
  Page 1 of 5 

Project 3 Programming, Linking, and (“long”) Jumps 
 
 
Objectives: Loading from multiple files, linking labels across files, and jumping to 
addresses further than PC + a 9-bit offset.  
 
 

1. Open 1.c.1.asm in an editor of your choice. Read over the code and comments 
to gain information about the intended purpose of the program.  

2. Using the LC3 Instruction Set Summary Guide, read over the code and 
attempt to confirm correctness. It may also help to try to assemble and 
simulate the execution of the code.  

 
Q.10 Were there any errors in the code? If so, describe them here and describe the 
correction.   
 
Q.11 What was the final result of the programs computation and where was the result 
stored? 
 
As you have likely observed, this program makes use of a procedure which begins at 
location label “neg2pos”. Lets assume that we plan to add a few more code snippets 
(which will occupy about 300 address spaces) to this .asm file, and thus to simulate 
this occurrence.  
 

3. Insert a .BLKW 300 pseudo-op to block out 300 words of address space just 
before neg2pos. (This pseudo-op has already been placed in the file … simply 
uncomment this line.) 

4. Reassemble and simulate the code. 
 
You should get a few errors here related to the increase in memory spaces between 
segments of code (one related to the load instruction and one related to the branch 
instruction). Read the error message(s). 
 

5. Update the .asm file with your corrections noted above, assemble and 
simulate to confirm correctness. (See question and hints below.) 

 
 
Q.12 Describe each error and your fix, in detail. List out the code corrections in your 
response. What happens and why?  Explain your solution. See hints below. 
 
Hint 1: Note a similar “load offset” issue was avoided in lines: 
  LD R2 FileStartPtr ; load starting address 

 
Hint 2: Branch Offset issue. The target of the branch is too far, but how can we 
overcome this? Our branching capabilities are limited by a PC offset. However, the 
JMP command gets the 16-bit target address from a register. You need to 



  Page 2 of 5 

restructure the conditional to account for this change. Try the following design 
scheme 
 
 ; in the preamble, Load a PTR to the subroutine  

; in the preamble, Load a PTR to just after conditional … or 

somewhere reasonable 

 … 

 ; Generate condition 

 ; Branch (conditional) 

  ; load appropriate register 

  ; JMP to subtask1  

 ; subtask2 

 ; continue sequential execution 

 

… far far away …  

  

 ;subtask1 

 ;JMP back to continue sequential … or somewhere reasonable 

 

( Note: in some instances, it is better to use JSSR and RET, … we will learn more about this in 
the near future.) 
  

C.2 In your personal svn branch, commit the corrected versions of the 1.c.1.asm file. 
 
 
Note that in this example, many procedures and data were contained in 1 .asm file. 
This makes the job of the loading the code to the LC3 memory fairly easy. However, 
it is often the case that there are many interrelated files that may be compiled and 
or assembled separately, but whose executions are interdependent. For example, 
you may have multiple files with many methods that call methods from other files. 
Without the proper management, this can lead to issues once the binary files are 
mapped to memory: including data fidelity issues, e.g. newly loaded code may 
clobber or overwrite some existing code, if not 
properly managed. Also, there is a concern of 
interoperability, referencing across multiple 
files. For example, in .asm file #1 you wish to 
refer to a procedure (by address pointer) 
contained in .asm file #2 … but how can we 
know where file #2 will be loaded in memory 
since the memory address label(s) are not 
defined in file #1…? 
 
This issue is generally handled by a link editor 
or linker. This program will take the resulting 
assembler outputs such as multiple .obj files 
from multiple .asm file, and will “link” them to 
create one final executable image, .exe file, to 
be loaded by the loader. 
 



  Page 3 of 5 

In many assemblers there are pseudo-ops to help handle this issue by declaring 
address labels to be global (using .GLOBAL) and referring to address labels outside 
of a current .asm file using pseudo-op .EXTERNAL. See below example with label L2. 
During assembly, no errors are created for “undefined” labels which are declared to 
be .EXTERNAL. It is assumed these labels are defined in some external file.  
 

