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Abstract
Among various crop damaging factors, biotic stresses primarily contribute to the limitation of the 
growth and development of plants, which leads to huge yield losses. Globally, about 25% crop 
yield is lost due to diseases and insect infestation. The production and consumption of vegetables is 
growing worldwide due to its nutritional value in human dietary systems. The vegetables are attacked 
by different soil borne pathogens which compromise yield and quality. To prevent such devastating 
effects, pesticides are applied in high throughput vegetable cultivation practices. However, the 
excessive and imprudent application of pesticides negatively affects the microbial diversity and soil 
biological activity. This in turn, detrimentally affects the yield and quality of vegetables. Eco-friendly 
sustainable agricultural practices that employ low cost microbial formulations can play pivotal roles in 
the management of biotic stresses. The use of plant beneficial bacteria to increase vegetable production 
may restrict pesticides application and also prevent the emergence of resistance of pathogens against 
toxic chemicals. Considering these, an attempt is made herein to highlight the impact of biotic 
stresses especially bacterial and fungal pathogens on some of the popularly grown vegetables. This 
review provides information about the active biomolecules associated with disease suppression and 
significance of plant beneficial bacteria in the amelioration of lethal vegetable diseases. The interplay 
between the soil beneficial microbes and vegetables will facilitate the development of bacteria-based 
antagonist strategies for inexpensive production of vegetables in stressful open field conditions.
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1 INTRODUCTION 
Vegetables among many food crops are one of the 

most important constituents of the global dietary systems 
owing to their role in human health. So, the demand 
for nutritive vegetables with high quality is growing 
worldwide. The vegetable crops are extremely susceptible 
to biotic stresses such as insect-pests[1,2], bacterial[3,4] and 
fungal[5] phytopathogens and weeds[6], which have caused 
substantive yield losses in many countries. For example, 
a significant loss of 40% in potato due to pathogens is 
reported[7,8]. To safeguard the yield and quality of widely 
consumed vegetables such as tomato, potato, cabbage, 
ladyfinger etc. from biotic stresses, crop rotation[9,10], usage 
of disease resistant varieties[11] and other disease control 
measures are adopted. Moreover, various agrochemicals 
especially fungicides and insecticides[12] are applied in 
soil-vegetable systems to offset the negative impacts 
of biotic stresses. Sadly, many of these management 
strategies failed to harvest satisfactory results. Use of 
agrochemicals in vegetable production has been found 
destructive to nutrient composition and yield of vegetables, 
environment and via food chain, the human health. Due 
to this, agrochemicals application is considered unsuitable 
in vegetable production[13,14]. Considering all the harmful 
impact of pesticides, growers are advised to restrict the 
usage of agrochemicals for the maintenance of the yield 
and quality of vegetables. The question is how to make it 
feasible. Solutions, specifically the microbial formulation 
strategies, have been provided to the growers for the 
pesticide problems in vegetable production. In this regard, 
the use of plant beneficial bacteria (PBB): low-cost and 
environmentally sustainable options are advocated for 
enhancing vegetables quality and yield optimization[15,16]. 
Unfortunately, the scientific information on the ame- 
lioration of vegetable disease employing PBB in soil-
plant systems are inadequate[17,18]. However, few pieces 
of literature on how PBB could be useful in circumventing 
the biotic stresses while concurrently amplifying the yield 
of vegetable crops are reported[19,20]. This review attempts 
to gather published information on the biotic stresses with 
a particular focus on the impact of phytopathogens on 
some widely cultivated vegetables. In addition, this review 
outlines the potential role of PBB in the management of 
diseases and their prospects in sustainable production 
of vegetables in different agrosystems. This review will 
therefore, be useful for growers to design and practice 
microbes-based strategies for inexpensive production 
of vegetables in different environmental conditions. 
Furthermore, the information given here will be helpful 
for researchers working in the area of PBB-vegetable 
interactions.

2 BIOTIC STRESS TO VEGETABLES AND HOW 
VEGETABLES RESPOND TO STRESS: AN OVE- 
RVIEW

Biotic stress in plants generally refers to the stresses 

caused by the living organisms, specifically, pathogens, 
insect pests, viruses and viroids, weeds, or intra/inter specific 
competition for limited available resources. The biotic 
stresses in general, are the major constraints of vegetable 
production worldwide (Table 1). Physiologically, the biotic 
stress agents limit the uptake of nutrients which negatively 
affects plant vigor and in extreme cases, the death of the 
host plants. However, the extent and severity of biotic stress 
differs with the weather conditions, soil-plant systems, 
cropping pattern, climatic seasons, cultivation practices, 
vegetable genotypes, and agroecological regions[29,30]. In 
general, hot and humid weather environment, nutrient-rich 
agrosystems and contemptible crop-management practices 
further predispose the vegetables to such biotic stresses.

Plants, however, have evolved defense systems (innate 
and systemic response) to combat different types of 
biotic stresses[31,32]. Chief among them is the evolution/
identification of highly sophisticated crosstalk between 
different plant hormones, for instance, ethylene (ET), 
jasmonic acid (JA), auxin (IAA), abscisic acid (ABA), 
ethylene (ET), and salicylic acid (SA). These hormones are 
secreted in response to specific stimuli and enhance plants’ 
endurance under stressed conditions[33,34]. Recent findings 
suggest that the protection against biotic stresses occur at 
critical stages of plants such as morphological, structural 
and physiological levels[35]. Evidence suggests that the 
interaction between pathogens and different plant signalling 
pathways determines the level of tolerance among infected 
plants[36]. All these, either alone or in synergism provides 
tolerance or resistance against biotic stresses and give 
plants the strength and rigidity[32,37]. For example, when 
plant is infected by any pathogen, the injured plants secrete 
reactive oxygen species (ROS) around the infection site 
called “oxidative bursts”. This is considered as the primary 
disease resistant response against infections[38]. Besides 
ROS, in response to pathogen attack, plants increase cell 
lignifications which blocks the invasion of pathogens and 
thus reduces the host susceptibility[39]. Some of the other 
notable plant-based compounds secreted in response 
to infections and that provide protection against biotic 
stresses include β-aminobutyric acid (BABA)[40,41] or 
benzothiadiazole (BTH)[42], SA[43,44], JA[15, 45] and ABA[46]. 
As an example, the relationship between the endogenously 
secreted SA and the resistance exhibited against biotrophic 
and hemibiotrophic pathogens in plants have been 
positively correlated. The exogenous SA application 
induced the local and systemic acquired resistance in 
tomato against F. oxysporum[47].

3 HOW IS BIOTIC STRESS MEASURED?
Soil borne plant pathogens among biotic stresses 

account for huge economic, quality, and yield losses to 
vegetable crops worldwide[48], which necessitates timely 
detection and evaluation of the damage caused by 
such soil borne pathogens. The biotic-induced stresses, 
therefore, are monitored right from the early growth stage 
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Table 1. Examples of Some Biotic Stresses Adversely Affecting the Vegetable Production

Biotic Stress Host Plant Diseases Causal Organism Crop Response Ref

Bacteria Tomato Bacterial canker Clavibacter michiganensis Systemically colonizes tomato xylem 
leading to unilateral leaflet wilt, marginal 
leaf necrosis, stem and petiole cankers, 
and plant death.

