and the buffer is written
to the disk. Phase 11 is fetched into core storage
and the first sector of intermediate I/O is read into
the first disk buffer (BUFI). A branch is then made
to phase 11 to transfer the first statement from the
intermediate I/0 buffer to the source input buffer.
Phase 1 is then fetched onto core storage and con-
trol is transferred to it.

In pass 2, phase 12 branches to DTHDR to build
the end-of-program data header. If the source pro-
gram is a type 3, 4, 5, 6, or 7 (not a mainline), an
execution address of zero is saved in ASCOM and in

the source statement buffer. If the source program
is a type 1 or 2 (a mainline), the execution address,

e. , the END statement operand, is saved in
ASCOM and in the source statement buffer. The last
sector of DSF output is written to the disk and the
disk block count of the program is saved in ASCOM.
Phase 12 then fetches phase 3 and transfers control
to it.

PHASE 13

Phase 13 searches the master graphics op code table
to determine if the mnemonic in the current input
record is a valid 2250 mnemonic. If the mnemonic
is not in the op code table, control passes to Phase 9
to post the error code for an invalid mnemonic.
When a 2250 mnemonic is found, a branch is made to
G4040.

G4040 determines if the Assembler is in pass 1
or pass 2. During pass 1 the Location Assignment
Counter (LAC) is incremented by 1 or 2, depending
upon whether a 1- or 2-word order is being process-
ed. During pass 2 a branch is made to G4070 which
causes a branch to be made to the address contained
in the fourth word of the op code table entry. This
is the address of the section that will process the
order.

The format, tag, and operand fields of the order
are tested. Control passes to the SCAN routine in
phase 9 to evaluate any orders which contain
operands. When control returns, the operands are
tested to determine whether they are valid. If an
error is encountered, control passes to ERFLG to
post the error. The operand is put in the op code
buffer and a branch is made to G4090 to transfer
the contents of the op code buffer to the Disk System
Format (DSF) buffer. G4090 passes control to
B4HEX in Phase 9 to convert the contents of the
op code buffer from binary to 4 hexadecimal charac-
ters. When control returns it passes to DFOUT
which moves the word to the DSF buffer. The LAC
is incremented by one and the op code buffer is set
to zero. Control passes to LDLBL to access the
next record.

ERMSG

ERMSG is called by the GETER subroutine within
phase 9 when an error occurs during the assembly
process. It is loaded into the first disk buffer (BUFI).
A list of error messages is contained within ERMSG.

Section 10. Assembler Program 71

Figure 14, panel 3 shows the layout of the con-
tents of core storage during pass 2 of an assembly
in two-pass mode.

Figure 14, panel 4 shows the layout of the con-
tents of core storage during pass 2 of an assembly
in one-pass mode.

0 0

COMMA, COMMA, COMMA, COMMA, COMMA, COMMA,
Skeleton Skeleton Skeleton Skeleton Skeleton Skeleton
Supervisor Supervisor Supervisor Supervisor Supervisor Supervisor

DISKZ DISKZ DISKZ DISKZ DISKZ DISKZ

re A ASCOM ASCOM ASCOM ASCOM ASCOM

Resident Resident Resident Resident Resident
Phase Phase 0 Phase 0 Phase 0 Phase 0 Phase 0

0

Overlay Overlay Overlay Overlay Overlay
Area Area Area Area Area

/ Phase Phase Phase Phase Phase
9 9 9 9 9

Phase 10 Phase 10 Phase 10

IN T1 Phase WA IN TI Phase 11 Phase 10A

HDNG HDNG HDNG
Buffer Buffer Buffer

Card I/O Card I/O Card I/O Card I/O Card I/O
Buffers Buffers Buffers Buffers Buffers

Print Print Print Print Print
Buffer Buffer Buffer Buffer Buffer

Disk I/O Disk I/O Disk I/O Disk I/O Disk I/O
Buffer Buffer Buffer Buffer 1 Buffer 1

Principal
I/O Device
Subroutine

Principal
I/O Device
Subroutine

Principal
I/O Device
Subroutine

Disk I/0
Buffer 2

Disk I/0
Buffer 2

Principal Principal Principal Principal Principal
Print Device Print Device Print Device Print Device Print Device
Subroutine Subroutine Subroutine Subroutine Subroutine

S. T. S. T. S. T. S. T. S. T.
Overflow Overflow Overflow Overflow Overflow/

Buffer Buffer Buffer Buffer Buffer

/

Symbol Symbol Symbol

____-------_—_—___-----

Symbol Symbol

A

Table Table Table Table Table

Figure 14. Core Layout During Assembler Program Operation

72

PHASE OBJECTIVES

The following is a list of the compiler phases by
number and name, and their major functions:

Phase
Number	 Phase Name

1	 Input

2	 Classifier

3	 Check Order/
Statement
Number

Function

Process the control
records; read the
source statements
and build the string.

Determine the state-
ment type and place
the type code in the
ID word.

Check for the presence
and sequence of
SUBROUTINE,
FUNCTION, Type,
DIMENSION, COMMON,
and EQUIVALENCE
statements; place
statement numbers in
the Symbol
Table.

SECTION 11. FORTRAN COMPILER

FLOWCHARTS

General:	 FOR01
Phase 1:	 FOR02
Phase 2:	 FOR03
Phase 3:	 FOR04
Phase 4:	 FOR05-FOR06
Phase 5:	 FOR07-FOR08
Phase 6:	 FOR09
Phase 7:	 FOR10
Phase 8:	 FOR11
Phase 9:	 FOR12
Phase 10:	 FOR13
Phase 11:	 FOR14
Phase 12:	 FOR15
Phase 13:	 FOR16
Phase 14:	 FOR17
Phase 15:	 FOR18
Phase 16:	 FOR19
Phase 17:	 FOR20
Phase 18:	 FOR21
Phase 19:	 FOR22
Phase 20:	 FOR23
Phase 21:	 FOR24
Phase 22:	 FOR25
Phase 23:	 FOR26
Phase 24:	 FOR27
Phase 25:	 FOR28
Phase 26:	 FOR29
Phase 27:	 FOR30

GENERAL COMPILER DESCRIPTION

The FORTRAN Compiler consists of 27 sequentially
executed phases:

Phases 1 and 2 are initialization and control phases,
processing the control records and building the
initial statement string.

The FORTRAN Compiler translates source programs
written in the 1130 Basic FORTRAN IV Language into
machine language object programs. The compiler
also provides for the calling of the necessary arith-
metic, function, conversion, and input/output sub-
routines during the execution of the object program.

Phases 3 thru 10 are specification phases, process-
ing the specification statements and other defini-
tive information and building the basic Symbol
Table.

Phases 11 thru 18 are compilation phases, analyzing
and processing the source statements and re-
placing them with object coding.

Phases 19 thru 26 are the output phases.

Phase 27 is a recovery phase, terminating the com-
pilation and executing a CALL EXIT.

Thus, the FORTRAN Compiler is a "phase"
compiler; the compiler is passed-by the source
program, which resides in core and is massaged
into the object program.

Section 11. FORTRAN Compiler 73

Phase
Number	 Phase Name Function

Phase
Number Phase Name	 Function

4	 COMMON/SUB-
ROUTINE or
FUNCTION

6	 Real Constant

7	 DEFINE FILE,
CALL LINK,
and CALL EXIT

8	 Variable and
Statement
Function

9	 DATA Statement

10	 FORMAT

Place COMMON variable
names and dimension in-
formation in the Symbol
Table; check for a
SUBROUTINE or FUNC-
TION statement and, if
found, place the name
and dummy argument
names in the Symbol
Table.

Place the names of real
constants in the Symbol
Table.

Check the syntax of
DEFINE FILE, CALL
LINK, CALL EXIT
statements; determine
the defined file specifi-
cations.

Place the names of
variables, integer con-
stants, and statement
function parameters in
the Symbol Table.

Check the syntax of the
DATA statement, check
its variables for validity,
and reformat the state-
m ent.

Convert FORMAT
statements into a spec-
ial form for use by the
input/output subroutines
during execution of the
object program.

11	 Subscript
Decomposition

12	 Ascan I

13	 Ascan

14	 DO, CONTINUE,
etc.

15	 Subscript
Optimize

16	 Scan

17	 Expander I

18	 Expander

Calculate the constants
to be used in subscript
calculation during exe-
cution of the object
program.

Check the syntax of all
arithmetic, IF, CALL,
and statement function
statements.

Check the syntax of all
READ, WRITE, FIND,
and GO TO statements.

Replace DO statements
with a loop initializa-
tion statement and in-
sert a DO test state-
ment following the DO
loop termination state-
ment; process BACK-
SPACE, REWIND,
END FILE, STOP,
PAUSE, and END
statements.

Replace subscript
expressions with an
index register tag.

Change all READ,
WRITE, GO TO,
CALL, IF, arithmetic,
and statement function
statements into a mod-
ified form of Polish
notation.

Replace READ, WRITE,
GO TO, and RETURN
statements with object
coding.

Replace CALL,, IF,
arithmetic, and state-
m ent function statements
with object coding.

5	 DIMENSION/	 Place DIMENSION var-
REAL, INTEGER, iable names and dimen-
and EXTERNAL sion information in the

Symbol Table; indicate
the appropriate mode
for REAL and INTEGER
statement variables.

74

Phase
Number Phase Name

19	 Data Allocation

20	 Compilation
Errors

21	 Statement
Allocation

22	 List Statement
Allocation

23	 List Symbol
Table

24	 List Constants

25	 Output I

26	 Output It

27	 Recovery

Function

Allocate a storage area
for variables in the
object program.

List unreferenced
statement numbers,
undefined variables,
and error codes for
erroneous statements.

Determine the storage
allocation for the object
program coding.

List the statement
number addresses,
if requested.

List the subprogram
names in the Symbol
Table and the System
Library subroutine
names in the string,
if requested.

Compute the addresses
of the constants; list
the addresses, if
requested.

Build the program
header and data header
records and place them
in Working Storage;
place the real and inte-
ger constants into
Working Storage.

Complete the conver-
sion of the string to
object coding and place
the object program into
Working Storage.

Print the compilation
termination message;
exit by executing a
CALL EXIT.

CORE LAYOUT

Figure 15, panel 1 shows the layout of the contents
of core storage after the Monitor Control Record
Analyzer has fetched phase 1 of the FORTRAN
Compiler into core storage and has passed control
to the control record analyzer portion. The princi-
pal print and principal input device subroutines
have been fetched by phase 1. The card input and
print buffers have been allocated by phase 1.

Figure 15, panel 2 shows the layout of the con-
tents of core storage after the control record analy-
zer portion of phase 1 has passed control to the
statement input portion. The control record analy-
zer portion of the phase is overlaid by the input
statement string.

Figure 15, panel 3 shows the layout of the con-
tents of core storage during the execution of
phases 2 through 18. During these phases the boun-
dary separating the statement string and Symbol
Table fluctuates as the string and Symbol Table
are massaged.

Figure 15, panels 4 and 5 show the layout of
the contents of core storage during the execution
of phases 19 through 24. Panel 4 reflects the
contents of core storage before any printing has
been performed in those phases. In panel 5 the
lower-addressed portion of these phases has been
overlaid by the print buffer when printing has
been performed.

Figure 15, panels 6 and 7 show the layout of
the contents of core storage during the execution
of phase 25. Panel 6 reflects the contents of
core storage before any object coding has been
generated and written to disk. In panel 7 the
lower-addressed portion of the phase has been
overlaid by the disk output buffer when object
coding has been generated and written to disk.

Figure 15, panel 8 shows the layout of the
contents of core storage after control has been
passed to phase 26. The disk buffer has been
allocated by phase 26 and is not an overlay.

Figure 15, panel 9 shows the layout of the
contents of core storage after control has been
passed to phase 27. The principal print device
subroutine has been fetched by the phase. The
DCOM buffer has also been allocated by the
phase.

Section 11. FORTRAN Compiler 75

0 0 0 0 0 0 0 0

COMMA,
Skeleton

Supervisor

COMMA,
Skeleton

Supervisor

COMMA,
Skeleton

Supervisor

COMMA,
Skeleton

Supervisor

COMMA,
Skeleton

Supervisor

COMMA,
Skeleton

Supervisor

COMMA,
Skeleton

Supervisor

COMMA,
Skeleton

Supervisor

COMMA,
Skeleton

Supervisor

DISKZ DISKZ DISKZ DISKZ DISKZ DISKZ DISKZ DISKZ DISKZ

/./7 DCOM
Buffer

Statement Statement Statement Statement Statement
String

Statement
String

Statement
String

A/

String String String String

Phase
27

Phase 1,
Control
Record

Analyzer
Portion

// ///,

Print Print
Buffer Buffer Symbol Symbol Symbol Symbol Symbol Symbol

Table Table Table Table Tab le Table

Primary
Card BufferC CaPrrid Buffer

FORTRAN FORTRAN FORTRAN FORTRAN FORTRAN FORTRAN FORTRAN FORTRAN
Communications Communications Communications Communications Communications Communications Communications Communications

Area Area Area Area Area Area Area Area

Principal Principal Print Disk Disk
Input Device

SSubroutine
Input Device
Subroutine

Buffer Buffer Buffer

Secondary Cord Phases Phases
Card Buffer Buffer 19-24 19-24

Phase 1,
Statement

Input

Phase 1,
 Statement

Input

Phases
2-18

Phase
25

PhPhase
25

Phase
26

Portion Portion

Principal Principal Principal Principal Principal

Print Device Print Device Print Device Print Device Print Device

Subroutine Subroutine Subroutine Subroutine Subroutine

ROL ROL ROL ROL ROL ROL ROL ROL /

Subroutine Subroutine Subroutine Subroutine Subroutine Subroutine Subroutine Subroutine
/// 	 __L

Figure 15. Core Layout During FORTRAN Compiler Operation

FORTRAN COMMUNICATIONS AREA

The FORTRAN Communications Area consists
of 16 words of storage where information obtained

from the FORTRAN control records and compiler-
generated addresses and indicators are kept.
This information is available to any phase needing
it. The contents of the FORTRAN Communications
Area words are described in Table 3.

76

Table 3. The Contents of the FORTRAN Communications Area

Word Symbolic Name Description of Contents

1 ORG The origin address for an absolute program.

2 SOFS The address of the start of the string.

3 EOFS The address of the end of the string.

4 SOFST The address of the start of the Symbol Table.

5 SOFNS The address of the start of the non-
statement-number entries in the Symbol
Table.

6 SOFXT Phases 1-20.	 The address of the start of
the Symbol Table entries for SGTs (subscript-
generated temporary variables).

Phases 21-25.	 The work area word count.

7 SOFGT Phases 1-20.	 The address of the start of
the Symbol Table entries for GTs (generated
temporary storage locations).

Phases 21-25.	 The constant area word
count.

8 EOFST The address of the end of the Symbol Table.

9 COMON Phases 1-19.	 The address of the next
available word for COMMON storage.

Phase 20.	 The address of the highest-
addressed word reserved for COMMON
storage.

Phase 21.	 Not used.

Phases 22-25.	 Relative entry point.

10 CSIZE All phases except Phase 20. 	 The
COMMON area word count.

Phase 20.	 The address of the lowest-

11

addressed word reserved for COMMON
storage.

ERROR Bit 15 set to 1 indicates overlap error.
Bit 14 set to 1 indicates other error.

12-13 FNAME The program name (obtained from the NAME
control record, or a SUBROUTINE or
FUNCTION statement) stored in name code.

14 SORF Set positive to indicate FUNCTION.
Set negative to indicate SUBROUTINE.
0	 indicates mainline.

15 CCWD Control card
Bit 15 set to
Bit 14 set to
Bit 13 set to
Bit 12 set to
Bit 11	 set to

word.
indicates Transfer Trace.
indicates Arithmetic Trace.
indicates Extended Precision.
indicates List Symbol Table.
indicates List Subprogram

Bit 10 set to
Bit	 9 set to
Bit	 8 set to

Names
indicates List Source Program.
indicates One Word Integers.
indicates Origin.

16 IOCS IOCS Contro
Bit 15 set to

Card Word.
indicates 1442 Card Read

Bit 14 set to
Punch, Model 6 or 7.
indicates 1134/1055 Paper

Bit 13 set to
Bit 12 set to
Bit 11 set to
Bit 10 set to
Bit	 9 set to

Bit	 8 set to
Bit	 7 set to
Bit	 3 set to
Bit	 1 set to

Tape Reader Punch.
indicates Console Printer.
indicates 1403 Printer.
indicates 2501 Card Reader.
indicates Keyboard.
indicates 1442 Card Punch,
Model 5.
indicates Disk Storage.
indicates 1132 Printer.
indicates 1627 Plotter.
indicates Unformatted Disk
I/O Area.

17 DFCNT The number of files defined.

PHASE AREA

The Phase Area is the area into which the various
phases of the compiler are read by the ROL subrou-
tine. The size of the Phase Area is determined by
the size of the largest phase of the compiler.

Each phase, when loaded into the Phase Area,
overlays the preceding phase. There are two phases,
however, that are exceptional in that they are loaded
at some location other than the Phase Area origin.
The ROL subroutine in phase 1 is loaded into high-
addressed storage by phase 1 so that it occupies
initially the position it will occupy throughout the
compilation. The control record analysis portion
of phase 1 is loaded into the String Area. This por-
tion of the phase is in use only until the FORTRAN
control records have been processed and is overlaid
by the source statements. Phase 27, the Recovery
Phase, which is executed after the object program
has been produced, is also read into the String Area.

STRING AREA

During compilation the String Area contains both the
statement string and the Symbol Table. The state-
ment string is built by the Input Phase in an ascend-
ing chain beginning in the low-addressed words of
the String Area. The Symbol Table is built during
the compilation process in a descending chain be-
ginning in the high-addressed words of the String
Area.

The statement string expands and contracts as it
is massaged during the compilation process. The
Symbol Table expands as items are removed from
the statement string and added to the Symbol Table.
In addition, some phases move the entire statement
string as far as possible toward the Symbol Table.
The last statement of the string then resides next
to the last Symbol Table entry. As the phase oper-
ates on the statement string, now referred to as
the input string, it is rebuilt in the low-addressed
end of the String Area. The rebuilt string is refer-
red to as the output string. This procedure allows
for expansion of the statement string.

Section 11. FORTRAN Compiler 77

If at any time during the compilation an entry
cannot be made to the statement string or the Symbol
Table due to the lack of sufficient storage, an overlap
error condition exists. In the event of such an over-
lap condition, the remaining compilation is bypassed
and an error message is printed (see Compilation
Errors). Either the size of the source program or
the number of symbols used must be decreased, or
the program must be compiled on a machine of larger
storage capacity.

SYMBOL TABLE

The Symbol Table contains entries for variables,
constants, statement numbers, various compiler-
generated labels, and compiler-generated temporary
storage locations.

The first entry of the Symbol Table occupies the
three highest-addressed words of the String Area,
1. e. , the 3 words just below the first word of the
FORTRAN Communications Area. The second entry
is positioned in the lower-numbered words adjacent
to the first entry, etc.

During the initialization of the Symbol Table in
phase 1, three words are reserved for the first
Symbol Table entry. This entry is not made, how-
ever, until phase 3. From this point the size of the
Symbol Table varies from phase to phase until it
achieves its largest size in phase 18. Its size always.
includes the three words reserved for the next
Symbol Table entry.

During phases 3 through 18, the Symbol Table con-
tains variables, constants, and statement numbers.
Information for these entries has been removed from
the statement string and has been replaced by the
address of the ID word of the corresponding Symbol
Table entry. Also, the Symbol Table contains the
various compiler•generated labels and temporary
storage locations used in compilation.

During the output phases, 19 through 26, these
entries in the Symbol Table are replaced by object
program addresses that are inserted into the object
coding by phase 26.

Format

All entries in the Symbol Table consist of three
words -- an ID word and two Name-Data words.
The entries for dimensioned variables are exception-
al, however, in that they are six-word entries, the
additional three words containing the dimension
information.

The ID word occupies the lowest-addressed word
of the three word entry. The Name-Data words
occupy the two higher-addressed words.

A typical three-word entry is illustrated in the
following example of the entry for the integer con-
stant 290.

ID Word	 Data Word 1	 Data Word 2

2	 9	 0	 blank blank

111000000000000001011001011100111010000000000000000 I

Lowest-Addressed	 Highest-Addressed
Word	 Word

Entry in hexadecimal form —E000 65CE 0000

The entry for the subprogram name COUNT would
appear as:

ID Word	 Name Word 1	 Name Word 2

COUN	 T

1000000001000000011000011010110100111000101011000111

Lowest-Addressed	 Highest-Addressed
Word	 Word

Entry in hexadecimal form - C080 86B4 C563

78

ID Word

The layout of the Symbol Table ID word is given in
Table 4. The ID word is formed when the entry is
placed in the Symbol Table.

Name-Data Words

The Name-Data words of Symbol Table entries have
the following format:

Word	 Bit
	

Contents

1 0 0, if the following 15 bits contain
the first half of a constant; 1, if
the following 15 bits contain any-
thing other than the first half of a
constant.

1-15	 First 15 bits of the 30-bit Symbol
Table entry

2	 0	 Same as bit 0 of word 1

1-15	 Second 15 bits of the 30-bit Symbol
Table entry

Table 4. The Contents of the FORTRAN Symbol Table ID Word

Bit
Position Status and Meaning

0 1	 - Constant
0	 - Variable

1 1	 -	 Integer
0	 - Real

2 1	 - COMMON

3-4 01	 - One dimension
10	 - Two dimensions
11	 -	 Three dimensions

5 1	 - Statement function parameter/dummy argument

6 1	 - Statement number

7 1	 - Statement function name

8 1	 - Subprogram name

9 1	 - FORMAT statement number

10 1	 - Referenced statement number or defined
variable

11 1	 -	 External

12 1	 - Generated temporary storage location (GT)

13 1	 - Subscript-generated temporary variable (SGT)

14 1	 - Allocated variable

15 Not Used

Three words are always used for the dimension
information regardless of the number of dimensions.

For one-dimensional arrays, all three dimension
words contain the integer constant that specifies the
dimension of the array. For example, the entry for
array ARRAY (10) would appear as:

Dimension Information 	 Array Name

10	 I 10	 I 10	 ID Worc

Lowest- 	 Highest-
Addressed
	

Addressed
Word
	

Word
Dimensioned Entries

The Symbol Table entry for a dimensioned variable
requires six words: two for the array name, one
for the ID word, and three for the dimension infor-
mation. The dimension information occupies the
three lowest-addressed words, the ID word occupies
the next higher-addressed word, and the Name-Data
words occupy the two highest-addressed words.

For two-dimensional arrays, the first (highest-
addressed) dimension word contains the integer
constant of the first dimension; the middle and
last (lowest-addressed) dimension words both
contain the product of the first and second dimen-
sion integer constants. Thus, the dimension in-
formation for array B(5,15) appears as:

Section 11. FORTRAN Compiler 79

Dimension Information	 Array Name

75 I 75 1 5	 ID Word

For three-dimensional arrays, the first dimen-
sion word contains the integer constant of the first
array dimension; the middle dimension word con-
tains the, product of the first and second dimension
integer constants; the third dimension word con-
tains the product of the first, second, and third
integer constants of the array dimensions. The di-
mension information for array C(9,9,9) appears as:

Dimension Information	 Array Name

729	 81	 9	 ID Word	 .

STATEMENT STRING

The source statements are read by the Input Phase,
converted to EBCDIC, and stored in core storage.
The first statement is stored starting at $ZEND, and
each succeeding statement is placed adjacent to the
previous statement, thus forming the source state-
ments into a string. The area within which the
source statements are stored is referred to as the
String Area.

ID Word

For identification purposes, as each statement is
placed in the String Area, an ID word is added at
the low-address end of each statement. The ID
word has the following format:

Bit	 Contents

0-4	 Statement type code
5-13	 Statement Norm
14	 Varied; used for interphase

communication
15	 1, if statement is numbered; otherwise, 0

The Norm is the only portion of the ID word com-
pleted by the Input Phase. The Norm is a count of

the number of words used to store that statement,
including the ID word and statement terminator.

The statement type codes, shown in Table 5, are
added in the Classifier Phase (except for FORMAT
statements).

Table S. FORTRAN Statement ID Word Type Codes

Code Statement Types

00000 Arithmetic

00001 BACKSPACE

00010 END

00011 END FILE

00100 SUBROUTINE

00101 REWIND

00110 CALL

00111 COMMON

01000 DIMENSION

01001 REAL

01010 INTEGER

01011 DO

01100 FORMAT

01101 FUNCTION

01110 GO TO

01111 IF

10000 RETURN

10001 WRITE

10010 READ

10011 PAUSE

10100 Error

10101 EQUIVALENCE

10110 CONTINUE

10111 STOP

11000 DO test

11001 EXTERNAL

11010 Statement Function

11011 Internal Output Format

11100 CALL LINK, CALL EXIT

11101 FIND

11110 DEFINE FILE

11111 DATA

80

Statement Body

Each statement, after being converted to EBCDIC,
is packed two EBCDIC characters per word. This
is the form in which the statements are initially
added to the statement string.

Statement Terminator

Statements are separated by means of the statement
terminator character, a semicolon. The statement
terminator character indicates the end of the state-
ment body. This character remains in the string
entry throughout the compilation process for that
particular statement type.

All statements in the statement string carry the
statement terminator except for FORMAT and CON-
TINUE statements and compiler-generated error
statements. Error statements inserted into the
string by the compiler are inserted without the
terminator character.

COMPILATION ERRORS

When an error is detected during the compilation
process, the statement in error is replaced by an
appropriate error statement in the statement string.
Each error statement is added during the phase in
which the corresponding error is detected and the
procedure is the same in all phases.

1. The type code in the erroneous statement's ID
word is changed to the error type.

2. The statement body is replaced by the appro-
priate error number. The statement number,
if present, is retained in the Symbol Table and
the Symbol Table address is retained in the
error statement on the string.

3. The statement string is closed up, effectively
deleting the erroneous statement from the state-
ment string.

Error statements in the statement string are ex-
ceptional in that they do not carry the statement
terminator character (semicolon).

Error indications are printed at the conclusion of
compilation. If a compilation error has occurred,
the message

I COMPILATION DISCONTINUED

is printed and no object program is placed in Working
Storage.

Error messages appear in the following format:

CAA ERROR AT STATEMENT NUMBER
XXXXX+YYY

where C indicates the FORTRAN Compiler, AA is the
error number, XXXXX is the last encountered
statement number, and YYY is the count of state-
ments from the last statement number.

There are also error messages in the format

CAA ZZZZZZZZZZ...

where ZZZZ Z.... is an explanation of the error
condition.

See the Programming and Operator's Guide publi-
cation for a list of the FORTRAN error numbers,
their explanation, and the phases during which they
are detected.

In addition to the errors, undefined variables are
listed by name at the end of compilation. Undefined
variables inhibit the output of the object program.

COMPILER I/0

The compiler uses the DISKZ . subroutine for all disk
I/O operations required during compilation.

The compiler uses the principal input device sub-
routine to read the control records and source state-
ments to be compiled, and the principal input con-
version subroutine to convert the source input to
EBCDIC.

The principal print device subroutine is used to
perform any printing required during the compilation.

FETCHING COMPILER PHASES

The ROL subroutine loaded into high-addressed stor-
age as part of phase 1, obtains from each phase the
word count and sector address of the next phase to be
loaded. This subroutine then reads the next compiler
phase into core storage and transfers control to it.

If a small change is made to the ROL subroutine,
it also examines the Console Entry switches. If
a request to dump is indicated in the switches, it

Section 11. FORTRAN Compiler 81

calls the System Core Dump program via the $DUMP
entry point in the Skeleton Supervisor to dump the
statement string, the Symbol Table, and the FOR-
TRAN Communications Area. At the completion of
the dump the ROL subroutine regains control. It
then fetches and transfers control to the next phase.

PHASE DESCRIPTIONS

PHASE 1

• Reads the control records; sets the correspond-
ing indicators in the FORTRAN Communications
Area.

• Reads the source statements; stores them in the
String Area; precedes each statement with a
partially completed ID word.

• Checks for a maximum of five continuation rec-
ords per statement.

• Lists the source program, if requested.

Phase 1 is composed of two major segments; the
first analyzes the control records and the second
inputs the source statements. The control record
analysis portion of phase 1 is loaded into the String
Area, while the statement input portion is loaded at
the normal Phase Area origin. The control record
analysis subroutines, therefore, remain in storage
until the processing of the control records is com-
pleted. They are then overlaid by the source state-
ments as the string is built by the statement input
portion.

Errors Detected

The errors detected by phase 1 are: 1 and 2.

PHASE 2

• Determines the statement type for each statement.
inserts the type code into the statement ID word.

• Places the statement terminator character (semi-
colon) at the end of each statement.

• Converts subprogram names longer than five
characters to five-character names.

• Converts FORTRAN-supplied subprogram names
according to the specified precision.

• Generates the calls and parameters that initialize
I/O subroutines during execution of the object pro-
gram, if the IOCS control indicators are present.

According to the indicators set in the IOCS word
(word 16) of the FORTRAN Communications Area by
the previous phase, phase 2 generates the required
calls to FORTRAN I/O. If the Unformatted Disk I/O
Area indicator is on, a 'LISP UFIO' followed by its
parameter is inserted into the string. If the Disk
indicator is on, a 'LIEF SDFIO' followed by its par-
ameter is inserted into the statement string. If any
other indicator in the IOCS word is on, phase 2 in-
serts the 'LIBF SFIO' followed by its parameters
into the statement string. The table of device ser-
vicing subroutines (ISSs) is also built and inserted.

Phase 2, beginning with the first statement of the
string, checks each statement in order to classify it
into one of the 31 statement types. FORMAT state-
ments, already having the type code, and compiler-
generated error statements are not processed by this
phase. Each statement name is compared to a table
of valid FORTRAN statement names. Each recog-
nized statement name is removed from the string
and the corresponding ID type code is inserted into the
statement ID word.

Arithmetic statements are detected by location of
the equal sign (=) followed by an operator other than
a comma. Because of this method of detection,
arithmetic and statement function statements both
carry the arithmetic statement ID type until phase 8,
which distinguishes them.

Names within the statement body are converted
into name code and stored. Names with only one or
two characters are stored in one word.

Phase 2 converts all parentheses, commas, etc. ,
into special operator codes. Each operator is stored
in a separate word. Also, each arithmetic operator
(+,	 /, *, **) is stored in a separate word, and a
statement terminator character (semicolon) is placed
after each statement, except for CONTINUE and
FORMAT statements and compiler-generated error
statements.

NOTE: The string words containing name or con-
stant characters have a one in bit position 0. Bit

82

position 0 of string words containing arithmetic op-
erator characters has a zero.

The standard FORTRAN-supplied subprogram
names specified in the source program are changed,
if necessary, to reflect the standard or extended
precision option specified in the control records.
Also, the six-character subprogram names of
SLITET, OVERFL, and SSWTCH, which are allowed
so as to be compatible with System/360 FORTRAN,
are changed to SLITT, OVERF, and SSWTC, respec-
tively.

The word FUNCTION appearing in a Type state-
ment and the statement numbers of DO statements
are isolated by the Classifier Phase. Isolation is
accomplished by placing a one-word special oper-
ator (colon) just after the word or name to be isolated.
This process aids later phases in detecting these
words and numbers.

Errors Detected

The error detected by phase 2 is: 4.

PHASE 3

• Checks the subprogram and Specification state-
ments for the proper order; removes any state-
ment numbers from these statements.

• Checks to ensure that statements following IF,
GO TO, CALL LINK, CALL EXIT, RETURN,
and STOP statements have statement numbers.

• Removes CONTINUE statements that do not have
statement numbers.

• Checks the statements for statement numbers;
checks the Symbol Table for a previous entry of
the same statement number.

• Places the statement number into the Symbol
Table; places the address of the Symbol Table
entry into the string.

Phase 3 makes two passes through the statement
string. The first pass checks to ascertain the sub-
program and Specification statements are in the fol-
lowing sequence:

SUBROUTINE or FUNCTION statement
Type statements (REAL, INTEGER)
EXTERNAL statements
DIMENSION statements
COMMON statements
EQUIVALENCE statements

A check is also made to ensure that all DATA and
DEFINE FILE statements appear within the Specifi-
cation statement group. Placement of these two
statement types is optional; however, they must not

I

be intermixed with EQUIVALENCE statements.
The SORF word (word 14) in the FORTRAN Com-

munications Area is appropriately modified if a
SUBROUTINE or FUNCTION statement is present.

The second pass of phase 3 scans the statement
string for statements with statement numbers. Each
unique statement number is placed into the Symbol
Table and the address of the Symbol Table entry is
placed into the string where the statement number
previously resided.

All statements having statement numbers pre-
viously added to the Symbol Table (duplicates of other
statement numbers) are in error.

Errors Detected

The errors detected by phase 3 are: 5, 6, and 9.

PHASE 4

• Places COMMON statement variables into the
Symbol Table; includes dimension information in
the Symbol Table entries, if present; removes the
statement from the string.

• Checks for a SUBROUTINE or FUNCTION state-
ment; places the names and dummy arguments
of the SUBROUTINE or FUNCTION statement into
the Symbol Table; deletes the statement from
the statement string.

• Checks REAL and INTEGER statements for the
word FUNCTION.

Phase 4 is a two-pass phase. The first pass proc-
esses COMMON statements; the second pass proc-
esses a SUBROUTINE or FUNCTION statement, in-
cluding a FUNCTION designated in a REAL or
INTEGER statement.

Section 11. FORTRAN Compiler 83

Pass 1 of phase 4 examines all COMMON state-
ments, checking all variable names for validity.
Valid, unique variable names found in COMMON
statements are placed into the Symbol Table. Dupli-
cate variable names are in error.

When dimension information is present in a
COMMON statement, the Symbol Table entry for the
dimensioned variable is expanded to six words, the
dimension constants are changed to binary format,
and this binary information is inserted into the
Symbol Table entry. The Symbol Table ID word is
updated to indicate the presence of the dimension
information and the level of dimensioning.

When all the variables in a COMMON statement
have been processed, it is removed from the string.

The second pass of phase 4 checks for a SUBROU-
TINE or FUNCTION statement among the Specifica-
tion statements. If either is found, the SORF word
(word 14) in the FORTRAN Communications Area is
modified to indicate whichever is applicable. The
subprogram name is checked for validity. If valid,
the name is added to the Symbol Table and the ad-
dress of the Symbol Table entry is placed into the
FNAME words (words 12-13) in the FORTRAN Com-
munications Area. The subprogram parameters are
checked and, if valid, they are added to the Symbol
Table and the statement is removed from the string.

The first REAL and INTEGER statements are
examined for the presence of the word FUNCTION.
If the FUNCTION specification is found, the REAL
or INTEGER statement is processed in the same
manner as a FUNCTION statement, except that the
subprogram mode is specified explicitly by the
statement type.

Errors]Detected

The errors detected by phase 4 are: 7, 8, 10, 11, 12,
12, 13, 14, and 15.

PHASE 5

• Places DIMENSION statement variables into the
Symbol Table; places dimension information into
the Symbol Table entries; removes the statement
from the string.

• Places variables and dimension information from
REAL, INTEGER, and EXTERNAL statements
into the Symbol Table.

• Indicates in the Symbol Table ID word the
variable's mode (real or integer).

• Checks EXTERNAL statements for the names
IFIX and FLOAT, which are not allowed.

The processing of phase 5 is done in two passes.
The first pass analyzes DIMENSION statements. Each
variable name found in a DIMENSION statement is
first checked for validity. If the name is valid, the
Symbol Table is searched for a duplicate. If no dupli-
cate is found, the variable name, along with its di-
mension information, is added to the Symbol Table.
If a duplicate is found that has not yet been dimen-
sioned, the dimension information from the variable
name is added to the existing Symbol Table entry. If
a duplicate is found that has already been dimen-
sioned, the variable name is in error.

In a subprogram compilation, a comparison is
made to ensure that no variable name duplicates the
subprogram name.

The second pass of phase 5 examines the REAL,
INTEGER, and EXTERNAL statements found in the
statement string. Each variable found in these types
of statements is checked for validity. Valid variables
are compared to the Symbol Table entries. Those
variables duplicated in the Symbol Table as the result
of prior COMMON or DIMENSION statement entries
are in error. Those not equated to Symbol Table
entries are added to the Symbol Table in the same
manner as in the first pass of this phase.

Errors Detected

The errors detected by phase 5 are: 7, 8, 15, 17,
18, 19, 20, 21, and 22.

PHASE 6

• Scans all IF, CALL, and arithmetic statements
for valid real constants.

• Converts real constants to standard or extended
precision format, as specified.

Each valid real constant encountered in an arithmetic
IF, or CALL statement is converted to binary in the
precision indicated by the FORTRAN Communica-
tions Area indicators. The Symbol Table is checked
for a previous entry of the constant. If a previous

84

entry is found, no new entry is made. The constant
operator, a special code Indicating that the follow-
ing word is the Symbol Table address of a constant,
followed by the Symbol Table address of the con-
stant already entered is inserted into the statement
string in place of the constant.

If no previous entry in the Symbol Table is found,
the converted constant is added to the Symbol Table.
The constant operator along with the Symbol Table
address replaces the constant in the statement string.
The statement string is closed up following the alter-
ation of the string.

Errors Detected

The following errors are detected by phase 6: 23
and 50.

PHASE 7

• Checks the syntax of DEFINE FILE, CALL EXIT,
and CALL LINK statements.

• Determines the defined file specifications.

All variable names in DEFINE FILE, CALL LINK,
and CALL EXIT statements are checked for validity
and are added to the Symbol Table. All valid con-
stants are converted to binary and are added to the
Symbol Table.

Phase 7 checks to ensure that a DEFINE FILE
statement does not appear in a subprogram.

This phase computes the file definition specifica-
tions, that is, a DEFINE FILE Table consisting of
one entry for each unique file. Each entry consists
of the file number, the number of records per file,
the record length, the associated variable, a blank
word for insertion of the file's sector address at the
time the program is loaded for execution, the num-
ber of records per sector, and the number of disk
blocks per file. A count is kept in the DFCNT word
(word 17) in the FORTRAN Communications Area
of the number of files defined.

Errors Detected

The errors detected by phase 7 are: 3, 70, 71, 72,
73 and 74.

PHASE 8

• Places variables and integer constants into the
Symbol Table.

• Places parameters from statement function state-
ments into the Symbol Table.

• Replaces operators with pointers to the Forcing
Table to be used in phase 16.

• Converts the left parenthesis of subscripts to a
special dimension indicator.

Phase 8 checks the variable names found in the state-
ment string for validity. Valid variables are added
to the Symbol Table. A second check is made to en-
sure that all variable names conform to the implicit
or explicit mode specifications (real and integer).
Integer constants are also added to the Symbol Table,
provided they are unique. However, integer con-
stants that are found in subscript expressions are
not added to the Symbol Table until a later phase.

When adding names and constants to the Symbol
Table, phase 8 replaces them in the string by the
address of their respective Symbol Table entries,
except if they are found in subscript expressions.
The address replacing a constant or name is the
address of the ID word of the Symbol Table entry
for that constant or name.

Internal statement numbers are located in the
Symbol Table and are replaced by the address of their
corresponding Symbol Table entries; those state-
ment numbers not found in the Symbol Table (i. e. ,
not previously entered) are in error.

Phase 8 changes the ID word of the statement
function statement, until now identical to that of an
arithmetic statement, to the statement function type.
Also, the statement function name and the param-
eters of statement functions are added to the Symbol
Table. These entries in the Symbol Table are dis-
tinguished by their lack of a sign bit in the second
word of the name.

During phase 8, the left parenthesis on subscripts
is changed to a special left parenthesis operator that
indicates the order of the dimension that follows.

This phase also converts all operators, except
those in subscript expressions, from the 6-bit
EBCDIC representation to a pointer value. This
pointer value is derived from the Forcing Table. The
conversion is done in preparation for the Scan Phase,

Section 11. FORTRAN Compiler 85

phase 16, when an arithmetic operational hierarchy
will be determined through these pointer values.

Errors Detected

The following errors are detected in phase 8: 7, 24,
25, 26, and 43.

PHASE 9

• Checks the DATA statement for correct syntax
and valid variable references.

• Reformats the DATA statement into a string of
data groups.

Each variable in the DATA statement is checked to
ensure that it has been previously entered into the
Symbol Table. A check is also made to ensure that
a subscript expression for a DATA statement vari-
able does not exceed the level of dimensioning indi-
cated in the Symbol Table entry for the referenced
variable.

Phases 9 converts the DATA statement into the
following form:

ID
Word Data Group 1 Data Group 2 I 'Data Group n

Each data group has the following form:

The constant may be one word in length (an integer),
two or three words in length (a real number in stand-
ard or extended precision), or n words in length (a
literal).

Each data pointer has the following form:

Word	 Bit	 Contents

1	 0	 1

	

1	 0, if no displacement word follows
1, if a displacement word follows

	

2	 0, non-externally subscripted
variable
1, externally subscripted variable

	

3-4	 Zeros

	

5-15	 Symbol Table address of the variable
2	 0-15	 Displacement word (present only if

variable is subscripted)

A displacement word follows data pointers to sub-
scripted variables; its contents are the adjusted sub-
script offset.

The statement terminator is removed from the
DATA statement in phase 9.

Errors Detected

Phase 9 detects the following errors: 75, 76, 77,
78, 79, 80, and 82.

PHASE 10

• Converts FORMAT statements into a chain of
format specifications for interpretation by the
FORTRAN I/O subroutines.

Data	 Data	 Data

Header	 Constant	 Pointer 1	 Pointer 2J-n	
Data

Pointer n
_J

• Converts the Apostrophe (') type format to
H type.

In decomposing the FORMAT statement, phase 10
converts each format type into a format specification
(see Table 6). Where required, the Field Repeat,
Group Repeat, and REDO counts are computed and
inserted. At the completion of phase 10, the
FORMAT statement is simply a chain of format
specifications.

The conversion of a FORMAT statement is shown
below:

Each data header has the following form:

Bits	 Contents

0	 0
1-12	 Duplication factor

13-15	 Length of the following constant

86

9 9 9 0 A (3 H A F. 3 4' 0

ID
Word 999 14,3 A,P =,b F,3,6 E,4,10 / 1,8

I 8 7 A 5 6 I 5 3 H X F 9

RR,4	 -3	 T,1 H,10 b,A N,S W,E	 R,b	 I,S	 H,3	 X,Y =,b F,4,9 RR,16

Table 6. Conversion of FORTRAN FORMAT Specifications

Format Specification (output)

4 Bits	 5 Bits	 7 Bits

Format
Type

(input)
16 Bits

0000 DD
	

WW

0001 DO
	

WW

0010 WW

0011 WW

0100 WW

0101 WW

0110 CC

0111 Undefined

RR 11000 NO

1001 NO

E

F

A

H

T

/

Group Repeat

Field Repeat

1010 Not Used

REDO

DD (decimal width)

WW (total field width)

CC (carriage control)

1011

Maximum = 127 (used only in E and
F type formats).

Maximum = 127 in E and F type for-
mats, 145 in I, A, X, and H type
formats.

Positive count of the number of
character positions to be skipped.

NO (number)

RR 1 (group repeat)

RR (REDO)

RR

Positive count of the number of
repetitions to be made of a field or
group.

Negative count of the number of words
back to the first specification of a group
to be repeated.

Positive count of the number of words
back to the rightmost left parenthesis in
the statement.

Errors Detected

The following errors are detected in phase 10: 27,
28, 29, and 30.

PHASE 11

• Calculates the constants needed for object pro-
gram subscript computation.

• Sets up dummy arguments for the insertion of
variables in the object coding.

Phase 11 bypasses all FORMAT, CONTINUE, and
compiler-generated error statements. All other
statements are scanned but only those statements
that contain the special left parenthesis operator
inserted by phase 8 are operated upon.

The subscripting information for each variable
is checked for validity.

Section 11. FORTRAN Compiler 87

Phase 11 then calculates the subscript constant
D4 and, depending on the dimensioning level, the
constants D1, D2 , and D 3 . (See below for the
method of derivation of these constants.)

These subscript constants are inserted into the
subscript expression with the subscript indices.
The right and left parenthesis enclosing the subscript
expression are then changed to special operators to
be used in a later phase.

Calculation of the Subscript Constants

Assuming the maximum subscript form

c*v+c'

where

v represents an unsigned, nonsubsGripted, integer
variable and c and c' represent unsigned integer
constants,

phase 11 computes the subscript constants (D-factors)
as follows:

For a 1-dimension array --

A(C *I + C 2)i

D 1 = C 1 *S

D4 = (C2 - 1) *S

For a 2-dimension array --

A(C i *I + C 2 , C3 *J + C4)

D 1 = C 1 *S

D 2 = L * C 3 * S

D4 = [(C2 - 1) L * (C 4 - 1)1 *
S

For a 3-dimension array --

A(C 1 *I + C2 , C3 * J + C4, C 5 *K + C 6)

D i = C 1 *S

D 2 = L * C 3
 *S

D 3 = L * M * C5 * S

D 4 = [(C2 - 1) + L * (C 4 - 1) + L * M * (C ii - 1)I*S

In the above formulas,

L = first dimension factor

M = second dimension factor

S = size in words of the array entries

= 1 for one-word integers

= 2 for standard precision

= 3 for extended precision

C 1 and C2 = constants in the first dimension value

C 3 and C4 = constants in the second dimension

C 5 and C6 = constants in the third dimension

I, J, and K are the subscript indices.

Errors Detected

The following errors are detected in phase 11: 31,
32, 33, 34, and 35.

PHASE 12

• Checks the syntax of arithmetic, IF, CALL, and
statement function statements.

• Checks statement function calls, including nested
calls, for valid names and the correct number of
parameters.

• Checks for the definition of variables; checks for
valid statement number references in IF state-
ments.

The syntax of all CALL statements is checked. A
call operator is inserted between the subprogram
name and its dummy arguments for use in the Scan
Phase, phase 16.

During the analysis of statement function state-
ments a table is built containing the statement function
name and the number of parameters associated with

value

value

88

that function. This table is used in analyzing state-
ment function calls, including nested calls, to check
for the proper number of parameters.

The syntax of the record number expression in
Disk READ/WRITE statements is checked. The right
parenthesis is changed to a colon operator which
facilitates the scan of the Disk READ/WRITE state-
ment in the following phase.

Errors Detected

The following errors are detected in phase 12: 36,
37, 38, 39, 40, 41, 42, and 43.

PHASE 14

• Checks for valid syntax in DO statements and in
nested DO loops.

• Generates and inserts at the appropriate points
the coding needed to perform the DO test.

• Checks the syntax of DO, CONTINUE, BACK-
SPACE, REWIND, END FILE, STOP, PAUSE,
and END statements.

PHASE 13

• Checks FIND, READ, WRITE, and GO TO state-
ments for correct syntax, valid FORMAT state-
ment references, and valid variables.

• Detects implied DO loops in READ and WRITE
statements; generates the indicators necessary
for later processing of the DO loop.

When READ and WRITE statements are encountered
in a mainline program, a check is made for the pres-
ence of IOCS indicators in the FORTRAN Communi-
cations Area. All READ and WRITE statements in a
SUBROUTINE or FUNCTION subprogram do not
require the presence of IOCS indicators.

READ, FIND, and WRITE statements are checked
for valid variables and for proper syntax. READ
and WRITE statements are checked for a valid
FORMAT statement reference. Disk READ and
WRITE statements are differentiated by means of the
apostrophe (') separating the file number and record
number parameters. The appropriate disk or non-
disk I/O operator is generated for and inserted into
each READ or WRITE statement.

READ and WRITE statements are also checked
for implied DO loops. The necessary DO initialize
and DO test operators are generated and inserted into
the statement body.

Errors Detected

The following errors are detected in phase 13: 43,
44, 45, 46, 47, 48, 49, 50, and 68.

• Checks for a GO TO, IF, STOP, CALL LINK,
CALL EXIT, or RETURN statement as the last
executable statement of the source program.

BACKSPACE, END FILE, and REWIND statements
are checked for valid unit addresses. Valid unit
addresses are placed into the Symbol Table as
integer constants. BACKSPACE, END FILE, and
REWIND statements are then replaced on the state-
ment string by a generated LIBF followed by the
Symbol Table address of the unit address. This
Symbol Table address becomes an argument to
the MBE.

Statements which follow STOP statements are
checked to ensure that they are numbered statements.
All integers found in PAUSE and STOP statements
are checked to ensure that they are not greater than
9999. Valid integers are added to the Symbol Table
as integer constants.

As the DO statements are analyzed for correct
syntax, phase 14 constructs a DO Table in the follow-
ing format:

Word	 Contents

1
	

Index
2
	

DO test statement number or
Generated Label

3
	

Test value
4
	

Increment
5
	

DO range statement
number

Section 11. FORTRAN Compiler 89

A DO Table entry is made for each DO statement
when it is detected. As the statements following
the DO statement are scanned, the statement num-
bers are compared with the contents of word 5, the
range limit, of the DO Table entries. When the
range limit is found the DO test coding is inserted
into the statement string.

The DO Table is built from low-to-high-addressed
storage. It is scanned, however, from high-to-low-
addressed storage. In this manner, nested DO loops
that violate range limits are detected.

Errors Detected

The following errors are detected in phase 14: 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, and 62.

PHASE :L5

• Scans READ, WRTEE, IF, CALL, and arithmetic
statements for subscript expressions.

• Optimizes subscript calculation by means of the
Subscript Expression Table.

• Generates SGTs (Subscript-generated temporary
storage locations) as necessary.

Each unique subscript expression is placed into a
table called the Subscript Expression Table. Each
entry in this table appears as follows:

Word	 Contents

1	 D4
2	 I, first dimension subscript index

3
	

D 1
4	 J, second dimension subscript index

5	 D 2
6	 K, third dimension subscript index

7	 D 3
8	 /8010, if entry is not used

/0010, if entry is used on this statement
/0000, if entry was used on a previous
statement

Also, each unique variable of a subscript expression
is placed into a table called the Bound Variable
Table.

As each subscript expression is entered into the
Subscript Expression Table, it is removed from the
string. The subscripted variable is then tagged with
SGT indicator bits pointing to the Subscript Expres-
sion Table entry.

An SGT (Subscript-generated temporary storage
location) is generated for each entry made to the Sub-
script Expression Table. The SGT is placed into an
SGT Table. The SGT is also placed into the Symbol
Table and the address of the Symbol Table entry is
inserted into the statement in the string.

For each subscript expression encountered, a
scan is made of the Bound Variable Table. If one or
more of the variables in the subscript expression are
not located in the Bound Variable Table, the subscript
must be recalculated. Thus, a unique entry is made
to the Subscript Expression Table for the expression
and an associated SGT is generated.

If, however, all the variables of the subscript
expression are located in the Bound Variable Table,
the Subscript Expression Table is then scanned to
determine if a duplicate subscript expression is al-
ready located in the table. If no equivalent is found,
the subscript expression is added to the table as a
unique entry and an associated SGT is generated.

If a duplicate expression is found in the Subscript
Expression Table, the subscript expression is re-
moved from the string and is replaced by a pointer
to its duplicate in the Subscript Expression Table.
Thus, identical subscript expressions share the same
indices of a common entry in the Subscript Expression
Table and the same SGT.

Whenever a variable is assigned a new value (i. e. ,
appears to the left of the equal sign in an arithmetic
expression, in the argument list of a subprogram,
etc.), that variable, if found in the Bound Variable
Table, is removed from the table. This removal
from the Bound Variable Table causes all entries in
the Subscript Expression Table containing that vari-
able to be removed. The associated SGTs are also
removed from the SGT Table but remain in the Sym-
bol Table. The addresses in the string of the SGTs
in the Symbol Table also remain.

If a statement is encountered containing a subscript
expression and having a statement number that is
referenced by some other statement, the entire Sub-
script Expression Table is cleared and all subscripts,

90

beginning with the subscript expression in the ref-
erence statement, must be recalculated.

The Subscript Expression Table is also cleared
whenever a DO statement is encountered. Following
subscripts must be recalculated. Implied DO loops,
as in READ and WRITE statements, cause only those
entries involving the index of the implied DO to be
cleared. Only the subscripts involving that index
must be recalculated.

Errors Detected

The following error is detected in phase 15: 63.

PHASE 16

• Converts all FIND, READ, WRITE, IF, GO TO,
CALL, statement function, and arithmetic state-
ments into a modified form of Polish notation.

• Establishes the order of arithmetic operational
performance.

• Sets up the arguments for subroutine calls to be
generated.

Phase 16 converts all READ, WRITE, GO TO, arith-
metic, statement function, CALL, and IF statements
to a modified form of Polish notation. This conver-
sion is accomplished through the use of a Forcing
Table, strings, and an Interpreter.

The Forcing Table is a table of 2-word entries.
The first word contains the left and right forcing
values for each operator. The first 8 bits constitute
the left forcing value and the last 8 bits, the right
forcing value. The second word of the 2-word entry
contains the address of the string to be used by the
Interpreter when the corresponding operator is
forced. (See Table 7.)

The string address (word 2 of each Forcing Table
entry) for each operator is a pointer used by the
Interpreter. This pointer designates to the Inter-
preter a string of operations that must be per-
formed by the Interpreter in order to convert the
forced operator and its operands to the modified form
of Polish notation.

NOTE: Strings may also contain pointers. These
pointers designate substrings, which are detailed

Table 7. FORTRAN Forcing Table

Operator Definition Forcing Value
Left	 I	 Right

String
Pointer

N Name Operator 63	 00 0

Normal Right Parenthesis 01	 32 0

Statement Terminator 3C	 3C 0

+,- Add, Subtract OA	 OA 1

/,* Divide, Multiply 05	 05 1

Exponentiation 05	 04 1

Assign 3B	 3C 1

(Normal Left Parenthesis 31	 01 2

Comma 31	 30 3

0 Call Operator 01	 01 4

0 0
0

Special Parenthesis for Literals,
Special Parenthesis for
Dimensioned Arrays 31	 01 6

0 Unary Minus OA	 OA 7

ac Operator 31	 01 8

40
Special Right Parenthesis in
Implied DOs 31	 01 9

0
Subscripting Right Parenthesis
in Implied DOs 31	 01 10

0 I/O Operator before Scan 30	 01 11

Ip I/O Operator during and after
Scan 30	 01 12

411)
Equal Sign in Implied DOs 31	 01 13

extensions of the string and which are used by the
Interpreter in the same manner as the strings.

A forcing condition exists if the forcing value of
the right operator is equal to or greater than the
forcing value of the left operator. This condition re-
sults in the left operator being forced; that is, the
operation to the left has precedence. Whenever a
non-forcing condition exists, the operands and oper-
ators involved remain in the statement. Operands
and operators are removed from the string only when
an operator is forced and the Interpreter-generated
symbol FAC replaces them.

The Interpreter controls the conversion of the
statement to the modified form of Polish notation. As
each operator is forced, the Interpreter, using the
string address from the Forcing Table, selects the

Section 11. FORTRAN Compiler 91

associated string and performs the string opera-
tions. These operations result in the output of the
forced operator and its operands, resequenced in
the order of operational performance. The forced
operator and its operands are put out into the output
buffer by the Interpreter and are replaced in the
statement body by the symbol FAC.

The scan begins with the string pointer moving
from left to right. When an operator is encountered,
the scan looks two words to the left for a second op-
erator. If none is found, the string pointer moves
to the right, one word at a time, in search of another
operator. If an operator is found to the left, the
scan converts the left and right operators to their
respective forcing values and checks for the forcing
condition.

If a forcing condition does not exist, the scan
again resumes, moving the pointer to the right. If,
however, a forcing condition does exist, the Inter-
preter handles the operator and operands involved.

Upon return to the scanning process, the string
pointer is positioned to the same operator that
caused the previous force, the symbol FAC resides
one word to the left in place of the forced operator
and its operands, and a new operator resides two
words to the left. These operators are then con-
verted and the check is made for the forcing condi-
tion.

If at any time the symbol FAC is an operand of a
forced operator, FAC is replaced by a GT (generated
temporary storage location). The GT is then output-
ted as the operand in place of FAC. FAC again re-
places the forced operator and operands in the state-
ment body. New GTs are created as they are needed
in order to maintain FAC in the statement body.

At the completion of the scan process the state-
ment body has been reduced to the symbol FAC; the
statement body now consists of less than four words.
The output buffer contains the entire statement con-
verted to the modified form of Polish notation.

If in looking for a left operator the scan must by-
pass the argument list of a call operator, the ele-
ments of this argument list are stored temporarily
in a special buffer called the Push-down List. When
the call operator is forced and placed into the output
buffer, the Push-down List is then emptied into the
output buffer in reverse order so that the arguments
are restored in their original sequence following
the call operator.

When the scan detects that the statement consists
of less than four words (the symbol FAC only), the
output buffer is placed into the statement string
overlaying the symbol FAC, and the scan moves to
the next statement.

The statement terminator (semicolon) serves as
an operator that is scanned as any other operator,

Figure 16 illustrates the scanning process.

Errors Detected

The following error is detected in phase 16: 64.

PHASE 17

• Replaces FIND, READ, WRITE, GO TO, and
RETURN statements with compiler-generated
coding.

• Replaces those parts of arithmetic, IF, CALL,
and statement function statements that involve
subscripting of variables with compiler-generated
coding.

• Checks subprograms for a RETURN statement;
generates the return linkage coding.

Phase 17 replaces READ, WRITE, and FIND state-
ments by a call to the appropriate I/0 subroutine,
along with the necessary arguments. Generated
labels are added to READ and WRITE statements in-
volving implied DO loops.

Also, statement function, arithmetic, IF, and
CALL statements are examined for subscripted var-
iables. Those parts of these statements that involve
subscripts are replaced by compiler-generated cod-
ing.

In order to produce more efficient coding, phase
17, by means of an SGT Table, eliminates redundant
loads of the same subscript offset. Also, the instruc-
tions used to load literal subscripts are placed im-
mediately before the indexed operations.

Errors Detected

The following error is detected in phase 17: 69.

92

Arithmetic Statement
A=B+C*D-E

Step
Contents of

the string
Contents of the
Output Buffer Comments

1 A	 BtC*D-E A is not an operator, so the pointer, P, moves to the right, 	 When scanning to the right for an

P
t operator, non-operators are simply skipped. 	 When scanning for an operator to the left with which

to force, non-operators are added to the push-down list.

2 A = B+C*D-E There is no operator to the left with which a forcing condition test can be made; 	 therefore, the
pointer moves to the right until an operator is encountered.

P

3 A = B+C"D-E;

t
P

Using the forcing table, the pointer indicates the RV (right forcing value) and P - 2 (two positions
to the left) indicates the LV (left forcing value).	 The RV of + is OA; 	 the LV of = is 3B.	 OA is not
equal to or greater than 3B. 	 The left operator is not forced, and the pointer moves to the next
operator.

4 A	 BIC'D-E; The RV of * is 05;	 the LV of + is OA.	 05 is not equal to or greater than OA... The left operator is

t not forced, and the pointer moves to the next operator.

P

5 A	 BIC*D i E; *CD The RV of - is OA; the LV of * is 05.	 OA is greater than 05.	 Hence, the left operator is forced.

P
T

*CD is placed in the output buffer and the symbol FAC replaces the outputted operator and

operands.	 The pointer is not moved; an attempt is made to force the new left operator.

6 A - BFFACA-E; *CD+B The RV of - is CA;	 the LV of F is OA. 	 OA is equal to OA.	 Hence, the left operator is forced.

T +B is added to the output buffer. 	 The symbol FAC still replaces the contents of the output buffer.
P The pointer is not moved;	 an attempt is made to force the new left operator.

7 A - FAC-E;

t
P

*CD +B The RV of - is OA;	 the LV of = is 3B.	 OA is not equal to or greater than 3B. 	 The left operator
is not forced and the pointer moves to the next operator,

8 A = FAC-E; *CD EB-E The RV of ; is 3C; 	 the LV of - is OA.	 3C is greater than OA. 	 Hence, the left operator is

P
t forced. -E is added to the output buffer. 	 The symbol FAC still replaces the contents of the

output buffer.	 The pointer is not moved;	 an attempt is made to force the new left operator.

9 A - FAC; *CD+B-E=A The RV of ; is 3C; 	 the LV of = is 3B.	 3C is greater than 3B.	 Hence, the left operator is

10

P

FAC;

t forced.

*CD+B-E=A

=A is added to the output buffer. 	 The symbol	 FAC still replaces the contents of the
output buffer,

The original statement now consists of three words or less.	 This indicates that the statement has
been scanned.	 The symbol FAC is now replaced by the contents of the output buffer.

11 *CD+B-E-A; The scan is complete.

Figure 16. FORTRAN Scan Example

PHASE 18

• Replaces arithmetic, statement function, CALL,
and IF statements not involving subscripted var-
iables by compiler-generated coding.

• Completes the replacement of arithmetic, state-
ment function, CALL, and IF statements that do
involve subscripted variables by compiler-
generated coding.

• Optimizes IF statement branch instructions.

• Handles mixed-mode arithmetic.

This phase generates the coding necessary to replace
arithmetic, statement function, CALL, and IF state-
ments. This phase wholly converts statements of
these types that include no subscripted variables and
merely completes the conversion, which was partially
completed in phase 17, of statements of these types
that do include subscripted variables.

Phase 18 generates the code to perform integer,
real, and mixed-mode arithmetic. Where possible,
integer arithmetic is done in-line. The remainder of
the coding consists of calls to System Library sub-
routines, followed by argument lists.

As needed, calls to the FORTRAN-supplied FUNC-
TION subprograms IFIX and FLOAT are generated.

Section 11. FORTRAN Compiler 93

All calls to these subprograms are made MBEs.
However, calls to exponentiation subroutines gen-
erated by phase 18 are made CALLs.

GTs (generated temporary storage locations) de-
tected in the string by this phase or generated by
this phase for storing intermediate results of arith-
metic calculations are made to agree in mode with
the function of which they are a part.

Errors Detected

There are no errors detected in phase 18.

PHASE 19

• Fetches the principal print device subroutine for
use by phases 19-24; also provides a print inter-
face subroutine for these phases.

• Allocates storage for COMMON variables.

• Allocates all storage assignments aligned accord-
ing to EQUIVALENCE statements.

• Assigns all allocations according to the specified
precision of the program.

• Prints the allocations of the variables as they
are assigned, if requested.

Phase 19 performs the allocation of the variables
found in the Symbol Table; i. e. , these variables are
assigned storage addresses in the object coding.
These addresses replace the Symbol Table entries
for the variables.

The COMMON area resides in high-addressed
storage during execution of the object program.
Thus, all COMMON variables are assigned absolute
addresses within this high-addressed area. The
variable area resides in storage just below the ob-
ject program during execution. All variables not

I in COMMON are assigned addresses within this
area.

Phase 19 first allocates COMMON variables found
in the Symbol Table. EQUIVALENCE statements
that include COMMON variables are examined and
the addresses are aligned during allocation to obtain
an equivalence. A check is made to ensure that the
equivalence does not cause a variable or array ele-
ment to be allocated beyond the beginning of the
COMMON area.

Variables that appear in EQUIVALENCE state-
ments are allocated next, one combined equivalence
nest at a time. The remaining variables in the
Symbol Table are finally allocated, real variables
first, followed by integer variables.

Phase 19 also computes the core requirements for
constants after all defined variables have been allo-
cated. The core requirements for variables and for
COMMON are then stored in the FORTRAN Commun-
ications Area.

Errors Detected

The error detected by phase 19 is either: 65, 66,
or 67.

PHASE 20

• Lists any errors that were detected during the
compilation process.

• Rearranges the statement string if there were no
errors detected.

Phase 20 deletes from the statement string EQUIV-
ALENCE statements that do not have an error indica-
tor and replaces EQUIVALENCE statements that have
an error indicator by error statements.

The Symbol Table is scanned twice. The first
scan detects unreferenced statement numbers and
lists them on the principal print device. The second
scan detects undefined variables and lists these also
on the principal print device.

The statement string is rearranged (if there were
no errors in the compilation) so that, if they are
present, the DEFINE FILE Table, format specifica-
tion strings, and arithmetic statement functions pre-
cede the first executable statement.

The statement string is scanned for error state-
ments. Two counters are maintained during the scan.
The first (STLAB) contains the statement number of
the last numbered statement encountered. The second
(STCNT) contains a count of the statements encoun-
tered since the last numbered statement. Compiler-
generated statements and statement numbers are dis-
regarded in these counts.

When an error statement is detected, these coun-
ters are inserted into the error message along with
the error number for printing.

A check is made on all DATA statements. If a data
constant is defined in COMMON, error 81 is indicated.

94

Errors Detected

The following error is detected in phase 20: 81.

PHASE 21

I. Assigns the addresses to statement functions and
numbered statements; inserts the allocations into
the string.

• Creates the subroutine initialization call, if
required.

• Calculates the core requirements of the program;
stores the result in the FORTRAN Communica-
tions Area.

• Generates the statement function return linkage
coding.

Phase 21 allocates addresses to all numbered state-
ments and statement functions. The allocation is
placed into the statement string entry, following the
statement number or function label. A calculation
of the object program storage requirements is made
from the Location Counter at the end of allocation
and stored in the SOFNS word (word 4) in the FOR-
TRAN Communications Area.

If the program being compiled is a subprogram,
this phase also creates the subroutine initialization
call, CALL SUBIN, along with its dummy arguments;
this subroutine directs the insertion of arguments
during execution of the object program.

Errors Detected

There are no errors detected in this phase.

PHASE 22

• Inserts the statement allocations into the Symbol
Table.

• Lists the statement allocations on the principal
print device, if requested.

This phase scans the statement string for statement
function statements and numbered statements. The

allocation found in each of these statements is
entered in the Symbol Table. The allocation and the
label are then deleted from the string entry.

Errors Detected

There are no errors detected in this phase.

PHASE 23

• Lists the Features Supported by the program as
indicated in the FORTRAN Communications Area.

• Lists the System Library subroutines used by the
program, if requested.

• Lists the subprogram names found in the Symbol
Table, if requested.

Using the indicators in the CCWD word (word 15) in
the FORTRAN Communications Area, phase 23
recreates the control records that were recognized
in phase 1. These control records (with the exception
of *IOCS) are listed on the principal print device
under the title 'FEATURES SUPPORTED.

According to the indicators in the CCWD word,
phase 23 also alters (for purposes of printing only)
the names of subprograms in the compiler-generated
calls to reflect extended precision, if specified.
(The actual compiler-generated coding is not altered
until phase 26.)

If requested, a list is made of all the subprogram
names that appear in the Symbol Table (all CALLs).

Phase 23 also scans the statement string, bypass-
ing all one-word statements and tagging the names in
the System Library table that are called by the pro-
gram (all LIBFs). While scanning the System
Library table, phase 23 checks the indicators in the
IOCS word (word 16) in the FORTRAN Communica-
tions Area. A tag is added to the names of those
subroutines that service the devices indicated in the
IOCS word (i. e. , the devices listed in the *IOCS
control record). The names of the associated con-
version subroutines (if required) are also tagged.
The Subroutine table is then scanned and, if requested,
the tagged System Library subroutine names are
listed.

Section 11. FORTRAN Compiler 95

Errors Detected

There are no errors detected in this phase.

PHASE 24

• Lists the Core Requirements.

• Lists the constants and their addresses, if
requested.

Under the heading 'CORE REQUIREMENTS,' phase
24 prints the amounts of storage used by the program,
COMMON area, and variables. The program name
is printed from the FNAME words (words 11-12) in
the FORTRAN Communications Area.

If a list request is specified in the CCWD word
(word 15), the real and integer constants are con-
verted to output coding and listed with their relative
addresses according to the specified precision.
Real constants are listed first, followed by integer
constants.

A check is made to see that the core requirements
do not exceed 32767 words. If they do, the ERROR
word (word 11) in the FORTRAN Communications
Area is set and output to Working Storage is sup-
pressed.

Errors Detected

There are no errors detected in this phase.

PHASE 25

• Builds the program header arid data header rec-
ords; places these records onto the disk in
Working Storage.

• Places real and integer constants into Working
Storage in absolute mode.

Phase 25 initially builds the program header and
data header records. These records and the Buffer
Communications Area carry information to phase 26.
The program header and data header records are
placed in Working Storage.

The statement string is searched for DEFINE FILE
statements. These statements are analyzed and then

placed into Working Storage. The file specifications
are outputted in absolute mode, except for the asso-
ciated variable, which is in relocatable or absolute
mode. The statement string is also searched for
DATA statements. All data constants are placed in
Working Storage in absolute mode.

The Symbol Table is scanned twice. The first scan
extracts real constants, computes their allocations,
and inserts the allocations into the Symbol Table. The
second scan performs the same operations for integer
constants. All constants are placed into Working
Storage in absolute mode.

Errors Detected

There are no errors detected in this phase.

PHASE 26

• Converts the compiled statement string to object
coding.

• Places the object program into Working Storage.

According to the indicators in the CCWD word (word
15) in the FORTRAN Communications Area, phase 26
alters the subroutine names referenced by the com-
piled program to reflect, if necessary, extended pre-
cision as specified by the user. Phase 23 made the
same conversion for listing purposes; this phase
makes the conversion during the generation o:' the
object program.

Phase 26 converts the statement string into the
object program, which is written in Working Storage.

At the completion of the output, the termination
subroutine (OUTER) inserts the necessary data into
the FORTRAN Communications Area so that the Re-
covery Phase can complete the compilation.

Errors Detected

There are no errors detected in this phase.
PHASE 27

• Sets up the switches and parameters needed by
the Monitor Control Record Analyzer to assume
control.

• Prints error messages 86, 96 and 99

96

This phase is the means by which the compiler re-
turns control to the monitor system. The phase is
entered under the following conditions:

I. Normal end of compilation, with or without
program errors.

2. Disk work area exceeded.
3. Control record trap during input phase.

In each case the Recovery Phase sets indicators
in the FORTRAN Communications Area in order to
inform the monitor system program called next as
to the results of the compilation. Compilation errors,
the exceeding of Working Storage, and the trapping of
a monitor control record all cause the compilation
output to be suppressed, the non-execute switch
($NXEQ) to be set, and the non-DUP switch ($NDUP)
to be set.

If the compilation is successful, the program
length, the number of disk blocks used to store the
program, and the execution address are all trans-
mitted to DCOM on the master cartridge and to
DCOM of the Working Storage cartridge if it is other
than the master cartridge.

Errors Detected

There are no errors detected in this phase.

UPDATING THE MASTER CARTRIDGE

If the compilation is free of errors, DCOM on the
master cartridge is updated as follows:

• The program length in disk blocks is placed in
DBCT and in one entry in the # WSCT quintuple

corresponding to the cartridge that contains
System Working Storage.

• The execution address (or entry point address)
is placed in *ENTY.

• One entry in the # FMAT quintuple corresponding
to the cartridge that contains System Working
Storage is set to zero to indicate that the Working
Storage contains DSF.

In addition, if System Working Storage is on
other than the master cartridge, # WSCT and

FMAT of the cartridge containing System Working
Storage are updated as described above.

Section 11. FORTRAN Compiler 97

SECTION 12. SYSTEM LIBRARY

Write Cartridge ID (ID):
Fetch Phase IDs From SLET (FSLEN):
Fetch System Subroutine (FSYSU):
Write Working Storage Addresses (ADRWS):
Initialize Disk Cartridge (DISC):
Read *ID Record and Convert (RDREC):
Print Cartridge ID (IDENT):
Call System Print Subroutine (CALPR):
Copy Disk Cartridges (COPY):
Delete Core Image Buffer (DLCIB):
Dump SLET (DSLET):
Maintenance Program (MODIF):

SCAT2, Call Processing:
SCAT2, Interrupt Processing:

SCAT3, Call Processing:
SCAT3, Interrupt Processing:

UTL01
UTL02
UTL02
UTL03
UTL04
UTL05
UTL06
UTL07
UTL08
UTL09
UT L10
UTL11-
UTL13
SCA 01
SCA02-
SCA03
SCA04
SCA05-
SCA07

FI001-
F1003

CARD Z:	 FI004-
FI005

PRNTZ:	 FI006
PAPT Z:	 FI007
READ Z:	 FI008
WRTYZ:	 F1009
PRNZ:	 FIO10
PNCH Z:	 FIO11
TYPE Z:	 F1012
HOLE Z:	 FIO13

The System Library consists of (1) a complete
library of input/output (except disk I/O), data
conversion, arithmetic, and function subprograms,
(2) selective dump subroutines, and (3) special
programs for disk maintenance.

The following is a list of the contents of the
System Library.

FLOWCHARTS 	 FORTRAN Non-disk I/0 (SFIO):

Function Name si Type Subtype Reference Deck ID

Utility

Selective Dump on Console Printer DMTDO, DMTXO 4 0 CALL U5B00010
Selective Dump on 1132 Printer DMPD1, DMPX1 4 0 CALL U5C00010
Dump 80 Subroutine DMP80 4 0 CALL U5A00010

Common FORTRAN

Test Console Entry Switches DATSW 4 8 CALL T3F00010
Divide Check Test DVCHK 4 8 CALL T3G00010
Functional Error Test FCTST 4 8 CALL T3H00010
Overflow Test OVERF 4 8 CALL T3J00010
Sense Light Control and Test SLITE, SLITT 4 8 CALL T3L00010
FORTRAN Trace Stop TSTOP 4 8 CALL T3M00010
FORTRAN Trace Start TSTRT 4 8 CALL T3N00010
Selective Dump PDUMP 4 0 CALL T3K00010

FORTRAN Sign Transfer

Extended Precision Transfer of Sign ESIGN 4 8 CALL S2F00010
Standard Precision Transfer of Sign FSIGN 4 8 CALL R2F00010
Integer Transfer of Sign ISIGN 4 8 CALL T3I00010

Extended Precision Arithmetic/Function

Extended Precision Hyperbolic
Tangent ETANH, ETNH 4 8 CALL S2I00010

Extended Precision A**B Function EAXB, EAXBX 4 8 CALL 52000010

Section 12. System Library 99

Function	 Name Type Subtype Reference Deck ID
Extended Precision Arithmetic/Function (Cont'd)

Extended Precision Natural Logarithm ELN, EALOG 4 8 CALL S2E00010
Extended Precision Exponential EEXP, EXPN 4 8 CALL S2D00010
Extended Precision Square Root ESQR, ESQRT 4 8 CALL S2H00010
Extended Precision Sine-Cosine ESIN, ESINE,

ECOS, .ECOSN 4 8 CALL S2G00010
Extended. Precision Arctangent EATN, EAT AN 4 8 CALL S2B00010
Extended Precision Absolute Value

Function EABS, EAVL 4 8 CALL S2A00010

Standard Precision Arithmetic/Function

Standard Precision Hyperbolic
Tangent FTANH, FTNH 4 8 CALL R2I00010

Standard Precision A**B Function FAXB, FAXBX 4 8 CALL R2C00010
Standard Precision Natural Logarithm FLN, FALOG 4 8 CALL R2E00010
Standard Precision Exponential FEXP, FXPN 4 8 CALL R2D00010
Standard Precision Square Root FSQR, FSQRT 4 8 CALL R2H00010
Standard Precision Sine-Cosine FSIN, FSINE,

FCOS, FCOSN 4 8 CALL R2G00010
Standard Precision Arctangent FATN, FAT.AN 4 8 CALL R2B00010
Standard Precision Absolute Value

Function FABS, FAVL 4 8 CALL R2A00010

Common Arithmetic/Function

Fixed Point (Fractional) Square Root XSQR 4 8 CALL T1C00010
Integer Absolute Function IABS 4 8 CALL T1B00010
Floating Binary/EBCDIC Decimal

Conversions
FBTD (binary to

decimal), FDTB
(decimal to binary) 4 0 CALL T1A00010

System

LOCAL/SOCAL Flipper F LIPR 3 U5D00010
DCOM Update SYSUP 4 0 CALL U5E00010

FORTRAN Trace

Extended Floating Variable Trace SEAR, SEABX 3 0 LIBF S2J00010
Fixed Variable Trace SIAR, SIARX 3 0 LIBF T6B00010
Standard Floating IF Trace SFIF 3 0 LIBF R2K00010
Extended Floating IF Trace SEIF 3 0 LIBF S2K00010
Fixed IF Trace SIIF 3 0 LIBF T6C00010
Standard Floating Variable Trace SFAR, SFARX 3 0 LIBF R2J00010
GOTO Trace SGOTO 3 0 LIBF T6A00010

FORTRAN I/O

Non-Disk Formatted FORTRAN I/O SFIO, SIOI, SIOAI,
SIOF, SIOAF ,
SIOFX, SCOMP,
SWRT, SRED,
SIOIX 3 3 LIBF T4C00010

FORTRAN Find SD FND 3 1 LIBF T4B00010

100

Function Name(s)	 Type	 Subtype Reference Deck ID

Disk FORTRAN I/O SDFIO, SDRED,
SDWRT, SDCOM,
SDAF, SDF, SDI,
SDIX, SDFX,
SDAI	 3	 1 LIBF T4A00010

Unformatted FORTRAN I/O UFIO	 3	 1 LIEF T4D00010

URED, UWRT, UIOI, UIOF ,
LTIOAL UIOAF, UIOFX, UIOIX,
UCOMP, BCKSP, EOF, REWND

Common FORTRAN

FORTRAN Pause PAUSE	 3	 2 LIBF T2A00010
FORTRAN Stop STOP	 3	 2 LIBF T2B00010
FORTRAN Subscript Displacement

Calculation SUBSC	 3	 0 LIBF T2D00010
FORTRAN Subroutine Initialization SUBIN	 3	 0 LIEF T2C00010
FORTRAN Trace Test and Set TTEST, TSET	 3	 0 LIEF T2E00010

FORTRAN I/O and Conversion

FORTRAN Card 1442 (Read/Punch) CARD Z	 5	 3 LIBF T5A00010
FORTRAN Card 1442-5 (Punch) PNCHZ	 5	 3 LIEF T5G00010
FORTRAN Card 2501 (Read) READZ	 5	 3 LIBF T5J00010
FORTRAN Paper Tape PAPT Z	 5	 3 LIBF T5F00010

FORTRAN 1132 Printer PRNT Z	 5	 3 LIBF T5H00010

FORTRAN 1403 Printer PRNZ	 5	 3 LIBF T5I00010

FORTRAN Keyboard/Typewriter TYPE Z	 5	 3 LIBF T5K00010

FORTRAN Typewriter WRTYZ	 5	 3 LIBF T5L00010
FORTRAN Hollerith to EBCDIC

Conversion HOLE Z	 3	 3 LIBF T5D00010
FORTRAN Get Address Subroutine GETAD	 3	 3 LIEF T5C00010

FORTRAN EBCDIC Table EBCTB	 3	 3 - T5B00010
FORTRAN Hollerith Table HOLTB	 3	 3 - T5E00010

Extended Precision Arithmetic/Function

Extended Precision Get Parameter EGETP	 3	 2 LIBF S1E00010

Extended Precision A**I Function EAXI, EAXIX	 3	 2 LIEF S1B00010
Extended Precision Divide EDVR, EDVRX	 3	 2 LIBF S1D00010
Extended Precision Float Divide EDIV, EDIVX	 3	 2 LIBF S1C00010
Extended Precision Float Multiply EMPY, EMPYX	 3	 2 LIBF S1G00010
Extended Precision Subtract Reverse ESBR, ESBRX	 3	 2 LIBF S1H00010

Extended Add-Subtract EADD, ESUB,
EADDX, ESUBX	 3	 2 LIBF S1A00010

Extended Load-Store ELD, ELDX, ESTO,
ESTOX	 3	 0 LIBF S1F00010

Standard Precision Arithmetic/Function

Standard Precision Get Parameter FGETP	 3	 2 LIBF R1E00010

Standard Precision A**I Function FAXI, FAXIX	 3	 2 LIBF R1B00010

Standard Precision Divide Reverse FDVR, FDVRX	 3	 2 LIBF R1D00010
Standard Precision Float Divide FDIV, FDIVX	 3	 2 LIBF R1C00010
Standard Precision Float Multiply FMPY, FMPYX	 3	 2 LIBF R1G00010

Standard Precision Subtract Reverse FSBR, FSBRX	 3	 2 LIBF R1H00010

Section 12, System Library 101

Function Name(s) Type Subtype Reference Deck ID

Standard Precision Arithmetic/Function (Contid)

Standard Add/Subtract FADD, FSUB,
FADDX, FSUBX 3 2 LIBF R1A00010

Standard Load/Store FLU, FLEX,
FSTO, FSTOX 3 0 LIBF R1F00010

Standard Precision Fraction Multiply XMDS 3 2 LIBF S3I00010

Common Arithmetic/Function

Fixed Point (Fraction) Double Divide XDD 3 2 LIBF 531300010
Fixed Point (Fraction) Double

Multiply XMD 3 2 LIBF S3H00010
Sign Reversal Function SNR 3 2 LIBF S37 00010
Integer to Floating Point Function FLOAT 3 0 LIBF S3C00010
Floating Point to Integer Function IFIX 3 0 LIBF S3D00010
I**J Integer Function FIXI, FIXIX 3 2 LIEF S31300010
Normalize NORM 3 0 LIBF S3E00010
Floating Accumulator Range Check FARC 3 2 LIBF S3A00010

Interrupt Service

Card Input/Output (No Error
Parameter) CARD 0 5 0 LIBF U2 A0001.0

Card Input/Output (Error
Parameter) CARD1 5 0 LIBF U2B00010

Disk Input/Output (No Preoperative
Parameter Checking) DISKZ* - - Special

Disk Input/Output (No Simultaneity) DISK1* LIBF
High-Speed Disk Input/Output

(Simultaneity) DISKN* - - LIBF
Paper Tape Input/Output PAPT 1 5 0 LIBF U2D00010
Single Frame Paper Tape Input/Output PAPTX 5 0 LIBF U2F00010
Simultaneous Paper Tape Input/Output PAPTN 5 0 LIBF U2E00010
Plotter Output PLOT1 5 0 LIBF U2G00010
1132 Printer Output PRNT1 5 0 LIBF U2J00010
1403 Printer Output PRNT3 5 0 LIBF U2K00010
Keyboard/Console Printer Input/Output TYPED 5 0 LIBF U2N00010
Console Printer Output WRTYO 5 0 LIBF U2000010
1231 Optical Mark Page Reader OMPR1 5 0 LIBF U2C00010
2501 Card Input (No Error Parameter) READO 5 0 LIBF U2L00010
2501 Card Input (Error Parameter) READ 1 5 0 LIBF U2M00010
1442 Card Output (No Error Parameter) PNCHO 5 0 LIBF U2I100010
1442 Card Output (Error Parameter) PNCH1 5 0 LIBF U2100010

*Note: Whereas DISKZ, DISK1, and DISKN are not strictly ISS subroutines (they are stored in the System Area
by the System Loader), they are included in this list because they possess many characteristics of ISS
subroutines.

102

Function Name(s) Type Subtype Reference Deck ID

Conversion

16 bits to 6 Decimal Characters (Card
Code) BIND C 3 LIBF U4B00010

32 bits to 11 Decimal Characters BIDEC 3 LIBF U4A00010
16 Bits to 4 Hexadecimal Characters

(Card Code) BINHX 3 0 LIBF U4C00010
6 Decimal Characters (Card Code)

to 16 bits DCBIN 3 0 LIBF U4G00010

11 Decimal Characters to 32 bits DECBI 3 0 LIBF U4H00010

EBCDIC to Console Printer Output
Code EBPRT 3 0 LIBF U3A00010

Card Code to EBCDIC, EBCDIC to
Card Code HOLEB 3 0 LIBF U3B00010

Card Code to Console Printer
Output Code HOLPR 3 0 LIBF U3C00010

4 Hexadecimal Characters (Card
Code) to 16 bits HXBIN 3 0 LIBF U3D00010

PTTC/8 to EBCDIC, EBCDIC to
PTTC/8 PAPEB 3 0 LIBF U3E00010

PTTC/8 to Card Code, Card Code
to PTTC/8 PAPHL 3 0 LIBF U3F00010

PTTC/8 to Console Printer Output
Code PAPPR 3 0 LIBF U3G00010

Card Code to EBCDIC, EBCDIC to
Card Code SPEED 3 0 LIBF U3H00010

Fast multi-purpose conversion ZIPCO 3 0 LIBF U3I00010

Conversion Tables

EBCDIC and PTTC/8 Table EBPA 3 0 - U4K00010

Card Code Table HOLL 3 0 - U4P00010
Console Printer Output Code Table PRTY 3 0 - U4Q00010

EBCDIC to IBM Card Code EBHOL 3 0 - U4J00010

1403 Code to Console Printer Code PT3CP 3 0 - U4R00010

Console Printer Code to 1403 Code CPPT3 3 0 - U4F00010

1403 Code to EBCDIC PT3EB 3 0 - U4S00010
EBCDIC to 1403 Code EBPT3 3 0 - U4L00010

IBM Card Code to Console Printer
Code HOLCP 3 0 - U4000010

Console Printer Code to IBM Card
Code CPHOL 3 0 - U4E00010

Console Printer Code to EBCDIC CPEBC 3 0 - U4D00010
EBCDIC to Console Printer Code EBCCP 3 0 - U4I00010

PTTC/8 Code to IBM Card Code PTHOL 3 0 - U4T00010

IBM Card Code to EBCDIC HLEBC 3 0 - U4M00010
IBM Card Code to 1403 Printer Code HLPT3 3 0 - U4N00010

SCA Subroutines
SCAT1 5 0 LIBF W1F00010
PRNT2 5 0 LIBF W1E00010
HOLCA 3 0 - W1C00010
STRTB 3 0 - W1G00010
SCAT2 5 0 LIBF W1H00010
SCAT3 5 0 LIBF W1I00010

Section 12, System Library 103

Function Name Type Subtype Reference Deck ID

SCA Subroutines (Cont'd)

HXCV
EBC48
110L48

3
3
3

0
0
0

W1D00010
W1A00010
W1B00010

Mainline

Initialize Disk Cartridge DISC 2 U6C00010
Print Cartridge ID 'DENT 2 U6F00010
Write Cartridge ID ID 2 U6G00010
Copy Disk Cartridges COPY 2 U61100010
Write WS Addresses ADRWS 2 U6A00010
Delete CIB DLCIB 2 U6D 00010
Maintenance Program MODIF 2 U6H00010
Dump SLET DSLET 2 U6E00010
Paper Tape Utility PTUTL 2 U6I00010

System/Miscellaneous

Call System Print Subroutine CALPR 4 0 CALL U7.A00010
Fetch Phase IDs from SLET FSLEN 4 0 CALL U7B00010
Fetch System Subroutine FSYSU 4 0 CALL U7B00010
Read *ID Record and Convert RDREC 4 0 CALL U7C00010

Interrupt Level Subroutines

Interrupt Level Zero Subroutine ILSOO 7 U1A00010
Interrupt Level One Subroutine ILSO1 7 U1B00010
Interrupt Level Two Subroutine ILS02* 7 1 U1C00010
Interrupt Level Three Subroutine ILSO3 7 UlD00010
Interrupt Level Four Subroutine ILSO4* 7 1 UlE 00010

1627 Plotter Subroutines

Scale (Extended Prec.) SCALE 4 0 CALL V1N00010
Scale (Std. Pree.) SCALE 4 0 CALL V1000010
Grid (Extended Prec.) E GRID 4 0 CALL V1C'00010
Grid (Std. Prec.) FGRID 4 0 CALL V1B00010
Plot (Extended Prec.) EPLOT 4 0 CALL VlD 00010
Plot (Std. Prec.) FPLOT 4 0 CALL VlI00010
Point Characters POINT 4 0 CALL V1M00010
Character (Extended Prec.) E CHAR 4 0 CALL VIA 00010
Character (Std. Prec.) FCHAR 4 0 CALL V1F0001O
Annotation (Extended Prec.) ECHRX, ECHRI,

VCHRI 3 0 LIBF V1B00010
Annotation (Std. Prec.) FCHRX, FCHRI,

WCHRI 3 0 LIBF V1G00010
Scaler (Extended Prec.) ERULE 3 0 LIBF VIE 00010
Scaler (Std. Prec.) FRULE 3 0 LIBF V1J00010
Interface PLOTI 3 0 LIBF V1K00010
Pen Mover XYPLT 3 0 LIBF V1P00010
1627 Plot PLOTX 5 0 LIBF V1L0001O

*These are special versions that consist only of BIT information.

104

Function Name(s) Type Subtype Reference Deck ID

Disk I/0

Sequential Access SEQOP, SEQIO,
SEQCL

3 0 LIBF Z SA

Direct Access DAOPN, DAIO,
DACLS

3 0 LIBF ZDA

ISAM Load ISLDO, ISLD,
ISLDC

3 0 LIBF ZIL

ISAM Add ISADO, ISAD,
ISADC

3 0 LIBF ZIA

ISAM Sequential ISEQO, ISE TL,
ISEQ, ISEQC

3 0 LIBF ZIS

ISAM Random ISRDO, ISRD,
ISRDC

3 0 LIBF ZIR

RPG Decimal Arithmetic

Add, Subtract and Numeric
Compare

RGADD, RGSUB,
RGNCP

3 0 LIBF YAI

Multiply RGMLT 3 0 LIBF YMV
Divide RGDIV 3 0 LIBF YDV
Move Remainder RGMVR 3 0 LIBF YMR
Binary Conversion RGBTD, RGDTB 3 0 LIBF YCN
RPG Sterling and Edit

Sterling Input Conversion RGSTI 3 0 LIBF YSI
Sterling Output Conversion RGSTO 3 0 LIBF YSO
Edit RGEDT 3 0 LIBF YED

RPG Move

From LO Buffer to Core RGMV1, RGMV5 3 0 LIBF YM1
From Core to LO Buffer RGMV2 3 0 LIBF YM2
MOVE Operation RGMV3 3 0 LIBF YM3
MOVEL Operation RGMV4 3 0 LIBF YM4
RPG Compare

Alphameric RGCMP 3 0 LIBF YAC
RPG Indicators

Test RGSI1 3 0 LIBF YI1
Set Resulting On RGSI2 3 0 LIBF YI2
Set On RGSI3 3 0 LIBF YI3
Set Off RGSI4 3 0 LIBF YI4
Test for 0 or Blank RGSI5 3 0 LIBF YI5

RPG Miscellaneous

Test Zone RGTSZ 3 0 CALL YTZ
Convert to Binary RGCVB 3 0 CALL YC B
Object Time Error RGERR 3 0 LIBF YER
Blank After RGBLK 3 0 LIBF YBK
Alternating Sequence ALTSE - - LIBF -

(User-Written)

• Section 12. System Library 104.1

INTERRUPT LEVEL SUBROUTINES

INTERRUPT LEVEL TWO SUBROUTINE (ILS02)

This interrupt level subroutine is actually a part
of the Skeleton Supervisor. However, the Core
Load Builder requires that a dummy ILS for level
two be stored in the System Library. The dummy
supplied by IBM is stored in the System Library
as subtype 1, type 7. The coding in the dummy
ILSO2 is immaterial, because the Core Load Builder
merely bypasses it when it discovers the subtype 1.

If the user supplies his own ILS02, it must be
stored in the System Library as subtype 0, type 7.

INTERRUPT LEVEL FOUR SUBROUTINE (ILSO4)

This interrupt level subroutine is actually a part
of the Skeleton Supervisor. However, the Core
Load Builder requires that a dummy ILS for level
four be stored in the System Library. The dummy
supplied by IBM is stored in the System Library
as subtype 1, type 7. The dummy ILSO4 consists
only of a nine-word table followed by a zero, as
follows:

10 71 13 33	 46	 50	 60	

'•	 c 0 ' 3,4C	 .	 , 	 R.43.E,R,v,E.D. , .
r 	 4.54	 s,E,R,v,eo,1W1 ,,,:Ill :::	 1133,41-,R.v,e,0::,,,. 	 .:	 ,	 ,	 ,

IIMMINIMINIP , ,3,0,	 „	 ,_ ,I 4,0.3	 „	 .	 ,	 ,	 ,	 ,	 „	 ,	 ,	 ,	 ,	 ,	 ,	 ,	 ,	 ,,,
I 1, 4 3.

5

a 	 .2,5,420.1.	 , ,	 ,	 ,	 .	 ,	 ,	 „	 ,	 ,	 ,	 „	 , „
III

3,	 , 	 , 	 „14,, 	 .	 , ,	 ,
	

,
	

,
04.3,6.	 . , „AE,Y,640,4,2,01,00:111,50,1,6, ,P,R,1,4,7,E,R,

EMU .0
6. 37 l,,,M14,7_,

F,'	 „	 . „ .44eD.-4,6-,7,4,84.6	 I 41.1),T,c A r aR
11■1111 	 11111

The leftmost eight bits of each word contain the
relative entry point to the ISS for the associated
device, and the rightmost eight bits contain @ISTV
plus the ISS number. These eight words are used
by the Core Load Builder to construct the IBT for
interrupt level 4.

If the user supplies his own ILSO4, it must be
stored in the System Library as subtype 0, type 7.

MAINLINE PROGRAMS

DISK INITIALIZATION PROGRAM (DISC)

The disk initialization program has three basic
functions:

• Establishes that the cartridges specified in the
*ID record have no more than 3 defective cyl-
inders and that cylinder 0 is not defective

• Changes the cartridge labels as specified in the
*ID record

• Initializes portions of sectors 0, 1, and 2 to set
up the cartridges specified as non-system car-
tridges

DISC first reads an *II) record to obtain FROM
and TO cartridge IDs. It then reads current car-
tridge IDs from the master cartridge DCOM
(#PCID) and compares them with the FROM IDs
specified in the *ID record. If there are any IDs
not found, an error message is printed on the
principal print device.

DISC next seeks home on all drives to be
initialized (up to four), and writes each of 3
patterns to an entire cylinder, one sector at a time.
The patterns used, in sequence, are /AAAA, /5555,
and /0000.

DISC then reads back each sector and compares
it with the pattern written (including the sector ad-
dress). If no error occurs, DISC writes the next
pattern to the same cylinder.

If the error bit of the DSW is set at any time or
if the data read does not compare with the pattern
written, DISC repeats the write/read sequence for
the entire cylinder 50 times, using the same pattern.

If a second error occurs, DISC puts the address
of the first sector on the cylinder in which the error
occurred in the defective cylinder table.

DISC performs this write/read sequence for
each of the 203 cylinders.

Section 12. System Library 105

Word
1
2
3
4
5
6

7
8

If (1) cylinder zero is defective, (2) more than
three cylinders are defective, or (3) it is impossible
to write a sector address, DISC types out an error
message indicating that the cartridge may not be
used.

If the cartridge is good, DISC writes the defective
cylinder addresses, if any, in the first three words
of sector @IDAD. Wherever a 'defective cylinder
does not exist, /0658 is written in the first three words
of sector @IDAD. DISC also writes the cartridge ED
in word four of sector @IDAD, writes zeros in words
7-30, and stores an error message program beginning
in word 31. If a cold start is attempted using this
non-system cartridge, control is passed from the
Cold Start Loader to the error message program
instead of the Cold Start Program. An error mes-
sage is printed on the Console Printer and no cold
start is effected.

DISC initializes the following words of DCOM
(sector @DCOM):

Value Inserted

/0200
/0200
/0020
Cartridge ID
/0008
/0002

DISC initializes LET (sector 2) as follows:

Contents
/0000
/0020
/0000
/0138
/0000,
/7112 The name

1DUMY (in
/4528 name code)
/0620

DISC terminates with a CALL EXIT.

subroutine FSLEN. This IOAR header is used to
call in the principal print device subroutine when
it is needed by FSYSU.

Next, IDENT reads DCOM to obtain #PCID, the
table of disk cartridge IDs and their related physical
drive numbers.

IDENT then prints the cartridge ID and physical
drive number from the table until all available car-
tridge IDs have been printed.

IDENT terminates with a CALL EXIT.

CHANGE CARTRIDGE ID (ID)

This program changes the ID on up to four disk car-
tridges.

The IOAR headers for the principal input device,
principal print device, and principal conversion
subroutines are obtained from SLET on the system
cartridge. These subroutines are used for input/
output.

Using the RDREC subroutine, the *ID record is
fetched. RDREC also builds two tables in core
storage from the FROM-TO fields of the *ID record,
one in packed EBCDIC for printer output, the other
in binary for matching the cartridge IDs. DOOM
is fetched from the master cartridge to obtain the
cartridge ID table (#CIDN).

Each drive on the system is selected. If the
selected drive is present, the cartridge ID is
fetched. The ID is matched with the IDs in #CIDN.
If no matching ID is found, the ID is printed with
an error message and the job is terminated. The
cartridge ID of the selected drive is matched to the
IDs in the FROM-TO table. When a match occurs, the
cartridge ID is changed to the 'TO' ID; the ID for
the cartridge in #CIDN is changed and the 'TO' ID
is written onto the selected drive. IDs that do not
match entries in the FROM-TO table are bypassed.

When all IDs have been processed, #CIDN is
written back to the master cartridge and the FROM-
TO table is printed. After printing the FROM-TO
table, ID terminates with a CALL EXIT.

Location

#ANDU
#BNDU
#F PAD
#CIDN
#CIBA
#ULET

DISK COPY (COPY)
PRINT CARTRIDGE ID (IDENT)

This program copies the contents of one or more
This program prints out the ID and the physical drive	 cartridges (except words 0-3 of sector @IDAD) onto
number of each disk cartridge mounted on the system. 	 from one to four other cartridges.

IDENT first fetches the principal print device 	 COPY first fetches the system device subroutine
subroutine IOAR header from SLET using the	 IOAR headers from SLET using the RDREC subroutine.

106

The system device subroutines are called in by the
RDREC subroutine as they are needed by the pro-
gram. The RDREC subroutine also reads the *ID
record and converts the numbers to binary and
stores them in the FROM-TO table.

COPY then checks the FROM and TO field IDs
to ensure that each specified cartridge is available.
An error message is printed for the unavailable
FROM or TO cartridges.

All available FROM-TO cartridge combinations
are then processed. Sectors 0 thru 7 of cylinder 0
of each source cartridge are read and written, ex-
cept for the defective cylinder table, to each speci-
fied destination cartridge. Sectors 0 thru 7 of the
next 199 logical cylinders of each source cartridge
are copied, 4 sectors at a time to each specified
destination cartridge.

One cartridge at a time is processed and at the
end of each, a check for a Keyboard interrupt is
made. If any occurred during the previous copy,
the interrupt is now processed.

After all cylinders from the specified cartridge
have been copied, a completion message is printed
using the principal print device subroutine.

COPY terminates with a CALL EXIT.

DELETE CIB (DLCIB)

This program deletes the Core Image Buffer (CIB)
from a non-system cartridge to provide additional
disk storage area for the User Area and Working
Storage. An *ID record is used to specify the car-
tridge on which the CIB is to be deleted.

DLCIB uses the subroutine RDREC to obtain
the system device subroutine IOAR headers from
SLET on the master cartridge and to fetch the *If)
record containing the affected cartridge ID. The
RDREC subroutine also converts the specified
cartridge ID to binary.

If the specified cartridge is not present, DLCIB
prints an error message and terminates with a
CALL EXIT.

The CIB of the specified cartridge is deleted.
The User Area and Working Storage are moved
one cylinder closer to cylinder zero. Accordingly,
the file-protection address for the specified car-
tridge is altered in the $FPAD quintuple in COMMA.

DCOM of the master cartridge is then read.
The sector addresses of the CIB, User Area, and
Working Storage are altered. DCOM is written
back to the master cartridge and to the altered
cartridge.

DLCIB prints the new User Area and Working
Storage addresses for the specified cartridge using
the principal print device subroutine.

DLCIB terminates with a CALL EXIT.

DUMP SLET TABLE (DSLET)

DSLET dumps the System Location Equivalence
Table (SLET) to the principal print device. Four
4-word SLET entries are printed per line.

DSLET reads the SLET table into a 640-word
buffer in core storage, prints the SLET table using
the principal print device subroutine, and terminates
with a CALL EXIT.

Section 12. System Library 107

1130 Disk Data File Conversion Program

The following information is designed to assist in
understanding the program flowcharts by presenting
an overall view of the purpose of each major part of
the program.

FLOWCHARTS:

CHART A
CHART B
CHART C
CHART D
CHART E
CHART F
CHART G

PROGRAM NAME:	 DFCNV

GENERAL PROGRAM DESCRIPTION: The program
converts one 1130 FORTRAN and/or Commercial
Subroutine Package (1130-SE-25X) disk data file to
one 1130 RPG disk data file. FORTRAN files created
using logical unit number 10 cannot be converted by
DFCNV. Converted files cannot be processed as
ISAM files. The program accepts all FORTRAN and
Commercial Subroutine Package (CSP) disk data
formats and a two-word integer format (see Appen-
dix E). The input data may be a disk data file or
the corresponding cards in card data format. All
printing is performed on the principal printer. The
subroutine DISK1 is used to perform all disk I/0
operations.

PART 1:

ENTRY POINT: FC000 (CHART A)

The system device subroutines for the principal in-
put and print devices and input data conversion are
read into core and pertinent interrupt pointers are
set.
• The File Description card (D in column 72) is
read and printed, and its fields are diagnosed for
errors.
• LET/FLET searches are performed for input
(if disk file input specified) and output files and
calculated file sizes are checked against actual file
sizes.

INTERNAL SUBROUTINES:

FC015 - The card read and/or print function in this
section of the program is not specifically
subroutinized, but it is the general card
input function for the entire program.

CONVT- Subroutine which converts a right-justified

EBCDIC coded decimal field of variable
length to a one word binary value and ad-
vances the field pointer beyond the field
just converted. It accounts for leading
blanks in a File Description (D) card field
and causes immediate program termination
when a D-card field error is detected.

SEARC- Subroutine which checks the file name re-
ferenced by the field pointer for validity,
packs the file name, adds the disk data
format indicator to the packed file name
and performs the LET/FLET search for
the file.

ERRORS DETECTED: The errors detected in part
1 are F01, F02, F03, F06 and F08 (see Appendix
F).

PART 2:

ENTRY POINT: FC016 (CHARTS B and C)

• The Field Specification cards (S in column 72) are
read and printed, each field specification is diagno-
sed for errors and the specification information is
compressed and saved.
• If it is present, the Commercial Subroutine Pack
age A3 format translation table (A in column 72) is
read and printed and the 40 translation characters
are saved.
• The end-of-file card (/ * in column 1 and 2) is
read and printed.

Note: A general flowchart of the compress/save op-
eration described above has been provided in Chart
C although this operation is in fact specific to field
type. See Appendix for a description of each field
type compression.

INTERNAL SUBROUTINE:

CONVT: Subroutine is described in part 1.

ERRORS DETECTED: The errors detected in part 2
are F04, F06 and F07. It is noted that only one F04
message is printed for each field specification in
error although more than one error may occur with-
in a field specification.

PART 3:

ENTRY POINT: FCO26 (CHART D)

• Final error checking is performed and program

t 07. 1 •

termination is effected if any control card or speci-
fication errors have occurred.
• The input data is read, converted and inserted
into the RPG data file.
• The operation complete message is printed and
control is returned to the supervisor.

INTERNAL SUBROUTINE:

CDDSK - Subroutine which converts card data for-
matted data to disk data format when card
input is specified and relocates input data
so that it appears to be disk data.

Each of the field conversion subroutines is discussed
under part 4.

ERRORS DETECTED: The errors detected in part
3 are F05, F06 and F09.

NOTE: The Disk File protection deliminates
$ FPAD - $FPAD +4 of COMMA are modified during
the conversion portion of DFCNV. These modified
COMMA words must be restored prior to further
processing if unforseen problems (accidential imme-
diate stop) cause abnormal termination of DFCNV
These words are restored by DFCNV under normal
program termination following successful conver-
sion.

PART 4

FIELD CONVERSION SUBROUTINE (CHARTS E, F
and G):

• These subroutines are designed to retrieve the
input field and use the specifications contained in the
compression area to convert the field.
• The internal subroutine INSRT (described below
and on CHART G) is called by each conversion sub-
routine to place the converted field into the output
record. Control is then returned to the mainline
part of the program (part 3) to convert the next
field.

I-conversion (ICNVT): The sign of the integer is
saved and its absolute value is converted to 5 deci-
mal digits (by repeated division by 10). Each digit
is placed with positive zone (F) into a 31 word work
area which has been initialized to /F0. The field is
then placed in the RPG record.

J-conversion (JCNVT): The sign of the integer is
saved and its absolute value is converted to 10 deci-
mal digits (by repeated division by 10). The deci-
mal conversion is performed by first determining
the range of the two-word integer, converting the
low order 7 decimal digits, then converting the high
order 3 decimal digits after adjusting for the range
factor. Each digit is placed with positive zone (F)
into a 31 word work area which has been initialized
to /F0. The field is then placed in the RPG record.

D-conversion (DCNVT): The sign of the CSP D1
field is saved (from the low order of the field) and the
ones' complement of the low order word is taken.
Each digit (see D1 data format, Appendix E) is placed
with positive zone (F) into a 31 word work area which
has been initialized to /F0. The field is then p] aced
in the RPG record.

E-conversion (ECNVT): The CSP D4 field (see Ap-
pendix E) is converted to Dl format and placed in a
200 work work area. The subroutine DCNVT is
then used to place the field in the RPG record.

B(C)-conversion (BCNVT): The subroutine INSRT is
called to insert the field into the RPG record (not
shown on charts).

X-conversion (XCNVT): The input data pointer is
adjusted to bypass the number of words specified
(not shown on charts).

F-conversion (FCNVT): Each word of the input field
is decoded into 3 translation table displacements by
means of the following formulae.

I> 0,	 N1=(I/1600)+20
N1=(1±32000)/1600
N2=(I-(N1-20) *1600)/40
N3=I-(N1-20) *1600-(N2*40)

where I represents the input word and N1, N2 and N3
represent the translation table displacements relative
to card column 40 of the first, second and third chara-
cters.

The 3 translation characters are then retrieved
and placed in the RPG record. This procedure con-
tinues until the entire input field has been converted.

R-conversion (RCNVT): The real number is loaded
into the FAC and normalized. If the mantissa is
zero, the 31 word work area (which has been initia-
lized to /F0) is used to fill the RPG field and control
is returned to the mainline part of DFCNV. If the
mantissa is non-zero, the sign of the field is saved
and the absolute value of the mantissa is used in con-
junction with FBTN2 and MPY to obtain the decimal
digits. Each digit is placed with positive zone (F)

▪ 107. 2

into a 31 word work area which has been initialized to
/FO. The field is then placed in the RPG record.

The RPG field is set to zeroes or nines if the
real number being converted is too small or too large
respectively to fit into the RPG field.

INTERNAL SUBROUTINES:

INSRT- Subroutine which places the converted field
into the RPG record. It uses the technique
of placing one eight-bit character (or two
four-bit packed digits) into the RPG field
at a time, alternating between the left and
right halves of a word. If a numeric field
is packed, two decimal digits are retrieved
at a time; if unpacked, single digit retri-
eval is used. Alphabetic retrieval corres-
ponds to that of numeric unpacked except
that characters are returned from units of
1,2 or 3 words rather than a one character
per word work area. Once a numeric field
has been retrieved, the sign sign is added to
the Field (F=positive; D=negative). See
DFCNV field type examples section of IBM
1130 Disk Monitor System, Version 2, Pro-
gramming and Operator's Guide, Form C26-
Form C26-3717.

FBTN2 - Subroutine which generates the first deci-
mal digit and the decimal exponent of a
real number field (adapted from RBTD
subroutine, see IBM 1130 Subroutine
Library, Form C26-5929).

MPY - Subroutine which generates the decimal
digits of a real number field (adapted
from FBTD subroutine, see IBM 1130
Subroutine Library, Form C26-5929).

EXTERNAL SUBROUTINES:

FLD-	 Subroutine which loads a standard pre-
cision floating point number into the FAC
(see IBM 1130 Subroutine Library, Form
C26-5929).

E LD— Subroutine which loads an extended pre-
cision floating point number into the FAC
(see IBM 1130 Subroutine Library, From
C26-5929).

NORM- Subroutine which normalizes the number
in the FAC (see IBM 1130 Subroutine
Library, Form C26-5929).

ERRORS DETECTED: The F10 error is detected in
the R-conversion subroutine RCNVT.

107.3 •

SYNCHRONOUS COMMUNICATIONS ADAPTER
	

Alarm. If the operation is the turning on/off of the
SUBROUTINE (SCAT1)

	 audible alarm, SCAT1

Call Processing
	 1. turns the audible alarm on in the local system

if digit 4 of the control parameter is zero
The call processing routine

	 2. turns the audible alarm off in the local system
if digit 4 of the control parameter is non-zero

• Checks the call parameters for errors 	 3. returns to the calling routine at LIBF+2.

a Sets up the processing of subsequent interrupts
	 Close. If the operation is a Close, SCAT1

depending on the operation requested by the call
1. resets the SCA

• Initiates the requested operation	 2. clears the programmed indicators in SCAT1
3. decrements the $SCAT counter by 1 (word 17

Operation
	 in COMMA)

4. returns to the calling routine at LIBF+2
When entered via a LIBF, SCAT1

Open. If the operation is an Open, SCAT1
1. saves XR1, XR2, accumulator and extension, and

status
	 1. determines the requested mode of operation

2. examines the control parameter to determine the
	 from digit 4 of the control parameter (digit 4

operation requested
	 zero indicates Data In, non-zero indicates Data

3. obtains and saves the I/O area address and error
	 Out)

routine address parameters if the operation is 	 2. puts the addresses of the read response, write
an Open, Transmit, or Acknowledge and Receive 	 response, and timeout routines for the Open
and Error Statistics	 operation into the interrupt branch addresses

4. determines, if the operation is a Transmit or 	 3. begins transmission of the IDLE character for
Acknowledge and Receive, from digit 3 of the	 1. 5 seconds
control parameter if ILRCs will be present in

	 4. increments the $SCAT counter by 1
transmitted or received data records (digit 3

	 5. sets the retry counter to 7
non-zero indicates ILRCs will be present, zero 	 6. sets RTBSY on (non-zero)
indicates ILRCs will not be present)

	 7. returns to the calling routine at LIBF+4

Test. If the operation is a Test, SCAT1
Transmit. If the operation is a Transmit, SCAT1

1. checks the routine busy indicator (RTBSY)
2. returns to the calling routine at LIBF+3 if

RTBSY is off (zero)
3. returns to the calling routine at LIBF+2 if

RTBSY is on (non-zero)

Auto Answer. If the operation is the enabling/
disabling of the auto answer interrupt, SCAT1

1. (if digit 4 of the control parameter is zero)
enables the auto answer interrupt, saves the
I/O area address, and returns to the calling
routine at LIBF+3

2. (if digit 4 of the control parameter is non-zero)
disables the auto answer interrupt and returns
to the calling routine at LIBF+2

1. puts the addresses for the read response,
write response, and timeout routines for the
Transmit operation into the interrupt branch
addresses

2. determines the type of transmission from digit 2
of the control parameter (digit 2 equal to 0
indicates transmission of a data record, 1 in-
dicates transmission of the End of Transmission
sequence, and 2 indicates transmission of the
Telephone sequence)

3. performs a Start Write (puts the SCA in the trans-
mit mode and causes a write response interrupt)

4. sets the retry counter to 7
5. sets RTBSY on (non-zero)
6. returns to the calling routine at LIBF+4

108

Acknowledge and Receive. If the operation is an
Acknowledge and Receive, SCAT1

1. puts the addresses of the read response, write
response, and timeout routines for the Receive
operation into the interrupt branch addresses

2. determines the type of acknowledgement to be
transmitted from digit 2 of the control parameter
(digit 2 zero indicates a positive acknowledge-
ment, non-zero indicates a negative acknow-
ledgment)

3. performs a Start Write (puts the SCA in the
transmit mode and causes a write response
interrupt)

4. sets the retry counter to 7
5. sets RTBSY on (non-zero)
0, returns to the calling routine at LIBF+4

Errors

When SCAT1 detects an error in the calling proces-
sing, a code indicating the error found is placed in
the accumulator, the address of the LIBF is placed
into location 40 in COMMA, and a branch is taken
to location 41, a WAIT. When PROGRAM START
is pressed, a branch is taken to the address in
location 40 (i.e. , the LIBF is re-executed).

Interrupt Processing

The interrupt processing routine

• Handles read response, write response, and
timeout interrupts for the Open, Transmit, and
Receive operations

• Handles the auto answer request interrupt

• Maintains an error statistics log of certain error

• Is able to log timeouts and all characters trans-
mitted and received

Operation

The paragraphs below describe the processing per-
formed by SCAT1 to accomplish an entire operation
(Open-Data In, Open-Data Out, Transmit, or
Acknowledge and Receive). Actually, this processing
is accomplished in a series of interrupts initiated by
the user's call to SCAT1.

An interrupt occurs for each character received
or transmitted. SCAT1, by means of programmed
indicators, keeps track of the characters to be
received or transmitted next. After transmission
or reception of each character, SCAT1 returns to
the interrupted program.

At the completion of an entire operation, a turn-
around of the line occurs and IDLE characters are

transmitted for 1.5 seconds. During this 1.5
seconds the user must call SCAT1, specifying the
next operation to be performed.

When entered from ILSO1 due to an interrupt by
the SCA, SCAT1 senses the device status word to
determine the type of interrupt.

