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Exactly solvable model of two 
trapped quantum particles 
interacting via finite-range soft-
core interactions
Przemysław Kościk1 & Tomasz Sowiński   2

The exactly solvable model of two indistinguishable quantum particles (bosons or fermions) confined 
in a one-dimensional harmonic trap and interacting via finite-range soft-core interaction is presented 
and many properties of the system are examined. Particularly, it is shown that independently on the 
potential range, in the strong interaction limit bosonic and fermionic solutions become degenerate. 
For sufficiently large ranges a specific crystallization appears in the system. The results are compared to 
predictions of the celebrated Busch et al. model and those obtained in the Tonks-Girardeau limit. The 
assumed inter-particle potential is very similar to the potential between ultra-cold dressed Rydberg 
atoms. Therefore, the model can be examined experimentally.

Exactly solvable Busch et al. model1 of two ultra-cold bosons confined in a harmonic trap and interacting 
via contact forces was one of the milestones bringing us closer to our understanding of strongly correlated 
many-body systems. Although the model deals with only two particles, because of its exact solutions, it inspired 
many theoretical and experimental studies on collective properties of ultra-cold atoms which are far beyond a 
simple perturbative description2–13. Particularly, exact solutions of the model were essential for studies of the 
Tonks-Girardeau limit of infinite repulsions between particles14–22. The validity of the model in a wide range of 
interactions was finally confirmed in beautiful experiments23,24 with a few ultra-cold particles.

Here, we present a wide generalization of the one-dimensional Busch et al. model to the case of two quantum 
particles (bosons as well as fermions) interacting via the force of a finite range. With this model and its analyti-
cal solutions, it is possible to examine easily different effects caused by the strength and the range of the mutual 
forces, restoring well-known results in limiting cases and discovering unsuspected properties in the intermediate 
regime where the system smoothly transitions between them. Although the model studied seems to be artifi-
cial, it approximates the real inter-particle interaction much closer than an oversimplified zero-range potential. 
Moreover, a proposed shape of the interaction potential can be quite well engineered experimentally in systems 
of ultra-cold atoms where mutual interactions and shape of an external potential may be controlled with amazing 
accuracy25–29. Particularly in the context of ultra-cold Rydberg atoms, due to the Rydberg blockade phenomena, 
the shape of the inter-particle interaction potential is very close to the shape studied here30–33. From this point of 
view, the model studied may have some importance for understanding of the general problem of two interacting 
quantum particles.

The Model
In the following we study properties of the system of two identical quantum particles of mass m confined in a 
one-dimensional harmonic trap of frequency Ω and interacting via soft-core finite-range rectangular potential. 
The Hamiltonian of the system reads
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where the interaction potential (x) has a form
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i.e., the interaction energy is constant and it is non-zero only when the distance between particles is not larger 
than a. Similar model was considered previously in three dimensions34. Depending on the situation we consider 
symmetric (for bosons) or antisymmetric (for fermions) wave functions with respect to an exchange of particles’ 
positions

Ψ = ±Ψ .x x x x( , ) ( , ) (3)1 2 2 1

It is quite natural that in the limit of a → 0 with constrain 2aV = const one restores the Busch et al. model 
with delta-like contact interaction1, while in the limit V → ∞ an extensively studied model of hard spheres is 
obtained14.

Our aim is to give a straightforward and analytical prescription for the eigenstates of the Hamiltonian (1) as a 
function of the potential depth V and its range a. With these solutions, we examine different properties of a few 
of the lowest eigenstates in the bosonic and fermionic cases. In particular, we consider different single-particle 
system characteristics (density profile, momentum distribution) as well as inter-particle correlations reflected in 
a reduced single-particle density matrix.

The Eigenproblem
To find eigenstates and corresponding eigenenergies of the Hamiltonian (1) it is very convenient to perform 
standard transformation to the coordinates of the center-of-mass frame:
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In these new variables the Hamiltonian (1) can be written as a sum of two independent single-particle 
Hamiltonians  = R + r:
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The Hamiltonian R has a textbook form of the harmonic oscillator and it can be diagonalized straightfor-
wardly. The Hamiltonian r has an additional term related to the interactions (2) and the corresponding eigene-
quation, when written in the natural units of an external harmonic oscillator, has the form:
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Since the Hamiltonian r commutes with the operator of the parity inversion, r → −r, the eigenstates of r 
can be chosen as either even or odd functions of the relative position r. They directly correspond to bosonic and 
fermionic statistics, respectively.

