

Systems

File No. S370-36
Order No. GC20-1805-3

IBM Virtual Machine
Facility /370:
EDIT Guide
Release 2 PLC 13

This publication explains, for users of the Conversational
Monitor System (CMS), how to use the CMS Editor to
create, examine, and modify files at the terminal. It con
tains descriptions of:

• The EDIT command.

• The EDIT subcommands.

• The EDIT macros.

Examples are also included.

The IBM Virtual Machine Facility/370: Command
Language Guide for General Users, Order No. GC20-1804,
is a prerequisite for thorough understanding and effective
use of this publication.

GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975

Preface

This publication is intended for system
programmers, application programmers, and
other terminal users. It describes how to
use the CMS EDIT program to create and
change files at the terminal.

"Section 5: Operational Characteristics"
discusses unique CMS Editor operations and
functions.

It is divided into six sections, plus
two appendixes.

"Section 6: Error Conditions and
Recovery Procedures" provides information
on error messages and conditions.

"Appendix A: summary of
"Section 1: Introduction" describes the

facilities of the CMS Editor and includes
an introduction to editing with an IBM 3277
Display Station.

Subcommands" lists the subcommands
their operands, for quick reference.

EDIT
with

"Section 2: Command Modes" describes how
to change from one command mode to
anothe1:.

"Section 3: EDIT Subcommands" describes
each subcommand in detail. If a subcommand
operates differently at a typewriter
terminal than it does at a display
terminal, the differences are discussed.

"Section 4: EDIT Macros" discusses macro
conventions and use.

"Appendix E: User-written EDIT
illustrates some EDIT macros that
write for your own use.

PREREQUISITE PUBLICATION

This is a ~ajor revision of GC20-1805-3, and makes obsolete that edition
and Techn1cal GN20-2641. This edition, together with Technical
Newsletter GN20-2660, dated March 31, 1975, corresponds to Release 2 PLC
11 (Program Level Change) of the IBM Virtual Machine Facility/370-and-to
all s?bsequent releases until otherwise indicated in new editions or
Techn1cal Newsletters.

Ch~nges ar~ pe~iodi:a1ly made to the specifications herein; before using
th1s publ1cat1on 1n connection with the operation of IBM systems,
consult the lat~st I~~ ~1§!~~L]§Q ~Bg ~1§!~L11Q ~iEli~~~Ehl' Order No.
GA22-6~2~, and 1tS !~~!~g! ~iQ~g~~ ~HEE!~!~Bi, Order No. GC20-0001, for
the ed1t10ns that are aPFlicable and current. '

Technical changes and additions to text and illustrations are indicated
by a vertical bar to the left of the change.

Requests for copies of IBM pUblications should be made to your IBM
representative or to the IBM branch office serving your locality.

1 f?rm .for readers' comments is provided at the back of this
pubI1cat10n •. If the form has.bee~ removed, comments may be addressed to
IBM ~orporat10n, VM/370 pub11cat10ns, 24 New England Executive Park,
Bur11ngton, Massachusetts 01803. Comments hecome the property of IBM.

© Copyright International Business Machines Corporation 1972, 1973,
1974, 1975

Macros"
you can

GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975

3270 DISPLAY SYSTEM AS A REMOTE VIRTUAL
MACHINE CONSOLE

]~~~ Program Feature

The IBM 3270 Display system is now
supported as a remote virtual machine
console when attached to a 2701 Data
Adapter Unit or 2703 Transmission
Control Unit via a nonswitched line.

Remote 3270s controlled by an IBM 3704
or 3705 Communications controller must
be controlled by the Emulation Program
(EP) or the Partitioned Emulation
Program (PEP) in EP mode.

Using this support, 3270 Display System
users can have copies of 3277 screen
displays printed on 3284, 3286, or 3288
printers at their remote locations.

The section "Editing with a
Terminal" has been updated to
this support.

CMS EDITOR CHANGES

!~~: Program Features

Display
reflect

The new NODISP option of the EDIT
command places a 3270 display terminal
in LINE (typewriter terminal) mode for
the entire EDIT session.

The new DSTRING subcommand allows you to
delete any number of lines beginning at
the current line and ending at the line
containing a specified character
string.

Summary of Amendments
for GC20-1805-3

as updated by TNL GN20-2660
VM/370 Release 2 PLC 13

The new FORMAT subcommand allows you to
change the mode of your 3270 display
terminal from DISPLAY (display terminal)
mode to LINE (typewriter terminal) mode,
or from LINE mode to DISPLAY mode.

~E2BE~~: Program Features

The VERIFY subcommand has been changed
to allow you to specify the verification
start column as well as the verification
end column.

The SCROLL subcommand syntax has been
changed: SCROLL specifies a forward
scroll and SCROLLUP specifies a backward
scroll. The F and B operands are
eliminated with this change.

The AUTOSAVE subcommand has been changed
so that it now treats multiline changes
caused by a single CHANGE or OVERLAY
subcommand as one update.

The maximum length of a record that can
be edited has been changed to 160
characters. Although you cannot create
160-byte records using the CMS Editor,
you can edit an existing file that
contains 160-byte records.

DOCUMENTATION CHANGES

The changes that appear in this
technical newsletter reflect the
programming changes listed above and
minor technical and editorial changes.

DOCUMENTATION CHANGES

This manual has been
release. The following
made:

revised for
changes have

this
been

• The discussion "Editing with a
Display Terminal" in "section
Introduction" has been rewritten.

3270
1 :

• "Figure 2. Sample settings of 3270
Program Function Keys" has been included
to show one way you could define a
3270's program function keys to make
them particularly useful for editing.

• "Figure 4. Access Modes for CMS Files"
has been revised.

• In the discussion
Records," the list
defaults for various
corrected.

"Serialization of
of serialization

filetypes has been

• The discussion "Subcommand and Macro
Notation Conventions" has been deleted.
This information is found in the !~L37Q:
£Q~~~nQ 1~ngy~gg ~~!Qg !2£ ~gn~£~!
!!§~£~.

Summary of Amendments
for GC20- 1805-3

VM/370 Release 2 PLC 11

• Two examples of editing a file at a
typewriter terminal in "Line Number
Editing" have been corrected.

• Information has been added to the
description of the CHANGE subcommand.
Use of the CHANGE subcommand without
operands causes unprintable characters
to be removed from the current line.

o Information about FREEFORT and ASSEMBLE
files has been added to the discussion
of the LINEMODE subcommand.

• The full record length of BASIC and
VSBASIC files is now the default when
the TRUNC, VERIFY, and ZONE subcommands
are issued for these files.

• The section "3270 Display Terminal
Subcommands" haS been deleted. This
information is contained in "Section 3:
EDIT Subcommands."

• The discussion "Writing EDIT Macros" has
been rewritten to clarify the
information about stacking EDIT
subcommands.

CMS EDITOR LINE RENUMBERING FEATURE

!£!: Program Feature

A new CMS Editor subcommand, RENUM,
recomputes the line numbers for VSBASIC
and FREEFORT source files. The
following changes were made:

• The uLine Number Editing U section of
usection 1: Introductionu summarizes
the RENUM subcommand.

• uSection 3: EDIT Subcommands u
describes the new RENUM subcommand in
detail and gives additional
information for the GETFILE
subcommand.

• The uEditor Messages" section of
"section 6: Error Conditions and
Recovery Procedures" lists and
describes the messages related to the
line renumbering feature.

• "Appendix A: Summary of EDIT
Subcommands" is updated to include
the RENUM subcommand.