[21]

Viruses Tomato root rot, 
Tomato yellow leaf curl 
virus (TYLCV)

Pythium aphanidermatum 
Begomovirus

Death of plants, Yield losses [22,23]

Fungi Early blight Alternaria solani Early blight can affect almost all parts of 
the tomato plants, including the leaves, 
stems, and fruits. The plants may not die, 
but they will be weakened and will set 
fewer tomatoes than normal.

[24]

Nematodes Root-knot nematode 
disease

Meloidogyne incognita Loss of fruit yield [25]

Weeds Okra - Cynodon dactylon, 
Eleusine indica, Amaranthus 
spinosus  and Commelina 
benghalensis

Yield loss [6]

Insect- Pests Eggplants - Shoot and fruit borer Damages foliage, flower buds and fruits [26]

- Jassids Affect leaves and fruit yields [27]

- Leaf eating beetles Feed on leaves and seriously damage 
plants

[28]

until harvest to identify and properly diagnose diseases on 
time. This will help to find a suitable management strategy 
to limit the damage caused by the pathogens. In this regard, 
researchers focus onto assess- (i) the effects of pathogens 
on plants (ii) pathogen growth during interactions and (iii) 
how plants own active biomolecules following infection 
overcome the biotic stresses (self-defence). Conventionally, 
the disease assessment of crop plants is conducted by 
monitoring symptoms through human naked eyes and brain 
to measure their incidence. Also, the detection or pathogen 
identification methods depend on isolation, microscopic 
examination and growth of recovered pathogens[49]. 
The traditional approaches are, however, destructive, 
manual expertise demanding, labour intensive, and time 
consuming. Therefore, researchers apply physiological-
based markers approach to find a better vegetable disease 
detection method[50]. Some of the most commonly applied 
methods include (i) Diaminobenzidine (DAB) staining 
and luminol-based assays and nitroblue tetrazolium (NBT) 
staining methods: detecting reactive oxygen species (ROS) 
for example, hydrogen peroxide (H2O2) and superoxide (O2

-

), respectively, (ii) Aniline blue staining method: measuring 
callose deposition, (iii) Membrane damage: detecting 
electrolyte leakage, and (iv) Trypan blue staining method: 
evaluating cell death. Of these, the DAB, an organic 
compound, when reacts with H2O2 and peroxidase is 
oxidized to an insoluble brown alcohol precipitate whereas 
luminol is oxidized by Horseradish Peroxidase (HRPO) in 
the presence of H2O2 and releases chemiluminescence[51,52]. 
The chemiluminescence is measured by luminometer or 
is photographed (imaged) employing a photon detecting 
imaging system. The NBT reacts with O2

- and forms 

an insoluble formazan (dark blue deposit) that can be 
visualized. The DAB or NBT staining product is, however, 
proportional to the amount of H2O2/O2

- in the tissue. Callose, 
a polysaccharide, generated in response to wounding and 
pathogen elicitors is deposited at the interface between 
the plasma membrane and plant cell wall[53, 54]. Callose 
formation can be detected and quantified by staining 
with aniline blue. Mechanistically, the callose reacts with 
aniline blue and fluoresces under UV light. The death of 
plants after infection is attributed to the hypersensitive 
response[55,56] or the collapse of the plant immune system. 
Trypan blue staining is the classical technique that can 
detect and quantify infection-induced cell death[57,58]. 
Healthy plant cells with unbroken membranes preserve 
electrolytes within the cell boundaries. But the stability and 
integrity of the membrane are disrupted under the attack 
from infectious organisms, which, therefore, results in elec- 
trolyte leakage[59,60]. The evaluation of electrolyte leakage 
from leaf discs that floats on water determines the severity 
of cell membrane instability and damage. 

The biotic stress can also be detected by expression 
analyses of defense-marker genes by qRT-PCR, RNA  
sequencing, proteomics and microarrays. These techni- 
ques provide information about metabolic alteration 
caused by pathogens[61-63]. In addition, the synthesis and 
accumulation of stressed-induced biomolecules such as 
SA[64], JA[65], ABA[66] or ET[67] have been measured in 
infected plants[68-70]. Recently, chlorophyll fluorescence 
imaging (Chl-FI), a very pertinent and a highly delicate 
technique, has been used for the detection of plant stress 
and monitoring crop performance[71]. The Chl-FI, a 
diagnostic tool, is used to determine the photosynthesis 
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activity at different stages of plant growth (cellular, 
foliage, and whole-plant) that allow researchers to perform 
phenotyping of plants[72]. The Chl-FI gives knowledge 
about the timing and position of the pathogen development 
and contributes immensely to understanding the regulation 
of photosynthesis from foliage to crop scale. Among 
the extensively researched diseases detected by Chl-
FI, the disease caused by fungi and oomycetes have 
been reported. As an example, reduction in chlorophyll 
content of cucumber leaves infected with viral (Cucumber 
mosaic virus and Cucumber green mottle mosaic virus) 
and powdery mildew (Sphaerotheca fuliginea) fungal 
pathogen has been detected[73]. These techniques in 
general, provide sufficient evidence to explain variations 
in plant transcriptional and physiological responses due 
to infection caused by the soil borne pathogens. Lately, 
several automatic and semi-automatic techniques such 
as Back-Propagation Neural Network (BPNN), Support 
Vector Machine (SVM), K-Nearest Neighbors (KNN), 
Radial Basis Function Neural Network (RBFNN), Color 
Co-occurrence Method (CCM) and Spatial Gray-Level 
Dependence Matrices (SGDM) have been developed for 
the detection of plant pathogens[74,75]. These techniques 
help to identify pathogens in healthy or diseased leaves. 
However, various challenges accompany these techniques 
during processing. For example, the automation of the 
detection system during complex imaging outside under 
intense lightning and environmental conditions is difficult.

