1130 Scientific Subroutine Package (1130-CM-02X)

Programmer's Manual

Abstract

The Scientific Subroutine Package (SSP) is a collection of 121 FORTRAN subroutines divided, for the sake of presentation, into three groups: statistics, matrix manipulation, and other mathematics. It is a collection of input/outputfree computational building blocks that can be combined with a user's input, output, or computational routines to meet his needs. The package can be applied to the solution of many problems in industry, science, and engineering.

This is a major revision obsoleting H20-0252-2. The storage requirements in Appendix A have been changed. Other changes are indicated by a vertical line

to the left of the text.

This edition applies to Version 1, Modification 2 of the 1130 Scientific Subroutine Package ($1130-C M-02 X$) and to all subsequent versions and modifications until otherwise indicated in new editions or Technical Newsletters.

Changes are continually made to the specifications herein. Before using this publication in connection with the operation of IBM systems, consult the latest 1130 SRL Newsletter, N20-1130, for the editions that are applicable and current.

Copies of this and other IBM publications can be obtained through IBM branch offices. Address comments concerning the contents of this publication to IBM, Technical Publications Department, 112 East Post Road, White Plains, N.Y. 10601
Programming 2
Overall Rules of Usage 3
General Rules 3
Matrix Operations 3
Variable Dimensioning 3
Storage Compression 4
Matrix Element References 5
Introduction 1
Areas of Application 1
Statistics 1
Matrix Manipulation 1
Other Mathematical Areas 1
Characteristics 1
Design Philosophy 2
Choice of Algorithms 2
Program Modification 7
Optimization of Time 7
Extended Precision 7
Format of the Documentation 8
Subroutine Descriptions 8
Sample Program Descriptions 8
Machine Configuration 8
Guide to Subroutines 9
Subroutine Listings and Writeups 13
Appendix A. Storage Requirements 128
Appendix B. Accuracy of Subroutines 133
Appendix C. Timing 137
Appendix D. Sample Programs 138

The IBM 1130 Scientific Subroutine Package makes available a mathematical and statistical subroutine library. The user may supplement or modify the collection to meet his needs. This library includes a wide variety of subroutines to perform the functions listed below, but is not intended to be exhaustive in terms of either functions performed or methods used.

AREAS OF APPLICATION

Individual subroutines, or a combination of them, can be used to carry out the listed functions in the following areas:

Statistics

- Analysis of variance (factorial design)
- Correlation analysis
- Multiple linear regression
- Polynomial regression
- Canonical correlation
- Factor analysis (principal components, varimax)
- Discriminant analysis (many groups)
- Time series analysis
- Data screening and analysis
- Nonparametric tests
- Random number generation (uniform, normal)

Matrix Manipulation

- Inversion
- Eigenvalues and eigenvectors (real symmetric case)
- Simultaneous linear algebraic equations
- Transpositions
- Matrix arithmetic (addition, product, etc.)
- Partitioning
- Tabulation and sorting of rows or columns
- Elementary operations on rows or columns

Other Mathematical Areas

- Integration of given or tabulated functions
- Integration of first-order differential equations
- Fourier analysis of given or tabulated functions
- Bessel and modified Bessel function evaluation
- Gamma function evaluation
- Legendre function evaluation
- Elliptic, exponential, sine, cosine, Fresnel integrals
- Finding real roots of a given function
- Finding real and complex roots of a real polynomial
- Polynomial arithmetic (addition, division, etc.)
- Polynomial evaluation, integration, differentiation

CHARACTERISTICS

Some of the characteristics of the Scientific Subroutine Package are:

- All subroutines are free of input/output statements.
- Subroutines do not contain fixed maximum dimensions for the data arrays named in their calling sequences.
- All subroutines are written in 1130 FORTRAN.
- Many matrix manipulation subroutines handle symmetric and diagonal matrices (stored in economical, compressed formats) as well as general matrices. This can result in considerable saving in data storage for large arrays.
- The use of the more complex subroutines (or groups of them) is illustrated in the program documentation by sample main programs with input/output.
- All subroutines are documented uniformly.

CHOICE OF ALGORITHMS

The algorithms in SSP have been chosen after considering questions of storage, accuracy, and past experience with the algorithm. Conservation of storage has been the primary criterion except in those situations where other considerations outweighed that of storage. As a result, many compromises have been made both with respect to level of sophistication and execution time. One such compromise is the use of the Runge-Kutta integration technique rather than predictor-corrector methods. A departure from the primary criterion of storage is illustrated by the algorithm for matrix inversion. If only row pivoting had been used, the subroutine would not have required working storage and would have needed fewer FORTRAN statements for implementation. However, pivoting on both rows and columns was chosen because of the accuracy requirement for matrix inversion in statistical operations.

PROGRAMMING

The subroutines in SSP have been programmed in 1130 FORTRAN. Many of the larger functions such as those in statistics have been programmed as a series or sequence of subroutines.

An example of the use of sequences of subroutines is the statistical function called factor analysis. Factor analysis is a method of analyzing the intercorrelations within a set of variables. It determines whether the variance in the original set of variables can be accounted for adequately by a smaller number of basic categories; namely, factors. In the Scientific Subroutine Package, factor analysis is normally performed by calling the following five subroutines in sequence:

1. CORRE - to find means, standard deviations, and correlation matrix
2. EIGEN - to compute eigenvalues and associated eigenvectors of the correlation matrix
3. TRACE - to select the eigenvalues that are greater than or equal to the control value specified by the user
4. LOAD - to compute a factor matrix
5. VARMX - to perform varimax rotation of the factor matrix

The multiple use of subroutines is illustrated by the fact that subroutine CORRE is also utilized in the multiple linear regression and canonical correlation. Subroutine EIGEN is used in canonical correlation as a third level subroutine.

GENERAL RULES

All subroutines in the Scientific Subroutine Package (SSP) are entered by means of the standard FORTRAN CALL statement. These subroutines are purely computational in nature and do not contain any references to input/output devices. The user must therefore furnish, as part of his program, whatever input/ output and other operations are necessary for the total solution of his problem. In addition, the user must define by DIMENSION statements all matrices to be operated on by SSP subroutines as well as those matrices utilized in his program. The subroutines contained in SSP are no different from any usersupplied subroutine. All of the normal rules of FORTRAN concerning subroutines must, therefore, be adhered to with the exception that the dimensioned areas in the SSP subroutine are not required to be the same as those in the calling program.

The CALL statement transfers control to the subroutine and replaces the dummy variables in that subroutine with the value of the actual arguments that appear in the CALL statement if the argument is a constant or a variable. When the argument is an array or function subprogram name, the address of the array or subprogram is transmitted to the called subroutine.

The arguments in a CALL statement must agree in order, number, and type with the corresponding arguments in the subroutine. A number may be passed to a subroutine either as a variable name in the argument list or as a constant in the argument list. For example, if the programmer wishes to add matrix AR1 to matrix AR2 in order to form matrix AR3 using the SSP subroutine GMADD and if AR1 and AR2 are both matrices with ten rows and twenty columns, either of the two following methods could be used:

Method 1
CALL GMADD(AR1, AR2, AR3, 10, 20)

Method 2
$\mathrm{N}=10$
$\mathrm{M}=20$

CALL GMADD(AR1, AR2, AR3, N, M)

Many of the subroutines in SSP require the name of a user function subprogram or a FORTRANsupplied function name as part of the argument list
in the CALL statement. If the user's program contains such a CALL, the function name appearing in the argument list must also appear in an EXTERNAL statement at the beginning of that program.

For example, the SSP subroutine RK2 integrates a function furnished by the user. It is therefore necessary for the user to program the function and give the name of the function to RK2 as a parameter in the CALL statement. If the user wished to integrate the function $\frac{d y}{d x}=3.0 x+2.0 Y$, his main program might look like:

EXTERNAL DERY

His function subprogram could be:

$$
\begin{aligned}
& \text { FUNCTION DERY }(\mathrm{X}, \mathrm{Y}) \\
& \text { DERY }=3.0 * \mathrm{X}+2.0^{*} \mathrm{Y} \\
& \text { RETURN } \\
& \text { END }
\end{aligned}
$$

The user's main program gives the name of the programmed function to RK2 by including that name in the CALL statement and in an EXTERNAL statement. RK2, in turn, goes to the function DERY each time it requires a value for the derivative. The subroutine RK2 is not modified by the programmer. The dummy function name FUN in subroutine RK2 is, in effect, replaced by the name appearing in the user's CALL statement during execution of the subroutine.

MATRIX OPERATIONS

Special consideration must be given to the subroutines that perform matrix operations. These subroutines have two characteristics that affect the format of the data in storage--variable dimensioning and data storage compression.

Variable Dimensioning

Those subroutines that deal with matrices can operate on any size array limited, in most cases, only by the available core storage and numerical analysis considerations. The subroutines do not contain fixed maximum dimensions for data arrays named in their calling sequence. The variable dimension capability
has been implemented in SSP by using a vector storage approach. Under this approach, each column of a matrix is immediately followed in storage by the next column. Vector storage and two-dimensional storage result in the same layout of data in core, so long as the number of rows and columns in the matrix are the same as those in the user's dimension statement. If, however, the matrix is smaller than the dimensioned area, the two forms of storage are not compatible.

Consider the layout of data storage when operating on a 5 by 5 array of numbers in an area dimensioned as 10 by 10 . If the programmer has been using double subscripted variables in the normal FORTRAN sense, the 25 elements of data will appear as shown in Figure 1. FORTRAN stores double subscripted data by column based on the column length specified in the DIMENSION statement. Thus, in the example, sequential core locations would contain data elements 1 to 5 , five blank locations, data elements 6 to 10 , five blank locations, etc. The matrix subroutines take a vector approach in storing arrays by column, which means that they assume the data is stored as shown in Figure 2.

	Column							
	1	23	4	56	7	8	9	10
1	(1)	(6) (11)	(16)	(21)				
2	(2)	(7) (12)	(17)					
3	(3)	(8) (13)	(18)					
4	(4)	(9) (14)						
Row 5	(5)	(10) (15)	(20)					
6								
7								
8								
9								
10								

Figure 1. Double subscripted data storage

(1)	(11)	(21)
(2)	(12)	(22)
(3)	(13)	(23)
(4)	(14)	(24)
(5)	(15)	(25)
(6)	(16)	
(7)	(17)	
(8)	(18)	
(9)	(19)	
(10)	(20)	

Figure 2. Vector storage

As has been stated previously, for the case where the dimensioned area is the same as the matrix size, the two approaches will have the same data storage layout and the user can proceed in a regular double subscripted fashion. If, however, he is operating in a mode where the dimensioned area is larger than the arrays and if he wishes to use the SSP subroutines, he must be certain that his data is stored in the vector fashion illustrated by Figure 2. A subroutine called ARRAY is available in SSP to change from one form of storage to the other. In addition, a subroutine called LOC is available to assist in referencing elements in an array stored in the vector fashion.

Storage Compression

Many subroutines in SSP can operate on compressed forms of matrices, as well as the normal form. Using this capability, which is called "storage mode", considerable savings in data storage can be obtained for special forms of large arrays. The three modes of storage are termed general, symmetric, and diagonal. In this context, general mode is one in which all elements of the matrix are in storage. Symmetric mode is one in which only the upper triangular portion of the matrix is retained columnwise in sequential locations in storage. (The assumption is made that the corresponding elements in the lower triangle have the same value.) Diagonal mode is one in which only the diagonal elements of the matrix are retained in sequential locations in storage. (The off-diagonal elements are assumed to be zero.) This capability has been implemented using the vector storage approach. To illustrate the effect of the storage mode capability, refer to Figure 3. A symmetric matrix is shown in Figure 3A. If this array is to be manipulated using the SSP matrix subroutines with storage mode capability, then the array may be stored as shown in Figure 3B. This is the upper triangular portion of the array and corresponds to a storage mode code of 1 . Symmetric matrices of order N may be stored in a vector only $\mathrm{N}^{*}(\mathrm{~N}+1) / 2$ locations rather than $\mathrm{N} * \mathrm{~N}$ locations. For larger matrices, this will be a saving of almost one half.

The effect of storage mode when dealing with diagonal matrices is even more pronounced. Diagonal matrices of order N may be stored in a vector only N locations long. Figure 3 C shows a 3 by 3 diagonal matrix. If this array is to be manipulated using the SSP matrix subroutines with storage mode capability, then only the diagonal elements of the array need be stored. This is shown in Figure 3D and corresponds to a storage mode code of 2.

General matrices of order N by M require a vector $\mathrm{N}^{*} \mathrm{M}$ long and use a storage mode code of 0 .

A

C

D

Figure 3. Storage mode

Thus, if the programmer wishes to use SSP subroutines on matrix A, which is general, matrix B, which is symmetric, and matrix C, which is diagonal, and all matrices are 10 by 10 or smaller, the dimension statement in his program could be:

DIMENSION $\mathrm{A}(100), \mathrm{B}(55), \mathrm{C}(10)$

Matrix Element References

Subroutine LOC in the Scientific Subroutine Package may be used to reference elements within a matrix that is stored in a vector fashion and may involve storage mode compression. The calling sequence for LOC is:

CALL LOC (I, J, IJ, N, M, MS)
The capabilities of subroutine LOC are as follows: If reference is required to the element at row I and column J of matrix A whose dimensions are N by M and if the storage mode code is MS, then a CALL to the LOC subroutine as shown above will result in the
computation of the subscript IJ such that A(IJ) is the desired element. The parameters represented by I, $J, N, M, M S$ can either be integer variables or integer constants. The parameter represented by IJ is an integer variable. Note that the user must dimension the array A as a single subscripted variable to meet the restrictions of some FORTRAN systems. To illustrate the use of LOC: If reference is required to the element at row 2 , column 2 of the 3 by 3 symmetric matrix illustrated in Figure 3A and stored as shown in Figure 3B (storage mode code 1), the sequence might be:

CALL LOC (2, 2, IJ, 3, 3, 1)

The value of IJ computed by LOC would be 3 ; meaning that the proper element is the third element in the specially stored symmetric matrix (Figure 3B). If the storage mode code is for a symmetric matrix where only the upper triangular portion is retained in storage and if I and J refer to an element in the lower triangular portion, IJ will contain the subscript for the corresponding element in the retained upper triangle. Thus if the user wanted the element in row 3, column 1 of the matrix shown in Figure 3A and the array was stored as in Figure 3B, the statement:

$$
\text { CALL LOC }(3,1, \mathrm{IJ}, 3,3,1)
$$

would result in IJ having the value of 4 ; that is, the fourth element in Figure 3B. If a matrix is stored as shown in Figure 3D (storage mode 2) and LOC is used to compute the subscript for an off-diagonal element (I not equal to J), the result in IJ will be zero. This is due to the fact that the element does not exist in storage. In this situation, the user must not utilize IJ as a subscript. Following is an illustration of how to take care of this condition and also handle the case where the current storage mode is unknown.

If the user wishes to set a variable X equal to the element in the third row and fourth column of a 10 by 10 array named A for either a symmetric, diagonal, or general matrix, the required program can be implemented for any storage mode MS as follows:

CALL LOC (3, 4, IJ, 10, 10, MS)

$$
\mathrm{X}=0.0
$$

$$
\operatorname{IF}(\mathrm{LJ}) 20,30,20
$$

$20 \mathrm{X}=\mathrm{A}(\mathrm{IJ})$
30

MS is assumed to have been set at 0,1 , or 2 at some earlier point in the program. This sequence would then set the proper value for X given any storage mode that might be encountered. The second and third statements take care of the off-diagonal condition for a matrix with a storage mode of 2 .

As a special case, LOC can be used to compute the total length of an array in storage with a statement such as:

CALL LOC (N, M, IJ, N, M, MS)

For example, if the user has a 3 by 3 matrix whose storage mode is 1 (Figure 3B), the statement:

CALL LOC (3, 3, IJ, 3, 3, 1)
will result in IJ being set to 6 . This is not only the proper subscript to reference element 3,3 but is also the actual length of the vector in storage.

The information contained in the fifth parameter (number of columns) in the calling sequence for LOC is not actually used in the calculations performed by LOC. It has been included in the calling sequence in case the user wishes to expand LOC to cover other forms of data storage.

PROGRAM MODIFICATION

OPTIMIZATION OF TIME

The subroutines in SSP are designed to conserve storage. If the user wishes to exchange space for time, there are several ways in which SSP may be modified to effect this end. For example, many of the subroutines in SSP make use of LOC subroutine to handle vector storage and storage mode referencing. The execution time of these subroutines can be substantially reduced by implementing LOC in Assembler Language. (The distributed version of LOC is implemented in FORTRAN.) Another approach is to incorporate the function of LOC within each subroutine and thus avoid the "setup" costs of repeated calls to LOC. This has the effect of reducing execution time but at some cost in subroutine storage and in the ease with which other modes of storage such as triangular matrix storage or storage by row rather than by column can be implemented. Figure 4 shows how matrix addition and the LOC capabilities can be implemented within the same subroutine.

In the mathematical area, the user may find it desirable to implement entirely different algorithms for integration. The use of techniques that automatically adjust the integration interval depending on the rate of change of the function will often have the effect of reducing total execution time.

EXTENDED PRECISION

The accuracy of the computations in many of the SSP subroutines is highly dependent upon the number of significant digits available for arithmetic operations. Matrix inversion, integration, and many of the statistical subroutines fall into this category. All of the subroutines will compile correctly for extended precision by placing the *EXTENDED PRECISION control card at the appropriate place in the deck. Note that 1130 FORTRAN does not allow the intermixing of regular and extended precision in the same program.

Figure 4. Inline LOC

The major portion of this manual consists of the documentation for the individual subroutines and the sample programs.

SUBROUTINE DESCRIPTIONS

A guide to the subroutines, designed to aid in locating any particular subroutine, is given in the pages that follow. Each of the subroutine descriptions contains a program listing and, in some cases, a mathematical description. If there are restrictions on the ranges of values that the parameters may take, these are included under the remarks section of each subroutine description. References to books and periodicals will be found under the method section of the description. The mathematical description pages do not, in most cases, indicate the derivation of the mathematics. They are intended to indicate what mathematical operations are actually being performed in the subroutines. Some of the major statistical functions are performed by a sequence of SSP subroutines. An abstract describing this sequence will be found just before the description of the first subroutine that is specific to this function.

SAMPLE PROGRAM DESCRIPTIONS

The sample program listings are given in Appendix D. They are immediately preceded by a guide to aid in locating the sample program calling a particular SSP subroutine or (where applicable) typical user-written subroutine. Each sample program consists of a detailed description including information on the problem, the program, input, output, program modification, operating instructions, error messages, and machine listings of the programs, input data and output results. Timings for these programs is given in Appendix C. The sample programs have been chosen to (1) illustrate a sequence of SSP subroutines, (2) illustrate the use of a complex subroutine, or (3) show the way in which one member of a large set of related subroutines might be used.

As part of the development of the sample programs, some special sample subroutines have been
implemented that may prove useful to the programmer. These include:

HIST - Print a histogram of frequencies
MATIN - Read an input matrix into storage in vector form for use by SSP matrix subroutines

PLOT - Plot several variables versus a base variable

MXOUT - Print a matrix stored in the SSP vector format

Listings of the above subroutines are included in the sample program documentation in this manual.

The sample programs all require 8 K words of core for execution and several of them require (in addition) the overlay capabilities of the Disk Monitor.

MACHINE CONFIGURATION

The machine configuration necessary to run SSP/1130 is dependent upon the use that is to be made of the package. All of the subroutines are I/O free, compile to less than 1500 words of core, and are, therefore, configuration independent. However, many of the routines are intended to be used in conjunction with other subroutines or to solve problems using large arrays of data. For this reason, many of the subroutines are not useful with less than 8 K words of core.

The following items should be taken into consideration when deciding upon the applicability of this package to a particular machine configuration:

1. The size of problem which may be executed on a given 1130 depends upon the number of subroutines used, the size of the compiled subroutines, the size of the compiled main program, the size of the control program, and the data storage requirements.
2. SSP/1130 programs will be distributed in card form only.
3. Several of the sample problems require 8 K words of core and the use of the Disk Monitor, and the remaining sample problems require 8 K words of core.

It is possible to estimate program sizes by using the manual Core Requirements for 1130 FORTRAN (C20-1641) in conjunction with the core size listing found in Appendix A.
Page Page

STATISTICS

Data Screening

TALLY--totals, means, standard 13 deviations, minimums, and maximums
BOUND--selection of observations within bounds
SUBST --subset selection from observation matrix
ABSNT --detection of missing data 16
TAB1--tabulation of data (1 variable) 16
TAB2--tabulation of data (2 variables) 18SUBMX--build subset matrix
Elementary Statistics
MOMEN--first four moments 20
TTSTT--tests on population means
Correlation
CORRE--means, standard deviations, and correlations
Multiple Linear Regression
ORDER--rearrangement of inter- correlations
MULTR--multiple regression and correlation
Polynomial Regression
GDATA--data generation
Canonical Correlation
CANOR--canonical correlation 30
NROOT--eigenvalues and eigenvectors ofa special nonsymmetric matrix20
Analysis of Variance 4

AVDAT--data storage allocation

AVDAT--data storage allocation

AVDAT--data storage allocation 34 34 34
AVCAL- $\Sigma \Sigma$ and Δ operation
AVCAL- $\Sigma \Sigma$ and Δ operation
AVCAL- $\Sigma \Sigma$ and Δ operation 35 35 35
MEANQ--mean square operation
MEANQ--mean square operation
MEANQ--mean square operation 36 36 36
Discriminant Analysis
Discriminant Analysis
Discriminant Analysis
Discriminant Analysis
DMATX--means and dispersion matrix
DMATX--means and dispersion matrix
DMATX--means and dispersion matrix
DMATX--means and dispersion matrix 38 38 38 38
DISCR--discriminant functions
DISCR--discriminant functions
DISCR--discriminant functions
DISCR--discriminant functions 39 39 39 39
Factor Analysis
Factor Analysis
Factor Analysis
Factor Analysis
TRACE--cumulative percentage of
TRACE--cumulative percentage of
TRACE--cumulative percentage of
TRACE--cumulative percentage of 41 41 41 41
LOAD--factor loading
LOAD--factor loading
LOAD--factor loading 42 42 42
VARMX--varimax rotation
VARMX--varimax rotation
VARMX--varimax rotation
VARMX--varimax rotation 43 43 43 43
Time Series
Time Series
Time Series
Time Series
AUTO--autocovariances
AUTO--autocovariances
AUTO--autocovariances
AUTO--autocovariances 46 46 46 46
CROSS--crosscovariances
CROSS--crosscovariances
CROSS--crosscovariances
CROSS--crosscovariances 47 47 47 47
SMO--application of filter coefficients
SMO--application of filter coefficients
SMO--application of filter coefficients
SMO--application of filter coefficients 48 48 48 48
EXSMO--triple exponential smoothing
EXSMO--triple exponential smoothing
EXSMO--triple exponential smoothing 49 49 49
Nonparametric Statistics
Nonparametric Statistics
Nonparametric Statistics
Nonparametric Statistics
CHISQ-- χ^{2} test for a contingency table
CHISQ-- χ^{2} test for a contingency table
CHISQ-- χ^{2} test for a contingency table
CHISQ-- χ^{2} test for a contingency table 50 50 50 50
UTEST--Mann-Whitney U-test
UTEST--Mann-Whitney U-test
UTEST--Mann-Whitney U-test
UTEST--Mann-Whitney U-test 52 52 52 52
TWOAV--Friedman two-way analysis of
TWOAV--Friedman two-way analysis of
TWOAV--Friedman two-way analysis of
TWOAV--Friedman two-way analysis of 53 53 53 53 variance variance variance variance
QTEST --Cochran Q-test
QTEST --Cochran Q-test
QTEST --Cochran Q-test
QTEST --Cochran Q-test 54 54 54 54
SRANK--Spearman rank correlation
SRANK--Spearman rank correlation
SRANK--Spearman rank correlation
SRANK--Spearman rank correlation 55 55 55 55
KRANK--Kendall rank correlation
KRANK--Kendall rank correlation
KRANK--Kendall rank correlation
KRANK--Kendall rank correlation 56 56 56 56
WTEST--Kendall coefficient of
WTEST--Kendall coefficient of
WTEST--Kendall coefficient of
WTEST--Kendall coefficient of 58 58 58 58

RANK--rank observations
TIE--calculation of ties in ranked observations

59
59 9 Random Number Generators

RANDU--uniform random numbers 60
MATHEMATICS OPERATIONS
Special Matrix Operations
MINV--matrix inversion
EIGEN--eigenvalues and eigenvectors of areal, symmetric matrix
Matrices
GMADD--add two general matrices 64
GMSUB--subtract two general matrices 64
GMPRD--product of two general matrices 65
GMTRA--transpose of a general matrix 65
GTPRD--transpose product of two general matrices
MADD--add two matrices 66
MSUB--subtract two matrices 67
MPRD--matrix product (row into column) 67
MTRA--transpose a matrix 68
TPRD--transpose product 68
MATA--transpose product of matrix by itself
SADD--add scalr to matrix 69
SSUB--subtract scalr from a matrix 70
SMPY--matrix multiplied by a scalr 70
SDIV --matrix divided by a scalr 71
RADD--add row of one matrix to row of another matrixCADD--add column of one matrix to col-umn of another matrix
SRMA--scalr multiply row and add to another rowSCMA--scalr multiply column and add toanother column
RINT--interchange two rows73
CINT--interchange two columns 74
RSUM--sum the rows of a matrix 74
CSUM--Sum the columns of a matrix 75
RTAB--tabulate the rows of a matrix 75
CTAB--tabulate the columns of a matrix 76
RSRT--sort matrix rows 77
CSRT--sort matrix columns 78
RCUT--partition row-wise 79
CCUT--partition column-wise 79
RTIE--adjoin two matrices row-wise 80
CTIE--adjoin two matrices column-wise 80
MCPY--matrix copy 81
XCPY--copy submatrix from given matrix 81
RCPY--copy row of matrix into vector 82
CCPY--copy column of matrix into vector 82
DCPY--copy diagonal of matrix into vector 83
SCLA-matrix clear and add scalr 83
DCLA--replace diagonal with scalr 84
MSTR--storage conversion 84
MFUN--matrix transformation by a 85function
RECP--reciprocal function for MFUN 85
LOC--location in compressed-stored 86matrix
ARRAY--vector storage-double dimen- 86sioned storage conversion
Integration and Differentiation
QSF--integral of equidistantly tabulated function by Simpson's Rule 87
QATR--integral of given function by trapezoidal rule using Romberg's 88
extrapolation method

Ordinary Differential Equations

RK1--integral of first-order differential equation by Runge-Kutta method

RK2--tabulated integral of first-order
differential equation by Runge-Kutta
method
RKGS--solution of a system of first-order differential equations with given initial values by the Runge-Kutta method

Fourier Analysis

FORIF --Fourier analysis of a given function

FORIT--Fourier analysis of a tabulated function

Special Operations and Functions

$$
\text { GAMMA--gamma function } 97
$$

LEP--Legendre polynomial
BESTJT-J Bessel function 99
BESY--Y Bessel function 101
BESI--I Bessel function 103
BESK--K Bessel function 104
CELI--elliptic integral of the first kind 105
CEL2--elliptic integral of the second kind 106
EXPI--exponential integral 108
SICI--sine cosine integral 110
CS--Fresnel integrals 112
Linear EquationsSIMQ--solution of simultaneous linear,algebraic equations

Nonlinear Equations

RTWI--refine estimate of root by 116 Wegstein's iteration
RTMI--determine root within a range by Mueller's iteration
RTNI--refine estimate of root by 119 Newton's iteration
Roots of Polynomial
POLRT--real and complex roots of a real polynomial
Polynomial Operations
PADD--add two polynomials 122
PADDM--multiply polynomial by constant 122 and add to another polynomial
PCLA--replace one polynomial by another 122
PSUB--subtract one polynomial from 123
another
PMPY--multiply two polynomials 123
PDIV--divide one polynomial by another 124
PQSD--quadratic synthetic division of a 124
polynomial
PVAL--value of a polynomial 124
PVSUB--substitute variable of polynomial 125 by another polynomial
PCLD--complete linear synthetic division 125
PILD--evaluate polynomial and its first 125
derivative
PDER--derivative of a polynomial 126
PINT--integral of a polynomial 126
PGCD--greatest common divisor of two 126 polynomials
PNORM--normalize coefficient vector of polynomial

The following pages give the subroutine listings. Wherever necessary, additional explanatory matter on the routine, or a discussion of the underlying mathematics has been included.

Statistics - Data Screening

TALLY

Purpose:

Calculate total, mean, standard deviation, minimum, maximum for each variable in a set (or a subset) of observations.

Usage:
CALL TALLY(A, S, TOTAL, AVER, SD, VMIN, VMAX, NO, NV)

Description of parameters:
A - Observation matrix, NO by NV
S - Input vector indicating subset of A. Only those observations with a nonzero $\mathrm{S}(\mathrm{J})$ are considered. Vector length is NO.
TOTAL - Output vector of totals of each variable. Vector length is NV.
AVER - Output vector of averages of each variable. Vector length is NV.
SD - Output vector of standard deviations of each variable. Vector length is NV.
VMIN - Output vector of minima of each variable. Vector length is NV.
VMAX - Output vector of maxima of each variable. Vector length is NV.

- Number of observations.

NV - Number of variables for each observation.

Remarks:
None.
Subroutines and function subprograms required: None.

Method:
All observations corresponding to a non-zero element in S vector are analyzed for each variable in matrix A. Totals are accumulated and minimum and maximum values are found. Following this, means and standard deviations are calculated. The divisor for standard deviation is one less than the number of observations used.

```
    Shbroutine tallyta, S, fotal,aver, SD,vMin,vmax,non,nvi
```



```
        ClEAR output vectors and initialize vhin,vmax
        OO 1 K=1,NV
        TOTal(K)=0.0
        MVER(K)=0.0
    VHIM(K)=1.0E3日
c VMAX(K)=1.0E3G
        SCMT=0.0
        007 J=I,NO
        IFISIJII 2,7.2
    c SCNTASCNT+I.O
        calculate
        00 6 {=1,NV
        Total(l)=TOTAL(I!+aliJ)
        iflaliJi-vMinilll 3.4.4
    * vin(li=aliJ)
    4 IFIA!!J)-VMAXIII) 6.6.5
    5 vaxill)=AllJ)
```



```
    8 sotilisur
c 7 Continueglate meavs and stamdard deviayions
        00 g I=1;NV
```



```
    RETUR
```

	$\overline{2}$

Purpose:

Select from a set (or a subset) of observations the number of observations under, between and over two given bounds for each variable.

Usage:
CALL BOUND (A, S, BLO, BHI, UNDER, BETW, OVER, NO,NV)

Description of parameters:
A - Observation matrix, NO by NV
S - Vector indicating subset of A. Only those observations with a non-zero $S(J)$ are considered. Vector length is NO.
BLO

- Input vector of lower bounds on all variables. Vector length is NV.
BHI - Input vector of upper bounds on all variables. Vector length is NV.
UNDER - Output vector indicating, for each variable, number of observations under lower bounds. Vector length is NV.
BETW - Output vector indicating, for each variable, number of observations equal to or between lower and upper bounds. Vector length is NV.
OVER - Output vector indicating, for each variable, number of observations over upper bounds. Vector length is NV.

Remarks:
None.
Subroutines and function subprograms required: None.

Method:

Each row (observation) of matrix A with corresponding non-zero element in S vector is tested. Observations are compared with specified lower and upper variable bounds and a count is kept in vectors under, between, and over.

SUBRCuTINE BDUNDTA, S, BLO, BHI, UNDER, BETM, OVER,NO,NVI

CLEAR DUTPUT VECTORS.
OO $L K=1, N V$
UNDER $1 K 1=0,0$
UNDER(K)=0.0
BETW(K) $=0.0$
1 OVERIKI=0.0
no $\mathrm{B}_{\mathrm{J}}^{\mathrm{J}=1 \text {, } \mathrm{NO}}$
1J=J-NO
IFISIJII 2,8,2

- Compare observations with ajunos

Do $7=1$, NV
TF(AAIJT-BLOC! 1) 5.3 .3
$\begin{array}{ll}\text { 3F(AIIJ)-BLItII) } & 5,3,3 \\ \text { IF }\end{array}$
CgUNT

GO TO 7

7 CONTINUF
a CONTINUE
conitinu
RFTURA
RFTURM
END

SUBST

Purpose:

Derive a subset vector indicating which observations in a set have satisfied certain conditions on the variables.

Usage:

CALL SUBST (A, C, R, B, S, NO, NV, NC) Parameter B must be defined by an external statement in the calling program.

Description of parameters:

A - Observation matrix, NO by NV
C - Input matrix, 3 by NC, of conditions to be considered. The first element of each column of C represents the number of the variable (column of the matrix A) to be tested, the second element of each column is a relational code as follows:

1. for less than
2. for less than or equal to
3. for equal to
4. for not equal to
5. for greater than or equal to
6. for greater than The third element of each column is a quantity to be used for comparison with the observation values. For example, the following column in C :
92.5
causes the second variable to be tested for greater than or equal to 92.5 .
R - Working vector used to store intermediate results of above tests on a single observation. If condition is satisfied, $R(I)$ is set to 1 . If it is not, $R(I)$ is set to 0 . Vector length is NC.
B - Name of subroutine to be supplied by the user. It consists of a Boolean expression linking the intermediate values stored in vector R. The Boolean operators are '*' for 'and', ' + ' for 'or'. Example:

SUBROUTINE BOOL (R, T)
DIMENSION R(3)
$\mathrm{T}=\mathrm{R}(1) *(\mathrm{R}(2)+\mathrm{R}(3))$
RETURN
END
The above expression is tested for
R(1).AND. (R(2). OR. R(3))

S - Output vector indicating, for each observation, whether or not proposition B is satisfied. If it is, $\mathrm{S}(\mathrm{I})$ is non-zero. If it is not, $\mathrm{S}(\mathrm{I})$ is zero. Vector length is NO.
NO - Number of observations.
NV - Number of variables.
NC - Number of basic conditions to be satisfied.

Subroutines and function subprograms required:
B The name of actual subroutine supplied by the user may be different (e.g., BOOL), but subroutine SUBST always calls it as B. In order for subroutine SUBST to do this, the name of the user-supplied subroutine must be defined by an EXTERNAL statement in the calling program. The name must also be listed in the "CALL SUBST" statement. (See usage above.)

Method:
The following is done for each observation.
Condition matrix is analyzed to determine which variables are to be examined. Intermediate vector R is formed. The Boolean expression (in subroutine B) is then evaluated to derive the element in subset vector S corresponding to the observation.

```
SUBROUTINE SUBSTIA,C,R,B,S,NO,NY,NC
    GIMENSION Al!l,Ct11,R!11,5t11
    CO-9 I=1,NO
    10=1-NO
    K=-2
    ClEaR R vectoa
    R\J1=0.0
    k=k+3
        k=k+3
    l=C(K)
    la=1G+12*NO
    form r vectar
        2aA(1A)-C(k+2)
        GOTO(1,2,3,4,5,5},160
    lF(9) T,B,日
    IF(0) 7,7,8
    IF(a) 1,8,7
    IF101 8,7,7
    \IF{Q:8,8,
    % RlJ=1.0
c concalculate s vectim
    9 CALL B(R,S\\1)
    lom, RERN
```


Purpose:

Test missing or zero values for each observation in matrix A.

Usage:

CALL ABSNT (A, S,NO,NV)

Description of parameters:

A - Observation matrix, NO by NV.
S - Output vector of length NO indicating the following codes for each observation:

1 There is not a missing or zero value.
0 At least one value is missing or zero.
NO - Number of observations.
NV - Number of variables for each observation.

Remarks:
None.

Subroutines and function subprograms required: None.

Method:

A test is made for each row (observation) of the matrix A. If there is not a missing or zero value, 1 is placed in $S(J)$. If at least one value is missing or zero, 0 is placed in $S(J)$.

```
    SuHQDITINE ARSNTIA,S,V7,NV
    UIMENSIUN AllI,SII
    on >0 J=1,N(1
    lJ=J-NG
    (i) 10) i=1,NV
    IJ=1J**O
    [F[A(IJ)] 10,5.1)
    lFIAIIJ)
    S(J)an
    0 GOTIN20
    IO confinue
    ODCJNTMNG
    CNO
```


TAB1
This subroutine tabulates for a selected variable in an observation matrix, the frequencies and percent frequencies over class intervals. Interval size is computed as follows:

$$
\begin{equation*}
\mathrm{k}=\frac{\mathrm{UBO}_{3}-\mathrm{UBO}_{1}}{\mathrm{UBO}_{2}-2} \tag{1}
\end{equation*}
$$

where $\mathrm{UBO}_{1}=$ given lower bound

$$
\mathrm{UBO}_{2}=\text { given number of intervals }
$$

$$
\mathrm{UBO}_{3}=\text { given upper bound }
$$

If $\mathrm{UBO}_{1}=\mathrm{UBO}_{3}$, the subroutine finds and uses the minimum and maximum values of the variable.

A table lookup is used to obtain the frequency of the i-th class interval for the variable, where $\mathrm{i}=1,2, \ldots, \mathrm{UBO}_{2}$. Then, each frequency is divided by the number of observations, n, to obtain the percent frequency:

$$
\begin{equation*}
P_{i}=\frac{100 F_{i}}{n} \tag{2}
\end{equation*}
$$

In addition, the following statistics are calculated for the variable:

Total: $T=\sum_{i=1}^{n} X_{i j}$
where $\mathbf{j}=$ selected variable
Mean: $\quad \overline{\mathrm{X}}=\frac{\mathrm{T}}{\mathrm{n}}$

Standard deviation:

$$
\begin{equation*}
s=\sqrt{\frac{\sum_{i=1}^{n} x_{i j}^{2}-\left(\sum_{i=1}^{n} x_{i j}\right) 2 / n}{n-1}} \tag{5}
\end{equation*}
$$

Subroutine TAB1

Purpose:

Tabulate for one variable in an observation matrix (or a matrix subset), the frequency and percent frequency over given class intervals. In addition, calculate for the same variable the total, average, standard deviation, minimum, and maximum.

Usage:
CALL TAB1 (A, S, NOVAR, UBO, FREQ, PCT, STATS, NO, NV)

Description of parameters:
A - Observation matrix, NO by NV.
S - Input vector giving subset of A. Only those observations with a corresponding non-zero $\mathrm{S}(\mathrm{J})$ are considered. Vector length is NO.
NOVAR - The variable to be tabulated.
UBO - Input vector giving lower limit, number of intervals and upper limit of variable to be tabulated in $\mathrm{UBO}(1)$, $\mathrm{UBO}(2)$ and $\mathrm{UBO}(3)$ respectively. If lower limit is equal to upper limit, the program uses the minimum and maximum values of the variable. Number of intervals, $\mathrm{UBO}(2)$, must include two cells for values under and above limits. Vector length is 3.
FREQ - Output vector of frequencies. Vector length is UBO(2).
PCT - Output vector of relative frequencies. Vector length is UBO(2).
STATS - Output vector of summary statistics, i.e., total, average, standard deviation, minimum and maximum. Vector length is 5.
NO - Number of observations.
NV - Number of variables for each observation.

Remarks:
None.
Subroutines and function subprograms required: None.

Method:
The interval size is calculated from the given information or optionally from the minimum and maximum values for variable NOVAR. The frequencies and percent frequencies are then calculated along with summary statistics. The divisor for standard deviation is one less than the number of observations used.

```
        SUBROUTINE TAGI(A,S,NOVAR,UBO,FREG,PCT,STATS:NO,NV)
        OIMENSION A(I),SII).UBOI3I,FREQ(1),PCTIII,STATSISI
        OMENSION WEOI3
    OO 5 1=1,3
c CALCULATE MIN AND MAX
        VM!N=1.0E38
        VMAXX=1,0F38
        lu=NO*(NOVAR-1)
    IF=!j+1
    10 IF(A!TJI-VMIN) 15,20.20
    15 VMIN=A(IJ) (J) (VMAX) 30.30.29
    25 vMAX=A(IJ)
    30 CONTINUE
        STATS(4)EvMIN
        STATS(5)=VMAX LIMITS
        IF(UBOII)-UBO(3)) 40,35.40
        35 UBO(1)\VMIN
        UBO(3)=VMAX
        INN*UBO(2)
        clear outout areas
        MO 45 I=1,INN
    43 PRET(1)=0.0
    00 S0 I=1,3
C SO STATSII=0.0 CALCULATE INTERVAL SILE
c SINT=AES(\UBO(3)-UAO(1)1/(UBO(2)-2.0)1
        TEST SUBSET VECTOR
        SCNT-O.O
            liJ=NO#(NOVAR-1)
        CO 75 JOL:NO
        lJ=1J+1
    55 SCNT=SCNT+1.0
        SCNT=SCNT+1.0
            STATS(1)=STATS(1)+A(1J)
            STATS(3)=STATS(3)
        TEMP=UBO(I)
        00 80 I=1.INTX
        CO SO I=1HNNTX
        TEMP=TEMD+SINT (TAMJTEMD) 70.60.80
        IF(A(IJ)-TEMP) 75,65,05
    FREO(INN) = FREO(INN) +1.0
    60 TO 75
    70 FRFQI:IMFREOI:I+1.0
75 CONTINUE
            calculate relative frequencies
    OO BO I=I.INN
    OCT(I)=FREO[11+100.0/5CNT
        CALCULATE MEAN AND STANDARD DEVIATION
    IF(SCNT-1.0) 85.85.90
    45 STATS(2)=0.0
    STATS(3)=0
    GOTSO $5
    STATS(2)=STATS(1)/SCNT
    9500 100 1=1,3
    UBO(l)=WBO!
    lugO(t)=W
```



```
    [F(StJ)) 10.30.10
        MNTEST SUBSET VECTOR (1)/(UBO(2)-2.0)
            NT =5CNT+1:0
        1+100.0/5CNT

TAB2
This subroutine performs a two-way classification of the frequency, percent frequency, and other statistics over given class intervals, for two selected variables in an observation matrix.

Interval size for each variable is computed as follows:
\[
\begin{equation*}
\mathrm{k}_{\mathrm{j}}=\frac{\mathrm{UBO}_{3 \mathrm{j}}-\mathrm{UBO}_{1 \mathrm{j}}}{\mathrm{UBO}_{2 \mathrm{j}}-2} \tag{1}
\end{equation*}
\]
where \(\mathrm{UBO}_{1 \mathrm{j}}=\) given lower bound
\[
\begin{aligned}
& \mathrm{UBO}_{2 \mathrm{j}}=\text { given number of intervals } \\
& \mathrm{UBO}_{3 \mathrm{j}}=\text { given upper bound }
\end{aligned}
\]
\[
\mathrm{j}=1,2
\]

If \(\mathrm{UBO}_{1 \mathbf{i}}=\mathrm{UBO}_{3 \mathrm{i}}\), the subroutine finds and uses the \(\mid\) minimum and maximum values of the \(j^{\text {th }}\) variable.

A frequency tabulation is then made for each pair of observations in a two-way table as shown in Figure 5.

Symbols \(\geq\) and \(<\) in Figure 5 indicate that a count is classified into a particular interval if the data point is greater than or equal to the lower limit of that interval but less than the upper limit of the same interval.

Then, each entry in the frequency matrix, \(\mathrm{F}_{\mathbf{i j}}\), is divided by the number of observations, \(N\), to obtain the percent frequency:
\[
\begin{equation*}
P_{i j}=\frac{100 F_{i j}}{N} \tag{2}
\end{equation*}
\]
where \(\mathrm{i}=1,2, \ldots, \mathrm{UBO}_{21}\)
\[
\mathrm{j}=1,2, \ldots, \mathrm{UBO}_{22}
\]

As data are classified into the frequency matrix, the following intermediate results are accumulated for each class interval of both variables:
1. Number of data points, \(\mathfrak{n}\)
2. Sum of data points, \(\sum_{i=1}^{n} x_{i}\)
3. Sum of data points squared, \(\sum_{i=1}^{n} x_{i}^{2}\)

From these, the following statistics are calculated for each class interval:

Mean: \(\bar{X}=\frac{\sum_{i=1}^{n} x_{i}}{n}\)
Standard deviation:
\[
\begin{equation*}
s=\sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}-\left(\sum_{i=1}^{n} x_{i}\right) 2 / n}{n-1}} \tag{4}
\end{equation*}
\]


Figure 5. Fréquency matrix

\section*{Subroutine TAB2}

\section*{Purpose:}

Perform a two-way classification for two variables in an observation matrix (or a matrix subset) of the frequency, percent frequency, and other statistics over given class intervals.

Usage:
CALL TAB2 (A, S, NOV, UBO, FREQ, PCT, STAT1, STAT2,NO,NV)

Description of parameters
A - Observation matrix, NO by NV
S - Input vector giving subset of A. Only those observations with a corresponding non-zero \(\mathrm{S}(\mathrm{J})\) are considered. Vector length is NO.
NOV - Variables to be cross-tabulated. \(\mathrm{NOV}(1)\) is variable \(1, \mathrm{NOV}(2)\) is variable 2. Vector length is 2.
- 3 by 2 matrix giving lower limit, number of intervals, and upper limit of both variables to be tabulated (first column for variable 1, second column for variable 2). If lower limit is equal to upper limit for variable 1, the program uses the minimum and maximum values on each variable. Number of intervals must include two cells for under and above limits.
FREQ - Output matrix of frequencies in the two-way classification. Order of matrix is INT1 by INT2, where \(\mathbb{I N T 1}\) is the number of intervals of variable 1 and INT2 is the number of intervals of variable 2. INT1 and INT2 must be specified in the second position of respective column of UBO matrix.
PCT - Output matrix of percent frequencies, same order as FREQ.
STAT1 - Output matrix summarizing totals, means, and standard deviations for each class interval of variable 1. Order of matrix is 3 by INT1.
STAT2 - Same as STAT1 but over variable 2. Order of matrix is 3 by INT2.
NO - Number of observations.
NV
- Number of variables for each observation.

Remarks:
None.
Subroutines and function subprograms required: None.

Method:
Interval sizes for both variables are calculated from the given information or optionally from the minimum and maximum values. The frequency and percent frequency matrices are developed. Matrices STAT1 and STAT2 summarizing totals, means, and standard deviations are then calculated. The divisor for standard deviation is one less than the number of observations used in each class interval.
```

 SURRCUTINE TAB2IA,S,NOV,UPO,FREO,PCT,STATL,STATZ,NO,NVI
 OIMENSION A(1),5(1).NOV(2).UBO(3.2),FREOI\).PCT(1),STAT1/1)
 1STAT2(2).SINT(2)
 DOES
 OD 5 }\quad=1=1,
 5 WAOII,J)=UBO(I.J)
 DO 4O I=1,2
 DO 40 1-1,2
 -UBO(3,11)40,10,40
 VMAX=-1.0E38
 IJ=NO#(NOV\1:-1)
 DO 35 J=1,NO
 lJ=1J+1
 IF(Al|J)-VMIN! 20.25,25
 15 IF(AlIJ)-VMIN: 20.25
 20 VMTM=A(!J)
 30 VMAX=A!!J)
 CONTINUE
 UBO(3.1)=VMax
 40 CONTINUE
 45 DO SALCULATE INTERVAL SIZE
    ```

```

 clear output areas
 lNT1=UBO(2,1)
 INT2=UBOI2:2,
 INTT=INT1*INT2
 NDO 55 !=1,INT
 5 PCT{11:0.0
 INTY=3#INT1
 00 60 T=1,INTY
 60 STAT1(t)=0.0
 N0665 T=1:INTZ
 c
STMST, SUGSET VECTOR
SCNT=0.0
INTY=INT1-1
1]=NO*(NOV(2)-1)
IJX=NO*(NOV(2)-1)
OO 95 J.1,NO
I J=1 j + I
IF\S(J))
SCNT=SCNT+1.0
c
CALCULATE FREOUENCIES
TEMPl=UBO(1.1)-STNT\1
00 73 IY-1.INTY
FF(AM1J)-TEMD1) 80,75,75
CONTINUE
CONTINUE
80 IYYa3*(IY-1)+1
STAT1(IYY)=STAT1([YY)+A(1J)
STATI(IYY)=STATI(IYY)+1.0
IYY=IYY+1 (HYTM(IYY)+1.0
STAT1(1YY):STAT1(IYY)+A(IJ)*AIIJ)
TEMP2=URO(1,F)-SINT(2)
CO 85, X=1HINTX
IF(A1IJX)-TEMP2) 90,85,85
CONTINUE
IX=1NT2
90
lJF={NT 1*(TX-1)+1Y
*)=(|F)=FRFO(1JF)+1.0
STAT2(IX)=STAT2(IX)+AIIJX)
1x=1x+1
STAT2(ix)=sTATZ(IX)+1.0
STAT2(IX)=STAT2(IX)*A(IJx)*A(1Jx)
CONTINUESTATI(IXI*A(IJX)*A(IJX)
CALCULATE PERC
DO 100 I=1.1NTT
pG ealculate totals, means. standard deviations
IXY=-1 \
MXY=1XY+3
lXY=1XY+3
TEMDI=STAT1(IXY)
IF{TEMP1-1.0) 120.105.110
STAT1(1SD)=0.0
GOTO 115

```

```

 115 STATIIIXYI*SUM/TEMP1
 CONTINUE
 MOX=-1 140 1.INT2
 1x }x=1xx+
 is0=1xx+1
 TEMP2-STAT2(tXX)
 IF(TEMP2-1.0) 140,125,130
 125 STAT2IISDI=0.0

```

```

130 STAT2(ISD)=SORT(ABSII
40 CONTINUE
00 150 1=1:3
SO CO 150 J=1,?
MRETURN

```

\section*{SUBMX}

\section*{Purpose:}

Based on vector \(S\) derived from subroutine SUBST or ABSNT, this subroutine copies from a larger matrix of observation data a subset matrix of those observations which have satisfied certain condition. This subroutine is normally used prior to statistical analyses (e.g., multiple regression, factor analysis).

\section*{Usage:}

CALL SUBMX (A, D, S, NO, NV, N)

Description of parameters:
A - Input matrix of observations, NO by NV.
D - Output matrix of observations, N by NV.
\(S\) - Input vector of length NO containing the codes derived from subroutine SUBST or ABSNT.
NO - Number of observations.
NV - Number of variables.
N - Output variable containing the number of non-zero codes in vector \(S\).

Remarks:
Matrix D can be in the same location as matrix A.

Subroutines and function subprograms required: None.

\section*{Method:}

If \(S(I)\) contains a non-zero code, I-th observation is copied from the input matrix to the output matrix.
```

 sumbinotine sugmx (a,D,S,N:I,NV,Ni
    ```

```

 MIMC
 10% 20 J=1,N
 is I=I,NO
 IF(S(1): 15, 15, 10
 10 LL=LL+1
 O(LLI=A(L)
 15 CuNINNA
 GOUNT NON-2FR) cDOCS IN VFCTIRS
    ```

```

 Hr\stllim,30, 35
 25 V=N+1
 COntin:JF
 Mafl(tan
    ```


\section*{Statistics - Elementary}

\section*{MOMEN}

This subroutine computes four moments for grouped data \(F_{1}, F_{2}, \ldots, F_{n}\) on equal class intervals. The number of class intervals is computed as follows:
\[
\begin{equation*}
\mathrm{n}=\left(\mathrm{UBO}_{3}-\mathrm{UBO}_{1}\right) / \mathrm{UBO}_{2} \tag{1}
\end{equation*}
\]
where \(\mathrm{UBO}_{1}=\) given lower bound
\[
\begin{aligned}
& \mathrm{UBO}_{2}=\text { given class interval } \\
& \mathrm{UBO}_{3}=\text { given upper bound }
\end{aligned}
\]
and the total frequency as follows:
\[
\begin{equation*}
T=\sum_{i=1}^{n} F_{i} \tag{2}
\end{equation*}
\]
where \(\mathrm{F}_{\mathrm{i}}=\) frequency count in i -th interval.
Then, the following are computed:
First Moment (Mean):
\[
\begin{equation*}
\mathrm{ANS}_{1}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~F}_{\mathrm{i}}\left[\mathrm{UBO}_{1}+(\mathrm{i}-0.5) \mathrm{UBO}_{2}\right]}{\mathrm{T}} \tag{3}
\end{equation*}
\]
| j-th Moment (Variance):
\[
A N S_{j}=\frac{\sum_{i=1}^{n} F_{i}\left[\mathrm{UBO}_{1}+(i-0.5) \mathrm{UBO}_{2}-\mathrm{ANS}_{1}\right]^{j}}{T}
\]
\(\mathrm{j}=2,3,4\)

These moments are biased and not corrected for grouping

\section*{Subroutine MOMEN}

\section*{Purpose:}

To find the first four moments for grouped data on equal class intervals.

Usage:
CALL MOMEN (F, UBO,NOP,ANS)

\section*{Description of Parameters:}

F - Grouped data (frequencies). Given as a vector of length (UBO(3)-UBO(1))/ UBO(2)
UBO - 3 cell vector, UBO(1) is lower bound and UBO(3) upper bound on data. \(\mathrm{UBO}(2)\) is class interval. Note that UBO(3) must be greater than UBO(1).
NOP - Option parameter. If NOP \(=1\), ANS(1) \(=\) MEAN. If NOP \(=2\), ANS(2) \(=\) second moment. If NOP \(=3\), ANS(3) \(=\) third moment. If \(\mathrm{NOP}=4\), ANS(4) \(=\) fourth moment. If NOP \(=5\), all four moments are filled in.
ANS - Output vector of length 4 into which moments are put.

Remarks:
Note that the first moment is not central but the value of the mean itself. The mean is always calculated. Moments are biased and not corrected for grouping.

Subroutines and function subprograms required: None.

\section*{Method:}

Refer to M. G. Kendall, 'The Advanced Theory of Statistics', V.1, Hafner Publishing Company, 1958, Chapter 3.
```

 SUBROUTINE MOMEN IF,UBONNCP:ANS,
 DIMENSION F(1),NBO(3),ANS14)
 CIMENSION F!
 ANS(1)=0.0
 CALCULATE THE NLMEER OF CLASS INTERVALS
 GALCulate total freguenc
 r=0.0
    ```

```

 lf(NOP-5)
 5NOP=5
 120 JUMP=1
 130 NOM TO=2 150
 c FIRST MOMENT
 5:001 16
    ```

```

 ANS (1)=ANSIL1/T
 SHC)350,200,250,307,200%, v:DP
 200 or 210 1=1,N
 200 OT: 21
    ```

```

 ANS(7)=ANS(T1/T
 Gu1TI 12hn,350), J!up
 THIQN 4пयгNT
 zhr on >a口 }1=1,
 250 ANS:1
 MNS(3)=ANS(3)+F
 G) F:] { 300,353), JuMD
 C) FOMath mom
 F1=1,
 110 A.5(4)=ANS(4) +F
 350) ANS(4)=
 FM!
    ```

This subroutine computes certain t-statistics on the means of populations under various hypotheses.

The sample means of \(A_{1}, A_{2}, \ldots, A_{N A}\) and \(B_{1}\), \(\mathrm{B}_{2}, \ldots, \overline{\mathrm{~B}}_{\mathrm{NB}}\) are normally found by the following formulas:
\[
\begin{equation*}
\bar{A}=\frac{\sum_{i=1}^{N A} A_{i}}{N A} ; \quad \bar{B}=\frac{\sum_{i=1}^{N B} B_{i}}{N B} \tag{1}
\end{equation*}
\]
and the corresponding sample variances by:
\[
S A^{2}=\frac{\sum_{i=1}^{N A}\left(A_{i}-\bar{A}\right)^{2}}{N A-1} ; \quad S B^{2}=\frac{\sum_{i=1}^{N B}\left(B_{i}-\bar{B}\right)^{2}}{N B-1}
\]
\(\mu\) and \(\sigma^{2}\) stand respectively for population mean and variance in the following hypotheses:

Hypothesis: \(\mu_{B}=A ; A=a\) given value (Option 1): Let \(\bar{B}=\) estimate of \(\mu_{B}\) and set NA \(=1\) ( \(A\) is stored in location A).

The subroutine computes:
\[
\begin{equation*}
\text { ANS }=\frac{\overline{\mathrm{B}}-\mathrm{A}}{\mathrm{SB}} \cdot \sqrt{\mathrm{NB}} \quad \text { (t-statistic) } \tag{3}
\end{equation*}
\]
\[
\begin{equation*}
\mathrm{NDF}=\mathrm{NB}-1 \quad \text { (degrees of freedom) } \tag{4}
\end{equation*}
\]

Hypothesis: \(\mu_{A}=\mu_{B} ; \sigma_{A}^{2}=\sigma_{B}^{2}\) (Option 2):

The subroutine computes:
\[
\begin{gather*}
\mathrm{ANS}=\frac{\overline{\mathrm{B}}-\overline{\mathrm{A}}}{\mathrm{~S}} \cdot \frac{1}{\sqrt{\frac{1}{\mathrm{NA}}+\frac{1}{\mathrm{NB}}}} \text { (t-statistic) }  \tag{5}\\
\mathrm{NDF}=\mathrm{NA}+\mathrm{NB}-2 \quad \text { (degrees of freedom) }  \tag{6}\\
\text { where } \mathrm{S}=\sqrt{\frac{(\mathrm{NA}-1) \mathrm{SA}+(\mathrm{NB}-1) \mathrm{SB}}{}{ }^{2}}  \tag{7}\\
\text { HA+NB-2} \\
\text { Hypothesis: } \mu_{\mathrm{A}}=\mu_{\mathrm{B}}\left(\sigma_{\mathrm{A}}^{2} \neq \sigma_{\mathrm{B}}^{2}\right)(\text { Option 3): }
\end{gather*}
\]

The subroutine computes:
\[
\begin{equation*}
\text { ANS }=\frac{\overline{\mathbf{B}}-\overline{\mathrm{A}}}{\sqrt{\frac{\mathrm{SA}^{2}}{\mathrm{NA}}+\frac{\mathrm{SB}^{2}}{\mathrm{NB}}}} \quad \text { (t-statistic) } \tag{8}
\end{equation*}
\]
\[
\begin{gathered}
\mathrm{NDF}=\frac{\left(\frac{\mathrm{SA}^{2}}{\mathrm{NA}}+\frac{\mathrm{SB}^{2}}{\mathrm{NB}}\right)^{2}}{\left(\frac{\mathrm{SA}^{2}}{\mathrm{NA}}\right)^{2} /(\mathrm{NA}+1)+\left(\frac{\mathrm{SB}^{2}}{\mathrm{NB}}\right)^{2} /(\mathrm{NB}+1)}-2 \\
\text { (degrees of freedom) }
\end{gathered}
\]

Note：The program returns a rounded NDF，not a truncated NDF．
｜Hypothesis：\(\mu_{A}=\mu_{B}\left(\right.\) no assumption on \(\left.\sigma^{2}\right)(\) Option 4）：
The subroutine computes：
\[
\begin{array}{ll}
\text { ANS }=\frac{\overline{\mathrm{D}}}{\mathrm{SD}} \cdot \sqrt{\mathrm{NB}} & \text { (t-statistic) } \\
\text { NDF }=\mathrm{NB}-1 & \text { (degrees of freedom) } \tag{11}
\end{array}
\]
\[
\begin{equation*}
S D=\sqrt{\frac{\sum_{i=1}^{N B}\left(B_{i}-A_{i}-\bar{D}\right)^{2}}{N B-1}} \tag{12}
\end{equation*}
\]
\[
\mathrm{NA}=\mathrm{NB}
\]

\section*{Subroutine TTSTT}

\section*{Purpose：}

To find certain T －statistics on the means of populations．

\section*{Usage：}

CALL TTSTT（A，NA，B，NB，NOP，NDF，ANS）
Description of parameters：
A－Input vector of length NA containing data．
NA－Number of observations in A．
B－Input vector of length NB containing data．
NB－Number of observations in B．
NOP－Options for various hypotheses： NOP＝1－－－That population mean of \(B=\) given value \(A\) ． （Set NA＝1．）
NOP＝2－－－That population mean of \(B=\) population mean of \(A\) ， given that the variance of \(B=\) the variance of \(A\) ．

NOP＝3－－－That population mean of \(B=\) population mean of \(A\) ， given that the variance of \(B\) is not equal to the vari－ ance of \(A\) ．
NOP \(=4-\)－－That population mean of \(B=\) population mean of \(A\) ， given no information about variances of \(A\) and \(B\) ． （Set NA＝NB．）
NDF－Output variable containing degrees of freedom associated with T－statistic calculated．
ANS－T－statistic for given hypothesis．

\section*{Remarks：}

NA and NB must be greater than 1，except that NA＝ 1 in option 1．NA and NB must be the same in option 4．If NOP is other than \(1,2,3\) or 4 ， degrees of freedom and T－statistic will not be calculated．NDF and ANS will be set to zero．

Subroutines and function subprograms required： None．

Method：
Refer to Ostle，Bernard，＇Statistics in Research＇， Iowa State College Press，1954，Chapter 5.

SUBROUTINE TTSTT IA，NA，B，NB，NOP，NOF，ANSI OIMENSION All），
INIDIALIZATIOY NDF \(=0\)
ANS \(=0.7\)
Calculate the mean of a
amfan＝
AMFAN＝0．0
110 AMEAN＝AMEAN＋A！！！
FNA \(A\) ANA
AME AN／FNA
C lib hmeanol calate the mean if h
113 MMEAN＊0．0
DU \(120 \quad 1=1\) ，N
120 BMEAN＝8MEAN＊B（T）
FNB＝NB
RMEAN＝ \(\mathrm{AHEAN/FNB}\)
IF（YMP－4）122， 13
122 IF（NUP－10 20n． 135,200
125 calcillate the vatiance tif
D \(11130 \quad 1 \times 1, \mathrm{NA}\)
130 SAZ \(5 A 2+1 \Delta(11)-A M E A N) * * 2\)
SAR \(=\) SAZ／IFNA－ 1.01
CALCHLATE THE VARIANCE OF
\(134 \begin{aligned} & \text { SR } 2=0.0\end{aligned}\)


Gill In \(1150,160.17 \mathrm{nl}\) ，NOP
\(150 \triangle A, S=11\) HME \(A\)
\(\mathrm{NHF}=\mathrm{NH}-1\)
\(\mathrm{Gu} \mathrm{FO}>0 \mathrm{O}\)
C igu NLF＝NADONH－？



Gu T1200
1／O AVS＝（HAEAN－AMEAN）／SJH｜（SA）／FNA＋SH2／FYR）


N（IF \(\times A 1 / A D-7 . C+0.5\)


0） \(1901=1\) ，NB



oon Mf tive
+N12

\section*{CORRE}

This subroutine calculates means, standard deviations, sums of cross-products of deviations from means, and product moment correlation coefficients from input data \(X_{i j}\), where \(\mathrm{i}=1,2, \ldots, n\) implies observations and \(j=1,2, \ldots, m\) implies variables.

The following equations are used to calculate these statistics:

Sums of cross-products of deviations:
\[
\begin{aligned}
S_{j k}= & \sum_{i=1}^{n}\left(x_{i j}-T_{j}\right)\left(x_{i k}-T_{k}\right)- \\
& \sum_{i=1}^{n}\left(x_{i j}-T_{j}\right) \sum_{i=1}^{n}\left(x_{i k}-T_{k}\right)
\end{aligned}
\]
where \(j=1,2, \ldots, m ; k=1,2, \ldots, m\)
\[
\begin{equation*}
T_{j}=\frac{\sum_{i=1}^{m} x_{i j}}{m} \tag{2}
\end{equation*}
\]
(These temporary means \(T_{j}\) are subtracted from the data in equation (1) to obtain computational accuracy.)

Means: \(\quad \bar{X}_{j}=\frac{\sum_{i=1}^{n} x_{i j}}{n}\)
where \(\mathrm{j}=1,2, \ldots, \mathrm{~m}\)
Correlation coefficients:
\[
\begin{equation*}
r_{j k}=\frac{S_{j k}}{\sqrt{S_{j j}} \sqrt{S_{k k}}} \tag{4}
\end{equation*}
\]
where \(\mathrm{j}=1,2, \ldots, \mathrm{~m} ; \mathrm{k}=1,2, \ldots, \mathrm{~m}\)

Standard deviations:
\[
\begin{equation*}
s_{j}=\frac{\sqrt{s_{j j}}}{\sqrt{n-1}} \tag{5}
\end{equation*}
\]

Subroutine CORRE

\section*{Purpose:}

Compute means, standard deviations, sums of cross-products of deviations, and correlation coefficients.

Usage:
CALL CORRE (N, M, IO, X, XBAR, STD, RX, R, B, D, T)

Description of parameters:
N \(\quad\) - Number of observations.
M - Number of variables.
IO - Option code for input data. 0 If data are to be read in from input device in the special subroutine named data. (See "subroutines and function subprograms required" below.)
1 If all data are already in core.
\(X \quad\) - If \(I O=0\), the value of \(X\) is 0.0 . If \(I O=1, X\) is the input matrix ( N by M) containing data.

XBAR - Output vector of length M containing means.
STD - Output vector of length M containing standard deviations.
RX - Output matrix ( M by M ) containing sums of cross-products of deviations from means.
R - Output matrix (only upper triangular portion of the symmetric matrix of M by M ) containing correlation coefficients. (Storage mode of 1)
B - Output vector of length M containing the diagonal of the matrix of sums of cross-products of deviations from means.
D - Working vector of length M.
T - Working vector of length M.
Remarks:
None.
Subroutines and function subprograms required:
DATA(M,D) - This subroutine must be provided by the user.
(1) If \(\mathrm{IO}=0\), this subroutine is expected to furnish an observation in vector \(D\) from an external input device.
(2) If \(\mathrm{IO}=1\), this subroutine is not used by CORRE but must exist in job deck. If user has not supplied a subroutine named DATA, the following is suggested. SUBROUTINE DATA RETURN END

\section*{Method:}

Product-moment correlation coefficients are computed.
```

 SUGROUTINE CORRE IN,M,IO,X,XBAR,STD,RX,R,B,D,T:
    ```
        IMENSION XII):
INITIALIZATION
    \(00100 \mathrm{~J}=1 . \mathrm{M}\)
\(\mathrm{B}(\mathrm{J})=0.0\)
    100
    \(\mathrm{K}=(\mathrm{M}=\mathrm{M}+\mathrm{N}) / 2\)
    \(001021=1 . \mathrm{K}\)
    \(102 \begin{gathered}\text { RNHN } \\ \text { FN }\end{gathered}\)
    \(1=0\)
    IF (10) 105, 127, 105

    00
DO 107
\(L=L+1\)

    XeAR(J)=T(J)


        \(\operatorname{Lic}\)
00110

        D(J) \(=x\) (L)-T()
    \(110 \quad 8(J)=8(J)+01 J\)
        \(\begin{array}{llll}D 0 & 115 & \mathrm{~J}=1+\mathrm{M} \\ \mathrm{DO} & 115 \\ \mathrm{k}=1, \mathrm{~J}\end{array}\)

    \(J K=J K+1\)
\(R(J K)=R t\)
        JK) + (J)*D(x)
        READ OBSERVATIONS AND CALCULATE TEMPORARY
\(\stackrel{c}{c}\)
    \(127 \mathrm{IF}(\mathrm{N}-\mathrm{M}) \mathrm{FROM}\) THESE

    135 kKzM
    137 DO 140 IE1, KK
        CALL DATA \((M, D)\)
        \(T(J)=T(J)+D(J)\)
        \(L=L+1\)
\(R \times(L)=D(J\)
        FKK \(=k R\)

I5O TAJIRT(JH/FRK
CALCULATE SUMS OF CROSSmPRODUCTS OF DEVIATIONS
        FROM TEMPORARY MFANS FOR M OBSERVATIONS
        L=O
\(00180 ~ 1-1, k K\)
        JK=0 170 JmiM
        L-L.+1
    170 D(J) 2 RX(L)-T(J)
        DO \(180 \quad J=1, M\)

        \(J K=J k+1\)

        (N-KK) 205. 205. 18
            READ THE REST OF CBSERVATIONS ONE AT A TIME, SUM
            PRODUCTS OF DEVIATIONS FROM TEMPORARY MEANS
    3 185 KK=N-KK
        \(002001=1, k K\)
\(1 K=0\)
        JK=0 DALL \(\quad\) DATA 1
    00 \(190 \mathrm{~J}=1 . \mathrm{M}\)
        XBAR(J) \(=\times \operatorname{ABR}(J)+D(J)\)
        \(n(J)=D(J)-t(J) ~\)
    190 B(J)=A(J) - 1 DIJ
    DO \(200 \mathrm{~J}=1\) "
    \(J k=J k+1\)
    \(200 \begin{gathered}J K=J K+1 \\ R(J K)=R(J K)+n(J) * D(K) \\ \text { CALCULATE }\end{gathered}\)
205
        (JK)=R(JK)+n(J)\#D(K)
CALCULATE MEANS
        \(\mathrm{JK}=0\)
\(00210 \mathrm{~J}=1, \mathrm{M}\)
            XEARTJIEXBARIJI/FN
6
\(C\) ARJUST SUMS OF CROSS-
    \(00210 \mathrm{~K}=1, \mathrm{~J}\)
    \(J K=J K+1\)
\(R(J K)=R(J K)-B(J)=B(K) / F N\)
        CALCULATE CORRELATION COEFFICIENTS
    \(\begin{array}{ll}J K=0 \\ 00 & \\ 0220\end{array}\)
    \(\mathrm{JK}=0 \quad \mathrm{~J} 2 \mathrm{O}=\mathrm{M}\)
    STDIJ) SORT \(A B S(R(J K)!\)
    DO \(230 \mathrm{JaR} 1,4\)
    \(0230 \mathrm{kaj}+\mathrm{N}\)
    \(J K=J+(k * K=K) / 2\)
    =M*(J-1) + K
    LaM*(K-1) \(+J\)

RX(L)RR(JK)
CORRE 97
CCRREMO1 CRRREMO CORREMO2
CCRREMO3 CCRREMO3 CCRREMO4
CCRREMO CCRREMOS
CCRRE 99 CCRRE 99
CCRRE 100
CCRRE CCRREIO1 CCRRE 102
CCRRE 103 CCRRE103
CCRRE10 CCRRE105 CCRRF106
CCRRE107
CCRE CCRREIO CCRRE109 CORRE110

225 R(JK)=R(JK)/(STD(J)*STD(K) )
225 RlJKIPRI
230 CONTINUE
```

 CNOLCULATE STANDARD DEVIATIONS
    ```
            FN \(=\) SARTIFN-1
DO \(240 \mathrm{~J}=1 \mathrm{M}\)
```

