## AGENDA ITEM REQUEST FORM

## Hays County Commissioners Court <br> Tuesdays at 9:00 AM

Request forms are due in Microsoft Word Format via email by 2:00 p.m. on Wednesday.

## AGENDA ITEM

Discussion and possible action to authorize the County Judge to execute an Installation Contract with Performance Services Inc. related to The Energy Efficiency Project and the technical energy audit performed in 2016.

## ITEM TYPE MEETING DATE

AMOUNT REQUIRED
ACTION-MISCELLANEOUS
February 21, 2017

## LINE ITEM NUMBER

## TBD

## AUDITOR COMMENTS:

PURCHASING GUIDELINES FOLLOWED: N/A AUDITOR REVIEW: N/A


## SUMMARY

On July 19, 2016, Commissioners Court passed a memorandum of understanding authorizing Performance Services Incorporated to perform a technical energy audit and report back to Hays County. The audit was completed over the summer and fall. In November, 2016, the court approved a resolution pertaining to financing of the project. Staff and PSI have identified possible funding sources and are ready to move forward and begin the project.

# INSTALLATION CONTRACT 

This INSTALLATION CONTRACT (the "Contract") is made as of the $\qquad$ day of $\qquad$ 20 by and between Performance Services of Texas, Inc. ("PSI") and Hays County("Owner"), concerning the following:
Owner:
Qualified Provider/
Contractor:

Hays County
712 s. Stagecoach Trail
San Marcos, Texas 78666
Contractor:
Performance Services of Texas, Inc.
3010 LJB Freeway, Suite 1200
Dallas, TX 75234
Project: ENERGY SAVINGS PERFORMANCE CONTRACT
Scope of Work: PSI proposes to provide Utility Cost Reduction Measures ("UCRMs") for Owner at the Project, as described in the Utility Assessment Report dated $\qquad$ , and attached hereto as Exhibit A (the "UAR"), and as further described in the Improvement List, dated , and attached hereto as Exhibit B (the "Improvement List").

PSI shall cause the UCRMs to be installed in accordance with the UAR, the Improvement List and the Measurement and Verification Plan, attached hereto as Exhibit C (the "M\&V Plan"). PSI has guaranteed the savings due to the installation of the UCRMs as set forth in the UAR and the Performance Guarantee Agreement, attached hereto as Exhibit D (the "Guarantee").

Contract Price: $\qquad$ Dollars (\$ $\qquad$ )

Terms of Payment: Monthly progress based payments, pursuant to the terms of Paragraph 4 below.

## Exhibits:

"A": Utility Assessment Report ("UAR")
" B ": Improvement List
" C ": Measurement and Verification Plan ("M\&V Plan")
" D ": Performance Guarantee Agreement ("Guarantee")
"E": Sample Periodic Savings Report

PSI and Owner agree to the terms above and as set forth below in the following Terms and Conditions and in the Exhibits attached hereto, all of which are a material part of this Contract. The Contract, with its attachments and exhibits, is the full agreement between PSI and the Owner as of the date it is signed. All previous conversations, correspondence, agreements, or representations not included in the Contract are not part of the Contract between PSI and the Owner. This Contract shall become effective on the date first above written notwithstanding different dates of execution hereof.

## OWNER:

HAYS COUNTY


By: $\qquad$

Printed Name and Title

## TERMS AND CONDITIONS

1. SCOPE OF WORK. PSI shall provide Owner with the work and the services set forth in the Scope of Work above ("Work"), except to the extent specifically indicated in the Contract Documents to be the responsibility of others. PSI shall supervise and direct the Work and shall be solely responsible for all construction means, methods, techniques, sequences, and procedures and for coordinating all portions of the Work. PSI shall be responsible to pay for all labor, materials, equipment, tools, construction equipment and machinery, transportation, and other facilities and services necessary for the proper execution and completion of the Work and Services, whether temporary or permanent and whether or not incorporated or to be incorporated in the Work. Owner and PSI will mutually agree upon any required field utilities or other work, equipment or services to be provided by the Owner. In resolving conflicts, errors, discrepancies and disputes concerning the Scope of Work to be performed by PSI, PSI's Improvement List and PSI's plan, plan notes and scope documents generated therefrom, shall be given precedence over all other documents. The Work and the UCRMs shall comply with current local, state and federal construction, plumbing and environmental codes and regulations.
2. CONTRACT DOCUMENTS. The Contract Documents are comprised of the following: (1) this Contract; (2) All written modifications, addenda, amendments, scope modifications or additions to this Contract; (3) the UAR; (4) the Improvement List; (5) the Measurement and Verification Plan; and (6) the Performance Guarantee.
3. MUTUAL OBLIGATIONS. Owner and PSI commit at all times to cooperate fully with each other and proceed on the basis of trust and good faith, to realize the benefits afforded under the Contract Documents. Owner shall, throughout the performance of the Work, cooperate with PSI and perform its responsibilities, obligations and services in a timely manner to facilitate PSI's timely and efficient performance of the Work and so as not to delay or interfere with PSI's performance of its obligations under this Contract.
4. CONTRACT PRICE AND PAYMENT. The total price for PSI's Work under this Contract shall be as set forth above, subject to adjustments as set forth herein (the "Contract Price"). All payments made by Owner to PSI shall be made via wire transfer. Within ten (10) days of execution of the Contract, Owner shall pay to PSI the agreed cost for the UAR, five percent ( $5 \%$ ) of the Contract Price as a mobilization fee and one hundred percent $(100 \%)$ of the engineering for the Project, as specified in the UAR. Thereafter, the balance of the Contract Price shall be paid to PSI in monthly progress payments on or before the 28 th of each month for the value of work completed plus the amount of materials and equipment suitably stored, either on site or offsite the previous month, less the aggregate of previous payments to PSI. Sales of materials are payable in cash on delivery of the goods. There shall be no retainage withheld from payments made under this Contract. Final payment, constituting the entire unpaid balance for the Work, shall be due 30 days after the Work described in this Contract is substantially complete, except for $150 \%$ of the value of any agreed upon punch list items remaining at that time. "Substantial Completion" is defined as the stage in the progress of the Work when the Work is sufficiently complete in accordance with the Contract Documents so that the Owner can occupy or utilize the Work for its intended use. Any amounts withheld for punch list shall be due 30 days after the punch list items are completed. Any performance guarantee, as set forth in the Performance Guarantee, shall not commence or become effective until such final payment is received by PSI. No back charges or claim of Owner for services shall be valid except by the agreement in writing by PSI before work is executed. In the event that the Owner fails to make any monthly progress payment or is otherwise overdue in making such payment, and upon fourteen (14) days written notice to the Owner, PSI shall be entitled to stop work without prejudice to any other remedy it may have, and Owner shall be responsible to PSI for any increased costs in demobilization and remobilization in stopping and recommencing the Work. In the event of such work stoppage and start up, PSI and Owner agree to cooperate in

## Performance Services

adjusting any schedule requirements so as to endeavor to minimize the impact on the Owner's operations of its facility. All sums not paid when due shall bear interest at the rate of $11 / 2 \%$ per month from due date until paid or the maximum legal rate permitted by law whichever is less; and PSI is entitled to recover all costs of collection, including PSI's attorney fees, from the Owner.
5. ACCESS TO JOB-SITE. Owner and PSI shall mutually agree upon the access to the jobsite necessary to perform the Work, as well as any preparation of work areas so as to be acceptable for PSI's Work under this Contract. PSI and Owner will cooperate with each other to coordinate such access and preparation of the work areas. PSI will not be called upon to start work until the mutually agreed upon access to the jobsite is provided and until sufficient areas are ready to ensure continued work until job completion. The performance of PSI's Work is contingent upon such agreed access to the job site and to the areas whereby PSI is to perform its work.
6. SCHEDULE. After execution of this Contract, PSI shall be given a reasonable time in which to commence and complete the performance of the Work under this Contract ("Contract Time"). PSI shall not be liable or responsible for any loss, damage, costs, delay, default, or injury that is caused by acts, omissions, conditions, events or circumstances beyond its control or due to no fault of PSI or those for whom PSI is responsible, or due to any act, omission or neglect of the Owner or anyone under the Owner's control, including but not limited to: delays, hindrances or interferences caused by Owner, architect and/or engineers, or other contractors, subcontractors, suppliers or third parties; Concealed or Unknown Subsurface Conditions, Hazardous Conditions, changes ordered in the Work, armed conflict or economic dislocation resulting therefrom; embargos, shortages of labor, equipment or materials, production facilities or transportation; labor difficulties or disputes, civil disorders of any kind; action of civil or military authorities; vendor priorities and allocations, fires, floods, accidents, unusual or unanticipated weather conditions or precipitation and acts of God. IN NO EVENT SHALL PSI BE LIABLE FOR BUSINESS INTERRUPTION LOSSES OR CONSEQUENTIAL OR SPECULATIVE DAMAGES.
7. WARRANTY. PSI warrants that materials and equipment furnished by PSI will be of good quality and new; that the Work will be free from defects, and to the extent consistent with the standard of reasonable care and skill ordinarily used and exercised by contractors such as PSI in performing work for projects of the same type, kind, nature, complexity and size as the Project covered by this Contract, and as otherwise not inherent in the quality required or permitted; and that the Work will conform to the requirements of this Contract. PSI warrants that the Work shall be free from defects in material and workmanship arising from normal usage for a period of one (1) year from the date of Substantial Completion ("Warranty Period"). THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES EXPRESS OR IMPLIED, INCLUDING ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. During the Warranty Period, upon fourteen days (14) written notice from the Owner, PSI shall, at its option, repair or replace the defective Work. PSI's warranty obligations shall lapse after the running of the Warranty Period. These warranties do not extend to any Work that has been repaired by others, abused, altered, misused, or that has not been properly and reasonably maintained. PSI shall not be responsible for damage to its work caused by others. Any repair work necessitated by such damage caused by others will be considered as an order for extra work. PSI will not be responsible for special, incidental, or consequential damages.

Nothing in the warranties provided herein are intended to limit any manufacturer's warranty which provides Owner with greater warranty rights than set forth in this Section. Upon expiration of the Warranty Period, PSI will assign the rights to any manufacturer's warranty and all other rights against manufacturers of materials and equipment and Owner accepts such assignment for all materials and equipment incorporated into the Work. The Owner agrees that after expiration of the Warranty Period, its sole remedy for defects or failure of materials or equipment is directly against such manufacturers and waives all rights against PSI for any defects or failures of such materials or equipment following Substantial Completion. PSI will provide the Owner with all manufacturers' warranties upon expiration of the Warranty Period. However, PSI's failure to do so does not waive or modify this provision.
8. CONCEALED OR UNKNOWN CONDITIONS. Should concealed or unknown subsurface conditions be encountered in an existing structure during the performance of PSI's Work that are of an unusual nature, differing materially from those ordinarily encountered and not generally recognized as inherent in work of the character
provided for in this Contract, the Contract Price shall be equitably adjusted upon claim by the PSI for any increased costs.
9. OWNER SCOPE MODIFICATIONS. PSI agrees not to seek any change orders for additional costs incurred in performing the Work pursuant to the Scope of Work set forth above. However, in the event that the Owner modifies the Scope of Work and directs PSI to perform any additional or extra work outside the Scope of Work as set forth above, the Contract Price and Contract Time shall be adjusted accordingly. PSI shall not be obligated to perform scope modifications, including additional or extra work, unless PSI shall receive a written directive, signed by an authorized representative of Owner; provided, that work performed without the written directive of Owner, but made necessary by an emergency involving an immediate threat to the safety of persons or property, or the non-performance of which would impair the efficiency, scheduling or coordination of the work of Owner, PSI or PSI's subcontractors, shall nevertheless serve as a basis for revising the Contract Price or Contract Time in accordance with this paragraph. The amount to be paid by Owner to PSI for any scope modifications, including additional or extra work, or the amount to be allowed by PSI, shall be determined as provided under the terms of the Contract, except, notwithstanding any provisions to the contrary in the Contract or elsewhere in the Contract Documents, PSI shall be entitled to an allowance of $\qquad$ percent (__\%) for overhead and an allowance of percent (__ \%) for profit, in addition to its actual costs for materials and labor on all scope modifications, including additional or extra work.
10. MATERIALS. All materials shall be furnished in accordance with the respective industry tolerance of color variation, thickness, size, finish, texture and performance standards.
11. TAXES, PERMITS, AND FEES. PSI shall be responsible for obtaining all permits and related permit fees associated with the Work. PSI shall pay sales, consumer, use, and other similar taxes and shall secure and pay for the building permit and other permits and governmental fees, licenses, and inspections necessary for proper execution. The Owner shall be responsible for securing any necessary approvals, easements, assessments, or zoning changes and shall be responsible for real estate and personal property taxes where applicable.
12. OWNER PROJECT CRITERIA. In the event that Owner furnishes any criteria or design requirements, such as conceptual documents, design criteria, performance requirements and other Project-specific technical materials and requirements for the Project which may describe the Owner's program requirements and objectives for the Project, including but not limited to the character, scope, use, space, price, time and scheduling requirements, relationships, forms, size and appearance of the Project, site and expandability requirements, materials and systems and, in general, their quality levels, performance standards, requirements or criteria, and major equipment layouts, submittal requirements and other requirements governing PSI's Work (defined herein collectively as "Owner Project Criteria"), then PSI shall have the right to rely on the information contained in the Owner's Project Criteria in performance of the Work, including the preparation of any drawings, plans and specifications.
13. OWNER SERVICES AND INFORMATION. Owner shall provide, at its own cost and expense, for PSI's information and use the following, all of which PSI is entitled to rely upon in performing the Work: (1) Surveys describing the property, boundaries, topography and reference points for use during construction, including existing service and utility lines; (2) Geotechnical studies describing subsurface conditions, and other surveys describing other latent or concealed physical conditions at the Site; (3) Temporary and permanent easements, zoning and other requirements and encumbrances affecting land use, or necessary to permit the proper construction of the Project and enable PSI to perform the Work; (4) A legal description of the site; (5) To the extent available, as-built and record drawings of any existing structures at the Site; 6) To the extent available, environmental studies, reports and impact statements describing the structural and mechanical systems, chemical, air and water pollution and environmental conditions, including Hazardous Conditions, in existence at the Site; and (7) any other mutually agreed upon services and information.
14. OWNER REPRESENTATIONS. Owner represents, warrants and agrees that (i) it has obtained any consents, approvals, permissions and easements necessary for the work, excluding state and local permits and design releases being furnished by PSI pursuant to Paragraph 11, and has furnished all bonds or financial security called for by governmental authorities; (ii) job and site conditions are such that the work is ready to be started in normal
course; (iii) there are no concealed or unknown subsurface conditions in the existing structure and there are no unusual soil or subsurface conditions at the site and the area where the work is to be installed consists of undisturbed virgin soil; (iv) if the work is dependent upon or is to be undertaken in conjunction with other work, such other work shall be performed so as to permit PSI to perform the work without unusual or extraordinary effort or cost and in a normal uninterrupted single shift operation; (v) it is the owner of the site; and, (vi) all tap in, connection and other types of fees and charges have been fully paid.
15. FINANCIAL ASSURANCES. If requested by PSI, Owner shall furnish reasonable evidence satisfactory to PSI, prior to signing this Contract, or any time thereafter, that sufficient funds are available and committed for the entire cost of the Project, including payment in full of the Contract Price. If PSI elects to proceed with work without having received such evidence, it may stop work upon ten days notice if such evidence has not been furnished within five days after such request.
16. LIQUIDATED DAMAGES. Owner shall make no demand for liquidated damages for delays or actual damages for delays in any sum in excess of such amount as may be specifically named in this Contract and no liquidated damages may be assessed against PSI for delays or causes attributed to other PSIs or arising outside the scope of this Contract.
17. CLEANUP. PSI shall keep the premises and the surrounding area free from accumulation of waste materials or rubbish caused by the Work and, upon completion of the Work, PSI shall remove all waste materials, rubbish, tools, construction equipment, machinery, and surplus materials. PSI agrees at all times to keep the job site clean of debris arising out of its own operations, and Owner shall in no event back charge PSI for the Owner's cleanup costs without PSI's written consent.
18. SAFETY. PSI shall comply with all applicable laws, ordinances, rules, regulations, and lawful orders of public authorities related to safety of persons or property. PSI's responsibility for safety under this Section is not intended in any way to relieve any of PSI's subcontractors, suppliers or second or third tier subcontractors and suppliers of their own legal obligations and responsibility for complying with any applicable laws, ordinances, rules, regulations, and lawful orders of public authorities related to safety of persons or property, and for taking all necessary measures to implement and monitor reasonable safety precautions and programs to guard against injury, losses, damages or accidents resulting from their performance of the Work.
19. HAZARDOUS MATERIALS. Unless specifically noted in the Contract, PSI is not responsible for any Hazardous Conditions, Materials or Substances encountered on site. Unless specifically noted in the Contract, PSI's obligations expressly exclude any Work of any nature associated or connected with the identification, abatement, cleanup, control, removal, or disposal of Hazardous Conditions, Materials or Substances, including but not limited to asbestos in or on the premises. Upon encountering any Hazardous Conditions, Materials or Substances, PSI will stop work until the Owner takes the necessary measures necessary to ensure that the Hazardous Conditions, Materials or Substances have been remediated or rendered harmless. Such measures and remediation are the responsibility of the Owner, not PSI.
20. PSI INSURANCE. Prior to commencing the Work, PSI shall provide a certificate of insurance to the Owner showing its insurance coverage, and PSI shall maintain such insurance in full force and effect at all times until the Work has been completed, in the following minimum amounts:

```
COVERAGES
    Commercial General Liability
> Product & Completed Operations Aggregate
> Personal & Advertising Injury
> Each Occurrence
> Workers Compensation
> Umbrella Policy in addition to individual coverage
```

> General Aggregate \$ 2,000,000
$>$ Automobile Liability- Each Occurrence $\quad \$ 1,000,000$

LIMITS OF LIABILITY
\$ 2,000,000
\$ 2,000,000
\$ 1,000,000
\$ 1,000,000
\$ 1,000,000
$\$ 500,000 / \$ 500,000 / \$ 500,000$
$\$ 10,000,000$.

The Owner and its consultants shall be additional insureds on the Contractor's primary and excess insurance policies for Commercial General Liability and Automobile Liability. The additional insured coverage shall be primary and non-contributory as to any of the Owner's insurance policies. The additional insured coverage shall apply to both ongoing operations and completed operations. The policy limits applicable to the additional insureds shall be the same amount applicable to the named insured or policy limits not more than the amounts required under this Contract.

The insurance carriers shall have no right of subrogation against Owner and its consultants and their respective officers, directors, consultants, agents, and employees, and Contractor shall obtain from each of its subcontractors a waiver of subrogation on all insurance coverages required, including Commercial General Liability, Workers Compensation, Employers Liability and Automobile Liability, in favor of the parties identified herein with respect to losses arising out of or in connection with the Work on the Project.
21. OWNER'S INSURANCE. The Owner shall assume full responsibility for any risk of loss to the Work. The Owner shall also procure and maintain property insurance upon the entire Project and premises, including Builder's Risk coverage, in an amount equal to the total value of the entire Project and premises, including the Work, on all real and personal property, including professional fees, overtime premiums and all other expenses incurred to replace or repair the insured property. The property insurance shall insure against the risks and perils of fire and extended coverage, theft, vandalism, malicious mischief, collapse, flood, earthquake, airborne property, debris removal and other perils or causes of loss, including physical loss or damage to the Work and any materials or equipment in transit, at the Project Site or at another off-site storage location. The Owner shall also purchase and maintain such mechanical breakdown insurance including startup and testing, as may be required or necessary, which shall include the interests of the Owner, PSI and PSI's subcontractors.

Each insurance policy shall name Owner as an insured and PSI or its Assignee(s), including subcontractors and sub-subcontractors, as an additional insured and loss payee, as appropriate, and shall contain a clause requiring the insurer to give PSI or its Assignee at least thirty (30) days prior written notice of any alteration in the terms of such policy or the cancellation thereof. The proceeds of any such policies shall be payable to Owner and PSI or its Assignee(s), as their interests may appear. Upon acceptance of the Project, and any UCRMs, and upon each insurance renewal date, Owner shall deliver to Provider a certificate evidencing such insurance upon request of PSI. In the event of any loss, damage, injury or accident involving the Work, Owner shall promptly provide Provider with written notice thereof and make available to Provider all information and documentation relating thereto.
22. MUTUAL WAIVER OF SUBROGATION. The Owner and PSI mutually waive all rights against each other and subcontractors and sub-subcontractors of PSI, for damages covered by insurance provided under Paragraph Nos. 20 and 21 and herein, except such rights as they may have to the proceeds of such insurance held by the Owner and PSI as trustees. PSI shall require similar waivers from its subcontractors.
23. BONDS. Prior to commencement of the Work, PSI shall execute and deliver to Owner a $100 \%$ Performance Bond and $100 \%$ Payment Bond in an amount equal to the full Contract Price at the time this Contract is executed. The bond will be written with a company licensed to transact business in the State where the work is located and has a minimum A.M. Best Rating of A VII.

PSI shall also execute and deliver to Owner an Energy Savings Performance Bond not less than 30 days of closing final acceptance of the Project and PSI's Work and upon payment in full of the entire Contract Price. The Energy Savings Performance Bond shall assure the faithful performance of the annual Guaranteed Savings Amount, ("GSA") as provided in the Performance Guarantee Agreement (the "Guarantee"). The Energy Savings Performance Bond shall only be required to cover a two year portion of the GSA; provided, however, PSI shall be responsible to have an Energy Savings Performance Bond in place throughout the Guarantee, subject to the terms and conditions of the Guarantee.

PSI shall place sufficient monies into an interest bearing escrow account for the purpose of paying the premiums for the Energy Savings Performance Bond through the last year of the Guarantee. Escrow account funds shall only be used for the purpose of paying said premiums while the Guarantee is in effect. If the escrow becomes
depleted of funds prior to the last Energy Savings Performance Bond being executed, PSI shall provide additional funding to the escrow account as required. After the Guarantee has been fully satisfied, any funds remaining in the escrow account shall revert to PSI.

Performance Services shall not share security in the performance guarantee with anyone other than the Owner.
24. OWNER'S REPRESENTATIVE. The Owner designates the following individual as its Owner's Representative, who has authority to sign, execute and issue all documents or documentation on behalf of the Owner, and otherwise bind the Owner with respect to all matters requiring Owner's decision or approval:

| Name: |  |
| :--- | :--- |
| Title: |  |
| Address: |  |
| Phone: |  |
| Fax: |  |
| Email: |  |

Owner's Representative shall be responsible for providing Owner-supplied information and approvals in a timely manner to permit PSI to fulfill its obligations under this Contract. Owner's Representative shall also provide PSI with prompt notice if it observes any failure on the part of PSI to fulfill its contractual obligations, including any errors, omissions or defects in the performance of the Work.
25. PSI'S REPRESENTATIVE. PSI designates the following individual as its Contractor's Representative, who has authority to sign, execute and issue all documents or documentation on behalf of PSI, and otherwise bind the PSI with respect to all matters requiring PSI's decision or approval:

| Name: | R. Scott Morris |
| :--- | :--- |
| Title: | Vice President of Operations |
| Address: | 4670 Haven Point Boulevard, Suite 200, Indianapolis, Indiana 46280 |
| Phone: | $(317) 713-1750$ |
| Fax: | $(317) 713-1751$ |
| Email: | smorris@performanceservices.com |

26. DISPUTE RESOLUTION. The parties are fully committed to working with each other throughout the Project and agree to communicate regularly with each other at all times so as to avoid or minimize disputes or disagreements. If disputes or disagreements do arise, PSI and Owner each commit to resolving such disputes or disagreements in an amicable, professional and expeditious manner so as to avoid unnecessary losses, delays and disruptions to the Work. PSI and Owner will first attempt to resolve disputes or disagreements at the field level through discussions between Contractor's Representative and Owner's Representative. If a dispute or disagreement cannot be resolved through Contractor's Representative and Owner's Representative, senior executives of PSI and the Owner, upon the request of either party, shall meet as soon as conveniently possible, but in no case later than thirty (30) days after such a request is made, to attempt to resolve such dispute or disagreement. If after the meeting between senior executives, the dispute or disagreement cannot be resolved on terms satisfactory to both parties, the parties shall submit the dispute or disagreement to non-binding mediation. The mediation shall be conducted by a mutually agreeable impartial mediator, or if the parties cannot so agree, a mediator designated by the American Arbitration Association ("AAA") pursuant to its Construction Industry Mediation Rules. The mediation will be governed by and conducted pursuant to a mediation agreement negotiated by the parties or, if the parties cannot so agree, by procedures established by the mediator. If mediation is unsuccessful, any and all disputes under this Contract shall be decided by confidential arbitration in accordance with the Construction Industry Arbitration Rules of the American Arbitration Association. Such arbitration shall be conducted in Travis County, Texas and governed by Texas law.
27. INDEMNIFICATION. PSI, to the fullest extent permitted by law, shall indemnify and hold harmless Owner, its officers, directors, employees and agents from and against claims, losses, damages, liabilities, including
attorneys' fees and expenses, for bodily injury, sickness or death, and property damage or destruction (other than to the Work itself) but only to the extent resulting from the negligent acts or omissions of PSI or its subcontractors or suppliers, anyone employed directly or indirectly by any of them or anyone for whose acts any of them may be liable. Any such indemnification obligation of PSI shall be excused or discharged to the extent that the claim, damage, loss and expense, or event giving rise to the demand for indemnification, defense and hold harmless is caused in whole or in part by the acts or omissions of the Owner or any party sought to be indemnified. Likewise, the Owner, to the fullest extent permitted by law, shall indemnify and hold harmless PSI and any of PSI's officers, directors, employees, or agents from and against claims, losses, damages, liabilities, including attorneys' fees and expenses, for bodily injury, sickness or death, and property damage or destruction (other than to the Work itself) but only to the extent resulting from the negligent acts or omissions of Owner, Owner's separate contractors, or anyone for whose acts any of them may be liable. The Owner shall waive any rights of subrogation with regard to any damage to all real and personal property until all of the Work has been completed and accepted by the Owner.

## 28. EVENTS OF DEFAULT.

(a) By Owner. The term Event of Default, as used in this Contract with respect to Owner, means the occurrence of any one of more of the following events: (i) Owner fails to make any payment as it becomes due in accordance with the terms of this Contract, and any such failure continues for five (5) days after the due date thereof; (ii) Owner fails to perform or observe any other covenant, condition or agreement to be performed or observed by it hereunder and such failure is not cured within ten (10) days after written notice thereof by PSI; (iii) the discovery by PSI that any statement, representation or warranty made by Owner, legal, financial or otherwise, in this Contract or in any document ever delivered by Owner pursuant hereto or in connection herewith is false, misleading or erroneous in any material respect; or (iv) Owner becomes insolvent, is unable to pay its debts as they become due, makes an assignment for the benefit of creditors, applies or consents to the appointment of a receiver, trustee, conservator or liquidator of Owner or of all or a substantial part of its assets, or fails to provide the financial assurances required by Paragraph No. 15.
(b) By PSI. The term Event of Default, as used in this Contract with respect to PSI, means the occurrence of any one or more of the following events: (i) PSI's failure to perform its obligations in the manner and within the time prescribed by the terms of the UAR subject to the provisions of Paragraph No. 6; (ii) failure to pay, within 30 days of notice that payment is due, the amount required by the terms of the Guarantee; or (iii) failure to repair or replace defective equipment, material or workmanship within the Warranty Period within 60 days after receipt of notice from the Owner.
29. REMEDIES. Upon the occurrence of an Event of Default, either party may, at its option, exercise any right, remedy, or privilege which may be available to it under applicable law, including the right to (i) proceed by appropriate action to enforce the terms of this Contract, (ii) recover damage for the breach of this Contract, and (iii) rescind this Contract as to any or all of the UCRM's. In addition, the parties shall remain liable for all covenants and indemnities under this Contract, and for all attorney fees and other costs and expenses, including court costs, incurred with respect to the enforcement of any of the remedies listed above or any other remedy available to either party to this Contract.
30. MUTUAL WAIVER OF CONSEQUENTIAL DAMAGES. The Owner and PSI mutually waive any and all claims against each other for any and all consequential and/or speculative damages or losses and incidental costs and expenses arising out of or relating to the Contract and whether arising in contract, warranty, tort (including negligence), strict liability or otherwise. This mutual waiver includes:
(a) damages incurred by the Owner for rental expenses, for losses of use, business interruption, income, profit, financing, business and reputation, and for loss of management or employee productivity or of the services of such persons; and
(b) damages incurred by PSI for principal office expenses including the compensation of personnel stationed there, for losses of financing, business and reputation, and for loss of profit except anticipated profit arising directly from the Work.
31. OWNER'S REMEDIES. The Owner's remedies with respect to equipment found to be defective in material or workmanship, or the installation thereof, shall be limited exclusively to the right of repair or replacement of such defective equipment. IN NO EVENT SHALL PSI BE LIABLE FOR CLAIMS (INCLUDING BUT NOT LIMITED TO CLAIMS BASED UPON CONTRACT, STATUTE, TORT (NEGLIGENT OR INTENTIONAL), STRICT LIABILITY OR EXPRESS OR IMPLIED WARRANTY) FOR ANY OTHER DAMAGES, WHETHER DIRECT, IMMEDIATE, FORESEEABLE, CONSEQUENTIAL, OR SPECIAL OR FOR ANY EXPENSES INCURRED BY REASON OF THE USE OR MISUSE OF EQUIPMENT, OR FAILURE OF SUCH EQUIPMENT, REGARDLESS OF THE CONFORMIITY WITH THE TERMS AND CONDITIONS THIS CONTRACT.
32. ENFORCEMENT OF CONTRACT. In the event that either party is required to enforce any of the terms and conditions of this Contract, or is entitled to recover from either party any damages or moneys, then such prevailing party shall be entitled to recover its attorney fees incurred for all investigation, negotiation, litigation, arbitration and other such services commonly performed by attorneys, and all court costs, fees paid to experts, arbitration fees and similar expenses.
33. MODIFICATIONS. Additions, deletions, and modifications to the Contract may be made upon the mutual written agreement of the parties. Such additions may include proposals from PSI for additional Work.
34. NOTICES. All notices or communications related to this Contract shall be in writing and shall be deemed served if and when sent by email, facsimile, U.S. mail or hand delivery to the representative listed in Paragraph Nos. 24 and 25 above..
35. WAIVER. No action or failure to act by the PSI shall constitute a waiver of any right or duty afforded any of them under the Contract, nor shall any such action or failure to act constitute an approval of or acquiescence in any breach hereunder, except as may be specifically agreed in writing.
36. SEVERABILITY. Every provision of the Contract is intended to be severable such that, if any term or provision hereof is illegal or invalid for any reason whatsoever, such prevision shall be severed from the Contract and shall not affect the validity of the remainder of the Subcontract.
37. CONTROLLING LAW. This Contract, and all matters arising out of or relating to it, shall be governed by and construed in accordance with the law of the State of Texas. Venue and forum for any action or proceeding shall be in a court of competent jurisdiction in Travis County, Texas.
38. ASSISTANCE WITH FEDERAL PROGRAMS. The Internal Revenue Code allows various tax benefits to companies that implement energy efficiency and renewable energy projects with public entities in some situations. Owner agrees to assist PSI in applying for these federal programs, should any be applicable due to the execution of this Contract and the performance of the Work. PSI agrees to reimburse the Owner for any labor or other costs incurred by Owner in helping PSI complete applications for these programs.
39. SOFTWARE UPGRADES AND COMPATIBILITY; REMOTE ACCESS. It is understood that from time to time operating software that may be an inherent part of Owner's facilities and/or the Project improvements will be upgraded and/or transitioned to new platform by the developer of such software, outside of the control of PSI. Owner shall be responsible for all costs associated with any and all software upgrades and/or compatibility requirements. In addition, during the Contract Time and the period of the Guarantee, Owner agrees to grant PSI remote access as follows:
(a) Access to Owner's HVAC system via VPN connection;
(b) Access to relay emails from the HVAC devices for alarm notification and energy reporting;
(c) Access to the HVAC devices for retrieval of weather data, time sync and other necessary functions;
(d) Access for use in commissioning HVAC devices.

# EXHIBIT A - UTILITY ASSESSMENT REPORT 

## FOR



# Hays County, Texas 

## 712 S. Stagecoach Trail <br> San Marcos, TX 78666

Conducted by:

## Performance Services

3010 LBJ Freeway

Suite 1200
Dallas, Texas 75234
January 26, 2017

[^0]
## TABLE OF CONTENTS

Contents
I. EXECUTIVE SUMMARY ..... 3
A. BACKGROUND. ..... 3
B. BUILDINGS/FACILITIES ANALYZED ..... 5
Table 1A: List of Facilities included in Report ..... 5
C. COMPOSITE PROJECT SUMMARY ..... 6
Table 1B: List of Recommended UCRMS ..... 6
Table 1C: Summary of Project: Financial and Savings ..... 7
TABLE 1D: Summary of Utility Cost Reduction Measures and Project Totals ..... 8
II. GENERAL FACILITY DESCRIPTIONS ..... 9
A. FACILITY DESCRIPTION ..... 9
B. BUILDING DESCRIPTIONS ..... 9
Table 2A. BUILDING DESCRIPTIONS ..... 11
Table 2B: EQUIPMENT LIST ..... 12
C. UTILITY COST REDUCTION MEASURES. ..... 16
D. UTILITY ANALYSIS METHODOLOGY ..... 17
III. BASE YEAR UTILITY CONSUMPTION DATA ..... 18
IV. UTILITY RATE SCHEDULE ANALYSES ..... 24
A. ELECTRIC RATE SCHEDULE ANALYSIS ..... 24
B. GAS UTILITY RATE SCHEDULE ANALYSIS ..... 26
C. WATER AND WASTEWATER UTILITY RATE SCHEDULE ANALYSIS ..... 27
V. TECHNICAL ANALYSIS ..... 28
A. UTILITY COST REDUCTION MEASURES ..... 28
B. DETAILED COMMISSIONING PLAN. ..... 46
VI. PROJECT FINANCIAL ANALYSIS ..... 58
VIII. APPENDICES ..... 55
A. UTILITY RATE SCHEDULES
B. DETAILED BACKUP CALCULATIONS \& COMPUTER INPUT/OUTPUT SHEETS
C. MANUFACTURER'S LITERATURE
D. DETAILED IMPLEMENTATION PLAN
E. OTHER SUPPORTING DOCUMENTS - Measurement \& Verification Plan

Utility Assessment Report of<br>Hays County, TX, 712 S. Stagecoach Trail<br>San Marcos, TX 78666<br>Contact: Mr. Clint Garza<br>Phone Number: (512) 393-2150

## I. EXECUTIVE SUMMARY

## A. BACKGROUND

PSI was selected by Hays County, TX on May 17, 2016, to begin developing a Utility Assessment Report for an Energy Savings Performance Contract for the following four Hays County sites:

- Government Center-712 S. Stagecoach Trail, San Marcos, TX 78666- Three story, 236,000 gross square foot courts and office building
- Court House - 111 E. San Antonio St, San Marcos, TX 78666 - Three story, 21,396 gross square feet office building
- Juvenile Detention - 2220 Clovis Barker Road, San Marcos, TX 78666 - One story, 43,222 gross square feet detention and office building
- Development Services - 2171 Yarrington Road, San Marcos, TX 78666 - One story, 14,058 gross square feet office building with vehicle maintenance shop
- Health Department - 401-A Broadway, San Marcos, TX 78667 - One story, 13,327 gross square feet health clinic
- Precinct 2-5458 FM 2770, Kyle, TX 78640 - One story, 14,174 gross square feet office and court building
- Precinct 3-200 Stillwater Drive, Wimberley, TX 78676-One story, 8,521 gross square feet office and court building
- Precinct 4 - 195 Roger Hanks Parkway \#3, Dripping Springs, TX 78620 - One story, 6,272 gross square feet office and court building
- Jacobs Well Natural Center - 830 Jacobs Well Road, Wimberley, TX 78676 - One story, 2,400 gross square feet office building
- Jail - 1307 Uhland Road, San Marcus, TX 78666 - One story, 83,306 gross square feet detention facility

Site audits were performed in May and June 2016.
Hays County objectives for this project are as follows:

- Energy and water savings
- Improve Government Center, server room space conditioning
- Replace fluorescent, incandescent and HID lighting with LED lighting
- Address occupant comfort and deferred maintenance at the Court House
- Water controls at Jail
- Web based building automation
- Renewable energy
- Minimize future operational and maintenance costs
- Cost effective renewable energy

This report documents PSI's findings and recommendations. The data presented herein includes engineering and financial analyses, and savings calculation methodology associated with each facility improvement and conservation measure that is recommended by PSI and approved by Hays County. The conservation measures recommended herein will result in the desired reduction in energy and water consumption through improved efficiencies, improved controls and related control strategies.

In addition to significant cost reductions attributable to electric, gas, water and wastewater utilities, the improvement measures recommended herein reduce emissions of greenhouse gases. Additionally, Hays County will benefit from a number of instances where PSI is including new equipment to replace or improve existing aged equipment infrastructure. These equipment replacements and additions eliminate the need for Hays County to devote resources to fund and procure such equipment repairs and replacements while benefiting Hays County's operations and reliability of services.

The following is a summary of the conservation measure types included in this project:

- LED lighting
- Power quality improvement
- Building controls
- Window restoration
- Heating Ventilating and Air Conditioning (HVAC) efficiency improvements
- Water efficiency
- Solar PV

Project Benefits:

1. Eliminate cost of repairs and replacement associated with the 29 year old 600 kW standby generator senving the Hays County Jail.
2. Effectively increase the amount of bond dollars available for the Hays County Jail expansion and remodel by including energy and water conservation scope (LED lighting, building automation system, new standby generator, water controls) within this project.
3. Improved space temperature control within court rooms on the third floor of the Government Center and within the server room located within the Government Center.
4. Increase the number of hours worked by staff at both the Development Services building and Government Center by having both buildings on standby generators.
5. Permit space temperature control within the Hays County Jail during power outages.
6. Reduced lighting operation and maintenance costs.
7. Improved occupant comfort within the Court House.
8. Improved maintainability of HVAC equipment at the Court House.
9. Eliminate cost of HVAC equipment repair and
10. Eliminate costly HVAC repairs and replacement at Court House.
11. Web based building automation systems at all buildings except Juvenile Detention. Web based building controls will facilitate remote control and troubleshooting of building HVAC systems.
12. Eliminates need for Hays County to spend approximately $\$ 45,000$ to upgrade JCI building automation system at the Government Center.

## B. BUILDINGS/FACILITIES ANALYZED

PSI has conducted a detailed assessment of energy assets and energy use for Hays County.

This study focuses on electricity and water as together they account for over 95 percent of the utility budget. PSI has identified areas for conservation and increased operational efficiencies. Although there are numerous facilities and sites that comprise Hays County, this study targeted the areas where energy savings and retrofits provide the greatest value and return on investments. The following table lists facilities assessed in this report.

TABLE 1A: List of Facilities Included in Report

|  | Facility Name | Use | HVAC \& Electrical Systems | Gross Area (SF) |
| :---: | :---: | :---: | :---: | :---: |
| GC | Government Center | Office | Mech: VAV package rooftop units with NG and electric heating. Elect: $480 \mathrm{~V}, 3 \phi$ Secondary single meter | 236,000 |
| CH | Court House | Office | Mech: Package and split systems. DX cooling and natural gas heating. Elect: $208 \mathrm{~V}, 3 \phi$ Secondary single meter | 21,396 |
| JD | Juvenile Detention | Corrections | Mech: Package and split systems. DX cooling and natural gas heating. Elect: $208 \mathrm{~V}, 3 \phi$ Secondary single meter | 43,222 |
| DS | Development Services | Office | Mech: Split systems. DX cooling and electric heating. Elect: 208 V, 3 $\phi$ Secondary single meter | 14,058 |
| HD | Health Department | Office | Mech: Split systems. DX cooling and electric heating. Elect: 208 V, $3 \phi$ Secondary single meter | 13,327 |
| P2 | Precinct 2 | Office | Mech: Split systems. DX cooling and electric heating. Elect: 208 V, $3 \phi$ Secondary single meter | 14,174 |
| P3 | Precinct 3 | Office | Mech: Split systems. DX cooling and electric heating. Elect: 208 V, $3 \phi$ Secondary single meter | 6,272 |
| P4 | Precinct 4 | Office | Mech: Split systems. DX cooling and electric heating. Elect: 208 V, $3 \phi$ Secondary single meter | 6,272 |
| JW | Jacobs Well Natural Center | Office | Mech: Split systems. DX cooling and electric heating. Elect: $240 \mathrm{~V}, 1 \phi$ Secondary single meter | 2,400 |
| J | Jail | Corrections | Mech: Package and split systems. DX cooling and natural gas heating. Elect: $480 \mathrm{~V}, 3 \phi$ Secondary single meter | 83,306 |

C. COMPOSITE PROJECT SUMMARY

| Matrix of Opportunities |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| , | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| Building | LED Lighting | Power Conditioning | Solar PV | Demand <br> Response | Retro-Cx \& BAS with Tridium front End | Water Controls | Window film | Window Restoration |  <br> Plumbing <br> Upgrades |
| Govemment Center | - | - | $\stackrel{\rightharpoonup}{*}$ | $\bullet$ | - | $\bullet$ |  |  |  |
| Court House | - | - |  |  | $\bullet$ |  | $\bullet$ | $\bullet$ | $\bullet$ |
| Juvenile Detention | $\stackrel{+}{*}$ | - |  | $\stackrel{\rightharpoonup}{*}$ |  |  |  |  |  |
| Development Services | - | - |  | - | $\bullet$ |  |  |  |  |
| Health Department | - | - |  |  | $\bullet$ |  |  |  |  |
| Precinct 2 | $\bullet$ | $\bullet$ |  |  | $\bullet$ |  |  |  |  |
| Precinct 3 |  | $\checkmark$ |  |  | - |  |  |  |  |
| Precinct 4 | - | - |  |  | - |  |  |  |  |
| Jacobs Well Natural Center | - | - |  |  | - |  |  |  |  |
| Jail | - | - | - | - | + | - |  |  | $\bullet$ |

Table 1 C: Summary of Project: Financial and Savings

| SUMMARY OF PROJECT |  |  |
| :--- | :--- | :--- |
|  | Total ${ }^{1}$ |  |
| kWh Savings: | $2,970,017$ | $\mathrm{kWh} / \mathrm{yr}$. |
| Demand Savings: | 7,537 | $\mathrm{~kW} / \mathrm{yr}$. |
| Gas Savings: | 7,864 | Therms/yr. |
| Btu Savings: ${ }^{2}$ | 35,239 | MMBtu/yr. |
| Water Savings: | 8,096 | $\mathrm{kGal} / \mathrm{yr}$. |
| Cost Savings: | 452,260 | $\$ / \mathrm{yr}$. |
| Base Year Cost Reduction: | $32 \%$ | $\%$ |
| Implementation Cost | $5,634,371$ | $\$$ |
| Payback Period | 12.5 | Years |

1. Building O\&M Savings identified for project justification are included in the total.
2. BTU savings should be calculated on the basis of source BTU's ( $11,600 \mathrm{BTU} / \mathrm{kWh}$ and $1,030,000 \mathrm{BTU} / \mathrm{MCF}$ )

This report identifies a wide variety of energy conservation measures. Taken collectively, these are the Utility Cost Reduction Measures (UCRM's) recommended by PSI. If implemented in the form recommended by PSI, these UCRMs will result in the savings and costs summarized above. The savings for the recommended composite project listed above account for interdependence of savings of individual UCRMs. Costs for the project likewise account for savings, which accrue from installing several UCRMs at once. All equipment, material, implementation planning and engineering costs for the recommended UCRM's are included and reflect all UCRM's being done at one time under a single construction project. PSI provides professionally managed, turnkey projects for customers and proposes this project as a single turn-key transaction although a number of subcontractors and vendors are involved and managed by PSI.
TABLE 1D Summary of Utility
Cost Reduction Measures and Project Totais


## II. GENERAL FACILITY DESCRIPTIONS

## A. FACILITY DESCRIPTION

The PSI audit team conducted on-site tours of all facilities included in the project as listed in Section 1 of this report and described in detail below. During the audit, PSI interviewed key staff members and building occupants to get a better understanding of each of the sites. PSI also met with Hays County staff and gathered information on current facility upgrade projects being implemented at the project sites. An overview of the facility upgrade projects being performed by other contractors within the project buildings follow:

## Government Center

- None


## Court House

- HVAC repair


## Juvenile Detention

- None


## Development Services

- None


## Health Department

- HVAC repair


## Precinct 2

- None


## Precinct 3

- Remodel

Precinct 4

- None


## Jacobs Well Natural Center

- None


## Jail

- Inmate monitoring upgrades

While a number of improvement opportunities are common across most Hays County facilities such as LED lighting, some facilities have specific improvement opportunities that are unique. PSI objective was to identify the least efficient facilities and focus on providing cost-effective solutions and improvements in keeping with the goals of Hays County while complying with requirements set
forth by Hays County and State Energy Conservation Office. In a number of instances the energy improvement measures will provide added "non-energy" benefits to Hays County.

In most facilities, only three utilities (electricity, water and waste water) exist. Natural gas is only present at the Government Center, Court House, Juvenile Detention, and the Jail. The City of San Marcos continues to be a regulated market. As such, the City of San Marcos is the electric provider for sites within the City. Please refer to Section 4 - Utility Rate Schedule Analysis for detailed explanation and discussion of PSI's approach for addressing electric utility costs.

CenterPoint and Wimberley Hydro supply natural gas at market-based price determined by the date of production.

Water and waste water services to Hays County facilities is supplied by the local city where the building resides. As with electricity and gas services, water costs for all included City facilities is in keeping with published tariffs and rates.

