

Application Program

H20-0252-3

1130 Scientific Subroutine Package

(1130-CM-02X)

Programmer's Manual

The Scientific Subroutine Package (SSP) is a collection of 121 FORTRAN subroutines divided, for the sake of presentation, into three groups: statistics, matrix manipulation, and other mathematics. It is a collection of input/outputfree computational building blocks that can be combined with a user's input, output, or computational routines to meet his needs. The package can be applied to the solution of many problems in industry, science, and engineering.

Fourth Edition (September 1968)

This is a major revision obsoleting H20-0252-2. The storage requirements in Appendix A have been changed. Other changes are indicated by a vertical line to the left of the text.

This edition applies to Version 1, Modification 2 of the 1130 Scientific Subroutine Package (1130-CM-02X) and to all subsequent versions and modifications until otherwise indicated in new editions or Technical Newsletters.

J

ł

*

Changes are continually made to the specifications herein. Before using this publication in connection with the operation of IBM systems, consult the latest 1130 SRL Newsletter, N20-1130, for the editions that are applicable and current.

Copies of this and other IBM publications can be obtained through IBM branch offices. Address comments concerning the contents of this publication to IBM, Technical Publications Department, 112 East Post Road, White Plains, N.Y. 10601

CONTENTS

2

0

Ð

Introduction	1
Areas of Application	1
Statistics	1
Matrix Manipulation	1
Other Mathematical Areas	1
Characteristics	1
Design Philosophy	2
Choice of Algorithms	2
Programming	2
Overall Rules of Usage	3
General Rules	3
Matrix Operations	3
Variable Dimensioning	3
Storage Compression	4
Matrix Element References	5

Program Mo	dification	7
Optimizat	ion of Time	7
	Precision	7
Format of th	e Documentation	8
Subroutine	e Descriptions	8
Sample Pi	cogram Descriptions	8
Machine C	configuration	8
Guide to Subr	routines	9
Subroutine L	istings and Writeups	13
Appendix A.	Storage Requirements	128
Appendix B.	Accuracy of Subroutines	133
Appendix C.	Timing	137
Appendix D.	Sample Programs	138

.

٠ • •

. . .

: .

· · ·

INTRODUCTION

The IBM 1130 Scientific Subroutine Package makes available a mathematical and statistical subroutine library. The user may supplement or modify the collection to meet his needs. This library includes a wide variety of subroutines to perform the functions listed below, but is not intended to be exhaustive in terms of either functions performed or methods used.

AREAS OF APPLICATION

Individual subroutines, or a combination of them, can be used to carry out the listed functions in the following areas:

Statistics

- Analysis of variance (factorial design)
- Correlation analysis
- Multiple linear regression
- Polynomial regression
- Canonical correlation
- Factor analysis (principal components, varimax)
- Discriminant analysis (many groups)
- Time series analysis
- Data screening and analysis
- Nonparametric tests
- Random number generation (uniform, normal)

Matrix Manipulation

- Inversion
- Eigenvalues and eigenvectors (real symmetric case)
- Simultaneous linear algebraic equations
- Transpositions
- Matrix arithmetic (addition, product, etc.)
- Partitioning
- Tabulation and sorting of rows or columns
- Elementary operations on rows or columns

Other Mathematical Areas

- Integration of given or tabulated functions
- Integration of first-order differential equations
- Fourier analysis of given or tabulated functions
- Bessel and modified Bessel function evaluation
- Gamma function evaluation
- Legendre function evaluation
- Elliptic, exponential, sine, cosine, Fresnel integrals
- Finding real roots of a given function
- Finding real and complex roots of a real polynomial
- Polynomial arithmetic (addition, division, etc.)
- Polynomial evaluation, integration, differentiation

CHARACTERISTICS

Some of the characteristics of the Scientific Subroutine Package are:

- All subroutines are free of input/output statements.
- Subroutines do not contain fixed maximum dimensions for the data arrays named in their calling sequences.
- All subroutines are written in 1130 FORTRAN.
- Many matrix manipulation subroutines handle symmetric and diagonal matrices (stored in economical, compressed formats) as well as general matrices. This can result in considerable saving in data storage for large arrays.
- The use of the more complex subroutines (or groups of them) is illustrated in the program documentation by sample main programs with input/output.
- All subroutines are documented uniformly.

CHOICE OF ALGORITHMS

The algorithms in SSP have been chosen after considering questions of storage, accuracy, and past experience with the algorithm. Conservation of storage has been the primary criterion except in those situations where other considerations outweighed that of storage. As a result, many compromises have been made both with respect to level of sophistication and execution time. One such compromise is the use of the Runge-Kutta integration technique rather than predictor-corrector methods. A departure from the primary criterion of storage is illustrated by the algorithm for matrix inversion. If only row pivoting had been used, the subroutine would not have required working storage and would have needed fewer FORTRAN statements for implementation. However, pivoting on both rows and columns was chosen because of the accuracy requirement for matrix inversion in statistical operations.

PROGRAMMING

The subroutines in SSP have been programmed in 1130 FORTRAN. Many of the larger functions such as those in statistics have been programmed as a series or sequence of subroutines. An example of the use of sequences of subroutines is the statistical function called factor analysis. Factor analysis is a method of analyzing the intercorrelations within a set of variables. It determines whether the variance in the original set of variables can be accounted for adequately by a smaller number of basic categories; namely, factors. In the Scientific Subroutine Package, factor analysis is normally performed by calling the following five subroutines in sequence:

1. CORRE - to find means, standard deviations, and correlation matrix

2. EIGEN - to compute eigenvalues and associated eigenvectors of the correlation matrix

3. TRACE - to select the eigenvalues that are greater than or equal to the control value specified by the user

4. LOAD - to compute a factor matrix

5. VARMX - to perform varimax rotation of the factor matrix

The multiple use of subroutines is illustrated by the fact that subroutine CORRE is also utilized in the multiple linear regression and canonical correlation. Subroutine EIGEN is used in canonical correlation as a third level subroutine.

GENERAL RULES

All subroutines in the Scientific Subroutine Package (SSP) are entered by means of the standard FORTRAN CALL statement. These subroutines are purely computational in nature and do not contain any references to input/output devices. The user must therefore furnish, as part of his program, whatever input/ output and other operations are necessary for the total solution of his problem. In addition, the user must define by DIMENSION statements all matrices to be operated on by SSP subroutines as well as those matrices utilized in his program. The subroutines contained in SSP are no different from any usersupplied subroutine. All of the normal rules of FORTRAN concerning subroutines must, therefore, be adhered to with the exception that the dimensioned areas in the SSP subroutine are not required to be the same as those in the calling program.

The CALL statement transfers control to the subroutine and replaces the dummy variables in that subroutine with the value of the actual arguments that appear in the CALL statement if the argument is a constant or a variable. When the argument is an array or function subprogram name, the address of the array or subprogram is transmitted to the called subroutine.

The arguments in a CALL statement must agree in order, number, and type with the corresponding arguments in the subroutine. A number may be passed to a subroutine either as a variable name in the argument list or as a constant in the argument list. For example, if the programmer wishes to add matrix AR1 to matrix AR2 in order to form matrix AR3 using the SSP subroutine GMADD and if AR1 and AR2 are both matrices with ten rows and twenty columns, either of the two following methods could be used:

Method 1

CALL GMADD(AR1, AR2, AR3, 10, 20)

$$N = 10$$

M = 20
CALL GMADD(AR1, AR2, AR3, N, M)

Many of the subroutines in SSP require the name of a user function subprogram or a FORTRANsupplied function name as part of the argument list in the CALL statement. If the user's program contains such a CALL, the function name appearing in the argument list must also appear in an EXTERNAL statement at the beginning of that program.

For example, the SSP subroutine RK2 integrates a function furnished by the user. It is therefore necessary for the user to program the function and give the name of the function to RK2 as a parameter in the CALL statement. If the user wished to integrate the function $\frac{dy}{dx} = 3.0x + 2.0Y$, his main program might look like:

EXTERNAL DERY

His function subprogram could be:

```
FUNCTION DERY (X, Y)
DERY=3.0*X+2.0*Y
RETURN
END
```

The user's main program gives the name of the programmed function to RK2 by including that name in the CALL statement and in an EXTERNAL statement. RK2, in turn, goes to the function DERY each time it requires a value for the derivative. The subroutine RK2 is not modified by the programmer. The dummy function name FUN in subroutine RK2 is, in effect, replaced by the name appearing in the user's CALL statement during execution of the subroutine.

MATRIX OPERATIONS

Special consideration must be given to the subroutines that perform matrix operations. These subroutines have two characteristics that affect the format of the data in storage--variable dimensioning and data storage compression.

Variable Dimensioning

Those subroutines that deal with matrices can operate on any size array limited, in most cases, only by the available core storage and numerical analysis considerations. The subroutines do not contain fixed maximum dimensions for data arrays named in their calling sequence. The variable dimension capability has been implemented in SSP by using a vector storage approach. Under this approach, each column of a matrix is immediately followed in storage by the next column. Vector storage and two-dimensional storage result in the same layout of data in core, so long as the number of rows and columns in the matrix are the same as those in the user's dimension statement. If, however, the matrix is smaller than the dimensioned area, the two forms of storage are not compatible.

Consider the layout of data storage when operating on a 5 by 5 array of numbers in an area dimensioned as 10 by 10. If the programmer has been using double subscripted variables in the normal FORTRAN sense, the 25 elements of data will appear as shown in Figure 1. FORTRAN stores double subscripted data by column based on the column length specified in the DIMENSION statement. Thus, in the example, sequential core locations would contain data elements 1 to 5, five blank locations, data elements 6 to 10, five blank locations, etc. The matrix subroutines take a vector approach in storing arrays by column, which means that they assume the data is stored as shown in Figure 2.

					Co	lun	ın				
	_	1	2	3	4	5	6	7	8	9	10
Row	1 2 3 4 5 6 7 8 9	(1) (2) (3) (4) (5)	(6) (7) (8) (9) (10)	(11) (12) (13) (14) (15)	 (16) (17) (18) (19) (20) 	(2 (2 (2 (2 (2	2) 3) 4)				

Figure 1. Double subscripted data storage

			 	_	
(1)	(11)	(21)			
(2)	(12)	(22)			
(3)	(13)	(23)			
(4)	(14)	(24)			
(5)	(15)	(25)			
(6)	(16)				
(7)	(17)				
(8)	(18)				
(9)	(19)				
(10)	(20)				

Figure 2. Vector storage

As has been stated previously, for the case where the dimensioned area is the same as the matrix size, the two approaches will have the same data storage layout and the user can proceed in a regular double subscripted fashion. If, however, he is operating in a mode where the dimensioned area is larger than the arrays and if he wishes to use the SSP subroutines, he must be certain that his data is stored in the vector fashion illustrated by Figure 2. A subroutine called ARRAY is available in SSP to change from one form of storage to the other. In addition, a subroutine called LOC is available to assist in referencing elements in an array stored in the vector fashion.

Storage Compression

Many subroutines in SSP can operate on compressed forms of matrices, as well as the normal form. Using this capability, which is called "storage mode", considerable savings in data storage can be obtained for special forms of large arrays. The three modes of storage are termed general, symmetric, and diagonal. In this context, general mode is one in which all elements of the matrix are in storage. Symmetric mode is one in which only the upper triangular portion of the matrix is retained columnwise in sequential locations in storage. (The assumption is made that the corresponding elements in the lower triangle have the same value.) Diagonal mode is one in which only the diagonal elements of the matrix are retained in sequential locations in storage. (The off-diagonal elements are assumed to be zero.) This capability has been implemented using the vector storage approach. To illustrate the effect of the storage mode capability, refer to Figure 3. A symmetric matrix is shown in Figure 3A. If this array is to be manipulated using the SSP matrix subroutines with storage mode capability, then the array may be stored as shown in Figure 3B. This is the upper triangular portion of the array and corresponds to a storage mode code of 1. Symmetric matrices of order N may be stored in a vector only $N^{*}(N+1)/2$ locations rather than N*N locations. For larger matrices, this will be a saving of almost one half.

The effect of storage mode when dealing with diagonal matrices is even more pronounced. Diagonal matrices of order N may be stored in a vector only N locations long. Figure 3C shows a 3 by 3 diagonal matrix. If this array is to be manipulated using the SSP matrix subroutines with storage mode capability, then only the diagonal elements of the array need be stored. This is shown in Figure 3D and corresponds to a storage mode code of 2.

General matrices of order N by M require a vector N*M long and use a storage mode code of 0.

Figure 3. Storage mode

Thus, if the programmer wishes to use SSP subroutines on matrix A, which is general, matrix B, which is symmetric, and matrix C, which is diagonal, and all matrices are 10 by 10 or smaller, the dimension statement in his program could be:

DIMENSION A(100), B(55), C(10)

Matrix Element References

Subroutine LOC in the Scientific Subroutine Package may be used to reference elements within a matrix that is stored in a vector fashion and may involve storage mode compression. The calling sequence for LOC is:

CALL LOC (I, J, IJ, N, M, MS)

The capabilities of subroutine LOC are as follows: If reference is required to the element at row I and column J of matrix A whose dimensions are N by M and if the storage mode code is MS, then a CALL to the LOC subroutine as shown above will result in the computation of the subscript IJ such that A(IJ) is the desired element. The parameters represented by I, J, N, M, MS can either be integer variables or integer constants. The parameter represented by IJ is an integer variable. Note that the user must dimension the array A as a single subscripted variable to meet the restrictions of some FORTRAN systems. To illustrate the use of LOC: If reference is required to the element at row 2, column 2 of the 3 by 3 symmetric matrix illustrated in Figure 3A and stored as shown in Figure 3B (storage mode code 1), the sequence might be:

CALL LOC (2, 2, IJ, 3, 3, 1)

The value of IJ computed by LOC would be 3; meaning that the proper element is the third element in the specially stored symmetric matrix (Figure 3B). If the storage mode code is for a symmetric matrix where only the upper triangular portion is retained in storage and if I and J refer to an element in the lower triangular portion, IJ will contain the subscript for the corresponding element in the retained upper triangle. Thus if the user wanted the element in row 3, column 1 of the matrix shown in Figure 3A and the array was stored as in Figure 3B, the statement:

CALL LOC (3, 1, IJ, 3, 3, 1)

would result in LJ having the value of 4; that is, the fourth element in Figure 3B. If a matrix is stored as shown in Figure 3D (storage mode 2) and LOC is used to compute the subscript for an off-diagonal element (I not equal to J), the result in LJ will be zero. This is due to the fact that the element does not exist in storage. In this situation, the user must not utilize LJ as a subscript. Following is an illustration of how to take care of this condition and also handle the case where the current storage mode is unknown.

If the user wishes to set a variable X equal to the element in the third row and fourth column of a 10 by 10 array named A for either a symmetric, diagonal, or general matrix, the required program can be implemented for any storage mode MS as follows:

CALL LOC (3, 4, IJ, 10, 10, MS) X = 0.0 IF(IJ)20, 30, 20 20 X = A(IJ) 30 ------

Overall Rules of Usage 5

MS is assumed to have been set at 0, 1, or 2 at some earlier point in the program. This sequence would then set the proper value for X given any storage mode that might be encountered. The second and third statements take care of the off-diagonal condition for a matrix with a storage mode of 2.

As a special case, LOC can be used to compute the total length of an array in storage with a statement such as:

CALL LOC (N, M, IJ, N, M, MS)

For example, if the user has a 3 by 3 matrix whose storage mode is 1 (Figure 3B), the statement:

will result in LJ being set to 6. This is not only the proper subscript to reference element 3, 3 but is also the actual length of the vector in storage.

The information contained in the fifth parameter (number of columns) in the calling sequence for LOC is not actually used in the calculations performed by LOC. It has been included in the calling sequence in case the user wishes to expand LOC to cover other forms of data storage.

ñ

OPTIMIZATION OF TIME

The subroutines in SSP are designed to conserve storage. If the user wishes to exchange space for time, there are several ways in which SSP may be modified to effect this end. For example, many of the subroutines in SSP make use of LOC subroutine to handle vector storage and storage mode referencing. The execution time of these subroutines can be substantially reduced by implementing LOC in Assembler Language. (The distributed version of LOC is implemented in FORTRAN.) Another approach is to incorporate the function of LOC within each subroutine and thus avoid the "setup" costs of repeated calls to LOC. This has the effect of reducing execution time but at some cost in subroutine storage and in the ease with which other modes of storage such as triangular matrix storage or storage by row rather than by column can be implemented. Figure 4 shows how matrix addition and the LOC capabilities can be implemented within the same subroutine.

In the mathematical area, the user may find it desirable to implement entirely different algorithms for integration. The use of techniques that automatically adjust the integration interval depending on the rate of change of the function will often have the effect of reducing total execution time.

EXTENDED PRECISION

The accuracy of the computations in many of the SSP subroutines is highly dependent upon the number of significant digits available for arithmetic operations. Matrix inversion, integration, and many of the statistical subroutines fall into this category. All of the subroutines will compile correctly for extended precision by placing the *EX-TENDED PRECISION control card at the appropriate place in the deck. Note that 1130 FORTRAN does not allow the intermixing of regular and extended precision in the same program.

```
SUBROUTINE MACX(A,B,R,N,M,MSA,#S8)
DIMENSION A(1),B(1),R(1)
C
C
C
               TEST FOR SAME STORAGE MODE
          IF(MSA-MSB) 30,1C,30
C
C
C
              COMPUTE VECTOR LENGTH
    10 ND≈N+M
IF(#SA-1) 24,22,23
22 ND=(ND+N)/2
    GO TO 24
c
               ADD MATRICES OF SAME STORAGE MODE
    24 CO 25 I=1,NC
25 R(I)≃A(I)+B(I)
RETURN
              GET STORAGE MCDE OF GUTPUT MATRIX
     30 MTEST=MSA+MSB
    IF(MTEST) 35,35,32
32 MSR=1
     35
         DD 60 J=1,P
CD 60 I=1,N
C
C
C
              LOCATE ELEMENT IN OUTPUT MATRIX
         KX∓-1
MS=MSR
GO TO A
IJR=IR
                   65
     40
C
C
C
              LCCATE ELEMENT IN MATRIX A
          KX≏0
µs=µsa
go to 65
          IJA=IR
AEL=0.0
IF(IJA) 46,48,46
AEL=A(IJA)
    45
              LOCATE ELEMENT IN MATRIX B
    48 KX=1
#5=#58
          GO TC 65
    5C
         IJE≏IR
          BEL=0.0
          IF(1J8) 55,60,55
     55 BEL=B(IJE)
c
              ADD MATRICES OF DIFFERENT STURAGE MODES
č
    60 R(IJR)=AEL+BEL
Return
              IN LINE LOC
     65 IF(#S-1) 70,75,9C
    65 1F(FS-1) 70,75,9C

70 IR=%(J-1)+1

GE TC 95

75 1F(1-J) 20,85,85

75 IR=1+(1+J-J)/2

GO TC 95

85 IR=J+(1*I-1)/2

GO TC 95

90 IR=0

1F(1-J) 95,92,95

92 IR=1

95 1F(KX) 40,45,50

ENC
```

Figure 4. Inline LOC

The major portion of this manual consists of the documentation for the individual subroutines and the sample programs.

SUBROUTINE DESCRIPTIONS

A guide to the subroutines, designed to aid in locating any particular subroutine, is given in the pages that follow. Each of the subroutine descriptions contains a program listing and, in some cases, a mathematical description. If there are restrictions on the ranges of values that the parameters may take, these are included under the remarks section of each subroutine description. References to books and periodicals will be found under the method section of the description. The mathematical description pages do not, in most cases, indicate the derivation of the mathematics. They are intended to indicate what mathematical operations are actually being performed in the subroutines. Some of the major statistical functions are performed by a sequence of SSP subroutines. An abstract describing this sequence will be found just before the description of the first subroutine that is specific to this function.

SAMPLE PROGRAM DESCRIPTIONS

The sample program listings are given in Appendix D. They are immediately preceded by a guide to aid in locating the sample program calling a particular SSP subroutine or (where applicable) typical user-written subroutine. Each sample program consists of a detailed description including information on the problem, the program, input, output, program modification, operating instructions, error messages, and machine listings of the programs, input data and output results. Timings for these programs is given in Appendix C. The sample programs have been chosen to (1) illustrate a sequence of SSP subroutines, (2) illustrate the use of a complex subroutine, or (3) show the way in which one member of a large set of related subroutines might be used.

As part of the development of the sample programs, some special sample subroutines have been implemented that may prove useful to the programmer. These include:

HIST - Print a histogram of frequencies

- MATIN Read an input matrix into storage in vector form for use by SSP matrix subroutines
- PLOT Plot several variables versus a base variable
- MXOUT Print a matrix stored in the SSP vector format

Listings of the above subroutines are included in the sample program documentation in this manual.

The sample programs all require 8K words of core for execution and several of them require (in addition) the overlay capabilities of the Disk Monitor.

MACHINE CONFIGURATION

The machine configuration necessary to run SSP/1130 is dependent upon the use that is to be made of the package. All of the subroutines are I/O free, compile to less than 1500 words of core, and are, therefore, configuration independent. However, many of the routines are intended to be used in conjunction with other subroutines or to solve problems using large arrays of data. For this reason, many of the subroutines are not useful with less than 8K words of core.

The following items should be taken into consideration when deciding upon the applicability of this package to a particular machine configuration:

1. The size of problem which may be executed on a given 1130 depends upon the number of subroutines used, the size of the compiled subroutines, the size of the compiled main program, the size of the control program, and the data storage requirements.

2. SSP/1130 programs will be distributed in card form only.

3. Several of the sample problems require 8K words of core and the use of the Disk Monitor, and the remaining sample problems require 8K words of core.

It is possible to estimate program sizes by using the manual <u>Core Requirements for 1130 FORTRAN</u> (C20-1641) in conjunction with the core size listing found in Appendix A.

GUIDE TO SUBROUTINES

9

¢

ŧ

ſ

	Page		Pag
STATISTICS		Analysis of Variance	
Data Screening		AVDATdata storage allocation	34
TALLYtotals, means, standard deviations, minimums, and	13	AVCAL Σ and Δ operation	35
maximums		MEANQmean square operation	36
BOUNDselection of observations within bounds	14	Discriminant Analysis	
SUBSTsubset selection from observation	15	DMATXmeans and dispersion matrix	38
matrix		DISCRdiscriminant functions	39
ABSNTdetection of missing data	16	Factor Analysis	
TAB1tabulation of data (1 variable)	16	TRACEcumulative percentage of eigenvalues	41
TAB2tabulation of data (2 variables)	18	LOADfactor loading	41
SUBMXbuild subset matrix	20	VARMXvarimax rotation	4
Elementary Statistics		Time Series	
MOMENfirst four moments	20	AUTOautocovariances	4
TTSTTtests on population means	21	CROSScrosscovariances	
Correlation			4
CORREmeans, standard deviations, and correlations	23	SMOapplication of filter coefficients (weights)	4
Multiple Linear Regression		EXSMOtriple exponential smoothing	49
	95	Nonparametric Statistics	
ORDERrearrangement of inter- correlations	25	CHISQ x^2 test for a contingency table	50
MULTRmultiple regression and correlation	26	UTESTMann-Whitney U-test	52
Polynomial Regression		TWOAVFriedman two-way analysis of variance	5
GDATAdata generation	28	QTESTCochran Q-test	54
Canonical Correlation		SRANKSpearman rank correlation	5
CANORcanonical correlation	30	KRANKKendall rank correlation	5
NROOTeigenvalues and eigenvectors of a special nonsymmetric matrix	32	WTESTKendall coefficient of concordance	58

Guide to Subroutines 9

	Page		Page	
RANKrank observations	59	Random Number Generators		1
TIEcalculation of ties in ranked observations	59	RANDUuniform random numbers	60	-5
		GAUSSnormal random numbers	60	

Ē

.)

MATHEMATICS OPERATIONS Special Matrix Operations	
MINVmatrix inversion	6
EIGENeigenvalues and eigenvectors of a real, symmetric matrix	6
Matrices	
GMADDadd two general matrices	6
GMSUBsubtract two general matrices	6
GMPRDproduct of two general matrices	6
GMTRAtranspose of a general matrix	6
GTPRDtranspose product of two general matrices	6
MADDadd two matrices	e
MSUBsubtract two matrices	e
MPRDmatrix product (row into column)	6
MTRAtranspose a matrix	6
TPRDtranspose product	e
MATAtranspose product of matrix by itself	(
SADDadd scalr to matrix	(
SSUBsubtract scalr from a matrix	5
SMPYmatrix multiplied by a scalr	7
SDIVmatrix divided by a scalr	,
RADDadd row of one matrix to row of another matrix	ŗ
CADDadd column of one matrix to col- umn of another matrix	7
SRMAscalr multiply row and add to another row	,
SCMAscalr multiply column and add to another column	r
RINTinterchange two rows	,

8

Ø

ą

.

Page

CINTinterchange two columns	74
RSUMsum the rows of a matrix	74
CSUMsum the columns of a matrix	75
RTABtabulate the rows of a matrix	75
CTABtabulate the columns of a matrix	76
RSRTsort matrix rows	77
CSRTsort matrix columns	78
RCUTpartition row-wise	79
CCUTpartition column-wise	79
RTIEadjoin two matrices row-wise	80
CTIEadjoin two matrices column-wise	80
MCPYmatrix copy	81
XCPYcopy submatrix from given matrix	81
RCPYcopy row of matrix into vector	82
CCPYcopy column of matrix into vector	82
DCPYcopy diagonal of matrix into vector	83
SCLAmatrix clear and add scalr	83
DCLAreplace diagonal with scalr	84
MSTRstorage conversion	84
MFUNmatrix transformation by a function	85
RECPreciprocal function for MFUN	85
LOClocation in compressed-stored matrix	86
ARRAYvector storage-double dimen- sioned storage conversion Integration and Differentiation	86
QSFintegral of equidistantly tabulated function by Simpson's Rule	87
QATRintegral of given function by trapezoidal rule using Romberg's extrapolation method	88

Page

Page

Page

116

117

119

120

122

122

122

123

123

124

124

124

125

125

125

126

126

126

127

.....

þ.

.

ē

Ordinary Differential Equations		Nonlinear Equations
RK1integral of first-order differential equation by Runge-Kutta method	90	RTWIrefine estimate of root by Wegstein's iteration
RK2tabulated integral of first-order differential equation by Runge-Kutta method	91	RTMIdetermine root within a range by Mueller's iteration
RKGSsolution of a system of first-order differential equations with given	92	RTNIrefine estimate of root by Newton's iteration
initial values by the Runge-Kutta method		Roots of Polynomial
Fourier Analysis		POLRTreal and complex roots of a real polynomial
FORIFFourier analysis of a given func- tion	95	Polynomial Operations
		PADDadd two polynomials
FORIT Fourier analysis of a tabulated function	96	PADDMmultiply polynomial by constant and add to another polynomial
Special Operations and Functions		PCLAreplace one polynomial by another
GAMMAgamma function	97	PSUBsubtract one polynomial from another
LEPLegendre polynomial	98	PMPYmultiply two polynomials
BESJ-J Bessel function	99	PDIVdivide one polynomial by another
BESYY Bessel function	101	PQSDquadratic synthetic division of a polynomial
BESII Bessel function	103	PVALvalue of a polynomial
BESKK Bessel function	104	PVSUBsubstitute variable of polynomial by another polynomial
CEL1elliptic integral of the first kind	105	
CEL2elliptic integral of the second kind	106	PCLDcomplete linear synthetic division
EXPIexponential integral	108	PILDevaluate polynomial and its first derivative
SICIsine cosine integral	110	PDERderivative of a polynomial
CSFresnel integrals	112	PINTintegral of a polynomial
Linear Equations		PGCDgreatest common divisor of two polynomials
SIMQsolution of simultaneous linear, algebraic equations	115	PNORMnormalize coefficient vector of polynomial

The following pages give the subroutine listings. Wherever necessary, additional explanatory matter on the routine, or a discussion of the underlying mathematics has been included.

Statistics - Data Screening

TALLY

Purpose:

Calculate total, mean, standard deviation, minimum, maximum for each variable in a set (or a subset) of observations.

Usage:

CALL TALLY(A, S, TOTAL, AVER, SD, VMIN, VMAX, NO, NV)

Description of parameters:

- A Observation matrix, NO by NV
- S Input vector indicating subset of A. Only those observations with a nonzero S(J) are considered. Vector length is NO.
- TOTAL Output vector of totals of each variable. Vector length is NV.

AVER - Output vector of averages of each variable. Vector length is NV.

- SD Output vector of standard deviations of each variable. Vector length is NV.
- VMIN Output vector of minima of each variable. Vector length is NV.
- VMAX Output vector of maxima of each variable. Vector length is NV.

NO - Number of observations.
 NV - Number of variables for each observation.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

All observations corresponding to a non-zero element in S vector are analyzed for each variable in matrix A. Totals are accumulated and minimum and maximum values are found. Following this, means and standard deviations are calculated. The divisor for standard deviation is one less than the number of observations used.

	SUBROUTINE TALLY(A, S, TOTAL, AVER, SD, VMIN, VMAX, ND, NV)	TALLY 1
	DIMENSION A(1), SIL), TOTALILI, AVERILI, SD(1), WAX(1)	TALLY Z
c	CLEAR OUTPUT VECTORS AND INITIALIZE VMIN.VMAX	TALLY 3
•	DO 1 K#1.NV	TALLY 4
	TOTAL (K)=0.0	TALLY 5
	AVER(K)=0.0	TALLY 6
	SD(K)=0.0	TALLY 7
	VMIN(K)=1.0E38	TALLY B
	1 VMAX(K)=-1.0E38	TALLY 9
C	TEST SUBSET VECTOR	TALLY IN
	SCNT=0.0	TALLY 11
	00 7 J=1,NO	TALLY 12
	1j=j-N0	TALLY 13
	[F(S(J)) 2,7,2	TALLY 14
	2 SCNT=SCNT+1+0	TALLY 15
с	CALCULATE TOTAL, MINIMA, MAXIMA	TALLY 15
	DD 6 1=1.NV	TALLY 17
	0r+f1=f1	TALLY 18
	TOTAL()=TOTAL()+A])	TALLY 19
	[F(A(1))-VHIN(1)) 3.4.4	TALLY 20
	3 VMIN([]=A[]])	TALLY 21
	4 [F[A([J]-VMAX[])] 6.6.5	TALLY 22
	5 VMAX11)=A(1)	TALLY 23
	6 SD([]=SD([]+A([])+A([])	TALLY 74
	7 CONTINUE	TALLY 25
с	CALCULATE MEANS AND STANDARD DEVIATIONS	TALLY 26
-	DO 8 I=1.NV	TALLY 27
	AVER(I)=TOTAL(I)/SCNT	TALLY 28
	8 SO([]*SORT(ARS([SO(])-TOTAL(])*TOTAL([)/SCNT)/(SCNT-1.0)))	TALLY 29
	RETURN	TALLY 30
	END	TALLY 31
		1ALLT 31

14

BOUND

Purpose:

Select from a set (or a subset) of observations the number of observations under, between and over two given bounds for each variable.

Usage:

Α

CALL BOUND (A, S, BLO, BHI, UNDER, BETW, OVER, NO, NV)

Description of parameters:

- Observation matrix, NO by NV
- S Vector indicating subset of A. Only those observations with a non-zero S(J) are considered. Vector length is NO.
- BLO Input vector of lower bounds on all variables. Vector length is NV.
- BHI Input vector of upper bounds on all variables. Vector length is NV.
- UNDER Output vector indicating, for each variable, number of observations under lower bounds. Vector length is NV.
- BETW Output vector indicating, for each variable, number of observations equal to or between lower and upper bounds. Vector length is NV.
- OVER Output vector indicating, for each variable, number of observations over upper bounds. Vector length is NV.

NO

- Number of observations

NV - Number of variables for each observation

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

c

¢

с

с

Each row (observation) of matrix A with corresponding non-zero element in S vector is tested. Observations are compared with specified lower and upper variable bounds and a count is kept in vectors under, between, and over.

ē

	SUBROUTINE BOUNDIA, S, BLO, BHI, UNDER, BETW, OVER, NO, NV)	ROUND	1
	DIMENSION A(1),S(1),BLO(1),BHI(1),UNDER(1),BETW(1),OVER(1)	BOUND	2
	CLEAR DUTPUT VECTORS.	BOUND	3
	DO 1 K=1.NV	BOUND	- 4
	UNDER (K)=0.0	BOUND	5
	BETW(K)=0.0	BOUND	5
1	DVER(K)=0.0	BOUND	7
•	TEST SUBSET VECTOR	BOUND	8
	DD 8 J=1,ND	BOUND	9
	[J=J-NO	ROUND	10
	IF(S(J)) 2,8,2	BOUND	11
	COMPARE OBSERVATIONS WITH BOUNDS	BOUND	12
2	DO 7 1+1-NV	BOUND	13
•	IJ=[J+N0	BOIIND	14
	IF(A(1J)-8L0(11) 5+3+3	BOUND	15
3	1F(A(1))-BHI(1)) 4,4,6	ROUND	16
1	COUNT	80UND	17
4	BETW(1)=BETW(1)+1.0	BOUND	19
7	GO TO 7	BOUND	19
4	UNDER(1)=UNDER(1)+1.0	BOUND	20
1	G0 T0 7	BOUND	21
٨	OVER([]=OVER[[]+1.0	BOUND	22
	CONTINUE	BOUND	23
	CONTINUE	BOUND	24
č	RETURN	ROUND	25
	END	BOUND	26

SUBST

Purpose:

Derive a subset vector indicating which observations in a set have satisfied certain conditions on the variables.

Usage:

CALL SUBST (A, C, R, B, S, NO, NV, NC) Parameter B must be defined by an external statement in the calling program.

Description of parameters:

- A Observation matrix, NO by NV
- C Input matrix, 3 by NC, of conditions to be considered. The first element of each column of C represents the number of the variable (column of the matrix A) to be tested, the second element of each column is a relational code as follows:
 - 1. for less than
 - 2. for less than or equal to
 - 3. for equal to
 - 4. for not equal to
 - 5. for greater than or equal to
 - 6. for greater than

The third element of each column is a quantity to be used for comparison with the observation values. For example, the following column in C:

2.

5.

92.5

causes the second variable to be tested for greater than or equal to 92.5.

- R Working vector used to store intermediate results of above tests on a single observation. If condition is satisfied, R(I) is set to 1. If it is not, R(I) is set to 0. Vector length is NC.
- B Name of subroutine to be supplied by the user. It consists of a Boolean expression linking the intermediate values stored in vector R. The Boolean operators are '*' for 'and', '+' for 'or'. Example:

SUBROUTINE BOOL (R, T) **DIMENSION R(3)** T=R(1)*(R(2)+R(3))RETURN END

The above expression is tested for R(1). AND. (R(2). OR. R(3))

- S Output vector indicating, for each observation, whether or not proposition B is satisfied. If it is, S(I) is non-zero. If it is not, S(I) is zero. Vector length is NO.
- NO Number of observations.
- NV Number of variables.
- NC Number of basic conditions to be satisfied.

Subroutines and function subprograms required:

The name of actual subroutine supplied by в the user may be different (e.g., BOOL), but subroutine SUBST always calls it as B. In order for subroutine SUBST to do this, the name of the user-supplied subroutine must be defined by an EXTERNAL statement in the calling program. The name must also be listed in the "CALL SUBST" statement. (See usage above.)

Method:

The following is done for each observation. Condition matrix is analyzed to determine which variables are to be examined. Intermediate vector R is formed. The Boolean expression (in subroutine B) is then evaluated to derive the element in subset vector S corresponding to the observation.

DIMENSION A(1),C(1),R(1),R(1) DD 9 [-1+N0 [Qe1-N0 [Qe1-N0 SUBST 3 DD 8 J=1+NC C CLEAR R VECTOR C FORM R VECTOR C C FORM R VECTOR C FORM R VECTOR C FORM R VECTOR C FORM R VECTOR C C FORM R VECTOR C C FORM R VECTOR C C FORM R VECTOR C C CLEAR R VECTOR C CLEAR R VECTOR C CLEAR R VECTOR C C CLEAR R VECTOR C CLEAR		SUBROUTINE SUBSTLA,C.R.B.S.NO.NV.NC)	SUBST 1
DD 9 1=1,NO SUBST 3 IQ IQ IQ SUBST 4 K=-2 SUBST SUBST 5 DD J=1,NC SUBST 5 C CLEAR R VECTOR SUBST 7 R(J)DD.0 SUBST SUBST 7 C LOCATE ELEMENT IN OBSERVATION MATRIX AND RELATIONAL CODE SUBST 7 K=K+3 SUBST SUBST 11=CLEAR SUBST I I SUBST SUBST 1 I I=CLEAR YECTOR SUBST 1 Q=AC(IA)-CLEAR SUBST SUBST 1 SUBST 1 GO TOIL YEAR SUBST SUBST 1 1 SUBST 1 SUBST 1 SUBST 1 1 1 SUBST 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			SUBST 2
IQ=1-NC SUBST SUBST K=-2 SUAST SUAST DN B J=1+NC SUAST SUAST C CLEAR R VECTOR SUBST R(J)=0.0 SUAST SUAST C LCCATE ELEMENT IN OBSERVATION MATRIX AND RELATIONAL CODE SUAST R=x+3 SUBST SUBST IZ=c(k) SUBST SUBST IA=1Q+12*MO SUBST SUBST IG0=c(1k+1) SUBST SUBST GO FORM R VECTOR SUBST GO TO(1,2,3,4,5,5,5), IGO SUBST I 1F(0) 7,8,4 SUBST SUBST 3 1F(2) 4,7,8 SUBST SUBST 5 1F(0) 7,8,7 SUBST SUBST 5 1F(0) 8,7,7 SUBST SUBST 6 1 F(0) 8,4,8,7 SUBST SUBST 7 R(J)=1,0 SUBST SUBST 4 1F(0) 7,8,8 SUBST SUBST 5 1F(0) 8,7,7 SUBST SUBST 6 1 F(0) 8,4,8,7 SUBST SUBST 7 (J)			SUBST 3
K=-2 SUBST SUBST DD B J=1,NC SUBST SUBST C CLEAR R VECTOR SUBST C LOCATE ELEMENT IN OBSERVATION MATRIX AND RELATIONAL CODE SUBST C LOCATE ELEMENT IN OBSERVATION MATRIX AND RELATIONAL CODE SUBST C LOCATE ELEMENT IN OBSERVATION MATRIX AND RELATIONAL CODE SUBST IIc(x) SUBST SUBST IAc(x) SUBST SUBST IAc(x) SUBST SUBST IAc(x) SUBST SUBST C FORM R VECTOR SUBST GO TOLL/2-3,4+,5,5+,5+,5+ SUBST SUBST GO TOLL/2-3,4+,5+,5+,5+,5+ SUBST SUBST GO TOLL/2-3,4+,5+,5+,5+,5+ SUBST SUBST A IF(q) 7,4,R SUBST SUBST J IF(q) 7,7,8 SUBST SUBST J IF(q) 1,7,8,T SUBST SUBST J IF(q) 8,7,7 SUBST SUBST J IF(q) 8,7,7 SUBST SUBST G CALCULATE S VECTOR SUBST			SUBST 4
DN J=1, NC SURST SURST C LEAR R VECTOR SUBST 7 R(J)=0.0 SUBST 7 SUBST C LOCATE ELEMENT IN OBSERVATION MATRIX AND RELATIONAL CODE SUBST 1 IZ=C(K) SUBST SUBST 1 IA=10+12+NO SUBST SUBST 1 IA=10+12+NO SUBST SUBST 1 IG0=C(K+I) SUBST SUBST 1 G0=C(K+I) SUBST SUBST 1 G0=TO(1,2+3,+4,5,5),F,GG SUBST SUBST 1 G1=10 7,4,6 SUBST 1 SUBST 1 S1=10 7,7,6 SUBST 1 SUBST 1 S1=16(0) 7,7,7 SUBST 2 SUBST 2 S1=16(0) 8,4,6,7 SUBST 2 8 SUBST 2 G IF(0) 8,4,6,7 SUBST 2 8 SUBST 2 G IF(0)			SUBST 5
C CLEAR R VECTOR SUBST 7 R(1)=0.0 SUBST 7 C LOCATE ELEMENT IN OBSERVATION MATRIX AND RELATIONAL CODE SUBST 1 IA-CRN SUBST 7 SUBST 17 IA-CRN SUBST 10 SUBST 12 IA-CRN SUBST 12 SUBST 12 IA-CRN SUBST 12 SUBST 12 IA-CRN SUBST 13 SUBST 12 GO-CRN SUBST 14 SUBST 14 GO 101-2:3;4;5;5;5;1;1G0 SUBST 14 SUBST 14 GO 101-2:3;4;5;5;5;1;1G0 SUBST 14 SUBST 14 3 IF(1) 7:0;8;7 SUBST 14 SUBST 14 3 IF(1) 7:0;8;7 SUBST 14 SUBST 14 5 IF(0) 8:7;7;8 SUBST 23 SUBST 23 6 IF(0) 8:0;7;7 SUBST 23 SUBST 23 8 CONTINUE SUBST 23 SUBST 23 8 CONTINUE SUBST 23 SUBST 23 9 CALL R(R:SI11) SUBST 25 9 9 CALL R(R:SI11) SUBST 25 9 CALL R(R:SI11) SUBST 25			SUBST 6
R(j)=0.0 SUBST # C LOCATE ELEMENT IN OBSERVATION MATRIX AND PELATIONAL CODE SUBST # K=K+3 SUBST # SUBST # I2-C(K) SUBST # SUBST # I4-IQ+12*MO SUBST # SUBST # IG0=C(K+1) SUBST # SUBST # Q=A(IA)=C(K+2) SUBST # SUBST # G0 FORM # VECTOR SUBST # SUBST # G0 TO(1,2;3,4,5,5,5),IGO SUBST # SUBST # 1 IF(0) 7,8,4 SUBST # SUBST # 3 IF(2) 4,7,8 SUBST # SUBST # 4 IF(0) 7,8,7 SUBST # SUBST # 5 IF(0) 8,7,7 SUBST # SUBST # 6 IF(0) 8,4,8,7 SUBST # SUBST # 7 R(i,1)=1,0 SUBST # SUBST # 8 CONTINUE SUBST # SUBST # 9 CALL R(R,S(I1)) SUBST # SUBST # 9 CALL	r		SUBST 7
C LOCATE ELEMENT IN OBSERVATION MATRIX AND RELATIONAL CODE SUBST 10 N=K+3 SUBST 11 SUBST 11 IA=LO+IZ+NO SUBST 12 SUBST 12 IG0=C(K+1) SUBST 12 SUBST 12 IG0=C(K+1) SUBST 12 SUBST 12 Q=A(IA)-C(K+2) SUBST 13 SUBST 14 Q=A(IA)-C(K+2) SUBST 14	c		SUBST 8
K=K+3 SUBST 11 IZ=C(K) SUBST 11 IA=IQ+IZ+NO SUBST 11 IA=IQ+IZ+NO SUBST 11 IGD=C(K+1) SUBST 12 IGD=C(K+1) SUBST 13 C FORM R VECTOR SUBST 14 Qa4(IA)=C(K+2) SUBST 16 GO TO(I_2+3>+5>5),IGO SUBST 17 I IF(Q) 7-8,-6 SUBST 17 2 IF(Q) 7-8,-7 SUBST 14 3 IF(Q) 8,7,-7 SUBST 14 5 IF(Q) 8,7,-7 SUBST 23 6 IF(Q) 8,8,-7 SUBST 23 8 CONTINUE SUBST 23 6 CALCULATE 5 VECTOR SUBST 25 9 CALL R(R,SSII) SUBST 25	c	IDCATE FLEMENT IN OBSERVATION MATRIX AND RELATIONAL CODE	SUBST 9
Ty-C(K) SUBST 12 IA-10+12+NO SUBST 12 IG0=C(K+1) SUBST 12 IG0=C(K+1) SUBST 12 G0=C(K+1) SUBST 12 Q=A(IA)-C(K+2) SUBST 14 Q=A(IA)-C(K+2) SUBST 12 Q=A(IA)-C(K+2) SUBST 12 Q=A(IA)-C(K+2) SUBST 12 Q=C CA(LC(K+5) VECTOR SUBST 25 Q=C(L R(R+S(I1)) SUBST 27 Q=C(L R(R+S(I1)) SUBST 27 Q=C(L R(R+S(I))<	•		SUBST 10
1A-10+12+M0 SUBST 12 IG0-C(X+1) SUBST 13 C FORM R VECTOR SUBST 14 0-A(IA)-C(K+2) SUBST 14 0-A(IA)-C(K+2) SUBST 16 G0 TO(1,2,3,4,5,5,5),IGO SUBST 17 1 IF(0) 7,8,4 SUBST 17 2 IF(0) 7,7,8 SUBST 17 3 IF(2) 8,7,7 SUBST 17 5 IF(0) 8,7,7 SUBST 23 6 IF(0) 8,7,7 SUBST 23 7 R(1,1)=1,0 SUBST 23 8 CONTINUE SUBST 23 6 CALL R(R,S(I1)) SUBST 25 9 CALL R(R,S(I1)) SUBST 25			SUBST 11
IGD=CIK+11 SUAST 13 C FORM R VECTOR SUBST 14 Q=A(IA)=CIK+21 SUAST 15 G0 TO(I_+2,3,4,5,5,5,1,1G) SUBST 16 1 IF(Q) 7,48,7 SUBST 16 3 IF(Q) 7,78 SUBST 27 4 IF(Q) 8,47,7 SUBST 27 5 IF(Q) 8,47,7 SUBST 27 6 IF(Q) 8,47,7 SUBST 27 7 R(I_1)=1,0 SUBST 23 8 CONTINUE SUBST 25 9 C CALCULATE 5 VECTOR 9 CALL R(R,SS(I1)) SUBST 25 9 CALL B(R,SS(I1)) SUBST 25			SUBST 12
c FORM'R VECTOR SUBST 1 Qa4(IA)-CIKP21 SUBST 1 G0 TO(1,2,3,4,5,5),IGO SUBST 1 IF(0) T,7,8 SUBST 1 3 IF(0) T,7,8 SUBST 1 3 IF(0) T,7,8 SUBST 1 5 IF(0) T,7,7 SUBST 2 6 IF(0) 8,7,7 SUBST 2 7 IF(0) 8,4,7 SUBST 2 8 CONTINUE SUBST 2 SUBST 2 8 CONTINUE SUBST 2 SUBST 2 9 CALL R(F,SII) SUBST 2 9 CALL R(F,SII) SUBST 2 9 CALL RES VECTOR SUBST 2 9 CALL RES SUCTOR SUBST 2			SURST 13
Q=A(1A)-C1(k+2) SURST 15 G0 T0(1,22,3)-(5,5)-160 SUBST 16 1 IF(Q) 7,7-8-9 SUBST 17 2 IF(Q) 7,7-8 SUBST 17 3 IF(Q) 7,7-8 SUBST 17 3 IF(Q) 7,7-8 SUBST 17 5 IF(Q) 8,7-7 SUBST 21 6 IF(Q) 8,7-7 SUBST 21 7 R(1)=1-0 SUBST 22 8 CONTINUE SUBST 23 6 CALCULATE 5 VECTOR SUBST 25 9 CALL B(R-SSI1) SUBST 25 9 CALL B(R-SSI1) SUBST 25 9 CALL B(R-SSI1) SUBST 25	c		SUBST 14
GO TO(1,2,3,4,5,5), I,GO SUBST 1 1 I F(0) 7,8,4 SUBST 1 2 I F(0) 7,7,8 SUBST 1 3 I F(2) 4,7,8 SUBST 1 4 I F(2) 4,7,8 SUBST 1 5 I F(0) 4,7,7 SUBST 2 6 I F(2) 4,7,7 SUBST 2 7 I F(2) 4,7,7 SUBST 2 8 CONTINUE SUBST 2 7 R(1) 4,1,0 SUBST 2 8 CONTINUE SUBST 2 9 C ALCULATE 5 VECTOR SUBST 2 9 CALL R(R, SS(1)) SUBST 2 8 RETURN SUBST 2	•		SUBST 15
1 1 F(Q) 7,78,8 SUBST 17 2 1 F(Q) 7,7,8 SUBST 18 3 1 F(Q) 7,7,8 SUBST 27 4 1 F(Q) 7,8,7 SUBST 27 5 1 F(Q) 8,7,7 SUBST 27 6 1 F(Q) 8,7,7 SUBST 27 7 R (1) +1,0 SUBST 27 8 CONTINUE SUBST 27 9 C ALCULATE 5 VECTOR SUBST 25 9 CALL B(R, SS(1)) SUBST 27 9 CALL B(R, SS(1)) SUBST 27			SUBST 16
2 j F(q) 7,7,8 SUBST 18 3 j F(q) 7,7,8 SUBST 21 4 j F(q) 7,7,8 SUBST 21 5 j F(q) 7,8,7 SUBST 21 6 j F(q) 8,7,7 SUBST 21 7 j F(q) 8,7,7 SUBST 23 8 CONTINUE SUBST 23 6 CONTINUE SUBST 25 9 CALCULATE 5 VECTOR SUBST 25 9 CALL R(R,STI1) SUBST 25 9 CALL R(R,STI1) SUBST 25 9 CALL R(R,STI1) SUBST 25			SU8ST 17
3 IF(2) 8,7,8 SUBST 19 4 IF(2) 7,8,7 SUBST 20 5 IF(2) 8,7,7 SUBST 23 6 IF(2) 8,7,7 SUBST 23 7 R(1,1)=1,0 SUBST 23 8 CONTINUE SUBST 23 6 CONTINUE SUBST 24 7 G(1,4)=1,0 SUBST 25 9 CALCULATE 5 VECTOR SUBST 25 9 CALL B(R,SSI1) SUBST 25 9 CALL B(R,SSI1) SUBST 25			SUBST 18
4 IF(Q) 7,847 SUBST 27 5 IF(Q) 8,747 SUBST 21 6 IF(Q) 8,847 SUBST 22 7 R[4]94.0 SUBST 23 8 CONTINUE SUBST 23 6 CALCULATE 5 VECTOR 9 CALL R(R,STI1) SUBST 25 9 CALL R(R,STI1) SUBST 26 0 CALSTAR SUBST 26			SU85T 19
5 ÍF (Q) 8,7,7 SUBST 21 6 IF (Q) 8,8,7 SUBST 22 7 R (L)=L,0 SUBST 23 8 CONTINUE SUBST 24 7 C CALCULATE S VECTOR SUBST 25 9 CALL B(R,SLI1) SUBST 25 9 CALL B(R,SLI1) SUBST 25			SUBST 20
7 R(j)=1.0 SUBST 23 8 CONTINUE SUBST 24 C CALCULATE S VECTOR SUBST 25 9 CALL B(R,SSI1) SUBST 26 R ETURN SUBST 27			SUBST 21
B CONTINUE SUBST 24 C CALCULATE S VECTOR SUBST 26 9 CALL B(R,SIII) SUBST 26 RETURN SUBST 27		6 (F(G) 8.8.7	SUBST 22
C GALCULATE S VECTOR SUBST 25 9 CALL B(R+SLI)} SUBST 26 RETURN SUBST 27		7 R(J)=1.0	SUBST 23
9 (ALL B(R,S(1)) RETURN SUBST 26 SUBST 27		B CONTINUE	SUBST 24
RETURN SUBST 27	С	CALCULATE S VECTOR	SUBST 25
		9 CALL B(R,S(1))	
		RETURN	SURST 27
END SUBST 24		END	SUBST 24

Purpose:

Test missing or zero values for each observation in matrix A.

Usage:

CALL ABSNT (A, S, NO, NV)

Description of parameters:

- A Observation matrix, NO by NV.
- S Output vector of length NO indicating the following codes for each observation:
 - 1 There is not a missing or zero value.
 - 0 At least one value is missing or zero.
- NO Number of observations.
- NV Number of variables for each observation.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

A test is made for each row (observation) of the matrix A. If there is not a missing or zero value, 1 is placed in S(J). If at least one value is missing or zero, 0 is placed in S(J).

	SUHRDUTING ABSNTLA, S, NO, NVI	ABSNT	1
	DIMENSION ALLESSIE	495NT	Z
	00 29 J=1.NO	ABSNT	3
	1 J= J+N()	AHSNT	4
	5())=1.0	48517	5
	00 10 1=1+NV	ABSNT	6
	[J=]J+WD	ABSNT	7
	(F(A((J)) 10,5,1)	ABSNI	9
5	S(J)=0	ARSNT	9
	GR TU 20	ABSNT 1	n i
10	CONFINUE	ABSNT 1	1
20	CONTINUE	ABSNT 1	2
	RETURN	ABSNT 1	3
	END	ABSNT 1	4

This subroutine tabulates for a selected variable in an observation matrix, the frequencies and percent frequencies over class intervals. Interval size is computed as follows:

$$k = \frac{UBO_3 - UBO_1}{UBO_2 - 2}$$
(1)

贝

where $UBO_1 = given lower bound$

 UBO_{2} = given number of intervals

 $UBO_3 =$ given upper bound

If $UBO_1 = UBO_3$, the subroutine finds and uses the minimum and maximum values of the variable.

A table lookup is used to obtain the frequency of the i-th class interval for the variable, where $i = 1, 2, ..., UBO_2$. Then, each frequency is divided by the number of observations, n, to obtain the percent frequency:

$$P_{i} = \frac{100F_{i}}{n}$$
(2)

In addition, the following statistics are calculated for the variable:

Total:
$$T = \sum_{i=1}^{n} X_{ij}$$
 (3)

where j = selected variable

Mean:
$$\overline{X} = \frac{T}{n}$$
 (4)

Standard deviation:

$$s = \sqrt{\frac{\sum_{i=1}^{n} x_{ij}^{2} - \left(\sum_{i=1}^{n} x_{ij}\right)^{2/n}}{n-1}}$$
(5)

Subroutine TAB1

Purpose:

Tabulate for one variable in an observation matrix (or a matrix subset), the frequency and percent frequency over given class intervals. In addition, calculate for the same variable the total, average, standard deviation, minimum, and maximum. Usage:

CALL TAB1 (A, S, NOVAR, UBO, FREQ, PCT, STATS, NO, NV)

Description of parameters:

- A Observation matrix, NO by NV.
 S Input vector giving subset of A.
 - Input vector giving subset of A.
 Only those observations with a corresponding non-zero S(J) are considered.
 Vector length is NO.
- NOVAR The variable to be tabulated.
- UBO Input vector giving lower limit, number of intervals and upper limit of variable to be tabulated in UBO(1), UBO(2) and UBO(3) respectively. If lower limit is equal to upper limit, the program uses the minimum and maximum values of the variable. Number of intervals, UBO(2), must include two cells for values under and above limits. Vector length is 3.
- FREQ Output vector of frequencies. Vector length is UBO(2).
- PCT Output vector of relative frequencies. Vector length is UBO(2).
- STATS Output vector of summary statistics, i.e., total, average, standard deviation, minimum and maximum. Vector length is 5.

NO - Number of observations.

NV - Number of variables for each observation.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

с

¢

с

¢

c

c

с

The interval size is calculated from the given information or optionally from the minimum and maximum values for variable NOVAR. The frequencies and percent frequencies are then calculated along with summary statistics. The divisor for standard deviation is one less than the number of observations used.

	SUBROUTINE TABLIA+S+NOVAR+UBO+FREQ+PCT+STATS+NO+NV)	TAB1	1
	DIMENSION A(1),S(1),UBO(3),FREQ(1),PCT(1),STATS(5)	TABI	
	DIMENSION WBO(3)	TABL	
	D0 5 1=1-3		
5	WB0(1)=UB0(1)	TAB1	
		TAB1	
	CALCULATE MIN AND MAX	TAB1	3
	VMIN=1+0E38	TA91	4
	VMAX=-1.0E38	TAB1	5
	IJ=NO+(NOVAR-1)	TAB1	6
	DO 30 J=1+NO	TAB1	7
		TAB1	8
	IF(S(J)) 10+30+10	TAB1	ġ
10	IF(A(IJ)-VMIN) 15+20+20	TAB1	10
	VMIN=A(IJ)	TAB1	ii
	IF(A(IJ)-VMAX) 30.30.25	TABL	12
	VMAX=A(IJ)	TABI	13
		TABI	14
30	CONTINUE	TABL	19
	STATS(4)=VMIN		
	STATS(5)=VMAX	TAB1	16
	DETERMINE LIMITS	TAB1	17
	IF(UBO(1)-UBO(3)) 40.35.40	TAB1	18
35	UBO(1)=VMIN	TAB1	19
	UBO(3)=VMAX	TAB1	20
40	INN#U90(2)	TAB1	21
	CLEAR DUTPUT AREAS	TAB1	22
	DO 45 1=1.INN	TA81	23
	FREQ(1)=0.0	TAB1	24
4.8	PCT(1)=0.0	TAB1	25
	DO 50 I=1.3	TABL	26
	STATS(1)=0.0	TABI	27
50		TABI	28
	CALCULATE INTERVAL SIZE	TABI	29
	SINT=ABS((UBO(3)=UBO(1))/(UBO(2)=2.0))		
	TEST SUBSET VECTOR	TAB1	30
	5CNT=0+0	TAB1	31
	IJ=NO+(NOVAR-1)	TAB1	32
	DO 75 J=1+NO	TAB1	33
	I = L I = L I	TAB1	34
	IF(S(J)) 55+75+55	TAB1	35
55	SCNT=SCNT+1.0	TAB1	36
	DEVELOP TOTAL AND FREQUENCIES	TA81	37
	STATS(1)=STATS(1)+A(1J)	TAB1	38
	STATS(3)=STATS(3)+A(1J)+A(1J)	TABL	39
		TABI	40
	TEMP=UBO(1)=SINT	TABI	41
	INTX=INN-1		
	DO 60 I=1.INTX	TAB1	42
	TEMP=TEMP+SINT	TAB1	43
	IF(A(IJ)-TEMP) 70,60,60	TABI	44
60	CONTINUE	TAB1	45
	IF(A(IJ)-TEMP) 75+65+65	TAB1	46
65	FREQ(INN)=FREQ(INN)+1.0	TAB1	47
	GO TO 75	TAB1	48
70	FREQ(1)=FREQ(1)+1+0	TAB1	49
	CONTINUE	TAB1	50
	CALCULATE RELATIVE FREQUENCIES	TAB1	
	DO BO I=1+INN	TA81	52
80	PCT(I)=FREQ(I)+100+0/SCNT	TAB1	53
	CALCULATE MEAN AND STANDARD DEVIATION	TABL	54
	IF(SCNT-1.0) 85.85.90	TAB1	
85	STATS(2)=0+0	TABI	
	STATS(3)=0.0	TABI	
	GO TO 95	TABL	58
90	STATS(2)=STATS(1)/SCNT	TABI	
	STATS(3)=SQRT(ABS((STATS(3)=STATS(1)*STATS(1)/SCNT)/(SCNT=1.0)))	TABL	
95	00 100 I=1+3		
	UBO(I)=WBO(I)	TAB1	
	RETURN -	TABI	
	END -	TAB1	
	N10	TAB1	62

TAB2

This subroutine performs a two-way classification of the frequency, percent frequency, and other statistics over given class intervals, for two selected variables in an observation matrix.

Interval size for each variable is computed as follows:

$$k_{j} = \frac{UBO_{3j} - UBO_{1j}}{UBO_{2j} - 2}$$
(1)

where UBO_{1i} = given lower bound

 $UBO_{2j} = given number of intervals$ $UBO_{3j} = given upper bound$ j = 1, 2

If $UBO_{1i} = UBO_{3i}$, the subroutine finds and uses the minimum and maximum values of the jth variable.

A frequency tabulation is then made for each pair of observations in a two-way table as shown in Figure 5.

Symbols \geq and < in Figure 5 indicate that a count is classified into a particular interval if the data point is greater than or equal to the lower limit of that interval but less than the upper limit of the same interval.

Then, each entry in the frequency matrix, F_{ij} , is divided by the number of observations, N, to obtain the percent frequency:

$$P_{ij} = \frac{100F_{ij}}{N}$$
(2)

where $i = 1, 2, ..., UBO_{21}$

$$j = 1, 2, ..., UBO_{22}$$

As data are classified into the frequency matrix, the following intermediate results are accumulated for each class interval of both variables:

1. Number of data points, n

2. Sum of data points,
$$\sum_{i=1}^{n} X_{i}$$

3. Sum of data points squared,
$$\sum_{i=1}^{n} x_i^2$$

From these, the following statistics are calculated for each class interval:

Mean:
$$\overline{X} = \frac{\sum_{i=1}^{n}}{2}$$

n

Standard deviation:

$$s = \sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}/n}{n - 1}}$$
(4)

(3)

Subroutine TAB2

Purpose:

Perform a two-way classification for two variables in an observation matrix (or a matrix subset) of the frequency, percent frequency, and other statistics over given class intervals.

Usage:

А

CALL TAB2 (A, S, NOV, UBO, FREQ, PCT, STAT1, STAT2, NO, NV)

Description of parameters

- Observation matrix, NO by NV

S - Input vector giving subset of A. Only those observations with a corresponding non-zero S(J) are considered. Vector length is NO.

18

UBO	-	3 by 2 matrix giving lower limit,	
		number of intervals, and upper	
		limit of both variables to be tabu-	
		lated (first column for variable 1,	
		second column for variable 2). If	
		lower limit is equal to upper limit	
		for variable 1, the program uses the	
		minimum and maximum values on	
		each variable. Number of intervals	
		must include two cells for under and	
		above limits.	
FREQ	-	Output matrix of frequencies in the	
-		two-way classification. Order of	
		matrix is INT1 by INT2, where INT1	
		is the number of intervals of vari-	
		able 1 and INT2 is the number of in-	
		tervals of variable 2. INT1 and	
		INT2 must be specified in the second	
		position of respective column of UBO	

- matrix. PCT Output matrix of percent frequen----cies, same order as FREQ.
- Output matrix summarizing totals, STAT1 means, and standard deviations for each class interval of variable 1. Order of matrix is 3 by INT1.
- STAT2 Same as STAT1 but over variable 2. Order of matrix is 3 by INT2.

- Number of observations. NO

- Number of variables for each obser-NV vation.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Interval sizes for both variables are calculated from the given information or optionally from the minimum and maximum values. The frequency and percent frequency matrices are developed. Matrices STAT1 and STAT2 summarizing totals, means, and standard deviations are then calculated. The divisor for standard deviation is one less than the number of observations used in each class interval.

		SUBROUTINE TAB2(A+S+NOV+UBO+FREQ+PCT+STAT1+STAT2+NO+NV)	TAB2
		DIMENSION A(1)+S(1)+NOV(2)+UBO(3+2)+FREQ(1)+PCT(1)+STAT1(1)+	TABZ
		1STAT2(2)+SINT(2)	TA82
		DIMENSION WBO(3.2)	TAB2
		00 5 J=1+3 00 5 J=1+2	TAB2
	5	WBO([+J)=DBO([+J)	TAB2
c	-	DETERMINE LIMITS	TAB2 TAB2
-		DO 40 1=1.2	TAB2
		IF(UB0(1.1)-UB0(3.1))40.10.40	TABZ
	10	VMIN=1.0E38	TABZ
		VMAX=-1.0E38	TABZ
		IJ=NO+(I)+1)+1)	TAB2
		00 35 J=1+NO	TAB2
		1J=1J+1	TAB2
		IF(S(J)) 15+35+15	TAB2
	15	IF(A(IJ)-VMIN) 20+25+25	TAB 2
	20	VMIN=A(IJ)	TAB2
	20	IF(A(IJ)-VMAX) 35:35:30 VMAX=A(IJ)	TAB2
	35	CONTINUE	TAB2
		UBO(1+I)=VMIN	TAB2 TAB2
		UBO(3+1)=V4AX	TABZ
	40	CONTINUE	TAB2
с		CALCULATE INTERVAL SIZE	TAB2
		DO 50 I=1+2	TAB2
	50	SINT(1)=ABS((UBO(3+1)=UBO(1+1))/(UBO(2+1)=2+0))	TAB2
c		CLEAR OUTPUT AREAS	TAB2
		INT1=UBO(2+1) INT2=UBO(2+2)	TAB2 TAB2
		INTT=INT1+INT2	TAB2
		DO 55 I=1,INTT	TA92
		FREQ(I)=0.0	TABZ
	55	PCT(1)=0.0	TAB2
		INTY=3*INT1	TAB2
		00 60 I=1+INTY	TAB2
	60	STAT1([]=0.0	TAB2
		INTZ=3*INT2	TAB2
		D0 65 1=1.INTZ	TAB2
~	65	STAT2(1)=0.0	TAB2
c		TEST SUBSET VECTOR SCNT=0+0	TAB2
		INTY=INT1-1	TAB2 TAB2
		INTX=INT2=1	TAB2
		1J=NO*(NOV(1)-1)	TAB2
		1JX=NO*(NOV(2)-1)	TABZ
		DO 95 J=1.NO	TAB2
		IJ=IJ+1	TAB2
		IJX=IJX+1	TAB2
		IF(S(J)) 70,95,70	TAB2
-	70	SCNT=SCNT+1.0	TAB2
c		CALCULATE FREQUENCIES	TAB2
		TEMP1=UBO(1+1)-SINT(1)	TAB2
		DO 75 IY=1+INTY	TAB2
		TEMP1=TEMP1+SINT(1) IF(A(IJ)-TEMP1) 80.75.75	TAB2 TAB2
	75	CONTINUE	TABZ
		IY=INT1	TAB2
	80	1YY=3*(IY-1)+1	TA82
		STAT1(IYY)=STAT1(IYY)+A(IJ)	TAB2
		[YY=[YY+]	TAB2
		STAT1(IYY)=STAT1(IYY)+1.0	TAB2
		IYY=IYY+1	TABZ
		STAT1(IYY)=STAT1(IYY)+A(IJ)*A(IJ) TEHOD=UPO(1:0)=SINT(0)	TAB2
		TEMP2=UBO(1+2)-SINT(2) DO 85 [X=1+INTX	TABZ
		TEMD2=TEMP2+SINT(2)	TAB2
		IF(A(IJX)-TEMP2) 90,85,85	TAB2
	85	CONTINUE	TAB2
		IX=INT2	TAB2
	90	IJF=INT1+(IX-1)+IY	TAB2
		FREQ(1JF)=FREQ(1JF)+1+0	TAB2
		1x=3*(1x-1)+1	TAB2
		STAT2(IX)=STAT2(IX)+A(IJX)	TAB2
		IX=IX+1	TAB2
		STAT2(IX)=STAT2(IX)+1.0	TAB2
		IX=IX+1 STAT2(IX)=STAT2(IX)+A(IJX)*A(IJX)	TAB2 TAB2
	95		TAB2
с		CALCULATE PERCENT FREQUENCIES	TAB2
-		DO 100 I=1+INTT	TAB2
	100	PCT(1)*FREQ(1)*100.0/SCNT	TABZ
с		CALCULATE TOTALS. MEANS. STANDARD DEVIATIONS	TAB2
		IXY=-1	TAB2
		DO 120 I=1+INT1	TAB2
		IXY=IXY+3 ISD=IXY+1	TAB2
			TAB2
		TEMP1=STAT1(IXY) SUM=STAT1(IXY-1)	TAB2 TAB2
		IF(TEMP1-1.0) 120.105.110	TABZ
	105	STAT1(ISD)=0.0	TAB2
		GO TO 115	TAB2
	110	STAT1(ISD)=SQRT(ABS((STAT1(ISD)=SUM*SUM/TEMP1)/(TEMP1=1.0)))	TAB2
	115		TAB2
	120	CONTINUE	TAB2
		[XX=-]	TAB2
		DO 140 I=1+INT2	TAB2
		IXX=IXX+3 ISD=IXX+1	TAB2 TAB2
		150=1xx+1 TEMP2=STAT2(1xx)	TAB2
		SUN=STAT2(IXX-1)	TABZ
		IF{TEMP2-1.0} 140+125+130	TAB2
	125	STAT2(ISD)=0.0	TAB2
		GO TO 135	TAB2
		STAT2(ISD)=SQRT(ABS((STAT2(ISD)=SUM*SU4/TEMP2)/(TEMP2+1+0)))	TAB2
	135	STAT2(IXX)=SUM/TEMP2	TAB2
	140	CONTINUE	TAB2
		D0 150 1=1+3	TAB2
		DO 160 I-1-2	7497

- 00 150 I=1+3 D0 150 J=1+2 150 U=0([+J]=WRO([+J] RETURN FMP

SUBMX

Purpose:

Based on vector S derived from subroutine SUBST or ABSNT, this subroutine copies from a larger matrix of observation data a subset matrix of those observations which have satisfied certain condition. This subroutine is normally used prior to statistical analyses (e.g., multiple regression, factor analysis).

Usage:

CALL SUBMX (A, D, S, NO, NV, N)

Description of parameters:

- A Input matrix of observations, NO by NV.
- D Output matrix of observations, N by NV.
 S Input vector of length NO containing the codes derived from subroutine SUBST or ABSNT.
- NO Number of observations.
- NV Number of variables.
- N Output variable containing the number of non-zero codes in vector S.

Remarks:

Matrix D can be in the same location as matrix A.

Subroutines and function subprograms required: None.

Method:

If S(I) contains a non-zero code, I-th observation is copied from the input matrix to the output matrix.

	SUBRUITINE SUBMX (A+D+S+N()+NV+N)	SUPMX 1
	DIMENSION ALLI, DELI, SELI	SURMX 2
	L=0	SUBMX 3
	LL=0	SUBMX 4
	00 20 J=1.NV	SUPMX 5
	00 15 1=1,00	SUBMX 6
	1=1+1	SUPPX 7
	1F(S(1)) 15, 15, 10	SURMX R
	10 LL=LL+1	SUBMX 9
	0(LL)=A(L)	SUBMX 10
	15 CUNTINUE	SUPPX 11
	20 CUNTINUF	SUBMX 12
С	COUNT NON-ZERD CODES IN VECTOR S	SUBMX 13
	N=0	SURMX 14
	20 10 1=1,N0	SURMX 15
	IFIS(1)1 30, 30, 25	SUPHX 16
	25 N=N+1	SURMX 17
	30 CONTINUE	SURMX 19
	RETURN	SUPMX 19
	FND	SURMX 20

Statistics - Elementary

<u>MOMEN</u>

This subroutine computes four moments for grouped data F_1, F_2, \ldots, F_n on equal class intervals. The number of class intervals is computed as follows:

$$n = (UBO_3 - UBO_1)/UBO_2$$
(1)

where $UBO_1 = given lower bound$

 UBO_2 = given class interval

 $UBO_{2} = given upper bound$

and the total frequency as follows:

$$\Gamma = \sum_{i=1}^{n} F_{i}$$
 (2)

where $F_i =$ frequency count in i-th interval.

Then, the following are computed:

First Moment (Mean):

$$ANS_{1} = \frac{\sum_{i=1}^{n} F_{i} \left[UBO_{1} + (i-0.5) UBO_{2} \right]}{T}$$
(3)

j-th Moment (Variance):

grouping

These moments are biased and not corrected for

Subroutine MOMEN

Purpose:

To find the first four moments for grouped data on equal class intervals.

Usage:

CALL MOMEN (F, UBO, NOP, ANS)

Description of Parameters:

- F Grouped data (frequencies). Given as a vector of length (UBO(3)-UBO(1))/ UBO(2)
- UBO 3 cell vector, UBO(1) is lower bound and UBO(3) upper bound on data.
 UBO(2) is class interval. Note that UBO(3) must be greater than UBO(1).
- NOP Option parameter. If NOP = 1, ANS(1) = MEAN. If NOP = 2, ANS(2) = second moment. If NOP = 3, ANS(3) = third moment. If NOP = 4, ANS(4) = fourth moment. If NOP = 5, all four moments are filled in.
- ANS Output vector of length 4 into which moments are put.

Remarks:

- Note that the first moment is not central but the value of the mean itself. The mean is always calculated. Moments are biased and not corrected for grouping.
- Subroutines and function subprograms required: None.

Method:

Refer to M. G. Kendall, 'The Advanced Theory of Statistics', V.1, Hafner Publishing Company, 1958, Chapter 3.

		SUBROUTINE MOMEN (F+UBO+NOP+ANS)	MOMEN	1
		DIMENSION F(1)+UBD(3)+ANS(4)	MUMENMO	11
		DO 100 I=1+4	MOMEN	3
	100	ANS(1)=0.0	HOMEN	4
с		CALCULATE THE NUMBER OF CLASS INTERVALS	MUMEN	5
č		N={UBO(3)-UBO(1)}/UBO(2)+0.5	MOMENMO	
с		CALCULATE TOTAL FREQUENCY	MOMEN	7
		Fe0.0	MOMEN	à.
		00 110 [=1+N	MOMEN	3
	110	T=T+F(1)	MOMEN 1	ก
	11.7	IF(NOP-5) 130, 120, 115	MOMEN 1	
	115	NOP=5	NOMEN 1	12
		JUNP=1	MOMEN 1	13
	110	60 TO 150	MOMEN 1	4
	1 40	JUMP=2	HOMEN 1	15
r		FIRST MOMENT	MOMEN 1	
4		00 160 I≈1+N	MOMEN 1	17
	•	FI=1	MOMEN 1	R
	140	ANS(1)=ANS(1)+F(()*(URD(1)+(E(-).5)*URD(2))	MOMEN 1	19
	100	ANS[]]=ANS[]]/T	MOMEN 2	20
		GU TO (350.200.250.300.200), NOP	MOMEN 2	21
с		SECIND MOMENT	MOMEN 2	,,
C	200	90 210 L=1.N	MOMEN 2	
	20.7	F1=1	MOMEN 2	
	210	ANS(2) = ANS(2) + F(1) = (USO(1) + (F) - 0 + 5) = UBO(2) - ANS(1) } = 2	MOMEN 2	
	210	ANS(2)=ANS(2)/T	MOMEN 2	
		GU TO (250.350). JUMP	NOMEN 2	77
c		THIRD MOMENT	MOMEN 2	B
ç	250	D0 250 I=1+N	MOMEN 2	20
	e 31	Fiel	MOMEN 3	10
	240	ANS(3)=ANS(3)+F([)+(URO(1)+(F)-0.5)+J97(2)-ANS([])++3	MOMEN 3	
	1.10	ANS(3)=ANS(3)/T	MOMEN 3	12
		G') T() {300,350}, JUNP	NOMEN 3	
с		FOURTH MOMENT	MOMEN 3	14
۰.	300	21 310 I=L+N	NOMEN 3	5
	,	Fire	MOMEN 3	
	110	ANS(4)=ANS(4)+F(1)*(U30())+(F1-3.5)*UR7(2)-ANS(1))**4	MOMEN 3	17
		4NS(4)=ANS(4)/T	MOMEN 3	18
	150	REFURN	MOMEN 3	19
		FND	MITHEN 4	. ^

TTSTT

This subroutine computes certain t-statistics on the means of populations under various hypotheses.

The sample means of A_1 , A_2 , ..., A_{NA} and B_1 , B_2 , ..., \bar{B}_{NB} are normally found by the following formulas:

$$\overline{A} = \frac{\sum_{i=1}^{NA} A_i}{NA}; \qquad \overline{B} = \frac{\sum_{i=1}^{NB} B_i}{NB} \qquad (1)$$

and the corresponding sample variances by:

$$SA^{2} = \frac{\sum_{i=1}^{NA} (A_{i} - \overline{A})^{2}}{NA - 1}; SB^{2} = \frac{\sum_{i=1}^{NB} (B_{i} - \overline{B})^{2}}{NB - 1} (2)$$

 μ and σ^2 stand respectively for population mean and variance in the following hypotheses:

Hypothesis: $\mu_B = A$; A = a given value (Option 1): Let \overline{B} = estimate of μ_B and set NA = 1 (A is stored in location A).

The subroutine computes:

ANS =
$$\frac{\overline{B} - A}{SB} \cdot \sqrt{NB}$$
 (t-statistic) (3)

$$NDF = NB - 1$$
 (degrees of freedom) (4)

Hypothesis: $\mu_A = \mu_B$; $\sigma_A^2 = \sigma_B^2$ (Option 2):

The subroutine computes:

ANS =
$$\frac{\overline{B} - \overline{A}}{S} \cdot \frac{1}{\sqrt{\frac{1}{NA} + \frac{1}{NB}}}$$
 (t-statistic) (5)

$$NDF = NA + NB - 2$$
 (degrees of freedom) (6)

where
$$S = \sqrt{\frac{(NA - 1)SA^2 + (NB - 1)SB^2}{NA + NB - 2}}$$
 (7)

Hypothesis:
$$\mu_{A} = \mu_{B} \left(\sigma_{A}^{2} \neq \sigma_{B}^{2} \right)$$
 (Option 3):

The subroutine computes:

ANS =
$$\frac{\overline{B} - \overline{A}}{\sqrt{\frac{SA^2}{NA} + \frac{SB^2}{NB}}}$$
 (t-statistic) (8)

$$NDF = \frac{\left(\frac{SA^2}{NA} + \frac{SB^2}{NB}\right)^2}{\left(\frac{SA^2}{NA}\right)^2 / (NA+1) + \left(\frac{SB^2}{NB}\right)^2 / (NB+1)} -2$$
(9)

(degrees of freedom)

Note: The program returns a rounded NDF, not a truncated NDF.

Hypothesis: $\mu_A = \mu_B$ (no assumption on σ^2) (Option 4):

The subroutine computes:

ANS =
$$\frac{\overline{D}}{SD} \cdot \sqrt{NB}$$
 (t-statistic) (10)

NDF = NB - 1 (degrees of freedom) (11)

where $\vec{D} = \vec{B} - \vec{A}$ (12)

$$SD = \sqrt{\frac{\sum_{i=1}^{NB} (B_i - A_i - \vec{D})^2}{NB - 1}}$$
 (13)

NA = NB

Subroutine TTSTT

Purpose:

To find certain T-statistics on the means of populations.

Usage:

CALL TTSTT (A, NA, B, NB, NOP, NDF, ANS)

Description of parameters:

Α	-	Input vector of length NA containing	ng
		data.	

- NA Number of observations in A.
- B Input vector of length NB containing data.
- NB Number of observations in B.
- NOP Options for various hypotheses: NOP=1--- That population mean of B = given value A. (Set NA=1.) NOP=2--- That population mean of
 - NOP=2--- That population mean of B = population mean of A, given that the variance of B = the variance of A.

- NOP=3--- That population mean of B = population mean of A, given that the variance of B is not equal to the variance of A.
- NOP=4--- That population mean of B = population mean of A, given no information about variances of A and B. (Set NA=NB.)
- NDF Output variable containing degrees of freedom associated with T-statistic calculated.

ANS - T-statistic for given hypothesis.

Remarks:

NA and NB must be greater than 1, except that NA=1 in option 1. NA and NB must be the same in option 4. If NOP is other than 1, 2, 3 or 4, degrees of freedom and T-statistic will not be calculated. NDF and ANS will be set to zero.

Subroutines and function subprograms required: None.

Method:

C

Refer to Ostle, Bernard, 'Statistics in Research', Iowa State College Press, 1954, Chapter 5.

		SUBROUTINE TESTE (A,NA,B,NB,NDP,NDF,ANS)	TISTT
		DIMENSION A(1),8(1)	TTSTT 2
С		INITIALIZATION	TTSTT 3
		NDF=0	TTSTT 4
		ANS=0.0	TTSTT
с		CALCULATE THE MEAN OF A	TISTT #
		AMFAN=9.0	TTSTT 7
		00 110 L=1+NA	TTSTT P
	110	AME AN=AME AN+AL []	TISTE
		FNA=NA	TTSTT 10
		AMEAN=AMEAN/FNA	TTSTT 11
c		CALCULATE THE MEAN OF B	TISTE 12
	115	BMEAN=0.0	TTSTT 13
		DU 120 [=1,NB	TTSTT 14
	120	BMEAN=BMEAN+B([]	TTSTT 15
		FNB=NB	TTSTT 14
		BMEAN=9MEAN/FNB	TESTE 17
		IF(NOP-4) 122, 180, 200	TTSTT 18
	122	IF(NUP-1) 200, 135, 125	TTSTT 19
с		CALCULATE THE VARIANCE OF A	TTSTT 20
	125	5A2=0.7	TTSTT 21
		D/1 130 1=1+NA	TTSTT 77
	130	SA2=SA2+{4{1}}-AMF 4N}**2	TTSTT 23
		SA2=SA2/(FNA-1.0)	TISTI 24
c		CALCULATE THE VARIANCE OF P	TTSTT 25
	135	SR2=0.0	TISTI 24
		DD 140 [=1,NB	TTSTT 27
	140	5H2=5H2+{B{]}-HMFAN}##2	TTSTT 29
		SH2=SH2/(FNB-L.D)	¥FSTT 29
		GU TO (150+160+170), NOP	TISTI 30
С		OPTION L	11511 31
	150	ANS={{HMEAN-AMEAN}/SQRT(SB2)}*SQRT(FNB}	TTSTT 32
		NDF = NH - 1	TTSTT 33
_		GU TU 200	TTSTT 34
С		NPTION 2	ITSTE 35
	160	NUF=NA+NB-2	TTSTT 36
		FNDF=NDF	TTSTT 37
		S=SJRT(((FNA-1.0)*SA2+(FNA-1.0)*SH2)/FNDF1	TTSTT 38
		ANS=[[9MEAN~AMEAN]/S]#[].0/SORT[].0/ENA+1.0/ENB}] Gu [[] 200	TTSTT 39
с			TTSTT 40
L	1.20	JPTION 3 ANS=(H4EAN-AMEAN)/SQRT(SAZ/FNA+SBZ/FNR)	TTSTT 41 TTSTT 42
	170	A1=(SA2/FNA+SR2/-NA)###2	TTSTT 43
		A/=(SA2/FNA)++7/(FNA+1.0)+(SB7/FNB)++2/(FNB+1.0)	TTSTT 44
		NDF+A1/A2-2.0+0.5	TTSTT 45
		GI TO 200	TISTE 44
c		UPTION 4	TTSTT 47
1	180	50=7.0	TTSTT 48
		D=RHEAN-AMEAN	TTSTT 49
		03 190 1=1,NB	TTSTT 50
	120	SU=SD+(8(1)-A(1)-D)++2	TISTE SI
		SU=SURT(SU/(FNB-1.0))	TTSTT 52
		445=(0/S0)+S0RT(FNB)	ITSTT 53
		NOF=N+-1	TISTI 54
	200	4F TURN	TTSTT 55
		END	TTSTT 56

CORRE

This subroutine calculates means, standard deviations, sums of cross-products of deviations from means, and product moment correlation coefficients from input data X_{ij} , where i = 1, 2, ..., n implies observations and j = 1, 2, ..., m implies variables.

The following equations are used to calculate these statistics:

Sums of cross-products of deviations:

$$S_{jk} = \sum_{i=1}^{n} \left(X_{ij} - T_{j} \right) \left(X_{ik} - T_{k} \right) - \frac{\sum_{i=1}^{n} \left(X_{ij} - T_{j} \right) \sum_{i=1}^{n} \left(X_{ik} - T_{k} \right)}{n}$$
(1)

where j = 1, 2, ..., m; k = 1, 2, ..., m

$$T_{j} = \frac{\sum_{i=1}^{m} X_{ij}}{m}$$
(2)

(These temporary means T_j are subtracted from the data in equation (1) to obtain computational accuracy.)

Means:
$$\overline{X}_{j} = \frac{\sum_{i=1}^{n} X_{ij}}{n}$$
 (3)

where j = 1, 2, ..., m

Correlation coefficients:

$$\mathbf{r}_{jk} = \frac{\mathbf{S}_{jk}}{\sqrt{\mathbf{S}_{jj}} \sqrt{\mathbf{S}_{kk}}}$$
(4)

where j = 1, 2, ..., m; k = 1, 2, ..., m

Standard deviations:

$$s_{j} = \frac{\sqrt{s_{jj}}}{\sqrt{n-1}}$$
(5)

where j = 1, 2, ..., m

Subroutine CORRE

Purpose:

Compute means, standard deviations, sums of cross-products of deviations, and correlation coefficients.

Usage:

Description of parameters:

- N Number of observations.
- M Number of variables.
- IO Option code for input data. 0 If data are to be read in from input device in the special subroutine named data. (See "subroutines and function subprograms required" below.)
 - 1 If all data are already in core.
- If IO=0, the value of X is 0.0.
 If IO=1, X is the input matrix (N by M) containing data.
- XBAR Output vector of length M containing means.
- STD Output vector of length M containing standard deviations.
- RX Output matrix (M by M) containing sums of cross-products of deviations from means.
 - Output matrix (only upper triangular portion of the symmetric matrix of M by M) containing correlation coefficients. (Storage mode of 1)
- B Output vector of length M containing the diagonal of the matrix of sums of cross-products of deviations from means.
- D Working vector of length M.
 - Working vector of length M.

Remarks:

None.

т

R

Subroutines and function subprograms required: DATA(M,D) - This subroutine must be provided by the user.

> (1) If IO=0, this subroutine is expected to furnish an observation in vector D from an external input device.

 (2) If IO=1, this subroutine is not used by CORRE but must exist in job deck. If user has not supplied a subroutine named DATA, the following is suggested. SUBROUTINE DATA RETURN END

Method:

Product-moment correlation coefficients are computed.

		SUBROUTINE CORRE (N+M+10+X+XBAR+STD+RX+R+B+D+T)	CCRRE 1
		SUBROUTINE CORRE (N+M+1GiX+XBAR+SID+R+X+R+GFD+77 DIMENSION X(1)+SBAR(1)+STD(1)+RX(1)+R(1)+B(1)+D(1)+T(1) INITIALIZATION	CCRRE 2 CCRRE 3
c		INITIALIZATION DO 100 J=1+M	CCRRE 4
		B(J)=0.0	CORRE 5 CORRE 6
	100	T(J)=0.0 K=(M#M+M}/2	CORRE 7
		DO 102 I=1+K	CCRRE 8 CORRE 9
	102	R(I)=0.0 FN=N	CCRRE 10
		1 = 0	CCRRE 11 CCRRE 12
c		IF(I0) 105, 127, 105 DATA ARE ALREADY IN CORE DO 108 J=1.W DO 107 I=1.N	CORRE 13
	105	DO 108 Jal.M	CORRE 14 CORRE 15
		L=L+1	CORRE 16
	107	T(J)=T(J)+X(L)	CORRE 17 CCRRE 18
	108	XBAR(J)=T(J) T(J)=T(J)/FN	CCRRE 19
		DO 115 I=1.N JK=0	CCRRE 20 CORRE 21
			CORRE 22
		00 110 J=1.M	CCRRE 23 CCRRE 24
		L=L+N D(J)=X(L)-T(J)	CCRRE 25
	110	8(J)=8(J)+0(J)	CORRE 26 CORRE 27
		DO 115 J=1+M DO 115 K=1+J	CORRE 28
		JK=JK+1	CCRRE 29 CCRRE 30
	115	GO TO 205	CCRRE 31
ç		READ OBSERVATIONS AND CALCULATE TEMPORARY	CORRE 32 CORRE 33
C	127	READ OBSERVATIONS AND CALCULATE TEMPORARY MEANS FROM THESE DATA IN T(J) IF(N=W) 130, 130, 135	CCRRE 34
	130	KK≌N Go to 137	CCRRE 35 CCRRE 36
		KK ** M	CORRE 37
	137		CORRE 38 CORRE 39
		CALL DATA (M.D) DO 140 J.1.M	CCRRE 40
		T(J)=T(J)+D(J) L=L+1	CCRRE 41 CCRRE 42
	140	RX(L)=D(J)	CCRRE 43
		FKK=KK Do 150 J=1+M	CORRE 44 CCRRE 45
		XBAR(J)=T(J)	CORRE 46
r	150	T(J)#T(J)/FKK CALCULATE SUMS OF CROSS-PRODUCTS OF DEVIATIONS	CORRE 47 CCRRE 48
c		FROM TEMPORARY MEANS FOR M OBSERVATIONS	CCRRE 49
		L=0 D0 180 1=1,KK	CORRE 50 CORREMO6
		7K=0	CORRE 52
		DO 170 J=1+M L=L+1	CORRE 53 CCRRE 54
	170	D(J)=RX(L)-T(J)	CORRE 55
		DO 180 J=1+M B(J)=B(J)+D(J)	CCRRE 56 CCRRE 57
		DO 180 K=1.J	CORRE 58
	180	JK=JK+1 R(JK)=R(JK)+D(J)+D(K)	CORRE 59 CORRE 60
	100	IF(N-KK) 205, 205, 185 READ THE REST OF OBSERVATIONS ONE AT A TIME, SUM THE OBSERVATION, AND CALCULATE SUMS OF CROSS- BROQUETE OF DEVIATIONS FOR THOMORE ON THE OBSERVATIONS	CORRE 61
c c		READ THE REST OF OBSERVATIONS ONE AT A TIME. SUM THE OBSERVATION. AND CALCULATE SUMS OF CROSS-	CORRE 62 CORRE 63
č			CORRE 64
	185	KK=N-KK Do 200 I=1.KK	CCRRE 65 CCRRE 66
		JK=0	CORRE 67
		CALL DATA (M.D) Do 190 J=1.M	CCRRE 68 CCRRE 69
		DO 190 J=1+M XBAR(J)=XBAR(J)+D(J)	CCRRE 70
	190	B(J)=B(J)+D(J) B(J)=B(J)+D(J)	CCRRE 71 CCRRE 72
		DO 200 J=1+M DO 200 K=1+J	CORRE 73
		JK=JK+1	CCRRE 74 CCRRE 75
-	200	R(JK)=R(JK)+D(J)+D(K)	CCRRE 76
c	205		CCRRE 78
		DO 210 J=1+M XBAR(J)+XBAR(J)/FN	CCRRE 79 CCRRE 80
c		ADJUST SUMS OF CROSS-PRODUCTS OF DEVIATIONS	CCRRE B1
c		FROM TEMPORARY MEANS	CCRRE 82 CCRRE 83
		DO 210 K=1+J JK=JK+1	CCRRE 84
ç	210	R(JK)=R(JK)-B(J)+B(K)/FN CALCULATE CORRELATION COEFFICIENTS	CORRE 85 CORRE 86
-		JK=0	CCRRE 87
		DO 220 J=1+M JK=JK+J	CCRRF 88 CCRRF 89
	220	STOLING SOPTI ABS(PLIKI))	CCRRE 90
		DO 230 J=1+M DO 230 K=J+M	CCRRE 91 CCRRE 92
		JK=J+(K+K-K)/2 L=N+(J-1)+K	CCRRE 93
		RX(L)=R(JK)	CORRE 95
		L=M#(K-1)+J	CCRRE 96

		GO TO 230
		R(JK)=R(JK)/(STD(J)+STD(K))
	230	CONTINUE
c		CALCULATE STANDARD DEVIATIONS FN=SORTIFN=1+0) DO 240 J=1+M
	240	STD(J)=STD(J)/FN
c		COPY THE DIAGONAL OF THE MATRIX OF SUMS OF CROSS-PRODUCTS OF
č		DEVIATIONS FROM MEANS.
		L=-M
		DD 250 1=1.4
		L=L+M+1
	250	B(1)=RX(L)
		RETURN
		END

CCRRE101

CORREIOS CORREIOS CORREIIO

RX(L)=R(JK) IF(STD(J)*STD(K))225+222+225 222 R(JK)=0+0

Statistics - Multiple Linear Regression

In the Scientific Subroutine Package, multiple linear regression is normally performed by calling four subroutines in sequence.

1. CORRE - to find means, standard deviations, and correlation matrix

2. ORDER - to choose a dependent variable and a subset of independent variables from a larger set of variables

3. MINV - to invert the correlation matrix of the subset selected by ORDER

4. MULTR - to compute the regression coefficients, ${\rm b}_0,~{\rm b}_1,~{\rm b}_2,~\ldots,~{\rm b}_m,$ and various confidence measures

The subroutine CORRE works in either of two ways: (1) it expects all observations in core, or (2) it triggers a user-provided input subroutine, DATA, to read one observation at a time into a work area. In either case, the user must provide a subroutine named DATA (see "Subroutines Required" in the description of subroutine CORRE).

ORDER

Purpose:

Construct from a larger matrix of correlation coefficients a subset matrix of intercorrelations among independent variables and a vector of intercorrelations of independent variables with dependent variable. This subroutine is normally used in the performance of multiple and polynomial regression analyses.

Usage:

CALL ORDER (M, R, NDEP, K, ISAVE, RX, RY)

Description of parameters:

- M Number of variables and order of matrix R.
- R Input matrix containing correlation coefficients. This subroutine expects only upper triangular portion of the symmetric matrix to be stored (by column) in R. (Storage mode of 1.)
- NDEP The subscript number of the dependent variable.

 K - Number of independent variables to be included in the forthcoming regression.

ISAVE -

 E - Input vector of length K+1 containing, in ascending order, the subscript numbers of K independent variables to be included in the forthcoming regression.

> Upon returning to the calling routine, this vector contains, in addition, the subscript number of the dependent variable in K+1 position.

RX - Output matrix (K by K) containing intercorrelations among independent variables to be used in forthcoming regression.

RY - Output vector of length K containing intercorrelations of independent variables with dependent variables.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

From the subscript numbers of the variables to be included in the forthcoming regression, the subroutine constructs the matrix RX and the vector RY.

		SUBROUTINE UPDER (M,R,NDEP,K,ISAVE,RX,RY)	ORDER	ı
		DIMENSION R(1), ISAVE(1), RX(1), RY(1)	ORDER	2
C		COPY INTERCORRELATIONS OF INDEPENDENT VARIABLES	ORDER	3
С		WITH DEPENDENT VARIABLE	ORDER	4
		MM=0	ORDER	5
		DO 130 J=1.K	GROER	5
		L2=1SAVF(J)	ORDER	7
		1FINDEP-L21 122, 123, 123	ORDER	9
	122	L=N()EP+(12#17-121/2	ORDER	9
		GO TO 125	ORDER	10
	123	L=L2+(NDEP+NDEP-NDEP)/2	ORDEP	11
	125	RY(J)=R(L)	ORDER	12
С		COPY A SUBSET MATRIX OF INTERCORRELATIONS AMONG	ORDER	13
C		INDEPENDENT VARIABLES	ORDER	14
		DO 130 1=1.K	DRDER	15
		L1=ISAVE(I)	ORDER	15
		1F(L1-L2) 127, 129, 128	DRDER	17
	127	↓=↓↓+{↓2+↓2↓/2	ORDER	19
		GO TO 129	ORDER	19
	128	L=L2+(L1+L1+/?	ORDER	20
	129	MM= MH+ 1	ORDER	21
	130	RX(4M) = R(L)	ORDER	22
c		PLACE THE SUBSCRIPT NUMBER OF THE DEPENDENT	DRDFP	23
C		VARIABLE IN ISAVE(K+1)	ORDER	24
		ISAVE(K+1)=NDEP	ORDER	25
		RFTURN	ORDER	25
		END	ORDER	27

This subroutine performs a multiple regression analysis for a dependent variable and a set of independent variables.