240 STD(J)=STD(J)/FN

```
COPY THE DIAGONAL OF THE MATRIX OF SUMS OF CROSS-PRCDUCTS OF
COPY THE DIAGONAL OF TH
OEVIATIONS FROM MEANS.
    DEVIATION
L=-M
DO 250 I \(=1, M\)
\(250 \begin{gathered}L=L+M+1 \\ B(1)=R X(L)\end{gathered}\)
(
    RETUR
END

END
\(e^{240}\)


\section*{-}

\section*{ORDER}

\section*{Purpose:}

Construct from a larger matrix of correlation coefficients a subset matrix of intercorrelations among independent variables and a vector of intercorrelations of independent variables with dependent variable. This subroutine is normally used in the performance of multiple and polynomial regression analyses.

Usage:
CALL ORDER (M, R, NDEP, K, ISAVE, RX, RY)
Description of parameters:
M - Number of variables and order of matrix R .
\(R \quad\) - Input matrix containing correlation coefficients. This subroutine expects only upper triangular portion of the symmetric matrix to be stored (by column) in R. (Storage mode of 1.)
NDEP - The subscript number of the dependent variable.
K - Number of independent variables to be included in the forthcoming regression.
ISAVE - Input vector of length \(K+1\) containing, in ascending order, the subscript numbers of \(K\) independent variables to be included in the forthcoming regression.
Upon returning to the calling routine, this vector contains, in addition, the subscript number of the dependent variable in \(\mathrm{K}+1\) position.

RX - Output matrix (K by K) containing intercorrelations among independent variables to be used in forthcoming regression.
RY - Output vector of length K containing intercorrelations of independent variables with dependent variables.

Remarks:
None.

Subroutines and function subprograms required: None.

Method:
From the subscript numbers of the variables to be included in the forthcoming regression, the subroutine constructs the matrix RX and the vector RY.

SUBRDUTINE GPDER (N,R, NDED,K,ISAVE,RX,RYI
 HITH DEPENDENT VARIARLE
\(4 M=0\)
\(00130 \quad J=1, k\)
IFENOEP-121 122, 123, 123
\(22 L=\) Nil) \(p^{p+}+1 L>* L ?-L 21 / 2\)
6010125

c
C COPY A SUBSET MATRIX
INUEPLNDENT VARIABLES
indepindent variahles in intracidralations among,




\(\begin{array}{ll}28 \\ 29 & =24=44+1\end{array}\)
\(130 \mathrm{RX}(\mathrm{YM})=\mathrm{R}(1)\)
C PLACE THE SUBSCRIPT NUMAER TF JHE DEPFNDFNT PARIARLE IN ISAVE(K+1)
(SAVE(K+1) = NOED
RFTURN
END

\section*{MULTR}

This subroutine performs a multiple regression analysis for a dependent variable and a set of independent variables.

Beta weights are calculated using the following equation:
\[
\begin{equation*}
\beta_{j}=\sum_{i=1}^{k} r_{i y} \cdot r_{i j}^{-1} \tag{1}
\end{equation*}
\]
where \(r_{i y}=\begin{aligned} & \text { intercorrelation of } i^{\text {th }} \text { independent } \\ & \text { variable with dependent variable }\end{aligned}\)
\(\mathbf{r}_{\mathrm{ij}}^{\mathbf{- 1}}=\) the inverse of intercorrelation \(\mathrm{r}_{\mathrm{ij}}\)
\(\mathrm{i}, \mathrm{j}=1,2, \ldots, \mathrm{k}\) imply independent variables
\(r_{i y}\) and \(r_{i j}{ }^{-1}\) are input to this subroutine.
Then, the regression coefficients are calculated as follows:
\[
\begin{equation*}
b_{j}=\beta_{j} \cdot \frac{s_{y}}{s_{j}} \tag{2}
\end{equation*}
\]
where \(s_{y}=\) standard deviation of dependent variable
\(s_{j}=\underset{\text { variable }}{\text { standard deviation of } j^{\text {th }} \text { independent }}\)
\[
j=1,2, \ldots, k
\]
\(s_{y}\) and \(s_{j}\) are input to this subroutine.
The intercept is found by the following equation:
\[
\begin{equation*}
b_{0}=\bar{Y}-\sum_{j=1}^{k} b_{j} \cdot \bar{X}_{j} \tag{3}
\end{equation*}
\]
where \(\overline{\mathrm{Y}}=\) mean of dependent variable
\[
\begin{aligned}
& \bar{X}_{j}=\text { mean of } j^{\text {th }} \text { independent variable } \\
& \bar{Y} \text { and } \bar{X}_{j} \text { are input to this subroutine. }
\end{aligned}
\]

Multiple correlation coefficient, \(R\), is found first by calculating the coefficient of determination by the following equation:
\[
\begin{equation*}
R^{2}=\sum_{i=1}^{k} \beta_{i} r_{i y} \tag{4}
\end{equation*}
\]
and taking the square root of \(\mathrm{R}^{2}\) :
\[
\begin{equation*}
R=\sqrt{R^{2}} \tag{5}
\end{equation*}
\]

The sum of squares attributable to the regression is found by:
\[
\begin{equation*}
\mathrm{SSAR}=\mathrm{R}^{2} \cdot \mathrm{D}_{\mathrm{yy}} \tag{6}
\end{equation*}
\]
where \(\mathrm{D}_{\mathrm{yy}}=\begin{aligned} & \text { sum of squares of deviations from } \\ & \text { mean for dependent variable }\end{aligned}\)
\[
\mathrm{D}_{\mathrm{yy}} \text { is input to this subroutine. }
\]

The sum of squares of deviations from the regression is obtained by:
\[
\begin{equation*}
\mathrm{SSDR}=\mathrm{D}_{\mathrm{yy}}-\mathrm{SSAR} \tag{7}
\end{equation*}
\]

Then, the F -value for the analysis of variance is calculated as follows:
\[
\begin{equation*}
\mathrm{F}=\frac{\operatorname{SSAR} / \mathrm{k}}{\operatorname{SSDR} /(\mathrm{n}-\mathrm{k}-1)}=\frac{\operatorname{SSAR}(\mathrm{n}-\mathrm{k}-1)}{\operatorname{SSDR}(\mathrm{k})} \tag{8}
\end{equation*}
\]

Certain other statistics are calculated as follows:
Variance and standard error of estimate:
\[
\begin{equation*}
S_{y .12 \ldots k}^{2}=\frac{S S D R}{n-k-1} \tag{9}
\end{equation*}
\]
where \(\mathrm{n}=\) number of observations
\[
\begin{equation*}
S_{y .12 \ldots k}=\sqrt{s_{y .12 \ldots k}^{2}} \tag{10}
\end{equation*}
\]

Standard deviations of regression coefficients:
\[
\begin{equation*}
S_{b_{j}}=\sqrt{\frac{r_{j j}^{-1}}{D_{j j}}} \cdot S_{y .12 \ldots k}^{2} \tag{11}
\end{equation*}
\]
where \(D_{j j}=\begin{aligned} & \text { sum of squares of deviations from mean } \\ & \text { for } \mathrm{j} \text { th } \\ & \text { independent variable. } \\ & D_{j j}\end{aligned}\) is input to this subroutine.
\[
j=1,2, \ldots, k
\]

Computed t:
\[
\begin{align*}
& t_{j}=\frac{b_{j}}{S_{b_{j}}}  \tag{12}\\
& j=1,2, \ldots, k
\end{align*}
\]

\section*{Purpose:}

Perform a multiple linear regression analysis for a dependent variable and a set of independent variables. This subroutine is normally used in the performance of multiple and polynomial regression analyses.

Usage:
CALL MULTR (N, K, XBAR, STD, D, RX, RY, ISAVE, B, SB, T, ANS)

Description of parameters:
N - Number of observations.
K \(\quad\) - Number of independent variables in this regression.
XBAR - Input vector of length M containing means of all variables. \(M\) is number of variables in observations.
STD - Input vector of length M containing standard deviations of all variables.
D - Input vector of length \(M\) containing the diagonal of the matrix of sums of cross-products of deviations from means for all variables.
RX - Input matrix ( K by K) containing the inverse of intercorrelations among independent variables.
RY - Input vector of length \(K\) containing intercorrelations of independent variables with dependent variable.
ISAVE - Input vector of length K+1 containing subscripts of independent variables in ascending order. The subscript of the dependent variable is stored in the last, \(K+1\), position.
B - Output vector of length \(K\) containing regression coefficients.
SB - Output vector of length \(K\) containing standard deviations of regression coefficients.
T - Output vector of length K containing T-values.
ANS - Output vector of length 10 containing the following information: ANS(1) Intercept ANS(2) Multiple correlation coefficient
ANS(3) Standard error of estimate
ANS(4) Sum of squares attributable to regression (SSAR)
\begin{tabular}{ll} 
ANS(5) & \begin{tabular}{l} 
Degrees of freedom associ- \\
ated with SSAR
\end{tabular} \\
ANS(6) & Mean square of SSAR \\
ANS(7) & \begin{tabular}{l} 
Sum of squares of deviations \\
from regression (SSDR)
\end{tabular} \\
ANS(8) & \begin{tabular}{l} 
Degrees of freedom associ- \\
ated with SSDR
\end{tabular} \\
ANS(9) & Mean square of SSDR \\
ANS(10) & F-value
\end{tabular}

Remarks:
N must be greater than \(\mathrm{K}+1\).
Subroutines and function subprograms required: None.

Method:
The Gauss-Jordan method is used in the solution of the normal equations. Refer to W. W. Cooley and P. R. Lohnes, 'Multivariate Procedures for the Behavioral Sciences', John Wiley and Sons, 1962, Chapter 3, and B. Ostle, 'Statistics in Research', The Iowa State College Press, 1954, Chapter 8.

SUARCUTINE MULTR (N,K,XBAR,STO-D.RX,RY; ISAVE,B,SB+T,ANS)

1 T12).ANS(10)
C BETA WEIGHTS
\(1000_{8}^{00} 10100 . j=10 \mathrm{O}\)

L1ak* \(\mathrm{J}-1)\)
\(00110 \mathrm{l}=1\),
\begin{tabular}{l} 
DO 110 \\
\(1 \times 1\) \\
\hline 1
\end{tabular}

\(\mathrm{RH}=9.0\)
\(\mathrm{BO}=0.0\)
B0:0.0
LIFISAVE(4)
LIDISAVE(MA)
CREFFICIENT

LEGGFSSIONIU COEFFICIENTS



BO-xBAR(LII-BO
c. Sum of souares attriautable to Regrfssinn
c mulitple correlation cogfficient
\(122 \mathrm{kM}=\mathrm{SJat}\) AHS(RAM)
SUM TF SOUARES OF DEVIATINNS FROM REGRFSSION
SSOR PDILI)-SSAR
Variance of estimate

STAMDARD deviatilins df regresstun cotrffit.ifnts

Llak*(J-1)+J
L=1SAVE


130 TIJI \(=\) RIJJ/SRIIJ
STANDAQO EHROX OF ESTIMATE
135 SY = SORTC ABSISYI)
\(\underset{E K=}{F}\) VALUE
FK
SSAK
SSOM
SSARR
SKK
SSARMESSAR
FSOR
FSSARY/SSEN
FASSARY/SSDR
ANSI 1\()=80\)
ANS \(21=R M\)

ANS \((4)=55 A R\)
ANS 5 (5) \(=\mathrm{FK}\)
ANS \((6)=\) SSARM
ANS 17\()=\) SSOR
ANS \(71=5 S 50 R\)
\(A N S 141=5 N\)
\(A N S(7)=551\) )R 4
ARSIITIS
RETIIR


Multa
MULTR
multrmol
MLITR
MULTR
MULTR
MULTR
MULTR
MULTR
\(\begin{array}{ll}\text { MULTR } & 8 \\ \text { MUL } \\ \text { and }\end{array}\)


multa
Mut TR
419 to 15
mut ir
MUETR 1

\(\begin{array}{ll}\text { Mill TP } & 19 \\ \text { Mul } & \text { Ta on }\end{array}\)




\(\begin{array}{ll}4111 \\ 4 R & 25 \\ 4 / 15 T R & 20 \\ 4\end{array}\)
HILTR 20

HMTR 3



MHLTR 3
Mutio it

YuLtr
Mista
in






\(\begin{array}{ll}\text { MCH TR } & \text { 5n } \\ \text { HIM TR } & 51\end{array}\)

MJLTR 53
MHLTR
K4
\(4 H I H\)




\section*{Statistics - Polynomial Regression}

Polynomial regression is a statistical technique for finding the coefficients, \(\mathrm{b}_{0}, \mathrm{~b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{m}}\), in the functional relationship of the form:
\[
y=b_{0}+b_{1} x+b_{2} x^{2}+\ldots+b_{m} x^{m}
\]
between a dependent variable \(y\) and a single independent variable \(x\).

In the Scientific Subroutine Package, polynomial regression is normally performed by calling the following four subroutines in sequence:
1. GDATA - to generate the powers of the independent variable and find means, standard deviations, and correlation matrix
2. ORDER - to choose a dependent variable and subset of independent variables from a larger set of variables
3. MINV - to invert the correlation coefficient matrix
4. MULTR - to compute the regression coefficients, \(b_{0}, b_{1}, b_{2}, \ldots, b_{m}\), and various confidence measures

The special subroutine PLOT may be used to plot \(Y\) values and \(Y\) estimates.

GDATA
This subroutine generates independent variables up to the \(\mathrm{m}^{\text {th }}\) power (the highest degree polynomial specified) and calculates means, standard deviations, sums of cross-products of deviations from means, and product moment correlation coefficients.
\(\mathrm{X}_{\mathrm{i} 1}\) denotes the \(\mathrm{i}^{\text {th }}\) case of the independent variable;
\(X_{i p}\) denotes the \(i^{\text {th }}\) case of the dependent variable,
where \(i=1,2, \ldots, n\)
n - number of cases (observations)
\(p=m+1\)
\(\mathrm{m}=\) highest degree polynomial specified

The subroutine GDATA generates powers of the independent variable as follows:
\[
\begin{align*}
& \mathrm{x}_{\mathrm{i} 2}=\mathrm{x}_{\mathrm{i} 1} \cdot \mathrm{x}_{\mathrm{i} 1} \\
& \mathrm{x}_{\mathrm{i} 3}=\mathrm{x}_{\mathrm{i} 2} \cdot \mathrm{x}_{\mathrm{i} 1}  \tag{1}\\
& \mathrm{x}_{\mathrm{i} 4}=\mathrm{X}_{\mathrm{i} 3} \cdot \mathrm{x}_{\mathrm{i} 1} \\
& \cdot \\
& \cdot \\
& \mathrm{x}_{\mathrm{im}}=\mathrm{x}_{\mathrm{i}, \mathrm{~m}-1} \cdot \mathrm{x}_{\mathrm{i} 1}
\end{align*}
\]
where \(i\) and \(m\) are as defined as above.
Then, the following are calculated:
Means:
\[
\begin{equation*}
\bar{x}_{j}=\frac{\sum_{i=1}^{n} x_{i j}}{n} \tag{2}
\end{equation*}
\]
where \(j=1,2, \ldots, p\)

Sums of cross-products of deviations from means:
\[
\begin{align*}
D_{j k} & =\sum_{i=1}^{n}\left(X_{i j}-\bar{X}_{j}\right)\left(X_{i k}-\bar{X}_{k}\right)-  \tag{3}\\
& \sum_{i=1}^{n} \frac{\left(x_{i j}-\bar{X}_{j}\right) \sum_{i=1}^{n}\left(x_{i k}-\bar{X}_{k}\right)}{n}
\end{align*}
\]
where \(j=1,2, \ldots, p ; k=1,2, \ldots, p\).
Correlation coefficients:
\[
\begin{equation*}
r_{i j}=\frac{D_{i j}}{\sqrt{D_{i i}} \sqrt{D_{j j}}} \tag{4}
\end{equation*}
\]
where \(i=1,2, \ldots, p ; j=1,2, \ldots, p\).
Standard deviations:
\[
\begin{equation*}
s_{j}=\frac{\sqrt{D_{j j}}}{\sqrt{n-1}} \tag{5}
\end{equation*}
\]
where \(\mathrm{j}=1,2, \ldots, \mathrm{p}\)

\section*{Subroutine GDATA}

Purpose:
Generate independent variables up to the \(M^{\text {th }}\) power (the highest degree polynomial specified) and compute means, standard deviations, and correlation coefficients. This subroutine is normally called before subroutines ORDER, MINV and MULTR in the performance of a polynomial regression.

Usage:
CALL GDATA (N, M, X, XBAR, STD, D, SUMSQ)
Description of parameters:
N - Number of observations.
M - The highest degree polynomial to be fitted.
\(\mathrm{X} \quad\) - Input matrix ( N by \(\mathrm{M}+1\) ). When the subroutine is called, data for the independent variable are stored in the first column of matrix \(X\), and data for the dependent variable are stored in the last column of the matrix. Upon returning to the calling routine, generated powers of the inde-
pendent variable are stored in columns 2 through M.
XBAR - Output vector of length M+1 containing means of independent and dependent variables.
STD - Output vector of length M+1 containing standard deviations of independent and dependent variables.
D - Output matrix (only upper triangular portion of the symmetric matrix of \(\mathrm{M}+1\) by \(\mathrm{M}+1\) ) containing correlation coefficients. (Storage Mode of 1.)
SUMSQ - Output vector of length M+1 containing sums of products of deviations from means of independent and dependent variables.

\section*{Remarks:}

N must be greater than \(\mathrm{M}+1\).
If \(M\) is equal to 5 or greater, single precision may not be sufficient to give satisfactory computational results.

Subroutines and function subprograms required: None.

Method:
Refer to B. Ostle, 'Statistics in Research', The Iowa State College Press, 1954, Chapter 6.
```

 SUBROUTINE GDATA IN,M,X,xBAQ,STD,D, SUMSOI
    ```

```

 ginerate inmfoendent variables
 9% LI=0
 10n 190 I=2,4
 L1=4 1+N
 L=L l+J
 100 K=LL\=x(k)*x(J)
 c. 100 x(L)=x(K)*x(J)
S 苂=y+1
OH}=\textrm{N
131115 =1,4M
xHAR|II=O.n
O% :10 j=1,N
110 x ABMII=xBAR(II*X(L)
15 RHA<\II=XHAPIIHO
5 M14AK\I=XHAMIT
c I3O SIDND=0.%
L={14M+1:*M4|?

```

```

 15% 0!11=n.0
 on 170 x=1,N
 min 17n x=1,N
 L2= y* J=-1)+K
 12=x(L)I-XHAR(J)
 L
 00 170 I=1.J
 I=x(LII-XBARII
 L=L+1
    ```

```

 NOM
 M17}17
 L=L+1
 75 112
 50(L)==0は!-5rn
    ```

```

 L=L+1
    ```

```

 calcinata rimeriation cotfagicars
 l=0
 DON ime I=1,j
 L=L+L
    ```

```

 CALCuLATC STAV:IAQ, nfviATIMS
 M=5041(NF-1:N
 zon sIDEI=5!JilimaF
 M1 rua!:
 goata
 moata
 goata
 groata
 m,RATA
 gDATA
 gDATA S
 GODAKA I
 L=0
    ```

\section*{Statistics - Canonical Correlation}

In the Scientific Subroutine Package, canonical correlation analysis is normally performed by calling the following five subroutines:
1. CORRE - to compute means, standard deviations, and correlation matrix
2. MINV - to invert a part of the correlation matrix
3. EIGEN - to compute eigenvalues and eigenvectors
4. NROOT - to compute eigenvalues and eigenvectors of real nonsymmetric matrix of the form \(\mathrm{B}^{-1} \mathrm{~A}\)
5. CANOR - to compute canonical correlations and coefficients

The subroutine CORRE works in either of two ways: (1) it expects all observations in core, or (2) it triggers a user-provided input subroutine, DATA, to read one observation at a time into a work area. In either case, the user must provide a subroutine named DATA (see "Subroutines Required" in the description of subroutine CORRE).

CANOR

This subroutine performs a canonical correlation analysis between two sets of variables.

The matrix of intercorrelations, \(R\), is partitioned into four submatrices:
\(R=\left[\begin{array}{l|l}\mathrm{R}_{11} & \mathrm{R}_{12} \\ \hline \mathrm{R}_{21} & \mathrm{R}_{22}\end{array}\right]\)
\(R_{11}=\) intercorrelations among \(p\) variables in the first set (that is, left-hand variables)
\(R_{12}=\) intercorrelations between the variables in the first and second sets
\(R_{21}=\) the transpose of \(R_{12}\)
\(R_{22}=\) intercorrelations among \(q\) variables in the second set (that is, right-hand variables)

The equation:
\[
\begin{equation*}
\left|\mathrm{R}_{22}^{-1} \mathrm{R}_{21} \mathrm{R}_{11}^{-1} \mathrm{R}_{12}-\lambda \mathrm{I}\right|=0 \tag{2}
\end{equation*}
\]
is then solved for all values of \(\lambda\), eigenvalues, in the following matrix operation:
\[
\begin{align*}
& \mathrm{T}=\mathrm{R}_{11}^{-1} \mathrm{R}_{12}  \tag{3}\\
& \mathrm{~A}=\mathrm{R}_{21} \mathrm{~T} \tag{4}
\end{align*}
\]

The subroutine NROOT calculates eigenvalues ( \(\lambda_{i}\) ) with associated eigenvectors of \(R_{22}^{-1} A\), where \(i=1,2, \ldots\), \(q\).

For each subscript \(i=1,2, \ldots, q\), the following statistics are calculated:

Canonical correlation:
\[
\begin{equation*}
\operatorname{CANR}=\sqrt{\lambda_{\mathbf{i}}} \tag{5}
\end{equation*}
\]
where \(\lambda_{i}=i^{\text {th }}\) eigenvalue
Chi-square:
\[
\begin{equation*}
x^{2}=-[n-0.5(p+q+1)] \quad \log _{e}^{\Lambda} \tag{6}
\end{equation*}
\]
where \(n=\) number of observations
\[
\Lambda=\underset{j=1}{q}\left(1-\lambda_{j}\right) ;
\]

Degrees of freedom for \(\chi^{2}\) :
\[
\begin{equation*}
D F=[p-(i-1)][q-(i-1)] ; \tag{7}
\end{equation*}
\]
\({ }_{i}{ }^{\text {th }}\) set of right-hand coefficients:
\[
\begin{equation*}
b_{k}=v_{k i} \tag{8}
\end{equation*}
\]
where \(v_{k i}=\) eigenvector associated with \(\lambda_{i}\)
\[
\mathrm{k}=1,2, \ldots, q
\]
\(i^{\text {th }}\) set of left-hand coefficients:
\[
\begin{equation*}
a_{j}=\frac{\sum_{k=1}^{q} t_{j k} b_{k}}{\text { CANR }} \tag{9}
\end{equation*}
\]
where \(\left\{t_{j k}\right\}=T=R_{11}^{-1} R_{12}\)
\[
j=1,2, \ldots, p
\]

\section*{Subroutine CANOR}

\section*{Purpose:}

Compute the canonical correlations between two sets of variables. CANOR is normally preceded by a call to subroutine CORRE.

Usage:
CALL CANOR (N, MP, MQ, RR, ROOTS, WLAM, CANR, CHISQ, NDF, COEFR, COEFL, R)

Description of parameters:
N - Number of observations.
MP - Number of left hand variables.
MQ - Number of right hand variables.
RR - Input matrix (only upper triangular portion of the symmetric matrix of M by M , where \(\mathrm{M}=\mathrm{MP}+\mathrm{MQ}\) ) containing correlation coefficients. (Storage mode of 1.)
ROOTS - Output vector of length MQ containing eigenvalues computed in the NROOT subroutine.
WLAM
- Output vector of length MQ containing lambda.

CANR - Output vector of length MQ containing canonical correlations.
CHISQ - Output vector of length MQ containing the values of chi-squares.
NDF - Output vector of length MQ containing the degrees of freedom associated with chi-squares.
COEFR - Output matrix (MQ by MQ) containing MQ sets of right hand coefficients columnwise.
COEFL - Output matrix (MP by MQ) containing MQ sets of left hand coefficients columnwise.
R - Work matrix (M by M).
Remarks:
The number of left hand variables (MP) should be greater than or equal to the number of right hand variables (MQ). The values of canonical correlation, lambda, chi-square, degrees of freedom, and canonical coefficients are computed only for those eigenvalues in roots which are greater than zero.

Subroutines and function subprograms required: MINV NROOT (which, in turn, calls the subroutine EIGEN.)

\section*{Method:}

Refer to W. W. Cooley and P. R. Lohnes, \({ }^{\prime}\) Multivariate Procedures for the Behavioral Sciences', John Wiley and Sons, 1962, Chapter 3.

```

 L=LlMP
    ```

```

 L=MP*MQ
 OD 160
 NL=0
 On 160{=1,
 SUM=0.0
 00 150 k=1,M
 N1=N1+1
 150\ SUM=SUM+COEFL(NH)*R(N?)
 L=L+1
 calcllate eigenvalues mith associated figenvectors of the
 INvERSE OF R22 * A
 CALLLNNOOT (MO,R(N3), COEFR,ROOTS,R(L)\
 for each value ofil=1,2,\ldots.,mo, calculate the following
 oo 2tO I=1,N0
 TEST Hhether etgenvalue is greater than zero
 TFIROOTSIII) 220, 220, 165
 CANINICAL CDR2ELATION
 CHI-SQuARE
 MLAH(I)=1.0
 On 170 J=1,MO
 170 WLAM(II=WLAMIfl*(1.0-RMOTS(JII
 FN=N
 FMP=MP
 bat = MLANI!)
 175 CHISOLII= =-FN-3.5*(FMP+FMG+1.01)*ALDG(BAT)
DEGREES OF FREFDOM FDR CHI-SQUARE
N1=1-1
NDF(!)=(MP-NI)*(NO-NI)
Ml-IH SET OF R\& ght hand comefficients
N2=MO*(1-1)+L
N2am@*IT-1)*L-l
NO 180 J= 1,MO
N1=N1-1
1AO COEFR(N1J=R1N2)
I-th SET TF LFFI hand cmeffictents
00 200 J=1,
N2=40*!I-
N = =NP* (I-1)+
COEFLIK\=0.0
OO 190 JJ=1,MO
N2=N2+1
90 COEFL(K)=COEF(\K)
7?0 COEFL(K)=COEFL(K)*R(N|1)*
NO COEFL(K)=COFFL(K)/CANRII)
210 CONTINIS
RCTU

```


This subroutine calculates the eigenvalues, \(\lambda_{i}\), and the matrix of eigenvectors, \(V\), of a real square nonsymmetric matrix of the special form \(\mathrm{B}^{-1} \mathrm{~A}\), where both \(B\) and \(A\) are real symmetric matrices and \(B\) is positive-definite. This subroutine is normally called by the subroutine CANOR in performing a canonical correlation analysis. The computational steps are as follows.

A symmetric matrix (storage mode 1) is formed by using the upper triangle elements of the square matrix B. Then, the eigenvalues, \(h_{i}\), and the matrix of eigenvectors, \(H\), of the symmetric matrix are calculated by the subroutine EIGEN.

The reciprocal of square root of each eigenvalue is formed as follows:
\[
\begin{equation*}
\mu_{i}=\frac{1}{\sqrt{h_{i}}} \tag{1}
\end{equation*}
\]
where \(\mathrm{i}=1,2, \ldots, \mathrm{~m}\)
\(\mathrm{m}=\) order of matrix \(B\)
The matrix \(\mathrm{B}^{-1 / 2}\) is formed by multiplying the \(j^{\text {th }}\) column vector of \(H\) by \(\mu j\), where \(j=1,2, \ldots, m\). The symmetric matrix \(\mathrm{S}=\left(\mathrm{B}^{-1 / 2}\right)^{\prime} A B^{-1 / 2}\) is formed in the following two matrix multiplications:
\[
\begin{align*}
& Q=\left(B^{-1 / 2}\right)^{\prime} A  \tag{2}\\
& S=Q B^{-1 / 2} \tag{3}
\end{align*}
\]
and eigenvalues, \(\lambda_{i}\), and the matrix of eigenvectors, M , of S are calculated by the subroutine EIGEN.

The matrix \(W=B^{-1 / 2} 2_{M}\) is formed, and the vectors in \(W\) are normalized to form the matrix of eigenvectors, V , by the following equation:
\[
\begin{align*}
& \qquad V_{i j}=\frac{W_{i j}}{\sqrt{\operatorname{SUMV}_{j}}}  \tag{4}\\
& \text { where } \begin{array}{r}
i=1,2, \ldots, m \\
j=1,2, \ldots, m
\end{array} \\
& \operatorname{SUMV}_{\mathrm{j}}=\sum_{i=1}^{m} W_{i j}^{2}
\end{align*}
\]

\section*{Subroutine NROOT}

\section*{Purpose:}

Compute eigenvalues and eigenvectors of a real nonsymmetric matrix of the form B -inverse times A. This subroutine is normally called by subroutine CANOR in performing a canonical correlation analysis.

Usage:
CALL NROOT (M, A, B, XL, X)
Description of parameters:
M - Order of square matrices \(A, B\), and X.
A - Input matrix ( M by M ).
B - Input matrix (M by M).
XL - Output vector of length M containing eigenvalues of \(B\)-inverse times \(A\).
X - Output matrix ( M by M ) containing eigenvectors columnwise.

Remarks:
None.
Subroutines and function subprograms required: EIGEN

\section*{Method:}

Refer to W. W. Cooley and P. R. Lohnes, 'Multivariate Procedures for the Behavioral Sciences', John Wiley and Sons, 1962, Chapter 3.
```

 SuramuTINf nrgot (m,A,B,XL,XI
 DTMENSION AIL,日GPUTE EIGENVALUFS AN:S EIGENVECTORS OF B
 k=1
 DO 100 J=2.4
 L=M*(J-1)
 l=L+1
 100 R(K)=R(L
ihf matrix bis a real symmetric matrix.
CALL E!GEN IA,X,Y,MVI
fukm reciprijcals of square rout of eigenvalues. the results
M,
L=0
MO=L+J

```

```

110 XLIJI=1.0/ SORTt ABSIN(LIH
k=0
04 115 j=1,4
00 115 I=1,
c
M(:X(K)*x(J)
OU 120 I=1,M
N2=0
M1=4*(1, J=1)M
L=M*1J-11+1
x(1)=0.0
DO 120 K=1,4
l}\begin{array}{l}{\textrm{N}=2=\textrm{Nl+1}}
{\textrm{NZ}=\textrm{N}2+1}
120
L=0
00 130 J=1,4
OD 230
N2=4*!J
L=L+1
A(L)=0.0
OD l36.0
N2=N2+1
COMPUTE FIGENVALIIFS AND EIGENVFCTORS OF A
CALL EIGEN (A, X,Y,MVI
L=0 140 I= 1,M
L=L+1
c
campute the njrmalizfo fitfanvectors
O 150 I=1,M
N2=0
M0 150 J=1,M
L=M*|J-!)*
A(L)=0.0
ON 15n K=1,N
N1=N1+4
150 A(L)=A(L)+B(NL)*x{N2)
l
OD 180 J=1,
Sumv=0.0
DO 170
170 SUMV = SIMV +A(L)*A(L)
175 SUMV= SORTISUMVI
DI1 180 I= 1,M
l}\begin{array}{l}{k=K+1}
{x(K)=A (K)/SUM}
RETJaN
RETUQ

Statistics - Analysis of Variance

In the Scientific Subroutine Package, analysis of variance is normally performed by calling the following three subroutines in sequence:

1. AVDAT - to place data in properly distributed positions of storage
2. AVCAL - to apply the operators sigma and delta in order to compute deviates for analysis of variance
3. MEANQ - to pool the deviates and compute sums of squares, degrees of freedom, and mean squares

AVDAT

This subroutine places data for analysis of variance in properly distributed positions of storage.

The size of data array X, required for an analysis of variance problem, is calculated as follows:

$$
n=\prod_{i=1}^{k}\left(L_{i}+1\right)
$$

where $L_{i}=$ number of levels of $i^{\text {th }}$ factor

$$
k=\text { number of factors }
$$

The input data placed in the lower part of the array X are moved temporarily to the upper part of the array. From there, the data are redistributed according to the equation (4) below. Prior to that, multipliers, s_{j}, to be used in finding proper positions of storage, are calculated as follows:

$$
\begin{align*}
& s_{1}=1 \tag{2}\\
& s_{j}=\prod_{i=1}^{j-1}\left(L_{i}+1\right)
\end{align*}
$$

where $J=2,3, \ldots, k$
Then, a position for each data point is calculated by the following equation:

$$
\begin{equation*}
S=\operatorname{KOUNT}_{1}+\sum_{j=2}^{k} s_{j} \cdot\left(\operatorname{KOUNT}_{j}-1\right) \tag{4}
\end{equation*}
$$

where KOUNT ${ }_{j}=$ value of $j^{\text {th }}$ subscript of the data to be stored.

The subroutine increments the value(s) of subscript(s) after each data point is stored.

Subroutine AVDAT

Purpose:
Place data for analysis of variance in properly distributed positions of storage. This subroutine is normally followed by calls to AVCAL and MEANQ subroutines in the performance of analysis of variance for a complete factorial design.

Usage:
CALL AVDAT (K, LEVEL, N, X, L, ISTEP, KOUNT)

Description of parameters:
K \quad - Number of variables (factors) K must be greater than 1 .

LEVEL - Input vector of length K containing levels (categories) within each variable.
N - Total number of data points read in.
X - When the subroutine is called, this vector contains data in locations X(1) through X(N). Upon returning to the calling routine, the vector contains the data in properly redistributed locations of vector X. The length of vector X is calculated by (1) adding one to each level of variable and (2) obtaining the cumulative product of all levels. (The length of $X=(\operatorname{LEVEL}(1)+1) *(\operatorname{LEVEL}(2)+1) *$ \ldots...(LEVEL(K) + 1).)
$\mathrm{L} \quad$ - Output variable containing the position in vector X where the last input data is stored.
ISTEP - Output vector of length K containing control steps which are used to locate data in proper positions of vector X.
KOUNT - Working vector of length K.
Remarks:
Input data must be arranged in the following manner. Consider the 3 -variable analysis of variance design, where one variable has 3 levels and the other two variables have 2 levels. The data may be represented in the form $\mathrm{X}(\mathrm{I}, \mathrm{J}, \mathrm{K})$, $\mathrm{I}=1,2,3 \mathrm{~J}=1,2 \mathrm{~K}=1,2$. In arranging data, the inner subscript, namely I, changes first. When $I=3$, the next inner subscript, J, changes and so on until $\mathrm{I}=3, \mathrm{~J}=2$, and $\mathrm{K}=2$.

Subroutines and function subprograms required: None.

Method:

The method is based on the technique discussed by H. D. Hartley in 'Mathematical Methods for Digital Computers', edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.

```
        SUAROUTINE AVDAT GK,LEVEL,N,X,L,ISTEP,KOUNT
        dimensign LEvel(1), x{1},ISTEP(1), KOUNITI
        dialculate tofal dafa area rejuired
        MmLFVFL{11+1
    DO 105 (=2,k
c move oata to THE upper part of the array x
        GOR IHE PURPISE OF REARRANGEYENT
        N1[=M+1
        N2=N+1
        l
    107 X(NI)=\1N2)
        calculate mulitplifrs to be used in finding storage lucations
            CalCULATE MULT
        ISTEP\|=1
        MO 110\=2,K
        ON 115 {=1,k
    t15 kOUNT(t)=
        place data in proper locations
            NI=N1-1
        00 135 1%1,
        l=kaunTli)
```



```
    NI=N1+1
        Nl=N1+1
        OO 130 J=1,N
        If(KOUNTJj-LEVEL{JI) 124, 125, 124
    174 K|UNT! JI=KOUNTGN!+1
    50 10 135
    1/5 k\uwilj):
    lis CONTINIJE
    liso CINTINIJE
        RCTURN
        MCTUR
```


AVCAL

This subroutine performs the calculus for the general k-factor experiment: operator Σ and operator Δ. An example is presented in terms of $\mathrm{k}=3$ to illustrate these operators.

Let $\mathrm{x}_{\mathrm{abc}}$ denote the experimental reading from the $a^{\text {th }}$ level of factor A, the $b^{\text {th }}$ level of factor B, and the $\mathrm{c}^{\text {th }}$ level of factor C . The symbols A, B, and C will also denote the number of levels for each factor so that $\mathrm{a}=1,2, \ldots, \mathrm{~A} ; \mathrm{b}=1,2, \ldots, \mathrm{~B}$; and $c=1,2, \ldots, C$.

With regard to the first factor A ,
operator $\sum_{a} \equiv \begin{aligned} & \text { sum over all levels } a=1,2, \ldots, \\ & \text { A, holding the other subscripts at }\end{aligned}$ constant levels, and
operator $\Delta \underset{\mathrm{a}}{\mathrm{a}} \equiv$ multiply all items by A and subtract the result of \sum_{a} from all items

In mathematical notations, these operators are defined as follows:

$$
\begin{align*}
& \sum_{a} x_{a b c} \equiv X_{\cdot b c} \equiv \sum_{a=1}^{A} x_{a b c} \tag{1}\\
& \Delta_{a} x_{a b c} \equiv A x_{a b c}-X_{\cdot b c} \tag{2}
\end{align*}
$$

The operators Σ and Δ will be applied sequentially with regard to all factors A, B, and C. Upon the completion of these operators, the storage array X contains deviates to be used for analysis of variance components in the subroutine MEANQ.

Subroutine AVCAL

Purpose:

Perform the calculus of a factorial experiment using operator sigma and operator delta. This subroutine is preceded by subroutine ADVAT and followed by subroutine MEANQ in the performance of analysis of variance for a complete factorial design.

Usage:
CALL AVCAL (K, LEVEL, X, L, ISTEP, LASTS)

Description of parameters:
$\mathrm{K} \quad$ Number of variables (factors). K must be greater than 1.
LEVEL - Input vector of length K containing levels (categories) within each variable.
X - Input vector containing data. Data have been placed in vector X by subroutine AVDAT. The length of X is (LEVEL(1) + 1)*(LEVEL(2) + 1)*... *(LEVEL(K) +1).
$L \quad-\quad$ The position in vector X where the last input data is located. L has been calculated by subroutine AVDAT.
ISTEP - Input vector of length K containing storage control steps which have been calculated by subroutine AVDAT.
LASTS - Working vector of length K .
Remarks:
This subroutine must follow subroutine AVDAT.
Subroutines and function subprograms required:
None.

Method:

The method is based on the technique discussed
by H. O. Hartley in 'Mathematical Methods for
Digital Computers', edited by A. Ralston and
H. Wilf, John Wiley and Sons, 1962, Chapter 20.

MEANQ

This subroutine performs the mean square operation for the general k -factor experiment in the following two steps:

1. Square each value of deviates for analysis of variance stored in the array X (the result of the operators Σ and Δ applied in the subroutine AVCAI).
2. Add the squared value into summation storage. In a three-factor experiment, for example, the squared value is added into one of seven storages ($7=2^{3}-1$) as shown in the first column of Table 1. The symbols A, B, and C in the first column denote factor A, factor B, and factor C.

After the mean square operation is completed for all values in the storage array X, the subroutine forms sums of squares of analysis of variance by dividing the totals of squared values by proper divisors. These divisors for the three-factor experiment mentioned above are shown in the second column of Table 1. The symbols A, B, and C in the second column denote the number of levels for each factor.

The subroutine, then, forms mean squares by dividing sums of squares by degrees of freedom. The third column of the summary table shows the degrees of freedom. The symbols A, B, and C denote the number of levels for each factor.

Table 1. Table Showing Summation Storages, Divisors to Form Sum of Squares, and Degrees of Freedom (Subroutine MEANQ)
$\left.\begin{array}{|ccc|}\hline \begin{array}{c}\text { Designation of Store } \\ \text { and of Quantity Con- } \\ \text { tained in it }\end{array} & \begin{array}{c}\text { Divlsor Required to } \\ \text { Form Sum of Squares } \\ \text { of Analysis of Variance }\end{array} & \end{array} \begin{array}{c}\text { Degrees of Freedom } \\ \text { Required to Form } \\ \text { Mean Squares }\end{array}\right]$

Subroutine MEANQ

Purpose:

Compute sum of squares, degrees of freedom, and mean square using the mean square operator. This subroutine normally follows calls to
AVDAT and AVCAL subroutines in the performance of analysis of variance for a complete factorial design.

Usage:

CALL MEANQ (K, LEVEL, X, GMEAN, SUMSQ, NDF, SMEAN, MSTEP, KOUNT, LASTS)

Description of parameters:
K - Number of variables (factors). K must be greater than 1 .
LEVEL - Input vector of length K containing levels (categories) within each variable.
X - Input vector containing the result of the sigma and delta operators. The length of X is (LEVEL(1)+1)* (LEVEL(2) + 1)*...*(LEVEL(K) + 1).
GMEAN - Output variable containing grand mean.
SUMSQ - Output vector containing sums of squares. The length of SUMSQ is 2 to the $K^{\text {th }}$ power minus one, ($2{ }^{* *} \mathrm{~K}$) -1 .
NDF - Output vector containing degrees of freedom. The length of NDF is 2 to the $\mathrm{K}^{\text {th }}$ power minus one, $(2 * * \mathrm{~K})-1$.
SMEAN - Output vector containing mean squares. The length of SMEAN is 2 to the $\mathrm{K}^{\text {th }}$ power minus one, $(2 * * \mathrm{~K})-1$.
MSTEP - Working vector of length K .
KOUNT - Working vector of length K.
LASTS - Working vector of length K .
Remarks:
This subroutine must follow subroutine AVCAL.
Subroutines and function subprograms required: None.

Method:
The method is based on the technique discussed by H. O. Hartley in 'Mathematical Methods for Digital Computers', edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.


```
    l
    calculate total number of data
    N=LEVEL11
```



```
        SET UP CONTROL FOR MEAN SQUARE OPERATOR
        ASTS(1)=LEVEL
    LASTS(I)=LEVEL(t)+1
c NN=1 CLEAR TME area to Store sums of souares
            -(2**)-1
            MO 180 l=2,x
    180 MSTEP(I)=USTEP(I-1)*2
    DO 185 f=1.LL
- SOS SUMSQIII=0.0
            Do 190 1=1,k
    200
        DO 260 1=1,K
        1F(KOUNTII)-LASTS(II) 210, 250, 210
    210 1F(L) 220. 220: 240
    IF(KOUNT(1)=LEVEL(I)) 230, 230, 250
    230 LEL+MSTEP(1)
    240 1F{KOUNT(1)-LFVEL(II) 230, 260, 230
    240 IF(KOUNT=
    260 continue
    IF(L) 285, 285, 270
    270 SUMSO(L)=SUMSQ(L)+X(NN)*X(NN)
        GO TO 200
            calculate the grand mean
    C285 FNON
c CALCULATE FIRST OIVISOR GEOUIREO TO FORM SUM OF SQUARES AND
                    MN=XINNI/FN 
```

| c | mean souarfs | MEANO 44 |
| :---: | :---: | :---: |
| | DO 310 $\mathrm{I}=2$, K | MEANQ 45 |
| 310 | WSTEP(1)=0 | MEANO 46 |
| | NN=0 | meano 47 |
| | MSTEP(1) $=1$ | MEANO 48 |
| 320 | NDI=1 | NEANO 49 |
| | ND2 $=1$ | MEANO 50 |
| | DO 340 falik | MEANQ 51 |
| | IFIMSTEP(1) 330, 340, 330 | MEANQ 52 |
| 330 | ND1 $=$ NDI*LEVEL (!) | MEANQ 53 |
| | NO2 $=$ NO2*(LEVEL! $!$-1) | MEANO 54 |
| 340 | continue | MEANO 55 |
| | FN1 $=$ NO1 | meangmol |
| | FN $1=F N$ FFN 1 | meangmoz |
| | FN2 $=$ NS? | MEANO 5 T |
| | $\mathrm{NN}=\mathrm{NN}+1$ | MEANO 58 |
| | SUWSOINNI SUMSOINNI/FN1 | MEANS 59 |
| | NDF (NN) $=$ ND | MEANO 60 |
| | SMEAY(NNITSUMSO(NN)/FN2 | meano 61 |
| | IF(NN-LL) 345, 370, 370 | MEANO 62 |
| 345 | no 360 laip | meano 63 |
| | 1FIMSTEP(t) 347, 350, 347 | meang ${ }^{\text {S }}$ |
| 347 | MSTED (1)=0 | MEANO 65 |
| | 60 T0 360 | meano 66 |
| 350 | MSTEP(1)=1 | MEANG 67 |
| | GO TO 320 | MEANO 68 |
| 360 | continue | MEANO 69 |
| 370 | RETUR | mpang 70 |
| | END | MEANQ 7. |

Statistics - Discriminant Analysis

In the Scientific Subroutine Package, discriminant analysis is normally performed by calling the following three subroutines in sequence:

1. DMATX - to compute means of variables in each group and a pooled dispersion matrix
2. MINV - to invert the pooled dispersion matrix
3. DISCR - to compute coefficients of discriminant functions and evaluate the functions for each observation (individual)

This subroutine calculates means of variables in each group and a pooled dispersion matrix for the set of groups in a discriminant analysis.

For each group $k=1,2, \ldots, g$, the subroutine calculates means and sums of cross-products of deviations from means as follows:

Means:

$$
\begin{equation*}
\bar{x}_{j k}=\frac{\sum_{i=1}^{n_{k}} x_{i j k}}{n_{k}} \tag{1}
\end{equation*}
$$

where $n_{k}=$ sample size in the $k^{\text {th }}$ group

$$
\mathfrak{j}=1,2, \ldots, \mathrm{~m} \text { are variables }
$$

Sum of cross-products of deviations from means:

$$
\begin{equation*}
S_{k}=\left\{s_{j \ell}^{k}\right\}=\sum\left(x_{i j k}-\bar{x}_{j k}\right)\left(x_{i \ell k}-\bar{x}_{\ell k}\right) \tag{2}
\end{equation*}
$$

where $\mathrm{j}=1,2, \ldots, \mathrm{~m}$

$$
\ell=1,2, \ldots, m
$$

The pooled dispersion matrix is calculated as follows:

$$
D=\frac{\sum_{k=1}^{g} s_{k}}{\sum_{k=1}^{g} n_{k}-g}
$$

where $\mathrm{g}=$ number of groups

Subroutine DMATX

Purpose:

Compute means of variables in each group and a pooled dispersion matrix for all the groups. Normally this subroutine is used in the performance of discriminant analysis.

Usage:

CALL DMATX (K, M, N, X, XBAR, D, CMEAN)

Description of parameters:
K - Number of groups.

CMEAN - Working vector of length M.
Remarks:
The number of variables must be greater than or equal to the number of groups.

Subroutines and function subprograms required: None.

Method:

Refer to 'BMD Computer Programs Manual', edited by W. J. Dixon, UCLA, 1964, and T. W. Anderson, 'Introduction to Multivariate Statistical Analysis', John Wiley and Sons, 1958, Section 6.6-6.8.

```
```

 SubrguTINE DHATX {K,M,N,X,XGAR,O,CMEANI
    ```
```

 SubrguTINE DHATX {K,M,N,X,XGAR,O,CMEANI
 SUBRGUTINE DHATX {K,M,N,X,XGAR,O,CMEANI
 SUBRGUTINE DHATX {K,M,N,X,XGAR,O,CMEANI
 MM=M&M I=1,MM
 MM=M&M I=1,MM
 100 00 D1100 1=10
100 00 D1100 1=10
c
c
N4=9
N4=9
OO 160 NG = 1,K
OO 160 NG = 1,K
M1=N(NG)
M1=N(NG)
CN=N1
CN=N1
MOL
MOL
MBAR(LM)=O.n
MBAR(LM)=O.n
L=L+1
L=L+1
120 XBAR(LNSI=XBAR(LM) +XIL)

```
```

120 XBAR(LNSI=XBAR(LM) +XIL)

```
```



```
```

 #EAN=LM-4
    ```
```

 #EAN=LM-4
 On 150 I= 1,N
 On 150 I= 1,N
 On 150 I=1,N
 On 150 I=1,N
 SO 1+0 J=1,M
 SO 1+0 J=1,M
 MO t&O J=1,M
 MO t&O J=1,M
 140 N2=LMFANEJ CMEANILII-XAGRIN2I
 140 N2=LMFANEJ CMEANILII-XAGRIN2I
 LL=0
 LL=0
 coll
 coll
 O0 150 JJ=
 O0 150 JJ=
 150 OLLLS=DILL'
 150 OLLLS=DILL'
 150 OLLLINOILL)+CMFAVIJJ\#CMEANIJJ!
150 OLLLINOILL)+CMFAVIJJ\#CMEANIJJ!
CalCulate the pugleo olspersion matrix
CalCulate the pugleo olspersion matrix
LL=-K
LL=-K
\700 LL=LL*NT:T,K
\700 LL=LL*NT:T,K
FN=LL
FN=LL
FN=LL
FN=LL
METURN

```
    METURN
```

```
    LMEAN=LM-M
```

```
    LMEAN=LM-M
```

- Number of variables (must be the same for all groups).
- Input vector of length K containing sample sizes of groups.
- Input vector containing data in the manner equivalent to a 3 -dimensional FORTRAN array, X(1, 1, 1), $\mathrm{X}(2,1,1), \mathrm{X}(3,1,1)$, etc. The first subscript is case number, the second subscript is variable number and the third subscript is group number. The length of vector X is equal to the total number of data points, $T * M$, where $T=N(1)+N(2)+$ $\ldots+\mathrm{N}(\mathrm{K})$.
BAR - Output matrix (M by K) containing means of variables in K groups.
D - Output matrix (M by M) containing pooled dispersion.

DISCR

This subroutine performs a discriminant analysis by calculating a set of linear functions that serve as indices for classifying an individual into one of K groups.

For all groups combined, the following are obtained:

Common means:

$$
\begin{equation*}
\bar{x}_{j}=\frac{\sum_{k=1}^{g} n_{k} \bar{x}_{j k}}{\sum_{k=1}^{g} n_{k}} \tag{1}
\end{equation*}
$$

where $\mathrm{g}=$ number of groups
$\mathrm{j}=1,2, \ldots, \mathrm{~m}$ are variables
$\mathrm{n}_{\mathrm{k}}=$ sample size in the $\mathrm{k}^{\text {th }}$ group
$\bar{x}_{j k}=$ mean of $j^{\text {th }}$ variable in $k^{\text {th }}$ group
Generalized Mahalanobis $\mathrm{D}^{\mathbf{2}}$ statistics, V:

$$
\begin{equation*}
V=\sum_{i=1}^{m} \sum_{j=1}^{m} d_{i j} \sum_{k=1}^{g} n_{k}\left(\bar{x}_{i k}-\bar{x}_{i}\right)\left(\bar{x}_{j k}-\bar{x}_{j}\right) \tag{2}
\end{equation*}
$$

where $d_{i j}=\begin{aligned} & \text { the inverse element of the pooled dis- } \\ & \text { persion matrix } D\end{aligned}$
V can be used as chi-square (under assumption of normality) with $\mathrm{m}(\mathrm{g}-1)$ degrees of freedom to test the hypothesis that the mean values are the same in all the g groups for these m variables.

For each discriminant function $\mathrm{k} *=1,2, \ldots, \mathrm{~g}$, the following statistics are calculated:

Coefficients:

$$
\begin{equation*}
C_{i k *}=\sum_{j=1}^{m} d_{i j} \bar{x}_{j k} \tag{3}
\end{equation*}
$$

Constant:

$$
\begin{equation*}
C_{o k *}=-1 / 2 \sum_{j=1}^{m} \sum_{l=1}^{m} d_{j 1} \bar{x}_{j k} \bar{x}_{1 k} \tag{4}
\end{equation*}
$$

For each $\mathrm{i}^{\text {th }}$ case in each $\mathrm{k}^{\text {th }}$ group, the following calculations are performed:

Discriminant functions:

$$
\begin{equation*}
f_{k *}=\sum_{j=1}^{m} c_{j k} x_{i j k}+c_{o k *} \tag{5}
\end{equation*}
$$

where $\mathrm{k} *=1,2, \ldots, \mathrm{~g}$
Probability associated with largest discriminant function:

$$
\begin{equation*}
P_{L}=\frac{1}{\sum_{k *=1}^{g} e^{\left(f_{k *}-f_{L}\right)}} \tag{6}
\end{equation*}
$$

where $f_{L}=$ the value of the largest discriminant function
$\mathrm{L}=$ the subscript of the largest discriminant function

Subroutine DISCR

Purpose:

Compute a set of linear functions which serve as indices for classifying an individual into one of several groups. Normally this subroutine is used in the performance of discriminant analysis.

Usage:
CALL DISCR (K, M, N, X, XBAR, D, CMEAN, V, C, P, LG)

Description of parameters:
K \quad - Number of groups. K must be greater than 1.
M - Number of variables.
N - Input vector of length K containing sample sizes of groups.
X - Input vector containing data in the manner equivalent to a 3 -dimensional FORTRAN array, $X(1,1,1)$, $\mathrm{X}(2,1,1), \mathrm{X}(3,1,1)$, etc. The first
subscript is case number，the sec－ ond subscript is variable number and the third subscript is group number．The length of vector X is equal to the total number of data points，$T * M$ ，where $T=N(1)+N(2)+$ $\ldots+\mathrm{N}(\mathrm{K})$ ．
XBAR－Input matrix（M by K）containing means of M variables in K groups．
D－Input matrix（ M by M ）containing the inverse of pooled dispersion matrix．
CMEAN－Output vector of length M containing common means．
V－Output variable containing general－ ized Mahalanobis D－square．
C－Output matrix（M＋1 by K）containing the coefficients of discriminant functions．The first position of each column（function）contains the value of the constant for that func－ tion．
P
－Output vector containing the proba－ bility associated with the largest discriminant functions of all cases in all groups．Calculated results are stored in the manner equivalent to a 2 －dimensional area（the first subscript is case number，and the second subscript is group number）． Vector P has length equal to the total number of cases， $\mathrm{T}(\mathrm{T}=\mathrm{N}(1)+$ $N(2)+\ldots+N(K))$ ．
LG－Output vector containing the sub－ scripts of the largest discriminant functions stored in vector P ．The length of vector LG is the same as the length of vector P ．

Remarks：
The number of variables must be greater than or equal to the number of groups．

Subroutines and function subprograms required： None．

Method：
Refer to＇BMD Computer Programs Manual＇， edited by W．J．Dixon，UCLA，1964，and T．W． Anderson，＇Introduction to Multivariate Statis－ tical Analysis＇，John Wiley and Sons， 1958.

```
        LuO 140 1=1,k
        On 140 1=1,k
    140% C(L)=XBAR\LI-CMEANIJ)
    V=0.0
lon
    On N160 l
    N2=J-M
    SUM=0.0 [J=1,K
        M
150 NT=N2+M
    <ol}\begin{array}{l}{L=L+1}\\{V=V&DILI*SUM}
160 V=v*Dili*SUMM
        N2=0
        OO 190 KA= = , K
    N2=N2+1
    170 P(1)=X8AR(N2)
        l
        SUR=0.0
        l
        l
1AO SUM=SUM&OCN1)*P(J)*P(L)
        SUR= SUM+O(N1T*P(J)
        on 190 1=1,M
        Mon 190 1=
            lol
            OD 190 J=1,M
190 CIIDI=CIIOO+DINII#PIJI
CIIQI=CIIOI+DINII#PIJI 
            CIIOI=CIIOL&DINII#PIJI 
            LPASE=0
            ND 270 KG=1,K
            NN=N(KG)
            DO 260 I=1,NN
            00 200 J=1,M
    200}\begin{array}{l}{L=L&NN}\\{D(J)=X(L)}
    200}\begin{array}{l}{L=L*NN}\\{0(J)=X(L)}\\{N2=0}
        N2=0
        N}\begin{array}{l}{N2=N2+1}\\{SUN=C(N2)}
        SUN=CIN21,
        D0) 210 J=1,M
    210 SUM=5UM+C(N2)*O(J)
    210 SUM2SUM+C(N2I*OCH)
c
            L=1
            l
    230 \=J
    230L= SUH=XBAR(J)
    240 CONTINUE
        c 240 confinuegeribagility associateo with the largest miscriminant funcition
        PL=0.0
    250 PL=PL* EXP(XRAR(J)-SUM)
l
        LGINI)=L
260 P(N1)=1.07/PL
        loremuR
        V=0.0
c
            SUMaxAR(1)
        PL=0.0 =1,
0n 250 J=1.K
        RETURN
c
o mahalanubis o souaae
M=0 160 J=1,M
        N2=0
    N2=N2+1
        N1=0
            OO}22=N2+1 KA=
            N2=N2+1
OIS
            10=10+1
            *
140 va0 (OARIL-CMEAN(J)
                            O
    0n 140 l=1,k
*
```


$\stackrel{c}{c}$

130 CMEANTIIECMEANIIITNN CaLCulate generalizeo mahalanub！s o souare
$\begin{array}{ll}\text { A } & 16 \\ \text { a } & 17\end{array}$
ご Cheantilecmeantilifn LuO
~ペ゙ったご
\square
c

0

Factor analysis is a method of analyzing the intercorrelations within a set of variables. It determines whether the variance in the original set of variables can be accounted for adequately by a smaller number of basic categories, namely factors.

In the Scientific Subroutine Package, factor analysis is normally performed by calling the following five subroutines in sequence:

1. CORRE - to find means, standard deviations, and correlation matrix
2. EIGEN - to compute eigenvalues and associated eigenvectors of the correlation matrix
3. TRACE - to select the eigenvalues that are greater than or equal to the control value specified by the user
4. LOAD - to compute a factor matrix
5. VARMX - to perform varimax rotation of the factor matrix
The subroutine CORRE works in either of two ways: (1) it expects all observations in core, or (2) it triggers a user-provided input subroutine, DATA, to read one observation at a time into a work area. In either case, the user must provide a subroutine named DATA (see "Subroutines Required" in the description of subroutine CORRE).

TRACE

This subroutine finds k , the number of eigenvalues that are greater than or equal to the value of a specified constant. The given eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$, λ_{m} must be arranged in descending order.

Cumulative percentage for these k eigenvalues are:

$$
\begin{equation*}
\mathrm{d}_{\mathrm{j}}=\sum_{\mathrm{i}=1}^{\mathrm{j}} \frac{\lambda_{\mathrm{i}}}{\mathrm{~m}} \tag{1}
\end{equation*}
$$

where $\mathrm{j}=1,2, \ldots, \mathrm{k}$
$m=$ number of eigenvalues (or variables)
$\mathrm{k} \leq \mathrm{m}$

Subroutine TRACE
Purpose:
Compute cumulative percentage of eigenvalues greater than or equal to a constant specified by the user. This subroutine normally occurs in a sequence of calls to subroutines CORRE, EIGEN, TRACE, LOAD, and VARMX in the performance of a factor analysis.

Usage:
CALL TRACE (M, R, CON , K, D)
Description of parameters:
M - Number of variables.
R - Input matrix (symmetric and stored in compressed form with only upper triangle by column in core) containing eigenvalues in diagonal. Eigenvalues are arranged in descending order. The order of matrix R is M by M. Only $M^{*}(M+1) / 2$ elements are in storage. (Storage mode of 1.)
CON - A constant used to decide how many eigenvalues to retain. Cumulative percentage of eigenvalues which are greater than or equal to this value is calculated.
K - Output variable containing the number of eigenvalues greater than or equal to CON. (K is the number of factors.)
D - Output vector of length M containing cumulative percentage of eigenvalues which are greater than or equal to CON.

Remarks:
None.
Subroutines and function subprograms required: None.

Method:
Each eigenvalue greater than or equal to CON is divided by M and the result is added to the previous total to obtain the cumulative percentage for each eigenvalue.

SUBROUTINE TRACE $\operatorname{In}, \mathrm{R}, \mathrm{CON}, \mathrm{K}, \mathrm{O}$)
 IMENSIOM RIll, DII

$\mathrm{FM}=\mathrm{N}$
$\mathrm{L}=0$
DO 100 1*1.m

100 D(t)=A(L)
c test whether i-theigenvalue is greater TEST WHETHER THEIGENVALUE
THAN OR EOUAL TO THE CONSTANT

$105 \mathrm{kak+1}$
c 110 olli=0itifin compute cumulative percentage of eigenvalues
$12000130 \quad 1=2, k$
$1300(1)=0(1)+0(1-1)$ D(1)=Di
RETURN RETURN
ENO

LOAD

This subroutine calculates the coefficients of each factor by multiplying the elements of each normalized eigenvector by the square root of the corresponding eigenvalue.

$$
\begin{equation*}
a_{i j}=v_{i j} \cdot \sqrt{\lambda_{j}} \tag{1}
\end{equation*}
$$

where $i=1,2, \ldots, m$ are variables
$j=1,2, \ldots, k$ are eigenvalues retained (see the subroutine TRACE)
$\mathrm{k} \leq \mathrm{m}$

Subroutine LOAD

Purpose:
Compute a factor matrix (loading) from eigenvalues and associated eigenvectors. This subroutine normally occurs in a sequence of calls to subroutines CORRE, EIGEN, TRACE, LOAD, and VARMX in the performance of a factor analysis.

Usage:

CALL LOAD (M, K, R, V)

Description of parameters:

M - Number of variables.
K - Number of factors.
R - A matrix (symmetric and stored in compressed form with only upper triangle by column in core) containing eigenvalues in diagonal. Eigenvalues are arranged in descending order, andfirst K eigenvalues are used by this subroutine. The order of matrix R is M by M. Only $M^{*}(M+1) / 2$ elements are in storage. (Storage mode of 1.)
V - When this subroutine is called, matrix V (M by M) contains eigenvectors columnwise. Upon returning to the calling program, matrix V contains a factor matrix (M by K).

Remarks:
None.

Subroutines and function subprograms required:
None.

Method:

Normalized eigenvectors are converted to the factor pattern by multiplying the elements of each vector by the square root of the corresponding eigenvalue.

```
SNBROUTINE LOAD (H,K,R,V)
SIMENSION RIII,VII)
MLMEN
DO 160 Jal,k
```



```
150 SO= SORTIR(JJ)I
00 16n f=1,M
160V(LI)=SQev(L)
MRTURN
    REND
```


VARMX

This subroutine performs orthogonal rotations on a m by k factor matrix such that:

$$
\begin{equation*}
\sum_{j}\left\{m \sum_{i}\left(a_{i j}^{2} / h_{i}^{2}\right)^{2}-\left[\sum_{i}\left(a_{i j}^{2} / h_{i}^{2}\right)\right]\right\}^{2} \tag{1}
\end{equation*}
$$

is a maximum, where $i=1,2, \ldots$, m are variables, $j=1,2, \ldots, k$ are factors, $a_{i j}$ is the loading for the $i^{\text {th }}$ variable on the $j^{\text {th }}$ factor, and h_{i}^{2} is the communality of the $i^{\text {th }}$ variable defined below.

Communalities:

$$
\begin{equation*}
h_{i}^{2}=\sum_{j=1}^{k} a_{i j}^{2} \tag{2}
\end{equation*}
$$

where $i=1,2, \ldots, m$
Normalized factor matrix:

$$
\begin{equation*}
b_{i j}=a_{i j} / \sqrt{h_{i}^{2}} \tag{3}
\end{equation*}
$$

where $i=1,2, \ldots, m$

$$
\mathbf{j}=1,2, \ldots, \mathrm{k}
$$

Variance for factor matrix:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{c}}=\sum_{\mathrm{j}}\left\{\left[\mathrm{~m} \sum_{\mathrm{i}}\left(\mathrm{~b}_{\mathrm{ij}}^{2}\right)^{2}-\left(\sum_{\mathrm{i}} \mathrm{~b}_{\mathrm{ij}}^{2}\right)^{2}\right] / \mathrm{m}^{2}\right\} \tag{4}
\end{equation*}
$$

where $\mathrm{c}=1,2, \ldots$ (iteration cycle)
Convergence test:
If $V_{c}-V_{c-1} \leq 10^{-7}$
four successive times, the program stops rotation and performs the equation (28). Otherwise, the program repeats rotation of factors until the convergence test is satisfied.

Rotation of two factors:

The subroutine rotates two normalized factors $\left(\mathrm{b}_{\mathrm{ij}}\right)$ at a time. 1 with 2,1 with $3, \ldots, 1$ with k, 2 with $3, \ldots, 2$ with $\mathrm{k}, \ldots, \mathrm{k}-1$ with k . This constitutes one iteration cycle.

Assume that x and y are factors to be rotated, where x is the lower-numbered or left-hand factor, the following notation for rotating these two factors is used:

$$
\left[\begin{array}{cc}
x_{1} & y_{1} \tag{6}\\
x_{2} & y_{2} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
x_{m} & y_{m}
\end{array}\right] \cdot\left[\begin{array}{rr}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{X}_{1} & \mathrm{Y}_{1} \\
\mathrm{X}_{2} & \mathrm{Y}_{2} \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\mathrm{X}_{\mathrm{m}} & \mathrm{Y}_{\mathrm{m}}
\end{array}\right]
$$

where x_{i} and y_{i} are presently available normalized loadings and X_{i} and Y_{i}, the desired normalized loadings, are functions of ϕ, the angle of rotation. The computational steps are as follows:
A. Calculation of NUM and DEN:

$$
\begin{align*}
A & =\sum_{i}\left(x_{i}+y_{i}\right)\left(x_{i}-y_{i}\right) \\
B= & 2 \sum_{i} x_{i} y_{i} \\
C= & \sum_{i}\left[\left(x_{i}+y_{i}\right)\left(x_{i}-y_{i}\right)+2 x_{i} y_{i}\right] \tag{7}\\
D= & \left.4 \sum_{i}\left(x_{i}\right)\left(x_{i}+y_{i}\right)\left(x_{i}-y_{i}\right)-2 x_{i} y_{i}\right] \\
D & \left.y_{i}\right) x_{i} y_{i} \\
N U M & =D-2 A B / m \\
D E N= & C-[(A+B)(A-B)] / m
\end{align*}
$$

B. Comparison of NUM and DEN:

The following four cases may arise:
NUM < DEN, go to B1 below.
NUM $>$ DEN, go to B2 below.
$($ NUM + DEN $) \geq \epsilon *$, go to B3 below.
(NUM + DEN) $<\epsilon$, skip to the next rotation.

* ϵ is a small tolerance factor.

B1: $\quad \tan 4 \theta=|\mathrm{NUM}| /|\mathrm{DEN}|$
If $\tan 4 \theta<\epsilon$ and
(i) DEN is positive, skip to the next rotation.
(ii) DEN is negative, set $\cos \phi=$ $\sin \phi=(\sqrt{2}) / 2$ and go to E below.

If $\tan 4 \theta \geq \epsilon$, calculate:

$$
\begin{align*}
& \cos 4 \theta=1 / \sqrt{1+\tan ^{2} 4 \theta} \tag{9}\\
& \sin 4 \theta=\tan 4 \theta \cdot \cos 4 \theta \tag{10}
\end{align*}
$$

and go to C below.
B2: $\quad \operatorname{ctn} 4 \theta=\mid$ NUM $|/|$ DEN \mid
If $\operatorname{ctn} 4 \theta<\epsilon$, set $\cos 4 \theta=0$ and $\sin 4 \theta=1$. Go to C below.

If $\operatorname{ctn} 4 \theta \geq \boldsymbol{\epsilon}$, calculate:

$$
\begin{align*}
& \sin 4 \theta=1 / \sqrt{1+\operatorname{ctn}^{2} 4 \theta} \tag{12}\\
& \cos 4 \theta=\operatorname{ctn} 4 \theta \cdot \sin 4 \theta \tag{13}
\end{align*}
$$

and go to C below.
B3: \quad Set $\cos 4 \theta=\sin 4 \theta=(\sqrt{2}) / 2$ and go to C below.
C. Determining $\cos \theta$ and $\sin \theta$:
$\cos 2 \theta=\sqrt{(1+\cos 4 \theta) / 2}$
$\sin 2 \theta=\sin 4 \theta / 2 \cos 2 \theta$
$\cos \theta=\sqrt{(1+\cos 2 \theta) / 2}$
$\sin \theta=\sin 2 \theta / 2 \cos \theta$
D. Determining $\cos \phi$ and $\sin \phi$:

D1: If DEN is positive, set
$\cos \phi=\cos \theta$
$\sin \phi=\sin \theta$ and go to (D2) below.

If DEN is negative, calculate

$$
\begin{align*}
& \cos \phi=\frac{\sqrt{2}}{2} \cos \theta+\frac{\sqrt{2}}{2} \sin \theta \tag{20}\\
& \sin \phi=\left|\frac{\sqrt{2}}{2} \cos \theta-\frac{\sqrt{2}}{2} \sin \theta\right| \tag{21}
\end{align*}
$$

and go to (D2) below.
D2: If NUM is positive, set

$$
\begin{align*}
& \cos \phi=|\cos \phi| \tag{22}\\
& \sin \phi=|\sin \phi| \tag{23}
\end{align*}
$$

and go to (E) below.

If NUM is negative, set

$$
\begin{align*}
& \cos \phi=|\cos \phi| \tag{24}\\
& \sin \phi=-|\sin \phi| \tag{25}
\end{align*}
$$

E. Rotation:

$$
\begin{align*}
& X_{i}=x_{i} \cos \phi+y_{i} \sin \phi \tag{26}\\
& Y_{i}=x_{i} \sin \phi+y_{i} \cos \phi \tag{27}
\end{align*}
$$

where $i=1,2, \ldots, m$
After one cycle of $k(k-1) / 2$ rotations is completed, the subroutine goes back to calculate the variance for the factor matrix (equation 4).

Denormalization:

$$
\begin{equation*}
a_{i j}=b_{i j} \cdot h_{i} \tag{28}
\end{equation*}
$$

where $i=1,2, \ldots, m$

$$
j=1,2, \ldots, k
$$

Check on communalities:

$$
\begin{array}{ll}
\text { Final communalities } & f_{i}^{2}=\sum_{j=1}^{k} a_{i j}^{2} \\
\text { Difference } & d_{i}=h_{i}^{2}-f_{i}^{2}
\end{array}
$$

Subroutine VARMX

Purpose:

Perform orthogonal rotations of a factor matrix. This subroutine normally occurs in a sequence of calls to subroutines CORRE, EIGEN, TRACE, LOAD, VARMX in the performance of a factor analysis.

Usage:

CALL VARMX (M, K, A, NC, TV, H, F, D)

Description of parameters:
M - Number of variables and number of rows of matrix A.
K - Number of factors.
A - Input is the original factor matrix, and output is the rotated factor matrix. The order of matrix A is M by K.
NC - Output variable containing the number of iteration cycles performed.
TV - Output vector containing the variance of the factor matrix for each iteration cycle. The variance prior to the first iteration cycle is also calculated. This means that $\mathrm{NC}+1$ variances are stored in vector TV. Maximum number of iteration cycles allowed in this subroutine is 50. Therefore, the length of vector TV is 51.
H - Output vector of length M containing the original communalities.
F - Output vector of length M containing the final communalities.
D - Output vector of length M containing the differences between the original and final communalities.

Remarks:
If variance computed after each iteration cycle does not increase for four successive times, the subroutine stops rotation.

Subroutines and function subprograms required: None.

Method:

Kaiser's varimax rotation as described in 'Computer Program for Varimax Rotation in Factor Analysis' by the same author, Educational and Psychological Measurement, Vol. XIX, No. 3, 1959.
where $i=1,2, \ldots, m$

```
    SURROUT INE VARMX (M,K,A,NC,TV,H,F,D
    IMENS(ON A(b),TV(1),H(l),F(1),011)
    fNitializatitn
    TVLT=0.0
    NL=K-1
    NC=O0
    fFN=FNEFN
    CDNS=0.7071066
        CALCULATE DRIFINAL COMMUNALITIFS
    OD l10 I=1
    lol
    L=N*(J-T)+1
c 110 HII)=H(I)*ALLI*ACLI
            O l2o Ia1,M
    15 HIII= SORTiH(I
    0n 120 J#1,*
    20 A(L)=AlL)/Ht
    G0 TO 132
    130 NV=MV+CULATE VARI ANCE FOR FACTIRR MATRIX
    TVLT=TV(NV-1)
    TVCNV:=0.0
    LOO 150 J
    8B=9.0
    LL=4*1J-11,
    L=LB+1
    CC=41LI*All
    AA=AA+CC
    140 B8=BB+CC*CC
    IF(NV)=TV(NV) +(FV*BB-AA*AA)/FFN
        PERFORM CONVEQGENCE TESt
    160 IFI(TV(NV)-TVLH-41.E-7)I 170, 170, 190
    170 NC=NC+1
        FF(NC-3) 190, 190,430
            GDTATION OF TAO factmRS CONTINuES up to
    | 120.
    190 00 420 J=1%LL
            11= J+1
            calcurate num and oen
            0n 420 Kl=II,k
            2=1=(K1-1)
            AA=0.0
            CC=0.0
            O0 230 I=1,M
            l}\begin{array}{l}{13=2L1+1}\\{4=12+1}
            |=(A1(3)+A(L4))*(A(L3)-A(L4)]
            T=A(l3)*A(L4)
            T=T+T
            010=00+2.0*U*T
            AA=AA+U
    30 B8=B8+Y
            T=00-2,0*AA*BB/FY
            CC-1AA*AA-B8*BY 1/FN
        IFIT-BIARISON TF NUM AND DEN
            IF(|T+B|-EPS) 425, 250, 250
            NUH + DEN IS JREATER THAN TR EDUAL TO THF
NULeraen l5 jREA
            COS4T=CONS
            SIN4T=CONS
```



```
    IFITAN4T-FPSI 303, 290, 290
    90 CDS4F=1.01 SQRT1,O+TAN4TOTAN4TI
        SIN4T=TAN4T*COS4T
            SIN4TETAN4T
    00 1F(B) 310,420,420
        SINP=CONS
            GO TO 400
c. NUM IS greater than dFy
    CO CTN4T=ABS(T/B
    IFICTN4T-EP5) 34): 330, 330
    SIN4T=1.0/ SORTII
    60 10 350
    340 CNS4T=0.0
        oetermine cos theta and sin theta
    350 COS2T= SORT(11.0+COS4T)/2.n)
    SIN2T=SIN4T/12.0* COS2T)
    55 COST= SORTIC1.0*=OS2T1/2.01
        DETERHINE COS PHI AND SIN PH
        [F(A) 370, 370, 360
        COSP=CNST
        SINP=SINT
            O[% 380
    70 cosp=CuNS*COST*CJNS*SINT
    375 SINP = ARSICONS*CTST-CONS*SINT
    90 SINP=-SM, 390,400
    O SINPE-SGNP ROTATION
    D0 t10 I= 1.N
        L3=L1+1
        AA=A(L3)*COSP*AtLG)*SIMP
        A(L4|-A(L3)*SINN*AlL4)*COSP
    410 A(L3)=AA
        go TO 130
C 430 DO DENORMALITEL,M
            LaM+(J-1)+1
    440 A(L)=A(L)*H(1)
        CHECK ON COMmJNALITIES
            NC=NV-1
            *00450 (1*1;M
            00 470 1=1,4
            F[1)=0.0
            * 460 J=1,K
            F(1)=F(I)+A(L)*A(L)
            OH1IEHII-F!I)
            RETURN
```

Statistics - Time Series
AUTO

This subroutine calculates the autocovariances for lags $0,1,2$, \ldots, (L-1), given a time series of observations $\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots, \mathrm{~A}_{\mathrm{n}}$ and a number L .

where $A V E R=\frac{1}{n} \sum_{i=1}^{n} A_{i}$ $\mathrm{n}=$ number of observations in time series A.
$\mathrm{j}=1,2,3, \ldots, \mathrm{~L}$ represent time lags $0,1,2, \ldots$, (L-1).

Subroutine AUTO

Purpose:
To find autocovariances of series A for lags 0 to L-1.

Usage:
CALL AUTO (A, N, L, R)

Description of parameters:
A - Input vector of length N containing the time series whose autocovariance is desired.
N - Length of the vector A.
L - Autocovariance is calculated for lags of 0 , 1, 2,... , L-1.
R - Output vector of length L containing autocovariances of series A.

Remarks:
The length of R is different from the length of A. N must be greater than L. Otherwise, $R(1)$ is set to zero and this routine exits.

Subroutines and function subprograms required: None.

Method:
The method described by R. B. Blackman and J. W. Tukey in The Measurement of Power Spectra, Dover Publications, Inc., New York, 1959.
DO $110 \quad 1=1 . \mathrm{N}$
100 OD 110 I= $1: N$
110 AVER=AVER+A(I)
$\mathbf{F N}=\mathrm{N}$
averaaverifn
C CALGULATE AUTOCOVARIANCES
Do 130 JHF L
$\infty \quad 130 \mathrm{~J}=1$
$\mathrm{NJ}=\mathrm{N}-\mathrm{J}+\mathrm{l}$
$\mathrm{NJ}=\mathrm{N}=\mathrm{J}+\mathrm{C}$
$\mathrm{Sum}=0.0$
SUM $=0.0$
DO $1201=1, \mathrm{NJ}$
$1 J=1+J=1$
$1 \mathrm{~J}=1+\mathrm{J}-1$
SUM $\mathrm{SUM}+(\mathrm{C}(1)-A V E R) *(A(I J)-A V E R)$

RIJIESU
RETURN

CROSS

This subroutine calculates the crosscovariances of series B lagging and leading A, given two time series $A_{1}, A_{2}, \ldots, A_{n}$ and $B_{1}, B_{2}, \ldots, B_{n}$ and given a number L.
(a) B lags A:

$$
\begin{equation*}
R_{j}=\frac{1}{n-j+1} \sum_{i=1}^{n-j+1}\left(A_{i}-\text { AVERA }\right)\left(B_{i+j-1}-\text { AVERB }\right) \tag{1}
\end{equation*}
$$

(b) B leads A:

$$
S_{j}=\frac{1}{n-j+1} \sum_{i=1}^{n-j+1}\left(A_{i+j-1}-\operatorname{AVERA}\right)\left(B_{i}-\text { AVERB }\right)
$$

where AVERA $=\frac{1}{n} \sum_{i=1}^{n} A_{i}$

$$
\text { AVERB }=\frac{1}{n} \sum_{i=1}^{n} B_{i}
$$

$\mathrm{n}=$ number of observations in each series.
$\mathrm{j}=1,2, \ldots, \mathrm{~L}$ represent time lags (or leads) of $0,1,2, \ldots,(L-1)$.

Subroutine CROSS

Purpose:

To find the crosscovariances of series A with series B (which leads and lags A).

Usage:
CALL CROSS (A, B, N, L, R, S)

Description of parameters:
A - Input vector of length N containing first time series.
B - Input vector of length N containing second time series.
N - Length of series A and B.
L - Crosscovariance is calculated for lags and leads of $0,1,2, \ldots, L-1$.

R - Output vector of length L containing crosscovariances of A with B, where B lags A.
S - Output vector of length L containing crosscovariances of A with B, where B leads A.

Remarks:

N must be greater than L. If not, $R(1)$ and $S(1)$ are set to zero and this routine exits.

Subroutines and function subprograms required: None.

Method:
The method is described by R. B. Blackman and J. W. Tukey in The Measurement of Power Spectra, Dover Publications, Inc., New York, 1959.