## B. BUILDING DESCRIPTIONS

The following tables provide detailed information gathered during our site audits of the facilities included within this project. Additional general information follows:

- Except for the detention facilities, the project buildings are occupied approximately 55 hours per week
- Except for the detention facilities, buildings are typically closed on government holidays and weekend
- The County's primary server room is located on the first floor of the Government Center
- The Courts are used mornings, Monday through Thursday except for holidays
- The number of personal computers in these buildings approximately equals the number of building staff
- Buildings are occupied by Hays County staff and visitors
- Electric space heat in most Hays County buildings
- Electric domestic water heaters in most Hays County buildings

|  | Page 10 |
| :--- | :--- |
| January 26, 2017 | Performance <br> Services |
|  |  |

Table 2A. Table of relevant information concerning each of the buildings included in this report.

| Building Name | Address | Function | Conditioned Area (Sf) | Number of Stories | Hactype | HVAC <br> Controls | Wall Construction Type | Typical Occupancy | Year of construction | To be Removed from Senice in Next 10 Yrs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Government Center | 712 S. Stagecoach Trail, San Marcos, TX 78666 | Office/Court Building | 236,000 | 3 | RTUs | JCI Metasy | Concrete Block | 450 | 2012 | No |
| Court House | 111 E. San Antonio St, San Marcos, TX 78666 | Office Building | 21,396 | 3 | 4-Trane Split Systems, 3Trane Package Units | Prog. T-Stat | Concrete Block | 30 | 1882 / 1908 | No |
| Juvenile Detention | 2220 Clovis Barker Road, San Marcos, TX 78666 | Correctional | 43,222 | 1 | 17-RTUS | Prog. T-Stat | Concrete Block | 90 | 2003 | No |
| Development Services | 2171 Yarington Road, San <br> Marcos, TX 78666 | Office Building | 14,058 | 1 | 13-Trane Split Systems | Prog. T-Stat | Concrete Block | 70 | 2011 | No |
| Health Department | 401-A Broadway, San Marcos, TX 78667 | Office Building | 13,327 | 1 | 5-Trane Split Systems | Prog. T-Stat | Concrete Block | 30 | 2002 | No |
| Precinct 2 | 5458 FM 2770, Kyle, TX 78640 | Office Building | 14,174 | 1 | 12-Trane Split Systems | Prog. T-Stat | Concrete Block | 50 | 2013 | No |
| Precinct 3 | 200 Stillwater Drive, Wimberley, TX 78676 | Office Building | 8,521 | 1 | 2-Split Systems, 5 Rooftop Units | Prog. T-Stat | Concrete Block | 30 | 2016 Remodel | No |
| Precinct 4 | 195 Roger Hanks Parkway \#3, Dripping Springs, TX 78620 | Office Building | 6,272 | 1 | 4-Trane Split Systems | Prog. T-Stat | Concrete Block | 25 | 2009 | No |
| Jacobs Well Natural Center | 830 Jacobs Well Road, Wimberley, TX 78676 | Office Building | $)^{2,400}$ | 1 | 1-Goodman Split System | Prog. T-Stat | Concrete Block | 4 | 2001 | No |
| Jail | 1307 Uhland Road, San Marcus, TX 78666 | Correctional | 83,306 | 1 | 30RTUs | Prog. T-Stat | Concrete Block | 426 | 1987 | No |

January 26, 2017
Table 2B: EQUIPMENT LIST The Tables below provide descriptions of all mechanical equipment and collection data regarding power use.


| Building Name: Court House |  |  | , |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Equipment Name | Quantify | Namephte Data | Slze | Field Measurament | Effclency | Annual Operating $\qquad$ Hours | Comment/ Condition/l Areaserved |
| Building Automation System | 1 | None | \% | - | NA | 8760 | Individual thermostats |
| Package Rooftop Unit | 3 | ¢. YSC Model | 32.5 tons |  | 11 EER | 3000 | Fair to good condition |
| Split System | 2 | Trane TWA Series | 15 tons |  | 11 EER | 3000 | Fair to good condition |
| Heat Pump | 2 | Trane TWA Series | 5 ton |  | 10 EER | 3000 | Fair to poor condition |
| Exhaust/Relief Fans | 2 | Horizontal Draw Through | <1 hp total |  |  | 8760 | Constant speed |



| Building Name: Development Services |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Equipment Mame | cuantity. | Namenlats data | S18\% | Field Mastuvernart | Efficiency | Annual Operating Hours | Comment/Condikinh/Aratserytid |
| Building Automation System | 1 | None |  |  | NA | 8760 | NA |
| Split System | 1 | Mitsubishi | 2 ton | d | 12 SEER | 8760 | Good candition |
| Split System | 2 | Trane and Sanyo | 1.5 ton | $\geqslant$ | 13 SEER | 8760 | Good condition |
| Split System | 1 | Trane | 2 ton | , | 14 SEER | 8760 | Good condition |
| Split System | 4 | Trane | 3 ton | \%. | 14 SEER | 8760 | Good condition |
| Split System | 1 | Trane | 3.5 ton | $\cdots$ | 14 SEER | 8760 | Goad condition |
| Split System | 3 | Trane | 4 ton |  | 14 SEER | 8760 | Good condition |
| Split System | 2 | Trane | 3 ton |  | 14 SEER | 8760 | Good condition |
| Split System | 1 | Aaon | 10 ton |  | 12 SEER | 8760 | Good condition |
| Area Heater | 4 | Electric Resistance Heater | Varies |  | 100\% (D) | 800 | Good condition |
| Shop Tools |  | Pnuematic \& Electric |  |  |  | 2000 | Good condition |
| Exhaust/Relief Fans | 3 | Horizontal Draw Throush |  |  |  | 8760 | Constant speed |
| Air Compresser | 1 | Two compressor |  |  | 89\% (D) | 2000 | Pnuematic controls |

## Page 13

| Building Name: Health Department |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Equipment Name | Quantity | Nameplate Data |  | Field Meacurement | Efficiency | Annual Operating Hours | Comment/Condition//Area Seved |
| Building Automation System | 1 | None |  |  | NA | 8760 | NA |
| Split System | 1 | Trane | 1.5 ton |  | 10 EER | 3500 | Fair condition |
| Split System | 1 | Trane | 3 ton | $\stackrel{\square}{4}$ | 10 EER | 3500 | Fair condition |
| Split System | 2 | Trane | 6 ton | 4 | 10 EER | - 3500 | Fair condition |
| Split System | 2 | Trane | 10 ton |  | 10 EER | 3500 | Fair condition |
| Split System | 1 | Trane | 12.5 ton | * | - 10 EER | 3500 . | Fair condition |
| Fume Hood | 1 |  |  | 4 |  | 50 | Good condition |
| Exhaust/Relief Fans | 2 | Horizontal Draw Through |  |  | NA | 8760 | Constant speed |



| Building Name: Precinct 3 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Equpment Nome | ouantry | Nomeplate Data |  | Field Merrusment | Efficiency | $\qquad$ | comment/Condition/Arentemed |
| Building Automation System | 1 | None |  |  | NA | 8760 | NA |
| Split System | 5 | Trane \& Lennox | 4 ton |  | 13 SEER | 3500 | Fair to good condition |
| Rooftop Unit | 2 | Trane | 4 ton |  | 13 SEER | 3500 | Constant speed |


| Building Name: Precinct 4 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Equipment Name | Cuantity | \#\#\#M Namenlate Data | slue | Fheld Mersurament | Efficiency | Annualoperating Hours | comment / Condition / Area Sorved |
| Building Automation System | 1 | None |  | \%) | NA | 8760 | NA |
| Split System / Heat Pumps | 6 | Trane | 3.5 ton |  | 13 SEER | 3500 | Fair to good condition |
| Exhaust/Relief Fans | 2 | Horizontal Draw Through | $\cdots$ |  | - NA | 8760 | Constant speed |




## Page 15

January 26, 2017

Performance Sen
C. UTILITY COST REDUCTION MEASURES (UCRMS)

| Matrix of Opportunities |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 1 | 2 | 3. | 4 | 5 | 6 | 7 | 8 | 9 |
| Building | LEDLighting | Power Conditioning | Solar PV | Demand Response | Retro-Cx \& BAS with Tridium Front End | Water Controls | Window Film | Window Restoration | HVAC $\&$ Plumbing Upgrades |
| Govemment Center | - | - | - | - | - | - |  |  |  |
| Court House | - | - |  |  | - |  | - | - | - |
| Juvenile Detention | - | - |  | - |  |  |  |  |  |
| Development Services | - | - |  | - | - |  |  |  |  |
| Heath Department | - | - |  |  | - |  |  |  |  |
| Precinct 2 | - | - |  |  | - |  |  |  |  |
| Precinct 3 |  | - |  |  | - |  |  |  |  |
| Precinct 4 | - | - |  |  | - |  |  |  |  |
| Jacobs Well Natural Center | - | - |  |  | - |  |  |  |  |
| Jail | - | - | - | - | - | - |  |  | - |

## D. UTILITY ANALYSIS METHODOLOGY

Performance Services has developed energy baselines from utility data provided by the Hays County. Electrical baselines were established by using 2015 utility data.

Energy savings were determined using standard engineering calculation spreadsheets and computer modeling using the latest version of eQuest (3.65). Concerning building simulation modeling, prior to calculating savings, baseline models were constructed that provided statistically valid baseline matches. Simulation models were constructed and used to model savings for the following buildings:

- Court House

Engineering calculation spreadsheets were used to determine energy savings in the following buildings:

- Government Center
- Court House
- Juvenile Detention
- Development Services
- Heath Department
- Precinct 2
- Precinct 4
- Jacobs Natural Resource Center
- Jail

Savings calculations within the Appendix include the following:

- LED lighting
- Power conditioning
- Solar PV
- Demand response
- Building Automation System/Retro-commissioning
- Water retrofits
- Window film
- Window restoration

The following table shows both existing and projected EUls.

## EUI Comparison Table

| Building |  |  |
| :---: | :---: | :---: |
| $\#$ | Name | Sq. Ft. w/o <br> Parking <br> Garages |
| 1 | Government Center | 236,000 |
| 2 | Court House | 21,396 |
| 3 | Juvenile Detention | 43,222 |
| 4 | Development Services | 14,058 |
| 5 | Health Department | 13,327 |
| 6 | Precinct 2 | 14,174 |
| 7 | Precinct 4 | 6,272 |
| 8 | Jacobs Well Natural Center | 2,400 |
| 9 | Jail | 83,306 |


| EUI |  |
| :---: | :---: |
| Existing Total <br> kBTU/SqFt/Yr | Projected <br> Total <br> kBTU/SqFt/Yr |
| 62 | 38 |
| 49 | 33 |
| 97 | 78 |
| 50 | 39 |
| 63 | 43 |
| 37 | 29 |
| 55 | 31 |
| 27 | 18 |
| 161 | 120 |

## III. BASE YEAR UTILITY CONSUMPTION DATA







This document contains Performance Services Trade Secrets and Confidential information to be used by the addressee for evaluating the PSI proposal. Addressee shall not disclose the Confidential information to third parties without written consent of Performance Services.





This document contains Performance Services Trade Secrets and Confidential information to be used by the addressee for evaluating the PSI proposal. Addressee shall not disclose the Confidential information to third parties without written consent of Performance Services.

## IV. UTILITY RATE SCHEDULE ANALYSES

## A. ELECTRIC RATE SCHEDULE ANALYSIS

Hays County has buildings located in various cities with buildings served by different utilities companies. The following is a description of current electrical charges by utility and building.

## NAME OF UTILITY: City of San Marcos

## RATE SCHEDULE ANALYZED: Commercial

## SUMMARY OF BILLING COMPONENT CHARGES:

## Electric Charges

| Energy Charge: | $\$ 0.077258$ | per kWh |
| :--- | :---: | :--- |
| Demand Charge: | $\$ 3.44$ | per kW |

## NAME OF UTILITY: City of San Marcos

## RATE SCHEDULE ANALYZED: Small Commercial

SUMMARY OF BILLING COMPONENT CHARGES:

## Electric Charges

## Energy Charge:

$\$ 0.077258$
Demand Charge:
$\$ 3.61$
per kWh
per kW

NAME OF UTILITY: Bluebonnet
RATE SCHEDULE ANALYZED: Commercial
SUMMARY OF BILLING COMPONENT CHARGES:

## Electric Charges

| Energy Charge: | $\$ 0.07650$ | per kWh |
| :--- | :--- | :--- |
| Demand Charge: | $\$ 4.50$ | per kW |

NAME OF UTILITY: Pedernales Electric
RATE SCHEDULE ANALYZED: Large Power
SUMMARY OF BILLING COMPONENT CHARGES:

## Electric Charges

Energy Charge:
$\$ 0.06893$
per kWh
Demand Charge:
\$3.38
per kW

NAME OF UTILITY: Pedernales Electric
RATE SCHEDULE ANALYZED: Small Power
SUMMARY OF BILLING COMPONENT CHARGES:

## Electric Charges

Energy Charge:
$\$ 0.08109$
per kWh
Demand Charge:
$\$ 0.00$
per kW

## AVOIDED COST OF ENERGY AND DEMEAND TO BE USED IN CALCULATIONS:

Electric rate components are based on energy ( kWh ) and also on demand ( kW ). For electrical avoided cost of energy, Performance Services is using the rates as defined in the rate structures above and summarized below.

Electric Rate for Gov. Center \& Jail

| Season | Cost per kW | Cost per kWh |
| :--- | :---: | :---: |
| Year Around | $\$ 3.44$ | $\$ 0.07726$ |

Electric Rate for Juvenile Detention

| Season | Cost per kW | Cost per kWh |
| :--- | :---: | :---: |
| Year Around | $\$ 4.50$ | $\$ 0.07650$ |

Electric Rate for Court House \& Health Department

| Season | Cost per kW | Cost per kWh |
| :--- | :---: | :---: |
| Year Around | $\$ 3.61$ | $\$ 0.07726$ |

Electric Rate for Precinct 2

| Season | Cost per kW | Cost per kWh |
| :--- | :---: | :---: |
| Year Around | $\$ 3.38$ | $\$ 0.06893$ |

Electric Rate for Development Services, Precinct 4 \& Jacobs Well

| Season | Cost per kW | Cost per kWh |
| :--- | :---: | :---: |
| Year Around | $\$ 0.00$ | $\$ 0.08109$ |

The utilities do not currently charge Hays County for low power factor fees. As such, power factor fee savings have not been included as avoided costs used in the project savings analysis.

## COMMENTS:

For future rate escalation purposes, Performance Services is using 2 percent per year for electricity.

## B. GAS UTILITY RATE SCHEDULE ANALYSIS

## NAME OF UTILITY: CENTERPOINT ENERGY

RATE SCHEDULE ANALYZED: Hays County MARKET RATE PLAN

## CENTERPOINT ENERGY RATE

The "rate plan" for natural gas supplied to Hays County buildings is comprised of three components in addition to taxes: Storage Inventory Charge; Base Charge; and the Gas Cost Adjustment Charge. All charges are consumption dependent and the Gas Cost Adjustment charge is determined based on market prices. The Gas Cost Adjustment charge in the largest component of the overall natural gas rate.

## AVOIDED COST OF ENERGY TO BE USED IN CALCULATIONS:

Since Hays County pays the same rate for natural gas at each of the project buildings, PSI has calculated the weighted average price paid for retail natural gas by Hays County during calendar year 2015 (January through June) excluding the flat service charges such as the Texas Gas Service Customer Charge. Natural gas rates used in this report by building follow:

| Equilding | Cost/CCF of NG |
| :---: | :---: |
| Government Center | $\$ 0.65$ |
| Court House | $\$ 0.65$ |
| Juvenile Detention | $\$ 0.65$ |
| Development Services | NA |
| Health Department | NA |
| Precinct 2 | NA |
| Precinct 4 | NA |
| Jacobs Well Natural Center | NA |
| Jail | $\$ 0.65$ |

Note that natural gas costs comprise only 3.2 percentage of Hays County utility costs at these four sites.
C. WATER AND WASTEWATER UTILITY RATE SCHEDULE ANALYSIS

NAME OF UTILITY: City of San Marcos Water Utility
RATE SCHEDULE ANALYZED: 2016 COMMERCIAL RATE SCHEDULE

## SUMMARY OF BILLING COMPONENT CHARGES:

2016 water volume rates for the City of San Marcos are shown in the table below. The applicable rate for the Facilities is $\$ 7.35$ per 1,000 gallons

CITY OF SAN MARCOS 2016 WATER RATES FOR COMMERCIAL CUSTOMERS


| $W$ | $0-13,000$ | $\$ 2.16$ |
| :---: | :---: | :---: |
| $W$ | $13,000-25,000$ | $\$ 6.49$ |
| $W$ | $>25,000$ | $\$ 7.35$ |

2015 wastewater volume rates for the City of Austin are shown below (Table 3). The applicable rate for the Facility is $\$ 8.82$ per 1,000 gallons. Only water discharged to the sanitary sewer is subject to the wastewater charge.

CITY OF SAN MARCOS 2015 WASTEWATER RATES FOR COMMERCIAL CUSTOMERS

| Ratexype | Sewer volunnes (crgaly | Sewer Rate ( $5 / 1,000$ gal) |
| :---: | :---: | :---: |
| w | All | \$6.93 |

AVOIDED COST OF WATER TO BE USED IN CALCULATIONS:

| Building |  | Cost per Unit |  |
| :---: | :---: | :---: | :---: |
| Name | Gross sq. ft. | Sewer (kgal) | Water (kgal) |
| Government Center | 236,000 | $\$ 6.93$ | $\$ 7.35$ |
| Jail | 83,306 | $\$ 6.93$ | $\$ 7.35$ |

## V. TECHNICAL ANALYSIS

## A UTILITY COST REDUCTION MEASURES

Table 5-1 identifies Utility Cost Reduction Measures (UCRM) that can be economically implemented as part of this guaranteed savings project for Hays County. These UCRMs provide a reduction in consumption while also addressing Hays County's need for necessary infrastructure improvements.

Table 5-1: Utility Cost Reduction Measures

| MeasureTyper | Utiliy Coss feduction Measure : |
| :---: | :---: |
| Electrical | LED Lighting |
|  | Power Conditioning |
|  | Demand Response |
| Renewable Energy | Solar Photovoltaics |
| Mechanical | Server Room Cooling Improvements |
|  | New HVAC Equipment |
| Building Envelope | Window Restoration/Film |
| Controls | New Building Automation System |
|  | Retro-Cx with Tridium Front End |
| Water | Water Controls \& Piping |

In addition to the savings associated with reduced energy consumption, Hays County will also expect to realize other important benefits, including:

- New standby generators at Jail and Development Services
- Adding Jail HVAC onto emergency power
- Replacement of failing HVAC equipment
- Water controls in Jail
- Renewable energy
- Improved lighting
- Improved comfort
- Improve control of space temperatures
- Reduced electrical system harmonics and less electrical surges

Project scope of work specifics follow:

UCRM NO.: 1

UCRM NAME: LED Lighting (Partial QECB Funded UCRM)

## SUMMARY DATA

All projects are analyzed in the dependent mode and in the following sequence:
Building loads, distribution systems, primary equipment, and utility management systems. All recommended UCRMs are assumed to be installed for dependency purposes.

| kWh Savings | $1,190,455$ | $\mathrm{kWh} /$ Year |
| :---: | :---: | :---: |
| Natural Gas Savings | 0 | Therms $/$ Year |
| Water Savings | 0 | $\mathrm{kgal} /$ Year |
| Cost Savings | $\$ 142,711$ | Per Year |
| Implementation Cost | $\$ 1,062,712$ |  |
| Simple Payback Period | 7.4 | Years |
| Est. Useful Life | 20 | Years |

## UCRM Description:

The dominant lighting system within these buildings is T-8 linear fluorescent. Within the jail, Hays County staff is slowly replacing the T-12 fluorescent lighting with T-8 fluorescent lighting as lamps and ballasts fail. The drawbacks to the existing lighting systems within the project buildings follow:

- T-12 lamps and ballasts are at or beyond end of useful life
- Fluorescent lighting systems are becoming obsolete
- Limited replacement parts in the future
- High lighting O\&M costs
- Relatively short lamp life

To address these issues, this measure considers replacement of the fluorescent, incandescent and HID lighting with LED lighting. Benefits include:

- High efficacy, low energy usage
- 50,000+ hour lamp life
- Ten year warranty on linear products and new fixtures
- Improved illumination levels
- Improved lighting controls to reduce operational hours

This measure also includes converting and/or replacing exterior fixtures with LED fixtures.

A detailed scope of work for this measure follows:

- Retrofit and/or replace 3,461 fixtures at Government Center
- Install approximately 21 occupancy sensors at Government Center
- Retrofit and/or replace 115 fixtures at Precinct 4
- Install approximately 0 occupancy sensors at Precinct 4
- Retrofit and/or replace 12 fixtures at Jacobs Well Nature Center
- Install approximately 0 occupancy sensors at Jacobs Well Nature Center

Qualified Energy Conservation Bond (QECB) funded portion of lighting scope:

- Retrofit and/or replace 324 fixtures at Court House
- Install approximately 0 occupancy sensors at Court House
- Retrofit and/or replace 515 fixtures at Juvenile Detention
- Install approximately 1 occupancy sensors at Juvenile Detention
- Retrofit and/or replace 277 fixtures at Development Services
- Install approximately 9 occupancy sensors at Development Services
- Retrofit and/or replace 162 fixtures at Health Department
- Install approximately 0 occupancy sensors at Health Department
- Retrofit and/or replace 289 fixtures at Precinct 2
- Install approximately 1 occupancy sensors at Precinct 2
- Retrofit and/or replace 15 fixtures at Jacobs Well Nature Center
- Install approximately 0 occupancy sensors at Jacobs Well Nature Center
- Retrofit and/or replace 1552 fixtures at the Jail
- Install approximately 0 occupancy sensors at the Jail
- Provide one percent spare lamps and/or drivers
- All material made obsolete during this work will be disposed of according to state and local requirements.

Savings were calculated using manufacturer data and spreadsheet calculations. Savings include lamp and ballast material only maintenance savings which are consistent with actual costs. Hours of operation are based on ANSI data for these building types and were fine-tuned by using operational loggers. Lighting documentation including saving calculations are included in the Appendix. Linear LED lamps, drivers and new fixtures will have a 10 year manufacturer's warranty.

UCRM NO.: 2

UCRM NAME: Power Conditioning

## SUMMARY DATA

All projects are analyzed in the dependent mode and in the following sequence:
Building loads, distribution systems, primary equipment, and utility management systems. All recommended UCRMs are assumed to be installed for dependency purposes.

| kWh Savings | 185,335 | $\mathrm{kWh} /$ Year |
| :---: | :---: | :---: |
| Natural Gas Savings | 0 | Therms $/$ Year |
| Water Savings | 0 | $\mathrm{kgal} /$ Year |
| Cost Savings | $\$ 15,207$ | Per Year |
| Implementation Cost | $\$ 179,200$ |  |
| Simple Payback Period | 11.8 | Years |
| Est. Useful Life | 20 | Years |

UCRM Description: Power quality issues can typically be summarized as follows:
Poor Power Factor caused by the inductive loads such as: electric motors, transformers, compact fluorescent lighting and high intensity discharge lighting. Inductive loads increase the amount of energy required by your electrical equipment to work properly, which in turn creates excess heat that reduces the efficiency and longevity of electrical equipment. Note that these devices will not cause the buildings to go into a lead power factor condition.

Harmonic Interference is caused by non-linear loads such as computers, fax machines, copiers, medical devices and variable frequency drives. Non-linear loads create heat that increases energy usage and damages electrical equipment causing an increase in repair, maintenance, and replacement costs.

Transient Surges \& Spikes are caused by turning equipment on and off, lighting, utility grid changes, and back-up power supplies. These conditions attack electrical equipment and also cause increased repair, maintenance, and equipment costs.

To address these issues, this measure considers installation of a total of approximately 19 power conditioners with modular capacitance (where applicable) to improve power factor making your motor load run cooler and more efficiently. This results in a reduction in energy consumption and an extension of the useful life of your motor load. The Power Conditioning System will also provide harmonic filtration to mitigate harmonic distortion and recycle waste energy resulting in reduced energy consumption which prolongs the longevity of electrical equipment.

Lastly, the Power Conditioning System with its industrial grade metal oxide varistors (MOVs) protects electrical equipment from transient electrical equipment.

A detailed scope of work for this measure follows:

- Installation of approximately 6 power conditioning panels at Hay's County Government Center
- Installation of approximately 3 power conditioning panels at Hay's County Juvenile Detention
- Installation of approximately 3 power conditioning panels at Hay's County Jail
- Installation of 1 power conditioning panel at each of the following buildings: Court House, Development Services, Health Department, Precinct 2, Precinct 3, Precinct 4, Jacob's Well Nature Center

Note that the Power Conditioners will be connected in parallel with the electrical system and will be installed at or near primary electrical loads within buildings, i.e. Chillers, data centers, large motors, etc. The Power Conditioners will not affect the operation of the electrical system. In the event of a significant surge or spike, the equipment will provide addition protect to electrical equipment.

Savings were calculated using a harmonic reduction spreadsheet calculator. Savings calculations were also performed by the manufacturer's representative.

## UCRM NO.: 3

UCRM NAME: Solar PV

## SUMMARY DATA

All projects are analyzed in the dependent mode and in the following sequence:
Building loads, distribution systems, primary equipment, and utility management systems. All recommended UCRMs are assumed to be installed for dependency purposes.

| kWh Savings | 987,790 | $\mathrm{kWh} /$ Year |
| :---: | :---: | :---: |
| Natural Gas Savings | 0 | Therms $/$ Year |
| Water Savings | 0 | $\mathrm{kgal} /$ Year |
| Cost Savings | $\$ 87,965$ | Per Year |
| Implementation Cost | $\$ 1,522,893$ |  |
| Simple Payback Period | 17.3 | Years |
| Est. Useful Life | 25 | Years |

## UCRM Description:

Hays County Government Center and Jail are both excellent candidates for solar power due to the large amounts of space, minimal shading and relatively high electric rates.

This measure includes installing an approximately 475 kW dc photovoltaic solar array on the roof of the Government Center and an approximately 210 kW dc photovoltaic solar array on the ground adjacent to the Jail. These sites have been selected for the following reasons:

- Large open ground spaces adjacent to buildings that can facilitate entire photovoltaic array or large open roof space
- "All-In" electric rate of approximately $\$ 0.095$ per kWh

Electrical generation with Photovoltaic (PV) Solar Energy for a secondary power supply on a facility is a proven energy saving strategy.

## PV System's Specifications

The following a summary of the solar PV system considered for this project:

- Size: 685 kW dc (nominal)
- Installation Location: On the roof of the Government Center and on the ground adjacent to the Jail. These systems will cover approximately 85,000 square feet and consist of approximately 2,045 modules.
- Modules: 335 or 325 watt poly crystalline modules that are UL and CEC listed and shall have a minimum of $16 \%$ efficiency
- Inverters: Four or more inverters having a minimum $96 \%$ CDC weighted efficiency
- Roof Mounting: Ballasted racking designed for 90 mph wind installed over roof separator sheet. Pricing based on roof not having to be structurally reinforced.
- Ground Mounting:
- Solar array output to be submetered
- Modules will come with a 25 year production guarantee of no more than $20 \%$ degradation by year 25
- Modules, inverters and ballasted racking shall have 10 year warranties

The annual renewable energy production is estimated at $1,081,680 \mathrm{kWh}$. Below is a sample graph showing a monthly energy production profile.

Sample Annual PV Energy Production (kWh)


Another bi-product of the PV system is the environmental benefits. For example, a $685 \mathbf{k W ~ d c ~ P V ~}$ system will offset 775 tons of carbon dioxide emissions per year. The amount of energy that the PV system will produce, could power 104 average American homes.

Annual energy production/savings was calculated using the National Renewable Energy Laboratory's PVWatts and HelioScope from Folsom Labs.

UCRM NO.: 4

UCRM NAME: Demand Response (QECB Funded UCRM)

## SUMMARY DATA

All projects are analyzed in the dependent mode and in the following sequence:
Building loads, distribution systems, primary equipment, and utility management systems. All recommended UCRMs are assumed to be installed for dependency purposes.

| kWh Savings | 0 | $\mathrm{kWh} /$ Year |
| :---: | :---: | :---: |
| Natural Gas Savings | 0 | Therms $/$ Year |
| Water Savings | 0 | $\mathrm{kgal} /$ Year |
| Cost Savings | $\$ 27,450$ | Per Year |
| Implementation Cost | $\$ 663,415$ |  |
| Simple Payback Period | 24.2 | Years |
| Est. Useful Life | 20 | Years |

UCRM Description:
Where most energy savings programs focus on saving amount of energy used, demand response focuses on reducing grid load. Utility companies must either provide instantaneous power for any load on the grid by increasing capacity at a large upfront cost or sustain blackouts for customers whenever load exceeds capacity. Utilities and regulators have systems in place to reward power users for reducing their peak load during high demand times.

ERCOT in cooperation with utilities throughout Texas offers a demand response program that allows customers to be paid an incentive of being willing and able to reducing electrical load during peak load periods. Program participants receive notice before each use reduction, or curtailment, event. The qualified scheduling entity (QSE)/ERCOT will deliver event start and stop times to you via email, text message, or both, depending on your preference.

Although curtailment events are rare, they can occur any time of the day or year. Note that Hay's County will be paid for program participation whether or not a curtailment event occurs.

Simple participation strategies include:

- Demonstrate demand response capacity once a year
- Sign up with ERCOT through QSE in four month increments
- During a curtailment event, reduce building demand within 10 or 30 minutes from time of call by using standby generator to pick up building load
- Run standby generators until curtailment event is over

The following is a summary of the scope of this measure:

- Add remote start/stop controls and notification to 750 kW standby generator at Government Center and an automatic transfer switch to power additional building load
- Add remote start/stop controls and notification to 125 kW standby generator at Juvenile Detention
- Replace existing 600 kW standby generator at Jail with a new 600 kW standby generator with remote start/stop controls and notification. Scope to include new automatic transfer switch and distribution panel which will allow the new generator to power building HVAC loads as well as life safety loads
- Install new 100 kW standby generator at Development Services with remote start/stop controls and notification. New generator to power office building and diesel pumps.
- Train staff on ERS demand response process

UCRM NO.: 5

UCRM NAME: Retro-commissioning and Building Automation System with Tridium Front End

## SUMMARY DATA

All projects are analyzed in the dependent mode and in the following sequence:
Building loads, distribution systems, primary equipment, and utility management systems. All recommended UCRMs are assumed to be installed for dependency purposes.

| kWh Savings | 587,793 | kWh/Year |
| :---: | :---: | :---: |
| Natural Gas Savings | 0 | Therms $/$ Year |
| Water Savings | 0 | kgal/Year |
| Cost Savings | $\$ 47,056$ | Per Year |
| Implementation Cost | $\$ 868,835$ |  |
| Simple Payback Period | 18.5 | Years |
| Est. Useful Life | 20 | Years |

UCRM Description:
This UCRM proposes to implement a retro-commissioning program at the Government Center. This program will combine aspects of controls optimization, retro-commissioning, and new construction commissioning. The following standards of comfort and control strategies will be applied:

## Cooling

Setpoint
Occupied Cooling Setpoint
Occupied Cooling Setpoint Unoccupied Cooling Setpoint

## Heating

Setpoint
Occupied Heating Setpoint
Occupied Heating Setpoint Unoccupied Heating Setpoint

Default Value
$74^{\circ} \mathrm{F}$ (Except $3^{\text {rd }}$ floor court rooms)
$69^{\circ} \mathrm{F}$ (3rd floor court rooms)
$90^{\circ} \mathrm{F}$

Default Value
$70^{\circ} \mathrm{F}$ (Except $3^{\text {rd }}$ floor court rooms)
$67^{\circ} \mathrm{F}$ (3rd floor court rooms)
$50^{\circ} \mathrm{F}$

- Optimize use of natural gas heating
- Optimize use of outdoor air using CO2 sensors and occupancy schedule
- Reset minimum VAV box airflows from $40 \%$ to $20 \%$
- Identify failed sensors and HVAC equipment

Additionally, this measure includes replacing the existing JCI Metasys user interface with a new Tridium user interface. Project details follow:

1. Replace JCI NAE controllers with JACE controllers
2. Convert Metasys databases into a database that fits into the Tridium JACE FX platform by using your current DDL files
3. Create new web based user interface that will be accessible from iOS and Andriod devices as well as Apple computers and Windows based PCs
4. Integrate in other Hays County building automation systems being installed as part of this project
5. Replace approximately 40 temperature sensors with temperature sensors with system override buttons

## HVAC Modifications

Currently the Hays County Government Center third-floor courtrooms must be set to 67 degrees Fahrenheit to maintain a comfortable temperature. Also in the Courthouse there are two units that are beyond their useful lives and two units in very confined spaces. To correct these issues new HVAC equipment would need to be installed.

In the Hays County Government Center third-floor we interviewed staff and found that the HVAC would not respond to increases in temperature based on full occupancy. Running multiple calculations we confirmed that if the spaces were full to capacity, space temperature would drift up into uncomfortable temperatures. To resolve this PSI will replace 18 VAV boxes with larger boxes, rebalance the third-floor and reset min/max airflow throughout the third-floor.

Energy savings calculations are documented in the appendix and additionally were calculated using engineering spreadsheet and checked using the latest version of eQuest (3.64). Prior to calculating savings, baseline models were constructed that provided statistically valid baseline matches.

## Server Room Modifications

The Government Center IT Server room is served by three Data Aire split-systems which provide space cooling to the IT Server room. Although cooling capacity is sufficient the diffusers suppling the air and return grilles are designed to cool the space not the server racks. This creates hot and cold spots throughout the server room and requires the space to be over cooled.

By changing the diffusers and changing the current server racks with racks designed to provide laminar air-flow through the server's, hot spots will be reduced providing better server performance and safety for the county's valuable server capacity.

Three sets of racks will need to be changed at a time to provide continuous service for the County. The County will need to provide for disconnecting, moving and reconnecting all components in each rack.

Lastly, this measure includes repairing of exterior refrigerant line insulation.

Training will be provided by PSI to County personnel to properly follow the requirements of using the new server racks.

Energy savings, albeit relatively small, will result from this design change. The primary purpose for making this design change is to minimize the risk of server overheating and downtime.

## Building Automation System Description

The HVAC systems at the following buildings are controlled by standalone programmable thermostats:


This measure replaces the existing obsolete thermostats, with a native BACnet, smart thermostats that function as a simplified building automation system (BAS). These smart thermostats will be integrated into a common Tridium user interface along with the BAS serving the Government Center. Native BACnet thermostats will be installed at the following buildings:

- Court House (Seven new stats and three averaging temperature sensors)
- Development Services (13 new stats)
- Health Department (Five new stats)
- Precinct 2 ( 12 new stats)
- Precinct 3 (Seven new stats)
- Precinct 4 (Four new stats and two averaging temperature sensors)
- Jacob's Well Natural Center (One new stat)

At these sites, existing thermostats will be removed from the building except for server room thermostats. The new smart thermostats/BAS will provide for scheduling, trending, alarms and graphics of the equipment in the building. The scope of this upgrade includes the installation of smart thermostats for the equipment listed below:

- 41 Split systems 2.5 tons and larger
- Three Package rooftop units

The scope of this measure at the Hays County Jail includes replacing existing thermostats with a comprehensive, native BACnet BAS. This new BAS will have a Tridium user interface and will be integrated into a multiple building Tridium front end.

Energy savings will be realized through temperature set-point adjustments and optimized equipment operation according to occupancy and load conditions. The proposed BAS system will be capable of providing all commonly used energy conservation control strategies. The types of energy management and control sequences to be employed include:

## Optimized Mechanical System Schedules

The air handling units are currently operating $24 \times 7$ to maintain the desired temperatures in each area. The new BAS will enable scheduling of equipment to reduce operating hours while still maintaining the building comfort during occupied times. Unoccupied times for each day will be identified by Hays County staff and trends will be utilized to ensure set points are achieved at the start of each occupied period.

## Space Temperature Set-point Scheduling

The required space conditions in the buildings can be changed based on the occupancy schedule. During periods when the building is unoccupied, the set-points would be adjusted to a level so that desired space conditions can be recovered at the beginning of the next occupancy period. This ECM will work with the building management groups to clearly define both the occupancy schedules and space conditions that should be maintained for each building area. The BAS will maintain the setpoints and schedules.

During unoccupied periods, the HVAC equipment will operate only when required to maintain conditions at the unoccupied set-point. Additionally, exhaust fans will only be operated during occupied periods.

Outside air ventilation will be eliminated during unoccupied periods. Optimum start routines will be used to delay the recovery period as long as possible based on outdoor air conditions and historical performance data.

| Cooling |  |
| :--- | :--- |
| Setpoint | Default Value |
| Occupied Cooling Setpoint | $74^{\circ} \mathrm{F}$ |
| Unoccupied Cooling Setpoint | $90^{\circ} \mathrm{F}$ |
|  |  |
| Heating |  |
| Setpoint | Default Value |
| Occupied Heating Setpoint | $70^{\circ} \mathrm{F}$ |
| Unoccupied Heating Setpoint | $50^{\circ} \mathrm{F}$ |

## Comprehensive BAS - Additional Features at Jail (Control of 30 RTUs)

## Economizer Control

Some of the existing air conditioning units are equipped to use outside air for cooling when outdoor air conditions permit, however, not all of these units operate properly. The BAS would take over this control so that the system will monitor the outdoor air conditions and modulate the outdoor air and return air dampers to provide a mixed air temperature acceptable for cooling conditions. Economizer control would be done by monitoring outdoor air temperature. When outdoor temperature is below $55^{\circ} \mathrm{F}$, economizer control is enabled, the outdoor air and return dampers are positioned to maintain a $55^{\circ} \mathrm{F}$ mixture, and the mechanical cooling is disabled or at least minimized.

## Supply Air Temperature Reset

Space temperature will be maintained by supply air temperature reset. Use of supply air temperature reset can increase comfort levels and save energy.

## Demand Controlled Ventilation

Existing air conditioning unit outdoor air dampers have minimum position settings to bring in minimum outdoor air for ventilation based on the design maximum number of people in the area served by the system on a continuous basis. Installation of carbon dioxide sensors in the space or return air will allow control of outdoor air dampers to provide the required amount of ventilation air to maintain the level of carbon dioxide (CO2) below the recommended level. Outdoor air will be adjusted to the required amount for the number of people in the conditioned area on a real time basis. Heating and cooling of excess outdoor air will be eliminated, therefore yielding substantial savings.

## Controlled Bulding Exhaust

Existing building exhaust fans operate 24 hours per day, seven days a week throughout the year. During unoccupied periods when building HVAC systems are off, operation of building exhaust fans results an excessive and uncontrolled infiltration of outdoor air.

The BAS will be used to control the five primary exhaust fans so that they only operate when building HVAC systems are in use.

## Temperature Averaging at Court House

Hays County Courthouse has been retrofit with an air-conditioning system which is split into several zones. Each zone provides heating and cooling as needed, however the zones include tenants with different cooling needs. As a result, one tenant may be hot and another cold. By installing four additional temperature sensors and averaging the temperature within these zones, occupants can work in a more comfortable environment, without the need to over-cool the space and use electric heaters for individual comfort. It is important to point out that while temperature averaging will help address comfort issues, it will not completely resolve them. To completely address comfort issues, additional zoning would need to be added within the Court House.

UCRM NO.: 6
UCRM NAME: Water Controls

## SUMMARY DATA

All projects are analyzed in the dependent mode and in the following sequence:
Building loads, distribution systems, primary equipment, and utility management systems. All recommended UCRMs are assumed to be installed for dependency purposes.

| kWh Savings | 0 | kWh/Year |
| :---: | :---: | :---: |
| Natural Gas Savings | 7,864 | Therms $/$ Year |
| Water Savings | 8,096 | kgal/Year |
| Cost Savings | $\$ 105,293$ | Per Year |
| Implementation Cost | $\$ 680,035$ |  |
| Simple Payback Period | 6.5 | Years |
| Est. Useful Life | 20 | Years |

## UCRM Description:

Domestic plumbing fixtures assessed during the facility survey included toilets, urinals, lavatory faucets, kitchen/break room faucets, showerheads, and custodial faucets. This survey included a count of the plumbing fixtures, measurements of the flow rates or flush volumes, and identification of leaks or defects.

Based on the water balance and observations during the water efficiency survey, we identified several opportunities for water savings and developed recommendations for achieving these savings.

## Government Center Scope of Work

High Efficiency Urinal (HEU) Retrofit
Recommendation: HEUs are available that use a maximum of one pint per flush ( 0.125 gpf ), or $87.5 \%$ less water than standard 1.0 gpf urinal. With the passage of the 1992 Energy Policy Act, 1.0 gpf urinals became the standard in the United States. New Standards developed by the EPA WaterSense Program are being adopted by the majority of plumbing manufacturers. PSI recommends 0.125 gpf over waterless urinals because of possible sediment and other maintenance issues that arise with waterless urinals.

The recommendation involves removal of 17 high flow ( 1.0 gpf )) urinal flush valves with 0.5 gpf valves, which is necessary to ensure that the fixtures work with maximum efficiency.

Failure to install the correct valve can result in sedimentation of the drain line and other components.

## High Efficiency Lavatory Faucet Aerator Retrofit

Recommendation: High efficiency aerators for lavatories typically use 0.5 gpm or less. The recommended action involves replacing 111 lavatory faucet aerators that have a flow rate of 2.2 gpm or greater with new high efficiency aerators having flow rates of 0.5 gpm or less.

## High Efficiency Utility Faucet Aerator Retrofit

Recommendation: High efficiency aerators for utility faucets typically use 1.5 gpm . This recommended action involves installing four high efficiency aerators that have a flow rate of approximately 2.43 gpm on kitchen/break room faucets. It is recommended that the faucets be fitted with high efficiency aerators with flow rates not to exceed 1.5 gpm .

## High Efficiency Kitchen Faucet Aerator Retrofit

Recommendation: High efficiency aerators for kitchens and break rooms typically use 1.5 gpm . The recommended action involves installing 19 high efficiency aerators that have a flow rate of 2.2 gpm on kitchen/break room faucets. It is recommended that the faucets be fitted with high efficiency aerators with flow rates not to exceed 1.5 gpm .

## Hays County Jail Scope of Work

## High Efficiency Toilet (HET) Retrofit

Recommendation: HETs use a maximum of 1.28 gpf , or approximately $60 \%$ less than the standard 3.5 gpf toilets. With the passage of the 1992 Energy Policy Act, 1.6 gpf toilets became the standard in the United States. The State of Texas now requires all toilets sold on or after January 1, 2014 to operate at 1.28 gpf or less.

The recommendation involves removal of all existing toilets with flush volumes of 1.6 gpf or greater and replacement with HETs (a total of 15 toilets). This recommendation includes replacing all porcelain and flush valves, which is necessary to ensure that the fixtures work with maximum efficiency.

## High Efficiency Detention Flush and Lavatory Valve (HEDFR) Retrofit

Recommendation: HEDFRs use a maximum of 1.6 gpf , or approximately $55 \%$ less water than the standard 3.5 gpf toilets.

The recommendation involves installation of an intelligent plumbing system having three (3) basic components on 155 toilets/Lavatories and 54 showers:

1. Controller
2. Pressure Activated Sensor
3. Valve (Lavatory, Flush, Shower, Etc.)

The electronic controller is the master control device in the water conservation system. It uses a microprocessor that's programmed at the factory with run-times, delays, lockout periods, etc., all designed to discourage misuse and conserve water. Savings are seen in the reduction of: Water used; sewage costs; and costs attributed to vandalism. A total of six remote control stations are included in this scope.

The pressure activated sensors, commonly called "buttons", have a housing made of solid stainless steel with the pressure activation circuitry potted and completely waterproof. The sensor is activated when 4-12 oz. of pressure is applied to the face of the button.

The valves can adapt to existing plumbing systems or can be piped in for new applications. Flush valves can be located remotely while maintaining proper gallons per flush requirements.

## High Efficiency Lavatory Faucet Aerator Retrofit

Recommendation: High efficiency aerators for lavatories typically use 0.5 gpm or less. The recommended action involves replacing 32 lavatory faucet aerators that have a flow rate of 2.2 gpm or greater with new high efficiency aerators having flow rates of 0.5 gpm or less.

Water savings were calculated using engineering spreadsheets. Prior to calculating savings, baseline models were constructed that provided statistically valid baseline matches.

## UCRM NO.:

UCRM NAME: Window Film (QECB Funded UCRM)

## SUMMARY DATA

All projects are analyzed in the dependent mode and in the following sequence:
Building loads, distribution systems, primary equipment, and utility management systems. All recommended UCRMs are assumed to be installed for dependency purposes.

| kWh Savings | 9,152 | $\mathrm{kWh} /$ Year |
| :---: | :---: | :---: |
| Natural Gas Savings | 0 | Therms $/$ Year |
| Water Savings | 0 | $\mathrm{kgal} /$ Year |
| Cost Savings | $\$ 752$ | Per Year |
| Implementation Cost | $\$ 42,302$ |  |
| Simple Payback Period | 56 | Years |
| Est. Useful Life | 20 | Years |

## UCRM Description:

PSI will work with Hays County and the historical society to install window film that meets the aesthetic requirements of the Court House. This measure considers installing a high performance, clear window film. However, where the County has covered windows with black tarp in order to minimize glare, PSI recommends installing high performance, tinted window film to maintain acceptable working environments.

The Hays County Courthouse windows are historic, clear single pane glass. Compared to modern windows, these windows do not reject as much solar heat and have a higher emissivity (materials effectiveness in emitting energy as thermal radiation). Window glass is by nature highly thermally emissive. To improve thermal control (insulation and solar optical properties), window film will be applied to a total of 185 window panes. Window film will not be installed on a total of 16 window panes to prevent potential damage to windows with wire in the glass.

Benefits include energy savings as well as improved occupant comfort. Training will be provided by PSI to county personnel to properly maintain the window film.

