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A B S T R A C T

Sediments from theMagadi Basin (south Kenya Rift) preserve a one-million-year palaeoenvironmental record that reflects
interactions between climatic, volcanic and tectonic controls. Climate changes that impacted sedimentation include wet-
dry cycles on variable timescales and an overall progressive trend towards greater aridity. Volcanic influences involved
inputs of tephra to the basin, significant inflow of geothermal fluids, and the effects of weathering, erosion and trans-
portation of clastics from trachyte and basalt terrains. Tectonic controls, which were often step-like, reflect the influence
of faults that provided pathways for fluids and which controlled accommodation space and drainage directions.

Intensified aridity and evaporative concentration resulted in salinity and pH increasing with time, which led
to a change from calcite deposition in mildly saline lakes before 380 ka to the later formation of zeolites from
reactions of volcaniclastic debris with highly alkaline lake and pore water. After 105 ka, hyperalkaline condi-
tions led to trona accumulation and increasingly variable rare earth elements (REEs). The presence of mixed
saline and freshwater diatom taxa between 545 and 16 ka indicates climate variability and episodic inputs of
fresh water to saline lakes. Calcrete formed in lake marginal settings during semi-arid periods.

Tectonic controls operated independently of climate, but they interacted together to determine environmental
conditions. Aquatic deposition was maintained during periods of increasing aridity because fault-controlled ambient
and geothermal springs continued to flow lakewards. This recharge, in turn, limited pedogenesis: palaeosols are
common in other rift floor sequences. Trona formed when aridity and evapoconcentration increased, but its pre-
cipitation also reflects increased magmatic CO2 that ascended along faults. Basin fragmentation and north-south
fractures caused loss of cross-rift (east-west) drainage from rift-marginal basalts, resulting in reduced transition metals
after 545 ka. The Magadi Basin demonstrates how a careful reconstruction of these complex tectono-climatic inter-
actions is essential for accurate palaeoenvironmental reconstruction in continental rifts and in other tectonic settings.
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1. Introduction

Much of the early palaeoclimate research in East Africa was devoted
to understanding Plio-Pleistocene hominin and archaeological sites (see
Cohen et al., 2016 and Campisano et al., 2017 for reviews). More re-
cently, efforts have focused on climate variability from various Pliocene
to Recent time-slices (Kingston et al., 2007; Owen et al., 2008; Tierney
et al., 2010; Junginger and Trauth, 2013; Magill et al., 2013). A range
of record types have proven useful in reconstructing palaeoclimates in
the region, including Late Quaternary core-records (e.g., Verschuren
and Chapman, 2008; De Cort et al., 2013, 2018), outcrop data (e.g.,
Levin, 2015), and marine cores (e.g., deMenocal, 1995, 2004). More

recently, drill cores from extant rift lakes have proven exceptionally
useful in documenting palaeoenvironmental histories, including a 1.3-
million-year Lake Malawi record (Ivory et al., 2016). In addition, a one-
million-year pollen-diatom-mineralogy study of a core at Lake Magadi
synthesised the regional climatic history for the southern Kenya Rift as
a basis for exploring hominin evolution and mammalian change (Owen
et al., 2018a). The latter paper complements this study, which is based
on outcrops and two lake cores, and which focuses on aquatic sedi-
mentation and palaeoenvironments using sedimentological, miner-
alogical and geochemical data, supplemented by diatom analyses.

Lake Magadi lies in the axial trough of the southern Kenya Rift
~605m above sea level (masl), and is a seasonally-flooded, saline
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Fig. 1. Geology and stratigraphy of the Magadi Basin, south Kenya Rift. A: Geological setting based on Baker (1958, 1963), Behr (2002), Guth and Wood (2014) and
original observations. Photolineaments imply subvolcanic (?) NW–SE trends that have locally controlled the morphology of the Magadi Basin, drainage and
alignment of hot-spring groups. Drill Site 1 (MAG14-1A and -1C) lies near the western edge of a structural high with depth to trachyte of ~133m; drill Site 2
(MAG14-2A) lies within a sub-basin (rhomb-graben?) with depth to trachyte basement of ~194m. KNE=Kisamis-Nasikie Engida-Koora lineament. Logged outcrops:
HMB=High Magadi Beds (localities A, B and C); GB=Green Beds (locality 1); OB=Oloronga Beds (localities 1 and 2). B: Magadi Basin stratigraphy modified from
Behr (2002) showing evolving terminology and revisions, with earlier schemes to the left. No thickness or timescale is implied. Four informal units are currently
recognised based on outcrops: the Oloronga Beds, the Green Beds, the High Magadi Beds and the Evaporite Series. The stratigraphy and radiometric ages are from
Behr (2002). Published dates reported by Behr are from Fairhead et al. (1972), Butzer et al. (1972), Goetz and Hillaire-Marcel (1992) and Röhricht (1998).
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alkaline pan, currently floored by trona (Fig. 1). Discontinuous Qua-
ternary sedimentary outcrops around the lake include fluvial sediments
(channel deposits, alluvium), calcrete, lacustrine limestone (including
microbialites), zeolitic mudstone and siltstone, sodium silicate mi-
nerals, and chert of diverse origins (Baker, 1958, 1963; Eugster, 1967,
1969, 1980; Hay, 1968; Herrick, 1972; Surdam and Eugster, 1976;
Behr, 2002; Brenna, 2016; Felske, 2016; Leet et al., 2016). These se-
diments accumulated in a N-S axial rift sump, in which the northern
depocentre remained a lake or wetland for most of the last million years
because of spring recharge during drier periods. Lake Magadi probably
united with Lake Natron in northern Tanzania as a single, relatively
dilute lake for different periods during the Pleistocene and early

Holocene (Eugster, 1986; Casanova and Hillaire-Marcel, 1987;
Williamson et al., 1993).

Lake Magadi was cored in June 2014 by the Hominin Sites and
Paleolakes Drilling Project (HSPDP), which aims to develop basin-to-re-
gional scale palaeoenvironmental histories that can be compared with
local hominin remains and artefacts to infer possible environmental
influences on hominin evolution (Cohen et al., 2016). We present here
results of detailed analyses of the sedimentology, major- and trace-
element geochemistry and mineralogy from two Lake Magadi cores and
nearby sediment outcrops (Fig. 1A), supported by diatom records,
which collectively provide a history of changing aquatic environments
during the past million years. Both drill cores reached the volcanic
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basement. This new evidence gives an opportunity to reconstruct the
Pleistocene history of the Magadi basin in much greater detail than
previously possible. Specifically, we aim to: 1) reconstruct the en-
vironmental history of the Magadi palaeolakes; and 2) relate that se-
dimentary record to evolving tectonic, volcanic and climatic controls.