Beta weights are calculated using the following equation:

$$\beta_{j} = \sum_{i=1}^{k} r_{iy} \cdot r_{ij}^{-1}$$
(1)

where $r_{iy} =$ intercorrelation of ith independent variable with dependent variable

$$r_{iy}$$
 and r_{ij}^{-1} are input to this subroutine.

Then, the regression coefficients are calculated as follows:

$$b_{j} = \beta_{j} \cdot \frac{s_{y}}{s_{j}}$$
(2)

where $s_y = standard deviation of dependent variable$

- $s_{j} = standard deviation of j^{th} independent variable$
 - j = 1, 2, ..., k

s and s are input to this subroutine.

The intercept is found by the following equation:

$$\mathbf{b}_0 = \overline{\mathbf{Y}} - \sum_{j=1}^{K} \mathbf{b}_j \cdot \overline{\mathbf{X}}_j$$
(3)

where \overline{Y} = mean of dependent variable

$$\overline{X}_{j}$$
 = mean of jth independent variable
 \overline{Y} and \overline{X}_{j} are input to this subroutine.

Multiple correlation coefficient, R, is found first by calculating the coefficient of determination by the following equation:

$$R^{2} = \sum_{i=1}^{k} \beta_{i} r_{iy}$$
(4)

and taking the square root of R^2 :

$$R = \sqrt{R^2}$$
 (5)

The sum of squares attributable to the regression is found by:

$$SSAR = R^2 \cdot D_{yy}$$
(6)

where D_{yy} = sum of squares of deviations from mean for dependent variable

 D_{VV} is input to this subroutine.

The sum of squares of deviations from the regression is obtained by:

$$SSDR = D_{yy} - SSAR$$
(7)

Then, the F-value for the analysis of variance is calculated as follows:

$$F = \frac{SSAR/k}{SSDR/(n-k-1)} = \frac{SSAR(n-k-1)}{SSDR(k)}$$
(8)

Certain other statistics are calculated as follows:

Variance and standard error of estimate:

$$s_{y,12...k}^2 = \frac{SSDR}{n-k-1}$$
 (9)

where n = number of observations

$$S_{y.12...k} = \sqrt{S_{y.12...k}^2}$$
 (10)

Standard deviations of regression coefficients:

$$S_{b_j} = \sqrt{\frac{r_{jj}^{-1}}{D_{jj}} \cdot S_{y,12...k}^2}$$
 (11)

where D_{jj} = sum of squares of deviations from mean for jth independent variable. D_{jj} is input to this subroutine.

$$j = 1, 2, ..., k$$

Computed t:

$$t_{j} = \frac{b_{j}}{S_{b_{j}}}$$
(12)

$$j = 1, 2, ..., k$$

Purpose:

Perform a multiple linear regression analysis for a dependent variable and a set of independent variables. This subroutine is normally used in the performance of multiple and polynomial regression analyses.

Usage:

CALL MULTR (N, K, XBAR, STD, D, RX, RY, ISAVE, B, SB, T, ANS)

Description of parameters:

- N Number of observations.
- K Number of independent variables in this regression.

XBAR - Input vector of length M containing means of all variables. M is number of variables in observations.

STD - Input vector of length M containing standard deviations of all variables.

D - Input vector of length M containing the diagonal of the matrix of sums of cross-products of deviations from means for all variables.

RX - Input matrix (K by K) containing the inverse of intercorrelations among independent variables.

RY - Input vector of length K containing intercorrelations of independent variables with dependent variable.

ISAVE - Input vector of length K+1 containing subscripts of independent variables in ascending order. The subscript of the dependent variable is stored in the last, K+1, position.

B - Output vector of length K containing regression coefficients.

SB - Output vector of length K containing standard deviations of regression coefficients.

T - Output vector of length K containing T-values.

ANS - Output vector of length 10 containing the following information:

ANS(1) Intercept

- ANS(2) Multiple correlation coefficient
- ANS(3) Standard error of estimate
- ANS(4) Sum of squares attributable

to regression (SSAR)

ANS(5)	Degrees of freedom associ-
	ated with SSAR
ANS(6)	Mean square of SSAR
ANS(7)	Sum of squares of deviations
	from regression (SSDR)
ANS(8)	Degrees of freedom associ-
•••	ated with SSDR
ANS(9)	Mean square of SSDR
ANS(10)	F-value

Remarks:

N must be greater than K+1.

Subroutines and function subprograms required: None.

Method:

The Gauss-Jordan method is used in the solution of the normal equations. Refer to W. W. Cooley and P. R. Lohnes, 'Multivariate Procedures for the Behavioral Sciences', John Wiley and Sons, 1962, Chapter 3, and B. Ostle, 'Statistics in Research', The Iowa State College Press, 1954, Chapter 8.

		SUBROUTINE MULTE (N.K. XBAR.STD.D.RX.RY.ISAVE.B.SB.T.ANS)	MULTR 1
		DIMENSION XBAR(1).STD(1).D(1).RX(1).RY(1).ISAVE(1).B(1).SB(1).	MULTR 2
		1 T(1)+AN5(10)	MUL TRMO 1
		MM=K+1	MULTH 4
с		BETA WEIGHTS	MULTR 5
		DO 100 J=1+K	MULTR 6
	100	0,0=(1)8	MULTR 7
		DO 110 J=1.K	MULTR 8
		$L1 = K \neq (J-1)$	MULTR 9
		DO 110 I=1+K	HULTR 10
		L=L1+1	MULTR 11
	110	B(J)=B(J)+RY(])#RX(L)	MULTE 12
	•••	RH=0.0	MULTR 13
		80=0.0	MULTR 14
		LI=[SAVE(MM)	401 78 15
с		CREFFICIENT OF DETERMINATION	MULTR 16
۰.		DO 120 J=L.K	HULTR 17
		RM=RM+B(1)*RY(1)	MULTA 18
с		REGRESSION COEFFICIENTS	MULTP 19
c		L=ISAVE(1)	
		8(1)=8(1)+(STO(L)/STO(L))	MULTR 20
с		INTERCEPT	MULTR 21
L			MULTE 22
	120	80=80+8(1)*X8AR(L)	MULTR 23
-		80=x8AR(L1)-80	MULTR 24
С		SUM OF SQUARES ATTRIBUTABLE TO REGRESSION	41) TR 25
-		SSAR=RM+D(L1)	MULTR 26
С		MULTIPLE CORRELATION COEFFICIENT	MILTR 27
	122	KM= SORTE ANSERNIE	MULTR 28
С		SUM OF SQUARES OF DEVIATIONS FROM REGRESSION	MULTR 29
		SSDR=DIL11-SSAR	HULTR 30
С		VARIANCE OF ESTIMATE	HULTR 11
		FN=N-K-1	411LTR 32
		SY=SSDR/FN	MULTR 33
С		STANDARD DEVIATIONS OF REGRESSION COFFFICIENTS	MULTR 14
		00 130 J≃1.K	MULTR 35
		LT=K#[J-1]+J	MULTR 36
		L=ISAVE(J)	MULT9 37
	125	SB(J)= SQRT(ABS((RX(LL)/O(L))+SY))	MULTP 38
С		COMPUTED T-VALUES	4ULTR 39
	130	11] = ALJIZZZ (L) A	MULTR 40
С		STANDARD ERROR OF ESTIMATE	411LTR 41
	135	SY= SQRT(ABS(SY))	4ULTR 42
c		F VALUE	HIPL TP 43
		FK=K	MULTR 44
		SSAHM=SSAR/FK	401 74 44
		SSDRM=SSDR/FN	MULTH 45
		F=SSARM/SSDRM	41JL TR 47
		ANS(1)=80	MULTE 49
		AN 5 (2) = RM	MIJETR 49
		4N5(3)=5Y	MULTE SO
		ANS(4)=554R	MULTR 51
		4N5(5)=FK	MULTR 57
		ANS(6)=SSARM	MULTE 53
		ANSI 71=SSOR	HULTR 54
		415[4]=FN	401 14 55
		ANS(9)=SSIR4	MULTE 56
		445[10]=F	HILTP 57
		RETURN	-
		END .	401 18 50

Statistics - Polynomial Regression

Polynomial regression is a statistical technique for finding the coefficients, b_0 , b_1 , b_2 , ..., b_m , in the functional relationship of the form:

$$y = b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m$$

between a dependent variable y and a single independent variable x.

In the Scientific Subroutine Package, polynomial regression is normally performed by calling the following four subroutines in sequence:

1. GDATA - to generate the powers of the independent variable and find means, standard deviations, and correlation matrix

2. ORDER - to choose a dependent variable and subset of independent variables from a larger set of variables

3. MINV - to invert the correlation coefficient matrix

4. MULTR - to compute the regression coefficients, b_0 , b_1 , b_2 , ..., b_m , and various confidence measures

The special subroutine PLOT may be used to plot Y values and Y estimates.

<u>GDATA</u>

This subroutine generates independent variables up to the mth power (the highest degree polynomial specified) and calculates means, standard deviations, sums of cross-products of deviations from means, and product moment correlation coefficients.

 X_{i1} denotes the ith case of the independent variable; X_{ip} denotes the ith case of the dependent variable,

where i = 1, 2, ..., n

n - number of cases (observations)

 $\mathbf{p} = \mathbf{m} + \mathbf{1}$

m = highest degree polynomial specified

The subroutine GDATA generates powers of the independent variable as follows:

$$X_{i2} = X_{i1} \cdot X_{i1}$$

$$X_{i3} = X_{i2} \cdot X_{i1}$$

$$X_{i4} = X_{i3} \cdot X_{i1}$$

$$.$$

$$.$$

$$X_{im} = X_{i, m-1} \cdot X_{i1}$$
(1)

where i and m are as defined as above.

Then, the following are calculated:

Means:

$$\overline{X}_{j} = \frac{\sum_{i=1}^{n} X_{ij}}{n}$$
(2)

where j = 1, 2, ..., p

Sums of cross-products of deviations from means:

$$D_{jk} = \sum_{i=1}^{n} \left(X_{ij} - \overline{X}_{j} \right) \left(X_{ik} - \overline{X}_{k} \right) - \sum_{i=1}^{n} \left(X_{ij} - \overline{X}_{j} \right) \sum_{i=1}^{n} \left(X_{ik} - \overline{X}_{k} \right)$$
(3)

where $j = 1, 2, \ldots, p; k = 1, 2, \ldots, p$.

Correlation coefficients:

$$\mathbf{r}_{ij} = \frac{\mathbf{D}_{ij}}{\sqrt{\mathbf{D}_{ii}} \sqrt{\mathbf{D}_{jj}}}$$
(4)

where i = 1, 2, ..., p; j = 1, 2, ..., p.

Standard deviations:

$$\mathbf{s}_{j} = \frac{\sqrt{\mathbf{D}_{jj}}}{\sqrt{n-1}}$$
(5)

where j = 1, 2, ..., p

Subroutine GDATA

Purpose:

Generate independent variables up to the Mth power (the highest degree polynomial specified) and compute means, standard deviations, and correlation coefficients. This subroutine is normally called before subroutines ORDER, MINV and MULTR in the performance of a polynomial regression.

Usage:

CALL GDATA (N, M, X, XBAR, STD, D, SUMSQ)

Description of parameters:

Ν - Number of observations. М The highest degree polynomial to be

fitted.

х - Input matrix (N by M+1). When the subroutine is called, data for the independent variable are stored in the first column of matrix X, and data for the dependent variable are stored in the last column of the matrix. Upon returning to the calling routine, generated powers of the independent variable are stored in columns 2 through M.

- XBAR Output vector of length M+1 contain-ing means of independent and dependent variables.
- STD - Output vector of length M+1 containing standard deviations of independent and dependent variables.
 - Output matrix (only upper triangular --portion of the symmetric matrix of M+1 by M+1) containing correlation coefficients. (Storage Mode of 1.)
- SUMSQ -Output vector of length M+1 containing sums of products of deviations from means of independent and dependent variables.

Remarks:

D

N must be greater than M+1.

If M is equal to 5 or greater, single precision may not be sufficient to give satisfactory computational results.

Subroutines and function subprograms required: None.

Method:

Refer to B. Ostle, 'Statistics in Research', The Iowa State College Press, 1954, Chapter 6.

			GDATA	1	
		SUBROUTINE GDATA (N.M.X.XBAR.STD.D.SUMSQ)	GDATA		
		DIMENSION X(1), X4 AR(1), STO(1), O(1), SU4SO(1)			
¢		GENERATE INDEPENDENT VARIABLES	GDATA		
		IF [M-1] 105+105+90	GOATA		
	90	L1=9	SDATA		
		DO 100 I=2+M	GDATA		
		LI=LI+N	GDATA	7	
		00 100 J=1+N	GDATA	9	
		L=LI+J	GOATA	9	
		K=L-N	GDARA	12	
	100	x(L)=x(K)*x(J)	GDATA	-11	
C	1.00	CALCULATE MFANS	GDATA	12	
Ľ	106	CALLULAIC MEANS MAINAI	GDATA		
	102		GDATA		
		DF = N	GDATA		
		L=C	GDATA		
		Du 115 F=1.4M			
		XHAR []]=0.0	GDATA		
		D0 110 J=1,N	GDATA		
		L×L + 1	GDATA		
		XBAR([]=XBAR([]+X(L]	GDATA		
	115	XHAR(T)=XHAR(T)/)F	GDATA		
		DO 130 J=1+4M	GDATA		
	130	STDILI=0.0	GDATA		
C		CAECULATE SUMS OF CROSS-PRIDUCTS OF DEVIATIONS	GDATA	74	
		L={{44+}}}/2	GOATA	75	
		07 150 1=1.L	SDATA	26	
	150	D(1) = 0 + 0	GDATA	27	
		DO 170 K=1+N	GDATA	79	
		L=()	SDATA	23	
		00 170 J=1.4M	GDATA	30	
		L2=N#(J-()+K	GOATA	31	
		T2=4(L2)-XHAR(J)	SUATA	32	
		STU(J)=STO(J)+T2	GDATA	33	
		00 17C [=1.J	SDATA	14	
		L1=N+(I-1)+K	GDATA		
		T1=X(L1)-XHAR(T)	SOATA		
			SOATA		
	1.70	0(L)=0(L)+T1+T2	SOATA		
	110	1=0	SDATA		
		00 175 J≠1.4M	GDATA		
		1)0 175 [=1,J	SDATA		
			SDATA		
			GDATA		
	1/5	D(L)=0(L)=STO(T)*STO(J)/9E	GDATA		
		00 180 I=1+4M	GDATA		
		1=1+1	GDATA		
		\$0M\$Q{[]=0{L}	GOATA		
	190	STOLIN= SORTE ADS (D(L)))			
С		CALCULATE COPRELATION CONFELCTENTS	SDATA		
		L=0	SDATA		
		DO 190 J=1,4M	SDATA		
		DO 190 Tel.J	30414		
		L=L+L	SUATA		
	190	0(L)=0(L)/(STO(1)+STO(J))	SOATA		
С		CALCULATE STANDARD DEVIATIONS	SDATA		
		0F=SQX1(0F=1.0)	SOATA		
		00 200 1=1, MM	SHATA		
	200	STD(1)=STD(1)/OF	GOATA		
		RI TURI;	SDATA		
		END	SDATA	57	

Statistics - Canonical Correlation

In the Scientific Subroutine Package, canonical correlation analysis is normally performed by calling the following five subroutines:

1. CORRE - to compute means, standard deviations, and correlation matrix

2. MINV - to invert a part of the correlation matrix

3. EIGEN - to compute eigenvalues and eigen-vectors

4. NROOT - to compute eigenvalues and eigenvectors of real nonsymmetric matrix of the form $B^{-1} A$

5. CANOR - to compute canonical correlations and coefficients

The subroutine CORRE works in either of two ways: (1) it expects all observations in core, or (2) it triggers a user-provided input subroutine, DATA, to read one observation at a time into a work area. In either case, the user must provide a subroutine named DATA (see "Subroutines Required" in the description of subroutine CORRE).

CANOR

This subroutine performs a canonical correlation analysis between two sets of variables.

The matrix of intercorrelations, R, is partitioned into four submatrices:

$$R = \begin{bmatrix} \frac{R_{11} & R_{12}}{R_{21} & R_{22}} \end{bmatrix}$$
(1)

- R₁₁ = intercorrelations among p variables in the first set (that is, left-hand variables)
- $R_{12} =$ intercorrelations between the variables in the first and second sets

$$R_{21}$$
 = the transpose of R_{12}

R₂₂ = intercorrelations among q variables in the second set (that is, right-hand variables)

The equation:

$$\left| \begin{array}{ccc} R_{22}^{-1} & R_{21} & R_{11}^{-1} & R_{12} & -\lambda I \end{array} \right| = 0 \tag{2}$$

is then solved for all values of λ , eigenvalues, in the following matrix operation:

$$\Gamma = R_{11}^{-1} R_{12}$$
 (3)

$$A = R_{21} T$$
 (4)

The subroutine NROOT calculates eigenvalues (λ_i) with associated eigenvectors of R_{22}^{-1} A, where $i = 1, 2, \ldots, q$.

For each subscript i = 1, 2, ..., q, the following statistics are calculated:

Canonical correlation:

$$CANR = \sqrt{\lambda_i}$$
 (5)

where $\lambda_i = i^{th}$ eigenvalue

Chi-square:

$$x^{2} = - [n-0.5 (p + q + 1)] \log_{e}^{\Lambda}$$
 (6)

where n = number of observations

$$\Lambda = \prod_{j=1}^{q} (1 - \lambda_j);$$

Degrees of freedom for χ^2 :

$$DF = \left[p - (i-1)\right] \left[q - (i-1)\right];$$
(7)

ith set of right-hand coefficients:

$$\mathbf{b}_{\mathbf{k}} = \mathbf{v}_{\mathbf{k}\mathbf{i}} \tag{8}$$

where v_{ki} = eigenvector associated with λ_{i}

$$k = 1, 2, \ldots, q;$$

ith set of left-hand coefficients:

$$a_{j} = \frac{\sum_{k=1}^{q} t_{jk} b_{k}}{CANR}$$
(9)

where $\left\{t_{jk}\right\} = T = R_{11}^{-1} R_{12}$

j = 1, 2, ..., p

Subroutine CANOR

Purpose:

Compute the canonical correlations between two sets of variables. CANOR is normally preceded by a call to subroutine CORRE.

Usage:

CALL CANOR (N, MP, MQ, RR, ROOTS, WLAM, CANR, CHISQ, NDF, COEFR, COEFL, R)

Description of parameters:

N		Number of observations.
MP	-	Number of left hand variables.
MQ	-	Number of right hand variables.
RR	-	Input matrix (only upper triangular
		portion of the symmetric matrix of
		M by M, where $M = MP + MQ$ con-
		taining correlation coefficients.
		(Storage mode of 1.)
ROOTS	-	Output vector of length MQ contain-
		ing eigenvalues computed in the
		NROOT subroutine.
WLAM	-	Output vector of length MQ contain-
		ing lambda.

- CANR Output vector of length MQ containing canonical correlations.
- CHISQ Output vector of length MQ containing the values of chi-squares.
- NDF Output vector of length MQ containing the degrees of freedom associated with chi-squares.
- COEFR Output matrix (MQ by MQ) containing MQ sets of right hand coefficients columnwise.
- COEFL Output matrix (MP by MQ) containing MQ sets of left hand coefficients columnwise.

R Remarks:

The number of left hand variables (MP) should be greater than or equal to the number of right hand variables (MQ). The values of canonical correlation, lambda, chi-square, degrees of freedom, and canonical coefficients are computed only for those eigenvalues in roots which are greater than zero.

Subroutines and function subprograms required: MINV

NROOT (which, in turn, calls the subroutine EIGEN.)

Method:

c c

c

Refer to W. W. Cooley and P. R. Lohnes, 'Multivariate Procedures for the Behavioral Sciences', John Wiley and Sons, 1962, Chapter 3.

	SUB3DUTINE CANDR IN.MP.MD.RR.RUDTS.HLAM.CANR.CHISO.NDF.COFFR.	CANOR	1
	L COEFL,R)	CANOR	,
	DIMENSION RR(1), CODTS(1), WLAM(L), CANR(1), CHISU(1), NOF(1), CDEFR(1),	CANOR	3
	1 CDFFL(1)+R(1)	CANOR	4
	PARTITION INTERCORRELATIONS AMONG LEFT HAND VAPIABLES, BETWEEN	CANOR	5
	LEFT AND RIGHT HAND VARIABLES, AND AMONG RIGHT HAND VARIABLES.	CANOR	6
	N=NP+M.3	CANOR	7
	N1 =)	CANOR	A
	00 L05 T=1.W	CANUR	9
	00 105 J=1.H	CANOR	10
	IF(I-J) 102, 103, 103	CANDR	i.
102	, r=[+(]+]-]/2	CANDE	12
	GU TU 104	CANDR	13
10	S L ≈ J + { [+] - [] / 2	CANOP	14
104	• N1=N1+1	CANOP	15
1.25	5 K(N1)=9R(L)	CANOR	16
	Lump	CANOP	17
	00 108 J=2,MP	CANDR	19
	N1=M+{J-1}	CANOR	19
	00 108 1=1. HP	CANOP	
	L = L + L	CANDR	21
	N =N1+E	CANOR	72
10	3 R(L)=R(N1)	CANUR	23
	N2=4P+1	CANOR	24
	L≈0	CANFIR	25
	00 110 J=N2,M	CANOR	26
	N[=M#(J-1)	CANDR	27
	DO E10 I±1.4P	CANOR	29
	£ =L + 1	CANOR	29
	N1=N1+1	CANDR	3n
113) C()FFL[L]=Q(N])	CANDR	31
	L=0	CANOR	32
	00 L20 J=N2,M	CANOR	33
	N1=4*{J-1}+MP	CANITR	34
	DO 120 [=N2, H	CANCE	15
	L=L+1	CANOR	36
	N1=N1+L	CANOR	37
12	CUEFR(L)=+(N1)	CANDR	39
	SOLVE THE CANINICAL EQUATION	CANOR	30
	L=NP=NP+1	CANGR	
	KIL+MP	CANDR	
	CALL HINV (R.MP.)ET.RIL),9(K))	CANDP	
	CALCULATE T = INVERSE OF R11 + R12	CANOR	
	00 140 [=1,4P	CANOR	
	N2 = 0	CANOR	
	DO 130 J≖L,HQ	CANER	
	NI=[-MP	CANOR	
	R(I)TS(J)=0.0	CANOR	
	DO 130 K=1,MP	CANDR	
	NI=NI+MP	CANOP	
	N2=N2+1	CANCR	
-13	D RUCTS(J)=RUOTS(J)+R(N1)+COFFL(N2)	CANDR	
	L=I-NP	CANOR	
	DO 140 J=1.MQ	CANDR	-4

		L=L+HP	CANOR	55
	140	R(L)=ROOTS(J)	CANOR	
с	140	CALCULATE A = R21 * T	CANOR	
L				
		L=MP+HQ	CANOR	
		N3=L+1	CANOR	
		DO 160 J=L,MQ	CANOR	60
		NL=0	CANOR	61
		DO 160 Tel.MQ	CANOR	62
		N2=MP+(J-1)	CANOR	63
		SUM=0.0	CANOR	
		DG 150 K=1.MP	CANOR	
			CANOR	
		N1=N1+1		
		N2=N2+1	CANOR	
	150	SUM=SUM+COEFL(N1) #R(N2)	CANDR	
		L=L+1	CANOR	
	160	R(L)=SUM	CANOR	70
c		CALCULATE EIGENVALUES WITH ASSOCIATED FIGENVECTORS OF THE	CANOR	71
c		INVERSE OF R22 + A	CANOR	72
-		1=1+1	CANOR	73
		CALL NROOT (MO.R(N3).COEFR.ROOTS.R(L))	CANOR	
с		FOR EACH VALUE OF I = 1, 2, MO, CALCULATE THE FOLLOWING	CANOR	
			CANOR	
С		STATISTICS		
		DO 210 [=1,MQ	CANOR	
c		TEST WHETHER EIGENVALUE IS GREATER THAN ZERO	CANOR	
		tF(ROOTS(T)) 220, 220, 165	CANOR	
С		CANUNICAL CORRELATION	CANOR	80
	165	CANR(1)= SQRT(ROJTS(1))	CANOR	81
c		CHI-SQUARE	CANOR	92
-		WLA4(1)=1.0	CANOR	83
		00 170 J=[,MQ	CANOR	
	1.70	WLAM(1)=WLAM(1)+(1.0-ROOTS(J))	CANOR	
	110		CANOR	
		FN=N		
		FMP=MP	CANDR	
		FMQ=MQ	CANOR	
		BAT = WLAM(T)	CANOR	
	175	CHISQ([] = -(FN-J.5*(FMP+FMQ+1.0))*ALOG(BAT)	CANOR	
С		DEGREES OF FREEDOM FOR CHI-SQUARE	CANDR	91
		N1=I-1	CANDR	92
		NDF([]=(MP-N])+(NQ-N])	CANOR	93
С		I-TH SET OF RIGHT HAND CREFFICIENTS	CANDR	94
		N1=MQ+(I-1)	CANOR	95
		N2=MQ+(1-1)+L-1	CANOR	
		D0 180 J=1.MQ	CANDR	
		N1=N1+1	CANOR	
		N7=N2+1	CANOR	
	190	COEFR(N1)=R(N2)	CANOR	
С		I-TH SET OF LEFT HAND COEFFICIENTS	CANOR	
		00 200 J=1.MP	CANDR	102
		9H-1=J-HP	CANOR	103
		N2=MQ#(I-1)	CANOR	104
		K=MP+(1-1)+J	CANDR	
		CDEFL(K)=0.0	CANOR	
		DG 190 JJ=1,MQ	CANOR	
		NI=N1+MP		
		N2=N2=12=12	CANOP	
			CANOR	
		COEFL(K)=COEFL(K)+R(N1)+COEFR(N2)	CANOR	
		COEFL(K)=COEFL(K)/CANR(1)	CANGRI	111
		CONTINUE	CANORI	112
	220	RETURN	CANORI	113
		END	CANORI	

NROOT

This subroutine calculates the eigenvalues, λ_i , and the matrix of eigenvectors, V, of a real square nonsymmetric matrix of the special form $B^{-1}A$, where both B and A are real symmetric matrices and B is positive-definite. This subroutine is normally called by the subroutine CANOR in performing a canonical correlation analysis. The computational steps are as follows.

A symmetric matrix (storage mode 1) is formed by using the upper triangle elements of the square matrix B. Then, the eigenvalues, h, and the matrix of eigenvectors, H, of the symmetric matrix are calculated by the subroutine EIGEN.

The reciprocal of square root of each eigenvalue is formed as follows:

$$\mu_{i} = \frac{1}{\sqrt{h_{i}}}$$
(1)

where i = 1, 2, ..., m

m = order of matrix B

The matrix $B^{-1/2}$ is formed by multiplying the jth column vector of H by μ_j , where j = 1, 2, ..., m. The symmetric matrix $S = (B^{-1/2})' AB^{-1/2}$ is

formed in the following two matrix multiplications:

$$Q = (B^{-1/2})' A$$
 (2)

$$S = QB^{-1/2}$$
(3)

and eigenvalues, λ_i , and the matrix of eigenvectors, M, of S are calculated by the subroutine EIGEN.

The matrix $W = B^{-1/2}M$ is formed, and the vectors in W are normalized to form the matrix of eigenvectors, V, by the following equation:

$$V_{ij} = \frac{W_{ij}}{\sqrt{SUMV_j}}$$
(4)

i = 1, 2, ..., mwhere

$$j = 1, 2, ..., m$$

$$SUMV_{j} = \sum_{i=1}^{m} W_{ij}^{2}$$
 (5)

Subroutine NROOT

Purpose:

Compute eigenvalues and eigenvectors of a real nonsymmetric matrix of the form B-inverse times A. This subroutine is normally called by subroutine CANOR in performing a canonical correlation analysis.

Usage:

CALL NROOT (M, A, B, XL, X)

Description of parameters:

- M Order of square matrices A, B, and X.
- A Input matrix (M by M).
- B Input matrix (M by M).
- XL Output vector of length M containing eigenvalues of B-inverse times A.
- X Output matrix (M by M) containing eigenvectors columnwise.

Remarks:

None.

Subroutines and function subprograms required; EIGEN

Method:

Refer to W. W. Cooley and P. R. Lohnes, 'Multivariate Procedures for the Behavioral Sciences', John Wiley and Sons, 1962, Chapter 3.

	SUBROUTINE NROOT (M.A.B.XL.X)	NROOT	1	
	DIMENSION A(1).8(1).X(1).X(1)	NROOT	2	
С	COMPUTE EIGENVALUES AND EIGENVECTORS OF B	NROOT	3	
· ·	K=1	NROOT	4	
	D0 100 J=Z.M	NROOT	5	
		NROOT	6	
	DO 100 T=1.J	NROOT	7	
	L=L+1	NROOT	8	
	K=K+1	NROOT	9	
	100 B(K)=B(L)	NROOT	10	
с	THE MATRIX B IS A REAL SYMMETRIC MATRIX.	NROOT	11	
c		NROOT	12	
	CALL EIGEN (8.X.4.4V)	NROOT	13	
с	FORM RECIPROCALS OF SQUARE ROOT OF EIGENVALUES. THE RESULTS	NROOT	14	
č	ARE PREMULTIPLIED BY THE ASSOCIATED EIGENVECTORS.	NROOT	15	
C	L=0	NROOT	16	
	D0 110 J=1.M	NROUT	17	
	£=L+J	NROOT	18	

110 XL(J)=1.07 SORT(AB:	5(3(1)))
K≈0	
DO 115 J=1.4	
00 115 I=1+M	
K=K+1	
115 B(K)=X(K)=XL(J)	
	PRIME * A * (B**(-1/2))
00 120 I=1,M N2=0	
00 120 J=1+M	
N1=M#{[-1]	
L=M#(J-1)+I	
X(L)=0.0	
DO 120 K=1.4	
N1=N1+1	
N2=N2+1	
120 X(L)=X(L)+B(N))*A(N	21
L=0	
DO 130 J=1+M	
DO 130 [=1,J	
N1=[-M	
N2=4*(J-1)	
L=L+1	
A(L)=0.0 DO 130 K=1.M	
N1=N1+M	
N2=N2+1	
130 A(L)=A(L)+X(N1)+B(N	21
	UES AND EIGENVECTORS OF A
CALL EIGEN 1A+X+Y+M	
L=0	*1
00 140 1±1.M	
L=L+1	
140 XL(I)=A(L)	
	ALIZED FIGENVECTORS
DD 150 [=1.M	
N2=0	
00 150 J=1,M	
NL≃T-M	
L=M+{J-L}+I	
A(L)=0.0	
00 150 K=1,M	
N1=N1+M	
N2=N2+1	
150 A(L)=A(L)+B(N1)#X{	N2)
L=0	
K=0	
DO 100 J=1,M	
SUMV≏0.0 DD 170 I≃1.M	
L=L+1	
L=L+1 L70 SUHV=SJMV+A(L)+A(L	1
175 SUMV= SORT(SUMV)	,
Dil 180 1=1.M	
K=K+1	
140 XIKI=AIKI/SUMV	
RETURN	
END	

NR0DT 19 NR0DT 20 NR0DT 21 NR0DT 21 NR0DT 21 NR0DT 24 NR0DT 24 NR0DT 24 NR0DT 24 NR0DT 27 NR0DT 27 NR0DT 27 NR0DT 30 NR0DT 30 NR0DT 31 NR0DT 31 NR0DT 31 NR0DT 31 NR0DT 33 NR0DT 33 NR0DT 44 NR0DT 45 NR0DT 45 NR0DT 45 NR0DT 45 NR0DT 45 NR0DT 55 NR0DT 56 NR0DT 56 NR0DT 56 NR0DT 56 NR0DT 56 NR0DT 56 NR0DT 57 NR0DT 57 NR0DT 57 NR0DT 57 NR0DT 56 NR0DT 56 NR0DT 66 NR0DT 66 NR0DT 67 NR0DT 66 NR0DT 67 NR0DT 64 NR0DT 67 NR0DT 64 NR0DT 64 NR0DT 64 NR0DT 67 NR0DT 67 NR0DT 67 NR0DT 77 NR0

Statistics - Analysis of Variance

In the Scientific Subroutine Package, analysis of variance is normally performed by calling the following three subroutines in sequence:

1. AVDAT - to place data in properly distributed positions of storage

2. AVCAL - to apply the operators sigma and delta in order to compute deviates for analysis of variance

3. MEANQ - to pool the deviates and compute sums of squares, degrees of freedom, and mean squares

AVDAT

This subroutine places data for analysis of variance in properly distributed positions of storage.

The size of data array X, required for an analysis of variance problem, is calculated as follows:

$$\mathbf{n} = \prod_{i=1}^{k} (\mathbf{L}_{i} + 1)$$
(1)

where $L_i =$ number of levels of ith factor

k = number of factors

The input data placed in the lower part of the array X are moved temporarily to the upper part of the array. From there, the data are redistributed according to the equation (4) below. Prior to that, multipliers, s_j, to be used in finding proper positions of storage, are calculated as follows:

$$s_1 = 1 \tag{2}$$

$$s_{j} = \prod_{i=1}^{j-1} (L_{i} + 1)$$
 (3)

where J = 2, 3, ..., k

Then, a position for each data point is calculated by the following equation:

$$S = KOUNT_1 + \sum_{j=2}^{k} s_j \cdot (KOUNT_j - 1)$$
 (4)

where $KOUNT_j$ = value of jth subscript of the data to be stored.

The subroutine increments the value(s) of subscript(s) after each data point is stored.

Subroutine AVDAT

Purpose:

Place data for analysis of variance in properly distributed positions of storage. This subroutine is normally followed by calls to AVCAL and MEANQ subroutines in the performance of analysis of variance for a complete factorial design.

Usage:

Ν

CALL AVDAT (K, LEVEL, N, X, L, ISTEP, KOUNT)

Description of parameters:

- K Number of variables (factors) K must be greater than 1.
- LEVEL Input vector of length K containing levels (categories) within each variable.
 - Total number of data points read in.
- When the subroutine is called, this vector contains data in locations X(1) through X(N). Upon returning to the calling routine, the vector contains the data in properly redistributed locations of vector X. The length of vector X is calculated by (1) adding one to each level of variable and (2) obtaining the cumulative product of all levels. (The length of X = (LEVEL(1)+1)*(LEVEL(2)+1)*...*(LEVEL(K)+1).)
- L Output variable containing the position in vector X where the last input data is stored.
- ISTEP Output vector of length K containing control steps which are used to locate data in proper positions of vector X.

KOUNT - Working vector of length K.

Remarks:

Input data must be arranged in the following manner. Consider the 3-variable analysis of variance design, where one variable has 3 levels and the other two variables have 2 levels. The data may be represented in the form X(I,J,K), I=1,2,3 J=1,2 K=1,2. In arranging data, the inner subscript, namely I, changes first. When I=3, the next inner subscript, J, changes and so on until I=3, J=2, and K=2.

Subroutines and function subprograms required: None.

Method:

The method is based on the technique discussed by H. D. Hartley in 'Mathematical Methods for Digital Computers', edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.

		SUBROUTINE AVDAT (K,LEVEL,N,X,L,ISTEP,KOUNT)	AVDAT	1
		DIMENSION LEVEL(1).X(1).ISTEP(1).KOUNT(1)	AVDAT	2
С		CALCHATE TOTAL DATA AREA REQUIRED	AVDAT	3
Ŭ		M=LEVFL(1)+1	AVDAT	4
		DO 105 1=2+K	AVDAT	5
	105	N=N+(LEVEL(1)+1)	AVDAT	6
с		MOVE DATA TO THE UPPER PART OF THE ARRAY X	AVDAT	7
č		FOR THE PURPOSE OF REARRANGEMENT	AVDAT	8
		N1=M+1	AVDAT	9
		N2 = N+1	AVDAT	10
		DO 107 1=1.N	AVDAT	11
		N1=N1-1	AVDAT	12
		N2=N2-1	AVDAT	13
	107	x(N1)=X(N2)	AVDAT	14
с		CALCULATE MULTIPLIERS TO BE USED IN FINDING STORAGE LUCATIONS	AVDAT	
č		FOR INPUT DATA	AVDAT	
-		ISTEP(1)=1	AVDAT	17
		DO 110 1=2.K	AVDAT	
	110	ISTEP(1)=1STEP(1-1)*(LEVEL([-1)*1)	AVDAT	
	•••	DO 115 [=1.K	AVDAT	20
	115	KOUNT(I)=1	AVDAT	
с	•••	PLACE DATA IN PROPER LOCATIONS	AVDAT	
		NI=NI-I	AVOAT	
		DO 135 (+1.N	AVDAT	
		L=KOUNT(1)	AVDAT	
		D() L20 J=2,K	AVDAT	
	120	L = L + I STEP(J) + (KOJNT(J) - 1)	AVDAT	
		N1=N1+I	AVDAT	
		x(L)=x(N1)	AVOAT	
		00 L3C J=L+K	AVDAT	
		IF(KOUNT(J)-LEVEL(J1) 124, 125, 124	AVDAT	
	174	KOUNT(J)=KOUNT(J)+1	AVDAT	
	-	50 10 135	AVDAT	
	125	KOUNT(J)=1	AVDAT	
	130	CONTINUE	AVDAT	
	135	CONTINUE	AVOAT	
		RETURN	AVDAT	
		END	AVDAT	58

AVCAL

This subroutine performs the calculus for the general k-factor experiment: operator Σ and operator Δ . An example is presented in terms of k=3 to illustrate these operators.

Let x_{abc} denote the experimental reading from the ath level of factor A, the bth level of factor B, and the cth level of factor C. The symbols A, B, and C will also denote the number of levels for each factor so that a = 1, 2, ..., A; b = 1, 2, ..., B; and c = 1, 2, ..., C.

With regard to the first factor A,

operator
$$\sum_{a} \equiv$$
 sum over all levels $a = 1, 2, ..., A$, holding the other subscripts at constant levels, and

operator
$$\Delta_a \equiv$$
 multiply all items by A and sub-
tract the result of Σ_a from all
items

In mathematical notations, these operators are defined as follows:

$$\sum_{a} x_{abc} \equiv X_{bc} \equiv \sum_{a=1}^{A} x_{abc}$$
(1)

$$\Delta_{a} x_{abc} \equiv A x_{abc} - X_{bc}$$
(2)

The operators Σ and Δ will be applied sequentially with regard to all factors A, B, and C. Upon the completion of these operators, the storage array X contains deviates to be used for analysis of variance components in the subroutine MEANQ.

Subroutine AVCAL

Purpose:

Perform the calculus of a factorial experiment using operator sigma and operator delta. This subroutine is preceded by subroutine ADVAT and followed by subroutine MEANQ in the performance of analysis of variance for a complete factorial design. Usage:

CALL AVCAL (K, LEVEL, X, L, ISTEP, LASTS)

Description of parameters:

К	Number of variables (factors).
	K must be greater than 1.

- LEVEL Input vector of length K containing levels (categories) within each variable.
- Input vector containing data. Data have been placed in vector X by subroutine AVDAT. The length of X is (LEVEL(1)+1)*(LEVEL(2)+1)*... *(LEVEL(K)+1).
- L The position in vector X where the last input data is located. L has been calculated by subroutine AVDAT.
- ISTEP Input vector of length K containing storage control steps which have been calculated by subroutine AVDAT.
- LASTS Working vector of length K.

Remarks:

This subroutine must follow subroutine AVDAT.

Subroutines and function subprograms required: None.

Method:

The method is based on the technique discussed by H. O. Hartley in 'Mathematical Methods for Digital Computers', edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.

		SUBROUTINE AVCAL (K,LEVFL,X,L,1STEP,LASTS)	AVCAL
		DIMENSION LEVEL(1),X(1),ISTEP(1),LASTS(1)	AVCAL
с		CALCULATE THE LAST DATA POSITION OF EACH FACTOR	AVCAL
C		LASTS(1)=L+1	AVCAL
			AVCAL
		DO 145 J=2,K	AVC AL
	145	LASTS(1)=LASTS(1-1)+ISTEP(1)	AVCAL
c		PERFURM CALCULUS OF OPFRATION	AVCAL
	150	DO 175 I=1,K	AVCAL
		L=1	AVCAL I
		LL=1	AVCAL 1
		SUM=0.0	
		NN=LEVEL(1)	AVCAL 1
		FN= YN	AVCAL L
		INCRE=ISTEP(1)	AVCAL 14
		LAST=LASTS(1)	AVCAL 1
C.		SIGMA OPERATION	AVCAL 14
	155	DD 160 J=1,NN	AVCAL I
		SUM=SUM+X(L)	AVCAL I
	160	L=L+INCRE	AVCAL LT
		XIL H#SUM	AVCAL 27
С		DELTA OPERATION	AVCAL 21
		UI 165 J=1,NN	AVCAL 22
		X(LL)=FN#X(LL)-SJM	AVCAL 23
	145	LL=LL+INGRE	AVC &L 24
		SUM=0.0	AVCAL 25
		1F(L-LAST) 167, 175, 175	AVCAL 26
		IFIL-LAST+INCRE) 168, 168, 170	AVCAL 27
	LGH	L=L+INCRF	AVCA1 29
		LL=LL+INCRE	AVCAL 29
		GU T/1 155	AVEAL 30
	172	L=L+14CRE+1-LAST	AVC A1 31
		LL=LL+INCRF+I-LAST	AVC AL 32
		SH TO 155	AVCAL 33
	175	CONTINUE	AVCAL 34
		RETURN	AVCAL 35
		END	AVCAL 36

MEANQ

This subroutine performs the mean square operation for the general k-factor experiment in the following two steps:

1. Square each value of deviates for analysis of variance stored in the array X (the result of the operators Σ and Δ applied in the subroutine AVCAI).

2. Add the squared value into summation storage. In a three-factor experiment, for example, the squared value is added into one of seven storages (7 = 2^3 - 1) as shown in the first column of Table 1. The symbols A, B, and C in the first column denote factor A, factor B, and factor C.

After the mean square operation is completed for all values in the storage array X, the subroutine forms sums of squares of analysis of variance by dividing the totals of squared values by proper divisors. These divisors for the three-factor experiment mentioned above are shown in the second column of Table 1. The symbols A, B, and C in the second column denote the number of levels for each factor.

The subroutine, then, forms mean squares by dividing sums of squares by degrees of freedom. The third column of the summary table shows the degrees of freedom. The symbols A, B, and C denote the number of levels for each factor.

Table 1. Table Showing Summation Storages,Divisors to Form Sum of Squares, andDegrees of Freedom (Subroutine MEANQ)

Designation of Store and of Quantity Con- tained in it	Divisor Required to Form Sum of Squares of Analysis of Variance	Degrees of Freedon Required to Form Mean Squares
$(A)^2$	ABC · A	(A-1)
(B) ²	ABC B	(B-1)
(AB) ² (C) ²	ABC · AB	(A-1) (B-1)
$(C)^2$	ABC C	(C-1)
(AC) ²	ABC · AC	(A-1) (C-1)
(BC) ²	ABC BC	(B-1) (C-1)
(ABC) ²	ABC · ABC	(A-1) (B-1) (C-1)

Subroutine MEANQ

Purpose:

Compute sum of squares, degrees of freedom, and mean square using the mean square operator. This subroutine normally follows calls to AVDAT and AVCAL subroutines in the performance of analysis of variance for a complete factorial design.

Usage:

CALL MEANQ (K, LEVEL, X, GMEAN, SUMSQ, NDF, SMEAN, MSTEP, KOUNT, LASTS)

Description of parameters:

o,	or therou (лµ	arameters:
	K	-	Number of variables (factors).
			K must be greater than 1.
	LEVEL	-	Input vector of length K containing
			levels (categories) within each vari-
			able.
	х	-	Input vector containing the result of
			the sigma and delta operators. The
			length of X is $(LEVEL(1) + 1)^*$
			(LEVEL(2) + 1)**(LEVEL(K) + 1).
	GMEAN	-	
			mean.
	\mathbf{SUMSQ}	-	Output vector containing sums of
			squares. The length of SUMSQ is 2
			to the K th power minus one,
			(2**K)-1.
	NDF	-	Output vector containing degrees of
			freedom. The length of NDF is 2 to
			the K^{th} power minus one, $(2^{**}K)-1$.
	SMEAN	-	Output vector containing mean
			squares. The length of SMEAN is 2
			to the K th power minus one, (2**K)-1.
	MSTEP	-	Working vector of length K.
	KOUNT	-	Working vector of length K.
	LASTS	-	Working vector of length K.

Remarks:

This subroutine must follow subroutine AVCAL.

Subroutines and function subprograms required: None.

Method:

The method is based on the technique discussed by H. O. Hartley in 'Mathematical Methods for Digital Computers', edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.

		SUBROUTINE MEAND (K+LEVFL,X+GMEAN+SUM50+NDF+SMEAN+MSTEP+KOU		
		1 LASIS)	MEANQ	
		DIMENSION LEVEL(1),X(1),SUMSQ(1),NDF(1),SMEAN(1),MSTEP(1),	MEANQ	3
		1 KOUNT(1)+LASTS(1)	MEANQ	4
с		CALCULATE TOTAL NUMBER OF DATA	MEANQ	
		N=LEVEL(1)	MEANQ	
		DO 150 1=2.K	MEANO	
	150	N=N*LEVEL(I)	MEANQ	
с		SET UP CONTROL FOR MEAN SQUARE OPERATOR		
		LASTS(1)=LEVEL(1)	MEANQ	
		DO 178 1=2+K	MEANG	
	178	LASTS(I)=LEVEL(I)+1	MEANQ	
		NN=1	MEANQ	
с		CLEAR THE AREA TO STORE SUMS OF SQUARES	MEANO	
		LL=(2**K)-1	MEANQ	
		MSTEP(1)=1	MEANO	
		DO 180 1=2+K	MEANO	
	160	MSTEP(I)=MSTEP(I=1)+2	MEANQ	
		DO 185 1=1.LL	MEANQ	
	185	SUMSQ(1)=0.0	MEANQ	
c		PERFORM MEAN SQUARE OPERATOR	MEANO	
		DO 190 I=1+K	MEANQ	
		KOUNT(I)=0	MEANQ	
	200	L=O	MEANO	
		DO 260 1=1+K	MEANO	
		IF(KOUNT(I)-LASTS(I)) 210. 250. 210	MEANQ	
		IF(L) 220, 220, 240	MEANQ	
	220	KOUNT(I)=KOUNT(I)+1	MEANO	
		IF(KOUNT(I)-LEVEL(I)) 230, 230, 250	MEANG MEANG	
	230	L=L+MSTEP(I)	MEANG	
		GO TO 260 IF(KOUNT(I)-LEVEL(I)) 230, 260, 230	MEANO	
		KOUNT(1)=LEVEL(1)) 230+ 280+ 230 KOUNT(1)=0	MEANQ	
		CONTINUE	MEANO	
	260	1F(L) 285, 285, 270	MEANO	
		IC(L) 283+ 283+ 270 SUMSQ(L)=SUMSQ(L)+X(NN)*X(NN)	MEANO	
	270	NN=NN+1	MEANO	
		GO TO 200	MEANQ	
~		CALCULATE THE GRAND MEAN	MEANO	
c	285	FNAN	MEANO	
	203	GMEAN=X (NN)/FN	MEANO	
c		CALCULATE FIRST DIVISOR REQUIRED TO FORM SUM OF SQUARES		
č		DIVISOR, WHICH IS EQUAL TO DEGREES OF FREEDOM, REQUIRED	TO FORMMEANO	
		STATESONA BUILD TO EACH TO PEONEES OF THEESONA REGOLIED	1	

	MEAN SQUARES
	DO 310 I=2+K
310	MSTEP(I)=0
	NN=0
	MSTEP(1)=1
320	ND1=1
	ND2=1
	DO 340 I=1.K
	IF(MSTEP(I)) 330, 340, 330
330	ND1=ND1*LEVEL(I)
	ND2=ND2+(LEVEL(I)-1)
340	CONTINUE
	FN1=ND1
	FN1=FN+FN1
	FN2=ND2
	NN=NN+1
	SUMSQ(NN)=SUMSQ(NN)/FN1
	NDF(NN)=ND2
	SMEAN(NN) = SUM5Q(NN) / FN2
	IF(NN-LL) 345, 370, 370
345	00 360 I=1+K
	IF(MSTEP(I)) 347: 350: 347
347	MSTEP(I)=0
	GO TO 360
	MSTEP(1)=1
	GO TO 320 CONTINUE
	RETURN
510	END
	END

c

MEANO	44
MEANO	45
MEANO	46
MEANO	47
MEANO	48
MEANQ	49
MEANO	50
MEANQ	
MEANO	
MEANQ	53
MEANQ	54
MEANO	
MEANGN	
MEANQM	
MEANQ	
MEANQ	
MEANO	
MEANQ	
MEANO	
MEANQ	
MEANQ	
MEANO	70
MEANO	

Statistics - Discriminant Analysis

In the Scientific Subroutine Package, discriminant analysis is normally performed by calling the following three subroutines in sequence:

- 1. DMATX to compute means of variables in each group and a pooled dispersion matrix
- 2. MINV to invert the pooled dispersion matrix
- 3. DISCR to compute coefficients of discriminant functions and evaluate the func-

tions for each observation (individual)

DMATX

This subroutine calculates means of variables in each group and a pooled dispersion matrix for the set of groups in a discriminant analysis.

For each group k = 1, 2, ..., g, the subroutine calculates means and sums of cross-products of deviations from means as follows:

Means:

$$\overline{\mathbf{x}}_{jk} = \frac{\sum_{i=1}^{n_k} \mathbf{x}_{ijk}}{\frac{n_k}{n_k}}$$
(1)

where $n_k = \text{sample size in the } k^{\text{th}} \text{ group}$

 $j = 1, 2, \ldots, m$ are variables

Sum of cross-products of deviations from means:

$$\mathbf{S}_{k} = \left\{ \mathbf{s}_{j\ell}^{k} \right\} = \sum \left(\mathbf{x}_{ijk} - \overline{\mathbf{x}}_{jk} \right) \left(\mathbf{x}_{i\ell k} - \overline{\mathbf{x}}_{\ell k} \right) \quad (2)$$

where j = 1, 2, ..., m

$$l = 1, 2, ..., m$$

The pooled dispersion matrix is calculated as follows:

$$D = \frac{\sum_{k=1}^{g} S_{k}}{\sum_{k=1}^{g} n_{k} - g}$$
(3)

where g = number of groups

Subroutine DMATX

Purpose:

Compute means of variables in each group and a pooled dispersion matrix for all the groups. Normally this subroutine is used in the performance of discriminant analysis.

Usage:

CALL DMATX (K, M, N, X, XBAR, D, CMEAN)

Description of parameters:

K - Number of groups.

- Number of variables (must be the same for all groups).

- Input vector of length K containing sample sizes of groups.
- Input vector containing data in the manner equivalent to a 3-dimensional FORTRAN array, X(1, 1, 1),
 X(2, 1, 1), X(3, 1, 1), etc. The first subscript is case number, the second subscript is variable number and the third subscript is group number. The length of vector X is equal to the total number of data points, T*M, where T = N(1) + N(2) + ... + N(K).
- XBAR Output matrix (M by K) containing means of variables in K groups.
- D Output matrix (M by M) containing pooled dispersion.
- CMEAN Working vector of length M.

Remarks:

м

Ν

The number of variables must be greater than or equal to the number of groups.

Subroutines and function subprograms required: None.

Method:

Refer to 'BMD Computer Programs Manual', edited by W. J. Dixon, UCLA, 1964, and T. W. Anderson, 'Introduction to Multivariate Statistical Analysis', John Wiley and Sons, 1958, Section 6.6-6.8.

		SUBROUTINE DMATX (K.M.N.X.XBAR.D.CHEAN)	DMATX	1
		DIMENSION N(1).X(1).XBAR(1).D(1).CHEAN(1)	DMATX	;
		MH#M#M	DMATX	3
		00 100 [×1, MM	DMATX	4
	100	0(1)=0.0	DMATX	5
с		CALCULATE MEANS	DMATX	6
C.		N4=9	DHATX	7
		L=0	DMATX	ġ.
		LN=0	DMATX	9
		DO 160 NG=1-K	DMATX	12
		N1=N(NG)	OMATX	ii.
		FN=N1	DMATX	12
		DO 130 J=1.M	DMATX	13
		LN=LN+1	DMATX	14
		KBAR (L M)=0.0	DMATX	15
		DO 120 1=1+NL	DMATX	16
		L=L+1	OMATX	17
	120	XBAR (LN)=XBAR (LM) +X (L)	DMATX	18
	130	XBAR(LM)=XBAR(LM)/FN	DMATX	19
c	• • • •	CALCULATE SUMS OF CROSS-PRODUCTS OF DEVIATIONS	DHATX	20
•		LNEANILH-N	DMATX	21
		DO 150 [=1.N]	DMATX	22
		LL=N4+I-N1	OMATX	23
		00 140 J=1.M	OMATX	24
		LL=LL+N1	DMATX	25
		N2=LMFAN+J	DMATX	56
	140	CMEAN(J)=X(LL)-XRAR(N2)	DMATX	27
		LL=0	DMATX	
		DO 150 J=1.M	DMATX	29
		00 150 JJ=1.#	DMATX	
		LL=LL+1	DHATX	
		D(LL)=D(LL)+CMFAN(J)+CMEAN(JJ)	DMATX	
	160	N4=N4+N]#M	DMATX	
c		CALCULATE THE POOLED DISPERSION MATRIX	DMATX	
		LL=-K	DNATX	
		DQ 170 I=1+K	DMATX	
	170	LL=LL+N(T)	OMATX	
		FN=LL	DMATX	
		DO 180 /=1,4M	OMATX	
	180	D(1)=D(1)/FN	OMATX	
		RETURN	DMATX	
		END	DMATX	+2

DISCR

This subroutine performs a discriminant analysis by calculating a set of linear functions that serve as indices for classifying an individual into one of K groups.

For all groups combined, the following are obtained:

Common means:

$$\vec{x}_{j} = \frac{\sum_{k=1}^{g} n_{k} \vec{x}_{jk}}{\sum_{k=1}^{g} n_{k}}$$
(1)

g = number of groupswhere

 $j = 1, 2, \ldots, m$ are variables

$$n_k = \text{sample size in the } k^{\text{th}} \text{ group}$$

$$\overline{\mathbf{x}}_{\mathbf{jk}} = \text{mean of } \mathbf{j}^{\mathbf{th}} \text{ variable in } \mathbf{k}^{\mathbf{th}} \text{ group}$$

41.

Generalized Mahalanobis D² statistics, V:

$$v = \sum_{i=1}^{m} \sum_{j=1}^{m} d_{ij} \sum_{k=1}^{g} n_k (\overline{x}_{ik} - \overline{x}_i) (\overline{x}_{jk} - \overline{x}_j)$$
(2)

where $d_{ij} =$ the inverse element of the pooled dis-persion matrix D

V can be used as chi-square (under assumption of normality) with m(g-1) degrees of freedom to test the hypothesis that the mean values are the same in all the g groups for these m variables.

For each discriminant function k = 1, 2, ..., g, the following statistics are calculated:

Coefficients:

$$C_{ik*} = \sum_{j=1}^{m} d_{ij} \overline{x}_{jk}$$
(3)

where i = 1, 2, ..., m

k = k*

Constant:

$$C_{ok*} = -1/2 \sum_{j=1}^{m} \sum_{l=1}^{m} d_{jl} \bar{x}_{jk} \bar{x}_{lk}$$
 (4)

For each ith case in each kth group, the following calculations are performed:

Discriminant functions:

$$f_{k*} = \sum_{j=1}^{m} C_{jk} x_{ijk} + C_{ok*}$$
 (5)

where k = 1, 2, ..., g

Probability associated with largest discriminant function:

$$P_{L} = \frac{1}{\sum_{k*=1}^{g} e^{(f_{k*} - f_{L})}}$$
(6)

where f_{L} = the value of the largest discriminant function

> L = the subscript of the largest discriminant function

Subroutine DISCR

Purpose:

Compute a set of linear functions which serve as indices for classifying an individual into one of several groups. Normally this subroutine is used in the performance of discriminant analysis.

Usage:

Ν

х

CALL DISCR (K, M, N, X, XBAR, D, CMEAN, V, C, P, LG)

Description of parameters:

К	-	Number of groups.	K must be
		greater than 1.	
М	-	Number of variables	S.

- Number of variables.
- Input vector of length K containing sample sizes of groups.
- Input vector containing data in the manner equivalent to a 3-dimensional FORTRAN array, X(1, 1, 1), X(2, 1, 1), X(3, 1, 1), etc. The first

subscript is case number, the second subscript is variable number and the third subscript is group number. The length of vector X is equal to the total number of data points, T^*M , where $T = N(1) + N(2) + \dots + N(K)$.

XBAR - Input matrix (M by K) containing means of M variables in K groups.

D - Input matrix (M by M) containing the inverse of pooled dispersion matrix.
 CMEAN - Output vector of length M containing

common means.

V - Output variable containing generalized Mahalanobis D-square.

C - Output matrix (M+1 by K) containing the coefficients of discriminant functions. The first position of each column (function) contains the value of the constant for that function.

P - Output vector containing the probability associated with the largest discriminant functions of all cases in all groups. Calculated results are stored in the manner equivalent to a 2-dimensional area (the first subscript is case number, and the second subscript is group number). Vector P has length equal to the total number of cases, T (T = N(1) + N(2) + ... + N(K)).

LG - Output vector containing the subscripts of the largest discriminant functions stored in vector P. The length of vector LG is the same as the length of vector P.

Remarks:

The number of variables must be greater than or equal to the number of groups.

Subroutines and function subprograms required: None.

Method:

Refer to 'BMD Computer Programs Manual', edited by W. J. Dixon, UCLA, 1964, and T. W. Anderson, 'Introduction to Multivariate Statistical Analysis', John Wiley and Sons, 1958.

	SUBROUTINE DISCR (K,M,N,X,XBAR,D,CMEAN,V,C,P,LG)	DISCR	1
	DIMENSION N(1),X(1),XBAR(1),D(1),CMEAN(1),C(1),P(1),LG(1)	DISCR	2
C	CALCULATE CONTON MEANS	DISCR	3
	N1=N(1)	DISCR	4
	DO 100 1=2.K	DISCR	5
100	N1=N1+N(1)	DISCR	6
	FNT=N1	DISCR	7
	DD 110 I=1,K	DISCR	8
110	P(1)=N(1)	DISCP	9
	00 130 1=1,M	DISCR	10
	CMEAN(I)=0	DISCR	11
	N1=1-M	DISCR	12
	00 120 J=1,K	DISCR	13
	N1=N1+M	DISCR	14
120	CHEAN([]=CHEAN(])+P(J)+XBAR(N1)	DISCR	15

	130	CHEAN([]=CHEAN(])/FN)	DISCR 16
с		CALCULATE GENERALIZED MAHALANUBIS D SQUARE	DISCR 17
•		L = O	DISCR 18
		DO 140 1=1,K	DISCR 19
		DO 140 J=1,M	DISCR 20
			DISCR 21
	140	C(L)=XBAR(L)-CMEAN(J)	DISCR 22
		V=0.0	DISCR 23
		L≖0	DISCR 24
		00 160 J=1.M	DISCR 25
		DO 160 I=1. M	DISCR 26
		N1=[-M	DISCR 27
		N2=J-M	DISCR 28
		SUM≃0.0	DISCR 29
		DO 150 [J=1,*	DISCR 30
		NL=NL+M	DISCR 31 DISCR 32
		N7=N2+H	DISCR 33
	150	SUM=SUM+P([J]+C(N])+C(N2)	DISCR 34
			DISCR 35
с	190	V=V+D(LI#SUM CALCULATE THE COEFFICIENTS OF DISCRIMINANT FUNCTIONS	DISCR 36
c		N2=0	DISCR 37
		00 190 KA=1,K	DISCR 38
		00 170 I×1,4	DISCR 39
		N2=N2+1	OISCR 40
	170	P(1)=XBAR(N2)	DISCR 41
		[Q={M+1}+[KA-1]+1	DISCP 42
		SUN=0.0	DISCR 43
		DD 180 J=1.M	DISCR 44
		NI=J-M	DISCR 45
		DO 180 L=1,H	DISCR 46
		N1=N1+M	DISCR 47
	180	SUM=SUM+D(N1)+P(J)+P(L)	DISCR 48
		C(10)=-(SUM/2.0)	DISCR 49
		DO 190 I=1,M	DISCR 50
		N1=1-M	DISCR 51
		19=10+1	01SCR 52
		C(19)=0.0	DISCR 53
		DO 190 J=1,M N1=N1+M	DISCR 54
		N1=NL+M	DISCR 55
	190	C(1Q)=C(1Q)+D(N1)*P(J)	DISCR 56 DISCP 57
ç		FOR EACH CASE IN EACH GROUP, CALCULATE	DISCP 57 DISCR 59
c		DISCREMINANT FUNCTIONS	DISCR 59
		LBASE=0 N1=0	015CP 60
		NI=0 DO 270 KG=1,K	01509 61
		DJ 270 KG=1,K NN=N(KG)	DISCR 67
		DU 260 I*1,NN	015CP 63
		L=I-NN+LBASE	DISCR 64
		DO 200 J=1,M	DISCR 65
			DISCR 66
	200	D(J)=X(L)	DISCR 67
	200	N2=0	DISCR 68
		DO 220 KA=1.K	DISCR 69
		N2=N2+1	DISCR 70
		SUH=C(N2)	DISCR 71
		D() 210 J=1.H	DISCR 72
		N2=N2+1	DISCR 73
	210	SUM=SUM+C(N2)+D(J)	DISCR 74
	220	XBAR (KA)=SUM	DISCR 75
c		THE LARGEST DISCRIMINANT FUNCTION	01SCR 76
		Lei	DISCP 77
		SUM=XRAR(1)	DISCR 78
		DO 240 J≈2,K	015CR 79
	• • •	IF(SUM-XBAR(J)) 230, 240, 240	DISCR 80 DISCR 81
	230		DISCR 81 DISCP 82
	240	SUM#XBAR(J)	
c	240	CONTINUE PROBABILITY ASSOCIATED WITH THE LARGEST DISCRIMINANT FUNCTION	DISCR 83 DISCR 94
L		PRISOND PRISON AND AND AND AND AND AND AND AND AND AN	DISCR 44
		PL=0.0 DO 250 J=1.K	DISCR 86
	260	DU 250 J=1+K PL=PL+ EXP(XBAR(J)-SUM)	01SCR 87
	2.00	NI=NI+L	DISCR 89
		LGINIJaL	DISCR 89
	260	P(N1)=1.0/PL	015CP 90
		LBASE=LRASE+NN+M	DISCR 91
		PETURN	DISCR 92
		END	DISCR 93

Statistics - Factor Analysis

Factor analysis is a method of analyzing the intercorrelations within a set of variables. It determines whether the variance in the original set of variables can be accounted for adequately by a smaller number of basic categories, namely factors.

In the Scientific Subroutine Package, factor analysis is normally performed by calling the following five subroutines in sequence:

- 1. CORRE to find means, standard deviations, and correlation matrix
- 2. EIGEN to compute eigenvalues and associated eigenvectors of the correlation matrix
- 3. TRACE to select the eigenvalues that are greater than or equal to the control value specified by the user
- 4. LOAD to compute a factor matrix
- 5. VARMX to perform varimax rotation of the factor matrix

The subroutine CORRE works in either of two ways: (1) it expects all observations in core, or (2) it triggers a user-provided input subroutine, DATA, to read one observation at a time into a work area. In either case, the user must provide a subroutine named DATA (see "Subroutines Required" in the description of subroutine CORRE).

TRACE

This subroutine finds k, the number of eigenvalues that are greater than or equal to the value of a specified constant. The given eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_m$ must be arranged in descending order.

Cumulative percentage for these k eigenvalues are:

$$d_j = \sum_{i=1}^j \frac{\lambda_i}{m}$$
(1)

where j = 1, 2, ..., k

m = number of eigenvalues (or variables)

 $k \leq m$

Subroutine TRACE

Purpose:

Compute cumulative percentage of eigenvalues greater than or equal to a constant specified by the user. This subroutine normally occurs in a sequence of calls to subroutines CORRE, EIGEN, TRACE, LOAD, and VARMX in the performance of a factor analysis.

Usage:

CALL TRACE (M, R, CON, K, D)

Description of parameters:

- M Number of variables.
- R Input matrix (symmetric and stored in compressed form with only upper triangle by column in core) containing eigenvalues in diagonal. Eigenvalues are arranged in descending order. The order of matrix R is M by M. Only M* (M+1)/2 elements are in storage. (Storage mode of 1.)
- CON A constant used to decide how many eigenvalues to retain. Cumulative percentage of eigenvalues which are greater than or equal to this value is calculated.
- K Output variable containing the number of eigenvalues greater than or equal to CON. (K is the number of factors.)
- D Output vector of length M containing cumulative percentage of eigenvalues which are greater than or equal to CON.

None.

Subroutines and function subprograms required: None.

Method:

Each eigenvalue greater than or equal to CON is divided by M and the result is added to the previous total to obtain the cumulative percentage for each eigenvalue.

	SUBROUTINE TRACE (M.R.CON.K.D)	TRACE	1
	DIMENSION R(1), D(1)	TRACE	ż
	FN=M	TRACE	3
	L=0	TRACE	á
	DD 100 I×1+M	TRACE	5
	L=L+I	TRACE	6
11	00 D(1)=R(L)	TRACE	7
	K#0	TRACE	
C	TEST WHETHER I-TH EIGENVALUE IS GREATER	TRACE	9
č	THAN OR EQUAL TO THE CONSTANT	TRACE	10
-	DO 110 T=1+H	TRACE	11
	IF(D(1)-CON) 120, 105, 105	TRACE	12
	05 K≈K+1	TRACE	13
	10 0(1)=0(1)/FM	TRACE	14
c ī	COMPUTE CUMULATIVE PERCENTAGE OF EIGENVALUES	TRACE	15
Ť 1	20 00 130 1=2+K	TRACE	16
	30 D(1)=D(1)+D(1-1)	TRACE	17
-	RETURN	TRACE	18
	END	TRACE	19

LOAD

This subroutine calculates the coefficients of each factor by multiplying the elements of each normalized eigenvector by the square root of the corresponding eigenvalue.

$$a_{ij} = v_{ij} \cdot \sqrt{\lambda_j}$$
(1)

where i = 1, 2, ..., m are variables

j = 1, 2, ..., k are eigenvalues retained (see the subroutine TRACE)

 $k \leq m$

Subroutine LOAD

Purpose:

Compute a factor matrix (loading) from eigenvalues and associated eigenvectors. This subroutine normally occurs in a sequence of calls to subroutines CORRE, EIGEN, TRACE, LOAD, and VARMX in the performance of a factor analysis.

Usage:

CALL LOAD (M, K, R, V)

Description of parameters:

- M Number of variables.
- K Number of factors.
- R A matrix (symmetric and stored in compressed form with only upper triangle by column in core) containing eigenvalues in diagonal. Eigenvalues are arranged in descending order, and first K eigenvalues are used by this subroutine. The order of matrix R is M by M. Only M*(M+1)/2 elements are in storage. (Storage mode of 1.)
- When this subroutine is called, matrix V (M by M) contains eigenvectors columnwise. Upon returning to the calling program, matrix V contains a factor matrix (M by K).

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Normalized eigenvectors are converted to the factor pattern by multiplying the elements of each vector by the square root of the corresponding eigenvalue.

	SUBROUTINE LOAD (M.K.R.V)	LOAD	1
	DIMENSION R(1),V(1)	LOAD	ž
	L=O	LOAD	3
	JJ=0	LOAD	4
	DO 160 J=1+K	LOAD	5
	L+LL=LL	LOAD	6
150	SQ= SQRT(R(JJ))	LOAD	7
	DD 160 J=1.M	LOAD	Ř
	L=L+1	LOAD	9
160	V(L)=5Q+V(L)	1040	10
	RETURN	LOAD	ii
	END	1.040	12

VARMX

This subroutine performs orthogonal rotations on a m by k factor matrix such that:

$$\sum_{j} \left\{ m \sum_{i} \left(a_{ij}^2 / h_i^2 \right)^2 - \left[\sum_{i} \left(a_{ij}^2 / h_i^2 \right) \right] \right\}^2 \quad (1)$$

~

is a maximum, where i = 1, 2, ..., m are variables, j = 1, 2, ..., k are factors, a_{ij} is the loading for the ith variable on the jth factor, and h_i^2 is the communality of the ith variable defined below.

Communalities:

$$h_i^2 = \sum_{j=1}^k a_{ij}^2$$
 (2)

where i = 1, 2, ..., m

Normalized factor matrix:

$$b_{ij} = a_{ij} / \sqrt{h_i^2}$$
(3)

where i = 1, 2, ..., m

j = 1, 2, ..., k

Variance for factor matrix:

$$V_{c} = \sum_{j} \left\{ \left[m \sum_{i} \left(b_{ij}^{2} \right)^{2} - \left(\sum_{i} b_{ij}^{2} \right)^{2} \right] / m^{2} \right\}$$
(4)

where c = 1, 2, ... (iteration cycle)

Convergence test:

If
$$V_c - V_{c-1} \le 10^{-7}$$
 (5)

four successive times, the program stops rotation and performs the equation (28). Otherwise, the program repeats rotation of factors until the convergence test is satisfied.

Rotation of two factors:

The subroutine rotates two normalized factors (b_{ij}) at a time. 1 with 2, 1 with 3, ..., 1 with k, 2 with 3, ..., 2 with k, ..., k - 1 with k. This constitutes one iteration cycle.

Assume that x and y are factors to be rotated, where x is the lower-numbered or left-hand factor, the following notation for rotating these two factors is used:

$$\begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ x_{m} & y_{m} \end{bmatrix} \cdot \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix} = \begin{bmatrix} x_{1} & y_{1} \\ x_{2} & y_{2} \\ \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \\ x_{m} & y_{m} \end{bmatrix}$$
(6)

where x_i and y_i are presently available normalized loadings and X_i and Y_i , the desired normalized loadings, are functions of ϕ , the angle of rotation. The computational steps are as follows:

A. Calculation of NUM and DEN:

$$A = \sum_{i} (x_{i} + y_{i}) (x_{i} - y_{i})$$

$$B = 2 \sum_{i} x_{i} y_{i}$$

$$C = \sum_{i} [(x_{i} + y_{i}) (x_{i} - y_{i}) + 2x_{i} y_{i}] \qquad (7)$$

$$[(x_{i} + y_{i}) (x_{i} - y_{i}) - 2x_{i} y_{i}]$$

$$D = 4 \sum_{i} (x_{i} + y_{i}) (x_{i} - y_{i}) x_{i} y_{i}$$

$$NUM = D - 2AB/m$$

$$DEN = C - [(A + B) (A - B)] /m$$

B. Comparison of NUM and DEN:

The following four cases may arise:

NUM < DEN, go to B1 below.

NUM > DEN, go to B2 below.

(NUM + DEN) $\geq \epsilon^*$, go to B3 below.

(NUM + DEN) < ϵ , skip to the next rotation.

* ϵ is a small tolerance factor.

B1: $\tan 4\theta = |\text{NUM}| / |\text{DEN}|$ (8)

If $\tan 4\theta < \epsilon$ and

- (i) DEN is positive, skip to the next rotation.
- (ii) DEN is negative, set $\cos \phi = \sin \phi = (\sqrt{2})/2$ and go to E below.

If $\tan 4 \theta \geq \epsilon$, calculate:

$$\cos 4 \theta = 1 / \sqrt{1 + \tan^2 4 \theta}$$
 (9)

$$\sin 4\theta = \tan 4\theta \cdot \cos 4\theta \tag{10}$$

and go to C below.

B2:
$$\operatorname{ctn} 4\theta = |\operatorname{NUM}| / |\operatorname{DEN}|$$
 (11)

- If $\operatorname{ctn} 4\theta < \epsilon$, set $\cos 4\theta = 0$ and $\sin 4\theta = 1$. Go to C below.
- If $\operatorname{ctn} 4\theta \geq \epsilon$, calculate:

$$\sin 4\theta = 1/\sqrt{1 + \operatorname{ctn}^2 4\theta}$$
 (12)

 $\cos 4\theta = \operatorname{ctn} 4\theta \cdot \sin 4\theta \qquad (13)$

and go to C below.

- B3: Set $\cos 4\theta = \sin 4\theta = (\sqrt{2})/2$ and go to C below.
- C. Determining $\cos \theta$ and $\sin \theta$:

$$\cos 2\theta = \sqrt{(1 + \cos 4\theta)/2} \tag{14}$$

$$\sin 2\theta = \sin 4\theta / 2\cos 2\theta \tag{15}$$

$$\cos\theta = \sqrt{(1 + \cos 2\theta)/2} \tag{16}$$

$$\sin\theta = \sin 2\theta / 2\cos\theta \tag{17}$$

D. Determining $\cos \phi$ and $\sin \phi$:

D1: If DEN is positive, set

$$\cos\phi = \cos\theta \tag{18}$$

 $\sin \phi = \sin \theta$ (19) and go to (D2) below.

If DEN is negative, calculate

$$\cos \phi = \frac{\sqrt{2}}{2} \cos \theta + \frac{\sqrt{2}}{2} \sin \theta \qquad (20)$$

$$\sin\phi = \left|\frac{\sqrt{2}}{2}\cos\theta - \frac{\sqrt{2}}{2}\sin\theta\right| \quad (21)$$

and go to (D2) below.

D2: If NUM is positive, set

 $\cos\phi = \cos\phi \qquad (22)$

$$\sin \phi = \left| \sin \phi \right| \tag{23}$$

and go to (E) below.

If NUM is negative, set

$$\cos\phi = \left|\cos\phi\right| \tag{24}$$

$$\sin\phi = - \left| \sin\phi \right| \tag{25}$$

E. Rotation:

$$X_{i} = X_{i} \cos \phi + y_{i} \sin \phi$$
 (26)

$$Y_{i} = x_{i} \sin \phi + y_{i} \cos \phi$$
 (27)

where i = 1, 2, ..., m

After one cycle of k(k - 1)/2 rotations is completed, the subroutine goes back to calculate the variance for the factor matrix (equation 4).

Denormalization:

$$a_{ij} = b_{ij} \cdot h_i$$
 (28)

where i = 1, 2, ..., m

Check on communalities:

Final communalities $f_i^2 = \sum_{j=1}^k a_{ij}^2$ (29)

 $d_i = h_i^2 - f_i^2$

Difference

where i = 1, 2, ..., m

Subroutine VARMX

Purpose:

Perform orthogonal rotations of a factor matrix. This subroutine normally occurs in a sequence of calls to subroutines CORRE, EIGEN, TRACE, LOAD, VARMX in the performance of a factor analysis.

Usage:

CALL VARMX (M, K, A, NC, TV, H, F, D)

Description of parameters:

- M Number of variables and number of rows of matrix A.
- K Number of factors.
- A Input is the original factor matrix, and output is the rotated factor matrix. The order of matrix A is M by K.
- NC Output variable containing the number of iteration cycles performed.
- TV Output vector containing the variance of the factor matrix for each iteration cycle. The variance prior to the first iteration cycle is also calculated. This means that NC+1 variances are stored in vector TV. Maximum number of iteration cycles allowed in this subroutine is 50. Therefore, the length of vector TV is 51.
- H Output vector of length M containing the original communalities.
- F Output vector of length M containing the final communalities.
- D Output vector of length M containing the differences between the original and final communalities.

Remarks:

If variance computed after each iteration cycle does not increase for four successive times, the subroutine stops rotation.

Subroutines and function subprograms required: None.

Method:

(30)

Kaiser's varimax rotation as described in 'Computer Program for Varimax Rotation in Factor Analysis' by the same author, Educational and Psychological Measurement, Vol. XIX, No. 3, 1959.

SUBROUTINE VARMX (M.K.A.NC.TV.H.F.D) DIMENSION A(1),TV(1),H(1),F(1),D(1) C INITIALIZATION EPS=0.00116 TVLT=0.0 LL=K-1 NV=1 NC=0 FN=M FFN=FN=FN CONS=0.7071066 C CALGULATE DRIJINAL COMMUNALITIFS D0 110 J=1.K L=M=1.LA H(1)=0.0 D0 110 J=1.K L=M=1.J=1.K L=M=1.K D0 120 J=1.K L=M=1.K L= с с c ç c U=[A1[3]+A1[4])=[A1[3]-A1[4]] T=A1[3]+A1[4] T=T+T CC=CC+U+T]*U=(U=T] DD=DD+2_0=U=T Aa=A4-U 230 BB=B8-T T=DD-2_0=Aa*BB/FN B=CC=1AA*AA-BB#B91/FN COMPARISON (F NUM AND DEN IFIT=B1 280, 240, 370 240 CIS4T=CONS CIS4T=CONS CIS4T=CONS CIS4T=CONS CIS4T=1.0/ SQRTI1.0FTAAAT*TAAAF1 SIN4T=LS1 300, 240, 470 310 SIN4F=LS1 340, 310 SIN4T=LS1 340, 310 350 SIN4T=LS1 CIS4T=CONSTIL.0FCTNAT*CTNAT CIS4T=CONSTIL CIS4T=CONST c C. с G TO 350 G TO 350 SINOT=1.0 DETERNINE COS THETA AND SIN THETA 350 COS2T= SORT(11.0+COS4T)/2.0) SINOT=SINAT/2.0+COS2T) 355 COST= SORT(11.0+COS7T)/2.0) SINT=SINAT/2.0+COST) DETERNINE COS PHI AND SIN PHT IF(N] 3TO, 3TO, 360 360 COSP=CONT SIND=SINT GD TO 380 370 COSP=CUNS+COST+CONS+SINT 375 SIND= ABS(CONS+COST-CONS+SINT) 380 IF(11 340, 340, 400 400 DG 410 I=1,4 L3=L3+ L3=L3+ L4=L2+ L4=L2 С С 190 190 L AA=xx-A(4)=-A(13)=5im A(1)=-A(13)=5im GO T(1)UE GO T(1)UE GO T(1)UE GO T(1)UE A30 D0 460 J=1,M D0 460 J=1,K L=+(1)=-A(1)=H(1) C CHECK ON COMMINALITIES NC=NV=1 D0 450 I=1,M 400 H(1)=+(1)=H(1) 00 470 I=1,M f(1)=+(1)=H(1)= 60 470 J=1,K L=He(J=1)=1 400 J=1,K L=He(J=1)=1 400 I(1)=+(1)=1 40

Statistics - Time Series

AUTO

VARMX VARMX

VARNX 18 VARNX 20 VARNX 20 VARNX 21 VARNX 22 VARNX 22 VARNX 22 VARNX 22 VARNX 23 VARNX 24 VARNX 25 VARNX 25 VARNX 32 VARNX 32 VARNX 32 VARNX 32 VARNX 32 VARNX 32 VARNX 34 VARNX 34 VARNX 34 VARNX 34 VARNX 34 VARNX 42 VARNX 45 VARNX 44 VARNX 45 VAR

VARNE SE VAR

VAPMX101 VARMX102 VARMX103 VARMX104 VARMX105 VARMX105

VARMX107

VARMX109 VARMX109 VARMX110 VARMX111

VARMX111 VARMX112 VARMX112 VARMX114 VARMX115 VARMX115 VARMX116 VARMX116 VARMX119 VARMX119 VARMX120 VARMX123 VARMX124

VARMX125

VARMX125 VARMX126 VARMX127 VARMX128 VARMX128 VARMX129 VARMX130 VARMX131 VARMX132 VARMX132

123456789

This subroutine calculates the autocovariances for lags 0, 1, 2, ..., (L-1), given a time series of observations A_1 , A_2 , ..., A_n and a number L.

$$R_{j} = \frac{1}{n-j+1} \sum_{i=1}^{n-j+1} (A_{i} - AVER) (A_{i+j-1} - AVER)$$
 (1)

where AVER = $\frac{1}{n} \sum_{i=1}^{n} A_{i}$

$$j = 1, 2, 3, ..., L$$
 represent time lags $0, 1, 2, ..., (L-1)$.

Subroutine AUTO

To find autocovariances of series A for lags 0 to L-1.

Usage:

CALL AUTO (A, N, L, R)

Description of parameters:

- A Input vector of length N containing the time series whose autocovariance is desired.
- N Length of the vector A.
- L Autocovariance is calculated for lags of 0, 1, 2,..., L-1.
- R Output vector of length L containing autocovariances of series A.

Remarks:

The length of R is different from the length of A. N must be greater than L. Otherwise, R(1) is set to zero and this routine exits.

2

Subroutines and function subprograms required: None.

Method:

The method described by R. B. Blackman and J. W. Tukey in The Measurement of Power Spectra, Dover Publications, Inc., New York, 1959.

		SUBROUTINE AUTO (A.N.L.R)
		DIMENSION A(1) .R(1)
c		CALCULATE AVERAGE OF TIME SERIES A
		AVER=0+0
		IF(N=L) 50,50,100
	50	R(1)=0.0
		RETURN
	100	DO 110 I=1+N
	110	AVER=AVER+A(I)
		FN=N
		AVER-AVER/FN
c		CALCULATE AUTOCOVARIANCES
		DO 130 J=1+L
		SUM=0.0
		DO 120 I=1+NJ
		I = I + J - 1
	120	SUM=SUM+(A(I)+AVER)+(A(IJ)-AVER)
		FNJ=NJ
	130	R(J)=SUM/FNJ
		RETURN
		END

CROSS

AUTO 1 AUTO 2 AUTO 2 AUTO 4 AUTO 4 AUTO 402 AUTO M02 AUTO M03 AUTO M04 AUTO 10 AUTO 10 AUTO 10 AUTO 11 AUTO 12 AUTO 13 AUTO 11 AUTO 12 AUTO 13 AUTO 14 AUTO 15 AUTO 18 AUTO 18 AUTO 18 AUTO 10 AUTO 20 AUTO 20

This subroutine calculates the crosscovariances of series B lagging and leading A, given two time series A_1, A_2, \ldots, A_n and B_1, B_2, \ldots, B_n and given a number L.

$$R_j = \frac{1}{n-j+1} \sum_{i=1}^{n-j+1} (A_i - AVERA) (B_{i+j-1} - AVERB)$$
(1)

$$S_j = \frac{1}{n-j+1} \sum_{i=1}^{n-j+1} (A_{i+j-1} - AVERA) (B_i - AVERB)$$

where AVERA =
$$\frac{1}{n} \sum_{i=1}^{n} A_i$$

AVERB =
$$\frac{1}{n} \sum_{i=1}^{n} B_{i}$$

- n = number of observations in eachseries.
- $j = 1, 2, \ldots, L$ represent time lags (or leads) of 0, 1, 2, ..., (L-1).

Subroutine CROSS

Purpose:

To find the crosscovariances of series A with series B (which leads and lags A).

Usage:

CALL CROSS (A, B, N, L, R, S)

Description of parameters:

- A Input vector of length N containing first time series.
- B Input vector of length N containing second time series.
- N Length of series A and B.
- L Crosscovariance is calculated for lags and leads of 0, 1, 2,..., L-1.

- R Output vector of length L containing crosscovariances of A with B, where B lags A.
- S Output vector of length L containing crosscovariances of A with B, where B leads A.

N must be greater than L. If not, R(1) and S(1) are set to zero and this routine exits.

Subroutines and function subprograms required: None.

Method:

The method is described by R. B. Blackman and J. W. Tukey in <u>The Measurement of Power</u> <u>Spectra</u>, Dover Publications, Inc., New York, 1959.

		SUBROUTINE CROSS (A+B+N+L+R+S)
		DIMENSION A(1)+B(1)+R(1)+S(1)
с		CALCULATE AVERAGES OF SERIES A AND B
-		FN=N
		AVERA=0.0
		AVERB=0.0
		1F(N-L)50+50+100
	50	9(1)=0.0
		5(1)=0.0
		RETURN
	100	00 110 I=1 N
	100	AVFRA=AVFRA+A(I)
	110	AVERB=AVERB+B(I)
		AVERA=AVERA/FN
		AVERB=AVERB/FN
с		CALCULATE CROSSCOVARIANCES OF SERIES A AND B
`		
		NJ=N=J+1
		SUMR=0.0
		SUMS=0+0
		DO 120 I#1+NJ
		1J#1+J=1
		SUMR=SUMR+(A(I)=AVFRA)+(9(IJ)=AVFRB)
	120	SUMS=SUMS+(A(IJ)=AVFRA)*(B(I)=AVERB)
	120	FNJ=NJ
		R(J)=SUMR/FNJ
	120	S(J)=SUMS/FNJ
	1 20	RETURN
		END

\underline{SMO}

This subroutine calculates the smoothed or filtered series, given a time series A_1, A_2, \ldots, A_n , a selection integer L, and a weighting series W_1, W_2, \ldots, W_m .

$$\mathbf{R}_{i} = \sum_{j=1}^{m} \mathbf{A}_{p} \cdot \mathbf{W}_{j}$$
(1)

where $p = j \cdot L - L + k$

$$k = i - IL + 1$$

$$i = IL \text{ to } IH$$

$$IL = \frac{L(m-1)}{2} + 1$$
(2)

$$IH = n - \frac{L(m-1)}{2}$$
(3)

- L = a given selection integer. For example, L = 4 applies weights to every 4th item of the time series.
- m = number of weights. Must be an odd integer. (If m is an even integer, any fraction resulting from the calculation of $\frac{L(m-1)}{2}$ in (2) and (3) above will be truncated.

n = number of items in the time series.

From IL to IH elements of the vector R are filled with the smoothed series and other elements with zeros.

Subroutine SMO

Purpose:

CROSS CROSS CROSS CROSS CROSS CROSS CROSS CROSS CROSS CROSS

To smooth or filter series A by weights W.

Usage:

CALL SMO (A, N, W, M, L, R)

Description of parameters:

- A Input vector of length N containing time series data.
- N Length of series A.
- W Input vector of length M containing weights.

4

- M Number of items in weight vector. M must be an odd integer. (If M is an even integer, any fraction resulting from the calculation of $(L^*(M-1))/2$ in (1) and (2) below will be truncated.)
- L Selection integer. For example, L=12 means that weights are applied to every 12th item of A. L=1 applies weights to successive items of A. For monthly data, L=12 gives year-to-year averages and L=1 gives month-to-month averages.
- R Output vector of length N. From IL to IH elements of the vector R are filled with the smoothed series and other elements with zero, where

$IL=(L^{*}(M-1))/2+1$	 (1)
H=N-(L*(M-1))/2	 (2)

N must be greater than or equal to the product of L*M.

Subroutines and function subprograms required: None.

Method:

Refer to the article 'FORTRAN Subroutines for Time Series Analysis', by J. R. Healy and B. P. Bogert, Communications of ACM, V.6, No. 1, Jan., 1963.

	SUBROUTINE SHO (4,N,W,M,L,R)	SHO	1
	DIMENSION A(1),W(1),R(1)	5 M D	2
c	INITIALIZATION	SMO	3
	DO-110 J=1.N	SM0	4
110	R(1)=0.0	540	5
	[L=(L=(H-1))/2+1	SMO	6
	[H=N-(L*(H-1))/2	SMO	7
c	SMOOTH SERIES A BY WEIGHTS W	SMO	8
	DO 120 [=IL, [H	SMD	9
	K=I-IL+1	SMO	10
	M.I=L 051 00	SMO	11
	!P=(j≠L)-L+K	SMD	12
120	R[]]=R[]]+A[]P]#W[J}	SMO	13
	RETURN	SMO	14
	END	S MO	15

EXSMO

This subroutine calculates a smoothed series S_1 , S_2 , ..., S_{NX} , given time series X_1 , X_2 , ..., X_{NX} and a smoothing constant α . Also, at the end of the computation, the coefficients A, B, and C are given for the expression A + B(T) + C(T)²/2. This expression can be used to find estimates of the smoothed series a given number of time periods, T, ahead.

The subroutine has the following two stages for i = 1, 2, ..., NX, starting with A, B, and C either given by the user or provided automatically by the subroutine (see below).

(a) Find S_i for one period ahead

$$S_i = A + B + .5C \tag{1}$$

(b) Update coefficients A, B, and C

$$A = X_{i} + (1 - \alpha)^{3} (S_{i} - X_{i})$$
(2)

$$B = B + C - 1.5 (\alpha^2) (2 - \alpha) (S_i - X_i)$$
(3)

$$C = C - (\alpha^3) (S_i - X_i)$$
 (4)

where α = smoothing constant specified by the user

 $(0.0 < \alpha < 1.0).$

If coefficients A, B, and C are not all zero (0.0), take given values as initial values. However, if A = B = C = 0.0, generate initial values of A, B, and C as follows:

$$C = X_1 - 2X_2 + X_3$$
 (5)

$$B = X_2 - X_1 - 1.5C$$
 (6)

$$A = X_{1} - B - 0.5C$$
(7)

Subroutine EXSMO

Purpose:

To find the triple exponential smoothed series S of the given series X.

Usage:

CALL EXSMO (X, NX, AL, A, B, C, S)

Description of parameters:

 Input vector of length NX containing time series data which is to be exponentially smoothed.

- NX The number of elements in X.
- AL Smoothing constant alpha. AL must be greater than zero and less than one.
- A, B, C Coefficients of the prediction equation where S is predicted T periods hence by
 - A + B*T + C*T*T/2.
 - As input: If A=B_⊇C=0, program will provide initial values. If at least one of A, B, C is not zero, program will take given values as initial values.
 - As output: A, B, C, contain latest, updated coefficients of prediction.
 - Output vector of length NX containing triple exponentially smoothed time series.

S

None.

Subroutines and function subprograms required: None.

Method:

Refer to R. G. Brown, 'Smoothing, Forecasting and Prediction of Discrete Time Series', Prentice-Hall, N.J., 1963, pp. 140 to 144.

	SUBROUTINE EXSMO (X+NX+AL+A+B+C+S)	EXSMO 1
	DIMENSION X(1)+S(1)	EXSMO 2
с	IF A-B=C=0.0. GENERATE INITIAL VALUES OF A. B. AND C	EXSMO 3
•	IF(A) 140. 110. 140	EXSMU 4
1	10 17(8) 140, 120, 140	EXSMO 5
	20 1F(C) 140, 130, 140	EXSMO 6
	30 L1+1	EX5MON01
	L2+2	EX5MOM02
	L3+3	EX5MON03
	C=X(L1)-2+0=X(L2)+X(L3)	EX5M0M04
	B+X(L2)-X(L1)-1+5+C	EXSMOM05
	A=x(L1)=B=0+5+C	EX5M0M06
	40 BE=1=0-AL	EX5MO 10
1	86CU8=8E+8E+BE	EXSMO 11
	ALCUB=AL*AL*AL	EXSMU 12
	DO THE FOLLOWING FOR I=1 TO NX	EXSMO 13
c	DO 150 I=1+NX	EXSMO 14
c	FIND S(1) FOR ONE PERIOD AHEAD	EXSMO 15
C.		EXSMO 16
	S(1)=A+B+0.5*C UPDATE COEFFICIENTS A: B: AND C	EXSMO 17
с		EXSMO 18
	DIF=5(1)-x(1)	EX5MO 19
	A=X(1)+BECUB+DIF	EXSMO 20
	B=B+C-1.5+AL+AL+(2.0-AL)+DIF	EXSMO 20
1	50 C=C-ALCUB+DIF	
	RETURN	EXSMO 22
	END	EXSMO 23

Statistics - Nonparametric

CHISQ

This subroutine calculates degrees of freedom and chi-square for a given contingency table A of observed frequencies with n rows (conditions) and m columns (groups). The degrees of freedom are:

$$d.f. = (n-1) (m-1)$$
(1)

If one or more cells have an expected value of less than 1, chi-square is computed and the error code is set to 1.

The following totals are computed:

$$T_i = \sum_{j=1}^{m} A_{ij}; i = 1, 2, ..., n \text{ (row totals)}$$
 (2)

$$T_j = \sum_{i=1}^{n} A_{ij}; j = 1, 2, ..., m$$
 (column totals) (3)

$$GT = \sum_{i=1}^{n} T_i \text{ (grand total)}$$
(4)

Chi-square is obtained for two cases:

(a) for
$$2 \ge 2$$
 table:

$$x^{2} = \frac{GT\left(\begin{vmatrix} A_{11} & A_{22} & -A_{12} & A_{21} \\ A_{11} & A_{12} & A_{21} & A_{21} \end{vmatrix} - \frac{GT}{2} \right)^{2}}{(A_{11} + A_{12})(A_{21} + A_{22})(A_{11} + A_{21})(A_{12} + A_{22})}$$
(5)

(b) for other contingency tables:

$$x^{2} = \sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\left(A_{ij} - E_{ij}\right)^{2}}{E_{ij}}$$
 (6)

~

where
$$E_{ij} = \frac{T_i T_j}{GT}$$

 $i = 1, 2, ..., n$
 $j = 1, 2, ..., m$

Subroutine CHISQ

Purpose: Compute chi-square from a contingency table.

Usage:

CALL CHISQ(A, N, M, CS, NDF, IERR, TR, TC)

Description of parameters:

Α	-	Input matrix,	N by M,	containing con-
		tingency table.	•	

- N Number of rows in A.
- M Number of columns in A.
- CS Chi-square (output).
- NDF Number of degrees of freedom (output).
- IERR Error code (output):
 - 0 Normal case.
 - 1 Expected value less than 1.0 in one or more cells.
 - 3 Number of degrees of freedom is zero.
- TR Work vector of length N.
- TC Work vector of length M.