4 WHY ARE PLANT BENEFICIAL BACTERIA 
PREFERRED FOR VEGETABLE DISEASES MA- 
NAGEMENT?

Indeed, bacterial and fungal phytopathogens among 
biotic stresses are the most deadly menace to the 
nutritional value, biomass, and yield of vegetable crops 
worldwide[76]. So, it is imperative to realize the threat and 
devise protection strategies to maintain both the yield and 
quality of vegetables, for which the vegetable growers 
espouse different methods to suppress the disease causing 
bioagents. Such methods include field sanitization, use 
of disease resistant cultivars, crop rotation, and pesticides 
application[17,77]. Agrochemicals, especially the use of 
pesticides among many diseases management options 
in general, are effective in reducing the crop damage in 
different agrosystems[78,79]. The emergence of resistance 
among pathogens toward pesticides, the residual toxicity 
to neighbouring non-target organisms and environmental 
pollution are, however, the biggest global challenges. 
To date, there have been no available environmentally 
sustainable solutions to prevent biotic stresses. Therefore, 
the scientists in recent times have directed their efforts 
onto discover inexpensive, eco-friendly, and viable 
alternative that can be effective in the suppression of 
vegetable diseases. Such microbial formulations may 
achieve to optimize the production of safe and good 
quality vegetables under open field conditions[80,81]. The 

plant beneficial bacteria endowed, especially with the 
disease eradication ability, often termed “microbiological 
control agents or “microbial antagonists”, inhibit soil 
borne phytopathogens by secreting various antimicrobial 
metabolites. Additionally, they promote the growth and 
development of vegetables by supplying essential plant 
nutrients and phytohormones (Table 2). Essentially, the 
antimicrobial metabolites of microbial or any biological 
origin, are easily biodegradable compared to the fre- 
quently used agrochemicals[100]. Considering all, an 
attempt is made herein to explore the role of microbial 
formulations in disease suppression vis-a-vis growth and 
yield optimization of some of the most popularly cultivated 
and widely consumed vegetables.

5 DISEASE MANAGEMENT BY PLANT BENEFI- 
CIAL BACTERIA: A GENERAL PERSPECTIVE 

Plant beneficial bacteria are bacteria that infect, colonize 
surfaces and augment the overall development of plants by 
one or simultaneous growth modulating mechanisms[101,102]. 
Management of biotic stresses including those of plant 
pathogens using PBB has indeed been one of the greatest 
interests to researchers[103,104]. The PBB containing disease 
suppression abilities include bacteria belonging to different 
functional groups such as N2 fixers[105], P-solubilizers[106], 
K[107], and Zn-solubilizers[108,109] etc. The wide-ranging 
soil borne PBB protects the vegetables from pathogen 
attack directly by secreting pathogen-antagonizing 
substances[110]. The antimicrobial metabolites include 
the broad-spectrum antibiotics[111-113], cell wall degrading 
enzymes[114], iron-chelating compound, siderophores[115,116], 
cyanogenic compounds, HCN[117,118] or bacteriocins[119,120] 
and ACC deaminase[121]. They also limit the pathogen 
populations through competition for space and nutrients 
or indirectly by inducing the resistance mechanisms[122,123], 
all of which contribute to enhancingthe yield and quality 
of vegetables. Of these, siderophores, lytic enzymes, 
antibiotics and bacteriocins that disintegrate cellular 
architecture and ACC deaminase that lowers the stress 
hormone, ethylene, have been widely studied mechanisms 
of antagonistic PBB. The PBB have shown effective 
antagonism in treating different pathogens including 
bacteria[124], fungi[125] and viral diseases[126]. In PBB, few 
bacteria secrete antibiotics, pyrrolnitrin, pyoluteorin, 2, 
4-DAPG, etc. to inhibit the growth of phytopathogens[127]. 
The stimulation of induced systemic resistance (ISR) is 
yet another significant disease suppressive mechanism 
adopted by PBB. However, the PBB may employ 
simultaneous mechanisms of antagonism to provide 
better results (Figure 1). As an example, P. fluorescens 
CHA0 synthesized two antifungal compounds such 
as 2,4-diacetylphloroglucinol (DAPG)[128,129] and pyo- 
luteorin (PLT)[130] which together suppressed various soil 
borne plant diseases[131]. Below are some of the important 
compounds released by PBB to inhibit the pathogens and 
help promote growth and yield of vegetables.
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Table 2. Diseases of Some Common Vegetables and Their Management by Plant Beneficial Bacteria

Disease Infected Plants Bioagents Microbial Antagonists Inhibitory Biomolecules Ref

Fusarium wilt Tomato F. oxysporum f sp. 
lycopersici

Bacillus aryabhattai strain 
SRB02

Phytohormones: Salicylic acid 
and amino acids

[15] 

Fusarium wilt Tomato F. oxysporum f sp. 
lycopersici

Streptomyces griseus Glucanase, chitinase, peroxidase [82] 

Bacterial wilt Tomato R. solanacearum Bacillus, Brevibacillus 
Pseudomonas, Trichoderma

Peroxidase, phenylalanine 
ammonia lyase, polyphenol 
oxidase

[83] 

Bacterial wilt Eggplant R. solanacearum P. polymyxa Lipopeptides [84,85] 

Bacterial wilt Eggplant R. solanacearum P. fluorescens Rhizosphere colonization

Powdery mildew Cucumber Podosphaera xanthii 
(Castagne)

T. harzianum, T. viride, B. 
subtilis, P. polymyxa, S. 
marcescens

Peroxidase, polyphenol oxidase, 
phenols content (TPC)

[86] 

Damping-off Cucumber and 
Tomato

Pythium 
aphanidermatum

Talaromyces variabilis Glucanase, cellulase and 
siderophores

[87] 

Phytophthora 
crown rot

Cucumber Phytophthora 
capsica

P. stutzeri, B. subtilis, B. 
amyloliquifaciens, S. maltophilia

Competitive root tip colonization [88] 

Phytophthora 
crown rot

Cucumber P. capsica P. stutzeri, B. subtilis, 
Stenotrophomonas 
maltophilia, B. 
amyloliquefaciens

Catalase [88] 

Damping off Cucumber Pythium ultimum P. fluorescens, Pseudomonas 
sp., B. subtilis

Antibiotics and metabolites [89] 

Downy mildew Cucumber Pseudoperenospora 
cubensis

Consortium of Achromobacter 
sp., Streptomyces sp., B. 
licheniformis

Induced systemic resistance [90] 

Root and collar 
rot 

Okra Macrophomina 
phaseolina

T. viride ND [91] 

Root rot Okra R. solani P. fluorescens  Siderophores, HCN, IAA [92] 

Chilli Fruit Rot Chilli P. capsici T. asperellum, T. harzianum, B. 
subtilis

Volatiles and non- volatile 
metabolites

[93] 

Bacterial spot Pepper Xanthomonas 
campestris pv. 
Vesicatoria

Lactic acid bacteria  Siderophores [94] 

Early blight Potato A. solani and A.
Grandis

Mycoparasitic fungus 
Clonostachys: C. chloroleuca, C. 
pseudochroleuca, C. 
rhizophaga

Bioactive substances and cell 
wall- degrading enzymes

[95] 

Late blight Potato P. infestans Streptomyces Amylases, cellulases [96] 

Early blight Potato Alternaria solani T. harzianum with P. 
fluorescens

ND [97] 

Late blight Potato,
Pepper 

P. infestans; 
P. capsica

Chaetomium globosum;
Burkholderia cepacian

Endo and exoglucanases; 
antimicrobials

[98,99] 