2. Previous outcrop and borehole studies in the Magadi Basin

Early descriptions of sediments in the Magadi basin were provided
by Parkinson (1914), Gregory (1921), Walter (1922) and Coates (as

Anonymous, 1923). The oldest exposed deposits are the fluvial, spring
and lacustrine ‘Oloronga Beds’, which rest upon the Magadi Trachytes
(~1.4–0.8Ma; Fig. 1B; Baker, 1958, 1963; Crossley, 1979, Herrick,
1972; Eugster, 1980; Behr, 2002). A radiometric age of
0.78 ± 0.04Ma for an obsidian flow overlying basal Oloronga sedi-
ments (Fairhead et al., 1972; Eugster, 1980, his Fig. 15.21) is consistent
with 36Cl/Cl brine estimates of ~0.76Ma for salt accumulation in the
basin (Kaufman et al., 1990). A U/Th date of 0.3Ma indicates a
minimum age for the ‘upper’ Oloronga Beds (Fig. 1B; Röhricht, 1998;
Behr and Röhricht, 2000), which are overlain by a calcrete (Eugster,
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1980, 1986; Felske, 2016). Lacustrine and alluvial sediments are also
preserved several km northwest of Lake Magadi, including at Lai-
nyamok (Fig. 1A) (Shipman et al., 1983; Potts et al., 1988).

Despite a lack of exposure of geological contacts, Temperley (un-
published, cited by Baker, 1958) reported a ‘Chert Series’ that lay above
the Oloronga Beds. Baker (1958) described stratigraphic sections.
Eugster (1967, 1969, 1980) and Surdam and Eugster (1976) proposed
that the Chert Series formed part of the Late Pleistocene to Holocene
‘High Magadi Beds’ (HMB), despite their non-conformable contact. U/
Th dating of chert by Goetz and Hillaire-Marcel (1992), however,
showed that some of the chert deposits were much older (98.5 ± 20 ka
and 40.0 ± 6.5 ka). Röhricht (1998), Behr and Röhricht (2000) and
Behr (2002) reassigned sediments with bedded chert above the Olor-
onga Beds to the newly defined ‘Green Beds’ (Fig. 1B).

Stromatolitic limestones encrusting bedrock up to 60m above
modern Lake Magadi (~660 masl), were used to infer former higher
lake-phases at ~130 ka and ~12–10 ka, with a maximum pa-
laeoshoreline at ~656m (Hillaire-Marcel et al., 1986; Casanova, 1987;
Hillaire-Marcel and Casanova, 1987). An earlier stromatolite genera-
tion, up to 80m above Lake Natron, was dated at> 200 ka. Those
higher palaeolakes were inferred to have formed a single water body in
the combined Natron-Magadi basins.

The Late Pleistocene to Holocene HMB (Fig. 1B) were deposited in
the modern axial graben in a fresh to moderately saline, alkaline lake
(White, 1953; Baker, 1958, 1963; Eugster, 1969, 1980, 1986; Herrick,
1972; Surdam and Eugster, 1976). White (1953), Baker (1958), Butzer
et al. (1972), and Behr (2002) noted a palaeoshoreline ~40 ft (12.2m)
above the modern lake. Partly laminated diatomaceous core sediments
dated at 17.71 ± 0.22 to 10.8 ± 0.12 ka from the Northwest Lagoon
of Lake Magadi imply freshwater inflow to a former saline lake (Barker
et al., 1990; Taieb et al., 1991; Damnati et al., 1992, 2007; Roberts
et al., 1993; Damnati and Taieb, 1995).

Baker (1958), Hay (1968), Surdam and Eugster (1976) and Eugster
(1980) described the mineralogy of Lake Magadi boreholes drilled in
1953, but gave few stratigraphic details. They inferred low lake-levels after
deposition of the HMB, with accumulation of>40m of bedded trona and
black mud of the Evaporite Series (Fig. 1B). The hydrology, hydro-
chemistry and brine evolution at Lake Magadi have been discussed by
Gregory (1921), Baker (1958), Jones et al. (1967, 1977), Eugster (1969,
1970, 1980, 1986), Eugster and Hardie (1978), Eugster and Jones (1968,
1979), Hillaire-Marcel and Casanova (1987), Allen et al. (1989), Darling
(2001) and others. Owen et al. (2018a) described the stratigraphy of the
Magadi HSPDP cores, upon which this study is partly based, from a pa-
laeoclimate perspective, using pollen, diatom and mineralogical records.
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3. Methods

Sediment outcrops logged between 2006 and 2018 were combined
with sampling of modern sediments and waters across the catchment.
Lake Magadi was drilled in June 2014 to depths of ~133mbs (metres
below surface; Site 1) and 194mbs (Site 2) (Fig. 1A; Cohen et al., 2016).
Geochemical analyses were carried out on outcrop samples (n=76)
and core sediments, with MAG14-2A sampled at 32 cm intervals, and
where distinctive lithologies would have been omitted (n=344; see
Electronic Supplementary Material). Samples were analysed by Acti-
vation Laboratories Ltd., Ancaster ON, Canada (4E-exploration
package; for methods, see http://www.actlabs.com). Major and trace
elements were determined by coupled-plasma and inductively coupled
plasma-mass spectrometry. Detection limits are given in the Electronic
Supplementary Material. Rare earth element (REE) data were normal-
ised against C1 chondrite composition (Sun and McDonough, 1989).
Total organic‑carbon (TOC) was determined by loss-on-ignition (LOI) at
550 °C without prior removal of carbonates. X-ray diffraction samples
were taken at 16 cm-intervals and analysed using a Panalytical X'pert
Pro MPD diffractometer using CuKα radiation at 45 kV and 40mA.

Diatoms are rare or absent in outcrops. In MAG14-2A, diatom
samples were collected every ~32 cm (as for geochemical samples) and
where facies changed. Synthetic silica microspheres (8 μm diameter)
were added to assist quantitative counts. Organic matter and carbo-
nates were removed using H2O2 and HCl. Diatoms were mounted in
Naphrax. At least 400 frustules were counted for each microscope slide
except where diatoms were rare (see Electronic Supplementary
Material).

Dating methods are described by Owen et al. (2018a). Chert samples
from core (n=18) and outcrop (n= 6) samples were dated using U-
series methods (Fig. 2A). The uppermost parts of the cores were dated
using 14C techniques (n=11). Those analyses produced inconsistent
ages, likely because of recycled old carbon; six ages are compatible with
the lithostratigraphy. Nine replicate 40Ar/39Ar single-crystal dates were
determined from K-feldspar crystals in a little-altered tephra in MAG14-
2A at 96–101mbs with a single crystal date obtained at 151mbs. The
Brunhes-Matuyama boundary was identified at 174.36mbs. Bayesian
methods were applied to define the age-model and its uncertainties
(Fig. 2B; Bacon v. 2.2; Blaauw and Christen, 2011).

4. Results

4.1. Exposed Quaternary sediments

The Early to Middle Pleistocene Oloronga Beds overlie Magadi
Trachyte in scattered outcrops north, south and west of Lake Magadi
(Baker, 1958; Fig. 1A). Sections OB1 and OB2, southwest of Magadi,
contain trough cross-bedded fluvial sandstone (Figs. 1A, 3, 4A, B)
overlain by bedded, wavy lacustrine chert and grey zeolitic siltstone
(Fig. 4C) covered locally by thin (< 5 cm) dark grey limestone. A lat-
erally extensive calcrete up to 40 cm thick, with massive, pisolitic and
laminated facies caps the Oloronga Beds disconformably across much of

the basin (Fig. 4A, D; Eugster, 1980; Felske, 2016), including at Section
OB2 where the massive facies contains subangular chert clasts (Fig. 4E).
This calcrete is one of several of different ages (Felske, 2016). Locally,
SW-NE palaeochannels that incise the fluvial sandstone are filled with
blackish brown mudstone with lighter cm-scale subvertical and hor-
izontal branching trace fossils (roots?) (Fig. 4F, G).