Summary of Amendments
for GC20-1805-2

as updated by GN20-2641
VM/370 Release 2 PLC 4

CMS EDITOR
TERMINAL

SUPPORTS IBM

~~~: Program Feature 

3270 DISPLAY 

The CMS Editor now supports the IBM 3270 
Display terminal. The following changes 
reflect this support: 

• "Section 1: Introduction" describes 
editing with a display terminal. 

• "Section 3: EDIT Subcommands" has a 
new section, "3270 Display Terminal 
Subcommands," which describes the 
EDIT subcommands that are supported 
only for the 3270 display terminal or 
work somewhat differently with the 
3270. Also, the following new 
subcommands are described in "section 
3: EDIT Subcommands:" 

Summary of Amendments 
for GC20- 1805- 2 

VM/370 Release 2 PLC 1 

- AUTOSAVE allows automatic saving of 
the current file. 

- BACKWARD moves records down the 
screen and moves the current line 
pointer backward in the file. 

- FORWARD moves records up the screen 
and moves the current line pointer 
forward in the file. 

- SCROLL allows automatic display of 
the entire file in increments of 20 
lines, for one-minute intervals. 

MISCELLANEOUS CHANGES 

f~~]B~£: Documentation Only 

The !]L11Q: ]]1! Gui£~ contains many 
small editorial and technical changes 
too numerous to list. 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1915 

SECTION 1: INTRODUCTION •••••••••• 5 
CMS Editor •••••••••••••••• 5 

Editor Modes: EDIT and INPUT Mode •••• 5 
Editing with a 3210 Display Terminal •• 5 

EDIT Command • • • • • • • • • • • 10 
Line Pointer • • • • • • • • •• 10.2 
Logical Line Editing Characters. 10.3 
Saving Intermediate Results. • • 12 

Data Files. • • • • • • • • • •• • 12 
Data Truncation. • • • • • • • • 13 
Tab Settings ••••••••••••• 14 
Operands Containing Character Strings. 16 
Serialization of Records. • 16 

Context Editing. • • • • • 11 
Line Num ber Editing. • • • • 21 

SECTION 2: COMMAND MODES. 
VM/310 Logon Procedures •• 

Signalling Attention. 
Ending an Input Line • 

LOGON, MSG Commands. 
CP Mode. • • • • • • 
IPL CMS. • • • • •• 
CMS Mode • • • • • • 

File Identifiers • 
CMS Immediate Commands • • • • • 
Returning to CP (from CMS) • • ••• 
Entering EDIT Mode • • • • • 
Entering EDIT Mode via the RETURN 

Command • • • • • • • • • • • • • • 
CMS EDIT Mode. • • • • • • • • • 

Returning to CP (from EDIT) ••• 
Entering EDIT Macros • • • • • • 
Entering INPUT Mode ••••••• 
Entering CMS via FILE or QUIT 

• 25 
• 21 
• 21 
• 21 
• 29 
• 29 
• 29 
• 29 
• 29 
• 31 
• 33 
• 33 

• 33 
• 33 
• 35 
• 35 
• 31 

• 31 Subcommands • • • • • 
CMS Subset Commands. • 

INPUT Mode • • • • • • • 
Returning to EDIT Mode 

• • • •• • 31 
• • • • • • 37 
from INPUT Mode 37 

SECTION 3: EDIT SUBCOMMANDS ••••••• 39 
EDIT Subcommand Summary by Function. • • 39 
Alphabetic Listing of EDIT Subcommands • 40 

ALTER Subcommand • • • • • • • • 41 
A UTOSA VE Subcommand. • • • • • • 42 
BACKWARD Subcommand. • • 43 
BOTTOM Subcomcand. • 43 
CASE Subcommand. • • • • • • • •••• 43 
CHANGE Subcommand. • •••• 44 
CMS Subcommand • • • 46 
DELETE Subcommand. • •••• 47 
DOWN Subcommand. • • • 47 
DSTRING Subcommand •••••••••• 47 
FILE Subcommand. • 48 
FIND Subcommand. • • 49 
FMODE Subcommand • • • • 49 
FNAME Subcommand • • •••• 50 
FORMAT Subcommand. • •••• 50 
FORWARD Subcommand •• 50.1 

GETFILE Subcommand • • • 
IMAGE Subcommand • • 
INPUT Subcommand • • • 
LINEMODE Subcommand. 
LOCATE Subcommand. 
LONG Subcommand. • • • 
NEXT Subcommand. • • 
OVERLAY Subcommand • • 
PRESERVE Subcommand. • 
PROMPT Subcommand •• 
QUIT Subcommand. • • 
RECFM Subcommand • 
RENUH subcommand • 
REPEAT Subcommand •• 

Contents 

• 50.1 
51 

• • • • . • 52 
. • • • . . 54 

• 55 
• • 56 
• • 56 
• • 51 

51 
• • 58 

58 
• • 58 
• • 59 

60 
• • 60 

• • • • • • • 61 
• • • 61 
• • • 61 

62 
• • 63 

REPLACE subcommand 
RESTORE Subcommand 
RETURN Subcommand ••• 
REUSE Subcommand • • 
SAVE Subcommand •• 
SCROLL Subcommand •• 
SERIAL Subcommand. 
SHORT Subcommand • 
STACK Subcommand • 

• • • • • • • • 63 

TAB SET Subcommand. 
TOP Subcommand • 
TRUNC Subcommand • • 
TYPE Subcommand. • 

65 
• • 65 
• • 65 

• • • • • • • 66 
• • 66 

• 67 
UP Subcommand ••••••• • • 68 
VERIFY Subcommand. • ••• •• 
X or Y Subcommand. • •••• 
ZONE Subcommand. 
? Subcommand • • • • • • • • • • • 
nnnnn Subcommand • 

SECTION 4: EDIT MACROS • 
Wri ting EDIT Macros. • 

• • 68 
69 

• 70.1 
• • 11 

72 

73 
13 

SECTION 5: OPERATIONAL CHARACTERISTICS. 15 
Number of Records Handled by the Editor. 75 
Top-ot-File and End-of-File Conditions • 75 
Placing a Continuation Character in 

Column 72 • • • • • • • • • • • • 16 

SECTION 6: ERROR CONDITIONS AND RECOVERY 
PROCEDURES. • • • • • • • • • • • • • • 17 

Editor Error Procedures. • • • • •• 77 
Exceeding Virtual storage Capacity • 17 
Exceeding Disk Storage capacity ••••• 78 
Unplanned Terminal Session Ending. • • • 78 
Editor Messages. • • • • • • • • • • • • 79 

APPENDIX A: SUMMARY OF EDIT SUBCOMMANDS. 85 

APPENDIX B: 
$MACROS. • 
$MARK. 
$POINT • 
$COL • 

INDEX. 

USER-WRITTEN EDIT MACROS • • 87 
• • • • . • 87 

• • 88 
• • 90 
• • 91 

• • 93 



GC20-1805-3, Page Kodified by TNL GN20-2660, Karch 31, 1975 

FIGURES 

Figure 1. 

Figure 2. 

Figure 2.1 
Figure 3. 

Figure 4. 
Figure 5. 

3270 Display Terminal Screen 
Layout ••••••••••••••••••••••••• 7 
sample Settings of 3270 Program 
Function Keys •••••••••••••••••• 9 
Remote 3270 Screen Display •••• 10 
Truncation Columns for EDIT 
Subcommands ••••••••••••••••••• 14 
Access Kodes for CMS Files •••• 31 
Number of Records Handled by 
the Editor •••••••••••••••••••• 75 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31,1975 

Section 1: Introduction 

The CMS EDIT facility (hereinafter referred to as the Editor) allows you 
to: 

• Create sequential 
records. 

files containing fixed- or variable-length 

• Use standard default values, with certain filetypes, 
length, format, tab settings, serialization, lowercase 
translation, and other file attributes. 

o Add, delete, or change any part of a file. 

for record 
to uppercase 

• Move one or more lines from one place in the file to another. 

• Search and change a file using context or line editing. 

• Receive prompting with line numbers, if desired. 

• Display all or part of the file. 

• Use the eMS EXEC interpreter to execute user-written EDIT macros. 

I EDITOR MODES: EDIT AND INPUT MODE 

The Editor has two modes of operation, EDIT mode and INPUT mode. When 
you issue an EDIT command at the terminal, or within an EXEC procedure, 
EDIT mode is always entered, whether or not the specified file exists. 

If the file already exists, CMS locates it and you can begin working 
on it. If the file does not exist, CMS creates a new file having the 
filename and filetype you specified in the EDIT command. 

If you want to start putting new data into the file, type INPUT to 
get into INPUT mode. The Editor considers all information keyed in from 
this point on to be input data until you enter a null line (that is, a 
line containing no data). This null line causes the Editor to return to 
EDIT mode so that you can invoke EDIT subcommands, if you wish, before 
storing the new file on disk. On the other hand, if you do not want to 
enter INPUT mode immediately, you can enter EDIT subcommands to add to, 
examine, alter and rearrange the contents of an existing file. 

EDITING WITH A 3270 DISPLAY TERMINAL 

The IBM 3277 Display Station (hereinafter referred to as the 3270) 
allows you to edit files and obtain the same results as you would with a 
typewriter terminal. 

section 1: Introduction 5 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1915 

This section describes the screen layout of the 3270, outlines some 
considerations for editing files at a 3210, and describes how to define 
and use the 3270 program function keys. If you do not have a 3270 
display terminal, go on to the section entitled "EDIT Command." 

A local or remote 3210 display terminal can operate in either DISPLAY 
mode or LINE mode. In DISPLAY mode, the screen appears as shown in 
Figure 1; the file that is being edited is displayed in the output 
display area. In LINE mode, the screen appears as if it were a 
typewriter terminal's console sheet, except that the screen status (for 
example, VM READ) appears in the lower right-hand corner of the screen. 
The commands and subcommands you issue appear in the output display area 
in the order in which you issued them. 

A remote 3270 terminal is in LINE mode unless you issue the FORMAT 
DISPLAY subcommand, which puts the terminal into DISPLAY mode for the 
remainder of the EDIT session. (Each time you enter INPUT mode, 
however, the terminal temporarily returns to LINE mode.) 

A local 3210 terminal is in DISPLAY mode unless you: 

1. Begin an EDIT session by issuing the EDIT command with the 
NODISP option, or 

2. Issue the FORMAT LINE subcommand. 

If you use the HODISP option, the 3270 goes into LINE mode for the 
entire EDIT session. You cannot change it to DISPLAY mode by issuing 
the FORMAT DISPLAY subcommand. If you have issued the FORMAT LINE 
subcommand, however, the 3270 goes into LINE mode, but you can return to 
DISPLAY mode by issuing FORMAT DISPLAY. 

The NODISP option is useful if 
to remain on the screen when you 
execution of an EXEC procedure). 

you want your previous console output 
enter EDIT mode (for example, during 

The terminal's response is faster in LINE mode than in DISPLAY mode, 
because each subcommand you issue in LINE mode causes fewer changes to 
the screen than it would in DISPLAY mode. For example, issuing a 
subcommand that changes the current line pointer (such as UP, DOWN, 
LOCATE, or FIND), in DISPLAY mode causes the entire output display area 
to be rewritten (Up to 1600 bytes). One of these subcommands issued in 
LINE mode, however, causes only one line to be written (up to 160 
bytes) • 

In DISPLAY mode, therefore, terminal response is slower but you are 
able to see how the file you are editing looks and how it is changed by 
each EDIT subcommand you issue. In addition, subcommands that are 
unique to display terminals, such as SCROLL and CHANGE with no operands, 
can only be used when the terminal is in DISPLAY mode. 

Except for speed of response, a local terminal in LINE mode and a 
remote terminal in LINE mode function alike. A local terminal in 
DISPLAY mode and.a remote terminal in DISPLAY mode function alike except 
when the Editor goes into INPUT mode. A local terminal in DISPLAY mode 
remains in DISPLAY mode when it enters INPUT mode. A remote terminal, 
however, returns to LINE mode when it enters INPUT mode. After you have 
finished entering input and return to EDIT mode, the remote terminal 
returns to DISPLAY mode. For more information about display terminals 
in INPUT mode, see the description of the INPUT subcommand. 

6 IBM VM/310: EDIT Guide 



GC20-1805-3, Page !odified by TIL GR20-2660, !arch 31, 1975 

The screen of 
following data 
Figure 1: 

a 3270 
during 

display terminal in DISPLAY mode contains the 
an editing session, in the format shown in 

• Edit Session Status--NEWFILE, EDIT, or INPUT. NEWFILE appears if you 
edit a new file, EDIT or INPUT appears when you enter the first 
subcommand, and INPUT appears when you enter input mode. 

• File ID--fn ft fm F/V lrecl (filename, filetype, filemode, fixed or 
variable length, logical record length). 

• Message--Any VM/370 message to the user, preceded by five "greater 
than" (»»» characters. 

• output Display Area--up to 20 lines of data. You cannot key data 
into this area of the screen. 

• 

• 

Current Line Pointer (CLP)--positioned at 
current input or editing line. Line 9 is 
System Available indicator appears on. 

line 9, 
the line 

indicates the 
that the 3270 

c (Lozenge)--Indicates an unusable position occupied by a 
attribute control character. Thus, line 21 (the last line of 
output display area) can display only the first 79 characters 
line since the screen attribute character occupies position 80. 
screen attribute characters appear as blanks on the screen. 

3270 
the 

of a 
The 

I. User Input Area--80 characters on line 22 and 56 characters on line 
I 23; a total of 136 characters. 

• Screen Status--The screen status conditions are: RUNNING, MORE ••• , 
HOLDING, CP READ, VM READ, and NOT ACCEPTED. See the VML~l~: 
I~E~~ll~! Y§~E~§ §Yi£g for details about screen status conditions. 

Column 0 15 24 33 37 39 80 
.-> I -, 
I Line o I Status Ifn 1ft Ifm I 
1 I --I 
1 Line 11»?»Message I 
I I ----I 
I Line 21 I 
1 1 1 
I 1 I r 
1 1 OUTPUT DISPLAY ARE 1 1 System 
I Line 91 (20 Lines) ·1<-IAvailable 
24 I I I Indicator 
Lines I 1 L 

I < > 
I < > 
1 < > 
I I I 
1 I I 
1 Line 211 c I 
1 1 1 
1 Line 221 56 I 
1 IUser Input Area r------ 1 
I Line 231 Ie Screen Status 1 L_> 

< 80 Characters > 

Figure 1. 3270 Display Terminal Screen Layout 

section 1: Introduction 7 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

Some EDIT subcommands work differently on a 3270 terminal in DISPLAY 
mode than they do on a typewriter terminal or a 3270 in LINE mode. The 
following briefly notes some characteristics of the 3270 in DISPLAY mode 
that are important in editing. 

• The output display area, lines 2 through 21, displays up to 20 file 
records. The current li~e (that is, the line being edited) always 
appears on line 9. 