ND=Not Detected

5.1 Defence Molecules Produced by Plant Beneficial 
Bacteria
5.1.1 Iron Chelating Compounds

Siderophores are low molecular weight (≈2.0 KDa)  
iron chelating peptide molecules which are secreted un- 
der low-iron limited conditions by rhizosphere PBB 
[132,133]. Plant beneficial bacteria including N2 fixers, for 
example, rhizobia and Azotobacter[134], P-solubilizers[116], 
K and Zn solubilizers[92] excrete functionally different 
types of siderophores (hydroxamates, catecholates, phe- 
nolates, and carboxylates). The released siderophores 

form a complex with soil iron and limit its availability 
to phytopathogens[135]. Moreover, the siderophore regu- 
lates the population size by restricting the Fe supply to  
phytopathogens and therefore, protect plants from furth- 
er infection[136,137]. As an example, the siderophores 
positive PBB, P. aeruginosa (strain FB2) and B. subtilis 
(strain RMB5) demonstrate significant antagonistic 
activity against different fungal plant pathogens, F. 
oxysporum, F. moniliforme, R. solani, Colletotrichum 
gloeosporioides, C. falcatum, A. niger, and A. flavus[115]. 
Pyoverdines produced mainly by pseudomonads 
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such as P. protegens, P. aeruginosa and P. fluorescens 
have shown adequate antagonistic activity against 
many pathogenic bacteria and fungi such as Pythium 
and Fusarium species. The tomato plants were then 
protected from pathogen-based damage and achieved 
healthy growth[138]. Similarly, the siderophore pseu- 
dobactin secreted by P. putida suppresses the growth 
and infection of F. oxysporum and R. solani by reducing 
the Fe availability[127]. Species of Azotobacter also sec- 
retes different types of siderophores, azotochelin, 
protochelin, aminochelin, and azotobactin that shield 
the food crops from phytopathogens such as Alternaria, 
Fusariun and Aspergillus. Given the direct impact on 
disease progression, the siderophores-mediated suppr- 
ession of soil borne pathogen provides a promising aven- 
ue for PBB engineering and pathogen control. 

5.1.2 Pathogen Modulating Enzyme 
Plant beneficial bacteria also produce the growth 

modulating enzyme, 1-aminocyclopropane-1-carboxylate 
(ACC) deaminase that induces tolerance against biotic 
stresses[139,140]. The ACC deaminase lowers the concentration 
of ethylene (ET) produced under severe biotic stresses[141]. 
Ethylene (C2H4 or H2C=CH2), a stress phytohormone, 
induce chlorosis, senescence, and abscission in plants which 
aggravates the fatal impact of different pathogens[142,143]. 
When produced by PBB, the ACC deaminase splits the 
ACC (a precursor of ethylene) into α-ketobutyrate and 
ammonia that reduces the precursor levels by inducing 
the ACC oxidase activity and ACC synthase in stressed 
conditions[144, 145]. Accordingly, the ET concentration declines 
in the surrounding environment and thus plants are relieved 
from ET pressure. Plants therefore exhibit better growth 
and yields[146,147]. The ACC deaminase produced by PBB 
Paenibacillus lentimorbus have induced tolerance in tomato 
against Scelerotium rolfsii, a causal organism of southern 
blight disease. The bacterized tomato plants displayed 
modulated ET pathway and antioxidants activities. The 
systemic tolerance was substantiated by pathogen related 
gene expression analysis[148]. 

5.1.3 Unregulated Waste Products: Cyanogenic Com- 
pounds

Plant beneficial bacteria, in particular, fluorescent 
pseudomonads, studied extensively owing to their abilities 
to produce toxic antimicrobial metabolites including 
cyanogenic compounds are implicated in plant disease 
management[149,150]. Many authors have reported HCN 
(a volatile poisonous secondary metabolite) producing 
PBB and their use as the antagonist in disease suppression 
and growth and yield enhancement of vegetables[151]. 
Mechanistically, HCN cracks and distorts the fungal hyphae 
leading to alteration in cellular structure and function 
due to vacuolation and protoplast leakage[152]. Cyanide, a 
toxic substance, acts by forming stable complexes with 
some of the essential elements such as Cu2+, Fe2+, and 

Mn2+ which consequently disrupts the functional aspect of 
protein. HCN effectively blocks the transport of electron 
and interrupts the supply of energy to the cell, and the 
death of biotic forms including pathogenic microbes 
occur under HCN positive environment. In a greenhouse 
study, Hyder and co-workers[153] observed that the HCN 
positive P. putida, P. libanensis, P. aeruginosa, B. subtilis, 
B. megaterium and B. cereus significantly suppressed the 
infections caused by a notorious fungus Phytophthora 
capsici by 52.3–63% and concurrently enhanced the 
growth characters of chilli pepper. In addition, the HCN 
positive P. japonica (strain NBRC 103040), B. megaterium 
(strain CtST3.5), Pseudomonas sp. (strain Gamma-81), 
P. tolaasii (strain ATCC 33618), P. chlororaphis (strain 
Lzh-T5) and P. mosselii (strain CV25) inhibited the growth 
of pathogenic A. tumefaciens and affected the survivability 
of Meloidogyne incognita juveniles[154]. Additionally, the 
gall formation on tomato plants by A. tumefaciens was 
prevented by P. japonica and Pseudomonas sp. Other PBB 
such as B. megaterium, P. chlororaphis, P. tolaasii, and 
P. mosselii, however, decline the number and biomass of 
galls produced on A. tumefaciens inoculated tomato plants 
grown either in the presence or absence of M. incognita. In 
general, all HCN producer PBB declined the M. incognita 
population and nematode gall numbers when used against 
M. incognita. Conclusively, the HCN-positive PBB caused 
a significant increase in overall performance of tomato 
plants colonized by A. tumefaciens and/or M. incognita.

5.1.4 Antibiosis and Antimicrobial Peptides
Production of antimicrobials such as lipopeptides, 

polyketides, and antifungal metabolites with broad-
spectrum action is yet another vital defense strategy 
adopted by PBB to control the attack by phytopathogens[25, 

155,156]. 2,4-diacetylphloroglucinol (DAPG), phenazine-1-
carboxylic acid, oomycin, zwittermycin A, pyrrolnitrin, 
fengycin, iturin, phycocyanin and kanosamine[154,157, 158] 
etc. are some of the common antibiotics that inhibit the 
growth and infective ability of phytopathogens. The notable 
PBB being capable of producing such antimicrobials are 
B. subtilis, B. amyloliquefaciens, B. velezensi, P. putida, 
P. fuorescens, P. brassicacearum, and P. polymyxa[103, 

159]. Functionally, the antimicrobials adversely affect 
the cell wall[160], damage the membrane integrity, and 
destruct protein synthesis by blocking the formation of 
initiation complexes on the small subunit of the microbial 
ribosomes[161], which inhibits the growth and development 
of phytopathogens. DAPG, a polyketide antimicrobial 
compound released by pseudomonads is used to control 
many soil-borne plant pathogens[162,163]. The DAPG 
produced by cell free culture filtrates of P. fluorescens 
(VSMKU3054) expressively prevents the in vitro growth of 
R. solanacearum, a causative agent of bacterial wilt disease 
of tomato, and other fungal pathogens, R. solani, S. rolfsii, 
M. phaseolina and F. oxysporum. Following inoculation, 
DAPG positive P. fluorescens (VSMKU3054) significantly 
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Figure 1. A mechanistic model explaining the bio-management of phytopathogens adopted by plant beneficial bacteria.

control the wilt disease of tomato[164]. Other PBB, like, 
Burkholderia sp. HQB-1 produces phenazine that possesses 
redox activity and has been reported to suppress wilt 
causing F. oxysporum[165]. In addition to Pseudomonas sp., 
several Gram negative and Gram positive PBB strains are 
also known to produce antibiotics, polymyxin, circulin and 
colistin, that can limit the growth of many bacterial and 
fungal plant pathogens[161,166]. 