Small cylindrical pale grey-brown tufa ‘chimneys’ (< 70 cm
high,< 40 cm diameter, ~1 cm-thick walls) with a flat upper rim are
interstratified with grey silts and laminar cherts at sites< 150m from
the modern SW Magadi hot springs (Fig. 4H). The calcite tufa cements
angular chert and siltstone fragments. Most chimneys align along N-S to
NNE-SSW trends.

About 10 km west of northern Lake Magadi (Fig. 1A), several tall N-
S–aligned tufa towers up to ~6m high (Fig. 4I), and linear mounds of
spring carbonate (up to ~2.5m high with variable orientation), lie
upon Magadi Trachyte (Baker, 1958). Internally, most towers are
composed of clusters of cm-scale vertical pipes with subhorizontal
plates and cement. About 150m south of the tallest mound (Fig. 4I),
poorly-preserved rimstone dams are present. These spring deposits lie
~120m east of a fault-scarp up to 20m high that marks the edge of the
N-S horst upon which the towers are rooted.

Section GB1 (Fig. 5), located at the southern margin of Lake Magadi
(Fig. 1A), exposes a 2.6m sequence of Middle to Late Pleistocene Green
Beds (Fig. 5A). The section includes basal massive, burrowed green and
orange mud (Fig. 5B, C) that gives way upwards to laminated green and
orange mud with thin white flakes (silicified plant fragments?) on la-
mination planes (Fig. 5D, E), thinly shelled spired gastropods, and three
bedded, undulating light and dark grey quartz-chert horizons< 3 cm
thick (Fig. 5F). The latter can be traced northwards for> 700m and E-
W for> 100m and, on the land surface, show open crystal moulds of
calcite, trona, gaylussite and other salts (Fig. 5G), fluid-escape struc-
tures, shrinkage cracks, tepee structures, trace fossils and possible
raindrop-impact prints (Eugster, 1969; Behr, 2002; Scott, 2010).
Northeast of the lake, low (<30 cm) terraces of pale-green chert
fragments might reflect palaeoshorelines of unknown age. Many chert
precursors (opaline species, gels or sodium silicates?) were remobilised
while partly soft to form dykes, decimetres thick and at least 50m long
(Fig. 5H). Other intrusive chert outcrops consist of reddish domal
mounds of quartz with concordant fractured and brecciated laminae,
some with couplets and triplets of repeating laminae typical of micro-
bialites (Fig. 5I).

Palaeoshorelines that formed when Lake Magadi was a deeper ex-
panded lake are present in many locations up to ~12m above the
modern lake (Figs. 6, 7A–B). Exposures in the ‘Dry Lagoon’ southeast of
Lake Magadi (Fig. 1A) show sections through the Late Pleistocene to
Early Holocene HMB (Fig. 6). The Lower HMB include a basal im-
bricated trachyte breccia (subangular conglomerate) overlain by in-
terbedded gravel lenses and pale brown tuff with thin lensoid to bedded
magadiite horizons and isolated magadiite patches. The top of the lower
HMB in many outcrops is a dark brown, laminated clay with well-
preserved Tilapia fish fossils (Fig. 7D). In contrast, the Upper HMB are a
crudely to well-bedded, zeolitic (mainly erionite) tuffaceous silt.

Fig. 5. Section GB1 of Green Beds, south Lake Magadi. See Fig. 3 for the key. Inset maps (a, b) show location of the section, excavated on the northeastern edge of the
track crossing a prominent N-S ridge (horst) armoured by bedded Green Beds chert. A: Exposed section showing context of facies photographs in images B to F. B:
Lowest part of the section showing burrowed and mottled pale green and orange mud with prominent straight thinly lined vertical burrow preserved in full relief and
partly filled by orange and brown granules. C: Horizontal burrow with short blunt side-branches on bedding plane in lower part of section. Preserved as negative
epirelief. Burrow fill is finer than host sediments. Similar burrows, horizontal and vertical, are common also in Oloronga Beds outcrops. D: Weakly laminated green
and orange muds, locally mottled, with lenses of pale grey mud. E: Grey-green and white ‘laminated’ muds. The discontinuous white laminae, 1–2mm thick, comprise
patches of compacted plant debris and (or) trails mineralised by opal-A? (see inset, same scale). Although they appear to be white laminae in section they are
discontinuous. F: Thin chert bed with low-amplitude undulations overlying dark green muds. G: Outcrop of horizontally bedded chert showing crystal pseudomorphs
(moulds) of carbonate minerals and fluid-escape structures (FE) that confirm a soft precursor. Eugster (1969) termed these linear moulds “pearl chains of calcite
rhombs and their casts”, suggesting they were originally calcite or gaylussite. H: Chert dyke, up to 80 cm high, cutting older, platy bedded chert (left). I: ‘Pillow chert’
of Behr (2002). These common cherts form coalescent, mainly reddish mounds several metres long (typically oriented N-S) with brecciated chert interiors covered by
fractured, laminar chert layers (inset: scale bar: 3 cm) producing a biohermal morphology. Arrow points to hammer ~ 30 cm long. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Volcaniclastic trough-cross-bedded sandstone overlain by Upper HMB
near Karamai (SE Magadi) provides evidence of fluvial-deltaic inflow to
the palaeolake (Figs. 6D, 7C).

Trona, which covers Lake Magadi during most dry seasons (Fig. 7E,
F), is the contemporary surface of the Evaporite Series (Baker, 1958),
which comprises bedded and massive trona and nahcolite, interbedded
with anoxic black zeolitic mud. The evaporites and mud extend>65m
below the lake floor.

4.2. Core data

4.2.1. Sedimentology and mineralogy
Cores MAG14-1A and MAG14-1C form a composite sequence that

reached trachyte at 133mbs. MAG14-2A contains 194m of sediment,
including gaps (Figs. 1A, 2A). Core sediments consist of detrital silici-
clastic grains, primary (airfall) and reworked ash and pumice, detrital
and authigenic clay minerals and zeolites, carbonate (micrite, gastro-
pods, ostracods), siliceous microfossils (diatoms, sponge spicules, phy-
toliths) and organic matter (pollen, spores, charcoal, diffuse organic
matter, microbial matter). Evaporite deposits, common in the upper-
most 65m of MAG14-2A, include nahcolite and abundant trona. Cal-
cite, Mg-calcite and dolomite are present below ~100mbs. Many mi-
nerals, both deposited and precipitated, have undergone early
diagenetic alteration. Zeolites, including erionite, phillipsite, morde-
nite, natrolite, clinoptilolite, chabazite and analcime, are common,
especially between ~100 and 10mbs. K-feldspar, clay minerals, biotite,
pyrite and hematite are also common. Chert (as cryptocrystalline quartz
and chalcedony) and magadiite are present at some levels.