Remarks:

Chi-square is set to zero if either N or M is one (error code 3).

Subroutines and function subprograms required: None.

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 6 and Chapter 8.

		SUBROUTINE CHISQ(A+N+M+CS+NDF+IERR+TR+TC)	CH150 1
		DIMENSION A(1) +TR(1) +TC(1)	CH150 2
		NM=N+M	CH150 3
		IERR=0	CHI50 4
		CS=0+0	CHISO 5
c		FIND DEGREES OF FREEDOM	CHISQ 6
		NDF = (N-1) = (M-1)	CHISQ 7
		IF(NDF) 5+5+10	CHISQ B
	5	IERR=3	CH150 9
		RETURN	CH150 10
c		COMPUTE TOTALS OF ROWS	CH150 25
	10	DO 90 1=1+N	CHISQM01
	•••	TR(1)=0+0	CH150 27
		1J=1-N	CH150 28
		DO 90 J=1+M	CHISQ 29
		I_I=I_J+N	CH150 30
	90	TR(1)=TR(1)+A(1)	CH150 31
c		COMPUTE TOTALS OF COLUMNS	CH150 32
•		1J=0	CH150 33
		DO 100 J=1.M	CH150 34
		TC(J)=0+0	CH150 35
		DO 100 [=1.N	CH150 36
			CHISQ 37
	100	TC(J)=TC(J)+A(IJ)	CHISQ 38
с		COMPUTE GRAND TOTAL	CHISQ 39
•		GT=0.0	CHISQ 40
		00 110 1=1+N	CHISQ 41
	110	GT+GT+TR(1)	CH150 42
c		COMPUTE CHI SQUARE FOR 2 BY 2 TABLE (SPECIAL CASE)	CH150 43
		1F(NM-4) 130+120+130	CHISQ 44
	120	L1=1	CH15QM04
		L2=2	CH1SQM05
		L3+3	CHISQM06
		L4=4	CH15GM07
		CS=GT+(ABS(A(L1)+A(L4)-A(L2)+A(L3))-GT/2.01++2/(TC(L1)+TC(L2)	CHISQMOB
		1+TR(L1)+TR(L2))	CHISOMD9
		RETURN	CHISQ 47

c	COMPUTE CHI SQUARE FOR OTHER CONTINGENCY TA	BIFS
130	1,1=0	
	DO 140 J=1+M	
	00 140 1=1+N	
	IJ=IJ+1	
	E=TR(1)+TC(J)/GT	
	1945-1.0) 135. 140. 140	
135	IERR=1	
140	CS=CS+(A(IJ)=E)+(A(IJ)=E)/E	
	RETURN	
	CND	

UTEST

This subroutine tests whether two independent groups are from the same population by means of the Mann-Whitney U-test, given an input vector A with smaller group preceding larger group. The scores for both groups are ranked together in ascending order. Tied observations are assigned the average of the tied ranks.

The sum of ranks in the larger group, R2, is calculated. The U statistic is then computed as follows:

$$U' = n_1 n_2 + \frac{n_2 (n_2 + 1)}{2} - R_2$$
 (1)

where $n_1 =$ number of cases in smaller group

$$n_2 = number of cases in larger group$$

$$U = n_1 n_2 - U'$$

if U' < U, set U = U' (2)

A correction factor for ties is obtained:

$$T = \sum \frac{t^3 - t}{12}$$
 (3)

where t = number of observations tied for a given rank

The standard deviation is computed for two cases:

(a) if T = 0
s =
$$\sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}$$
 (4)

(b) if T > 0

$$s = \sqrt{\left(\frac{n_1 n_2}{N(N-1)}\right) \left(\frac{N^3 - N}{12} - T\right)}$$
 (5)

where N = total number of cases $(n_1 + n_2)$

The significance of U is then tested:

$$Z = \frac{U - \bar{X}}{s}$$
(6)

where $\overline{X} = \text{mean} = \frac{n_1 n_2}{2}$

Z is set to zero if n_2 is less than 20.

Subroutine UTEST

Purpose:

Test whether two independent groups are from the same population by means of Mann-Whitney U-test.

Usage:

CALL UTEST (A, R, N1, N2, U, Z)

Description of parameters:

- A Input vector of cases consisting of two independent groups. Smaller group precedes larger group. Length is N1+N2.
- R Output vector of ranks. Smallest value is ranked 1, largest is ranked N. Ties are assigned average of tied ranks. Length is N1+N2.
- N1 Number of cases in smaller group.
- N2 Number of cases in larger group.
- U Statistic used to test homogeneity of the two groups (output).
- Z Measure of significance of U in terms of normal distribution (output).

Remarks:

Z is set to zero if N2 is less than 20.

Subroutines and function subprograms required: RANK TIE

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 6.

	SUBROUTINE UTEST(A.R.NI.N2.U.Z)	UTEST 1
	DIMENSION A(1)+R(1)	UTEST 2
с	RANK SCORES FROM BOTH GROUP TOGETHER IN ASCENDING ORDER. AND	UTEST 3
c c	ASSIGN TIED DESERVATIONS AVERAGE OF TIED RANKS	UTEST 4
	N=N1+N2	UTEST 5
	CALL RANK(A,R,N)	UTEST 6
	/=0.0	UTEST 7
С	SUM RANKS IN LARGER GROUP	UTEST 8
	R2=0.0	UTEST 9
	NP=N1+1	UTEST 10
	BO 10 F=NP+N	UTEST 11
	10 R2=R2+R{]}	UTEST 12
C,	CALCULATE U	UTEST 13
	FNX=N1+N2	UTEST L4
	FNAN	UTEST 15
	FN2 #N2	UTEST 16
	UP=fNX+FN2+((FN2+1.0)/2.0)-R2	UTEST 17
	U≖FNX-UP	UTEST 19
	[F(UP-U] 20,30,3)	UTEST 19
	20 U=UP	UTEST 20
С	TEST FOR N2 LESS THAN 20	UTEST 21
	30 [F[N2-20] 80,40,40	UTEST 22
c	COMPUTE STANDARD DEVIATION	UTEST 23
	40 KT=1	UTEST 24
	CALL TIEIR, N, KT, TS)	UTEST 25
	[F(TS) 50,60,50	UTEST 26
	50 S=SQRT((FNX/(FN+(FN+1.0)))+(((FN+FN+FN-FN)/12.0)-TS))	UTEST 27
	GO TO 70	UTEST 28
	60 S=SQRT(FNX*(FN+1.0)/12.0)	UTEST 29
С	COMPUTE Z	UTEST 30
	70 Z=(U-FNX+0.5)/S	UTFST 31
	BO RETURN	UTEST 32
	END	UTEST 33

ç

<u>TWOAV</u>

This subroutine determines the Friedman two-way analysis of variance statistic, given a matrix A with n rows (groups) and m columns (cases). Data in each group is ranked from 1 to m. Tied observations are assigned the average of the tied ranks.

The sum of ranks is calculated:

$$\mathbf{R}_{j} = \sum_{i=1}^{n} \mathbf{A}_{ij}$$
(1)

Friedman's statistic is then computed:

$$x_{r}^{2} = \frac{12}{nm(m+1)} \sum_{j=1}^{m} (R_{j})^{2} - 3n(m+1)$$
 (2)

The degrees of freedom are:

$$d.f = m - 1 \tag{3}$$

Subroutine TWOAV

Purpose:

Test whether a number of samples are from the same population by the Friedman two-way analysis of variance test.

Usage:

CALL TWOAV(A, R, N, M, W, XR, NDF, NR)

Description of parameters:

- A Input matrix, N by M, of original data.
- R Output matrix, N by M, of ranked data.
- N Number of groups.
- M Number of cases in each group.
- W Work area of length 2*M.
- XR Friedman statistic (output).
- NDF Number of degrees of freedom (output).
- NR Code: 0 for unranked data in A; 1 for ranked data in A (input).

Remarks:

None.

Subroutines and function subprograms required: Rank.

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 7.

	SUBROUTINE TWOAV (A.R.N.M.W.XR.NDF.NR)	TWOAV L
	DIMENSION A(1).R(1).W(1)	TWOAV 2
с	DETERMINE WHETHER DATA IS RANKED	TWOAV 3
L		TWDAV 4
	1F(NR-1) 10, 30, 10	
c	RANK DATA IN EACH GROUP AND ASSIGN TIED OBSERVATIONS AVER	
C	DF TIED RANK	TWOAV 6
	LO DO 20 I=1,N	TWOAV 7
	1 J=1-N	THOAV 9
	[K=1]	TWPAV 9
	DO 15 J=1.M	TWOAV 10
	1 J=1 J+N	TWOAV 11
	15 W(J)=A(IJ)	TWOAV 12
	CALL RANK (W.W(H+1),M)	TWOAV 13
	DD 20 J=1,M	TWOAV 14
	IK=IK+N	TWOAV 15
	1 H = H + 1	THOAV 16
	20 R(1K)=W([W]	TWOAV 17
	GO TU 35	TWOAV LS
	30 NM=N#4	TWOAV 19
	DD 32 [=1,NM	TWOAV 20
	32 R([)=A(])	TWOAV 21
c	CALCULATE SUM OF SQUARES OF SUMS OF RANKS	TWOAV 22
	35 RTSQ=0.0	TWOAV 23
	[R=0	TWOAV 24
	DD 50 J=1.M	TWOAV 25
	RT≃0.0	THOAV 26
	DG 40 t=1.N	TWOAV 27
	[R=[R+]	TWOAY 28
	40 RT=RT+R[IR]	TWOAV 29
	50 RTSQ≈RTSQ+RT#RT	THOAV 30
C	CALCULATE FRIEDMAN TEST VALUE. XR	TWOAV 31
	FNM=N#{M+L}	TWOAV 32
	FH*H	TWOAV 33
	XR={12.0/(FM#FNM))#RT50-3.0#FNM	TWOAV 34
c	FIND DEGREES JF FREEDOM	TWOAV 35
	NDF=M-L	THOAY 36
	RETURN	THOAV 37
	END	TWOAV 38
		1.41.44

This subroutine determines the Cochran Q-test statistic, given a matrix A of dichotomous data with n rows (sets) and m columns (groups).

Row and column totals are calculated:

$$L_{i} = \sum_{j=1}^{m} A_{ij} \text{ (row totals)}$$
(1)

where i = 1, 2, ..., n

$$G_j = \sum_{i=1}^n A_{ij}$$
 (column totals) (2)

where j = 1, 2, ..., m

The Cochran Q statistic is computed:

$$Q = \frac{(m-1)\left[m\sum_{j=1}^{m} G_{j}^{2} - \left(\sum_{j=1}^{m} G_{j}\right)^{2}\right]}{m\sum_{i=1}^{n} L_{i} - \sum_{i=1}^{n} L_{i}^{2}}$$
(3)

The degrees of freedom are:

$$d.f = m - 1$$
 (4)

Subroutine QTEST

Purpose:

Test whether three or more matched groups of dichotomous data differ significantly by the Cochran Q-test.

Usage:

CALL QTEST(A, N, M, Q, NDF)

Description of parameters:

- A Input matrix, N by M, of dichotomous data (0 and 1).
- N Number of sets in each group.
- M Number of groups.
- Q Cochran Q statistic (output).
- NDF Number of degrees of freedom (output).

Remarks:

M must be three or greater.

Subroutines and function subprograms required: None.

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 7.

	SUBROUTINE GTESTIA.N.M.Q.NDF)	QTEST	1
	DIMENSION A(1)	QTEST	,
С	COMPUTE SUM OF SQUARES OF ROW TOTALS, RSQ, AND GRAND TOTAL OF	OTEST	ŝ
č	ALL ELEMENTS. GD	OTEST	á
	K S Q = Q = Q	OTEST	5
	GD=0.0		6
	00 20 I=1.N		7
	T8=0.0		Å
	1.J=1-N		ģ
	DO 10 J≈1.M	OTEST 1	á
	IJ=IJ+N	OTEST I	
	10 TR=TR+A((J)	OTEST L	
	GD=GD+TR	OTEST 1	
	20 RSQ=RSQ+TR+TR	OTEST 1	4
c	COMPUTE SUM OF SQUARES OF COLUMN TOTALS, CSO	OTEST 1	
	CS9=0.0	OTEST 1	
	1,3=0	OTEST 1	
	CO 40 J=1.M	OTEST 1	
	TC=0.0	OTEST 1	
	00 30 [=1.N	OTEST 20	ò
	13=13+1	OTEST 2	
	30 TC=TC+A(1J)	QTEST 2	
	40 CSQ=CSQ+TC+TC	OTEST 2	
С	COMPUTE COCHRAN Q TEST VALUE	OTEST 24	
-	FNaM	OTEST 25	5
	Q=(FM-1.0)+(FM+CSQ-GD+GD)/(FM+GO-RSQ)	OTEST 20	
c	FIND DEGREES OF FREEDOM	OTEST 21	
-	NDF=N-1	OTEST 26	
	RETURN	OTEST 29	
	END	OTEST 30	

The statistic used to measure the significance of r_s is:

SRANK

This subroutine measures the correlation between two variables by means of the Spearman rank correlation coefficient, given two vectors of n observations for the variables.

The observations on each variable are ranked from 1 to n. Tied observations are assigned the average of the tied ranks.

The sum of squares of rank differences is calculated;

$$D = \sum_{i=1}^{n} (A_i - B_i)^2$$
 (1)

where $A_i =$ first ranked vector

B_i = second ranked vector n = number of ranks

A correction factor for ties is obtained:

$$T_{a} = \sum \frac{t^{3} - t}{12} \text{ over variable A}$$

$$T_{b} = \sum \frac{t^{3} - t}{12} \text{ over variable B}$$
(2)

where t = number of observations tied for a given rank

The Spearman rank correlation coefficient is then computed for the following two cases:

a) if
$$T_a$$
 and T_b are zero,

$$r_s = 1 - \frac{6D}{n^3 - n}$$
(3)

(b) if T_a and/or T_b are not zero,

$$r_{g} = \frac{X + Y - D}{2\sqrt{XY}}$$
(4)

where
$$X = \frac{n^3 - n}{12} - T_a$$
 (5)

$$Y = \frac{n^3 - n}{12} - T_b$$
 (6)

$$t = r_{s} \sqrt{\frac{n-2}{1-r_{s}^{2}}}$$
(7)

The degrees of freedom are:

$$d.f. = n - 2$$
 (8)

Subroutine SRANK

Purpose:

Test correlation between two variables by means of Spearman rank correlation coefficient.

Usage:

CALL SRANK(A, B, R, N, RS, T, NDF, NR)

Description of parameters:

- A Input vector of N observations for first variable.
- B Input vector of N observations for second variable.
- R Output vector for ranked data, length is 2*N. Smallest observation is ranked 1, largest is ranked N. Ties are assigned average of tied ranks.
- N Number of observations.
- RS Spearman rank correlation coefficient (output).
- T Test of significance of RS (output).
- NDF Number of degrees of freedom (output).
- NR Code: 0 for unranked data in A and B; 1 for ranked data in A and B (input).

Remarks:

T is set to zero if N is less than ten.

Subroutines and function subprograms required: RANK TIE

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 9.

	SUBROUTINE SRANK(A+B+R+N+RS+T+NDF+NR)	SRANK 1
	DIMENSION A(1) +B(1)+R(1)	SRANK 2
	D=N	SRANKMO1
	FNNN=D+D-D	SRANKMOZ
c	DETERMINE WHETHER DATA IS RANKED	SRANK 4
	IF(NR-1) 5: 10: 5	SRANK 5
с	RANK DATA IN A AND B VECTORS AND ASSIGN TIED OBSERVATIONS	SRANK 6
c	AVERAGE OF TIED RANKS	SRANK 7
	5 CALL RANK (A+R+N)	SRANK 8

CALL RANK (BrR(N+1)+N) SRAN G0 TO 40 SRAN C MOVE RANKED DATA TO R VECTOR SRAN 10 D0 20 1=1N SRAN 20 R[1]=A(1) SRAN D0 30 1=1N SRAN J=1+N SRAN	11 12 13 14 14 15 16
C MOVE RANKED DATA TO R VECTOR SRAN 10 D0 20 1=1.N SRAN SRAN 20 R(1)=A(1) SRAN SRAN D0 30 1=1.N SRAN SRAN	<pre>(12 (13 (14 (15 (15 (16)</pre>
10 DO 20 I=3+N 5RAN 20 R(I)=A(I) SRAN DO 30 I=2+N SRAN	(13) (14) (15) (15)
20 R(I)=A(I) SRAN DO 30 I=1+N SRAN	< 14 < 15 < 16
DO 30 I#1+N SRAN	(15)
	(16
30 R(J)=B(I) SRAN	. 17
C COMPUTE SUM OF SQUARES OF RANK DIFFERENCES SRAN	
40 D=0.0 SRAN	(18
DO 50 1=1+N SRAN	(19
J=I+N SRAN	¢ 20
50 D=D+(R(1)=R(J))#(R(1)=R(J)) SRAN	< 21
C COMPUTE TIED SCORE INDEX SRAN	< 22
KT=1 SRAN	K 23
CALL TIE (R+N+KT+TSA) SRAN	K 24
CALL TIE (R(N+1)+N+KT+TSB) SRAN	4 25
C COMPUTE SPEARMAN RANK CORRELATION COEFFICIENT SRAN	K 26
IF(T5A) 60+55+60 SRAN	K 27
55 [F(TSB) 60+57+60 SRAN	K 28
57 R5=1+0-6+0+D/FNNN SRAN	K 29
GO TO 70 SRAN	к 30
60 X≖FNNN/12+0-TSA SRAM	K 31
	K 32
	K 33
C COMPUTE T AND DEGREES OF FREEDOM IF N IS 10 OR LARGER SRAM	K 34
	Kr 35
	K 36
	K 37
	K 38
	K 39
END SRAF	K 40

<u>KRANK</u>

The subroutine computes the Kendall rank correlation coefficient, given two vectors of n observations for two variables, A and B. The observations on each variable are ranked from 1 to n. Tied observations are assigned the average of the tied ranks. Ranks are sorted in sequence of variable A.

A correction factor for ties is obtained:

$$T_{a} = \sum \frac{t(t-1)}{2} \text{ for variable A}$$

$$T_{b} = \sum \frac{t(t-1)}{2} \text{ for variable B}$$
(1)

where t = number of observations tied for a given rank

The Kendall rank correlation coefficient is then computed for the following two cases:

(a) if
$$T_a$$
 and T_b are zero,

$$\tau = \frac{S}{\frac{1}{2}n (n-1)}$$
(2)

where n = number of ranks

S = total score calculated for ranks in variable B as follows: selecting each rank in turn, add 1 for each larger rank to its right, subtract 1 for each smaller rank to its right.

(b) if
$$T_a$$
 and/or T_b are not zero,

$$\tau = \frac{S}{\sqrt{\frac{1}{2}n(n-1) - T_a}} \sqrt{\frac{1}{2}n(n-1) - T_b}$$
(3)

The standard deviation is calculated:

$$s = \sqrt{\frac{2(2n+5)}{9n(n-1)}}$$
 (4)

The significance of τ can be measured by:

$$z = \frac{\tau}{s}$$
(5)

Subroutine KRANK

Purpose:

Test correlation between two variables by means of Kendall rank correlation coefficient.

Usage:

CALL KRANK(A, B, R, N, TAU, SD, Z, NR)

Description of parameters:

- A Input vector of N observations for first variable.
- B Input vector of N observations for second variable.
- R Output vector of ranked data of length 2*N. Smallest observation is ranked 1, largest is ranked N. Ties are assigned average of tied ranks.
- N Number of observations.
- TAU Kendall rank correlation coefficient (output).
- SD Standard deviation (output).
- Z Test of significance of TAU in terms of normal distribution (output).
- NR Code: 0 for unranked data in A and B; 1 for ranked data in A and B (input).

Remarks:

SD and Z are set to zero if N is less than ten.

Subroutines and function subprograms required: RANK

TIE

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 9.

		SUBROUTINE KRANK(A,B,R,N,TAU,SD,Z,NR)	KRANK	1
		DIMENSION A(1) +B(1) +R(1)	KRANK	,
		SD=0.0	KRANK	3
		Z=0.0	KRANK	4
		FN=N	KRANK	5
		FN1=N#(N-1)	KRANK	6
С		DETERMINE WHETHER DATA IS RANKED	KRANK	7
		(F(NR-1) 5. 10. 5	KRANK	9
с		RANK DATA IN A AND B VECTORS AND ASSIGN TIED OBSERVATIONS	KRANK	9
č		AVERAGE OF TIED BANKS	KRANK	10
•	5	CALL RANK (A.R.N)	KRANK	
		CALL RANK (B,R(N+1),N)	KRANK	12
		GO TO 40	KRANK	
с		MOVE RANKED DATA TO R VECTOR	KRANK	14
v	10	00 20 [=1.N	KRANK	
		R[1]=A(1)	KRANK	
		DO 30 1=1.N	KRANK	
		J#1+N	KRANK	
	30	R(J)=R(I)	KRANK	
c		SURT RANK VECTOR R IN SEQUENCE OF VARIABLE A	KRANK	
	40	ISORT=0	KRANK	
		DO 50 [=2.N	KRANK	
		IF(9(1)-R(1-1)) 45,50,50	KRANK	
	45	ISORT=ISORT+1	KRANK	
		RSAVE=R([]	KRANK	
		R(I)=R(I-1)	KRANK	
		R(I-1) =RSAVE	KRANK	
		12=1+N	KRANK	
		SAVER®R (12)	KRANK	
		R(12)=R(12-1)	KRANK	30
		R([2-1)=SAVER	KRANK	31
	50	CONTINUE	KRANK	
		'IF(ISORT) 40,55,40	KRANK	
с		COMPUTE S ON VARIABLE B. STARTING WITH THE FIRST RANK, ADD 1	KRANK	
č		TO 5 FOR EACH LARGER RANK TO ITS RIGHT AND SUBTRACT & FOR EACH		
č		SMALLER RANK. REPEAT FOR ALL RANKS.	KRANK	
-		ANALES NAME OF ST I DO DEE DOMAGE		~

	55 \$≖0.0	KRANK	37	
	NH=N-1	KRANK	38	
	DD. 60 [=].NM	KRANK	39	
	J=N+I	KRANK	40	
	00 60 L=1.N	KRANK	41	
	K=N+L	KRANK	42	
	IF(R(K)-R(J)) 56.60.57	KRANK	43	
	56 S=S-1.0	KRANK	44	
	GD TD 60	KRANK	45	
	57 S=S+1.0	KRANK	46	
	60' CONTINUE	KRANK	47	
С	COMPUTE TIED SCORE INDEX FOR BOTH VARIABLES	KRANK	48	
	KT=2	KRANK	49	
	CALL TIE(R,N,KT,TA)	KRANK	50	
	CALL TIE(R(N+1),N,KT,TB)	KRANK	51	
C	COMPUTE TAU	KRANK	57	
	1F(TA) 70,65,70	KRANK	53	
	65 (FITR) 70,67,70	KRANK	54	
	67 TAU=S/(0.5#FN1)	KRANK	55	
	GO TO 90	KRANK	56	
	70 TAU=\$/[(\$QRT(0.5*FN1-TA])*(\$QRT(0.5*FN1-TB))]	KRANK	57	
c	COMPUTE STANDARD DEVIATION AND Z IF N IS 10 OR LARGER	KRANK	58	
	80 [F(N-10] 90,85,85	KRANK	59	
	85 SD=(SQRT((2.0*(FN+FN+5.0))/(9.0*FN1)))	KRANK		
	Z=TAU/SD	KRANK	61	
	90 RETURN	KRANK	62	
	END	KRANK	63	

WTEST

This subroutine computes the Kendall coefficient of concordance, given a matrix A of n rows (variables) and m columns (cases). The observations on all variables are ranked from 1 to m. Tied observations are assigned the average of the tied ranks.

A correction factor for ties is obtained:

$$T = \sum_{i=1}^{n} \frac{t^3 - t}{12}$$
(1)

where t = number of observations tied for a given rank

Sums of ranks are calculated:

$$Y_{j} = \sum_{i=1}^{n} R_{ij}$$
(2)

where j = 1, 2, ..., m

From these, the mean of sums of ranks is found:

$$\overline{R} = \frac{\sum_{j=1}^{m} Y_{j}}{m}$$
(3)

The sum of squares of deviations is derived:

$$s = \sum_{j=1}^{m} (Y_j - \bar{R})^2$$
 (4)

The Kendall coefficient of concordance is then computed:

$$W = -\frac{s}{\frac{1}{12}n^2 (m^3 - m) - nT}$$
(5)

For m larger than 7, chi-square is:

$$x^2 = n(m-1)W$$
 (6)

The degrees of freedom are:

d.f. =
$$n - 1$$
 (7)

Subroutine WTEST

Purpose:

Test degree of association among a number of variables by the Kendall coefficient of concordance.

Usage:

CALL WTEST (A, R, N, M, WA, W, CS, NDF, NR)

Description of parameters:

- Input matrix, N by M, of original data. А
- R - Output matrix, N by M, of ranked data. Smallest value is ranked 1; largest is ranked N. Ties are assigned average of tied ranks.
- Ν - Number of variables.
- м - Number of cases.
- WA Work area vector of length 2*M.
- W - Kendall coefficient of concordance (output).
- CS - Chi-square (output).
- NDF -Number of degrees of freedom (output).
- _ Code: 0 for unranked data in A; 1 for NR ranked data in A (input).

Remarks:

Chi-square is set to zero if M is 7 or smaller.

Subroutines and function subprograms required: RANK TIE

Method:

с

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 9.

```
        SUBROUTINE WTFST (A,R.N.M.WA.W.CS.NDF.NR)
        WTFST 1

        DIMENSION ALLIJ.RLIJ.WALLI
        WTFST 2

        FM=M
        WTFST 3

        FM=M
        WTFST 3

        OETEGRINE WHETHER DATA IS RANKED
        WTFST 5

        RANK DATA FOR ALL VALABLES ASSIGNET IFD DASFRVATIONS AVERGEFUTST 6
        OF TIED RAMKS AND COMPUTE CORRECTION FOR TIFD SCORES
        WTFST 7

        Tao.0
        WTFST 1
        WTFST 1
        WTFST 1

        OO 20 L=1,N
        WTFST 1
        WTFST 1

        Ixatj
        WTFST 1
        WTFST 1

        <
50
                          c
                                              00 60 J+1+M
60 S=S+(WA(J)-SM)*(#A(J)-SM)
                                       60 S=S+(WA(J)-SH)#(JA(J)-SH)

COMPUTE W

W=S/(([FNPER])+(FN=FN=FN]/12,0)-FN=T]

COMPUTE DEGREFS OF FREEDOM AND CHI-SQUARE [F M 15 NVER 7

CS=0.0

NDF=0

IF(M-7) 70,70,65

65 CS=FN=(FM-1.0)+W

NDF=M-1

70 RETURM

END
                          ¢
```

RANK

Purpose:

Rank a vector of values.

Usage:

CALL RANK(A, R, N)

Description of parameters:

- A Input vector of N values.
- R Output vector of length N. Smallest value is ranked 1; largest is ranked N. Ties are assigned average of tied ranks.
- N Number of values.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Vector is searched for successively larger elements. If ties occur, they are located and their rank value computed. For example, if two values are tied for sixth rank, they are assigned a rank of 6.5 (= (6+7)/2).

		SUBROUTINE RANK (A+R+N)	RANK	1	
		DIMENSION A(1) +R(1)	RANK	2	
c		INITIALIZATION	RANK	3	
		00 10 1=1+N	RANK	4	
	10	R(1)=0.0	RANK	5	
c	•••	FIND RANK OF DATA	RANK	6	
		DO 100 I=1+N	RANK	7	
c		TEST WHETHER DATA POINT IS ALREADY RANKED	RANK	8	
-		IF(R(1)) 20, 20, 100	RANK	9	
c		DATA POINT TO BE RANKED	RANK	10	
	20	SMALL=0.0	RANK	11	
		EQUAL=0.0	RANK	12	
		X=A(1)	RANK	13	
		00 50 J=1+N	RANK	14	
		1F(A(J)-X) 30+ 40+ 50	RANK	15	
c		COUNT NUMBER OF DATA POINTS WHICH ARE SMALLER	RANK	16	
	30	SMALL=SMALL+1+0	RANK	17	
		GO TO 50 -	RANK	18	
c		COUNT NUMBER OF DATA POINTS WHICH ARE EQUAL	RANK	19	
÷.,	40	EQUAL=EQUAL+1.0	RANK	20	
		R(J)=-1.0	RANK	21	
	50	CONTINUE	RANK	22	
c		TEST FOR TIE	RANK	23	
		IF(EQUAL-1.0) 60. 60. 70	RANK	24	
c		STORE RANK OF DATA POINT WHERE NO TIE	RANK	25	
-	60	R(1)=SMALL+1+0	RANK	26	
		GO TO 100	RANK	27	
с		CALCULATE RANK OF TIED DATA POINTS	RANK	28	
-	70	P=SMALL+(EQUAL+1.0)/2.0	RANK	M01	
		00 J=I-N	RANK	30	
		IF(R(J)+1.0) 90. 80. 90	RANK	31	
	90	R(J)=P	RANK	32	
	90	CONTINUE	RANK	33	
10	00	CONTINUE	RANK	34	
-	-	RETURN	RANK	35	
		END	RANK	36	

TIE

Purpose:

Calculate correction factor due to ties.

Usage:

CALL TIE(R, N, KT, T)

Description of parameters:

- R Input vector of ranks of length N containing values 1 to N.
- N Number of ranked values.
- KT Input code for calculation of correction factor:
 - 1 Solve equation 1.
 - 2 Solve equation 2.
- T Correction factor (output):
 - Equation 1 $T = SUM(CT^{**3}-CT)/12$
 - Equation 2 $T = SUM(CT^*(CT-1)/2)$ where CT is the number of observations
 - tied for a given rank.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Vector is searched for successively larger ranks. Ties are counted and correction factor 1 or 2 summed.

		SUBROUTINE TIE(P.N.KT.T)	TIE	ı
		DIMENSION R(1)	TIE	ż
С		INITIAL LZATION	115	3
		T=0.0	TIE	- 4
		Y=0.0	TIE	ŝ
		x=1.0E38	TIE	6
	,	100=0	TIE	7
с		FIND NEXT LARGEST HANK	TIF	Á
		DD 30 [=1.N	TIE	9
		IF(R(1)-Y) 30.30.10	TIE	10
	10	IF(R(1)-X) 20, 10, 30	TTE	- ii
		x=R([)	TIE	iż
	×0	IND+1	TIE	13
		CONTINUE	TIE	14
с	30	IF ALL RANKS HAVE BEEN TESTED, RETURN	TIF	15
c				
		LF(IND) 90,90,40	TIE	16
	40	Yax	TTE	17
		CT=0.0	TIF	18
c		COUNT TIES	TIF	19
		DO 60 1=1.N	TTE	50
		IF(R[1]-X) 60,50,60	TIE	21
		CT=CT+1.0	317	55
	60	CONTINUE	TIE	23
С		CALCULATE CORRECTION FACTOR	116	24
		IF(CT) 70,5,70	TIE	25
		I+(KT-L) 75+80+75	TIE	26
	75	T=T+CT+{CT+1+1/2+0	TIE	27
		GU TO 5	TIE	28
	80	T=T+{CT+CT+CT+CT}/12+0	TIF	29
		GR TO 5	TIE	30
	90	RETURN	TTE	31
		END	TTE	32

RANDU

Purpose:

Computes uniformly distributed random floating point numbers between 0 and 1.0 and integers in the range 0 to 2**15.

Usage:

CALL RANDU(IX, IY, YFL)

Description of parameters:

- IX For the first entry this must contain any odd positive integer less than 32,768. After the first entry, IX should be the previous value of IY computed by this subroutine.
- IY A resultant integer random number required for the next entry to this subroutine. The range of this number is from zero to 2**15.
- YFL The resultant uniformly distributed, floating point, random number in the range 0 to 1.0.

Remarks:

This subroutine is specific to the IBM 1130. This subroutine should not repeat its cycle in less than 2 to the 13th entries.

Note: If random bits are needed, the high order bits of IY should be chosen.

Subroutines and function subprograms required: None.

Method:

Power residue method discussed in IBM manual Random Number Generation and Testing (C20-8011).

	SUBROUTINE RANDULIX, IY, YEL)	RANDU	1	
	[Y=1X+899	RANDU	Z	
	IF(1Y)5,6,6	RANDU	3	
5	1Y=1Y+32767+1	RANDU	4	
	YFL=1Y	RANDU	5	
Ŭ		RANDU	6	
		RANDU	7	
	END	RANDU	8	
	YFL≖YFL/32767. RETURN END	RANDU	7	

GAUSS

This subroutine computes a normally distributed random number with a given mean and standard de-viation.

An approximation to normally distributed random numbers Y can be found from a sequence of uniform random numbers* using the formula:

$$Y = \frac{\sum_{i=1}^{K} X_i - \frac{K}{2}}{\sqrt{K/12}}$$
(1)

where X_i is a uniformly distributed random number, $0 < X_i < 1$

K is the number of values X, to be used

Y approaches a true normal distribution asymptotically as K approaches infinity. For this subroutine, K was chosen as 12 to reduce execution time. Equation (1) thus becomes:

$$Y = \sum_{i=1}^{12} X_i - 6.0$$

The adjustment for the required mean and standard deviation is then

$$Y' = Y * S + AM$$
 (2)

where Y' is the required normally distributed random number

S is the required standard deviation

AM is the required mean

^{*} R. W. Hamming, <u>Numerical Methods for</u> Scientists and Engineers, McGraw-Hill, N.Y., 1962, pages 34 and 389.

Subroutine GAUSS

Purpose:

Computes a normally distributed random number with a given mean and standard deviation.

Usage:

CALL GAUSS(IX, S, AM, V)

Description of parameters:

- IX IX must contain an odd positive integer less than 32,768. Thereafter it will contain a uniformly distributed integer random number generated by the subroutine for use on the next entry to the subroutine.
- S The desired standard deviation of the normal distribution.
- AM The desired mean of the normal distribution.
- V The value of the computed normal random variable.

Remarks:

This subroutine uses RANDU which is machine specific.

Subroutines and function subprograms required: RANDU

Method:

Uses 12 uniform random numbers to compute normal random numbers by central limit theorem. The result is then adjusted to match the given mean and standard deviation. The uniform random numbers computed within the subroutine are found by the power residue method.

	SUBROUTINE GAUSSI 1X+S+AM+V1	GAUSS	1	
	A=0.0	GAUSS	2	
	DO 50 1=1+12	GAUSS	3	
	CALL RANDU(IX.IY.Y)	GAUSS	4	
	1x=1Y	GAUSS	5	
50	A=A+Y	GAUSS	6	
	V=[A-6.0]+S+AM	GAUSS	7	
	RETURN	GAUSS	ß	
	END	GAUSS	9	

Mathematics - Special Matrix Operations

MINV

Purpose:

Invert a matrix.

Usage:

CALL MINV(A, N, D, L, M)

Description of parameters:

- A Input matrix, destroyed in computation and replaced by resultant inverse.
- N Order of matrix A.
- D Resultant determinant.
- L Work vector of length N.
- M Work vector of length N.

Remarks:

Matrix A must be a general matrix.

Subroutines and function subprograms required: None.

Method:

The standard Gauss-Jordan method is used. The determinant is also calculated. A determinant with absolute value less than $10^{**}(-20)$ indicates singularity. The user may wish to change this.

		SUBROUTINE MINV (A+N+D+L+M)	MINV	1
		DIMENSION A(1)+L(1)+M(1)	MINV	2
с		SEARCH FOR LARGEST ELEMENT	MINV	3
· ·		D=1.0	MINV	4
				5
		NK=-N	MINV	
		DO 80 K=1.N	MINV	6
		マストレント	MINV	7
		L(K)=K	MINV	8
		M{K}=K	MINV	9
		KK=NK+K	MINV	10
		BIGA=A{KK}	MINV	11
		00 20 J=K+N	MINV	12
		IZ=N+(J-1)	MINV	13
		DO 20 I=K+N	MINV	14
		IJ=IZ+I	MINV	15
	10	IF(ABS(BIGA)- ABS(A(IJ))) 15,20,20	MINV	16
		BIGA=A(IJ)	MINV	17
	• • •	L(K)=I	MINV	18
		M(K)=J		19
			MINV	
-	20	CONTINUE	MINV	20
с		INTERCHANGE ROWS	MINV	21
		J=L(K)	MINV	22
		IF(J-K) 35+35+25	MINV	23
	25	KI=K-N	MINV	24
		00 30 I=1+N	MINV	25
		KI=KI+N	MINV	26
		HOLD==A(KI)	MINV	27
		JI=KI-K+J	MINV	28
		A(KI)=A(JI)	MINV	29
	20	A(JI) =HOLD	MINV	30
c		INTERCHANGE COLUMNS	MINV	31
	36	I=M(K)	MINV	32
	~~	IF(I-K) 45.45.38	MINV	33
		JP=N+(I-1)		34
	36		MINV	35
		00 40 J=1,N	MINV	
		JK=NK+J	MINV	36
		L+qC=1C	MINV	37
		HOLD=-A(JK)	MINV	38
		A(JK)=A(JI)	MINV	39
	40	A(JI) =HOLD	MINV	40
¢		DIVIDE COLUMN BY MINUS PIVOT (VALUE OF PIVOT ELEMENT IS	MINV	41
c		CONTAINED IN BIGA)	MINV	42
	45	IF(ABS(BIGA)-1.E-20)46.46.48	MINV	MO3
	46	D=0.0	MINV	44
		RETURN	MINV	45
	48	DO 55 [=1+N	MINV	46
		IF(I-K) 50+55+50	MINV	47
	50	IK=NK+I	MINV	48
	-	A(IK)=A(IK)/(-BIGA)	MINV	49
	55	CONTINUE	MINV	50
с		REDUCE MATRIX	MINV	51
•		DO 65 /=1+N	MINV	52
		IK=NK+1	MINV	53
		10-10-1	~1 MY	

HOLD=A(IK) IJ=I=N D0 65 J=I+N IJ=IJ=N IF(I=K) 60+65+60 60 IF(I=K) 60+65+62 62 KJ=IJ=I=K A(IJ)=HOLD=A(KJ)+A(IJ) 65 CONTINUE C DIVIDE ROW BY PIVOT KJ=KJ=N NG 75 J=I=N KJ=KJ=N IF(J=K) 70+75+70 70 A(KJ)=A(KJ)/BIGA C PRODUCT OF PIVOTS D=D=BIGA C REPLACE PIVOT BY RECIPROCAL A(KK)=LaO/BIGA
DO 65 J=1:N IJ=IJ=N IF(I=K) 60:65:62 60 [F(J=K) 62:65:62 62 (J=JJ=K0(D+A(KJ)+A(IJ)) 65 CONTINUE C DIVIDE ROW BY PIVOT KJ=K=N DO 75 J=1:N KJ=KJ=A(KJ)/BIGA 75 CONTINUE C PRODUCT OF PIVOTS D=D=BIGA C REPLACE PIVOT BY RECIPROCAL
IJ=TJ=N IF(I=K) 60:65:60 60 IF(J=K) 62:65:62 62 KJ=JJ=I=K A(IJ)=HOLD=AA(KJ)+A(IJ) 65 CONTINUE C DIVIDE ROW BY PIVOT KJ=K=N D0 75 J=I=N KJ=KJ=A IF(J=K) FA(J)=A(KJ)+BIGA 75 CONTINUE C PRODUCT OF PIVOTS D=D=BIGA C REPLACE PIVOT BY RECIPROCAL
IF(I=K) 60+65+60 60 [F(J=K) 62+65+62 4(J)=HOLD=A(KJ)+A([J]) 65 CONTINUE C DIVIDE ROW BY PIVOT KJ=K=N D0 75 J=1+N KJ=KJ=A(J)/BIGA 75 CONTINUE C PRODUCT OF PIVOTS D=D=BIGA C REPLACE PIVOT BY RECIPROCAL
60 IFIJ=K) 62×65×62 62 Kj=Ij=I×K A(IJ)=HOLD*A(KJ)+A(IJ) 65 CONTINUE C DIVIDE ROW BY PIVOT KJ=K=N DO 75 J=I+N KJ=KJ=N IF(J=K1 T0×75×70 T0 A(KJ)=A(KJ)×BIGA 75 CONTINUE C PRODUCT OF PIVOTS D=D*BIGA C REPLACE PIVOT BY RECIPROCAL
62 KJ=IJ=I+K A(IJ)=HOLDPA(KJ)+A(IJ) 65 CONTINUE C DIVIDE ROW BY PIVOT KJ=K=N DO 75 J=I=N KJ=KJ+N IF(J=K) 70.75.70 70 A(KJ)=A(KJ)/BIGA 75 CONTINUE C PRODUCT OF PIVOTS D=D=BIGA C REPLACE PIVOT BY RECIPROCAL
A(I))=HOLD=A(K))+A(I) 65 CONTINUE C DIVIDE ROW BY PIVOT KJ=K=N D0 75 J=1+N KJ=KJ=N IF(J=K1 T0+75+70 T0 A(K))=A(KJ)+BIGA 75 CONTINUE C PRODUCT OF PIVOTS D=D=BIGA C REPLACE PIVOT BY RECIPROCAL
65 CONTINUE DIVIDE ROW BY PIVOT KJ=K=N DO 75 J=1=N KJ=KJ+N IF(J=K1 70+75+70 70 AIKJ)=AIKJ/SIGA 75 CONTINUE C PRODUCT OF PIVOTS D=D=BIGA C REPLACE PIVOT BY RECIPROCAL
C DIVIDE ROW BY PIVOT KJ=K=N DO 75 J=1:N KJ=KJ=N IF(J=K1 70:75:70 70 A(K)J=A(KJ)/BIGA 75 CONTINUE C PRODUCT OF PIVOTS D=D=BIGA C REPLACE PIVOT BY RECIPROCAL
KJAK-N DO 75 J=1;N KJ=KJ=N TF(1=K) 70;75;70 70 A[KJ]=A(KJ]/BIGA 75 CONTINUE C PRODUCT OF PIVOTS D=D=BIGA C REPLACE PIVOT BY RECIPROCAL
DÖ 75 J=1,N KJ=KJ+N IF(J=K1 70,75,70 70 A[KJ]=A(KJ)/BIGA 75 CONTINUE C PRODUCT OF PIVOTS D=D=BIGA C REPLACE PIVOT BY RECIPROCAL
KJ=KJ=N IF(J=K) 70.75-70 70 A(KJ)=A(KJ)/BIGA 75 CONTINUE C PRODUCT OF PIVOTS D=D=BIGA C REPLACE PIVOT BY RECIPROCAL
IFIJ=XI 70+75+70 70 A(KJ)=A(KJ)/BIGA 75 CONTINUE C PRODUCT OF PIVOTS D=D=BIGA C REPLACE PIVOT BY RECIPROCAL
70 A(KJ)=A(KJ)/BIGA 75 CONTINUE C PRODUCT OF PIVOTS D=D=BIGA C Replace PIVOT BY RECIPROCAL
75 CONTINUE C PRODUCT OF PIVOTS D=D#BIGA C REPLACE PIVOT BY RECIPROCAL
C PRODUCT OF PIVOTS D=D#BIGA C REPLACE PIVOT BY RECIPROCAL
C PRODUCT OF PIVOTS D=D#BIGA C REPLACE PIVOT BY RECIPROCAL
D=D*BIGA C REPLACE PIVOT BY RECIPROCAL
C REPLACE PIVOT BY RECIPROCAL
80 CONTINUE
C FINAL ROW AND COLUMN INTERCHANGE
K=N
100 = (K-1)
IF(K) 150+150+105
105 [=L(K)
IF(1-K) 120,120,108
108 JQ=N+(K-1)
JR=N+(I=1)
00 110 Je1+N
7K=70+7 D0 110 7=1*N
JK=JQ+J
HOLD=A(JK)
JK=JQAJ HOLD=A(JK) JI=JR+J
JK=JQ+J HOLDsA(JK) JI=JR+J A(JK)=~A(JI)
JK=ĴO÷J HOLD==(JK) JI=JR+J A(JK)==A(JJ) 110 A(J) = HOLD
JK=J0=J H0[D=A(JK) JI=JR=J A(JK)==A(J) 110 A(JI) = H0L0 120 J=H(K)
JK=J0+J HOLD==(JK) JI=JR+J A(JK)==A(JI) 110 A(JI) = HOLD 120 J=H(K) IF(J=K) 100+100+125
JK=J0+J HOLD=A(JK) JI=JR+J A(JK)=-A(J) 100 A(J1) = HOLD 120 J=W(K) IF(J=K) 100+100+125 125 KIK=N
JK+J0+J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 110 A(JI) =HOLD 120 J=K(K) IF(J-K) 100+100+125 125 KI=K-N D0 130 I=I+N
JK=J0+J HOLD=A(JK) JI=JR+J A(JK)=-A(J) 100 A(JI) = HOLD 120 J=W(K) IF(J=K) 100+100+125 125 KIK=N D0 130 I=1+N K[#KI+N
JK=J0+J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 110 A(JI)=HOLD 120 J=H(K) IF(J=K) 100+100+125 125 KI=K=-H D0 130 I=1+N KI=KI+H HOLD=A(KI)
JK=J0+J HOLD=A(JK) JI=JR+J A(JK)=-A(J) 100 A(JI)=HOLD 120 J=W(K) IF(J=K) 100+100+125 125 KIK=N D0 130 I=1+N K[KKI+N HOLD=A(KI) JI=KI=K+J
JK=J0=J HOLD=a(JK) JI=JR=J A(JK)==A(JI) 110 A(JI)=HOLD 120 J=H(K) IF(J=K) 100+100+125 125 KI=K=H D0 130 I=1+N KI=KI+N HOLD=A(KI) JI=KI=K=J A(KI)==A(JI)
JK=J0+J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 100 A(JI)=HOLD 120 J=W(K) IF(J=K) 100+100+125 125 KI=K=N D0 130 1=0+10 K[sK=K+N HOLD=A(KI) JI=KT=K+J A(KI)==A(JI) 130 A(JI)=HOLD
$ \begin{array}{c} Jk = J 0 + J \\ HO(D = A(JK) \\ J[= JR + J \\ I = JR + J \\ I = JR + J \\ I \ge J = M(K) \\ I \ge J = M(K) \\ I \ge J = M(K) \\ I \ge J \ge K = K + N \\ D = IS \\ I \ge S \\ I = S \\ I \ge S \\ I \ge S \\ I = S $
JK+J0+J HOLD=A(JK) JI=JR+J A(JK)=-A(JI) 100 A(JI) = HOLD 120 J=W(K) IF(J=K) 100+100+125 125 KI=K=N D0 130 I=1+N K[KKI=N HOLD=A(KI) JI=K(KI)=-A(JI) A(KI)=-A(JI) 130 A(JI) = HOLD

EIGEN

 MINV
 MO1

 MINV
 S5

 MINV
 S5

 MINV
 S5

 MINV
 S6

 MINV
 S7

 MINV
 S7

 MINV
 S6

 MINV

This subroutine computes the eigenvalues and eigenvectors of a real symmetric matrix.

Given a symmetric matrix A of order N, eigenvalues are to be developed in the diagonal elements of the matrix. A matrix of eigenvectors R is also to be generated.

An identity matrix is used as a first approximation of R.

The initial off-diagonal norm is computed:

$$\nu_{I} = \left\{ \sum_{i \le k} 2A_{ik}^{2} \right\}^{1/2}$$
 (1)

2

 ν_{T} = initial norm

A = input matrix (symmetric)

This norm is divided by N at each stage to produce the threshold.

The final norm is computed:

$$\nu_{\rm F} = \frac{\nu_{\rm I} \times 10^{-6}}{\rm N}$$
 (2)

This final norm is set sufficiently small that the requirement that any off-diagonal element A_{lm} shall be smaller than ν_F in absolute magnitude defines the convergence of the process.

An indicator is initialized. This indicator is later used to determine whether any off-diagonal elements have been found that are greater than the present threshold.

Each off-diagonal element is selected in turn and a transformation is performed to annihilate the offdiagonal (pivotal) element as shown by the following equations:

$$\dot{\lambda} = -A_{\rm Im} \tag{3}$$

$$\mu = 1/2 (A_{11} - A_{mm})$$
 (4)

$$\omega = \operatorname{sign}(\mu) \quad \frac{\lambda}{\sqrt{\lambda^2 + \mu^2}} \tag{5}$$

$$\sin \Theta = \frac{\omega}{\sqrt{2(1 + \sqrt{1 - \omega^2})}}$$
(6)

$$\cos \Theta = \sqrt{1 - \sin^2 \Theta}$$
 (7)

$$B = A_{i1} \cos \Theta - A_{im} \sin \Theta$$
 (8)

$$C = A_{il} \sin \theta + A_{im} \cos \theta$$
 (9)

$$B = R_{il} \cos \theta - R_{im} \sin \theta \qquad (10)$$

$$R_{im} = R_{il} \sin \theta + R_{im} \cos \theta$$
 (11)

$$R_{i1} = B \tag{12}$$

$$A_{11} = A_{11} \cos^2 \theta + A_{mm} \sin^2 \theta$$

$$-2A_{1m} \sin \theta \cos \theta$$
(13)

$$A_{mm} = A_{11} \sin^2 \theta + A_{mm} \cos^2 \theta + 2A_{1m} \sin \theta \cos \theta$$
(14)

$$A_{lm} = (A_{ll} - A_{mm}) \sin \theta \cos \theta + A_{lm} (\cos^2 \theta - \sin^2 \theta)$$
(15)

The above calculations are repeated until all of the pivotal elements are less than the threshold.

Subroutine EIGEN

Purpose:

Compute eigenvalues and eigenvectors of a real symmetric matrix.

Usage:

CALL EIGEN(A, R, N, MV)

Description of parameters:

- A Original matrix (symmetric), destroyed in computation. Resultant eigenvalues are developed in diagonal of matrix A in descending order.
- R Resultant matrix of eigenvectors (stored columnwise, in same sequence as eigenvalues).
- N Order of matrices A and R.
- MV Input code:
 - 0 Compute eigenvalues and eigenvectors.
 - 1 Compute eigenvalues only (R need not be dimensioned but must still appear in calling sequence).

Remarks:

Original matrix A must be real symmetric (storage mode=1). Matrix A cannot be in the same location as matrix R. Subroutines and function subprograms required: None.

Method:

Diagonalization method originated by Jacobi and adapted by von Neumann for large computers as found in 'Mathematical Methods for Digital Computers', edited by A. Ralston and H. S. Wilf, John Wiley and Sons, New York, 1962, Chapter 7.

		SUBROUTINE EIGEN(A,R,N,MV)	EIGEN 1
c		DIMENSION A(1)+R(1) GENERATE IDENTITY MATRIX	EIGEN 2 EIGEN 3
	10	IF(4V-1) 10,25,17 IQ=-N	EIGEN 4 Figen 5
		00 20 J=1.N	EIGEN 6
		IQ=IQ+N D0 20 I=I;N	EIGEN R
		[]=[Q+] R([]]=0+0	FIGEN 9 Elgen 10
	15	IFII-J1 20,15,70 R(IJ)=1.0	EIGEN 11 FIGEN 12
с		CONTINUE COMPUTE INITIAL AND FINAL NORMS (ANI)RM AND ANORMX)	EIGEN 13 FIGEN 14
C	25	ANORM=0.0	EIGEN 15
		DD 35 L=L.N DD 35 J=L.N	FIGEN 16 EIGEN 17
	30	F(I-J) 30,35,30 A=1+(J+J-J)/2	EIGEN 18 Figen 19
		ANORH=ANDRH+A(IA) +A(IA) Continue	EIGEN 20 EIGEN 21
		IF (ANDRM) 165,165,40 ANORM=1.414*SQRT(ANORM)	FIGEN 22 ELGEN 23
	40	ANRMX=ANORM+1.OE-6/FLOAT(N)	FIGEN 24
C		INITIALIZE INDICATORS AND COMPUTE THRESHOLD, THR IND=0	FIGEN 25 FIGEN 26
	45	THR≓ANORM THR≠THR/FLOAT(N)	EIGEN 27 Figen 28
		L=1 #=L+L	EIGEN 29 FIGEN 30
C		COMPUTE SIN AND COS MO={M#M-H}/2	EIGEN 31 EIGEN 32
		LQ=(L+L-L)/2 LQ=(L+HQ	FIGEN 33
		IF(ARS(A(LM))-T4R) 130,65,65	FIGEN 34 EIGEN 35
	65	IND≏1 LL≖L+LQ	EIGEN 36 EIGEN 37
		NN=N+MQ X=0.50[A(LL]-A(NN]]	EIGEN 39 Eigen 39
	68	Y=+A(LM)/ SQRT(A(LM)+A(LM)+X*X) IF(X) 70,75,75	EIGEN 40 EIGEN 41
		Y=-Y	EIGEN 42
		SINX=Y/ SQRT(2.0+(1.0+(SQRT(1.0-Y+Y)))) SINX2=SINX+SINX	EIGEN 43 EIGEN 44
	78	COSX= SQRT(L_O-SINX2) C(ISX2=COSX+COSX	EIGEN 45 EIGEN 46
с		SINCS =SINX+COSX Rotate L and 4 Columns	FIGEN 47 EIGEN 49
		[LQ=N+(L-1) [MQ=N+(M-1]	EIGEN 49 Etgen 50
		DO 125 1=1,N IQ=(1+1-1)/2	EIGEN 51 EIGEN 52
	80	IF(I-LJ 80,115,80 IF(I-M) 85,115,90	EIGEN 53
	85	IM=1+AQ GU TO 95	EIGEN 54 EIGEN 55 EIGEN 56
		IM=N+IQ IF(I-L) 100+105+105	EIGEN 57 Figen 58
		IL=I+LQ	ELGEN 59
	105	GO TO 110 IL⇒L+TQ	EIGEN 60 EIGEN 61
	110	X=A(IL)+COSX-A(I4)+SINX A(I4)=A(IL)+SINX+A(IM)+COSX	EIGEN 67 EIGEN 63
	115	A[[L]=X F{4V-1} 120,125,120	FIGEN 64 EIGEN 65
	120	1LR=1LQ+1 IMR=1MQ+1	ELGEN 66 EIGEN 67
		X=R(1LR)+CTSX-R(1NR)+SINX R(1NR)=R(1LR)+SINX+R(1NR)+COSX	EIGEN 68 EIGEN 69
	176	RI ILRI-X CONTINUE	FIGEN 70 FIGEN 71
	123	X=2.0+4(LM)+SINCS	EIGEN 72 EIGEN 73
		Y=4[LL]#CO5X2+4(4M]#SINX2-X X=4[LL]#SINX2+A(4M]#CO5X2+X	EIGEN 74
		A{LM}={A{LL}-A{M}}}*SINCS+A(LM)#{COSX2-SINX2} A{LL}*Y	EIGEN 75 EIGEN 76
с		A(MM)=X TESTS FOR COMPLETION	EIGEN 77 FIGEN 78
¢	130	TEST FOR M = LAST COLUMN [F(M-N] 135,140,135	EIGEN 79 Eigen ag
		M=M+1 GC TO 60	EIGEN A1 EIGEN A2
c	140	TEST FOR L = SECOND FROM LAST COLUMN IF(L-(N-1)) 145,150,145	EIGEN 83 Figen 84
		L+L+1 60 TO 55	EIGEN 85
	150	[F(1ND-11 160,155,160	EIGEN 86 Figen 87
	155	LND=0 GR T0 50	EIGEN 88 EIGEN 89
c	160	COMPARE THRESHOLD WITH FINAL NORM IF(THR-ANRMX) 165,165,45	EIGEN 99 EIGEN 91
C		SORT EIGENVALJES AND EIGENVECTORS	EIGEN 92 EIGEN 93
		00 185 1×1.N 10=10+N	EIGEN 94 EIGEN 95
		LL=1+(1+1)/2 JQ=N+(1-2)	EIGEN 94 EIGEN 97
		DO 185 J=1,N	EIGEN 9A
		JQ=JQ+N HM=J+(J+J-J]/7	EIGEN 99 Eigen103
	170	IF(A(LL)-A(MM)) 170,185,195 X=A(LL)	EIGENLO2
		A[LL]=A[MM] A{MM}=X	FIGEN103 EIGEN104
	175	IF(MV-1) 175,185,175 DD 180 K=1.N	ETGENIOS ETGENIOS
		ILR=IQ+K IMR=JQ+K	FIGENIO7 FIGENIO8
		X=R{ILR} R(ILR)=R{[MR]	EIGENI09 EIGENI10
	180	CONTINUE	EIGFNIII EIGFNII2
		END	EIGFN113 EIGFN114

Mathematics - Matrices

<u>GMADD</u>

Purpose:

Add two general matrices to form resultant general matrix.

Usage:

CALL GMADD(A, B, R, N, M)

Description of parameters:

- A Name of first input matrix.
- B Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A, B, R.
- M Number of columns in A, B, R.

Remarks:

All matrices must be stored as general matrices.

Subroutines and function subprograms required: None.

Method:

Addition is performed element by element.

	SUBROUTINE GMADD(A,8,R,N,M)	GMADD	1	
	DIMENSION A(1), B(1), R(1)	GMADD	2	
с	CALCULATE NUMBER OF ELEMENTS	GMADD	3	
-	NM=N+M	GMADD	4	
с	ADD MATRICES	GMADD	5	
-	00 10 L=1.NM	GMADO	6	
	10 R(1)=A(1)+B(1)	GMADD	7	
	RETURN	GMADD	ß	
	END	GMADD	9	

<u>GMSUB</u>

Purpose:

Subtract one general matrix from another to form resultant matrix.

Usage:

CALL GMSUB(A, B, R, N, M)

Description of parameters:

- A Name of first input matrix.
- B Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A, B, R.
- M Number of columns in A, B, R.

Remarks:

All matrices must be stored as general matrices.

₽

Subroutines and function subprograms required: None.

Method:

с с Matrix B elements are subtracted from corresponding matrix A elements.

	SUBROUTINE GMSUBLA,B,R,N,M) DIMENSION ALL),B(1),R(1)	GMSI/B GMSU/A	17	
	CALCULATE NUMBER OF ELEMENTS	GMSUR	3	
	NM=N+M	GASUB	4	
	SUBTRACT MATRICES	G#SUB	5	
	DO 10 [=L.NM	GMSUB	6	
10	R[]]=A([)-B([)	GMSUB	7	
	RETURN	GMSUB	A	
	END	GMSUB	9	

GMPRD

Purpose:

Multiply two general matrices to form a resultant general matrix.

Usage:

CALL GMPRD(A, B, R, N, M, L)

Description of parameters:

- A Name of first input matrix.
- B Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A.
- M Number of columns in A and rows in B.
- L Number of columns in B.

Remarks:

All matrices must be stored as general matrices. Matrix R cannot be in the same location as matrix A.

Matrix R cannot be in the same location as matrix B.

Number of columns of matrix A must be equal to the number of rows of matrix B.

Subroutines and function subprograms required: None.

Method:

The M by L matrix B is premultiplied by the N by M matrix A and the result is stored in the N by L matrix R.

RD	- 1
RD	2
RD	3
RD	4
RĎ	5
98	6
RD	7
RD	Ð
RD	9
RD	10
RD	11
RD	12
Rn	13
ŔD	14
RD	15
RD	16
RD	17
	PRD PRD PRD PRD PRD PRD PRD PRD PRD

<u>GMTRA</u>

Purpose:

Transpose a general matrix.

Usage:

CALL GMTRA(A, R, N, M)

Description of parameters:

- A Name of matrix to be transposed.
- R Name of resultant matrix.
- N Number of rows of A and columns of R.
- M Number of columns of A and rows of R.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrices A and R must be stored as general matrices.

Subroutines and function subprograms required: None.

Method:

Transpose N by M matrix A to form M by N matrix R.

	BROUTINE GHTRALA,R,N,N)	GMTRA	1
01	MENSION A(1),R(1)	GMTRA	2
L R	=0	GMTRA	3
00	10 [=1,N	GNTRA	4
13	=1-N	GMTRA	5
00	10 J=1,M	GMTRA	
11	= I J+N	GMTRA	7
I R	=IR+1	GMTRA	8
10 R([R]=A([J]	GMTRA	9
RE	TURN	GMTRA	10
EN	D	GMTRA	11

GTPRD

Purpose:

Premultiply a general matrix by the transpose of another general matrix.

Usage:

CALL GTPRD(A, B, R, N, M, L)

Description of parameters:

- A Name of first input matrix.
- B Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A and B.
- M Number of columns in A and rows in R.
- L Number of columns in B and R.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrix R cannot be in the same location as matrix B.

All matrices must be stored as general matrices.

Subroutines and function subprograms' required: None.

Method:

Matrix transpose of A is not actually calculated. Instead, elements of matrix A are taken columnwise rather than rowwise for postmultiplication. by matrix B.

SUBROUTINE GTPRD(A,B+R+N+M+L)	GTPRD	<u>.</u>
DIMENSION A(1),B(1),R(1)	GTPRD	2
18=0	GTPRD	3
	GTPRD	4
1K=-N		5
D0 10 K=1+L		
[J=0		6
1K=1K+N	GTPRD	7
	GTPRD	8
DO 10 J=1,M	GTPRD	9
18=1K	GTPRD 1	
[R=[R+]		
R([R)=0	GTPRD 1	
DO 10 I=1.N	GTPRD 1	15
	GTPRD 1	13
1-1-1-1	GTPRD	14
18=18+1	GTPRO	
10 R(IR)=R(IR)+A(IJ)#8(IB)		
RETURN	GTPRD 1	
END	GTPRD 1	17
LID		

MADD

Purpose:

Add two matrices element by element to form resultant matrix.

Usage:

CALL MADD(A, B, R, N, M, MSA, MSB)

Description of parameters:

- Α - Name of input matrix.
- в - Name of input matrix.
- R _ Name of output matrix.
- Ν ----Number of rows in A, B, R.
- м - Number of columns in A, B, R.
- MSA One digit number for storage mode of matrix A:

2

- 0 General.
- 1 Symmetric.
- 2 Diagonal.
- MSB Same as MSA except for matrix B.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

Storage mode of output matrix is first determined. Addition of corresponding elements is then performed.

The following table shows the storage mode of the output matrix for all combinations of input matrices:

Α	в	R
General	General	General
General	Symmetric	General
General	Diagonal	General
Symmetric	General	General
Symmetric	Symmetric	Symmetric
Symmetric	Diagonal	Symmetric
Diagonal	General	General
Diagonal	Symmetric	Symmetric
Diagonal	Diagonal	Diagonal

		SUBROUTINE MADD(4,8,R,N,M,MSA,MSB)
		DIMENSION A(1),B(1),R(1)
C		DETERMINE STORAGE NODE OF DUTPUT MATRIX
		[F{MSA-MSB] 7.5.7
	5	CALL LOC(N,N,NM,N,M,MSA)
		GQ TO 100
	7	MTEST=MSA*MSB
		MSR=0
		IF(MTEST) 20.20.10
	10	MSR=1
	20	IF (HTEST-2) 35, 35, 30
		MSR = 2
с		LOCATE ELEMENTS AND PERFORM ADDITION
	35	DD 90 J=1.M
		DO 90 I=1.N
		CALL LOC(I,J,I,R,N,M,MSR)
		IF(IJR) 40,90,40
	40	CALL LOCII.J.IJA, N.M. MSAI
		AEL=0.0
		1F(1JA) 50,60,50
		AEL=A[IJA]
	60	CALL LOC('I,J,IJB,N,M,MSB)
		BFL=0.0
		1+(138) 70,80,70
		8FL=8([J8)
		R([JR)=AEL+BEL
	90	CONTINUE
		RETURN
С		ADD MATRICES FOR DTHER CASES
		DD 110 1#1.NM
	110	R([)=A([)+B([)
		RETURN
		END

 HADD

 HADD

MSUB

Purpose:

Subtract two matrices element by element to form resultant matrix.

Usage:

CALL MSUB(A, B, R, N, M, MSA, MSB)

Description of parameters:

- A Name of input matrix.
- B Name of input matrix.
- R Name of output matrix.
- N Number of rows in A, B, R.
- M Number of columns in A, B, R.
- MSA One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.
- MSB Same as MSA except for matrix B.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

с

Structure of output matrix is first determined. Subtraction of matrix B elements from corresponding matrix A elements is then performed. The following table shows the storage mode of the output matrix for all combinations of input matrices:

A	В	R
General	General	General
General	Symmetric	General
General	Diagonal	General
Symmetric	General	General
Symmetric	Symmetric	Symmetric
Symmetric	Diagonal	Symmetric
Diagonal	General	General
Diagonal	Symmetric	Symmetric
Diagonal	Diagonal	Diagonal
SUBROUTINE MSUB(4,8,R,N,M,M DIMENSION AT1),BT1),BT1) OFTERMINE STORAGE MODE O IF(MSA-MSB) 7,5,7 CALL LOC(N,M,NN,N,M,MSA) GO TO LOO MTEST=MSA&MSR MSR=0 IF(MTEST) 20,20,10 MSR=0 MSR=1	1 m	8U2M 8U2M 8U2M 8U2M 8U2M 8U2M 8U2M 8U2M
) IF(MTEST-2) 35,35,30		MSUB MSUB
LOCATE ELEMENTS AND PERF	ORM SUBTRACTION	MSUA

20 IF (HTEST-2) 35,35,30 30 MSR-2 LOCATE ELEMENTS AND PERFORM SUBTRACTION 35 00 30 J=1,4 DO 30 I=1,4 CALL LOCII,J,IJR,N,M,MSR) IF(IJR) 40,90,40 40 CALL LOCII,J,IJR,N,M,MSR) AEL-0.3 IF(IJR) 50,60,50 50 AEL-AIIJA1 50,60,50 50 AEL-AIIJA1 50,60,50 50 AEL-AIIJA1 50,60,70 70 BEL-BIIJB3 BEL-0.0 IF(IJR) 70,80,70 70 BEL-BIIJB3 80 R(IJR)-AEL-BEL 90 CONTINUE AETURNACT MARKICES FOR OTHER CASES 100 D0 110 I=1.4M 110 R(I)-A(I)-B(I) RETURN END

MPRD

```
Purpose:
```

Multiply two matrices to form a resultant matrix.

Usage:

CALL MPRD(A, B, R, N, M, MSA, MSB, L)

Description of parameters:

- A Name of first input matrix.
- B Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A and R.
- M Number of columns in A and rows in B.
- MSA One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.
- MSB Same as MSA except for matrix B.
- L Number of columns in B and R.

Remarks:

Matrix R cannot be in the same location as matrices A or B.

Number of columns of matrix A must be equal to number of rows of matrix B.

Subroutines and function subprograms required: LOC

Method:

123456789

c

c

,0112345677890122234556789033233

MSUB

The M by L matrix B is premultiplied by the N by M matrix A and the result is stored in the N by L matrix R. This is a row into column product.

The following table shows the storage mode of the output matrix for all combinations of input matrices:

Α	в	R
General	General	General
General	Symmetric	General
General	Diagonal	General
Symmetric	General	General
Symmetric	Symmetric	General
Symmetric	Diagonal	General
Diagonal	General	General
Diagonal	Symmetric	General
Diagonal	Diagonal	Diagonal
DIMENSION A(1),8(1),R(1) SPECIAL CASE FOR DIAGON/ MS-MSA=10-MSB DIF(MS-22) 30,10,30 DO 20 I=1,N ALL OTMER CASES D IR11-A(1)+8(1) AETURN ALL OTMER CASES D IR-1 DO 90 J=1,N R(1R)+0 DO 90 I=1,N R(1R)+0 DO 30 I=1,N F(1A) 50,60,50 CALL LOC(1,K,1B,M-(L,MSA) IF(MS) 40,60,40 D (F(MS) 70,60,70 D (F(MS) 70,		ФРКО 1 4 ФРКО 2 4 ФРКО 3 4 ФРКО 4 4 ФРКО 1 4 ФРКО 2 4 ФРКО
	General General General Symmetric Symmetric Diagonal Diagonal Diagonal Diagonal SUBROUTINE MPROIA.B.R.N.M. DIMENSION A(1).8(1).8(1) SPECIAL CASE FOR DIAGONA MS-MSA-BIO-MSB IF(MS-22) 30,10,30 D D0 20 1-1,N ARTUAN ALL OTHER CASES D R(1)-A(1).4(1).8(1) RETURN ALL OTHER CASES D R(1)-A(1).4(1).8(1) RETURN ALL COMER CASES D D0 5-1,N R(1R)-0 D 00 5-1,N CALL LOC(1,K,1,BAVA,L,MSA) IF(MS) 40,60,50 D IF(18) 70,80,70 D IF(18) 70,80,70	General General General Symmetric General Diagonal Symmetric General Symmetric General Symmetric Diagonal Diagonal General Diagonal Symmetric Diagonal Symmetric Diagonal Diagonal Subadurike MPRDIA.0.8, N, N, N, NS3, LJ DINEWSION AIIJ.8(1).8(1) SPECIAL CASE FOR DIAGONAL BY DIAGONAL MS-45Ae10-MS5 DO 00 J-1, N ALL OTHER CASE S D 811J-AIIJ.8(1).8(1) RTIAL OTHER CASES D 80 J-1, N RTIAL D 90 J-1, N RTIAL D 90 J-1, N RTIAL D 90 J-1, N RTIAL D 90 J-1, N RTIAL OTHER CASES D 90 J-1, N RTIAL OTHER CASES D 90 J-1, N RTIAL OTHER CASES D 90 J-1, N RTIAL D 90 J

MTRA

Purpose:

Transpose a matrix.

Usage:

CALL MTRA(A, R, N, M, MS)

Description of parameters:

- A Name of matrix to be transposed.
- R Name of output matrix.
- N Number of rows of A and columns of R.
- M Number of columns of A and rows of R.
- MS One digit number for storage mode of matrix A (and R):
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in the same location as matrix A.

Subroutines and function subprograms required: MCPY

Method:

Transpose N by M matrix A to form M by N matrix R by moving each row of A into the corresponding column of R. If matrix A is symmetric or diagonal, matrix R is the same as A.

		SUBROUTINE MTRA(A.R.N.M.MS)	MTRA	
		DIMENSION ALLI+R(1)	MTRA	
C		IF MS IS 1 OR 2. COPY A	MTRA	
-		IF(45) 10,20,10	MTRA	
	10	CALL MCPYLA,R,N,V,MSI	MTRA	
		RETURN	MTRA	
с		TRANSPOSE GENERAL MATRIX	MTRA	
	20	18=0	MTRA	1
		DO 30 1=1.N	MTRA	
		1 J=1-N	MTRA	1
		DD 30 J=1.H	MTRA	i
		IJ=IJ+N	MTRA	1
		IR=IR+1	HTRA	1
	30	R(IR)=A(IJ)	MTRA	-i-
		RETURN	WTRA	÷
		END	MTRA	-i,

TPRD

Purpose:

Transpose a matrix and postmultiply by another to form a resultant matrix.

Usage:

в

CALL TPRD(A, B, R, N, M, MSA, MSB, L)

Description of parameters:

- A Name of first input matrix.
 - Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A and B.
- M Number of columns in A and rows in R.

Ē

- MSA One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.
- MSB Same as MSA except for matrix B.
- L Number of columns in B and R.

Remarks:

Matrix R cannot be in the same location as matrices A or B.

Subroutines and function subprograms required: LOC

Method:

с

с

Matrix transpose of A is not actually calculated. Instead, elements in matrix A are taken columnwise rather than rowwise for multiplication by matrix B.

The following table shows the storage mode of the output matrix for all combinations of input matrices:

Α	в	R
General	General	General
General	Symmetric	General
General	Diagonal	General
Symmetric	General	General
Symmetric	Symmetric	General
Symmetric	Diagonal	General
Diagonal	General	General
Diagonal	Symmetric	General
Diagonal	Diagonal	Diagonal

	SUBROUTINE TPRD(A, B, R, N, M, MSA, MSB, L)	TPRD	- 1
	DIMENSION A(1), B(1), R(1)	TPRD	2
	SPECIAL CASE FOR DIAGONAL BY DIAGONAL	TPRD	3
	MS=MSA*10+MSB	TPRD	4
	IF (MS-22) 30,10,30	TPRO	5
10	00 20 1=L.N	TPRO	6
20	R[]]=A[])#B[])	TPRD	7
	RETURN	TPRD	
	MULTIPLY TRANSPOSE OF A BY B	TPRO	9
30	IR*1	TPRO	10
	DO 90 K=1+L	TPRO	11
	00 90 J=1.#	TPPD	12
	R([R)=0.0	TPRD	13
	00 80 [=1.N	TPRD	14
	IF(MS) 40,60,40	TPRD	15
40	CALL LOCII+J+IA+V+M+MSA1	TPRD	16
	CALL LOC(I,K, IB, N, L, MSB)	TPPD	17
	(F(1A) 50,80,50	TPRD	18
50	IF(18) 70,80,70	TPRO	19
60	[A=N*(J-1)+I	TPRO	20
	[B=N#[K-1]+[TPRO	21
70	R[]R]=R[]R}+A[]A] #B[]B]	TPRD	22
80	CONTINUE	TPRO	23
90	IR=IR+1	TPRD	24
	RETURN	TPRD	25
	END	TPRD	26

MATA

Purpose:

Premultiply a matrix by its transpose to form a symmetric matrix.

Usage:

CALL MATA(A, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- R Name of output matrix.
- N Number of rows in A.
- M Number of columns in A. Also number of rows and number of columns of R.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrix R is always a symmetric matrix with a storage mode=1.

Subroutines and function subprograms required: LOC

Method:

Calculation of (A transpose A) results in a symmetric matrix regardless of the storage mode of the input matrix. The elements of matrix A are not changed.

	SUBSOUTINE MATA(A.R.N.M.MS)	MATA	t
	DIMENSION A(1), R(1)	MATA	2
	DO 50 K=1.M	MATA	3
	KX=[K+K-K]/2	MATA	4
	DD 60 J=1.M	MATA	5
	[F(J-K) 10.10.60	MATA	6
10	IR=J+KX	MATA	7
••	RITE	MATA	9
	D() 60 1=1+N	MATA	9
	IF(MS) 20+40+20	MATA	10
20	CALL LOC(1. J. 14. 1. 4. 45)	MATA	11
20	CALL LUC(1,K, 18, N, H, VS)	MATA	12
	1F(1A) 30,60,30	MATA	13
30	IF(18) 50.60.50	MATA	14
	IA=N+(J→I)+I	MATA	15
40	[B=N#(K-1)+]	MATA	16
		MATA	17
	R([Q]=R(IR)+A(IA)+A(IB)		
60	CONTINUE	MATA	19
	RETURN	MATA	19
	END	MATA	20

SADD

Purpose:

Add a scalar to each element of a matrix to form a resultant matrix.

Usage:

CALL SADD(A, C, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- C Scalar.
- R Name of output matrix.
- N Number of rows in matrix A and R.
- M Number of columns in matrix A and R.
- MS One digit number for storage mode of matrix A (and R);
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

Scalar is added to each element of matrix.

	SUBROUTINE SADD(A+C+R+N+M+MS)	SADD	1
	DIMENSION A(1),R(1)	SADD	ż
C	COMPUTE VECTOR LENGTH, IT	SADD	3
	CALL LOC(N, H, IT, Y, H, MS)	SADD	4
C	ADD SCALAR	SADD	5
	00·1 [=1,IT	SADD	6
	1 R(1)=A(1)+C	SADD	7
	RETURN	SADO	A
	END	SADD	9

SSUB

Purpose:

Subtract a scalar from each element of a matrix to form a resultant matrix.

Usage:

CALL SSUB(A, C, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- C Scalar.
- R Name of output matrix.
- N Number of rows in matrix A and R.
- M Number of columns in matrix A and R.
- MS One digit number for storage mode of matrix A (and R):
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

Scalar is subtracted from each element of matrix.

	SUBROUTINE SSUB(A+C+R+N+M+H5)	SSUR	1
	DIMENSION AT11.R[1]	5508	2
с	COMPUTE VECTOR LENGTH, IT	5508	3
	CALL LOC(N.H. IT.N.H.HS)	SSUB	4
C	SUBTRACT SCALAR	5508	5
-	PO = 1 = 1 + 17	SSUB	5
	1 8(1)=A(1)=C	SUB	7
	RETURN	SSUB	8
	END	SSUR	9

SMPY

Purpose:

Multiply each element of a matrix by a scalar to form a resultant matrix.

Usage:

CALL SMPY(A, C, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- C Scalar.
- R Name of output matrix.
- N Number of rows in matrix A and R.
- M Number of columns in matrix A and R.

ø

- MS One digit number for storage mode of matrix A (and R):
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

Scalar is multiplied by each element of matrix.

	SUBROUTINE SMPY(4,C.R.N.M.M.S)	SNPY	ı
	DIMENSION A(1),R(1)	SNPY	2
C	COMPUTE VECTOR LENGTH, IT	SHPY	3
	CALL LOCIN, M. IT. N. M. MS)	SMPY	4
С	MULTIPLY BY SCALAR	SHPY	5
	DO 1 [=1,[T	SMPY	6
	1 R([)=A([)+C	SMPY	7
	RETURN	SMPY	8
	END	SMPY	9

SDIV

Purpose:

Divide each element of a matrix by a scalar to form a resultant matrix.

Usage:

CALL SDIV(A, C, R, N, M, MS)

Description of parameters:

- Name of input matrix. Α
- С - Scalar.
- R - Name of output matrix.
- N - Number of rows in matrix A and R.
- Μ - Number of columns in matrix A and R.
- MS One digit number for storage mode of matrix A (and R):
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

If scalar is zero, division is performed only once to cause floating-point overflow condition.

Subroutines and function subprograms required: LOC

Method:

Each element of matrix is divided by scalar.

	SUBROUTINE SDIV(4,C,R,N,M,MS)	SDIV	1
	DIMENSION A(1),R(1)	SDIV	2
с	COMPUTE VECTOR LENGTH. IT	SDIV	3
	CALL LOC(N.M.TT.N.M.NS)	SDIV	4
c	DIVIDE BY SCALAR (IF SCALAR IS ZERD, DIVIDE DNLY UNCE)	SDIV	5
	1F(C) 2.1.2	SDIV	6
		SDIV	7
	2 00 3 1=1.17	501 V	8
	3 R(1)=A(1)/C	SDIV	9
	BETURN	SDIV	10
	END	SDIV	11

RADD

Purpose:

Add row of one matrix to row of another matrix.

Usage:

CALL RADD(A, IRA, R, IRR, N, M, MS, L)

Description of parameters:

- Α Name of input matrix. -
- IRA Row in matrix A to be added to row IRR ---of matrix R.
- R -Name of output matrix.
- IRR -Row in matrix R where summation is developed.
- Ν -Number of rows in A.
- М - Number of columns in A and R.
- MS - One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

 \mathbf{L} - Number of rows in R.

Remarks:

Matrix R must be a general matrix. Matrix R cannot be in the same location as matrix A unless A is general.

Subroutines and function subprograms required: LOC

Method:

Each element of row IRA of matrix A is added to corresponding element of row IRR of matrix R.

	SUBROUTINE RADD(4, IRA, R, IRR, N, M, MS.L)	RADO	t
	DINENSION A(1),R(1)	RADD	2
	IR=IRR-L	RADD	3
	DO 2 J=1.H	RADD	4
	1R=IR+L	RADD	5
C	LOCATE INPUT ELEMENT FOR ANY MATRIX STORAGE MODE	RADO	6
	CALL LOC(IRA, J. IA, N.M. MS)	RADD	7
C	TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	RADD	8
	IF(IA) 1,2,1	RADD	9
С	ADD ELEMENTS	RADD	1.0
	1 R(IR)=R(IR)+A(IA)	RADD	11
	2 CONTINUE	RADO	12
	RETURN	RADD	13
	END	RADD	14

Purpose:

Add column of one matrix to column of another matrix.

Usage:

CALL CADD(A, ICA, R, ICR, N, M, MS, L)

Description of parameters:

- A Name of input matrix.
- ICA Column in matrix A to be added to column ICR of R.
- R Name of output matrix.
- ICR Column in matrix R where summation is developed.
- N Number of rows in A and R.
- M Number of columns in A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.
- L Number of columns in R.

Remarks:

Matrix R must be a general matrix.

Matrix R cannot be in the same location as matrix A unless A is general.

Subroutines and function subprograms required: LOC

Method:

Each element of column ICA of matrix A is added to corresponding element of column ICR of matrix R.

	SUBROUTINE CADD(A, ICA, R, ICR, N, M, MS, L)	CADD	1
	DIMENSION A(1), R(1)	CADD	2
	[R=N*([CR-1])	CADD	3
	00 2 I=1.N	CADD	- 4
	[R=[R+]	CADD	- 5
c	LOCATE INPUT ELEMENT FOR ANY MATRIX STORAGE MODE	CADD	6
	CALL LOC(1.ICA.IA.N.H.HS)	CADO	7
C	TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	CADD	8
-	IF(IA) 1.2.1	CADD	9
c	ADD ELEMENTS	CADD	10
-	1 R(IR)=R(IR)+A(IA)	CADD	11
	2 CONTINUE	CADD	12
	RETURN	CADD	13
	END	CADD	14

SRMA

Purpose:

Multiply row of matrix by a scalar and add to another row of the same matrix.

Usage:

CALL SRMA(A, C, N, M, LA, LB)

Description of parameters:

- A Name of matrix.
- C Scalar.
- N Number of rows in A.
- M Number of columns in A.
- LA Row in A to be multiplied by scalar.
- LB Row in A to which product is added. If 0 is specified, product replaces elements in row LA.

Remarks:

Matrix A must be a general matrix.

Subroutines and function subprograms required: None.

Method:

с с с Each element of row LA is multiplied by scalar C and the product is added to the corresponding element of row LB. Row LA remains unaffected by the operation.

If parameter LB contains zero, multiplication by the scalar is performed and the product replaces elements in row LA.

SUBROUTINE SRMA(A.C.N.M.LA.LB)	SRMA	1
DIMENSION A(1)	SRMA	,
LAJ=LA-N	SRMA	- 1
LBJ=LB-N	SRMA	
00 3 J=1+M	SRMA	-
LOCATE ELEMENT IN BOTH ROWS	SRMA	6
LAJ=LAJ+N	SRMA	7
LBJ¤LBJ+N	SRMA	à
CHECK LB FOR ZFRO	SRMA	
IF(L8) 1,2,1	SRNA	10
IF NOT, MULTIPLY BY CONSTANT AND ADD TO OTHER ROW	SRMA	ii
1 A(LGJ)=A(LAJ)+C+4(LBJ)	SRMA	iż
GO TO 3	SRMA	13
OTHERWISE, MULTIPLY ROW BY CONSTANT	SRMA	14
2 A(LAJ)=A(LAJ)=C	SRMA	15
3 CONTINUE	SRNA	16
RETURN	SRMA	17
END	SRMA	18
E.F.	SKHA	19

<u>SCMA</u>

Purpose:

Multiply column of matrix by a scalar and add to another column of the same matrix.

Usage:

CALL SCMA(A, C, N, LA, LB)

Description of parameters:

- A Name of matrix.
- C Scalar.
- N Number of rows in A.
- LA Column in A to be multiplied by scalar.
- LB Column in A to which product is added. If 0 is specified, product replaces elements in LA.

Remarks:

Matrix A must be a general matrix.

Subroutines and function subprograms required: None.

Method:

Each element of column LA is multiplied by scalar C and the product is added to the corresponding element of column LB. Column LA remains unaffected by the operation.

If parameter LB contains zero, multiplication by the scalar is performed and the product replaces elements in LA.

	SUBRUUTINE SCMA(4.C.N.LA.L8)	SCMA	1
	DIMENSION ALLI	SCMA	2
c	LUCATE STARTING POINT OF BOTH COLUMNS	SCMA	3
	$\{LA=N*\{LA=1\}$	SCMA	4
	[LB=N=(LB-1)	SCMA	5
	00 3 (=1,N	SCNA	6
	[LA=ILA+]	SCMA	7
	[18=[18+]	SCMA	8
C,	CHECK L8 FOR JERO	SCHA	9
	[F{LB}],2,1	SCMA	10
C	1F NOT MULTIPLY BY CONSTANT AND ADD TH SECOND COLUMN	SCMA	-ii
	1 A(ILB)=A(ILA)*C+4(ILB)	SCMA	12
	GO TO 3	SCMA	13
С	OTHERWISE, MILTIPLY COLUMN BY CONSTANT	SCMA	14
	2 A(ILA)=A(ILA)+C	SCMA	15
	3 CONTINUE	5C 44	15
	RETURN	SCNA	17
	END	SCMA	19

RINT

Purpose:

Interchange two rows of a matrix.

Usage:

CALL RINT(A, N, M, LA, LB)

Description of parameters:

A – Name of matrix.

- \dot{N} Number of rows in A.
- M Number of columns in A.
- LA Row to be interchanged with row LB.
- LB Row to be interchanged with row LA.

Remarks:

Matrix A must be a general matrix.

Subroutines and function subprograms required: None.

Method:

¢

c

Each element of row LA is interchanged with corresponding element of row LB.

	SUBROUTINE RINT(4.N.M.LA.LB)	RINT	
	DIMENSION A(1)	RINT	ż
	LAJ=LA-N	PINT	3
	LBJ=LB-N	RINT	4
	DO 3 J=1,M	RINT	5
;	LOCATE ELEMENTS IN BOTH ROWS	RINT	6
	i Aj=LAj+N	RINT	7
	LBJ=LBJ+N	RINT	à
	INTERCHANGE ELEMENTS	41NT	9
	SAVE=A(LAJ)	RINT	10
	A(LAJ)=A(L8J)	RINT	11
	3 AILBJI=SAVE	RINT	12
	RETURN	RINT	ii
	END	RINT	14

Purpose:

Interchange two columns of a matrix.

Usage:

CALL CINT (A, N, LA, LB)

Description of parameters:

- A Name of matrix.
- N Number of rows in A.
- LA Column to be interchanged with column LB.
- LB Column to be interchanged with column LA.

Remarks:

Matrix A must be a general matrix.

Subroutines and function subprograms required: None.

Method:

Each element of column LA is interchanged with corresponding element of column LB.

	SUBROUTINE CINTIA,N+LA+LB)	CINT	ı
	DIMENSION A(1)	CINT	2
C	LOCATE STARTING POINT OF BOTH COLUMNS	CINT	3
	(LA=N+(LA-1)	CINT	4
	[LB=N*(LB-1)	CINT	5
	DO 3 [=1.N	CINT	6
	ILA=ILA+1	CINT	7
	ILB=ILB+I	CINT	9
с	INTERCHANGE ELEMENTS	CINT	9
-	SAVE=A(ILA)	CINT	10
	A(ILA)=A(ILB)	CINT	11
	3 ALTEBI=SAVE	CINT	12
	RETURN	CINT	13
	END	CINT	14

RSUM

Purpose:

Sum elements of each row to form column vector.

Usage:

CALL RSUM (A, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- R Name of vector of length N.
- N Number of rows in A.
- M Number of columns in A.
- MS One digit number for storage mode of matrix A:

à

- 0 General.
- 1 Symmetric.
- 2 Diagonal.

Remarks:

Vector R cannot be in the same location as matrix A unless A is general.

Subroutines and function subprograms required: LOC

Method:

Elements are summed across each row into a corresponding element of output column vector R.

	SUBROUTINE RSUM(A,R,N,M,MS)	RSUM	L
	DIMENSION A(1).R(1)	RSUM	2
	00 3 1+1.N	RSUH	3
c	CLEAR DUTPUT LOCATION	RSUM	4
	R{[]=0.0	RSUM	5
	DC 3 J=1.M	RSUM	6
с	LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE	RSUM	7
	CALL LOC(1+J+(J+N+M+MS)	RSUN	8
c	TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	RSUM	9
Ľ.	(F(IJ) 2.3.2	RSUM	10
~	ACCUMULATE IN OUTPUT VECTOR	RSUM	11
С	2 R(1)=R(1)+A(1)	RSUM	12
	3 CONTINUE	RSUM	13
		RSUM	14
	RETURN END	RSUM	15

CSUM

Purpose:

Sum elements of each column to form row vector.

Usage:

CALL CSUM(A, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- R Name of vector of length M.
- N Number of rows in A.
- M Number of columns in A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Vector R cannot be in the same location as matrix A unless A is general.

Subroutines and function subprograms required: LOC

Method:

Elements are summed down each column into a corresponding element of output row vector R.

	SUBROUTINE CSUM(4.R.N.M.MS)	CSUM	1
	DIMENSION ALL)+R(1)	CSUM	2
	00 3 J=1.M	CSUM	3
c	CLEAR OUTPUT LOCATION	CSUM	
•	R(J)=0.0	CSUN	5
	00 3 [=1-N	CSUM	6
c	LOCATE FLEMENT FOR ANY MATRIX STORAGE MODE	CSUM	7
•	CALL LOC(1,J,IJ,N,M,MS)	CSUM	8
с	TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	CSUM	9
	1F(1J) 2.3.2	CSUM	10
с	ACCUMULATE IN OUTPUT VECTOR	C SUM	11
•	2 R(J)=R(J)+A(IJ)	CSUM	12
	3 CONTINUE	CSUM	13
	RETURN	CSUM	14
	END	CSUM	15

RTAB

The function of this subroutine is graphically displayed by Figure 6 (see description under "Method").

Figure 6. Row tabulation

Subroutine RTAB

Purpose:

Tabulate rows of a matrix to form a summary matrix.

Usage:

CALL RTAB(A, B, R, S, N, M, MS, L)

Description of parameters:

- A Name of input matrix.
- B Name of input vector of length N containing key.
- R Name of output matrix containing summary of row data. It is initially set to zero by this subroutine.
- S Name of output vector of length L+1 containing counts.
- N Number of rows in A.
- M Number of columns in A and R.
- L Number of rows in R.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R is always a general matrix.

Subroutines and function subprograms required:

LOC

RADD

Method:

Rows of data in matrix A are tabulated using the key contained in vector B. The floating point number in B(I) is truncated to form J. The Ith row of A is added to the Jth row of R, element by element, and one is added to S(J). If J is not between one and L, one is added to S(L+1). This procedure is repeated for every element in vector B. Upon completion, the output matrix R contains a summary of row data as specified by vector B. Each element in vector S contains a count of the number of rows of A used to form the corresponding row of R. Element S(L+1) contains a count of the number of rows of A not included in R as a result of J being less than one or greater than L.

	SUBROUTINE RTABLA.B.R.S.N.M.MS.L)	RTAR	۱	
	DIMENSION A(1),B(1),R(1),S(1)	RTAB	2	
		RTAB	3	
С	CLEAR OUTPUT AREAS	RTAB	4	
	CALL LOC(M,L, IT, M,L,O)	RTAB	5	
	DO 10 [R=1,IT	RTAB		
	10 R[1R]=0.0		6	
	00 20 IS=I+L	RTAB	7	
	20 \${1\$}=0.0	RŤAŠ	8	
	S(L+1)=0+0	RTAB	9	
	00 60 [=1,N	RT49	10	
с	TEST FOR THE CEY OUTSIDE THE RANGE	RTAB	11	
	IF(8(1)) 50,50,30	RTAR	12	
	30 E=L	RTAB	13	
	IF(B(I)-E) 40,40,50	RTAR	14	
	40 JR=B(I)	STAB	15	
c	ADD ROW OF A TO ROW OF R AND 1 TO COUNT	STAB	16	
Č	CALL RADD(A+I+R+JR+N+M+MS+L)	RTAB	17	
	S(JR) = S(JR) + 1.0	RTAÐ	18	
	G0 T0 60	RTAB	19	
	50 S(L+1)=S(L+1)+1.7	RTAB	20	
	60 CONTINUE	RTAR	21	
	RETURN	RTAR	22	
	END	RTAB	23	

CTAB

The function of this subroutine is graphically displayed by Figure 7 (see description under "Method").

ъ

Figure 7. Column tabulation

Subroutine CTAB

Purpose:

Tabulate columns of a matrix to form a summary matrix.

Usage:

CALL CTAB(A, B, R, S, N, M, MS, L)

Description of parameters:

- A Name of input matrix.
- B Name of input vector of length M containing key.
- R Name of output matrix containing summary of column data. It is initially set to zero by this subroutine.
- S Name of output vector of length L+1 containing counts.
- N Number of rows in A and R.
- M Number of columns in A.
- L Number of columns in R.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R is always a general matrix.

Subroutines and function subprograms required: LOC CADD

Method:

Columns of data in matrix A are tabulated using the key contained in vector B. The floatingpoint number in B(I) is truncated to form J. The I^{th} column of A is added to the J^{th} column of matrix R and one is added to S(J). If the value of J is not between one and M, one is added to S(L+1). Upon completion, the output matrix R contains a summary of column data as specified by vector B. Each element in vector S contains a count of the number of columns of A used to form R. Element S(L+1) contains the number of columns of A not included in R as a result of J being less than one or greater than L.

	SUBROUT INE CTABIA . 8.R. S.N. H. HS.L.	CTAB	ı
	DIMENSION A(1)+8(1)+R(1)+5(1)	CTAB	2
c	CLEAR OUTPUT AREAS	CTAB	1
-	CALL LOC(N.L.IT.N.L.O)	CTAR	4
	00 10 [R=1.1T	CTAB	
	10 R(IR)=0.0	CTAB	
	DO 20 IS=1.L	CTAB	
		CTAB	é
	20 \$(15)=0.0	CTAB	è
	S(L+1)=0.0	CTAB	
	00 60 I=1,#		10
c	TEST FOR THE KEY OUTSIDE THE RANGE	CTAR	11
	IF(B(I)) 50,50,30	CTAB	12
	30 E=L	CTAB	13
	1F18(1)-E) 40,40,50	CTAB	14
	40 JR=8(1)	CTAB	15
c	ADD COLUMN OF A TO COLUMN OF R AND 1 TO COUNT	CTAB	10
•	CALL CADD(A, I.R. JR.N.M.MS.L)	CTAB	11
	S(JR)=S(JR)+1.0	CTAS	18
		CTAB	19
	GO TO 60	CTAB	20
	50 S(L+L)=S(L+L)+1+)		
	60 CONTINUE	CTAB	21
	RETURN	CTAB	22
	END	CTAR	23

RSRT

Purpose:

Sort rows of a matrix.