Energy savings were calculated using the latest version of eQuest (3.64). Prior to calculating savings, baseline models were constructed that provided statistically valid baseline matches.

UCRM NO.: 8

UCRM NAME: Window Restoration (Owner Buy Down UCRM)

## SUMMARY DATA

All projects are analyzed in the dependent mode and in the following sequence:
Building loads, distribution systems, primary equipment, and utility management systems. All recommended UCRMs are assumed to be installed for dependency purposes.

| kWh Savings | 3,480 | $\mathrm{kWh} /$ Year |
| :---: | :---: | :---: |
| Natural Gas Savings | 0 | Therms $/$ Year |
| Water Savings | 0 | $\mathrm{kgal} /$ Year |
| Cost Savings | $\$ 307$ | Per Year |
| Implementation Cost | $\$ 374,843$ |  |
| Simple Payback Period | 1223 | Years |
| Est. Useful Life | 50 | Years |

UCRM Description:
The Hays County Courthouse has very old windows that in many cases no longer open, and in some cases the glass has begun to fall out and are in generally poor condition. Below is a condition report from the survey.

Current Condition: Window sashes, jambs and sills vary in condition throughout the building. There is significant air infiltration throughout, no weather stripping, gaps at sills and sashes, significant paint and glazing failure, loose glass, missing/broken hardware, and many sashes do not function. There is significant wood rot in many sashes and sills.

Restoration Methodology and Scope of Work: Sashes, inner stop and parting bead will be removed and transported to the restorer. The current blinds will be removed at this time, labeled and stored onsite. The window openings will be sealed using plywood. Once sashes are removed the window jambs will be thoroughly examined. Window jamb and sill repairs will be done onsite.

Window jamb, window sill prep and paint will be completed while sashes are removed. In the shop, sashes and stop will be placed in a steam oven to remove all paint and glazing; then sanded, primed, painted, glazed and slotted for weather stripping. A borate based preservative (Boracare) will be applied to all bare wood prior to paint application. This will minimize the risk of future rot or pest damage to the wood. New concealed interlocking weather stripping will be installed when the sashes are reinstalled - this will seal each sash at sides, bottom and meeting rail to minimize air and noise infiltration and allow for normal function of the window.

Sashes will be installed with some new parting bead and original inner stop. Window jamb and brick mold will be painted but not interior window trim. Existing sash chain will be reused. Only the bottom sash will function, the top sash will be fixed. The workmanship will be warrantied for 10 years to exclude paint and glazing. Warranty from subcontractor.

Scope includes restoration of 89 windows at the Hays County courthouse.
Energy savings, albeit small, from this restoration will result from less infiltration. Other key benefits include: Minimized safety risk of broken or falling glass; Restoring windows before deterioration beyond point of repair.

UCRM NO.: 9

UCRM NAME: HVAC \& Plumbing Upgrades (QECB Funded UCRM)

## SUMMARY DATA

All projects are analyzed in the dependent mode and in the following sequence:
Building loads, distribution systems, primary equipment, and utility management systems. All recommended UCRMs are assumed to be installed for dependency purposes.

| kWh Savings | 6,012 | kWh/Year |
| :---: | :---: | :---: |
| Natural Gas Savings | 0 | Therms/Year |
| Water Savings | 0 | kgal/Year |
| Cost Savings | $\$ 530$ | Per Year |
| Implementation Cost | $\$ 240,136$ |  |
| Simple Payback Period | 453 | Years |
| Est. Useful Life | 20 | Years |

## UCRM Description:

In the Courthouse, there are two (2) 7.5 split-system units that serve the basement area and IT servers in this building that are over 15 years old and are beyond their recommended useful life. There are also two (2) 15 ton split-systems that serve primarily the second floor that are very difficult to service due to the very limited access to these units. Additionally, these units have become relatively expensive to maintain due to various mechanical system failures over the last two years.

This measure considers replacing the four split-systems with new, high efficiency units having the same nominal cooling/heating capacities. Additionally, PSI recommends installing AC-1 and AC-2 new air handling units in the open ceiling space to improve maintainability.

Training will be provided by PSI to county personnel to properly maintain equipment installed.
Additionally, this measure includes replacing 16 old copper $p$ traps with new copper $p$ traps at the Jail. Replacement is need to due to pipe age and condition.

Energy savings were calculated using the latest version of eQuest (3.64). Prior to calculating savings, baseline models were constructed that provided statistically valid baseline matches.

|  |  |  |  |  |  | \% Savings | somite Natural Cas (CCF) | \% Savings | WaterNW (kgai) | \% Savings |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Buriding Name \& UCRHs | Gross Syt | Electricity ( WWh ) | Natural Cas <br> (CCF) | Waterww (kgal) |  |  |  |  |  |  |
| Gowmmot Coxter Totale | 233,000 | 4,195,000 | 343 | 112 |  | 40\% |  | 10\% | 404 | 45 |
| Heplifing |  |  |  |  | 411068 |  | - |  | $\underline{\square}$ |  |
| 2Poma Conditioning |  |  |  |  | 113721 | 4 | $\stackrel{1}{4}$ |  | \% |  |
| 3 Sodar N |  | - |  |  | 688,750 | 4 | \& | , | 4 |  |
| 4Denand Resporse |  | - | + |  | $\square$ | 4 |  | $\underline{4}$ |  |  |
| 5 RReta Commisioning 8 BAS |  |  |  |  | 480,032 |  | 4 | 4 |  | \% ${ }^{\text {x }}$ |
| 6.Werer Camos |  |  |  |  |  |  | 335 | \% | 408 |  |
| Court House Totals | 21,396 | 271,680 | 1,265 | 46 | 101,864 | 37\% |  |  |  |  |
| 1.LED Lighting |  |  |  |  | 54,324 |  |  |  |  |  |
| 5-Reto-Carmisisioning \& BAS |  |  |  |  | 28,836 |  |  |  |  |  |
| 8 8.Window Ressoration |  |  |  |  | 3,480 |  |  |  |  |  |
| 7.Window Film |  |  |  |  | 9,152 |  |  |  |  |  |
| و HVAC Upyrades |  |  |  |  | 6,012 |  |  |  |  |  |
| Jumenis Dotertion Totats | 43,22 | 815,616 | 13,093 | 2,477 | 233,14 | 20\% | $\pm$ |  |  |  |
| 1-EED Lighting |  |  |  | , | 211,180 |  |  |  |  |  |
| 2 2Pmar Condifioning |  |  |  |  | 21,963 |  |  |  |  |  |
| 4Demand Resporse |  | \% |  |  | 4 |  |  |  |  |  |
|  |  |  | - |  |  |  | 4 | 4 | R |  |
| Deveropprment Services Totals | 14,058 | 206,200 |  | 84 | 46,859 | 23\% |  |  |  |  |
| 1-LED Lighting |  |  |  |  | 46,859 |  |  |  |  |  |
| 5-Reto-Cormissioning \& BAS |  |  |  |  |  |  |  |  |  |  |
| Haslith Departman Todss | 13,37 | 24338 | , | 84 | 75,49 | 31\% |  | $\underline{1}$ |  |  |
| 1.ED ligiting |  |  |  |  | 33,579 |  |  |  | \% |  |
| 5Retococomisioning \& BAS |  | $\square$ |  |  | 41,900 | 4 |  | 4 | $\underline{\square}$ |  |
| Precinct 2 Totals | 14,174 | 154,234 |  | 56 | 34,786 | 23\% |  |  |  |  |
| 1-LED Lighting |  |  |  |  | 34,786 |  |  |  |  |  |
| 5-Reto-Commissioning \& BAS |  |  |  |  |  |  |  |  |  |  |
| Precinct 4 Totels | 6,222 | 101,000 |  | 75 | 45,188 | 4\% | 4 | - |  |  |
| 1-1ED Lgting |  |  |  |  | 19,467 |  | - | 4 |  |  |
| SReta Commisioning 8AS | $\cdots$ |  |  |  | 25749 |  | Hix | - | - | 4 |
| Jacobs Well Totals | 2400 | 19,000 |  | 115 | 5,993 | 32\% |  |  |  |  |
| 1-EED Ligtring |  |  |  |  | 5,993 |  |  |  |  |  |
| 5-Reto-Commissioning \& BAS |  |  |  |  |  |  |  |  |  |  |
| Jall lotalk | 83,305 | 1,981, 220 | 868,100 | 17,500 | 733,155 | 3\% | 8,34 | 1\% | 7,855 | 45\% |
| H 160 Ligting |  |  |  |  | 374,198 | $\underline{1}$ | $\pm$ | $\underline{4}$ | \% | , |
| 2 fomar Conotiforing |  |  | $\stackrel{1}{2}$ |  | 49,651 | 4 |  | $\stackrel{1}{4}$ | 4 | 4 |
| 5 Ferto Cormissoinin \& BAS |  | , |  |  | 11,306 | \% |  |  | $\underline{0}$ | 4 |
| 6-6tar Catiols | , |  |  | $\square$ |  |  | 834 | 4 | 7.875 | 4 |
| 3 Sodar PV |  |  |  |  | 299,040 | 4 | $\underline{1}$ | $1 \times$ | \% |  |

## B. DETAILED COMMISSIONING PLAN

## Systems Start-up and Commissioning \& Operating Parameters

### 1.0 General

Performance Services shall commission the UCRMs, including major equipment and systems, to ensure they are set up to operate as intended and as required to achieve the guaranteed savings. During the final design and construction phases, Performance Services shall develop testing, commissioning and start-up procedures for the equipment, components and systems installed for the UCRMs. These procedures shall be in accordance with the manufacturers' guidelines, system performance objectives, and sequences of operation. Additionally, Performance Services will provide training and instruction for the operation and maintenance of the UCRMs.

Performance Services will provide and be responsible for the commissioning and start-up of all UCRMs at Hays County. This is accomplished as a continuation with the same team that developed, constructed and engineered the project. Commissioning is the act of statically and dynamically testing the installed equipment and systems, making sure the installed systems work and perform as they were designed. Although a simple concept, it is often overlooked but tremendously important. Because we guarantee energy savings, Performance Services has a vested interest that all systems, equipment, and controls work as designed and produce the intended results. The commissioning planning process begins during project development phase and is finalized during the implementation phase.

Performance Services believes that commissioning is a team activity, involving not only the Performance Services personnel, but also the customer's personnel, manufacturer's representatives, control technicians and the appropriate subcontractor. The commissioning plan is a valuable tool - for both Performance Services and all Hays County stakeholders involved with the project. It will accomplish the following:

- Verify compliance with specific equipment installation requirements and UCRM design intent
- Verify compliance with a facility's specific performance requirements
- Establish UCRM functional testing protocol and parameters
- Identify unique or seasonal testing requirements
- Coordinate testing requirements for M\&V purposes
- Verify completion of commissioning activities and customer concurrence as appropriate

During the Construction Phase, Performance Services will finalize a detailed commissioning plan specific to the UCRMs selected by Hays County. Performance Services' commissioning is a comprehensive process that is an integral part of the design, construction, and operational phases of a project. It will, at a minimum, confirm that the systems and equipment installed by Performance Services fully function as intended and as designed.

The procedures, methods, documentation, and signoff requirements in the plan shall cover each phase of the commissioning process from pre-design through final acceptance and post-occupancy. All equipment will be fully tested and operationally verified in accordance with the manufacturer's operating parameters, requirements and recommendations. Additionally, Performance Services may utilize an authorized manufacturer's representative or qualified consulting engineer, to inspect and approve
system installation for major equipment items (i.e., air valves, fan-walls, chillers, VAV terminal units, VSDs, controls, etc.).

## Overview of Commissioning Process

Commissioning $(C x)$ is a systematic process of ensuring that all building systems perform interactively according to the design intent and the UCRM performance requirements. This is achieved through a complete commissioning process; beginning at the design phase with documented design and operating intent and continuing through construction and acceptance phases, with actual verification of performance.

Commissioning activities during the design phases are intended to achieve the following specific objectives:

- Provide a plan for the implementation of the commissioning process, including the initial scope of systems to be commissioned for the project.
- Ensure that the design and operational intent are clearly documented.
- Provide a design review focusing on system performance, maintainability, and adherence to UCRM performance requirements.
- Ensure that commissioning for the construction phase is adequately reflected in the bid documents.
- Ensure the various members of the commissioning team clearly understand their responsibilities in their commissioning roles.
- Ensure the applicable equipment and systems are installed properly and receive adequate preoperational checkout.
- Verify and document proper performance of equipment and systems.
- Ensure that operation and maintenance documentation is provided for the continued management of the facility after the construction project is complete.
- Ensure proper training of facilities management, Performance Services Operation \& Maintenance and Performance Services Measurement $\&$ Verifications personnel.
- This plan does not provide a detailed explanation of required testing procedures. The detailed testing requirements and procedures will be found in the Commissioning Manual and contract specifications to be developed after UAR acceptance. Additionally, this plan does not provide extensive narrative on all commissioning concepts, as may be provided in other commissioning guides.

UCRM specific commissioning check lists will be provided as a separate submittal after the $100 \%$ design phase.

## C. DETAILED PROJECT MANAGEMENT PLAN

The purpose of this plan is to provide the necessary controls, supervision, inspections, tests and documentation for the utility cost reduction measures and definable features of work (DFOW) required by the Contract. Conformance to this plan will ensure compliance with the Contract documents and applicable standards related to materials, equipment, craftsmanship, finish and functional performance. This plan will assure quality results in keeping with budget, scope and schedule requirements. The Performance Services project management planning is compatible with project management processes and knowledge bases developed by Project Management Institute for the Project Management Professional ${ }^{\oplus}$ certification.
This plan will be accomplished with a Four-Phase process:

- Preparatory
- Initial
- Follow-up
- Functional Testing \& Commissioning

The Quality Control plan will cover all suppliers and subcontractors, as well as Performance Services staff.
Performance Services, through the utilization of this Quality Control Plan, strives to obtain a uniform, high quality level of workmanship throughout design, procurement, fabrication construction, start-up and functional testing. To achieve this standard, the following policies will be followed:

1. Assure high quality by maintaining supervised controls and written instructions governing quality control procedures and practice.
2. Establish clearly defined responsibilities and authorities responsible for compliance.
3. Comply with the contractual requirements, specifications, standards, and the Quality Control Plan.
4. Maintain a document tracking system that would provide objective evidence of compliance to the Contract documents.
5. Initiate proactive procedures which would anticipate and pre-empt deficient practices which might lead to unsatisfactory quality.
6. Identify discrepancies in quality for immediate corrective action.
7. Assure that corrective action is implemented properly and in a timely manner.

The Quality Control Assurance Team shall coordinate with jobsite personnel to assure compliance with the quality control requirements of the project, and successfully implement the procedures contained in this plan. The responsibilities of the Team are as follows:

- Provide review of design documents.
- Maintain documentation files and logs.
- Coordinate the quality control efforts of the subcontractors.
- Coordinate the activities of outside testing agencies.
- Check craftsman qualifications and certifications as part of standard submittal review.
- Conduct technical submittal reviews to support the Performance Services Construction Department.
- Lead the Preparatory Meetings.
- Develop and maintain the master inspection and test register and track completion of inspection and testing activities.
- Perform and document Initial, Follow-Up and Final inspections.

This document contains Performance Services Trade Secrets and Confidential information to be used by the addressee for evaluating the PSI proposal. Addressee shall not disclose the Confidential information to third parties without written consent of Performance Services.

- Generate and manage Work Completion lists.
- Administer Discrepancy Reports.
- Administer the Final Punch List.
- Complete Construction Quality Control (CQC) Reports.

The Quality Control/Assurance process is designed to have direct effect on the work at the sites. The organization shall employ a four-phase process to provide the highest degree of accountability and compliance possible. The Four-phase process will be covered in detail in Section 6.0 Quality Control Process. This team and process are designed to prevent errors and omissions before they occur.
PREPARATORY PHASE - This phase shall be performed prior to beginning work on each URCM. Prior to the preparatory phase meeting, the Quality Control Assurance Team must examine carefully the contract plans and specifications for the particular feature of work. With a thorough knowledge of the Contract requirements, the Quality Control Assurance Team can assure all necessary items pertaining to the work are covered. The Quality Control Systems Manager is in charge of the meeting. He must ensure that the proper people representing the contractor and/or subcontractors who will be involved in the URCM and definable feature of work are present. He must provide notice to the Owner's representative as to when the meeting will be held. A successful Preparatory Phase results in a clear understanding of the work and the standards to which the work will be evaluated. The meeting shall also result in a list of steps to be employed to ensure common deficiencies are eliminated. Minutes will be prepared and attached to the Construction Quality Control Daily Report.
INITIAL PHASE - This phase must be accomplished at the beginning of any URCM and definable feature of work. The "Initial Phase" will verify that control for the work developed in the "Preparatory Meeting" is implemented and the work is performed at the level of workmanship that is mutually agreed upon. This sets the standard of workmanship for this feature of work. This phase is where all differences are resolved. Safety is checked to include compliance with the Environmental Site Specific Safety and Health Plan (ESSS\&HP) and Activity Hazard Analysis is reviewed during the "Preparatory Meeting." The Owner's representative shall be notified in advance of the "Initial Phase" inspection. The results will be documented and attached to the Quality Control Daily Reports. The purpose is to ensure the work methods, materials, and the workmanship all comply with the approved design documents. The primary emphasis is on the effectiveness of the controls put into practice. Minutes will be prepared and attached to the CQC Daily Report.
FOLLOW-UP PHASE - This shall be performed to assure continuing compliance with contract requirements, including control testing, until completion of the particular feature of work. The Quality Control Assurance Team should continually refer back to the standards set in the "Preparatory and Initial Phases." The primary emphasis is on the continued effectiveness of the controls established in the Preparatory Phase and demonstrated in the Initial Phase. Both the QC Systems Manager and the CQC Manager will document this activity in their respective daily reports. The preceding phases were accomplished as a team. However this phase involves the separate observation of the QC Systems Manager and the CQC Manager.
FUNCTIONAL TESTING and COMMISSIONING PHASE - This is the final phase. Commissioning is critical in ensuring the system (especially mechanical systems) performs as intended per the contract.

## CONSTRUCTION CLOSEOUT

Performance Services shall use all reasonable efforts to install the Equipment and perform all Services hereunder in accordance with the Installation Schedule and the Scope of work. Performance Services will cooperate and coordinate with Hays County as to facilitate Performance Services performance.

Upon the completion of each URCM and/or per each location, Performance Services will request formal inspection from Hays County. Each of the items of Equipment shall be inspected by Performance Services, Hays County and Performance Services Contractor. These inspections can be scheduled on a weekly basis by means of the construction progress meeting to be held throughout the duration of the Project. The installation of Equipment and Performance Services related Services shall have achieved substantial completion ("Substantial Completion is defined as having beneficial use of equipment") when all Equipment has been physically constructed and installed in accordance with the Equipment/Services Scope Document, except for minor items of work that will not materially affect safe and substantial normal use and operation of the Equipment taken as a whole (such minor items of uncompleted work shall constitute the "Punch List") and the Equipment has successfully completed such operational tests, in accordance with operational standards established by the Equipment manufacturers.

When Performance Services determines that Substantial Completion has been achieved, Performance Services shall provide Hays County a Substantial Completion Notice, along with a list of punch list items of work outstanding and request a formal inspection. Hays County shall accept the Substantial Completion Notice if the applicable requirements of scope of work for that particular URCM have been satisfied and inspected. Within ten days after receipt of Performance Services Substantial Completion Notice, Hays County shall inspect and respond to Performance Services in writing either confirming that Substantial Completion has been achieved or if reasonable cause exists, rejecting such Substantial Completion Notice and specifying in detail the reasons therefore.

If Hays County rejects Performance Services Substantial Completion Notice and/or Punch List, Performance Services shall complete, correct or explain the deficient aspect of its Services, the Substantial Completion Notice or the Punch List, as the case may be, and shall submit an amended Substantial Completion Notice and/or Punch List, as appropriate, whereupon Hays County shall once again respond thereto as provided above.

The date of Substantial Completion shall be deemed to be and relate back to the date upon which Performance Services submitted to Hays County the Substantial Completion Notice which is either approved or deemed approved with comments or punch list by Hays County.

Generally the installation of Equipment and Performance Services related Services hereunder shall have achieved final completion ("Final Completion") when Substantial Completion has been achieved and all Punch List items have been completed. When Performance Services determines that Final Completion has been achieved, Performance Services shall provide Hays County a Final Completion Notice. Hays County shall accept Performance Services Final Completion Notice if the applicable requirements of the URCM have been satisfied. Within ten days after receipt of Performance Services Final Completion Notice, Hays County shall respond to Performance Services in writing either confirming that Final Completion has been
achieved or if reasonable cause exists, rejecting such Final Completion Notice and specifying the Punch List items which have not been completed.

If Hays County rejects Performance Services Final Completion Notice, Performance Services shall complete, correct or explain the deficient aspect of its Services or the Final Completion Notice, as the case may be, and shall submit an amended Final Completion Notice, whereupon Hays County shall once again respond thereto as provided above. The date of Final Completion shall be deemed to be and relate back to the date upon which Performance Services submitted to Hays County the Final Completion Notice which is either approved or deemed approved.

## POST CONSTRUCTION SERVICES

Performance Services Project Management staff will coordinate, schedule and provide training on all the UCRMs implemented. Operation and Maintenance Manuals will be provided in hard copy and electronically. The O\&M Manuals will include product data, commissioning and Labor and Material warranties. The warranty documents will clearly outline the procedures for material and labor warranties. Performance Services will assist Hays County with all warranty issues to ensure a quick, smooth and reasonable solution with all materials and workmanship.

Performance Services can offer and manage maintenance plans, re-commissioning plans to ensure that the equipment is maintained, operating properly and achieving the savings as required.

## VI. PROJECT FINANCIAL ANALYSIS

The following provides details of the project necessary to quantify cost of installed equipment, guaranteed savings and payback.

Overall Project Summary Table

|  |  | ANNUALSAVINGS |  |  |  |  |  |  |  | Project $\operatorname{Cost}$ (\$) | Paybark <br> (yrs.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UCRM No. | UCRM Tite | Electric Energ) (kWh/yr) | Demand (kW/ry) | Eleatric (\$/vr) | Natural Gas <br> (th/yr) | Natural Gas (\$/yl) | Water/Sewer (kgal/vr) | Water/Sewer ( $\$ / \mathrm{yr}$ ) | $\begin{aligned} & \text { Other } \\ & \text { Savings } \end{aligned}$ |  |  |
| 1 | LED Lighting | 1,190,455 | 3,376 | \$103,024 | 0 | $\$ 0$ |  |  | \$39,687 | \$1,062,712 | 7.4 |
| 2 | Power Conditoning | 185,335 | 254 | \$15,207 | 0 | $\$ 0$ |  |  | \$0 | \$179,200 | 11.8 |
| 3 | Solar PV | 987,790 | 3,387 | \$87,965 | 0 | \$0 |  |  | \$0 | \$1,522,893 | 17 |
| 4 | Demand Response | 0 | 0 | \$0 | 0 | \$0 |  |  | \$27,450 | \$663,415 | 24.2 |
| 5 | Retro-Cx \& BAS with Tridium Front End | 587,793 | 480 | \$47,056 | 0 | $\$ 0$ |  |  | \$0 | \$868,835 | 18 |
| 6 | Water Controls | 0 | 0 | \$0 | 7,864 | \$5,112 | 8,096 | \$100,181 | \$0 | \$680,035 | 6.5 |
| 7 | Window Film | 9,152 | 13 | \$752 | 0 | \$0 |  |  | \$0 | \$42,302 | 56 |
| 8 | Window Restoration | 3,480 | 10 | \$307 | 0 | \$0 |  |  | \$24,990 | \$374,843 | 15 |
| 9 | HVAC \& Plumbing Upgrades | 6,012 | 18 | \$530 | 0 | \$0 |  |  | \$0 | \$240, $\uparrow 36$ | 453 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | Totals | 2,970,017 | 7,537 | \$254,841 | 7,864 | \$5,112 | 8,096 | \$100,181 | \$92,127 | \$5,634,371 |  |
| Conract | erm | 15 Years |  |  |  |  |  |  |  |  |  |
| Utility As | essment Report Cost | \$75,000 | Included | n above costs |  |  |  |  |  |  |  |
| P\&P Bon | ding Cost | \$67,612 | Included | nabove costs |  |  |  |  |  |  |  |
| Initial Me | surement \& Verification Cost | \$0 |  |  |  |  |  |  |  |  |  |
| IMPLEM | NTATION TOTALS | \$5,634,371 | Total cos | of project |  |  |  |  |  |  |  |
| Guarante | d Savings | \$452,260 | Ufility and | maintenance | savings. |  |  |  |  |  |  |
| Simple P | ayback (Excluding Financing Cost) | 12.5 | Years |  |  |  | $\cdots$ |  |  |  |  |
| 1 st Year | M 8 V Service Cost | \$24,040 | May bec | ancelled at an | time | - |  |  |  |  |  |
| Financin | Cost | \$1,131,322 |  |  |  | * |  |  |  |  |  |

QECB Funded Project Scope

|  |  | AnNuAL SAVINGS |  |  |  |  |  |  |  | Project $\operatorname{Cost}\left(\right.$ ( ${ }^{\text {c }}$ ) | Payback (yrs.) | Energy <br> Savings <br> Percentage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| UCRM No. | UCRM Titide | Electric Energy (kWh/w) | Demand (kW/yr) | Electric(5iv) | Naturư Gas (th/yr) | Natural Gas (\$/yr) | Water/Sewer <br> (kgal/yr) | Water/Sewer <br> ( $/ \mathrm{l} / \mathrm{vr}$ ) | Other Savings |  |  |  |
| 4 | Demand Response | 0 | 0 | 0 | 0 | \$0 | 0 | \$0 | \$27,450 | \$663,415 | 24.2 | 4\% |
| 1 | LED Lighting | 757,348 | 1754 | \$64,144 |  |  |  |  | \$9,343 | \$526,996 | 7.2 | 21\% |
| 7 | Window Film | 9,152 | 13 | \$752 | 0 | \$0 | 0 | \$0 | \$0 | \$42,302 | 56 | 3\% |
| 9 | HVAC \& Plumbing Upgrades | 6,012 | 18 | \$530 | 0 | \$0 | 0 | \$0 | \$0 | \$240,136 | 453.4 | 2\% |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Totak | 712,512 | 1,784 | \$65,426 | 0 | \$0 | 0 | \$0 | \$36,793 | \$1,472,849 | 14.4 | 30\% |

Public Lease Purchase Funded Project Scope

|  |  | AnNualsavings |  |  |  |  |  |  |  | Project Cost(\$) | $\begin{aligned} & \text { Payback } \\ & \text { (wrs.) } \end{aligned}$ | Estimated <br> Project <br> Lifetime <br> (yrs.) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { UCRM } \\ \text { No. } \\ \hline \end{gathered}$ | UCRM Titie | Electric Energy ( $\mathrm{kWh} / \mathrm{yr}$ ) | Demand (kW/yr) | Electric (S/ry) | Natural Gas (th/yr) | Natural Gas <br> ( $\mathrm{F} / \mathrm{yr}$ ) | Water/Sewer ( $\mathrm{kga} / \mathrm{yr}$ ) | $\left\|\begin{array}{c} \text { Water } / \text { Sewer } \\ (\$ / \mathrm{yr}) \end{array}\right\|$ | $\begin{gathered} \text { O\&M } \\ \text { Savings } \end{gathered}$ |  |  |  |
| 1 | LED Lighting | 433,107 | 1,622 | \$38,880 | 0 | \$0 | 0 | \$0 | \$30,344 | \$535,716 | 7.7 | 20 |
| 2 | Power Conditioning | 185,335 | 254 | \$15,207 | 0 | \$0 | 0 | $\$ 0$ | \$0 | \$179,200 | 11.8 | 20 |
| 3 | Solar PV | 987,790 | 3,387 | \$87,965 | 0 | \$0 | 0 | \$0 | \$0 | \$1,522,893 | 17 | 25 |
| 4 | Retro-Cx \& BAS with Tridium Front End | 587,793 | 480 | \$47,056 | 0 | \$0 | 0 | $\$ 0$ | \$0 | \$868,835 | 18.5 | 20 |
| 5 | Water Controk | 0 | 0 | \$0 | 7,864 | \$5,112 | 8,096 | \$100, 181 | \$0 | \$680,035 | 6.5 | 20 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Totals | 2,194,025 | 5,742 | \$189,109 | 7,864 | \$5,112 | 8,096 | \$100,181 | \$30,344 | \$3,786,679 | 11.7 |  |

16 Year Cash Flow

| Hays County ESPC Project |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
| Saving |  |  |  |  | Paymerts |  |  |  |  |  |
| Year | Energy | Lighting <br> Materias Savings <br> Demand Response <br> 8 Est. Rebate | Courthouse Window Defered Savings | Total | Annual <br> Debt <br> Senice | Annual Senice Cost | Annual Mantenance Cost | M8V Serices | Total <br> Annual <br> Payments | $\begin{gathered} \text { Net } \\ \text { Cash Flow } \\ \$ \\ \hline \end{gathered}$ |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 0 | \$71,964 | \$60,000 |  | \$131,964 | 80 | So | , | 80 | S0 | \$131,964 |
| 1 | \$359,819 | \$67,137 | 524,900 | \$451,945 | 597,700 | S0 | 50 | \$24,40 | \$121,740 | \$330,205 |
| 2 | \$367,015 | \$67, 137 | \$24,900 | \$459, 142 | \$425,896 | S0 | S | \$24,521 | \$450,417 | 58,725 |
| 3 | \$374,355 | S67, 137 | \$24,990 | \$466,482 | \$425,667 | 50 | \$0 | \$25,011 | \$450,678 | \$15,804 |
| 4 | \$381,842 | \$67,137 | \$24,990 | \$473,969 | \$425,291 | \$0 | \$0 | \$25,511 | \$450,802 | \$23,166 |
| 5 | \$389,479 | \$67,137 | \$24,990 | \$481,606 | \$424,907 | \$0 | \$0 | \$26,022 | \$450,929 | \$30,677 |
| 6 | \$397,269 | \$61,184 | \$24,990 | \$483,442 | \$437,702 | \$0 | S | \$26,542 | \$464,244 | \$19,988 |
| 7 | \$445,214 | \$61,184 | \$24,990 | \$491,388 | \$437,405 | 50 | , | \$27,073 | \$464,478 | \$26,910 |
| 8 | \$413,318 | \$61,184 | \$24,990 | \$499,492 | \$437,099 | SO | \$0 | \$27,614 | \$464,713 | \$34,779 |
| 9 | \$421,585 | \$61,184 | \$24,990 | \$507,758 | \$436,788 | S0 | 30 | \$28,167 | \$464,955 | \$42,004 |
| 10 | \$430,016 | S661,184 | \$24,990 | \$516,190 | \$436,467 | \$0 | \$0 | \$28,730 | \$465, 197 | 950,993 |
| 11 | \$438,617 | \$27,450 | \$24,990 | \$491,056 | \$436,142 | 80 | $\$ 0$ | \$29,305 | \$465,47 | \$22,640 |
| 12 | \$447,389 | \$27,450 | \$24,990 | \$499,829 | \$435,808 | N | 30 | \$29,891 | \$465,699 | \$34,130 |
| 13 | \$456,337 | \$27,450 | \$24,990 | \$508,776 | \$435,468 | 30 | \$0 | \$30,489 | \$465,957 | \$42,820 |
| 14 | \$465,464 | \$27,40) | \$24,990 | \$517,903 | \$435,118 | 90 | \$0 | \$31,098 | \$466,216 | \$51,687 |
| 15 | \$474,773 | \$27,450 | \$24,990 | \$527,212 | \$434,761 | \$0 | \$0 | \$31,720 | \$466,481 | \$80,731 |
| 16 | \$484,268 | \$27,450 | \$0 | \$511,718 | \$273,219 | \$0 | \$0 | \$32,355 | \$305,574 | \$206, 145 |
| Total | \$6,787,725 | S S860,305 | \$374,843 | \$8,019,873 | 56,435,488 | S0 | \$0, | \$448,088 | 88,883,527 | \$1,13, 3,36 |

## Noes by Coum:

## The proections reflect the econoric banefitis over a 15 year term and dung the construction period (y. 0).

## Assumes an amua increae in energy coots par yeer of <br> $2 \%$

Includes Demand Response and Lighting Material saings. Sxings recice in year 6 besed on not all LED lighting having a 10 year wararty. Ligtting waranty savings end after year 10. Est. rebate is in year 0
Carthouse window replacernert deferted maintenance
Sm of Energy and Other Savings
Amua estimated debt service. Paid amually after Commencement Date (construction completion) of project based on financing at $1.55 \%$ for HC QECB funds and $2.69 \%$ for lease prchase over 16 years.
Amua service Cos. Asses at amual increase for inflation of
$0 \%$
Amual maintenance labor cost increase during warartylyuarantee period
Mesaremert and Verification Services A ssumes al amua incresse for inflation of $\% \%$.
Total projected amual payments
11 Represerts net amua cash flow

## VIII. APPENDICES

A. UTILITY RATE SCHEDULES - City of San Marcos Rates

Electric Rate

| Cisy of Sun Marcom Unilly Customer Survica Divition 638 E. Hopotims 3nn Marcoe TX 766e | Account Statem <br> actount mommarton | ment |  | ege 1 of it |
| :---: | :---: | :---: | :---: | :---: |
|  | ACCOHMT ADDRESS: biling date: dUE OATE: |  | 712 SSTAGE |  |
|  | SERVICE PERIOO: |  | 04.14.2014 70 | 5-02\%2016 |
|  | Account Actury |  |  |  |
|  |  | $\frac{70 v 10 \times 19}{16+9}$ |  | $\begin{array}{r} 18060 \\ 220000 \\ 760 \end{array}$ |
| 000004 | currtent charcss |  |  |  |
|  <br>  HAYS COUNTY GOVERNMENT CENTER 712 S STMGECOMCH TRL STE 1071 <br>  | Samber lameriotion |  | Luxpe | Chere |
|  | ELECTRIC CHARGES: Basic Cherge Commerxial |  |  | 218.40 |
|  |  |  | 229000 | 2335180 |
|  | Wh Charga, Com | 3440000 | 278000 | 2.614.40 |
|  | Power Cost Rocovery Fact, Com 0.067058 |  | 225000 | 15.356 .28 20.520 .48 |
|  |  |  |  | 20.504*14 |
|  |  |  |  | 20.5448 |

Water/Sewer Rate


## B. DETAILED BACKUP CALCULATIONS \& COMPUTER INPUT/OUTPUT SHEETS

## Spreadsheet Analysis

1. UCRM \#1 - LED Lighting Savings
2. UCRM \#2 - Power Conditioning Savings
3. UCRM \#4 - Demand Response
4. UCRM \#6-Water Controls Savings
5. UCRM \#8 - Window Restoration
6. UCRM \#9 - HVAC Upgrades

## Modeling Analysis

1. UCRM \#3 - Solar PV
2. UCRM \#5 - Retro-Commissioning \& Building Automation Savings
3. UCRM \#7-Window Film
UCRM-1 LED Lighting Upgrades

Savings Safety Factor: 90\%

Performance
Services

Notes:

1. Typical lighting fixture: 2.5 lamps with ballast
2. Average fluorescent lamp life -7 years
3. Average fluorescent lamp life -7 years
4. Average fiuorescent ballast life -15 years
5. Linear LED lamps, associated drivers and new fixtures will come with a 10 year manufacturer warranty
6. Lighting material cost data (paid invoices) provided by Hays County
7. Approximately 15 percent of the fixtures being retrofit to LED will hav
8. Approximately 15 percent of the fixtures being retrofit to LED will have a 5 year warranty versus a 10 warranty - Screw and plug in CFL replacement LED lamps
T8 Lamp Cost
120 T8 linear fluorescent lamps ordered from Commercial Lighting
Total cost for materials -
T8 Ballast Cost Data
No purchase data available so we are using a conservative value of $\$ 12$ each