Fifteen lithofacies are distinguished (Table 1; Fig. 8). Gastropod-

and ostracod-bearing carbonate-grainstone are present in the basal
parts of both cores (Facies 1–3, Table 1). Overlying sediments are
zeolitic, massive, thinly bedded or laminated, green, brown or black
silt, clay, mud and ash (F4–F8, Table 1, Fig. 8). Nodular and bedded
chert (F13) and silicified mudstone (F12) are also present. Massive
(F11) and bedded (F10) trona, and massive black, zeolitic mud with
trona (F9) dominate the uppermost 65m of core MAG14-2A.

Coarse-grained siliciclastic sediments include matrix-supported
paraconglomerate and rare sand-and-gravel (orthoconglomerate) in-
tervals (F15), which are most common in MAG14-1A. Palaeosols are
absent, but minor root development was observed (F14).

4.2.2. Geochemical zonation, MAG14-2A
Correlations between outcrops and geochemical zones are shown in

Fig. 9. Six geochemical zones (G1–G6) can be distinguished using
changes in total organic carbon (TOC) and Ca/Na and (K+Na)/Al
ratios (Fig. 9A). TOC is low and Ca/Na ratios are highest in Zone G1
(194.3–186mbs, ~1056–930 ka; Figs. 2, 9A). Ca/Na ratios and
(K+Na)/Al decrease in G2 (186–169mbs, ~930–740 ka), but P2O5
concentrations increase. Calcite is present throughout both zones with
analcime confined to G1, and Mg-calcite present in lower G1. Zone G3
(169–132mbs, ~740–545 ka) includes variable Ca/Na and slightly
elevated (K+Na)/Al ratios. Calcite is present throughout, with Mg-
calcite common, and dolomite recorded at some levels. Analcime is
present through most of G3 but other zeolites are absent. Zone G4
(132–102mbs, ~545–380 ka) has variable Ca/Na ratios but with a
moderate increase in (K+Na)/Al. Calcite and Mg-calcite are present,
but less common than in Zone G3. Zeolites other than analcime appear
for the first time in a few horizons in G4. Zone G5 (102–60mbs,
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~380–105 ka) is characterised by low Ca/Na and (K+Na)/Al ratios
and LOI values that intermittently increase in upper G5. Calcite and Mg-
calcite are absent, but a more varied assemblage of zeolites is present.
Zone G6 (60–0mbs, ~105–0 ka) shows an increase in TOC, low Ca/Na
ratios, and very high (K+Na)/Al ratios, reflecting the dominance of
trona and nahcolite. The dominant zeolites vary in G6. Using trace
elements, nineteen subzones are recognised (Fig. 9B; Table 2).

4.2.3. Diatom stages
Fig. 10 shows selected diatom taxa in core MAG14-2A plotted

against age, highlighting periods when diatoms were preserved be-
tween ~545 and ~16 ka (132–38mbs). Correlations with outcrops are
also shown in this figure. Nine stages are distinguished. Stages D1
(194.3–132mbs, ~1056–545 ka) and D9 (37–0mbs; ~16–0 ka) lack
diatoms. Both saline (e.g., Thalassiosira faurii, T. rudolfi, Cyclotella me-
neghiniana) and freshwater (Aulacoseira granulata and varieties, A.
agassizii) taxa are present in D2–D8 sediments. Stage D2 (132–108mbs,
~545–415 ka) contains rare diatoms dominated by planktonic Aulaco-
seira spp., but with C. meneghiniana and T. faurii recorded in a few
horizons. Overall diatom diversity is low. Diatoms vary in abundance in
D3–D8 and include well-preserved diverse floras with episodic in-
creases in benthic taxa. Stages D3 and D5 are distinguished by abun-
dant C. meneghiniana. Planktonic A. granulata and A. agassizii are

common throughout D3–D8, with the former dominant in most samples
from D4, D6 and D8 and the latter dominant in D3 and D7.

5. Discussion

5.1. Palaeoenvironmental interpretation

5.1.1. Geochemical stratigraphy
Lacustrine deposition began soon after volcanic eruptions in the

Magadi Basin ceased, given the lack of weathering of the underlying
trachytes. Zone G1 (~1056–930 ka) is characterised by ostracod-rich
grainstone without diatoms. In contrast, ostracod- and gastropod-rich
grainstone in the basal part of MAG14-1A and MAG14-1C (Fig. 2A)
contains freshwater benthic and epiphytic diatoms (Epithemia, Rhopa-
lodia, Encyonema), implying a marsh setting. Grainstone is absent above
the G1-G2 boundary, but calcite in silts throughout G2 (~930–740 ka)
indicates relatively low palaeolake salinity. Calcite might have formed
during photosynthetic microbial blooms as happens in modern rift lakes
(cf. Ng'ang'a et al., 1998; Stone et al., 2011).

Principal component analyses confirm a close relationship among
REE, Al2O3, Fe2O3 and TiO2 and feldspars, implying similar detrital
sources (Fig. 11A). REE patterns for G1 and G2 resemble those for the
Magadi Trachyte Formation (Fig. 11B), which are characterised by a
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negative Eu anomaly that is absent in basalts of the region (Le Roex
et al., 2001; Owen et al., 2011, 2014). Furthermore, low concentrations
of Co, Cr, Cu, Ni and V (Fig. 9B) support a trachytic source lithology
because these transition metals are less abundant in lavas of the Magadi

Trachyte Formation (2.6–3.9, 1.6–4.9, 6.3–12,< 8.4,< 3 ppm, re-
spectively) than in rift basalt (41–51, 53–254, 110–184, 21–124 and
232–307 ppm, respectively) (Le Roex et al., 2001).

Zones G1 and G2 are also distinguished by relatively high P2O5.

Fig. 8. Major lithofacies preserved in cores: see Table 1 for descriptions. Core segment and segment depth for each section is shown below each photograph. F1:
Gastropod limestone. F2: Carbonate grainstone. F3: Carbonate mud. F4: Laminated silt and clay. F5: Bedded silty clay. F6: Massive clay. F7: Massive silty ash. F8:
Black clay. F9: Massive mud with trona. F10: Bedded trona. F11: Massive trona. F12: Silicified mudstone. F13: Bedded chert (59Y-4; 85Y-1). Nodules in laminated
silts (62Y-3) and in black mud (65Y-1). F14: Massive mud with roots. F15: Sand and gravel.
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Major authigenic minerals
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Phosphate, which is released following weathering becomes available
to plants, and is then concentrated in soils following decay of litterfall
(Ruttenberg, 2014). Consequently, the elevated P2O5 could reflect P
delivery to the palaeolake from soils enriched in P, implying a relatively
wet climate. Dericquebourg et al. (2015), for example, suggested that
phosphatic sediments in Miocene Lake Lukeino (central Kenya Rift)
record high runoff to that palaeolake from organic-rich forest-covered
soils. Ostracods and gastropods in the early Magadi palaeolake also
indicate that it was then shallow and dilute. The absence of pollen,
common in overlying sediments, implies oxic bottom waters, which
would have favoured phosphorus deposition (Cosmidis et al., 2014).