• You can use the SCROLL subcommand to display up to 20 lines of the 
file at once, allowing a better visualization of format and editing 
changes. This results in faster file editing because it eliminates 
unnecessary checking and searching for lines, and replaces slow-speed 
typing with high-speed displays. 

• The CHANGE subcommand allows you to change the current line in the 
user input area by using the 3270 INSERT and DELETE keys, the cursor 
controls, and the keyboard. yoU can use the cursor controls to move 
the cursor around in the user input area and then retype, insert, or 
delete characters in the current line. For more information about 
using the cursor, see the !~Ll1Q: !~~~!~~1 Q§~!~§ g~iQ~. 

• When VERIFY is set to ON, the EDIT subcommands that change the file 
you are editing cause a new display reflecting the change to replace 
the current display. 

• The FORWARD and BACKWARD subcommands allow you to move the file 
display any number of lines in either direction. 

• The Editor does not redisplay the EDIT command line itself in the 
output display area unless the terminal is in LINE mode. In DISPLAY 
mode, only data lines are displayed in the output display area. You 
can write a chronological history of your EDIT commands and 
subcommands on the virtual console spool file when using the 3270, by 
issuing the CP command SPOOL CONSOLE START when you begin. However, 
output display area information written by the Editor is not spooled 
in DISPLAY mode, but it is spooled in LINE mode. 

• The "1" (query) subcommand causes the last EDIT subcommand you 
entered to be redisplayed in the user input area. You can now repeat 
this subcommand by pressing the 3270 ENTER key. 

The 3270's program function keys can be very useful for editing purposes 
if you set them to execute EDIT subcommands when they are pressed. 
Then, whenever you want to execute one of these subcommands, you need 
not key it in; you simply press the program function key. Thus you can 
avoid repeatedly keying in frequently-used subcommands. 

To set a program function key to a subcommand, enter the CP command 
SET PFnn IMMED, followed by the subcommand you want the PF key to 
perform. For example, you could issue: 

SET PF02 IMMED UP 5 

Now, whenever you wish to move up in the file five lines, press the PF02 
key; the subcommand UP 5 will be executed immediately. 

8 IBM VM/370: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

The SET command cannot be issued in EDIT mode; you must set your PP 
keys before issuing the EDIT command, or press the PAl key to bring you 
into the CP command environment. 

Figure 2 shows the layout of the 3270 program function keys with 
sample settings. To see how to set a program function key for logical 
tab settings (PF10 in Figure 2), see "Defining a 3270 Program Function 
Key for Tab Settings" under "Tab Settings~" 

r-
IPFl IPF2 IPF3 
I I I 
I SCROLL UP I UP 5 I UP 1 
I I (BACKWARD 5) I (BACKWARD 1) 
I I I 
I 
IPF4 IPF5 IPF6 
I I I 
I SCROLL I NEXT 5 I NEXT 1 
I I (FORWARD 5) I (FORWARD 1) 
I I I 
I 
IPF7 IPF8 IPF9 
I I I 
I TABSET I CMS I RETURN 
I 1 10 16 31 36 I I 
I 72 80 I I 
I 
IPF10 IPF11 IPF12 
I I I 
I CP TAB I TYPE I INPUT 
I (values equal to I I 
I those of PF7) I L---____________ _ 

Figure 2. Sample settings of 3270 Program Function Keys 

If you are using a remotely-connected 3270 display terminal, you can 
copy the full screen display currently appearing on the screen. The SET 
PFnn COpy command allows you to assign a COpy function to a specified PF 
key. pressing the PF key copies the current display on the screen by 
printing the display on a 3284, 3286, or 3288 printer that is attached 
to the same control unit as the display terminal. 

Figure 2.1 is an example of a remote 3270 screen display that could 
be copied on the printer. 

The user identification in Figure 2.1 is an identifying name that you 
can give the sheet; this is desirable if more than one remote terminal 
is using the printer. To enter this user identification, type it into 
the screen's user input area just before you press the PF key that is 
set to execute the COpy function. 

If you use the COpy function frequently, you can set a PF key with a 
user identification as follows: 

SET PFnn yourname ••• dept no. 

Press this PF key just before you press the PF key that you have set to 
execute the COpy function. 

section 1: Introduction 9 



GC20-1805-3, Page Modified by TNL GH20-2660, "arch 31, 1975 

DEFINE STORAGE 16384K 
STORAGE = 16384K 
IPL 190 . 
CMS VERSION n.n mm/dd/yy hh:mm 

user identification 
RUNNING 

Figure 2.1 Remote 3270 Screen Display 

See the description of the 'SET command in the !I1LJ1Q: ~.Q'!!!!!!!! 
~~ng~~gg 2~!g~ !Q~ ~gBg~~! Q§~~§ for detailed information about printing 
screen displays. 

The format of the EDIT command is: 

r------------- -------------------------- '----------.----------~ 
I 
I Edit filename filetype [filemode] [ (options ••• [) ]] 
I 
I 
I 
I 
I 
L 

QE1!.QB§: 
[LRECL nnn] 
[NODISP] 

---------' 

filename 
Indicates the name of the file to be processed. You must specify a 
one- to eight-character alphameric filename. If no filename is 
entered, an error message is displayed. 

filetype 
'Indicates the type of the file to be processed. You must specify a 
one- to eight-character alphameric filetype. If no filetype is 
entered, an error message is displayed. 

filemode 
Indicates the filemode of the file, which identifies the disk where 
the file resides, and the mode of access to the file. The filemode 
can be that of the parent disk if the file resides on an extension of 
that disk. 

10 IBM V!/370: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

LRECL nnn 
Indicates the record length of the file, where nnn is one to three 
decimal digits. The maximum record length (nnn) you can specify is 
160. See the discussion on "Record Length" in this section. 

HODISP 
places a 3270 display terminal in LINE mode (that is, operating as a 
typewriter terminal) for the entire EDIT session. Display terminal 
subcommands, such as SCROLL, are not valid. If you specify NODISP, 
you cannot change to DISPLAY mode by issuing the FOR"AT DISPLAY 
subcommand. 

If a filemode is specified, the Editor searches only that disk and 
its extensions for the file. If the filemode is not specified (that is, 
left blank), the Editor searches your A-disk and any extensions. If the 
filemode is specified as an asterisk (*), then the Editor searches all 
of your CMS disks for the file. 

If it finds the file, the Editor saves the filemode of the disk on 
which it found the file. If the Editor finds the file on an extension, 
it saves the filemode of the parent disk. 

When the file is to be written out (due to a FILE, SAVE, or AUTOSAVE 
subcommand), the Editor tries to write the file on the disk vhose 
filemode was saved. If this disk is read-only, however, the file cannot 
be written on it. The following error message is issued: 

SET NEW FILEMODE AND RETRY 

You must then reissue the FILE or SAVE subcommand, specifying the 
filemode of one of your re~d-write disks. Or, if future AUTOSAVEs will 
be issued for the file, change the filemode with the FMODE sucommand. 

If the Editor does not find the file on any disk when you issue the 
EDIT command, it allows you to create a new file with the file 
identifications you specified. When the newly-created file is to be 
written out, the Editor writes it on the disk specified by filemode, or 
if you did not specify filemode, on your A-disk. 

If you do not specify a record length in the EDIT Comand line, the 
Editor assumes the following defaults: 

g Editing Existing Files: The existing record length is used for all 
filetypes regardless of format (fixed or variable). 

• Creating New Files: 

r!!g~IE~ 
LISTING 
SCRIPT 
FREEFORT 
All others 

~g£Q~~ 19~9!h 
121 characters maximum 
132 characters maximum 

81 characters maximum 
80 

Format 
VarIable 
variable 
Variable 
Fixed 

The largest record you can edit with the Editor is 160 characters. A 
file with record length up to 160 bytes (for example, a listing file 
created by a DOS program) can be displayed and edited. 

section 1: Introduction 10.1 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

The largest record you can create with the Editor, however, is 130 
characters. If you key in more than 130 characters of input, the record 
is truncated to 130 characters when you press the ENTER or RETURN key. 

Por most purposes, you will not need to create records longer than 
130 characters. If it is necessary, however, you can expand a record 
that you have entered. You do this by issuing the CHANGE subcommand 
with operands, to add more characters to the record (for example, by 
changing a one-character string to a 31-character string). However, if 
you later use the CHANGE subcommand without operands to bring a record 
down into the user input area, anything in that record beyond 136 
characters is truncated. 

you can specify any filetype and assign it any record length up to 
160 bytes. Por example, you could begin to create a new file with a 
filetype of X and a record length of 145 by issuing: 

edit payday x (lrecl 145 

The default record lengths of the standard filetypes, like LISTING 
and SCRIPT, can be overrideen by the LRECL option of the EDIT command. 
Por example, you could issue either of these commands: 

edit newfile script (lrecl 150 
edit newfile script (lrecl 80 

You cannot create a record that is longer than the record length of 
the file. Por example, if the file you are editing has a default record 
length of 80, or if you specified LRECL 80 when you created the file, 
the Editor truncates all records to 80 characters. 

Using the LRECL option, you can override the record length of an 
existing file and make it larger, but not smaller. 

If you try to override the record length of an existing file and make 
it smaller, the Editor displays an error message, and you must issue the 
EDIT command again with a larger record length. Por example, suppose 
you have on your B-disk a file named MYPILE PREEPORT, which was created 
with the default record length of 81. If you try to edit that file by 
issuing: 

edit myfile freefort b (lrecl 72 

the Editor displays the message: 

GIVE A LARGER RECORD LENGTH. 

You must then issue the EDIT command again and either 
of 81 or more, or allow it to default to the current 
the file. 

LINE POINTER 

specify a length 
record length of 

• A Current Line Pointer (CLP) is associated with each file being 
edited. 

• The current line is the line that is being created or edited in a 
file. 

• The current line pointer identifies the line in the file that is the 
current line. 

10.2 IBH VM/370: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

Various EDIT subcommands and macros exist for" moving the current line 
pointer. The line pointer may be moved to: 

1. A record specified 
records) forward or 
pointer. 

by its relative displacement (in number 
backward from the current position of 

of 
the 

2. A record containing a specified string of characters or having a 
specified label. A string of characters can be any group of 
alphameric characters. If the EDIT subcommand used requires 
delimiters such as a slash (I) around the string, blanks may be 
included in the string. 

3. A specific record (indicated by the record number). 

The ability to search for strings allows you to be concerned with 
only the specific data to be manipulated, freeing you from the task of 
keeping track of the locations of specific records or the counts of 
inserted and deleted records. The Editor allows you to change one, 
several, or all occurrences of a specific string that exist in a file. 
This global change capability eliminates many tedious and repetitious 
editing chores. 

When you change from INPUT to EDIT mode, the pointer remains 
positioned at the last line entered from the terminal; when you change 
from EDIT mode to INPUT mode, the pointer is positioned so that the next 
line entered will follow the last line edited. 

After issuing the EDIT command and entering EDIT mode, the pointer is 
positioned at a special blank (null) line that the Editor creates and 
places in virtual storage in front of the first line of the file. If, 
during the processing of the file, a TOP subcommand is issued, the 
pointer is positioned at this null line. This is to allow you to insert 
records in front of the first data record in the file. The null line is 
not stored on your disk when you issue the FILE, SAVE, or AUTOSAVE 
subcommand. Issuing a TYPE subcommand when the pointer is positioned at 
the null line causes a blank line to be displayed. 

LOGICAL LINE EDITING CHARACTERS 

The following paragraphs describe the VM/370 logical line editing 
characters. In summary, the normal default values for the line editing 
characters are: 

£!!~;:~£~~!: 
i.i) 

# 
¢ .. 

l1~~.!!.!.!tg 
Logical character delete 
Logical line end 
Logical line delete 
Logical escape 

The logical line editing characters are defined for each virtual 
machine during VM/370 system generation. If your terminal's keyboard 
lacks any of these special characters, your installation will define 
other special characters for logical line editing. Check with your 