身事高




























M్MO

 सूజ








 - -


[^1]\times\mp@subsup{\mathrm{ TrailRate }}{\mathrm{ consumption}}{
Where:
FIXT = Number of fixtures for each retrofit
Powerdraw }\mp@subsup{\mp@code{B}}{=}{=\quadPower draw in kW for each fixture type before implementing lighting ECM per UAR
Powerdraw
Savingskwh = Actual annual electric consumption savings in kWh
Savings}=\quad\mathrm{ Actual annual electric savings in dollars
TrailRate}\mp@subsup{}{\mathrm{ Consumption }}{= Electrical consumption rate (trailing rate) in dollars per kWh
Baseline Hours = Baseline Hours are provided for each retrofit type in the UAR.

```

Performance
Services

\section*{Demand Savings:}

\author{
Savings \({ }_{k w}=\Sigma\left[(\right.\) FIST \() \times\left(\right.\) Powerdraw \(_{B}-\) Powerdraw \(\left.\left._{A}\right)\right]\) \\ Savings \(_{s}=\) Savings kw \(\times\) Trail Rate \(_{\text {Demand }}\)
}

Where:
FIST = \(\quad\) Number of fixtures for each retrofit
Powerdraw \(_{\mathrm{B}}=\quad\) Power draw in kW for each fixture type before implementing lighting ECM.
Powerdraw \(_{\mathrm{A}}=\quad\) Power draw in kW for each fixture type after implementing lighting ECM.
Savings \(s_{k w}=\quad\) Actual annual electric demand savings in kW
Savings \({ }_{5}=\quad\) Actual annual electric savings in dollars
Trail \(_{\text {Rate }}^{\text {Demand }}=\quad\) Electrical demand rate (trailing rate) in dollars per kW

\section*{UCRM 2 - Power Conditioning}

Guaranteed electrical energy savings generated by power conditioners shall be based upon one-time Pereand annual Post- Electrical measurements shall be as described in the UAR.

\section*{UCRM 3 - Solar Photovoltaic}

Guaranteed energy savings for this UCRM shall be based upon the methods described in the UAR.

\section*{UCRM 4 - Demand Response}

Guaranteed energy savings for this UCRM are considered "Deemed" and they shall be applied to the guaranteed annual energy savings amount throughout the term of the Guarantee.

\section*{UCRM 4 - Retro-Commissioning \& Building Automation System with Tridium Front End} Guaranteed electrical energy savings generated by the fan and pump motor UCRMs shall be based on motor horsepower, baseline hours identified in this Guarantee and trended run hours. These saving shall be considered variable savings such that the actual savings will vary monthly based on actual motor runtime as measured by the energy management system. The following calculations shall be used in determining the amount of actual electric savings.


Where:
Motor \(_{H P}=\quad\) Motor horsepower identified on motor nameplate
Savings \({ }_{k w h}=\quad\) Actual annual electric consumption savings in kWh
Savings \({ }_{\$}=\quad\) Actual annual electric savings in dollars
Rate \(_{s / k w h}=\quad\) Electrical consumption rate in dollars per kWh
Baseline Hours = Runtime hours shown on Schedule B

Additional guaranteed energy savings for this UCRM shall be based upon the methods described in the UAR.

\section*{Performance \\ services}

\section*{UCRM 6 - Water Controls}

Guaranteed energy, water and sewer savings for this UCRM shall be based upon the methods described in the UAR.

UCRM 7 - Window Film
Guaranteed energy savings for this UCRM are considered "Deemed" and they shall be applied to the guaranteed annual energy savings amount throughout the term of the Guarantee.

\section*{UCRM 8 - Window Restoration}

Guaranteed energy savings for this UCRM are considered "Deemed" and they shall be applied to the guaranteed annual energy savings amount throughout the term of the Guarantee.

\section*{UCRM 9-HVAC Upgrades}

Guaranteed energy savings for this UCRM are considered "Deemed" and they shall be applied to the guaranteed annual energy savings amount throughout the term of the Guarantee.

\section*{Adjustments}

Increased energy usage resulting from increasing outside air amounts to meet current building codes, airconditioning of areas that were previously not air-conditioned and other identified adjustments shall be added to Base Year energy costs.

\section*{Operational Savings}

Operational savings exist when an improvement implemented under this program reduces future repair or replacement labor and / or material monies that would have otherwise been expended if the improvement was not implemented. The operational savings described and quantified in this Guarantee shall be added to the energy savings to arrive at the total guaranteed savings amount. The stipulated operational savings calculations for this Guarantee are included in the UAR. All operational savings are considered Stipulated Savings such that the annual operational savings amounts identified in the UAR shall be applied annually to the guaranteed annual operational savings amount throughout the term of the Guarantee.

\section*{Energy Monitoring}

Energy monitoring services shall be performed by the Provider as described in this Guarantee. The Guarantee is void if the Owner ceases paying the Energy Monitoring fees identified below.

The annual Energy Monitoring fees for PSI are shown below and shall be paid for the previous 6 months of documented work.
\begin{tabular}{llc} 
Year & & Price \\
1 & & \(\$ 24,040\) \\
2 & & \(\$ 24,521\) \\
3 & & \(\$ 25,011\) \\
3 & & \(\$ 25,511\) \\
5 & & \(\$ 26,022\) \\
6 & \(\$ 26,542\) \\
\hline
\end{tabular}

\section*{Performance \\ Services}
\begin{tabular}{lr}
7 \\
8 & \(\$ 27,073\) \\
9 & \(\$ 27,614\) \\
10 & \(\$ 28,167\) \\
\hline 11 & \(\$ 28,730\) \\
\hline 12 & \(\$ 29,305\) \\
13 & \(\$ 29,891\) \\
14 & \(\$ 30,489\) \\
15 & \(\$ 31,098\) \\
\hline
\end{tabular}
- Note: The Owner has the right to request that the Provider change the scope of this Guarantee at the end of each annual guaranteed period to reduce monitoring

\section*{Other Requirements}

The Owner agrees to maintain all relevant equipment / systems affecting energy efficiency such that the condition of the existing equipment / systems during the term of Guarantee is at least equal to their condition at the completion of this Contract. The Owner also agrees to properly maintain all new and existing equipment and operate all of the new and existing systems as described in the Proposal, Installation Contract and Guarantee. If the Owner fails to operate his equipment / systems as described herein and it results in reduced energy or operational savings, then actual energy or operational savings shall be adjusted to the benefit of the Provider to offset lost energy savings caused by such failures by the Owner.

The calculations contained within this Guarantee shall be used exclusively in determining the actual savings over the term of the Guarantee. No additional monitoring or verification methods shall be used in determining the performance of this Guarantee related to energy or operational savings, unless agreed to in writing by both the Owner and Provider. By signing below, the Owner and Provider are fully accepting this Guarantee and all of its provisions, requirements, calculations, amounts and conditions.

\section*{Hays County}

By:
\(\qquad\) President
Date: \(\qquad\)

Performance Services, Inc.
By:
Timothy P. Thoman , President

Date: \(\qquad\)

Performance Services

Exhibit "J" - Sample Annual Savings Report
Hamilton Southeastern
Schools
Geist Elementary School
Year 4 - Quarter 4 Review


\section*{}


TABLE OF CONTENTS

\section*{GUARANTEE RESULTS}

\section*{Executive Summary}

Savings Summary - Actual vs. Guaranteed Detailed Energy Savings Breakdown Utility Comparison

Utility Data - Baseline usage vs. Current Usage Actual Equipment Runtimes
Fan Motor Savings for boiler

Variable Fan Speed Conversion Savings
Outside Air Savings
Chiller Savings
This Year 4 - Quarter 4 Guarantee Report contains the savings results for the period of time between October 1, 2014 and September 30, 2015. This report is intended to provide an update on the savings performance to date and to help uncover potential operating problems.
ENERGY SAVINGS:
Actual Measured Energy Savings:
\(\$ 66,456\) (electric)
\(\$ \mathbf{\$ 2 2 , 9 0 4}\) (gas)
Guarantee Savings (12 months) \(\mathbf{\$ 6 6 , 2 8 8}\)


Performance
Services
ENERGY SAVINGS
Geist Elementary
Electric
Gas
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Annual Guaranteed Savings Report Summary Year 4 - Quarter 4 (October 1, 2014 - September 30, 2015)} \\
\hline Description & Guaranteed Savings & Actual Savings & Net Difference \\
\hline ENERGY SAVINGS & & & \\
\hline Geist Elementary & & & \\
\hline * Electric & 48,202 & 66,456 & 18,254 \\
\hline * Gas & 18,085 & 22,904 & 4,818 \\
\hline  &  & Fits &  \\
\hline SAVINGS & 66,288 & 89,360 & 23,072 \\
\hline
\end{tabular}
Performance
Services


> NOTE:
> 1 Actual savings are calculated as defined in the Performance Guarantee Agreement, not based on raw utility data. Raw utility data is not used to measure actual energy savings because it is inaccurate and very time consuming. However, we feel it is important to compare raw utility data to the actual savings as a cross check. Therefore, we have provided raw utility data with this report. After adjusting for utility rate changes, weather, increased fresh air, air-conditioning additional areas and owner overrides the raw utility data corresponds to within \(21 \%\) or \(\$ 18,662\) of the actual savings.
Performance
Weather Adjusted Utility Bill Savings
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Timeframe}} & \multicolumn{10}{|l|}{\multirow[t]{2}{*}{Utility: Central Indiana Power ELECTRIC}} \\
\hline & & & & & & & & & & & & \\
\hline \multirow[t]{2}{*}{Previous Year} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \hline \text { Current } \\
& \text { Year }
\end{aligned}
\]} & \multirow[t]{2}{*}{Month} & \multicolumn{3}{|l|}{Current Year} & \multicolumn{3}{|l|}{Base Year} & \multicolumn{4}{|l|}{Savings} \\
\hline & & & Usage ( \(\mathbf{k w h}\) ) & Rate (\$ / kWh) & Raw Costs (\$) & Raw Usage (kWh) & Rate
\((\$ / \mathrm{kWh})\) & Raw Costs (\$) & Usage (kWh) & Rate
\((\$ / \mathrm{kWh})\) & & \begin{tabular}{l}
vings \\
(\$)
\end{tabular} \\
\hline 2008 & 2014 & Oct & 99,600 & \$ 0.1078 & \$ 10,733 & 147,900 & \$ 0.0949 & \$ 14,039 & 48,300 & \$ 0.1078 & \$ & 5,205 \\
\hline 2008 & 2014 & Nov & 108,000 & \$ 0.1077 & \$ 11,631 & 139,200 & \$ 0.0985 & \$ 13,718 & 31,200 & \$ 0.1077 & 5 & 3,360 \\
\hline 2008 & 2014 & Dec & 93,300 & \$ 0.1078 & \$ 10,060 & 99,900 & \$ 0.0991 & \$ 9,900 & 6,600 & \$ 0.1078 & \$ & 712 \\
\hline 2008 & 2015 & Jan & 102,000 & \$ 0.1077 & \$ 10,990 & 109,200 & \$ 0.0885 & \$ 9,665 & 7,200 & \$ 0.1077 & \$ & 776 \\
\hline 2008 & 2015 & Feb & 115,800 & \$ 0.1076 & \$ 12,464 & 107,700 & \$ 0.0907 & \$ 9,766 & \((8,100)\) & \$ 0.1076 & \$ & (872) \\
\hline 2008 & 2015 & Mar & 108,300 & \$ 0.1077 & \$ 11,663 & 125,100 & \$ 0.0904 & \$ 11,312 & 16,800 & \$ 0.1077 & \$ & 1,809 \\
\hline 2008 & 2015 & Apr & 94,500 & \$ 0.1078 & \$ 10,189 & 105,000 & \$ 0.0907 & \$ 9,526 & 10,500 & \$ 0.1078 & \$ & 1,132 \\
\hline 2008 & 2015 & May & 107,000 & \$ 0.1028 & \$ 11,000 & 131,100 & \$ 0.0904 & \$ 11,846 & 24,100 & \$ 0.1028 & \$ & 2,478 \\
\hline 2008 & 2015 & Jun & 90,000 & \$ 0.1111 & \$ 10,000 & 143,700 & \$ 0.0902 & \$ 12,965 & 53,700 & \$ 0.1111 & \$ & 5,967 \\
\hline 2008 & 2015 & Jul & 90,000 & \$ 0.1111 & \$ 10,000 & 111,900 & \$ 0.0909 & \$ 10,169 & 21,900 & \$ 0.1111 & 5 & 2,433 \\
\hline 2008 & 2015 & Aug & 107,100 & \$ 0.1077 & \$ 11,535 & 150,000 & \$ 0.0904 & \$ 13,565 & 42,900 & \$ 0.1077 & 5 & 4,620 \\
\hline 2008 & 2015 & Sep & 117,300 & \$ 0.1076 & \$ 12,625 & 164,700 & \$ 0.0824 & \$ 13,565 & 47,400 & \$ 0.1076 & 5 & 5,102 \\
\hline \multicolumn{3}{|l|}{Total} & 1,232,900 & \$ 0.1078 & \$ 132,890 & 1,535,400 & \$ 0.0912 & \$ 140,036 & 302,500 & \$ 0.1078 & S & 32,721 \\
\hline
\end{tabular}
\(\$ 0.1078\)


\section*{Performance}
Actual Equipment Usage
Year 4 - Quarter 2 (October 1, 2014 - March 31, 2015)


\section*{Q.}

\section*{Actual Equipment Usage}
Year 4 - Quarter 3 (October 1, 2014 - June 30, 2015)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{FAN MOTOR RUNTIME SAVINGS} \\
\hline Building & System ID & Motor HP & \[
\begin{aligned}
& \hline \text { Break HP / } \\
& \text { Motor HP }
\end{aligned}
\] & kW/ HP & \[
\begin{gathered}
\text { Fan } \\
\text { Speed }
\end{gathered}
\] & \[
\begin{aligned}
& \hline \text { Fan } \\
& \text { kW }
\end{aligned}
\] & Saved Hrs / Yr & \begin{tabular}{c|}
\hline Motor \\
Efficiency
\end{tabular} & Savings (kWh) & \[
\begin{gathered}
\text { Rate } \\
(\mathrm{kWh}) \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Savings \\
(\$)
\end{tabular} \\
\hline \multicolumn{12}{|l|}{GES-1 Jockey Boiler Installation} \\
\hline Geist Elementary & Boiler Fan & 5.00 & 1.00 & 0.746 & 100\% & 4.663 & 1,300 & 80\% & 6,061 & \$ 0.109 & \$ 663 \\
\hline Subtotal for GES-1 &  & 2mexay & - & - & (exer & ¢ & CHEMEx & - & 6,061 & cre & \$ 663 \\
\hline  & Ergextanderser & 380. & - & 3485 & -6x & \%xatis & 580 & 5xayme & cereme & 308380 &  \\
\hline \multicolumn{12}{|l|}{Note: Heat pump fan HP's are the total for all of the fan horsepowers.} \\
\hline
\end{tabular}

Heating and Air-conditioning Savings Due to \(\mathbf{C O}_{\mathbf{2}}\) Control
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Building} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Unit } \\
& \text { Type }
\end{aligned}
\]} & \multirow[t]{2}{*}{Quantity} & \multicolumn{2}{|l|}{Occupied Hours} & \multicolumn{2}{|l|}{Heating OA} & \multicolumn{2}{|l|}{Air-conditioned OA} & \multicolumn{2}{|l|}{Occupied Energy Change} & \multicolumn{4}{|l|}{Savings} \\
\hline & & & \begin{tabular}{l}
Winter \\
(Hours)
\end{tabular} & Summer (Hours) & Current (CFM) & Future (CFM) & Current (CFM) & Future (CFM) & Heating \(\qquad\) & \[
\begin{aligned}
& \hline \text { Cooling } \\
& \text { (BTU) } \\
& \hline
\end{aligned}
\] & & Heating & & \\
\hline Geist Elementary & VU-A1 & 1 & 1,260 & 140 & 3,860 & 2,500 & 3,860 & 2,500 & (65,073,960) & \((7,261,190)\) & 5 & 809 & \$ & 67 \\
\hline Geist Elementary & VU-D1 & 1 & 1,260 & 140 & 4,105 & 3,500 & 4,105 & 3,500 & \((28,948,343)\) & \((3,230,162)\) & 5 & 360 & \$ & 30 \\
\hline Geist Elementary & VU-E1 & 1 & 1,260 & 140 & 3,550 & 3,000 & 3,550 & 3,000 & \((26,316,675)\) & \((2,936,511)\) & 5 & 327 & \$ & 27 \\
\hline Geist Elementary & VU-F1 & 1 & 1,260 & 140 & 9,000 & 5,000 & 9,000 & 3,500 & (191,394,000) & \((29,365,105)\) & 5 & 2,381 & \$ & 269 \\
\hline Total for GES-2 & \% & 4828 & S88 & mesm & 20,515 & 14,000 & \% & 2ux 4\% & (311,732,978) & \((42,792,967)\) & \$ & - 3,878 & \$ & 392 \\
\hline  & 938\% & & \% & \% & 4-ums & 3ress & 2480 & 30. \({ }^{\text {a }}\) &  & 48 & & 348 & & - \\
\hline
\end{tabular}
Outside Air Heating \& Cooling Savings Resulting From Reduced Runtimes

Increased Heating and Cooling Costs Due to Increased Fresh Air Amounts

1. Minimum \(O A\) is based upon an occupancy of 25 persons in each classroom.
Performance

\section*{Performance
Services}

Note:
1. Average Output is calculated based on existing tonnage installed and calculated load.
\(A O=\) (calculated load / installed tons) * ( \(60 \%\) average annual loading)
2. Efficiency based on part load operation of 19 year old equipment, used \(1.28 \mathrm{~kW} / \mathrm{ton} \times 1.10\) fouling factor.```


[^0]:    Number of facilities audited:
    9
    Total gross square footage: 447,155

[^1]:    
    身家
    
    $8 \mathscr{O}$
    
    
     ल
    
    
    
    
    
    
    为运
    $\qquad$
    8 身
    
    
    
    $\square$
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    $\square$
     OM
    
    

    |  |  |  |  |  | 骨 |  |  |  |  |  | ${ }_{5}^{5}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  |  |  | $--$ | - |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | 边 |
    |  | $\cdots \sim$ | $\pi \sim \sim$ | $\sim\|\sim N\|$ |  | $\cdots \sim N$ | $\sim \sim N$ | $\sim \sim \sim$ | $\sim \sim \sim$ | $\\| \sim \sim$ | $\sim \omega$ | $\sim$ | $N \sim$ | ~~ | $\|N\| N$ | $N \sim N$ | $n-10$ | $-n-1$ |  |  |  |  |  |  |  |  |  |  |  |  | $=$ | $\sim$ | $\sim \sim$ |  | $m$ | $m$ | $n \sim$ | $\sim \sim$ | $\sim \sim \sim$ |  | $\sim$ | $\sim \approx \approx$ | $\approx$ | $0$ | $\sim$ |

    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    击
    
    
    
    
    
    
    
    
    
    
     Ma B

    OBZ
    
    
    


    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    为
    
    
    
    
    UCRM-2 Power Conditioning

    | Building | Measure | Annual kW Savings | Annual kWh Savings | Demand Savings | Energy Savings | Total Cost Savings |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | GC | Harmonic Reduction | 144 | 104,875 | $\$ 494$ | $\$ 8,102$ | $\$ 8,597$ |
    | GC | PF Correction | 29 | 21,481 | $\$ 101$ | $\$ 1,660$ | $\$ 1,761$ |
    | JD | Harmonic Reduction | 28 | 20,390 | $\$ 126$ | $\$ 1,560$ | $\$ 1,686$ |
    | JD | PF Correction | 5 | 4,013 | $\$ 25$ | $\$ 307$ | $\$ 332$ |
    | Jail | Harmonic Reduction | 68 | 49,548 | $\$ 233$ | $\$ 3,828$ | $\$ 4,061$ |
    | Jail | PF Correction | 8 | 5,620 | $\$ 26$ | $\$ 434$ | $\$ 461$ |
    |  |  |  |  |  |  |  |
    | TOTAL ALL BUILDINGS | 282 | 205,928 | $\$ 1,006$ | $\$ 15,891$ | $\$ 16,897$ |  |
    | TOTAL AFTER SAFETY FACTOR | $\mathbf{2 5 4}$ | $\mathbf{1 8 5 , 3 3 5}$ | $\$ 905$ | $\$ \mathbf{1 4 , 3 0 2}$ | $\$ 15, \mathbf{2 0 7}$ |  |

    ## Power Factor Savings Analysis

    Hays County Energy Savings Project
    PF Correction Energy Savings Calculation Equation from Con Edison \& Power Studies
    Annual $k W h$ Savings $=($ Average $k W) \times($ System Loss Percentage $) \times\left(1-\right.$ Original $P F^{2} /$ new $\left.P^{2}\right) \times 8760$ ho

    | Government Center |  |  |
    | :--- | :--- | :--- |
    | Average $\mathrm{KW}=$ | 760 |  |
    | Original PF $=$ | $87 \%$ |  |
    | Projected PF $=$ | $95 \%$ |  |
    | System Loss $=$ | $2 \%$ | (Typical range 2\% to 5\%) |

    Annual kWh Savings = $\quad 21,481$

    | Juvenile Detention |  |  |
    | :--- | :---: | :--- |
    | Average $\mathrm{kW}=$ | 161 |  |
    | Original PF $=$ | $88 \%$ |  |
    | Projected $\mathrm{PF}=$ | $95 \%$ |  |
    | System Loss $=$ | $2 \%$ | (Typical range 2\% to 5\%) |

    Annual kWh Savings = 4,013

    | Jail |  |  |
    | :--- | :---: | :--- |
    | Average $\mathrm{KW}=$ | 226 |  |
    | Original PF $=$ | $88 \%$ |  |
    | Projected PF = | $95 \%$ |  |
    | System Loss = | $2 \%$ | (Typical range 2\% to 5\%) |

    Annual kWh Savings = $\quad 5,620$

    ## UCRM 3: ERS Demand Response

    ## ERCOT ERS Program

    | Building | Generators | kW Rating |  | kW Reduction <br> Available |  | Projected ERS Revenue <br> per Year* |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | GC | 1 Stewart Stevenson | 750 | 388 | $\$ 15,188$ |  |  |  |  |
    | JD | 1 Generac | 125 | 88 | $\$ 3,938$ |  |  |  |  |
    | Jail | 1 Catepilar | 600 | 150 | $\$ 6,750$ |  |  |  |  |
    | DS | 1 Catepilar | 100 | 35 | $\$ 1,575$ |  |  |  |  |
    | Totals |  |  |  |  |  | $\mathbf{1 , 4 7 5}$ | $\mathbf{5 7 5}$ | $\mathbf{\$ 2 7 , 4 5 0}$ |

    * Estimated annual revenue for ERS program at $\$ 45,000$ per year per megawatt capacity.
    UCRM-4 Retro Commissioning

    | Building | Measure | Annual kW Savings | Annual kWh Savings | Demand Savings | Energy Savings | Total Cost Savings |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | GC | Retro Commissioning | 410 | 598,239 | \$1,410 | \$46,219 | \$47,628 |
    | CH |  |  |  | \$0 | \$0 | \$0 |
    | JD |  |  |  | \$0 | \$0 | \$0 |
    | DS |  |  |  | \$0 | \$0 | \$0 |
    | HD |  |  |  | \$0 | \$0 | \$0 |
    | P2 |  |  |  | \$0 | \$0 | \$0 |
    | P4 |  |  |  | \$0 | \$0 | \$0 |
    | JW |  |  |  | \$0 | \$0 | \$0 |
    | Jail |  |  |  | \$0 | \$0 | \$0 |
    | TOTAL ALL BUILDINGS |  | 410 | 598,239 | \$1,410 | \$46,219 | \$47,628 |
    | TOTAL AFTER SAFETY FACTOR |  | 328 | 478,591 | \$1,128 | \$36,975 | \$38,103 |

    Electric Rate for GC \& Jail

    | Season | Cost per kW | Cost per kWh |
    | :--- | :---: | :---: |
    | Year Around | $\$ 3.44$ | $\$ 0.077258$ |

    

    | Electric Rate | Cost per kW | Cost per kWh |
    | :--- | :---: | :---: |
    | Yeason | $\$ 0.00$ | $\$ 0.08786$ |


    \section*{Electric Rate for CH \& HD <br> | Season | Cost per kW | Cost per kWh |
    | :--- | :---: | :---: |
    | Year Around | $\$ 3.61$ | $\$ 0.07726$ |}


    \section*{Electric Rate for P2 <br> | Season | Cost per kW | Cost per kWh |
    | :--- | :---: | :---: |
    | Year Around | $\$ 3.38$ | $\$ 0.06893$ |}


    Savings Safety Factor: 80\%
    

    Electric Conmumption (hwh x000)
    

    Cims Conmamption (Am x000,000)
    
    

    Electric Consumption (kWh x000)
    

    ## Cuss Conmumption ( 1 am $\times 000,000$ )

    
    UCRM-5 Building Automation System
    
    Electric Rate for Precinct 2
    
    Electric Rate for Development Services, Precinct 4 \& Jacobs Well

    | Season | Cost per kW | Cost per kWh |
    | :--- | :---: | :---: |
    | Year Around | $\$ 0.00$ | $\$ 0.08109$ |

    Savings Safety Factor: 80\%
    

    Gas Consumption (Btu)
    

    | Area Lighting | $\square$ | Exterfor Usage | 4 | Water Heating | 3 | Refrigeration |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Task Ughting |  | Pumps A Aux. |  | Ht Pump Supp. | 8 | Hear Rejection |
    | Misc. Equipment | \% | Ventilation Fans | 5 | Space Heating |  | Space Cooling |

    Elextric Conaumption (kwh x000)
    

    ## 

    
    

    Electric Consumption ( kWh x000)
    

    Cam Conmumption (tem $\times 000,000$ )
    
    
    

    Electric Comumption (kwh *000)
    

    Cam Conmumption (tata)
    

    ## Electric Consumption (kWh)

    

    |  | Area Lighting Task Lighting Misc. Equipment | 5 | Extertor Usage Pumps \& Aux. Ventilation Fans |  | Water Heating Ht Pump Supp. Space Heaning | 漖 | Refrigeration <br> Heat Rejection <br> Space Cooling |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

    Electric Comsumption ( $\mathrm{kW} / \mathrm{x}$ x000)
    
    
    
    

    | $\square$ | Area Lighting | $\square$ | Extertor Usage | 18 | Water Heating | $\square$ | Refrigeration |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | - | Task Lighting | E | Pumps \& Alix. |  | He Pump Supp. | \% | Heat Rejection |
    | 4 | Misc, Equipment |  | Ventilation Fans |  | Space Heating |  | Space Cooling |

    Electric Consumption (kWh xoo0)
    

    Cm Conmumprion (Etu)
    
    
    

    ## Electric Consumption ( $\mathbf{k W h}$ x000)

    

    ## Ges Conswimption (than)

    
    UCRM-12 Window Film
    
    
    Electric Rate for CH \& HD

    | Season | Cost per kW | Cost per kWh |
    | :--- | :---: | :---: |
    | Year Around | $\$ 3.61$ | $\$ 0.07726$ |

    
    Electric Rate for DS, P4 \& JW

    ## Window Air Leakage at Court House

    $$
    L=4005 \times A \times(R p) 1 / 2
    $$

    Where:
    Lv = Leakage velocity in FPM
    L = Air leak age in CFM
    $\mathrm{Rp}=$ Room pressure in in-WG
    $\mathrm{A}=$ Opening area in square feet
    Project Specific Data
    $\mathrm{A}=\quad 1.5 \mathrm{SqFt}$
    $R p=\quad 0.05$ inch-WG
    $\mathrm{Bldg}=21,396 \mathrm{SqFt}$

    | $\mathrm{L}=$ | $1,343 \mathrm{CFM}$ |
    | :--- | :--- |
    | Leakage Rate $=$ | $0.063 \mathrm{CFM} / \mathrm{SqFt}$ |


    | Modeled Leakage Rate Reduction $=$ | 0.05 CFM/SqFt |  |
    | :--- | :--- | :--- |
    | Calculated Energy/Demand Savings $=$ | 3480 kWh | 10.4 kW |
    | Electric Cost Savings $=$ | $\$ 269$ | $\$ 38$ |

    Electric Rate for CH \& HD

    | Season | Cost/kW | Cost/kWh |
    | :--- | :---: | :---: |
    | Year Around | $\$ 3.61$ | $\$ 0.07726$ |

    C. MANUFACTURER'S LITERATURE
    UCRM 1: LED Lighting
    UCRM 2: Power Conditioning
    UCRM 3: Solar PV
    UCRM 6: Water Controls
    UCRM 7: Window Film
    UCRM 9: HVAC Upgrades

    UCRM 5: Building Automation System

    ## UCRM 1: LED LIGHTING

    ;PECIFICATION DATA

    | Model: | T82-A6-10 | T83-A6-10 | T84-A6-13 | T84-A6-15 | T84-A6-18 | T84-A6-22 |
    | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Lm/W: | 130.0 | 129.0 | 130.4 | 130.0 | 137.6 | 132.0 |
    | Rated Wattage @ 5000K: | 9.3 | 10.0 | 13.13 | 16.3 | 18.1 | 21.5 |
    | Rated Lumens @ 5000K: | 1209 | 1290 | 1712 | 2119 | 2490 | 2838 |
    | ZRI: | 87.0 | 82.0 | 80.3 | 82.5 | 87.0 | 87.0 |
    | THD @ 120VAC: | 16.05 | 15.8 | 10.84 | 10.84 | 13.67 | 12.25 |
    | DUV: | 0.0023 | 0.0035 | 0.0051 | 0.0051 | 0.0022 | 0.0082 |

    ower Supply*:
    Lamp Base:

    | ECT Options: |
    | :--- |
    | 70 Lifespan: |

    ETech LED EXPS A11 Series - 100-277VAC / Class 2/0-10VDC Dimming \& Non Dimming Option G13 Bi-pin
    
    *Refer to ETech LED EXPS A11 Series Power Supply Spec. Sheet for Specifications and Configurations. Tested Values@Ta $=25^{\circ} \mathrm{C}$ All values are nominal.

    PART NUMBER SPECIFICATION

    | EXPS - | - | - | - | - |
    | :---: | :---: | :---: | :---: | :---: |
    | Senes: | Lengthyseries | Norninal Wattage |  | Dimining Option |
    | External Power Supply | T82-A6 (2ft) | 10 (10 Watts) | 30 (3000K) <br> 35 (3500K) <br> 40 ( 4000 K ) <br> 45 (4500K) <br> 50 (5000K) | D (0-10VDC Dimming) ND (Non Dimming) |
    |  | T83-A6 (3ft) | 10 (10 Watts) |  |  |
    |  | T84-A6 (4ft) | 13 (13 Watts) <br> 15 (15 Watts) <br> 18 (18 Watts) <br> 22 (22 Watts) |  |  |

    PROJECT SPECIFICATION

    | Project: | Part Numbers: | Quantity: |
    | :--- | :--- | :--- |
    | Approved: |  |  |
    |  |  |  |
    | Date: |  |  |
    | D(920) 2676109 $\quad$ Minformation@etechled.com $\quad$ www.etechled.con |  |  |

    ## Maestro® Dual Technology Sensor Switch

    The Maestro» Dual Technology (Dual Tech) Occupancy Sensor Switch applies our exclusive XCT Tm Technology to the ultrasonic as well as the passive infrared technology in this sensor to create a product that can detect very fine motion, such as typing. This product also includes all of the great features found in the rest of the Maestro sensor family, including: adaptive relay switching, smart ambient light detection, and simple button presses for changing settings. The Maestro\& Dual Tech Occupancy Sensor Switch is available in single-circuit and dual-circuit versions.
    The single-circuit versions (MS-A102, MS-B102) can be used to meet many of the Title 20/24, ASHRAE 90.1, and IECC code requirements such as "automatic shutoff". The dual-circuit versions (MS-A202, MS-B202) can be used to meet many of the Title 20/24, ASHRAE 90.1, and IECC code requirements such as "automatic shutoff" and "multi-level lighting control". To find some examples of code-specific applications, visit www.lutron.com/energycodes
    Features

    - XCT тм $_{\text {Technology for major, minor, fine, and very fine motion detection }}$
    - $180^{\circ}$ sensor field-of-view
    - Tamper-resistant PIR lens
    - Up to $900 \mathrm{ft}^{2}\left(81 \mathrm{~m}^{2}\right)$ major motion coverage and $400 \mathrm{ft}^{2}\left(36 \mathrm{~m}^{2}\right)$ minor motion coverage
    - Two Ambient Light Detect (ALD) options:
    - Learning ALD Mode:

    Uses adaptive algorithm.
    Sensor learns user's preferred light level over time.

    - Fixed ALD mode:

    Four selectable light level thresholds: Hi, Med, Low, Min

    - Occupancy models (MS-A102-XX, MS-B102-XX, MS-A202-XX, MS-B202-XX) can be set to Auto-ON/Auto-OFF or Manual-ON/Auto-OFF per circuit
    - Dual-circuit models (MS-A202, MS-B202) meet Title 24 requirements for multi-level lighting control.
    - Single-circuit "Vacancy" models (MS-A102-V-XX, MS-B102-V-XX) available to meet Title 24/Title 20 requirements for vacancy sensors.
    - Adjustable timeout for each circuit ( $1,5,15$, or 30 minutes)
    - Sensitivity adjustment
    - PIR (Hi, Med, Low, Min)
    - Ultrasonic (Hi, Med, Low, Off)
    - Switches all lighting loads: incandescent, halogen, ELV, MLV, CFL, LED, magnetic fluorescent, electronic fluorescent
    - Switches fan loads at $120 \mathrm{~V} \sim$
    - MS-B102, MS-B102-V work with Maestros accessory switches in multi-location applications
    - MS-A models DO NOT require neutral wiring, while the MS-B models DO require neutral wiring.
    

    MS-A102-XX (Occupancy model) MS-A102-V-XX (Vacancy model) MS-B102-XX (Occupancy model) MS-B102-V-XX (Vacancy model)
    

    MS-A202-XX (Occupancy model) MS-B202-XX (Occupancy model)

    ## Notes:

    - "XX" in the model number represents color/finish code. See Colors and Finishes at end of document.
    - Wallplate not included.

    | Job Name: |
    | :--- |
    | Job Number: |

    Model Numbers:

    ## Specifications

    ## Regulatory Approvals

    －UL．Listed to U．S．and Canadian safety requirements （applies only to MS－B102，MS－B102－V，MS－B202）
    －NOM certified
    －Title 20／24 certified lighting control device
    －Complies with Title 20 and Title 24 section 110.9

    ## Power／Load Control

    －120－277 V～ $50 / 60 \mathrm{~Hz}$

    ## Key Design Features

    －Dual Sensing Technology
    －Switches all lighting loads
    － 6 A of lighting load per circuit at $120-277 \mathrm{~V} \sim$
    － $4.4 \mathrm{~A}(1 / 6 \mathrm{HP})$ of fan load per circuit at $120 \mathrm{~V} \sim$
    －Crush／tamper resistant lens
    －Smart Ambient Light Detection（ALD）
    －Fixed Ambient Light Detection
    －Adaptive zero－cross switching algorithm for extended relay life（patent pending）
    － $\mathrm{XCT}_{t \mathrm{~m}}$ Technology for major，minor，fine，and very fine motion detection
    －Programmable Circuit Swapping eliminates need for rewiring to reassign circuits after installation of a dual－circuit product．（patent pending）
    －Product ground current does not exceed 0.5 mA

    ## Environment

    －Ambient operating temperature： $32{ }^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ $\left(0^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$ ）， $0 \%-90 \%$ humidity，non－condensing． Indoor use only．
    Warranty
    －5－Year Limited Warranty．For additional Warranty information，please visit www．lutron．com／ TechnicalDocumentLibrary／Sensor＿Warranty．pdf

    ## Sensor Detection

    Lutron Dual Tech sensors operate by triggering initial occupancy using PIR technology，and maintain occupancy using both ultrasonic and PIR technology．

    ## Advanced Features

    ## Switching

    －Adaptive zero－cross switching－maximizes relay life by switching at the point of minimum energy on the AC power curve（patent pending）． Actively adapts to variations in relay timing．

    ## Additional Information on Sensors

    －For single－circuit PIR Maestro．Occupancy Sensor Switch models，please see Lutron』 P／N 369666
    －For Maestro』 Occupancy Sensor C．L® Dimmer models，please see Lutron ${ }^{(P / N} 369748$
    －For dual－circuit PIR Maestro Occupancy Sensor Switch，please see Lutron』 P／N 369758
    －For more information，please see www．lutron．com／occvacsensors
    －Lutron Technical Hotline：1．800．523．9466．

    ## Custom Settings

    ## Default settings shown in bold

    (1) - Timeout

    - 30 min
    - 15 min
    - 5 min
    - 1 min


    ## Mode - Sensor Modes

    Lights automatically turn off in all sensor modes

    - Occ -Occupancy mode (No ALD) ${ }^{1,2,3}$
    - Lrn - Occupancy with learning ALD mode
    - Fixd - Occupancy with fixed ALD mode
    - Vac - Vacancy mode (No ALD) ${ }^{2,3}$

    1 MS-A102-XX, MS-B102-XX default is Occ
    2 MS-A102-V-XX, MS-B102-V-XX is locked as Vac
    3 MS-A202-XX, MS-B2O2-XX defautts are: Circuit 1-Occ, Circuit 2 - Vac
    700 - Ultrasonic Sensitivity

    - High
    - Med
    - Low
    - Off

    PIR - Passive Infrared Sensitivity

    - High
    - Med
    - Low
    - Min


    ## Additional Settings

    Fixed ALD Light Level

    - Hi
    - Med
    - Low*
    - Min
    * "Low" is the default setting for any sensor that is set by the user to: Occupancy with fixed ALD mode


    ## Off-While-Occupied

    - Enabled
    - Disabled


    ## Walk-Thru Mode

    - Enabled
    - Disabled


    ## Custom Settings - Details

    ## Ambient Light Detection (ALD) mode

    Lights turn on only when natural light in the room is below the set threshold.

    - Learning: The ambient light threshold adjusts to the user's preference via manual interaction with the sensor switch.
    - Fixed: Choose a fixed ALD light level from four pre-set options:
    High, Medium, Low, and Minimum


    ## Manual Off-While-Occupied Options

    ENABLED (default setting)

    - When the sensor switch is manually turned off, the sensor switch will not turn the lights back on automatically while the room is occupied.
    - Once the room is vacated, the Auto-On feature returns to normal operation after the timeout period has expired.
    - This may be the preference in conference rooms or classrooms while viewing presentations. This feature requires motions to keep the lights off.
    DISABLED
    - When the sensor switch is manually turned off, the Auto-On feature will return to normal operation after 25 seconds.
    - This may be the preference in a restroom if the user always wants the lights to turn on upon entering and the lights to turn off when the room is vacant.


    ## Walk-Thru Mode

    ## ENABLED ${ }^{1}$

    - If motion is not detected within 3 minutes after initial occupancy, the lights will turn off after 3 minutes, instead of the current timeout.
    - This setting may be the preference in commercial applications where personnel may briefly trigger sensors during non-working hours.


    ## DISABLED (default setting)

    - When motion is detected, the lights will ALWAYS remain on for the entire timeout duration, regardless of the duration of occupancy detection.

    Load Type and Capacity

    | Control | Neutral Connection Required | Vacancy Only | Number of Circuits | Voltage / Load Type / Maximum Load (Anywhere in Gang) ${ }^{1}$ | Minimum Load | 3-Way with Mechanical Switch | Multi-Location with Accessory Switch |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | MS-A102 |  |  | 1 | 120-277V~ Lighting 6Aㄹ <br> $120 \mathrm{~V} \sim$ Fan $4.4 \mathrm{~A}(1 / 6 \mathrm{HP})^{3}$ | 0 A |  |  |
    | MS-A102-V |  | $\checkmark$ | 1 |  | OA |  |  |
    | MS-A202 |  |  | 2 |  | OA |  |  |
    | MS-B102 | $\checkmark$ |  | 1 |  | 0 A | $\checkmark$ | $\checkmark$ |
    | MS-B102-V | $\checkmark$ | $\checkmark$ | 1 |  | 0 A | $\checkmark$ | $\checkmark$ |
    | MS-B202 | $\checkmark$ |  | 2 |  | OA | $\checkmark$ |  |

    1 Ratings shown are per circuit.
    2 Sensor Switch Load Type: Designed for use with permanently installed incandescent, halogen, MLV, ELV, CFL, LED, magnetic fluorescent, and electronic fluorescent lighting loads.
    3 When controlling light and fan loads simultaneously on a single-circuit, maximum load capacity per circuit is 4.4 A at $120 \mathrm{~V} \sim$.

    ## Sensor Switch Placement

    - The sensor switch performs better with an unobstructed view of room occupants.
    - Hot objects and moving air currents can affect the performance of the sensor switch. The sensor switch performs best when located $6 \mathrm{ft}(1.8 \mathrm{~m})$ or more away from hot objects or moving air currents.
    - The PIR performance depends on a temperature differential between the ambient room temperature and that of room occupants. Warmer rooms may reduce the ability of the sensor switch to detect occupants.
    - The ultrasonic performance can be affected by air currents and moving objects. Consider the effects of fans, HVAC vents, open windows, or moving objects when installing the sensor switch.
    - If the sensor sees a specific area that is not desired (e.g., hallway), Lutron offers a lens mask kit (Lutron» P/N 50013614 ) that can be ordered through Tech Support (1.800.523.9466). Alternatively, selectively placing opaque tape (e.g., painter's tape, electrical tape, masking tape) over certain parts of the lens can limit it's field of vision to block undesired detection areas. Masking the lens may effect ALD performance, but DOES NOT block ultrasonic frequencies.


    ## Definitions

    Major motion: movement of a person entering or passing through an area.
    Minor motion: movement of a person occupying an area and engaging in small activities (e.g., reaching for a telephone, turning the pages of a book, opening a file folder, picking up a coffee cup).
    Fine Motion: movement of a person occupying an area and engaging in very small activities (e.g., reading a magazine).
    Very Fine Motion: movement of a person occupying an area and engaging in very small activities (e.g., typing on a keyboard).

    ## Sensor Switch Placement (continued)

    NEMA WD7 Coverage
    

    Major motion coverage: $900 \mathrm{ft}^{2}\left(81 \mathrm{~m}^{2}\right)$
    FEay Minor motion coverage: $400 \mathrm{ft}^{2}\left(36 \mathrm{~m}^{2}\right)$
    

    Test Room Dimensions: $37 \mathrm{ft} \times 38 \mathrm{ft}(11.28 \mathrm{~m} \times 11.6 \mathrm{~m})$
    Test Floor Surface Material: Carpet
    Sensor Coverage Angle: $180^{\circ}$
    Major motion coverage: Initial trigger motion detection
    Minor motion coverage: Maintained motion detection
    

    Ultrasonic Coverage (For Reference Only)
    

    Ultrasonic Frequency: 40 kHz

    ## Dimensions - Single-Circuit

    MS-A102, MS-A102-V, MS-B102, MS-B102-V
    Measurements shown as: in (mm).

    Front View
    

    ## Mounting

    Side View
    

    ## Operation

    
    

    Dimensions - Dual-Circuit MS-A202, MS-B202
    Measurements shown as: in (mm).

    Front View
    

    ## Mounting

    Side View
    

    Operation
    369773c 7 04.09.14
    
    

    * Recommended Wallbox dimensions: 3.5 in $(89 \mathrm{~mm}) \mathrm{D} \times 3$ in $(76 \mathrm{~mm}) \mathrm{H} \times 2$ in $(51 \mathrm{~mm}) \mathrm{W}$
    

    Sensor Switch
    

    Page
    ,IUTRON. SPECIFICATION SUBMITTAL

    ## Wiring Diagrams - Single-Circuit

    ## Wiring Diagram 1

    Single Pole Wiring - Single-Circuit (MS-A102, MS-A102-V)
    

    Wiring Diagram 2
    Single Pole Wiring - Single-Circuit (MS-B102, MS-B102-V)
    

    ## Wiring Diagram 3

    120 V~Multi-Location Installation with Maestro* Accessory Switches (MS-B102, MSB102-V)
    

    ## Wiring Diagram 4

    220/240 V~Multi-Location Installation with Maestro® Accessory Switches (MS-B102, MSB102-V)
    

    ## Wiring Diagram 5

    277 V~ Multi-Location Installation with Maestro』 Accessory Switches (MS-B102, MSB102-V)
    

    ## Wiring Diagrams - Single-Circuit (continued)

    ## Wiring Diagram 6

    3-Way Installation - Single-Circuit (MS-B102, MS-B102-V)
    

    Note: Dual Tech Sensor Switch can be installed in any location. However, optimum performance of sensor may depend upon installation location, see sensor switch placement guidelines on page 4.

    ## 3-Way Installation

    For retrofit 3-way installations the mechanical switch needs to be rewired as shown in the diagram below after wiring the Dual Tech Sensor Switch. Otherwise the 3-way installation will not work as expected. Single Pole mechanical switches may also be used in a 3-way installation with MS-B102, MS-B102-V and MS-B202 models.

    1. Connect Ground: Ensure the bare copper or green ground wire from the wallbox is connected to the green ground screw of the mechanical switch.
    2. Tag circuit Common: Your 3-way mechanical switch should have three screw terminals, two of the same color, and one of a different color. Tag the wire that is connected to the screw terminal of a different color.
    3. Identify the wire that matches the color of the wire you connected to the blue wire of the Maestro® Dual Technology Occupancy Sensor Switch. Connect this wire to one of the two terminals of the same color.
    4. Combine the tagged wire, the remaining wire and yellow jumper wire (included) using a wire connector. Connect the other end of jumper wire to the different color screw.
    

    ## Wiring Diagrams - Dual-Circuit

    Wiring Diagram 1
    Single Pole, Single Breaker Feed Wiring -
    Dual-Circuit (MS-A202)
    

    Wiring Diagram 2
    Single Pole, Single Breaker Feed Wiring -
    Dual-Circuit (MS-B202)
    

    ## Wiring Diagram 3

    Single Pole, Two Breaker Feed Wiring: Dual-Circuit (MS-A202)
    

    ## Wiring Diagram 4

    Single Pole, Two Breaker Feed Wiring: Dual-Circuit (MS-B202)
    

    Wiring must comply with NEC* code for wiring multiple branch circuits. Where two or more branch circuits supply devices or equipment on the same yoke, a means to simultaneously disconnect the ungrounded conductors supplying those devices shall be provided at the point at which the branch circuits originate.
    continued on next page...
    LUTRON SPECIFICATION SUBMITTAL
    Page
    Job Name:
    Model Numbers:

    Job Number:

    ## Wiring Diagrams - Dual-Circuit (continued)

    ## Wiring Diagram 5

    3-Way Installation, Single Breaker Feed Wiring: Dual-Circuit (MS-B202)
    NOTE: Do not use Maestros accessory switches with MS-B202.
    

    Note: Optimum performance of sensor may depend upon installation location, see sensor switch placement guidelines on page 4.

    ## Wiring Diagram 6

    ## 3-Way Installation, Two Breaker Feed Wiring: Dual-Circuit (MS-B202)

    Wiring must comply with NEC. code for wiring multiple branch circuits. Where two or more branch circuits supply devices or equipment on the same yoke, a means to simultaneously disconnect the ungrounded conductors supplying those devices shall be provided at the point at which the branch circuits originate.
    

    Note: Do not use Maestro. accessory switches with MS-B202.

    Note: Optimum performance of sensor may depend upon installation location, see sensor switch placement guidelines on page 4 .

    | Job Name: | Model Numbers: |  |
    | :--- | :--- | :--- |
    | Job Number: |  |  |

    ## 3-Way Installation

    For retrofit 3-way installations the mechanical switch needs to be rewired as shown in the diagram below after wiring the Dual Tech Sensor Switch. Otherwise the 3-way installation will not work as expected. Single-Pole mechanical switches may also be used in a 3-way with MS-B102, MS-B102-V and MS-B202 models.
    1.Connect Ground: Ensure the bare copper or green ground wire from the wallbox is connected to the green ground screw of the mechanical switch.
    2. Tag circuit Common: Your 3-way mechanical switch should have three screw terminals, two of the same color, and one of a different color. Tag the wire that is connected to the screw terminal of a different color.
    3.Identify the wire that matches the color of the wire you connected to the blue wire of the Maestro* Dual Technology Occupancy Sensor Switch. Connect this wire to one of the two terminals of the same color.
    4. Combine the tagged wire, the remaining wire and yellow jumper wire (included) using a wire connector. Connect the other end of jumper wire to the different color screw.
    

    ## How Loads Operate in 3-Way with Dual-Circuit Sensor Switch (MS-B202)

    |  | Initial Load State | After flipping 3-way mechanical switch |  |  |
    | :--- | :--- | :--- | :--- | :--- |
    |  | Circuit 1 | Circuit 2 | Circuit 1 | Circuit 2 |
    | When All Lights are OFF | Off | Off | On | On |
    | When All Lights are ON | On | On | Off | Off |
    | When One Circuit is ON | On | Off | Off | Off |
    |  | Off | On | Off | Off |

    ## Colors and Finishes

    Gloss Finishes
    

    White
    WH
    

    Almond
    AL
    

    Gray
    GR

    Black
    BL
    
    

    Ivory
    IV
    

    Light Almond
    LA
    

    Brown
    BR
    ,
    

    Greenbriar GB

    Desert Stone
    DS
    
    

    Merlot MR
    

    Eggshell ES
    

    Midnight
    MN
    

    Bluestone
    BG
    

    Stone
    ST
    

    Plum
    PL
    

    Biscuit
    BI
    

    Sienna SI
    

    Mocha Stone MS
    
    

    Turquoise
    TQ

    Snow SW
    

    Terracotta TC
    

    Goldstone GS
    

    Sea Glass SG

    - Due to printing limitations, colors and finishes shown cannot be guaranteed to match actual product colors perfectly.
    - Color chip keychains are available for more precise color matching:

    Gloss Finishes: DG-CK-1
    Satin Finishes: SC-CK-1
    

    | Job Name: |
    | :--- | :--- |
    | Job Number: |

    Model Numbers: $\square+\infty$

    ## Elite Dimmable PAR Series

    TCP's award winning PARs have just gotten better. With over 500 options, TCP's PAR series combines traditional beauty with top-notch technology.

    ## Limitess options for the following applications:

    - Track lights
    - Recessed downlights
    - Display lights
    - Outdoor fixtures that protect lamps from the elements


    ## Great features and benefis:

    - Energy efficient: up to $85 \%$ less energy than halogen replacements
    - Smooth, uniform dimming
    - Long life: 25,000 hours
    - $120 \mathrm{~W}, 90 \mathrm{~W}, 75 \mathrm{~W}, 60 \mathrm{~W}$ and 50 W replacements
    - NEW smooth outer housing
    - Excellent color consistency and high color rendering (CRI)
    - Avvilable in $2400 \mathrm{~K}, 2700 \mathrm{~K}, 3000 \mathrm{~K}, 3500 \mathrm{~K}, 4100 \mathrm{~K}$ and 5000 K
    

    | LED | 25,000 hours average rated life, 120 volts |  |
    | :---: | :---: | :---: |
    | Applications |  |  |
    | + Track Lights <br> + Recessed Downlights <br> + Display Lights <br> + Outdoor Fixtures that Protect Lamps from the Elements |  |  |
    |  |  | Bencitit |
    | Up to $85 \%$ less energy than halogen alternatives |  | Instant energy savings |
    | Long life |  | Minimizes replacement and maintenance costs |
    | Unique full foce optic |  | Provides designer grade light quality with same look as halogen replacement |
    | Smooth, clean outside housing |  | Seemlessly blends into lighting applictions |
    | Very low heat generation |  | Perfect for sensitive display lighting such as art golleries |
    | Excellent color consistency and CRI |  | Enhances colors of focel point while maintaining uniformity throughout lighting installation from lamp to lamp |
    | Light weight |  | Track or down light installations are not stroined by excess weight |