Chert began to accumulate from about 1Ma ago, implying that early
north-south rift faulting might have provided pathways for silica-rich
deep fluids to reach the surface (Owen et al., 2018b), supplementing
the silica derived from chemical weathering and runoff. Later, inter-
mittent development of chert implies continued inflow of silica-rich
runoff, spring- and groundwaters, with periodic development of eva-
porative alkaline brines that underwent dilution, cooling or both, per-
haps with microbial mediation of some silica precipitation.

Zone G3 (~740–545 ka) correlates with upper Stage D1, which
lacks diatoms, perhaps reflecting dissolution, competitive exclusion or
high turbidity. K+Na/Al ratios increase and P2O5 decreases in G3,
with the sediments containing Mg-calcite and dolomite. Those minerals
typically form in alkaline waters with high Mg/Ca ratios (Last et al.,

2012), and imply lake- or pore-fluids with a Mg/Ca ratio high enough to
induce primary carbonate precipitation or early diagenetic alteration of
a carbonate precursor (Murphy et al., 2014).

REE data for G3 (Fig. 11) show similarities to G1–G2 indicating
weathering of trachytic bedrock. However, relatively steep REE pat-
terns, reflected in normalised La/Lu ratios, suggest an increase in ba-
saltic bedrock sources. This inference is supported by increased Co, Cr,
Cu, Ni and V, which are more abundant in rift basalt. The REE changes
and increase in transition metals might have been induced by N-S axial-
rift faulting that fragmented the basin and eroded trachyte, locally
exposing older rocks. Potential sources include the Ol Tepesi, Singaraini
and Kirikiti Basalts, and basalt along the rift margins or beyond (Baker,
1958; Guth and Wood, 2014). In all cases, cross-rift lateral drainage is
implied for mafic siliciclastics to have reached the MAG14-2A site. In-
creased organic carbon and sulfur (Fig. 9), and development of eu-
hedral pyrite crystals (~3mm) in G3b upwards indicate increased
bottom-water anoxia. Redox-sensitive trace-metals (Mo, Cd, U) also
increase in G3, as they do today in the deeper, anoxic and sulfidic
waters of Lake Tanganyika (Brucker et al., 2011).

Aquatic sedimentation during G4 times (~545–380 ka) appears to
have been continuous at the MAG14-2A site despite outcrop distribu-
tions that indicate that the palaeolake had shrunk in size. This zone
overlaps with stages D2, D3 and lower D4, in which diatoms are rare.
Floras are dominated by planktonic species that include freshwater
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Fig. 10. Diatom stratigraphy of Core MAG14-2A. A total of 62
taxa were recorded from which five dominant planktonic
diatoms are plotted together with total freshwater and total
saline benthic taxa. Nine diatom stages are recognised based
on the presence or absence of diatoms, percentage of saline
taxa (Thalassiosira spp., Cyclotella meneghiniana) and the pre-
sence of freshwater Aulacoseira granulata versus freshwater A.
agassizii. Divisions are also based on the occurrence of benthic
taxa. The floras show mixing of saline and planktonic species
with episodic increases in saline and freshwater benthic taxa.
Mixing of planktonic floras reflects the development of saline,
fresh and meromictic lakes with benthic freshwater taxa
possibly introduced to the core site during floods. Outcrop
correlations are shown to the right (ES= Evaporite Series;
HMB=High Magadi Beds). Green Beds radiometric dates are
based on (1) Behr (2002) and this (2) paper.
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Aulacoseira mixed with saline Cyclotella meneghiniana and Thalassiosira
faurii (Fig. 10), with mean transfer-functions implying pH of ~7.4–8.5
and conductivities of ~300–3000 μS cm−1. Co decreases sharply at the
base of G4, together with declining Cr, Cu, Ni and V (Fig. 9B), reflecting
reduced basaltic inputs, perhaps due to (1) diminished weathered ba-
saltic terrains, (2) increased aridity and (or) reduced fluvial flow from
basaltic terrains, or (3) rising horst-blocks that deflected drainage axi-
ally, in common with regional N-S tilting (Owen et al., 2014).

Ca/Na and (K+Na)/Al ratios increase slightly in G4, with analcime

common and rare natrolite, erionite and phillipsite, indicating higher
salinity, consistent with increasing regional aridity (Fig. 9A). P2O5 re-
mained low during G4 deposition with well-preserved organic matter
and lamination implying an anoxic lake floor. Variable chondrite-nor-
malised La/Lu ratios and Eu anomalies, first observed in G3, continue.
G4 REE patterns show strongly negative Eu anomalies, declining LREE
and flat to declining HREE, with variable total REE (Fig. 11B). The REE
patterns resemble those for rocks of the Magadi Trachyte Formation
(Owen et al., 2011), but with a distinctive depletion in Lu similar to
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samples from Late Pleistocene spring tufa at Olorgesailie (Lee et al.,
2013).

Zone G5 (~380–105 ka) coincides with upper D4 to lower D8,
which contain rare to common, mixed saline and freshwater, planktonic
diatoms dominated by Aulacoseira, Thalassiosira and Cyclotella. Episodic
increases in freshwater benthic species (Fig. 10) may indicate dilute
inflow during floods (Barker et al., 1990). One explanation for mixing
of saline and freshwater floras could be that a saline alkaline lake was
periodically, or seasonally, flooded by fresh, lower-density nutrient-rich
waters and became meromictic, similar to modern Lake Bogoria
(Fig. 12D; De Cort et al., 2018). Potential water sources include axial
rivers and dilute overflow from the Koora Graben to the east. Diatoms
could have lived in the fresh surface waters (mixolimnion) if essential
nutrients remained available and evaporative concentration did not
exceed their salinity tolerances.

Zone G5 is characterised by very low Ca/Na and low (K+Na)/Al
ratios (Fig. 9A). Models of brine evolution reflect critical geochemical
divides and pathways that help to explain the Magadi hydrochemistry
(Hardie and Eugster, 1970; Deocampo and Jones, 2014). Today, Lake

Magadi brines form following the evaporation of dilute inflow with
HCO3 ≫Ca+Mg. Early precipitation of calcite and Mg-calcite (plus
minor primary or replacement dolomite?) in subsurface flow paths, at
or near spring discharges, at the lake margin, or in the water column
leads to a Ca- and Mg-free Na-CO3-SO4-Cl brine (Deocampo and Renaut,
2016). Microbial sulfate reduction then produces Na-CO3-Cl fluids from
which trona and halite precipitate (Hardie and Eugster, 1970; Jones
et al., 1977; Eugster, 1986). Lower Ca content in G5 likely reflects these
processes and (or) proportionally more hydrothermal inflow with low
Ca and high Na, as is typical for most of the modern hot springs (Jones
et al., 1977; Allen et al., 1989).