```
    Subrcutine cross (A,B,N,L,R,S)
    DIMENSION A(1),G(1),R(1),S(1)
    fN=ALCulate averages of Series a and b
    FN=N
    AVERA=0.0
    S% {(1)=0.0
    $(1)=0.0
    SETURN
    100 RO 110 I=IN
    AVFRA=AVERA+A(!)
    AVERB=AVERB+BI
    AVFPA=AVERA/FN
C AVERBAVERB/FN
    no 130 JaloL
    NJ#N-J+1
    SUMR=0.0
    DO 120 1=1,NJ
    lu=i+J-1
120 SUMS=SUMS*(A)IJ)=AVFRA)*(BII)-AVERB)
    l
    130 S(JIESUMS/FNJ
    RE TUQN
    CROSS 
```

SMO
This subroutine calculates the smoothed or filtered series, given a time series $A_{1}, A_{2}, \ldots, A_{n}$, a selection integer L, and a weighting series W_{1}, W_{2}, \ldots, W_{m}.

$$
\begin{equation*}
R_{i}=\sum_{j=1}^{m} A_{p} \cdot W_{j} \tag{1}
\end{equation*}
$$

where $p=j \cdot L-L+k$

$$
\mathrm{k}=\mathbf{i}-\mathrm{IL}+\mathbf{1}
$$

$$
\mathrm{i}=\mathrm{IL} \text { to } \mathrm{IH}
$$

$$
\begin{equation*}
\mathrm{IL}=\frac{\mathrm{L}(\mathrm{~m}-1)}{2}+1 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{HH}=\mathrm{n}-\frac{\mathrm{L}(\mathrm{~m}-1)}{2} \tag{3}
\end{equation*}
$$

$L=a$ given selection integer. For example, $L=4$ applies weights to every $4^{\text {th }}$ item of the time series.
$\mathrm{m}=$ number of weights. Must be an odd integer. (If m is an even integer, any fraction resulting from the calculation of $\frac{L(m-1)}{2}$ in (2) and (3) above will be truncated.
$\mathrm{n}=$ number of items in the time series.
From $I L$ to $I H$ elements of the vector R are filled with the smoothed series and other elements with zeros.

Subroutine SMO

Purpose:

To smooth or filter series A by weights W.

Usage:
CALL SMO (A, N, W, M, L, R)
Description of parameters:
A - Input vector of length N containing time series data.
N - Length of series A.
W - Input vector of length M containing weights.

M - Number of items in weight vector. M must be an odd integer. (If M is an even integer, any fraction resulting from the calculation of ($\left.\mathrm{L}^{*}(\mathrm{M}-1)\right) / 2$ in (1) and (2) below will be truncated.)
L - Selection integer. For example, $\mathrm{L}=12$ means that weights are applied to every $12^{\text {th }}$ item of A . $\mathrm{L}=1$ applies weights to successive items of A. For monthly data, $\mathrm{L}=12$ gives year-to-year averages and $\mathrm{L}=1$ gives month-to-month averages.
R - Output vector of length N. From IL to IH elements of the vector R are filled with the smoothed series and other elements with zero, where

$$
\begin{aligned}
& \mathrm{IL}=\left(\mathrm{L}^{*}(\mathrm{M}-1)\right) / 2+1 \ldots \ldots \text { (1) } \\
& \mathrm{IH}=\mathrm{N}-\left(\mathrm{L}^{*}(\mathrm{M}-1)\right) / 2 \ldots \text { (2) }
\end{aligned}
$$

Remarks:
N must be greater than or equal to the product of L*M.

Subroutines and function subprograms required: None.

Method:
Refer to the article 'FORTRAN Subroutines for Time Series Analysis', by J. R. Healy and B. P. Bogert, Communications of ACM, V.6, No. 1, Jan., 1963.

```
    SURROUTINE SMC (A,N+W,Y,L,RI
C INITIALIZATION
    110R(1)=0,01,
    0RIt!=0.0
    ML
c SHONTGOTM SERIES A bY weIghtS W
    00 120 I=IL,IH
    k=1-It+1
    OO 120 J=1,M
```



```
    RETURR
    METUR
```


EXSMO

This subroutine calculates a smoothed series S_{1}, $S_{2}, \ldots, S_{N X}$, given time series $X_{1}, X_{2}, \ldots, X_{N X}$ and a smoothing constant α. Also, at the end of the computation, the coefficients A, B, and C are given for the expression $\mathrm{A}+\mathrm{B}(\mathrm{T})+\mathrm{C}(\mathrm{T})^{2 / 2}$. This expression can be used to find estimates of the smoothed series a given number of time periods, T, ahead.

The subroutine has the following two stages for $\mathrm{i}=1,2, \ldots$, NX, starting with A, B, and C either given by the user or provided automatically by the subroutine (see below).
(a) Find $\mathrm{S}_{\mathbf{i}}$ for one period ahead

$$
\begin{equation*}
S_{i}=A+B+.5 C \tag{1}
\end{equation*}
$$

(b) Update coefficients A, B, and C

$$
\begin{align*}
& A=X_{i}+(1-\alpha)^{3}\left(S_{i}-X_{i}\right) \tag{2}\\
& B=B+C-1.5\left(\alpha^{2}\right)(2-\alpha)\left(S_{i}-X_{i}\right) \tag{3}\\
& C=C-\left(\alpha^{3}\right)\left(S_{i}-X_{i}\right) \tag{4}
\end{align*}
$$

where $\alpha=$ smoothing constant specified by the user

$$
(0.0<\alpha<1.0)
$$

If coefficients A, B, and C are not all zero (0.0), take given values as initial values. However, if $A=B=C=0.0$, generate initial values of A, B, and C as follows:

$$
\begin{align*}
& C=X_{1}-2 X_{2}+X_{3} \tag{5}\\
& B=X_{2}-X_{1}-1.5 C \tag{6}\\
& A=X_{1}-B-0.5 C \tag{7}
\end{align*}
$$

Subroutine EXSMO

Purpose:
To find the triple exponential smoothed series S of the given series X.

Usage:
CALL EXSMO (X,NX, AL, A, B, C, S)
Description of parameters:
X - Input vector of length NX containing time series data which is to be exponentially smoothed.

NX - The number of elements in X .
AL - Smoothing constant alpha. AL must be greater than zero and less than one.
A,B,C - Coefficients of the prediction equation where S is predicted T periods hence by

$$
\mathrm{A}+\mathrm{B} * \mathrm{~T}+\mathrm{C} * \mathrm{~T} * \mathrm{~T} / 2
$$

As input: If $A=B=C=0$, program will provide initial values. If at least one of A, B, C is not zero, program will take given values as initial values.
As output: A, B, C, contain latest, updated coefficients of prediction.
S \quad - Output vector of length NX containing triple exponentially smoothed time series.

Remarks:
None.
Subroutines and function subprograms required: None.

Method:
Refer to R. G. Brown, 'Smoothing, Forecasting and Prediction of Discrete Time Series', Prentice-Hall, N.J., 1963, pp. 140 to 144.

Subroutine exsmo (X.NX,AL,A,B,CiS)
c
120 IF(A) 140 . 110.140
30 IFCA) $140,120,140$
120 1F(C) 140, 130. 240
$130 \quad$ L1-1
$\stackrel{5}{5}=2$

Box(L2)-x(L1)-1.5*C
A A X X (LI) $\mathrm{B}=0.5 \times 6$
40 BE 1.0-AL
$B E C U 8=B E=B E * B E$
$A L C U B=A L$
ALCUB=AL*AL*AL
DO DO THE FOLLOWING FOR $1=1$ TO NX
DO 130 IEIINX
FIMD SIII FOR ONE PERIOD AMEAD
$11=A+B+0.5 * C$
UPDATE COEFFICIENTS A, B, AND C
$A=x(1)+B E C U B=D 18$
$B=B+C-1=5 * A L * A L * 12.0-A L) * D I F$
$150 \mathrm{CaC-ALCUB}$ DIF
RETURN
END

Statistics - Nonparametric

CHISQ

This subroutine calculates degrees of freedom and chi-square for a given contingency table A of observed frequencies with n rows (conditions) and m columns (groups). The degrees of freedom are:

$$
\begin{equation*}
\text { d.f. }=(n-1)(m-1) \tag{1}
\end{equation*}
$$

If one or more cells have an expected value of less than 1 , chi-square is computed and the error code is set to 1 .

The following totals are computed:

$$
\begin{align*}
& T_{i}=\sum_{j=1}^{m} A_{i j} ; i=1,2, \ldots, n \text { (row totals) } \tag{2}\\
& T_{j}=\sum_{i=1}^{n} A_{i j} ; j=1,2, \ldots, m \text { (column totals) } \tag{3}\\
& G T=\sum_{i=1}^{n} T_{i} \text { (grand total) } \tag{4}
\end{align*}
$$

Chi-square is obtained for two cases:
(a) for 2×2 table:

$$
\begin{equation*}
x^{2}=\frac{G T\left(\left.\right|_{11} ^{A_{22}}-A_{12} A_{21} \left\lvert\,-\frac{G T}{2}\right.\right)^{2}}{\left(A_{11}+A_{12}\right)\left(A_{21}+A_{22}\right)\left(A_{11}+A_{21}\right)\left(A_{12}+A_{22}\right)} \tag{5}
\end{equation*}
$$

(b) for other contingency tables:

$$
\begin{align*}
x^{2} & =\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{\left(A_{i j}-E_{i j}\right)^{2}}{E_{i j}} \tag{6}\\
\text { where } E_{i j} & =\frac{T_{i} T_{j}}{G T} \\
i & =1,2, \ldots, n \\
j & =1,2, \ldots, m
\end{align*}
$$

Subroutine CHISQ

Purpose:

Compute chi-square from a contingency table.
Usage:
CALL CHISQ(A, N, M, CS, NDF, IERR, TR, TC)
Description of parameters:
A - Input matrix, N by M , containing contingency table.
$\mathrm{N} \quad$ - Number of rows in A.
M - Number of columns in A.
CS - Chi-square (output).
NDF - Number of degrees of freedom (output).
IERR - Error code (output):

0 - Normal case.

1 - Expected value less than 1.0 in one or more cells.
3 - Number of degrees of freedom is zero.

TR - Work vector of length N .
TC - Work vector of length M.
Remarks:

Chi-square is set to zero if either N or M is one (error code 3).

Subroutines and function subprograms required:
None.
Method:
Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 6 and Chapter 8.

```
SUBROUTINE CHISOIADNIM,CSINDFIIERR,TRITG
    OIMENSION ACLIPTR(\).TCLII
        NM=N*M
        IERR-0
            FiND dEGREES OF freECOM
            NDF=(N-1):(M-1)
            3 JERR=3
            RETURN
        10 DO 90 laloN
            TR!!=0.0
            MR(1)=0.0
            D090 J-1/m
    \J=1J+N
    90 TR!I!*TR!!)*AIIJ)
            gOmPutE totals OF CClumNS
            IN=0
            T<1 NT=0.0
            DO 100 1.1,N
            T<lj)=T(clj)+A!!j)
                compute grand total
            GT=0.0
            00 110 I=1:N
110 GT-GT+TRIIH COMPUTE CHI SQUARE FOR 2 BY 2 TABLE ISPECIAL CASE
            IF(NM-4) 130.120.130
            L1=
            L1=1
            L2:2
            C4=4 (S=GT*(ABS(AILI)*AIL4)-A(L2)*AIL3)I-GT/2.01**2)(TCILI)*TC(L2)
            CS=GTGlabSRILZI)
            retuRN
```


UTEST

This subroutine tests whether two independent groups are from the same population by means of the MannWhitney U-test, given an input vector A with smaller group preceding larger group. The scores for both groups are ranked together in ascending order. Tied observations are assigned the average of the tied ranks.

The sum of ranks in the larger group, R2, is calculated. The U statistic is then computed as follows:

$$
\begin{equation*}
U^{\prime}=n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-R_{2} \tag{1}
\end{equation*}
$$

where $n_{1}=$ number of cases in smaller group

$$
\mathrm{n}_{2}=\text { number of cases in larger group }
$$

$$
\mathrm{U}=\mathrm{n}_{1} \mathrm{n}_{2}-\mathrm{U}^{\prime}
$$

$$
\begin{equation*}
\text { if } \mathrm{U}^{\prime}<\mathrm{U}, \text { set } \mathrm{U}=\mathrm{U}^{\prime} \tag{2}
\end{equation*}
$$

A correction factor for ties is obtained:

$$
\begin{equation*}
T=\sum \frac{t^{3}-t}{12} \tag{3}
\end{equation*}
$$

where $t=$ number of observations tied for a given rank

The standard deviation is computed for two cases:
(a) if $\mathrm{T}=0$

$$
\begin{equation*}
s=\sqrt{\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}} \tag{4}
\end{equation*}
$$

(b) if $\mathrm{T}>0$

$$
\begin{equation*}
s=\sqrt{\left(\frac{n_{1} n_{2}}{\mathrm{~N}(\mathrm{~N}-1)}\right)\left(\frac{\mathrm{N}^{3}-\mathrm{N}}{12}-\mathrm{T}\right)} \tag{5}
\end{equation*}
$$

where $N=$ total number of cases $\left(n_{1}+n_{2}\right)$
The significance of U is then tested:

$$
\begin{equation*}
\mathrm{Z}=\frac{\mathrm{U}-\overline{\mathrm{X}}}{\mathrm{~s}} \tag{6}
\end{equation*}
$$

where $\overline{\mathrm{X}}=$ mean $=\frac{\mathrm{n}_{1} \mathrm{n}_{2}}{2}$
Z is set to zero if n_{2} is less than 20 .

Purpose:

Test whether two independent groups are from the same population by means of Mann-Whitney U-test.

Usage:

CALL UTEST (A, R, N1, N2, U, Z)
Description of parameters:
A - Input vector of cases consisting of two independent groups. Smaller group precedes larger group. Length is $\mathrm{N} 1+\mathrm{N} 2$.
R - Output vector of ranks. Smallest value is ranked 1, largest is ranked N. Ties are assigned average of tied ranks. Length is $\mathrm{N} 1+\mathrm{N} 2$.
N1 - Number of cases in smaller group.
N2 - Number of cases in larger group.
U - Statistic used to test homogeneity of the two groups (output).
Z - Measure of significance of U in terms of normal distribution (output).

Remarks:
Z is set to zero if N 2 is less than 20 .
Subroutines and function subprograms required:
RANK
TIE

Method:

Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 6.
SUBROUTINE UTFSTIA.R.NI.N2,U,ZI
C KEANK SCORES FROM BOTH GRGUP TOGFTHER IN ASCENDING DRDER, ANO
NASSIGN TIED COSERVATIONS AVERAGE OF TIFD QANKS

$\underbrace{\text { CALL }}_{i=0,0}$ RANK (A,R,N)

FNX $=$ NIONZ
FNXN
FNZ
FN2
FN2 $=\mathrm{N} 2$
UPFNX-UP
IF (UP-U1 $20,30,3)$
20 UFlup-
C $\begin{aligned} & \text { TO UNOST FOR N2 LESS THAN } 20 \\ & 30 \text { IFIN2- } 201 \\ & 80,40.40\end{aligned}$
c compute standard deviation
40 KTEL TIETR,N,KT,TSS
IFITS) $50,60,50$

SO SOSORTIFNX:IFN+1.01/12.0)

HO RETURN

TWOAV

This subroutine determines the Friedman two-way analysis of variance statistic, given a matrix A with n rows (groups) and m columns (cases). Data in each group is ranked from 1 to m . Tied observations are assigned the average of the tied ranks.

The sum of ranks is calculated:

$$
\begin{equation*}
R_{j}=\sum_{i=1}^{n} A_{i j} \tag{1}
\end{equation*}
$$

Friedman's statistic is then computed:

$$
\begin{equation*}
x_{r}^{2}=\frac{12}{n m(m+1)} \sum_{j=1}^{m}\left(R_{j}\right)^{2}-3 n(m+1) \tag{2}
\end{equation*}
$$

The degrees of freedom are:

$$
\begin{equation*}
\mathrm{d} . f=\mathrm{m}-1 \tag{3}
\end{equation*}
$$

Subroutine TWOAV

Purpose:

Test whether a number of samples are from the same population by the Friedman two-way analysis of variance test.

Usage:
CALL TWOAV(A, R, N, M, W, XR, NDF, NR)

Description of parameters:

A - Input matrix, N by M, of original data.
R - Output matrix, N by M, of ranked data.
N - Number of groups.
M - Number of cases in each group.
W - Work area of length $2 * \mathrm{M}$.
XR - Friedman statistic (output).
NDF - Number of degrees of freedom (output).
NR - Code: 0 for unranked data in A; 1 for ranked data in A (input).

Remarks:
None.
Subroutines and function subprograms required:
Rank.
Method:
Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 7.
-

SUEROUTINE ThDAV (A, R,N,M,H,XR,NDF, nR
DIMENSION ATII,RI 1 I, WIII
DETERMINE WHET MER DATA IS RANKED
F (NR-1) $10,30,10$
rank oata in each broip and assign tien observations averafie DF TlED RaNK
$20 \quad \mathrm{l}=1, \mathrm{~N}$
10 Do $201=1, \mathrm{~N}$
$1 \mathrm{l}=1-\mathrm{N}$
$\mathrm{i}=1 \mathrm{j}$
on $15 \mathrm{~J}=1, \mathrm{M}$

$15 W(J=\Delta I I J)$

$1 k=1 K+N$
$1 H=N+1$

$30 \mathrm{CO}_{\mathrm{NH}=\mathrm{N}=4} \mathrm{TO} 35$
$30032 \quad 1=1$,
c 32 RIII=AIII
35 rtsome colate sum of souares uf sums of ranks
RTSO $=0.0$
$[R=0$

$\begin{array}{ll}\mathrm{RT} & \mathrm{Co.0}\end{array}$
0040
$I R=I R+1$
$1, N$
$I R=I R+1$
$R T=R T+R(I)$
$40 R T=R T+R(T A)$
50 RTSQ
calculate frisoman test value, xr

$F M=M$
$X R=11$
$X R=112.0 /($ FA*FN4I $) *$ RTSO-3.0*FNM
find degraes jf frfegoy
NDF $=\mathrm{N}-1$
RETURN
END

QTEST

This subroutine determines the Cochran Q-test statistic, given a matrix A of dichotomous data with n rows (sets) and m columns (groups).

Row and column totals are calculated:

$$
\begin{equation*}
L_{i}=\sum_{j=1}^{m} A_{i j} \text { (row totals) } \tag{1}
\end{equation*}
$$

where $i=1,2, \ldots, n$

$$
\begin{equation*}
G_{j}=\sum_{i=1}^{n} A_{i j} \text { (column totals) } \tag{2}
\end{equation*}
$$

where $\mathrm{j}=1,2, \ldots, \mathrm{~m}$
The Cochran Q statistic is computed:

The degrees of freedom are:

$$
\begin{equation*}
\text { d.f }=m-1 \tag{4}
\end{equation*}
$$

Subroutine QTEST

Purpose:

Test whether three or more matched groups of dichotomous data differ significantly by the Cochran Q-test.

Usage:

CALL QTEST (A, N, M, Q, NDF)
Description of parameters:
A - Input matrix, N by M, of dichotomous data (0 and 1).
$\mathrm{N} \quad$ - Number of sets in each group.
M - Number of groups.
Q - Cochran Q statistic (output).
NDF - Number of degrees of freedom (output).

Remarks:

M must be three or greater.
the Cochran Q statistic is computed.

Subroutines and function subprograms required: None.

Method:
Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 7.
SUAROUTINE OPESTIA,N,M,Q,NDFI
OIMENSION AIII
COMPUTE SUM OF SQUARES OF RON TOTALS, RSO, AND GRAND TOTAL of
$\mathrm{KSO}=0.0$
$\mathrm{GD}=0.0$
$0020 \quad 1=1, N$
TR 20.0
$i J=t-N$
DO 10 Nal,
10 TR=TR+A!
GO=GOTR
$1 J=0$
0.0

$\mathrm{TC}=0.0$

CsozCsQTC*TC
compute cochran o test value
OFIFM-1. OI*(FM*CS O-GD*GD)/IFM*GO-RSQ)
fino oegress of freedom
MOF=M-1
ROF
RETUR
END

c

SRANK

This subroutine measures the correlation between two variables by means of the Spearman rank correlation coefficient, given two vectors of n observations for the variables.

The observations on each variable are ranked from 1 to n. Tied observations are assigned the average of the tied ranks.

The sum of squares of rank differences is calculated:

$$
\begin{equation*}
D=\sum_{i=1}^{n}\left(A_{i}-B_{i}\right)^{2} \tag{1}
\end{equation*}
$$

where $A_{i}=$ first ranked vector

$$
\begin{aligned}
\mathbf{B}_{\mathbf{i}} & =\text { second ranked vector } \\
\mathrm{n} & =\text { number of ranks }
\end{aligned}
$$

A correction factor for ties is obtained:

$$
\begin{aligned}
& T_{a}=\sum \frac{t^{3}-t}{12} \text { over variable } A \\
& T_{b}=\sum \frac{t^{3}-t}{12} \text { over variable } B
\end{aligned}
$$

where $t=$ number of observations tied for a given rank

The Spearman rank correlation coefficient is then computed for the following two cases:
(a) if T_{a} and T_{b} are zero,

$$
\begin{equation*}
r_{s}=1-\frac{6 D}{n^{3}-n} \tag{3}
\end{equation*}
$$

(b) if T_{a} and/or T_{b} are not zero,

$$
\begin{equation*}
r_{s}=\frac{X+Y-D}{2 \sqrt{X Y}} \tag{4}
\end{equation*}
$$

where $X=\frac{n^{3}-n}{12}-T_{a}$

$$
\begin{equation*}
\mathrm{Y}=\frac{\mathrm{n}^{3}-\mathrm{n}}{12}-\mathrm{T}_{\mathrm{b}} \tag{6}
\end{equation*}
$$

The statistic used to measure the significance of r_{S} is:

$$
\begin{equation*}
t=r_{s} \sqrt{\frac{n-2}{1-r_{s}^{2}}} \tag{7}
\end{equation*}
$$

The degrees of freedom are:

$$
\begin{equation*}
\text { d.f. }=n-2 \tag{8}
\end{equation*}
$$

Subroutine SRANK

Purpose:

Test correlation between two variables by means of Spearman rank correlation coefficient.

Usage:

CALL SRANK (A, B, R, N, RS, T, NDF, NR)
Description of parameters:
A - Input vector of N observations for first variable.
B - Input vector of N observations for second variable.
R - Output vector for ranked data, length is $2 *$ N. Smallest observation is ranked 1 , largest is ranked N. Ties are assigned average of tied ranks.
$\mathrm{N} \quad$ - Number of observations.
RS - Spearman rank correlation coefficient (output).
T - Test of significance of RS (output).
NDF - Number of degrees of freedom (output).
NR - Code: 0 for unranked data in A and B; 1 for ranked data in A and B (input).

Remarks:
T is set to zero if N is less than ten.
Subroutines and function subprograms required: RANK
TIE

Method:
Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 9.

SUBROUTINE SRANKIA,E,R,N.RS,T,NDF:NR
DIMENSION AIS.BIJI.RII)

D=N

FNNN=D*O\#D-D
C DETERMINE WHETMER DATA IS RANKED
c IF RANK DATA IN A AND E VECTORS AND ASSIGN TIED OBSERVATIONS
RANK DATA IN A AND A
ZVERAGE OF TIED RANKS
5 CALL RANK (A,RON)

CALL RANK (BOR(N+1)ON)
GO 1040
 $100020 \quad 1=1, N$

DO 30 I 1 . N

$30 \mathrm{R}(J) \pm 8(1)$
c $40 \begin{array}{r}D=0.0 \\ D O \\ 0\end{array} 0$

0050 I=1:N
50 D=D+(RI)-RIJJ)(RI)-R(J))
KT=1 TIPUTE TIED SCORE
CALL TIE (RON+KT,TSA)
CALL TIE (RIN+1)PNPKT•TSB)
COMPUTE SPEARMAN RANK CORRELATION COEFFICIEMT
IFITSA: 60.55.60
55 IFITSBI $60,57,60$
$57 \mathrm{KS}=1.0-6.000 / \mathrm{FNNN}$
$R S=1.0-6$.
$G 0 T 070$
$X=F N N N / 22$
$x=F N N N / 12.0-T S A$
$x=x+15 A-150$
$R S=(x+Y-0)$
C COMPUTE T AND DEGREES OF FREEDOM IF N IS IU OR LARGER $T=0.0$
1F(N-10) 80.75,75
75 T=RS*SQRT(FLOAT(AH-2)/(1.U-RS*RS))
VOFE:
RETURN
RETU
END

KRANK

The subroutine computes the Kendall rank correlation coefficient, given two vectors of n observations for two variables, A and B. The observations on each variable are ranked from 1 to n. Tied observations are assigned the average of the tied ranks.
Ranks are sorted in sequence of variable A.
A correction factor for ties is obtained:

$$
T_{a}=\sum \frac{t(t-1)}{2} \text { for variable } A
$$

$$
\begin{equation*}
T_{b}=\sum \frac{t(t-1)}{2} \text { for variable } B \tag{1}
\end{equation*}
$$

where $t=$ number of observations tied for a given rank

The Kendall rank correlation coefficient is then computed for the following two cases:
(a) if T_{a} and T_{b} are zero,

$$
\begin{equation*}
\tau=\frac{S}{\frac{1}{2} n(n-1)} \tag{2}
\end{equation*}
$$

where $\mathrm{n}=$ number of ranks
$S=$ total score calculated for ranks in variable B as follows: selecting each rank in turn, add 1 for each larger rank to its right, subtract 1 for each smaller rank to its right.
(b) if T_{a} and/or T_{b} are not zero,

$$
\begin{equation*}
\tau=\frac{S}{\sqrt{\frac{1}{2} n(n-1)-T_{a}} \sqrt{\frac{1}{2} n(n-1)-T_{b}}} \tag{3}
\end{equation*}
$$

The standard deviation is calculated:

$$
\begin{equation*}
s=\sqrt{\frac{2(2 n+5)}{9 n(n-1)}} \tag{4}
\end{equation*}
$$

The significance of τ can be measured by:

$$
\begin{equation*}
z=\frac{\tau}{s} \tag{5}
\end{equation*}
$$

Subroutine KRANK

Purpose:

Test correlation between two variables by means of Kendall rank correlation coefficient.

Usage:
CALL KRANK(A, B, R, N, TAU, SD, Z, NR)
Description of parameters:
A - Input vector of N observations for first variable.
B - Input vector of N observations for second variable.
R - Output vector of ranked data of length $2 * N$. Smallest observation is ranked 1 , largest is ranked N. Ties are assigned average of tied ranks.
$\mathrm{N} \quad$ - Number of observations.
TAU - Kendall rank correlation coefficient (output).
SD - Standard deviation (output).
Z - Test of significance of TAU in terms of normal distribution (output).
NR - Code: 0 for unranked data in A and B; 1 for ranked data in A and B (input).

Remarks:
SD and Z are set to zero if N is less than ten.

Subroutines and function subprograms required:
RANK
TIE
Method:
Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 9.

SUBROUTINE KRANKIA,R,R,N,TAU.SO, Z, NRI
DIMENSICN AII.BIII.RIT
$5 D=0.0$
$Z=0.0$
$2=0.0$
$\mathrm{FN}=\mathrm{N}$
FNI $=$ N* \mid ($N-1 \mid$

 average of tici ranks
5 CALL RANK (A,R,NI
CALL RANK (B,R(N+1),N)
go to 40 move ranked data it a vector
100020 EL 1 N
ORIJ=A1I)
DO 30 I=I,
DO 30
$j=1+N$
30 R(J)=A!!
SORT RAN
40 I SORT $=0$
OO 50
50
on $50 \mathrm{Im} 2, \mathrm{~N}$
IFIRIII-RII-11) 45.50.50
ISORT=ISRT+1
45 TSDRT=ISDRT* 1
RSAVERRII
RIII=RIT-L

$12=1+\mathrm{N}$
SAVER=R(I2)
R(I2-1)=SAVER
50 CONTINUE
IFISTRRTI 40:55,40
COMPUTE S ON VARIAALE B. STARTING WITH THE FIRST RANK, ADD 1 TO 5 fir each larger rank to its righ
SMALLER RaNk. REpEAt for all ranks.

```
55 5=0.0
    NKaN-1 
        J=N+1
        OO 60 L=1,N
        K=N+L
    GO S=S-1.0
    G6 S=S-1.0
    57 S=S+1.0,
    60 CONTINUE
        cumpute tied score index for both variables
            CALL TIEIR,N,KT,TAI
            CALL TIE(R(N+1liV,KT,TA)
                COMPUTE TAL
    IF(TA) 70,05,70
    65 IFITRI 70,67,70
    67 TAU=S/10.5*FNI
    go ro qo
        AU=5/ISQRTIO.5*FNL-TA))*(SQRTIO.5*FNL-TB)I)
        compute stanoaro deviation ano z IF N is in dr largfr
    IFIN-10) 90, 65,85
    RS SD=\SORTI(2.O*(FY*FN*5.0)1/19.0*FNI)I)
    l= TAu/SD
    RENURN
```


WTEST

This subroutine computes the Kendall coefficient of concordance, given a matrix A of n rows (variables) and m columns (cases). The observations on all variables are ranked from 1 to m . Tied observations are assigned the average of the tied ranks.

A correction factor for ties is obtained:

$$
\begin{equation*}
T=\sum_{i=1}^{n} \frac{t^{3}-t}{12} \tag{1}
\end{equation*}
$$

where $t=$ number of observations tied for a given rank

Sums of ranks are calculated:

$$
\begin{equation*}
Y_{j}=\sum_{i=1}^{n} R_{i j} \tag{2}
\end{equation*}
$$

where $\mathrm{j}=1,2, \ldots, \mathrm{~m}$
From these, the mean of sums of ranks is found:

$$
\begin{equation*}
\bar{R}=\frac{\sum_{j=1}^{m} Y_{j}}{m} \tag{3}
\end{equation*}
$$

The sum of squares of deviations is derived:

$$
\begin{equation*}
s=\sum_{j=1}^{m}\left(Y_{j}-\bar{R}\right)^{2} \tag{4}
\end{equation*}
$$

The Kendall coefficient of concordance is then computed:

$$
\begin{equation*}
\mathrm{W}=\frac{\mathrm{s}}{\frac{1}{12} \mathrm{n}^{2}\left(\mathrm{~m}^{3}-\mathrm{m}\right)-\mathrm{nT}} \tag{5}
\end{equation*}
$$

For m larger than 7, chi-square is:

$$
\begin{equation*}
x^{2}=n(m-1) w \tag{6}
\end{equation*}
$$

The degrees of freedom are:

$$
\begin{equation*}
\text { d.f. }=\mathrm{n}-1 \tag{7}
\end{equation*}
$$

Subroutine WTEST

Purpose:

Test degree of association among a number of variables by the Kendall coefficient of concordance.

Usage:
CALL WTEST (A, R, N, M, WA, W, CS, NDF , NR)
Description of parameters:
A - Input matrix, N by M , of original data.
R - Output matrix, N by M , of ranked data. Smallest value is ranked 1 ; largest is ranked N. Ties are assigned average of tied ranks.
N - Number of variables.
M - Number of cases.
WA - Work area vector of length $2 *$ M.
W - Kendall coefficient of concordance (output).
CS - Chi-square (output).
NDF - Number of degrees of freedom (output).
NR - Code: 0 for unranked data in A; 1 for ranked data in A (input).

Remarks:

Chi-square is set to zero if M is 7 or smaller.
Subroutines and function subprograms required: RANK
TIE

Method:
Described in S. Siegel, 'Nonparametric Statistics for the Behavioral Sciences', McGraw-Hill, New York, 1956, Chapter 9.

Purpose:

Rank a vector of values.

Usage:
CALL RANK(A, R,N)
Description of parameters:
A - Input vector of N values.
R - Output vector of length N. Smallest value is ranked 1; largest is ranked N. Ties are assigned average of tied ranks.
N - Number of values.

Remarks:
None.
Subroutines and function subprograms required: None.

Method:
Vector is searched for successively larger elements. If ties occur, they are located and their rank value computed. For example, if two values are tied for sixth rank, they are assigned a rank of $6.5(=(6+7) / 2)$.

```
    SUGROUTINE RANXIA,RIN
    DIMENSION A(1):R(I)
    INITIALIZATION
    OC 10 I=1,N
10 RIt)PO.O RANK OF OATA
    DO 100 I=1.N
    ffisit WHETHER oATA pOINT IS already rankED
        IFIR(I)\ 20, 20,100
        point to be rankeo
        SMALL=0.0
        xeal:1,0
        DO 30 J=1,N
        IF(A{J)-x) 30, 40. 50
        cOunt number of mata points mhich are smaller
    SMALL-SMALL+1.0
        GO TO 50 %-I.0
    40 EQUAL=EQUAL+1.0
    R!J!=-1*0
    CONTINUE
        TEST FOR TIE
        F(E)
    60 R(t)=SMALL+1.
        .0 Data poji wheale no Tl
        caleulate rank of tied data points
    70 P=5NALLL+1EGUAL+1.01/2.0
    DO90 J=INNL+1.01/2.0
    R(J)=P
    R(J)=P
90 CONTINUE
    METURN
```

RANK
RANK
RANK
RANKK
RANK
RANK
RANK
RANKK
RANK
RAAKK
RANK
RRNK
RANK

Purpose:
Calculate correction factor due to ties.

Usage:
CALL TIE (R, N, KT, T)
Description of parameters:
R - Input vector of ranks of length N containing values 1 to N .
N - Number of ranked values.
KT - Input code for calculation of correction factor:

1 Solve equation 1.
2 Solve equation 2.
T - Correction factor (output):
Equation $1 \mathrm{~T}=\mathrm{SUM}(\mathrm{CT} * * 3-\mathrm{CT}) / 12$
Equation $\left.2 \mathrm{~T}=\mathrm{SUM}_{(\mathrm{CT}}{ }^{*}(\mathrm{CT}-1) / 2\right)$
where CT is the number of observations tied for a given rank.

Remarks:
None.

Subroutines and function subprograms required: None.

Method:
Vector is searched for successively larger ranks. Ties are counted and correction factor 1 or 2 summed.

```
SUbrNuTINE TIEIR,N,KT,T)
    SIMENSION RIII
- mansion allitimen
    T=0.0
    3x=1.063日
    < M=1.063日
        Fino next laritst yank
            on 30: :=1,N
        IF(R(I)-x) 20,30,30
    x=RT11
        1(1)= (N0+1
        oconidifull ranks mave befn tested, return
            IF:INO1 90,90,40
```



```
c croo.0
            M060 1=1,N
    MF{R1!-x)
    so Crect+1.0
        calcimatt curqectilin factim
            f(Cr) 70,5,70
    05 Ir+kT-11 r5, &0,75
    Tar0CT+4CT-1.1/2.n
    80 T= TO+CT*CT*CT-CTI/12.0
    Gn in s
    MENTUQ
```


RANDU

Purpose:

Computes uniformly distributed random floating point numbers between 0 and 1.0 and integers in the range 0 to $2^{* *} 15$.

Usage:

CALL RANDU(IX, IY, YFL)
Description of parameters:
IX - For the first entry this must contain any odd positive integer less than 32,768 . After the first entry, IX should be the previous value of IY computed by this subroutine.
IY - A resultant integer random number required for the next entry to this subroutine. The range of this number is from zero to $2 * * 15$.
YFL - The resultant uniformly distributed, floating point, random number in the range 0 to 1.0 .

Remarks:
This subroutine is specific to the IBM 1130. This subroutine should not repeat its cycle in less than 2 to the 13th entries.

Note: If random bits are needed, the high order bits of IY should be chosen.

Subroutines and function subprograms required: None.

Method:
Power residue method discussed in IBM manual Random Number Generation and Testing (C208011).

```
Subroutine randulix,iy,yfl
    TY=1X*899
IFI:Y15,0,6
5 IY=1Y+32767+
S YFIY+32767+1
    YFL=YFL/32767.
    RE TURN
```

RANDU
RANDI
RANDU
RANDU
RANOU
RANDII
RANOL
RaNDI
RANDI
RANDI
RanOU
RANDU

GAUSS

This subroutine computes a normally distributed random number with a given mean and standard deviation.

An approximation to normally distributed random numbers Y can be found from a sequence of uniform random numbers* using the formula:

$$
\begin{equation*}
Y=\frac{\sum_{i=1}^{K} x_{i}-\frac{K}{2}}{\sqrt{K / 12}} \tag{1}
\end{equation*}
$$

where X_{i} is a uniformly distributed random number, $0<X_{i}<1$
K is the number of values X_{i} to be used
Y approaches a true normal distribution asympototically as K approaches infinity. For this subroutine, K was chosen as 12 to reduce execution time. Equation (1) thus becomes:
$Y=\sum_{i=1}^{12} X_{i}-6.0$

The adjustment for the required mean and standard deviation is then

$$
\begin{equation*}
\mathrm{Y}^{\prime}=\mathrm{Y} * \mathrm{~S}+\mathrm{AM} \tag{2}
\end{equation*}
$$

where Y^{\top} is the required normally distributed random number
S is the required standard deviation
AM is the required mean

[^0]
Subroutine GAUSS

Purpose:

Computes a normally distributed random number with a given mean and standard deviation.

Usage:

CALL GAUSS(IX, S, AM, V)
Description of parameters:
IX - IX must contain an odd positive integer less than 32,768 . Thereafter it will contain a uniformly distributed integer random number generated by the subroutine for use on the next entry to the subroutine.
S - The desired standard deviation of the normal distribution.
AM - The desired mean of the normal distribution.
V - The value of the computed normal random variable.

Remarks:
This subroutine uses RANDU which is machine specific.

Subroutines and function subprograms required: RANDU

Method:

Uses 12 uniform random numbers to compute normal random numbers by central limit theorem. The result is then adjusted to match the given mean and standard deviation. The uniform random numbers computed within the subroutine are found by the power residue method.

MINV

Purpose:

Invert a matrix.

Usage:
$\operatorname{CALL} \operatorname{MINV}(A, N, D, L, M)$
Description of parameters:
A - Input matrix, destroyed in computation and replaced by resultant inverse.
N - Order of matrix A.
D - Resultant determinant.
L - Work vector of length N .
M - Work vector of length N.

Remarks:
Matrix A must be a general matrix.
Subroutines and function subprograms required: None.

Method:
The standard Gauss-Jordan method is used. The determinant is also calculated. A determinant with absolute value less than $10^{* *}(-20)$ indicates singularity. The user may wish to change this.

```
SUBROUTINE MINV(A,N.O.L.M)
OIMENSION A(1):G(1);M(1)
D=1.0
NK=-N
l
M{k|=k
MKONK+K
BlGA=A(KK)
lol
MO 20 I=K
    0 If=12+I ABS(BIGA)-AES(A(IJ)O) 15,20.20
    \1F1 ABS(BICA)
        gigAmal
        M{(K)=1
        INTERCHANGE ROWS
            j=L(K)
            KI=K-N
            OO 30 f=1,N
            KI=KI+N
            HOLD=-A(KI)
            MI=KI-K+J
    A(JI)=HOLO
c interchange columms
    {[=M(K)
    JP=N*(I-1)
    JP=N*(!-1)
        CO 40 J=1 
            JK=NK+J
            HOLD=-A(JK)
            M(JK)=A(J1)
                divide column by minus pivot ivalue of pivot element is
    M CONTAINEDIN INGA)
    45 1FIABS
    46 ODO.O
    DC 55 :=1,N
    IFII-K) 50,55,50
    0 IK=NK+1
    A(1K)-AlIKI/1-BIGAI
        CONTINDECE MATRIX
            DO 65:=1,N
c
```



```
\(0030 \quad I=1+N\)
\(K I=K I+N\)
MOLD=-A(KI)
A(KI)=ACJI)
A(J!) \(=H O L D\)
\(35 \mathrm{I}=\mathrm{M}(\mathrm{NT}\) )
( \(F\) ( \(|=x| 45,45,38\)
\(\mathrm{JP}=\mathrm{N}=(!-1)\)
\(\mathrm{CO} \quad 40 \mathrm{~J}=1, \mathrm{~N}\)
\(J K=N K+J\)
\(J=J P+J\)
```



```
divitained inn by minus pivot ivalue of pivot element is
IF(ABS(BIGA)-1.E-20)
\(60=0.0\)
RETURN
```



```
Al|kl-AltKl//-BIGAl
CONTINUE REDUCE MATRIX
\(0065: 1010 N\)
\(1 K=N K+1\)
```


Subrautine gaussitix, 5,4m, vi
$A=0.0$
$A=0.0$
$00 \quad 50 \quad 1=1,12$
call randulix,iy,y)
$50 \begin{gathered}\left.\begin{array}{l}X=1 \\ A=A+Y \\ y\end{array} \right\rvert\,\end{gathered}$

VZGA-6
RETURN
END

```
        HOLD=A(IK)
        1J=1-N
        l
        IF(I-k) 60,65,50
    60 1F(J=k) 62,65.62
    62 KJ=IJ=I+K
        AITJ)=HOLO*A(KJ)+A(IJ)
        DIVIDE ROW BY PIVOT
            KJOK~N
            DO 75 JN1;N
        IF(J-K) 70,75,70
    O A(KJ)=A(KJI/BIGA
    70 AlKJ)=A(K
    75 CONTINUE
        D=D*BIGA
            A(KK)=1,0/BIGA
    CONTINUE
    FINA
    row and column interchange
    < K=(k-1)
    50.150.105
    5 (FL(K)
    OB JO=N#(k-1)
        JReN*(I-\)
        DO 120 J=1.N
        OO 110 J
        HOLD=A(JK
        JI=JR+J
        A(JK)=-A,J!)
    10 AlJ!) =
    IF(J-K) 100.100.125
```



```
        DO 130 I=1%N
        xI=kI+N
        MOLDEA(KI
        A(kt1=-A(J!)
130 A(JI)=AHOLD
    G0 To 100
    150 RETURN


\section*{EIGEN}

This subroutine computes the eigenvalues and eigenvectors of a real symmetric matrix.

Given a symmetric matrix A of order N, eigenvalues are to be developed in the diagonal elements of the matrix. A matrix of eigenvectors \(R\) is also to be generated.

An identity matrix is used as a first approximation of \(R\).

The initial off-diagonal norm is computed:
\[
\begin{align*}
& v_{I}=\left\{\sum_{i \leq k} 2 A_{i k}^{2}\right\}^{1 / 2}  \tag{1}\\
& \nu_{I}=\text { initial norm } \\
& A=\text { input matrix (symmetric) }
\end{align*}
\]

This norm is divided by N at each stage to produce the threshold.

The final norm is computed:
\[
\begin{equation*}
\nu_{F}=\frac{\nu_{I} \times 10^{-6}}{N} \tag{2}
\end{equation*}
\]

This final norm is set sufficiently small that the requirement that any off-diagonal element \(A_{1 m}\) shall be smaller than \(\nu_{F}\) in absolute magnitude defines the convergence of the process.

An indicator is initialized. This indicator is later used to determine whether any off-diagonal elements have been found that are greater than the present threshold.

Each off-diagonal element is selected in turn and a transformation is performed to annihilate the offdiagonal (pivotal) element as shown by the following equations:
\[
\begin{align*}
\dot{\lambda} & =-\mathrm{A}_{\operatorname{lm}}  \tag{3}\\
\mu & =1 / 2\left(\mathrm{~A}_{11}-\mathrm{A}_{\mathrm{mm}}\right)  \tag{4}\\
\omega & =\operatorname{sign}(\mu) \frac{\lambda}{\sqrt{\lambda^{2}+\mu^{2}}}  \tag{5}\\
\sin \theta & =\frac{\omega}{\sqrt{2\left(1+\sqrt{\left.1-\omega^{2}\right)}\right.}} \\
\cos \theta & =\sqrt{1-\sin ^{2} \theta} \tag{7}
\end{align*}
\]
\[
\begin{align*}
B= & A_{i l} \cos \theta-A_{i m} \sin \theta  \tag{8}\\
C= & A_{i l} \sin \theta+A_{i m} \cos \theta  \tag{9}\\
B= & R_{i l} \cos \theta-R_{i m} \sin \theta  \tag{10}\\
R_{i m}= & R_{i l} \sin \theta+R_{i m} \cos \theta  \tag{11}\\
R_{i l}= & B  \tag{12}\\
A_{11}= & A_{i l} \cos ^{2} \theta+A_{m m} \sin ^{2} \theta \\
& -2 A_{l m} \sin \theta \cos \theta  \tag{13}\\
A_{m m}= & A_{11} \sin ^{2} \theta+A_{m m} \cos { }^{2} \theta \\
& +2 A_{1 m} \sin \theta \cos \theta  \tag{14}\\
A_{l m}= & \left(A_{l l}-A_{m m}\right) \sin \theta \cos \theta  \tag{15}\\
& +A_{l m}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
\end{align*}
\]

The above calculations are repeated until all of the pivotal elements are less than the threshold.

\section*{Subroutine EIGEN}

\section*{Purpose:}

Compute eigenvalues and eigenvectors of a real symmetric matrix.

\section*{Usage:}

CALL EIGEN(A, R, N, MV)
Description of parameters:
A - Original matrix (symmetric), destroyed in computation. Resultant eigenvalues are developed in diagonal of matrix \(A\) in descending order.
R - Resultant matrix of eigenvectors (stored columnwise, in same sequence as eigenvalues).
N - Order of matrices A and R.
MV - Input code:
0 Compute eigenvalues and eigenvectors.
1 Compute eigenvalues only ( \(R\) need not be dimensioned but must still appear in calling sequence).
Remarks:
Original matrix A must be real symmetric (storage mode=1). Matrix A cannot be in the same location as matrix \(R\).

Subroutines and function subprograms required: None.

\section*{Method:}

Diagonalization method originated by Jacobi and adapted by von Neumann for large computers as found in 'Mathematical Methods for Digital Computers', edited by A. Ralston and H. S. Wilf, John Wiley and Sons, New York, 1962, Chapter 7.

SUBROUTINE EIGENLA,R,N, MVI
SURROUTINE EIGENTA,
genemate ident ity matrix
1F14V-11 10.25.12
\(1010=-1\)

00 \(20101, \mathrm{~N}\)
\(1 J=10+1\)
1010
RIIJI \(=0.0\)
R(1) \(20,15,70\)
15 R1F1J=1:0
c
25 COMPUTE
00 \(35 \mathrm{t}=1, \mathrm{~N}\)
(Fillill 30, 35,30
1A=1+1 J*J-J1/2
ANORKA ANORM*A(IA) *AIIA)
CONTINE
CONTINUE
IF (ANORM)
IF(ANORM) \(105,165,4\)
ANORA \(=1.414 *\) SORTI \(A N O R H\) I
INIIIALILE \(\operatorname{INJICATORS}\) AND COMPUTE THRESHELS, THR
TND 20
THR \(=\) ANORM

\(45 \quad \mathrm{H} R \mathrm{R}=\mathrm{T}\)
\(50 \mathrm{~L}=1\)
\(55 \mathrm{M} L+1\)
\(55 \mathrm{M}=\)
60 compute sin avj cos
\(60 \begin{aligned} & M O=1 M * M-M) / 2 \\ & 10=(1 * L-L 1 / 2\end{aligned}\)
\(C=1 L * L-L 1 / 2\)
\(L M=L+M Q\)
62 IFt 4 AS
65 IND
IN
\(\angle A=L+L O\)
\(M M=N+M A P A\)
\(\left.\begin{array}{l}M M=M+H 2 \\ X=0.50(A(L)\end{array}\right)-A(M+1)\)
\(Y=-A(L M I /\) SQRT \((A I(M) * A T L M)+X \neq X)\)
If(x) \(10,75,75\)
\(70 \quad y=-y\)

to sinxzasinx+5inx
\(78 \cos x=\operatorname{sen} \ln (1,7-\sin (2)\)
\(\cos x 2=\cos x+\cos x\)
\(\operatorname{CiNCS}=\operatorname{Sinx}=\cos x\)
ROIATEL AnD y columns
[LOEN*(L-1)
IMOEN*

1Fll-L) B0.115, 日0

\(1 \mathrm{~m}=1+\mathrm{My}\)
GO In 95
\(0 \mathrm{IM}=\mathrm{M}+1 \mathrm{C}\)
95 IF (1-L) 100,105,1 05
GO 10110
\(05 \mathrm{IL}=\mathrm{L}+10\)
\(110 x=A / I L)+\cos x-a /[4 / * \sin x\)

15 ifivv-1) \(120,125,120\)




25 CONTINUE
\(x=2.004(L y / * S I N C S\)


\(A(L H)=(A / L L)-A(N+1)=S 1 N C S+A(L 4) *(C O S X 2-51 N X 2)\)
\(A(L L)=Y\)
\(A(M M)=X\)
C TESTS FOR COMOLETION
130 IFIM-NI 135.140.135

60 in 60
test fir l-second from last column
140 IFIL-(N-1) \(145,150,145\)
\(65 \mathrm{LEL+1}\)
GOTO
55
150 If(1ND-11 160.155 .160

C COMPARE THRESTOLD WIth final norm

165 10:-M
on 185
\(1 * 1, N\)
\(10=10+\mathrm{N}\)
\(\mathrm{J}=\mathrm{N}=11-21\)
On 185 J=1.N
\(J O=j O+N\)
\(M H=J+1 J * J-J 1 / 7\)



IFI4V-11 175.185. 175
\(17500180 \mathrm{~K}=1\)
\(M R=10+K\)
\(i N K=J Q+K\)
\(x=R\{L R 1\)
\(R(I L R)=R \mid I M R)\)

as continue RE TURN
END

EIGEN
EIGEN
EIGEN
EIGEN
EIGEN
EIGEN
FIGFN
EIGEN
EIGEN
EISEN
EIGEN
EIGEN
EIGEN
FIGFN 9
FIGFN in
EIGFN In
\(\begin{array}{ll}\text { EIGEN } & 11 \\ \text { FIGFN } & 12\end{array}\)
FIGEN 12
EIGEN 13
EIGEN
FIGEN 13
EIGEN
FIGEN 14
FIGEN 15
FIGEN In
EIGEN 19
EIGFN is
EIGEN is
\(\begin{array}{ll}\text { EIGEN } & 17 \\ \text { EIGEN } 18 \\ \text { FIGFN } & 19\end{array}\)
EIGEN
FIGFN 19
EIGEN ?
EIGEN
EIGFN \(? 1\)
FIGFN ?
FIGFN ?
EIGFN?
EIGN ?
EIGEN 23
FIGEN 34
FIGEN 25
FIGEN 25
FIGEN \(3 \%\)
EIGEN
FIGEN
ETIFN
FIGEN
OR
FIGEN \(2 A\)
EIGFN 29
EIGFN
EIGEN 30
EIGEN 39
EIIFN 31
EITEN 3?
EIGEN 33
FIGFN 36
EJGEN
EIGEN
36
\(\begin{array}{ll}\text { EIGEN } \\ \text { EIGEN } & 11 \\ \text { EIGFN }\end{array}\)
EIGEN
EIGEN 39
EIGEN
EIGEN
On
EIGFN
41
EIGFN 41
EIGEN 42
EIGFN 43
EIGEN 41
EIGFN 43
EIGFN 44
EIGEN 44
FIGEN
SIS
EIGEN 4,
EIGEN 47
FIGEN 47
EIGEN 49
EIGEN 49
\(\begin{array}{ll}\text { EIGEN } \\ \text { EIGFN } & 49 \\ \text { EIGEN } 5 n \\ \text { ETG }\end{array}\)
EIGEN \(5 n\)
EIGEN 51
EIGEN 5?
EIGEN 5 S?
EIGEN 53
EIGEN 54
EIGEN S4
ELOEN
EIGEN
EIGEN 56
EIGFN 57
FIGEN 59
EIGEN 59
EIGFN 67
EIGEN
GI
EIGFN h1
EIGFN 6 ?
EIGFN
EIGFN 63
FIGEN 64
EIGEN
EIGEN 65
EIGFN
an
EIGFN Ah
EIGEN
EIGFN
Sa
EIGEN SA
EIGFN 69
EIGEN
FIGEN 70
FIGEN 71
EIGFN 72
EIGRN
EISFN \(? ~\)
EIGEN 74
EIGFN 74
EIGFN 75
EIGEN 76
EIGFN 75
GIGEN 76
EIGEN 77
EIGEN 79
EIGFN 79
EIGEN AD
EIGEN A1
EIGFN A?
EIGFN A?
EIGEN \({ }^{2} 3\)
EIGEN AS
FIGFN
EIGEN AS
EIGEN 86
FIGFN 77
FIGFN 87
EIGEN 9 B
EIGEN A
EIGEN 89
EICEN
EIGEN 89
EIGEN 97
EIGEN 91
EIGFN 91
EIGEN 97
EIEN 93
EICEN 93
EIGEN 94
EIGEN 94
EIGEN 95
EIGEN 96
EIGEN 9h
EIGFN 97
EIGEN 9月
EIGEN 9 a
EIGENIOT
EIGNIDI
EIGENIOT
EIGFNIn
EIGENIA?
FIGENIT
EIGFN104
EJTFFNING
ElGENIOK
FigFylo
ElGEviOR
EIGENIO9
EIGFNII?
EIGFNIIT
EIGFNII3
EIGENIIS

\section*{GMADD}

\section*{Purpose:}

Add two general matrices to form resultant general matrix.

\section*{Usage:}

> CALL GMADD(A, B, R, N, M)

Description of parameters:
A - Name of first input matrix.
B - Name of second input matrix.
R - Name of output matrix.
N - Number of rows in A, B, R.
M - Number of columns in A, B, R.

Remarks:
All matrices must be stored as general matrices.
Subroutines and function subprograms required; None.

Method:
Addition is performed element by element.
```

 SLBROUTINE GMADD(A,R,R,N,M)
 calculate numger of elements
C NM=N\&M
D0 10 (=1,NM
10 RHI=A(IIOBIt)
METURN

```

\section*{GMSUB}

Purpose:
Subtract one general matrix from another to form resultant matrix.

\section*{Usage:}

CALL GMSUB(A, B, R, N, M)
Description of parameters:
A - Name of first input matrix.
B - Name of second input matrix.
R - Name of output matrix.
N - Number of rows in \(\mathrm{A}, \mathrm{B}, \mathrm{R}\).
M - Number of columns in \(A, B, R\).

Remarks:
All matrices must be stored as general matrices.
Subroutines and function subprograms required: None.

Method:
Matrix B elements are subtracted from corresponding matrix A elements.


\section*{GMPRD}

Purpose:
Multiply two general matrices to form a resultant general matrix.

\section*{Usage:}

CALL GMPRD(A, B, R, N, M, L)
Description of parameters:
A - Name of first input matrix.
B - Name of second input matrix.
R - Name of output matrix.
N - Number of rows in A.
M - Number of columns in A and rows in B.
L - Number of columns in B.

Remarks:
All matrices must be stored as general matrices. Matrix R cannot be in the same location as matrix A.
Matrix \(R\) cannot be in the same location as matrix B.
Number of columns of matrix A must be equal to the number of rows of matrix \(B\).

Subroutines and function subprograms required: None.

Method:
The \(M\) by \(L\) matrix \(B\) is premultiplied by the \(N\) by \(M\) matrix \(A\) and the result is stored in the \(N\) by \(L\) matrix \(R\).

\section*{GMTRA}

Purpose:
Transpose a general matrix.
Usage:
CALL GMTRA \((A, R, N, M)\)
Description of parameters:
A - Name of matrix to be transposed.
R - Name of resultant matrix.
N - Number of rows of \(A\) and columns of \(R\).
M - Number of columns of \(A\) and rows of \(R\).

\section*{Remarks:}

Matrix \(R\) cannot be in the same location as matrix A.
Matrices A and R must be stored as general matrices.

Subroutines and function subprograms required: None.

Method:
Transpose \(N\) by \(M\) matrix \(A\) to form \(M\) by \(N\) matrix R .



\section*{GTPRD}

\section*{Purpose:}

Premultiply a general matrix by the transpose of another general matrix.

Usage:
CALL GTPRD(A, B, R, N, M, L)

Description of parameters:
A - Name of first input matrix.
B - Name of second input matrix.
R - Name of output matrix.
N - Number of rows in A and B.
M - Number of columns in \(A\) and rows in \(R\).
L - Number of columns in B and R.

Remarks:
Matrix \(R\) cannot be in the same location as matrix A.
Matrix \(R\) cannot be in the same location as matrix B.
All matrices must be stored as general matrices.
Subroutines and function subprograms required: None.

Method:
Matrix transpose of A is not actually calculated. Instead, elements of matrix A are taken columnwise rather than rowwise for postmultiplication' by matrix \(B\).

\section*{MADD}

\section*{Purpose:}

Add two matrices element by element to form resultant matrix.

Usage:
CALL MADD(A, B, R, N, M, MSA, MSB)
Description of parameters:
A - Name of input matrix.
B - Name of input matrix.
R - Name of output matrix.
\(\mathrm{N} \quad\) - Number of rows in A,B,R.
M - Number of columns in A,B,R.
MSA - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
MSB - Same as MSA except for matrix B.
Remarks:
None.
Subroutines and function subprograms required: LOC

Method:
Storage mode of output matrix is first determined. Addition of corresponding elements is then performed.
The following table shows the storage mode of the output matrix for all combinations of input matrices:
\begin{tabular}{lll}
\multicolumn{1}{c}{ A } & \multicolumn{1}{c}{\begin{tabular}{c} 
B
\end{tabular}} & \multicolumn{1}{c}{ R } \\
General & General & General \\
General & Symmetric & General \\
General & Diagonal & General \\
Symmetric & General & General \\
Symmetric & Symmetric & Symmetric \\
Symmetric & Diagonal & Symmetric \\
Diagonal & General & General \\
Diagonal & Symmetric & Symmetric \\
Diagonal & Diagonal & Diagonal
\end{tabular}
```

 SUBROUTINE MADOIA,B,R,N,M,MSA,MSB
 DIHENSION All!,Btll,RIII
 dEtERMINE STORAGE NODE of nutput matrix
 F(HSA-MSB! 7,5,7
 CALL LOCIN,M,NH,N,M,MSA
 GO TO 100
 MTEST=MSA*MSB
 MSR=0
 IFIMTESTI 20,20,10
 0 MSR=1
 IO (FIMTEST-2) 35,35,30
 c locate elements ano perfory hodition
35 on 90 د=1,M
CALL LOCII,J,IJR,N,M,MSRI
MFIIJRI 40,90,40
O CalL locit,j.ijar
AEL=0.0
IFIIJAl 50.60.50
OO AEL=AlIJAI
O CALL LOC('I.J,1JB,N,N,MSO)
IF(1.58) 70,80,70
70 BFL=8(IJB)
O R(IJR)=AEL
CONTINU
ado matrices for other cases
Oo ADD MATRIC
100 R(I|=A TEIONM
RE RIJRN

```



\section*{MSUB}

Purpose:
Subtract two matrices element by element to form resultant matrix.

Usage:
CALL MSUB(A, B, R, N, M, MSA, MSB)
Description of parameters:
A - Name of input matrix.
B - Name of input matrix.
R - Name of output matrix.
\(\mathrm{N} \quad\) - Number of rows in \(\mathrm{A}, \mathrm{B}, \mathrm{R}\).
M - Number of columns in A, B, R.
MSA - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
MSB - Same as MSA except for matrix B.
Remarks:
None.
Subroutines and function subprograms required: LOC

Method:
Structure of output matrix is first determined. Subtraction of matrix B elements from corresponding matrix A elements is then performed. The following table shows the storage mode of the output matrix for all combinations of input matrices:
\begin{tabular}{lll}
\multicolumn{1}{c}{ A } & \multicolumn{1}{c}{ B } & \multicolumn{1}{c}{ R } \\
General & General & General \\
General & Symmetric & General \\
General & Diagonal & General \\
Symmetric & General & General \\
Symmetric & Symmetric & Symmetric \\
Symmetric & Diagonal & Symmetric \\
Diagonal & General & General \\
Diagonal & Symmetric & Symmetric \\
Diagonal & Diagonal & Diagonal
\end{tabular}

\section*{}

\section*{MPRD}

\section*{Purpose:}

Multiply two matrices to form a resultant matrix.

Usage:
CALL MPRD(A, B, R, N, M, MSA, MSB, L)
Description of parameters:
A - Name of first input matrix.
B - Name of second input matrix.
R - Name of output matrix.
\(\mathrm{N} \quad-\quad\) Number of rows in A and R .
M - Number of columns in A and rows in B.
MSA - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
MSB - Same as MSA except for matrix B.
L - Number of columns in B and R.
Remarks:
Matrix \(R\) cannot be in the same location as matrices A or B.
Number of columns of matrix A must be equal to number of rows of matrix \(B\).
Subroutines and function subprograms required: LOC
Method:
The \(M\) by \(L\) matrix \(B\) is premultiplied by the \(N\) by \(M\) matrix \(A\) and the result is stored in the \(N\)
by \(L\) matrix \(R\). This is a row into column product.
The following table shows the storage mode of the output matrix for all combinations of input matrices:


\section*{MTRA}

\section*{Purpose:}

Transpose a matrix.

\section*{Usage:}

CALL MTRA(A, R, N, M, MS)
Description of parameters:
A - Name of matrix to be transposed.
\(R \quad\) - Name of output matrix.
N - Number of rows of \(A\) and columns of R.
M - Number of columns of \(A\) and rows of \(R\).
MS - One digit number for storage mode of matrix A (and R):

0 - General.
1 - Symmetric.
2 - Diagonal.

\section*{Remarks:}

Matrix \(R\) cannot be in the same location as matrix A.

Subroutines and function subprograms required: MCPY

\section*{Method:}

Transpose \(N\) by \(M\) matrix \(A\) to form \(M\) by \(N\) matrix \(R\) by moving each row of \(A\) into the corresponding column of \(R\). If matrix \(A\) is symmetric or diagonal, matrix \(R\) is the same as \(A\).
```

 SURROUTINE MTRAIA,R,N,M,MS
 OIMENSION AIIl,R(I)
 IF(45) 10,20,10 2, COPY
 0 CALL MCPY(A,R,N,V,MSI
 RETURN
 c
1R=0
00 30 1=1,N
M0301
on 30, J=1,M
IN=1J+N
MR=|R+I
30 R|IRI=AISI
RE RURN

```

TPRD

Purpose:
Transpose a matrix and postmultiply by another to form a resultant matrix.

Usage:
CALL TPRD(A, B, R, N, M, MSA, MSB, L)
Description of parameters:
A - Name of first input matrix.
B - Name of second input matrix.
R - Name of output matrix.
N - Number of rows in A and B.
M - Number of columns in A and rows in R.
MSA - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
MSB - Same as MSA except for matrix B.
L - Number of columns in B and R.
Remarks:
Matrix \(R\) cannot be in the same location as matrices A or B.

Subroutines and function subprograms required: LOC

Method:
Matrix transpose of A is not actually calculated. Instead, elements in matrix A are taken columnwise rather than rowwise for multiplication by matrix B.
The following table shows the storage mode of the output matrix for all combinations of input matrices:
\begin{tabular}{lll}
\multicolumn{1}{c}{ A } & \multicolumn{1}{c}{ B } & \multicolumn{1}{c}{ R } \\
General & General & General \\
General & Symmetric & General \\
General & Diagonal & General \\
Symmetric & General & General \\
Symmetric & Symmetric & General \\
Symmetric & Diagonal & General \\
Diagonal & General & General \\
Diagonal & Symmetric & General \\
Diagonal & Diagonal & Diagonal
\end{tabular}

\footnotetext{

}

\section*{Purpose:}

Premultiply a matrix by its transpose to form a symmetric matrix.

\section*{Usage:}

CALL MATA(A, R, N, M, MS)
Description of parameters:
A - Name of input matrix.
R - Name of output matrix.
N - Number of rows in A.
M - Number of columns in A. Also number of rows and number of columns of \(R\).
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.

\section*{Remarks:}

Matrix \(R\) cannot be in the same location as matrix A.
Matrix \(R\) is always a symmetric matrix with a storage mode=1.

Subroutines and function subprograms required: LOC

\section*{Method:}

Calculation of (A transpose A) results in a symmetric matrix regardless of the storage mode of the input matrix. The elements of matrix A are not changed.
```

 SUHROIJTINE MATAIA,R,N,M,MSI
 DIMENSION AIII,RIII
 On so K=1,M
 kX=1k*k-ki/2
 IF(J-k) 10,10.0n
 10$$
\begin{array}{c}{1R=J+Kx}\\{R\IR=0}\end{array}
$$)
RITR)=0
(0)60 1=1,N
20 CALLS 20:40,20
CALL LUC\I,N,IA,N,4,4S!
IF(1A) 30,60.30
30 IF(AB) 50.50.50
40 1A=N*(J-1)+1
50 R(|Q|FRITR)+A(IA)*A(IG)
go continue
MEFURM

```



SADD

\section*{Purpose:}

Add a scalar to each element of a matrix to form a resultant matrix.

Usage:
CALL SADD(A, C, R, N, M, MS)
Description of parameters:
A - Name of input matrix.
C - Scalar.
R - Name of output matrix.
N - Number of rows in matrix \(A\) and \(R\).
M - Number of columns in matrix \(A\) and \(R\).
MS - One digit number for storage mode of matrix A (and R):

0 - General.
1 - Symmetric.
2 - Diagonal.
Remarks:
None.
Subroutines and function subprograms required: LOC

Method:
Scalar is added to each element of matrix.
```

SUBROUTINE SAOD(A,C,R,N,M,NS)
OIAENSION A/I),R(1)
c OIMENSION COMIl,R(I)
CALL LOCIN,M,IT,Y,M,HS)
ADD SCALAR
O0,1 1=1:IT
RITI=AI
RENO

```

\section*{Purpose:}

Subtract a scalar from each element of a matrix to form a resultant matrix.

\section*{Usage:}

CALL SSUB(A, C, R, N, M, MS)
Description of parameters:
A - Name of input matrix.
C - Scalar.
R - Name of output matrix.
N - Number of rows in matrix A and R.
M - Number of columns in matrix \(A\) and \(R\).
MS - One digit number for storage mode of matrix A (and R):

0 - General.
1 - Symmetric.
2 - Diagonal.

Remarks:
None.

Subroutines and function subprograms required: LOC

Method:
Scalar is subtracted from each element of matrix.
\begin{tabular}{|c|c|c|}
\hline \multirow{4}{*}{c} & Subrdutine ssubia, C,R,N, \(\mathrm{H}, \mathrm{NS}\) ) & Ssur \\
\hline & DIMENSION Alli, Rill & 55148 \\
\hline & COMPUTE VECTOR LENGTH. IT & SSum \\
\hline & CALL LOC(N, M, IT,N,M,MS) & Ssus \\
\hline \multirow[t]{5}{*}{c} & subtact scalar & S53日 \\
\hline & do 1 \(1=1,19\) & Ssun \\
\hline & 1 all)atll-c & ssun \\
\hline & return & Ssun \\
\hline & eno & Ssur \\
\hline
\end{tabular}

\section*{Purpose:}

Multiply each element of a matrix by a scalar to form a resultant matrix.