The eigenequation (7) has the form of the Weber differential equation35:






− +




Φ = −



 +



Φ

r
r r u rd

d
1
4

( ) 1
2

( ),
(8)

2

2
2

with u equal to −E + V − 1/2 and −E − 1/2 for |r| < a and |r| ≥ a, respectively. The Weber equation was originally 
studied to solve Laplace equation expressed in parabolic coordinates35 but it appears in different problems of 
mathematical physics and many of its properties are well known36,37. In the case studied, when the problem is not 
reduced to the ordinary harmonic oscillator problem (V ≠ 0), it is very convenient to consider two different pairs 
of the solutions ϕ ϕ+ −r r{ ( ), ( )}u u

( ) ( )  and φ φ+ −r r{ ( ), ( )}u u
( ) ( )  having appropriate symmetry under parity transforma-

tion   but different properties on the boundaries. The first pair can be expressed in terms of the confluent hyper-
geometric function 1F1 as:
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These functions may be consider as appropriate solutions only in the region |r| < a because they are divergent 
in the infinity, r → ±∞. The second pair of solutions is expressed in terms of other confluent hypergeometric 
function U:
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In contrast to the first pair, these functions decay appropriately in the limit r → ±∞ but they do not have 
appropriate behavior at r = 0, i.e., odd functions φ − r( )u

( )  are discontinuous, whereas even ones φ + r( )u
( )  have discon-

tinuous first derivative. It means that functions φ ± r( )u
( )  may be considered as appropriate solutions only in the 

region |r| ≥ a. Consequently, any solution of the eigenequation (7) with energy Ei (which is continuous and has a 
continuous first derivative in a whole space) may be constructed as following
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where ν = −Ei + V − 1/2, μ = −Ei − 1/2 and ±
i
( )  is a normalization coefficient of the resulting function. An 

additional coefficient ν
±A ( ) together with the eigenenergy Ei are determined by matching conditions at |r| = a, 

ensuring that the function (13) and their first derivatives are continuous in the whole space:
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As typical for such problems, the conditions (14) and (15) can be fulfilled only for some particular values of 
an eigenenergy Ei leading directly to the quantization of the physical spectrum. In the case studied, the matching 
conditions (14) and (15) are fulfilled when eigenenergy Ei is a solution of the following transcendental equation
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where ν = −Ei + V − 1/2, μ = −Ei − 1/2. It directly leads to the following equations
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determining even and odd solutions, respectively. Equations (16) and (17) are quite complicated but they can be 
solved straightforwardly with simple numerical methods. After determining eigenenergies one finds the corre-
sponding coefficients
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and thus corresponding wave functions of the relative motion (13).
It is worth mentioning that in the limiting case of noninteracting particles (V = 0) standard solutions of a 

one-dimensional harmonic oscillator are restored. Indeed, in this particular case one finds μ = ν = −Ei − 1/2 and 
the matching conditions (14) and (15) reduce to a simple demanding that eigenenergies are half-integer numbers, 
Ei = i + 1/2. In consequence, appropriate functions ϕν

± r( )( )  and φμ
± r( )( )  become equivalent and they are expressed 

in terms of Hermite polynomials Hi:
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In the opposite limit of infinite repulsions (V → ∞) situation is also simplified. In this case the relative wave 
functions (13) must vanish in a whole range |r| < a, i.e., all amplitudes =ν

±A 0( ) . It immediately leads to the sim-
plified quantization condition
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and in consequence to the typical for hard-core limit degeneracy between neighboring even and odd solutions.
Having analytical solutions (13) one can express any eigenstate of the Hamiltonian (1) as a simple product of 

two wave functions
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where ϒ R( )i  and Φj(r) are appropriate eigenstates of the center-of-mass and relative motion Hamiltonians, respec-
tively. Although these two particular coordinates (R and r) are completely decoupled, the wave function (21) 
cannot be written (for any finite V) as a product (for bosons) or single Slater determinant (for fermions) of wave 
functions of independent particles. This observation leads directly to non trivial quantum correlations between 
particles which are discussed in the following.