Write Response Interrupt. If a write response
interrupt has occurred, SCAT1

1. branches to the write response routine pointed
to by the interrupt response addresses as set
up in the call processing

Read Response Interrupt. If a read response
interrupt has occurred, SCAT1

1. checks to determine if a simultaneous timeout
interrupt has occurred

2. branches to the timeout routine pointed to by
the interrupt response addresses as set up in
the call processing if a simultaneous timeout
interrupt has occurred

3. reads the character received by the SCA into
core storage if no simultaneous timeout
interrupt has occurred

4. branches to the read response routine pointed
to by the interrupt response addresses as §et
up in the call processing

Timeout Interrupt. If a timeout interrupt has occur-
red, SCAT1

1. branches to the timeout routine pointed to by the
interrupt response addresses as set by the
call processing

Auto Answer Interrupt. If an auto answer interrupt
has occurred, SCAT1

1. determines from bit 6 of the DSW if the auto
answer interrupt is disabled/enabled (bit 6
zero indicates disabled, 1 enabled)

2. returns to ILSO1 if the auto answer interrupt
is disabled

3. stores a non-zero value at the I/O area address
if the auto answer interrupt is enabled

4. disables the auto answer interrupt
5. returns to ILSO1

Write Response (Open). If the mode of operation
is Data In, the write response routine

1. transmits the End of Idle sequence
2. performs a Start Read (puts the SCA in the

1 08. 1

receive mode and causes a read response
interrupt)

If the mode of operation is Data out, the write
response routine

1. transmits the End of Idle sequence
2. performs a Start Read
3. (when the read response routine has received

the End of Idle sequence in response to the
End of Idle sequence) transmits the Inquiry
sequence

4. performs a Start Read

Read Response (Open). If the mode of operation is
Data In, the read response routine

1. (when the write response routine has transmit-
ted the End of Idle sequence) expects to
receive the Inquiry sequence

2. (if the Inquiry sequence is received) sets
RTBSY off (zero), turns the line, around, and
begins transmission of the IDLE character
for 1. 5 seconds (the Open-Data In operation is
complete)

3. (if the End of Idle sequence is received) turns
the line around and begins transmission of the
IDLE character for 1.5 seconds

4. (if the Inquiry sequence is not received)
branches to the timeout routine

If the mode of operation is Data Out, the read
response routine

1. (when the write response routine has transmitted
the End of Idle sequence) expects to receive
the End of Idle sequence
(if the End of Idle sequence is received) turns
the line around and begins transmission of the
IDLE character for 1.5 seconds

3. (if the End of Idle sequence is not received)
branches to the timeout routine
(when the End of Idle sequence has been
received and the write response routine has
transmitted the Inquiry sequence) expects to
receive the CL character followed by the
ACK2 character

5. (if the CL character followed by the ACK2
character is received) sets RTBSY off (zero),
turns the line around, and begins transmission
of the IDLE character for 1.5 seconds (the
Open-Data Out operation is complete)
(if the CL character is not received,
or if the CL character is not followed
by the ACK2 character) branches to the
timeout routine

Timeout (Open). If the mode of operation is data
in, the timeout routine

1. branches to the user's error routine if a data
set failure has occurred

2. (on the first through seventh entries to this
routine) decrements the retry counter by 1,
begins transmission of the IDLE character for
1.5 seconds, and returns to the interrupted
routine while another attempt is made to receive
the expected sequence

3. (on the eighth entry to this routine) branches to
the user's error routine if synchronization has
not been established (after 7 attempts the End of
Idle sequence was not received in response to
the End of Idle sequence)

4. (on the eighth entry to this routine) branches to
the user's error routine if nothing is received
in response to the End of Idle sequence

5. (on return from the user's error routine) resets
the retry counter to 7 if the accumulator is non-
zero and returns to ILSO1

6. performs a Close operation (see "Close" under
Call Processing, above) if the accumulator is
zero and returns to ILSO1

If the mode of operation is Data Out, the timeout
routine

1. branches to the user's error routine if a data
set failure has occurred

2. (on the first through seventh entries to this
routine) decrements the retry counter by 1,
begins transmission of the IDLE character for
1. 5 seconds, and returns to the interrupted
routine while another attempt is made to receive
the expected sequence

3. (on the eighth entry to this routine) branches to
the user's error routine if synchronization has
not been established (after 7 attempts the End
of Idle sequence was not received in response
to the End of Idle sequence)

4. (on the eighth entry to this routine) branches to
the user's error routine if nothing is received
in response to the End of Idle sequence

5. (on the eighth entry to this routine) branches to
the user's error routine if the Inquiry sequence
is received in response to the End of Idle
sequence or in response to the Inquiry sequence

6. (on return from the user's error routine) resets
the retry counter to 7 if the accumulator is non-
zero and returns to ILSO1

7. performs a Close operation (see "Close" under
Call Processing, above) if the accumulator is
zero and returns to ILSO1

108. 2

Write Response (Transmit). If the type of transmis-
sion is Transmit Data, the write response routine

1. (following the initial write response interrupt)
transmits the Start of Record sequence, using
the appropriate start of record character--
SOR1 for odd numbered records, SOR2 for even
numbered records

2. next, transmits the data characters from the
I/O area, building and transmitting ILRCs, if
required

3. and finally, transmits the End of Record se-
quence at the depletion of the data word count

4. performs a Start Read (puts the SCA in the
receive mode and causes a read response
interrupt)

If the type of transmission is Transmit EOT,
the write response routine

1. (following the initial write response interrupt)
transmits the End of Transmission sequence

2. performs a Start Read

If the type of transmission is Transmit TEL, the
write response routine

1. (following the initial write response interrupt)
transmits the Telephone sequence

2. performs a Start Read

Read Response (Transmit). If the type of trans-
mission is Transmit Data, the read response routine

1. (when the write response routine has transmitted
the Start of Record sequence, using the ap-
propriate start of record character, followed
by the data characters, followed by the End of
Record sequence) expects to receive an ac-
knowledgement including the appropriate
acknowledgement character--ACK1 for odd
numbered records, ACK2 for even numbered
records--or the Error Received sequence

2. (if the appropriate acknowledgement is received)
turns the line around, and begins transmission
of the IDLE character for 1. 5 seconds (the
Transmit Data operation is complete)

3. (if the Error Received sequence is received)
decrements the retry counter by 1 and re-issues
the initial Start Write to transmit the data record

4. (if, after 7 attempts to transmit the data record,
the appropriate acknowledgement is not received)
branches to the user's error routine

5. (on return from the user's error routine) resets
the retry counter to 7 and re-issues the initial

Start Write to transmit the data record if the
accumulator is positive

6. sets RTBSY off (zero), turns the line around,
and begins transmission of the IDLE character
for 1.5 seconds if the accumulator is negative
(the Transmit Data operation is complete)

7. performs a Close operation (see "Close" under
Call Processing, above) if the accumulator is
zero

8. (if nothing is received in response to the trans-
mitted data record) a timeout occurs

9. (if the something other than the appropriate
acknowledgement or the Error Received sequence
is received) decrements the retry counter by 1
and issues the Start Write to transmit the Inquiry
sequence; then turns the line around and expects
to receive the appropriate acknowledgement

If the type of transmission is Transmit EOT, the
read response routine

1. (when the write response routine has transmitted
the End of Transmission sequence) expects to
receive the End of Transmission sequence

2. (if the End of Transmission sequence is received)
sets RTBSY off (zero), turns the line around,
and begins the transmission of the IDLE char-
acter for 1.5 seconds (the Transmit EOT
operation is complete)

3. (if the End of Transmission sequence is not
received) decrements the retry counter by 1
and re-issues the initial Start Write to transmit
the End of Transmission sequence

4. (if, after 7 attempts to transmit the End of
Transmission sequence, the End of Transmis-
sion is not received in response) branches to
the user's error routine

5. (on return from the user's error routine) resets
the retry counter to 7 and re-issues the initial
Start Write to transmit the End of Transmission
sequence if the accumulator is positive

6. sets RTBSY off (zero), turns the line around,
and begins transmission of the IDLE character
for 1.5 seconds if the accumulator is negative
(the Transmit EOT operation is complete)

7. performs a Close operation (see "Close" under
Call Processing, above) if the accumulator is
zero

If the type of transmission is Transmit TEL, the
read response routine

1. (when the write response routine has transmitted
the Telephone sequence) expects to receive the
Telephone sequence in response

108. 3

2. (if the Telephone sequence is received) sets
RTBSY off (zero), turns the line around, and
begins transmission of the IDLE character for
1.5 seconds (the Transmit TEL operation is
complete)

3. (if the Telephone sequence is not received)
decrements the retry counter by 1 and re-issues
the initial Start Write to transmit the Telephone
sequence

4. (if, after 7 attempts to transmit the Telephone
sequence, the Telephone sequence is not
received in response) branches to the user's
error routine

5. (on return from the user's error routine) resets
the retry counter to 7 and re•-issues the initial
Start Write to transmit the Telephone sequence
if the accumulator is positive.

6. sets RTBSY off (zero), turns the line around,
and begins transmission of the IDLE character
for 1.5 seconds if the accumulator is negative
(the Transmit TEL operation is complete)
performs a Close operation (see "Close" under
Call. Processing, above) if the accumulator is
zero

Timeout (Transmit). If a timeout interrupt occurs,
the timeout routine

1. branches to the read response routine to handle
the timeout as if an invalid response was
received

Write Response (Receive). The write response
routine

(if a data record was received in the last
Acknowledge and Receive operation) transmits
an acknowledgement, including the appropriate
acknowledgement character--ACK1 for odd
numbered records, ACK2 for even numbered
records (if the acknowledge is to be positive);
then performs a Start Read (puts the SCA in the
receive mode and causes a read response
interrupt)
(if a data record was received in the last
Acknowledge and Receive operation) transmits
the Error Received sequence (if the acknowledge-
ment is to be negative); then performs a Start
Read
(if the End of Transmission sequence has been
received) transmits the End of Transmission
sequence; then performs a Start Read

4. (if the Telephone sequence has been received)
transmits the Telephone sequence; then performs
a Start Read

Read Response (Receive). The read response routine

1. (after the appropriate acknowledgement has been
transmitted) expects to receive (1) the Start of
Record sequence, followed by the data record
(including ILRCs, if required), followed by the
End of Record sequence,(2) the End of Trans-
mission sequence,(3) the Telephone sequence, or
(4) the Inquiry sequence

2. (while receiving data characters) builds an LRC
to check against the ILRC/LRC received

3. (if 1 above is received) compares the LRC built
against the ILRC/LRC and indicates an error in
the data record if they are not identical

4. (if 1 without errors, or 2 above is received) sets
RTBSY off (zero), turns the line around, and
begins transmission of the IDLE character for
1.5 seconds (the Acknowledge and Receive
operation is complete)

5. (if 3 above is received) branches to the user's
error routine

6. (on return from the user's error routine) trans-
mits the Telephone sequence; then performs
a Start Read (puts the SCA in receive mode and
causes a read response interrupt)

7. (if 4 above is received) turns the line around,
re-transmits the appropriate acknowledgement;
then performs a Start Read

8. (if characters other than one of the above--1, 2,
3, or 4-- or 1 above, with errors, are received)
decrements the retry counter by 1, turns the
line around, and transmits the Error Received
sequence; then performs a Start Read

9. (if, after 7 attempts, one of 1, 2, 3, or 4 above
is not received) branches to the user's error
routine

10. (on return from the user's error routine) resets
the retry counter to 7 and re-transmits the
Error Received sequence attempting again to
receive one of 1, 2, 3, or 4 above, if the
accumulator is positive

11. sets RTBSY off (zero), turns the line around,
and begins transmission of the IDT,E character
for 1.5 seconds if the accumulator is negative
(the Acknowledge and Receive operation is
complete)

12. performs a Close operation (see "Close" under
Call Processing, above) if the accumulator is
zero

13. (if nothing is received in response to the last
acknowledgement transmitted) a timeout occurs

Timeout (Receive). The timeout routine

1. (if nothing is received in response to the last
acknowledgement transmitted) branches to the

108.4

read response routine to handle the timeout as 	 Close
if an invalid response was received

SYNCHRONOUS COMMUNICATIONS ADAPTER
SUBROUTINE (SCAT2)

Call Processing

Chart: GA

The call processing portion of SCAT2

• Checks the call parameters for errors. SCAT2
exits to the pre-operative error trap (word 4010
in COMMA) on any errors detected.

• Performs an Auto Answer, Alarm, Test, or
Close operation.

• Sets up, according to the call parameters, the
required switches and storage locations. These
switches and storage locations are used by the
interrupt processing portion of SCAT2 to perform
the requested operation during subsequent
interrupts.

• Initiates a Receive, Transmit Block, Transmit
Text, or Transmit End operation.

When entered via LIBF, SCAT2 saves the contents
of index registers 1 and 2, the accumulator, the
extension, and the status indicators. SCAT2 then
performs the processing described below for the
various operations.

Test

If RTBSY is non-zero, SCAT2 returns to the calling
routine at LIBF+2. If RTBSY equals zero, SCAT2
returns to the calling routine at LIBF+3,

Auto Answer

According to digit 3 of the control parameter, SCAT2
either disables the auto answer interrupt and returns
to the calling routine at LIBF+2 or enables the auto
answer interrupt, saves the I/O area address param-
eter at ANS, and returns to the calling routine at
LIBF+3.

Alarm

According to digit 3 of the control parameter, SCAT2
either turns the audible alarm on or turns it off. In
either case, SCAT2 returns to the calling routine at
LIBF+2.

SCAT2 resets the SCA, clears the appropriate
switches and storage locations, disconnects the SCA
from the communications line, and returns to the
calling routine at LIBF+2.

Receive, Transmit Block, Transmit Text, Transmit
End

SCAT2, according to the call parameters, sets up
the switches and storage locations required for the
requested operation (see Switches and Storage
Locations). In all cases the idle register is loaded
with the SYN character. The acknowledgements are
initialized for a Receive Initial or Transmit Initial
operation. The SCA is placed in the receive mode for
a Receive Initial operation; otherwise, it is placed in
the synchronize mode. SCAT2 then sets RTBSY non-
zero and returns to the calling routine at LIBF+4.

Error Statistics

The address to an error statistics log is given to
the user.

Options

According to digit 2 of the control parameter, the
options specified in digit 4 of the control parameter
are either enabled or disabled.

Interrupt Processing

Charts: GB, GC

The interrupt processing portion of SCAT2

• Handles read response, write response, and time-
out interrupts for Receive, Transmit Block,
Transmit Text, and Transmit End operations
according to the pertinent switches and storage
locations.

• Handles the auto answer request interrupt.

• Checks for errors in the data and communication
sequences received. SCAT2 exits to the user's
error routine to process any errors detected.

• Maintains an error statistics log of certain errors.

• Logs timeouts and all characters transmitted and
received.

108.5

During the series of interrupts initiated by the
call processing portion of SCAT2, the interrupt
processing portion performs the Receive, Transmit
Block, Transmit Text, or Transmit End operation
according to the switches and storage locations set u}:
in the call processing. An interrupt occurs (1) when
a character has been received in or transmitted by
the SCA, (2) on a timeout of the receive (3 second)
timer, (3) on a timeout of the transmit (1.5 second)
timer used during transmission of Normal EBCDIC
text, (4) on a timeout of the program (approximately

1

 22 second) timer used during transmission of Full-
Transparent text, or (5) on a timeout of the program
timer during a Receive Initial operation if the pro-
gram timer is specified to be used. The interrupt
processing consists of updating the switches and
storage locations(see Switches and storage Locations),
error checking, and reception or transmission of the
next message or control character, as appropriate.
After processing an interrupt, SCAT2 returns to the
interrupted program.

When entered from ILSO1 due to an interrupt by
the SCA, SCAT2 senses and resets the device status
word (DSW) to determine the type of interrupt.
SCAT2 interrogates the DSW bits in, the following
order: auto answer request (bit 4), ready (bit 7),
read response (bit 0), write response (bit 1), and
timeout (bit 3). According to the DSW bits SCAT2
performs the processing described below for the
various types of interrupt.

Auto Answer Request

If the auto answer request interrupt is disabled,
SCAT2 returns to ILS01. If it is enabled, SCAT2
stores a non-zero value at the address found in ANS,
disables the auto answer request interrupt, and
normally returns to ILS01. If an exit to a user's
routine is specified in an optional call to SCAT2, this
exit with the accumulator equal to zero is taken
before the return to ILS01.

Ready

The ready bit of the DSW must equal one in order for
SCAT2 to process a read response, write response,
or timeout interrupt. If the ready bit equals zero,
an error is indicated and SCAT2 branches to the user's
error routine.

Read Response

In the receiving station, read response interrupts
occur as message characters are received; in the
transmitting station, read response interrupts occur

as acknowledgements to the messages transmitted
are received.

SCAT2 reads the character received by the SCA
into storage at BUF. Then, according to the switch-
es and storage locations set up in the call processing
or in previous interrupt processing, SCAT2 trans-
fers a message character to the user's I/O area or
determines which control character was received.
SCAT2 tests, sets, and/or resets the switches and
storage locations depending on the character
received and returns to ILSO1.

During the reception of a message SCAT2 resets
the 3-second timer each time the synchronous idle
sequence is received to prevent an erroneous receive
timeout.

Write Response

In the receiving station, write response interrupts
occur as acknowledgements to the messages received
are transmitted; in the transmitting station, write
response interrupts occur as message characters
are transmitted.

SCAT2 determines from the switches and storage
locations set up in the call processing or in previous
interrupt processing the message or control char-
acter to be transmitted. SCAT2 tests, sets, and/or
resets the switches and storage locations depending
on the character to be transmitted. SCAT2 then
loads the character to be transmitted into the SCA
for transmission and returns to ILSO1.

During the transmission of Full-Transparent text,
SCAT2 loads the idle register in the SCA with the
DLE character so that the proper synchronous idle
sequence (DLE SYN) is transmitted whenever a
character gap occurs.

Timeout

SCAT2 tests, sets, and/or resets switches and
storage locations depending on the operation in
progress and the point at which the timeout occur-
red. SCAT2 then, if appropriate, performs special
processing according to the switches and storage
locations and returns to ILS01.

The program timer causes a timeout interrupt
every .22 seconds (approximately) during the trans-
mission of Full-Transparent text. This interrupt
does not occur simultaneously with a write response
interrupt. As the result of this interrupt SCAT2
sets TOIND non-zero, causing the synchronous idle
sequence (DLE SYN) to be transmitted on the next
two write response interrupts.

The transmit timer causes a timeout interrupt
every 1.5 seconds during the transmission of

108. 6

Normal EBCDIC text. This interrupt occurs
simultaneously with a write response interrupt.
As the result of this interrupt SCAT2 sets TOIND
non-zero, causing the synchronous idle sequence
(SYN SYN) to be transmitted.

The receive timer determines the maximum time
(3 seconds) that (1) a transmitting station will wait
for a reply or (2) a receiving station will .receive
message characters between synchronous idle
sequences. The receive timer is reset and re-
started each time the synchronous idle sequence is
received. As the result of a receive timer interrupt,
SCAT2 sets XMENQ non-zero, causing the trans-
mitting station to transmit ENQ next.

The program timer causes a timeout interrupt
during a Receive Initial operation if no ENQ is
received and the program timer is specified to be
used.

Switches and Storage Locations

ACK and ACK+1

Use/Contents. Storage locations containing the
alternating positive acknowledgements. ACK con-
tains the current acknowledgement; ACK+1 contains
the alternative acknowledgement.

Notes. During the call processing for a Receive/
Transmit Initial or Transmit End operation, ACK
and ACK+1 are loaded with ACKO and ACK1, respec-
tively. During interrupt processing the contents
of ACK and ACK+1 are exchanged following the
successful completion of each Receive Continue,
Transmit Block, or Transmit Text operation.

ANS

Use/Contents. A storage location containing the
address of the location where the auto answer indica-
tion is to be stored.

Notes. During the call processing for an Auto
Answer Enable operation, the I/O area address
parameter is saved at ANS. During interrupt process-
ing the location whose address is contained in ANS
is set non-zero whenever an auto answer request
interrupt occurs.

BCCA

Use/Contents. A storage location containing the
CRC-16 accumulated for the message just trans-
mitted/received.

Notes. The CRC-16 is accumulated in BCCA by the
CALC subroutine.

BCCR

Use/Contents. A storage location containing the
CRC-16 received following the message just
received.

Notes. The CRC-16 received in BCCR is compared
to the CRC-16 accumulated by the receiving station
in BCCA to determine whether or not the message
was received correctly.

BCC1

Use. A switch indicating in a Transmit operation
which half of the CRC-16 is being transmitted; in a
Receive operation that the next character to be
received is the CRC-16.

Settings. For a Transmit operation,

Zero = Transmit the second half of the CRC-16
Non-zero = Transmit the first half of the CRC-16

For a Receive operation,

Zero = negative of non-zero
Non-zero = CRC-16 is next character to be

received

Notes. BCC1 is set non-zero in a Receive operation
when the end character (ETB or ETX) has been
received or in a Transmit operation when the number
of characters to be transmitted (see COUNT) has
been decremented to zero. BCC1 is set to zero
after the entire CRC-16 has been received (Receive
operation) or after the first half of the CRC-16 has
been transmitted (Transmit operation).

BCC2

Use. A switch indicating which half of the CRC-16
is being received.

Settings.

Zero = Receive the first half of the CRC-16
Non-zero = Receive the second half of the CRC-16

Notes. BCC2 is set non-zero after the first half of
the CRC-16 has been received. BCC2 is set to zero
after the second half of the CRC-16 has been received.

108. 7

BUF	 DSW

Use/Contents. A storage location through which
message characters pass when being transferred
from the I/0 area to the SCA or from the SCA to the
I/O area.

Notes. The character in BUF is the character
received by the SCA that caused the last read response
interrupt or the character to be transmitted next by
the SCA.

CLOSE

Use. A switch indicating that a Close operation is to
be performed if no response is received to a trans-
mitted EOT.

Settings.

Zero = Close if no response to EOT
Non-zero = Do NOT Close if no response to EOT

Notes. CLOSE is set during the call processing
for a Transmit End operation according to digit 4
of the control parameter.

COUNT

Use/Contents. A storage location containing the
number of characters transmitted from or the number
of characters that were stored into the user's I/0 area.

Notes. The number in COUNT is incremented during
interrupt processing as characters are transmitted/
received. At the end of a Transmit operation, COUNT
equals the number of characters transmitted. At the
end of a Receive operation, COUNT equals the number
of characters stored in the I/O area.

:DLSTX

Use. A switch indicating that the DLE STX sequence,
which precedes a message or portion of a message
in Fun-Transparent text, has not yet been encount-
ered in the message being transmitted.

Settings.

Zero = negative of non-zero
Non-zero = DLE STX sequence not yet encountered

Notes. DLSTX is set non-zero if the first character
of a message in Full-Transparent text is not DLE.
DLSTX is set to zero after the character following
the first DLE (i. e. , STX) has been transmitted.

Use/Contents. A storage location containing the
device status word (DSW) saved following the last
interrupt.

EOTRP

Use/Contents. A switch indicating whether a read
response should be performed after transmitting an
EOT or not.

Settings.

Zero = Read response to EOT
Non-zero = Do NOT Read response to EOT

Notes. EOTRP is set during call processing for a
Transmit End operation according to digit 3 of the
control parameter.

ERRU

Use/Contents. A storage location containing the
error code to be placed in the accumulator before
branching to the user's error routine.

Notes. ERRU contains the error code for the post-
operation error detected by SCAT2.

FCODE

Use. A switch indicating the function to be perform-
ed.

Settings.

Negative = Receive
Zero = Transmit End
Positive = Transmit Block/Text

Notes. FCODE is set during call processing accord-
ing to digit 1 of the control parameter.

FIRST

Use. A switch indicating whether or not the first
character has been transmitted from or received in
the user's I/O area.

Settings.

Zero = First character transmitted/received
Non-zero = First character not yet transmitted/

received

108. 8

Notes. FIRST is set non-zero during call process-
ing. FIRST is set to zero during interrupt process-
ing when the first character is transferred to or
from the user's I/O area.

IOAR

Use/Contents. A storage location containing the
address of the user's I/0 area.

Notes. The I/O area address parameter is saved
at IOAR during call processing,

LSDLE

Use. A switch indicating that the last character
transmitted or received was DLE.

Settings.

Zero = negative of non-zero
Non-zero = Last character was DLE

Notes. LSDLE is set to zero during call processing;
it is set to zero during interrupt processing when-
ever it is non-zero and the character being trans-
mitted is not DLE. LSDLE is set non-zero during
interrupt processing when DLE is transmitted or
received.

OPTSW

Use/Contents. A switch indicating which user options
are active.

Settings. The options are indicated by bit switches.

Bit 13 = 1 A no-error exit to a user 's routine is
provided (acc = 0000

16)
 when the last

interrupt of an operation has been ser-
viced.

Bit 14 = 1 An immediate exit to a user's routine is
provided (acc = 0020) when a timeout6.occurs prior to receiving an ENQ on a
Receive Initial operation using the third
timer.

Bit 15 = 1 An immediate exit to a user's routine is
provided (acc = 0020) when a timeout6.occurs prior to receiving an ENQ on a
Receive Initial operation using the normal
3-second timer.

Notes; The bit switches are set and reset during
call processing.

OVFLO

Use. A switch indicating that the message received
exceeds the size of the user's I/0 area.

Settings.

NXTPD

Use/Contents. A switch indicating that a pad (FF16)
character is to be transmitted next.

Settings,

Zero = Do not transmit the pad character
Non-zero = Transmit the pad character

Notes. NXTPD is set non-zero after each turnaround
character or sequence has been transmitted. NTXPD
is set to zero after the pad character has been trans-
mitted.

OPERR

Use/Contents. A storage location containing the
address of a user's routine which is to be entered
as specified in an optional call to SCAT2.

Notes. The address parameter is saved at OPERR
during call processing.

Zero = negative of non-zero
Non-zero = Overflow of the user's I/0 area has

occurred

Notes. OVFLO is set non-zero during interrupt
processing when the character just received cannot
be stored in the user's I/O area (i.e. , COUNT is
now equal to WDCNT+1).

PACK

Use/Contents. A switch indicating whether the
message to be transmitted/received is
specified as unpacked (i. e. one character per
word) or packed (two characters per word).

Settings.

Zero = Message specified as unpacked
Non-zero = Message specified as packed

Notes. PACK is set during call processing according
to digit 2 of the control parameter.

108. 9

POINT

Use/Contents. A storage location containing the
address, of the location within the user's I/0 area
where the next character to be transmitted is located
or where the next character received is to be stored.

Notes. The address in POINT is incremented during
interrupt processing as characters are transmitted
or received.

RETRY'

Use/Contents. A storage location used as the retry
counter. RETRY contains the number of times an
operation is to be attempted,

Notes. RETRY is set to eight during call processing.
RETRY is decremented by one each time an operation
is reattempted. When RETRY equals zero, it is
reset to 7 and an exit is made to the user's error
routine.

RTBSY

Use. A switch indicating whether or not SCAT2 is
busy, i. e. , is performing a previously initiated
operation that has not been completed.

Settings.

Zero = SCAT2 not busy
Non--zero = SCAT2 busy

Notes. RTBSY is set non-zero during the call
processing for Receive, Transmit Block, Transmit
Text, and Transmit End operations. RTBSY is set
to zero during interrupt processing when the opera-
tion is completed.

STXIN

Use. A switch indicating that STX is the next char-
acter to be transmitted or received.

Settings.

Zero = negative of non-zero
Non-zero = Next character to be transmitted/

received is STX

Notes. STXIN is set non-zero when the first DLE
character of a message in Full-Transparent text
has been transmitted/received. STXIN is set to
zero after the character following the first DLE
(i. e. , STX) has been transmitted/received.

SUBF

Use. A switch indicating the sub-function of the
function to be performed.

Settings.

Negative = Receive/Transmit Initial or Transmit
EOT

Zero = Receive/Transmit Continue or Transmit
DLE EOT

Positive = Receive Repeat

Notes. SUBF is set during call processing accord-
ing to digit 2 of the control parameter.

SYN2

Use. A switch indicating that the synchronous idle
sequence is to be transmitted next.

Settings.

Zero = negative of non-zero
Non-zero = Insert the synchronous idle sequence

following a transmit timeout
SLVMS

Use. A switch indicating whether this station, in the
event of contention, is to be the master station or
the slave station.

Settings.

Zero = Master
Non--zero = Slave

Notes. ;SLVMS is set during the call processing for
a Transmit Initial Block/Text operation according
to digit 3 of the control parameter.

Notes. SYN2 is set to zero during the call process-
ing for a Transmit Initial or Transmit Continue
operation; it is set to zero during interrupt process-
ing after the synchronous idle sequence has been
transmitted. SYN2 is set non-zero during interrupt
processing when a timeout occurs during trans-
mission.

SYN5

Use/Contents. A storage location containing the
number of SYN (padding) characters that are to
precede every transmission.

108.10

Notes. During call processing SYN5 is set to five.
During interrupt processing the number in SYN5 is
decremented by one for each SYN character trans-
mitted. When SYN5 equals zero, transmission of
the message characters or control sequence follows.

TBTX

Use. A switch indicating whether Block or Text
transmission is to be performed.

Settings.

Zero = Block
Non-zero = Text

Notes. TBTX is set during call processing accord-
ing to digit 1 of the control parameter.

TEND

Use. A switch indicating that the next character to
be transmitted is ETB (in a Transmit Block opera-
tion) or ETX (in a Transmit Text operation).

Settings.

Zero = negative of non-zero
Non-zero ETB or ETX is next character to be

transmitted

Notes. TEND is set non-zero when all characters
of a message in Full-Transparent text has been
transmitted. TEND is set to zero after the end
character (ETB or ETX) has been transmitted.

TEXTM

Use. A switch indicating the type of text to be
transmitted.

Settings.

Zero = Normal EBCDIC text
Non-zero = Full-Transparent text

Notes. TEXTM is set during the call processing for
a Transmit Block/Text operation according to digit
4 of the control parameter.

TOIND

Use. A switch indicating that a receive timeout has
occurred.

Settings.

Zero = negative of non-zero
Non-zero = Receive timeout has occurred

Notes. TOIND is set non-zero when a receive
timeout occurs in the transmitting station while
waiting to receive an acknowledgement. TOIND is
set to zero when an acknowledgement is received.

TRANS

Use. A switch indicating that Full-Transparent text
is being transmitted/received or that the CRC-16 is
the next character to be received.

Settings.

Zero = negative of non-zero
Non-zero = Full-Transparent text being trans-

mitted/received, or CRC-16 is next
character to be received (if BCC1 is
also non-zero)

Notes. TRANS is set to zero during call processing;
it is set to zero during interrupt processing after
the end character (ETB or ETX) has been trans-
mittedoor after an acknowledgement has been trans-
mitted. TRANS is set non-zero when the sequence
DLE STX is encountered in transmitting or receiving,
or when the end character (ETB or ETX) is received
(see BCC1).

USERR

Use/Contents. A storage location containing the
address of the user's error routine.

Notes. The error routine address parameter is
saved at USERR during call processing.

WDCNT

Use/Contents. A storage location containing the word
count of the message for a Transmit operation or the
length of the I/O area for a Receive operation, if the
message is specified as unpacked; i. e. one character
per word. If the message is specified as packed, i. e.
two characters per word, the storage location con-
tains the number of characters to be transmitted or
the maximum number of characters to be received.

Notes. The contents of the first word of the user's
I/0 area are obtained and saved at WDCNT during
call processing.

108.11

WD17I	 Settings.

Use. A switch indicating whether or not the SCAT
counter, word 1710

in COMMA, has been incremented
by one.

Settings.

Zero = Word 17
10 has been decremented by 1 or
yehas not t been incremented by 1.

Non-zero = Word 17 10 has been incremented by 1.

Notes. WD17I is set non-zero during call processing
when the first operation other than a Close operation
is initiated, at the same time that word 17 	 is in-
cremented by one. WD17I is set to zero Wen a Close
operation is performed, at the same time that word
17 10 is decremented by one.

WRACK

Use. A switch indicating that an incorrect acknowl-
edgement was received prior to a receive timeout.

Settings.

Zero = negative of non-zero
Non-zero = Incorrect acknowledgement received

prior to a receive timeout

XMENQ

Use. A switch indicating that the next character to be
transmitted or the first character to be received must
be ENQ.

Settings.

Zero = negative of non-zero
Non-zero = Next character transmitted or first

character received must be ENQ

Notes. XMENQ is set non-zero during the call process-
ing for a Receive/Transmit Initial operation; it is
set non•zero during interrupt processing whenever a
receive timeout occurs while attempting to receive an
acknowledgement. XMENQ is set to zero during
interrupt processing when ENQ has been transmitted
or received.

XMESS

Use. A switch indicating that a message is to be
transmitted.

Zero = negative of non-zero
Non-zero = Entire message has not yet been

transmitted

Notes. XMESS is set non-zero during the call
processing for a Transmit Initial or Transmit
Continue operation. XMESS is set to zero during
interrupt processing when the entire message has
been transmitted.

XNAK

Use. A switch indicating that NAK is the next
character to be transmitted.

Settings.

Zero = negative of non-zero
Non-zero = Next character to be transmitted is

NAK

Notes. XNAK is set non-zero during the call process-
ing for a Receive Repeat operation; it is set non-
zero during interrupt processing when an error is
detected while receiving a message. XNAK is set to
zero during interrupt processing when NAK has been
transmitted.

SYNCHRONOUS COMMUNICATIONS ADAPTE R

SUBROUTINE (SCAT3)

Call Processing

Chart: GD

The call processing performed by the SCAT3 sub-
routine is identical to that performed by the SCAT2
subroutine, except that (1) SCAT3 does not perform
the Auto Answer operation as does SCAT2, (2) no
options can be specified as in SCAT2, (3) SCAT3
initiates the Monitor operation in addition to those
initiated by SCAT2, and (4) SCAT3, in initiating a
Transmit Initial operation, places the SCA in the
receive mode initially instead of in the synchronize
mode, as in SCAT2.

Monitor

SCAT3 saves the selection address and the polling
address specified in the Monitor operation in locations
SELA and POLLA, respectively. SCAT3 sets up the

108.12

switches and storage locations required for the
Monitor operation (see Switches and Storage Loca-
tions). The idle register is loaded with the SYN
character and the SCA is placed in the receive mode.
SCAT3 then returns to the calling routine at LIBF+4,

Interrupt Processing

Charts: GE, GF, GG

The interrupt processing performed by the SCAT3
subroutine is identical to that performed by the SCAT2
subroutine, except that (1) the auto answer request
interrupt, processed by SCAT2, is not processed by
SCAT3, (2) interrupt processing for the Monitor
operation, not found in SCAT2, is performed, and (3)
in the case of an error detected during a Monitor
operation, the operation is retried indefinitely, and
no exit is made to the user's error routine, as in
SCAT2.

Switches and Storage Locations

The switches and storage locations used by SCAT3
are identical to those used by SCAT2, except as
noted below.

ADDR

Use. A switch indicating that the polling or selection
address was received while monitoring.

Settings.

Zero = negative of non-zero
Non-zero = SCAT3 is in control mode

Notes. CMODE is set to zero during the call process-
ing for a Receive/Transmit Initial or Monitor
operation; it is set to zero during interrupt process-
ing whenever an SOH or STX character is received.
CMODE is set non-zero during interrupt process-
ing when EOT has been received.

EOTRP

There is no switch EOTRP in SCAT3.

FCODE

Use. A switch indicating the function to be performed.

Settings.

Negative = Receive
Zero = Monitor
Positive = Transmit Block/Text/End

Notes. FCODE is set during call processing accord-
ing to digit 1 of the control parameter. During
interrupt processing FCODE is set to zero if SCAT3
returns to the Monitor operation.

ITBSK
Settings.

Positive = Polling address received
Negative = Selection address received
Zero = No address received

Notes. If ADDR is set non-zero and the next charac-
ter received is not ENQ, NOTME is then set non-zero.

ANS

There is no storage location ANS in SCAT3.

CLOSE

There is no switch CLOSE in SCAT3.

CMODE

Use. A switch indicating that SCAT3 is in control
mode, i. e. , is able to recognize the polling or
selection address as such.

Use. A switch indicating that the next two characters
to be received while monitoring are to be ignored.

Settings.

Zero = negative of non-zero
Non-zero = Ignore the next two characters

Notes. ITBSK is set non-zero when an intermediate
block check (ITB) character or the sequence DLE ITB
is received while monitoring, in order that the two
following block check characters not be mistaken for
control characters.

LSSYN

Use. A switch indicating that the last character
recognized while monitoring Normal EBCDIC text was
a SYN character. ' When the sequence SYN SYN has
been recognized while monitoring Normal EBCDIC
text, the receive timer is reset.

108.13

Settings.

Zero = negative of non-zero
Non-zero = Last character recognized was a SYN

character

Notes. LSSYN is set non-zero during interrupt
processing whenever a SYN character has been
recognized while monitoring Normal EBCDIC text.
LSSYN is set to zero during interrupt processing
whenever any character other than the SYN character
has been recognized while monitoring Normal
EBCDIC text or whenever a timeout has occurred.

MONIT

Use. A switch indicating that a Receive Initial or
Transmit Initial operation is monitoring for the selec-
tion or polling address, respectively.

Settings.

Zero = negative of non-zero
Non-zero = Monitor for selection or polling address

Notes. MONIT is set non-zero during the call pro-
cessing for a Receive Initial or Transmit Initial
operation. MONIT is set to zero when the selection
address is received during a Receive Initial operation,
or when the polling address is received during a
Transmit Initial operation.

NOTME

Use. A switch indicating that, while monitoring, an
address was received that did not match the specified
polling or selection address.

Settings.

Zero = negative of non-zero
Non-zero --- Station's address was not received (but

another station's was received)

Notes. NOTME is used to determine whether a
response should be transmitted when an ENQ has been
received.

OPERR

There is no storage location OPERR in SCAT3.

OPTSW

There is no switch OPTSW in SCAT3.

POLLA

Use/Contents. A storage location containing the
polling address specified in the last Monitor opera-
tion initiated.

Notes. The polling address is saved at POLLA during
call processing.

POLLI

Use/Contents. A storage location containing the
address of the location following the location in the
user's program that contains the polling address.
The address found at POLLI is used by SCAT3 in
storing a non-zero value in the location following the
polling address whenever that polling address is
received, except during a Transmit Initial operation.

Notes. The appropriate address is saved at POLLI
during call processing.

SELA

Use/Contents. A storage location containing the
selection address specified in the last Monitor
operation initiated.

Notes. The selection address is saved at SELA
during call processing.

SELI

Use/Contents. A storage location containing the
address of the location following the location in the
user's program that contains the selection address.
The address found at SELI is used by SCAT3 in
storing a non-zero value in the location following the
selection address whenever that selection address is
received, except during a Receive Initial operation.

Notes. The appropriate address is saved at SELI
during call processing.

SLVMS

There is no switch SLVMS in SCAT3.

TBTX

Use. A switch indicating whether Block, Text, or
EOT transmission is to be performed.

108.14

Settings.	 ing when SCAT3 resynchronizes with the transmitting
station.

Negative = EOT
Zero = Block
Positive = Text

Notes. TBTX is set during call processing accord-
ing to digit 1 of the control parameter.

TRNSP

Use. A switch indicating the type of text being
monitored by SCAT3.

Settings.

Zero = Monitoring Normal EBCDIC text
Non-zero = Monitoring Full-Transparent text

Notes. TRNSP is set non-zero during interrupt
processing when DLE STX is received while monitor-
ing. TRNSP is set to zero during interrupt process-

XNAK

Use. A switch indicating that NAK is the next
character to be transmitted.

Settings.

Zero = negative of non-zero
Non-zero = Next character to be transmitted is

NAK

Notes. XNAK is set non-zero during the call process-
ing for a Receive Repeat operation. XNAK is set
non-zero during interrupt processing when an error
is detected while receiving a message or when the
selection address is received and SCAT3 is not
prepared to receive data. XNAK is set to zero
during interrupt processing when NAK has been
transmitted.

108.15

SECTION 13. SYSTEM DEVICE SUBROUTINES

The system device subroutines are a group of
special subroutines used exclusively by the moni-
tor system programs. These are the only device
subroutines used by the monitor system programs,
aside from DISKZ. They are listed below:

DISKZ
1403 Subroutine
1132 Subroutine

Console Printer Subroutine
2501/1442 Subroutine
1442/1442 Subroutine
1134/1055 Subroutine
Keyboard/Console Printer Subroutine
2501/1442 Conversion Subroutine
1134/1055 Conversion Subroutine (dummy)
Keyboard/Console Printer Conversion Sub-

routine (dummy)

Section 13. System Device Subroutines 109

SECTION 14. STAND-ALONE UTILITIES

DISK CARTRIDGE INITIALIZATION PROGRAM
(DCIP)

When DCIP is entered, a message is printed in-
structing the user to select the particular DCIP
function desired. Depending on his choice, one of
the functions described below is performed.

All messages, entries through the Console Entry
switches, and operator instructions are printed on
the Console Printer. All user options are entered
through the Console Entry switches.

After every cylinder on the cartridge has been
tested in the above manner, the program writes three
defective cylinder addresses and the cartridge ID into
the first four words of sector @IDAD. Where defec-
tive cylinder addresses do not exist, /0658 is written.
Words 7-30 of sector @IDAD are set to zeros. DCIP
also writes an error message program, beginning at
word 31. If a cold start is attempted using this non-
system cartridge, the error message program prints
an appropriate message and no cold start is effected.

DCOM (sector @DCOM) is initialized as follows:

DISK INITIALIZATION

A message is printed instructing the user to specify
the number of the physical drive on which is mounted
the cartridge to be initialized. At the same time,
the user is given the option of doing an "address
only" initialization, that is, an initialization that
writes correct addresses on a cartridge without
disturbing any of the data on that cartridge. The
user is then asked to specify the cartridge ID.

An entire cylinder of the cartridge is written with
one of three test patterns. The patterns used are
/AAAA, /5555, and /0000. The cylinder is then
read back into core storage, one sector at a time,
using double-buffering.

While one sector is being read, every word of
another is being examined to see that it compares
with the data that was written. If no errors occur
in any sector of the cylinder, the same procedure is
repeated for the next pattern, and so on until all
three patterns have been tested.

However, if any disk operation causes the error
bit of the disk device status word (DSW) to be set, or
if the data read does not compare with that written,
then the entire write/read/compare procedure is
repeated fifty times on the same cylinder with the
same test pattern. A second error, while in the
retry mode, causes DCIP to indicate the cylinder as
being defective.

If (1) cylinder zero is defective, (2) more than
three cylinders are defective, or (3) it is impossible
to write a sector address, DCIP types out an error
message indicating that the cartridge may not be
used.

	

Location
	

Value Inserted

	

#ANDU
	

/0200

	

#BNDU
	

/0200

	

#FPAD
	

/0020

	

#CIDN	 Cartridge ID

	

#CIBA
	

/0008

	

#ULET
	

/0002

LET (sector 2) is initialized as follows:

Word	 Contents

1	 /0000
2	 /0020
3	 /0000
4

761	
//000130085
/7112 I The name 1DUMY (in name
/4528 I code)

8	 /0620

A message indicating that the initialization is com-
plete and the addresses of any defective cylinders are
printed on the Console Printer.

At this time, the user is given the option of doing
additional testing of the disk; i. e. , the write/read/
compare sequence may be repeated up to 31 times.

DISK DUMP.

The principal print device is determined by first
initiating a carriage space operation on the 1403
Printer. The device status word (DSW) for the 1403
is then sensed to see if the 1403 is busy. If it is not,

Section 14. Stand-Alone Utilities 111

the same procedure is followed with the 1132 Printer.
On the basis of the results of the above test, a word
that points to the appropriate conversion table and a
branch instruction that branches to the proper printer
call are set up.

The user enters through the Console Entry
switches the sector address (with the drive code) of
the first sector to be dumped and the number of con-
secutive sectors to be dumped.

The logical sector address is determined in the
following manner. The physical sector address is
decremented by eight for each defective cylinder
that has a lower sector address less than the cylinder
to be dumped from. If the sector being dumped is on
a defective cylinder, the sector is assigned the log-
ical sector address of DEAD. Defective cylinder
data for the cartridge is obtained from sector @MAD.

Each of the 320 data words of the, sector is con-
verted from binary to four hexadecimal characters of
the appropriate printer code. The data is then
printed, sixteen words per line.

DISK COPY

DCIP requests the user to enter the numbers of the
source and destination drives in the Console Entry
switches. The defective cylinder table from the
source cartridge is fetched and checked to verify that
the values in it are under 1624 and in ascending
order.

The source cartridge is copied sector by sector
onto the destination cartridge. The cartridge ID
and defective cylinder table in sector 0, cylinder 0
are not copied onto the destination cartridge. If a
system cartridge is being copied, the cartridge ID
found in DCOM is also not copied.

If a cylinder on the source cartridge is defective,
the following cylinder is copied to the destination
cartridge. If a cylinder on the destination cartridge
is defective, the cylinder to be copied from the source
cartridge is copied onto the following cylinder.

UCART

The user receives the 1130 Disk Monitor System on a
disk cartridge. The contents of this cartridge are
as follows: cylinder 0 contains a copy of the Resident
Image, including DISKZ, a copy of the CARD() sub-
routine, a special cold start program, and a disk-to-
card dump program; cylinders 1 through 202 contain
the system decks stored in card images, four cards
per sector.

The execution of a cold start with this cartridge
causes sector 0, cylinder 0 to be fetched. Sector 0,
cylinder 0 contains DISKZ and the special cold start
program. DISKZ is loaded into the locations it
normally occupies in the Resident Monitor; the spec-
ial cold start program immediately follows it. Con-
trol is transferred to the special cold start program.

The special cold start program fetches the Resi-
dent Image (sector 2, cylinder 0) into the locations it
normally occupies in low core storage, fetches the
CARDO subroutine (sector 3, cylinder 0) into core
storage at /0250, and fetches the disk-to-card dump
program into core storage at /0390. Control is
transferred to the disk-to-card dump program, which
punches the system decks and terminates.

The disk-to-card dump program uses a one-
cylinder buffer origined at its high-addressed end.

112

Failing sub-
routine ID Subroutine

error number
list

If necessary, determine which program
called the falling subroutine and where it
is located in core.

Analyze the calling program for correct
parameters and linkage. If necessary, con-
tinue tracing back several levels of calls.

PROGRAM ANALYSIS PROCEDURES

INTRODUCTION

The purpose of the Program Analysis Procedures
is to provide the user with a step-by-step method
for analyzing the execution of any monitor system
or user program. The procedure is problem-
oriented; it begins with some program malfunc-
tion, assists the user in defining the failing com-
ponent or function, and provides the facility for
detailed analysis of that component or function.

PROGRAM ANALYSIS PROCEDURES SUMMARY

Flowdiagram 1 shows the procedure used for program
analysis. At each step in the procedure, the parts of
this document that apply to that step are indicated.

IDENTIFICATION OF THE FAILING COMPONENT
OR FUNCTION

Flowdiagram 2 shows the procedure used to identify
the component or function failing. Where applicable
the parts of this document that are pertinent to that
identification are indicated.

Step	 Analysis Procedure

Start

Supporting Documentation

O

O

O

O

Determine which program is failing. If it is
a subroutine, determine its name and its
location in core.

Get a full core dump.
Core Dump
Procedures

Block out and identify the significant items
in the core dump listing .

Core Layouts

Core
Location Pro-
cedures

V
Analyze the failing subroutine: Sub-

-Correct input	 -Data
parameters	 -To and from Linkage

-Function code	 -I/0 area

routine Ana ly-

[G

eneral

sis Procedure
Subroutine
Data
Charts Subroutine

Looping
Capabilities

Flowdiagram 1. General Procedure for Program Analysis

Trace Back
Procedures

Subroutine
Data Charts

Program Analysis Procedures 113

Non-Zero
Monitor System Program execution
-A DSLET Listing will provide
reference to phase ID

Pre-operative I/O Error
-Invalid Control Function
-Device Not Ready

Error number in ACC
should identify subroutine.
Go to Subroutine
Maintenance Analysis Procedure

_ Post-operative I/O Error
P -Error Bits in DSW

H Using IAR contents, go to step 11

in Trace Back Procedures

Using IAR, XRI, XR2, XR3, ACC,
EXT, attempt to correlate back to
program. Go to step 11 in Trace
Back Procedures

Subroutine
Error Number
List

T
T

Trace Back
Procedures

Contents of:
$PST1 Level 1
$PST2 Level 2
$PST3 Level 3
$PST4 Level 4

Contents of
$PRET

Contents of
$PHSE

Reference	 Analysis Procedure Supporting Documentation

(Start

Other E mars;

Incorrect
Answer, etc.

Program
Ann lysis
Procedures

Dump as soon

as possible
after the fail-
ure.

Flowdiagram 2. Procedure for Identification of the Failing Compon.mt or Function

114

Error
in Principal
Print Device

Subroutine

SUBROUTINE ERROR NUMBER/ERROR STOP
LISTS

Table 8 lists the errors detected by the System
Library ISSs and system device subroutines by
error code, describes the conditions under which
the error is detected, and provides a list of cor-
rective actions for those errors.

Table 9 lists the error stop addresses and their
meanings.

CORE DUMP PROCEDURE

To obtain a dump of the contents of core storage,
perform the following (see Flowdiagram 3):

1. If the error symptoms indicate that an error
has occurred in the disk or disk I/O subroutine
(i.e. DISKZ), the System Core Dump program
should not be used, because this same disk I/O
subroutine is used to load the System Core
Dump program, thus destroying the information
needed.

2. Was there a NOCAL Dump included in the core
load? If there was, it may be used to obtain
the core dump. To obtain the core dump, set
the IAR to the entry point of the NOCAL Dump
and start.

3. If the error symptoms indicate an error in the
principal print device, then the System Core
Dump program should not be used, as it would
destroy any information needed.

4. To retain the maximum information, the stand-
alone dump procedure should be used.
a. By displaying core storage, copy down

locations /0000 to /0050.
b. Use the stand-alone printer dump to dump

the rest of core storage.
5. To obtain the core dump using the System Core

Dump program, set the IAR to /0000 and start.

Start

Flowdiagram 3. Core Dump Procedure

files, arrays, and COMMON variables were defined
and SOCALs were employed.

Figure 17, panel 2 shows the layout of the contents
of core storage during the execution of a user's
FORTRAN core load in which files, arrays, and
COMMON variables were defined. No LOCALs were
defined; no SOCALs were employed.

Figure 17, panel 3 shows the layout of the contents
of core storage during the execution of a user's
FORTRAN core load in which no LOCALs, files,
arrays, SOCALs were employed. COMMON vari-
ables were defined.

Figure 17, panel 4 shows the layout of the contents
of core storage during the execution of a user's
Assembler Language core load.

Figure 17, panel 5 shows the layout of the contents
of core storage during the execution of an RPG core
load. For a detailed description of the RPG core
load see IBM 1130 RPG Program Logic Manual,
Form Y21-0010.

Retain Console
Information-
-ACC, EXT,
XR I ,XR2,XR3
-Lights
-Device Status

CORE BLOCK DIAGRAMS

Figure 17, panel 1 shows the layout of the contents
of core storage during the execution of a user's
FORTRAN core load in which LOCAL subprograms,

CORE LOCATION PROCEDURES

The following core load elements are located by
means of the procedures given with the elements.

FAC (Floating Accumulator)
- - 3 words used as FORTRAN Floating Accumulator
- - Located at XR3 + /007D.

Program Analysis Procedures 11S

•Table 8. Error Number List

DETECTING DETECTING DETECTING DETECTING
HEXADECIMAL SYMBOLIC SUBROUTINE SUBROUTINE SUBROUTINE SUBROUTINE
ERROR NUMBER ERROR STOP DURING SYSTEM DURING DURING ASSEMBLER 'DURING RPG CORE ERROR EXPLANATION CORRECTIVE ACTION

IN ADDRESS PROGRAM FORTRAN LANGUAGE CORE LOAD EXECUTION
ACCUMULATOR EXECUTION CORE LOAD LOAD EXECUTION

EXECUTION

1000 $PRET System 1442/1442 CARDZ - 1442 - Device Not Ready 1442 - Ready the Device
Subroutine PNCHZ

- CARDO CARDO 1442-6,-7 - Device Not Ready
CARDI - Read initiated with

Last Card Indicator
on

PNCHO PNCHO 1442-5 - Device Not Ready
PNCHZ

$PST4 System 1442/1442 CARDZ CARDO 1442 - Device Not Ready 1442-5 - Run out the punch
Subroutine PNCHZ CARDI CARDO — Ready the Device

PNCHO PNCHO
1442-6,-7 - Ready the DevicePNCHZ

1001 $PRET - CARDO
CARD!

CARDO
PNCHO

1442 - Invalid Device
Specified

1442 - Use Trace Back Procedures
to analyze calling program

PNCHO - Device not on system
PNCItl - Invalid Function

Specified
- Word Count over +80
- Word Count zero or

negative

2000 $PRET System Keyboard TYPEZ TYPED Console Printer/Keyboard Console Printer/Keyboard
Subroutine,
System Keyboard/

WRTYZ WRTY0 WRTYO - Device Not Ready - Ready the Device

Console Printer
Subroutine

$PST4 System Keyboard TYPEZ TYPE() WRTYO Console Printer/Keyboard Console Printer/Keyboard
Subroutine,
System Keyboard/

WRTYZ WRTY0 - Device Not Ready - Ready the Device

Console Printer
Subroutine

,-
2001 $PRET - - TYPE() Console Printer/Keyboard Console Printer/Keyboard

WRTYO WRTYO - Device not on System
- Invalid Function

- Use Trace Back Procedures
to analyze calling program

Specified
- Word Count zero or

negative

3000 SPRET System 1134/1055 PAPTZ PAPT1 1134/1055 - Device Not Ready 1134/1055 - Ready the Device
Subroutine PAPTX -

PAPTN

$PST4 System 1134/1055 PAPTZ PAPTi 1134/1055 - Device Not Ready 1134/1055 - Ready the Device
Subroutine PAPTX -

PAPTN

3001 SPRET - PAPT1 1134/1055 - Invalid Function 1134/1055 - Use Trace Back
PAPTX
PAPTN

_ Specified
- Invalid Check Digit
- Word Count zero or

negative

Procedures to
analyze calling
program

4000 SPRET System 2501/1442 READZ READO 2501 - Device Not Ready 2501 - Ready the Device
Subroutine READI READO

$PST4 - READZ READO 2501 - Device Not Ready 2501 - Ready the Device
READI READO - Read Error

- Feed Check
- Run out the reader old

retry with last card read
and cards run out

116

•Table 8. Error Number List (Continued)

4001 $PRET - READO
READ)

READO 2501 - Invalid Function
Specified

- Word Count over +80
- Word Count zero or

negative

2501 - Use Trace Back Procedures
to analyze calling program

5000 $PRET DISKZ DISKZ DISKZ
DISK1
DISKN

DISKZ Disk - Device Not Ready Disk - Ready the Device

5001 $PRET - DISK1
DISKN

- Disk - Invalid Device Specified
- Device not in System
- Invalid Function

Specified
- Area to be written

File-protected
- Word Count zero or

negative
- Starting Sector Address

over +1599

Disk - Use Trace Back Procedures
to analyze calling program

$PST2 DISKZ DISKZ DISKZ
DISK1
DISKN

DISKZ Disk - Power Unsafe
- Write Select

Disk - Turn power down, wait for
CARTRIDGE UNLOCKED
light to come on, turn
power up, then retry

- Call CE on persistent error

5002 $PST2 DISKZ DISKZ DISKZ
DISK)
DISKN

DISKZ Disk - 16 retrys made without
success

Disk - Initiate 16 more retrys
- Use another drive
- Use another cartridge
- Reinitialize cartridge

5003 $PRET DISK1
DISKN

- - - Disk - Invalid Device Specified
- Device not in System
- Invalid Function

Specified
- Area to be written

File-protected
- Word Count zero or

negative
- Starting Sector Address

over +1599

Disk - Use Trace Back Procedures
to analyze calling program

5004 $PST2 DISKZ DISKZ DISKZ DISKZ Disk - Disk Error Disk - Turn power down, wait for
CARTRIDGE UNLOCKED
light to come on, turn
power up, then retry

- Call CE on persistent error

6000 $PRET System 1132
Subroutine

PRNTZ PRNTI
PRNT2
PRNT3

PRNTI 1132 - Device Not Ready
- End of Forms

1132 - Ready the Device

6001 $PRET - - PRNTI
PRNT2
PRNT3

PRNT1 1)32 - Invalid Function
Specified

- Word Count over +60
- Word Count zero or

negative

1132 - Use Trace Back Procedures
to analyze calling program

7000 $PRE --- PLOT1 - 1627 - Device Not Ready 1627 - Ready the Device

$PST3 ., - PLOT1 - 1627 - Device Not Ready 1627 - Ready the Device

7001 $PRET -- - PLOT! _ 1627 - Invalid Device Specified
- Device not on System
- Invalid Function

Specified
- Word Count zero or

negative

1627 - Use Trace Back Procedures
to analyze calling program

8001 $PRET - - SCAT
SCAT2
SCAT3

_ SCA - Invalid Function
Specified

- Invalid Word Count
- Invalid Subfunction

Specified

SCA - Use Trace Back Procedures
to analyze calling program

Program Analysis Procedures 117

*Table 8. Error Number List (Continued)

8002 $PRET - SCATI - SCA - Receive operation
not completed

- Transmit operation
not completed

SCA - Use Trace Back Procedures
to analyze calling program

8003 $PRET - - SCATI _ SCA - Synchronization not
established before
attempting to perform
some Transmit or
Receive Operation

- Attempting to Receive
before receiving INQ
sequence

SCA - Use Trace Bock Procedures
to analyze calling program

9000 $PRET System 1403
Subroutine

PRNZ PRNT3 PRNT3 1403 - Device Not Ready
- End of Forms

1403 - Ready the Device

$PST4 System 1403
Subroutine

PRNZ PRNT3 PRNT3 1403 - Device Not Ready
- Print Error

1403 - Ready the Device

9001 $PRET - - PRNT3 PRNT3 1403 - Invalid Function
Specified

- Word Count over +60
- Word Count zero or

negative

1403 - Use Trace Back Procedures
to onalyze calling program

A000 $PRET - - OMPR _ 1231 - Device Not Ready 1231 - Ready the Device

$PST4 - OMPRI - 1231 - Device Not Ready
- Timing Mark Error
- Read Error

1231 - Ready the Device
- Retry with the sheet that

has been selected into
the stacker

A001 $PRET - - OMPR - 1231 - Invalid Function
Specified

1231 - Use Trace Back Procedures
to analyze calling program

*Table 9. Error Stop List

Absolute Address Symbolic Address Program Explanation

/0012 - Cold
Start

-Invalid disk drive number
in Console Entry Switches

Loader -Indicated disk drive not
ready

/004 - Cold -Disk read error
Start
Loader

-Waiting for interrupt from
seek operation

/0046 Cold
Start

-Wailing for interrupt from
reading sector @IDAD

Loader

/0029 $PRET+1 All ISSs -Preoperative Error

/0082 $PST1 +1 Level 1
ISSs

-Postoperative Error on
level 1

/0086 SPST2 +1 Level 2
ISSs

-Post-operative Error on
level 2

/008A $PST3+1 Level 3
ISSs

-Post-operative Error on
level 3

/008E $PST4 +I Level 4
ISSs

-Post-operative Error on
level 4

ARITHMETIC AND FUNCTION SUBPROGRAM
ERROR INDICATORS
-- 3 words preceding FAC.
-- First word (XR3 + /007A) is used for real arith-

metic overflow and underflow indicators.
-- Second word (XR3 + /007B) is used for divide

check indicator.
- - Third word (XR3 + /007C) is used for function

subroutine indicators.
- - The loader initializes all three words to zero.

LIBF TV (Library Function Transfer Vector)
- - One 3-word entry for each LIBF listed in the

core map.
-- Located just preceding ARITH/FUNC ERROR

INDICATORS.
- - Higher core end is located at XR3 + /0079.
- - First LIBF Entry (the beginning of LIBF TV) is

located at (XR3 + /0077) - (3 times the number
of LIBFs listed in core map).

118

COMMA,
Skeleton
Supervisor

COMMA,
Skeleton
Supervisor

COMMA,
Skeleton
Supervisor

COMMA,
Skeleton
Supervisor

COMMA
Skeleton
Supervisor

DISKZ DISKZ DISKZ DISK1
or

DISKZ

DEFINE FILE DEFINE FILE CConstants,
DISKN

Table Table Integers

Arrays Arrays
Fixed Routine
(Mainline

Format
Parameters

Program)

Constants,
Integers

Constants,
Integers

Mainline Mainline
Format Format Program Program

Parameters Parameters Variable
Section
(Mainline
Program)

Mainline Mainline
Program Program

In-Core
Subroutines

in-CoreIn-Core
Subroutines Subroutines

In-Core In-Core
Subroutines Subroutine

Flipper
Table Initryt

Subroutines
FLIPR

LOCAL
Interrupt

Level
.,,.../ Intsevrreufit

IntservruertArea Subroutines Subroutines

SOCAL SuSubroutine
Area

7
Initeervruort

Subroutines

ALIEF TV LIBF TV LIBF TV

CALL TV CALL TV CALL TV

COMMON COMMON COMMON LIBF TV LIBF TV

CALL TV CALL TV

• Figure 17. Core Layout Dur'ng User Core Load Execution

LIBF TV SOCAL LINKAGE
- - The 6 or 9 words used to link to the SOCAL/

LOCAL Flipper.
- - Located just preceding the First LIBF Entry in

the LIBF TV.

- - 6 words long if SOCAL option 1; 9 words long if
SOCAL option 2.

CALL TV (Call Transfer Vector)
- - One single-word entry for each call listed in the

core map.
-- Located immediately following FAC.
-- First CALL TV Entry is at XR3 + /0080 (add 1 if

address comes out odd).
- - The Last CALL TV Entry is at (First CALL TV

Entry-1) - (Number of CALLs listed in the core
map).

DISK I/O SUBROUTINE
- - All Disk I/O subroutines are loaded beginning

at CORE LOCATION /00F2.
- - The Disk I/O subroutines vary in length (see table)
-- The type of disk subroutine in core is contained in

$DZ1N (see table)

Disk I/O
Subroutine

Location in
Core

First
Word

Contents Currently First Last of User's
of $DZ1N in Core Word Word Program

FFFF DISKZ /00F2 /01DF /01FE
0000 DISK1 /00F2 /0293 /02B2
0001 DISKN /00F2 /03A1 /03C0

DFT (DEFINE FILE Table)
- - 7 words for each file defined by the user.
-- Located at 1 plus the end of the disk I/O subroutine.

ARRAYS (In User's Program Area)
-- Located immediately following DEFINE FILE

Table, if any.

CONSTANTS AND INTEGERS (In User's Program
Area)
- - Located immediately following ARRAYS, if any.

COMMON (The area at "End of Core" defined by
COMMON statement)
- - Length of COMMON is contained in $COMN.
-- Start of COMMON is highest core address, (XFFF),

minus the Length of COMMON.

IN-CORE SUBROUTINES (subroutines that are in
core all the time)
-- Located immediately following user's mainline

program.

Program Analysis Procedures 119

- - Those subroutines listed in core map that are
not SOCALS or LOCALS are In-Core subroutines.

- - The load address of these subroutines is listed
with subroutine name.

LOCAL/SOCAL FLIPPER (FLIPR)
- - Load address given in core map under the head-

ing SYSTEM SUBROUTINES.

LOCAL AREA (The "Load-on-Call" overlay area)
-- Size depends upon largest LOCAL subroutine

used.
-- Beginning core address is FLIPR + /0066.
- - Ending core address is address of SOCAL Area

minus 1.

SOCAL AREA (System overlay area)
- - Located immediately following LOCAL Area.
-- Beginning core address is found at FLIPR

+ /004D.
-- The first word in SOCAL Area contains the

word count of SOCAL Area.
- - Ending core address is the beginning address

+ the word count of the SOCAL Area.

GENERALIZED SUBROUTINE MAINTENANCE/
ANALYSIS PROCEDURE

Flowdiagram 4 provides the procedure to be used for
detailed analysis of an I/O subroutine. The proce-
dure is applicable to FORTRAN device, general ISS,
and system device subroutines.

TRACE BACK PROCEDURES

Flowdiagram 5 provides the procedure to be used to
trace back from a failing subroutine to the preceding
portion of the core load, which called the subroutine.
This procedure can be used to trace all the way back
to the mainline program.

SUBROUTINE LOOPING CAPABILITIES

SYSTEM DEVICE SUBROUTINES

The linkages to system device subroutines are of
the form:

LDD
	

LIST
BSI
	

L ENTRY POINT

LIST
	

DC
	

PARAMETER
DC
	

PARAMETER

To place the subroutine into a loop:

1. Obtain link word from the system device
subroutine.

2. The contents of this link word point to the loca-
tion following the long BSI instruction.

3. Insert into the location following the long BSI
instruction an MDX instruction back to the LDD
instruction.

LIBRARY SUBROUTINES (except 'Z' subroutines
and PLOTX)

The linkage to the System Library device subroutines
(ISSs) are of the following form:

LIBF
	

CALL

BSI 3 TVDISP
	

BSI I
	

CALLTV
DC	 CONTROL DC

	
CONTROL

DC	 ARG 1
	

DC
	

ARG 1

DC	 ARGN	 DC	 ARGN

To place the subroutine into a loop:

1. Insert in the location following the last argument
an MDX instruction back to the BSI instruction.

2. Some of the arguments may have to be changed
to point to the BSI instruction because they are
error exits or busy addresses.

3. Refer to subroutine data charts for unique
operating characteristics.

120

L
ooping

Capabi lities

Assumes Core
Location Pro-
cedures have
been done

Possible Device
Failure, Run
Diagnostics or
Loop Call

Loop Sub-
routine

Flowdiagram 4. Generalized Subroutine Maintenance/Analysis Procedure

Program Analysis Procedures 121

Multiple
entry points in

this subrou-
tine

Step Procedure
failing — — ----- —

This procedure assumes the user has alreadyStart with
analyzed the subroutine per Subroutinesome
Analysis Procedures and has blocked outSubroutine
a core dump per Core Location Procedures.

0

0

IGet the core map printed during program
loading

A core map is obtained by punching an
"L" in column 14 of the XEQ card if the
program being loaded is in disk system
format.

I Determine which function was being used I

(Step 19)

0

0

Get the symbolic entry point from the
Subroutine Data Charts

1	 This is the Core Load Address of thatFind the symbolic entry name in the core
pma	 entry point.

— The subroutine type is obtained from the
Subroutine Data Charts

Add 2 to the Core Load Address obtained
in step 5

the address computed in step 8
Get the contents of the word located at I

entry
Get the first word of the transfer vector I

C Step 11)

Flowdiagrarn 5. Trace Back Procedures

The contents of the address —	 —The Core Load
derived in step 5 is the Link
Word back to the calling
statement in the calling
program

This gives the address of the word that
points to the transfer vector.

This gives the address of the transfer
vector.

This is the Link Word back to the calling
statement in the calling subroutine.

Address contains
the Link Word
back to the
caller.

(Step 11

0

0

0

0

122

Now determine the name of the failing
subroutine.

Step Procedure

(

Continue now
having the ad-
dress of calling
statement

Match the address of the calling pro-
gram to the addresses in the core map

Step 17)

Determine which overlay Is in core.

Locate the SOCAL linkage words in the
core dump

V
The word group containing "FOFD" is
the overlay in core

Use the Core Dump Analysis Procedures
to locate SOCAL linkage words, 3 for
each overlay

-SOCAL LINKAGE-

XXXX XXXX 70FX
	

Overlay 3
XXXX XXXX 70FX

	
Overlay 2

XXXX XXXX 70FX
	

Overlay 1
-The overlay in core contains 70FD in
third word

-Overlays not in core contain
70F4 (SOCAL level 2) or
70F7 (SOCAL level 1) In third word

Make a table of subroutines by overlay
assignment Mark the core map to identify all sub-

routines In the incore overlay

Match the address of the ca !ling program
obtained in step 7 (CALL) or step 10
(LIBF) to the addresses marked in step 15

The address closest to and less than the
calling program's address identifies
the name in core map

You now have name of calling subroutine.

Analyze this subroutine using Subroutine
Analysis Procedures

(Step 1

Flowdiagram 5. Trace Back Procedures (Continued)

Program Analysis Procedures 123

Step	 Procedure

The different entry points are related to

code from the Subroutine Data Charts
Get the symbolic location of function the

routi
various

ne.
"functions" performed by the

subroutine

Microfiche reference to subroutine list-
ing is given in Appendix D. Findthe symbolicsym

listing
bolic location in the

subroutine
	 j

V
The address at the symbolic location
determined in step 20 is the relative
address.

jGet the relative address of the location'
of function code

Get the load point address for this
subroutine from core map

The relative address determined in step
Calculate core location of function	 I 21 plus the load point address determined
code	 in step 22 gives the location of the

function code.

]Get the function code from core dump
and decode with Subroutine Data Chart

Get the symbolic name for each function
entry point from the Subroutine Data
Chart

(Step 5)

Flowdiagrarn 5. Trace Back Procedures (Concluded)

124

SUBROUTINE DATA CHARTS

SYSTEM DEVICE SUBROUTINE FOR KEYBOARD/CONSOLE PRINTER

Phase ID: @ KBCP
Used by: Monitor system programs
Subroutines required: ILSO4
Linkage:	 LDD	 LIST

BSI	 L	 KB000+1

LIST DC
	

FUNCTION CODE
DC
	

I/O AREA ADDRESS

Preoperative input parameters:

Function ACC EXT
I/O Area
Address

Read, Convert,
Print

/7002 Address of I/O
Area

Word Count

Postoperative conditions and entry points:

Function	 at	 KB080
Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Read, Convert,
Print

/7002 KB000+1 103000+1 KB020+1 KB020+1

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location

Used X X X X

Significant variables:

Symbolic location Contents/Use

KB080 The function is placed here. 	 It becomes an MDX *+2 when executed.

KB160 Original word count.

KB170 Original I/0 area address.

KB270 Character buffer area, containing a 12-bit character read from the Keyboard, the
rotate/tilt code character printed, or a control character.

103280 Data area pointer, pointing to the next word in the data area into which the EBCDIC
character will be placed.

KB290 Remaining word count.

KB370 and KB370+1 Read/Print Control IOCC.

Program Analysis Procedures 125

SYSTEM DEVICE SUBROUTINE FOR 1442/1442

Phase II): @ 1442
Used by: Monitor system programs
Subroutines required: ILSO4
Linkage:	 LDD	 LIST

BSI L	 CD000+1

LIST DC	 FUNCTION CODE
DC
	

I/O AREA ADDRESS

Preoperative input parameters:

Function ACC EXT I/O Area Address

Read /7000 Address of the I/O No word count is used but an
Area 80 position area must be

specified.

Punch /7001 Address of the I/O No word count is used but an
Area 80 position area must be

specified.

Read /7002 Address of the I/O No word count is used but an
Area 80 position area must be

specified.

Feed /7003 Not used Not used

Postoperative conditions and entry points:

Function	 at	 CD090 Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Read /7000 CD000+1 CD000+1 CD016+1 CD016+1 0
CD010+1 CD010+1 4

Punch /7001 CD000+1 CD000+1 CD016+1 CD016+1 0
CD010+1 CD010+1 4

Read /7002 CD000+1 CD000+1 CD016+1 CD016+1 0
CD010+1 CD010+1 4

Feed /7003 CD000+1 CD000+1 CD010+1 CD010+1 4

126

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline
Saved at/restored from
symbolic location CD120

Used X X

Interrupt
level 0

Saved at/restored from
symbolic location CD190 CD190+1 CD018

Used X

Interrupt
level 4

Saved at/restored from
symbolic location

Used X X X X X

Significant variables:

Symbolic location Contents/Use

CD210 First column indicator.

CD250 Current column address.

CD260 Second half of the last IOCC performed, read or punch.

CD230 Second half of the last IOCC performed, start read or punch.

CD188 Skip indicator; non-zero = take one feed cycle.

$LAST Last card indicator; non-zero = last card.

$CTSW Control card switch; non-zero = control card read.

$IBSY Busy indicator for 1442; non-zero = busy.

Program Analysis Procedures 127

SYSTEM DEVICE SUBROUTINE FOR 2501/1442

Phase ID: @ 2501
Used by: Monitor system programs
Subroutines required: ILSO4
Linkage:	 LDD	 LIST

BSI L	 RP000+1

LIST DC
	

FUNCTION CODE
DC
	 I/O AREA ADDRESS

Preoperative input parameters:

Function ACC EXT I/O Area Address

Read /7000 Address of I/O Area Word count

Punch /7001 Address of I/O Area Not used

Read /7002 Address of I/O Area Word count

Feed /7003 Not Used Not used

Postoperative conditions and entry points:

Function	 at	 RP360 Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Read /7000 RP000+1 RP000+1 RP020+1 RP020+1 4

Punch /7001 RP000+1 RP000+1 RPO40+1 RPO40+1 0
RP020+1 RP020+1 4

Read /7002 RP000+1 RP000+1 RP020+1 RP020+1 4

Feed /7003 RP000+1 RP000+1 RP020+1 RP020+1 4

Register status:

ACC EXT XR1 XR2 XR3 Status

MainlineMain

Saved at/restored from
symbolic location

RP440

Used X X

Interrupt
level 0

Saved at/restored from
symbolic location

RP480 RP480+1 RP060

Used X

Interrupt
level 4

Saved at/restored from
symbolic location

Used X X X

128

Significant variables:

Symbolic location Contents/Use

RP500 Current column address.

RP520 I/O address for restart information.

RP600 Word count for 2501 Reader.

RP200 Device last used:
/1702 = 1442
/4F01 = 2501

$LAST Last card indicator; non-zero = last card.

$CTSW Control card switch; non-zero = control card read.

SIB SY Busy indicator; non-zero = busy.

Program Analysis Procedures 129

SYSTEM DEVICE SUBROUTINE FOR CONSOLE PRINTER

Phase ID: @ CPTR
Used by: Monitor system programs
Subroutines required: ILSO4
Linkage:	 LDD	 LIST

BSI	 L	 CP000+1

LIST DC	 FUNCTION CODE
DC	 I/O AREA ADDRESS

Preoperative input parameters:

Function ACC EXT I/O Area
Address

Address of page
Restore /7000 heading buffer

(@HONG)
Write /7001 Address of I/O Word Count

Area
Skip /7002

Postoperative conditions and entry points:

Function at	 CP120 Symbolic Return Interrupt Return Interrupt
entry point address at entry point address at level

AD CP000+1 CP000+1 CP020+1 CP020+1

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location CP170+2

Used X X X X

130

Significant variables:

Symbolic location Contents/Use

CP120 The function is placed here.	 This word is executed to decode the function.
/7000 is a MDX *
/7001 is a MDX * + 1
/7002 is a MDX * + 2

CP200 Carriage return counter, used for counting carriage returns for restore.

CP350 IOCC for printing on console.

CP350+1 CP350 contains address of CP450.

CP370 Actual word count of message not including trailing blanks.

CP380 Data area pointer, pointing to the word containing the 2 EBCDIC characters,
one of which is being printed.

CP450 Print character buffer word. 	 The IOCC points to this word, which contains
the character or control character just printed.

Program Analysis Procedures 131

SYSTEM DEVICE SUBROUTINE FOR :1132

Phase ID: @1132
Used by: Monitor system programs
Subroutines required: ILSO1
Linkage:	 LDD	 LIST

BSI	 L	 PN0004-1

LIST DC
	

FUNCTION CODE
DC
	

I/O AREA ADDRESS

Preoperative input parameters:

Function ACC EXT I/O Area
Address

Print /7001 I/O Area address 0 � word count
< 80

Skip to Channel 1 /7000 I/0 Area address I/O Area is
referenced

Space Immediate /7002 Not used Not used

Postoperative conditions and entry points:

Function	 at	 PN380 Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Print /7001 PN000+1 PN000+1 PN010+1 PN010+1 1

Skip /7000 PN000+1 PN000+1 PN010+1 PN010+1 1

Space /7002 PN000+1 PN000+1 PN010+1 PN010+1 1

Register Status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location

PN400+1 PN400+3 PN400+5

Used X X X X X X

Interrupt
level 1

Saved at/restored from
symbolic location

PN200 PN200+1 PN440+1 PN440+3 PN440+5 PN450

Used X X X X X X

132

Significant variables:

Symbolic location Contents/Use

PN040 Last emitter character read as a result of a read emitter response interrupt.

PN050 Second word of Sense-DSW-with-reset IOCC.

PN060 Last DSW sensed in interrupt.

PN070 Second word of Sense-DSW-with-no-reset IOCC.

PN080 First word of Read emitter IOCC, contains the address of location PN040.

PN090 Second word of Read emitter MCC.

PN100 First word of Start Printer IOCC, also the idle scan counter.

PN110 Second word of Start Printer IOCC.

PN120 Print scan counter.

PN130 Second half of Stop Printer IOCC.

PN150 Second half of Start Carriage IOCC.

PN170 Second half of Stop Carriage IOCC.

PN180 First half of Stop Carriage IOCC and mask to check bits 3, 5, and 6 of Printer DSW.

PN370+1 Address of the I/O area.

PN460+1 Word count.

PN470+1 Address of message.

$PBSY /0001 indicates I/0 buffer is busy and 49 print scan cycles have not been
completed.

/0000 indicates routine may still be busy completing the 16 idle scans; however,
I/O buffer is ready to accept new input.

$CH12 Zero = Channel 12 has not been sensed.

Non-Zero = Channel 12 has been sensed and skip to channel 1 has not been
performed.

Program Analysis Procedures 133

SYSTEM DEVICE SUBROUTINE FOR 1403

Phase ID: (00.403
Used by: Monitor system programs
Subroutines required: ILSO4
Linkage:	 LDD	 LIST

BSI L	 PR000+1

LIST DC	 FUNCTION CODE
DC	 I/O AREA ADDRESS

Preoperative input parameters:

Function ACC EXT I/O Area
Address

Print 1 Line /7001 Address of 0 � word count S. 60
I/O Area

Skip /7000 Address of
I/O Area

I/O Area is
referenced

Space Immediate /7002 Not used Not used

Postoperative conditions and entry points:

Function	 at	 PR150 I/O Area
word count

Symbolic
entry point

Return
address at

Interrupt
entry point

Print /7001 Non-Zero PR000+1 PR000 PRO10

Skip /7000 Not used PR000+1 PR000+1 PRO10

Space /7002 Not Used PR000+1 PR000+1 PR010

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location PR230+1 PR240+1 PR250+1

Used X X X X X X

:L34

Significant variables:

Symbolic location Contents/Use

PR140 A NOP after the following areas have been adjusted to the correct address as a
result of relocation:

PR300
PR500+1
PR180+2
PR280+2
PR170+1
PR220+2
PRO80
PR400+1
PR430+1

PRO80 First word of Print IOCC, contains address of print buffer.
PRO80+1 Second half of Print IOCC.

PR110 Second half of Sense-without-reset IOCC,

PR300 First word of Skip-to-channel-12 IOCC.
PR300+1 Second word of Skip-to-channel-12 IOCC.

PRO90 First word of Space immediate IOCC.
PRO90+1 Second word of Space immediate IOCC.

PR290+1 Address of the user's I/O area.

PRO60 Storage location for the last DSW sensed during interrupt; also, first word of
Sense-DSW-with-reset IOCC.

PR070 Second word of Sense-DSW-with-reset IOCC.

PR110 Second word of Sense-DSW-without-reset IOCC.

PR39.0 60-word buffer from which the line is printed.

$PGCT Binary page count, where 0 � page count	 32767

$CH12 Channel 12 switch indicating channel 12 detected in DSW during interrupt;
not reset until a skip to channel 1 is requested by the user.

$PBSY Printer busy switch, modified during execution of routine.

($PBSY) = Zero: routine and printer not busy.
= Positive: transmission to printer is in progress; transmission

complete has not been received; subroutine I/O buffer is busy.
= Negative: transmission complete has been received; subroutine

I/O buffer can now be set up with new message.

Program Analysis Procedures 135

SYSTEM DEVICE SUBROUTINE FOR 1134/1055

Phase ID: @ 1134
Used by: Monitor system programs
Subroutine required: none
Linkage:	 LDD	 LIST

BSI	 L	 PT000+1

LIST DC
	

FUNCTION CODE
DC
	

I/O AREA ADDRESS

Preoperative input parameters:

Function ACC EXT I/O Area
Address

Read without
conversion

/7000 Address of I/O Area Word Count

Punch /7001 Address of I/O Area Word Count

Read with con-
version

/7002 Address of I/O Area Word Count

Postoperative conditions and entry points:

Function	 at	 PT060 Symbolic
entry point

Return
address at

Interrupt
entry point

Interrupt
level

Read with con-
version

/7000 PT000+1 PT000+1 PT010+1 4

Punch /7001 PT000+1 PT000+1 PT010+1 4

Read without
conversion

/7002 PT000+1 PT000+1 PT010+1 4

Register status:

ACC EXT XR1 XR2 XR3 Status

MainMainline

Saved at/restored from
symbolic location

Used X X X

136

Significant variables:

Symbolic location Contents/Use

PT000+1 Return address to caller from main line.

PT010+1 Return address from interrupt.

PT060 Function code, executed as follows:
/7000 = MDX *
/7001 = MDX *+1
/7002 = MDC *+2

PT340 Data area pointer.

PT360 Remaining word count.

PT370 Switch used for reading or punching: /0001 = punch, /0002 = read.

PT380 Switch used to indicate if conversion of information read is needed:
zero = no conversion,
non-zero = conversion.

PT460 and PT460+1 IOCC for read and punch.

PT480 Data buffer.	 The character to be read or punched is contained here.

PT500 Counter for counting first 3 characters.

Program Analysis Procedures 137

SYSTEM DEVICE SUBROUTINE FOR DISK -- DISKZ

Phase ID: @DZID
Used by: Monitor system programs

Assembler Language programs
FORTRAN programs
RPG programs

Subroutines required: ILSO2
Linkage:	 LDD	 LIST

BSI L	 DZ000

LIST DC
	

FUNCTION CODE
DC
	

I/O' AREA ADDRESS

Preoperative input parameters:

Function ACC EXT I/O Area
Address

I/O Area
Address + 1

Read /7000 or Address of the 0 � word count Drive code and
/0000 I/O Area (must

be even)
.1 length of defined
data area

sector address

Write /7001 Address of the 0 � word count Drive code and
I/O Area (must
be even)

5_ length of area
to be written
on disk

sector address

Find /0000 Address of the
I/O Area (must
be even)

/0000 Drive code and
sector address

Postoperative conditions and entry points:

Function	 at	 DZ945 Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

—
Interrupt

level

Read /0000 DZ000 D2.100+5 DZ010 DZ 010 2

Write /0100 DZ000 D2.100+5 DZ010 DZ010 2

Find /0000 DZ000 D2.100+5 DZ010 DZ010 2

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location DZ100+1 DZ100+3

Used X X X X X

138

Significant variables:

Symbolic location Contents/Use

DZ350+1 Address of the word in COMMA containing the current position of the heads on the
referenced disk.

DZ235+1 Address of the first word of the I/O Area.
C[C(DZ235+1)] = originally requested word count
C[C(DZ235+1) +] = originally requested sector address

DZ904 and First and second words of the last IOCC performed (excluding sense DSW).
DZ905

DZ908 and First and second words of forced-Read after-Seek IOCC.
DZ909

DZ901 Sector address of previously executed forced Read.

DZ906 and IOCC developed for user-requested function.
DZ907

DZ975 Second word of Read-Back-Check IOCC.

DZ912 Word count remaining to be read or written from original.

DZ913 Next sector to be read or written.

DZ910 Second word of Seek IOCC.

Program Analysis Procedures 139

CARDZ

Flowcharts: FI004-05
Used by: SFIO
Subroutine required: HOLEZ, ILS01, ILSO4
Linkage: LIBF CARDZ (BSI 3 TV DISP)

where ACC = FUNCTION CODE
XR1 = I/O AREA ADDRESS
XR2 = WORD COUNT

Peroperative input parameters:

Function ACC XR1 XR2

Read

Write

/0000

/0002

I/0 Area Address

I/0 Area Address

Word Count

Word Count

Postoperative conditions and entry points:

Function	 at	 C Z912 Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Read

Write

/0000

/0002

CARDZ

CARDZ

LIBF TV link
word

UHF TV link
word

CZ100
(column)

CZ110
(op complete)

CZ100
(column)

CZ110
(op complete)

1

4

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location

Used X X X X X

140

Significant variables:

Symbolic location Contents/Use

CZ904 Start read or punch IOCC, set by program depending on function used to
CZ904+1 initiate operation.

If read, CZ904 + 1 = CZ906 + 1
If write, CZ904 + 1 = CZ908 + 1

CZ902 Read or Punch IOCC, set by program depending on function to read or punch
columns.

If read, CZ902 + 1 = CZ906
If write, CZ902 + 1 = CZ908

CZ923 Address pointer to I/0 area, incremented on each column interrupt.

CZ925 Original I/O area address -1.

CZ920 DSW is saved here on an operation-complete interrupt.

CZ010 Switch used for waiting for interrupt:
Set positive when waiting for any interrupt.
Set zero when column interrupt occurs.
Set negative when op-complete interrupt occurs.

$RWCZ Previous operation switch:
/0000 = previous operation was a read.
/0002 = previous operation was a write.

If a write function is to be performed and the previous operation was a write,
this switch causes CARDZ to read a card and test for // in columns 1-2.

CZ918 Switch used to test for /1 card before writing on it; zero means only reading
or previous operation before write was a read.

CZ918-3 Buffer area for saving first 3 columns; rest of card is read into fourth word
thru when reading before write.
CZ918

Program Analysis Procedures 141

PNCHZ

Flowchart: FI011
Used by: SFIO
Subroutines required: HOLEZ, ILS01, ILSO4
Linkage: LIBF PNCHZ (BSI 3 TV DISP)

where ACC = FUNCTION CODE
XR1 = I/O AREA ADDRESS
XR2 = WORD COUNT

Preoperative input parameters:

Function ACC XR1 XR2

Write /0002 I/O Area Address Word (character) count
of 80

Postoperative conditions and entry points:

Function
Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Write PNCHZ LIBF TV link
word

PZ060
(column)

PZ080
(op complete)

PZ060

PZ080

0

4

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location

Used X X X X

142

Significant variables:

Symbolic location Contents/Use

PZ340 Address pointer to I/O area; First word of Punch IOCC, Incremented on
each column interrupt.

PZ340+1 Second word of Punch IOCC.

PZ360 and Feed IOCC for initiating punch operation.
PZ360+1

PZ400 Error display indicator.
PZ400+1 Second word of last card feed IOCC.

PZ120+1 Original I/0 area address.

PZ040 Switch used for waiting for operation -- complete interrupt:
zero = op complete interrupt has occurred
non-zero = waiting for op-complete

Program Analysis Procedures 143

READZ

Flowchart: FI008
Used by: SFIO
Subroutines required: HOLEZ, ILSO4
Linkages: LIBF READZ (BSI 3 TV DISP)

where XR1 = I/0 AREA ADDRESS

Preoperative input parameters:

Function XR1

Read I/O Area Address

Postoperative conditions and entry points:

Function Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Read] READZ LIBF TV RZ060 RZ060 4
link word

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location

Used X X X X X

Significant variables:

Symbolic location Contents/Use

RZ360 I/0 Area Address; also, first word of Read IOCC.

RZ360+1 Second word of Read IOCC.

RZ380 Switch used for interrupt processing:
non-zero = waiting for interrupt
zero = set by occurrence of interrupt

144

TYPE Z

Flowchart: F1012
Used by: SFIO
Subroutines required: HOLEZ, GETAD, ILSO4
Linkage: LIBF TYPEZ (BSI 3 TV DISP)

where ACC = FUNCTION CODE
XR1 = I/0 AREA ADDRESS
XR2 = WORD COUNT

Preoperative input parameters:

Function ACC XR1 XR2

Read

Write

/0000

/0002

I/O Area Address

I/O Area Address

Word count, set to 80 by
TYPEZ

Character count

Postoperative conditions and entry points:

Function	 at	 KZ910 Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

via LIBF TV
Read /0000 TYPEZ link word

via LIBF TV
KZ100 KZ100 4

Write /0002 TYPEZ link word KZ100 KZ100 4

Register status:

ACC EXT XR1 XR2 XR3 Status

MainMainline

Saved at/restored from
symbolic location

Used X X X X _

Significant variables:

Symbolic location Contents/Use

KZ911 Original character count plus one.

KZ210+1 Original I/O area address.

KZ910 Read-Write function indicator word.

KZ906 IOCC used to print characters from KZ914.

KZ914 Buffer word used to hold character to be printed.
KZ913 Saved DSW from Sense-with-reset in interrupt routine.
KZ900 IOCC used to read Keyboard character into I/O area.
KZ902 IOCC used to release Keyboard.

KZ912 Number of remaining characters to be typed. (Each character read is typed.)

Program Analysis Procedures 145

WRTYZ

Flowchart: FI009
Used by: SFIO
Subroutines required: GETAB, EBCTR, ILSO4
Linkage: LIBF WRTYZ (BSI 3 TV DISP)

where XR1 = I/0 AREA ADDRESS
XR2 = WORD COUNT

Preoperative input parameters:

Function XR1 XR2

Write I/O Area Address Character Count

Postoperative conditions and entry points:

Function Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Write WRTYZ WRTYZ+2 TZ100 TZ100 4

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location

Used X X X X

Significant variables;

Symbolic location Contents/Use

TZ907 Number of characters remaining to be printed.

TZ908 Output buffer for printing character.

TZ902 IOCC used to print character out of TZ908.

146

PRNZ

Flowchart: FI010
Used by: SFIO
Subroutines required: ILSO4
Linkage: LIBF PRNZ (BSI 3 TV DISP)

where XR1 = I/O AREA ADDRESS
XR2 = WORD COUNT

Preoperative input parameters:

Function XR1 XR2

Print I/O Area Address Word count, including 1 for
carriage control character

Postoperative conditions and entry points:

Function
Symbolic

entry point
Return

address at
Interrupt
entry point

Return
address at

Interrupt
level

Print PRNZ PRNZ+2 WZ 100 WZ 100 4

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location

Used X X X X X

Significant variables:

Symbolic location Contents/Use

WZ 904 First word of Print IOCC, Address of output area.

WZ906 Address for store after character conversion.

WZ908 Counter for character conversion.

WZ 990 EBCDIC-to-1403-Printer-code conversion table.

WZ934 Transfer complete switch: zero = transfer complete.

WZ 933 EBCDIC character being converted.

Program Analysis Procedures 147

PRNTZ

Flowchart: FI006
Used by: SFIO
Subroutines required: ILSO2
Linkage: LIBF PRNTZ (BSI 3 TV DISP)

where XR1 = I/O AREA ADDRESS
XR2 = WORD COUNT

Preoperative input parameters:

Function XR1 XR2

Print Output buffer address (first char- Word count, including carriage
acter is carriage control) control character.

Postoperative conditions and entry points:

Function Symbolic Return Interrupt Return Interrupt
entry point address at entry point address at level

Print PRNTZ PRNTZ+2 AZ100 AZ100 2

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location

Used X X X X X

Interrupt
level 2

Saved at/restored from
symbolic location

Used

148

Significant variables:

Symbolic location Contents/Use

AZ150+1 Address of first data word in output buffer.

AZ919 Word count.

AZ900 Interrupt exit switch:
+ , if line is complete
- , if idles complete
0 , if waiting

AZ922 Space counter (positive number of spaces).

AZ914 DSW storage.

AZ924 Scan counter (print).

AZ918 Emitter-character storage.

Program Analysis Procedures 149

PAPTZ

Flowchart: FI007
Used by: SFIO
Subroutine required: ILSO4
Linkage: LIBF PAPTZ (BSI 3 TV DISP)

where ACC = FUNCTION CODE
XR1 = I/O AREA ADDRESS
XR2 = WORD COUNT

Preoperative input parameters:

Function ACC XR1 XR2

Read

Write

/0000

/0002

Address of I/O Area

Address of I/O Area

Word count, set to 120
by PAPTZ

Word count

Postoperative conditions and entry points:

Function	 at	 BZ924 Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Read

Write

/0000

/0002

PAPTZ

PAPTZ

PAPTZ+2

PAPTZ+2

BZ100

BZ100

BZ100

BZ100

4

4

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location

Used X X X X

150

Significant variables:

Symbolic location Contents/Use

BZ924 Read/Write indicator.

BZ929 Number of words remaining to be read or punched.

BZ300+1 Address of I/O Area.

BZ010 Routine busy indicator: zero, no interrupt waiting to be processed; non-
zero, an interrupt waiting to be processed.

BZ902 IOCC used to Start paper tape reader.

BZ904 IOCC used to Read paper tape.

BZ925 Read area for BZ904, Read paper tape IOCC.
Write area for BZ906, Punch paper tape IOCC.

BZ926 DSW from sense-with-reset in interrupt subroutine.

BZ906 IOCC used to Punch paper tape.

Program Analysis Procedures 151

CARDO

Used by: Assembler Language programs and RPG generated programs
Subroutines required: ILSOO, ILSO4
Linkage: LIBF CARDO (BSI 3 TV DISP)

DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function. ARG1 ARG2 ARG3 I/O Area Address

Test /0000 Return to this word if
busy

Return to this word if not
busy

Not used

Read /1000 I/O Area. Address NSI Word count

Punch /2000 I/0 Area Address NSI Word count

Feed /3000 Not used NSI Not used

Stack /4000 Not used NSI Not used

Postoperative conditions and entry points:

Function	 at	 CA20
Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Test CARDO CA34+1

Read /7000 CARDO CA34+1 INT1 INT1 0
INT2 INT2 4

Punch /7001 CARDO CA34+1 INT1 INT1 0
INT2 INT2 4

Feed /7002 CARDO CA34+1 INT2 INT2 4

Stack /7003 CARDO CA34+1

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location TEMP CA30+1 CA31+1 CA32

Used X X X

152

Significant variables:

Symbolic location Contents /Use

COUNT Number of words left to be transferred.

COLM Address being transferred to or from.

RSTRT Word count for restart.

RSTRT+1 Starting address for restart.

BUSY Busy indicator; non-zero = busy.

CHAR Second half of the Sense DSW IOCC that was last executed.

ERROR Skip indicator; non-zero = feed a card.

Program Analysis Procedures 153

CARD'

Used by: Assembler Language programs
Subroutines required: ILSOO, ILSO4
Linkage: LIBF CARD1 (BSI 3 TV DISP)

DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3 I/O Area Address

Test /0000 Return to this word if
busy

Return to this word
if not busy

Not used

Read /1000 I/O Area Address Address of user
error routine

Word count

Punch /2000 I/O Area Address Address of user
error routine

Word count

Feed /3000 I/0 Area Address Address of user
error routine

Not used

Stack /4000 Not used Not used Not used

Postoperative conditions and enter points:

Function	 at	 CR24+1 Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Test CARD1 EXIT+1

Read /0001 CARD1 EXIT+1 INT1 INT1 0
INT2 INT2 4

Punch /0002 CARD1 EXIT+1 INT1 INT1 0
INT2 INT2 4

Feed /0003 CARD1 EXIT+1 INT2 INT2 4

Stack /0004 CARD1 EXIT+1

154

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location TEMP CR42+1 CR44+1 CR46

Used X

Significant variables:

Symbolic location Contents/Use

RESTR Count information for restart.

RESTR+1 I/O area address for restart.

RESTR+2 Address of error routine; also, busy indicator.

ERROR Skip indicator; non-zero = feed a card.

INDIC Feed check at read station indicator; non-zero = feed check.

INIT Last initiate command given.

COLM Address being transferred to or from.

COUNT Number of words to transfer.

CHAR Second half of the Sense DSW IOCC used.

Program Analysis Procedures 155

READO

I
Used by: Assembler Language programs and RPG generated programs
Subroutines required: ILSO4
Linkage: LIBF READO (BSI 3 TV DISP)

DC ARG1
DC ARG2

Preoperative input parameters:

Function ARG1 ARG2 I/O Area

Test /0000 Return to this word if busy Not used

Read /1000 Address of word count Word count

Feed /1000 Address of word count Word count
(must be zero)

Postoperative conditions and entry points:

Function
Symbolic

entry point
Return

address at
Interrupt

entry point
Return

address at
Interrupt

level

Test READO RE 180+1

Read READO RE18041 RE048 RE048 4

Feed READO RE 18041 RE048 RE048 4

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location RE324 RE 144+1 RE 156+1 RE 168

Used X X

Significant variables:

Symbolic location Contents/Use

RE228 Busy indicator; non-zero indicates busy.

RE264 I/O area address.

156

READ1

Used by: Assembler Language programs
Subroutines required: ILSO4
Linkage: LIBF READ1 (BSI 3 TV DISP)

DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3 I/O Area Address

Test /0000 Return to this word if busy Return to this word if not
busy

Not used

Read /1000 I/0 Area Address Address of user's error
routine

Word count

Feed /1000 I/O Area Address Address of user's error
routine

Word count
(must be zero)

Preoperative conditions and entry points:

Function
Symbolic

entry point
Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Test READ1 RE180+1

Read READ1 RE180+1 RE048 RE048 4

Feed READ1 RE 180+1 RE048 RE048 4

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location

RE324 RE 144+1 RE 156+1 RE168

Used X X

Significant variables:

Symbolic location Contents/Use

RE228 Busy indicator; non-zero indicates busy.

RE264 I/0 Area address.

RE360+2 Address of user's error routine for read error.

RE370+2 Address of user's error routine during last card.

Program Anal ysis Procedures 157

PNCHO

Used by: Assembler Language programs and RPG ;enerated programs
Subroutines required: ILSOO, ILSO4
Linkage: LIBF PNCHO (BSI 3 TV DISP)

DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3 I/O Area Address

Test /0000 Return to this word if busy Return to this word if not
busy

Not used

Punch /2000 Address of I/O Area Return to this word
following call

Word count

Feed /3000 Not used NSI Not used

Postoperative conditions and entry points:

Function	 at	 CA20 Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Test PNCHO CA34+1

Punch /7001 PNCHO CA34+1 INT1 INT1 0
INT2 INT2 4

Feed /7002 PNCHO CA34+1 INT2 INT2 4

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location

TEMP CA30+1 CA31-F1 CA32

Used X X

1.58

Significant variables:

Symbolic location Contents/Use

CHAR Second half of DSW last sensed.

COLM Address being punched from.

BUSY Non-zero indicates busy.

COUNT Number of columns to be punched.

ERROR Non-zero indicates feed a card (SKIP).

RSTRT Word count for restart.

RSTRT+1 Data address for restart.

Program Analysis Procedures 159

PNCH1

Used by: Assembler Language programs
Subroutines required: ILSOO, ILSO4
Linkage: LIBF PNCH1 (BSI 3 TV DISP)

DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3 I/O Area Address

Test /0000 Return to this word if busy. Return to this word if not
busy

Not used

Punch /2000 Address of I/O Area Address of user's error
routine

Word count

Feed /3000 Not used Address of user's error
routine

Not used

Postoperative conditions and entry points:

Function	 at	 CA20 Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Test PNCH1 CA34+1

Punch /7001 PNCH1 CA34+1 INT1 INT1 0
INT2 INT2 4

Feed /7002 PNCH1 CA34+1 INT2 INT2 4

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic locations TEMP CA30+1 CA31+1 CA32

Used X X

160

Significant variables:

Symbolic location Contents/Use

CHAR Second half of Sense DSW IOCC.

COLM Address being punched from.

BUSY Busy indicator; non-zero = busy.

COUNT Number of columns to punch.

ERROR Non-zero indicates feed a card (SKIP).

INDIC Read station feed check if non-zero.

RSTRT Word count for restart.

RSTRT+1 Data address for restart.

RSTRT+2 Address of user's error routine.

Program Analysis Procedures 161

TYPEO

Used by: Assembler Language programs
Subroutine required: ILSO4
Linkage: LIBF TYPEO (BSI 3 TV DISP)

DC ARG1
DC ARG2

Preoperative input parameters:

Function ARG1 ARG2 I/O Area Address

Test /0000 Return to this word if opera-
tion is not complete

Read-Print /1000 I/O Area Address Word Count

Print /2000 I/O Area Address Word Count

Postoperative conditions and entry points:

Function	 at	 TY24 Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

]interrupt
level

Test TYPEO EXIT+1

Read Print /7000 TYPEO EXIT+1 INT1 INT1 4

Print /7001 TYPEO EXIT+1 INT1 INT1 4

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline
Saved at/restored from
symbolic locations SAVAQ SAVAQ+1 SAV1+1 SAV2+1 SAVST

Used X X

162

Significant variables:

Symbolic location Contents/Use

TY24 Functional branch instruction:
/7000 = MDX * if Read/Print.
/7001 = MDX *+1 if Print.

READ Pointer to data input area.

READ+1 Last half of Read IOCC.

RSTRT+1 Data area address.

RSTRT+2 Word count.

COUNT Contents depend on the function:
/7000 - number of words remaining to be read.
/7001 - count of remaining characters to be printed, initially set to twice the

word count.

PRINT IOCC used to print character from TEMPI.

INIT IOCC used to release keyboard.

DSWRD Device status word from sensing device in interrupt routine.

RIGHT Switch indicating which character in TEMPI will be used next:
/0000 = Use right character
/0001 = Go get next word from data area and use left character.

TEMPI Contents depend on the function:
/7000 - rotate/tilt character converted from hollerith input character from

keyboard.	 Character is printed on console from this area.
/7001 - Temporary storage for printing a character (high order 8 bits was last

character printed).

TY90+1 Address of Hollerith table.

TY92+1 Address of Rotate/Tilt character table.

Program Analysis Procedures 163

PRNT1

Used by: Assembler Language programs and RPG generated programs
Subroutines required: ILSO1
Linkage: LIBF PRNT1 (BSI 3 TV DISP)

DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3

Test /0000 Returns to this word if
routine is busy

Returns to this word if routine
is not busy

Print /20X0 I/O Area Address Error routine address
X = space control
0 , space after print
1 , suppress space

Control /3XY0 Return to this word.
Carriage X = immediate control

Y = after print control

Print /40X0 I/0 Area Address Error routine address
Numeric X = space control

0 , space after print
1. , suppress space

Postoperative conditions and entry points:

Function	 at	 PART Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Test PRNT1 EXIT+1

Print /20X0 PRNT1 EXIT+1 INT1 INT1 1

Control Carriage /3XY0 PRNT1 EXIT+1 INT1 INT1 1

Print Numeric /40X0 PRNT1 EXIT+1 INT1 INT1 1

164

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location AQ AQ+1 FC58+1 FC58+3 F C5 8+4

Used X X X X X

Interrupt
level 1

Saved at/restored from
symbolic location OUT+1

Used X X

Significant variables:

Symbolic location Contents/Use

ILLGL+2 Address of call +1.

NEGWD 2's complement of the word count.

CLEAR Last entry to the clear print buffer routine.

DSW DSW from the last interrupt.

SPSK Space count if (-). 	 Skip if (+).	 Compare for skip response interrupt.

PASS Interrupt switch.

FC16+1 Address of call +2.

STRE3+2 Address of call +3.

SCAN+1 End of the I/O area.

,--CTR48 Scan counter to determine when line is complete.

CTR16 Counter for 16 idles.

Program Analysis Procedures 165

PRNT3

I
Used by: Assembler Language programs and RPG generated programs
Subroutines required: ILSO4
Linkage: LIBF PRNT3 (BSI 3 TV DISP)

DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3

Test /0000 Return to this word if
busy

Return to this word if not
busy

Print /20Z0
Z = space control

Address of I/O Area Address of error subroutine,
error parameter required

1, space suppressed
0, space after print

Control /3XY0
X = immediate control
Y = control after print

Postoperative conditions and entry points:

Function Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Test PRNT3 W3080+1

Print Third digit at PRNT3 W3080+1 W3010 W3010 4
W3920

Control Third digit at PRNT3 W3080+1 W3010 W3010 4
W3920

Register status:

ACC EXT XR1 XR2 XR 3 Status

Mainline

Saved at/restored from
symbolic location W3905 W3905+1 W3060+1 W3050+1 W3070

Used X X X X X

166

Significant variables:

Symbolic location Contents/Use

W3920 First word of the Sense-DSW-without-reset IOCC; also, Carriage control
character.

W3935 Routine busy switch, non-zero indicates the routine is processing a message.

W3990 First word of 60-word output buffer.

W3975 DSW saved for checking of indicator bits at appropriate time;	 error bits
during print complete	 9/12 during carriage operation complete.,ch.

W3130+1 Address of user output area.

• Program Analysis Procedures 167

PAPT1

Used by: Assembler Language programs
Subroutines used: ILSO4
Linkage: LIBF PAPT1 (BSI 3 TV DISP)

DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3 I/O Area Address

Test /0000 Return to this word if
the operation is not
complete

Return to this word if
previous operation is
complete

Read /1X00 I/O Area Address Address of user error Word count (1/2 the
X=0, Check
X=1, No check

routine number of char-
acters)

Punch /2K00 I/O Area Address Address of user error Word count (1/2 the
X=0, Check
X=1, No check

routine number of char-
acters)

Postoperative conditions and entry points:

Function	 at	 DEVIC Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Test PAPT1 RET+1

Read /0002 PAPT1 RET+1 INT1 INT1 4

Punch /0001 PAPT1 RET+1 INT1 INT1 4

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location SAVA XR1+1 X.R1+2

Used X X X

168

Significant variables:

Symbolic location Contents/Use

DEVIC Function indicator:
/0002 = Read.
/0001 = Punch.

CHECK Switch for controlling checking function:
/0000 = Do not check.
/FFOO = Check for a Delete or Stop character.

WDCNT Count of remaining words.

IOAR Data area pointer.

USERR+2 Address of user error routine.

BUF Temporary storage for word containing 2 characters to be punched.

SENSE Sense DSW for paper tape.

READS IOCC for starting paper tape reader.

IOCC Read or punch control word.

FCRD Character switch:
(Punch) Even =	 Both characters in the word have been punched, go get

the next character.
Odd	 =	 Punch the right character.

(Read)	 Even =	 Second character of word was just read.
Odd	 =	 First character of word was just read.

Program Analysis Procedures 169

PAPTN

Used by: Assembler Language programs
Subroutine required: ILSO4
Linkage: TJFIF PAPTN (BSI 3 TV DISP)

DC ARG1
DC ARG2
DC •ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3
I/O Area
Address

Test /0000 Return to this word if Return to this word if
Test reader the previous operation previous operation is

/0001 is not complete complete
Test punch

Read /1X00 I/O Area. Address Address of user Word c ount
X=0, Check
X=1, No check

error routine (1/2 the number
of characters)

Punch /2X00 I/O Area Address Address of user Word count
X=0, Check
X=1, No check

error routine (1/2 the number
of characters)

Postoperative conditions and entry points:

Function
Symbolic

entry point
Return

address at
Interrupt

entry point
Return

address at
Interrupt

level

Test PAPTN RET+1

Read PAPTN RE T+1 INTN INTN 4

Punch PAPTN RET+1 INTN INTN 4

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline
Saved at/restored from
symbolic location

SAVA XR1+1 XR2+1 XR2+2

Used X X X 	 	 X

170

Significant variables:

Symbolic location Contents/Use

CHECK /FFOO = Check for a Delete or Stop character.
/0000 = Do not check.

WDCNT Number of words remaining to be punched.
RWDCT Number of words remaining to be read.

IOAR Address pointer to user data area (punch).
RIOAR Address pointer to user data area (read).

USER! Address of user error routine (punch).
RUSE1 Address of user error routine (read).

BUF Temporary storage for word to be punched.
RBUF Temporary storage for word to be read into.

Index Register 2 Address of RDTBL, if reading.
Address of PNTBL, if punching.

IOCC IOCC used for punching a character.
READS IOCC used to start tape reader.

CHAR Switch used to indicate which half of the word is to be used:
(RCHAR) Even = Both characters in word used.

Odd = First character of word was used.

SENSR DSW received from Sense-with-reset IOCC.

RIOCC IOCC used to read paper tape.

IOCC2 IOCC used to punch a Delete character.

Program Analysis Procedures 171

PLOT1

Used by: Assembler Language programs
Subroutines used: ILSO3
Linkage: LIBF PLOT1 (BSI 3 TV DISP)

DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3 I/O Area Address

Test

Plot

/0000

/1000

Return here if routine
busy

I/O Area Address

Return here if routine
not busy

Address of user's
error routine

Not used

Word count

Postoperative conditions and entry points:

Function Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Test PLOT1 RET+1.

Plot PLOT1 RET+1 INT1 INT1 3

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location SAVAQ SAVAQ+1 XR1+1 XR1-F2

—

Used X X

172

Significant variables:

Symbolic location Contents/Use

DEVIC Non-zero indicates invalid device.

BUSY Non-zero indicates busy.

DIGIT Counter to determine which section of packed word is being used.

SENSE Word count, number of words for this plot.

IOAR Output area address in user program.

BUF Word being decoded for plotting.

FIRST Non-zero indicates first command.

DUPCT Non-zero indicates repeat some command or plot.

CTRL Last plot command executed.

WORK Command that has been separated out of BUF.

Program Analysis Procedures 173

OMPR1

Used by: Assembler Language programs
Subroutines required: ILSO4
Linkage: LIBF OMPR1 (BSI 3 TV DISP)

DC ARG1
DC ARG2
DC ARG3

Preoperative input parameters:

Function ARG1 ARG2 ARG3 NOTE

Test /0000 Return to this word if
program is busy

Return to this word if
program is not busy

Timing /0001 Return to this word if Return to this word if bit
Mark bit 8 on in DSW 8 is off in DSW
Test

Read /1X00 I/O Area Address Address of user error
routine X = 1, Stacker Select

X = 0, No Stacker
Select

Feed /3000 NSI (return to this
word after feed)

NSI

Disconnect /4000 NSI (return to this
word after disconnect)

NSI

Stacker
Select

/5000 NSI (return to this
word after Stacker

NSI

Select)

Postoperative conditions and entry points:

Function	 at	 MPR62 Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Test OMPR1 MPR59+1

Timing Mark OMPR1 MPR59 +1
Test

Read /FFFE OMPR1 MPR59+1 INT1 INT1 4

Feed /0000 OMPR1 MPR 59 +1 INT1 INT1 4

Disconnect OMPR1 MPR59 +1

Stacker OMPR1 MPR59+1
Select

174

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location SAVAQ SAVAQ+1 SAVX1 MPR56 i-1 MPR58

Used X X X X X

Significant variables:

Symbolic location Contents/Use

Accumulator At entry to a user error routine:
ACC = 0001, Master Mark detected.
ACC = 0002, Read Error and/or Timing Mark Error.
ACC = 0003, Hopper Empty.
ACC = 0004, Document Selected.

MPR84+2 Entry to user's error routine.

MPR62 Function:
/FFFE = Read (2000)
/0000 = Feed (3000)

READ IOCC for Read function.

READ+1 Address of user I/O area.

MPR68 NONZERO,	 Feed has already been performed.
ZERO,	 Feed has not been initiated for this Read function.

CNTRL and IOCC for Feed function.
CNTRL+1

STKSL and IOCC for Stacker select.
STKSL+1

DSCNT and IOCC for Disconnect function.
DSCNT+1

BUSY Program busy indicator:
zero = Not Busy.
non-zero = Busy.

MPR64 Zero, No first character interrupt.
Non Zero, Have received first character interrupt.

MPR66 Master mark indicator switch:
zero = No master mark.
non-zero = Master mark read.

Index Register 1 Address of the calling sequence.

Program Analysis Procedures 175

WRTYO

Used by: Assembler Language programs and RPG generated programs
Subroutines required: ILSO4
Linkage: LIBF WRTYO (BSI 3 TV DISP)

DC ARG1
DC ARG2

]Preoperative input parameters:

Function ARG1 ARG2 I/O Area Address

Test

Print

/0000

/2000

Return to this word if
operation is not complete

I/O Area Address Word Count

Postoperative conditions and entry points:

Function Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Test WRTYO WR36+1

Print WRTYO WR36+1 INT1 INT1 4

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location SAVA WR30+1 WR32+1 WR34

Used X X X X

Significant variables:

Symbolic location Contents/Use

COUNT Dynamic word counter; number of words remaining to be printed.

IOAR Pointer to data area, address of last word used.

TEMPI Character to be printed, high order 8 bits was last character printed.

PRINT First word of IOCC to print character out of TEMPI.

PRINT+1 Second word of IOCC to print character out of TEMPI.

RIGHT Switch indicating which character in TEMPI will be used next:
/0000 = Right character.
/0001 = Go get next word from date area and use left character.

TEMP Right half of Sense-with-reset IOCC.

176

DISK1

Used by: Monitor system programs, Assembler Language programs
Subroutines required: ILSO2
Linkage:* for monitor system programs

LDD	 LIST
BSI L	 D0000

LIST DC	 FUNCTION CODE
DC	 I/0 AREA ADDRESS

for Assembler Language programs

LIBF	 DISK1 (BSI 3 TV DISP)
DC	 ARG1
DC	 ARG2
DC	 ARG3
DC	 ARG4

*This subroutine may be entered by user-written Assembler Language programs via the LIBF TV or by
monitor system programs via a direct branch. If a direct branch is used, DISK1 uses the parameters contained
in the ACC and EXT to construct the parameters of a LIBF and simulates a LIBF entry by calling on itself.