    | UL approved for damp location |  | Can be used outdoors when protected from elements-withstands humidity indoors/ouidoors |
    | Shatter resistant |  | Lower the risk of injury and breakage |

    

    | Spetitations |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: |
    |  | PAR38 | PAR30LN | PAR30SN | PaR20 |
    | Input Line Voltage: | 120 VaC | 120 VAC | 120 VaC | 120 VAC |
    | Input Power | 17\%14 W | 14\&12W | 12810W | 1088 |
    | Input Line Frequency | 50/60Hz | 50/60Hz | 50/60Hz | 50/60H2 |
    | Lamp Life (Rated) | 25,000 hrs | 25,000 hrs | 25,000 hrs | 25,000 hrs |
    | Minimum Staring Temp | $30^{\circ} \mathrm{C}$ | $30^{\circ}$ | $30^{\circ} \mathrm{C}$ |  |
    | Maximum Operoting Temp | $40^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ | $40^{\circ} \mathrm{C}$ |  |

    

    For the most up-to-date spers, please visit www.tpi.com

    | Ifem\# | Dessription | Volioge | Woltoge | Incondescent Wallage Comparison | Lumens: | IPW | ${ }_{C B C P}$ | Beam Angle | (CI | CRI | M.OL (incher) | Diometer (inches) | $\begin{aligned} & \text { Case } \\ & \text { Quantity } \end{aligned}$ | STV/MTO |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PAR38 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | LED17P38024KFL | Dimmoble 17W Smooth PAR38-2400K $40{ }^{\circ}$ | 120 | 17 | 120 | 1200 | 70.6 | 2132 | 40 | 2400k | 80 | 5.3 | 4.8 | 12 | MTO |
    | LEDI7P38024KNFL | Dimmable 17W Smooth PAR38-2400K $25^{\circ}$ | 120 | 17 | 120 | 1200 | 70.6 | 4750 | 25 | 2400k | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED17P38024KSP | Dimmoble 17W Smooth PAR38-2400K 15 | 120 | 17 | 90 | 1200 | 70.6 | 6937 | 15 | 2400k | 80 | 5.3 | 4.8 | 12 | MTO |
    | LEDI7P38027KF. | Dimmable 17W Smooth PAR38 2700K 40 | 120 | 17 | 120 | 1200 | 70.6 | 2563 | 40 | 2700K | 80 | 5.3 | 4.8 | 12 | STK |
    | LEDI7P38027KNFL | Dimmable 17W Smooth PAR38-2700K $25^{\circ}$ | 120 | 17 | 120 | 1200 | 70.6 | 5710 | 25 | 2700 K | 80 | 5.3 | 4.8 | 12 | STK |
    | LED17P38027KSP | Oinmoble ITW Smooth PAR38-2700K 15 | 120 | 17 | - 90 | 1200 | 70.6 | 8338 | 15 | 2700k | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED17P38030kFL | Dimmable 17W Smooth PAR38-3000K $40^{\circ}$ | 120 | 17 | 120 | 1250 | 73.5 | 3107 | 40 | 3000K | 80 | 5.3 | 4.8 | 12 | STK |
    | LEDITP38030KNFL | Dimmoble 17W Smooth Par38-3000K $25^{\circ}$ | 120 | 17 | 120 | 1250 | 73.5 | 6130 | 25 | 3000K | 80 | 5.3 | 4.8 | 12 | STK |
    | LEDI7P38030KSP | Dimmable 17W Smooth PAR38-3000K $15^{\circ}$ | 120 | 17 | 90 | 1250 | 73.5 | 8658 | 15 | 3000 K | 80 | 5.3 | 4.8 | 12 | MTO |
    | IFD17P38035KFL | Dinmoble 17W Smooh PAR38-3500K 40 | 120 | 17 | 120 | 1275 | 75.0 | 3132 | 40 | 3500 K | 80 | 5.3 | 4.8 | 12 | MTO |
    | [ED17P38035KMFL | Dimmable 17W Smooth PAR38-3500K $25^{\circ}$ | 120 | 17 | 120 | 1275 | 75.0 | 7550 | 25 | 3500k | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED17P38035kSP | Dimmable ITW Smooth Par38-3500K $15^{\circ}$ | 120 | 17 | 90 | 1275 | 75.0 | 8771 | 15 | 3500 K | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED17P3804IKFL | Dimmable I7W Smooth PAR38-4100K $40^{\circ}$ | 120 | 17 | 120 | 1300 | 76.5 | 3366 | 40 | 4100k | 80 | 5.3 | 4.8 | 12 | MTO |
    | [ED17P38041KNFL | Dimmoble 17W Smooih Par38-4100K $25^{\circ}$ | 120 | 17 | 120 | 1300 | 76.5 | 7292 | 25 | 4100k | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED17P3804IKSP | Dimmable 17W Smooth Par38-4100K $15^{\circ}$ | 120 | 17 | 90 | 1300 | 76.5 | 9947 | 15 | 4100K | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED17P38050KFL | Dimmade 17W Smooth Par38-5000K $40^{\circ}$ | 120 | 17 | 120 | 1300 | 76.5 | 3183 | 40 | 5000 K | 80 | 5.3 | 4.8 | 12 | MTO |
    | LEDI7P38D50KNFL | Dimmoble ITW Smooth PAR38-5000K $25^{\circ}$ | 120 | 17 | 120 | 1300 | 76.5 | 7043 | 25 | 5000k | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED17P38050KSP | Dimmoble ITW Smooth PAR38-5000K $15^{\circ}$ | 120 | 17 | 90 | 1300 | 76.5 | 10989 | 15 | 5000 K | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED14P38024KFL | Dimmable 14W Smooth PAR38-2400K $40^{\circ}$ | 120 | 14 | 90 | 1050 | 75.0 | 2377 | 40 | 2400K | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED $14 P 38024 \mathrm{KNFL}$ | Dimmoble 14W Smooth PAR38 - $2400 \mathrm{~K} 25^{\circ}$ | 120 | 14 | 90 | 1050 | 75.0 | 4645 | 25 | 2400K | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED 4 P38024KSP | Dimmoble 14W Smooth PAR38-2400K $15^{\circ}$ | 120 | 14 | 90 | 1050 | 75.0 | 5806 | 15 | 2400 K | 80 | 5.3 | 4.8 | 12 | MTO |
    | [ED14P38027KFL | Dimmoble 14W Smooth Par38-2700K $40^{\circ}$ | 120 | 14 | 90 | 1050 | 75.0 | 2858 | 40 | 2700 K | 80 | 5.3 | 4.8 | 12 | STK |
    | LED14P38027KNFL | Dimmable 14W Smooth PAR38-2700K $25^{\circ}$ | 120 | 14 | 90 | 1050 | 75.0 | 5583 | 25 | 2700 K | 80 | 5.3 | 4.8 | 12 | STK |
    | LEDIPP38027KSP | Dimmable 14W Smooth Par38-2700K $15^{\circ}$ | 120 | 14 | 90 | 1050 | 75.0 | 10949 | 15 | 2700k | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED14P38030KFL | Dimmable 14W Smooth PAR38-3000K $40^{\circ}$ | 120 | 14 | 90 | 1100 | 78.6 | 2846 | 40 | 3000k | 80 | 5.3 | 4.8 | 12 | STK |
    | LED14P38030KNFL | Dimmoble 14W Smooth PAR38-3000 $25^{\circ}$ | 120 | 14 | 90 | 1100 | 78.6 | 6721 | 25 | 3000k | 80 | 5.3 | 4.8 | 12 | STK |
    | LEDI4P38D30KSP | Dimmable 14W Smooth PAR38-3000K $15^{\circ}$ | 120 | 14 | 90 | 1100 | 78.6 | 11300 | 15 | 3000 K | 80 | 5.3 | 4.8 | 12 | MTO |
    | [EDI4P38035KKL | Dimmable 14W Smooth PAR38:3500K $40{ }^{\circ}$ | 120 | 14 | 90 | 1125 | 80.4 | 3469 | 40 | $35001 /$ | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED14P38035KMFL | Dimmabla 14W Smooh PAR38-3500K $25^{\circ}$ | 120 | 14 | 90 | 1125 | 80.4 | 6970 | 25 | 35001 | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED14P38035KSP | Oimmable 14W Smoot PAR38. 3500k $15^{\circ}$ | 120 | 14 | 90 | 1125 | 80.4 | 10098 | 15 | 3500k | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED14P3804IKFL | Dimmable 14W Smooh PAR38-4100K $400^{\circ}$ | 120 | 14 | 90 | 1150 | 82.1 | 2612 | 40 | 4100k | 80 | 5.3 | 4.8 | 12 | MIO |
    | LED14P38D41KMFL | Dimmable 14W Smoohl PAR38 - 4100K $25^{\circ}$ | 120 | 14 | 90 | 1150 | 82.1 | 4546 | 25 | 4100K | 80 | 5.3 | 4.8 | 12 | MTO |
    | [ED14P38D41KSP | Dimmable 14W Smooh Par38 - $4100 \mathrm{~K} 15^{\circ}$ | 120 | 14 | 90 | 1150 | 82.1 | 11718 | 15 | 4100k | 80 | 5.3 | 4.8 | 12 | MTO |
    | [ED14P38050KFL | Dimmable 14W Smooth PAR38-5000K 40 | 120 | 14 | 90 | 1150 | 82.1 | 4621 | 40 | 5000k | 80 | 5.3 | 4.8 | 12 | MTO |
    | [ED14P38D50KHFL | Dimmokie 14N Smooh PAR38-5000K 25 | 120 | 14 | 90 | 1150 | 82.1 | 7611 | 25 | 5000 K | 80 | 5.3 | 4.8 | 12 | MTO |
    | LED14P38050KSP. | Dimmable 14W Smooth PAR38-5000K $15{ }^{\circ}$ | 120 | 14 | 90 | 1150 | 82.1 | 12147 | 15 | 5000K | 80 | 5.3 | 4.8 | 12 | MTO |
    | PAR30 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | LED14P30024KFL | Dimmable I4W Smooth PAR30-2400K $40{ }^{\circ}$ | 120 | 14 | 75 | 1050 | 75.0 | 2513 | 40 | 2400 K | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED14P30024KNFL | Dimmoble 14W Smooth PAR30-2400K $25^{\circ}$ | 120 | 14 | 75 | 1050 | 75.0 | 4417 | 25 | 2400 K | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED14P30024KSP | Dimmable 14W Smooth PAR30-2400K $15^{\circ}$ | 120 | 14 | 75 | 1050 | 75.0 | 7515 | 15 | 2400 K | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED14P30027KFL | Dimmable 14W Smooth PAR30-2700\% $40{ }^{\circ}$ | 120 | 14 | 75 | 1050 | 75.0 | 3021 | 40 | 2700 K | 80 | 4.8 | 3.8 | 12 | STK |
    | [ED14P30027KNFL | Dimmoble 14W Smooth PAR30-2700K $25^{\circ}$ | 120 | 14 | 75 | 1050 | 75.0 | 5310 | 25 | 2700k | 80 | 4.8 | 3.8 | 12 | STK |
    | LED14P30027KSP | Dimmoble 14W Smooth PAR30-2700K $15^{\circ}$ | 120 | 14 | 75 | 1050 | 75.0 | 9033 | 15 | 2700k | 80 | 4.8 | 3.8 | 12 | MTO |
    | IEDI4P30030KFL | Dimmable 14W Smooth PAR30-3000K $40^{\circ}$ | 120 | 14 | 75 | 1100 | 78.6 | 2881 | 40 | 3000K | 80 | 4.8 | 3.8 | 12 | STK |
    | LED14P30D30KNFL | Dimmable 14W Smooth PAR30 3000K $25^{\circ}$ | 120 | 14 | 75 | 1100 | 78.6 | 8169 | 25 | 3000K | 80 | 4.8 | 3.8 | 12 | STK |
    | LED14P30030KSP | Dimmable 14W Smooth PAR30-3000k $15^{\circ}$ | 120 | 14 | 75 | 1100 | 78.6 | 9328 | 15 | 3000 K | 80 | 4.8 | 3.8 | 12 | MIO |
    | LEDI $4 P 30035 K \mathrm{FL}$ | Dimmable 14W Smooth PAR30-3500K $40{ }^{\circ}$ | 120 | 14 | 75 | 1125 | 80.4 | 3196 | 40 | 3500 K | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED14P30035 KNFL | Dimmoble 14W Smooth PAR30-3500K $25{ }^{\circ}$ | 120 | 14 | 75 | 1125 | 80.4 | 6662 | 25 | 3500 K | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED 4 P30035 KSP | Dimmable 14W Smooth PAR30-3500K $15^{\circ}$ | 120 | 14 | 75 | 1125 | 80.4 | 9529 | 15 | 35001 | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED14P3004IKFL | Dimmable 14W Smooth PAR30-4100K 40 | 120 | 14 | 75 | 1150 | 82.1 | 3154 | 40 | 4100k | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED14P30041KNFL | Dimmable 14W Smooth PAR30-4100K $25^{\circ}$ | 120 | 14 | 75 | 1150 | 82.1 | 6813 | 25 | 4100k | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED14P3004IKSP | Dimmable 14W Smooth PAR30.4100K $15^{\circ}$ | 120 | 14 | 75 | 1150 | 82.1 | 9681 | 15 | 4100K | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED14P30050KFL | Dinmabin 14W Smooih PAR30-5000 40 | 120 | 14 | 75 | 1150 | 82.1 | 3212 | 40 | 5000 K | 80 | 4.8 | 3.8 | 12 | MTO |
    | [ED14P30050KNFL | Dimmable 14W Smooth PAR30-5000k $25^{\circ}$ | 120 | 14 | 75 | 1150 | 82.1 | 5872 | 25 | 5000 K | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED14P30050KSP | Dimmable 14W Smoth PAR30-5000K $15^{\circ}$ | 120 | 14 | 75 | 1150 | 82.1 | 10043 | 15 | 5000 K | 80 | 4.8 | 3.8 | 12 | MTO |


    | liem\# | Description | Voltage | Waltage | Incondescent Wattage Comparison | Lumens | LPW | CBCP | $\begin{aligned} & \text { Beam } \\ & \text { Angle } \end{aligned}$ | ¢ণ | CRI | M.OL (inchess) | Diameter (inches) | $\begin{gathered} \text { Cose } \\ \text { Quantily } \end{gathered}$ | STWMTO |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PAR30 conimued |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | LED12P30024KFL | Dimmoble 12W Smoot PaR30-2400K $40^{\circ}$ | 120 | 12 | 75 | 800 | 66.7 | 1600 | 40 | 2400K | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED12P30024k阴 | Dimmable I2W Smooth PAR30-2400K $25^{\circ}$ | 120 | 12 | 75 | 800 | 66.7 | 4553 | 25 | 2400k | 80 | 4.8 | 3.8 | 12 | MTO |
    | LEDI2P30024KSP | Dimmoble I2W Smooth PAR30-2400K $15^{\circ}$ | 120 | 12 | 75 | 800 | 66.7 | 6990 | 15 | 2400 K | 80 | 4.8 | 3.8 | 12 | MTO |
    | 1-1212P30277KFL | Dimmoble I2W Smooth PAR30-2700K $40^{\circ}$ | 120 | 12 | 75 | 850 | 70.8 | 1924 | 40 | 2700 K | 80 | 4.8 | 3.8 | 12 | STK |
    | LED12P30027KNL | Dimmoble 2 W Smooth PAR30-2700K $25^{\circ}$ | 120 | 12 | 75 | 850 | 70.8 | 5473 | 25 | 2700 K | 80 | 4.8 | 3.8 | 12 | SIK |
    | L1:12P3002715P | Dimmable I2W Smooth PAR30.2700K $15^{\circ}$ | 120 | 12 | 75 | 850 | 70.8 | 8402 | 15 | 2700 K | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED12P30030KFL | Dimmoble I2W Smooth PAR30-3000K $40^{\circ}$ | 120 | 12 | 75 | 875 | 72.9 | 2596 | 40 | 3000k | 80 | 4.8 | 3.8 | 12 | STK |
    | LED12P30030KNFL | Dimmoble 12W Smooth Par30-3000K $25^{\circ}$ | 120 | 12 | 75 | 875 | 72.9 | 5523 | 25 | 3000k | 80 | 4.8 | 3.8 | 12 | SIK |
    | LEDI2P30030isP | Dimmoble 12W Smooth PaR30-3000K $15^{\circ}$ | 120 | 12 | 75 | 875 | 72.9 | 8437 | 15 | 3000k | 80 | 4.8 | 3.8 | 12 | MTO |
    | LE12P30035kFL | Dimmoble I2W Smooth PAR30-3500K $40^{\circ}$ | 120 | 12 | 75 | 900 | 75.0 | 2608 | 40 | $3500 K$ | 80 | 4.8 | 3.8 | 12 | MTO |
    | LDD12P30035KNFL | Dimmoble I2W Smooth Par30-3500K $25^{\circ}$ | 120 | 12 | 75 | 900 | 75.0 | 4060 | 25 | 3500 K | 80 | 4.8 | 3.8 | 12 | M10 |
    | L-012P300354SP | Dimmoble 12W Smooti PAR30-3500K $15^{\circ}$ | 120 | 12 | 75 | 900 | 75.0 | 8956 | 15 | 3500 K | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED 2 P3004/KFL | Dimmoble 12W Smooth PaR30-4100K $40^{\circ}$ | 120 | 12 | 75 | 925 | 71.1 | 2759 | 40 | 4100 K | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED12P3004IKNFL | Dimmable 12W Smooth Par30-4100K $25^{\circ}$ | 120 | 12 | 75 | 925 | 77.1 | 6017 | 25 | 4100k | 80 | 4.8 | 3.8 | 12 | MTO |
    | LED 12P30041/SP | Dimmable 12W Smooth Par30-4100K $15^{\circ}$ | 120 | 12 | 75 | 925 | 77.1 | 7275 | 15 | 4100 K | 80 | 4.8 | 3.8 | 1 | MIO |
    | LDI2P30D50KF: | Dimmable 12W Smooth PAR30-5000K $40^{\circ}$ | 120 | 12 | 75 | 950 | 79.2 | 2235 | 40 | 5000 K | 80 | 4.8 | 3.8 | 12 | M10 |
    |  | Dimmoble 12W Smooh PAR30-5000K $25^{\circ}$ | 120 | 12 | 75 | 950 | 79.2 | 4088 | 25 | 5000 K | 80 | 4.8 | 3.8 | 12 | M10 |
    | LED12P300501SP | Dimmoble 12W Smooh Par30-5000K $15^{\circ}$ | 120 | 12 | 75 | 950 | 79.2 | 7375 | 15 | 50001 | 80 | 4.8 | 3.8 | 12 | MIO |


    | PAR30SN |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | LED12P305024KFL | Dimmoble 12W Smooth PAR30 Shor Neck - 2400K $400^{\circ}$ | 120 | 12 | 75 | 800 | 66.7 | 1881 | 40 | 2400k | 80 | 3.5 | 3.8 | 12 | MIO |
    | LED12P3SSD24KNFL | Dimmoble 12W Smooth Par30 Shor Neck - 2400K $25^{\circ}$ | 120 | 12 | 75 | 800 | 66.7 | 3605 | 25 | 2400 K | 80 | 3.5 | 3.8 | 12 | MTO |
    | IEDIP305S244KP | Dimmoble 12W Smooth Par30 Shor Neck -2400K $15^{\circ}$ | 120 | 12 | 75 | 800 | 66.7 | 6051 | 15 | 2400 K | 80 | 3.5 | 3.8 | 12 | MTO |
    | [ED12P30SD27kR | Dimmable 12W Smooth Par30 Shorl Neck - $2700 \mathrm{~K} 40^{\circ}$ | 120 | 12 | 75 | 850 | 70.8 | 2261 | 40 | 2700 K | 80 | 3.5 | 3.8 | 12 | STK |
    | [E012P35SO27KNFL | Dimmable 12W Smooth PAR30 Short Neck - 2700K $25^{\circ}$ | 120 | 12 | 75 | 850 | 70.8 | 4333 | 25 | 2700 K | 80 | 3.5 | 3.8 | 12 | STK |
    |  | Dimmable 12W Smooth PAR30 Short Neck-2700K $15^{\circ}$ | 120 | 12 | 75 | 850 | 70.8 | 7274 | 15. | 2700 K | 80 | 3.5 | 3.8 | 12 | MTO |
    | LEDI2P30SD30K¢ | Dimmoble 12W Smooth PaR30 Short Neck- 3000K $40{ }^{\circ}$ | 120 | 12 | 75 | 875 | 72.9 | 2349 | 40 | 3000k | 80 | 3.5 | 3.8 | 12 | STK |
    | LEDI2P3OSD30KNFL | Dimmable 12W Smooth PAR30 Short Neck- 3000K $25^{\circ}$ | 120 | 12 | 75 | 875 | 72.9 | 5630 | 25 | 3000k | 80 | 3.5 | 3.8 | 12 | STK |
    | LEDI2P30SD30KSP | Dimmable 12W Smooth PAR30 Short Neck-3000K $15^{\circ}$ | 120 | 12 | 75 | 875 | 72.9 | 7705 | 15 | 3000k | 80 | 3.5 | 3.8 | 12 | MTO |
    | [EDI2P305035KR | Dimmable 12W Smooth PAR30 Short Neck- 3500K $40^{\circ}$ | 120 | 12 | 75 | 900 | 75.0 | 2032 | 40 | 3500 K | 80 | 3.5 | 3.8 | 12 | MTO |
    | LED12P305035KNF | Dimmable 12 S Smooth PAR30 Short Heek-350KK $25^{\circ}$ | 120 | 12 | 75 | 900 | 75.0 | 5832 | 25 | 3500 K | 80 | 3.5 | 3.8 | 12 | MTO |
    | LED12P305035K5P | Dimmable 12W Smooti PAR30 Short Neek - 3500K $15^{\circ}$ | 120 | 12 | 75 | 900 | 75.0 | 6914 | 15 | 3500 K | 80 | 3.5 | 3.8 | 12 | MTO |
    | LEDI2P30SO41KFL | Dimmoble 12W Smooth PAR30 Short Neek - 4100K $40^{\circ}$ | 120 | 12 | 75 | 925 | 77.1 | 2235 | 40 | 4100K | 80 | 3.5 | 3.8 | 12 | MTO |
    | LEDI2P30SO41 KNFL | Dimmable 12W Smooth PAR30 Short Heck - 4100K $25^{\circ}$ | 120 | 12 | 75 | 925 | 77.1 | 7159 | 25 | 4100K | 80 | 3.5 | 3.8 | 12 | MTO |
    | LEDI2P30SD41KSP | Dimmable 12W Smooth Par30 Short Neck - 4100K $15^{\circ}$ | 120 | 12 | 75 | 925 | 77.1 | 7768 | 15 | 4100K | 80 | 3.5 | 3.8 | 12 | MTO |
    | LED12P30SO50kF | Dimmable 12W Smooth PAR30 Shart Neck - 5000k $40^{\circ}$ | 120 | 12 | 75 | 950 | 79.2 | 2500 | 40 | 5000 K | 80 | 3.5 | 3.8 | 12 | MTO |
    | LED12P30SD50KNH | Dimmable 12W Smooth PAR30 Short Heck - 5000K $25^{\circ}$ | 120 | 12 | 75 | 950 | 79.2 | 4792 | 25 | 5000K | 80 | 3.5 | 3.8 | 12 | MTO |
    | EED12P30SO50KSP | Dimmoble 12 W Smooth PAR30 Shoot Heek -5000K 15 | 120 | 12 | 75 | 950 | 79.2 | 8045 | 15 | 5000 K | 80 | 3.5 | 3.8 | 12 | MTO |
    | LEDIOP305024k\% | Dimmoble 1OW Smooth PAR30 Short Neck - $2400 \mathrm{~K} 40^{\circ}$ | 120 | 10 | 60 | 600 | 60.0 | 1713 | 40 | 2400k | 80 | 3.5 | 3.8 | 12 | MTO |
    | LEDIOP30SO24KNEL | Dimmoble 10W Smooth PAR30 Short Neck - 2400K $25^{\circ}$ | 120 | 10 | 60 | 600 | 60.0 | 3683 | 25 | 2400K | 80 | 3.5 | 3.8 | 12 | MTO |
    | IED 10 P305024K5P | Dimmoble 1OW Smooth PAR30 Short Neck - 2400K $15^{\circ}$ | 120 | 10 | 60 | 600 | 60.0 | 6163 | 15 | 2400K | 80 | 3.5 | 3.8 | 12 | MTO |
    | [ED10P30S027k | Dimmoble 10W Smooth Par30 Short Neck - 2700K 40 | 120 | 10 | 60 | 700 | 70.0 | 2060 | 40 | 2700 K | 80 | 3.5 | 3.8 | 12 | STK |
    | LE010P30S027KNF | Dimmoble 10W Smooth PAR30 Short Neck - 2700K $25^{\circ}$ | 120 | 10 | 60 | 700 | 70.0 | 4427 | 25 | 2700 K | 80 | 3.5 | 3.8 | 12 | STK |
    |  | Dinmoble 10W Smooth PAR3O Shorl Neck - 2700K $15^{\circ}$ | 120 | 10 | 60 | 700 | 70.0 | 7408 | 15 | 2700 K | 80 | 3.5 | 3.8 | 12 | MTO |
    | EEDOP30SO30K¢ | Dimmable 10W Smooth PAR30 Short Neck - 3000K $40^{\circ}$ | 120 | 10 | 60 | 725 | 72.5 | 2173 | 40 | 3000k | 80 | 3.5 | 3.8 | 12 | STK |
    | IEDOP30SO30KNFL | Dimmable 10W Smooth PAR30 Shorn Neck - 3000K $25^{\circ}$ | 120 | 10 | 60 | 725 | 72.5 | 4799 | 25 | 3000k | 80 | 3.5 | 3.8 | 12 | STK |
    | EDOPP30SO30KSP | Dimmoble 10W Smooth PAR30 Shor Neck - 3000K $15^{\circ}$ | 120 | 10 | 60 | 725 | 72.5 | 8181 | 15 | 3000k | 80 | 3.5 | 3.8 | 12 | MTO |
    | IEDIOP30SD35KA | Dimmoble 10W Smooth Par30 Shar Neck -3500K $40^{\circ}$ | 120 | 10 | 60 | 750 | 75.0 | 2289 | 40 | 3500 K | 80 | 3.5 | 3.8 | 12 | MTO |
    | LEDOP30SD35KHFL | Dimmble 10W Smooh Par30 Short Neck - 3500K $25^{\circ}$ | 120 | 10 | 60 | 750 | 75.0 | 4927 | 25 | 35001 | 80 | 3.5 | 3.8 | 12 | MTO |
    | IEDIOP3OSD35KSP | Dimmoble low Smooth Par30 Short Nedk 3500K $15^{\circ}$ | 120 | 10 | 60 | 750 | 75.0 | 5912 | 15 | 3500 K | 80 | 3.5 | 3.8 | 12 | MTO |
    | EDIOP3OSD41KE | Dimmoble 1OW Smooth Par30 Short Nerk - $4100 \mathrm{~K} 40^{\circ}$ | 120 | 10 | 60 | 775 | 77.5 | 1894 | 40 | 4100k | 80 | 3.5 | 3.8 | 12 | MTO |
    | L.EDIOP30SO41KNFL | Dimmable 10W Smooth PAR30 Short Nerk - 4100K $25^{\circ}$ | 120 | 10 | 60 | 775 | 77.5 | 5539 | 25 | 4100K | 80 | 3.5 | 3.8 | 12 | MTO |
    | L-D10p305041K5P | Dimmoble low Smooth Par30 Shor Herk - $4100 \mathrm{~K} 15^{\circ}$ | 120 | 10 | 60 | 775 | 77.5 | 7127 | 15 | 4100 K | 80 | 3.5 | 3.8 | 12 | MTO |
    | IEDIOP30SO50KA | Dimmable 10W Smooth Par30 Short Heck - 5000K 40 | 120 | 10 | 60 | 800 | 80 | 2432 | 40 | 5000k | 80 | 3.5 | 3.8 | 12 | MTO |
    | EEDOP30SD5OKHF | Dimmoble 10W Smooth Par30 Short Heck -5000 $25^{\circ}$ | 120 | 10 | 60 | 800 | 80 | 5844 | 25 | 5000 K | 80 | 3.5 | 3.8 | 2 | MTO |
    | LEE10P3050501KP | Dimmoble 10W Smooth Par30 Short Herk - 5000K $15^{\circ}$ | 120 | 10 | 60 | 800 | 80 | 777 | 15 | 5000k | B0 | 3.5 | 3.8 | 2 | MTO |

    5 WarkRaNTV
    For the most up-to-date specs, please visif www.tcpi.com

    LED Dimmable PAR Lamps
    Smooth Uniform Dimming

    | liem\# | Descriplian | Voltage | Wattage | Incondescent Watlage Comparison | Lumens | LPW | CBCP | $\begin{aligned} & \text { Beam } \\ & \text { Angle } \end{aligned}$ | (IT) | (R1 | M. 0.1 (inches) | Diameter (incthes) | $\begin{gathered} \text { Cose } \\ \text { Quontity } \end{gathered}$ | STK/MTO |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PAR20 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    | LEDIOP20024KFL | Dimmable 10W Smooth PaR20-2400K $40^{\circ}$ | 120 | 10 | 60 | 600 | 60.0 | 1163 | 40 | 2400k | 80 | 3.5 | 2.5 | 12 | MTO |
    | LEDIOP20024KNEL | Dimmoble 1OW Smooth PaR20-2400K $25^{\circ}$ | 120 | 10 | 60 | 600 | 60.0 | 2312 | 25 | 2400 K | 80 | 3.5 | 2.5 | 12 | MTO |
    | LED10P20027kf | Dimmoble 1OW Smooth PaR20-2700K $40^{\circ}$ | 120 | 10 | 60 | 600 | 60.0 | 1398 | 40 | 2700 K | 80 | 3.5 | 2.5 | 12 | STK |
    | LEDIOP20027KNE | Dimmoble 10W Smooth PaR20-2700K $25^{\circ}$ | 120 | 10 | 60 | 600 | 60.0 | 2779 | 25 | 27001 | 80 | 3.5 | 2.5 | 12 | STK |
    | LEDIOPYOD30KFL | Dimmoble 1OW Smooth PaR20 3000K $40^{\circ}$ | 120 | 10 | 60 | 650 | 65.0 | 1364 | 40 | 3000k | 80 | 3.5 | 2.5 | 12 | STK |
    | LEDIOP20330XNFL | Dimmoble 10W Smooth PaR20.3000K $25^{\circ}$ | 120 | 10 | 60 | 650 | 65.0 | 2865 | 25 | 3000k | 80 | 3.5 | 2.5 | 12 | STK |
    | LEDIOP20035KFL | Dimmoble 10W Smooth PAR20-3500K 40 | 120 | 10 | 60 | 675 | 67.5 | 1470 | 40 | 3500k | 80 | 3.5 | 2.5 | 12 | M10 |
    | LEDIOP20D35KNEL | Dimmable 10W Smooth PaR20-3500K $25^{\circ}$ | 120 | 10 | 60 | 675 | 67.5 | 2923 | 25 | 3500k | 80 | 3.5 | 25 | 12 | мT0 |
    | LEDOP2004ikFL | Dimmoble 10W Smooth PaR20-4100K $40^{\circ}$ | 120 | 10 | 60 | 700 | 70.0 | 1493 | 40 | 4100 K | 80 | 3.5 | 2.5 | 12 | mio |
    | LEDOP20041KNFL | Dimmoble 10W Smooth PaR20-4100K $25^{\circ}$ | 120 | 10 | 60 | 700 | 70.0 | 2967 | 25 | 4100 K | 80 | 3.5 | 2.5 | 12 | MIO |
    | LEDIOP20050KFL | Dimmoble 1OW Smooth Par20-5000K $40^{\circ}$ | 120 | 10 | 60 | 725 | 72.5 | 1546 | 40 | 5000K | 80 | 3.5 | 2.5 | 12 | MTO |
    | LEDIOP20b500NR | Dimmable IOW Smoth PaR20-5000K $25^{\circ}$ | 120 | 10 | 60 | 725 | 72.5 | 3073 | 25 | 5000k | 80 | 3.5 | 2.5 | 12 | MTO |
    | LEDBP20024KFL | Dimmoble 8W Smooth PAR20-2400K $40^{\circ}$ | 120 | 8 | 50 | 500 | 62.5 | 1006 | 40 | 2400k | 80 | 3.5 | 2.5 | 12 | MTO |
    | LEDBP20024KNFL | Dimmoble 8W Smooth PAR20-2400K $25^{\circ}$ | 120 | 8 | 50 | 500 | 62.5 | 1943 | 25 | 2400 K | 80 | 3.5 | 2.5 | 12 | MTO |
    | LEDBP20027KFL | Dimmable 8W Smooth PAR20-2700K $40^{\circ}$ | 120 | 8 | 50 | 575 | 71.9 | 1210 | 40 | 27001 | 80 | 3.5 | 2.5 | 12 | STK |
    | LEDBP20027KNFL | Dimmoble 8WSmooth PAR20-2700K $25^{\circ}$ | 120 | 8 | 50 | 575 | 71.9 | 2336 | 25 | 2700 K | 80 | 3.5 | 25 | 12 | STK |
    | LEDPP20B30KFL | Dimmoble 8W Smooth PAR20-3000K $40^{\circ}$ | 120 | 8 | 50 | 600 | 75.0 | 1416 | 40 | 3000k | 80 | 3.5 | 2.5 | 12 | STK |
    | LEDBP20030KNFL | Dimmoble 8W Smooth Par20-3000K $25^{\circ}$ | 120 | 8 | 50 | 600 | 75.0 | 2463 | 25 | 3000k | 80 | 3.5 | 2.5 | 12 | STK |
    | LEDBP20035kKL | Dimmable 8WSmooth Par20-3500K $40^{\circ}$ | 120 | 8 | 50 | 625 | 78.1 | 1308 | 40 | 3500 K | 80 | 3.5 | 2.5 | 12 | MTO |
    | LEDBP20035KNFL | Dimmable 8W Smooth Par20-3500K $25^{\circ}$ | 120 | 8 | 50 | 625 | 78.1 | 1974 | 25 | 3500 K | 80 | 3.5 | 2.5 | 12 | MTO |
    | LEDBP20041KFL | Dimmoble 8W Smooth PaR20-4100K $40^{\circ}$ | 120 | 8 | 50 | 650 | 81.2 | 1327 | 40 | 4100k | 80 | 3.5 | 2.5 | 12 | MTO |
    | LEDPP20041KNFL | Dimmable 8W Smooth PaR20-4100k $25^{\circ}$ | 120 | 8 | 50 | 650 | 81.2 | 2291 | 25 | 4100k | 80 | 3.5 | 2.5 | 12 | MTO |
    | 1EDBP20050KKL | Dinmode 8WS mooth Par20-5000K $40^{\circ}$ | 120 | 8 | 50 | 650 | 81.2 | 1501 | 40 | 5000 K | 80 | 3.5 | 2.5 | 12 | MTO |
    | [EDBP20050KNFL | Dimmoble 8W Smooh PaR20-5000k $25^{\circ}$ | 120 | 8 | 50 | 650 | 81.2 | 2059 | 25 | 5000 K | 80 | 3.5 | 25 | 12 | MTO |

    ## CREATING BEAUTY

    Icp has a 20 -year history in energy-efficient lighting. Thanks to our cutting edge technology and manutacturing expertise, we have shipped billions of high quality lamps. Our integrated technology and manufacturing provides expedited time-to-market. with TCP, you can count on unique lighting products designed to meet very specific needs-lighting that transforms your surroundings and envelopes you in warmth-lighting that generates beauty with every fipo of the swith.

    ## UCRM 2: POWER CONDITIONING

    
    dupresses surges and spikes
    Clean, Safe, Efficient Power

    - Fillers moise generated by switching power electronics

    $\checkmark \cap$

    - Eliminates drastic voltage flectuation
    - Improves power factor and reduces system fosses


    ## Powerful Benefits

    more hours of productive operation

    - Significantly extends equipment life and performance by reducing machine downtime
    - Prevents premature equipment replacement and maintenance
    - Reduces demand and energy costs


    ## Proven Applications

    anywhere clean power is required

    - EDM and Laser Systems
    - CNC Machines
    - AC Motors
    - Water and Wastewater Treatment Plants (Pumps)
    - Restaurants, Supermarkets, Convenience Stores and other light Commercial applications
    "Power management" isn't some trendy new, heavy-handed management style. It's the strategic and successfifl management of incoming electrical power: Insuring power quality is just as important to successful EDM operations... because it prevents very expensive maintenance.
    -E. Bud Guitrar, EDM Tuday, September October, 2005
    (Powergy) CPS is designed to eliminate unwanted bumps and spikes, and protect against voltage "transients", generally smoothing out the power, while also adjusting the phase of power to help inductive load machinery nun mare efficienty.
    - FEMP, US Deparment of Energy. September 1998

    For more intormation or to locate an authorized distributor near you call 1-888-876-9374 or Visif www.powergycom 195 Frances Avenue. Cranston, Rhode lsland 02910 1-888-8-POWERGY WWWPOWERGYCOM

    ## SPECIFICATIONS

    | Pext Model Seme | CPS53Y408240 | CPS 3D20:/240 | CEES-36380 | crs-3m480 | cepssbete |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Voltage (Vac) | 208/240 | 208/240 | 380 | 480 | 600 |
    | Phase Configuration | $3 \Phi$ Wye | $3 \oplus$ Delta | 3 Ф Delta | $3 \Phi$ Delta | $3 \Phi$ Delta |
    | Frequency ( Hz ) | 50~60 | 50~60 | $50 \sim 60$ | 50~60 | 50~60 |
    | Energy Absorption (J) (2 ms current wave) | 3300 | 3300 | 5460 | 5760 | 6600 |
    | Surge Current (A) (8/20ps current wave) | 40K | 40K | 40K | 40K | 40K |
    | Max. Clamping Voltage (V) (@) $300 \mathrm{~A} .8 / 20 \mu \mathrm{~s}$ current wave) | 710 | 710 | 1120 | 1500 | 1815 |
    | Line Wires (AWG) | 10 | 10 | 8 | 8 | 6 |
    | Circuit Breakers (A) | 30 | 30 | 40 | 40 | 50 |
    | Dimensions ( $\mathrm{W} \times \mathrm{DxH}$ ) | $12^{n} \times 12^{\prime \prime} \times 6^{\prime \prime}$ | $12^{\prime \prime} \times 12^{\prime \prime} \times 6^{\prime \prime}$ | $12^{\prime \prime} \times 14^{\prime \prime} \times 8^{\prime \prime}$ | $12^{\prime \prime} \times 14^{\prime \prime} \times 8^{\prime \prime}$ | $12^{\prime \prime} \times 14^{\prime \prime} \times 8^{\prime \prime}$ |
    | Weight (lbs) | 26 | 26 | 38 | 38 | 48 |

    Powergy: has since 1995 established a track record of boosfing eiectrical efficiency for abroad spectrum of commercial and residential applicatons

    Powerfut Company - Theisch Engineering mantiactures the Powergy ${ }^{\text {wh }}$ Clean Fower Systems. Powergy ${ }^{\text {F }}$ is ayailable through a select network of electrical equipment distribuiors.

    Cal Thisch fingineerng for more information or to locate an authorked reseller near you

    The Powergy ${ }^{\text {sh }}$ Clean Power Systems is designed to protect against unwanted bumps. spikes and transients by cleansing the power and adjusting the phases helping your equipment run smovther and more effrently

    ## INSTALLATION CUIDE

    Model CPS-3Y208/240 \& CPS-3D208/240

    WARNING:

    - Opening the Powergy CPS without prior permission from Thielsch, will void its warranty coverage.
    - Apply the CPS only to 3 -phase, 208 or $240 \mathrm{Vac}, 50 / 60 \mathrm{~Hz}$, Wye or Delta power systems.
    - The CPS must be mounted vertically, in a dry location, using the four mounting holes.
    - The CPS must be installed by a licensed electrician, in compliance with national and local codes.
    - IMPORTANT: THIS UNIT MUST BE CONNECTED DIRECTLY TO A DEDICATED CIRCUIT BREAKER. DO NOT, UNDER ANY CIRCUMSTANCES, HARD-WIRE INSTALL WITHOUT A DEDICATED BREAKER.


    ## YOU WILL NEED:

    1. A circuit breaker box with a 3-pole 30 Amp circuit breaker; OR A fuse disconnect box with three 30 Amp fuses. NOTE: Above items can be conveniently purchased through Thielsch.
    2. Appropriate tools, wires and conduits.
    3. A licensed electrician who is well versed with the national and local electrical codes.

    ## MOUNTING THE DEVICES:

    1. Inspect the exterior of the CPS to ensure that it has not been damaged in transit. Ensure that the front label/overlay is still intact, that the warranty seals are intact, and that the cables protruding from the unit have not been damaged.
    2. Locate the EDM/Laser machine breaker. Identify sufficient space near the machine breaker to locate the breaker box/fuse disconnect and the CPS.
    3. Ensure that the CPS is on a clear and dry wall.
    4. Mount the breaker box/fuse disconnect and the CPS. When mounted, the phase indication lights should be visible.

    ## MOUNTING HOLES

    POSITION:

    ## INSTALL PROCEDURES:

    1. If possible, de-energize the power panel/breaker box/fuse disconnect prior to connecting all the devices.
    2. According to the CODES, run wires and conduit between the machine breaker (line side) and the breaker box/fuse disconnect. Run conduit between the breaker box/fuse disconnect and the CPS. Feed the wires from the CPS through the conduit into the breaker box/fuse disconnect.
    3. DO NOT UNDER ANY CONDITIONS SPLICE NEW CABLE ONTO THE CPS, OR OPEN THE CPS, TO EXTEND THE LENGTH OF THE CABLE PROVIDED.
    

    TEST PROCEDURES:

    1. Double check if all connections are correct.
    2. If so, close the circuit breaker or fuse disconnect.
    3. Check if all three lights on the CPS are on:

    YES - Proceed to next step.
    NO - De-energize the CPS and check if cables are correctly connected. Check the ground cable connection. If problem persists, call the distributor or Thielsch for technical assistance.
    4. Use a clamp-on Ammeter to check if all line currents are about 14A (+/-1A). Contact the distributor or Thielsch if the current reading is different.
    6. Put this installation guide near the unit, for future use.

    ## WARRANTY:

    - Remember to fill and mail out the Warranty Registration Card within 10 days of installation.
    - Powergy Clean Power Systems provide the original purchaser a 3-year limited product warranty. Refer to the product warranty sheet for more details.

    ENGINEERING
    195 FRANCES AVE. CRANSTON, RI 02910

    1-888-8-POWERGY WWW.POWERGY.COM

    ## UCRM 3: SOLAR PV

    ## MECHANICAL SPECIFICATION

    | format | 78.5 in $\times 39.4$ in $\times 1.38$ in（including frame） <br> $(1994 \mathrm{~mm} \times 1000 \mathrm{~mm} \times 35 \mathrm{~mm}$ ） |
    | :---: | :---: |
    | Weight | 52.9 lb （ 24 kg ） |
    | Front Cover | $0.13 \mathrm{in}(3.2 \mathrm{~mm})$ thermally pre－stressed glass with anti－reflection technology |
    | Back Cover | Composite film |
    | Frame | Anodised aluminum |
    | Cell | $6 \times 12$ Q．ANTUM solar cells． |
    | lunction box | $3.35-4.37 \mathrm{in} \times 2.36-3.15 \mathrm{in} \times 0.59-0.75 \mathrm{in}(85-111 \times 60-80 \times 15-19 \mathrm{~mm})$ ， <br> Protection class $\geq 1 P 67$ ，with bypass diodes |
    | Cable | $4 \mathrm{~mm}^{2}$ Solar cables（t）$\geq 47.24 \mathrm{in} \mathrm{(1200} \mathrm{mm)},(-) \geq 47.24 \mathrm{in} \mathrm{(1200} \mathrm{mm)}$ |
    | Comnectar | Amphenol UTX，IP68 |

    

    | ELECTRIEAL CHARACTERISTICS |  |  |  |  |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | PDWERCLASS |  |  | 325 | 330 | 36 | 340 | 345 |
    |  |  |  |  |  |  |  |  |
    | Pawer at MPpo． | $\mathrm{P}_{\text {map }}$ | ［W］ | 325 | 330 | 335 | 340 | 345 |
    | Shont Circuit Current | $1_{s c}$ | ［A］ | 9.44 | 9.49 | 9.54 | 9.59 | 9.64 |
    | 對 Open Circain Volnge＊ | $V_{\text {af }}$ | ［V］ | 46.30 | 46.55 | 46.81 | 47.07 | 47.32 |
    | 至 Current at MPP＊ | 1 \％ip | ［A］ | 8.85 | 8.91 | 8.97 | 9.03 | 9.09 |
    | －Voitageat Mpp＊ | $V_{\text {wip }}$ | ［V］ | 36.70 | 37.02 | 37.33 | 37.63 | 37.93 |
    | Efficiency | $\eta$ | ［\％］ | $\geq 16.3$ | $\geq 16.5$ | $\geq 16.8$ | $\geq 17.1$ | $\geq 17.3$ |
    | MInIMUM PERFGRMANCE AT NORMAL OPERATING CONDTIONS，nec＊ |  |  |  |  |  |  |  |
    | Power at MPP： | $\mathrm{P}_{\text {spe }}$ | ［W］ | 241.0 | 244.7 | 248.4 | 252.1 | 255.8 |
    | E Stort Circuis Cimrent ${ }^{\text {a }}$ | ${ }_{\text {sf }}$ | ［A］ | 7.61 | 7.65 | 7.69 | 7.73 | 7.77 |
    | 堊 Open Circuit Voltage＊ | $V_{\text {of }}$ | ［V］ | 43.20 | 43.44 | 43.68 | 43.92 | 44.16 |
    | E Current at MPP＊ | $\mathrm{l}_{\text {Mre }}$ | ［A］ | 6.94 | 6.99 | 7.04 | 7.09 | 7.14 |
    | Vollage at MPP＊ | $V_{\text {wip }}$ | ［V］ | 34.72 | 35.01 | 35.29 | 35.56 | 35，83 |

    ${ }^{1} 1000 \mathrm{Whm}^{2}, 25^{\circ} \mathrm{C}$ ，spectrum AM $1.5 \mathrm{G} \quad{ }^{2}$ Mzasurement tolerances $\mathrm{STC} \pm 3 \% ; \mathrm{NOC}=5 \% \quad{ }^{3} 800 \mathrm{~W} / \mathrm{Nm}^{2}$ ，NOCT，spectrum AM $1.5 \mathrm{G} \quad$ bypical values，actual values may difter aceus PEFFORANCE WARRANTY

    PERECRMANCE AT LOW IRRAOMNEE
    

    At least 9796 of nominal power during first year．Thereafter max 0.5 多 degra dation per year．
    At least 92\％of nominal power up to 10 years．
    At least $83 \%$ of nominal power up to 25 years．

    All data within measurement foleg ances Full warranties in accordance with the waranty terms of the QCELLS sates organization of your respective country．
    

    Typical medzile performance under lem irradiance conditions un comparison bo sTC conditions $\left(25^{\circ} \mathrm{C}\right.$ ， $\left.1000 \mathrm{~W} / \mathrm{m}^{2}\right)$

    TEMPERATURE COEFICIEMTS

    | Temperature Cosfllient ofl $\mathrm{I}_{\text {\％}}$ | a | ［\％／K］ | $+6.04$ |  | $\beta$ | ［\％／K］ | －0．29 |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | Tempesature Coetficien of $\mathrm{P}_{\text {\％}}$ \％ | Y | ［\％／k］ | －0．40 | Hermal Operating Cell Yempanature | HOCT | $\left[^{\circ} \mathrm{F}\right]$ | $113 \pm 5.4\left(45 \pm 3^{\circ} \mathrm{C}\right)$ |

    ## PROPERTIES FOR SYSTEM DESIGN

    | Maximun System Voltage $\mathbf{V}_{\text {sp }}$ | ［V］ | 1500 （IEC）／1500（UL） | Safety Class | 11 |
    | :---: | :---: | :---: | :---: | :---: |
    | Maximum Seties Fuse Rating | ［ $A D C]$ | 15 | Fite Rating | C（IEC）／TYPE 1 （UL） |
    | Design load push（U）${ }^{\text {a }}$ | ［lbs／it］ | 75 （3600 Pa） | Permitted nodule temperature on cortinupus dity | $-40^{\circ} \mathrm{Fup}$ to $+185^{\circ} \mathrm{F}$ <br> $\left(-40^{\circ} \mathrm{C}\right.$ up to $\left.+85^{\circ} \mathrm{C}\right)$ |
    | Design load，pull（0L）${ }^{\text {a }}$ | ［llishfit］ | 33 （1600 Pa） | 2 safety factor of 1.5 include |  |

    ## gualifications and certificates

    | PAGKAgING INFORMATION |  |
    | :--- | ---: |
    | Number of Modulea per Paltet | 29 |
    | Number of Palletr per $53^{\prime}$ Container | 30 |
    | Mumber of Pallets per 40 Conkainer | 22 |
    | Pallet Dinensions（ $\mathrm{L} \times \mathrm{W} \times \mathrm{H}$ ） | $81.3 \times 45.3 \times 46.9 \mathrm{in}$ |
    |  | $(2065 \times 1150 \times 1190 \mathrm{~mm})$ |
    | Pallet Weight | $1671 \mathrm{lbs}(758 \mathrm{~kg})$ |

     of this product
    Hanwhe CELLS Americalinc．
    
    

    # Polar Bear ${ }^{\oplus}$ III HD <br> Mechanical Attachment Bracket Installation Manual 

    Document Number 9910031 Rev C
    September 2016

    ## Revision History

    | Rev | ECO \# | Date | Description of Changes | Approved By |
    | :---: | :---: | :---: | :--- | :---: |
    | A | C00385 | 29AUG14 | Initial Released | CA |
    | B | C00422 | 08SEP15 | Add installation instruction for 5 Degree <br> Mechanical Attachment Bracket | CN |
    | C | C00457 | 12SEP16 | Add installation instruction for 10 Degree <br> South Tray Mechanical Attachment |  |

    ## Table of Contents

    Revision History ..... 2
    Table of Contents ..... 3
    Introduction ..... 4
    Safety Overview ..... 4
    Parts and Hardware ..... 5
    Required Tools ..... 5
    5 Degree Mechanical Attachment location and Mechanical Attachment Bracket Installation ..... 6
    Step 1: Position the Mechanical Attachment ..... 6
    Step 2: Install the Mechanical Attachment. ..... 7
    Step 3: Secure the Mechanical Attachment Bracket ..... 7
    10 Degree Mechanical Attachment location and Mechanical Attachment Bracket Installation ..... 10
    Step 1: Position the Mechanical Attachment ..... 10
    Step 2: Install the Mechanical Attachment. ..... 11
    Step 3: Secure the Mechanical Attachment Bracket ..... 11
    10 Degree South Support Mechanical Attachment location and Mechanical Attachment Installation ..... 13
    Step 1: Position the Mechanical Attachment ..... 13
    Step 2: Install the Mechanical Attachment ..... 14
    Step 3: Connect the Mechanical Attachment to the Ballast Tray ..... 14
    Appendix A: Safety ..... 15

    ## Introduction

    The PaneIClaw Mechanical Attachment Bracket is an option for PaneIClaw's Polar Bear ${ }^{\star}$ III HD flat roof photovoltaic mounting systems. The PanelClaw Mechanical Attachment Bracket is designed to enable installers to seamlessly connect EcoFasten Solar ${ }^{\star}$, OM ${ }^{\circledR}$ Roofing Products and Anchor Products ${ }^{\top}{ }^{\top}$ Mechanical Attachments to PanelClaw's Polar Bear III HD system. This installation manual demonstrates the proper connection of EcoFasten, OMG and Anchor products to Polar Bear III HD components.

    "THIS INSTALLATION MANUAL DOES NOT COVER SELECTION OF OR INSTALLATION OF ANY MATERIALS USED TO SEAL A MECHANICAL ATTACHMENT TO THE ROOF. FOR THESE INSTRUCTIONS PLEASE SEE OEM PROVIDER INSTALLATION MANUALS AND RELATED LITERATURE. A LIST OF OEM PROVIDERS IS SHOWN BELOW.<br>THIS INSTALLATION MANUAL DOES NOT COVER SELECTION OF OR INSTALLATION OF FASTENERS REQUIRED TO FASTEN A MECHANICAL ATTACHMENT TO THE ROOF STRUCTURE ITSELF. FOR THESE instructions, please see oem providers installation manuals and related literature. a LIST OF OEM PROVIDERS IS SHOWN BELOW"

    OEM MECHANICAL ATTACHMENT PROVIDERS:

    - Anchor Products: www.anchorp.com
    - OMG Roofing Products: www.omgroofing.com
    - ECOFasten Solar: www.ecofastensolar.com


    ## Safety Overview

    Safety is an essential part of every photovoltaic (PV) installation and every construction site. It is imperative to plan ahead for any safety concerns and hazards to promote safe work practices during installation. This section does not claim to address or Support all safety concerns that may arise during the installation of PanelClaw mounting systems or any other aspect of the work being performed. Before beginning work, installers should refer to all local and federal safety, health, and regulatory requirements to assure compliance. Refer to OSHA Part 1926 and its related Subparts for federal construction related regulations and standards.

    The section in Appendix A: Safety outlines some of the obvious / major hazards that could exist during the installation of PanelClaw products, and are divided to bring a level of clarity to such hazards. Some sections do not apply to all PanelClaw product lines and such exclusions are noted within each section.
    $\square$ PRIOR TO INSTALLATION, READ THE SAFETY PROVISIONS ATTACHED IN APPENDIX A AND REVIEW THE INSTALLATION MANUAL IN ITS ENTIRETY.

    ## Parts and Hardware

    ## Major Components

    ## (6) Mechanical Attachment Bracket

    

    Mechanical Attachment Bracket
    for $5^{\circ}$ PanelClaw system
    

    Hardware Kits

    3 Fastener Kit
    

    Parts and Hardware

    | 1 | Mechanical Attachment Bracket | Universal bracket connecting the Mechanical Attachment to the Baliast Tray |
    | :--- | :--- | :--- |
    |  |  | Serrated flange nuts $1 / 4-20$ Stainless Steel $18-8$ <br> Hex head cap screw $1 / 4-20 \times 0.75^{\prime \prime}$ Stainless Steel 18-8 <br> Flange nuts $3 / 8-16$ Stainless Steel 304 <br> Hex head bolt 3/8-16 $\times 1.25^{\prime \prime}$ Stainless Steel 304 <br> Flat Washer 3/8 Stainless Steel 304 |

    ## Required Tools

    - $3 / 8^{\prime \prime}$ drive torque wrench (settings available up to 30 ft -lbs)
    - $3 / 8^{\prime \prime}$ deep socket (bolts) and wrench
    - $1 / 2^{\prime \prime}$ deep socket (bolts) and wrench


    ## 5 Degree Mechanical Attachment location and Mechanical

    Attachment Bracket Installation
    ## Step 1: Position the Mechanical Attachment

    1. Consult the provided Racking Construction Set Drawing for the locations of the Mechanical Attachments that need to be installed. Once the modules and Supports are installed you can locate the Mechanical Attachments. Ballast Trays and modules may need to be removed if they are already installed.
    2. The Mechanical Attachments are installed underneath modules and connect to the side of the Ballast Trays via the Mechanical Attachment Bracket.
    3. Center the Mechanical Attachments on the Ballast Tray requiring the attachment (east to west). NOTE: If no suitable slots are available at the center of the Ballast Tray, the Mechanical Attachment can be located at the next available slots closest to the center of the gap between adjacent modules.
    4. See below for Mechanical Attachment locations from the Support edge (Figure 1, 2). NOTE: OMG and Anchor Products are interchangeable for the instructions below.
    

    Figure 1 OMG/Anchor Products: Distance from Support surface to center of Mechanical Attachment
    

    Figure 2 EcoFasten Product: Distance from Support surface to center of Mechanical Attachment

    ## 5 Degree Mechanical Attachment location and Mechanical Attachment Bracket Installation

    Step 2: Install the Mechanical Attachment

    1. Install the Mechanical Attachment once it has been placed appropriately. Consult the manufacturer's installation instructions and specifications regarding the proper installation and flashing of the Mechanical Attachment.

    ## Step 3: Secure the Mechanical Attachment Bracket

    1. Once the Mechanical Attachment is installed you can complete the rest of the Mechanical Attachment assembly. Attach the L-Brackets/Standoffs to the threaded stud on the Mechanical Attachment. Finger-tighten for now. (Figure 3, 4)
    2. With the Mechanical Attachment shown as in the figures below, attach the Mechanical Attachment Bracket to the L-Bracket. Finger-tighten the hardware for now. (Figure 3, 4)
    

    Figure 3 OMG/Anchor Products: Attach the L-Brackets to the threaded stud on the Mechanical Attachment

    ## 5 Degree Mechanical Attachment location and Mechanical Attachment Bracket Installation

    

    Figure 4 Ecofasten Product: Attach the standoff and L-Brackets to the threaded stud on the Mechanical Attachment

    ## 5 Degree Mechanical Attachment location and Mechanical Attachment Bracket Installation

    3. Install the Ballast Tray and locate the Mechanical Attachment Bracket so that it aligns with the inner slots of the Ballast Tray. Using the two $1 / 4-20 \times 0.75^{\prime \prime}$ serrated flange bolts and $1 / 4-20$ serrated flange nuts connect the Ballast Tray and Mechanical Attachment Bracket. Torque to 8 ft-lbs. (Figure 5)
    4. Torque the remaining components:

    L-Bracket to Mechanical Attachment to 30 ft -lbs;
    L-Bracket to Mechanical Attachment Stud per Manufactures installation instructions. (Figure 5)
    

    Figure 5 Secure the Mechanical Attachment Bracket with 2 nuts and bolts using slots that align with Ballast Tray

    ## 10 Degree Mechanical Attachment location and Mechanical

    ## Attachment Bracket Installation

    ## Step 1: Position the Mechanical Attachment

    1. Consult the provided Racking Construction Set Drawing for the locations of the Mechanical Attachments that need to be installed. Once the module and Supports are installed you can locate the Mechanical Attachment. Ballast Trays will need to be removed if they are already installed.
    2. The Mechanical Attachments are installed north of modules and connect to the underside of the Ballast Trays via the Mechanical Attachment Bracket.
    3. Center the Mechanical Attachments between two adjacent modules (east to west).
    4. See below for Mechanical Attachment locations from the module edge (Figure 6,7). NOTE: OMG and Anchor Products are interchangeable for the instructions below.
    

    Figure 6 OMG/Anchor Product: Distance from Support surface to center of Mechanical Attachment
    

    Figure 7 EcoFasten Product: Distance from Support surface to center of Mechanical Attachment

    ## 10 Degree Mechanical Attachment location and Mechanical Attachment Bracket Installation

    ## Step 2: Install the Mechanical Attachment

    1. Install the Mechanical Attachment once it has been placed appropriately. Consult the manufacturer's installation instructions and specifications regarding the proper installation and flashing of the Mechanical Attachment.

    Step 3: Secure the Mechanical Attachment Bracket

    1. Once the Mechanical Attachment is installed you can complete the rest of the Mechanical Attachment assembly. Attach the L-Brackets/Standoffs to the threaded stud on the Mechanical Attachment. Finger-tighten for now. (Figure 8, 9, 10)
    2. With the opening facing down attach the Mechanical Attachment Bracket to the L-Bracket. Finger-tighten the hardware for now.
    3. Install the Ballast Tray and locate the Mechanical Attachment Bracket so that it aligns with the inner slots of the Ballast Tray. Using the two $1 / 4-20 \times 0.75^{\prime \prime}$ serrated flange bolts and $1 / 4-20$ serrated flange nuts connect the Ballast Tray and Mechanical Attachment Bracket. Torque to 8 ft-lbs (Figure 8, 9, 10).
    4. Torque the remaining components:

    L-Bracket to Mechanical Attachment to 30 ft -lbs.
    L-Bracket to Mechanical Attachment Stud per Manufactures installation instructions.
    

    Figure 8 OMG Product: Secure the Mechanical Attachment Bracket
    Polar Bear III HD Mechanical Attachment Bracket Installation Manual

    ## 10 Degree Mechanical Attachment location and Mechanical Attachment Bracket Installation

    

    Figure 9 EcoFasten Product with $6^{\prime \prime}$ standoff: Secure the Mechanical Attachment Bracket
    

    Figure 10 EcoFasten Product: Secure the Mechanical Attachment Bracket

    ## 10 Degree South Support Mechanical Attachment location and Mechanical Attachment Installation

    ## Step 1：Position the Mechanical Attachment

    1．Consult the provided Racking Construction Set Drawing for the locations of the Mechanical Attachments that need to be installed．Once the module and Supports are installed you can locate the Mechanical Attachment．Ballast Trays will need to be removed if they are already installed．