\section*{Usage:}

CALL SMPY(A, C, R, N, M, MS)
Description of parameters:
A - Name of input matrix.
C - Scalar.
R - Name of output matrix.
N - Number of rows in matrix A and R.
M - Number of columns in matrix A and R.
MS - One digit number for storage mode of matrix A (and R):

0 - General.
1 - Symmetric.
2 - Diagonal.
Remarks:
None.

Subroutines and function subprograms required: LOC

Method:
Scalar is multiplied by each element of matrix.

SUBROUTINE SMPY(A,CRR,N,N,MSI
OIMENSICN A(1),R(I)
C COMPUTE VECILR LENGTH, IT
C CALL LOCIN,M,ITIN,M,NSI


RE TJR


Purpose:
Divide each element of a matrix by a scalar to form a resultant matrix.

Usage:
CALL SDIV(A, C, R, N, M, MS)
Description of parameters:
A - Name of input matrix.
C - Scalar.
R - Name of output matrix.
N - Number of rows in matrix A and R.
M - Number of columns in matrix \(A\) and \(R\).
MS - One digit number for storage mode of matrix \(A(a n d R)\) :

0 - General.
1 - Symmetric.
2 - Diagonal.
Remarks:
If scalar is zero, division is performed only once to cause floating-point overflow condition.

Subroutines and function subprograms required: LOC

Method:
Each element of matrix is divided by scalar.

Purpose:
Add row of one matrix to row of another matrix.

\section*{Usage:}

CALL RADD(A, IRA, R, IRR, N, M, MS, L)
Description of parameters:
A - Name of input matrix.
IRA - Row in matrix A to be added to row IRR of matrix \(R\).
R - Name of output matrix.
IRR - Row in matrix \(R\) where summation is developed.
N - Number of rows in A.
M - Number of columns in A and R.
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
L - Number of rows in R.

Remarks:
Matrix \(R\) must be a general matrix.
Matrix \(R\) cannot be in the same location as matrix A unless A is general.

Subroutines and function subprograms required: LOC

Method:
Each element of row IRA of matrix A is added to corresponding element of row IRR of matrix R.
```

SUBROUTINE RADD(A,IRA,R,IRR,N,M,MS,LI
DIMENSIGN AIII,RIII
MIMENSICN
MR=RR-L,N
in= locate input element for any matrix storagf mode
c CALL LOC(IRA,J,IA,N,M,MSI IN dIAGONAL MATRIX
TEST FOR ZERO
I RIIRI=RIIRITAIIA
2 CONINRI
CONTINUE
END

```
RADO
RADD
RADD
RADD
RADD
RADO
RADO
RADD
RADD
RADD
RADO
RADD
RADD
RAD
0
\(\begin{array}{ll}\text { RADDO } & 12 \\ \text { RADD } & 13\end{array}\)

\section*{CADD}

\section*{Purpose:}

Add column of one matrix to column of another matrix.

\section*{Usage:}

CALL CADD(A, ICA, R, ICR, N, M, MS, L)

Description of parameters:
A - Name of input matrix.
ICA - Column in matrix A to be added to column ICR of R.
R - Name of output matrix.
ICR - Column in matrix \(R\) where summation is developed.
\(\mathrm{N} \quad\) - Number of rows in \(A\) and \(R\).
M - Number of columns in A.
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
L - Number of columns in R.

\section*{Remarks:}

Matrix R must be a general matrix. Matrix \(R\) cannot be in the same location as matrix A unless A is general.

Subroutines and function subprograms required: LOC

Method:
Each element of column ICA of matrix \(A\) is added to corresponding element of column ICR of matrix \(R\).
```

SUGROUTINE CADD(A,ICA,R,ICR,N,A,MS,L)
DIRENSIONAIIH,RIII
iR=N\#\ICR-I
00 2I=1,
locate input element fom any matrix storagf mdoe
CALL LDC(I,ICA,IA,N,M,MS)
F(IA) 1,2,1
adD ELEMFNTS
R(IR)=RIIRI*AIIA
ZCONTINUE
RETURN
M RETUR

```


SRMA

\section*{Purpose:}

Multiply row of matrix by a scalar and add to another row of the same matrix.

\section*{Usage:}

CALL SRMA(A, C, N, M, LA, LB)

Description of parameters:
A - Name of matrix.
C - Scalar.
\(\mathrm{N} \quad\) - Number of rows in A.
M - Number of columns in A .
LA - Row in A to be multiplied by scalar.
LB - Row in A to which product is added. If 0 is specified, product replaces elements in row LA.

Remarks:
Matrix A must be a general matrix.
Subroutines and function subprograms required: None.

Method:
Each element of row LA is multiplied by scalar C and the product is added to the corresponding element of row LB. Row LA remains unaffected by the operation.
If parameter LB contains zero, multiplication by the scalar is performed and the product replaces elements in row LA.
```

ubrcutime
dimensitan alll
LAJ=LAG-N
LAJELR-N
DO 3 J=1;M ELEMENT IN bOTM ROHS
LAJ*LAJ*N
LBJ=L\&JON (HECK LB FOR IFRO
IFILE) 1,2,1
if not, multiply ar constant and ado to other row
(A(LEJ)\#A(LAJ)*C*AlLBS)
go 10 3
2 AILAJI=AILAJI*C
3 continue
RETURN

```


\section*{Purpose:}

Multiply column of, matrix by a scalar and add to another column of the same matrix.

Usage:
CALL SCMA (A, C, N, LA, LB)
Description of parameters:
A - Name of matrix.
C - Scalar.
N - Number of rows in A.
LA - Column in A to be multiplied by scalar.
LB - Column in A to which product is added. If 0 is specified, product replaces elements in LA.

Remarks:
Matrix A must be a general matrix.
Subroutines and function subprograms required: None.

\section*{Method:}

Each element of column LA is multiplied by scalar C and the product is added to the corresponding element of column LB. Column LA remains unaffected by the operation. If parameter LB contains zero, multiplication by the scalar is performed and the product replaces elements in LA.
```

SUBRUUTINE SCMACA.C.N,LA,LET

```
OIMFNSION AlII
LUCATE START
lucate starifivg moint if mith rillumes
(ABN*!LA-1)

ILA=ILA+1
MA \(=1 L A+1\)
CHECK LA FOR PERO
AIF NOT MIJLIIPLY BY CONSTANT ANO ADO IT SFCOND COLUMN

on To
OTHERWISE, MIRTIPLY COLUMN by CONSTANT
? \(A(I L A)=A(I L A) * C\)
A(ILA)
CONTINIF
REFTURN
ENO

\section*{RINT}

\section*{Purpose:}

Interchange two rows of a matrix.

\section*{Usage:}

CALL RINT(A, N, M, LA, LB)
Description of parameters:
A - Name of matrix.
N - Number of rows in A.
M - Number of columns in A.
LA - Row to be interchanged with row LB.
LB - Row to be interchanged with row LA.
Remarks:
Matrix A must be a general matrix.

Subroutines and function subprograms required:
None.

\section*{Method:}

Each element of row LA is interchanged with corresponding element of row LB.
```

Sugroutine RINTIA,N,A,LA,LB)
dimensidnemail
LAJPLA-N
LRJ=LR-N
lom
LAJ=LAJ+N
l-jilmjerchange el mmeyis
SAVE=AlLAJI
A(LAJ)=AlLEJ)
3 AlLBJI=SAVE
RETUR

```
RINT
RINT
RINT
RINT
RINT
RINT
RINT
RINT
HINT
RINT
RINT
RINT
RINT

\section*{Purpose:}

Interchange two columns of a matrix.
Usage:
CALL CINT(A, N, LA, LB)
Description of parameters:
A - Name of matrix.
N - Number of rows in A.
LA - Column to be interchanged with column LB.
LB - Column to be interchanged with column LA.

Remarks:
Matrix A must be a general matrix.
Subroutines and function subprograms required: None.

Method:
Each element of column LA is interchanged with corresponding element of column LB.

SURROUTINE CINTIA,N,LA,LEI
UIMENSTON AII)
c locate stariivg point tif roth columys
ILA \(=N *:(L A-1)\)
\(\| B=N^{*}(L B-1)\)


ILB=ILB+L
interchange elements
SAyEallla

RETURN
END

RSUM

\section*{Purpose:}

Sum elements of each row to form column vector.

\section*{Usage:}

CALL RSUM (A, R, N, M, MS)
Description of parameters:
A - Name of input matrix.
R - Name of vector of length \(N\).
N - Number of rows in A.
M - Number of columns in A.
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
Remarks:
Vector \(R\) cannot be in the same location as matrix A unless A is general.

Subroutines and function subprograms required: LOC

Method:
Elements are summed across each row into a corresponding element of output column vector R.
```

SUBYOUTINE RSUMIA,R,N,Y,MSI
SUMENSINE RSUMIN,R,
On 3 I*liN
R(11)0.0
DO 3 J=1,M
c cogate element fom any matrix storafe mone
CaLL LOC(J,J,IJ,V,M,MS)
CALL LDCII,J,NST,H,MS)
IF(lJ) 2,3,2
2 RGII=CUMIIATEIJI
3 RIIIERNIN
MEIURM

```

\section*{CSUM}

\section*{Purpose:}

Sum elements of each column to form row vector.

Usage:
CALL \(\operatorname{CSUM}(A, R, N, M, M S)\)
Description of parameters:
A - Name of input matrix.
R - Name of vector of length M.
N - Number of rows in A.
M - Number of columns in A.
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
Remarks:
Vector \(R\) cannot be in the same location as matrix A unless A is general.

Subroutines and function subprograms required: LOC

Method:
Elements are summed down each column into a corresponding element of output row vector \(R\).
```

SUBROUTINE CSUMIA,R,N,M,NSI
OIMENSION A(ll,RI\!
DO 3 J=1,N
R(J)=0.0
OD 3 I= 1;N
oo locate element for any matrix storage mode
CALL LOC(T,J,IJ,N,M,MSI
IEST FOR LERO ELEMENT IN DIAGONAL MATRIX
IFISJI 2;3,2
ACCUMuLATE IN OUIPUT vectar
R(J)=R(J)+A!IJ)
3 CONTINUE
geruRN

```

RTAB
The function of this subroutine is graphically displayed by Figure 6 (see description under "Method").


Figure 6. Row tabulation

\section*{Subroutine RTAB}

\section*{Purpose:}

Tabulate rows of a matrix to form a summary matrix.

\section*{Usage:}

CALL RTAB(A, B, R, S, N, M, MS, L)
Description of parameters:
A - Name of input matrix.
B - Name of input vector of length \(N\) containing key.
R - Name of output matrix containing summary of row data. It is initially set to zero by this subroutine.
\(S\) - Name of output vector of length \(L+1\) containing counts.
N - Number of rows in A.
M - Number of columns in A and R.
L - Number of rows in R.
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
Remarks:
Matrix R is always a general matrix.

Subroutines and function subprograms required:
LOC
RADD

Method:
Rows of data in matrix A are tabulated using the key contained in vector \(B\). The floating point number in \(\mathrm{B}(\mathrm{I})\) is truncated to form J . The \(\mathrm{I}^{\text {th }}\) row of \(A\) is added to the \(J^{\text {th }}\) row of \(R\), element by element, and one is added to \(\mathrm{S}(\mathrm{J})\). If J is not between one and \(L\), one is added to \(S(L+1)\). This procedure is repeated for every element in vector \(B\). Upon completion, the output matrix \(R\) contains a summary of row data as specified by vector \(B\). Each element in vector \(S\) contains a count of the number of rows of \(A\) used to form the corresponding row of R. Element \(S(L+1)\) contains a count of the number of rows of A not included in \(R\) as a result of \(J\) being less than one or greater than \(L\).
```

 SUBRIUTINE RTABIA,B,R,S,N+M,MS,L)
 OIMENSIDN A(1), B(l),R(1),S(1)
 CLEAR OUTPUT AREAS
 CALL LOC(N,L,TT,Y,L,O)
 O 10 TR=1,IT
 LO RIIRI=0.0
 20 S{15:=0.0
 0 sits)=0.0
    ```

```

 F{B(I): 50,50,30
 30 E=L
 30 E=L FIA(I)-E) 40,40,50
 40 JR=B(I)
 ADD ROM OF A TO ROH OF R AND I tO COUNI
 CALL RAODIA,I,R,JR,N,M,MS,L)
 S(JR)=S(JR)+1.0
 GOTO 60
 50 S(L+1)=5(L+1)+1.)
 50 S(L41)=512
 RETU
    ```

CTAB
The function of this subroutine is graphically displayed by Figure 7 (see description under "Method").


Figure 7. Column tabulation

\section*{Subroutine CTAB}

Purpose:
Tabulate columns of a matrix to form a summary matrix.

Usage:
\(\operatorname{CALL} \operatorname{CTAB}(A, B, R, S, N, M, M S, L)\)
Description of parameters:
A - Name of input matrix.
B - Name of input vector of length M containing key.
R - Name of output matrix containing summary of column data. It is initially set to zero by this subroutine.
\(S\) - Name of output vector of length L+1 containing counts.
N - Number of rows in A and R.
M - Number of columns in A.
L - Number of columns in R.
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.

Remarks:
Matrix R is always a general matrix.
Subroutines and function subprograms required:
LOC
CADD

\section*{Method:}

Columns of data in matrix A are tabulated using the key contained in vector \(B\). The floatingpoint number in \(\mathrm{B}(\mathrm{I})\) is truncated to form J . The \(I^{\text {th }}\) column of \(A\) is added to the \(J^{\text {th }}\) column of matrix \(R\) and one is added to \(S(J)\). If the value of \(J\) is not between one and \(M\), one is added to \(S(L+1)\). Upon completion, the output matrix \(R\) contains a summary of column data as specified by vector B. Each element in vector \(S\) contains a count of the number of columns of A used to form R. Element \(S(L+1)\) contains the number of columns of \(A\) not included in \(R\) as a result of \(J\) being less than one or greater than \(L\).
```

sugroutime ctabiA,B,R,S,N,M,MS,L)
SUQROUTIGE CTABA,B,R,SN,N,M,MS
Calear autpur areas
\00 10 RR=L,TT
10 RO 20 i S=1,
20 sils)=0.0
STLI1=0.0

```

```

 IFIB(I)I 50,50,30
 30 ExL(1)
 =3(1) 40.40,50
 ady colunn of a to colum, of a ano I to count
 CALL CADD(A,I,R,JR,N,M,MS,L)
 S(JRI=S(Ja)+1.0
 60 10.00
 so s(L+1)=5(L+1)+1.)
 60 continue
 M RENU
    ```

\section*{RSRT}

Purpose:
Sort rows of a matrix.
Usage:
CALL RSRT(A,B,R,N,M,MS)
Description of parameters:
A - Name of input matrix to be sorted.
B - Name of input vector which contains sorting key.
R - Name of sorted output matrix.
N - Number of rows in \(A\) and \(R\) and length of \(B\).
M - Number of columns in A and R.
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
Remarks:
Matrix \(R\) cannot be in the same location as matrix A.
Matrix \(R\) is always a general matrix. .
N must be greater than 1. This routine sorts into ascending order. Sorting into descending order requires changing card RSRT 013 to read IF ( \(\mathrm{R}(\mathrm{I}-1)-\mathrm{R}(\mathrm{I})\) ) \(30,40,40\)
Subroutines and function subprograms required: LOC
Method:
Rows of input matrix A are sorted to form output matrix R. The sorted row sequence is determined by the values of elements in column vector \(B\). The lowest valued element in \(B\) will cause the corresponding row of \(A\) to be placed in the first row of \(R\). The highest valued element of B will cause the corresponding row of A to be placed in the last row of R. If duplicate values exist in \(B\), the corresponding rows of \(A\) are moved to \(R\) in the same order as in \(A\).
subroutine rastia,b,ronomoms)
c
MOVE SCRTING KEY VECTOR TO FIRST COLUMM OF OUTPUT MATRIX
MOVE SERTING KEY VECTOR TO FIRST COLUMN OF OUTPUT
AND BUILD ORIGINAL SEGUENGE LIST IN SECOND COLUMN
\(0010 \mathrm{I}=1\), N
R(I)
\(R(1)=g(t)\)
\(12=1+N\)
\(R(12)=1\)
R120
R \(121=1\)
I
SORT ELEMENTS in sorting key vfctor coriginal seduence list IS RESEGUENCED ACCORDiNGLYI

LLx-1
0040 TE2•L

RSAVER(1)
RIl
RII
R(II=R(I-1)
R(I=1)=RSAVE
\(R(1-1)=R 5 A V\)
\(12=1+N\)
SAVERER(12)
R(12)-R(12-1
\(R(12)=R(12-1)\)
\(R(12-1)=S A V E R\)
40
MOVE ROWS FROM MATRIX A TO MATRIX \(A\) inUMBER in SECOND COLUMM
50 of r represents row numger of matrix a to be movedi
\(12=1+\mathrm{N}\) ( ROW Number in matrix a
\(12=1+N\)
IN \(=R(12)\)
IN
IR \(=1-N\)

C LOCATE ELEMENT IN OUTPUT MATRIX
1R-IR+N
cal locate element in input matrix
TEST FOR ZERO ELEMENT IN DIAGONAL MATRIX
(1AA) \(60,70,60\)
MOVE ELEMENT
GO MOVE ELEMENT TO OUTPUT MATRIX
0 R(IR)-ACIA)
GO TO 80
R(IR)
70 R(IRI=O
AO CONTINUE
RETURN
RETUR
END


\section*{CSRT}

\section*{Purpose:}

Sort columns of a matrix.

\section*{Usage:}

CALL CSRT(A, B, R, N, M, MS)
Description of parameters:
A - Name of input matrix to be sorted.
B - Name of input vector which contains sorting key.
R - Name of sorted output matrix.
N - Number of rows in A and R.
M - Number of columns in \(A\) and \(R\) and length of \(B\).
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.

\section*{Remarks:}

Matrix \(R\) cannot be in the same location as matrix A.
Matrix \(R\) is always a general matrix. N must be greater than 1. This routine sorts into ascending order. Sorting into descending order requires changing card CSRT 016 to read IF (R(IP)-R(IQ)) 30, 40, 40

Subroutines and function subprograms required:
LOC
CCPY

Method:
Columns of input matrix A are sorted to form output matrix R. The sorted column sequence is determined by the values of elements in row vector \(B\). The lowest valued element in \(B\) will cause the corresponding column of \(A\) to be placed in the first column of \(R\). The highest valued element of \(B\) will cause the corresponding row of \(A\) to be placed in the last column of \(R\). If duplicate values exist in \(B\), the corresponding columns of A are moved to \(R\) in the same order as in A.

SUBROUTINE ESRT(A,B,R,N,M,MSI)
DIMENSION A(1),B(1):R(1)
MOVE SORTING KEY VECTOR TO FIRST ROW OF OUTPUT MATRIX
K-1
DO 10 J=1, M
( \(1 k+1)=J\)
R \((1 K+1)=J\)
\(I K=1 K+N\)
SORT ELEMENTS IN SORTING KEY VECTOR IORIGINAL SEQuENCE LISt IS RESEGUENCED ACCORDINGLY:
\(20 \begin{aligned} & \mathrm{L}=\mathrm{M}+\mathrm{I} \\ & \mathrm{ISORT}=0\end{aligned}\)
\(\mathrm{L}=\mathrm{L}-1\)
\(\mathrm{D}=1\)
10an+1

IFIR(IO)
ISORT=
RSAV
1SORTAD
RSAVER(10)
R(IO) erilp)
R(IP)=RSAVE
SAVER \(\mathrm{R}(10+1)\)
R(10+1) \(=R(1 P+1)\)
\(R(10+1)=R(I P+1\)
\(R(I P+1)=S A V E R\)
\(40 \begin{aligned} & \mathrm{R} / \mathrm{P}=1 \mathrm{P}+\mathrm{N} \\ & \mathrm{IO}\end{aligned}\)
\(50 \mathrm{IQ}=1 \mathrm{IO+N}\)
50 CONTINUE
IF(ISORT) 20.60 .20
MOVE COLUMNS FROM MATRIX A TO MATRIX R INUMBER IN SECOND ROW
\(0 \cdot 10+\mathrm{N}\)
get column number in matrix a
\(12=10+2\)
\(1 \mathrm{~N}=\mathrm{R}(12)\)
MOVE COLUMA
\(t \mathrm{R}=10+1\)
CALL CCPY(A,IN:R(IR) : \(N+M+M S\) )
CONTINUE
REND

\section*{RCUT}

\section*{Purpose:}

Partition a matrix between specified rows to form two resultant matrices.

\section*{Usage:}

CALL RCUT (A, L, R, S, N, M, MS)

Description of parameters:
A - Name of input matrix.
L - Row of A above which partitioning takes place.
R - Name of matrix to be formed from upper portion of A.
S - Name of matrix to be formed from lower portion of A.
N - Number of rows in A.
M - Number of columns in A.
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.

\section*{Remarks:}

Matrix \(R\) cannot be in same location as matrix \(A\). Matrix S cannot be in same location as matrix A. Matrix \(R\) cannot be in same location as matrix \(S\). Matrix \(R\) and matrix \(S\) are always general matrices.

Subroutines and function subprograms required: LOC

\section*{Method:}

Elements of matrix A above row \(L\) are moved to form matrix \(R\) of \(L-1\) rows and \(M\) columns. Elements of matrix \(A\) in row \(L\) and below are moved to form matrix \(S\) of \(N-L+1\) rows and \(M\) columns.
```

 Subroutine rcut(4,L,R,5,Nom,ms)
 DIMENSIGN AILI,R(II,SII)
 DIME
 IT=0
 00 70 J=1,M
 OO 70 I=1,N
 FImD Location in outbut matrix ano set to zero
If(I-L: 20,10.10
10 IS=15+1
S(TS)=0.0
20 IRRIR+1
RItri=0,0}\mathrm{ Locate element for any matrix storage mode
30 CALL LECI,J,IJ,W,M,MS)
IEST FOR 2ERO ELEMENT IN DIAGONAL. M
determine whet her above. or belom l
40 IF(I-L) 60,50,SO
40 If(1-L) 60,
go to 70
60 RIIRJ=A!IJ)
60 RIIRI*AiI
CONTINUE
RETURN

```

\section*{CCUT}

\section*{Purpose:}

Partition a matrix between specified columns to form two resultant matrices.

Usage:
CALL CCUT (A, L, R, S, N, M, MS)
Description of parameters:
A - Name of input matrix.
L - Column of A to the left of which partitioning takes place.
R - Name of matrix to be formed from left portion of \(A\).
S - Name of matrix to be formed from right portion of A.
N - Number of rows in A.
M - Number of columns in A.
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.

\section*{Remarks:}

Matrix \(R\) cannot be in same location as matrix A. Matrix \(S\) cannot be in same location as matrix \(A\). Matrix \(R\) cannot be in same location as matrix \(S\). Matrix \(R\) and matrix \(S\) are always general matrices.

Subroutines and function subprograms required: LOC

Method:
Elements of matrix \(A\) to the left of column \(L\) are moved to form matrix \(R\) of \(N\) rows and \(L-1\) columns. Elements of matrix \(A\) in column \(L\) and to the right of \(L\) are moved to form matrix \(S\) of \(N\) rows and \(\mathrm{M}-\mathrm{L}+1\) columns.
```

 SUBROUTINE CCUTIA,L,R,S,N,M,MS
 gMENSION Alli,RCil,Sil)
 IR*0
 0070 Joi,M
 0a 70 I=1,N
Find location
10. IS=IS+1
S(15)=0.0
S(15)=0.0
20 tR=tR+1
c lotate element for any matrix storagf mode
C 30 CALL LEST FOR LERO ELEMENT IN OIAGONAL MATRIX
IFIIJJ 40,70,40
oEtERMjNE whet mer right or left of l
40 (FIJ-L\ 60;5
socis)=AllJ
OOR(IRI=Al!J)
go ritrizali
RETURN

```


\section*{RTIE}

CTIE

\section*{Purpose:}

Adjoin two matrices with same column dimension to form one resultant matrix. (See Method.)

\section*{Usage:}

CALL RTIE (A, B, R, N, M, MSA, MSB, L)
Description of parameters:
A - Name of first input matrix.
B - Name of second input matrix.
R - Name of output matrix.
N - Number of rows in A.
M - Number of columns in A, B, R.
MSA - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
MSB - Same as MSA except for matrix B.
L - Number of rows in B.

\section*{Remarks:}

Matrix \(R\) cannot be in the same location as matrices A or B.
Matrix R is always a general matrix.
Matrix A must have the same number of columns as matrix \(B\).

Subroutines and function subprograms required: LOC

\section*{Method:}

Matrix B is attached to the bottom of matrix A. The resultant matrix R contains \(\mathrm{N}+\mathrm{L}\) rows and M columns.
```

 SURROUTINE RTIEIA,B,R,N,M,MSA,MSB,LI
 DIMENSION AlII,BCLIFR(II
 MNEN
 MR=0
 MSX=MSA
 OO 9 J=1,M
 DO 8 II=1,2
 M0,7:{=1,
 lR=IR&1
 RTfri=0,0 elemte elEment for any matrix storage mode
 CALL LOCII,J,IJ,VN,M,NSXI
 TEST FOR IERO ELEMENT IN DIAGONAL MATRIX
 FIIJI 2.7,?
 2 co TO(3,41,11
 3 R(IR)=A!IJ)
 BRIRI=A!
 4 R(IR)=B|IJ
 c TCONTNUEE REPEAT ABOVE FOR MATRIX a
SX=MSB
MMSX=MSB
R-l geset fop. next column
MSX=MSA
MGETURN

```



Purpose:
Adjoin two matrices with same row dimension to form one resultant matrix. (See Method.)

\section*{Usage:}

CALL CTIE (A, B, R, N, M, MSA, MSB, L)
Description of parameters:
A - Name of first input matrix.
B - Name of second input matrix.
\(R \quad\) - Name of output matrix.
\(\mathrm{N} \quad\) - Number of rows in \(A, B, R\).
M - Number of columns in A.
MSA - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
MSB - Same as MSA except for matrix B.
L - Number of columns in B.

\section*{Remarks:}

Matrix \(R\) cannot be in the same location as matrices A or B.
Matrix \(R\) is always a general matrix.
Matrix A must have the same number of rows as matrix \(B\).

Subroutines and function subprograms required: LOC

Method:
Matrix B is attached to the right of matrix A. The resultant matrix R contains N rows and \(\mathrm{M}+\mathrm{L}\) columns.

```

 SUBROUTINE CTIERA,8,R+N;M,
 MMaN4
 MSx=MSA
 DO 6 JJ=1,?
 DO 5 J=1,MM
 IR=IR+1
 MRIR+1
 locate element for any matrix storage mode
 TEST FOR IERO ELEMENT IN DIGGONAL MATRIX
 MOVE ELEMENT TO MATRIX R
 2 GO TO(3,4),JJ
 GO TO 5
 4.R(IRI=&IIJ
 5 CONTINUE REPEAT ABOVE for matrix b
MSX=ASB
MMal IN
RETURN
METURN

```

\section*{MCPY}

\section*{Purpose:}

Copy entire matrix.

\section*{Usage:}

CALL MCPY (A, R, N, M, MS)
Description of parameters:
A - Name of input matrix.
R - Name of output matrix.
N - Number of rows in A or R.
M - Number of columns in A or R.
MS - One digit number for storage mode of matrix A (and R):

0 - General.
1 - Symmetric.
2 - Diagonal.

\section*{Remarks:}

None.

Subroutines and function subprograms required: LOC

\section*{Method:}

Each element of matrix A is moved to the corresponding element of matrix \(R\).
suhroutine mepy(a, R,N, m, ms s)
DIMENSION AII), RIII
COMPUTE VEGTRR LENGTH. IT
COPY MATRIX
\(00 \sum_{i=1,1 T}\)
I RIISAC
RETURN
EAT
KETUR
END

\section*{XCPY}

\section*{Purpose:}

Copy a portion of a matrix.

\section*{Usage:}

CALL XCPY(A, R, L, K, NR, MR, NA, MA, MS)

Description of parameters:
A - Name of input matrix.
R - Name of output matrix.
L - Row of \(A\) where first element of \(R\) can be found.
K - Column of A where first element of R can be found.
NR - Number of rows to be copied into R.
MR - Number of columns to be copied into R.
NA - Number of rows in A.
MA - Number of columns in A.
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
Remarks:
Matrix R cannot be in the same location as matrix A.
Matrix \(R\) is always a general matrix.
Subroutines and function subprograms required: LOC

\section*{Method:}

Matrix \(R\) is formed by copying a portion of matrix A. This is done by extracting NR rows and MR columns of matrix \(A\), starting with element at row L , column K .
```

SURRDIIINE XCPY(A,R,L,K,NR,YR,NA,MA,MS)
MOMENSIONA!1),RIU
IR=0
L22=L+NR-1
on 5 J=K,kz
On 5ITM,LL
l|=IR+1
RIJRI=0.0 elemen for any matrix storage mode
CALL LICII,J,IA,NA,MA,MSI MARIX SHMRGE MNOL
CAL TEST FOP IERD ELEMENT
t+1ra| 4,5,4
4 R(IR)=A|IA:
4 RITRIPAII
5 CONTINUE
RE vuR

```

\section*{RCPY}

\section*{Purpose:}

Copy specified row of a matrix into a vector.

\section*{Usage:}

CALL RCPY (A, L, R, N, M, MS)
Description of parameters:
A - Name of input matrix.
L - Row of A to be moved to R.
R - Name of output vector of length M.
N - Number of rows in A.
M - Number of columns in A.
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.

\section*{Remarks:}

None.

Subroutines and function subprograms required: LOC

Method:
Elements of row \(L\) are moved to corresponding positions of vector \(R\).
```

SBROUTINE RCPYIA,L,R,N,M,MS
DINENSICN A(1),al l)
00 3 J=1,M
locate element for any matrix storage mode
CALL LOCIL.JOLJ,N,M,HSI
TEST FOR LERD ELEMENT IN DIAGONAL MATRIX
IFILJ) 1,2,I
q\mp@code{MVE ELEMENT IOR}
R(J)=A(LJ)
G0 10 3
RIJI=0.0
RFTIJRN
RND

```

CCPY

\section*{Purpose:}

Copy specified column of a matrix into a vector.

Usage:
CALL CCPY(A, L, R,N, M, MS)

Description of parameters:
A - Name of input matrix.
L - Column of A to be moved to R.
R - Name of output vector of length N.
N - Number of rows in A.
M - Number of columns in A.
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.

Remarks:
None.
Subroutines and function subprograms required: LOC

Method:
Elements of column \(L\) are moved to corresponding positions of vector \(R\).
```

SUBROUTINE CCPYIA,L,R,N,N,MS

```
SUBROUTINE CCPYIA,L,R,N,N,MS
DIMENSION AIIT,RIII
DIMENSION AIIT,RIII
DO 3I=1,N
DO 3I=1,N
    CALL LOC(I,L,IL,V,M,MS)
```

 CALL LOC(I,L,IL,V,M,MS)
    ```


```

 jF(IL) 1,2,1
    ```
    jF(IL) 1,2,1
    IF(ILI I.2,1
    IF(ILI I.2,1
1 R(1)=AlIL
1 R(1)=AlIL
G0 TO 3
G0 TO 3
2 RIII=O.D
2 RIII=O.D
2 REII=O.O
2 REII=O.O
    conTIM
    conTIM
eNo
```

eNo

```
```

c

```

\section*{Purpose：}

Copy diagonal elements of a matrix into a vec－ tor．

Usage：
CALL DCPY（A，R，N，MS）
Description of parameters：
A－Name of input matrix．
R－Name of output vector of length N．
N －Number of rows and columns in matrix A．
MS－One digit number for storage mode of matrix A：

0 －General．
1 －Symmetric．
2 －Diagonal．

Remarks：
Input matrix must be a square matrix．

Subroutines and function subprograms required： LOC

Method：
Elements on diagonal of matrix are moved to corresponding positions of vector \(R\) ．
```

 SUBROUTINE OCPY(A,R,N,MS)
 OIMENSION AlII,Rt:I
    ```

C call Locate otagonal elen
C MOVE DTAGONAL ELERENT TO vector r R（J）AAit
RETURA RETUR

SCLA

\section*{Purpose：}

Set each element of a matrix equal to a given scalar．

\section*{Usage：}

CALL SCLA（A，C，N，M，MS）

\section*{Description of parameters：}

A－Name of input matrix．
C－Scalar．
N －Number of rows in matrix A．
M－Number of columns in matrix A．
MS－One digit number for storage mode of matrix A：

0 －General．
1 －Symmetric．
2 －Diagonal．

Remarks：
None．
Subroutines and function subprograms required： LOC

Method：
Each element of matrix A is replaced by Scalar C．

\section*{}

UTMENSION A／1） COMPUTE VECTRR LENGTH，II
c CALL LOCIN．VECTOR IENGTH，I
c CALL REPLACE BY SCALAR

\(1 \begin{gathered}\text { AHIJFC } \\ \text { RETURN }\end{gathered}\)
RETUR
ENO

\section*{DCLA}

\section*{Purpose:}

Set each diagonal element of a matrix equal to a scalar.

Usage:
CALL DCLA (A, C, N, MS)
Description of parameters:
A - Name of input matrix.
C - Scalar.
N - Number of rows and columns in matrixA.
MS - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
Remarks:
Input matrix must be a square matrix.
Subroutines and function subprograms required: LOC

\section*{Method:}

Each element on diagonal of matrix is replaced by scalar C.
```

 SugRDUTINE oCLAIA,C,N,MSI
 SUGROUTINE OCL
 DO 3-1=1;N
CALL LOC,I,I,ID,N,N,MSI
c CALLEPLACE DIAGONAL ELEMENTS
3 ACIDI=C
RETUR

```
                    \(\begin{array}{ll}\text { OCLA } & 1 \\ \text { OCLA } & 2 \\ \text { OCLA } & 3 \\ \text { OCLA } & 4 \\ \text { OCLA } & 5 \\ \text { OCLA } & 6 \\ \text { OCLA } & 7 \\ \text { OCLA } & 8 \\ \text { DCLA } & 9\end{array}\)

MSTR

\section*{Purpose:}

Change storage mode of a matrix.
Usage:
CALL MSTR(A, R, N, MSA, MSR)
Description of parameters:
A - Name of input matrix.
R - Name of output matrix.
N - Number of rows and columns in A and \(R\).
MSA - One digit number for storage mode of matrix A:

0 - General.
1 - Symmetric.
2 - Diagonal.
MSR - Same as MSA except for matrix R.
Remarks:
Matrix \(R\) cannot be in the same location as matrix A.
Matrix A must be a square matrix.
Subroutines and function subprograms required: LOC

Method:
Matrix A is restructured to form matrix \(R\). MSA MSR
\(0 \quad 0 \quad\) Matrix A is moved to matrix R. \(0 \quad 1\) The upper triangle elements of a general matrix are used to form a symmetric matrix.
02 The diagonal elements of a general matrix are used to form a diagonal matrix.
\(10 \quad\) A symmetric matrix is expanded to form a general matrix.
\(1 \quad 1\) Matrix A is moved to matrix R.
12 The diagonal elements of a symmetric matrix are used to form a diagonal matrix.
\(20 \quad\) A diagonal matrix is expanded by inserting missing zero elements to form a general matrix.
21 A diagonal matrix is expanded by inserting missing zero elements to form a symmetric matrix.
22 Matrix A is moved to matrix R.

\section*{MFUN}

\section*{Purpose:}

Apply a function to each element of a matrix to form a resultant matrix.

\section*{Usage:}

CALL MFUN (A, F, R, N, M, MS)
An external statement must precede call statement in order to identify parameter \(F\) as the name of a function.

Description of parameters:
A - Name of input matrix.
F - Name of FORTRAN-furnished or user function subprogram.
\(R\) - Name of output matrix.
N - Number of rows in matrix A and R.
M - Number of columns in matrix A and R.
MS - One digit number for storage mode of matrix \(A\) (and \(R\) ):

0 - General.
1 - Symmetric.
2 - Diagonal.
Remarks:
Precision is dependent upon precision of function used.

Subroutines and function subprograms required: LOC
F (see Description of Parameters)
Method:
Function \(F\) is applied to each element of matrix \(A\) to form matrix R.

\section*{SURROUTINE MFUNIA,F,R,N,M,MSI}

OIMENSIDN A(1), RII
c. COMPUTE VECTOR LENGTH. II
c CALL LISC(N,M,IT,Y,M,MCI
mo \(51=1\), 1 T

5 R\|JFFAB
RFTUR
END

\section*{Function RECP}

\section*{Purpose:}

Calculate reciprocal of an element. This is a FORTRAN function subprogram which may be used as an argument by subroutine MFUN.

\section*{Usage:}

RECP(E)
Description of parameters:
E - Matrix element.

\section*{Remarks:}

Reciprocal of zero is taken to be 1.0E38.
Subroutines and function subprograms required: None.

Method:
Reciprocal of element \(E\) is placed in RECP.
function recplet
BIG=1.OE38
tEST ELEMFNT = or zEhn
IFIE) \(1,2,1\)
1 REC \({ }^{\text {IF }}=1.0 / \mathrm{NON}-1\)
REC \(P=1.0 / E\)
RE TURN
RETF IERO, SET EQUAL TO INFINITY
- RECPOSIGNTBIGEE

RETUR
tND

\section*{Purpose:}

Compute a vector subscript for an element in a matrix of specified storage mode.

Usage:
CALL LOC (I, J, IR, N, M, MS)

Description of parameters:
I - Row number of element.
J - Column number of element.
IR - Resultant vector subscript.
N - Number of rows in matrix.
M - Number of columns in matrix.
MS - One digit number for storage mode of matrix:

0 - General.
1 - Symmetric.
2 - Diagonal.

Remarks:
None.

Subroutines and function subprograms required:
None.

Method:
MS=0 Subscript is computed for a matrix with \(\mathrm{N} * \mathrm{M}\) elements in storage (general matrix).

MS=1 Subscript is computed for a matrix with \(\mathrm{N}^{*}(\mathrm{~N}+1) / 2\) in storage (upper triangle of symmetric matrix). If element is in lower triangular portion, subscript is corresponding element in upper triangle.

MS=2 Subscript is computed for a matrix with N elements in storage (diagonal elements of diagonal matrix). If element is not on diagonal (and therefore not in storage), IR is set to zero.
```

 SUBROUTINE LOC(I,J.IR,N,M,MSI
 lx=1
 jK=J (MS-1, 10,20,30
 10 1RX=N*(Jx-1):1x
60 In 36
0 1F(IX-3x) 22.24,24
22 1RX= (x+{Jx\& Jx-Jx)/2

```

```

 c,0 T0 36
 30 IRX=0
 IF(|x-Jx) 36,32,36
 32 IRX=1X
 36 IR=1Rx
 RETUR
    ```


\section*{Purpose:}

Convert data array from single to double dimension or vice versa. This subroutine is used to link the user program which has double dimension arrays and the SSP subroutines which operate on arrays of data in a vector fashion.

\section*{Usage:}

CALL ARRAY (MODE, I, J, N, M, S, D)

Description of parameters:
MODE - Code indicating type of conversion:
1 - From single to double dimension.
2 - From double to single dimension.
I - Number of rows in actual data matrix.
\(J\) - Number of columns in actual data matrix.
N - Number of rows specified for the matrix \(D\) in dimension statement.
M - Number of columns specified for the matrix D in dimension statement.
\(S\) - If MODE=1, this vector contains, as input, a data matrix of size \(I\) by \(J\) in consecutive locations columnwise. If MODE=2, it contains a data matrix of the same size as output. The length of vector \(S\) is IJ , where \(\mathrm{IJ}=\mathrm{I}^{*} \mathrm{~J}\).
D - If MODE=1, this matrix ( N by M ) contains, as output, a data matrix of size I by J in first I rows and J columns. If MODE=2, it contains a data matrix of the same size as input.

Remarks:
Vector \(S\) can be in the same location as matrix D. Vector \(S\) is referred as a matrix in other SSP routines, since it contains a data matrix. This subroutine converts only general data matrices (storage mode of 0 ).

Subroutines and function subroutines required:
None.

Method:
Refer to the discussion on variable data size in the section describing overall rules for usage in this manual.
```

 guroutine array (mode,l,j,N,M,S,D)
 DIMENSION S(1),0til
 NT*N-I
 c TEST TYPE TF EONVERSION
IFIMODE-1) 100, i00, 120
CONVERT FROM SINGLF TO ODUGLE OIMENSION
*00 1J=1*J*1
lol
NM=NM-N1
No 110 L=1,I
IJ=1J-
110 U1NM)=511J
GO To 140
convert from imuble to simgle dimfnsion
129 1 J=0
O 130 K=1.J
125 L=1,1
l\=1J+1
25 SIIJI=DCNM
25 SHIJIDD(NM
130 NH=NM+N

Mathematics - Integration and Differentiation

QSF

This subroutine performs the integration of an equidistantly tabulated function by Simpson's rule. To compute the vector of integral values:

$$
\left.\begin{array}{l}
z_{i}=z\left(x_{i}\right)=\int_{a}^{x_{i}} y(x) d x \\
\text { with } x_{i}=a+(i-1) h
\end{array}\right\}(i=1,2, \ldots, n)
$$

for a table of function values $y_{i}(i=1,2, \ldots, n)$, given at equidistant points $\mathrm{x}_{\mathrm{i}}=\mathrm{a}+(\mathrm{i}-1) \mathrm{h}$ ($\mathrm{i}=1,2, \ldots, \mathrm{n}$), Simpson's rule together with Newton's $3 / 8$ rule or a combination of these two rules is used. Local truncation error is of the order h^{5} in all cases with more than three points in the given table. Only z has a truncation error of the order h^{4} if there are only three points in the given table. No action takes place if the table consists of less than three sample points.

The function is assumed continuous and differentiable (three or four times, depending on the rule used).

Formulas used in this subroutine (z_{j} are integral values, yj function values) are:

$$
\begin{gather*}
z_{j}=z_{j-1}+\frac{h}{3}\left(1.25 y_{j-1}+2 y_{j}-0.25 y_{j+1}\right) \tag{1}\\
z_{j}=z_{j-2}+\frac{h}{3}\left(y_{j-2}+4 y_{j-1}+y_{j}\right)\left(\begin{array}{c}
\text { Simpson's } \\
\text { rule })
\end{array}\right. \tag{2}\\
z_{j}=z_{j-3}+\frac{3}{8} h\left(y_{j-3}+3 y_{j-2}+3 y_{j-1}+y_{j}\right) \tag{3}\\
\text { (Newton's } 3 / 8 \text { rule) } \\
z_{j}=z_{j-5}+\frac{h}{3}\left(y_{j-5}+3.875 y_{j-4}+2.625 y_{j-3}\right. \\
\left.+2.625 y_{j-2}+3.875 y_{j-1}+y_{j}\right) \tag{4}
\end{gather*}
$$

[combination of (2) and (3)]

Sometimes formula (2) is used in the following form:

$$
\begin{equation*}
z_{j}=z_{j+2}-\frac{h}{3}\left(y_{j}+4 y_{j+1}+y_{j+2}\right) \tag{5}
\end{equation*}
$$

Local truncation errors of formulas (1)...(4) are, respectively:

$$
\begin{aligned}
& R_{1}=\frac{1}{24} h^{4} y^{\prime \prime \prime}\left(\xi_{1}\right) \quad\left(\xi_{1} \epsilon\left[x_{j-1}, x_{j+1}\right]\right) \\
& R_{2}=-\frac{1}{90} h^{5} y^{\prime \prime \prime \prime}\left(\xi_{2}\right) \quad\left(\xi_{2} \epsilon\left[x_{j-2}, x_{j}\right]\right) \\
& R 3=-\frac{3}{80} h^{5} y{ }^{\prime \prime \prime \prime}\left(\xi_{3}\right) \quad\left(\xi_{3} \epsilon\left[x_{j-3}, x_{j}\right]\right) \\
& R_{4}=-\frac{1}{144} h^{5} y^{\prime \prime \prime \prime}\left(\xi_{4}\right) \quad\left(\xi_{4} \epsilon\left[x_{j-5}, x_{j}\right]\right)
\end{aligned}
$$

However, these truncation errors may accumulate. For reference see:
(1) F.B. Hildebrand, Introduction to Numerical Analysis. McGraw-Hill, New York/ Toronto/London, 1956, pp. 71-76.
(2) R. Zurmühl, Praktische Mathematik für Ingenieure und Physiker. Springer, Berlin/ Göttingen/Heidelberg, 1963, pp. 214-221.

Subroutine QSF

Purpose:

To compute the vector of integral values for a given equidistant table of function values.

Usage:
CALL QSF(H, Y, Z,NDIM)
Description of parameters:
H - The increment of argument values.
Y - The input vector of function values.
Z - The resulting vector of integral values. Z may be identical to Y .
NDIM - The dimension of vectors Y and Z .
Remarks:
No action in case NDIM less then 3.
Subroutines and function subprograms required: None

Method:
Beginning with $Z(1)=0$, evaluation of vector Z is done by means of Simpson's rule together with Newton's $3 / 8$ rule or a combination of these two rules. Truncation error is of order $\mathrm{H}^{* * 5}$ (that is, fourth-order method). Only in case NDIM=3 truncation error of $\mathrm{Z}(2)$ is of order $\mathrm{H}^{* *} 4$.

```
    SUGROUTINE OSF(HiY,Z,NOIM
    DIMENSION Y1.1,2111
    HT=.3333333mH
    L4=1
    L2:2
    L5=5
    IFINOIM-517,8,1
    NDIM IS GREATER
    SUMM-SUMI +SUMI
        SUMI=HT*(Y(LI)+SUMI+Y(L))
        AUX)=Y(LG)+Y(L4)
    AUXI=SUM1+HT*(YILYY+AUXI+Y(LS)I
    AUX2=HT*(YILI)+3.875*(Y(L2)+Y(L5))+2.625*(Y(L)3)+Y(L4))+Y(L6)
    SUM2EY(LS)+Y(LS)
    SUM2FSUM2+SUMR2
    SUM2=AUX2-MT*(Y(L4)+SUM2+Y(L6))
    2Cl1=0.
    AUX=Y(L3)+Y(L3)
    AUX=AUX+AUX (L2)=SUM2-HT*(Y(L2)+AUX+Y(L4))
    2(L,3)=5UM
    Z1L4IOSUM2
    IFINDIM-6/5.5:2
    2 DO 4 I=7,NDIM,2
    SUM1- a AUXI
        SUM{&AUXI
        AUXI=Y(1-1)+Y(1-1-1
    AUXl=AUX1+AUX1
        AUX\=SUM{+HT#(Y{I-2)+AUXI+Y!I|)
    2:1-2)=54:41
    MF(1-NDIMI3,6,0
    AUX2=Y(!)+Y(!)
    AUX2aAUX2+AUX2 (!-1)*AUX2+Y(!+1))
    4 2(1-1)=SUM2
    5 \text { Z(NDIM-1)=AUXI}
        Z(NDIMI=AUX?
    ZINDIMI
    6 Z(NOIM-1)aSUMZ
        Z\NDIMI =AUK
    RETURN
        IFINDIM-3112.11:8
        NDIM IS EOUAL TO 4 OR 5
    S SUM2=1,125*HT*(Y(LI)+Y(LZ)+Y(LZ)+Y(LZ)+Y(L3)+Y(L3)+Y(L3)+Y(L4))
        SUM\=Y(L2)+Y(L2)
        SUMb=SHT*(Y(LJ)+SUMl+Y(L3))
        z(L)}=0\mathrm{ . 
        AUXl=Y(LG)+Y(L3)
        AUXI=AUXI +AUX1
        IL2)=SUM2-HT*(Y(L2)+AUX1+Y(L4)
        IFINDIM-5120,9:9
    AUX]=Y(L4)+Y(L4)
        {(L5)=SUM\+HT*(Y(L3)+AUXl+Y(L5)
    O 2(L3)aSUMI
        2(64)=SUM2
        RETURN
        RETURN
    11SUM1*HT*(1.25*Y(L')+Y(L2)+Y(LZ)-.25*Y(L)
    SUM2=Y(LZ)+Y(L2)
    SUM2=SUM2+SUM2
    Z(L3)=HT*IY(LI)+SUM2+Y(L3))
    2LLI=00*
    12 RETURN
```

This subroutine performs the integration of a given function by the trapezoidal rule together with Romberg's extrapolation method in order to compute an approximation for:

$$
\begin{equation*}
y=\int_{a}^{b} f(x) d x \tag{1}
\end{equation*}
$$

Successively dividing the interval [a,b]into 2^{i} equidistant subintervals ($i=0,1,2, \ldots$) and using the following notations:

$$
\begin{aligned}
& h_{i}=\frac{b-a}{2^{i}} ; x_{i, k}=a+k \cdot h_{i}, f_{i, k}=f\left(x_{i, k}\right) \\
& \quad\left(k=0,1,2, \ldots, 2^{i}\right)
\end{aligned}
$$

the trapezoidal rule gives approximations $\mathrm{T}_{\mathrm{O}, \mathrm{i}}$ to the integral value y :

$$
\begin{equation*}
T_{o, i}=h_{i}\left\{\sum_{k=0}^{2^{i}} f_{i, k}-\frac{1}{2}(f(a)+f(b))\right\} \tag{2}
\end{equation*}
$$

Then the following can be written:

$$
T_{o, i}=y+\sum_{r=1}^{\infty} c_{o, 2 r} \cdot h_{i}^{2 r}
$$

with unknown coefficients $C_{0,2 r}$ which do not depend on i. Thus there is a truncation error of the order h_{1}^{2}.

Knowing two successive approximations, $\mathrm{T}_{\mathbf{O}, \mathrm{i}}$ and $\mathrm{T}_{0, i+1}$, an extrapolated value can be generated:

$$
\begin{equation*}
T_{1, i}=T_{0, i+1}+\frac{T_{0, i+1}-T_{0, i}}{2^{2}-1} \tag{3}
\end{equation*}
$$

This is a better approximation to y because:

$$
T_{1, i}=y+\frac{1}{2^{2}-1} \sum_{r=1}^{\infty} C_{o, 2 r}\left(2^{2} h_{i+1}^{2 r}-h_{i}^{2 r}\right)
$$

Noting that $2^{2} h_{i+1}^{2}-h_{i}^{2}=0$ and setting:

$$
C_{1,2 r}=\frac{1}{2^{2}-1}\left(2^{2}-2^{2 r}\right) \cdot C_{0,2 r}
$$

$T_{1, i}$ becomes:

$$
T_{1, i}=y+\sum_{r=2}^{\infty} c_{1,2 r} h_{i+1}^{2 r}
$$

This gives a truncation error of the order h_{i+1}^{4}.

Knowing $\mathrm{T}_{\mathrm{O}}, \mathrm{i}+2$ also, $\mathrm{T}_{1, \mathrm{i}+1}$ can be generated (formula 3), and:

$$
\begin{equation*}
\mathrm{T}_{2, \mathrm{i}}=\mathrm{T}_{1, \mathrm{i}+1}+\frac{\mathrm{T}_{1, \mathrm{i}+1}-\mathrm{T}_{1, \mathrm{i}}}{2^{4}-1} \tag{4}
\end{equation*}
$$

Thus:

$$
\begin{array}{r}
T_{2, i}=y+\sum_{r=3}^{\infty} c_{2,2 r} \cdot h_{i+2}^{2 r} \\
\text { with } C_{2,2 r}=\frac{1}{2^{4}-1}\left(2^{4}-2^{2 r}\right) C_{1,2 r}
\end{array}
$$

with a truncation error of the order $\mathrm{h}_{\mathrm{i}+2}^{6}$. Observe that the order of truncation error increases by 2 at each new extrapolation step.

The subroutine uses the scheme shown in the figure below for computation of T -values and
generates the upward diagonal in the one-dimensional storage array AUX, using the general formula:
$T_{k, j}=T_{k-1, j+1}+\frac{T_{k-1, j+1}-T_{k-1, j}}{2^{2 k}-1}(k+j=i$,

$$
\begin{equation*}
\mathrm{j}=\mathrm{i}-1, \mathrm{i}-2, \ldots, 2,1,0) \tag{5}
\end{equation*}
$$

and storing:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{o}, \mathrm{i}} \text { into AUX (i+1) } \\
& \mathrm{T}_{1, \mathrm{i}-1} \text { into AUX (i) } \\
& \mathrm{T}_{\mathrm{k}, 0} \text { into AUX (1) }
\end{aligned}
$$

Truncation error	$O\left(h_{i}^{2}\right)$	$O\left(h_{i}^{4}\right)$	$O\left(h_{i}^{6}\right)$	$O\left(h_{i}^{8}\right) \ldots$	
step length h_{i}	j	0	1	2	$3 \ldots$
$b-a$	0	$T_{0,0}$	$T_{1,0}$	$T_{2,0}$	$T_{3,0} \ldots$
$\frac{b-a}{2}$	1	$T_{0,1}$	$T_{1,1}$	$T_{2,1}$	\vdots
$\frac{b-a}{4}$	2	$T_{0,2}$	$T_{1,2}$	\vdots	
$\frac{b-a}{8}$	3	$T_{0,3}$	\vdots		
\vdots	\vdots	\vdots			

Computation of T-values (QATR)
The procedure stops if the difference between two successive values of AUX (1) is less than a given tolerance, or if the values of AUX (1) start oscillating, thus showing the influence of rounding errors.

Subroutine QATR

Purpose:

To compute an approximation for integral ($\mathrm{FCT}(\mathrm{X}$), summed over X from XL to XU).

```
Usage:
    CALL QATR(XL, XU, EPS, NDIM, FCT, Y, IER,
    AUX) Parameter FCT required an EXTERNAL
    statement.
Description of parameters:
    XL - The lower bound of the interval.
    XU - The upper bound of the interval.
    EPS - The upper bound of the absolute error.
```

NDIM - The dimension of the auxiliary storage array AUX. NDIM-1 is the maximal number of bisections of the interval (XL, XU).
FCT - The name of the external function subprogram used.
Y - The resulting approximation for the integral value.
IER - A resulting error parameter.
AUX - An auxiliary storage array with dimension NDIM.
Remarks:
Error parameter IER is coded in the following form:
IER=0 - It was possible to reach the required accuracy. No error.
$I E R=1$ - It is impossible to reach the required accuracy because of rounding errors.
IER=2 - It was impossible to check accuracy because NDIM is less than 5 , or the required accuracy could not be reached within NDIM-1 steps. NDIM should be increased.

Subroutines and function subprograms required: The external function subprogram FCT(X) must be coded by the user. Its argument X should not be destroyed.

Method:
Evaluation of Y is done by means of the trapezoidal rule in connection with Romberg's principle. On return Y contains the best possible approximation of the integral value and vector AUX the upward diagonal of the Romberg scheme. Components AUX(I) ($\mathrm{I}=1,2, \ldots$, IEND, with IEND less than or equal to NDIM) become approximation to the integral value with decreasing accuracy by multiplication by (XU-XL).

For reference see:

1. Filippi, Das Verfahren von Romberg-Stiefel-Bauer als Spezialfall des Allgemeinen Prinzips von Richardson, Mathematik-Technik-Wirtschaft, Vol. 11, Iss. 2 (1964), pp. 49-54.
2. Bauer, Algorithm 60, CACM, Vol, 4, Iss. 6 (1961), pp. 255.
```
SUBROUTINE OATRIXL,XU,EPS,NDIM,FCT,Y,IER,AUX
DIMENSION AUX(1)
    OIMENSION AUX(1)
    AUx(1)=.5
        IF(NDIM-1)A.B.1
    IF(NDIM-1)A
C \ NDIM IS GREATER than 1 AND H is not equal to O.
    HHEH
    DELT2=0.
    DELT2*
    JJ=$1=2,NDIM
    Y&AUX(1)
    OELTA=DEL
    MH=0,5*HH
    O=,5*P
    lol
```


Mathematics - Ordinary Differential Equations

RK1

This subroutine integrates a given function using the Runge-Kutta technique and produces the final computed value of the integral.

The ordinary differential equation:

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) \tag{1}
\end{equation*}
$$

with initial condition $y\left(x_{0}\right)=y_{0}$ is solved numerically using a fourth-order Runge-Kutta integration process. This is a single-step method in which the value of y at $x=x_{n}$ is used to compute $y_{n+1}=$ $y\left(x_{n+1}\right)$ and earlier values y_{n-1}, y_{n-2}, etc., are not used.

The relevant formulae are:

$$
\begin{equation*}
\mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}}+1 / 6\left[\mathrm{k}_{0}+2 \mathrm{k}_{1}+2 \mathrm{k}_{2}+\mathrm{k}_{3}\right] \tag{2}
\end{equation*}
$$

where we define, for step size h

$$
\left\{\begin{array}{l}
k_{0}=h f\left(x_{n}, y_{n}\right) \\
k_{1}=h f\left(x_{n}+h / 2, y_{n}+k_{0} / 2\right) \\
k_{2}=h f\left(x_{n}+h / 2, y_{n}+k_{1} / 2\right) \\
k_{3}=h f\left(x_{n}+h, y_{n}+k_{2}\right)
\end{array}\right.
$$

Subroutine RK1

[^1]Description of parameters:
FUN - User-supplied function subprogram with arguments X, Y which gives DY/DX.
HI - The step size.
XI - Initial value of X.
YI - Initial value of Y where $\mathrm{YI}=\mathrm{Y}(\mathrm{XI})$.
XF - Final value of X.
YF - Final value of Y.
ANSX - Resultant final value of \mathbf{X}.
ANSY - Resultant final value of Y. Either ANSX will equal XF or ANSY will equal YF depending on which is reached first.
IER - Error code:
IER=0 No error. IER=1 Step size is zero.

Remarks:
If XI is greater than $\mathrm{XF}, \mathrm{ANSX}=\mathrm{XI}$ and ANSY=YI.
If H is zero, IER is set to one, ANSX is set to XI, and ANSY is set to zero.

Subroutines and function subprograms required: FUN is a two argument function subprogram furnished by the user: $D Y / D X=F U N(X, Y)$. Calling program must have FORTRAN external statement containing names of function subprograms listed in call to RK1.

Method:
Uses fourth-order Runge-Kutta integration process on a recursive basis as shown in F. B.
Hildebrand, 'Introduction to Numerical Analysis', McGraw-Hill, 1956. Process is terminated and final value adjusted when either XF or YF is reached.

```
SUBHOUTINE RKIIFUN,HI,XI,YI,XF,YF,ANSX,ANSY,IERI
        IF XF IS LESS THAN OR EQUAL TO XI, RETURN XI,YI AS ANSWER
        |(xF-x[1) 11,11,12
    11 ANSX=x1
        lansyayt
    C 12 MaHt
    12\MyH|
    44 IER=1
        ANSY=0.0
        MNSPO.0
    16 Hz-H!
    SEt XN=INITIAL X,YN=INITIAL Y
    OO
        integrate une time step
        MNENOH
        MUMP:I
    xNI=xx
        COMPARE XNL {=x(N+1)) th x FINAL aNO branch accorDIvGLY
        C IFIXNI-XFISO, 30,4% XNI=XF, RETURY IXF,YNII AS ANSNER!
        ANSX=XF
            ANSYYN1
                xNl greafer than xf, set nen step size and intforitite onf step
            refurn results of intfgration as answer
        HNENaXF-XM
        GO TO 170
    45 GOSTOXX
        MANSY=YY
            XNL LESS THAN X FINAL, CHECK IF IYN,YNI) SPAN Y FINAL
    50 IF(IYNI-YF)*IYF-YNII60.70.117
```



```
    MN=XNL
```



```
    On IFTYM(-YF)OO,1OO, RO
        A% ANSY=NM
        CNSN=XH
    100 ANSY=YN1
        ANSK=RNI
    ON ANO YM
C }40\mathrm{ do ando ymí span yf. try to fino x valuf assmciatfo with vf
c colinterpoiate is find nentime step ano intf:rate onf stfo
            TRY TEN INTERODLATHONS AT NIST
        HNEN=1(YF-YN )/YNL-YNHO(XNI-XN)
        JIMP=3
    115 XNEWHXX
        MNEM=YY
        compafe computed r value nith yf and hranch
        IFIYNEW-YE/120.150.130
    madvance, yf is getuen ynely and ynl
    MM=YNEW
    <NOM TO 140
c go avanc, yf is betwfen yn ano ynew
    130 YNLPYNEN
    <MN2XNEL
C 140 ZETURN (XNFW,YF! AS ANSWER
150 ANSX=XYEW
160 ANST=YN
170 M? =HNFW/2.0
    TI=HNE:#FUN(XN, YN)
        T2ZHNEM*FUN(XNO+12,YN+T1/7.01
        T3 =HNEW*FUNI XN+H2,YN+T2/2.01
        T4PHNE W*FUNI XN+HE EW,YN+T Si
        YY=YN+TIT+2.0*T 2+2.0*T3+T41/6.0
    XX=XN*HNEM
    Gח TO (25,45,115), Jump
    ENO
```


RK2

This subroutine integrates a given function using the Runge-Kutta technique and produces tabulated values of the computed integral.

The ordinary differential equation:

$$
\begin{equation*}
\frac{d y}{d x}=f(x, y) \tag{1}
\end{equation*}
$$

with initial condition $y\left(x_{0}\right)=y_{0}$ is solved numerically using a fourth-order Runge-Kutta integration process. This is a single-step method in which the value of y at $x=x_{n}$ is used to compute $y_{n+1}=$ $\mathrm{y}\left(\mathrm{x}_{\mathrm{n}+1}\right)$ and earlier values $\mathrm{y}_{\mathrm{n}-1}, \mathrm{y}_{\mathrm{n}-2}$, etc., are not used.

The relevant formulae are:

$$
\begin{equation*}
\mathrm{y}_{\mathrm{n}+1}=\mathrm{y}_{\mathrm{n}}+1 / 6\left[\mathrm{k}_{0}+2 \mathrm{k}_{1}+2 \mathrm{k}_{2}+\mathrm{k}_{3}\right] \tag{2}
\end{equation*}
$$

where we define, for step size h

$$
\left\{\begin{array}{l}
k_{0}=h f\left(x_{n}, y_{n}\right) \tag{3}\\
k_{1}=h f\left(x_{n}+h / 2, y_{n}+k_{0} / 2\right) \\
k_{2}=h f\left(x_{n}+h / 2, y_{n}+k_{1} / 2\right) \\
k_{3}=h f\left(x_{n}+h, y_{n}+k_{2}\right)
\end{array}\right.
$$

Subroutine RK2

Purpose:

Integrates a first-order differential equation $D Y / D X=F U N(X, Y)$ and produces a table of integrated values.

Usage:
CALL RK2(FUN, H, XI, YI, K, N, VEC)
Description of parameters:
FUN - User-supplied function subprogram with arguments X, Y which gives DY/DX.
H - Step size.
XI - Initial value of X.
YI - Initial value of Y where $\mathrm{YI}=\mathrm{Y}(\mathrm{XI})$.
K - The interval at which computed values are to be stored.
$\mathrm{N} \quad$ - The number of values to be stored.
VEC - The resultant vector of length N in which computed values of Y are to be stored.

Remarks:
None.

Subroutines and function subprograms required:
FUN - User-supplied function subprogram for DY/DX.
Calling program must have FORTRAN EXTERNAL statement containing names of function subprograms listed in call to RK2.

Method:
Fourth-order Runge-Kutta integration on a recursive basis as shown in F. B. Hildebrand, 'Introduction to Numerical Analysis', McGrawHill, New York, 1956.

```
SUBROUTINE RKRIFJN,H,XI,YI,K,N,VEG
DIMFNSIGN VECIII
M=2=4%2.
Y=YI
00 2 t=1,N
low
TI=HOFUNIX,Y)
[7=H0FUNIX+H2,Y+TUR2.1
    T3=HAFUN(X+H2,YOT2/2.)
    Y= YO1T1*7.*F2+2.*13+T41/0.
1 X X X + + 
```



```
    RFTUR
```


RKGS

This subroutine uses the Runge-Kutta method for the solution of initial-value problems.

The purpose of the Runge-Kutta method is to obtain an approximate solution of a system of firstorder ordinary differential equations with given initial values. It is a fourth-order integration procedure which is stable and self-starting; that is, only the functional values at a single previous point are required to obtain the functional values ahead. For this reason it is easy to change the step size h at any step in the calculations. On the other hand, each Runge-Kutta step requires the evaluation of the right-hand side of the system four times, which is a great disadvantage compared with other methods of the same order of accuracy, especially predictorcorrector methods. Another disadvantage of the method is that neither the truncation errors nor estimates of them are obtained in the calculation procedure. Therefore, control of accuracy and adjustment of the step size h is done by comparison of the results due to double and single step size 2 h and h.

Given the system of first-order ordinary differential equations:

$$
\begin{aligned}
& y_{1}^{\prime}=\frac{d y_{1}}{d x}=f_{1}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
& y_{2}^{\prime}=\frac{d y_{2}}{d x}=f_{2}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right) \\
& \ldots \ldots \ldots \ldots \\
& y_{n}^{\prime}=\frac{d y_{n}}{d x}=f_{n}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right)
\end{aligned}
$$

and the initial values:

$$
\mathrm{y}_{1}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{1,0}, \mathrm{y}_{2}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{2,0}, \cdots, \mathrm{y}_{\mathrm{n}}\left(\mathrm{x}_{0}\right)=\mathrm{y}_{\mathrm{n}, 0}
$$

and using the following vector notations:
$Y(x)=\left(\begin{array}{c}y_{1}(x) \\ y_{2}(x) \\ \bullet \\ \bullet \\ \bullet \\ y_{n}(x)\end{array}\right), F(x, Y)=\left(\begin{array}{c}f_{1}(x, Y) \\ f_{2}(x, Y) \\ \bullet \\ \bullet \\ \bullet \\ f_{n}(x, Y)\end{array}\right), Y_{0}=\left(\begin{array}{c}y_{1,0} \\ y_{2,0} \\ \bullet \\ \bullet \\ \bullet \\ y_{n, 0}\end{array}\right)$
where Y, F and Y_{0} are column vectors, the given problem appears as follows:

$$
Y^{\prime}=\frac{d Y}{d x}=F(x, Y) \text { with } Y\left(x_{0}\right)=Y_{0}
$$

With respect to storage requirements and compensation of accumulated roundoff errors, Gill's modification of the classical Runge-Kutta formulas is preferred. Thus, starting at x_{0} with $Y\left(x_{0}\right)=Y_{0}$ and vector $\mathrm{Q}_{0}=0$, the resulting vector $\mathrm{Y} 4=\mathrm{Y}\left(\mathrm{x}_{0}+\mathrm{h}\right)$ is computed by the following formulas:

$$
\begin{align*}
& \mathrm{K}_{1}=\mathrm{hF}\left(\mathrm{x}_{0}, \mathrm{Y}_{0}\right) \quad ; \mathrm{Y}_{1}=\mathrm{Y}_{0}+\frac{1}{2}\left(\mathrm{~K}_{1}-2 \mathrm{Q}_{0}\right) \\
& \mathrm{Q}_{1}=\mathrm{Q}_{0}+3\left[\frac{1}{2}\left(\mathrm{~K}_{1}-2 \mathrm{Q}_{0}\right)\right]-\frac{1}{2} \mathrm{~K}_{1} \\
& \mathrm{~K}_{2}=\mathrm{hF}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{Y}_{1}\right) ; \mathrm{Y}_{2}=\mathrm{Y}_{1}+\left(1-\sqrt{\frac{1}{2}}\right)\left(\mathrm{K}_{2}-\mathrm{Q}_{1}\right) \\
& \mathrm{Q}_{2}=\mathrm{Q}_{1}+3\left[\left(1-\sqrt{\frac{1}{2}}\right)\left(\mathrm{K}_{2}-\mathrm{Q}_{1}\right)\right]-\left(1-\sqrt{\frac{1}{2}}\right) \mathrm{K}_{2} \\
& \mathrm{~K}_{3}=\mathrm{hF}\left(\mathrm{x}_{0}+\frac{\mathrm{h}}{2}, \mathrm{Y}_{2}\right) ; \mathrm{Y}_{3}=\mathrm{Y}_{2}+\left(1+\sqrt{\frac{1}{2}}\right)\left(\mathrm{K}_{3}-\mathrm{Q}_{2}\right) \tag{1}\\
& \mathrm{Q}_{3}=\mathrm{Q}_{2}+3\left[\left(1+\sqrt{\left.\left.\frac{1}{2}\right)\left(\mathrm{~K}_{3}-Q_{2}\right)\right]-\left(1+\sqrt{\frac{1}{2}}\right) \mathrm{K}_{3}}\right.\right. \\
& \mathrm{K}_{4}=\mathrm{hF}\left(\mathrm{x}_{0}+\mathrm{h}, \mathrm{Y}_{3}\right) ; \mathrm{Y}_{4}=\mathrm{Y}_{3}+\frac{1}{6}\left(\mathrm{~K}_{4}-2 \mathrm{Q}_{3}\right) \\
& \mathrm{Q}_{4}=\mathrm{Q}_{3}+3\left[\frac{1}{6}\left(\mathrm{~K}_{4}-2 \mathrm{Q}_{3}\right)\right]-\frac{1}{2} \mathrm{~K}_{4}
\end{align*}
$$

where $K_{1}, K_{2}, K_{3}, K_{4}, Y_{1}, Y_{2}, Y_{3}, Y_{4}, Q_{1}, Q_{2}$, Q_{3}, Q_{4} are all column vectors with n components. If the procedure were carried out with infinite precision (that is, no rounding errors), vector Q4 defined above would be zero. In practice this is not true, and Q_{4} represents approximately three times the roundoff error in Y_{4} accumulated during one step. To compensate for this accumulated roundoff, Q_{4} is used as Q_{0} for the next step. Also $\left(x_{0}+h\right)$ and Y_{4} serve as x_{0} and Y_{0} respectively at the next step.

For initial control of accuracy, an approximation for $Y\left(x_{0}+2 h\right)$ called $Y(2)\left(x_{0}+2 h\right)$ is computedusing the step size 2 h , and then an approximation called $Y(1)\left(x_{0}+2 h\right)$, using two times the step size h. From these two approximations, a test value δ for accuracy is generated in the following way:

$$
\begin{equation*}
\delta=\frac{1}{15} \sum_{i=1}^{n} a_{i} \cdot\left|y_{i}^{(1)}-y_{i}^{(2)}\right| \tag{2}
\end{equation*}
$$

where the coefficients ai are error-weights specified in the input of the procedure.

Test value δ is an approximate measure for the local truncation error at point $\mathrm{x}_{0}+2 \mathrm{~h}$. If δ is greater than a given tolerance ${ }^{\epsilon} 2$, increment h is halved and the procedure starts again at the point x_{0}. If δ is less than ϵ_{2}, the results $\mathrm{Y}(1)\left(\mathrm{x}_{0}+\mathrm{h}\right)$ and $\mathrm{Y}(1)\left(\mathrm{x}_{0}+2 \mathrm{~h}\right)$
are assumed to be correct. They are then handed, together with $x_{0}+h$ and $x_{0}+2 h$ and the derivatives at these points -- that is, the values of $F\left[x_{0}+h\right.$, $\left.\mathrm{Y}^{(1)}\left(\mathrm{x}_{0}+\mathrm{h}\right)\right]$ and $\mathrm{F}\left[\mathrm{x}_{0}+2 \mathrm{~h}, \mathrm{Y}(1)\left(\mathrm{x}_{0}+2 \mathrm{~h}\right)\right]$ respectively -- to a user-supplied output subroutine.

If δ is less than $\epsilon_{1}=\epsilon_{2} / 50$, the next step is carried out with the doubled increment. However, care is taken in the procedure that the increment never becomes greater than the increment h specified as an input parameter, and further that all points $\mathrm{x}_{0}+\mathrm{jh}$ (where $\mathrm{j}=1,2, \ldots$) which are situated between the lower and upper bound of the integration interval are included in the output. Finally, the increment of the last step of the procedure is chosen in such a way that the upper bound of the integration interval is reached exactly.