Usage:

CALL RSRT(A, B, R, N, M, MS)

Description of parameters:

- A Name of input matrix to be sorted.
- B Name of input vector which contains sorting key.
- R Name of sorted output matrix.
- N Number of rows in A and R and length of B.
- M Number of columns in A and R.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrix R is always a general matrix..

N must be greater than 1. This routine sorts into ascending order. Sorting into descending order requires changing card RSRT 013 to read IF(R(I-1)-R(I)) 30, 40, 40

Subroutines and function subprograms required:

LOC

Method:

Rows of input matrix A are sorted to form output matrix R. The sorted row sequence is determined by the values of elements in column vector B. The lowest valued element in B will cause the corresponding row of A to be placed in the first row of R. The highest valued element of B will cause the corresponding row of A to be placed in the last row of R. If duplicate values exist in B, the corresponding rows of A are moved to R in the same order as in A.

		DIMENSION A(1).B(1).R(1)	RSRT	2
с		MOVE SCRTING KEY VECTOR TO FIRST COLUMN OF OUTPUT MATRIX	RSRT	
с		AND BUILD ORIGINAL SEQUENCE LIST IN SECOND COLUMN	RSRT	
		DO 10 I+1+N	RSRT	. 5
		R(I)=B(I)	RSRT	
		12=1+N	RSRT	
	10	R(12)=1	RSRT	á
с		SORT ELEMENTS IN SORTING KEY VECTOR (ORIGINAL SEQUENCE LIST	RSRT	9
с		IS RESEQUENCED ACCORDINGLY	RSRT	10
		L=N+1	RSRT	MOI
	20	ISORT=0	RSRT	11
		L=L-1	RSRT	M0 2
		00 40 1=2.L	RSRT	M03
		IF(R(1)-R(1-1)) 30.40.40	RSRT	
	30	ISORT=1	RSRT	
		RSAVE=R(1)	RSRT	15
		R([]=R([-1)	RSRT	
		R(I-1)=RSAVE	RSRT	17
		12=1+N	RSRT	18
		SAVER=R(12)	RSRT	19
		R(12)=R(12-1) R(12-1)=SAVER	RSRT	20
		CONTINUE	RSRT	21
	40	IF(ISORT) 20,50,20	RSRT	22
с			RSRT	23
č		MOVE ROWS FROM MATRIX A TO MATRIX R (NUMBER IN SECOND COLUMN OF R REPRESENTS ROW NUMBER OF MATRIX A TO BE MOVED)	RSRT	24
	50	DO BO I=1.N	RSRT	25
c		GET ROW NUMBER IN MATRIX A	RSRT	26 27
•		12=1+N	RSRT	
		IN=R(12)	RSRT	29
		IR=I-N	RSRT	30
		DO 80 J=1.M	RSRT	31
С		LOCATE ELEMENT IN OUTPUT MATRIX	RSRT	32
		IR=IR+N	RSRT	
c		LOCATE ELEMENT IN INPUT MATRIX	RSRT	34
		CALL LOC(IN+J+IA+N+M+MS)	RSRT	35
с		TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	RSRT	36
		IF(1A) 60+70+60	RSRT	37
C		MOVE ELEMENT TO OUTPUT MATRIX	RSRT	38
	60	R(IR)=A(IA)	RSRT	39
		GO TO BO	RSRT	40
		R(1R)=0	RSRT	41
	нQ	CONTINUE	RSRT	42
		RETURN	RSRT	43
		END	RSRT	44
		Mathematics - Matricos	. 77	,

Mathematics - Matrices 77

CSRT

Purpose:

Sort columns of a matrix.

Usage:

CALL CSRT(A, B, R, N, M, MS)

Description of parameters:

- Α - Name of input matrix to be sorted.
- в - Name of input vector which contains sorting key.
- R - Name of sorted output matrix.
- Ν - Number of rows in A and R.
- М - Number of columns in A and R and length of B.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrix R is always a general matrix.

N must be greater than 1. This routine sorts into ascending order. Sorting into descending order requires changing card CSRT 016 to read IF(R(IP)-R(IQ)) 30, 40, 40

Subroutines and function subprograms required:

LOC CCPY Method:

Columns of input matrix A are sorted to form output matrix R. The sorted column sequence is determined by the values of elements in row vector B. The lowest valued element in B will cause the corresponding column of A to be placed in the first column of R. The highest valued element of B will cause the corresponding row of A to be placed in the last column of R. If duplicate values exist in B, the corresponding columns of A are moved to R in the same order as in A.

8

4

Ŧ

		SUBROUTINE CSRT(A,B,R,N,M,MS)	C5RT	1
с		DIMENSION A(1),B(1),R(1)	CSRT	2
č		MOVE SORTING KEY VECTOR TO FIRST ROW OF OUTPUT MATRIX	CSRT	3
C.		AND BUILD ORIGINAL SEQUENCE LIST IN SECOND ROW	CSRT	
		00 10 J=1.M	CSRT	5
		R(IK)=B(_)	CSRT	6
		R(IK)=5(J)	CSRT	?
	10	IK=IK+N	CSRT	8
с	10		CSRT	9
č		SORT ELEMENTS IN SORTING KEY VECTOR (ORIGINAL SEQUENCE LIST	CSRT	10
۰.		IS RESEQUENCED ACCORDINGLY) L=M+1	CSRT	11
			CSRT	
	20	ISORT=0	CSRT	12
		L=L-1 IP=1	CSRT	
			CSRT	13
		IQ=N+1 D0 50 J=2+L	CSRT	14
		50 50 J=2+L If(R(IG)→R(IP)) 30+40+40	CSRT	
	**	ISORT=1	CSRT	16
	30	RSAVE=R(IQ)	CSRT	
		R(IQ)=R(IP)	CSRT	18
		R(ID)=R(IP) R(IP)=RSAVE	CSRT	19
		SAVER=R(IQ+1)	CSRT	20
		R(IQ+1)=R(IP+1)	CSRT	22
		R(IP+1)=SAVER	CSRT	23
	40	IP=IP+N	CSRT	24
	40	10=10+N	CSRT	25
	60	CONTINUE	CSRT	26
		IF(ISORT) 20+60+20	CSRT	27
с		MOVE COLUMNS FROM MATRIX & TO MATRIX & INUMBER IN SECOND ROW	CSRT	28
č		OF R REPRESENTS COLUMN NUMBER OF MATRIX A TO BE MOVED)	CSRT	29
C	40	IQ==N	CSRT	30
	90	DO 70 J=1.eM	CSRT	31
		10=10+N	CSRT	32
c		GET COLUMN NUMBER IN MATRIX A	CSRT	33
٠.		I2=IQ+2	CSRT	34
		IN=R(12)	CSRT	35
с		MOVE COLUMN	CSRT	36
•		IR=IO+1	CSRT	37
		CALL CCPY(A+IN+R(IR)+N+M+MS)	CSRT	38
		CONTINUE	CSRT	39
		RETURN	CSRT	40
		END	CSRT	41
			CONT	

RCUT

Purpose:

Partition a matrix between specified rows to form two resultant matrices.

Usage:

CALL RCUT (A, L, R, S, N, M, MS)

Description of parameters:

- Name of input matrix. Α
- Row of A above which partitioning takes \mathbf{L} place.
- R - Name of matrix to be formed from upper portion of A.
- S - Name of matrix to be formed from lower portion of A.
- Number of rows in A. Ν
- Number of columns in A. М
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in same location as matrix A. Matrix S cannot be in same location as matrix A. Matrix R cannot be in same location as matrix S. Matrix R and matrix S are always general matrices.

Subroutines and function subprograms required: LOC

Method:

Elements of matrix A above row L are moved to form matrix R of L-1 rows and M columns. Elements of matrix A in row L and below are moved to form matrix S of N-L+1 rows and M columns.

		SUBROUTINE ROUT(A.L.R.S.N.M.MS)	RCUT	1
		DIMENSION A(1),R(1),S(1)	RCUT	2
		IR=0	RCUT	3
		15=0	RCUT	- 4
		00 70 J=1.H	RCUT	5
		DO 70 1=1,N	RCUT	6
С		FIND LOCATION IN OUTPUT MATRIX AND SET TO ZERO	RCUT	7
	•	IF(I-L) 20,10,10	RCUT	8
	10	15=15+1	RCUT	9
		S(IS)=0.0	RCUT	10
		GD TO 30	. RCUT	- 14
	20	IR=[R+]	RCUT	12
		R(IR)=0.0	RCUT	13
C		LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE	RCUT	14
	- 30	CALL LOC(I.J.IJ.N.M.MS)	RCUT	15
С		TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	RCUT	16
		IF(IJ) 40,70,40	RCUT	17
С		DETERMINE WHETHER ABOVE OR BELOW L	RCUT	18
	40	IF(I-L) 60,50,50	RCUT	19
	50	S(IS)=A(IJ)	RCUT	20
		GO TO 70	RCUT	21
	60	R[]R]=A{IJ}	RCUT	22
	70	CONTINUE	RCUT	23
		RETURN	RCUT	24
		END	RCUT	25

CCUT

Purpose:

Partition a matrix between specified columns to form two resultant matrices.

Usage:

CALL CCUT (A, L, R, S, N, M, MS)

Description of parameters:

- Α - Name of input matrix.
- \mathbf{L} - Column of A to the left of which partitioning takes place.
- R -Name of matrix to be formed from left portion of A.
- S - Name of matrix to be formed from right portion of A.
- Ν - Number of rows in A.
- М - Number of columns in A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in same location as matrix A. Matrix S cannot be in same location as matrix A. Matrix R cannot be in same location as matrix S. Matrix R and matrix S are always general matrices.

Subroutines and function subprograms required: LOC

Method:

Elements of matrix A to the left of column L are moved to form matrix R of N rows and L-1 columns. Elements of matrix A in column L and to the right of L are moved to form matrix S of N rows and M-L+1 columns.

		SUBROUTINE CCUT(4,L,R,S,N,M,MS)	CCUT	1
		DIMENSION A(1),R(1),S(1)	CCUT	2
		IR=0	CCUT	3
		15=0	CCUT	4
		00 70 J=1+H	CCUT	Ś
		00 70 I=1+N	CCUT	6
C		FIND LOCATION IN OUTPUT MATRIX AND SET TO ZERD	CCUT	ž
•		(F(J-L) 20.10.10	CCUT	
	10	·[\$=[\$+1	CCUT	9
		5(15)=0.0		
		GD TO 30	CCUT	10
			CCUT	-11
	20	1R=1R+1	CCUT	12
		R[[R]=0.0	CCUT	13
С		LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE	CCUT	14
	30	CALL LOCII.J.IJ.N.M.MS)	CCUT	15
c		TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	CCUT	16
		IF([J] 40,70,40	CCUT	17
c		DETERMINE WHETHER RIGHT OR LEFT OF L	COT	18
	40	(F(J-L) 60,50,50	CCUT	19
	50	S(IS)=A(IJ)	CCUT	20
		GO TO 70	CCUT	21
	60	R(IR)=A(IJ)	CCUT	22
		CONTINUE	CCUT	23
		RETURN	CCUT	24
		END	CCUT	25
		ERD	LLUI	~ >

RTIE

Purpose: Adjoin two matrices with same column dimension to form one resultant matrix. (See Method.)

Usage:

CALL RTIE(A, B, R, N, M, MSA, MSB, L)

Description of parameters:

- A Name of first input matrix.
- B Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A.
- M Number of columns in A, B, R.
- MSA One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.
- MSB Same as MSA except for matrix B.
- L Number of rows in B.

Remarks:

Matrix R cannot be in the same location as matrices A or B.

Matrix R is always a general matrix.

Matrix A must have the same number of columns as matrix B.

Subroutines and function subprograms required: LOC

Method:

Matrix B is attached to the bottom of matrix A. The resultant matrix R contains N+L rows and M columns.

CTIE

Purpose:

Adjoin two matrices with same row dimension to form one resultant matrix. (See Method.)

Usage:

CALL CTIE(A, B, R, N, M, MSA, MSB, L)

Description of parameters:

- A Name of first input matrix.
- B Name of second input matrix.
- R Name of output matrix.
- N Number of rows in A, B, R.
- M Number of columns in A.
- MSA One digit number for storage mode of matrix A:

۶

4

- 0 General.
- 1 Symmetric.
- 2 Diagonal.
- MSB Same as MSA except for matrix B.
- L Number of columns in B.

Remarks:

Matrix R cannot be in the same location as matrices A or B.

Matrix R is always a general matrix.

Matrix A must have the same number of rows as matrix B.

Subroutines and function subprograms required: LOC

Method:

RTIE 1 RTIE 2 RTIE 2 RTIE 2 RTIE 5 RTIE 5 RTIE 5 RTIE 6 RTIE 6 RTIE 10 RTIE 20 RTI Matrix B is attached to the right of matrix A. The resultant matrix R contains N rows and M+L columns.

	SUBROUTINE CTIEIA, 8, R. N. M. MSA, NSB, L)	CTLE	
	DIMENSION A(L)+B(L)+R(L)	CTIF	
	MMax	CTIE	
	18=0	CTIE	
	MSX=MSA	CTIE	
	D0 6 JJ=1+2	CTIE	
	DO 5 J=1.MM	CTIE	
	DO 5 1=1-N	CTIE	
	1R=1R+1	CTIE	
	R(1R)=0.0	CTIE 1	1
С	LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE	CTIE I	
~	CALL LOC(I, J, IJ, N, HH, MSX)	CTIF	i
c	TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX	CTIE I	í
•	(F(1J) 2.5.2	CTTE 1	i
с	MOVE ELEMENT TO MATRIX R	CTIF I	i
•	2 GQ TQ(3.4).JJ	CTIE I	i
	3 R(1R)=A(1J)	CTIE	i
	GO TO 5	CTIE	i
	4 R(IR)=B(IJ)	CTIF I	i
	5 CONTINUE	CTIE	2
с	REPEAT ABOVE FOR MATRIX B	CTIE	2
•	MSX=MSB	CTIF 2	2
	MN=L	CTIE	,
	6 CONTINUE	CTIE 2	,
	RETURN	CTIE	į
	END	CTIE	2

MCPY

Purpose: Copy entire matrix.

Usage:

CALL MCPY (A, R, N, M, MS)

Description of parameters:

- A Name of input matrix.
- R Name of output matrix.
- N Number of rows in A or R.
- M Number of columns in A or R.
- MS One digit number for storage mode of matrix A (and R):
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

Each element of matrix A is moved to the corresponding element of matrix R.

	SUBROUTINE MCPY(A.R.N.M.MS)	NCPY	1	
	DIMENSION A(1),R(1)	MCPY	2	
r	COMPUTE VECTOR LENGTH. IT	NCPY	3	
÷	CALL LOC(N. M. 11. N. M. 451	MC P Y	4	
C	COPY MATRIX	MCPY	5	
-	00 1 1=1.17	HCPY '	6	
	1 R(I)=A(I)	MCPY	7	
	KETURN	NCPY.	9	
	END	HCPY	9	

XCPY

Purpose:

Copy a portion of a matrix.

Usage:

CALL XCPY(A, R, L, K, NR, MR, NA, MA, MS)

Description of parameters:

- A Name of input matrix.
- R Name of output matrix.
- L Row of A where first element of R can be found.
- K Column of A where first element of R can be found.
- NR Number of rows to be copied into R.
- MR Number of columns to be copied into R.
- NA Number of rows in A.
- MA Number of columns in A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrix R is always a general matrix.

Subroutines and function subprograms required: LOC

Method:

Matrix R is formed by copying a portion of matrix A. This is done by extracting NR rows and MR columns of matrix A, starting with element at row L, column K.

SUB	OUTINE XCPY(A.R.L.K.NR. 4R.NA. MA.MS)	XCPY	1
DIM	ENSION ALLI,RELL	XCPY	z
	INITIALIZE	XCPY	3
18=)	XCPY	4
L2=1	_+NR-1	XCPY	5
K7=!	(*MR-1	XCPY	6
DN	j]=K,K2	XCPY	7
00 1	5 I=L,L2	XCPY	8
IR=	lR+1	XCPY	9
RIJI	t)=0_0	XCPY	10
	OCATE ELEMENT FOR ANY MATRIX STORAGE MODE	XCPY	11
CALL	LOCII, J. 14, NA, MA, MS1	XCPY	12
	TEST FUP ZERO ELEMENT IN DIAGUNAL MATRIX	XCPY	13
t F ()	141 4.5.4	XCPY	14
4 RITE	()=A([A)	XCPY	15
5 CON	INUE	XCPY	16
		XCPY	17
END		XCPY	19
	DIME IR=C L2=L K2=M DO 5 IR=1 R(JP CALL CALL 1 tF(I 4 R(TR 5 CONT RETU	SURROUTINE XCPY(A,R,L,K,NQ,4Q,NA,MA,MA,MS) DIMENSION ALIJ,R(1) INJTIALIZE R=0 L?=L+NR-1 K?=K+NR-1 OT 5 J=L,L2 IR=IR41 R[IR]=0.0 LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE CALL LOCIJ,JIA,VA,MA,MS) TEST FOP ZERO ELEMENT IN DIAGUNAL MATRIX IF(IA) 4,5,4 4 R(IR)=A(IA) 5 CONTINUE RETURN END	DIMENSION A(1),R(1) XCPY INITIALIZE XCPY IR=0 XCPY IZ=L+NR=1 XCPY IZ=L+NR=1 XCPY ID 5 J=L,L2 XCPY OD 5 J=L,L2 XCPY R=1R+1 XCPY RLOCIF ELEMENT FOR ANY MATRIX STORAGE MODE XCPY CALL LOCIFJ,JA,YA,MA,MSJ XCPY TEST FUP ZERO ELEMENT IN DJAGUNAL MATRIX XCPY FITAL XCPY FITAL XCPY RETURN XCPY

RCPY

Purpose:

Copy specified row of a matrix into a vector.

Usage:

CALL RCPY (A, L, R, N, M, MS)

Description of parameters:

- Name of input matrix. Α
- Row of A to be moved to R. L
- R - Name of output vector of length M.
- Ν - Number of rows in A.
- M Number of columns in A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

Elements of row L are moved to corresponding positions of vector R.

SUBROUTINE RCPY(A,L,R,N,M,MS) DIMENSION A(1),R(1)

	DO 3 J=1+M
C	LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE
	CALL LOCIL, J, LJ, N, M, MSI
C	TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX
	IF(LJ) 1,2,1
c	NOVE ELEMENT TO R
	1 R(J)=A(LJ)
	GO TO 3
	3 91 11-9 9

- CONTINUE

CCPY

Usage:

 \mathbf{L}

CALL CCPY(A, L, R, N, M, MS)

Description of parameters:

- Name of input matrix. Α
 - Column of A to be moved to R.
- R - Name of output vector of length N.

Ť

- Number of rows in A. N
- Number of columns in A. М
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

c c c

RCPY RCPY RCPY RCPY RCPY RCPY RCPY RCPY 1234567890112316

RCPY RCPY RCPY RCPY

Elements of column L are moved to corresponding positions of vector R.

SUBROUTINE CCPY(A.L.R.N.M.MS)	CCPY	1
DIMENSION A(1)+R(1)	CCPY	2
DO 3 [=1.N	CCPY	3
LOCATE ELEMENT FOR ANY MATRIX STORAGE MODE	CCPY	4
CALL LOC(I.L.IL.N.M.MS)	CCPY	5
TEST FOR LERO ELEMENT IN DIAGONAL MATRIX	CCPY	6
IF(1L) 1.2.1	CCPY	7
MOVE ELEMENT TO R	CCPY	8
1 R(1)=A[[L]	CCPY	9
GO TO 3	CCPY	10
2 R(1)=0.0	CCPY	11
3 CONTINUE	CCPY	12
RETURN	CCPY	13
	CCPY	14

DCPY

Purpose:

Copy diagonal elements of a matrix into a vector.

Usage:

CALL DCPY (A, R, N, MS)

Description of parameters:

- A Name of input matrix.
- R Name of output vector of length N.
- N Number of rows and columns in matrix A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Input matrix must be a square matrix.

Subroutines and function subprograms required: LOC

Method:

Elements on diagonal of matrix are moved to corresponding positions of vector R.

	SUBROUTINE OCPY(A,R.N.MS)	DCPY	1
	DIMENSION A(1),R(1)	OCPY	ž
	DO 3 J=1.N	DCPY	3
C	LOCATE DIAGONAL ELEMENT FOR ANY MATRIX STORAGE HODE	DCPY	- ű
	CALL LOC(J,J,IJ,N,N,MS)	DCPY	Ś
C	MOVE DIAGONAL ELEMENT TO VECTOR R	DCPY	6
	3 R(J)=A(IJ)	DCPY	7
	RETURN	OCPY	ġ
	END	DCPY	9

SCLA

Purpose:

Set each element of a matrix equal to a given scalar.

Usage:

CALL SCLA (A, C, N, M, MS)

Description of parameters:

- A Name of input matrix.
- C Scalar.
- N Number of rows in matrix A.
- M Number of columns in matrix A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: LOC

Method:

Each element of matrix A is replaced by Scalar C.

	SUBROUTINE SCLAIA, C, N, M, HS)	SCLA	1
	DEMENSION A(1)	SCL A	2
c	COMPUTE VECTOR LENGTH, IT	SCLA	3
	CALL LOC(N.M.IT.N.M.NS)	SCLA	4
C	REPLACE BY SCALAR	SCLA	5
	DO 1 [=1,[T	SCLA	6
	1 A{{}}=C	SCLA	7
	RETURN	SCLA	8
	END	501 4	ā

DCLA

Purpose:

Set each diagonal element of a matrix equal to a scalar.

Usage:

CALL DCLA (A, C, N, MS)

Description of parameters:

- A Name of input matrix.
- C Scalar.
- N Number of rows and columns in matrix A.
- MS One digit number for storage mode of matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Input matrix must be a square matrix.

Subroutines and function subprograms required: LOC

Method:

Each element on diagonal of matrix is replaced by scalar C.

	SUBROUTINE OCLAIA, C, N, MS)	OCL A	ı
	DIMENSION AT1)	DCLA	2
	DO 3 1=1,N	OCL 4	3
¢	LOCATE DIAGONAL ELEMENT FOR ANY MATRIX STORAGE MODE	DCLA	4
	CALL LOCTI,I,ID,N,N,MSI	DCLA	Ś
С	REPLACE DIAGONAL ELEMENTS	DCLA	6
	3 A(1D)=C	DCLA	7
	RETURN	DCLA	â
	END	DCLA	9

MSTR

Purpose:

Change storage mode of a matrix.

Usage:

CALL MSTR(A, R, N, MSA, MSR)

Description of parameters:

- A Name of input matrix.
- R Name of output matrix.
- N Number of rows and columns in A and R.
- MSA One digit number for storage mode of
 - matrix A:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.
- MSR Same as MSA except for matrix R.

Remarks:

Matrix R cannot be in the same location as matrix A.

Matrix A must be a square matrix.

Subroutines and function subprograms required: LOC

Method:

0

1

1

1

2

2

Matrix A is restructured to form matrix R. MSA MSR

- 0 Matrix A is moved to matrix R.
- 0 1 The upper triangle elements of a general matrix are used to form a symmetric matrix.
 0 2 The diagonal elements of a gener
 - 2 The diagonal elements of a general matrix are used to form a diagonal matrix.
 - 0 A symmetric matrix is expanded to form a general matrix.
 - 1 Matrix A is moved to matrix R.
 - 2 The diagonal elements of a symmetric matrix are used to form a diagonal matrix.
 - 0 A diagonal matrix is expanded by inserting missing zero elements to form a general matrix.
 - 1 A diagonal matrix is expanded by inserting missing zero elements to form a symmetric matrix.
- 2 2 Matrix A is moved to matrix R.

	SUBRUUTINE MSTR(4,R,N,MSA,MSR)	MSTR	
	DIMENSION A(1),R(1)	MSTR	
	DO 20 [=1.N	MSTR	
	DD 20 J=1+N	MSTR	
2	IF R IS GENERAL, FORM ELEMENT	MSTR	
	IF(MSR) 5,10,5	MSTR	
2	IF IN LOWER TRIANGLE OF SYMMETRIC OR DIAGONAL R. BYPASS	HSTR	
	5 [F([-J] 10,10,20	NSTR	
	10 CALL LOCII, J, IR, N, NSR)	MSTR	į
2	IF IN UPPER AND OFF DIAGONAL OF DIAGONAL R. BYPASS	ASTR	10
	IF(1R) 20,20,15	NSTR	ii
	OTHERWISE, FORM B(1.J)	MSTR	iz
	15 R(1R)=0.0	MSTR	11
	CALL LOC(1, J, IA, N, N, MSA)	MSTR	14
•	IF THERE IS NO A(1, J), LEAVE R(1, J) AT 0.0	MSTR	15
	IF(IA) 20.20.18	MSTR	16
	18 R[[R]=4([A)	MSTR	17
	20 CONTINUE	MSTR	
	RETURN		18
	END	HSTR	19
	CAD	MSTR	20

MFUN

Purpose:

Apply a function to each element of a matrix to form a resultant matrix.

Usage:

CALL MFUN (A, F, R, N, M, MS)

An external statement must precede call statement in order to identify parameter F as the name of a function.

Description of parameters:

- A Name of input matrix.
- F Name of FORTRAN-furnished or user function subprogram.
- R Name of output matrix.
- N Number of rows in matrix A and R.
- M Number of columns in matrix A and R.
- MS One digit number for storage mode of matrix A (and R):
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

Precision is dependent upon precision of function used.

Subroutines and function subprograms required:

LOC

F (see Description of Parameters)

Method:

Function F is applied to each element of matrix A to form matrix R.

	SUBROUTINE NEUN(A,F,R,N,M,MS)	MFUN	1
	DIMENSION A(1),R(1)	MEUN	2
c	COMPUTE VECTOR LENGTH, IT	MEUN	3
	CALL LUCIN,M,IT,Y,M,MS)	NELIN	4
С	BUILD MATRIX & FOR ANY STORAGE MODE	MEUN	5
	00 5 1≈1,IT	MFUN	6
	8=4([)	MEUN	7
	5 R([)=F(A)	MEUN	9
	RFTURN	MFUN	9
	END	MEUN	10

Function RECP

Purpose:

Calculate reciprocal of an element. This is a FORTRAN function subprogram which may be used as an argument by subroutine MFUN.

Usage:

RECP(E)

Description of parameters: E - Matrix element.

Remarks:

Reciprocal of zero is taken to be 1.0E38.

Subroutines and function subprograms required: None.

Method:

Reciprocal of element E is placed in RECP.

	FUNCTION RECP(E)	RECP	1	
	BIG≈1.0E38	RECP	2	
с	TEST ELEMENT FOR ZENO	RECP	3	
	IF(E) 1.2.1	RECP	4	
С	IF NON-ZERO, CALCULATE RECIPROCAL	RECP	5	
	1 RECP=1.0/E	RECP	6	
	RETURN	RECP	7	
с	IF ZERO, SET EQUAL TO INFINITY	RECP	я	
	2 RECP=SIGN(BIG,E)	RECP	9	
	RETURN	RECP	10	
	END	RECP	11	

LOC

Purpose:

Compute a vector subscript for an element in a matrix of specified storage mode.

Usage:

CALL LOC (I, J, IR, N, M, MS)

Description of parameters:

- I Row number of element.
- J Column number of element.
- IR Resultant vector subscript.
- N Number of rows in matrix.
- M Number of columns in matrix.
- MS One digit number for storage mode of matrix:
 - 0 General.
 - 1 Symmetric.
 - 2 Diagonal.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

- MS=0 Subscript is computed for a matrix with N*M elements in storage (general ma-trix).
- MS=1 Subscript is computed for a matrix with N*(N+1)/2 in storage (upper triangle of symmetric matrix). If element is in lower triangular portion, subscript is corresponding element in upper triangle.
- MS=2 Subscript is computed for a matrix with N elements in storage (diagonal elements of diagonal matrix). If element is not on diagonal (and therefore not in storage), IR is set to zero.

	SUBROUTINE LOCIT, J. IR. N. M. MSI	1.00	
			1
	1x=1	LOC	2
	T = X f	LOC	3
	[F[MS-1] 10,20,30	LOC	4
10	1RX=N#(JX-1)+IX	LOC	5
	GD TN 36	LOC	6
20	IF(IX-JX) 22+24+24	LOC	7
22		LOC	A
	GD TO 36	LOC	9
24	IRX=JX+11X+1X-1X)/2	LOC	10
	GO TO 36	LOC	11
30	IRX=0	F 0C	12
	[F(X-JX) 36,32,36	LOC	13
- 32	IRX=IX	LOC	14
36	IR-IRX	LNC	15
	RETURN	100	16
	END	LUC	17

ARRAY

Purpose:

Convert data array from single to double dimension or vice versa. This subroutine is used to link the user program which has double dimension arrays and the SSP subroutines which operate on arrays of data in a vector fashion.

Usage:

Ι

J

CALL ARRAY (MODE, I, J, N, M, S, D)

Description of parameters:

- MODE Code indicating type of conversion:
 - 1 From single to double dimension.
 - 2 From double to single dimension.
 - Number of rows in actual data matrix.
 - Number of columns in actual data matrix.
- N Number of rows specified for the matrix D in dimension statement.
- M Number of columns specified for the matrix D in dimension statement.
- If MODE=1, this vector contains, as input, a data matrix of size I by J in consecutive locations columnwise.
 If MODE=2, it contains a data matrix of the same size as output. The length of vector S is IJ, where IJ=I*J.
- D If MODE=1, this matrix (N by M) contains, as output, a data matrix of size I by J in first I rows and J col-umns. If MODE=2, it contains a data matrix of the same size as input.

Remarks:

Vector S can be in the same location as matrix D. Vector S is referred as a matrix in other SSP routines, since it contains a data matrix. This subroutine converts only general data matrices (storage mode of 0).

Subroutines and function subroutines required: None.

Method:

Refer to the discussion on variable data size in the section describing overall rules for usage in this manual.

		SUBROUTINE ARRAY (MODE, 1, J, N, M, S, D)	ARRAY	1	
		DIMENSION S(1), D(1)	ARRAY	;	
		NI4N-I	ARRAY	5	
			ARRAY	ź	
С		TEST TYPE OF CONVERSION	ARRAY	5	
		IF(MODE-1) 10C, 100, 120	ARRAY		
С		CONVERT FROM SINGLE TO DOUBLE DIMENSION		6	
	100	£+L+1=1	ARR AY	?	
		NM=N+J+E	ARRAY	R	
		DO 110 K=1,J	ARR AY	9	
		NM=NM-N 1	ARRAY		
		00 110 L=1.1	ARRAY	11	
		1 – L 1 – L	ARR AY	12	
		NM=NM-1	ARRAY	13	
	110	DINM)=S(1J)	ARRAY	14	
		GO TO 140	ARRAY	15	
c		CONVERT FROM DOUBLE TO SINGLE DIMENSION	ARRAY	16	
č	120	IJ=0	ARRAY	17	
	,	NM=0	ARRAY		
		DO 130 K=1,J	ARRAY		
		00 125 L=1.I	ARRAY		
			ARRAY		
		[+L]=L]			
		NM=NM+1	ARRAY		
		S(IJ)=D(NM)	ARRAY		
		NH=NH+N1	ARR AY		
	140	RETURN	ARRAY		
		END	APR AY	26	

Mathematics — Integration and Differentiation QSF

This subroutine performs the integration of an equidistantly tabulated function by Simpson's rule. To compute the vector of integral values:

$$z_{i} = z(x_{i}) = \int_{a}^{x_{i}} y(x) dx$$
with $x_{i} = a + (i-1) h$

$$(i = 1, 2, ..., n)$$

for a table of function values y_i (i = 1,2,...,n), given at equidistant points $x_i = a + (i-1) h$ (i = 1,2,...,n), Simpson's rule together with Newton's 3/8 rule or a combination of these two rules is used. Local truncation error is of the order h^5 in all cases with more than three points in the given table. Only z_2 has a truncation error of the order h^4 if there are only three points in the given table. No action takes place if the table

The function is assumed continuous and differentiable (three or four times, depending on the rule used).

consists of less than three sample points.

Formulas used in this subroutine $(z_j \text{ are integral values, } y_j \text{ function values) are:}$

$$z_j = z_{j-1} + \frac{h}{3} (1.25 y_{j-1} + 2y_j - 0.25 y_{j+1})$$
 (1)

$$z_{j} = z_{j-2} + \frac{h}{3}(y_{j-2} + 4y_{j-1} + y_{j})$$
 (Simpson's (2)
rule)

$$z_{j} = z_{j-3} + \frac{3}{8}h(y_{j-3} + 3y_{j-2} + 3y_{j-1} + y_{j})$$
(3)

(Newton's 3/8 rule)

$$z_{j} = z_{j-5} + \frac{h}{3} (y_{j-5} + 3.875 y_{j-4} + 2.625 y_{j-3} + 2.625 y_{j-2} + 3.875 y_{j-1} + y_{j})$$
(4)
[combination of (2) and (3)]

Sometimes formula (2) is used in the following form:

$$z_{j} = z_{j+2} - \frac{h}{3}(y_{j} + 4y_{j+1} + y_{j+2})$$
 (5)

Local truncation errors of formulas (1)...(4) are, respectively:

$$R_{1} = \frac{1}{24} h^{4} y'''(\xi_{1}) \quad (\xi_{1} \epsilon [x_{j-1}, x_{j+1}])$$

$$R_{2} = -\frac{1}{90} h^{5} y''''(\xi_{2}) \quad (\xi_{2} \epsilon [x_{j-2}, x_{j}])$$

$$R_{3} = -\frac{3}{80} h^{5} y''''(\xi_{3}) \quad (\xi_{3} \epsilon [x_{j-3}, x_{j}])$$

$$R_{4} = -\frac{1}{144} h^{5} y''''(\xi_{4}) \quad (\xi_{4} \epsilon [x_{j-5}, x_{j}])$$

However, these truncation errors may accumulate. For reference see:

- F.B. Hildebrand, <u>Introduction to Numerical</u> <u>Analysis</u>. McGraw-Hill, New York/ Toronto/London, 1956, pp. 71-76.
- (2) R. Zurmühl, <u>Praktische Mathematik für</u> <u>Ingenieure und Physiker</u>. Springer, Berlin/ Göttingen/Heidelberg, 1963, pp. 214-221.

Subroutine QSF

Purpose:

To compute the vector of integral values for a given equidistant table of function values.

Usage:

CALL QSF(H, Y, Z, NDIM)

Description of parameters:

H	-	The	increment	of	argument	values.
---	---	-----	-----------	----	----------	---------

- Y The input vector of function values.
- Z The resulting vector of integral values. Z may be identical to Y.

NDIM - The dimension of vectors Y and Z.

Remarks:

No action in case NDIM less then 3.

Subroutines and function subprograms required: None

Method:

Beginning with Z(1) = 0, evaluation of vector Z is done by means of Simpson's rule together with Newton's 3/8 rule or a combination of these two rules. Truncation error is of order H**5 (that is, fourth-order method). Only in case NDIM=3 truncation error of Z(2) is of order H**4.

	5	SUBROUTINE QSF(H+Y+Z+ND1M)	USF	MOI
		DIMENSION Y(1)+2(1)	QSF	MOZ
		+T=.3333333*H	QSF	M03
		_1=1	OSF	M04
		.2•2	WSF	M05
		.3=3	QSF	M06
			QSF	M07
		L5≖5 L6≖6	QSF QSF	MOB MO9
		LO-0 1F(NDIM-5)7,8,1	QSF	M10
c		NDIM IS GREATER THAN 5. PREPARATIONS OF INTEGRATION LOOP	05F	M11
•		SUM1=Y(L2)+Y(L2)	OSF	M12
		SUM1=SUM1+SUM1	USF	M13
		SUM1=HT+(Y(L1)+SUM1+Y(L3))	QSF	M14
		AUX1=Y(L4)+Y(L4)	OSF	M15
	4	AUX1=AUX1+AUX1	QSF	M16
		AUX1=SUM1+HT+(Y(L3)+AUX1+Y(L5))	QSF	M17
		AUX2=HT*(Y{L1}+3.875*(Y(L2)+Y{L5})+2.625*(Y(L3)+Y(L4))+Y(L6))	QSF	M18
		SUM2=Y(L5)+Y(L5)	USF	M19
	1	SUM2 = SUM2 + SUM2	QSF	MZO
		SUM2=AUX2-HT*(Y(L4)+SUM2+Y(L6))	USF USF	M21 M22
		Z(L1)≠O. AUX=Y(L3)+Y(L3)	QSF	M23
		AUX=AUX+AUX	QSF	MZ4
		2(L2)=SUM2-HT*(Y(L2)+AUX+Y(L4))	OSF	M25
		Z(L3)=SUM1	QSF	M26
		Z(L4)=SUM2	USF	M27
		1FINDIM-615.5.2	OSF	MZ 8
с		INTEGRATION LOOP	USF	M29
	2	DO 4 I=7,NDIM.2	QSF	M30
		SUM]=AUX1	QSF	M31
		SUM2=AUX2	QSF	M32
		AUX1=Y(I-1)+Y(I-1)	QSF	M33
		AUX1=AUX1+AUX1	USF	M34
		AUX1=SUM1+HT#(Y(I=2)+AUX1+Y(I))	QSF QSF	M35 M36
		Z(1-2)=SUM1 IF(1-NDIM13+6+6	QSF	M37
		AUX2=Y(1)+Y(1)	QSF	M38
		AUX2=AUX2+AUX2	USF	M39
		AUX2=SUM2+HT+(Y(I=1)+AUX2+Y(I+1))	USF	M40
		Z(1-1)=SUM2	USF	M41
	5	Z(NDIM-1)=AUX1	USF	M42
		Z(ND1M)=AUX2	USF	M43
		RETURN	USF	M44
		Z(NDIM-1)=SUM2	QSF	M45
		2 (ND [4] = AUX1	USF QSF	M46 M47
с		RETURN END OF INTEGRATION LOOP	QSF	M41 M48
· ·		IF(NDIM-3)12+11+8	QSF	M49
¢		NDIM IS EQUAL TO 4 OR 5	USF	M50
•		SUM2=1+125*HT*(Y(L1)+Y(L2)+Y(L2)+Y(L3)+Y(L3)+Y(L3)+Y(L3)+Y(L4))	QSF	M51
	-	SUM1=Y(L2)+Y(L2)	QSF	N52
		SUM1=SUM1+SUM1	QSF	M53
		SUM1=HT+(Y(L1)+SUM1+Y(L3))	QSF	M54
		Z(L1)=0.	USF	M55
		AUX1=Y(L3)+Y(L3)	QSF	M56
		AUX1=AUX1+AUX1	USF	M57
		2(L2)=SUM2-HT+(Y(L2)+AUX1+Y(L4))	uSF	M58
	~	IF (NDIM-5)10.9.9	USF	M59 M60
		AUX1=Y(L4)+Y(L4) AUX1=AUX1+AUX1	JSF JSF	M61
		2(L5)=SUM1+HT+(Y(L3)+AUX1+Y(L5))	JSF	M62
	10	2(L3) = SUM1	USF	M63
		2(L4)=SUM2	OSF	M64
		RETURN	JSF	M65
с		NDIM IS EQUAL TO 3	QSF	M66
		SUM1=HT+(1.25+Y(L1)+Y(L2)+Y(L2)=.25+Y(L3))	USF	M67
		SUM2=Y(L2)+Y(L2)	USF	M68
		SUM2=SUM2+SUM2	USF	M69
		Z(L3)=HT*(Y(L1)+SUM2+Y(L3))	USF	м70 м71
		2(L1)=0. 2(L2)=SUM1	uSF USF	M72
	12	RETURN	USF	M73
	••	END	USF	M74

This subroutine performs the integration of a given function by the trapezoidal rule together with Romberg's extrapolation method in order to compute an approximation for:

$$y = \int_{a}^{b} f(x) dx \qquad (1)$$

Successively dividing the interval [a,b] into 2^{i} equidistant subintervals (i = 0, 1, 2, ...) and using the following notations:

$$h_i = \frac{b-a}{2^i}$$
; $x_{i,k} = a + k \cdot h_i$, $f_{i,k} = f(x_{i,k})$
(k = 0, 1, 2, ..., 2ⁱ)

the trapezoidal rule gives approximations $T_{0,i}$ to the integral value y:

$$T_{o,i} = h_i \left\{ \sum_{k=0}^{2^*} f_{i,k} - \frac{1}{2} (f(a) + f(b)) \right\}$$
(2)

Then the following can be written:

$$T_{o,i} = y + \sum_{r=1}^{\infty} C_{o,2r} \cdot h_i^{2r}$$

with unknown coefficients $C_{0,2r}$ which do not depend on i. Thus there is a truncation error of the order h_{1}^{2} .

Knowing two successive approximations, $T_{0,i}$ and $T_{0,i+1}$, an extrapolated value can be generated:

$$\Gamma_{1,i} = T_{0,i+1} + \frac{T_{0,i+1} - T_{0,i}}{2^2 - 1}$$
 (3)

This is a better approximation to y because:

$$T_{1,i} = y + \frac{1}{2^{2}-1} \sum_{r=1}^{\infty} C_{0,2r} \left(2^{2} h_{i+1}^{2r} - h_{i}^{2r}\right)$$

Noting that $2^{2} h_{i+1}^{2} - h_{i}^{2} = 0$ and setting:
$$C_{1,2r} = \frac{1}{2^{2}-1} \left(2^{2} - 2^{2r}\right) \cdot C_{0,2r}$$

T_{1,i} becomes:

$$T_{1,i} = y + \sum_{r=2}^{\infty} C_{1,2r} h_{i+1}^{2r}$$

This gives a truncation error of the order h_{i+1}^4 .

Knowing T_0 , i+2 also, T_1 , i+1 can be generated (formula 3), and:

$$T_{2,i} = T_{1,i+1} + \frac{T_{1,i+1} - T_{1,i}}{2^4 - 1}$$
 (4)

Thus:

$$T_{2,i} = y + \sum_{r=3}^{\infty} C_{2,2r} \cdot h_{i+2}^{2r}$$

with $C_{2,2r} = \frac{1}{2^4 - 1} (2^4 - 2^{2r}) C_{1,2r}$

with a truncation error of the order h_{i+2}^6 . Observe that the order of truncation error increases by 2 at each new extrapolation step.

The subroutine uses the scheme shown in the figure below for computation of T-values and

generates the upward diagonal in the one-dimensional storage array AUX, using the general formula:

$$T_{k,j} = T_{k-1,j+1} + \frac{\frac{1}{k-1,j+1} - \frac{1}{k-1,j}}{2^{2k}-1} (k+j=i, j = i-1, i-2, \dots, 2, 1, 0)$$
(5)

and storing:

$$T_{o,i}$$
 into AUX (i+1)
 $T_{1,i-1}$ into AUX (i)

$$T_{k,0}$$
 into AUX (1)

Truncation o	error	0(h ² _i)	0(h <mark>4</mark>)	O(h <mark>6</mark>)	O(h ⁸)
step length h _i	i j	0	1	2	3
b-a	0	T _{0,0}	T1,0	T _{2,0}]	T _{3,0}
<u>b-a</u> 2	1	T 0,1)	T , 1	^T 2,1	:
<u>b-a</u> 4	2	T _{0,2}	T _{1,2}		
<u>b-a</u> 8	3	т _{о,3} ј	:		
•	:	÷			

Computation of T-values (QATR)

The procedure stops if the difference between two successive values of AUX (1) is less than a given tolerance, or if the values of AUX (1) start oscillating, thus showing the influence of rounding errors.

Subroutine QATR

Purpose:

To compute an approximation for integral (FCT(X), summed over X from XL to XU).

Usage:

CALL QATR(XL, XU, EPS, NDIM, FCT, Y, IER, AUX) Parameter FCT required an EXTERNAL statement.

Description of parameters:

XL - The lower bound of the in	terval.
--------------------------------	---------

- XU The upper bound of the interval.
- EPS The upper bound of the absolute error.

- NDIM The dimension of the auxiliary storage array AUX. NDIM-1 is the maximal number of bisections of the interval (XL, XU).
- FCT The name of the external function subprogram used.
- Y The resulting approximation for the integral value.
- IER A resulting error parameter.
- AUX An auxiliary storage array with dimension NDIM.

Remarks:

Error parameter IER is coded in the following form:

- IER=0 It was possible to reach the required accuracy. No error.
- IER=1 It is impossible to reach the required accuracy because of rounding errors.
- IER=2 It was impossible to check accuracy because NDIM is less than 5, or the required accuracy could not be reached within NDIM-1 steps. NDIM should be increased.
- Subroutines and function subprograms required: The external function subprogram FCT(X) must be coded by the user. Its argument X should not be destroyed.
- Method:

Evaluation of Y is done by means of the trapezoidal rule in connection with Romberg's principle. On return Y contains the best possible approximation of the integral value and vector AUX the upward diagonal of the Romberg scheme. Components AUX(I) (I=1, 2,..., IEND, with IEND less than or equal to NDIM) become approximation to the integral value with decreasing accuracy by multiplication by (XU-XL).

For reference see:

- Filippi, Das Verfahren von Romberg-Stiefel-Bauer als Spezialfall des Allgemeinen Prinzips von Richardson, Mathematik-Technik-Wirtschaft, Vol. 11, Iss. 2 (1964), pp. 49-54.
- Bauer, Algorithm 60, CACM, Vol. 4, Iss. 6 (1961), pp. 255.

DIMENSION AUX11) OATE PREPARATIONS OF ROMERG-LOOP OATE AUX11)=s94(FCT(XL)+FCT(XU)) OATE H=XU=XL OATE TF(MDIM-1)#s851 OATE 1 FF(MDIM-1)#s851 OATE 2 HUM OATE 3 HUM OATE 4 HUM OATE				
C PREPARATIONS OF ROWMERG-LOOP OATR AUX 11)=*5*(FCT(XU)) OATR H=XU=XL OATR H=XU=XL OATR IF(H0JM-1)#*5 OATR 1 IF(H)?*10*2 OATR 2 MDM IS GREATER THAN 1 AND H IS NOT EQUAL TO 0* OATR 2 MM#H OATR DELT2*0* OATR D1 P=1* JJ=1 OATR DELT2*0* OATR V=AUX(1) OATR DELT1*DELT2 OATR H0*HM OATR H0*HM OATR Y=AUX(1) OATR DELT1*DELT2 OATR H0*HM OATR H0*HM OATR H0*HM OATR H0*HM OATR H0*SPP OATR Y=XUX11 OATR		SUBROUTINE QATR(XL+XU+EPS+NDIM+FCT+Y+IER+AUX)	GATR	1
AUX(1)=.59 GATR H=XU=XL GATR IF(VD]M=]18+8-1 GATR 1F(VD]M=]18+8-1 GATR 1F(VD]M=]18+8-1 GATR 1F(VD]M=]18+8-1 GATR 1F(VD]M=]18+8-1 GATR 2HNEH GATR 2HNEH GATR 2HNEH GATR DELT2=0. GATR P=1 GATR J=1 J=1 D0 T T=2+NDIM V=AUX(1) GATR DELT2 GATR HO=HH QATR H0=HH QATR H0=HH QATR H0=+HH QATR H=5+P QATR P=5P QATR			GATR	- 1
H=XU=XL 0ATR IF(H0)V=1)8+8-1 0ATR 1 IF(H)2+10+2 0ATR 2 NDIM IS GREATER THAN 1 AND H IS NOT EQUAL TO 0. 0ATR 2 HH=H 0ATR E=FP5/ABS(H) 0ATR DELT2=0. 0ATR JJ=1 0ATR DeLT2=0 0ATR Y=AUX(1) 0ATR DELT2=0 0ATR H=H 0ATR JJ=1 0ATR DeLT1=0ELT2 0ATR H=H=H 0ATR Y=AUX(1) 0ATR HH=H 0ATR HH=, S+HH 0ATR Y=4U+H 0ATR	C	PREPARATIONS OF ROMBERG-LOOP	QATR	- 3
IF(VD1V-1)8+8-1 OATR IF(ND2+10+2 OATR VHDIM IS GREATER THAN 1 AND H IS NOT EQUAL TO 0. OATR 2 HVBH OATR 2 HVBH OATR 2 HVBH OATR 0 HUTZOO. OATR 0 J=1 OATR 0 J=1 OATR 0 T 1=2+NDIM OATR Y=AUX(1) OATR 0 ATR OATR H0=HH OATR H0=+HH OATR HH=-SHH OATR P=-S=P OATR X=XL+HH OATR		AUX(1)=+5+(FCT(XL)+FCT(XU))	QATR	4
1 1F(H)2-10-2 0 ATR 0 2 NDIM 15 GREATER THAN 1 AND H IS NOT EQUAL TO 0. 2 HH4H E #FP5/ABS(H) DELT2=0. 0 ATR 1 J=1. 0 ATR 1 0 ATR		H=XU-XL	QATR	
1 1F(H)2:10:2 0 NDIM 15 GREATER THAN 1 AND H IS NOT EQUAL TO 0. 2 HM=H 2 E=FP5/ABS(H) DELT2=0. 0 JTR 1 P=1. JJ=1 0 OTR 1 0 JT =2:NDIM V=AUX(1) DELT1=0ELT2 0 ATR 1 0 ATR 1 0 ATR 1 0 ATR 1 0 ATR 1 HM=.5+H 0 ATR 1 0 ATR 1		IF(NDIM-1)8+8+1	GATR	6
C NDIM IS GREATER THAN 1 AND H IS NOT EQUAL TO 0. GATR 2 HH#H GATR GATR E=FP5/ABS(H) GATR I DELT2=0. GATR GATR J=1 GATR GATR D0 7 1=2.HDIM GATR GATR Y=AUX(1) GATR GATR D0=T1=0ELT2 GATR GATR H0=HH GATR GATR H0=+HH GATR GATR H==.5HH GATR GATR P=.5=P GATR GATR X=XL+HH GATR GATR		1 IF(H)2.10.2		7
2 HHRH 0ATR E=FP5/ABS(H) 0ATR 1 DELT2=0. 0ATR 1 J=1. 0ATR 1 T = 1. 0ATR 1 JJ=1 0ATR 1 V=AUX(1) 0ATR 1 DELT1=0ELT2 0ATR 1 HO=HH 0ATR 1 P=_5=P 0ATR 1 X=XL+HH 0ATR 2	c	NDIM IS GREATER THAN 1 AND H IS NOT FOULL TO D.		Ŕ
E=FP5/AB3(H) OATR DELT2=0. OATR P=1. OATR J=1 OATR D0 7 1=2.HDIM OATR Y=AUX(1) OATR D0+HH OATR H0=HH OATR H0=HH OATR HH=.54HH OATR P=.59P OATR X=XL+HH OATR				è
DELT2=0, OATR 1 P=1. OATR 1 JJ=1 OATR 1 D0 7 !=2.NDIM OATR 1 Y=AUX(1) OATR 1 DELT2=0 OATR 1 H0=HH OATR 1 HH=.5+HH OATR 1 P=.5=P OATR 1 X=XL+HH OATR 2				10
P=1. ÓAT# I JJ=1 ÓAT# I D0 7 1=2 HDIM ÓAT# I Y=AUX(1) ÓAT# I Y=AUX(1) ÓAT# I DELT1=DELT2 ÓAT# I H0=HH ÓAT# I HH= 5#HH ÓAT# I P=5#P ÓAT# I X=XL+HH ÓAT# I				
JJ=1 OATR 1 D0 7 I=2+NDIM OATR 1 Y=AUX(1) OATR 1 DELTI=0ELT2 OATR 1 HD=HH OATR 1 HH=.5+HH OATR 1 P=.5=P OATR 2 X=XL+HH OATR 2				
D0 7 1=2-NDIM GATR 1 Y=AUX(1) GATR 1 DELT1=DELT2 GATR 1 HD=HH GATR 1 HH= SATR 1 P=SPP OATR 1 X=XL+HH GATR 2				
Y=AUX(1) QATR 1 DELT1=0ELT2 QATR 1 H0=HH QATR 1 HH=_59HH QATR 1 P=_59P QATR 2 X=XL+HH QATR 2				
DELT1=DELT2 GATR 1 HD=HH QATR 1 HH=.5=HH QATR 1 P=.5=P QATR 1 X=XL+HH QATR 2				
НО=НН ОАТК 1 НН=,5+НН ОАТК 1 Р=,5+Р ОАТК 1 Х=XL+НН ОАТК 2				
HH=_36HH QATR 1. P=_56P QATR 1. X=XL+HH QATR 2.				16
P≈s5≉P OATR 1 X=XL+HH OATR 2			QATR	17
X=XL+HH QATR 2		HH=•9+HH	QATR	18
		P=,5*P	QATR	19
SM=0. QATR 2		X=XL+HH	QATR	20
		S4=0.		23

		D0 3 J=1+JJ	QATR	22
		SM=SM+FCT (X)	QATR	23
		X=X+HD	QATR	24
	2	AUX (1) = +5*AUX (1-1)+P*SM	OATR	25
-		A NEW APPROXIMATION OF INTEGRAL VALUE IS COMPUTED BY MEANS OF	QATR	26
č		TRAPEZOIDAL RULE.	OATR	27
č		START OF ROMBERGS EXTRAPOLATION METHOD.	GATR	28
C			GATR	29
		Q=1.	QATR	30
		JI=1-1	QATR	31
		DO 4 J=1+JI	QATR	32
		11=1-J	QATR	33
		0=0+0	QATR	34
		0=Q+Q	QATR	35
	4	AUX(II)=AUX(II+1)+(AUX(II+1)=AUX(II))/(Q=1+)	GATR	36
c		END OF ROMBERG SIEP		37
		DELT2=ABS(Y-AUX(1))	QATR	
		IF(I-5)7+5+5	QATR	30
	5	IF(DELT2-E)10+10+6	QATR	39
	6	IF (DELT2-DELT1)7+11+11	QATR	40
	7	ل ل + ال ال = ال	QATR	41
	Å	IER=2	QATR	42
	ŏ		QATR	43
		RETURN	QATR	44
	10	IER=0	GATR	45
	10	GO TO 9	QATR	46
	• •	IFR=1	QATR	47
	77	15K-1	QATR	48
		RETURN	QATR	49
		END	QATR	50
		EUN		

Mathematics - Ordinary Differential Equations

RK1

This subroutine integrates a given function using the Runge-Kutta technique and produces the final computed value of the integral.

The ordinary differential equation:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y) \tag{1}$$

with initial condition $y(x_0) = y_0$ is solved numerically using a fourth-order Runge-Kutta integration process. This is a single-step method in which the value of y at $x = x_n$ is used to compute $y_{n+1} =$ $y(x_{n+1})$ and earlier values y_{n-1} , y_{n-2} , etc., are not used.

The relevant formulae are:

$$y_{n+1} = y_n + 1/6 [k_0 + 2k_1 + 2k_2 + k_3]$$
 (2)

where we define, for step size h

$$\begin{cases} k_0 = hf(x_n, y_n) \\ k_1 = hf(x_n + h/2, y_n + k_0/2) \\ k_2 = hf(x_n + h/2, y_n + k_1/2) \\ k_3 = hf(x_n + h, y_n + k_2) \end{cases}$$
(3)

Subroutine RK1

Purpose:

Integrates a first order differential equation DY/DX = FUN(X, Y) up to a specified final value.

Usage:

CALL RK1(FUN, HI, XI, YI, XF, YF, ANSX, ANSY, IER)

Description of parameters:

FUN	- User-supplied function subprogram
	with arguments X, Y which gives
	DY/DX.
ΗI	- The step size.
XI	- Initial value of X.
YI	- Initial value of Y where YI=Y(XI).

- XF Final value of X.
- YF Final value of Y.
- ANSX Resultant final value of X.
- ANSY Resultant final value of Y. Either ANSX will equal XF or ANSY will equal YF depending on which is
- reached first. IER - Error code: IER=0 No error. IER=1 Step size is zero.

Remarks:

If XI is greater than XF, ANSX=XI and ANSY=YI. If H is zero, IER is set to one, ANSX is set to XI, and ANSY is set to zero.

Subroutines and function subprograms required: FUN is a two argument function subprogram furnished by the user: DY/DX=FUN (X, Y). Calling program must have FORTRAN external statement containing names of function subprograms listed in call to RK1.

Method:

Uses fourth-order Runge-Kutta integration process on a recursive basis as shown in F. B. Hildebrand, 'Introduction to Numerical Analysis', McGraw-Hill, 1956. Process is terminated and final value adjusted when either XF or YF is reached.

		SUBROUTINE RKIIFUN.HI.XI.YI.XF.YF.ANSX.ANSY.IER)	RKI	۱
с		IF XF IS LESS THAN DE EQUAL TO XI. RETURN XI.YI AS ANSWER	RKI	ż
-		IF(XF-X1) 11-11-12	981	3
	11	ANSX=XI	RKI	4
		ANSY=YI	RKÍ	5
		RETURN	RK1	5
c		TEST INTERVAL VALUE	RKI	7
•	12	HaH	RK1	9
		IF(H1) 16.14.20	RKI	9
	14	IER=1	RKI	10
		ANS X=XI	R¥ 1	11
		ANSY=0.0	RKI	12
		RETURN	RK1	13
	16	H=-HI	RK 1	14
C		SET XN=INITIAL X.YN=INITIAL Y	RK1	15
	20	XN=X I	RKI	16
		YN-YI	RKI	17
с		INTEGRATE UNE TIME STEP	RKI	18
		HNEW=H	RKI	19
		JUMPel	RK1	20
		GU TO 170	RKI	21
	25	xN 1 = XX	RK1	22
		AN 1 = A A	8K 1	23
C		COMPARE XN1 (#XCN+1)) TO X FINAL AND BRANCH ACCORDINGLY	RK1	24
		1F{XN1-XF}50,30,40	BKJ	25
С		XNI=XF, RETURN LXF, YNII AS ANSWER	PK1	26
	30	ANSXAXF	RKI	27
		AN 5 Y = YN 1	RKI	28
		GO TO 160.	9K L	29
C		XN1 GREATER THAN XF, SET NEW STEP SIZE AND INTEGRATE ONE STEP	RKI	30
c		RETURN RESULTS OF INTEGRATION AS ANSWER	RKI	31
	40	KNEW=XF-XN	RK 1	72
		JUNP=2	881	33
		GO TO 170	RKI	34
	45	ANSX=XX	RK 1	35
		AN 5Y = YY	PKI	36
		GO TO 160	RK1	37
С		ANI LESS THAN & FINAL, CHECK IF (YN, YNI) SPAN Y FINAL	RK1	38
	50	IF((YN1-YF)*(YF-YN))60,70,110	RKI	30

90

c		YNI AND YN DO NOT SPAN YF. SET (XN, YN) AS (XNI, YNI) AND REPEAT		40
	60	AN=ANT	RK1	41
		KN=XNI	RKI	47
		GO TO 170	RKI	43
c		EITHER YN DR YNE *YF. CHECK WHICH AND SET PROPER (X,Y) AS ANSWE		44
		[F{YN]-YF}80,100, R0 ANSY=YN	9K1	45
	80	ANSX=XN	9K1	45
		GO TO 160	961	49
	1.00	ANSY=VN1	RKL	49
	100		RKI	51
			6K1	51
c			RKI	52
÷	110		961	51
c			961	54
č			RKI	55
L			RKI	56
			RKI	57
			RKI	58
			RK1	59
	115		RKI	60
c			RKI	61
Ľ			RKI	62
c			RKI	63
v	120		RK1	64
			RKI	65
			RKI	66
ć			RK1	67
Ť	130	YNL=YNEW	881	68
			RKI	69
	140		RKI	70
с	• • •		RKI	71
÷.,	150 /	ANSX=XNEW	RK 1	72
			RK 1	73
1	160 0	RETURN	RK1	74
	170 1		RKİ	75
	1		RK1	76
	1		RK 1	77
	1		RKL	78
	1		RK 1	79
			RK1	80
			RK1	81
			RK 1	82
		ENO I	RK 1	83

<u>RK2</u>

This subroutine integrates a given function using the Runge-Kutta technique and produces tabulated values of the computed integral.

The ordinary differential equation:

$$\frac{dy}{dx} = f(x, y) \tag{1}$$

with initial condition $y(x_0) = y_0$ is solved numerically using a fourth-order Runge-Kutta integration process. This is a single-step method in which the value of y at $x = x_n$ is used to compute $y_{n+1} = y(x_{n+1})$ and earlier values y_{n-1} , y_{n-2} , etc., are not used.

The relevant formulae are:

$$y_{n+1} = y_n + 1/6 [k_0 + 2k_1 + 2k_2 + k_3]$$
 (2)

where we define, for step size h

$$\begin{pmatrix} k_0 = hf(x_n, y_n) \\ k_1 = hf(x_n + h/2, y_n + k_0/2) \\ k_2 = hf(x_n + h/2, y_n + k_1/2) \\ k_3 = hf(x_n + h, y_n + k_2) \end{cases}$$
(3)

Subroutine RK2

Purpose:

Integrates a first-order differential equation DY/DX=FUN(X, Y) and produces a table of integrated values.

Usage:

CALL RK2(FUN, H, XI, YI, K, N, VEC)

Description of parameters:

FUN	-	User-supplied function subprogram
		with arguments X, Y which gives DY/DX.
Н	-	Step size.

- XI Initial value of X.
- YI Initial value of Y where YI=Y(XI).
- K The interval at which computed values are to be stored.
- N The number of values to be stored.
- VEC The resultant vector of length N in which computed values of Y are to be stored.

Remarks:

None.

Subroutines and function subprograms required:

FUN - User-supplied function subprogram for DY/DX.

Calling program must have FORTRAN EXTER-NAL statement containing names of function subprograms listed in call to RK2.

Method:

Fourth-order Runge-Kutta integration on a recursive basis as shown in F. B. Hildebrand, 'Introduction to Numerical Analysis', McGraw-Hill, New York, 1956.

SUBROUTINE #K2(FJN,H,XI,YI,K,N,VEC)	RK2	1
DIMENSION VECILI	RK2	÷
H2=H/2.	9K2	3
A=A1	RK2	4
x=X1	RK7	5
DO 2 [=1,N	RK2	6
00 1 J=1+K	RK2	7
Tl=H#FUN(X,Y)	RK2	8
[7=H@FUN[X+H2,Y+][/2.]	RK 2	9
T3=H#FUN(X+H2,Y+T2/2,)	RK2	10
₹4=H#FUN(X+H,Y+T3)	RKZ	11
Y= Y+{T1+7.*T2+2.*T3+T41/6.	RK2	12
X=X+H	RK7	13
VEC([]=Y	RKZ	14
RFTURN	RK2	15
END	982	16
	DIAENSION VEC(1) HZ=H/2 Y=YI X=XI DO 2 [=1,N DO 1]=1.K T1=H=PLW(X+Y) T3=H=PLW(X+Y) T3=H=PLW(X+Y,Y=T2/2.) T3=H=PLW(X+Y,Y=T2/2.) T4=H=PLW(X+Y,Y=T3) Y= Y4(T1+2.*T2+2.*T3+T4)/6. X=X+H VEC(1)=Y RFTURN	D14EMS1DN VECILI RK2 H2=H/2. RK2 Y=YI RK2 Y=YI RK2 V=VI RK2 D0 2 [=1,N RK2 D0 1 [=1,K RK2 T1=H=PUM1K+V1 RK2 T1=H=PUM1K+V1 RK2 T3=H4PUM1K+V1(x+T1/2.) RK2 T3=H4PUM1K+V1(x+T1/2.) RK2 T3=H4PUM1K+V1(x+T1/2.) RK2 T3=H4PUM1K+V1(x+T1/2.) RK2 T3=H4PUM1K+V+T1/2.) RK2 T4=T4PUT1+V RK2 T4=T4PUT1+V RK2 T4=T4PUT1+V RK2 T4=T4PUT1+V RK2 T4=T4PUT1+V RK2 T4=T4PUT1+V RK2

<u>RKGS</u>

This subroutine uses the Runge-Kutta method for the solution of initial-value problems.

The purpose of the Runge-Kutta method is to obtain an approximate solution of a system of firstorder ordinary differential equations with given initial values. It is a fourth-order integration procedure which is stable and self-starting; that is, only the functional values at a single previous point are required to obtain the functional values ahead. For this reason it is easy to change the step size h at any step in the calculations. On the other hand, each Runge-Kutta step requires the evaluation of the right-hand side of the system four times, which is a great disadvantage compared with other methods of the same order of accuracy, especially predictorcorrector methods. Another disadvantage of the method is that neither the truncation errors nor estimates of them are obtained in the calculation procedure. Therefore, control of accuracy and adjustment of the step size h is done by comparison of the results due to double and single step size 2h and h.

Given the system of first-order ordinary differential equations:

$$y_{1}^{\prime} = \frac{dy_{1}}{dx} = f_{1} (x, y_{1}, y_{2}, \dots, y_{n})$$

$$y_{2}^{\prime} = \frac{dy_{2}}{dx} = f_{2} (x, y_{1}, y_{2}, \dots, y_{n})$$

$$\dots$$

$$y_{n}^{\prime} = \frac{dy_{n}}{dx} = f_{n} (x, y_{1}, y_{2}, \dots, y_{n})$$

and the initial values:

$$y_1(x_0) = y_{1,0}, y_2(x_0) = y_{2,0}, \dots, y_n(x_0) = y_{n,0}$$

and using the following vector notations:

$$\mathbf{Y}(\mathbf{x}) = \begin{pmatrix} \mathbf{y}_{1}(\mathbf{x}) \\ \mathbf{y}_{2}(\mathbf{x}) \\ \cdot \\ \cdot \\ \cdot \\ \mathbf{y}_{n}(\mathbf{x}) \end{pmatrix}, \quad \mathbf{F}(\mathbf{x}, \mathbf{Y}) = \begin{pmatrix} \mathbf{f}_{1}(\mathbf{x}, \mathbf{Y}) \\ \mathbf{f}_{2}(\mathbf{x}, \mathbf{Y}) \\ \cdot \\ \cdot \\ \cdot \\ \mathbf{f}_{n}(\mathbf{x}, \mathbf{Y}) \end{pmatrix}, \quad \mathbf{Y}_{0} = \begin{pmatrix} \mathbf{y}_{1, 0} \\ \mathbf{y}_{2, 0} \\ \cdot \\ \cdot \\ \mathbf{y}_{n, 0} \end{pmatrix}$$

where Y, F and Y_0 are column vectors, the given problem appears as follows:

$$Y' = \frac{dY}{dx} = F(x, Y) \text{ with } Y(x_0) = Y_0$$

With respect to storage requirements and compensation of accumulated roundoff errors, Gill's modification of the classical Runge-Kutta formulas is preferred. Thus, starting at x_0 with $Y(x_0) = Y_0$ and vector Q0 = 0, the resulting vector $Y4 = Y(x_0+h)$ is computed by the following formulas:

$$K_{1} = h F(x_{0}, Y_{0}) ; Y_{1} = Y_{0} + \frac{1}{2}(K_{1} - 2Q_{0})$$

$$Q_{1} = Q_{0} + 3\left[\frac{1}{2}(K_{1} - 2Q_{0})\right] - \frac{1}{2}K_{1}$$

$$K_{2} = h F(x_{0} + \frac{h}{2}, Y_{1}) ; Y_{2} = Y_{1} + (1 - \sqrt{\frac{1}{2}})(K_{2} - Q_{1})$$

$$Q_{2} = Q_{1} + 3\left[(1 - \sqrt{\frac{1}{2}})(K_{2} - Q_{1})\right] - (1 - \sqrt{\frac{1}{2}})K_{2}$$
(1)

$$K_{3} = h F(x_{0} + \frac{h}{2}, Y_{2}) ; Y_{3} = Y_{2} + (1 + \sqrt{\frac{1}{2}})(K_{3} - Q_{2})$$

$$Q_{3} = Q_{2} + 3 \left[(1 + \sqrt{\frac{1}{2}})(K_{3} - Q_{2}) \right] - (1 + \sqrt{\frac{1}{2}})K_{3}$$

$$K_{4} = h F(x_{0} + h, Y_{3}) ; Y_{4} = Y_{3} + \frac{1}{6} (K_{4} - 2Q_{3})$$

$$Q_{4} = Q_{3} + 3 \left[\frac{1}{6} (K_{4} - 2Q_{3}) \right] - \frac{1}{2}K_{4}$$

where K_1 , K_2 , K_3 , K_4 , Y_1 , Y_2 , Y_3 , Y_4 , Q_1 , Q_2 , Q_3 , Q_4 are all column vectors with n components. If the procedure were carried out with infinite precision (that is, no rounding errors), vector Q_4 defined above would be zero. In practice this is not true, and Q_4 represents approximately three times the roundoff error in Y_4 accumulated during one step. To compensate for this accumulated roundoff, Q_4 is used as Q_0 for the next step. Also ($x_0 + h$) and Y_4 serve as x_0 and Y_0 respectively at the next step.

For initial control of accuracy, an approximation for $Y(x_0 + 2h)$ called Y(2) $(x_0 + 2h)$ is computed using the step size 2h, and then an approximation called Y(1) $(x_0 + 2h)$, using two times the step size h. From these two approximations, a test value δ for accuracy is generated in the following way:

$$\delta = \frac{1}{15} \sum_{i=1}^{n} a_{i} \cdot |y_{i}^{(1)} - y_{i}^{(2)}| \qquad (2)$$

where the coefficients ai are error-weights specified in the input of the procedure.

Test value δ is an approximate measure for the local truncation error at point x₀+2h. If δ is greater than a given tolerance ϵ_2 , increment h is halved and the procedure starts again at the point x₀. If δ is less than ϵ_2 , the results Y(1) (x₀+h) and Y(1) (x₀+2h)

are assumed to be correct. They are then handed, together with $x_0 + h$ and $x_0 + 2h$ and the derivatives at these points -- that is, the values of $F[x_0 + h, Y^{(1)}(x_0+h)]$ and $F[x_0+2h, Y^{(1)}(x_0+2h)]$ respectively -- to a user-supplied output subroutine.

If δ is less than $\epsilon_1 = \epsilon_2/50$, the next step is carried out with the doubled increment. However, care is taken in the procedure that the increment never becomes greater than the increment h specified as an input parameter, and further that all points $x_0 + jh$ (where j = 1, 2, ...) which are situated between the lower and upper bound of the integration interval are included in the output. Finally, the increment of the last step of the procedure is chosen in such a way that the upper bound of the integration interval is reached exactly.

The entire input of the procedure is:

1. Lower and upper bound of the integration interval, initial increment of the independent variable, upper bound ϵ_2 of the local truncation error.

2. Initial values of the dependent variables and weights for the local truncation errors in each component of the dependent variables.

3. The number of differential equations in the system.

4. As external subroutine subprograms, the computation of the right-hand side of the system of differential equations; for flexibility in output, an output subroutine.

5. An auxiliary storage array named AUX with 8 rows and n columns.

Output is done in the following way. If a set of approximations to the dependent variables Y(x) is found to be of sufficient accuracy, it is handed -together with x, the derivative F[x, Y(x)], the number of bisections of the initial increment, the number of differential equations, the lower and upper bound of the interval, the initial step size, error bound ϵ_2 , and a parameter for terminating subroutine RKGS -- to the output subroutine. Because of this output subroutine, the user has the opportunity to choose his own output format, to handle the output values as he wants, to change the upper error bound, and to terminate subroutine RKGS at any output point. In particular, the user is able to drop the output of some intermediate points. printing only the result values at the special points $x_0 + nh (n = 0, 1, 2, ...)$. The user may also perform intermediate computation using the integration results before continuing the process.

For better understanding of the flowchart and of the FORTRAN program, the following figure shows the allocation of special intermediate result vectors within the storage array AUX.

For reference see A. Ralston/H.S. Wilf, <u>Mathe-</u> matical Methods for Digital Computers, Wiley, New York/London, 1960, pp. 110-120. AUX

function vector Y(x)	1. row (AUX (1) in flowchart)
derivative vector F(×, Y(x))	2. row (AUX (2) in flowchart)
vector of accumulated roundoff at point x	3. row (AUX (3) in flowchart)
function vector Y(x+2h) for testing purposes	4. row (AUX (4) in flowchart)
function vector Y(x+h)	5. row (AUX (5) in flowchart)
vector of accumulated roundoff at point x + h	6. row (AUX (6) in flowchart)
derivative vector F(x+h, Y(x+h))	7. row (AUX (7) in flowchart)
vector of error weights multiplied by 1/15	8. row (AUX (8) in flowchart)

Storage allocation in auxiliary storage array AUX (RKGS)

Subroutine RKGS

Purpose:

To solve a system of first-order ordinary differential equations with given initial values.

Usage:

CALL RKGS(PRMT, Y, DERY, NDIM, IHLF, FCT, OUTP, AUX) Parameters FCT and OUTP require an external statement.

Description of parameters:

- PRMT An input and output vector with dimension greater than or equal to 5, which specifies the parameters of the interval and of accuracy and which serves for communication between the output subroutine (furnished by the user) and subroutine RKGS. Except for PRMT(5), the components are not destroyed by subroutine RKGS and they are:
- PRMT(1) Lower bound of the interval (input).
- PRMT(2) Upper bound of the interval (input).
- PRMT(3) Initial increment of the independent variable (input).
- PRMT(4) Upper error bound (input). If absolute error is greater than PRMT(4), the increment gets halved. If the increment is less than PRMT(3) and absolute error less than PRMT(4)/50, the increment gets doubled. The user may change PRMT(4) in his output subroutine.

- PRMT(5) No input parameter. Subroutine RKGS initializes PRMT(5)=0. If the user wants to terminate subroutine RKGS at any output point, he must change PRMT(5) to nonzero in subroutine OUTP. Further components of vector PRMT can be made available if its dimension is defined greater than 5. However subroutine RKGS does not require this. Nevertheless, they may be useful for handling result values to the main program (calling RKGS) which are obtained by special manipulations with output data in subroutine OUTP.
- Y Input vector of initial values (destroyed). On return, Y is the resultant vector of dependent variables computed at intermediate points X.
- DERY Input vector of error weights (destroyed). The sum of its components must equal 1. On return, DERY is the vector of derivatives of function values Y at points X.

NDIM - An input value which specifies the number of equations in the system.

IHLF - An output value which specifies the number of bisections of the initial increment. When IHLF is greater than 10, subroutine RKGS exits to the main program with error message IHLF=11. Other error messages are:

> IHLF=12; PRMT(3)=0 or PRMT(1)=PRMT(2) IHLF=13; SIGN(PRMT(3)) is not equal to SIGN(PRMT(2)-PRMT (1)).

- FCT The name of the external subroutine used. This subroutine computes the right-hand side, DERY, of the system for given values X and Y. Its parameter list must be X, Y, DERY. Subroutine FCT should not destroy X and Y.
- OUTP The name of the external output subroutine used. Its parameter list must be X, Y, DERY, IHLF, NDIM, PRMT. None of these parameters (except, if necessary, PRMT(4), PRMT(5),...) should be changed by subroutine OUTP. If PRMT(5) is changed to nonzero, subroutine RKGS is terminated.

AUX - An auxiliary storage array with 8 rows and NDIM columns.

Remarks:

The procedure terminates and returns to the calling program, if

- 1. More than 10 bisections of the initial increment are necessary to get satisfactory accuracy (error message IHLF=11).
- 2. The initial increment is equal to 0 or has the wrong sign (error messages IHLF=12 or IHLF=13).
- 3. The integration interval is exhausted.
- Subroutine OUTP has changed PRMT(5) to nonzero.
- Subroutines and function subprograms required: The external subroutines FCT(X, Y, DERY) and OUTP(X, Y, DERY, IHLF, NDIM, PRMT) must be furnished by the user.

Method:

c

c

c

c

Evaluation is done by means of fourth-order Runge-Kutta formulae using the modification due to Gill. Accuracy is tested comparing the results of the procedure with the increment.

Subroutine RKGS automatically adjusts the increment during the whole computation by halving or doubling. If more than 10 bisections of the increment are necessary to get satisfactory accuracy, the subroutine returns with error message IHLF=11 to the main program.

To get full flexibility in output, an output subroutine must be furnished by the user.

```
SUBROUTINE RKGS(PRMT+Y+DERY+NDIM+IHLF+FCT+OUTP+AUX)
DIMENSION Y(1)+DERY(1)+AUX(8+1)+A(4)+B(4)+C(4)+PRMT(5)
DO 1 =1+NDIM
AUX(8+)==066666667*DERY(1)
X==0RWT(1)
Y=NOPRMT(2)
H=PRMT(3)=0
CALL FCT(X+Y+DERY)
ERROR TEST
IF(H+(XEND=X))38+37+2
PREPARATIONS FCR RUNGE=KUTTA METHOD
A(1)==5
A(2)=292R932
A(3)=1+070107
A(4)==1666667
1
      A(4)=+1666667
B(1)=2+
      B(2)=1.
B(3)=1.
     C(2)=.2928932
C(3)=1.707107
C(4)=.5
     C(4)=.5
PREPARATIONS OF
DO 3 I=1.NDIM
AUX(1.1)=Y(1)
AUX(2.1)=DERY(I)
AUX(3.1)=0
                                                  FIRST RUNGE-KUTTA STEP
           X(6+1)=0.
       IREC=0
      IHLF=-1
ISTEP=0
     IEND=0
START OF
IF((X+H-X
H=XEND=X
IEND=1
                            A RUNGE-KUTTA STEP
XEND)+H)7+6+5
     RECORDING OF INITIAL VALUES OF THIS STEP
CALL OUTP(X+Y+DERY+IREC+NDIM+PRMT)
IF(PRMT(5))40+8+40
7
        TEST
       ISTEP=ISTEP+1
START OF INNERMOST RUNGE-KUTTA LOOP
    J=1
AJ=A(J)
BJ=B(J)
T'=C(J)
      CJ=C(J)
20 11 1=1+NDIM
```

		R1=H+DERY(I)	RKGS	51
		R2=AJ*(R1-BJ*AUX(6+1))	RKGS	52
		Y(1)=Y(1)+R2	RKGS	53
		R2=R2+R2+R2	RKGS	54
	11	AUX(6+1)=AUX(6+1)+R2=CJ*R1	RKG5	55
		IF(J=4)12+15+15	RKGS	56
	12	1+1	RKGS	57
	••	IF(J-3)13,14,13	RKGS	58
	13	X=X+.5+H	RKGS	59
	14	CALL FCT(X+Y+DERY)	RKGS	60
		6010 10	RKGS	61
c		END OF INNERMOST RUNGE-KUTTA LOOP	RKGS	62
ċ		TEST OF ACCURACY	RKGS	63
	15	IF(1TEST)16+16+20	RKGS	64
c		IN CASE ITEST=0 THERE IS NO POSSIBILITY FOR TESTING OF ACCURACY	RKGS	65
	16	DO 17 I=l+NDIM	RKGS	66
	17		RKGS	67
		ITEST=1	RKGS	68
		ISTEP=ISTEP+ISTEP+2	RKGS	69
	18	1HLF=1HLF+1	RKGS	70
		X=X+H	RKGS	71
		Hastel	RKGS	72
		DO 19 I=1.NDIM	RKGS	73
		Y([}=AUX(1+1)	RKGS	74
		DERY(I)=AUX(2+I)	RKGS	75
	19	AUX(6+I)=AUX(3+I)	RKGS	76
		GOTO 9	RKGS	77
c		IN CASE ITEST=1 TESTING OF ACCURACY IS POSSIBLE	RKGS	78
	20	IMOD=1STEP/2	RKGS	79
		IF(ISTEP-IMOD-IMOD)21+73+21	RKGS	80
	21	CALL FCT(X,Y,DERY)	RKGS	81
		DO 22 1=1+ND14	RKGS	82 83
		AUX(5+1)=Y(1)		
	22	AUX(7,1)=DERY(1)	RKGS	84
		GOTO 9	RKGS	85
c		COMPUTATION OF TEST VALUE DELT	RKGS	86 87
	23	DELT=0.	RKGS	86
		00 24 I=1+NDIM	RKGS	89
	24	DELT=DELT+AUX(8+1)*ABS(AUX(4+1)-Y(1))	RKG5 RKGS	90
		1F(DELT-PRYT(4))28+28+25	RKGS	91
c		ERROR IS TOO GREAT	RKGS	92
	25	1F(1HLF-10)26+36+36	RKGS	93
	26	DO 27 I=1.NDIM	RKGS	94
	27	AUX(4,1)=AUX(5,1)	RKGS	95
		ISTEP=ISTEP+ISTEP=4 X=X-H	RKGS	96
		IEND=0	RKGS	97
			RKGS	98
c		GOTO 18 RESULT VALUES ARE GOOD	RKG5	99
	28	CALL FCT(X,Y+DERY)	RKGS	100
	20	DO 29 I=1+NDIM	RKGS	101
		AUX(1+1)=Y(1)	RKGS	102
		AUX(2+1)=DERY(1)	RKGS	103
		AUX (3+1/=AUX(6+1)	RKGS	104
		Y(I)=AUX(5+1)	R×GS	105
	20	DERY(])=AUX(7+1)	RKGS	106
	29	CALL OUTP (X-H+Y+DERY+IHLF+NDIM+PRMT)	RKGS	107
		1F(PRMT(5))40+30+40	RKGS	108
	20	DO 31 [=1+NDI4	RKGS	109
	50	Y(1)=AUX(1+1)	R×GS	110
	3)	DERY(1)=AUX(2+1)	RKGS	
		IREC=IMLF	RKGS	112
		1F(1END)32+32+39	RKGS	119
с		INCREMENT GETS DOUBLED	RKGS	114
•	32	IHLF=IHLF-1	RKGS	115
		1STEP=ISTEP/2	RKGS	116
		Halleh	RKGS	117
		IF(IHLF)4,33,33	RKGS	118
	33	IMOD=1STEP/2	RKG5	119
		IF(ISTEP-IMOD-1MOD)4+34+4	RKG5	120
	34	IF (DELT-+02*PRMT(4))35+35+4	RKGS RKGS	121
	35	IHLF=IHLF=1	RKGS	122
		ISTEP=ISTEP/2	REGS	123
		H=H+H	RKGS	125
-		GOTO 4	RKGS	126
c	-	RETURNS TO CALLING PROGRAM	RKGS	127
	36	IHLF=11	RKGS	128
		CALL FCT(X+Y+DERY)	RKGS	129
		GOTO 39	RKGS	130
	37	IHLF=12	RKGS	131
	28	GOTO 39 IHLF=13	RKGS	132
		CALL OUTP (X.Y.DERY.IHLF.NDIM.PRMT)	RKGS	
		RETURN	RKGS	134
	40	END	RKGS	135

Mathematics - Fourier Analysis

FORIF

This subroutine produces the Fourier coefficients for a given periodic function.

- Given: 1. A function f(x) for values of x between 0 and 2 π
 - 2. N the spacing desired such that the interval is $2\pi/(2N+1)$
 - 3. M the desired order of the Fourier coefficients, $0 \le M \le N$.

The coefficients of the Fourier series that approximate the given function are calculated as follows:

$$C_1 = \cos\left(\frac{2\pi}{2N+1}\right) \tag{1}$$

$$S_{1} = \sin\left(\frac{2\pi}{2N+1}\right)$$

$$U_{2} = 0$$

$$U_{1} = 0$$

$$C = 1$$

$$S = 0$$

$$J = 1$$
(2)

The following recursive sequence is used to compute U_0 , U_1 , and U_2 :

$$U_{0} = f\left(\frac{2m\pi}{2N+1}\right) + 2 C U_{1} - U_{2}$$
(3)
$$U_{2} = U_{1}$$
$$U_{1} = U_{0}$$

for values of $m = 2N, 2N-1, \ldots, 1$

The coefficients are then:

$$A_{J} = \frac{2}{2N+1} \left(f(0) + C U_{1} - U_{2} \right)$$
(4)

$$B_{J} = \frac{2}{2N+1} S U_{1}$$
(5)

The values of C and S are updated to:

$$Q = C_1 C - S_1 S$$
$$S = C_1 S + S_1 C$$
$$C = Q$$

J is stepped by 1 and the sequence starting at equation (3) is now repeated until M+1 pairs of coefficients have been computed.

Subroutine FORIF

Purpose:

Fourier analysis of a given periodic function in the range $0-2\pi$.

Computes the coefficients of the desired number of terms in the Fourier series F(X) = A(0) +SUM(A(K)COS KX+B(K)SIN KX) where K=1, 2, ..., M to approximate the computed values of a given function subprogram. Usage:

CALL FORIF (FUN, N, M, A, B, IER)

Description of parameters:

- FUN Name of function subprogram to be used for computing data points.
- N Defines the interval such that 2N+1points are taken over the interval $(0, 2\pi)$. The spacing is thus $2\pi/(2N+1)$.
- M The maximum order of the harmonics to be fitted.
- A Resultant vector of Fourier cosine coefficients of length M+1; i.e., A_0, \ldots, A_M .
- B Resultant vector of Fourier sine coefficients of length M+1; i.e., B₀, ..., B_M.
- IER Resultant error code where:

IER=0	No error.
IER=1	N not greater than or
	equal to M.
$\mathbf{IER}=2$	M less than 0.

Remarks:

M must be greater than or equal to zero. N must be greater than or equal to M. The first element in vector B is zero in all cases.

Subroutines and function subprograms required:

FUN - Name of user function subprogram used for computing data points.

Calling program must have FORTRAN EXTER-NAL statement containing names of function subprograms listed in call to FORIF.

Method:

Uses recursive technique described in A. Ralston, H. Wilf, 'Mathematical Methods for Digital Computers', John Wiley and Sons, New York, 1960, Chapter 24. The method of indexing through the procedure has been modified to simplify the computation.

			FORIF	1	
		SUBROUTINE FORIF(FUN,N,M,A,B,IER)			
		DIMENSION A(1),8(1)	FORTF	2	
C		CHECK FOR PARAMETER ERRORS	FORTF	3	
		IER=0	FORTF	•	
	20	(F(M) 30.40.40	FORIF	- 5	
		IER=2	FORIF	6	
	30	RETURN	FORIF	7	
		[F(M-N) 60.60.50	FORIF		
			FORIF		
	50	IER=1	FORTE	10	
		RFTURN	FORIE	ii.	
С		COMPUTE AND PRESET CONSTANTS	FORTE	12	
	60	AN=N	FORIE	15	
		COEF=2.0/12.0*AN+1.0)			
		CONST=3.141593+CJEF		14	
		SI=SIN(CONST)		15	
		C1=COS(CONST)		16	
		C=1.0	FORIF	17	
		5=0.0	FORTF	18	
		J=1	FORTF	19	
		FUNZ=FUN(0.0)	FORTF	20	
		UZ=0.0	FORIF	21	
	10	U1=0.0		22	
				23	
		AI=CON FORM FOURTER COEFFICIENTS RECURSIVELY	FORTE		
c			FORIF		
	75	x=AI#CONST		26	
		U0=FUN(x)+2.0+C+J2-U2			
		U2=U1	FORIF		
		UL-U0		28	
		A1=A1-1.0		29	
		IFIAI1 80.80.75	FORIF		
	80	A[J]=COEF+(FUNZ+C+U1-U2)	FORIF	31	

	8111+C0EF+S+U1
	1F1J-18+131 90-100.100
90	Q=C1+C-S1+S
	S=C1#5+S1#C
	C=0
	J=J+1
	GO TO 70
00	A(1)=A(1)+0.5
	RETURN
	END

FORIF 32 FORIF 33 FORIF 34 FORIF 36 FORIF 36 FORIF 30 FORIF 39 FORIF 40 FORIF 41

FORIT

This subroutine produces the Fourier coefficients of a tabulated function.

- Given: 1. Tabulated values of a function f(x) for x between 0 and 2π in steps of $2\pi/(2N+1)$
 - 2. N such that there are 2N+1 tabulated data points: $2K\pi/2N+1$, $K = 0, 1, 2, \dots, 2N$
 - 3. M the desired order of the Fourier coefficients where $0 \le M \le N$

The coefficients of the Fourier series which approximate the given function are calculated as follows:

$$C_1 = \cos\left(\frac{2\pi}{2N+1}\right) \tag{1}$$

$$S_1 = \sin\left(\frac{2\pi}{2N+1}\right) \tag{2}$$

$$U_2 = 0$$
$$U_1 = 0$$
$$C = 1$$
$$S = 0$$
$$J = 1$$

The following recursive sequence is used to compute U_0 , U_1 , and U_2 :

$$U_{0} = f\left(\frac{2m\pi}{2N+1}\right) + 2CU_{1} - U_{2}$$
(3)
$$U_{2} = U_{1}$$
$$U_{1} = U_{0}$$

for values of $m = 2N, 2N-1, \ldots, 1$

The coefficients are then:

$$A_{J} = \frac{2}{2N+1} \left(f(0) + C U_{1} - U_{2} \right)$$
(4)

$$B_{J} = \frac{2}{2N+1} S U_{1}$$
 (5)

The values of C and S are updated to:

$$Q = C_1 C - S_1 S$$
$$S = C_1 S + S_1 C$$
$$C = Q$$

J is stepped by 1 and the sequence starting at equation (3) is now repeated until M+1 pairs of coefficients have been computed.

Subroutine FORIT

Purpose:

Fourier analysis of a periodically tabulated function.

Computes the coefficients of the desired number of terms in the Fourier series F(X) = A(0)+SUM(A(K)COS KX+B(K)SIN KX) where K=1, 2, ..., M to approximate a given set of periodically tabulated values of a function.

Usage:

CALL FORIT (FNT, N, M, A, B, IER)

Description of parameters:

- FNT Vector of tabulated function values of length 2N+1.
- N Defines the interval such that 2N+1points are taken over the interval $(0, 2\pi)$. The spacing is thus $2\pi/(2N+1)$.
- M Maximum order of harmonics to be fitted.
- A Resultant vector of Fourier cosine coefficients of length M+1; i.e., A_0, \ldots, A_M .
- B Resultant vector of Fourier sine coefficients of length M+1; i.e., B₀, ..., B_M.

IER - Resultant error code where:

IER=0 No error.

IER=1 N not greater or equal to M.

IER=2 M less than 0.

Remarks:

M must be greater than or equal to zero.

N must be greater than or equal to M.

The first element of vector B is zero in all cases.

Subroutines and function subprograms required: None.

Method:

Uses recursive technique described in A. Ralston, H. Wilf, 'Mathematical Methods for Digital Computers', John Wiley and Sons, New York, 1960, Chapter 24. The method of indexing through the procedure has been modified to simplify the computation.

	SUBROUTINE FORITIFNT, N, M, A, B, JER)	FORIT 1
	DIMENSION ATT, B(1), FNT(1)	FORIT 2
С	CHECK FOR PARAMETER ERRORS	FORIT 3
	I ER=0	FORIT 4
	D 1F(M) 30,40,40	FORIT 5
3	O JER=2	FORIT 6
	RETURN	FORTT 7
	0 [F[4-N] 60,60,50	FORIT 8
5	0 [ER=1	FORIT 9
	RETURN	FORIT 10
с	COMPUTE AND PRESET CONSTANTS	FORIT 11
6	D AN=N	FORIT 12
	COEF=2.0/(2.0*AN+1.0)	FORIT 13
	CUNST=3.141593*CDFF	FORIT 14
	S1=SIN(CONST)	FORIT 15
	C1=COS(CONST)	FORIT 16
	C=1.0	FORIT 17
	S=0.0	FORIT 18
	1=1	FORT 19
	FNTZ=FNT(1)	FORIT 20
7	0 U2=0.0	FORIT 21
	U1=0.0	FORIT 22
	[=2*N+]	FORIT 23
C	FORM FOURIER CREFFICIENTS RECURSIVELY	FORIT 24
7	5 UO=FNT([]+2.0*C*J1-U2	FORIT 25
	U2=U1	FORIT 26
	U1 ≈ U0	FORIT 27
	1=1-1	FORIT 28
	IF(I-1) 80,80,75	FORIT 29
8	0 A(J)=COEF*(FNT2+C*U1-U2)	FORIT 30
	B(J)=COEF*S*U1	FORIT 31
	IF(J-(M+L)) 90,130,100	FORIT 32
91	D Q=C1+C-51+S	FORIT 33
	S=C1*S+S1*C	FORIT 34
	C=D	FORTT 35
]+L=L	FORIT 36
	GO TO 70	FORIT 37
100	0 A(I)=A(1)+0.5	FORIT 38
	RETURN	FORIT 39
	END	FORIT 40

Mathematics - Special Operations and Functions

GAMMA

This subroutine computes the value of the gamma function for a given argument x.

Calculation of the Gamma Function. Γ (x) is defined for x > 0 by:

$$\Gamma (x) = \int_0^\infty t^{x-1} \cdot e^{-t} dt$$
 (1)

This function satisfies the recurrence relation:

 $\Gamma(\mathbf{x}) = (\mathbf{x}-1) \cdot \Gamma(\mathbf{x}-1) \tag{2}$

which defines $\Gamma(x)$ for any x not a negative integer.

Note that when x is a positive integer $\Gamma(x) = (x-1)!$

To compute $\Gamma(x)$ for x > 1, apply the recurrence (2), r times until $1 < x - r = y \le 2$. Thus, for x > 1

$$\Gamma$$
 (x) = (x-1) (x-2) ... (x-r) Γ (y) (3)

 $\Gamma(y)$ is computed from the following formula:

$$\Gamma(y) \approx 1 - 0.57710166(y-1) + 0.98585399(y-1)^2$$

- 0.87642182(y-1)³ + 0.83282120(y-1)⁴

Mathematics - Fourier Analysis 97

$$- 0.56847290(y-1)^{5} + 0.25482049(y-1)^{6}$$
$$- 0.05149930(y-1)^{7}$$
(4)

For x < 1, the recurrence (2) is taken in the direction of decreasing n, giving

$$\Gamma(x) = \frac{\Gamma(y)}{x(x+1) (x+2) \dots (x+r-1)}$$
(5)

where $1 < x + r = y \le 2$.

As before, Γ (y) is computed using equation (4).

Subroutine GAMMA

Purpose:

Computes the gamma function for a given argument.