    2．The Mechanical Attachments are installed between two adjacent south supports and connect to the center of the Ballast Trays．
    3．Place the Mechanical Attachments matching the hole location in the Ballast Tray．
    Notes：Drill a $1 / 2^{\prime \prime}$ hole in the middle of the Ballast Tray if needed．
    

    Mechanical Attachments are installed between two adjacent South Supports

    Figure 11 Place the Mechanical Attachment underneath the center of the Ballast Tray

    ## 10 Degree South Support Mechanical Attachment Location and Mechanical Attachment Installation

    ## Step 2: Install the Mechanical Attachment

    1. Install the Mechanical Attachment once it has been placed appropriately. Consult the manufacturer's installation instructions and specifications regarding the proper installation and flashing of the Mechanical Attachment.

    ## Step 3: Connect the Mechanical Attachment to the Ballast Tray

    1. Once the Mechanical Attachment is installed you can connect the Mechanical Attachment to the Ballast Tray.
    2. Place the Ballast Tray on the South Supports. Match the Ballast Tray hole to the Mechanical Attachment stud. Connect the Ballast Tray to the South Supports with 4 bolts. (In some instances the Ballast Tray must be forced down to be able to install the washer and nut)
    3. Connect the Mechanical Attachment to the Ballast Tray with a washer and a nut.
    4. Torque the nut to 30 ft -lbs.
    

    Figure 12 Connect the Mechanical Attachment to the Ballast Tray

    ## Appendix A: Safety

    The subsections below outline some of the obvious / major hazards that could exist during the installation of PanelClaw products, and are divided to bring a level of clarity to such hazards. Some sections do not apply to all PanelClaw product lines and such exclusions are noted within each section.

    Electrical Hazards: PanelClaw products are purely mechanical and do not contain any electrically live parts. When a photovoltaic module is exposed to sunlight it is electrically live and cannot be turned off. As soon as modules are installed using a PanelClaw system, an electrical shock hazard is present. All personnel on site should coordinate to ensure that such electrical hazards are clearly communicated. It is advised, at a minimum, that all personnel utilize caution and proper Personal Protective Equipment as outlined in that section. Only electrically qualified personnel should perform PV module installation. Refer to OSHA Part 1926 Subpart K - Electrical and NFPA 7OE for additional information.

    Fall Hazards: This section only applies to Polar Bear® products installed on locations six feet or higher above grade. Proper fall protection should be in place at all work sites. There are many fall protection solutions readily available to help reduce exposure to fall hazards. These may include personal fall arrest systems, safety nets, guardrails, and flagged setbacks from all roof edges as outlined in OSHA Part 1926 Subpart M - Fall Protection.

    Trip Hazards: All PanelClaw arrays have elevated components that are installed above grade or above a roof surface. Such hazards should be identified and caution should be taken to avoid tripping over such components. Refer to the Fall Hazards section specifically if working with the Polar Bear product line. Make sure to pick up and not drag your feet when working on site, and always pay attention to your path of movement to note any obstructions that could create a trip hazard.

    Lifting Hazards: The PanelClaw installation process involves lifting of heavy items that could lead to personal injury and damage to property. All personnel should be trained in the proper procedures for manually lifting. Evaluate an object's size and weight prior to lifting, and follow these general guidelines for lifting:

    1. Assess the lift and know the object weight.
    2. Bend at the knees and get a good grip.
    3. Keep back straight and lift straight up with legs without twisting. It is important to lift with the legs and not the back.
    4. If an object is too large or heavy, ask for help and do not attempt to lift by yourself. In the case that mechanical assistance (e.g. crane, forklift, etc.) is required to complete the lifting operations, all machine operators of such devices should be licensed and trained.

    Material Handling: All PanelClaw parts and components are made of aluminum and steel alloys and utilize stainless steel assembly hardware. These materials are considered non-toxic and require no special handling procedures. Metal components may have sharp edges, so be sure to handle with care and utilize proper personal protection equipment, especially gloves, during handling. Refer to OSHA Part 1926 Subpart H - Materials Handling, Storage, Use, and Disposal for additional information.

    Personal Protective Equipment (PPE): All personnel should utilize and implement proper PPE per OSHA requirements. Refer to OSHA requirements for proper use and implementation of PPE. The following
    items are suggested as a minimum to avoid injury based on the installation procedure outlined in this manual:

    1. Appropriate work clothing
    2. Electrically insulated hard hat
    3. Protective eyewear
    4. EH rated safety boots
    5. Gloves
    6. High-visibility safety vest
    7. Hearing protection

    If any PPE appears to be defective, stop the use of such equipment immediately, and ensure it is replaced before work continues. Refer to OSHA Part 1926 Subpart E - Personal Protective and Life Saving Equipment for additional information.

    Hand and Power Tools: Access to all hand and power tools should be regulated and controlled at all times on site to prevent improper use and related injuries. When not in use, all equipment should be stored in a secured location. Only personnel who have been properly trained in the safe operation of any potentially dangerous tool should be allowed access. All required tools to perform the installation of PanelClaw racking are outlined in the installation procedure. All tools should be inspected daily and before use by the operator. If any tool appears to be defective, stop the use of such equipment immediately, and ensure it is replaced before work continues. Electrical power tools should follow proper lock-out tag-out procedures per OSHA requirements. Refer to OSHA Part 1926 Subpart I - Tools Hand and Power for additional information.

    ## UCRM 5: BUILDING AUTOMATION

    Apex of oontrol

    With iss onboard $1 / O$, the Reliable
    Controls; MACH-ProSys takes the
    MACH-ProCom" higher, reaching the
    apex of control as a fuly programmable.
    frternet-comected. BACnet. Buiding
    Controler ( $B$-BC) ideal for large pooftop
    equipment, large mechanical rooms and
    muiti-bulding aptications.
    
    design

    ## Tech Specs

    ## Processor

    - 147 MHz , high-performance, 32-bit embedded microcontroller


    ## Memory

    - 8 MB operating RAM
    - 1 MB non-volatile RAM(trends and dynamic values)
    - 4 MB Flash EEPROM operating system, database, and controller configuration


    ## Supply Voltages

    - 24 VAC $\pm 10 \% 75$ VA max. $50 / 60 \mathrm{~Hz}$
    - $24 \mathrm{VDC} \pm 10 \% 26 \mathrm{~W}$ max.


    ## Communications

    - IEEE 802.3 Ethernet 10/100 BaseT
    - 2 EIA-485@76.8 kbps max.
    - 1 EIA-232@ 115.2 kbps max. PC or modem
    - SMART-Net port @ 16 sensors max.


    ## Universal Inputs

    - 12 universal inputs
    - 12-bit AD converter
    - Analog: 0-10 VDC, 4-20 mA, thermistor
    - Binary: dry contact
    - impedance:
    $1 \mathrm{M} \Omega$ for $0-10 \mathrm{VDC}$ range
    $250 \Omega$ for $4-20 \mathrm{~mA}$ range
    $20 \mathrm{k} \Omega$ pull-up for thermistor/
    dry contact range
    - Pulse counting up to 150 Hz (supports flow meters)
    - 24 VAC over-voltage protection


    ## 8 Outputs

    - 12-bit D/A converter
    - First four outputs are socketed to accommodate relay, TRIAC, or universal modules (output modules sold separately)
    - Analog: 0-12 VDC
    - Binary: 0/12 VDC
    - Manual ON provides adjustable 0-12 VDC (HOA model only)
    - LED indicator (glows proportionally)
    - Output power: $75 \mathrm{~mA} @ 12$ VDC
    - 24 VAC over-voltage and short protection


    ## Expansion Modules

    - Up to 7 MACH-ProPoint expansion modules


    ## Peripheral Power

    - Onboard variable 15-24 VDC power supply providing up to 200 mA of DC power to peripheral devices
    (If powered with 24 VDC , the maximum voltage output is 22 VDC )


    ## Real-Time Clock

    - $\pm 1$ second per day

    Memory/RTC Backup

    - 72 hour backup
    - 10 years for database


    ## Wiring Terminals

    - 12 to 22AWG ( $3.31 \mathrm{~mm}^{2}$ to $0.33 \mathrm{~mm}^{2}$ )
    - Stranded or solid core
    - Copper conductors only


    ## Dimensions

    - $25.4 \mathrm{~cm} \mathrm{~L} \times 13.7 \mathrm{cmW} \times 3.9 \mathrm{~cm} \mathrm{H}$ ( $10^{\prime \prime} \mathrm{L} \times 5 /{ }^{3}{ }^{\prime \prime} \mathrm{W} \times 11 / 2^{\prime \prime} \mathrm{H}$ )
    Mounting
    - \#8 clearance holes on $23.0 \mathrm{~cm} \mathrm{~L} \times 11.0 \mathrm{~cm} \mathrm{~W}$ ( $9^{1 / 16^{\prime \prime}} \mathrm{L} \times 4^{5} / 11^{10} \mathrm{~W}$ )
    - Screw depth 25 mm (1")


    ## Features

    ## Protocol

    . BACnet
    BIP $\times 2$, Ehernet:MS/TP and PTP

    - DHCP
    - Dynamic Host Contiguration Protocol
    - Modbus
    - Supports both RTU and

    TCP communications in slave mode and master mode with up to 128 slave devices

    - SMTP

    Provides standard email communications for broadcasting email alarms

    - Supports TLSISSL security
    - SNMP

    Simple Network Maragement Protocol

    - SNTP
    - Simple Network Time Protocol
    12 Inputs
    - Universal ranges
    - Expandable using MACH

    Propoint expansion modules

    - Maxinum possible inputs of 180


    ## 8 Outputs

    - Outputs 1 - 4 are wired to unpopulated sockets
    - Outputs $5-8$ are universal (ro sockets)
    * Expandable using MACH.

    Propaint expansion modules

    - Maximum possible outputs of 120


    ## 1024 Variables

    Selectable standard and custom ranges, as well as fixed program diven values.

    ## 128 PID Loops

    *: Standard P PI, or PID centrollers for closed loop contral

    ## 128 Schedules

    . 14 Onlot tines for each weekday or exception:
    32 Calendars
    *. Days of the year designated as holidays

    ## 20 Custom Tables

    - For creatng custom scaing lunctions


    ## 64 System Groups

    - Alows related points to be

    3. grouped onto one display
    . 160 points/group
    128 Control-BASIC:

    ## Programs

    - User progranimable control strategy in a readable, BASLC-like language
    - 3200 bytes per program

    Trend Logs:

    - Each Trend $\log$ stores up to 8 points
    - Values recorced at user. defined intervals
    - Dynamically assigned


    ## Runtime Logs

    *. Totals the On time and records the OnjOff times of every binary point

    - Dynamicaly assigned

    128 Variable Arrays

    - Up to 128 elements in a one-dimensional array
    128 User Passwords
    - Protects access to system
    - Each user is assigned a user name and an acoess level


    ## Custom Units

    * 8 analog engineering units
    . 8 binary units
    - 8 mulitistate units with 8 states, 30 characters each:


    ## SMART-Net-Port

    - Networks up to 16 SMARFSensors:
    1536 Network In Points
    512 Network Out Points
    . The total maximum number of writes and shares to other devices
    Real-Time Clock
    Warranty
    - 5 years


    ## Certification

    -. BTLListed (B-BC)

    - UL 916 Listed
    -. FCC CFR 47 Part $15 / B$
    - CE


    ## Ordering

    MP-S

    - MACH-ProSys controller

    MP-S-H

    - MACH-ProSys controller with HOA (Hand/Off/Auto) switches and potentiometer overrides for each output


    ## MP-S-SMK

    - MACH-ProSys controller certified for smoke control. See MP-S-SMK submittal for details


    ## MP-S-H-SMK

    - MPS-SMK with HOA (Mand/Off Auto) switches and potentiometer overides for each output


    ## Accessories

    ## MP-DINRAIL

    - Two-piece adapter kit to mount controller onto $35 \mathrm{~mm} \times 7.5$ mm top hat DIN rail. DIN rail not included
    MPP-IO
    - MACH-ProPoint I/O expansion module with 12 universal inputs and 8 outputs


    ## MPP-IO-H

    - MPP-10 with HOA (Hand/Off/ Auto) switches and potentiometer ovenides for each output


    ## MPP-IO-U

    - MACH-ProPoint I/O expansion module with 12 universal inputs and 8 universal outputs


    ## MPP-IO-U-H

    - MPP-1O-U with HOA /Hand/Off Auto) switches and potentiometer overrides for each output


    ## MPP-IO-DL

    - Door label sheet for MPS, MPS-H, MPW-S, MPW-S-H, MPP-1O MPP-10-H, MPP-10-U, and MPP-IO-UH


    ## MPP-I

    - MPP Input expansion module with 24 universal inputs
    MPP-I-DL
    - Door label sheet for MPP-I

    MPP-O

    - MACH-ProPoint output expansion module with 16 universal outputs
    MPP-O-H
    - MPP-O with HOA (Hand/Off)

    Auto) switches and potentiometer overides for each output
    MPP-O-DL

    - Door label sheet for MPP-O

    RM

    - Relay output module (package of 10 )
    TM
    - TRIAC output module (package of 10 )
    UM
    - Universal output module (package of 10 )
    SS-RJ11TB-B, SS-RJIITB-C
    - SMART-Net breakout connector RJ-11 to terminal block


    ## SS-X

    SMART-Sensor Network Expansion Board
    

    Connect up to 7 MACH -ProPoint expansion modules of any mix with a maximum input count of 180 , and a maximum output count of 120 per controller. Expansion modules are daisy-chained to the 1/0Net port of the controller in any combination.

    ## UCRM 6: WATER CONTROLS

    ## UCRM 4: WATER CONTROLS

    ## WATER SAVINGS

    The water savings generated from installing an I-CON system is VERY SIGNIFICANT and long term. With water savings of up to $70 \%$, most systems pay for themselves in 2 to 5 years. The savings of our natural resources is immediate and priceless. We're saving nearly 400 correctional facilities, both nationally and internationally, billions of gallons of water and millions of dollars in wastewater \& water heating costs every month...the proof is on their water bills.

    See how much you can save with our
    Savings Calculator!
    SAVE WATER. SAVE MONEY.
    

    ## EASE OF INSTALLATION \& MAINTENANCE

    Our retrofit systems are easy to switch to and easy to maintain. The quality and durability of our products decreases the frequency of rebuilding/replacing parts that wear or degrade over time, which reduces labor and parts costs. Typically, our consumable parts last at least three times longer than the other comparable products on the market. Maintenance personnel prefer our systems because they spend a minimal amount of time servicing them. Government officials and facility managers also prefer our products because they see the cost savings, added security, reliability, and the overall benefits of working with our systems. Their maintenance staff is no longer fighting a losing battle trying to keep the plumbing system functional and secure.

    | TYPICAL EXISTING PNEUMATIC |
    | :---: |
    | BLOCK |

    ## I-CON ${ }^{\text {® }}$ PNEUMATIC BLOCK RETROFIT

    

    ## MORE SECURITY \& GREATER CONTROL WITH THE TOUCH OF A FINGER USING ENVISAGE®

    Envisage offers increased security by offering facility staff the ability to control and monitor all plumbing fixtures graphically displayed on your facility's floor plan. With the touch of a finger our customers can lockdown, remotely flush, schedule usage and control all the parameters of the plumbing fixtures for a single cell, multiple cells, or an entire facility. Typically these features are used to perform contraband searches and inmate extractions. It offers easy maintenance and great features for keeping your facility plumbing system more secure and functioning properly.

    ## LOCKOUT THE PLUMBING FOR A SINGLE CELL OR THE ENTIRE FACILITY WITH THE TOUCH OF A FINGER

    

    ## ONLY I-CON FLUSH VALVES CAN PREVENT TOILET FIRES

    The I-CON ${ }^{\circledR}$ MOMENTUM ${ }^{\otimes}$ flush valve is designed to have a positive reset after pressure loss occurs which means it's the only flush valve that can prevent toilet fires.

    A toilet fire is a typical condition that occurs to standard diaphragm flush valves causing the water to continually run when the water pressure supplied to the valve is too low for the valves' diaphragms to close, causing thousands of gallons of water per minute to be wasted until each flush valve is manually reset which can take days to complete the process.
    

    ## INSTALL FLUSH VALVES IN REMOTE LOCATIONS

    Our I-CON MOMENTUM ${ }^{\circledR}$ flush valves can be located remotely while maintaining proper GPF requirements, our competitors valves cannot. Many other I-CON products are also suitable for remote for remote location, such as: lavatory valves, shower valves, urinal valves, and drinking fountain valves. Likewise, our electronics controllers in conjunction with other I-CON products can offer customized systems such as the control panel illustrated below. We have the ability to customize any I-CON system based on each facility's needs, such as: reduced maintenance, enhanced security, and easy one touch controls.

    ## GROUP VALVES TOGETHER, NO NEED TO BE BY FIXTURE

    CONNECT TWO LEVELS FOR EASY MAINTENANCE
    

    Efficiency Series

    ## DESCRIPTION

    Complete vitreous china water closet.

    ## Flush Cycle

    Model ST-2029-A* Universal Closet
    ( 1.1 to $1.6 \mathrm{gpf} / 4.2$ to 6.0 Lpf )
    Code: 2102029
    Flush volume is determined by the flushometer used with closet.
    

    * Please note that this model is fully interchangeable with Models: ST-2020-A, ST-2022-A, ST-2023-A and matches all dimensional and performance parameters.
    ** This model meets the requirements for a High Efficiency Toilet when used with a high efficiency flushometer ( $1.28 \mathrm{gpt} / 4.8 \mathrm{Lpf}$ or 1.1/1.6 gpf-4.2/6.0 Lpf dual-flush).

    NOTE: Plumbing System Requirements $\sqrt{ }$ Minimum Flowing Pressure: 25 PSI
    $\sqrt{ }$ Maximum Static Pressure: 80 PSI
    $\checkmark$ Minimum Flow Rate: 18 GPM

    | This space for Architect/Engineer approval |  |
    | :--- | :--- |
    | Job Name | Date |
    | Model Specified | Quantity |
    | Variations Specified |  |
    | CustomerWholesaler |  |
    | Contractor |  |
    | Architect |  |

    ## SPECIFICATIONS

    ## Fixture

    - Vitreous China
    - Floor Mounted
    - ADA Compliant
    - Siphon Jet Flushing Action
    - $1-1 / 2^{\prime \prime}$ IPS top spud inlet
    - 2-1/8" trapway diameter
    - Fully Glazed Trapway
    - Integral Flushing Rim
    - Elongated Bowl
    - Water Spot Area $10^{\prime \prime} \times 71 / 2^{\prime \prime}$
    - Closet Bolts and Caps Included
    - Water closet compliant to the applicable sections of ASME A112.19.2/CSA B45.1
    - Toilet Seat Not Included


    ## Colors/Finishes

    - White


    ## Recommended Seats

    - Bemis - 1955CT/1955SSCT \& 2155CT/2155SSCT
    - Church - 295CT/295SSCT \& 2155CT/2155SSCT

    NOTE: All vitreous china dimensions shown in these drawings are nominal. Dimensions can vary within the tolerances established in the governing ASME A112.19.2/CSA B45.1 standard. Please take this into consideration when planning rough-in and plumbing layouts.

    ## Product Specification

    Elongated water closet shall be made of vitreous china with a $1-1 / 2^{n}$ top spud. Bowl shall be ADA Compliant when installed at required height of $17^{\prime \prime}$ from floor to top of fixture. Water Closet shall be Sloan Model ST-2029-A.

    ## SLロAN.

    Sloan
    10500 Seymour Avenue
    Franklin Park, IL 60131
    Phone: 1-800-982-5839
    Fax: 1-800-447-8329
    uww.sloanvalve.com

    ## ST-2059-A Universal Closet <br> Top Spud Vitreous China Elongated Water Closet

    ## DESCRIPTION

    Complete vitreous china water closet.

    ## Flush Cycle

    Model ST-2059-A Universal Closet

    $$
    \text { (1.1 to } 1.6 \mathrm{gpf} / 4.2 \text { to } 6.0 \mathrm{Lpf} \text { ) }
    $$

    Flush volume is determined by the flushometer used with closet.
    

    * Please note that this model is fully interchangeable with Models: ST-2050-A, ST-2052-A, ST-2053-A and matches all dimensional and performance parameters.
    ** This model meets the requirements for a High Efficiency Toilet when used with a high efficiency flushometer ( $1.28 \mathrm{gpf} / 4.8 \mathrm{Lpf}$ or 1.1/1.6 gpf-4.2/6.0 Lpf dual-flush).
    

    Meets the American Disabilities Guidelines and ANSI A117.1 requirements when installed according to these requirements.

    NOTE:
    Plumbing System Requirements
    $\sqrt{ }$ Minimum Flowing Pressure: 25 PS
    $\sqrt{ }$ Maximum Static Pressure: 80 PSI
    $\sqrt{ }$ Minimum Flow Rate: 18 gpm

    | This space for Architect/Engineer approval |  |
    | :--- | :--- |
    | Job Name | Date |
    | Model Specified | Quantity |
    | Variations Specified |  |
    | CustomerWholesaler |  |
    | Contractor |  |
    | Architect |  |

    

    ## SPECIFICATIONS

    ## Water Closet

    - Wall hung vitreous china elongated bowl
    - Siphon jet flushing action
    - 1-1/2" I.P.S. top spudi inlet
    - 2-1/8" fully glazed trapway diameter
    - Mounting hardware, carrier and toilet seat not included
    - Integral flushing rim
    - Water spot area $91 / 2^{\prime \prime} \times 81 / 4^{\prime \prime}$
    - ASME A112.19.2/CSA B45.1


    ## Colors/Finishes

    - White


    ## Recommended Accessories

    - Compatible with toilet seat models:

    Olsonite 10CT
    Bemis 1955 CT Church Commercial 295CT
    

    Designed to Meet ADA standards when bowl is $17^{\prime \prime}$ - 19 " high including seat
    

    NOTE: All vitreous china dimensions shown in these drawings are nominal. Dimensions can vary within the tolerances established in the governing ASME A112.19.2/ CSA B45.1 standard. Please take this into consideration when planning rough-in and plumbing layouts.

    ## Product Specification

    Elongated water closet shall be made of vitreous china with a $1-1 / 2^{\prime \prime}$ top spud inlet. Bowl shall be ADA compliant when installed at required height of $17^{\prime \prime}-19^{\prime \prime}$ from floor to top of fixture (including seat). Water Closet shall be Sloan Model ST-2059-A.

    ## SLロAN.

    Sloan Headquarters
    10500 Seymour Avenue
    Franklin Park, iL 60131
    Phone: 1-800-982-5839
    Fax: 1-800-447-8329
    www.sloanvalve.com
    
    

    PLASTIC HINGES WITH STAINLESS STEEL POSTS AND PINTLES

    MODEL \# COLOR \#

    ## 295CT/295SSCT

    ## DESCRIPTION:

    Open front less cover, elongated, heavy-duty, injection molded solid plastic toilet seat. Features four molded-in bumpers, non self-sustaining (295CT) or self-sustaining (295SSCT) check hinges with non-corrosive 300 Series stainless steel posts and pintles and STA-TITE ${ }^{\text {© }}$ Commercial Fastening System ${ }^{\text {TM }}$. This seat complies with IAPMO/ANSI Z124.5-2013 Plastic Toilet Seats as a class Commercial Heavy Duty.

    ## SPECIFICATIONS:

    Size: Elongated

    Material:
    Style:
    Bumpers:
    Hinges:

    Fastening System:

    Plastic
    Open Front less Cover
    Four
    Plastic Non Self-Sustaining (295CT) or SelfSustaining (295SSCT) with 300 Series Stainless Steel Posts and Pintles
    STA-TITE ${ }^{\oplus}$ Commercial Fastening System ${ }^{\text {M }}$

    ## FEATURES:

    STA-TITE ${ }^{\text { }}$ Commercial Fastening System ${ }^{\text {™ }}$
    Non-Corrosive 300 Series Stainless Steel Posts and Pintles

    D I MENSIONS:
    
    
    

    Sloan 111-1.28 11-14

    ## Sloan ${ }^{\circledR}$ Model Flushometer

    ## Description

    Exposed Water Closet Flushometer for floor mounted or wall hung top spud bowls.

    - Flush Cycle

    Model 111-1.28 High Efficiency (1.28 gpf/4.8 Lpf)

    - Specifications

    Quiet, Exposed, Diaphragm Type, Chrome Plated Closet Flushometer with the following features:

    - High Chloramine Resistant PERMEX Synthetic Rubber Diaphragm with Linear Filtered Bypass and Vortex Cleansing Action ${ }^{\text {TM }}$
    - ADA Compliant Metal Oscillating Non-Hold-Open Handle with Triple Seal Handle Packing
    - $1^{\prime \prime}$ I.P.S. Screwdriver Bak-Chek Angle Stop
    - Vandal Resistant Stop Cap
    - Adjustable Tailpiece
    - Vacuum Breaker with Flush Connection
    - Spud Coupling and Spud Flange for $1 / 2{ }^{\prime \prime}$ Top Spud
    - Sweat Solder Adapter with Cover Tube and Cast Wall Flange
    - High Copper, Low Zinc Brass Castings for Dezinciitication Resistance
    - Non-Hold-Open Handle and No External Volume Adjustment to Ensure Water Conservation
    - Low Consumption flush accuracy
    - Handle Packing, Stop Seat and Vacuum Breaker Molded from PERMEX* Rubber Compound for Chloramine Resistance
    Valve Body, Cover, Tailpiece and Control Stop shall be in conformance with ASTM Alloy Classification for Semi-Red Brass. Valve shall be in compliance to the applicable sections of ASSE 1037 and ANSI/ASME A112.19.2.
    - Variations
    $\square$ YO Bumper on Angle Stop
    $\square$ DFB Dual Filtered Fixed Bypass Diaphragm
    $\square$ SG Saniguard ${ }^{\text {A Antimicrobial Coating Protects Handle and Socket* }}$
    $\square \mathrm{HL}-3 \quad 3^{\prime \prime}$ Metal Oscillating Push Button on front of valve
    (does not meet ADA requirements)
    *Saniguard does not protect users or others against disease-causing bacteria.
    - Accessories

    See Accessories Section of the Sloan catalog for details on these and other Flushometer variations.

    - Fixtures

    Consult Sloan for Sloan brand matching fixture options.
    

    This space for Architect/Engineer approval

    ## SLロAN

    SLOAN VALVE COMPANY • 10500 SEYMOUR AVE. • FRANKLIN PARK, LL 60131
    Ph: 1-800-9-VALVE-9 or 1-847-671-4300 • Fax: 1-800-447-8329 or 1-847-671-4380 www.sloanvalve com

    Efficiency Series

    ## Model

    ## SU-1200 Series

    Vitreous China Retrofit Top Spud Urinal

    ## DESCRIPTION

    Complete HEU vitreous china retrofit top spud urinal fixture.

    ## Flush Cycle

    $\square$ Model SU-1200-0.125 (0.125 gpf/0.5 Lpf)
    Code: 1101200
    -Model SU-1202-0.25 (0.25 gp//1.0 Lpf)
    Code: 1101202
    $\square$ Model SU-1205-0.5 (0.5 gpt/1.9 Lpf)
    Code: 1101205

    ## SPECCFCATIONS

    ## Urinal Fixure

    - Wall hung vitreous top spud china
    - Large footprint to cover old caulk lines
    - Washdown flushing action
    - 3/4" I.P.S. top spud iniet
    - 2" NPT outlet flange
    - All mounting hardware included
    - Integral flushing rim
    - $100 \%$ factory flush tested
    - Compliant to the applicable sections of ASME A112.19.2/CSA B45.1
    - Carrier not included
    

    NOTE : All vitreous china dimensions shown in these drawings are nominal. Dimensions can vary within the tolerances established in the governing ASME A112.19.2/CSA B45.1 standard. Please take this into consideration when planning rough-in and plumbing layouts.

    ## Product Specification

    Washdown urinal shall be made of vitreous china with a $3 / 4^{\prime \prime}$ top spud. Urinal shall have a $14^{\prime \prime}$ rim. Urinal shall include a removable strainer, inlet spud and hanger. Urinal shall be Sloan Model SU-12 $\qquad$ __gpf.

    NOTE: Plumbing System Requirements
    $\sqrt{ }$ Minimum Flowing Pressure: 25 PSI
    $\sqrt{ }$ Maximum Fixture Static Presure: 80 PSI
    

    | This space for Architect/Engineer approval | Date |
    | :--- | :--- |
    | Jot Name | Quantily |
    | Model Specified |  |
    | Variations Specified |  |
    | Customer Wholesaler |  |
    | Contractor |  |

    ## SLロAN.

    Sloan Valve Company 10500 Seymour Avenue Franklin Park, IL 60131 Phone: 1-800-9-VALVE-9 (982-5839) or 1-847-671-4300
    Fax: 1-800-447-8329 or 1-847-671-4380
    www.sloanvalve.com
    Copyright © 2013 Sloan Valve Company
    SU-1200 09-13
    

    Royal 186 HEU S.S. - Rev. Od (03/12) Copyright (c) 2012 SLOAN VALVE COMPANY

    Royal ${ }^{\circledR}$ Model Flushometer

    - Description

    Exposed Urinal Flushometer, for $3 /{ }^{\prime \prime}$ top spud urinals.

    - Fush Cycle

    口Model 186-0.125 (0.125 gpf/0.5 Lpf)
    -Model 186-0.25 ( $0.25 \mathrm{gpf} / 1.0 \mathrm{Lpf}$ )
    DModel 186-0.5 (0.5 gpf/1.9 Lpf)

    ## - Specifications

    Quiet, Exposed, Diaphragm Type, Chrome Plated Urinal Flushometer with the following features:

    - For Flushing Volumes 0.125 and 0.25 : Dual Linear Filtered Bypass Diaphragm
    - For Flushing Volume 0.5: Dual Filtered Bypass Diaphragm
    - ADA Compliant Metal Oscillating Non-Hold-Open Handle with Triple Seal Handle Packing
    - $3 / 4^{" I}$ I.P.S. Screwdriver Bak-Chek ${ }^{\oplus}$ Angle Stop
    - Free Spinning Vandal Resistant Stop Cap
    - Adjustable Tailpiece
    - High Back Pressure Vacuum Breaker Flush Connection with One-piece Bottom Hex Coupling Nut
    - Spud Coupling and Flange for $3 / 4$ " Top Spud
    - Sweat Solder Adapter w/Cover Tube \& Cast Wall Flange w/Set Screw
    - High Copper, Low Zinc Brass Castings for Dezincification Resistance
    - Non-Hold-Open Handle, Fixed Metering Bypass and No External Volume Adjustment to Ensure Water Conservation
    - Flush Accuracy Controlled by CID Technology
    - Diaphragm, Handle Packing, Stop Seat and Vacuum Breaker molded from PERMEX Rubber Compound for Chloramine Resistance

    Valve Body, Cover, Tailplece and Control Stop shall be in conformance with ASTM Alloy Classification for Semi-Red Brass. Valve shall be in compliance to the applicable sections of ASSE 1037 and ANSI/ASME A112.19.2.

    ## - Variations

    $\square$ HL-3 $\quad 3^{\prime \prime}$ Metal Oscillating Push Button on front of valve (does not meet ADA requirements)
    $\square$ SG SaniGuardid Antimicrobial Handle and Socket

    ## - Accessories

    See Accessories Section of the Sloan catalog for details on these and other Flushometer variations.

    - Fixtures

    Consult Sloan for Sloan brand matching fixture options.
    

    The information contained in this document is subbect to change without notice.

    ## SLロAN

    SLOAN VALVE COMPANY - 10500 SEYMOUR AVE. $\operatorname{FRANKLIN~PARK,~IL.~} 60131$
    254 h: 1-800-982-5839 or 1-847-671-4300 - Fax: 1-800-447-8329 or 1-847-671-4380
    $254^{\text {fh: 1-800-982-5839 or 1-847-671-4300 - Fax: 1-800 }}$ www.sloanvalve.com

    PCA ${ }^{\circledR}$ Spray
    Te: 1866 253-0102
    Fax ( 1884 944-1590
    www usalandord.com
    Certified WBE Company
    Faucet Attachment - 0.5 gpm max
    Pressure compensating Regular Size

    ## Features and Benefits

    $\rightarrow$ Pressure compensating for constant flow from 20 to 80 psi.
    $\rightarrow$ Provides non-splashing, non-aerated spray.
    $\rightarrow$ Anti-clogging dome screen filters sediment and particles.
    $\rightarrow$ Color-coded to identify flow rate.
    $\rightarrow$ Virtually unbreakable single piece insert ensures a longer usable life.
    $\rightarrow$ Compatible with all NEOPERL regular male and female housings, vandal proof and metric size housings.
    $\rightarrow$ Available housing finishes: chrome.
    $\rightarrow$ Laser marked housings: statutory mark and custom logo.
    $\rightarrow$ Rubber washer.

    ## Certification

    ANSIINSF 61
    ASME A112.18.1M
    CSA B125

    | Designation \& Thread Sizes |  |
    | :--- | :--- |
    | Designation | Thread Size |
    | Insert only |  |
    | Regular male | $15 / 16^{\prime \prime}-27$ |
    | Regular female | $55 / 64^{\prime \prime}-27$ |
    | Regular dual thread | $15 / 16^{\prime \prime}-27 \times 55 / 64^{\prime \prime}-27$ |
    | Regular male vandal proof | $15 / 16^{\prime \prime}-27$ |
    | Regular female vandal proof | $55 / 64^{\prime \prime}-27$ |
    | Regular dual thread vandal proof | $15 / 16^{\prime \prime}-27 \times 55 / 64^{n}-27$ |
    | Vandal key |  |

    *Other combinations also available

    ## Housings

    Dimensions

    | No | mm | ln |
    | :---: | :---: | :---: |
    | $A$ | 13.00 | .512 |
    | $B$ | 19.95 | .785 |
    | $C$ | $\approx 25$ | $\approx 1$ |

    
    Flow Rate Curve
    

    ## Technical Data

    Material:

    | Body | Acetal |
    | :--- | :--- |
    | O-ring | EPDM |
    | Washer | EPDM |

    Working temperature: $150^{\circ} \mathrm{F}$
    Working pressure: $\quad 125 \mathrm{psi}$

    | Insert Color Code |  |  |
    | :--- | :--- | :--- |
    | Dome: White | Diffuser. Lime Green | Basket: Gray |

    ## UCRM 7: WINDOW FILM

    

    ## Virtually invisible insulation. Enhance comfort and efficiency year round with $\mathbf{3 M}^{\text {w }}$ Thinsulate ${ }^{\text {Tw }}$ Window Film Climate Control 75.

    - Helps provide increased insulation performance, much like upgrading single pane to double pane and double pane to triple pane windows
    - Helps improve comfort during cold winter months
    - Heat rejection helps provide comfort and energy savings in summer months
    - High visible light transmission film with a neutral appearance that helps maintain the building's existing appearance
    - Helps extend the life of furnishings by significantly reducing harmful UV rays, the largest cause of fading
    - Comprehensive warranty from 3M
    


    ## Thinsulate, insulation for your windows.

     and Alliances: CLINTON
    CLIMATE INITIATIVE
     assorintlom.
    

    ## Climate Zone 6

    Historic Minnesota Governor's Residence $1,000 \mathrm{sq} \mathrm{ft}$ installation of $3 \mathrm{M}^{\text {™ }}$ Thinsulate ${ }^{\mathrm{ma}}$ Window Film Climate Control 75.

    Customer Issues:

    - Historic property that could not change the look of the building
    - Single pane windows, caused cold, drafty areas
    - Needed to meet state energy savings goals
    

    Product Performance and Technical Data

    | Glass Type <br> (All 1/4") | Film Type | Visible Light |  |  | Total Solar Energy Rejected | Solar Heat Gain Corfficient (G Value) | U Value |  | Heat Loss Reduction | Heat Gain Reduction | UV Light Rojected | Glare <br> Reduction | Vislble Light to Solar Heat Gain Ratio |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | Reflected (interior) | Reflected (exterior) | Transmitted |  |  | btu/ <br> $\mathrm{hft}^{2} \mathrm{~F}$ | $\begin{gathered} \mathrm{w} / \mathrm{k} \\ \mathrm{~m}^{2} \mathrm{~K} \end{gathered}$ |  |  |  |  |  |
    | Clear | $\begin{aligned} & \text { Thinsulate'" } \\ & 75 \end{aligned}$ | 12\% | 16\% | 74\% | 47\% | 0.53 | 0.63 | 3.6 | 40\% | 35\% | 99.9\% | 17\% | 1.4 |
    |  | $\begin{gathered} \text { Thinsulate'" } \\ 75 \end{gathered}$ | 10\% | 8\% | 44\% | 60\% | 0.40 | 0.63 | 3.6 | 40\% | 37\% | 99.9\% | 17\% | 1.1 |
    |  | $\begin{gathered} \text { Thinsulate' }{ }^{\text {"* }} \\ 75 \end{gathered}$ | 17\% | 21\% | 66\% | 49\% | 0.51 | 0.35 | 2.0 | 26\% | 27\% | 99.9\% | 16\% | 1.3 |
    |  | $\begin{gathered} \text { Thinsulate }{ }^{m} 75 \\ \end{gathered}$ | 15\% | 10\% | 40\% | 63\% | 0.37 | 0.35 | 2.0 | 26\% | 27\% | 99.9\% | 15\% | 1.1 |

    ## LEED Certification

    Window films may be used toward the following LEED credits

    | - 55-8 | - MR 1.1-1.2 | PEQ-71 | > EQ-8.1-8.2 | - EA-1 | - MR 5.1-5.2 | - EQ-7.2 | $\cdots$ ID |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


    ## 3M

    Renewable Energy Division
    3M Center, Building 235-2S-27

    ## UCRM 9: HVAC UPGRADES

    This document contains Performance Services Trade Secrets and Confidential information to be used by the addressee for evaluating the PSI proposal. Addressee shall not disclose the Confidential information to third parties without written consent of Performance Services.

    ## D. DETAILED IMPLEMENTATION PLAN

    - Preliminary Project Schedule
    


    ## E. OTHER SUPPORTING DOCUMENTS

    - Exhibit C - Measurement \& Verification Plan
    - Exhibit E - Sample Annual M\&V Report


    ## EXHIBIT B - PROJECT IMPROVEMENT LIST

    ## PROJECT SCOPE

    The following project scope matrix defines the project improvements being made at each building:
    

    ## UTILITY COST REDUCTION MEASURE (UCRM) \& IMPROVEMENT SUMMARIES

    ## LED Lighting

    This UCRM considers replacement of the fluorescent, incandescent and HID lighting with LED lighting. Benefits include:

    - High efficacy, low energy usage
    - 70,000+ hour lamp life typically
    - Ten year warranty on most product
    - Improved illumination levels
    - Improved lighting controls to reduce operational hours

    A detailed scope of work for this measure follows:

    - Retrofit and/or replace 3,461 fixtures at Government Center
    - Install approximately 21 occupancy sensors at Government Center
    - Retrofit and/or replace 324 fixtures at Court House
    - Install approximately 0 occupancy sensors at Court House
    - Retrofit and/or replace 515 fixtures at Juvenile Detention
    - Install approximately 1 occupancy sensors at Juvenile Detention
    - Retrofit and/or replace 277 fixtures at Development Services
    - Install approximately 9 occupancy sensors at Development Services
    - Retrofit and/or replace 162 fixtures at Health Department
    - Install approximately 0 occupancy sensors at Health Department
    - Retrofit and/or replace 289 fixtures at Precinct 2
    - Install approximately 1 occupancy sensors at Precinct 2
    - Retrofit and/or replace 115 fixtures at Precinct 4
    - Install approximately 0 occupancy sensors at Precinct 4
    - Retrofit and/or replace 27 fixtures at Jacobs Well Nature Center
    - Install approximately 0 occupancy sensors at Jacobs Well Nature Center
    - Retrofit and/or replace 1552 fixtures at the Jail
    - Install approximately 0 occupancy sensors at the Jail
    - Provide one percent spare lamps and/or drivers
    - All material made obsolete during this work will be disposed of according to state and local requirements.
    - Provide one percent spare lamps and/or drivers
    - All material made obsolete during this work will be disposed of according to state and local requirements.


    ## Power Conditioning

    This UCRM considers installation of a total of approximately 19 power conditioners with modular capacitance (where applicable) to improve power factor making your motor load run cooler and more efficiently. This results in a reduction in energy consumption and an extension of the useful life of your motor load. The Power Conditioning System will also provide harmonic filtration to mitigate harmonic distortion and recycle waste energy resulting in reduced energy consumption which prolongs the longevity of electrical equipment.

    Lastly, the Power Conditioning System with its industrial grade metal oxide varistors (MOVs) protects electrical equipment from transient electrical equipment.

    A detailed scope of work for this measure follows:

    - Installation of approximately 6 power conditioning panels at Hay's Government Center
    - Installation of approximately 3 power conditioning panels at Hay's County Juvenile Detention
    - Installation of approximately 3 power conditioning panels at Hay's County Jail
    - Installation of 1 power conditioning panel at each of the following buildings: Court House, Development Services, Health Department, Precinct 2, Precinct 3, Precinct 4, Jacob's Well Nature Center


    ## Solar PV

    This UCRM includes installing an approximately 499 kW dc photovoltaic solar array on the roof of the Government Center and an approximately 241 kW dc photovoltaic solar array on the ground adjacent to the Jail.

    ## Demand Response

    The following is a summary of the scope of this UCRM:

    - Add remote start/stop controls and notification to 750 kW standby generator at Government Center and an automatic transfer switch to power additional building load
    - Add remote start/stop controls and notification to 125 kW standby generator at Juvenile Detention
    - Replace existing 600 kW standby generator at Jail with a new 600 kW standby generator with remote start/stop controls and notification. Scope to include new automatic transfer switch and distribution panel which will allow the new generator to power building HVAC loads as well as life safety loads
    - Install new 100 kW standby generator at Development Services with remote start/stop controls and notification. New generator to power office building and diesel pumps.
    - Train staff on ERS demand response process


    ## Retro-commissioning and Building Automation System with Tridium Front End

    This UCRM proposes to implement a retro-commissioning program at the Government Center. This program will combine aspects of controls optimization, retro-commissioning, and new construction commissioning. The following standards of comfort and control strategies will be applied:

    Cooling
    Setpoint
    Occupied Cooling Setpoint
    Occupied Cooling Setpoint Unoccupied Cooling Setpoint

    ## Heating

    Setpoint
    Occupied Heating Setpoint Occupied Heating Setpoint Unoccupied Heating Setpoint

    ## Default Value

    $74^{\circ}$ F (Except $3^{\text {rd }}$ floor court rooms)
    $69^{\circ} \mathrm{F}$ (3rd floor court rooms)
    $90^{\circ} \mathrm{F}$

    Default Value
    $70^{\circ} \mathrm{F}$ (Except $3^{\text {rd }}$ floor court rooms)
    $67^{\circ} \mathrm{F}$ (3rd floor court rooms) $50^{\circ} \mathrm{F}$

    - Optimize use of natural gas heating
    - Optimize use of outdoor air using CO2 sensors and occupancy schedule
    - Reset minimum VAV box airflows from $40 \%$ to $20 \%$
    - Identify failed sensors and HVAC equipment


    ## Tridium User Interface

    Additionally, this UCRM includes replacing the existing JCI Metasys user interface with a new Tridium user interface. Project details follow:

    ## 1. Replace JCI NAE controllers with JACE controllers

    2. Convert Metasys databases into a database that fits into the Tridium JACE FX platform by using your current DDL files
    3. Create new web based user interface that will be accessible from iOS and Andriod devices as well as Apple computers and Windows based PCs
    4. Integrate in other Hays County building automation systems being installed as part of this project
    5. Replace approximately 40 temperature sensors with temperature sensors with system override buttons

    ## HVAC Modifications

    Currently the Hays County Government Center third-floor courtrooms must be set to 67 degrees Fahrenheit to maintain a comfortable temperature. Also in the Courthouse there are two units that are beyond their useful lives and two units in very confined spaces. To correct these issues new HVAC equipment would need to be installed.

    In the Hays County Government Center third-floor we interviewed staff and found that the HVAC would not respond to increases in temperature based on full occupancy. Running multiple calculations we confirmed that if the spaces were full to capacity to space temperature would drift up into uncomfortable temperatures. To resolve this PSI will replace 18 VAV boxes with larger boxes, rebalance the third-floor and reset min/max airflow throughout the thirdfloor.

    Energy savings calculations are documented in the appendix and additionally were calculated using engineering spreadsheet and checked using the latest version of eQuest (3.64). Prior to calculating savings, baseline models were constructed that provided statistically valid baseline matches.

    ## Server Room Modifications

    The Government Center IT Server room is served by three Data Aire split-systems which provide space cooling to the IT Server room. Although cooling capacity is sufficient the diffusers suppling the air and return grilles are designed to cool the space not the server racks. This creates hot and cool spots throughout the server room and requires the space to over cooled.

    By changing the diffusers and changing the current server racks with racks design to provide laminar air-flow through the server's, hot spots will be reduced providing better server performance and safety for the county's valuable server capacity.

    Three sets of racks will need to be changed at a time to provide continuous service for the County. The County will need to provide for disconnecting, moving and reconnecting all components in each rack.

    Lastly, this measure includes repairing of exterior refrigerant line insulation.

    Training will be provided by PSI to County personnel to properly follow the requirements of using the new server racks.

    Energy savings, albeit relatively small, will result from this design change. The primary purpose for making this design change is to minimize the risk of server overheating and downtime.

    ## Building Automation System Description

    The HVAC systems at the following buildings are controlled by stand-alone programmable thermostats:

    | Bullding Name | Address | HVACType | HVAC Controls |
    | :---: | :---: | :---: | :---: |
    | Court House | 111 E. San Antonio St, San Marcos, TX 78666 | 4-Trane Split Systems, 3Trane Package Units | Prog. T-Stat |
    | Juvenile Detention | 2220 Clovis Barker Road, San Marcos, TX 78666 | RTUs | Prog. T-Stat |
    | Development Services | 2171 Yarrington Road, San Marcos, TX 78666 | 13-Trane Split Systems | Prog. T-Stat |
    | Health Department | 401-A Broadway, San Marcos, TX 78667 | 5-Trane Split Systems | Prog. T-Stat |
    | Precinct 2 | 5458 FM 2770, Kyle, TX 78640 | 12-Trane Split Systems | Prog. T-Stat |
    | Precinct 3 | 200 Stillwater Drive, Wimberley, $\text { TX } 78676$ | 2-Split Systems, 5 Rooftop Units | Prog. T-Stat |
    | Precinct 4 * | 195 Roger Hanks Parkway \#3, Dripping Springs, TX 78620 | 4-Trane Split Systems | Prog. T-Stat |
    | Jacobs Well Natural Center | 830 Jacobs Well Road, Wimberley, TX 78676 | 1-Goodman Split System | Prog. T-Stat |