Antibacterial peptides synthesized ribosomally by  
PBB termed “bacteriocins” are proteins with an antimi-
crobial activity that are used by producing strains to 
reduce competition from related bacterial strains[120]. 
Once excreted into the environment, the bacteriocins 
destruct the bacterial cells which are closely related to 
the producer strains[167,168]. In crop production systems, 
the bacteriocins have been found effective in suppressing 
the growth of phytopathogens[127]. However, unlike 
conventional antibiotics, bacteriocins are narrow-spec- 
trum proteinaceous toxins that can be bacteriostatic or 
bactericidal even for the synthesizing bacteria. Megacins, 
marcescins, cloacins and pyocins are some of the notable 
bacteriocins excreted by B. megaterium, S. marcescens, 
E. cloacae and P. pyogenes, respectively[169]. Bacteriocins 
produced by species of Bacillus have received great 
attention due to their wide spectrum activity against 
multiple pathogens[170]. As an example, the bacteriocins 
including known compounds such as fengycin, surfactin, 
bacillibactin, subtilin, etc. produced by Bacillus strains 

show inhibitory activity against bacterial and fungal 
phytopathogens, E. carotovora, P. syringae, R. solani, B. 
cinerea, V. dahlia and P. infestans[119].

5.1.5 Cell Wall Degrading Enzymes 
Several lytic enzymes are released by PBB that hydro- 

lyse fungal/bacterial polymeric compounds, cellulo- 
se, hemicellulose, chitin, and proteins[171]. The hydrolytic 
enzymes, for instance, chitinase[172], glucanase[173], ß-1, 
3-glucanase[174], cellulases[175], proteases[176], phenylalanine 
ammonia lyase, peroxidase, polyphenol oxidase, catala- 
se[177], lipases[178] etc. secreted by PBB degrade the cell 
wall of pathogens and ultimately cause their death. Since 
the fungal cell walls are mainly composed of chitin and 
beta-glucans, the PBB through lytic enzymes inhibit the 
growth of pathogenic fungi. Symbiotic N2 fixing (SNF) 
rhizobium, S. fredii and free-living P. fluorescens produces 
chitinase and beta-glucanases, which have been reportedto 
inhibit the growth of F. udum. Accordingly, the PBB could 
manage the fusarium wilt disease caused by the fungus[179]. 
Antagonistic bacteria S. marcescens hamper the mycelial 
growth of S. rolfsii through chitinase[180] while Lysobacter 
enzymogenes suppress the growth of Bipolaris and Pythium 
sp. by glucanase[181]. The secretion of defense enzymes 
such as SOD, guaiacol peroxidise, catalase and ascorbate 
peroxidase by Paenibacillus lentimorbus in wake of 
inoculation ameliorate the biotic stress caused by S. rolfsii in 
tomato plants[148]. Also, E. asburiae BQ9 exhibits resistance 
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against tomato yellow leaf curl virus. The expression of 
defense-related genes and antioxidant enzymes, including 
phenylalanine ammonia lyase, peroxidase, catalase, 
and superoxide dismutase contributes to the disease 
resistance[126].

5.1.6 Induced Systemic Resistance (ISR) and Com- 
petition

Apart from directly inactivating the phytopathogens, 
the PBB may also activate plant defence systems and 
induce resistance against different pathogens. The 
signalling cascade and wide-spread mechanism called 
“induced systemic resistance (ISR)”[182] evolved within 
plants are induced by different biotic agents including 
rhizobacteria[183]. When a powerful pathogen attacks 
the host plant, the ISR is activated[123,184] (Table 3). 
Notable PBB that induce ISR in potato, tomato, and 
Chinese cabbage against potential pathogens such as 
Bemisia tabaci, Fusarium, M. phaseolina, R. solani, R. 
solanacearum, Colletotrichum orbiculare, B. cinerea, and 
Pectobacterium carotovorum belongs to Pseudomonas, 
Alcaligenes, Paenibacillus, and Chryseobacterium[196,182]. 
The PBB such as B. amyloliquefaciens, Lactobacillus 
paracasei, P. fuorescens, and P. putida have been found to 
protect plants including tomato by inducing ISR against 
phytopathogens[197,198]. The ISR is though, not specific 
against any individual pathogen, plays a critical role in the 
management of plant diseases. The ISR is developed by 
PBB colonization of plant roots and is mediated by plant 
hormones for instance, JA, ET or phenolic compounds 
etc.[199,200] produced by infected plants. 

Competition for space and nutrients between PBB 
and pathogens is considered an important strategy in 
plant protection[67,201]. The PBB usually compete with the 
pathogens both for physical space and growth supporting 
nutrients with limited amounts, both of which can alter 
the growth and infection ability of the pathogens[202,203]. 
Among PBB, pseudomonads in general are the better 
colonizers[204] of the plant root surface and through this 
ability can restrict the spread and growth of pathogens. 
Furthermore, in colonizing and aggregating onto seeds 
or soils, PBB strive for the limited available nutrients. 
Through active nutrient uptake mechanisms, PBB deter 
the growth of pathogenic fungi and bacteria by preventing 
the accessibility of nutrients to competing pathogens. 
For example, the soil suppressiveness to Fusarium wilt 
of tomato is attributed to competition for carbon and iron 
between the rhizospheres pathogenic F. oxysporum and 
F047 of F. oxysporum, a non-pathogenic endophytic strain 
and the wild population of fluorescent pseudomonads, 
respectively[205,206]. Conclusively, the PBB consisting 
of biocontrol potentials serve as an inexpensive and 
environmentally friendly approach for maintaining the 
yield and quality of vegetables while eliminating/reducing 
the use of agrochemicals in vegetable cultivation practices. 

6 MANAGEMENT OF VEGETABLE PATHOG- 
ENS BY PLANT BENEFICIAL BACTERIA: FEW 
EXAMPLES

Microbes-based strategies broadly known as “Micro- 
bial control” is receiving increasing attention as an environ- 
mentally comprehensive substitute to pesticides in vege- 
table production practices worldwide. The role of PBB in 
the management of phytopathogens causing severe losses to 
some of the most common vegetables are described.