system administrator to see which logical line editing characters have 
been defined for your virtual machine. Also, you can use the CP TERMINAL 
command to change the logical line editing characters for your virtual 
machine. (See the !HL11Q: £2~~~~g ~~llguagg ~y!gg ~Q~ ggllg~! Q§~~§.) 

If you enter three or more line editing symbols together, you may get 
unpredictable results. 

Section 1: Introduction 10.3 



GC20-1805-3, Page ~odified by TBL GN20-2660, March 31, 1975 

Should you discover that you have made a minor typing error while 
entering commands or data, the logical character delete symbol (~) 
allows you to delete one or more of the previous characters entered. The 
~ deletes one character per ~ entered, including the ¢ and t logical 
editing characters. For example: 

10.4 IBM VM/370: EDIT Guide 



ABCI~~ results in AB 
ABC~D results in ABD 
t~DEF results in DEF 
ABC~~~ deletes the entire string 

The logical line end symbol (t) allows you to key in more than one 
command on the same line, to minimize the amount of time you have to 
wait between entering commands. You type the t at the end of each 
logical command line, and follow it with the next logical command line. 
The Editor stacks the commands and executes them in sequence. For 

.example, the entry 

down 1ttype 1ttop 

is executed in the same way as the entries: 

down 1 
type 1 
top 

The logical line delete symbol (t~ (or [ for Teletype1 Mod 33/35 
terminals) deletes the entire preV10US physical line, or the last 
logical line back to (and including) the previous logical line end ('). 
It can be used to delete a line containing many or serious errors. If a 
1 sign (logical line end) immediately precedes the t sign, only the 1 
sign is deleted. For example: 

• Logical Line Delete: 

ABCIDEFt deletes the tDEF and results in ABC 
ABClt results in ABC 
ABCIDEFtlGHI results in ABCtGHI 
ABC#DEFtGHI results in ABCGHI 

• Physical Line Delete: 

ABCt deletes the whole line 

The logical escape symbol (") causes VK/370 to consider the next 
character entered to be a data character, even if it is normally one of 
the logical line editing symbols (~, t, ", or I). For example: 

ABC"tD results in ABCtD 
""ABC"" results in "ABC" 

The appearance of a single logical escape symbol (") as the last 
character of a line is ignored. 

1Trademark of the Teletype corporation, Skokie, Illinois. 

section 1: Introduction 11 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

SAVING INTERMEDIATE RESULTS 

When you are changing a file extensively or entering a large file, it is 
good practice to make a few additions or changes, issue the SAVE 
subcommand, and then continue entering or editing. Use of this 
subcommand ensures that a minimum of work would need to be redone in 
case of a CP or CMS system failure or a major user editing error such as 
globally changing the wrong word or string. Alternatively, you can 
invoke the AUTOSAVE subcommand at any time during the editing session to 
automatically save the entire file after every "n" updates. 

A file must consist of at least one line of data to be written 
permariently on disk. A file consisting only of a null line cannot be 
saved, and results in an error message being displayed. 

The Editor examines the filetype component of the file identifier to see 
if it is one of the reserved filetypes whose default attributes are 
known to the Editor. Examples of such attributes are: 

• Record format: F (Fixed) or V (Variable) 
• Logical record length (LRECL) 
• Case mode (uppercase or lowercase) 
• Truncation columns 
• Zone columns 
• Serialization conditions 
• Line editing conditions (LINEMODE setting) 
• Verification columns 
• Line image settings 
• Tab settings 

In general, the Editor prepares fixed-length (logical) records of 80 
characters, except for SCRIPT files, which are variable-length records 
up to 132 characters long; LISTING files, which are 121-character 
variable-length records; and FREEPORT files, which are 81-character 
variable-length records. For all the reserved filetypes except SCRIPT 
and MEMO, all characters are translated to uppercase. all characters 
are translated to uppercase. information on reserved filetypes, refer 
to the !~LJIQ: £Q~~~g ~~~~~ §Yig~ !Q~ General Q~~!~. 

For example, if a filetype of MEMO is specified, the file consists of 
80-character fixed-length records containing both uppercase and 
lowercase letters, with no truncation or serialization columns. 

If the filetype is SCRIPT, all input lines entered in INPUT mode and 
strings entered in EDIT mode are interpreted without converting 
lowercase characters to uppercase. The record format is set to V 
(variable-length records). In addition, input lines containing 
underscored information are internally rearranged when CANON was 
specified in the IMAGE command (this is the default for SCRIPT files). 
CANON means that regardless of how the characters are keyed in 
(characters, backspaces, underscores), the Editor stores the information 
in the file as: character-backspace-underscore, character-backspace
underscore, and so on. If, for example, you want an input line to look 
like: 

12 IBM VM/370: EDIT Guide 



You could enter it as: 

ABC, 3 backspaces, 3 underscores 

- or -

3 underscores, 3 backspaces, ABC 

A typewriter types out the line in the following order: 

A backspace, underscore 
B backspace, underscore 
C backspace, underscore, which results in: 
~~f 

To enter backspace characters (X'16') at a 3270, which has no backspace 
key, you must enter some other character in place of the backspace, and 
then use the ALTER subcommand to change that character to a X'16'. 

For example, if you enter: 

input ABC??? 
alter 1 16 1 G 

all occurrences of the question mark on 
When the changed line is redisplayed 
looks like: 

that line are changed to X'16'. 
in the output display area, it 

The backspace character is indicated by a blank, as the 3270 cannot 
place compound characters in a single screen position. 

If you try to use a subcommand with column settings greater than the 
record length specified in the EDIT command (LRECL n), the Editor 
rejects the command. For example, a MEMO file has a fixed record length 
of 80, and cannot have a truncation column set beyond this limit: 

edit new file memo 
NEW FILE: 
EDIT: 
trunc 

80 
trunc 129 
?EDIT: trunc 129 
trunc 81 
1EDIT: trunc 81 
trunc 60 
trunc 

60 

DATA TRUNCATION 

the current setting is requested 

truncat~on at position 129 is requested 
the subcommand is not accepted 
truncation at position 81 is requested 
the subcommand is not accepted 
the subcommand is accepted 
the current setting is requested 

The truncation columns that are used by EDIT subcommands for reserved 
filetypes (and any other filetypes) are shown in Figure 3. 

section 1: Introduction 13 



Truncation Columnll 

71 

72 

81 

Record length 

End Zone 

Filetype Subcommand 

For ASSEMBLE, UPDATE, and 1 INPUT 
UPDTxxxx files 1 REPLACE 

------------1 
For FORTRAN, COBOL, and PLIOPT filesl 

-------I 
For FREEFORT files 1 

All other filetypes 

For all filetypes, the string is 
displayed up to the VERIFY column. 

INPUT 

ALTER 
LOCATE 
CHANGE 

lThe truncation column may be altered at any time during the terminal 
session by entering a TRUNC subcommand. 

Figure 3. Truncation Columns for EDIT Subcomrnands 

TAB SETTINGS 

Logical tab settings indicate the column positions where fields within a 
record begin. These logical tab settings need not correspond to the 
physical tab settings on a typewriter terminal. Tab operations using a 
display terminal are discussed under "Inserting Tab Characters at a 
3270." The default logical tab settings depend on the filetype of the 
file. Changing the default logical tab settings is discussed below. 

What happens when you press the TAB key on a typewriter terminal 
depends on whether IMAGE is on or off. (The default for all filetypes 
except SCRIPT is IMAGE ON. You can change the default by issuing the 
EDIT subcommand IMAGE ON or IMAGE OFF.) 

If IMAGE is on when you press the TAB key, the Editor inserts one or 
more blanks into the record, starting at the column where you pressed 
the TAB key, and ending at the last column before the next logical tab 
setting. The next character entered after the tab becomes the first 
character of the next field. 

If IMAGE is off when you press the TAB key, the tab character, X'05', 
is inserted in the record, just as any other data character is 
inserted. No blanks are inserted. 

The Editor places data entered under the following filetypes in the 
proper column when the tabbing is performed. 

14 IBM VM/370: EDIT Guide 



I!!~!:IE~ 
ASSEMBLE, MACRO, 

UPDATE, 
UPDTxxxx, 
ASM3705 

FORTRAN 

FREEPORT 

BASIC, VSBASIC 

PLIOPT, PLI 

COBOL 

All Others 

1, 

9, 

7, 

2, 
79, 

1, 

1, 
91, 

7, 10, 15, 

15, 18, 23, 

10, 15, 20, 

4, 7, 10, 
80 

8, 12, 20, 

6, 11, 16, 
101, 111, 

20, 25, 30, 80 

28, 33, 38, 81 

25, 30, 80 

13, 16, 19, 22, 25, 31, 37, 43, 49, 

28, 36, 44, 68, 72, 80 

21, 26, 31, 36, 41, 46, 51, 61, 71, 
121, 131 

To change the default settings, use the EDIT subcommand TABSET. 

55, 

81, 

If you want to insert a tab character (X'OS') into a record and IMAGE is 
on, you can do one of the following: 

1. Set IMAGE OFF before you enter or edit the record, and then press 
the TAB key at the appropriate place in the record; or 

2. Press some other character key at the appropriate place in the 
record, and then use the ALTER subcommand to alter that character 
to a X' 05' (tab character). You should use a seldom-used 
character, such as ? or ~ (not) for this purpose. 

To enter a tab character at a 3270, which does not have a TAB key, you 
can either: 

1. Enter another character at the appropriate place in the record, and 
then use the ALTER subcommand to alter that character to a X'05', 
or 

2. Before you begin to create the file, use the CMS command SET INPUT 
char 05 to define some other character as the tab character. CMS 
will then translate all occurrences of that character to X'05' and 
redisplay the input line in the output display area. If IMAGE is 
on, the line will appear padded with an appropriate number of 
blanks. 

3. Define a 3270 program function key to indicate tab settings. 

Section 1: Introduction 15 



Use the CP "SET PFnn TAB" command in the following manner: 

SET PFnn TAB n1 n2 ••• nn 

nn is any valid function key number from 1 to 12. 

n1 n2 ••• nn are the logical tab settings desired, expressed as 
decimal numbers. Valid numbers are 1 to 136. Invalid 
tab settings are ignored. You can specify the setting 
values in any order, but they are normally specified in 
ascending order. 

You can define different PF keys with different tab settings for 
different filetypes. The operation is always executed immediately 
regardless of the specification of the IMMED or DELAY operand with the 
operation. 

T~e operation works in the following manner when you press the PF 
key. CP examines the tab settings and sets them in ascending order. CP 
ignores invalid values and examines the data at the current cursor 
position on the screen. If it is "null" it is replaced in storage by a 
tab character, but on the screen the cursor is positioned at the next 
tab setting in the user input area. CP does not replace valid 
characters in the input data. Tabbing beyond the last defined tab 
position repositions the cursor at the beginning of the user input 
area. 

When you end the data line by pressing the ENTER 
the imbedded tab character (X'OS') is presented 
processing. 

OPERANDS CONTAINING CHARACTER STRINGS 

key, the data with 
to the Editor for 

Some EDIT subcommands require character strings as operands. A string 
begins with a delimiter (any valid character that does not appear in the 
string) and continues as a sequence of valid characters until the 
delimiter is again specified. Thus, the delimiter indicates only the 
beginning and end of the string. The delimiter is redefined in each new 
subcommand by its appearance at the beginning, of a string. If two 
strings exist in one subcommand, the same delimiting character must be 
used for each string. In this publication, the slash (I) is used to 
denote the delimiter, although any valid character that does not appear 
in the string can be used. 

Note: Unless you turn off logical editing via the CP TERMINAL command, 
VM/370 edits the input line for character delete, line delete, logical 
escape, and logical line end symbols before the Editor receives the 
character string. For a discussion of input line editing, refer to the 
previous section entitled "Logical Line Editing Characters." 

SERIALIZATION OF RECORDS 

If record serialization is the default for the filetype being edited, or 
if you specify serialization by issuing a SERIAL subcommand, an 

16 IBM VM/370: EDIT Guide 



GC20-1805-3, Page Modified hi TIL GH20-2660, March 31, 1975 

identifier is normally placed in columns 7]-80 of each record. (For 
BASIC and VSBASIC files, a 5-digit sequence number is placed in position 
1-5 of each record.) The identifier normally consists of a 
three-character identification followed by a five-digit number. 

The identifier is taken from the first three characters of the 
filename, or from the first operand of the SERIAL subcommand. The 