The entire input of the procedure is:

1. Lower and upper bound of the integration interval, initial increment of the independent variable, upper bound ϵ_{2} of the local truncation error.
2. Initial values of the dependent variables and weights for the local truncation errors in each component of the dependent variables.
3. The number of differential equations in the system.
4. As external subroutine subprograms, the computation of the right-hand side of the system of differential equations; for flexibility in output, an output subroutine.
5. An auxiliary storage array named AUX with 8 rows and n columns.

Output is done in the following way. If a set of approximations to the dependent variables $\mathrm{Y}(\mathrm{x})$ is found to be of sufficient accuracy, it is handed -together with x , the derivative $\mathrm{F}[\mathrm{x}, \mathrm{Y}(\mathrm{x})]$, the number of bisections of the initial increment, the number of differential equations, the lower and upper bound of the interval, the initial step size, error bound ϵ_{2}, and a parameter for terminating subroutine RKGS -- to the output subroutine. Because of this output subroutine, the user has the opportunity to choose his own output format, to handle the output values as he wants, to change the upper error bound, and to terminate subroutine RKGS at any output point. In particular, the user is able to drop the output of some intermediate points, printing only the result values at the special points $\mathrm{x}_{0}+\mathrm{nh}(\mathrm{n}=0,1,2, \ldots)$. The user may also perform intermediate computation using the integration results before continuing the process.

For better understanding of the flowchart and of the FORTRAN program, the following figure shows the allocation of special intermediate result vectors within the storage array AUX.

For reference see A. Ralston/H. S. Wilf, Mathematical Methods for Digital Computers, Wiley, New York/London, 1960, pp. 110-120.

AUX

function vector $Y(x)$	1. row (AUX (1) in flowchart)
derivative vector $F(x, Y(x)$)	2. row (AUX (2) in flowchart)
vector of accumulated roundoff at point x	3. row (AUX (3) in flowchart)
function vector $Y(x+2 h)$ for testing purposes	4. row (AUX (4) in flowchart)
function vector $Y(x+h)$	5. row (AUX (5) in flowchart)
vector of accumulated roundoff at point $x+h$	6. row (AUX (6) in flowchart)
derivative vector $F(x+h, Y(x+h))$	7. row (AUX (7) in flowehart)
vector of error weights multiplied by $1 / 15$	8. row (AUX (8) in flowchart)

Storage allocation in auxiliary storage array AUX (RKGS)

Subroutine RKGS

Purpose:

To solve a system of first-order ordinary differential equations with given initial values.

Usage:
CALL RKGS(PRMT, Y, DERY, NDIM, IHLF, FCT, OUTP, AUX) Parameters FCT and OUTP require an external statement.

Description of parameters:
PRMT - An input and output vector with dimension greater than or equal to 5 , which specifies the parameters of the interval and of accuracy and which serves for communication between the output subroutine (furnished by the user) and subroutine RKGS. Except for PRMT(5), the components are not destroyed by subroutine RKGS and they are:
PRMT(1) - Lower bound of the interval (input).
PRMT(2) - Upper bound of the interval (input).
PRMT(3) - Initial increment of the independent variable (input).
PRMT(4) - Upper error bound (input). If absolute error is greater than PRMT(4), the increment gets halved. If the increment is less than PRMTT(3) and absolute error less than PRMT(4)/50, the increment gets doubled. The user may change PRMT(4) in his output subroutine.

P	No input parameter. Subroutine RKGS initializes PRMT(5)=0. If the user wants to terminate subroutine RKGS at any output point, he must change PRMT(5) to nonzero in subroutine OUTP. Further components of vector PRMT can be made available if its dimension is defined greater than 5. However subroutine RKGS does not require this. Nevertheless, they may be useful for handling result values to the main program (calling RKGS) which are obtained by special manipulations with output data in subroutine OUTP.
Y	- Input vector of initial values (destroyed). On return, Y is the resultant vector of dependent variables computed at intermediate points X .
DERY	- Input vector of error weights (destroyed). The sum of its components must equal 1. On return, DERY is the vector of derivatives of function values Y at points X .
NDIM	- An input value which specifies the number of equations in the system.
IHLF	- An output value which specifies the number of bisections of the initial increment. When IHLF is greater than 10, subroutine RKGS exits to the main program with error message $\mathrm{IHLF}=11$. Other error messages are: IHLF=12; $\operatorname{PRMT}(3)=0$ or PRMT(1)=PRMT(2) IHLF=13; SIGN(PRMT(3)) is not equal to SIGN(PRMT(2)-PRMT (1)).
FCT	- The name of the external subroutine used. This subroutine computes the right-hand side, DERY, of the system for given values X and Y. Its parameter list must be $\mathrm{X}, \mathrm{Y}, \mathrm{DERY}$. Subroutine FCT should not destroy X and Y .
OUTP	- The name of the external output subroutine used. Its parameter list must be $\mathrm{X}, \mathrm{Y}, \mathrm{DERY}$, IHLF, NDIM, PRMT. None of these parameters (except, if necessary, PRMT(4), PRMT(5),...) should be changed by subroutine OUTP. If PRMT(5) is changed to nonzero, subroutine RKGS is terminated.
AUX	- An auxiliary storage array with 8 rows and NDIM columns.

RKGS initializes PRMT(5)=0. If the user wants to terminate subroutine RKGS at any output point, he must change PRMT(5) to nonzero in subroutine OUTP. Further components of vector PRMT can be made availble if dimension is defined than 5 . theless, they may be useful for handling result values to the main program (calling RKGS) which are obtained by special manipulations with output data in subroutine OUTP. (destroyed). On return, Y is the resultant vector of dependent variables computed at intermediate points X. (destroyed). The sum of its components must equal 1. On return, of function values Y at points X . An input value which specifles the An output value which specifies the number of bisections of the initial increment. When IHLF is greater than 10, subroutine RKGS exits to the main program with error message $\mathrm{IHLF}=11$. Other error mesIHLF=12; $\operatorname{PRMT}(3)=0$ or PRMT(1)=PRMT(2) HLF=13; SIGN(PRMT(3)) is not equal to SIGN(PRMT(2)-PRMT (1)). used. This subroutine computes the right-hand side, DERY, of the sysparameter list must be $X, Y, D E R Y$. Subroutine FCT should not destroy X and Y . routine used. Its parameter list must be X, Y, DERY, IHLF, NDIM, (except, if necessary, PRMT(4), PRMT(5), . .) should be changed by subroutine OUTP. If PRMT(5) is changed to nonzero, subroutine RKGS is terminated. rows and NDIM columns.

Remarks:

The procedure terminates and returns to the calling program, if

1. More than 10 bisections of the initial increment are necessary to get satisfactory accuracy (error message IHLF=11).
2. The initial increment is equal to 0 or has the wrong sign (error messages IHLF=12 or IHL $F=13$).
3. The integration interval is exhausted.
4. Subroutine OUTP has changed PRMT(5) to nonzero.

Subroutines and function subprograms required: The external subroutines FCT(X, Y, DERY) and OUTP (X, Y, DERY, IHLF , NDIM, PRMT) must be furnished by the user.

Method:
Evaluation is done by means of fourth-order Runge-Kutta formulae using the modification due to Gill. Accuracy is tested comparing the results of the procedure with the increment.

Subroutine RKGS automatically adjusts the increment during the whole computation by halving or doubling. If more than 10 bisections of the increment are necessary to get satisfactory accuracy, the subroutine returns with error message $\mathrm{IHLF}=11$ to the main program.

To get full flexibility in output, an output subroutine must be furnished by the user.

```
    SUBROUTINE RKGS(PRMT,Y,DERY,NDIM,IRLF;F(T,OUTP;AUX)
    DOLIEI~NDIM
    AUX(8,1)=.06666667*DERY(I)
        x=0q4T11
        F=ND=PRMT(2)
        M=PRMT(3)
        CALL FCT(X,Y,DERY)
        ERROR TEST
        FRTHP(XEND-X1)38.37.?
            2 PREPARATIONS 
            A(2)=02920932
            A(3)=1.707107
            A14)=.1666667
            8(2)=1.
            |(3)=10
            8(4)=2.
            C(2)=:2928932
            C(3)=1.707107
C(14)=.5
            DO 3 I=I:NDIM
            AUX(2,I)=DERY(I)
            AUX(2,1)=2ERY
            3 Aux (6;T)=0.
            MREC=0
            M=N+N
            ISTFD-1
            IEND=0
            START OF A RUNGE-KUTTA STEP
            4 IFI(X+M-XEND)*H)7:6.5
            4 TF11X+H-X 
            RECOPDING OF INITIAL VALUES OF THIS STEP
            CALL OUTPIX,Y,DERY,IREC:NOIM,PRMT)
            IFIPGMTIS|\40.8,40
            & ITESTaC
            ISTEP=1STED+I
            c
            10. AJFA(J)
        BJ=B(J)
    00 11 ImI.NDIM
```

```
        R!=H*DFRY(I)
        R2#AJWIRI-8)
        R(1)=Y(R2+R2
    11 AUX(S.1)=AU\times(6,1)+R2-CJ*R1
        IF(J-4)12,15,15
    1F(J-3)
    x=x+.5*H
    CALL FCTIX:Y:DERY
        GND OF INNERMOST RUNGE-XUTTA LOOP
        FESTTOF ACCURACY
    15 1F(ITESTI:6.16.20
    I5 IN CASF ITFST=0 THERE IS NO POSSIBILITY FOR TESTING OF aCCURACY
    16 DO 17 I=1:ND:M
        AUX(4.II=Y(!)
        ISTEP=1STED+ISTEP-2
    18
        \MLFa{HLF+1
        H*.5*H
        D0 19 I=1,NDIM
        Mo l9 l=1,ND!M
        MERY(1)=AUX(2,1)
    C IN CASE ITEST=1 TESTING OF ACCURACY IS pOSSIQLE
        IF\ISTEP=IMOD-IMOD121,73.2I
    CALL ECTIX,Y,DERY
        CO22 1=1;ND!
        AUX(5,1)=Y(1)
        AUX(7,II=DERY(I)
        gotog
        l
        NO 24 I=1*NDIM (%)
        DELT=DELT+A*T(B,1)2R.2B.25
        IF(OELT-PRUT(4)12H.
    \ ERROR IS TOO GREAT
    25 1F11HLF-10326.3
        AUX14,1:=AUX(5,11
        MSEPG1STED+1STEP-4
        M=X-H
        IEND=0
        GOTO 18
    28 CALL FCT(X,Y,DERY)
        AUX(1,!)=Y(1)
        AUX(2,1)=DERY(1)
        AUX(3:W=AUX(6.
        M\I!日AUXIS.11
    29 DERY(I)PAUX(T,I)
    DERY(I)DAUX(T,I)
        IF(PRMT(5)140,30.40
    DO 31 {=1;ND!"
        M(1)=AUX{1,1)
        DERY(IIGAL
        IREC=1HLF
        INCREMENT GETS DOURLED
    32 IHLF=IHLF-1
        IHLF=IHLF-1 
        H= ++H
            IF(IHLF)4,33,33
    3 NOD=1STEP/2
    IF11STEP-1NOD-1M0014,34,4
    34 IFIOELT-.02*PRMT/41135,35*4
            LTFOELT-:02*P
        MS
        GOTO
        RETURNS TO CALLING PROGRAM
    METURNS TO CALLING
    36 1HLF=11 (X,Y,OERY)
        COTO 39
        7 1HLF=12
    38 1HLF=13
    38 1HLF:13 OUTO(X,Y,OERY,1HLF,NDIM,PRMT)
    M RETUR
C END OF INNERMOST RUNGE-KUTTA LOOP
            MMOD=ISTED/2
        CO 22 1=1,NDIM
        DO 29 I=1.NDIM
        \M5EP=1
Mathematics - Fourier Analysis
```


FORIF

This subroutine produces the Fourier coefficients for a given periodic function.

Given: 1. A function $f(x)$ for values of x between 0 and 2π
2. N - the spacing desired such that the interval is $2 \pi /(2 N+1)$
3. M - the desired order of the Fourier coefficients, $0 \leq \mathrm{M} \leq \mathrm{N}$.

The coefficients of the Fourier series that approximate the given function are calculated as follows:

$$
\begin{equation*}
C_{1}=\cos \left(\frac{2 \pi}{2 N+1}\right) \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{S}_{1}=\sin \left(\frac{2 \pi}{2 \mathrm{~N}+1}\right) \\
& \mathrm{U}_{2}=0 \\
& \mathrm{U}_{1}=0 \\
& \mathrm{C}=1 \\
& \mathrm{~S}=0 \\
& \mathrm{~J}=1
\end{aligned}
$$

The following recursive sequence is used to compute $\mathrm{U}_{0}, \mathrm{U}_{1}$, and U_{2} :

$$
\begin{align*}
& \mathrm{U}_{0}=\mathrm{f}\left(\frac{2 \mathrm{~m} \pi}{2 \mathrm{~N}+1}\right)+2 \mathrm{C}_{1}-\mathrm{U}_{2} \tag{3}\\
& \mathrm{U}_{2}=\mathrm{U}_{1} \\
& \mathrm{U}_{1}=\mathrm{U}_{0}
\end{align*}
$$

for values of $m=2 N, 2 N-1, \ldots, 1$
The coefficients are then:

$$
\begin{align*}
& A_{J}=\frac{2}{2 N+1}\left(f(0)+C U_{1}-U_{2}\right) \tag{4}\\
& B_{J}=\frac{2}{2 N+1} S U_{1} \tag{5}
\end{align*}
$$

The values of C and S are updated to:

$$
\begin{aligned}
Q & =C_{1} C-S_{1} S \\
S & =C_{1} S+S_{1} C \\
C & =Q
\end{aligned}
$$

J is stepped by 1 and the sequence starting at equation (3) is now repeated until M+1 pairs of coefficients have been computed.
Subroutine FORIF

Purpose:

Fourier analysis of a given periodic function in the range $0-2 \pi$.
Computes the coefficients of the desired number of terms in the Fourier series $\mathrm{F}(\mathrm{X})=\mathrm{A}(0)+$ SUM(A(K)COS KX+B(K)SIN KX) where $K=1,2$, ..., M to approximate the computed values of a given function subprogram.

Usage:

CALL FORIF(FUN, N, M, A, B, IER)
Description of parameters:
FUN - Name of function subprogram to be used for computing data points.
N - Defines the interval such that $2 \mathrm{~N}+1$ points are taken over the interval $(0,2 \pi)$. The spacing is thus $2 \pi /(2 N+1)$.
M - The maximum order of the harmonics to be fitted.
A - Resultant vector of Fourier cosine coefficients of length $M+1$; i.e., A_{0}, \ldots, A_{M}.
B - Resultant vector of Fourier sine coefficients of length $\mathrm{M}+1$; i. e., B_{0}, \ldots, B_{M} -
IER - Resultant error code where:
IER=0 No error.
IER=1 $\quad \mathrm{N}$ not greater than or equal to M .
IER=2 M less than 0.

Remarks:

M must be greater than or equal to zero. N must be greater than or equal to M . The first element in vector B is zero in all cases.

Subroutines and function subprograms required:
FUN - Name of user function subprogramused for computing data points.
Calling program must have FORTRAN EXTER-
NAL statement containing names of function subprograms listed in call to FORIF.

Method:

Uses recursive technique described in A. Ralston, H. Wilf, 'Mathematical Methods for Digital Computers', John Wiley and Sons, New York, 1960, Chapter 24. The method of indexing through the procedure has been modified to simplify the computation.

```
            SuBROUTINE FORIFIFUN,N,N,A,B,IERI
            OIMENSION Al!!,8!1!
    IER=0
    M0 IER=0,
    Mo TRR=2
    40 (F(N-M) 60.60.50
    40 (F|M-M)
c RF tuan compule and paeset comstanis
        COEF=2.0/(2.0&aNH 1.0)
            CONST=3.1415930CSEF
            SIESINICOMSTI
            C1=COS(consT)
            C=1.0
            l}\begin{array}{l}{s=0.0}\\{f=1}\\{\mathrm{ funz-fUN(0.0)}}
    FUUZ=FUM
        U2=0.0
            AI ORON FOMHIER COEFFICTEMTS RECHESIVELT
C is x=alecomsi
            M=AKOCONSI
            MO=FUN
            UV=U0
            A1=A1-1.0
    30 A(J)=COEF*(FUNZ*G*UL-U2)
```


FORIT

This subroutine produces the Fourier coefficients of a tabulated function.

Given: 1. Tabulated values of a function $f(x)$ for x between 0 and 2π in steps of $2 \pi /(2 N+1)$
2. N such that there are $2 \mathrm{~N}+1$ tabulated data points: $2 \mathrm{~K} \pi / 2 \mathrm{~N}+1, \mathrm{~K}=0,1,2$,, 2N
3. M - the desired order of the Fourier coefficients where $0 \leq M \leq N$

The coefficients of the Fourier series which approximate the given function are calculated as follows:

$$
\begin{align*}
\mathrm{C}_{1} & =\cos \left(\frac{2 \pi}{2 \mathrm{~N}+1}\right) \tag{1}\\
\mathrm{S}_{1} & =\sin \left(\frac{2 \pi}{2 \mathrm{~N}+1}\right) \tag{2}\\
\mathrm{U}_{2} & =0 \\
\mathrm{U}_{1} & =0 \\
\mathrm{C} & =1 \\
\mathrm{~S} & =0 \\
\mathrm{~J} & =1
\end{align*}
$$

The following recursive sequence is used to compute $\mathrm{U}_{0}, \mathrm{U}_{1}$, and U_{2} :

$$
\begin{aligned}
& \mathrm{U}_{0}=\mathrm{f}\left(\frac{2 \mathrm{~m} \pi}{2 \mathrm{~N}+1}\right)+2 \mathrm{C}_{1}-\mathrm{U}_{2} \\
& \mathrm{U}_{2}=\mathrm{U}_{1} \\
& \mathrm{U}_{1}=\mathrm{U}_{0}
\end{aligned}
$$

for values of $m=2 N, 2 N-1, \ldots, 1$
The coefficients are then:

$$
\begin{equation*}
A_{J}=\frac{2}{2 N+1}\left(f(0)+C U_{1}-U_{2}\right) \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{B}_{\mathrm{J}}=\frac{2}{2 \mathrm{~N}+1} \mathrm{~S} \mathrm{U}_{1} \tag{5}
\end{equation*}
$$

The values of C and S are updated to:

$$
\begin{aligned}
& \mathrm{Q}=\mathrm{C}_{1} \mathrm{C}-\mathrm{S}_{1} \mathrm{~S} \\
& \mathrm{~S}=\mathrm{C}_{1} \mathrm{~S}+\mathrm{S}_{1} \mathrm{C} \\
& \mathrm{C}=\mathrm{Q}
\end{aligned}
$$

J is stepped by 1 and the sequence starting at equation (3) is now repeated until $\mathrm{M}+1$ pairs of coefficients have been computed.

Subroutine FORIT

Purpose:
Fourier analysis of a periodically tabulated function.
Computes the coefficients of the desired number of terms in the Fourier series $F(X)=A(0)+$ $\operatorname{SUM}(A(K) C O S K X+B(K) \operatorname{SIN} K X)$ where $K=1,2$, ..., M to approximate a given set of periodically tabulated values of a function.

Usage:

CALL FORIT (FNT, N, M, A, B, IER)
Description of parameters:
FNT - Vector of tabulated function values of length $2 \mathrm{~N}+1$.
N - Defines the interval such that $2 \mathrm{~N}+1$ points are taken over the interval $(0,2 \pi)$. The spacing is thus $2 \pi /(2 N+1)$.
M - Maximum order of harmonics to be fitted.
A - Resultant vector of Fourier cosine coefficients of length $\mathrm{M}+1$; i.e., A_{0}, ..., $\mathrm{A}_{\mathrm{M}}{ }^{\text {• }}$
B - Resultant vector of Fourier sine coefficients of length $\mathrm{M}+1$; i.e., B_{0}, \ldots, B_{M}.
IER - Resultant error code where:
IER=0 No error.
$\operatorname{IER}=1 \quad \mathrm{~N}$ not greater or equal to M.

IER=2 M less than 0.
Remarks:
M must be greater than or equal to zero. N must be greater than or equal to M . The first element of vector B is zero in all cases.

Subroutines and function subprograms required: None.

Method:

Uses recursive technique described in
A. Ralston, H. Wilf, 'Mathematical Methods for Digital Computers', John Wiley and Sons, New York, 1960, Chapter 24. The method of indexing through the procedure has been modified to simplify the computation.

```
        SUBROUTINE FORITIFNT,N,N,A,B,TERI
        OIMENSION AIII,BI II,FNTIII
        IER=0
        20 IF(M) 30,40,40
        IER=2
        \ RETURN
    S0 IF(4-N)
C GO GN=NMPUTE AND PRESET CONSTANTS
    60 AN=N
        COEF=2.0/12.0*AN+1.0)
        Sl=SINICONSTI
        Cl=COS(CONST)
        l
        S=0.0
```



```
    70 UZ=0.0
        M1=0.0
            FORM fOURIER CDEFFICIENTS RECURSIVELY
    15 UO=FNT(II+2.0*C*I-UT
        U2=U1.
            M M1=40
            !=1-1
    80 A(J)=CORF*(FNTL+F:U!-U2)
        B(J)=COFF*S*U1
    90\begin{array}{l}{IF(J-1M+1)!}\\{0=C1*C-5)*S}\end{array}}
    90 O=C1*C-S1*S
        c
        J=J+1
    100 A|!=A(1)*0.5
    METUNA
```


Mathematics - Special Operations and Functions
GAMMA

This subroutine computes the value of the gamma function for a given argument x .

Calculation of the Gamma Function. $\Gamma(x)$ is defined for $\mathrm{x}>0$ by:

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{\infty} t^{x-1} \cdot e^{-t} d t \tag{1}
\end{equation*}
$$

This function satisfies the recurrence relation:

$$
\begin{equation*}
\Gamma(x)=(x-1) \cdot \Gamma(x-1) \tag{2}
\end{equation*}
$$

which defines $\Gamma(\mathbf{x})$ for any x not a negative integer.
Note that when x is a positive integer $\Gamma(\mathrm{x})=(\mathrm{x}-1)$!
To compute $\Gamma(x)$ for $x>1$, apply the recurrence (2), r times until $1<x-r=y \leq 2$. Thus, for $x>1$

$$
\begin{equation*}
\Gamma(x)=(x-1)(x-2) \ldots(x-r) \Gamma(y) \tag{3}
\end{equation*}
$$

$\Gamma(y)$ is computed from the following formula:

$$
\begin{aligned}
\Gamma(y) \approx 1- & 0.57710166(y-1)+ \\
- & 0.98585399(y-1)^{2} \\
& \\
& \text { Mathematics }- \text { Fourier Analysis } 97
\end{aligned}
$$

$$
\begin{align*}
& -0.56847290(y-1)^{5}+0.25482049(y-1)^{6} \\
& -0.05149930(y-1)^{7} \tag{4}
\end{align*}
$$

For $x<1$, the recurrence (2) is taken in the direction of decreasing n, giving

$$
\begin{equation*}
\Gamma(x)=\frac{\Gamma(y)}{x(x+1)(x+2) \ldots(x+x-1)} \tag{5}
\end{equation*}
$$

where $1<x+r=y \leq 2$.
As before, $\Gamma(y)$ is computed using equation (4).

Subroutine GAMMA

Purpose:

Computes the gamma function for a given argument.

Usage:

CALL GAMMA(XX, GX, IER)
Description of parameters:
XX - The argument for the gamma function.
GX - The resultant gamma function value.
IER - Resultant error code where:
IER=0 No error.
IER=1 XX is within. 000001 of being a negative integer.
IER=2 $X X$ is greater than 34.5
GX is set to 1.0E38

Remarks:

None.
Subroutines and function subprograms required: None.

Method:

The recursion relation and polynomial approximation by C. Hastings, Jr., 'Approximations for Digital Computers', Princeton University Press, 1955.

$130 \begin{gathered}\text { IER }=1 \\ \text { REPURN }\end{gathered}$
END
GAKMA 20
GAMMA
29

LEP
This subroutine computes the values of the Legendre polynomials for a given argument x and orders zero up to N. The Legendre polynomial $P_{n}(x)$ satisfies the recurrence equation

$$
P_{n+1}(x)=\left((2 n+1) \cdot x \cdot P_{n}(x)-n \cdot P_{n-1}(x)\right) /(n+1)
$$

with starting values $P_{0}(x)=1, P_{1}(x)=x$.
For reasons of economy and numerical stability the recurrence equation is used in the form:

$$
\begin{aligned}
& P_{n+1}(x)=x \cdot P_{n}(x)-P_{n-1}(x)+x \cdot P_{n}(x) \\
& -\left(x \cdot P_{n}(x)-P_{n-1}(x)\right) /(n+1)
\end{aligned}
$$

For large values of n the last term is negligible, giving the approximation:

$$
P_{n+1}(x)=2 \cdot x \cdot P_{n}(x)-P_{n-1}(x)
$$

This form shows that roundoff errors grow at worst linearly, assuming that the argument x is absolutely less than one.

If e_{n+r} is the error in $P_{n+r}(x)$ due to a single rounding error e in $P_{n}(x)$, the approximation is

$$
e_{n+r+1}=2 x \cdot e_{n+r}-e_{n+r-1}
$$

with initial conditions $e_{n}=e, e_{n-1}=0$. The solution of this difference equation has its maximum for $|x|=1$:

$$
\begin{aligned}
e_{n-1} & =0, e_{n}=e,\left|e_{n+1}\right|=2 e, \ldots,\left|e_{n+r}\right| \\
& =(r+1) e
\end{aligned}
$$

The order is assumed to be zero for negative values of N .

Subroutine LEP
Purpose:
Compute the values of the Legendre polynomials $P(N, X)$ for argument value X and orders 0 to N.

Usage:
CALL LEP(Y, X,N)
Description of parameters:
Y - Result vector of dimension $\mathrm{N}+1$ containing the values of Legendre polynomials of order 0 to N for given argument X . Values are ordered from low to high order.
X - Argument of Legendre polynomial.
N - Order of Legendre polynomial.

Remarks:

N less than 0 is treated as if N were 0 .
Subroutines and function subprograms required: None.

Method:
Evaluation is based on the recurrence equation for Legendre polynomials $\mathrm{P}(\mathrm{N}, \mathrm{X})$; $\mathrm{P}(\mathrm{N}+1, \mathrm{X})=2 * \mathrm{X} * \mathrm{P}(\mathrm{N}, \mathrm{X})-\mathrm{P}(\mathrm{N}-1, \mathrm{X})-(\mathrm{X} * \mathrm{P}(\mathrm{N}, \mathrm{X})-$ $\mathrm{P}(\mathrm{N}-1, \mathrm{X})) /(\mathrm{N}+1)$, where the first term in brackets is the order, and the second is the argument.
Starting values are $P(0, X)=1, P(1, X)=X$.

```
SUBROUTINE LEPIY,X,N)
SUBRONSON YIJI
LH=1
L2=2
Y(LI)=1:0
1FRINII*R
2 REIL2)=X
2 Y(L2)=X 
3 00 4 I=2.N
3 00 4 I: \2,
MG=XHY(I)
RETURN
REND
TEST OF ORDER
```

This subroutine computes the J Bessel function for a given argument and integer order by using the recurrence relationship:

$$
\begin{equation*}
F_{n+1}(x)+F_{n-1}(x)=\left(\frac{2 n}{x}\right) F_{n}(x) \tag{1}
\end{equation*}
$$

The desired Bessel function is:

$$
\begin{equation*}
J_{n}(x)=\frac{F_{n}(x)}{\alpha} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=F_{0}(x)+2 \sum_{m=1}^{M-2} F_{2 m}(x) \tag{3}
\end{equation*}
$$

M is initialized at M_{0}.
M_{0} is the greater of M_{A} and M_{B} where:

$$
M_{A}=[x+6] \text { if } x<5 \text { and } M_{A}=[1.4 x+60 / x] \text { if }
$$

$x \geq 5$.
$M_{B}=[n+x / 4+2]$
$\mathrm{F}_{\mathrm{M}-2}, \mathrm{~F}_{\mathrm{M}-3}, \ldots, \mathrm{~F}_{2}, \mathrm{~F}_{1}, \mathrm{~F}_{0}$ is evaluated using equation (1) with $\mathrm{F}_{\mathrm{M}} \stackrel{2}{=} 0$ and $\mathrm{F}_{\mathrm{M}-1}=10^{-30}$.
α and $J_{n}(x)$ are then computed using equations (3) and (2) respectively.

The computation is repeated for $\mathrm{M}+3$.
The values of $J_{n}(x)$ for M and $M+3$ are compared:

$$
\text { If }\left|J_{n}(x)_{M}-J_{n}(x)_{M+3}\right| \leq \delta\left|J_{n}(x)_{M+3}\right|
$$

this value is accepted as $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$; if not, the computation is repeated by adding 3 to M and using this as a new value for M. If M reaches $M_{M A X}$ before the desired accuracy is obtained, execution is terminated. $\mathrm{M}_{\mathrm{MAX}}$ is defined as:

$$
M_{\text {MAX }}= \begin{cases}{\left[20+10 x-\frac{x^{2}}{3}\right]} & \text { for } x \leq 15 \tag{4}\\ {[90+x / 2]} & \text { for } x>15\end{cases}
$$

Subroutine BESJ

Purpose:

Compute the J Bessel function for a given argument and order.

Usage:

> CALL BESJ(X, N, BJ, D, IER)

Description of parameters:
X - The argument of the J Bessel function desired.
N - The order of the J Bessel function desired.
BJ - The resultant J Bessel function.
D - Required accuracy.
IER - Resultant error code where:
$\operatorname{IER}=0 \quad$ No error.
IER=1 $\quad \mathrm{N}$ is negative.
$\mathrm{IER}=2 \quad \mathrm{X}$ is negative or zero.
IER=3 Required accuracy not obtained.
IER=4 Range of N compared to X not correct. (See Remarks.)

Remarks:

N must be greater than or equal to zero, but it must be less than
$20+10 * \mathrm{X}-\mathrm{X} * * 2 / 3$ for X less than or equal to 15;
$90+\mathrm{X} / 2 \quad$ for X greater than 15.
Subroutines and function subprograms required: None.

Method:

Recurrence relation technique described by H. Goldstein and R. M. Thaler, 'Recurrence Techniques for the Calculation of Bessel Functions', M.T.A.C., V.13, pp. 102-108 and I. A. Stegun and M. Abramowitz, 'Generation of Bessel Functions on High Speed Computers', M.T.A.C., V.11, 1957, pp. 255-257.

```
    suaroutine besj(x,N,bj,D,iER)
    SU&RO
    IF(N)10,20,20
    10\ leR=1
    M0 RETURN !F(x)30,30,31
    20 LF(x)30
    M1 RETURN
    31 IF(X-15,132,32,34
    32 NTEST=20.*10.*x-x** 213
    GO IO 36
    34 NTEST=90.* X/2.
    36 IFIN-NTEST140,38,38
    36 IFIN-NT
    40 RETURN
    40. IER=0
    MRN:N+1
c (fix-5.150,60,60
    50 MA=x+5.
    $0 MAR1.4*X+60./X
    MB=N+IFIX(X
    MF(MA-MR)80,90,97
    Coc(mA-MR)8
```


BESY

This subroutine computes the Y Bessel function for a given argument x and order n. The recurrence relation:

$$
\begin{equation*}
Y_{n+1}(x)=\left(\frac{2 n}{x}\right) \cdot Y_{n}(x)-Y_{n-1}(x) \tag{1}
\end{equation*}
$$

is used for this evaluation.
For $\mathrm{x}>4$

$$
\begin{align*}
Y_{0}(x)= & \sqrt{\frac{2}{\pi x}}\left(P_{0}(x) \sin \left(x-\frac{\pi}{4}\right)\right. \\
& \left.+Q_{0}(x) \cos \left(x-\frac{\pi}{4}\right)\right) \tag{2}\\
Y_{1}(x)= & \sqrt{\frac{2}{\pi x}}\left(-P_{1}(x) \cos \left(x-\frac{\pi}{4}\right)\right. \tag{3}\\
& \left.+Q_{1}(x) \sin \left(x-\frac{\pi}{4}\right)\right)
\end{align*}
$$

$$
\begin{align*}
& P_{0}(x), Q_{0}(x), P_{1}(x), \text { and } Q_{1}(x) \text { are: } \\
& \frac{1}{\sqrt{2 \pi}} P_{0}\left(\frac{4}{t}\right)= 0.3989422793-0.0017530620 t^{2} \\
&+0.0001734300 t^{4}-0.0000487613 t^{6} \\
&+0.0000173565 t^{8}-0.0000037043 t^{10} \tag{4}
\end{align*}
$$

$$
\begin{align*}
\frac{1}{t \sqrt{2 \pi}} Q_{0}\left(\frac{4}{t}\right)= & -0.124669441+0.0004564324 t^{2} \\
& -0.0000869791 t^{4}+0.0000342468 t^{6} \\
& -0.0000142078 t^{8}+0.0000032312 t^{10} \tag{5}
\end{align*}
$$

$$
\begin{aligned}
\frac{1}{\sqrt{2 \pi}} P_{1}\left(\frac{4}{t}\right)= & 0.3989422819+0.0029218256 t^{2} \\
& -0.0002232030 t^{4}+0.0000580759 t^{6} \\
& -0.0000200920 t^{8}+0.0000042414 t^{10}
\end{aligned}
$$

$$
\begin{align*}
\frac{1}{t \sqrt{2 \pi}} Q_{1}\left(\frac{4}{t}\right)= & 0.0374008364-0.0006390400 t^{2} \\
& +0.0001064741 t^{4}-0.0000398708 t^{6} \\
& +0.0000162200 t^{8}-0.0000036594 t^{10} \tag{7}
\end{align*}
$$

where $\mathrm{t}=\frac{4}{\mathrm{x}}$
For $\mathrm{x} \leq 4$

$$
Y_{0}(x)=\frac{2}{\pi} \sum_{m=0}^{15}(-1)^{m}\left(\frac{x}{2}\right)^{2 m} \frac{1}{(m!)^{2}}
$$

$$
\begin{equation*}
\left[\log \frac{\mathrm{x}}{2}+\gamma-\mathrm{H}_{\mathrm{m}}\right] \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathrm{H}_{\mathrm{m}}=\sum_{\mathrm{r}=1}^{\mathrm{m}} \frac{1}{\mathrm{r}} \text { if } \mathrm{m} \geq 1=0 \quad \text { if } \mathrm{m}=0 \tag{9}
\end{equation*}
$$

and $\boldsymbol{\gamma}=$ Euler's constant $=0.5772156649$

$$
Y_{1}(x)=-\frac{2}{\pi x}+\frac{2}{\pi} \sum_{m=1}^{16}(-1)^{m+1}\left(\frac{x}{2}\right)^{2 m-1}
$$

$$
\begin{equation*}
\frac{1}{m!(m-1)!} \cdot\left[\log \frac{x}{2}+\gamma-H_{m}+\frac{1}{2 m}\right] \tag{10}
\end{equation*}
$$

Subroutine BESY

Purpose:

Compute the Y Bessel function for a given argument and order.

Usage:

CALL BESY(X, N, BY, IER)

Description of parameters:

X - The argument of the Y Bessel function desired.
N - The order of the Y Bessel function desired.

BY - The resultant Y Bessel function.

IER - Resultant error code where:
IER=0 No error.
IER=1 $\quad N$ is negative.
IER=2 $\quad \mathrm{X}$ is negative or zero. IER=3 BY is greater than $10 * * 36$.

Remarks:

Very small values of X may cause the range of the library function ALOG to be exceeded. For $N>30$ and $X \leq 5$, this condition may occur. X must be greater than zero.
N must be greater than or equal to zero.
Subroutines and function subprograms required: None.

Method:

Recurrence relation and polynomial approximation technique as described by A.J. M. Hitchcock, 'Polynomial Approximations to Bessel Functions of Order Zero and One and to Related Functions', M.T.A.C., V.11, 1957, pp. 86-88, and G. N. Watson, 'A Treatise on the Theory of Bessel Functions', Cambridge University Press, 1958 p. 62.

```
    IFINIIAN.10.10
    IF(x)190.190.20
    IFIX)190.190.20
20 TF(X=4.0140,40,30
    COMPUTE yO ANO YI FOR X GREATER THAN 4
    T1#40.0/X
    P0=1(11=,0000037043*T2+*000017735651*T2*,0000487613)*T2
        N+000173431*T2=-0017530521*T2+*3989423
    00=(1(1,0000032312*T2*,0000142078)*T2*,0000342468)*T2
    1-0000N60791)#T2+.00545543241*T2-.01246604
    1-.0002232031#T+.002921A261*T2+.3989423
    OL=((1)-.0000036594*T24.00001622)=T2-.00003987CO)*T2
    # +.0001054741)#T2-.00063904n01*T2+.03740084
        AE2.0/SORT(X)
    B=A*T1
    C=X-.78439A2
    Y1=-A*P1*COSICI+B*OI*SINIC,
    SO TO 90
    40}\begin{array}{c}{xx=x/2.}\\{x>axx=xx}
    T=ALOG{xX)+.5772157
    SUM=O*
    TEMET
    no 70 L=1.15
    IF(L-1)50,50.50
    50 SUM=SUM+1.TFLOAT(L-1)
    60 FL
    TET-SUM
    70 YOGYOTERM
    TFRM = XX*(T-.5)
    SUM=O.
    Y1=TERM 
    DOMO L=2.16
    FL:L
    FL1FFL-1.
    TS*T-SUM
    0- Y1=Y1+TERM
    P12=.6306198
    l
```

?

CHECK IF ONLY YO OR Y I
90 IS DESIRED
IFIN-11100,100,130
RETURN FITHFR YO OR YI AS RFQUIRFD
100 IF (F) $110,120,110$
110 QY=Y1
GO TO 170
GOYO

C $130 \underset{\text { YAFRFORM RECURRFNGF OPFRATIONS TO FIND YN(X) }}{\text { YASM }}$
$130 \begin{gathered}Y A B Y O \\ Y B E Y\end{gathered}$
$Y B=Y 1$
$40 \begin{aligned} & \mathrm{K}=1 \\ & \mathrm{~T}=\mathrm{FLOAT}(2 * K) \\ & \mathrm{K}\end{aligned}$
YC•T\#Yg-YA
YCOTAYB-YA
IFIABS(YC)-1.0C36) $145,145,141$
$41 \begin{aligned} & \text { IER }=3 \\ & \text { RETURN }\end{aligned}$

$41 \begin{array}{l}\text { KEREB } \\ \text { RETURN } \\ K=K+1\end{array}$

$145 k=k+1$
IF(K-N)15C.160.150
$90 \begin{aligned} & \mathrm{IF}(\mathrm{K}-\mathrm{N}) \\ & \mathrm{YA}=\mathrm{Ya}\end{aligned}$
YB=YC
60 TO
140
60 TO
$60 \mathrm{BY}=\mathrm{YC}$
$160 \mathrm{BY}=\mathrm{YC}$
170 RETURN
170 RETURN
180 IER=1
BO IERE1
RETURN
OETURN
90
TERE2
RETURN
RETURN
END

END

BESY 103
BESY 104

BESI

This subroutine computes the I Bessel function for a given argument x and order n.

For $\mathrm{x} \leq 12$ or $\leq \mathrm{n}$

$$
\begin{equation*}
I_{n}(x)=\left(\frac{x}{2}\right)^{n} \frac{1}{n!} \sum_{s=0}^{30}\left(\frac{x}{2}\right)^{2 s} \frac{n!}{s!(n+s)!} \tag{1}
\end{equation*}
$$

For $\mathrm{x}>12$ and $>\mathrm{n}$

$$
\begin{align*}
I_{n}(x)= & \frac{e^{x}}{\sqrt{2 \pi x}} \sum_{m=0}^{30}(8 x)^{-m} \cdot \frac{1}{m!} \\
& \underset{K}{\mathrm{II}=1}\left((2 K-1)^{2}-4 n^{2}\right) \tag{2}
\end{align*}
$$

Subroutine BESI

Purpose:
Compute the I Bessel function for a given argument and order.

Usage:

CALL BESI(X,N, BI, IER)

Description of parameters:
X - The argument of the I Bessel function desired.
N - The order of the I Bessel function desired.
BI - The resultant I Bessel function.
IER - Resultant error code where:
IER=0 No error.
IER=1 $\quad \mathrm{N}$ is negative.
IER=2 X is negative.
IER=3 $\quad \mathrm{BI}$ is less than $1.0 \mathrm{E}-36$, and is set to zero.
IER=4 X is greater than 60 and and greater than N .

Remarks:
X and N must be greater than zero.
Subroutines and function subprograms required: None.

Method:

Computes the $I^{\text {th }}$ Bessel function using series or asymptotic approximations depending on the range of the arguments.
30 IF (X-FLSAT (N) $140,40,110$
compute first term of series and set initial value of the sum
$40 \mathrm{xx}=\mathrm{x} / 2$.
IF N ($70,70,59$
DO 60 IMI N
FI:
$i=(A B S(T E R M)-1, E-36) 56,60.60$
$1 E R=3$
$B I=0.0$
BI= 0.0
RFTURN
60 TERM=TERMEKX/F:
BI=TERM
$x \times=x \times x x$
COMPUTE TERMS,STOPPING WHEN ABSITERMI LE ABSISUM OF TERMS)
TIMES TOLERANC
F(ABSITERM)-ABSI日I*TOLI1100.100.80
IF(ABS (TERM
$F K=K *(N+K)$
TERYOTERM*(XX/FK)
TERYOTERM*
90 BIFEI+TERM
RETUR AI AS ANSWER
C 100 RETUQN 12 AND X GT N, SO USE ASYMPTOTIC APPROXIMATION
110 FN=4*N*N

RETURN
$115 \mathrm{xX}=1 . /\left(\right.$ R.* $\left.^{\prime}\right)$

$81=14$
$00130 \quad x=1,30$
IF(ABSITERNI-ABSTTOLAR:1)140.140.120
FK=12*K-1)**2
TERMaTERM*XX*(FK-FN)/FLOAT(K)
TERMATERMAX
BI $=A 1+$ TERM
Go S1GNIFt
140 pl=3.141592653
BI=
GO TO 100
OER=1
IER=1 100
CO TO
TER=2
TER $=2$
GO TO 100
ONO

BESK

This subroutine computes the K Bessel function for a given argument x and order n.

The recurrence relation:

$$
\begin{equation*}
K_{n+1}(x)=\frac{2 n}{x} K_{n}(x)+K_{n-1}(x) \tag{1}
\end{equation*}
$$

is used for this evaluation.
The initial values K_{0} and K_{1} are found as follows:
For $\mathrm{x}>1$

$$
\begin{equation*}
K_{0}(x)=e^{-x} \sqrt{\frac{\pi}{2 x}} G_{0}(x) \tag{2}
\end{equation*}
$$

where $\mathrm{x}=1 / \mathrm{t}$ for $\mathrm{t}<1$

$$
\begin{align*}
& \mathrm{G}_{0}\left(\frac{1}{\mathrm{t}}\right) \cdot \sqrt{\frac{\pi}{2}}=1.2533141373 \quad-0.1566641816 \mathrm{t} \\
& +0.0881112782 \mathrm{t}^{2}-0.0913909546 \mathrm{t}^{3} \\
& +0.1344596228 t^{4}-0.2299850328 t^{5} \\
& +0.3792409730 t^{6}-0.5247277331 t^{7} \\
& +0.5575368367 t^{8}-0.4262632912 t^{9} \\
& +0.2184518096 t^{10}-0.0668097672 t^{11} \\
& +0.0091893830 t^{12} \tag{4}
\end{align*}
$$

$$
\begin{aligned}
\mathrm{G}_{1}\left(\frac{1}{\mathrm{t}}\right) \cdot \sqrt{ } \frac{\pi}{2}= & 1.2533141373+0.4699927013 \mathrm{t} \\
& -0.1468582957 \mathrm{t}^{2}+0.1280426636 \mathrm{t}^{3} \\
& -0.1736431637 \mathrm{t}^{4}+0.2847618149 \mathrm{t}^{5} \\
& -0.4594342117 \mathrm{t}^{6}+0.6283380681 \mathrm{t}^{7} \\
& -0.6632295430 \mathrm{t}^{8}+0.5050238576 \mathrm{t}^{9} \\
& -0.2581303765 \mathrm{t}^{10}+0.0788000118 \mathrm{t}^{11} \\
& -0.0108241775 \mathrm{t}^{12}
\end{aligned}
$$

For $\mathrm{x} \leq 1$

$$
\begin{equation*}
\gamma=\text { Euler's constant }=0.5772156649 \tag{6}
\end{equation*}
$$

$$
\begin{align*}
K_{0}(x)= & -\left(\gamma+\log \frac{x}{2}\right)+\sum_{s=1}^{6}\left(\frac{x}{2}\right)^{2 s} \frac{1}{(s!)^{2}} \\
& {\left[H_{s}-\left(\gamma+\log \frac{x}{2}\right)\right] } \tag{7}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{H}_{\mathrm{S}}=\sum_{\mathrm{r}=1}^{\mathrm{s}} \frac{1}{\mathrm{r}} \tag{8}
\end{equation*}
$$

$$
K_{1}(x)=\frac{1}{x}+\sum_{s=1}^{8}\left(\frac{x}{2}\right)^{2 s-1} \frac{1}{(s!)^{2}}
$$

$$
\begin{equation*}
\left[\frac{1}{2}+s \cdot\left(\gamma+\log \frac{x}{2}-H_{s}\right)\right] \tag{9}
\end{equation*}
$$

Subroutine BESK

Purpose:
Compute the K Bessel function for a given argument and order.

Usage:
CALL BESK(X, N, BK, IER)
Description of parameters:
X - The argument of the K Bessel function desired.
N - The order of the K Bessel function desired.
BK - The resultant K Bessel function.
IER - Resultant error code where:
IER=0 No error.
$\mathrm{IER}=1 \quad \mathrm{~N}$ is negative.
IER=2 $\quad \mathrm{X}$ is zero or negative.
$\mathrm{IER}=3 \quad \mathrm{X}$ is greater than 60. Machine range exceeded.
$\mathrm{IER}=4 \quad \mathrm{BK}$ is greater than 1. E36.

Remarks:
N must be greater than or equal to zero.
Subroutines and function subprograms required: None.

Method:
Computes zero-order and first-order Bessel functions using series approximations and then computes $\mathrm{N}^{\text {th }}$ order function using recurrence relation.

Recurrence relation and polynomial approximation technique as described by A.J. M. Hitchcock, 'Polynomial Approximations to Bessel Functions of Order Zero and One and to Related Functions', M.T.A.C., V.11, 1957, pp.86-88, and G. N. Watson, 'A Treatise on the Theory of Bessel Functions', Cambridge University Press, 1958, p. 62.

SUBROUTINE BESKIX,N,BK,IERI
DIMENSTON T(12)
9K=. 0
$\underset{1 \in R * 1}{1 F(N) 10.11,11}$
IER*
RETURN
IF
IF(X)12,12,20
IER=2
RETURN
1Fix-6n.0122.22,21

RETURN
tER=0
TER=0

C=SORT(B)

TF(N-1127,29:27
(F $\mathrm{N}-1127,29,27$
COMPUTE KO USING POLYNOMIAL APPROXIMATION
27 GO A A $11.2931414-.1566818 * T(1)+.08111278 * T(2)-.091390954 * T(3)$ $2+013445962 * T(4)-.22998503 * T(5)+.37924097 * T(6)-.52472773 * T(7)$ $4 *=009189383 * T 1121) * \mathrm{C}$
IF(N)20.28.29
$2 \mathrm{~B} \quad \mathrm{BK}=60 \mathrm{C}$
C 29 GOMPUTE KI USING POLYNOMIAL APPROXIMATION

2-. 17364316 FT(4) +.28476181*T(5)-.45943421*T(6)*.62833007*T(7)
-. 66322954*T(8)+.50502386*T(9)-.2581303**T(10)+.079800012*T(1)
4=010R24177*T(12) +C

BKEG1
RETURN
F FROM KO.KI COMPUTE KN USING RECURRENCE RELATION
$310035 \mathrm{~J}=2$, N
[F(GJ-1,0f36)33.33,32
$32 \begin{aligned} & \text { TERG4 } \\ & \text { GO } 10\end{aligned}$
GO TO
$G 0.61$
$33 \mathrm{GO}=\mathrm{GI}$
4 RK=GJ
$36 \stackrel{R}{8}$
$A=.5772$
$C=B=B$
$C=B+B$
IF $(N-1) 37,43.37$
c COMPUTE KO USING SERIES EXPANSION

- 0 -

X2J=1.
FACT=1.
FACTE14

RJ=1. $/ F L O A T(J)$
$\times 2 J=\times 2 J * C$
FACTEFACT
FACTHFACT
HJ=HJ+RJ
0 GO-GO+X2J*FACT*(HJ-A)
IF(N)43,42,43
2 EK=GO
compute kl using series expansion
c
FACT=1.

$61=1,1 \times+2 J *$
$0050 \mathrm{~J}=2.8$

RJE1.1FLOATIJ)
FACTMFACT\#RJORJ
$50 \begin{gathered}H J=H J+R J \\ G 1=G 1+X 2 J * F A C T *(1.5+(A-M J) * F L O A T(J)\end{gathered}$

CEL1

This subroutine computes the complete elliptic integral of the first kind. This is defined as:

$$
K(k)=\int_{0}^{\pi / 2} \frac{d t}{\sqrt{1-k^{2} \sin ^{2} t}} \cdot 0 \leq k<1
$$

An equivalent definition is:

$$
K(k)=\int_{0}^{\infty} \frac{d x}{\sqrt{\left(1+x^{2}\right)\left(1+k_{c}^{2} x^{2}\right)}}
$$

where k_{c} is the complementary modulus:

$$
k_{c}^{2}+k^{2}=1,0<k_{c}^{2} \leq 1
$$

The subroutine CELI1 calculates $\mathrm{K}(\mathrm{k})$ for given modulus k .

The calculation of RES $=K(k)$ is based on the process of the Arithmetic-Geometric Mean.

Starting with the pair of numbers:

$$
a_{0}=1, g_{0}=k_{c}
$$

the sequences of numbers $\left(a_{n}\right),\left(g_{n}\right)$ are generated using the definition:

$$
a_{n}=\frac{1}{2}\left(a_{n-1}+g_{n-1}\right), g_{n}=\sqrt{a_{n-1} g_{n-1}}
$$

This iterative process is stopped at the $\mathrm{N}^{\text {th }}$ step, when $a_{N}=g_{N}$.

If D is the number of decimal digits in the mantissa of floating-point numbers, then the equality $a_{N}=g_{N}$ must be interpreted as $\left|a_{N}-g_{N}\right|$ is less than $\mathrm{a}_{\mathrm{N}} \cdot 10^{-\mathrm{D}}$.

Since the sequences $\left(a_{n}\right),\left(g_{n}\right)$ converge quadratically to the same limit (Arithmetico-Geometrical mean) the test for the end of iteration may be replaced by comparing $\left|a_{N-1}-g_{N-1}\right|$ against $\mathrm{a}_{\mathrm{N}-1} \cdot 10^{-\mathrm{D} / 2}$, thus saving one calculation of the geometrical mean.

The value of $K(k)=\frac{\pi}{2 a_{N}}$.

Subroutine CELI

Purpose:

Calculate complete elliptic integral of first kind.
Usage:
CALL CEL1 (RES, AK, IER)

Description of parameters:
RES - Result value.
AK - Modulus (input).
IER - Resultant error code where:
IER=0 No error.
$\mathrm{IER}=1 \quad \mathrm{AK}$ not in range -1 to +1 .
Remarks:
For $A K=+1,-1$ the result is set to 1. E38. For modulus AK and complementary modulus $C K$, equation $A K * A K+C K * C K=1.0$ is used.
AK must be in the range -1 to +1 .
Subroutines and function subprograms required: None.

Method:
Landen's transformation is used for calculation. Reference:
R. Bulirsch, 'Numerical Calculation of Elliptic Integrals and Elliptic Functions', Handbook Series Special Functions, Numerische Mathematik Vol. 7, 1965, pp. 78-90.

SURPOUTINE CELZIRES*AK.IER

TER:O
TEST MOOULUS
GEOE1.
-AK\#AK

1 TERAI
RET RESULT VALUE -OELOW
2 GES=1.E38
2 RESTURN
RETUR
3 GEOUSQRT(GEO)
4 ARI-I.
4 AARIERI
TEST=AARI*1.E-4
ARIDGEO
TEST OF AGCURACY
TFIAARI -GEOTESTIO
TFIAARI GEO-TESTIGM
GEOMSART(AARIMGEO)
ARIn0.5\#AR
$C O$ to
© RES=3.141993 /ARI RESE3.4
RETURN
ENO

CEL2

This subroutine computes the generalized complete elliptic integral of the second kind. This is defined as
$\operatorname{cel} 2(k ; A, B)=\int_{0}^{\pi / 2} \frac{A+(B-A) \sin ^{2} t}{\sqrt{1-k^{2} \sin ^{2} t}} d t$.

Equivalent is the definition:
$\operatorname{cel} 2(k ; A, B)=\int_{0}^{\infty} \frac{A+B x^{2}}{\left(1+x^{2}\right) \sqrt{\left(1+x^{2}\right)\left(1+k_{c}^{2} x^{2}\right)}} d x$,
where k_{c} is the complementary modulus:

$$
\mathrm{k}_{\mathrm{c}}^{2}+\mathrm{k}^{2}=1,0<\mathrm{k}_{\mathrm{c}}^{2} \leq 1
$$

The subroutine CELI2 calculates cel $2(\mathrm{k} ; \mathrm{A}, \mathrm{B})$ for given modulus k, and constants A, B. The calculation of RES $=$ cel $2(k, A, B)$ is based on the process of the Arithmetic-Geometric Mean.

Starting with the pair of numbers:

$$
\mathrm{a}_{0}=1, \mathrm{~g}_{0}=\mathrm{k}_{\mathrm{c}}
$$

the sequences of numbers $\left(a_{n}\right),\left(g_{n}\right)$ are generated using for definition:

$$
a_{n}=\left(a_{n-1}+g_{n-1}\right), g_{n}=2 \sqrt{a_{n-1} g_{n-1}}
$$

This iteration process is stopped at the $\mathrm{N}^{\text {th }}$ step, when $\mathrm{a}_{\mathrm{N}}=\mathrm{g}_{\mathrm{N}}$.

Further needed are the sequences
$\left(A_{i}\right),\left(B_{i}\right)$ defined by means of:
$A_{0}=A, B_{0}=B$
$A_{n}=B_{n-1} / a_{n-1}+A_{n-1}$
$B_{n}=2\left(B_{n-1}+g_{n-1} \cdot A_{n-1}\right)$

If D is the number of decimal digits in the mantissa of floating-point numbers, the iteration process is stopped as soon as ($a_{N-1}-g_{N-1}$) is less than $\mathrm{a}_{\mathrm{N}-1} \cdot 10^{-\mathrm{D} / 2}$.

Since $\left(a_{n}\right),\left(g_{n}\right)$ converge quadratically to the same limit (Arithmetico-Geometrical mean) this implies that $\left(a_{N}-g_{N}\right)$ is less than $a_{N} \cdot 10^{-D}$.

The value of cel $2(k ; A, B)=\frac{\pi}{4} \cdot \frac{A_{N+1}}{a_{N}}$

Subroutine CEL2

Purpose:

Computes the generalized complete elliptic integral of second kind.

Usage:

CALL CEL2 (RES, AK, A, B, IER)
Description of parameters:
RES - Result value.
AK - Modulus (input).
A - Constant term in numerator.
B - Factor of quadratic term in numerator.
IER - Resultant error code where:
IER=0 No error.
IER=1 AK not in range -1 to +1 .
Remarks:
For $\mathrm{AK}=+1,-1$, the result value is set to 1. E38 if B is positive, to -1. E38 if B is negative. Special cases are:
$K(K)$ obtained with $A=1, B=1$.
$\mathrm{E}(\mathrm{K})$ obtained with $\mathrm{A}=1, \mathrm{~B}=\mathrm{CK} * \mathrm{CK}$ where CK
is complementary modulus.
$B(K)$ obtained with $A=1, B=0$.
$D(K)$ obtained with $A=0, B=1$
where K, E, B, D define special cases of the generalized complete elliptic integral of second kind in the usual notation, and the argument K of these functions means the modulus.

Subroutines and function subprograms required: None.

Method:
Definition:
RES $=$ integral $((\mathrm{A}+\mathrm{B} * \mathrm{~T} * \mathrm{~T}) /(\mathrm{SQRT}((1+\mathrm{T} * \mathrm{~T}) *$
($\left.\left.1+(\mathrm{CK} * \mathrm{~T})^{* *} 2\right)\right)^{*}(1+\mathrm{T} * \mathrm{~T})$) summed over T from 0
to infinity).
Evaluation:
Landen's transformation is used for calculation. Reference:
R. Bulirsch, 'Numerical Calculation of Elliptic Integrals and Elliptic Functions', Handbook Series Special Functions, Numerische Mathematik Vol. 7, 1965, pp. 78-90.

```
        SUBROUTINE CELZ(RES,AX,A,B,IER)
        SUBROU
        TEST MODULUS
            GEO-1.-AK*AK
        GEO-10-AK*AK
    2 IER=1
    set result value = overflow
    2 1F1813.5.4
    C)
```

RETURN	CEL2
5 RESaA	CEL2
RE TURN	CEL 2
compute integral	CEL2
6 GEO=SORTIGEOI	CEL. 2
Afi-1.	CEL2
$A A=A$	CEL2
$A N=A+B$	CEL2
W-8	CEL 2
7 Wuwtanegeo	CEL2
$\mathrm{W}=\mathrm{W}+\mathrm{W}$	CEL2
Aasan	CEL2
AARI-AR!	CEL2
ARI=GEO+ARI	CEL2
$A N=H / A R I+A N$	CEL2
TEST OF ACCURACY	CEL 2
	CEL2
- GEO-SORTIGEOHARI)	CEL2
GSO-GEO+GEO	CEL2
60107	CEL2
9 RES..7853982 *AN/AR1	CEL2
RETURN	CEL2
END	CEL2

EXPI
This subroutine computes the exponential integral in the range from -4 to infinity.

For positive x, the exponential integral is defined as:

$$
E_{1}(x)=\int^{\infty} \frac{e^{-t}}{t} d t, x>0
$$

x
This function, $\mathrm{E}_{1}(\mathrm{x})$, may be analytically continued throughout the complex plane, and defines a multivalued complex function. However, for any given real argument, this extended multivalued function has a unique real part. The subroutine EXPI computes this unique real number for $x \geq-4, x \neq 0$.

For negative x, the real part of the extended exponential integral function is equal to $-E_{i}(-x)$,
where

$$
E_{i}(y)=-\int_{-y}^{\infty} \frac{e^{-t}}{t} d t, y>0
$$

(\int denotes Cauchy principal value.)
For $x=0$, a singularity of the function, the program returns 1.0×10^{38}.

No action is taken in case of an argument less than -4.

Polynomial approximations which are close to Chebyshev approximations over their respective ranges are used for calculation.

1. Approximation in the range $x \geqq 4$.

A polynomial approximation is obtained by means of truncation of the Expansion of $E_{1}(x)$ in terms of shifted Chebyshev Polynomials $\mathrm{T}_{\mathrm{n}}{ }^{*}$

$$
E_{1}(x)=\frac{e^{-x}}{x} \sum_{n=0}^{\infty} A_{n} T_{n} *\left(\frac{4}{x}\right), \text { for } 4 \leqq x<\infty
$$

[^2]The coefficients A_{n} are given in the article by Luke/Wimp.*

Using only nine terms of the above infinite series results in a truncation error $\epsilon(x)$ with:

$$
|\epsilon(x)|<\frac{e^{-x}}{x} \sum_{v=9}^{\infty}\left|A_{v}\right|<\frac{e^{-x}}{x} \cdot 0.82 \cdot 10^{-8}
$$

Transformation of the shifted Chebyshev polynominals to ordinary polynomials finally leads to the approximation:

$$
\operatorname{EXPI}(x)=e^{-x}\left(\frac{4}{x}\right) \sum_{v=0}^{\infty} a_{v}\left(\frac{4}{x}\right)^{v} \text { for } x \geq 4
$$

The coefficients of this approximation given to eight signification digits are:

$$
\begin{aligned}
& a_{0}=0.24999999 \\
& a_{1}=-0.062498588 \\
& a_{2}=0.031208561 \\
& a_{3}=-0.022951979 \\
& a_{4}=0.020412099 \\
& a_{5}=-0.017555779 \\
& a_{6}=0.011723273 \\
& a_{7}=-0.0049362007 \\
& a_{8}=0.00094427614
\end{aligned}
$$

2. Approximation in the range $|x| \leqq 4$.

A polynomial approximation is obtained by means of telescoping of the Taylor series of the function:

$$
\int_{0}^{x} \frac{\left(e^{-t}-1\right)}{t} d t=-\ln x-C-E_{1}(x)
$$

where C $=0.5772156649$ is Euler's constant.
This results in the approximation:

$$
\operatorname{EXPI}(x)=-\ln |x|+\sum_{v=0}^{14} b_{v} x^{v}
$$

with a truncation error E absolutely less than 3×10^{-8}.

The coefficients of this approximation given to eight significant digits are:

$$
\begin{aligned}
& \mathrm{b}_{0}=-0.57721566 \\
& \mathrm{~b}_{1}=1.0000000 \\
& \mathrm{~b}_{2}=-0.25000000 \\
& \mathrm{~b}_{3}=0.055555520 \\
& \mathrm{~b}_{4}=-0.010416662 \\
& \mathrm{~b}_{5}=0.0016666906 \\
& \mathrm{~b}_{6}=-0.00023148392 \\
& \mathrm{~b}_{7}=0.000028337590 \\
& \mathrm{~b}_{8}=-0.0000030996040 \\
& \mathrm{~b}_{9}=0.00000030726221 \\
& \mathrm{~b}_{10}=-0.000000027635830 \\
& b_{11}=0.0000000021915699 \\
& b_{12}=-0.00000000016826592 \\
& b_{13}=0.000000000015798675 \\
& b_{14}=-0.0000000000010317602
\end{aligned}
$$

Subroutine EXPI

Purpose:

Computes the exponential integral in the range -4 to infinity.

Usage:
CALL EXPI(RES, X, IER)
Description of parameters:
RES - Result value.
X - Argument of exponential integral.
IER - Resultant error code where:
IER=0 No error.
$\operatorname{IER}=1 \quad \mathrm{X}$ less than -4 .
Remarks:
For $X=0$ the result value is set to 1. E38. For X less than -4 calculation is bypassed. The argument remains unchanged.

Subroutines and function subprograms required: None.

Method:

Definition:
RES= integral(EXP(-T)/T, summed over Trom X to infinity).
Evaluation:
Two different polynomial approximations are used for X greater than 4 and for $\operatorname{ABS}(\mathrm{X})$ equal or less than 4.
Reference:
Luke and Wimp, 'Jacobi Polynomial Expansions of a Generalized Hypergeometric Function over a Semi-Infinite Range', Mathematical Tables and Other Aids to Computation, Vol. 17, 1963, Issue 84, pp. 395-404.

This subroutine computes the sine and cosine integrals. These integrals are defined as:

$$
\operatorname{Si}(x)=\int_{\infty}^{x} \frac{\sin (t)}{t} d t, x \geq 0
$$

and

$$
\operatorname{Ci}(x)=\int_{\infty}^{x} \frac{\cos (t)}{t} d t, x>0
$$

The subroutine SICI calculates both $\mathrm{Si}(\mathrm{x})$ and $\mathrm{Ci}(\mathrm{x})$ for a given argument x . Two different approximations are used for the ranges $|x| \leq 4$ and $4<|x|<\infty$. Negative values of the argument x are handled by means of the following symmetries:

$$
\operatorname{Si}(-x)=-\pi-\operatorname{Si}(x)
$$

Real part of
$\operatorname{Ci}(-x)=\operatorname{Ci}(x), x>0$ (see discussion of EXPI).
For $x=0$, a singularity of $\mathrm{Ci}(\mathrm{x})$, the routine returns -1.0×10^{38}.

Polynomial approximations that are close to Chebyshev approximations over their respective ranges are used for calculation.

1. Approximation in the range $|x|>4$.

The sine and cosine integrals are closely related to the confluent hypergeometric function:

$$
Y(x)=-i x \Psi(1,1 ;-i x)
$$

We have:

$$
\operatorname{Si}(x)+i \operatorname{Ci}(x)=\frac{\pi}{2}+i e^{i x} \Psi(1,1 ;-i x)
$$

Setting:

$$
\operatorname{ix} \Psi(1,1 ; i x)=\sum_{n=0}^{\infty}\left(A_{n}+i B_{n}\right) T_{n}^{*}\left(\frac{4}{x}\right)
$$

[^3]we get the expansions:
\[

$$
\begin{aligned}
& \operatorname{Si}(x)=\sum_{n=0}^{\infty}\left(\frac{A_{n} \cdot \cos x}{x}+\frac{B_{n} \cdot \sin x}{x}\right) T_{n}^{*}\left(\frac{4}{x}\right) \\
& \operatorname{Ci}(x)=\sum_{n=0}^{\infty}\left(\frac{B_{n} \cdot \cos x}{x}-\frac{A_{n} \cdot \sin x}{x}\right) T_{n}\left(\frac{4}{x}\right)
\end{aligned}
$$
\]

in terms of shifted Chebyshev polynomials T_{n}^{*}.
The coefficients A_{n} and B_{n} are given in the article by Luke/Wimp.*

Using only ten terms of the above infinite series results in a truncation error $E(x)$ with:

$$
|E(x)|<\frac{1}{x} \cdot 2.3 \cdot 10^{-8}
$$

Transformation of the shifted Chebyshev polynomials to ordinary polynomials finally leads to the approximations:

$$
\begin{aligned}
& \operatorname{Si}(x)=-\left(\frac{4}{x}\right) \cdot(\cos x \cdot V(x)+\sin x \cdot U(x)) \\
& \operatorname{Ci}(x)=\left(\frac{4}{x}\right) \cdot(\sin x \cdot V(x)-\cos x \cdot U(x))
\end{aligned}
$$

where

$$
\begin{aligned}
& V(x)=\sum_{n=0}^{10} a_{n} \cdot\left(\frac{4}{x}\right)^{n} \\
& U(x)=\sum_{n=0}^{9} b_{n} \cdot\left(\frac{4}{x}\right)^{n}
\end{aligned}
$$

The coefficients of these expansions given to eight significant digits are:

$$
\begin{aligned}
& \mathrm{a}_{0}=0.25000000 \\
& \mathrm{~b}_{0}=0.000000000258398 \quad 86 \\
& \mathrm{a}_{1}=-0.00000066464406 \\
& \mathrm{~b}_{1}=0.062500111 \\
& \mathrm{a}_{2}=-0.031224178 \\
& \mathrm{~b}_{2}=-0.000011349579
\end{aligned}
$$

$a_{3}=-0.0003764000$
$b_{3}=-0.023146168$
$a_{4}=0.026012930$
$b_{4}=-0.0033325186$
$a_{5}=-0.0079455563$
$b_{5}=0.04987$
$a_{6}=-0.04400$
2. Approximation in the range $|x| \leq 4$.

A polynomial approximation for $\mathrm{Si}(\mathrm{x})$ is obtained by means of telescoping of the Taylor series:

$$
\begin{aligned}
\operatorname{Si}(x) & =-\frac{\pi}{2}+\int_{0}^{x} \frac{\sin t}{t} d t \\
& =-\frac{\pi}{2}+x \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1) \cdot(2 n+1)!}
\end{aligned}
$$

This results in the approximation:

$$
\operatorname{Si}(x)=-\frac{\pi}{2}+x \cdot \sum_{n=0}^{6} a_{v}\left(x^{2}\right)^{v},
$$

with a truncation error E absolutely less than $|X| \cdot$ $1.4 \cdot 10^{-9}$.

Similarly an approximation for $\mathrm{Ci}(\mathrm{x})$ is obtained by means of telescoping of the Taylor series:

$$
\mathrm{Ci}(x)-C-\operatorname{In}(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2 N \cdot(2 n)!}
$$

This results in the approximation:

$$
\operatorname{Ci}(x)=C+\operatorname{In}|x|-x^{2} \cdot \sum_{n=0}^{5} b_{n}\left(x^{2}\right)^{n}
$$

with a truncation error E absolutely less than x^{2}. $5.6 \cdot 10^{-9}$.

The coefficients of these approximations given to eight significant decimal digits are:
$\mathrm{C}=0.57721566$
$a_{0}=1.0000000$
$\mathrm{b}_{0}=0.24999999$
$a_{1}=-0.055555547$
$b_{1}=-0.010416642$
$a_{2}=0.0016666582$
$b_{2}=0.00023146303$
$a_{3}=-0.000028341460$
$b_{3}=-0.0000030952207$
$a_{4}=0.00000 \quad 03056 \quad 1233$
$b_{4}=0.00000 \quad 0026945842$
$a_{5}=-0.0000000022232633$
$b_{5}=-0.00000 \quad 0000138698 \quad 51$
$a_{6}=-0.00000 \quad 00000 \quad 09794 \quad 2154$
Subroutine SICI
Purpose:
Computes the sine and cosine integral.
Usage:
CALL SICI(SI, CI, X)
Description of parameters:
SI - The resultant value $\operatorname{SI}(\mathrm{X})$.
CI - The resultant value CI(X).
X - The argument of $\operatorname{SI}(X)$ and $\mathrm{CI}(\mathrm{X})$.
Remarks:
The argument value remains unchanged.

Subroutines and function subprograms required: None.

Method:
Definition:
$\operatorname{SI}(X)=$ integral $(\operatorname{SIN}(T) / T$, summed over T from infinity to X).
$\mathrm{CI}(\mathrm{X})=$ integral $(\operatorname{COS}(\mathrm{T}) / \mathrm{T}$, summed over T from infinity to X).
Evaluation:
Reduction of range using symmetry. Different approximations are used for ABS(X) greater than 4 and for ABS(X) less than 4. Reference:
Luke and Wimp, 'Polynomial Approximations to Integral Transforms', Mathematical Tables and Other Aids to Computation, Vol. 15, 1961, Issue 74, pp. 174-178.

```
    SUAROUTINE SICIISI,CI,XI
    IEST ARGUMENT RANGE
    z=aBS(x).
    If(l-4:) 10,10,5)
10 v=202 IS NIIT GREATER THAN 4
    l
    I:Y-.28341460E-4)*Y+16666582F-2)*Y- 55555547F-1)*Y+1, 
    |*V-*2834I460E-4,*Yt166665REF-2I*Y-
        IFIL) 30,20,30
    20CI=-1.E38
    RETURN
    1.30952207E-51*Y+. 23146303E-31*Y-.10416642E-11*Y4.2.49999991
    40 RETURN
40 RETURN g greater than 4.
    50 5t=51N(2)
    l
```



```
    1*.0498771591*l-.33325184E-21*1-.07314616日)*2-.11349579E-4)*l
    2*.052590111)*2+.25839886F-9
    2*.0525901111*l+.25839886F-9.0291917864*2-.0653728341*2+.079020335)*SCC1
    12-.044004155)*2-. 20794555631*2+.026012930)*2-.3764n00)E-31*2
    lol
        CI=l*(SI*v-Y*U),
        test for negat ive argument
            F(x) 60,40,40
60 SI=-3.1415927-51
    SI=-3.
    -2834(460E-4)*Y+.(6666582F-2)*Y--55555547F-(1)*Y+1,)
```


CS

This subroutine computes the Fresnel integrals for a given value of the argument x. The Fresnel integrals are defined as:

$$
C(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \frac{\cos (t)}{\sqrt{t}} d t
$$

and

$$
S(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x} \frac{\sin (t)}{\sqrt{t}} d t .
$$

The subroutine CS calculates both $C(x)$ and $S(x)$ for a given argument x.

In case of a negative argument x the absolute value of x is taken as argument for C and for S .

Polynomial approximations that are close to Chebyshev approximations over their respective ranges are used for calculation.