Preoperative input parameters (for LIBF entry) t :

Function ARG1 ARG2 ARG3 ARG4 I/O Area Address

Test /0000 Not used Return to this
word if busy

Return to this
word if not busy

Not used

Read /1000 Address of the Address of user Return to this Word 1 = word
I/O Area error routine word after

initiating
operation

count
Word 2 = drive code

and sector
address

Write /2000 Address of the Address of user Return to this Word 1 = word
W/O
RBC

I/O Area error routine word after
initiating
operation

count
Word 2 = drive

code and
sector
address

Write /3000 Address of the Address of user Return to this Word 1 = word count
With
RBC

I/O Area error routine word after
initiating
operation

Word 2 = drive
code and sector
address

Write /4000 Address of the Address of user Return to this Word 1 = not used
Immediate I/O Area error routine word after ini-

tiating operation
Word 2 = drive

code and sector
address

Seek /500x Address of the Address of user Return to this Word 1 = not used
x = seek option
displacement

I/O Area error routine word after ini-
ting operation

Word 2 = drive
code and sector
address

pplies to simulated LIBF.

Program Analysis Procedures 177

Postoperative conditions and entry points:

Function	 at	 D1928 Symbolic
entry point

Return
address at

Interrupt
entry point

Return
address at

Interrupt
level

Test /0000 D1000	 (branch) D1070 D1020 D1020 2
D1020+2 (LIBF)

Read /0001 D1000	 (branch) D1070 D1020 D1020 2
D1020+2 (LIBF)

Write W/O RBC /0002 D1000	 (branch) D1070 D1020 D1020 2
D1020+2 (LIEF)

Write W/RBC /0003 D1000	 (branch) D1070 D1020 D1020 2
D1020+2 (LIBF)

Write Immediate /0004 D1000	 (branch) D1070 D1020 D1020 2
D1020+2 (LIBF)

Seek W/O Seek /0005 D1000	 (branch) D1070 D1020 D1020 2
Option D1020+2 (LIBF)

Seek With Seek /0005 D1000	 (branch) D1070 D1020 D1020 2
Option (D1929=x000) D1020+2 (LIBF)

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location D1912+1 D1912 D1060+2 D1060+4 D1060

Used X X X X X

178

Significant variables:

Symbolic location Contents/Use

D0006 If DISK! was entered by a monitor system program at D1000, this word is used by
DISK1 to simulate a LIBF link word. 	 The contents of this word should reference
the simulated LIBF at symbolic location D0060.

D1000 Monitor system program entry.

D1020+2 LIBF TV entry.

D1020+4 LIBF TV link word.	 Contains the address of the first parameter in the calling
sequence.

D0235+1 Address of the word containing the beginning of the file-protected area of the disk
(D0310+1) on the specified drive.

D0280+1 Address of a table in COMMA containing the list of defective cylinders of the disk
on the referenced drive.

D0305+1 Address of the device code to be used corresponding to the referenced drive.
(D0330+1)

D0350+1 Address of the word in COMMA containing the current position of the heads on the
(D0390+1) referenced disk.

D0901 Sector address of previously executed Forced Read.

D1901 Current arm position obtained by reading the sector address after seeking.

D1902 and Last two words of sector previously read.	 The area is used to store an inter-
D1903 mediate word count and sector address.

D1904 and IOCC for the operation currently being performed.
D1905

D1906 and IOCC for the user-requested function.
D1907

D1908 and IOCC to reader sector address into D1901 after a seek operation.
D1909

D1911 Second word of Sense IOCC.

D1912 and Used to save and restore the ACC and EXT.
D1913

D1925 Word count remaining to be read or written from originally requested word count.

D1926 Next sequential sector to be read or written.

D1929 Non-zero if the seek option was requested.

D1930 Non-zero if the displacement option was requested.

D1932 Second word of Seek IOCC.

D1938 Current sector address.

$DBSY Non-zero indicated routine is busy; this word must be cleared to zero before entry
to this routine is permitted.

Program Analysis Procedures 179

DISKN

Used by: Monitor system programs, Assembler Language programs
Subroutines required: ILS02
Linkage:* for monitor system programs

LDD	 LIST
BSI	 L	 D0000

LIST DC	 FUNCTION CODE
DC	 I/0 AREA ADDRESS

for Assembler Language programs

LIBF	 DISKN (BSI 3 TV DISP)
DC	 ARG1
DC	 ARG2
DC	 ARG3
DC	 ARG4

*This subroutine may be entered by user-written Assembler Language programs via the LIBF TV or by moni-
tor system programs via a direct branch. If a direct branch is used, DISKN uses the parameters contained in
the ACC and EXT to construct the parameters of a LIBF and simulates a LIBF entry by calling on itself.

Preoperative input paramaters (for LIBF entry)t

Function ARG1 ARG2 ARG3 ARG4 I/O Area Address

Test /0000 Not used Return to this
word if busy

Return to this
word if not busy

Not used

Read /1000 Address of the Address of user Return to this Word 1 = word
I/O Area error routine word after ini-

tiating operation
count

Word 2 = drive
code and sector
address

Write W/O /2000 Address of the Address of user Return to this Word 1 = word
RBC I/O Area error routine word after ini-

tiating operation
count

Word 2 = drive
code and sector
address

Write With /4000 Address of the Address of user Return to this Word 1 = word
RBC I/O Area error routine word after ini-

tiating operation
count

Word 2 = drive
code and sector
address

Write /1000 Address of the Address of user Return to this Word 1 = not used
Immediate I/O Area error routine word after ini-

tiating operation
Word 2 = drive

code and sector
address

Seek /500x Address of the Address of user Return to this Word 1 = net used
x = seek option
displacement

I/O Area error routine word after ini-
tiating operation

Word 2 = drive
code and sector
address

(Applies to simulated LIBF.

180

Postoperative conditions and entry points:

Function	 at	 DN9 84+XR 1
Symbolic

entry point
Return

address at
Interrupt

entry point
Return

address at
Interrupt

level

Test /0000 DN000	 (branch) DN120 DNO20 DNO20 2
DNO20+2	 (LIBF)

Read /0001 DN000	 (branch) DN120 DNO20 DNO20 2
DNO20+2	 (LIBF)

Write W/O /0002 DN000	 (branch) DN120 DNO20 DNO20 2
RBC DNO20+2	 (LIBF)

Write With /0003 DN000	 (branch) DN120 DNO20 DNO20 2
RBC DNO20+2	 (LIBF)

Write /0004 DN000	 (branch) DN120 DNO20 DNO20 2
Immediate DNO20+2	 (LIBF)

Seek W/O /0005 DN000	 (branch) DN120 DNO20 DNO20 2
Seek Option DNO20+2	 (LIBF)

Seek With /0005 DN000	 (branch) DN120 DNO20 DNO20 2
Seek Option DNO20+2	 (LIEF)

Register status:

ACC EXT XR1 XR2 XR3 Status

Mainline

Saved at/restored from
symbolic location

DN902 DN902+1 DN110+1 DN110+3 DN100

Used X X X X X

Significant variables:

Symbolic location 	 Contents/Use

DN230+1	 If DISKN was entered by a monitor system program at DN000, this word is used by
DISKN to simulate a LIBF link word. The contents of this word should reference
the simulated LIBF at DN902.

DNO20+4	 Contents of the LIBF link word if called by a user-written LIBF.

DN902 and	 Simulated LIBF parameters for direct branch input:
DN902+1	 D0010 = /1100 for read input

= /2200 for write input
D0010+1 = address I/O area

DISKN is capable of executing 5 drives simultaneously. Reference to the proper disk drive work areas
is accomplished by use of a table. XR1 is used to point to the relative starting position for each specific
drive in the table. The starting address in the table is computed as follows:

Program Analysis Procedures 181

Significant variables (Continued):

Symbolic location Contents/Usw

The contents of location DNXXX+XR1 where DNXXX is the first entry
in the table and XR1 contains twice the drive code.

Example: Assume drive 1 is referenced.	 The address would be:
DNXXX+(1 x 2) = DNXXX + 2

DN952 and First and second words of Seek IOCC if one is required; also used as temporary
DN952+1 storage.

DN050+1 Drive determination:	 the drive currently being referenced may be determined by
the contents of Xi11 corresponding to the relative starting address in the drive
table, or by examining the contents of STOX1+1. 	 This location contains twice the
drive code.

Index Register 2 Drive code and I/O area address at various times during execution of this routine.

DN978+XR1 Current position (sector address) of the heads on the referenced drive.

DN980+x-R1 Last two words of the I/0 area just read into.

DN982+XR1 Address of the user's error routine.

DN9 83 i-XR1 Current seeking status of the drive:
/FFFF = drive is seeking, has just seeked, or seek is required.
/0000 = seek not required, or not in process.

DN970+XRI Originally requested user function.

DN985+XR1 Error counter for referenced drive for this operation:
50 10 - C(DN985+XR1) = total errors occurred for this drive during requested

function.

DN986+XR1 and IOCC for the current user-requested operation, except for Seek and Sense DSW.
DN9 86 +1+XRi

DN990+XR1 Originally requested sector address.

DN991+XR1 Current sector address for current IOCC.

182

Significant variables: (Continued)

Symbolic location Contents/Use

DN992-FXR1 Remaining word count to be read or written.

DN993-FXR1 Word count to be used in next I/0 operation.

DN994-FXR1 Current I/0 area address.

DN995-FXR1 Read-back-check counter:
100 10 = C(DN995+XR1) = total errors occurred attempting to perform RBC.

$DBSY Current status of each of the 5 possible drives; i. e. , if drives 0 and 2 are both
busy, bits 0 and 2 of $DBSY are set to 1.

Program Analysis Procedures 183

FLOWCHARTS

System
Loader

Flowcharts:
SYLO1 - 05

LINK

Cold Start
Loader

Flowchart:
CSTOI

Cold Start
Program

Flowchart:
CSTO2

3
DUMP

Skeleton
upervisor
lowchort:
SUPOI

EXIT

Core Image
Loader

Flowcharts:
CIL01 - 02

EXIT
entry

LINK	 DUMP	 DUMP	 LINK
entry,	 entry,	 entry,	 entry,

DSF	 negative	 non-negative	 DCI
program	 parameter	 parameter	 program

Monitor Control
Record Analyzer

Flowcharts:
SUP02 - 08

DUP	 FOR	 RPG	 ASM	 XEQ
record	 record	 record	 record	 record

Term inal	 Dynamic
Dump	 Dump

System Core
Dump P ogram

Flowchart:
SUP09

DCI	 DSF
program	 program

Subroutine
Library

Flowcharts:
UTL01-13
SCA01-07
F1001-13

Auxi I iary
Supervisor
Flowchart:

SUFI°

Disk Utility	 FORTRAN	 RPG Compiler	 Assembler
Program (DUP)	 Compiler	 Flowcharts:	 Program

Flowcharts:	 Flowcharts:	 See RPG PLM	 Flowcharts:
DUPOI -13	 FOROI - 30	 Form Y21-0010	 ASMO1 -24

EXIT	 EXIT	 EXIT	 EXIT

Core Load
Bui der

Flowcharts:
CLBOI - 02

•
LINK	 LINK	 EXIT	 EXIT	 LINK	 DUMP	 EXIT

USER
EXECUTION

Flowchart DMS01. Disk Monitor System, System Overview

• Flowcharts	 185

mom texauao	 ularAS • TO•LkS 2.rettoitkoi.3

070133 JO aNa 080313 1031303
OIHd 5033039
	 13 	

• s3Nlinavons •
• 0701	 •
• DI dna H3131 •
• 01 3011009 •
• 033 01 39	 •

	

Sr 	

49014373
NO 13 111N3

31971 070133
3H1 ailen

9

	5.01 	 •
' '''' • 3SVHd 113 AO •

.0V3H979
5

 inr Lals.
• NI 	 V 3330i 	

	

Er 	

N130
001179001A003
9315AS 00330e9

....• ...•If 	

S3A •

31991 070133
NI S313133

3H1 053303d
09

•
IN3S33d

ION 5331030
0/I 301 1310

• NI 31931001
SH 	

• •
E 35099900

.33103 ONV H313A.

S3A •
•••

0701
ON	 1V111N1

• EH
.'

.01 93N/7 S350Hd•
: 049133M-31•

	

NV en 13S	 •

	

CO 	

•
: 390131373 NO
• Z 3SVHd 3901S
......OH 	

• 1 3SVHd .-9115 •
• 9117 Z	 •

	

•35799 40 301335 	
• V A713390	 •
• 01 MS 135	 •

	

19 	
K

0301	 '46
ON	 1711191 .•

X

X
• •
• E3 .9••

••	 103033d
• ION 0331930
• 0/I 391 I315
• NI 31731001

	

Si 	

£ 35709905
•33131 INN H3133•

03

131	 ••
•40 301330 ISWII.••	 37110111N1 •

•
	 SO 	

ON •

••
	 •	 0701
531 •• 10I1101 ••

••	 SA

•• 39791 513 NI
: 390303N133710
• 0019503 317090

43 	

"84? 04016147.
.5533007 113 135.

4	 •
• 03341300333 •

	

SI V91	 •
.3SVHd	 19930$7,

	

4ANV OWO ION 00 	

	

El 	

S3A •
•• • •

••••• 113/90I3SSV
ON ".	 SSVdA9 .*

••	 E3
X

** * **** x

031131N00303
• SI /VH1
• 3S79d 3731303
•ANV 0701 ION 00

£0

• •	 •

A37553333
9397 NOIHSO3
0131 ONVdX3

23

03070133 39
• 9038P5sVg3
.303 I315 93373S

23 	

ON •.• . •
.....	 0301

S3A•1711101
• za

531 •

0701
ON •	1711101 o'

.

• 0
• 0393
• 10111303 3009 •
• 0001 05330119 •
• 13 	 	

•••11. 	

.0/1 0373 IOSZ.
H113 0/1 0373

• 2441 AV133A0
...... 4*...10

••••

X •• ZO

ON •

• 39791 117301533•3•
••	 3711711131 •
	 GO 	

• 070133–Z •
0301-1 gSVH4OnS

•331N3 INV 9513i.
43

07311103	 -•
ON E ' 	 SSVdA9

E3

'X'. E3 •

• 300131393
• 01 NO 330900
• 31009 ONO
• N0I533A 317090

Z3 	
X

0350 330733
S3A ` ' 	 2441

13
I3SVHd

• o• n-1413M112
• en 135•

X	 ASON3

•
.03070/ SI 3SVHd.
•H3V3 SW 41971 •

1315 01139 •
•

	 EC!

• 11011009
• 1N3RIS33
• 0a13/11MINI

Z9
Z3SVHd

• 3SVHd	 •
00701 330301

• 018151009	 •
...... 0..39

• IS

• ZO
••0	 539

`• 5x7 530 5•
 .:"'"

••	 NV

•

• 919911194X"
: 189 'xi
• £7 	

. • 2 11421% 1 3d .0—

Z 11 	 	 ••••••.••••i7

• 330701	 •
.173151000

• 30 0701 170079.

••••• •	 •002.	 •002.
• A2 •	 • A4.	 • A5•

Al

...Nth FROM •
• BOOTSTRAP LOR

• •	 40.10	 • •	 • •....	 •	 •	 •
• A3	 •

%	 *...... il	
•	 •

.. 	 ABSSC 	 % 	 EOP	 %
A2	 ...	 A3.....	 A4	 	 45

•,	 0.	 :	 FthrST	 :	 FILE LAST
- ..	 TEST	 .. •.	 ..	 IS IT	 .1. NO	 St TOR

..... XCARD FOR .0....	 ..	 PRESENT		 • PROq HD TO :	 PROC SED TO

.	 ...	 0,-0.	 .1..	 .	 0.	 ...	 SK•
...	 0.	 .0

%	 R.04.	 • 0	 .4.4.	:TS
• ••	 •	 •
• 02	 •	 • C2 •• •	 •	 •	 •***.	 •	■

El

2501
WAS
READER	

NO

USED

YES

	 Cl 	

OVERLAY 1442
SUER. WITH 2501

SUER.

	

i	 x
	 82 	 	 	 B3• •

•••	 •:
	 COMMUNI ATIDN .

 •	 SET r	 •
•

• TEST FOR LOAD

AREA AN FILE•
• •

• •	 • F2 •
• C2	 •	 •• •
•..•
	 2 	 	 	 C3

TEST FOR PHID
	

LOAD PHASE 2
CARD
	

AND ENTER AT
MAING

	 B4 	 	 	 85 	• •
•INITIALIZE FOR •:	 SET XCARD TO •

•• BINNING 	 FOR SCON •
• CARD NEXT	 ••

	 4 	 	 	 C S 	
• SECTOR ADOR. •	 •
• WILL BE TAKEN •

ARD	

•CALCULATE CORE

C
•FROM NEXT DATA •	

• s iLR g2SiT•• •	 •
"40

. 00		 •	 •
002.	 X 	 	 •	 •	 • A3 •
010.X	 • D2	 •	 •MO

•• • •
START...
	 D1 	
	 x

D1	 	 02 	 	 i
......03

•READ CARD INTO	 TEST FORSCON •	 • DISPLAY ERROR •
BUFFER A	 13	 •••	

•	 •

..X. DI •	 ...X DI •
'00.4.

.002•
• E4•• •

0020
•

.	 .	 .
%

..	
.0.	 REQ	 R

.

	

*....	

DATA
E4	 ..	 	 E5 	El	

. .•.
E2	 m.

YESNO ... IS PAK	 ..	
...	 aliSaT	 .0711PIARi... NO	

• $(04ERTagli,.

.. BR:A:ES**

• TriBinn

	

..... INDICATOR	 0.FOLL W EC OR.....
:RTUE...	 ON	 .11

YES
...

..110 • •........ *02*
•0 F3.••	 •

...	 .0	 .0.	

• • .	 • DI .	 •
• F2 0.X.	 •	 •	 ..X: 01 :• •	

MOD

•

E	
%	 OM04...

	 Fl 	 	 F2	 *.	 F3	 ...	 	 F4 X
STUFF	 x	 ...

:
COMPRESS 2;
	

..	
klkw

•WORDS IN BUF ER.•
•

B	 •	
.:0 PRESENT!!!.

..
..	 . ..
	 .	

0:0.. RallS. .::.!!!	 •SEC PR
T.eA
	 SS

 • FROM WOKE/ II

• *002.... .• .
". ..110		 • NO	 •	 ..G5.• •

X	 • H1 •	 x 	 	 •

•..••	 	 x 	.

X	 TBL2	 %
Gl ... •..	 %	 G3.•.•.	 	 G4 	 	 G5 	

CARD		 •DISPLAY ERROR 3•	
liAN:i::.!!!

0..052 	
..-.cokiAm.-.. YES	 •	 •

...EXPECTED ...	 •	 •

•NO 	 H:X140.

...	 0
.044

8.00	 .	 .	 •
• A2 •

• HI •.X.	 •	 •
• . .	 MO. e	 X

CARDP
a.
 ml....

•
........H1 	

..	 CARD	 *.	 •
..	 TYPE	 .0.	 *DISPLAY ERROR 9•.•	 .0	 •....... ...

•

.INITI
J3
ALIZE DISK*

:0E40ft/ill/ACK:
DATA	 •• •

• K2•

X* 01 •• •a.
CORE
	 K2 	

•

HREIANO FOR :CPU SIZE	 ••
ma.

..X0 DI •

Flowchart SYL02. System Loader, Phase 1

CARD

:...S.B...002 A4

...MODE..002 F3

....DATA..002 E4

....E0P...002 A5

..S/D...002 D1

..REQ...002 E5

.....TERM..002 G5

:...CORE..002 K2

.002•

• •
•
•

	 J4 	
• • ErAELISH •
• FILE THIS	 •PRIN IPAL PRINT.

	

....SECTOR AND GET • 	
:DEYNDfC278R!"

:
•NEXT••	 •

X
..	 x

H4	 ..	 	 H5 	

.. BUFFER	 ... NO	 COMPRESS DATA :• 0.
....	 FULL	 AND SAVE FOR

•*.	 .	 PHASE 2	 •
..	 .. %

• YES	,

• D1• •.......

TRANSFER DATATO DISK BUFFER
• •

TEST REQ DATA •
FOR ERRORS	 •

• MODE CARD

Flowcharts 187

	C2
SET INDICATOR

•AO ON Al START.

• BUFFE A	 •
READINTO

	 C3 	

• POINT ADDRESS •

: INIMPPEAI
S •

XSL1
	 	 D3 	

N • • UtP0A N I9 	 .*

•003•
•1)?•

•

•
i	 05 	

PROCESSED TO

FE LAST	 .5 COR
DISK	 ••••

. .
02	 *.

*	 IS	 *.
•BUFFER A2

BUSY

• YES

..X. Fl

.003.

ADDRESSSAVE S ADDRESS OF
SECTOR

FOLLOWING
CUSHION

• • •
003.
F1 •.X

• • •

WAIT FOR I/0
OPERATIONS
COMPLETE

SETIO
	 BI 	
• INITIALIZE	 •
• INTERRUPT	 •
• BRANCH
• ADDRESSES • •

UVERM
	 CI 	• •
•UPDATE VERSION •
•AND MODEL LEVEL.

NUMBER	 •• •

DI

X •.NO• •
• Fl •• •
••••

X
MAINS

• ENTER FROM
• PHASE 1•

A2	 *.	 	 A3 	

• •	 2501NO	 •READ TO BUFFER•• READER ON
•0: A COMPLETEPSYSTEMOP

X

AS

•
CARD
TYPE

•
• YES

DUB

	

.	 ..X. F2 •	 .• •

	

X	 •.••

:..•DATA••D04 Al

	

B2	 ..	 B3	 .•
..		 •...RA 	 	 :...E0P...003 G5..	 I	 .. YES

•. BUFFER A • 	 X.:.	 Hs12 	 '....r..! X: ERROR STOP	 •	 :..•E0S.••005 Al
.. BUSY	4.	 •

	

.D.	
• NO	 • NO

X x	 E2 	 	 E3.....	 	 E5 	
:HOOKY ADDRESS •	 .•

..	 I	
..

*. ND	
•	 .

: SUBWIla TO •
	 BUFFER A	

*. BU Y	 ..	
• BEGINNING OF •
+IN/TIAL/ZE FOR •

• NEW PHASE
• A2	 *	 i	 •	 •

• YES	

o FE •

000.

•MODIFY
F3 	
 ADDRESS

:	
IN

•SUBROUTINE TO A.•
• YES	 *.G5*
:	 •
:	 .
X	 XSL3 	 I

	 G2	 G5
• •	 •	 LIF
•PACK DATA FROM •	 •	 SECTORRAST• A OR A2 TO B •	 • PROCESSED TO
• •	 •	 DISK• •	 •

• F2 •.X.
• • .X 	

TPAK
F2

	NO	 IS
PACKING	 .*

..REQUIRED

x:
•

H2	 .	 H3 	
.:. "LA .:."	 xi 90,tAna•

115•
• COMPLETE SLET
• ENTRIES FOR
• THIS PHASE•

• YES

X▪
J2

CLEAR A2 BUSY
INDICATOR

4.0
• •
• A5 •• • 	 J5 	• •

•UPDATE SIFT ON .
• DISK	 ••• •

.	 ••••

..X. Fl •
• •
• A5 •• •.6..

Flowchart SYL03. System Loader, Phase 2

188

• YES
S•003•

• Fl.

C2.....
emE R • .: NO

• YES	
•003•
• Fl•

• •

FR ONE
	 A4 	
• •
•SEARCH SLET FOR.

..X. THIS PHASE	 •
• •
• •

• MUSE	 NO
•
LONGER THAN

 IG IN

• YES	 ••••

• •
• B2 •
• •

	 C4 	
•
•G0 TO EXPNO TO •
• EXPAND INTO •
••	 CUSHION	 •

•

. 004.
• Al•• •

•

X
XSL2	 ...	 FEAT	 .o.

Al	 ..	 A3	 ..

	

.• IS	 o.	 0 DOES 6.
•
	..

...	 PASSING	 	 X•.	 SECT
 'EU ..
	 X.• PHA!' ID.• LOADER	 .. NO	 ..CARO FOLLOW.. YES	 ...NO

11. PHASES .6	 ..NEG IVE
al.		

•

	

• ' YES	 • • NO
m
	• YES

.11.69
• •
• 82 ..X• •

	

x	

	

....	 x	 x
B1	 .1.	 	 B2 	 	 	 83 	

...	 •	 •	 •
NO ... IS THIS • ...	 YARAMEgata •	

•STORE PHASE ID •
.PHASE TO BE•. 	 •AND OTHER DATA •

.	 .. LOADED ..	 *IN	 RELOAD RELOAD TABLE.
..	 ...	 •••	 •

	 CI 	
• •
• CLEAR BYPASS •
• SWITCHES
• •
• •

C3...
INITIAL	 NO

• LOAD	 .6

• YES

X

	

FINLD 	 x	 02 	 	 03 	 	 04	 ...
• •	 •
•	 FILE THIS	 •	

..

	

PO/NT XR2 TO •	
•:. M I D

... ..
..n..•SECTONEXT AND GET •	 AT IN :

NEXT	 .
• •	 •	 •

X

	• . YES	 •••••
•

7(

•	

•

B2 •• •
••leo

• Fl.	 FIZZ 	 x
• •	 E3 	

• •	 ...o. 	

	

•• VERIFY THAT •	 • DISPLAY ERROR •
*PHASE

ID
IS IN •	 11	 •

• ORDER	
•

•	 •	
•

• •

:.X: 82

•003•

Flowchart S11.04, System Loader, Phase 2

Flowcharts 189

ISLA

11.41.0.

.005•

•	 •	 •
•	 A3	 o...

•••
NODA	

•

	 AS 	 • 	 A2 	 A 3 ***** 4.4. 	A4	•	 • 	A5	
•	 PLACE CURRENT •

STORE FFFF AT
END OF RELOAD
TABLE STRING

eINITililZE_CORE 	
•	 S	 AND	 •

'WO KZINEVED:
ALTSEPTIVEE ..x:18A4NCVlif04 :•

•	 AREA	 •
...:EN9WATAN OF:

•	 CORE GIBING	 •
•	 IMAGE	 •

SETPD
	 131 	 B2 	 B3 * : *** ff... 	 B 	 	 BS 	

SET PRINCIPAL
I/0 DATA	 IN

FETCH APRS ENTER
NEXT OVERLAY •	 TABLE TO DISK

•	 BR TO
4
 RES MON •

•TO	
S

FETCHR
	 •
DUP TO.

.	 TOE

•INCREASE STRING
•	 LENGTH BY 3
•	 PUSH END WORD

SLET SUBPHASE 3 *SUBROUTINE LIRE.•	 • •DOWN STRING
•

••••Cl
MASK

C2
INIZ

C3
.	 .

C5

FETCH AND ENTER
SUBPHASE 2

CLEAR SLET OF
ALL SIGN BITS

ADDRESSES

•	 •
..x:Cragiqitzp2n:

EN	 OF	 •. YES
e .	 DISK

D
 STRING

ADDRESSES • 	 • .400•	 •
•	 D4 • .NO	 0.0.•

• A3•:

.0.0

TMOT2 COMTL
	 DI•
•FETCH CIL DATA
•	 FROM SLET FOR

02•
•;611EIHNNTM

D3 .•
•0118-af6 ':.NO

04 	•
'LOAD A PHASE ID:
•	 OF D 	 TABLE

	 D5 	 •
ENCIVI OV ENSK •

DISKZ• ••	 NOT PRESENT •	 STRING• STRING	 ••••

•	 YES
•

.	 . CDT •	 D4	 El 	
•	 FETCH ICON

E2 	 E3 X E4

.•
•	 • • •

•UPDATE CUSHION
•	 SIZE AND FILE

.•	 RELOAD	 NO4.	 OPERATION CLEAR SYSTEM
LOADER FROM 4..	 MigE

•	 BACK DISK .	 STRING	 .4•.
•	 YES NO

C200	 x
Fl 	 F2	 x	 	 F4

x

•	 •	E3 	 	 •	 COMPARE ONe
.•	 INITIAL	 NO

LOAD
•	 FETCH RELOAD	 •	 •	 DISPLAY END	 •	 • DISK TABLE ID
•TABLE FROM DISK.	 •

•	
RELOAD	

•
•	 • WITH

LE
ALL

0.S
CORE

••
	

•	 TAB	 1 •	 •
•	 YES

.	 .
	 GI 	 • •	 SET6 2FADDR TO	 •

G4

UPDATE	 • +POINT TOEND OF. ANY	 e. NO
ADDITIONAL	 •

WORDS IN DCOM •
.IN—CORE RELOAD •

TABLE
MATCH	

• •

GETR
H2H2

READ DISK	 •
RELOAD TABLE •
INTO BUFFS	 •

J2•
.• ANY 0.00•.4 DATA IN	 YES •	 •

••	 DISK	 .•..•.X•	 04 •
•. TABLE .•	 •	 •.•

• ND

•
INITIALIZE	 •

FIRST SECTOR OF.
LET	 ••

	 J1 	 •
INITIALIZE A •

NUMBER OF WORDS•
IN RES IMAGE ••

YES

	 H4 	
• COMPARE NEXT
• DISK TABLE ID

... 4 WITH ALL CORE
• TABLE ID'S

• •
• A3 •

Flowchart SYLOS. System Loader, Phase 2

190

S3to..
• • •	 •

o' 939N0N
•
 '.

•X 	 	 30190	 '.
ON "•	 0I190••	 s'

23 	 •'.	 13
)1 •• •

•S3H31/MS WOHA•
O 30190 1031901

• AO 838809 0038•
10

1100

x

161 sIxetlomoLl

aarreol 4.1r4S PI0D ' TO.LSD axegomou

• W99909d 1/1915 •
• 0103 01 11%3 •
	 EN••••

;013301%990U:
• Oalii1S1N01.

Er
x

••
• 3W00 01 	 •

CH

•
• 13539

01AW/aM09
	

:11m098Poinl5•
	 09 	
	

	 .10x

	19915 0103 40 •	 03IA/33dS

	

5539009 110133S•	 30180 90i 3003

	

ONV iwnoo	 •	 331030 01108O80 do 135 •

	

CA 	 	 	 13x

•
• •

	

9330	 ••
• 01 3301 01109 •
• E3 	

•

S901913091SNI

	

901	 •
03510038 0,108.

CO

S3A •
',.

• ••

......
41...	 ..

23 X • " • • •	 10039	 '•
• •	 ON 'm	 ASIO	 ."...I,	 ..	 ••

'.. E3

13S3
•HlIM ASIO

k1
 35930.
	 E9 	

'NUM AM'
of 3301 ollne
	 /3 	

0000
NOI1V30 19

9011003X3
1
 NI939

19

• 300W	 •
.19551510160TOl.
	 IV 	

ldI

A

•GET DEVICE CODE•
• FOR LOGICAL 0 •
•SET UP BY COLD •
• START LOADER ••

	 CL 	
••

• INITIALIZE •
*LOCATION 0 WITH•
•BRANCH TO SUMP••

A
	 DI 	
• SET UP NORO •
• COUNT AND •
+SECTOR ADDRESS •
• OF RESIDENT •
• IMAGE	 •

	 EL...*.....
• INITIALIZE
• SOCYL ENTRIES
• FOR POSITIVE• TO

	 Flo***

• SET SDBSY AND
• SCYLN TO ZERO

•

	 01***.m.

•FETCH RESIDENT •
IMAGE•

	 141***.n

• INITIALIZE	 •
•SACO(ENTRY FOR•
• LOGICAL 0	 •

mon 	
• EXIT TO	 •
• AUXILARY	 •
• SUPERVISOR	 •

••••10 	
•ENTER FROM COLD.
• START LOADER •• •

Flowchart CST02. Cold Start Program

192

PI	 *.
.*	 *.

*. YES
INTERRUPTS	 .*...

. RENDING .

■:****02*********:

*INDICATE ENTRY *
* RADE AT SExIT *

*****************	 :**************

*****B1*4* ***** **
*
*fNDICATE ENTRY *

MADE AT SLINK *

	

****A1*********	 ****A7*********	 ****A1*********
* soUPP ENTRY *	 * SExIT ENTRY *	 * SLINK ENTRY *

POINT	 *	 POINT	 •	 *	 POINT

	

*	 *	 *
. **********•*••*

$ N7

x . .

*****C1**********
SAVE REGISTERS,
* GET AND SAVE *

OUMP FORMAT *
CURE	 *

******01***********

* SAVE FIRST 4K *
E CORE UN CIA.

*****EI 	
*INDICATE ENTRY *
* MADE AT EnumP *•

•* * * • * * * * * * * • *

*** * *C 2 ** * ********

StaI RTN
*	 *

***** ****** ******

***** D7**********
• GET AND SAVE *
*LINK NAME. TWO *
wORDS FOLLOWNG
* CALL LINK	 *
* * • * * * * * *	

$

x..........
E7	 N.

	

.*	 N.

	

.*	 *. YES
*. INTERRUPTS .5...

*. PENDING .t
*. .***

ND

* ***** F2 ***** ******

* FETCH CORE	 *
IMAGE LOADER,

• PHASE I	 *

****G7* *******
* EXIT TO CORE *
* IMAGE LOADER *

•Flowchart SUPOI. Supervisor, Skeleton Supervisor

Flowcharts 193

****A1*********
ENTER FROM CORE
* IMAGE LOADER *
**************.

*C132.
* NI ..X
• *

******R1***********

*FETCH REQUIRED *
• SOMANES
.....****••**

C **	l 	 *.

YES.. CCNTROL
...*.	 RECDRO IN	 .*

PUFFER .*

. NO

*007.
3 *+,

RA770
******01*■*********

	

RA000	 007E7

*READ A RECUR°.

Fl"	
y ES .	 ..

...**... CMUTD S .*'*
..	 .*

* *
* A2 *...
****	 x

/12*"*.
.*BRANCH O.

.* ON 0*3 TO
*.	 PROCESS	 ..

.. RECORD .*
*....

....CMTS..002 01

....JOR...002 83
0.

....P4O5..007 F$

....CPRN..007 E4

....TYPE..002 C4
BI

:...XEO...002 A3
....DUP...002 A4
....ASM...002 45
:...EOR...002 A5

H x * *** ****

"VOic" *

J2	 0. ****** J4*** *****

*REQUIRED PHASE *
•

BRANCH TO
NEXT PHASE .

*
PRINT ERR
	 *

 ."*:

a***
.

* Dl *
*

H1*..
*.

FLUSH	 *. YES
•• 	 THE JOT	 .4....

*.
.*

	

X	 * ******	 ** * **
* NO

*• DI *
.

******j/*S'*********

RECORD	 .r..* R3;0*	 PRINT THE	 *

	

.	

	

*************	 X	
.

..•* . YES
• •
* 62 *. *
....

****K2*********
•

* RETURN	 *

a +* ***#t 4***

	 4 ***** **•**
* SET WC C SCTR *
* ADD* LOAD I/0 *
* AREA AMR
• READ FUNCTION *
********** ****** *

..J0B...002 .1
....XEQ...002 A3
....DUP...002 A4
....ASM...007 A5
....FOR...002 A5

002
Al*

R4503
63	 4.

.*
$NREO,	 *. YES

• NO EXECUTE .0....
S. SW ON .*	 •

* NO

* (11 8.0
..**

PA600
•
* SET WC	 SCRr *
:REOUPEnDgHASE:"..*
*********** ***** *

* *

*****c3 ****** ****
. MOVE ROUTINE *
*FOR READING IN •
*4 PHASE TO THE *
* $HASH AREA	 *
******** *********

****D3******.r.
BRANCH TO SHASH
* + 3, H4	 *
* **********......

sr
002

F3 5...
* *	 .X 	
....it	 X

RA460
E3	 11.

.* $10CT,	 YES
4. .	 PENDING	 .5 	

. !NERVE .

007
* A4*

•
•

	

*0560	 X
A4	***A5** ********

.*	 *.	 *

	

*.	 NO OOP	 .4....	 :TUTU; 41E4 NF-:

	

.*	 $NDUR	 .. YES
.SWITCH ON.	 .	 *	 *

R.	 ...	 *

	

X	 **a*** ********* 0.

	

. NO	

.	 ****

.	 *	 . • j$ r	 . *	 *

..X* B3 * *	 •	 —X* 83 .

	

.	 r .•..	 .	 *
**** 	 ****

.032*
.02

	

RA480	 X
•*04.05***5
* SET WC	 S:TR *
:IPARRR5TRIVRE:
• KEYBD TEND CD.

	

OR P/T	 *

.	 ****

.	 *	 *

..X* 81 *
*

002
* *4*
*

•

	

RA400	 X
*****E4 ******* ***
* SET

WDDR
C C SCTR *

* A 	 OF	 •
* PRIN0IPAL	 •
• PRNTER O	 *
*CONSOLE PR

T
NTER *

X
* •
* JO ***

RA520

ND • NO

*****E/**********

. SET xR3
*

e CCORDING TO *
* RECORD TYPE •

61
. .

*

	

JOB	 YES

	

RECORD	 .4....

tf *FR ***** ...*

. ENTR Y POINT *

*	 •
* G2 *.X• *

******G2 ***** ******

READ 4 RECORD

*****E3**** ***** *
• BRANCH TO	 *
* PREOPERATIVE *
. ERROR TRAP	 *....
* DISP HEX FEET w

•
****** ***********	 X

****	 *	 *
.007*	 * DI
* 04 *...	 *	 *

•r.
RA440	 X******6o..... ******

* SKIP TO NEW *
PAGE C PRINT

* PAGE NO.	 *
**** * * •****** ******* ******

* NO	 ****
*	 •

X	 . A2 *

.	 ****

..X# DI *
+R..

ROUTINE TO BF MOVED
TO $HASH AREA

• Flowchart SUP02. Supervisor, Monitor Control Record Analyzer

194

******A3* ****** *t t*
• FETCH ID LIST a	 t PRINT SYSUP *

X	 FROM DISK	 HEADING*	 *	 *	 .

******A5 	
PRINT REMAINING

Ins NOTX * PROCESSED •

X
D4	 *.

*
*..	 1p

•EQUAL 0
*.

***:* 0

•

E4	 *A
.*	 S.

.* CARTRIDGE *. NO
*.NITH THIS In .• 	

*.AVAILABLE..
*.

• YES

ItiNHaFPri.W*
CARTRIDGE •

****** ***** * *

. YES

x

■•**••OR

..x* "Ansi cAPR .*

****EB*********
• EXIT TO SLExIT •
* IV SKELETON *
* SUPERVISOR	 •

SU500

•FIND THE10 IN •
a #cTST la""
a	 CARTRIDGE	 *

******FA ****** ****.

* "IINSEP" *

SYSUP
A2	 a.*****A/**********	 R.

.a	 ID LIST t. NEG

.*

POS

•
•
•

•****** ************* ***********•*

*****Rp***** ***** ***mpg ****** ***** ******g5
a	 FETCH	 If) LIST	 * PRINT	 ID,	 LOG

*	 DRIVE,	 PHYS	 * a WRITE UPDATED •
FROM CORE	 *

STORAGE	 a
..X	 DRIVE	 F3R	 THIS

a	 CARTRIDGE	 *
D:04	 TO MASTER
*	 CARTRIDGE	 •

* *	 *	 * * * * * * ******** *****
•

******c2*********** *****cA ******** **
****c4 	

* F FAFN C LWMITE *
*FET

SATELLITE
 F 	 A •

* *
P FTDAN TO	 A

CALLING ROUTINE.	 CARTRIDGE	 a a	 CARTRIDGE	 *•

*****01**********	 •***.02.*****•***
SYSUP	 103A2	 a FETCH ID FOR *A 	 *	 a	 MASTER* a	 *RIGE F	 *
a UPDATE OCOM a	

.CART IDD	 ROM
LIST	 *

.
:***************:	 *****************

*****F1**********	 E2* **.
.	 DEFINE	 SCTo
a	 ADDR OF GIB

•
a

.*	 a.
.t CARTRIDGE a.	 NU

* DRIVE
a 4KING

CODE OF
sin g 	 C

*
*

.WITH	 THIS	 ID	 . 	
.AVAILABLE.

•LJNEuRMATTFD
•*********•

*****F1**********

1/0*

X

S.

******Fp

.*
* YES

**** ******

X
****81**♦******

*•**AG4 ******* ***
5U500	 003E5 *MOVE ALL ITEMS *

S EXIT TO SEAT
*	 IN SKELETON

*
*

a	 .
...* UPDATE	 SYSTEM a

. FROM POSITION *

.14 THIS DCOM TD**	 SUPERVISOR******* ********
* a	 °COM TABLES	 * a

	 1NIITAlc141	 a

*ENTRY FROM MCRA: 	 t.	 ADDRESS
.**************

.*

*****R1*********:

* SET TEMPORARy
*MODE SWITCH IF *
* a IN COLUMN R •Ltassatattatr*...0

•

*****ci**********
• CONvEPT HOXA *
a	 DECIMAL	 *
*CARTR/DGE ID C *
*STORE IN MUST *

a INITIALIZE	 a	 *FETCH DCOm FROM*
COMMA	 *	 MASTER

A CARTRIDGE a

	

*****************	 *************

%

	

*****01**********	 *****Gp**********
a	 *	 *SU500	 003E5*

	SET NO OF EUUAT	 a	 	 *
* RCDS IN SECNT *	 * UPDATE SYSTEM *
* *	 * DCOM TABLES a
* *	 *	 a

	

*********•*******	 ******* ****** ****

:****************	 *************

****** ***********

***** *****

PRINT VERSION L*
mODLEALL C CORE
a	 SITES	 a
** ***********

*•***H2***** *****
a SIT ALL HUT a
. FIRST ENTRIES *
*IN SYSTEM DCOM *
*TABLES TO ZERO *
•
•.*********

H4 ******
at RETURN TO *
*CALLING ROUTINE.

*****J1♦*********

a UPDATE SLFT *
*14E0 FnP PHASE *
A
** ***** **********

******J7***********
JR8n0* .

1NITLZE HONG*	 BER	 *

•••

*****Ri* ***** ****	 ******RQ***********
*RRANCH TO READ *	 *RESTORE PAGE C *
* IN PHASE 3	 *	 PRINT J38
• a	 *	 RECORD	 *
•
*****************	 *** 	 *a*

•
•

9
*****	 ****
00 ,	 ** AAA	 *

.*	
A4 *

**

•Flowchart SUP03. Supervisor, Job Processor

Flowcharts 195

J P300

****A1*********
*ENTRY FROM Supy.

p HASE 2	 *
MA** *** **

x;

J8310	 J5320

* BI
	 ..

.

*****Bp. ...*****
*
*****81 ******** **

..	 *ANDO	 *. NO	 *SEARCH LET FOR *	 • READ PREVIOUS •

	

.. EQUAL M8N8U .. 	 	 •	 END OF	 *	 . LET SECTOR	 •
A .	 .*	 A PERMANENT LET *	 .

:*********** 	 *
A.	 .*

A2	 s.

..UA. PERAKIA4T
A.	 LET	 .A

A. .. .*.*
YES	 A*RA

*
• n2 *
•
...*

*****A3 **********

LAM-Pal-8R:

* YES
.**.	 .	 ** AA

*	 .r 	 *
* CI. *.x

.
.	 * C3 *.X

* * .	 x 	 	 *	 *
****	 X	 x	 ***.

J p50050

	

J6330	 •A.	 JI33	 x
	CI	

A.
	 C2	 S.	 .****E3**********

.4.	 *.	 .*	 A.
NO ..	 ALL	 A.	 .* END OF	 *. NO	 *UPDATE SITE OF

	

...*. CARTRIDGES .*	 A. PFRMANFNT .5...	 MS
.SEARCHED .	 5.	 LET	 .*	 *	 *

A.	 .. S. 	 .5.*	
:***** ********** •A.

. YES	 * YES
**A,*

* *
* n2 *.x
* *

Y	 J5340	 x	 .•.
...**ni**********	 *****07********** 	 03	 *.
* *	 *
*UPDATF ncom OF *	 *SEARCH LET FOR * 	 .*.

4.
 ALL	 A. NO

*A DUSTER CART	 *	 END OF	 .	 *. TEMP ITEM

*

S
* *	 * TEMPORARY LET *	 A. DELETED .*
* *	 *	 A.	 .*
...•.•***•*******	 ***** ********** **	 %

• YES	 RAMS
A	 a
* J2 A
* *

	

x 	 	 4..4,

	

J5360	 •A.
F2	 A.	 .****F3	 * *****
.*..a	 s

	.• END OF	 A. NO	 * SFT UP LAST *

	

A. TEMP LET	 0....	 *DUMMY ENTRY SET*
A. FOUND ..,	 * *ANDO - OBNOU •

A.	 ..
A YES

El • A.
.*	 A.

YES .*	 ANY	 A.
FOUAT	 .*

S. RECORDS ..
.*

A NO

y.. *****

JE1361	 x
*****F7*•********

...*F1*********	 A
A	 A	 *STARCH LET FOR A
A Fx1T TO MCRA A	 * LAST DUMMY	 A
* A	 A	 ENTRY	 A
***************	 A

. *** ********.

G/	 A.	 G2	 A.
TURN A.	 .*	 A.

	

YES .s
MAN	

.* DUMMY A. NO
A. ENTRY FOUND .A...

SLFT	 A.	 .*
*.	 *

r.

	

* ' NO	 A YES

x	 x.....m.********.	 ****.H2**********
.	 • A 	*
* SET ABORT JOB A *SAVE SIZE

TEMP*	 SWITCH	 A
* *	 A	 DELETED	 A.	 .
......***********	 :**** ********* *.:

* J? *.x
*
.***

J8370

****J1 	 	 A	 *
* A	 *BLANK OUT TEMP •
A Foil TO ARCA A	 ITEMS	 A
* A	 s	 A
.**************	 *	 *

*****F1 ******** **

• VELEMT
ITEMS

	

* SATEL CART	 A
*UPDAT RE

T
SAE OANDU OF*

A
•***•********

. *	 •
—X* CI .

	

*	 A
*A**

••**K7 	 	 K7	 *.
 ..	 *.

	

RANCH E EXIT A	 .* END OF	 A. NO

	

*	 ***. sPc464 .*.s.-...
TO PH5	 .

.	 •	

	

YES	 44.*A..***.....*******

. C q *
;	 X	 *	 *

•****	 MAMA	 ****
00,	 *	 *
A B3*	 * A3 A
* *	 *	 *

A	 ..**

•Flowchart SUPO4. Supervisor, Delete (Temporary Items) Let

t96

****Al*********

ENTER FROM MCQA

******A1***********

* RFAD IN SCUM *

..***********

C/	 5. *.
I. IN	 *. YES

*. COLUMN 14 Or: 	
.	 .

• NO

Al	 *.
.•.

.5	 PU	
*

	

NCH	 5. YES
•. IN COLUMN . 	

*.	 24	 .5
.	 .

. .
* NU

***** BB**********
* SLOSW
SET ZERO LOCALS• CANNOT CALL

LS*
* LOCALS
***** ******* *****

•*.C3	 •S.

	

.*	 *.

	

.*	 PUNCH	 5. YES
S. IN COLUMN

	

*.	 28	 .•

	

.	 .
. .

NU

A5	 S.
•.

N3 .. mAINLINF *......	 NAME	 .*
. GIVEN .

.*
YES

*****5*********

• F ilTjaLnRK *
• SUPV

*****84 ******** **
• SLOSH
*SET NON - ZERO
LOCALS CAN CALL
• LOCALS	 *
•* * * * * **********

*****o/**********
*	 1MPSW
* "MK& MAP *

*****02**********

* St
ttiP1
q	

*
WIHU O;F	 *

*****01* **********	 sxlsw
igcMOONs

*****D4*
x
**** *****

*	 SX3SW	 •
.cr NON - ZERO .
*

s
SPECIAL	 ILSES	 •

X....,5.......••
* EXIT	 TO CORE	 •
* LOAD Auttm•	 *

*	 REQUESTED	 *
*	 *

*	 *
*At*** ****** **I.***

*****E1*►********

SET NCORO TO NO
* OF SUPV CNTRL

RCVS	 *
.********** ******

*****F1**********
*READ COLUMN 19 *
c SFT REQUESTED
. DISK I/0	 ** AcCORDINGLT *

* SFT FOLLOWING *
* TWITCHES ZERO *
*IN DCOM NLCNT, *

NNCNT, *FONT, *
• NGCNT, NOCSW *
************ *****

•
•
•

****** rls**********
* WRITE DCOM TO *

DISK

***************** * * *
•
•
•
•

*****G1*********:

:FFAWROnNYDRT:*	 *
•

***********4***•*

• •
HI	 *.

.*	 *.
5. YES

ID /FRO	 .* 	.*

S. *. ..o.5
-.-NO

.*.
GA	 *.

.*
.5 MAINLINE

*.
 S. NO*.	 NAME	 .* 	

. BLANK .
P. ..• .*

* YES

****G4 	
* * NINOR *
*SET NAME INDIC *

X* NON - ZERO *
 ••

•

***** H3**********	 *****H4 **********
SET'NINDR, NAME
* INDIC, ZERO K it SET TO ZERO •
* *DADA, SECTOR *	 * *CONN socoe •* ADDR OF WS	 *
********** ****** *

•
.x 	
x

•J1 x j2** ******* *	 J3...*.	 5** 	
*	 *♦.5 NO OF S. 	

* p074% 12 ET **LOOK UP CORRISP*	 :coAETSP EltlEm * 	 .*SUPV CNTRL 5. NO
	 x*INFO FOR PHASE ** LOGICAL DRIVE *	

5.*. ii0I? .*.*	 *	 5CURE	 *WORKING STORAGE*
* *	 *
*********** ****** 	 ********** ***** **	 5. ...5

	 *	 .
* YES

	

;	
X 	 	 ****

* 5
* As *	 x*	 .	 *****K4 **********	 1* ***** ****
****	 *	 **	 *DCDE

*BRANCH TO FETCH**SFT DRIVE CODE *
ENINLIMAOFo *PHASE 5 C ExIT * * 	 TO IT	 *

. 4.***** ********* ***:****** ******** *:

;;▪
****	 *****
 .002**	 *

* Al *	 * 13*.• *	 •
****	 *

•Flowchart SUPOS. Supervisor, XEQ Processing

Flowcharts	 1.97

*	 4

*DETERMINE TYPE *

	 **►

A

E0000
A .5.4	 4.

•*♦♦	 •	 *	 .• NAME 5.
*	 •	 *	 *	 NO .*EOLLOdE0 ay*.
A3 5-.0 SET WC TO ONE *	 ..*♦.	 RIGHT	 .4
• *	 *	 ♦	 .	 *. PAREN .*
****	 *	 ♦

A	
4.	 .*

	

5**♦ 	 ****YES

▪ •* J1 *	
. ***** *

..X* A5 •

	

****	 •	 *

***** ql* *** *****	 54	 *.
****	 •	 •	 .4	 *.

• *	 *POINT TO COLUMN*	 NO .* CHARACTER .4.
• 51Y*	 7	 *	 *	 NOT A	 .40..* *	 •	 •	 ►S. COMMA .•*0**	 •	 •	 4.	 .4

.;* YES

A
4***

• •
E0070	 * JI *

Cl	 4.	 ♦	 *
.5	 *.

*.
	pi,

YES .•	 IS
CHARACTER A .*
. PLANK .

A	 •. .•1.•**	 • ND
* r
* B5 **

k*•*

0*-1	 4.
t4 ti	 .4 IS	 *.
j, :0.. E.40 .:*CHAti/iR A *:*

*	
►	 4, PAREN .**8**	 *.	 .*

*. .4
• YES

•▪

.*.
E3	 •S.

*v.**	 .•	 *.
* * YES .*	 MORE	 *.ANTEp

JI

****	 4.	 .4
S. .*

* NO

•
•

****AI 	
*ENTER HF.E F.OM♦
* PHASE 3 OR	 *

*** ** V*114*t*****

LF000
****501 	
▪ SET SCRS FOR *
LOCALS, NOCALSv

E
*FILES,

QU
02

A
750, C*

*********** ***** *

*5**
006
* CI •.X*

:****cl* *** ****
*SET TYPE 3 NON *
* ZERO IF EQOAT .5
* ONLY	 *

******** ********

1E120 	 A
1* ***** *****

mono	 009E1

READ C PRINT A
*	 RECORD	 *

***** ***** ***

••

• 45 5...

EQ050	 .4.

A5	 *.
.*	 *.

NO	 NEXT	 4..
* .*

5 .	 PLANK .1:
.	 .

YES
5• *

* B5 *.X• *

*****85 ******* *•♦
*F/000

► READ A RECORD :

***** ********* ***

*****E I * ******* •

iDFTEPRINF TYPE *

•
.*Ci

•
Htt*.	 WROO

.*RCD OF SAME*. ND	 *	 *
*.	 TYPF AS	 .5 	 X WRITE BUFF TO
*.PREVIOUS .4	 *	 SCRA	 •

4.	 .•
.. .*

.YES

LF200

•.N000	 *	 •	 *
* -*	 * CLEAR BFR FOR *
* FETCH FIRST *	 *	 TYPES NOT	 *
* NAME OF PAIR 4	 •	 SPECIFIED	 *
• *	 4	 *

LOCALS• 	 006A3
NOCALS 00643

FILES	 00641

0275D	 00643

LQUAT	 00543

.5.t
G2	 5.

FBOOg	 00941	 W11008	 009E4
YES .*tHISVCO4•.	 r 	 *	 *	

•

4.5.8gROWC.5'*	
*	 *
* STORE NAME	 *	 * CLEAR DISK S

S.	 .4.	 4	 *
* NO

HI	 •.
3 .5	 5.
* SET INDICS C ♦
*INITIALIZE FOR *	 *.*FULlegg!

.*	 NAME	 4. NO	 5	 5

*	 *
54	

• A NEW RECORD ♦
* ♦ 	 •.
** 	 e►*►*	

FOLLOWED 	

•**

4.4....

.5.
R	

* WRITE DCOM *

: J1 ♦ 	 •

	

*	 *• •.	 •
•**•	 .	 • J1 •

r	 *
:X 	 	 	 LOCALS 00663	 *•**

	 I ;
	NDCALS n0663	 X

j4.4.*.
.....FILES	 006AI	

:::v85 **********

	

00941*	
:****j5 ******* 4*:

.5 PRINT ERROR *	 • 	 *	
.515 NAMES.

.	 *	 *	 .	 * NAME OF PAIR •	
X* LOAD BUILDER *•

45 FETCH CORE *
S.
	 R2 XRg	 S. YES

..X	 MESSAGE	 	 G225D	 00663	 * FETCH SECOND *	 .* 	

• *.4.:!!!;;4.5;	 4. ; * *	
:**** ********* 4♦•.	 .	 	EQUAT	 00563	 *	 *

* 5	 •	 •	 .
*on** * J1 *	

A

∎DFlowchart SUP06. Supervisor, Control Record Analyzer

. J1♦	 A	 *	 •*****	 *****	 ****

	

0,00,*	
ni:

	

* oi *	 X

	

4 *	 x	 ***
• .FA000	 00941*	 ****K4 *********

• *	 *BRANCH TO EXIT *
* r	 *	 TO CIL	 r
. STORE NAME	 .	 ■	 *
*	 •

198

LF000
*****A/**********
* *
* SET LOCAL.	 *

:AC,11 . 00-84 *

•
•

******R1***********
RRODO	 009E1

*
:EAR AND PRINT
	 *

	Cl .*•*.	 C2	 *.	 C3.*. *.	
X

.*	 *.	 .*	 5.	 .*	 S...	 LOCAL	 ** NO	 .*	 NOCAL	 *. NO	 ..	 FILES	 S. ND	 * PRINT ERROR **.	 RECORDS	 .*.. 	 50.	 RECORD	 .* 	 x*.	 RECORD	 .* 	 MESSAGE*.	 ..	 *.	 .*	 5.	 ..	 x X *	 *8.	 .8	 *..	 5S. .

	

*	 *.	 .*

	

4. 44ES	 * VES	 ■ YES	 .4**	 •

	

.	 *	 *

	

.	 .	 * C4 *
.	 .	 .	 *	 *	 X

	

****	 ***a*X	 X	 X	 *002■
.*,	 .*.

01	 *.	 D2	 *.	 03
.8.

5. 	 * 01*• *.8	 *.	 ,*	 8.	 .*	 8.	 *.8	 LAST	 S. YES	 .*	 LAST	 *. YES	 .*	 LAST	 8. YES

	

4. R ECORD A	 .*....	 *. RECORD A	 .*....	 S. RECORD A	 .* 	
5...LOCAL .8 .*	 5. NOCAL .8	 .	 5. FILES .8	 x

5.	 .*	 *.	 .5	 *****4. • 	 X	 5. .*	 X	 *• .*	 *0085

	

* NO	 ND	 NO	 • 41**ncre * 	 *008*	 . *
* A3*	 * 83*
* 5	 * ■
* *

***** * • * * * • * * * • *	 •	 *• EA *

	

* •	 *	 *
	007	 .	 ***** CI 5.5.* *	 •	****	 X

	

******Ei 	

	

WR000	 009E4

WRITE BUFFER TO
SCRAG STORS
ri t* *5 *******

******E2 ********** *
WR000	 009E4
	 •*
WRITE BUFFER TO
SCRA SECTORS

N3 ** 0 **WR000	 009E4
*	 *
WRITE BUFFER O
*SCRA SECTORS

T
 .

4-

X
.*.

El . . 5.	 F2	 *.	 F3	 *.
.*	 5.	 .*	

*.5.
	 ..8	 LOCAL	 5. YES	 .	 NOCAL	 5. YES	 .*	 FILES	 *. YES *

S.	 INDICATOR .5....	 5. INDICATOR .5....	 5. INDICATORX5 C4 4

5 .	 UN	 .8	 .	 *. *. UN	 .*	 5.	 ON	 •5	 *	 •
.•	 5.	 .*	 5***

S.S..1.05	
;

. .

* NO	
;

	

* * * *	 *. •.
* NO* *	 *	 *

* C4 *	 * C4 ** *	 *	 *
• .5**	 ****

*****G1*** *******

INWJgkAhN *
*

INDICATOR" ON
**

= INPRAM EL *
• *

***** ****** * *****

008	 *008*
* Al*	 * Al**	 *

•Flowchart SUP07. Supervisor, Control Record Processor

008
. A,** *

Flowcharts 199

;
H4

.*
.*	 TYPE	 .. NO

	

•. A. SAME	 • 	

	

LAST	 .A
 .A.

•.	 .*
A. .*

A YES

•
•
•

••POINT TDCOLUMN!

••

• •

..X A G3 *
■ 	 •

006

*****F1**********
•FN000	 009A1*
• •
*FETCH FILE NAME.
*AND CONVERT TO *
* NAME CODE	 *.......*** *****

****•GE**********
009AI.

•STORE FILE NAME.
. TO I/0 BUFFER
:********** *****

•rm,nn
2 	

019AI*

STORE FILE NAME.
• TO I/O BUFFER a•

.*.	 x
HI . .	 *****H2 **********

.. NEXT S.	 *	 A
.R COLUMN A •A. NO	 *	 FETCH AND	 A

•S.	 RIGHT	 .,• 	
V: CARTRIDGEA. p AREN ..

*
A. A. .***

* AFT

•

;
*****J1***** *****

. SET CARTRIDGE A

. In bLANK

*****	 *Sim
000	 5	 *	 *008*
%al*	 * A2 *	 * 43*

• *	 4. *
* **a*	 •

•
•

%	 %	 %
*****Al ****** ****	 ******A2. ******* **.
. *	 PROOn	 009FI	 *	 *
*SET WORD COUNT *	 .— 	 	 *SET WORD COUNT r
. EU ONE	 A	 READ AND PRINT	 *	 TO ONE	 *
* *	 A A RECORD	 .	 •	 A
• A	 *	 *
*************

•

;
X	 ;

...a.m.*** ******	 R2	 A.
* A	 *
POINT TO COLUMN	 YES ...

A
RECORD

A. A.
	 *POINT TO COLUMN**

* SAME TYPE .•	 *	 7	 ** 8	 *X
. *	 A. AS LAST .A	 .	 A
: ******** ****** ..

. A.
A. .5.*	

•	 *

* NJ	 •
****	 '	 .	 •*

4, CI *.X	 ;	 •
•a	 *

X	
:OH:	 ;*4**

*****C/	 . *	 CI	 A.
a	 A	

*
	 A	 A

* FETCH AND .*	
.5..

COLUMN A. R. YES	 * SFT MAINLINE *

* *. A.A	
x* NAME A BLANK
A **

5. 7 A COMMA .. 	* CONVERT FILE *
.	 NUMBER

***** ***** . ******	 S. .A
• NO

A
***** DR**********
*FN000

* FETCH A14000943!
A 	

* CONVERT	 A
* MAINLINE NAME A

.0

X
*****DE* ***** ****
*FROOn on9A1•
********* ------*

*STORE NUMBER TO.
DISK I/O RUFFFR

A...v.. ******

El	 *.	 ***** E2 *****
.*

: Cr-VV., A*

.

$.5I!! *** ..X: SET tlik,"*"E
COMMA .*

• NO

***** ERB...* *****
F q (100	 009A1

...X. STORE NAME TO A
A I/O RUFFFR
A

rf

EX	 •A.

	

..	 A.
..	 NEXT	 ♦S. YES

	

.. COLUMN A	 .* 	

	

A. BLANK .*	 x

	

S.	 .*	
*0065

	

4, NO	 . CI.

	

****	 .	 . *
* * .
A G3 A.V.• • .

	

****	 X
G3	 *.

	

.*	 A.	 mum	 009E1
.* FOLLOWING A. YES	 *	 .

	

...COM .A 		A 	 .A	 X READ AND PRINT
A. A A RECORD	 •

	

S.	 .5
	A. .5	 ****** *******

A NO

•
•
•

*FN000	 009A3.

CONVERT WEIR. *
NAME	 A

.x 	

X .A.	 .A.
*****K1*** ***** **	 K2	 A.	 K3	 A.
.F8000	 A	 .5	 A.	 .A	 S.
A 	 .	 .5	 NEXT	 A. NU	 .* FOLLOWING •A. NO
STORE CARTRIDGE 	 X*.	 COLUMN	 ***** X*.	 COLUMN	 .*....
A	 ID TO 1,0	 A	 ..A.BLANK0,...	 A. BLANK .*
A	 RUFFFR	 A	 .
** *********** ***4.	 A. •%

• YE

	

	 * YES	 ****S
• •
* CI *

.
* ;5..	 *X55.	 S.***

* A2 *

•Flowchart SUPO8. Supervisor, Control Record Processor

• •
A AR •
•

200

:351021307331":
********* WO***

X

* ******* *ma►*
* ■
3511008 00111.1

****** ***********
300

**xe 15mo 000035*
* 1N35311330	 *
***** *****IH*****

X

: 0/I Utdqv313: 04 081 3404148 *
********* CO****

*
000330

* 351 10103	 *
	 10 	

saints ****asst*
• •

sossaoosa psooau To.tluoD c aosinlacillS .60c1f1S 4.retionnoue

"00Z

401WIt**W.O0*	 5*,01,51.ti.l...4.

* *	 *	 *	 *

	

9015 01 budAnu	
*
VIM 01 033108	 0110138 11 UV38

	

a 0/1 OSlO 31189*	 * 0/1 OSLO 31189*	 *	 *
*

* *	 ****►* 	 n******	 ** ******** *I4******
*10 *	 x	 X
900

ON a	 S3:.*.*
* 050*.*

•	 •	 8'	 •*	 *	 *	 5'	 .*

	

..•*. 0333050/1 •*	 *• 351 Nwnlo . 4 •—•	 * 3A11V03N iNnoa*x 	 *
*,

0337 111001 •*

	

. 38313 .	 *. HAS **	 *	 *	 .*

	

S3A .*	 NS10	 *•	 •6*	 S1H1	 *• ON •	 * 0809 15.1 13S *
•
*
•♦ 	 *3

*.
'5**	 83*.	 *	 *	

031 '4 080138 *.
•* •*	 13

*.
00089	 00053

•
01. *54,..

*'
5.	•a'

NNV19 6 *	 *	 *
531 'S	 1%4N	 *
	 *.	 N00/03	 .

6
*	 :Almounrp:

.*
.*•80

*.	 *********IU****

* *
* A1051080319 *

15003	 **• (Non IN3W3O3NI** *
**********13*****

Nwnin
S3A

*
 .*	 1%3N	 *.

•*	 *•
•*	 E1

.*•

***** ****** * *****	 *****************
*	 033300 0/1 *

• 831400	 *	 * NSIO NI 314.5 *
* NO1S83A501 * x .•	 * . buns 80 GI *
* %MO? *	 :3"31119812510:
** ***** ***t9 ***** 	 ****** ****I9*****

X

* *a *	 * *
*If *	 S3A *ON *
■900* 	 *. •*	 AS O:
5*5**	 *•	 •*	 *****	 5• .
% 	 *• 0I1VA •*	 X 	 ■6 	 1103

*
.*

•	 N140101	 •	 *	 004308 0/I •*
ON ".	 15814	 0•	 S3A •*	 NSIU	 *•

•*	 *•	 •*	 *.
•*	 tV	 •*	 IV

**•	 00053	 00031

	El	

. LIMISHERWCIB 	•

• YES

E2
.L•

iTrHLAST
I§Amp.

. YES
0. LINE

• NO

C2 • 	 	 C3 	 	 	 C4 	

CONVERT NEXT
ADDRESSAND •

NEXT 16 WORDS .•
INDICATE NEXT
SECTION IS 3

INDICATE NEXT
SECTION IS 4

.•.•••

• A2 • .00.
• •
• A3
••••	 X

▪NNA L FRM CORE.
• IMAGE LOADER •
• •

	 111 	

	

'FETCH PRINCIPAL 	
PRINT DEVICE

• SUBROUTINE •

A3	 0.
..	 •.4.

•
LOWER	 .. NO

• LIMIT LESS
.
 .. 	 X.:.LIMHWEESS ...r...X:

.

E4

.
 :

...THAN 2566.. 	 •.THAN 4096..	 •	 •
..	

.. .•
YES	 •YES

0."	 0040
.009.	 •009.
• 03 •.1	 • 84 ..X
• •	 •	 •

11•••
	 01".

MM2	 MM3
	 83 	 	 	 84 	

• •	 • FETCH WORDSWORDS •	 • FETCH WORDSWORDS •
PRINT HEADING • 1286-25 FROM 	 •2566-45 FROM

• •	 CIB	 •	 C18	
•

A2
'E

YES

B2

..C1.......
YES	 RETURN

ADDRESS

NO
:	

•.	 ••
X	 'X

X	 •	
•
.1...

	

X	 •• A2 •	 • A2 •
	 D1 	 	 Of....	 •	 .
*SET LIMITS FOR •	 ..	 • 	 .•.•	11.

: HHANIXAL :.
•

NO .. ARE THE ...

	

DUM	 .1"EM:E5 .46..
• •	 ..	 .0

.09.
•0 E4.

MM4
•MAKE

E4
 LOCATIONS •

•ABOVE 4096 THE •
• BUFFER FOR	 •
• DUMPING OF	 •
• 4096-CORE	 •

	Fl	

	

•PR1NT REGISTERS 	
AND INDICATORS
• •

	 F2 	

	

' 1.RINT THE LINE 	

	 F4 	
• •
• INDICATE NEXT •
• SECTION IS 1 •

.4. 	 11.

	 1 	 	 G2	 ...	 03. .

• NGADIHEPRINTPR	

.

	

0

C

	 s•
• ..	 DUMP	 .. YES

	

I	 ...	 OMPLETE	 	 X.:. BORNS .:0YES
• •		 4..	 ..

	

0.	 ..
e.

• NO	 • NO

X	 I...
HI	 ..	 H2	 ..	 x

.	 ..	
•
	

•
	 ...013 	

.•LOWER	 •. NO	 • EXIT TO $EXIT •
6.

•
LIMIT LESS:. MR	 .-..!?..

•.THAN 1286.0		 • itIplinVEIRN

	

I . • .0	 X

• YES		 • YES	
....	 •	 •	 •	 •
•009•	 • A3 •	 • A2 •
• Jl ..X	 •	 *	 •	 •
• •	 .004.11	 1.600
....

MM1	 x
Jl 	 J2.....

.645AHFOOTa	
..M

le	 SION

0.

..••

•

••

$12 •

	 H4 	
• RESTORE CORE •

..X LOAD FROM CIB

..j4 	
• RETURN TO	 •
• CALLING LOAD •

•
• INDICATE NEXT
• SECTION IS 2

...*
• •
• AZ •• •

001.6

	..t 	 009 J1

	

:...2 	 009 83

	

....3 	 009 B4

	

....4 	 009 E4

Flowchart SUFI 0. Supervisor, Auxiliary Supervisor

Flowcharts 201

B3 	 	 	 84 	 	 	 85•
CONVERT	 •

CARTRIDGE ID TO.
EBCDIC	 •

•

SET SEISM
▪ NON-ZERO•
•

•FETCH PRINCIPAL.
PRINT DEVICE

• • SUBROUTINE ••

DUMMY UP JOB •
CONTROL RECORD •
IN SUPERVISOR •

BUFFER	 ••

...C4 	
: ENTSULtiONT:
• SUPERVISOR	 •

C5 	
•

CONVERT NAME. •
INSERT IN	 •
MESSAGE	 ••

......
+M.	 .010+	 •*010*	 .010.
0 .A2.	 ..A!.	 %At.	 ...T

• •	 •	 •.	 .

A5500	 X	 AS100 	 i	 AS200 	 R 	 AS300 	 k▪••••A2A3	 	 A4	 A5 	
1....A1 	 	 DUMMY UP OUP	 •	 •
.ENTER FROM CORE.	 CONTROL RECORD •	

FWPROARIWAEi	 lENNINRINgT.	
• INDICATE THE
• APPROPRIATE• IMAGE LOADER •	 IN SUPERVISOR

• BUFFER	 •	 •	 •	 MESSAGE• •

81

SET (DUMP 10 •
ZERO, FETCH •

$OMPF
•

- -
C I 	•.

DUMP
▪ FORMAT CODE

:...-3....010 AS
D3

•
SET $CTSW	 •
NON-ZERO	 •

•
•

X
05

••
PRINT MESSAGE• •

••E3 	
• EXIT TO $EX1T •
• IN SKELETON •
• SUPERVISOR	 •

EN
•
• SET ANXED
• NON-ZERO••

...FS 	
• EXIT TO $EX1T •
• IN SKELETON •
• SUPERVISOR	 •

Flowchart SUP11. Supervisor, System Core Dump Program

202

•
•MOVE DISK READ
• ROUTINE TO
• (HASH•

CI
*	 o.

CALL	 YES
• DUMP

-•▪ *-	 .*
NO

• A4 :...

CM11;...
A4 	

CM000

114**Al
• ENTER FROM	 :	 ...SAVE LOW COMMON•
• SKELETON	 ON THE C.111
• SUPERVISOR	 •	 •	 •

CM220	 X
82	 *.	 	 63 	 	 	 84 000000 I...

.• FORMAT .
	 .	 •	 •

.• FORMAT • m. YES	 •FETCH AUXILARY •	 •LOOK UP NAME OF.
..X..	 CODE	 • 	 X	 SUPERVISOR	 •	 LINK IN	 •

	

•..NEGATIVE 0.	 •	 •	 LET/FLET	 •
...	 ..	 •	 •

...ID

X	 C2 	 	 C4	 ...
••••C3 	C5 	

• FETCH DUMP	 •	 •	 EXIT TO	 •	 0 NAME IN ... NO	 •PROGRAM	 •	 AUXILARY	 •	 .. • LET/FLET	 0 	 X. EXIT TO $DUMP •• •	 • SUPERVISOR	 •	*...	
111. .4

• YES
•

•

. .
D1_ 	 *.

•
...	 ••••02 	 	 *.

	

NO .•	 CALL	 ...	 • TRANSFER TO •	 0. NAME OF ... YES

	

..... 	 LINK		 • DUMP PROGRAM •	 .. A DATA FILE. 	• .	 *.	 0...	o.0
• YES	 • NO

	

.	 .

	

.	 .

	

X	 X
El	 o.	 EAo.	 	 E5 	

	

ANY ..	 ••••E2 	
•	

•
..■ COMMON •*. YES	 •ENTER FROM CORE.	 0. DSF OR	 DCI	 •SET CORE IMAGE

BELOW	 .o....	 • IMAGE LOADER •	 ...	 DCI	 	 X•LOADER SWITCH.
• 4096	 ...	 •	 PHASE 2	 •	 ..	 .*	 •ECLSW, TO ZERO

...	 ..

	

X	 ..
• NO	 .4.0	 ..I:6	 .

000.	 .	 •	 4	 •	 .	 04.•
• A4 •	 .

• Fl ...X.o	 •	 .	 ..Xo H1 •

.•••	 X	
••••

	 Z	 ••••••
...

Fl	 ...	 F2	 *.	 	 F3 	 	 f4	 .01	 •.	 •
	 ...	 0.	 *....	 D/SKZ	 ... YES	 0.	 CALL	 e. NO	 • FETCH MONITOR •	 • COMMON	 ... NO

	

..X... IN RESIDENT 0. 	 X•. LINK	 0. 	 X CONTROL RECORD	 .. BELOW 4096 .*....

	

. MONITOR 0.	•	 • ANALYZER	 •	 0.	 .*.	 .•	 *.	 0
X

• NO	 • YES	 *AYES	

:	
.	 • fl •

	

.	 .

	

;(1	 X
	 GI	 • 	 G2 x 	 	 G4
• 4	
•SET CORE IMAGE •	 'FETCH CORE LOAD.	 'EXIT03TO MONITOR.	 .. itnEERMrSt1 •
'LOADER SWITCH. •	 BUILDER. PHASES	 *CONTROL RECORD •	 COMMON AND 4096
• SCLSK. TO 1 *	 •	 0 AND 1	 •	 •	 ANALYZER	 •	 • ON THE CIA ••

• H/ •.X.• •
LD000

oo.1•••H1 	

•
FETCH CORE	 •
IMAGE LOADER

• PHASE 2	 •

*112 	
• EXIT TO CORE •
• LOAD BUILDER •
• PHASE 0	 •

•00...11 	
• EXIT TO CORE •
• IMAGE LOADER. •
• PHASE 2	 •

Flowchart CIL01. Core Image Loader, Phase 1

Flowcharts 203

• ENTER FRCIM CORER•
• IMAGE LOADER, •
• PHASE 1	 •

HI
• CORE'.
 I

• SWITCH,
SCLSW•

02	

•• OISKZYES
X.. REQUESTED .* 	

	 B3 	
• •
• PREPARE TO	 •
X• FETCH DISK1• •• •

• 0	 • NO
••••

• •
• C3

	 C3**. *****
• •
• PREPARE 70	 •
A.• FETCH DISKI •
• •

• NO
• •	 x 	

• 02 •.X.	 • D3 *.X• •
.......	 :	

x	 X	 x
•	 DI 	 .	 D2 	 	 	 03 	 	 04	 ..

• TRANSFER	 •	 •	 .. CORE 	 •..	US 	
•PARAMETERS FROM.	 • PREPARE TO	 •	 •FETCH REQUESTED . 	•RETURN TO CORE •
• LORE IMAGE	 •	 • FETCH DISKN • 	 X DISK I/O SUBP. 	 X.,.. ,4712H, %. 1 	X• IMAGE LOADER •
•HEADER to CoMnA•	 •	 •	 4. SCLSW, ..	 •	 PHASE I	 •

•
• 0

	 El 	
•STORE ABS SCTR •
• ADDRESSES OF •
• LOCALS AND •
•SOCALS, IF ANY,.
•IN C.I. HEADER •

• •
E4 ..0

• •
1141.4	

	 E4
•
FETCH CORE LOAD•• •

El	 ..	 X
..Fp 	

NO .. • CORE	 ..	 • EXIT TO CORE •
..... LOAD IN GIB ..	 LOAD	 •

• •

• TES

GI
..PART OF•.

• CORE LOAD •. NO
BELOW
4096

• YES

X	 71.
HI	 *.	 	 H2 	 	 H3	 *.	 04	 *.

.•ALL OF ..	 . PREPARE TO	 •
• crIRE LOAD •. NO	 • FETCH ALL OF •	 .. NECESSARY •R. YES..	 DISKN •.. YES

BELOW	 .. 	 X.CORE LOAD BELOW . 	 X T.? FETCH 0151., 	 X.. REQUESTED
• ... 4096 	..	 4096

..	 .*	 •	 •	 • i
. A YES	 • NO	 • NO	 0011.• •.	 X.	 •.	 • 02

..X. E4	 •	 •	 •

•••• •

	JI 	•
• PREPARE. TO
• FETCH ALL OE
• CORE LOAD

J4

• DISKI.NO
REQUESTED

	 J5 	
• •
• PREPARE TO	 •X. FETCH DISK/ •

• YES
.	 000.	 1114.•
. •	 •

K	 ..X. C3 •

*Of.

• H3 •

Flowchart CIL02. Core Image Loader, Phase 2

•
•

CI 	 	 C2	 *.

• FETCH CORE	 •
IMAGE. HEADER• •

DISKI	 YES
REQUESTED

..X• 03 :

204

•Z 3SVHd 01 1IX3•
	 Tr....

X

•
OHd-00001

• Z 3SVHd H3134 •
TH

• •
• IHd-000N1	 •
• 31901.0,101.
♦

N1 /011 N /13113%•

••
• Hd-00019 31991 	

•

• 0901 NI 3W1N •
• 0/1 OSLO 03193•

11 	

•
•1430V3H 39119190*

• 13 	 •

•
Hd-000H9 V30V3H

• 3N11NIVW H713A.
10

• NO30
•140di P313W089d•
• 0391 039 3AVS •
• •
	 13 	

••
0030 H3134 ••

	 19 	

SOZ sixelpAAINA

noTvezifemul gaapring Inc,/ amp • Tom aregomoid

•
a	 ••

•3SVHd VIA d31144•
/v••••

	 05••••• 	 ••
•PROCESS SOCALS •

..X• PS000 — PH 5 •• ••

H5

• SOCALS	 •• NO
▪ COMPLETED

X
• YES • •DI:

mit
	 J5 	

• FETCH	 EPHAS	 •
10000 — PH 44• •

•

	A2 .• *.	 	 3 	
• PERFORM	 •

NO	
: PROCESSING
• TP000 — PH 6 ••

• YES	 •O••• •
• G4• •

1•1•0

2	 ••

•

•
•

%
83

.	
...*
	
	 B4 	

.
• .. COMMON	 .. YES	 •	 PRINT R47	 •

.. OVERLAYS	 	 X MESSAGE PM000
• •.CORE LOAD.•	 •	 PH 0	 •

..	 ..

• NO•
.x 	
x

MC170	 MCI
C3..	

BO
...	 C4 	

...	

•..	 ANY	 .. NO	 •PRINT EXECUTION.
o.	 ERRORS	 X MESSAGE PM000 —

• IL000 PH 4		 •	 PH 0	 •
•

....Al* 	
• ENTER FROM	 •
• PHASE 1	 •• •

• • • •
• ••81 ...X• •

MC000•••	81	
RELOCATE	 •
	 82 	

MAINLINE	 •
PROGRAM	 •

•	 FETCH PHASE 4
LK000 PH 0

•	 81000— PH 2	 • •

	CI 	 C2•
Mg&LENg-K:

•	 RELOCATE
•
	 RinnEgAii

O00vo• •
•01 •.X• •

MCO30
D1 	

• FETCH PHASE 3 •
LK000 —PH 0• •

• YES

•

i	 D2 	 	 	 03 	 	 04. ..	 	 D5 	• •
CALCULATE	 • TERMINATE •	 .*	 .. NO	

X. AIPLWER •.AVAILAB
L

E CORE	 ••*LOADING TLOOD •	 x	 STORECI •• .. 	
• ET000 PH 4	 •	 PH 0		 •	 PHASE 2	 •• •	 •	

• YES
MID

• E3

••	 .
MC/50 ••	 x

E2.•. ..	 E3 am*
.	 .

•••	 LOCALS
	 .. NO	 •FETCH PHASE 12 ..

LOCALS OR

.

 	 X LK000 — PH 0
... SOCALS .*

..	 ..

• YES

MC270
E4 	

• •	 • EXIT TO CORE •
FETCH DUP	 • IMAGE LOADER •• •

••11.0• •
• El ...X• •

MC090
El 	•

•GET ENTRY FROM
• LOAD TABLE••

	F2	

•FETCH OVERLAYED•
PART PHASE 2	 ...o

• LK000—PH 0 •

**ff.

	 F3 w••••
*PRINT CORE MAP
FOR SUBROUTINES
•M2000 — PH 12*

1.1

. .
Fl

• LAST	 YES
ENTRY	

• NO

• •. RETURN TO DUP •• •

....	 **Oil
• •	 • 81 :	 •	 •
• G2	 •	 •	 • G4

..... .
	MC060	 MC160	 x	 MC120

M x
01	 G2 ..	 	 63 ern *	 	 Gh 	

..	 ENTRY ..

	

. 	 ENTRY •.. YES	 ...PREVIOUSLY .. YES 	 • FETCH PHASE 6 •	 • FETCH PHASE 5 •

	

•. RELOCATED .•....	 •. RELOCATED .•.•..	 LK000 — PH 0	 LK000 -. PH 0
...	 YET	 LOCAL ..	 •	 •	 •	 •

..	 .	 ..

.11D
i

•••••	 • NO	 ••••• •	 .000	 •	 •
• El • •	 •	 • et •.	 •	 • • H2 o•X	 •	 •

.	to
ma	 x

	MC210 	 X 	 MC240	 x	 .4.
HI	 	 H2 	 	 	 H3 a...	 H4	

•
• •	 .	 DETERMINE	 •	 •	 •	

	

•CHECK NAME FOR •	 • WHETHER TO	 •	 •CREATE TRANSFER.	 ... LOCALS	 .. YES
• CALL OR LIRE •	 •RELOCATE ENTRY •	 •VECTOR TV000—PH•	 .. PROCESSEDX
• CN000-PH 0	 •	 • 00000—PH 3	 •	 6	 •	 ..	 YET	 ..

:• •	 •	 •	
NO

X
II	

%.....• •
.•
	 • A3 •	 NC330

Jl	 ..	 J2	 ...	 •
qu

	

* •
•	 J4

• * •..	 ..	 10.
DISK	 .. NO	 ..	 a. YES	 ..	 ANY	 o. NO

*.▪ I/0 ENTRY

.

	 BYPASS		 LOCALS	 .* 	
..	 ..	 o.	 .d...	411. ..	 lc	 o.	 x

* YES	 MO	 • NO	 *4.0	 • YES• •	 •	 •
• El •	 • et •• •

'.....*....X
	MC220	 X

K1	 ..	 	 K2 	 	 	 K4 	 	 	 K5 	
• •	 •	 RELOCATE	 •

.. NO	 RELOCATE	 •	 •PROCESS LOCALS•.	 • REQUIRED ILS •

	

...	 PASS I		 • SUBROUTINE	 •	 • ADD FLIPPER •	 SUBROUTINES •

	

8/000—PH 2	 •	 • PL000 — PH 5 •	 • IL000 — PH 4 ••
• YES

.	 •..X•
•

02

••	 ••	 •
•

•
H2 •• ..X• El •	 ..X• DI •	 .0* E3 •

	

* low . 	.***

Flowchart CLB02. Core Load Builder, Master Control

206

• •
• Ah •• •

	

CCAT	 ii
	 A4

......*A2 	 	 • INITIALIZE• ENTER FROM	 •	 •CATCO SWITCHES
•

SUPERVISOR	
•
	 •AND WORK AREAS

• AS REQUIRED

x
B2 ..

....	
	 B3 	 	 	 B4 	

••.
	 •	 •

..	 PAPER	 .. YES	 •SET CATCO PTPON•	 • INITIALIZE...	 TAPE ON	 ... 	 X•SWITCH NON-ZERO•	 •	 INTERRUPT	 •
.. SYSTEM ...	 •	 •	 LOCATIONS	 •

...	 .•	 •	 •	 •	 •
NO

	 CI 	 	 C2
41	

•
..&	 •	 .

• SET	 •	 NO .0 1442-5	 +.
• CATCO.RBLINK •X	 •	 ON SYSTEM

.
 ..•

•SWITCH NON-ZERO.	

	

0.	 ...
• YES

X.
X

	 02 	
•BUILD CARD I/O •

PHASE
• •

X
	 Ca 	 	 	 C4

• WiDgg ER •	 • READ MOM OF •
SYSTEM DRIVE TO

•••	 CATCO	 •

x	 X
	 D3	 	 D4
•WRITE PHASE 16 •	 • LOPYRSEIN

TO DISK	 AT 0 FOR	 •
• •	 • REMAINDER OF •

• CCAT

	 E2 	
•..RITE PHASE 15

TO DISK
• •

x
E3.•. ...	 	E4	

	

.• PRIN...	 READ PRINC.

	

NO 0.1/0 W/D KB ...	 &PRINTER DEVICE •
..... ...	 PAPER	 ...	 ROUTINE.

... TAPE	 ..	 • OVERLAYING •
.1.	 ..	 CCAT

• YES

	 F3 	
•WRITC O Ptlik. 15 •
• •

...
G2

.
 ...	 	 G3 	

.10	 I..
.••PRINCIPAL •. YES

x
&BUILD KEYBOARD •

I/0	 .m 	 	 PHASE
•.KEYBOARD 0.	 •	 •

...	 .•
• NO

.x

	 H2 	
•WRITE PHASE 14 •

TO DISK

	 J2 	
•SET CATCO (ROUT•
•SM TO INDICATE •
• PRINCIPAL 1/0 •
• DEVICE

•

*OA.
• •
• A4 •
0.	 •

Flowchart DUPO1. Disk Utility Program, CCAT

••
• EXIT TO REST

Flowcharts 207

•
•

X
D

02	
OACTL

..	 03 	
..	 ..

..	 4.. YES	 • PROCESS COUNT
•DUMPDATA .. 	 A.•	 FIELD

..	 ..
*.	 ..	 •

•

*008.
• Al*
• •

........ .0.40
. •

NO

FLCTL
Fl	 ..	 F2	 ..	 	 F3 	

...	 •
•NO .. CONTROL YES	 • SET FLET ONLY•.....	 RECORD	 ..	 al. .DUMPFLET .. 	 X:	 SW

it.	
..	 0;

•

	Ex....	 E2....

*READ 	 •	
•DUMPLET	

YES

LECTL
	 E3 	

	 X•SET LET/FLET SW.

• •▪
• A2

•
• A4 •

• .	 ol.o	 .

	X 	 PL035
	 A2 	 	 	 A4 	•••.•

•E▪ NTER FROM REST.
• IN DUPCO

• PRINT CONTROL •
RECORD• •

FETCH PRECI
PHASE

. ****
•014•

..X. Al •• •
STCTL	 PL030

Bl	 ..	 B2••...	 83 	 	 	 84 	
•...	 ..	 •PROCESS •STORE.•

FROM CLB		 •STORE .. 	 X: 491t1,—E 4• 60 • 	 X• FETCH STORE
RETURN • *. YES	 YES

*.	 ..	 .CONTROL KECORDS•
o.	 ...

	

X	 •	 1.4.
• NO	 4.11.	 ..•140

• a	 . woo.
• • Ah •	 .	 . •003.

..X• Al.	 •
X	

40..
; ••••

CI

• PRINCIPAL.NO
▪ I/0 FROM	 .06...

K.B.

• YES

DUCTL	 PL050
C2	 ... 	 C3 	 	 C4 	

..	 .	 •	 •
..	 .. YES	 0:PROC.81	 MP. ••••	 •DUMP	 .• 	 	 	 A. FETCH DUMP
..	 ..	 X	 .CONTR8LPRECORDS.

..	 ..	 •	 •	 •
	 we

▪ NO

RDITO
	 01..o.

•FETCH DUP PHASE•
14 (PRIN. I/O

• SU8R. SET) •

........ .4.4.
NO

X..

X

• YES	 • NO

FL100
E4 	

	

X I.CONTROL RECORDS 	

PL060
	 F4 	••
• FETCH DUMPLET••

.	 1/...
.	 •	 . •010•
.	 .	 ..X. Al •

X	 X	 •	 •
..••

DLCTL	 PL070
GI	 ..	 02....	01 	 ...	 G4 	

	

..MONITOR..	 ..	 *.	 •	 •
CONTROL .. NO	 YES	 •PROCESS •DELETE*	 •
RECORD	 .0....	 ..	 •DELETE	 .. 	 X.CONTROL RECORD • 	 X. FETCH DELETE
CARD	 .40	 . 	 *.	 ..	 •..		 •	 •	 :i

• YES	 OM	 • NO
, ••••

• A2 :	 .	 . •011•
• ..X. Al •

411.44	 •	 •
DFCTL	 PL080

	 1.41. *	 H2	 ..	 	 3 	 .1.	 	 H4 	
..	 ..	 •	 •

•SET UP DEXIT TO	 YES
GO TO	 ..	 •DEFINE	 	 x:R5Ht RECORD 	 Xi FETCH DEFINE

. SUPERVISOR		 •
..	 ..	 •	 •

••
• NO : •. •07,2•..X. Al •

• •

WACTL
J3 	 ..

miljto•ou	 •	 •	 ...J4_	
+EXIT VIA LEAVE •	 ..	 • YES	 *PROCESS RECORD •• 	• IN DUPCO	 •	 *.	 *DWADR .. 	 X.CONTROL RECORD •	

• ETA 1.111JOHS •
X* V

°.	 ..	 •	 • 	 DUPCO 	 •
		 •	 •

••NO

•
•

IVO

	 K2
• •	 ••Kx 	
•SET UP OUP CTRL.	 •EXIT VIA LEAVE •
•REC ERROR EXIT • 	 X•	 IN DUPCO	 ••• •	 	 •

Flowchart DUP02. Disk Utility Program, DCTL

208

•003•
• Al•

• •

•

i
STORE

Al	 0.	 A4 0. 	 	 A5 	

•.0 . 	
I/0	 .. YES	

.	
..... NO	 • READ SYSTEM •

.. REQUIRED

41.

	 X*. STOREDATA .. 	 X FORMAT RECORDS.

	

.*	 0.
• NO
	 • YES

• B1 •.X.• •

El	 •.	 B2...0.	 	 B3 	 	 	 R4 	 	 05...0.
x

..FXA OR ..	 MOVE FROG. OR
0.:

..

UM

ENOUGH

W 0:.YES
X •

•DATA

RE TQUOIR

FXA OR •	 •	 READ DATA	 •	 .. RECORD • 0. NO

•
. YES

	

STOREMOD	 .0 	 	 UA AES	
•	 •D	

FORMAT RECORDS
•
	.. TYPE VALID .0....

O .0

	

0. NO 	 ..•IVO • YS	 •••E	 •

	

0	 0.	 0

.	 ••••	 .	 ••••	 •	 •

•

	

••	

•

•
E2

•

0
..X: E2 •	 ..X: H2 •	 •	 •

•

	

4.1.•	 x	
p...4	

•	 •

CI	 0.	 C2	 ..	
C3... 0.	 	 C5 	

Y
.*	 0.	 .•	1 ERROR

	

STORECI	 .0 	 Xi.. LOAD BUILT .. 	 X.I.WH/LE ST RING.....:
... DETECT .. YES	 •	 WRITE TO

WORKING STORAGE•..	 .. YES	 .0	 CORE • 11. YES

s.	 .•	 ..	 .0	 ..CORE L AO.•
o.	

•
		 0.	

• NO	 • NO	 • NO	 ••••
• •
• E2 •

*.e.0.
••

	01.• 0. 	 	 D2 	

	

.0	 ..	 •OUP EXIT CALLS •
.•	 STORE	 0. YES	 ••CLB WHICH CALLS•

	

. TO WORKING	 • DDUP . S PRECI

	

0. STORAGE	
•

	

..	 • PHASE

	

0.	 .4 	 •

	

** *140	 O...

	

4	 •	 004.
• H2 • •	 •
• • • E2 •.X
me • •

	

ii	 me

	

El	 o.

	

.*FXA OR *.	 .0.0E2 	
... UA HOLE .. ND

	

LARGE	 .0	 X.▪ EX/T TO LEAVE
. ENOUGH .*

.. .4.
• YES

..X• 111 •• •
.40.0

	 F2 	

• UPDATE LET OR •
..0	

REQUIRED• REQUIRED	 •

	 02 	 ••:UPONIARES AS •
•• •

• •▪
• H2 ...X• •

• pRINT SIGN OFF •
MESSAGE• •

00••12 	• •
• EXIT TO REST •• •

FL

NO	 DSF	 0.
...*.	 PROGRAM

• YES

G1•
• DO ADJUST
•PROGRAM TO END
• OF USER AREA
•

	X

	 HI 	

*M8VJAPTSTIMORR 	
FXA AS

• REQUIRED	 •

	 J1 	
MASK, DO NOT •

ALLOW KB

INTERRUPT	 •

Flowchart DUP03. Disk Utility Program, STORE

Flowcharts 209

• A3•
•006•
. A30

•

•006. .06.
•0 Al.

LF000
	 Al. 	

•• SET LOCAL

:111AtifOrIILDF

•005.
• 131.•.X:

	 61 	
RR000	 007E1

READ AND PRINT
• A RECORD	 •

....*	 .
*005.	 .	 •
• CI •.X.• •	 ,
6.4.11	 X

CI..	 C2	 ..	 C3	 ..	 X

•
.	 ..

	LOCAL	 ... NO	
..•••C4

..	 RECORD	 .. 	 X.:. WaSab	
.:.NO	 •
	X. 	 RECORD	 %." 	 x. EXIT TO LEAVE •..		 X •	 •

..	 ..

• YES	 • YES	 • YES

	

.	 •	 •

	

.	 .	 .	 • C4 •

	

.	 .	 •	 •

	

;	 X	 1	

•0.•

	DI	 ..	 02	 ..	 03	 ..6 ,

•

..	 ..
..	 LAST	 it. YES	 ..	 LAST	 • YES	 o	 LAST	 •. YES

RECORD A	 6.....	 .. RECORD A	 RECORD A
• LOCAL NOCAL FILES ..

% X
	..	 .

•006•
• NO	 ..•.NO	 • NO

*006.

	

	
..i.

.0066

	

.	 • A3.	 • A3•	 •
• . 16	 • .

	

i▪ 	 X	 X
	 El". 	 	 	 E2	 	 E3 ******* 6...
WR000	 007E4	 WR000	 MR000

----.	

•

	
007E4

• •	
00714•	

WRITEBUFFER TO
eSCRA SECTORS.	 :INii8YEPARI2	 tNa inqRsT:: •bB 1	 4-5

•005•
• C4.

Fl

•▪ 	
LOCAL.YES

INDICATOR
▪ ON

•▪ 	NO	 ••••

• C4 •.•
• ••
Of.*

01

SET LOCAL
INDICATOR ON

It

F2

•INDICATOR
ON

• NO • •
• C4 •

INHIJKIN

•

000

• INWOR . ..TLX: C4II.	 ON

• NO

SET FILES
INDICATOR ON

G2 	 	 	 G3

Flowchart DUPO4. Disk Utility Program, FILEQ

210

..
*006	 •	 •	 •006••	*.Al.
	

..

	

.	 • A2 	 • A3•• •	 ...•

	

.	 .

	

.	 .

	

X	 X	 X
	 Al	 	 A2	 	 A3

• RR000	 007E1	 •	 •SET WORD COUNT • 4.—	 —.	 :SET WORD COUNT •

	

TO ONE	 •	 •READ AND PRINT	 •
• • A RECORD	 •	 •	 •

•
•
•
•

X

	 81 X 82	 ...•83	
.• •	 •POINT TO COLUMN.	 YES .. RECORD	 ..	 •POINT TO COLUMN•B	 •X 	 *. SAME TYPE

.
 ..	 •	 7	 •

• .. AS LAST ..	 .	 •• ..	 •	 •..
• NO......

• CI •.X	 X•
•••••	 .00So

..C!.	
.

	 CI 	 	
C.•
3

•	 .	
*

.
FETCH AND	 •.. COLUMN

..
 .. NO• CONVERT FILE	 ..	 A COMMA .• NUMBER	 a.	 ..•

..	 ...

•FB000
1

007AI•	 •
	 03

MAINLINEIMASET•
•STORE NUMBER TO.	 • NAME A BLANK•DISK I/O BUFFER.	 .• •	 •

• YES

X

•••

X
▪ .

El	

•

	 	 E2 	
•

o.	 •	 •

•••	 COLUMN
	 4.. YES	 • SET FILE NAME •

COLUMN A	 	 X•	 BLANK	 •
• COMMA ..	 •	 •

..	 ..	 •	 •
NO

•FN000
l

007A3 	 •f80002 007A1 	
*---------------.	 •	 — 	•FETCH FILE NAME.	 •STORE FILE NAME•
•AND CONVERT TO •	 • TO I/O BUFFER •
• NAME CODE	 •	 •	 •

	 GI 	

	

*F8000	 00761 	
*-------- -------
•STORE FILE NAME*
• TO 1/0 BUFFER •

HI..	 	 H2
.. NEXT ..	 •	 •
• COLUMN A .. NO	 •	 FETCH AND	 •.1.	 RIGHT	 	 X•	 CONVERT	 *
• PAREN

.
 ..	 • CARTRIDGE ID •
.	 *	 •

• YES

•FB005 3 	00761.*---------------...X. STORE NAME TO •
▪ I/0 BUFFER	 •••

X

F3.....

••• 	 NEXT	 *. YES
COLUMN A	 0, 	

BLANK

• NO

• G3 ••X.

•005•
• Bl•

• •

G3 • G4 	
RR000	 007E1

FOLLOWING	 YES•	 •▪ COLUMN A	 	 X READ AND PRINT
BLANK	 • A RECORD	 •

• NO

•
X

	 X

	 H3 	 	 H4	 ..
•FN000	 007A3•	

..	 TYPE	 .. NO

	

...: CONVERT MR. •	 S t2ET AS
• NAME	 •	

• YES
.05*
•

0
C4.• •

	 JI 	

• SET CARTRIDGE •
• ID BLANK	 ••

	 J4•
•POINT TO COLUMN.• a 	 ••• •

G3

K/ n K2	 *.	 K3......
•F0000	 •	 .0

	

.•	
NEXT	 ,.. NO	 .• FOLLOWING •. NO

STORE CARTRIDGE. 	 X.	 COLUMN	 .. 	 X*.	 COLUMN	 .*....
• ID U TOE

ER
I/0	

•
•	 .. BLANK .•	 .. BLANK ..

• B 	 ..	 *.	 ..
• ..	 .6 .	 i
• YES	 ••

e
YES	

•
•	 •	 •
X	

• CI •
R • •

....	 .46.4	 16.0.
• 4	 •	 •
• A2 •	 • A2• •
0..0	 .0.0

Flowchart DUPO5. Disk Utility Program, FILEQ

Flowcharts 211

0* 05.
• C46

0 •

FNOOD
A3	

•
0

FIRST	 *. NO

•

COLUMNi

4.
• YES	 •0 L40•

• •

FB000
Al	 *.

%/ODILSAFER 	
YES

FULL	 .0.•
• NO

	 BI 	
STORE FILE

NAME. CARTRIDGE
ID OR SUER.

NAME IN DISK
I/O BUFFER

INCREMENT MORD
COUNT

ACCORDINGLY

•...01 •

:CALNURNOLYINE:•

RR000
EP	 .04••E2 	

•••▪ RECORD v. YES ...X:CMINT
LAIGAMBCOUNT ZERO .0 	

0.	 .0

• NO

•**•••*

• •
READ A RECORD• •
	 ••••

VITER°18K s10 •• •

•

X

• STORE THE

AMNIN
• BUFFER•

X

C3 	 	 C4 	

• 0.	 •... NEXT	 .. YES	 •CONVERT NAME TO.4.. COLUMN A	X•	 NAME CODE
0 . COMMA .0	 X	 •

0.	 .0	 •	 •
•.ND

.
03	 4.	 x

.0	 0.	 ••••
.6	 NEXI	 0. YES	 •	 RED4TURN TO	 •0.	 COLUMN		 •CALLINO ROUTINE.

BLANK .00 .	 .0

•.AO

E3	 *.

NOTHIS	 4.
COLUMN THE .6

0 . SIXTH

• NO

MR000
E4	 4.

...I/OD18;FER
CLEAR

NO

.05
*
*

•0 CA
• •	 	 F4 	•

•MRITE DISK I/O •
BUFFER TO SCRA•

	 GI •• • 	

• PFIORIIHE •

•.•002 	• •
.RETURN TO DCTL ••

	 G4 	• •
:CLEAl upin I/O •

• •

X

	HI.... *****

:RECUSREWIT BY:
ONE	 •

6 .6*.H4 	
• RETURN TO	 •
.CALLING ROUTINE.

00000

:CALI▪ T8449INE:

Flowchart DIJP06. Disk Utility Program, FILEQ

212

E T z siautromoia

cuninact umi2oad A4111111 4s? CI • Lodna lautiamou

• •
• SA X'•

• 93A400 Indir) :	 •
: 1130 01 090139•
	 Tr.•••

•--
• HDNOd 01 XN11 •%	

• "98 0114 -81":•
.40600	 00DdX•	 •
	 4r 	 	 	 Er 	

04ZAX

S3!....

NVV90Nd
isa AO

ON
590503N 90111%;

• 3H1 ININd	 •
.EH

S3A •
•
• koddno indino •	 .-
• H3N0d 01 ANI1 •	 .: anmivo•:•;,„-
• — •
•40600 	 00040•

•E9 	 	 .4.	 T9

	 X	 	 0

	

.	 .

	

.	 .	 .
.	 •

	

S3A •	 S3:...	 .	 O•j....
.•	 ..• ..•	 .4.	 :9NINBAnf50100•	 ..	 SM	

•••	 000130	 :0 0	
ON .. 11n1031R839.. x
	 ON .. 01107 MVO .:*	 • 3301d 01 X011 •X 	 •	 NI 03001d .•• • 	 •	

536 P100....	 SA....	 ..	 .	 •MOO	 000MX•

	

..	 4A •.....EA	 ZA 	 	IA
00140	 ...

•
0

	

.... SA •	 .
• •	 .	 .

	

•...	 •	 •
ON •

•
• 000130
••	 03....

. 00010

	 0X 	 	
:

ON • .	 :
(1....... ..

••
	

••
	 •	 •	 •	 •	 ..	 .

..	
,. S3A	

•	 030V 1NI9d •	 .9310134N1Nd NO 01.00•	 ." 931NI9d ,

	

.• (mon
SV1
viva 	 	 • V0310 01 0011 •	 • 3301d 01 X0411 •X 	 •NO 03301d

1•,I	 .	 • 	 •	 ------•	 , 30

	

•.
	 .00600	 0003%.	 *S0000 	 0001%.	 , ind0ino.-

4.•

	

SO	 	 40 	 	
•	

ZO 	 	
53A

!	10	 00400
!	 x

•
•

O	

*

I.4...

••

	

	 .	 •	 •	 X510X510.... • ..
•::.avormiva 	 	 • 8400P1479 •	 •

 NOVA anon viva.
1	 .. . S3A .. X .. 10dfRdININd •	

NV0/30	 •
• •	 .---------------

• V 139 01 ANI1 .X.'

	

..•	 	 £0..•••.	 •40600 000400
	 0 	 	

.00900	 0009X

	

... S3	 	 43 	 	 	 1 	 	,
00110	 x	 x

)8

ON •
• V3i400	 •
• 1NI9d NI 0100 •
• 193501 01 0011*
• •.£0600	 000IX.
	 SO 	

0001%

• 03010190 OVOM •••	 0099004
:

V190 i0 000330 113003H• X 	
• •	 400 100904•	

iSO
53A ..49U/IIROVI••

	 E g 	 • ZO 	 	 10
00000

•
•

XSIO MONA
• anon viva 139 •

EV
00000

•
• sgwrinowans

dwnoo
• "3/IMITMT°

IV 	

•

•
• •

.10 •

.900.

000aa

..**H3N0d....
•

• "8341Neida° •	
•	 •
• BM NO 0100 :0 	 .. NO 3S3801 1d .:.

.awom 01100 330/d.
.03000 	 0000*	

S3A
• -. Indir).-

E3 	 	 	 03	13
00040

•0

TH
04400

	

701000XC000	 %POO°
Al 	 	 A3 	 	 A4 	

• •	 •	 •

	

•PLACE DATA WORD:	 •CLEAR THE PRINT.	 •PLACE CHECKSUM •
• IN BUFFER	 •	 •	 AREA	 •	 •AND WORD COUNT ••	•• 	 •	 •	 IF NEEDED	 •

• •	 •••
	 0	 	 	 000

XPI20...	 XPI65
B4	 ..	 	B5	

••••113 	 	 ..PUNCHED..
• •	 • OUTPUT ON •. NO
	 0

•PUNCHCIIMRD ON.
• RETURN	 •	 ..	 PAPER
• •	TAPE .• ..	 •	 •

• YES

	 C4 	

	

•PUNCH RECORD ON 	
PAPER TAPE

• •

x .e.
eit' • '..	 B2	 ...

.0	
• 	

..
LAST	 0. NO	

x•	 .•.
 BUFFER
	 %.442.

	

f. DATA WORD .0, 	
.1.	 ..1	,

0.	 .0	

YES	 •.:ES

RW100
CI 	

	

•PLACE BUFFER ON 	
DISK

•

XI000
D3 	 	

5P2B0
.

O 	 	 •	 ..•• 04 	
•PLACE

:RETURN	
DATA 	 •

• ••	
RETURN

•

.1.1••E3	
•

• RETURN	 •
•

Flowchart DUP08. Disk Utility Program, DDUMP

214

D•• Al 	•••

DUMPLET
A/ 	*

•	 EXECUTE
•	 ONE-TIME

•••
•INITIALIZATIONS•

	 A2 	
• GET LET/FLET

..X• AtIa.":14 .
• 08ADR.•

x
..

81. ..*.
	
	 82 	

..
SINGLE	 .. YES	 • PRINT DCOM	 •

..	 ENTRY	 .. 	 	 HEADER LINE
..	 ..	 •	 •

*.	 ..

..•110
MAI• •
C1 .X

	 CI • 	 C2	 *.

• •	 IS THIS	 NO
RESTORE PAGE	 A SECONDARY

	

•.
 •	 *. ENTRY .11

YES

	 DI 	

• READ A SECTOR •
OF LET/FLET• •

	D2	

• ••
FIND PRIMAR

••

X

x
	 El	 	 E2 	 	 E3	 *.

• •	 . ANY	 .
• PRINT DCDM	 •	 • FORMAT AND	 •	 ..	 MORE	 .. YES.

HEADER LINE	 •PRINT ONE ENTRY 	 X*. ENTRIES TO•

	 Fl
.PRINT LET/FLET

HEADER•

•

•
LINE •

•	 PER LINE	 •

F2 '• ..
..ANOTHER•.

.• SEFTR ON •. YES

.."...CAR ITIRiDGE.. '*

*.	 PRINT	 ..

''..11a
. 	 ...•

..X• H2 •

.....O.

	 F3 	
•	 SET UP TO	 •

	 	 X: PRffEi8RNUT
•	 LET/FLET	 •

..	 .. •	 •
•	 NO

4.4.0

CI	 •

X

	 G/ 	 G2 	 G3 	
•	 FORMAT AND	 •
•PRINT ONE LINE • •	 ANOTHER	 YES

•
•	 OF LET/FLET	 •
•	 ENTRIES	 •

CARTRIDGE
•.REQUIRED
	 	 S. PRUISVPNNT

•	 CARTRIDGE

•	 NO
:	 • • • •• •

• H2 •.X

HI	

•

• *
NO	 SECTOR	 *. YES

ALL PRINTER

	 2 	

.WRITIEMliOFF •

...j2 	
• EXIT TO DUPCO •
• VIA REST	 •

Flowchart DUP09. Disk Utility Program, DUMPLET/DUMPFLET

Flowcharts 215

•
•

DELETE
AI 	

•BA000	 ••	
• INITIALIZE FOR •
• PREVIOUS DUMY •
• /F ANY	 •

	 El 	
•NU000	 •

•COMPUTE SIZE 0F•
• ENTRY TO BE •
• DELETED	 •

X
	 ct 	
•MU000	 •
• —•
•INITIALIZE FOR •
•FOLLOWING DUNN, •
• IF ANY	 •

	 Dl 	
•CN000	 •

•SHRINK LET/FLET•
• UNTIL DDF OR •
• DCI FOUND	 •

	 El 	•
• INSERT DUMY

•

ENTRY F

.........

	 Floe* 	
•SH000
•	
• SHRINK
• REMAINDER OF
• LET/FLET

••••• 	
•DU000 ••1/1000Z •
• UPDATE LAST	 ...X.DELETE PROGRAM •
• DUET ENTRY	 •	 FROM UA	 •
• •

•.4.
Hl

 DELETE	 YES
FROM UA

••	 • •
• NO

••••j1 	
*EXIT TO REST IN•

DUPCO	 •• •

Flowchart DUP10. Disk Utility Program, DELETE

216

*****	 *
..0• G2 *

• *
*•**

*•a•
.	 *
..0* G2 *

Om**

8.40
..X* G2 *• *

•***

:R• VPSDO,D6CriL *
* AD DR I DISKI =
* .*

"114= 'T"; *** *
x* •REST • IN OUPC0*

DEFINE0 *****1000* ****** 0****
*ENTER FRCM OUP • y , ••:212:
* CONTROL	 0 * *

•O•*
*	 *
* Bs *...a	 * .

X	 *•*•

B4
.0.

8.01	 0.	 02	
+'*.

	
•
	

0

.0	 ..	 .*	5	 *.	 .0	 8.	 ****85**** *****
.*	 VOID	 0. NO	 .0	 VOID	 0. NC	 .8.	 VOID	 0. NO	 •* MODIFY	 8. NO	 *	 *

. ASSEMBLER .0 	 0.	 FORTRAN	 .0 	 X*.	 RPG	 .8 	 X*. FIXED AREA .0 	 X:	 ERROR	 *
.	 .0	 4.	 .	 *.	 .*	 *.	 .*	 •	 r

.	 .	 *.	 .*	 *.	 .*

	

* YFS	 * YES	 0.* YES	 • YES

%	 1▪ 	X 	 %
1 .0.	

.0.

	

0.	 C2	 0.	 C3	 4.	 C4.0E *.
.*	 *.	 ..	 *.	 .*	 0.	 .*	 •.	 ****

S. ASSEMBLER .	 .	 ►.	 PRESENT	 .0....	 B.	 PRESENT	 .8....	 .:0 AiLEIID *:*!!..X: E2 a
.0	 N. ND	 .8 FORTRAN V. NC	 .*	 RPG	 0. NC
N. PRESENT .0	 .	 *.	 . 8. .0	 0.	 .00...

0.	 .0	 .•	 8.	 .0	 **Si
%%	 i

****	 .
* YES

► 	 *

: "L.* *"*.*	
►* YES
.	 **** *	 *

****	 0 NES
* * .	 * 115 *	 . *	 * * AB *	 . *	 * * BS *
• DI •*.X.	 •*	 *	 ..X* DL 	 * S...**	 ..X* Dl * *	 *
* * .	 *0**	 •	 * ****
•***	 X	 *8**	 ****

DI	 *.	 *****0
.0	 S.	 ***►	 *REPLACE ADM OF*

.*	 FIXED	 *. YES .	 *	 *CIB INTERrALL y *
S.	 AREA	 .*....X. 55 *	

: win WIZ :

	

.. PRESENT	 .
*	 *	 *

*.	 .5	 ****	 ****	 *	 AREA	 *
* *	 * * ********** * * * * *

B, *lo	 * E2 ** *

X

*****Ft**********	 E2	 0.
* *	 *	 .
DETERMINE PHASE	 .0.

	 *.
FIXED 4. YES	

0:IPAZEEMMES:* ID RANGE OF *	 *. AREA TO BE .• 	
* FROG TO 5010 *	 *.DECREASED.}	 *
* *.	 .*	 y
****** * ** * ** ***** 	 *. .0	 *****************

* NO

X	 0
*****Ft* ***** ****	 ***** F2 * **** ****

* REMOVE PHASE .	 :1AVIPAIMs 	RIOS FROM SLET 6*
* RELOAD TABLE *

********	 ***** *	 *** ******* *******

* *
* G2 0...* *

**A,*	 .
X .0.

*****G1* ********	 ***** G2* ****** ***	 G3	 *.
* *	 *	 .
PROCESS REBUILT	 * UPDATE MOM a *	 .*.• PREY * 8. YES
• RELOAD TABLE S	 *

	
RESIDENT
	

*
	

0. FIXED AREA .0 	
* *.ASSIGNED .4
* *	 *	 0.	 .*

* NO

*****Ht**** ******
* *	 *
• SHIFT UA TO *	 * BUILD SECTOR *

	 • EXPAND FOR
* CLOSE GAP IN *	 0 HEADER & RUMP *

	
* FIXED AREA

*SYST PROS AREA *	 SENTRY FOR FLET •

	

i	 *	 •	 *
I.** ***** **Mt***	 *****************

******E4 ********** *
****ES *********

* GET LAST FLET *
..X .	 SECTOR	 •	 ERROR

x
F4.*'*.