6.1 Bacterial and Fungal Wilt of Tomato and Brinjal
6.1.1 Bacterial Wilt of Tomato 

Tomato (Solanum lycopersicum L.), commercially the 
second most important edible vegetable crop after potato, 
owing to its high nutritive value (a rich source of vitamin 
A and C) is cultivated and consumed worldwide[207]. The 
yield and quality of tomato, however, suffers heavily from 
attack by nearly 200 species of plant pathogens including 
bacteria, fungi such as Fusarium, Pythium, Rhizoctonia, 
and Verticillium and viruses etc.[208,209] Wilt, among vegetal 
diseases, is the most common and devastating one against 
tomato caused by the microbial pathogens[210] in the tropical 
and subtropical areas of the world[211]. Among bacterial 
pathogens, R. solanacearum is the second most damaging 
bacterial pathogen that causes vascular wilt in tomato plants 
with swift and lethal wilting symptoms[212,213]. The yield 
loss of tomato due to this pathogen varies between 2 to 
90% in different cultivation areas[214,215]. Different strategies 
such as, agrochemicals, antimicrobial plant extracts, 
soil disinfection, antibiotics, crop rotation and resistant 
cultivars etc. are adopted to reduce the losses caused to 
tomato by bacterial pathogens[216,217]. Notwithstanding the 
effectiveness of in restricting the growth, development 
and infection potential of phytopathogens, their harmful 
effects on microbial diversity, soil biological activity[218,219] 

and tomato yields[220] raise global concerns. In order to 
prevent the lethal effect of chemicals, biological control 
measures in the management of bacterial wilt disease 
are desirable[221]. Several antagonistic PBB for example, 
P. fluorescens, P. putida, Bacillus sp. etc. applied in soil-
plant systems suppress the tomato wilt disease[83,222,223]. 
The tomato plants inoculated with B. velezensis (B63) and 
P. fluorescens (P142) significantly reduce the population 
densities of R. solanacearum (B3B) and hence, the wilt 
systems. Analysis by Confocal Laser Scanning Microscopy 
(CLSM) revealed an aggressive colonization of bacterial 
antagonists in roots, root hairs, epidermal cells and within 
xylem vessels that primed the plant defence against fungal 
pathogens. Similarly, the disease intensity was minimum 
(17.95%) while the biocontrol efficacy was maximum 
(68.19%) when tomato plants were bio-primed with B. 
amyloliquefaciens DSBA-11. The B. amyloliquefaciens 
strain DSBA-12 and B. subtilis strain DTBS-5 on the other 
hand had poor biocontrol ability which resulted in slightly 
higher disease intensity due to R. solanacearum infection. 
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Table 3. Examples of induced systemic resistance against diseases in vegetable crops

Vegetables Elicitor PBR PBR Strains Resistant Against Pathogens Ref

Tomato B. cereus EPL1.1.3 Ralstonia syzigiisub [185]

P. fluorescens PF15 Fusarium wilt [186]

E. asburiae BQ9 Yellow leaf curl virus [126]

P. putida BTP1 B. cinerea [187]

P. putida WCS 358 Broad spectrum [188]

Chilli Bacillus sp. BSp.3/aM Colletotrichum capsica [189]

B. vallismortis EXTN-1 Phytophthora capsica [190]

Black pepper P. fluorescens Pf1 P. capsica [191]

Cucumber B. megaterium L8 Pythium aphanidermatum [192]

Potato B. vallismortis EXTN-1 Potato Virus Y and X [193]

P. fluorescens 89B61 P. infestans [194]

French bean P. putida WCS 358 Broad spectrum [188]

Radish P. fluorescens WCS-374 F. oxysporum f. sp. raphanin [195]

Bacillus strains in general, declined the R. solanacearum 
populations in infected plants and consequently optimized 
the vegetative growth, yields and quality of tomato[223]. The 
innate immunity triggered by environmentally friendly 
PBB to plants was owing to the secretion of peroxidase, 
phenylalanine ammonia lyase and polypehenol oxidase[83].

6.1.2 Fusarium Wilt of Tomato
Vascular wilt caused by the soilborne fungus F. oxysporum 

f. sp. lycopersici (FOL) is one of the most destructive 
fungal diseases of tomato in many vegetable growing 
countries. As a soil inhabitant, the fungus spreads to different 
agronomic areas through infested soil transport, good quality 
water (irrigation water), infected plants and seeds[224]. The 
pathogenic fungus enters through the root via wounds or 
natural openings. After massive aggregation, they cause 
stern vascular damage by disrupting water transport 
leading to wilting and subsequently plant death[225]. More 
than 80% of crop loss that has been reported is attributed 
to infections[226]. Traditionally, growers apply fungicides 
to control this disease but the emergence of resistance 
among pathogens against chemicals becomes a major 
concern worldwide[227]. Considering this, the use of 
many PBB such as species of Pseudomonas and Bacillus 
entailing antifungal activity have been recommended 
for examining the spread of fungal wilt disease[228,229]. 
Inoculation of B. aryabhattai SRB02 for example 
significantly improves the growth while tumbling 
the disease in both tolerant and susceptible tomato 
cultivars[15]. The susceptible and tolerant tomato cultivars 
bacterized with B. aryabhattai (strain SRB02) have 
significantly higher amounts of amino acids following 
infection by F. oxysporum. The plant defence hormone 
analysis revealed maximum concentration of SA with 

gradual reduction in JA in diseased plants. These 
observations fairly proved the antagonistic potentials of 
strain SRB02 which triggered the release of endogenous 
phytohormones and amino acid[15,230]. Several other 
researchers have also concluded that the antibiotics for 
instance zwittermicin, bacillomycin, fengycin, bacilysin 
and difficidin produced by B. amyloliquefaciens strains 
can be useful in the management of fusarium wilt that 
consequently could improve the growth and yield of 
tomato[231,232]. 

6.1.3 Bacterial Wilt of Eggplant
Bacterial wilt of eggplant (Solanum melongena) is 

one of the most destructive diseases of brinjal caused 
by R. solanacearum. This disease has threatened brinjal 
production throughout the temperate and tropical regions 
of the world[233,234]. Owing to the long survivability and 
variable forms of the pathogen in soil and the ability to re-
infect the healthy plants, chemical means failed to manage 
this pathogen[235]. In greenhouse experiment, the application 
of P. polymyxa (IMA5) markedly optimized the growth, 
above/underground seedling/root length and biomass of R. 
solanacearum infected eggplants while exhibiting greatest 
biocontrol efficiency. The MALDI-TOF MS analysis 
revealed the production of antimicrobial lipopeptide 
by bacterial antagonist and therefore, the antagonistic 
activity was ascribed to the production of polymyxin and 
tridecaptin[84]. Also, the P. fluorescens, a widely studied 
antagonist when applied as bacterial formulations enhanced 
the growth and yield features such as leaf area, number 
and biomass of fruits, height and yield of R. solanacearum 
infested brinjal plants[85]. The bacterial formulations applied 
to seed, root and soil further reduce the occurrence and 
sternness of the bacterial wilt disease. The substantial 
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aggregation and colonization of the antagonist onto the 
seed surface from where it moves to the expanded roots 
is considered the best place for microbial colonization[236]. 
This PBB strategy for disease suppression is considered 
promising in brinjal cultivation practices for reasons 
explained earlier. 