1. Approximation in the range $|\mathrm{x}|>4$.

The Fresnel integrals $C(x)$ and $S(x)$ are closely related to the confluent hypergeometric function:

$$
Y(x)=\sqrt{x i} \psi\left(\frac{1}{2}, \frac{1}{2} ; x i\right)=x i \psi\left(1, \frac{3}{2} ; x i\right) .
$$

We have:

$$
\begin{aligned}
& \left.C(x)=\frac{1}{2}+\frac{1}{\sqrt{8 \pi}} \sqrt{\frac{4}{x}(\sin }(x) \operatorname{Re}(Y)-\cos (x) \operatorname{Im}(Y)\right) \\
& S(x)=\frac{1}{2}-\frac{1}{\sqrt{8 \pi}} \sqrt{\frac{4}{x}(\cos (x) \operatorname{Re}(Y)+\sin (x) \operatorname{Im}(Y))}
\end{aligned}
$$

The expansions of real part $\operatorname{Re}(\mathrm{Y})$ and complex part Im (Y) in terms of shifted Chebyshev polynomials $\mathrm{T}_{\mathrm{n}}^{*}$ over the range $4 \leq \mathrm{x}<\infty$ are easily obtained using the method of computation described by Luke/Wimp.*

By means of truncation of the infinite series:

$$
\begin{aligned}
& \operatorname{Re}(Y(x))=\sum_{v=0}^{\infty} A_{v} T_{v}^{*}\left(\frac{4}{x}\right) \\
& \operatorname{Im}(Y(x))=\sum_{v=0}^{\infty} B_{v} T_{v}^{*}\left(\frac{4}{x}\right)
\end{aligned}
$$

[^4]beyond the eighth and ninth term respectively we get approximations with errors $\mathrm{E}_{\mathrm{C}}(\mathrm{x})$ and $\mathrm{E}_{\mathrm{S}}(\mathrm{x})$ where both errors are absolutely less than:
$$
\epsilon=\sqrt{\frac{4}{x}} \cdot 1.3 \cdot 10^{-8}
$$

Transformation of the shifted Chebyshev polynomials to ordinary polynomials finally leads to the approximations:

$$
\begin{aligned}
& C(x)=\frac{1}{2}+\sqrt{\frac{4}{x}}(\sin (x) \cdot P(x)+\cos (x) \cdot Q(x)) \\
& S(x)=\frac{1}{2}+\sqrt{\frac{4}{x}}(-\cos (x) \cdot P(x)+\sin (x) \cdot Q(x))
\end{aligned}
$$

where

$$
\begin{aligned}
& P(x)=\sum_{0}^{7} a_{v}\left(\frac{4}{x}\right)^{v} \\
& Q(x)=\sum_{0}^{8} b_{v}\left(\frac{4}{x}\right)^{v} .
\end{aligned}
$$

The coefficients a_{v} and b_{v} are given to eight significant decimal digits:

$$
\begin{aligned}
& a_{0}=0.19947115 \\
& \mathrm{~b}_{0}=-0.00000 \quad 00044440909 \\
& a_{1}=-0.0000012079984 \\
& b_{1}=-0.024933215 \\
& \mathrm{a}_{2}=-0.0093149105 \\
& b_{2}=-0.000016064281 \\
& a_{3}=-0.00040271450 \\
& b_{3}=0.0059721508 \\
& a_{4}=0.0074282459 \\
& b_{4}=-0.00030953412 \\
& a_{5}=-0.0072716901 \\
& b_{5}=-0.0067928011
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{a}_{6} & =0.0034014090 \\
\mathrm{~b}_{6} & =0.0079700430 \\
\mathrm{a}_{7} & =-0.00066339256 \\
b_{7} & =-0.00416 \\
b_{8} & =0.000894
\end{aligned}
$$

2. Approximation in the range $0 \leqq \mathrm{x} \leqq 4$.

Approximations for $C(x)$ and $S(x)$ in the range $0 \leqq x \leqq 4$ were obtained by means of telescoping of the respective Taylor series expansions:

$$
\begin{aligned}
& C(x)=\sqrt{\frac{2}{\pi}} \cdot \sqrt{x} \cdot \sum_{v=0}^{\infty} \frac{(-1)^{v} x^{2 v}}{(4 v+1)(2 v)!} \\
& S(x)=\sqrt{\frac{2}{\pi}} \cdot \sqrt{x^{3}} \cdot \sum_{v=0}^{\infty} \frac{(-1)^{v} x^{2 v}}{(4 v+3)(2 v+1)!}
\end{aligned}
$$

This leads finally to the following approximations:

$$
\begin{aligned}
& C(x)=\sqrt{x} \sum_{v=0}^{6} c_{v} \cdot\left(x^{2}\right)^{v} \\
& S(x)=x \sqrt{x} \sum_{v=0}^{5} d_{v}\left(x^{2}\right)^{v},
\end{aligned}
$$

with respective errors $E_{c}(x)$ and $E_{S}(x)$, where

$$
\begin{aligned}
& \left|E_{c}(x)\right|<\sqrt{x} \cdot 2.6 \cdot 10^{-8} \\
& \left|E_{s}(x)\right|<x \sqrt{x} \cdot 3.5 \cdot 10^{-8}
\end{aligned}
$$

The coefficients c_{v} and d_{v} are given below to eight significant decimal digits:

$$
\begin{aligned}
& \mathrm{c}_{0}=0.79788455 \\
& \mathrm{~d}_{0}=0.26596149 \\
& \mathrm{c}_{1}=-0.079788405 \\
& \mathrm{~d}_{1}=-0.018997110
\end{aligned}
$$

```
c}\mp@subsup{c}{2}{}=0.003693858
d
c}3=-0.00008 52246 22
d
c}4=0.0000011605 28
d
c
d
c}\mp@subsup{c}{6}{}=0.00000\quad00000\quad50998 348
```


Subroutine CS

Purpose:

Computes the Fresnel integrals.

Usage:

CALL CS (C, S, X)
Description of parameters:
C - The resultant value $C(X)$.
S - The resultant value $\mathrm{S}(\mathrm{X})$.
X - The argument of Fresnel integrals. If X is negative, the absolute value is used.

Remarks:
The argument value X remains unchanged.
Subroutines and function subprograms required:
None.

Method:

Definition:
$\mathrm{C}(\mathrm{X})=$ integral $(\mathrm{COS}(\mathrm{T}) / \mathrm{SQRT}(2 * \mathrm{PI} * \mathrm{~T})$ summed over T from 0 to X).
$\mathrm{S}(\mathrm{X})=$ integral $(\mathrm{SIN}(\mathrm{T}) / \mathrm{SQRT}(2 * \mathrm{PI} * \mathrm{~T})$ summed over Trom 0 to X).
Evaluation:
Using different approximations for X less than 4 and X greater than 4.
Reference:
'Computation of Fresnel Integrals' by Boersma, Mathematical Tables and Other Aids to Computation, Vol. 14,1960 , No. 72 , p. 380.
subrdutine csic.s,x)
$t=A B S(x)$
c
XIS NOT GREATER THAN 4
C*SORTII)
$5=2 * \mathrm{C}$

$1-.85224622 \mathrm{E}-41 * 2+.36938586 \mathrm{E}-2162-.079788405)=24.797884551$

$1 \rightarrow+004537 \mathrm{IE}-31 * 2-10997110 \mathrm{E}-1102+265961491$
c Z is
greater than 4
$\mathrm{D}=\mathrm{COS}(2)$
$\mathrm{S}=\mathrm{Sin}(2)$
2*4.12

$1.67928011 \mathrm{~F}-21 * 2-30953412 \mathrm{E}-31 * 24.59721508 \mathrm{E}-21 * 2-.160842 \mathrm{Bl}$
$2.0249332151 * 2-.4440909 \mathrm{E}$

1.14.282459E-2)*2-. 40271450E-3)*2-.93149105E-21*2-.12079984E-51*2*
2.1994711

RETURN
END

Mathematics - Linear Equations

SIMQ
Purpose:
Obtain solution of a set of simultaneous linear equations, $A X=B$.

Usage:

CALL SIMQ(A , B, N, KS)

Description of parameters:
A - Matrix of coefficients stored columnwise. These are destroyed in the computation. The size of matrix A is N by N .
B - Vector of original constants (length N). These are replaced by final solution values, vector X .
N - Number of equations and variables. N must be greater than 1.
KS - Output digit:
0 For a normal solution.
1 For a singular set of equations.

Remarks:

Matrix A must be general.
If matrix is singular, solution values are meaningless.
An alternative solution may be obtained by using matrix inversion (MINV) and matrix product (GMPRD):

Subroutines and function subprograms required: None.

Method:
Method of solution is by elimination using largest pivotal divisor. Each stage of elimination consists of interchanging rows when necessary to avoid division by zero or small elements. The forward solution to obtain variable N is done in N stages. The back solution for the other variables is calculated by successive substitutions. Final solution values are developed in vector B, with variable 1 in $B(1)$, variable 2 in $B(2), \ldots \ldots \ldots$, variable N in $B(N)$.
If no pivot can be found exceeding a tolerance of 0.0 , the matrix is considered singular and KS is set to 1 . This tolerance can be modified by replacing the first statement.

search for maximum coefficient in columa $\mathrm{J}=1 \mathrm{~T}+\mathrm{I}$
ifiabsibigat-absiatijul 20.30,30
20 BIGA*AiIJ
1 Max $=1$
CONT
INU
c 30 continue for pivot less than tolerance isingular matrixi Tf(ABS(EIGA)-TOL) $35,35,40$

35 | $\mathrm{K} S=1$ |
| :---: |
| RET |

c RETJRN interchange rjus if necessary

DO $50 \mathrm{KNJ}, \mathrm{N}$
$11=12+N$
$12=11+1 T$
$12=11+1 t$
SAVE=A1
A(II)ACt2
A(1)

0 Allilzallly Biga
SAVE=B (IMAX
BtJ=SAvE/AIG
C eliminate next variable
(F $(J-N) 55,70,55$
$55 \operatorname{los}=\mathrm{N}=(\mathrm{J}-1)$
CO
$05(\mathrm{X}=\mathrm{JY}, \mathrm{N}$
$1 \times j=105+1 \mathrm{x}$

CO $\quad 60 \quad 1 x=3 Y=N$
$[x J X=N+1 J x=11+1 x$
$3 J x=1 x J x+1 T$
$A(1 x J x)=A(1 x$

-65 $B(\mid x)=B(\mid x)-18(J) \& A(\mid x J))$
c 70 nY=N-1 gack SLUTION

$11=\mathrm{NFH}$
DO
BO
$\mathrm{J}=1, \mathrm{NY}$

$18=11-J$
$18=01$
$10=1$
00
0150
$00 \mathrm{kO} \mathrm{K}=1, \mathrm{~J}$
8(IB)=B(IB)-ACIA) *BIICI
$\quad \begin{aligned} & 1 A=I A-N \\ & C=I C-1\end{aligned}$
OEEIC-1
RETURN
END
END

Mathematics - Roots of Nonlinear Equations

RTWI

This subroutine refines the initial guess x_{0} of a root of the general nonlinear equation $x=f(x)$.
Wegstein's iteration scheme is used in order to get accelerated convergence in case of a function $f(x)$, which has at least continuous first derivative in the range in which iteration moves.

Following Figure 8, set $x_{1}=y_{0}=f\left(x_{0}\right)$ and $y_{1}=$ $\mathrm{f}\left(\mathrm{x}_{1}\right)$.

Refinement of x_{1} is done by determination of the intersection of the linear function $y=x$ and the secant through the points ($\mathrm{x}_{0}, \mathrm{y}_{0}$) and ($\mathrm{x}_{1}, \mathrm{y}_{1}$), thus getting:

$$
\begin{aligned}
x_{2} & =x_{1}+\frac{x_{1}-x_{0}}{\frac{x_{0}-y_{0}}{x_{1}-y_{1}}}-1 \\
\text { and } y_{2} & =f\left(x_{2}\right)
\end{aligned}
$$

The next step is done by starting at $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ and setting:

$$
\begin{aligned}
& x_{3}=x_{2}+\frac{x_{2}-x_{1}}{\frac{x_{1}-y_{1}}{x_{2}-y_{2}}-1} \\
& y_{3}=f\left(x_{3}\right)
\end{aligned}
$$

Figure 8. Wegstein's iterative method

Itcan be seen that this determines the intersection between $y=x$ and the secant through the points
($\mathrm{x}_{1}, \mathrm{y}_{1}$) and ($\mathrm{x}_{2}, \mathrm{y}_{2}$). Therefore Wegstein's iteration scheme is often called the secant modification of the normal iteration scheme $x_{i+1}=f\left(x_{i}\right)$.

Repeating these steps, the result is the iteration scheme:

$$
\left.\begin{array}{l}
x_{i+1}=x_{i}+\frac{x_{i}-x_{i-1}}{\frac{x_{i-1}-y_{i-1}}{x_{i}-y_{i}}}-1 \tag{1}\\
y_{i+1}=f\left(x_{i+1}\right)
\end{array}\right\}(i=1,2, \ldots)
$$

Each step requires one evaluation of $f(x)$.
This iterative procedure is terminated if the following two conditions are satisfied:

$$
\begin{aligned}
& \delta_{1} \leqq \text { and } \delta_{2} \leqq 10 . \varepsilon \\
& \delta_{1}=\left\{\begin{array}{l}
\left|x_{i+1}-x_{i}\right| \\
\left|x_{i+1}\right| \\
\left|x_{i+1}-x_{i}\right|
\end{array}\right. \\
& \text { if } \quad\left|x_{i+1}\right|>1
\end{aligned}
$$

with
and tolerance ε given by input.
The procedure described above may not converge within a specified number of iteration steps. Reasons for this behavior, which is indicated by an error message may be:

1. Too few iteration steps are specified.
2. The initial guess x_{0} is too far away from any root.
3. The tolerance ε is too small with respect to roundoff errors.
4. The root to be determined is of multiplicity greater than one.
Furthermore, the procedure fails if at any iteration step the denominator of equation (1) becomes zero. This is also indicated by an error message. This failure may have two reasons:
5. The secant has the slope 1 , either exactly or due to roundoff errors. In both cases it is probable that there is at least one point ξ in the range in which iteration moves with $\mathrm{f}^{\prime}(\xi)=1$.
6. $x_{i}=x_{i-1}$ and $x_{i} \neq y_{i}=f\left(x_{i}\right)$. This case is possible due to roundoff errors or to a very steep slope of the secant.

Subroutine RTWI

Purpose:

To solve general nonlinear equations of the form $\mathrm{X}=\mathrm{FCT}(\mathrm{X})$ by means of Wegstein's iteration method.

Usage:
CALL RTWI (X, VAL, FCT, XST, EPS, IEND, IER)
Parameter FCT requires an EXTERNAL statement.

Description of parameters:
$X \quad$ - Resultant root of equation $X=F C T(X)$.
VAL - Resultant value of X-FCT(X) at rootX.
FCT - Name of the external function subprogram used.
XST - Input value which specifies the initial guess of the root X .
EPS - Input value which specifies the upper bound of the error of result X.
IEND - Maximum number of iteration steps specified.
IER - Resultant error parameter coded as follows:

IER=0 - no error
IER=1 - no convergence after IEND iteration steps
IER=2 - at some iteration step the denominator of iteration formula was equal to zero

Remarks:
The procedure is bypassed and gives the error message $I E R=2$ if at any iteration steps the denominator of the iteration formula is equal to zero. That means that there is at least one point in the range in which iteration moves with the derivative of $\operatorname{FCT}(\mathrm{X})$ equal to 1 .

Subroutines and function subprograms required: The external function subprogram FCT(X) must be furnished by the user.
Method:
Solution of equation $\mathrm{X}=\mathrm{FCT}(\mathrm{X})$ is done by means of Wegstein's iteration method, which starts at the initial guess XST of a root X. One iteration step requires one evaluation of $\mathrm{FCT}(\mathrm{X})$. For test on satisfactory accuracy see formula (2) of mathematical description.
For reference, see:

1. G. N. Lance, Numerical Methods for High Speed Computers, Iliffe, London, 1960, pp. 134-138.
2. J. Wegstein, "Algorithm 2," CACM, Vol. 3, Iss. 2 (1960), pp. 74.
3. H.C. Thacher, "Algorithm 15," CACM, Vol. 3, Iss. 8 (1960), pp. 475.
4. J. G. Herriot, "Algorithm 26," CACM, Vol. 3, Iss. 11 (1960), pp. 603.
```
SUBROUTINE RTWIIX,VAL,FCT,XST,EPS|IEND,IER
    prepare iteration
    MREPARE
    MOL=XST
```



```
    B=-A
    VAL=x-FCT(TOL)
C START ITERATION LOOP
    OO% 1=1:IEND
    IF!valil,7:1
    EGB/VAL=1.
    B=A/VAL=1.;
        MTERATION Is possible
    2 A=A/B
        l}\begin{array}{l}{x=x+A}\\{B*VAL}\\{TOL=x}
        VAL-X-FCT(TOL)
c TEST ON SATISFACTORY ACCURACY
        TOL=EPS
        IF(D-1,14,4,
    TOL=TOL#D
    4IF(ABS(A)-TOL)5,5,6
    5 IFAASS(VALI-10.*TOL17,7,6
    6 CONTINUE
        No CONVERGENCE AFTER IEND ItERATION STEPS. ERROR rETURN.
        NNOCONV
7 RETURN mRTURN IN GASE OF zERO DIVISOR
    IER=2
```

RTMI

This subroutine determines a root of the general nonlinear equation $f(x)=0$ in the range of x from $x_{l i}$ up to $x_{r i}\left(x_{l i}, x_{r i}\right.$ given by input) by means of Mueller's iteration scheme of successive bisection and inverse parabolic interpolation. The procedure assumes $f\left(x_{l i}\right) . f\left(x_{r i}\right) \leqq 0$.

Starting with $\mathrm{x}_{1}=\mathrm{x}_{1 \mathrm{i}}$ and $\mathrm{x}_{\mathrm{r}}=\mathrm{x}_{\mathrm{ri}}$ and following Fig. 9, one iteration step is described.

First, the middle of the interval $x_{1} \ldots x_{r}$ is computed:

$$
x_{m}=\frac{1}{2}\left(x_{1}+x_{r}\right)
$$

In case $f\left(x_{m}\right) . f\left(x_{r}\right)<0, x_{1}$ and x_{r} are interchanged to ensure that $f\left(x_{m}\right) \cdot f\left(x_{r}\right)>0$.
In case
$2 f\left(x_{m}\right)\left[f\left(x_{m}\right)-f\left(x_{1}\right)\right]-f\left(x_{r}\right)\left[f\left(x_{r}\right)-f\left(x_{1}\right)\right] \geq 0$
x_{r} is replaced by x_{m} and the bisection step is repeated. If, after a specified number of successive bisections, inequality (1) is still satisfied, the procedure is bypassed and an error message is given.

In Fig. 9, the second bisection step leads to a configuration which does not satisfy inequality (1). Thus by inverse parabolic interpolation:

$$
\begin{align*}
& \Delta x= f\left(x_{1}\right) \frac{x_{m}-x_{1}}{f\left(x_{m}\right)-f\left(x_{1}\right)} \\
&\left\{\begin{array}{l}
f\left(x_{r}\right)-2 f\left(x_{m}\right)+f\left(x_{1}\right) \\
\left.1+x_{m}\right)
\end{array} \frac{\left.f\left(x_{r}\right)-f\left(x_{m}\right)\right]}{\left.f f\left(x_{r}\right)-f\left(x_{1}\right)\right]}\right\} \tag{2}\\
& \text { and } x=x_{1}-\Delta x
\end{align*}
$$

and x is sure to be situated between x_{1} and x_{m}

Figure 9. Mueller's iterative method

Now, for the next iteration step, x becomes x_{1} and x_{m} becomes x_{r} if $f(x) \cdot f\left(x_{1}\right)>0$, or x becomes x_{r} if $f(x) \cdot f\left(x_{1}\right)<0$.

Convergence is either quadratic or linear if the multiplicity of the root to be determined is equal to one or greater than one respectively, and if $f(x)$ can be differentiated continuously at least twice in the range $\mathrm{x}_{\mathrm{li}} \ldots \mathrm{x}_{\mathrm{ri}}$. Each iteration step requires two evaluations of $f(x)$.

This iterative procedure is terminated if either the two conditions (checked in bisection loop)
and

$$
\left.\begin{array}{l}
\left|x_{r}-x_{1}\right| \leq \varepsilon \cdot \max \left(1,\left|x_{r}\right|\right) \tag{3}\\
\mid f\left(x_{r}\right)-f\left(x_{1} \mid \leq 100 \cdot \varepsilon\right.
\end{array}\right\}
$$

or the two conditions (checked after inverse parabolic interpolation)
and

$$
\left.\begin{array}{l}
|\Delta x| \leq \varepsilon \cdot \max (1,|x|) \tag{4}\\
|f(x)| \leq 100 \cdot \varepsilon
\end{array}\right\}
$$

are satisfied, where tolerance ε is given by input.
The procedure described above may not converge within a specified number of iteration steps followed by the same number of successive bisections. Reasons for this behaviour, which is indicated by an error message, may be:

1. Too few iteration steps are specified.
2. The initial interval $\mathrm{x}_{\mathrm{l}} \cdots \mathrm{x}_{\mathrm{ri}}$ is too long.
3. The tolerance ε is too small with respect to roundoff errors.

Furthermore, the procedure is bypassed, also giving an error message, if the basic assumption $f\left(x_{1 i}\right) . f\left(x_{r i}\right) \leq 0$ is not satisfied.

For reference see G. K. Kristiansen, "Zero of Arbitrary Function ${ }^{\prime \prime}$, BIT, vol. 3 (1963), pp. 205206.

Subroutine RTMI

Purpose:

To solve general nonlinear equations of the form $\mathrm{FCT}(\mathrm{X})=0$ by means of Mueller's iteration method.

Usage:
CALL RTMI(X, F, FCT, XLI, XRI, EPS, IEND, IER)
Parameter FCT requires an EXTERNAL statement.

Description of parameters:
X - Resultant root of equation $\mathrm{FCT}(\mathrm{X})=0$.
F - Resultant function value at root X.
FCT - Name of the external function subprogram used.
XLI - Input value which specifies the initial left bound of the root X.
XRI - Input value which specifies the initial right bound of the root X.
EPS - Input value which specifies the upper bound of the error of result X .
IEND - Maximum number of iteration steps specified.
IER - Resultant error parameter coded as follows:

IER=0 - no error
IER=1 - no convergence after IEND iteration steps followed by IEND successive steps of bisection
IER=2 - basic assumption FCT(XLI)
*FCT(XRI) less than or equal to zero is not satisfied

Remarks:

The procedure assumes that function values at initial bounds XLI and XRI have not the same sign. If this basic assumption is not satisfied by input values XLI and XRI, the procedure is bypassed and gives the error message $\operatorname{IER}=2$.

Subroutines and function subprograms required: The external function subprogram $\operatorname{FCT}(\mathrm{X})$ must be furnished by the user.

Method:
Solution of equation $\operatorname{FCT}(X)=0$ is done by means of Mueller's iteration method of successive bisections and inverse parabolic interpolation, which starts at the initial bounds XLI and XRI. Convergence is quadratic if the derivative of $\mathrm{FCT}(\mathrm{X})$ at root X is not equal to zero. One iteration step requires two evaluations of $\mathrm{FCT}(\mathrm{X})$. For test on satisfactory accuracy see formulae $(3,4)$ of mathematical description.

SUBROUTINE RTMICX,F,FCT,XLI,XRI,EPS,IEND,IERI
c PREPARE ITERATION
$\mathrm{IER=O}$
$\mathrm{XL}=\mathrm{XL} \mathrm{I}$
$x R=X R 1$
$x=X L$
TOL=x
faflet(TOL)
Faferitol
tFifilithel

TOLaX
facCTITOL
1FFF:2,16.2
2 FRaf
IF(SIGN(1..FL) STIGNII.,FRI)25.3,25
c BASIC ASSUMOTION FL*FR LESS TMAN O IS SATISFIED.

TOLF:100.*FPS
START ItERATION loop
c START BISECTION LOOD
OO $13 \mathrm{k}=1$ IEND

tFif)3,16.5
5 IFISIGN(1., FF)-SIGN(1., FR) 17.6.7
interchange xl and xr in order to get the same sign in fand fr
$\mathrm{TOL}=\mathrm{XL}_{\mathrm{L}}$
$\mathrm{XL}=\mathrm{XR}_{\mathrm{R}}$

$7 \begin{aligned} & \mathrm{FR}=\mathrm{TOL} \\ & \mathrm{TOL}=\mathrm{F}-\mathrm{FL}\end{aligned}$
$A=A+C L$
$A=A+A$
(FIA-FR*(FR-FL)1B,9,9
8 if(I-IENDII7.17.9

c test on satisfactory accuracy in bisection loop TOL $=$ EPS
AIABS
PR
1F(A-1.) 111,11,10
10 YOL=TOLAA
11 IF(ABS (XR-XL)-TOL) $12,12,1$
12 IFABSIFR-XL)-TOLI $12,12,13$

- 13 CONTINUE END OF PISECTION LOOP

C END OF RISECTION LOOP
C NO CONERGENCE AFTER IEND ITERATION STEOS FOLLOWFD BY IENO SUCCESSIVE STEPS OF BISECTION OR STEAOILY INCREASING FUNCIION IER=1
14 IF(ABS(FR)-ARS!FL) $116,16.19$

$5 \mathrm{X}=\mathrm{xL}$
$\mathrm{F}=\mathrm{FL}$

16 RETURN
computation of iterated x-value by inverse parabolic interpolationt rim
1+ $\left.\begin{array}{c}A=F R-F \\ D X=(X-X L)\end{array}\right) F L *(10+F *(A-T O L) /(A *(F R-F L)) / 1 / T O L$
$\mathrm{X} M=\mathrm{X}$
$\mathrm{FM}=\mathrm{F}$
$x=x L-D x$
TOL $=x$
TOLEX
FFFCTITOL)
test on satisfactooy accuracy in iteration loop

- 1A TOL=EPS
$A=A B S(x)$
$I F(A-1$
IFlA-1:120,20,19
19 TOLAYOL:A
21 IF (ABS (F)-TOLF) 16:16;22
C PREPARATION OF NEXT BISECTION LOOP
22 IFISIGN(1.OF)+SIGNIG.OFLH24.23.24
$\quad \begin{aligned} & X R=X \\ & f R=F \\ & G O T O\end{aligned}$
$24 \begin{aligned} & X L * X \\ & F L=F\end{aligned}$
$X R=X M$
$F R=F M$
GO TO
c END OF ITERATION LOOP
$25 \begin{aligned} & \text { ERR } \mathrm{E}=2\end{aligned}$ RETUR
END
RTNI
This subroutine refines the initial guess x_{0} of a root of the general nonlinear equation $f(x)=0$. Newton's iteration scheme is used in the following form:

$$
\begin{equation*}
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \quad(i=0,1,2, \ldots) \tag{1}
\end{equation*}
$$

Convergence is quadratic or linear if the multiplicity of the root to be determined is equal to one or greater than one respectively, and if $f(x)$ can be differentiated continuously at least twice in the range in which iteration moves. Each iteration step requires one evaluation of $f(x)$ and one evaluation of $f^{\prime}(x)$.

This iterative procedure is terminated if the following two conditions are satisfied:

$$
\begin{align*}
& \delta \leqq \varepsilon \text { and }\left|f\left(x_{i+1}\right)\right| \leqq 100 \cdot \varepsilon \\
& \delta=\left\{\begin{array}{l}
\left|x_{i+1}-x_{i}\right| \text { in case of }\left|x_{i+1}\right|>1 \\
\left|x_{i+1}\right| \\
\left|x_{i+1}-x_{i}\right| \text { in case of }\left|x_{i+1}\right| \leqq 1
\end{array}\right\} \tag{2}
\end{align*}
$$

and tolerance $\boldsymbol{\varepsilon}$ given by input.
The procedure described above may not converge within a specified number of iteration steps. Reasons for this behaviour, which is indicated by an error message, may be:

1. Too few iteration steps are specified.
2. The initial guess x_{0} is too far away from any root.
3. The tolerance ε is too small with respect to roundoff errors.
4. The root to be determined is of multiplicity greater than one.

Furthermore, the procedure fails and is bypassed if at any iteration step the derivative $f\left(x_{i}\right)$ becomes zero. This is also indicated by an error message.

For reference see:
(1) F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, New York/Toronto/ London, 1956, pp. 447-450.
(2) R. Zurmühl, Praktische Mathematik für Ingenieure und Physiker, Springer, Berlin/ Göttingen/Heidelberg, 1963, pp. 12-17.

Subroutine RTNI

Purpose:

To solve general nonlinear equations of the form $\mathrm{F}(\mathrm{X})=0$ by means of Newton's iteration method.

Usage:

CALL RTNI (X, F, DERF, FCT, XST, EPS, IEND, IER) Parameter FCT requires an EXTERNAL statement

Description of parameters:
X - Resultant root of equation $F(X)=0$.
F - Resultant function value at root X.
DERF - Resultant value of derivative at root X.
FCT - Name of the external subroutine used. It computes for given argument X the function value F and derivative $D E R F$. Its parameter list must be X, F, DERF.
XST - Input value which specifies the initial guess of the root X.
EPS - Input value which specifies the upper bound of the error of result X .

IEND - Maximum number of iteration steps specified.
IER - Resultant error parameter coded as follows:
IER=0 - no error
IER=1 - no convergence after IEND iteration steps
IER=2 - at some iteration step derivative DERF was equal to zero

Remarks:
The procedure is bypassed and gives the error message $\mathrm{IER}=2$ if at any iteration step the derivative of $F(X)$ is equal to 0 . Possibly the procedure would be successful if it were started again with another initial guess XST.

Subroutines and function subprograms required: The external subroutine $\operatorname{FCT}(\mathrm{X}, \mathrm{F}, \mathrm{DERF})$ must be furnished by the user.

Method:
Solution of the equation $F(X)=0$ is obtained by means of Newton's iteration method, which starts at the initial guess XST of a root X . ' Convergence is quadratic if the derivative of $F(X)$ at root X is not equal to zero. One iteration step requires one evaluation of $\mathrm{F}(\mathrm{X})$ and one evaluation of the derivative of $\mathrm{F}(\mathrm{X})$. For tests on satisfactory accuracy see formula (2) of the mathematical description.

```
SUBROUTINE RTNI(X,F,DERF,FCT,XST,EPS,IEND,IER)
    PREPARE ITERATION
    MPREPART
    MER=0
    CALLFCT(TOL,F,OERF)
TOLF=100.*EPS 
    DOGI=1,IEND
    IF(F)I.7:1
EQUATION IS NOT SATISFIED BY X
    IF(DERF)2,A,2
    ITERATION
    Cx=x-Dx
    X=x-Dx
CALL FCTITOL,F,DERFI
C TEST ON SATISFAGTORY ACCURACY
    TOLEEPS
    IF(A-1.14,
    3 TOL=TOL*A,
    4 TF(ABS(DX)-TOL)5,5,6
    5 TF(ABS(F)
C END OF ITERATION LOOP
    END OF ITERATION LOOP 
    IER=1
    error return in case of zero divisor
    | ERROR R
    l
```


Mathematics - Roots of Polynomial

POLRT

This subroutine computes the real and complex roots of a real polynomial.

Given a polynomial

$$
f(z)=\sum_{n=0}^{N} a_{n} z^{n}
$$

let
$Z=X+i Y$ be a starting value for a root of $f(z)$. Then:

$$
\begin{equation*}
\mathrm{z}^{\mathrm{n}}=(\mathrm{X}+\mathrm{iY})^{\mathrm{n}} \tag{2}
\end{equation*}
$$

Define X_{n} as real terms of expanded equation (2). Define Y_{n} as imaginary terms of expanded equation (2).

Then for:

$$
\begin{align*}
\mathrm{n} & =0 \\
\mathrm{X}_{\mathrm{o}} & =1.0 \\
\mathrm{Y}_{\mathrm{o}} & =0.0 \\
\mathrm{n} & >0 \\
\mathrm{X}_{\mathrm{n}} & =\mathrm{X} \cdot \mathrm{X}_{\mathrm{n}-1}-\mathrm{Y} \cdot \mathrm{Y}_{\mathrm{n}-1} \tag{3}\\
\mathrm{Y}_{\mathrm{n}} & =\mathrm{X} \cdot \mathrm{Y}_{\mathrm{n}-1}+\mathrm{Y} \cdot \mathrm{X}_{\mathrm{n}-1} \tag{4}
\end{align*}
$$

Let U be the real terms of (1).
V be the imaginary terms of (1).
Then:

$$
\begin{aligned}
& U=\sum_{n=0}^{N} a_{n} X_{n} \\
& V=\sum_{n=0}^{N} a_{n} Y_{n}
\end{aligned}
$$

or

$$
\begin{align*}
& U=a_{0}+\sum_{n=1}^{N} a_{n} X_{n} \tag{7}\\
& V=\sum_{n=1}^{N} a_{n} Y_{n} \tag{8}\\
& \frac{\partial U}{\partial X}=\sum_{n=1}^{N} n \cdot X_{n-1} \cdot a_{n} \tag{9}\\
& \frac{\partial U}{\partial Y}=-\sum_{n=1}^{N} n Y_{n-1} a_{n} \tag{10}
\end{align*}
$$

Note that equations (3), (4), (7), (8), (9), and (10) can be performed iteratively for $\mathrm{n}=1$ to N by saving $\mathrm{X}_{\mathrm{n}-1}$ and $\mathrm{Y}_{\mathrm{n}-1}$.

Using the Newton-Raphson method for computing $\Delta \mathrm{X}, \Delta \mathrm{Y}$, we have:

$$
\begin{align*}
& \Delta X=\left(V \frac{\partial U}{\partial Y}-U \frac{\partial U}{\partial X}\right) /\left[\left(\frac{\partial U}{\partial X}\right)^{2}+\left(\frac{\partial U}{\partial Y}\right)^{2}\right] \tag{11}\\
& \Delta Y=-\left(U \frac{\partial U}{\partial Y}+V \frac{\partial U}{\partial X}\right) /\left[\left(\frac{\partial U}{\partial X}\right)^{2}+\left(\frac{\partial U}{\partial Y}\right)^{2}\right] \tag{12}
\end{align*}
$$

after applying the Cauchy-Riemann equations.
Thus, for the next iteration:

$$
\begin{aligned}
& \mathrm{X}^{\prime}=\mathrm{X}+\Delta \mathrm{X} \\
& \mathrm{Y}^{\prime}=\mathrm{Y}+\Delta \mathrm{Y}
\end{aligned}
$$

Subroutine POLRT
Purpose:
Computes the real and complex roots of a real polynomial.

Usage:
CALL POLRT(XCOF, COF, M, ROOTR, ROOTI, IER)

Description of parameters:
XCOF - Vector of M+1 coefficients of the polynomial ordered from smallest to largest power.
COF - Working vector of length $\mathrm{M}+1$.
M - Order of polynomial.
ROOTR - Resultant vector of length M containing real roots of the polynomial.
ROOTI - Resultant vector of length M containing the corresponding imaginary roots of the polynomial.
IER - Error code where:
IER=0 No error.
IER=1 M less than one.
$I E R=2 \quad M$ greater than 36.
IER=3 Unable to determine root with 500 iterations on 5 starting values.
IER=4 High order coefficient is zero.

Remarks:
Limited to 36 th order polynomial or less. Floating-point overflow may occur for high order polynomials but will not affect the accuracy of the results.

Subroutines and function subprograms required: None.

Method:
Newton-Raphson iterative technique. The final iterations on each root are performed using the original polynomial rather than the reduced polynomial to avoid accumulated errors in the reduced polynomial.
SUBROUTINE POLRTIXCCF,GOF, M, ROOTRIROOTIIIERI
DIMENSION XCOF(2),SOF(1):ROOTR(1)PROOT11:
$\mathrm{iFit}_{\mathrm{N}=\mathrm{M}}^{\mathrm{M}} \mathrm{O}$
IER=O
(FixCOF(N+1)) $10,25,10$
IFINI $15+15=32$
IER=1
RETURN
20 RE TURN
25 SER=4 ERROR CODE TO 4
$25 \begin{aligned} & \text { IER }=4 \\ & \text { GO } 10 \\ & 20\end{aligned}$
30 IER-2
GO TO 20
GO TO 20
$2 \mathrm{~F}(\mathrm{~N}-36)$
$35 \mathrm{NX}=\mathrm{N}$
$N X X=N+1$
$N 2=1$
${ }_{K J 1}=N+1$
$00{ }^{40} L=1, K J 1$
$M T=K J 1-L+1$
$40 \operatorname{COF}(M T)=x \operatorname{COF}(\mathrm{~L})$
54 SET INITIAL VALUES
YO. 0.005000101
$6 \quad$ ineoro initial value gounter
$50 \begin{gathered}1 N=0 \\ \mathrm{X}=\mathrm{xO}\end{gathered}$
increment initial values and counter
$X O=-10.0 * Y O$
$Y O=-10.04 X$
set x and y to gurrent value
$x=x 0$
$y=Y 0$
INEIN+1
GO 10 . 59
$53 \begin{gathered}1 F I T=1 \\ X P R=x\end{gathered}$
XPREX
YPR
iction evate polynomial and derivatives
59 ICT=O
$60 \quad U X=0.0$
$U X=0.0$
$U Y=0.0$
$Y=0.0$
$V=0.0$
$V T=0.0$
$X T E S=0$

1F(U) 65,130.65

$x T 2=x \neq x T-Y=Y T$
$y T 2=x=Y T+Y * x T$

FI: + l

$x T=x_{12} 2$
$Y T=Y / 2$
$10 \begin{aligned} & \mathrm{YT}=\mathrm{YI} 2\end{aligned}$
SLMSO-UXeux+uyeur
75 DX=1v=uY-u*uxi/sumso

(78 IF(ABS(DY)+ ABS(DXI-1.0E-05) 100.80.80

- SIEP ITERATION COUNTER
$80 \begin{aligned} & 1 C T=1 C T+1 \\ & \text { IflicT-500 }\end{aligned}$
IFIICT-5001 60, 35,85
85 IFIIFIT1 100,90.100
C 90 IFIIN-5) $50,95,95$
95 terna error code to 3
GR 10
GO 20

$M T=K J 1-L \rightarrow 2$
$T E M P=X C O F$
TEMP $=x C O F(N T)$
$x C O F(M T)=G O F i L$
105 COFILIETEMP
ITEMP $=$ N
$N=N X$
$N X=1 T E M$
NX:ITEMP
IFIIFITI
TEIFITI 120,55,120
110 IFIFITH 215.50 .115
$15=X P R$
$Y=Y P R$
20 IFIT=0

ALPMA $X+X$
SUMSO $=X * X+Y * ~$
Suns
$\mathrm{N}=\mathrm{N}-2$
CO
T
$3 \begin{aligned} & 60 \text { T0 } 140 \\ & x=0.0\end{aligned}$
$30 \begin{aligned} & x=0.0 \\ & N X=N X-1\end{aligned}$
$N X=N X-1$
$N X X=N X X-1$
$Y=O$

alpmazx

COF(L2) = COF(L2) + ALPHA COF(LI)
4500150 L-2,N
150 COF $(L+1)=\operatorname{COF}(L+11+$ ALPHA*CUF(L)-SUMSG*CUF(L-S)
55 ROOTIIN2l:Y
ROOTRIN2
$\mathrm{N} 2=\mathrm{N} 2+1$
$\mathrm{N}=\mathrm{NR} 2+1$
$\mathrm{IFISUMSO} 160,165,160$

SUMSO*0.0
65 IFiNI $20,20,45$
65 END

POLRT POLRT POLRT
POLAT POLRT
POLRT

Mathematics - Polynomial Operations

PADD

Purpose:
Add two polynomials.
Usage:
CALL PADD(Z, IDIMZ, X, IDIMX, Y, IDIMY)
Description of parameters:
Z - Vector of resultant coefficients, ordered from smallest to largest power.
IDIMZ - Dimension of Z (calculated).
$X \quad$ - Vector of coefficients for first polynomial, ordered from smallest to largest power.
IDIMX - Dimension of X (degree is IDIMX-1).
Y - Vector of coefficients for second polynomial, ordered from smallest to largest power.
IDIMY - Dimension of Y (degree is IDIMY-1).

Remarks:

Vector Z may be in same location as either vector X or vector Y only if the dimension of that vector is not less than the other input vector. The resultant polynomial may have trailing zero coefficients.

Subroutines and function subprograms required: None.

Method:
Dimension of resultant vector IDIMZ is calculated as the larger of the two input vector dimensions. Corresponding coefficients are then added to form Z .

SURROUTINE PADDIZ, IDIMZ, $X, I O I M X, Y, I D I M Y$) DIMENSION ZIII, X\{1),Y\{11	
test oimensions of summanos	PADO 3
	PADO PADO S
10 Noimmidimy	${ }_{\text {Pado }}$ Pa
>0 IFINDIM) 90,90, 33	pado 7
	pand a
IF(1-\{DIMx) 40,40,60	pann 9
40 Ifli-idiay $50,50,70$	pado in
50 [10) $\times 1$ (1) ${ }^{\text {a }}$ (1)	P400 11
${ }^{60}$ ro ${ }^{\text {80 }}$	PADO 12
	PADO PADD 13 14
70 z1raxil	Pand 15
¢0 coniliue	Padod 16
retuen	${ }_{P A O D}{ }^{\text {Pad }}$
eno	- A00 19

PADDM

Purpose:
Add coefficients of one polynomial to the product of a factor by coefficients of another polynomial.
Usage:
CALL PADDM(Z, IDIMZ, X, IDIMX, FACT, Y, IDIMY)
Description of parameters:
Z - Vector of resultant coefficients, ordered from smallest to largest power.
IDIMZ - Dimension of Z (calculated).
X - Vector of coefficients for first polynomial, ordered from smallest to largest power.
IDIMX - Dimension of X (degree is IDIMX-1).
FACT - Factor to be multiplied by vector Y.
Y - Vector of coefficients for second polynomial, ordered from smallest to largest power.
IDIMY - Dimension of Y (degree is IDIMY-1).
Remarks:
Vector Z may be in same location as either vector X or vector Y only if the dimension of that vector is not less than the other input vector. The resultant polynomial may have trailing zero coefficients.
Subroutines and function subprograms required: None.
Method:
Dimension of resultant vector IDIMZ is calculated as the larger of the two input vector dimensions. Coefficient in vector X is then added to coefficient in vector Y multiplied by factor to
form Z.
SUBROUTINE PADDKI Z,IDIMZ,X,IDINX,FACT,Y,IDIMYI
OIMENSION 2(1), XIll,Y(1)
TEST DIMENSIONS OF SUMmANDS

Ifiloinx-iDiny $10,20,20$
NOIHEIDIMY
If (NDIM) 90

IFII-IIMXI 40,40,60
IFII-10IMYI $50,50,70$
Lllefact*Y(IIty
GO to go

2117 Fa 80
$2611=\times 111$
$102111=\times 111$
80 CONTINUE
TOIMZ
RETURN
ENO

PAODMpacom	
Padom	
AD	
400	
ADo	
Pado	
a,	
ad	
ADOD	10
ADD	11
adom	12
ado	
a00	
do	
A	

PCLA

Purpose:
Move polynomial X to Y .

Usage:

CALL PCLA(Y, IDIMY, X, IDIMX)
Description of parameters:
Y - Vector of resultant coefficients, ordered from smallest to largest power.
IDIMY - Dimension of Y.

X - Vector of coefficients for polynomial, ordered from smallest to largest power.
IDIMX - Dimension of X .
Remarks:
None.

Subroutines and function subprograms required: None.

Method:
IDIMY is replaced by IDIMX and vector X is moved to Y .

```
    Sugroutine pCla (y,idiny,x,idimx)
    DIMENSION xIII,y:i
    MIMENSION XI
    (FifOIMx] 30,30,10
10 00 20 I=1,101Mx
20 Y(1)=x(J)
    O
```


PSUB

Purpose:

Subtract one polynomial from another.
Usage:
CALL PSUB(Z, IDIMZ, X, IDIMX, Y, IDIMY)
Description of parameters:
Z - Vector of resultant coefficients, ordered from smallest to largest power.
IDIMZ - Dimension of Z (calculated).
X - Vector of coefficients for first polynomial, ordered from smallest to largest power.
IDIMX - Dimension of X (degree is IDIMX-1).
Y - Vector of coefficients for second polynomial, ordered from smallest to largest power.
IDIMY - Dimension of Y (degree is DIMY-1).
Remarks:
Vector Z may be in same location as either vector X or vector Y only if the dimension of that vector is not less than the other input vector. The resultant polynomial may have trailing zero coefficients.

Subroutines and function subprograms required:
None.
Method:
Dimension of resultant vector IDIMZ is calculated as the larger of the two input vector dimensions. Coefficients in vector Y are then subtracted from corresponding coefficients in vector X.

```
        SUBROUTINE PSUBIL,IDIMZ,X,1OIMX, Y,IOIMY
        OIMENSIGN 2(1);xi1),VI1)
        NOIM=10:MX
        IF lloinx-loiny 10.20.20
    IF IIDINX-1
    10 NOIM=10INY (N0,90,30
    30 DO 80 [=1,NOIM
    IF (I-IDIMXI 40,40,60
    40 IF (I-101MV)}50,50,7
    so l(1)=x(I)-Y(I)
    60 T0 80
    60 21t)=-y(1
    10 2(1)=x(1)
    90 CONTINUE
    O IDIMZ=NDI
        l
```


PMPY

Purpose:
Multiply two polynomials.

Usage:

CALL PMPY(Z, IDIMZ, X, IDIMX, Y, IDIMY)

Description of parameters:
Z - Vector of resultant coefficients, ordered from smallest to largest power.
IDIMZ - Dimension of Z (calculated).
X - Vector of coefficients for first polynomial, ordered from smallest to largest power.
IDIMX - Dimension of X (degree is IDIMX-1).
Y - Vector of coefficients for second polynomial, ordered from smallest to largest power.
IDIMY - Dimension of Y (degree is IDIMY-1).

Remarks:
Z cannot be in the same location as X.
Z cannot be in the same location as Y.
Subroutines and function subprograms required:
None.

Method:
Dimension of Z is calculated as IDIMX+IDIMY-1. The coefficients of Z are calculated as sum of products of coefficients of X and Y, whose exponents add up to the corresponding exponent of Z.

```
    SUBROUTINE PMPYIZ,IDIAZ,X,IDIMX,Y,IOIMYI
    DIMENSION [IIT,XIU,YIII
    IF{IDIMX*IDIMYIIO,10,20
10 101mZ=0
20 101mL=IDIMx.IDIm-1
    DO 30 I=1,101M2
    30 211)=0.
        00 40 t=1,IDIMX
        00 40 J=1,101MY
        O 2(k)=x(|)=v(J)+2(k)
    O RETURN
        RE YU
```


Purpose:

Divide one polynomial by another.

Usage:

CALL PDIV(P, IDIMP, X, IDIMX, Y, IDIMY, TOL, IER)

Description of parameters:
P - Resultant vector of integral part.
IDIMP - Dimension of P.
X - Vector of coefficients for dividend polynomial, ordered from smallest to largest power. It is replaced by remainder after division.
IDIMX - Dimension of X.
Y - Vector of coefficients for divisor polynomial, ordered from smallest to largest power.
IDIMY - Dimension of Y.
TOL - Tolerance value below which coefficients are eliminated during normalization.
IER - Error code. 0 is normal, 1 is for zero divisor.

Remarks:
The remainder R replaces X. The divisor Y remains unchanged. If dimension of Y exceeds dimension of X, IDIMP is set to zero and calculation is bypassed.

Subroutines and function subprograms required: PNORM

Method:
Polynomial X is divided by polynomial Y giving
integer part P and remainder R such that
$\mathrm{X}=\mathrm{P}^{*} \mathrm{Y}+\mathrm{R}$.
Divisor Y and remainder vector get normalized.

```
        SUBROUIINE POIVIP,IOIMP,X,IDIMX,Y,IDIMY,TOL,IER
        DIMENSION P(1),XIII,Y(1)
        IF(loIMY) 50,50,10
    10 IDIMP=10IMx-1DIMY +1
        IFIIDIMP) 20,30,50
            degree of divisor was grfater than degref tf diviofnd
        20 IUIMP=0
    30 IER=0
c so reytis zero polymomial
    50 lER=1
        GU TOM 40
    60 1DIMX=1DIMY-1
    |=10!MP
    70 11=1+10ImX
c P(HIEx(IIG/YIDIMY)
        on subrractmmult
        OO & % O k=
        x(J)=x(J)-p(t)*y(k)
    Bo continue
        I=1-1 (FM)90,90,70
        normalilif remainder polynomial
    90 CALL PNORMIK,IDIMX,TOLI
        CALL PNDR
```

PDIV
PDIV
POIV
PDIV
PDIV
PDIV
PDIV
PDIV
PDIV
POIV
POIV
PDIV
PDIV
POIV
PDIV
PDIV
PDVV
PDIV
POV
PDIV
POIV
PDIV
PDIV
PDIV
POIV
POIV
POIV
POIV
POIV
POIV

Purpose:
Perform quadratic synthetic division.

Usage:

CALL PQSD(A, B, P, Q, X, IDIMX)
Description of parameters:
A - Coefficient of Z in remainder (calculated).
B - Constant term in remainder (calculated).
P - Coefficient of Z in quadratic polynomial.
Q - Constant term in quadratic polynomial.
X - Coefficient vector for given polynomial, ordered from smallest to largest power.
IDIMX - Dimension of X .

Remarks:
None.

Subroutines and function subprograms required:
None.
Method:
The linear remainder $A * Z+B$.

	Doso	1
dimension xill	PQSO	?
$\mathrm{A}=0$.	PQSO	3
$8=0$.	POSO	4
$j=1019 x$	poso	5
$1 \mathrm{l}_{1} \mathrm{Ftj13,3,2}$	Pos\%	6
$2 L=P q A+B$	paso	7
$\mathrm{g}=0 * 4 *$ (J)	poso	8
$A=$?	poso	9
$\mathrm{J}=\mathrm{j}-1$	pasn	10
G0 TO 1	poso	11
3 beturn	poso	12
END	Paso	13

PVAL
Purpose:
Evaluate a polynomial for a given value of the variable.

Usage:
CALL PVAL(RES, ARG, X, IDIMX)
Description of parameters:
RES - Resultant value of polynomial.
ARG - Given value of the variable.
X - Vector of coefficients, ordered from smallest to largest power.
IDIMX - Dimension of X .

Remarks:
None.

Subroutines and function subprograms required: None.

Method:
Evaluation is done by means of nested multiplication.

sumboutine praliaes,arg, x,idimxi	pual	1
dimension xill	peval	$\frac{2}{3}$
	pval	4
	PVAL	5
2 RESARES*ARG*X(J)	pval	7
	pvai	9
3 RETURN	pyal	9
END	pval	10

PVSUB

Purpose:

Substitute variable of a polynomial by another polynomial.

Usage:
CALL PVSUB(Z, IDIMZ, X, IDIMX, Y, IDIMY, WORK1, WORK2)

Description of parameters:
Z - Vector of coefficients for resultant polynomial, ordered from smallest to largest power.
IDIMZ - Dimension of Z.
X - Vector of coefficients for original polynomial, ordered from smallest to largest power.
IDIMX - Dimension of X.
Y - Vector of coefficients for polynomial which is substituted for variable, ordered from smallest to largest power.
IDIMY - Dimension of Y.
WORK1 - Working storage array (same dimension as Z).
WORK2 - Working storage array (same dimension as Z).

Remarks:
None.
Subroutines and function subprograms required:
PMPY
PADDM
PCLA

Method:

Variable of polynomial X is substituted by polynomial Y to form polynomial Z. Dimension of new polynomial is (IDIMX-1)*(IDIMY-1) +1 . Subroutine requires two work areas.

SUBRDUTINE PYSUBLZ, IDIMZ, X, IDIMX, Y, IDIMY, WORKL, WRKK 71

test of dimens ions
If (IIIAXX-1) 1,3,3
1 IDTYZ
2 RETURN
2 RE TURN
loiml $=1$
$2111=x 11$

4 i H1:1
YORKI(1)=1.
CALL PMPY(KDRK2,1 M2,Y,IDIMY, KIIRKL,IM1)
CALL PCLA(WORKI,IW1,WORK2, IW2)
FACr=x(1)
CALL PADOMIT, IUIMZ,R,IDI世Z,FACT, WORK1, IWII

5 CONTINDIE
GO TO

$\mathrm{ENO}_{\mathrm{ENO}}^{\mathrm{G}}$

PCLD

Purpose:

Shift of origin (complete linear synthetic division).

Usage:

CALL PCLD(X, IDIMX, U)

Description of parameters:
X - Vector of coefficients, ordered from smallest to largest power. It is replaced by vector of transformed coefficients.
IDIMX - Dimension of X.
U - Shift parameter.
Remarks:
None.
Subroutines and function subprograms required: None.

Method:

Coefficient vector $X(I)$ of polynomial $P(Z)$ is transformed so that $Q(Z)=P(Z-U)$ where $Q(Z)$ denotes the polynomial with transformed coefficient vector.

```
        Subrautine pCLD (x,idimx,u)
        DIMENSION XIII
        M=1
```



```
    2 IF (J-K) 4,4;3
        J=J-1
            G0 TO 2
    4.k=k+1
    RETURN
    ENO
```

 PCLD
 PCLD
PCLD
PCLD
PCLD
PCLD
PCLD
PCLD
PCLD
PCLD
PCLO
PCLD
PCLD
PCLD
PCLD
1
2
3
4
5
6
7
8
9
10
11
12

PILD

Purpose:

Evaluate polynomial and its first derivative for a given argument.

Usage:

CALL PILD(POLY, DVAL, ARGUM, X, IDIMX)

Description of parameters:
POLY - Value of polynomial.
DVAL - Derivative.
ARGUM - Argument.
X - Vector of coefficients for polynomial, ordered from smallest to largest power.
IDIMX - Dimension of X.

Remarks:

None.
Subroutines and function subprograms required: PQSD

Method:

Evaluation is done by means of subroutine PQSD (quadratic synthetic division).

```
SUAROUTINE PILD (POLY,DVAL,ARGUH,X,IDIMX)
    OIMENSION XIII
    P=ARGUM+ARGUM
    P=-ARGUM*ARGUM
    CALL POSO (DVAL,POLY,P,O,X,IOINX)
    PLY=ARGUM*DVAL+POLY
    RE TURN
```

 PILD
 PILD
PILD
PILD
PILD
PILD
PILD
PILD

PDER

Purpose:

Find derivative of a polynomial.

Usage:

CALL PDER(Y, IDIMY, X, IDIMX)
Description of parameters:
Y - Vector of coefficients for derivative, ordered from smallest to largest power.
IDIMY - Dimension of Y (equal to DDIMX-1).
X - Vector of coefficients for original polynomial, ordered from smallest to largest power.
IDIMX - Dimension of X.

Remarks:
None.
Subroutines and function subprograms required:
None.
Method:
Dimension of Y is set at dimension of X less one. Derivative is then calculated by multiplying coefficients by their respective exponents.

```
SUBROUTINE PDERIY,IDIMY,X,IDIMX:
SIMENSION XIIH,Y II
IF TEST.OF DIMENSION
\if(101Hx-1) 3.3
            EXPT=0.
            DO 2 I=1,IDINY
            EXPT=EXPIT1.
            M EXPT=EXPT+1:*
            GOTOE
            GO TO &
            colminuan
            END
```


PINT

Purpose:

Find integral of a polynomial with constant of integration equal to zero.

Usage:

CALL PINT(Y, IDIMY, X, IDIMX)
Description of parameters:
Y - Vector of coefficients for integral, ordered from smallest to largest power.
IDIMY - Dimension of Y (equal to IDIMX+1).
X - Vector of coefficients for original polynomial, ordered from smallest to largest power.
IDIMX - Dimension of X .

Remarks:
None.
Subroutines and function subprograms required:
None.
Method:
Dimension of Y is set at dimension of X plus one, and the constant term is set to zero. Integral is then calculated by dividing coefficients by their respective exponents.

```
subroutine pint(y,IDIMy,x,iotmx)
SUGROUTINE PINTIY,IO
        MLMENSION XII
        Y(i)=0.
    IFI[DIMx)1,1,2
```



```
I RETURN
    DO 3 1=2,IDINY 
    Y(I|=X{1-1)/E
    G0 TO 1

\section*{PGCD}

\section*{Purpose:}

Determine greatest common divisor of two polynomials.

Usage:
CALL PGCD(X, IDIMX, Y, IDIMY, WORK, EPS, IER)

\section*{Description of parameters:}

X - Vector of coefficients for first polynomial, ordered from smallest to largest power.
IDIMX - Dimension of \(X\).
Y - Vector of coefficients for second polynomial, ordered from smallest to largest power. This is replaced by greatest common divisor.
IDIMY - Dimension of Y.
WORK - Working storage array.
EPS - Tolerance value below which coefficient is eliminated during normalization.
IER - Resultant error code where:
\begin{tabular}{ll}
\(I E R=0\) & No error. \\
\(I E R=1\) & \(X\) or \(Y\) is zero polyno- \\
& mial.
\end{tabular}

Remarks:
IDIMX must be greater than IDIMY.
IDIMY \(=1\) on return means \(X\) and \(Y\) are prime, the GCD is a constant.

Subroutines and function subprograms required:
PDIV
PNORM

\section*{Method:}

Greatest common divisor of two polynomials X and Y is determined by means of Euclidean algorithm. Coefficient vectors X and Y are destroyed and greatest common divisor is generated in Y.
```

Subroutine pGCDIK,i0!Mx,y,iDIMy,MORK,EPS,IER
SUBROUTINE PGCDIK,IOIMX,Y,I
c dimension reqireg fig vector mameo mork is tolmx-idimy+l
\& CALL POIVINORK,
2 tF(101MX)5,5.3
c interchacee x ano Y
300 \& J=1,10tMY
MOR(1)=x(J)
Mis)=YiJ!
- Y(J)=MORK(1)
Moim=toimx
idincidimy

```

```

 5 GOTOTURN'
 5 RE TUR
    ```

\section*{PNORM}

\section*{Purpose:}

Normalize coefficient vector of a polynomial.

\section*{Usage:}

CALL PNORM(X, IDIMX, EPS)
Description of parameters:
X - Vector of original coefficients, ordered from smallest to largest power. It remains unchanged.

IDIMX - Dimension of X. It is replaced by final dimension.
EPS - Tolerance below which coefficient is eliminated.

\section*{Remarks:}

If all coefficients are less than EPS, result is a zero polynomial with IDIMX=0 but vector X remains intact.

Subroutines and function subprograms required: None.

Method:
Dimension of vector X is reduced by one for each trailing coefficient with an absolute value less than or equal to EPS.
```

SHERDUTINE PNORQIX,IDIMX, EPS
OIHENSION X(1)
I [f(101MX) 4,4,2
2 IFIABS(x)10IMX
G0 mmit
4- RETJINN

```
\(\begin{array}{ll}\text { PNORM } & 1 \\ \text { PNRRM } & \\ \text { PNORH } \\ \text { PNOR } \\ \text { PNORH } & 4 \\ \text { PNRRM } & 5 \\ \text { PNORM } & 6 \\ \text { PNORM } & 7 \\ \text { PNORM } & \text { B }\end{array}\)

\section*{APPENDIX A: STORAGE REQUIREMENTS}


\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & Function & \begin{tabular}{l}
Storage \\
Required \\
(Words)
\end{tabular} & Name & Function & \begin{tabular}{l}
Storage \\
Required \\
(Words)
\end{tabular} \\
\hline MSUB & subtract two matrices (calls LOC) & 226 & RTAB & tabulate the rows of a matrix (calls LOC, RADD) & 198 \\
\hline MPRD & matrix product (row into column) (calls LOC) & 230 & CTAB & tabulate the columns of a matrix (calls LOC, CADD) & 198 \\
\hline MTRA & transpose a matrix (calls MCPY) & 108 & RSRT & sort matrix rows (calls LOC) & 308 \\
\hline TPRD & transpose product (calls LOC) & 230 & CSRT & sort matrix columns (calls LOC and CCPY) & 306 \\
\hline MATA & transpose product of matrix by itself (calls LOC) & 194 & RCUT & partition row-wise (calls LOC) & 162 \\
\hline SADD & add scalar to matrix (calls LOC) & 56 & CCUT & partition column-wise (calls LOC) & 162 \\
\hline SSUB & subtract scalar from a matrix (calls LOC) & 56 & RTIE & adjoin two matrices row-wise (calls LOC) & 178 \\
\hline SMPY & matrix multiplied by a scalar (calls LOC) & 56 & CTIE & adjoin two matrices column-wise (calls LOC) & 166 \\
\hline SDIV & matrix divided by a scalar (calls LOC) & 66 & MCPY & matrix copy (calls LOC) & 52 \\
\hline RADD & add row of one matrix & & XCPY & copy submatrix from given matrix (calls LOC) & 128 \\
\hline & matrix (calls LOC) & 90 & RCPY & copy row of matrix into vector (calls LOC) & 78 \\
\hline CADD & add column of one matrix to column of another matrix (calls & & CCPY & copy column of matrix into vector (calls LOC) & 78 \\
\hline & LOC) & 92 & DCPY & copy diagonal of matrix into vector (calls LOC) & 58 \\
\hline SRMA & scalar multiply row and add to another row & 108 & SCLA & matrix clear and add scalar (calls LOC) & 52 \\
\hline SCMA & scalar multiply column and add to another column & 110 & DCLA & replace diagonal with scalar (calls LOC) & 50 \\
\hline RINT & interchange two rows & 94 & MSTR & storage conversion & \\
\hline CINT & interchange two columns & 96 & & (calls LOC) & 116 \\
\hline RSUM & sum the rows of a matrix (calls LOC) & 98 & MFUN & matrix transformation by a function & 66 \\
\hline CSUM & sum the columns of a matrix (calls LOC) & 98 & RECP & reciprocal function for MFUN & 44 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & Function & Storage Required (Words) & Name & Function & Storage Required (Words) \\
\hline PSUB & subtract one polynomial from another & 112 & PCLD & complete linear division & 74 \\
\hline PMPY & multiply two polynomials & 142 & PILD & evaluate polynomial and its first derivative (calls PQSD) & 56 \\
\hline PDIV & divide one polynomial by another (calls PNORM) & 198 & PDER & derivative of a polynomial & 88 \\
\hline PQSD & quadratic synthetic division of a polynomial & 78 & PINT & integral of a polynomial & 88 \\
\hline PVAL
PVSUB & value of a polynomial
substitute variable of & 54 & PGCD & greatest common divisor of two polynomials (calls PDIV and PNORM) & 108 \\
\hline PVSUB & substitute variable of polynomial by another polynomial (calls PMPY, PADDM, PCLA) & 132 & PNORM & normalize coefficient vector of polynomial & 48 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{The subroutines in SSP can be broken down into three major categories from the standpoint of accu-}} & GMADD \\
\hline & & GMSUB \\
\hline \multicolumn{2}{|l|}{racy. They are: subroutines having little or no} & GMPRD \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{dependent on the characteristics of the input data; and subroutines in which definite statements on accuracy can be made.}} & GMTRA \\
\hline & & GTPRD \\
\hline & & MADD \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{SUBROUTINES HAVING LITTLE OR NO AFFECT ON ACCURACY}} & MSUB \\
\hline & & MPRD \\
\hline \multicolumn{2}{|l|}{\multirow[b]{4}{*}{The following subroutines do not materially affect the accuracy of the results, either because of the simple nature of the computation or because they do not modify the data:}} & MTRA \\
\hline & & TPRD \\
\hline & & MATA \\
\hline & & SADD \\
\hline \multirow{3}{*}{TALLY} & & SSUB \\
\hline & totals, means, standard deviations, & SMPY \\
\hline & minimums, and maximums & SDIV \\
\hline BOUND & selection of observations within bounds & RADD \\
\hline SUBST & subset selection from observation matrix & CADD \\
\hline ABSNT & detection of missing data & \multirow[t]{2}{*}{SRMA} \\
\hline TAB1 & tabulation of data (1 variable) & \\
\hline TAB2 & tabulation of data (2 variables) & SCMA \\
\hline SUBMX & build subset matrix & RINT \\
\hline MOMEN & first four moments & CINT \\
\hline TTSTT & tests on population means & RSUM \\
\hline ORDER & rearrangement of intercorrelations & CSUM \\
\hline AVDAT & data storage allocation & RTAB \\
\hline \multirow[t]{2}{*}{TRACE} & cumulative percentage of eigenvalues & CTAB \\
\hline & \(\chi^{2}\) test for a contingency table & RSRT \\
\hline CHISQ & \(\chi^{2}\) test for a contingency table & CSRT \\
\hline UTEST & Mann-Whitney U-test & RCUT \\
\hline TWOAV & Friedman two-way analysis of variance & CCUT \\
\hline QTEST & Cochran Q-test & RTIE \\
\hline SRANK & Spearman rank correlation & CTIE \\
\hline KRANK & Kendall rank correlation & MCPY \\
\hline \multirow[t]{2}{*}{WTEST} & Kendall coefficient of concordance & XCPY \\
\hline & & RCPY \\
\hline RANK & rank observations & CCPY \\
\hline TIE & calculation of ties in ranked observations & DCPY \\
\hline RANDU & uniform random numbers & SCLA \\
\hline GAUSS & normal random numbers & DCLA \\
\hline
\end{tabular}
add two general matrices subtract two general matrices product of two general matrices transpose of a general matrix transpose product of two general matrices

\section*{add two matrices}
subtract two matrices
matrix product (row into column)
transpose a matrix
transpose a product
transpose product of matrix by itself add scalar to matrix
subtract scalar from a matrix
matrix multiplied by a scalar matrix divided by a scalar
add row of one matrix to row of another matrix
add column of one matrix to column of another matrix
scalar multiply row and add to another row
scalar multiply column and add to another column
interchange two rows
interchange two columns
sum the rows of a matrix
sum the columns of a matrix
tabulate the rows of a matrix
tabulate the columns of a matrix sort matrix rows
sort matrix columns
partition row-wise
partition column-wise
adjoin two matrices row-wise
adjoin two matrices column-wise matrix copy
copy submatrix from given matrix copy row of matrix into vector copy column of matrix into vector copy diagonal of matrix into vector matrix clear and add scalar replace diagonal with scalar
\begin{tabular}{|c|c|}
\hline MSTR & storage conversion \\
\hline MFUN & matrix transformation by a function \\
\hline RECP & reciprocal function for MFUN \\
\hline LOC & location in compressed-stored matrix \\
\hline CONVT & single precision, double precision conversion \\
\hline ARRAY & vector storage--double dimensioned conversion \\
\hline PADD & add two polynomials \\
\hline PADDM & multiply polynomial by constant and add to another polynomial \\
\hline PCLA & replace one polynomial by another \\
\hline PSUB & subtract one polynomial from another \\
\hline PMPY & multiply two polynomials \\
\hline PDIV & divide one polynomial by another \\
\hline PQSD & quadratic synthetic division of a polynomial \\
\hline PVAL & value of a polynomial. \\
\hline PVSUB & substitute variable of polynomial by another polynomial \\
\hline PCLD & complete linear division \\
\hline PILD & evaluate polynomial and its first derivative \\
\hline PDER & derivative of a polynomial \\
\hline PINT & integral of a polynomial \\
\hline PGCD & greatest common divisor of two polynomials \\
\hline PNORM & normalize coefficient vector of polynomial \\
\hline \multicolumn{2}{|l|}{SUBROUTINES WHOSE ACCURACY IS DATA DEPENDENT} \\
\hline \multicolumn{2}{|l|}{The accuracy of the following subroutines cannot be predicted because it is dependent on the characteristics of the input data and on the size of the problem. The programmer using these subroutines must be aware of the limitations dictated by numerical analyses considerations. It cannot be assumed that the results are accurate simply because subroutine execution is completed. Subroutines in this category are:} \\
\hline CORRE & means, standard deviations, and correlations \\
\hline MULTR & multiple regression and correlation \\
\hline GDATA & data generation \\
\hline CANOR & canonical correlation \\
\hline NROOT & eigenvalues and eigenvectors of a special nonsymmetric matrix \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline AVCAL & \(\Sigma\) and \(\Delta\) operation \\
\hline MEANQ & mean square operation \\
\hline DMATX & means and dispersion matrix \\
\hline DISCR & discriminant functions \\
\hline LOAD & factor loading \\
\hline VARMX & varimax rotation \\
\hline AUTO & autocovariances \\
\hline CROSS & crosscovariances \\
\hline SMO & application of filter coefficients (weights) \\
\hline EXSMO & triple exponential smoothing \\
\hline MINV & matrix inversion \\
\hline EIGEN & eigenvalues and eigenvectors of a real, symmetric matrix \\
\hline SIMQ & solution of simultaneous linear, algebraic equations \\
\hline QSF & integral of tabulated function by Simpson's Rule \\
\hline QATR & integral of given function by trapezoidal rule \\
\hline RK1 & integral of first-order differential equation by Runge-Kutta method \\
\hline RK2 & tabulated integral of first-order differential equation by Runge-Kutta method \\
\hline RKGS & solution of a system of first-order differential equations by Runge-Kutta method \\
\hline FORIF & Fourier analysis of a given function \\
\hline FORIT & Fourier analysis of a tabulated function \\
\hline RTWI & refine estimate of root by Wegstein's iteration \\
\hline RTMI & determine root within a range by Mueller's iteration \\
\hline RTNI & refine estimate of root by Newton's iteration \\
\hline POLRT & real and complex roots of polynomial \\
\hline
\end{tabular}

\section*{SUBROUTINES WITH DEFINITE ACCURACY CHARACTERISTICS}

This table was developed by comparing floating-point results from the subroutines with the tables given in Abramowitz and Stegun*. In certain cases the reference table gave results in fixed-point form. In these cases the maximum differences below are given in terms of number of decimal places (d.p.) which agreed, rather than number of significant digits (s.d.) which agree. In compiling maximum differences, the maximum was taken over the set of points indicated in the table. The average difference was normally much smaller.