sequence numbering normally begins at 00010 and is increased by 10 for 
each record unless it is changed by the PROMPT or SERIAL subcommand. A 
PROMPT subcommand simply changes the prompting increment. The line 
identifier in columns 73-80 can be changed by issuing the SERIAL 
subcommand when in EDIT mode. 

serialization is the default for the following filetypes: ASSEMBLE, 
MACRO, FORTRAN, COBOL, PLIOPT, UPDATE, and UPDTxxxx. Serialization is 
suppressed, unless requested by the SERIAL subcommand, for all other 
filetypes. A file with a filetype of MEMO, LISTING, or EXEC must not be 
serialized, since each column in records in these types of files aay 
contain data. Serialization can only be used on fixed format, 
80-character record length files. 

You would normally use context editing ~n files that are not line number 
oriented or if changes are to be made globally throughout the file. It 
allows you to create and update files by content rather than by line 
number. The following discussion introduces the EDIT subcommands that 
are useful in "Section 3: EDIT Subcommands." 

You can use the following EDIT subcommands when context editing: 

AUTOsave [nIOFF] 

Tells the Editor to automatically save the file after every B 
updates to the file. 

BAckward [lin] 

Moves records down the screen' n lines. This subcommand is 
functionally equivalent to the UP subcommand. The current line 
pointer moves within the file, but the current line remains 
positioned at line 9. 

Bottom 

Moves the line pointer to the last record of the file. 

Change /string1/string2[/[1Inl*[GI*]]] 

Changes the old data (string1) to the new data (string2). 

Section 1: Introduction 17 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

DELete [llnl*] 

Deletes a single record, a group of consecutive records, or all 
records in a file from the current line pointer to the end of the 
file. I 

DOwn [lin] 

Moves the line pointer down the specified number of lines. This 
subcommand is functionally equivalent to FORWARD and NEXT. 

Dstring /string[/] 

Deletes the lines from the' current line down to, but not including, 
the first line containing the specified character string. 

FILE [filename [filetype [filemode]]] 

stores the current file on your 
terminating the EDIT session. 

disk and returns to CMS, 

Find [line] 

Searches the beginning of each line in the file, between the 
current line and the end of the file, for the first occurrence of 
the specified data line. If no line is specified, the search is 
successful on the first line examined. 

FOrward [lin] 

Moves records up the screen n lines. 
functionally equivalent to DOWN and NEXT. 

This subcommand is 

Input [line] 

Places the specified line in the file while in EDIT mode. 
data line is specified, INPUT mode is entered. 

If no 

Locate /string[/] 

Scans each record in the file, between the current line and the end 
of the file, for the first occurrence of the specified string. 

Next [lin] 

QUIT 

Moves the line pointer down the specified. number of lines. This 
subcommand is functionally equivalent to FORWARD and DOWN. 

Terminates the EDIT session and returns to CMS, but does not save 
the current file contents on your disk. 

Replace [line] 

Replaces the current line with the specified line. If no data line 
is specified, INPUT mode is entered and the current line is 
deleted. 

18 IBM VM/370: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

SAVE [filename [filetype [filemode]]] 

Saves the current file on your disk. If a file with the same 
filename already exists on your disk, it is replaced by the current 
file. 

section 1: Introduction 18.1 



GC20-180S-3, Page Modified by TNL GN20-2660, March 31, 1975 

S[croll][Up][*lnl!] 

Displays a file in increments of 10 or 20 records at a time. 
SCROLL causes forward scrolling; SCROLL UP causes backward 
scrolling. This subcommand is valid'only for a display terminal in 
DISPLAY mode. 

TOP 

Moves the line pointer to the null line at the top of the file. 

Type [llml*[nl*]] 

Displays the specified lines of the current file at the terminal. 

Up [11 n] 

Moves the line pointer up the specified number of lines. 
subcommand is functionally equivalent to BACKWARD. 

This 

The following example shows the creation of a new file at a typewriter 
terminal, then its alterations, and finally the replacement of the 
original file by the updated file. The subcommands used are illustrative 
only and are not intended to show the optimum way to achieve a 
particular result. User entries are in lowercase; computer responses 
are in uppercase. 

ipl cms 

CMS VERSION n LEVEL n 

edit dalow memo 
NEW FILE: 
EDIT: 
input 
INPUT: 

This file has been 
created to shooow 
of the edit command. 
But it is not 

EDIT: 

file 

Although not shown, each line is 
terminated with pressing the Return 
key, which causes the end of input 
line. (See "section 2: Command 
Modes," for a discussion on ending 
an input line.) 

EDIT command is issued, and a system 
file search reveals that no CMS file 
with that name and type exists. 
To enter INPUT mode, input is typed. 

These four lines were created by 
keyed 'input. This is the file da ta. 

A null line (press RETURN) entered 
here causes the system to leave 
INPUT mode and enter EDIT mode. 

The EDIT mode allows the use of the 
EDIT subcommands. 

The 4-line file named DALOW MEMO, 
created above, is stored on disk. 

section 1: Introduction 19 



R; T=0.12/0.33 16:30:42 

edit dalow memo 

EDIT: 

type 4 

This file has been 
created to shooow 
of the edit command. 

up 2 

This file has been 

down 

created to shooow 

change /shooow/show/ 

crea ted to show 

Acknowledgment by CftS that the PILE 
subcommand completed successfully. 

The file is requested again so that 
corrections can be made. 

The file exists, thus the Editor 
knows that subsequent actions will 
involve alterations via the EDIT 
subcom ma nd s • 

The TYPE subcommand is invoked to 
type four lines. 

The Editor responds by typing the 
null line at the beginning of the 
file, plus the next 3 data lines. 

N01g: The pointer now points to the 
last line typed (that is, the "of 
the edit command" line). 

Move the pointer up 2 lines. 

The Editor responds by typing the 
desired line. 

Point to next line. Since no operand 
is specified, 1 is assumed. 

The Editor responds by typing the 
next line. 

The CHANGE subcommand is issued to 
correct the spelling of shooow. 

The Editor responds by typing the 
corrected line. 

input the power and versatility The INPUT subcommand is used to 
insert a new line following the line 
just changed. 

bottom The BOTTOM subcommand is issued. 

But it is not 

delete 

EOF: 

top 

TOP: 

type 10 

20 IBM VM/370: EDIT Guide 

The Editor responds by typing the 
last line of the file. 

DELETE subcommand deletes the line. 

The Editor 
current line 
of the file. 

indicates that the 
pointer is at the end 

The TOP subcommand requests the line 
pointer to be positioned at the 
beginning of the file. 

The Editor indicates that the 
pointer is at the null line at the 
top of the file. 

The TYPE subcommand requests the 
Editor to type 10 lines (or all that 
are in the file if less than 10). 



This file has been 
created to show 

You see that all the changes have 
been made. 

the power and versatility 
of the edit command. 
EOF: 
file When you have verified the changes, 

use the FILE subcommand to store the 
edited file on your disk. (The old 
DALOW MEMO file is erased, and the 
new one replaces it.) 

R; T=0.22/0.96 16:30:55 

You may find it more convenient to use line numbers when creating or 
updating certain types of data files, such as those containing BASIC or 
VSBASIC source statements. Line number references are used to insert, 
replace, or callout data records explicitly by number, rather than by 
relative displacement from the current position of the line pointer. 

You can use the following EDIT subcommands when editing by line numbers: 

Input 

You cannot specify a data line operand with the INPUT subcommand 
when LINEMODE LEFT or RIGHT has been specified. The nnnnn [text] 
subcommand must be used instead. Also, when in INPUT mode, line 
numbers are displayed at the beginning of each line as the Editor 
prompts for the next input line. On a display terminal, however, 
the prompting numbers are displayed in the message line near the 
top of the screen. 

LINEmode [LeftIRightIOFF] 

The LEFT or RIGHT operands place line numbers at the beginning 
(LEFT) or end (RIGHT) of each data record. 

nnnnn [text] 

Use this subcommand 
instead of the INPUT 
been specified. 

while in EDIT mode in conjunction with or 
subcommand when LINEMODE LEFT or RIGHT has 

PROMPT [n] 

Changes the prompting increment by 
incremented. It is only applicable in 
LEFT or RIGHT has been specified. 

RENum [strtnollQ [incrnolstr1llQ]] 

which line 
INPUT mode 

numbers are 
when LINEMODE 

RENUM recomputes all the line numbers in a VSBASIC or FREEFORT 
file. Also, for all VSBASIC statements that have statement numbers 
for operands, those operands are recomputed ~o that they correspond 
to the new line numbers. . 

Section 1: Introduction 21 



The following example illustrates the creation of a BASIC language 
source file at a typewriter terminal. User entries are lowercase; 
system responses are-uppercase. Although not shown, each line is 
terminated by pressing the RETURN key, causing the end of input. (See 
"section 2: Command Modes," for a discussion of ending an input line.) 

ipl cms 
CMS VERSION n LEVEL n 
e total basic 
NEW FILE: 
EDIT: 

input 
INPUT: 

10 a=O 
20 c=3 
30 d= b+a*c 
40 

EDIT: 
25 b=10 

5 

LINE NOT FOUND 
TOF: 
5 rem sample basic program 

30 
30 D= B+A*C 

change /c/c+1/ 
30 D= B+A*C+1 

input 
INPUT: 

40 t=d+t 
50 

EDIT: 
26 t=O 

bottom 
40 T=D+T 

50 end 

top 
TOF: 
type * 

5 REM SAMPLE BASIC PROGRAM 
10 A=O 
20 C=3 
25 B=10 
26 T=O 
30 D= B+A*C+1 
40 T= D+T 
50 END 

EOF: 
file 
Ri T=0.34/1.37 16:33:34-<' 

22 IBM VM/370: EDIT Guide 

The user loads CMS. 

The minimum acceptable form of the 
EDIT command is issued, and a file 
search reveals that no CMS file with 
that filename and filetype exists. 
Because the filetype is BASIC, 
LINEMODE LEFT is automatically set by 
the Editor. 
The user enters INPUT mode by typing 
"input". 
The Editor prompts each new data 
line with line numbers (10, 20, etc.), 
and the user enters data (a=O, c=3, 
etc.). Then the user issues a null 
line to get out of INPUT mode. The 
user enters EDIT mode, then inserts 
line 25, which he had forgotten to 
enter previously. 
He then checks to see if line 5 
exists. 
It does not; the pointer is at top 
of file. 
The user then inserts the forgotten 
line at line 5, and calls out line 
30. The Editor types line 30 as it 
appears in the file. The user changes 
the line and the Editor types the line 
as it now appears. 
The user enters INPUT mode to continue 
inserting lines in the file. 

A null line response returns the user 
to EDIT mode. 
The user remembers to initialize a 
value and inserts the line. 
He then goes to the bottom of the file 
to insert the last line in the file. 
The Editor types out the last record 
in the file, and the user types in 
line 50. 
The TOP subcommand positions the 
pointer at the top of the file. 
At this point, the user requests that 
all lines of the file be typed. 

Since the results are satisfactory, he 
stores the program by issuing the FILE 
subcommand. 



The following example illustrates the 
file that uses CMS macros. (Note that 
any useful work.) 

creation of an assembler language 
the program created does not do 

The example as shown assumes that the user has set physical tabs to 
positions 16 and 22. Since the file being created has a fi1etype of 
ASSEMBLE, the Editor automatically sets the logical tabs needed for an 
assembler language file (1, 10, 16, etc.) This is discussed under "Tab 
settings." 

e test assemble 
NEW FILE: 
EDIT: 

1inemode righ t 

input 
INPUT: 
00010 
00020 
00030 
00040 
00050 
00060 
00070 
00080 
00090 
00100 

* sample of 1inemode right 
test start x'O' 

ba1r 12,0 
using *,12 
st 14,sav14 
type ·testing ••• • 
1 14,sav14 
br 14 

EDIT: 
20 

end 

00020 TEST START 
change /0/20000/ 
00020 TEST START 
80 
00080 BR 
input 
INPUT: 
00083 sav14 ds 
00085 wkarea ds 
00087 flag ds 
00088 runon equ 
00089 runoff equ 
RENUMBER LINES 

EDIT: 
line off 
serial all 10 
save 
EDIT: 
line right 

type 

00130 RUNOFF EQU 

X'20000' 

14 

f 
3d 
x 
x' 80' 
x'40' 

X' 40' 

After the user loads 
the EDIT command. 
specified file did 
exist, the Editor 
FILE: • 

CMS, he enters 
Because the 

not previously 
types out NEW 

The user issues the LINEMODE RIGHT 
subcommand to number the new file. 
The user then enters INPUT mode to 
insert lines into the file. 
!Qi~: The line numbers (with leading 
zeros) are typed out on the left, 
even though LINEMODE RIGHT has been 
specified. The Editor performs this 
transposition to save output typing 
time and to make it easier to refer 
to the line numbers. 

A null line keyed in causes a transfer 
to EDIT mode. 

The user calls out line 20 by number, 
and the Editor types out line 20. 
The modification is made and then 
typed out. The user then requests 
that line 80 be typed, then goes to 
INPUT mode to insert the program data 