6.1.4 Fusarium Wilt of Eggplant
Fusarium wilt of eggplant caused by F. oxysporum 

f. sp. melongenae is a serious vegetable disease. The 
pathogenic fungus invades the vascular bundles, blocks the 
xylem tissues, and disrupts the water transport, leading to 
severe wilting and consequently the death of the plants[237]. 
Sadly, the Fusarium spores resist abiotic stresses and 
persist in the soil indefinitely. The control of this fungal 
pathogen and the deadly disease secondary to its impact 
is, therefore, utterly challenging. The use of PBB has, 
however, given some ray of hope as an alternative strategy 
to other modes of wilt management. Recently, two Gram 
positive PBB, B. amyloliquefaciens (KY568716) and B. 
velezensis (KY568715) showing broad-spectrum antifungal 
activity against F. oxysporum, A. alternata, C. capsici, M. 
phaseolina, S. hydrophilum, R. solani and P. digitatum, 
when applied on diseased eggplants, effectively reduced 
the lethal Fusarium wilt disease owing to lytic enzymes. 
Accordingly, the antagonists significantly promoted the 
biological features such as length, biomass and chlorophyll 
content of eggplants after stress was ameliorated[238]. In 
other investigation, P. aeruginosa (P07-1), P. putida (P11-
4), P. aeruginosa (85A-2), B. amyloliquefaciens (76A-1) 
and B. cereus (B10a) substantially inhibited the mycelial 
growth leading eventually to a massive reduction (85%) in 
the incidence of the disease. The P. aeruginosa (P07-1) and 
P. putida (P11-4) among all bacterial antagonists, colonize 
aggressively within eggplants, prevent the entry of the 
fungal mycelium inside the host tissues, and consequently 
alleviate the disease effect. The reduction in brinjal wilt 
disease is attributed to the ISR and secretion of several 
enzymes, peroxidase, polyphenol oxidase, catalase and cell 
wall degrading enzymes[239].

6.2 Root Rot Disease of Okra
Okra (Abelmoschus esculentus L. Moench) is regarded 

as an integral component of balanced food systems owing 
to its amino-acid composition which is rich in lysine and 
tryptophan, dietary fibers, and other essential nutrients[240,241]. 
Like other edible vegetables, cultivated okra is susceptible 
to many pathogens including fungi of genera Rhizoctonia 
(root rot), Fursarium (wilt), Pythium, Phytophthora, 
Macrophomina (damping off), Colletotrichum (anth- 
racnose), Cercospora (leaf spot), Erysiphe (powdery 
mildew) and Botrytis (pod rot), bacteria such as 
Xanthomonas esculenti (leaf spot) and viruses (yellow vein 
mosaic) and different insect pests[242-244]. Root rot of okra 
among many R. solani driven diseases is one of the most 
distressing diseases which has endangered the cultivation 

of okra worldwide. The application of PBB either alone 
or in combination with other bioagents have, however, 
been found successful in mitigating the destructive impact 
of root rotting fungi. Furthermore, the PBB application 
stimulates the synthesis of polyphenols and improve the 
antioxidant levels in okra plants[245]. Pseudomonas (P. 
flourescens PF-7 and PF-8) as an antagonist suppressed 
the R. solani growth significantly leading to a considerable 
increase in the vigour index of okra plants[92]. The 
excretion of secondary metabolites including pigments, 
siderophores, and cyanogen, etc. in addition to the release 
of IAA, SA and P solubilization by P. fluorescens causes an 
overall improvement in the yield and quality of okra. The 
biocontrol potentials and ability to secrete different growth 
modifying substances makes P. fluorescens a most ideal 
microbiological agent for upgrading the production of okra 
in different agrosystems.

6.3 Early and Late Blight of Potato
Potato (Solanum tuberosum L.) is the most important 

edible food crop which is cultivated widely in the temperate, 
sub-tropical, and tropical regions. Early blight caused by A. 
solani is one of the most common foliar diseases of potato 
around the world and causes yield losses of up to 80%[246]. 
After infection, the disease symptoms appear first onto the 
lower senescing leaves that subsequently turn chlorotic and 
abscise prematurely. Eventually, the brown spot enlarges 
gradually and leads to complete destruction of plant foliage. 
Also, the stem canker or collar rot, sunken spots, lesions 
on upper stems and petioles or dark leathery fruit spots, 
etc. are other visible symptoms that appear in wake of 
infection[247]. Moreover, the early blight may also cause dry 
rotting of tubers which spoils the yield and quality of tubers. 
However, the incidence and severity of disease depends 
on different factors such as cropping season, cultivation 
regions, cultivar genotypes and the health and stage of 
potato plants. Though, chemical fungicides are generally 
used to control potato early blight, the residual toxicity to 
non-target organisms and environmental hazards can be 
not underestimated. Therefore, the bacterial antagonists 
have been attempted to optimize the yield and quality 
of potato[248]. For instance, a formulation consisting of P. 
fluorescens and T. harzianum, when applied in combination 
with the fungicide mancozeb, inhibited the growth of A. 
solani and greatly reduced the severity and incidence of the 
disease. The reduction in disease then produces a substantial 
improvement in the growth and yield of potato[97]. 

Late blight is another most devastating disease of 
potato and is the re-emerging problem worldwide. The 
yield losses due to this deadly disease caused by the 
oomycete Phytophthora infestans[249] varies from countries 
to countries depending upon the adopted plant protection 
measures and growing cultivars[250,251]. For example, the 
yield loss in potato due to late blight has been reported 
as 100% under epidemic condition in Pakistan while 
in India the reduction in potato production due to this 
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disease averages 15% across the country[252]. On the 
other hand, the total cost of late blight in Europe arising 
out of yield loss and the cost associated with its control 
has been estimated over one billion euros per year[253]. 
In traditional cultivation practices, potato growers adopt 
different management strategies for late blight disease. 
They use chemicals, host resistant cultivars, biological 
control measures and cultural control methods[254], among 
which the bio-based measures involving the use of bacterial 
antagonists especially the genera Pseudomonas and 
Bacillus for potato late blight have been proved effective 
and economical[255,256]. In a greenhouse experiment, P. 
chlororaphis (strain R47) efficiently reduced the incidence 
of P. infestans, and demonstrated the highest level of P. 
infestans inhibition which was followed by P. fluorescens 
(R76) and P. marginalis (S35). The inhibitory action of 
Pseudomonas strains was mediated through the antifungal 
compounds[257,258]. As a result, the growth of P. infestans 
were suppressed significantly that leads to a significant 
enhancement in potato production[259]. The application of 
single bacterial antagonist against P. infestans sometimes, 
however, is counterproductive because the pathogen 
can attack its host by multiple routes. To be specific, this 
pathogen can enter through direct sporangia germination 
or via the release of motile zoospores; both situations 
involve host cell penetration and mycelial development[249]. 
Therefore, the approaches based on multiple rather than 
single antagonist strain each targeting different route of 
infection are desirable. This strategy shows great potential 
to further improve the amelioration efficiency of co-
cultures. To date, very few studies have been conducted 
to address this issue and test the effect of composite PBB 
antagonists for potato diseases control. De Vrieze and co-
workers achieved significantly improved protection of 
potato against P. infestans-induced blight disease when 
using combination of five Pseudomonas strains than when 
applying each Pseudomonas strain separately[260]. This 
finding indeed paves the way for better understanding of 
antagonists’ microbiome management that subsequently 
could be integrated into global potato production strategies.