.*
.•
	 LAST

..
*. NO

*. ENTRY . 1	 .0 	 X
8.DUNN . .*

***IES

•
•
M	 NO

05'5.0.
	*9

•
D4 ' 0	 ..	 *.

.. C N 1 .*. NO	 ..	 ix e t	*.
*.DUMY A ABSORB .. 	 X.. DUMY ; SOLE .0

.	 IT	 .	 *. ENTRT .*
.	 .0	 ..	 .

•*.*.YES	 • YES

I
****•H4 **********
* *	 0
* MODIFY FIXED •	 :DEC TES AREA
* AREA
* *	 *
* *	 •	 0

* *
UPDATE	 *	 *

* REPOSITIONED *	 * UPDATE LET	 •
* r	 *	 *
. *	 *	 *
******** ********

Flowchart DUP11. Disk Utility Program, DEFINE

Flowcharts 217

•• ENTER FROM	 •
•LEAVE IN DUPCO •

EX020
	 B5 	.•	 .EX/80	 013H4 	ENTRY	 o. YES	 •	 •CODE EQUALS	 	 X.
• WRITE OCOM	 ••.• •

• NO

••

10130101Cl	 ..	 	 C4 	 	 	 5 	.	 ..	 :EX180	 013H4.	 PLACE Cli. REC 	ENTRY	 .. YES TRAPPED IN	 •COOL	 	 X.	 •	 SUPERVISOR	 ••.POSITIVE	 • WRITE DOOM	 •	 BUFFER..	 ..••••

• NO
•
•
•
•

x	 i
DI.....	 	D3	 ..	 	 D4 	 	 05

EX100	 x
••	 0.	 .10180 	 013H4•	 PRINT ERROR	 .. OUP.....	 ENTRY	 .. YES		 • MESSAGE WITH •	 .• ENTERED

.
 ... YES. CODE EQUALS .. 	 	 X.	 •	 NUMBER OF ENTRY	 ..	 FROM—4	 ..	 • WRITE MOM	 ••	 ••	 CODE	 •	 Ca MODIF	 •	I.. ..

R
EXOTO

El	 ...	 E2 	 	 x••	 o.	 •80180	 0I3H4•E3 	 	 ••••E4 	 	E4 	..	 ENTRY	 C. YES	 .---------------	 • EXIT TO ADRWS •	 *EXIT TO REST IN. 	
: EINTSULtfONT. CODE E QUALSX.	 • VIA LINK IN •	 •	 DUPCO	 •— 3	 ..	 . WRITE DCOM	 • •	 DUPCO 	 •	 •	 •	 • SUPERVISOR	 ••

..	 ..
•.A0

•
EX050

•
F 	

80180 1	013H4 •
F2 	

•WRITE UPCOR TO •
•

DuP PHASE 13
WRITE DOOM	 •	 •	 •

	 F5 	

• FETCH MODIF •
EXIT PHASE (12)

• GI :.X:
EX06; •••	 %

GI
...••G5 	

• EXIT TO MODIF
SET UP DUMP	 •FETCH PHASES 0 •

FORMAT CODE OF •	 AND 1 OF CORE
— 1	 •	 CLUBS BUILDER •

• NO	 • NO

....H
• EXIT TO CORE •	 • WRITE DCOM TO •• LOAD2 BUILDER	 ••	 MASTER
• •	 • CARTRIDGE •

EX180
	 H4

• EXIT TO STROP •
• IN SKELETON •
• SUPERVISOR	 •

J4

INTERRUPT	 YES

NO
• •

GI
••••

....K4 	
• RETU	 TO	 •
•CAL	

RN
LING ROUTINE•

•

Flowchart DUP12. Disk Utility Program, DEXIT

218

•014.
• Al.

• •

PRECI
*rnA 	

•ENTER
l
 FROM CORE.

• LOAD BUILDER •

...et	 .	 	 82 	

	

.•FXA OR *.	 •	 •
UA HOLE .1. NO	 •	 SET ERROR	 •
LARGE	 .. 	 X•INDICATORS FOR •

	

0. ENOUGH 01	 •	 STORE
o.	 ...	 •	 .

• YES
••••

•
• 12 •.X
• •

01.04.

	C/ 	 	 	 C2
MOVE SOCALS AND	 •	 •

• LOCALS TO	 •	 •CLEAR $NDUP TO •
• LORAN •	

• ALLOW FURTHER •
• OUP FUNCTIONS •

	 01 	
MOVE PRIG. IN

• CI8 TO PROPER •
LOCATION IN FDA
• OR VA	 •

••02 	 ••
• EXIT TO REST ••

	 El
• MOVE PRIG.	 •
ABOVE 4/(TO FAA
• OR UA	 •

	 Fl •

1;411E4N)ufi2V
• INTO CORE •

..X• 12 •

Flowchart DUP13. Disk Utility Program, PRECI

Flowcharts 219

	Eloom
•PHASE2 •
• HEADER
• STATEMENT	 •
• PROCESSOR	 ••	

• Fl

*ma.
••••

•PHASE9•	
• OP CODEtl
• PROCESSOR•

	 E2 	

	

•PHASE2A 	 •• •
X:FIL$RMTSTATEMENT

• •

•
FETCH PHASE 4

fl

• •

	 H3 	
•PHASE4

TERMINATOR •

• EXIT TO sexIT	 •

: SUPERVISOR"

..o.*
•001.	 *001.
• A2.	 • A3•••	 • •• •

.	 .
I	 7(882	 iB8
.1m...42 	

...I•A1•••.. .•••• 	 +PHASES	 •	 .PHASA3E6	 •.........•.....--*--.
:ENTER FROM MCRA:	 • HEADNG. ORG. :	 • IMPERATIVE

......... wow...	
:ETChaltaaNT .	

• piockis& .

.01.
•0 A4•

• •

BB3
	 A . 	
•PHASE7	 •

•"ADEFaa" 	• •
..X• Fl	 ..X• Fl	 Fl• .

•..•
•PHASE°

• ASSEMBLER
• LOADER

•001.
• C3•

	 A5 	
•PHASE7A•

X:	 CONVERTER•

.001•
• C5.

• •• •
••

BE14
%C3	 	 CS 	

•PHASE12	 •	 •PHASE8• •	
• END STATEMENT •	 •	 LINKAGE	 •

•• PROCESSOR	 «• • META ••

Fl •

• •

•
•• CI •.X• •
ma,

BRA
.•..

•PHASEI
......

'CONTROL RECORD
• PROCESSOR

•	 DI 	 	 03	 o.	 	 D4 	
•PHASE1A	 .•	 ..
• M ...

E

- .—.. •	
... .
	 .. I	

.	
•	 •

* S BLER	 PASS	 .«.......0 FETCH PHASE 10AS
. INITIALIZER	 ..	 •

o.	 .*

	E3	 	 E4	 ..
..	 .

• f	 ..	 ONE	 .	

1

. NO

	

FETCH PHASE 3	 *. PASS MODE ••• • 	
.00.

• YES	 4.....	 • F5.
• •	 • •
• CI •	 •
• •	 •

885	 i
	 F3 	 I	 	 F4 	 	 	 F5
•PHASE3	 •PHASEBA	 •
.-	 -0	 •	 •	 • 	 	 :• SYMBOL TABLE •	 FETCH PHASE 11 •	 *ORES STATEMENT

• PRBIEVIOR •	
•	 •	 PROCESSOR	 •• •

.	 .

..0* CI •	 ..X. F/ •

...ow.

G3 	

REQUIRED	 YES
▪ PHASE IN

CORE

NO

..•.••
• ETCH REQUIRED •

PHASE• •

JI

• PHASE	 Co. REQUIRED

	 001 A2

....6 	 001 A3

:...7 	 001 A4

..8 	 001 C5

..BA• 	 001 F5

..••12• 	 001 C3

Flowchart ASM01. Assembler Program, General Flow

220

	B1	

	

45TAIVrals 	
CuNVERS1uN

• SUBROUTINES •

	 C/ 	

%FETCH PHASE 9 	

	 DI 	
• INITIALIZE KEY
• PARAMETERS,
• BUFFERS
•COMMUNICATIONS
• AREAS

El

INITIALIZE
SYMBOL TABLE
BOUNDARIES

	 Fl 	
RP000• -•
• READ A CARD •

x	 61 	

• •
FETCH PHASE 1• •

• ••HI. 	• •
•EXIT TO PHASE 1•• •

	 A l 	
•ENTER FROM MCRA•

Flowchart ASMO2. Assembler Program, Phase 0

Flowcharts 221

•• ENTER FROM	 •
•pHASE 0•. PASS 10
•PHASE 12—PASS 2.

X

BI .. 82.....

• .• 0.
0.	 NO	 .•

0	 ..
TWO •. NO

•.
..

PASS 1
..

.•........X•.
..

PASS MODE
..

.•....

• .
o YES •	 YES 000.0

•	 •
•	 Fl	 •

•	 CI
•

...X.
•	 .X 	

•	 •

ii

	 CI
• RDCRD	 015E3

•
FETCH NEXT

• RECORD	 •

X

RP000

• READ A CARD •

CVADR
	 DI 	
•
• CONVERT THE
• RECORD
••

i
El..	 E2	 ..

.*	 ..
.0 CONTROL .. YES	 ..	 .k. YES

•.	 RECORD	 .•........X..	 PASS 2	 .•....
0 .	 ..	 0.	 .•

.ENO	 •NO	 •• .•
.0.4	 .	 •

• CI •
• FI •.X.	 •	 •
• •	 ••••

0•04

	 F1•0 	 	 F2. ..	 	 F3 	
.
VAL/0 •.. NO	 •• CHANGE • IN

• FETCH PHASE IA •	 0.	 CONTROL	 .. 	 X. COLUMN 1 TO A
• •	 .. RECORD ..	 •	 MINUS

*.	 .0	 •
• YES

4.4.f.G•••
• EXIT TO PHASE •

IA	 •
• •

	 G2 	

: IMAa
• SPECIFIEDD I
•

	H2	
P9MVE	 017AI

•	
PRINT CONTROL

• RECORD	 •

..0• CI •

.00.0.

Flowchart ASM03. Assembler Program, Phase 1

222

• ENTER FROM	 •
• PHASE 1	 ••

81..
s	
	 B2 	

••	 •
•• PASS
	 .. YES	 • INDICATE evi

oo PASS MODE

.

 .. 	 I. AS DSF BUFFER
..	 *0.*	 0.

•140

CI	 .o	 	 C2 	•
•

YES	 •INDICATE /IMF0.	 PASS 1 	 S. AS DSF BUFFER
•

• NO
*ow.• •

• 01 •.%
.	 •

X

	 D/ 	 	 	 02 	
• INDICATE DSF •
• R	 •

• •FETCH
P

HASE 2 	 • ADDRESSES IN •
• ASCOM	 •• •

•▪ EXIT TO PHASE 2:
E2 . ..	 	 E3 	

o. YI/0o* OB/CB *. YES	 : 1:PITTPA T Tr
•.PAPER TAPE OR.. 	 X. R GHT IN BOTH •

•.KEYBOARD	 •	 BUFFERS	 •

0...	 .
• F2 •.X.

F2 .. o.	 	 F3 	.0	 0.	 •MODIFY I/O RTN •
• NO	 •	 TO FORCE	 •

PASS 1	 •	 •RECORDS TO COME..0	 • IN AT COL 21 •• •
• YES

..X. F2 •

G2.....
• INITIALIZE

•.	 WORKING
.0 ENOUGH 0. YES
	 X: WanoVih8

STORAGE	 • PRINT BUFFER

•10
D1 •

is000
	 HZ

X

GETER	 015A3

PRINT ERROR
• MESSAGE	 •

X
••••j2 	

: SUMILISR• •

Flowchart ASM04. Assembler Program, Phase 1A

•

Flowcharts 223

•005.
• 04•

• •

•005.
• E3•

• •

•
•

YY4
E3

ERROR

E4 	

SET UP PROGRAM
HE

INFORMAADERTION

	 E5 	

*FETCH OVERLAYED•
PART OF PHASE 2

•••••••

• F4 •.X
•••.	 x

•PALB
F
L
4

01601 •

• IGNORE LABEL,
GET NEXT RECORD•

•
.EXIT TO PHASE 9*•

.005 •	.005•	 .005•	 •005•

. A20	 • A3*
• •	

• 64.
• •	

• 45.••
• •	 •.	

YYI	 i	 YY2	 X	 YY5	 X	 YY6 	 i
	 A2 	 	 	 A3 	 	 	 A4 	

••••Al 	
•4
	 •	 •	 ••DETERMINE THAT •

• ENTER FROM
0
 •	 • PERFORM ENT	 .PERFORM ISS/ILS •	ONLY ONE	 •

• •	 • PHASE IA	 •	 •ERROR CHECKING •	 •ERROR CHECKING •	 MUIR• •	 •

A5

•
FETCH PHASE 2A •

X
0***4131 ******
.SET UP ADDRESS
• FOR PHASE 9
.RETURN TO PHASE

2

B2 	 B3 	
*SCAN	 015A5

• EVALUATE
*ISS/ILS NUMBER•

134
INITIALIZE

PROGRAM
L
 TYPE

AND ENT COUNT

INDICATE	 • EXIT TO PHASE •
PRECISION	 •	 24
SPECIFIED•	 •	 •

.000• •
..X• F4 •

.
I	 C2	 *.•• 	 C3 X

••••cl ****** .••	 •

YES . 0	 +SET UP PROGRAM
•EXIT TO PHASE 9•		 PASS 1	 .•X 	 HEADER

• INFORMATION
•
•

• F4

X
••••	 • NO

YY3 X

	02	
.....13/ 	 	 •SCAN	 015A5•

• ENTER FROM •	 • -- 	 •
PHASE 9:	 •COLLECT PROGRAM•

•
NAME

	 	 •

04

ErArtrEalG
• ENTER FROM	 •

PHASE 2A	 •••

X

El	 ..	 	 E2 	
..	 . .
	

•B4NEX	 01601 	.•.	 .--------0
DETERMINE .•
OP CODE ..	 •: RWAVNI

..	 0	 ADDRESS uF ENTRY POINT

:...ENT...005 A2

	

:...ISS...005 A3	 OFOUTX
	 FZXF3	

.....LIBR..005 D4
SAVE OBJECT	 •SET 4AglaGRAM

	

E3	 • OUTPUT IN DSF •

	

:...EPR...005 A4	
•BUFFER	 •	 INFORMATION

	

..SPR...005 A4	 •

....ILS...005 A3

.;(.0:...F/LE..005 A5
X	 G3 	 0

INITIALIZE	 •	 ••••G4
RELOCATION MODE•

AND ADDRESS 0....	 •EXIT TO PHASE 9•
COUNTER	 •	 .

	 •
• •
• F4 •

Flowchart A.SM05. Assembler Program, Phase 2

224

•RHAN4 ;FLIPPER•• •

x
	 81 	• •
• PERFORM FILES •
•STATEMENT ERROR.
• CHECKING	 •
• •

CIo.	 .	 C2 	
. •	 • •.
••

NO	 xi BUlgarILES
PASS 1

•.	 .•

..YES

DFOUT
0 1•

• ALLOCATE ROOM •	 SAVE OBJECT •
• FOR FILES	 • OUTPUT IN DSF •
TABLE. 7 WORDS:BUFFER•••

X

	 El 	
•10181	 016A/••
•SCAN LABEL GET.
• NEXT RECORD ••

••••l 	
*EXIT

F
 TO PHASE 2•

• FLIPPER	 ••

02 	 •

Flowchart ASM06. Assembler Program, Phase 2A

Flowcharts 225

11011113

1114410N

ON •

NNV111	 ".
S3A	 02103	 40

•• EH

•

•• Z44 0001
son•114

•X 	

•

	EN 	 /900141..4.4.• •
X • • E0 •

10

•
NSIO 01 31901•

• 109MA5 31I11A •

If

10

9ZZ

E asEtid i turacad iatcituassv • Lows)" 4.1Egamord

• CO 4.0•
.0..

11VN WVVOOLId

	 EV••••

• Ell •

•

• vo ggrin

	

ad •	
•• wow 0001 • •

Er

• •	 •	 •
OVV3	 V301014 1NI/Id

• NNV/II VO4 avan•	 •	 •

••••• •
• E3 :X.:

53: . ..
..	

	

31901	
• x x	 ..	 •.	 .	 ..•

• 109WAS HONOd •	 S3A .. S 21MW	 4,	 03V1003V
	 44 	 	 '44	 Ed	

....L.NIV%.... ON
"4.	 44,

1(.	 .
. :

S3A •	 S3A....

.
.4.

I...319.4C.....4.
109WAS	 ".	 X:* 3S0Hd H3134..0 	

ON 	 •H3N0d/1NINd...:. 0419:V. .• :.ON
	 Z3 	 	

". ..	 13 ..
.4.	 44•

X.	 H3N0d	 000Ed	 "."	 00EEd

•
K.	 0'
.0 . . E3 •

• ON •

3SVHd 01 1103•

v4••••

• •	 ••

•4.
•• 	31901	 ..	 03111003V

I.
'•.4.

• 10991S ININd 4.
x

"

5344 .0	 AN/ad	 ...4.
00

S3A

H3N0d/ININd	 •

011glagrH3	 • VOIBSIONd • x 	 .1g41111$1...
ON '.	 109NAS

X
	 E3 	

SEEEd	
	 23 	

00ZEd	

•• •• ••

531
.".

••I:13153003•.•• 3AVS 31001•
108WAS	 ON

31 01

O1 3Z1 Y11INI

E9 	 	 IS
OEEEd

• 4462143=43
Svo44••

.-706 FROM •
• PHASE 3	 •• •

81

DVERFLOW	 NO

*.AMIPAg

• YES

CI

OVERFLOW	 ND

..-*.--

• YES

	 DI 	
• MOVE OBJECT •
• PROGRAM TO	 •
• PERMANENT WS •
•SECTOR BOUNDARY.• •

	 El 	

•PRINT ASSEMBLER 	
END MESSAGES• •

Fl•	 ••	 •
•	 UPDATE COMMA	 ••	 •• •

	 GI

•	 •
FETCH MOH• •

	 HI

UPDATE DCOM

	 JI •
••

WRITE DCoM ••

	 KI 	
• CONVERT LAST •	 .•..K2 	
• RECORD READ, •
• MOVE TO	 •	 X. SUPERVISOR
• SUPERVISOR CR •	 •	 •
• BUFFER

Flowchart ASM08. Assembler Program, Phase 4

Flowcharts 227

	X 	 X
	 84 	 	 	 85 	
• •	 • GENERATE AND
•PERFORM BES/8SS•	 • OUTPUT CALL
..ERROR CHECKING •	 • DUMP FOLLOWED
• • BY PARAMETERS• •	 •

C5.....

DUMP OR	 POMP
POMP

• DUMP	 0...• •
• F3.• •

X
5 •

GENERATE AND •
OUTPUT CALL •

EXIT	 ••
• • • •

83

PASS 1	
NO

• YES

•••
	 C3
• CHECK FOR
•OPERAND SYMBOL
• PREVIOUSLY
• DEFINED

:0

	 03

CHECK THE	 •

.009.	 •009•

.A:.	 .A2.

• •

• • ENTER FROM	 •
• PHASE 9	 •• •

XA8A3
	 A3 too.
•SCAN	 015A5

• EVALUATE TIT
• OPERAND•

XA8A4	 %	 XABA5 	 X
A4 	 	 A5 	

• SCAN	 015A5•	 .SCAN	 015A5• •
• EVALUATE THE •	 • EVALUATE DUMP
• OPERAND	 •	 .1-MTS. FORMAT
• •	 CODE

•009•
• A3••

. .
81	 ..	 82	 ..

..	
.. OP CODE•. .. YES..	 .. YES

..	 HONG	 	 X•.	 PASS I	
..	0.	 .0	 *.	 ..

NO
	

• NO

•
	Cl	 	 C2	 ..• ..	 .
•PREVENT FURTHER:	 .. LISTING

.
 .. NO

• PHASE 2	 •	 .. • SPECIFIED
• MNEMONICS

it.	 ..
..

• YES

X

DI
•MOD2

• ••

D2
GTHDG	 015A4

PRINT THE
• HEADING	 •

X..2E•
:...ORG...009 A3	 •	 •

....OSS...009 A4
	 E2 	

...BES...009 A4	 •PALBL	 01601•

....EQU...009 H4	 • IGNORE LABEL, ••
*GET NEXT RECORD.

....LIST..009	 •	 •

....EJCT..009 H2

:...SPAC..009 F5

....DUMP..009 AS

	 E3 	 •
• 0606TINEgIT
•• I/O BUFFER	 ••

" X* F3 •

•009.
• F5••••• •

• F3 •.X
....POMP..009 A5XABF5 	 X

	 F3 	 	 F5
• ••E2 	 	 •CUBE	 016A1•	 •SCAN	 015A5•• •	 	 —•	 •	 •

•EXIT TO PHASE 9•	 •iCAN LABEL GET.	 • EVALUATE THE •
• •	 • NEXT RECORD •	 •	 OPERAND	 •• •	 •

.X

.....
•009•	 •009•	 •009*
• H1•
• •	 %Hi*	 • H4.••	• . •	 •.	 .	 ..X. F3 •
.	 .	 •	 •	 •

	XA8G1 	 X 	 0A8G2 	 X	 XABH4	 X	 •••.
H/	 H2 	 	 H4 	

•SCAN	 015A5•
• EVALUATE THE	 • RESTORE THE •	 •	 •

OPERAND	 PAGE
• •	

: EVALUATE THE

...*

..X• E2

•
J/ 	 	 	 J4• •

SPECIFIED LIST
INDICATE THE

CONDITION

	 •	 CHECK FOR	 •
• SYMBOLS	 •

UNDEFINED	 •

..X. F3 • ..X. F3 •

Flowchart ASM09. Assembler Program, Phase 5

••••

	 G5 	
....G3 	 	 SPACE THE

•EXIT TO PHASE 9•	 •• 46AWIP •• •	 •	 LINES	 •

228

•• ENTER FROM •
• PHASE 9	 •
•

	 01 	
• •
•PREVENT FURTHER•
• PHASE 2	 •
• MNEMONICS	 •
•

C1*.'...	 C2'...	 	 C3 	
.	 *.		 *SCAN	 015A5•

.4. OP CODE .. YES	 .0	 *. NO	 .--
IS DC	 .. 	 X..	 PASS 1	 .. 	 X.	 EVALUATE	 •

..	 *.	 ...	 •	 OPERAND	 •
*.	

•.AO • YES

..X. G1 •

•• • •

D1 02

..X. F2 •

•
.. OP CODE *. YES	 .CHANGE OP CODE

I.. IS BRANCH 	 X* TO /7000 OR
• /4C00

*.

	

	 •..
• NO

X▪

	

x	
El	 ..	 •••••E2 	 	 E3	 ..

•
OPERAND • ... YES	 • EVALUATE TAG	 YES

	

.	
•••. REQUIRED	 .• 	 X• AND FORMAT	 	 X•.	 PASS 1	 .•....

•.	 •	 FIELDS	 •.	 ..	 .
• •.	 .•	 .

• NO	 • NO	 ••!•••
....

.	 •	 •	 .	 • G1 •

.	 • F2

...	

....

X	
71%	

FT .• ..	 	 F2 	 	 F3	 4..	 	 F4 	,..		 *SCAN 	 01545•
NO	 •10g6/g; 1	 .. SHORT .. YES	 --

x:°'1301UPIRTs°• 	 ..• INSTRUCTION 	
...	 ..	

X.	 EVALUATE
• OPERAND

..	 PASS 1
.		 •..

• YES	 • NO
...it

• •	 .
•GI *.5
.•.. 	 it

X	 ...	 x
.LOLBL
-------- -------.

	

01641•	 • OUTPUT BINARY •	 ..8i RODE*.	 •	 COMPUT
	 GI 	 	 	 G2 	 	 	 G4 	

SCAN LABEL. GET 	
• NEXT RECORD •	

*INSTRUCT IN. 1 ••OR 2 WORD • TO .
• OSF BU ER ER	 •	

.. CONDITIONAL .. -----
..
*. BRANCH ..

	

*. NO	 • DighAiEMINT.
X

• INSTRUCT BN
D	

• •	 •	 . 	 .	 •.. ..	 7(

• YES

•

X

••••

• •
• F2

	 H3 	
...•HI 	 	 •	 •

•
•EXIT TO PHASE 9•	 :	 SPECIFIED
• •	 •	 CONDITION	 •

•
4FORPlw110:66	

•
OF

• INSTRUCTION •• •

:SCAN
J4 	

	01545	

: ENEME •• •
•

..X. F2 •

Flowchart ASM10. Assembler Program, Phase 6

Flowcharts 229

..o..X1.11., •..••	 	 A3 	
• ENTER FROM	 •	 • ENTER FROM	 •
• PHASE 9	 •	 •	 PHASE 7A	 •

• •

	 RI....	 	 B3 	 1•.
•PREVENT FURTHER	 *FETCH OVERLAYED.
• PHASE 2	 PORTION OF
• MNEMONICS	 •	 PHASE 7

••••
• •
• C2 •
• •

0.0•4

• x

CI 	 	 C22 	 	 C3....	 	 C5 	
•LOLBL	 016A1•..	 ..	 •	 CONVERT	 •	 •

.. YES	 • MAGUAJDV OAND •
	 X:CHARVIENISTIC...	 PASS I	 .• 	 X•SCAN LABEL, GET.	 ...* H ME ...YES 	 X.

• NEXT RECORD	 • COMPLIMENTARY • 	 •	 IN HEX
• •..	 ..•	 FORM	 •	 •

MO	 • NO

FLIP1 01.1..4	 lc	 D3	 ..	 	 D4 	 	 	 D5 	••••02 		 •	 CONVERT	 •
• •	 .. FlIAT4G ...YES	 • MAGNITUDE AND •

•FETCH PHASE 7A.* 	 •EXIT TO PHASE 9•	 :CHARMEUSTIC
• •	 •	 ...SPECOTED.."	 X: COMPLIMENTARY • 	 •	 IN BINARY

•.	 .•	 •	 FORM	 •	 •
• NO

• .
-	 •
• •	 :X 	

X	 X i	 	 E3EA••••E/•••••	 •
• EXIT TO PHASE •	 •DE2Varitii TO:	 • OUTPUT TWO

TA	 •	 • FIXED POINT • 	 X•	 WORDS OF
• •	 •	 FORM	 *	 •CONSTANT IN HEX• •

DFOUT
	 F4 	
OUTPUT TWO

WORDS OF
CONSTANT IN

BINARY

• •
• C2 •

Flowchart ASM11. Assembler Program, Phase 7

230

.1/1E11/2
FLIPPER:*PHA S 7

	 BI
•RESET SWITCHES
•AND BUFFERS TO

ZERO
•

•
CI

• ANALYZE THE
• SIGN
•
•

	DI
• •
• COMPUTE THE •
•BINARY MANTISSA.

	 El 	
••

•ANALYZE SPECIAL.
• CHARACTERS	 •
•

••

X
Fl .• ..	 	 F2 	

.61	 61.	 •
E/B	 .. YES	 • ANALYZE E/B.• . sailtAs .. 	 H. SPECIFICATION

•16. .16

• NO

	 GI
• •
•COMPUTE POWERS •
•OF 10 MODIFIER •
• •
•

x

HI	 .6.	 	 H2 	 	 	 3 	
..	 61.	 • UPDATE BINARY •	 •	 •

.46	 . NO	 • EXPONENT AND •	 +ADJUST MANTISSA.
MANTISSA	 .. 	 X•	 NORMALIZE	 • 	 X•AND EXPONENT BY.

.. ZERO	 ..	 •	 MANTISSA	 •	 • POWERS OF 0 •
• •	 •

...	 ...
•.YES

	 J/ 	 	 	 J3 	
• *TRANSFER SIGN •
•ZER9 LIFFIAISE

BUFFERS	
•MANTISSA, AND •
• 8 NARY

• • CHAR CTER TO •
• •	 • PHASE 7 BFR •

•EXIT TO PHASE 7•
• FLIPPER	 •
• •

Flowchart ASM12. Assembler Program, Phase 7A

Flowcharts 231

002

.13.
00A3m

•

	 A3 	 •
•SCAN DELIMITERS•

4412ciE4 gUNT:

	 83 	

TT

CHARACTER COUNT
TO I/O BUFFER

• •ENTER FROM	 •
• PHASE 9	 •
• •

	 BI 	
• •
+PREVENT FURTHER.
• PHASE 2	 •
• MNEMONICS_ •

03 '
	

04

	
•

1.. • PASS I	 .141? x:OWNIFER8FPNA:

•
• YES

••••••▪ •• 	•
..X• GI •	 ..X• GI

• •
16001*	 .460.

CSP

'PHASE 8•.
▪ OP CODE

•
•

....LIDF..013 Fl

....CALL..013 Fl

..OSA...013 Fl

....LINK..013 Fl

....EXIT..013 Fl

...EBC...013 A3

Fl

00130
• FR •..•

XXI
I...	 X

	Fl	 0.
IP. NO

PASS t

• YES
••••• •

• GI •.X• •

•ADJUO2ST LAC SET
• UP RELOCATION

..X. 	BITS AS
• APPROPRIATE
•

	 EX 	
•SCAN	 015A5

▪ SUBROUTINE
• NAME
•

	 F2 	
•
•OUTFUT WORD IN
• HEX TO I/O
• BUFFER
•

X

C3

CHARACTERS

	GI	
• .0LBL	 016A1•

•SCAN LABEL, GET•X..
• NEXT RECORD •
• •

• •
•EXIT TO PHASE 9.• •

G2
•
• OUTPUT WORD 1
• IN BINARY TO
• D$F BUFFER

H2'....

YES .•PROCESSING •.

• •.STPIMENT.• *

• NO

x
	 J2 	 •
OUTPUT WORD 2 •
IN HEX TO I/O •

BUFFER	 •
•

K2 •
OUTPUT WORD 2 •
IN BINARY TO •
DSF BUFFER

:.0 • GI •
.000

Flowchart ASM13. Assembler Program, Phase 8

232

OMS22
E4	 ..	 	 ES 	.•	 it.	 •...	 . NO	 • INDIFRTHE

'iTAINNIR!.	 A
INDI C ATE

4.
• YES

DMS20
F4 	• •• OUTPUT	 •

:CMt5IIEBUFFVUT:•

F5 	•
:EiHEJ TALCM TBLANK

•

DMS24

•

	 G4

	

•LOIJIL	 •• •
:SCAMARNR8ET:

•

• Dl •
• 4

OSA..
G2

• NEXT.YES
CHARACTER

••..IS REPEAT..

• NO

	 1.12 	• •
ffiTARAVIR:	

•
*EXIT TO PHASE•• •

•• ENTER FROM	 •
• PHASE 9	 •• •

	 BI 	• •
•RESET SWITCH 	 •
•AND FLAGS. GET •
• A CHARACTER •• •
*too• •	IF.

• CI +.5	 • C2• •	 •	 • .
•.••	 5.......

•.
	 DM503 • X

CI	 •.C2	 	 C3**...	 C4...... 	
OMSI5 	

C5 	
...	 .

:	
..•

••YES.. CHARACTER +. YES	
X: MULTIPLIER...IS APOSTROPHE 	 X:

CHECK
• 	 X.:ISZIAilliai.4:+413 	 X.:*	 D1817	 ..	

....	
..	

••..
	 ...

•140	 • YES	 • NO
O *	 .

... C2 •

.	 ...so

.	*

• • .
X:• DI ...X.

• •	 X 	..I .	 X	 X	 %
DMS10	 DMSI7

DI	 ..	 D4	 ...	 OS	 ..
...DEVICE	 •.01	 INDICATOR •. NO		 VI,AR L •. . YES	 ..	 VALID	 .. YES

.... X....FOR DEVICE.......:...I5 StAAA CT...". ***.CMIACfER..e.	 ...	 •o. ..
• YES	

oh. ..
o NO	 •NO• •	 •

• 01•
.	 •

CONAB
El 	
CONVERT

• CHARACTER TL

• DEVICE CODE

	

.X 	

Fl

TW
o. CHARACOTERS 	

NO

PACKED

• YES

GI

NO
• PASS 2	 06 	

•.:ES

•
OMIT

•
:4115y1PDIV :
• BUFFER	 •

..x. CI •• ••• • •

Flowchart ASM14. Assembler Program, Phase 8A

Flowcharts 233

X
STRT9

B1	 4.	 	 82 	.0	 ..	 •LOLBL	 016AI 	
. •YES.	 •	 	 -11
. ASTERISK IN

..
.. 	 X.SCAN LABEL. GET....

•.COLUMN 21.. •• NEXT RECORD •
it.	 ..	 •	 •

• NO

	 CIS*04 ******

PACK NUR' :

G3 .
P
. e. 	 	 G4 	

•
LA
CARDYES	 •

INDICATOR	 	 X	 FEED A CARD
ON	 •

* AO •
•
•

GEYER	 GTHOG	 SCAN
Al 	 	 A3 	 	 A4 	

	
AS•

ENTER PHASE 9 'ERAEICVMAIEW	
.SKnaitTFIETO.

• • WALTVUEs

X
	 83 	 	 	 04 	 	 	 BS
EM000	 022A1.

• •	 •	 •	 e SCAN OPERAND
PRINT ERROR	 PRINT HONG	 FOR SPECIAL •

• MESSAGE	 •	 •	 •	 CHARACTERS	 •
•

	 C4 	 	 	 CS
•

• RETURN TO	 •	 •	 •	 • EVALUATE EACH •
• CALLER	 •

•
• SPACE A LINE

•
ELEMENT	 :

•

PERFORM TABLE
LOOK UP OF OP

CODE

05

• •••WURN TO •	 DETERMINE
• CALLER	 EXPRESSION
• VALUE

ROCRD
•

FETCH•
• CORRESPONDING
•INDICATOR MORD

E3 	 •
•
• CLEAR NEXT
•INPUT BUFFER TO
• EBCDIC BLANKS

	 ES 	• •
•NOVE EXPRESSION.
+VALUE TO ASCUM •• •
• •

•

•▪.x 	
	Fl	
• BRANCH VIA	 •
•BRANCH TABLE TO.
• EX/7 TO	 •
•REOUIRED PHASE •

F3

•ppEE
I 	 ..

•:.!!!
BUoY

...FS 	
• RETURN TO	 •
••	 CALLER	 ••

•

XX

	

H3 .• '..	 H4	 *.	 	 5 	
... LAST	

.. CARD A •.. NO	 ..	 LAST	 .. NO

	

MONITOR	 ,.. 	 X.. CARD END	 .. 	 X.READ A RECORD 	0. CONTROL STMT	 ..
..	 ..

O. .4
• YES
	

• YES

G1

.:* WRIT *:.!!!
CORE

• NO

	 HI....

• FETCH PHASE•
........ 4444*

•
•

••J1 	

:REQUIRED PHASE

	 J3 	 	 	 J5 	
• •
•EXCHANGE INPUT •

• FETCH PHASE 3 •	 • BER ADDRESSES •• •	 •

....3 	 	..KS	
• •	 •	 ReTURN TO
'EXIT

K

 TO	 PHASE 3.	 •	 CALLER• •	 •	 •

Flowchart ASM15. Assembler Program, Phase 9

234

LDLBL
Al 	

•• CONVERT LABEL •
• TO 30 BITS	 •
•RIGHT JUSTIFIED.

•

131 . ••.	 	 B2 	

• • YES	
•	 •

..•
...	 PASS 1	 .. 	 x:,414R8L4RIEE:
 •	 •..• 	 ..	 •	 .

• NO

CI 	
• •
•DETERMINE LABEL•
• VALUE. OUTPUT •
• VALUE IN HEX •

	

PALBL	
0/ 	

	

•	 •

.12,94EMITNIIE:
• IS AVAILABLE •

	

.•.	 APB1
El	 ..	

E3 RST/ ..
	

GTHDG.•.	
	 E4 	

5A410.. F.	
• .. NO	 .. STATEMENT •. YES	 •	 •

.

▪ PASS 1	 X*. OR CHANNEL 	 X .RELTSIRME •
• .1.	 *.	 12	 ..

..	 ..	 **Al.		 HEADING
• •	 it. .0

• YES	 • F2 •	 • NO

	

.	 0400• .

	

ii	 .
7(

iX 	

FI	 ..	 	 F2	 F3.....	 	 F4 	
..	 *.	 MICRO	 015E3	 ...Ming... YES	 •

P9MVE	 OITA/
.	 ONE	 *. NO	 •	 -•	 •	 •

• PASS MODE 	 X GET NEXT RECORD	 ..	 OR ANY	 .. 	
..	 ..	 •	 •	 *. ERRORS ..	

X • LIST THE
	 *

..	
... .0

• YES	 ••40

	 I	 	 G2 	 	 G3X

	

G

	

X 	 CVADR	 x	 x
....

•INTI 	 OITA2:	 .	 •	

•• PASS
YES • •	 .•	 .1.

•SAVE STATEMENT •	 •CONVERT RECORD •	 *.	 PASS 1

.	

.. 	
• IN INT I/O	 •

	

:	
..	 0.

• BUFFER	 •	 •..	 ..

••10

B4HEX

..H2 	
• RETURN TO	 •
• CALLER	 •X..

•

X	 X

H3...	 H4.***.
0	 .	 .0 	 *004

..
	

TWO	 *. YES	 ..	 LIST	 .. NO	 •	 *
.. PASS MOOE	 . 	 X*.	 DECK	X. F2 •

..	
..	•	

....NO	 • YES

	 J3 	 	 	 J4 	
•INT2	 020A1•

	*GROVINT958":	
•PUNCH A CARD •

• BUFFER	 •

• •
• F2 •

Flowchart ASM16. Assembler Program, Phase 9

Flowcharts 235

83 •B4	
•

.•BUFFER I/0
•.	YES	 • WRITE CURRENT •

0. BUFFERF ULL •. 	 X	 BFR TO DISK

• NO

•

•
•
•
•

•.0 • PRINT	 YESit.	 ROUTINE
BUSY

62

•
LISTING •. *. YES

0. SPECIFIED
*.	 .0

.•	 .•
• NO	 • NO

P9MVE	 INT1	 .0.
Al 	 	 AZ	 0.	 	 A3 	

•SCAN BUFFER FOR•..	 ..	 •

CHVIMIthS A	 •. ASTERISK IN .• 	.0 	 ••. NO	 4SCnRgEKITFOR

• REPLACE THEm	 •.COLUMN 21.•41.	 ...	 •
• YES

•

X▪ 	 i

	 CI 	 	 x	 	 C3 	• •	
0•

••02 	 •• PACK AND MOVE • 	 RETURN TO •	 SU VVETIVW• INPUT 8FR TO •	 *	 CALLER	 •
•	 PRINT BFR	 •	 8FR

•

Dl 	 	 	 D3

• •	 PACK AND SAVE
PRINT A LINE	 RECORD IN INT

• •	 •	 I/O OFR

•

***E1.0 	
• RETURN TO	 •
• CALLER	 •

•
•
•• E 3 	

: 'PAM"• •

Flowchart ASM17. Assembler Program, Phase 9

236

DTHOR
Al

COMPUTE OSF
BLOCK MORD

COUNT

%IWO	 ...
A2	 ..	 43	 *.

0, DSF • .	
•
	

I

..
.• OUTPUT	 *. NO	 0,	 END	 *..NO

BUFFER	 	 X•..pEllaillE9 N. ...
..	 FULL	 ...

*.	
• YES

X

8 X

SAVE WORD COUNT

P loem p ImN0
DATA HEADER

	 B 	
•DTHDR

2
	018A1•

• GENERATE DATA •
• HEADER
• •

	 CI 	 	 	 62 	
• WRITE CURRENT

RESET DSF •	 • SEgn OF
FT

B
S

F •
BUFFER POINTERS•

•
•
	 DISK	 •

•

	 DI 	 	 D2	 *.
• .	 ..

INCREMENT	 •	 ...
	

DID	 ... NO
BUFFER OVERFLOW .	.. OVERFLOW	 .•...

WORD COUNT	 •	 *. OCCUR 0.
• *.	 ..

.. 0.
• YES

	 E2 	
"...El 	 	 • MOVE WORDS

• RETURN TO	 •	 •	 WHICH
••	 CALLER	

•:26FREOBIE	 •	 KDIO
 • START OF OFR

X

..F2 	
• RETURN TO	 •
• CALLER	 •
• •

Flowchart ASM18. Assembler Program, Phase 10

Flowcharts 237

S3A

0 .
4

031419W3S".
39	 .4

ON •-• 01 SM01335,..
3909

.*.4.10

ON •
• •	 *.	 .4
• •	 4.	 .4
	 S539009 8115139.0 	 	 ONOOd	 ..
• 183939381	 •	 S3A 	 4	 109915 ,..

...	 .
	 Ed 	 	 .4	 14

SE

VOi asulTc1 6 1.11r1?oici a argtu ss v ' 6 T IAIS V 4.-Tv gam om

•
:381620,1 9M511193:
	 4,9•••• • 38

TT
• 394.1d	 01939• •

EM 	

ON •

•
	11N1 3901038 X	 • I SSVd	 .0

• •	 S3A 	 4
•	 9f 	 	 Er

• •901335
•141121Vd 3901538•

▪ 9H 	

801335 039143;• Ald1110N 11199•
▪ f9

•

S3A •
*. .4

71P7r...030361100ie:"
Ed

•
• •
• 901335	 •4 1401A93ok0 H399350

•
13

• •90133S
• MD1193h0 0939 •

	

...... 410 	

• •
• •
•433935 A0149330*
• WOd 3111311181•
• 13 	

• •
801335

• 191190d 9 3395•
19

S3A •

...o 	 SSVd
ON

INT2
Al

FETCH DISK
BUFFER

ADDRESSES

	 BI 	 •
CLEAR BO WORD •
INPUT BUFFER TO.
EBCDIC BLANKS ••

x

CI	 0.	 	 C2 	
..	 .	 . 	 NEXT

. 0	 INT.	 .. YES	 OR 	 •
,.. I/0 BUFFER .0 	 X INTERMEDIATE

EMPTY ...	 •1/0 FROM DISK•
..	 ...

NO

	 DI 	

	

+UNPACK AND moyE 	
• ONE STATEMENT •
• TO STATEMENT •
• INPUT BUFFER •
•

••••El 	
• RETURN TO	 •
• CALLER	 •• •

Flowchart ASM20. Assembler Program, Phase 11

Flowcharts 239

	85	
•1871	 017A2•
•
• SAVE END	 •

•
• STATEMENT

•

	C1 	
RESET ERCAT,
ADCOM. OPCNT.
AND INTSN 1)

ZERO
PROGRAM ':•I!!.x. •HAVE ENTRY
POINT

• NO

016.4. *****
ALLOW FURTHER

PHASE 2
MNEMONICS

	 02 	
SCAN	 01565

FETCH HO
ADDRESS

	 El 	 	 	 E2 	
• T
•CLEAR FIRST 51 •	 EXECUTION
•WORDS OF HEADER	 ADDRESS IN HEX
• TO ZERO	 IN I/O BUFFER

••••
• •
• A5
• •

OAP..

•.••.
• ENTER FROM	 •
• PHASE 9	 ••

AS

ONE.NO
▪. PASS RODE

• YES • •
• r4•

•

81	•82	 	 83	 ..	 	 B4 	
•0THOR	 018Al•...	 ..	 P9MVE	 01781

•
.. NO	 •	 —•-- —.	 .. LISTING .. YES

▪ PASS 1	X•WRITE LAST DATA.	 ..0.. SPECIFIED .. 	 X•MOVE STATEMENT
• HEADER. EOP •		 •TO PRINT BFR •
• DATA HEADER •		 AND PRINT IT

• YES	 • NC

:X▪ 	
X

C3 **. ..	 	Ch	•
•▪ 	•bin	 ':•"' 	 x:CFREOLNURP •

•.SPECIFIED.•
0.	 .4

NO

x
F0
	 03 	

.42.	
•	 •	 •

010	
	 04 	 	 	 OS 	

WRO	
•

WRITE LAST	 X 	 PUNCH RECORD • FETCH PHASE 11
• SECTOR TO ..	 •	 •	 •	 •

DISK

••••••

E4

••••	 %
X%

•	 E3 	 	 Eh	 ...	 	 85 	
• COMPUTE DB	

•
	 o.

• COUNT OF 	 LIST	 ... NO
• PROGRAM. SAVE •	 ..	 DECK E	
• IN ASCOM	
• o.	 00

YES

	 CS 	

• WRITE INT I/0 •
BFR TO DISK• •

• FETCH FIRST •
SECTOR OF INTER

I/0	 •

	 Fl 	 F3 	 F4 	 	 F5
•	 • MODIFY RDCRD	 •
•
	 1	

•	 •	 •RTN TO PREVENT •P41/56 PROGRAM FETCH PHASE 3 •• DBL BUFFERING •

• INT2 	 020A1•

•	 MOVE FIRST	 •• a	 •	 IN PASS 2	 •
•

•	 STATEMENT
•	 INPUT

TO	 •
BUFFER	 •

•.• •• X 	 G5
•
+INITIALIZE	 DSF

...•D3 	•	 •
•BUFFER POINTERS •EXIT TO PHASE 3.	 	 X • FETCH PHASE 1*

•	 ••

	 H1.4•41 .•••.••

•
• FETCH PHASE	 10 	 •EXIT TO PHASE	 I•

....... 4..000

J1• 464
•
• RESTORE
• ORIGINAL LIST
• CONDITION

Flowchart ASM21. Assembler Program, Phase 12

240

EM000
1 •
FETCH •

APPROPRIATE •
ERROR MESSAGE •

x
X 	

0..
81	 41. ..

••.... PRINT	 .. YES.
.... ROUTINE	 	

•.NO

X
CI

• "42/ACFR

...••01 	 •
•RETURN TO GEIER••

Flowchart ASM22 . Assembler Program, Error Message Phase

Flowcharts 241

•**•
•
• OUTPUT RIGHT
• HALF OF TABLE

ENTRY

K.

	 Al 	
• •

:HOttERIU-2/ZE •
• TO B BITS	 •
• •

	 81....* 0000
•

• TABLE DISPL
•

•

	 C14.4. 0000
FETCH TABLE

ENTRY

X
..

DI
.
 ..	 	 D2 	

	

••
	

••
	 •	 •. NO	 X. HON;

LE
9 PUNCH

	

...	 .•	 •	 ENTRY	 .

	

..	 •	 •
A. .4.

YES

•CALL NG ROUTINE.
▪ *********

Flowchart ASM23, Assembler Program, Read Conversion Phase

242

Al

SAV5014yEAREA

X

81 82•

	

HE;	 ". "• INITIALIZE A
U. WORD COUNT OF

.0	 ..	 •	 39
..	 ..	 •

•.;ES

I
...

	C/
.
 0.	 •4.00C2 	

.•	 a.	 •

• DECK E
.. LIST	 .. NO	 x:SCANFMNITHT

...	 ..	 X	 •
..	 ..	 •

...
• YES

	

X	 x
D2

CONVERT 1	 :
COLUMN

•

	E2
•

INCREMENT I/O
AREA POINTER •

••

•DECREaN WORD
COUNT •

• •
• •

.
G2

•▪ 0	 LAST	 NO
▪ CHARACTER.

YES

	 H2 	
• OR LAST	 •
+CHARACTER WITH •
• PUNCH STOP •
• CHARACTER	 ••

	 J2 	
RP000 •
• PUNCH DATA •

....K2
• RETURN TO	 •
.CALLING ROUTINE.

Flowchart ASM24. Assembler Program, Punch Conversion Phase

X

	 DI

•CLEAR FIRST 17 •
• COLUMNS	 •

Flowcharts 243

se••F2 	
PHASE 14
DO. CONTINUE.
STOP, ETC.

CHART FOR 16

.... 	
PHASE1

C2
5

SUBSCRIPT
OPTIMIZE CHART

FOR 17

X

•▪ PHASE16	 •
•SCAN CHART FOR *
• 18	 •
• •

	 F3 	

	

•PHASE22 	 •
•
• rLIKLUAIII8h
• CHART FO 24 •

	 G3 	
•PHASE23
•■■■■■■■•

• LIST SYMBOLIC
▪ CHART FOR 25•

	 H3 	
•PHASE24

:LaIRVVNS
CONSTANTS

•

.....•	 •
	 A2 	
.PHASES	 •
	 •

	 A3 	
•PHASE17. -------

	 A4 	
•PHASE25	 •.....

:ENTER FROM
•

KRA.
• •:WIRFOUT T :• •	 CHART• 19

*OUTPUT
•	 FOR
•

I CHART ••
27	 •

	 81B2 	 84
•PHASE'	 •• 	 	 • •PHASE10	 •

•
•PHAS218 •PHASE26	 •

•
•INPUT CHART FOR.
• 01	 •

•	 FORMAT
•STATEMENT CHART• •	 alPIR II 'OUTPUT II CHART.

•	 FOR 28	 •
• • •	 FOR 12 • •

.PHASE
CI

2 • •PHASEC/1 •PHAS
C
E19 •

	 C4
.PHASE27 •

.---------------.
•	 CLASSIFIER	 •

•--	 	 •
+DATA ALLOCATION.

•	 •
•RECOVERY CHART •

•	 CHART
•

FOR 02	 •
•

•	 DECOMPOSITION
•	 CHART FOR 13

•	 CHART
•

FOR 21	 •
•

FOR
•

29	 ••

	 DI 	 02 	 03
•PHASE3	 •

•
•PHASE/2 .PHASE20	 •

.1:1Y4 TO $1017 •
••	 CHECK ORDER,	
.•STMT. NO. CHART

•	 ASCAN I CHART
FOR 14

•	 COMPILATION	 •
•	 ERRORS CHART	 • • 	 rbitM8R" :

•	 FOR 03	 •
•

•	 FOR 22	 •

	 El 	 E2 	 E3
•PHASE4	 •
• 	

•PHASE13 •PHASE21	 •
•COMMON SUER. OR. • ASCAN II CHART •	 STATEMENT	 •
•FONG. CHART
•	 04,

FOR.
05	 •

•	 FOR 15 •	 ALLOCATION
•	 CHART

•
FOR 23

	FL....
•PHASE5	 •
•
• DIMEN./REAL. •
•INTGR., ETNL.
•CHART FO

X
R 06,07.

.••••
PHASE6

REAL CONSTANT
CHART FOR OB

•
••
•
•

•••••
.PHASE7
• DEFINE FILE 	 ••CALL LINK, EXIT.
• CHART FOR 09 •

.....
•PHASEB
• VARIABLE AND •
•STMT. FUNCTIONS.
• CHART FOR 10 •

Flowchart FOR01. FORTRAN Compiler, General Flow

244

• • NO

F/510 x

	 C2 	
• READ INPUT	 •

READ INPUT	 •RECORD
• RECORD	 •	 •	 •

••••
• •
: DI •.X

•	 ••
• Cl• •

*
F1000

ok*
	 0

F1500	 002A2

• •
• A4 •
• •

F0	

MT

050	 F1501	 F1006	
X	

F1016
B1 	 	 02.X....	 .	 83 	 	 B4	 ..	 05	 ..

GET MACHINE	 .•	 • 	 •	 ••	 .• TOO •.
SIZE AND	 ..	 E ND	 .. YES	 YES	 ...	 MANY	 .. YES

INITIALIZE	 .. STANT READ •• 	 X:SET END SWITCH •	 ...CONTINUATION .. 	 X...CONTINUATION
• PHASE	 •...	 ST	 STMTS ..

	

..	 ..••	

X
F0000 F1500	 F1005

A l 	 	 A2	 *.	 A4.•...
LOAD SYSTEM •	

.•
	4.	 ..

•
SUBRS,	 .:•SWITEVIDSET • :.Y.!!.X: F4 :	 ... SWIPMEI NTY!.INPUT. PRINT • S

INITIALIZE	 :		 •	 •	 ..	 01
• IL504 TABLE •		 ••••	 Or.

▪ • NO	 •.NO	 ••••
• •	 •	 •

• •	 • CI •
• •
MO

'7,10	 •e AD

F/009
	 C4 	
•

STATEMENT
• NUMBER
•

X

FI001▪ •••	 K	 FI512	 F1017	 x	 F1054
	 D1 	 	 x	 	 04 	 	 	 D5 	

F/500	 002A2	 ..••I:72 	 	 •	 *	 •
• •	 •PACK STATEMENT •	 .	 REPLACE

READ INPUT	 • •	 RETURN	 •	 • AND PLACE ON •	 •STATEMENT WITH
• RECORD	 •	 •	 •	 •STRING	 •	 ERROR

• •	 •

: .4..0.

	 El 	
•
• CONVERT STANT
•TO EBCDIC CODE
•

••

••••

• F4 •
• •

x ROL	 X
El .•. ..	 	F2	 	 	 F4

...	 ..	 •	 •	 •	 .
.. CONTROL .. YES	 • ANALYZE AND •	 •SET UP TO LOAD •

...	 RECORD	 	 X• STORE CONTROL •	 • NEXT PHASE	 •
...	 ...	 •RECORD DATA •	 •	 •

..	 .. • •	 •	 •

F1004
GI • 	 	 G4

..X. DI. •01 •• •
***le

• rS11141MiErg •
• REQUIRED	 •

• GET PHASE ID •
FROM BIT

• SWITCHES

1	 x

HI	 ...	 H4...	 	 H5 	
*.		 • DUMP STRING •

CONTROL *. YES	 ..	 EQUAL	 ... YES	 • AREA, SYMBOL •
..	 RECORD	 •.•....	 .. TO ID THIS .. 	 X•TABLE AREA, AND.

PHASE
•

FCOM

	

..	 .. 	 •

..• . NO 	 fe4,0

	

i	
• NO

.	 •	 •	 .	 .
• CI

A
	 •• •

4.410	 .04.0

RL010 	 X

	

J4 	
•

•LOAD NEXT PHASE•• •

	

....K4 	
• EXIT TO NEXT •

PHASE	 •
• •

Flowchart FOR02. FORTRAN Compiler, Phase 1

• •
• A4 •

Flowcharts 245

.046..

• F3 •
• •
6.0.

CALLC
F3 	

• ••REINITIALIZE TO.
• SCAN STRING •
• AGAIN	 •
• •

•
• • ••

• G3 •.X.
0.0..

	

ENDO GR...	 WAIT

•
...•GA

•
ENO	 YES	 R:EXITRZSRBIE

ROUTINE• STATEMENT

NO

START	 Al 	
• INITIALIZE	 •
• PHASE. MOVE
•STRING NEXT TO
• SYMBOL TABLE

COCT
BI 	

• SET UP
•INITIALIZATION
•CALLS 70 SEW
•SOF10, AND UFIO

ern
• •
• CI *Of• •ivs.	 x

	ZAIB
s

MOVE	 NOVEL CI	 .i.	 	 C2 	 	 C3 	0 .	 flo	 •	 •	 00.4
.. FORMAT •.. YES	

X:M°10SWOLINT 	 x:421NMEMEO :....X: CI :

	

OR ERROR	 .. 	
•.STATEMENT..	 •	 STRING	 •	 •

.w	 o.	 •	 •	 •	 .000

• NO

DI'
YES▪ ARITHMETIC

...STATEMENT..

• NO

ZA5
	 El. 	
:ST17141tAlf$PE
• SUBROUTINE

GETIO
Fl 	

• •
• SEARCH 	 •
• FOR

AR
	 •

TYPE
• •

GI
.	 END	 NO

STATEMENT	 • 	

YES
•

ZA6
	 D2 	•

	 S . STUNGIENINY•
•

MAKE
E2 	

• COMPRESS REST
• OF STATEMENT.
•MOVE TO OUTPUT
• STRING
•

1DSV2	 ..
F2

• POUMP
41
	 NO

• CALL

• YES

	 G2 	
• •
•PUT POUMP CALL •
• ON STRING	 •
• ••

IDAHO	 .•.	 ZZYZ	HO . ..	 H4	 ..	 H5 	

	

.0	 4..	 0. NAME ..	 •	 •0. YES	 ..1	 TCH-R . ..YES	 •• CONVERT TO 5 •

	

.... STMENT 	
"..?ViP476 ...

	 X•CHARACTER NAME.•

	

..	 .•	 •CLOSE UP STRING.

	

..		 •	 •
... o•

	

•10	 • NO

xx
MOVIE

J3

7Y:fEMPNIE14
INPUT STRING •

• ••••
.▪ 	 •	 •
..X• G3 •

ZAIA
HI

OgYITUNEN

04.0• •• P3 •

Flowchart FOR03. FORTRAN Compiler, Phase 2

246

LOOK
ESE4

• NO

••
CKRL

El	 0..0 REAL,
▪ INTEOER

,.
	 YES

..EXTERNAL OR

• NO

TAG3
Fl

...COMMON *.
YE•OR	 S

EQUIVALENC	
*.STATEMENTE.0

• YES
• .00.

•

• C4 •

CLUE

..	 ..	 .
... STATEMENT •. YES	 • PUT ERROR ON

.0. NUMBER IN .. 	 X.	 STUNG
SYMBOL ..

...TABLE..	 •

NO

..X• 05 •• •
PUTIN

F4• •
• PUT NUMBER IN •
• SYMBOL TABLE •• •• •

X

E2.....
STATEMENT	 NO

"... UDE;
4. .0

• YES

	 ?
. REPLX ACE
•STATEMENT WITH
+ERROR. CLOSE UP
• STRING•

JACK

START
	 Al 	• 	
"INITIALIZE PASS 	
• ONE• •• •	• •

• 94 .
....	 .	 a...	 .	 •• •	

• B1 i.X.	 • 83 ...

.......	 %	 ..a.. %
ST1	 .•.	 INIT	 R

81...0.	
SET
82

SORE	
B3	 I..
.•B4
	

...	 .	 .	 •	 .0	 •	 •
..SUBROUTINE

.
 .. YES	 • POSITIVE FOR •	 YES	 •INITIlle PASS.

. OR FUNCTION .. 	 X.	 FUNCTION,	 •	 .. STATEMENT

.

	 •	 •

	

•.STATEMENT.• •• NEGATIVE FOR •	 .. NUMBER ..	 •	 •0.	 .0	 • SUBROUTINE	 •..	 ..	 •	 •
..	 .

• . 110	 • NO	 OM	 •
• •	
.	 • G2 • •	 • .
.	 •	 • • C4 0.X.
%		 •	 * .

TENT. .	 RMOV1 	 %	 ENDSr" .:.
Cl	 C2	 0.	 C3 	 	 C4	 ..

.		 •	 REMOVE	 ••..	CS 	
.. DEFINE	 .. YES	 .. 	 •	 .. NO	 'STATEMENT FROM •	 ..	 END	 YES	 "EXIT TO THE ROL.

FILE	 .. 	 X.. • STATEMENTSTRING. MOVE TO.	 .. STATEMENT .. 	 X.	 ROUTINE	 •
...STATEMENT..	 x	 0. NUMBERNEXT STATEMENT •	•	 •

..	0	 ..	 .0..•
• NO 	 .YES	 • NO

• •	 •	 •
..X• Bl •	 • 05•

%	 •	 •
....	 Z

1

..	 ..0.
.•04

	
MOVS..

05
x

4.	 .
D	41

02 	
•	 •

•• STATEMENT .. YES	 REMOVE	 .0.	 .. NO	 • MOVE TO NEXT0. STATEMENTX	 STATEMENT	 :	 ... STATEMENT

.

X•	 STATEMENT
..	 .41	 NUMBER	

:	
.. NUMBER ..

..	 .0	0	 •

• NO
mi. .

• •	 • .X 	
• G2 •.X.

TAGS	 ...	
••

	 i

GI	 ..	 G2 	 	 	 G4 	 ..m.
• •

••

	.■ YES	
MOILIFMMT	 •

• PUT SYMBOL •

	

..MTIOFAT..."...:	 : TAshe smass •

	

..	 •	 .%
• NO	 0...	 •• •	
• • B3 •
• •	 •	 ..X• B1 •	 ..X• D5 •

%	 %w.f.	OM

EFFMOVES
HI	 ..	 	 HZ 	

*.
▪ .	 . YES	 MOVE TO

	

TRANSFER	 	 x
•.STATEMENT.•IF.	0

• NO

•

iX 	

Jl.....
••••

ENO.YES	 •
▪ STATEMENT .0....X• 84 •

••
• NO

00.0• •	 •
81 •• •

Flowchart FOR04. FORTRAN Compiler, Phase 3

Flowcharts 247

PH 	 AI 	
•

INITIALIZE	 •
PHASE	 •

•
•

.0•0%.

• B1 •.X:

RI.**0.
0	 END	 0. YES

. STATEMENT .41 	
. •

.006.
• NO	 • Al.

FIXIF
CI u	 	 2
0••

•
COMMON	 .. YES	 • INITIALIZE TO▪ STATEMENT .. 	 X. SCAN COMMON

..	 •	 STATEMENT
..	 •

• NO
• •

• DI •.X.	 • D2 ..X• •
••••„	 11..•	 X

MV	 x 	 PTB • .0.	 002
	 DI . DT 	 03	 ...	 	 D4 	
• • THIS	 0.	 •

	

MILIVIZI T :	 ...WORD STMT •. NO
O. TERMINATOR .0 	 X0. •NAME

.0 • LEGAL	 .. NO	 x: PUT ERRORON
• 0.	 ...	 0.	 0.	 •	 •
• 0.	 .0	 •	 •I,. ..

• YES	 • YES

	

...X. B/ •	 •	 ..X. 01 •

	

.0.....	 i
RMOVE 	 X	 ZORRO

E2 	 	 E3	 0.• •	 ...
• REMOVE	 .0 NAME IN • 0. YES
•STATEMENT FROM • 	 0.	 SYMBOL	 .0 	
• STRING	 0. TABLE ..
• ..1	 4.

a	PIO

. •	 •	 •005•	 .

..X. 01 •	 • F3 •.X.
..la'

PLACE
6, 0•40	 i
	 F3 000000 1.4

PUT NAME IN
• SYMBOL TABLE

G3.....
•.0	 NAME	 0. NO

O. DIMENSIONED .0...
0 .	 .6

• YES

PRTE

CONVERT
CONSTANTS TO

BINARY

NEX
	 J3 •
• •
•PLACE CONSTANTS•
•IN SYMBOL TABLE.
• •
• •

003
	 K3 	
• •
•GO TO NEXT ITEM•
• IN STATEMENT
• •
• •

•

..X. 02 •

Flowchart FOR05. FORTRAN Compiler, Phase 4

248

YES

TRY PLAC1

• • .0.*
OS.*

• El •
..X• E2 • •	 •

•:04NOA$C4 ATIRRO,
•IN ,04/81.. TABLE•

•

CIE

.••

• NO

•OOP•	 •	 •
%AI*	 • A4 •

• •
•

•
•

NXTPO
Al 	 	 	 A4 	

• •
INIUNZE •SUBPROPH NAME

•IN SYM OL TABLE
•

•
•
•
•

STAR1
al',	

003	 ...	 x
52	 ..

..	 ..	 • PUPSYM TBL
..FUNCTION OA.. YES	 ...FUNCTION OR•. NO	 •..ADDR OF SUBPROG

. ..5418gINE.. 	 "..N/R9VALU..-*--:	 •..COMMUNRATIONS
..		 • AREA	 NAME/
..	 R

•. NO	 • YES	

8.0.1
• •
• D4 •.X
• •

i▪ 	 v."

.
X	 SLOP	 X

.
DI	 ..	 	 4 	

	

.	 •	 •
•

INTEGER
.
 ..	 •YES	 : FabiNEIN :	 • MOgaraEXT

	

.. FUNCTION	 	 X. COMMUNICATION •
..	 ..	 •	 •

•.	 ..	 •	 •	 •	 •
NO4...	v....

• •	 •	 •
• El •.X	 • E2 •.X	 • E3

• •	 • •
•••• 	 •••• • X	 ern.	 x

002	 x 	 DTB	 ...	 FLOP	 e5....
E2	 *.	 	 E3	 64	 ..

....El 	 	
0•
	

•.
	 •	 •	

.EXIT TO THE ROL•	 ..	 LEGAL ... NO	 . PUT ERROR ON •	 .:*-44AIUM '- NO	 5.:* PALMER '.. NO ..• ROUTINEit.	 NAME	 	 X*	 STRING	 •
..		 •	 *. NAME	 ...

..	 ..	 •		 *.	 .4.
..)1

• . :ES	 • YES	 me.
• :	 ••••	 •	 •	 •

.	 • 63•
.	 .0• E/ .	 .	 •	 •

....

• PUT NAME IN
• SYMBOL TABLE
•
•

• • • •

..X• Di •

A	 ••.	 %
.01.	 RMV	 x	 /ARK/	 ...

F2	 ..	 	 F4 	 	 F5	 ...
.• . 	• 	 •	 ..PARAM. ..
.. NAME IN

..
 .. YES	 •	 REMOVE	 •	 .. NAME IN .. YES

.. SYMBOL TBL... 	 	 •STATEMENT FROM • 	 ..	 SYMBOL	

	

..OR COM.. ••	 STRING
•

•	 .. TABLE ..
.. ..	 7,

.13	 .	 • NO	

.	 .	 mit	 .	 • •
. •	 •	 •	 • E1*ic	 ..X• El •	 .	 .	 •

.....	 -	 au..
• • 	 ..

	

.
• A4 •	 •PIECE 	 R• •	 05

me....	 •

Flowchart FOR06. FORTRAN Compiler, Phase 4

Flowcharts 249

ON1
...H2

• coNUIVSTTO
•BINARY. PUT IN
• SYMBOL TABLE

X	 X
	 H3 	

REPLACE •
STATEMENT WITH

O

•
ERROR. CLOSE UP.

STRING	 •
•

PHAS
Al 	•• •

••••

• 81 :.X.

X

B1

.•	 END.YES
STATEMENT

0.	 .0
•008•
• Al•

• •

MIX
 •CI

0	 0.
YES	 •INITIALIZE TO

go. DIMENSION•X•SCAtT2ILIVA/ON
...STATEMENT.*

• NO
•
•

;

• NO

• • •
• 01 ...X.
• • •
••••	 .

	 01 .00 *
MOVE TO NEXT

STATEMENT

•

• D2

•••	 X
SIP

	

D2	 0.
to.

.:0YES

. •

••••
• •
• 03

	 D3 	• •
• REMOVE

X.STATEMENT FROM •
• STRING	 •

•

..00
. •	 •
e.X . DI •

411 . .•
• NO

..▪ I* BI •

PADS
E2

LEGAL •0 . NO▪ NAME
0.	 ..

	

... .01	 X
• YES	 010.0

: 	

•	 •
• G3 •

• •	 •

	ZORRO....	 PREY	 ...	 SUBN
F2	 0.	 F3	 ...	 	 F4 	

0	 0.	 • SPREAD SYMBOL

	

... NAME IN ... YES	 SUBPROG. •. NO
SYMBOL	 ... 	 X•.NAME OR PREY * 	 I.	 DIMENSION

.
0. TABLE ..•..	

0...	 •
DIMENS. ..	 • IN ORMA	 N ••

0.	 ..
• NO	 • YES

▪ •
• G3 *.X
• •

04410
PLACE	 X	 ER

G2

•▪ PUT NAME IN	 • PUTM
g

la ON
• SYMBOL TABLE

60.1.0
• *
• 03 •
• •

041.046

•
11

NEX
••.•j2 •

•
MOVE TO x

.4.0C.

..X. 131 •
• •

..X• D2 •
• •

Flowchart FOR07. FORTRAN Compiler, Phase S

250

•008.
• AI.

• •

BEGIN 	 A
1

• •
• B4 •
• •

• 131• • .
x

DAP.*.	 SOS
BI

• END
o	

YES 	 4;1;40 THE ROL•
I. STATEMENT

.

 	 X:	 ROUTINE	 •

• NO

.o.
B4

o*	 NO	 •	 •

" :

• YES

.., • • •	 .	 • E3 •
• 02 :.X.	 ••	 • 	•

**Of
1.•••	 I	 A

JAP	 BOB	 TIGER	 .•.DC .%	 02.....	 	03	 	 04	 ..•

•
.	 •	 •	 •	 ..

...." sINE g Eg.T ":•:!!.x 4 .14XAMMX ". YES	 x:sTATBW E FRom :....
• ST NG	 •	 .	

...EQURMFLO:T.!!!.
..	 .4.	 .

..		 •	 •	 •	 4..	 0.

	

...	 o. 	 	 X	 O. .11 	;(
•. NO	 •.;10	*	 • NO	 *.O*

••••	 •	 *	 •••• • 	 •
• *	 •	 • Fl • •	 •	 • E3 •

	

.	 • E3	 •	 . • E4 *.X	 •	 •
• • .	 000l.	 *	 •	

A	 A"It.

	

....	 CLESr.	 A 	 LAPS 	 X

	

El	 ..	 E2	 •I.	 E3	 E4
.1.		 o.	 •	 •	 •	 •

... EXTERNAL	 ... 	 	*.	 SW3A ON	 .. 	
xi puying ON •:	 *SET APPROPRIATE.

• INDICATORS IN •
.•.. YES	 o, YES

“	
X	 •	 •	 • SYMBOL TABLE •...STATEMENT..	 *.

...		 '	 •	 .	 .
• NO	 ..NO

***0	 .	 .	 11..... ...I.. :
0	 •	 . •	 •

• Fl ..X.	 • F2 •.X
,
.	 ..X• Fl •

	

••••.	 .•••	 R	 •••••
•	 • .

	

x	 ZAR...
•Fl 	 	 F2	 ...	 F4. •.

	

..		 •.	 .3E1. tLA ON TO •
• :

STATEMENT	 •
•

	 ... DIMENSIONED 	NAME
...	 .1	 V. illiART

•

MOVE TO NEXT	 ..	 LEGAL	 .. NO	 ...	 NAME 	m. NO

•
X	 TERMINATOR MUST:

01
• YES	 • YES

• •.	 .
A	 A

LAP	 KIN
C4CC..	 	 C2

.	 .	 •	 o	 ..	 .
	*. STIMENT .. S 	x:sal i ilkli449 :	Ecluri..Frx ".. Y”.

	

YE 	
•

...		 0.

" . ..AD	 • NO	 ••01 •
••••	 .	 •	 •

SIS

• ...*
.	 0.4.0
. •	 •
..X. 02 •

. •	 •	 •

..X• 01 •	 .	 •
• •

••••	 %
ZOR

	G2 	 ...

	

.....	 PLACE 	03	 SUBS	 A

.1	 I.	 P	 *	 2OLLECT	 •

*... SYMBOL ..

.o NAME IN •. NO
	 Xi

PLACE NAME
	
•

• •	 iBikgROTIYN
o.	 ..	 •	 •	 • SYMBOL TABLE •*. .o.

• YES

	

11.
A▪ 	•	 •

	FUN...	 • 64 •	 YELP

	

.....*	
•	 o	 	 4 	H2 ••....COMMON • 	 Mil	 •	 •

	

. PREVIOUSLY .•....X• B4 •	 :POIDERST0102XT:

..	 OR	 v. NO	 •	 .

. OIMEIOD ..	 •	 • • ELEMENT	 •

• • YES

E3

••••
• •

J4

YES
▪ COMMA	 ..

•Y...
NO

	 64 	•
:p012YIRSION2xi:
• ELEMENT	 •

	

. •	 •

...X. F2 •

	

*	 •

Flowchart FOR08. FORTRAN Compiler, Phase 5

Flowcharts 25L

CAP	 GUT
Bl.

0.6'82 	
ENO	

•
YES	 • EXIT TO ROL

	

STATEMENT	 X.	 ROUTINE •

F] ▪

• READ	 YES
STATEMENT

• NO

.:* STATEMENT

• NO

HI.

•0	 FIND	 YES
STATEMENT

0.	 .0

••••• •
....X: C2

•

•• -

• •
• El

Al

INITIALIZE
PHASE

.•••••

• 81 •.X• •

START

NO
ern• •

• C2

me X
.• 	 23	 .•.	

Z 	
	 %

CI	 .•C2	 0. 	 C3 	
..	 .• .	 ..,	 ...

0
X: M"ILTEgAi"

.	 .1. YES	 ...	 0. NO

.▪ ARITHMETIC ... 	 X•. OPERATOR	 .. 	
•.STATEMENT.e 	 X

..	 ...	 •... ..
• NO	 • YE

•
IP •	 o. YES

STATEMENT

X
RC CLSUP

.0 STATEMENT•YES
	 X: IF P

03

WERNAVG.•TERMINATOR

21

• NO

•
•

X

El

•
.

CALL	 YES0.. STATEMENT .0...0(
00

•
*

0.	 DECIMAL	
NO

......X. C3

4.

•
• •

• NO YES

X
21		 J812

F2	 ..	 	P3 oe.
..	 • .	 •

•••	 CONSTANT
0. NO	 •	 REPLACE

CONSTANT	 .. 	 X•STATEMENT WITH0.	 .0	 • ERROR MESSAGE
..	 ..

• YES

Z33
G2

COMMTTO

RCZ1
H2 	

•
•TMOSTIK NTABLE

RC22
J2 	

PUIpinikINT

• SYMBOL TABLE
ADDRESS ON

• STRING

NUMM	
K2 	•

rfiKNWIEWIT
•

J1.....
•..	 DATA	 0.. YES
STATEMENT

"*."No

MOVE 	 X
K1

••
MOVE TO NEXT

:	 01.00• •	 •
..X. 81 •• •••••

04041• •
• C3

Flowchart FOR09. FORTRAN Compiler, Phase 6

252

•
•
• 1N3d0 31vad0

td 	

319Y4 109WA5
01 NOI/VW804N1•

3111 00tl:
	 1,3•••••

Eda
)3.

Esz SDIETT0AA0T3

L asvtid (aaudutop NITILL1103 'onma IratiomoI3

••••
• •
• 19 ..X••

• • • •	 :

• •• •
• 1N3N31515	 •
• AXON 01 3509 :•
	 19

TASOI
X:

• 491591R88s :	 NO aMfAiSlad•
	 aa 	 	 	 Ea 	

8Z8X	 X	 Z/83

ON •

••	 3511008	 Of	 1N3W3/515 **
. 100 3H1 01 11X3•	 53A **	 093	 *.
	 Sim..	 ..	 ••

.....IA
T03

•
ON

 **
••193931515••

.":	 Ad10014 ON5 •X 	 	 AN11
XV1NAS 833H3 •	 S3A	 1151

• Z3 	 	13*
113

ON

	 ••IN3W3151S.•
.:HD1e4411-11i0014:5	

1IX3	 *.
S3A	 1153	 *.•

	 za 	 	 /a •
133

ON • ON
..	 -.	

9

	

8470V4 Ex 	 	
..

0037	 **X	
..•.I.N3W31515••

	

.01/VA 8 d /433H3•	 S3A *..	 4005	 *.	 S3A ...	 341i10 I.:.
• •	 .•	 a.	 ..

**	 •/3
..

	 ND 	 	E3
SAO	 •	 Ida

•
•
• 1N3W31515 9535
• 01 3111511191
• 	 8 	1

X	 IND
4141.4

• •
X** TO •• •

.16.11

35593
3111511IN/

10
1SHd

• •
• A3

411.1.4

ORG IN
	 Al 	 	 A3

O ff*

PHASE	 •• PINNAT	 G2
NUMBER ..

O de*

• NO
4011121

• •
• BI ..X• •

1..00

EV1 	 81 	

• 83 •.X:

CV5A
83

CV5B
84

INITIALIZE TO	 YES	 STATEMENT *. NO

	

SCAN BODY OF • OPERATOR	 	 X*. TERMINATOR 01 	
STATEMENT

• • C2 •	 • NO	 • YES

	

.	
.... 	 •	 •

	

.	 .	

•%	

C4 ..X

i
	CV11	

•	 •

k	 CVO	
x

C

	

CC . ..	 	 C2 	 	 C3	 	 C4
X	 V6	

C5..•
.. DATA, ..	 •	

..	
REMOVE POSSIBLE*	

.

•.•FILE.

	

ILE
DEFINE ••. YES	 Xi MOVE TO
	

.. NO
*. VARIABLE	 O.....	

..

	

. F.	 L	 ilINGTIVilf	
NO

	

:	
"...bniTASO4	LINK. FORMAT.	 .. NAME	STMT IS TAT .

OR .FRR .STAT	 •	 •	
1• ... •
..*	

FUNC	 •

	

..i.0	 • YES	 YES.	

	

1* 01 •	
•	 •• .

	

.	 .	 • F4 •

	

%	1..	 %...	 CV50	 x

	

01 .• ..	 03	 ..	 	 04 	 	 	 D5 	
.	 ..	 •	 •	 •

	

•• STATEMENT
 .. YES	 417790 THE ROL.		 LEGAL	 .. NO	 •CLOSE UP STRING.	 •REMOVE CONSTANT.

.. STATEMENT .. 	 X.	 ROUTINE	 •	 IF NECESSARY :	 •	 OPERATOR	 •
..	 ..	 •	 •	 .	 .

..	 ..

	

i	
•	 •	 •	 •

	

•-,41	 • YES	
• •	 :	 .	 I.".

1*.

•
• G3 •

	

%a...	
..X• J2 •

%	
	CV/3	 x	

C2

	

El	 ..	 	 E3 	

M

.	 * ADJUST
ME
SHAPE OF•	 .,.5

	

..	 .	 NA	 IF

	

"-..AK	
YES

	

T..-" ... :	 : REHMENIN
• FUNCTION

	

...•..10	
0000

• •	 10.0
• C4 •	 •	 •

• •	 •	 • F4 ...•

	

.		 •	 . .
CV2	 ;	

•••••	 X

	

CV22	 ...
	 Fl 	 	

CV17

	

F3 	 	 F4	 ...	
CVIO

	

F5 	
• •	

•••• SET SWITCHES •	 • FINE OR PUT	 ..	 LEGAL	 .. NO	 : OPMYTFITTO
• FOR IF, WRITE .	 •NAME 1118UMBOL

•
1....	 • FONN TAABLE :X..•REAO. OR WRITE •

0400	
.

• YES

....catiM ..."--:• •

	

.).(....	 %
G2

.. ..
• •	 ...it	 .• •	
.....	

...Of.
• HI :	 • G3 •

• G3X. J2 •
....	 OM

CV3	 0725A	 CV12..
G3

B	 COOT	 X

	

Gl	 Of....	 G4

	

..
9	

.* LEGAL *.
• PUT ERROR ON	 •COLLECT 1NIEGER•

.. STATEMENT .:.YES••
0	 .. STATEMENT ..	 •NO

X.. NUMBER IN .. 	 X.	 STRING
SYMBOL ..	 •	

CONSTANT

	

•.TABLE.•	 •	 •	 •

	

•• • • ilo	 • YES
....	 .	 .• •

	

• HI •.X
.
.	 .

;'..

•..*	 X	 •	 •
EV5	 ...	 YYZO 	 i	 • C2 •	 JOC

	

HA	 ..	 HO 	 	 	 H4 	
.•

	

..;RITEIDIF..	
...ro e

	

... NO•	 PUT SYMBOL	 •FIND OR PUT

	

OR GOTO......	 • TABLE ADDRESS	 CONSTANT IN
• * STATEMENT.*	 *	 ON STRING	 • SYMBOL TABLE •

..	 ..	 •	 •

	

a.. ..	 i

	

YES		 •	 .• •		 : 	
	% 	

. 83 • •	 • .
.• • * J2 ...X.	 .X• J2 •

	

me	 410.4.	 •	 • .	 •	 •
• •	 MO .	 •4..
• A3

•
	 CV7	 X

J2

MOVESTRINGMIIITIAA

:	 •••••

...X• HI •
• •
.40.

Flowchart FOR11. FORTRAN Compiler, Phase 8

254

SSZ sprIpmoid

6 asviTcl gaalPlum0 NVILL1103 • znioa aretramoTa

.0....

...f..	 .4.4.. 004	
• 40 :
000.

••••	 :	 .	 • •: ••00•3.40:• 	!•
• 10 .X°:	 • 23 *X*.

•	
53,t•..

xi: 143181118 :X 	

•	 .
•• 31991

•
• ••

••
• 143431015	 • ..	 •01	 •

: g7iWiligi 3gn :	 ON 	 • 140431915 .• S3A

..
80104/4831. 	

5539040	 .	

•
. NO Tal gi S 100 0 0	 ON '. NriNg .:.

0"•
	

••..
*0 	 15

..

	01403	
••	 •5	 EX	 	 .	 ZX• 993	 E41XN	 0X 	

f	
OLIN

.	 .
	 X.

.	 .	 •
•

OPN1•

• 4.	 •	 •	 ..	 6.
	 . 6 031FAIX3' . ..• •	 •	 •

•

1X3431.14101 •1	 S3A .0 sn IA3411 0
•

.6

	

: ,0,34'4 U644084:	
.

..
**	 If

....
	Mr	 	 	 Zr 	

4030!	 !TH515
....	

X
• •	 •	 :
• 03 ••	 •	 M.
• •	 •	 •	 •
....• Ze •

0. 4 : * *. • •

	.* 5144
3340108 ..	

.•
•

...

	

*°N	
:	 V344 X9OM

• :41 14815400 Ind
hH .

x
IN 	

•

*• •	

..

.. MN

15403
...

HS IS	

•

•
• Zr •• •

••••
53! •

•.•a315vi4x3••
1401S401	 •14915403 310301 •

	•40 /M RBri g SI
	 Zd 	hi	 X	 X• 64104

901300	 •
NO110311000 •X 	

143439030	 •	 ON
Si

4104

)s0..0
• •
	 •

• /a •• •	 •...	 53A •
!	 .. a.

4..	 ..	 r
..	 ..	 •

6. ; j : .039404i343. :.	 • 0344 XVOM NI,* .090M 830838 ine
•

•

	

..	 40	 	 10 	

	

6 . 6 	 ZHSIS 4019

.	 •	 •
• 0398 X9OM 41 •	 •

• 401143/300	
	 ** 901304 *0

• 100 101935905•	 • X 	NO110311400 '..
• allne	 •	 •	 3 V	 S3A •6.
• •	 •
	 43 	 	 	 Z3 	 	 ..	 13 •

ONION	 6..	 31334
x

S3t . ..
. 6	 6.	 •

. 6	 .4.	 •
"... 1012135805 ..

6 .	 o.	
•14415403 310301:

ON .4.	 •
*0..40

0.

•

TO 	X
	 30410.40.

•
• 19. +X**	 X. TO :
.•.•	 :	

/6	 •	 •	 .0
• •	 •	 ..

..:30 •

	 143431015 ...• V390 N9OM	 .
• NI 331N100 100:	 • 14119.1066 •3	 ON *.	 4100	 0*

. 4.
'. 	 13

.
	43 	 	 	 Z3 	X

	 -.-

f
!1334

---. Z/ •	 .

	

000.'	 •
ON

• •	 •	 •	 .6	 6.
• 118 3841030 pS • 	 1 81
• • 931410d 31901•	 .	 3411009	 *X

• 0
	14343/4	 • 		5 	 •X	

0*04

	 49 	 	 	 Z9 	 	 *
S3A .:. 14316VIS

*.

.:.• 108WAS 011 9 •	 •*109 3H1 01 11X3o	 •	 553304 3	 0.
• •	 	 Es•..• • 	•	 0	 .	

91
■ 	 ..

.
x	 84194	 11103	 1103	 •..	 00410!	 04..

• X • : 10 :
:	

3di;72.4.

41038

.11.0• •
• h0•

• .•
• ZX •
• S3A

' 3181 • • 3181*.

•
-190403 **
14015403 **

ON *.	 040	 **
.• aim

3V
44134

START
	 Al 	

INWALIZE E

.1104	 :

• BI •.X.

oleive	 %

•
END	 6. YES	 .;;Trio THE ROL•

STATEMENT • X:	 ROUTINE	 :

o.	 .0

%	 .
C8EL.e.	 DECO,	 BAKER	 %

CI	 ..	 02...0.	 	 3 ****** faii
•••

•
FORMAT	 0. YES	 ...
	

.. NO	 • PUT ERROR ON
STATEMENT .. 	 X.• 	 STATEMENT

.

 .4. 	 X:	 STRING
▪ NUMBER ..0.

	

	 •..• ...*
• NO	 • YES
.	 .	 4.1.•.	 .	 . •	 •.	 .	 ..X• El

NOVEM	 %	 INDIC	 %	 •••
••••01 	 	 D2 	•
mO IVATV.MI T •	 :sPATIVAIRE47

O...• •
• C3 •

•

.0.0• •
	..X• 81 •	 • E2 •.X• •

	

••••	 ••••
E2

END OF
• STATEMENT	

YES

NO

• *	 •
• BI •

	

*	 •
.000

• •
•SCAN FOR VALID •
•FORMAT TYPE AND.
• SYNTAX	 •• •

TST
G2

.0	 0.	 ••••
•

SYNTAX	 0. NO	 •	 •
o. AND TYPE	 ...4..X. C3 •

• VALID .0	 •	 •
.0	 ••••

0. o.
• YES

HAN1
	 H2 	

•PuT OUT FORMAT
•SPECIFICATIONS••

	 J2 	

•• MOVE TO

••

" X* E2 •
•

Flowchart FOR13. FORTRAN Compiler, Phase 10

256

•
X

CI
.°

•:* STAMPNT •. YES
.•• 01,

404.• •
• C2• •
	 C2 	 	 	 C3 	• • •STORE 0 VALUES

X:NEWI TO 	 •
• •	 IN STRING

• FOLLOWED BY
• •	 SPECIAL
• •	 •	 OPERATOR

ZZZZ

•
X

01.

•
..*.

41

.• FORMAT	 YES
STATEMENT.*.	 .0

• NO

El
.•

YES
• CONTINUE•

o.STATEMENT..
0.	 .0

• NO

•

Fl.*.o.
• HO,
DEFINE	 YES

. .	 . •

• NO

• 4

..X• 81 •• •••••

	

X'

L	 A
	 D3

MOVE TO NEXT
ELEMENT

•
..X• H/ •

•• A3 •

•• • •

START
	 Al 	

INITIALIZE

ABELL
A3 	

GgaRANNION

• B1 •.X.

••••• • X

1
.1,	 CK6	 x

8	 e.
..	 v.

.	 END	 .. YES	 •;;;;9	

	 83 	

	

0 THE ROL*	 CALCULATE 0.
STATEMENT .. 	 X.	 ROUTINE	 •	 VALUES

..	 ...	 •
v.	 ..	 •

•0

• NO

	 GI 	•
• INITIALIZE TO
•SCAN STATEMENT••
same

• •
• HI •.X.

• X
TESTI

HI	 4..
.0 ▪ STATEMENT.YES

	

*. TERMINATOR	

0 .	 .0

• NO
•
•
•

X

JI.•	 *.

	

.• DIMENSION	 NO
▪ LEVEL I, 2, •

OR 3

• YES•

ABEL
K I	 ..	 	 K2 	

.	 .	 •	 ••
.	

*. YES	 REPLACE	 •

	

STATEMENT. 	 x

•
:MINIVATART:•.FUNCTION .•

..	 ••	 •	 •
• NO

.	 .1161.0

	

X	 ...X. C2 •
v.

• •	 me.
• A3 •• •••••

Flowchart FOR14. FORTRAN Compiler, Phase 11

Flowcharts 257

. .

XY20
Fl.	 F2'..•

VALID...

•

YES	 STATEMENT	 NO
STATEMENT	 X*. FUNCTION

..FUNCTION .0	 NAME

• YES

• GI ••X4

.•••

X

	 GI 	 2 	
• PUT STATEMENT •

MOVE TO
	 :	

FUNCTION
OPERATOR ON •

•• STRING. COUNT •
• •	 ARGUMENTS	 •

	 F4 	

•IN SYlaykyTABLE•

•

XY30
G4 	

• CPUT ALL
•• "PrINC ON

XY5

START
	 Al* 	

INITIALIZE

00..

• 01 •.X.

.4.	 OVERF
B1

....02 	
END	 .. YES	 •EXIT TO THE ROL•

STATEMENT 	
X:	

ROUTINE

. NO

• 84 ...:

X
	 54 	

•PUT IF OPERATOR:
• ON STRING	 •

•
•
•
• • •

• C2 *...
X• 	 .	 X

ARITH •x
CI..	 C2 	 	 C4...

..	 ..	 •	 MODIFY	 •	
..	 .. YES	

..Y!.,.• ARITHMETIC .•	 X.EXORENTSNIP 	
•
	PARRICHESIS.. .

...STATEMENT..	 • SCAN PROCESS •	 ..	 .*
• •it.	 ..

....	 X

. NO	 ''01.10	 0...
.	 •	 •
. •	 • • C2 •
..x• E3 • •	 •

• • •4..
.40..	

.

XY23 o . o 	X013D
I	 ...	 (12. .•• 	 03	 •.

.1.	 .••.4.	 :.
IF	 m. YES	 .0	 *. YES	 .. STATEMENT '•. YES

	

•. STATEMENT .•....	 ...nfIVVEIAi.. 	 X•. TERMINATOR .•....
..	 ..	 .

*.	 .•	 *.	 .♦	
X X

	

....	 • NO	 .ENO	 ••••
• ••••• . 	 •	 •	 ••••

• B4 •	 • CI • •	 •
• •	 • E3 ••X.	 •	 • • Ey

•.0•	 •	 • ,	 ••••	 •	 • ,
I	 M. .	 •••• x

X025	 LIST	 x	 .0

•

ES	 ..	 	 E2 	 	 	 E3 	 	 E4	 ..

.	 ...	 •	 •	 •	 •	
•
	 ..

..	 CALL	 ... YES	 •*CHECK STATEMENT*	 •• PUT ERROR ON :	 ..	 LEGAL	 .. NO

	

•. STATEMENT .•....	 •NUMBER LIST FOR.	 •	 STRING	 •	 •.	 NAME
..	 .*	 •	 VALIDITY	 •	 •	 •..	 ..	 •	 w	 •	 •	 ..

...110	
I

	

••••	 • YES	
X

.....

	

0	 •	 ,	 .000	 :	 .4.0	 •	 •

	

. E4 •	 • E3 •
• •	 ..X• G/ •	 ..X• GI :	 •	 .

	

....	 0...

	

M.	 .440

..X. 81 •

•
•
•

1	 x
0029

H2 .• *.	 H4	 ..
...	

..	 LESS	 .. NO	 .. STATEMENT ... NO
.. TERMINATOR •......• THAN 15	

..	
..	

0.40
X		 X

. YES	 • YES	 me

.	 •	 •	 .	 .0.0 •	 •

. •	 • • E3 •	 . .	 • 0 E3 •

..X. C2 • •	 •	 ..X. GI • •	 •
.	 • .0.0 • 	 • • • • •
••• •	 .0..

Flowchart FOR15. FORTRAN Compiler, Phase 12

258

• •
• A4 •
• •

4. 0. 4h

START
Al 	 ••

• INITIALIZE TO •
*SCAN STATEMENT •
• STRING ••

. B1 •.X.• • .am
XY2	 ..

RI	 •.

•
• .	 ••••13 	

▪.. • END	 .. YES
x	
*EXIT,ITNE ROL•

*.	
S

TATEMENT ..
...	 ...	 •	 •*.	

• NO

•
•

X
XY3

CI	 *.

•▪ 	READ.YES
STATEMENT

• ND

xy4
DI

WRITE	 •. YES
•STATEMENT 	

.•
• N

.:* STWERENT •* YES

.•

••
XY6A4

A
AS	 ..

..	 ..	 •

	

..X•. INDICATORS	 x
• PUT ERROR ON •..	 10CS •.. NO

...	 .•	 •	 •
••	 ..	 •	 •

• YES

••
A

XV6A
B3.....

...* LEFT 	 NO.1. PARENTHESIS..

• YES

PUT
	 C3 	• •
• PUT OUT I/O •
• OPERATOR	 •• •• •

D3	 *.

..A gAD/WRITi . .. NO
STATEMEN
NUMBER

• YES•••
E3.....

41.
VARIABLE	 NO

*.	 LIST
.. FOLLOWS

..;ES

: 	 • • • •

..X* GI •• •
••••

.	 .

.	 .

X
XY24	 ...	 XY27	 XY14A 	 X

F/	

.. .•YES	

F2 	 	 F3
..	 .	 •	 •

..	 GOTO ..	 S	 .CHECK LIST FOR.. ' STATEMENT ..	 I:0E6'0MR:	 +VALID VARIABLE
..	 ..	 •	 VALIDITY	 •	 •	 NAMES

..	 ...	 •	 •01.
• NO

••••
• • .	 .	 .x 	
• GI ..X.	 .
•	 •	 X 	

..... ..	 .

	

x	 10.15	
X

	 GI 	 	 03.•*.	 G4

• •	
...• ...

	MOVE TO NEXT •	 .. STATEMENT •. NO	 •.
	

•STATEMENT	 .:*. OPMER

.
 *:." 	 X•. TERMINATOR	 X A4 •

	

:		 •	 ••	 ••••
• YES:	 .

..X. 81 •	 ..X. GI •• •	 •	 •
••••

XY16
H3

.•0N—DIMEN:... NO	 ******
INTEGER	 A4 •

•..VARIABLE	 •	 •
••••

• YES

PUT	 A
	 J3

WERTOR"

XY21

• REARRANGE •

•STICDPS DFOR •
• S AN• •

• • 45 •

..X. GI •• •

Flowchart FOR16. FORTRAN Compiler, Phase 13

Flowcharts 259

• YES
.	 •	 •
. •	 • C5 •
..X• A4 • .	 •• • .0**

	 D3 	•
• PUT ERROR ON

..X•	 STRING

•
•

C5 •

4

: IN D FORE NEX	 •
• CIPTS ;5 1 14T •
• STATEMENT	 •

FL	 It.

	

4.. BACKSPACE	 	
YES

..STATEMENT..
. •

• NO

GI	 ..

•• REWIND	 •• YES
• STATEMENT ••••••X

• NO

X
HI	 ..

• END.YES
•FILES	X

...STATEMENT..

• NO

•

*4.4
• •
• A4

%	 ••••	 X
START
	AL	 	 A3	 ..	 A4	

•••
•	 PHASE	 .. CONTINUE	 06...	 ...	 ILEF	 %.n...	 INITIALIZE	 .. NU

• • •
• .1E**

	

X	 •	 •

• YES	 •.:ES	 Iwo..	 • 85 .

	

OM :	 •	 •
.	 .	 • C5 •	

• FIT ..X.	 '	
.

......

••.ABEL ..	 LIZPUT	 k
81	 ..	 83	 • 	 84'....

•PLAVE U TEST .•
NO ..	 END	 ..	 NO ..	 •.	 ..	 a. YES	 •IN STRINGG OVER •
...•. STATEMENT .•		 ID OK	 ..	 •. CONTINUE		 CON4NUE	 •

*.STATEMENT..	 STATEMENT	 ••
..

• YES	 • YES	 • NO	

•
.

.X 	 	 B5 • •	 •.
• •	 . 	

.• •	 • • C5 .X

	

%	 %
DOTAL	 BAKER

CS	C2 	 	 C3	 ..
..	 •

.	 DO	 .. NO	 .* STATEMENT •. NO
. TABLE EMPTY •. 	 X: OUTPUT ERROR:

	
..	 HAVE
.. NUMBER ..

• YES

• ▪ EXIT TO ROL .
• ROUTINE	 •
• •

.	 • • • •

.•X. C5 • BE

**Of	 •	 •
41.40

MOVE
	 CS

• MOVE TO I

X	 .4.....
.4.	 FULL

El	 ...• E2	 ..	 	 E3 	 	 	 E4 	 	 E5	 ..

••
	 .	 •	 •

•• STATEMENT
 .. YES	 ..	 LEGAL	 •. YES	 • PUT OUT DO	 .• 	 •.. YES

STATEMENT .. 	 	 VO	 	 0:4Mprw-an':.. 	 X. INIT. MOVE TO •	 X•. STATEMENT
..	 ..	 •.STATEMENT.• ••	 •	 •NEXT STATEMENT •	 .. NUMBER ..

...	 .•	 •	 •	

• NO • NO
.	 ••••

..0• H3 •

• NO

	

F2..	 F3	 ..	 	 F4 	 	 	 F5

	

••	 •••..	 PAUSE	 .. YES	 •	 s. YES	 *OUTPUT Z SYMBOL•	 : GENERATE A
.

	

X. • DR STOP	 	 X.. SEMI—COLON

.
 .. 	 X. TABLE POINTER •	 •	 LABEL

FOLLOWS ..	 .

	

..	 ..	 •	 •

• NO	AO

	

.	 ..o.	 .	 0...

.	 •	 •
	•.X• J2 •	 ..X: J2 •

	

Z	 •••• 	 •••••

SHUT	 STNO	 x
	G2 	 ..	 	 G5 	

•PUT STMT NUMBER•

•
INTEGER .. YES	 • OR GENERATED

• CONSTANT		 • LABEL IN WO 2
..	 .	 •	 OF DO TBL

	

..	 .

	

0. ..	 R

• NO	 ...F.	 .
• •	
••

• • K2 • •	 •	 0

	

.	 •	 • •"H3

O

X.A.C5
.
 •

.... 	 • • .
SHOE	 CLOS;rn

H3
%

	

H2	 ..

▪
• INTEGER *.

	

. CONSTANT	
NO
	 X

........ 4.11.411.0*
• YES

••••.•••••
. •	 •

• j2 • • X	 ..X. C5 •

••••••
• •

PUT ERROR ON
STRING

J1

• STOPYES
•a. STATEMENT

• NO

•

KI

• PAUSEYES
STATEMENT

• NO

••••
• •
• Al •• •
..o.

	 J2 	•
•PUT IN SYR TEL,•
• PUT SYR TBL •
•ADOR ON STRING

• •▪
• K2 •.X• •

4.140
X

K2

PUT OUT	 •
APPROPRIATE

• CALL	 •

..X• C5 •

Flowchart FOR17. FORTRAN Compiler, Phase 14

260

UUT
45

TAG NAME

• BI •.X.

%to. X
TEST

BI

•
...*B2 	

.	 END •	 YES	 . EXIT TO ROL
• STATEMENT	 	 X.	 ROUTINES

TST5
	 134 	
• PUT IN	 •	 •
• SUBSCRIPT	 •	 .
. EXPRESSION	 •
••	 TABLE

.	 •

START
X

Al 	 	 A4•
• I NIT I ALIZESUBSC	 .. YES
• PHASE	 EXPRESSION
• •.IN TABLE•

NU

• NO
.....

• •
• 02

	

X	 ••••	 X

•CI	 ..	 C2	 ..	 C3	
T5T5A

..	 	 C4 	 	 	 C5 	
.	 ..	 •	 	

	.• FORMAT	 •. YES	 .•• STMT IF.. NO	 . YES

	

.. STATEMENT .•....	 •. CALL, R/W .. 	 X.• 	 DO	 TAG NAME	 •	 :EXPRWSTON FROM•....
...OR A

R
ITH... 	 ••	 STATEMENT	 .	 .

	

••	 •
	 •

	

X•X	 X•• NO		 '	:ES	 • NO	 I....
• •	 .	 •	 will..	 •	 •
• ja 4.	 .	 . J4 .	 •	 •	 • ,4.

	

•
•	 •	 •	 .	 * 05 ..

	

••••	 :		 •	 • .	 • • • • :it...	 .

	

X	
	 X	 OPEN	 PURE	 x

	

•
DI	 ..	 	 D2	 	 03 	 	04 	 	 	

	

• •	 •	 *	 .	 •PUT SUBSC	 . PURGE INDEX •. • DEFINE	 , YES	 •CLEAR SUBSCRIPT.	 GENERATED	 •FRUM SUBSCRIPT ••.	 FILE	 •S
A

N 	
•
	 • EXPRESSION	 •	 TEMPORARY UN •	 • EXPRESSION	 •..•.

•• •	 /ABLE	 •	 STRING	 • *	 TABLE• •	 •

	

ic•• NO	• •	 .	 •••	 •• ••	 •	 •
• J4 •	 •	 •	 •	 • 1-4.• •	 ..X* C2 •	 • 05

•

 ..	 .	 •

	

....	 •	 ..• .	 •...

	

X	 X	,...	 X

	

AVAR	 TESTI
•

	

El	 ..	 E2 • E4 E4	 	 EN	 ..

	

.	 •	 .0	 ..

	

. CALLING .. YES	 .. DEFINE	 .. NO	 • MOVE STRING	 ••	 .. NO•.	 EXIT	 •.	 FILE.POINTER TO END •	 .. REFERENCED .•...•
• OF SUBSCRIPT •	 ..STATEMENT..•

XX• NO		 • YES	 • YES

•
	

....• • •
.• J4 •	 .	 CI.

• •••••.	
• F4 :.X	 .	 •	 •

...0	
.	 •••*

TER	 X

	

 F2••	 	 2 	 	 	 V4 	 	 	 E5 	
*PUT ASSOCIATED *	 •	 •• .. YES	 • VARIABLES IN •	 •• MOVE STRING	 •CLEAR SUBSCRIPT.

	

DATA	 •BOUND VARIABLE •	 •	 POINTER	 • EXPRESSION	 ••..	 .	 TABLE*	 TABLE• •	 •	 •X
• NO	 4...

• •

	

.	 * 4 .	 X 	 	 . •	 •

• •	 ...

	

.	 • • G2 •.X	 .•..X C2

.

 •I ••••	 X	 '.....

	GI	 ..	 G2•• 	 G4	 ..
.	 .

• STMT

	

. YES	 .	 U0	 .. YES	 .•. STATEMENT
.
•. NO

	

•. HAVE NUMBER .•....	 •. OPERATOR	 .• 	 	 •. TERMINATOR .,...
..	 .	 •

XX	 ..

	

. •	 X.. . .
• NO	 v...	 • NO	 	 ow.	 . YES	 ..• •	 •	 •	 •	 •

• e5 .	 .	 • 05 •	 • G2 *• •	 •	 •	 •	 ••••••••••	 ••••

	

X	 X
	TEST2JAY	 X

•H/	 ..	 H2	 ..	 	 14 	
•BOUND ..

• VARIABLE *. YES	 04BSCRIPTI*. NO	 ••	 CLOSE UP
..	 TABLE	

••••••
	0, I.	 2, ...•...:	 • STATEMENT IF

•EMPTY .. 	 •• 	 NECESSARY

	

X	 X
• NO	 ••••	 • YES	 4 •••

• •	 •	 •	 ••••••

	

.	 • C2 •	 •	 • E4 •
• •	 •	 .	 •	 •	 • J4 •.X

	

.	 fie..	 •	

	

X	 TS!	 X	 •••• a X	 JI 	 	 	 J2 	 	 	 J4 	

PURGE BOUND
VARIABLES GET SUBSCRIPT	 MOVE TO NEXT

EXPRESSION	 STATEMENT

.	 ...•

..X• C2 •• •
• •
• A4 •

• .X• el •• •

Flowchart FOR18. FORTRAN Compiler, Phase 15

Flowcharts 261

	

EDE	 SCANT
	 Al 	 	 	 A2 	

	

.	 .	 •	 •
• INITIALIZE	 •	 :INITIALIZE FOR •
• PHASE	 ..X:SCAN STATEMENT•• •	 •	

• •
• 83 •
•• •

• 131 •.X.• •
•••	 x

SETUP
Bt.

• ARITH
* ASP CALL *. YES
GOOD IF RI.-

STMTS

PLACE	 X.

	 BZ 	 	 	 B3•....*
• •	 • PERFORM ALL •
•RESET GENERATED.	 • FUNCTIONS OF •
• TEMPORARIES •	 4 INTERPRET/AI
• .	 •	 PACKAGE	 •• .

• NO

CENM
CA	 *.

•
END	 NU

STATEMENT

• YES

CT

NORM.No
LESS THAN 4

•
• YES

• •EXIT TO ROE
• ROUT/NE	 •

XX
P -TPUL	 x	 NAME
	 02 	 	 03	 ..• ••• CALCULATE	 •	 ..	 BOTH	 .• 40
•STATEmENT NORM •	 ...	 SYMBOL	
• *	 ..OPERATORS..
• •	 ..
**M.. 	

• YES

ADv
	 04 	•
• ROVE STRING •

.. X*	 POINTER

•

X	 FORCE
...••.2 	 	 E3	 ..
• ..
• FE NECESSARY' N0 .. 40
. OVEN OR CLOSE •	 .. OPERATORS .. 	
• STRING	 •	 .. FORCE ..
.	 .	 a.

• YES

X
....

	CRYNm	 ;	
•	 •
. 83 •

	 F2 	 	 .	 ••
. CORRECT	 .•••
•STATEMENT NORM

•

MOVE
	 0• •
• PLACE POLISH •
•TABLE ON STRING.••

NEXTS
	 H2 	

• •
• MOVE TO NEXT •
• STATEMENT	 •

J2
• LAST

	

. SORT A	 *. YES
STATEMENT •

 .•
. NO
• •	 .
..X• BI •

	

.	 •

	j3

REINITIALIIE •
X.	 FUR SCAN	 •

•

..X• Ea •• •

Flowchart. FOR19. FORTRAN Compiler, Phase 16

262

ENE
Al

•
INITIALIZE	 •

PHASE	 •••

START	 81 	
• MOVE STRING
•NEXT TO SYMBOL
• TABLE.
• INITIALIZE•

41444
• •
• CI ••(
• •	 X 	

	

01021• 	 X
CI 	

•
• INITIALIZE TO
• SCAN NEXT
• STATEMENT
•

01051
D1	 ..

..	 ..
	 02 	• 	

..	 STMT	 ' ..
FUNCTION	 '

YES• •	 MOVE DUMMY	 •
X*	 VARIABLE TO	 •

..	 SORT	 :0.
..	 ..

•	 OUTPUT STRING •
•

•	 NO

•
•

01061 x
E	 ..E1

.	 ..
	 E2E 	
•mOVE TO OUTPUT •

..	 ARITH	 ..

. 'CALL OR IF
YES

.. 	
.	 STRING	 •

X•	 PROCESSING	
STMT	 ..

..	 ...
.	 SUBSCRIPT	 •
•	 OPERATORS	 •

• NO

•

P2011
Fl	 	 F2

0000	 a. YES	
X: PRIMiiM2gT

°
•▪ • STATEMENT 	.•

• NO

•
•

P1053
01G2	

READ.	 YES	 • PROCESS READ 	
• WRITE. FIND 	 X• WRITE. FIND

• STMT	 •	 STATEMENT
41.

....NO

HI

'RETURN'YES
• STATEMENT

P2031
H2 	

4	 4
«PROCESS RETURN •
	 X.	 STATEMENT

•
NO

0/041
	 21 	

•MOVE STATEMENT •
• UNALTERED TO •
• OUTPUT STRING

KC....
..	 ..	 •••••2 	

▪..	 LAST	 ... YES	 • EXIT TO ROL •
• STMT END	 .. 	 X.	 ROUTINES

• SORT	 ...1.	 ..
..NO

..0• CI

Flowchart FOR20. FORTRAN Compiler, Phase 17

Flowcharts 263

ENT
Al

INITIALIZE
PHASE

START
	 El 	
• MOVE STRING
•NEXT TO SYMBOL
• TABLE
• INITIALIZE

••••••••
•
•

• Cl ...X.
• •

PIO21	 X
	 Cl 	

•
•

INITIALIZE TO
• SCAN NEXT
• STATEMENT

f	 •
fli1441

.X 	

P1051	 A

DI	 ..	 D2 	 	 	 03 	
..	 ...

. YES	
•	 •	 •MOvE TO OUTPUT .

• STRING TILL •
•. STATEMENT ,• 	

. MOVE DUMMY	 •
X. VARIABLE TO •	NEXT	 •

...FUNCTION ...	 • OUTPUT STRING :'.. ***** X . NON-PROCESSED •
..	 ..	 •	 •	 •	 OPERATOR	 •

.. ..
N

D4	 ..
...END OF
STATEMENT	 YES

X•. TERMINATOR

• CI •

• • •

•Fl	 E2

•••
	READ..YES	 I/O	 NO
hITITE, OR O. 	 X..	 UNIT

FIND	 ..	 INTEGER

• NO	 • YES

•
•

.X 	
X

Fl

ARITH.	
./.

YES •	 •
.▪ CALL, OR IF .•....X• E3 •
••STATEMENT.•	 •	 •

. NO

P1041	 A
	 G1• • 	

•
+MOVE STATEMENT
• UNALTERED 10 •
• OUTPUT STRING

P5011
E4	 ..	 	 15 	

..	 ..	 •	 	

•
CALL	 ... YES	 •MOVE 2NO CALLS •

▪ OPERATOR	 ... 	' 	X•W/ARG TO OUTPUT....
...	 •	 STRING	 •

•...	
•
	 •

• NO

•
..X. CI •	 •

mi.
P3011

F5 	
• •
•MOVE OPER.NAMES•

X•	 TO OUTPUT	 •...
• STRING	 •
• •

4•
• MOVE OPERATOR
• AND NAMES TO
• OUTPUT STRING•

	 L3 	

X. OUTPUT ERROR
•

F4
.■	 *.
•IF	 YES

•. OPERATOR	 .• 	

• NU

•
•

P2013

..... p.,
•
•
,•
•

••
%

• •
• 03 •

HI
ff..

	••
	WAS.NO	 •	 •
LAST STMTX. C1 •

STMT	 •	 •

. YES

.%

EXIT TO ROL
• ROUTINE	 •

Flowchart FOR21. FORTRAN Compiler, Phase 18

264

‘aaudurop NV/U.1103 • ZZ110.1 azEllomoLd6T as'otici

liens	 •
• 10N 01 11X3

• •
• •
• 3011 0310111d/40.
• ANN indino• •
	 IH 	

• •
• S311T13I1VA	 •
• 1090101 1S11
• ONV 3113001113 ••
	 19 	

•
• 0311113I1VA
• 10 0 0 1011
• am, 01000110
• 14 	

OZO1W

SINWIS
30031VAI003.

SS300Nd

T3
X

•• •	 •
N11111311	 •	 •003(1100 31v00110•

	 ?O•.	 •	 •
	 10 	

X	 0101W

01W10
• /1 1003 0011 •

Nani g N	 301/00 ININd
•101SAS NO Z3

	 	 	 1

ININd.
3211VIIINI	 •

X	 0 	
910dI

• •	 ha
.03110 10111d 0101.	 • 30014d 1199011111 •
•ST1313V3VH0 XlVd*	 mn HOJ alms •

• ININd SAS ()v01.
	 E9 	 	 	 ZO 	 	 	 /B 	
X	 11/dM30	 ININd

• •	 •
• awls	 •	 •	 wins	 •
• BdM3N N3103•	 • 101Nd 113103 •
	 EV....	 	 z•••••

OSVHd
37111/11/01

IV

•	 ONION3H	 •
101U ONV

• 39Vd 30OI5311 •

930

ENT
Al

INITIALIZE
PHASE AND
PRINTER

MOVST	 X
	 B1 	
• DELETE EQUIV •
•STMTS. IF ERROR.
• NOTED INSERT •

ERROR ID •

A/011
	 CI 	

• LIST	 •
UNREFERENCED

• STATEMENTS •

A102/	 X
	 DI 	

MUST UNDEFINED •
VARIABLES

• •

ern
• •
• E/ ..X• *

	

....	 X
E1011E2011	 R1011

El	 ..	 E2	 o.	 	 E3,.•..•..•••••

	

...		 •	 REARRANGE	 •

	

.. END OF	 .. YES	 ..	 COMM	 ..	
X: DATA, 8. NO

11,40,14 ..X...	 STRING	 .• 	 X0. AREA ERROR

	

..	 -.	 •.WD IND ON.•	 • DEFINE FILE,	 •
..	STMT EUNCT AT LOW STR AOR

. NO • YES
•

E1024.•.	 E2020	 I▪
FE	 ..	 	 F2 	

•
PRINT MESSAGE	•F1.••..•..•..•

ERROR	 .. YES	 • 'OUTPUT HAS •	 • EXIT TO ROL •
ID	 BEEN	 	 X.	 ROUTINE

	

..	 ..	 • SUPPRESSED' •
• •	 . ***** ...MOM'

. NOO4OO
OM

: G3 :	 •	 •
• G3

MO
i	

•.E1051
M
 X

GR	 ..	 02'..	 G3..... ******

•
...		 LIST ERROR AND

DATA	 ... YES	 ..	 ANY	 .. YES	 •STMT REFERENCE.•
• STMT	 .. 	 X•.	 COMMON	 .. 	 	 DELETE FROM

•..VARIABLE ..	 •	 STRING	 •
..	

• NO

•

E1031
Hi 	

• •
•MOVE STATEMENT •
• UNALTERED TO
• OUTPUT STRING
• •

• NO
	 •

MO

• El •

Flowchart FOR23. FORTRAN Compiler, Phase 20

266

•
•
•
•

A.

ENT
	 Al 	
• MOVE STRING

NEXT TO SYR
• T8L.INITIATE
• FOR STMT SCAN
• *O..

.	 •
• 82

.4.4

m1021
1

M1051
8

	 al

MT	

....

..ST
NE

 F
xT
ORMAT.. NO	 • "NT

	

.	 -.. NO

	

...STATEMENT OR	 	 R. STATEMENT
•.CALL I/0 *.FUNCTION...