areas after line 80. 

The Editor uses a 
algorithm to insert 
between the old lines. 

predetermined 
new lines 

At this point, the Editor runs out of 
available line numbers since record 
number 00090 already exists. 
The user then follows this procedure 
(valid for LINEMODE RIGHT only) to 
reseria1ize the line numbers. The '10' 
could be any reasonable increment. 
The line numbers cannot be greater 
than five digits long. A FILE or SAVE 
subcommand must be invoked to cause 
reseria1ization to occur in storage 
and on disk. After serialization, the 
LINEMODE RIGHT subcommand is 
reissued. 
A typeout of the last record entered 
is requested. 
(Line 130 was previously numbered line 
89. ) 

Section 1: Introduction 23 



135 runmix 
50 
00050 
input 
INPUT: 
00053 
00055 
00057 
EDIT: 
top 
TOF: 
type * 
00010 * SAMPLE 
00020 TEST 
00030 
00040 
00050 
00053 
00055 
00060 
00070 
00080 
00090 SAV14 
00100 WKAREA 
00110 FLAG 
00120 RUNON 
00130 RUNOFF 
00135 RUNMIX 
00140 
EOF: 
file 

equ x'20' 

ST 14,SAV14 

tm flag,runon 
hcr 1,14 

OF LINEMODE RIGHT 
START X'20000' 
BALR 12,0 
USING *,12 
ST 14,SAV14 
TM FLAG,RUNON 
BCR 1,14 
TYPE ·TESTING ••• • 
L 14,SAV14 
BR 14 
DS F 
DS 3D 
DS X 
EQU X' 80' 
EQU X'40' 
EQU X' 20' 
END 

RESERIALIZATION SUPPRESSED 
R; 

The nnnnn subcommand is used to enter 
line 135 and to move the line pointer 
to line 50. 
The user issues the INPUT subcommand 
and the Editor prompts him for lines 
53, 55, and 57. 

A null line response is 
out of INPUT mode. 
The user repositions the 
the beginning of the file 
a typeout of the file. 

used to get 

pointer to 
and requests 

Issuing the FILE subcommand causes the 
file to be stored on the user's disk. 
The Editor did not reserialize the 
file again; it remains as it was since 
the file was previously serialized due 
to the previous SAVE subcommand. 

The user can obtain a typeout of this file as it appears on disk 
under CMS by keying in: 

type test assemble 

* SAMPLE 
TEST 

SAV14 
WKAREA 
FLAG 
RUNON 
RUNOFF 
RUNMIX 

H; 

OF LINEMODE RIGHT 
START X'20000' 
BALR 12,0 
USING *,12 
ST 14,SAV14 
TM FLAG,RUNON 
BCR 1,14 
TYPE ·TESTING ••• • 
L 14, SAV 14 
BR 14 
DS F 
DS 3D 
DS X 
EQU X'80' 
EQU X'40' 
EQU X'20' 
END 

00000010 
00000020 
00000030 
00000040 
00000050 
00000053 
00000055 
00000060 
00000070 
00000080 
00000090 
00000100 
00000110 
00000120 
00000130 
00000135 
00000140 

Observe that the record numbers now appear where they actually occur 
in the records--in positions 73 through 80. 

24 IBM VM/370: EDIT Guide 



Section 2: Command Modes 

This section shows you how to enter into and exit from the various 
VM/370 command modes. 

Throughout this section, a diagram guides you in the discussion of 
each command. The diagram faces each page of text, with the topics 
discussed highlighted on the diagram. The numbered and lettered 
portions of the diagram correspond to the numbered and lettered portions 
of the text. 

section 2: Command Mode~ 25 



• 

II 

II .. 

S,g'.,T-' 
~ 

Attentions To Enter 
CP Mode (or Type CP) .. 

1. Signal Attention B 
2. Enter Immediate 

Command .. 3. CMS Stacks 
Command if 
Not Immediate 
Command 

• 
t II -.,: 

~ 

II 

Null Line 
Res onse 

26 IBM VM/310: EDIT Guide 

Establish Communication 
With VM/370 Central 
Computer 

LOGON, MSG, DIAL 
Commands May Be Issued 
At This Time 

~ ,. 
CP MODE 

Enter CP Commands 

~ P' 

IPL CMS 

... P' 

CMSMODE 

Enter CMS Commands 

B C 

IR:TURN 

~ 

.... 

IA 
Subcommand 

Issue the (Issued after 
EDIT CMS Subcommand) 

Command 

~ ~ ... 

CMS 
EDIT MODE 

Enter EDIT Subcommands 
Or MACROS 

JA B C D E 

CMS Subset -+ 
Commands 

'l1li 
,. 

FILE orQUIT 

EDIT Subcommands -
MACROS 

Issue the 
INPUT 

Subcommand .. 
CMS 

INPUT MODE 

Enter Data To Be 
Included in the File 

JA 



Depending on the type of terminal you are using, you need to turn the 
terminal on and either: 

• Perform the LOGON procedure if your terminal is connected to the 
central computer by a leased line or local attachment. 

• Dial the central computer's telephone number, if the terminal is 
connected to the central computer by a switched line. Then perform 
the LOGON procedure. 

For additional information on establishing communication with the 
VM/370 system, consult the Y~LllQ: !g£~!n~! Q§gE~§ Q~!Q~. 

The terminal used in this example is a typewriter terminal. 

SIGNALLING ATTENTION 

~~£h!ng l.I:e~ 
2741,3767 
1052 
Teletype 

Models 33,35 
3210,3215 
3158 Console 
3270 
3066 Console 

ENDING AN INPUT LINE 

!'!~£hi!!~ !I.E~ 
2741,3767 
1052 
Teletype 

Models 33,35 

3210,3215 
3158 Console 
3270 
3066 Console 

ligy Q§~g 
ATTN 
RESET LINE or ATTN1 

BREAK 
REQUEST 
ENTER 
ENT ER, PA 1 
ENTER 

li~.I Q§gg 
RETURN 
RETURN2 or ALTN CODING plus numeral 5 (EOB) 

CTRL plus X-OFF (or with the appropriate terminal 
control unit feature on the computer, RETURN) 

END 
ENTER 
ENTER 
ENTER 

1will be ATTN if feature 1600 is present. 
2Requires an RPQ Feature. 

section 2: Command Modes 27 



D 
Establish Communication 
With VM/370 Central 
Computer 

C,c I, ,~c 

... ,. ; 

II 
LOGON, MSG, DIAL 
Commands May Be Issued 
AtThisTime 

, 

II ... ,. ; 

.... 
CPMODE 

. I 
~ 

Enter CP Commands 
Signal Two 
Attentions To Enter 
CP Mode (or Type CP) 

... ,. 
II 

IPL eMS 

1 

; 

~ ... 
II ~ 

1. Signal Attention, CMSMODE 
2. Enter Immediate "'" Command :-+ 3. CMS Stacks Enter CMS Commands 

Command if 
Not Immediate IA 

B C 

IR:TURN 
Command 

• Subcommand 

Issue the (Issued after 
EDIT CMS Subcommand) 

t 
Command 

~ II ~ ... 
... 

CMS ,. EDIT MODE 

Enter EDIT Subcommands 
Or MACROS 

IA B C D E 

CMS Subset --+ 
Commands 

... ~ FILE or QUIT 

EDIT Subcommands -
MACROS 

Issue the 
INPUT 

Subcommand .. 
II eMS 

INPUT MODE 

Enter Data To Be 
Included in the File 

Null line IA 
Res onse 

28 IBM VM/370: EDIT Guide 



r--, 
12 1 1~g~], ~~g f~~~~]~E 
L--I 

Once communication with the VM/370 system has been established, the 
normal procedure is to log on via the LOGON command. If unable to log 
on, use the MSG command to communicate with the VM/370 computer operator 
or another user who is logged on with your userid. 

r--, 
13 1 fE ~~~~ 
L--.I 

On completion of the logon procedure, the CP command environment is 
entered as indicated by the message: 

LOGON AT 10:57:54 EST FRIDAY 02/09/73 

r--, 
14 1 IE.!! f~E 
L--.I 

At this point, you can load CMS or any other supported operating system 
into the virtual machine by issuing the CP command IPL, if this was not 
automatically done for you. 

When CMS is loaded into the virtual machine, a message similar to the 
following types: 

CMS 02/02/73 FRI 08.12.38 

FILE IDENTIFIERS 

Each file created under CMS control~ or created for use via 
commands, is represented on disk by a file identifier. The 
identifier consists of three components--filename, filetype, 
filemode, in the following format: 

filename filetype filemode 

CMS 
file 

and 

filename is a one- to eight-character alphameric name assigned (in most 
cases) by you. 

fi1etype is a one- to eight-character alphameric name used as a 
descriptor or as a qualifier of the filename. Refer to the 
Y~L]lQ: ~Q~~g~g 19~9~ggg ~~!~g fQ£ ~g~g~~! Q§g~§ for a list of 
the assumed or default attributes of reserved filetypes. 

filemode is a two-character field. The first character, the mode 
letter, is alphabetic and denotes the name of the file 
directory of the disk on which the file resides. The second 
character, the mode number, is numeric and denotes the mode by 
which the file is accessed. Valid mode numbers are shown in 
Figure 4. 

Section 2: Command Modes 29 



.. 
II 

II 
Ito. 

Signal TW' 

,. 

Establish Communication 
With VM/370 Central 
Computer 

LOGON, MSG, DIAL 
Commands May Be Issued 
At This Time 

"'I 
,.. 

CP MODE 

Enter CP Commands 

Attentions To Enter 
CP Mode (or Type CP) 

t 

"'I ,. 
II 

IPL CMS 

,.. .1 

11. Signal Attention' 11 CMS MODE ~ .......... . 
,2, Enter Immediate 1-----------1 ... 

Command ..... 
r3, CMS Stacks ...,. Enter CMS Commands 

Command if .. ~--...",....-__ -:--_r__-.....Jf"~,~~" .. 
Not Immediate IAl B C ID 
Command, 

.. 1 RETURN 
Subcommand 

Issue the (Issued after 
EDIT CMS Subcommand) 

COind~ ~ 
II ~_--%..-----3!~--, 

Ito. CMS 

,. ~ _____ E_D_I_T_M_O_D_E ______ ~ 

Enter EDIT Subcommands 
Or MACROS 

B C D 

CMSSubset ......... 
Commands --,. 

~ ,. 
EDIT 

MACROS 

" ••• FILE or QUIT __ IIIIII1. 
'" Subcommands-

II 

Issue the 
INPUT 

Subcommand • CMS 
INPUT MODE 

Enter Data To Be 
Included in the File 

•••••••••• NuIlLine 
, Response 

30 IBM VM/310: EDIT Guide 



GC20-180S-3, Page Modified by TNL GN20-2660, March 31, 1975 

r ------, 
I Filemode Read/Write 

status I Number 

o 

1 

2 

3 

4 

5 
6-9 

R/W 

R/W 

R/i 

R/E 

os 

R/i 

Meaning 

The file specified is a private file; you 
cannot access a file with the 0 filemode 
unless you have read/write privileges for 
the virtual disk on which th~ file resides. 

You can read from and write on this file, 
depending on how the disk is accessed. 

You can read from and write on this file, 
depending on how the disk is accessed. 
certain files on the S-disk are mode 2; 
you can access these files. You can also 
use mode 2 to describe files on disks 
other than the system disk. 

The file is to be erased after it is read. 
usually, this filemode is used for 
temporary work files created by the 
language processors and some CMS commands. 

This file is created using os macros. It 
may be blocked and, if in os variable 
format, may contain Block Descriptor Words 
(BDWs) and Record Descriptor Words (RDWs). 

Has the same meaning as filemode 1. 
Reserved for IBM use. 

Figure 4. Access Modes for CMS Files 

~ 

ISAI CMS IMMEDIATE COMMANDS 
~ 

You can enter one of the following eMS commands only after signalling an 
Attention interruption (pressing the ATTN key, ENTER key, or equivalent) 
during program execution. (Refer to the description of the TERMINAL MODE 
command in the YM/3IQ: X~~~iB~l Q2~I~2 §~iE~ to see how Attention 
handling can be defined differently for different users.) eMS reads and 
acts on the command immediately if it is one of the following: 

So 

RO 

HO 

HT 

RT 

HX 

Action 
Halt-Batch. This stops the execution of a CMS Batch virtual 
machine after the completion of the current job. 
Suspend Tracing. This causes the recording of trace 
information to be temporarily suspended. 
Resume Tracing. This causes tracing that was suspended by the 
SO command to resume. 
Halt Tracing. This causes the recording of trace information 
to stop. 
Halt Typing. This causes the output typing or displaying to 
stop, but the program continues execution. 
Restore Typing. This causes typing or displaying that was 
stopped by an HT command to resume at a later point in the 
program. 
Halt Execution. This causes execution of the previous eMS 
command or user program to terminate immediately. 

If the eMS command is not one of the above, CMS "stacks" the command 
or commands in the terminal input buffer (also called the console stack) 
for processing after execution of the program-in-progress has been 
completed. 

section 2: Command Modes 31 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

• 

IJ 

Establish Communication 
With VM/370 Central 
Computer 

LOGON, MSG, DIAL 
Commands May Be Issued 
At This Time 

EDIT 
MACROS 

__ ••• FILE or QUIT_ .... , 
'" Subcommands 

Issue the 
INPUT 

Subcommand 

II eMS 
INPUT MODE 

Enter Data To Be 
Included in the File 

A 

•••••••••• NUIl Line ••••••••• • Response 

32 IB" V"1370: EDIT Guide 



r--, 
ISBI RETURNING TO CP (FROM CMS) 
L--J 

If you want to return to the CP environment,- type CP or #CP or signal 
attention the appropriate number of times. On a 3270 terminal, press 
the PA1 key. (To return to the CMS environment from the CP environment, 
enter the CP command BEGIN.) For further information on attention 
signalling, see the TERMINAL MODE command description in the VML]1Q: 
%g£!!ll~! y~~~~~ §~!g~ . 

.--, 
ISCI ENTERING EDIT MODE 
L--J 

The EDIT command invokes the CMS Editor. In EDIT mode, EDIT subcommands 
and macros may be issued. 

r--, 
ISDI ENTERING EDIT MODE VIA THE RETURN COMMAND 
L---' 

If you got into CMS mode from EDIT mode by issuing the EDIT subcommand 
CMS, you can return to EDIT mode by issuing the CMS subset command 
RETURN. Paragraph 6E lists the other CMS subset commands that can be 
issued. 

r--, 
16 I £~§ ~~!1 ~~~~ 
L--J 

Editing is performed upon a copy of the CMS file that is completely 
resident in the user's virtual storage. This approach allows rapid 
searching both forward and backward through the file. It does, however, 
limit the size of files to be edited to those that can be whclly 
contained within the user's available virtual storage. It is possible 
to perform editing operations upon larger files by splitting the file 
into smaller files that can be handled by the Editor in the available 
storage area, or by temporarily increasing the size of the virtual 
machine by use of the CP command DEFINE. Using DEFINE, you can increase 
your storage up to the maximum permitted for your virtual machine (that 
is, the MSTOR value in the VM/370 directory entry) for the duration of 
the terminal session. 

EDIT mode is indicated by either of two messages: 