Zone G5 sediments contain many zeolites (natrolite, chabazite,
erionite, phillipsite, clinoptilolite) but lack calcite or Mg-calcite, re-
flecting increasingly saline and alkaline waters (Rabideaux, 2018).
Many zeolites formed during early diagenesis (cf. Hay, 1966, 1970;
Manega and Bieda, 1987). Erionite, the most common zeolite, forms
where trachytic glass reacts with water. Later zeolite phases formed
where erionite or other precursors reacted with more concentrated
brines (Herrick, 1972; Surdam and Eugster, 1976). Erionite + Na+
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produces analcime and is favoured by high Na+/H+ ratios and low
silica activity. In contrast, phillipsite forms by reaction of trachytic glass
with Ca+ and K+ -bearing fluids associated with high silica activity.
Herrick (1972) noted that analcime might form from aluminosilicate
gels, which are often present in modern sediments at Nasikie Engida
(Fig. 1A), a small hyperalkaline lake northwest of Lake Magadi (Eugster
and Jones, 1968). Hay (1964) inferred that dominance of erionite over
phillipsite reflects high Na/K ratios in brines, with phillipsite associated
with ratios of 28–34. In contrast, chabazite requires more Ca to form
(Singer and Stoffers, 1980), and clinoptilolite needs high silica activity
(Herrick, 1972).

Zone G5 REE patterns vary more than those in G1–G4. Some show
negative Eu anomalies, but others do not. Tb is lower in some G5
samples. Nd and Sm also change with HREE showing falling, flat and
rising trends. Kerrich et al. (2002) reported REE variability in outcrops
of the Green Beds and High Magadi Beds, which correlate with parts of
G5 and G6, respectively (Fig. 9A). Although REE are commonly used in
provenance studies because of their stability (Taylor and McLennan,
1985), they vary in response to changes in pH, redox conditions, ad-
sorption/desorption and cation exchange in highly saline alkaline lakes.
Lee and Byrne (1993), for example, noted that carbonate-rich brines
have a significant impact on REE speciation and in complexing REEs.

Zone G6 (~105–0 ka) sediments, characterised by very low Ca/Na,
high (K+Na)/Al ratios and high LOI550 percentages, include many
zeolites, abundant trona and minor nahcolite (Fig. 9A). Stage D8
(120–16 ka, Fig. 10) overlaps with G6a–G6c, with diatoms declining in
abundance upwards. Taxa include mixed freshwater Aulacoseira spp.
and saline Thalassiosira and Cyclotella taxa. The mixed flora, similar to
that in G5, implies periodic flooding and the formation of meromictic
lakes of variable duration, with sparse floras after about 0.08 ka con-
sistent with development of a trona saline pan.

REE data vary more than in lower zones (Fig. 11B). Detailed G6 REE
patterns show that trona-bearing mud has a negative Eu anomaly and
that REEs decline from LREE to HREE (Fig. 11) except for Lu, which
shows both negative and positive anomalies. In contrast, trona shows
positive anomalies for Nd and Tb with low La, Sm, Eu and Yb, and a
small positive anomaly for Lu, probably reflecting the influence of
strongly alkaline carbonate-rich brines.

Relatively high Au concentrations in G6c, which partially overlaps
with the African Humid Period (AHP) and HMB deposition, contrast
with Au concentrations below detection limits in G6a–G6b and G6d at
times when the basin was a trona pan. Zone G6a has less As, Br, Sb and
REE than G6b (Fig. 9B) with G6c distinguished from G6b by higher
concentrations of Br, Ag, Pb, Th, U and Zn, together with less As, Mo
and Sb. Several of these elements (Br, Pb, Zn, Sb, Ag) have been related
to springs feeding carbonate lakes at Sassykkul in Tajikistan (Volkova,
1998). Other elements were considered tracers of evaporative con-
centration (U, Mo, As) at Sassykkul. Variations in these elements might
reflect contrasting spring sources and brine evolution in palaeolake
Magadi. Br shows very-low positive or negative correlations with other
elements, with Br concentrations increasing and Ca/Na ratios de-
creasing upwards (Fig. 9B), which may indicate a link to increasing
salinity and possible hydrothermal inflow.

5.1.2. Outcrop to core correlation and palaeogeography
Outcrop to core correlations are shown in Figs. 9, 10 and 13. The

Magadi outcrop and core sediments lie upon the Magadi Trachyte
Formation (~1.4–0.8Ma), which consists of flood trachyte up to 120m
thick that filled the pre-existing horst-and-graben topography. Rivers
and lakes then deposited fluvial and lacustrine sediments upon the
volcanic substrate (Baker, 1958; Crossley and Knight, 1981; Guth and
Wood, 2014).

The poorly dated Oloronga Beds began to accumulate before
0.78 ± 0.04Ma based on a K-Ar date from obsidian within basal
Oloronga lake beds (Fairhead et al., 1972; Eugster, 1980, his
Fig. 15.21). A U/Th-dated hippo tooth gave a minimum age of 300 ka

for the upper Oloronga Beds (Röhricht, 1998; Behr and Röhricht, 2000),
although the actual ages of these beds could be much older. The lack of
pedogenesis upon the trachyte substrate at MAG14-2A implies that
deposition started soon after eruptions ceased (~1078.3 ± 3.6 ka).
Together, the evidence from cores and the distribution of the Oloronga
Beds, show that the earliest palaeolakes (Zones G1–G2, ~1056–740 ka)
were fresh to mildly saline and more extensive than today (Fig. 12A).

Tufa-travertine towers on a horst west of Lake Magadi have been
radiocarbon dated at 16.7 ± 0.4 to 25.5 ± 0.7 ka (Hillaire-Marcel
et al., 1986) and were interpreted to have formed while partly sub-
merged near the HMB palaeolake shoreline. However, they are possibly
much older, given that the base of the largest tower (~712m asl)
is> 50m higher than the maximum inferred Late Pleistocene-Holocene
HMB lake-level (~660m asl) (Hillaire-Marcel et al., 1986). It is unclear
if the tufa deposits are subaerial or sublacustrine or both, but the towers
lack external drapery that might be expected with subaerial outflow (cf.
Bargar, 1978). Possible rimstone dams south of the towers imply sub-
aerial formation and the dense travertine fabrics of those dams are
compatible with high-temperature fluids (Jones and Renaut, 2010). In
contrast, the towers, with internal vertical tubes, are similar to those
described from lake floors (e.g., Lake Abhé: Dekov et al., 2014). A
sublacustrine origin (Casanova and Hillaire-Marcel, 1987, their Fig. 9)
would imply a Holocene lake at ~715–720m or higher, for which there
is no recorded evidence. Either the horst block has been uplifted>
50m during the terminal Pleistocene and Holocene, or the tufa towers
may be contemporary with the small Oloronga tufa chimneys at Section
OB1, having formed before axial-rift faulting, and contemporary with
Zone G1 (1080–930 ka) when carbonate grainstone was deposited
(Fig. 12A). Baker (1958) found no evidence for tectonic disturbance of
the HMB and recorded the ‘40 ft’ (+12.2m: ~617–620m: Fig. 7A)
shoreline at many locations across the basin. Behr (2002, p. 260) si-
milarly found no sedimentary or geomorphological evidence for a
higher precursor lake at that time. The age of the tufa towers remains
uncertain.