• YES	 • YES

X	 M1071
	 C 	
• MOVE

I
 STMT TO 	 • 	C2
	

.	 •INSERT3
	

	

 REL ADDR 	
• OUTPUT STRING •	 •	 INSERT	 •

	

•...	 INSERTING	 :	 •ALLOCATION INTO•	 :STg7T
1ST

• ALLOCATION	 • OUTPUT STRING •	 •	 AREA
• •	 •	 •	 •

x
	 52 	 	 D3	 ..
OUTPUT CALL	 ..	 .
SUBIN W/0 ARG •	 ..	 IS	 .. NO
AND STMT BODY •	 .. SUBPROGRAM•
TRKSW IS 0 IN	

SURE	 •	
YES•

• •
• 82 •

.111111...

M1081 x
F3 	

• OUTPUT CALL •
• SUBIN W. ARG •
•TRAKSR TS I IN •
• SUER	 •
• •

X

M10 2
F3

OUTPM4VING.

thLOCgRIMM

EXIT	 X
G3

• STORE PROGRAM
LENGTH IN

• COMMUNICATION
• AREA

....H3 	
• exIT TO ROL
• ROUTINE	 ••

Flowchart FOR24 • FORTRAN Compiler, Phase 21

Flowcharts 267

ENT

•

•

▪ 	INITIALIZE
•

•
POINTERS FOR •

+SCAN OF STRING •
• •

.44.4.

: 01 ..x.

O444 . ;4

MI000•

.. NEXT
▪ STMT HAVE	 YES

• STMT
NUMBER

• NO

CI	 ..

NO

	

	 * IS NEXT ..
STATEMENT

•.FUNCTION

• YES

:X 	

ALOC

LISTINGNO
REQUESTED

• YES

	 El 	

	

•PRINT STATEMENT 	
NAME AND

• ALLOCATION •

X
	 Fl 	

	

•INSERT ALLOC IN 	

	

•SYM TEM.,. DELETE 	

	

•LABEL ALLOC OF 	
• 1TMt
• •

GI

MOVE STMT
UNALTERED TO •
OUTPUT STRING •

. .
HI	 ..

	

.	 LAST	 NO
• SIMI WAS	

END

X

• YES	 6444

• 01

4444

..j1 	
• EXIT TO ROL •
• ROUTINE	 •

Flowchart FOR25. FORTRAN Compiler, Phase 22

268

• NO

L2041
	 B2 	 	 B3	 ..
• •	 .
•SCAN STATEMENT •	 .. LISTING

..
 .. NO

+STRING FOR ONE •	 .. REQUESTER
• WORD CALLS	 •	 ..

.. ..
• YES

CALLED.TAG	 LLED	 R.	
	 C3 	

• NAMES IN	 •	 •LIST SUER NAMES 	
• SUBROUT/NE OUT •	 WHICH HAVE BEEN
• TABLE	 ••	 TAGGED	 ••

•

	 D2 	
• •
•MOVE POINTER TO.

...•NEXT STATEMENTS.

....Q 	
• EXIT TO ROL •
• ROUTINE• •

ENT	 12012
	 Al 	 	 A2	 ..• •

	•INITIALIZE THE .	 . END OF •.. YES
PHASE	 •	 ..X•..	 STRING	 .* 	

• •
• •

	 81 	

• LIST FEATURES •
SUPPORTED

•

K1051
CI

••
	NO
EXTENDED•

..PRECISION..

• YES

	 D/ 	
ALTER SUBR NAME 	

TABLE TO	 •
REFLECT	 •

EXTENDED	 •
PRECISION	 •

X

	El	
• TAG NAMES IN •
•SUBROUTINE OUT•
+TABLE INDICATED.
•10 IOCS WORD	 .IN
• COMM AREA	•

11035
Fl

••

LISTING*NO
▪ REQUESTED

•.;ES

	 01 	
LIST SUBPROGR

•NAMES THAT ARE •
IN SYMBOL

• TABLE	 •

L2011
H1 	

• •
• INITIALIZE	 •
*STRING POINTER •• •• •

Flowchart FOR26. FORTRAN Compiler, Phase 23

Flowcharts 269

J2	 *.

• MAXIMUM •. NO
X•. COME SIZE

••.j3 	
• EXIT TO ROL •

X.	 ROUTINE	 •
•	 1.4

ENT
Al

INITIAL/2E
PHASE AND
PRINTER

•
•
•
•

;
L4C11

81

SYR TOL .. NO
• LISTING

•..REQUESTED..

•*YES

•

Cl

NO

• YES

	 DI 	
•MODIFY FOR EXT
• PREC. INSERT
•PARAMETERS FOR
• CONY.

L4021
	 El 	

• LIST REAL	 •
CONSTANTS• •

ii
	 Fl 	
• COMPUTE	 •
• LOCATIONS AS
• ENCOUNTERED. •
•SyM TIE PASS SW.
• IS 0

GI

•"21APILM •

HI 	
• COMPETE	 •
• LUCATIONS AS •
• ENCOUNTERED. •
•SYM T8L PASS SW.

IS I

::x

CORED 	 X

J1 	

• LIST CORE
REQUIREMENTS

• YES

;
K2 	

•
•SET ERROR CODE •

••

Flowchart FOR27. FORTRAN Compiler, Phase 24

270

Al

INITIALIZE
PHASE

• B/ •.X.
• • .
••••	 A

510/1 	83
B1

•
.* DEFINE• YES
	 X•Fifir MUMS:FILE STMT

•.
• NO

FIO21
•CIC2	 	 C3 	

• • 	 •	 •
DATA YES	 • OUTPUT DATA •	 • OUTPUT DEFINE •
STMT	 	 X.	 STATEMENT 	 • FILE TABLE	 •

NO

ENT

•▪ 01 •.X• •

	DI	•
• SCAN SYMBOL
• TABLE FOR
• CONSTANTS

0102201032
El	 ..	 	 E2 	

	

..	 •

.:' CONSTANT ...YES 	
•	 OUTPUT IN	 •

X* ABSOLUTE MODE •

	

... FOUND ..	 X	 •	 .
..	 ..	 •	 •

• NO

•
•

F1015
03 	

•
• MOVE TO NEXT •
• STATEMENT	 •

..X• 131 •• •

01031
Fl

••• 	
REAL	 YES

CONSTANT	 • 	
FOUND ..

• NO

	

0/033	 x
F2 	

	

.	 •
• PLACE	 •
•ALLOCATION INTO.
• SYMBOL TABLE

•• COUTAINTS

.AYES

• 01

••••H2 	
• EXIT TO ROL •
• ROUTINE	 •
• •

Flowchart FOR28. FORTRAN Compiler, Phase 25

Flowcharts 271

	 Ala..*
INIITAWIZE

111

.4. EXTENDED
*.
 *. NO

PRECISION...
...REQUESTED..

• YES

	 CD.***
•ALTER SUER NAME.
* TABLE TO	 •
* REFLECT	 •
• EXTENDED	 •
• PRECISION	 •

	 011••••
OUTPUT STRING

•°MOWN •
• OBJECT	 •

PROGRAM.
........

•• EXIT TO FEEL
• ROUTINE	 •
•

Flowchart FOR29. FORTRAN Compiler, Phase 26

272

• YES
•

i
RC300...

0E3 	 	 E4•	 	 E5 	
• •	 .*	 *.	 •	 •

:NOW1 MAES •	
.. M.S. ON .. NO	 •UPDATE DCOM ON •

• '...cM4V8GE.. ----- x: NON—SYSTEM
	 =

•-.. ..--
YES

X X

RC000
	 A2 	

:REVAIHLPHISE
•

	 B2 	
• LOAD SYSTEM •

PRINT
• SUBROUTINE •

C2'....
2	 RECOVeRY *. 0
• TYPE CODE .• 	

*. EQUALS 0.

• 1

RC600	 RC500	 x	 RC100	
.•04		 DI 	 	 02 	 	 D3	 ...	 	 04

• •SET NO DUP. NO •	 .• ERROR *.	 •
• SET NODUP.	 •	 • XEQ SWITCHES. •...	 IN	 *. NO	 • UPDATE SYSTEM
•N0XE0 SWITCHES •	 •SET TO PRINT WS .	.. COMPILATION	 X CARTRIDGE DCOM
• • EXCEEDED MSG •	 *.	 ...	 •
• •	 •	 *.	 ...	 •

	 El 	
PRINT MON CTL

• RECORD	 •
ENCOUNTERED

•
MNT

SG	 •

X	 RC200	 0
	 Fl	 	 F4

PRINT	 •	 •
• COMPILATION •	 • SET TO PRINT •

DISCONTINUED	 END OF	 •
• MSG	 •	

•
•COMPILATION MSG•
• •

	 GI 	 	 	 G4
• •
:IMESUE470°:	

•	 •
PRINT MSG

• I/P BUFFER	 •	 •	 •

••• 	
• CALL EXIT TO •	 •• CALL

114
 EX/T TO •

• SUPERVISOR	 •	 • SUPERVISOR	 •
• •••

Flowchart FOR30. FORTRAN Compiler, Phase 27

Flowcharts 273

CARED

DISKZ
•	
• READ SLET •

	 B1 	•
•FETCH IOAR HOB
• FOR PRINCIPAL
• DEVICE RTNS•

	 CI 	•
• FETCH .10
•RECORD. SET UP
• FROM—TO TABLE•

• 	

A
	 0/
D1SKZ

• READ DCOM •

• ▪ El •.X.• •
X

El	 E2.•*.	 	 E3 	 tom

.NO	 or	 CART	
DISKZD1

•• YES	 •	 •• CAIVIDGE	 	 X.. ON SELECTED 	 X READ ID FROM
...PROCESSED..	 DRIVE	 • SELECTED	 •.

YES • NO

	 F 	
D1SKZl

WRITE UPDATED
• DOOM	 •

•
•
•
•

F3'....
• . 0.

.1D I5
CART

DCOM•N)
e.ID FROM THI!

DRIVE .0
a.	 .0

YES
4	 •

▪ * GI •
••

***** 404...0460
•

•	 •
• GI •.M

	 GI 	

• PRINT FROM—TO •
TABLE• •

• ▪ EXIT TO SEXIT •
• IN SKELETON •
• SUPERVISOR	 •

G3	 0.
• LAST

.•FROM—TO NO... NO
IN TABLE

...PROCESSED..
0.	 .0

• YES

G4	 ..	 	 G5 	
..	 I..	 *PROCESS CHANGE 	

.•CART ID .. YES	 • UPDATE SCUM. •
X*

.
. IS TABLE ID .. 	 X• ADD ONE TO	 •
..	 ..	 • TABLE POINTER •

0 .	 ..	 •... .0
• NO

.....	 .• • o
• 0H4 •.X.• •

••••
	 .i.

	 H4 	 	 	 H5 	
• INCR XRi FOR	 DISKZ
• NEXT DC M ID	 • 	 •

X•	 AMIREAVE	 WRITE CART. 10
• ON SELECTED •

• •	 CART.

:.X • El •
•....•

..X• H4 •

Flowchart U11.01, System Library, ID

274

FSLEN

•
Al 	

:FSICUEStitiCeDD
•SYSTEM ROUTINE•

	 111

•FETCH PHASE 10

•JWINICRE

	 Cl 	

	

•FETCH SLET FROM 	
SYSTEM ODOM• •

	 Di

• SEARCH FOR
• PHASE KO

. .
El	 m..
	
	 E2 	

	

.•
	 •

..	 PHASE	 ... NO	 • PLAGUE140 IN

	

.. ID	
I

N ODOM 	 0:

	

..	 ..

	

..	 ..	 •

• YES

	 Fl 	

:
• FETCH HOE
•SECTOR ADDRESS

ilm••01

•CALIFMRLUY/NE•

...••H1 	 •
• ENTRY FSYSU •

•••••••
02000

•
FETCH REQUESTED
*ROUTINE FROM •

DISK

	 K1 	
• •	 ...••K2 	

•VagNIIPPY• 	 X•RETURN TO USER •
•POINT IN A-REG ••

Flowchart UTL02. System Library, FSLEN/FSYSU

Flowcharts 275

sivalav ‘11..re1qvi tunsAS • £011,11

9/.2

• •
• 1103	 ••
	 IH•••••

!'

18?

"18a3047 :M

•

NO inilt1101
ONV 1V,0104
	 13 	

X

/44111t3n
	 la 	

X

ON

•11 .	 33001103	 .'"'

	

• 4,	 030	 o. 53A

•

	

8 AO	 •
339NON 301)35 •

13314337Ni	 •
	 111 	 •

X

	3911101S	 •
VIM awn
	 'V 	 •10800

DISC
Al 	

•CALIO	 •

1.•••
• •
• B2 •

• •
•READ ID RECORD •• •

• •
••••

	B1 	 	 82.....
ALPR	 007A1 	 	

	

-•	 .•	 ANY	 *. NO
PRINT .10	 •	 ... DISK ERRORS

RECORD	 •	 *.	 ...
•

• •.:ES

004i
• •
• e2 •

EBCBI	 •
CONVERT .10

RECORD TO	 •
BINARY	 •

	 C2 	
REWRITE AND

.REREAD PATTERN •
THAT FAILED 50
• TIMES	 •

X	 . .
	 DI 	 	 D2	 ..

..	 .
•READ MOM FROM •	 ..	 ANY	 .. NO

MASTER	 .. DISK ERROR
.

• CARTRIDGE •	
..	 ..

• YES

x 	 El	 	 E2 	
• SET FLAG TO	 •
• PREVENT	 • FLUFEVINEER
•INITIALIZATION
• OF LOGICAL 0	 •

•

X

	 F/ 	 	 F2
• *.
• INITIALIZE	 ND	 ALL	 *.
• DEFECTIVE	 *. CYLINDERS .•
•CYLINDER TABLES	 WRITTEN

• YES

•

	 GI 	 	 G2	 *.•
SEEK ROM	 •	 S

• CARTRIDGESE TO •	 .:**CYthDER •. YES

	

BE	
• INITIALIZED •	 ..DEPECYIVE.*

••
• NO

	

x 	

	

x	 ...
m.

WRITEI
	 	 2
AND READ	 .. MORE

.
 ..	 •CALRRH3 007A1 	

•BACK 3 PATTERNS•	 .. THAN 3 ••. YES X	 ..-
TO ALL	 *. DEFECTIVE.. 	 X. PRINT M1SSAGE •

• CARTRIDGES •	 ...CYLINDERS..	 •	 CARTE DGE	 •
.	 ..	 •	 CARTE 	•
.. ..

• NO

	 J2 	
•DISKZ• •
• INITIALIZE	 •
• W1'8601,42

•
• ExIT•

Flowchart UTL04. System Library, DISC

Flowcharts 277

	F/ 	

•
•

▪ STORE CENT FOR ••
• •

	GI
• PLACE ENTRY •
•POINT OF SYSTEM.
*ROUTINES IN THE•
• A-REG	 •
• •

HI
•

PRINT .10	 •
RECORD	 •

••

RDREC
Al 	

•FSLEN	 002A1••	
• FETCH AND	 •
• CONVERT . 10 •
• RE ORD

•

•
•

;

NI	

•••
•

VALID NO
•ID RECORD

• YES

•

	 Cl 	
PACK EBCDIC •

STOWT taR.S•
PRINT TABLE

	 •

	 DI •
CONVERT ID	 •
NUMBERS TO •
BINARY AND	 •

STORE IN USERS.
TABLE	 •

El

.. NO
NUMBERS

••••E2 	 •
PRINT ERROR

MESSAGE	 •

•• RETURN TO	 •
•CALLING ROUTINE.
• •

Flowchart UTLOS. System Library, RDREC

278

IDENT	
Al 	

•CALPR	 007A1•
.---------------•
• •
•PRINT HEADINGS •
• •

	 El 	
DISKZ

• -*

• READ OCOM •

X

	 CI
*FETCH CARTRIDGE

.
*

.10 AND PHYSICAL
• DRIVE NUMBER •
• FROM DCOM	 •
• •

	 Dl 	
•CALPR	 007A1•
• -*
• PRINT ID AND ••
•PHYSICAL DRIVE
• NUMBER	 •

. .
El

•.* END OF	 NO
11.	 TABLE

• YES

• .*F1 •
• EXITTO	 •
• SUPERVISOR	 •

Flowchart UTL06. System Library, IDENT

Flowcharts 279

•

CALPR
Al

: STORE LIME
• COUNT
•
•

Bl

: STORE PRINT
• LINE ADDRESS

CI

• PRINT *•*. YES
*. ROUTINE IN.4.. MEMORY

•	 HO

•	 D 	 •I D2	 	 D3 	
•FSLEN002A14

—• LINE*. YES	 •PRINT HEADING,
•	 FETCH SLET	 •
•	 PHASE IQ	 •

..X.. COUNT ZERO		 SPACE ONE LINE •
•	 HEADERS	 •

NO

	 El 	 E2
•FSYSU	 •

*GET WORD COUNT
•	 FETCH SYSTEM	 • 	 	 SETpgwFrOR
•SUBROUTINE FOR •
•	 PRINTER	 •	 •

F2

•
PRINT •

406M

	 H2 	
•
•DECREMENT LINE
• COUNT BY ONE

•

LINE	 *. NO
*. COUNT ZERO

.

 .*...

• YES

**.••1(3 	

EXIT••

Flowchart UTL07. System Library, CALPR

280

swIromma

Ac103 tAreaqn tuaiskS • 801.1..11 lavtlomoid

•
•11%3 •

	 IA. ..0

•
•

•
IVLOO	 bd/V3
	 13

: SNQI1V 1NV]0°
•	 01-NONA	 •
• 311P13A;

TO

•
•
•
• S3A •

• .-	 ..

• igaigiip'' X	
• SNOLIVN19•103 .0 	

ulmRfiR4 VOi:	

.319011000.4.
300101003 '..

ON '. 03Id133dS .'•

	

01-deld - ININd •	 :upon Sudo/ °Yid.	 '. 110 o'

	

93.•..••	 	 3	 ^.	 03

• 30010 •103ANO3•
• •000330	 •
• 01. N5131	 •
•	
•10000	 3390N.
	 19 	

• •
•smilnoa 331030•
• W31SAS 0313A •
.10000	 33009.
	 TV

AdO3

DICIR
	 Al 	
•ROREC	 005AI 	

• FETCH SYSTEM e
•DEVICE ROUTINES.
• •

	 El 	
+RDREC	 DOSAI•
	 •

•FETCH, CONVERT •
• ID RECORD	 •
• •

CR	 ..	 	 C2 	
.	 *.

•. SPECIFIED .. NO	 • PRINT ERROR +
.. CARTRIDGE .• 	 x .	 MESSAGE	 .

...AVAILABLE..
*.	 ..

YES

D2 +.1(
• •
0•0.

DELETE: CIB,MOVE
• USER	 •	 •	 •
. AREA WORMING	 EXIT	 •
•STORAGE DOWN •	 •	 •

•
•
•

	 E/ 	

	

•FETCH DCOM FROM 	
SYSTEM

• CARTRIDGE •

........

	 El 	
ALTER SECTOR
ADDRESSES OF
CIO, UER

AREA,MORSKING
STORAGE IN DCOM

• WRITE DCON ON •

CARTRIDGE •

	 HI 	
• ALTER FILE	 •
•PROTECT ADDRESS+
• IN RESIDENT •

:spUTIN8 FART :

	 JI 	

• WRITE DCOM ON •
SPECIFIED

• CARTRIDGE •

• PRINT NEW UA •
• AND MS	 •
• ADDRESSES OF •
• SPECIFIED	 •
• CARTRIDGE	 •

• • • •

..X• D2 •

Flowchart UTL09. System Library, DLCIB

282

EEZ sUrqamoil

.LaIsa (Areaqm uia4sA5	 aavtiomou

• •
• 1113	 ••

53A

•' • 031313d •'S3N11
ON -•	 Ot 11V

•14

3311 V 1N13.1

11,100 	 3d1V3 	
13 	

	

S3131N3	 •

	

131S t 40	 •
3N1/ V 1VWVO4 •
	 TO 	

NOD 	 •
1N1341 ONV 30Vd•
M3N 01 d1MS •	 •

1V100 	 3d1V3.
13

•
••
• naavanil 13S
• 19 	

•
• 3303 01NT •
•319,1 1310 MU..-------------__.
•	 TV 	

13/S0

fxSZ

alum 'Amnia ulalsAS • I van Ireliamou

•
• 09

•
•• •

•

• 3510 0084 •
• i1i141 31sA732 •
	 IN 	

06000

•
•553I009 191 135••
•
	 1r

X

ON

09000

•
•

. 1V
•

 •
. 110.

• 831409	 •
01 0030 0938

• 01093 0000 0038.

S O
0E900

)(•• •
.1V •	 ens. •
.010.
	 o'	 's

3dA)	 .•
3513	 830930

• C0•
OZSOW

•

	

SS38009	 •
1 d303 1841 513 •	

./41
S3A ".	 0E11

•
•	 ZH 	 •.....10

OLOOW
0)1

•

ON..

	

•0411i 1 131	 •ix	 53A	 NI 1032*.	 .•
	 ZO 	 •".	 10

09000

S 30033	 :X
	 4i••••

ON

'	 1031
	 'ON 13091 *.
51A ".	 300003 o'

Ed

•

	

001 1'd 	
•X••

	 01 	 •

• -vans	 •
NOIMAND1

• /131.3d	
•

	 Id 	

4 00333	 •0
	 43....

• 13 440••

• •• •	 •
• 10003	 •
.031Vd 123033330 	
• •

	

53 	

53A

	

330930	
•• 011VA	 •ON

• sa •

••

ON

 3010
ON 13031 '•

53A	 30/0043...'
".	 E3

...21500
• •

X'. E3 •
• •••••

4Nnop
H310d 301,5

ONV 1399103
£0

•
1 80303	 •
	 03.•..

DN •

..h;*

530•
• 20

05000

ON

-----S3A•9d

13
• 51000

▪ -mtris	 •
321030 0/1

•1Vd130111/1 03134•
	 10 	

•
•

ON •
.°

080330
40	 1031003	 o'''
'...8011000.' 53A

• 53

• •

• .3142 9 3 1430 •
53

53t.

	

•• X:	 1 00383	 •0 	 •
'11	 VTR"	30 	 .:*

•	43....	 's•

	

".	 E3oo.

ON •

	

a"	 4.

.' 080338•

	

X:	 9 30333	 4:8 	
SU•*. 108)003•	 49...•	 o•

ES

• swamlaNI •

Wfingin403

	 Z3 	
00100

• •-yens A30 10134
•lVd13013d H313•

13

• ND-0015 S1018d •
	 09 	

• •xsla
.0039 1315 W3134.
	 19 	

00009

ON •

R... 	 INnoo
S g A	 3319d	 o'

59
'11"

•
• •.5t, •

.110.

•
• Nit° 0"
	 E w

S	 V ONI •
/104 iINSON:

• N 1593A 39
V

05 •
ZO 	

•
• •
• 09 •• •

• oolV 	

• 32113:1Alaii3:

00000005DM

.012•
• Al.

• •

•

%

•

.	
P. L

A4

ACE PATCH

187/9FP4SK•

M0530
	 Al 	 •
• SffitITA78
• NUMBER	 •

•

. .
81	 0.	 	 82 	

• •	 ••B; 	
. NO	 •OBTAIN DISK AND.	 •	 •O. ABSOLUTE •

	

x:MEstErEilRiH:
	 •	 ERROR 9	 •

PATCH .•	 •	 ••

•011•

.A5•

•

J.	 DI 	 	 D4	 ..
OBTAIN NUMBER	 .0	 ...
AND FORMAT OF •	 ..	 HEX	 ... YES
PATCH DATA	 0.	 PATCH	 .0....

RECORDS	 0.	 ..

	

0.	 ..
• NO	 ••••

•.	 • Fl •• •
	 Xi	 ••••

M0568	 ..
El	 ..	 E4.....

...	 .0	 0.	E5 	
•

HEX	 0. NO	 .. BINARY • ...NO	 •
PATCH .0 	 	 0. 	 PATCH	 . 	 X•	 ERROR /

...	 .0
• . *•	 •*

YES • YES

	 F4 	
0.••E2 	 	 •

• •	 • SEMpARY
• ERROR 3	 •• ••

M0590	 X
GI 	 	 	 G4

CONVERT AND
STORE RECORD

AND[[

BINARY BUFFER
• MEHBIATV••

RY

• RECORD	 •

• YES

	 CI 	

OBTAIN DISK AND
CORE ADDRESS
FROM HEADER

• NO

	 B4 	

• WRITE DISK

• SKITAR
2R

M06/0
C4

•

•
ALL

P
L
A
Lpp
TCH

gg•
0. YES

M0599
	 HI 	
ALHKAR 815K

SECTORSSECTORS TO BE
PATCHED

H4	 ...0	 .	 44..•.H5 	.•	 .1. YES
CHECKSUM • X:	 ERROR 2
ERROR ..	 •	 •

...	 .0
•-0

.j2.

	

.4.	 PATCH • •. YES	 •	 •
• TOO BIG	 	 X.	 ERROR A	 •• •

• NO

X

	K1	

• READ DISK	 •

• sEiNg0

• V

• A4 •

Flowchart UTL12. System Library, MODIF

Flowcharts 285

•013.
• Al.

	

ERODE 	 7(

Al
• •	 0..••A2 	 	A3114.16...o...
• UPDATE ..MDFI •	 •	 •• AND .. MDF2 IN 1.---------0	 ERROR I	 •	 •ENTER FROM DUP •OCOM	 •	 •	 •	 •
• •

SR020RY000 	 El 	 	 83
•WRITE D NIDIF ON • • FETCH °CCM. •

PRINCIPAL PRINT 1
 DEV. SUER •

X
	 CI 	 	 C3	 It.

••FETCHDlig	 •FROM •	 .• •MFD2	 NO• EQUAL 0	 	 X.•

YES

.e.
03	 4.....WA 	 	 ..,	 0.	1•D4 	• •	 .•	 =MDFI • .1. NO• EXIT TO OUP •	 o.	 EQUAL 0	 .. 	 0.	 ERROR 8• •	 0.	 .•	 •

*.	 .•
• YES

•013•	 .
• E3
••••

RY/00 •
 E3

	 • .00••E4 	
• /Y AbIED .:." 	 X:	 ERROR 8	

•
•

.1. CARD	 .•	 •

YES

x
	 F3 	

UPDATE DCDH,
MOD LEVEL AND

VERSION NUMBERS

	 83 4p."

hfit2x78RIF

	 H3

• PRINT	 •
TERMINATION

• MESSAGE	 •

••••j3

:	 SKELETON
• SUPERVISOR	 •

Flowchart UTL13. System Library, MODIF

•

C4

WAIT

286

•

*****H2*•********

* FETCH PRINT	
*C ONVT	 *

SUBRTN	 * CONVER /EC *
*COUNT TO

T
 BINARY*

**********•**	 *****************

******H1***********

. YES	 *010.
Er000	 .FC015	 * 02*

******A1***********	 AZ	 *.	 * .
.	

*SECTOR SECDNO *	 ..	 INPUT	 *.	 	
SEC TOR OF SLET	 X..X*. DEVICE BUSY .*X 	
a.**.*.

.	 ..*************	 *. .**;**	 * NO
. *
* A2 .	 •* *	 •

X

•****A4**********
*•**	 *CONVT	 *

*	 *	 * 	
* A4 5....X* CONVERT INPUT *

* EEC SIZE TO *
****	 *	 BINARY	 *

****** ********** *

•
•
•

*****R1**********	 B2	 t.	 B4	 *.
* *	 .*	 *.	 ****B1*********	 ..
:SFp

i
lil
tg
LU v FOR:	 .* MONITOR A. YES

N.	 CONTROL	 .*, 	 *
	 EXIT TO	 *

	

x* SUPERVISOR	 *	
NO .*	 INPUT
	 *. RFC SIZE	 .

*SUBRNT ENTRIES *	 N. RECORD .*	 *	 *	 *. VALID .*
* 5.	 ..	 ****it* *****R**	 *.	 .•
*****************	 *. .t

* N3	 • YES

C1*********:
KK

:DETWOERRIN

.	 .

.	 -
•

X
R

. 5 C2	 *•	 :tliAW***** **** :
*.	 ****c3*********

YES	 * 	 *
t. CARD	 	 X: SUPERVISOR	

*
	 *CONVERT OUTPUT *

*	 * REC SIZE TO **.*. ON .*.
***************	 BNARY	 *

#****************
* NO

•

5Cool
...a.**ol*****.**.,*#	 ******D2*L▪ ********	

*
.04	 S.

* FETCH INPUT *	 NO .5 OUTPUT '5.
SUBROUTINE	 READ ONE CARD	 * *. RE5AffiE .•.*

.	 .	 ****
......*******	 *************	 *

YES	 . ES
.
****••

X

*****E1**********	 E2	 ..
.*

N SET INTERRUPT *	 .*	 DATA	 *. YES
VECTORS C ILSOI	 N.	 CARD	 .* 	
* ,i0RD FOR IRT *	 *.	 .*	 4

N.	 .*	 *****
....*************	 *010*

* NJ	 * 04*
* *

FCO50	 X
******F1***********	 ******E2***.*******

. FETCH INPUT *	 *	 *
DATA CONVER	 PRINT CARO

.	 SUPRTN	 *	 *	 *

* **4444444***	 *************

X
*****GI.********:	 G7•*. ..

.*	 *.
: DUR7 1 .1ANN :	 N. DESCRIPTION .* 	

.*	 FILE	 .. ND

* *. CARD	 .*	 x

* S.*. .*	 *011* *0/1
* *****

* YES	 * A1*
* *

*

FEN.*	 X
*****ES* *********

* COMPUTE INPUT *

* REC Si2M, PFR t
* DETERMINE	 •
* PRECISION OF *
* REAL NUMBERS . ■

**•EN 	
* DETERMINE	 *	 *SFARC	 	
* PRECISION OF •	 * 	 *
* FORTRAN	 *	 *LET/FLET SEARCH*
* INTEGERS	 *	 *FOR OUTPUT FILE*
* *	 *	 *

****** ********** 5

FCI40

	

G4 *******	 	 5.*********

:IMMPOIRDNUT:	
*COMPUTE OUTPUT *
* RFC COUNT PER •

• DISK	 *	 SECTOR
• *

x
***** H444444 *****	 *****HK***** *****
* *	 *	 •
* DETERMINE OBJ *	 *CALC FILE SIZES*
* WARNING MSG .	

1
CHECK
	

*
*	 OPTION	 *
* *	 *	 *
*********•*•*****

444,
..Y* 47 *

•

is

x

	

*****J1**********	 J2	 *.	 .*****J1** ***** ****	 J4	 *.
* .	 .*	 S.

* SET INTERRUPT *	 .*•* RECORD * *. NO	 *	 PRINT	 *	 .5	 CARD	 S.
• VECTOR	 .	 S. COUNT VALID .5 	 X DIAGNOSTIC MSG	 S.	 INPUT	 .*
* *	 *.	 ..	 *	 F01	 *	 *.	 .*
* *	 N.	 .4	 ..

:	 5***
.	 *	 *	 •

	

..X . A7 *	 k	 •

	

4	 *	 ****	 •

	

****	 *	 •

* A4 .	 Cc
* *	 x

	

****	 ****1*********	 *SEARC 	 *
*

K
EkIT TO	 5	 5	 *

* SUPERVISOR	 .	 *LET/FLET SEARCH*
* *	 *FOR INPUT FILE *
*************•*	 *	 *

•Flowchart DCN 10. CHART A. System Library D,s1(Data File Conversion Program (DFCNV)

* YES

Flowcharts 286.1

Ff 1 10
Al	 *.	 A2	 *.	 A3	 *.	 .*****A4***********

.*		 *.
.* CSP Al	 *. No	 .*	 FIELD	 .. NO	 .*	 END -	 .. NO	 * PRINT WARNING *A. TRANSLATION .* 	 X..SPECIFICATION.. 	 X*. OF - FILE .8 	 X	 MSG F06
. TABLE .	 *. CARO	 .4	 *. CARD	 .*	 *	 X

	

...*	 a.	 .*	 4.	 .4	 * * * * *
A. .■ 	 *************	 *010*	* YES	 * YFS	 * YES	 * A7.

* *

%	 *013*
%	 FC0I6	 * Al*

	

*****31**********	 42	 B.	 * *

	

*	 .■ 	 *.	 *
* LOAD Al TABLE *	 .*	 A. NO
*WITH DATA FROM *
. CARD	 *	

*.t EMBEDDED .4.4.—
* *	 ..	 .*

4.. !* ;,s
•
•
•

4,*.i.***t."*4k*
*ix***

:0i:
I At

******c2*********.*

PRINT
DIAGNOSTIC MSG *

*

 •

fr?in
Cl	 *.

.*	 *•
.. REPEAT	 B. YES8.	 OPTION	 .* 	
*.SPECIFIED..

C4	 S.	 ****.C5**********
.8	 *.	 *CONVT

	

.4 REPEAT	 *. NDa	 .
X*. COUNTER SET .8 ***** ...X* FETCH REPEAT *

B.•	.*	 *	 COUNTER	 *
t************

* NO

D3 ...X.
*

FC2Il

43	 *.
*.

8:8COLCPAYNTFP4: *YES
.	 . 71	 .

*•	 **. .**
* NO

410
* AA** *

i**.i.**404M.****

• YES
•

X'

FC212
*****05**********

*	 DECEMENT	 **REP	
R

EAT COUNTER *

:******** ** ****

•

	E3 	 *.	 E5	 *..*	 *.	
.*	 CARD	 *. YES

• TERMINATOR • 	 	 *:. COUNT 	 0 8:*':!?.*.DETECTED •*	 x	 *.	 .*

	

***•..	 ..

	

010	 .• ..t	 X* NO	 * A7*	 * NO	 ft***
* *	 *

• t	 .	 * D3*

	

.	 .	 *

	

X
	 .***

	

;•El	 S.	 ******F4***********	 *****Fs**********
.8	 *	 .

	

.* SPECIFIC *. B . NO	 *	 PRINT* SFT CARD COL *
..	 TERMIN	 .*. 	 X DIAGNOSTIC MSG	 *POINTEP TO PREY*

...DETECTED .*	 *	 F04	 *	 *	 SPECIE	 *
.	 .

	

*************	 *****************
* YES

	

.	 x
	 X;	 ****

*	 *
FC213	 •*.	 x	 * G3 *

	

G3	 F.	 *****G4**********	 *	 .
****	 .4	 ..	 *	 *4,4,4,

*	 *	 .8	 CARO	 8. YES	 * POINT TO NEXT *

	

*
* G3:....".*.DICEMD .4 .5....	

*	 CARD COL	 *

	

*	 ...**...	 .*	 . 	 *

	X 	 *****************
* NO	 *****

	

010	 :	 ****
• * A2.	 . *	 *
• * *	 ..X. D3 *

	

*	 *	 *

	

X	 ****

A****47**********
*CONVT
* FETCH BYPASS *...•
o 'man COUNT	 *

*

* *
* 03 *
* *

*Flowchart DCN 11. CHART B. System Library Disk Data File Conversion Program (DFCNV)

286. 2

.0/2*
* A3** *

)7(

*****A3**********
*CONVT	 *
	 a

* FETCH RPG EEC *
COL	 *

•

*****B3**********

DETERMINE FIELD
TYPE

•

*****T3 ****** ****

*• FETCH FIELD .
TYPE CONVERSION
* SUPRTN ADM

*****D2**********
*CONVT
*--------- ------ *
• FETCH INPUT *X
* PRECISION	 *
* ----- ****** *****

•

•

03 .*.

YES ...;PiCiVica-a.
a

S. NEEDED ...a

P.	 .*
• NO
•

*****E2 ***** *****
* *	 .*FjNPU;.*.	

******E4** *********

* FETStlAnPUT * 	 XS::NMIHRE.*:*" 	 X*DIAGNTYI 45G**
a	 S. VALID ..	 a	 04	 *

** ****************	
.*	

***** ********
* YES
:	 •

*****T3 ********* *
*CONVT	 *

* FETCH OUTPUT *
* PRECISION	 *
***** ******* *****

•

*****R1**********

le• FETCH OUTPUT *
SCALE

•
•
•
X

	******H I ***********	 H2	 *. Ill	 *.	 ******H4 ***********
.*s.	

.EC
*OUTPUT 5.

• PR/NT	 *	 YES .*	 *.

	

DI5ONOSTIC MSG x 	 	
YES .*PR/ION E.. NO

TO7	 *	 * *IMSIAIR N .* ***	* *.5.
USng ../.5

	 X*DIAONglir MSG s *
*	 F04

a.***1;*	

.•
******** ***at*

a

.	 7(

	 2*********:

:SET PAR OPTION*
:X

J3	 s.
.*	 *.

YES .*	 PACK	 5.
	 S.	 OPTION	 ..1(

S.SPECIFIED.**. 0,.*

* NO

•

°Flowchart DCN 12. CHART C. System Library Disk Data File Conversion Program (DFCNV)

Flowcharts 286. 3

FCO26	 FCNOO
•

A. RP.W20 * :.YES 	 x:WCSVB TNHC-
•

V. /*CARD ..	 •	 *

* NO
•

FC 00 FC310 .#,
	 yEs

%	 ...
......si 	 	 K2	 *.	 R1	 A.

PRINT	
.A TOTAL S.

* *	 .*	 RPG	 .. NO	 ...*ORFP.***.	
.S
	Ks*. ***** **

.6
	 X*. TERMINAL	 .6

YES 	 EXIT To	 .

	

DIAGNOSTIC MSG	 ..PRECISION RPG.* 	
X*... 4114E ..'*TES
	

	 X. SUPERVISOR	 .* 106	 A	 ..REC SIZE _.#	 X	 t.6 ERRORS .•	 •A.	 *..	 S.	 .■*************
*.A.ITS	

.6
• NO	 *...:10

• •	 :	 •.	 •	 ..	 .	 •
FC360	

X
X	 X

X	 A 	 	 C4	 A.

	

...KA** *******	 .*	 A.
: SUPERVISOR:	

.

	

* DIAGNOSTIC	 *MSG 	 	
.
DIAGNOSTIC MSS * 	 	 A. 	 HAT	 A : .T?...	 .-	 *	 F09	 A	 •	 F05	 A	 A.

	

.........•.****	
..

..*

	

.. *******	 A.....		 X▪
A YES	 .5*.

	

*	 **	 .011.	 *
*	

DI ** II *...	
r 04 ..X	 A	 •*	 . A	 •	 ******A. •

COO SK******D1***********	 ..***0 **X*********
* READ A SECTOR *	 *ROVE EXTRA DATA*

	

OF INPUT DATA	 *WORDS TO START •
* OF INPUT SFR •

	

*************	 ********** • • • :

* Ft *.X*

FC320

.CUNVERT A FIELD*
C INSERT INTO *

* OUTPUT REC
*READmINAUATA.
* A "•

•

	

FC380	 SF I	 A.
• A

	

NO ..
•5

END -	 ..	 *CONVERT DATA TO.

	

...A. OF - RECORD .6	 r	 DISK DATA	 *

	

..	 •.	 •	 FORMAT	 A

	

A.	 .•	 .	 A;	 A. .5
55	 * YES

	

. Fl .	 •	
: ******

•...	 ..x• El •. *	 *
X

FC330	 ELKS()	

	

GI.6.	 G2	 .	 Gl	 A.

	

..	 A.	 A.	 .•	 5.
S. SFR FILLED .5 	

	

.* OUTPUT	 S. No	 .5.*	
.

FILE	 S. NO	 ..	 INPUT	 A. NO

	

S.	 ..	 05-,aMtil?.".5-*	 ..coNORsui..•

	

.	 6...:
	Us.

	

5.	 .	 s.	 .	 s.	 ..
S. ..

	

. YES	 . 'IFS. VES	 •4t•

	

•.•. .	 *
• .	 . •	 • . El •

	

.	 ..X. DI • *	 *

	

:	
.

	

.	 •

	% 	 .
X

*4..

	

a.... 	 	 *•****H2•*** 	 *
• wPITE OUTPUT •	 * WRITE OUTPUT *

	

OFR UN 555	 REX UN DISK
* *	 *

•
•
•
•
•

* ! ******* A.

SPRINT OPERATION*
COMPLETE MSG

•
*****

•

X
..••K2•*** 	

*	 EXIT TO	 AA SUPERVISOR	 A

•Flowchart DCN 13. CHART D. System Library Disk Data File Conve:sion Program (DFCNV)

.A/	 A.5
•.

286.4

ICNVT
****A1*** ***** *

*	 ENTER	 I	 -	 *
*	 CONVERSION	 *

JCNVT
****A2*********

*	 ENTER J -	 *
*	 CONVERSION	 *

DC NVT
****A3*********

*	 ENTER 0 -	 *
*	 CONVERSION	 *

ECNVT
****A***** *****

*	 ENTER E -	 *
*	 CONVERSION	 *
* •

*************** *************** *************** ***************

. ****
*	 *

:
* B3 5.0
*	 *

%

*****En********** *****B2********** *****B3********** ***** B4** ***** ***
*	 *
: ON TDPAg i :

.*
:FILMNFIFtREA :

* FETCH OUTPUT	 *
:WEiticZKNO*:

*	 OMPUTE	 INPU	 *C
rittEJSIS,WN07.1T

FIELD -	 INTEGER *	 * *	 INPUT FIELD	 * * RACKED OGTSI	 *
*	 *

*	 *
**** *********** **

*	 ****************** *****************
•

*****ci********** C
*.

O	 *. **.C3 * *****C4*** ******5

*FILL WORD AREA *
* WITH /F0	 *

.********** ***** *

*
NO .. INTEGER t.

...*. NEGATIVE	 .*

YES

.*	 *.
NO .*

.	 .
YES

* RETRIEVE	 *
PertikatS :

4.** ***** 4,* ***** 4.0

DI	 *.
.*	 *.

.n*: * NEGATIVE	
A.

*.

* YES

x

*****02 ***** *****

COMPLEMENT	 *

***** 	 *****

x

*****03**********	 *****D4 *******

COAMERMT SOF *	 : DOTS
*LOW ORDER WORD * 	 AREA
********* ********

X

*

RPM° *

*****F1**********	 *****E2**********	 *****E3 	
*	 *	 *
a	 TAKE TWO'S	 *	 *	 DETERMINE	 .	 *FILL WORK AREA *	 * FETCH	 SAVE	 *
*	 COMPLEMENT	 •	 .	 WITH /FD	 *FINAL D	 -

:	 *ALREAD 4Y UNPCKED**	 In86111018A :
*	 *	 *...Am.**	 *****************

.	 ****
X .	 *

. .0* R3 **	 *

*****E1**********	 *****F3**********

CONVERT INTEGER	 *	 CONVERT LOW	 *	 * FIELD MARK *
* TO 5 DEC OCT'S *	 :ORDERDITFCIMAL:	 ARM	 ADDING	 :

..***************	 *****************
.	 .
.	 .
.	 :	 .

r L 007	 x	 x	 x
*****G1**********	 ***** G2*********.	 *****63**********
INSRT	 016AI	 * ACCOUNT FOR *	 *INSRT	 01641*
. 	 .	 * RANGE WITH	 *	 *	 *

INTO RPG RECORD	 *	 VALUE	 :1001PGFIRORD:
* INSERT FIELD *	 * ADJUSTMENT	 *

* *	 *
:***************:	 *****************

****H1*********
* RETURN TO	 *
* MAINLINE	 *

x*****H2 **********	 x
* ****H3** *******
* CONVERT HIGH *	 *RETURN TO	 .
*ORDER

DO
1

TS
DECIMAL*	 *

*
	MAINLINE	 **

* *	 ***************
*+ *+**** *** ***** *

*****J2**********
INSRT 01641
*-
:IMENGIFE8R4

•
•

•

****K2*********
* RETURN TO	 *
* MAINLINE
* ********* *****

•Flowchart DCN 14. CHART E. System Library Disk Data File Conversion Program (DFCNV)

•
•

Flowcharts 286. 5

*0070
F3	 A.

.•	 *..•	 •S. YES

	

..X*. EXPONENT	 .4....
• (*-I0 .*

•S.	 .•

	

B. 10	 ••*►

	

••	 *
* 03 **••••

••*•*G 	
•MPY
.	 •▪
* GENERATE	 *
• DECIMAL DIGIT *
.	 •

X
.5.H3	 •.

.5	 B.
NO .*	 DIGIT	 B.

..*
..•

FCNVT	 RCNVT	 R0060

	

* *****	 ***.A, *********	 *FREW	 •
• ENTER R -	 •-------------* *

:• CONVERSION	 :	 : CONVERSION	 :	 4.0•GENERATE
• 4, necimm. EXP 6 /*
• *	 DEC °GT	 *

;•
• •
•
: A3 :

***•

****5111** ********
•
:Dx60.11t346,1 *

.•.B3	 •.
...	 *.

NO .*	 •.
..... EXPONENT	 .•

*.TOO LARGE..

*FLDIELD	 •
5- 	 5
I LOAD PAC WITH
* REAL NUMBER *

*****CI 800:2***C2 *

	 • **** 	*

: *** *****

5.	 .55.	 .•
•	 YES

*	 FETCH FIELD	 *
* ORMN
.-	 * •	 *

*FILL WORK AREA *
LENGTH IN WORDS *	 NORMALIZE	 •

* NUMBER IN FAC *
*	 WITH /F9	 *•	 •*	 •..***************

*	 ************ ****** *	 •
**•* •••*

*	 *
* 01	 4.0

*	 *
■ D3 •.X*

* * * *
x

•	 *****
***** D1* ********* ****•02******•*••

*	 •
* COMPUTE TABLE *
* DISPLACEMENT	 •

*FILL WORK AREA *
*	 WITH /FO	 •

•	 PRINT WARNING •
MSG Flo	 IF

*FOR FIRST CHAR * *	 •
*

*	 DESIRED	 •

***•.	 •
..X• J3 *

%
5 *

*****E1**** ******	 E2	 •.

* FETCH FIRST *	 YES .*.•
	

..5.
CHAP FROM TABLE	 . MANTISSA	 .•

AL. ZERO	 .•
* r	 ..	 .*
km *******	 %	 .. .*

•*•*	 * NU• ** .11 •• *	 :•* 5 . X
.•.

...**F1***** *****	 F.	 S.

.

. COMPUTE TABLE •	 NO .•.5	 •. B.
* DISPLACEMENT •	 ...*. MANTISSA	 .5
. FUR SEC CHAR •	 .	 *.NEGATIVE .•* *	 B.	 ..%	 *. .5

•*••	 B YES• *
• A3+* *	 .
5•

%1.•• *D1 	 	***** G2*••***••••
4	 *	 *
*FETCH SEC CHAR *	 * TAKE TWO'S	 •
• FROM TABLE	 *	 • COMPLEMENT OF •

• MANTISSA	 •
.	 •	 •	 •* 	

**•*
. •	 •
..X* A3 •

•
55

*..•.HI 	

*• COMPUTE TABLE *
* DISPLACEMENT *
* FOP 3R0 CHAR •

*****•* 	

•*••*	 •
* J1 ..X• *
••*•

80050

./NSR4	 016041•
DECREMENT FIELD	 *	 RETURN TO	 *

	

..X*LENGTH IN WORDS*	 • INSERT FIELD * 	 X*	 MAINLINE	 *
• •	 *INTO RPG RECORD*• •	 •	 •***ea ******* **a**

•
•.

K2	 •S.
r.	 •	 •*•*Kr *******

.*	 FIELD	 S. YES	 •*	 RESTORE	 •*	 ••	 RETURN TO	
•

	 x: COMPRESSION S 	 x;	 MAINLINE

*****JI 	

*FETCH 3RD CHAR •
* FROM TABLE	 ••
********** *******

.....KI 	
•INSRT	 OTAAI*

• IN S UI RECORD :•
.494*** **********

•Flowchart DCN :15. CHART F. System Library Disk Data File Conversion Program (DFCNV)

286. 6

CI	 4.
*

.*	
.

 A, YES
4. ALPHABETIC .*. 	

*. FIELD .**.	 .*
. .

• NO

*****C2***** *4*4*
:WORDS/TN-SET:

A: tWAg8
* SWITCH
******* **********

	

INSRT	 .4.	 .4.

	

****Al* ***** ***	
Al	 *.	 44	 *.	 *****As **********

44
* • *	 .*	 *.	 .4.	 *.	 *	 *

*
* ENTER INSRT *	

.4 OUTPUT	 P. YES	 .4.	 •. YES	 * SET NEGATIVE 0

*
* A3 *....X*. PRECISION .4 	 x*. NEGATIVE	 .* 	

	

** ***** ********	
*	 *	 *. ZERO	 .4	

X*VONE FOR FIELD *
4. FIELD .4	 *	 •

****	 4.	 .4	 *.	 .4	 •	 *

	

•. *	 *. *

	

*• NO	 *ENO

	

*****BI****►***** 	
15070	 .*. X!NORDX

P.

	

RETRIEVE OUTPUT	
B1	 P

:INITIALIZE ALL ►
PRECISION E SET

::1?*::;:PVIEEDI4C.::*

	

*	 .

* PREC SWITCH *	 *
* SW E

TE
N

N TRY
ALLOW .• 0

* *

*	 •

S.
*. .4

*	
.4 * *

R

* YESL.

*****C3*! ********

* WORD/ENTRY G :
* REMAINING	 *
• CHAR/WORDS	 *
* SWITCHES	 *

:	 ***•
. *	 *
..X* EP *

*	 *
***•

.....01 	

:
SET PACK

************ *****

X
*****02**********

•SET DUMMY ZONE *
	 X*INTO WORK REA *

FOR PACK OPATION•

* *
* E2 *.X..
****	 X

INO31
*	 * .

.
*•**•Fl********** 	

.*

• *
• RETRIEVE 2	 •	

.4E2	 *.

YES .*	 PACK 5.*.
* DIGITS IN	 *x 	 *. OPTION ON .*
. PACKED FORMAT * 4..	 *.
* .• *
******•**********

.4
•. .•

* NO

*****E2**********

VUIWA4
** *
•***********►

•

	 X.

	

IN050	 .*.

	

*****G1 ********4,	 4.

	

*	 02	 *

* PLACE CHAR IN *	
*.

4.*
* LF

O
ET
TP

H
T

A
Wi
ND
n

OF *X 	
n	 *	

YES.
.

4.4

..LEEWND .4.*
*
*****•*•*********

IN °H***H2 * *** *****

*• PLACE CHAR IN *
* RIGHTHAND OF *
* UTPT WORD

.4.**H1***** *****
* *
*SET SWITCH FOR *
*RLSHTHANO CHAR *

NEXT
***** ******** ****

• •
•

IN051	 X	 X▪

* *	
*****j2*************** JI**********	 *

*
* DECREMENT	 *	 *SET SWITCH FOR •
•	 OUTPUT	 *.... ...:	

NEXT
LEFTHANU CHAR *

* *	 .	 **	 PRECISION	 •	 .

********** ***** **	 x	
*

* *
• A3 *
* *

•Flowchart DCN 16. CHART G. System Library Disk Data File Conversion Program (DFCNV)

X
****C4**	 *****

* RETURN TO	 *
* CALLER
******** *******

•.417
•

.x 	

Flowcharts 286.7

$E T2A	 CPLOG
*****A1**********	 ***A4 ****** ****
* *	 •	 *	 ***•AB *********
*SAVE PEGS, XR2 *	 * DUMMY ROUTINE *	 *	 RETURN TO	 *
* IS BASE Arm *	 *CAN BE REPLACED* 	 X*CALLING ROUTINE*
. IS f	 *	 *	 BY USER	 *	 *	 *
* *	 *	 *
*****************	 ****** * ***** *****

	

.*.	 IOLOG

	

RI	 5.	 *****R2* *********	 *****R* ****** ****

	

.*	 *.	 *	 *	 ****	 *	 ****85 ***** * ***
.5	 *. YES	 *TEST FOR BUSY 1*	 *	 •	 * DUMMY ROUTINE *	

X:CALtitTIMININE:
 *

5. FUNCTION 0 .* 	 X* SET U. EXIT S....0* K4 *	 *CAN BE REPLACED* 	
*. /TEST) .•.	 *	 *	 *	 *	 BY USER	 •	 *	 *

	

*.	 .► 	 .	 *	 ****	 *	 *
***** ***** *******	 ****** ***********

* NO

•

NTFST

	

CI	 .	 C2. S.	 *****C3 ******** **

	

.*	 *.	 .*	 S.	 *	 *.5	 *. YES	 .*	 ERROR	 *. YES	 *GIVE USER ERROR*
. FUNCTION R .5 	 X. STATISTICS .* 	 X*STATS TEL ADOR *A,	 .*	 *.	 .*	 *	 *

	

*.	 .**	 *
5.	 ***. .*

	NO	 * NO

. •
• X
• ****

*	 *
X	 4 K4 *

*****03 ***** *****	 *****D2	 *	 *
CPLOG	 00IA4	 *	 *	 ****	 *•**

* SET BIT	 *	 *	 *
* LOG CALL	 *	 * SWITCHES FOR *....X* K4 *
* PARAMETER	 *	 *	 OPTIONS	 *	 *	 *
• *	 *	 •	 ****
*****************	 ********•***•*•*•

	

El	 S.
	.*	 *.

.*	 *. YESS. FUNCTIONS .* 	
.	 I-3	 .

	

.	 .
***.Z0

	 X.
X

	

TEST.*. 	 AUTOA

	

Fl*.	 ***F2************	 F3**.*.
•.	 .*

	YES .* ROUTINE
*.

 *.	 *	 *	 3 .5	 *. *. 1	
X
*
* DIEU D E A1970	 *...*.	 BUSY	 .*	 RESET SCA	 X	 *	 FUNCTIONS .* 	

s.	 .*	 *	 *	 •.5, 2, 3, .5	 ANSWER	 •

	

.	 .	 •S.	 .*

	

A. .*	 *********** ****** 	 •. .*	 * ******** ********
* NO	 * 2

X
***•*	 *

	X 	 ALARM 	 X 	 * K4 *
*****D1*** ***** **	 *****C2 	 	 *	 •
* SET FUNCTION *	 *	 *	 ****
*1 COON) RCV IS *	 *	 CLEAR	 * TURN ALARM ON *
* -, ENO IS O. *	 • INDICATORS	 *	 OR OFF
* XMIT TS .	 •	 *	 *
*	 •	 •	 *
*****************	 ************ *****	 **** *************

HT*** ******

* PUT
	 *EI" *

********** *••****

i M****	 ****
* *	 *	 •
* K4 *	 * K* *
s	 *	 •	 *
••	 ****

....
*****n*** ****** *	 J3	 S.	 S.
* .s	 5.	 .*	 *.
s SAVE PARA SET *	 *	 START SCA	 *	 .* RECEIVE *. TES	

X*:*

gJ4

iGRIM *:*YES 	
* START PROGRAM •

* RCV OR %MIT * 	 X.	 OPERATION . 	 X*.	 INITIAL	 .* 	 	 X	 TIMER
* INDICS	 5.	 .*	 S. T MER .•	 •	 *

S.	 .•	 *.	 .*
:***************:	 *. .5	 5. .*

• NO	 • NO

•
.x•

• *	 ****K4*•••*****	 *5**
* * 	

 •	 *	 *	 •
SET INDICATORS 	 X	 EXIT	 *X....* K4 *

• *	 *	 *
* *	 ****

Flowchart SCAM. System Library, SCAT2 Call Processing

• Flowcharts 287

INT2
..*A1***** *******

• SENSE & RESET *
DSW

AI	 *.	 92	 *.	 B3	 5.	 84	 *.	 85.***..4	 .•	 .*	 5.	 .*	 *.	 .4	 *.	
.•	 AUTO	 *. No	 .4	 4. YES	 .•	 READ	 *. NO.*	 TIME	 *. NON.	 ANSWER	 .* 	 E..	 READY	 .4... X*. RESPONSE	 .• 	 X*.. RESPONSE 4 .*" 	 o•.	 OUT..

. * • *	 r .	 . •	 5.	 . *	 • .	 .4	 4,	 .4	 .••	 • •	 .•	 a.	 .4	 5.	 .4	 4.	 .4
. .5	 S. .	 X* YES	 ***10	 4.*.:E'S	 * YES	 * YES	 •••*

* *
* J4*
* **•**

ANSI	 x	 NTROY	 X	 READI	 X	 X	 x***C1************	 *****cx**********	 ***** c3 ***** *****	 ***** C4 ***** *****	 *****C5***********	 •	 *	 *	 *	 *IOLOG	 00104** SFT INDIC	 *	 * ERROR /9000. •	 * COUNT WRITE *	 .	 *nISABLE AUTO	 * RESET C CONI •	 * CHECK 	
*

	 * • ANSWER	 .	 *CLOSE OR RETRY *	 * OSW BIT 2 ON •	
: CHECK ERR IF *
	 4, LOG TIME OUT ** *	 A	 *	 *

	

.**** ********** *. 	 *****************	 ****** ****** o****	 .****** ****** ****
•

X	 ;,****	 ****.	 •	 *
, H4 *	 . H4 •	 x	 .4.*	 .	 .	 .	 ***03**Arrrx *****	 D4	 *.****	 ..**	 .*	 ..

* READ CHAR	 •	 OMIT .* FUNCTION *. END
INTO SFR...*.	 CODE	 .. 	*	 •	 .	 *. IFCODE) .*	 x*.	 •*	 *****

%	 *004*
*040	

* RCV	
• * *

03*
004	 .
• A1*	 *
5*	 ;

*
004
* 01*

*****E1 ********	 * •
1OLOG	 001114

*• LOG CHARACTER *
*

***** ************

X
F3	 *.	 F5.*...

.4	 .*	 *.

	

END .• FUNCTION *. RCV	 XMIT .* FUNCTION 8. END
* CODE	 .* 	 	 *	 CODE

4. IFCODE) .5	 x	 x	 *. IFCODEI .*

	

7*	 *003*	 .005*	 r. ..*****	 *****	 H.	 .4..00 5.5. .4 .5	 X

	

• G2*	 • OMIT	 * AI*	 * 84*	 . RCV• •	 * 4)	 • *
• *	 :087:

;	 ;	 * *

	

.	 •
X	 *003*	 *005*

	

DISCO	 %	 • 43*	 * 81•
11	 ..	 .**G2** ***** *****	 r •	 * *

.. .
*. YES	 A)	 RESET SCA	 *	

*
OLE EOT	 .*... ***** X	 RESET 1NoR5

.5	 *	 *
*.	 .

	

********** ****** *	 *002*4. * . rj0 	 * H4*

	

.	 *•**	 ****	 * *
• . 8,	 .	 9	 *
.	 -X* H4 *	 * H4 *....

*

	

*	 .	 *	 *	 .X	 ****	 *•••	 X
INTO	 .5.

HI	 0.	 *****H2**********	 H4	 9.	 *****H5* *********
..	 r.	 •	 .*	 a.	 r	 *

.*	 .. IFS	 * EDT TO USER *	 .* ROUTINE 5. NO	 * EXIT TO USER *
5.	 EOT	 .* 	 X* AREA CLEAR	 *	 5.	 BUSY	 .* 	 X* RTN IF EXIT *..	 .•	 *	 RTEISY	 *	 5.	 .*	 * OPTION SPEC **.	 .*	 *	 S.	 .5	 a	 *

	

*** ********* *****	 •. .*
* NO	 * YES	 •

	

****	 *55*
.	 . *	 .	 *002*	 •.	 ..X* N4 *	 * J4 4.0	 .

	

*	 *	 *	 *	 X 	 x 	;	 ****	 ****

FN um

J1	 *.
..	 5.	 *	 .

.*	 *. YES	 * FNC TO USER *
.	 ENO	 .5 	 X AREA CLEAR	 •

.*	 *	 RIBS*	 •
0.	 •	 *

*i**
*	 *

* * J4 *
▪ *	 •* ****EXIT

4, Nn

;▪
•• * •

•
NINO	 X▪ 	 * H4 •*****ol* *********	 *

* *	 ***.	 ****
• ERROR /0200 •	 r	 •
• RESET & CONT 4. ...X* H4 *
*CLOSE OR RETRY * 	 *	 *

Flowchart SCA02. System Library, SCAT2 Interrupt Processing

.288

003
* Ai*

	

;	 X

....	

..
RCVRD	 VITRO	

..* 41.***. *.	
A2 ** * ******

.9 A3
	 9.	 .44	 S.

	

.5	 *.	
.	

5. YES

***** As**********
*

*	 5. "S	 	

*

.	 ENO	 4	 X	 START SYNC	 S.	 ACK	 .4 	
.5 CORRECT S. YES	 *	 4

9 X*. ES
	
	 X* CLEAR ATBSY •

9.	 .4	 *	 .	 4.	 .5 :4.	 .9	 5.	 .5	 5.	 .4	 :
*****************	 ;

8.* NO	 *****	 * NO	 0410
****	 *002** *	 * H4*	 .	 .

* 02 *...	 * 5	 .
* * .	 *

	

X	 ****X.
	31	 4,	

ROEOT	 X

.* -*43.4.9. *.
*. YES	

X	 x

.* .*
	 9.

9. YES	

*****B2**********
*

B4** *******
• •

X: UlPa Te6U0K iS :....	
*	 *	 *	 ALTERNATE	 *

*.	 EDT	 .4 	 	 *.	 NAK	 .5 	 	 START SYNC	 	 X*	 ACKNOWL	 *
.*	 * 0, RTBSY OFF *	 .	 9.	 .•	 *	 ► 	 *	 5

4.	 .4	 9. 	 .4	 *	 *
***** * * ********* * X	 ***was ******* **

	

4. 40	 ...NO
* go,*	 *007*

*	 •	 * H4*

.4 .4 CI
	 4.
.!

9.4. YES	

DISCO***	 ;

X* FFFF RESET	 *

*	 * .

*****c2**********

* USER COUNT = *
 *	 *	

*

8..9 .9 C3j.4.9.*:*.n.ROT * ERR ACCEPT *

*****E4*** *******
*
*ERR 0400 COUNT *

X
•

002
. **1*

X

*

* C2 4...	 4 *

4.	 OLE ROT	 .9 	
*.	 .**	 *	 9.	 .*	 *CLOSE OR RETRY •

*.	 *	
INORS

* 9.	 .*	 *	 4
** ****** **** *****	 5. .4	 X	 ******** *********

:NO

	

N	 * NO *55*
**

*
• * B2 ** *	 X

	

X	 4:	
:	 *A.**
X	 *002*

* G7*	 .5.	 34**
.*	 9.	 *	 .*

9'4. YES	

5 *
*

	

O1	 4.	 4 *	 D3	 *.

..	 START	 9. NO
*. [OAR RCV01 .5 	 	 OLE EOT	 .4....

4. 9.	 .5 .4
	 .4

S. 	 .5.5

* YES	 * NO	 *5*5
X

	* 	 *
* C2 *

• 4.	 r
55

RENTS'	 x
*****E1 	 	 *****E2 **********	 El.***.	 E4	 *.
* *	 *	 *	 .5	 5.	 .9	 9.	 *	 *
* STORE DATA IN *	 *ERR /2000 COUN	 .*	 *. yES	 .5	 4. YES	 x:Ettsi 4ORW T:* 1/0 AREA INCR *	 * ERROR ACCEPT *

T*	
5.	 ENO	 .* 	 X*.	 MASTER	 .9 	

* 1NDRS	 *	 *CLOSE OR RESET *	 5.	 .5	 5.	 .5	 *	 8
* *	 *	 *	 5.	 .8	 9.	 .5	 *	 •
*****************	 *****************	 5. .*

	

.	 * NO	 5'440
:	 .

R

	

X	 .	 .*****	 .
002	 5002*

CKENn	 * H4*	 % %	 * H4*
*****Fl* **Mt**	 . *	 *****F3 **********	 *****F4 **********	 * *
* *	 *	 *INVAL SEQ COUNT*	 *	 ERR /4000 *	 5

*
*

CA NECESSARY
 BCC WHEN *
	 *

*	
5 AC CE

ERR
PT

ERR
CLO1SE O

0200 R* :SLINfisRlitx . ►5

* *	 *	 RETRY	 *	 *	 CLOSE	 *
* ■ 	 *	 *	 *	 *

•
X*****

	

5007*	 *002*
	H4* 	 i H4*

	

* t	 * *. .
GI	 4.

	

.*	 *.
.*	 ENO	 *. NO

*. CHAR RCM .9 	

	

*.	 .4	 x
	9.	 .*	 *****

	

9. .4	 *002*
* YES	 * 34*

* 4
*

•

HI	 S.	 *****H2 **********
.*	 5.	 *	 *

.5	 4. YES	 *	 ERR /1000	 *

	

*. OVERFLOW	 . 	 X*ACCEPT CLOSE OR* 	
4.	 .	 *	 RETRY	 *	 x

*.	 .■	 5	 *	 *****
5. .*	 *********s **4****	 *0025

* NO	 * H4t
* *

X
.5.

JI	 S.	 *****J2***** *****
.5 RC	 4.	 *	 *

.*RCV0
C

- BCC 5. YES	 * ALT ACES USER *
*. ACCUMULATED .5 	 X:COUNR9sylgipTH.: 	

*.	 .5	 x
4.	 .5	 *	 *

* NO

X***sou* *********
* ERROR 0000	 *
* COUNT ERR	 *
ACCEPT CLOSE	 OR 	

RETRY* *	 44***
*►*************** 	 *002*

. H4*
* *

002
* H4*
* 5

Flowchart SCA03. System Library, SCAT2 Interrupt Processing

• Flowcharts 289

XMTNT
At	 ..	 *.4:00* ******** .1,1. 	 ***** A3**********	 ***A4************

.t	 *.	 *l LOG	 00184.

	

.. xMIT -	 *. yES	 * NRITN4NO.	 *	 *	 .	 **•	 ENO ON	 .* 	 x	 	 0*	 . 	 X	 START REAC.*	 *	 *	 * LOG CHARACTER .	 *	 *	 x
• ..	 *	 .	 ****** 	 	 *********** ******	 *002*

	

. NO	 * J4** *
*

.*.
81 '	.	 82	 r.	 ***83 ********* ***

.*	 *.
..	 OMIT	 A. NO	 .*	 TRANS	 *. NO	 * WRITE BCC,	 *

N.	 MESSAGE	 •* 	 X*. ENO CHAR	 .* 	 x	 PAD START*.	 ..	 S. NEEDED .5	 5	 READ	 .	 xA.	 ...	 *.	 .*	 *****
002

	

* YES	 * J4*
-	 * ►

*
•

x**.cL****	 *	 ***c2**** ****** 5*
* WRITE CATA	 *	 *	 WRITE DIE	 *

FROM AREA	 ETB, PAD OR
* *	 * DIE ETX, PAD *

**********************	 *****************	 *004*
* D3*
* *
*
•

ENOWT	 .*.

	

D3	 *.	 ***D4 	

	

5	 5.
..	 SUB -	 *. NO	 *	 WRITE CLE	 *

	

. FUNCTION	 .. 	 X	 EDT. PAD
*.	 EDT	 .5	 *

..	 .*

	

s'.:	
******* **********

* ES

	

X 	

X*****F1**********	 **►E3************ 	 t**** E4**********
.10LOG	 00184*	 *IDLOG	 00184*
* * 	 	

• WRITE EDT.	 *	 *
*	

-*
*

* 	 ---	 *

* LOG CHARACTER * 	 X	 *	 t,	 * LOG CHARACTER *
* *	 *5***	 *	 ********** ***** ***	 *002*	 *** ****** ********	 ****************■

* J4*	 .* r
*

***** F3.*********
IOLOG	 00184

*▪ LOG CHARACTER*****	 i
004	 **►►*************
* G1*

002
* 02*
* 5

X	 X
STOAT	 RnTSTG1	 S.	 ***Gs *********** * 	 G3	 *.	 ***G4 ******** ****

.5	 5.	 .*	 ..

.	 NAK ON	 . 	
x ► WRITMAX, 	 *	 .:.	 Rca	 5...*YES	 *.* KNIT -	 *. YES

	 X 	 START REAC
*.	 .5	 *	 *	 *.RESPONSE .*

*.	 .5
******* ** *******	 5'5. .*. 4	 *****************

s. * . NO 	 * NO	 .

X

•;	 X	
002
* J4****H1************	 *****N2**** ***** *	 *****H3	 4****	 * *

IDLOG	 00184	 *	 *	 *
* WRITE CURRENT * 	 	 -*	 *	 *

OLE ACK. PAO 	 * CLEAR RTBSY *
* *	 I LOG CHARACTER *	 *	 *

* *	 *	 *
*****************	 ** ****** ********	 ******* MM.**

002
* H4*

J2* ****** .*	 5 *
* INITIALIZE	 *

INDICATORS
* START READ *

****** ****** *Mt

X
5****
*0025
* J4►

*

Flowchart SCA04. System Library, SCAT2 Interrupt Processing

YES

*****014*** ******
* UPDATE	 *
.	 POINTERS,	 ** COUNTS,	 *
* INDICATORS	 *
...**************

•290

005
* Rt*
* *

	

RCVT	 XMTTM	 .*.

	

*****.t**********	 B4	 0.
.8	 0,	

PS ******* *•

* COUNT SLAVE *
0:0 niNS S:*YES 	* 	 TIME OUT	 *	

* START PROS	 *
X	 TIMER INSERT

*.	 .5
*.	 .8

****** *	 *	 *** *
NO

GI * * S.	 *****G2 **********	
X

*****C4**** ******
.8 TIME ..	 *	 *	 *,	 *

.. OUT EXIT, *. YES	 *	 ERR /0020	 *	 * COUNT MASTER *
0. INIT, NO	 . 	 X*ACCEPT CLOSE OR*	 *	 TIME OUT	 *

ENO	 .*	 *	 RETRY	 *	 *	 *
.*	 *	 *	 *	 *

**** ***** ** ***** * 	 * * * * * ***** * * * * * * *
* NO

. *	 *
..X* E2 *

*	 *

****+O1** ****#*** ***	 02' .0.	 **►03************ 	 *****04*5********
* *'	 .*	 *.	 *	 *
* ERROR 12000 *	 .* USE Of	 *. YES	 * START PROGRAM *	 * ERROR 0200	 *
ACCEPT CLOSE OR	 0.	 PROGRAM	 .* 	 TIMER	 *ACCEPT CLOSE OR*
* RETRY	 *	 *. TIMER .*	

x*
* *	 RETRY	 *

* *	 s.	 .*	 *	 *
***********►***** 	 5, . * * * * * * * * * * * * * * *

.	 NO

.	 0***	 :	 .
* *

').(* E2 5.0	 :	 %
* *	 x 	 	 * * r * *

002	 .***	 *002*
* 54*	 * N4*
O *	 x	 . *
* ***,E2*********	 *

* *
* EXIT	 *
* *

►****
005
* Gl*

*

•

ENOTM
CI	 R.	 ***** G2**********

*.
.*	 ROT L	 *. NO

CLOSE	 .* 	 X* CLEAR RTBSV *
.* .*	 *	 *

* YES

*****	 *****
*002.	 *002*
* 02*	 * 04*

*	 *

Flowchart SCAO5. System Library, SCAT2 Interrupt Processing

• Flowcharts 291

SCAT3
s****A1**********
*
*SAVE RUGS. XP2 *
s IS RASE. ACCR •

	

IS T	 *

PI	 *.	 ******2**********

	

A.	 *	 *
S . YES	 *TEST FOR RUST 8*

	

FUNCTION 0 .* 	 X* SET UP EXIT :...:

	

. (TEST/	 .*

	

A.	 .*	 *	 t	 .
	*s***************	 X

* NO	 xi**
• •	 •
• * KT *
• •	 •

•• • •
;

LATEST

	

CI	 S.	 *****C7**********

	

*.	 *	 *

	

..	 A. YES	 * GIVE USER ERR •

	

. FUNCTION 8 . 	 X* STAT TOL ADOR *

	

.*	 *	 *

	

S.	 .*	 *	 *

	

*. D.Z	
**** ******** *****

:	 ****

	

*	 •
..** K3 *

• *

X
*****01**********

	

CPLOG	 00/A4

* PARAMETER
 A 	 *• *

X
CLOSE

	

El	 S.	 E2	 S.	 ***E3**** ***** 4**

	

.*	 A.	 S.
	.*	 *. YES	 .*	 *. 3	 *	 END SCA	 *

	

. FUNCTIONS 2. 	 Y*• FUNCTIONS .0 	 Xt	 OPERATION

	

.	 — 8	 .	 *.	 .*	 *5..	 ..*

	

** *110	 .*.2

	

.	 •

	

.	 •
x	 .
X

TEST ALARM	 ;

	

Fl .** *.	 ••*E2************	 *****F3********k*

	

.*	 *.	 •

	

YES .5 ROUTINE S.	 * TURN ALARM ON •	 CLEAR	 *

	

BUSY	 . *	 OR OFF	 • INDICATORS	 S

	

A.	 .*	 •	 .	 i	 *

	

*.	 .•	 •

	

. S	 *** ***** *I...kn.*** 	 ***** ****** *qt.***
* NO

X
*****G1**********
* SFT FUNCTION *
SIFCOOE) TO — IF*
*PCV. n IF MNTR ** k IF XMIT	 **

.	 ****	 : .*****

.	 *	 • k

.. X* K3 *	 ..X. K3 *• *	 .	 *****	 *it*

ml*********

s PUT SYN IN	 *
IDLE REG

*****j3**********
*	

jp**************jk ****** ***:
*

*SAVE PAEAN SET s
• RCV

	

	 IT OR *... ***** X
**
	

START
	 *X*SET INDICATORS/W	 *	

*

* MNTR !NOES	 *

: ***** ****** **** ::***************:

***** *
* K3 *.X*

EXIT

*****K3S ***55**,
EXIT •

** *go**

Flowchart SCA06. System Library, SCAT3 Call Processing

•292

INTL ***A/************

* SENSE C RESET *
OSW

007
8 85*
• *
*
•
•
.

.	 .8.
Ell * 	*.	 El*	 8.	 B3	 8.	 B4	 *.	 i

	* 	 .i,	 *.	 .*	 8.	 .*	 8.	 ****85 *********
. YES	 .*	 READ	 8. NO	 ..	 WRITE	 *. NO	 .*	 TIME	 8. NO	 *	 *

	READY	 	 X*. RESPONSE	 .* 	 X*. RESPONSE	 .8 	 X*.	 OUT	 .* 	 X:	 EXIT	 8
S.	 8.	 .8	 *.	 .8	 8.	 ..	 *

8.	 .	
5.8* *: .*

	 8.	 .*	 8.	 .8

	

8. .*	 8. .8

	

NO	 ES	 YES	 * YES

R D!AE

	

*****cl**********	 *****c2**********	 *****C3* fit*******	 ***** C4 *
x
***** *8**

. *	 ♦IOLOG 	 00184*
• ERROR /8000 *	 *CCUNT READ CHK 8 	 * COUNT WRITE •	 * 	 	 -*

	

RESET & CONT OR 	 *ORR IF DSW BIT *	 * CHECK ERR IF *	 *
* MONITOR	 *	 2 CN	 *	 • DSW BIT 2 ON *	 * LOG TIME OUT *

* *	 *	 *	 *

	

****************	 *****************	 *****************	 ** ********* ******

•

03•8**.
.8	 P.

8. RCA
* ...*. . CODE8

FUNCTION
.8 .8
	

.	 .8 *****
X

	

*****************	 X	 8.8. .8 *008*
*****	 * MNTR	

*00
• F4*

009	 .	 * *
* AI*	 *
8 r	 X

* *****

:1At
n2**********X	 VT:

* *
*	 ****	

.8 E4.8**.
8.

*
00184*

• *	 * OMIT .8 FUNCTION 8. *NU
♦ 	 *	 * HI *X....*.	 CODE
* LOG CHARACTER *

* *	 *

8.81 :711!:"5

.8 	
*

RCVT

x
*****0 ***********
* 8
* ERR /2000	 •
* MONITOR OR	 *
* RETRY	 *

*8**	 *	 *
* *	 ********** *******
* HI *	 .* 8
*8**	

X

%	 *	 *
XMTTM	 * 85 *

HI	 *.	 *****H2**********	 *	 *
.*	 8.	 *	 8	

8: 5	1n4s 5:5" 	 5: f,0 NT
	

*

.	 . ******* **** *****
YES

X
JI** *** ****	 *****J2* ** ******

* *
* START FROG	 *	 *	 ERR /0200	 *

TIMER INSERT	 *ACCEPT MONITOR *
* DEW SON	 *	 •	 OR RETRY	 ■

* *
****** ***********	 *****************

X Z
****	 ****

* *	 *	 *
* 05 *	 * 95 *

8	 *
****	 ****

Flowchart SCA07. System Library, SCAT3 Interrupt Processing

02*********
*	 READ CHAR	 *

INTO BFR	
OMIT .8

009
• G5*
* *

F2	 *.
.8	 *.	 *	 *

RCV .8 FUNCTION *. MNTR	 * COUNT SLAVE *
* CODE	 .8 	 	 *	 TIME OUT	 •

X	 8. IFCODEI .*	 x	 *	 *

008	
t. . .8.*

009	
*	 *
******* ******** **

**
* AI*	 8 r XMIT	 * E3*
* 4	 .	 8 **	 *

X

008
* A3*
* *
*

• Flowcharts 293

• • * • *
▪ 208	 *0013*
A AL*	 * Al*

A AA	 * •

%	 %
RrA/R0AmTR0

	

Al*.	 ***A2**** **** t	 Al	 5.	 A4	 *.	 *****A5 **********
.5	 *.	 ..	 .*	 4.	 *	 *

. YES	 8	 . CORRECT *. YES	 .*	 •. YES	 *	 *
fNQ	 .* 	 A	 START SNYC....	 *.	 ACK	 .3 	 X*. RESPONSE TO .* 	 X* CLEAR RTBSY ..*	 *	 •	 *.	 .3	 5. MESSAGE .*	 *	 *

	

.*	 *.	 .*	 •	 *

	

, .	 *****************	 ;
* NO	 *****	 * NO****	 *007*
.	 *	 •	 * 135*
• * R7 *	 .• *
%	 **•*	 .	 %

X	 i
II	 3.	 *****R7**********	 03	 *.	 ***B4•*****•***** 	 **•**85.**********	 r.	 *	 *	 *

*. YES	 * USER COUNT IS *	 5. YES	 *	 •	 *	 ALTERNATE	 *f q T	 .4........ X* ZFRD START	 4....	 NAK	 A.* 	 	 START SYNC	 	 A*	 ACKNOwL	 *..	 * MONITORING	 *	 .	 *	 *

	

.*	 *	 .	 .r	 *	 *

	

*****************	 X	 *****************	 ***** ********** **
* A NC	 *****	 rt NO

*009•
.	 * J1*
.	 * •
.
x	 i	 *007*

R CVTM	 %	 * 05*
CI	 *.	 ***** c2***** *****	 (3	 S.	 *****c.****•*****	 • *

•2	 5.	 . ERROR /2000 *	 .3	 *.	 * ERROR /0400 *	 •
.•	 START	 .. NO	 * MOUNT ERROR *	 ..*	 *. YES4, CHAR Rovo .4.... ***** x* MONITOR OR 	 *....	 5.	 EOT	 :AcEBTANR *

.*	 RETRY	 *		 *	 OR RETRY	 **.	 ..	 *	 *	 .	 4.	 I	 .i	 *

	

********•********	 A *** ********* ****** YES	 *****	 * NO	 *••*
*005**007*	 *	 *
* 85*	 • 87 *	 .

	

* •	 •	 *	 X****	 *****
007

A	 • 05***01**********	 *****03**********	 • *
*

* ST / 0 OATS IN *	 * ERROR /0700 *
* I/0	 I.	 *	 *ACCEPT MONITOR *
*INCREMENT IN TO *	 * OR RETRY •. • •*****************	 .****************

•
X•****

007
• 85******E1**********

• *
* CALCULATE RCC *
*WHEN NECESSARY
*	 *	 **********************	 *008*

* F4*
• *

•

%
RCVWT01	 ..	 F4	 4.	 ***E5***** *******

	

..	 *.	 ..	 *.
.4	 END*. NO	 .5 SECT -	 *. YES

.. CHAR REVD .. 	 	 3.	 EOT ON	 .4 	
x * WRITE TOT,	 •

	

.	 .	 x	 4.	 *	 *

	

2.	 ..	 ***t*	 4.	 .
007

* YES	 * B5.	 3.*.Z0* •
*

•

:I	 *****02..********	 G4	 4.	 ***G5***** *******
. 3	 *. YES	 * ERROR /11100 * 	 .* XMIT -	 *. YES	 * WRITE NAK,	 •
.. OVERFLOW	 ***** x*AccEPT MONITOR * 	 	 4.	 NAK ON	 .4 	 x*.	 .4	 *	 OR RETRY	 *	 A	 4.	 .*	 •	 *

3.	 .4	 .	 *****	 *.	 .4

	

** ***** * ****** ***	 *007**** ******** ******
* NO	 * 85*	 6.**NO
.	 • •

• .	 X 	
.	 .
%	

.
%	 X

HI	 A.	 ****•H2**********	 ***144 ******** ****

	

.5 BCC *.	 *ALTERNATE ACKS * 	 *10100	 00184*
.*RCVC . ECC *. YES 	 * LSER COUNT - *	 * WRITE CLRRENT •	 *	 *

	

*. ACCUmULATEn .4.... **** * LENGTH Rtfis y *	 OLE ACK, PAD 	 X.	 •
.	 .	 OAF	 .	 *	 *	 * LOG CHARACTER *

* ***************	 *****************	 *****************
* NO	 .
.	 .

%.

007

%	 * R5*	 x****.ii**********	 r *	 ***J5*** *********
* ERROR /0300 *
* COUNT ERROR *

**ACC
	 MONITOR *	 NOMA. *.	 DR RETRY	 *	 *	 START READ *

.	 .
.	 .
X	 %*4***	 **•**

42 07*	 *007*
• 85*	 . 85*A *	 * •

*	 •

Flowchart SCA08. System Library, SCAT3 Interrupt Processing

•

• Flowcharts 293. 1

*****FI*********:
uPDATI POINTERS
* COUNTS	 *
* INDICATORS	 *
:***************:

*
* G1 5.9*

*****G1**********
*IOLOG	 001B4.

* LOG CHARACTER *

•

007

85*
*

009
* AI*
* 5

AI	 5.	 ***AR ***** * ***** *

	

.* EMIT -	 *. YES	 * WRIT; 40T,	 *
5 .	 COT ON	 .5 	

.*	
X.

.	 .

** * . NO **** *
*
* J3
* *
■***

X

CI	 A.	 ***c2************
*
.*	

-TIpx	
*.

YESEY

	

.	 A S WRITE ENO t	 *.
S.	 CND ON	 .* 	 .	 PAD START	

	

.*	 READ	 *	 .

********** ****** *	 I
* NO	 ****

* *
• * GI *

* *• ****

MOUNT
A4	 5.

.5	 5.
.* %MIT -	 *. NO

S.	 NAK	 .5 	
*.	 .5

.	 .

* YES

* *
* 84 *.X
* *

X
EA* *** *A.***	 ***85 	

*
* 11; E s7at *	

* WRITE EDT.	 *
PAREgART

REAL
*****55** *****s**

	 C4* **#******
IOLOG	 00184
*--- 	 ■

* LOG CHARACTER *
•*•**•*•**•**

.	 *
..0* K3 *

* *
■***

RI	 A.

	

.*	 *•

	

.5 EMIT -	 *. YES
*.	 NAK ON	 .5....

	

..	 .4.

	

.	 .
X

* NC	 ****
• •

• * 94
• *	 *

* * • *

01	 5.	 02	 *.	 ***03****** ***** *
. •	 * .	 . *	 * .

..	 EMIT	 S. NO	 ..	 TRANS	 *. NO	 * WRITE BCC I	 *a.	 MESSAGE	 •* 	 x*. END CHARS .* 	 X.	 PAD START	
.5	 5. NEEDED .*	 READ	 *	 .

5.	 •* 5. .*	 *****************	 X
* YES	 * YES	 ****

.	 4***	 *	 *

.	 *009*	 * GI *
• * E3 *...	 *	 *
.	 •	 *.	 ****

****	 X
X	 MONRD	 .5.

EI**** *****	 ***E2 	 	 E3	 *.	 E4	 *.
.■ 	 *.	 .*	 5. 	 **

* WRITE DATA	 *	 *	 WRITE OLE	 *	 .5 CONTROL *. YES	 .5 SOH OR	 5. YES 	 *
FROM AREA	 FTR, PAO OR	 *.	 MODE	 .5 	 x*.	 STX	 .. 	 X*CONTR. MODE OFF:

*	 *	 *	 OLE ETX,PAD 4	 S.	 .*	 *.	 .5
.	 .	 .*	 *	 *

*****************	 * • * * * * * ****** * * * *
* NO	 * NO

:	 **a*	 :	 14**
. *	 *	 .	 . *	 •

	

„X* GI *	 .	 ..X* K3 *

.X)., 	

X	
*	 *

*	 *

F3	 5.	 F4	 5.

	

.*	 *.	 .*	 •S.

	

NO*:* TURN -	 S.	 NO .5 POLL CR S.
...*.	 AROUND	 .	 * SELECT RIND .4.
.	 *.

*
	S.	 .*

	

S.	 .**
X	 5. .5	 5. .5

****	 * YES	 * YES
* *
* K3 *
* *	 .	 .
****	 .

X

	

G3 .*. *.	 ***G4 * i **** * *****

	

.*	 S.
S.	 EOT	 .5...	 * sii4T"NiiE *

	.* 	 *. NO

	

.5	 *	 *
. .

009
• 05*
* •

MONTM

CONTROL MODE OF

**** ********** **a
* YES

***** H3**********

CONTROL MODE ON

009	 .x 	
* J3 *.X.
• *	 .0 	

RESYN	 X
J3 *** * *****

* END OP START *
READ* *

*ii*ii** *********

* *
* K3 5.0

*
*5**

****K3*********

• EXIT

Flowchart SCA09. System Library, SCAT3 Interrupt Processing

*****	 *
..X• K3 *

w ****H s **********

*
COMENIATOR

*	 *
****** ***********

• 293.2

•
• SET TO SYPASS
•Sf10 ON 4ESTART

•

02
.•

YES . •	 NEW	 •.
• OVERLAY

•002•
5E3615 	 X	 • El•

D4
....D3 	

• EXIT TO LEXIT •	 •SET UP DISPLAY •
• IN SKELETON •	 FOON AND WAIT
• SUPERVISOR

•

• YES

RETURN TO
PAINLINE

	 GI••• 	
•

• SET igaRVOR •x

•

•
• •

	K3.X........
•
• CLEAR I/O
•BuFFER IF READ
• OPERATION
•

4
•GOTO I/O DEVICE.

.........k	 SUBROUTINE
•

•

SEAL

...•.A1 	

ENTRY

ARK) SART
....•43 	

ENTRY•

	 A4 	
•
• CLEAR I/U	 •
•BUFFER IF WRITE.
• OPERATION	 ••
•

•
• ENTRY

•
•

INITIALIZE FOR
READ

• •
• 84 •.X

	 B3 	 	 B4	 ..
•
•INITIALIZE FUR	 .. EXIT TU

.
 .. YES

WRITE	 .. CONTINUE	 ..
•
•

•
• B5 *...• •

	 B5 	
RESET READ

INDICATOR AND •
X	 BUFFER FULL

INDICATOR	 •
•

• NO
;81.
C5 •.X•

SFOEV•
C2C5

•• SETO	 ..••C4 	
..	 EVER*. NO	 • DISPLAY ERROR • 	 •	 • RESET BUFFER

... INITIALIZED 	 X	 F000	 •	 RETURN	 POINTER
..	 ..	 •	 •	 .	 .

..	 .	 •
.. ..

• YES

•001•
• D4

	CI 	
SAVE ADDRESS OF
LIVE CALLS FOR

SuRSECFANT
ENTRIES

0/

SAVE TRACE
DEVICE AND
PRECIS101

X

• NO •
•
•

INITIAL	 NO
• ENTRY	 .. 	

	5/. 1)10	 X
• ..*E2 	
• SAVE FORMAT
• STMT LOC AND
• GET DEVICE
• NURSER
•

E2

NO	 UNIT NO
VALID	 .•

X
• YES

• JI •

X

02 .*. ..
NO	 VALID • •

• FOR READ OR
WRITE

5E390
•E3	 ..	 E4	 ...	 	 E5 	

.	 .	 ..
..	 IS THIS

.
 .. YES	 .. • ERROR • *. YES

.0•.	 A WRITE	 FOOL. F008	 .• 	 X•SET F001 SWITCH:
..	

..		 •	 •

	

..	 X
• NO	 ••••	NO....	 .	 •	 •

•001• •	• 115 •
• F3 0.X.	 •	 •
•
....
X.!.

	 F3 	 	 F4	 ..	 	 F5 	
• SET EXIT	 ..	 •	 •
• ADDRESS TO	 ERROR	 .. NO	 *CLEAR BUFFER IF.
• CONTINUE AFTER •	 F002	 •	 READ	 •
• I/0	 ..	 •	 •
.		 •	 •

• YES
.

•001•	 .
• G3 •.X.
• •	 .

SFD40	 X
	 G3•••••••••

STORE EXIT
• ADDRESS

	 G4 	
• UPDATE FORMAT •

	

...•	 POINTER	 •

•	
• YES

•003•
•.1(!•

••G5 	•
•EXIT TO CALLER •

•

x
F110

H4	 ..	 H5	 . ..
• •
	

•

.	 ERROR	 *. NO	 ... ERROR	 .. YES
.. F003,5,6,7 .. 	 X..	 r009

..	
..	 ..	 *.	 ..

.. .■ 	 X
• YES	 • NO

HI

SET UP BUFFER
SIZE AND ZERO

COUNT

X
H3

SET COUNT OF
CHARACTERS TI]
READ OR WRITE

1111,*

. , 	 •
: '4 :-
.....	 i
••••J/••. 	 	 J2.•	 .

	

1T UP ERROR :	 •
	 ..

NO .. DEVICE	 *.
F001	 •X	 • SURE LOADED

	

.	

	

X	 X
J3	 ..	 	 J9 	

•
•	 •

	

.	 F001	 .. YES	 • UPDATE BUFFER •	
.

• ERROR SW		 POINTER	 	 X•SET FAC TO ZERO:

	

SET	 0.	 •
• .

•003•
..C3.

NO	 ...•

B4

.003.

• YES

..R• D4

K2

CLEAR I/O
CUFF ER

Flowchart FI001. System Library, FORTRAN Non-disk I/O

294

*DO
02.
H.

H4

RESET FORMAT
POINTER

• 0 0 1 •
• C5.

• •

.002.	 .002w
• 04*	 %AY.

•

	SIDIX	 SIOF	 SIOAI	 5E125	 ii 	 SF122	 %
...••04	 5 	

....A/ 	 	AZ 	 	 .H•A3 	 	 •	 •	 •
• ENTRY	 • • • NON	 •	 .	 • SET BUFFER	 •
• SUBSCRIPTED •	 • SUBSCRIPTION •	 •	 ARRAY	 .	 BUFFER 	 :	 •POINTER START-1.
• VARIABLE	 •	 • 	 VARIABLE 	 •	 •	 •	 COUNT SPECIFIED.	 •	 •

• •

....	 •• •
• B4 ..X	 X• •	1.
it. "	• 	 •

X	 x	 • A4 •
	 01 	 	 	 82 	 	 	 a3 	 	 	 84 	 	 •	 •
• SET UP	 •	 •	 SET UP	 •	 •SET UP ADDRESS .	 •	 "II.
• DISPLACEMENT •	 •DISPLACEMENT OF•	 ••OF FIRST ELT, •	 •	 INCREMENT	 •

• AurAns:AUT :	 : TY4 n'tY :	 . SET UP ARRAY
 •• SIZE	 •	

•FORMAT POINTER • .
• ARRAY SIzE TO 1.	 •	 •	 •	 •	 •	 •	 .

x
••••

••••	 •	 •
.002.	 • El4. C4	 •	 •

X
	 •	 •	 .

5E170▪
•....C4 	

• INCREMENT
.FORMAT POINTER

••••••

••••	 • 03 ••••

	

••••	 .002*X 	 	 •	 •
02 :..:	 • 04..X

.....	 %	 4101.0
X	 SF150	 SF175

	 DI 	 	 	 02 	 	 03	 *..
	
	 D4 	

• SET UP		 •
STORE ADDRESS, •	 •	 NON-D/GIT	 •	 .. FORMAT	 ..	 • [NCR REPEAT

ARRAY SIZE,	 • COUNT. 1 .2, •	 ..	 TYPE	 ..	 • COUNTER BY 1
EXIT ADDRESS	 •	 F.3, E • 7	

• •		 •

NY•
El •.X

003 A4

	

SF100..•	 	 003 A4	
.•El	 E2	 ..	 E4	 ..

•
o.	 .0.	 .1.	I 	003 A3	

REDO	 *. YES	 .. TYPE E •.. NO..	 ALL	 .. YES
o.	 INDICATOR	 •.	 OR F	A 	 003 RI	 •.	 REPEATS	 .•....

	

SET	 DONE	
.	 .•	 .	 .•	X 	 002 A4	 ..	 .•

	

X	 X
• NO	YES	H 	 003 Al	 • NO	

•001•
• F3.	7 	 002 A5	 : 04

•• •
....SLSH 	 002 G4	 %so..

X	G.R 	 002 C4
	 Fl 	 	 	 F2 	 	 	 F4 	
• •	F.R...002 04	 •	 	

:• • STORE DECIMAL •	 •	 BACKSPACE	 •
•CLEAR WORK AREA.	 • WIDTH IOW	RE00..002 H4	 ...•FORMAT POINTER •

• .•• •	 •
X •	

•
......

*	
X 	 	 • El •002.

• • G4 4....
• •

X	 SEIM••	 X
	 GI 	 	 	 G2	 G4

• GET WORD FROM •	 • STORE TOTAL •	 SET REDO
•

• FORMAT	 •	 • FIELD WIDTH •	 INDICATOR
• STATEMENT	 .	 .

• IWO/

CI
•

ADD BASE	 •
ADDRESS

• •

x	 x
HI	 4..	 H2	 .

4.	 .	 ..FORMAT
.,	 TYPE	 .. NO	 ..	 TYPE	 .. NO	 *	 *

E.F. OR I	 E.F,I,A. ORX. D3 •

•

...	 ..	 X	 ..	 •	 •
..		 11.00*
.. ..	 X

YES	 *m.o.	 • YES• •
. 02 •

%it...

Jl•

• ARRAYw. NO
• COUNT IS 0

	 J 	
•

REW2 BUFFER •
• ihMRY8R :

• YES	 ••••• •
D2 •

40.0.

. .

	

K2 4..	 	 K3 	 	 K4	 ..
..-*•.K1 	 	 •	 •	 .*	 4...aka 	

• .. BUFFER	 .. YES	 • SET UP ERROR .	 ..	 ARRAY	 .. YES
•RETURN TO M.L. •	 •. OVERFLOW	 .• 	 X.	 F002	 *	 *. COUNT ZERO 	 X•RETURN TO M.L.• •

.	 •	 4..	 ..
• NO

• .	 .001.
• D3 •	 • 04*• •	 • •

•

Flowchart FI002. System Library, FORTRAN Non-disk I/O

• NO

.001•
• C5.

• •

Flowcharts 295

SF205
A3	 *.

YES	 INTEGER
...*.	 DATA

NO

X
5E210

A4

NO	 REAL	 ..

.•

• YLS

X

X
03

.•

SET UP ERROR •
E009

•001.•
• 04.

0▪ 03•

▪ X
5E350
	

5F430
C3
	

C 4

•
READ	 NU	 'CONVERT NUMBER

..X.. FUNCTION	 	 X. FOR OUTPUT

STORE DATA IN •	 •
LIST ELEMENT	 •	 •RETURN TO M.L. •

•

• • •
003•
K3 •.X

• • • •

	 K3
X

DECREMENT LIST .
ADDRESS BY DATA.

TYPE. LOWER
ARRAY COUNT I •

.0*.*
•003•	 .003•
• A3.	 • 44.
• *	 • •

•

•003*
• A/o• •

SF140
	 AI•••*

•5E1 DATA PT AS
• NEXT FORMAT
• LOCATION

SF220
...••C2 	
•
•NOVE DATA FROM •

•..X•STORAGE TO I/C *
••	 BUFFER

•

••••
•00l•

Bl...X

5E1730 ••	X
	 PI...*
• SET UP CHARS
'PER win FROM A

TYPE
. SPECIFICATION

5E185
CI

WRITE • 0. YES
• FUNCTION

YES

5E355	 X5E590
D3 	 	 D4	 *.	 	 D5 	
INPUT AND	 .	

•
	 •	 •

CONVERT WW 	 DATA	 *. YES	 • PACK BUFFER •
CHARS FROM	 .	 ..	 EXCEED	 .. 	 X• FIELD WITH	 •

BUFFER	 *. SPECS.	 . 0	 •	 ASTERISKS	 •
• •

NO
• • • •

..X• K3 •• *
**..

. .
E3	 ..	 	 E4 	

.	 • .	 •
•

ERROR	 .. YES	 • OUTPUT NUMBER ••,.	 F003.5.6.		 •	 TO BUFFER
OR 7	 ..	 .

..	 •
• NO	 11-11...•

11.4.	 "001.
0003"	 • 04•
. F3 • * 0	 ..X. K3 •• •.•..•

5E320
.
	X	 SCOMP	

••.
	 F3 	
.	 ...
"STORE NUMBER IN.	

.•F4 	

• FAG	 •WRITE COMPLETE
•
•

• NO

	 DI...* 	• •
••••lvE DATA FROM •
• 1/0 BUFFER TO •
. STORAGE	 •

'

El	 0.
••M	 . NU

FORMAT	 M3 •

• YES

.002.
• EL.• •

.001.
• 04.

• •

. .
03 	 ...	 G4	 ..

•
0.

YES .*	 ERROR		 REDO	 .. YES
• FOD4	 ..	 IND ON		 X

..	 ..	 .*
.. .0	 0. ..	 •001.

• NO	 • NO	 .G3*

• •

FIX DATA

03

YES *. IS DATA
• INTEGER

• NO

H4	 *.
• LAST *.
FORMAT	 NO

•.SPECIFICATION.• 	
• SLASH

YES •001.•..G•
•

X

J3 *

•002•
• El•

• •

Flowchart FI003. System Library, FORTRAN Non-disk I/O

SF3

296

CAROZ	 X	 C1270	 X
	 A2 	

SET UP FOR
WRITE IOCC

....A1 	
•ENTRY VIA LIBF •

CARD/
•

A3
SET PREVIOUS •
OPERATION •

INDICATOR TO
CURRENT

OPERATION	 •

NO

..X. 02 • X	
A5 •• •

*ow. •

C126;•••
	 A 	
• •
•WAIT AT LOC /8E•
	 X.WITH A DISPLAY •• OF /1000	 •

• •

PREVIOUSYES
•••	 OPERATION	 .•....

READ

X
NO • •

• C2•

C5	 ..

NOERROR	 ..
SWITCH SET•

• YES

•
•

05	 ..•

COLUMN	 YES
▪ READ

•

• NO • •
X .	. C2.

••••••

E5

FEED CARD• •

..0: C2 :

El

X

...H3 	
• RETURN TO •	..	 READ	 .. NO
. CALLER	 •	 OPERATION

•

X
YES

El

••• •

CZ230

..X • SENSE DEVICE

.Y.4

• •
• A2 • • A3 •

• • • •

•

• A5

•
•
•

11.4.

• •
• 82 *.X

	

X
•	 •1	

CZ200	 C2240	 X
..B1.•.....	 	 B2....

INITIALIZE
YES .• • READ	 •.	 READ/WRITE
..... OPERATION .•	 IDCC, CLEAR

•LAST INDICATOR

X
	 83 	

• START READER •
PUNCH

•■ ••
NO

....
• .
• C2 ..X

C2260 •••	 x
	 CI 	 	 	 C 2 	 	C3'....
•HOLEZ	 013AI.
• •	

•
	 •	 .. OPERATION •. NU

• CONVERT EBC *	 SENSE DEVICE •.. COMPLETE....
• CARDS TO	 .	 •	 •	 ..INTERRUPT..
• HOLERITH	 •	 ..

• YES

•
•

	

.	 .
	DI	 ..	 02	 ..	 D3	 ..	 	 04 	

01	 *.
.. PREVIOUS .. YES	 .. NO	 YES	 •	 SET ERROR

	

OPERATION		 READY		 ERROR	 SWITCH
WRITE	

•.

	
X
.	

X
	NO		 •. YES	 •.11" 	• NO

....	 •	 .
• m

.	
. GI •	 • Fl •	 .

• El	 .X	 •	 •	 .	 .
• •	

0
...	 C(T(

C221
	[1 X E2	

•

	
• 03
	 *.	 	 E4 	

• •
	SET UP FOR	 .. YES	 ..	 LAST	 .. YES	 •	 SET (LAST	 •

	

wRITE IOCC	 ..	 ERROR		 CARD	 .. 	 X.	 INDICATOR	 •
..	 ..

..	 ..	 •	 •

.x.

X	
• A3 .C2330

•	 Fl 	 		
. F3
	F4 	

.	 • 	 .	 	
•WAIT AT LOC I2A.	 •.. //BLANK

..
 .. YES	 • CLEAR //BLANK •

.WITH DISPLAY OF.X...	 .. TEST SWITCH .. 	 X•	 TEST SWITCH	 •
• /1000	 .	 ..	 SET	 ..
•..	 •

.. ...
.11...	 . NC

....	 •	 •
• •	 • FL •	 .
• GI	 •	 •	 .
• •	 .	

0•••4... 	 X
CZ220	 x

•	 GI 	 	 G3	 ..	 G4	 ..

	

..	 ..	
••	

...•G5 	
• SET // BLANK	 .*	 READ .. YES	

.•
	 FIRST	 .. YES	 .	 •

TEST SWITCH	 .. OPERATION 	 X.. THREE CHAR •• 	 X. CALL EERIE	 •

	

*.	 .. //BLANK .•	 •	 •
••	 .1,

NO	 • NO

• NO

•
.0 	

. .
JI	 ..	 	 14 	

•
...	 ...	 •HOLEZ	 013AI 	

. •	 LAST	 • . NU	 •	 •	 • 	
CARD......X. A2 •	 • CONVERT ROLL. •

*.		 •	 •	 •	 TO EBCDIC	 •
. o	 o.	 A...	 •

• YES

	 01 	

• FEED LAST CARD •

X
...K4 	

• RETURN TO	 •
CALLER •

Flowchart FI004. System Library, CARDZ

Flowcharts 297

CZ400 CZ/I0
B381	 ..	 	 B2 	

..	 ..	 • SET TO RE	 •

. TEST SWITCHX• CARD COLUMNS •

	

.. //BLANK .	
.

. YES	 • FIRST THREE •	
.RiENEIPRREPT.

SET	 ..	 • INTO SPECIAL •	 • AND SAVE	 •
*.	 ..	 •	 BUFFER	 •

•
• NO

	 CI 	
• •
• INCREMENT I/O •
•BUFFER ADDRESS •• •• •

	 C; 04.0
• SET OPERATION
• COMPLETE
• INTERRUPT
• SWITCH
•

I • •

..Al 	A; ao•
• COLUMN	 •	 • OP-COMPLETE •
•INTERRUPT ILS00•	 •INTERRUPT ILSO4.• •	 •	 •

	 01 • na ******m
• SENSE DSW TO •	 •
RESET INTERRUPT	 •RETURN TO ILSO4•
• •	 •

	 El 	

• READ OR PUNCH •
ONE COLUMN• •

• •
•RETURN TO ILS00.• •

Flowchart FI005. System Library, CARDZ •

298

A5
CLEAR PRINT •
SCAN BRIEFER •

•

B5

H5
. .

H5
NO.IDLE

COUNT ZERO

..:ES

	 J5 	
•

STOP PRINTER •• •

• ••
A4 :..:

AZ300 •••	Z

	

A4 	

• A3

PRNTZ	 %	 Al240•••	 %
	 A2 	 	 	 A3 	

....A 	 	 •
•ENTRY

I
 VIA LIBF •	 .	 SET SPACE	 •	 •	 •	 •

• PRNTZ	 • COUNT.' FOR	 START	

	

PRINTER 	 •START CARRIAGE
• •	 • SINGLE SPACE	 •	 •	 •	 •

•

AZ200 	 X	 x	 AZ245	 x

	

B1 	 	 	 2 	 	 	 B3 	 	 	 14 	
• •
•INITIALIZE SCAN.	 •START CARRIAGE
•CT=49.10LECT • 18 •	SPACE
• •	 •	 •
• •

•
.	 .
•CLEAR	 INTERRUPT.
•	 SWITCH	 •x 	

•

•
•	 CLEAR CHANNEL
•	 12	 SNITCH

.
•
•
:

DECREMENT SCAN •
COUNTER	 •

X	 XX

	

AZ210	 AZ250
	 CI 	 	 .C2....

.	 .
• •	 .. DOUBLE	 .. NO

SENSE DEVICE	 *.	 SPACE	
• •	 .. REQUEST ..

X

C3
YES•CHANNEL *.

1 FOUND

....c 	
*INTERR

4
UPT FROM •

• ILSO1	 •
• •••

• YES

• •
C5

• SCAN •
COUNT .CT.

0

• YES

X
D1

FORMS	 NO
CHECK

	 D2 	
INCREMENT SPACE

COUNT BY 1

D3
IDL

..	 SCANS •NO•
•.COMPLETE

	

AZ100	
D4 	

• SENSE DEVICE •
WITH RESET AND
• SAVE DSW	 •

AZ/50
05 	

•
READ EMITTER •• •

• NO

• YES• YES

AZ270
	El 	
• •
•NAIT AT LOC /2A•

...•wITH DISPLAY OF.
/6000	 •

• •

• •
• E2 •.X• .

AZ220
EP 	

SHARBUIN
.....E3 	

• EXIT TO CALLER •
YESSKIP
..... RESPONSE

X
	 S 	
•SCAN

E
 BUFFER FOR:

• EMITTED CHAR, •
• SET BITS IN •
• PRINT SCAN	 •
• BUFFER

* NO
• •
• H3 •

FI61 	 Z	
X

Fl 	 	 F2 ..
•

	

LD CONTROL •	 .. CHARACTER
.
 •.

CHARACTER	 •	 ..	 COUNT
••• ..	 .GT.1	 .•

. .	 . •
• NO

.

	

%	
..	 :=0yEs.,,

•.	 . •

• •	
.....

.
Z	

.	 	 X....

AZ230	 Z	 AZ130
G/ .•. •.	 G2 	 	 	 G3 	 	 G4 	

• OR CHANNEL 12

• PGET
• YES	 •	 •

SENSE DEVICE	 X..
•

A	 SPACE PRINTER • 	 x: CHANNELE	 12...	 JEC	 ..
*. REQUEST ..	 •	 •	 •	 •	 •	 SWITCH•

Z
• NO
.• A4 •	

.• •
MO

.H3..14*
• •

• •	 4
••••

X	 ••••	 X
*.	 .••.••H1	 ..	 H2	 *.	 H3	 ...	 H4	 ..

..	
••
	•

	
.*	

•.. SUPPRESS .. YES	 YES	 .. CHANNEL .. NO	 .. EMITTER .. YES
SPACE	 CARRIAGE	X	 I	 ..	 INTERRUPT

.. REQUEST	 BUSY		 •	

	

Z	 ••
	

• NO		 • NO
.
	• YES	

•
.	 .ENO.
•

F3

......	 ..	 SPA
CT
CE	 CTR..

	
....•		 RESPONS

•	 A3 •	 .	 • F3 •
•	 •	 .	 •	 •

0114;*.•
E3

X	 F4
	

X

YES	
•

•..,	 DECR	 ..	 NO	 YES	 ..	 • SPACE	 ..

....	 • NO

... .
	

'.....

V

: E2 :
....

X	 Z
JI	 ..	 J2

•
	

.
.

• CHANNEL ... YES	 ..	 SPACE	 *. NO
12 SWITCH	 COUNT.0	

...	 SET	 0.	
..	■

%
•

.110	
••••	 • YES• •

Z	 •	 .• A4 •
....	

	 J3 	
• •

STOP CARRIAGE• •

X

••.•F5 	
• •
:RETURN TO ILSOI.
• •

	 G5 	
•
•DECREMENT IDLE
• COUNTER
•
•

:EXIT TO CALLER •

AZ195	 X
	 K3 	 	 	 K5 	
• •	 •••••K4 	 	 •	 •
• SET INTERRUPT •	 • SET INTERRUPT •
• SWITCH TO	 • 	 x•RETURN TO ILSOI•X 	 •SWITCH TO IDLE •
CHANNEL 1 FOUND .	:SCANS COMPLETE •

• •

Flowchart F1006. System Library, PRNTZ

Flowcharts 299

▪ A4

•62400	
x

A2 	 	 	 Ai 	 	 A4
RAPT!

..•.AI 	

• PAPT2
+ENTRY VIA LIEF	 ..x • START READER •

• Az •	 •
• •62 ..X•••••	 XX

	

62200	 . .	 BZ220
SI	 •.	 82

YESWRITE
	

INTERRUPT • NO

	

FUNCTION
	

SWITCH
SET

	

Nn	 • YES

•
• SET UP FOR: •. 	 PUNCH	 •• NO
• UPPER CASE	 •.	 READY	 .•..•.

CONVERSION•
X

• •
• •	 • Fl •
• 133• ••• • •
	83	 	 84

SET UP FOR.•	 NL	 NO
LOWER CASE	 SWITCH SET
CONVERSION	 ••.FOR EXIT ••

• ••••••	 • YFS

4	 •	 • Ft •
• C3 •...

• •
• YES
	 .•••

• .
• 21 •• •••••

1.0/0-0

	 C3• 	
• CONVERT	 •

• ACCORDING
•cASE• STORE IN •
• REEFER

••••C4 	
• RETURN TO

CALLER•

1 	 	 	 C2• •
•SET CHAR COUNT .	 •CLEAR INTERRUPT.

	

•TO MAXIMUM FOR •	 •	 SWITCH
READ	 •• •

04	 .••

• CASE*. YES
• SWITCH SET

	 01. 	 	 02

•
	

•
.• •

	•INCRENENT CHAR •	 YES . •.
	 .

WRITE	 •.

	

'COUNT BY 1 FOR •	 FUNCTION
NL CHAR	 •	 . •

• •	 .•	 ..

	

.........	 X....	 • NO• •
• A4 •• •....

	03 441.•

• INCREMENT
• BUFFER ADR.
.DECREmENT CHAR

COUNT•
NO

	 El 	•
•SET NL NO EXIT
• OUTPUT CASE
• SHIFT•

• SENSE DEVICE

	 Ez 	

	

CHARACTER 	

F2•

• UPPER	 YES
CASE CHAR '

• NO

	 E4 	*	 •
• DECREMENT	 •
•CHARACTER COUNT.• •• •

F4

YES .0 • CHAR	 ..
••••.	 COUNT 0	 ..

NO

E3

CHAR	 NO

X
• YES• .	 •.	 •	 • • FL •
..x. K2 •	 •• • ••••

•• ••

Fl

••••
X

• x
GI	 ..	 G2..	 	 G3 	 	 	 G4 	

• • • •	WRITE •./. YES	 ..	 LOWER	 .. YES	 • SET NL SWITCH •	 •CONVERT CHAR TO.•.	 FUNCTION	 .•....	 •.	 CASE CHAR	 .•...•	 •	 FOR EXIT	 .x..
..	 ..	

•PTTC/A AND SAVE•

• •

	

x		 X
• Nn		 • NO	

• A4 •	 • K1 •
• •

	

.	 •	 •

	

%	

••••

%	

.1....

HI	 ..	 H2..	 .	 H3 	 	
• H4
	 ..

	READER	 .. YES	 .. DELETE	 .. YES	 .	 SET UP TO	 •	 YES ..	 CAS

	

READY	 ..
	 ...

..	 CHAR	 •ouTPUT NL CHAR •	 •	 CHANGE	 ..
..	 .*..REDUIRED .0

	

..	 .

	

X	 X
• NU	 ••••	 •.NO	 NO•

• •	 .
••. 	

•
	 •
• A2 •	

.	 •
• El •.

	 .4E4E0 	
X 	• Jl •.x.	 4	 •	 ..X• K4•

	

:	 X	 ••••

	

00..		 •	 •
AZ350

mi.
	X	 62450	 61430	 x

...• •.11 	 	 22.....

.	
.	 J3 	

•
'WAIT AT LOC /20.	 .. NO	 • SET TO OUTPUT 	 • CLEAR CASE...•WITH DISPLAY OF.	 NL CHAR		 • PROPER CASE •0..	 • SWITCH LOAD
• /3000	 CHAR	 •	 •	 CHARACTER• ••	 •	 •X

• YES	
....	 .	 4	 •	 .	 M..• C3 •	 •	 •

• K2 ..X.	 x	 •	 ..X• K4.•	

•. K4

•

•.X

•••••• %	 • •••••	 ••••

	

••••	 •	 •

bZ300

	

Kz....	 	K4	
*•KI • YES//BLANK	 NO	 •	 •	 •

• LOLL REMIT	 10(• RECORD READ ..
•

X•	 RETURN	 •	 PUNCH CHARACTER

..X• 82 •

Flowchart F1007. System Library, PAPTZ

300

	

READ/	 R/060

"...Al 	 	 .,..•A3 	

	

•ENTRY VIA LIBF •	 •INTERRUPT FROM •
READZ	 •	 .	 ILSO4

• •	 •

X 	

RZ100
	 O1 	

SENSE DEVICE

CI	 ..