The notation \(x=a(b) c\) implies that \(a, a+b, a+2 b, \ldots, c\) were the arguments (x) used.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & Functions & Remarks & Allowable Parameter Range & Range Checked
with
references* & \begin{tabular}{l}
Maximum \\
Difference \\
s.d. =significant digits \\
d. p. =decimal places
\end{tabular} \\
\hline GAMMA & \(\Gamma(\mathrm{x})\) (gamma) & & \(x \leqslant 34.5\), and \(x\) not within \(10^{-6}\) of zero or a negative integer & \[
\begin{aligned}
& x=.1(.1) 3 \\
& x=1(1) 34
\end{aligned}
\] & 2 in 6th s.d. 1 in 6th s.d. \\
\hline LEP & \begin{tabular}{l}
\[
P_{n}(x)
\] \\
(Legendre)
\end{tabular} & & \[
\begin{aligned}
& -1 \leq x \leq 1 \\
& \mathrm{n} \geq 0
\end{aligned}
\] & \[
\begin{aligned}
& x=0(.2) 1 \\
& n=2,3 \\
& n=9,10
\end{aligned}
\] & \begin{tabular}{l}
3 in 6 th \(\mathrm{s} . \mathrm{d}\). \\
1 in 5th s.d.
\end{tabular} \\
\hline BESJ & \[
\mathrm{Jn}(\mathrm{x}) \text { (Bessel) }
\] & (The accuracy Factor, D, used in the program was \(10^{-5}\).) & \[
\begin{aligned}
& \mathrm{x}>0 ; \mathrm{n}>0 \\
& \text { when } \mathrm{x} \leq 15 ; \\
& \mathrm{n}<20+10 \mathrm{x}^{-\mathrm{x}^{2 / 3}} \\
& \text { when } \mathrm{x}>15 \text {, } \\
& \mathrm{n}<90+\mathrm{x} / 2
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x}=1(1) 17 \\
& \mathrm{n}=0,1,2 \\
& \mathrm{n}=3(1) 9 \\
& \mathrm{x}=1(1) \mathrm{n}-2 \\
& \mathrm{n}=3(1) 9 \\
& \mathrm{x}=\mathrm{n}-1(1) 20 \\
& \mathrm{x}=1,2,5,10,50 \\
& \mathrm{n}=10(10) 50 * *
\end{aligned}
\] & \begin{tabular}{l}
8 in 6th s.d. \\
1 in 5th s.d. \\
1 in 5th d.p. \\
3 in 6th s.d.
\end{tabular} \\
\hline BESY & \(\mathrm{Y}_{\mathrm{n}}(\mathrm{x})\) (Bessel) & & \[
\begin{aligned}
& \mathrm{n} \geq 0 \\
& \mathrm{x}>0
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x}=1(1) 17 \\
& \mathrm{n}=0,1,2 \\
& \mathrm{n}=3(1) 9 \\
& \mathrm{x}=1(1) \mathrm{n}-2 \\
& \mathrm{n}=3(1) 9 \\
& \mathrm{x}=\mathrm{n}-1(1) 20 \\
& \mathrm{x}=1,2,5,10,50 \\
& \mathrm{n}=10(10) 50^{* *}
\end{aligned}
\] & \begin{tabular}{l}
9 in 6th s.d. \\
1 in 5th s.d. \\
1 in 5th d.p. \\
3 in 5th s.d.
\end{tabular} \\
\hline BESI & \(\mathrm{I}_{\mathrm{n}}(\mathrm{x})\) (Bessel) & \begin{tabular}{l}
(Table values are \(e^{-x} I_{n}(x)\). maximum difference is for these values) \\
(Table values \({ }^{-}\) are \(I_{n}(x)\) )
\end{tabular} & \[
\begin{aligned}
& x>0 \\
& 0 \leqslant n \leqslant 30
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{x}=1(1) 20 \\
& \mathrm{n}=0,1 \\
& \mathrm{x}=5(1) 20 \\
& \mathrm{n}=2 \\
& \mathrm{x}=1(1) 20 \\
& \mathrm{n}=3(1) 9 \\
& \mathrm{x}=1,2,5,10 \\
& \mathrm{n}=10,20,30 * *
\end{aligned}
\] & \begin{tabular}{l}
8 in 7th s.d. \\
6 in 7th s.d. \\
1 in 5 th \(\mathrm{s} . \mathrm{d}\). \\
8 in 7th s.d.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Name & Functions & Remarks & Allowable Parameter Range & Range Checked with references* & \begin{tabular}{l}
Maximum Difference s.d. =significant digits \\
d. p. =decimal places
\end{tabular} \\
\hline \multirow[t]{3}{*}{BESK} & \multirow[t]{3}{*}{\(\mathrm{K}_{\mathrm{n}}(\mathrm{x})\) (Bessel)} & (Table values are \(\mathrm{e}^{\mathrm{X}} \mathrm{K}_{\mathrm{n}}(\mathrm{x})\). These were used for maximum differences) & \multirow[t]{2}{*}{\[
\begin{aligned}
& x>0 \\
& n \geq 0
\end{aligned}
\]} & \[
\begin{aligned}
& \mathrm{x}=1(1) 20 \\
& \mathrm{n}=0,1 \\
& \mathrm{x}=5(1) 20 \\
& \mathrm{n}=2
\end{aligned}
\] & 8 in 7th s.d.
9 in 7 th s.d. \\
\hline & & & & \[
\begin{aligned}
& \mathrm{x}=1(1) 20 \\
& \mathrm{n}=3(1) 9
\end{aligned}
\] & 1 in 5th s.d. \\
\hline & & \multicolumn{2}{|l|}{(Tabled values are \(\mathrm{K}_{\mathrm{n}}(\mathrm{x})\)} & \[
\begin{aligned}
& \mathrm{x}=1,2,5,10,50 \\
& \mathrm{n}=10(10) 50^{* *}
\end{aligned}
\] & 1 in 6th s.d. \\
\hline CEL1 & \[
\begin{aligned}
& \mathrm{K}(\mathrm{k}) \\
& \text { (elliptic 1st } \\
& \text { integral) }
\end{aligned}
\] & (Tabled values are \(K(m)\);
\[
\mathrm{m}=\mathrm{k}^{2}
\] & \(-1 \leq \mathrm{k} \leqslant 1\) & \(\mathrm{m}=0(.1) .9\) & 1 in 7th s.d. \\
\hline \multirow[t]{2}{*}{CEL2} & \multirow[t]{2}{*}{(Generalized Integral of 2nd kind)} & \[
\mathrm{K}(\mathrm{~m}) \text { when }
\]
\[
\mathrm{A}=\mathrm{B}=1
\] & \multirow[t]{2}{*}{\(-1 \leqslant k \leqslant 1\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{m}=0(.1) .9 \\
& \mathrm{~m}=0(.1) .9
\end{aligned}
\]} & 1 in 7th s.d. \\
\hline & & \[
\begin{aligned}
& \mathrm{E}(\mathrm{~m}) \text { when } \\
& \mathrm{A}=1, \\
& \mathrm{~B}=\mathrm{ck}^{2} \\
& \text { where }^{2}=\mathrm{k}^{2}
\end{aligned}
\] & & & 1 in 7th s.d. \\
\hline \multirow[t]{5}{*}{EXPI} & \multirow[t]{5}{*}{Exponential Integral} & \[
\begin{aligned}
& -\operatorname{Ei}(-x) \\
& \text { when } X<0
\end{aligned}
\] & \multirow[t]{5}{*}{\(x \geq-4\)} & \(x=-.5(.-5)-2\) & 0 in 7th s.d. \\
\hline & & & & \(x=-2.5(-.5)-4\) & 1 in 7th s.d.*** \\
\hline & & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{E}_{1}(\mathrm{x}) \text { when } \\
& \mathrm{x}>0
\end{aligned}
\]} & & \(\mathrm{x}=.5(.5) 2\) & 2 in 7 th s.d. \\
\hline & & & & \(x=2.5(.5) 4\) & 6 in 5th s.d. *** \\
\hline & & & & \(\mathrm{x}=4.5(.5) 8\) & 3 in 7th s.d.*** \\
\hline SICI & \[
\begin{aligned}
& \text { si (x) } \\
& \text { (sine integral) }
\end{aligned}
\] & & none & \[
\begin{aligned}
& x=1(1) 10 \\
& x=10 \pi
\end{aligned}
\] & \[
\begin{aligned}
& 3 \text { in } 7 \text { th s.d. } \\
& 0 \text { in } 7 \text { th } \mathrm{s.d.}
\end{aligned}
\] \\
\hline SICI & Ci(x) (cosine integral) & & none & \[
\begin{aligned}
& x=1(1) 10 \\
& x=10 \pi
\end{aligned}
\] & \[
\begin{aligned}
& 3 \text { in } 7 \text { th } \mathrm{s.d.} . \\
& 0 \text { in } 5 \text { th } \mathrm{s.d.}
\end{aligned}
\] \\
\hline CS & \[
\begin{aligned}
& \mathrm{C}_{2}(\mathrm{u}) \\
& \text { (Fresnel) } \\
& \mu=\frac{1}{2} \pi \mathrm{x}^{2}
\end{aligned}
\] & & none & \[
\begin{aligned}
& x=.1, .3, .6, .8 \\
& x=1(1) 5
\end{aligned}
\] & 1 in 6 th s.d.
2 in 7 th s.d. \\
\hline \multirow[t]{2}{*}{\(\overline{\mathrm{CS}}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\(\overline{S_{2}}(\mathrm{u})\) \\
(Fresnel)
\[
\mu=\frac{1}{2} \pi x^{2}
\]
\end{tabular}}} & \multirow[t]{2}{*}{none} & \(x=.1, .3, .6, .8\) & 1 in 4th s.d. \\
\hline & & & & \(\mathrm{x}=1(1) 5\) & 3 in 7th s.d. \\
\hline
\end{tabular}
*Handbook of Mathematical Functions, Abramowitz and Stegun, National Bureau of Standards publication.
**Results outside the range of the 1130 are set to zero or machine infinity. Results are subject to compatability of \(x\) and \(n\).
***Tabled results, used for maximum difference, were given for \(\mathrm{xe}^{\mathrm{x}_{\mathrm{E}_{\mathrm{i}}}(-\mathrm{x}) \text { and } \mathrm{xe} \mathrm{X}^{\mathrm{X}} \mathrm{E}_{1}(\mathrm{x})}\)
1. Sample program SOLN was chosen to exemplify the overall timing of a problem. In all cases the 1442 Card Reader, Model 7, is used for input and all necessary subroutines are already on disk. (Core speed: \(3.6 \mu \mathrm{~s}\).)
a. Compile time, using a LIST ALL card (gives a program listing of its 56 cards and a memory map which includes variable allocations, statement allocations, features supported, called subprograms, integer constants, and core requirements), requires 1 minute 32 seconds on the 1132 Printer. (Compile time, minus the LIST ALL card, requires 36 seconds.)
b. To store the program on disk takes 10 seconds.
c. After the XEQ control card is read, the computer uses 17 seconds to locate the necessary subprograms and the main program, and to load them in core.
d. Execution time is four seconds. Output printing time is 53 seconds on an 1132 Printer and 3 minutes 32 seconds on the console typewriter.
2. To illustrate the computational time used by an IBM 1130 computer, the following program was selected:

DIMENSION \(A(1600), L(40), M(40)\)
\(I X=3\)
\[
I X=3
\]

2 PAUSE 1
DO \(1 \mathrm{I}=1,1600\)
CALL RANDU (IX,IY,Y)
\(I X=I Y\)
\(1 A(I)=Y\)
PAUSE 2
CALL \(\operatorname{MINV}(A, 10, D, L, M)\)
PAUSE 3
CALL MINV (A,15,D,L,M)
PAUSE 4
CALL MINV ( \(A, 20, D, L, M)\)
PAUSE 5
CALL MINV (A, 30, D,L,M)
PAUSE 6
CALL MINV ( \(A, 40, D, L, M\) )
PAUSE 7
GO TO 2
END
a. RANDU - random number generator subroutine. To generate 1600 numbers, using subroutine RANDU, execution time is 5 seconds.
b. MINV - matrix inversion subroutine. Matrix inversion, using subroutine MINV, is performed on five different sized matrices, with the following results in execution time:
(1) The \(10 \times 10\) matrix uses 4 seconds.
(2) The \(15 \times 15\) matrix uses 12 seconds.
(3) The \(20 \times 20\) matrix uses 27 seconds.
(4) The \(30 \times 30\) matrix uses 1 minute 28 seconds.
(5) The \(40 \times 40\) matrix uses 3 minutes 27 seconds.

\section*{SAMPLE PROBLEM TIMING}

The table below gives sample problem times from the reading of the XEQ card to the printing, on the 1132 Printer, of the last output line:

\section*{Problem . Time}

DASCR 2 min. 20 sec . ( 5 min .30 sec . using the console typewriter)
\begin{tabular}{|c|c|c|}
\hline ADSAM & 1 min . & 25 sec . \\
\hline ANOVA & & 55 sec. \\
\hline EXPON & 1 min . & 5 sec. \\
\hline FACTO & 1 min . & 55 sec. \\
\hline MCANO & 1 min . & 55 sec . \\
\hline MDISC & 2 min . & 12 sec . \\
\hline POLRG & 2 min . & 53 sec. \\
\hline QDINT & & 30 sec . \\
\hline REGRE & 2 min . & 25 sec. \\
\hline RKINT & & 55 sec. \\
\hline SMPRT & & 30 sec. \\
\hline SOLN & 1 min . & 15 sec. \\
\hline
\end{tabular}

This appendix describes a set of sample programs designed to illustrate typical applications of the scientific subroutines. The sample programs also make use of certain user-written special sample subroutines. Such subroutines are, of course, to be taken only as typical solutions to the problem under consideration, each user being urged to tailor such subroutines to his own specific requirements.

A "Guide to the Sample Programs" immediately follows this introduction. The guide indicates the location of the sample program (if any) calling a particular subroutine of the SSP or referencing a special sample subroutine. The SSP listings are not repeated in this appendix; to locate such listings refer to "Guide to Subroutines" in the introduction.

Listings of the special sample subroutines (HIST, MATIN, PLOT, MXOUT, BOOL, DATA, and FUN) are provided immediately following each sample program. The subroutines DATA, MATIN, and MXOUT are used with several sample programs, and for purposes of clarity the listings of these special user-written routines are repeated with each sample program.

GUIDE TO THE SAMPLE PROGRAMS

\section*{Data Screening \\ Page}

DASCR--Sample Main Program

Illustrates use of:

> SUBST--subset selection from observation matrix

TAB1--tabulation of data (1 variable)
LOC--location in compressed-stored matrix

Special sample subroutines are:
BOOL--Boolean expression
HIST--histogram printing
MATIN--matrix input

\section*{Multiple Regression}

REGRE--Sample Main Program
Illustrates use of:
```

CORRE--means, standard deviations, and correlations
ORDER--rearrangement of intercorrelations

```

MINV--matrix inversion
MULTR--multiple regression
Special sample subroutine is:
DATA--sample data read

\section*{Polynomial Regression}

POLRG--Sample Main Program
Illustrates use of:
GDATA--data generation
ORDER--rearrangement of intercorrelations
MINV--matrix inversion
MULTR--multiple regression
Special sample subroutine is:
PLOT--output plot

\section*{Canonical Correlation}

MCANO--Sample Main Program
Hlustrates use of:
CORRE--means, standard deviations, and correlations

CANOR--canonical correlation
MINV--matrix inversion
NROOT--eigenvalues and eigenvectors of a special, nonsymmetric matrix

EIGEN--eigenvalues and eigenvectors of a symmetric matrix

Special sample subroutine is:
DATA--sample data read
Analysis of Variance
ANOVA--Sample Main Program
Illustrates use of:
AVDAT--data storage allocation
AVCAL-- \(\boldsymbol{\Sigma}\) and \(\triangle\) operation
MEANQ--mean square operation

card I/O devices, he must change the *IOCS card and the first READ instruction of each sample program to conform to his configuration.
3. All of the output format statements in the sample main programs and the sample subroutines specify the console typewriter as the output device. However, the logical unit numbers for input and output are optional. The first card of the sample problem data deck defines the input/output units for a specific run, and is read from the principal card reader by the sample main program. Format for this card is as follows:

Column 2 contains the logical unit number for output
Column 4 contains the logical unit number for input
4. The IOCS card, included with each sample main program, specifies three devices (CARD, TYPEWRITER, 1132 PRINTER). The user should include only those I/O devices employed by the program, thus eliminating any unnecessary Monitor subroutines.
5. Since core storage for the IBM 1130 Model II B computer is 8 K , only a limited number of the sample programs have ample storage area for increases in dimension statements. The majority of the programs are now dimensioned so near maximum storage size that any increases in the dimension would create system overlays (SOCAL's) or would necessitate the use of a LOCAL overlay area.
6. For each sample program given below, there is a schematic diagram showing deck setup. This schematic gives a general description of deck requirements. Specific details pertaining to three different situations should be understood. To follow the discussion of the three cases for all sample programs, consider Figure 10.
a. Initial run of a sample program under the disk monitor system: All required monitor control cards are distributed with decks. If the deck setup given in Figure 10 is used, the final card of the routine DASCR, the //XEQ card (which is a monitor control card), should be taken out of the routine DASCR and placed after the *STORE card which has stored the routine LOC on the disk. With this change, DASCR will be compiled, stored on disk (with all of its required routines), and then will execute. After this initial run is complete, the second case can be considered ( b , below).
b. After the initial run of a sample program under the disk monitor system, following runs can be made by using only the \(/ / X E Q\) card and any required \(*\) LOCAL cards, followed by data. This case assumes that all routines are on the disk.
c. Running sample programs under Card FORTRAN (1130-FO-001) (non-disk system): All monitor control cards (see the Application Directory) must now be removed from decks. Using Figure 10, consider that the labeled decks refer to object programs which were previously compiled using Card FORTRAN (C263629). With this consideration, noting the binary loaders and library required as stated under "Object Deck Loading Procedures" in the 1130 Card/Paper Tape Programming System Operator's Guide, and with decks in Figure 10 order, DASCR will run.

NOTE: Remarks in (a) above about changes in placement of //XEQ cards pertain also to any required \(*\) LOCAL cards, which must succeed the //XEQ cards.

A fourth situation may also be considered. If the user has all subroutines stored on the disk, and none of the sample problems are on the disk, then any individual sample problem will run as it was distributed in card form.

A LOCAL card, following the XEQ Monitor control card, allows the user to designate all subroutines to be loaded into a LOCAL overlay area on call at execution time. For the function of SOCAL and the use of LOCAL, the reader is referred to IBM 1130 Disk Monitor System, Version 2, Programming and Operator's Guide (C26-3717). The sample programs employ the LOCAL facility.

\section*{DATA SCREENING}

\section*{Problem Description}

A set of observations is read along with information on propositions to be satisfied and limits on a selected variable. From this input a subset is obtained and a histogram of frequency over given class intervals is plotted for the selected variable. Total, average, standard deviation, minimum, and maximum are calculated for the selected variable. This procedure is repeated until all sets of input data have been processed.

\section*{Program}

\section*{Description}

The data screening sample program consists of a main routine, DASCR, and six subroutines:
SUBST
TAB1
LOC \(\left\{\begin{array}{l}\text { are from the Scientific Subroutine } \\ \text { Package }\end{array}\right.\)

MATIN is a sample input routine
HIST is a sample program for plotting a histogram

BOOL refer to subroutine SUBST

\section*{Capacity}

The maximum size of matrix of observations has been set at 1000 elements, the number of observations at 200 , and the number of conditions at 21 . Therefore, if a problem satisfies the above conditions, no modification to the sample program is necessary. However, if the maximum sizes must be increased, the dimension statements in the sample main program must be modified to handle this particular problem. The general rules for program modification are described later.

Input
One I/O Specification card defines input/output units (see "Sample Program Descriptions".)

A parameter card with the following format must precede each matrix of observations:
\begin{tabular}{clc} 
Columns & \multicolumn{1}{c}{ Contents } & \begin{tabular}{c} 
For Sample \\
Problem
\end{tabular} \\
\(1-2\) & Blank & \\
\(3-6\) & \begin{tabular}{l} 
Up to four digit identification \\
code (numeric only)
\end{tabular} & 0001 \\
\(7-10\) & Number of observations & 0100 \\
\(11-14\) & Number of variables & 0004
\end{tabular}

\section*{Matrix of Observations}

Each matrix of observations must be followed by a card with a 9 punch in column 1.

The condition matrix and bounds data are preceded by a parameter card containing the number of conditions and the variable to be selected for analysis:
\begin{tabular}{|c|c|c|}
\hline Columns & Contents & For Sample Problem \\
\hline 1-2 & Number of conditions & 02 \\
\hline 3-4 & Variable to be selected & 03 \\
\hline \multicolumn{3}{|l|}{UBO Vector} \\
\hline \multicolumn{3}{|l|}{A card with an asterisk in column 1 must follow the UBO vector. A blank card after the last set of input data terminates the run.} \\
\hline
\end{tabular}

\section*{Data Cards}
1. The observation matrix: Data cards have seven fields of ten columns each, starting in column one. The decimal point may appear anywhere in a field or may be omitted, if the number is an integer. However, all numbers must be right justified even if the decimal point is punched. The number in each field may be preceded by blanks. All values for an observation are punched consecutively and may continue from card to card. However, a new observation must start in the first field of the next card.
2. The condition matrix (see description in the subroutine SUBST): Each ten-column field contains a condition to be satisfied. The first two columns contain the variable number (right justified), the third column the relational code, and the last seven columns of each field a floating-point number. There may be as many as seven conditions per card and a total of three cards or 21 conditions.
3. The UBO vector (see description in the subroutine TAB1): The UBO vector is punched in three fields of ten columns each as a floating-point number.

Deck Setup
The deck setup is shown in Figure 10.
Sample
A listing of input cards for the sample problem is presented at the end of the sample main program. Output
Description
The output consists of the subset vector showing which observations are rejected (zero) and accepted (nonzero), summary statistics for the selected variable, and a histogram of frequencies versus intervals for that variable.

Sample
The output listing for the sample problem is shown in Figure 11.

\section*{Program Modification}

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes to the DIMENSION statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:
1. Changes in the dimension statement of the main program, DASCR.
a. The dimension of array A must be greater than or equal to the number of elements in the observation matrix. For the sample problems the value is 400 .
b. The dimension of array \(C\) must be greater than or equal to the number of conditions, c times 3. For the sample problem this product is \(6=2 \times 3\).
c. The dimension of array \(S\) must be greater than or equal to the number of observations, \(m\). Since there are 100 observations in the sample problem the value of \(m\) is 100 .
d. The dimension of array \(R\) must be greater than or equal to the number of conditions, c. For the sample problem the value of c is 2.
e. The dimensions of array FREQ and PCT must be greater than or equal to the number of intervals for the selected variable. For the sample problem this value is 20.
2. Insert the dimension size for \(A\) in the third argument of the CALL MATIN statement (following statement 24).
3. Subroutine BOOL can be replaced if the user wishes to use a different boolean expression (see description in subroutine SUBST). The boolean expression provided in the sample program is for both conditions to be satisfied:
\[
\mathrm{T}=\mathrm{R}(1) * \mathrm{R}(2)
\]
\(A=\) Matrix of observations
\(C=\) Condition matrix


Figure 10. Deck setup (data screening)





\section*{Operating Instructions}

The sample program for data screening is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

\section*{Error Messages}

The following error conditions will result in messages:
1. Reserved storage area is too small for matrix: DIMENSIONED AREA TOO SMALL FOR INPUT MATRIX. GO ON TO NEXT CASE.
2. Number of data cards does not correspond to that required by parameter card: INCORRECT NUMBER OF DATA CARDS FOR MATRIX. EXECUTION TERMINATED.

Error condition 1 allows the computer run to continue. Error condition 2, however, terminates execution and requires another run to process succeeding cases.

Sample Main Program for Data Screening - DASCR
Purpose:
Perform data screening calculations on a set of observations.

\section*{Remarks:}

I/O specifications transmitted to subroutines by COMMON.
Input Card:
Column 2 MX - Logical unit number for output.
Column 4 MY - Logical unit number for input.

Subroutines and function subprograms required:
SUBST
TAB1
LOC
BOOL
HIST
MATIN

Method:
Derive a subset of observations satisfying certain conditions on the variables. For this subset, the frequency of a selected variable over given class intervals is obtained. This is plotted in the form of a histogram. Total, average, standard deviation, minimum, and maximum are also calculated.
```

focr
IOCS(CARD,TYPEWRITER,1132 PRINTERI
ONE WORD INTEGERS
SAMPLE MAIN PROGRAM for data screnning - dascr
maxinum number of elements of the observation matrix.
dimenSION A(IOOO)
NUMHER GF CONDITIONS TIMES 3.
IMENSION C(G3) DIMENSION HUST OE GREATER THAN OR ECUAL TO 3.
dmenSiON UBOi3) dimenSion musi be greaier fhan or equal to the
NUMBER UF OBSERVATIONS.
OIMENSION S[200) otmension must de greater than or equal to the
NUMBER OF CONDITIONS.
DIMENSION R(21)
THE FOLGOHING dimensions musi de greater than qr equal to the
NUMGER DF INTERVALS FOR THE SELEGTED VARIABLE.
Then following dimension must ae greater than or equal to 5.
IMENSION STATS(S)
COMMON MX,HY
fgrmat(////23H oata screening prqblem,iza
I FORMAT(/\$//23H DATA SCREENING PRQBLEm,IL FOR (NPUT MATRIX, (4)
FORMATI//43H INCURRECT MUMHER DF DATA CARDS FDR NATRIX ,14)
FORHAT(//19H GO ON TO NEXT CASEI
S FORMAT(HI2H END OF CASE)
FORMATI 3F10.0)
FORMAT///14H SUaSET VECTOR,///]
19 FORMAI (16,F5.0)
20 FORMATI////33H SUMMARY STATISTICS FJK VARIAGLE, I31
21 FORMATi//JH TGTAL =,FIO.3,2X,9HAVERAGE =,FIO.3, 2x, 2UHSTANOARD DEVIGA
LATION =, FLO.3,2X,9HMINIMUM =,F1O.3,2X,9NAAXIMUM =,F10.3)
22 fORMAT(2I2)
Kc=0
REAU(2,22)AX,MY
24 KC=KC+L
CALL MATIN,ICBD,A,
25 IF(IER-1) 40,30,35
WRITE(NX,I1) ICUD
WITE(HX,141
GO TO 24
35 WRITEGIAX,13)
MRITEIMX,IZ
40 KEAD(MY,22)NC,NOVAR
REAU{MY,163IC(I,I=1,JC!
READINY,1714U8O[11,1=1,3)
CALL SUBST(A,C,R,BOOL,S,NU,NV,NC)
WRITE(MX,IB)
NO 50 i=1,NO
50 WRITEIMA,1911,SII)
CALL TAGLAA,S,NUVGR,USE,FREG,PCT,STATS,NO,NV
WRITE(MA,<1)ISTATS(!),t=1,5)
JZ=UBQ(2)
CALL HISTIKC,FKEQ,JZ)
RITE(MX,25)
G0 JO24
OC stop
\% diture
"STURE
$1 /$ xEw UASCR
${ }^{1}{ }_{0000101000004}$

| 173 |
| :--- |
| 170 |
| 154 |
| 159 |
| 129 |
| 192 |
| 203 |
| 122 |
| 136 |
| 147 |
| 153 |
| 165 |
| 178 |
| 205 |
| 219 |
| 150 |
| 160 |
| 161 |
| 142 |
| 193 |
| 156 |
| 114 |
| 153 |
| 225 |
| 158 |
| 121 |
| 132 |
| 148 |
| 123 |
| 128 |
| 155 |
| 172 |
| 183 |
| 158 |
| 146 |
| 171 |
| 153 |
| 165 |
| 172 |

STURE
1 xEv vascr


```
    19 SOE UP LONE
    9 DO 30 J=JS,JE
    IF(J-ICCL120,20,3)
```



```
    L=L+1
    O AlTJI=CAROLL)
    1 continue
        MROERIROCR+1), 3,35,35
    35 IFIIS-1,137,36.30
    37 go rovil
    geauiny,3)ICamo
    IFIICARD-9139,40,39
    39 IER22
        &NO
MATIF 39
MATIN-4n
MatN4,
MATN42
MatiN 4.
MaTIN45
MATN45
MATIN 47
```


MULTIPLE LINEAR REGRESSION

Problem Description

Multiple linear regression analysis is performed for a set of independent variables and a dependent variable. Selection of different sets of independent variables and designation of a dependent variable can be made as many times as desired.

The sample problem for multiple linear regression consists of 30 observations with six variables as presented in Table 2. The first five variables are independent variables, and the last variable is the dependent variable. All five independent variables are used to predict the dependent variable in the first analysis, and only second, third, and fifth variables are used to predict the dependent variable in the second analysis.

Table 2. Sample Data for Multiple Linear Regression

| Observation | Yariables | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | X_{1} | X_{2} | X_{3} | X_{4} | χ_{5} | X_{6} |
| 1 | 29 | 289 | 216 | 85 | 14 | 1 |
| 2 | 30 | 391 | 244 | 92 | 16 | 2 |
| 3 | 30 | 424 | 246 | 90 | 18 | 2 |
| 4 | 30 | 313 | 239 | 91 | 10 | 0 |
| 5 | 35 | 243 | 275 | 95 | 30 | 2 |
| 6 | 35 | 365 | 219 | 95 | 21 | 2 |
| 7 | 43 | 396 | 267 | 100 | 39 | 3 |
| 8 | 43 | 356 | 274 | 79 | 19 | 2 |
| 9 | 44 | 346 | 255 | 126 | 56 | 3 |
| 10 | 44 | 156 | 258 | 95 | 28 | 0 |
| 11 | 44 | 278 | 249 | 110 | 42 | 4 |
| 12 | 44 | 349 | 252 | 88 | 21 | 1 |
| 13 | 44 | 141 | 236 | 129 | 56 | 1 |
| 14 | 44 | 245 | 236 | 97 | 24 | 1 |
| 15 | 45 | 297 | 256 | 111 | 45 | 3 |
| 16 | 45 | 310 | 262 | 94 | 20 | 2 |
| 17 | 45 | 151 | 339 | 96 | 35 | 3 |
| 18 | 45 | 370 | 357 | 88 | 15 | 4 |
| 19 | 45 | 379 | 198 | 147 | 64 | 4 |
| 20 | 45 | 463 | 206 | 105 | 31 | 3 |
| 21 | 45 | 316 | 245 | 132 | 60 | |
| 22 | 45 | 280 | 225 | 108 | 36 | 4 |
| 23 | 44 | 395 | 215 | 101 | 27 | 1 |
| 24 | 49 | 139 | 220 | 136 | 59 | 0 |
| 25 | 49 | 245 | 205 | 113 | 37 | 4 |
| 26 | 49 | 373 | 215 | 88 | 25 | 1 |
| 27 | 51 | 224 | 215 | 118 | 54 | 3 |
| 28 | 51 | 677 | 210 | 116 | 33 | 4 |
| 29 | 51 | 424 | 210 | 140 | 59 | 4 |
| 30 | 51 | 150 | 210 | 105 | 30 | 0 |

Program

Description

The multiple linear regression sample program consists of a main routine, REGRE, and five subroutines:
\(\left.\begin{array}{l}CORRE

ORDER

MINV

MULTR\end{array}\right\} \quad\)| are from the Scientific |
| :--- |
| Subroutine Package |

DATA
is a special input subroutine

Capacity
The capacity of the sample program and the format required for data input have been set up as follows:

1. Up to 21 variables, including both independent and dependent variables.
2. Up to 99,999 observations, if observations are read into the computer one at a time by the special input subroutine named DATA. If all data are to be stored in core prior to the calculation of correlation coefficients, the limitation on the number of observations depends on the size of core storage available for input data.
3. (12F6.0) format for input data cards.

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than 22 variables, dimension statements in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format in the input subroutine, DATA, must be modified. The general rules for program modification are described later.

Input

One I/O Specification card defines input/output units (see "Sample Program Descriptions").

One control card is required for each problem and is read by the main program, REGRE. This card is prepared as follows:

| Columns | Contents | For Sample
 Problem |
| :--- | :--- | :--- |

[^5]| Columns | Contents | For Sample
 Problem |
| :--- | :--- | :--- |
| | Number of observations | 00030 |
| $12-13$ | Number of variables | 06 |
| $14-15$ | Number of selection cards
 (see below) | 02 |

Leading zeros are not required to be keypunched, but all numbers must be right-justified, even if a decimal point is included.

Data Cards

Since input data are read into the computer one observation at a time, each row of data in Table 2 is keypunched on a separate card using the format (12F6.0). This format assumes twelve 6 -column fields per card.

If there are more than twelve variables in a problem, each row of data is continued on the second and third cards until the last data point is keypunched. However, each row of data must begin on a new card.

Selection Card

The selection card is used to specify a dependent variable and a set of independent variables in a multiple linear regression analysis. Any variable in the set of original variables can be designated as a dependent variable, and any number of variables can be specified as independent variables. Selection of a dependent variable and a set of independent variables can be performed over and over again using the same set of original variables.
The selection card is prepared as follows:

| Columns | $\begin{array}{c}\text { For Sample } \\ \text { Problem }\end{array}$ | | |
| :---: | :--- | :---: | :---: |
| $1-2$ | $\begin{array}{l}\text { Option code for table of } \\ \text { residuals }\end{array}$ | 01 | 01 |
| | $\begin{array}{l}\text { Selec- Selec- } \\ \text { tion 1 }\end{array}$ | tion 2 | |$]$

Figure 12. Deck setup (multiple linear regression)
9. Standard error of estimate
10. Analysis of variance for the multiple regression
11. Table of residuals (optional)

Sample
The output listing for the sample problem is shown in Figure 13.

Program Modification

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, REGRE:
a. The dimension of arrays XBAR, STD, D, RY, ISAVE, $B, S B, T$, and W must be greater than or equal to the number of variables, m. Since there are six variables in the sample problem the value of m is 6 .
b. The dimension of array RX must be greater than or equal to the product of $\mathrm{m} \times \mathrm{m}$. For the sample problem this product is $36=6 \times 6$.
c. The dimension of array R must be greater than or equal to $(m+1) m / 2$. For the sample problem this number is $21=(6+1)$ 6/2.

mLtrple aegression.....sample
selectiov..... 2

| $\underset{\text { variable }}{\substack{\text { vat }}}$ | м¢ A | STAMDARD
 CEVIATIOA | $\begin{aligned} & \text { SORRELATION } \\ & \times \mathrm{Vs} Y \mathrm{y} \end{aligned}$ | HEGRESSION COEFFICIEMT | $\begin{aligned} & \text { STO. ENRDH } \\ & \text { OF } \\ & \text { REG.COEF. } \end{aligned}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 316.15668 | 144.42996 | 0.42189 | 0.00743 | 0.00172 | 4.31784 |
| 3 | 241.00002 | 36.43074 | 0.11900 | 0.01497 | 0.00351 | 2.71643 |
| 5 | 34.23333 | 15.97569 | 0.39412 | 0.05362 | 0.0125 | 4.2620 |

oepenoent

Figure 13. Output listing
2. Changes in the input format statement of the special input subroutine, DATA:

Only the format statement for input data may be changed. Since sample data are either one-, two-, or three-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in six 3column fields, and, if so, the format is changed to (6 F3.0) .

The special input subroutine, DATA, is normally written by the user to handle different formats for different problems. The user may modify this subroutine to perform testing of input data, transformation of data, and so on.

Operating Instructions

The sample program for multiple linear regression is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Error Messages

The following error conditions will result in messages:

1. The number of selection cards is not specified on the control card: NUMBER OF SELECTIONS NOT SPECIFIED. JOB TERMINATED.
2. The matrix of correlation coefficients is singular: THE MATRIX IS SINGULAR. THIS SELECTION IS SKIPPED.

Error condition 2 allows the computer run to continue; however, error condition 1 terminates execution of the job.

Sample Main Program for Multiple
 Regression - REGRE

Purpose:
(1) Read the problem parameter card for a multiple regression, (2) Read subset selection cards, (3) Call the subroutines to calculate means, standard deviations, simple and multiple correlation coefficients, regression coefficients. T-values, and analysis of variance for multiple regression, and (4) Print the results.

Remarks:

The number of observations, N , must be greater than $M+1$, where M is the number of variables. If subset selection cards are not present, the program can not perform multiple after returning from subroutine MINV, the value of determinant (DET) is tested to check whether the correlation matrix is singular. If DET is compared against. a small constant, this test may also be used to check near-singularity.

I/O specifications transmitted to subroutines by COMMON.
Input card:
Column 2 MX - Logical unit number for
output.

Column 4 MY - Logical unit number for input.

Subroutines and function subprograms required:
CORRE (which, in turn, calls the subroutine named DATA)
ORDER
MINV
MULTR

Method:
Refer to B. Ostle, 'Statistics in Research', The Iowa State College Press', 1954, Chapter 8.
IOCSICARD, TYPEWRITER,1132 PRINTERI
ONE WORD INTEGERS
SAMPLE MAIN PROGRAM FOR MULTIPLE REGRESSION - REGRE
THE FOLLOWING OIMENSIONS YUST BE GREATER THAN UR EQUAL TO THE REGRE
TME FOLLOWING OIMENSIONS MUST bE GREATER THAN UR EQUAL IO THE REGRE $\quad 2$
NUMEER OF VARIABLESOY.

1SB(21).T(21).W(21) REGREMO2
the following dimension must be greater than oh equal to the kegke
DIMENSION RXI441) REGREMO
the following oimension must be greater than or equal to
(M+1)0M/2.
the following dimension must be greaier than or equal to 10.
OIMENSION ANSIIO:
COMMCN MX +MY
READ(2,151mX,
FORMAT1212)
15 FORMAT1212!
1 FORMATIAA,A2,15,212)
2 FORMATI////25H MULTIPLE REGRESSION......A4.AR//6X,14HSELECTION.......REGRE
1:21/1

5 FORMATH//DOH DEPEVDENT:
6 FORMATI///1OH INTERCEPT,13X,F13.5//23H MULTIPLE CORRELATION PF13.REGRE
$15 / / 23 \mathrm{H}$ STD. ERROR OF ESTIMATE,F13.5/H/
7 FORMATI $/ 1,21 X, 39 H A N A L Y S I S ~ O F ~ V A R I A N C E ~ F O R ~ T H E ~ R E G R E S S I O N / / 5 X, 19 M S O R E G R E ~$
IURCE OF VARIATION, $7 \mathrm{XP}, 7 \mathrm{HDEGREES}, 7 \mathrm{XX}, 6 \mathrm{HSUM}$ OF, $10 \mathrm{X}, 4$ HMEAN, $13 \mathrm{X}, 7 \mathrm{HF}$ VALUREGRE

LFROM REGRESSION $\quad 16+2$ Fi6.5)
9 FORMAT/ $/ 5 \times 5$ FHOTAL. $19 \times 16, F 16.51$
10 Format (3612)
11 FORMAT(/.15X:19HTABLE OF R
FORMAT (16,F15.5 $5 \cdot 2$ F14.5)
13 FORMATI////53H NUMEER OF SELECTIONS NOT SPECIFIED. JCB TERMINATEREGR
14 FORMATI//52H THE MATKIX 15 SINGULAR. THIS SELECIION IS SKIPPED.I
READ PROBLEM PARAMETER CARD
100 READ IMY.11 PR, PR1, ${ }^{2}$ PM.NS
PR..........PROBLEM NUMBER (MAY BE ALPHAMERIC)
PRI.........PROBLEM NUMBER TCONTINUED
N.............NMMER OF OBSERVATIONS
M...........nUMBER OF VARIABLES
$10=0$
$x=0.0$
CALL CORRE (N.M. IO,X,XBAR,STD,RX,R,D.B.TI
TEST NUMAER OF SELECTIONS
IF(NS) 108, 108, 109
GRITE IM $^{\text {ma }} 300$
DO 200 III,NS
WRITE (MX. 21 PR.PKI. I
READ SUQSET SELECTION GARD
READ (MY-10INRESI, NOEP OK, (ISAVEIJI JJ $1, K$)
NRESI.....OPTION CODE FOR TAMLE OF RESIDUALS
IF IT IS NOI OESIRED
O IF IS IS DESIRED.
NDEP....... DEPENDENT VARTABLE
K..............nUMEER OF IADEPENDENT VARIABLES INCLUDED
ISAVE......A VEGTOR CONTAINING THE INDEPENDENT VARIAHLES
CALL ORDER (M, R M M MCLUDED
CALL ORDER (M,R R NDEP,K,ISAVE,RX,RY)
test singularity of the matrix inverted
IF(DET) $112,110.112$
WRITE ${ }^{\text {GO TO }} 200$
TO

C PRINT MEANS, STANDARD DEVIATIONS, INTERCORRELATIUNS EETMEEN
X AND Y: REGRESSIOR COEFFICIENTS, STANDARD DEVIATIONS OF
REGRESSION COEFFICIENTS. ANJ COMPUTED T.VALUES
MMAK $\mathrm{K}+1$
MMEITE (MX:3)

6 PRINT INTERGEPT, MULTPLE CORRELAIION COEFFICIEANT, ANO

sample input subroutine - data

| subrdutine data (4.0) | OATA |
| :---: | :---: |
| OIMENSION OLII | gata |
| cammon mx,my | data |
| 1 formatilizs.0) | data |
| read an observation from input oevice. | data |
| REAU (MY, 1) (DII, [=1,M) | data |
| return | data |
| eno | gata |

POLYNOMIAL REGRESSION

Problem Description

Powers of an independent variable are generated to calculate polynomials of successively increasing degrees. If there is no reduction in the residual sum of squares between two successive degrees of polynomials, the program terminates the problem before completing the analysis for the highest degree polynomial specified.

The sample problem for polynomial regression consists of 15 observations, as presented in Table 3. The highest degree polynomial specified for this problem is 4.

Table 3. Sample Data for Polynomial Regression

| X | Y |
| :---: | :---: |
| 1 | 10 |
| 2 | 16 |
| 3 | 20 |
| 4 | 23 |
| 5 | 25 |
| 6 | 26 |
| 7 | 30 |
| 8 | 36 |
| 9 | 48 |
| 10 | 62 |
| 11 | 78 |
| 12 | 94 |
| 13 | 107 |
| 14 | 118 |
| 15 | 127 |

The capacity of the sample program and the format required for data input have been set up as follows:

1. Up to 50 observations
2. Up to 6th degree polynomials
3. (2F 6.0) format for input data cards

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than $60 \mathrm{ob}-$ servations or if greater than 7th degree polynomial is desired, dimension statements in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format in the sample main program must be modified. The general rules for program modification are described later.

Input

I/O Specification Card

One control card is required for each problem and is read by the main program, POLRG. This card is prepared as follows:

| Columns | Contents | | For Sample
 Problem |
| :---: | :--- | :--- | :--- |
| $1-6$ | Problem number (may be
 alphameric) | SAMPLE | |
| $7-11$ | Number of observations | 00015 | |
| $12-13$ | Highest degree polynomial
 to be fitted | 04 | |

Columns

Contents

14 Option code for plotting Y values and Y estimates:

1

0 if it is not desired

1 if it is desired
Leading zeros are not required to be keypunched; but numbers must be right-justified in fields.

Data Cards

Since input data are read into the computer one observation at a time, each pair of X and Y data in Table 3 is keypunched in that order on a separate card using the format (2F6.0).

Plot Option Card
A card containing b12... 9 (blank followed by numbers 1 through 9) in columns 1 to 10 is necessary after each set of data if plotting is required (option 1). If plotting is not required (option 0), this card must be omitted.

Deck Setup

Deck setup is shown in Figure 14.
Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

Output

Description

The output of the sample program for polynomial regression includes:

1. Regression coefficients for successive degree polynomial
2. Analysis-of-variance table for successive degree polynomial
3. Table of residuals for the final degree polynomial (included with plot)
4. Plot of Y values and Y estimates (optional)

Sample

The output listing for the sample problem is shown in Figure 15.

Figure 14. Deck setup (polynomial regression)

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, POLRG:
a. The dimension of array X must be greater than or equal to the product of $n(m+1)$, where n is the number of observations and m is the highest degree polynomial to be fitted. Since there are 15 observations and the highest degree polynomial specified is 4 , the product is $75=15(4+1)$.
b. The dimension of array DI must be greater than or equal to the product of $\mathrm{m} \times \mathrm{m}$. For the sample problem this product is $16=4 \times 4$.
c. The dimension of array D must be greater than or equal to $(m+2)(m+1) / 2$. For the sample problem this number is $15=(4+2)(4+1) / 2$.
d. The dimension of arrays $B, E, S B$, and T must be greater than or equal to the highest degree polynomial to be fitted, m. For the sample problem the value of m is 4.
e. The dimension of arrays XBAR, STD, COE, SUMSQ and ISAVE must be greater than or equal to $(m+1)$. For the sample problem this value is $5=(4+1)$.
f. The dimension of array P must be greater than or equal to $3 n$. For the sample problem this value is $45=3(15)$. The array P is used when a plot of Y values and Y estimates is desired.
2. Changes in the input format statement of the main program, POLRG:

Only the format statement for input data may be changed. Since sample data are either one-, two-, or three-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in two 3-column fields, and if so the format is changed to (2 F 3.0).

\qquad

| arsewino ne. | tatit of atsicuts | | - 8510045 | Nest une |
| :---: | :---: | :---: | :---: | :---: |
| | \times whee | , mes | | |
| : | 1.30303: | 1s.usues | -.,mp | -...neoc |
| : | 2.02030 | 1.6.Con | 11.84150 | -1.6339 |
| , | 3.03030 | s.araco | 25,700\% | -0.8064 |
| - | ...esomis | n.w.sum | 22.930, | s.714, |
| , | s.acioss | s.aus. | 22,65350 | [.93+4* |
| - | -.sene | 2...... | 2s, cusse | -114\% |
| , | 1, | ,..ive. | 30.009\% | -0.50084 |
| - | ,10000 | 10. 90, | 3+.0n9 | -207746 |
| * | \cdots | \cdots | -a.mis | -.asole |
| 1 | |wo. | (1.04150 | c. 21.50 |
| ${ }^{2}$ | 1.00003 | To.ucost | 10.risct | 1.8749. |
| $: 2$ | :2,0m | -u-ctiz: | \%1..wns | ..5354 |
| , | 12,0,002 | [1.6.u.us | 16. 56870 | -v.56027 |
| i- | 1...semon | : 1 .usis: | 114.cose | -6.280420 |
| : | 2,n:80\% | [2]:maji | | ..2sact |

 1.0008 :
 2.1.22t
 1.23:2

$\stackrel{+2 \times 4}{\rightarrow+\div \%}$
-02en

Figure 15. Output listing

Operating Instructions

The sample program for polynomial regression is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Sample Main Program for Polynomial Regression POLRG

Purpose:

(1) Read the problem parameter card for a polynomial regression, (2) Call subroutines to perform the analysis, (3) Print the regression coefficients and analysis of variance table for polynomials of successively increasing degrees, and (4) Optionally print the table of residuals and a plot of Y values and Y estimates.

Remarks:

I/O specifications transmitted to subroutines by COMMON.
Input card:

$$
\begin{gathered}
\text { Column } 2 \mathrm{MX}-\begin{array}{l}
\text { Logical unit number for } \\
\text { output. }
\end{array}
\end{gathered}
$$

Column 4 MY - Logical unit number for input.
The number of observations, N , must be greater than $M+1$, where M is the highest degree polynomial specified. If there is no reduction in the residual sum of squares between two successive degrees of the polynomials, the program terminates the problem before completing the analysis for the highest degree polynomial specified.

Subroutines and function subprograms required: GDATA ORDER
MINV
MULTR
PLOT (A special PLOT subroutine provided for the sample program.)

Method:
Refer to B. Ostle, 'Statistics in Research', The Iowa State College Press, 1954, chapter 6.

```
#'foric
IOCSICARU.TYPENNITER.1132 PRINTERI
*ONE WORD IATEGERS
        S SAMLEE MAIN PROGRAM FOR POLYNOMIAL REGRESSION - POLRG 
        PRODUCT OF N&CM+1). WHERE N IS THE NUMBER OF OBSERVATIONS AND
        M IS THE MIGHEST DEGREE POLYNOMIAL SPECIFIED.
        THE FOLIOWING dinension must ge greaitr tman or equal to the
        PRODUCT OF MOM.
        the foloming dimension mus: be greater tman ok equal to
        (M+2)=1M+1)/2.
        DIMENSION Diz8)
        TtME FOLLOWING DIMENSIONS MUST be gREATER THAN OR Equal tO M.
        TME fOLLUWING DIMENSIONS mUSI be gheater than or equal tu
        (M+11.* SMAR(7),STD(7),COE (7),SUMSC171, ISAVE(7)
        tme followin oimension must be greater than or ecual to iv.
        DMENSION ANSIIOI
            THE FOLLOWING DIMENSION WILL BE USED IF THE PLOT OF OBSERVED
            THIS CASE, MUST gE GREATER THAN OG EQUAL TO N*3. OTHERWISE,
            tre SILE OF OIMENSION mAY be SEt to 2.
        DIMENSION PI150
        COMMON MX,MY
    FORMATIA4,A2.15.12.111
    FOKMATI2FG.0:1,12:11
    FORYATI////27M POLYNOMIAL REGRESSION......
    5 FORMATI//32H PGLYNONIAL REGRESSION OF DEGREE,I3
    G FORMATI//12H PCLYNONIAL REGRESSION OF DEGREE,13)
    7 FORMATI/I2GH REGRESSION COEFFICIENTS/IIOFI2.5II
    GFORMATI///24A, 24MANALYSIS UF VARIANCE FUR,I4,19M DEGREE POLYVCIMI
    9 FORMATI///.5X019HSOURCE OF VARIATIUN.7X.9HDEGREE UF,7x.6HSUM OF,
    19X,4HMEAN:10X.1MF.9X,20MIMPROVEMEST IN TERNS/33X,7MFREECOM.EX.
    27HSOUARES,7X,6HSOUARE,7X,5HVALUE*8X. ITMOF SU, UF SOUARESI
    O FJRMATI/120M DUE TU REGKESS!UN:12X,16,F17,b,F14,5,FI3.5,F2J.51
```



```
    3 FORMATI/II7H NC INMRUVENEATI
```



```
    5 FORMAT:/1.3X,16.F18.S.FI4.S.F17.5.FIS.S,
    FORMATI2I2I
        REAEAD PRUBLEN PARAMLTER CAR
100 READ (MYP1) HR,DY:,NOYRNOLUT
        PR....PROELEN NUMHER IMAY'HE ALPHAMERICI
        PRI...PROBLEM NUMBER ICONTINUED|
        H....NUMEER OF OBSERVATIONS
        NPLOT.OPTION CODE FOR PLOTTING
            IF PLOT IS NOT DESIRED.
            pint Problem numeg amo Ne
        WRITE (MX.3) PR,PRI
        WRITE (MXA&4) M
        L*N*M
        110 1-2,N
        x(1) is the independent variagle, and xiJI is the dependent
            VARIABLE.
10 READ (MY,2) x(l),X\J
        CALL GDATA IM,M,X,XBARISTD,D,SUMSOI
        MM=M+1
        SUM=0.0
        DO 200 1=1.M
        15AVEI!1=1
            form subSET of correlation coefficient matrix
c.CALL ORDER (MM.D,MMPI,ISAVE,DIDE)
            GALL MINV 'DI,I,DET,B,TI,SUMSO,DI,E,ISAVE,B,SB,T,ANSI
        PRINT THE RESULT OF CALGULATION
        WRITE (MX,S) I
        FIANSI7:1140.130.130
        IFISUMIPi 140. 140. 150
        WRITEIMX,13)
    GO TO 210
    OO WRITEIMX.GIANSII)
        WRITE (MX,7)(B(J).J=1:1)
        WRITE (Mx,8) :
        SHMAMS(4)
        WRITE (MX,10) I,ANS(4),ANSIG),ANSIIOI,SUMIP
        I=ANSis)
        WRITE (MX.11) NI,ANS(7).ANS(9)
            save coefficients for calculaticion of y estimates
            COE(1)=ANS(1)
            OO 160 J=1:I
    160
        COEld*
    300 LA=I GONTINUE
210 test whether plot 15 DESired
c}210\mathrm{ IF(NPLOT) 100, 100, 220
    220 NP3=N+N
        DO 230 1=1, 
        NP3=NP3+1
        L=1}230\textrm{J=1.LA
        P(NP3)P(NP3)+X(L)*COE(よ+1)
c
        N2-N
        DON*M
        P(1=x1!!
        N2=N2+1
            M(N+1)
            PRINT TABLE OF RESIDUALS
            WRITE (MX,3) PR,PRI
            WRITE (MX.5) LA
            WRITE (MX,5)
    WRITE 
    NP2=N
    NP3=N+N
    OO250 1:1
    NP3=NP3+1
```

250 WRITE (MXX,15) 1,P(1),P(AN2)OPINP3), RESIO CALL PLOT ILA,P:N,3.0.1) GO TO 100 OLRG12 OLRG128

suarnutime flat
puapose
plot several cross-variables versus a base varlable
USAGE
CALL PLUT ($\mathrm{NO}_{*} \mathrm{~A}_{\boldsymbol{p}} \mathrm{H}_{8} \mathrm{M}_{\mathrm{p}} \mathrm{NL}, \mathrm{NS}$)
DESCRIPTIOM OF PARANETERS
ND - CMART MUMEER IS DIGITS MAXIMUNI base variagle and successive columns are the cross-
 mL - Munser dF LImes in the plot. if 0 is specified. so ns - code for sorting the ease variable data in ascending CRDER sorting is mot mecessary falready in ascending SORTIMG IS NECESSARY.
REMARKS
NCNE
Subroutines ano function subprograms recuired NONE
SUBROUTINF PLOTINU.A,N,M,NL,N5I
SUBROUTINF PLOTINU.A,N,M,NL,N5I
MENSION OUT:IOLI,YPRIlll,ANGl91,All
MENSION OUT:IOLI,YPRIlll,ANGl91,All
COMYON MX,MY
COMYON MX,MY
fogyar lim,60x,7H CHART
fogyar lim,60x,7H CHART
Furmat (2x)
Furmat (2x)
Fgryatiloall
Fgryatiloall
- faryal 1/1,0x.1F10.41
- faryal 1/1,0x.1F10.41
IF(vS) 16, 16, 1)
IF(vS) 16, 16, 1)
SORT base variable data in ascending order
SORT base variable data in ascending order
lo on 15 =1,N
lo on 15 =1,N
|f(A|!)-A|J!) 14, 14, 11
|f(A|!)-A|J!) 14, 14, 11
|l:I-N
|l:I-N
On 12 k=1,M
On 12 k=1,M
L=L+N
L=L+N
ML=LL**
ML=LL**
AllこA!lll
AllこA!lll
12 AlLl)=F
12 AlLl)=F
14 CONTINUE
14 CONTINUE
test NL
test NL
16 IFINLI\ 20, 18, 2n
16 IFINLI\ 20, 18, 2n
PRINT TITLE
PRINT TITLE
REAI) HLANK AND GIGITS FOR PRINTING
REAI) HLANK AND GIGITS FOR PRINTING
READ(4Y,5) ALANK, (ANG(1),I=1,91
READ(4Y,5) ALANK, (ANG(1),I=1,91
SCAL=(AINI-A{IL)/{FLOATTNLL-1)
SCAL=(AINI-A{IL)/{FLOATTNLL-1)
l=N+1
l=N+1
M2=|*N
M2=|*N
YMAX=YMIN
YMAX=YMIN
MF(A) J=41,M2
MF(A) J=41,M2
if(A)JI-YMAX) 28, 26,28
if(A)JI-YMAX) 28, 26,28
2G YM|v=A!J)
2G YM|v=A!J)
60 T3 40
60 T3 40
YMAK=AlJI
YMAK=AlJI
40 continue
40 continue
FIND BASE VARIABLF PRINT POSITION
FIND BASE VARIABLF PRINT POSITION
|=a|\
|=a|\
NYx = M-1
NYx = M-1
45 F=1-1
45 F=1-1
fF(A(L)-XPR) 50,50,70
fF(A(L)-XPR) 50,50,70
F[N.] CROSS-VARIABLES
F[N.] CROSS-VARIABLES
so bn 5s { x=1,101
so bn 5s { x=1,101
DO go }J=1,\mp@code{MyK
DO go }J=1,\mp@code{MyK
L=L+J*N
L=L+J*N
MUM(JP)=ANGIJ)
MUM(JP)=ANGIJ)
on continite
on continite
PRINT LJNE ANO CLEAR, OR SKID
PRINT LJNE ANO CLEAR, OR SKID
L=L+1
L=L+1
GO TO so
GO TO so

Program

Description

The canonical correlation sample program consists of a main routine, MCANO, and six subroutines:
$\left.\begin{array}{l|l}\text { CORRE } \\ \text { CANOR } & \\ \text { MINV } \\ \text { NROOT } & \begin{array}{l}\text { are from the Scientific Subroutine } \\ \text { Package }\end{array} \\ \text { EIGEN }\end{array}\right)$

DATA is a special input subroutine

Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

1. Up to 9 variables, including both the first set of variables (that is, left-hand variables) and the second set of variables (that is, right-hand variables). The number of variables in the first set must be greater than or equal to the number of variables in the second set.
2. Up to 99,999 observations.
3. (12F 6.0) format for input data cards.

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than 9 variables, dimension statements in the sample main program must be modified to handle the particular problem. Similarly, if input data cards are prepared using a different format, the input format in the input subroutine, DATA, must be modified. The general rules for program modification are described later.

Input

I/O Specification Card

One control card is required for each problem and is read by the main program, MCANO. This card is prepared as follows:

| Columns | Contents | For Sample
 Problem |
| :---: | :---: | :---: |
| $1-6$ | Problem number (may be
 alphameric) | SAMPLE |

| Columns | Contents | For Sample Problem |
| :---: | :---: | :---: |
| 7-11 | Number of observations | 00023 |
| 12-13 | Number of variables in the first set (that is, left-hand variables)* | 04 |
| 14-15 | Number of variables in the second set (that is, righthand variables) | 03 |
| *The number of variables in the first set must be greater than or equal to the number of variables in the second set. | | |

Leading zeros are not required to be keypunched; but must be right-justified within fields.

Data Cards

Since input data are read into the computer one observation at a time, each row of data in Table 4 is keypunched on a separate card using the format (12F 6.0). This format assumes twelve 6-column fields per card.

Deck Setup
Deck setup is shown in Figure 16.

Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

Output

Description
The output of the sample program for canonical correlation includes:

1. Means
2. Standard deviations
3. Correlation coefficients
4. Eigenvalues and corresponding canonical correlation
5. Lambda
6. Chi-square and degrees of freedom
7. Coefficients for left- and right-hand variables

Sample

The output listing for the sample problem is shown in Figure 17 of this sample program.

Figure 16. Deck setup (canonical correlation)

Program Modification

Noting that storage problems may result, as previously described in "Sample Program Descriptions", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize


```
toonLali=\ corroctents
10x 1.00e29 0.0.0031 
```



```
    llll
```



```
Mroncth comflurioy 9.0870
```


Figure 17. Output listing
the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, MCANO:
a. The dimension of arrays XBAR, STD, CANR, CHISQ, and NDF must be greater than or equal to the total number of variables $m(m=p+q$, where p is the number of left-hand variables and q is the number of right-hand variables). Since there are seven variables, four on left and three on right, the value of m is 7 .
b. The dimension of array RX must be greater than or equal to the product of mx m . For the sample problem this product is $49=7 \times 7$.
c. The dimension of array R must be greater than or equal to $(m+1) m / 2$. For the sample problem this number is $28=(7+1) 7 / 2$.
d. The dimension of array COEFL must be greater than or equal to the product of $\mathrm{p} \times \mathrm{q}$. For the sample problem this product is $12=4 \times 3$.
e. The dimension of array COEFR must be greater than or equal to the product of $q \times q$. For the sample problem this product is $9=3 \times 3$.
2. Changes in the input format statement of the special input subroutine, DATA:

Only the format statement for input data may be changed. For example, since sample data are either two- or three-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in seven 3-column fields, and if so, the format would be changed to (7 F 3.0). Note that the current input format statement will allow a maximum of twelve variables per card. The special input subroutine, DATA, is normally written by the user to handle different formats for different problems. The user may modify this subroutine to perform testing of input data, transformation of data, and so on.

Operating Instructions

The sample program for canonical correlation is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Sample Main Program for Canonical Correlation MCANO

Purpose:

(1) Read the problem parameter card for a canonical correlation, (2) Call two subroutines to calculate simple correlations, canonical correlations, chi-squares, degrees of freedom for chi-squares, and coefficients for left and right hand variables, namely canonical variates, and (3) Print the results.

Remarks:
I/O specifications transmitted to subroutines by COMMON.
Input card:

> Column 2 MX - Logical unit number for output.

Column 4 MY - Logical unit number for input.
The number of left-hand variables must be greater than or equal to the number of righthand variables.

Subroutines and function subprograms required:
CORRE (which, in turn, calls the input subroutine named DATA.)
CANOR (which, in turn, calls the subroutines MINV and NROOT. NROOT, in turn, calls the subroutine EIGEN.)

Method:
Refer to W. W. Cooley and P. R. Lohnes, ' Multivariate Procedures for the Behavioral Sciences', John Wiley and Sons, 1962, chapter 3.
\#FOR

* cine herd integers

of left hand variables, any mo is the numbek uf right hand
LIMENSION XBAR(9), STO(9), CANRI 91 , CHISQ(9), NDF(9)
the follohing dimension must be greater than or equal to the
PRDUUCT CF M\#M.
dimensidun rxigin
the fullowing dimension must ae greater than or equal to

the following limensiun must de greatek than or equal to the
PRSION CCEFL(81).
the following dimension must be greater than or equal to the
UIMENSICN COEFR(25).
COMMON MX,My
1 FORMAT ${ }_{24} A_{A} A_{2}, 15,212$)
currelation......,A4,az//22h

2GHT HANO VARIABLES, 14/1
3 FORMATI/OAH MEANS/S BF 15.511
5 FORMAT(//ZSH GORRELAIION COEFFICIENIS)
6 formari $/ 14 \mathrm{H}$ ROW, 13 /(IOF12.51)

2OAA 5X, ICHCHI-SJUARE,7X,
FORMATI/IT,F19.5,F16.5,2F14.5,5X,15)
FGRMATI///22H GANGNJCAL CORRELATION.F12.5)
FORMAI (1/39H COEFFICIENTS FUR LEFI HAND VARIABLES/(8F15.53)
2 frRmaticliz
READI2,12IMX, MY
C 1 RO REAU (MY,L)PR, PRL, iN.MP, MQ CARD
PR.......PRJBLEM NUMDER (MAY BE ALPHAMERIL)
PR....... PROBLEM NUMBER ICONTINUEO
N.........NUMBER OF ObSERVAT IUNS
MP.........NUHAEK OF LEFT HANO VARIADLES
MG........nuaber of right hand variables
MRTMP $+M$
I
$\mathrm{x}=0$
$=0$
CALL COREE (N,M,IG,X,XBAR,STD.RX,R,CANR,CHISO, COEFL
print means, stanuard deviations, and correlation
COEFFICIENTS OF ALL VARIABLES

NRITE ($\mathrm{HX}, 5$)
$\begin{array}{ll}\text { DO } 160 & 1=1, M \\ \text { DO } & 150 \\ J=1, M\end{array}$

$\mathrm{L}=1+(\mathrm{J} * \mathrm{~J}-\mathrm{J}) / 2$
GO to 140
6010140
$L=\downarrow+(1) 1-1) / 2$

50 CONTINUE
WRITE (MX, $6: 1$, (CANR $(J), J=1, M)$
12 CANOR (N, MP, MQ, R, XBAR,STO, CANR, CHISQ, NDF, COEFR, COEFL, RX)
c PRINT EIGENVALUES, CANONICAL CORRELATIONS, LAMBOA, GHI-SQUARES
C DEGREES OF FREEDONS
WRITE (MX,7)
DO $170(1=1, M O$
nl=I-1
If(XBAR(I)) 165, 165, 17 C
5 AMENL

Mh=mQ
$\begin{aligned} & 175 \\ & N 1=0 \\ & N 2=0\end{aligned}$
$\mathrm{N} 2=0$
$\mathrm{DO} \quad 200 \quad 1=1, \mathrm{MM}$
WRITE (MX,9)CANRII)
$\mathrm{NL}=\mathrm{Nl}+1$
XBAR(J)=COEFL(NI)
MRI TE (MX, 103 1 X8ART JJ, J=1, MPI
DO $190 \mathrm{~J}=1$, MQ
N2=N2+1
XBAR $(J)=C O E F R(N 2)$
WRITE (MX, 1llixBAR(J), Jal, mal
CONTINUE
GO TO 100
GO 10
END
$\#$ oup

\#L XEG MCANO 01
iLOCALMCANO, corre, canar

| 5^{1} AMPLELEOCO230403 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 191 | 135 | 69 | 19 | 179 | 145 | 70 |
| 195 | 149 | 70 | 20 | 201 | 192 | 69 |
| 181 | 148 | 71 | 19 | 185 | 149 | 75 |
| 183 | 153 | 82 | 18 | 188 | 149 | 86 |
| 176 | 146 | 67 | 18 | 171 | 142 | 71 |
| 208 | 237 | 81 | 22 | 192 | 152 | 77 |
| 189 | 150 | 79 | 21 | 190 | 149 | 72 |
| 197 | 159 | 90 | 20 | 289 | 192 | 82 |
| 188 | ${ }^{152}$ | 76 | 19 | 197 | 159 | ${ }^{34}$ |
| 192 | 159 | 76 | 20 | 187 | 131 | 72 |
| 179 | 138 | 99 | 18 | 186 | 148 | ${ }_{89} 8$ |
| 109 | 14.7 | 65 | 18 | 174 | 147 | 70 |
| 174 | 150 | 71 | 19 | 185 | 152 | 65 |
| 190 | 159 | ${ }_{98}^{91}$ | ${ }_{20} 19$ | ${ }_{197}^{193}$ | 157 | 9 |

ANALYSIS OF VARIANCE

Problem Description

An analysis of variance is performed for a factorial design by use of three special operators suggested by H.O. Hartley.* The analysis of many other designs can be derived by reducing them first to factorial designs, and then pooling certain components of the analysis-of-variance table.

Consider a three-factor factorial experiment in a randomized complete block design as present in Table 5. In this experiment factor A has four levels, factors B and C have three levels, and the entire experiment is replicated twice. The replicates are completely unrelated and do not constitute a factor.

Table 5. Sample Data for Analysis of Variance

| Replicate (Block) | | b_{1} | | | | b_{2} | | | | b_{3} | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | a_{1} | a_{2} | a_{3} | a_{4} | a_{1} | a_{2} | a_{3} | a_{4} | a_{1} | a_{2} | a_{3} | a_{4} |
| $r_{1} \ldots$ | $\left(c_{1}\right.$ | 3 | 10 | 9 | 8 | 24 | 8 | 9 | 3 | 2 | 8 | 9 | 8 |
| | C_{2} | 4 | 12 | 3 | 9 | 22 | 7 | 16 | 2 | 2 | 2 | 7 | 2 |
| | c_{3} | 5 | 10 | 5 | 8 | 23 | 9 | 17 | 3 | 2 | 8 | 6 | 3 |
| $r_{2} \cdots$ | (c_{1} | 2 | 14 | 9 | 13 | 29 | 16 | 11 | 3 | 2 | 7 | 5 | 3 |
| | c_{2} | 7 | 11 | 5 | 8 | 28 | 18 | 10 | 6 | 6 | 6 | 5 | 9 |
| | $\left(c_{3}\right.$ | 9 | | | 8 | | 16 | 11 | 7 | 8 | 9 | 8 | 15 |

*H. O. Hartley, "Analysis of Variance" in Mathematical Methods for Digital Computers, edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.

Nevertheless, for the purpose of this program, a four-factor experiment (with factors A, B, C, and R) is assumed. Thus, each element of the data in Table 5 may be represented in the form:

$$
\begin{aligned}
& \mathrm{X}_{\text {abcr }} \text { where } \mathrm{a}=1,2,3,4 \\
& b=1,2,3 \\
& \mathrm{c}=1,2,3 \\
& r=1,2
\end{aligned}
$$

The general principle of the analysis-of-variance procedure used in the program is to perform first a formal factorial analysis and then pool certain components in accordance with summary instructions that specifically apply to the particular design. The summary instructions for four different designs are presented in the output section.

Program

Description

The analysis-of-variance sample program consists of a main routine, ANOVA, and three subroutines:
\(\left.\begin{array}{l}AVDAT

AVCAL

MEANQ\end{array}\right\}\)| are from the Scientific |
| :--- |
| Subroutine Package |

Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

1. Up to six-factor factorial experiment
2. Up to a total of 1600 data points. The total number of core locations for data points in a problem is calculated as follows:

$$
T=\prod_{i=1}^{k}\left(\operatorname{LEVEL}_{i}+1\right)
$$

where LEVEL ${ }_{i}=$ number of levels of $i^{\text {th }}$ factor
$\mathrm{k}=$ number of factors
$\Pi=$ notation for repeated products
3. (12F6.0) format for input data cards

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than six
factors or if the total number of data points is more than 1800 , dimension statements in the sample main program must be modified. Similarly, if input data cards are prepared using a different format, the input format statement in the sample main program must be modified. The general rules for program modifications are described later.

Input
I/O Specification Card

One control card is required for each problem and is read by the main program, ANOVA. This card is prepared as follows:

| Columns | Contents | For Sample Problem |
| :---: | :---: | :---: |
| 1-6 | Problem number (may be alphameric) | SAMPLE |
| 7-8 | Number of factors | 04 |
| 9-15 | Blank | |
| ${ }^{16}$ | Label for the first factor | A |
| (17-20 | Number of levels of the first factor | 0004 |
| 2^{21} | Label for the second factor | B |
| 22-25 | Number of levels of the second factor | 0003 |
| ${ }^{26}$ | Label for the third factor | C |
| 27-30 | Number of levels of the third factor | 0003 |
| \int^{31} | Label for the fourth factor | R |
| ($32-35$ | Number of levels of the fourth factor | 0002 |
| 66 | Label for the eleventh factor (if present) | |
| 67-70 | Number of levels of the eleventh factor | |

If there are more than eleven factors, continue to the second card in the same manner.

Columns
Contents
$\begin{cases}1 & \text { Label for the twelfth factor } \\ 2-5 & \text { Number of levels for the twelfth factor }\end{cases}$
etc.
Leading zeros are not required to be keypunched.

Data Cards

Data are keypunched in the following order: X_{1111}, $\mathrm{X}_{2111}, \mathrm{X}_{3111}, \mathrm{X}_{4111}, \mathrm{X}_{1211}, \mathrm{X}_{2211}, \mathrm{X}_{3211}, \ldots$,
X_{4332}. In other words, the innermost subscript is changed first; namely, the first factor, and then second, third, and fourth subscripts. In the sample problem, the first subscript corresponds to factor A and the second, third, and fourth subscripts to factors B, C, and R. Since the number of data fields per cards is twelve, implied by the format (12F6.0), each row in Table 5 is keypunched on a separate card.

Deck Setup

Deck setup is shown in Figure 18.

Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

Figure 18. Deck setup (analysis of variance)

Description

The output of the sample analysis-of-variance program includes the numbers of levels of factors as input, the mean of all data, and the table of analysis of variance. In order to complete the analysis of variance properly, however, certain components in the table may need to be pooled. This is accomplished by means of summary instructions that specifically apply to the particular experiment as presented in Table 6.

Table 6. Instructions to Summarize Components of Analysis of Variance

As mentioned earlier, the sample problem is a randomized complete block design with three factors replicated twice. Therefore, it is necessary to pool certain components in the table of analysis of variance shown in Figure 19. Specifically, the components $A R, B R, A B R, C R, A C R, B C R$, and $A B C R$ are combined into one value called the error term. The result is indicated in Figure 19. Since these data are purely hypothetical, interpretations of the various effects are not made.

Sample

The output listing for the sample problem is shown in Figure 19.

Figure 19. Output listing

Program Modification

Noting that storage problems may result, as previously described in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, ANOVA:
a. The dimension of array X must be greater than or equal to the total number of data points as calculated by the formula in the program capacity section above. For the sample problem the total number of data points is $240=(4+1)(3+1)(3+1)(2+1)$.
b. The dimension of arrays HEAD, LEVEL, ISTEP, KOUNT, and LASTS must be greater than or equal to the number of factors, k. Since there are four factors in the sample problem ($4=3$ original factors +1 pseudo factor) the value of k is 4 .
c. The dimension of arrays SUMSQ, NDF, and SMEAN must be greater than or equal to $\mathrm{n}=2^{\mathrm{k}} \mathbf{- 1}$, where k is the number of factors. For the sample problem the value of n is $15=2^{4}-1$.
2. Change in the input format statement of the main program, ANOVA:

Only the format statement for input data may be changed. Since sample data are either one- or two-digit numbers, rather than using
six-column fields as in the sample problem, each data may be keypunched in a two-column field, and, if so, the format is changed to (12F2.0). This format assumes twelve 2column fields per card, beginning in column 1.

Operating Instructions

The sample analysis-of-variance program is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Sample Main Program for Analysis of Variance - ANOVA

Purpose:

(1) Read the problem parameter card for analysis of variance, (2) Call the subroutines for the calculation of sums of squares, degrees of freedom and mean square, and (3) Print factor levels, grand mean, and analysis of variance table.

Remarks:

The program handles only complete factorial designs. Therefore, other experimental design must be reduced to this form prior to the use of the program.
I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required: AVDAT
AVCAL
MEANQ
Method:
The method is based on the technique discussed by H.O. Hartley in "Mathematical Methods for Digital Computers", edited by A. Ralston and H. Wilf, John Wiley and Sons, 1962, Chapter 20.

DISCRIMINANT ANALYSIS

Problem Description

A set of linear functions is calculated from data on many groups for the purpose of classifying new individuals into one of several groups. The classification of an individual into a group is performed by evaluating each of the calculated linear functions, then finding the group for which the value is the largest.

The sample problem for discriminant analysis consists of four groups of observations as presented in Table 7. The number of observations in the first group is eight; the second group, seven; the third group, seven; and the fourth group eight. The number of variables is six in all groups.

Program

Description

The discriminant analysis sample program consists of a main routine, MDISC, and three subroutines:

are from the Scientific Subroutine Package

Table 7. Sample Data for Discriminant Analysis

| | Observation | X | X_{2} | X_{3} | X | X_{5} | x_{6} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Group 1 | 1 | 3 | 10 | 9 | 8 | 24 | 8 |
| | 2 | 4 | 12 | 3 | 8 | 22 | 7 |
| | 3 | 9 | 3 | 2 | 8 | 9 | 8 |
| | 4 | 16 | 2 | 2 | 2 | 7 | 2 |
| | 5 | 5 | 10 | 5 | 8 | 23 | 9 |
| | 6 | 17 | 3 | 2 | 8 | 6 | 3 |
| | 7 | 2 | 10 | 9 | 8 | 29 | 16 |
| | 8 | 7 | 10 | 5 | 8 | 28 | 18 |
| Group 2 | 1 | 9 | 10 | 27 | 8 | 28 | 16 |
| | 2 | 11 | 7 | 8 | 9 | 8 | 15 |
| | 3 | 8 | 10 | 2 | 8 | 27 | 16 |
| | 4 | 1 | 6 | 8 | 14 | 14 | 13 |
| | 5 | 7 | 8 | 9 | 6 | 18 | 2 |
| | 6 | 7 | 9 | 8 | 2 | 19 | 9 |
| | 7 | 7 | 10 | 5 | 8 | 27 | 17 |
| Group 3 | 1 | 3 | 11 | 9 | 15 | 20 | 10 |
| | 2 | 9 | 4 | 10 | 7 | 9 | 9 |
| | 3 | 4 | 13 | 10 | 7 | 21 | 15 |
| | 4 | 8 | 5 | 16 | 16 | 16 | 7 |
| | 5 | 6 | 9 | 10 | 5 | 23 | 11 |
| | 6 | 8 | 10 | 5 | 8 | 27 | 16 |
| | 7 | 17 | 3 | 2 | 7 | 6 | 3 |
| Group 4 | 1 | 3 | 10 | 8 | 8 | 23 | 8 |
| | 2 | 4 | 12 | 3 | 8 | 23 | 7 |
| | 3 | 9 | 3 | 2 | 8 | 21 | 7 |
| | 4 | 15 | 2 | 2 | 2 | 7 | 2 |
| | 5 | 9 | 10 | 26 | 8 | 27 | 16 |
| | 6 | 8 | 9 | 2 | 8 | 26 | 16 |
| | 7 | 7 | 8 | 6 | 9 | 18 | 2 |
| | 8 | 7 | 10 | 5 | 8 | 26 | 16 |

Capacity

The capacity of the sample program and the format required for data input have been set up as follows:

1. Up to four groups
2. Up to ten variables
3. Up to a total number of 100 observations in all groups combined.
4. (12 F6.0) format for input data cards

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than four groups, more than ten variables, or more than 100 observations, dimension statements in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format statement in the sample main program must be modified. The general rules for program modification are described later.

Input

I/O Specification Card

One control card is required for each problem and is read by the main program, MDISC. This card is prepared as follows:

| Columns | Contents | For Sample
 Problem |
| :---: | :--- | :--- |
| $1-6$ | Problem number (may be
 alphameric) | SAMPLE |
| $7-8$ | Number of groups | 04 |
| $9-10$ | Number of variables | 06 |
| $11-15$ | Number of observations
 in first group | 00008 |
| $21-20$ | Number of observations
 in second group | 00007 |
| $26-30$ | Number of observations
 in third group | 00007 |
| Number of observations
 in fourth group | 00008 | |
| $65-70$ | Number of observations
 in twelfth group (if
 present) | N |

If there are more than twelve groups in the problem, continue to the second card in the same manner.

Columns

1-5

6-10

Contents

Number of observations in thirteenth group

Number of observations in fourteenth group

Leading zeros are not required to be keypunched, but numbers must be right-justified in fields.

Data Cards

Since input data are read into the computer one observation at a time, each row of data in Table 7 is
keypunched on a separate card using the format (12 F6.0). This format assumes twelve 6-column fields per card.

Deck Setup

Deck setup is shown in Figure 20.

Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

Output

Description

The output of the sample program for discriminant analysis includes:

1. Means of variables in each group
2. Pooled dispersion matrix
3. Common means
4. Generalized Mahalanobis D-square
5. Constant and coefficients of each discriminant function

Figure 20. Deck setup (discriminant analysis)
6. Probability associated with the largest discriminant function evaluated for each observation.

Sample

The output listing for the sample problem is shown in Figure 21.

Program Modification

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, MDISC:
a. The dimension of array N must be greater than or equal to the number of groups, k. Since there are four groups in the sample problem the value of k is 4 .
b. The dimension of array CMEAN must be greater than or equal to the number of variables, m. Since there are six variables in the sample problem the value of m is 6 .
c. The dimension of array XBAR must be greater than or equal to the product of m times k. For the sample problem this product is $24=6 \times 4$.
d. The dimension of array C must be greater than or equal to the product of $(m+1) k$. For the sample problem this product is $28=(6+1) 4$.
e. The dimension of array D must be greater than or equal to the product of m times m. For the sample problem this product is $36=6 \times 6$.
f. The dimension of arrays P and LG must be greater than or equal to the total number of observations in all groups combined, t. For the sample problem this total is $30=8+7+7+8$.
g. The dimension of array X must be greater than or equal to the total number of data points that is equal to the product of t

Figure 21. Output listing
times m. For the sample this product is $180=30 \times 6$.
2. Changes in the input format statement of the main program, MDISC:

Only the format statement for input data may be changed. Since sample data are either one- or two-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in twocolumn fields, and, if so, the format is changed to (6 F 2.0). This format assumes six 2 -column fields per card, beginning in column 1.

Operating Instructions

The sample program for discriminant analysis is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Sample Main Program for Discriminant Analysis - MDISC

Purpose:

(1) Read the problem parameter card and data for discriminant analysis, (2) Call three subroutines to calculate variable means in each group, pooled dispersion matrix, common means of variables, generalized Mahalanobis D square, coefficients of discriminant functions, and probability associated with largest discriminant function of each case in each group, and (3) Print the results.

Remarks:

The number of variables must be greater than or equal to the number of groups.
I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required:
DMATX
MINV
DISCR

Method:

Refer to "BMD Computer Programs Manual", edited by W.J. Dixon, UCLA, 1964, and T.W. Anderson, "Introduction to Multivariate Statistical Analysis", John Wiley and Sons, 1958, section 6.6-6.8.

[^6]

| 7 | 9 | 8 | 2 | 19 | 9 | 16 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% | 10 | 5 | ${ }^{8}$ | 27 | 17 | 7 |
| 3 | 11 | 9 | 19 | 20 | 10 | 9 |
| 4 | 13 | 10 | 7 | 21 | 15 | \% |
| 8 | 3 | 16 | 16 | $1{ }^{16}$ | ${ }^{7}$ | 21 |
| 6 | 9 | 10 | 5 | 23 | 11 | 23 |
| ${ }_{17}^{8}$ | 10 3 | 2 | $\stackrel{8}{7}$ | ${ }_{6} 27$ | 16 | 24 |
| 3 | 10 | 8 | 8 | 23 | 8 | 25 |
| 4 | 12 | 3 | ${ }^{\text {a }}$ | 23 | ? | 26 |
| 9 | 3 | 2 | ${ }^{8}$ | 21 | 7 | 97 |
| $\xrightarrow{15}$ | ${ }_{10}^{2}$ | 26 | ${ }_{8}^{2}$ | 27 | 16 | 29 |
| 8 | 9 | 2 | 8 | ${ }^{26}$ | 16 | 31 |
| 7 | ${ }_{10}^{88}$ | ${ }_{5}$ | 8 | 26 | ${ }_{16}$ | 32 |

FACTOR ANALYSIS

Problem Description
A principal component solution and the varimax rotation of the factor matrix are performed. Principal component analysis is used to determine the minimum number of independent dimensions needed to account for most of the variance in the original set of variables. The varimax rotation is used to simplify columns (factors) rather than rows (variables) of the factor matrix.

The sample problem for factor analysis consists of 23 observations with nine variables as presented in Table 8. In order to keep the number of independent dimensions as small as possible, only those eigenvalues (of correlation coefficients) greater than or equal to 1.0 are retained in the analysis.

Table 8. Sample Data for Factor Analysis

| Observation | X_{1} | X_{2} | X_{3} | X_{4} | x_{5} | x_{6} | x_{7} | x_{8} | x_{9} |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | 7 | 7 | 9 | 7 | 15 | 36 | 60 | 15 | 24 |
| 2 | 13 | 18 | 25 | 15 | 13 | 35 | 61 | 18 | 30 |
| 3 | 9 | 18 | 24 | 23 | 12 | 43 | 62 | 14 | 31 |
| 4 | 7 | 13 | 25 | 36 | 11 | 12 | 63 | 26 | 32 |
| 5 | 6 | 8 | 20 | 7 | 15 | 46 | 18 | 28 | 15 |
| 6 | 10 | 12 | 30 | 11 | 10 | 42 | 27 | 12 | 17 |
| 7 | 7 | 6 | 11 | 7 | 15 | 35 | 60 | 20 | 25 |
| 8 | 16 | 19 | 25 | 16 | 13 | 30 | 64 | 20 | 30 |
| 9 | 9 | 22 | 26 | 24 | 13 | 40 | 66 | 15 | 32 |
| 10 | 8 | 15 | 26 | 30 | 13 | 10 | 66 | 25 | 34 |
| 11 | 8 | 10 | 20 | 8 | 17 | 40 | 20 | 30 | 18 |
| 12 | 9 | 12 | 28 | 11 | 8 | 45 | 30 | 15 | 19 |
| 13 | 11 | 17 | 21 | 30 | 10 | 45 | 60 | 17 | 30 |
| 14 | 9 | 16 | 26 | 27 | 14 | 31 | 59 | 19 | 17 |
| 15 | 10 | 15 | 24 | 18 | 12 | 29 | 48 | 18 | 26 |
| 16 | 11 | 11 | 30 | 19 | 19 | 26 | 57 | 20 | 30 |
| 17 | 16 | 9 | 16 | 20 | 18 | 31 | 60 | 21 | 17 |
| 18 | 9 | 8 | 19 | 14 | 16 | 33 | 67 | 9 | 19 |
| 19 | 7 | 18 | 22 | 9 | 15 | 37 | 62 | 11 | 20 |
| 20 | 8 | 11 | 23 | 18 | 9 | 36 | 61 | 22 | 24 |
| 21 | 6 | 6 | 27 | 23 | 7 | 40 | 55 | 24 | 31 |
| 22 | 10 | 9 | 26 | 26 | 10 | 37 | 57 | 27 | 29 |
| 23 | 8 | 10 | 26 | 15 | 11 | 42 | 59 | 20 | 28 |
| | | | | | | | | | |

Program
Description
The factor analysis sample program consists of a main routine, FACTO, and six subroutines:
$\left.\begin{array}{l}\text { CORRE } \\ \text { EIGEN } \\ \text { TRACE } \\ \text { LOAD } \\ \text { VARMX }\end{array}\right\}$ Package from the Scientific Subroutine

DATA is a special input subroutine

Capacity

The capacity of the sample program and the format required for data input have been set up as follows:
| 1. Up to 29 variables
2. Up to 99,999 observations
3. (12F6.0) format for input data cards

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than 30 variables, dimension statements in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format statement in the input subroutine, DATA, must be modified. The general rules for program modification are described later.

Input

I/O Specification Card

One control card is required for each problem and is read by the main program, FACTO. This card is prepared as follows:

| Columns | Contents
 $1-6$ | Problem number (may be
 alphameric)
 Sample |
| :---: | :--- | :--- |
| $7-11$ | Number of observations | 00023 |
| $12-13$ | Number of variables | |
| $14-19$ | Value used to limit the
 number of eigenvalues of | 09 |

correlation coefficients. (cont)

Only those eigenvalues
greater than or equal to this value are retained in the analysis. (A decimal point must be specified.)

Leading zeros are not required to be keypunched, but numbers must be right-justified in fields.

Data Cards

Since input data are read into the computer one observation at a time, each row of data in Table 8 is keypunched on a separate card using the format (12F6.0). This format assumes twelve 6-column fields per card.

If there are more than twelve variables in a problem, each row of data is continued on the second and third cards until the last data point is keypunched. However, each row of data must begin on a new card.

Deck Setup

Deck setup is shown in Figure 22.

Figure 22. Deck setup (factor analysis)

Sample

The listing of input cards for the sample problem is presented at the end of the sample main program.

Output

Description

The output of the sample program for factor analysis includes:

1. Means
2. Standard deviations
3. Correlation coefficients
4. Eigenvalues
5. Cumulative percentage of eigenvalues
6. Eigenvectors
7. Factor matrix
8. Variance of the factor matrix for each iteration cycle
9. Rotated factor matrix
10. Check on communalities

Sample

The output listing for the sample problem is shown in Figure 23.

Program Modification

Noting that storage problems may result, as previously described in "Sample Program Description", program capacity can be increased or decreased by making changes in dimension statements. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:

1. Changes in the dimension statements of the main program, FACTO:
a. The dimension of arrays B, D, S, T, and XBAR must be greater than or equal to the number of variables, m. Since there are nine variables in the sample problem the value of m is 9 .
b. The dimension of array V must be greater than or equal to the product of m times m. For the sample problem this product is $81=9 \times 9$.
c. The dimension of array R must be greater than $\frac{(m+1) m}{2}$

| factor analtsis......savole
 | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 82.6 | | 23.6epu | 18.00000 | 12.46936 | 36. | 2808 | 34.00000 | 14.3418 |
| | 17005 | | 3.33627 | 8.3334 | 3.13780 | 9.2 | $1 \times$ | 12.87887 | 2,20sas |
| sometation cosericients | | | | | | | | | |
| R0. : 1.000000 | 0.34086 | 0.11974 | 0.12201 | 0.2396 | -0.0984 | 0.20902 | ${ }^{-0.129068}$ | 0.03827 | |
| Row ${ }_{\text {cosengo }}$ | 1.00050 | 0.4191 | 0.33972 | -0.00748 | -0.09100 | 0.87482 | -0.33049 | 4123307 | |
| now 0.12974 | 0.4311 | 1.50000 | 0,6812 | -0.631\% | -0.08315 | -0.10231 | 0.42215 | 4.67632 | |
| 200 0.12101 | 0.33972 | catis12 | 2.00000 | ${ }^{-0.33207}$ | -0.50364 | 0.40893 | 0.22339 | v.swevo | |
| Row ${ }_{0} 5.21917$ | -0.08262 | -0.4387 | -0.31207 | 1.00000 | -0.23998 | 0.03310 | -0.00475 | -0.0334 | |
| ${ }^{200050.093 .68}$ | -3.0900 | -3.6334 | -0.56304 | -0.22494 | 2,00030 | -0.40320 | -0.25060 | -u.staso | |
| 900 0.20924 | 8278622 | -0.12381 | 0.4893) | 8.03310 | -0,44320 | 1.00050 | -8.28009 | 0.0010 | |
| | -5.32304 | 0.33219 | 0.2339 | 0.0 .80413 | -0.2540 | -0.28069 | 1.60000 | 0.13919 | |

| MOX 0 ¢09857 | 0.33187 | a.27es3 | 0.9soiv | -0.30341 | -0.374 6 | 0.00123 | 0.13315 | 1.0ugou |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ggenviluss | : $66+370$ | 1.53316 | 1.0654 | | | | | |
| CUMULHTIYE 甲E 0.3277 g | | Elemwass | 0.30161 | | | | | |
| Eigenvectars | | | | | | | | |
| vetcior | 0.0463 | 0.39709 | 0.19660 | -0.16808 | -0.39821 | 0.3943 | 0.02102 | 0.07310 |
| | 0.06ss: | -0.absor | -0.12091 | 0.61809 | 00, 85477 | 0.38 sP | -0.24869 | -u.ubos, |
| vector -6.79 \%99 | -0.40625 | -3.23931 | 0.173 | 0.12467 | -6.035*3 | 0.01600 | 0.62387 | 0.1270 |
| vector $0 . \sin +60$ | 0.16809 | 9.302es | 0.68162 | 0.30538 | -0.16202 | -0.434.10 | 0.66283 | -4027746 |
| saction matiza | , Macroas | | | | | | | |
| YARIABLE 0.70231 | 0.64633 | -0.37286 | 0.36803 | | | | | |
| vantitele, | 0.0499 | 0.50 .5893 | 0.27750 | | | | | |
| | -0.372* | -0.29367 | 0.34928 | | | | | |
| $\begin{array}{r} \text { YARIAEtt } \\ \text { Dasisist } \end{array}$ | -0.1324 | 0.218073 | 0.06497 | | | | | |
| | 9.78475 | 0.10002 | 0.33325 | | | | | |
| | --.31.82 | -0.5626 | -0.16690 | | | | | |

Figure 23. Output listing

For the sample problem, this number is $45=\frac{(9+1) 9}{2}$
2. Changes in the input format statement of the special input subroutine, DATA:
a. Only the format statement for input data may be changed. Since sample data are either one- or two-digit numbers, rather than using six-column fields as in the sample problem, each row of data may be keypunched in two-column fields, and, if so, the format is changed to (9F2.0). This format assumes nine 2column fields per card, beginning in column 1.
b. The special input subroutine, DATA, is normally written by the user to handle different formats for different problems. The user may modify this subroutine to perform testing of input data, transformation of data, and so on.

Operating Instructions

The sample program for factor analysis is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Error Messages

If the number of factors to be rotated is one or zero, the following message will be printed:

ONLY___FACTOR RETAINED, NO ROTATION.
The program skips rotation and goes to the next problem if it is present.

Sample Main Program for Factor Analysis - FACTO

Purpose:

(1). Read the problem parameter card, (2) Call five subroutines to perform a principal component solution and the varimax rotation of a factor matrix, and (3) Print the results.

Remarks:

I/O specifications transmitted to subroutines by COMMON. Input card:

> Column 2 MX - Logical unit number for output.
> Column 4 MY - Logical unit number for input.

Subroutines and function subprograms required: (which, in turn, calls the subroutine named DATA.)

CORRE
EIGEN
TRACE
LOAD
VARMX

Method:

Refer to "BMD Computer Programs Manual", edited by W. J. Dixon, UCLA, 1964.

```
// far
#lOCSICARD,TYPEWRITER,1132 PRINTERI
*ONE WORD INYEGERS SAMPE MAIN PROGRAM FOR FACIOR ANALYSIS - fACTO
```



```
M,
M,
M,
M,
M,
M,
M,
M,
llol
llol
llol
    FFORMATH//2SM CORRELAIION COEFFICIENTS:
    FORMATT//4H ROW.13/110F12.511
    FDRMATW%12H E GEMVALUES/ILOF12.5II
    FFRMATI/%37M GUMULATIVE PERC
```



```
    FORMATI//YH VAKLABLE,I3/110F12.5)/
    FORMATI//YH VANIABLEII3/11OF12.5)/ 
    3 FORMAT (l0,F20.6) 
```



```
    5 FORMATI//YM VARIABLE,I3/(10F12.5)I
    112X,5HFINAL,10X,1OHDIFFERENCE:
    FURMATIIO.3F1a.5:
    17 FURMAT(10,3F1,5)
    18 FORMAT(A4,AE,15,I2,FG.0)
        REAO{2,201MX,MY
            MEAD PROBLEM PARAME TER CARO
100 READ (MY, 18)PR,PKLI,N,M,CON (MNA ME ALPHAMERIG)
lom READ (HY,18)PR,PKL,N,M,CUNGER (MAY BE ALPHAMERIC)
            PR1..........PROBLEM NUMBER (CONT
            M..........number yf varlables 
            WRITE IMX,LJPR,PRL, RETAMM
            10=0
            C=0.0 CORZE (N,M,IO,X,XBAR,S,V,R;D,d,T)
            PRINT MEANS 
            WKITE (MA, 2IIXGAR(J),J=1,M)
            WRITE (MX,BI(SIJ),J=1,M)
G WRITE (MX,BILSIJJ,J=1,M)
            MRITE (MX,4)
            lol
    02{\mp@code{LF([-J) 102, 104, 104}
    102 L=i+! J#J-J)/2
    C0 10 110
    120 RRITE (MX,5II,(J)N),J=1,M)
        MRITE (MX,5)I,(J(N),J=
            GALL EIGEN (K,V,M,MV)
            MRINT EIGENVALUES
    M
130\begin{array}{c}{L=1+(1/*1-I)}\\{\mathrm{ S(I)R(L)}}\end{array})
            WRITE (MX,6){S(JH,J=1,K)
            WRITE (MX,G){SIJ,,J=1,K)
            WRITE (MX,7JIO\JI,J=1,K)
            MPRINTEIG;
            WRITE (MX.ES
            C=0 150 J=1,k
```



```
14C D(1)=V(L)
            WALL LOAO (M,K,R,V),
            CALL LOAD (M,K,R,V)
            MRIN(MFACTM
            lol
            DO 170 J=1,k
170若(J)=vil)
l70 W(J)=V(L)
IF(K-1) 185,185,188
285WRITE TMX,19)K
185 WR1TE (MX,19)K
l,

\section*{- IOCSICARD, TYPEWRITER,1132 PRINTERI}
```

*ONE WORD INTEGERS
llol

```

```

PERCENTAGEE O
llol

```

```

FACTO \$
FACIO 1
FORMATiz[2]
FACIO 2
FACCIO 22
N..........number uf cases males
10 DRJF=RILI
, }10
FACHO 22
FACrO
FACIU 24
FACrO
FACra 28
FACifO 35
FACTO 36
C 100 READ
FACIO 37
FACIO
C CALLTNACE {M,R,CDN,K+O)
FACIO41
Cun........iUNSTANT USEO TO DECIjE HOW MANY EIGENVALuES
FACTO 42
FACO}
FFACOO4,
c
c
FACTO 40
FACTO 47
FACTO 48
FACTO 49

```

```

 FACYO 51
 FACTO 53
 FACTO 54
 FACTO 55
 FACrO Sa
 FACrD 59
 FACrO OL
 FACTO O3
 FACIOO O4
 FACIO os
 FACGHS of
 FACHO Os
 FACIO 69
 FACIO
 FACrO
10 U(J)=V(L)
FACTU 82
FACTO 84
FACTO 85
FACTO 86

```
-


\section*{TRIPLE EXPONENTIAL SMOOTHING}

\section*{Problem Description}

Given a time series \(X\), a smoothing constant, and three coefficients of the prediction equation, this sample program finds the triple exponentially smoothed series \(S\) of the time series \(X\).

\section*{Program}

\section*{Description}

The sample program for triple exponential smoothing consists of a main routine, EXPON, and one subroutine, EXSMO, from the Scientific Subroutine Package.

\section*{Capacity}

The capacity of the sample program and the format required for data input have been set up as follows:
1. Up to 1000 data points in a given time series
2. (12F6.0) format for input data cards

Therefore, if a problem satisfies the above conditions it is not necessary to modify the sample program. However, if there are more than 1000 data points, the dimension statement in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format in the sample main program must be modified. The general rules for program modification are described later.

Input

\section*{I/O Specification Card}

One control card is required for each problem and is read by the main program, EXPON. This card is prepared as follows:
\begin{tabular}{|c|c|c|}
\hline Columns & Contents & For Sample Problem \\
\hline 1-6 & Problem number (may be alphameric) & SAMPLE \\
\hline 7-10 & Number of data points in a given time series & 0038 \\
\hline 11-15 & Smoothing constant,
\[
(0.0<\alpha<1.0)
\] & 0.1 \\
\hline 16-25 & First coefficient (A) of the prediction equation & 0.0 \\
\hline 26-35 & Second coefficient (B) of the prediction equation & 0.0 \\
\hline 36-45 & Third coefficient (C) of the prediction equation & 0.0 \\
\hline
\end{tabular}

Leading zeros are not required to be keypunched, but numbers must be right-justified in fields.

\section*{Data Cards}

Time series data are keypunched using the format (12F6.0). This format assumes that each data point is keypunched in a six-column field and twelve fields per card.

\section*{Deck Setup}

Deck setup is shown in Figure 24.

\section*{Sample}

The listing of input cards for the sample problem is presented at the end of the sample main program.

\section*{Output}

\section*{Description}

The output of the sample program for triple exponential smoothing includes:
1. Original and updated coefficients
2. Time series as input and triple exponentially smoothed time series.

\section*{Sample}

The output listing for the sample problem is shown in Figure 25.

\section*{Program Modification}

Noting that storage problems may result, as previously discussed in "Sample Program Description", program capacity can be increased or decreased by making changes in the dimension statement. Input data in a different format can also be handled by providing a specific format statement. In order to familiarize the user with the program modification, the following general rules are supplied in terms of the sample problem:
1. Changes in the dimension statement of the main program, EXPON:

The dimension of arrays \(X\) and \(S\) must be greater than or equal to the number of data points in time series, NX. Since there are 38 data points in the sample problem, the value of NX is 38 .
2. Changes in the input format statement of the main program, EXPON:

Only the format statement for input data may be changed. Since sample data are three-digit numbers, rather than using six-column fields as in the sample program, each data point may be keypunched in a three-column field and 24 fields per card. If so, the format is changed to ( 24 F 3.0 ).


Figure 24. Deck setup (triple exponential smoothing)

TRIPLE EXPONENTIAL SMOOTHING......SAMPLE
NUMBER OF DATA POINTS 38
SMOOTHING CONSTANT 0.100
\begin{tabular}{cccc} 
COEFFICIENTS & A & B & \(C\) \\
ORIGINAL & 0.00000 & 0.00000 & 0.00000 \\
UPDATED & 484.80169 & 1.71278 & 0.04165
\end{tabular}
\begin{tabular}{|c|c|}
\hline InPut data & smoothed data (FORECAST) \\
\hline 430.00006 & 430.00006 \\
\hline 426.00006 & 426.00006 \\
\hline 422.00006 & 422.00006 \\
\hline 419.00006 & 418.00006 \\
\hline 414.00006 & 414.29998 \\
\hline 413.00006 & 410.23993 \\
\hline 412.00006 & 407.08990 \\
\hline 409.00006 & 404.66839 \\
\hline 411.00006 & 402.22406 \\
\hline 417.00006 & 401.25134 \\
\hline 422.00006 & 402.64642 \\
\hline 430.00006 & 405.61694 \\
\hline 438.00006 & 410.71417 \\
\hline 441.00006 & 417.47027 \\
\hline 447,00006 & 423.99908 \\
\hline 455.00006 & 431.18335 \\
\hline 461.00006 & 439.43420 \\
\hline 453.00006 & 447.87902 \\
\hline 448.00006 & 452.21600 \\
\hline 449.00006 & 454.10571 \\
\hline 454.00006 & 455.80731 \\
\hline 463.00006 & 458.54632 \\
\hline 470.00006 & 463.30535 \\
\hline 472.00006 & 469.06439 \\
\hline 476.00006 & 474.09521 \\
\hline 481.00006 & 479.11016 \\
\hline 483.00006 & 484.38598 \\
\hline 487.00006 & 488.94592 \\
\hline 491.00006 & 493.50836 \\
\hline 492.00006 & 498.05432 \\
\hline 485.00006 & 501.66992 \\
\hline 486.00006 & 502.12536 \\
\hline 482.00006 & 502.44427 \\
\hline 479.00006 & 501.16723 \\
\hline
\end{tabular}

Figure 25. Output listing

\section*{Operating Instructions}

The sample program for triple exponential smoothing is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

Sample Main Program for Triple Exponential Smoothing - EXPON

\section*{Purpose:}
(1) Read the problem parameter card and a time series, (2) Call the subroutine EXSMO to smooth the time series, and (3) Print the result.

\section*{Remarks:}

A smoothing constant specified in the problem parameter card must be greater than zero but less than one in order to obtain reasonable results.
I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required: EXSMO.

Method:
Refer to R. G. Brown, "Smoothing, Forecasting and Prediction of Discrete Time Series", Prentice-Hall, N. J., 1963, pp. 140 to 144.


\section*{MATRIX ADDITION}

Problem Description
An input matrix is added to another input matrix to form a resultant matrix. Each set of input matrices
and the corresponding output matrix is printed. The procedure is repeated until all sets of input matrices have been processed.

\section*{Program}

\section*{Description}

The matrix addition sample program consists of a main routine, ADSAM, and four subroutines:
\begin{tabular}{lll} 
MADD & \(\left\{\begin{array}{l}\text { are from the Scientific } \\
\text { Subroutine Package }\end{array}\right.\) \\
LOC & \begin{tabular}{l} 
are sample subroutines \\
MATIN \\
mXO matrix input and \\
output
\end{tabular}
\end{tabular}

\section*{Capacity}

Matrix size has arbitrarily been set at 650 data elements. Therefore, if a problem satisfies the above condition, no modification in the sample program is necessary. However, if there are more than 650 elements, the dimension statement in the sample main program must be modified to handle this particular problem. The general rules for program modification are described later.

\section*{Input}

\section*{I/O Specification Card}

Each input matrix must be preceded by a control card with the following format:
\begin{tabular}{cll} 
Columns & \multicolumn{1}{c}{\begin{tabular}{c} 
Contents \\
\(1-2\)
\end{tabular}} & \begin{tabular}{c} 
Blample \\
Problem
\end{tabular} \\
\(3-6\) & \begin{tabular}{l} 
Up to four-digit identifi- \\
cation code
\end{tabular} & 0001 \\
\(7-10\) & \begin{tabular}{l} 
Number of rows in \\
matrix
\end{tabular} & 0008 \\
\(11-14\) & \begin{tabular}{l} 
Number of columns in \\
matrix
\end{tabular} & 0011 \\
\(15-16\) & \begin{tabular}{l} 
Storage mode of matrix \\
0 for general matrix \\
1 for symmetric matrix \\
2 for diagonal matrix
\end{tabular} & 0
\end{tabular}

Each input matrix must be followed by a card with a 9 -punch in column 1.

\section*{Data Cards}

Data cards are assumed to have seven fields of ten columns each. The decimal point may appear anywhere in a field, or may be omitted; however, all numbers must be right-justified. The number in each field may be preceded by blanks. Data elements must be punched by row. A row may continue from card to card. However, each new row must start in the first field of the next card. Only the upper triangular portion of a symmetric or the diagonal elements of a diagonal matrix are contained on data cards. The first element of each new row will be the diagonal element for a matrix with symmetric or diagonal storage mode. Columns 7180 of data cards may be used for identification, sequence numbering, etc.

A blank card after the last pair of input matrices terminates the run.

\section*{Deck Setup}

The deck setup is shown in Figure 26.
Sample
A listing of input cards for the sample problem is presented at the end of the sample main program.

Output

\section*{Description}

Both sets of input matrices and the output matrix are printed. The resultant matrix is printed for any sized array as a general matrix regardless of the storage mode. Each seven-column grouping is headed with the matrix code number, dimensions, and storage mode. Columns and rows are headed with their respective number. The code number for the output matrix is derived by adding the code numbers for the input matrices.

\section*{Sample}

The output listing for the sample problem is shown in Figure 27.

\section*{Program Modification}

Noting that storage problems may result, as previously described in "Sample Program Description", the maximum matrix size acceptable to the sample


Figure 26. Deck setup (matrix addition)
program may be increased or decreased by making the following changes in ADSAM:
1. Modify the DIMENSION statement to reflect the number of elements for \(A, B\), and \(R\).
2. Insert the same number in the third parameter of the two CALL MATIN statements (20 and 45).

The output listing is set for 120 print positions across the page and double spacing. This can be
changed by means of the last two arguments in the three CALL MXOUT statements in ADSAM (statements \(40,80,90\) ).

\section*{Operating Instructions}

The matrix addition sample program is a standard FORTRAN program. Special operating instructions
are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

\section*{Error Messages}

The following error conditions will result in messages:
1. Reserved storage area is too small for matrix: DIMENSIONED AREA TOO SMALL FOR INPUT MATRIX (matrix code no.). GO ON TO NEXT CASE.
2. Input matrices do not have the same dimensions: MATRIX DIMENSIONS NOT CONSISTENT. GO ON TO NEXT CASE.
3. Number of data cards does not correspond to that required by parameter card: INCORRECT NUMBER OF DATA CARDS FOR MATRIX (matrix code no.). EXECUTION TERMINATED.

Error conditions 1 and 2 allow the computer run to continue. Error condition 3, however, terminates execution and requires another run to process succeeding cases.


Figure 27. Output listing

\section*{Purpose:}

Matrix addition sample program.

\section*{Remarks:}

I/O specifications transmitted to subroutines by COMMON.
Input card:
Column 2 MX - Logical unit number for
Column 4 MY - Logical unit number for input.

Subroutines and function subprograms required: MADD
MATIN
MXOUT
LOC
Method:
Two input matrices are read from the standard input device. They are added and the resultant matrix is listed on the standard output device. This can be repeated for any number of pairs of matrices until a blank card is encountered.
// FOR
IOCSICARDPTYPEWRITER,1132 PRINTERI
*ONE WORD INTEEERS
SAMPLE MAIN PROGRAM FUK MATKIX ADDITIUN - ADSAM OF NUMES ARE DIMENSIUNED FUR 1000 ELEMENTS. THEREFORE, PHUDU DIMENSION A(650):B(650)-R1650) COMMON MXiMY
10 FORMATHO1/16H MATRIX ADDITION:

ORMAT:/2IN EXECUTION TEKMINATED

is FORMATI/II9H GO ON TU NEXT CASEI
16 fidRMATI.12m ENO OF GASE: :
FORMATI212)
wRITE(MX:10)
20 GALL MAIINIICODA,A, 100.NA,MA,HSA, IEHI
IF: NA ' \(25,95,25\)
25 IFITER-1) \(40 \cdot 3 \mathrm{C} \cdot 35\)
30 WRITE(MX
30 WRITE TMXIH IGOOA
GO TO 45
35 WRITEIMX,14) IGODA
37 WRITEIMX.12)
37 WRITETMX.12
40 CALL MXOUT ITICODA.A.N
50 CALL MXATN(ICODH: NA:MA.MSA:60.120.2
S GALL MATINIICODH,B, 100,NB,MBOMSE, IERI
SO WRITE(MX+11)1600
WRITEMAXP1S
GO TO 20
55 WR TO 20

70 1F(MA-ME) 75,80,7
WRITE(MX, 13 )
GU TO 20
80 CALL HXOUT(ICJDB, E , NB, MB, NS B, 60, 120,2) \(1 C O D=1 \mathrm{COOA}+1600 \mathrm{~B}\)
CALL HADU(A, B, K, NA, MA, MSA, MSB)
MSR=MSA
IF(MSA-MSB) \(90,90,8 S\)
MSR=MSB
CALL MXOUT (ICOUR,R,NA,MA,MSR,60,120,2) WRITEIMX, 16)
5 stop
END

\%S DUP
*STORE n's ua adsam

\section*{00010008001100}
\(0.7601008 \quad 0.62718021 .00000000 .70868430 .40385190 .00314260 .6876602\) \(\begin{array}{llll}0.6751766 & 0.8635910 & 0.7446845 & 0.6963269 \\ 0.6644095 & 1.0000000 & 0.6271802 & 0.6194650\end{array}\) \(\begin{array}{llll}0.6644085 & 1.00000000 & 0.6271802 & 0.6194650 \\ 0.3571068 & 0.7125728 & 0.6144597 & 0.5745585\end{array}\) \(\begin{array}{lllll}0.0000000 & 0.0644085 & 0.7601497 & 0.5749585 \\ 1.0 .7507505 \\ 0.6373449 & 0.0152021 & 0.7029392 & 0.6573101\end{array}\) \(0.6963269 \quad 0.57455850 .657310100 .8492243\) 0.62950470 .80517400 .69431080 .6492243 \(\begin{array}{lllll}0.7446845 & 0.6144597 & 0.7029382 & 0.6943109 \\ 0.3605070 & 0.4611099 & 0.3976204 & 0.3718001\end{array}\)

\(0.3547574 \quad 0.0027470 \quad 0.6010878\) 0.42994250 .00332910 .7284786 0.37180010 .00287890 .6299642 0.39762040 .00307890 .6737132
0.36050700 .00279150 .6108296

\(\begin{array}{llllllllll}0.0033291 & 0.0027470 & 0.0031426 & 0.0031039 & 0.0017776 & 1.0000000 & 0.0030119\end{array}\) \(\begin{array}{llllllllllllllll}0.4299425 & 0.3547574 & 0.4058519 & 0.4008593 & 1.0000000 & 0.0017776 & 0.3889673\end{array}\) 1.00000000 .72412150 .62441930 .5838704
\({ }^{9} 00020008001100\)


\section*{subroutine matim}

\section*{puspose}
reads control cam and matrix data elements frow logical
UWIT 5
usage
CALL MATIMIICODE, A,ISIZE, IRON, ICOL, IS, IERI
oescalptidm of paraneters
ICODE-UPGN RETGRM, ICGDE WILL CONTAIN FQUR OIGIT
IDENTIFICATION CODE FROM MATRIX PARAMETER CARD
a -DATA AREA FOR INPUT MATRIX
ISIZE-RUMBER OF ELEREMTS OIMENSIONED BY USER FDR AREA A
IRCW -UPDM RETURN. IROW WILL CONTAIM ROM DIMENSIOM FROA IROW -UPGN RETURN, IROW WILL CONTAIM ROM DIMENSION FROM ICOL -UPGA RETURM, ICDL YILL COMTAIN COLUMN DIMEMSION FRRA is MAPRIX RETURME IS CARD contaim storage mode cede fram MATRIX PARAMETER CARD UHERE
ISOO GEMERAL MATRI \(\begin{array}{ll}15=0 & \text { GEMERAL MATRIX } \\ \text { I } S=1 & \text { SYMNETRIC MATAIX }\end{array}\)
IS 2 DIAGDMAL MATRIX
-UPON RETURN, IER WIL CONTAIM AN ERROR CODE WHERE IER=0
\(\begin{aligned} & \text { HO ERROR } \\ & \text { IER=1 } \\ & \text { ISILE IS LESS THAN MUMBER OF ELEMENTS IN }\end{aligned}\) IER=2 I KCDRRECT MUMBER OF DATA CARDS

REMARKS
MONE
subrouttines and function subprograms requireo
LDC
methad
SUBROUT ine assumes that input matrix consists df parameter CARD FOLLOMED by data cards
PARANETER CARD has the followimg format
Paraneter card has the following format
Col. l- 2 blank
COL. 1- 2 BLANK COUR OIGIT IDENTIFICATION COOE
COL. 710 NUMBER OF RONS IN MATRIX
COL.11-14 NUMBER OF COLUKMS IN MATAIX
CRL. \(15-16\) STORAGE MODE OF MATRIX MIERE
al 15- 16 STORAGE MCDE
0 - GENERAL MATRIX
0 - GENERAL MATRIX
1- SYMMETRIC MATRIX
DATA CARDS ARE ASSUATE TO HAVE SEvEN FIELDS DF TEN COLUMNS
EACH. DECIMAL PDINT MAY APPEAR ANY WHERE IN AF FIELD. IF MO
EACH. DECIMAL PDINT MAY APPEAR ANY where IN A FIELD. IF NO
DECIMAL PDINT IS IMCLUDED. IT IS ASSUMED THAT THE DECIMAL DECIMAL POINT IS IMCLUDED: IT IS ASSURED THAI THE DECIMAL
POINT IS AT THE END OF THE IO COLUMN FIELD. NUMBER IN EACH FIELD HAY BE PRECEDED BY BLANKS. DATA ELEMENTS HUST BE PHOWEVER EACH NEW ROM MUST START IME THE FIRST FIELD OF THE NEXT CARD. DNRY THE UPPER TRIAMGULAR PIRTIION OF A SYMMETRIC OR THE DIAGUMAL ELEMENTS OF A DIAGGMAL MATRIX ARE CGNIAINED
ON DATA CARDS. THE FIRST ELENENT OF EACH NEW RDW WILL BE ON DATA CARDS. THE FIRST ELEMENT OF EACH NEW ROH WILL B
THE DIAGONAL. ELEMENT FOR A MATRIX MITH SYMAETRIC GR DIAGONAL STORAGE MODE. COLUNNS 71-80 OF DATA CARDS
USED FDR IDENTIFICATION, SEUENCE NGYBER ING, ETC

subroutine matiniticcop, hisite,iron,ical,is,ieri
OIMENSI ON CAROI
COMMDN MX,My
1 FORHAT 7 Fio. 01
? FORMATIt6:214.121
3 FORMAT(II)
\(I U C=7\)
\(I E R=0\)
KEAD: MY, zIICGOE, IROW,ICOL,IS
CALL LECIIROW,ICII, ICNT,IRDW,ICOL, ISI
IFIISILE-ICNTIG.7,7
b IER=1
6 IER=1
7 IF IICNT) \(38,3 B, 8\)
- \(1 \mathrm{COLI}=\mathrm{iCOL}\)

C COMPUTE NUMBER of cards for this row
1 IRCDS=1ICOLT-11/IOC+1
IFISS-1115,15,12
C 15 on SEt UQ gijop fir number of cardos in rom
REAOIMY.iliCAKOIt), I=1, IDC)
SKRP through jata cards if input area too 5 mall
\(16 \quad 2=0\)
C COMPUTE COLIJMY NUMBER fOR FIRST FIELD IN CURRENT CARD
\(J 5=(K-1) * 10 C+1 C D L-1 C D L T+1\)
Cll

\footnotetext{
purpose
PRODICEES AN OUTPUT LISTING DF ANY SIZED aRRAY ON
LOGICAL UNIT I
}
```

USAGE
CALL MXOUTIICODE,A,N,M,MS,LINS,IPOS,1SP)
OESCRIPTJON OF PARAMETERS
ICGDE- InPUT CODE Rumber to be printed on each dutput page
A-NAME OF OUTPUT MATRIX
N-NUMBER OF RONS IN A
ms-stIRAGE mODE OF A where mS=
O-GENERAL
O-SYMERETRIC
l-SYMMETRIC
LINS-MUNPER OF PRINT LINES ON THE PAGE tuSUALLY 601
ISP-LINE SPACING CEDE, 1 FOR SIMGLE SPACE, 2 FDR DOUBLE
SPACE
REmarkS
NONE
SUBROUTINES RND FUNCTIGM SUBPRDGRAMS REOUIRED
LOC
METHED
THIS SUBROUTINE CREATES A STANDARD OUTPUT LISTING OF ANY
SIREO ARRAY WITH ANY STIRAGE MODE. EACH PAGE IS HEADED WITH
each columN and rom is alSo meaded with itS respective
EACH CDLU
SUBROUTINE MXOUT IICODE,A,N,M,MS.LINS,IPOS.ISDI
DIMFNSION A(1),B(8)

```

```

 I&X,I SHSTORAGE MOJE, I1,i;
 FORMAT!12X,GHCOLJMN ,713x,13,10X1,11
 4 FORMAT!7X,4HROH,13,7(E16.61)
 J=1
 C WRITE HEADING
NENB=!PGS/16-!
LENEI = (LINS/ISP)-10
HRITEIMX,1IICODE,N,4,4S
JNT=J+NEND-1
IFIJNT-MI33,33,32
32 JNT=M
HRITEIMX,2)IJCUR, JCUR=J,JNT)
LTENO = LSTRT+LEVO-1
ON FORY OUTPUT RJWLINE
DO 55 k=l,NFND
KK=K
CAEL LOCIL,JT,IJYT,N,M,MS
A(k)=0.0
IFTIJNTISO,50,45
45 G(K)=A\IJNT)
5O CONTINUE
|F(JT-4) 55,60.60
55 CONTINUE
SO IFINNDOF LINE, YOW WAITE
60 1F(15P-1)65,65,70
5 WR:TE(MX,4H,(8\JW),JW=1,KK
G0 in 75
O WR(TE(MX,5)L,(BIJW),JW=1,KK)
IF END OF ROWS,GO CHECK COLUMNS
75 IF(N-L)B5,85,RO
SO CONTINUE
WRITE NEN HEA\ING
LSTRI=LSTRT+LEND
to 20
F(JT-4)90,95,95
O J=JT+1
GG ro 10
END

```

\section*{NUMERICAL QUADRATURE INTEGRATION}

\section*{Problem Description}

The tabulated values of a function for a given spacing are integrated. Multiple sets of tabulated values may be processed.

Program

\section*{Description}

The numerical quadrature integration program consists of a main routine QDINT, and one subroutine, QSF, from the Scientific Subroutine Package.

\section*{Capacity}

The capacity of the sample program and the format for data input have been set up as follows:
1. Up to 500 tabulated values of a function
2. (7F10.0) format for input data cards

Therefore, if the problem satisfies the above conditions, no modification to the sample program is necessary. However, if there are more than 500 values to be integrated the dimension statement in the sample main program must be modified to handle this particular problem. Similarly, if input data cards are prepared using a different format, the input format statement in the sample main program must be modified. The general rules for program modification are described later.

Input

I/O Specification Card

Each integration requires a parameter card with the following format:
\begin{tabular}{|c|c|c|}
\hline Columns & Contents & \begin{tabular}{l}
For \\
Sample \\
Problem
\end{tabular} \\
\hline 1-5 & Up to 5-digit numeric identification code & 12345 \\
\hline 6-10 & Number of tabulated values for this function & 0020 \\
\hline 11-20 & Interval between tabulated values & 1.0 \\
\hline
\end{tabular}

The first two parameters consist of up to five digits with no decimal point (FORMAT (215)). Note that the second parameter may not exceed 500 . The third parameter consists of up to ten digits (FORMAT) (F10.0).

Data Cards

Data cards are assumed to be seven fields of ten columns each. The decimal point may appear anywhere in the field, or be omitted, but the number must be right-justified. The number in each field may be preceded by blanks. Columns 71 through 80 of the data cards may be used for identification, sequence numbering, etc. If there are more than seven tabulated values, the values should continue from card to card with seven values per card, until the number of values specified in the parameter card has been reached.

A blank card following the last set of data terminates the run.

Deck Setup
The deck setup is shown in Figure 28.

\section*{Sample}

A listing of input cards for the sample problem is presented at the end of the sample main program.

\section*{Output}

\section*{Description}

The identification code number, number of tabulated input values, the interval for the tabulated values, and the resultant integral values at each step are printed.

\section*{Sample}

The output listing for the sample problem is shown in Figure 29.

\section*{Program Modification}

Noting that storage problems may result, as previously discussed in "Sample Program Description", the maximum number of tabulated values acceptable
to the sample program may be increased. Input data in a different format can also be handled by providing a specific format statement.
1. Modify the DIMENSION statement in QDINT so that the size of array Z is equal to the maximum number of tabulated values.
2. Changes to the format of the parameter cards and data cards may be made by modifying FORMAT statements 10 and 32, respectively, in QDINT.
integration of tagulated values for dy/dx using subroutine osf
 \(\begin{array}{llllllllll}0.000000000 E & 00 & 0.19999983 E & 01 & 0.39999995 E & 01 & 0.59999981 E & 01 & 0.79999990 E & 01 \\ 0.11999998 E & 02 & 0.13999996 E & 02 & 0.1599999 E & 02 & 0.1799996 E & 02 & 0.1999996 E & 02 \\ 0.21999992 E & 0\end{array}\)
 0.35999984 E O2 0.37999977 E 02
integration of tabulated values for dy ox using subroutine osf
FUNETION \(543 \quad 10\) TABULATED VALUES \(\quad\) INTERVAL \(=0.10000002 E 01\)

RESULTANT VALUE OF INTEGRAL AT EACH STEP IS
 \(\begin{array}{lllll}0.00000000 E & 00 & 0.14999959 E & 01 & 0.39999995 E \\ 0.23999996 E ~ O 2 ~ 0.31499992 E ~ O 2 ~ & 0.3999992 E & 0.49499984 E\end{array}\)

Figure 29. Output listing


Run termination

Last problem

Figure 28. Deck setup (numerical quadrature integration)

\section*{Operating Instructions}

The numerical quadrature integration sample program is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

\section*{Error Messages}

The following conditions will result in error messages:
1. The number of tabulated values specified in the parameter card is less than or equal to two: ILLEGAL CONDITION. NUMBER OF TABULATED VALUES IS LESS THAN THREE.

The program will continue to read data cards until the next problem is reached.
2. The interval specified in the parameter card is zero: ILLEGAL CONDITION. SPECIFIED INTERVAL IS ZERO.

The program will continue to read data cards until the next problem is reached.

\section*{Sample Program for Integration of a Tabulated} Function by Numerical Quadrature - QDINT

\section*{Purpose:}

Integrates a set of tabulated values for \(\mathrm{F}(\mathrm{X})\) given the number of values and their spacing.
Remarks:
The number of values must be more than two and the spacing greater than zero. I/O logical units determined by MX and MY, respectively.
Subroutines and function subprograms required: QSF

Method:
Reads control card containing the code number, number of values, and the spacing of the function values contained on the following data cards. Data cards are then read and integration is performed. More than one control card and corresponding data can be integrated in one run. Execution is terminated by a blank control card.


```

 3& WRITE(MX, 20)ICOD,NUMAR,SPACE
 \F(NUMGR-3)ICG,50,50
 GALL USF (SPACE,L,Z,NUMOR)
 IFISPAGEJ00,zE3,00
 WK:TEIMX, 30)(LT\),I=1,NUMER)
 G0 T0 15
 WR(TE(MX, 22)
 READ{MY,32)(ill),1=t,NUMBR)
 Gu TU 35
 200 NRITECMX,22)
MRITEC:MX,24)
l
1/ OUP
*STORE golmis ua duint

```

\begin{tabular}{rrr}
20 & 1.0 & \\
2.0 & 2.0 & 2.0 \\
2.0 & 2.0 & 2.0 \\
2.0 & 2.0 & 2.0 \\
10 & 1.0 & 3.0 \\
1.0 & 2.0 & 3.0 \\
8.0 & 9.0 & 10.0
\end{tabular}

\section*{RUNGE-KUTTA INTEGRATION}

\section*{Problem Description}

A differential equation of the form:
\[
\frac{d y}{d x}=f(x, y)
\]
is integrated with initial conditions as specified in a parameter card. The differential equation is defined in the form of a function subprogram that is provided by the user.

\section*{Program}

\section*{Description}

The Runge-Kutta integration program consists of a main routine, RKINT, one subroutine, RK2, from the Scientific Subroutine Package, and one usersupplied function subprogram, FUN, which defines the differential equation to be integrated.

\section*{Capacity}

Up to 500 values of the integral may be tabulated.
Input
I/O Specification Card
Each integration requires a control card with the following format:
\begin{tabular}{ccc} 
Columns & Contents & \begin{tabular}{c} 
For Sample \\
Problem
\end{tabular} \\
\(1-10\) & Initial value of \(\mathrm{X}=\mathrm{X}_{0}\) & 1.0 \\
\(11-20\) & Initial value of \(\mathrm{Y}=\mathrm{Y}\left(\mathrm{X}_{0}\right)\) & 0.0
\end{tabular}

For Sample Columns

21-30

36-40

Step size

31-35 Number of steps required between tabulated values

10
Contents Problem 0.01

Total number of tabulated values required 30

The first three parameters consist of up to ten digits.

\section*{(FORMAT (F10.0))}

The last two parameters consist of up to four digits plus a blank.
(FORMAT (15))
Multiple parameter cards may be used.
A blank card terminates the run.

\section*{Data Cards}

None.
Blank Card
Run termination.
Deck Setup
The deck setup is shown in Figure 30.


Figure 30. Deck setup (Runge-Kutta integration)


Figure 31. Output listing
2. Changes to the format of the parameter card may be made by modifying FORMAT statement 1.

The user-supplied function subprogram FUN may be replaced by any function subprogram having the same name and parameter list. In this way, the user may define any desired first-order differential equation.

\section*{Operating Instructions}

The sample program for Runge-Kutta integration is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

\section*{Error Messages}

\section*{None.}

Sample Program for Runge-Kutta Integration of a Given Function with Tabulated Output - RKINT

\section*{Purpose:}

Integrates the function subprogram FUN using the initial conditions contained in control cards. Produces tabulated output.

Remarks:
I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required: RK2
FUN - User-supplied function subprogram giving DY/DX=FUN(X, Y)

Method:
Reads control card containing initial values of \(X\) and \(Y\), step size, number of steps desired between tabulated values, and number of tabulated values required. Program then enters RK2 to perform integration. Multiple control cards can be used on the same function.

\section*{*/ FOR}

©ONE MORD INTEGERS
 Witid tabulatej gutput - rxint the folloning ui hension must de as large as the maximum numeer of tabulated values oisireo



4 FORMAT(2121)
READ(2,4) Mx, My
- reap injrol caro conthining iteas listio unden netidod.

TFRITE HEAUINO INFDKMATION.

CALL KX2ZFUN, H, XU,YU,JAT, IENT, A)


\(x=\times 0\)
\(30 \quad 30\)
\(x=x+5 T P+11-23\)
c
Gj 3ACK ANJ CHECX FUR AUJItIDINAL CONT:DL GARD.
gu ju 10
40 STUP
\(1 /\) OUP
*store req rkint ws ua roint


POLYNOMIAL ROOTS

\section*{Problem Description}

The real and complex roots are computed for a real polynomial with given coefficients. Multiple sets of coefficients may be processed.

\section*{Program}

\section*{Description}

The polynomial roots sample program consists of a main routine, SMPRT, and one subroutine, POLRT, from the Scientific Subroutine Package.

\section*{Capacity}

Roots for polynomials of order 36 or less may be computed.

Input
I/O Specification Card
Each set of data requires a control card with the following format:
\begin{tabular}{llc} 
Columns & \multicolumn{1}{c}{ Contents } & \begin{tabular}{c} 
For Sample \\
Problem
\end{tabular} \\
1 & Blank & \\
\(2-5\) & \begin{tabular}{l} 
Up to four-digit identifi- \\
cation code
\end{tabular} & 360 \\
\(6-8\) & Blank & \\
\(9-10\) & Order of polynomial & 9
\end{tabular}

The first parameter consists of up to four digits without decimal point (I4).

The second parameter consists of up to two digits with no decimal point (12). The order of the polynomial must be less than or equal to 36 .

\section*{Data Cards}

Data cards are assumed to have seven fields of ten columns each. The decimal point may appear anywhere in the field, or be omitted, but the number must be right-justified. The number in each field may be preceded by blanks. Columns 71 to 80 of the data cards may be used for identification, sequence numbering, etc. If there are more than seven coefficients, the values should continue from card to card with seven values per card until the number of values has been reached that is one greater than the order of the polynomial. The first coefficient is for the constant term of the polynomial and the last coefficient for the highest order term. Fields with zero coefficients may be left blank.

Run termination.
Deck Setup
The deck setup is shown in Figure 32.
Sample
A listing of the input cards for the sample problem is presented at the end of the sample main program.

Output
Description
The identification code, the polynomial order, the input coefficients, and the real and complex roots are printed.

Sample
The output listing of the sample problem is shown in Figure 33.

Program Modification
The maximum order of the polynomial acceptable to the sample program is fixed by the subroutine POLRT. However, input data in a different format can be handled by providing a specific format statement.
1. The sample program can accept polynomials up to the maximum 36 th order, which is allowed by the subroutine.
2. Changes to the format of the parameter card and data cards can be made by modifying FORMAT statements 10 and 40, respectively, in main sample program SMPRT.

\section*{Operating Instructions}

The polynomial roots sample program is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

\section*{Error Messages}

The following conditions will result in error messages:
1. The order of the polynomial specified in the control card is less than one: ORDER OF POLYNOMIAL LESS THAN ONE.


Figure 32. Deck setup (polynomial roots)

The program will go on to the next set of data.
2. The order of the polynomial specified in the control card is greater than 36: ORDER OF POLYNOMIAL GREATER THAN 36.

The program will go on to the next set of data.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{FOR POLYNOMIAL 360 OF OROER THE IWPUT COEFFICIENTS ARE}} \\
\hline & & & & & \\
\hline  & 0:0000000\% 0 O & 0.0000000 E
0.0000000 E
OO & O.:0000000E
0.2000000 E
oi & 0.0000000800 & 0.0000000800 \\
\hline real root & complex root & & & & \\
\hline  & -0.1004528E 01 & & & & \\
\hline -0.1019270E 01 & 0.2436727 000 & & & & \\
\hline \multirow[t]{2}{*}{} & -0.236202e & & & & \\
\hline & -0.709097E 0 & & & & \\
\hline  &  & & & & \\
\hline
\end{tabular}

Figure 33. Output listing
3. The subroutine POLRT is unable to determine a root after 500 iterations on eight different starting values: UNABLE TO DETERMINE ROOT. THOSE ALREADY FOUND ARE ...

The program will print all the roots that were computed and then go to the next set of data.

\section*{Sample Program for Real and Complex Roots of a Real Polynomial - SMPRT}

\section*{Purpose:}

Computes the real and complex roots of a real polynomial whose coefficients are input.

\section*{Remarks:}

The order of the polynomial must be greater than one and less than thirty-seven. I/O logical units determined by MX and MY, respectively.

Subroutines and function subprograms required: POLRT

Method:
Reads a control card containing the identification code and the order of the polynomial whose coefficients are contained on the following data cards. The coefficients are then read and the roots are computed.
More than one control card and corresponding data can be processed. Execution is terminated by a blank control card.
```

/1 FOR
*IOCS(CARD,TYPENNITER,IHGL PRINTERI
*CNE woro integers
AMPLE PRuGRAM fúf kEAL aNO Gunplex rudtS of a keal polv-
MJMLAL - SMPRT
OIMENS{UN A(37).,W(37),RDOTR(37),ROSTH(37)
0 FORMAT(1X,1*,3X,12)
to fORMATI////S2H REAL AND COMPLEX RUOTS uF A PULYNOMIAL uSING SUBRUJSMPRT
M,
ITINE POLKT/I/17H FOR PULYN
O FUKMAT17F10.C)
5 FORMAT: %/1/;i4H GROER OF PGLYNOMIAL LESS THAN ONE)
77 FORMATH/1/13OH ORUER OF POLYNOHIAL FEEATER THAN 36]
79 FORNATI|/1/31H HIGH ORDER COEFFICIENT IS 2ERO)
S5 FORMATIHO/SOH UNAOLE TO DETERMINE RDOT. THOSE ALREADY FOUND AREI
FURMAT(////5K,9HREAL RGOT,6X,12HCOMPLEX RODT//I
97 FORMAT(2E10.7)
8 FORMAT(2EI6.
kEAU(2,5J3MX,HY
READ(MY,10)ID,10RD
IFIID+ICRUIICC,100.20
*RITEIMX,30)ID,IORO
aEad(mY,401(All),l=1,J
mRJTE{MX,50JA,

```

```

 CALL PULRT(A,W,IGRU, RNOTR, RGUTI,IER)
 F(IER-1190,60,7C
 WRITE\MX,05)
 F(IEH-3)75,80,7
 WRITE(MX,77)
 G0 Tu 5
 MR:TE(MX,79)
 WRITE(Mx,85)
 T0 wRITE(MX,95)
 96 WRITE(HX,97)ROUTRII),ROCTI(I)
 60 TO 5
 0% 60 TO
 OOUEND
 // OUP
\#STORE NMPRNS UA SMPRT

```


\section*{SOLUTION OF SIMULTANEOUS EQUATIONS}

\section*{Problem Description}

A solution is obtained for a set of simultaneous equations by the method of elimination using largest pivotal divisor. Both the input data and the solution values are printed. This procedure is repeated until all sets of input data have been processed.

\section*{Program}

\section*{Description}

The solution of simultaneous equations sample program consists of a main routine, SOLN, and four subroutines:
\(\left.\begin{array}{l}\text { SIMQ } \\
\text { LOC }\end{array}\right\}\)\begin{tabular}{l} 
are from the Scientific Subroutine \\
Package
\end{tabular}
are sample subroutines for matrix input and output

\section*{Capacity}

The sample program will solve for 40 equations. The general rules for program modifications are described later.

Input
I/O Specification Card
A control card with the following format must precede each matrix of coefficients:
\begin{tabular}{clc} 
Columns & \multicolumn{1}{c}{ Contents } & \begin{tabular}{c} 
For Sample \\
Problem
\end{tabular} \\
\cline { 1 - 1 } \(1-2\) & Blank & \\
3-6 & \begin{tabular}{l} 
Up to four-digit identifi- \\
cation code (numeric \\
only)
\end{tabular} & 1 \\
\(7-10\) & \begin{tabular}{l} 
Number of rows in \\
matrix
\end{tabular} & 10 \\
& \begin{tabular}{l} 
Number of columns in \\
matrix (same as number \\
of rows)
\end{tabular} & 10
\end{tabular}

Each matrix must be followed by a card with a 9punch in column 1. This, in turn, is followed by the constant vector.

\section*{Data Cards}

Data cards are assumed to have seven fields of ten columns each. The decimal point may appear anywhere in a field, or be omitted, but the number must be right-justified. The number in each field may be preceded by blanks. Equation coefficients must be punched by row. A row may continue from card to card. However, each new row must start in the first field of the next card. The vector of constants is punched in continuous data fields following the 9 card. Columns 71 to 80 of data cards may be used for identification, sequence numbering, etc.

A blank card after the last set of input data terminates the run.

\section*{Deck Setup}

The deck setup is shown in Figure 34.


Figure 34. Deck setup (solution of simultaneous equations)

A listing of input cards for the sample problem is presented at the end of the sample main program.

Output

\section*{Description}

The original matrix is printed for any sized array. Each six-column grouping is headed with the matrix code number, dimensions, and storage mode (always 0 in this sample program). Columns and rows are headed with their respective number. The original vector of constants is also printed. The solution values are then listed. This output is given for each case to be processed.

Sample
The output listing for the sample problem is shown in Figure 35.

\section*{Program Modifications}

Noting that storage problems may result, as previously discussed in "Sample Program Description", the size of the maximum problem acceptable to the sample program can be increased. Output of the solution values in a different format can be handled by providing a specific format statement.
1. Changes to the DIMENSION statement of the main program, SOLN. The dimension of array A must be greater than or equal to the maximum number of elements in the matrix ( \(\mathrm{N} \times \mathrm{N}\) ). The dimension of array \(B\) must be greater than or equal to \(N\).
2. Insert the same number N in the third argument of the CALL MATIN statement (statement 25) in SOLN.
3. Changes to the format of the solution values may be made by modifying FORMAT statement 21 in SOLN.

\(\qquad\)

socution valles

end of case

Figure 35. Output listing

The matrix listing is set for 120 print positions across the page, and double spacing. This can be changed by means of the last two arguments in the CALL MXOUT statement in SOLN (statement 65).

\section*{Operating Instructions}

The sample program for the solution of simultaneous equations is a standard FORTRAN program. Special operating instructions are not required. Logical unit 2 is used for input, and logical unit 1 is used for output.

\section*{Error Messages}

The following error conditions will result in messages:
1. Reserved storage area is too small for matrix: DIMENSIONED AREA TOO SMALL FOR

INPUT MATRIX (matrix code no.). GO ON TO NEXT CASE.
2. Matrix of coefficients is not square: ROW AND COLUMN DIMENSIONS NOT EQUAL FOR MATRIX (matrix code no.). GO ON TO NEXT CASE.
3. Number of data cards does not correspond to that required by parameter card: INCORRECT NUMBER OF DATA CARDS FOR MATRIX (matrix code no.). EXECUTION TERMINATED.
4. Singular input matrix: MATRIX IS SINGULAR. GO ON TO NEXT CASE.

Error conditions 1, 2, and 4 allow the computer run to continue. Error condition 3, however, terminates execution and requires another run to process succeeding cases.

\section*{Sample Main Program - SOLN}

\section*{Purpose:}

Solution of a set of simultaneous equations.

\section*{Remarks:}

I/O specifications transmitted to subroutines by
COMMON.
Input card:
Column 2 MX - Logical unit number for output.
Column 4 MY - Logical unit number for input.

Subroutines and function subprograms required:
SIMQ
MATIN
MXOUT
LOC

\section*{Method:}

A matrix of simultaneous equations coefficients and a vector of constants are read from the standard input device. The solution is obtained and listed on the standard output device. This procedure is repeated for other sets of equations until a blank card is encountered.
```

// FOR
*lOCS(CARU,TYPENRITER,1132 printeri
*ONE HORD INTEGERS
**NE WORD SNTEGERS
c
STATEMENT IS CHANGED
COMMON MX,MY
O FORMATt////35:4 SGlution dF SImultameuus equatlins)
l
12 FURMAT!//Z1H EXECUTION TERMINATEUI
3 FORMAT(//48H RUW AND GULUMN OIMENSIONS NOI EQUAL FOR MATRIX, 14,
4 FURHAY(//43H INEURNECLT NUMBER UF UATA LARUS FOR MAIKIX,I4)
15 FORMAT(//19H GO UN TO NEXT CASE)
17 fORMAT (////LAH JRISINAL B VECTUR,////)

```

```

 24 FURMAT(7F10.0)
 21 FURMAT(16,10x, \equiv10.0
 22 FORMAFH//I2H END OF LASE)
 FORMAT(212)
 READI(,23)MX,MY
 25 CALL MATIN (ICOD,A,1600,N,M, MS,IER)
 IF(N) 3C,95,36
    ```

```

 35 GRITEIAX,IIIICOO
 40 WRITC(MX, 141)/COS
 40 IFIN 95 50,55,50
 45 IF(N-N) 50,55,50
 GO TO 90
 5 IFIMS) 60,65,60
 $0 AN[TEINAXISIIGOD
 6S CALL MXUUT(ICOJ,A,N,H,MS,6U,12O, <1)
 REAU(MY,20)(5(I),I=1,N)
 WRITEIMX,17)
 OO 7U I=L,N
 70 WRITEIMX,21)I,BII)
 CALL SIMOIA,B,N,KSI
 75 WRITE(1Hx,19)
 RITEGMX,
 G0 TO 25
 80 wR(TEIHX,18)
 65 WRITEMAX,21)1,Bi|)
 MRITĖ(iAx,22)
 go to 25
 90 REAU(MY,201!BII,,I=1,N)
 WALTE(HX,15)
 NHITctMX,
 95 WRITEINX,12)
 ST0P
 // OUP
STORE WOLNS UA SOLN

```

sumpoutine matim
PURPOSE
reads control camb and matrix data elements from logical
init 5
UWIT 5
USAGE

DESCRIPTIOM OF PARAMETERS
ICODE-LPON RETURM
ICODE- IPGN RETURM, ICDDE WILL CONTAIN FOUR DIGIT
TOENTIFICAYIO CDDE FROM MTRIX PARAMETER CARD
DATA AREA FOR INPUT MAYIX

IROM -UPOM RETURM, IROH MILL CCNTAIN RCM DIMENSIGN FROM
ICOL -HAPON REFURM, IICR WILL COMIAJM COLUMS DIMENSIDN FRDM
IS -UPON RETURM, IS WILL CONTAIM STORAGE MODE CODE FRDM -UPON RETURM IS MILL CONTAIN
MATRIX PARAMETER CARD WHERE
I SOO GERERAL MATRIX
I S=1 SYMNETRIC MATRIX
IER -UPON RETURN, IER MLLL CONTAIM AN ERROR CODE WHERE

IER=2 I KCORRECT NUMBER OF DATA CARDS
remarks
none
SUBRCUTINES AND FUNCTION SUGPROGRAMS REQUIRED LOC

\section*{кETHOD}
slebroutine assumes that inpuit matrix consists of parameten
CARD FOLLOHED BY DATA CARDS
PARAMETER CARD HAS THE FOLLOING FORMAT
cal. 1- 2 blank
COL. 3-. 6 UP TO FOLAR DIGIT IDENTIFICAIION CODE
COL. 7-10 NUHBER OF ROWS IN MATRIX
COE. 15 -16 STORAGE MODE OF MATRIX MHERE
O- GENERAL MATRIX
1 - SYKMETRIC MATRIX
1 - sMmetric matrix
2 - oiaginal matrix
OATA CARDS ARE ASSLMEB TO HAVE SEVEH FIELDS OF TEN CELUKNS
EACH. DECIMAL POINT MAY APPEAR ANYHHERE IN A FIELD. IF WO
COCIMAL PINT IS INNLUDED. IT IS ASSLMED THAT THE DECIMAL
PDINT IS AT THE END OF THE 10 COLUHE FIELD. NUMEER IM EACH

PUNCHED OY ROW. AR ROW MAY CONT INUE FRCM CARD TO CARD.
HCNEVER EACH NEW ROW MUST START IN THE FIRST FIELD OF THE NEXT CARD OMA Y THE UPPER TRIANGULAR PGRTION OF A SYMMETAIC OR THE DIAGOMAL ELEMENTS OF A DIAGONAL MATRIX ARE CONTAIMED
ON DATA CARDS. THE FIRSI ELENENT RF EACH WEN ROU WILL BE THE OIAGCNAL ELEEENT FOR A MATRIX WITH SYKMETRIC OR
 THE LAST DATA CARD FOR ANY MATRIX KUST EE FOLCOMED oY A CABD. WITH A 9 PUHCH IN COLUMN 1.
```

sumrgutinf matintichof, A,ISITE,IRON,ICOL,IS,IERI
OTMENSION A/I)
CIMMON MX,MY
CCIMMON MX,MY
l Fugmarimfin.0)
3 +GRMATGID
IUC=7
KEADI MY, z\ICINE,IRON,ICOL,IS
CALE LOCIIRIGW,ICJL,ICVT,IRDW,ICJL,ISI
CALLIDCLIRGWIIGI,
6 IFR=1
7F IFICNT)BA,3H,4
lCOL I=ICOL
c lacompute numafz of cardS for this row
11 1RCOS= 1TCOLT-11/10C+1
\1 1RCDS=1TCOLT-11/IDC+1

```

```

15 DO 31 K=1,|QC,SS
R\&ADIMY, ISICAHDII,I=I,IDEI IF INOUT AREA TOO SMALL
IF(IFR)16,16,31
16 L=0 computf colimy nimaco fmb firgt fielo in Cu{rfitt cazj
MS=1K-1:TADC+ICRL-ICOLI+1
,IS

```

```


 CAGE ML MXOUT(ICODE,A,N,M,MS,LINS,IPOS,ISPI
 oescriptian of parameiers m
M-NAME GF OUTPUT MATRIX
N-NUMBER Of ROMS IN A
m-STORAGE mODE GF a where ns:
O-GENERAL
LINS-Number of PRINT limes on the page cusualcy boj

```

```

 I
 memarks
 sughoutines and function subprigrams reguired
LOC
METHOD SURROUTINE CREATES A STANDARD OUTPUT LISTING OF ANY
IZED ARRYY WITH AHY STIRAGE MADE. EACH PAGE IS HEADED MIT
THE CODE WUMGER,DIRENSIONS AND STCRAGE MGDE OF THE ARRAY
EACH
SUBRDUTINE MXDUT
purpose
logroduces an output listing of any sized array on

```
MATIN?
Matin
MATIN
MATIN
4
\(\begin{array}{ll}\text { MATIN } & 4 \\ \text { MATIA } & 5 \\ \text { MATIN }\end{array}\)

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
(USA Only)```


[^0]:    * R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill, N.Y., 1962, pages 34 and 389 .

[^1]:    Purpose:
    Integrates a first order differential equation $D Y / D X=F U N(X, Y)$ up to a specified final value.

    ## Usage:

    CALL RK1(FUN, HI, XI, YI, XF, YF, ANSX, ANSY, IER)

[^2]:    *Luke/Wimp, "Jacobi Polynomial expansion of a generalized hypergeometric function over a semiinfinite ray", Math. Comp., Vol. 17, 1963, Iss. 84, p. 400.

[^3]:    *Luke/Wimp, "Jacobi Polynomial expansion of a generalized hypergeometric function over a semiinfinite ray", Math. Comp. Vol. 17, 1963, Iss. 84, p. 402.

[^4]:    *Luke/Wimp, "Jacobi Polynomial expansion of a generalized hypergeometric function over a semiinfinite ray", Math. Comp., Vol. 17, 1963, Iss. 84, pp. 395-404.

[^5]:    1-6
    Problem number (may be
    alphameric)

[^6]:    7 FOR
    *ONE WORD INTEGERS TEK, 1132 PRINTERI
    © ONE WORD INTEGERS
    SAMPLE MAIN PROGRAM FOR DISCRIMINANT ANALYSIS - MOISC
    the fol lohing dimension must ae greater than ur equal to the
    NUM 8 ER OF
    DIMENSION N 4 )
    Mensidon ni4)
    The fullowing dimension must be greater than or equal to the
    inumber of variables, m..