~~~n!!!g 
Indicates that the file specified by the CMS EDIT command has
been loaded into the virtual machine; on a typewriter
terminal, the message is followed by a carriage return and the
unlocking of the keyboard. On a display terminal, the message
is displayed in the message line (Line 1). Since the 3270
keyboard is always unlocked, you can start entering data
immediately. You can then make changes to a file by issuing
EDIT subcommands and macros. All changes to the file become
effective immediately in main storage, but not on disk. The
changed file must be written to your disk storage with the
FILE, SAVE, or AUTOSAVE subcommands if you want to keep a
permanent copy of the changed file.

If you issue a QUIT subcommand, any changes to the file in
storage are ignored, and the original file is kept on disk as
it existed before any changes were made. If the file is newly
created, it is not written onto disk.

section 2: Command Modes 33

D

fJ

II
...

S;'ri"T.'
r

Attentions To Enter
CP Mode (or Type CP)

II

1. Signal Attention II
2. Enter Immediate

Command .. 3. CMS Stacks
Command if
Not Immediate
Command

•
t II ...

r

: ,

II

Null Line
Response

34 IBM VM/370: EDIT Guide

Establish Communication
With VM/370 Central
Computer

LOGON, MSG, DIAL
Commands May Be Issued
At ThisTime

~ ,..
CPMODE

Enter CP Commands

... ,.

IPL CMS

"III ,.
CMSMODE

Enter CMS Commands

B C

~:TURN

....

...

r Subcommand

Issue the (Issued after
EDIT CMS Subcommand)