DEVICE •.. NO
READY	 .. 	

* YES

*..•.B3 	
• •
• SET INTERRUPT •
• SWITCH	 •

•

	 C2 	 	 	 C3 	
•
•WAIT AT LOC /2A.	 • SENSE DEVICE •

X•WITH DISPLAY OF*	 WITH RESET
/4000	 •

•
•

X
	 DI 	 	 	 D4 	
• SET UP IOCC. •	 •	 SET ILSO4	 •
• PLACE WORD	 •	 .. YES	 * INTERRUP EXIT .

	

+COUNT IN FRONT •	 ERROR	 	 X. TO RETURN TO •
• OF I/O BUFFER •	 RZ100

• •	 •

NC

RI090
El 	

READ CARD•

	 E4 	
••

•WAIT AT LOC /BE*
+WITH DISPLAY OF*

/4000
• •

02110
X

01

INTERRUPT	 NO
▪ SWITCH

SET

RZ070

•/ETURN TO ILSO4•

• .•
•YES

X
	 GI 	
• •
.RESET INTERRUPT.
• SWITCH	 •

•

.
Hi	 ..

*	•I-12 	
//BLANK .. YES	 •	 •
CONTROL	 	 X. CALL $EX1T	 •

	

..READ CARD.•	 •
..	 ..

• ..
• NO

X
	 Jl 	
•HOLEZ	 01301 	
• •
• CONVERT	 •
• HOLLERITH
• RAPPER TO BBC

X
.*.K1 	

• RETURN TO	 •
CALLER	 •

•

Flowchart FI008. System Library, READZ

Flowcharts 301

X
	 CL 	

	

.STORE CHARACTER 	
• COUNT- LOAD •
•CARRIER RETURN

CHAR	 •

12340
C2

NO .• INTERRUPT
SWITCH

SET	 ..

• YES

X
C3

SET INTERRUPT
SWITCH

• A2 •

12300	 X	 12100	 72400
•••••02 	

	

••••AL•••	 *...A3 	 ••••A4 	
	•ENTRY VIA LIRE •	 . CONVERT EBC •	 •INTERRUPT FROM •	 • TEST DEVICE •

wRTY2	 •	 •	 CHAR TO	 •	 •	 ILSO4	 •	 READY	 •
• .	 •TyPEwRITER CODE.	 •	 •	 •	 •

X 	

T1.200	 X	 TI330	 X	 X
	 HI 	 	 •• .•••132 	 	 	 83 	 	 	 84 	
•T2400	 00904•

•000E CHARACTER •	 • SENSE DEVICE •
CHECK	 •	 	 X	 OR CONTROL	 WITH RESET	 •• SENSE DEVICE •

. TYPEWRITER	 •	 •	 •	 •	 •	 •
• READY	 •

G4 •

	

•DEVICE	 .. NO	 • WAIT AT /2A

	

READY	 	 X• DISPLAY /2000 •

YES

.....02 	 X
• ...D3 	 	 ..•.04 	

•CLEAR INTERRUP •	 .	 •
• SWITCH	 •RETURN TO ILSO4•	 •	 RETURN	 •

• •
•

....E2 	
T2400	 00904•

CHECK
TYPEWRITER

READY
it

. .
F?	 ...

..	
• ALL	 .. ND	 •	 .

• CHARACTERS

,

 .•. . . . X. A2 •
OUTPUT	 ..	 0	 41-

..	

.. ..

• YES

...G2 	
• RETURN TO	 •
• CALLER

Flowchart F1009. System Library, WRTYZ

302

•••
ON •

..	 •	 •
M

.O
135	

•
	 • 3000 81d 0071 •

	

1. • 	 0011MS I '0"	 . 01 110003 WD04.
1000000 0 511,	 • 833000 1830N01••

70 	 •	 00 	...	 01170	 X	 50E7M

)If 	• .	 •
• • EH *• •	 •

ON •	 S%,....	 .4..

e •	'.
.. 31310005' .	.•	 I	 ".	 •

83300081 '.	
:. Iii.51;14NS 0.: (1; *

	

53A '.	 .'

▪•
00E7M

ZMSId `A.reaqn uta3sAs • OI 011 3retromot3

• ••Ev :x • • • • • 831N1bd 31VdS
2 3

•

ON •

•
ASEIG	 6.

• 39010800	
•530-

• or

	

X
. 	0107M•

••••••	 •	 •
11,45.1.

* 10 •• EV •

EIN

• .	 •	 •1....	 501 •	 ••••

I	 X

II	 •	 . I530008 -.	 •

	

0111.0	 •	 "°.'	 11VdS	 '.	 I 1NH3 01 dIXS ••••	 01 N811138	 •	 ON '.	 011000 +0	 .	 •	 EH....	
•	 ZH	 	 /H

•70511 01 0011130•

• 7H...•

••••• •
O.• EH

••••••
53A

•00311'•
001IMS ".

11000000000313. 	
alaidwoa•

	

". 8d3SNVH1	 DN
+0

	 70 	 •.....00

•
ON •

03831000003▪ 	*****

•
01	 53A

'.13NNV111+001	 20

ON •

Asne•
000101100	 .•"

• S3A

• 10

XX

031100
21 1301101 135.

S3A •

+0	 N/103831010g :•
^N• ON16.13NNVH.'

73

• 3811 1N18d•
03

•
.001105 3131080D•
• 83350081 135 •• •	 £3 	

•
ON •

0 153E1038

	

.'	 31IAS
S3A•5S3110305

ON

is3floam
39Vd

• 113E3	 ••• 530
•▪

••
• 811001001
• 1081NO3 nvol•
	 00 	

000311	
•311130 "" ON

• ZO

11111115
1 11013 1AS

13

••
X. MS 03811N003N3
• 21 1010 00110
•
	 13 	

00070

• •
• 0000/ •

X . 00 AVldSIG 011M•
.02/ 301 10 1100.• •	 13 	

0617M

:9in3nif,111R3r
51

530

X

13538 01100310140 30005 	 • M50 3SN3S , **
• •	 •

• 301030 30835 •	 •	 •

	 78 	 	 	 EG 	 	 	 09

.610.411
• •

EV •

X
00070

•
• 70511	 •
• 11080 Larmaainn•

00170

ON ..!.

•
xsne

0	 30018001 'OC"	 71180	 •
S3A	 1811 VIA A8103.

•• EV

	

00000
	

758d
X

X: ": EV

	 0 5 	
WAIT AT RE	 •

DISPLAY /1000

•

01.41.4

INCREMENT TO
NEXT BUFFER
LOCATION

X
D2 	

• SET ROUTINE
.BUSY IND CLEAR
• LAST CARO
• SWITCH
•

4....E1....

+RETURN TO 1E000•
•

X
	 E2 	

SENSE DSW	 •
Es

• ..	 •
LAST	 .. YES	 • SET LAST CARD

....	 CARD	 .. 	 	 +	 SWITCH
...

+.	 ..

• NO

F4	 *.

FEED	 *. YES •	 •
• CHECK	 C5 •

6 .	 •	 •
. 6	 6.

• NU

G4
•
• CLEAR BUSY
• INDICATOR

•

X

	 Fl....	 F2

YES	 •LAST

	

• FEED LAST CARD •% 	 	 CARD

.66,•R•11.6P••46.

• NO

•
	 X

G2

•
SENSE DOW

PACES	 PNCHZ	 P2080

••••Al 	 	82 	 	 ...DA4 	
.INTERRUPT FROM •	 •ENTRY VIA LIBF •	 •INTERRUPT FROM •

ILSOD	 •	 PNCHZ	 •	 .	 ILSO4• •	 •	 •	 •	 •

P1100	 x 	 B1 	 	 	 B2 	 	 	 H4
.HOLEZ	 013A1.SENSE DSM METH .	 .SENSE DOW WITH •.

RESET	 •CONVERT BUFFER :	 RESET
• •	 +EBCDIC TO HOLL •	 •	 •
........ 441.1.1.

CI..•*	
P2120

.......	 	 C2
X

•
• • LOAD STARTING
PUNCH A COLUMN	 •BuFFER ADDRESS X

C4	 44.

• 4, YES
ERROR

PZ090
	 C 5 	
•

•
• SETUP ILSOI	 •

..X•RETURN TU PZ120.

P2200

........ •

16:441

• 11

• C5 •

• NO

X

02 . 	44.	 	 3 	
.	 • .	 •
DEVICE	 *. NO	 • WAIT AT 2A	 •

...	 READY	 	 X. DISPLAY /1000 .
..	 .■	 •	 .

..	 .*	 •	 •

• YES

• START PUNCH •
OPER.

	 X.

K2
4.4.44A3 	

	

YES .• ROUTINE	 NO	 •

	

BUSY IND	 .4. 	 X•	 RETURN
SET

.44

•

Flowchart FI011. System Library, PNCHZ

1.4...•I14 X

•RETURN TU ILSO4•

304

XX

D2
KZ300

X	 80260
.....C2 	

	

TYPE ONE	 •
•••.. X CHARACTER OR
• CONTROL	 •

K2600I	 012E4*
	 C

TEST DEVICE •
READY

80210 	 0
01

SET BUFFER •
ADD WD CNT. •
ENTER CAR.

• RETURN

NO.•	 •
INTERRUPT • .•X....• 02 •

YET

	X 	 X

	

F3 	 	 	 F4 	•
DECREMENT

•CHARACTER COUNT.• SENSE OSW• •
•

	

TYPEZ	 82220A2•KZ400 	
3 	 	

KZ100*
.... • A1 	 	A4 	

	

.ENTRY VIA LW •	 .•	 READ	 *. YES	

•

• INTERRUPT FROM •

• •TYPEZ	 •	 ..x.. FUNCTION	 	 X.SELECT KEYBOARD .	•ILSO4	 •
 •..	 ..,..••	 • NO

• A2 •	 .
• • 82 :.X •

	

KZ200	 82230•••	 X	 x	 El 	 	 	 B2 	 	 	 B4 	• •	 .	 •• INITIALIZE	 •	 •CONVERT ONE E8C•	 • SET INTERRUPT •• COUNT BUFFER .	 • TO TYPEWRITER •	 •0CGURRED SWITCH.

	

. SETUP RESTART •	 CODE	 •

	

.	 .	 •	 •

YES• •
• 02 •• •

	 C4

•SENSE INTERRUPT.
WITH RESET SAVE• •

	

.....D4 	 •
*RETURN TO ILSO4••

KI500
	 E3 	
•K2600	 012E4••

. " :TEST I/ DEVICE :•

K2600

...••E4 	

• TEST READY

	 E2 	 ••
• CLEAR INTERRUPT.
*OCCURED SWITCH •

F2

•
NO

KEYBOARD	
..RESPONSE •

• YES

X	 x

	 G2 	 	 G3.•...	 04°..

•READ CHARACTER •	 NO .••
	 ..

ALL	 ..	 YES .. DEVICE •• 	 •	 •
INTO BUFFER	 CHARACTERS	 READY	 ..x...... G4

.

 •
• •	 .	 ..PROCESSED..	 •	 •

I	 1	
••••

	

....	 • YES	 ••••	 • NO• •	 •	 •
• A2 .	 • J4 •• •

	

....	
X

	

 X•	 	 H4
...w3 	

	

YES ...•RESTART.... 	 • • RETURN TO	 •	 • WAIT AT 2A
REQUEST	 ..	 •	 CALLER	 • DISPLAY /2000..	 •

	

X •	
• NO	 11,1••

	

.	 •

	

.	 . G4 .	 .
• • J4

X
• •

....

	 JI 	 	 J2'....	 R
•HOLEZ 	

	

013A1.	J4 	NO . .. • END OF .4*.
• CONVERTS	 :X 	 	 LINE	 •	 RETURN
• CHARACTERS IN •	 ..CHARACTER..	

•
• BUFFER TO E8C •	 •.	 ..

..X. 82 •

• YES•••

.	 K2 	
•83 	

	

.14011E BLANK INTO.	 •	 RETURN TO	 •
• BUFFER	 • 	 X.	 CALLER•• .

Flowchart F1012. System Library, TYPEZ

X

•

X

Flowcharts 305

HOLE/

'ENTRY VIA LEAF •
HOLEZ

• •

•
.STORE. CHARACTER

COUNT
•
•

	 EA 	

•SETUP HOLLERITH
• TO EBCDIC

DI	 	 D2 	•
.	 READ	 NO	 • SETUP CONVERT

• FUNCTION	 .. 	 X. ADC TO HOLL•
•

• YES

X

HZ100
	 El 	•
• CONVERT AND

..X* RESTORE INTO
• BUFFER

	 Fl 	

• INCREMENT	 •
• BUFFER
*DECREMENT COUNT.

.
GI

NC .•	 ALL
CHARACTERS
..CONVERTED,

• YES
•
••

HI

•vEsREAD
FUNCTION

• NO

•PUB PUNCH STOP
'LAST CHARACTER

•

• It CTURN TO
• CALLER

Flowchart FI013. System Library, HOLEZ

306

****	 ****
* *	 *	 *	 *not*
* E2 .	 * A3 *	 . A5**	 *	 *	 *	 ****	 * .

'pm	 *As*	 *	 *	 •
.	 * A4 ‘....	 •.
X	

*	 * .
****	 .

	PNCHO	 %	 C420...	 CA25P X	 CA36 %PUNCH
*****A2**********	 A3	 *.	 ***** A4**********	 *****A5**********

	

****A1*********	 *	 *	 .*	 S.	 *	 *	 *
• ENTER LIME	 A	 . INCREMENT XR1 *	 .5 BRANCH	 A.	 *INCREMENT STOCT*	 *CONSTRUCT PUNCH*
* RNCHO	 *	 *	 BY I	 *	 A.	 TO I/0	 .*	 * MONITOR I/0 *	 A COLUMN TOCC ■
* *	 .	 *	 *.FUNCTION .*	 *	 COUNTER	 •	 •

	

******* ***** ***	 •	 *	 *.	 .*	 *	 •	 *	 ******************	 *****************
.	 •
X

****	 	 001 E5
* *
* F4 *	7 	 001 AS	 x

	

*****R1 ***** ***** 	 •	 *	 *****B4** ****** **	 *****B5**********
* *	 ****	1 ***** 001 El	 *	 *	 *
* A	 A	 SET THIS	 *	 *OFT WORD COUNT •
* SAVE SRI	 •	4 ***** 001 F5	 *SUBROUTINE BUST*	 *FROM FIRST WORD*
. *	 *	 INDIC ON	 *	 * OF I/O AREA *

	

*	 .	 *	 *	 *	 *

	

*****************	 *******•*********

* *
* Cl *...
* * .

X	 CA14.*.	 CA24 X
*****c1**********	 C7	 *.	 *****c3**********
• LOA() %c/1 FROM *	 .* I/O *.	 *GET 6 SAVE I/O *
* THIS TV WITH A	 .. FUNCTION *. NO	 A AREA ADDRIN A
* Arm OF	 *	 ..X..LFGAL, (4 OR .*.... 	 *MCC 5 RSTRT + *
ARGUMENT Annss A	 .	 A. LESSI .	 .	 *	 1	 •
* *	 .	 *.	 .*	 *	 A
*****************	 X	 *** ***** * ***** ***

*;**	 * YFS	 ****
*	 .

: C2 *	 * F5 *
* *

	 ****	 ****

X
CAP6.*. A.

C4	 A.	 CL AA.
.*	 A.	 .* WIRD S.

YES•.*	 ERROR	 A.	 YES ..COUNT ZERO A.
...A.	 INDICATOR .ow	 ...*.	 JA	 .*

*.	 ON	 .•	 .	 *.NEGATIVE .•
A. 	 .*	 *.	 .*

5.40	
X

****	 • NO
*	 •
A F5 A
*	 *

NT1
****Qv*********

A	 COLUMN	 *
INTERRUPT LEVEL
* n	 *
•* * * * * * . * * * * * * *

IT
*****07*******	 *****n3**********
* CONSTRUCT *	 *	 A
* MD% TO 1/0 A 	A INCREMENT ORE A
FUNCTION BRANCH	 *	 BY I	 *
* TABLE	 *	 *	 *
* *	 *	 *
****** ***** ***	 *****************

****** D4****** *****
/NITIATE

* CALCULATED	 A
	DESIRES I/0	 ...

	

A FUNCTION	 *

*****D5 **********
SAVE WORD COUNT
A	 IN COLUMN	 *
* COUNTER	 *
* RESTART	 A

011

;	 . El *.X
*****	 *	 *
107	 ****
* (.4*	 CA15 BEEFS	 CA27 X
• *	 *****E2* ***** 4

r	
******E1***********	 E5	 S.

* A	 .* WORD A.
* CONSTRUCT C A	 *SENSE 1442 DSW *	 *	 *	 .*	 COUNT	 *. NO
A INSTR TO CALE. * 	 WITHOUT RESET	 FEED A CARD	 *,GREATER THAN .4.....
* DFS/RED IOCC * 	A	 *	 *	 A	 *.	 BO	 .*
* *	 A.	 .5
**************	 ******•******	 •************	 X

* YES	 ****
■*•* 	 •*•*	 .	 A	 A

* A	 x 	 	 *001*.	 * C3*
* F4 *.X	 * F5 S.X.	 *	 *

	 x	 *	 *	 *	 ♦ 	 4	 ****
****	 ****

	

TNT ,	CA15. .	 .5.	 CA2B X	 CA40 X
FP	 *.	 El	 A.	 *****F4**********	 *****F5 **********

.***R1*********	 .*	 A.	 .*	 *.	 *	 *	 A
* nP COMPLETE A	 XIS .. IS THIS A.	 NO .*	 LAST	 S.	 * INCREMENT %RI *
TNTERRHAT LEVEL.	*SUBROUTINE .*	 ...*. CARD 9IT ON .*	 BY 1	 :Amount, *
* 4	 *	 *. RUST	 .*	 .1,	 . *	 A	 *CALL eRROR CODE*
***************	 *.	 .*	 A.	 .*	 . A	 *	 *

.	 X. ********** *******
	NO 	 *u•* YES	 **•*

* *	 .	 *	 A
* A4 ** F4 *

X	 *	 * 4.	 *	 K
*****	 ****	 ****
000	 X	 *002*
* FIR	 CAI7 X	 .S.	 x	 • Cl*
* .	 ******59***********	 G1	 A.	 *****54**********	 * A

*
A	 *	 A

*SENSE 144? DSW *	 .*.. I/O S. *. NO	 *	 *
WITHOUT RESET X...	 A. FUNCTION		 * RESTORE ACC *

* A	 .	 *. FEED (11 .*	 *	 *
.	 .	 *	 *	 SS**

*************	 5. .*	 71	 ******•*** ***** *It	 •	 *

	

w7***	 * YES	 *A**	 * G2 *
* *	 A	 * ****	 •	 A
* 52 A	 * A4 * *001*	 ****
* *	 :	 *	 * 5 H4 *.X	 x

	

****	 .	 ****	 *	 4,
**•*

T A10 X	 X	 CA29 X	 CA42.X,▪ YFS
*****HI**********	 H7. .A.	 ******H3*********** 	 *****H4**** ***** *	 H5	 S.
*	 •	 •	 .	 •
* SAVE 'ter,	 .	 .*.* NOT • •. YES	 A FEED TO EJECT *	 * SET UP RETURN *	 .*.■

	 .

	

IS	 *.
* STA T US. xa 7 *	 A. READY BIT .*....	 LAST CARD	 * BOOR FROM XR1 *	 ..55. DEVICE BUSYA.5
* A	 *.	 ON	 •A	 *	 *	 *	 *	 .	 *. BIT 05 .•* *	 5.	 .5	 *	 *	 *.	 .5

	

*****************	 X	 *************	 *****************
* NO	 ****	 .	 T4**	 * NO

* *	 *	 *
* H5 *	 * H5
*	 •	 %	 *	 •

	

****	 *****	 ****
X	 *002*	 X

re 1 R X	 * BI*	 0A.,0 X
JI	 A.	 ***** J7*** **4****	 * *	 ***** j4**********	 J5	 A.

.5	 A.	 *	 •	 A	 t	 *	 .*	 *.
..	 1/0	 A. NO	 *	 CALCULATE	 *	 * RESTORE XRI. *	 .•	 IS	 5. NO

S. FUNCTION	 .*....	 *nesiREn INTIAL *	 * KR?, STATUS A	 S. ERROR CHECK .5....
..TEST (01 ..	 *	 inrr	 *	 *	 *	 A. BIT ON .s

A.	 .5	 *	 *	 *	 *
S. .	 X	 *****************	 ***** ************	 i

* YFS	 ****	 * YES
• **002*

.	 * cl *	 • Bl*

.	 •	 •	 %	 .	 * •
****	 ****	 •

%	 *	 *	 %
* Al *	 CA34	 ...

Kt	 *.	 *	 *	 x	 K5	 5.
.*	 A.	 ****	 ****K4*********	 ..	 A.

.5 IS THIS N. YFS	 *	 RETURN TO	 *	 ..	 I/0	 *. ND
A. SUBRoUTINE	 *MAINLINE !MAYBE*	 S. FUNCTION	 .*....
. ROSY	 .	 * VIA sPRET)	 *	 *.FEED 131 .*

.	 .	 ********* ******	 *.	 OF
%	 %

.GNU	 ****	 * YES
* *	 .	 *007*
* P4 *	 * Bl*

;	 *	 *	 %	 * 4.
****	 ****	 *****	 •

* *	 *002*
A A2 *	 • Al*
* *	 * *
****	 *

Flowchart FI01 4. System Library, PNCHO

• Flowcharts 306. 1

Z'90£ •

OHDNd Bacirl tualsAS 'S TOLI liEtiomoLd

*

* 57 r
* *
**►*

ON a
•

**	 'a
♦° 	 1331 '*
	 •	 sNwnloo	 •*
53A •♦ 14140111004.'

ANN a"
'a	 41

*
13031 130803181
* 4003 N801311 *
****** ***Op..**

.*** ***** *44*
•

801148300 0/1
0301530 1881538

.1

	NU 	 'A
	 *	 801871001 **
531	 801183	 •'

• SVM
IN

*NOM,
**********Ir*****

*
* 34 *
*	 *	 •
****	 ON *

*1341 1408831
* M 213 8811	

01*
138 *

********* SH.***
ZZ1N

31188 0/1 •
* Poinum 31033%3*

a
r	 3301	

*

a Poin103 NI 8008*
a 0/I IN38387N1 *
a	 *

BUN

•

*
a	 1 AB	 *
• 8318007 880103*
• 1N3838330	 a
a

a	 0 13031	 a
11538 8114

• ASO 2441 30N31*
as* ** • ** **** ttIN

•

* •
*40 *
•000•

* 18138 403 8004*
0/I 2 18003 *

* 0408 3801534 a
*******►**LH*****

FAIN

•
.13031 13

4
 0883181**

* 8084 N80138 *
********* E4****

x

a'HANO3
'*

'5
x • * .	80113114 °*8•
SSA 'a	 SI	 5•

'5
. .38

081•1

*•**
*
*tY *
* *

0841 1541 13313 "'

***********Zi******

•

**	 "4
""*' Nu 110 0840

	

538 **	 1581
'*	 IN

(1011N
X

ON *

•
•

	

a'	 No
	 *	 119 0.33117

	

SdA **	 d07,11H
i	 10

•*•***A.*****

	

4 14041	 4
N1AK

* *SO 2441 3SN3S*

*****•*****I
0110 10

*

I I IN

******* **********
*	 a

10118 0808I4180*	 *	 80883 40 —	 *	 •

SAA •
*.

'	 108110	 'a

*h4 *
‘00

*	 30 1 — 8008	 *
800V	 301 *3

—* 1503 803 35040*	 0847	 0434
*	 *

NO1171404II
	 e UN

* 103 H3N0d135 * *	 4153$*
*********** 3*****

x
.*	 Z3 * *

*014 *•;•	 1 0.1 N
*100•

*a**
X

*	 *
531 a * Z3 *

.tens NI	 3085 *

* '43808 01 107 a
*	 a	 4•
*	 3007	 a'	 NO	 'r

**a*

*	 1X3N 40 4140 a
*NI	 01 118 N3Nnd•
*	 dOIS NI	 .80. a

*	 80883 A9438	 *	 ••	 8010310N1	 •s...
'a	 80883	 *• ON*ION Z4V1	 0001

* HIM 334 U401/ ** "A,

*	 I * Bads	 *
*	 01	 1BX 145	 *

******** **50**** ".	 E0
301 18

********4.10*****

UN *
**

*	 7301 NI	 *
'*

a"	 NO	 *	 N	 *
********54 ***** **

13818
:4008183(1111421(31:

	 *.	 118 10438	 'A,	 *13031 1.018831N1*
531, 'a	 ION	 5'	 *	 8043 880138	 *

*N1	 38015 3 1 AB.
* 180 IN38321331

a
ass ******* 57*****

*.	 ******* **c3****
'a	 E7	 x **********1:)*****

9118 x	 t4,73

X . * * I3 *
**••	 X.	

•	 a
400

* * *
* 53 *
•	 •St•.

dI3S 0143 33803
•	 *

a	 0 13031	 *	 *	 31081	 * *3007 808/J3 1083*
•01 NO 801831041•
•	 80883 131	 •

13S38 8114	 *A500 3N1111089115*
* 1150 0441 35835*	 *	 5131 13536	 •

■108 3001.00(111*
* HI1M	 0401 *

•
***** ***** te *****

*	 *
	 ZG***•* **** ******10 *****

53:.*.*
'flo

r" 110143 'a 	
5' NI 8018310N1•*
'* 33383	 ON

0333 A.•

X

*
*	

uaiNnw
0/1 80111408 *

13018 183838330
**********CV*****

*a**
•	 44
*5**

*

BEIIN

*
*a**
Z4
**►*

.(
30118

*

•

*
*

.4(A)*
*•a**

It.**	 M.*.	 ••..	
* *	 a	 •	 *	 4.	 •003*
* A2 4. 	 a Al *	 * A4 *	 • A5*
* a	 *	 *	 •	 *	 * *
••	 ****	 ***A.	 a

X
.	 .

	PNCH1	 %	 Ch20	 CA2511	 %	 CA16	 %
*****A7** ***** ***	 Al	 5.	 *****A4** ********

****A1*********	 .*	 a.	 *	 .
* ENTER LIRE	 *	 * INCREMENT XRI a	 .* BRANCH	 a.	 *INCREMENT STOCT. 	 *CONSTRUCT PUNCH*

PhICH1	 *	 BY I	 *.	 TO I/O	 .*	 a MONITOR I/0 a	 *	 COL TOCC	 *
 *	 a	 •.FUNCTION .*	 *	 COUNTER	 4,	 *	 •

******* ****** *	 S.	 .*	 *	 a
:*********** **** :	 *. .*	 :* ********* *****:

•
X

a*	/ *** 003 F5
. *
. F4 *	7 	 003 A5x

:****91* *******:	 *	 a

:***414*: ***** ***
.....3 	 001 El	 a

*	 SET THIS	 *	 *GET WORD COUNT a
* SAVE 1(111	A 	 003 F5	 *SUBROUTINE BUSY*	 *FROM FIRST WORO*
* a	 INDIC ON	 a	 • OF I/0 AREA •
:***************:

*****c(**********
* LOAD XRI FROM *
a THIS TV WITH *
* ADM OF	 *
*ARGUMENT ADDRS

CA14	 CA24	 CA76	 .5.
c/	 5.	 4.***.c5♦*•******* 	 CA	 a.	 C5	 a.

.5 1/0 5.	 * GET AND SAVE a	 .a	 4..	 .a WORD *.
,5 FUNCTION a. NO	 a //0 AREA ADDR * 	 .*	 ERROR	 *. YES	 .*COUNT ZERO a. YES

..X*. LEGAL (4 OR .*....	 *IN IOCC L. RSTRT*X... 	 a. INDICATOR	 5.	 OR
B . LESS) .*	 .a	 a I	 a	 .	 a.	 ON	 .4.	 ..NEGATIVE .a

* *	 .	 a.	 .4.	 a.	 .*
X	 ********* ****** **.	 X	 a. .5	 X

fi4.	 YES	 ****	 ****	 a NO	 **•*	 a NO	 A.***
a	 a	 4.	 a	 *	 *	 a-	 a	 r	 *
a 177 *	 a FS *	 a C3 a	 * E4 a	 • F5*
*	 ' *	 a	 4=	 a	 4.	 *	 a
a***	 ****	 ****	 ***•	 ****

	

*****D2

•**D4******** 	 *****D5**** ******
1

* COLUMN	 *	 * HUNT015; **	

:***433*********:

	

a INCREMENT ORE . *	 a INITIATE CALL *	 *SAVE WORD COUNT*
****D*

	

INTERRUPT LEVEL	 *FUNCTION BRANCH*	 BY I	 DESIRED 1/0	 ...	 SIN COL COUNTER :
0	 •a	 a	 * FUNCTION	 *

TABLE	 *

* a	 *	 a

.
***** ****** ***	 ********

***** ****	 ****** ***** **

X
** ***

:"E31**.X
a	 a

*	 .
* E4 *...
a	 a

004
a Fla
* * *****E7*******

4.***
CA25

*****E1**********
****	 .

XFEED	 CA27	 X******E4 ***********
.* WO:D	 *.*	 a

*	 CONSTRUCT C *	 a INCREMENT XRI * 	 *

a OnTI&EITIRe:**
	BY 1	 a	 a FEED A CARD

a	 4.	
*	

a
.: . :Ca5 .80U:N. TayaE1 5s. :. NO

...GREATER THAN	 .*....
*

************** *	 *****************	 *** ***** *****
**!*

**** ■

a	 * X 	
Fii**.X:
a	 •.	 *C*14.1X .	. 	

: F4 :.X

•

TNT/
****F1*********

CAI5	 X	 CA43****E5 * 1 ******* :F7	 B.	 *•***F3**********	
CA

•	
***** F4**** ***** :

a	 OP COMPLETE	 a YES	 .* 	 THIS	 a.	 *SAVE USER ERROR*	 * INCREMENT XR/ a 	 a LOAD ACC WITH *
INTERRUPT LEVEL
*	 4	 4,

...*. SUBROUTINE	 .a	 *SUBROUTINE ADDS*	 ..X*	 BY 1	 a	 :RePERale2A6:S.	 BUSY	 .5	 a	 .	 *	 a

X

a.	 .4.
**,1,144,4,4,

NO

a	 .	 *
*********	 .	 ***********

aa**
a	 *
* F4 *
a	 a

a	 a

004

004

. F2*
. *

CA17	 X
.*****7****,014,....	 ******Gi***** ******	 a *

*SENSE 1442 nsw *	 *SENSE	 1442 OSH a	

GA ****** :
a

WITHOUT RESET	 X...	 WITHOUT RESET	 ACC	 a
a	 *	 .	 *	 *	 a

•	 *	 ****
*

	
4.* ***** *******	 *************	 ********

* G2 a	

*00::STORE

::::*****
44.4,*

*	 •
* G2 *
4.	 a

*	 a	 * H4 *.X
*:**

****	 4.	 a
X	

*CAll	 %	 •	 •	 CAA** X
	 YES

CA42
*****H1**********	 H?	 *.	 *****H4**********	 H5	 S.

*	 B.	 a	 .*	 S.
...

.*	
NOT	 5.	 YES	*HLA:T::s *.	 NO	 a SET UP RETURN a	 .4.	IS	 a.a	

STATUS, 	 :	 a. CARD BIT ON	 .5....	 a ADDR FROM XRI 4.	 ..X*. DEVICE BUSY .*
•*	 .	 4.. * 1.1. 1T ON.*.*a.	 ON	 .4,	 a.

a	
5.	 READY BIT	

* a.	 .* .*a.	 a	 a.*
*****************	 X	 X	 *****************

******	 ******	 44.**a NO	 * NO
:	 a	 a

4, H9	 ,I,	 .	 A4	 4,	 •	 H5 *
•	 *	 *	 *	 :	 a	 *
****	 ****	 ****

X	 %

.	
CI	 x	 CA30	 %	 .5.

•JI	 *	 *****J?**********	 •J3	 *.	 ***** J4 ***** *****
I.	

AO
.*	 *	 ..	 S.	 •	 a	 .* j5 ! :::. a. NO.a	 I/0	 *. NO	 4,	 TALC DESIRED	 a	 ...	 I/0	 a.	 NO	 * RESTORE	 XR1,	 a	 .•	 IS

a.	 FUNCTION	 .	 INITIAL	 IOCC	 *	 a.	 FUNCTION	 .5....	 *	 XR7.	 STATUS	 *	 S. ERROR CHECK .*.....*....
..TEST	 (n)	 .*	 a	 4..FEED	 (31	 .4	 .	 a	 4.

a	 a...	 aS..*	 a	 .
	

a.	 BIT ON	 .*
	 •S.

;	 ********* ********	
...a	

A
.	 *55** YES	 ****	 * YES

• .	 E7	 .	
.	 .	 4,
.	 * A4 *	 . 814.

a	 *	 X	 *	 a	 :	 . *
Sass	 ****	 :

.*::::.4.*

X	 a	 *	 %

K1	 B.	
a Al a
*	 *	 ******x3*!********* ****

CA34****K4*: ******* 	
K5	 5.

****4.4.4.4.	 .*.4.
.*	 IS THIS	 \.	 YES	 *	 *	 a FEED TO EJECT *	

:MAAETUNa.	 SUBROUTINE	X*	 F4 4,	 IMAYBE:	 a:	 FUNCTION
*	

LAST CARD
*.	 BUSY	 .5	 *	 *	 *	 a	 VIA SPREE)	 a	 •.FEED	 (3)	 .4.

..	 .*	 ****** *********	 a.	 .a
.*.0	

sass
a	 *************	 %

*004

X	 %	 %
****	 *****

*	 *
* A7 *	

004
* 31*	 :nt:

**	 * *	 * 5
****	 a	 *

Flowchart FI016. System Library, PNCHO

• Flowcharts 306. 3

004
. CI *.X

CA44

*****cl***■******

* DECREMENT IRS *
RY l L STORE IN
• $PRET

.m.* 	

*****D1**********

• SST 001 TO	 *
• SPRFT	 I	 *

:*************

;

003
. H4■

0(14
* El •
* *

rR54******Fi*.

*SENSE 1447 DSw *
WITH RESET

• LEVEL n *

504
• Al.

*****A1***•**•***

RIFT ERROR INDIC*▪
* ON EVEN TO	 *
FORTE CARD SKIP
*	 *
...***** ******* **

****	 ****
* *	 *	 *
* A2 *	 * Al ** *	 *	 ** 5 * *	 'I.***

;
;

••***A7*•*** *****	 A3	 5.
. SET PUNCH COL •	 .4.	 A.
* MCC ATOP TO *	 .5	 IS	 P. NO
• A pOR - I OF *	 5. FUNCTION	
*DATA WORD WITH .	 P. PUNCH .5
• 17 BIT	 *	 5.	 .5
******* **********

* YES

CRIB
*****132****•*****	 *****B1**********
* *
. INCREMENT I/0 *	 • CONVERT PUNCH *
* Ann,/ IN COL •	 * IOCC TO FEED ***	

/orr
	* 	 .	

!MC
:

** ***** **********

* LOAD ACC WITH •
5/000/ FEED OR *A PUNkl CHECK *
• ERROR CODE *

*** ********** *A**

	CR71A 	 X
•a84 *****•*

• BRANCH TO •
• USER'S ERROR •

	

A	 SUBR
►

*****G1**********
• •
■ DECREMENT COL *
• COUNTER By I ■

MI	 A.
*	 *.

.*	 ANY	 P. YES
• ADDITIONAL .* 	

.COL LEFT .

. NO

******E3***■******

•EJECT LAST CAROA

• r
	 X

* 03 *.X
*

***•
CR62

***** 03.*********

* 'MOM* *
• *******

E3	 a.
.*	 a.

..	 WAS	 •S. YES	 *SENSE 1442 DSW a
*. ERROR NDIIC .5....
*.ON E ODD .5	

WITHOUT RESET

5•***	 .	 *	 *A.	 .*
004	 *. .5.	 i
* F2*
5 *	 *55*	 *. NO	 *	 *

*
* Fl :.X:	

* E4

	

.* 	 *****it	 •	 .

CR60	 ;	 CR64"" •
X*..	

CR75******F2** ****** *** 	 *****F3 ****** *ft*	 f4*.
* A	 .*	 S.	 * LOAD ACC WITH •*SENSE 1442 11544 *	 * RESET THIS	 •	 .5	 NOT	 5. YES

* LEVEL 4	 5
WITH RESET	 *SUBROUTINE BUSY*

. IN 	 *	
•. READY BIT .5 	
. ON	 .	

X:1122t040124":* *
* A	 S.	 .*	 *	 ********** ********	 	 *5*S. .N*O

•

XG7	 5.	 	 G 	 	 04****.

	

.*	 S.	 •	 5	 .5	 A.	 *SPST4	 A

	

.5 FAROE P. YES	 * DECREMENT *	 NO .* ERROR *.	 5------------•

	

5. CHECK SIT . 4,	 *SIOCT. MONITOR*. INDICATOR .5	 *PAUSE FOR POST *...

	

P.	 ON	 .*	 A I/0 COUNTER *	 .	 a.	 ON	 .5	 • - OP ERROR	 A

	

S.	 .* * r
;	

5.	 .a	 *	 *;
	* NO	 A.*•	 •	 ****	 * YES

	

*	 a	 .
• * Ill *	 * j4 *	 .• •	 *	 .	 •

	

1(****	 .1 	 *•*•

CR61	 CR66	 ;
H2	 5.	 ;

	.* 	 a.	 ****H3 ****** * * *
.*	 LAST	 P. No	 * RETURN FROM *	 *	 *

	

S. CARD BIT ON .5....
4.. 	 .*	

INTERRUPT LEVEL	 X.... * FEED A CARD •* 4	 A

	

P.	 .*	 ****** **M.!**
X

	YES	 **•*
* *	 *•*.
• 03 *	 a	 A* A	 • J4 *. ..

	

***a	 .	 a

	

CR73 ****
	 5,(

a	 a
*RESTORE COUNT E•
* I/0 ADDR FOR *
* RETRY	 *
• .
***** ******** ***A

******c2**** ****** *

FXFC/JU I (41. I/0

CR22

...*n7* *******
* RETURN FROM *
INTERRUPT LEVEL

0
******* ********

* a
• CS *...

**A*	 i
CR738	 .5.

C4	 A.	 C5	 P..5	 P.	 .* READ *.
.•	 USER	 •S. YES	 .* STATION •S. YES

	•. *SET ACC TO .•....	 5.	 FEED

	

S. ZERO	 .A	 .	 *. CHECK .*
.	 .	 5.	 .•

	

X	 •. .*
• NO	 A***	 * NO

	

*	 a

	

.	 • F3 •	 .

	

.	 *	 *

	

X	
AA**	 .

	.•. 	 CR73E	 X
D4	 5..•	 5.	 •	 *

NO .5	 IS	 *.	 ■SET ERROR 'NOM*

	

.••*• FUNCTION	 .5	 *ON ODD TO FORCE*
• *. PUNCH .5 	*	 CARD SKIP' *

X	
S.	 .*	 *	 *

44	 * YES
*
* CS *	 *
* * E4 •.X	 X

*	 X 	
t*5*

CR77	 X

FRI6	 X	 X
*****JI•*********	 *****J2 **********
.	 .	 *
* INCREMENT COL *	 * SET ACC TO	 *
• I/O ADDS IN A	 • / 0000 LAST •
• Torr.	 *	 *CARD ERROR COORS*	 .	 *	 .
************.****

...*
* *
* X3 *...
* *5 * *4	 .

CR6IA	 cp70	 x
*****R1**********	 **K2*******	 *****B1* *********
. .0R • IN STOP *	 *	 *	 *	 •
PUNCH MT 12 TN	 . *RANCH TO a	 *SAVE FEED CHECK*
* DATA OF NEXT *	 . USER'S ERROR *	 *	 BIT INDIC	 *
* cot /1 PUNCH *	 *	 SUSR	 *	 *	 *
• SAYE IN SUFIS * 	 *	 .	

A
*****************	 • • * • • ******	 * ******* 4******•*

	

.	 .
X	 X

	

****	 • ***	 ****

	

4	 *	 *	 •	 *	 •
* 12 *	 * Al .	 * A4 ** *	 •	 •	 •	

••***	 ****	 *A**

Flowchart FIO1 7. System Library, PNCH1

* REINITIATE	 *
DESIREO I/0

• FUNCTION	 •

X306.4

'90£ slartlamoII •

TINrdd 'AreaqT1 malsAs 'mu 4retiomou

49 a*9005***

* ** 40 aa a**•

•.	 .

	

*****************	 ******** ******** *
* a	 *	 *
*01344 991 4111

**	 *11131A 9935 2E11*
*NI 409 N ail***	

	

 0110d131 a	
N1 0409 9441193

118 1N143 34015	 *119 19143 3401S*
a	 *•	 a
*********** 9*****	

****a	 ***********IN*****
* 44 a	

******* ***4X*****
X	 :	 X	 91493

a	 *****11
.	 •

***** *** ***** *a**
• a	 *	 *	 *	 *	 *	 *
a	 a	 a	 *	 *	 *	 *	 a
* 1331	 *	 a	 iwnop 0409 a	 a	 13438	 *	 * I - INno pum 4E*
a N431103 14185 *	 * HIIM Za% 0901 •	 a NI III 3dU1S *	 a - 15110 13534 a
* a	 *
***********	 ****	

*
f**	

*	 a	 r*****	 ***** ***** /I' 	
x	 X	 x	 x

• 19003	 a*

*a	 01314 1015 •
a	 .

a	
a
*

*
* 339	

*
5*

a 0409 31114039 *	 *19144 ZEll 0431*	 *Au x330 '144E11*

	

* AO 4009 3119 a	
* NI 943110* 113*

.1* a Z	 ZE	 a	 • 	 	 a 19143 A311501" *
a - 14003 14181 a	 a	 40313*	 a 141 3401534 a	 *	 *

	

********** ZH*****	 **********18*****
):	 x

• 3***

	

*	 •
.	

. ** •	 X • a. SA* *
* *	 •	 a	 *	

*..).,►
a'	 *•

*
'	 a*********** ******	 *****************	 ***** **** ****** **

* a	 *OM 390 NI 140143* 	 a	 30Q5 40443 *	 s'	 '5.
a 091 0191 4VH3 *	 a 1193 2903111 a	 0	 '.

: . 1531813534 : 	 a 0311183 alunoo*	 * ZEI I 10091 .	 ON .* - 11310 a'
* *	 * 811M DVI 0901 a	 '5 'a	 111 *.

: ******* I*	 45***Tinri	 **********Z5*****10111****9133:	 •*'
x

X** ED **S•*	 a	 a
* a	 •
* 13 *	 *	 a	 *
a	 4 * 4****

53/ . *.. •••*
).'	

•40 * *** ********* *****
•	 0830 .	 '	 a	 4010910N1	 a	

SOU
0400 34d 5I1E a*.	 .*	 *	 a	 aa 	

*
*• MON Amnon '**"	 a	 314 354	 * .4 91 19503 01 *
'i	 040M	 a' ON	 a	 c) Nani	 *	 *4 A11 15310 +luau*

. * '4,	 tA*.	 •	 a*****•***** E3***** 	 I3******
x	 x

*13 *	 :*::*:a *
100	 *	 a

:	
S3A a

	

*********** ****** 	 **** ****** ********* **
a	 *	 s•	 ••	 a	 *	 •	 *	 *
a	 I	 *	 •	 a•	 •*	 a	 3005 40443 a	 '	 a	 511E 091	 *

*	 31	 1103 a*18 Z40 NI ituoin*	 ..••*.	 0 . 110	 'a

	

: 14 3335304/ •	
"* X

a 040M 39119949 * 	 UN '4.	 a'	 *1/U1 4 19143943 13135*
a	 11431434jNI	 *	 '. .*	 13 al.	 * 81111 5:19 0901 a	 *	 a

X	 '*"•	 4/33	
***** *****Z3 *****

	

Z1011	
	 li*•***5314'$.	 .,

***** *********** *

a 103 0135 }3405i
* 3103133• HO1 N 8933 *

a 4V33 0N4 41 *	 *0311193 34031403*
a	 *** ****** **E0*****

••
a* •*43 .a500*

*
*IV*900*

44**
4* Z3 ** a****

*• 301VA 09114015
*:.:

* 01 19003 UM* 31111903N 14534* •
******** * 53****:

*•**
* *a ZO ** *

********* ****** **	 '	 *•*************•*
** 90 91 418	 *	 :	 a	 :	 :	 01313 9935 :
a 103 131 3805 a 	 a ZZ 01 4319003 * 	 ''.0* JO 040M 1191 *
* 4983 151 41 a	 * NV3S 84 135 a	 *NI 110 31313905*
* a	 a	 N935 131	 a
* ****** ****3 ***** 	 * **** *** *E3****: 	 * ******* **Z5*****9433

•********▪ ********

* 1.4411 30 4009*
* 8115 lox 0901
	 15*****

:******* *******:

a lax 3195 *

:*********I4 ****

* ** ED ** aa*aa 531 *35

*********** ******	 'J'
•

. ..

a*	 4313949H3	 a	 5".1,'	 'oxNO •'a
6311183 0310000 	 --** 401V3IONI 'a
* 8119 3493903 *	 ON 'a 313381N a'
a	 a	 .* "a	 104.	 ****
******►*►* 98*****	 *	 a

* 40 ax
)1	 4,	 *

• t
•

*** ***** ********	 *************•
a	 *	 *	 a	 *	 ***** ** *******
a	 1340	 a	 13339	 *	 * 1 A3 01313 *	 *	 •
0/1 5.4359 3043	 a 0191 4311183 *	 a	 N935 NI OM a	 *	 11.443	 *
a 040M 1%3N 130 *	 a ZE1I 0934	 a	 134015 01 4000 a 	 a 3311 VIA 43193*
a	 a	 a	 *	 * 193834391	 a	 *********10****
***** ************	 *******49*****

9935	 3	 1183	 X	 11943
•

• •	 •
****.	 ****•a	 *	 * *	 *	 a

	

a AV 4	 *EV *	 a 49 *
a	 a	 *500*	 a	 *

	

****	 *****	 *a**

01 4009501313I
* NV3S 13134 *

AU 4319003 NVDS
* 84 1931434330 *

•****•********
.**** ***** * **

as***	 **••	 *555	 ****
*0065	 *006*	 *	 *	 *	 *	 *	 *
A Al*	 • 42*	 * A3 •	 • A4 *	 * A5 ** *	 * *	 *	 *	 *	 •	 *	 **	 ***■ 	 •***	 **•*

• •
• •.

Kin	 x 	 STXTT	 X	 .*.	 i	
FC20	 .*CONTROL*****AI	 A3	 ..	 A4	 5.	 115	 *.

* SAVE EXt AonR *	 • SET UP RETURN •	 YES . * -*41; SA"...	
.•	 *.	 .. IDLE *.

.*	 WORD	 5. YES	 NO .*	 SCAN	 5.
* OF LIAF+I FOR *	 * ADDS FROM XRI *	 5. COUNT WAS .5.... ...*.COUNTER .LE. .*
* ERROR EXIT	 *	 ...*.*. CHANNEL... 5	5. .GT. 60 .5	 .	 5.	 0	 .5

* *	 *.BITS .*	 C.	 .*	 S.	 .*
:************•**:	 X.	 5. .5	 S. .5	 %

****	 • NO	 NO	 ••***	 S.*.t,ES
* *	 *005*
* K7 •	 5 G25
*	 *	 * 5
*a**	 *

•*111..*****

* SAVE)012,	 *
* STATUS, Arc + *

EXT	 *

:*************•*:

******C1***********

*SENSE II17 nSW *
WITHOUT RESET

FC58

* IBTETM *

EXIT

****C7*********
* RETURN TO *
• MAINLINE*

	 t**
* SET NUMERIC *
*MODE IND/CATOT: 5
• ON/OF F FRO	 •
* SAVED ACC

M
 •

*****C1*: ****** ■**

* INCREMENT XR/ •
AY 1	 •

*****•I,

FC16B
*****B4*** *******

:15D1i/AFOTEAM*
* SAVE	 R SCAN *

:***************:

****C4 **********
* SET 48 SCAN *
*COUNTER TO 46. *
2 [IDLE COUNTER

TO 12

FC704

*SENSE 1132 DSW •
..X WITHOUT RESET

* *
******** *****

C5	 *.

	

.5	 5.
YES .5

CARRIAGE *.

	

...*. BUSY BIT	 .5

	

*.	 ON	 .5
	. 	 .

5. .5
* NO

.
nl	 *.	 *****03* *****	 *****D4 **********

	

.8	 4•	 *	 SAVE XR1 *	 ►CLEAR	 **
YES. 8	NOT	 *. Es	 * ADOR OF ADDS *	 *- 	 *	 *	 *

•. REAny RIT .* 	 	 *OF I/0 AREA IN •	 *ZERO 1112 SCAN *	 *SET STOPC TO 12*

	

..	 ON	 ..	 X	 *	 FC16	 ►	 *	 FIELD	 5	 •

	

S.	 .4.	 *****	 •	 *	 *	 *	 *	 *
	005	 *•************

• NO	 * F2•
.	 k *
•
•

	FCI3	 x	 x

	

IL • *.	 ***** E2**********	 *****E3**** ***** • 	 ***•*5**** *******	 ***** E5**********

	

.*	 *.	 *	 *	 *	 SET SCAN	 •	 *	 *
..	 1/0	 •. NO	 •	 SAVE I/O	 •

	

. FUNCTION	 . 	 ..0* CONTROL WORD 5	
5 INCREMENT XR1 :	 *COMPLETE SIT 14*	 • GET CONTROL *

5 LAST MORO OF *	 • DIGIT 2 FROM *

	

4.1E51 IT) ..	 •	 *	 *	 * SCAN FIELD	 *	 * EXT AND SAVE *

	

5.	 .*	 *	 *	 *	 *	 *	 *	 *••************•**	 ******** *********	 *********** Wig**
••
•
•
%	 X

X	 X	 x .5.
******F/***********	 F7	 5.	 *•***F1*•********	 ***ME/. ***** * *****	 F5	 5.

.*	 •.	 * SAVE XR1 ADDR *	 .*	 5.
*SENSE 1117 DST *	 .8,	 I/O	 *. YES	 * OF BOOR OF	 *	 * START 1137	 *	 NO .5 DIGIT 2 *.
WITHOUT RESET	 *. FUNCTION	 .5....	 * USER'S ERROR .	 PRINTER	 ...I,	 IS 0	 .5

. *	 *. .LE. I ..	 *	 SURE	 *	 *	 S.	 .5
*

	• *************	 i	 *****************	
5.

• NO	 *****	

5.

* YES

	

005	 ****	 ****
.	 * 02*	 *0065	 «nos*

	* * 	 * 51 4,x	 • G4 5.0* *	 *	 *	 *
X	 X	 ****	 X	 *4*5

G1 *** *.	 G2	 5.	 G3	 5.	 	 G4 ****** ****
FETAL	 CNTUP	 X	 X

.4451 0514*.	 .5 I/O *.*.	 .	 *	 *	 *
	YrS .5 AIN ON	 *.	 .5 FUNCTION C. YES	 .5

.*
 I/O	 *. YES	 *INCREMENT STOUT•	 * GET CONTROL *

.. . I.	 FXCF*T	 .*	 5.	 CONTROL	 .5....	 *. FUNCTION	 .*....	 * MONITOR I/O *	 * OIGIT 3 FROM *
5. CHANNEL .*	 5.	 111	 .5	 5. .GT. 4 .*	 * COUNTER BY 1 *	 .	 EXT	 5
.SITS .5	 5.	 ..

	

X	
S.	 .*

	

%	 **** ******** ***** 	
*	 *

	ND	
R.

* NO	 *5*5	 NO	 *555*	 .	 .
• *	 *005* 	 .
* 05 *	 . G2*
• *	 * 5	 ;(▪ 	 •

	

****	 *	 *55*
*	 .

X	 7(FC16	 x	 * K1 .	 .*.*****441.*********	 *****442***** ***** 	 *****1-73*•**•*** I,* 	 •	 S	 H5	 *.* *	 *	 •	 *	 *	 **•*	 .*	 5.
* INCREMENT XR1 S	 * SAVE /Arc AS • MT
* MY I	 *	 . NUMERIC MODE *	

:GFallISITWORD :	 .5 DIGIT 3 *. YES
5.	 IS 0	 .5....

* *	 S	 INDICATOR	 *	 •	 *	 5.	 .•
* *	 *	 *	 *	 5	 5.	 .****	 **	 *	 *****************	 X

• NO

	

.	 .	 *005*
• x.	 * G2*

• * 4.

	

X	 .	 •
X*****J1** ******* *	 *****J7**********	 J1. 5•

S.	

FC25
*****J5 *X*********

* *	 *	 5	 ..	 5.	 *	 *
* INCREMENT XR/ *	 *	 ** 	 *
. AY I	 *	 *	 ZERO EXIT	 *	 5. NEGATIVE 5. * NO	 * SUBTRACT 12 ** *	 *	 •	 5.	 .s	 x	 «	 ** «	 *	 •	 S.	 . *	 *****	 *	 5
*•***********►***	 ***** ************ 	 *005*

• YES	 * 575****	 ****	 * •
006	 *	 *	 •	 *
* KI 5.8	 * K2 8.X	 .	 X**	 *	 *	 •****	 *5**	 *007*

X	 FCIAX	 X	 X	 * Al******K1**********	 * ***** K7***** ******	 ***** Ki**********	 * ** *	 *	 *	 *
* RESTORE ACC + *	 *SENSE 1717 DSW *	 * SAVE MINUS WORD*
* ENT	 *	 WITHOUT RESET	 *	 COUNT	 *
* *	 *	 *	 *	 *
*	 •	 *	 *
************ *****	 	 *

.	 •
• •	 •
Z	 i	 i

*4**	 **•*	 tit*
• .	 *	 *	 *	 A
S AA *	 * Al *	 5 44 5
. *	 *	 *	 *	 *
****	 ****	 ****

Flowchart P1019. System Library, PRNT1

• 306. 6

S IFS

L'9OE suegomou •

Idmid 'Asuacul ulalsAS	 laBgomou

	

*9**	 *
*	 *	 4 *	 * •

	* 50 •	 **9 9	 *i9 *
*	 *	 *900*	 *900*

	

4*4*	 *****	 *****

	

x	 t	 '1
•
-•

	

.	 538 *
****•********

**	 *	 *	 4*	 •*
* 94 01 93190E13 *	 430d5 350/9503	 *•
* 3131 14 13S *	 *	 Zt11 1/1015 *	 '* d31NOU3 *• ON

*	 '*	 4'
**********4N*****	 ***********ZN****** 	 **...1N

	

*	 X	 330dS

* 9
*10 *
4900*

weiTAtniti
*********su*****

• *

Zux 31101038 *X"*	 *
********** 53***** in0

X**

*
 53 *
100

• *	 *

* 1 AN 931N000 *	 *	 .
	 * WI 9011909 *	 * I AN 9319903 *
1301$ 1N4439330	 *33015 1934410330*
*	 *	 *	 *	 *
**********tr•****	 * *	 **********1r*****

x	 4531	 *49 *

	

****	 *900*
*	 *	 *****

	

X** Er *	 **	 *
*9**

	

** ****** ***** 	 *►*********** 	 *****************
*	 *

*	 *	 *	 *	 I AN	 *
d1NS	 dIAS 30018603	 * 40* 0344393Ni *

* 304)11194)3 d01S *	 *	 ZEII 19015 *	 *	 1000	 *
*	 4

* ****** **;*
E

H ******	 ******•*•*•4H•*****
X	

**********IH*****
x

.	 *
* 40 *.	 *

	

SiA *	 sax *	 ****	 UN

	

4 • •4	 *	 4"*
*	 .	 9'	 '9	 9"	 .*

	

4' ND 119 *	 *	 *	 9' ND OONI **	 ** 10 43301 '4
X.- 0174*: * 8inf

&	

.:4	
* 0Ni330,15/dIN5*
* ONV 5S0d 90313*	

4' 30Vd5YdIN5 '4
NI	 9'	

'"***	 14NNVH3	 '4,
538 **	 SIH1	 **

**	 **	 *	
•*	 NI

 0 119 4'	 '*U1 31N5**
"4	 99	 **********k9*****	 '4	 45	 '*	 19

•*•	 x	 9E34
x

*	 *	 Xx 	
* r

*IN *
900	 •

SAA *	 53A *

	

9, ******9**	 4* •*)!*****************

	

*	 *.	 •.	 9'	 '9	 *	 *
	* 	 *1019315w*	 '	 9' 1081903 **	 *	 I AN	 *

*X ***** "***	 3YdS/dINS "9	 *".*• 3xviu3mxil '*	 4. cdx IN39393N1 *

	

: 0191 MiV./10. *	 ON '*	 H31044	 4'	 •ON '9	 *•	 *	 E 00V	 *

	

*	 '9	 9'	 '*	 *"	 *	 *

	

**********43*****	 •	 **. .Z4	 **********14 *****

	

X	 0931
*9*4

	

*	 *	 9*4*

	

X • * 43 *	 *	 4

	

*	 *	 * Z0 .

	

*9**	 *	 9
• *99*	 ON *

*****************	 *****************	 :*	 *	 *	 *	 4•	 's

	

* gr11814 910, 11 3* 	 *149908031.1051*
* 135 098 5119 *

* 410103991 Z *

	

* 4031 1001900 *	 *"**"
**

6 139N0H3
**

'.
S3A '4 01 3135 *a

*	 *	 *	 NO U 111	 *	 *	 NIIAV	 9

*	 *	 911010 UiAVS 139*	 '4	 9'

	

*********** 43******	 **********t3*****	 **********43*****	 .9.5.1a
	x 	 x

*	 *
9 kr *

	

*	 *
	S3A *	 4***	 S3A

	

9*
** '4	 *	 ***** ******* *****

".	 9'	 **	 *	 *	 *	 *
9'	 9' NU 114 • 9	 •	 901031091	 •	 4	 *

*• 1331 535495 •**••**•*•	 3514E41549 '8 	 *	 430d5/dINs *	 *	 *
•*	 340N	 ** ON	 •ON **	 dINS	 9'	 *	 NI 38015	 ••	 * Z90 11S UI E 000*

.*	 9'	 *	 *	 *	 *'8
- * 	 *a

9'
'.. . 1.0	 ********•*40***** 	 •*********i0*****

	

'90, 	 4433

	

*.	 ****

	

*	 *	 *9*8
X • * ai * *	 *

	

*	 * * CV *

	

•***	 *	 *
• ****	 ON *

	

*************	 ******** ********
*	 4	 *	 M	 5'	 •* .**	 *	 *	 M50 1895 *	 *	 dINS	 *	 **

	

a 1 Al muiNnov *	 090 13138 HIIM	 * 310310N1 01 *""*• Z/ 11N901-11 '9

	

*33035 1N31439330** MSO ZE1I 4SN3S*	 * 0 114 NI .90/ *	 •S3A '* 01 dINS 9•
*	 *	 •	 *	 •9	 4'

	****** *****3*****	 ***********13******	 ****** ****Z3*****	 '9,	 13

	

X	 x	 x

•
•

ON8'
*

*	 *"
9*	 "9 **

*
• 1 A9 9319003 :X 	 *	 53101 14 .4 '*
* 3101 /V N330 *	 53A '4	 99100	 *"

■ 	 '9	 *•
**	 4H

1933	 '**

S3A *
• •

**	 "9
**	 M50	 **
	 * 03805 NI NO '4
ON "9 110 N3383 *•

** NV3S *•
**tr

4*

***** ********** **	 *,**********G****•
:901118 31 13403* 5S4d	 *
*	 N931 13S	 *	 * 01N1 4450 .90. *

******•***49*•***X

*****************	 ************•****	 *********** ***** *
*	 *	 *	 *	 *	 *
*	 *	 *	 4)30	 *	 *	 *
*	 29X 3805	 *	 * 01 5/1109033V *	 4 0 01 411X 13S *
*	 *	 *	 1911 131HS *	 *	 **	 *	 *	 •	 *	 *

***** ***** 2u*****	 **********It*****
x	 0511	 x	 x

	

****	 *It.■
*	 *	 *	 *

	

* 4 *	 * Z0 *	 '
*	 *	 *	 *

S3A .	 ****	 **** '	 S3A *. .

	

X	 *** *********** ***	 X
• *	 4•	 •4	 *	 *	 .	 4•	 .•
• 01313 NVOS *	 *• NO 119 • 4	 •	 *	 *	 *	 *	 *•	 **
iNlad e111 0032	 *•	 35NOdS39 ****•	 *	 10511 VIA	 *	 ""*. N011063,10'*
a 	 	 *	 *8 33VdS	 9' ON	 *A8193 1909b3lN1* 	 * 911119n10001 *	 ON '4	 31M 	9'
*	 10313*	 •*	 9'	 *********kV****	 *	 *	 '.	 *.
********** 50*****	 **.. 40	 ****•*****44****•	 **.10.

*	 x	
9534	 11N1	 t	6k34	

..

*.	 • *	 *
*	 **** Z4 *	 •

****	 *	 .	 *
*	 *	 ****	 * 9
* SV *	 *IV *
*	 *	 *100*
***•

FC86

*** ****** ****

* *
•
.
if

FC70ECRI	 x
Al t4.

..	 ..	 *
.*	 48	 •. NO	 * CECREMENT 16 *

. PRINT SCAN .•.... 	 •ISLE COUNTER BY
.comPTFTEn.	 .	 •	 *

.	 .	 *	 *

•
anon*

41*

;
• YES .•••*

nos
* .41*
* *

et**
*	 * *

*a**
*

* 43	 *
•	 w

* 44 *
*

*
•	 4 4

*
4...

**** ****
•

*	 .

* ***** A34*********

*START sMgetIAGE • *START CARRIAGE *
SKIP

*#***********

CEAR

• ENTpRqE Y
FI 	 •

TO	 *
* SUBROUTINE *

UP7	 X*****R1**********	 42	 *.	 *****133**** * 	
*CLEAR	 *	 .5	 *.

PR	 *	 *	
*

* *	 .4	 MORE	 4. YES. Foll 1112	 INT. IDLES TO GO .o....	 : INzucut Iv':7
* SCAN FIELD	 *	 S.	 .5	 .	 * COUNTER BY I *

* S.	 .■ 	 ************ ****** 	 ;	 ************.****
* NO	 *****	 .
• *007*
.	 * CS*
.	 • *	 ;

* *****
;	 .007*

* CS*:****CI 	 	 C2.4.4.	 * *
.*	 *.

X***t*BS********t 4o.

:ZERO ACC + EXT **	 *

.	 SFT SCAN	 *	 NO .5	 *.
*COmPETE BIT ON * 	 ...*.	 SKIP/SPACE	 .7,	 •	 SET	 XR2 TO -8
*	 * *./NOR . / ..	 :

5 .	 .*:***************: :***** ******* ***:
YES

•

Di	 A.
FCB2	 SERE.	 CL2*****0 4 ********* *	 ***01**********	 ***** 05 ******

X

NO	 .*	 16	
•.

*	 • LOAD ACC WITH *
GET I/O CONTROL	 *	 /0004	 1/17	 *	 *ZERO TWO WORDS *..*.	 IOLFS DONE	 .4

.	 •
.	 .

* *ORO DIGIT 3	 5
*
:	

*
xs	 CHANN6. 12	 **	 ERROR CODE	 *

..X. IN PRINT SCAN *
FIELD	 *

•
***•	 YFS

**** 	 * ****. ** ********* ****** *****************
.	 •
*	 47
*	 *

*****F1********** *****E7 ***** ****
*	 ZERO PASS	 *
•ICLEARS CHANNEL*

of17
*	 INDICATORSI	 •

*SET SKIAC	 4
* MDR TOP/ I

SP IF E
 *

*arc * 0 0 IF err*
*	 1	 •

•
* INCREMENT RR2 *

BY 2
•	 ■

:*******: ****** **:
• *	 *

	 X

Fry/ STR E3*•***F1**********	 .****F7 ********** ***** Elm** 	 FS
* Loan ACC WITH * .*	 8.

NO .4	 *.
....*.4. 082 . 0 .

8.	 .*
5. .♦

* YES
X

ni	 *.	 (12. **.	 *****DB*******
.*	 R.	 .*	 t.	 *	 *	 ****G5 	

.* COUNTER 4. NO	 .. CHANNEL S. YES	 *	 BRANCH TO *	 * RETURN FROM *4..	 n	 *. 12 BIT ON .4... 	 * USER'S ERROR 4	 *	 INTERNAL	 •*.	 ..	 *. IN PASS ..	 * SUBROUTINE *	 * SUBROUTINE 	 *..	 .*	 *.	 .*	 *	 *
;	 **** ***** *****

s YES	 *****	 * NO
.	 *1107*
.	 * r.S.
.	 * 5	 .
.	 *

;
;	 ...

******H1***********	 H2	 *.	 HI	 r.

	

.•	 *.	 .4	 *.* *	 .4 CHANNEL B. YES	 YES .8	 USER	 *.
STOP PR/NTEo	 4. .2NIT ON IN . 5*. SET ACC To .4* *	 *. PASS	 .*	 *. ZERO	 .*

	

S.	 .*	 *.	 .**************
* NO 	 .NO

.	 .

.	 .
.
.X 	

.	 x
Y	 ECR4	 .•.:****J1*********:
	 J2	 *.	 ***r* J3* ********

	

.*	 8.	 *
DECREMENT AIOCT	 .*SPACE/SKIP •S. YES
: «IINIToR un *	 5. INDICATOR . .4.... 	 :4704NCOVISE :
* COUNTER BY 1 •	 4.	 ..	 .	 *CHANNEL 1 SKIP o
* *	 5
*** ***** • ****** ***	 X	 sr.*** ***** * **** *

. NO	 *****
.	 .	 *007*
,	 .

.	
* C5*

	

* •	 X
•*	 *	 *
no *	i 	 *	 4,
4, rs *	.*,	 * 44 .
* 4	 K7	 4.	 *	 .

s	 .4	 4.	 ****	 ****

	

.*SoACE/SK1 p 8. YES 5	 *
. INDICATORX Ay *

	

*	 *

	

4.	*
* NO

• *
5 Al
* *.***

Flowchart F1021. System Library, PRNT1

• DECREMENT 2 *
IDLE COUNTER BY
*
********* ********

STORE ACC IN :

•

* /0103. 1132 *
..X*CHANNEL D ERROR*

* CODE *

• 306. 8

ON *

e NO 118

	

•
40Vau ION	 .8

034 ** 831Niad e
•*	 3.*-0

*
13538 inolum

*
* MS0 050/ 3SN3S*

9h9/18

6 '90£ naUtIOM01,3 •

aralith	 maasAS	 • zoid siaelp.mou

*♦** 	 .***	 ****
•	 r	 *	 *	 *	 *	 *	 *

1 *	 * kV *	 * LW 4	 *CV *
010	 *4**	 *	 *	 *	 *	 *	 *

*	 *	 *44*	 *58*	 *84*
► ► 	 53 *X -

*08 *	 *	 *
010	 •	 ****	 •034 *	 ******** *********	 *************

.*	 •	 •	 *	 4
•	 e.	 434	 11530 inchttm"••••	 1130038	 83810 0/1	 8083	 *	 I .8 43938	 *	 *	 3.01 3801538 *

ON	 1808831811 *'	 * 831330/H3 0901*	 4	 01 180 131	 *	 * M10 150/ 35835.
'4	 ***********13********	 SN	 ** ***** ***C.). *****	 **********03 *****

998*	 X	 5103
44

► 	 *
X** SY *

*	 *

3*4*
*	 4	 •
* tr	 *	 .
■ 	 *	 •
a***	 ON •

•	 1
.811* 3S11

313
* MS0 04495

X

inSla
30 8013*	 * ix3N "3

0001*	 *	 01 80/031UNI
*	 114018

59am
•***

*	 •
v • * sr *

*	 *

*
p)	 *	 *u
0830*	 .	 1380$

*	 *	 NI	 isx
13888	 *	 *

****** ****ir
I

***************** ****** **
*	
*	 *
*	 *	 0

abOiS *	 * 180 18138383Ni
.

*****	 **********41
x

******** t*	 *.	 ••
•	 4•	 Asne	 •*

Au	 *--V	 3NtAnotlens •*
*	

03A
	 **	 5181 51	 *•

*	 •*	 *•
*****	 **

9488	 EltIM
****	 ****

*	 *	 *4**	 •	
*	 *

X . * Zr *	 *	 *	 •)0*	 Ir *
.	 •	 *
****	 *	 *	 •	 ****

****	 53A *
*****************	 ***** * * * * * * * * 	 t*	 *

•	 *	 *	 *	 *	 **10(31108•*
831338383	 * 1 AG 800/ 9389*	 *	 1 45	 *	 0310808HD	 ""**	 NOIlJNOA	 **

*	 v i811/0	 *	 * 0/1 18138 U3N1 *	 *	 I48	 I813838330 * 	 *	 V 15193	 *	 (IN	 -*	 0/1	 **
*	 *	 **	 **

*********** CH******	 **********18*****	 ********* *2H******	 **	 In
hh8M	 4(08

* * *
•	 *

*	 	 X
010

ON *	 ON 	 .*	
* **********e •*

*	
*•
	 '*

******	 *****************

*
0440
*	 *

s'	 NO 118 * •*
•—e	 409311 ION	 •*

53A	 831Ni8d	 e
.8•

50

• 	 18018
*	 031338383	 ',8x -

Sa4 -*	 1x38	 e
.*

• i	 h7
	 ((911*

*5**

1000	 *	 *	 031800)
*	 00'803 Ay738	 *	 *	 0/1 0U118.03
ION 1501	 8000/	 *1)018 1N38383N1*

HIIM 33V 0901 *
********* *09*****	 **********Z0*****

****‘"M

5
*	

•	
1	 AV	

*

* 10% 180830030	 *
**********10*****

*	 *
* Sr *X -
*	 *	 •

•	 *	 *
•••* ED *

*	 *

4*5*
*	 *	 •

cf	 •
*	 *	 •
****	 034 *

4 ****** **********

*13138 18011118
*

* *SO E501 3SN3S*

*	 8318003	 *
*	 0/1 8011NOW	 *
13018 IN3838330

4 .
4.	

Asne	 •** *333(1* inalno *	
•• ON 	 3N111100605 •**	 0008 1N0 U1	 *

* 9309 0/1 8081	 *	 ON •*	 5181 SI	 **
* b3131110H3 3808*	 •*

******* ***43***** ****** ****01*****	 • .8	 13

ON 8,
•	 •

e 1814.1 Di•*
e 583i-491083

•*	 3803	 *• S34
•*	 *•

'.8.*.43

* I 48 8318,1n05 *
* 8310999013	 *
* 181383833a	 *

***** ***** 50*****

*4**
• . *
* La *
*
*4**

******** ********
•

*3003 80084 1113
*
. •

* 1993111 1000/*X•
* 8118 339 0901 *
**********La*****

058*

** ***** **********
* 1119i0 010-13 *
* IX35 31 .00304
* 01 001331301 *
* 01043 1.11Dis *
* 3211VIiiNi *
***** ***** 23*****

********* ********

*• I t V310 U/I *
• 30 8008 avas 8

***** *****20*****

518.*..

'*III 1511•*
NO113808 •*•••

0/I	 e ON
**

*• 339 `SO1415 *
* 00A 1095	 *
**********10*****

0108

* *********** *4,4** ********** ***** **

* *
* 53 *
* *

13 0 .*	 ****

•	 *	 838809
•	 *1031110
-"X*	 NI 0313083143

*	 031311101
*	 1331
******* ***53*****

*
NUOM 380*

*
*

3801.5
4988

x•0053 **

600

'*
e

e	
N	 -*

• 118 3SONOdS3a••••
• 4	 3314031	 *• ON

-.8831N1ade
'*	 ha

-**

******* ******

*	 01 80013a

31111NIVW

*********03****

9183

* 801831081 A505*
*	 010 0318003	 *
*	 0383 sc.	 0*	 *
18003 (4808 3AVS
**********40*****

ON *
•	 •

•	 03009	 1111910009*
*	 10 bUUV H118 *
* A01N3 01 5101 *

913111	 1111 0901	 *
***** *****I0*****

M811
•
•
•

•

•	 239 AO 1831
*	 01 131811 ONV *
* v381, 0//	 *
* 8313V8VH3

8088
0301*

*	 MS0 34VS	 *
aNv 13038 H118
MSU 0501	 351935*
	 h0******

osam

	 	 *•
* • 80

S34	 • 4

**********03 *****
008m

3811901N•*
0830 180103•*

08011 3384 e
*	 0/1	 e
'*	 GS

UZ0M

*	 100 1870

**********I0*****

*	 *
* LD *

•
•

*
**** ON *

•	 *
•	 1331	 *
•	 8383 1138 '31 *X"
el 01 401921081
•	 189	

*
.18 ids	 *

*	 40111 8083	 *

1388831N/ 0501*
*** ****** 410***

*********** ******
•	 e

* 110 8033 3009 * 	 *"e
* N00130 an 131 *	 034	 •*
**********01*****

e	
•*

NO 118 '*
A0339 ION

0318110d	 e
**	 43

*•

44100	 *
* 1011 VIA 03181*
*********1v****

2931*	 IINI 800m 08108

**** ****
*	 *
* kV *

•	 *
* /V *

*	 *

*

AI*****
* BRANCH TO*

* INTERRuPT r
* REQUEST	 *
* SUBROUTINE *
• VIA 105E9 ************

solos
* :4
* *

****pu*********

*RETURN TO ILSO4.

WA66A
*****01*** *****
* LOAD ACC WITH *
5/ 10 1 0, 1051 NOT*
* READY FARO,/ *

CODE

*****FI**1 	
*EPST4
*PAUSF FOP. POST •
* - OP ERROR	 *
**** * ***** ****

*5***
000
* C5*

Flowchart FIO23. System Library, WRTYO

+306.10

* RECORD RETURN *
* ADDRESS	 *
* *

*****c4 **********

RESTORE 2 SAVED
* BUFFER WORDS *
*	 *

*****D4 **********
•

*SENSE DSW WITH •

*RESA
*RESET ENS SAVE 4.

T SODSW	 *
*	 *

Ti TOT
****A/*********

* MONITOR ENTRY *

0/000.5

INTERRUPT ENTRY

x

	

*****R1**********	 R7	 *.	 *****BB**********
• *	 ..	 *
* INDICATE A	 *	 .*•5 DISK	 4,. YES	 *SET RETURN EXIT*
. MONITOR ENTRY *	 *.	 BUSY	 	 x*	 TO LTDE*B	 *
* HAS BEEN MARE *	 ..	 *

* *.

	

** gm*** ***** *****	 :**** ****** * **** :
NO

X

CI	 *.	 :****C 	
..	 S.	 *

*FS ..	 READ	 *•	 *SET RETURN EXIT*

	

..... REQUESTER .*	 *	 TO LW.*	 *
• }.FUNCTION .*	 *

S.	 .*	 *
X	 5. ..	 *********** ******

	

****	 * NO
. *
* RI **	 .

	

****	 X 	

X	 x

	

*****01**********	 *****D7**********
* *

	

CONSTROcT DUMMY 	 *	 RESTORE	 *

	

— *WITTE LIEF CALL*	 *	 REGISTER	 *
. *	 *	 *
* *	 *	 *

	

*****************	 *****************

* *
* El *...
• . .

x	 ..
x*****

*****E1**********	 x	
*

.E4	 *.
* *
cONSTRUCT DUMMY	

*****E2
	 *	 .5	 DATA	 5. YES

* R EAD LIRE CALL *	 *RETURN TO USER *	 *.	 ERROR	 .5 	
* **. 	 .*	 x* a	 *****************	 *.	 .*
**** ***** ********

ROBSY	 .5
* *

5.«110	
50/4*
* B4*
a *

I/000.4

•G/******

* LI RE ENTRY	 *
****** !*f* *****

X
*****H/**********

4, RECORD RETURN *

	

ADDRESS	 *

******** ******** *

****G4 *********
RETURN TO RESET
* PROCESSING	 *

*****J/**********

*SAVE REGISTERS *

***** ******** ****

. .
El	 *.

*	 *.
.*	 TEST	 *. NO

-.0*. FUNCTION	 •5 	.	 *•REQUFETEO.* 	 x
.	 *.	 .*	 *****
.
. * YES	 * RI*

* .	 * *
RH	 *
* K1*	 7(
*****	 ****

. *
* R2 *
* *

Flowchart FIO24. System Library, DISKI

• Flowcharts '306. 11

.;.YES
01740

11	 •H.

015K	 P.
ROSY

* NO

*117.
* 91*

* * * *
X

****•c1.*********

seVE TRANSFER •
. VECTOR LINK .
woRn ADDRESS *

********* ****** **

X
*****D1**********

.SAVE REQUESTED *
5 FUNCTION CODE .

****************5

*****El**********
ISOLATE AND *

*	 SAVE SEEK

*
	 OPTIO

*	 pARAMETNER

t***************:

*****F1**** *****
* ISOLATE AND .

SAVE
DISPLACFMENT5	 PARAMETER	

A

***** *9,4* ******

X
•...*G/*****•****
* SAVE ADnP OF
* 1/0 PUFFER	 a

X
...**,-u**********

*SET UP ADOR oF
. USERS ERROR *
*	 ROUTINE	 *

******* !}}}t##}#*

*****31 ********* *

* SET UP EXIT *
*	 ADDRESS

•K1**********

* INCREMENT I/0 *
*COUNTER, -sforT,.

BY 1
****************.

•***
.012*
5 04 *.X*

n1255
*•***04**********
* SUBTRACT NEXT .
.	 DEFECTIVE	 •
	 X*	 CYLINDER	 *X..

.	 ADDRESS	 *
•

******** * * * * * * • *

*****DS*****•****

:CONSTMEJ SEEK *

*	 *
****** ***********

X

E4	 S.
NO .**	 5.*	 S.

***:* YES

E
: INTERMEDIATE *

*SECTOR ,i8Ons
*	 *

• INCREMENT	 •	 *D1220	 014845

:ADDIFIRVEMEXT:
*	 CYLINDER	 *	 ■ INITIATE SEEK ••

•*	 **
• *	 r	 *
• 143 5	 * A4 *
■ 	 •	 .
****	 *5**

X	 7(
***** A8**********
*	 *	 *	 *
*SAVE RESULT AS *	 *	 CLEAR	 *
*WORKING SECTOR *	 * INTERMEDIATE *
• ADDRESS	 •	 * WORD COUNT	 *
*	 *	 *	 *	 ow*

5012*	 *****************	 *****************	 *017*
. R7*	 * 95*
* *	 * 5
• *

•	 x*

	

i	 x	 X
D1250	 X DI320	 .*.

*****R2 ***** *5***	 B3	 7.	 84****.	 95	 S.
*	 *	 .* IS	 S.	 .4.	 S.	 .5	 *.
* TURN ON DISK .	 .. REQUESTED •S. NO	 .5	 SEEK	 S. NO	 .. ARM AT	 S. YES
BUSY INDICATOR,	 *. DRIVE ON	 .*....	 S.	 OPTION	 .*...	 -X*. REQUESTED .*....
*	 SDBSY	 7	 S. SYSTEM .•	 .	 *. REQUESTED.*	 4	 *.CYLINDER .*
*	 *	 *.	 .5	 ..	 .*	 5.	 .******* ******* ***A.	 ;	 , X

	

0 YES	 * YES	 *.;**	 ***10
008	 ****	 *	 •	 *013*
* F4*	 5112*	 * 85 *	 * G2*
• •	 . C4 *.X	 •	 •	 * 5
*	 *	 *	 ***•

;	 D1280	 X	 X
*****C2 ****** 5***	 *****C3**********	 *****G4 ****** ***.
*	 SAVE MORD	 *	 *	 •	 *	 *
* COUNT, SECTOR *	 * CONSTRUCT 2ND *	 : iCIRRIMPTOD •:	 * SENSE ESN AND *
. ADDR PROM I/O *	 * WORD OF READ *	 • NEXT CYLINDER *	 * SAVE AT SODSw *
*AREA	 *	 *	 IOCC	 *	 *	 ADDS	 *	 *	 **	 *	 *	 *	 *	 *	 *	 *
*********** ****** 	 *** ***** *** ******	 ********* ********	 ************ *****

X
*****02•*******•*	 *****D3• ********
*	 *	 *	 *
.ISOLATE LOGICAL*	 * CONSTRUCT 2Nn *
* DRIVE CODE	 *	 *WORD SENSE WITH*
*	 *	 * RESET TOCC	 **	 .	 .	 *

5 ***** ********5

Fx	 *.	 *****F1**********
.*	 s.	 •	 *

.4.	 LEGAL	 •P. NO	 * CONSTRUCT 2140 *P.	 DRIVE	 .5....	 *WORD REQUESTED *
.SPECIFIED.	 *READ/WRITE 'MC*

S.	 .*	 •	 •
X	 **********•******

• YES *****
.011*
* F4*
* *

X
•F2***•******	 ****•F1***•******
*	 .	 *	 *
* SET UP FILE *	 * SENSE OSW 5Nn *
* PROTECT ADDS *	 * SAVE III SOOSW *
*FOR THIS DRIVE *	 *	 .*	 *	 *	 *
*****************	 *** * *** **********

x
*****,, X	 53	 *.	 54

.•.
5.	 GS.. *.

*	 *	 .* POWER *.	 .*	 *.
* FETCH SECTOR *	 .5 UNSAFE OR 5. YES	 NO .* LOOPEC	 P.	 YES .5	 SEEK	 •P.
• ADDRESS	 *
*	 *	 5.	 WRITE	*.	 3 TIMES	 .5

5. SELECT .7	 *.	 .5	 *'*.REQUESTED.*
*	 *	 *.	 ..	 *.	 .5
******** * ***** **	 X	 X

* NO	 * YES	 *•**	 • NO
*0/45	 *	 *
* 87*	 * KS *
* 5	 *	 *

* * * *

H1	 P.	 H4	 5.
.. D1S- S.	 .5	 .5	 5.

.* PLACEMENT H. NO	 ..	 DTSK	 P. NO	 .5	 SCTR	 P. YES
A.	 OPTION	 .5...	 5.	 READY	 .*....	 P. min TOO	 .5....

.S P ECIFIED.	 5.	 P. LARGE .5
*.	 ..	 5.	 •ix

% x
YES	 • YES	 *****	 ***NO	 *****

:	
*013♦
* 04*	

50135
* BE*

* *	 * *
*

X	 .*.*****J,********•*	 J1	 5.	 J4	 5.
*	 ADD FILE	 *	 .5 LEGAL *.*.	 •01220	 01484•
PROTECT ArmilEss	 ..	 I/0	 S. NO	 .5

.5
 SCTR	 5. NO	 *	 *

*	 TO
nDR
SECETOR

sS	 *
*	 *. FUNCTION	 .*....	 5. ADDS LOP	 .••....*	 INITIATE

A	
*

*	 *	
S. CODE .* .5

•.	
P. REPAO ...

S.	 .*	
*READ-AFTER-SEEK**

** ***** **********	 S. .	 %	 P. .*	 X	 :* ****** *.******:
* YES	 • * it * *	 * YES	 ****

011	 *	 •	 ****
x 	 	 .	 * F4*	 .	 * 85 *

.	 * .1,.	 *	 * * K5 5.x.

	

****	 *	 * .
;	 ;	 *55*	 i

.....K7*•********
*	 •

KI	 •*.	 K4	 *.	 :****K5 ***** ****:
* .5	 ..	 S.
*	 REMOVE DRIVE .	 .*'REQUESTED S. NO	 .. REQUESTED S. YES	 * UPDATE SCYLN *
*	 CODE	 *	 P. FUNCTION	 .	 P. FUNCTION	 .•....	 * WITH CYLINDER •
*	 *SEEK	 .*	 5. WRITE .5	 *	 ADDRESS	 •
*	 .	 S.	 .*	 *
******** ***** **** 	

.. p. .p .*
• YES	 *****	 * NO

013	 *013*	 :	 ****
* Ai*	 * E4•	 . *	 *

;	 ;	 * *	 %	 5 *	 ..X* B5 *****	 ****	 ****	 r	 *	 *
.	 *	 *	 *	 *	 *	 **•■
. Al *	 * A4 *	 * 95 *

.	 .	 *	 r	 •
..•.	 ****	 ***a

*SET UP IOCC TO *
* READ ST WORD •
* OF 1ST SECTOR •

Flowchart F1025. System Library, DISK1

• 306.12

ET '90£ '21-8 49M°I.4 •

tuolsAS 'WOE 3305PMOId

• *
** Ea

*
*•

*I
*

*Za *
*

	

00	 ****
	0 	 0

	

.	 •
:***************:	 :***************:

V30,2
:N3303-04-0030:	 * 0/1 0101 10003*
*	 13001500J	 *	 *	 OSOM 3001S s
:*********2m****:	 ********* *Ix*****

X

S3A •
2' .*

*• •

'41'2t2P
r •	 x3303	 '*

*•	 -0000	 '0
ON •* -0032 N11M*•

•	 •
30 31333 •

OdOM 03133	 *

*
*
*

** 31100 *•
•*
	 or
•	 •	 UBEIO

*******1r****:
*10 *
* 10*

********* ***** *** *****************
*	 4001 00303	 *
*	 30110•3403/fd *
*	 01 HONVOU *

01130
* 440111500 000 *

*	 *
* 55300309 00 3354
*	 ONV	 *iNno

1	 .
SONOM 9N1N1VN39

*--
•	 Z15cli/1304$ *

* 1030003 00313 *
*	 *

* ObON M N 3005 *.*	 *
* 230000 3104003*

****** ****40 ***** ******* ***20***** * ********* 10*****
X 49110

*	 •	 *	 NOIS031X3
* *0 * •••• x* O. 	 0000
*	 *	 3003

***** *****49*****

*
00133S*X -

30100	 *

53A 2,

,•031SnvHx3•*
•	 10003 0000 •••

•*,	 31,01030	 *.	 ON
-531NA*.

.*	 29

531
4*	 .*

*• 5533000
'"*.	 01 00133S	 •*
ON **	 1501	 **

**.*.1.9
01110

0101u

A	 •***
'	 *	 * *	 *

X . * 00 *
•	 ***♦ *LIU*****

****** *********** ***************** ***** **** ****** *0

*	 * *	 300 Al 0000	 * 04E
*	 moirinwnoav	 *
*	 *	

*	 1103V 00	 *
*	 oi 1005	 *	 * basn or N00130*

*********ta****
alas 101103003S
* 1030 11130363Ni*

* AU 1000J OVUM *
*	 3/V1030931Ni	 *
*	 1N3W30330	 *
**********1d*****

0	 * *(2:110	
•
	 **2:110

•	 '	 *	 *	 •	 *	 *
* * 'V* £3 *'5** 43 *
*00 *:

	 11,Ii:	
•	 *E10*

gn:	 ON *
********:****:::: ************* ***

r	 *
*	 34 AS	 **	 .	 I.• 	 1101'5.*	

*

*	 1,0111113101	 :•.'
*	 310003	 *
*	 *

"..***	 0011000 V	 .2,	 .01301$	 0310003*
S3A	 .2,	 5101. SI	 *.	 r 0/1 10aWan330 *

•*	 r.	 s	 *
000162335LIV30:

*	 31	 31031001	 *
*

0333110 30 SUOUM
♦ 	 001 1001A 300S*

**	 43	 ******** **3*****
00016	 x

♦***23*****

!
*

* *V3 *
•	 •

*43 *
010

ON *	 *****

•	
*	 *
♦ 	 SO M44 /3S :

010
*****	 *

*	 AS001	 *
X*	 0010310N1	 *x.•
*	 AS0$1 102313	 *

*	 *
*	 *
* Au 'O

3
N
00

001335 *
* 3101	 /N3030301*

'	 •
"4

5*.
*.	 '

NO	 •*•••
•*	 A0313	 *.	 S3A

******	 *	 *	 '4,	 *••	 4*
******** **E0****	 **********20*****	 •*	 10

* *5 •	 00110
*	 *

x 	 00010
X

! *

* 4
•	 *0q *

010	 **** ********* **** 	 ** ********** *****
*	 *	 *	 *	 *****	 •	 *	 *
*	 *	 *	 * 3301 031530035*	 •
*	 000013

1%3
an 135 **	 k	 130d$	 *	 * SS3SO 31011101*	 * 5535009 00133S*

*	 *	 *	 01 11%3 130	 *
10410	 00110	 *	 *

*	 *	 *	 1030 dn /OS	 *
411410	 50210	 *

* ****** ***V3*****
x	 X

**********23*****	 ***•******13*****
x	 X

**** *
*	 *
* *3 *

* *
*40 *

a	 *
ON *	 ****

*.	 .2,	 0 * •

*010**
03A *

0'	 • *
*	

*•	 ••

*. 1103	 '4,	 '	 *	 * *	 *	 '	 *•	 00110N113.*
*" V 901310035 **"'

.1, SaA	
•	 solvinwnaay	*

.*	 *	 01 0005	 *
•	 3301	 ls30030*	 ..*.	 31,21113WW1	 .*
*	 Sad5n

oa
 In l3S	 *	 ON .*	 3111Im	 *.

•* **	 SS
**	 •	 * *	 .	

Id
*.

***** *****40*****	
*

•2.
01110	 0

0	
0001

•

•
••	 0

*	 *	 * * 43 *	 •
•	 *	 *	 * *

*GU *
:n10

*
:	

*00 *
010	 *000**010*

'*	
****** ***********

*****	 :
4.:'*"*

*

0	
S 3A

*	 •*
X 	 0' 03103303**	 * 0340 0/1 0101 * 	 *,'	 '*

*. 03303 -0300	 . 0,	 * SSidOOV 001335*
ON	 "10	 -003$	 *'	 *	 153N 3001S	 *	

""*" 112031 10003	 .2,

'*	 *•	 *	 *	
ON •*	 0000	 *•

•*	 4.
•2,	 EV	 **** ****** 02***** 	 •0,	 Iv

0	 04010

	

0	 0
• •	 •

	

•***	 ♦*** 	 *
* *	 *	 *	 * 4
* EV *	 * 20 *	 *Tv *
* *	 *	 *	 ■sio*

	

•**•	 ****	 ***•*

O4	 *.
.*	 5.

.* IGNORE	 *. YES
.	 ERROR	 . 	

*.	 .8

5'4410
013
* D3*• •

*5***
0/4
* B,*
* *
*

	

01190	 01160
*****R1**********

•
* SET UP ERROR *	 * CLEAR CURRENT *
* cOnE FOR USER *	 *ARM ROS. SOCYLN*

CALL
********* ********

014
* 84*
**

	01220	
134.*.*.

.*	 S.
NO .* HAVE 16 *.

	

.*.	 RETRIES	 .•
.BEEN MADE.

*.
* YES

GE	 *.
.*	 *.

.*	 LIEF	 *. yFS
*.	 CALL

.	 „
.	 .

* NO

• ■

• /5007 TO ACC *

am* ****** **

x
*****4 **********
91180	 01481

SET UP AND CALL
* USERS ERROR *

EXIT	 *
********** *******

*****01**********
* OFT UP F4001, *
* GOOF FOR	 *
* MONITOT CALL *. *
* ****** **********

011
* G4*
*

***** Fi**********
*FRROR

BRANCH TO USERS
* ERROR ROUTINE *
•

* IN/TIATE	 *
CURRENT IOCC

*013** Fl*
y	 * *

****F1*********
*RETURN THROUGH *

mten*

Flowchart F1027. System Library, DISK!

• 306.14

*8**
*	 *
• A3 *...
****	 ;

Al	 5.5.*. YES

.*.

.* **A7 IS *.8. *. YFS	

.*.	 .*.
A4	 *.	 5

.*.
45	 5.

5. 8. VESi
****41*********

..
..
 IS	 5.:*

.*
ugo

*.
:.YES ;	 .

.*
 IS*ENTRY VIA LIRE *

OMPR1	 S.	 PROGRAM	 .s....	 8. FUNCTION	 .5 	 	 	 X*. MPR64 . 0 .8....
* **********	 .******	 *	 8. BUSY	 .*	 *. READ	 .5	 8.	 .8	 5.	 .*

	

i	
8. 5. .*

.4,	 *.
. ... 5	 5.. .8.5

	

* NO	 *••*	 * NO	 * NO	 • NO****	 ****	 *	 *	 •*	 *	 *	 •	 * X/ *	 •	 •* RI •.Y	 * R2 *.X	 *	 *
• •*	 r	 *	 *	 ****

****	 x	 **•*	 %	 XX	 %
.5..8.01	 8.	 Al	 i.	 B4.5.5.	 85	 5.****97 ****** ***	 .*	 S.	 .5	 or.

.5 .5 IS	 S.*. YES	 *EXIT TO LIRE ♦ * 	 YES .* IS FEED S.	 YES .5 .5 IS	 5.8.	 .5	 IS IT	 •S. YES*. FUNCTION	 .8 	
5. TEST	 .5	

5	 1	 ...*.	 GIVEN	 .*	 i. MASTERMARK .•...5	 *	 •	 8. .5.8	
...*... PROGRAM .8.5

.DOCUMENT .5.	 *.	 *.	 .•	 5.	 .*5. .s	 %	 5. .8
* NO	 ****	 * NO	

8. .5
* NO	

8. .*
* NO* *

• E3 5.	 •

C3.1:***. S. YES

.	 *	 *
%	

C1 .5. 5.	 *****C2 ********* *
*MPR411	

*****C4 * : ******* :
i ** :7T5:: • :::411

.* IS	 *.	 .8
.* FUNCTION .. YES	 * 	 	 *	 .5	 IS

* "IDVIIES "D :
+, TIMING MARK .* 	 X* LOOP ON FEED *	

* SET UP READ *
*

*... P:SUAM	 5 .	 * MCC SAVE I/O *
5	 ADDRESS	 *S. TEST	 .5

R.	 .5	 *	
ROSY

* 8.*	 *
8 . .54* NO	 * NO

• X 	
. :
%	 %

.5. %
D1	 *.	 02.5.*.	 ***** 04**********

.5	 5.	 .8 IS	 8.	 r	 s*
S. LEGAL CALL .5 	* L GAL
	 	 	

*.	 CHECK	 .5 	 	 :INDiETATUERPR68: ** t	 1: sET.TPA Mc' *	 * CHARACTER.5
.*	 IS IT	 S. NO	 .*TIMING MARK*. NO

5.	 .8	 .	
5. 5. BUSY	 .5	 .	 *	 * * A * ... *BUSY /NCR SIOCT*	 •

	

.	 S. .5 .5	% 	
*

*	 .
* YES	 .	 * YES	 *5**

	

.	 .	 **** *	 *	 ****	 :	 ***•

	

. *	 * * B2 * *	 *	 .	 *	 *

	

..X* Kt * *	 * * E3 5...	 .	 * F4 *.X

	

5	 * ****	 *	 * .	 .	 *	 *
****	 ****	 .

X

	

.	
****	 x

.5.***** F1** ****** **	 *****E3 **********	 .	 E4	 *.
* *	 *	 *	 *MP1175	 *	 .	 .5	 5.	 •
SET MPR62 n FOR	 .	 * FYIT TO SPRET * 	 r.--	 	 •NO .5	 IS	 5.	 * UPDATE I/O	 •* FEED -2 FIR *	 ...X* WITH DISPLAY *X...	 *. *.--.

- ...t.	 DEVICE
 DiNg .5 .8	 •READ	 *	 5	 A001	 *	 * DISCONNECT	 *	

*
A DDRESS CLEAR ** MPR68* *	 *	 *.	 *	 *.	 .5	 *	 **a** ***** ********	 ******* ***** *****	 .	 ************ *****

	

****	 * YES
5555 : E7 :

	

..
X* 13/ . *	 *

* * •***

Fl 	 4*..*	 I
YFS .5 FUNCTION

*.
 *.

..*. *. FEED OR	 .*
READ	 .55.	 .8

%. 8 5 * 5. .*
* NO

*
. Al

*
*

*

*

41 5.
.5 IS	 *.

.* FUNCTION *. YES
S. DISCONNECT .5 	

.	 .
5.	 .*

* NO
•

II
.5.

HI	 *.	 H4	 S.
.8 15	 5.	 .*	 5.

.* FUNCTION S. NO	 YES .•	 IS	 *.
.	 STACKER	 .5....	 FUNCTION	 .5

	

. SELECT .8	 .	 8. FEED	 .
8.	 .5	 *.	 .•;	 %	 *. .*

	

YES	 *555	 ****	 • NO*	 •	 *
* E2 *	 * KI ** *	 *	 •
****	 •***	 x 	

%

	

*****E2*** *******	 *****F3**********	 * ***** F4****** *****
*MPR25	 *	 *	 *
* *	 * EXIT TO SPREE *	 *

..X*	 *	 S WITH DISPLAY *	 START FEED
* DISCONNECT	 *	 *	 4000	 *	 *
* *	 •	 ***** ***** ********

55
*

..X* KI *
* *

*

▪ 	*

▪ X* E4 *
*

*****G4 **********

* CLEAR MPR69 *
*STACKER SELECT *
* SWITCH	 *
******* **********

•n********•■
*MPR16	 *

*STACKER SELECT *
•

*
• K1 *.X
* *
..**

•K/******
*FYIT TO LIRE	 *

7	 *
* *

* *
i SET UP USERS *
* ERROR ROUTINE *
* *
* *

.•.K4	 S.
.*	 5.

	

.5 IS STK	 *. YES
SEL	 .5 	*.

*.REOUIRED
S.	 .5

8. .5
* NO

*MPR36	 •
* 	 	 •

..X*
*STACKER SELECT •
* *

* * .
* K5 5.X.
3 * .

K5 *****
*EX/T TO LIRE	 *

4	 *

Flowchart F1028. System Library, OMPRI. -CALL

• Flowcharts 306. 15

....A/5* ***** **
* r
*ENTRY VIA /LSO4** *
******** *******

SENSE ANn RESET
05W

.
CI	 *.

*.
.*	 IS IT	 *. YES

*. FEED CHECK .1....

**•*
• *

	**** 	 X
*	 *
• A4 B...

.:5*ES	
*MPREIA

A4.5.*.

	

.*	 B.	 •

*:5SEISBnICON .s
S	 • 	 *
	 X*TO USERS ERROR *

B. • ROUTINE WITH *

	

.	 .	 *	 0004	 *

* NO

X
.*.

A?	 *.	 A3	 *.
.5	 B.	 .5	 5.

.•	 IS	 •S. YES	 .•	 IS	 S. NO
■. 	 PROGRAM	 .5 ** , 	 X*. MPR67	 •SET

S. BUSY	 .*	 ..	 .*
B. 	

•

. 5	 •S.	 .*
B.110	

5. ..• * YES

* EXTT TO SPST4 •	 A
• WITH DISPLAY •	 DISCONNECT

.002	 *	 •

X

*****C30•*♦**•*** 	 C4	 *.	 CS	 S.
# t IS IT *.	 .•	 B.
■ EXIT TO SPST4 s	 .*	 IS	 •. NO
* WITH DISPLAY • 	 *:"81IDTV;In B. 	 X*.	 HOPPER	 .5...
* A003	 n	 B. MARK	 ..	 *. EMPTY .•

	

.	 *.1RRO:.*	 •B.	 .5
* ..

♦

* YES

X

CZ	 5.
.5	 5.

NO .5	 IS	 S.
...5.	 DEVICE	 •.5

B. READY .•
5.	 .5

•. .5
* YES

* NO
:	 ►**►

► 	 *
..X• GA *

* *

BA	 •.
.*	 IS OP	 *

* . •.17T 1. 84E .•N.O.:

.	 .*. .*	 X
* YES	 ****

• *
• K/ *

.	 *	 •

ic

* YES

•

X
01	 B.

.*	 B.	 •	 •
NO•.*	 TS IT	 *.	 *	 *

...*.	 READ	 *	 SET MPR65	 *
..RESPONSE .5

.*
* *

•S.	 .*	 *	 *

. .
D3	 B.

	

.5	 S.
NO .*	 1	 ♦B. YES

	

...*.*.	 EA 	 .•.°

	

..	 .*

0 **4	 S.
.5

.*	 I	
B.

B. YES

S.*. 18bB4M ..5...
B.	 .*

*MPRB4	 *
* 	 •
*TO USERS ERROR *
* ROUTINE0003 WITH *5 	 •

.***	 . YES
* *
* AC *
* *

. •	 *

..X* KI ►

	

*	 *
•4•*

X

•
* SET MR1167

rt

 *

***** ************

* *
• SET BUSY INCR *
* AIOCT	 *
* *
• *

* *
mgEt: ARP

* DECR SIOC	 S

• •	 •
..X • KI *

F/	 S.
	.5	 •.

NO	 TS IT	 S ..
• .*. MASTER MARK 5
• *.	 onc	 .*
X

. YES
* *
* HI *

*
...*

G I . . *.

	

1.	*.

	

.*.
	

IS	 *. NO
S. MPR66 SET .B...

	

.	 .

	

..	 ..

. YES****

*MPRBA	 *	 ****E3*** ******
* *	 • ENTRY VIA RSI *

X*TO USERS ERROR 0 	 •	 MPRB4	 *
* ROUTINE WITH *	 *	 5
* 0001	 5	 .

X
X

G2 '** *.	 *****03* ******** .

	

.•	 •S.	 **

...*.	 ACC . 0 .5	 * PIXR1081iti :

	

YES .*	 5.

	

5.	 .5	 5

	

r.	 .•	 *	 .
*****5 ********** .

X
a* ***********
*mPRBA

-*•
*TO USERS ERROR *
* ROUTINE WITH *
• 0002

**►*
• •
• 54 0.1
■ *

.
GA	 B.

.•
	

•

	

.* IS.ASC	 B. YES
••	 .• 	

*.	 ••
.•

*10

* HI *.X.
* * .X
****	 X

X
HI .** *.	 x

.*	 S.	 *SET UP NEW i/n *	 ****113 *********
..	 IS	 •B. YES	 * AREA AND SAVE *	 *	 *

*. MPR66 SET .• 	 	 * IN MRRAO SET *	 *	 RETURN
B.	 .5	 •	 MPR66	 *	 *

5.	 .5	 5	 *
**** ******* ******

. NO
• *•••
. . *
..X* HI *

• •
***•

READ ONF	 *
..X

*
	CHARACTER

.X 	
X

.•.	 .
H4	 *.

.*	 B.	 *	 *
. 1.	 IS	 ♦ B. NO 	 *ExiT TO RESTA *

•. Taig .. .5
	 x* WITH DISPLAY *

* A000	 •
S.	 .•	 *	 •

•* .0•	 *********** ******
* YES

X

•• RESTORE I/0 •
* BOOR RESET	 *•

MPR69

• •
.*K7* ******
* *
* *	 *
UPDATE I/0 AREA	 START FEED
. w	 *	 •
.**** ***** ** ***** *

*•**

	

. *	 *

..X5 K1 *

	

*	 *
Sim*

Flowchart F1029. System Library, OMPR1 -INTERRUPT

• 306.16

• 90£ siretiamou •

nmvszo ` Aluactri tua isAs 	 4autiomou

********* ******* *

NtiO13d	 *
*******:*10****

• N211113O
•
*********4.5. *

X

69bd11 13S *89ddl. 501.310NI*
• 0334 dV31)
:*********13.***:

•
:*********ki****:

X
****►********

173136 b3N3V1S •
• NVO1311	 *
•

.133NNUSIU

SOddil

S3****

110313	 •

***********E3***•**

S3A *
.	 •

•	 •
.	 173135 •

•	 01 NO	 "...
.*	 11 SI	 *• ON

.*	 r.
"*.*.£0

******* ****I3*

*
	 Asnu

*	 0333 NO
* 	
*
**********I0*****

****** *
*

 *

d001 *
*

OrOdO*

X
********** *******

:	 Asnu	
*
*

* 0333 NO d001 *
* —*
* tOddN*
**********X0*****

*** *********** ***

:	 1J01$
LO	

*
.

• 11530	 daN *
* ONV Asnu 110317.
*
**********17*****

x

ON *
••

;;:*•. atsTi .•*

ON • ON * S3A •
.	 •

t•
*•

.**	 .**
	 *

.	 .
**	 • •

**	 Asnu	 **
135 SOOdil

•*	 Si SI ►•
"*".•

S3A
. • /0 •	 ASS 6955ri	 •*	 **	 W.d0013d	 ••

536 ..	 SI	 *.	 SI	 *'ON.
*	 *••*	 *.

.*.*.SO ** EO	 . 4 .*.15

*** ************	 ***************
* *	 *	 *	 *	 •
*	 *455
• 	 ISO VIA AM1N3.

*	 *	 9EddO	 *	 *	 S. 358	 *
*	 *	 ISO VIA Ald1N3 * 	 *	 ISO VIA Ad1N3 *

********* OV****	 ****** *011100***

• 0883 V 0333

******* ****53******
LZVO

'" * 0/l 0141530 *
* 3103 310111N1 *

ON *

*
4°

'*
dr'	 NO 31081 .4

80884	 4. 531
".*4'

.*	 53
133135 "*.9200

83N3V1S X	 ****
* *

X • * 53 *
910

* *
* NO 3108)	 *.0989 3N/Inolons.
* SIMI 135	 *

■

*•	 83118003	 4
* 0/I 801I801 *
13011 1634.38361

1! 95203

* 1138d$ VIA *
391081 381111108
* 01 N80139	 *

********* sx****
X

19glialb

**********5/ *****
X 0E03

•
* 330 3901538 *

***** *****80 *****

*************

• 0908 1 V30UV 0908 VA4V
3
 0/1 *

• mIIM 09X 0001 •
********** Olt.***

6013

•

* 0395 0/1	 •
* 80310 01 8000 *

03110 0/1 aAVS *
•

********** Er*****

ON *
•	 •• •	 e	 x0119	 4,

* SA *V . " .*• 310119.100110
.• S3A '. SIMI SI *0

°.
.	 1.3

**** 	 *•

****• •
* 23 **	 *

****	 SAA

** (01 1031'.
"'"*,	 NOLIAMA .*

ON	 U/I

4 ".	 IF 4'

.	 •

kV *
*

*

* 3..)01 10111611 ■
• 039I530 3103 *
**********Or*****

ST .90E•

OCILIVD 'Axemui tualsAs 'HOU limpAkoLl

* *▪
* eV

*
08.1 1501

* 13303 01 0333 *

****** ***** ***** *

**** ********** **.

	

18	 ►
*• lax 183838330 *

►*********SH*****

•
S3: * *

s' 171 0039•*

	

"'."	 80119803

	

ON •*	 0/I	 **
•*	 *'

"8	 40
•4•

•
031 *

*•
•	 •

** 16 110 11*
"*" 0331 11Q 0039'*'
ON •* N01138813 *-

** 0/1	
•

•*	 Si

S3A * *
A.**• •

.	 '
x •• ..°

*
 NO 119 09034•*

	

ON •*	 1101	 *•
4	 4•
"*. .S3

•
85832•4715429.

	*** 	 ****t1::**1*Z2:!
*4**

* *
0 •* 40 *

810

* *
*

* 1 AS	 •
* 180 18138383N1 *
* *
►***43****►X

*4 190159 3 0301.
* NI 8000 0390
* 0/1 3105 S 130*
*****►**** 98*****

X 4.03

* *
X** 40 *

GIG

44814*****
*	 *

(1,89
* ANO3 0A3dS *
OA 30011 10001
01 V 40 0/1 135
****** ****40*****

£003

•	 •
• *•	 UR	 •*
'i;;*:*881,28i"n:*

* OdOM *•
LH

*********** ******
• •
• IVVISAV	 •
* 1 8318003	 *
* 103 NI I ♦ •410909 u•om 3151*
****4*****E0*****

•

4	

•
000

* 01141 0501 1103 r
18003 0908 3100
**********63*****

* *
.1A*
610
*****	 ON

**
• AAIIVSAN•i

•
0	 •

53A •* Ob32 1Nn03**
0 . 0808 s'

•*	 43

********* ***** ***

* 03130 0/1 30 *
U608 15b14 8003
* iNn03 0808 135*
****.*****E0 *****

	

X	 31653

*
3301 08311 30 AW
• 1001 3301 3103**
**********C3.****

	

0009 A	 10.3
• ****• *	 *
"'* 63 *

1110

43 810 	

40 810 ****
IV 610 	
. 3 810 	 1".:

*• NO110140A**
0/I 01	 **
H18.90 .•

•*	 CV
**'

• •
.10•
610
*****	 ON

• •
S.•

NO	 •*
-**' ▪ 119 AUVAd '*
S3A ",*	 ION	 *'

.*	 8°
•*.*.OH

13536 160H118
*

• MS0 2001 ASNAS*

ON *
.4

.•	 ASA0 •*
' 3N11008115 '".

▪ S1H1 SI e 03*
0*	 *•

•*	 03
'.051113

* 9501 0391530
* 313 Ul 81581 *

* 1311815003	 *
*******Z4 *****

* 31951
HONVdil 60113801

* 0/I 01 0014
* 13nbASNO3	 *

*►*****00*****

► 	 *44** *
*13	 . VA *
610	 *	 *
*4***	 SAA	 **►**•

*'	 •

	

*	 •
""**	

ISS31
00 41 10031

*
 •*0"

ON •* NO1138103 **
•* Oil *•

'.	 03
"4,0103

:*** ********* ****
 *

I AO
*• 100 1838383Ni *
********** AV.....

gL%: S ,Tg t S *

*********.IH*****
x 01.3

6151

****************4
* *
* 5900. INJWOD/1.*
* AO 4000	 *
* H118 Al S1111 *
* W001 lox U8111 *
****** ***41:/*****

******* ********
* *
* 00603	 .
* 3811 431NA *
****►****1.****

uut,93

*
X
	 *IA .

*A10►
*****	 ON

•

	

*****	 ****	 **•*
010	 4	 *	 *	 *
* AI*	 * A 7 *	 * A5 B* *	 *	 *	 ***► 	 •	 *****	 *	 *	 ****

* A3
.	 .	 *	 * .

****	 .	 X

	

CA36 X PUNCH	 X	 NT/OE X

	

*.***A/*********.	 *****A7**********	 *****A1**********	 NTIII.*.5.
* **	 a	 .8	 8.

	CONSTRUCT PUNCH	 *$ET ERROR mom *	*DECREMENT SIOCT*	 NO .*	 FEED	 S.
* COL /nu.	*	 * ON TO FORCE *	 "X* MONITOR

I
/O *	 	 S .• CHECK INDIC .4

* CARD SKIP	 *	 *	 COUNTER	 *	 8.15CARRY .*
* *	 *	 *	 S.	 .8

. Y* ES****	 .	 ****
019.	 *	 *
* 87. *.x.	 * il4 *.X
* *	 .	 *	 *
****.	 ****

CA41 y	 x	 NT12X	 NT13E	 X

	

:****91*********:	 *****B2** ***** ***	 *B3**********	 ******Br ***********
* LOAD ACC WITH S 	 *	 r	 •

	

*GET WORD COUNT •	 */1 FA 1447 No**	 * RESET /1415	 *	 *SENSE 1442 DSW * 	 *SET ERROR INDIC*
	FROm FIRST WORD	 ..x* READY ERROR *	 *SUBROUTINE BUSY*	 	 X	 WITH RESET	 X...X....* ON TO FORCE *

* OE I/O AREA *	 . *	 CODE	 *	 *	 INDIC	 *	 X	 *	 LEVEL 0	 *	 .	 *	 CARD SKIP	 •. *	 *	 *	 *	 *	 •

	

:***************:	 . ********** *******	 ******* ****** ****	 **********•**
****	 *;5*	 44**

* *	 *	 *	 *	 *
* R7 *	 * 14 *	 * 84 *
* *	 *	 *	 *	 *****	 ****	 ****	 *4**

* *
. .	 * 95 *

14	 B.	 *	 T.
****c3*********	 .*	 B.	 ****

* RETURN FROM 4	 .4	 NOT	 S. YES
INTERRUPT LEVEL	 B. READY BIT .* 	
* 4	 *	 B.	 ON	 .*
*********•*****	 *.	 .T.

* NO

X
NT13F x

D4	
4•
	 *****D5***** *****

.5	 *.	 * LOAD ACC WITH *
NO .4	 ERROR	 *.	 5/1000, 1442 N*

...*. INDICATOR .*	 * READY ERRO
OT

R *
.	 ON	 .	 *	 CODE	 *

5.	 .4	 *	 *
B. .*	 ****** ***** ******

YES

******* ***** ****:

CA44

	

V.1 **.	 *****r2.*********
.4 wnRn B.	 *	 *

YES .*COUNT ZERO *. 	 4 DUREMENT YR/ *
•.X*R y / I. STORE 18*...t.	 OP

	 .4 **	. *	 SPRET	 *
• ..	 .* 	 *	 •Z	 B. .*. *****************

'km	 * NO	 ****
* *	 *	 A.
* FT B	 . r2 *
*	 .	 *	 *
****	 •***

*****D1*********:	 *****n2**********
*	 •

* says WORD COLINT•	 * SET XR1 TO	 *
SIN COL COUNTER * 	 .	 SpRET r 1	 *
* 5 PFSTRT	 *	 *	 *

*:**************	 *************

X*****
B	 *01 9*	 NO

.4.	 * H5*	 NTIOX.*.
El	 B.	 5 *	 F3	 5.