Usage:

CALL GAMMA(XX, GX, IER)

Description of parameters:

- XX The argument for the gamma function.
- GX The resultant gamma function value.
- IER Resultant error code where:

IER=0	No error.
IER=1	XX is within.000001 of be-
	ing a negative integer.
IER=2	XX is greater than 34.5
	GX is set to 1.0E38

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

The recursion relation and polynomial approximation by C. Hastings, Jr., 'Approximations for Digital Computers', Princeton University Press, 1955.

		SUBROUTINE GAMMA(XX+GX+IER)	GAMMA	1
		1F(XX-34,5)6.6.4	GAMMAM	401
		IER=2	GAMMAN	102
	-	GX=1.E38	GAMMAM	103
		RETURN	GAMMAN	104
			GAMMAN	105
	•	X=XX ERR=1.0E=6	GAMMA	3
		IEK=Q	GAMMA	Ā
			GAMMA	5
		GX=1.0	GAMMA	6
		IF(X=2+0}50+50+15 IF(X=2+0)110+110+15	GAMMA	7
			GAMMA	ė
	12	X=X-1.0 GX=GX*X	GAMMA	ē.
		GO TO 10		10
		IF(X=1+0)60+120+110	GAMMA	ĩĩ
c		SEE IF X IS NEAR NEGATIVE INTEGER OR ZERO	GAMMA	12
c			GAMMA	
		IF (X-ERR) 62+62+80	GAMMA	
	62		GAMMA	
		Y=FLOAT(K)-X	GAMMA	
		IF (ABS(Y)-ERR)130+130+64	GAMMA	
		IF(1.0-Y-ERR)130,130,70	GAMMA	
c		X NOT NEAR A NEGATIVE INTEGER OR ZERO	GAMMA	
		IF(X=1+0)80+80+110	GANMA	
	80	GX=GX/X	GAMMA	
		x=x+1.0	GAMMA	
		GO TO 70	GAMMA	
	110	Y=X=1.0	GAMMA	
		GY=1.0+Y*1-0.5771017+Y*1+0.9858540+Y*1-0.8764218+Y*1+0.8328212+	GAMMA	
		1Y*(-0.5684729+Y*(+0.2548205+Y*(-0.05149930))))))))))	GAMMA	
		GX=GX+GY	GAMMA	
	120	RETURN	UAMMA	e (

GAMMA 28 Gamma 29 Gamma 30

LEP

This subroutine computes the values of the Legendre polynomials for a given argument x and orders zero up to N. The Legendre polynomial $P_n(x)$ satisfies the recurrence equation

$$P_{n+1}(x) = ((2n+1) \cdot x \cdot P_n(x) - n \cdot P_{n-1}(x))/(n+1)$$

with starting values $P_0(x) = 1$, $P_1(x) = x$.

For reasons of economy and numerical stability the recurrence equation is used in the form:

$$P_{n+1}(x) = x \cdot P_n(x) - P_{n-1}(x) + x \cdot P_n(x)$$

- $(x \cdot P_n(x) - P_{n-1}(x))/(n+1)$

For large values of n the last term is negligible, giving the approximation:

$$P_{n+1}(x) = 2 \cdot x \cdot P_n(x) - P_{n-1}(x)$$

This form shows that roundoff errors grow at worst linearly, assuming that the argument x is absolutely less than one.

If e_{n+r} is the error in P_{n+r} (x) due to a single rounding error e in $P_n(x)$, the approximation is

$$e_{n+r+1} = 2 \times \cdot e_{n+r} - e_{n+r-1}$$

with initial conditions $e_n = e$, $e_{n-1} = 0$. The solution of this difference equation has its maximum for $|\mathbf{x}| = 1$:

$$e_{n-1} = 0, e_n = e, |e_{n+1}| = 2e, ..., |e_{n+r}|$$

= (r + 1)e

The order is assumed to be zero for negative values of N.

Subroutine LEP

Purpose:

Compute the values of the Legendre polynomials P(N, X) for argument value X and orders 0 to N.

Usage:

CALL LEP(Y, X, N)

Description of parameters:

- Y Result vector of dimension N+1 containing the values of Legendre polynomials of order 0 to N for given argument X. Values are ordered from low to high order.
- X Argument of Legendre polynomial.
- N Order of Legendre polynomial.

Remarks:

N less than 0 is treated as if N were 0.

Subroutines and function subprograms required: None.

Method:

c

Evaluation is based on the recurrence equation for Legendre polynomials P(N, X);

P(N+1, X)=2*X*P(N, X)-P(N-1, X)-(X*P(N, X)-P(N-1, X))/(N+1), where the first term in brackets is the order, and the second is the argument.

Starting values are P(0, X)=1, P(1, X)=X.

 SUBROUTINE LEP(Y*X*N)
 LEP
 1

 DIMENSION YI11
 LEP
 2

 TEST OF ORDER
 LEP
 3

 L1=1
 LEP
 MO2

 2/22
 LEP
 MO2

 Y1(L)=1*0
 LEP
 MO2

 1 RETURN
 LEP
 6

 2 Y1(L)=1*
 LEP
 6

 1 RETURN
 LEP
 8

 3 D0 4 102:N
 LEP
 8

 3 D0 4 102:N
 LEP
 10

 4 Y112:N=GG*Y(1)
 -(G=Y(1-1))/FLOAT(1)*G
 LEP

 RTURN
 LEP
 12

 END
 L/1
 -(G=Y(1-1))/FLOAT(1)*G
 LEP

BESJ

This subroutine computes the J Bessel function for a given argument and integer order by using the recurrence relationship:

$$\mathbf{F}_{n+1}(\mathbf{x}) + \mathbf{F}_{n-1}(\mathbf{x}) = \left(\frac{2n}{x}\right) \mathbf{F}_n(\mathbf{x}) \tag{1}$$

The desired Bessel function is:

$$J_{n}(x) = \frac{F_{n}(x)}{\alpha}$$
(2)

where

$$\alpha = F_0(x) + 2 \sum_{m=1}^{M-2} F_{2m}(x)$$
 (3)

M is initialized at Mo.

 M_0 is the greater of M_A and M_B where:

$$M_{A} = [x+6] \text{ if } x < 5 \text{ and } M_{A} = [1.4x+60/x] \text{ if}$$
$$x \ge 5.$$
$$M_{B} = [n+x/4+2]$$

 F_{M-2} , F_{M-3} , ..., F_2 , F_1 , F_0 is evaluated using equation (1) with $F_M = 0$ and $F_{M-1} = 10^{-30}$.

 α and $J_n(x)$ are then computed using equations (3) and (2) respectively.

The computation is repeated for M+3.

The values of $J_n(x)$ for M and M+3 are compared:

If
$$\left| J_{n}(x)_{M} - J_{n}(x)_{M+3} \right| \leq \delta \left| J_{n}(x)_{M+3} \right|$$

this value is accepted as $J_n(x)$; if not, the computation is repeated by adding 3 to M and using this as a new value for M. If M reaches M_{MAX} before the desired accuracy is obtained, execution is terminated. M_{MAX} is defined as:

$$M_{MAX} = \begin{cases} \left[20 + 10x - \frac{x^2}{3} \right] \text{ for } x \le 15 \\ \left[90 + x/2 \right] & \text{ for } x > 15 \end{cases}$$
(4)

Mathematics - Special Operations and Functions 99

Subroutine BESJ

Purpose:

Compute the J Bessel function for a given argument and order.

Usage:

CALL BESJ(X, N, BJ, D, IER)

Description of parameters:

- X The argument of the J Bessel function desired.
- N The order of the J Bessel function desired.
- BJ The resultant J Bessel function.
- D Required accuracy.
- IER Resultant error code where:

IER=0 No error.

- IER=1 N is negative.
- IER=2 X is negative or zero.
- IER=3 Required accuracy not
 - obtained.
- IER=4 Range of N compared to X not correct. (See Remarks.)

Remarks:

N must be greater than or equal to zero, but it must be less than

20+10*X-X** 2/3	for X less than or	equal to
	15;	
	a ==	

90+X/2 for X greater than 15.

Subroutines and function subprograms required: None.

Method:

Recurrence relation technique described by H. Goldstein and R. M. Thaler, 'Recurrence Techniques for the Calculation of Bessel Functions', M.T.A.C., V.13, pp.102-108 and I.A. Stegun and M. Abramowitz, 'Generation of Bessel Functions on High Speed Computers', M.T.A.C., V.11, 1957, pp.255-257.

	SUBROUTINE BESJ(X.N.BJ.D.IER)	BESJ	1	
	BJ=.0	BESJ	Ż	
	IF(N)10,20,20	BESJ	3	
10	IER=1	RESJ	4	
10	RETURN	BESJ	Ś	
20	IF(X)30,30,31	BESJ	6	
	IER#2	RESJ	7	
30	RETURN	RESJ	ġ	
••	IF(X-15.)32,32,34	BESJ	ģ	
	NTEST=20+10+*X-X** 2/3	BESJ	10	
32		BESJ	ii	
• •	GO TO 36	BESJ	12	
	NTEST=90.+X/2.	BESJ	13	
	IF (N-NTEST) 40, 38, 38			
38	1FR=4	BESJ	14	
	RETURN	BESJ	15	
40	1ER=0	BESJ	16	
	N 1 = N + 1	BESJ	17	
	BPREV=.0	BESJ	18	
	COMPUTE STARTING VALUE OF M	RESJ	19	
	1F(X-5, 150, 60, 60	BESJ	20	
50	MA=X+6.	BESJ	21	
	GO TO 70	BESJ	22	
60	MA=1.4#X+60./X	BESJ	23	
	MB=N+1F1X(X)/4+2	BESJ	74	
	MZERO=MA	BESJ	25	
	1F(MA-MB)80.90.97	BESJ	26	
80	M2ERO=48	AESJ	27	

	SET UPPER LIMIT OF M	
	MMAX=NTEST	
100	DO 190 M=MZERO, MMAX, 3	
	SET F(M),F(M-L)	
	FM1=1.0E-28	
	FM=.0	
	ALPHA=.0	
	LF(M-(M/2)+2)120,110,120	
110	JT=-1	
	GO TO 130	
	JT≖l	
130	M2=4-2	
	UN 160 K=1+M2	
	MK = M K	
	BMK=2.*FLOAT(MK)*FM1/X-FM	
	FM=FM1	
	FM1=BMK	
	IF (MK-N-1)150,140,150	
140	BJ=BMK	
150	II=−II	
	S=L+JT	
160	AL PHA= AL PHA+ BMK #5	
	BMK=2.*FM1/X-FM	
	[FIN]180,170,180	
170	B J= B MK	
180	AL PHA= AL PHA+ BMK	
	BJ=BJ/ALPHA	
	IF(ABS(BJ-BPREV)-ABS(D+BJ))200,200,190	
190	BPREV=8J	
	IER=3	
200	RETURN	
	ENID	

с

с

c

BESY

This subroutine computes the Y Bessel function for a given argument x and order n. The recurrence relation:

$$Y_{n+1}(x) = \left(\frac{2n}{x}\right) \cdot Y_n(x) - Y_{n-1}(x)$$
 (1)

is used for this evaluation.

For x > 4

$$Y_{0}(x) = \sqrt{\frac{2}{\pi x}} \left(P_{0}(x) \sin\left(x - \frac{\pi}{4}\right) + Q_{0}(x) \cos\left(x - \frac{\pi}{4}\right) \right)$$

$$Y_{1}(x) = \sqrt{\frac{2}{\pi x}} \left(-P_{1}(x) \cos\left(x - \frac{\pi}{4}\right) + Q_{1}(x) \sin\left(x - \frac{\pi}{4}\right) \right)$$
(2)
(3)

 $P_0(x), Q_0(x), P_1(x), and Q_1(x) are:$

$$\frac{1}{\sqrt{2\pi}} P_0\left(\frac{4}{t}\right) = 0.3989422793 - 0.0017530620t^2 + 0.0001734300t^4 - 0.0000487613t^6 + 0.0000173565t^8 - 0.0000037043t^{10}$$
(4)

$$\frac{1}{t\sqrt{2\pi}} Q_0 \left(\frac{4}{t}\right) = -0.124669441 + 0.0004564324t^2 -0.0000869791t^4 + 0.0000342468t^6 -0.0000142078t^8 + 0.0000032312t^{10}$$
(5)

$$\frac{1}{\sqrt{2\pi}} P_1\left(\frac{4}{t}\right) = 0.3989422819 + 0.0029218256t^2 \\ -0.0002232030t^4 + 0.0000580759t^6 \\ -0.0000200920t^8 + 0.0000042414t^{10}$$
(6)

$$\frac{1}{t\sqrt{2\pi}}Q_{1}\left(\frac{4}{t}\right) = 0.0374008364 - 0.0006390400t^{2} + 0.0001064741t^{4} - 0.0000398708t^{6} + 0.0000162200t^{8} - 0.0000036594t^{10}$$
(7)

where $t = \frac{4}{x}$

For $x \le 4$

$$Y_{0}(x) = \frac{2}{\pi} \sum_{m=0}^{15} (-1)^{m} \left(\frac{x}{2}\right)^{2m} \frac{1}{(m!)^{2}} \left[\log \frac{x}{2} + \gamma - H_{m}\right]$$
(8)

where

$$H_{m} = \sum_{r=1}^{m} \frac{1}{r} \text{ if } m \ge 1 = 0 \quad \text{if } m = 0 \quad (9)$$

and
$$\gamma$$
 = Euler's constant = 0.5772156649

$$Y_{1}(x) = -\frac{2}{\pi x} + \frac{2}{\pi} \sum_{m=1}^{16} (-1)^{m+1} \left(\frac{x}{2}\right)^{2m-1}$$
$$\frac{1}{m! (m-1)!} \cdot \left[\log \frac{x}{2} + \gamma - H_{m} + \frac{1}{2m}\right]$$
(10)

Subroutine BESY

Purpose:

Compute the Y Bessel function for a given argument and order.

Usage:

CALL BESY(X, N, BY, IER)

Description of parameters:

- X The argument of the Y Bessel function desired.
- N The order of the Y Bessel function desired.

- BY The resultant Y Bessel function. -
- IER ----Resultant error code where:

IER = 0	No error.
IER=1	N is negative.
IER=2	X is negative or zero.
IER=3	BY is greater than 10**36.

Remarks:

Very small values of X may cause the range of the library function ALOG to be exceeded. For N > 30 and $X \leq 5$, this condition may occur. X must be greater than zero.

N must be greater than or equal to zero.

Subroutines and function subprograms required: None.

Method:

Recurrence relation and polynomial approximation technique as described by A.J.M. Hitchcock, 'Polynomial Approximations to Bessel Functions of Order Zero and One and to Related Functions', M.T.A.C., V.11, 1957, pp.86-88, and G.N. Watson, 'A Treatise on the Theory of Bessel Functions', Cambridge University Press, 1958 p. 62.

	SUBROUTINE BESY (X+N+BY+IER)	BESY	
с		BESY	
	IF(N)180+10+10	BESY	
	10 IER=0	BESY	'4
	IF(X)190+190+20	BESY	5
¢	BRANCH IF X LESS THAN OR EQUAL 4	BESY	7
	20 1F(X-4.0)40.40.30	BESY	M05
c	COMPUTE YO AND Y1 FOR X GREATER THAN 4	BESY	9
	30 T1=4+0/X	BESY	M06
	T2=T1+T1	BESY	M07
	P0={{{{}-,0000037043*T2+,0000173565}*T2-,0000487613}	T2 BESY	MOB
	1 ++000173431+T2-+0017530621+T2++3989423	BESY	
	00=((((,0000032312*T2=.0000142078)*T2+.0000342468)*		
	10000869791)+72+.00045643241+7201246694	BESY	
	P1=((((.0000042414+T2=.0000200920)+T2+.0000580759)+		
	1000223203)+T2+.002921826)+T2+.3989423	BESY	
	Q1=({{(000036594*T2+.00001622)*T20000398708}*T		
		BESY	
	1 +.0001064741)*T20006390400)*T2+.03740084		
	A=2.0/SQRT(X)	BESY	
	B=A+T1	BESY	
	C=X7853982	BESY	
	Y0=A#P0#SIN(C)+R#Q0#COS(C)	BESY	
	Y1==A#P1#CO5(C)+B*O1#SIN(C)	BESY	
	GO TO 90	BESY	
с		BESY	
	40 XX=X/2.	BESY	
	x2=xx*xx	BESY	54
	T=ALOG(XX)++5772157	BESY	M21
	SUM=0.	BESY	56
	TERM=T	BESY	57
	YO=T	BESY	58
	DO 70 L=1+15	BESY	59
	1F(L-1)50,60,50	BESY	60
	50 SUM=SUM+1./FLOAT(L-1)	BESY	61
	60 FL=L	BESY	62
	TS=T-SUM	BESY	
	TERM=(TERM*(-X2)/FL**2)*(11./(FL*TS))	BESY	
	70 YO=YO+TERM	BESY	65
	TFRM = XX+(T=+5)	BESY	
	SUM=0.	BESY	
	Y1=TERM	BESY	
	DO 80 L=2+16	BESY	
	SUM=SUM+1+/FLOAT(L-1)	BESY	
	FL=L	BESY	
	FL-L FL1=FL-1+	BESY	
	TS=T-5UM	BESY	
	TERM=(TERM*(-X2)/(FL1*FL))*((TS++5/FL))(TS++5/FL1))	BESY	
	80 Y1=Y1+TERM	BESY	
	PI2=+6366198	BESY	
	Y0=P12=+0366170	BESY	
		BESY	
	Y1=-P12/X+P12+Y1	0131	15

с	CHECK	1 F	ONLY	Y٥	OR	۲1	۱S	DESIRED	

- c

- C CHECK IF ONLY YO OR YI IS DESIRED 90 IF(N-1)100.100.130 00 IF(N)110.120.110 110 BY-YI 10 BY-YI 10 OF PERFORM RECURFINCE OPFRATIONS TO FIND YN(X) 130 YA-YO YB-YI K=1 140 T-FLOAT(2*K)/X Y(=T+YB=YA RETURN 145 K=K+1 IF(K-N)150.160.150 150 YA-YC GO TO 140 150 ISO YA-YA YB-YC GO TO 140 150 YA-YA YB-YC GO TO 140 150 FREURN ¢

į

÷

BESI

This subroutine computes the I Bessel function for a given argument x and order n.

For $x \le 12$ or $\le n$

 $I_{n}(x) = \left(\frac{x}{2}\right)^{n} \frac{1}{n!} \sum_{s=0}^{30} \left(\frac{x}{2}\right)^{2s} \frac{n!}{s!(n+s)!}$ (1)

For x > 12 and > n

$$I_{n}(x) = \frac{e^{x}}{\sqrt{2\pi x}} \sum_{m=0}^{30} (8x)^{-m} \cdot \frac{1}{m!}$$
$$\prod_{K=1}^{m} ((2K-1)^{2} - 4n^{2})$$
(2)

Subroutine BESI

Purpose:

Compute the I Bessel function for a given argument and order.

Usage:

CALL BESI(X, N, BI, IER)

Description of parameters:

- X The argument of the I Bessel function desired.
- N The order of the I Bessel function desired.
- BI The resultant I Bessel function.

IER - Resultant error code where:

- IER=0 No error.
 - IER=1 N is negative.
 IER=2 X is negative.
 IER=3 BI is less than 1.0E-36, and is set to zero.
 IER=4 X is greater than 60 and and greater than N.

Remarks:

X and N must be greater than zero.

Subroutines and function subprograms required: None.

Method:

Computes the I^{th} Bessel function using series or asymptotic approximations depending on the range of the arguments.

	c		SUBROUTINE BESI(X+N+ BI+IER) CHECK FOR ERRORS IN N AND X AND EXIT IF ANY ARE PRESENT	BESI	1
	Ċ		IER=0	BESI	3
			BI=1=0	BEST	4
			1F(N)150+15+10	BESI	
		10	IF(X)160,20,20	BE51	6
			1F(X)160+17+20	8E51	7
		17	RETURN	BESI	8
	c		DEFINE TOLERANCE TOL=1.E=6	BES1 BESI	9 10
	c	70	IF ARGUMENT GT 12 AND GT N+ USE ASYMPTOTIC FORM	BESI	11
	•		1F1X-12.140.40.30	BESI	12
		30	1F(X-FLOAT(N))40,40,110	BESI	13
	с		COMPUTE FIRST TERM OF SERIES AND SET INITIAL VALUE OF THE SUM	BESI	14
			xx=x/2.	BESI	15
		50	TERM=1.0 IF(N) 70,70,59	BESI BESI	
		55	DO 60 I=1+N	BESI	
			FI=1	BESI	
			IF (ABS(TERM)-1.E-36)56+60+60	BESI	MOS
		56	1ER=3	8ES I	
			B1=0.0	BESI	
			RETURN	BESI	
			TERM=TERM=XX/FI BI=TERM	BESI	
			XX=XX=XX	BESI	23
	с		COMPUTE TERMS+STOPPING WHEN ABS(TERM) LE ABS(SUM OF TERMS)	BESI	
	č		TIMES TOLERANCE	BESI	
			DO 90 K=1,1000	BESI	
			IF(ABS(TERM)-ABS(81+TOL))100+100+80	BESI	27
		40	FK=K+(N+K) TERM=TERM+(XX/FK)	8ES1 8E51	28 29
		90	BI#BI+TERM	BESI	30
	¢		RETURN BI AS ANSWER	BESI	31
		100	RETURN	BESI	32
	c		X GT 12 AND X GT N. SO USE ASYMPTOTIC APPROXIMATION	8E\$ I	33
		110	FN=4+N#N	BESI	34
			IF(X- 60.0)115.111.111 IER=4	BESI	
			RETURN	BESI	
		115	XX=1./(8.*X)	BESI	
			TERM=1.	BESI	36
			81=1.	BESI	37
			DO 130 K=1+30	BESI	38
,			IF(ABS(TERM)-ABS(TOL+BI))140+140+120	BESI	39
		120	FK={2*K-1}**2 TERM=TERM*XX*(FK-FN)/FLOAT(K)	BESI BESI	40 41
		130	BI=BI+TERM	BESI	42
	c	••••	SIGNIFICANCE LOST AFTER 30 TERMS TRY SERIES	BEST	
			GO TO 40	BESI	M19
		140	P1=3.141592653	BESI	43
			BI=BI*EXP(X)/SORT(2.*PI*X)	BESI	44
			GO TO 100	BESI	45
		150	IER=1	BESI	46 47
		160	GO TO 100 IER=2	BESI BESI	48
		1 30	GO TO 100	BESI	49
			END	BESI	50

BESK

This subroutine computes the K Bessel function for a given argument x and order n.

The recurrence relation:

$$K_{n+1}(x) = \frac{2n}{x} K_n(x) + K_{n-1}(x)$$
 (1)

is used for this evaluation.

The initial values K_0 and K_1 are found as follows:

For x > 1

$$K_0(x) = e^{-x} \sqrt{\frac{\pi}{2x}} G_0(x)$$
 (2)

$$K_{1}(x) = e^{-x} \sqrt{\frac{\pi}{2x}} G_{1}(x)$$
 (3)

where x = 1/t for t < 1

$$G_{0}\left(\frac{1}{t}\right)\cdot\sqrt{\frac{\pi}{2}} = 1.2533141373 - 0.1566641816t + 0.0881112782t^{2} - 0.0913909546t^{3} + 0.1344596228t^{4} - 0.2299850328t^{5} + 0.3792409730t^{6} - 0.5247277331t^{7} + 0.5575368367t^{8} - 0.4262632912t^{9} + 0.2184518096t^{10} - 0.0668097672t^{11} + 0.0091893830t^{12}$$

$$(4)$$

(5)

$$G_{1}\left(\frac{1}{t}\right) \sqrt{\frac{\pi}{2}} = 1.2533141373 + 0.4699927013t$$

-0.1468582957t² + 0.1280426636t³
-0.1736431637t⁴ + 0.2847618149t⁵
-0.4594342117t⁶ + 0.6283380681t⁷
-0.6632295430t⁸ + 0.5050238576t⁹
-0.2581303765t¹⁰ + 0.0788000118t¹¹
-0.0108241775t¹²

For $x \leq 1$

$$\boldsymbol{\gamma} = \text{Euler's constant} = 0.5772156649 \tag{6}$$

$$K_{0}(x) = -\left(\gamma + \log\frac{x}{2}\right) + \sum_{s=1}^{6} \left(\frac{x}{2}\right)^{2s} \frac{1}{(s!)^{2}}$$

$$\left[H_{s} - \left(\gamma + \log\frac{x}{2}\right)\right]$$
(7)

where

$$H_{s} = \sum_{r=1}^{s} \frac{1}{r}$$
(8)
$$K_{1}(x) = \frac{1}{x} + \sum_{s=1}^{8} \left(\frac{x}{2}\right)^{2s-1} \frac{1}{(s!)^{2}}$$
$$\left[\frac{1}{2} + s \cdot \left(\gamma + \log \frac{x}{2} - H_{s}\right)\right]$$
(9)

Subroutine BESK

Purpose:

Compute the K Bessel function for a given argument and order.

Usage:

Description of parameters:

- X The argument of the K Bessel function desired.
- N The order of the K Bessel function desired.

BK - The resultant K Bessel function.

IER - Resultant error code where:

No error.
N is negative.
X is zero or negative.
X is greater than 60.
Machine range exceeded.
BK is greater than
1.E36.

Remarks:

N must be greater than or equal to zero.

Subroutines and function subprograms required: None.

Method:

Computes zero-order and first-order Bessel functions using series approximations and then computes N^{th} order function using recurrence relation.

Recurrence relation and polynomial approximation technique as described by A. J. M. Hitchcock, 'Polynomial Approximations to Bessel Functions of Order Zero and One and to Related Functions', M.T.A.C., V.11, 1957, pp.86-88, and G.N. Watson, 'A Treatise on the Theory of Bessel Functions', Cambridge University Press, 1958, p. 62.

SUBROUTINE BESK(X+N+BK+IER) DIMENSION T(12) RK=+0 DIMENSION T(12) RX=.0 IF(N)10.11.11 IF(N)10.11.11 RTURN IF(X)12.12.20 IZ IER=2 RTURN 20 IF(X=64.0)22.22.22.21 IER=3 RTURN 22 IER=0 IF(X=1.36.35.25 SA = 250-C=X) B=1./X C=5QRT(B) T(1)=0 DO 26 L=2.12 01233412345678901223456789012345675678991234567 MMM011111111122222222222235353555675678991234444444 C = SORT(B) T(1)=8 D0 26 L=*12 26 T(L)=T(L=1)=8 IF(N-1127*29*27 COMPUTE KO USING POLYNOMIAL APPROXIMATION 27 G0*4*(1*293314)=*15666418*T(1)**08R111278*T(2)**091390954*T(3) 2**35435684*T(8)**2299803*T(5)**37920097*T(6)**22472773*T(7) 3**55753684*T(8)**226928*T(9)**21845161*T(10)**066509767*T(11) 4**009189383*T(12)*C IF(N120*28*29 28 BK=00 RETURN COMPUTE K1 USING POLYNOMIAL APPROXIMATION COMPUTE K1 USING POLYNOMIAL (1)**058303*T(2)**12804266*T(3) 2**17364316*T(4)**28476181*T(5)**45843421*T(6)**62833807*T(7) 3**6632954*T(8)**6502386*T(9)**25813038*T(10)**078800012*T(11) 4**010824177*T(12))*C IF(N-120*30*31 30 BK=01 RETURN FROM K0*K1 COMPUTE KN USING RECURRENCE RELATION 31 D0 35 J*2*N GJ*2**FLOAT(J)**1*61/X*G0 IF(GJ-140*3633*3*3*32 32 IER*4 G0 T0 34 33 G0*61 34 BK=6J 35 G1*6J 34 BK=GJ RK=GJ RETURN B=X/Z= A=57721566+ALOG(B) C=9=B IF(N=1)37:43:37 COMPUTE KO USING SERIES EXPANSION GO=A 36 37 G0-A X2J=1. FACT=1. HJ=-0 D0 40 J=1.6 RJ=1./FLOAT(J) X2J=X2J+C HJ=HJ=RJ G0=G0-X2J=FACT=(HJ=A) IF(N)43+42+43 RK=60 BESK BESK BESK BESK 4455555555556666666666677777 IF(N)+32+42-42 BK=GO RETURN COMPUTE K1 USING SERIES EXPANSION 43 X2J=B FACT=1. HIN1. FACT=1. HJ=1. G1=1.4/X+X2J*(.5+A-HJ) D0 50 J=2.8 X2J=X2J*C KJ=1.4/FLOAT[J] FACT=FACT*RJ*RJ BESK BESK BESK BESK BESK BESK BESK BESK FACT=FACT#FJ9#J HJ=HJ9#J 50 G1=G1+X2J=FACT+(.5+(A-HJ)+FLOAT(J)) IF(N-1131+52+31 8k=G1 ReTURN END

c

с

CEL1

This subroutine computes the complete elliptic integral of the first kind. This is defined as:

$$K(k) = \int_{0}^{\pi/2} \frac{dt}{\sqrt{1-k^{2} \sin^{2} t}} \cdot 0 \le k < 1$$

An equivalent definition is:

K(k) =
$$\int_{0}^{\infty} \sqrt{\frac{dx}{(1+x^2)(1+k_c^2 x^2)}}$$

where k_c is the complementary modulus:

$$k_{c}^{2} + k^{2} = 1, \ 0 < k_{c}^{2} \le 1$$

The subroutine CELI1 calculates K(k) for given modulus k.

The calculation of RES = K (k) is based on the process of the Arithmetic-Geometric Mean.

Starting with the pair of numbers:

$$a_0 = 1, g_0 = k_c$$

the sequences of numbers (a_n) , (g_n) are generated using the definition:

$$a_n = \frac{1}{2} (a_{n-1} + g_{n-1}), g_n = \sqrt{a_{n-1} g_{n-1}}$$

This iterative process is stopped at the Nth step, when $a_N = g_N$.

If D is the number of decimal digits in the mantissa of floating-point numbers, then the equality $a_N = g_N$ must be interpreted as $|a_N - g_N|$ is less than $a_N \cdot 10^{-D}$.

Since the sequences (a_n) , (g_n) converge quadratically to the same limit (Arithmetico-Geometrical mean) the test for the end of iteration may be replaced by comparing $|a_{N-1} - g_{N-1}|$ against $a_{N-1} \cdot 10^{-D/2}$, thus saving one calculation of the geometrical mean.

The value of K (k) =
$$\frac{\pi}{2 a_N}$$
.

Subroutine CEL1

Purpose:

Calculate complete elliptic integral of first kind.

Usage:

CALL CEL1 (RES, AK, IER)

Description of parameters:

RES - Result value.

AK - Modulus (input).

Remarks:

For AK=+1, -1 the result is set to 1. E38. For modulus AK and complementary modulus CK, equation AK*AK+CK*CK=1.0 is used. AK must be in the range -1 to +1.

Subroutines and function subprograms required: None.

Method:

Landen's transformation is used for calculation. Reference:

R. Bulirsch, 'Numerical Calculation of Elliptic Integrals and Elliptic Functions', Handbook Series Special Functions, Numerische Mathematik Vol. 7, 1965, pp. 78-90.

	SUBROUTINE CEL1(RES+AK+IER)	CEL1	1
	IER=0	CEL1	2
c	TEST MODULUS	CEL1	3
	GEO=1AK+AK	CEL1	4
	1F(GEO)1+2+3	CEL1	5
	1 IER=1	CEL 1	6
	RETURN	CEL1	7
с	SET RESULT VALUE -OFLOW	CEL1	8
-	2 RES=1.E38	CEL1	9
	RETURN	CEL1	10
	3 GEO=SGRT(GEO)	CEL1	11
	ARI=1.	CEL1	12
	4 AARI=ARI	CELI	13
	TEST=AAR1+1.E-4	CEL 1	14
	ARI=GEO+ARI	CELI	15
c	TEST OF ACCURACY	CEL 1	16
-	IF (AARI-GEO-TEST) 6.6.5	CELI	17
	5 GEO=SGRT (AARI+GEO)	CEL 1	18
	ARI=0-5+ARI	CEL1	19
	GO TO 4	CELI	20
	6 RES=3+141593 /ARI	CEL1	21
	RETURN	CELI	22
	END	CEL1	23

CEL2

This subroutine computes the generalized complete elliptic integral of the second kind. This is defined as

cel 2 (k; A, B) =
$$\int_{0}^{\pi/2} \frac{A + (B-A)\sin^{2}t}{\sqrt{1 - k^{2}\sin^{2}t}} dt.$$

Equivalent is the definition:

cel 2 (k; A, B) =
$$\int_{0}^{\infty} \frac{A + Bx^{2}}{(1+x^{2})\sqrt{(1+x^{2})(1+k_{c}^{2}x^{2})}} dx,$$

where k_c is the complementary modulus:

$$k_{c}^{2} + k^{2} = 1, \ 0 < k_{c}^{2} \le 1$$

The subroutine CELI2 calculates cel 2 (k; A, B) for given modulus k, and constants A, B.

The calculation of RES = cel 2 (k, A, B) is based on the process of the Arithmetic-Geometric Mean.

Starting with the pair of numbers:

$$a_0 = 1, g_0 = k_0$$

the sequences of numbers (a_n) , (g_n) are generated using for definition:

$$a_n = (a_{n-1} + g_{n-1}), g_n = 2\sqrt{a_{n-1}g_{n-1}}$$

This iteration process is stopped at the Nth step, when $a_N = g_N$.

Further needed are the sequences

$$(A_{i}), (B_{i})$$
 defined by means of:
 $A_{0} = A, B_{0} = B$
 $A_{n} = B_{n-1}/a_{n-1} + A_{n-1}$
 $B_{n} = 2 (B_{n-1} + g_{n-1} \cdot A_{n-1})$

If D is the number of decimal digits in the mantissa of floating-point numbers, the iteration process is stopped as soon as $(a_{N-1} - g_{N-1})$ is less than $a_{N-1} \cdot 10^{-D/2}$.

Since (a_n) , (g_n) converge quadratically to the same limit (Arithmetico-Geometrical mean) this implies that $(a_N - g_N)$ is less than $a_N \cdot 10^{-D}$.

The value of cel 2 (k; A, B) = $\frac{\pi}{4} \cdot \frac{A_{N+1}}{a_N}$

Subroutine CEL2

Purpose:

Computes the generalized complete elliptic integral of second kind.

Usage:

CALL CEL2(RES, AK, A, B, IER)

Description of parameters:

RES - Result value.

AK - Modulus (input).

- A Constant term in numerator.
- B Factor of quadratic term in numerator.
- IER Resultant error code where:

IER=0 No error.

IER=1 AK not in range -1 to +1.

Remarks:

For AK = +1, -1, the result value is set to 1. E38 if B is positive, to -1. E38 if B is negative. Special cases are: K(K) obtained with A = 1, B = 1. E(K) obtained with A = 1, B = CK*CK where CK

is complementary modulus.

B(K) obtained with A = 1, B = 0.

D(K) obtained with A = 0, B = 1

where K, E, B, D define special cases of the generalized complete elliptic integral of second kind in the usual notation, and the argument K of these functions means the modulus.

Subroutines and function subprograms required: None.

Method:

Definition: RES= integral((A+B*T*T)/(SQRT((1+T*T)*(1+(CK*T)**2))*(1+T*T)) summed over T from 0 to infinity).

Evaluation:

Landen's transformation is used for calculation. Reference:

R. Bulirsch, 'Numerical Calculation of Elliptic Integrals and Elliptic Functions', Handbook Series Special Functions, Numerische Mathematik Vol. 7, 1965, pp. 78-90.

	SUBROUTINE CEL2(RES+AK+A+B+IER)	CEL 2	1
	IER=0	CEL2	2
c	TEST MODULUS	CEL2	3
	GEO=1AK*AK	CEL2	4
	IF (GEO) 1 + 2 + 6	CEL2	5
	1 IER=1	CEL2	6
	RETURN	CEL2	7
C	SET RESULT VALUE = OVERFLOW	CEL2	8
-	2 1F(B)3.5.4	CEL2	9
	3 RES=-1.E38	CEL2	10
	RETURN	CEL2	11
		CELZ	12

4	RES=1.E38
	RETURN
5	RESA
	RETURN
	COMPUTE INTEGRAL
6	GEO=SORT (GEO)
	AR1=1.
	AA=A
	AN=A+B
	W=8
7	W=W+AA=GEO
	A=A+A
	AA=AN
	AARI=ARI
	AR I =GEO+AR I
	AN=W/ARI+AN
	TEST OF ACCURACY
	IF{AAR1-GEO-1.E-4+AAR1)9.9.8
8	GEO=SGRT(GEO=AARI)
	GEO=GEO+GEO
	GO TO 7
9	RES=.7853982 #AN/ARI
	RETURN
	END

с

CEL2 13 CEL2 14 CEL2 14 CEL2 16 CEL2 16 CEL2 17 CEL2 18 CEL2 19 CEL2 29 CEL2 21 CEL2 21 CEL2 22 CEL2 23 CEL2 24 CEL2 23 CEL2 24 CEL2 31 CEL2 3 EXPI

The coefficients A_n are given in the article by Luke/Wimp. *

This subroutine computes the exponential integral in the range from -4 to infinity.

For positive x, the exponential integral is defined as:

$$E_{1}(x) = \int_{-t}^{\infty} e^{-t} dt, x > 0$$
x

This function, $E_1(x)$, may be analytically continued throughout the complex plane, and defines a multivalued complex function. However, for any given real argument, this extended multivalued function has a unique real part. The subroutine EXPI computes this unique real number for $x \ge -4$, $x \ne 0$.

For negative x, the real part of the extended exponential integral function is equal to $-E_i$ (-x),

where

$$E_{i}(y) = - \int_{-y}^{\infty} \underline{e}^{-t} dt, y > 0$$

 $(\int \text{denotes Cauchy principal value.})$

For x = 0, a singularity of the function, the program returns 1.0×10^{38} .

No action is taken in case of an argument less than -4.

Polynomial approximations which are close to Chebyshev approximations over their respective ranges are used for calculation.

1. Approximation in the range $x \ge 4$.

A polynomial approximation is obtained by means of truncation of the Expansion of $E_1(x)$ in terms of shifted Chebyshev Polynomials T_n^*

$$E_1(x) = \frac{e^{-x}}{x} \sum_{n=0}^{\infty} A_n T_n * \left(\frac{4}{x}\right) \text{, for } 4 \leq x < \infty$$

Using only nine terms of the above infinite series results in a truncation error ϵ (x) with:

$$\left| \epsilon (\mathbf{x}) \right| < \frac{\mathrm{e}^{-\mathbf{x}}}{\mathbf{x}} \sum_{\mathbf{y}=9}^{\infty} \left| A_{\mathbf{y}} \right| < \frac{\mathrm{e}^{-\mathbf{x}}}{\mathbf{x}} \cdot 0.82 \cdot 10^{-8}$$

Transformation of the shifted Chebyshev polynominals to ordinary polynomials finally leads to the approximation:

2

EXPI(x) =
$$e^{-x} \left(\frac{4}{x}\right) \sum_{v=0}^{\infty} a_v \left(\frac{4}{x}\right)^v$$
 for $x \ge 4$

The coefficients of this approximation given to eight signification digits are:

$$a_0 = 0.24999 999$$

$$a_1 = -0.06249 8588$$

$$a_2 = 0.03120 8561$$

$$a_3 = -0.02295 1979$$

$$a_4 = 0.02041 2099$$

$$a_5 = -0.01755 5779$$

$$a_6 = 0.01172 3273$$

$$a_7 = -0.00493 62007$$

$$a_8 = 0.00094 42761 4$$

2. Approximation in the range $|x| \leq 4$.

A polynomial approximation is obtained by means of telescoping of the Taylor series of the function:

$$\int_{0} \frac{(e^{-t} - 1)}{t} dt = -\ln x - C - E_{1}(x),$$

х

where
$$C = 0.57721$$
 56649 is Euler's constant.
This results in the approximation:

$$EXPI(\mathbf{x}) = -\ln |\mathbf{x}| + \sum_{\mathbf{v}=0}^{14} \mathbf{b}_{\mathbf{v}} \mathbf{x}^{\mathbf{v}}$$

^{*}Luke/Wimp, "Jacobi Polynomial expansion of a generalized hypergeometric function over a semiinfinite ray", Math. Comp., Vol. 17, 1963, Iss. 84, p. 400.

with a truncation error E absolutely less than $3 \ge 10^{-8}$.

The coefficients of this approximation given to eight significant digits are:

b ₀	=	-0.57721	566		
^b 1	=	1.00000	00		
b_2	=	-0.25000	000		
^b 3	=	0.05555	5520		
b_4	=	-0.01041	6662		
^b 5	=	0.00166	66906		
^b 6	=	-0.00023	14839	2	
b ₇	=	0.00002	83375	90	
b ₈	=	-0.00000	30996	040	
b ₉	=	0.00000	03072	6221	
^b 10	=	-0.00000	00276	35830	
^b 11	=	0.00000	00021	91569	9
^b 12	=	-0.00000	00001	68265	92
^b 13	=	0.00000	00000	15798	675
^b 14	=	-0.00000	00000	01031	7602

Subroutine EXPI

Purpose:

Computes the exponential integral in the range -4 to infinity.

Usage:

CALL EXPI(RES, X, IER)

Description of parameters:

- RES Result value.
- X Argument of exponential integral.
- IER Resultant error code where:
 - IER=0 No error.
 - IER=1 X less than -4.

Remarks:

For X = 0 the result value is set to 1. E38. For X less than -4 calculation is bypassed. The argument remains unchanged. Subroutines and function subprograms required: None.

Method:

Definition:

RES= integral(EXP(-T)/T, summed over T from X to infinity). Evaluation:

Two different polynomial approximations are used for X greater than 4 and for ABS(X) equal or less than 4.

Reference:

Luke and Wimp, 'Jacobi Polynomial Expansions of a Generalized Hypergeometric Function over a Semi-Infinite Range', Mathematical Tables and Other Aids to Computation, Vol. 17, 1963, Issue 84, pp. 395-404.

	SUBROUTINE EXPICES, X, IER)	EXPI	
С	TEST OF RANGE		-
ç	IER=0	EXPI	2
		EXPI	3
	1F(x-4.) 10,10,29	FXPI	- 4
	10 IF(X+4.1 55,30,3)	EXPI	5
С	ARGUMENT IS GREATER THAN 4	EXPI	6
	20 ARG=4./X	EXPI	
	RES=EXP(-X)+((((((((000944276144ARG0049362007)+ARG+.011723273)	FYPI	8
	1 *ARG017555779) *ARG+.020412099)*ARG+.022951979)*ARG+.0312085611	EVOT	ş
	2 *ARG-+0624985881 *ARG++249999991 *ARG	EXPL	10
	RETURN		
С	ARGUMENT IS ASSOLUTELY LESS OR EQUAL 4	EXPI	11
· ·		EXPI	12
	30 IF(X) 40,50,40	EXPI	13
	400RES=-ALOG(ABS(X))-((((((((((((((()))	EXPI	14
	1.16826592E-91*X21915699E-81*X+.27635830E-71*X30726221E-61*X+	EXPI	15
	2.30996040E-51*X-,28337590E-41*X+,23148392E-31*X-,00166669061*X+	EXPI	16
	3.0104166621*X0555555201*X+.251*X-1.01*X57721566	EXPI	17
	RETURN	EXPI	18
	50 RES=1.E38	EXPI	19
	RETURN		
c	ARGUMENT IS LESS THAN -4.	EXPI	20
•	55 [ER=1	EXPI	21
	RETURN	EXPI	22
	END	EXPI	23
	ENU	EXP1	24

we get the expansions:

This subroutine computes the sine and cosine integrals. These integrals are defined as:

$$\operatorname{Si}(\mathbf{x}) = \int_{-\infty}^{\mathbf{x}} \frac{\sin(t)}{t} \, \mathrm{d}t, \ \mathbf{x} \ge 0$$

and

$$\operatorname{Ci}(x) = \int_{-\infty}^{x} \frac{\cos(t)}{t} dt, x > 0$$

The subroutine SICI calculates both Si (x) and Ci (x) for a given argument x. Two different approximations are used for the ranges $|x| \le 4$ and $4 < |x| < \infty$. Negative values of the argument x are handled by means of the following symmetries:

Si (-x) = $-\pi$ - Si (x)

Real part of

Ci
$$(-x) = Ci(x), x \ge 0$$
 (see discussion of EXPI).

For x = 0, a singularity of Ci (x), the routine returns -1.0×10^{38} .

Polynomial approximations that are close to Chebyshev approximations over their respective ranges are used for calculation.

1. Approximation in the range |x| > 4.

The sine and cosine integrals are closely related to the confluent hypergeometric function:

$$Y(x) = -ix \Psi(1, 1; -ix).$$

We have:

Si (x) + i Ci (x) =
$$\frac{\pi}{2}$$
 + ie^{ix} Ψ (1, 1; -ix).

Setting:

ix
$$\Psi$$
 (1, 1; ix) = $\sum_{n=0}^{\infty}$ (A_n + i B_n) T^{*}_n ($\frac{4}{x}$)

Si(x) =
$$\sum_{n=0}^{\infty} \left(\frac{A_n \cdot \cos x}{x} + \frac{B_n \cdot \sin x}{x} \right) T_n^* \left(\frac{4}{x} \right)$$

Ci (x) =
$$\sum_{n=0}^{\infty} \left(\frac{B_n \cdot \cos x}{x} - \frac{A_n \cdot \sin x}{x} \right) T_n \left(\frac{4}{x} \right)$$

in terms of shifted Chebyshev polynomials T_n^* . The coefficients A_n and B_n are given in the article by Luke/Wimp.*

Using only ten terms of the above infinite series results in a truncation error E(x) with:

$$|\mathbf{E}(\mathbf{x})| < \frac{1}{\mathbf{x}} \cdot 2.3 \cdot 10^{-8}$$

Transformation of the shifted Chebyshev polynomials to ordinary polynomials finally leads to the approximations:

Si (x) =
$$-\left(\frac{4}{x}\right) \cdot (\cos x \cdot V(x) + \sin x \cdot U(x))$$

Ci (x) = $\left(\frac{4}{x}\right) \cdot (\sin x \cdot V(x) - \cos x \cdot U(x)),$

where

$$V(x) = \sum_{n=0}^{10} a_n \cdot \left(\frac{4}{x}\right)^n$$
$$U(x) = \sum_{n=0}^{9} b_n \cdot \left(\frac{4}{x}\right)^n$$

The coefficients of these expansions given to eight significant digits are:

$$a_0 = 0.25000 \ 000$$

$$b_0 = 0.00000 \ 00002 \ 58398 \ 86$$

$$a_1 = -0.00000 \ 06646 \ 4406$$

$$b_1 = 0.06250 \ 0111$$

$$a_2 = -0.03122 \ 4178$$

$$b_2 = -0.00001 \ 13495 \ 79$$

^{*}Luke/Wimp, "Jacobi Polynomial expansion of a generalized hypergeometric function over a semiinfinite ray", Math. Comp. Vol. 17, 1963, Iss. 84, p. 402.

$$a_3 = -0.00037 64000 3$$

$$b_3 = -0.02314 6168$$

$$a_4 = 0.02601 2930$$

$$b_4 = -0.00333 25186$$

$$a_5 = -0.00794 55563$$

$$b_5 = 0.04987 7159$$

$$a_6 = -0.04400 4155$$

$$b_6 = -0.07261 6418$$

$$a_7 = 0.07902 0335$$

$$b_7 = 0.05515 0700$$

$$a_8 = -0.06537 2834$$

$$b_8 = -0.02279 1426$$

$$a_9 = 0.02819 1786$$

$$b_9 = 0.00404 80690$$

$$a_{10} = -0.00510 86993$$

2. Approximation in the range $|x| \le 4$.

A polynomial approximation for Si (x) is obtained by means of telescoping of the Taylor series:

Si (x) =
$$-\frac{\pi}{2} + \int_{0}^{x} \frac{\sin t}{t} dt$$

= $-\frac{\pi}{2} + x \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n+1) \cdot (2n+1)!}$

This results in the approximation:

Si(x) =
$$-\frac{\pi}{2} + x \cdot \sum_{n=0}^{6} a_{v}(x^{2})^{v}$$
,

with a truncation error E absolutely less than $|X| \cdot 1.4 \cdot 10^{-9}$.

Similarly an approximation for Ci (x) is obtained by means of telescoping of the Taylor series:

Ci(x) - C - In(x) =
$$\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{2N \cdot (2n)!}$$

This results in the approximation:

Ci (x) = C + In |x|
$$-x^2 \cdot \sum_{n=0}^{5} b_n (x^2)^n$$
,

with a truncation error E absolutely less than $x^2 \cdot 5.6 \cdot 10^{-9}$.

The coefficients of these approximations given to eight significant decimal digits are:

С	=	0.57721	566		
a_0	=	1.00000	00		
^b 0	=	0.24999	999		
^a 1	=	-0.05555	5547		
^b 1	=	-0.01041	6642		
a_2	=	0.00166	66582		
^b 2	=	0.00023	14630	3	
a_3	=	-0.00002	83414	60	
b ₃	=	-0.00000	30952	207	
a_4	=	0.00000	03056	1233	
^b 4	=	0.00000	00269	45842	
$^{a}_{5}$	=	-0.00000	00022	23263	3
^b 5	=	-0.00000	00001	38698	51
a_6	=	-0.00000	00000	09794	2154

Subroutine SICI

Purpose:

Computes the sine and cosine integral.

Usage:

CALL SICI(SI, CI, X)

Description of parameters:

SI - The resultant value SI(X).

CI - The resultant value CI(X).

X - The argument of SI(X) and CI(X).

Remarks:

The argument value remains unchanged.

Mathematics - Special Operations and Functions 111

Subroutines and function subprograms required: None.

Method:

Definition:

- SI(X)=integral (SIN(T)/T, summed over T from infinity to X).
- CI(X)=integral (COS(T)/T, summed over T from infinity to X).

Evaluation:

Reduction of range using symmetry.

Different approximations are used for ABS(X) greater than 4 and for ABS(X) less than 4.

Reference:

- Luke and Wimp, 'Polynomial Approximations to Integral Transforms', Mathematical Tables and
- Other Aids to Computation, Vol. 15, 1961, Issue 74, pp. 174-178.

	SUBROUTINE SICIST.CT.X)	1012	1
С	TEST ARGUMENT RANGE	SICI	2
	Z=ABS(X),	SICI	3
	16(2-4.) 10,10,50	STCL	4
С	Z IS NIT GREATER THAN 4	SICI	5
	10 Y=Z#Z	SICI	6
	\$1=-1.5707963+X*((((((,97942154E-11*Y22232633E-8)*Y+.30561233E-6	SICL	7
	1)*Y-,28341460E-4)*Y+,16666582E-2)*Y-,555555547E-1)*Y+1,1	STCT	9
С	TEST FOR LOGARITHMIC SINGULARITY	SICE	9
	IF(Z) 30,20,30	SICI	10
	20 CI=-1.E38	SICE	11
	RETURN	SICI	12
	300Cl=0.57721566+ALJG(2)-Y*((((13869851E-9*Y+.26945842E-7)*Y-	SICI	13
	1.30952207E-51*Y+,23146303E-31*Y-,L0416642E-11*Y+,249999991	STCL	14
	40 RETURN	SICT	15
¢	Z IS GREATER THAN 4.	STCL	16
	50 ST=SIN(Z)	SICI	17
	Y=COS(Z)	\$101	18
	2=4./2	SICE	19
	0U=111111111(.+40480590E-2*Z022791426)*Z+.055150700)*Z072616418)*/	SICE	20
	1+.0498771591#233325186E-21#70731461681#211349579E-41#2	SICI	21
	2+.0625301111+2+.25839886F-9	SICI	22
	0V={{{{{{{{{{{{}}}}}}}}	SICI	23
	12-+044004155}#2-+9079455563}#2++026012930}#2-+37640003E-3}#2	S1C1	24
	Z+.0312241781#756464496F-61#7+.25000900	SICT	25
	CI=Z+(SI+V-Y+U)	SICL	59
	SI=-Z#(SI#U+Y#V)	SICE	27
C	TEST FOR NEGATIVE ARGUMENT	STCT	28
	[F(X) 60+40+40	SICI	29
С	X IS LESS THAN -4.	5101	30
	60 SI=-3.1415927-SI	STCE	31
	RETURN	strt	32
	END	\$101	33

\underline{CS}

This subroutine computes the Fresnel integrals for a given value of the argument x. The Fresnel integrals are defined as:

C(x) =
$$\sqrt{\frac{1}{2\pi}} \int_{0}^{x} \sqrt{\frac{\cos(t)}{t}} dt$$

and

$$S(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{x} \sqrt{\frac{\sin(t)}{t}} dt.$$

The subroutine CS calculates both C(x) and S(x) for a given argument x.

In case of a negative argument x the absolute value of x is taken as argument for C and for S.

Polynomial approximations that are close to Chebyshev approximations over their respective ranges are used for calculation.

1. Approximation in the range |x| > 4.

The Fresnel integrals C(x) and S(x) are closely related to the confluent hypergeometric function:

$$Y(x) = \sqrt{xi \psi} (\frac{1}{2}, \frac{1}{2}; xi) = xi \psi (1, \frac{3}{2}; xi).$$

We have:

$$C(x) = \frac{1}{2} + \frac{1}{\sqrt{8\pi}} \sqrt{\frac{4}{x}} (\sin (x) \operatorname{Re} (Y) - \cos (x) \operatorname{Im} (Y))$$

$$S(x) = \frac{1}{2} - \frac{1}{\sqrt{8\pi}} \sqrt{\frac{4}{x}} (\cos (x) \operatorname{Re} (Y) + \sin (x) \operatorname{Im} (Y))$$

The expansions of real part Re (Y) and complex part Im (Y) in terms of shifted Chebyshev polynomials T_n^* over the range $4 \le x \le \infty$ are easily obtained using the method of computation described by Luke/Wimp.*

By means of truncation of the infinite series:

1. 1

Re
$$(Y(x)) = \sum_{v=0}^{\infty} A_v T_v^* \left(\frac{4}{x}\right)$$

Im (Y (x)) =
$$\sum_{v=0}^{\infty} B_v T_v^* \left(\frac{4}{x}\right)$$

*Luke/Wimp, "Jacobi Polynomial expansion of a generalized hypergeometric function over a semiinfinite ray", Math. Comp., Vol. 17, 1963, Iss. 84, pp. 395-404.

112

beyond the eighth and ninth term respectively we get approximations with errors $E_{c}(x)$ and $E_{s}(x)$ where both errors are absolutely less than:

$$\epsilon = \sqrt{\frac{4}{x}} \cdot 1.3 \cdot 10^{-8}$$

Transformation of the shifted Chebyshev polynomials to ordinary polynomials finally leads to the approximations:

$$C(x) = \frac{1}{2} + \sqrt{\frac{4}{x}} (\sin (x) \cdot P(x) + \cos (x) \cdot Q(x))$$

$$S(x) = \frac{1}{2} + \sqrt{\frac{4}{x}} (-\cos(x) \cdot P(x) + \sin(x) \cdot Q(x))$$

where

$$P(x) = \sum_{0}^{7} a_{v} \left(\frac{4}{x}\right)^{v}$$
$$Q(x) = \sum_{0}^{8} b_{v} \left(\frac{4}{x}\right)^{v}.$$

The coefficients a_v and b_v are given to eight significant decimal digits:

$$a_6 = 0.00340 14090$$

 $b_6 = 0.00797 09430$
 $a_7 = -0.00066 33925 6$
 $b_7 = -0.00416 92894$
 $b_8 = 0.00087 68258$

2. Approximation in the range $0 \leq x \leq 4$.

Approximations for C(x) and S(x) in the range $0 \le x \le 4$ were obtained by means of telescoping of the respective Taylor series expansions:

$$C(x) = \sqrt{\frac{2}{\pi}} \cdot \sqrt{x} \cdot \sum_{v=0}^{\infty} \frac{(-1)^{v} x^{2v}}{(4v+1)(2v)!}$$
$$S(x) = \sqrt{\frac{2}{\pi}} \cdot \sqrt{x^{3}} \cdot \sum_{v=0}^{\infty} \frac{(-1)^{v} x^{2v}}{(4v+3)(2v+1)!}$$

This leads finally to the following approximations:

$$C(x) = \sqrt{x} \sum_{v=0}^{6} c_{v} \cdot (x^{2})^{v}$$
$$S(x) = x \sqrt{x} \sum_{v=0}^{5} d_{v} (x^{2})^{v},$$

with respective errors $E_{c}(x)$ and $E_{s}(x)$, where

$$\left| \begin{array}{c} \mathbf{E}_{c} (\mathbf{x}) \right| < \sqrt{\mathbf{x}} \cdot 2.6 \cdot 10^{-8} \\ \left| \begin{array}{c} \mathbf{E}_{s} (\mathbf{x}) \right| < \mathbf{x} \sqrt{\mathbf{x}} \cdot 3.5 \cdot 10^{-8} \end{array} \right|$$

The coefficients c_v and d_v are given below to eight significant decimal digits:

$$c_0 = 0.79788 455$$

$$d_0 = 0.26596 149$$

$$c_1 = -0.07978 8405$$

$$d_1 = -0.01899 7110$$

Mathematics - Special Operations and Functions 113

e ₂ =	0.00369	38586		
d ₂ =	0.00060	43537	1	
c ₃ =	-0.00008	52246	22	
d ₃ =	-0.00001	05258	53	
e ₄ =	0.00000	11605	284	
d ₄ =	0.00000	01122	5331	
e ₅ =	-0.00000	00101	40729	
d ₅ =	-0.00000	00006	67774	47
c ₆ =	0.00000	00000	50998	348

	SUBROUTINE CS(C.S.X)	cs		
	Z=4851X1		1	
		cs		
	2 [F(2-4.) 3,3,4	C S	3	1000
c	X IS NOT GREATER THAN 4	CS	4	
	3 C+SQRT(Z)	CS	5	
	S=2=C	C S	6	
	2=2+2	C S	7	
	C=C+f({{{{{.50998348E-10+Z10140729E-71+Z+.11605284E-5}+Z	C S	8	
	185224622E-4)#2+.36938586E-2)#2079788405)#2+.797884551	C S	9	
	5=\$+1({{{{66777447E+9+2+.11275331E-6}+210525853E-4}+2	CS	10	
	1 +.60435371E-3)#Z18997110E-1)#Z+.26596149)	CS	11	
	RETURN	CS	12	
c	X IS GREATER THAN 4	C S	13	
	4 D=CDS(2)	ĊŚ	14	
	S=SIN(Z)	ċs	15	
	2=6./7	cs	16	
	A=((({(((čš	17	
	1.67928011F-21#Z-, 30953412E-31#Z+, 59721508E-21#Z-, 16064281E-41#Z-	Č.S.	18	
	2.024933215)#244460909E-8	čš	19	
	B=[{{({{1-,66339256E-3+2+,34014090E-2}+2-,72716901E-2}+7+	čš	20	
	1.74282459E-21+240271450E-31+293149105E-21+212079984E-51+2+	čš	21	
	2.199471	čš	22	
	Z=SGRT(2)	čš	23	
	C=.5+2+1D+A+5+B1	cs	24	
	S=.5+Z+{S+A-D+B}		25	
		CS		
	RETURN	C S	26	
	END	C S	27	

Subroutine CS

Purpose:

Computes the Fresnel integrals.

Usage:

CALL CS (C, S, X)

Description of parameters:

- C The resultant value C(X).
- S The resultant value S(X).
- X The argument of Fresnel integrals. If X is negative, the absolute value is used.

Remarks:

The argument value X remains unchanged.

Subroutines and function subprograms required: None.

Method:

```
Definition:
C(X)=integral (COS(T)/SQRT(2*PI*T) summed over T from 0 to X).
S(X)=integral (SIN(T)/SQRT(2*PI*T) summed over T from 0 to X).
Evaluation:
Using different approximations for X less than 4 and X greater than 4.
Reference:
'Computation of Fresnel Integrals' by Boersma, Mathematical Tables and Other Aids to Computation, Vol. 14, 1960, No. 72, p. 380.
```

SIMQ

Purpose:

Obtain solution of a set of simultaneous linear equations, AX=B.

Usage:

CALL SIMQ(A, B, N, KS)

Description of parameters:

- Α - Matrix of coefficients stored columnwise. These are destroyed in the computation. The size of matrix A is N by N.
- в - Vector of original constants (length N). These are replaced by final solution values, vector X.
- Ν - Number of equations and variables. N must be greater than 1.
- KS Output digit:
 - 0 For a normal solution.
 - 1 For a singular set of equations.

Remarks:

Matrix A must be general.

If matrix is singular, solution values are meaningless.

An alternative solution may be obtained by using matrix inversion (MINV) and matrix product (GMPRD).

Subroutines and function subprograms required: None.

Method:

c

Method of solution is by elimination using largest pivotal divisor. Each stage of elimination consists of interchanging rows when necessary to avoid division by zero or small elements. The forward solution to obtain variable N is done in N stages. The back solution for the other variables is calculated by successive substitutions. Final solution values are developed in vector B, with variable 1 in B(1), variable 2 in $B(2), \ldots, variable N in B(N)$. If no pivot can be found exceeding a tolerance of 0.0, the matrix is considered singular and KS is set to 1. This tolerance can be modified by replacing the first statement.

SUBROUTINE SIMQ(4+B,N+KS)	SIMO	1
DIMENSION A(1), B(1)	SIMO	2
FORWARD SOLUTION	STMQ	3
TDL=0.0	SIMO	4
KS=0	SIMQ	5
JJ==N	STMO	6
00 65 J=1+N	SIMQ	7
JY=J+1	SIMO	8
JJ=JJ+N+1	SIMO	9
BIGA=O	STMQ	10
LT=J]	QM12	11
00 30 I=J.N	SIMQ	12

с	SEARCH FOR	MAX ENUN	COEFFICIENT	IN COLUMN

- IF(ABS(BIGA)-ABS(A(IJ))) 20,30,30 20 BIGA=A(IJ)
- INAA-I INAA-I 30 CONTINUE TEST FOR PIVOT LESS THAN TOLERANCE ISINGULAR MATRIXI IF(ABSIBIGA)-TOL) 35,35,40

- ITABSIBILATILC 35,35,40 S KS=1 RETURN INTERCHANGE RJWS IF NECESSARY 40 IL=J=N#(J-2) IT=IMAK-J DD 50 K=J,N IL=II+N с
- 12=11+N 12=11+17 SAVE=A1113 A(11)=A(12)
- A (12)-5AVE 'O'VIDE EQUATION BY LEADING COEFFICIENT 50 A(11)-A(11)/BIGA SAVE-BI MARN 81 MARNN 81 MARN 81 MARN 81 MARN 81 c

- с

- 60 A11XJX)=A11XJX:-[A11XJ)=A 65 B11X)=B11X)=B(3)=A11XJ)= BACK SOLUTION 70 NV=N-1 IT=NCN DD 80 J=1,NY IA=IT-J IB=N-' IC-' 00 H0 K=1,J 9(18)=9(18)-A11A)=B(1C) IA=IA-N 80 IC=IC-1 RETURN END

Mathematics - Roots of Nonlinear Equations

RTWI

This subroutine refines the initial guess x_0 of a root of the general nonlinear equation x = f(x). Wegstein's iteration scheme is used in order to get accelerated convergence in case of a function f (x), which has at least continuous first derivative in the range in which iteration moves.

Following Figure 8, set $x_1 = y_0 = f(x_0)$ and $y_1 = f(x_1)$.

Refinement of x_1 is done by determination of the intersection of the linear function y = x and the secant through the points (x_0, y_0) and (x_1, y_1) , thus getting:

$$x_{2} = x_{1} + \frac{x_{1} - x_{0}}{x_{0} - y_{0}} - 1$$

and
$$y_2 = f(x_2)$$

The next step is done by starting at (x_2, y_2) and setting:

$$x_{3} = x_{2} + \frac{x_{2} - x_{1}}{x_{1} - y_{1}}$$
$$\frac{x_{1} - y_{1}}{x_{2} - y_{2}} - 1$$
$$y_{0} = f(x_{0})$$

Figure 8. Wegstein's iterative method

It can be seen that this determines the intersection between y = x and the secant through the points (x_1, y_1) and (x_2, y_2) . Therefore Wegstein's iteration scheme is often called the secant modification of the normal iteration scheme $x_{i+1} = f(x_i)$.

Repeating these steps, the result is the iteration scheme:

$$\begin{array}{c} x_{i+1} = x_i + \frac{x_i^{-x_{i-1}}}{x_{i-1}^{-y_{i-1}}} \\ y_{i+1} = f(x_{i+1}) \end{array} \right) (i = 1, 2, ...) \quad (1)$$

Each step requires one evaluation of f(x).

This iterative procedure is terminated if the following two conditions are satisfied:

$$\delta_{1} \leq \text{and } \delta_{2} \leq 10 \cdot \varepsilon$$
with
$$\delta_{1} = \begin{cases} \frac{|x_{i+1}^{-x_{i}}|}{|x_{i+1}|} & \text{if } |x_{i+1}| > 1\\ |x_{i+1}^{-x_{i}}| & \text{if } |x_{i+1}| \leq 1, \\ |x_{i+1}^{-x_{i}}| & \text{if } |x_{i+1}| > 1\\ \delta_{2} = \begin{cases} \frac{|x_{i+1}^{-y_{i+1}}|}{|x_{i+1}|} & \text{if } |x_{i+1}| > 1\\ |x_{i+1}^{-y_{i+1}}| & \text{if } |x_{i+1}| \leq 1 \end{cases} \end{cases}$$
(2)

and tolerance ε given by input.

The procedure described above may not converge within a specified number of iteration steps. Reasons for this behavior, which is indicated by an error message may be:

1. Too few iteration steps are specified.

2. The initial guess \mathbf{x}_0 is too far away from any root.

3. The tolerance $\boldsymbol{\epsilon}$ is too small with respect to roundoff errors.

4. The root to be determined is of multiplicity greater than one.

Furthermore, the procedure fails if at any iteration step the denominator of equation (1) becomes zero. This is also indicated by an error message. This failure may have two reasons:

1. The secant has the slope 1, either exactly or due to roundoff errors. In both cases it is probable that there is at least one point ξ in the range in which iteration moves with $f'(\xi) = 1$.

2. $x_i = x_{i-1}$ and $x_i \neq y_i = f(x_i)$. This case is possible due to roundoff errors or to a very steep slope of the secant.

Subroutine RTWI

Purpose:

To solve general nonlinear equations of the form X=FCT(X) by means of Wegstein's iteration method.

Usage:

CALL RTWI (X, VAL, FCT, XST, EPS, IEND, IER) Parameter FCT requires an EXTERNAL statement.

Description of parameters:

Х	-	Res	sultai	it i	root	of	equ	ation	X≈	FCT(X).	
					-							

- VAL Resultant value of X-FCT(X) at rootX.FCT Name of the external function sub
 - program used.
- XST Input value which specifies the initial guess of the root X.
- EPS Input value which specifies the upper bound of the error of result X.
- IEND Maximum number of iteration steps specified.
- IER Resultant error parameter coded as follows:
 - IER=0 no error
 - IER=1 no convergence after IEND iteration steps
 - IER=2 at some iteration step the denominator of iteration formula was equal to zero

Remarks:

The procedure is bypassed and gives the error message IER=2 if at any iteration steps the denominator of the iteration formula is equal to zero. That means that there is at least one point in the range in which iteration moves with the derivative of FCT(X) equal to 1.

Subroutines and function subprograms required: The external function subprogram FCT(X) must be furnished by the user.

Method:

Solution of equation X=FCT(X) is done by means of Wegstein's iteration method, which starts at the initial guess XST of a root X. One iteration step requires one evaluation of FCT(X). For test on satisfactory accuracy see formula (2) of mathematical description.

For reference, see:

- G. N. Lance, Numerical Methods for High Speed Computers, Iliffe, London, 1960, pp. 134-138.
- J. Wegstein, "Algorithm 2," <u>CACM</u>, Vol. 3, Iss. 2 (1960), pp. 74.
- H.C. Thacher, "Algorithm 15," <u>CACM</u>, Vol.
 3, Iss. 8 (1960), pp. 475.

J.G. Herriot, "Algorithm 26," <u>CACM</u>, Vol. 3, Iss. 11 (1960), pp. 603.

		SUBROUTINE RTWI(X+VAL+FCT+XST+EPS+IEND+IER)	RTWI	7
c		PREPARE ITERATION	RTWI	2
		IER=0	RTWI	3
		TOL=XST	RTWI	4
		X=FCT(TOL)	RTWI	- 5
		A=X-XST	RTWI	6
		B=-A	RTWI	7
		TOLEX	RTWI	8
		VAL=X-FCT(TOL)	RTWI	ġ
с		START ITERATION LOOP	RTWI	10
		DO 6 1=1+1END	RTWI	ĩĩ
		IF(VAL)1+7+1	RTWI	12
c		EQUATION IS NOT SATISFIED BY X	RTWI	13
	1	B=B/VAL-1.	RTWI	14
		IF(B)2+8+2	RTWI	19
c		ITERATION IS POSSIBLE	RTWI	16
	2	A=A/B	RTWI	17
		X=X+A	RTWI	18
		B=VAL	RTWI	19
		TOL =X	RTWI	źó
		VAL=X-FCT(TOL)	RTWI	21
с		TEST ON SATISFACTORY ACCURACY	RTWI	22
-		TOLEEPS	RTWI	23
		D=ABS(X)	RTWI	24
		IF(D-1.)4.4.3	RTWI	25
		TOL=TOL#D	RTWI	26
		1F(ABS(A)-TOL)5+5+6	RTWI	27
		IF(ABS(VAL)-10.*TOL)7.7.6	RTWI	28
		CONTINUE	RTWI	29
с	•	END OF ITERATION LOOP	RTWI	30
č		NO CONVERGENCE AFTER LEND ITERATION STEPS. ERROR RETURN.		
۰.		IER+1	RTWI	31
	7	RETURN	RTWI	32
c		ERROR RETURN IN CASE OF ZERO DIVISOR	RTWI	33
•	۵	IER=2	RTWI	34
	9	RETURN	RTWI	35
		END	RTWI	36
			RTWI	37

RTMI

This subroutine determines a root of the general nonlinear equation f(x) = 0 in the range of x from xli up to xri (xli, xri given by input) by means of Mueller's iteration scheme of successive bisection and inverse parabolic interpolation. The procedure assumes $f(x_{li}) \cdot f(x_{ri}) \leq 0$.

Starting with $x_1 = x_{1i}$ and $x_r = x_{ri}$ and following Fig. 9, one iteration step is described.

First, the middle of the interval $x_1 \dots x_r$ is computed:

$$x_{m} = \frac{1}{2} (x_{l} + x_{r}).$$

In case $f(x_m)$. $f(x_r) < 0$, x_1 and x_r are interchanged to ensure that $f(x_m) \cdot f(x_r) > 0$.

In case

 $2 f(x_m) [f(x_m)-f(x_1)] - f(x_r) [f(x_r) - f(x_1)] \ge 0$ (1) x_r is replaced by x_m and the bisection step is repeated. If, after a specified number of successive bisections, inequality (1) is still satisfied, the procedure is bypassed and an error message is given.

In Fig. 9, the second bisection step leads to a configuration which does not satisfy inequality (1). Thus by inverse parabolic interpolation:

$$\Delta x = f(x_1) \frac{x_m^{-x_1}}{f(x_m)^{-f(x_1)}} \begin{cases} 1 + f(x_m) \frac{f(x_1) - 2f(x_m)^{+f(x_1)}}{[f(x_1)^{-f(x_m)}] [f(x_1)^{-f(x_1)}]} \end{cases}$$
(2)
and $x = x_1 - \Delta x$

and x is sure to be situated between x_1 and x_m

Figure 9. Mueller's iterative method

Now, for the next iteration step, x becomes x_1 and x_m becomes x_r if $f(x) \cdot f(x_1) > 0$, or x becomes x_r if $f(x) \cdot f(x_1) < 0$.

Convergence is either quadratic or linear if the multiplicity of the root to be determined is equal to one or greater than one respectively, and if f(x) can be differentiated continuously at least twice in the range $x_{li} \cdot \cdot \cdot x_{ri}$. Each iteration step requires two evaluations of f(x).

This iterative procedure is terminated if either the two conditions (checked in bisection loop)

and

$$\begin{aligned} |\mathbf{x}_{\mathbf{r}} - \mathbf{x}_{\mathbf{l}}| &\leq \varepsilon \cdot \max(1, |\mathbf{x}_{\mathbf{r}}|) \\ |\mathbf{f}(\mathbf{x}_{\mathbf{r}}) - \mathbf{f}(\mathbf{x}_{\mathbf{l}})| &\leq 100 \cdot \varepsilon \end{aligned}$$

۱

(3)

or the two conditions (checked after inverse parabolic interpolation)

and

$$\begin{aligned} |\Delta \mathbf{x}| \leq \varepsilon \cdot \max(1, |\mathbf{x}|) \\ |\mathbf{f}(\mathbf{x})| \leq 100 \cdot \varepsilon \end{aligned}$$
(4)

are satisfied, where tolerance ε is given by input.

The procedure described above may not converge within a specified number of iteration steps followed by the same number of successive bisections. Reasons for this behaviour, which is indicated by an error message, may be:

1. Too few iteration steps are specified.

2. The initial interval $x_{1i} \cdots x_{ri}$ is too long.

3. The tolerance ε is too small with respect to roundoff errors.

Furthermore, the procedure is bypassed, also giving an error message, if the basic assumption $f(x_{1i}) \cdot f(x_{ri}) \leq 0$ is not satisfied.

For reference see G. K. Kristiansen, "Zero of Arbitrary Function", BIT, vol. 3 (1963), pp. 205-206.

Subroutine RTMI

Purpose:

To solve general nonlinear equations of the form FCT(X)=0 by means of Mueller's iteration method.

Usage:

CALL RTMI(X, F, FCT, XLI, XRI, EPS, IEND, IER) Parameter FCT requires an EXTERNAL statement.

Description of parameters:

- X Resultant root of equation FCT(X)=0.
- F Resultant function value at root X.
- FCT Name of the external function subprogram used.
- XLI Input value which specifies the initial left bound of the root X.
- XRI Input value which specifies the initial right bound of the root X.
- EPS Input value which specifies the upper bound of the error of result X.
- IEND Maximum number of iteration steps specified.
- IER Resultant error parameter coded as follows:
 - IER=0 no error
 - IER=1 no convergence after IEND iteration steps followed by IEND successive steps of bisection
 - IER=2 basic assumption FCT(XLI) *FCT(XRI) less than or equal to zero is not satisfied

Remarks:

The procedure assumes that function values at initial bounds XLI and XRI have not the same sign. If this basic assumption is not satisfied by input values XLI and XRI, the procedure is bypassed and gives the error message IER=2.

Subroutines and function subprograms required: The external function subprogram FCT(X) must be furnished by the user.

Method:

Solution of equation FCT(X)=0 is done by means of Mueller's iteration method of successive bisections and inverse parabolic interpolation, which starts at the initial bounds XLI and XRI. Convergence is quadratic if the derivative of FCT(X) at root X is not equal to zero. One iteration step requires two evaluations of FCT(X). For test on satisfactory accuracy see formulae (3, 4) of mathematical description.

			RTMI	1
с			RTMI RTMI	2 3
		IER-0	RTMI	4
		xL=xLI XR=XRI	RTMI	5
		X=XL	RTMI	
		TOI =X	RTMI	67
		F=FCT(TOL)	RTMI	8
			RTMI	. ?
	1	FLEF	RTMI	10
			RTMI RTMI	11 12
			RTM1	13
			RTMI	14
	,	FDeF	RTMI	15
	•	IF (SIGN(1.+FL)+SIGN(1.+FR))25.3.25	RTMI	16
с		BASIC ASSUMPTION FLAFR LESS THAN 0 IS SATISFIED.	RTMI	17
ċ		GENERATE TOLERANCE FOR FUNCTION VALUES.	RTMI	18
	3		RTMI	19
		1024-100243	RTMI	20
c			RTMI	21 22
	4		RTMI	23
c			RTMI	24
			RTMI	25
			RTMI	26
		F=FCT(TOL)	R T M I	27
		IF(F)5+16+5	RTMI	28
	5	LF(SIGN(1F)+SIGN(1FR))7.6.7	RTMI	29
с		INTERCHANGE XL AND XR IN ORDER TO GET THE SAME SIGN IN F AND FR	RTMI	30
	6		RTMI	31
			RTMI RTMI	32 33
			RTMI	34
		TOL=FL FL=FR	RTMI	35
			RTMI	36
	7		RTMI	37
		ARENTOL	RTMI	38
		A=A+A	RTMI	39
			RTMI	40
	8	1 - 1 - 1 - 1 - 1 - 1 - 1 - 2	RTMI	41
	9		RTMI	42
-			RTMI	44
с		TOL=EPS	RTMI	45
		A=ABS(XR)	RTMI	46
			RTMI	47
	10	TOL=TOL*A	RTMI	48
	ii	1E(ABS(YR=Y))-TO(112+12+13	RTMI	49
	12	IF (ARS (FR-F())-TOLF) 14.14.13	RTMI	50
	13	CONTINUE	RTMI	51 52
c			RTMI RTMI	52
ć			RTMI	54
с			RTMI	55
с			RTMI	56
	14		RTMI	57
			RTMI	58
	19		RTMI	59
	16		RTMI	60
c		COMPUTATION OF ITERATED X-VALUE BY INVERSE PARABOLIC INTERPOLATION	RTMI	61
-	17	A=FR-F	RTMI	62
			RTMI	63
			RTM1	64
		rmer .	RTMI	65
			RTMI	66 67
		TOL=X F=FCT(TOL)	RTMI	68
			RTMI	69
c		TEST ON SATISFACTORY ACCURACY IN ITERATION LOOP	RTM1	70
•	18	TOLEFPS	RTMI	71
	-	A=AB5(X)	RTMI	72 73
			RTMI	
	19		RTM1	74
			RTMI RTMI	75 76
	21		RTMI	77
c	22	IF(SIGN(1++F)+SIGN(1++FL))24+23+24	RTMI	78
	23		RTMI	79
		fR=F	RTMI	80
		GO TO 4	RTMI	81
	24	XI =X	RTMI	8 Z
		FL=F	RTMI	83
		XR=XM	RTMI	84
			RTMI	85
		GO TO 4	RTMI RTMI	86 87
ç		END OF ITERATION LOOP	RTMI	88
с	25	ERROR RETURN IN CASE OF WRONG INPUT DATA IER=2	RTMI	89
	23	RETURN	RTMI	90
		END	RTMI	91
\mathbf{R}	TN	T		

RTNI

This subroutine refines the initial guess x_0 of a root of the general nonlinear equation f(x) = 0. Newton's iteration scheme is used in the following form:

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$
 (i = 0, 1, 2, ...) (1)

Convergence is quadratic or linear if the multiplicity of the root to be determined is equal to one or greater than one respectively, and if f(x) can be differentiated continuously at least twice in the range in which iteration moves. Each iteration step requires one evaluation of f(x) and one evaluation of f'(x). This iterative procedure is terminated if the following two conditions are satisfied:

with

$$\delta = \begin{cases} \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| & \text{in case of } |x_{i+1}| > 1 \\ \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| & \text{in case of } |x_{i+1}| \le 1 \\ \left| x_{i+1} - x_i \right| & \text{in case of } |x_{i+1}| \le 1 \end{cases}$$
(2)

and tolerance ε given by input.

The procedure described above may not converge within a specified number of iteration steps. Reasons for this behaviour, which is indicated by an error message, may be:

1. Too few iteration steps are specified.

2. The initial guess \boldsymbol{x}_0 is too far away from any root.

3. The tolerance ε is too small with respect to roundoff errors.

4. The root to be determined is of multiplicity greater than one.

Furthermore, the procedure fails and is bypassed if at any iteration step the derivative $f(x_i)$ becomes zero. This is also indicated by an error message.

For reference see:

- F. B. Hildebrand, <u>Introduction to Numerical</u> <u>Analysis</u>, McGraw-Hill, New York/Toronto/ London, 1956, pp. 447 - 450.
- (2) R. Zurmühl, <u>Praktische Mathematik für</u> Ingenieure und Physiker, Springer, Berlin/ Göttingen/Heidelberg, 1963, pp. 12 - 17.

Subroutine RTNI_

Purpose:

To solve general nonlinear equations of the form F(X)=0 by means of Newton's iteration method.

Usage:

 \mathbf{F}

CALL RTNI (X, F, DERF, FCT, XST, EPS, IEND, IER) Parameter FCT requires an EXTERNAL statement

Description of parameters:

- Resultant function value at root X.
- DERF Resultant value of derivative at root X.
- FCT Name of the external subroutine used. It computes for given argument X the function value F and derivative DERF. Its parameter list must be X, F, DERF.
- XST Input value which specifies the initial guess of the root X.
- EPS Input value which specifies the upper bound of the error of result X.

Mathematics - Special Operations and Functions 119

- IEND Maximum number of iteration steps specified.
- IER Resultant error parameter coded as follows:
 - IER=0 no error
 - IER=1 no convergence after IEND iteration steps
 - IER=2 at some iteration step derivative DERF was equal to zero

Remarks:

The procedure is bypassed and gives the error message IER=2 if at any iteration step the derivative of F(X) is equal to 0. Possibly the procedure would be successful if it were started again with another initial guess XST.

Subroutines and function subprograms required: The external subroutine FCT(X, F, DERF) must be furnished by the user.

Method:

Solution of the equation F(X)=0 is obtained by means of Newton's iteration method, which starts at the initial guess XST of a root X. ' Convergence is quadratic if the derivative of F(X) at root X is not equal to zero. One iteration step requires one evaluation of F(X) and one evaluation of the derivative of F(X). For tests on satisfactory accuracy see formula (2) of the mathematical description.

	SUBROUTINE RINI(X+F+DERF+FCT+XST+EPS+IEND+IER)	RTNI	1
c	PREPARE ITERATION	RTNI	2
•	IER=0	RTNI	3
	X=XST	RTNI	4
	TOL=X	RTNI	
	CALL FCT(TOL+F+DERF)	RTNI	ē
	TOLF=100.*EPS	RTNI	7
c	START ITERATION LOOP	RTNI	ė
•	DO 6 I=1+IEND	RTNI	Ģ
	IF(F)1+7+1	RTNI	10
c	EQUATION IS NOT SATISFIED BY X	RTNI	11
	1 IF(DERF)2+8+2	RTN1	12
c	ITERATION IS POSSIBLE	RTNI	13
•	2 DX=F/DERF	RTNI	14
	X=X=DX	RTNI	15
	TOL=X	RTNI	16
	CALL FCT(TOL+F+DFRF)	RTNI	17
c	TEST ON SATISFACTORY ACCURACY	RTNI	18
•	TOL=EPS	RTNI	19
	A=ABS(X)	RTNI	20
	IF(A=1.)4.4.3	RTNI	21
	3 TOL=TOL+A	RTNI	22
	4 [F(ABS(DX)-TOL)5,5,6	RTNI	23
	5 IF(ABS(F)-TOLF)7+7+6	RTNI	24
	6 CONTINUE	RTNI	25
c	END OF ITERATION LOOP	RTNI	26
è	NO CONVERGENCE AFTER IEND ITERATION STEPS. ERROR RETURN.	RTNI	27
•	IER=1	RTNI	28
	7 RETURN	RTN1	29
c	ERROR RETURN IN CASE OF ZERO DIVISOR	RTNI	30
<u>ر</u>	8 IER=2	RTNI	31
	RETURN	RTNI	32
	END	RTNI	33
	Lino (

Mathematics - Roots of Polynomial

POLRT

This subroutine computes the real and complex roots of a real polynomial.

Given a polynomial

$$f(z) = \sum_{n=0}^{N} a_n z^n$$
(1)

let

Z = X + iY be a starting value for a root of f(z). Then: $z^n =$

$$(X + iY)^{"}$$
.

(2)

Define X_n as real terms of expanded equation (2). Define Yn as imaginary terms of expanded equation (2).

Then for:

$$n = 0$$

 $X_0 = 1.0$
 $Y_0 = 0.0$
 $n > 0$
 $X_n = X \cdot X_{n-1} - Y \cdot Y_{n-1}$ (3)
 $Y = X \cdot Y + Y \cdot X$ (4)

$$Y_{n} = X \cdot Y_{n-1} + Y \cdot X_{n-1}$$

$$(4)$$

Let U be the real terms of (1).

V be the imaginary terms of (1).

$$U = \sum_{n=0}^{N} a_n X_n$$
(5)
$$V = \sum_{n=0}^{N} x_n Y_n$$
(6)

or

n=0

$$U = a_{o} + \sum_{n=1}^{N} a_{n} X_{n}$$
 (7)

$$V = \sum_{n=1}^{N} a_n Y_n$$
 (8)

$$\frac{\partial U}{\partial X} = \sum_{n=1}^{N} n \cdot X_{n-1} \cdot a_n$$
(9)

$$\frac{\partial U}{\partial Y} = -\sum_{n=1}^{N} n Y_{n-1} a_n$$
(10)

Note that equations (3), (4), (7), (8), (9), and (10) can be performed iteratively for n = 1 to N by saving X_{n-1} and Y_{n-1} .

Using the Newton-Raphson method for computing ΔX , ΔY , we have:

$$\Delta X = \left(V \frac{\partial U}{\partial Y} - U \frac{\partial U}{\partial X} \right) / \left[\left(\frac{\partial U}{\partial X} \right)^2 + \left(\frac{\partial U}{\partial Y} \right)^2 \right]$$
(11)
$$\Delta Y = - \left(U \frac{\partial U}{\partial Y} + V \frac{\partial U}{\partial X} \right) / \left[\left(\frac{\partial U}{\partial X} \right)^2 + \left(\frac{\partial U}{\partial Y} \right)^2 \right]$$
(12)

after applying the Cauchy-Riemann equations. Thus, for the next iteration:

 $X' = X + \Delta X$

$$Y' = Y + \Delta Y$$

Subroutine POLRT

Purpose:

Computes the real and complex roots of a real polynomial.

Usage:

CALL POLRT(XCOF, COF, M, ROOTR, ROOTI, IER)

Description of parameters:

XCOF	-	Vector of M	A+1 coefficients of the			
		polynomial	ordered from smallest			
		to largest]	power.			
COF	-	Working ve	ector of length M+1.			
М	-	Order of p	olynomial.			
ROOTR	-	Resultant v	ector of length M contain-			
		ing real ro	ots of the polynomial.			
ROOTI	-		ector of length M contain-			
		ing the cor	responding imaginary			
		roots of the	coots of the polynomial.			
IER	_	Error code	where:			
		IER=0	No error.			
		IER=1	M less than one.			
		IER=2	M greater than 36.			
		IER=3	Unable to determine			
			root with 500 iterations			
			on 5 starting values.			
		$\mathbf{IER}=4$	High order coefficient is			
			zero.			

Remarks:

Limited to 36th order polynomial or less. Floating-point overflow may occur for high order polynomials but will not affect the accuracy of the results.

Subroutines and function subprograms required: None.

Method:

Newton-Raphson iterative technique. The final iterations on each root are performed using the original polynomial rather than the reduced polynomial to avoid accumulated errors in the reduced polynomial

		reduced polynomial.	
		SUBROUTINE POLRT(XCCF+COF+M+ROOTR+ROOTI+IER)	POLRT 1
		DIMENSION XCOF(1)+COF(1)+ROOTR(1)+ROOTI(1) IFIT+0	POLRT 2 POLRT 3
		N=M IER=0	POLRT 4 POLRT 5
		IF(XCOF(N+1)) 10+25+10 IF(N) 15+15+32	POLRT 6 POLRT 7
c		SET ERROR CODE TO 1 IER=1	POLRT 8 POLRT 9
-		RETURN	POLRT 10
¢	25	SET ERROR CODE TO 4 IER=4	POLRT 11 POLRT 12
с		GO TO 20 SET ERROR CODE TO 2	POLRT 13 POLRT 14
		1ER=2 GO TO 20	POLRT 15 POLRT 16
	32	IF(N=36) 35+35+30 NX=N	POLRT 17 POLRT 18
		NX = N+1 N2 = 1	POLRT 19 POLRT 20
		KJI = N+1 D0 40 L=1+KJI	POLRT 21
		MT=KJ1-L+1	POLRT 22 POLRT 23
c		COFINT)=XCOFIL) SET INITIAL VALUES	POLRT 24 POLRT 25
	45	x0=.00500101 Y0=0.01000101	POLRT 26 POLRT 27
c		ZERO INITIAL VALUE COUNTER IN=D	POLRT 28 Polrt 29
ç	50	X=XO INCREMENT INITIAL VALUES AND COUNTER	POLRT 30 POLRT 31
-		X0=-10.0*Y0 Y0=-10.0*X	POLRT 32 POLRT 33
c		SET X AND Y TO CURRENT VALUE X=X0	POLRT 34
		Y+Y0	POLRT 35 POLRT 36
		IN=IN+1 GO TO 59	POLRT 37 POLRT 38
	55	IFIT=1 XPR=x	POLRT 39 Polrt 40
c		YPR=Y EVALUATE POLYNOMIAL AND DERIVATIVES	POLRT 41 POLRT 42
		ICT=0 UX=0.0	POLRT 43 POLRT 44
		UY=0+0 V =0+0	POLRT 45 POLRT 46
		YT=0.0 XT#1.0	POLRT 47 POLRT 48
		U=COF(N+1) IF(U) 65+130+65	POLRT 49 POLRT 50
	65	DO 70 [=1+N	POLRT 51 POLRT 52
		L =N=I+1 XT2=X*4XT=Y=YT	POLRT 53
		YT2=X=YT+Y=XT U=U+COF1L }=XT2	POLRT 54 POLRT 55
		V=V+COF(L)=YT2 FI=I	POLRT 56 POLRT 57
		UX=UX+FI=XT=COF(L) UY=UY=FI=YT=COF(L)	POLRT 54 Polrt 59
	70	XT=XT2 YT=YT2	POLRT 60 POLRT 61
		SUMSQ=UX+UX+UY+UY IF(SUMSQ) 75+110+75	POLRT 62 POLRT 63
	75	DX=(V+UY+UX)/SUMSQ X=X+DX	POLRT 64 POLRT 65
		DY=-{U+UY+V+UX}/SUMSQ Y=Y+DY	POLRT 66 POLRT 67
c	78	IF(ABS(DY)+ ABS(DX)-1.0E-05) 100.80.80 -STEP ITERATION COUNTER	POLRT 68 POLRT 69
-	80	ICT=ICT+1 IF(ICT=500) 60+85+85	POLRT 70
	85	IF(IFIT) 100+90+100	POLRT 71 POLRT 72
c		IF(IN-5) 50+95+95 SET ERROR CODE TO 3	POLRT 73 POLRT 74
		IER=3 GO TO 20	POLRT 75 POLRT 76
	100	DC 105 L=1+hXX MT=KJ1-L+1	POLRT 77 Polrt 78
		TEMP=XCOF(MT) XCOF(MT)=COF(L)	POLRT 79 Polrt 80
	105	COF(L)=TEMP ITEMP=N	POLRT 81 POLRT 82
		N=NX NX=ITEMP	POLRT 83 POLRT 84
	110	IF(IFIT) 120+55+120 IF(IFIT) 115+50+115	POLRT 85 POLRT 86
	115	X=XPR Y=YPR	POLRT 87 POLRT 88
	120	IFIT=0 IF(x)122+125+122	POLRT 89 POLRTMO1
	122	IF(ABS(Y)-ABS(X)+1+0E-04)135+125+125 ALPHA=X+X	POLRTMO2 POLRT 91
		SUMSG=x+x+Y+Y N=N-2	POLRT 92 POLRT 93
		GO TO 140	POLRT 94
	1 30	X=0+0 NX=NX=1	POLRT 95 POLRT 96
	135	NXX=NXX-1 Y=0.0	POLRT 97 Polrt 98
		SUMSQ=0+0 ALPHA=X	POLRT 99 POLRT100
	140	N=N-1 L1=1	POLRT131 POLRTM03
		L2=7 COF(L2)=COF(L2)+ALPHA=COF(L1)	POLRTMO4 POLRTMOS
	145 150	D0 150 L=2+N COF(L+1)=COF(L+1)+ALPHA=CUF(L)=SUMSQ=CUF(L=1)	POLRT103 POLRT104
	155	ROOTIN2)=Y ROOTIN2)=Y	POLRTIO5 POLRTIO5
		N2=N2+1 IF(SUMSQ) 160,165,160	POLRT107 POLRT108
	160	X=-X 20M2C=0.0	POLRT109 POLRT113
	147	GO TO 155	POLRT111
	103	IF(N) 20+20+45 END	POLRT112 POLRT113

Mathematics - Special Operations and Functions 121

Mathematics - Polynomial Operations

PADD

Purpose:

Add two polynomials.

Usage:

CALL PADD(Z, IDIMZ, X, IDIMX, Y, IDIMY)

Description of parameters:

- Z Vector of resultant coefficients, ordered from smallest to largest power.
- IDIMZ Dimension of Z (calculated).
- Vector of coefficients for first polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X (degree is IDIMX-1).
- Y Vector of coefficients for second polynomial, ordered from smallest to largest power.
- IDIMY Dimension of Y (degree is IDIMY-1).

Remarks:

- Vector Z may be in same location as either vector X or vector Y only if the dimension of that vector is not less than the other input vector. The resultant polynomial may have trailing zero coefficients.
- Subroutines and function subprograms required: None.

Method:

Dimension of resultant vector IDIMZ is calculated as the larger of the two input vector dimensions. Corresponding coefficients are then added to form Z.