 
During the assembly of each .asm file, a relocation 
record is created for each EXTERNAL label used in 
that file. The appropriate address is then determined 
at link time, using .sym file data and information used 
when the single executable image. Thus a cohesive 
executable file (with all appropriate addresses 
replacing all labels) can be loaded.  
 
With this in mind lets break up our previous example 
into two separate .asm files and attempt to link them 
correctly … NOTE: we will need to do this manually 
(we can’t use pseudo-ops like .EXTERNAL and 
.GLOBAL) since PennSim does not have a linker!!! 
 
1. Create two new files 1.c.2.asm and 1.c.3.asm such 
that 1.c.2.asm contains all of the code from 1.c.1.asm 
except the neg2pos procedure. Place the neg2pos 
procedure into 1.c.3.asm. Thus you have effectively 
split the original .asm file into two different .asm files.  
2. Also, feel free to remove the .BLKW directive as 
we no longer need to simulate the need for a long 
jump. 
 

Note we will need to play the role of the linker. Let’s assume that we plan to load 
1.c.2.obj into memory starting at x3000, and we plan to load the 1.c.3.obj into the 
memory just after it.  

 
We have two link/load issues: 

I. We have a label “neg2pos” in 1.c.3.asm, which is the address of a 
procedure; however, this label is not defined in 1.c.2.asm.  

II. We plan to load 1.c.2.obj into memory starting at x3000, and we plan to 
load the 1.c.3.obj into the memory just after it; however, we do not know 
exactly what address to load 1.c.3.obj. 

 
Lets begin to address issue I. You likely have a ptr to the procedure defined, e.g. 
 
  neg2posPtr .FILL neg2pos 

 



  Page 4 of 5 

However this will fail, since neg2pos is not defined here. We do not know the target 
address of this label at this time, so for now,  
 

3. define this pointer to point to some arbitrary address so we can assemble the 
file without error 

 
neg2posPtr .FILL x0000  

 

Now, we should be able to assemble and load 1.c.2.obj. As a result we can determine 
the ending address, and thus, the beginning address to load 1.c.3.obj. (thus 
remedying issue II) To make this more clear, 
 

4. Add the following label (as a placeholder) at the end of 1.c.2.asm 
 

ENDADDRESS .END  

 

5. Assemble 1.c.2.asm, load the .obj file into PennSim and open the .sym file using an 
editor.  

 
Q.13 Using PennSim confirm starting load address of 1.c.2.obj. What is it? Using PennSim 
and the .sym file, what is the value of label ENDADDRESS?  
 
We can now remedy issue II. We should load 1.c.3.obj at the address value of ENDADDRESS. 
 

6. Remove line  
 

ENDADDRESS .END  

 
 from 1.c.2.asm (as this is no longer needed) 
 

7. Change the .ORIG statement in 1.c.3.asm such that the file is loaded to the 
appropriate address. 

8. Assemble and load both files and confirm that 1.c.3.obj is loaded to the correct 
location. 

 
Q.14 What starting memory location is 1.c.3.obj loaded at? Is this correct? If not, adjust and 
explain. 
 
Now we have enough information to rectify issue I. Observe that both files are now 
consecutively loaded, so address label neg2pos is known.  
 
Q.15 What is the address value of label neg2pos?  
 
 

9. Open 1.c.3.sym and find the value of neg2pos and change the value in 1.c.2.asm 
accordingly: 
neg2posPtr .FILL ???? 

 

 



  Page 5 of 5 

10. Re-assemble and load both files and confirm that you are, in fact, an expert 
linker and that the program now executes correctly. 

 
C.3 In your personal svn branch, commit the corrected versions of 1.c.2.asm and 
1.c.3.asm. 

 
 
 