Spectral properties.  Many properties of the system studied can be extracted directly from the spectrum of 
the relative motion Hamiltonian (6). In Fig. 1 we show several the lowest eigenenergies of r as functions of the 
interaction strength V for different potential ranges a. Solid lines correspond to even wave functions (bosons) 
while dashed lines to odd cases (fermions). As suspected, for V = 0 the spectrum of noninteracting particles is 
restored, i.e., alternating bosonic (symmetric) and fermionic (antisymmetric) states of the relative motion have 
equally distributed energies ħ/2, 3ħ/2, 5ħ/2, etc. For non-vanishing interactions V ≠ 0, depending on the potential 
range a, eigenenergies vary. A rapidity of these changes crucially depends on a sign of interactions–for the attrac-
tion is much higher than for the repulsion. It is interesting to note that for any finite range (a ≠ 0) and sufficiently 
large attractions each eigenstate may have arbitrary large negative energy. Note also that, independently on the 
potential range a, energies never cross. It means that for any finite a and V any eigenstate of the system is not 
degenerated. In fact, it is a direct consequence of one-dimensionality of the relative motion Hamiltonian Hr

38.
In the particular limit of strong repulsions, the neighboring states of opposite symmetry become degen-

erate independently on the interaction range a. This observation is a direct consequence of the Bose-Fermi 
mapping14,16.

It is clearly seen in Fig. 1 that properties of even and odd solutions of the relative coordinate eigenproblem are 
essentially different when the potential range a becomes smaller than the natural length scale of the problem (in 
dimensionless units equal to 1). As it is seen, in contrast to bosonic states, energies of fermionic states (dashed 
lines) become more horizontal, i.e., they are less sensitive to the interaction energy strength. This behavior is a 
consequence of the fact that odd functions always vanish at r = 0, i.e., along with decreasing a the interaction 
energy rapidly decreases independently on interaction strength V. In the limit of vanishing a the interaction is 
completely described in terms of the s-wave scattering which is not present between indistinguishable fermionic 
particles.

Contact interactions limit.  Mentioned above limiting case of contact forces can be explored more precisely 
by considering a formal limit in which the interactions (r) become identical with δ-like potential of the form 
gδ(r), i.e., in the limit a → 0 with fixed product 2aV = g = const. In this limit, the problem reduces to the cele-
brated model of two quantum particles interacting via contact forces for which exact analytical solutions are 
known1. To show how the limiting spectrum is restored we fix the potential range a and for given limiting inter-
action g we calculate a rescaled value of potential strength V = g/(2a). In this way one obtains the spectrum of the 
relative motion Hamiltonian Hr for different ranges a rescaled to the interaction strength g of the Busch et al. 
model. Results of this procedure adopted to even (bosonic) eigenstates of the relative motion Hamiltonian are 
presented in Fig. 2. As it is seen, with decreasing potential range a corresponding eigenenergies approach the 
results for contact interactions (thick black line). For a = 0.15 (red solid line) an agreement is almost perfect in a 
wide range of interactions. These results are in qualitative agreement with previously obtained finite range correc-
tions obtained within the Green’s function approach for higher dimensionality39.

At this point, it should be noted that for any finite a, in contrast to the contact interactions limit, all eigenener-
gies become negative for sufficiently strong attractions (see Fig. 1). Only in the case of contact interactions there 
exists exactly one bound state of the Hamiltonian (6)–the ground-state of the bosonic system.

Single-particle quantities.  The simplest quantities which can be measured experimentally quite easily are 
related to single-particle properties. All of them are fully captured by the reduced single-particle density matrix 
which for the model studied has a form:

∫Γ ′ = Ψ Ψ ′
−∞

∞ ⁎x x x x x x x( , ) d ( , ) ( , ), (22)2 2 2
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where Ψ(x1, x2) is a chosen two-particle state of the system. In the following we focus on the properties of the bos-
onic and the fermionic ground-states, i.e., according to the notation of Eq. (21) the states Ψ00(x1, x2) and Ψ01(x1, 
x2), respectively.