	SURROUTINE PADD(2, IDIH2, X, IDIHX, Y, IDIHY)	PADD	1
	DIMENSION 2(1), x(1), Y(1)	PADD	;
	TEST DIMENSIONS OF SUMMANDS	PADD	3
	NOIM=IDIMX	PADO	- 4
	IF (IDIMX-IDIMY) 10,20,20	PADO	Ś
10	NOIM=IDINY	PADD	6
20	IF(NDIM) 90,90,30	PADO	7
30	00 80 [=1,NDIM	PADD	e
	IF(I-IDIMX) 40,43,60	PADO	9
40	IF(I-10INY) 50,50,70	PADD	10
50	2(1)=X(1)+Y(1)	PADO	11
	GO TO 80	PADD	iż
60	Z(1)=Y([)	PÁDO	13
	GQ TQ 80	PADD	14
70	Z([)=X(])	PADO	15
80	CONTINUE	PADD	16
	IDIMZ=NDIM	PADO	17
	RETURN	PADO	18
	END	PADD	19

PADDM

Purpose:

 \mathbf{Z}

Υ

Add coefficients of one polynomial to the product of a factor by coefficients of another polynomial. Usage:

CALL PADDM(Z, IDIMZ, X, IDIMX, FACT, Y, IDIMY)

Description of parameters:

- Vector of resultant coefficients, ordered from smallest to largest power.
- IDIMZ Dimension of Z (calculated).
- Vector of coefficients for first polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X (degree is IDIMX-1).
- FACT Factor to be multiplied by vector Y.
 - Vector of coefficients for second polynomial, ordered from smallest to largest power.

IDIMY - Dimension of Y (degree is IDIMY-1). Remarks:

Vector Z may be in same location as either vector X or vector Y only if the dimension of that vector is not less than the other input vector. The resultant polynomial may have trailing zero coefficients.

Subroutines and function subprograms required:

None.

Method:

Dimension of resultant vector IDIMZ is calculated as the larger of the two input vector dimensions. Coefficient in vector X is then added to coefficient in vector Y multiplied by factor to form Z.

SUBROUTINE PADDM(Z, IDIMZ, X, IDIMX, FACT, Y, IDIMY)	PADDH 1
	PADU7 1
DIMENSION ZILL+XILL+Y(1)	PADOM 2
	PADDH 3
	PADDH 4
IF((DIMX-IDIMY) 10.20.20	PADDM 5
	PADDM 6
	PADDM 7
	PADDM 8
	PADDM 9
	PADDM 10
	PADDM 11
60 TO 80	PADDM 12
	PADDM 13
	PADDM 14
	PADDH 15
	PADDM 16
	PADDM 17
	PADON LE
	PADDM 19
	TEST DIMENSIONS OF SUMMANDS NDIM-IDIMX IF(IDIMX-IDIMY) 10,20,20 D NDIM-IDIMY D IF(NDIM) 90,90,33 D DD N0 1-1,NDIM IF(I-DIMY) 50,50,70 D IF(I-1DIMY) 50,50,70 D IF(I-1DIMY) 50,50,70 D IF(I-1DIMY) 50,50,70

PCLA

Purpose:

Move polynomial X to Y.

Usage:

Y

CALL PCLA(Y, IDIMY, X, IDIMX)

Description of parameters:

- Vector of resultant coefficients, ordered from smallest to largest power.
- IDIMY Dimension of Y.

X - Vector of coefficients for polynomial, ordered from smallest to largest power.

IDIMX - Dimension of X.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

IDIMY is replaced by IDIMX and vector X is moved to Y.

	SUBROUTINE PCLA (Y, IDINY, X, IDINX)	PCLA	ı
	DIMENSION X(1),Y(1)	PCLA	2
	IDIMY=IDIMX	PCLA	3
	LF(1DIMX) 30,30,10	PCLA	4
10	DO 20 [=1.ID[MX	PCLA	5
20	Y(1)=X(1)	PCLA	6
30	RETURN	PCLA	7
	END	PCLA	8

PSUB

Purpose:

Subtract one polynomial from another.

Usage:

CALL PSUB(Z, IDIMZ, X, IDIMX, Y, IDIMY)

Description of parameters:

- Z Vector of resultant coefficients, ordered from smallest to largest power.
- IDIMZ Dimension of Z (calculated).
- Vector of coefficients for first polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X (degree is IDIMX-1).
- Y Vector of coefficients for second polynomial, ordered from smallest to largest power.
- IDIMY Dimension of Y (degree is IDIMY-1).

Remarks:

Vector Z may be in same location as either vector X or vector Y only if the dimension of that vector is not less than the other input vector. The resultant polynomial may have trailing zero coefficients.

Method:

Dimension of resultant vector IDIMZ is calculated as the larger of the two input vector dimensions. Coefficients in vector Y are then subtracted from corresponding coefficients in vector X.

		SUBROUTINE PSUB{Z.IDIMZ.X.IDIMX.Y.IDIMY}	P SUB	1
		DIMENSION 2(1),x(1),Y(1)	PSUB	2
С		TEST DIMENSIONS OF SUMMANOS	PSUB	3
		NDIM=IDIMX	PSUR	4
		IF (IDIMX-IDIMY) 10,20,20	PSUB	5
	10	NDEM=IDEMY	PSUB	6
	20	IF (ND1H) 90,90,30	PSUB	7
	30	DO 80 [=1.NDIM	PSUB	8
		IF (I-IDIMK) 40.40.60	PSUB	9
	40	IF (1-101MY) 50,50,70	PSUB	10
	50	Z(1)=X(1)-Y(1)	PSUB	11
		GD TO 80	PSUB	12
	60	2(1)=-Y(1)	PSUB	13
		GO TO 80	PSUB	14
	70	Z(1)=X(1)	PSUB	15
	80	CONTINUE	PSUB	16
	90	IDIMZ=NDIM	PSUB	17
		RETURN	PSUB	18
		END	PSUB	19

PMPY

Purpose:

Multiply two polynomials.

Usage:

 \mathbf{Z}

CALL PMPY(Z, IDIMZ, X, IDIMX, Y, IDIMY)

Description of parameters:

- Vector of resultant coefficients, ordered from smallest to largest power.
- IDIMZ Dimension of Z (calculated).
- Vector of coefficients for first polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X (degree is IDIMX-1).
- Y Vector of coefficients for second polynomial, ordered from smallest to largest power.
- IDIMY Dimension of Y (degree is IDIMY-1).

Remarks:

Z cannot be in the same location as X.

Z cannot be in the same location as Y.

Subroutines and function subprograms required: None.

Method:

Dimension of Z is calculated as IDIMX+IDIMY-1. The coefficients of Z are calculated as sum of products of coefficients of X and Y, whose exponents add up to the corresponding exponent of Z.

	SUBROUTINE PMPY(2, IDIMZ, X, IDIMX, Y, IDIMY)	PMPY	1
	DIMENSION ZILLAX(L),YILL	PMPY	ż
	IF(IDIMX+IDIMV)10,10,20	PMPY	3
10	IDIMZ=0	PMPY	4
	GO TO 50	PMPY	5
20	IDIMZ=IDIMX+IDIMY+I	PMPY	6
	DD 30 I=1,101MZ	PMPY	7
30	2(1)=0.	PMPY	8
	DD 40 [=1, [D]MX	PNPY	9
	DO 40 J=1,101MY	PMPY	10
	K=[+j-1	PNPY	11
40	Z(K)=X(1)+Y(J)+Z(K)	PHPY	12
50	RETURN	PHPY	13
	END	PMPY	14

Subroutines and function subprograms required: None.

PDIV

Purpose: Divide one polynomial by another.

Usage:

CALL PDIV(P, IDIMP, X, IDIMX, Y, IDIMY, TOL, IER)

Description of parameters:

- P Resultant vector of integral part.
- IDIMP Dimension of P.
- Vector of coefficients for dividend polynomial, ordered from smallest to largest power. It is replaced by remainder after division.
- IDIMX Dimension of X.
- Y Vector of coefficients for divisor polynomial, ordered from smallest to largest power.
- IDIMY Dimension of Y.
- TOL Tolerance value below which coefficients are eliminated during normalization.
- IER Error code. 0 is normal, 1 is for zero divisor.

Remarks:

The remainder R replaces X.

The divisor Y remains unchanged.

If dimension of Y exceeds dimension of X,

IDIMP is set to zero and calculation is bypassed.

Subroutines and function subprograms required: PNORM

Method:

Polynomial X is divided by polynomial Y giving integer part P and remainder R such that $X = P^*Y + R$.

Divisor Y and remainder vector get normalized.

		SUBROUTINE POIV(P.101MP.X.101MX.Y.101MY.TOL.1ER)	PDIV	1
		DIMENSION P(1), X(1), Y(1)	POIV	,
		CALL PNORM (Y, IDIMY, TOL)	PDIV	3
		IF(IDINY) 50.50.10	POTV	- 4
	10	IDIMP=IDIMX-IDIMY+1	PDIV	5
		[F(1D1MP) 20,30,50	PDIV	6
c		DEGREE OF DIVISOR WAS GREATER THAN DEGREE OF DIVIDEND	PDIV	7
	20	IDIMP=0	PDTV	8
		IER=0	POIV	ğ
		RETURN	PDIV	10
c		Y IS ZERO POLYNOMIAL	PDIV	iĭ
•	50	IFR=1	PDIV	iż
		GU TO 40		13
с		START REDUCTION		14
•	60	101MX=101MY-1		15
		I=IDIMP		16
	70	II=I+IDIMX		17
		P(1)=X(1()/Y((D)YY)		18
С		SUBTRACT MULTIPLE OF DIVISOR		19
		DO 80 K=1. [D[MX		zó
		J=K-1+I		21
		X(J)=X(J)-P([)+Y(K)		22
	80	CONTINUE		23
			PDIV	24
		IF(I) 90.90.70	PDIV	25
С		NORMALIZE REMAINDER POLYNOMIAL	PDIV	26
	90	CALL PNORM(X.IDIMX.TOL)		27
		GO TO 30	PDIV	28
		END	PDIV	29

PQSD

Purpose:

Perform quadratic synthetic division.

Usage:

CALL PQSD(A, B, P, Q, X, IDIMX)

Description of parameters:

- A Coefficient of Z in remainder (calculated).
- B Constant term in remainder (calculated).
- P Coefficient of Z in quadratic polynomial.
- Q Constant term in quadratic polynomial.
- Coefficient vector for given polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

The linear remainder A*Z+B.

SUBRIUTINE POSDIA,8,P,0,	X, IDINX) POSD	ı
DIMENSION X(1)	POSD	- 2
A=0.	POSD	
8=0.	PQSO	4
J=1DIMX	P050	
1 [F[J]3,3,2	POSD	6
2 Z=P*A+B	POSD	7
B=Q+A+X(J)	POSD	8
A=Z	POSD	ģ
1-6-21	POSD	10
GO TO 1	PQSD	11
3 RETURN	POSO	12
END	PQSD	13

PVAL

Purpose:

Evaluate a polynomial for a given value of the variable.

Usage:

CALL PVAL(RES, ARG, X, IDIMX)

Description of parameters:

RES -	Resultant	value o	of po	lynomial.
-------	-----------	---------	-------	-----------

- ARG Given value of the variable.
- X Vector of coefficients, ordered from smallest to largest power.

IDIMX - Dimension of X.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Evaluation is done by means of nested multiplication.

SUBROUTINE PVALIRES, ARG, X, IDIMX)	PVAL	1
DIMENSION X(1)	PVAL	2
RES=0.	PVAL	3
J=IDIMX	PVAL	4
1F(J)3+3+2	PVAL	5
RES=RES+ARG+X(J)	PVAL	6
J=J-1	PVAL	7
60 10 1	PVAL	٩
RETURN	PVAL	9
END	PVAL	10

PVSUB

Purpose:

Substitute variable of a polynomial by another polynomial.

Usage:

```
CALL PVSUB(Z, IDIMZ, X, IDIMX, Y, IDIMY, WORK1, WORK2)
```

Description of parameters:

Deperpued	- r	
Z	-	Vector of coefficients for resultant polynomial, ordered from smallest to largest power.
IDIMZ	-	Dimension of Z.
х	-	Vector of coefficients for original polynomial, ordered from smallest to largest power.
IDIMX	_	Dimension of X.
Y	-	Vector of coefficients for polynomial which is substituted for variable, ordered from smallest to largest power.
IDIMY	_	Dimension of Y.
WORK1	-	Working storage array (same dimension as Z).
WORK2	-	Working storage array (same dimension as Z).
Remarks:		
None.		

Subroutines and function subprograms required:

PMPY
PADDM
PCLA

Method:

Variable of polynomial X is substituted by polynomial Y to form polynomial Z. Dimension of new polynomial is (IDIMX-1)*(IDIMY-1)+1. Subroutine requires two work areas.

SUBROUTINE PVSUB(Z, IDIMZ, X, IDIMX, Y, IDIMY, WORKL, WORK2)	PVSUB	1
DIMENSION ZILL,X(1),Y(1),WORK1(1),WORK2(1)	PVSUB	2
TEST OF DIMENSIONS	PVSUB	3
IF (IDIMX-1) 1.3.3	PVSUB	4
L ID142=0	PVSUB	5
2 RETURN	PVSUB	6
3 IDIM2=1	PVSUB	7
2(1)=x(1)	PA208	A
IF (DIMY* DIMX- D MY) 2.2.4	PVSUB	9
4 IW1=1	PVSIIB	10
WORK1(1)=1.	PVSUR	11
00 5 [=2,]D1#X	PVSUB	12
CALL PMPY(WORK2.IW2.Y.IDINY.WORK1.IW1)	PVSUB	13
CALL PCLAIWORKI, INI, WORK2, IW2)	PVSU9	14
FACT=X(1)	PVSUA	15
CALL PADDM(Z.1014Z.Z.ID14Z.FACT.WORK1.IW1)	PVSUB	16
5 CONTINUE	PVSUB	17
GO TO 2	PVSUR	19
END	PVSUB	19

PCLD

Purpose:

Shift of origin (complete linear synthetic division).

Usage:

CALL PCLD(X, IDIMX, U)

Description of parameters:

Х	- Vector of coefficients, ordered from
	smallest to largest power. It is re-
	placed by vector of transformed co-
	efficients.
TOTAT	Dimension of V

IDIMX - Dimension of X.

U - Shift parameter.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Coefficient vector X(I) of polynomial P(Z) is transformed so that Q(Z)=P(Z-U) where Q(Z)denotes the polynomial with transformed coefficient vector.

	SUBROUTINE PELD (X, IDIMX, U)	PCLO	1
		PCLD	ż
	DIMENSION X(1)	PCLD	3
	K=1 J=TOTMX	PCLD	4
		PCLO	5
	IF (J-K) 4,4,3		
3	X{J-1}=X{J-1}+U+X{J}	PCLD	6
	J=J-1	PCLD	7
	G0 T0 2	PCLD	8
4	K=K+1	PCLO	9
	IF (IDIMX-K) 5+5+1	PCLD	10
5	RETURN	PCLD	11
-	END	PCLO	12

PILD

Purpose:

Evaluate polynomial and its first derivative for a given argument.

Usage:

CALL PILD(POLY, DVAL, ARGUM, X, IDIMX)

Description of parameters:

POLY	-	Value of polynomial.
DVAL	-	Derivative.
ARGUM	-	Argument.
х	-	Vector of coefficients for poly-
		nomial, ordered from smallest to
		largest power.
IDIMX	-	Dimension of X.

Remarks:

None.

Subroutines and function subprograms required: PQSD

Method:

Evaluation is done by means of subroutine PQSD (quadratic synthetic division).

SUBROUTINE PILD (POLY, DVAL, ARGUM, X, IDIMX) DIMENSION X(1)	PILD	1
P=ARGUM+ARGUM	PILD	2
	, PILD	3
	PTLD	4
CALL POSD (DVAL,POLY,P,Q,X,IO(MX)	PILD	5
POLY=ARGUM+DVAL+POLY	PILD	6
RETURN	PILD	7
END	PILD	á

PDER

Purpose:

Find derivative of a polynomial.

Usage:

CALL PDER(Y, IDIMY, X, IDIMX)

Description of parameters:

- Y Vector of coefficients for derivative, ordered from smallest to largest power.
- IDIMY Dimension of Y (equal to IDIMX-1).
- Vector of coefficients for original polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Dimension of Y is set at dimension of X less one. Derivative is then calculated by multiplying coefficients by their respective exponents.

	l I
	SUBROUTINE PDER(Y, IDINY, X, IDINX)
	DIMENSION X(1).Y(1)
	TEST OF DIMENSION
	IF (IDIMX-1) 3,3,1
1	IDIHY=IDIMX-1
	EXPT=0.
	00 2 [=1,101HY
	EXPT=EXPT+1.
2	Y(1)=X(1+1)*EXPT
	GO TO 4

3 IDINY=0 4 RETURN END

PINT

c

Purpose:

Find integral of a polynomial with constant of integration equal to zero.

Usage:

CALL PINT(Y, IDIMY, X, IDIMX)

Description of parameters:

- Y Vector of coefficients for integral, ordered from smallest to largest power.
- IDIMY Dimension of Y (equal to IDIMX+1).
- X Vector of coefficients for original polynomial, ordered from smallest to largest power.
- IDIMX Dimension of X.

Remarks:

None.

Subroutines and function subprograms required: None.

Method:

Dimension of Y is set at dimension of X plus one, and the constant term is set to zero. Integral is then calculated by dividing coefficients by their respective exponents.

		PINT	
	SUBROUTINE PINT(Y, (DIMY, X, (DIMX)		
	DIMENSION X(1),Y(1)	PINT	2
	IDINY=IDINX+1	PINT	3
	Y(1)=0.	PINT	4
	IF([DIMX)]+1+2	PINT	5
	RETURN	PINT	- 6
	EXPT=1.	PINT	7
د	00 3 1=2.101MY	PINT	9
	Y(1)=X(1-1)/EXPT	PINT	9
•	EXPT=EXPT+1.	PINT	10
,	GO TO 1	PINT	11
	END	PINT	12

PGCD

Purpose:

Determine greatest common divisor of two polynomials.

Usage:

CALL PGCD(X, IDIMX, Y, IDIMY, WORK, EPS, IER)

Description of parameters:

Х	-	Vector of coefficients for first poly-
		nomial, ordered from smallest to
		largest power.

- IDIMX Dimension of X.
- Y Vector of coefficients for second polynomial, ordered from smallest to largest power. This is replaced by greatest common divisor.
- IDIMY Dimension of Y.
- WORK Working storage array.
- EPS Tolerance value below which coefficient is eliminated during normalization.
 IER Resultant error code where:
 - Resultant error code where: IER=0 No error. IER=1 X or Y is zero polynomial.

Remarks:

IDIMX must be greater than IDIMY.

IDIMY=1 on return means X and Y are prime, the GCD is a constant.

Subroutines and function subprograms required: PDIV

PNORM

Method:

Greatest common divisor of two polynomials X and Y is determined by means of Euclidean algorithm. Coefficient vectors X and Y are destroyed and greatest common divisor is generated in Y.

	SUBROUTINE PGCD(X, 101MX, Y, 101MY, WORK, EPS, 1ER)	PGCD		
	DIMENSION X(1)+Y(1)+WORK(1)	PGCD	ż	
с	DIMENSION REQUIRED FOR VECTOR NAMED WORK IS IDIMX-IDIMV+1		ì	
	1 CALL PDIVINORK, NOIM, X, IDIMX, Y, IDIMY, EPS, IER)	PGCD	4	
	IF(IER) 5.2.5	PGCD	5	
	2 [F[[D]MX] 5.5.3	PGCD	6	
с	INTERCHANGE X AND Y	PGED	7	
÷	3 DO 4 J=1.IDINY	POCO	Å	
	WORK(1)=X(J)	PGCD	q	
	X{J}=Y{J}	PGCD	20	
	4 Y(J)=WGRK(1)	PGCD	11	
	NDIM=ID1MX	PGED	12	
	IDIMX-IDIMY	9 GCD	13	
	IDIMY=NDIM	*GC0	14	
	GO TO 1	PGCD	15	
	S RETURN	PGCO	16	
	END	PGCO	17	

PNORM

Purpose:

Normalize coefficient vector of a polynomial.

Usage:

CALL PNORM(X, IDIMX, EPS)

Description of parameters:

- Х
- Vector of original coefficients,
 - ordered from smallest to largest power. It remains unchanged.

- IDIMX Dimension of X. It is replaced by final dimension.
- EPS Tolerance below which coefficient is eliminated.

Remarks:

If all coefficients are less than EPS, result is a zero polynomial with IDIMX=0 but vector X remains intact.

Subroutines and function subprograms required: None.

Method:

Dimension of vector X is reduced by one for each trailing coefficient with an absolute value less than or equal to EPS.

SUBROUTINE PNORA(X, IDIMX, EPS)	PNORM	1	
DIMENSION X(1)	PNDRM	2	
1 1F(101MX) 4.4.2	PNDRM	3	
2 1F(ABS(X(10)MX1)-EPS) 3.3.4	PNORM	4	
3 IDIMX=IDIMX-1	PNORM	5	
GO TO L	PNORM	6	
4 RETURN	PNORM	7	
END	PNORM	8	

APPENDIX A: STORAGE REQUIREMENTS

The following table lists the number of characters of storage required by each of the subroutines in the Scientific Subroutine Package. The figures given were obtained by using 1130 Monitor FORTRAN, Version 2, Modification Level 1. Also noted are the subroutines or function subprograms that are called or are used by a given subroutine.

			in sequence)	(v, MODII)
		Storage		
Name	Function	Required (<u>Words</u>)	ORDER	rearrangement of intercorrelations
<u>Itunio</u>		(<u>morab</u>)		
STATISTICS			MULTR	multiple regression and correlation
Data Screenin	ıg			
	-		Dolomomial I	
TALLY	totals, means, standard deviations, minimums,		Polynomial F	tegression
	maximums	356	• • -	lires GDATA,
BOUND	selection of observations		ORDER, MIN in sequence)	IV, MULTR
200112	within bounds	206	in boquoico,	
SUBST	subset selection from		GDATA	data generation
50151	observation matrix			
	(needs user's Boolean	224	Canonical Co	rrelation
	subroutine)	224	(Usually requ	iires CORRE,
ABSNT	detection of missing		CANOR, MIN	IV, NROOT,
	data	94	EIGEN in sec	luence)
TAB1	tabulation of data (1		CANOR	canonical correlation
	variable)	612		(CANOR calls MINV and NROOT)
TAB2	tabulation of data (2			and NROOT)
	variables)	1140	NROOT	eigenvalues and
SUBMX	build subset matrix	134		eigenvectors of a special nonsymmetric
				matrix (NROOT calls
Elementary S	tatistics			EIGEN)
MOMEN	first four moments	404		
mmerre	tests on population		Analysis of V	ariance
TTSTT	tests on population means	538	(Usually requ	aires AVDAT, AVCAL,
			MEANQ in se	equence)
Correlation			AVDAT	data storage allocation
CORRE	means, standard de-			
	viations, and correla- tions (needs user's		AVCAL	Σ and Δ operation
	subroutine to get data)	1164	MEANQ	mean square operation

Storage

Required

(Words)

206

518

668

1132

752

326

268

560

Function

<u>Name</u>

Multiple Linear Regression

(Usually requires CORRE, ORDER, MINV, MULTR

128

Name	Function	Storage Required (<u>Words</u>)	Name	Function	Storage Required (<u>Words</u>)
Discriminar (Usually red DISCR in se	quires DMATX, MINV,		KRANK	Kendall rank correla- tion (KRANK calls RANK and TIE)	524
DMATX	means and dispersion matrix	422	WTEST	Kendall coefficient of concordance (WTEST calls RANK and TIE)	498
DISCR	discriminant functions	980	RANK	rank observations	216
Factor Anal	lysis		TIE	calculation of ties in ranked observations	196
	quires CORRE, EIGEN, DAD, VARMX in sequence)		<u>Random Nu</u>	mber Generators	
TRACE	cumulative percentage of eigenvalues	160	RANDU	uniform random numbers	52
LOAD	factor loading	98	GAUSS	normal random num- bers (GAUSS calls	
VARMX	varimax rotation	1186		RANDU)	68
Time Series	<u>S</u>		MATHEMA	TICS	
AUTO	autocovariances	180	Special Mat	trix Operations	
CROSS	crosscovariances	248	MINV	matrix inversion	784
SMO	application of filter coefficients (weights)	166	EIGEN	eigenvalues and eigenvectors of a real, symmetric	
EXSMO	triple exponential smoothing	274	Matrices	matrix	1058
Nonparamet	tric Statistics		SIMQ	solution of simultaneous	
CHISQ	x ² test for a contingency table	490		linear, algebraic equations	540
UTEST	Mann-Whitney U-test		GMADD	add two general matrices	52
	(UTEST calls RANK and TIE)	242	GMSUB	subtract two general matrices	52
TWOAV	Friedman two-way analysis of variance		GMPRD	product of two general matrices	156
0.000	(TWOAV calls RANK)	324	GMTRA	transpose of a general matrix	
QTEST	Cochran Q-test	232			88
SRANK	Spearman rank cor- relation (SRANK calls RANK and TIE)	378	GTPRD	transpose product of two general matrices	152
	·····	010	MADD	add two matrices (calls LOC)	226

•

۰,

I

Name	Function	Storage Required (<u>Words</u>)	<u>Name</u>	Function	Storage Required (<u>Words</u>)	ŀ
MSUB	subtract two matrices (calls LOC)	226	RTAB	tabulate the rows of a matrix (calls LOC, RADD)	198	
MPRD	matrix product (row into column) (calls LOC)	230	СТАВ	tabulate the columns of a matrix (calls LOC, CADD)	198	
MTRA	transpose a matrix (calls MCPY)	108	RSRT	sort matrix rows (calls LOC)	308	
TPRD	transpose product (calls LOC)	230	CSRT	sort matrix columns (calls LOC and CCPY)	306	
МАТА	transpose product of matrix by itself (calls LOC)	194	RCUT	partition row-wise (calls LOC)	162	
SADD	add scalar to matrix (calls LOC)	56	CCUT	partition column-wise (calls LOC)	162	
SSUB	subtract scalar from a matrix (calls LOC)	56	RTIE	adjoin two matrices row-wise (calls LOC)	178	
SMPY	matrix multiplied by a scalar (calls LOC)	56	CTIE	adjoin two matrices column-wise (calls LOC)	166	e
SDIV	matrix divided by a scalar (calls LOC)	66	МСРҮ	matrix copy (calls LOC)	52	
RADD	add row of one matrix to row of another		ХСРҮ	copy submatrix from given matrix (calls LOC)	128	
	matrix (calls LOC)	90	RCPY	copy row of matrix into vector (calls LOC)	78	
CADD	add column of one matrix to column of another matrix (calls		ССРҮ	copy column of matrix into vector (calls LOC)	78	
	LOC)	92	DCPY	copy diagonal of matrix into vector (calls LOC)	58	
SRMA	scalar multiply row and add to another row	108	SCLA	matrix clear and add scalar (calls LOC)	52	
SCMA	scalar multiply column and add to another column	110	DCLA	replace diagonal with scalar (calls LOC)	50	
RINT	interchange two rows	94	MSTR	storage conversion		
CINT	interchange two columns	96		(calls LOC)	116	
RSUM	sum the rows of a matrix (calls LOC)	98	MFUN	matrix transformation by a function	66	
CSUM	sum the columns of a matrix (calls LOC)	98	RECP	reciprocal function for MFUN	44	,

Name	Function	Storage Required (<u>Words</u>)	Name	Function	Storage Required (<u>Words</u>)
LOC	location in compressed-		BESI	I Bessel function	414
	stored matrix	108	BESK	K Bessel function	844
ARRAY	vector storagedouble dimensioned conversion	198	CEL1	elliptic integral of the first kind	126
Integration	and Differentiation		CEL2	elliptic integral of the	
QSF	integral of tabulated function	806	CEL2	second kind	200
	Iunction		EXPI	exponential integral	262
QATR	integral of given function by trapezoidal rule.	386	SICI	sine cosine integral	366
		380	CS	Fresnel integrals	310
Ordinary D	ifferential Equations				
RK1	integral of first-order differential equation by Runge-Kutta method (needs user function subprogram)	468			
RK2	tabulated integral of first-		Roots of No	onlinear Functions	
	order differential equation by Runge-Kutta method (needs user function sub- program)	210	RTWI	refine estimate of root of Wegstein's iteration (needs user function subprogram)	208
RKGS	solution of a system of first-order differential equations by Runge-Kutta method (uses given initial values)		RTMI	determine root within a range by Mueller's iteration (needs user function subprogram)	536
		1174	RTNI	refine estimate of root by Newton's iteration (needs	
Fourier An	alysis			user function subprogram)	172
FORIF	Fourier analysis of a given function (needs user		Roots of Pe	olynomial	
	function subprogram)	292	POLRT	real and complex roots of polynomial	
FORIT	Fourier analysis of a tabulated function	284			820
Special One	motions and Mathematical Fund	· · · · ·	Polynomia	1 Operations	
	erations and Mathematical Func	tions	PADD	add two polynomials	110
GAMMA	gamma function	260	PADDM	multiply polynomial by	
LEP	Legendre polynomial	132		constant and add to another polynomial	118
BESJ	J Bessel function	448	PCLA	replace one polynomial	
BESY	Y Bessel function	704	1 0141	by another	48

-

Name	Function	Storage Required (<u>Words</u>)	Name	Function	Storage Required (Words)	
PSUB	subtract one polynomial from another	112	PCLD	complete linear division	74	-*
PMPY	multiply two polynomials	142	PILD	evaluate polynomial and its first derivative (calls PQSD)	56	
PDIV	divide one polynomial by another (calls PNORM)	198	PDER	derivative of a polynomial	88	ઢ
PQSD	quadratic synthetic divi- sion of a polynomial	78	PINT	integral of a polynomial	88	~
PVAL	value of a polynomial	54	PGCD	greatest common divisor of two polynomials (calls		
PVSUB	substitute variable of polynomial by another			PDIV and PNORM)	108	
	polynomial (calls PMPY, PADDM, PCLA)	132	PNORM	normalize coefficient vector of polynomial	48	

Ŷ

The subroutines in SSP can be broken down into three major categories from the standpoint of accuracy. They are: subroutines having little or no affect on accuracy; subroutines whose accuracy is dependent on the characteristics of the input data; and subroutines in which definite statements on accuracy can be made.

SUBROUTINES HAVING LITTLE OR NO AFFECT ON ACCURACY

The following subroutines do not materially affect the accuracy of the results, either because of the simple nature of the computation or because they do not modify the data:

TALLY	totals, means, standard deviations,	SMPY
	minimums, and maximums	SDIV
BOUND	selection of observations within bounds	RADD
SUBST	subset selection from observation matrix	CADD
ABSNT	detection of missing data	SRMA
TAB1	tabulation of data (1 variable)	
TAB2	tabulation of data (2 variables)	SCMA
SUBMX	build subset matrix	RINT
MOMEN	first four moments	CINT
TTSTT	tests on population means	RSUM
ORDER	rearrangement of intercorrelations	CSUM
AVDAT	data storage allocation	RTAB
TRACE	cumulative percentage of eigenvalues	CTAB
CHISQ	x^2 test for a contingency table	RSRT
UTEST	Mann-Whitney U-test	CSRT
TWOAV	Friedman two-way analysis of variance	RCUT CCUT
QTEST	Cochran Q-test	RTIE
SRANK	Spearman rank correlation	CTIE
~~~~		MCPY
KRANK	Kendall rank correlation	XCPY
WTEST	Kendall coefficient of concordance	RCPY
RANK	rank observations	CCPY
TIE	calculation of ties in ranked observations	DCPY
RANDU	uniform random numbers	SCLA
GAUSS	normal random numbers	DCLA
		-

GMADD	add two general matrices
GMSUB	subtract two general matrices
GMPRD	product of two general matrices
GMTRA	transpose of a general matrix
GTPRD	transpose product of two general matrices
MADD	add two matrices
MSUB	subtract two matrices
MPRD	matrix product (row into column)
MTRA	transpose a matrix
TPRD	transpose a product
MATA	transpose product of matrix by itself
SADD	add scalar to matrix
SSUB	subtract scalar from a matrix
SMPY	matrix multiplied by a scalar
SDIV	matrix divided by a scalar
RADD	add row of one matrix to row of an- other matrix
CADD	add column of one matrix to column of another matrix
SRMA	scalar multiply row and add to another row
SCMA	scalar multiply column and add to an- other column
RINT	interchange two rows
CINT	interchange two columns
RSUM	sum the rows of a matrix
CSUM	sum the columns of a matrix
RTAB	tabulate the rows of a matrix
CTAB	tabulate the columns of a matrix
RSRT	sort matrix rows
CSRT	sort matrix columns
RCUT	partition row-wise
CCUT	partition column-wise
RTIE	adjoin two matrices row-wise
CTIE	adjoin two matrices column-wise
MCPY	matrix copy
XCPY	copy submatrix from given matrix
RCPY	copy row of matrix into vector
CCPY	copy column of matrix into vector
DCPY	copy diagonal of matrix into vector
SCLA	matrix clear and add scalar
DCLA	replace diagonal with scalar

MSTR	storage conversion	AVCAL	$\Sigma$ and $\Delta$ operation
MFUN	matrix transformation by a function	MEANQ	mean square operation
RECP	reciprocal function for MFUN	DMATX	means and dispersion matrix
LOC	location in compressed-stored matrix	DISCR	discriminant functions
CONVT	single precision, double precision	LOAD	factor loading
	conversion	VARMX	varimax rotation
ARRAY	vector storagedouble dimensioned conversion	AUTO	autocovariances
PADD	add two polynomials	CROSS	crosscovariances
PADDM	multiply polynomial by constant and add to another polynomial	SMO	application of filter coefficients (weights)
PCLA	replace one polynomial by another	EXSMO	triple exponential smoothing
PSUB	subtract one polynomial from another	MINV	matrix inversion
PMPY	multiply two polynomials	EIGEN	eigenvalues and eigenvectors of a real, symmetric matrix
PDIV	divide one polynomial by another	SIMQ	solution of simultaneous linear, alge-
PQSD	quadratic synthetic division of a polynomial	QSF	braic equations
PVAL	value of a polynomial	49L	integral of tabulated function by Simpson's Rule
PVSUB	substitute variable of polynomial by another polynomial	QATR	integral of given function by trapezoidal rule
PCLD	complete linear division	RK1	integral of first-order differential
PILD	evaluate polynomial and its first		equation by Runge-Kutta method
1120	derivative	RK2	tabulated integral of first-order differ- ential equation by Runge-Kutta method
PDER	derivative of a polynomial	DVGG	- • •
PINT	integral of a polynomial	RKGS	solution of a system of first-order differential equations by Runge-Kutta
PGCD	greatest common divisor of two		method
	polynomials	FORIF	Fourier analysis of a given function
PNORM	normalize coefficient vector of polynomial	FORIT	Fourier analysis of a tabulated function
		RTWI	refine estimate of root by Wegstein's iteration
SUBROUTIN DE PENDEN	IES WHOSE ACCURACY IS DATA T	RTMI	determine root within a range by Mueller's iteration
		DOWN	rofine estimate of root by Nowton's

The accuracy of the following subroutines cannot be predicted because it is dependent on the characteristics of the input data and on the size of the problem. The programmer using these subroutines must be aware of the limitations dictated by numerical analyses considerations. It cannot be assumed that the results are accurate simply because subroutine execution is completed. Subroutines in this category are:

CORRE	means, standard deviations, and correlations
MULTR	multiple regression and correlation
GDATA	data generation
CANOR	canonical correlation
NROOT	eigenvalues and eigenvectors of a special nonsymmetric matrix

RTNI refine estimate of root by Newton's iteration

ð

POLRT real and complex roots of polynomial

#### SUBROUTINES WITH DEFINITE ACCURACY CHARACTERISTICS

This table was developed by comparing floating-point results from the subroutines with the tables given in Abramowitz and Stegun*. In certain cases the reference table gave results in fixed-point form. In these cases the maximum differences below are given in terms of number of decimal places (d.p.) which agreed, rather than number of significant digits (s.d.) which agree. In compiling maximum differences, the maximum was taken over the set of points indicated in the table. The average difference was normally much smaller.

The notation x = a (b) c implies that a, a + b, a + 2b, ..., c were the arguments (x) used.

Name	Functions	Remarks	Allowable Parameter Range	Range Checked with references*	Maximum Difference s.d.=significant digits d.p.=decimal places
GAMMA	Γ(x) (gamma)		$x \leq 34.5$ , and x not within $10^{-6}$ of zero or a negative integer	x = .1 (.1) 3 x = 1 (1) 34	2 in 6th s.d. 1 in 6th s.d.
LEP	P _n (x) (Legendre)		-1≟x≟1 n≥0	$ \begin{array}{c} x = 0 \ (.2) \ 1 \\ n = 2, \ 3 \\ n = 9, \ 10 \end{array} $	3 in 6th s.d. 1 in 5th s.d.
BESJ	Jn(x) (Bessel)	(The accuracy Factor, D, used	x>0; n>0		8 in 6th s.d.
		in the program was 10 ⁻⁵ .)	when $x \le 15$ ; $n < 20 + 10x^{-x^{2}/3}$ when $x > 15$ , n < 90 + x/2	n = 3 (1) 9 x = 1 (1) n-2	1 in 5th s.d.
				n = 3 (1) 9 x = n - 1 (1) 20	1 in 5th d.p.
				x = 1, 2, 5, 10, 50 n = 10 (10) 50 **	3 in 6th s.d.
BESY	Y _n (x) (Bessel)		$\begin{array}{c} n \ge 0 \\ x > 0 \end{array}$	x = 1 (1) 17 n = 0, 1, 2	9 in 6th s.d.
				n = 3 (1) 9 x = 1 (1) n-2	1 in 5th s.d.
				n = 3 (1) 9 x = n-1 (1) 20	1 in 5th d.p.
				x = 1, 2, 5, 10, 50 n = 10 (10) 50**	3 in 5th s.d.
BESI	I _n (x) (Bessel)	(Table values are $e^{-xI_n(x)}$ .	$\begin{array}{c} x > 0 \\ 0 \leq n \leq 30 \end{array}$	x = 1 (1) 20 n = 0, 1	8 in 7th s.d.
		maximum difference is for these		x = 5 (1) 20 n = 2	6 in 7th s.d.
		values)		x = 1 (1) 20 n = 3 (1) 9	1 in 5th s.d.
		(Table values are I _n (x))		x = 1, 2, 5, 10 n = 10, 20, 30**	8 in 7th s.d.

Subroutines	with	Definite	Accuracy	Characteristics	(continued)
-------------	------	----------	----------	-----------------	-------------

Name	Functions	Remarks	Allowable Parameter Range	Range Checked with references*	Maximum Difference s.d.=significant digits d.p.=decimal places
BESK	K _n (x) (Bessel)	(Table values are e ^x K _n (x). These were	$\begin{array}{c} x > 0 \\ n \ge 0 \end{array}$	x = 1 (1) 20 n = 0, 1	8 in 7th s.d.
		used for maxi- mum differ- ences)		x = 5 (1) 20 n = 2	9 in 7th s.d.
				x = 1 (1) 20 n = 3 (1) 9	1 in 5th s.d.
		(Tabled values are K _n (x)		x = 1, 2, 5, 10, 50 n = 10 (10) 50**	1 in 6th s.d.
CEL1	K (k) (elliptic 1st integral)	(Tabled values are K(m); $m = k^2$	-1∠k∠1	m = 0 (.1) .9	1 in 7th s.d.
CEL2	(Generalized	K(m) when	-1 <b>∠</b> k <b>∠</b> 1	m = 0 (.1).9	1 in 7th s.d.
	Integral of 2nd kind)	A = B = 1 E(m) when A = 1, $B = ck^{2}$ where m = k^{2}		m = 0 (.1).9	1 in 7th s.d.
EXPI	Exponential Integral	-Ei (-x) when X<0	x≥-4	x =5(5) -2	0 in 7th s.d.
	Integra			x = -2.5 (5) $-4$	1 in 7th s.d.***
		$E_1$ (x) when $x > 0$		x = .5 (.5) 2	2 in 7th s.d.
				x = 2.5 (.5) 4	6 in 5th s.d.***
				x = 4.5 (.5) 8	3 in 7th s.d.***
SICI	s _i (x) (sine integral)		none		3 in 7th s.d. 0 in 7th s.d.
SICI	C i (x) (cosine integral)		none	x = 1 (1) 10 $x = 10 \pi$	3 in 7th s.d. 0 in 5th s.d.
CS CS	C ₂ (u)		none	x = .1, .3, .6, .8	1 in 6th s.d.
	(Fresnel) $\mu = \frac{1}{2}\pi x^2$			x = 1 (1) 5	2 in 7th s.d.
CS	S (u) (Fresnel)		none	x = .1, .3, .6, .8	1 in 4th s.d.
	$\mu = \frac{1}{2}\pi x^2$	·		x = 1 (1) 5	3 in 7th s.d.

*Handbook of Mathematical Functions, Abramowitz and Stegun, National Bureau of Standards publication.

**Results outside the range of the 1130 are set to zero or machine infinity. Results are subject to compatability of x and n. ***Tabled results, used for maximum difference, were given for  $xe^{x}E_{1}(-x)$  and  $xe^{x}E_{1}(x)$ 

#### APPENDIX C: TIMING

1. Sample program SOLN was chosen to exemplify the overall timing of a problem. In all cases the 1442 Card Reader, Model 7, is used for input and all necessary subroutines are already on disk. (Core speed:  $3.6 \mu s.$ )

- a. Compile time, using a LIST ALL card (gives a program listing of its 56 cards and a memory map which includes variable allocations, statement allocations, features supported, called subprograms, integer constants, and core requirements), requires 1 minute 32 seconds on the 1132 Printer. (Compile time, minus the LIST ALL card, requires 36 seconds.)
- b. To store the program on disk takes 10 seconds.
- c. After the XEQ control card is read, the computer uses 17 seconds to locate the necessary subprograms and the main program, and to load them in core.
- d. Execution time is four seconds. Output printing time is 53 seconds on an 1132 Printer and 3 minutes 32 seconds on the console typewriter.

2. To illustrate the computational time used by an IBM 1130 computer, the following program was selected:

```
DIMENSION A(1600), L(40), M(40)
  IX=3
2 PAUSE 1
  DO 1 I=1,1600
  CALL RANDU (IX, IY, Y)
  IX=IY
1 A(I) = Y
  PAUSE 2
  CALL MINV (A,10,D,L,M)
  PAUSE 3
  CALL MINV (A,15,D,L,M)
  PAUSE 4
  CALL MINV (A,20,D,L,M)
  PAUSE 5
  CALL MINV (A,30,D,L,M)
  PAUSE 6
  CALL MINV (A,40,D,L,M)
  PAUSE 7
  GO TO 2
  END
```

a. RANDU - random number generator subroutine. To generate 1600 numbers, using subroutine RANDU, execution time is 5 seconds.

- MINV matrix inversion subroutine. Matrix inversion, using subroutine MINV, is performed on five different sized matrices, with the following results in execution time:
  - (1) The 10 x 10 matrix uses 4 seconds.
  - (2) The 15 x 15 matrix uses 12 seconds.
  - (3) The 20 x 20 matrix uses 27 seconds.
  - (4) The 30 x 30 matrix uses 1 minute 28 seconds.
  - (5) The 40 x 40 matrix uses 3 minutes 27 seconds.

#### SAMPLE PROBLEM TIMING

The table below gives sample problem times from the reading of the XEQ card to the printing, on the 1132 Printer, of the last output line:

<u>Problem</u>			Time	
DASCR	2 min.	20 sec.	(5 min. 30 sec. using the console typewriter)	
ADSAM	1 min.	25 sec.		
ANOVA		55 sec.		
EXPON	1 min.	5 sec.		
FACTO	1 min.	55 sec.		
MCANO	1 min.	55 sec.		
MDISC	2 min.	12 sec.		
POLRG	2 min.	53 sec.		
QDINT		30 sec.		
REGRE	2 min.	25 sec.		
RKINT		55 sec.		
SMPRT		30 sec.		
001.11				

#### APPENDIX D: SAMPLE PROGRAMS

This appendix describes a set of sample programs designed to illustrate typical applications of the scientific subroutines. The sample programs also make use of certain user-written special sample subroutines. Such subroutines are, of course, to be taken only as typical solutions to the problem under consideration, each user being urged to tailor such subroutines to his own specific requirements.

A "Guide to the Sample Programs" immediately follows this introduction. The guide indicates the location of the sample program (if any) calling a particular subroutine of the SSP or referencing a special sample subroutine. The SSP listings are <u>not</u> repeated in this appendix; to locate such listings refer to "Guide to Subroutines" in the introduction.

Listings of the special sample subroutines (HIST, MATIN, PLOT, MXOUT, BOOL, DATA, and FUN) are provided immediately following each sample program. The subroutines DATA, MATIN, and MXOUT are used with several sample programs, and for purposes of clarity the listings of these special user-written routines are repeated with each sample program.

# GUIDE TO THE SAMPLE PROGRAMS

Data Screening	Page	
DASCRSample Main Program		
Illustrates use of:		
SUBSTsubset selection from observation matrix		
TAB1tabulation of data (1 variable)		
LOClocation in compressed-stored matrix		
Special sample subroutines are:		
BOOLBoolean expression	145	
HISThistogram printing	145	
MATINmatrix input	145	
Multiple Regression		
REGRESample Main Program	150	
Illustrates use of:		
CORREmeans, standard deviations, and correlations		
ORDERrearrangement of intercorrelations	5	

	Page
MINVmatrix inversion	
MULTRmultiple regression	
Special sample subroutine is:	
DATAsample data read	151
Polynomial Regression	
POLRGSample Main Program	155
Illustrates use of:	
GDATAdata generation	
ORDERrearrangement of intercorrelations	6
MINVmatrix inversion	
MULTRmultiple regression	
Special sample subroutine is:	
PLOToutput plot	156
Canonical Correlation	
MCANOSample Main Program	159
Illustrates use of:	
CORREmeans, standard deviations, and correlations	
CANORcanonical correlation	
MINVmatrix inversion	
NROOTeigenvalues and eigenvectors of a special, nonsymmetric matrix	
EIGENeigenvalues and eigenvectors of a symmetric matrix	
Special sample subroutine is:	
DATAsample data read	160
Analysis of Variance	
ANOVASample Main Program	164
Illustrates use of:	
AVDATdata storage allocation	
AVCAL $\Sigma$ and $\Delta$ operation	
MEANQmean square operation	

	Page		Page
Discriminant Analysis		Illustrates use of:	
MDISCSample Main Program	168	QSFnumerical integration by Simpson's rule	
Illustrates use of:		Runge-Kutta Integration	
DMATXmeans and dispersion matrix		RKINTSample Main Program	184
MINVmatrix inversion			104
DISCRdiscriminant functions		Illustrates use of:	
Faster Analysia		RK2Runge-Kutta integration	
Factor Analysis		Special sample function is:	
FACTOSample Main Program	172	FUNdefinition of differential equation	184
Illustrates use of:		Real and Complex Roots of Polynomial	
CORREmeans, standard deviations, and correlations		SMPRTSample Main Program	186
EIGENeigenvalues and eigenvectors of a real, symmetric matrix		Illustrates use of:	
TRACEcumulative percentage of eigenvalues		POLRTreal and complex roots of polynomial	
LOADfactor loading		Solution of Simultaneous Equations	
VARMXvarimax rotation		SOLNSample Main Program	190
Special sample subroutine is:		Illustrates use of:	
DATAsample data read	173	SIMQsolution of simultaneous equations	
Triple Exponential Smoothing		LOClocation in compressed-stored matrix	
EXPONSample Main Program	175	Special sample subroutines are:	
Illustrates use of:		MATINmatrix input	190
EXSMOtriple exponential smoothing		MXOUTmatrix output	191
Matrix Addition		SAMPLE PROGRAM DESCRIPTION	
ADSAMSample Main Program	179	The specific requirements for each sample paint including problem description, subroutines,	
Illustrates use of:		capacity, input, output, operating instruction	s, error
MADDmatrix add		messages, program modifications, and timin well as listings of data inputs and program re	
LOClocation in compressed-stored matrix		are given in the documentations of the individ sample programs. There are, however, several significant fa	lual
Special sample subroutines are:		which apply to all these sample programs.	1015,
MATIN-~matrix input	179	1. Data input to programs produced by 11 FORTRAN is required to be right justified wi	
MXOUTmatrix output	180	field, even if the data includes decimal points	
Numerical Quadrature Integration		<u>leading</u> blanks are permitted. 2. All sample programs as distributed wi	
QDINTSample Main Program	182	on an 8K Model IIB with 1132 Printer and 144 Read Punch, Model 6 or 7. If the user has d	

•

4

•

card I/O devices, he must change the *IOCS card and the first READ instruction of each sample program to conform to his configuration.

3. All of the output format statements in the sample main programs and the sample subroutines specify the console typewriter as the output device. However, the logical unit numbers for input and output are optional. The first card of the sample problem data deck defines the input/output units for a specific run, and is read from the principal card reader by the sample main program. Format for this card is as follows:

Column 2 contains the logical unit number for output

Column 4 contains the logical unit number for input

4. The IOCS card, included with each sample main program, specifies three devices (CARD, TYPEWRITER, 1132 PRINTER). The user should include only those I/O devices employed by the program, thus eliminating any unnecessary Monitor subroutines.

5. Since core storage for the IBM 1130 Model II B computer is 8K, only a limited number of the sample programs have ample storage area for increases in dimension statements. The majority of the programs are now dimensioned so near maximum storage size that any increases in the dimension would create system overlays (SOCAL's) or would necessitate the use of a LOCAL overlay area.

6. For each sample program given below, there is a schematic diagram showing deck setup. This schematic gives a general description of deck requirements. Specific details pertaining to three different situations should be understood. To follow the discussion of the three cases for all sample programs, consider Figure 10.

- a. Initial run of a sample program under the disk monitor system: All required monitor control cards are distributed with decks. If the deck setup given in Figure 10 is used, the final card of the routine DASCR, the //XEQ card (which is a monitor control card), should be taken out of the routine DASCR and placed after the *STORE card which has stored the routine LOC on the disk. With this change, DASCR will be compiled, stored on disk (with all of its required routines), and then will execute. After this initial run is complete, the second case can be considered (b, below).
- b. After the initial run of a sample program under the disk monitor system, following runs can be made by using only the //XEQ card and any required *LOCAL cards, followed by data. This case assumes that all routines are on the disk.

c. Running sample programs under Card FORTRAN (1130-FO-001) (non-disk system): All monitor control cards (see the Application Directory) must now be removed from decks. Using Figure 10, consider that the labeled decks refer to object programs which were previously compiled using Card FORTRAN (C26-3629). With this consideration, noting the binary loaders and library required as stated under "Object Deck Loading Procedures" in the 1130 Card/Paper Tape Programming System Operator's Guide, and with decks in Figure 10 order, DASCR will run.

NOTE: Remarks in (a) above about changes in placement of //XEQ cards pertain also to any required *LOCAL cards, which must succeed the //XEQ cards.

A fourth situation may also be considered. If the user has all subroutines stored on the disk, and none of the sample problems are on the disk, then any individual sample problem will run as it was distributed in card form.

A LOCAL card, following the XEQ Monitor control card, allows the user to designate all subroutines to be loaded into a LOCAL overlay area on call at execution time. For the function of SOCAL and the use of LOCAL, the reader is referred to <u>IBM 1130</u> <u>Disk Monitor System</u>, Version 2, Programming and <u>Operator's Guide (C26-3717)</u>. The sample programs employ the LOCAL facility.

# DATA SCREENING

# **Problem Description**

A set of observations is read along with information on propositions to be satisfied and limits on a selected variable. From this input a subset is obtained and a histogram of frequency over given class intervals is plotted for the selected variable. Total, average, standard deviation, minimum, and maximum are calculated for the selected variable. This procedure is repeated until all sets of input data have been processed.

# Program

# Description

The data screening sample program consists of a main routine, DASCR, and six subroutines:

SUBST	
TAB1	are from the Scientific Subroutine Package
roc	

MATIN is a	a	sample	input	routine
------------	---	--------	-------	---------

HIST is a sample program for plotting a histogram

BOOL refer to subroutine SUBST

#### Capacity

The maximum size of matrix of observations has been set at 1000 elements, the number of observations at 200, and the number of conditions at 21. Therefore, if a problem satisfies the above conditions, no modification to the sample program is necessary. However, if the maximum sizes must be increased, the dimension statements in the sample main program must be modified to handle this particular problem. The general rules for program modification are described later.

## Input

One I/O Specification card defines input/output units (see "Sample Program Descriptions".)

A parameter card with the following format must precede each matrix of observations:

<u>Columns</u>	Contents	For Sample Problem
1 - 2	Blank	
3 - 6	Up to four digit identification code (numeric only)	0001
7 - 10	Number of observations	0100
11 - 14	Number of variables	0004

#### Matrix of Observations

Each matrix of observations must be followed by a card with a 9 punch in column 1.

The condition matrix and bounds data are preceded by a parameter card containing the number of conditions and the variable to be selected for analysis:

<u>Columns</u>	Contents	For Sample Problem
1 - 2	Number of conditions	02
3 - 4	Variable to be selected	03

#### **UBO** Vector

A card with an asterisk in column 1 must follow the UBO vector. A blank card after the last set of input data terminates the run.

#### Data Cards

1. The observation matrix: Data cards have seven fields of ten columns each, starting in column one. The decimal point may appear anywhere in a field or may be omitted, if the number is an integer. However, all numbers must be right justified even if the decimal point is punched. The number in each field may be preceded by blanks. All values for an observation are punched consecutively and may continue from card to card. However, a new observation must start in the first field of the next card.

2. The condition matrix (see description in the subroutine SUBST): Each ten-column field contains a condition to be satisfied. The first two columns contain the variable number (right justified), the third column the relational code, and the last seven columns of each field a floating-point number. There may be as many as seven conditions per card and a total of three cards or 21 conditions.

3. The UBO vector (see description in the subroutine TAB1): The UBO vector is punched in three fields of ten columns each as a floating-point number.

#### Deck Setup

The deck setup is shown in Figure 10.

Sample

A listing of input cards for the sample problem is presented at the end of the sample main program. Output

#### Description

The output consists of the subset vector showing which observations are rejected (zero) and accepted (nonzero), summary statistics for the selected variable, and a histogram of frequencies versus intervals for that variable.

#### Sample

The output listing for the sample problem is shown in Figure 11.

# **Program Modification**

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes to the DIMENSION statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statement of the main program, DASCR.

a. The dimension of array A must be greater than or equal to the number of elements in the observation matrix. For the sample problems the value is 400.

- b. The dimension of array C must be greater than or equal to the number of conditions, c times 3. For the sample problem this product is  $6 = 2 \times 3$ .
- c. The dimension of array S must be greater than or equal to the number of observations, m. Since there are 100 observations in the sample problem the value of m is 100.
- d. The dimension of array R must be greater than or equal to the number of conditions,c. For the sample problem the value of c is 2.
- e. The dimensions of array FREQ and PCT must be greater than or equal to the number of intervals for the selected variable. For the sample problem this value is 20.

2. Insert the dimension size for A in the third argument of the CALL MATIN statement (following statement 24).

3. Subroutine BOOL can be replaced if the user wishes to use a different boolean expression (see description in subroutine SUBST). The boolean expression provided in the sample program is for both conditions to be satisfied:

$$T = R(1) * R(2)$$



Figure 10. Deck setup (data screening)

	INTERVAL CLASS	->w************************************	FREQUENCY	TOTAL = 14	SUMMARY ST.	
		•		<b>\$92.</b> 00	ATISTI	
3         3           3         4           3         4           3         4           4         1           3         4           4         1           3         4           4         1           3         4           4         1           3         4           4         1           3         4           4         1           5         4           4         1           5         4           4         1           5         4           6         1           7         6           7         7           8         1           9         10           11         12           12         14           13         14           14         15           15         16           16         1           17         1           18         14           19         14           10         1           11	N	**	N			
3     4     10     23     14     3     2     1     1       3     4     10     23     14     8     4     3     2     1     1       3     4     10     23     14     8     4     3     2     1     1       3     4     4     10     23     14     8     4     3     2     1     1       3     4     4     10     23     14     8     4     3     2     1     1       3     4     4     10     23     14     8     4     3     2     1     1       3     4     4     3     2     1     2     1     1     1       4     4     3     2     1     2     1     1     1       5     6     7     8     10     11     12     13     14     14     14	tu)	* *	N		R VARI	
STANDARD DEVIATION = 114.000 MAXIMUM = 114.000 M	•	*	-		IABLE	
STANDARD DEVIATION         19-322         MININUM         11-000         11-000           10         23         14         3         2         1         2         1         1           10         23         14         8         4         3         2         1         1         1           10         23         14         8         4         3         2         1         2         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	Un	***	ω	.61.02	ω	
1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1       1     1     1     1     1	۰	****	•			
0     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1       1     1     1     1     1     1	7	****	*	ANDAR		
0     ************************************	80	****	10	D DEV		
0     ************************************		* • • • • • • • • • • • • • • • • • • •	i	IATIO		
12     13     14     15     16     17     18       13     14     1     1     1		****	1	6		L 988998892229888888888828877777777777766676666688888888
MINIMUM = 114-000 MAXIMUM = * * * * * * * * * * * * * * * * * * *		****	8	19.		***************************************
		****	*			
= 114-000 MAXIMUM = 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1		***	w	HI NI NC		
16 17 18 19		**	N			
1 MAXIMUM = 1 1 I 1 I		•	-	114.		
AXIMUM = 1 1 1 18 19		**	N			
19 *	-	*		MÁXIM		
• * F		•				
		•		225.000		

Appendix D - Sample Programs 143

· · · · ·

7

....

# **Operating Instructions**

The sample program for data screening is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

#### Error Messages

The following error conditions will result in messages:

1. Reserved storage area is too small for matrix: DIMENSIONED AREA TOO SMALL FOR INPUT MATRIX. GO ON TO NEXT CASE.

2. Number of data cards does not correspond to that required by parameter card: INCORRECT NUM-BER OF DATA CARDS FOR MATRIX. EXECUTION TERMINATED.

Error condition 1 allows the computer run to continue. Error condition 2, however, terminates execution and requires another run to process succeeding cases.

Sample Main Program for Data Screening - DASCR

Purpose:

Perform data screening calculations on a set of observations.

Remarks:

I/O specifications transmitted to subroutines by COMMON.

Input Card:

Column 2 MX - Logical unit number for output. Column 4 MY - Logical unit number for input.

Subroutines and function subprograms required:

SUBST
TAB1
LOC
BOOL
HIST
MATIN

#### Method:

Derive a subset of observations satisfying certain conditions on the variables. For this subset, the frequency of a selected variable over given class intervals is obtained. This is plotted in the form of a histogram. Total, average, standard deviation, minimum, and maximum are also calculated.

// FOR	
*IOCS(CARD,TYPEWRITER,1132 PRINTER) *ONE WORD INFEGERS	
C SAMPLE MAIN PROGRAM FOR DATA SCREENING - DASCR	DASCH 1
EXTERNAL BOOL	DASCR 2
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	JASCR 3 JASCR 4
C MAXIMUM NUMBER OF ELEMENTS OF THE OBSERVATION MATRIX. DIMENSION A(1000)	DASCR 5
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	DASCH 6
C NUMBER OF CONDITIONS TIMES 3.	DASCR 7
DIMENSION C(63)	DASCR B
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO 3.	DASCR 9
DIMENSION UBD(3)	DASCR 10 DASCR 11
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE C NUMBER OF OBSERVATIONS.	DASCH 12
C NUMBER OF OBSERVATIONS. DIMENSION SI2003	DASCR 13
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	DASCK 14
C NUMBER OF CONDITIONS.	DASCR 15
DIMENSION R(21)	DASCR 16 Dascr 17
C THE FULLOWING DIMENSIONS MUST BE GREATER THAN UR EQUAL TO THE C NUMBER OF INTERVALS FOR THE SELECTED VARIABLE.	DASCR 17 DASCR 18
C NUMBER OF INTERVALS FOR THE SELECTED VARIABLE. DIMENSION FREQ(20),PCT(20)	DASCR 19
C THE FOLLOWING DIMENSION MUST BE GREATER THAN DR EQUAL TO 5.	DASLA 20
DIMENSION STATS(5)	DASCR 21
COMMON MX, HY	DASCH 22
LO FORMAT(///23H DATA SCREENING PROBLEM, 13)	DASCR 23 Dascr 24
11 FORMATI//45H DIMENSIGNED AREA TOD SMALL FOR INPUT MATRIX +14)	DASCR 25
12 FORMAT(//21H EXECUTION TERMINATED) 13 Format(//43h incurrect number of data cards for matrix ,[4)	DASCH 26
14 FORMAT(//L9H GO ON TO NEXT CASE)	DASCR 27
15 FORMAT(//12H END OF CASE)	DASCK 28
16 FORMATI7(F2.0,F1.0,F7.0))	DASLK 29
17 FORMAT(3#10.0)	DASCR 30
18 FORMAT(//14H SUBSET VECTOR,///)	DASCR 31 DASCR 32
19 FORMAT(16,F5.0)	DASCR 33
20 FORMAT(///33H SUMMARY STATISTICS FUR VARIABLE ,[3] 21 FORMAT(//8H TOTAL =,F10.3,2%,9HAVERAGE =,F10.3,2%,20HSTANDARO DEV	
LATION =+F10.3,2X,9HMINIMUM =+F10.3,2X,9HMAXIMUM =+F10.3)	DASCR 35
22 FORMAT(212)	DASCR'36
KC≈0	DASCR 37
C READ I/O UNIT NUMBERS	DASCR 38
READ(2,22)MX,MY	DASCR 39 Dascr 40
24 KC=KC+L CALL MATIN(ICBD,A,1000,NV,MS,IEK)	DASCR 41
1F(NJ) 25,50,25	DASCR 42
25 IF(IER-1) 40,30,35	DASCR 43
30 WRITE(NX,11) ICOD	DASCR 44
WRITE(MX,14)	DASCR 45
GO TO 24	DASCR 46 Dascr 47
35 wRITE(MX,13) wrIte(MX,12)	DASCR 40
GO TO 60	DASCR 49
40 READ(MY, 22)NC, NOVAR	DASCR 50
JC=NC+3	DASCR 51
READ(MY,16)(C([),I=1,JC)	DASCR 52
READ(NY,17)(UBO(I),1=1,3)	DASCR 53
CALL SUBST(A,C,R,BOOL,S,NO,NV,NC)	DASCR 54
WRITE(MX,1G)KC	DASCR 55
WRITE(MX, 18)	DASCR 50 DASCR 57
DO 50 [#1,NO	UASCR 58
50 WRITE(MX,19)I,S(I) Call Tabila,S+Nuvar,Jdú+Freù,PCT,STATS,NO,NV)	DASLR 59
WRITE(MX,20) NUVAR	DASCR 60
WRITE(MX, 21)(STATS(1), I=1,5)	DASCK 01
JZ=UBD(2)	DASCR 62
CALL HIST(KC.FREQ.JZ)	DASLK 03 DASLR 64
WR1TE(MX,15)	DASLK 05
GU TO 24 66 STOP	DASCK 66
END END	UASLR 67
// DUP	
#STURE WS UA DASCR	
// XEW DASCR	

// 608

1 2			
000101000004			
46	64	173	12
24	72	170	8
32	71	154	16
41	68	129	10
50	65	192	12
63	75 70	203	14
29	64	136	13
28 52	77	147	- 11
36	67	153	18
31	68	165	9
72	70	178	10
53	71	205	14
21	65	219	12
49	63	150	6
28	62	160	16
53	72	161	13
47	73	142	15
37	67	193 156	18 14
64	68	156	10
65	60 64	153	12
62 19	68	225	- 5
46	67	158	11
33	72	121	4
37	65	132	13
41	76	148	16
52	71	123	16
29	68	128	14
32	65	155	17
24	72 73	172	10
56	65	158	11
63 67	69	146	2
58	66	171	9
41	65	153	12
49	66	165	14
52	72	172	16
23	78	183	15
56	71	195	16
52	68	118	• 7
40	66	165	14
39	68	215	16
23	71	154	12
56	65	149 162	10 16
25	65 68	152	16
37	70	152	15
40	69	137	14

1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1				MATTN
<pre>C FIND LARCEST FREQUENCY FAARSOD 20 1=1.1N D 200 1=1.1N D 200 1=1.1N D 200 1=1.1N D 200 1=1.1N D 200 1=1.1N C CONTINE S CALE FREATSOD 0.1 S CALE FREATSOD 0.1 SOD D 20111-10 D 200 1=1.1N D 200 1=1</pre>	SUBROUTINE MATIN SUBROUTINE MATIN PURPOSE READS CONTROL CAND AND MATRIX DATA ELEMENTS FROM LOGICAL UNIT 5 USIGE CALL MATINICODE.A.ISIZE, IROM.ICOL.IS.IER) DESCRIPTION OF PARAMETERS CALL MATINICODE.A.ISIZE, IROM.ICOL.IS.IER) DESCRIPTION OF PARAMETERS ICOL-UPON RETWAR, ICODE MILL CONTAIN POLARMETER CAND ASTA AREA FOR INUT ANTRIX DATA AREA FOR INUT ANTRIX ASTA AREA FOR INTRIX ASTA AREA FOR INTRIX ASTA AREA FOR INUT ANTRIX ASTA AREA FOR INTRIX ASTA AREA FOR	ATTRIX PARTERE AND WHERE 13-0 GERERAL MATRIX 13-1 SYMMERIC ANTRIX 13-2 LIXEMBAL MATRIX 13-2 LIXEMBAL MATRIX 15-2 LIXEMBAL MALL CONTIM AN ERROR CODE WHENE 158-0 NO ERROR LESS THAN MURBER OF ELENENTS IN 158-1 LIXELS LESS THAN MURBER OF ELENENTS IN 158-2 INCORRECT NUMBER OF DATA CAROS REMARS REMARS MONE SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED LCC	RETHID SUBROUTINE ASSUMES THAT INDUT MATRIX CONSISTS OF PARAMETER SUBROUTINE ASSUMES THAT INDUT MATRIX CONSISTS OF PARAMETER CARD STATE CALON HAS THE FOLLOWING FORMAT COLL. 1 - 2 BLAN COLL. 2 - 0 UP TOTA MODIFIT IDENTIFICATION CODE COLL. 3 - 0 UP TOTA MODIFIT IDENTIFICATION CODE COLLIS-10 KUNNER OF RANS. IN ANTRIX COLLIS-10 STORAGE MODE OF MATRIX WHERE 1 - SYMMETRIX 2 - 0 TAGOML ANTRIX 2 - 1 - SYMMETRIX 2 - 1 - SYMMETRIX 2 - 1 - SYMMETRIX DATA CARDS ARE ASSUMED THAT THE DECLIMAL DATA CARDS ARE ASSUMED THAT THE DECLIMAL DATA CARDS ARE ASSUMED THAT THE FIRST FIELD OF THE DOTA CARDS ARE ASSUMED TO HAVE CAUNA FIELD. THE WO DECLIMA POINT IN THAT AND CAUNA FIELD. THE WO DECLIMA POINT IN THAT AND CAUNA FIELD. THE WO DECLIMA POINT IS THCLUDED IT IS ASSUMED THAT THE DECLIMAL DOTA CARDS ARE ASSUMED THAT THAT ARE CANDOL CARD TO DECLIMA POINT IS THCLUDED THAT THAT ARE CANDOL CARD TO DECLIMA POINT IS THCLUDED THAT THAT ARE CAUNA. MATRIX ARE CANDOL 1 - SYMMETRIX THAT AND AND AND A THAT AND A DATA CARDS AND E FOLLOWED FIELD OF THE DATA CARDS. THE FOR A MATRIX THAT ARE CANDOL AND TO DATA ALERENTS OF A AMATRIX THAT ARE CANDOL AND TO DATA ALENT AND A AMATRIX THAT ARE CANDOL AND TO DATA ALENT AND A AMATRIX THAT ARE CANDOL AND TO DATA ALENT AND A AMATRIX THAT ARE CANDOL AND TO DATA ALENT AND A AMATRIX THAT ARE AND ALL AFT. DATA ALENT AND A AMATRIX THAT ARE CANDOL AND TO DATA ALENT AND A AMATRIX THAT ARE CANDOL AND TO DATA ALENT AND A AMATRIX THAT AND ALENT AND ALENT A THAT A AMATRIX THAT AND ALENT AND A	SUMADUTIME MATIM ICODE, A,ISI7E,IRUM.ICOL.IS.IER) UNMENSION CARDEN UNMENSION CARDEN UNMENSION CARDEN I FORMANT FFLO.D) 1 FORMANT FFLO.D) 2 FORMANT FFLO.D) 3 FORMATT FFLO.D) 3 FORMATT FFLO.D) 3 FORMATT FFLO.D) 3 FORMATT FFLO.D) 4 FORMATT FFLO.D) 5 F
, , , , , , , , , , , , , , , , , , ,	989 999 999 999 999 999 999 999 999 999		BOOL 0 BOOL 0 BOOL 0 BOOL 00 BOOL 0 BOOL 0 C	
2140380122288845013345000°03320°°44003305		USER-SUPPLIED SPECIAL SUBROUTINE - BOOL INIS SPECIAL SUBROUTINE - BOOL THIS SPECIAL SUBROUTINE - BOOL CALLED BY SUBROUTINE LLUSTRATES AN EXTERNAL SUBROUTINE IF DIFFERENT PROPOSITIONS ARE USED FOR DIFFERENT PROPOSI- TION SUBROUTINE AND DIFFERENT SUBROUTINE MANES. THESA SUBROUTINE AND AND SUBPLIED UND BY AN EXTERNAL STATEWENT APPERIME IN THE AND PROGRAM MAICH CALLS SUBST. THEN, FOR APPERIME ANT HE AND PROGRAM MAICH CALLS UNST. THEN, FOR EACH PROBLEM. SUBST IS CALLED WITH A PROPER SUBROUTINE MANE IN ITS ARGUMENT LIST.	T) HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HIST HI	FREGUBICLES NUST BE POSITIVE NUMBERS         SUBRUTIVES AND FUNCTION SUPPOGAMS REQUIRED         NAME         NAME         SUBRUTIVES AND FUNCTION SUPPOGAMS REQUIRED         NEPHOD         FEE         REPHOD         FEE         SUBRUTIVE         IF       REQUIRED         SUBROUTIVE       ISTREPOGAMS REQUIRED         SUBROUTIVE       ISTREPOGAMS
22222222222222222222222222222222222222		LIED SPECIAL LA SUBROUTH SUBROUTHE: SUBROUTHE: ENT PROPOSIT ENT PROPOSIT ENT PROPOSIT ENT PROPOSIT T BE ANNET T BE ANDET T BE ANDET	(E BOOL (4,1) (1,1) (1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,1) (1,1) (1,2) (1,1) (1,1) (1,2) (1,1) (1,1) (1,1) (1,2) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1	FAEQUENCIES AND TURNT BE POSITI SUBRUTINES AND FUNCTION SUB MONG THE LARGEST FREQUENCY IS IF EQUIRED FREQUENCY IS IF EQUIRED FREQUENCY IS SUBV JULIT21, FREQIED SUBV JULIT21, FREQIED SUBV JULIT21, FREQIED SUBV JULIT21, FREQUENCY 2015) ATT///ATSLILH HISTOGRAM 113) ATT///ATSLILH
0000001445000010010004600000100000000000	4 4	USER-SUPPLIED USER-SUPPLIED THIS SPECIAL CHIED BY SUB DIFFERENT THE SAME RUM- THE SAME RUM- THE SAME RUM- SUBROUTINE AN EACH PROBLED	SUBROUTINE BOOL(R+T) OFMENSION R11): L2=2 Facturated Recolding BRADUTINE H SUBROUTINE H BRADA CALL HIST CALL HIST CA	FREGURICITIES SUBROUTTIES SUBROUTINES SUBROUTINES SUBROUTINES FOR CONTREMENTING SUBROUTINE HISTIN CONTREMENTING SUBROUTINE HISTIN CONTREMENTING SUBROUTINE HISTIN CONTREMENTING SUBROUTINE SUBROUTINE SUBROUTINE SUBROUTINE SUBROUTINE SUBRUTILIES SUBBUTURES SUBRUTILIES SUBBUTURES SUBUTURES SUBBUTURES SUBUTURES SUBBUTURES S
	50 10 10 10 10 10 10 10 10 10 10 10 10 10			-NM3562 2

6

Þ

ų,

Appendix D - Sample Programs 145

ð

.

	JE	E=JS+1DC-1	MATIN 29	
	16	F(15-1)19,19,17	MATIN 30	
	17 38	F=JS	MATIN 31	
с		SET UP LOOP FIR DATA ELEMENTS WITHIN CARD	NATIN 32	
	19 00	0 30 J≃JS,JE	MATIN 33	
	11	F(J-1CCL)20,20,31	MATIN 34	
	20 C/	ALL LOC(IROCR ,J,IJ,IROW,ICOL,IS)	MATIN 35	
	L 2	=L+1	MATIN 35	
	30 A	(IJ)=CARD(L)	MATIN 37	
	31 00	DNTINUE	MATIN 39	
	16	ROCR=IROCR+1	MAT [P' 39	
		F(IROW-IROCR) 38,35,35	44TIN -40	
	35 11	F(IS-1)37,36,36	MATIN 41	
	36 10	COLT=ICOLT-1	MATIN 42	
		0 70 11	MATIN 43	
	38 RÍ	EAU(MY.3) [CARD	MATIN 44	
	11	F ( ICARD-9) 39, 40, 39	MATIN 45	
	39 11	ER=2	MATIN 46	
	40 R	ETURN	MATIN 47	
	E1	ND	MATIN 48	

# MULTIPLE LINEAR REGRESSION

#### **Problem Description**

Multiple linear regression analysis is performed for a set of independent variables and a dependent variable. Selection of different sets of independent variables and designation of a dependent variable can be made as many times as desired.

The sample problem for multiple linear regression consists of 30 observations with six variables as presented in Table 2. The first five variables are independent variables, and the last variable is the dependent variable. All five independent variables are used to predict the dependent variable in the first analysis, and only second, third, and fifth variables are used to predict the dependent variable in the second analysis.

#### Table 2. Sample Data for Multiple Linear Regression

Mantahl

1			∵ariabl	es		
Observation	X1	X2	X ₃	X4	X ₅	X ₆
1	29	289	216	85	14	1
2	30	391	244	92	16	2
3	30	424	246	90	18	2
1 2 3 4 5 6 7 8	30	313	239	91	10	1 2 2 2 2 3 2 3 0
5	35	243	275	95	30	2
6	35	365	219	95	21	2
7	43	396	267	100	39	3
8	43	356	274	79	19	2
9.	44	346	255	126	56	3
10	44	156	258	95	28	0
11	44	278	249	110	42	4
12	44	349	252	88	21	1
13	44	141	236	129	56	1
14	44	245	236	97	24	4 1 1 3 2 3 4
15	45	297	256	111	45	3
16	45	310	262	94	20	2
17	45	151	339	96	35	3
18	45	370	357	88	15	
19	45	379	198	147	64	4
20	45	463	206	105	31	4 3 4
21	45	316	245	132	60	4
22	45	280	225	108	36	4
23	44	395	215	101	27	1
24	49	139	220	136	59	0
25	49	245	205	113	37	4
26	49	373	215	88	25	1
27	51	224	215	118	54	3
28	51	677	210	116	33	4
29	51	424	210	140	59	4
30	51	150	210	105	30	0
1						

# Program

#### Description

The multiple linear regression sample program consists of a main routine, REGRE, and five sub-routines:

CORRE	are from the Scientific
ORDER	Subroutine Package
MINV	
MULTR	
DATA	is a special input subroutine

# Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

1. Up to 21 variables, including both independent and dependent variables.

2. Up to 99,999 observations, if observations are read into the computer one at a time by the special input subroutine named DATA. If all data are to be stored in core prior to the calculation of correlation coefficients, the limitation on the number of observations depends on the size of core storage available for input data.

3. (12F6.0) format for input data cards.

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than 22 variables, dimension statements in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format in the input subroutine, DATA, must be modified. The general rules for program modification are described later.

#### Input

One I/O Specification card defines input/output units (see "Sample Program Descriptions").

One control card is required for each problem and is read by the main program, REGRE. This card is prepared as follows:

<u>Columns</u>	Contents	For Sample Problem
1 - 6	Problem number (may be alphameric)	SAMPLE

Columns	Contents	For Sample Problem
7 - 11	Number of observations	00030
12 - 13	Number of variables	06
14 - 15	Number of selection cards (see below)	02

Leading zeros are not required to be keypunched, but all numbers must be right-justified, even if a decimal point is included.

#### Data Cards

Since input data are read into the computer one observation at a time, each row of data in Table 2 is keypunched on a separate card using the format (12F6.0). This format assumes twelve 6-column fields per card.

If there are more than twelve variables in a problem, each row of data is continued on the second and third cards until the last data point is keypunched. However, each row of data must begin on a new card.

# Selection Card

The selection card is used to specify a dependent variable and a set of independent variables in a multiple linear regression analysis. Any variable in the set of original variables can be designated as a dependent variable, and any number of variables can be specified as independent variables. Selection of a dependent variable and a set of independent variables can be performed over and over again using the same set of original variables.

The selection card is prepared as follows:

		For Sa Prob	•
		Selec-	Selec-
<u>Columns</u>	Contents	tion 1	tion 2
1 - 2	Option code for table of residuals	01	01
	00 if it is not desired		
	01 if it is desired		
3 - 4	Dependent variable desig- nated for the forthcoming regression	06	06
5 - 6	Number of independent variables included in the forthcoming regression	05	03

			ample olem Selec-
Columns	Contents	tion 1	tion 2
5 - 6 (cont)	(the subscript numbers of individual variables are specified below)		
7 - 8	1st independent variable included	01	02
9 - 10	2nd independent variable included	02	03
11 - 12	3rd independent variable included	03	05
13 - 14	4th independent variable included	04	
15 - 16	5th independent variable included	05	
etc.			

The input format of (36I2) is used for the selection card.

#### Deck Setup

Deck setup is shown in Figure 12.

The repetition of the data cards following a selection card is dependent upon the option code for the table of residuals. If the table is required (option 01), the data must be repeated; if the table is not required (option 00), card G immediately follows card E.

#### Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

#### Output

#### Description

The output of the sample program for multiple linear regression includes:

- 1. Means
- 2. Standard deviations

3. Correlation coefficients between the independent variables and the dependent variable

- 4. Regression coefficients
- 5. Standard errors of regression coefficients
- 6. Computed t-values
- 7. Intercept
- 8. Multiple correlation coefficients



Figure 12. Deck setup (multiple linear regression)

9. Standard error of estimate

10. Analysis of variance for the multiple regression

11. Table of residuals (optional)

# Sample

The output listing for the sample problem is shown in Figure 13.

# **Program Modification**

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, REGRE:

- a. The dimension of arrays XBAR, STD, D, RY, ISAVE, B, SB, T, and W must be greater than or equal to the number of variables, m. Since there are six variables in the sample problem the value of m is 6.
- b. The dimension of array RX must be greater than or equal to the product of m x m. For the sample problem this product is  $36 = 6 \times 6$ .
- c. The dimension of array R must be greater than or equal to (m + 1) m/2. For the sample problem this number is 21 = (6 + 1) 6/2.

	LECTION					
VARIABL'	Ê MEAN	STANDARD DEVIATION	CORRELATION	RÉGRESSION COEFFICIENT	STD+ ERROR OF REG+CDEF+	COMPUTED
1	43.13333	6.52175	0.25422	0.01242	0.03634	0-34172
2	316.16668	114.42994	0.42189	0+00738	0.00186	3.96545
3	241.80001	36+43074	0.11900	0+01504	0.00634	2.36852
4	103.66667	17.85638	0.37822	0+00150	0.03678	0.04101
5	34.13333	15.97569	0.39412	0+04918	0.04141	1.18782
DEPENDE	NT					
5	2.26866	1.41255				
INTERCE	PT	-6.07935				
PULTIPU	E CORRELATION	0.73575				

MULTIPLE CORRELATION 0.73575 STD. ERROR OF ESTIMATE 1.05161

ANALYSI	5 OF VARIANCE	FOR THE REGRES	510N	
SOURCE OF VARIATION	DEGREES OF FREEDOM	SUM OF SQUARES	MEAN	F VALUE
ATTRIBUTABLE TO REGRESSION DEVIATION FROM REGRESSION	5 24	31.32517 26.54149	6.26503 1.10589	5.66512
TOTAL	29	57.86666		

MULTIPLE REGRESSION ..... SAMPLE SELECTION..... 1

		RESIDUALS	
SE NO.	Y VALUE	Y ESTIMATE	RESIDUAL
1	1.00000	0.48089	0.51910
2	2.00000	1.77669	0.22330
3 I	2.00000	2.14585	-0.14585
4	0.00000	0.82879	-0.82579
5	2.00000	1.90522	0.09477
6	2.00000	1.52124	0.47875
7	3.00000	3.46447	-0.46447
8	2.00000	2+25886	-0.25886
9	3.00000	3+80259	-0.80259
10	0.00000	1.02042	-1.02042
11	4.00000	2.49735	1.50264
12	1+00000	2.00065	-1.00065
13	1.00000	2.00735	-1.00735
14	1+00000	1.15307	-0.15307
15	3.00000	2.90445	0.09554
16	2.00000	1.83531	0-16465
17	3.00000	2+56004	0+43995
18	4.00000	3-45229	0.54770
19	4+00000	3.62661	0.37338
20	3.00000	2.68067	0.31932
21	4.00000	3.64886	0.35113
22	4.00000	1.86541	2+13458
23	1.00000	2.09862	-1+09862
24	0+00000	1.97217	-1.97217
25	4.00000	1+41253	2+58746
26	1.00000	1.88026	-0.88026
27	3.00000	2.27646	0.72353
28	4+00000	4.51080	-0.51080
29	4.00000	3.95746	0+04253
30	0.00000	0.45457	-0.45457

MULTIPLE REGRESSION....SAMPLE

SELECTION.... 2

VARIABLE NO.	E MEAN	STANDARD DEVIATION	CORRELATION X VS Y	REGRESSION	STD. ENROR OF REG.CUEF.	COMPUTED T VALUE
z	316,16668	114.42994	0.42189	0.00743	0.00172	4.31764
3	241.80001	36+43074	0.11900	0.01497	0.00551	2.71693
•	34.13333	15.97569	0.39412	0.05362	0.01258	4.26263
DEPENDE	NT					

6 2+26666 1++1258

MULTIPLE CORRELATION 0+73423 STD+ ERROR OF ESTIMATE 1+01281

ANALYSI	S OF VARIANCE	FOR THE REGRES	5510N	
SOURCE OF VARIATION	DEGREES OF FREEDOM	SUM OF	MEAN SQUARES	F VALUE
ATTRIBUTABLE TO REGRESSION DEVIATION FROM REGRESSION	3 26	31.19601 26.67065	10.39867 1.02579	10.13718
TOTAL	29	57.86666		



Figure 13. Output listing

2. Changes in the input format statement of the special input subroutine, DATA:

Only the format statement for input data may be changed. Since sample data are either one-, two-, or three-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in six 3column fields, and, if so, the format is changed to (6F3.0).

The special input subroutine, DATA, is normally written by the user to handle different formats for different problems. The user may modify this subroutine to perform testing of input data, transformation of data, and so on.

#### **Operating Instructions**

The sample program for multiple linear regression is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

#### Error Messages

The following error conditions will result in messages:

1. The number of selection cards is not specified on the control card: NUMBER OF SELECTIONS NOT SPECIFIED. JOB TERMINATED.

2. The matrix of correlation coefficients is singular: THE MATRIX IS SINGULAR. THIS SE-LECTION IS SKIPPED.

Error condition 2 allows the computer run to continue; however, error condition 1 terminates execution of the job.

# Sample Main Program for Multiple Regression - REGRE

Purpose:

 Read the problem parameter card for a multiple regression, (2) Read subset selection cards, (3) Call the subroutines to calculate means, standard deviations, simple and multiple correlation coefficients, regression coefficients. T-values, and analysis of variance for multiple regression, and (4) Print the results.

#### Remarks:

The number of observations, N, must be greater than M+1, where M is the number of variables. If subset selection cards are not present, the program can not perform multiple after returning from subroutine MINV, the value of determinant (DET) is tested to check whether the correlation matrix is singular. If DET is compared against a small constant, this test may also be used to check near-singularity. I/O specifications transmitted to subroutines by COMMON.

Input card:

Column 2 MX - Logical unit number for output.

Column 4 MY - Logical unit number for input.

Subroutines and function subprograms required:

CORRE (which, in turn, calls the subroutine named DATA) ORDER

MINV MULTR

#### Method:

Refer to B. Ostle, 'Statistics in Research', The Iowa State College Press', 1954, Chapter 8.

		CARD+TYPEWRITER+1132 PRINTER) DRD INTEGERS		
			REGRE	1 2
		NUMBER OF VARIABLES.	REGRE	3
		DIMENSION XBAR(21)+STD(21)+D(21)+RY(21)+ISAVE(21)+B(21)+	REGREY	
		SB(21)+T(21)+W(21)	REGREM	102
	•	THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	REGRE	6
		PRODUCT OF MAM.	REGRE	7
		DIMENSION RX(441)	REGREM	103
		THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO	REGRE	9
		(M+1)*M/2.	REGRE	10
		DIMENSION R(231)	REGRE	
		THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO 10.	REGRE	12
		DIMENSION ANS(10)	REGRE	13
		COMMON MX+MY	REGRE	14
		READ (2+15) MX+MY		15
		FORMAT(212)	REGRE	16
		FORMAT(A4+A2+15+212)	REGRE	17
		FORMATI////25H MULTIPLE REGRESSION	REGRE	18
	З.	FORMAT(//9H VARIABLE,5X.4HMEAN;6X.8HSTANDARD.6X.11HCORRELATION;4X	DECOL	21
		10HREGRESSION+4X+10HSTD. ERROR+5X+8HCOMPUTED/6H NO++18X+9HDEVIA1 10N+7X+6HX VS Y+7X+11HCOEFFICIENT+3X+12HOF REG+COEF++3X+7HT VALUE	DEGDE	22
	, ²	FORMAT(/+14+6F14+5)	REGRE	23
		FORMAT(//+10H DEPENDENT)	REGRE	
	2	FORMAT(///10H INTERCEPT+13X+F13+5//23H MULTIPLE CORRELATION +F13-	REGRE	
	°,	5//23H STD. ERROR OF ESTIMATE.F13.5//)	REGRE	26
	. 7	FORMAT///.21X.39HANALYSIS OF VARIANCE FOR THE REGRESSION//5X.19HS	REGRE	27
	î	URCE OF VARIATION . 7X . THDEGREES . 7X . 6HSUM OF . 10X . 4HMEAN . 13X . THF VAL	JREGRE	28
	;	E/30X+10HOF FREEDOM+4X+7HSQUARES+9X+7HSQUARES)	REGRE	29
	8	FORMATI/JOH ATTRIBUTABLE TO REGRESSION +16+3F16+5/30H DEVIATION		
	- 1	FROM REGRESSION +16+2F16+51	REGRE	
		FORMAT(/5X+5HTOTAL+19X+16+F16+5)	REGRE	32
	10	FORMAT(3612)	REGRE	
	11	FORMAT(/.15X.18HTABLE OF RESIDUALS//9H CASE NO5X.7HY VALUE.5X.1	OREGRE	34
	1	HY ESTIMATE.6X.BHRESIDUAL)	REGRE	35
	12	FORMAT(16+F15+5+2F14+5)	REGRE	
		FORMATI////53H NUMBER OF SELECTIONS NOT SPECIFIED. JOB TERMINATE		
	1	• }	REGRE	
	14	FORMATI //52H THE MATRIX IS SINGULAR. THIS SELECTION IS SKIPPED.]	REGRE	
		READ PROBLEM PARAMETER CARD	REGRE	
	100	READ (MY+1) PR+PR1+N+M+NS	REGRE	
		PRPROBLEM NUMBER (MAY BE ALPHAMERIC)	REGRE	
		PR1PROBLEM NUMBER (CONTINUED)	REGRE	
		NNUMBER OF OBSERVATIONS	REGRE	
		MNUMBER OF VARIABLES	REGRE	
•		NSNUMBER OF SELECTIONS	REGRE	
		10=0	REGRE	
		X=0+0 CALL CORRE (N+M+I0+X+XBAR+STD+RX+R+D+B+T)	REGRE	
			REGRE	
c		TEST NUMBER OF SELECTIONS IF(NS) 108, 108, 109	REGRE	
	100	WRITE (MX+13)	REGRE	
	109	GO TO 300	REGRE	
	100	DO 200 1=1+NS	REGRE	
	107	WRITE (MX+2) PR+PR1+1	REGRE	
		READ SUBSET SELECTION CARD	RESRE	
-		READ SUBSET SELECTION CARD READ (MY+10)NRESI+NDEP+K+(ISAVE(J)+J=1+K)	REGRE	
		NRESI OPTION CODE FOR TABLE OF RESIDUALS	REGRE	5 :
		O IF IT IS NOT DESIRED.	REGRE	
		0 IF IT IS NOT DESIRED. 1 IF IT IS DESIRED.	REGRE	
		NDEP+++++DEPENDENT VARIABLE	REGRE	
		KNUMBER OF INDEPENDENT VARIABLES INCLUDED	REGRE	
:		ISAVE VECTOR CONTAINING THE INDEPENDENT VARIABLES	REGRE	
		INCLUDED	REGRE	
		CALL ORDER (M+R+NDEP+K+1SAVE+RX+RY)	REGRE	
		CALL MINY (RX+K+DET+B+T)	REGRE	
;		TEST SINGULARITY OF THE MATRIX INVERTED	REGRE	
		IF(DET) 112, 110, 112	REGRE	
	110	WRITE (MX+14)	REGRE	
		GO TO 200	REGRE	
	112	CALL MULTR (N+K+XBAR+STD+D+RX+RY+ISAVE+B+SB+T+ANS)	REGRE	
		PRINT MEANS, STANDARD DEVIATIONS, INTERCORRELATIONS BETWEEN	REGRE	
		X AND Y. REGRESSION COEFFICIENTS. STANDARD DEVIATIONS OF		
•		REGRESSION COEFFICIENTS, AND COMPUTED T.VALUES	REGRE	
		MM=K+1	REGRE	
		WRITE (MX+3) DO 115 J=1+K	REGRE	
		DO 115 J=1+K L=15AVE(J)	REGRE	
	, 1 =	L-IGATLIGI LDITE (NY.4)   .YBAD(  ).CTA(  ).DV( ().D( ).CD( ).T( ).	REGRE	
	113	WRITE (MX+4) L+XBAR(L)+STD(L)+RY(J)+B(J)+SB(J)+T(J) WRITE (MX+5)	REGRE	
		L=ISAVE(MM)	REGRE	
		WRITE (MX+4) L+XBAR(L)+STD(L)	REGRE	
2		PRINT INTERCEPT. MULTIPLE CORRELATION COEFFICIENT, AND	REGRE	
		STANDARD ERROR OF ESTIMATE	REGRE	
2		WRITE (MX+6) ANS(1)+ANS(2)+ANS(3)	REGRE	

c	PRINT ANALYSIS OF VARIANCE FOR THE REGRESSION	REGRE 86
	WRITE (MX+7)	REGRE 97
	L=ANS(8)	REGRE 88
	WRITE (MX+8) K+ANS(4)+ANS(6)+ANS(10)+L+ANS(7)+ANS(9)	REGRE 89
	L=N=1	REGRE 90
	SUM=ANS(4)+ANS(7)	REGHE 91
	WRITE (MX+9) L+5UM	REGRE 92
	IFINRES11 200, 200, 120	REGRE 93
c	PRINT TABLE OF RESIDUALS	REGRE 94
120	WRITE(MX+2)PR+PR1+1	RECRE 95
	WRITE (MX.11)	REGRE 90
	MM#15AVE(K+1)	REGRE 97
	DO 140 [[=].V	REGRE 98
	CALL DATA(M++)	REGRE 99
	SUM*ANS[1]	REGR: 100
	DO 130 J=1+K	REGR:101
	L=ISAVE(J)	REGRÉ102
130	SUM=SUM+w(L)+B(J)	REGRE103
	RESI=W(MM)-SUM	REGRE 104
140	WRITE (MX+12) (1+W(MM)+SUM+RESI	REGRE105
200	CONTINUE	RÉGRE106
	50 TJ 100	HEGHE107
300	STOP	REGREIJS
	END	41 GR = 1 J 9

#### SAMPLE INPUT SUBROUTINE - DATA PURPOSE READ AN UBSERVATION (N DATA VALUES) FROM INPUT DEVICE. THIS SUBROUTINE IS CALLED BY THE SUBROUTINE CORRE AND RUST BE PROVIDED BY THE USER. IF SIZE AND LOCATION OF DATA FIELDS ARE DIFFERENT FROM PROBLEM TO PROBLEM, THIS SUB-ROUTIME MUST BE RECOMPILED WITH A PROPER FORMAT STATEMENT. USAGE CALL DATA (N,D) DESCRIPTION OF PARAMETERS N - THE NUMBER OF VARIABLES IN AN DBSERVATION. D - JUTPUT VECTOR OF LENGTH N CONTAINING THE OBSERVATION DATA. REMARKS THE TYPE OF CONVERSION SPECIFIED IN THE FORMAT MUST BE EITHER F OR E. SUBBOUTINES AND FUNCTION SUBPROGRAMS REQUIRED NOTE

	SUBROUTINE DATA (M.O)	DATA	1
	DIMENSION D(1)	DATA	2
	COMMON MX,MY	DATA	3
	1 FORMAT(12F6.0)	DATA	4
С	READ AN OBSERVATION FROM INPUT DEVICE.	DATA	5
	READ (MY+1) (D(1)+[=1,M)	DATA	6
	RETURN	0414	7
	END	DATA	8
		-	

# POLYNOMIAL REGRESSION

# **Problem Description**

Powers of an independent variable are generated to calculate polynomials of successively increasing degrees. If there is no reduction in the residual sum of squares between two successive degrees of polynomials, the program terminates the problem before completing the analysis for the highest degree polynomial specified.

The sample problem for polynomial regression consists of 15 observations, as presented in Table 3. The highest degree polynomial specified for this problem is 4.

Table 3. Sample Data for Polynomial Regression

_X	Y
1	10
2	16
3	20
4	23
5	25
6	26
7	30
8	36
9	48
10	62
11	78
12	94
13	107
14	118
15	127

# Program

Program					For Sample			
Description			Columns	Contents	Problem			
	al regression sample protine, POLRG, and five s		14	Option code for plotting Y values and Y estimates:	1			
GDATA				0 if it is not desired				
ORDER	are from the Scienti	fic Subroutine		1 if it is desired				
MINV	Package		Leading zeros are not required to be keypunched;					
MULTR	)			s must be right-justified in f	nelds.			
PLOT	is a special plot sub	routine	Data Cards					
Capacity			servation a Table 3 is 1	data are read into the comput t a time, each pair of X and keypunched in that order on a the format (2F 6.0).	Y data in			
required for d	of the sample program a lata input have been set		Plot Option					
2. Up to 6 3. (2F 6.0 Therefore, ditions it is no program. Ho	<ol> <li>Up to 50 observations</li> <li>Up to 6th degree polynomials</li> <li>(2F 6.0) format for input data cards Therefore, if a problem satisfies the above con- ditions it is not necessary to modify the sample program. However, if there are more than 60 ob- servations or if greater than 7th degree polynomial</li> </ol>			A card containing b129 (blank followed by num- bers 1 through 9) in columns 1 to 10 is necessary after each set of data if plotting is required (option 1). If plotting is not required (option 0), this card must be omitted. Deck Setup				
main program	must be modified to have modified to hav	ndle this par-	-	is shown in Figure 14.				
prepared usin	g a different format, the main program must be	e input format	Sample					
	for program modification		The listing	of input cards for the sampl at the end of the sample mair	e problem is program.			
Input			Output					
I/O Specificat	ion Card		Description	1				
	ard is required for each main program, POLRG s follows:		The output of the sample program for polynomial regression includes: 1. Regression coefficients for successive degree polynomial					
Columns	Contents	Problem	degree poly	ysis-of-variance table for su momial e of residuals for the final d				
	coblem number (may be	SAMDIE	nomial (inc	luded with plot)				

4. Plot of Y values and Y estimates (optional)

£

2

4

# Sample

SAMPLE

00015

04

The output listing for the sample problem is shown in Figure 15.

7 - 11

12 - 13

alphameric)

to be fitted

Number of observations

Highest degree polynomial



Figure 14. Deck setup (polynomial regression)

2

۲

# **Program Modification**

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, POLRG:

- a. The dimension of array X must be greater than or equal to the product of n (m + 1), where n is the number of observations and m is the highest degree polynomial to be fitted. Since there are 15 observations and the highest degree polynomial specified is 4, the product is 75 = 15 (4 + 1).
- b. The dimension of array DI must be greater than or equal to the product of m x m. For the sample problem this product is  $16 = 4 \times 4$ .
- c. The dimension of array D must be greater than or equal to (m + 2) (m + 1)/2. For the sample problem this number is 15 = (4 + 2) (4 + 1)/2.
- d. The dimension of arrays B, E, SB, and T must be greater than or equal to the highest degree polynomial to be fitted, m. For the sample problem the value of m is 4.
- e. The dimension of arrays XBAR, STD, COE, SUMSQ and ISAVE must be greater than or equal to (m + 1). For the sample problem this value is 5 = (4 + 1).
- f. The dimension of array P must be greater than or equal to 3n. For the sample problem this value is 45 = 3(15). The array P is used when a plot of Y values and Y estimates is desired.

2. Changes in the input format statement of the main program, POLRG:

Only the format statement for input data may be changed. Since sample data are either one-, two-, or three-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in two 3-column fields, and if so the format is changed to (2F 3.0).



4

44 محمد المراجب ومحدودة مراجبة من من محمد ومحمد ومراجبة مراجبة محمد محمد مراجبة (1994).

Figure 15. Output listing

#### **Operating Instructions**

The sample program for polynomial regression is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output. // FOR

Sample Main Program for Polynomial Regression - POLRG

# Purpose:

(1) Read the problem parameter card for a polynomial regression, (2) Call subroutines to perform the analysis, (3) Print the regression coefficients and analysis of variance table for polynomials of successively increasing degrees, and (4) Optionally print the table of residuals and a plot of Y values and Y estimates.

#### Remarks:

I/O specifications transmitted to subroutines by COMMON.

Input card:

- Column 2 MX Logical unit number for output.
- Column 4 MY Logical unit number for input.

The number of observations, N, must be greater than M+1, where M is the highest degree polynomial specified. If there is no reduction in the residual sum of squares between two successive degrees of the polynomials, the program terminates the problem before completing the analysis for the highest degree polynomial specified.

Subroutines and function subprograms required:

GDATA ORDER MINV MULTR PLOT

Method:

Refer to B. Ostle, 'Statistics in Research', The Iowa State College Press, 1954, chapter 6.

for the sample program.)

(A special PLOT subroutine provided

// FOR *IUCS(CARU+TYPENKITER+1132 PRINTER)	
*ONE WORD INTEGERS C SAMPLE MAIN PROGRAM FOR POLYNOMIAL REGRESSION - POLKG C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	POLRG 1 Polrg 2
C PRODUCT OF N*(M+1). WHERE N IS THE NUMBER OF OBSERVATIONS AND	POLRG 3
M IS THE HIGHEST DEGREE POLYNOMIAL SPECIFIED.	POLRG 4
DIMENSION X13501	POLRGMO1
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	POLRG 6
C PRODUCT OF M#M+	POLRG 7
DIMENSION DI(36)	POLRGMO2
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO	POLRG 9
C (M+2)+(M+1)/2.	Polrg 10
DIMENSION DI28)	POLRGMU3
C THE FOLLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL TO M.	POLRG 12
DIMENSION B(6)+SB(6)+T(6)+E(6)	POLRGMU4
C THE FOLLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL TO	Polrg 14
C (M+1). DIMENSION XBAR(7)+STD(7)+COE(7)+SUMSQ(7)+ISAVE(7)	POLRG 15 Polrgmos Polrg 17
C THE FOLLOWIN OIMENSION MUST BE GREATER THAN OR EQUAL TO 13. DIMENSION ANSILO C THE FOLLOWING DIMENSION WILL BE USED IF THE PLOT OF OBSERVED	POLRG 18 POLRG 19
C DATA AND ESTIMATES IS DESIRED. THE SIZE OF THE DIMENSION. IN	POLRG 20
C THIS CASE. MUST BE GREATER THAN OF EQUAL TO N+3. OTHERWISE.	POLRG 21
C THE SIZE OF DIMENSION MAY BE SET TO 1.	POLRG 22
DIMENSION P(150)	POLRGMO6
COMMON MX+MY	POLRG 24
1 FORMAT(A4+A2+I5+I2+I1)	POLRG 25
2 FORMATIZE6.01	POLRG 26
3 FORMATI///27H POLYNOMIAL REGRESSION	Polrg 27
4 FURMAT(//23H NUMBER OF OBSERVATION+16//)	POLRG 28
5 FORMAT(//32H POLYNOMIAL REGRESSION OF DEGREE+13)	Polrg 29
6 FORMAT(//12H INTERCEPT+F15+5)	POLRG 30
7 FORMAT(//26H REGRESSION COUFFIC(ENTS/(10F12+5))	POLRG 31
8 FORMAT(7/724%+24MANALYSIS OF VARIANCE FOR+14+19H DEGREE POLYNOM 11/1	PULRG 33
9 FORMAT(///•5X+19HSOURCE OF VARIATION+7X+9HDEGREE UF+7X+6HSUM OF+	PULRG 34
19X+4HMEAN+10X+1HF+9X+20HIMPROVEMENT IN TERMS/33X+7HFREEDOM+8X+	PULRG 35
27HSQUARES+7X+6HSQUARE+7X+5HVALUE+8X+17HOF SUN OF SQUARES1 10 FJRMAT(//20M DUE TV REGRESSIJN+12X+16+F17+5+F145+F13+5+F24+51	PULRG 35 Pulrg 37 Pulrg 38
11 FORMAT(32H - DEVIATICM ABOUT REGRESSION - +16+F17+5+F14+5) 12 Format(8x+5Htotal+19x+16+F17+5///) 13 Format(//17H - NG Immrovement)	PULKG 39 PULKG 40
14 FORMATI///27xs18HTABLE OF RESIDUALS//15H OBSERVATION NO.+5X+74x 1ALUE+7X+7HY VALUE+7X+10HT SSTIMATE+7X+8HKESIDUAL/)	
15 FORMATI//+3X+16+F18+5+F14+5+F17+5+F15+5)	PULRG 43
16 FORMATI2I2)	PULRG 44
READ 12+161MX+MY	PULRG 45
C READ PRUBLEM PARAMETER CARD	POLRG 46
100 READ (MY+1) PR+PH1+N+M+NPLOT	PULKU 47
C PR++++PROBLEM NUMBER (MAY HE ALPHAMERIC)	PULRU 48
C PRISSSPROBLEM NUMBER (CONTINUED)	PULRG 49
C NSSSSSNMBER OF OBSERVATIONS	PULRG 50
C MHIGHEST DEGREE POLYNOMIAL SPECIFIED	POLRG 51
C NPLOT.OPTION CODE FOR PLOTTING	POLRG 52
C O IF PLOT IS NOT DESIRED.	POLRG 53 POLRG 54
C PRINT PROBLEM NUMBER AND N.	POLRG 55
WRITE (MX+3) PR+PR1	PULRG 56
WRITE (MX+4) N C READ INPUT DATA	POLRG 57 Polrg 54 Polrg 59
L=N=M DO 110 I=1=N J=L+I	POLRG 60 POLRG 61
C X(I) IS THE INDEPENDENT VARIABLE, AND X(J) IS THE DEPENDENT	POLRG 62
C VARIABLE.	POLRG 63
110 READ (MY+2) X(1)+X(J)	POLRG 64
CALL GDATA (N+M+X+XBAR+STD+D+SUMSQ)	POLRG 65
MM=M+1	POLRG 66
SUM=0.0	POLRG 67
NT=N-1	POLRG 68
Do 200 I=1+M	POLRG 69
ISAVE(I)=I	POLRG 70
C FORM SUBSET OF CORRELATION COEFFICIENT MATRIX	POLRG 71
CALL ORDER (MM+D+MM+I+ISAVE+DI+E) C INVERT THE SUBMATRIX OF CORRELATION COEFFICIENTS	POLRG 72 Põlrg 73 Polrg 74
CALL MINY (DIAIADET,BAT) CALL MULTR (N,1)XBAR*STD/SUMSQ+DI+E+ISAVE+B+SB+T+ANS) C PRINT THE RESULT OF CALCULATION	POLRG 75 POLRG 75
C PRINT THE RESULT OF CALCULATION WRITE (MX+5) I IF(ANS(7)1140+130+130	PULRG 77 POLRGMO7
130 SUMIP#ANS(4)=SUM	PULRGMU8
15 (SUMIP) 140, 140, 150	PULRG 79
140 WRITE(MX.13)	POLRG 80
Go To 210	Polrg 81
150 WRITE(MX+6)ANS(1)	PULRG 82
WRITE (MX+7) (B(J)+J=1+I)	POLRG 83
WRITE (MX+8) I	POLRG 84
Write (MX+9)	FOLRG 85
SUM=ANS(4)	POLRG 86
WRITE (MX+10) [+ANS(4)+ANS(6)+ANS(10)+SUMIP	POLRG 87
N1=ANS(8)	PULRG 88
WRITE (MX+11) NI+ANS(7)+ANS(9)	PULRG 89
WRITE (MX+12) NT+SUMSQ(MM) C SAVE COEFFICIENTS FOR CALCULATION OF Y ESTIMATES	POLRG 90 Polrg 91 Polrg 92
COE(1)=ANS(1) DO 160 J=1,1	POLRG 93
160 COF(1+1)=8(J) LA=1 200 CONTINUE	POLRG 95 POLRG 96
C TEST WHETHER PLOT IS DESIRED	POLRG 97
210 IF(NPLOT) 100, 100, 220	Polrg 98
C CALCULATE ESTIMATES	PULRG 99
220 NP3=N+N	POLRG100
DO 230 I=1+N	PULRG101
NP3=NP3+1	POLRG102
P(NP3)=COE(1)	POLRG103
L=1	POLRG104
DO 230 J=1+LA P(NP3)=P(NP3)+X(L)+COE(J+1)	POLRG105 Polrg106 Polrg107
230 LOLAN C COPY OBSERVED DATA	PULRGIOS PULRGIOS PULRGIOS
N2=N Lanem Do Dec Lalin	POLRG110 POLRG111
00 240 [=1+N P[]==X[] N2=N2=1	POLRG112 POLRG113
N2=N2+1 L=L+1 240 P(N2)=X(L)	POLRG114 POLRG115
240 P(N2)=XLL) C PRINT TABLE OF RESIDUALS WRITE (NX+3) PR+PR1	PULKG116 PULRG117
WRITE (MX+5) LA	POLRG118
WRITE (MX+14)	POLRG119
NP2=N NP3=N+N	POLRG120 POLRG121 POLKG122
DO 250 1=1+N NP2=NP2+1	POLHG123 POLHG123 POLRG124
NP3=NP3+1 RESID=P(NP2)=P(NP3)	POLRG125



SUBROUTINES AND FUNCTION SUBPROGRAMS REGUIRED NONE

_				<u> </u>
		THE OTHER AND A AN A ALL MEN	PLOT	1
		SUBROUTINE PLOTINU, A, N, M, NL, NS) DIMENSION OUT(101), YPR(11), ANG(9), A(1)	PLOT	2
			PLOT	3
		COMMON MX, MY	PLOT	4
		FURMAT (///,60X,7H CHART +13,//1	PLOT	5
		FORMAT [1X,F11.4,5X,L31A1]	PLOT	6
		FURMAT (2X)	PLOT	7
		FORMAT(10A)) FORMATI 16X-101H	PLOT	8
	-		PLOT	9
	1		PLOT	10
	- 5	FORMAT (//.9X.11F10.4)	PLOT	11
		NLL=NL	PLOT	iż
		IF(NS) 16, 16, 10	PLOT	13
с		SORT BASE VARIABLE DATA IN ASCENDING ORDER	PLOT	14
	10	00 IS I=1,N	PLOT	15
		DO 14 J=1,N	PLOT	16
		IF(A(()-A(J)) 14, 14, 11 L=1-N	PLOT	17
		1, = j = N	PLOT	18
		DO 12 K=1, M	PLOT	19
		L=L+N	PLOT	20
		L=LL+N	PLOT	21
		F=A(1)	PLOT	22
		A(L)=A(LL)	PLOT	23
		A(LL)=F	PLOT	24
		CONTINUE	PLOT	25
		CONTINUE	PLOT	26
с	1.5	TEST NLL	PLOT	27
c	1.6	IF(NLL) 20, 18, 20	PLOT	28
			PLOT	29
с	10	NLL=50 PRINT TITLE	PLOT	30
L	20	WRITE(MX, 1)NO	PLOT	31
с	20	READ BLANK AND DIGITS FOR PRINTING	PLOT	32
c		READ(44,5) BLANK, (ANG(1), I=1,9)	PLOT	33
с		FIND SCALE FOR BASE VARIABLE	PLOT	34
č		XSCAL=(A(N)-A(1))/(FLOAT(NLL-1))	PLOT	35
с		FIND SCALE FOR CROSS-VARIABLES	PLOT	36
•		M1=N+1	PLOT	37
		M2=1=N	PLOT	38
		YMIN=A(ML)	PLNT	39
		Y44X=Y4IN	PLOT	40
		D0 40 J=41,42	PLOT	41
		1F(A(J)-Y4(N) 28, 26,26	PLOT	42
	26	IF(A(J)-YMAX) 40,40,30	PLOT	43
	28	YNIN=A(J)	PLOT	44
		GD T9 40	PLOT	45
	30	YMAX=A(J)	PLOT	46
		CONTINUE	PLOT	47
		YSCAL=(YMAX-YMIN)/100.0	PLOT	48
С		FIND BASE VARIABLE PRINT POSITION	PLOT	49
		X8=A(1)	PLOT	50
		L≃l	PLOT	51
		MYX = M-1	PLOT	52
		1=1	PLOT	53
	45	F=1-1	PLOT	54
		XPR=XA+F*XSCAL	PLOT	55
		[F(A(L)-XPR) 50,50,70	PLOT	56
С		FIND CRUSS-VARIABLES	PLOT	57
		00 55 IX=1.101	PLOT	58 59
	55	OUTIIX)=BLANK	PLOT	
		DO 60 J=1.MYX	PLOT	60
		LL=L+J*N	PLOT	62
		JP=((A(LL)-YMIN)/YSCAL)+1+0	PLOT	63
		OUT (JP)=ANG(J)	PLOT	64
~	60	CONTINUE PRINT LINE AND CLEAR, OR SKIP	PLOT	65
с		waite(MX, 2)XPR, (3))T(12), (2=1,101)	PLOT	65
		H 1 1 E M 4, 2 7 A F 4, 1 3 () 1 1 2 7 4 1 2 = 1 4 1 () 1 7 L=L+1	PLOT	67
			PLOT	69
	10	WRITE(MX, 3)	PLOT	69
	1.0	42112100121		



# CANONICAL CORRELATION

#### **Problem Description**

An analysis of the interrelations between two sets of variables measured on the same subjects is performed by this program. These variables are predictors in one set and criteria in the other set, but it is irrelevant whether the variables in the first set or in the second set are considered as the prediction variables. The canonical correlation, which gives the maximum correlation between linear functions of the two sets of variables, is calculated.  $\chi^2$  is also computed to test the significance of canonical correlation.

The sample problem for canonical correlation consists of four variables in the first set (left-hand side) and three variables in the second set (righthand side) as presented in Table 4. These two sets of measurements have been made on 23 subjects.

# Table 4. Sample Data for Canonical Correlation

		First se	t	Se	Second set		
Observation	<u>X</u> 1	X ₂	X3	X4	<u>Y1</u>	Y ₂	Y3
1	191	155	65	19	179	145	70
2	195	149	70	20	201	152	69
3	181	148	71	19	185	149	75
1 2 3 4 5 6	183	153	82	18	188	149	86
5	176	144	67	18	171	142	71
6	208	157	81	22	192	152	77
7	189	150	75	21	190	149	72
8	197	159	90	20	189	152	82
9	188	152	76	19	197	159	84
10	192	150	78	20	187	151	72
11	179	158	99	18	186	148	89
12	183	147	65	18	174	147	70
13	174	150	71	19	185	152	65
14	190	159	91	19	195	157	99
15	188	151	98	20	187	158	87
16	163	137	59	18	161	130	63
17	195	155	85	20	183	158	81
18	196	153	80	21	173	148	74
19	181	145	77	20	182	146	70
20	175	140	70	19	165	137	81
21	192	154	69	20	185	152	63
22	174	143	79	20	178	147	73
23	176	139	70	20	176	143	69

# Program

# Description

The canonical correlation sample program consists of a main routine, MCANO, and six subroutines:

CORRE	
CANOR	
MINV	are from the Scientific Subroutine Package
NROOT	
EIGEN	
DATA	is a special input subroutine

#### Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

1. Up to 9 variables, including both the first set of variables (that is, left-hand variables) and the second set of variables (that is, right-hand variables). The number of variables in the first set must be greater than or equal to the number of variables in the second set.

- 2. Up to 99,999 observations.
- 3. (12F 6.0) format for input data cards.

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than 9 variables, dimension statements in the sample main program must be modified to handle the particular problem. Similarly, if input data cards are prepared using a different format, the input format in the input subroutine, DATA, must be modified. The general rules for program modification are described later.

Input

#### I/O Specification Card

One control card is required for each problem and is read by the main program, MCANO. This card is prepared as follows:

Columns	Contents	For Sample Problem
1 - 6	Problem number (may be alphameric)	SAMPLE

Contents	For Sample Problem
Number of observations	00023
Number of variables in the first set (that is, left-hand variables)*	04
Number of variables in the second set (that is, right- hand variables)	03
	Number of observations Number of variables in the first set (that is, left-hand variables)* Number of variables in the second set (that is, right-

*The number of variables in the first set must be greater than or equal to the number of variables in the second set.

Leading zeros are not required to be keypunched; but must be right-justified within fields.

#### Data Cards

Since input data are read into the computer one observation at a time, each row of data in Table 4 is keypunched on a separate card using the format (12F 6.0). This format assumes twelve 6-column fields per card.

#### Deck Setup

Deck setup is shown in Figure 16.

#### Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

# Output

#### Description

The output of the sample program for canonical correlation includes:

- 1. Means
- 2. Standard deviations
- 3. Correlation coefficients
- 4. Eigenvalues and corresponding canonical
- correlation
  - 5. Lambda
  - 6. Chi-square and degrees of freedom
  - 7. Coefficients for left- and right-hand variables

# Sample

The output listing for the sample problem is shown in Figure 17 of this sample program.



ţ

ő

Figure 16. Deck setup (canonical correlation)

# Program Modification

Noting that storage problems may result, as previously described in "Sample Program Descriptions", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also behandled by providing a specific format statement. In order to familiarize

145.47427	[49.913]		76.86930	17.47820	183-00063	148.82611
10+101+1	110%5	73	10.46337	1.08164	9.84423	6.73965
COMPELATION CO	FFICIENTS					
1,400000	0.74851	0.37082	0.66440	0.42290	0+66079	0.24682
0.74851	1.00000	0+63252	0.22590	0.46811	0.72779	0-53193
0.57042	0.43252	1.00000	0.20657	0.47394	0.60168	0.79684
0,88440	0-22590	0.20657	1.00030	0.32870	0.34867	-0.10732
0× 5 0.62290	0.66411	3-47394	0.92870	1.00009	0.82555	0+39257
0.66079	0,32179	2,43346	0,34863	0.02555	1.00000	0.67657
0.24682	0.53193	3.7948×	-9,10732	0-30257	0++7657	1.00000
NUMBER OF FIGENYALUES REMOVED	LANGEST EIGENVALUE REMAINING	CONA CA COR	ESPONDING NOVICAL RELATION	LA#604	CH I-SQUARE	DEGREES UF FREEDOM
e 1	0.19680			0+11597	40.93274	12
2	0.00767			0+99232	0.14637	2
	FLATION O	49375				
ANDVICAL CORM						
CANDITCAL CORRI COEFFICIENTS Gabbiog	FOR LEFT HAND	) VARIABL'	ES 1-05821	-0.56650		
COEFFICIENTS 0.66309	FOR LEFT MANE	7 10 VARIA0	1-05821	-0.54450		
COEFFICIENTS 0.66309 COEFFICIENTS -0.02133	FOR LEFT HAND -0+1001 FOR RIGHT HAN 0+0400	7 10 VARIA0	1-05821	-0-54650		
COEFFICIENTS 0+56309 COEFFICIENTS -0+02133 CATONICAL CORRI	FOR LEFT HAND -0+1001 FOR RIGHT HAN 0+0400	10 VANIAB 19 104736	1-05821 6.89730	-0.54650		
COEFFICIENTS 0-86309 COEFFICIENTS -0-02133 ANDNICAL CORRI COEFFICIENTS 0-07833	FOR LEFT HAND -0.1001 FOR RIGHT HAN 0.400 ELATION FOR LEFT HAND -0.8391 FOR RIGHT HAN	10 VARIAB 19 104734 15 10 VARIABLI	1.05821 6.89730 6.69730			
COEFFICIENTS 0.66309 COEFFICIENTS -0.02133 ANTONICAL COMMI COEFFICIENTS 0.08453 COEFFICIENTS	FOR LEFT HAND -0.1001 FOR GIGHT HAN 0.0000 ELATION -0.4391 FOR RIGHT HAN -0.5550	ND VARIAG 19 10-736 2 VARIABLI 15 10 VARIABL 23	1.05821 LES 0.89730 C3 0.66309			

Figure 17. Output listing

the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, MCANO:

- a. The dimension of arrays XBAR, STD, CANR, CHISQ, and NDF must be greater than or equal to the total number of variables m (m = p + q, where p is the number of left-hand variables and q is the number of right-hand variables). Since there are seven variables, four on left and three on right, the value of m is 7.
- b. The dimension of array RX must be greater than or equal to the product of m x m. For the sample problem this product is  $49 = 7 \times 7$ .
- c. The dimension of array R must be greater than or equal to (m + 1)m/2. For the sample problem this number is 28 = (7 + 1)7/2.
- d. The dimension of array COEFL must be greater than or equal to the product of p x q. For the sample problem this product is  $12 = 4 \times 3$ .
- e. The dimension of array COEFR must be greater than or equal to the product of  $q \ge q$ . For the sample problem this product is  $9 = 3 \ge 3$ .

2. Changes in the input format statement of the special input subroutine, DATA:

Only the format statement for input data may be changed. For example, since sample data are either two- or three-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in seven 3-column fields, and if so, the format would be changed to (7F 3.0). Note that the current input format statement will allow a maximum of twelve variables per card. The special input subroutine, DATA, is normally written by the user to handle different formats for different problems. The user may modify this subroutine to perform testing of input data, transformation of data, and so on.

# **Operating Instructions**

The sample program for canonical correlation is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Sample Main Program for Canonical Correlation - MCANO

# Purpose:

(1) Read the problem parameter card for a canonical correlation, (2) Call two subroutines to calculate simple correlations, canonical correlations, chi-squares, degrees of freedom for chi-squares, and coefficients for left and right hand variables, namely canonical variates, and (3) Print the results.

# Remarks:

I/O specifications transmitted to subroutines by COMMON.

# Input card:

- Column 2 MX Logical unit number for output.
- Column 4 MY Logical unit number for input.

The number of left-hand variables must be greater than or equal to the number of righthand variables.

Subroutines and function subprograms required:

CORRE	(which, in turn, calls the input
	subroutine named DATA.)
CANOR	(which, in turn, calls the subrou-
	tines MINV and NROOT. NROOT,

in turn, calls the subroutine EIGEN.)

#### Method:

Refer to W. W. Cooley and P. R. Lohnes, 'Multivariate Procedures for the Behavioral Sciences', John Wiley and Sons, 1962, chapter 3.

	FOI			0.112	2.00101										
*0		CARD, TYP	GERS											MCANU	
ĉ		THE F	OLLOW	NG DI	RAN FUR MENSION	IS MUST	Bé	GREATEI	R THAI	NÜR	EQUA	L TO	THE	MCAND	
ĉ		OF LI	EFT HAN	D VAR	VAR TABL TABLES	ANU N	M=MP	THE N	HERE I Unber	NP I UF	RIGHT	HAN	D	MCANJ MCANU	3
C		VARIA DIMENSIO	ABLES). Dn Xbaf		TD( 9) + C	ANR ( 9 )	+CHI	50(9),	NDF(9)	)				MCANU NCANU	5
c c		THE 1	FOLLOWI JCT OF	NG DI	MENSION	MUST	BE Ģ	REATER	THAN	OR	EQUAL	τü	THE	MCANB MCANB	7 8
c		DIMENSIO	JN RXE	111	MENSION	I MUST	BE G	REATER	THAN	0R	FOUAL	τa		MCANU MCANU	9 10
č			₽M/2.											MCANO	
ç		THE I	OLLOWI	NG DI	MENSION	MUST	BE G	REATER	THAN	0R	EQUAL	TO	THE	MCANG	13
c		DIMENSI		L(81)					<b>T</b>			•••		MCANU	14
ĉ		PRODI	JCT OF	NQ*NQ	MENSION	MUST	BEG	REATER	THAN	DR	EQUAL	10	THE	MCANO MCANO	17
		COMMON		R(25)										MCANO MCANO	18 19
	1 2	FORMATE	44, AZ, 1	5,212 CANO	) Nical (	GRRELA	TION		A4.A2	//22	H N	ο. α	F OBS	NCANO EMCANO	
		CHATION	5,8X,14	129H	ND. (	DF LEFT	HAN	VARI	ABLES	,15/	30H	NG.	OF R	MCANU MCANU	22
	ڌ	FORMATI	//6H M8	ANS/1	8F15.51	) (AT[]]NS	. / 1 8 6	5 611						MCAND	24
	5	FORMATE	1/25H C	ORREL	ATION C	OEFFIC								MCANU	26
	7	FORMAT(	///12+	i Nu	MBER OF	-,7x,7H	ILARG	EST,7X	,13HC	ORR E	SPUND	I NG	31X.7	MCAND	28
		LDEGREES/ 20A,5X,10	энсні-з	JUARE	,7X,2HC	5X,10HE DF/4X,7	IGEN Threm	VALUE, OVED,7	7X,9H X,9HR	CANC EMAI	NICAL NING,	,7X, 7X,1	HCUR	RMCANU	٥٤
		FORMATE	,32X,7H	IFREED	EM7)									MCANU	51
	9	FORMATE	///22H	CANON		JRRELAJ	10.	F12.5}	VARIA	61 E S	718F1	5.53		MCANU	
	11	FORMATI	/40H	COEF	FICIENT	IS FOR	RIGH	T HAND	VARI	ABLE	\$7(8F	15.5		MCANG	35
c	••	READ(2,	12) MX . ?		AMETER	C 4 8 0								MCANG	37
	100	READ (M	Y.LIPR.	PR1,N	, MP , MQ									NCANO	39
ĉ		PR1.	••••Pi	OBLEM	NUMBER	< (CON1	TINUE		RIC)					MCANU MCANO	
с с		N MP	NL	JABER JABER	OF OBSE OF LEFT	ERVATIL F HAND	JNS VAR I	AULES						MCANÚ MCANÚ	
¢		MÚ WRITE (1	NL	JABER	OF RIGH	IT HANG	VAR	IABLES						MLANG	44
		M=MP+MQ IO=0				•								MCANU	46
		X=0.0												MCANO	48
ç		CALL COM PRIN	MEANS	STA STA	NÚARD L	ITAIV30	ONS,							MCAND MCANU	50
Ĺ		WRITE (	4X,3)()	BAR [ ]		4)	5							MCANO	
		WRITE (		STD(1)	+I=1+M1	1								MCANU	
		DO 160	I=1.M											MCANG	55
		DO 150 [Ft[-J]	120,	130, 1	30									MCAND	57
		L=[+(J* GO TO 1	40											MCANO MCANO	59
	140	L=J+(I* CANR(J)	=R(L).											MCANO	
		CONTINU WRITE (		I CANR	(J),J=	L , M)								MCAND MCAND	
c		CALL CA	NOR (N	, MP , NQ	R, XBA	R.STD.C	CANR,	CHISQ,	NDF .C	OEFF	COEF	L+R)		HCAND	64
C		DEGR WRITE (	EES OF	FREED	OMS									MCANO	66
		DØ 170 N1=1-1												MCANO	68
C		TEST	WHETH	R EIG	ENVALU	E IS GR	REATE	R THAN	ZERO					MCANO MCANO	70
	165	IF(XBAR MM=N1		55, 16	5, 170									MCANO	
	170	GO TO 1 WRITE (1		,XBAR	(1),CA	R(1),	510(1	),CHIS	Q(1),	NDF (	11			MCANO	73 74
c			CANON	ICAL	COEFFIC	IENTS								MCAND	
	175	N1=0 N2=0												MCAND	77
		00 200 1 WRITE (/	(= L , MM (x , 9) ( 4	NRETS										MCANO	79
		DO 180 . N1=N1+1	I=1, MP											MCANO	81
	180	XBAR(J)			a	401								MCANO	83
		WRITE () DO 190	4X,103( J=1,MQ	ADAK	JJ-1-	HP 1								MCAND MCAND	
	190	N2=N2+1 XBAR(J)	COEFR	N2)										MCANU MCANU	87
	200	WRITE (A	4X,1134	XBAR(	J),J=l,	NQ)								MCAND	
		GO TO 10 END	30											MCANO MCANJ	90
	DUA TORE	<b>&gt;</b>	S UA	MCANO											
11	XEG	MCANO MCANO,CO	01												
_															_
1	2	00023040	1												1 2
ل <b>م</b> رد.	191	155	65	19	179	145	70								3
	195	148	70 71	20 19	201 185	152	69 75								5
	183	144	82 67	18 18	188	149 142	86 71								6 7
	208	150	81 75	22 21	192 190	152 149	77 72								8
	197	159	90 76	20 19	189 197	152 159	82 84								10 11
	192	150	78 99	20 18	187	151 148	72								12 13
	183		65 71	18 19	174	147 152	70 65								14 15
	190	159 151	91 98	19	195 187	157 158	99 87								16 17
				**	- • •										

SAMPLE INPUT SUBROUTINE - DATA PURPOSE READ AN UBSERVATION (N DATA VALUES) FROM INPUT DEVICE. This subroutine is called by the subroutine corre and must be provided by the user. If size and location of data fields are different from prodent to problem. This sub-									
174	143 139	79 70	20 20	178 176	147 143 INE - 1	73 69 		25	
192	154	69	20	185	152	63		23 24	
181 175	145 140	77 70	20 19	182 165	146 137	70 81		22	
196	153	80	21	173	148	74		20 21	
195	155	85	20	183	158	81		19	
163	137	59	18	161	130	63		18	

# USAGE CALL DATA (N,D)

DESCRIPTION OF PARAMETERS M - THE NUMBER OF VARIABLES D - DUTPUT VECTOR OF LENGTH DATA. . IABLES IN AN OBSERVATION LENGTH M CONTAINING THE **OBSERVATION** 

REMARKS THE TYPE OF CONVERSION SPECIFIED IN THE FORMAT MUST BE Either F or E.

٥

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

END	ግል ፣ ል	4
RETURN	1) & T &	7
READ (MY+1) (D(1)+1=1+M)	ATAG	6
READ AN OBSERVATION FROM INPUT DEVICE.		5
1 FORMAT(12F6.0)	ATAC	4
COMMON MX+MY	DATA	3
DIMENSION D(1)	-DATA	2
SUBROUTINE DATA (4,9)	DATA	1

#### ANALYSIS OF VARIANCE

#### **Problem Description**

An analysis of variance is performed for a factorial design by use of three special operators suggested by H.O. Hartley.* The analysis of many other designs can be derived by reducing them first to factorial designs, and then pooling certain components of the analysis-of-variance table.

Consider a three-factor factorial experiment in a randomized complete block design as present in Table 5. In this experiment factor A has four levels, factors B and C have three levels, and the entire experiment is replicated twice. The replicates are completely unrelated and do not constitute a factor.

#### Table 5. Sample Data for Analysis of Variance

Replicate			ь	1			ъ	2			b3		
(Block)		aı	a2	a,	a4	a ₁	a2	a3	a4	a ₁	a2	a ₃	a4
	( °1	3	10	9	8	24	8	9	3	2	8	9	8
r ₁	C ₂	4	12	3	9	22	7	16	2	2	2	7	2
	( c3	5	10	5	8	23	9	17	3	2	8	6	3
	(°1	2	14	9	13	29	16	11	3	2	7	5	3
r ₂	{ c ₂	7	11	5	8	28	18	10	6	6	6	5	9
	( °3	9	10	27	8	28	16	11	7	8	9	8	15

*H.O. Hartley, "Analysis of Variance" in Mathematical Methods for Digital Computers, edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.

Nevertheless, for the purpose of this program, a four-factor experiment (with factors A, B, C, and R) is assumed. Thus, each element of the data in Table 5 may be represented in the form:

x abcr where 
$$a = 1, 2, 3, 4$$
  
 $b = 1, 2, 3$   
 $c = 1, 2, 3$   
 $r = 1, 2$ 

The general principle of the analysis-of-variance procedure used in the program is to perform first a formal factorial analysis and then pool certain components in accordance with summary instructions that specifically apply to the particular design. The summary instructions for four different designs are presented in the output section.

#### Program

#### Description

The analysis-of-variance sample program consists of a main routine, ANOVA, and three subroutines:

AVDAT	
AVCAL	are from the Scientific Subroutine Package
MEANQ	

#### Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

1. Up to six-factor factorial experiment

2. Up to a total of 1600 data points. The total number of core locations for data points in a problem is calculated as follows:

$$T = \frac{k}{n} (LEVEL_{i} + 1)$$

where  $LEVEL_i$  = number of levels of ith factor k = number of factors

 $\Pi$  = notation for repeated products

3. (12F6.0) format for input data cards

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than six

factors or if the total number of data points is more than 1800, dimension statements in the sample main program must be modified. Similarly, if input data cards are prepared using a different format, the input format statement in the sample main program must be modified. The general rules for program modifications are described later.

# Input

# I/O Specification Card

One control card is required for each problem and is read by the main program, ANOVA. This card is prepared as follows:

Columns	Contents	For Sample Problem
1 - 6	Problem number (may be alphameric)	SAMPLE
7 - 8	Number of factors	04
9 - 15	Blank	
<b>∫</b> ¹⁶	Label for the first factor	Α
(17 - 20	Number of levels of the first factor	0004
<b>∫</b> ²¹	Label for the second factor	В
22 - 25	Number of levels of the second factor	0003
<b>)</b> ²⁶	Label for the third factor	С
27 - 30	Number of levels of the third factor	0003
<b>)</b> ³¹	Label for the fourth factor	R
32 - 35	Number of levels of the fourth factor	0002
66	Label for the eleventh factor (if present)	
67 - 70	Number of levels of the eleventh factor	

If there are more than eleven factors, continue to the second card in the same manner.



Leading zeros are not required to be keypunched.

# Data Cards

Data are keypunched in the following order: X₁₁₁₁, X₂₁₁₁, X₃₁₁₁, X₄₁₁₁, X₁₂₁₁, X₂₂₁₁, X₃₂₁₁,...,

 $X_{4332}$ . In other words, the innermost subscript is changed first; namely, the first factor, and then second, third, and fourth subscripts. In the sample problem, the first subscript corresponds to factor A and the second, third, and fourth subscripts to factors B, C, and R. Since the number of data fields per cards is twelve, implied by the format (12F6.0), each row in Table 5 is keypunched on a separate card.

# Deck Setup

Deck setup is shown in Figure 18.

# Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.



Figure 18. Deck setup (analysis of variance)

Output

# Description

The output of the sample analysis-of-variance program includes the numbers of levels of factors as input, the mean of all data, and the table of analysis of variance. In order to complete the analysis of variance properly, however, certain components in the table may need to be pooled. This is accomplished by means of summary instructions that specifically apply to the particular experiment as presented in Table 6.

Table 6.	Instructions to Summarize Components	
	of Analysis of Variance	

	Single Classification with Replicates	Two-way Classification with Cell Replicates	Randomized Complete Block with Two Factors	Split Plot
(Input) Factor No. 1 2 3	Groups = A Replicates ≃ R	Rows = A Columns = B Replicates = R	Factor 1 = A Factor 2 = B Blocks = R	Main treatment = A Subtreatment = B Blocks = R
(Output) Sums of squares	A R AR	A B AB R AR BR ABR	A B AB R AR BR ABR	A B AB R AR BR ABR
Summary instruction	Error = R + (AR)	Error = R + (AR) +(BR)+(ABR)	Error = (AR)+(BR) +(ABR)	Error = (BR)+(ABR) (b)
Analysis of variance	Groups A Error	Rows A Columns B Interaction AB Error	Factor 1 A Factor 2 B Interaction AB Blocks R Error	Main treatment A Blocks R Error (a) AR Subtreatment B Interaction AB Error (b)

As mentioned earlier, the sample problem is a randomized complete block design with three factors replicated twice. Therefore, it is necessary to pool certain components in the table of analysis of variance shown in Figure 19. Specifically, the components AR, BR, ABR, CR, ACR, BCR, and ABCR are combined into one value called the error term. The result is indicated in Figure 19. Since these data are purely hypothetical, interpretations of the various effects are not made.

#### Sample

The output listing for the sample problem is shown in Figure 19.

ANALYSIS OF VARIANCE....SAMPLE



A B	229.04168	3	76+34722
в	722+69445	2	361+34722
A8	1382.08349	6	230+34722
c	55.11111	2	27+55555
AC	42,00000	6	7.00000
BC	13,13868	4	3-28472
ABC	140.75003	12	11.72916
R	141.68057	1	141.68057
AR	18.81944	3	6.27314
8R	6.02777	2	3.01388
ABR	176+97222	6	29.49536
CR	40.77777	2	20.36888
ACR	50.55555	6	8.42592
BCR	62.63889	4	15+65972
ABCR	151.02780	12	12+58564
TOTAL	3233.31641	71	

DEGREES OF

MEAN

Figure 19. Output listing

#### **Program Modification**

Noting that storage problems may result, as previously described in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, ANOVA:

- a. The dimension of array X must be greater than or equal to the total number of data points as calculated by the formula in the program capacity section above. For the sample problem the total number of data points is 240 = (4+1)(3+1)(2+1).
- b. The dimension of arrays HEAD, LEVEL, ISTEP, KOUNT, and LASTS must be greater than or equal to the number of factors, k. Since there are four factors in the sample problem (4 = 3 original factors + 1 pseudo factor) the value of k is 4.
- c. The dimension of arrays SUMSQ, NDF, and SMEAN must be greater than or equal to  $n = 2^{k}-1$ , where k is the number of factors. For the sample problem the value of n is  $15 = 2^{4}-1$ .

2. Change in the input format statement of the main program, ANOVA:

Only the format statement for input data may be changed. Since sample data are either one- or two-digit numbers, rather than using six-column fields as in the sample problem, each data may be keypunched in a two-column field, and, if so, the format is changed to (12F2.0). This format assumes twelve 2column fields per card, beginning in column 1.

#### **Operating Instructions**

The sample analysis-of-variance program is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Sample Main Program for Analysis of Variance - ANOVA

#### Purpose:

(1) Read the problem parameter card for analysis of variance, (2) Call the subroutines for the calculation of sums of squares, degrees of freedom and mean square, and (3) Print factor levels, grand mean, and analysis of variance table.

# Remarks:

The program handles only complete factorial designs. Therefore, other experimental design must be reduced to this form prior to the use of the program.

 $I\!\!\!/ O$  logical units determined by MX and MY, respectively.

Subroutines and function subprograms required:

AVDAT
AVCAL
MEANQ

#### Method:

The method is based on the technique discussed by H.O. Hartley in "Mathematical Methods for Digital Computers", edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.

// FOR	
+IOCS(CARD+TYPEWRITER+1132 PRINTER)	
ONE WORD INTEGERS	
C SAMPLE MAIN PROGRAM FOR ANALYSIS OF VARIANCE - ANOVA	ANOVA 1
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO T	HE ANOVA 2
C CUMULATIVE PRODUCT OF EACH FACTOR LEVEL PLUS ONE (LEVELII)	
C FOR 1=1 TO K. WHERE K IS THE NUMBER OF FACTORS	ANOVA 4
DIMENSION X(1600)	ANOVAMO2
C THE FOLLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL TO	
C NUMBER OF FACTORS	ANOVA 7
DIMENSION MEADIGI+LEVEL(6)+ISTEP(6)+KOUNT(6)+LASTS(6)	ANOVA B
C THE FOLLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL TU	
C THE K-TH POWER MINUS 1+ ((2**K)-1)	ANOVA 10
DIMENSION SUMSQ(63) +NDF(63) + SMEAN(63)	ANDVAMG1
C THE FOLLOWING DIMENSION IS USED TO PRINT FACTOR LABELS IN	
C ANALYSIS OF VARIANCE TABLE AND IS FIXED	ANDVA 13
DIMENSION FMT(15)	ANOVA 14
1 FORMAT(A4, A2, I2, A4, 3X, 11(A1, I4)/(A1, I4, A1, I4, I4, I4, I4, I4, I4, I4, I4, I4, I4	
2 FORMAT(////26H ANALYSIS OF VARIANCE	ANUVA 16
3 FORMAT(//18H LEVELS OF FACTORS/(3X,A1,7X,14))	ANOVA 17
4 FORMAT(///11H GRAND MEAN, F20.5////)	ANOVA 18
5 FORMAT(//IGH SOURCE OF.18X.7HSUMS OF.10X.10HDEGREES OF.9X.4HM	
110H VARIATION, 18X, 7HSQUARES, 11X, 7HFREEDOM, 10X, 7HSQUARES/)	ANUVA 20
6 FORMAT(2X,15A1,F2G.5,10X,16,F20,5)	ANOVA 21
7 FORMAT(/7H TUTAL,10X,F2G.5,10X,16)	ANOVA 22
8 FDRMAT(12F6.0)	ANGVA 23
9 FORMAT(212) C	ANOVA 25

1 2 5AMPL	E04         A000480003C0003R0002           3         10         9         8         2         8         9         3         2         8         9           4         12         3         9         22         7         16         2         2         7           5         10         5         8         23         9         17         3         2         8         6           2         14         9         13         29         16         11         3         2         7         5           7         11         5         8         28         19         10         6         6         5           9         10         27         8         28         16         11         7         8         9	8 2 3 9 15	1 2 3 4 5 6 7 8
STOR			
DUI	CNU	ANLVA	
	WRITE (MX,7)SU4+N GO TO 100	ANGVA	
170		ANUVA	17
	CONTINUE	ANUVA	
150	ISTEP(I)=1 50 TO 120	ANGVA ANGVA	
	GO TU 160	ANGVA	73
147	IF(ISTEP(I)) 1+7, 150, 147 ISTEP(1)=0	ANUVA ANUVA	
145	JO 160 [=1,K	ANGVA	
	IF(NN-LL) 145, 170, 170	ANGVA	69
	HRITE (MX,6)(FAT(1),1=1,15),SUNSQ(NR),NUF(NN),SMEAR(NN) SUM=SUM+SUMSQ(NN)	ANLVA ANOVA	
140	CONTINUÉ	MAUVA	66
100	L=L+1 FMT(L)=HéAJ({})	ANUVA ANUVA	
	IF(ISTEP(I)) 130, 140, 130 L=L+1	ANCVA	
	FMT(I)=BLANK	ANUVA	
	L≠0 D0 146 [=1,K	ANÚVA ANÚVA	
20	NN=NN+1	ANUVA	54
	NN⇒0 SUM=0.0	ANŬVA Anuva	
10	FMT(1)=BLANK	ANÚVA	
	JO 110 1=1,15	ANOVA	55
05	00 105 1=2,K ISTEP(1)=0	ANOVA	
	ISTEP(1)=1	ANOVA	
	LL=(2**K)-1	ANDVA	51
	PRINT ANALYSIS OF VARIANCE TABLE WRITE (MX.5)	ANOVA ANOVA	
	WRITE (MX,4)GMEAN	ANOVA	
	PRINT GRAND MEAN	ANDVA	
	CALL AVCAL (K,LEVEL,X,L,ISTEP,LASTS) CALL MEANQ (K,LEVEL,X,GMEAN,SUMSQ,NDF,SMEAN,ISTEP,KOUNT,LASTS)	ANOVA ANOVA	
	CALL AVDAT (K, LEVEL, N, X, L, ISTEP, KOUNT)	ANOVA	44
	READ (MY,8)(X(I),I=1,N)	ANOVA	
102	N≂N≉LEVEL(I) Read all input data	ANDVA ANDVA	
	DO 102 I=2,K	ANGVA	40
	CALLULAIE IDIAL NUMBER OF DATA ELEMENIS N=LEVEL(1)	ANDVA ANDVA	
	WRITE (MX,3)(HEAD([],LEVEL(]),I=1,K) Calculate Total Number of Data Elements	ANOVA	
	WRITE (MX,2)PR,PR1	ANDVA	36
	PRINT PROBLEM NUMBER AND LEVELS OF FACTORS	ANOVA	
	HEADFACTOR LABELS LevelLevels of factors	ANOVA ANOVA	
	BLANK BLANK FIELD	ANOVA	32
	KNUMBER OF FACTORS	ANOVA ANOVA	
	PRPROBLEM NUMBER (MAY BE ALPHAMERIC) PR1PROBLEM NUMBER (CONTINUED)	ANOVA	
		ANUVA	
100	READ PROBLEM PARAMETER CARD READ (MY,1)PR,PR1,K+BLANK,{HEAD(I),LEVEL(I),I=1,K)	ANOVA	

ø

## DISCRIMINANT ANALYSIS

#### **Problem Description**

A set of linear functions is calculated from data on many groups for the purpose of classifying new individuals into one of several groups. The classification of an individual into a group is performed by evaluating each of the calculated linear functions, then finding the group for which the value is the largest.

The sample problem for discriminant analysis consists of four groups of observations as presented in Table 7. The number of observations in the first group is eight; the second group, seven; the third group, seven; and the fourth group eight. The number of variables is six in all groups.

# Program

#### Description

The discriminant analysis sample program consists of a main routine, MDISC, and three subroutines:

DMATX	)
MINV	are from the Scientific Subroutine Package
DISCR	)

Table 7. Sample Data for Discriminant Ana	lysis
-------------------------------------------	-------

t							
	Observation	<b>X</b> 1	X ₂	X3	X4	X ₅	<u>Х₆</u>
Group 1	1 2 3 4 5 6 7 8	3 4 9 16 5 17 2 7	10 12 3 2 10 3 10 10	93225295	8 8 2 8 8 8 8	24 22 9 7 23 6 29 28	8 7 8 2 9 3 16 18
Group 2	1 2 3 4 5 6 7	9 11 8 1 7 7 7	10 7 10 6 8 9 10	27 8 2 8 9 8 5	8 9 14 6 2 8	28 8 27 14 18 19 27	16 15 16 13 2 9 17
Group 3	1 2 3 4 5 6 7	3 9 4 8 6 8 17	11 4 13 5 9 10 3	9 10 10 16 10 5 2	15 7 7 16 5 8 7	20 9 21 16 23 27 6	10 9 15 7 11 16 3
Group 4-	1 2 3 4 5 6 7 8	3 4 9 15 9 8 7 7	10 12 3 2 10 9 8 10	8 3 2 2 6 5	8 8 8 8 8 8 9 8	23 23 21 7 27 26 18 26	8 7 2 16 16 2 16

#### Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

- 1. Up to four groups
- 2. Up to ten variables

3. Up to a total number of 100 observations in all groups combined.

4. (12F6.0) format for input data cards

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than four groups, more than ten variables, or more than 100 observations, dimension statements in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format statement in the sample main program must be modified. The general rules for program modification are described later.

# Input

#### I/O Specification Card

One control card is required for each problem and is read by the main program, MDISC. This card is prepared as follows:

Columns	Contents	For Sample Problem
1 - 6	Problem number (may be alphameric)	SAMPLE
7 - 8	Number of groups	04
9 - 10	Number of variables	06
11 - 15	Number of observations in first group	00008
16 - 20	Number of observations in second group	00007
21 - 25	Number of observations in third group	00007
26 - 30	Number of observations in fourth group	00008
•		
•		

# 65 - 70 Number of observations in twelfth group (if present)

If there are more than twelve groups in the problem, continue to the second card in the same manner.

Columns	Contents
1 - 5	Number of observations in thirteenth group
6 - 10	Number of observations in fourteenth group

Leading zeros are not required to be keypunched, but numbers must be right-justified in fields.

# Data Cards

Since input data are read into the computer one observation at a time, each row of data in Table 7 is keypunched on a separate card using the format (12F6.0). This format assumes twelve 6-column fields per card.

Deck Setup

Deck setup is shown in Figure 20.

# Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

# Output

# Description

The output of the sample program for discriminant analysis includes:

- 1. Means of variables in each group
- 2. Pooled dispersion matrix
- 3. Common means
- 4. Generalized Mahalanobis D-square

5. Constant and coefficients of each discriminant function

÷

ø



Figure 20. Deck setup (discriminant analysis)

6. Probability associated with the largest discriminant function evaluated for each observation.

#### Sample

The output listing for the sample problem is shown in Figure 21.

#### **Program Modification**

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, MDISC:

- a. The dimension of array N must be greater than or equal to the number of groups, k. Since there are four groups in the sample problem the value of k is 4.
- b. The dimension of array CMEAN must be greater than or equal to the number of variables, m. Since there are six variables in the sample problem the value of m is 6.
- c. The dimension of array XBAR must be greater than or equal to the product of m times k. For the sample problem this product is  $24 = 6 \times 4$ .
- d. The dimension of array C must be greater than or equal to the product of (m+1)k. For the sample problem this product is 28 = (6+1)4.
- e. The dimension of array D must be greater than or equal to the product of m times m. For the sample problem this product is  $36 = 6 \times 6$ .
- f. The dimension of arrays P and LG must be greater than or equal to the total number of observations in all groups combined, t. For the sample problem this total is 30 = 8 + 7 + 7 + 8.
- g. The dimension of array X must be greater than or equal to the total number of data points that is equal to the product of t

PLE SIZES	TABLES 6					
1	8 8					
j.	7					
•	8					
1 MEAN:	7-50000	4 43800	7 85866			
		4+02500	1+23000	18.50000	8.8/900	
2 MEANS 7.14285	8.57143	9.57143	7.85714	20+14286	12.57143	
3 MEANS 7085714	7.85714	8.85714	9.28571	17.42857	10.14285	
4 MEANS 7.75000	8.00000	6.75000	7.37500	21.37500	9.25000	
DISPERSI	ON MATREX					
19.61980	-11-16208	-5-21496	-6+09889	-22+74861	-9.54051	
-11.16208	11-94504	5+61812	1.91758	22+60987	10+66757	
-5.21496	5.61812	39.45945	3.93681	16.23487	9.34546	
-6.09889	1.91758	3.93681	9.83309	4.62156	3+83790	
L .						
22.74861	22+60987	16.23487	4.62155	62.78635	30.18268	
-9.54051	10.66757	9.34546	3,83790	30+18268	29.57484	
MEANS 7.66666	7.96666	7.33333	7.89999	19.39999	10+13333	
LIZED MAHA	LANOBIS D-SQUARE	12.78067				
MINANT FUN	CTION 1					
ONSTANT	<ul> <li>COEFFICIENTS</li> </ul>					
8.49425	• 2.63968	2.12202	-0.17167	1.91198	0.58476	-0.40476
MINANT FUN	ICTION 2					
	<ul> <li>COEFFICIENTS</li> </ul>					
9.21008	• 2.61928	2.25227	-0.04816	1.88318	0.43732	-0.21763
MINANT FUN	CTION 3					
ONSTANT	<ul> <li>COEFFICIENTS</li> </ul>					
1.86424	• 2.74448	2.39585	-0.06456	2+13259	0+42619	-0+32716
MINANT FUN	CTION 4					
	COFFFICIENTS					
ONSTANT	<ul> <li>COEFFICIENTS</li> </ul>					
	1	1         9           1         NEAN:         7.50000           2         NEANS         8.57143           3         NEANS         7.85714           7.13283         8.57143           3         NEANS           7.63714         7.85714           4         MEANS           7.75000         8.00000           0 DISPERSION MATRIX           10.61880         -11.16208           11.18208         11.94504	1         9           1         9           1         8           1         8           2         8           3         9           3         9           3         9           3         9           3         9           3         9           3         9           3         9           3         9           3         9           3         9           4         8           5         7           5         8           5         9           5         9           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1           1         1	1         9           1         NGAN:           7.87500         7.50000           2.8630         8.57143           9.87143         7.857143           9.87143         7.85714           9.87143         7.85714           9.87143         7.85714           9.87143         7.85714           9.87143         7.85714           9.87143         7.85714           9.87143         7.85714           9.87143         7.85714           9.87143         7.85714           9.87143         7.85714           9.87143         7.85714           9.87143         7.85714           9.87143         7.85714           9.87143         7.85714           9.87143         7.85700           9.87143         7.85700           9.1015PERSION MATRIX           19.61800         -11.16208           9.5112         39.45965           9.61812         39.45965           9.61812         39.4596           9.61812         3.93601           9.6300         1.01758           9.54031         10.66757           9.35333         7.890999	1       0         1       NGAN:         7.87500       7.50000         2.8645       8.57143         9.87143       9.57143         9.87143       9.57143         9.8645       7.45714         8.85714       9.57143         9.87143       7.65714         9.87143       7.65714         9.87143       7.65714         9.87143       7.65714         9.87143       7.65714         9.87143       7.65714         9.87143       7.65714         9.87143       7.65714         9.87143       7.65714         9.87143       7.65700         9.87143       7.65700         9.87143       7.65700         9.87143       7.65700         9.87143       9.57143         9.81847       1.61750         9.91868       11.94504         9.9197       1.61812         9.91989       1.01756         9.92061       9.63309         9.92101       1.01756         9.93333       7.69999         1.9198       7.35333         9.91091       1.91996         9.911091 <td< td=""><td>1         0           1         0           2         0           2         0           2         0           2         0           2         0           2         0           3         0           3         0           3         0           3         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0</td></td<>	1         0           1         0           2         0           2         0           2         0           2         0           2         0           2         0           3         0           3         0           3         0           3         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0           1         0

EVALUATION OF CLASSIFICATION FUNCTIONS FOR EACH OBSERVATION

0.38065 0.37043 0.36260

PROBABILITY

BSERVATION

ASSOCIATED WITH

DISCRIMINANT ANALYSIS ..... SAMPLE NUMBER OF GROUPS NUMBER OF VARIABLES

\$



Figure 21. Output listing

Appendix D - Sample Programs 167

times m. For the sample this product is  $180 = 30 \times 6$ .

2. Changes in the input format statement of the main program, MDISC:

> Only the format statement for input data may be changed. Since sample data are either one- or two-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in twocolumn fields, and, if so, the format is changed to (6F2.0). This format assumes six 2-column fields per card, beginning in column 1.

# **Operating Instructions**

The sample program for discriminant analysis is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Sample Main Program for Discriminant Analysis - MDISC

#### Purpose:

(1) Read the problem parameter card and data for discriminant analysis, (2) Call three subroutines to calculate variable means in each group, pooled dispersion matrix, common means of variables, generalized Mahalanobis D square, coefficients of discriminant functions, and probability associated with largest discriminant function of each case in each group, and (3) Print the results.

#### Remarks:

The number of variables must be greater than or equal to the number of groups.

I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required:

DMATX
MINV
DISCR

# Method:

Refer to "BMD Computer Programs Manual", edited by W.J. Dixon, UCLA, 1964, and T.W. Anderson, "Introduction to Multivariate Statistical Analysis", John Wiley and Sons, 1958, section 6.6-6.8.

- / / F			
*100	S(CARD, TYPEWRITER, 1132 PRINTER)		
*ONE	WORD INTEGERS		
С	SAMPLE MAIN PROGRAM FOR DISCRIMINANT ANALYSIS - MDISC	MOISC	1
ċ	THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	MDISC	2
č	NUMBER OF GROUPS, K	MDISC	3
	DIMENSION N(4)	MDISC	4
c	THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	MOISC	5
č	NUMBER OF VARIABLES, N	MD1 SC	6

DIMENSION CHEAN[10] THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE PRODUCT OF MMX. DIMENSION XBAR(40) THE FULLOWING DIMENSION MUST BE GREATER THAN DR EQUAL TO THE PRODUCT OF (MM-1)*K.. DIMENSION C(44) THE FULLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE PRODUCT OF MM-1. DIMENSION DILOO) THE FULLOWING DIMENSIONS MUST BE GREATER THAN OR EQUAL TO THE TOTAL OF SAMPLE SIZES OF K GROUPS COMBINED, T (T = N(1)+N(2)+. +N(K)). C C c c 11 12 13 14 MDISC MDISC MDISC MDISC MDISC MDISC ĉ 15 16 c c c TOTAL OF SAMPLE SIZES OF K GROUPS COMBINED, T IT = N(1)+N(2)+ +N(X)) Dimension P(100),LG(100) The Following Dimension must be greater than or equal to the Total Data Points which is equal to the product of T+N.. Dimension X(1000) MDISC MDISC MDISC MDISC MDISC MDISC MDISC C C 33 34 35 36 37 11 12 12 FORMAT[7/7/6/H EVALUATION UF CLASSIFICATION FUNCTIONS FUR EACH OBSINDISC IERVATION MORE AND A CLASSIFICATION FUNCTIONS FUR EACH OBSINDISC 13 FORMAT[7/6H GAGUP,13/19X,27HPROBABILITY ASSOCIATED WITH,11X,7HLARGHOISC IEST/13H OBSERVATION,5X,29HLARGEST DISCRIMINANT FUNCTIJN,8X,12HFUNNDISC 2CTION NG.) 14 FORMAT[7/,20X,F8.5,20X,16) NOISC 15 FORMAT[212] NOISC 4012344567890123345678901223456678901273 14 FURMAIL11,200,F0-52,200,103 15 FURMAIT2123 READ12,151MX,AW READ PRUBLEM PARAMETER CARD 100 READ1WY,1)PR,PR,14,K,H,(NI),I=1,K,) PR.....PROBLEM NUMBER (MAY BE ALPHAMERIC) PRI.....PROBLEM NUMBER (CONTINUED) K......NUMBER (JF VARIABLES M......VECTOR (JF GROUPS M......VECTOR (JF GROUPS M......VECTOR (JF GROUPS M......VECTOR (JF LENGTH K CUNTAINING SAMPLE SIZES MRITE (MX,24) PA,PR[,K,H 00 110 I=1,K MRITE (MX,44) I.N(I) WRITE (MX,44) READ DATA L=0 D0 130 I=1,K NI-MK(1) c .MOISC 47 MDISC 57 MDISC 77 MD c 000 ç с DU 120 J=1,N1 DU 120 J=1,N1 READ (MY+5) (CMEAN(IJ),IJ=1,M) LEL+1 N2-L-NI DO 120 IJ=1,M N2-N2-NI XIN23-CMEANIIJ) L=N2 CALL DMATX (K.M.N.X.XBAR.D.CMEAN) PRINT MEANS AND POOLED DISPERSION MATRIX L=0 c L≃0 DO 150 [=1,K DO 140 J=1,M L=L+1 L=L+1 140 CHEAN(J)=XBAR(L) 150 WRITE (M4.6) I.(CHEAN(J),J=L,H) WRITE (M4.7) DO 170 I=1.H L=I-H DO 170 [=1,H L=I-H DO 160 J=1,H L=L+H CHEAN(J)=D(L) WRITE (MX,B] I,(CHEAN(J),J=1,H) CALL HINV (D.H,DET,CMEAN,C) CALL DISCR (K,MN,NX,XBAR,D,CMEAN,V,C,P,LG) PRINT COMMON MEANS WRITE(MX,S) (CMEAN[],I=1,H) PRINT GENERALIZED MAHALANUBIS D-SQUARE WATTE (MX,IQ) V MDISC 85 MDISC 86 MDISC 87 MDISC 88 MDISC 88 MDISC 89 MDISC 90 MDISC 92 MDISC 93 MDISC 93 MDISC 95 MDISC 95 MDISC 97 MDISC 98 MDISC 98 MDISC 98 MDISC 98 с C MOISCIOO MDISCIOI NDISCIO2 N2=N(1) MDISCIDE 1=1.K MDISC104 MDISC105 WRITE (MX+13) I L=0 D0 190 J=N1,N2 L=L+1 190 wRITE (MX,14) L,P{J},LG{J} MDISCIOS MDISCIOS MDISCIOS MDISCIOS 190 WATE (1A,14) C,P(3); 1F(1-K) 20C, 1CC, 1CC 20C N1=N1+N(1) N2=N2+N(1+1) 21C CONTINUE SIDD END MDISCIIO MDISCIII MOISCILL MDISCIIS MUISCI14 MUISCI15 // DUP *STORE WS UA MDISC // XEQ MDISC 01 *LOCALMDISC, DMATX, MINV, DISCR 1 2 SAMPLE040600008000070000700008 10 8 7 8 2 9 3 16 18 16 15 16 15 15 12 24 22 97 23 69 28 28 27 18 828888898 16 5 17 2 7 9 11 10 3 10 10 10 7 5 27 8 2

# 7 9 8 2 19 9 16 7 10 5 8 27 17 17 3 11 9 15 20 10 18 9 4 10 7 9 9 19 4 10 7 9 15 20 8 16 16 16 7 21 6 9 10 5 8 21 6 9 10 5 8 27 16 21 7 6 3 24 24 3 10 8 8 23 8 25 4 12 3 8 23 7 26 9 3 2 8 21 7 27 9 10 26 8 27 16 29 9 10 26 8 26 16 30 7 8 6 9 18 2 31

#### FACTOR ANALYSIS

#### **Problem Description**

A principal component solution and the varimax rotation of the factor matrix are performed. Principal component analysis is used to determine the minimum number of independent dimensions needed to account for most of the variance in the original set of variables. The varimax rotation is used to simplify columns (factors) rather than rows (variables) of the factor matrix.

The sample problem for factor analysis consists of 23 observations with nine variables as presented in Table 8. In order to keep the number of independent dimensions as small as possible, only those eigenvalues (of correlation coefficients) greater than or equal to 1.0 are retained in the analysis.

Table 8. Sample Data for Factor Analysis

Observation	<b>X</b> 1	Xz	X3	X ₄	<b>X</b> 5	X ₆	<b>X</b> ₇	X ₈	X۹
1	7	7	9	7	15	36	60	15	24
1 2 3 4 5 6 7 8 9	13	18	25	15	13	35	61	18	30
3	9 7	18	24	23	12	43	62	14	31
4	7	13	25	36	11	12	63	26	32
5	6	8	20	7	15	46	18	28	15
6	10	12	30	11	10	42	27	12	17
7	7	6	11	7	15	35	60	20	25
8	16	19	25	16	13	30	64	20	30
9	9	22	26	24	13	40	66	15	32
10	8	15	26	30	13	10	66	25	34
11	8 8	10	20	8	17	40	20	30	18
12	9	12	28	11	8	45	30	15	19
13	11	17	21	30	10	45	60	17	30
14	9	16	26	27	14	31	59	19	17
15	10	15	24	18	12	29	48	18	26
16	11	11	30	19	19	26	57	20	30
17	16	9	16	20	18	31	60	21	17
18	9	8	19	14	16	33	67	9	19
19	7	18	22	9	15	37	62	11	20
20	7 8	11	23	18	9	36	61	22	24
21	6	6	27	23	7	40	55	24	31
22	10	9	26	26	10	37	57	27	29
23	8	10	26	15	11	42	59	20	28

#### Program

#### Description

The factor analysis sample program consists of a main routine, FACTO, and six subroutines:

CORRE	
EIGEN	are from the Scientific Subroutine
TRACE	Package
LOAD	
varmx /	
DATA	is a special input subroutine

# Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

- 1. Up to 29 variables
  - 2. Up to 99,999 observations
  - 3. (12F6.0) format for input data cards

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than 30 variables, dimension statements in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format statement in the input subroutine, DATA, must be modified. The general rules for program modification are described later.

# Input

# I/O Specification Card

One control card is required for each problem and is read by the main program, FACTO. This card is prepared as follows:

Columns	Contents	For Sample Problem
1 - 6	Problem number (may be alphameric)	SAMPLE
7 - 11	Number of observations	00023
12 - 13	Number of variables	09
14 - 19	Value used to limit the number of eigenvalues of	0001.0

Columns	Contents	For Sample Problem
14 - 19 (conț)	correlation coefficients. Only those eigenvalues greater than or equal to this value are retained in the analysis. (A decimal point must be specified.)	

Leading zeros are not required to be keypunched, but numbers must be right-justified in fields.

# Data Cards

Since input data are read into the computer one observation at a time, each row of data in Table 8 is keypunched on a separate card using the format (12F6.0). This format assumes twelve 6-column fields per card.

If there are more than twelve variables in a problem, each row of data is continued on the second and third cards until the last data point is keypunched. However, each row of data must begin on a new card.

å

٥

â

# Deck Setup

Deck setup is shown in Figure 22.



Figure 22. Deck setup (factor analysis)

# Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

#### Output

#### Description

The output of the sample program for factor analysis includes:

- 1. Means
- 2. Standard deviations
- 3. Correlation coefficients
- 4. Eigenvalues
- 5. Cumulative percentage of eigenvalues
- 6. Eigenvectors
- 7. Factor matrix
- 8. Variance of the factor matrix for each iteration cycle
  - 9. Rotated factor matrix
  - 10. Check on communalities

#### Sample

The output listing for the sample problem is shown in Figure 23.

# **Program Modification**

Noting that storage problems may result, as previously described in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, FACTO:

- a. The dimension of arrays B, D, S, T, and XBAR must be greater than or equal to the number of variables, m. Since there are nine variables in the sample problem the value of m is 9.
- b. The dimension of array V must be greater than or equal to the product of m times m. For the sample problem this product is  $81 = 9 \times 9$ .
- c. The dimension of array R must be greater than  $\frac{(m+1)m}{2}$

FACTOR AMALYS NO. OF CASE NO. DF VAR	ISSAMPI S 23 ARLES 9	.ε							
PEA45 9+3043 29+1304	4 12.0 3	50869	23.00000	18.00044	12.0695	6 34.1	2008	54.00000	14.341
STANDARD DEVI 2+7041 6+0924			5.13627	5.33393	3+1378	o 9.;	[9] • 4	14.87520	2+3650
CORPELATION C	OFFICIENTS								
ROW 1 1.00000	C.34986	0,11974	0.1210	0.21917	-0.09548	0.20901	-0.12905	0.05817	
PDV 2 0.34986	1.00000	0.41311	0.3557	z -0+08242	-0.09100	0.29672	-0.320+4	U.J\$307	
ROW 3 0.11974	01311	140000	0.4151	2 -0++3178	-0.08345	-0+10291	0.03215	0.27832	
40¥ * 0.12101	0.35572	0.41512	1.0000	-0.31267	-0.50364	0.49855	0.22539	0.54840	
ROW 5 0.21917	-0.01242	-0-43178	-0.3126	7 1.00000	-0.22999	0.03310	-9.00+75	-0.10361	
POW 6 -0.09548	-0.04100	-0.68345	-0.5036	-0.22999	1.00000	-0+++520	-0,254+0	-4.37656	
90% 7 D.20901	0.29622	-0.10251	0.4985	0.03310	-0.44520	1.00000	-0.28049	0.00113	
ROM 8 -0415405	-0+32044	0.03215	0.2253	9 -0.00475	-0.25440	-0.28049	1.00000	0.13515	
ROW 0 0+23817	0.35387	0.27632	0.59894	-0.30341	-0.37456	0.02123	9.13515	1.00000	
EIGENVALUES 2.94988									
2.94988 CUMULATIVE PE 0.32776	1+64370 ACENTAGE OF	1+55516 EIGENVALUES							
	0.51039	0.68319	0.80161						
EIGENVECTORS									
VECTOR 1 0+16+37	0.34835	0-28797	5.49660	-	-0.32921	0.34432	0.01287	0.47518	
VECTOR 2 0.3+836	0.08351	-0.44840	-0.1189)		~0.26427	0.38659	-0.24844	-0,05013	
VECTOR 3 -0.29899	-0-48825	-0.23533	0,17377	0,14467	-0.43545	0.01680	0.61587	U+12470	
VECTOR & 0.54440	0.16404	0.38285	0.04162	0.30536	-0.16163	-0.43410	0.40283	-0.23788	
FACTOR MATRIE	6 * FACTOR	\$1							
VARIABLE 1 0.24231	0.44663	-0.37286	0.56203						
VARIAGLE 2 0.59830	0+08394	-0.58393	0.17456						
VARIABLE 3 0.+9+59	-0.57240	-0.29347	0.39528						
VARJAGLE L 0.85243	-0.15248	0.21679	0.04297						
VAR [ABLE 5 -0+28865	0.78475	0.18042	0.31525						
-0.565-3	-0.33662	-0.94303	-0.10686						
VARIAGLE 7 N.68589	0.49821	0.02344	-0.44816						
0.02211	-0-31852	0.76402	0.41587						
0.01613	-0.07710	0.15550	-0.24359						
TERATION	VARJANCES								
1	0.211284 0.336136 0.397020								
;	0.405175								
9 9 10	G.2112# G.336136 G.397020 G.405107 G.405527 G.405587 G.405587 G.405587 G.405587 G.405587								
10 11 12	0.405587								
OTATED FACTOR	MATRIX I .	FACTORSI							
6.03497	0.07183	-0.05578	0.85017						
0.29324	-0.39652	-0.35580	0.60349						
ARIABLE 3 0.05113	-0.82493	0.19068	0,32984						
0.74040	-0.41401	0+24579	0,13971						
-0.09090	0.80662	0.13524	0.39228						
-0.68285	-0.21579	-3.44983	-0.20502						
4814RLE 7 0.86495	0.18299	-0.34918	0.04830						
ARIABLE A N+03602	-2.05499	3.91375	-0.19982		•				
		0.00993	-0.02374						
HECK ON COMMUN	ALITIES CRIGINAL 0.73640 0.73640 0.33645 0.39656 0.79656 0.79725 0.42006 0.85476 0.75651	F 14 0.73 0.73 0.79 0.87 0.87 0.79 0.92 0.92 0.92 0.92	AL	DIFFERENCE 0.00000 0.00000 0.00000 0.00001 0.00001 0.00001 0.00001					
2	0.73648	0.73	647 463	0.00000					
5 6 7 8	0.83109	n. •	108	0.00000					

Figure 23. Output listing

For the sample problem, this number is  $45 = \frac{(9+1)9}{2}$ 

2. Changes in the input format statement of the special input subroutine, DATA:

- a. Only the format statement for input data may be changed. Since sample data are either one- or two-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in two-column fields, and, if so, the format is changed to (9F2.0). This format assumes nine 2column fields per card, beginning in column 1.
- b. The special input subroutine, DATA, is normally written by the user to handle different formats for different problems. The user may modify this subroutine to perform testing of input data, transformation of data, and so on.

# **Operating Instructions**

The sample program for factor analysis is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

# Error Messages

If the number of factors to be rotated is one or zero, the following message will be printed:

ONLY____FACTOR RETAINED, NO ROTATION.

The program skips rotation and goes to the next problem if it is present.

Sample Main Program for Factor Analysis - FACTO

#### Purpose:

(1) Read the problem parameter card, (2) Call five subroutines to perform a principal component solution and the varimax rotation of a factor matrix, and (3) Print the results.

# Remarks:

I/O specifications transmitted to subroutines by COMMON.

Input card:

Column 2 MX - Logical unit number for output.

Column 4 MY - Logical unit number for input.

Subroutines and function subprograms required: (which, in turn, calls the subroutine named DATA.)

CORRE EIGEN TRACE LOAD VARMX

#### Method:

.....

Refer to "BMD Computer Programs Manual", edited by W. J. Dixon, UCLA, 1964.

ę

// FOR *IOCS(CARD,TYPEWRITER,1132 PRINTER)	
*DNE WORD INTEGERS C SAMPLE MAIN PROGRAM FOR FACTOR ANALYSIS - FACTO C THE FOLLOWING DIMENSIONS WIGT BE GREATER THAN OR SOLIDE TO	FACTO 1
	THE FACTO 2
C NUMBER OF VARIABLES+ M++ DIMENSION B(29)+D(29)+S(29)+T(25)+XBAR(29)	FACTO 3 FACTOMOL
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO	THE FACTO 5
C PRODUCT OF M#M DIMENSION V(841)	FACTO 6 FACTOMOZ
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO	FACTU 8
C (M+1)+M/2 DIMENSION R(435)	FACTU 9 FACTOMO3
C THE FOLLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO	51 FACTO 11
DIMENSION TV(51) Common MX+MY	FACTO 12 FACTO 13
1 FORMATI////21H FACTOR ANALYSISA4.A2//3X.12HNO. OF CASES	94X. FACTO 14
116/3X+16HNO+ OF VARIABLES+16/1 2 FORMAT(//6H MEAN5/(8F15+51)	FACTO 15 FACTO 16
3 FORMAT(//20H STANDARD DEVIATIONS/(8F15+5F)	FACTO 17
4 FORMAT(//25H CORRELATION COEFFICIENTS) 5 FORMAT(//4H ROW+13/(10F12+51)	FACTO 18 Facto 19
6 FORMAT(///12H EIGENVALUES/(10F12+5))	FACTO 20
7 FORMATI//37H CUMULATIVE PERCENTAGE OF EIGENVALUES/(10F12.5)) 8 FORMATI///13H EIGENVECTOR5)	FACTO 21 Facto 22
B FORMATI///SJBEIOGNIL/(OF125)) 10 FORMATI///HUFGTOGNI/ATRIX (.13,9H FACTORS)) 11 FORMATI//HUMIABLE, SJ/10F12.5) 11 FORMATI//HUMIABLE, SJ/10F12.5)	FACTO 23
IC FORMAT(///IGH FACTOR MATRIX (+I3,9H FACTORS)) 11 FORMAT(//9H VARIABLE+I3/110F12.5))	FACTO 24 Factu 25
12 FURMAIL/// LUB LIERATION, IN, SHVARIANCES/ BH CICLE/	FACTO 26
13 FORMAT(16,F20,6) 14 FORMAT(///24H RUTATED FACTOR MATRIX (,13,9H FACTORS))	FACTO 27 Facto 28
15 FORMAT(//9H VARIABLE,[3/(10F12.5)] 16 FORMAT(///23H CHECK ON COMMUNALITIES//9H VARIABLE,7X,8HORIGI	FACTU 29
16 FORMAT(///23H CHECK ON COMMUNALITIES//9H VARIABLE,/X,8HURIGI 112X,5HFINAL,10X,10HDIFFERENCE)	NAL, FACTO 30 Facto 31
17 FURMAT(10,3F18.5)	FACTO 32
18 FURMAT(A4,A2,13,12,F6.0) 19 Format(//5h unly,12,30h factor retained, no rotation }	FACTG 33 Facto 34
20 FORMAT(212)	FACIO 35
RÉADI2,201MX,MY C READ PROBLEM PARAMETER CARD	FACTO 36 Facto 37
100 READ (MY+18)PR+PR1+N+M+CON	FACTO 38
C PRPROBLEM NUMBER (MAY BE ALPHAMERIC) C PRIPROBLEM NUMBER (CONTINUED)	FACTO 39 Facto 40
C NNUMBER UF CASES C MNUMBER OF VARIABLES	FACTO 41
C MNUMBER OF VARIABLES C CUNCUNSTANT USED TO DECIDE HOW MANY EIGENVALUES	FACTO 42 Facto 43
C TO RETAIN	FACTO 44
WRITE [MX,1}PR,PR1+N,M [D=0	FACTO 45 Facto 46
X=0.0	FACTO 47
CALL CORRE (N,M,10,X,XBAR,S,V,R,D,d,T) C PRINT MEANS	FACTU 48 Factu 49
WKITE (MX,2)(XBAx(J),J=1,M)	FACTU 50
C PRINT STANDARD DEVIATIONS WRITE (MX,3)(S(J),J=1,M)	FACTO 51 FACTO 52
C PRINT CORRELATION COEFFICIENTS	FACTO 53
HRITE (MX,4) DD 120 1=1,M	FACTO 54 Facto 55
00 110 J=1,M IF(1−J) 102, 104, 104	FACTO 56
1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	FACTO 57 Facto 58
GO TO 110 104 L=J+(I+I-I)/2	FACTO 59
104 L=J+(1+1-1)/2 110 D(J)=R(L)	FACTO 60 FACTO 61
120 WRITE (MX,5)1,[J(J),J=1,M)	FACTU 62
MV=0 Call Eigen (r,v,m,mv)	FACTO 63 Facto 64
CALL TRACE (M,R,CON,K,D)	FACTO 65
C PRINT EIGENVALUES DO 130 I=1+K	FACTO 66 Facto 67
L=1+(1+1-1)/2 130 S(1)=R(L)	FACTJ 65
WRITE (MX,6)(S(J),J=1,K)	FACTO 69 Facto 70
	FACTU 71
WRITE (MX,7)IOL),J=1,K) C PRINT EIGENVECTURS	FACTO 72 Facto 73
WRITE (MX.8) L=O	FACTO 74
C-U DO 150 J=1,K DO 140 I=1,M	FACTO 75 Facto 76
DO 140 I=1.M L=L+1	FALTO 77 FACTO 78
14C D(I)=V(L)	FACTU 79
150 WRITE (MX,9)J,(D(I),I=1+M) CALL LOAD (M.K.R.V)	FACTO 80 Facto 81
C PRINT FACTOR MATRIX	FACTU 82
WRITE (MX,10)K DO 180 [=1,M	FACTO 83
DO 170 J=1,K L=M#(J-1)+1	FACTO 84 Facto 85
L = M ≠ ( J − 1) + 1 170 D ( J = V( L)	FACTU 86
190 MKILE (WX*TT)1*TD(7]*T=T*K]	FACTO 87 Facto 88
IF(K-1) 185, 185, 188 185 WRITE (MX.19)K	FACTU 89 Facto 90
60 TO 100	FACTO 91
188 CALL VARMX (M.K.V.NC.TV.B.T.D)	FACTO 92

190 WATTE [MA, 13) MC, TV(1)       FACTU 98         C       PRINT ROTAEU FACTUR MATRIX       FACTU 90         00 220 1=1+K       FACTU 100         00 220 1=1+K       FACTU 102         100 WATTE (MA, 14)K       FACTU 100         00 220 1=1+K       FACTU 102         100 WATTE (MA, 14)K       FACTU 102         111 FE (MA, 15)1 (S(J), J=1, K)       FACTU 102         210 SIJ = V(L)       FACTU 103         210 SIJ = V(L)       FACTU 104         210 SIJ = V(L)       FACTU 11, P(I), P(I), P(I)         210 SIJ = V(L)       FACTU 104         220 MAITE (MA, 13) (ACTU 1, P(I), P(I), P(I), P(I), P(I), P(I)       FACTU 104         210 SIJ = V(L)       FACTU 104         211 F       MS AFACTU 11, P(I), P(I	H D	V=NC+1 RITE (M 0 190 [ C=I-1								FACTO 94 Facto 95 Facto 96 Facto 97
HR11E       HA11A       FACTD101         D0       210       210       FACTD102         D0       210       210       FACTD102         D0       210       510       FACTD102         L=MR(J-1)+1       FACTD103         220       MR11E(MX,13)1,(S(J),J=1,K)       FACTD103         210       MR11E(MX,13)1,(S(J),J=1,K)       FACTD105         220       MR11E(MX,13)1,(S(J),J=1,K)       FACTD105         210       MR11E(MX,17)1,6(1),T(1),0(1)       FACTD107         D0       230       FACTD         // DUP       FACTD100       FACTD107         *STGRE       MS <ua< td="">       FACTD         // AEQ FACTD       OI       FACTD104         // AEQ FACTD       OI       FACTD107         *STGRE       MS<ua< td="">       FACTD         // AEQ FACTD       OI       FACTD107         // AMPLE00023090001.0       2       1         7       7       7       7         7       7       7       1         SAMPLE00023090001.0       2       1       2         7       7       7       7       5         7       18       25       11       10</ua<></ua<>	190 W	RITE IN PRINT	TATON 1	EU FAC	J TUR MA	TRIX				FACTU 99
L_mA(-1)+1 FACUU13 210 SL)=V(L) FACUU13 220 MRITE(MX,15)+(S(J),J=1,K) FACUU13 C PKINT C_MMUAL IT IES FACUU13 0 RITE(MX,15) (S(J),J=1,K) FACUU13 230 MRITE(MX,15) (S(J),J=1,K) FACUU13 230 MRITE(MX,15) (S(J),J=1,K) FACUU13 C D L00 FACUU13 C D L00 FACUU13 END FACUU13 * SAMPLE00023090001+0 FACUU * STORE WS UA FACTO // DUP STORE FLGEN,TRACE+LOAD,VARMX 1 2 SAMPLE00023090001+0 2 * 13 18 25 15 13 35 61 18 30 4 9 18 24 23 12 43 62 14 31 5 7 19 25 16 13 30 64 20 30 4 9 10 12 55 16 13 30 64 20 30 4 1 1 1 2 55 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 16 13 30 64 20 30 10 9 12 25 11 8 45 30 15 19 14 11 17 21 30 10 45 60 17 30 15 10 15 24 18 12 29 48 18 26 11 10 15 24 18 12 29 48 18 26 11 11 13 019 19 26 57 20 30 18 11 10 15 24 18 12 29 48 18 26 17 11 11 30 19 19 26 57 20 30 18 16 9 16 20 18 31 60 21 17 19 9 19 20 7 18 22 9 15 37 62 11 20 21 8 11 25 18 9 36 61 22 24 22 6 6 27 23 7 40 55 24 31 22 24 22 6 6 27 23 7 40 55 24 31 22 25 26 26 26 10 37 75 27 29 24 26 26 27 23 7 40 55 24 31 23 27 29 24	ن ن	0 220 1	= L , M	6						FACTD101
210       SLJ **(C)       FACTUI05         220       RAITE (MX,13)1,(SLJ),J=1,K)       FACTUI05         220       RAITE (MX,13)1,(SLJ),J=1,K)       FACTUI05         0       PALNT CJMMJNALITIES       FACTUI07         00       230       FALTOI06         00       230       FALTOI07         230       RAITE (MX,17)1,6(1),T(1),0(1)       FACTUI09         GO TO LOO       FACTOI07         END       FACTOI07         *STORE       MS UA FACTO         // ACQ FACTO       01         *LOCALFACTD, COMRE, ELGEN, TRACE, LOAD, VARMX         12       SAMPLEO0023090001.0         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7 <t< th=""><th>Ĺ</th><th>=M*(J-)</th><th>[]+I</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Ĺ	=M*(J-)	[]+I							
c       PARTNI COMMUNALTIES       FACT0107         wRITE (MX,17)1,6(1),T(1),0(1)       FACT0103         D0 230 [1-1,M]       FACT0107         230 RRITE (MX,17)1,6(1),T(1),0(1)       FACT0107         G0 T0 100       FACT0107         END       FACT0107         *STORE       MS UA FACT0         // DUP       *         *LOCALFACTD, CORRE, EIGEN, TRACE, LOAD, VARMX         1       2         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7       7         7		RITEIN	(,13)1,			1				FACTU105
DD 230 [1-1, W 230 [K] [E (K, I], J[], J[], T[], D[]) GO TO 100 END FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FACTUIO FAC				INAL IT I	165					FACTD107
12         FACTOILO           ENO         FACTO           YOUP         WS UA FACTO           YOUP         WS UA FACTO           *IDCALFACTO, CDURE, -LIGEN, TRACE, LOAD, VARMX           1         2           SAMPLEC0023090001.0         1           7         9           1         2           SAMPLEC0023090001.0         1           7         9           1         2           6         20           1         12           6         20           7         15           7         15           7         15           8         24           10         12           11         7           12         5           13         15           14         10           15         11           16         19           17         11           18         15           19         12           10         12           11         17           13         10           14         13           15	D	0 230 1	l=1,M							
<pre>// DUP *STORE NS UA FACTD // XEQ FACTO 01 *LOCALPACTD COWRE.EIGEN.TRACE.LOAD.VARMX 1 2 SAMPLEC00023090001.0 7 7 9 7 15 36 00 15 24 3 1 8 25 15 13 35 61 18 30 4 9 18 24 23 12 43 62 14 31 5 7 13 25 36 11 12 63 26 32 6 6 8 20 7 15 46 18 28 15 7 10 12 30 11 10 42 27 12 17 8 7 6 11 7 15 35 60 20 25 9 16 19 25 16 13 30 64 20 30 10 9 22 26 24 13 40 66 15 32 11 8 10 20 8 17 40 20 30 18 13 9 12 28 11 8 45 30 15 19 14 11 17 21 30 10 45 60 17 30 15 9 16 20 8 17 40 20 30 18 11 17 21 30 10 45 60 17 30 15 9 16 20 7 18 12 29 48 18 26 17 11 11 30 19 19 26 57 20 30 18 16 9 16 20 18 31 60 21 17 19 9 6 19 22 48 18 12 29 48 18 26 17 11 11 30 19 19 26 57 20 30 18 16 9 16 20 18 31 60 21 17 19 9 8 19 14 16 33 67 9 19 20 7 18 22 9 15 37 62 11 20 21 8 11 25 18 9 36 61 22 24 22 6 6 27 23 7 40 55 24 31 22 10 9 26 26 10 37 57 27 29 24</pre>				,8(1)		,,,,,				FACTOL10
STORE         NS         UA         FACTO           // XEQ FACTO         1           *LOCALFACTU, CONRE, EIGEN, TRACE, LOAD, VARMX           12           SAMPLE00023090001*0           7         7           13         18           24         23           7         15           36         11           13         18           25         15           7         15           6         20           7         15           6         20           7         15           7         15           7         15           7         16           10         12           20         7           11         10           12         25           13         16           14         10           15         16           16         17           17         15           18         13           19         12           10         12           13         16           14         11     <		ND								FACTOIII
LOCALFACTO, COMRE, EIGEN, TRACE, LOAD, VARMX  1 2 SAMPLE00023090001.0 7 7 9 7 15 36 60 15 24 3 13 18 25 15 13 35 61 18 30 4 9 18 24 23 12 43 62 14 31 5 6 8 20 7 15 46 18 28 15 7 10 12 30 11 10 42 27 12 17 8 7 6 11 7 13 35 60 20 25 9 16 19 25 16 13 30 64 20 30 10 9 22 26 24 13 40 66 15 32 11 8 15 26 30 13 10 66 25 34 12 8 10 20 R 17 40 20 30 15 19 14 11 17 21 30 10 45 60 17 30 15 9 16 26 11 8 45 30 15 19 14 11 17 21 30 10 45 60 17 30 15 9 16 26 11 8 45 30 15 19 14 11 17 21 30 10 45 60 17 30 15 9 16 26 17 30 15 9 16 20 R 17 40 20 30 18 13 9 12 28 11 8 45 30 15 19 14 11 17 21 30 10 45 60 17 30 15 9 16 26 27 14 31 29 48 18 26 17 11 11 30 19 19 26 457 20 30 18 16 9 16 20 18 31 60 21 17 19 9 8 19 14 16 33 67 9 19 20 7 18 22 9 15 37 62 11 20 21 8 11 23 18 9 36 61 22 24 22 6 6 27 23 7 40 55 24 31 23	<b>#STORE</b>			FACTO						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+LOCALF	FACTU ACTU,CC		GEN, TF	ACE,LO	DAD,VAR	R MX			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0023090	0001.0							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	7	9							
6       8       20       7       15       46       18       28       15       7         10       12       30       11       10       42       21       17       8         7       6       11       7       15       35       60       20       25       9         16       19       25       16       13       30       64       20       30       10         9       22       26       24       13       40       66       15       32       11         8       10       20       8       17       40       20       30       18       13         9       12       28       11       8       45       30       15       19       14         11       17       21       30       10       45       60       17       30       15         9       16       26       27       14       31       59       19       17       16         10       15       24       18       12       29       48       18       26       17       17         11       13       30<	9	18	24	23	12	43	62	14	31	5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	19	25	16	13	30	64	20	30	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6		20							
	11	17	21	30	10	45	60	17	30	15
1         1         30         19         19         26         57         20         30         18           16         9         16         20         18         31         60         21         17         19           9         8         19         14         16         33         67         9         19         20           7         18         22         9         15         37         62         11         20         21           8         11         23         18         9         36         61         22         24         22           6         6         27         23         7         40         55         24         31         23           10         9         26         26         10         37         57         27         29         24										
\$\begin{aligned} \$\becin{alimimalimimaligned} \\\begin{aligned} \$\begin{aligned} \$\bec		11								
8 11 23 18 9 36 61 22 24 22 6 6 27 23 7 40 55 24 31 23 10 9 26 26 10 37 57 27 29 24	9	8	19	14	16	33	67	9	19	ZO
6 6 27 23 7 40 55 24 31 23 10 9 26 26 10 37 57 27 29 24							62 61			
	6	6	27	23	7	40	55	24	31	23
	5	AMPLE	INPUT :	SUBROU	TINE -	DATA				
SAMPLE INPUT SUBROUTINE - DATA	F									
PURPOSE										
PURPOSE Read an Ubservation (N Data Values) from Input Device.		8E PI	ROVIDE	D BY T	KE USE	R. IF	SIZE	ÁND LO	CATION OF DA	ATA
PURPOSE Read an Ubservation (n data values) from input device. This subrouting is called by the subrouting corre and must be provided by the user. If size and location of data		ROUT	US ARE INE AU	DIFFE ST BE	RECOMP	KUR PR ILED W	ITH A	PROPER	FORMAT STA	SUB- TEMENT.
PURPOSE READ AM UBSERVATION (N DATA VALUES) FROM INPUT DEVICE. This subroutine is called by the subroutine corre and must	1	SAGE								
PURPOSE READ AM UBSERVATION (N DATA VALUES) FROM INPUT DEVICE. This subroutine is called by the subroutine corre and must be provided by the USER. If size and location of data fields are different from Problem to Problem, this sub- routine must be recompiled with a proper Format Statement.			DATA	(M,D)						
PURPOSE READ AM UBSERVATION (N DATA VALUES) FROM INPUT DEVICE. This subroutine is called by the subroutine corre and must be provided by the USER. If size and location of data fields are different from problem to prodlem, this sub-	C									
PURPOSE READ AM UBSERVATION (N DATA VALUES) FROM INPUT DEVICE. THIS SUBROUTINE IS CALLED BY THE SUBROUTINE CORRE AND MUST BE PROVIDED BY THE USER. IF SIZE AND LOCATION OF DATA FIELDS ARE DIFFERENT FROM PROBLEM TO PROBLEM, THIS SUG- ROUTINE AUST BE RECOMPILED WITH A PROPER FORMAT STATEMENT. USAGE CALL DATA (N,D) DESCRIPTION OF PARAMETERS										ATION
PURPOSE READ AN UBSERVATION (N DATA VALUES) FROM INPUT DEVICE. This subrouting is called by the subroutine corre and must be provided by the user. If size and location of data fields are different from problem to problem, this sub- routine must be recompiled with a proper format statement. USAGE Call data (N,D) Description of parameters N - The Nubber of Variables in an Observation.									114E 0032KV	
PURPOSE READ AM UBSERVATION (N DATA VALUES) FROM INPUT DEVICE. THIS SUBROUTINE IS CALLED BY THE SUBROUTINE CORRE AND MUST BE PROVIDED BY THE USER. IF SIZE AND LOCATION OF DATA FIELDS ARE DIFFERENT FROM PROBLEM TO PROBLEM, THIS SUG- ROUTINE MUST BE RECOMPILED WITH A PROPER FORMAT STATEMENT. USAGE CALL DATA (N,D) DESCRIPTION OF PARAMETERS										

THE TYPE OF CONVERSION SPECIFIED IN THE FORMAT MUST BE Either F or E.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

	SUBROUTINE DATA (4,9)	DATA	1
	DIMENSION D(1)	DATA:	2
	COMMON MX, MY	DATA	3
	1 FORMAT(12F6.0)	DATA	4
:	READ AN OBSERVATION FROM INPUT DEVICE.	DATAC	5
	READ (MY,1) (D(1),1=1,M)	DATA	6
	RETURN	OATA	7
	END	9474	۹

# TRIPLE EXPONENTIAL SMOOTHING

# Problem Description

Given a time series X, a smoothing constant, and three coefficients of the prediction equation, this sample program finds the triple exponentially smoothed series S of the time series X.

# Program

# Description

The sample program for triple exponential smoothing consists of a main routine, EXPON, and one subroutine, EXSMO, from the Scientific Subroutine Package.

# Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

- 1. Up to 1000 data points in a given time series
- 2. (12F6.0) format for input data cards

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than 1000 data points, the dimension statement in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format in the sample main program must be modified. The general rules for program modification are described later.

# Input

# I/O Specification Card

One control card is required for each problem and is read by the main program, EXPON. This card is prepared as follows:

Columns	Contents	For Sample Problem
1 - 6	Problem number (may be alphameric)	SAMPLE
7 - 10	Number of data points in a given time series	0038
11 - 15	Smoothing constant, (0.0 < $\alpha$ < 1.0)	0.1
16 - 25	First coefficient (A) of the prediction equation	0.0
26 - 35	Second coefficient (B) of the prediction equation	0.0
36-45	Third coefficient (C) of the prediction equation	0.0

Leading zeros are not required to be keypunched, but numbers must be right-justified in fields.

# Data Cards

Time series data are keypunched using the format (12F6.0). This format assumes that each data point is keypunched in a six-column field and twelve fields per card.

# Deck Setup

Deck setup is shown in Figure 24.

# Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

# Output

# Description

The output of the sample program for triple exponential smoothing includes:

1. Original and updated coefficients

2. Time series as input and triple exponentially smoothed time series.

# Sample

The output listing for the sample problem is shown in Figure 25.

# **Program Modification**

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes in the dimension statement. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statement of the main program, EXPON:

The dimension of arrays X and S must be greater than or equal to the number of data points in time series, NX. Since there are 38 data points in the sample problem, the value of NX is 38. Q

2. Changes in the input format statement of the main program, EXPON:

Only the format statement for input data may be changed. Since sample data are three-digit numbers, rather than using six-column fields as in the sample program, each data point may be keypunched in a three-column field and 24 fields per card. If so, the format is changed to (24F3.0).



Figure 24. Deck setup (triple exponential smoothing)

# TRIPLE EXPONENTIAL SMOOTHING.....SAMPLE NUMBER OF DATA POINTS 38 SMOOTHING CONSTANT 0.100

)

3

TØ

COEFFICIENTS	A	в	c
	0.00000	0.00000	0.00000
ORIGINAL	0.00000	0.00000	0.00000
UPDATED	484.80169	1.7127B	0.04165
	640	OTHED DATA	
INPUT DATA		FORECAST)	
430.00006		430.00006	
426:00006		426.00006	
422.00006		422.00006	
419.00006		418.00006	
414.00006		414.29998	
413.00006 412.00006		410-23993 407-08990	
409.00006		404.66839	
411.00006		402.22406	
417.00006		401.25134	
422.00006		402+64642	
430.00006		405.61694	
438.00006 441.00006		410.71417 417.47027	
447.000006		423.99908	
455.00006		431.18335	
461.00006		439.43420	
453.00006		447.87902	
448.00006		452.21600 454.10571	
449.00006		454.10571	
463.00006		458.54632	
470.00006		463.30535	
472.00006		469.06439	
476.00006		474.09521	
481.00006		479.11016	
483.00006 487.00006		484•38598 488•94592	
491.00006		493.50836	
492.00006		498.05432	
485.00006		501+66992	
486.00006		502.12536	
482.00006 479.00006		502.44427 501.16723	
479.00000		501-10/25	
479.00006		498.92730	
476.00006		496.84124	
472.00006		494.00787	
470.00006		490.30413	

Figure 25. Output listing

# **Operating Instructions**

The sample program for triple exponential smoothing is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

# Sample Main Program for Triple Exponential Smoothing - EXPON

Purpose:

(1) Read the problem parameter card and a time series, (2) Call the subroutine EXSMO to smooth the time series, and (3) Print the result.

#### Remarks:

A smoothing constant specified in the problem parameter card must be greater than zero but less than one in order to obtain reasonable results.

I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required: EXSMO.

#### Method:

Refer to R. G. Brown, "Smoothing, Forecasting and Prediction of Discrete Time Series", Prentice-Hall, N. J., 1963, pp. 140 to 144.

// FOR #IOCSICARD, TYPEWRITER, 1132 PRINTER)

*ONE	WORD INTEGERS		
C	SAMPLE MAIN PROGRAM FOR TRIPLE EXPLNENTIAL SMOOTHING - EXPON	EXPUN	1
ċ	THE FULLOWING DIMENSION MUST BE GREATER THAN OR EQUAL TO THE	EXPON	
c	NUMBER OF DATA POINTS IN A GIVEN TIME SERIES.	EXPON	
	DIMENSION X(1000),S(1000)	EXPON	
	FORMAT( 44, 42, I4, F5.0, 3F10.0)	EXPON	5
	+ 60RMAT(12F6.0)	EXPON	6
3	FORMAT(////34H TRIPLE EXPONENTIAL SMOOTHING,A4,A2//22H NUMBER	EXPON	7
	1 OF DATA PGINTS, 16/19H SMOOTHING CONSTANT, F9.3/1	EXPON	8
4	FORMAT(//13H COEFFICIENTS,9X,1HA,14X,1HB,14X,1HC)	EXPON	9
5	FORMAT(//9H GRIGINAL, F19.5, 2F15.5)	EXPON	10
0	FORMAT(//8H UPDATED,F20.5,2F15 .5/)	EXPON	11
7	FORMATI//27X.13HSMOOTHED DATA/7X,10HINPUT DATA.12X.10H(FORECAST))	EXPON	12
	FORMAT(F17.5,8X,F15.5)	EXPON	13
9	FORMAT(212)	EXPON	14
	READ(2,9)MX,MY	E XPON	15
C	READ PROBLEM PARAMETER CARD	EXPON	16
	READ (MY,1) PK,PR1,NX,AL,A,B,C	EXPON	17
<u> </u>	PRPRUBLEM NUNBER IMAY BE ALPHAMERICI	EXPON	18
	PRIPROBLEM NUMBER (CONTINUED)	EXPON	19
	NXNUMBER OF DATA POINTS IN TIME SERIES	EXPON	
	ALSHOUTHING CONSTANT	EXPON	
<b>.</b>	A.S.CCOEFFICIENTS OF THE PREDICTION EQUATION	EXPON	
c	WRITE (MX,3) PR, PRI, NX, AL	EXPON	
-	PRINT URIGINAL COEFFICIENTS	EXPON	
	WRITE (MX,4)	EXPON	
	WRITE (MX,5) A,8,C	EXPON	26
2	READ TIME SERIES DATA	EXPON.	27
	READ (MY,2) (X[]),[=1,NX)	EXPON	
-	CALL EXSMD (X,NX,AL,A,B,C,S)	EXPON	
5	PRINT UPDATED COEFFICIENTS	EXPON	
2	WRITE (MX,6) A,B,C	EXPON	
•	PRINT INPUT AND SHOOTHED DATA	EXPON	
	WRITE (MX,7)	EXPON	
20.0	DO 200 I=1,NX	EXPON	
200		EXPON	
	END	EXPUN	
// DU		EXPON	37
#STOR			
	E WS VA EXPON Q EXPON		
,, ve	a cafun		

SAMPLE	36 0	•1	0.0		0.0	0	•0					2
430 438 476 472	426 441 481 470	422 447 483	419 455 487	414 461 491	413 453 492		449	411 454 482	463	422 470 479	430 472 476	3

# MATRIX ADDITION

# **Problem Description**

An input matrix is added to another input matrix to form a resultant matrix. Each set of input matrices and the corresponding output matrix is printed. The procedure is repeated until all sets of input matrices have been processed.

# Program

# Description

The matrix addition sample program consists of a main routine, ADSAM, and four subroutines:

MADD	Ì	are from the Scientific				
LOC	5	Subroutine Package				
MATIN	2	are sample subroutines				
MXOUT	\$	for matrix input and output				

# Capacity

Matrix size has arbitrarily been set at 650 data elements. Therefore, if a problem satisfies the above condition, no modification in the sample program is necessary. However, if there are more than 650 elements, the dimension statement in the sample main program must be modified to handle this particular problem. The general rules for program modification are described later.

#### Input

# I/O Specification Card

Each input matrix must be preceded by a control card with the following format:

		For
		Sample
Columns	Contents	Problem
1 - 2	Blank	
3 - 6	Up to four-digit identifi- cation code	0001
7 - 10	Number of rows in matrix	0008
11 <b>-</b> 14	Number of columns in matrix	0011
15 - 16	Storage mode of matrix 0 for general matrix 1 for symmetric matrix 2 for diagonal matrix	0

Each input matrix must be followed by a card with a 9-punch in column 1.

#### Data Cards

Data cards are assumed to have seven fields of ten columns each. The decimal point may appear anywhere in a field, or may be omitted; however, all numbers must be right-justified. The number in each field may be preceded by blanks. Data elements must be punched by row. A row may continue from card to card. However, each new row must start in the first field of the next card. Only the upper triangular portion of a symmetric or the diagonal elements of a diagonal matrix are contained on data cards. The first element of each new row will be the diagonal element for a matrix with symmetric or diagonal storage mode. Columns 71-80 of data cards may be used for identification, sequence numbering, etc.

3

19

G

A blank card after the last pair of input matrices terminates the run.

# Deck Setup

The deck setup is shown in Figure 26.

# Sample

A listing of input cards for the sample problem is presented at the end of the sample main program.

# Output

#### Description

Both sets of input matrices and the output matrix are printed. The resultant matrix is printed for any sized array as a general matrix regardless of the storage mode. Each seven-column grouping is headed with the matrix code number, dimensions, and storage mode. Columns and rows are headed with their respective number. The code number for the output matrix is derived by adding the code numbers for the input matrices.

#### Sample

The output listing for the sample problem is shown in Figure 27.

#### **Program Modification**

Noting that storage problems may result, as previously described in "Sample Program Description", the maximum matrix size acceptable to the sample



Figure 26. Deck setup (matrix addition)

3

10

program may be increased or decreased by making the following changes in ADSAM:

1. Modify the DIMENSION statement to reflect the number of elements for A, B, and R.

2. Insert the same number in the third parameter of the two CALL MATIN statements (20 and 45).

The output listing is set for 120 print positions across the page and double spacing. This can be

changed by means of the last two arguments in the three CALL MXOUT statements in ADSAM (statements 40, 80, 90).

# **Operating Instructions**

The matrix addition sample program is a standard FORTRAN program. Special operating instructions

are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

# Error Messages

The following error conditions will result in messages:

1. Reserved storage area is too small for matrix: DIMENSIONED AREA TOO SMALL FOR INPUT MATRIX (matrix code no.). GO ON TO NEXT CASE.

2. Input matrices do not have the same dimensions: MATRIX DIMENSIONS NOT CONSISTENT. GO ON TO NEXT CASE.

3. Number of data cards does not correspond to that required by parameter card: INCORRECT NUMBER OF DATA CARDS FOR MATRIX (matrix code no.). EXECUTION TERMINATED.

Error conditions 1 and 2 allow the computer run to continue. Error condition 3, however, terminates execution and requires another run to process succeeding cases.

MATRIX	1	a Rows	11 COLUKNS 2	STORAGE	KODE G	\$	
		40100E 00	0.627180E 00	-	-	0.405851E 00	0.314240E-02
ROW	2 0.				0+619465E 00	0.3547575 00	0.274700E-02
ROW	۶ O.	1000005 01	0.6644055 00	0,760100E 00	0.750750£ 00	0.429942E 00	0.3329105-02
ROW	۰ o.	96326E 00	0.574558E 00	0.6573105 00	0.649224E 00	0.371800E 00	0.2878906-02
ROW	· ·.	****** DO	0.6144598 00	0.7029582 00	0.6943108 00	0.3976208 00	0.307890E-02
ROW	6 C.	575176E 00	0.557106E 00	0.6373448 00	0.6295048 00	0.3605075 00	0.2791506-02
ROW	7 C.	12910E-02	0.274700E-02	0.314260E-02	0+310390E-02	0.177760E-02	0+100000E 01
ROW	s o.	299475 00	0.3547578 00	0.4058518 00	0.400859E 00	0.1000000 01	u.177760E-02
MATRIX	1	8 ROWS	11 COLUMNS	STORAGE	MODE 0		
	COLUMN	7	8	9	10	11	
		87660£ 00		0.863591E 00	0.7446546 00	0.696326E 00	
ROw		01087E 00		0.712572E 00	0.614499E 00	0.5745582 00	
ROW		284788 00		0.815202E U0		0.657310E 00	
RQW		299648 00			0+694310E 00	0.649224E 00	
ROW		73713E 00		0.461109E 00		0.371600E 00	
ROW		10829€ 00			0.307890E-02	0.287890E-02	
		01190E-02			0.6737138 00	0.6299648 00	
ROM	s 0.	188967E QC	0.100000E 01	0.724121E UG	0+524+18E 00	0.583670E 00	
*AT9 ] X	2	8 ROWS	11 COLUMNS	STORAGE	MODE D		
	COLUMN	1	2	3	٠	\$	٠
ROW		50750E 00	0.619465E 00	0.708684E 00	0.1000006 81	0.400859E 00	0.3103406-02
ROW		44684E 00	0+614459E 00	0.7029588 00	0-694310E 00	0.397620E 00	0.307890L-02
20¥		63591E 00		0.8152028 00	0.8U5174E 00	0.461109E 00	0.3570502-02
ROM		96326E 00		0.657310E 00	0+649224E 00	5.37180DE CC	0.2878402-02
ROW		75176E 00		0.6373448 00	0.6295048 00	0.360507£ 00	0.2741501-02
ROW		A4684E 00		0.7029585 00		0.397820E 00	0.307890L-02
ROV		63591E QO			G+805174E 00	0.461109E 00	0.357050L-02
ROW	a o	60100E 00	0.627180E 00	0-100000E 01	0.7086548 00	0.405851E QD	C+314260E-02
MATRIX	,	8 ROWS	11 COLUMNS	STORAGE	MODE 0		
		7		9	10	11	
ROW	1 0.1	79201E 00	0.724121E 00	0.100000E 01	0.798668E 00	0.746805E OD	
ROW	2 0.0	73713E 00	0.6244186 80	0.798668E CO	0.100000E 01	0.643978E 00	
ROW	3 0	61287E 00	0+583870E 00	0.746805E CO	0-6419788 00	0.100000E 01	
ROW		29964E DD	0.100000E 01	0.664408E DO	0.760100E 00	0.750750E 00	
ROM		10829E 00	0.7284785 00	0.601087E 00	0.68766UE 00	0.679201E UU	
ROW	a 0.0	737136 00	0.4298426 00	0.354757E 00	0.405851E 00	0.400659E 00	
ROM	7 0.	1287E 00	0.760100E 00	0.627180E 00	0.100000E 01	0.70868+E 00	
ROW	8 0.1	8766CE 00	0.696326E 00	0.574558€ 00	0.657310E 00	0.6492248 00	
MATRIX		8 ROWS	11 COLURNS	STORAGE			
	3 COLUMN	1	2	3	-00E 0	,	6
		51065E 01		0.170868E 01	0.170868E 01	0.806711E 00	U.624030E-02
		40909E 01		0.133013E 01	0.131377E 01	0.752377E 00	0.5825906-02
		06359E 01		0.157530E 01	0-155592E 01	0.8910525 00	0.6899392-02
		39265E 01		0+131+62E 01	0+1298+4€ 01	0.74360UE 00	C.575740E-02
		41986E 01		0.134030E 01	0-1323812 01	U.758127E UD	0.5870408-02
		41986E 01	0+117156E 01	0.134030E 01	0+132381E 01	0.758127E 00	0,587040E-02
		56920E 00		0.815344E 00	0.808277E 00	0.462087E 00	
RQW RQW		19004E 01		0.818344E 90 0.140585E 01		0.462887E 00 0.140585E 01	
RCW		19004E 01 8 ROw5		0,140585E D1 Storage	0+110954E 01		
RDW MATR (X	а о.: 3 социми	8 ROWS	0.981937E 00 11 Columns 8	0.140585E D1 Storage 9	0+110954E 01 MGDE 0 10	0,140585E 01 11	
RDW MATR I X	а D.; 3 СОЦИМИ 1 О.;	8 ROWS 7 366666E 01	0.981937E OD 11 COLUMMS 8 0.139929E 01	0.140585E 01 Storage 9 0.186359E 01	0.110954E 01 MGDE 0 10 0.154335E 01	0,1+0585E 01 11 0.1+4313E 01	
RDW MATR I X	а 0., 3 СОЦИМИ 1 0.1 2 0.5	8 ROM5 7 36686E 01 27480E 01	0.001937E DD 11 COLUMNS 8 0.139929E D1 0.110152E 01	0.142585E 01 STORAGE 9 0.186559E 01 0.151124E 01	0.110954E 01 MCDE 0 10 0.154335E 01 0.161445E 01	0.140585E 01 11 0.144313E 01 0.121853E 01	
RDW MATR I X ROW ROW	а 0., 3 СОЦИМИ 1 0.1 2 0.5	8 ROWS 7 366666E 01	0.001937E DD 11 COLUMNS 8 0.139929E D1 0.110152E 01	0.140585E 01 Storage 9 0.186359E 01	0.110954E 01 MGDE 0 10 0.154335E 01	0,1+0585E 01 11 0.1+4313E 01	
RDW MATR IX ROW ROW ROW	а 0.: 3 СОЦИЧК 1 0.: 2 0.: 3 0.:	8 ROM5 7 36686E 01 27480E 01	0.981937E 00 11 COLUMMS 0 0.139929E 01 0.118152E 01 0.122121E 01 0.122530E 01	0.140985E 01 STORAGE 9 0.186559E 01 0.151124E 01 0.156200E 01 0.146958E 01	0.110954E 01 MGDE 0 10 0.154335E 01 0.161445E 01 0.134693E 01 0.155441E 01	11 0.140585E 01 11 0.144313E 01 0.121853E 01 0.105731E 01 0.139997E 01	
RDW MATR IX ROW ROW ROW	a D.: 3 COLUMN 1 D.1 2 O.: 3 O.: 4 O.:	19004E 01 B ROWS 7 366866E 01 27480E 01 350976E 01	0.981937E 00 11 COLUMMS 0 0.139929E 01 0.118152E 01 0.122121E 01 0.122530E 01	0.140385E 01 STORAGE 9 0.136359E 01 0.131124E 01 0.136200E 03	0.110954E 01 MGDE 0 10 0.154335E 01 0.161445E 01 0.134693E 01	0.140585E 01 11 0.144313E 01 0.121852E 01 0.105731E 01	
RDW MATR IX ROW ROW ROW ROW	а 0,; 3 СОЦИМИ 1 0,; 1 0,; 3 0,; 3 0,; 5 0,;	8 ROWS 7 366866E 01 27480E 01 150976E 01 25992E 01	0.001937E 00 11 COLUMMS 8 0.139929E 01 0.118922E 01 0.122121E 01 0.162950E 01 0.16898E 01 0.432734E 00	0.140385E 01 STORAGE 9 0.153124E 01 0.155200E 01 0.106219E 01 0.356327E 00	0.110934E 01 MCDE 0 10 0.154335E 01 0.161443E 01 0.165441E 01 0.106526E 01 0.408930E 00	11 0.140585E 01 11 0.144313E 01 0.121853E 01 0.105731E 01 0.139997E 01	0.492020E-02
ROW MATR (X ROW ROW ROW ROW ROW ROW	в 0,; 3 социях 1 0,; 2 0,; 3 0,; 4 0,; 5 0,; 6 0,;	B ROWS 7 366686E 01 27480E 01 30976E 01 25992E 01 25992E 01 28454E 01	0001937E 00 11 COLUMMS 8 0.139929E 01 0.10532E 01 0.105293E 01 0.00293E 01 0.137092E 01	0.140305E 01 STORAGE 9 0.150355E 01 0.150255E 01 0.160255E 01 0.160255E 01 0.35027E 00 0.140846E 01	0.110934E 01 NGDE 0 10 0.134335E 01 0.134335E 01 0.134543E 01 0.108528E 01 0.408930E 00 0.408930E 00 0.407371E 01	11 0.1445835E 01 0.144313E 01 0.121853E 01 0.12593E 01 0.13997E 01 0.403738E 00 0.1338464E 01	
ROW MATR IX ROW ROW ROW ROW ROW ROW	в 0,; 3 социни 1 0,; 2 0,; 3 0,; 3 0,; 5 0,; 5 0,; 6 0,; 7 0,;	B ROWS 7 3566865 01 274805 01 3509765 01 2599755 01 259925 01 284545 01	0001937E 00 11 COLUMMS 8 0.139929E 01 0.10532E 01 0.105293E 01 0.00293E 01 0.137092E 01	0.140385E 01 STORAGE 9 0.153124E 01 0.155200E 01 0.106219E 01 0.356327E 00	0.110934E 01 NGDE 0 10 0.134335E 01 0.134335E 01 0.134543E 01 0.108528E 01 0.408930E 00 0.408930E 00 0.407371E 01	11 0.1445385 01 0.14453135 01 0.14553135 01 0.1457315 01 0.1457315 01 0.1051006 01 0.4037385 00	

3

Ŋ

S

Figure 27. Output listing

Sample Main Program for Matrix Addition - ADSAM

Purpose:

Matrix addition sample program.

Remarks:

I/O specifications transmitted to subroutines by COMMON.

Input card:

Column 2 MX - Logical unit number for output.

Column 4 MY - Logical unit number for input.

Subroutines and function subprograms required:

MADD MATIN

MXOUT

LOC

### Method:

10

Two input matrices are read from the standard input device. They are added and the resultant matrix is listed on the standard output device. This can be repeated for any number of pairs of matrices until a blank card is encountered.

# // FOR

, , , , , , , , , , , , , , , , , , ,		
*IOCS(CARD+TYPEWRITER+1132 PRINTER)		
+ONE WORD INTEGERS		
C SAMPLE MAIN PROGRAM FUR MATRIX ADDITION - ADSAM		1
C MATRICES ARE DIMENSIONED FOR 1000 ELEMENTS. THEREFORE. PRODUCT		2
C OF NUMBER OF ROWS BY NUMBER OF COLUMNS CANNUT EXCLED 1000+		3
DIMENSION A(650)+B(650)+R(650)		4
COMMON MX:MY 10 FORMAT(////16H MATRIX ADDITION)		5
11 FORMAT(///15H DIMENSIONED AREA TOO SMALL FOR INPUT MATRIX +14)		7
12 FORMAT(//21H EXECUTION TERMINATED)		8
13 FORMAT(//33H MATRIX DIMENSIONS NOT CUNSISTENT)		9
14 FORMAT(//43H INCORRECT NUMBER OF DATA CARDS FCR MATRIX +14)	ADSAN 1	Ó.
15 FORMATE//19H GO ON TU NEXT CASE!	ADSAM 1	1
16 FORMAT(//12H END OF CASE)	AUSAM L	
17 FORMAT(212)	ADSAM 1	
READ(2+17)MX+MY	ADSAM 1	
WRITE(MX.)(0)	ADSAM 1 ADSAM 1	
20 CALL MATINIICODA:A+ 100+NA+MA+MSA+IER) IFI NA 1 25+95+25	AUSAM 1	
25 IF(IER=1) 40+30+35	ADSAM 1	
30 WRITE(MX+11) ICODA	AUSAM 1	
GO TO 45	ADSAM 2	
35 WRITE(MX+14) (CODA	ADSAM 2	1
37 WRITE(MX+12)	ADSAM 2	
GO TO 95	ADSAM 2	
40 CALL MXOUT(ICODA+A+NA+MA+MSA+60+120+2)	ADSAM 2	
45 CALL MATINIICODB.B. 100.NB.MB.MSB.IER)	ADSAM 2 ADSAM 2	
IF(IER-1) 60+50+55 50 wRITE(MX+11)(COD)	ADSAM 2	
wRITE(MX+15)	ADSAM 2	
GO TO ZO	ADSAM 2	
55 WRITE(MX+14) ICODB	ADSAM 3	Ó
GO TO 37 60 IF(NA-NB) 75,70,75	AUSAN 3	
60 IF(NA-NB) 75,70,75	ADSAM 3	
70 1F(MA-MB) 75,80,75 75 WRITE(MX.13)	AUSAM 3	
WRITE(MX+15)	ADSAM 3	
GU TU 20	ADSAM 3: ADSAM 3	
80 CALL MXQUT(ICUD8, 5, NB, M8, M58, 60, 120, 2)	ADSAM 3	
ICODR=ICODA+ICOD8	ADSAM 3	
CALL MADJ(A,B,K,NA,MA,MSA,MSB)	AUSAM 3	
MSR=MSA	ADSAM 40	o i
IF(MSA-MSB) 90,90,85	ADSAM 4	
	ADSAM 42	
90 CALL MXOUT(ICODR,R,NA,MA,MSR,60,120,2) WRITE(MX,16)	ADSAM 4	
GO TO 20	ADSAM 44	
95 STOP	ADSAM 4	
END	ADSAM 41	
1/ DUP		
#STORE INS UA ADSAM		
// XEQ ADSAM		
12	1	
00010008001100	2	
0.7601008 0.6271802 1.0000000 0.7086843 0.4058519 0.0031426 0.6876602	3	
0.6751766 0.8635910 0.7446845 0.6963269	4	
0.6644085 1.0000000 0.6271802 0.6194650 0.3547574 0.0027470 0.6010878	5	
0.5571068 0.7125728 0.6144597 0.5745585	6	
1.0000000 0.6644085 0.7601008 0.7507505 0.4299425 0.0033291 0.7284786	7	
0.6373449 0.8152021 0.7029582 0.6573101	6	
0.6963269 0.5745585 0.6573101 0.6492243 0.3718001 0.0028789 0.6299642 0.6295047 0.8051740 0.6943108 0.6492243	9 10	
0.8295047 0.8051740 0.8945108 0.8492245 0.7446845 0.6144597 0.7029582 0.6943108 0.3976204 0.0030789 0.6737132	10	
0.3605070 0.4611099 0.3976204 0.3718001	12	
0.6751766 0.5571068 0.6373449 0.6295047 0.3605070 0.0027915 0.6108296	13	
0.0027915 0.0035705 0.0030789 0.0028789	14	

0.6108296 0.4299425	0.0027470 0.7812874 0.3547574 0.7241215	0+6737132 0+4058519	0+6299642				15 16 17 18
9 00020008		000244105					19 20
0.7241215	0.6194650	0.7986682	0.7468050				21 22
0.6244183	0.7986682	1.0000000	0.6439786			0+6737132	23 24 25
0.5838704	0.7468050	0.6439786	1.0000000			0+6299642	26 27
0.6751766	0.5571068	0.6373449	0.6295047	0.3605070	0.0027915	0.7284786	28 29
0.7446845		0.7029582	0.6943108	0.3976204	0.0030789	1.0000000	30 31 32
0.8635910	0.7125728	0.8152021	0.8051740	0.4611099	0.0035705	0.7812874	33
	0.6271802 0.5745585					0.6876602 0.6299642	35 36 37 38