.* WORD B.	 *	 ****	 .*	 *.
. 4	 COUNT	 B. NO	 *	 *	 .*	 IS	 B.

.GREATFP THAN . 	 	 * El B....X.. FUNCTION	 .4
*.	 en	 .B	 y	 *	 *	 B. PUNCH .4

B.	 .4	 *****	 *****	 ****	 5.	 .*
4. .4	 *o18*	 *019*	 B. .*

YES	 * 94*	 * Fp*	 YES
****	 * .	 * *
019	 *
* E1 *.X
* .
****A

CA40 X*****Ft**********	 ***4:13*1*********	 ******F9***********

* LOAD ACC WITH*	 *SENSE 1442 OSW *
/Inol, ILLEGAL....
* rm. '. ERROR COI1F4	 *	 LEVEL Sr *

w/TH RESET
*

*****************	 x

* *
r7 *

* *

X
r7 * +•#.	 ***na**********

..	 B.	 *	 *
.5	 ERROR	 C. YES	 *SAVE FEED CHECK*

4. CHECK BIT .5... ***** X. BTT IN CARRY *
B.	 ON	 .4	 *	 INDIC	 *

♦ 	 5.	 .*	 *	 *
019	 B. .4	 .****************
• Hi*	 * NO
* *

.	 .

▪ .. EJECT LAST CARO
• *

***********•*	 X	 *************
*5**

	

*	 *
* Al *

	

*	 *

******E4***********
*SPST4	 *

* *	 • 	 *
FEED A CARD	 ...*PAUSE FOR POST *

* *	 . * - OP ERROR	 *
**************	 •

*8**
* ***.
* 94 *019*
*	 • F5 *...
*****	 *	 .

NT14 X

****F4 ********	
*****E5

*	 •
* RETURN ROM *
*INTERRUPT

F
 LEVEL*	 122I1Ewn7n

4	 * RESET MCC	 *
******** *******

******65 ******* ****

*":16H Ini E?" *
*	 LEVEL	 •

X	 X	 X
.5.	 NT/08.s. x

HI	 4.	 H2	 *.	 H3****.	 ****"*H140*!*** *****	 *****H5 **********

•
4	4.

	

. YES	 •
	 B.	 .4	

*.5. YES	
.	 *	 *	 •

..	 IS	 .5	 LAST	 5. YES	 .*	 TS	 * RESTORE WORD *	 * DECREMENT COL *
*. 5nryi lfiE n pl	5

	

ROSY .5....	 4. con HIT O
N
	.4.... 	 *. FUNCTION	 .*...	 * COUNT 5 I/0 *	 * COUNTER BY 1 *B.	 ..	 B. PUNCH .5	 *ADDR FOR RETRY * 	 5	 *
5.	 .*	 B.	 .4	 B.	 .*	 *	 *	 *	 *

. .	 X	 4. ..5	 X	 4. .4	 ****** ******* ****	 ***** ***** *******
* NO5 NO	 * NO

	

:M	
5

	

.:	
****5

.
▪ . r7*	 * El *

	

. *	 *	 *
* .

X	

X▪ 	x
x

J1	 S. J3	 B.

	

B.
	 YES	

******J4 ***** * *****	 J5****.*****J7**********

•*
	 B.	 .	 *	 .B	 .*	 4.

.5	 ANY	 B. YES.4	 IS	 *. NO	 * ZERO ERROR	 *

	

B::.EuVR&ON .5 .4....	 *RV)PNEkiTION"	 4. ADDITIONAL

	

*. F g ROQ CHECK	 *	 INDICATOR	 *

	

B . BIT ON ..	 .	 *	 .	 *	 *

. YES	
;	

•	 *

.	 .

	

B. *	
X	 *************	

*.i01. LEFT .#
S. .*

	

****	 *NO	 ****	 * NO	
*020** *	 *

NO	
.

* S7 •	 .	 * A5 *
• *	 *	 .	 •	 *	 X	 * *

X	
****	 ***a

X

****K4 * **** ***	

020
...	 . . * A1*

K1	 4.	 K7	 B.	 53****.	 * *

	

.* I/O B.	 B.	 *

	

.5 FUNCTION *. No	 .4	 WAS	 B. YES	 .*LEAST 1 COL*. NO

	

*.READ OP FEED .5....	 *. ERROR INDIC .*....	
B. .# A

	

 .4....	
* RETURN FROM *
INTERRUPT LEVEL

. .(1 OP 11 ..	 S.•	 ON	 ..*	 B. READ	 .4	 *	 4	 *
B.	 .4

	X 	 X	
4.

	

B. .***	 X	
**** ******* ****

* YES	 ****	 • NO	 ****

	

*	 *	 .	 *
* 87 .	 * 84 •	 :*::*:

X	 .	 *	 X	 *	 *	 X	 *	 *
***	 ****	 ****	 *4***

. *	 *	 *	

*	 *
• 47 *	 • Al *	 * 94 *	

* *	 *	 *	 *	 •

	

****	 ********

Flowchart FI032. System Library, CARDO

• Flowcharts 306.19

X
A *.

	

l	 *.
	* 	 *.

NO .	 READ	 ..

	

...**. RESPONSE	 .*
*. au ON ..

	

.	 .
5.

* YES

•
•
•

X
*****R1**********

. INCREMENT COL *
• COUNTER IV 1 *
•
****** ***** * *****

•

NTI6 X
*****C1**********

* INCREMENT COL *
• 1/1 AMR IN *

IOCC

***** n i * 	
• .0P . IN STOP •
PUNCH ITT 12 IN
* DATA OF NEXT *
S rOL TO PUNCH. *
▪ SAVE IN SURE *
******* ****** ****

X
*****Fl**********
*SET PUNCH MCC *
RATIOS TO Anna -
* I OF nArA WORD *
• WITH 10 BIT *

*▪ ****************

02n▪ Fl *.Y
* *

NT1R X
*****F1**********
•
• INCREMENT I/0 *
* Anna IN COL *

IOCC

NT20 x
******,/i,**********

*EXECUTE COL I/0.
READOIRITE

•

X

NT''

****N/P********
. RETURN FROM *
INTERRUPT LEVEL

****** ***** ****

Flowchart F1033. System Library, CARDO

• 306. 20

**•*
• *

• * 20 *
*	 *

SAA *	 •***
.	 0

* 0 101 1511•.
40115903 •*••

'a .	Oil .** ON.	
•

'5	 11

* :qv . snivis *
* 040 JAYS	 *
*****•****1H*****

01/1

* 4
*EA *
*0014
*4***

********▪ *******
*141131 130043101•
• 4131d105 dU •
*********IA***•

4181

* *•
*EV *
800

E

131131 1d04411N1
940103	 *

*********10****

1191

TZ '90£ sl imiomold •

URIVO 'Anima tua/sAs 17£01.3 2701p/AciL1

• •	 *

*19 *	 * SV *
200	 *	 *

* *	 *	 1891048	 *
* 83191100	 *	 *	 3181SSOd	 *
* 0/1 8011NON *	 * 893 3090 0019 *
.10011 193838181* 	 *	 1 *9 1N1103 •
* * 0808 193938191*

* *
*13 *
020

*********** ******	 **** *********** **
• *
* *	 (190S	 *
: 14X 11143:18091 :	

* ANg) 03330 904*
* 010911 1000/ ►

• *01 9389 0/1 130*
**********9H*****

x	 x	 V2113

•
•
•

S3A *	 S3A *
* 0 0 *	 *• .*

* *	 4,'	 •*	 *	 *
•18091 ASne bens* 	 *• 111 0038 0 * 	 5• NO ilv • 5 	 *	 13833	 •
*S1H11 8009 aens*x	 *•	 80110903 •*"**• N3380 80884 •*	 ."x*N1 3801S 2 I Au*
40883 8355 3/010	 ON •*	 0/1	 *•	 ON •.	 Si	 *•	 * lax 181938130 *
*	 •*	 *•	 •*	 .•	 *

** .*. 09	 •.	 tO	 *********►49*****
!	 9687	 '4.•	 x 8181

x	 x
• *55*

 *
***► 	 •	 * xu *

* *	 •	 *	 •
* S5 *	 ON *	 ****
• *	 *• •*	 !* ****** * ***** ****

* *.
**

NO 114 •*	 •	 *3003 80881 1191*
****	 *	 **	 *

'5	 189	 •	 *• 39011 311,140 •••. 	 * 1993111 1001/.
* lax 193838191 *	 ••	 51 01	 *• S3A	 * 9118 119 0901 *

****	 *	 ,E•	 *	 *
* *	 '.	 EA	 ***** ***** 4A*****
* EN *	 x	 •*°	 0E07
*	 •	 X

•X
•

*
*

*
* 1 AG	 *
* 18X 193838030 *
• *

•
08 *

*
.5°

A004
**

	

.• 3811004900 0..0 	
•• 51101 SI *• 038•*	 **

•*	 GU
'5° 4113
X 	
'X

s'
0▪ 838 •*

*•	 80110903 °Jr-
"*	 0/1	 *• ON

•*	 *•
•*	 00

•*•

* *
* 1491038	 •
* 1 3101 103 81 5	 10 440 	
* 8005 0/1 3990 *
* 98 120 	 E"':

X	 4,7 100 	

	

****	 40 120 	 1•••'
* *
* 03 *
* *

11
*.	 * 5 5 *

• •
•	 •	 *•	 '4,

* 0	 08	 •*	 0	 *• 80111803.*
•• 9081 8310309*s • 8 •	*•	 0/1 01	 ".1
'*	 19003	 *• S3A	 •*	 H38849 .•

•• 0808 * 0	 0*	 *•
•*	 90	 .*	 sO

.. 0	 908/
X	 !

038.*.
. •*

•*
•	 0333 •

—* au 0938
09

*
 ** 90111904 *°

•* 0/1 *•
"*	 EH

***********# *5***
3003

* 80883 A99311 * 	
109 0491 0001/
* H118 338 0801 *
**** ****** EN*****

lx83

*	 *
	 x X . :	 *

********** *******

* dINS 0890	 *
* 3030i 01 NO *
31091 30483 13S

%Vs*
• *	 *
X's 4A *

x • *
• ****

ON *

**
s'

04A2**
"	 11910	

	

0 * 10815101	 SaA
' * 014 0•

	

.•	 23

•***	 4.'5**
• *	 *	 *
* 99 *	 * 09 *
* * 5 * * *

	°I 	 *1 0 *
. *	

•	 *
**.i.

• *200*
•****	 ON *

'1,	
e	 ..

• e	 Asnu ••*.

* 3701 OAAA 4541*	 ""*• 3811004805 .5
• 8118 353 0001 *	 S3A '. S1H1 SI *•
 *

**********Z0 *****	
•'*

'.	 IN

X 4415

1	 1AdS	 *
01 1

1
40 1AS *

***** ****CH****:

* *
• *	 010

0090 ISO1	 • 31810
180083

88 04 2**
* 103r3 01 0333 * * 831N1103 103 91*

*19003 0808 3A9S.
***** *****,0*****

X	 I

ON *
• •

. 0	 •*
•	 NO	 0

• 118 00938 "...
•*	 AUN	 *• S3A

*	 E3

*'	 ISSil **
""*. 10 *) 18031'.
ON '4, N011540) .•

. *
.8

0/1
85

*.

S3A *
** •*	 **************•**

* 50003 1039008E•
* 30 8009	 *
* 0119 Al S101 *
* 44033 111X U001 *
****•*•***13*****

X
**•*

* *	 *
* SO *	 .	 * 49 *
* *	 .	 *	 *

	

S3Al.*„.	 0,7.*..	 -4*5*
*************	 ******* ***** *** **1*	 **********•******

5'
.1. ° 	 •*	 *•	 •4

*• 1A1i09314 • . * *	
*	 *

3301	 : :	 *	 *
w • NO 119 0493 • i ••-**	 80	 •* 	 	 13538 1008118

*
* 1181 01 11910 *x ••	 *	 18x 4A09	 *

•4	 1591	 *• ON	 •* 0837 101103*' S3A 	 * mS0 4991 35930*	 *	 NO113804	 *	 *	 *
. .5	 *•	 •* 0809 *.	 * 0/1 SAYS	 *	 *	 *

	

. * ... Sii 	 .4.9.49	 ***** ****** iii***Itd3
X	

•49*****
0180	

***** *****I. 	
X

	

X	 **•*	 *4**

	X . * E9 *	
•	 **	 *

•
*	 •	 **120:0":
•	 * •

•
•

***** * ****** *****	 •****************
* *	 •	 S	 •	 *	 ***•***********

• * 4315 0/1 30 *	 *	 0.1301	 *	 *	 *	 *	 *
13038 11105118	 *0808 1S813 8043* 	 * 101 7 1011181 .	 .	 1 AU	 *	 10893	 *

* ASO 2941 30940*	 * Anol 0808 139*	 * 0301030 0191 *	 * lax 1838383Ni *	 *	 Adil 41193 ** *	 *	 ***••****194.5*
*********** SV******	 ***** ***** 90 *****	 **********EV*****

	

03341.	9E183	 H5N04/04310	 0E05:0045	 10881
• .

•

•
* *	 ****

* *	 * *	 *	 •	 *	 5

	

*07 *	 *40 *

	

120	 *100*	
* Ea *
*	 *	

* eV *
* *

5*9*	 5*5*

*	 N0113N114 * 	
OV 0381530

*	 10111N1311 *
*•********* SN*****•

0803 V 0333	 ••••x

)1,

*

*
*IV *
520

ON *
•	 •

	

•	 0333 •
N13113404 •*

	

SaA •*	 SI	 *..*	 *.
.*.N.S3

•

Dti *
5•

1.131408
**

**
NOI13NOA ..*".

	

••	 SI	 3A*
.4.*

S

S9*.
. S

**.
•*►*

• *
* 43 *

**Y.,
•

*
*

• i#4*
*•********••**•*• •

*	 •►********••***
* •

*	 601V310,11	 *X••	 *13031 1drIbb3IN1*8.•
*	 80883 0832 *	 • 8088 N*1113* *

•********tD*••*
**** ****** 43 *****

X Z9b3	 9883

X .** 43 *
* *
***.

•0803 1581 13313	
0/11i1.1 61g3h

******* ****S8****** 	 ******* ****10:1******
X	 X

* sr *
*	 *

S3t.*.N
*•	 • **	

.*
*.

NO 31041	 *13831 1408831N1*
.*	 •

•*	 80883	 •• ON	 * W084 *811138 *
•*	 t'	 ***** ****48****

'1 ,•,513

	 X	

9943
•

* *
*10 *
En

ON *
*

r . •*
• .*

r°	 NO	 .*	 *	 931NOOD
•

1/8 00038 .* 	 ►
030 • 	 LON	 *•	 Nalno:

•*	 *•	 *	 *
••	 SA	 **•*******hi***•*

•

*	 *
*	 •	 *	 *

13503 10011115	 *	 310NI xsne .
* MS0 2771 30430*	 *dens S181 13S38*

*	 *

	

** *********	 *
7

S3******	 *********43*****

	

x	 983f 2133
****	 *v.*

*	 '	 •	 *	 ****	 •	 *
* *	 •X•* SO * *	 *	 • X • * ad *

18 •	 •	 .220 * Si *	 .	 *
EEO	 •	 **** ► 	 *	 •	 • .A. •
*****	 S3A *	 *5*•	 ON *

	

!	 N.*. •*!	 *..
** .*

.*	 •*.	 .1.•	 0038	 •► 	 *•	 NO	 ..1.
.".** 0093919 1Q3 ". 	 X....*• 31041 80981 •*

ON •* 3N0 11031 *.	 530 •*	 SVK	 4•
•*	 IV	 r .	 •.1.	 .•

•.1.	 SO	 •*	 40

	

".10.	.*.

********* ********
•
•
* I. AB dainnua *

1113 1N3N343N1 *
•
** ********

•
•

SJA •
'.

*•
*• NO /lb

35NUdS39
av3d	 *• ON

".*	 s'
.*.*.ed

ON *

********** *******

* 3D4 3911038 *
• •
**********L1 *****

**** ****** .4.44.*
..•	 .*	 *	 *

*• ii31 103 • *	 *	 *

	

.•• II..	 1VN0111U1V •* 	 *	 1 AB	 *53A •*	 ANN	 *'	 * lax 1N3W393N1 *
•*	 *•	 *	 *

*	 20	 **********1U*****.„.
A	 8453

....
*	 *

A • * 1U a
.46U.

4* ********** *****	 ***** *******.

	

.	 *

	

*	 *	 *	 NO 34) 3 4

	

* 1 08 8314003 *	 Jil 0341s30

	

* 102 1N3W3b330 *	 *	 31ViliN1	 .

	

*	 *

	

*** ***** **Z3*****	 ***********ID******
X	 !	 Ltai

•***
*	 *****

".. 13 *	 .
5	 * 10 *
****•	 *

*************	 f

	

*	 0 13031	 **	 *	 •
I3538 811*	 0803 0 9Jii	 ".

	* MS0 2441 3SN3S*	 *	 *

	

********* * Lai ***** *	 ***** ****** IN******
x

****•
• * 13 *
• •

A •	 ****
*********••*******	

SJ

	

*	 *	 *•	 ND	 •*

	

*	 3301 evti	 *	 x." 31091 80883 .*...
• 351430 38131138 *	 SI	 4, UN

4'

	

****** **CV ***** 	 tV
0583	 4353010* •	9003

1331 3 55

*l0**
.220.
"4**

ZZ '90E •

TUHYD 1 .A.re/qci utalsAs •SEOLI lantpmotl

	4*** 	
*	 •	 .	 .

	

* SV *	 * 94
.	 *	 *	 *

	

****	 ****	 4***

	

:	 x

	

.	 *	 *
. tj *

	

*	 .
• SdA .0	 ****

****r ****4*	 *• •*	 !*.*
*	 8181S*	 *• 85Nnd •.

* 2101,1113 s.d3sn *	 ••	 ND113NO3	 •..••
* 01 97NVii9 .	 '*.*	 SI	 +v• UN

*	 *	 •	 ..	 ****
******* #X**	 •.. . 1,N	 *

	

x	 *
* b. *

 * 	 *
•3**

x
•

** ******** ********	 3003	 *	 .	 r
* *0983 X3390 *	 . 3N11n08uns *	 *	 118 21	 *

* H119 utiUK *190*
: ET195Y9101T) *	

* 80333 5.8350 .

	

. 01 8:15989 *	 *30 NOUN 01 *039*
* 911* 339 0 1801 *	 .	 *	 * 3301 1-1N0d 135*
	 C 	 	 **•****Er••

***** ***** *******
• •	 *	 *	 * dens NI imrs .	 ****** **********	 •• "1-13110301 103 •	 *	 1130d3 VIA **v003 *0493 UtlY5*
*	 NUNI 118	 *. 1XON 30 51511 •	 *330981 3NI1NIVN**33383 0330 3AVS*	 : 1 0 91 1 33ril	 :	 *N1 21 11* HjWIld.	 *	 01 N3111321	 .*	 *	 *	 * 801S hi .80. *	 ********.lH**********,***LH*****	 ********•*Z8***•*	 A

f 0183	 x	 x	 11x3
■***

*	 .
• 43 *
• .

53A *	 A.***
..• •.	 x	 *****•**•********

	

.	 ••*•
•4,

♦ 	 .	 *	 *
D301	 *	 *	 *

. NO 1111 0903 .•••	 * NI *GOV Oil *	 * 5h1V1S '200 ..*	 15.1	 *. ON	 * 107 1N3N383NI .	 . 'lax 3*01538 *
•*	 .x•	 *	 .	 *	 *.5	 EU	 ******•***2*****	 **********1:1*****

:	 0593	 X	 2403

•

*.

	

.	 NO	 .
	 *	 119 NOiND **

	

S30 '4	 90943	 *•
".	 *.

•*	 E3

•5**•••
4	 a 13831	 *

13S38 1111M
• MS0 2441 3SN0S•

*********:*temt•**

*
• •

*Ea *
.22b.
**b..

• *	 *
11 . * .*	 •***

	

):	 *****************	 	 * 	
w .	.*	 *	 *	 *	 *

* .*-01 339 13
5

 * 033i01 3301 *	 * 103 NI 8000 *
• '3301	 *	 •	 3301	 *

•*	 kosn	 .• 03A	 * 1.15Nrld 1330NO3 * 	 5 0/1 IN38381N1 *
•*	 *•**	 *	 *

.* .N. S11	 	 ****Ev*****

****	 *•**	 4***
**	 *

* v0 ** SV *	 * 40 *
*	 *	 *	 *	 *	 *
****	 ****	 ****

7583
'X 	

023
* Al*
* *

CR738.8.
AI	 *.

.8 READ 8.
. 8 STATION* *. YES

8.	 FEET	 .8 	
8 . CHECK .8

*****S. 	
077

* NO	 * E5*
8***	 *
071	 .*
* BI *.X.
* *

CR7 7 E %
*****81**********

SET ERROR 'runic
• ON TO FORCE *
* CARD SKIP	 *

*8***
0,7
* 05*
* *

073
* DI*
* *

CR75
*****0/*** ****** *
* LOAD ACC, WITH *
* 1100, 1447 NOT*
* READY ERROR *

CODE	 *

*****F1 	
*SPST4
*RA USE FOR POST *
* - OP ERROR	 *
:***************:

Flowchart FIO26. System Library, CARD1

• Flowcharts 306.23

•	 •
* 30883 40 - *
. 1504 VOA asnIrd*

4150►

*
• 3003	 .

41111482749NO./:* 14119 559 0905 •
S

****•**** SH*****
)1	 9E38

•
0438 0893

* IOSZ 1891533 *

09E38

'90E•

oavau `icluacin tua 3sAs 'LEDO 71et131A01.1

	

****	 **••
* *

** 44 *	
.	 .

	

* 69 .	 **::*
*	 .

* *	 4	 *	 *	 *

	

4***	 *•*► 	 *44*

	

)1)1

' ON .
....***** ********	

* 4•	 .4
* 4	 *	 *	 3000	 *	 •	 .1•	 ASo. 6.
13A31 Id/18831Ni	 * 30883 39938 4	 0938	 •• apainuuans ..---* £083 (41(0138 * 	 *100 1050 0004/*	 *02193 IOSZ 1(1915(•4 5161 S1 *' Si.*********4M****	 • 141114 339 0901 •

4E33)1	

.4
's	 1h8	

.•X	 **********Ex *****	 ****** *** : * 4M****.*
4.1.**4938

▪ Er
$33 •	 ****

*
--x. 4V *

*	 *

* yalpinoa *
:13B. 1N3438)30*
*********** H****

*W.	 ****
*	 •	 *	 *
* 49 *	 * E0 .
• *	 *	 •

ON *	 *•**	 *•sr
.... 6*

'..	
X

**	 *	 * •	 *
'	 3	 1(83 * •	

135*
X"* •►•11(1 n31.13"'°*.	 ""* i

300
m ?T

80v:) , :X"	
*
r	 1301 0933	 r

531 '4 .. 40883 4•*.
* HJIM 338 8901 *	

*NI 8009 838
** .

*
45	 ***(******5 8

31	
	 3****•

X 4E6
14

••
3 69 •	 •

*•5 	ON 4
*.

1506
**

rt	 s'
1 A9	 4	 3N11nub9OS

4• IVX 1N314310141 * 	 S3A	 51 4.
0 *	 4•

-4.4.(3
X 8013*

*	 •

	

X . *
*
 58 *	 '	

*44444
	 % 	

• *	 .	 * ET ►
••	 •	 *	 .

	

ON *	 **!*

	

LenNTAAAMati:	
*- Asnw 3 IA30 **X"

	

+1.° NO 116 •	 •	
*
*	 *';31.: 419531's

. . * • • * . 4 	 .	 * ***** ***********

* *

	

.*
**

S	 4'	 : t2d474119? :	
.. NO113N04 **X"
'a	 0/1	 *.• *	 *•

*
	 Zr 	

	

is	 ******C1:7361
ON •

* 11311100.1
* 0/I 3011NOW *
13011 163938061

*	 •
* EL) *
* *

*4►►
* *

64 *
• *
***►

• *	 *
1 A9

lux IN3N33:1u1
:*********15****:

 4
13i3/1 HI1M

* *SO OSZ 3SN3S*

X 9EEI8

ON *
*• °4

4.
4 .	NO	 •*

. 119 10433 .••
' *	 10N	 •• S3A

8•••	 53
•*.

• *	 ■ 	 *
*13A31 AdntivaANI.	 •	 31911619W	 •
* 3131(419 40 *	 * 01 N8A133 *
********* 3****	 *** ****** i3****

	

94038	 x 08138

ON *
*•

**	 8B	 84
X •••* • N9141 8369385:*

tin53A •► 100 110M*
u

*
baJAn.-

ZA

ON *

S3A *

(01 1531•*
• NO113113
•*	 oil	 ON

*.
• 4	 Li

4 •	••
• 3311953N•
	 • IN003 0809
S3A	 daiAna *--*	 *•

•*	 00

•

•

:

44138

0,7.*..** 	 	 •***********••****	 4	 ..•	 ••	 *	 **	 *	 *•	 0336 -4	 4 S11009 iN31411589** I8X W083 wa y *	 *• IN003 40/4 a.	 4	 30 6009	 ** nuniad do 135 *	 '4,	 833408** 53A	 * H11" Al 5161 4
• •	 •4	 *•	 . 4083 18% 40901 ►***** *****3*****	 .4	 ********4*1 	X 1E138	 -!.	 X

'.:	 X	 ****
* *	 .
* Er •
• •
•	 ON ** - •*	 ** ****** ******

• *	 4°	 '4	 *	 *• 4	 ..•	 NO	 '.	 *	 *
* 339 3801638 *""•• Ile A0938 '*	 *	 Lax 3A9S	 4
* *	 S3A '*	 ION	 ••	 *	 ** *	 •► 	 *•	 *	

*

• • .•. Z8	 **********I8 *****

)1****
. *	 .
* cv *
• •	 •
**!*	 -

• L'Tfivi3s• *

*4*4
* *
* 44 *
* *
**►►

* • •	 4	 *	 •.	 ****** ********** 13831	 * •	 *	 ** 	 •
* 18* 1NAI1383141 *	

"'X
*
15311 100H11M

*
:602411(38b69:X"	

4	 I 89	 *
• m 0 OSZ 3SN3S*	

*	 00433	 *
* 3911 911 84163**	 •	 *	 *	 ****** ***Vim******* **:.1/ 03.	rt.** *

*

X (4133	 X 96038	 00933.

• *	 *
• .•.1. EY •	 •

*8**	 r	 *	 *4**
• 4	 *44*
* 49 •	 * Z4 *
* *
****	 *4**

7***	 ****	 ****
* . *	 *	 *	 *	 *
* A2	 *	 * A3 *	 * A4 *
* 3	 *	 *	 *	 *
•	 *	 *4**

• •	 •
RES60

5 ****
* BRANCH TO 4.

*USER'S ERROR *
	 X*SUBROUTINE WITH*

* ACC	 /0001 *
***** ******

X

	

X
•

RE/70	 x 85
*.

*.	*****A1********* 	 97	 3.	 *****B3**********	 *****B4**********
* *	 .*	 S.	 *	 ► 	 *	 .*	 *•
*	 •	 YES .*	 NOT	 *.	 * INCREMENT XR1 *	 * SET XR1 TO	 *

*
*	

S. *. ON .* .*	
TES.,..*ETIFII TO * ...

*
* SAVE XRI	 •	 .••.• READY BIT .*	 ..X*	 BY 1	 	 *	 SPRET . I	 *	

..
: *	 !	 *	 *.	 .* * 	 ..*. ZERO	 .•

*

	

***** ************ 	 X	 . ******* ******* ***	 ********* ********	 X	 5. .*
•	 * NO	 *	 *•*•	 * NO

* *	 *	 *	 *	 •
* JI *	 .	 * 83 *	 * H4 *
* *	 .	 *	 *	 *	 *
****	 ****	 ***•

;

	

x	 .5.	 x	 RE362	 x
	***** C1**********	 •C7	 ►S. 	 *****CS ******* ***

* Lou) XRI FROM *	 .4	 *.	 *
* THIS TV WITH *	 YES .. BUFFER	 4.	 *	 *SENSE 2501 DSW *
* ADDS OF	 3	 ...*. WORD COUNT ..	 * RESTORE ACC *	 •.X WITHOUT RESET

	

*ARGUMENT ADORS *	 B. ZERO	 .*	 .	 *	 *
* *	 .*

* NO	 *:;**
* *

.	 X 	 	 * C5 *
* *
•***

X	 x
ornon	 x.*.	 RE132	 0E049

	

*****D1**********	 D2	 *.	 *****03**********	 D5	 3.
* **.	 *	 ****04 ****** *** 	 ..	 S.
* SAVE	 *	 .*

.*
PUFFER	 *. YES	 * SET UP RETURN *	 * OP COMPLETE *	 .5	 NOT	 *. YES

	

ACC,STATUS, 7017 	 *. WORD COUNT .* 	 	 * BOOR FROM SRI * 	 *INTERRUPT LEVEL*	 S. READY BIT .5...
* *	 *.NEGATIVE .4,	5	 *	 4	 *	 3.	 ON	 .*
* *	 *.	 .5	 *	 *	 ***************	 t.	 .5

	

**************•**	
S. * N

.5 O
	

********* ********	 *• 10

	

.:•	
X

RES-16	 x	 x
	FI 	 S.	 F2	 *.	 ***** E3**********	 ******E4***** ******	 ******E5 ***********

.3	 *. .•AUFFER S.	 *	 *
NO .3	 1/0	 3.	 .*WORD COUNT 5. YES	

► IM R ;TATUi :	
*SENSE 7501 55W 3	 * RESTART 2501 •

	

..... FUNCTION	 .3	 *.GREATER THAN .*....X 	 WITH RESET	 CARD READ

	

.TEST (0/ .	 3.	 AO	 .5

	

:	
*	 *	 •	 *

3.	 .*	 5.	 .5	 *

	

•S. .3	 **** ***** ******** 	 ***** ********
* YES	 * NO	 .	 .

.	 .
x ilX***•

 Z 	 *	 *
REI08	 x 	 RETRO	 * K4 *

	

El	 *.	 x	 F4.*.*.	 .	 .
*.	 *	 *	 *MET *********	 .3	 *.	 **•*

.*
.*

/S THIS *. YES	 * INCREMENT XR/ *	 *	 RETURN TO	 *	 .3	 ERROR	 S. YES
*. SUBROUTINE .3.... 	 BY 2	 *	 •	 MAINLINE	 *	 5. CHECK 91T

	

5 . BUSY	 .•	 *	 *	 *	 3.	 ON	 .5

	

*	 ***a•** **33****	 3.	 .3•,	 .t
 .3 .* ;	 **** ****** ***
* NO	 *33*	 * NO

* *	 ****
* RS *	 *	 *

▪ *	 *	 * A4 *X..
• ****	 *	 *

	

****	 .	 X

	

X	 x	 RE192	 RE370

	

*****cl**********	 *****07***** *****	 *****03*;********	 04	 *.	 **G5 *******
* *	 *	 *	 * LOAD ACC WITH •*.	 * 9RANCH TO •
* INCREMENT XRI *	 *SFT BUFFER *ono*	 * /4001, 2501 *	 .*

.*
 LAST	 4. YES	 *USER'S ERROR *

* AY 1	 *....	 * IN READ TOCC *	 X..X* ILLEGAL CALL *	 5. CARD BIT ON .5 	 X*SUBROUTINE WITH*
*	 .	 .	 *	 . * ERROR CODE	 *	 *.	 .*	 * ACC - /0000 *
* *	 .	 *	 *	 . *	 *.	 *

	

* ***** ***********	 X	 ******** ********* 	 . *********** ******	 5.5. .3*
****	 ****	 * NO

* *	 .	 *	 5***
* 53 *	 * GS *	 *	 •
* *	 *	 *	 * H4 *.X
*3**	 ****	 *	 ■ 	 X 	

x	 RE340	 K	 RE375

	

*****H2**********	 *****H4**********
* *	 *	 *	 * LOAD ACC WITH 3

	

SAVE USER ERROR	 *DECREMENT SIOCT* 	 3/4000. 2501 NOT.

	

SUBROUTINE AMR	 * MONITOR 1/0 *	 * READY ERROR 5X..
* *	 *	 COUNTER	 *	 *	 COOS	 *

	

*3**	 •	 •	 ****	 *	 *	 *	 *
* *	 ******* **********	 *	 .	 ***** ****** ******
* n* *	 * 42 *
* *	 *	 *

	

****	 ****

	

x	 X

RF077	
.;.NO X	 RE704	

.p .YES X
	J1*.	 ***** J2** ***** ***	 J3	 *.	 *****J4 ***** *****

.3	 3.	 *	 *	 .*	 5.	 *	 *	 *SPST4	 *
. 5	 I/O	 •.	 *INCREMENT STOCT*	 .*	 IS	 *.	

:SUMIWIVIBOSY:
	

...*PAUSE FOR POST •
* -*

	

..X*. FUNCTION	 .5	 * MONITOR T/0 5	 :*X*..DEXIiE0ZUS!..*

	

*.LEGAL. (II.•	 .	 COUNTER	 *	 *	 INDICATOR	 *. * - OP ERROR	 •

	

S.	 .*	 *	 *	 .	 S.	 .5	 *	 *	 . *	 *

	

****••***********	 .****** ****** ****	 X 	
* YES	 34**	 *.illn	 **v.*

* *	 .	 ****	 •
* Jl *	 *	 *	 * C5 *

•
.	 * K4 * • X	 *	 *

	X
x
	****	 .	 *	 *

*•**	

9E084...	 X	 RE348

	

K1	 *.	 *****K7**********	 *****K1***•••••**	 x
•*	 *.	 *	 *	 * LOAD ACC WITH * 	 ****K4 *********

	

YES .3 IS THIS 5.	 *	 SET THIS	 *	 5/4000. 2501 NOT* 	 * RETURN FROM *

	

...*. SUBROUTINE .5	 :SUBNIMINBUSY:	 * READY ERROR *	 *INTERRUPT LEVEL*

	

. RUST	 .	 *	 CODE	 *	 * 	 4	 *

	

*.	 .3	 *	 *	 5	 *

	

*. .3	 ******* ***** *****	 **** ******* ******
* NO

.	 .

	

;	 X	 X

	

sr**	 ****	 ***•

	

*	 .	 *	 *	 •	 *
* 02 *	 * Al *	 • A4 *
* *	 •	 *	 *	 *

	

****	 ****	 ****

Flowchart FI038. System Library, READ1

	READ/	 RE096	 X	 ii	 RE216	 X
******A7•**** **sit*	 ******A3****►****** 	 ***** A ****** *****

****A1**********

	

*ENTER VIA LIRE *	
*TM/74M *X...	

START 250/ CARD	
..X:BViREMEVORVIN:READ/	 *	 READ

* *	 *	 .	 *	 *	 . **
	 *

	

****** ***sass**	 .	 *
** ***** ******	 *************

*4.**	 54**
• *

.	 * A2 *	 * A4 *
* *

****	 ****

• Flowcharts 306.25

pLOTI
****A/*********	 *	 •

*ENTER VIA LIEF . 	 * RESTORE XRT, *
* PLUTI	 *	 •	 STATUS	 *
*	 •	 *	 *
.**************	 *	 *

********** *******

PET
****•B1•*********	 x* *	 ****B7** *******
* SAVE X*1 LOAD *	 *	 RETURN TO	 ** XR1 WITH Ann* * 	 +CALLER OF PLOTI*
* OE LIRE + 1 *	 *	 .
. *
	 1.4 ***** ***

STAR x
4.****E1**********

* SAVE STATUS, *
* ACC S Err	 *

.........****

*****DT*********•
• •
GET DIGIT 4 OF,
*FIRST ARGUMENT

NERDY
*****D5***** ***a*
* LOAD ACC WITH *
5/7000. PLOTTER •

..X*NOT READY ERROR*
CODE	 ■

***** ES***** *****
•
S 4 131.1 1 DEVICE	 *
0/0/0 INTO BITS
* 4-7 OF ACC	 *

YES
.*.	 LEGAL.*.	 Al ;

E1	 *.	 E7	 *.	 .****E1** *** * ** **
.5	 *.	 .*	 S.	 * STORE DEVICE a

..	 I/0	 .. ND	 .*	 1,0	 *.	 *DIGIT IN BITS 4.1

	

4. FoNETION	 .* 	 x*. FUNCTION	 .► 	 * - 7 OF DEVICE 5*.TEST In) .5	 *.WRITE 111.*	 .	 WORD	 4'*.	 .4.	 *.	 .*	 *	 a************t****
* YES	 a-*-4o

*	 *
* F2 *.x

ERRE.- I X
*****E7 **********

5.
YES .5 IS THIS *.	 * LORE ALL WITH •
...*. SUBROUTINE	 ./7001, ILLEGAL *X

	

S. IOSY	 .5	 *CALL EPROR conE*
•***************5.

F3
NO .*	 WAS	 5.

* DEVICE	 •5S. DIGIT I .5
S.

* YES
.

* NO
•• * • .5*5
4.076.	 *	 *
• GI *.x	 * 02 *.X• .	 *	 *
****	 ****
1F5FT-2 x	 ERRFT X
*****,1•*********	 *****G7**********
* *	 *
* INCREMENT SRI a	 * DECREMENT SRI •
* Rx I	 a	 *TY I & STORE IN*5	 a	 SPRET	 *
* a	 •	 *
***** ************ 	 **********•******

****►G1**********

* LOAD ACC WITH5	 /0000,

*****. ***** ******

a***	 ****
* *	 r	 *
* A4 *	 • A5 *
* *	 *	 *
****	 **AP*

.	 .

.	 .
x

RTW.*.	 %	 %
A3	 5.	 *****A ***********

• *	 *

	

YES .*
.5

 IS THIS
*.

*.	
5

	

...*. SURROUTINF ..	 :uTIMInsi9O4n:	
'GET & SAVEUSER*
* ERROR	 *

S . BUSY	 .5	
}FR
 OF I/0 AREA *	 *SUBROUTINE RODE*

.	 .	 *	 *	 *	 ****** ****** ******
* NO

X
RI	 *.	 84.5.5.

.*	 *.	 .5	
5•
	 •	 *

	

.r*:' RiffiEn .
	

2.42*:* n5194. s:5	
* SET THIS SUER **
5 BUSY INDIC &

a.	 .	 *.POSITIVE .5	 * FIRST INDR	 *
*.	 .5	 R.	 ..	 •	 *

	

X	 .. .*

	

4. YES	 ****	 * YES

	

s	 *
• F2 •
* a	 %
**►*

007
*****C3*****►**** 	 *****c4 * x

*********	 • *x5*
* *	 •	 *
* ZERO DEVICE .	 *	 S
* woRn	 5.	 •SAVE WORD COUNT*
• 4.	 *	 *
*	 .	 *	 *
******* ******* *** 	 ********* ********

X	 X
*****D4*** *******

* *	 *	 *
* LOAD ACC WITH .	 5 GET I/0 AREA 5
* /7RO0, 1627 4.	

*
*ADM SAVE ADDR S• AREA CODE	 .

.	 *	
5 1	 *

*.
********** ****** .	 ****** ***** ******

*****F4***►******

MOVE FIRST WORD
* OF 1/0 AREA a
*DATA TO SUFFER *

►

ROY X
******F4**** ****** *

*SENSE 1677 DSW 5
..x WITHOUT RESET

.s.
G4	 S.

	

.*	 *.
.*	 NOT	 S. YES*. READY BTT .* 	

	

.	 ON	 .

	

S.	 .*
s' .•

•

	

x	 %x	 x	 ART.*.	 •*.

	

•****H1*********•	 *****H2 ***** *****	 H3	 S.	 H4	 a.. 5	 .
S !NETT SRI :	 * SE/ XXI TO *

*	 SPRFT • 1	 . 	
YES .5.•
	 .. 5.
	 YES .*

.5
 DEVICE *mot.*	 *	 ACC - 0	 .*	 ••.5. BUSY BIT ON .*

	

*	 ..*
* *	

5...
.5

	

..	
S.	 .*.*

	

*****************	 i. .*
* ND	 • NO

RESET X
*****J1**********

* RESTOPEACE • *
ExT

***** J3**********
• CANS WRITE &
S SENSE /OCC . S *

:* ***** *****.***:

*****.I ***********

VN5WITPOI NO":
* COUNTER BY 1 •

*****R ********* is

* INCREMENT ORE ►
BY 1	 *

RESET+I X
*****1(1.*•*******

. SET UP' RETURN *
* Ann?, FROM .R1 *

:********k#A#AAA:

:****K3 ***** ****:
* SET HEX 01010 *
IN imp COUNTER

TO 5
:***************:

• •

****	 *•**	 •*►*
* **	 ►

• 02 *	 * 44 *	 * A5 *• *	 *	 ****.	 ****

Flowchart FI039. System Library, PLOT1

• 306. 26

•

**•*
*	 *
* 44 *

.*.	 GET
Ai	 R.

•
6	 6.

.*	 FIRST	 *. YES
*. DIGIT INDIC .5....

6.	 ON	 .6
6 .	 .6	

;
* NO	 ****

	

6	 6
• H4 *

*
**•*

******B4***********

* WRITE 1627	 ■
PLOTTER COMMAND* *

•
•

XX

PLOTC X
******J3***********

*SENSE 1627 0514 *
WITHOUT RESET X...

* *PAWN COMMAND'• •
**********•**

(4**
*

* ji •
* *

****** *******

K3 • •6.
.5	 *.	 ****

.5 BUSY	 •OR 6. YES
. NOT READY .5..•.1 E4 *

BITS ON .*	 *	 *
5.	 .*	 ****

* NO

•***
* *
* 44 ** *

026
* GI*
*

LOOK*****H3**********
* ADO 010/T IN *
WORK TO AnDR OF
* PLOTTER CNTRL *
woRns, STORE IN

!MC	 ******************

/NTI
****A1*** ***** *

INTERRUPT ENTRY
* VIA 11003	 *

IPRG
*****Ri**********

* RESTORE SENSE *
* OSW IOCC	 *

:************

******cl ******* ****

*SENCH1 WFV54 *

51 • 	S.
*.

NO .* • RARITY	 *.
...*. FPROR BIT .*
.	 *.	 ON	 .*
X	

*.
****	 YFS

*
* HI *

*

*****F1*********
* LOAD ACC WITH *
* ,0001 (OR(E a *
* INTO DE VTCE *
* OIGIT IN BITS *

4-7	 *
************■****

FRR
11*****

*	 *
* BRANCH To *

6 USER'S ERROR *
* 51)65001 IRE

. .
GE	 ..

NO .*▪ USER	 *.
..*. SET ACC TO .6

****	 * YES
• *6*6*
• JA *	 •

HI 60(
*****	 *

PLT X

*****“1**********

* DECREMENTOUP *
6 COUNTER AY 1 *

* *
* A? *
* •

ALPHA.? X
*****A2***** *****
GET	 02745

..X*
*GET NEXT DIGIT *
********** *******

.!.
. 82	 **5	 *.

YES .6	 IS	 8.
...*. DIGIT 13, E. .*

5. 08 F	 .•
5.	 .•

***10

•

12	 *.
.6	 6.

.6	 IS	 *. NO
.DIGIT A, S. .6...
	 OR C	 .**•	 .*

*. .6
* YES

*.
0,-

.6	 *.
NO .5	 /S	 *.
.6.	 DIGIT A	 .6

.*
6.	 .6

0	 *.
****	 YES*	 •

* J2 *
.	 •

*****E7* ****** ***
GET	 02715

•*OFT NEXT OIGIT ** *

*46+
* *
* F7 5.0
* *

AL-5 X*****F?** ******* ** *
* STORE IN nUP *
* COUNTER	 *
* *
* *

G2	 6.
S.

YES .* ▪ 	 OUP	 *
6, COUNTER =	 .. *

.**.	 •*

* ND

EXIT :
****C4 *X********

* RETURN FROM •
* INTERRUPT	 *X..

NR
****4 **********

* LOAD ACC WITH *
*/7000,

OD

PLOTTER *
..X*NOT

RODE
Y ERROR*

.

..X* NOT
•
**************•**

•***
* *
* E4 *
* *

*****F4**** ******
*SPST3
*PAUSE FOR POST *
* - OP ERROR *
****** ****** **a**

••
*
* H4 6...
* * .
6•

FST
*****H4**********
* ZERO FIRST	 *
* DIGIT INDIC *
4	 *

I• NVVIIVALIUBR :
•

*• DECREMENT HEX •
• DIGIT IN WORD •
■ COUNTER WY 1 •

•

X
C5•***.

.6	 6.
.* COUNTER 4. NO
•.	 .•

*.	 .6
4. • 4,	 X

YES
6020*
• CS*
• *

X
***** Ds ***** *****

■
• RESET COUNTER *
• TO 4 BY	 *
6. INCREMENTING •
•

•
*DECREMENT WORD *
* COUNT BY 1	 *

F5 • ••.
.8	

•. • COUNTER 6. NO
5.	 .LE. 0	 .6....4.	 •6

6 .	 •*6. .•	 %
* YES

*028■
• Al*

6

* COUNTER BY I •
i nTATMIT t38":

W• $ T ,,INP f84:

*5*8
* *
* A3 *
* *
*6**

	

C-5	 %
*****A3**********
* SHIFT LEFT 4 *

..X*BITS G STORE IN*
* OUP COUNTER *
*** ***** *mt.***

*****ss* ******* **
GET	 02745

*GET NEXT DIGIT •
******* **********

*****C3 **********
* *
* 'OR, DUP	 *
* COUNTER INTO *

ACC

..X

*

* F2 ** *
*4**

*6*6
* *
* El *...
* * .

C	 X
*****ES* ***** ****
*GET 	 02745** *
*GET NEXT DIGIT *
* *

*****FS ******* *6*
* *
* SHIFT LEFT 4 *
BITS C STORE IN
* DUE COUNTER *

*****GA**********
GET	 02745

*	 *
*GET NEXT DIGIT *

*

•

J1	 *.
.6	 6.

NO .6 COUNTER 6.
.*.	 .LE. 0	 .6

.	 .
6.	 .6

X	 *. .*
+A.**	 * YES

* J l *077*	 .X 	
* * XI *.X.*****	

•****
ALPHA X

*****K!**********

* F R O OUPLICATE *
* COUNTFR	 *

•
•

* *
* A7 *
* *

***•

* J2 6...
* .
****	 X

AC .*.

	

J2	 6.
*.

. •	 IS	 6• YES
DTGTT C	 .5....

.5
.*

X
• NO	 ****

* *
* Fl *
* *

*****K2**********
*GET	 02745•

*GET NEXT DIGIT *

*

* AI *
* *

J5 • 5.
.6

NO .*	 FIRST
*.

*S.
• DIGIT INDIC • .6

6.	 ON	 .6
6.	 .•

• * YES

***S.
026
* Gl•
* *

Flowchart FI040. System Library, PLOT1

• Flowcharts 306.27

8Z '90£

LT,Old `Ireami tualsAs TtOL4 Izetromoil

1:14115 1VNb3INI

* WObiNbOl3b *
• *******1:4***

JJ â

*• 01XbOA 4083 *
* 11910 ibu1S3* *
**********130****

X

N4UM	 ** NI 134 3bOIS *
* 2 33V 0141 *
* 4118	 131HS *
**********10*****

X

jjv	 5

.0432 143 NI SAG*
* WUbl 0804 130 *

•
Mis##### 8

131HS
*	 *

JO* 13 *
V20

****** ***********
4./139 01 V31V 011*
* NI 01 031N10/1 *
* ION UbUM 3AON 5
**********Ib*****

********** *******
*	 1	 *
* ASV389 Oil 30*
*SUUUV ININ3b3141.
	 *1V *****

X 4nuol

6Z • 90£ slretionnota •

DISIG `Areacin tualsAS 'ZVOL3 lautpmou

*

▪ EV *
* *
* * *

***** ********* ***
* *
• bolvinwaapv oi*
.400S 3003 83Vdd.
***** *****EN *****

**** ********* ****

* NOISN3183 01 *
* SSAVUOV 80113S.
******►***zr *****

•
*

*la *	 S*8 *
000	

**	 **
*• 50111 **

a' 91 0318130 •*
ON .*	 3A5H	 8.

*
*	 EH

•*•	 ASb04

***** ***►******
•
a OUZO VIA *
* basn 01 1011130*
►►**►****43*►**

X

:* ********** *****

* 1o0d83INI	 *
alovt4

:*********1****

01020
•• 15 00020 wubJ *
* 11015 1801121 *
* st3sn 13S	 .
**********13***►*

0E010

*
X • . Id

*	 *

SJA *
S .• •*

*•	 •.0
*
	

505 38**
808113	 •*

* 1/J89 0/1 JAYS91.0	 *.
* •
'4	 83

*
**** ****** 1J***** i

2tix 13x 3t01s3ai * 01020 01A *X
ZNSIO 01 14013b
*********E3#***

ON
00120
	 09000

*	 *

X . ► 43 4
.6E0*

*****************	 :********.*******

	

*
* 3301 1133053*	

*

31511111	
•

* 	 	 .	 * tINVUMSe3nn •	
* 3001 NO113NflA

	

-
	 *

	

OIX	
* 0315100dd 3AVS*

* *

	

**********EU****► 	 **********I0*****

*
	********* ***** ***	 *************

* 08120 15	 *	
•	 *

* flax} SS 33005 *	
*	 SS37100*	 *	 •	 *

	

.	 •

	

01101	 001zu53553.*
* 0380 0/I 3A5S ■ 	 * IN3ann5 0108 * *10 Ed% 140 3805*
► * ****	 * lax 3301038 •	 *

	********** 43*****	 *	 *	 ***** *****E3*****	 **********I3**•**
X	 * 11 *	 x	 UWIZU	 X

*	 *

•
***********►*****

▪ 090I0	 •	 01070

: NtAliVIAH *	
*

3695
	 NO111S0d*

* WVV 09313	 *
•	 •	 IV S33,300 *

* 1110138 SASS *
•

►►*****8***** 	 **********te*****	 **•*►*** *eu*****

ON *
*.

. SS3W30b8.
NI	 •*

S34 •* NOI1Vddd0 *.
**

XS
I0 *.

*	 lb
AS404

	 x

***** ***** *******
* d101_801183 *	 •44••44* •******

* * 3A11Vd3d0150. •	 *	 *	 t	 *
* N01150330	 *	 *	 01 0314.00	 8	 *AdIN3 IdO3U31NI*	 * AdiN3 1011111 *
*...	 31,1111N1	 *	 * 	 *	 ► 	 5	 *	 *
.8 ******** 4.****	 ► 	 EiSdS*	 ********t 25a***	 *********IV****

OLOZG	 X	 06110	 01020	 000/1)

0

X
.*.

•	 •
	 2* A5	 *.

.* LAST	 5.* REMOVE DarvF	 *
*rnnE AND SECTOR**	 NUMBER

*CONSTRUCT READ
.	 CHECK [DLL

*
* NO .* SECTOR TO *..

...*.	 READ/WRITE	 *
*. .•*44** •	 • * * **** *.*010*

.	 RI*
****** ******** *** 	 ** *	 *

. 84 •
..*

-.YES* •	 •

•

07710
*****R1 ****** *4**

*INCREMENT SIOCT.
*COUNTER B y ONE *

: ST;

*****52**********
•

21m IN *
*
*CONSTRUCT
*WITH RESET

***** B3**********
X

*****B4**** ******
*	 *

SENSE.	 SOLACE SEEK IOCC*
IOCC*	 *IN CURRENT IOCC*

*****85 **********

:REAMIUMNgilDs:
•

*
	

*
*	 *	

*
* *	

*
Mk.** ** ** .*
**•*
010

cl	 ..Y
*	 •
*v.,

07235
*****cf*****4**** *****tx*

suaTaArt

NEXT *
*****C1 ******
*

****	 *****c.**•*******
*	 *01070

%
*****c5 ******* ***

(129A4*	 •. SET	 XR1	 WITH	
*•	 ORIGINAL	 I/O	 .

4	 NREA AnnaEss	 A
*	 DEFECTIVE	 *
*	 CYLINDER	 *
*	 ADDRESS	 *

* INTERMEDIATE	 *	 *	 *	 *	 FETCH WORD	 *
* SCTR Anna TO	 *	 •	 * COUNT OF 371	 *.	 EXTENSION	 s	 * INITIATE SEEK *

***************** ******* ****** •	 .
*****************	 :**** ******* ****:	

:

*I.**
030
* 01 *.x

X 	

X
*	 *
5***

*****ni*********•
•

*SAVE WD rAINNT, *
*SCTR AnoR FRFR 	 *

n7	 *.
*

NO .*	 MDR 6	 *.

00340	 X*****D3**********	 *****04***** *****	 *****D5 * ********•
* SENSE DNA AND *	 * PLACE IOCC TO *	 *SET WORD COUNT *

1/0	 A.Fh	 *
.*.	 OTR THAN	 .*

..BAD ADDS .*
* SAVE AT SODSw •	 *READ 1	 WORD IN *	 INTO I/O AREA *

* CURRENT IOCC	 *	 •
***************** *.	 .**.	 ,* ***•*******•**.**	 ******* ********: 	 :*** ********** **:

YES

*****E1********** ***** F/.......*** *****E4** *******	 *****E5 **********	 INITIALIZE	 •
INTERMEDIATE	 *

*	 WOCNT,	 SCTR	 *
*	 INCREMENT	 *
*	 DESIRE	 .
*	 CYLINDER 	 .

.. WRITE *.	 *D2070	 029A4*	 * SET /OCC FOR	 *
.*HAS SELECT ..	 YES	 * 	 	 --*	 *	 REQUESTED	 *S.	 OR ROWER	 .5....	 * INITIATE READ *	 *REAO/WRITE	 INTO**AnOR WITH THESE*

*	 VALUES	 *
ADDRESS BY ONE . A. UNSAFE	 .	 *	 OF SECTOR	 *	 . CURRENT IOCC	 *

S.	 *	 ADDRESS	 ,*r.**•••••.•********* ***************** X	 ******* ****** ****

DAD

* NO
.	 *031*
.	 * 01**	 F1	 ..x MAIN .	 • *

*	
*

** * * 1000
07,40

*****F1*********. F, •	 •
F3	 S.	 *****F4**********	 *****F5********•.

*FrTCH AND SAVE *
* DR CODE F ROM	 **	 I/0 A X ES	 *

*	 *-
..	 LOOPED	 A. NO

Ir.	 1 TIMES	„
***,	 .*

..
DISKID	 *.
	 *ESTE DECODE *

.	 *. NO	 * FETCH SECTOR	 *	 *R
	 OR

*	 NO.	 IN SECTO
TO

R •S.	
.*	

READY		 *	 ADDRESS AND	 *	 *ADDRESS IN I/O •..	 *PLACE	 IN	 5C yLIN.	 *	 AREAS.
	 ..*	 *	 *	 ****************. X	 ***.** ***********

* YES	 • YE.S	 $****
011

x	 CONSTRUCT	 * C4*
'ND MO OF	 . *
IOCCS	 .

•••	 SEEK*****.1********** *****G1**********	 G4	 ..	 ERROR	 *****G5** ***** • * *
*	 *	 .*IS THIS*.	 *00070	 029A4**usE	 nRIVE CODE 4.

*	 TO CO4PUTF
*	 ADDRESSES OE:

* FETCH DESIRED H	 .*	 THE	 F. NO	 * 	 	 *
:FETCH AREA CDOE:	 * CYLINDER ADM/	 It	 4.	 REQUESTER	 .*....	 •	 INITIATE	 ** FROM I/O AREA A	 S.	 Anna	 .*	 *REQUESTED READ,*

*	 *	 S.	 .•	 *WRITE FUNCTION *** ********** ***** 	 X

* YES	 **R**
*0pq.

.	 . G2*

.	 * *

X

•****H/********** 00400*****H7** ******* 5	 *****H3 ***** *4***	 H4	 5.	 *****H5* *********
*	 SACRA •	 CONSTRUCT	 *	 •	 SUBTRACT	 .*INTER— *.	 **	 POSITIVE	 .	 *	 CURRENT ARM	 *A	 .*	 MEDIATE	 *. YES	 *SET READ/CHECK *• *DIRECTION SEEK * 	 *	 POSITION,

	 **	 IOCC	 5	 *	 tCyLIN*	 *
—X*. WORD COUNT	 .5....	 .	 IOCC	 INTO

.EXHAUSTED.	 .	 * CURRENT IOCC	 **.	********* ********* ********	 ********* ******** *„	 .*	 X	 ***** ** ***** *****
* NO	 *****

03/
* 02*
* *	 X
*	 mt.*

*****J1*****•**** *****J7***
.•,

*******	 J3	 *.
•01/*•	 AI*
* •

•	 INI T IALIZE	 *
*coLLOWING LOP •

*CONSTRUCT READ
fOcC WITH SCTR

c.

SEEK	 *.
*.	 NECESSARY	 .. 	

Nn *	 DECREMENT	 *
INTERMEDIATE RD• FOR 1 p ASSES	 • *	 NUMBER	 •

•
,	 ,

,	 .
*	 CNT By	120	 •

********.******** ******* ******* *** ***** ************

.****K1********•* ***** A2**********

4. YES

•****R4**********x

. FETCH SECTOR

. ADDRESS FROM	 * *roNVERT A WRITE*
lord	 IF WRITE *

*	 Fil&SH WWI K	 :
*	 DIRECTION AND •

*
*	 INCREMENT	 *
*	 INTERMEDIATE	 •*	 I/O DuErER	 * *	 REQUESTED *	 NO. OF *SCTR SODA 1Y	 I •

***************** * ***** *********** *	 CYLINDERS	 .
*********** ***** .

*
**** ****** **Am..*

. .
; 7(* * * *

.	 *
'R.**

*	 *
* 14 •

* * A5 *
*	 .

**** ..**

Flowchart 21043. System Library, DISKZ

co 306.30

;
Al	 *.

.* WAS *.
YES .* REIOESTED *.

	

...*. FUNCTION	 ..

	

S.	 11E40	 •*

	

.	 .
* NO

x
*****B1**********

	

ronrn	 02954
* *
* INITIATE REM', *
* CHECK	 *
* *	 *****

	

*****♦***********	 *031*
* C4*
* *

x

	x 	 D7220	 ;

	

*****ci**********	 ***** c**********

	

.	 .	 *
	RESTORE 2 SAVED	 * FETCH 5000 TO *

* BUFFER WORDS *	 * ACCUMULATOR *
* *	 *
* *	 *****	 *

	

*****************	 *n11*	 *011*	 ******* ***** *****
* 02*	 * n3*
4 *	 * *
*	 *

07210	 ;	 07215	 X	 X
01	 *.	 *****D2**********	 *****n3**********	 *****D4**********

	

..	 *.	 *	 *	 *	 •	 *SPRET	 *

	

..	 INTMO	 *. TES	 * CLEAR BUSY	 .	 * FETCH 5002 TO *	 * 	 *

	

. Wolin CNT	 . 	 x*INDICATOR SOPS y*	 * ACCUMULATOR *	 *	 BRANCH TO	 *

	

..FxHAUSTEn..	 *	 *	 *	 *	 * PREOPERATIVE *

	

•	 .	 *	 *	 *	 *	 * ERROR TRAP	 *
*****************	 *****************	 *****************

* NO •
;	 ;

*****	 *****
029	 *010*
* Al*	 * 01*

	

*****F1 ****** ****	 *****F7**********	 * *	 * *
* *	 *	 *	 *	 *
* POINT **1 170 *	 *DECREMENT IOC. *

	

*WOROS AHEAD TO *	 * COUNTER SIOCT *
* NEW lin AREA *	 *	 BY /	 *
* *	 *	 *

	.************	 ********** ****** *

;

049
* 04*

	

*****F1**********	 * .
* *	 *
* SAVE FIRST 2*
* WORDS OF THIS ..
* AREA	 .* *

.****01**********

	

SET	 *
* INTERMEDIATF *
wDRO FOUNT ScyR
*0000 INTO THIS

*

	AREA	 *
********* *****

Flowchart F1044. System Library, DISKZ

• Flowcharts 306. 31

APPENDIX A. EXAMPLES OF FORTRAN OBJECT CODING

This appendix shows, by example, the Assembler 	 by the FORTRAN Compiler. A typical cross-section
Language equivalent for the object coding generated 	 of FORTRAN statements is shown.

Source Coding	 Object Coding
Object Coding
With Trace*

Arithmetic Statements - real, integer, and mixed modes

I=J
	

LD	 L	 J

STO	 L	 I	 LIBF	 SIAR

DC

A =B
	

LIBF	 FLD

DC

LIBF	 FSTO	 LIEF	 SFAR

DC	 A

A=I
	

LD	 L	 I

LIBF	 FLOAT

LIBF	 FSTO	 LIBF	 SFAR

DC	 A

I=A
	

LIBF	 FLD

DC	 A

LIBF	 IFIX

STO	 L	 I	 LIBF	 SIAR

DC

I=K-M
	

LD	 L	 K

S	 L M

STO	 L	 I	 LIBF	 SIAR

DC

A=I-B
	

LD	 L	 I

LIBF	 FLOAT

LIBF	 FSUB

DC

LIBF	 FSTO
	 LIBF	 SFAR

DC	 A

* The period in this column indicates that the generated coding is the same as in the Object Coding column. Trace refers to Arithmetic
or Transfer Trace, whichever is applicable.

Appendix A. Examples of FORTRAN Object Coding 307

Object Coding
Source Coding	 Object Coding

	
With Trace

A =B-I

I=J*K

A -43* C

A =B*I

LD	 L	 I

LIEF	 FLOAT

LIEF	 FSBR

DC

LIBF	 FS TO

DC	 A

LD	 L	 I

LIBF	 FLOAT

LIBF	 FADD

DC

LIBF	 FS'TO

DC	 GT1

LD	 L	 J

LIBF	 FLOAT

LIBF	 FS BR

DC	 GT1

LIBF	 FS TO

DC	 A

LD	 L	 J

M	 L K

SLT	 16

STO	 L	 I

LIBF	 FLD

DC

LIBF	 FMPY

DC

LIBF	 FS'TO

DC	 A

LD	 L	 I

LIBF	 FLOAT

LIBF	 FMPY

DC

LIBF	 FSTO

DC	 A

A =B+I -J

Or

(A =I+13-f)

LIBF	 SFAR

LIEF	 SFAR

LIBF	 SIAR

DC

LIBF	 SFAR

LIBF	 SFAR

308

Object Coding
Source Coding	 Object Coding	 With Trace

I=J / K	 LD	 L	 J

SRT	 16

D	 L K

STO	 L	 I	 LIBF	 SIAR

DC

A=B / C

I=J / (K+M)

1=A / J

I=J**K

LIBF	 FLD

DC

LIBF	 FDIV

DC

LIBF	 FSTO	 LIBF	 SFAR

DC	 A

LD	 L	 K

A	 L M

STO	 3 +126

LD	 L	 J

SRT	 16

D	 3 +126

STO	 L	 I	 LIBF	 SIAR

DC

LD	 L	 J

LIEF	 FLOAT

LIBF	 FDVR

DC	 A

LIEF	 IFIX

STO	 L	 I	 LIBF	 SIAR

DC

LD	 L	 J

LIEF	 FIXI

DC

STO	 L	 I	 LIEF	 SIAR

DC

Appendix A. Examples of FORTRAN Object Coding 309

Object Coding
Source Coding	 Object Coding	 With Trace

A =B**I

A =B**C

A=i**B

A=B**(I+J)

A=B**(C+D)

LIBF	 FLD

DC

LIBF	 FAX"

DC

LIBF	 FSTC)

DC	 A

LIBF	 FLD

DC

CALL	 FAXB

DC

LIBF	 FSTO

DC	 A

LD	 L

LIBF	 FLOAT

CALL	 FAXB

DC

LIBF	 FSTC,

DC	 A

LD	 L	 I

A	 L	 J

STO	 L	 GT1

LIBF	 FLD

DC

LIBF	 TAXI

DC	 GT1

LIBF	 FSTO

DC	 A

LIBF	 FLD

DC	 C

LIBF	 FADD

DC

LIBF	 FSTO

DC	 GT1

LIBF	 FLD

DC

LIBF	 SFAR

LIBF	 SFAR

LIBF	 SFAR

LIBF	 SFAR

310

Object Coding
Source Coding	 Object Coding	 With Trace

A =B+C -(2**D*E -F)/G

CALL	 FAXB

DC	 GT1

LIBF	 FSTO

DC	 A

LIBF	 FLD

DC

LIBF	 FADD

DC

LIBF	 FSTO

DC	 GT1

LD	 L	 ADR1

LIBF	 FLOAT

CALL	 FAXB

DC

LIBF	 FMPY

DC

LIBF	 FSUB

DC

LIBF	 FDIV

DC

LIBF	 FSBR

DC	 GT1

LIBF	 FSTO

DC	 A

LIEF	 SFAR

LIBF	 SFAR

ADR1	 DC	 2

Arithmetic Statements - Subscripted Expressions

A(I)=B(I,J)+C(I,j) LIBF	 SUBSC

DC	 SGT1

DC	 value D4 for array A

DC

DC	 value D 1 for array A (see Note 1)

LIBF	 SUBSC

DC	 SGT2

DC	 value D4 for arrays B and C

DC

Appendix A. Examples of FORTRAN Object Coding 311

Object Coding
With TraceSource Codin.g.	Object Coding

DC	 value D , for arrays B and C

DC

DC	 value D 1 for arrays B and C (see Note 1)

LIBF	 FLDX

DC

LIBF	 FADDX

DC

LDX	 II	 SGT1

LIBF	 FSTOX	 LIBF	 SFARX

DC	 A

J, K)
	

LIBF	 SUBSC

DC	 SGT1

DC	 value D I for array L

DC

DC	 value D 3 for array L

DC

DC	 value D 	 array L

DC

DC	 value D for array L (see Note 1)

LD	 Li	 L

STO	 L	 M	 LIBF	 SIAR

DC	 M

M(I)=M(I+1) +M(J) LIBF	 SUBSC

DC	 SGT1

DC	 value D I for array M

DC

DC	 value D for array M (see Note 1)

LIBF	 SUBSC

DC	 SGT2

DC	 value D for array M

DC

DC	 valise D 1 for array M (see Note I)

LIBF	 SUBSC

DC	 SGT3

DC	 value D 1 for array M

DC

DC	 value D 1 for array M (see Note 1)

312

Object Coding
With TraceSource Coding	 Object Coding

LDX	 Il	 SGT2

LD	 Ll M

LDX	 I1	 SGT3

A	 L1 M

LDX	 Ii	 SGT1

STO	 Ll	 M	 LIBF	 SIARX

DC

A =JOE(B+C , D)+E LIBF	 FLD

DC

LIBF	 FADD

DC

LIEF	 FSTO

DC	 GT1

CALL	 JOE

DC	 GT1

DC

LIBF	 FLOAT

LIBF	 FADD

DC

LIEF	 FSTO

DC	 A

M(1)=M(2)+M(3)

M(1)=N(1)+M(1)

Statement Function Statements

LDX	 Ll	 value D
4
 for literal subscript 2

LD	 Ll M

LDX	 Ll	 value D
4
 for literal subscript 3

A	 Ll M

LDX	 Ll	 value D
4
 for literal subscript 1

STO	 Ll M	 LIBF	 SIARX

DC	 M

LDX	 Li	 value D
4
 for literal subscript 1

LD	 Li N

A	 Li M

STO	 Ll M	 LIBF	 SIARX

DC

LIBF	 SFAR

Appendix A. Examples of FORTRAN Object Coding 313

Object Coding
Source Coding	 Object Coding	 With Trace

A(B, .5)+E	 CALL

DC

DC	 ADR I.

LIBF	 FADE)

DC

LIBF	 FS TO

DC	 A

ADR1	 DC	 .5

LIBF	 SFAR

Call Statements

CALL XY CALL	 XY

CALL YZ (A(2), A(I), B, C*D) LIBF	 SUBSC

DC	 SGT1

DC	 value D
4
 for array A

DC

DC	 value D for array A (see Note 1)
1

LIBF	 FED

DC

LIBF	 FMPY

DC	 D

LIBF	 FSTO

DC	 C;T1

LDX	 Ll	 value D4 for literal subscript 2

MDX	 Ll A

NOP

STX	 Ll	 ADR:.

LDX	 I1	 SGT1

MDX	 Ll A

NOP

STX	 Ll ADR2

CALL	 YZ

ADR1	 DC	 0

ADR2	 DC	 0

DC

DC	 GT1

314

Object Coding
Source Coding	 Object Coding	 With Trace

CALL YZ (A(I), B, C*D) LIBF	 SUBSC

DC	 SGT1

DC	 value D
4
 for array A

DC

DC	 value D
I
 for array A (see Note 1)

LIBF	 FLD

DC

LIBF	 FMPY

DC

LIBF	 FSTO

DC	 GT1

LDX	 I1	 SGTI

MDX	 LI A

NOP

STX	 Ll ADR1

CALL	 YZ

ADR1	 DC	 0

DC

DC	 GT1

DO and CONTINUE Statements

DO 10 I=J,K

10 CONTINUE

LD	 L	 J

STO	 L	 I

ADR1	 (next sequential instruction)

MDX	 L	 I, 1

MDX	 *

LD	 L	 I

S	 L	 K

BSC	 L	 ADR1 , +

DO 10 I=J,K,M
	

LD	 L	 J

STO	 L	 I

ADRI
	

(next sequential instruction)

10 CONTINUE

Appendix A. Examples of FORTRAN Object Coding 315

Object Coding
Source Coding	 Object Coding.	 With Trace

LD	 L	 I

A	 L M

STO	 L	 I

SL

BSC	 L	 ADR1,+

GO TO Statement

GO TO 111
	

BSC	 L	 ADR1

ADR1	 (coding generated from statement 111)

Computed GO TO Statement

GO TO (111,112,113),I LDX	 Il	 I

LOC 1	 BSC	 Il	 LOCI +1

DC	 ADR1

DC	 ADR2

DC	 ADR3

LIBF	 SGOTO

ADR1	 (coding generated from statement 111)

ADR2	 (coding generated from statement 112)

ADR3	 (coding generated from statement 113)

IF Statements

IF (I) 111,112,113 LD	 L	 I

BSC	 L	 ADR1

BSC	 L	 ADR2,+-

BSC	 L	 ADR3, -Z

ADR1	 (coding generated from statement 111)

ADR2	 (coding generated from. statement 112)

ADR3	 (coding generated from statement 113)

LIBF	 SIIF

BSC L	 ADR1, +Z

BSC L	 ADR2, +-

BSC L	 ADR3, -Z

316

Object Coding

With Trace

IF (A) 111,100,113	 LIBF	 FLD

100 CONTINUE	 DC	 A

LD	 3 +126

BSC	 L	 ADR1,+Z

BSC	 L	 ADR2, -Z

LIBF	 SFIF

ADR1	 (coding generated from statement 111)

ADR2	 (coding generated from statement 113)

IF (A+I) 100,111,100	 LD	 L	 I

100 CONTINUE	 LIBF	 FLOAT

LIBF	 FADD

DC	 A

LD	 3 +126	 LIBF	 SFIF

BSC	 L	 ADR1,+-

ADR1	 (coding generated from statement 111)

IF (I) 111,111,112 LD	 L	 I

BSC	 L	 ADR1,+

BSC	 L	 ADR2, -Z

LIBF	 SIIF

BSC	 L ADR1,+

BSC L	 ADR2, -Z

ADR1	 (coding generated from statement 111)

ADR2	 (coding generated from statement 112)

PAUSE Statement

PAUSE 11
	

LIBF	 PAUSE

DC	 ADR1

ADR1	 DC	 /11

STOP Statement

STOP 21
	

LIBF	 STOP

DC	 ADR1

ADR1	 DC	 /21

Source Coding	 Object Coding

Appendix A. Examples of FORTRAN Object Coding 317

Source Coding	 Object Coding

RETURN Statements

for (REAL) FUNCTION subprogram	 LIBF	 FLD

where the subprogram name is COMP 	 DC	 COMP

BSC	 I	 address of subprogram linkword in transfer vector

for (INTEGER) FUNCTION subprogram 	 LD	 L	 ICOMP

where the subprogram name is ICOMP 	 BSC	 I	 address of subprogram linkword in transfer vector

for SUBROUTINE subprogram	 BSC	 I	 address of subprogram linkword in transfer vector

END Statement

The END statement produces no object coding.

I/O Initialization Calls

The following coding for the initialization of the FORTRAN I/O subroutines at execution time is generated and inserted into the program
by the compiler.

LIBF	 UFIO ,(see Note 2)

DC	 /000X

LIEF	 SDFIC (see Note 3)

DC	 /000X

LIBF	 MO (see Note 4)

DC	 /00YX

DC	 /0016

LIBF	 TYPEZ or LIBF WRTYZ (see Note 5)

DC	 0

LIBF	 CARDZ (see Note 6)

DC	 0

LIEF	 PRNTZ

DC	 0

LIBF	 PAPTZ

DC	 0

LIBF	 PRNZ

DC	 0

LIBF	 TYPEZ (see Note 5)

DC	 0

LIEF	 WCHRI

DC	 0

LIBF	 READ Z

DC	 0

LIEF	 PNCHZ (see Note 6)

DC	 0

LIBF	 F1,13 (or ELD)

LIBF	 FSTO (or ESTO)

318

Source Coding	 Object Coding

Non-Disk I/O Statements

READ (N, 101)A,I

READ (N, 101)(X(I), 1=1,5)

LIBF	 SRED

DC

DC	 101

LIBF	 SIOF

DC	 A

LIBF	 SIOI

DC

LIBF	 SCOMP

LIBF	 SRED

DC

DC	 101

LIBF	 SIOAF

DC	 X

DC	 number of elements in array X

LIEF	 SCOMP

LIBF	 SRED

DC

DC	 101

LD	 L	 ADR1

STO	 L	 I

ADR3	 LIBF	 SUBSC

DC	 SGT1

DC	 value D
4
 for array X

DC

DC	 value D
1
 for array X (see Note 1)

LIBF	 SIOFX

DC	 X

MDX	 L	 1,1

LD	 L	 I

S	 L	 ADR2

BSC	 L	 ADR3,+

LIBF	 SCOMP

ADR1	 DC	 1

ADR2	 DC	 5

READ (N, 101) X

where X is dimensioned

Appendix A. Examples of FORTRAN Object Coding 319

Source Coding	 Object Coding

WRITE (N,101)A,I LIBF	 SWRT

DC

DC	 101

LIBF	 SIOF

DC	 A

LIEF	 SIOI

DC

LIBF	 SCOMF'

Unformatted I/O Statements

READ (N) A ,	 LIBF	 URED

DC

LIBF	 UIOF

DC	 A

LIBF	 URN

DC

LIBF	 UCOMI'

READ (N)
	

LIBF	 URED

DC

LIBF	 UCOMI'

WRITE (N) A , I
	

LIBF	 UWRT

DC

LIEF	 UIOF

DC	 A

LIBF	 UK)I

DC

LIBF	 UCOMF'

Disk I/O Statements

READ (I'K) A, I LIBF	 SDRED

DC

DC

LIBF	 SDF'

DC	 A

LIBF	 SDI

DC

LIBF	 SDCOM

320

Source Coding	 Object Coding

WRITE (2'IBASE+IDISP (K)) A ,B,X	 LIBF	 SUBSC

where A, B, and X are dimensioned 	 DC	 SGT1

DC	 value D4 for array IDISP

DC

DC	 value D 1 for array IDISP (see Note 1)

LD	 L	 IBA SE

A	 LI	 IDISP

STO	 GT1

LIBF	 SDWRT

DC	 TWO

DC	 GT1

LIBF	 SDAF

DC	 A

DC	 number of elements in array A

LIBF	 SDAF

DC

DC	 number of elements in array B

LIBF	 SDAF

DC	 X

DC	 number of elements in array X

LIBF	 SDCOM
FIND (J, K)	 LIBF	 SDFND

DC

DC

Manipulative I/O Statements

BACKSPACE I	 LIBF	 BCKSP

DC

REWIND 10	 LIBF	 REWND

DC	 ADR1

ADR1	 DC	 10

END FILE 10	 LIBF	 EOF

DC	 ADR1

ADR1	 DC	 10

Appendix A. Examples of FORTRAN Object Coding 321

NOTES:
1. Tagged to indicate the end of the subscript argument list.

2. The LIBF UFIO and its parameter are inserted only if unformatted I/0 statements are encountered in the program. X is the integer size
and precision indicator.
3. The LIBF SDFIO and its parameter are inserted only if the Disk indicator (bit 8) in the IOCS word is on. X is the integer size and
precision indicator.
4. The LIBF SFIO, its parameters, and the LIBF table are inserted only if indicators other than the Disk indicator in the IOCS word are on.
Y is the trace device indicator. X is the integer size and precision indicator. The DC /0016 provides the number of words from the
LIBF SFIO to the first word following the LIBF table, inclusive.

A LIBF to a FORTRAN I/O device subroutine is present in the LIBF table for each device indicated by a bit in the IOCS word. If a device
is not ind:icated by a bit in the IOCS word, the LIBF is replaced by a DC 0.
S. If "KEYBOARD" is specified, the LIBF TYPEZ is inserted; if "TYPEWRITER" is specified, the LIBF WRTYZ is inserted.
6. If "CARD" is specified, the LIBF PNCHZ is not inserted; if "1442 PUNCH" is specified, the LIBF CARDZ is not inserted.

322

APPENDIX B. LISTINGS

This appendix contains 1) assembly listings of the
Resident Monitor, including DISKZ, and the Cold
Start Program, 2) listings describing the contents of
DCOM and the Resident Image, 3) the equivalences
used throughout the monitor system programs, and
4) a cross-reference listing of all the symbols used
in the above items.

The contents of this appendix are not to be
construed as an external specification, i. e. , the
locations in these listings may be changed. $PRET,
$OREQ, $EXIT, $LINK, and $DUMP are the only
guaranteed locations.

Note that in the listings the character is
printed as ', and the character is printed as =.

ADDR REL OBJECT ST.NO. LABEL OPCD FT OPERANDS 10/SEQNO

0001 * RLTV ADDR* SYMBOL* DESCRIPTION PMN00010
0002 * *	 * PMN00020
0003 * 0-3 *	 * RESERVED FOR EVEN BOUNDARIES PMN00030
0004 * 4-5 *)NAME * NAME OF PROGRAM/CORE LOAD PMN00040
0005 * 6 * NDBCT * BLOCK COUNT OF PROG/CORE LOAD PMN00050
00 06 * 7 * NECNT * *FILES SWITCH--ZERO MEANS NO PMN00060
0007 * * FILES HAVE BEEN EQUATED PMN00070
0008 * 8 * NSYSC * SYS/NON-SYS CARTRIDGE INDR PMN00080
0009 * 9 * AJBSW * JOBT SWITCH-- NON-ZERO MEANS PMN00090
0010 * * TEMPORARY MODE PMN00100
0011 *	 10 * NCBSW * CLB-RETURN-TO-DUP SWITCH-- PMN00110
0012 * *	 * ZERO=CLB RETURN TO SUPV PMN00120
0013 *	 11 * NLCNT * NO. OF LOCALS PMN00130
0014 * 1? * NMPSW * CORE MAP SWITCH--ZERO MEANS PMN00140
0015 * * DO NOT PRINT A CORE MAP PMN00150
0016 * 13 * 1MDF1 * NO. OUP CTRL RECDS IMODIF) PMN00160
0017 *	 14 * #MDF? * AMR OF MODIF BUFFER PMN00170
0018 *	 IS * *NCNT * NO. OF NOCALS PMN00180
0019 *	 16 * NENTY * RLTV ENTRY ADDS Of PROGRAM PMN00190
0070 *	 17 * ORP67 * 1442-5 SW 1011442-5 ON SYSTEM PMN00200
0021 *	 18 * NTODR * 'TO'	 WORKING STG DRIVE CODE PMN00210
0022 * 19 * NFRDR * 'FROM' WORKING STG DRIVE CODE PMN00220
0023 * 20 * NEHOL * ADM OF LARGEST HOLE IN FXA PMN00210
00 24 * 71 * NESZE * BLK CNT Of LARGEST HOLE IN FXA PMN00240
0025 * 77 * OUHOL * ADDR OF LARGEST HOLE IN UA PMN00250
0026 * 21 * OUSZE * BLK CNT OF LARGEST HOLE IN UA PMN00260
0027 * ?4 * 4005W * DUP CALL SW--NON-ZERONDUP CALL PMN00270
00?8 * 75 * *plop * PRINCIPAL	 I/0 DEVICE INDICATOR PMN00280
0029 * 76 * NPPTR * PRINC. PRINT DEVICE INDICATOR PMN00290
0010 * 27 * *CIAO * RLTV ADDR	 IN . STRT OF CIL ADDR PMN00300
0031 * 78 * NACIN * AVAILABLE CARTRIDGE	 INDICAT2-2 PMN00310
003 2 * 79 * OGRPH * 2250 INDICATOR	 2G2 PMN00320
0033 * 10 * OGCNT * NO. G2250 RECORDS	 2G2 PmN00330
0014 * 31 * ILOSW * LOCAL-CANNOT-CALL-LOCAL SW 2-2 PPIN00340
0015 * 3? * 1X1SW * SPECIAL ILS SWITCH	 2-2 PMN00350
0036 * 11 * NECNT * NO. OF *SQUAT RCDS	 2-4 PMN00355
0017 * 33-34 * RESERVED FOR FUTURE USE	 2-2 PMN00360
0038 * 35 * NANDU * 1+BLOCK ADDR OF END OF USER PMN00370
0019 *	 * AREA (ADJUSTED) LOGICAL DR 0 PMN00380
00 40 * 36 *	 * 1+8LOCK ADDR OF ENO Of USER PMN00390
0041 *	 * AREA (ADJUSTED) LOGICAL DR 1 PMN00400
0042 * 37 *	 * 14.BLOCK ADDR OF END OF USER PMN00410
0043 * *	 * AREA (ADJUSTED) LOGICAL OR 2 PMN00420
0044 * 18 *	 * 1+8LOCK ADDR OF END OF USER PMN00430
00 45 *	 * AREA (ADJUSTED) LOGICAL DR 3 PMN00440
0046 * 39 *	 * 1+BLOCK ADDS Of END OF USER PMN00450
0047 * *	 * AREA (ADJUSTED) LOGICAL DR 4 PMN00460
0048 * 40 * UBNDU * 1+BLOCK ADOR OF END OF USER PMN00470
0049 * *	 * AREA (RASE) LOGICAL DRIVE	 0 PMN00480
0050 * 41 *	 * 14-BLOCK ADDR OF END OF USER PMN00490
0051 *	 * AREA (BASE) LOGICAL DRIVE	 I PMN00500
0052 * 42 *	 * 14-BLOCK ADDR OF END OF USER PmN00510

0053 * *	 * AREA (BASE) LOGICAL DRIVE	 2 PMN00520
0054 * 43 *	 * 1*BLOCK ADDS OF END OF USER PMN00530
0055 * *	 * AREA (BASE) LOGICAL DRIVE	 3 PMN00540
0056 * 44 *	 * 1+BLOCK ADDS OF END OF USER PMN00550
0057 *	 * AREA (BASE) LOGICAL DRIVE 	 4 PMN00560
0058 * 45 * NFPAD * FILE PROTECT ADDR, LOGICAL PMN00570
0059 *	 * DRIVE 0 (BASE) PMN00580
0060 * 46 *	 * FILE PROTECT ADDR, LOGICAL PMN00590
0061 * *	 * DRIVE	 1	 (BASE) PMN00600
0067 * 47 *	 * FILE PROTECT ADDR, LOGICAL PMN00610
0063 * *	 * DRIVE	 2	 (BASE) PMN00620
0064 * 48 *	 * FILE PROTECT ADDR, LOGICAL PMN00630

0065 *	 * DRIVE 3	 (BASE) PMN00640
0066 * 49 *	 * FILE PROTECT ADDR,LOGICAL PMN00650
0067 * *	 * DRIVE 4	 (BASE) PMN00660
0068 * 50 * APCID * CARTRIDGE	 ID,	 PHYSICAL DRIVE 0 PMN00670
0069 *	 51 *	 * CARTRIDGE ID,	 PHYSICAL DRIVE 1 PMN00680
0070 * 52 *	 * CARTRIDGE	 ID,	 PHYSICAL DRIVE 2 PMN00690

0071 *	 53 *	 * CARTRIDGE ID,	 PHYSICAL DRIVE 3 PMN00700

0072 * 54 *	 * CARTRIDGE ID,	 PHYSICAL DRIVE 4 PMNOOTIO
0073 * 55 * NCIDN * CARTRIDGE ID, 	 LOGICAL DRIVE 0 PMN00720

0074 * 56 *	 * CARTRIDGE	 ID,	 LOGICAL DRIVE	 1 PMN00730

Appendix B. Listings 323

ADDR REL OBJECT	 ST.NO.	 LABEL OPCD FT OPERANDS
	

10/SEQN0

0075	 * 57	 *	 * CARTRIDGE ID, LOGICAL DRIVE 2 pMN00740
0076	 * 58	 *	 * CARTRIDGE ID, LOGICAL DRIVE 3 PMN00750
0077	 * 59	 *	 * CARTRIDGE ID, LOGICAL DRIVE 4 PMN00760
0078	 * 60	 * OCIBA * SCTR ADOR OF CIB, LOGICAL DR 0 PMN00770
0079	 * 61	 *	 * SCTR ADDR OF C113, LOGICAL DR 1 PMN00780
0080	 * 62	 *	 * SCTR ADDR OF CIB, LOGICAL DR 2 PMN00790
0081	 * 63	 *	 * SCTR ADOR OF CIB, LOGICAL DR 3 PmN00800
0082	 * 64	 *	 * SCTR ADDR OF CIB, LOGICAL DR 4 pMN00810
0083	 * 65	 * #SCRA * SCRA, LOGICAL DRIVE 0 	 PMN00820
0084	 * 66	 *	 * SCRA, LOGICAL DRIVE 1 	 PMN00830
0085	 * 67	 *	 * SCRA, LOGICAL DRIVE 2	 PON00840
0086	 * 68	 *	 * SCRA, LOGICAL DRIVE 3 	 PONC0850
0087	 * 69	 *	 * SCRA, LOGICAL DRIVE 4	 PMN00860
0088	 * 70	 * AFMAT * FORMAT OF PROG IN WS, DRIVE 0 PMN00870
C089	 * 71	 *	 * FORMAT OF PROG IN WS, DRIVE 1 PMN00880
0090	 * 72	 *	 * FORMAT OF pROG IN WS, DRIVE 2 pMN00890
0091	 * 73	 *	 * FORMAT OF PROG IN WS, DRIVE 3 PMN00900
0092	 * 74	 *	 * FORMAT OF PROG IN WS, DRIVE 4 PMN00910
C093	 * 75	 * OFLET * FLET SCTR ADDR, LOGICAL DR 0 	 PMN00920
C094	 * 76	 *	 * FLET SCTR ADDR, LOGICAL OR 1	 PMN00930
0095	 * 77	 *	 * FLET SCTR ADDR, LOGICAL OR 2 	 PMN00940
0096	 * 78	 *	 * FLET SCTR ADDR, LOGICAL DR 3	 PMN00950
0097	 * 79	 *	 * fLET SCTR ADDR. LOGICAL DR 4 	 PMN00960
0098	 * 80	 * OWLET * LET SCTR ADDR, LOGICAL DR 0 	 PmN0097O
0099	 * 81	 *	 * LET SCTR ADDR, LOGICAL DR 1 	 PMN00980
0100	 * 82	 *	 * LET SCTR ADDR, LOGICAL DR 2 	 PMN00990
0101	 * 83	 *	 * LET SCTR ADDS, LOGICAL DR 3 	 PMN01000
0102	 * 84	 *	 * LET SCTR ADDR, LOGICAL DR 4 	 PMN01010
0103	 * 85	 1, IWSCT * BLK CNT OF PROG IN WS, DRIVE 0 PMN01020
0104	 * 86	 *	 * BLK CNT OF PROG IN WS, DRIVE 1 PMN01030
0105	 * 87	 *	 * BLK CNT OF PROG IN WS, DRIVE 2 PMN01040
0106	 * 88	 *	 * BLK CNT OF PROG IN WS, DRIVE 3 PMN01050
0107	 * 89	 *	 * BLK CNT OF PROG IN WS, DRIVE 4 PMN01060
0108	 * 90	 * OCSHN * SCTR CNT CUSHION,LOGICAL DR 0 PMN01070
0109	 * 91	 *	 * SCTR CNT CUSHION,LOGICAL DR 1 PmN01080
0110	 * 92	 *	 * SCTR CNT CUSHION,LOGICAL DR 2 pmN01090
0111	 * 93	 *	 * SUER CNT CUSHION,LOGICAL OR 3 PMN01100
0117	 * 94	 *	 * SCTR CNT CUSHION,LOGICAL OR 4 PMN01110
0113	 * 95-319	 *	 * RESERVED FOR FUTURE USE	 PMN01120

RESIDENT MONITOR

Arm/ REL OBJECT	 ST.NO.	 LABEL OPCD FT OPERANDS 	 Io/SEQNO

0115	 ************ *********** *** ***** *******************: =rim

0116	 *
0117	 *STATUS-VERSION 2, MODIFICATION 4	 * PMN01160
0118	 * PMN01170
0119	 *FUNCTION/OPERATION- 0* PMN0118
0170	 *	 THIS SECTION ALWAYS REMAINS IN CORE. IT 	 * PMN01190
0121	 *	 IS COMPRISED OF THE COMMUNICATIONS 	 * PMN01200
0122	 *	 AREA (COMMA), THE SKELETON SUPERVISOR, AND	 * 14401210
0123	 *	 A DISK 4/0 SUBROUTINE, NOMINALLY DISKZ. (THE * PMN01220
0124	 *	 FIRST TWO OF THESE SECTIONS ARE INTERMIXED.) * PMN01230
0175	 *	 COMMA CONTAINS THE SYSTEM PARAMETERS REQUIR- * PMN01240
0126	 *	 ED TO FETCH A CORE LOAD IN CORE IMAGE FOR-

P0127	 *	 MAT. THE SKELETON SUPERVISOR PROVIDES IN- =1;:gP
0128	 *	 STRUCTIONS FOR INITIATING A CALL EXIT, A	 * PMN01270
0129	 *	 CALL LINK, A DUMP-TO-PRINTER OR A CALL TO THE * PMN01280
0130	 *	 AUXILIARY SUPERVISOR. IN ADDITION, THE SKELE-* PMN01290
0131	 *	 TON SUPERVISOR CONTAINS SEVERAL TRAPS FOR CER-* PMN01300
0132	 *	 TAIN I/O FUNCTIONS/CONDITIONS. THE DISK I/O	 * PMN01310
0133	 *	 SECTION CONSISTS OF A SUBROUTINE FOR READING * 441101120
0134	 *	 FROM OR WRITING ON A DISK CARTRIDGE ON A	 * PMN01330
0135	 *	 GIVEN LOGICAL DISK DRIVE. 	 * FmN01340

*01361	 * PMN013500
0137	 *ENTRY POINTS- 1360* PMN0
0138	 *	 * SPRET-A TRAP FOR PREOPERATIVE 1/0 ERRORS. 	 * PMN01370
0139	 *
0140	 *	

THE CALLING SEQUENCE IS	 * PMN01380
BSI	 L SPRET	 * PMN01390

0141	 *	 * SPSTX-A POSTOPERATIVE ERROR TRAP FOR I/O 	 * PMNO1400
0142	 *	 DEVICES ON LEVEL X (X101,2,3,OR 4). 	 * PMN01410

200143	 *	 THE CALLING SEQUENCE IS 	 * p mN01.4
0144	 *	 BSI L SPSTX	 * PMN01430
0145	 *	 * SSTOP-THE PROGRAM STOP KEY TRAP. 	 * PMN01440
0146	 *	 * SEXIT--THE ENTRY POINT FOR THE EXIT/CALL 	 * PMN01450
0147	 *	 EXIT STATEMENT. THE CALLING SEQUENCE IS* PMN01460
0148	 *	 LDX	 0 SEXIT	 * PMN01470
0149	 *	 * SLINK-THE ENTRY POINT FOR THE LINK/CALL 	 * PMN01480
0150

	

	 LINK STATEMENT. THE CALLING SEQUENCE IS* PMN01490
0151* PMN01500BSI L SLINK
0152	 *	 * SOUMP--THE ENTRY POINT FOR THE DUMP/POMP 	 * PMN01510
0153	 STATEMENT. THE CALLING SEQUENCE IS 	 * P141401520
0154	 *	 BSI L SCIUMP	 * PMN01530

* PMN015400155	 *	 DC
0156	 *	 OC	

FORMAT
	LIMIT1	 * PMN01550

0157	 DC	 LIMIT2	 * PMN01560
0158	 *	 WHERE LIMITI AND LimIT2 ARE THE LIMITS * pmN01570
0159	 *	 BETWEEN WHICH THE DUMP IS TO OCCUR, AND* PMNOI580
0160	 FORMAT IS A CODE INDICATING THE FORMAT * PMN01590
0161	 OF THE DUMP. IF FORMAT IS NEGATIVE, 	 * PMN01600
0162	 *	 THE AUXILIARY SUPERVISOR IS FETCHED	 * = ilng

0163	 *	 AND CONTROL PASSED TO IT.

324

ADOR REL OBJECT	 ST.NO.	 LABEL OPCD FT OPERANDS 	 ID/SEQNO

	

0164	 *	 * 01000-ENTERED WHEN THE CALLER WISHES TO 	 * PMN01630

	

0165	 *	 PERFORM A DISK 1/0 OPERATION. THE 	 * 881101640

	

0166	 *	 CALLING SEQUENCE . VARIES WITH THE	 * PMN01650

	

0167	 VERSION OF THE DISK I/O SUBROUTINE. 	 * PMN01660

	

0168	 *	 * $1200/$1400-ENTERED WHEN THE OPERATION-	 * PMN01670
*01691	 COMPLETE INTERRUPT OCCURS ON	 * PMN016800

* PMN01690

	

0170
	 *	

LEVEL 2/4.
* PMN01700

	

0172	 *INPUT-N/A	 * PMN01710

	

0173	 *	 * PMN01720

	

0174	 *OUTPUT-WORDS 6-4090 SAVED ON THE GIB ON A CALL 	 * PMN01710

	

0175	 *	 DUMP	 * PMN01740

	

0176	 *	 * PMN01750

	

0177	 *EXTERNAL REFERENCES-N/A	 * PMN01760

	

0178	 * PMN01770

	

0179	 *EXITS- 0* PMN0178

	

0180	 *	 * NORMAL	 * PMN01790

	

0181	 *THE EXITS FROM THE SUBROUTINES AT SPREE * PMN01800

	

0182	 *	 SPSTI, $PST2, SP5T3, SPST4, AND SSTOP 	 * PMN01810

	

0183	 *	 ARE BRANCH INSTRUCTIONS FOLLOWING A	 * PMN01820

	

0184	 *	 WAIT INSTRUCTION. SSTOP TURNS OFF IN- 0* PMN0183

	

0185	 *	 TERRUPT LEVEL 5 AFTER THE START KEY IS 	 * PMN01840

	

0186	 *	 DEPRESSED.	 * PMN01850

	

0187	 *	 *THE EXITS FROM SEXIT,SLINK,AND SDUMP ARE * PMN01860

	

C188	 *	 TO THE CORE IMAGE LOADER, PHASE 1,	 * PMN01870
*0189 AFTER THAT PHASE HAS BEEN FETCHED.	 * PMN0188001

	

0190	 *	 *THE EXIT FROM 01000 IS BACK TO THE 	 * PMN01890

	

0191	 CALLER AFTER THE REQUESTED DISK OPERA-	 * :=1,9901g

	

0192	 TION HAS BEEN INITIATED.

	

0193	 *	 *THE EXITS FROM $1200/$1400 ARE BACK TO	 * PAN01920

	

0194	 *	 THE ADDRESSES FROM WHICH THE DISK OP- 	 * PMN01930

	

0195	 *	 ERAT1ON COMPLETE INTERRUPT OCCURED	 * PMN01940

	

0196	 *	 AFTER THE INTERRUPT HAS BEEN SERVICED	 * :=111=

	

0197	 BV THE APPROPRIATE ISS.

	

0198	 *•	 * ERROR-N/A
:=1;78g

	

0199	 *

	

0200	 *TABLES/WORK AREAS- 	 * PMN01990
0201* PMNO2000*	 * SACOE

	

020?	 *	 * SCH12	 * PMNO2010

	

0203	 *	 * SCILA	 * PMNO2020

	

0204	 *	 * SCLSW	 * PMNO2010

	

0205	 *	 * $COMN	 * PMNO2040

	

0206	 *	 * SCORE	 * PMNO2050

	

0207	 *	 * SCTSW	 * PMNO2060

	

0208	 *	 * SCXR1	 * 881102070

	

0209	 *	 * SCYLN	 * PMNO2080

	

0210	 *	 * SDAOR	 * PMNO2100
10

	

0211	 *	 * SDBSY	 * PMNO2.1

	

0212	 *	 * SOCYL	 * 881102120

	

0213	 *	 * $DMPF	 * PMNO2130

	

0214	 * * $DREQ	
:=1:0	0215	 *	 * $FPAO

	

0216	 *	 * SGCOM	 2G2 * PMNO2160

	

0217	 *	 * $GRIN	 2G2 * PMNO2170

	

0218	 *	 * SHASH	 * PMNO2180

	

0210	 *	 * 3IBT2	 * PMNO2190

	

0220	 *	 * 1IBT4	 * PMNO2200
* PMNO2210* * $IBSY0221

	

0222	 *	 * SIOCT	 * PMN07220

	

0223	 *	 * SKCSW	 * PMNO2230

	

0224	 *	 * SLAST	 * 881102240

	

0725	 *	 * $NOUP	 * PMNO2250

	

0226	 *	 * SNXEQ	 * 881102260

	

0227	 *	 * SPBSY	 * PM1102270

	

0228	 *	 * $PGCT	 * PMNO2280

	

0220	*	 * SPHSE	 * PMNO2290

	

0230	 *	 * SRMSW	 * PMNO2300
* * $SCAT

	

0231	 2-4 * 881102305
* PMNO2310

	

0232	 * SSNLT

	

0233	 *	 * SUE10	 * PMNO2320

	

0234	 *	 * SULET	 * PMNO2310

	

0235	 *	 * $WRO1	 * PMNO2340

	

0236	 *	 * SWSOR	 * PMNO2350
02373	 •	 * $XR3X	 2-2 * PMNO236002

*023820	 * PMNO2370

	

0239	 *ATTRIBUTES-REUSABLE 	 * PMNO2380
* PMNO2390
* PMNO2400

	

g72. '1:11)	 :NOTES-

	

0242	 *	 THERE ARE WAIT INSTRUCTIONS AT SPRET+1, 	 * PMNO2410

	

0243	 *	 SSTOP+1, AND SPSTX1-1. DEPRESSING THE START 	 * PMNO2420

	

0244	 *	 KEY WILL RETURN CONTROL TO THE CALLER IN ALL * 881102430

	

0245	 *	 CASES.	 * PMNO2440

	

0246	 *** PMNO2450

Appendix B. Listings 325

ADDR REL OBJECT ST.NO. LABEL OPCD FT OPERANDS ID/SEQNO

0248 * PROVIDE PARAMETERS FOR SYSTEM LOADER PMNO2470
0749 PMNO2480
0250 ABS PMNO2490

0280 0251 ORG	 4 PMNO2500
0004 0 OFFA 0257 DC	 4095—* WD CNT FOR WRITING CORE ON CIB PMNO2510
0005 0 0000 0253 $C1BA DC	 *—*	 SCTR ADDR OF THE CIB PMNO2520
0006 0 0000 0254 SCH12 DC	 s—s	 ADDR OF CHANNEL 12 INDICATOR PMNO2530
0007 0 0000 0255 SCORN DC	 *—*	 LENGTH OF COMMON (IN WORDSI PMNO2540

0256 PMNO2550
0257 * ULTIMATE RESIDENCE OF THE INTERRUPT TV PMNO2560
0258 * PMNO2570

0008 0 0000 0259 $LEVO DC	 *—*	 LEVEL 0 BRANCH ADDRESS PMNO2580
0009 0 0000 0260 $LEV1 OC	 *—s	 LEVEL 1	 BRANCH ADDRESS PMNO2590
000A 0 GOBI 0261 $LEV2 DC	 11200 LEVEL 2 BRANCH ADOR PMNO2600
0008 0 0000 0262 $LEV1 DC	 s—s	 LEVEL 3 BRANCH ADDRESS PMNO2610
000C 0 00C4 0263 SLEV4 DC	 $1400 LEVEL 4 BRANCH ADDR PMNO2620
000D 0 0091 0264 $LEV5 DC	 $STOP LEVEL 5 BRANCH ADDR PMN07630

0265 * PMNO2640
0766 PMNO2650

000F 0 0000 0267 SCORE DC	 *—*	 SIZE OF CORE, E.G.. 4096=4K PMNO2660
000F 0 0000 0268 $CTSW DC	 *—*	 CONTROL RECORD TRAP SWITCH PMNO2670
0010 n 0000 0269 $DADR DC	 s—s	 SCTR ADDR OE PROG TO BE LOADED PMNO2680
0011 0 0000 0270 $SCAT DC	 *—*	 NON ZERC=SCA INTRPT PNONG	 2-4 PMNO2690
0012 0 0000 0771 $DREQ DC	 *—*	 IND. FOR REQUESTED VERSION DKI/0 PMNO2700
0013
0014

0 0000,
000C

0272
0273

SIBSY DC	 *—*	 NON— ZERO IF CD/PAP TP DEV. BUSY
SMASH BSS	 E	 12	 WORK AREA

PMNO2710
PMNO2720

0274 * PMNO2730
0275 PMNO2740

0020 0008 0276 $SCAN 1155	 8	 1132 SCAN AREA	 32 PMNO2750
0277 PMNO2760
0778 PMNO2770
0279 * PMNO2780
0780 * TRAP FOR PREOPERATIVE 1/C ERRORS PMNO2790
0281 * PMNO2800

0028 0 0000 0282 SPREE DC	 s—s	 ENTRY POINT PMNO2810
0029 0 3000 0283 WAIT	 WAIT TEL START KEY PUSHED PMNO2870
0028 on 50500028 0284 BSC	 I	 $PRET	 RETURN TO CALLER PMNO2830

0285 * PM6402840
0286 * PMNO2850

0020 0 0000 0787 SIRED CC	 *—*	 ADDR OF INT REQUEST SUBROUTINE PMNO2860
non) 0 0000 0288 SULET DC	 *—*	 ADDR OF LET, LOGICAL DR 0 PMNO2870
002E 0 0000 0289 DC	 AcDR OF LET, LOGICAL DR I PMN07880
002F 0 0000 0290 DC	 *—*	 AMR OF LET, LOGICAL DR 2 PMNO2890
0030 0 0000 0291 DC	 *—*	 ADDR OF LET. LOGICAL DR 3 PMNO2900
0011 0 0000 0292 DC	 *—*	 AODR OF LET, LOGICAL DR 4 PMNO2910
0032 0 0000 0293 $10CT DC	 *—*	 ZERO IF NO I/O IN PROGRESS	 50 PMNO2920
0011 0 0000 0294 SLAST DC	 *—*	 NON— ZERO WHEN LAST CARD SENSED PMN07930
0034 0 0000 0295 SNDUP DC	 *—*	 DO NOT DUP IF NON— ZERO PMNO2940
0035 0 0000 0296 $11XED OC	 *—*	 DO NOT EXECUTE IF NON— ZERO PMNO2950
0016 0 0000 0297 $PBSY DC	 *—*	 NON—ZERO WHEN PRINTER BUSY PMNO2960
0037 0 0000 029 8 $PGCT OC	 *—*	 PAGE NO. FOR HEADINGS PMNO2970

0299 PMNO2980
0100 * CALL	 ExIt ENTRY POINT TO SKELETON SUPERVISOR PMNO2990
0301 PMNO3000

0018 0 7019 0102 SEXIT MDX	 $5000	 BR TO FETCH CIL,	 PHASE 1 56 PMNO3010
0303 PMNO3020
0304 *** CALL LINK ENTRY POINT PMNO3030
0305 PMNO3040

0019 0 0000 0106 SLINK CC	 *—*	 ENTRY POINT	 57 PMNO3050
001A 0 1810 0307 SRA	 16 PMN01060
0018 0 7017 0308 MDX	 $5100	 BR TO FETCH CIL, PHASE 1 PMNO3070
001C 0000 0309 BSS	 E	 0 PMN01080
001C 0 0001 0310 $5900 DC	 1	 DISK PARAMETERS FOR SAVING CORE PMNO3090
0030 0 0004 0311 DC	 $CIBA-1 *IN CONNECTION WITH DUMP PMN01100
003E 0 FEEE 0317 $5910 DC	 —I	 CALL EXIT INDICATOR PMNO3110

0313 PMNO3120
0314 *** SAVE	 1ST 4K OF CORE ON THE CiB PMNO3130
0315 PMNO3140

001F 0 0000 0116 $DUMP OC	 5—*	 ENTRY POINT	 63 PMNO3150
(1040 0 D809 0317 STD	 SACEX	 SAVE ACCUMULATOR, EXTENSION PMNO3180
0041 0 4009 0318 BSI	 $5250	 CHK PNDNG INTRPT	 2-4 PMNO3185
0042 0 6904 0319 STX	 I	 SCXR1	 SAVE XR1 PMN01190
0053 00 C410003E 0320 LO	 I	 $DUMP PMNO3700
0045 0 0003 0121 STO	 $DMPF	 SAVE DUMP FORMAT CODE PMN01210
0046 0 C8E5 0322 LDD	 $5900 PMNO3210
0047 00 440000F2 0323 BSI	 L	 DZ000	 SAVE WOS 6-4095 ON CIB PMN01210
0049 0 C0E2 0324 LD	 $5900 PMNO3240
0046 0 7008 0325 MDX	 $5100	 BR TO FETCH CIL, PHASE I PMNO3250

0126 * PMN01251
0177 *** SURR TO	 CHECK IF ANY INTRPT IS PENDING PMNO3252
0328 POINCO253

326

ADDR RFL OBJECT ST.NO. LABEL OPCD FT OPERANDS ID/SEQNO

004B 0 0000 03 29 $S750 DC	 *—*	 ENTRY POINT PMNO3254
004C 0 C0E5 0330 $S300 LD	 SIOCT	 IS THERE INTRPT PNDNG PMNO3255
0040 0 E8C1 0331 OR	 $SCAT	 *OR SCA INTRPT PNDNG PMNO3256
004E 00 4C20004C 0332 BSC	 L	 $5100,2	 *THEN BR, IF ALL INTRPT PMNO3257
0050 00 4C800046 0333 RSC	 I	 $5250	 *IS SERVICED—RETURN pmN0175R

0335 PMNO3270
0336 *** FETCH CORE IMAGE LOADER, PHASE 1 PMNO3280
0337 PMNO3290

0052 0 COEB 0338 $5000 ID	 $5910 PMNO3300
0053 0 D0C2 0339 $5100 STD	 SRMSW	 SAVE EXIT— LINK— DUMP SWITCH PMNO3310
0054 00 65900039 0340 LOX	 11 SLINK	 LINK AMR TO XR1 PMNO3350
0056 0 C101 0341 LD	 1 1	 FETCH 2ND WD OF LINK NAME PMN01360
0057 0 1800 0342 RTE	 16 PMNO3370
0058 4) 0100 0343 LD	 1 0	 FETCH 1ST ND OF LINK NAME PMNO3380

0344 * $5150.1 CONTAINS ADDR LAST WD OF	 DISK I/0 MINUS 3 PMNO3400
0059 00 65000000 0345 $S150 LOX	 LI *—*	 ADDR END OF OKI/0-1 TO XR1 PMNO3410
0058 0 0888 0346 STD	 SLKNM	 SAVE LINK NAME PMNO3415
005C 0 40EE 0347 BSI	 $S250	 CHK ANY PNONG INTRPT 	 2-4 PMNO3417
0050 0 COFC 0348 LO	 SCILA PMNO3470
005E 0 1890 0349 $5200 SRT	 16 PMNO3430
005F 00 44000012 0350 BSI	 L	 DZ000	 FETCH CI LOADER, PHASE 1 PMNO3440
0061 0 40E9 0351 BSI	 $S250	 CHK DISK OP FINISHED	 2-4 PMNO3460
0062 0 4102 0352 BSI	 1	 2	 BR TO CI LOADER, PHASE 1 PMNO3470

0353 PMNO3480
0063 0 0000 0354 SGCOM DC	 *—*	 GRAPHIC SUBR PACKAGE INDR	 2G2 PMNO3490
0064 0 0000 0155 $GR1N DC	 *—*	 GRAPHIC INITIZN PROGRAM INDR 2G2 PMNO3500

0356 262 PMNO3510
0065 0003 0357 855	 3	 RESERVED FOR 2250	 202 PMNO3520
0068 0009 0358 BSS	 9	 PATCH AREA PMNO3530

0359 PMNO3540
0071 n 0000 03 60 SEISM OC	 *—*	 FLUSH—TO—NEXT—JOB SWITCH 1/FLUSH pMNO3550

0072 0000 0361 BSS	 E	 0 PMNO3560
0072 0 0000 0362 SCWCT DC	 *—*	 WORD COUNT AND SECTOR ADDRESS PMNO3570
0073 0 0000 0363 DC	 *—*	 *FOR SAVING/RESTORING COMMON PMN01580
0074 0 0000 0364 SCCAD DC	 *—*	 ADDR FOR SAVING/RESTORING COMMON PMNO3590
0075 0 0000 0365 usto DC	 *—*	 SCTR ADOR OF 1ST LOCAL/SOCAL PMNO3600
0076 0 0000 0366 $DZ1N DC	 *—*	 DISKZ/1/N INDICATOR (- 1,0,51) PMN01610
0077 0 0000 03 67 $DCOE DC	 *—*	 LOGICAL DRIVE CODE FOR PROGRAM PMNO3620
0078 0 0000 0368 SPHSE DC	 *—*	 NO. OF PHASE NOW IN CORE PMNO3630
0079 0 0000 0369 SUFIO DC	 *—*	 UNFORMATTED I/O RECORD NO. PMN01640
007A 0 0000 0370 $WSOR DC	 4,-4,	 WORKING STORAGE DRIVE CODE PmNO3650

0078 0 0000 0371 $WRD1 DC	 4,-4,	 LOADING ADOR OF THE CORE LOAD PmNO3660

007C 0 0000 0172 $KCSW DC	 4,-4,	 1	 IF KB,CP BOTH UTILIZED PmNO3670

0070 0 0000 0373 $UFDR DC	 '0—*	 UNFORMATTED I/O DRIVE CODE PMNO3680

007E 0 0000 0374 $CPTR DC	 S—*,	 CHANNEL 12 INDICATOR FOR CP PMNO3690

007F 0 0000 0175 $1132 DC	 *—*	 CHANNEL 12 INDICATOR FOR 1112 pMN01700

0080 0 0000 0376 $1403 DC	 *—*	 CHANNEL 12 INDICATOR FOR 1403 PMN01710

0378 * TRAP FOR POSTOPERATIVE I/O ERRORS ON LEVEL 1 pMNO3730

0379 * PmN01740

0081	 0 0000 0380 $PST1 DC	 *—*	 ENTRY POINT PMNO3750

0082 0 3000 0381 WAIT pmN01760

0083 on 40800081 0382 BSC	 I	 $PST1	 RETURN TO DEVICE SUBROUTINE PMNO3770

0383 * pmNO3780
0384 * TRAP FOR POSTOPERATIVE I/O ERRORS ON LEVEL 2 pmNO3790

0385 * PmNO3800

0085 0 0000 0186 $PST2 DC	 *—*	 ENTRY POINT pMNO3810
0086 0 3000 0387 WAIT PMNO3820

0087 no 40800085 0388 BSC	 I	 SPST2	 RETURN TO DEVICE SUBROUTINE PmNO3830

0389 * PMNO3840
0390 * TRAP FOR POSTOPERATIVE I/O ERRORS ON LEVEL 3 PMNO3850
0391 PMNO3860

0089 0 0000 019? $PST3 DC	 *—*	 ENTRY POINT PMNO3870
008A 0 1000 0393 WAIT PMNO3880
0088 no 40800089 0194 RSC	 I	 SPST3	 RETURN TO DEVICE SUBROUTINE PMNO3890

0395 PMNO3900
0396 * TRAP FOR POSTOPERATIVE I/O ERRORS ON LEVEL 4 PMNO3910
0397 PMNO3920

0080 0 0000 0398 $PST4 OC	 *—*	 ENTRY POINT PMNO3930
0081 0 3000 0399 WAIT PMNO3940
0081 00 40800080 0400 BSC	 I	 $PST4	 RETURN TO DEVICE SUBROUTINE PMNO3950

0401 * PMNO3960
0402 PMNO3970
0403 * PROGRAM STOP KEY TRAP PMNO3980
0404 PMNO3990

0091	 0 0000 0405 $STOP OC	 ENTRY POINT PMN04000
0092 0 3000 0406 WAIT	 WAIT T/L START KEY PUSHED PMN04010
0093 00 40000091 0407 ROSC I	 $STOP	 RETURN TO CALLER PMN04020

Appendix B. Listings 327

ADDR RFL OBJECT SI.NO. LABEL OPCD FT OPERANDS ID/SEQNO

0409 * PMN04040
0410 * PARAMETERS USED BY THE DISK I/O SUBROUTINES. THE PMN04050
0411 * LOGICAL DRIVE CODE IS FOUND IN BITS 1-3 FOR ALL PMN04060
0412 * BUT	 THE AREA CODE.	 BIT 0 WILL ALWAYS BE ZERO. PMN04070
0412 PMN04080
0414 PMN04090
0415 *** DISK1 AND DISKN WILL NO1	 WRITE BELOW THE PMN04100
0416 *** FOLLOWING SCTR ADDRESSES (EXCEPT WRITE IMMED1. PMN04110
0417 PMN04120

0095 0 0000 C418 SFPAD DC	 *-*	 FILE PROTECT ADM, LOGICAL OR 0 PMN04130
0096 0 0000 0419 DC	 s-*	 FILE PROTECT ADDR, LOGICAL DR I PMN04140
0097 0 0000 0420 DC	 *-*	 FILE PROTECT ADDR, LOGICAL DR 2 PMN04150
0098 0 0000. 0421 DC	 4.-4.	 FILE PROTECT ADDR, LOGICAL OR 3 PMN04160
0099 0 0000 0422 OC	 *-*	 FILE PROTECT ADDR, LOGICAL DR 4 PMN04170

0423 PMN04180
0424 *** THE ARM POSITION IS UPDATED WHENEVER A SEEK PMN04190
0425 *** OCCURS. PMN04200
0426 PMN04210

009A 0 0000 04 27 SCYLN DC	 0	 ARM POSITION FOR LOGICAL DRIVE 0 PMN04220
009B 0 0000 0428 DC	 0	 ARM POSITION FOR LOGICAL DRIVE I PMN04230
0090 0 0000 0429 DC	 0	 ARM POSITION FOR LOGICAL DRIVE 2 PMN04240
0090 0 0000 0430 OC	 0	 ARM POSITION FOR LOGICAL DRIVE 3 PMN04250
009F 0 0000 0411 DC	 0	 ARM POSITION FOR LOGICAL DRIVE 4 PMN04260

0432 PMN04270
0433 *** BELCH ARE THE DISK AREA CODES. A ZERO PMN04280
04 34 *** INDICATES THE CORRESPONDING DRIVE IS NOT PMN04290
0435 *** ON THE SYSTEM PMN04300
0416 PMN04310

009E 0 0000 0437 SACDF DC	 *-*	 AREA	 CODE FOR LOGICAL DRIVE 0 PMN04320
0060 0 0000 04 38 DC	 *-*	 AREA	 CODE FOR LOGICAL DRIVE L PMN04330
0061	 0 noon 0439 DC	 *-*	 AREA	 CODE FOR LOGICAL DRIVE 2 PMN04340
00A? 0 0000 0440 OC	 *-*	 AREA	 CODE FOR LOGICAL DRIVE 3 PMN04350
0061 0 0000 0441 OC	 *-*	 AREA	 CODE FOR LOGICAL DRIVE 4 PMN04360

0442 PMN04370
0443 *** THE AOR OF THE CYLINDER IN WHICH A DEFECT OC- PMN04380
0444 *** CURS,	 IF ANY,	 IS STORED IN THE 1ST, 2ND, OR 3RD PMN04390
0445
0446

*** WORD BELOW,	 DEPENDING ON WHITHER IT IS THE 1ST,
*** 2ND, CR 3RD DEFECT ON THE CARTRIDGE.

PMN04400
PMN04410

0447 PMN04420
0064 0 0000 0448 SDCYL DC	 *-*	 DEFECTIVE CYLINDER ADDRESSES 	 1 PMN04430
0065 0 0000 0449 DC	 *-*	 *FOR LOGICAL DRIVE 0	 2 PMN04440
0066 0 0000 0450 DC	 3 PMN04450
0047 0 0000 0451 OC	 *-*	 DEFECTIVE CYLINDER ADDRESSES	 I PMN04460
0068 0 0000 045? DC	 *-*	 *FOR LOGICAL DRIVE I	 2 PMN04470
0069 0 0000 0453 DC	 3 PMN04480
0066 0 000D 0454 DC	 4,-4,	 DEFECTIVE CYLINDER ADDRESSES	 I PMN04490
0068 0 0000 0455 DC	 5—*	 *FOR LOGICAL DRIVE 2	 2 PMN04500
00AC 0 0000 0456 DC	 *-*	 3 PMN04510
00AD 0 0000 0457 DC	 S-*	 DEFECTIVE CYLINDER ADDRESSES	 1 PMN04520
00AE 0 0000 0458 DC	 *-*	 *FOR LOGICAL DRIVE 3	 2 PMN04530
OOAF 0 0001 0459 DC	 3 PMN04540
0080 0 0000 0460 DC	 S-*	 OFFECTIVE CYLINDER ADDRESSES 	 1 PMN04550
0081	 0 0000 0461 DC	 *-*	 *FOR LOGICAL DRIVE 4	 2 PMN04560
0082 0 0000 0462 DC	 *-*	 3 PMN04570

0464 * PMN04590
0465
0466

*	 IL502--IHIS SUBROUTINE SAVES XR1, 	 XR2,	 STATUS,
ANO THE ACCUMULATOR AND ITS EXTENSION.