    | Jail | 1307 Uhland Road, San Marcus, TX 78666 | 30 RTUs | Prog. T-Stat |

    This UCRM replaces the existing obsolete thermostats, with a native BACnet, smart thermostats that function as a simplified building automation system (BAS). These smart thermostats will be integrated into a common Tridium user interface along with the BAS serving the Government Center. Native BACnet thermostats will be installed at the following buildings:

    - Court House (Seven new stats and three averaging temperature sensors)
    - Development Services (13 new stats)
    - Health Department (Five new stats)
    - Precinct 2 ( 12 new stats)
    - Precinct 3 (Seven new stats)
    - Precinct 4 (Four new stats and two averaging temperature sensors)
    - Jacob's Well Natural Center (One new stat)

    At these sites, existing thermostats will be removed from the building except for server room thermostats. The new smart thermostats/BAS will provide for scheduling, trending, alarms and graphics of the equipment in the building. The scope of this upgrade includes the installation of smart thermostats for the equipment listed below:

    - 41 Split systems 2.5 tons and larger
    - Three Package rooftop units


    ## Temperature Averaging at Court House

    Hays County Courthouse has been retrofitted with an air-conditioning system which is split into several zones. Each zone provides heating and cooling as needed, however the zones include tenants with different cooling needs. As a result, one tenant may be hot and another cold. By installing an additional four additional temperature sensors and averaging the temperature within these zones, occupants can work in a more comfortable environment, without the need to over-cool the space and use electric heaters for individual comfort. It is important to point out that while temperature averaging will help address comfort issues, it will not completely resolve them. To completely address comfort issues, additional zoning would need to be added within the Court House.

    Energy savings will be realized through temperature set-point adjustments and optimized equipment operation according to occupancy and load conditions. The proposed BAS system will be capable of providing all commonly used energy conservation control strategies. The types of energy management and control sequences to be employed include:

    ## Optimized Mechanical System Schedules

    The air handling units are currently operating $24 \times 7$ to maintain the desired temperatures in each area. The new BAS will enable scheduling of equipment to reduce operating hours while still maintaining the building comfort during occupied times. Unoccupied times for each day will be identified by the property manager and trends will be utilized to ensure set points are achieved at the start of each occupied period.

    ## Space Temperature Set-point Scheduling

    The required space conditions in the buildings can be changed based on the occupancy schedule. During periods when the building is unoccupied, the set-points would be adjusted to a level so that desired space conditions can be recovered at the beginning of the next occupancy period. This ECM will work with the building management groups to clearly define both the occupancy schedules and space conditions that should be maintained for each building area. The BAS will maintain the set-points and schedules.

    During unoccupied periods, the HVAC equipment will operate only when required to maintain conditions at the unoccupied set-point. Additionally, exhaust fans will only be operated during occupied periods.

    Outside air ventilation will be eliminated during unoccupied periods. Optimum start routines will be used to delay the recovery period as long as possible based on outdoor air conditions and historical performance data.

    | Cooling |  |
    | :--- | :--- |
    | Setpoint | Default Value |
    | Occupied Cooling Setpoint | $74^{\circ} \mathrm{F}$ |
    | Unoccupied Cooling Setpoint | $90^{\circ} \mathrm{F}$ |
    |  |  |
    | Heating |  |
    | Setpoint | Default Value |
    | Occupied Heating Setpoint | $70^{\circ} \mathrm{F}$ |
    | Unoccupied Heating Setpoint | $50^{\circ} \mathrm{F}$ |

    The scope of this UCRM at the Hays County Jail includes replacing existing thermostats with a comprehensive, native BACnet BAS. This new BAS will have a Tridium user interface and will be integrated into a multiple building Tridium front end located at the Government Center. In addition to occupancy schedule and set-point temperature optimization, we will address the following additional BAS features at the Jail:

    ## Economizer Control

    Some of the existing air conditioning units are equipped to use outside air for cooling when outdoor air conditions permit, however, not all of these units operate properly. The BAS would take over this control so that the system will monitor the outdoor air conditions and modulate the outdoor air and return air dampers to provide a mixed air temperature acceptable for cooling conditions. Economizer control would be done by monitoring outdoor air temperature. When outdoor temperature is below $55^{\circ} \mathrm{F}$, economizer control is enabled, the outdoor air and return dampers are positioned to maintain a $55^{\circ} \mathrm{F}$ mixture, and the mechanical cooling is disabled or at least minimized.

    ## Supply Air Temperature Reset

    Space temperature will be maintained by supply air temperature reset. Use of supply air temperature reset can increase comfort levels and save energy.

    ## Demand Controlled Ventilation

    Existing air conditioning unit outdoor air dampers have minimum position settings to bring in minimum outdoor air for ventilation based on the design maximum number of people in the area served by the system on a continuous basis. Installation of carbon dioxide sensors in the space or return air will allow control of outdoor air dampers to provide the required amount of ventilation air to maintain the level of carbon dioxide (CO2) below the recommended level. Outdoor air will be adjusted to the required amount for the number of people in the conditioned area on a real time basis. Heating and cooling of excess outdoor air will be eliminated, therefore yielding substantial savings.

    ## Controlled Building Exhaust

    Existing building exhaust fans operate 24 hours per day, seven days a week throughout the year. During unoccupied periods when building HVAC systems are off, operation of building exhaust fans results an excessive and uncontrolled infiltration of outdoor air.

    The BAS will be used to control the five primary exhaust fans so that they only operate when building HVAC systems are in use.

    ## Smoke Exhaust Fans

    The BAS will integrate control of the smoke exhaust fans with the associated air handling units. Control will be provided through the BAS.

    ## Water Controls

    A detailed scope of work for this UCRM follows:

    ## Government Center Scope of Work

    ## High Efficiency Urinal (HEU) Retrofit

    Recommendation: HEUs are available that use a maximum of one pint per flush ( 0.125 gpf ), or $87.5 \%$ less water than standard 1.0 gpf urinal. With the passage of the 1992 Energy Policy Act, 1.0 gpf urinals became the standard in the United States. New Standards developed by the EPA WaterSense Program are being adopted by the majority of plumbing manufacturers. PSI recommends 0.125 gpf over waterless urinals because of possible sediment and other maintenance issues that arise with waterless urinals.

    The recommendation involves removal of 17 high flow urinals flush valves with a flush volume of 1.0 gpf . This recommendation includes replacing flush valves with 0.5 gpf valves, which is necessary to ensure that the fixtures work with maximum efficiency. Failure to install the correct valve can result in sedimentation of the drain line and other components.

    ## High Efficiency Lavatory Faucet Aerator Retrofit

    Recommendation: High efficiency aerators for lavatories typically use 0.5 gpm or less. The recommended action involves replacing 111 lavatory faucet aerators that have a flow rate of 2.2 gpm or greater with new high efficiency aerators having flow rates of 0.5 gpm or less.

    ## High Efficiency Utility Faucet Aerator Retrofit

    Recommendation: High efficiency aerators for utility faucets typically use $2,25 \mathrm{gpm}$ or less. The recommended action involves installing four high efficiency aerators on kitchen/break room faucets. It is recommended that the faucets be fitted with high efficiency aerators with flow rates not to exceed 2.25 gpm .

    ## High Efficiency Kitchen Faucet Aerator Retrofit

    Recommendation: High efficiency aerators for kitchens and break rooms typically use 1.5 gpm or less. The recommended action involves installing 19 high efficiency aerators on kitchen/break room faucets. It is recommended that the faucets be fitted with high efficiency aerators with flow rates not to exceed 1.5 gpm .

    ## Hays County Jail Scope of Work

    ## High Efficiency Toilet (HET) Retrofit

    Recommendation: HETs use a maximum of 1.28 gpf , or $20 \%$ less water than standard 3.5 gpf toilets. With the passage of the 1992 Energy Policy Act, 1.6 gpf toilets became the standard in the United States. The State of Texas now requires all toilets sold on or after January 1, 2014 to operate at 1.28 gpf or less.

    The recommendation involves removal of all existing toilets with flush volumes of 1.6 gpf or greater and replacement with HETs (a total of 15 toilets). This recommendation includes replacing all porcelain and flush valves, which is necessary to ensure that the fixtures work with maximum efficiency.

    ## High Efficiency Detention Flush and Lavatory Valve (HEDFR) Retrofit

    Recommendation: HEDFRs use a maximum of 1.6 gpf , or less than $50 \%$ of the water used by the standard 3.5 gpf toilets.

    The recommendation involves installation of an intelligent plumbing system having three (3) basic components on 155 toilets/Lavatories and 54 showers:

    1. Controller
    2. Pressure Activated Sensor
    3. Valve (Lavatory, Flush, Shower, Etc.)

    The electronic controller is the master control device in the water conservation system. It uses a microprocessor that's programmed at the factory with run-times, delays, lockout periods, etc., all designed to discourage misuse and conserve water. Savings are seen in the reduction of: Water used; sewage costs; and costs attributed to vandalism. A total of six remote control stations are included in this scope.

    The pressure activated sensors, commonly called "buttons", have a housing made of solid stainless steel with the pressure activation circuitry potted and completely waterproof. The sensor is activated when 4-12 oz. of pressure is applied to the face of the button.

    The valves can adapt to existing plumbing systems or can be piped in for new applications. Flush valves can be located remotely while maintaining proper gallons per flush requirements.

    ## High Efficiency Lavatory Faucet Aerator Retrofit

    Recommendation: High efficiency aerators for lavatories typically use 0.5 gpm or less. The recommended action involves replacing 32 lavatory faucet aerators that have a flow rate of 2.2 gpm or greater with new high efficiency aerators having flow rates of 0.5 gpm or less.

    ## Window Restoration

    The following is a summary of the scope of this UCRM:
    Restoration Methodology and Scope of Work: Sashes, inner stop and parting bead will be removed and transported to the restorer. The current blinds will be removed at this time, labeled and stored onsite. The openings will be sealed using plywood. Once sashes are removed the window jambs will be thoroughly examined. Window jamb and sill repairs will be done onsite.

    Jamb/sill prep and paint will be completed whiles sashes are removed. In the shop, sashes and stop will be placed in a steam oven to remove all paint and glazing; then sanded, primed, painted, glazed and slotted for weather stripping. A borate based preservative (Boracare) will be applied to all bare wood prior to paint application. This will minimize the risk of future rot or pest damage to the wood. New concealed interlocking weather stripping will be installed when the sashes are reinstalled - this will seal each sash at sides, bottom and meeting rail to minimize air and noise infiltration and allow for normal function of the window. Sashes will be installed with some new parting bead and original inner stop. Jamb and brick mold will be painted but not interior window trim. Existing sash chain will be reused. Only the bottom sash will function, the top sash will be fixed. The workmanship will be warrantied for 10 years to exclude paint and glazing. Warranty from subcontractor.

    Scope includes restoration of 89 windows at the Hays County courthouse.

    ## Window Film

    The Hays County Courthouse windows are historic, clear single pane glass. Compared to modern windows, these windows do not reject as much solar heat and have a higher emissivity. Window glass is by nature highly thermally emissive. To improve thermal control (insulation and solar optical properties), window film will be applied to a total of 185 window panes. Window film will not be installed on a total of 16 window panes due to prevent potential damage to windows with wire in the glass.

    ## HVAC and Plumbing Upgrades

    In the Courthouse, there are two (2) 7.5 split-system units that serve the basement area and IT servers in this building that are over 15 years old and are beyond their recommend useful life. There are also two (2) 15 ton split-systems that serve primarily the second floor that are very difficult to service due to the very limited access these units. Additionally, these units have become relatively expensive to maintain due to various mechanical system failures over the last two years.

    This measure considers replacing the four split-systems with new, high efficiency units having the same nominal cooling/heating capacities. Additionally, PSI recommends installing AC-1 and $A C-2$ 's new air handling units in the open ceiling space to improve maintainability.

    Additionally, this measure includes replacing 16 old copper $p$ traps with new copper $p$ traps at the Jail. Replacement is need to due to pipe age and condition.

    ## Exhibit C

    ## Measurement and Verification Plan

    Pursuant to the terms of that certain Energy Performance Contract between Hays County (" HC ") and Performance Services, Inc. ("ESCO") dated $\qquad$ (the "Contract"), ESCO shall perform the energy and water savings measurement and verification as defined within this Measurement and Verification Plan (the "Plan"). ESCO shall also coordinate the Plan with the M\&V Consultant, as defined in the Contract. ESCO and the M\&V Consultant shall work to resolve any issues with respect to the Plan to the reasonable satisfaction of HC .

    GUARANTEED SAVINGS ESCO shall guarantee energy savings ("Energy Savings") pursuant to the terms of Exhibit D to the Contract, the Performance Guarantee Agreement (the "Guarantee"). The term of the Plan shall equal the term of the Guarantee. Energy Savings are calculated based on the installation of Utility Cost Reduction Measures ("UCRMs") which are designed to reduce electric consumption ( kWh ), reduce natural gas consumption (CCF), and reduce water/sewer usage (kgal).

    Operational savings ("Operational Savings") for maintenance, as identified and calculated in Exhibit A to the Contract, Utility Assessment Report (the "UAR"), are agreed to and stipulated by HC for the term of the Guarantee. ESCO and HC agree for the term of the Guarantee that the annual Utility Rate escalation factor will be 0\% for electricity, natural gas, water and sewer.

    Energy Savings and Operational Savings shall be collectively referred to herein as "Guaranteed Savings".

    Schedule A of the Plan contains the methodology and calculations used to determine Guaranteed Savings achieved as a result of the installation of the UCRMs, as well as the methodology that ESCO will use to measure, verify, and report on Guaranteed Savings achieved annually during the term of the Guarantee.

    Pursuant to the Guarantee, Guaranteed Savings are as follows:
    TABLE 1 - GUARANTEED SAVINGS

    |  | uchm tule | -35 ${ }^{\text {a }}$ |  | annuasminger |  |  | 5 $3^{3}$ |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
    | $\begin{aligned} & \text { UCRM } \\ & \text { No. } \end{aligned}$ |  | Getricthergy (whyt | Exatre (\$) | $2$ |  | $\begin{array}{\|c\|} \hline \text { Whartsener } \\ \hline \text { iselphit } \\ \hline \end{array}$ | Wharsent | Cotifesarim |  |
    | 1 | LED Lighting | 1,190,455 | \$103,024 | 0 | \$0 | 0 | \$0 | \$39,687 | \$142,711 |
    | 2 | Power Conditioning | 185,335 | \$15,207 | 0 | \$0 | 0 | \$0 | \$0 | \$15,207 |
    | 3 | Solar PV | 987,790 | \$87,965 | 0 | \$0 | 0 | \$0 | \$0 | \$87,965 |
    | 4 | Demand Response | 0 | \$0 | 0 | \$0 | 0 | \$0 | \$27,450 | \$27,450 |
    | 5 | Retro-Cx\& BAS with Tridium Front Ef | 587,793 | \$47,056 | 0 | \$0 | 0 | \$0 | \$0 | \$47,056 |
    | 6 | Water Controls | 0 | \$0 | 7,864 | \$5,112 | 8,096 | \$100,181 | \$0 | \$105,293 |
    | 7 | Window Film | 9,152 | \$752 | 0 | \$0 | 0 | 50 | \$0 | \$752 |
    | 8 | Window Restoration | 3,480 | \$307 | 0 | \$0 | 0 | \$0 | \$24,990 | \$25,296 |
    | 9 | HVaC P Plumbing Upgrades | 6,012 | \$530 | 0 | \$0 | 0 | \$0 | \$0 | \$530 |

    TABLE 2 - ANNUAL SAVINGS

    | Year | Electricity <br> (kWh) \$ | Annual Savings |  |  | Total <br> Savings \$ |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    |  |  | Natural Gas <br> (Therm) \$ | Water/ <br> Sewer \$ | Other <br> Savings \$ |  |
    | 1 | \$254,841 | \$5,112 | \$100,181 | \$92,127 | \$452,260 |
    | 2 | \$259,938 | \$5,214 | \$102,185 | \$92,127 | \$459,463 |
    | 3 | \$265,136 | \$5,318 | \$104,228 | \$92,127 | \$466,809 |
    | 4 | \$270,439 | \$5,425 | \$106,313 | \$92,127 | \$474,303 |
    | 5 | \$275,848 | \$5,533 | \$108,439 | \$92,127 | \$481,947 |
    | 6 | \$281,365 | \$5,644 | \$110,608 | \$92,127 | \$489,743 |
    | 7 | \$286,992 | \$5,757 | \$112,820 | \$92,127 | \$497,695 |
    | 8 | \$292,732 | \$5,872 | \$115,077 | \$92,127 | \$505,807 |
    | 9 | \$298,586 | \$5,989 | \$117,378 | \$92,127 | \$514,080 |
    | 10 | \$304,558 | \$6,109 | \$119,726 | \$92,127 | \$522,519 |
    | 11 | \$310,649 | \$6,231 | \$122,120 | \$52,440 | \$491,440 |
    | 12 | \$316,862 | \$6,356 | \$124,563 | \$52,440 | \$500,220 |
    | 13 | \$323,200 | \$6,483 | \$127,054 | \$52,440 | \$509,176 |
    | 14 | \$329,664 | \$6,613 | \$129,595 | \$52,440 | \$518,311 |
    | 15 | \$336,257 | \$6,745 | \$132,187 | \$52,440 | \$527,628 |
    | 16 | \$342,982 | \$6,880 | \$134,831 | \$27,450 | \$512,142 |
    | Total | \$4,407,066 | \$88,399 | \$1,732,474 | \$1,183,463 | \$7,411,402 |

    Table 3 below provides the annual fees for the Plan:
    TABLE 3 - ANNUAL M\&V FEE

    | Year | Annual Costs |  |
    | :---: | :---: | :---: |
    |  | PSIM\&V <br> Cost | Total M\&V Cost |
    | 1 | \$24,040 | \$24,040 |
    | 2 | \$24,521 | \$24,521 |
    | 3 | \$25,011 | \$25,011 |
    | 4 | \$25,511 | \$25,511 |
    | 5 | \$26,022 | \$26,022 |
    | 6 | \$26,542 | \$26,542 |
    | 7 | \$27,073 | \$27,073 |
    | 8 | \$27,614 | \$27,614 |
    | 9 | \$28,167 | \$28,167 |
    | 10 | \$28,730 | \$28,730 |
    | 11 | \$29,305 | \$29,305 |
    | 12 | \$29,891 | \$29,891 |
    | 13 | \$30,489 | \$30,489 |
    | 14 | \$31,098 | \$31,098 |
    | 15 | \$31,720 | \$31,720 |
    | 16 | \$32,355 | \$32,355 |
    | Total | \$415,734 | \$415,734 |

    ## INFORMATION AND ITEMS TO BE FURNISHED BY HC:

    HC shall furnish to ESCO any design, construction, maintenance or operating documents/manuals; utility billing data for electricity and natural gas consumption, bills and other information necessary to provide services under the Plan. To the fullest extent possible, information shall be delivered or made available in electronic media form and universal file formats (Text, comma delimited files, PDF, JPEG).

    During the term of the Plan, HC shall furnish a secure area for the storage of required materials and provide and arrange access for ESCO to such secure area as may be necessary for expeditious and orderly performance of the services under the Plan.

    ## UTILITY RATES AND BASELINE ASSUMPTIONS:

    The Guaranteed Savings shall be based on the utility cost per unit established and agreed to by both parties which is defined in the Energy, Water and O\&M Rate Data section of the Plan. For each year, the dollar savings shall be calculated based on the baseline unit cost of electricity and natural gas as defined within Schedule A of the Plan. These and other baseline assumptions used
    to calculate the Guaranteed Savings are documented in the UAR and Schedule A of the Plan. This includes, but is not limited to, assumptions about facility usage, occupancy, operating schedules, standards of comfort and continuance of the current physical plant and facility layout, configuration and equipment. Changes to any or all of these assumptions will be cause for adjustment of the Guaranteed Savings baseline as agreed to by both parties.

    ## BASELINE CONDITIONS:

    The baseline conditions for calculation of the Guaranteed Savings are set forth in Schedule A of the Plan. In the event that the actual conditions vary from the baseline conditions during the term of the Guarantee, the Guaranteed Savings calculations shall be adjusted to reflect the new baseline conditions.

    ## ANNUAL REPORT:

    ESCO will prepare and submit to HC an annual report within ninety (90) days of the anniversary of commencement date of the Plan. A sample annual report has been included within the Appendix of the UAR.

    FEES AND PAYMENTS:
    HC shall pay ESCO an annual fee for the performance of the services described in the Plan, pursuant to Table 3 above (the "M\&V Fee"). ESCO shall invoice HC for the M\&V Fee semi-annually in advance. Failure to pay the M\&V Fee shall be grounds for termination of the Guarantee by ESCO.

    ## MANNER AND TIME OF PAYMENT:

    The invoice shall be supported by such documents as HC shall reasonably require. Payment shall be due thirty (30) calendar days after the invoice date.

    In the event that HC , in good faith, disputes any portion of the invoice, HC shall advise ESCO in writing of the disputed portion and the undisputed portion of the invoiced amount shall be due thirty (30) calendar days after the invoice date. HC's liability for non-payment shall be governed in accordance with the Texas Prompt Payment Act.

    ## SHORTFALL PAYMENT:

    Within ninety ( 90 ) days after the completion of each annual period and receipt by ESCO of all required information, ESCO shall submit to HC an annual Report verifying and supporting the actual savings achieved for the preceding annual period and comparing it to the Guaranteed Savings. The Report shall include measurements, documentation and savings calculations used to support the reported savings for the period. Any shortfall in savings for an annual period shall be specifically identified in the Report, and any shortfall amount shall be paid by ESCO to HC
    within thirty (30) days of the submission of the annual Report. The maximum shortfall in any oneyear period is limited to the annual guaranteed energy savings amount identified in Table 2.

    ## EARLY TERMINATION OF M\&V:

    HC, at its sole discretion, may elect to terminate the Plan and the Guarantee after the end of the first year. Any such termination of the Plan and the Guarantee shall be submitted in writing by an authorized agent of HC to ESCO. Upon receipt of such termination, ESCO shall have no further obligations or liability with respect to the Plan or the Guarantee.

    ## MATERIAL CHANGES TO UCRM:

    From time to time, HC may need to make changes or modifications to its facilities, which may affect the Plan and/or the Guarantee. Minor changes to facilities can be accommodated by means of a baseline and or savings adjustment, subject to agreement by both parties. Any major change affecting more than $25 \%$ of the Guaranteed Savings for any given UCRM or facility or more than $10 \%$ of the total Guaranteed Savings shall be classified as a "Material Change" and shall be cause for full or partial termination of the Plan and Guarantee.

    Upon formal notification of a qualifying Material Change by HC, ESCO will prepare and submit, within 30 days, a termination proposal for the Guarantee and the Plan, which shall be reasonably agreed to by the parties.

    ## EQUIPMENT MAINTENANCE AND OPERATION RESPONSIBILITY:

    HC agrees to maintain its facilities, including the physical plant and all existing equipment / systems affecting energy efficiency, such that the condition of the facilities during the term of the Guarantee is at least equal to their condition at the completion of this Contract. HC also agrees to properly maintain (in accordance with manufacturer's guidelines and specifications) all new and existing equipment and operate all new and existing systems as described in the Proposal, Contract and Guarantee. If HC fails to operate its facilities as described herein and such failure results in reduced Energy Savings or Operational Savings, then the Guarantee and the Plan shall be adjusted accordingly.

    ## BASELINE ENERGY CONSUMPTION \& METHODS TO ADJUST

    The Baseline for Energy and Water/Sewer annual consumption has been established through analysis of utility billing data and analysis of data trends acquired by Performance Services during the UAR. The following table contains the agreed upon baselines for this project.

    TABLE 4 - ENERGY AND WATER/SEWER BASELINE

    | Building |  | Baseline Consumption - 12 months |  |  |  |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Name | Gross sq. ft. | Electricity (kWh) | Natural Gas (CCF) | Sewer (kgal) | Water (kgal) |
    | Government Center | 236,000 | 4,195,000 | 3,473 | 912 | 2,822 |
    | Court House | 21,396 | 271,680 | 1,265 | 46 | 46 |
    | Juvenile Detention | 43,222 | 815,616 | 13,693 | 2,497 | 2,497 |
    | Development Services | 14,058 | 206,200 | 0 | 84 | 84 |
    | Health Department | 13,327 | 244,338 | 0 | 84 | 84 |
    | Precinct 2 | 14,174 | 154,234 | 0 | 56 | 56 |
    | Precinct 4 | 6,272 | 101,600 | 0 | 75 | 75 |
    | Jacobs Well Natural Center | 2,400 | 19,000 | 0 | 115 | 115 |
    | Jail | 83,306 | 1,981,920 | 64,840 | 17,500 | 17,500 |

    ## Methods to Adjust Energy Consumption

    ## Adjustments

    In the basic equation used to determine savings shown below (General Savings Equation), adjustments are sometimes required to account for changes unrelated to the UCRM that affect energy use. Such adjustments may account for changes in weather, occupancy, or other factors between the baseline and performance periods.

    General Savings Equation:

    $$
    \text { Savings }=\text { (Baseline Energy - Post Installation Energy) } \pm \text { Adjustments }
    $$

    The purpose of adjustments is to express both baseline and post-installation energy under the same set of conditions. The modifications to the savings can be further distinguished as routine and non-routine adjustments, as shown in the Expanded Energy Savings Equation.

    Energy Savings Equation:

    $$
    \begin{aligned}
    & \text { Savings }= \text { (Baseline Energy - Post Installation Energy) } \pm \text { Routine Adjustments } \\
    & \pm \text { Non Routine Adjustments }
    \end{aligned}
    $$

    ## Routine Adjustments

    Routine adjustments are used to account for expected variations in independent variables and energy use. These adjustments often use regression analysis to correlate and adjust energy use to independent variables such as weather, but simple comparisons may also be employed. Routine adjustments are used to normalize energy use as a function of one or more independent parameters such as temperature, humidity, or meals served.

    Normalizing energy savings to a prescribed set of conditions is a very important technique used in ESPC projects. Using a fixed set of conditions for both the baseline and performance period cases, such as average weather conditions and the corresponding cooling load profile, allows the risks associated with these operational factors to be reduced.

    Alternatively, baseline and performance period conditions could be normalized to either baseline or performance period conditions. If performance period conditions are used to adjust the baseline case, the savings calculated will estimate the actual avoided energy use for that period.

    One of the key assumptions made when normalizing savings is that the performance period energy use will have a predictable relationship to the independent variables to be standardized. The baseline model will be completely defined in the contract, but the performance period model will need to be developed from measured data collected during the performance period. Typically, a valid baseline model indicates that a similar performance period model can be successfully developed.

    Once the baseline and performance period models of the equipment's energy consumption and the parameter(s) are established and validated, the standardized values of the independent parameters can be used to drive the both models and calculate savings.

    Therefore, a project-specific M\&V Plan should identify critical independent variables, explain how these variables will be measured or documented, and discuss how they will be used in the empirical models. Additionally, assumptions and mathematical formulas used in the M\&V Plan must be clearly stated, and the validity of any mathematical model used should be verified.

    ## Non-Routine Adjustments

    Non-routine adjustments are used to compensate for unexpected changes in energy driving factors, such as facility size, operating hours, and facility use. These factors must be monitored for change to ensure that they are not affecting the performance of the energy conservation measure. Tracking these factors is primarily a concern for projects using whole-building options (Options C \& D). Option A approaches typically avoid these types of adjustments as many of the factors that could change are stipulated. If future changes are expected, the M\&V Plan should incorporate methods for making these non-routine adjustments.

    It is commonly understood that UCRMs and energy systems interact with one another. Reduced lighting loads, for example, can reduce air conditioning energy consumption (a cooling bonus), but increase heating consumption (a heating penalty).

    Whole-building M\&V approaches such as building simulation or utility billing analysis account for these types of interactive effects, whereas retrofit isolation $M \& V$ approaches do not.

    When using retrofit isolation M\&V Options A and B, careful consideration must be given to dealing with interaction between UCRMs. One must properly account for interactive effects and avoid double-counting of savings, which can occur inadvertently if interactions are not carefully considered.

    Care must be taken to account for the reduced cooling loads on both the new and existing chillers due to the change in lighting. In addition, the cooling bonus should be based on the efficiency of the new chiller. In general, the possibility of double-counting energy savings can be reduced by considering one UCRM at a time.

    The later UCRMs should start (the baseline condition) from the performance period condition of the previous UCRMs. For related UCRMs, such as lighting efficiency and lighting controls, doublecounting can sometimes be avoided by using a single equation to determine savings from both measures.

    Methodologies for determining some of the more common interactions, such as lighting and HVAC, have been developed. However, detailed relationships between many dissimilar but interactive UCRMs are not known, and the methods for measuring interactive effects are not cost-effective for many applications. For projects using retrofit isolation approaches (Options A or B), one of three approaches can be taken to account for savings associated with interactive effects between UCRMs. These approaches are as follows:

    - Ignore interactive effects.
    - Use mutually agreed-upon values that are based on the site-specifics of the building and HVAC equipment types. The values can be developed on the basis of computer model simulations for typical building conditions or assigned on the basis of available information for typical buildings.
    - Develop a site-specific method to measure and estimate interactive effects. The federal agency and/or ESCO will need to agree on the merit and reasonableness of the proposed approach, which may include directly measuring the effects.


    ## SCHEDULE A - MEASUREMENT \& VERIFICATION

    The purpose of the Measurement and Verification (M\&V) Plan is to establish the method by which the calculated energy savings for the project are proven. Hays County shall provide Performance Services with the necessary data, including utility bills, and access to buildings and equipment proposed to be installed under the Scope of Work. Hays County will also provide access to building automation system information and any other facility Operating and Maintenance data as needed in order for Performance Services to perform the M\&V as described herein. Preferably, all requested building automation system data will be pushed electronically to Performance Services ftp site for this project.

    For this energy conservation project, Performance Services proposes to use a combination of M\&V methodologies based on end use measurement (retrofit isolation) and building energy simulation to verify the estimated savings set forth in the proposal for this project. Performance Services has during the UAR, and will continue to make use of a variety of building environment and equipment end use measurement options including one-time instantaneous and short-term continuous measurements as a means to verify specific performance criteria set forth in this M\&V plan. If performance test conditions do not allow for certain prescribed measurements to be made, then alternative M\&V methods may be proposed for agreement by the parties. Performance Services utilizes the DOE sponsored International Performance Measurement \& Verification Protocol (IPMVP EVO 10000.1 January 2012), and the FEMP M\&V Guidelines: Measurement and Verification for Federal Energy Projects Version 3.0 (2008) as references for this $M \& V$ plan.

    There are essentially two types of measurement procedures: retrofit isolation methods and whole building analysis methods. The retrofit isolation methods are called Option A - Retrofit Isolation with Key Parameter measurement and Option B - All Parameter Measurement options, respectively. The building analysis options are called: Option C, Utility Bill Analysis, and Option D, Calibrated Simulation, respectively. The last two options could be used to measure specific pieces of equipment and hence specific retrofits, if the meter being used in the analysis serves only the impacted piece of equipment. The following are summary descriptions of these $M \& V$ approaches based on the reference documents.

    ## OPTION A - Retrofit Isolation with Key Parameter Measurement

    Option A is an approach designed for projects in which the potential to generate savings must be isolated and verified, but the actual savings can be determined from short-term measurements, estimates, and engineering calculations. Performance period energy use is not measured throughout the term of the contract. Performance period energy use and baseline energy use are predicted using an engineering or statistical analysis of information that does not involve long-term measurements.

    Option A savings are determined by field measurement of the key performance parameter(s) which define the energy use of the energy conservation measure's (ECM) affected system(s) and/or the success of the project. Parameters not selected for field measurement are estimated. Estimates can be based on historical data, manufacturer's specifications, or engineering judgment. Documentation of the source or justification of the estimated parameter is required.

    Typical applications may include a lighting retrofit, where the power drawn can be monitored and hours of operation can be estimated.

    ## OPTION B - Retrofit Isolation with All Parameter Measurement

    M\&V Option B is a retrofit isolation or system-level approach. The approach is intended for retrofits with performance factors (e.g., end-use capacity, demand, power) and operational factors (lighting operational hours, cooling ton-hours) that can be measured at the component or system level and where long-term performance needs to be verified. It is similar to Option A, but uses periodic or continuous metering of all energy quantities, or all parameters needed to calculate energy, during the performance period. This approach provides the greatest accuracy in the calculation of savings, but increases the performance-period M\&V cost.

    The Option B approach ensures the same items as Option A, but also:

    - Determines energy savings using periodic or continuous measurement of energy use or all parameters needed to calculate energy use during the term of the contract.
    - Option B is typically used when any or all of these conditions apply:
    - For simple equipment replacement projects with energy savings that are less than $20 \%$ of total facility energy use as recorded by the relevant utility meter or sub-meter (Option C is not applicable)
    - When energy savings values per individual measure are desired
    - When interactive effects can be estimated using methods that do not involve longterm measurements
    - When the independent variables that affect energy use are not complex and excessively difficult or expensive to monitor
    - When operational data on the equipment is available through control systems
    - When sub-meters already exist that record the energy use of subsystems under consideration (e.g., a separate sub-meter for heating ventilation and air-conditioning (HVAC) systems)

    OPTION C - Whole Building Data Analysis
    M\&V Option C involves whole-facility utility or sub-meter data analysis procedures to verify the performance of retrofit projects in which whole-facility baseline and performance period data are available. Option C usually involves collecting historical whole-facility baseline energy use and related data and continuously measuring whole-facility energy use after UCRM installation.

    Baseline and periodic inspections of the equipment are also needed. Energy savings under Option $C$ are estimated by developing statistically representative models of whole-facility or submetered energy consumption (i.e., therms and/or kWh ). This method confirms total energy savings, but does not measure the savings from individual components.

    In general, Option C is used with complex equipment replacement and controls projects for which predicted savings are relatively large, i.e., greater than about $10 \%$ to $20 \%$ of the site's energy use, on a monthly basis. Option C regression methods are valuable for measuring interactions between energy systems or determining the impact of projects that cannot be measured directly, such as insulation or other building envelope measures.

    Regression analysis requires experienced, qualified analysts, and Option C methods should be employed only for projects that meet the following requirements:

    - Savings are predicted to be greater than about $10 \%$ to $20 \%$ of the overall consumption measured by the utility or sub-meter.
    - At least 12 and preferably 24 months or more of pre-installation data are used to calculate a baseline model.
    - At least 9 and preferably 12 months of performance period data are used to calculate annual savings.
    - Adequate data on independent variables are available to generate an accurate baseline model, and procedures are in place to track the variables required for performance period models.
    - Significant operational or other changes are not planned for the facility during the performance period, and procedures are in place to document changes that do occur at the site.

    Performance Services uses regression analysis software to compile, analyze and compute the pre-retrofit baseline from the electricity, fuel and water bills. The post-retrofit utility consumption data from these meters will be obtained subsequently and compiled, analyzed, normalized for weather, occupancy and other variables and compared to the pre-retrofit baseline to determine the savings (savings = baseline - post-retrofit usage) for each annual performance period in the contract. A baseline utility bill analysis report for each of the energy meters (electric and natural gas) for each facility covered by this UAR report is included in the appendix of this report.

    ## OPTION D - Calibrated Simulation

    Option D involves whole facility or system analysis procedures to verify the performance of retrofit projects using calibrated computer simulation models. Computer simulation is a powerful tool that allows an experienced user to model the building and mechanical systems in order to predict building energy use both before and after the installation of UCRMs. The accuracy of the models is ensured by using metered site data to describe baseline and/or performance period
    conditions. Carefully constructed models can provide savings estimates for the individual UCRMs on a project.

    More elaborate models generally improve the accuracy of savings calculations, but increase costs. A calibrated simulation of a building, however, can be utilized to easily evaluate savings from other potential improvements.

    Building simulation requires experienced, qualified analysts, and Option D methods should be used only for projects that meet any or all of the following requirements:

    - For complex equipment replacement and controls projects with too many UCRMs to cost-effectively use retrofit isolation methods A or B
    - When interactive effects between UCRMs are too complex for retrofit isolation approaches, but need to be quantified
    - When the Option C utility data analysis approach is not viable due to the overall level of savings being less than $20 \%$ of metered use
    - When complex baseline adjustments are expected during the performance period
    - When energy savings values per individual measure are desired
    - When new construction projects are involved
    - When savings levels are sufficient to warrant the cost of simulation
    - When either baseline or performance period energy data, but not both, are unavailable or unreliable.

    Each method is appropriate for certain types of energy conservation projects, and has its associated benefits, risks and costs. The recommended site and UCRM specific M\&V methodologies for verifying the project savings are presented below in section "Recommended M\&V Options."

    ## Selecting an M\&V Approach

    Since the primary purpose of measurement and verification is to validate payments or performance guarantees, the cost of $M \& V$ should be less than the payment amount or guarantee that is at risk. Consequently, the objective of $M \& V$ should not necessarily be to derive a precise energy savings number, but rather to ensure that energy services companies (ESCOs) properly complete their projects and that the resulting energy savings are reasonably close to the claimed savings. The appropriate level of M\&V rigor and accuracy is a level that protects the project investment and fulfills the intent of any legislative requirements. Careful consideration of the $M \& V$ level, type, and rigor benefits both parties and can help mitigate potential problems during the performance period.

    In general, the selection of a project specific M\&V method is based upon:

    - Project costs and expected savings
    - Complexity of the UCRM
    - Number of interrelated UCRMs at a single facility
    - Uncertainty or risk of savings being achieved
    - Risk allocation between the parties
    - Other uses for M\&V data and systems

    The scale of a project, energy rates, term of the contract, comprehensiveness of energy conservation measures (UCRMs), the benefit-sharing arrangement, and the magnitude of savings can all affect the value of the UCRM or project.

    The M\&V effort for this project has been scaled to the value of the project so that the value of the information provided by the M\&V activity is appropriate to the value of the UCRM and the project itself.

    Descriptions of power measurements and the methods used to $\log$ (trend) data
    The use of power measurements to validate our engineering assumptions is paramount to the success of our performance contract projects. Performance Services invested substantially in high-quality multi-phase and true-RMS metering equipment as well as industrial grade, portable BTU measurement equipment.

    Table at the end of the section contains a summary listing of the logging and metering equipment Performance Services uses in developing projects, in validating baseline equipment performance assumptions and post-installation verification of performance. Power, combustion, and BTU metering equipment are checked for calibration regularly by the manufacturer of the equipment. If any element(s) are beyond tolerances, the meter and the associated elements are recalibrated.

    ## RECOMMENDED M \& V OPTIONS