Typically, we are mostly interested not in the whole reduced single-particle density matrix Γ(x,x′) but only in 
its diagonal part

= Γn x x x( ) ( , ), (23)

which represents a density profile of particles. Analogously, a diagonal part of its Fourier transform
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π

= ′ Γ ′
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∞

−∞

∞ − ′p x x x x( ) 1
2

d d ( , )e , (24)
ip x x( )/

encodes distribution of a single-particle momentum. Properties of these two simple quantities crucially depend 
on the range of the potential a. These differences are especially manifested in the cases which are beyond appli-
cability of the Busch et al. model. In Fig. 3 and Fig. 4 we show density and momentum distributions for bosonic 
(red solid line) and fermionic (dashed blue line) ground-states obtained for a few representative potential ranges 
(a = 1, a = 1.5, and a = 2) and different potential strengths V, including hard-core limit case V → ∞.

Let us recall that in the hard-core limit, the bosonic wave functions necessarily satisfy the condition Ψ00(x1, 
x2) = 0 on the line x1 = x2, regardless of a since corresponding wave functions of relative motion Φ(r) vanish at 
r = 0. This observation, usually called fermionization, enables one to map the bosonic ground-state wave function 
to the fermionic one via the following relation Ψ00(x1, x2) = |Ψ01(x1, x2)|. In consequence, in the hard-core limit, 
the bosonic and fermionic ground states share not only the same energy but also have the same spatial density 
profiles (bottom row in Fig. 3). Note however, that this particular mapping (forced by infinite repulsions) does 

Figure 1.  Spectrum of the relative motion Hamiltonian ℋr as a function of interaction strength V and chosen 
potential range a. For clarity, even (odd) solutions corresponding to bosonic (fermionic) cases are plotted with 
solid (dashed) lines. Note that specific degeneracy between neighboring eigenenergies is established in the hard-
core limit (V → ∞). Energy and interaction strength V are measured in units of ħΩ.
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not necessarily mean that also momentum distributions for bosonic and fermionic ground-states are the same 
(bottom row in Fig. 4).

The situation becomes essentially different for potential ranges >∼a 2. In these cases, not only the density 
profiles n(x) but also the momentum distributions π(p) of bosonic and fermionic ground-states become identical 
in the hard-core limit (right bottom plots in Figs 3 and 4). At the same time the density profiles exhibit spatial 

Figure 2.  Even (bosonic) part of the spectrum of the relative motion Hamiltonian Hr as a function of rescaled 
interaction strength g = 2aV for two different values of the interaction range: a = 0.5 (thin dashed blue line) and 
a = 0.15 (thin solid red line). Along with vanishing a the limiting case of contact forces a → 0 (thick black line) 
is obtained in a wide range of interactions. Energy and rescaled interaction strength g are measured in units of 
ħΩ and Ωħ m/3 , respectively.

Figure 3.  The density distribution (23) calculated for bosonic (solid red line) and fermionic (dashed blue line) 
ground-states for different ranges of the potential a (columns) and different potential strengths V (rows). Note 
that for a sufficiently large strength V the density profile is the same for both statistics (see main text for details). 
The positions and the densities are measured in units of Ωħ m/( )  and Ω ħm / , respectively.
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separation into two independent peaks indicating localization of particles at opposite sides of the trap. This result 
is clearly understandable when two-particle density profile ρ(x1, x2) = |Ψ(x1, x2)|2 is considered. As it is seen in 
Fig. 5 the probability of finding both particles at the same side of the trap (x1, x2 0 or x1, x2 < 0) vanishes when 

>∼a 2. It is often said that the system enters the crystallization regime where individual particles are spatially 
separated40 and behave as distinguishable parties. In consequence, any physical property of the system does not 
depend on a quantum statistics. However, as explained in the next section, spatial separation does not mean that 
individual particles can be treated as independent since non-classical correlations between them are still 
present.