6.4 Bacterial Soft Rot of Cabbage
Cabbage (Brassica oleracea L.), one of the most 

widely cultivated crucifers worldwide suffers heavily 
from bacterial soft rot disease[261]. The disease caused 
by Pectobacterium carotovorum subsp. carotovorum 
(Pcc)[262,263] is a major constraint in Chinese cabbage 
production[264,265]. Chemical methods though generally 
effective are considered unsuitable due to environmental 
pollution and the emergence of resistance among 
target pathogens[266]. Bacterial antagonists is one of 
the most effective and economical microbiological 
approaches for soft rot disease[264]. Among bacterial 
agents, Bacillus, Pseudomonas, Lactobacillus, 
Lactococcus, and Paenibacillus have been used for 
soft rot management[267,268]. Studies by Cui and co-

workers revealed that the extent of soft rot in Chinese 
cabbage and transmission of P. carotovorum to the 
stem progeny in greenhouse conditions and its persistence 
in the rhizosphere was significantly declined due to the 
antibacterial activities of B. amyloliquefaciens KC-1[269].

6.5 Damping-off and Root Rot of Cucumber
Long English cucumber (Cucumis sativus L.; Cucur- 

bitaceae) is grown as a vegetable crop in greenhouses in 
many regions of the world. Damping-off and root rot caused 
by soil borne fungal pathogen Pythium sp. is a serious 
and widespread disease[270,271]. Generally, the intensity of 
damping-off and root rot pathogens are maximum during 
the cool and wet environment. Pathogenically, this fungus 
affects almost all growth stages and organs (e.g., radicle, 
hypocotyl, cotyledons, seed coat, endosperm, and embryo) 
of plants[272,273]. The infectious magnitude of damping-
off and root rot pathogens can be suppressed by certain 
fungicides, such as captan, thiram, iprodione, fenaminosulf, 
fosetyl-Al, and metalaxyl[274,275]. The microbiological 
control measures are, however, desired to clean up the 
damping-off and root rot diseases due to least/no hazards 
to the environment[87,276]. A few species of PBB especially 
the genera, Pseudomonas and Bacillus, have been found 
useful in alleviating the effect of damping-off and root rot 
pathogen P. ultimum[277,278]. In a study, Khabbaz and Abbasi 
reported that the three antagonistic PBB, P. fluorescens 
(9A-14), Pseudomonas sp. (8D-45) and B. subtilis (8B-1) 
when used alone or in combination enhanced the overall 
growth of cucumber by suppressing the unpleasant impact 
of P. ultimum-induced damping-off and root rot diseases[89]. 
The pre- and post-planting application of PBB caused 
a substantial reduction in the intensity of the cucumber 
diseases by 27%–50% leading thereby to a considerable 
increase in plant growth. The enhancement in cucumber 
yield and quality was attributed to the production of 
antibiotics and other anti-fungal metabolites by PBB[86, 102]. 
In conclusion, the sole or composite formulations of PBB 
could be developed as a safe and inexpensive biofungicides 
on commercial scale to optimize cucumber production 
globally under real field conditions. This will substantially 
reduce the dependence on fungicides being applied in 
traditional production systems to offset the damping-off and 
root rot disease in cucumber.

7 CONCLUSIONS AND FUTURE PROSPECTS
Vegetables are one of the most important constituents 

of human food systems. Most of the vegetable crops are 
susceptible to many biotic stresses, among which soil borne 
bacterial and fungal pathogens markedly reduce the yield 
and quality of widely grown and pleasantly consumed 
vegetables. The loss in vegetable production can be reduced 
by employing conventional approaches such as the use 
of resistant cultivars, crop rotation, field sanitization, and 
biocides. The exorbitant cost, the emergence of resistance 
among pathogens, and environmental pollution caused 
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by pesticide applications, however, remain major global 
issues to be addressed. The success that has been achieved 
so far at the bench scale clearly suggests that the microbial 
formulations could safely and inexpensively be exploited as 
an antagonist to alleviate the biotic stresses. Furthermore, 
they can act as biological enhancers for the nutrition and 
yield optimization of vegetables under stressed open field 
conditions. Despite the incredible developments made in 
this area to date, scientists/researchers need to identify the 
soil microbiota with profound disease suppression abilities 
from the unexplored soil ecosystems. Such PBB with 
multiple plant growth-enhancing traits demonstrate great 
potential in enhancing vegetable production under biotic 
stressed open field conditions. The molecular engineering 
of antagonists and transferring the desired genes coding 
for disease suppression/growth promotion into PBB 
deficient in such features are desirable. The use of advanced 
microscopic and some molecular techniques like cryo-SEM 
and HR-TEM, RFLP analysis, FISH, automated DNA 
sequencing methods, etc. may be valuable in deciphering 
the physiological details of PBB and devising the strategies 
for uplifting vegetable production in open field conditions. 
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Abbreviation List
ABA, Abscisic acid 
ACC deaminase, 1-Aminocyclopropane-1-carboxylate 
deaminase
BABA, β-aminobutyric acid
BPNN, Back-propagation neural network 
BTH, Benzothiadiazole 
CCM, Color co-occurrence method 
Chl-FI, Chlorophyll fluorescence imaging 
DAB, Diaminobenzidine 
DAPG, 2,4-Diacetylphloroglucinol 
ET, Ethylene 
FISH, Fluorescence in situ hybridization
H2O2, Hydrogen peroxide 
HCN, Hydrogen cyanide
HRPO, Horseradish peroxidase
HR-TEM, High-resolution transmission electron mic- 
roscopy

IAA, Indole acetic acid 
ISR, Induced systemic resistance
JA, Jasmonic acid
KNN, K-Nearest neighbours
NBT, Nitroblue tetrazolium
O2-, Superoxide
PBB, Plant beneficial bacteria
PLT, Pyoluteorin
RBFNN, Radial basis function neural network 
RFLP, Restriction fragment length polymorphism
ROS, Reactive oxygen species
SA, Salicylic acid
SEM, Scanning electron microscopy
SGDM, Spatial gray-level dependence matrices 
SNF, Symbiotic nitrogen fixation
SVM, Support vector machine
TYLCV, Tomato yellow leaf curl virus
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