```
SUBROUTINE MATIN
       PURPOSE
READS CONTROL CAMO AND MATRIX DATA ELEMENTS FROM LOGICAL
UNIT 5
     USAGE
CALL MATIN(ICODE,A,ISIZE,IROM,ICOL,IS,IER)
CALL MATINIICODE, A, ISIZE, IRCM, ICCL, IS, IER)

DESCRIPTION OF PARAMETERS

ICODE-UPON RETURN, ICODE WILL CONTAIN FOUR DIGIT

IDENTIFICATION CODE FROM MATRIX PARAMETER CARD

A - DATA AREA FOR INPUT MATRIX

ISIZE-NUMBER OF ELEMENTS DIMENSIONED BY USER FOR AREA A

IRCW - UPON RETURN, ICOD WILL CONTAIN ROW DIMENSION FROM

MATRIX PARAMETER CARD

ICOL -UPON RETURN, ICOL WILL CONTAIN COLUMN DIMENSION FROM

MATRIX PARAMETER CARD

IS - UPON RETURN, IS WILL CONTAIN STORAGE NODE CODE FROM

MATRIX PARAMETER CARD WHERE

IS-0 SYMEATERIC MATRIX

IS-1 SYMEATERIC CARD WHERE

IS-0 GEMERAL'MATRIX

IS-2 DIAGOMAL MATRIX

IER - UPON RETURN, IER WILL CONTAIN AN ERROR CODE WHERE

IEM-0 NO ERROR

IER-1 ISIZE IS LESS THAN NUMBER OF ELEMENTS IN

IMPUT MATRIX PARA CARDS

DEMLADEC
       REMARKS
NONE
     SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
 LOC

METHOD

SUBROUTINE ASSUMES THAT INPUT MATRIX CONSISTS OF PARAMETER

CARD FOLLOWED BY DATA CARDS

PARAMETER CARD MAS THE FOLLOWING FORMAT

COL. 1 - 2 BLANK

COL. 1 - 2 - 0 JLAGUNAL MATRIX

2 - 0 JAGUNAL MATRIX

2 - 0 JAGUNAL MATRIX

2 - 0 JAGUNAL MATRIX

DATA CARDS ARE ASSUMED TO HAVE SEVEN FIELDS OF TEN COLUMNS

BACH. DECIMAL POINT MAY APPEAR ANYWHERE IN A FIELD. IF NO

DECIMAL POINT IS AT THE END OF THE 10 COLUMN FIELD. NUMBER IN EACH

FIELD MAY BE PRECEDED BY BLANKS. DATA LEMENTS MUST BE

PUNCHED BY ROW. A ROW MAY CONTINUE FROM CARD TO CARD.

HOWEVER EACH NEW ROW MUST START IN THE FIRST FIELD OF THE

NEXT CARD. ONLY THE UPPER TRIANGULAR PORTION OF A SYMMETRIC

OR THE DIAGONAL ELEMENTS OF A DIAGONAL MATRIX ANE CONTAINED

ON DATA CARDS. THE FIRST ELEMENT OF FACH NEW ROW MILL BE

THE DIAGONAL STRAFT FOR ANTRIX MUST BE FOLLOWED BY A CARD

DISED FOR IDENTIFICATION, SCOULENCE THE ST.

THE LAST DATA CARD FOR ANY MATRIX MUST BE FOLLOWED BY A CARD

WITH A 9 PUNCH IN COLUMN 1.
```

DIMENSION A(1) DIMENSION A(1) DIMENSION A(1) DIMENSION A(1) DIMENSION A(1) COMMON MX,MY 4 FORMAT(F10.0) A FORMAT(F10.0			SUBROUTINE MATINI ICODE, A, ISIZE, IROW, ICOL, IS, TER)	MATIN	1
COMMON MX, MY         Matty 4           1 FORMATTFILO.0)         MATIN 5           2 FURMATTFILO.0)         MATIN 6           3 FORMATTFILO.0)         MATIN 7           10C=7         MATIN 7           10C=7         MATIN 7           10C=7         MATIN 7           11C=7         MATIN 7           12E=0         MATIN 7           14E=1         MATIN 7           15C=1CULROM, ICUL, IS         MATIN 12           16LL LOCLIROM, ICUL, ICUT, IRDN, ICOL, IS         MATIN 12           17 IF (ISTZ=-ICUT), IRDN, ICOL, IS         MATIN 12           18 ICOLT=ICOL         MATIN 12           17 IF (ICUT)38, 38,8         MATIN 14           8 ICOLT=ICOL         MATIN 14           9 ICOLT=INUMBER OF CARDS FOR THIS ROM         MATIN 14           11 IRCOS= (ICOLT-I/I) COL         MATIN 14           12 IRCOS= (ICOLT-I) / IOC+1         MATIN 14           12 IRCOS         MATIN 12           15 OO 1 K=1.1RCOS         MATIN 23           15 OO 1 K=1.1RCOS         MATIN 23           16 L=0         MATIN 23           17 IF IIRCOS         MATIN 23           16 L=0         MATIN 23           17 IF IIRCOS         MATIN 23				MATIN	2
1       FORMATIF;10:0)       MATIN: 5         2       FORMATIF;10:14:12)       MATIN: 6         3       FORMATIF;14:12)       MATIN: 6         10C=7       MATIN: 7       MATIN: 7         10C=7       MATIN: 6       MATIN: 7         10C=7       MATIN: 6       MATIN: 7         10C=7       MATIN: 7       MATIN: 7         10C=7       MATIN: 10       MATIN: 12         10C=7       MATIN: 12       MATIN: 12         10C=7       MATIN: 12       MATIN: 12         11       FORMATIF;10C+, FROW, FCOL, FS)       MATIN: 13         11       IFF,12Z=FCANTAF;7,7       MATIN: 13         12       IECDIF=1CANT: 6,7,7       MATIN: 13         14       16(L=1COL)       MATIN: 13         15       ICOLIF=1COL       MATIN: 13         14       16(L=1COL)       MATIN: 14         15       ICOS=11COL-1://10C+1       MATIN: 17         11       IRCOS=11COL-1:/10C+1       MATIN: 14         12       IRCOS=11COL-1:/10C+1       MATIN: 17         12       IRCOS=11COL-1:/10C+1       MATIN: 17         12       IRCOS=11COL-1:/10C+1       MATIN: 17         12       IRCOS=11COL-1:/10C+1       MATIN:			DIMENSION CARD(8)	MATIN	3
2       FURMAT[16,214,12]       MATIN         3       FORMAT[11]       MATIN         10C=7       MATIN       MATIN         10C=8       MATIN       MATIN         10C=7       MATIN       MATIN         11       FG1522=CATING, CARDS FOR THIS ROW       MATIN         11       RCG041       MATIN       MATIN         12       FG05=(ICOL-ID/I) COL       MATIN       MATIN         12       RCOS=(ICOL-ID/I) COL       MATIN       MATIN         12       RCOS=(ICOL-ID/I) COL       MATIN       MATIN         15       OD I K=1-IGCD       MATIN       MATIN       MATIN         2       SET UP LOOP FOR NUMBER OF CARDS IN ROW       MATIN       MATIN       MATIN         2       SET UP LOOP FOR NUMBER OF CARDS IN ROW       MATIN       MATIN			COMMON MX, MY	MATIN	4
3 FORMAT(11)       MATIN         10C=7       MATIN         1ER=0       MATIN         1ER=0       MATIN         CALL LOC(IRON,ICOL,ICNT,IROW,ICOL,IS)       MATIN         1FISIZE-ICATI6,7,7       MATIN         6 IER=1       MATIN         7 IF (ICATI36,38,8       MATIN         8 ICOLI=ICOL       MATIN         1 K0G81       MATIN         1 ROG81       MATIN         1 IROS=(ICOLI-1)/IOC+L       MATIN         1 IROS=(ICOLI-1)/IOC+L       MATIN         1 IROS=(ICOLI-1)/IOC+L       MATIN         2 IST       MATIN         3 IROS=(ICOLI-1)/IOC+L       MATIN         4 IF(IST-11)/IOC+L       MATIN         1 IROS=(ICOLI-1)/IOC+L       MATIN         2 IROS=(ICOLI-1)/IOC+L       MATIN         3 IST       SET UP       LODP FOR NUMBER OF CARDS IN ROM         3 SET UP       LODP FOR NUMBER OF CARDS IN ROM       MATIN 20         3 SK IP IMPOUCH DATA CARDS IF INPUT AREA TOD SMALL       MATIN 23         4 IFIERIALD; 1,31       MATIN 25         1 ICOLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD       MATIN 27         1 ICOLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD       MATIN 27		1	FORMAT ( 7F10.0)	MATIN	5
3 FORMAT(11)       MATTY 7         1UC=7       MATTY 7         1ER=0       MATTY 7         CALL LOCLIROW, ICOL, IS       MATTY 12         CALL LOCLIROW, ICOL, IS       MATTY 12         CALL LOCLIROW, ICOL, ICNT, IROW, ICOL, ISI       MATTY 12         CALL LOCLIROW, ICOL, ICNT, IROW, ICOL, ISI       MATTY 12         IF 1512E=1CAT16,7,7       MATTY 15         1 FF 1512E=1COL       MATTY 15         1 FG 1512E=1COL       MATTY 15         1 ROGex1       MATTY 15         1 ROGex1       MATTY 15         1 I RODS=11COLT-11/10C+1       MATTY 15         1 I RODS=11COLT-11/10C+2       MATTY 15         2 READING       MATTY 17         3 SET UP LIDP FOR NUMBER OF CARDS IN ROW       MATTY 21         4 SET UP LIDP FOR NUMBER OF CARDS IN ROW       MATTY 21         2 SKIP IMMOUGH DATA CARDS IF INPUT AREA TOD SMALL       MATTY 25         3 SKIP IMMOUGH DATA CARDS IF INPUT AREA TOD SMALL       MATTY 25         4 IFIERILG, 16, 31       MATTY 25         4 IFIERILG, 16, 15, 12       MATTY 25         4 IFIERILG, 16, 15, 12       MATTY 25         4 IFIERILG, 16, 15, 11       MATTY 25         4 IFIERILG, 16, 15, 12       MATTY 25         4 IFIERILG, 16, 15, 12       MATTY		2	FURMAT[16,214,12]	MATIN	6
IEB=0         Mative 0           READI 497,211CODE, IRON, ICOL, IS         MATIV 12           CALL LOC(IRON, ICOL, ICNT, IRON, ICOL, IS)         MATIV 11           IFISIZE-ICATI6,7,7         MATIV 12           1 FFISIZE-ICATI6,7,7         MATIV 13           7 IF COLLECT         MATIV 14           8 ICOLLECT         MATIV 15           1 NOGA:         MATIV 14           1 ROGA:         MATIV 15           1 ROGA:         MATIV 17           1 ROGA:         MATIV 17           1 ROGA:         MATIV 17           1 ROGA:         MATIV 17           2 COMPUTE NUMBER OF CARDS FOR THIS ROW         MATIV 17           1 IRCOS:         ICOLT-17/10C+L           1 FISILS:         MATIV 17           2 READING:         MATIV 18           3 SET UP LOOP FOR NUMBER OF CARDS IN ROM         MATIV 21           4 SET UP LOOP FOR NUMBER OF CARDS IN ROM         MATIV 21           2 SKIP FINDUMOH DATA CARDS IF INPUT AREA TOO SMALL         MATIV 23           3 SKIP FINDUMOH DATA CARDS IF INPUT AREA TOO SMALL         MATIV 25           16 L=0         MATIV 27           16 L=0         MATIV 27		3	FORMAT(11)	MATIN	
IER=0         HATIY 0           READI 4V,2)ICODE, IKON, ICOL, IS         HATIN 12           CALL LOC(IRON, ICOL, ICNT, IRON, ICOL, IS)         HATIN 12           CALL LOC(IRON, ICOL, ICNT, IRON, ICOL, IS)         HATIN 12           IF (ISIZE-ICATI6,7,7         HATIN 12           6         IER=1         HATIN 12           7         IF (ICNT)83,8,8         HATIN 13           8         ICOLI=ICOL         HATIN 13           10         COMPUTE NUMBER OF CARDS FOR THIS ROW         HATIN 17           11         IROS+11COLT-11/1 OC+1         HATIN 12           12         IECOS=11         HATIN 12           2         SET UP LODP FOR NUMBER OF CARDS IN ROW         HATIN 23           15         DO 31 K=1,14COS         HATIN 22           READIM, ILICAND(II),I=1,10C)         HATIN 22         SKIP IHNDUCH DATA CARDS IF INPUT AREA TOD SMALL         HATIN 22           16         LOO         HATIN 27         HATIN 27         IATIN 27           16         LOO         HATIN 27         HATIN 27           16         LOO         HATIN 27         HATIN 27			10C=7	MATIN	9
READ1 447,211CODE, 1K04,1COL,1S         MATIN 12           CALL LOC(IROW,ICOL,ICNT, IROW,ICOL,IS)         MATIN 12           IF(IS12E=ICNT)6,7,7         MATIN 12           6 IER=1         MATIN 13           7 IF (ICNT)80,38,8         MATIN 14           8 ICOLT=ICOL         MATIN 14           1 KOCR=1         MATIN 15           1 KOCR=1         MATIN 16           1 COMPUTE NUMBER OF CARDS FOR THIS ROW         MATIN 17           1 IRODS=(ICOLT-1)// IOC+1         MATIN 17           1 ST UP LOOP FOR NUMBER OF CARDS IN ROW         MATIN 27           1 ST UP LOOP FOR NUMBER OF CARDS IN ROW         MATIN 27           1 ST UP LOOP FOR NUMBER OF CARDS IN ROW         MATIN 27           1 ST UP LOOP FOR NUMBER OF CARDS IN ROW         MATIN 27           1 ST UP LOOP FOR NUMBER FOR FIRST FIELD IN CURRENT CARD         MATIN 27           1 FILTERIL6,16,31         MATIN 27           1 6 L=0         MATIN 27			IER=0		
CALL LOC(IROW,IC)L,ICNT, IROW,ICOL,IS)         MATIN         Natin           IFISIZE-ICNT)6,7,7         MATIN         MATIN         MATIN           6         IFR=1         MATIN         MATIN         MATIN           7         IFICNT)83,38,8         MATIN         MATIN         MATIN           8         ICOLI=ICOL         MATIN         MATIN         MATIN           18         ICOLI=ICOL         MATIN         MATIN         MATIN           1005         ICOLI=ICOL         MATIN         MATIN         MATIN           1         ICOSS-ICOLT-IN/IOC+L         MATIN         MATIN         MATIN           1         IFIS-115,15,12         MATIN         MATIN         MATIN         MATIN           12         IRCOS-I (LOUP FOR NUMBER OF CARDS IN ROW         MATIN         MATIN         MATIN         MATIN           2         SET_UP LOOP FOR NUMBER OF CARDS IN ROW         MATIN         MATIN         MATIN         MATIN         MATIN           2         SET_UP LOOP FOR NUMBER OF CARDS IN ROW         MATIN         MATIN <t< td=""><td></td><td></td><td>READ! MY, 2) ICODE, IROW, ICOL, IS</td><td></td><td></td></t<>			READ! MY, 2) ICODE, IROW, ICOL, IS		
IF(IS12E=ICNT16,7,7         HATIN 12           6 [ER=1         HATIN 13           7 IF (ICNT138,38,8         HATIN 14           8 [COLIF=ICOL         HATIN 14           9 [COLIF=ICOL         HATIN 15           1K0CR=1         HATIN 16           0 COMPUTE NUMBER OF CARDS FOR THIS ROW         HATIN 17           1 [RCDS=(ICOLT-1)// IOC+1         HATIN 27           1 [RCDS=(ICOLT-1)// IOC)         HATIN 27           1 [RCDS=(ICOLT-1)/ IOC)         HATIN 27           1 [RCDS=(ICOLT-1)/ IOC)         HATIN 27           1 [COLT-1] [RCDS [RCDS] [R INPUT AREA TOD SMALL         HATIN 27           1 [COLT-1] [RCDLMM NUMBER FOR FIRST FIELD IN CURRENT CARD         HATIN 27           1 [COLT-1] [COLTMN NUMBER FOR FIRST FIELD IN CURRENT CARD         HATIN 27			CALL LOCIIRON, ICIL, ICNT, IROW, ICOL, ISI		
6         IFR=1         HATIN 13           7         IF (ICNT)38,38,8         HATIN 14           8         ICOLT=ICOL         HATIN 15           180C8+1         HATIN 15           1         COMPUTE NUMBER OF CARDS FOR THIS ROW         HATIN 17           11         IRCOS+(ICOLT-I/I OC+L         HATIN 17           12         IRCOS+(ICOLT-I/I OC+L)         HATIN 17           12         IRCOS+(ICOLT-I/I OC+L)         HATIN 17           14         IRCOS+(ICOLT-I/I OC+L)         HATIN 17           15         OG 1K ~L-1 (RCOS)         HATIN 27           15         OG 1K ~L-1 (RCOS)         HATIN 27           14         READIMY, 11 (CARDI(I), I=1, IDC)         HATIN 27           16         LOC SK IP (HNQUGH JATA CARDS IF INPUT AREA TOD SMALL         HATIN 27           16         L-00         HATIN 27           16         L-00         HATIN 27					
7       IF (1CWT)39,39,8       MATIN 14         8       ICOLIFICOL       MATIN 15         1K0CR=1       MATIN 16       MATIN 16         1K0CR=1       MATIN 17       MATIN 16         1       IRCDS=(ICOLT-1)//10C+1       MATIN 17         1       IRCDS=(ICOLT-1)//10C+1       MATIN 17         12       IRCDS=(ICOLT-1)//10C+1       MATIN 19         12       IRCDS=(ICOLT-1)/10C+1       MATIN 17         14       IRCDS=(ICOLT-1)/10C+1       MATIN 19         15       D0 31 K=1,18CD5       MATIN 27         15       D0 31 K=1,18CD5       MATIN 27         15       D0 31 K=1,18CD5       MATIN 27         16       SKIP FINGUGH DATA CARDS IF INPUT AREA TOD SMALL       MATIN 27         16       L=0       MATIN 27         16       L=0       MATIN 27		6	1ER=1		
B         ICOLT=ICOL         HATTN 15           INCCR=1         HATTN 15           C         COMPUTE NUMBER OF CARDS FOR THIS ROW         HATTN 17           II RECOS=IICOLT=IJ/IOC+I         HATTN 17           II RECOS=ICOLT=IJ/IOC+I         HATTN 17           IF (IS-1)15,15,12         HATTN 17           I2 RECUS=I         HATTN 17           SET UP LINDP FOR NUMBER OF CARDS IN ROW         HATTN 27           IS OD IX K=1, RECUS         HATTN 23           C         SET UP LINDP FOR NUMBER OF CARDS IN ROW         HATTN 23           C         SET UP LINDP FOR NUMBER OF CARDS IN ROW         HATTN 23           C         SKIP THROUGH JATA CARDS IF INPUT AREA TOO SMALL         HATTN 23           I6 L=0         HATTN 27         HATTN 27           I6 L=0         C         HATTN 27           C         UMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD         HATTN 27		7	IF ( ICNT) 38, 38, 8		
INCGR=1         WATIN 16           C         COMPUTE NUMBER OF CARDS FOR THIS ROW         WATIN 17           11         IRCDS=(ICOLT-1)// IOC+1         WATIN 17           16         FIDS=115,12         WATIN 17           12         IRCDS=1         WATIN 17           12         IRCDS=1         WATIN 27           15         IG         WATIN 27           15         O         31 K=1,18CDS           17         IS         O           18         O         SK IP LOOP FOR NUMBER OF CARDS IN ROW           19         VIDOP FOR NUMBER OF CARDS IN ROW         WATIN 27           15         O         SK IP FINDUGH DATA CARDS IF INPUT AREA TOD SMALL         WATIN 27           16         L=O         WATIN 27         WATIN 27           16         L=O         WATIN 27         WATIN 27		8	ICOL T= ICOL		
C         COMPUTE NUMBER OF CARDS FOR THIS ROM         MATIN 17           11         TRCDS=I(ICOLT-I/I OC+1         MATIN 18           IF(IS-1)5,15,12         MATIN 19           12         IRCUS=1         MATIN 17           15         OG 11 K=1.FCCDS         MATIN 21           READ(MY, I)(CARD(I1),I=1.FOC)         MATIN 22           C         SET UP LOOP FOR NUMBER OF CARDS IN ROW         MATIN 21           READ(MY, I)(CARD(I1),I=1.FOC)         MATIN 23           C         SKIP THROUGH DATA CARDS IF INPUT AREA TOO SMALL         MATIN 23           IF(IFR)16,15,31         MATIN 25           16         L=0         MATIN 27           16         COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD         MATIN 27			IROCR=L		
11         IRCDS=(ICOLT-1)/IOC+L         MATIN 19           1F(IS-1)IS,15,12         MATIN 10           12         IRCUS=L         MATIN 10           12         IRCUS=L         MATIN 20           C         SET UP LIOP FOR NUMBER OF CARDS IN ROW         MATIN 21           15         DO 31 K=1, IRCOS         MATIN 22           READINY, IICCARDII, I=1, IOC)         MATIN 22           C         SKP IMPONED JATA CARDS IF INPUT AREA TOD SMALL         MATIN 24           IF(IER)16,16,31         MATIN 25           16 L=0         COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD         MATIN 27	С		COMPUTE NUMBER OF CARDS FOR THIS ROW		
IF(15-115,15,12         MATIN 20           12 IRCUS=1         MATIN 20           C         SET UP LOOP FOR NUMBER OF CAROS IN ROM         MATIN 21           15 DO 31 K=1,1RCOS         MATIN 22           READ(MY,1)TCARD(11,1=1,1DC)         MATIN 22           C         SKIP THHOUGH DATA CARDS IF INPUT AREA TOD SMALL         MATIN 23           IF(1FR)16,16,31         MATIN 25           16 L=0         MATIN 27           C         CHMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD         MATIN 27		11	IRCDS = (ICOLT - L) / I DC + L		
12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12         12<			IF(IS-1)15,15,12		
C         SET UP LOOP FOR NUMBER OF CARDS IN ROW         44119 21           15 00 31 K=1,14COS         HATIN 22           READIMY,1)1CARDIJ,1=1,10C         HATIN 23           C         SKIP THROUGH DATA CARDS IF INPUT AREA TOD SMALL         HATIN 23           IF(IFR)16,16,31         HATIN 25           16 L=0         COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD         HATIN 27		12	IRCI)S=1		
15 DO 31 K=1,14CDS         MATIN 22           RFADHWY,11(CARDI1),1=1,1DC)         MATIN 23           C         SKIP THROUGH JATA CARDS IF INPUT AREA TOD SMALL         MATIN 24           IF(IER)16,16,31         MATIN 25           16 L=0         MATIN 26           C         COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD         MATIN 27	c		SET UP LOOP FOR NUMBER OF CARDS IN ROW		
RFADIMY, I) (CARD[1], [=], IDC)         HATIN 23           C         SKIP THROUGH DATA CARDS IF INPUT AREA TOO SMALL         HATIN 24           IF[IER]16,16,31         HATIN 25           16 L=0         COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD         HATIN 25		15	00 31 K=1, IRCOS	MATEN	,,
C SKIP THROUGH DATA CARDS IF INPUT AREA TOO SMALL 4ATIN 24 IFITERILG.16.31 4ATIN 25 16 1-0 4ATIN 25 C COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD 4ATIN 27			RFAD(MY,1)(CARD(1),1=1,10C)		
16 L=0 MATIN 26 C COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD MATIN 27	С		SKIP THROUGH DATA CARDS IF INPUT AREA TOD SMALL		
16 L=0 MATIN 26 C COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD MATIN 27			IF(IER)16,16,31	MATIN	25
C COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD MATIN 27		16	L=0		
	C		COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD		
			JS=(K-1)+1DC+1COL-1COLT+1		

SUBROUTINE MXOUT

PURPOSE PRODUCES AN OUTPUT LISTING OF ANY SIZED ARRAY ON LOGICAL UNIT 1

USAGE CALL MXOUT(ICODE,A,N,M,MS,LINS,IPOS,ISP) CALL MADUTICUDE, MANAWARS, LINS, IPUS, ISP) DESCRIPTION OF PARAMETERS ICODE-INPUT CODE NUMBER TO BE PRINTED ON EACH OUTPUT PAGE A-NAME OF OUTPUT MATRIX N-NUMBER OF COLUMNS IN A M-STORAGE NODE OF A WHERE MS= -O-GENERAL 1-SYMMETRIC 2-DIAGONAL LINS-MUMBER OF PRINT LINES ON THE PAGE (USUALLY 60) IPOS-MUMBER OF PRINT POSITIONS ACROSS THE PAGE (USUALLY 132) ISP-LINE SPACING CODE, 1 FOR SINGLE SPACE, 2 FOR DOUBLE SPACE

REMARKS NONE

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

NETHOD THIS SUBROUTINE CREATES A STANDARD OUTPUT LISTING OF ANY SIZED ARRAY WITH ANY STORAGE NODE. EACH PAGE IS HEADED WITH THE CODE HUNDER, DIMENSIONS AND STORAGE NODE OF THE ARRAY. EACH COLUMN AND ROW IS ALSO HEADED WITH ITS RESPECTIVE NUMBER.

SUBROUTINE MXOUT (ICODE,A,N,M,MS,LINS, IPOS, ISP)	MXOUT	
DIMENSION A(1),B(8)	MXOUT	
COMMON MX, MY	HX0UT	
1 FORMAT(////5x, 7+MATRIX +15+6X+13+5H ROWS+6X+13+8H COLUMNS	<ul> <li>• • • × 0 0 T</li> </ul>	
18X,13HSTORAGE MODE ,11,/)	MXOUT	
2 FORMAT(12X,8HCOLJMN ,7(3X,13,10X)//)	4XOUT	
4 FORMAT(7X,4HROW ,13,7(E16.6))	MXOUT	
5 FORMAT(/,7X,4HRD# ,13,7(£16,6))	MXOUT	
1=L	4X0UT	
WRITE HEADING	MXOUT	1
NEND=1POS/16+1	MX∩UT	
LEND = (L[NS/ISP) - LO	MXOUT	1
LO LSTRT=1	HXOUT	1
20 WRITE(MX,1)(CODE, N, M, MS	4X0UT	1
JNT = J + NEND - 1	4X0UT	1
1F(JNT-M)33,33,32	MXOUT	1
M=TNL 26	MXOUT	1
33 CONTINUE	4X007	1
WRITE(MX,2)(JCUR, JCUR=J,JNT)	HXOUT	1
LTEND ≈ LSTRT+LEND-1	HXOUT	ł
DO 80 L=LSTRT,LTEND	MXOUT	1
FORM DUTPUT ROW LINE	4XOUT	;
DO 55 K=1,NFNO	4XOUT	ż
K K = K	MXOUT	;
JT ≂ J+K−i	4XDUT	2
CALL LOC(L, JT, TJYT, N, M, HS)	MXOUT	2
8(K)=0.0	MXOUT	
IF(1JNT)50,50,45	MXDUT	ż
45 B(K)=A(IJNT)	MXOUT	,
50 CONTINUE	4×001	3
CHECK IF LAST COLUMN. IF YES GO TO 60	4XOUT	3
IF(JT-41 55,60,60	AXOUT	
55 CONTINUE	MXOUT	3
END OF LINE, YOW WRITE	MXOUT	ġ
60 IF(ISP-1)65.65.70	*XOUT	
65 WRITE(MX,4)L.(8(JW).JW=1.KK)	HXOUT	
GO TO 75	MXOUT	1
70 WR[TE(4X,5)L,(B(JW),JW=1,KK)	MXOUT	
IF END OF ROWS GO CHECK COLUMNS	MXOUT	
75 IF(N-L)85,85,80	MXOUT	4
BO CONTINUE	NXOUT -	4
WRITE NEW HEADING	AXCUL	4
LSTRT≠LSTRT+LEND	MXOUT	4
GU TO 20	MXOUT	
END OF COLUMNS, THEN RETURN	HXOUT	
85 IF(JT-4)90,95,95	4XOUT	
90 J=JT+1	MXDUT	
GO TO 10	MXOUT -	
95 RETURN	MXOUT	
END	4XOUT	

# NUMERICAL QUADRATURE INTEGRATION

#### **Problem Description**

The tabulated values of a function for a given spacing are integrated. Multiple sets of tabulated values may be processed.

## Program

# Description

The numerical quadrature integration program consists of a main routine QDINT, and one subroutine, QSF, from the Scientific Subroutine Package.

# Capacity

The capacity of the sample program and the format for data input have been set up as follows:

1. Up to 500 tabulated values of a function

2. (7F10.0) format for input data cards

Therefore, if the problem satisfies the above conditions, no modification to the sample program is necessary. However, if there are more than 500 values to be integrated the dimension statement in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format statement in the sample main program must be modified. The general rules for program modification are described later.

3

17

b

9

# Input

# I/O Specification Card

Each integration requires a parameter card with the following format:

		For
		Sample
Columns	Contents	Problem
1 - 5	Up to 5-digit numeric identification code	12345
6 - 10	Number of tabulated values for this function	0020
11 - 20	Interval between tabu- lated values	1.0

The first two parameters consist of up to five digits with no decimal point (FORMAT (215)). Note that the second parameter may not exceed 500. The third parameter consists of up to ten digits (FORMAT) (F10.0).

### Data Cards

Data cards are assumed to be seven fields of ten columns each. The decimal point may appear anywhere in the field, or be omitted, but the number must be right-justified. The number in each field may be preceded by blanks. Columns 71 through 80 of the data cards may be used for identification, sequence numbering, etc. If there are more than seven tabulated values, the values should continue from card to card with seven values per card, until the number of values specified in the parameter card has been reached.

A blank card following the last set of data terminates the run.

# Deck Setup

The deck setup is shown in Figure 28.

## Sample

A listing of input cards for the sample problem is presented at the end of the sample main program.

#### Output

## Description

The identification code number, number of tabulated input values, the interval for the tabulated values, and the resultant integral values at each step are printed.

## Sample

The output listing for the sample problem is shown in Figure 29.

# **Program Modification**

Noting that storage problems may result, as previously discussed in "Sample Program Description", the maximum number of tabulated values acceptable



Figure 28. Deck setup (numerical quadrature integration)

to the sample program may be increased. Input data in a different format can also be handled by providing a specific format statement.

1. Modify the DIMENSION statement in QDINT so that the size of array Z is equal to the maximum number of tabulated values.

2. Changes to the format of the parameter cards and data cards may be made by modifying FORMAT statements 10 and 32, respectively, in QDINT.

INTEGRATION OF TABULATED VALUES FOR DY/DX USING SUBROUTINE QSF

FUNCTION 12345 20 TABULATED VALUES INTERVAL = 0.10000002E 01

RESULTANT	VALUE OF INTEG	RAL AT EACH STE	P IS		
0. 300000000 00	0.19999983E 01	0.39999995E 01	0.59999981E 01	0.79999990E C	1 0+99999981E 01
0+11999998E 02	0.13999996E 02	0+15999996E 02	0.17999996E 02	0.19999996E C	2 J-21999992E 02
			0.29999984E 02	0.31999984E C	2 0+33999984E 02
0.35999984E 02	0.37999977E 02				

INTEGRATION OF TABULATED VALUES FOR DY/DX USING SUBROUTINE QSF

FUNCTION 543 10 TABULATED VALUES INTERVAL = 0.10000002E 01

RESULTANT VALUE OF INTEGRAL AT EACH STEP IS 0.00000000E 00 0.14999959E 01 0.39999995E 01 0.74999952E 01 0.11999998E 02 0.17499996E 02 0.23999996E 02 0.31499992E 02 0.39999992E 02 0.49499984E 02

Figure 29. Output listing

Run termination

Blank card

Last problem

# **Operating Instructions**

The numerical quadrature integration sample program is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

# Error Messages

The following conditions will result in error messages:

1. The number of tabulated values specified in the parameter card is less than or equal to two: ILLEGAL CONDITION. NUMBER OF TABULATED VALUES IS LESS THAN THREE.

The program will continue to read data cards until the next problem is reached.

2. The interval specified in the parameter card is zero: ILLEGAL CONDITION. SPECIFIED IN-TERVAL IS ZERO.

The program will continue to read data cards until the next problem is reached.

Sample Program for Integration of a Tabulated Function by Numerical Quadrature - QDINT

Purpose:

Integrates a set of tabulated values for F(X) given the number of values and their spacing.

Remarks:

The number of values must be more than two and the spacing greater than zero.

I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required: QSF

# Method:

Reads control card containing the code number, number of values, and the spacing of the function values contained on the following data cards. Data cards are then read and integration is performed. More than one control card and corresponding data can be integrated in one run. Execution is terminated by a blank control card.

// FOR	
*IOCS(CARU,TYPEWRITÉR,LI32 PRINTER)	
ONE WORD INTEGERS	
C SAMPLE PRUGRAM FUR INTEGRATION OF A TABULATED FUNCTION BY	UDINT L
C NUMERICAL QUADRATURE - QDINT	QDINT 2
C THE FOLLOWING DIMENSION MUST BE AS LARGE AS THE MAXIMUM NUMBER C JF FABULATED VALUES TO BE INTEGRATED	ODINE 3
C JF FABULATED VALUES TO BE INTEGRATED	UDINE 4
DIMENSION 2(500)	QUINT 5
10 FORMAT (215,F10.0)	QUINT 6
20 FORMAT(/////' INTEGRATION OF TABULATED VALUES FOR DY/DX USING SU	
IROUTINE QSF ///11H FUNCTION ,15,34,15,17H TABULATED VALUES,	ODINTHOS
25X, LOHINFERVAL =, E15.8/)	QUINTH03
22 FORMAT(/18H ILLEGAL CONDITION/)	ODINT 10
23 FORMAT(/46H NUMBER OF TABULATED VALUES IS LESS THAN THREE)	QUINTIG4
24 FURMAT(/27H SPECIFIED INTERVAL IS ZERD)	ODINT 12
36 FORMATI/74, 'RESULTANT VALUE OF INTEGRAL AT EACH STEP 15.7	QUINTHOS
1(1H .6E15.8))	QDINTM06
31 FORMAT(212)	WDINT 14
32 FJRMAT(7F10.C)	001NT 15
READI 2, 31 I MX, MY	QUINT 16
35 READ(MY, 10) ICUD, NUMBR, SPACE	QDINT 17
IF(ICOJ+NUMBR)70+70+38	
4F146607N0/10K7/0F10730	QDINT 18

10	STOP						ວຸມ	INT 19
		x,20)1COD,	ODINT 20					
		R-31100.50	00	INTNO7				
50	50 READ(MY, 32)(211),1=1,NUMBR) GALL QSF (SPACE,2,2,NUMBR)						õ.	INT 22
							20	INTHOS
	LEI SPACE	c100,200,6	0				<u>ó</u> u	PONTAIO
60			, I=1, NUMBR	)			QC	INTHIO
	GD TJ 3						00	INT 26
	WRITELM							INE 27
	WRITE(M						00	INT 28
		,32)(2(1),	1= L.NUMBR)				00	INTH11
	GU TU J						00	INT 29
200	WRITE(M	x,22)					ن ذ	INT 30
	WRITELA						ODINT 31	
	GO TO 33	5						INT 32
	GO TO 3: END	5						INT 32
	END	5						
/ OUP	END.	5 S UA QDE	NŤ					
/ DUP STORE	END.		NT					
// DUP STORE	END W		NT					INT 33
/ DUP STORE / XEC	END W		NT					INT 33
1 2	END QDINT	S UA QDI.	NT 2.0	2.0	2.0	2.0		INT 33
7 DUP STORE 7 XEC	20	S UA QDE					QU - 2+0	INT 33
/ DUP STORE / XEC	20 2+0	S UA QDI.	2.0	2•0 2•0 2•0	2.0 2.0 2.0	2•0 2•0 2•0	οŭ 	INT 33
7 DUP STORE 7 XEC	20 2.0 2.0 2.0	S UA QDI 1.0 2.0 2.0	2.0	2.0	2.0	2.0	QU - 2+0	INT 33
/ DUP STORE / XEG 1 2 12345	20 2.0 2.0 2.0 2.0 2.0 10	1.0 2.0 2.0 2.0 1.0	2.0 2.0 2.0	2.0	2.0	2.0	2+0 2+0	INT 33
/ DUP STORE / XEQ 1 2 2345	20 2.0 2.0 2.0 2.0	S UA QD[ 1+0 2+0 2+0 2+0	2.0	2.0	2.0	2.0	QU - 2+0	

ð

f

Ъ

Ð

## RUNGE-KUTTA INTEGRATION

#### **Problem Description**

A differential equation of the form:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x, y)$$

is integrated with initial conditions as specified in a parameter card. The differential equation is defined in the form of a function subprogram that is provided by the user.

#### Program

### Description

The Runge-Kutta integration program consists of a main routine, RKINT, one subroutine, RK2, from the Scientific Subroutine Package, and one user-supplied function subprogram, FUN, which defines the differential equation to be integrated.

## Capacity

Up to 500 values of the integral may be tabulated.

## Input

I/O Specification Card

Each integration requires a control card with the following format:

Columns	Contents	For Sample Problem
1 - 10	Initial value of $X = X_0$	1.0
11 - 20	Initial value of $Y = Y(X_0)$	0.0

Columns	Contents	For Sample Problem
21 - 30	Step size	0.01
31 - 35	Number of steps required between tabulated values	10
36 - 40	Total number of tabulated values required	30

The first three parameters consist of up to ten digits.

# (FORMAT (F10.0))

The last two parameters consist of up to four digits plus a blank.

(FORMAT (15))

Multiple parameter cards may be used.

A blank card terminates the run.

Data Cards

None.

Blank Card

Run termination.

## Deck Setup

The deck setup is shown in Figure 30.

Sample

A listing of the input cards for the sample problem is presented at the end of the sample main program.

Output

Description

The values for the initial conditions and the tabulated values of the integral are printed.

# Sample

The output listing for the sample problem is shown in Figure 31.

# **Program Modification**

Noting that storage problems may result, as previously described in "Sample Program Description", the maximum number of tabulated values acceptable to the sample program may be increased. Input data in a different format can also be handled by providing a specific format statement.

1. Modify the DIMENSION statement in RKINT so that array A is as large as the number of tabulated values.



Figure 30. Deck setup (Runge-Kutta integration)

SOLUTION OF DY/DX=FUN(X+Y) BY RK2 SUBROUTINE

H≡	0.010	x0≖	1.000	¥0=	0.000
x					
1.	10		0.9531	0136E	-01
1.	20		0.1823	2139E	00
1.	30		0.2623	6397E	00
1.	40		0.3364	7167E	00
1.	50		0.4054	5423E	00
1.	60		0.47000	0247E	00
1.	70		0.53062	2677E	00
1.6	80		0.58776	8464E	00
1.9	90		0.64185	142E	00
2.0	00		0.69314	432E	00
2.1	10		0.74193	394E	00
2.2	20		0.78845	346E	00
2.3			0.83290		
2.4			0.87546		
2.5			0,91628		
2.6			0.95550		
2.7			0.99324		
2.9			0.10296		
2.9			0.10647		
3.0			0.10986		
3.1	-		0.11313	924E	01
3.2			0.11631		
3.3			0.11939		
3.4			0.12237		-
3.5			0.12527		
3.6			0.12809		
3.7			0.13083	-	
3.8			0.13349		01
3.9			0.13609		01
4.0	U		0.13862	772E	01

Figure 31. Output listing

2. Changes to the format of the parameter card may be made by modifying FORMAT statement 1.

The user-supplied function subprogram FUN may be replaced by any function subprogram having the same name and parameter list. In this way, the user may define any desired first-order differential equation.

## **Operating Instructions**

The sample program for Runge-Kutta integration is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

#### Error Messages

None.

Sample Program for Runge-Kutta Integration of a Given Function with Tabulated Output - RKINT

#### Purpose:

Integrates the function subprogram FUN using the initial conditions contained in control cards. Produces tabulated output.

## Remarks:

I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required: RK2

FUN - User-supplied function subprogram giving DY/DX=FUN(X, Y)

# Method:

Reads control card containing initial values of X and Y, step size, number of steps desired between tabulated values, and number of tabulated values required. Program then enters RK2 to perform integration. Multiple control cards can be used on the same function.

// FOR *IOCS(CARD, TYPEWRITER, 1132 PRINTER) #ONE WORD INTEGERS NUM INTEGENS Sample Projaam for Kunge-kutta integration of a jiven function rkint with tabulated dutput – rkint External fun rkint ĉ MITH TSOLATED JUPOT - KAINT
EXTERNAL FUN
THE FOLLOWING DIMENSION MUST dé AS LARGE AS THE MAXINUM NUMBER DE TADULATED VALUES DÉSIRED DIMENSION ALSOOJ
FORMAT (JFIO.0.215)
FORMAT(///XX.44HSQLUTION OF DY/DX=FUN(X,Y) BY RK2 SUBROUTINE///, 110X.244445,73.24.34X6=F7.35.24.34Y0=,FT.3///12X.14X.18X.44Y(X1//)
FORMAT(/10X,F3.2.10X.E15.8)
FORMAT(/10X,F3.2.10X.E15.8)
FORMAT(JONL CAND CONTAINING ITEMS LISTED UNDER METHOD.
IO READ(MY.11X0,YUH.JWT.FENT CHECK IF GARD IS BLARK. IF SJ. RETURN.
IF IENT201,40,20
WRITE HEADING INFORMATION. RKINT RKINT RKINT 
 AKIMT
 3

 AKIMT
 6

 AKIMT
 10

 AKIMT
 10

 RKIMT
 12

 KRIMT
 11

 RKIMT
 12

 KRIMT
 12

 KKIMT
 14

 RKIMT
 16

 KKIMT
 16

 KKIMT
 16

 KKIMT
 17

 RKIMT
 18

 RKIMT
 12

 RKIMT
 12

 RKIMT
 13

 RKIMT
 13

 RKIMT
 13

 RKIMT
 13

 RKIMT
 14

 RKIMT
 15

 RAINT
 20

 RKIMT
 21

 RKIMT
 20

 RKINT
 20

 RKINT
 20

 RKINT
 20

 RKINT
 20
 с UNEUK IF JARD IS BLANK. IF SJ, RETURN. IFITENT 120,40,20 WRITE HEADING INFORMATION. 20 WRITE MAN INFORMATION. 20 WRITE MAN INFORMATION. 20 WRITE JUTVI STEPPEDATIONTION STEPPEDATIONTION JD JO I=1,IENT JD JO ISIC STEPPEDATIONTOCK FUR AUDITIONAL CONTROL CARD. GU JO LO 40 STOP END С c c с с ENO // DUP *STORE WS UA RKINT // XEQ RKINT

10 30

#### 1.0 0.0 .01 FUNCTION FUN(X, Y) RETURN

1 2

FUN FUN FUN

2

2

b

₹

5

# POLYNOMIAL ROOTS

# **Problem Description**

The real and complex roots are computed for a real polynomial with given coefficients. Multiple sets of coefficients may be processed.

# Program

# Description

The polynomial roots sample program consists of a main routine, SMPRT, and one subroutine, POLRT, from the Scientific Subroutine Package.

### Capacity

Roots for polynomials of order 36 or less may be computed.

# Input

# I/O Specification Card

Each set of data requires a control card with the following format:

Columns	Contents	For Sample Problem
1	Blank	
2 - 5	Up to four-digit identifi- cation code	360
6 - 8	Blank	·
9 - 10	Order of polynomial	9

The first parameter consists of up to four digits without decimal point (I4).

The second parameter consists of up to two digits with no decimal point (I2). The order of the polynomial must be less than or equal to 36.

# Data Cards

Data cards are assumed to have seven fields of ten columns each. The decimal point may appear anywhere in the field, or be omitted, but the number must be right-justified. The number in each field may be preceded by blanks. Columns 71 to 80 of the data cards may be used for identification, sequence numbering, etc. If there are more than seven coefficients, the values should continue from card to card with seven values per card until the number of values has been reached that is one greater than the order of the polynomial. The first coefficient is for the constant term of the polynomial and the last coefficient for the highest order term. Fields with zero coefficients may be left blank.

# Blank Card

Run termination.

Deck Setup

The deck setup is shown in Figure 32.

Sample

A listing of the input cards for the sample problem is presented at the end of the sample main program.

# Output

# Description

The identification code, the polynomial order, the input coefficients, and the real and complex roots are printed.

Sample

The output listing of the sample problem is shown in Figure 33.

# **Program Modification**

The maximum order of the polynomial acceptable to the sample program is fixed by the subroutine POLRT. However, input data in a different format can be handled by providing a specific format statement.

1. The sample program can accept polynomials up to the maximum 36th order, which is allowed by the subroutine.

2. Changes to the format of the parameter card and data cards can be made by modifying FORMAT statements 10 and 40, respectively, in main sample program SMPRT.

#### **Operating Instructions**

The polynomial roots sample program is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

#### Error Messages

The following conditions will result in error messages:

1. The order of the polynomial specified in the control card is less than one: ORDER OF POLY-NOMIAL LESS THAN ONE.



Figure 32. Deck setup (polynomial roots)

The program will go on to the next set of data. 2. The order of the polynomial specified in the control card is greater than 36: ORDER OF POLY-NOMIAL GREATER THAN 36.

The program will go on to the next set of data.

REAL AND COMPLEX ROOTS OF A POLYNOMIAL USING SUBRDUTINE POLRT						
FOR POLYNOWIAL	360 OF ORDER 9					
THE INPUT COEFFI	CIENTS ARE					
-0.1000000E 01 0.1000000E 01	0.00000000E 00 0.0000000E 00 0.00000000E 00 0.00000000					
REAL ROOT	COMPLEX ROOT					
0.7206227E 00	-0.100428E 01 0.2436272E 00 -0.2436272E 00 -0.2436272E 00 -0.2609007E 00 -0.7609007E 00 -0.7609007E 00					
Figure 33.	Output listing					

3. The subroutine POLRT is unable to determine a root after 500 iterations on eight different starting values: UNABLE TO DETERMINE ROOT. THOSE ALREADY FOUND ARE ... ¥

0

声

The program will print all the roots that were computed and then go to the next set of data.

Sample Program for Real and Complex Roots of a Real Polynomial - SMPRT

## Purpose:

Computes the real and complex roots of a real polynomial whose coefficients are input.

# Remarks:

The order of the polynomial must be greater than one and less than thirty-seven. I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required: POLRT

Method:

''

Reads a control card containing the identification code and the order of the polynomial whose coefficients are contained on the following data cards. The coefficients are then read and the roots are computed.

More than one control card and corresponding data can be processed. Execution is terminated by a blank control card.

#### SOLUTION OF SIMULTANEOUS EQUATIONS

## **Problem Description**

A solution is obtained for a set of simultaneous equations by the method of elimination using largest pivotal divisor. Both the input data and the solution values are printed. This procedure is repeated until all sets of input data have been processed.

#### Program

## Description

The solution of simultaneous equations sample program consists of a main routine, SOLN, and four subroutines:

SIMQ	are from the Scientific Subroutine
LOC	Package

MATIN MXOUT

are sample subroutines for matrix input and output

# Capacity

The sample program will solve for 40 equations. The general rules for program modifications are described later.

## Input

#### I/O Specification Card

A control card with the following format must precede each matrix of coefficients:

Columns	Contents	For Sample Problem
1 - 2	Blank	
3 - 6	Up to four-digit identifi- cation code (numeric only)	1
7 - 10	Number of rows in matrix	10
11 - 14	Number of columns in matrix (same as number of rows)	10

Each matrix must be followed by a card with a 9punch in column 1. This, in turn, is followed by the constant vector.

# Data Cards

Data cards are assumed to have seven fields of ten columns each. The decimal point may appear anywhere in a field, or be omitted, but the number must be right-justified. The number in each field may be preceded by blanks. Equation coefficients must be punched by row. A row may continue from card to card. However, each new row must start in the first field of the next card. The vector of constants is punched in continuous data fields following the 9 card. Columns 71 to 80 of data cards may be used for identification, sequence numbering, etc.

A blank card after the last set of input data terminates the run.

# Deck Setup

The deck setup is shown in Figure 34.



Figure 34. Deck setup (solution of simultaneous equations)

## Sample

A listing of input cards for the sample problem is presented at the end of the sample main program.

# Output

# Description

The original matrix is printed for any sized array. Each six-column grouping is headed with the matrix code number, dimensions, and storage mode (always 0 in this sample program). Columns and rows are headed with their respective number. The original vector of constants is also printed. The solution values are then listed. This output is given for each case to be processed.

# Sample

b

Ð

The output listing for the sample problem is shown in Figure 35.

## **Program Modifications**

Noting that storage problems may result, as previously discussed in "Sample Program Description", the size of the maximum problem acceptable to the sample program can be increased. Output of the solution values in a different format can be handled by providing a specific format statement.

1. Changes to the DIMENSION statement of the main program, SOLN. The dimension of array A must be greater than or equal to the maximum number of elements in the matrix (N x N). The dimension of array B must be greater than or equal to N.

2. Insert the same number N in the third argument of the CALL MATIN statement (statement 25) in SOLN.

3. Changes to the format of the solution values may be made by modifying FORMAT statement 21 in SOLN.

LUTION OF SINULTANEOUS EQUATIONS

VATR 1X		1 10 ROWS	10 COLUMNS	STORAGE	HODE 0		
	COLU	4N 1	2	3	•	5	۵
ROW	1	0+100000E 01	0.6644086 00	0.760100E UG	0.750750E CO	0.4299426 00	0.3329105-02
ROM	2	0.664408E 00	0.100000E 01	0.627180€ 00	0.519465E 00	0.354757E 00	0.274700E-02
40×	3	0.760100E 00	0.627180E 00	0.100000E 01	G.705684E 60	0.405851E 00	0+314260E-02
ROW	4	0.750750E 00	U.619465E 00	0.708684E 00	0.100000E 01	0.400559E 00	0.310390E-02
RCW	5	0.429942E 00	0.354757E GD	0.405851E 00	0.400859E 00	0,1000002 01	0.177760E-02
ROW	6	0.332910E-02	0.274700E-02	0.314260E-02	0-3103905-02	0.177760E-02	0.100000E 01
ROW	7	0.728478E 00	0.601087E 00	D.667660E 00	0.679201E 00	G.388967E 00	0.3011V0E-02
ROM	8	0.675176E 80	0.557106E 00	0.637344E 40	0.629504E 00	0.360507E 00	0.279150E-02
804	9	0.0635918 00	0.712572E UU	0.81520ZE 00	0.805174E 00	0.461109E 00	0-357050E-02
ROW	10	0.744684E 00	0.6144596 00	0.702958E 00	0.694310E 00	0.397620E 00	0.3078906-02
MATRIX		1 10 ROWS	10 COLUMNS	STORAGE	NODE Q		
	COLUP	NN 7	8	,	10		
ROW	1	0.728478E 00	0+675176E 00	0.863591E 00	C.744684E 00		
ROW	2	0.601087£ 00	0.557106E 00	0.712572E UD	0.616659E 00		
ROW	3	0.487660E 00	0.637344E 00	0.815202E 00	0.7U2958E 00		
ROW	٠	0.679201E-00	0+629504E 00	0.805174E 00	0+6943106 00		
ROW	5	0.388967E D0	0+360507E 00	0.461109E 00	0+397620E 00		
ROW	6	0.3011936-02	0.279150E-02	0.357050E-02	0.307890E-02		
ROW	7	0.100000€ 01	0*970858E 00	0.781287E 00	0.673713E Q0		
ROW	8	0.610829E 00	0.100000E 01	0.7241216 00	0.024418E 00		
ROW	9	G.781287E 00	0.7241216 00	0.100000E 01	0.798668E 00		
ROW	10	0.673713E 00	0.624418E 00	0.798668E 00	0.1000D0E 01		
ORIGINAL 8	VECTO	OR .					
1		0.110000E 03					
2		0.1000006 02					
;		0.145000E 03 -0.500000E 02					
9		0.442000E 02 -0.140000E 02					
8		0.385000E 02 0.220000E 02					
10		0.165000E 04					
SOLUTION V	ALUES						
1 2		-0.283123E 03					
1		-0.567240E 03 -0.516456E 03					
4 5 6 7		-0.299155E 02 -0.179352E 03					
7		0.435176E 02 -0.479274E 03					
10		-0.230431E 03 -0.210172E 04 0.480974E 04					
10		014839/4E 04					
END OF CAS	E						

Figure 35. Output listing

The matrix listing is set for 120 print positions across the page, and double spacing. This can be changed by means of the last two arguments in the CALL MXOUT statement in SOLN (statement 65).

# **Operating Instructions**

The sample program for the solution of simultaneous equations is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

# Error Messages

The following error conditions will result in messages:

1. Reserved storage area is too small for matrix: DIMENSIONED AREA TOO SMALL FOR INPUT MATRIX (matrix code no.). GO ON TO NEXT CASE.

2. Matrix of coefficients is not square: ROW AND COLUMN DIMENSIONS NOT EQUAL FOR MATRIX (matrix code no.). GO ON TO NEXT CASE.

3. Number of data cards does not correspond to that required by parameter card: INCORRECT NUMBER OF DATA CARDS FOR MATRIX (matrix code no.). EXECUTION TERMINATED.

4. Singular input matrix: MATRIX IS SINGULAR. GO ON TO NEXT CASE.

Error conditions 1, 2, and 4 allow the computer run to continue. Error condition 3, however, terminates execution and requires another run to process succeeding cases.

Sample Main Program - SOLN

### Purpose:

Solution of a set of simultaneous equations.

### Remarks:

I/O specifications transmitted to subroutines by COMMON.

Input card:

- Column 2 MX Logical unit number for output.
- Column 4 MY Logical unit number for input.

Subroutines and function subprograms required:

- SIMQ MATIN MXOUT
- LOC

# Method:

A matrix of simultaneous equations coefficients and a vector of constants are read from the standard input device. The solution is obtained and listed on the standard output device. This procedure is repeated for other sets of equations until a blank card is encountered.

*IOCS(CARD, TYPEWRITER, 1132 PRINTER)

*ONÉ	WORD INTEGERS		
c	SAMPLE MAIN PROGRAM - SULN	SULN	1
C	MATRIX IS JIMENSIONED FOR 1600 ELEMENTS. THEREFORE, NUMBER OF	SCLN	
C	EQUATIONS TO BE SOLVED CANNUT EXCEED 40 UNLESS DIMENSION	SCEN	2 3
С	STATEMENT IS CHANGED	SULN	4
	DIMENSION A(160C),B(40)	SULN	5
	COMMON MX; HY	SULN	6 7
1.	O FORMAT(7/7/35H SOLUTION OF SIMULTANEOUS EQUATIONS)	SULN	7
1	1 FORMAT(//45H DIMENSIONED AREA TOO SMALL FOR INPUT MATRIX ,14)	SCLN	8
	2 FURMAT(//21H EXECUTION TERMINATED)	SULN	9
1.	3 FORMATI//48H ROW AND COLUMN DIMENSIONS NOT EQUAL FOR MATRIX ,14)	SOLN	10
	4 FURMATE//43H INCURRECT NUMBER OF DATA CARDS FOR MATKER ,14)	SCLN	11
	5 FORMATI//19H GO UN TO NEXT CASE)	SOLN	12
	6 FORMAT(//39H STRUCTURE CODE IS NOT LERO FOR MATRIX, 14)	SULN	13
	7 FORMAT(///18H ORIGINAL B VECTOR.///)	SULN	14
	8 FORMAT(////16H SULJTION VALUES,////)	SELN	15
	9 FURMAT(//19H MATRIX IS SINGULAR)	SOLN	10
	U FURMATI 7F10.0)	SULN	17
	1 FURMAT(16,10X,E16.5)	SOLN	18
	2 FORMATI//12H END OF CASE)	SOLN	19
2.	3 FORMAT(212)	SCLN	ŻG
	READ(2,23)MX,MY	SULN	21
	WRITE(HX, LC)	SULN	22
23	5 CALL MATIN (ICOD, A, 1600, N, M, MS, IER)	SULN	23
	1F1N) 3C, 95, 3C	SOLN	24
30	) iF(IER-1) 45,35,40	SOLN	ź۵



1

ή

Ś

4

1 2						
000100100						
1.0000000	0.6644085	0.7601008	0.7507505	0.4299425	0.0033291	0+7284786
	0.8635910					
0.6644085	1.0000000	0.6271802	0+6194650	0.3547574	0.0027470	0.6010878
	0.7125728					
	0.6271802		0.7086843	0+4058519	0+0031426	0+6876602
	0.8152021		*******			
	0.6194650		1.0000000	0.4008693	0-0031039	0.4792011
	0.8051740		1.00000000	014000372		
	0.3547574		-	1.0000000	0.0017774	A. 9080479
				110000000	0.001///0	013009075
	0.4611099					
	0.0027470		0.0031039	0.0017776	1.0000000	0+0030119
	0.0035705					
0.7284786	0.6010878	0.6876602	0.6792011	0+3889673	0.0030119	1+0000000
	0.7812874					
0.6751766	0.5571068	0.6373449	0.6295047	0.3605070	0.0027915	0+6108296
1.0000000	0+7241215	0.6244183				
0.8635910	0+7125728	0.8152021	0+8051740	0+4611099	0.0035705	0+7812874
0.7241215	1.0000000	0.7986682				
			0.6943108	0.3976204	0.0030789	0+6737132
	0.7986682					
9						
110.0	-120-0	10.	145.	-50.	44.20	-14.
38.5		1650.		-500	44860	
30+3	220	10200				

SUBROUTINE MATIN

PURPOSE Reads control card and natrix data elements from logical UNIT 5
USAGE CALL MATIN(ICUDE,A,ISIZE,IRUN,ICOL,IS,IER)
OFSCRIPTION OF PARAMETERS
ICODE-UPON RETURN, ICODE WILL CONTAIN FOUR DIGIT IDENTIFICATION CODE FROM MATRIX PARAMETER CARD
A -DATA AREA FOR INPUT MATRIX
ISTZE-NUMBER OF ELEMENTS DIMENSIONED BY USER FOR AREA A
IROW -UPON RETURN, IROW WILL CONTAIN ROW DIMENSION FROM Matrix parameter card
ICAL -UPON RETURN. ICOL WILL CONTAIN COLUMN DIMENSION FROM
MATRIX PARAMETER CARD
IS -UPON RETURN, IS WILL CONTAIN STORAGE HODE CODE FROM
MATRIX PARAMETER CARD WHERE
IS=0 GENERAL MATRIX
IS-I SYMMETRIC MATRIX
IS=2 DIAGONAL HATRIX
IER -UPON RETURN, IER WILL CONTAIN AN ERROR CODE WHERE
IER=1 ISIZE IS LESS THAN NUMBER OF ELEMENTS IN
INPUT NATRIX
IFR=2 INCORRECT NUMBER OF DATA CARDS
REMARKS NONE
SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

INDO SUBBOUTINE ASSUMES THAT INPUT MATRIX CONSISTS OF PARAMETER CARD FOLLOWED BY DATA CARDS PARAMETER CARD MAS THE FOLLOWING FORMAT COL. 3- 6 UP TO FOUR DIGIT IDENTIFICATION CODE COL. 3- 6 UP TO FOUR DIGIT IDENTIFICATION CODE COL. 3- 6 UP TO FOUR DIGIT IDENTIFICATION CODE COL. 11-14 NUMBER OF COLUMNS IN MATRIX COL.11-16 STORAGE MODE OF MATRIX 1 SYMMETRIC MATRIX D - GENERAL MATRIX D - GENERAL MATRIX D - GENERAL MATRIX D - GENERAL MATRIX TATA CARDS ABE ASSUMED TO HAVE SEVEN FIELDS OF TEN COLUMNS EACH. DECIMAL POINT HAY APPERA MAYWHERE IN A FIELD. IF NO DECIMAL POINT IS INCLUDED, IT IS ASSUMED THAT THE DECIMAL FIELD MAY BE PRECEDED BY BLANKS. DATA ELEMENTS MUST BE PUNCHED BY ROW. A ROM MAY CONTINUE FROM FORMING HAR AFT NEXT CARDS. ONLY THE UPPER TRIANGULAR POINT IS ASVMETING ON DATA CARDS. THE END OF THE ID CALUMN FIELD. NUMBER IN EACH FIELD MAY BE PRECEDED BY BLANKS. DATA ELEMENTS MUST BE PUNCHED BY ROW. A ROM MAY START IN THE FIRST FIELD DF THE NEXT CARD. ONLY THE UPPER TRIANGULAR POLATION OF A SVMETRIC ON DATA CARDS. THE PIRST ELEMENT OF ACANENT ON ANY MULL BE THE DIAGOMAL ELEMENT FOR A MATRIX WITH SYMMETRIC OR DIAGOMAL STORAGE MODE. COLUMNS TI-BO UP DATA CARDS NAY BE UNDATED AFTS ADD. THE START IN THE FIRST FIELD OF THE INGOUND ESTIMAL FORMER FOR A MATRIX WITH SYMMETRIC OR THE DIAGOMAL ELEMENT FOR A MATRIX WITH SYMMETRIC OR UNDATA CARDS. THE AND AND AND THE DIAGOMAL MATRIX ARE CONTAINED DIAGOMAL STORAGE MODE. COLUMNS TARENT OF ACANEN ANY BE UNDATED AFT ACARDS. THE OF ANY ANY AND ANY APE UNDATED ASTORAGE MODE. COLUMN THAN ANY APE ON A CARD. WITH A 9 PUNCH IN COLUMN 1. RETHOD

		SUBROUTINE MATINE CODE, A, ISIZE, IROW, ICOL, IS, IER)	MATIN
		OTMENSION A(1)	MATIN 2
		DIMENSION CARD(8)	MATIN
		CUMMON MX.MY	MATIN 4
		FORMAT(7F10-0)	MATIN
			MATIN
		FURMAT(16,214,12)	MATIN
	,	FGRMAT(IL)	MATIN
		100 = 7	MATIN
		IER=0	MATIN L
		READI MY, 2) ICHDE, IROW, ICOL, IS	4AT12 1
		CALL LOCIIROW, ICOL, ICNT, IROW, ICOL, IS)	MATIN L
		IF(ISIZE-ICNT)6.7.7	MATIN 1
		IFR=1	MATIN 1
		IF (1CNT)38,38,8	MATIN 1
	6	1COL T= 1COL	MATIN 1
		IROCR#1	HATIN 1
С		COMPUTE NUMBER OF CARDS FOR THIS ROW	NATIN 1
	11	IRCOS=( 1COLT-1)/[ DC+1	HATIN L
		IF(15-1)15,15,12	NATIN 2
	12	1 P C () S = 1	44TIN 7
с		SET UP LIDOP FOR NUMBER OF CARDS IN ROW	
	15	D() 31 K=1+19C()S	MATIN 2
		READ(MY,1)(CARD(1),1=1,1DC)	MATIN 2
С		SKIP THROUGH DATA CARDS IF INPUT AREA TOO SMALL	4AT ['+ 2
		IF([ER)16+16+31	44TIN 2
	16	L=0	MAT [N 2
c		COMPUTE COLUMN NUMBER FOR FIRST FIELD IN CURRENT CARD	MATES 2
1		JS = (K-1) + TDC + ICOL - ICOLT + 1	MATIN 2

Ø

ą

USAGE CALL MXCUT(ICCDE,A,N,M,MS,LINS,IPOS,ISP)

CALL PADDITIOUE ANALYSE ANALYS

# REMARKS NONE

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED LOC

RETHOD THIS SUBROUTINE CREATES A STANDARD OUTPUT LISTING OF ANY SIZED ARRAY WITH ANY STORAGE MODE. EACH PAGE IS HEADED WITH THE CODE NUMBER DIRENSIONS AND STORAGE RODE OF THE ARRAY. EACH COLUMN AND ROW IS ALSO HEADED WITH ITS RESPECTIVE NUMBER.

#### SUBROUTINE MXDUT

PURPOSE PRODUCES AN OUTPUT LISTING DF ANY SIZED ARRAY ON LOGICAL UNIT 3

	SUBROUTINE MXOUT (ICODE,A,N,M,MS,LINS, [POS,ISP)	MXOUF L
	DIMENSION A(1),B(8)	MXOUT 2
	COMMON MX,MY	MXOUT 3
	L FORMATI////SX, THMATRIX ,15,6X,13,5H ROWS,6X,13,8H COLUMNS,	4X0UT 4
	18X+13HSTORAGE MODE +(1+/)	MXOUT 5
	2 FORMAT(12X,8HCOLJMN ,7(3X,13,10X1//)	4X0UT 6
	4 FORMAT(7X.4HROW .13.7(E16.6))	4X00T 7
	5 FORMATL/.7X.4HRD# .13.7(E16.6))	HXOUT 5
		4X00T 9
c	WRITE HEADING	MXOUT LO
c	NEND=1POS/16-1	MXDUT 11
		MXOUT 12
	LEND = (LINS/ISP)-LO	MXOUT 13
	10 LSTRT=1	<b>MXOUT 14</b>
	20 WRITE(MX, 1) ICODE, N, M, MS	NXOUT 15
	JNT=J+NEND-1	MX0UT 16
	IF(JNT-M133, 33, 32	MXOUT 17
	32 JNT=4	
	33 CONTINUE	MXOUT 14
	WRITELMX,211JCUR,JCUR=J,JNT1	MXOUT 19
	LTEND = LSTRT+LEND-1	MXOUT 20
	DD 80 L=LSTRT,LTEND	MXOUT 21
с	FORM OUTPUT ROW LINE	<b>MXOUT 22</b>
	DO 55 K×1,NEND	4XOUT 23
	KK=K	MXDUT 24
	JT = J+K−1	MX0UT 25
	CALL LOCIL.JT.IJNT.N.M.MS}	MXDUT 26
	B(K)=0.0	4XOUT 27
	[F1[JNT]50,50,45	MXDUT 29
	45 B(K)=A(IJNT)	MXOUT 29 '
•	50 CONTINUE	4XOUT 30
c	CHECK IF LAST COLUMN. IF YES GD TO 60	MXOUT 31
	IF(JT-4) 55,60,60	<b>NXOUT 32</b>
	55 CONTINUE	MX001 33
с	END OF LINE, NOW WRITE	<b>MXOUT 34</b>
•	60 1F(15P-1)65,65,70	<b>MXOUT 35</b>
	65 WRITE(MX,4)L,(B(JW),JW=1,KK)	MXDUT 36
	GO TO 75	MXOUT 37
	70 WRITE(MX.5)L.(B(JW).JW=1.KK)	<b>₩X</b> PUT 38
c	IF END OF ROWS.GO CHECK COLUMNS	MXOUT 39
	75 1F(N=L)85.85.80	MXOUT 40
	80 CONTINUE	<b>MXOUT 61</b>
c	WRITE NEW HEADING	MXCUT 42
· ·	LSTRT=LSTRT+LEND	MXDUT 43
	GU TO 20	4001 44
c	END OF COLUMNS, THEN RETURN	4X007 44
c	85 1F(JT-4)90,95,95	4XOUT 45
	a0 ]=]1+1 42 1+171-4140*42*42	4X001 45
	GO TO 10	4X007 48
	95 RFTURN	MXEUT 49
	END	MXDUT 50

International Business Machines Corporation Data Processing Division 112 East Post Road, White Plains, N.Y. 10601 (USA Only)

IBM World Trade Corporation 821 United Nations Plaza, New York, New York 10017 (International) Printed in U.S.A. H20-0252-3

췋

駒