The distribution of sediment outcrops that are contemporary with
Zone G3 (~740–545 ka) suggests a similar areal extent for the Magadi
palaeolake to that inferred for G1–G2 times (Fig. 12B). Faulting in-
creased the topographic expression of north-south trending grabens,
some of which might have hosted isolated or periodically inter-
connected lakes.

In outcrop, the Oloronga Beds are commonly capped by pisolitic to
massive calcrete (Fig. 4A, D and E) that implies prolonged semi-aridity
and relatively low lake level. In cores, the boundary between Zones G4
and G5 (Fig. 9A) is characterised by reduced Ca/Na ratios and a change
from calcite and Mg-calcite to zeolites, which indicates an increase in
palaeosalinity consistent with increased aridity at ~380 ka. The wide-
spread calcrete overlies laterally extensive and eroded Oloronga Beds
(Eugster, 1980; Felske, 2016) with younger outcrop sediments re-
stricted to the modern axial lake basin, which suggests that the G4
(~545–380 ka) palaeolake had permanently shrunk (Fig. 12C), likely
due to faulting and basin fragmentation that developed an axial horst-
and-graben topography. Increased tectonic activity at Magadi during
this interval is consistent with evidence from the Olorgesailie Basin,
~20 km to the northeast, where faulting disrupted that basin after
~500 ka (Behrensmeyer et al., 2018; Potts et al., 2018).

During G5 times (~380–105 ka), a saline, alkaline lake developed
that might have been periodically flooded by axial rivers, or perhaps
overflow from a contemporary lake in the neighbouring Koora Basin to
the east (Fig. 12D–E) (Baker, 1958, 1986; Marsden, 1979; Muiruri,
2018). Although the timing of any overflow episodes is uncertain,
evidence for such events are preserved in a deep NW-SE fault-controlled
channel incised into Magadi Trachyte and by palaeowaterfalls to the
southeast of modern Lake Magadi, near Karamai. Composite cores
MAG14-1A and MAG14-1C (Fig. 12D), between the north and central
Lake Magadi sub-basins, contain orthoconglomerate that correlates
with G5. These gravels accumulated on a shallow E-W tectonic sill. In
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contrast, MAG14-2A lies in the deeper north Magadi sub-basin and
remained wet even during times of increased aridity, perhaps due to
spring inflow.

The Green Beds, south and northeast of the modern lake, are con-
temporary with upper Zone G5 and possibly lower G6. They were
previously dated at 98.5 ± 20 ka and 40.0 ± 6.5 ka using U/Th
techniques (Goetz and Hillaire-Marcel, 1992). New U/Th dates from
bedded cherts obtained for this study indicate ages of 180.6 ± 19.5,
176.6 ± 23.7, and 158.4 ± 17.4 ka. Chert dykes that intrude the
Green Beds have ages of 191.8 ± 3.6, 166.9 ± 3.3 and
163.0 ± 3.3 ka. The latter dates might reflect initial chert formation
rather than the age of dyke injection but all are older (~191–158 ka)
than those proposed by Goetz and Hillaire-Marcel (1992) and Behr
(2002). The revised chert ages correlate with zones G5c–d (Fig. 9B) and
diatom stage D7 (Fig. 10). Outcrops of the Green Beds imply deposition
on a gently sloping playa margin during the later stages of Zone G5 with

upward-shallowing cycles, strong evaporation, and with microbialites
and bedded chert forming periodically in shallow saline, alkaline wa-
ters.

Zone G6 is poorly represented in outcrops as it represents a time
when Lake Magadi was generally low and confined to the axial graben
as a small highly saline lake or trona pan (Fig. 12F). However, there
were wetter intervals when the lake expanded as it did during the
African Humid Period (Fig. 12G). Butzer et al. (1972), for example,
reported a 14C date of 9120 ± 120 yr BP for a fish-bearing clay marker-
bed in the lower HMB (Figs. 6, 7D). They also reported “corrected” 14C
trona dates from a mid-basin core of 4600 (11m depth), 5750 (21.4m)
and 10,010 (47.5 m) yr BP (errors unreported) in the Evaporite Series
but questioned their reliability. Despite the age uncertainty, these de-
posits represent Holocene periods when the palaeolake resembled the
modern evaporative lake (Fig. 12H). Williamson et al. (1993) also ob-
tained U/Th dates from a core in the ‘Northwest Arm’ of Lake Magadi of
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40,000 ± 6500 and 23,700 ± 6000 yr BP with HMB high lake de-
posits dated at 12,090 ± 120 and 10,800 ± 120 yr BP. The HMB and
Evaporite Series would therefore correlate with Zones G6c and d in
MAG14-2A, and parts of Stage D9 (Figs. 9 and 10).

5.2. Controls on sedimentation

Sedimentation in the Magadi Basin was influenced by climate, tec-
tonics and volcanism. The importance of climate is confirmed by pollen
and diatom data, which record a drying trend after ~575 ka and many
links to global climate trends (Owen et al., 2018a). For example, di-
agonal shading in Fig. 13 shows correlations between interglacials
(Antarctica data: Jouzel et al., 2007) and influxes of benthic diatoms
(high PCA values) that imply flooding of the palaeolake. Periods when
conditions were wetter in the Magadi Basin (750–525 ka) were also
recorded in the Olorgesailie Basin, 20 km to the northeast, as shown by
correlations between high pollen PCA values (Fig. 13) and inferred high
lake-levels (Potts et al., 2018). These reversible changes are unlikely to
have been driven by uplift or subsidence, which tends to be directional

in rift settings, especially on the timescales involved.
In contrast, the geochemical data (Figs. 9 and 13), discussed below,

include episodes when abrupt step-like changes occurred that might
reflect tectonic controls. For example, a major transition at ~740 ka led
to an increase in anoxic-euxinic elements (Mo, Cd, U, S) in the sedi-
ments. LOI percentages also increased, pollen started to be well-pre-
served, La/Lu ratios became more variable and transition metals ap-
peared in the geochemical record. A second step-like change occurred
at ~ 105 ka ago with increased Na and the first appearance of trona in
cores.

Owen et al. (2018b) documented several broad relationships be-
tween rifting and sedimentation across the East African Rift System,
observing, for example, that axial subsidence can cause rainshadow
effects which increase aridity on the rift floor. Fig. 14 shows major
controls on Magadi basin sedimentation, emphasising the role of tec-
tonics. The Magadi Rift was initiated at ~7Ma (Foster et al., 1997; Lee
et al., 2017). The oldest deposits are buried below the Magadi Trachytes
(1.4–0.8Ma). Early uplift along the rift margins would have cut off
lateral drainage into the rift (Fig. 14A) restricting sediment supply,
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but with dilute water may
or may not produce
tufa

Early stage
rifting

Later stage
rifting

A

B

Fig. 14. Rifting and sedimentation. Major
controls on sedimentation during early (A)
and later (B) rifting, as at Magadi during the
last 1Ma. Modified from Owen et al.
(2018b). Volcanic rocks commonly form
dams providing hydrological closure. Uplift
of rift margins and subsidence of the ad-
jacent rift floor control orographic rainfall
and development of rain shadows. Weath-
ering and erosion are also influenced by
uplift rates. CIA=Chemical Index of Al-
teration. Faulting controls accommodation
space, outlet (sill) heights, drainage diver-
sion, meteoric springs (A and B) and access
to deep geothermal fluids (B). Geothermal
fluids rise along faults, locally discharging
at hot springs, augmenting silica supplied
by weathering for chert formation. Trona-
nahcolite evaporite precipitation is en-
hanced by addition of mantle CO2.
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reducing clastic input, and changing bedrock source lithologies and
elemental compositions (solid and aqueous) delivered to the basin.
Changes in subsidence and uplift would also have altered erosion,
transportation and deposition rates that, in turn, would have controlled
when rocks were exposed to weathering and its intensity.