    Each method is appropriate for certain types of energy conservation projects, and has its associated benefits, risks and cost. Due to the interconnections of many of the UCRMs savings, PSI proposes to use primarily two M\&V Options for this project: 1) Option A - Retrofit Isolation with Key Parameter measurement (instantaneous or short term) and 2) Option B - Retrofit Isolation with All Key Parameter measurements. These methods will verify with a high degree of confidence that the savings are being achieved without adding excessive cost to the project. These Options will be used to verify the savings for the proposed UCRMs. Details are as follows:

    TABLE 5 - M\&V METHOD PER UCRM

    | UCRM | UCRM Description | Percent of Project | Total Savings | M\&V Method |
    | :---: | :---: | :---: | :---: | :---: |
    | 1 | LED Lighting | 31.6\% | \$142,711 | A |
    | 2 | Power Conditioning | 3.4\% | \$15,207 | A |
    | 3 | Solar PV | 19.5\% | \$87,965 | A |
    | 4 | Demand Response | 6.1\% | \$27,450 | Deemed |
    | 5 | Retro-Cx \& BAS with Tridium Front End | 10.4\% | \$47,056 | B \& Deemed |
    | 6 | Water Controls | 23.3\% | \$105,293 | A |
    | 7 | Window Film | 0.2\% | \$752 | Deemed |
    | 8 | Window Restoration | 5.6\% | \$25,296 | Deemed |
    | 9 | HVAC \& Plumbing Upgrades | 0.1\% | \$530 | Deemed |

    The buldings included in this project are:

    1. Government Center
    2. Court House
    3. Juvenile Detention
    4. Development Services
    5. Health Department
    6. Precinct 2
    7. Precinct 3
    8. Precinct 4
    9. Jacobs Well Natural Center
    10. Jail

    Performance Services has selected Option A for the following UCRMs:
    UCRM 1 - LED Lighting
    Performance Services proposes to retrofit to replace incandescent and fluorescent lightings with LED lighting that would:

    - Reduce the energy consumption of the existing lighting system by implementing innovative, improved lighting technologies and by applying creative design and problem solving measures to existing inefficient lighting situations
    - Reduce existing lighting maintenance requirements
    - Maintain existing light levels or attain light levels established by the Illuminating Engineering Society (IES) based upon best energy savings
    - Improve the levels and quality of lighting experienced by Hays County

    The key measurement parameters will be the instantaneous power in watts used by each pre and post-retrofit lighting fixture lamp and hours of operation during occupied and unoccupied periods. The measurements will be performed on a statistically significant quantity (sample) of pre and post-retrofit fixtures. Lighting power measurements will be made with a true-RMS watt meter to identify the instantaneous power draw of fixtures or circuits. Fixtures will typically be measured at either the last point of control (switch or circuit breaker), or at the fixture itself, whichever is safest to employ to achieve the readings. When lighting power is measured at the switch or circuit breaker, the number operating and non-operating fixtures is counted in order to accurately describe the average power draw for a particular fixture type. If a mixture of fixture types is on the last point of control or on a power circuit, then the individual fixtures should be measured. Finally, it may not be feasible or cost effective to measure individual fixtures prior to contract execution (e.g., pre- measurements). These are typically for high ceiling-mounted fixtures, and, consequently, these fixtures may be measured during construction for both the pre- and post-installation condition as follows: baseline condition is measured, fixture is retrofitted, and fixture is measured for post-installation condition.

    The number of fixtures and usage groups to be selected for measurement is based on the use of statistical sampling method (described below) to ensure reasonable sample populations and confidence level (CL) in the results of the samples.

    - Performance Services uses lighting audit to identify the fixtures to measure pre and post implementation and the hours of operation groups.
    - For measuring power, Performance Services identified the top $70 \%$ or greater of the total connected electric load (kW) based on the lighting audit. Each fixture connected load is calculated by (fixture quantity) $X$ (watts per fixture). Total connected load (Watts) is the sum of all (fixture quantity) X (watts per fixture). The remaining percent of total
    connected load have a lesser effect on the savings results and these fixtures will not be measured.
    - Performance Services will use Coefficient of Variation (CV) of 0.5 for pre and post-retrofit
    - Performance Services will use Confidence Level (CL) to be $90 \%$
    - Performance Services will use Precision to be $20 \%$.
    - Based on the fixture quantity an expected sample size will be selected. Minimum sample size per fixture type will be 3 pre-retrofit samples and 3 samples postretrofit. Additional samples might be required to meet the expected statistical parameters described above.

    Savings formulae

    $$
    E S=\frac{\left(W_{B A S E} \times H R S_{B A S E}\right)-\left(W_{P O S T} \times H R S_{P O S T}\right)}{1000}
    $$

    Where:

    | ES | $=$ | Total energy savings ( kWh ) |
    | :--- | :--- | :--- |
    | $W_{\text {BASE }}$ | $=$ | Measured baseline watt per fixture $(\mathrm{W})$ |
    | $W_{\text {POST }}$ | $=$ | Measured post-implementation watt per fixture $(\mathrm{W})$ |
    | HRS $_{\text {BASE }}$ | $=$ | Measured baseline operating hours (Hours) |
    | HRS | $=\quad$ Measured post-implementation operating hours (Hours) |  |

    Energy savings was calculated using manufacture data and spreadsheet calculations. Savings include fixture maintenance savings which are consistent with actual cost according to Hays County. The lighting maintenance savings was determined by the reduction of material cost during the warranty period and is based on information collected during interviews with Hays County staff and accepted industry standards. The savings is agree-to for the life of the project, and will not be verified under the annual energy savings report.

    ## Baseline Operational Hours

    Baseline lighting hours of operation are defined by ANSI by building type. This project consists of both office buildings and detention facilities. In order to better define operational hours, specifically where occupancy sensors are being used, lighting loggers were installed and hours of operation recorded. This information has been used to better define baseline hours of operation for lighting within the project buildings. Also, the power draw of common fixture types where measured to better establish the lighting baseline. The results (baselines) follow:

    | Building Type | ANSI <br> Lighting <br> Hours/ Yr | Area <br> Lighting <br> Hours/ Yr |
    | :---: | :---: | :---: |
    | (Occ. Cntl) |  |  |

    ## Baseline Existing Fixture Wattages

    | Fixture Type | Wattage |
    | :---: | :---: |
    | 4' 2 Lamp T8 | 59 |
    | 4' 3 Lamp T8 | 88 |
    | 4' 4 Lamp T8 | 115 |

    ## UCRM 2 - Power Conditioning

    The installation of power conditioners with modular capacitance to improve power factor will make motors run cooler and more efficiently. Thus results in a reduction in energy consumption and an extension of the useful life of motor loads. Also power conditioning system will provide harmonic filtration to mitigate harmonic distortion and recycle waste energy resulting in reduced energy consumption which prolongs the longevity of electrical equipment.

    PSI will perform Pre \& Post electrical measurements including harmonics using calibrated Hi Power metering equipment.

    Savings were calculated using on-line harmonic reduction spreadsheet calculators. The savings calculation was also performed by the manufacturer's representative. Savings will be evaluated based on the following changes being made to the existing electrical systems:

    1. Building Power Factor between $95 \%$ and $100 \%$
    2. Building total harmonics distortion of $1.8 \%$ or less

    Performance Services will use a power quality meter to verify power factor and total harmonic distortion levels annually at the Government Center, Jail and Juvenile Detention.

    UCRM 3 Solar PV
    Performance Services proposes to install solar photovoltaics at both the Government Center and jail. Solar photovoltaics is a renewable energy source that will directly supply electricity to both the Government Center and jail buildings. Electricity supplied by the solar photovoltaic array will be submetered as part of the project.
    Because Performance Services cannot guarantee weather conditions, Performance Services will measure the efficiency of the solar photovoltaic arrays under defined circumstances. This measured efficiency will be used within the power production simulation model to verify energy production meets or exceeds the guaranteed amount. Savings/energy production was calculated using a Helioscope or PV Watts computer simulation model.

    Performance Services proposes retrofit detention plumbing fixtures with usage and flow controls and to replace high flow urinals with low flow urinals as well as replace high flow aerators with low flow aerators. Benefits include:

    - Reduce the water consumption of the plumbing system by implementing innovative, improved plumbing technologies
    - Reduce hot water usage
    - Reduce existing plumbing maintenance requirements

    The key measurement parameters will be the water used by each pre and post-retrofit water fixture. The measurements will be performed on a statistically significant quantity (sample) of pre and post-retrofit fixtures. Water use and flow measurements will be made with approved equipment. Fixtures will be measured individually. Finally, it may not be feasible or cost effective to measure individual fixtures prior to contract execution (e.g., pre- measurements). Typically, measurements of pre- and post-installation condition will be as follows: baseline condition is measured, fixture is retrofitted, and fixture is measured for post-installation condition.

    The number of fixtures and usage groups to be selected for measurement is based on the use of statistical sampling method (described below) to ensure reasonable sample populations and confidence level (CL) in the results of the samples.

    - Performance Services used a water audit to identify the fixtures to measure pre and post implementation and the usage.
    - For measuring water usage, Performance Services identified the top $70 \%$ of the total domestic water load based on the water audit. Savings will be measured using a sampling of these fixtures. The remaining percent of total connected load have a lesser effect on the savings results and these fixtures will not be measured.
    - Performance Services will use Coefficient of Variation (CV) of 0.5 for pre and post-retrofit
    - Performance Services will use Confidence Level (CL) to be $90 \%$
    - Performance Services will use Precision to be $20 \%$.
    - Based on the fixture quantity an expected sample size will be selected. Minimum sample size per fixture type will be 3 pre-retrofit samples and 3 samples postretrofit. Additional samples might be required to meet the expected statistical parameters described above.

    SAVINGS FORMULAE

    $$
    W S=\frac{\left(W_{B A S E} \times U S G_{B A S E}\right)-\left(W_{P O S T} \times U S G_{P O S T}\right)}{1000}
    $$

    Where:

    | WS | $=$ | Total water savings (kgal) |
    | :--- | :--- | :--- |
    | $W_{\text {BASE }}$ | $=$ | Measured baseline gallons per fixture (gal) |
    | WPOST | $=$ | Measured post-implementation gallons per fixture (gal) |
    | USG $_{\text {BASE }}$ | $=$ | Calculated annual baseline usage (Quantity) |
    | USGPOST | $=$ | Calculated post-implementation usage (Quantity) |

    Savings baselines values are based on the following:

    |  |  |  |
    | :--- | :---: | :---: |
    | Typical Bldg Occupancy Including Visitors | 390 | 426 |
    | Male/Female Ratio | $45 / 55$ | NA |
    | \# of Toilet Flushes Per Year | 258,375 | $3,000,957$ |
    | Average gallons/flush | 1.60 | 3.50 |
    | \# of Urinal Flushes Per Year | 131,625 | NA |
    | Average gallons/flush | 1.00 | NA |
    | Minutes of Shower Usage Per Year |  | 951,920 |
    | Average gallons/minute |  | 2.50 |
    | \# of Times Lavatory Uses Per Year | 312,000 | 328,500 |
    | Average minutes/wash | 0.41 | 0.41 |
    | Average gallons/minute | 1.90 | 2.20 |

    Gov. Center-Quantity of flushes per year based on the following:

    - Employee women using toliets four times per day
    - Employee men using toliets one time per day and urinal three times per day
    - Visitors using toliet or urinal every two hours

    Jail-Lavatory use for non detention areas only

    - Savings calculated using a $9 \%$ reduction in toilet flushes due to water control system

    Water savings was calculated using manufacture data and spreadsheet calculations. Savings include a reduction in hot water usage (water heater savings) which are consistent with actual cost according to the County. Hot water energy savings were determined by using 80 percent of industry standard calculations. The savings is agree-to for the life of the project, and will not be verified under the annual energy savings report.

    Performance Services has selected IPMVP Option B for the following UCRMs and associated maintenance savings:

    ## UCRM 5 - Retro-Cx and Building Automation System with Tridium Front End

    As part of this measure, Performance Services will optimization building controls and retrocommission these controls which will result in energy savings at the Government Center. Energy savings will be realized through temperature set-points adjustments, reduced quantities of outdoor air during unoccupied periods and optimized equipment operation according to occupancy and load conditions.

    Performance Services will utilize the BAS to trend available data, such as equipment run times, temperature set points, air flow (CFM), damper position, carbon dioxide ( $\mathrm{CO}_{2}$ ) level, etc. Savings are calculated using spreadsheet based engineering calculations. Savings result from:

    - Reduced run hours - Optimal scheduling of HVAC equipment
    - Temperature setbacks
    - Optimizing outdoor air usage as appropriate
    - Utilizing natural gas heat instead of electric reheat when appropriate
    - Minimize simultaneous heating and cooling

    Baseline HVAC equipment power draw that will be used in the savings calculations will be measured using a true-RMS watt meter prior to project implementation. Baseline HVAC hours follow:

    - RTU-11 \& 12-24 hours per day, 7 days per week
    - RTU-11 \& 12 Fans - 24 hours per day, 7 days per week
    - RTU-11 \& 12 Outdoor air dampers - $10 \%$ open during unoccupied periods
    - RTU-11 \& 12 Natural Gas Heating - Disabled

    Guaranteed electrical energy savings generated by the fan and compressor motor operational hour changes shall be based on motor horsepower, baseline hours identified in this Guarantee and trended run hours. These saving shall be considered variable savings such that the actual savings will vary monthly based on actual motor runtime as measured by the energy management system. The following calculations shall be used in determining the amount of actual electric savings.

    Saving $s_{k W h}=\underline{\text { Motor }_{H P} \times(.746 \mathrm{~kW} / \mathrm{HP}) \times \text { (Baseline Hours - Trended Hours) }}$
    Motor Efficiency
    Savingss $=$ Savings $_{k w n} \times$ Rate $_{s / k w h}$
    Where:

    | Motor $_{H P}=$ | Motor horsepower identified on motor nameplate |
    | :--- | :--- |
    | Savings $_{\mathrm{kWh}}=$ | Actual annual electric consumption savings in kWh |
    | Savings $_{\$}=$ | Actual annual electric savings in dollars |
    | Rate $_{s / \mathrm{kWh}}=$ | Electrical consumption rate in dollars per kWh |
    | Baseline Hours $=$ | Runtime hours |

    ## Other Savings

    Guaranteed savings, other than motor savings shall be spreadsheet calculations based on equipment efficiencies and runtimes.

    ## Building Controls

    Performance Services will replace existing thermostats with BACnet protocol, smart energy management space control devices. The devices will be visible and controllable through a new Tridium user interface. Energy savings will be realized through temperature set-points adjustments and optimized equipment operation according to occupancy and load conditions.

    Performance Services will utilize the new BAS to trend available data, such as equipment run times and temperature set points. Savings are calculated using spreadsheet based engineering calculations. Savings result from:

    - Reduced run hours - Optimal scheduling of HVAC equipment
    - Temperature setbacks
    - Minimize simultaneous heating and cooling

    Baseline HVAC equipment power draw that will be used in the savings calculations will be measured using a true-RMS watt meter prior to project implementation. Baseline HVAC hours follow:

    - Court House Split and Package Systems - 24 hours per day, 7 days per week
    - Health Department Split Systems - 24 hours per day, 7 days per week
    - Precinct 4 Split Systems - 24 hours per day, 7 days per week
    - Jail Rooftop Units - 24 hours per day, 7 days per week

    Guaranteed electrical energy savings generated by the fan and compressor motor operational hour changes shall be based on motor horsepower, baseline hours identified in this Guarantee and trended run hours. These saving shall be considered variable savings such that the actual savings will vary monthly based on actual motor runtime as measured by the energy management system. The following calculations shall be used in determining the amount of actual electric savings.

    Savings ${ }_{k W h}=$ Motor $_{\mu \mathrm{p}} \mathrm{x}(.746 \mathrm{~kW} / \mathrm{HP}) \times$ (Baseline Hours - Trended Hours) Motor Efficiency

    Savings $=$ Savings $s_{k w h} \times$ Rate $_{\$ / k w h}$

    Where:

    | Motor $_{H P}=$ | Motor horsepower identified on motor nameplate |
    | :--- | :--- |
    | Savings $s_{k W h}=$ | Actual annual electric consumption savings in kWh |
    | Savings $_{\$}=$ | Actual annual electric savings in dollars |
    | Rate $_{\$ / k W h}=$ | Electrical consumption rate in dollars per kWh |
    | Baseline Hours $=$ | Runtime hours |

    ## Other Savings

    Guaranteed savings, other than motor savings shall be spreadsheet calculations based on equipment efficiencies and runtimes.

    OPTION C - Whole Building Data Analysis
    Performance Services has selected IPMVP Option C for the following UCRMs:

    - None

    In general, Option C is used with complex equipment replacement and controls projects for which predicted savings are relatively large, i.e., greater than about $10 \%$ to $20 \%$ of the site's energy use on a monthly basis. Option C regression methods are valuable for measuring interactions between energy systems or determining the impact of projects that cannot be measured directly, such as insulation or other building envelope measures.

    Performance Services uses engineering calculations to compute the pre-retrofit baseline from the electricity and fuel bills. The post-retrofit utility consumption data from these meters will be obtained and subsequently compiled, analyzed, normalized for weather, occupancy and other variables and compared to the pre-retrofit baseline to determine the savings for each annual performance period in the contract.

    ## SAVINGS FORMULAE

    The savings are defined by the formula:

    $$
    \begin{aligned}
    & \text { Savings }=\text { Baseline Energy }- \text { Option A\&B UCRM Savings } \\
    &+ \text { Remote Central Plant Savings }- \text { Post Installation Energy }{ }_{\text {Normalized }} \\
    & \pm \text { Adjustments }
    \end{aligned}
    $$

    Where
    \(\left.\begin{array}{ll}Baseline Energy= \& Energy consumption calculated from utility bill analysis prior to <br>
    \& retrofit and adjusted for other measures at this building for which <br>

    \& savings are being measured using Option A and/or B\end{array}\right\}\)\begin{tabular}{ll}
    Option A\&B UCRM $=$ \& Energy and maintenance savings from Option A and Option B <br>
    Savings \& measured UCRMs within building <br>
    Remote Central Plant $=$ \& Calculated central plant energy savings based on field measured <br>
    Savings

    $\quad$

    efficiency or if not available, $0.85 \mathrm{~kW} /$ ton. Baseline operation: 24
    \end{tabular}

    hours per day, seven days per week. Post hours of operation based on measured primary AHU run times.

    Post Installation
    Energy Normalized

    Adjustments
    $=$ Performance period energy use (customer provided post-retrofit electricity, natural gas and fuel oil billing data) that will be adjusted to the baseline load conditions to determine the savings
    $=$ Routine and non-routine changes made to the baseline or performance period energy use to account for variations in conditions

    Other Savings
    Performance Services has provided documentation for the following Other Savings within the Appendix of the UAR. Due to these savings being small and/or not readily documentable, Performance Services believes that it is not cost effective to measure and verify these savings. Other Savings included in this project are as follows:

    UCRM 4 Demand Response
    Performance Services proposes to install standby generator controls that will allow Hays County to participate in the ERS demand response program through a qualified scheduling entity. This measure includes making the following standby generators available for load shedding when requested by ERCOT.

    | Building | Generators | kW Rating | kW Reduction Available | Projected ERS Revenue per Year* |
    | :---: | :---: | :---: | :---: | :---: |
    | GC | 1 Stewart Stevenson | 750 | 338 | \$15,188 |
    | JD | 1 Generac | 125 | 88 | \$3,938 |
    | Jail | 1 Catepilar | 600 | 150 | \$6,750 |
    | DS | 1 Catepilar | 100 | 35 | \$1,575 |
    | Totals |  | 1,475 | 575 | \$27,450 |

    * Estimated annual revenue for ERS program at $\$ 45,000$ per year per megawatt capacity.

    As part of this project, Performance Services will assist Hays County sign up for the ERS demand response program. Projected UCRM revenue has been calculated based on recent program information supplied qualified scheduling entities. While this measure will generate significant revenue and have a good payback, it is not a measure than Performance Services can guarantee as it is dependent on Texas Facilities ongoing participation.

    Server Room Cooling Improvements
    Performance Services proposes to provide better control of the existing CRAC units serving the Government Center server room as well as change the air diffusers and current server racks with racks design to provide laminar air-flow through the server's. Making these changes will reduce hot spots, improve server performance and safety for the county's valuable server capacity. Energy savings will result from the more efficient/targeted use of air conditioning in the server room. This measures energy savings ( $\$ 126$ per year) accounts for less than $1 \%$ of the overall project energy savings.

    Following restoration of the windows at the Court House, Performance Services proposes to install window film on all but 16 windows not compatible with window film. Window film will reduce the solar load on the Court House, improve the thermal properties of the windows and improve occupant comfort. Energy savings will result from the improved window shading coefficient and improved window thermal properties which will reduce the amount of air conditioning required to maintain space temperatures. This measures energy savings (\$752 per year) accounts for less than $1 \%$ of the overall project energy savings.

    ## UCRM 8 Window Restoration


    #### Abstract

    Performance Services proposes to restore the wooden windows at Court House. Window restoration will improve safety, reduce air infiltration and improve occupant comfort. Energy savings will result from reduced air infiltration which will reduce the amount of air conditioning required to maintain space temperatures. This measures energy savings ( $\$ 307$ per year) accounts for less than $1 \%$ of the overall project energy savings.


    UCRM 9 HVAC Upgrades
    Performance Services proposes to replace the two heat pumps serving the Court House in addition to split systems AC-1 and AC-2. The new systems will be efficient than the existing systems. This measures energy savings ( $\$ 530$ per year) accounts for less than $1 \%$ of the overall project energy savings.

    ## Lighting Material Savings

    The HC will realize lighting material savings during the 10 warranty on linear LED retrofits and new fixtures. This savings has been calculated based on current Hays County maintenance practices and material costs. This savings analysis is included in the Appendix of the UAR. To help assure that HC achieves projected warranty period savings, PSI will train HC staff on the warranty process. The following annual lighting material savings have been reviewed and approved by Hays County: $\$ 39,687$.

    ## Domestic Water Heating Savings

    Retrofitting faucets with low flow aerators will reduce the demand and usage of domestic hot water. These savings are relatively small and as such, it is not cost effect to measure and verify the savings associated with this UCRM. This measures energy savings ( $\$ 5,112$ per year) accounts for less than $2 \%$ of the overall project energy savings.

    ## ENERGY, WATER AND O\&M RATE DATA

    For the purpose of calculation the energy dollar savings Performance Services in collaboration with Hays County, have agreed to the data below as the baseline year utility rates. Performance Services and Hays County agree for the term of this Agreement that the annual Utility Rate escalation factor will be $2 \%$ for electricity, natural gas, sewer and water. This escalation rate is based on the historical average rise in electric rates.

    TABLE 7 - UTILITY RATES
    Electric Rate for Government Center \& Jail

    | Season | Cost per kW | Cost per kWh |
    | :--- | :---: | :---: |
    | Year Around | $\$ 3.44$ | $\$ 0.07726$ |

    Electric Rate for Juvenile Detention

    | Season | Cost per kW | Cost per kWh |
    | :--- | :---: | :---: |
    | Year Around | $\$ 4.50$ | $\$ 0.07650$ |

    Electric Rate for Court House \& Health Department

    | Season | Cost per kW | Cost per kWh |
    | :--- | :---: | :---: |
    | Year Around | $\$ 3.61$ | $\$ 0.07726$ |

    Electric Rate for Precinct 2

    | Season | Cost per kW | Cost per kWh |
    | :--- | :---: | :---: |
    | Year Around | $\$ 3.38$ | $\$ 0.06893$ |

    Electric Rate for Dev. Services, Precinct 4 \& Jacobs Well

    | Season | Cost per kW | Cost per kWh |
    | :--- | :---: | :---: |
    | Year Around | $\$ 0.00$ | $\$ 0.08109$ |


    | Buildine | Cost CcE of NG |
    | :---: | :---: |
    | Government Center | $\$ 0.65$ |
    | Court House | $\$ 0.65$ |
    | Juvenile Detention | $\$ 0.65$ |
    | Development Services | NA |
    | Health Department | NA |
    | Precinct 2 | NA |
    | Precinct 4 | NA |
    | Jacobs Well Natural Center | NA |
    | Jail | $\$ 0.65$ |


    | Building |  | Cost per Unit |  |
    | :---: | :---: | :---: | :---: |
    | Name | Gross sq. ft. | Sewer (kgal) | Water (kgal) |
    | Government Center | 236,000 | $\$ 6.93$ | $\$ 7.35$ |
    | Jail | 83,306 | $\$ 6.93$ | $\$ 7.35$ |

    ## M\&V SAMPLING GUIDELINES

    This appendix introduces the statistical background, theory and formulas used to select, analyze and validate samples for project monitoring and evaluation. It also provides guidelines and procedures for the design and implementation of sampling.

    The purpose of monitoring a sample, as an alternative to monitoring an entire population is to; (a) characterize particular attributes of a population from which a sample is drawn with adequate accuracy and reliability, while (b) reducing monitoring costs and effort.

    As shown in figure below, sampling involves selecting several members from a population for monitoring and evaluation. The measured characteristics or behavior of the sample group is then used to infer the characteristics and/or behavior of the entire population. As expected, the assumption is that the sample is representative of the population. To ensure that the sample is indeed representative, calculations must be performed to assess and quantify the statistical validity of the sampled data. These calculations are presented later in this Appendix.
    

    Figure 1 - Population and Sample
    Sampling is applicable to projects such as lighting retrofits, energy efficient motor replacements, HVAC unit replacement, water retrofits, or any other project in which a number of similar pieces of equipment are affected by the same type of UCRM.

    In the most common applications, sampling strategies are used to characterize the hours of operation and the instantaneous power draw of a constant-load device. A separate sample set is required for each item evaluated.

    When selecting a sample from a population to determine hours of operation, it is necessary to ensure that the load is or device being sampled is monitored at or down-stream of its last point of control (LPC).

    The last point of control (LPC) is the portion of an electrical circuit (or other source of energy), that serves a set of equipment that is controlled on a single switch. As a result, all of the fixtures or pieces of equipment on that LPC are typically operated the same number of hours per year.

    For metering purposes, it is assumed that measurements taken of a single piece of equipment on an LPC captures the operating hours for all of the equipment served on the same circuit.

    ## Mathematical Methods for Sampling

    Sampling must be conducted using accepted methods and use an appropriate level of care to ensure that the M\&V results that rely on the sampling and analysis are sufficiently accurate. This section provides a summary of the concepts, methods and equations to be used.

    Although various assumptions regarding the distribution of the sampled data can be made, the large majority of sampling statistical analysis assumes that the data is normally distributed about the mean and in this Appendix, this assumption is made.

    Statistical validity requires that the samples be randomly selected. Use of a random number generator, such as that found in MS Excel ${ }^{\text {TM }}$ is convenient for ensuring the sample is randomly selected.

    ## Point Estimation - Confidence and Precision

    When we use sampling to estimate an average value of an entire population, we are performing an activity know as point estimation. A value or 'point' that is estimated based on a sample is not the actual average value but rather, is a value that is "reasonably close" to the actual average value. The question, then, for the M\&V practitioner is: "What do we mean when we say 'reasonably close'?" The question is answered using the following statistical terms.

    - Confidence: Confidence is fundamentally the same as probability, except that confidence refers to data already obtained, while probability refers to a future value. A confidence of $90 \%$ is commonly used in $M \& V$. So, using our $90 \%$ example, when we refer to a confidence level, we are saying "I am $90 \%$ confident that the measured value is within my stated confidence interval."
    - Confidence Interval (or Precision): Because the value estimated by sampling cannot be expected to be the actual value, it is useful to state an interval in which we have confidence the true value lies. Confidence interval is also often referred to as precision. An M\&V practitioner may state that they know the value has a precision of $20 \%$, which would mean that the "The estimate is within $20 \%$ of the true value."

    Confidence and precision, then, are the values referred to when a 90/20 (or 80/20 or any other) criteria is specified.

    ## Example

    Imagine that we wish to measure the run-hours of a sample of equipment for a month. Imagine now that we measure 200 'on' hours. If we are hoping to meet a $90 / 20$ criteria, we are hoping that we can say, with a $90 \%$ probability, that our estimate is within $20 \%$ of the actual average run hours - that is, we are 9/10th sure the actual runtime is between 180 and 220 hours.

    To graphically illustrate the concepts of normal distribution, confidence, and precision, shows a normal distribution with a confidence interval. Note that the confidence interval in the figure is defined by the error ( $+/-E$ ). This error figure is discussed further below and is defined in Equation 1.
    

    Figure 2 - Normal distribution with confidence interval

    The confidence interval (or precision) and the confidence level are positively linked; for any sample, as the confidence interval increases (that is, the precision is reduced, and the range of possible values of the true mean increases) the confidence level increases. Or, looking at it another way, as the confidence interval is reduced, the confidence level is also reduced.

    ## Application of Sampling to Proiects

    In the next sections considerations for the design and application of sampling are explored. The analysis steps to be used in conducting sampling are as follows:

    These steps are discussed below.

    ## Compile Project/UCRM and M\&V Plan Information

    In this step, the goal is to fully understand several things, including: the measure scope, the savings calculations quantifying the intended performance, the M\&V method to be used and the data to be collected. Once the project is understood, an M\&V practitioner can identify the calculation method and select variables to be sampled.

    In many energy conservation projects, it is often necessary to conduct both pre and post installation sampling. Regardless of whether the sampling is for evaluating the baseline or the post-retrofit conditions, the following information is typically required to properly assign usage groups and determine sample sizes.

    - Number of circuits, devices or LPCs. Identify and document the LPCs that are affected by the installation of UCRMs. This should be provided in the form of an equipment inventory survey in which each line in the survey represents an LPC that includes descriptions of affected and proposed UCRM nameplate data and quantity as well as location information.
    - Actual or change in load or wattage. Using the equipment inventory survey, the total change in load or wattage of the affected equipment by usage group can be computed.
    - Hours of operation. Sampling can be used to estimate the average hours of operation of the equipment. After the first sampling period (whether it is a year, month or week) of monitoring, the sampling result (actual $C_{v}$, Equation 3 ) should be used to compute the sample size. If it is expected that the equipment will be used in a significantly different in the current period than it was in the previous period, the estimate may be adjusted. Lighting hours of operation have already been established and defined herein.


    ## Designate Sampling Groups

    Each device or LPC should be assigned to a usage group based on similarities in the parameter being determined, such as operating hours or connected load. If differences are expected, but there are too few usage groups, the resulting variance of the data may result in unsatisfactory confidence and precision levels. However, if too many usage groups are created, then excessive monitoring and too small of populations may occur. So, while considering the tradeoffs, usage groups should be developed from criteria such as:

    - Area type (for example; office, hallway, meeting room)
    - Annual operating hours
    - Timing / usage patterns of the operating hours, load, or other variable
    - Variability of operating hours, load, or other variable
    - Similar functional use

    Usage groups should be selected so that equipment or LPC's are similar in that the sampled value (for example, hours or kW or kW/unit) is clustered around a specific estimate. When possible, avoid designating usage groups with populations that will yield less than 10 sample points.

    Examples of standard usage groups for fan motors with similar operating hours are HVAC ventilation supply fans, return fans, and exhaust fans.

    Examples of standard usage groups to determine lighting operating hours are fixtures with similar operating characteristics in offices, laboratories, hallways, stairwells, common areas, perimeters, storage areas, etc.

    Usage groups may be defined for the population on a building-by-building basis or across a number of buildings with similar usage areas. Monitoring can be done for a single or multiple buildings provided the usage groups are similar. Defining populations for multiple buildings is acceptable and usually results in fewer monitoring points than if each building were considered separately.

    ## Select Samples

    Select desired confidence and precision levels. A 90/20 confidence/precision level is commonly used in M\&V and is suggested.

    Establishing the Coefficient of Variation. Prior to selecting a sample, an estimate of the sampled coefficient of variation $\left(C_{v}\right)$ must be made. $A C_{v}$ of 0.5 has been historically recommended, and numerous projects have shown this to be reasonable guess for most applications. After the first year of monitoring, the coefficient of variation for each usage group can be projected from the results of the metering in the previous year.

    Having selected a confidence and precision level (90/20) and a $C_{v}$ (perhaps 0.5), use Equation 6 and 7 , above, to calculate a sample size for each sampling group. Then, randomly select that number of samples from the population.

    It is strongly recommended that oversampling (at a $10 \%$ or greater level) be included in case of data collection device failure or unexpectedly high data scatter.

    Table 3 illustrates the effect of confidence interval and precision on sample size.

    ## TABLE 8 - FIRST-YEAR ( $\mathrm{C}_{\mathrm{V}}=0.5$ ) SAMPLE SIZE TABLE BASED ON USAGE GROUP SAMPLING ${ }^{1}$

    | Precision | 20\% | 20\% | 10\% |
    | :---: | :---: | :---: | :---: |
    | Confidence | 80\% | 90\% | 90\% |
    | Z-Statistic | 1.282 | 1.645 | 1.645 |
    | Population Size, N | Sample Size, $\mathrm{n}^{*}$ |  |  |
    | 4 | 3 | 4 | 4 |
    | 8 | 5 | 6 | 8 |
    | 12 | 6 | 8 | 11 |
    | 16 | 7 | 9 | 13 |
    | 20 | 8 | 10 | 16 |
    | 25 | 8 | 11 | 19 |
    | 30 | 9 | 11 | 21 |
    | 35 | 9 | 12 | 24 |
    | 40 | 9 | 12 | 26 |
    | 45 | 9 | 13 | 28 |
    | 50 | 10 | 13 | 29 |
    | 60 | 10 | 14 | 32 |
    | 70 | 10 | 14 | 35 |
    | 90 | 10 | 15 | 39 |
    | 100 | 10 | 15 | 41 |
    | 125 | 11 | 15 | 45 |
    | 200 | 11 | 16 | 51 |
    | 300 | 11 | 17 | 56 |
    | 400 | 11 | 17 | 59 |
    | 500 | 11 | 17 | 60 |
    | Infinite | 11 | 17 | 68 |

    The samples in each usage group should be drawn at random ${ }^{2}$, so that each member has an equal probability of being selected.

    If there is reason to believe that there are significant seasonal variations in the operation of the equipment, sufficient monitoring will need to be conducted to capture these variations.

    TABLE 9 - REPRESENTATIVE MONITORING EQUIPMENT USED FOR MEASUREMENT \& VERIFICATION

    |  | Manufacturer | Model | Measurement | Range | Accuracy |
    | :---: | :---: | :---: | :---: | :---: | :---: |
    | Lighting \& Occupancy Time of Use | Hobo | Datalogger | - | - | - |
    | Temperature \& Relative Humidity | Hobo | U10-003 | Temperature | $-4^{\circ}$ Fto $158^{\circ} \mathrm{F}$ | $\pm 0.72^{\circ} \mathrm{F}$ |
    |  |  |  | Relative Humidity | 25\% to 95\% | $\pm 3.5 \%$ |
    |  <br> Relative Humidity + 2 <br> external inputs | Hobo | U12-013 | Temperature | $-4^{\circ} \mathrm{F}$ to $158^{\circ} \mathrm{F}$ | $\pm 0.72{ }^{\circ} \mathrm{F}$ |
    |  |  |  | Relative Humidity | 25\% to 95\% | $\pm 3.5 \%$ |
    | 4 external inputs | Hobo | U12-006 | - | - | - |
    | Carbon Dioxide external input | Telaire | 7001 | Carbon Dioxide | 0-4000 ppm | $\pm 50 \mathrm{ppm}$ |
    | Current Transformer external input | Hobo | CTV-A | Amperage | 0-20 A | $\pm 4.5 \%$ |
    | Current Transformer external input | Hobo | CTV-C | Amperage | 0-100 A | $\pm 4.5 \%$ |
    | Boiler Horsepower / BTU's / Chiller kW per Ton | GE <br> Panametrics | PT878 | Flow | $\begin{aligned} & \hline-17950 \text { to } \\ & 179500 \mathrm{gpm} \\ & \hline \end{aligned}$ | $\pm 1.5 \%$ |
    |  |  |  | Temperature | $-4^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}$ | $\pm 0.83{ }^{\circ} \mathrm{F}$ |
    | Multi-Phase Power | Hioki | 3169-20 | Voltage | $0-600 \mathrm{~V}$ | $\pm 0.2 \%$ |
    |  |  |  | Amperage | 0-500 A | $\pm 0.5 \%$ |
    | Multi-Phase Power | Hioki | 3169-20 | Voltage | $0-600 \mathrm{~V}$ |  |
    |  |  |  | Amperage | 0-500 A |  |
    | True-RMS Power | FLUKE | 345 or 1735 | Voltage | $0-600 \mathrm{~V}$ | $\pm 0.3 \%$ |
    |  |  |  | Amperage | 0-1400 A | $\pm 0.3 \%$ |
    | Combustion | Bacharach | PCA-265 | Oxygen | $\begin{array}{ll} \hline 0.1 \% & \text { to } \\ 20.9 \% & \end{array}$ | $\pm 0.3 \%$ |
    |  |  |  | Temperature | $\begin{array}{ll} \hline-4^{\circ} \mathrm{F} & \text { to } \\ 2192^{\circ} \mathrm{F} & \end{array}$ | $\pm 6^{\circ} \mathrm{F}$ |
    |  |  |  | Carbon Monoxide | 0-4000 ppm | $\pm 5 \%$ |
    |  |  |  | Nitric Oxides | 1-3000 ppm | $\pm 5 \%$ |
    |  |  |  | Pressure | $\pm 72$ inches WC | $\pm 2 \%$ |

    # EXHIBIT D <br> PERFORMANCE GUARANTEE AGREEMENT 

    | Project: | Hays County <br> Energy Savings Performance Contracting Hays County Texas |  |
    | :---: | :---: | :---: |
    | Qualified Provider: |  |  |
    | Company Name: | Performance Services of Texas, Inc. |  |
    | Address: | 3010 LBJ Freeway, 1215-A |  |
    | City, State, Zip: | Dallas, TX 75234 |  |
    | Representative: | Timothy P. Thoman |  |
    | Performance Guarantee Information: |  |  |
    | Annual Guaranteed Operational Savings Amount = |  | 92,127 |
    | Annual Guaranteed Energy/Water/Sewer Savings Amount = |  | 360,133 |
    | Total Annual Guaranteed Amount = |  | 452,260 |

    Program Term $=16$ Years

    ## Guarantee

    Performance Services, Inc. (the "Provider") guarantees that Hays County (the "Owner") will annually save the amounts stated above in energy and operating costs during the stated program term.

    The Performance Guarantee Agreement (the Guarantee) shall commence once the Utility Cost Reduction Measures (UCRMs) are installed, the Owner's staff has been trained how to operate the UCRMs and the UCRMs have been optimized by the Provider. The Guarantee commencement date shall be established by both the Owner and Provider by their signatures on the Guarantee Commencement Letter contained herein. The Guarantee shall be fulfilled and fully satisfied once the Guaranteed Energy and Operational Savings have equaled the Owner's payments as identified on the Amortization Schedule in the Guaranteed Energy Savings Contract (the Agreement).

    ## Energy Savings

    Energy savings shall be measured and verified by various methods depending on the UCRM. The measurement and verification methods to be used in determining actual energy savings are identified for each UCRM within this Guarantee and the Measurement and Verification Plan included in the Utility Assessment Report (UAR) dated December 15, 2016.

    The utility information used in this Guarantee for the Base Year shall be for the one-year period from January 2015 through December 2015. Current Year utility rate data shall be used in calculating energy savings occurring during that current year; provided Current Year utility rates are not less than Base Year utility rates. If Current Year utility rates drop below Base Year rates, Base Year rates shall be used to

    ## Performance <br> Services

    calculate Current Year energy savings. Any energy savings generated during the installation phase of this project shall be added to savings achieved during the first annual period of the Guarantee.

    The Owner shall pay the Provider the annual Energy Monitoring fees identified within this Guarantee. For these fees, the Provider shall calculate and report the actual energy savings over the term of the Guarantee as described herein.

    At the end of every annual guaranteed period, the actual annual savings will be compared to the guaranteed annual savings to determine if the guaranteed savings were achieved. If the actual savings for this one year period are less than the guaranteed annual savings amount, the Provider shall pay the Owner a cash refund for the difference between these amounts (herein call the "shortfall"). The maximum shortfall in any one-year period is limited to the annual guaranteed energy savings amount identified on the first page of this guarantee.

    ## UCRM 1 - LED Lighting Savings

    Guaranteed electrical energy savings generated by the lighting UCRMs included in the Project shall be based on a one-time measurement of lighting energy consumption under existing conditions and a onetime measurement upon completion of the lighting retrofit. The number of fixtures and usage groups selected for measurement is determined by the methods indicated in the UAR. These sample measurements shall be used to determine actual lighting savings. Each sample circuit shall be measured before and after the retrofit. The following calculations determine the actual annual electrical savings for the entire period of the guarantee.

    ```
    Consumption Savings:
    Savingskwh = \Sigma[(FIXT) x (Powerdraw, Powerdraw () x (Baseline Hours)]
    Savings$ = Savingskwh ```