PMN04600
PMN04610

0467 THE ADDRESS OF	 THE INTERRUPT SERVICE ROU- PMN04620
C468 TINE	 IS STORED IN $1205 BY PHASE 2 OF PMN04630
0469 THE CORE IMAGE LOADER. WORD 10 ALWAYS PMN04640
04 70 CONTAINS THE ADDRESS Of	 SI200. PMN04650
0471 PMN04660
0477 PMN04670

nn p i 0 0000
0473
04 74 $1200 DC	 *-*	 ENTRY PI	 (LEVEL 2 INTRUPT1

PMN04680
PMN04690

0084 0 6906 0475 STX	 1	 $1210+1	 SAVE XR1 PMN04700
0085 0 6607 0476 STX	 2 5I210+3	 SAVE XR2 PMN04710
0086 0 2807 0477 STS	 5I210+4	 STORE STATUS PMN04720
0087 0 080A 0478 STO	 $1290	 SAVE ACCUMULATOR,EXTENSION PMN04710

0479 * 31205+1 CONTAINS ADDR INTERRUPT ENTRY PT TO 01(1/0 PMN04740
0088 00 44000000 0480 $1205 BSI	 L	 *-*	 BR TO SERVICE THE INTERRUPT PMN04750
008A 00 65000000 0481 $1210 LOX	 LI *-*	 RESTORE XR1 PMN04760
00BC 00 66000000 0482 LOX	 L2 *-*	 RESTORE XR2 PMN04770
008F 0 2000 0483 LOS	 0	 RESTORE STATUS PMN04780
008F 0 C802 04 84 LOD	 $1290	 RESTORE ACCUMULATOR,EXT PMN04790
0000 00 4000083 0485 BOSC	 I	 $1200	 RETURN FROM INTERRUPT PMN04800
00C2 0000 0486 $1290 BSS	 I	 0 PMN04810
00C2 0 0000 0487 DC	 *-*	 CONTENTS OF ACCUMULATOR AND PMN04810
0001 0 0000 0488 DC	 *-*	 *EXTENT/ON PMN04830

328

ADOR REL OBJECT ST.NO. LABEL OPCD FT OPERANDS IC/SEQN0

0490 * PMN04850
0491
0492

* ILSO4--THIS SUBROUTINE SAVES XR1, XR2, STATUS,
AND THE ACCUMULATOR AND ITS EXTENSION.

PMN04860
PMN04870

0493 IF THE INTERRUPT IS FOR A KEYBOARD REG-	 * PMN04880
0494 DEST,AND IF A MONITOR PROGRAM IS IN CON- * PMN04890
0495 TROL, CONTROL IS PASSED TO pump. OTHER-	 * PMN04900
0496 WISE, CONTROL IS PASSED TO THE KEYBOARD/ * PMN04910
0497 CONSOLE PRINTER SUBROUTINE. WORD 12 AL- 	 * PMN04920
0498 WAYS CONTAINS THE ADDRESS OF $1400. 	 * PMN04930
0499 PMN04940
0500 * THE TABLE BELOW CONTAINS THE ADDRESSES OF THE PMN04950
0501 * INTERRUPT SERVICE ROUTINES FOR ALL THE DEVICES PMN04960
0502 * ON LEVEL 4. PMN04970
0503 PMN04980
0504 PMN04990
0505 * PMN05000

00C4 0	 0000 0506 $1400 DC	 *-*	 ENTRY POINT PMN05010
0005 0	 0818 0507 STD	 $1490	 SAVE ACCUMULATOR, EXTENSION PMN05020
0006 0	 280E 0508 S1S	 $1410	 SAVE STATUS PMN05010
0007 0	 690F 0509 SIX	 1 $1410+2	 SAVE XR1 PMN05040
0008 0	 6A10 0510 STX	 2 $1410*4	 SAVE XR2 PMN05050
00C9 0	 0816 0511 XIO	 $1492	 SENSE DSW PMN05060
OOCA 0	 1002 0512 SLA	 2	 IS THIS INTERRUPT REQUEST PMN05070
oncs 00 4C100000 0513 BSC	 L	 $1403,-	 BR IF NOT INTERRUPT REQUEST PMN05080
oncn 00 4480002C 0514 BSI	 I	 $IREQ	 BR If INTERRUPT REQUEST PMN05090
00CF 0	 FFFE 0515 DC	 -2	 ERROR CODE PMN05100
0000 0	 6109 0516 $1403 LDX	 1 9	 NO. DEVICES ON LEVEL TO XR1 PMN05110
0001 0	 0810 0517 X10	 $1494	 SENSE ILSW PMN05120
0002 0	 1140 0518 SLCA	 1	 FIND CAUSE Of INTERRUPT PMN05130

0519 * $1405+1 CONTAINS ADDR OF LEVEL 4 IBT MINUS	 L PMN05140
0003 00 45800000 0520 $1405 BSI	 11 *-*	 BR TO SERVICE THE 	 INTERRUPT PMN05150
0005 0	 2000 0521 $1410 LOS	 0	 RESTORE STATUS PMN05160
0006 00 65000000 0522 LOX	 LI *-*	 RESTORE XR1 PMN05170
0008 00 66000000 0523 LOX	 L2 *-*	 RESTORE XR2 PMN05180
OODA 0	 0803 0524 LCD	 $1490	 RESTORE ACCUMULATOR, EXT. PMN05190
OODEI 00 4CC000C4 0525 BOSC I	 $1400	 RETURN PMN05200

05 26 PMN05210
0527 * CONSTANTS ANC WORK AREAS PMN05220
0528 * EVEN-NUMBERED LABELS ARE ON EVEN BOUNDARIES PMN05230
0529 PMN05240

000D 0	 0000 0530 $DDSW DC	 *-*	 DSW FOR THE DISK PMN05250
OODE	 0002 0531 $1490 BSS	 E	 2	 CONTENTS OF ACCUMULATOR, EXT. PMN05260
00E0 0	 0000 0532 $1492 DC	 *-* PMN05270
0080 0 0533 $SYSC ECU	 *-1	 VERSION AND MOD NO. PMN05280
00E1	 0	 0800 0534 DC	 ,	 /0E00 IOCC FOR SENSE	 IOCC FOR KB/CP PMN05790
00E7	 0001 0535 $1494 BSS	 1	 PATCH AREA PMN05300
00E3 0	 0300 0536 DC	 /0300 IOCC FOR SENSING ILSW04 PMN05110

0538 2-2 PMN05130
0539 PATCH AREA	 2-2 PMN05340
0540 FIX FOR APAR N5044	 2-2 PMN05350
0541 2-2 PMN05360

0084 n	 0000 0542 $1496 DC	 *-*	 XR3 SETTING DURING XE0 2-2 PMN05370
00E5 0	 OF01 0543 DC	 /0E01	 SENSE KEY BOARD W RESET2-2 PMN05380

0544 *	 2-2 PMN05390
00E6 0	 0000 0545 $1420 DC	 *-*	 ENTRY POINT FLUSH JOB	 2-2 PMN05400
00E7 0	 08FC 0546 X10	 $1496	 SENSE KEY BOARD W RESET2-2 PMN05410
00E8 00 4C40008A 0547 BOSC L	 $1425	 TURN OF INTERRUPT	 2-2 PMN05420
00FA 00 44000038 0548 $1425 BSI	 L	 $DUMP	 BRANCH TO WAIT OUT PEND2-2 PMN05410
00EC 0	 FFEE 0549 DC	 -2	 *INTER AND GET AUX SUP 2-2 PMN05440

0550 *	 2-2 PMN05450
00ED	 0001 0551 BSS	 1	 PATCH AREA	 2-2 PMN05460
00E8 0	 0000 055? $011SY DC	 *-*	 NON-ZERO WHEN DISK I/O BUSY PMN05470

D1SKZ

ADDR REL OBJECT ST.NO. LABEL OPCD FT OPERANDS I0/SEQN0

0554 *** PMN05490
0555 *	 * PMN05500
0556 *STATUS-VERSION 2,	 MODIFICATION	 IL	 * PMN05510
0557 *	 * PMN05520
0558 *PROGRAM NAME-	 * PMN05530
0559 *	 *FULL NAME-FORTRAN/SYSTEM DISK I/0 SUBROUTINE * PMN05540
0560 *	 *CALLING SEQUENCE-	 * pmN05550
0561 *	 ion	 PARAM	 * PMN05560
0562 *	 BSI	 L	 02000	 * PMN05570
0563 *	 WHERE PARAM IS THE LABEL OF A DOUBLE-WORD	 * PMN05580
0564 *	 CELL CONTAINING THE FUNCTION CODE AND THE	 * PMN05590
0565 *	 AIM OF THE I/O BUFFER,1.E., ADDR OF WD CNT. * PMN05600
0566 *	 SFE 'CAPABILITIES' 	 FOR DISCUSSION OF PARAM- 	 * PMN05610
0567 *	 FTERS.	 * PMN05620
0568 * PMN05630

Appendix B. Listings 329

AODR REL OBJECT ST.NO. LABEL OpC0 TT OPERANDS ID/SEQN0
0569 *PURPOSE-	 * PMN05640
0570 *	 TO PROVIDE A SUBROUTINE TO PERFORM DISK OPERA-* PMN05650
0571 *	 TIONS. THIS SUBROUTINE	 IS INTENDED FOR USE BY * PMN05660
0572 *	 MONITOR PROGRAMS AND USER PROGRAMS WRITTEN IN * pMN05670
0573 *	 FORTRAN.	 THUS,IT IS INTENDED FOR USE IN AN 	 * pMN05680
0574 *	 ERROR-FREE ENVIRONMENT.	 * PMN05690
0575 * pmN05700
0576 *METHOD-	 * PMN05710
0577 *	 DISKZ REQUIRES A BuFFER,THE LENGTH OF WHICH IS* pmN05720
057P *	 7 GREATER THAN THE NO. WORDS TO BE READ/WRIT- * PMN05730
0579 *	 TEN.	 * PmN05740
05 80 * PMN05750
0581 *CAPABILITIES AND LIMITATIONS- 	 * PMN05760
0582 *	 THE WC CNT,AS WELL AS DZ000,MUST BE ON AN EVEN* PMN05770
0583 *	 BOUNDARY,MuST BE TN THE RANGE 0-32767. THE 	 * pMN05780
0584 *	 DRIVE CODE MUST BE	 IN BITS 1-3 OF THE SECTOR 	 * PMN05790
0585 *	 ADDR,WHICH FOLLOWS THE WD CNT. 	 THE FUNCTION	 * PmN05800
0586 *	 INDICATOR MUST RE XX00 FOR A READ OR XX01 FOR * PMN05810
0587 *	 A	 WRITE,WHERE 'XX'	 MEANS ANY 2 HEXADECIMAL 	 * PMN05820
0588 *	 CHARACTERS.	 A WD CNT OF ZERO INDICATES A SEEK.* pMN05830
0589 *	 (READ OR WRITE MAY BE	 INDICATED.)	 AUTOMATIC	 * PMN05840
0590 *	 SEEKING IS PROVIDED AS A PART OF READ/WRITE. 	 * PmN05850
0591 *	 A WRITE IS ALWAYS WITH A READ-BACK-CHECK. 	 * PMN05860
0597 *	 DISKZ MAKES NO PREOPERATIVE PARAMETER CHECKS. * PMN05870
0593 * PMN05880
0594 *SPECIAL FEATURES-	 * PMN05890
0595 *	 ntSKZ PROVIDES ONLY THOSE FUNCTIONS MENTIONED * PMN05900
0596 *	 ABOVE. DISKZ ANO DISKN OFFER THIS BASIC SET OF* PMN05910
0597 *	 FUNCTIONS PLUS OTHERS.	 * pMN05920
0598 * pmN05930
0599 ************************************** ****** ******* pMN05940
0601 * PROVIDE PARAMETERS FOR SYSTEM LOADER PMN05960
0602 PMN05970

10E0 0000 0603 RSS	 r	 0 pmN05980
00F0 0 OOEF 0604 DC	 *ZEND-*	 DISKZ WORD COUNT PMN05990
00F1 0 FF6A 0605 CC	 -.0ZID	 PHASE ID PmN06000
10f2 0 10E8 0606 CC	 SZEND-6-*+1 AODR Of SIFT EXTRACT pmN06010
00F1 0 0001 0607 DC	 1	 NO.	 ENTRIES IN SLET EXTRACT PMN06070
00F4 0608 ORG	 *-7 pMN06030
00F2 0 0000 0610 01000 DC	 *-*	 ENTRY POINT PMN06050
OOF3 00 740000EE 0611 MDX	 L	 SDBSV,0	 LOOP UNTIL OPERATION	 IN pmN06060
00F5 0 70F0 0612 MDX	 *-3	 *PROGRESS IS COMPLETE PmN06070
00F6 0 7002 0613 MOx	 07020	 BR AROUND INT ENTRY POINT PMN06080

0614 PMN06090
0615 * INTERRUPT ENTRY POINT PmN06100
0616 PMN06110

00F7 0 0000 0617 nZ010 DC	 *-*	 INTERRUPT ADDRESS PmN06120
00F8 0 7015 0618 MDX	 OZ 180	 BR TO SERVICE INTERRUPT PMN06130
noF9 0 690F 0619 D7020 STX	 1 D7100+1	 SAVE XRI pMN06140
00FA 0 6610 0670 SIX	 7 DZI00+3	 SAVE XR7 PmN06150
00FR 0 1008 0621 SLA	 8	 SHIFT	 INDICATOR 8 BITS pmN06160
OOFC 0 003C 0622 ST0	 07945	 SAVE FUNCTION INDICATOR PMN06170
OnFn 0 1800 0623 RTF	 16 PMN06180
00FF 0 0056 06 24 STO	 OZ235+1	 SAVE ODOR OF THE I/O AREA PMN06190
()OFF 0 6711 0625 DZ010 LOX	 (TCNT	 TURN ROSY INDICATOR ON AND pmN06200
0100 0 6AE1) 0626 STx	 2 SOBS),	 *SET RETRY COUNT pmN06210
0101 0 COF0 06 27 LO	 07000 PmN06220
0102 0 00F4 06 28 STD	 07010 PMN06230
0103 0 704E 06 29 MDx	 07230	 BR TO CONTINUE PMN06240
0104 00 4C000000 0610 DZ060 BSC	 L	 *-*	 BR TO SERVICE THE INTERRUPT PMN06250

0631 pMN06260
0632 * START ALL DISK OPERATIONS PMN06270
0633 * PMN06280

0106 0 6908 0614 DZ070 STX	 1 DZI80*1	 SAVE ADDR Of THE I/O AREA PMN06290
0107 0 OR1E 0615 XIO	 DZ904	 START AN OPERATION pMN06100

0636 PMN06310
0637 * RETURN TO USER pmN06320

0638 * PmN06330
01C8 00 65000000 0639 DZ100 LOX	 LI *-*	 RESTORE XR1 PMN06340
0108 00 66000000 0640 LOX	 17 5-5	 RESTORE XR2 PMN06150
0100 00 4CB000F7 0641 BSC	 I	 DZ010	 RETURN PMN06360

0642 * PmN06370
0643 * SERVICE ALL INTERRUPTS PMN06380
0644 * PmN06390

010F 00 65000000 0645 DZ180 LOX	 LI *-*	 AMR OF I/O AREA TO XR1 pMN06400
0110 00 660000E2 0646 Lox	 L2 01000	 ADDR OF DZ000 TO XR2 pMN06410
0112 0 0819 0647 x10	 01910	 SENSE THE DSid PMN06470
0113 0 00C9 0648 STO	 SODSW	 SAVE THE DSW PMN06430
0114 0 4850 0649 BOSC	 -SKIP IF ERROR BIT SET PMN06440
0115 0 70FE 0650 MDX	 07060	 BRANCH IF ERROR BIT NOT SET PMN06450
0116 0 C800 0651 D7185 LCD	 01902	 RESTORE WORD COUNT PMN06460
0117 0 0900 0657 STO	 1	 0	 *AND SECTOR ADDRESS PMN06470

330

ADDR REL OBJECT ST.NO. LABEL OPCD FT OPERANDS IC/SEQNO

0118 00 74FF00EE 0653 MDX	 L	 SD8SY,-1	 SKIP IF 16 RETRIES DONE pMN06480
011A 0 7039 0654 MDX	 07235	 BRANCH IF LESS THAN 16 PMN06490

0655 pmN06500
0656 * TRAP OUT TO POSTOPERATIVE TRAP pmN06510
0657 pmN06520

0118	 0 0812 0658 ICC	 02912	 1+SCTR ADDR TO EXTENSION PMN06530

0110 0 c014 0659 LD	 079I5 PMN06540
0110 0 4793 0660 02190 BSI	 2 SPST2-X2	 BR TO POSTOPERATIVE ER TRAP PMN06550
011F 0 1810 0661 SRA	 16	 CLEAR PMN06560
011.F	 00 04800191 0662 STO	 I	 D2350+1	 *ARM POSITION PMN06570
0121	 0 7000 0663 MDX	 02030	 RETRY OPERATION PMN06580

0664 * PMN06590
0665 * CONSTANTS AND WORK AREAS pMN06600
0666 PMN06610

0127 0000 0667 BSS	 F	 0 PMN06620
0668 * EVEN-NUMBERED LABELS ARE ON EVEN BOUNDARIES PMN06630

0122 0 0001 0669 02900 DC	 I	 CONSTANT,READ-AFTER-SEEK WD CNT PMN06640
0123 0 0000 0670 02401 DC	 0	 CURRENT ARM POSITION pMN06650
0174 0 0000 0671 01902 DC	 *-*	 LAST TWO WORDS OF SECTOR PMN06660
0175 0 0000 0672 DC	 *-*	 *PREVIOUSLY READ PMN06670
0126	 C 0000 0673 02904 DC	 *-*	 foCC FOR OPERATION CURRENTLY PMN06680
0177	 0 0000 0674 n2905 DC	 *-*	 *BEING PERFORMED PMN06690
0128	 0 0000 0675 02906 DC	 *-*	 SAVE AREA FOR IOCC FOR pmN06700
0179 0 0000 0676 D2907 DC	 *-*	 *USER-REQUESTED OPERATION PMN06710
0026 0 0127 0677 07908 DC	 D2900 TOCC FOR READ PMN06720
0128 0 0000 0678 D2909 DC	 *-*	 *AFTER SEEK PMN06730
0I20	 0 0000 0679 02910 DC	 *-*	 2ND WORD OF SEEK IOCC PMN06740
0120 0 0000 0680 D2911 DC	 *-*	 SENSE IOCC pmN06750
012E	 C 0000 0681 02912 DC	 *-*	 INTERMEDIATE WORD COUNT pmN06760
0128	 0 0000 0682 02913 DC	 *-*	 ADDR OF NEXT SEQUENTIAL SECTOR PMN06770
0130 0 5002 0683 07914 DC	 /5002 WRITE SELECT/POWER UNSAFE INOR PMN06780
0131	 0 5004 0684 0Z915 DC	 /5004 READ/WRITE/SEEK ERROR INDICATOR PMN06790
0132 0 FECO 0685 D2916 DC	 -320 TO BE USED TO SIMULTANEOUSLY pMN06800
0133 0 0001 0686 DC	 1	 *DECR WD CNT,	 INCR SCTR ADDR pmN06810
0114 0 0080 0687 02920 DC	 /0080 REAC CHECK BIT FOR 10Cc PmN06820
0135 0 0600 0688 02925 DC	 /0600 2ND WD OF READ IOCC W/0 AREA CC PMN06830
0116 0 0008 0689 02910 pc	 8	 NO.	 SECTORS PER CYLINDER pMN06840
0137 0 5000 0690 02935 DC	 /5000 NOT READY DISPLAY CODE pmN06850
0138 0 OFF8 0691 D2940 DC	 /OFF8 'AND' OUT DR CODE, SCTR ADDR PMN06860
0119 0 0000 0692 02 945 DC	 *-*	 FuNt	 INDICATOR (00READ,1NWRITE) pMN06870
011A 0 0701 0693 07950 CC	 /0701 SENSE IOCC W/O AREA CODE PMN06880
0138 0 0007 0694 D2955 DC	 /0007 'AND' OUT ALL BUT SCTR NO. pMN06890
011C 0 0004 0695 02960 DC	 $DCYL-$CYLN BASE DEFECTIVE CYL ADDR pMN06900
0110 0 009F 0696 D2965 DC	 $ACDE BASE AREA CODE ADDR pmN06910
011E 0 FFFB 0697 02970 DC	 SCYLN-SACDE BASE ARM POSITION ADDR PMN06920
013F 0 0000 0698 02975 DC	 *-*	 2ND WORD OF READ CHECK IOCC pMN06930
0140 0 0400 0699 D2980 DC	 /0400 2ND WO OF SEEK IOCC W/0 AREA CD PMN06940
0141 0 0141 0700 02985 DC	 321	 No.	 WORDS PER SECTOR 114/ ADDRI pMN06950
0147 0 0000 0701 02990 DC	 *-*	 CURRENT SECTOR NO. PMN06960
0143 0 FFFF 0702 D2995 DC	 -1	 MASK FOR COMPLEMENTING PMN06970

0703 pMN06980
0704 * RESERVED FOR SAVING CORE ON A DUMP ENTRY TO SKEL PmN06990
0705 pMN07000

0144
0082 0

0007 0700
0707

BSS	 7	 THIS AREA MUST BE AT SCIBA+319
X2	 ECUD2000

PMN07010
pMN07020

0708 PmN07030
0709 PMN07040
n710 pMN07050

0146 0
0147 0

1810
0046

0711
0712

D2210 SRA	 16
STOCLEAR BUSY INDICATOR$D8Sy

PMN07060
pmN07070

0148 00 74FF0032 0713 MDX	 L	 SIOCT,-1	 DECREMENT IOCS COUNTER PMNOTOBO
014A 0
0148	 0

1000
7080

0714
0715

NOP
MDX	 02100TO EXIT

PMN07090
pmN07100

0716 pMN07110
0717 * PREPARE TO TRAP OUT ON 'POWER UNSAFE' CONDITION PMN07120
0718 pMN07130

014C 0 C0E3 0719 n2215 LO	 02914 PMN07140
0140 0 700F 0720 MDX	 02190	 BR TO TPAR OUT pmN07150

0721 PMN07160
0727 * PREPARE TO TRAP OUT ON 'NOT READY' CONDITION PMN07170
0723 pmN07180

014E 0 C0E8 0724 02220 LD	 0Z935	 FETCH ERROR CODE pMN07190

014F 00 44000028 0725 BSI	 L	 SPRET	 8R TO PREOPERATIVE ERR TRAP PMN07200
0151 0 7036 0726 MDX	 D2340	 RETRY THE OPERATION pMN07210

0727 PMN07220
0728 STATEMENTS MOVED	 2-1 PMN07230
0729 PMN07240

0157 00 74010032 0730 D2230 MDX	 L	 $100T,1	 INCREMENT TOCS COUNTER PMN07250

0154 00 65000000 0731 D2215 LOX	 LI *-*	 ADDR 1/0 AREA TO XR1 pMN07260

0156 0 c900 0732 LDD	 1 0 PMN07270

0157 0
0158 0

MCC
0805

0733
0714

STD	 02902	 SAVE WORD COUNT, SCTR ADDR
STD	 07917

PMN07280
pmN07290

Appendix R Listings 331

ADDR REL OBJECT ST.NO. LABEL OPCD FT OPERANDS IC/SEONO

0159 0 1810 0735 07240 SRA 16 pMN07300
0I54 0 1084 0736 SLT 4 DRIVE CODE	 IN BITS	 12-15 PmN07310
0155 n 000E 0737 STO n7280+1 PMN07320
0150 0 80E0 0738 A 07965 COMPUTE AND STORE THE PIN07330
0150 0 DOIC 0719 STO D7110+1 *ADDR OF THE AREA CODE PMN07340
115E 0 800F 0740 A DZ970 COMPUTE AND STORE THE PMN07350
015F n 0031 0741 STO 0Z350+1 *ADDR OF THE ARM POSITION PMN07160
0160 0 8008 0742 A D7960 ADO IN BASE DT ADDR pmN07370
0161 0 8008 0743 A 07280+1 ADD IN	 THE DRIVE pMN07380
0162 0 8007 0744 A 07280+1 *CODE TWICE MORE PMN07390
0163 0 D006 0745 STO 07280+1 PMN07400
0164 0 62F0 0746 LOX 2 —3 INITIALIZE COUNTER FOR LOOP PMN07410
0165 0 6902 0747 STx 1 0Z906 PMN07420
0166 0 C101 0748 LO 1 1 FETCH OESIRED SECTOR ADDR PMN07430
0167 0 EODO 0749 AND 07940 'AND' OUT SECTOR NO. PMN07440
0168 0 0101 0750 07250 STO 1 1 *AND DRIVE CODE PMN07450
0169 00 94000000 0751 07280 S L *—* SUB DEFECTIVE CYLINDER ADDR PMN07460
0168 0 4828 0752 8SC 7+ SKIP IF BAD CYLINDER PmN07470
0160 0 7007 0753 MDX 07300 BR 10 CONTINUE PROCESSING PMN07480
0160 0 C101 0754 LO I 1 PMN07490
016F 0 8007 0755 A 02930 INCREMENT SCTR ADDR BY 8 pmN07500
016F 00 74010164 0756 MDX L 01280+1.1 POINT TO NEXT DEFECTIVE CYL PMN07510
0171 0 7201 0757 MDX 2 1 SKIP AFTER	 3RD PASS PMN07520
0172 0 70F5 0758 MDX 07250 COMPARE w/ NEXT DEF CYL ADR Pmt37530
0173 0 0101 0759 STO 1 1 SCTR ADDR WITH 3 DEF CYL2-4 PMN07535

0760 PMN07540
0761 * CONSTRUC THE 2ND WORD OF ALL IOCC . S PMN07550
0762 * PMN07560

0174 00 660000F2 0763 02300 LOX 12 07000 ADDR OF 07000 TO XR2 PMN07570
0176 0 C730 0764 Lo 2 07913— x2 FETCH SECTOR ADDRESS pMN07580
0177 0 E249 0765 AND 2 02955—x2 'AND' OUT ALL BUT SECTOR NO PMN07590
0178 0 D250 0766 STO 2 0Z990—X2 SAVE SECTOR NO. pMN07600
0179 00 04100000 0767 0Z131) L *—* FETCH AREA CODE PMN07610
0179 0 EA4F 0768 OR 2 01980-12 'OR'	 IN SEEK FUNCTION CODE PMN07620
0170 n 0714 0769 STO 2 07910— X2 SEEK TOCC MINUS DIRECTION PMN07630
0170 0 FA41 0770 0R 2 07925—X2 'OR'	 IN READ FUNCTION CODE PM007640
017F 0 D239 n771 STD 2 07909— x2 TOCC FOR READ— AFTER— SEEK EMN07650
017F 0 EA50 0772 OR 2 D7990—X2 'OR'	 IN SECTOR NO. PMN07660
0180 0 9247 0773 2 07945—x2 COMPLETE READ/WRITE CODE pMN07670
0181 0 0237 0774 STO 2 01907—X2 2ND WD OF READ/WRITE IOCC PmN07680
0117 0 E442 0775 OR 2 01920—x? 'OR'	 IN READ CHECK BIT PMN07690
0183 0 8747 0776 A 2 07945— X2 pMN07700
0184 0 0240 0777 STO 2 0Z975—X2 2ND WD OF READ CHECK IOCC PMN07710
0185 0 8448 0778 OR 2 07951—x2 'OR'	 IN SENSE	 IOCC BITS PMN07720
0186 0 0238 0779 STO 2 07911—X2 COMPLETED SENSE IOCC PMN07730
0137 0 CA3C 0780 LOD 7 DZ91?— x7 1+SCTR ADDR TO EXTENSION PMN07740
0188 0 0418 0781 D1340 x10 2 07910—x2 SENSE FOR DISK READY pMN07750
0189 0 07E8 0782 STO 2 cDDSW—X2 SAVE THE DSW PMN07760
018A 0 4828 0783 BSC 7+ SKIP UNLESS POWER UNSAFE OR PMN07770
0188 D 7000 0784 MDX 02215 *WRITE SELECT,	 RR OTHERWISE PMN07780
0180 0 100? 0785 SLA 2 BR TO PREOPERATIVE ERR TRAP PMN07790
0I80 0 41128 0786 BSC 2+ *IF DISK NOT READY,	 SKIP PMN07800
018F 0 708E 0787 MDX 07220 *OTHERWISE pMN07810

0788 * STATEMENTS REMOVED	 2-1 PMN07820
018F 0 0101 0789 LO 1 I FETCH DESIRED CYLINDER ADDR PMNO7R30
0190 00 94000000 0790 D7350 5 L *—* SUBTRACT ARM POSITION PMN07840
0197 0 4818 0791 BSC +- SKIP IF SEEK NECESSARY PMN07850
0193 0 7018 0792 MDX 0Z400 RANCH TO PERFORM OPERATION pMN07860

0793 PMN07870
0794 * SEEK PmN07880
0795 PMN07890

0194 0 1893 0796 SRT 19 PUT NO. CYLINDERS IN EXT PMN07900
0195 0 I800 0797 sRA 15 + OR — SIGN TO BIT	 15 pMN07910
0196 0 1002 0798 SLA 2 SHIFT SIGN TO BIT	 13 pMN07920
0197 1 E434 0799 OR 2 01910—x2 IN REMAINDER Of IOCC PMN07930
0198 0 1800 0800 RTF 16 pmN07940
0199 0 4810 0801 8SC SKIP IF SEEK TOWARD HOME PMN07950
019A 0 7002 0802 MDX 07380 BRANCH 1E SEEK TOWARD CENTR PMN07960
0198 0 F25I 0803 FOR 7 DZ995—X7 COMPLEMENT NO. CYLS TO BE PMN07970
0190 0 8230 0804 A 2 07900— x2 *SOUGHT TO GET POSITIVE NO. PMN07980
0190 0 0434 0805 07380 STD 2 07904-12 PmN07990
0198 0 07E8 0806 In 2 SODSw—x2 FETCH THE DSW	 2-1 PMN08000
019F 0 1000 0807 SLA 13 2-1 PMN08010
0140 0 4810 0808 8SC 2-1 PMN08020
0181 0 7001 0809 MDX 0Z390 2-1 PMN08010
0182 0 0101 0810 02385 LD 1 1 FETCH SECTOR ADDR 	 2-1 pMN08040
0143 0 1803 0811 SRA CONVERT TO CYLINDER ADDR2-1 PMN08050
0144 0 0234 0817 STO 2 D7904—X2 *AND STORE IN IOCC	 2-1 pMN08060
0145 0 4213 0813 07390 BSI 2 02070-1—x2 START SEEK	 2-1 PMN08070

332

ADDR REL OBJECT ST.NO. LABEL OPCD FT OPERANDS ID/SEQN0
0814 PMN08080
0815 * SEEK COMPLETE INTERRUPT PROCESSING PMN08090
0816 pmN08100

01A6 0	 C438 0817 LOD	 2 D2908-X2	 SET UP MCC FOR pmN08110
01A7 0	 DA34 0818 STD	 2 02904-X2	 *READ AFTER SEEK PmN08120
0148 0	 4213 0819 85I	 2 02070-1-X2 START READ-AFTER-SEEK pmN08130

0820 * pmN08140
0821 * READ-AFTER-SEEK COMPLETE INTERRUPT PROCESSING PmN08t50
0822 pMN08160

01A9 0	 0231. 0823 ID	 2 02901-x2	 FETCH ADR OF SCTR JUST READ pmN08170
0144 00 04800191 0824 STO	 I	 02350+1	 UPDATE ARM POSITION pmN08180
01Ac 0	 9101 0825 S	 1 1	 SUB DESIRED SCTR ADDR pMN08190
01AD 00 4C200116 0826 BSC	 L	 07185,2	 BR	 IF SEEK UNSUCCESSFUL pMN08200

0877 * pMN08210
0828 pmN08220
0829 * READ/WRITE pmNn8210
0830 PMN08240

01AF 0	 CA3C 0831 02400 LOC	 2 02912-X7	 FETCH INTERMEDIATE WD CNT PMN08250
OIRO n	 4808 0832 BSC	 SKIP,	 WD CNT NOT EXHAUSTED PMN08260
0191 0	 7094 0833 07410 MDX	 02210	 BRANCH IF READ/WRITE DONE PMN08270
0182 0	 8440 0834 AD	 2 02916-x7	 DECREMENT WORD COUNT AND pmN08280
0193 0	 033C n835 STD	 2 0Z917-X2	 *INCREMENT SECTOR ADDRESS PMN08290
0184 0	 4830 0836 BSC	 Z-	 SKIP IF THIS IS LAST SECTOR PMN08300
0185 0	 1810 0837 SRA	 16	 CLEAR ACCUMULATOR pMN08310
0186 0	 824F 0838 A	 2 02985-x2	 ADD BACK 321 TO WO CNT pmN08320
0157 0	 0100 0819 STO	 1 0	 STORE RESULT IN I/O AREA pmN08310
0188 0	 CA36 0840 100	 2 02906-X2	 RESTORE TOCC FOR ORIGINALLY PMN08340
0189 0	 DA34 0841 STD	 2 02904-x?	 *REQUESTED OPERATION pmN08350
0184 0	 C101 0842 LO	 1 1	 ADD SECTOR NO.	 TO SECTOR PMN08360
0198 0	 EA50 0843 OR	 2 02990-x2	 *ADDRESS PmN08370
018C	 0	 01.01. C844 STO	 1	 1 PMN08380
0180 0	 4213 0845 BSI	 2 02070-1-X2 START READ/WRITE OPERATION PMN08390

0846 pMN08400
0847 * READ/WRITE COMPLETE INTERRUPT PROCESSING pMN08410
0848 pmN08420

018E 0	 0740 0849 LO	 2 02975-X2	 SET UP FOR READ CHECK PMN08430
01RF 0	 n235 0850 STO	 2 02905-x2 PMN08440
OICO 0	 C247 0851 LO	 2 02945-X2	 FETCH FUNCTION INDICATOR PMN08450
0101 0	 4820 0852 BSC	 SKIP IF READ REQUESTED pMN08460
0102 0	 4211 0853 BSI	 2 02070-1-x2 START READ CHECK OPERATION PMN08470
0103 0	 CAl? 0854 LOD	 2 D1902-X2	 RESTORE LAST 2 WDS OF SEC- PMN08480
0104 0	 D900 0855 STD	 I 0	 *TOR PREVIOUSLY READ pmN08490
0105 0	 C21C 0856 LD	 2 02912-x2	 FETCH INTERMEDIATE WD CNT PmN08500
0106 0	 4808 0857 BSC	 SKIP IF MORE READING/WRTING PMN08516

0107 0	 70E9 0858 MDX	 02410	 BRANCH IF FINISHED pmN08520

01C8 00 75000140 08 59 MDX	 LI	 320	 POINT XR1 TO NEW I/O AREA PMN08530
O1CA 0	 0900 0860 LDD	 1 0	 SAVE LAST 2 WDS OF SECTOR PMN08540
0108 0	 0432 0 86 1 sT0	 2 D1902-X2	 *JUST READ/WRITTEN PMN08550
01CC 0	 CA3C 0867 LCD	 2 02912-x2	 WD CNT, SCTR ADDR NEXT OP pMN08560
1100 0	 9900 0863 STD	 1 0	 STORE BOTH IN NEW I/O AREA pMN08570
OICF 0	 708A 0864 MDX	 02240	 BACK TO SET UP NEXT OPERATN PMN08580

0865 * pmN08590
0866 * pmN08600

01CF	 0008 0867 ASS	 PATCH AREA	 2-4 PMN08610
0868 pMN08620
0869 * pmN08630

0104 n	 0040 0870 DC	 I CILI	 ID NO.	 OF CORE	 IMAGE LDR,P1 PMN08640
0108 0	 0000 0871 SCUM OC	 *-*	 CORE ADDR/C10 NO. PMN08650
010C 0	 0000 0872 DC	 WORD COUNT PmN08660
0t nn 0	 0000 0873 00	 *-*	 SCTR ADDR PMN08670
010E	 0002 0874 BSS	 2	 WO CNT,	 SCTR ADDR CORE LDS PMN08680
01E0 0 0875 szEND ECM	 1	 1- END OF DISKZ PMNOB690

Appendix B. Listings 333

EQUIVALENCES

ADOR REL OBJECT ST.NO. LABEL OPCD FT OPERANDS ID/SEQNO

0877 * PmN08710
0878 * EQUIVALENCES FOR DOOM PARAMETERS PMN08720
0879 * PMN08730

1004 0 0880 /INANE EQU 4	 NAME OF PROGRAM/GORE LOAD PMN08740
0006 0 08(11 (MKT ECU 6	 BLOCK CT OF PROGRAM/CORE LOAD PPIN08750
0007 0 0882 fFCNT ECU 7	 FILES SWITCH PMN08760
0008 1 0883 NSYSC EQU 8	 SYSTEM/NON-SYSTEM CARTRIDGE	 INOR PMN08770
0009 0 0884 NJBSW ECU 9	 JOBT SWITCH PMN08780
0008 0 0885 ((COSH	 EQU 10	 CLB-RETURN SWITCH PMN08790
0008 0 0886 NLCNT ECU 11	 NO.	 OF LOCALS PMN08800
0000 0 0887 NMPSW EQU 12	 CORE MAP SWITCH PMN08810
000(1 0 0888 IPMDF1	 EQU 13	 NO. DuP CTRL RECORDS	 (MODIF) PMNO8B2Q
000E 0 0889 NMDF2 EQU 14	 ACDR OF moOlF BUFFER PMN08810
000F 0 0890 NNCNT EQU 15	 NO.	 OF NOCALS PMN08840
0010 0 0891 NENTY ECU 16	 RLTV ENTRY ADDR OF PROGRAM PMN08850
1011	 0 0892 ORP67 EQU 17	 1442-5 SWITCH PMN08860
0017 0 0893 4TOOR EQU 18	 OBJECT WORK STORAGE DRIVE CODE PMN08870
0014 0 0894 NEHOL EQU 70	 AMR LARGEST HOLE IN FIXED AREA PMN08880
0015 0 0895 NESZE EQU 71	 BLK CNT LARGEST HOLE IN FXA PMN08890
0016 0 0896 OUHOL EQU 22	 A00IR LARGEST HOLE IN USER AREA PMN08900
0017 0 0897 NUSZE ECU 73	 BLK CNT LARGEST HOLE IN UA. PMN08910
0018 0 0898 NOCSW EQU 24	 OUP CALL SWITCH PmN08920
0019 0 0899 NPIOD ECU 25	 PRINCIPAL	 I/0 DEVICE INDICATOR PMN08910
001A 0 0900 NPPIR EQU 26	 PRINCIPAL PRINT DEVICE	 INDICATOR PMN08940
0018 0 0901 NCIAD ECU 77	 RLTV ADDR	 IN 'STRT OF CIL ADDR PMN08950
001C 0 0902 NACIN ECU 28	 AVAILABLE CARTRIDGE	 INDICATOR PMN08960
0010 n 0903 41GRPH ECU 29	 2750 INDICATOR	 2G2 PMN08970
001E 0 0904 NGCNT ECU 10	 ND. G7750 RECORDS	 2G2 PMN08980
001E 0 0905 NLOSW EQU 11	 LOCAL-CALLS-LOCAL SWITCH	 2-2 PMN08990
0020 0 0906 NxiSW EQU 37	 SPECIAL	 ILS SWITCH	 2-2 PMN09000
0071	 0 0907 NECNT ECU 33	 NO. OF *EQUAT RCOS	 2-4 PMN09005
0021 0 0908 NANDU ECU 35	 1+BLK ADM FIND OF UA (ADJUSTED) PMN09010
0071 0 0909 NONDU ECU 40	 1+BLK ADDR END OF UA (BASE) PmN09020
0020 0 0910 NFPAD EQU 45	 FILE PROTECT ADDS PMN09030
0032 0 0911 NPCID EQU 50	 CARTRIDGE	 ID, PHYSICAL DRIVE PmN09040
0017 0 0917 ILION EQU 55	 CARTRIDGE	 ID, LOGICAL DRIVE PMN09050
0010 0 0913 4018A	 ECU 60	 SCTR ADDS OF	 018 PMN09060
0041 (1 0914 FISCRA	 EQU 65	 SCTR ADDR Of. SCRA PMN09070
0046 0 0915 NFMAT EQU 70	 FORMAT OF PPOG IN WORKING STG PMN09080
0048 0 0916 NFLET ECU 75	 SCTR ADOR 1ST SCTR Of FLET PMN09090
0050 0 0917 NULET EQU 80	 SCTR ADDR 1ST SCTR OF LET PMN09100
1055 0 0918 NWSCT EQU 85	 BLK CNT OF FROG IN WORKING STG PMN09110
005A 0 0919 NCSHN ECU 90	 NO.	 SCTRS IN CUSHION AREA P81109120

0970 * PMN09130
0921 * EQUIVALENCES FOR PHASE ID NUMBERS pMN09140
0922 * PMN09150

106E 0 0923 'MCRA EQU 110	 PHASE	 ID FOR MCRA PMN09160
0073 0 0924 eSUP6 ECU 115	 PHASE ID FOR DUMP PROG	 2-4 PMN09170
n074 0 0925 'SUPT ECU 116	 PHASE ID FOR AUX SURV	 2-4 PMN09180
0078 0 0926 ,C180 ECU 120	 PHASE ID FOR CLB,	 PHASE 0/1 PMN09190
on8C 0 0927 '1403	 EQU 140	 PHASE	 ID FUR SYS 1403 SUER pMN09200
0080 0 0928 '1132	 EQU 141	 PHASE	 ID FOR SYS 1132	 SUBR pMN09210
008E (1 0929 .012TR	 ECU 142	 PHASE ID FOR SYS CP SUBS pMN09220
008E 0 0930 '2501	 EQU 143	 PHASE ID FOR SYS 2501	 SUBR PMN09230
0090 0 0931 '1442	 ECU 144	 PHASE ID FOR SYS 1442 SUBS p8N09240
n091	 n 0932 '1134	 EQU 145	 PHASE ID FOR SYS 1134 SUBS pMN09250
0092 0 0933 .KBCP EQU 146	 PHASE ID FOR SYS KB/CP SUBR pMN09260
0093 0 0934 'CDCV ECU 147	 PHASE 10 FOR SYS CD	 CONY pMN09270
0094 0 0935 .1710CV	 EQU 148	 PHASE 10 FOR SYS 1134 CONV pMN09280
0095 1 0936 'KBCV ECU 149	 PHASE TO FOR SYS KB	 CONV pMN09290
0096 n 0937 .DZID EQU 150	 PHASE ID FOR DISKZ pMN09300
0097 n 0938 10110	 EQU 151	 PHASE	 ID FOR DISK) pMN09310
0098 0 0939 'ONID ECU 152	 PHASE ID FOR DISKN pmN09320
0040 0 0940 .0111	 ECU 160	 PHASE 10 FOR CI	 LOADER,PH 1 pMN09330
0041	 0 0941 1C112	 ECU 161	 PHASE ID FOR CI LOADER,PH 2 pmN09340

0942 * pMN09350
0943 * EQUIVALENCES FOR RESIDENT MONITOR PMN09360
0944 * PMN09370

0014 0 0945 $LKNM EMI SMASH	 SAVE AREA FOR NAME OF LINK pMN09380
0016 0 0946 ORMSW MI $HASH+2	 EXIT-LINK-DUMP Sw(-1,001) pMN09190
0017 0 0947 $CXR1	 EQU $HASH+3	 SAVE AREA FOR XR1 PMN09400
0011 0 0948 $CLSW EQU $HASH+4	 SW FOR CORE IMAGE LOR,PH 2 PMN09410
0019 0 0949 $DMPF EQU SHASH+5	 DUMP FORMAT CODE pMN09420
00LA 1 0950 $ACEX EQU $HASH+6	 ACC AND EXT WHEN ENTER DUMP PMN09430
005A 0 0951 SCILA	 ECU 55150+1	 AMR OF END OF DK I/O - 3 PMN09440
00139 0 0952 51872	 EQU 51705+1	 ADR OF SERVICE PART OF DKI0 pMN09450
0104 1 0953 $1874 EQU $1405+1	 ADS. OF THE IBT PmN09460
DOFF 0 0954 ssNLT ECU $DBSy+1	 SENSE LIGHT INDICATOR pMN09470
00E0 0 0955 SPAUS ECU 131000-2	 PAUSE,14TERRUPT INDICATOR PMN09480
0081 0 0956 $RWCZ ECU 07000-1	 READ/WRITE SWITCH (CARDZ) PMN09490
00E4 0 0957 SXR3X EQU $1496	 x83 SETTING DURING XEQ	 2-2 R10109500

0958 * PMN09510

3:34

AMA REL OBJECT ST.NO. LABEL OPCD FT OPERANDS ID/SEQNO

0959 * EQUIVALENCES FOR ABSOLUTE SECTOR ADDRESSES PMN09520
0960 PMN09530

0000 0 0961 'LOAD EQU 0	 ADOR OF SCTR WITH ID,DEF CYL AOR PMN09540

0001 0 0962 'OCOM EQU 1	 ADDR OF SCTR CONTAINING OCOM PMN09550

0002 0 0963 'RIAD EQU 2	 ADDROOF SCTR CONTAINING RES IMGE PMN09560

0003 0 0964 'SLET EQU 3	 ADOR OF SCTR CONTAINING SLET PMN09570

0006 0 0965 'P181 EQU 6	 AMR Of SCTR CONTAINING RELD TBL PMN09580

0007 0 0966 'HONG EQU 7	 ADDR OF SCTR CONTAINING PAGE MDR PMN09590

0000 0 0967 15TRT EQU 0	 ADDR OF SCTR W/ COLD START PROG PMN09600
0968 PMN09610

0969 * EQUIVALENCES FOR THE CORE IMAGE HEADER PMN09620
0970 * PMN09630

0000 0 0971 eXEQA EQU 0	 PITY AMR OF CORE LOAD EXEC ADOR PMN09640

0001 0 0972 'CMON EQU I	 1/LTV ADDR Of WO CNT OF COMMON PMN09650

0002 0 0973 'DREQ EQU 2	 RLTV ADDR OF DISK I/0 INDICATOR PMN09660

0003 0 0974 'FILE EQU 3	 RLTV ADOR OF NO. FILES DEFINED PMN09670

0004 0 0975 "MKT EQU 4	 PITY ADDR OF WD CNT OF CI HEADER PMN09680
0005 0 0976 'LSCT EQU 5	 SCTR CNT OF FILES IN MK STORAGE PMN09690
n006 0 0977 'LOAD EQU 6	 PITY ADDR OF LOAD AMR CORE LOAD PMN09700
0007 0 0978 'XCTL EQU 7	 RLTV ADDR OISKI/DISKN EXIT CTRL PMN09710
0008 0 0979 'TVWC EQU 8	 RLTV ADDR OF WO CNT OF TV PMN09720
0009 0 0980 'WONT EQU 9	 RLTV AMR OF WO CNT OF CORE LOAD PMN09730
000A 0 0981 'XR3X EQU 10	 RLTV ADOR OF EXEC SETTING OF XR3 PMN09740
ODOR 0 0982 'TTVX EQU 11	 RLTV ADDR OF 1ST WD OF ITV PMN09750
0011 0 0983 'TLS4 EQU 17	 RLTV ADM OF 1ST WD OF IBT4 PMN09760
nnIA 0 0984 'OVSW EQU 26	 RLTV ADDR OF LOCAL/SOCAL SWITCH PMN09770
0010 0 0985 'CORE EQU 28	 CORE SIZE OF BUILDING SYSTEM PMN09780
0010 0 0986 'MONO EQU 29	 RLTV ADDR OF LAST WD OF CI HDR PMN09790

0987 * PMN09800
0988 * EQUIVALENCES FOR LET/FLET PMN09810
0989 * PMN09820

0005 0 0990 'LEH° EQU 5	 WORD COUNT OF LET/FLET HEADER PMN09830
0003 n 0991 eLFEN EQU 3	 NO OF WDS PER LET/FLET ENTRY PMN09840
0000 0 0992 'SCTN EQU 0	 RITY ADDR OF LET/FLET SCTR NO. PMN09850
0001 0 0993 'UAFX EQU 1	 RLTV ADOR OF SCTR ADDR OF UA/FXA PMN09860
0003 0 0994 'WDSA EQU 3	 RLTV ADDR OF NOS AVAIL IN SCTR PMN09870
0004 0 0995 'NEXT EQU 4	 RLTV ADOR OF ADDR NEXT SCTR PMN09880
0000 0 0996 1LFNM EQU 0	 PITY ADDR OF LET/FLET ENTRY NAME PMN09890
0002 0 0997 1BLCT EQU 2	 PITY ADDR OF LET/FLET ENTRY OBCT PMN09900

0998 * PMN09910
0999 * MISCELLANEOUS EQUIVALENCES PMN09920
1000 * PMN09930

0033 0 1001 "ISTV EQU 51	 ISS NO. ADJUSTMENT FACTOR 	 2-1 PMN09940
0005 0 1002 1MXDR EQU 5	 MAX NO. DRIVES SUPPORTED PMN09950
0380 0 1003 'COMZ EQU 896	 LOW COMMON LIMIT FOR DISKZ PMN09960
0400 0 1004 'COMI EQU 1216 LOW COMMON LIMIT FOR DISKI PMN09970
0600 0 1005 'COM2 EQU 1536 LOW COMMON LIMIT OF DISKN PMN09980
0011 n 1006 'TCNT EQU 17	 NO. TRIES BEFORE DISK ERROR PMN09990
00F9 0 1007 'OKEP MI 02000+7 LIEF ENTRY TO DISKI/N PMN10000
0087 0 1008 'DKIP EQU 02000+5 DISK I/O INTERRUPT ENTRY PT PMNI0010
0010 0 1009 'SCIB EQU 16	 CIB SECTOR COUNT	 2-2 PMNI0020
0003 0 1010 'HCTB EQU 3	 HIGH COMMON SECTOR COUNT 	 2-2 PMN10030
1000 0 1011 'MCOR EQU 4096	 SIZE OF MINIMUM CORE	 2-2 pMNI0040
0078 0 1012 Y EQU 127 PMN10050

1013 * PMN10060
0004 0 1014 1CION EQU 4	 RLTV ADM CARTRIDGE ID	 2-2 PMN10070
0005 0 1015 'COPY EQU 5	 RLTV ADDR COPY INDICATOR	 2-2 PMN10080
0001 0 1016 'OCTB EQU 1	 ;MTV ADDR DEFECTIV CYL TBL	 2-2 PMN10090
0008 0 1017 'DTYP EQU 8	 RLTV ADDR DISK TYPE INOR	 2-2 PMN10100

Appendix B. Listings 335

COLD START PROGRAM

ADDR REL CPRJECT ST.NO. LABEL OPCO FT OPERANDS ID/SUNO

1019 ***** * ****** ************************* ********* ***** pmN10120
1020 * PMN10130
1021 *STATUS - VERSION 2, monifICATION LEVEL 5.	 * pMN10140
1022 * pmN10150
1021 *FUNCTION/OPERATION -	 * PMN10160
1024 *	 THIS PROGRAM IS READ INTO CORE FROM SECTOR 0 	 * PmE)10170
1025 *	 OF THE SYSTEM CARTRIDGE AND TRANSFERRED TO BY * pMN10180
1026 *	 THE COLD START CARD.	 DEFECTIVE CYLINDER	 * PMN10190
1027 *	 ADDRESSES, CARTRIDGE ID AND DISK? ARE ALSO ON * pmN10200
1028 *	 SECTOR 0 AND ARE READ IN AT THE SAME TIME. 	 * pMN10210
1029 *	 ALL THAT REMAINS FOR THE COLD START PROGRAM IS* PMN10220
1030 *	 TO READ IN THE RESIDENT IMAGE, SAVE THE	 * PMN10230
1031 *	 CARTRIDGE	 ID AND TRANSFER TO THE AUXILIARY	 * PMN10240
1032 *	 SUPERVISOR THROUGH SOUMP IN THE RESIDENT	 * pmN10250
1033 *	 MONITOR.	 * PMN10260
1034 • pMNIO270
1035 *ENTRY - CR010-2	 * pmN10280
1036 *	 ENTER PROGRAM BY TRANSFER FROM COLD START CARD* PMN10290
1037 * pMN10300
1038 *INPUT -	 * pMN10310
1039 *	 THE CARTRIDGE ID OF LOGICAL DRIVE ZERO (THE 	 * PMN10320
1040 *	 SYSTEM CARTRIDGE)	 IS READ IN FROM SECTOR 0 	 * PMNI0330
1041 *	 WITH THE COLD START PROGRAM.	 * pmNI0140
1042 * pmN10350
1043 *OUTPUT -	 * pmNI0360
1044 *	 * THE RESIDENT IMAGE IS READ INTO CORE FROM 	 * PMN10370
1045 THE DISK.	 * PMN10380
1046 *	 *	 IN COMMA-	 * PMN10390
1047 SACDE	 * pmN10400
1048 sCIBA-I	 * pmN10410
1049 SCION	 * pMN10420
1050 SCYLN	 * pMN10430
1051 SOBSY	 * pMN10440
1052 SIOCT	 * PMN10450
L053 * PMN10460
1054 *EXTERNAL REFERENCES -	 * pmN10470
1055 *	 OZ000	 SUBROUTINE TO PERFORM DISK I/0.	 * pmNI0480
1056 * pmNI0490
1057 *EXITS -	 * pMN10500
1058 *	 THE ONLY EXIT IS TO THE AUXILIARY SUPERVISOR	 * PMN10510
1059 *	 AS FOLLOWS-	 * pmNI0520
1060 BSI	 SouMP	 * pms110530
1061 DC	 -1	 * PmNI0540
1062 *	 * pmN10550
1063 *TABLES/WORK AREAS - N/A	 * pmNI0560
1064 * pMN10570
1065 *ATTRIBUTES -	 * pMN10580
1066 *	 THIS PROGRAM IS NOT NATURALLY RELOCATABLE. 	 * PmN10590
1067 *	 * PmN10600
1068 *NOTES -	 * pmN10610
1069 *	 DISK ERRORS RESULT IN A WAIT AT S p ST2.	 * PmN10620
1070 *** **** *****•**** ********* *********** ************ ** pmN10630
1072 PMN10650
1073 * READ THE RESIDENT IMAGE INTO CORE PmN10660
1074 PMN10670

01E0 0 6I7F 1075 LOX	 1 Y PMN10680
01E1 0 087E 1076 Lon	 CR920	 SET UP WORD COUNT AND SCTR PMNI0690
01E2 00 00000004 1077 CR010 STD	 L	 scIBA-1	 *ADDR OE RESIDENT IMAGE PmN10700
01E4 0 0125 107s STO	 1	 SOCYL- y	*INITIALIZE DEF CYL NO. 1 PMNI0710
01E5 0 0184 1079 Lo	 1 3-y	 FETCH LOG DRIVE 0 AREA CODE PMN1.0720
01F6 0 0120 1080 STO	 1 SACDE-Y	 *AND STORE	 IT IN COMMA pmN10730
01E7 0 0029 1081 sTO	 CR920+1	 SAVE THE AREA CODE PmN10740
01E9 0 0156 1082 LD	 I 02000-2-27-Y FETCH AND SAVE THE PmNI0750
01E9 0 DOE1 1083 STO	 SCION	 *CARTRIDGE	 ID pmN10760
(ILEA 0 COER 1084 LO	 CR010+1	 FETCH CORE ADDR OF RESIDENT PMN10770
01E9 0 1890 1085 SRT	 16	 *IMAGE AND PUT IN EXTENSION PMN10780
01 EC 0 016E 1086 STO	 1 soBSY-Y	 CLEAR DISK BUSY INDICATOR PmN10790
DIED 0 0118 1087 STO	 1 SCYLN-Y	 INITIALIZE ARM POSITION pMN10800
OlEE 0 4173 1088 BSI	 1 01000- y	FETCH RESIDENT IMAGE PMN10810
OIEF 0 1000 1089 WAIT	 WAIT Our THE INTERRUPT pmN10820

1090 PmNi0910
1091 * INITIALIZE	 ITEMS IN COMMA pmp410840
1092 pmN10850

01E0 0 1810 1093 SRA	 16 PmN10860
01E1 0 0193 1094 STO	 1 slOCT-Y	 CLEAR IOCS COUNTER PmNI0870
01E2 0 C81B 1095 Lon	 CR910 pmNI0880
01E1 0 0985 1096 STD	 1 SCIBA-I-Y *FOR SAVING CORE ON THE CIB PMN10890
01F4 0 COIC 1097 LO	 CR920+1	 FETCH AREA CODE PMNI0900
01E5 0 01 20 1098 STo	 1 SACDE-Y	 RESET AREA CODE PmN10910
01F6 0 C016 1099 LO	 CR905	 INITIALIZE WO ZERO TO BR TO PMN10920
01E7 0 0181 1100 STO	 1 0-Y	 *DUMP ENTRY POINT PLUS 1 Pms110930

1101 PMN10940
1102 * TRANSFER TO THE AUXILIARY SUPERVISOR pMN10950

336

ADDR REL OBJECT ST.NO. LABEL OPCD FT OPERANDS	 ID/SEQN0

1103 * TO COMPLETE INITIALIZATION	 PMNI0960
110401 1 * PMNI0970

01F8 0 4100 1105 BSI	 1 (DUMP—Y	 BR TO AUXILLIARY SUPERVISOR PMN10980
01F9 0 FFF 1106 DC —1	 *FOR JOB PROCESSING	 PMN10990

1107 * PMN11000
01FA no13 1108 855 19	 PATCH AREA	 PMN11010

110911 * PMN11020
1110 * CONSTANTS AND WORK AREAS	 PMN11030
1111 * PMNII040

0700 0 703F 1112 CR905 MD%	 X $DUMP+1-1 TO BE STORED IN LOCN ZERO	 PMN11050
070E 0 0000 1113 CR910 DC 0	 WC CNT,SCTR ADDR OF	 2-5 PMNI1060
020F 0 000 1114 DC 'HONG	 *HARMLESS WRITE TO DISK	 PMN11070
0210 0 00F8 1115 CR920 DC
0211 0 0002 1116 DC

fi4fg—$CH12 WD CNT AND SCTR	 PMN11080
*ADDR OF RESIDENT IMAGE	 PMN11090

0212 021 1117 END *	 PMN11100

SYMBOL

CR010
CR905
CR910
CR970
07000
01010
0Z020
01030
01060
011170
01100
D1180
07185
D2190
01210
01215
01220
D1730
nz,15
01240
01250
07780
07100
07110
07340
01350
07110
01185
01390
07400
D7410
07900
01901
01902
01904
07905
07906
01907
07908
07909
07910
D1911
01912
01913
D2914
07915
07916
01970
01975
01910
01915
07940
01945
02950
01955
01960
01965

VALUE

01F2
0700
020E
0210
00F2
00F7
00F9
()0FF
0104
0106
0108
010E
0116
0110
0146
0I4C
014E
0152
0154
0159
0168
0169
0174
0179
0188
0190
019D
0142
0165
OlAF
0101
0122
0171
0174
0126
0127
0178
0129
017A
0128
012C
0170
012F
017E
0130
0111
0132
0134
0115
0176
0137
0138
0139
011A
01113
0130
0130

REL

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

DEEM

1077
1112
1113
1115
0610
0617
0619
0625
0610
0634
0639
0645
0651
0660
0711
0719
0724
0710
0771
0735
0750
0751
0763
0767
0781
0790
0805
0810
08I1
0831
0833
0669
0670
0671
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696

CROSS—REFERENCE

REFERENCES

1084
1099
1095
1076	 1081	 1097
0323	 0350	 0627	 0646
0628	 0641
0613
0663
0650
0813	 0819	 0845	 0853
0619	 0670	 0715
0618	 0634
0826
0770
0833
0784
0787
0629
0674	 0654
0864
0758
0737	 0743	 0744	 0745
0757
0719
0726
0662	 0741	 0824
0802

0809
0792
0858
0677	 0804
0823
0651	 0713	 0854	 0861
0635	 C805	 0812	 0818
0850
0747	 C840
0774
0817
0771
0647	 0769	 0781	 0799
0779
0658	 0734	 0780	 0831
0764
0719
0659
0834
0775
0770
0755
0724
0749
0622	 0773	 0776	 0851
0778
0765
0742
0718

0707

0756

0841

0835

0763

0856

0955

0862

0956 1007	 1008 1082 1088

Appendix B. Listings 337

SYMBOL VALUE REL DEFN REFERENCES

01970 011E 0 0697 0740
01975 013F 0 0698 0777	 C849
02980 0140 0 0699 0768
01985 0141 0 0700 0838
07990 0142 0 0701 0766	 0772 0843
02995 0141 0 0702 0803
SAME 009F 0 0437 0646	 0697 1080 1098
SACEX 00IA 0 0950 0317
SCCAD 0074 0 0164
SCH12 0006 0 0254 1115
SCILA 0005 0 0253 0311	 1077 1096
SCION 0108 0 0871 1083
SCILA 005A 0 0951 0348
SCLSW 0018 0 0948
SCOMN 0007 0 0255
SCORE 000E 0 0267
SCPTR 007F 0 0374
SCTSW 000F 0 0268
SCWCT 0072 0 0162
SCXR1 0017 0 0947 0319
SCYLN 009A 0 0427 0695	 0697 1087
SOADR 0010 0 0269
SOBSY 00EF 0 0552 0611	 0626 0653 0712 0954 1086
SDCDE 0077 0 0367
SDCYL 00A4 0 0448 0695	 1078
SODSW 000D 0 0530 0648	 078? 0806
SOMPF 0019 0 0949 0321
SDREQ 0012 0 0271
(DUMP 003F 0 0316 0120	 0548 1105 1112
SDZ1N 0076 0 0366
(EXIT 0038 0 0302
$FLSH 0071 0 0360
SEPAO 0095 0 0418
SGCOM 0063 0 0354
(GRIN 0064 0 0355
(HASH 0014 0 0273 0945	 0946 0947 0948 0949 0950
SPBSY 0013 0 0272
SI8T2 0089 0 0952
SI8T4 0004 0 0953
SIOCT 0032 0 0293 0330	 0713 0710 1094
SIREQ 002C 0 0287 0514
SI200 0083 0 0474 0261	 0485
11205 0088 0 0480 0952
$1210 008A 0 0481 0475	 0476 0477
51290 00C2 0 0486 0478	 0484
(1400 00C4 0 0506 0263	 0525
$1403 0000 0 05(6 0513
$1405 0003 0 0520 0953
$1410 0005 0 0521 0508	 0509 0510
$1420 00E6 0 0545
$1425 00F4 0 0548 0547
11490 000E 0 0531 0507	 0524
$1492 00E0 0 0532 0511
$1494 00E2 0 0535 0517
11496 00E4 0 0542 0546	 0957
SKCSW 007C 0 0372
(LAST 0033 0 0294
SLFVO 0008 0 0259
(LEVI 0009 0 0260
SLEV2 000A 0 0261
SLEV3 000B 0 0262
SLFV4 nooC 0 0263
SLEV5 000D 0 0264
SLINK 0039 0 0306 0340
SLKNM 0014 0 0945 0346
SLSAD 0075 0 0365
SNOUP 0034 0 0295
SNXEQ 0035 0 0296
SPAUS 00F0 0 0955
SPBSY 0036 0 0297
(FOCI 0037 0 0298
SPHSF 0078 0 0368
SPRET 0028 0 0282 0284	 0725
$P511 0081 0 0380 0382
SPIT? 0085 0 0386 0388	 0660
$P513 0089 0 0392 0394
$P314 0080 0 0398 0400
SRMSW 0016 0 0946 0339
$RWCZ 00E1 0 0956

1115

338

SYMROL VALUE REL DEFN REFERENCES

SSCAN 0020 0 0276
$SCAT 0011 0 0270 0331
$SNLT 00EF 0 0954
$STOP 0091 0 0405 0264 0407
$SYSC 00E0 0 0533
$5000 0052 0 0338 0302
$S100 0053 0 0339 0308 0325
$5150 0059 0 0345 0951
$5200 005E 0 0349
$5250 0048 0 0329 0318 0333 0147 0.351
$5300 004C 0 0330 0332
$5900 0030 0 0310 0322 0324
$S910 003E 0 0312 0338
$UFDR 0070 0 0373
suF10 0079 0 0369
SULET 002D 0 0288
$WR01 007B 0 0371
$WSDR 007A 0 0370
$XR3X 00F4 0 0957
VEND 01E0 0 0875 0604 0606
$1132 007E 0 0375
$1403 0080 0 0376
X2 00F2 0 0707 0660 0764 0765 0766 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778

0779 C780 0781 0782 0799 0803 0804 0805 0806 0812 0813 0817 0818 0819 0823
0831 0834 0835 0838 0840 0841 0843 0845 0849 0850 0851 0853 0854 0856 0861
0862

007F 0 1012 1075 1078 1079 1080 1082 1086 1087 1088 1094 1096 1098 1100 1105
NACIN 001E 0 0902
NANDU 0023 0 0908
N8NDU 0078 0 0909
NCBSW 000A 0 0885
SCIAD 0018 0 0901
NCIBA 001C 0 0913
NCIDN 0037 0 0912
NCSHN 005A 0 0919
NDFICT 0016 0 0881
NOCSW 0018 0 0898
NECNT 0021 0 0907
/FENT ,/ 0010 0 0891
NECNT 0007 0 0882
#FHOL 0014 0 0894
IFLET 0048 0 0916
#FMAT 0046 0 0915
NFPAD 0070 0 0910
NEWE 0015 0 0895
#GCNT 001E 0 0904
NGRPH 0010 0 0901
NJBSW 0009 0 0884
#LCNT 0008 0 0886
OLOSw 00IF 0 0905
NMDF1 000D 0 0888
4m0F2 000E 0 0889
NmPSW 000C 0 0887
#NAME 0004 0 0880
NNCNT 000F 0 0890
OPCID 0037 0 0911
NPIOD 0019 0 0899
NPPTR 00IA 0 0900
#RP67 0011 0 0892
NSCRA 0041 0 0914
#SYSC 0008 0 0883
4TODR 0012 0 0893
NUHOL 0016 0 0896

NULET 0050 0 0917
fuszE 0017 0 0897
NWSCT 0055 C 0918
NX1Sw 0020 0 0906
1 13LCT 0002 0 0997
'CDCV 0093 0 0934
. cInN 0004 0 1014
1 C1L1 00A0 0 0940 0870
'CIL? 00A1 0 0941
1 CLR0 0078 0 0926
1 CMON 0001 0 0972
I Ccm7 0380 0 1003
1 COM1 0400 0 1004
'COM2 0600 0 1005
'COPY 0005 0 1015

• Appendix B 338. 1

SYMBOL VALUE REL DEFN REFERENCES

'CORE 0010 0 0985
'CPTR 008E 0 0929
'OCOM 0001 0 0962
'OCT8 0001 0 1016
"DKEP 00F9 0 1007
'OUP 0177 0 1008
"ONTO 0098 0 0939
'DREG? 0002 0 0973
'07YP 0008 0 1017
. nzin 0096 0 0937 0605
'DUD 0097 0 0938
'FILE 0003 0 0974
'HC19 0003 0 1010
'HONG 0007 0 0966 1114
'MEND 001D 0 0986
'HWCT 0004 0 C975
' - LOAD 0000 0 0961
'TIS4 0011 0 0983
"157V 0033 0 1001
'ITVX 000B 0 0982
'KBCP 0092 0 0933
'KICV 0095 0 0936
'1040 0006 0 0977
'LEEN 0003 0 0991
"LEND 0005 C 0990
'LFNM 0000 0 0996
°1507 0005 0 0976
'HCOR 1000 0 1011
'MCRA 006E 0 0923
'MXDR 0005 0 1002
'NEXT 0004 0 0995
'OVSW 001A 0 0984
• RTCV 0094 0 0935
'RIAD 0002 0 0963 1116
'RT51 0006 0 0965
'5C19 0010 0 1009
'SCTN 0000 0 0992
'SIFT 0003 0 0964
'STRT 0000 0 0967
'5UP6 0073 0 0924
'SUET 0074 0 0925
'TCNT 0011 0 1006 0625
"TVWC 0008 0 0979
'UAFX 0001 0 0993
'WONT 0109 0 0980
s wnss 0003 0 0994
'XCTL 0007 0 0978
'XEOA 0000 0 0971
'XR3X 0004 0 0981
'1132 onsn 0 0928
'1134 0091 0 0932
'1403 ow 0 0927
'1442 0090 0 0931
'2501 008F 0 0930

338.2•

APPENDIX C. ABBREVIATIONS

Below is a list of the abbreviations used in the 	 Abbreviation	 Meaning
listings of the 1130 Disk Monitor System, Version
2. Included in this list are the abbreviations used 	 CC	 Card Column
in current 1130 and 1800 systems. 	 CD	 Card

CDE	 Code
Abbreviation	 Meanilai	 CHAN	 Channel

CHAR	 Character
ABS	 Absolute	 CHK	 Check
ACC	 Accumulator, Accumulate 	 CHG	 Change
ACCT	 Account	 CHKPT	 Checkpoint
ACT	 Actual	 CIB	 Core Image Buffer
ADDL	 Additional	 CIL	 Core Image Loader
ADDR	 Address	 CLB	 Core Load Builder
ADJ	 Adjust	 CLD	 Core Load
ADV	 Advance	 CLR	 Clear
AI	 Analog Input	 CLS	 Close
ALG	 Algebraic	 CMN	 COMMON
ALLOC	 Allocate	 CMP	 Compare
ALLOCN	 Allocation	 CMPL	 Complement
ALPHA	 Alphabetic	 COMMA	 Communication Area
ALT	 Alternate, Alteration	 COMP	 Compute
AO	 Analog Output	 CNSL	 Console
APPDGE	 Appendage	 CNT	 Count
APPROX	 Approximate	 COL	 Column
ARITH	 Arithmetic	 COMM	 Communication
ASDNG	 Ascending	 CON	 Constant
ASM	 Assembler	 COND	 Condition
ASMBL	 Assemble	 CONT	 Continue
ASGN	 Assign	 CORR	 Correction
AUX	 Auxiliary	 CP	 Console Printer, Control Parameter
AVAIL	 Availability	 CPLD	 Coupled
AVG	 Average	 CPTN	 Computation

CTR	 Counter
BEGNG	 Beginning	 CTRL	 Control
BFR	 Buffer	 CURB	 Current
BKSP	 Backspace	 CVRT	 Convert
BLK	 Block	 CYL	 Cylinder
BLKCNT	 Block Count
BLNK	 Blank	 DAO	 Digital-Analog Output
BR	 Branch	 DB	 Disk Block
BM	 Buffer Mark	 DC	 Data Channel

DCMT	 Document
CAD	 Core Address	 DEC	 Decision
CALC	 Calculate, Calculator 	 DECML	 Decimal
CAR	 Channel Address Register	 DECR	 Decrement
CARR	 Carriage	 DEF	 Defective
CART	 Cartridge	 DEFN	 Define
CAT	 Catalog	 DEL	 Delete
CATLGD	 Cataloged	 DESCG	 Descending

Appendix C. Abbreviations 339

Abbreviation Meaning Abbreviation Meaning

DE TM Determine FREQ Frequency
DEVC Device FUNC Function
DGT Digit FWD Forward
DI Digital Input FXA Fixed Area
DICT Dictionary FXD Fixed
DIM Dimension
DIRCTY Directory GEN Generator
DISP Displacement GENL General
DISPCHG Dispatching GM Group Mark
DK Disk GT Greater Than
DLMTER Delimeter GTE Greater Than or Equal To
DPC Direct Program Control
DR Drive HDLER Handler
DSW Device Status Word HDR Header
DT Defective Track HEX Hexadecimal
DUP Disk Utility Program HI High
DUPCTN Duplication HLT Halt

HSK Housekeeping
EBC EBCDIC HYPER Hypertape
E LIM Eliminate
ELT Element TAR Instruction Address Register
ENT Entry IC Instruction Counter
EOF End Of File ID Identification
E OJ End Of Job IDX Index
EOR End Of Reel ILS Interrupt Level Subroutine
EP Extended Precision ILSW Interrupt Level Status Word
EQ Equal, Equate INCR Increment
EQU Equate IND Indicate
ERP Error Parameter INDN Indication
ERR Error INDR Indicator
ES Electronic Switch INFO Information
ETV Executive Transfer Vector INITLZ Initialize
EVAL Evaluate INQ Inquire
EXCH Exchange INT Initial
EXEC Execute INTFCE Interface
EXP Exponent INTLD Interlude
EXPR Expression INTM Interim
EXTYP Exit Type INTMD Intermediate
EXTR Extract INTNL Internal

INTRPT Interrupt
FAC Floating Accumulator I/O Input/Output
FOR FORTRAN IOAP I/O Area Parameter
FIO FORTRAN I/O IOCC I/0 Control Command
FLD Field IOCR I/0 Control Routine
FLDL Field Length INST Instruction
FIG Figure INTERP Interpret
FLET The Location Equivalence Table INVAL Invalid

for the Fixed Area ISS Interrupt Service Subroutine
FLT Floating ITER Iterate, Iteration
FMT Format ITG Integer
FR From I/P Input

340

Abbreviation Meaning Abbreviation Meaning

KB Keyboard OPN Open
KP Keypunch OPND Operand

OPTN Option
LBL Label OPTR Operator
LCT List Control Table ORG Origin
LD Load OVFLO Overflow
LET Location Equivalence Table for OVLP Overlap

User Area OVLY Overlay
LFT Left
LH Left-Hand, Leftmost PAPT Paper Tape
LINKB Link/Busy Word PARAM Parameter
LIT Literal PARTL Partial
LN Line PERF Perforate, Perforated, Perforation
LNG Length PERPHL Peripheral
LO Low PFM Perform
LOC Location PG Page
LOCAL Load-on-Call Subroutine PGLIN Page and Line
LT Less Than PH Phase
LTE Less Than or Equal To PHYS Physical
LTR Letter PK Pack
LVL Level PKD Packed

PNCH Punch
MACH Machine PNDG Pending
MAGT Magnetic Tape POS Position
MAINT Maintain, Maintenance PR Print
MAL F Malfunction PRE C Precision
MAX Maximum 'PRE V Previous
MEM Memory PRGE Purge
MIN Minimum PRI Priority
MISC Miscellaneous PRINC Principal
ML Mainline PROC Process
MN Mnemonic PROG Program
MOD Modification PROT Protect
MON Monitor PRTN Partition
MPXR Multiplexor PRVNT Prevent
MPY Multiply PT Pointer, Point
MRGE Merge PTR Printer
MSG Message PTV Positive
MSTR Master

QUALFD Qualified
NEC Necessary QUANT Quantity
NEG Negative QUE Queue
NO. Number
NORM Normalize, Normalized RAND Random
NUM Numeric R + S Reset and Start
NXT Next R/W Read/Write

RCD Record
OBJ Object RCV Receive
OP Operation RD Read
0/P Output RDY Ready

Appendix C. Abbreviations 341

Abbreviation Meaning Abbreviation Meaning

REF Reference SUB Subtract
REG Register SUBP Subprogram
REL Release SUBR Subroutine
RELOC Relocate, Relocatable SUBSC Subscript
REQ Request, Require SUMM Summarize
RET Return SUP Suppress
RH Right-Hand, Rightmost SUP Supervisor
RI Read in SYNC Synchronize,	 Synchronizer
RLS Reels SYM Symbol
RLTV Relative SYSRx System Reserved Word (x is a digit)
RM Record Mark SYST System
RO Read Out SW Switch
RPT Report
RSLT Result TBL Table
RST Reset TECHNQE Technique
RSTRT Restart TEMP Temporary
RT Right TERM Terminal, Terminate
RTE Route TM Tapemark
RTN Routine TMN Transmission
RWD Rewind TMT Transmit

TOT Total
SAD Sector Address TP Tape
SAT Satellite TR Transfer
SAR System Action Required TRK Track
SCHEI) Schedule, Scheduler TRLR Trailer
SCN Scan TRUNC Truncate, Truncation
SCTR Sector TST Test
SECT Section TU Tape Unit
SEL Select TV Transfer Vector
SEN Sense TW Typewriter
SEQ Sequence
SEQNO Sequence Number UA User Area
SER Serial UAR User Action Required
SEG Segment UFLO Underflow
SIG Signal UNC Unconditional
SIM Simulator UNLD Unload
SK Skeleton UNPKD Unpacked
SLET System Location Equivalence Table UTIL Utility
SM Storage Mask
SNGL Single V Version
SOCAL System Load-On-Call Subroutine VAL Value
SP Space VAR Variable
SRCH Search VIOL Violation
SPEC Specification, Specify VOL Volume
ST Store
STA Station WD Word
STD Standard WM Word Mark
STG Storage, Storing WR Write
STMNT Statement WRK Work
STP Standard Precision WS Working Storage

342

Abbreviation Meaning Abbreviation Meaning

W/ With 1st First
W/O Without 2nd Second

3rd Third
XPL Explain, Explanation 4th Fourth
XR1 Index Register 1 5th Fifth
XR2 Index Register 2 6th Sixth
XR3 Index Register 3 7th Seventh
XTR Extra 8th Eighth

9th Ninth
Z Zero
ZN Zone

Appendix C. Abbreviations 343

APPENDIX D. MICROFICHE REFERENCE TABLE

Disk Monitor Microfiche Disk Monitor Microfiche
System Component Identification System Component Identification

System Loader Phase 17 KAA. 017.00
(Paper Tape) Phase 18 KAA. 018.00

Bootstrap BAA. 001.00 Phase 19 KAA. 019.00
Phase 1 BAA. 002.00 Phase 20 KAA. 020.00
Phase 2 BAA. 003.00 Phase 21 KAA. 021.00

Phase 22 KAA. 022.00
System Loader (Card) Phase 23 KAA. 023.00

Bootstrap BAA. 004.00 Phase 24 KAA. 024.00
Core Image Loader BAA. 005.00 Phase 25 KAA. 025.00
Phase 1 BAA. 006.00 Phase 26 KAA. 026.00
Phase 2 BAA. 007.00 Phase 27 KAA. 027.00

Disk Utility Program Assembler Program
DUPCO JAA. 001.00 Phase 0 MAA. 001.00
DCTL JAA. 002.00 Phase 1 MAA. 007.00
STORE JAA. 003.00 Phase 1A MAA. 008.00
FILEQ JAA. 004.00 Phase 2 MAA. 012.00
DDUMP JAA. 005.00 Phase 2A MAA. 013.00
DMPLT JAA. 006.00 Phase 3 MAA. 010.00
DE LET JAA. 007.00 Phase 4 MAA. 011.00
DFINE JAA. 008.00 Phase 5 MAA. 015.00
DEXIT JAA. 009.00 Phase 6 MAA. 016.00
CDFAC JAA. 010.00 Phase 7 MAA. 017.00
KBFAC JAA. 011.00 Phase 7A MAA. 018.00
PTFAC JAA. 012.00 Phase 8 MAA. 019.00
PRE CI JAA. 013.00 Phase 8A MAA. 020.00

Phase 9 MAA. 014.00
FORTRAN Compiler Phase 10 MAA. 003.00

Phase 1 KAA. 001.00 Phase 10A MAA. 009.00
Phase 2 KAA. 002.00 Phase 11 MAA. 004.00
Phase 3 KAA. 003.00 Phase 12 MAA. 005.00
Phase 4 KAA. 004.00 Error Message Phase MAA. 006.00
Phase 5 KAA. 005.00 Punch Conversion
Phase 6 KAA. 006.00 Phase MAA. 021.00
Phase 7 KAA. 007.00 Read Conversion Phase MAA. 002.00
Phase 8 KAA. 008.00
Phase 9 KAA. 009.00 Supervisor
Phase 10 KAA. 010.00 Monitor Control Record
Phase 11 KAA. 011.00 Analyzer NAA. 001.00
Phase 12 KAA. 012.00 System Core Dump
Phase 13 KAA. 013.00 Program NAA. 002.00
Phase 14 KAA. 014.00 Auxiliary Supervisor NAA. 003.00
Phase 15 KAA. 015.00
Phase 16 KAA. 016.00 Core Load Builder OAA. 001.00

Appendix D. Microfiche Reference Table 345

Disk Monitor Microfiche Disk Monitor Microfiche
System Component Identification System Component Identification

System Device Subroutines PAA. 001.00 FIXI SAA. 005.00
FLOAT SAA. 005.00

Standard Precision IFIX SAA. 005.00
Arithmetic and Function NORM SAA. 005.00
Subroutines SNR SAA. 005.00

FADI) RAA. 001.00 XDD SAA. 006.00
FAXI RAA. 001.00 XMD SAA. 006.00
FDIV RAA. 001.00 XMDS SAA. 006.00
FDVII. RAA. 001.00
FGETP RAA. 001.00 FORTRAN Common
FLD RAA. 002.00 Subroutines (No
FMPY RAA. 002.00 Precision)
FSBR RAA. 002.00 FBTD TAA. 001.00
FABS RAA. 002.00 IABS TAA. 001.00
FATN RAA. 002.00 XSQR TAA. 001.00
FAXB RAA. 003.00 PAUSE TAA. 001.00
FEXP RAA. 003.00 STOP TAA, 002.00
FLN RAA. 003.00 SUBIN TAA. 002.00
FSIGN RAA. 003.00 SUBSC TAA. 002.00
FS1N RAA. 003.00 TTEST TAA. 002.00
FSQR RAA. 004.00 DATSW TAA. 002.00
FTANH RAA. 004.00 DVCHK TAA. 003.00
SEAR RAA. 004.00 FCTST TAA. 003.00
SFIF RAA. 004.00 ISIGN TAA. 003.00

OVERF TAA. 003.00
Extended Precision PDUMP TAA. 003.00
Arithmetic and Function SLITE TAA. 004.00
Subroutines TSTOP TAA. 004.00

EADD SAA. 001.00 TSTRT TAA. 004.00
EAXI SAA. 001.00
EDIV SAA. 001.00 FORTRAN Trace
EDVR SAA. 001.00 Subroutines
EGETP SAA, 001.00 SGOTO TAA. 009.00
ELD SAA. 002.00 STAR TAA. 009.00
EMPY SAA. 002.00 SIIF TAA. 009.00
ESBR SAA. 002.00
EABS SAA. 002.00 FORTRAN Conversion
EATN SAA. 002.00 Subroutines and Tables
EAXB SAA. 003.00 EBCTB TAA. 006.00
EEXP SAA. 003.00 GETAD TAA. 006.00
ELN SAA. 003.00 HOLEZ TAA. 007.00
ESIGN SAA. 003.00 HOLTB TAA. 007.00
ESIN SAA. 003.00
ESQR SAA. 004.00 FORTRAN I/O Subroutines
ETANH SAA. 004.00 SDFIO TAA. 004.00
SEAR SAA. 004.00 SDFND TAA. 005.00
SEIF SAA. 004.00 SFIO TAA. 005.00
FARO' SAA. 004.00 UFIO TAA. 006.00

346

Disk Monitor Microfiche Disk Monitor Microfiche
System Component Identification System Component Identification

FORTRAN Device ZIPCO UAA. 007.00
Subroutines BIDE C UAA. 007.00

CARDZ TAA. 006.00 BIND C UAA. 007.00
PAPTZ TAA. 007.00 BINHX UAA. 007.00
PNCHZ TAA. 007.00 CPE BC UAA. 008.00
PRNTZ TAA. 008.00 CPHOL UAA. 008.00
PRNZ TAA. 008.00 CPPT3 UAA. 008.00
READZ TAA. 008.00 DCBIN UAA. 008.00
TYPE Z TAA. 008.00 DE CBI UAA. 008.00
WRTYZ TAA. 008.00 EBCCP UAA. 009.00

EBHOL UAA. 009.00
Interrupt Level EBPA UAA. 009.00
Subroutines (ILS s) EBPT3 UAA. 009.00

ILSOO UAA. 001.00 HLE BC UAA. 009.00
ILSO1 UAA. 001.00 HLPT3 UAA. 010.00
ILSO2 UAA. 001.00 HOLCP UAA. 010.00
ILSO3 UAA. 001.00 HOLL UAA. 010.00
ILSO4 UAA. 001.00 PR TY UAA. 010.00

PT3CP UAA. 010.00
Interrupt Service PT3EB UAA. 011.00
Subroutines (ISSs) PTHOL UAA. 011.00

CARDO UAA. 002.00
CARD1 UAA. 002.00 Utility Dump Subroutines
OMPR1 UAA. 002.00 DMP80 UAA. 011.00
PAPT1 UAA. 002.00 DMTDO UAA. 011.00
PAPTN UAA. 002.00 DMPD1 UAA. 012.00
PAPTX UAA. 003.00
PLOT1 UAA. 003.00 System Subroutines
PNCHO UAA. 003.00 SYSUP UAA. 013.00
PNCH1 UAA. 003.00 FLIPR UAA. 012.00
PRNT1 UAA. 004.00
PRNT3 UAA. 004.00 Mainline Programs
READO UAA. 004.00 ADRWS UAA. 014.00
READ1 UAA. 004.00 COPY UAA. 014.00
TYPE 0 UAA. 005.00 DISC UAA. 015.00
WRTYO UAA. 005.00 DLCIB UAA. 016.00

DSLE T UAA. 016.00
Conversion Subroutines IDENT UAA. 017.00
and Tables ID UAA. 017.00

EBPRT UAA. 005.00 MODIF UAA. 018.00
HOLE B UAA. 005.00 PTUTL UAA. 019.00
HOLPR UAA. 006.00 CALPR UAA. 019.00
HXBIN UAA. 006.00 FSLEN UAA. 019.00
PAPEB UAA. 006.00 RDREC UAA. 020.00
PAPHL UAA. 006.00
PAPPR UAA. 006.00 Plotter Subroutines
SPEED UAA. 007.00 E CHAR VAA. 001.00

Appendix D. Microfiche Reference Table 347

Disk Monitor Microfiche Disk Monitor Microfiche
System Component Identification System Component Identification

ECHRX VAA. 001.00 PRNT2 WAA. 002.00
EGRID VAA. 001.00 SCAT1 WAA. 003.00
EPLOT VAA. 001.00 STRTB WAA. 004.00
ERULE VAA. 002.00
FCHAR VAA. 002.00 Stand-alone Programs
FCHRX VAA. 002.00 Cold Start Card ZAA. 001.00
FGRID VAA. 002.00 Console Printer
FPL OT VAA. 003.00 Core Dump
FRULE VAA. 003.00 (Paper Tape) ZAA. 003.00
PLOTI VAA. 003.00 Console Printer
PLOTX VAA. 003.00 Core Dump
POINT VAA. 003.00 (Card) ZAA. 002.00
SCALE VAA. 004.00 DCIP ZAA. 004.00
SCALE VAA. 004.00 1132/1403 Printer
XYPLT VAA. 004.00 Core Dump

(Paper Tape)
SCA Interrupt Service Phase 1 ZAA. 007.00
Subroutines (ISSs),
Conversion Subroutines,
and Conversion Tables

Phase 2
1132/1403 Printer

Core Dump (Card)

ZAA. 008.00

EBC48 WAA. 001.00 Phase 1 ZAA. 005.00
110L48 WAA. 001.00 Phase 2 ZAA. 006.00
HOLCA WAA, 001.00 PTREP ZAA. 009.00
HXCV WAA. 001.00 UCART ZAA. 010.00

:348

I
D character I	 blank

bits 	 7

APPENDIX E: DISK DATA FORMATS

FORTRAN Integer Data:

A FORTRAN integer can always be contained in one
word (16 bits) regardless of the amount of disk stor-
age allocated for the integer. If the *ONE WORD
INTEGERS control card is used in the job which
creates the FORTRAN disk data file, one data word
is allocated for each integer; otherwise, disk stor-
age allocation for each integer is that specified for
real variables (2 or 3 words).

Example:	 The integer field +32767 appears on a
disk file beginning * at record word n as described
below.

With one word integers and standard or extended
precision specified:

Record
Word:
Content: /7FFF

With standard precision only specified:

Record
Word:	 n-1

Content: /7FFF /XXXX

where /XXXX represents a fill word (meaningless
data).
With extended precision only specified:

Record
Word:	 n-1
Content: /0000 /01 F4

FORTRAN REAL DATA:

A complete description of FORTRAN real data ap-
pears in the IBM 1130 Subroutine Library, Form
C26-5929.

FORTRAN A-FORMATTED DATA (integer and real):
This data format is described in the IBM 1130/1800
Basic FORTRAN IV Language, Form C26-3715.

Commercial Subroutine Package (CSP) Al FORMAT:

CSP Al format consists of 1 character per 16-bit
word, left-justified:

Record
Word:	 n-2
Content: /7FFF

n-1
/XXXX /XXXX

The righthand 8 bit always contain the blank character
/40. This blank is inserted by the CSP subroutines.

where /XXXX represents a fill word.

*FORTRAN disk file build proceeds backwards from
the 320th word of each disk sector.

Two Word Integer Data:

A two-word integer is an integer which can be repre-
sented in two or less words (32 bits). Two words of
disk storage are allocated for each two-word integer.
One word integers may appear in the same disk data
file as two-word integers, but extended precision
real variables may not be used in a file which con-
tains two-word integers.

Example: Thetwo-word integer field +500 appears
on a disk file beginning at record word n as

CSP A2 FORMAT:

CSP A2 format consists of two characters per word:

1character	 character

bits 	 78

CSP A3 FORMAT
CSP A3 format represents 3 characters as a one-word
integer. The user supplies a 40 character translation
table and the A3 integer is formed from the relative
(to card column 40) positions of each character in this
table.

A3 integer = (N1-20)*1600+(N2*40)+N3

where N1, N2 and N3 are the relative translation
table positions of the first, second and third chara-

15

• APPENDIX E. 349

cters respectively.

CSP D1 FORMAT:

CSP Dl format consists of one digit per word, right-
justified, representation as described below:

00000000
	

0000 digit

bits	 0	 78
	

15

Example:	 The six-digit field 001968 appears on
a disk file beginning at record word n as follows:

Record
Word: n-5 n-4 n-3 n-2 n-1 n
Content: /0008 /0006 /0009 /0001 /0000 /0000

CSP D4 FORMAT:

CSP D4 format consists in general of four decimal
digits per word, with each digit occupying four bits
of the word. However, since the low order digit
carries the sign of the field, it is handled separately,
and is placed by itself in the last word of the D4
field. Any 4-bit blocks not used in the field are
filled with /F. This format is best illustrated with
examples.

Example 1: The five-digit field +12345 appears on
a disk file beginning at record word n as follows:

Record
Words	 n-1
Content: /0005	 /1234

Example 2: The six-digit field +123456 appears on
a disk file beginning at record word n as follows:

The sign of the field is reflected in the low order
(digit) word of the field, this word being the ones'
complement of the digit if the field is negative.

n-4	 n-3	 n-2	 n-1
/0006 /0009 /0001	 /0000 /0000

Record
Word:	 n-5
Content: /FFF7

Record
Word:	 n-2
Content: /0006

Record
Word:	 n-2
Contents /FFF8

n-1
/5FFF	 /1234

n-1
/56FF	 /1234

Example:	 The six-digit field -001968 appears on
a disk file beginning at record word n as follows:

Example 3: The seven-digit field -1234567 appears
on a disk file beginning at record word n as follows:

349. 1 •

APPENDIX F: DIAGNOSTIC CAPABILITIES

All DFCNV error messages and their identifying	 conversion begins. Any diagnostic except warning
numbers (listed below) are printed on the principal 	 messages (indicated below) causes program ter-
printer. All diagnostics are printed before data	 mination.

No. Message Cause

F01 INVALID DESCRIP-
1) 1.
	 Numeric field at card column XX outside

TION CARD FIELD- 11 allowable field range.
COL, XX ' 2.	 Unrecognizable character in field at

card column XX.

F02 FILE NAME NOT 1) 1.	 LET/FLET entry not found for file named
IN LET/FLET-Y „ on File Description card.

" 2.	 File name given on File Description card
invalid.
Y=1,	 input file error
=0,	 output file error

F03 FILE SIZE INVALID- 1) File size calculated from File Description
Y data exceeds actual file size.

4)
F04 INVALID FIELD SPE- 1.	 Numeric field of specification starting

CIFICATION SYN- at card column XX outside allowable field
TAX-COL. XX range.

2.	 Unrecognizable Character in field of
3) specification starting at card column XX.

Embeddeds or intervening blanks on
Field Specification card.
4.	 J-field type specification detected
starting at card column XX when extended
precision was specified.

F05 CSP A3 TABLE No A (col 72) card precedes/■ card when
MISSING F-field specified.

F06 INVALID CARD 2)	 1.	 Unrecognizable card precedes /*card
S EQUENCE il (column 72 not D, S, or A).

;(2.	 Multiple	 File Description cards read.
p 3.	 File Description card out of order.
" 4.	 No Field S ecification card precedes

/• card.

No. Message Cause,

5) F07 TRUNCATION
2)

High order truncation occurs in output field
OCCURS AT COL. at column XXX.
XXX.

1)
F08 CARD INPUT Card input is specified when principal input

INVALID device is console keyboard.

F09 OUTPUT RECORD Sum of individual field lengths exceeds
LENGTH INVALID specified record length for output.

F10 FIELD OUT OF
2)

RPG real number field starting at column
RANGE AT COL. XXX has been set to zeroes or nines in
XXX OF RECORb record YYYYY.
YYYYY

1) Program termination immediate.
2) Warning only.

3) No columns indication.

4) It is noted that certain invalid field specification formats and/or invalid
continuation marks (comma or blank allowable) which produce the F04
error message offset the "next" specification checked for validity. That
is, the field specification immediately following is performed and no com-
pression is built.

Example:	 The Field Specification card
Col.	 1	 72

6-16,I-15,X4
produces the following error message. F04 INVALID FIELD SPECIFICA-
TION SYNTAX - COL. 01.
The invalid specification 1-15 will not be diagnosed until the specification
6-16 is corrected to read 6-16.0.

5) Extraneous truncation warnings may result from certain invalid field
specifications.

• APPENDIX F. 349. 2

APPENDIX G: FIELD TYPE COMPRESSIONS

Compression for I-, J- and R-field type:

Word	 Contents

Compression for X-field type:

1 Address of I-, J- or R-conversion subroutine. Word Contents

2 The displacement in characters to the start of the 1 Address of X-conversion subroutine

3 bit 0-7
bit 8
bits 9-15

RPG output field in binary (equivalent to the
specified RPG column -1),
Precision (field length) of output field in binary
1 if output field is to be packed, 0 if not.
Scale of output field in binary

2 Number of words to be bypassed

Compression for B- and C-field type:

Word	 Contents

1
2

3 bits 0-7
bits 8-9
bits 10-15

Address of B (C) - conversion subroutine
The displacement in characters to the start of the
RPG output field in binary (equivalent to the spe-
cified RPG column -1).
Precision of output field in binary.
Number of words per entry.
Number of characters per entry.

Compression for D- and E-field type:

Word	 Contents

1
2

3 bits 0-7
bit 8
bits 9-15

4 bits 0-7
bits 8-15

Address of D- or E-conversion subroutine
The displacement in characters to the start of the
RPG output field in binary (equivalent to the spe-
cified RPG column -1).
Precision of output field in binary
1 if output field is to be packed, 0 if not
Scale of output field in binary
CSP precision in binary
CSP scale in binary

Compression for F-field type:

Word	 Contents

1	 Address of F-conversion subroutine
2 The displacement in characters to the start of the

RPG output field in binary (equivalent to the spe-
cified RPG column -1)

3	 Hexadecimal constant /0341
4	 Number of characters to be converted

349.3.

INDEX

Assembler program 65
Communications area 66
Core layout 71
Double-buffering 67
Error message phase 71
Flowcharts 220
General 65
Intermediate I/O 67
Introduction 2
Overlay area 66
Phase 0 67
Phase 1 67
Phase lA 67
Phase 2 68
Phase 2A 68
Phase 3 68
Phase 4 68
Phase 5 68
Phase 6 69
Phase 7 69
Phase 7A 69
Phase 8 69
Phase 8A 69
Phase 9 69
Phase 10 70
Phase 10A 71
Phase 11 71
Phase 12 71
Phase 13 71
Program operation 65
Punch conversion phase 71
Read conversion phase 71

Symbol table 66
Auxiliary supervisor 23
Cartridge-dependent parameters

COMMA 3
DCOM 3

CIB (see core image buffer)
Cold start loader 15
Cold start program 15
Cold start programs 15

Cold start loader 15
Cold start program 15
Core layout 15
Flowcharts 191
Introduction 1

COMMA (in-core communication area) 3
(see also resident monitor)

Communications areas 3
Cartridge-dependent parameters 3
Disk-resident (DCOM) 3
Drive-dependent parameters 3
Introduction 1
In-core (COMMA) 3

Core image buffer (CIB)
Core load builder 34

Core image loader 27
Core layout 28
Debugging/analysis aids 30
Flowcharts 203
Introduction 1

Phase 1 27
Phase 2 27
Special techniques 27, 28

Core load builder 33
Core image buffer (CIB) 34
Core layout 33
Debugging/analysis aids 42
DEFINE FILE table 39
Disk buffers 34
FILES information 35
Flowcharts 205
General comments 33
G2250 information 35
Interrupt branch table (IBT) 35
Interrupt level subroutines (ILSs) 37
Introduction 2
ISS table 35
Linkage to LOCALs 37
Linkage to SOCALs 38
Load table 35
LOCAL information 35
LOCALs 37
NOCAL information 35
Overlay scheme 33
Pass 1 36
Pass 2 36
Phase 0 40
Phase 1 40
Phase 2 40
Phase 3 41
Phase 4 41
Phase 5 41
Phase 6 42
Phase 7 42
Phase 8 42
Phase 9 42
Phase 10 42
Phase 11 42
Phase 12 42
Phase 13 42
SOCALs 37
Transfer vector (TV) 37

DCIP 111
DCOM 3
DEFINE FILE table (DFT)

Core load builder 39
DFT (see DEFINE FILE table)
Disk cartridge initialization program (DCIP) 111

Index 350

Disk I/O subroutine
Resident monitor 17
Subroutine data charts 125
System library 102

Disk utility program (DUP) 43
CFACE phase 59
Communications area (CATCO) 45
Control records 44
Core layout 43
DCTL phase 51
DDUMP phase 55
DEFINE phase 57
DELETE phase 57
Delete Temporary LET 21
DEXIT phase 58
Diagnostic aids 63
DUMPLET/DUMPFLET phase 56
DUPCO phase 49
FILEQ phase 54
Fixed location equivalence table (FLET) 44
Flowcharts 207
Introduction 2
KFACE phase 60
Location equivalance table (LET) 44
PFACE phase 60
PRECI phase 62
STORE phase 52

Disk-resident communications area (DCOM) 3
Drive-dependent parameters

COMMA 3
DCOM 3

DUP (see disk utility program)

FILES control record processing
Disk utility program 54
Supervisor 22

FILES information in SCRA
Disk utility program 55
Supervisor 22

Fixed location equivalence table (FLET) 44
FLET 44
Flowcharts 185

Assembler program 220
Cold start programs 191
Core image loader 203
Core load builder 205
Disk utility program 207
FORTRAN compiler 244
Supervisor 193
System library 274
System loader 186

FORTRAN compiler 73
Communications area 76
Compilation errors 81
Compiler I/O 81
Core layout 75
Flowcharts 244
General 73
Introduction 2
Phase area 77
Phase objectives 73
Phase 1 82
Phase 2 82

Phase 3 83
Phase 4 83
Phase 5 84
Phase 6 84
Phase 7 85
Phase 8 85
Phase 9 86
Phase 10 86
Phase 11 87
Phase 12 88
Phase 13 89
Phase 14 89
Phase 15 90
Phase 16 91
Phase 17 92
Phase 18 93
Phase 19 94
Phase 20 94
Phase 21 95
Phase 22 95
Phase 23 95
Phase 24 96
Phase 25 96
Phase 26 96
Phase 27 96
Statement string 80
String area 77
Symbol table 78

Graphics
Assembler program 69,71

G2250 control record processing
Disk utility program 55
Supervisor 22

G2250 information in SCRA
Disk utility program 55
Supervisor 22

IBT (see interrupt branch table)
ILSs (see interrupt level subroutines)
Interrupt branch table (IBT)

Core load builder 35
Interrupt level subroutines (ILSs)

Core load builder 37
Skeleton supervisor 17
System library 105

Interrupt service subroutines (ISSs)
Subroutine data charts 152
System library 102

Introduction 1
ISSs (see interrupt service subroutines)

Job Control Record Processing 20

LET 44
LOCAL control record processing

Disk utility program 54
Supervisor 22

LOCAL information in SCRA
Disk utility program 55
Supervisor 22

LOCAL linkage in TV 37
LOCALs 37
Location equivalence table (LET) 44

351

Master cartridge updating 97
MCRA (see monitor control record analyzer)
Monitor control record analyzer (MCRA) 19

JOB control record processing 19
Other control record processing 20
System update program 20

NOCAL control record processing
Disk utility program 54
Supervisor 22

NOCAI, information in SCRA
Disk utility program 55
Supervisor 22

Procedures
Core dump 115
Core location 115
Generalized subroutine maintenance/analysis 120
Identification of the failing component or function 113
Program analysis 113
Subroutine looping 120
Trace back 120

Program analysis procedures 113
Core block diagrams 115
Core dump procedures 115
Core Location procedures 115
Generalized subroutine maintenance/analysis procedure 120
Identification of the failing component or function 113
Introduction 113
Subroutine data charts 125
Subroutine error number list 115
Subroutine error stop list 115
Subroutine looping capabilities 120
Summary 113
Trace back procedure 120

Reload table
System loader 14

Resident monitor 17
COMMA 17
Disk I/O subroutine 17
Flowcharts 193
Introduction 1
Skeleton supervisor 17

SCRA (see supervisor control record area)
Skeleton supervisor 17

CALL LINK, CALL EXIT, CALL DUMP processor 17
Error traps 17
ILSs 17

SLET
System loader 13

SOCAL linkage in TV 38
SOCALs 37
Stand-alone utilities 111

DCIP 111
Introduction 2
UCART 112

Subroutine data charts 125
CARDZ 140
CARDO 152
CARD1 154
DISKN 180
DISKZ 138
DISK1 177
OMPR1 174
PAPTN 170
PAPTZ 150
PAPT1 168
PLOT1 172
PNCHZ 142
PNCHO 158
PNCHI 160
PRNTZ 148
PRNT1 164
PRNT3 166
PRNZ 147
READZ 144
READO 156
READ1 157
System device subroutine for console printer 130
System device subroutine for disk 138
System device subroutine for keyboard/console printer 125
System device subroutine for 1132 132
System device subroutine for 1134/1055 136
System device subroutine for 1403 134
System device subroutine for 1442/1442 126
System device subroutine for 2501/1442 128
TYPEZ 145
TYPEO 162
WRTYZ 146
WRTYO 176

Subroutine error numbers 115
Subroutine error stops 115
Supervisor 19

Job Control Record Processing 20
System update Program 20
Delete Temporary LET 21
Auxiliary supervisor 23
Core layout 24
Introduction 1
Monitor control record analyzer (MCRA) 19
XEQ control record processor 21
System core dump program 23

Supervisor control record area (SCRA)
Disk utility program 55
Supervisor 22

Supervisor control record processing
Disk utility program 54
Supervisor 22

Symbol table
Assembler program 66
FORTRAN compiler 78

System core dump program 23
System device subroutines 109

Introduction 2
Subroutine data charts 125

System library 99
Arithmetic and function subroutines, common 100, 102

Index 352

Arithmetic and function subroutines, extended precision 99, 101
Arithmetic and function subroutines, standard precision 100, 101
Conversion subroutines 103
Conversion tables 103

Disk Data File Conversion Program 107.1
Flowcharts 107. 1
General program description 1 07.1
Part 1. Entry Point 107. 2
Internal Subroutines-part 1 1 07.1
Part 2. Entry Point 107.1
Internal Subroutine-part 2 1 07.1
Part 3. Entry Point 107. 2
Internal Subroutine-part 3 107. 2
Part 4. Entry Point 107.2
Internal Subroutines-part 4 107. 3
External Subroutines-part 4 107. 3
Flowcharts 274
FORTRAN common 99, 101
FORTRAN conversion 101
FORTRAN I/O 100
FORTRAN sign transfer 99
FORTRAN trace 100
Interrupt level subroutines (ILSs) 104, 105
Interrupt service subroutines (ISSs) 102
Introduction 2
Mainline programs 104, 105
Plotter subroutines 104
SCA subroutines 103

SCAT 1 108
SCAT 2 108. 5
SCAT 3 108.12

Utility subroutines 99
System Loader 9

Cartridge identification sector 13
Core layout 12
Flowcharts 186
Introduction 1
Phase 1 9
Phase 2 10
Reload table 14
System location equivalence table (SLET) 13

System location equivalence table (SLET)
System loader 13

I	 System update Program 20
Transfer vector (TV)

Core load builder 37
TV (see transfer vector)

XEQ control record processor 21
Supervisor control record area (SCRA) 22
Supervisor control record processing 22
XEQ control record processing 21

353

Y26-3714-2

■-•

cu
0

rt.

a.
N.

c
5
n

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
B21 United Nations Plaza, New York, New York10 017
[International]

READER'S COMMENT FORM

IBM 1130 Disk Monitor System Version 2,	 Form Y26-3714-2
Program Logic Manual

• How did you use this publication?

As a reference source 	
As a classroom text 	
As a self-study text 	

• Based on your own experience, rate this publication . . .

As a reference source:
Very	 Good	 Fair	 Poor	 Very
Good	 Poor

As a text:
Very	 Good	 Fair	 Poor	 Very
Good	 Poor

• What is your occupation? 	

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

Y26-3714-2

YOUR COMMENTS, PLEASE .. .

This SRL manual is part of a library that serves as a reference source for systems analysts,
programmers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use. Each
reply will be carefully reviewed by the persons responsible for writing and publishing this
material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys-
tem should be directed to your IBM representative or to the IBM sales office serving your
locality.

Fold Fold

FIRST CLASS

PERMIT NO. 1359

WHITE PLAINS, N. Y.

M=1111111111=11

Mini1111MBUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY ...

IBM Corporation

112 East Post Road

White Plains, N. Y 10601

Attention: Department 813 L

MM
International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
(USA Only)

IBM World Trade Corporation
B21 United Nations Plaza, New York, New York 10 017
(International)

11■111=11

bd

w
O

4,

Fold	 Fold

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347
	Page 348
	Page 349
	Page 350
	Page 351
	Page 352
	Page 353
	Page 354
	Page 355
	Page 356
	Page 357
	Page 358
	Page 359
	Page 360
	Page 361
	Page 362
	Page 363
	Page 364
	Page 365
	Page 366
	Page 367
	Page 368
	Page 369
	Page 370
	Page 371
	Page 372
	Page 373
	Page 374
	Page 375
	Page 376
	Page 377
	Page 378
	Page 379
	Page 380
	Page 381
	Page 382
	Page 383
	Page 384
	Page 385
	Page 386
	Page 387
	Page 388
	Page 389
	Page 390
	Page 391
	Page 392
	Page 393
	Page 394
	Page 395
	Page 396
	Page 397
	Page 398
	Page 399
	Page 400
	Page 401
	Page 402
	Page 403
	Page 404
	Page 405
	Page 406
	Page 407
	Page 408
	Page 409
	Page 410
	Page 411
	Page 412
	Page 413
	Page 414
	Page 415
	Page 416
	Page 417
	Page 418
	Page 419
	Page 420
	Page 421
	Page 422
	Page 423
	Page 424
	Page 425
	Page 426
	Page 427
	Page 428
	Page 429
	Page 430