Prior to the step-like change at ~740 ka, the volume of water inflow
and sediment infill were broadly equal to the evolving accommodation
(subsidence and compaction) in the rift grabens, producing ‘balanced-
filled’ lakes (cf. Carroll and Bohacs, 1999). The earliest lakes were di-
lute to moderately saline, locally accumulating carbonate grainstone.
After ~740 ka, the lakes became ‘underfilled’ when horsts and grabens
fragmented the formerly flatter rift-floor. As axial-rift faulting pro-
ceeded and the climate became more arid, potential accommodation
exceeded the volume of water and sediment supply. Closed hydro-
logical basins then enabled the development of increasingly saline, al-
kaline lakes with anoxic bottom waters.

The presence of chert in the oldest Magadi sediments implies that
early rising thermal fluids, and runoff with compositions derived from
silicate weathering, contained enough silica for siliceous deposits to
form after evaporation, evapotranspiration, dilution at a chemical in-
terface, cooling or microbial biomediation. Crustal thinning above an
elevated asthenosphere might have enabled faults to tap deep geo-
thermal reservoirs (Fig. 14B) but subaerial sinter deposits, linked to
boiling water, are rare in the south Kenya Rift. Palaeosinters (including
fossil geyserite) are known only at Eremit ~15 km northeast of Olor-
gesailie (Owen et al., 2014). Most modern hydrothermal fluids at Ma-
gadi contain Na≫ Ca and abundant HCO3 and CO3. These favour for-
mation of Na-CO3-SO4-Cl brines with a high pH after evaporation
(Eugster, 1970, 1980, 1986). Those fluids have exerted a major influ-
ence on deposition, especially since G5 times (after ~380 ka) when
salinities increased and alkaline carbonate-rich fluids reacted with
volcaniclastic particles to form zeolites. However, the contemporary
alkaline water did not precipitate extensive trona until the second step-
like change in the geochemical profile at about 105 ka ago.

That event might have involved a tectonic control. Earman et al.
(2005), for example, emphasised the role of magmatic CO2 in producing
extensive deposits of trona in the USA and Mexico. Renaut and Tiercelin
(1994) had earlier proposed that geothermal CO2 contributed to trona
formation at Lake Bogoria, Kenya. Gaseous CO2 is trapped today below
an extensive nahcolite (NaHCO3) crust on the floor of Nasikie Engida, a
small lake northwest of Lake Magadi (Fig. 1A). Darling et al. (1995)
showed that abundant CO2 of mantle origin is issues along the rift floor.
Lee et al. (2016, 2017) reported that ~4Mt yr−1 of mantle-derived CO2
is released along faults in the Magadi–Natron Basin. It is possible,
therefore, that formation of trona at Magadi was enhanced by CO2-
enriched gas discharge into the lake along sublacustrine faults, in ad-
dition to strong evaporation in an underfilled basin.

The origins of the Magadi chert deposits remain enigmatic (Eugster,
1967, 1969; Hay, 1968; Behr, 2002; Brenna, 2016; Leet et al., 2016).
Eugster (1980) attributed the Magadi chert to replacement of magadiite
[NaSi7O13(OH)3.4H2O], other sodium silicates, or Na-silicate gels in
the HMB sediments and at Nasikie Engida. In outcrop, most bedded
chert in the Oloronga Beds and Green Beds are concordant within la-
custrine sediments, whereas other cherts are intrusive, forming dykes,
irregular masses and mounds (some biohermal?). Intrusions of silica-
rich fluid, soft and semi-lithified silica gel, and chert into older shallow
sediments are probably related to tectonic events (Behr and Röhricht,
2000). Some bedded chert in outcrop provides sedimentological evi-
dence that implies microbial influences in its formation and shows that
the quartz might originally have been soft gelatinous silica (Behr, 2002;
Brenna, 2016). Evidence from the HSPDP cores implies several origins
for the chert, but some chert horizons were clearly diagenetic (Leet
et al., 2016). Behr (2002) reported that some exposed chert might have
replaced carbonate. Rare examples of carbonate replacement by chert
are exposed ~10 km SSE of Magadi townsite. High aqueous silica re-
sulting from weathering (silicate hydrolysis of volcanic rocks),

hydrothermal inflow, and highly alkaline (high pH) brines makes it
difficult to differentiate the origins of the parent fluids and specific
factors leading to silica precipitation (e.g., evaporation, fluid mixing,
cooling and replacement of carbonate in various combinations). These
processes nonetheless have produced what is perhaps the most ex-
tensive outcrop of lacustrine chert in the world.

6. Conclusions

The Magadi Basin preserves a one-million-year record of aquatic
deposition under dry, tropical conditions. The basin experienced pro-
gressive increases in aridity superimposed on wet-dry cycles and step-
like changes that resulted from tectonic processes. Major tectonic
controls include:

• Axial rift faulting that tapped geothermal fluid reservoirs, introdu-
cing silica via springs from early in the basin history.
• Faulting of the rift floor that diverted cross-rift (E-W) rivers that
reduced inputs of transition metals derived from rift-marginal ba-
salts after 540 ka.
• The addition of magmatic CO2 to evaporated sodic brines that en-
abled thick trona deposits to form after 105 ka.
• The development of a horst-and-graben topography that modified
accommodation space and which confined the palaeolake to its
present narrow N-S axial setting after deposition of the Oloronga
Beds.

Climatically, the basin was characterised by many wet-dry cycles,
but with a trend towards increasing aridity after 575 ka. This increased
evaporative concentration of spring, stream and lake waters, resulting
in:

• Higher pH and salinity. Mildly saline, calcite-precipitating, waters
developed before 380 ka. Later high-pH waters reacted with volca-
niclastic grains to form zeolites; trona precipitated after ~105 ka.
• Increased REE instability, with these elements complexing with
carbonate as waters became more alkaline after 400 ka and espe-
cially after 105 ka.
• Saline lakes that received episodic fresh waters, leading to mixed
assemblages of saline and freshwater planktonic diatoms between
545 and 16 ka.

The Quaternary sediments of the Magadi Basin record long-term
climatic change (increasing aridity) and contemporary tectonics that
frequently modified the hydrology and hydrogeology. The sedimentary
record confirms the importance of considering all potential environ-
mental controls when performing environmental reconstructions,
especially in tectonically active settings.
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