For finite interaction strengths V < ∞ (see Figs 3 and 4) one can observe how the quasi-fermionization is 
built along with increasing V. It is quite instructive to note that the fermionization regime is reached earlier if the 
interaction range a is bigger. It is consistent with previous results concerning quasi-degeneracy in the spectrum 
of the relative motion Hamiltonian (compare to Fig. 1).

Inter-particle correlations.  As was mentioned before, the eigenstates (21) are always separable when writ-
ten with respect to coordinates (4). However, for any finite interaction, it cannot be written as a product with 
respect to positions of particles x1 and x2. This simple observation means that the eigenstates of the interacting 
system studied encode nonclassical correlations between particles. These inter-particle correlations are nicely 
captured by spectral properties of the reduced single-particle density matrix Γ(x, x′). It is known that the matrix 
Γ(x, x′) can be decomposed to its natural Schmidt orbitals

x x u x u x( , ) ( ) ( ),
(25)i

i i i∑λΓ ′ = ′

where ui(x) and λi are eigenvectors and eigenvalues of the reduced density matrix Γ(x, x′), respectively. 
Coefficients λi have a direct interpretation of probabilities of finding a single particle in quantum states described 
by the corresponding orbitals and they are normalized to unity, ∑iλi = 1. Let us note that in the case of fermions, 
due to Pauli exclusion principle (3), all non-zero eigenvalues are doubly degenerated.

If both bosons occupy exactly the same orbital u0(x) then the reduced density matrix simply projects to the 
orbital u0(x) and particles are trivially correlated. What is less intuitive, correlations between particles are also 
trivial whenever particles occupy two different orbitals u0(x) and u1(x) in the way that the two-particle wave 
function is represented by their Slater determinant (for fermions) or permanent (for bosons). In all these cases, 

Figure 4.  The distribution of the single-particle momentum (24) calculated for bosonic (solid red line) and 
fermionic (dashed blue line) ground-states for different ranges of the potential a (columns) and different 
potential strengths V (rows). Although, for sufficiently large strength V density profiles in Fig. 3 are the same for 
both statistics, momentum distribution not necessarily have this property. Only for large enough ranges both 
distributions become equal indicating appearance of crystallization (see main text for details). The momentum 
and the momentum distributions are measured in units of Ωħm  and Ωħm1/( ) , respectively.
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the state is regarded as non-entangled since correlations originate only in the quantum statistics of indistinguish-
able particles41,42. In other cases, additional correlations are forced by mutual interactions and they are directly 
reflected in increasing number of non-vanishing occupations λi in the decomposition (25).

In the Fig. 6a we present four the largest eigenvalues λi of the reduced density matrix Γ(x, x′) calculated for 
bosonic (solid black lines) and fermionic (dashed blue line) ground-states, Ψ00(x1, x2) and Ψ01(x1, x2), as functions 
of potential range a in the hard-core limit V → ∞. As noted above, in the fermionic case eigenvalues are doubly 
degenerated. In the contact interaction limit (a → 0), fermions, in contrast to bosons, become noninteracting and 
therefore there is no additional correlation beyond that induced by quantum statistics (λ0 = λ1 = 0.5). In opposite 
limit of large ranges >∼a 2, bosonic occupations λi become doubly degenerated and equal to fermionic ones. 
Simultaneously, reduced single-particle matrices of bosonic and fermionic ground-states become identical. By a 
direct inspection of the two-particle state we found that the ground-state of the system can be written as (± sign 
for bosons and fermions, respectively):

∑κΨ = ±x x x x x x( , ) [ ( ) ( ) ( ) ( )],
i

i i i i i1 2 1 2 2 1L R L R

where i(x) and i(x) are single-particle orbitals localized in left and right side of the trap constructed from the 
corresponding even and odd single-particle orbitals of the reduced density matrix Γ(x, x′)43:

 = + +x u x u x( ) 1
2

[ ( ) ( )],
(26)i i i2 2 1

Figure 5.  Two-particle probability density of finding particles at positions x1 and x2 in hard-core limit V → ∞ 
for different values of the potential range a. For sufficiently large range ( >∼a 2) particles occupy exactly opposite 
sides of the trap. This is one of the features of the crystallization mechanism. The positions and the probability 
distributions are measured in units of Ωħ m/( )  and mΩ/ħ, respectively.
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= − .+x u x u x( ) 1
2

[ ( ) ( )]
(27)i i i2 2 1

The construction is possible, since in this case the appropriate eigenorbitals are degenerated and any of their 
linear combination remains as an eigenvector of Γ(x, x′). The amplitudes κi are related directly to the occupations 
λi, κi =  λ i2  =  λ +i2 1 . This observation is one of quite spectacular manifestations of the crystallization men-
tioned before. Note that the values of the dominant occupations λ0 and λ1 decreases with potential range a. It 
means that even in the crystallization regime particles cannot be treated as trivially correlated parties and there-
fore they cannot be locally described with individual well-defined orbitals.

Non-classical correlations between particles are quite well quantified by the von Neumann entropy. When 
occupancies λi are known, it can be calculated straightforwardly as λ λ= −∑S logi i i2 . This measure exactly van-
ishes in the non-entangled product state of bosons (λ0 = 1) and it is equal to 1 in the non-entangled bosonic and 
fermionic states (λ0 = λ1 = 0.5). Note however that in the bosonic case, an opposite implication does not hold, i.e., 
the condition S = 1 does not necessarily means that the state in non-entangled42. In Fig. 6b (for bosons) and 
Fig. 6c (for fermions) we show the dependence of the von Neumann entropy on the potential strength V for dif-
ferent ranges a calculated in the ground-state of interacting particles. It is clear that in a considered range of 
parameters the von Neumann entropy S is a monotonic function of the interaction V and its growth crucially 
depends on the potential range a. It is also worth noticing that in the fermionic case and vanishing range (a → 0) 
the von Neumann entropy remains unchanged independently on the interaction strength V. This is a direct con-
sequence of vanishing contact interaction for fermionic species.

Summary
In this paper, we present properties of the exactly solvable model of two interacting particles confined in a har-
monic trap. Inter-particle forces are modeled by a square wall controlled by two independent parameters: poten-
tial range and its strength. The results enabled us to investigate and discuss different properties of the system in 
a whole range of parameters between limiting cases of well known Busch et al. and hard-core models. Obtained 
results suggest that any finite range of the inter-particle forces is directly reflected in simple quantities which 
can be measured experimentally. The prominent example is the many-body spectrum where, in contrast to the 
zero-range case, all eigenstates become unbounded from below for attractive forces. We show that also density 
and momenta distributions maybe strongly affected by the finite range of the potential. All these deviations from 
the Busch et al. model maybe examined in recent experiments on a few ultra-cold particles.

The model presented belongs to the specific class of quite realistic quantum many-body problems having exact 
analytical solutions44–47. From this point of view it is not only an interesting academic example. In fact, it may 
serve as a first building block for constructions of the many-body ground states of larger number of interacting 
particles. For example, it can be used as an input for the variational Jastrow-like ansatz based on analytical solu-
tions of two-body problems48.

Figure 6.  (a) First four of the largest eigenvalues of the reduced single-particle density matrix Γ(x, x′) 
calculated for the bosonic (solid black lines) and fermionic (dashed blue lines) ground-state in the hard-core 
limit V → ∞ as functions of the potential range a. In the limit of contact interactions (a → 0) fermionic ground-
state does not manifest any non-trivial correlations. For large ranges ( >∼a 2) bosonic eigenvalues become 
degenerate and equal to appropriate fermionic ones indicating crystallization regime. Note that fermionic 
eigenvalues are always doubly degenerated. (b,c) The von Neumann entropy S as a function of interaction 
strength V for different potential ranges a. Note that in the fermionic case its growth is strongly suppressed in 
the limit of vanishing range (a → 0) as a consequence of vanishing contact interaction in this limit. In all plots 
the potential range a and strength V are measured in units of Ωħ m/( )  and ħΩ respectively.
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