COi
nd

... ~.
CMS

EDIT MODE

Enter EDIT Subcommands
Or MACROS

JA B C D E

CMSSubset ~
Commands

... ,.
FILE or QUIT

EDIT Subcommands -
MACROS

Issue the
INPUT

Subcommand • CMS
INPUT MODE

Enter Data To Be
Included in the File

IA


~~~~~gg ~g~~!~g 
NEW FILE: Indicates that the file specified by the CMS EDIT 
EDIT: command does not presently exist. To enter INPUT mode, enter 

.----, 

the EDIT subcommand INPUT. 

The INPUT mode is indicated by the message 

INPUT: 

a carriage return, and the unlocking of the keyboard. You can 
then type successive lines of input to the file. To insert a 
blank line in a file, type at least one space and then press 
the RETURN key (or equivalent end-of-line key). A null line 
(that is, a carriage return with no prior blanks or 
characters) entered when in INPUT mode does not add a blank 
line to the file; instead it is a signal to the Editor that 
you have finished keying in input data, and the Editor returns 
to EDIT mode. 

If a null line is entered while in EDIT mode, the following 
message is displayed: 

EDIT: 

]Q~g: A null line is a terminal input line consisting of a 
carriage return or line-end character as the only information 
in the last logical line. The line-end character brings you 
back to EDIT mode; thus it has the same effect as a null 
line. Verification, invoked by the VERIFY ON subcommand, is 
the normal response mode of the Editor. In this mode, the 
Editor displays, at the terminal, each line changed or found. 
If you turn verification off, only normal Editor messages are 
displayed. To display the line at the terminal, you must issue 
the TYPR-subcommand • 

16AI RETURNING TO CP (FROM EDIT) 
L--.J \ 

If you want to return to CP, key 
appropriate number of times. If you 
you may press the PA1 key instead. 
CP command BEGIN.) 

in .CP or signal attention the 
are using a 3270 display terminal, 

(To return to EDIT mode, issue the 

You can also enter CP by issuing a QUIT or FILE subcommand, which 
returns control to CMS, then issuing the CP or tcp command (without any 
operands) • 

.----, 
16BI ENTERING EDIT MACROS 
L--.J 

You can issue EDIT macros when the Editor is in EDIT mode. These are 
special procedures that allow you to manipulate and edit files. If 
issued in INPUT mode, they are considered to be normal data input to the 
file. See "section 4: EDIT Macros" for additional information. 

Section 2: Command Modes 35 



Signal Two 
Attentions To Enter 
CP Mode (or Type CP) 

t 

1. Signal Attention 
2. Enter Immediate 

Command 
3. CMS Stacks 

Command,if, 
Not Immediate 

36 IBM VM/370: EDIT Guide 

D 

II 

.. 
II 

Establish Communication 
With VM/370 Central 
Computer 

LOGON, MSG, DIAL 
Commands May Be Issued 
AtThisTime 

Enter CP Commands 

IPLCMS 

Enter EDIT Subcommands 
Or MACROS 

ABC D 

CMS Subset 
Commands 

EDIT 
MACROS 

•••• FILEor OUIT __ IIIII. 
" Subcommands 

Issue the 
INPUT 

Subcommand 

II eMS 
INPUT MODE 

Enter Data To Be 
Included ;n the File 



r--, 
16CI ENTERING INPUT MODE 
'---I 

Whether or not the file specified in the EDIT command exists, EDIT mode 
is entered. To make changes to a file, type: 

input 

and the Editor responds with: 

INPUT: 

New data can then be entered. 

r--, 
16DI ENTERING CMS VIA FILE OR QUIT SUBCOMMANDS 
L--J 

Issuing the subcommands FILE or QUIT 
from which the Editor was initiated. 
disk, whereas QUIT does not. 

causes a return to the environment 
FILE stores the current file on 

r--. 
16EI CMS SUBSET COMMANDS 
L--J 

While in EDIT mode, a subset of CMS commands may be issued after 
specifying the EDIT subcommand CMS. They are: 

ACCESS LISTFILE RENAME 
CP PRINT RETURN 
DISK PUNCH SET 
ERASE QUERY STATE 
EXEC READCARD TYPE 

!!2!~: If CMS commands other than those listed are issued, an error 
message is typed and the command is rejected. 

Except for logical editing characters, all data entered in INPUT mode is 
considered to be part of the file. 

r--. 
17AI RETURNING TO EDIT MODE FROM INPUT MODE 
L--J 

To change from INPUT to EDIT mode, enter a null line (RETURN key or 
equivalent) • 

section 2: Command Modes 37 



I 

GC20-180S-3, Page Modified by TNL GN20-2660, March 31, 1975 

• Moving the Pointer 

FIND 
LOCATE 

TOP 
BOTTOM 

• Changing EDIT Modes 

INPUT 
(NULL LINE) 

UP 
DOWN 

NEXT 
nnnnn 

• specifying Record Attributes 

CASE 

Section 3: Edit Subcommands 

SCROLL 
FORWARD 

BACKWARD 

IMAGE 
FNAME 

RECFM 
FMODE LRECL (from EDIT command) 

• Modifying Data 

CHANGE REPLACE INPUT TABSET DSTRING 
ALTER DELETE REPEAT TRUNC 
OVERLAY GETFILE RENUM ZONE 

• Displaying Editor output 

TYPE LONG 
VERIFY SHORT 

• saving Intermediate Results 

SAVE AUTOSAVE 

• Miscellaneous 

CMS PRESERVE SERIAL 
RESTORE ? STACK 
REUSE X or Y 

• Ending the Session 

QUIT 
FILE 

• Editing Line Numbers 

LINEMODE RENUM 
nnnnn PROMPT 

• Changing 3270 Terminal Modes 

FORMAT 

section 3: EDIT Subcommands 39 



GC20-1805-3, Page ftodified by TNL GR20-2660, !arch 31, 1975 

The following pages describe the EDIT subcommands, which are listed in 
alphabetic order for easy reference. 

Some EDIT subcommands operate differently on 3270 terminals. These 
subcommands are: 

BACKWARD 
BOTTOM 
CHANGE 
DELETE 

DSTRING 
FORWARD 
INPUT 

OVERLAY 
TOP 
TYPE 

The SCROLL subcommand, and the CHANGE subcommand issued without 
operands, operate only on 3270 terminals in DISPLAY mode. The FORMAT 
subcommand operates only on 3270 terminals, and only if the EDIT command 
was issued without the NODISP option. 

40 IBM VM/370: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

ALTER SUBCOMMAND 

The ALTER subcommand searches, starting at the current line, all or any 
part of a file for a character or a byte of data and alters that 
character or byte, if found, to another character or byte of data. A 
space is a delimiter. 

Note: Do not use this subcommand to change a character string more than 
one-character long. 

r------

1 
1 ALter {parm1} {parm2} [jlnl* [GI*]] 
1 
L 

_________________ -J 

parm1 
Specifies either the character or two contiguous hexadecimal digits 
(0-9, A-F) for which the Editor is to search. 

parm2 
Specifies either a character or two contiguous hexadecimal digits 
(0-9, A-F) with which the ~ditor is to replace parm1, if found. 

n or * 
Indicates the number of lines to be searched, starting at the current 
line. If * is entered, the search is performed until the end of the 
file is reached. If this option is omitted, then only one line is 
searched. 

G or * 
Requests the Editor to alter every occurrence of parm1 in the lines 
specified. If G or * is not specified, only the first occurrence of 
parm1 in each line specified is altered. 

When verification is on, each line that is altered is displayed at 
the terminal. 

ALTER may be used to create an SLC card in the following manner: 

In INPUT mode type: 

XSLC 00100 

then, in EDIT mode type: 

alter X 02 

The sequence in this example results in the proper hexadecimal character 
being placed in position 1 of the record. 

Note: You can issue the ZONE subcommand to indicate those columns that 
are-to be operated on by ALTER. 

section 3: EDIT Subcommands 41 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

AUTOSAVE SUBCOMMAND 

This subcommand allows you to save automatically the current copy of 
your file during an EDIT session. The frequency of the automatic save 
execution is specified by you. The subcommand format is: 

r 
I 
I AUTOsave [nIOFF] 
I 
L-----

I n 
I specifies the number of updates to be made between automatic saves. 

n is a decimal number between 1 and 32767. An addition, deletion, or 
change of a line is usually treated as one update. Each line 
affected by the $MOVE macro is treated as one update. However, all 
changes caused by one CHANGE, DELETE, DSTRING, GETPILE, or OVERLAY 
subcommand are treated as a single update, no matter how many lines 
are affected. 

I 
I 
I 
I 
I 
I 

OFF 
Disables the automatic save feature. 

no operands 
Displays the current AUTOSAVE setting at the terminal. 

The AUTOSAVE subcommand causes execution of the EDIT SAVE function 
when the specified number of updates is made to the file while in EDIT 
or INPUT mode. Since the original file is replaced by updated versions 
of the file, it is up to you to rename or otherwise protect your 
original file. 

The message "_SAVED" is displayed at the terminal when the SAVE 
operation occurs. The AUTOSAVE subcommand issued with no operands 
results in the current AUTOSAVE status being displayed at the terminal. 
The default mode for all filetypes is OFF. Therefore, if you desire 
automatic save mode, you must issue the AUTOSAVE subcommand with a 
numeric operand. You can issue the AUTOSAVE subcommand at any time 
during an EDIT session. 

42 IBM VM/370: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

BACKWARD SUBCOMMAND 

n 

BAckward [lin] 

Is the number of records backward you wish to move in the file being 
edited. On a typewriter terminal, the record that appears II lines 
before the current line is typed. On a 3270, records move down and 
off the screen !! lines. (This is equivalent to UP.) If !! exceeds 
the number of records in the file before the current line, "TOF:" is 
displayed on line 9. 

BOTTOM SUBCOMMAND 

The BOTTOM subcommand makes the last line of the file the current line 
without causing an end-of-file condition. When verification is on, the 
bottom line is displayed at the terminal. The BOTTOM subcommand has no 
operands. If the BOTTOM subcommand is issued at a 3270 display terminal 
in DISPLAY mode, "EOF:" is displayed on line 10, lines 2 through 9 
contain the last eight records of the file, and lines 11 through 23 are 
blank. 

Bottom 
I 
I 
I 

'------
___________________J 

CASE SUBCOMMAND 

The CASE subcommand indicates how the Editor is to process (or inquires 
how the Editor is processing) uppercase and lowercase letters. 

r-
I 
I CASE [MIU] 
I L _________________________ _ 

U 

Indicates that the Editor is to accept any mixture of uppercase and 
lowercase letters for the file as they are entered at the terminal. 
If you have a 3270 that does not have the lowercase feature (RPQ), 
you can key in lowercase characters, but they appear on the screen as 
uppercase characters. 

Indicates that the Editor is to translate all lowercase letters to 
uppercase letters before the letters are entered into the file. 

The Editor assumes a default of U for all filetypes except MEMO and 
SCRIPT. If no operand is specified for CASE, the present setting is 
displayed at the terminal. 

section 3: EDIT Subcommands 43 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

CHANGE SUBCOMMAND 

The CHANGE subcommand causes the Editor to search all or any part of a 
file for a specified group of characters, and, if found, change that 
group of characters to another group of characters of the same or a 
different length. 

If you issue the CHANGE subcommand without operands at a 3270 display 
terminal in DISPLAY mode, the following occurs: 

1. The record pointed to by the current line pointer appears in the 
user input area of the display. (Nonprintable characters are 
stripped from the record.) 

2. You can then "alter the record in the user input area by retyping 
part or all of the line, or by using the INSERT or DELETE keys to 
insert or delete characters. 

3. When the change is completed, you press the ENTER key, which causes 
the record in the user input area to replace the old record at the 
current line in the output display area. 

The INSERT MODE key on the 3270 allows you to insert one or more 
characters into the display line. All existing data to the right of the 
insertion are progressively shifte~ one position to the right until 
position 80 is encountered. Any additional insertions move spillover 
characters to the beginning of the next line. If you use LINEMODE RIGHT 
(sequence numbers on the right side of each record), the use of the 
INSERT and DELETE keys causes the sequence number to shift; therefore, 
the sequence number may become invalid. 

The CHANGE subcommand is treated as 
issued without operands at a typewriter 
terminal that is not in DISPLAY mode. 

an invalid subcommand if it is 
terminal or at a 3270 display 

The CHANGE subcommand should not be issued without operands when you 
are editing a file that contains binary information (such as an 
assembler TEXT file) at a display terminal. This causes nonprintable 
characters (such as backspaces, tabs, and carriage returns) to be 
stripped from the line when the line is moved to the user input area. 
You should issue the CHANGE subcommand with operands to change a line 
that contains binary information, so that you overlay only those 
nonprintable characters you wish to change. 

If you bring a line down to the user input area and decide not to 
change it, press the ERASE INPUT key and the ENTER key, and the line 
will be replaced in the file intact. 

If the character string inserted causes the data line to extend 
beyond the truncation column, the excess characters are truncated. (See 
the description of the TRUNC subcommand for additional information on 
truncation. ) 

.-----
1 
1 Change [string 1/string2[ /( 11 n 1 * [G I * ]]]] 
1 L __ _ 

/ (diagonal) 
Signifies any unique delimiting character that does not appear in the 
character strings involved in the change. 

44 IBM VM/370: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

string1 
Specifies the group of characters to be changed (old data). String1 
may be a null string. 

section 3: EDIT Subcommands 44.1 





string2 
Specifies the group of characters to be inserted (new data). 
additional information is to be entered on the command line, 
closing delimiter may be omitted. string2 may be a null string. 

n or * 

If no 
the 

Indicates the number of lines to be searched, starting at the current 
line. If * is entered, the search is performed until the end of the 
file is reached. If this option is omitted, then only one line is 
searched. 

G or * 
Requests the Editor to change every occurrence of string1 in the 
lines specified. If G or * is not specified, only the first 
occurrence of string1 in each line specified is changed. If string1 
is null, G or * may not be specified. 

When verification is on, each line that is changed is displayed at 
the terminal. Global changes made on a 3270 cause each line that is 
changed to be temporarily moved to line 9. All other lines on the 
screen are moved accordingly to maintain the proper record sequence. 
When the change operations are complete, the word "EOF" (indicating the 
end of the file) is displayed on line 9, preceded by the last seven 
records of the file. Lines 10 through 23 are blank. 

Changing First Occurrence Only 

BEFORE: QLPHQ=QLPHQ-BETQ 
CODE: c Iq/al 
AFTER: ALPHQ=QLPHQ-BETQ 

Changing All Occurrences in the Line 

BEFORE: QLPHQ=QLPHQ-BETQ 
CODE: c ZqZaZ1 * 
AFTER: ALPHA=ALPHA-BETA 

Note: Z is used as a delimiter in this example to show that 
the-delimiter need not be a diagonal (I). 

The CHANGE subcommand can be used to display without change all lines 
that contain the information specified in string1. This may be 
accomplished by entering: 

Change Istring1/string11 * * 
When verification is 

displayed. 
on, every occurrence in every line is 

Note: The ZONE subcommand can be issued to indicate those columns that 
are-to be operated on by CHANGE. 

Occasionally, if the 
definitive, global 
throughout the file. 

data contained within string1 
changes can cause serious 

is not sufficiently 
errors to be made 

section 3: EDIT Subcommands 45 



For example, assume the following two lines exist: 

This is a 
wise choice. 

If you change the "is" to "may be" but do not precede and follow the 
"is" with blanks, the command: 

change lis/may bel * * 
results in: 

Thmay be may be a 
wmay bee choice. 

A better way is to key in: 

change /~is~/)may be~/ * * 
!2~~: The ~ is for illustration only, and signifies one blank per ). 

Result: 

This may be a 
wise choice. 

Thus, you can see that you should use caution when making global 
changes. 

CMS SUBCOMMAND 

The CMS subcommand causes the Editor to enter the CMS Subset mode, which 
allows you to execute those CMS commands that do not need to use the 
main storage being used by the Editor. The CMS subcommand has no 
parameters. 

I 
I CMS 
I L----____________________________________________ __ 

The CMS commands that you can execute are: ACCESS, CP, DISK, ERASE, 
EXEC, LISTFILE, PRINT, PUNCH, QUERY, READCARD, RENAME, RETURN, SET, 
STATE, and TYPE. Any attempt to execute an invalid CMS command, or one 
that requires main storage, causes the response: 

UNKNOWN CP/CMS COMMAND 

Since use of system loading facilities could potentially overlay 
either the Editor or the file on which it is operating, the commands 
LOAD, INCLUDE (RESET), START, and RUN should not be executed. 

To resume editing, enter the CMS subset command RETURN. 

46 IBM VM/370: EDIT Guide 

,/ 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

DELETE SUBCOMMAND 

The DELETE subcommand deletes all or any part of a file. The new 
current line is the one following the deleted lines. A DELETE 
subcommand or an INPUT subcommand that includes the data line to be 
inserted causes a verification output display if the terminal is a 
display terminal and VERIFY is ON. 

If you delete a record when using a display terminal in DISPLAY mode, 
the Editor rewrites the output display area with the top seven records 
unchanged. The bottom 12 records move up by one, and a new record (if 
one exists) moves into the bottom of the output display area (line 23). 

r--------------
I 
I DELete 
I 
L 

n or * 
Indicates the number of lines to be deleted, starting at the current 
line. If * is entered, the remainder of the file is deleted. If 
this option is omitted, only one line is deleted. 

DOWN SUBCOMMAND 

The DOWN subcommand advances the line pointer forward in the file. The 
line pointed to becomes the new current line. DOWN operates in the same 
way as the NEXT subcommand. (Also see the "UP Subcommand" discussion.) 

r 
I 
I DOwn [lin] 
I 
I 

n 
Indicates the number of lines to advance the pointer, starting at the 
current line. If this option is omitted, the pointer is advanced 
only one line. 

When verification is on, the line pointed to is displayed at your 
terminal; if the DOWN subcommand encounters the end of the file, "EOF:" 
is displayed. 

I DSTRING SUBCOMMAND 

The DSTRING subcommand deletes the lines from the current line down to, 
but not including, the first line containing the specified character 
string. The current line is not checked for the character string. 

Section 3: EDIT Subcommands 47 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

r-'-----
I 
I Dstring /string[ /] 
I 
I 

/ (diagonal) 

--, 
I 
I 
I 
I 

signifies any unique delimiting character that does not appear in the 
string. 

string 
. specifies the group of characters to be checked for. 

I The zone set by the ZONE subcommand or the default zone setting is 
I checked for the presence of the character string. A character string 
I with a length greater than the current zone setting causes the error 
I message "ZONE ERROR. II 

A null character string deletes the current line. 

If the character string is not found ~y the end of the file, no 
deletions occur, the current line pointer 1S unchanged, and the message 
"STRING NOT FOUND, NO DELETIONS MADE" is displayed. 

When the DSTRING subcommand is issued at a display terminal in 
DISPLAY mode, the screen is changed to reflect the changes to the file, 
if verification is on. 

FILE SUBCOMMAND 

The FILE 
overrides 
command. 

r 
I 
I FILE 
I 

subcommand writes the edited file on 
the file identification originally 

[filename [filetype [filemode]]] 
L _________________________________________ ___ 

filename 

disk and, optionally, 
supplied in the EDIT 

-------, 
I 
I 
I 
I 

Indicates the filename for the file. A new filename can also be 
specified by the FNAME subcommand. If filename is omitted, filetype 
and filemode cannot be specified, and the existing filename, 
filetype, and filemode are used. 

filetype 
Indicates the filetype for the file. 

filemode 
Indicates the filemode for the file. 
specified by the FMODE subcommand. 

A new file mode can also be 

Any existing file that has an identical file identification is 
replaced, and the Editor operation is completed. If errors are 
encountered in performing the operation, appropriate error messages are 
displayed, and control returns to EDIT mode to allow recovery attempts. 
(See "Section 6: Error Conditions and Recovery Procedures" for further 
informa tion.) 

48 IBM V8/370: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

FIND SUBCOMMAND 

The FIND subcommand searches the beginning of each line of data for a 
match on some specified information. Only one blank delimiter may be 
used after the subcomaand. Additional blanks are considered to be a 
part of the specified character string. 

r-
I 
I Find [line] 
I L-________ __ 

line 
Indicates any valid input line. It may contain blanks and tab 
characters, as well as any combination of alphanumeric or special 
characters. 

The file is searched, beginning with the next line, examining only 
those characters in the beginning of each line which correspond in 
position to the nonblank characters in the specified line. The Editor 
replaces the TAB character or characters with the appropriate number of 
blanks before searching for a match. The first line in which a match 
occurs becomes the new current line. If none is found before the end of 
the file is reached, the message NOT FOUND is displayed. If the 
specified line is null or blank, the search is successful on the first 
line examined. If the line pointer is at the end of the file when the 
FIND subcommand is issued, the search starts from the top of the file. 

Searches may be made for character strings that begin in columns 
other than column one by including sufficient logical or physical tabs 
before starting the text information. The column in each line in which 
searching begins is determined by the position of logical tab settings 
and the number of times you pressed the tab key. 

When verification is on, the line is displayed at your terminal when 
it is found. 

FMODE SUBCOMMAND 

The FMODE subcommand resets the filemode for subsequent FILE, SAVE, or 
AUTOSAVE subcommands, or displays the current filemode setting. 

r---------------------------- ------.-------------------------------------, 
I 
I FMode [filemode] 

I 
I 
I I 

I I 

filemode 
Indicates the filemode that is to replace the current filemode 
setting. If only a mode letter is given, the existing mode number is 
retained. If the filemode is not specified, then the current 
filemode is displayed. 

If a subsequent FILE, SAVE, or AUTOSAVE subcommand is issued and the 
Editor determines that the filemode prevents writing, a message is 
displayed to tell you to change the filemode. 

Section 3: EDIT Subcommands 49 



GC20-1805-3, Page Kodified by TNL GN20-2660, March 31, 1975 

FHAME SUBCOMMAND 

The FNAME subcommand resets the filename for subsequent unqualified FILE 
and SAVE subcommands, or displays the current filename. 

r-----------
I 
I FName [filename] 
I 
I 

filename 
Indicates the filename that is to replace the current filename. If a 
new filename is not specified, then the current filename is 
displayed. 

FORMAT· SUBCOMMAND 

The FORMAT subcommand changes the mode of a local or remote 3270 
terminal from DISPLAY to LINE (or LINE to DISPLAY). You can issue this 
subcommand at any time during the editing session, if you invoked the 
EDIT command without the NODISP option. 

FORMat {DISPLAYILINE} 

DISPLAY 
specifies that a full screen display of data is to occur. 
Subcommands do not appear as part of the data displayed. 

If you are using a remote 3270 in DISPLAY mode, the terminal is 
forced into LINE mode whenever you enter INPUT mode to add to your 
file or create a new file. The terminal returns to DISPLAY mode when 
you leave INPUT mode. 

LINE 
Specifies that the display station is to operate as a typewriter 
terminal. Every line you enter is displayed on the screen; the 
screen looks like a typewriter terminal's console sheet. 

The FORMAT subcommand is treated as an invalid subcommand if it is 
issued: 

1. Without operands, or 
2. At a typewriter terminal, or 
3. At a display terminal if the EDIT command was invoked with the 

HODISP option. 

The terminal mode that you set by issuing the FORMAT subcommand 
remains in effect until you: 

1. Issue a QUIT or FILE subcommand to end the EDIT session, or 
2. Change it by issuing the FORMAT subcommand with the other mode. 

50 IBM VM/370: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

FORWARD SUBCOMMAND 

The FORWARD subcommand moves the current line pointer forward in the 
file you are editing. 

r.------·--------·--------------------------------------------------------------------, 
I I 
I FOrward [11 n ] I 
I I L ________________________ J 

n 
Is the number of records forward you wish to move in the file being 
edited. On a typewriter terminal, the record that appears ~ lines 
after the current record is typed. On a 3270, records move up and 
off the screen n lines. (This is equivalent to DOWN or NEXT.) If ~ 
exceeds the number of records remaining in the file, EOF is displayed 
on line 9, the current line. 

GET FILE SUBCOMMAND 

The GETFILE subcommand inserts all or part of a specific CMS file into a 
file that you are processing. 

r ---------------------------------------------, 
I 
I Getfile filename [filetypel* [filemodel! [11m [nl!]]]] 

I 
I 
I I 

I I 

filename 
Indicates the filename of the file that contains the data to be 
inserted into the file you are processing. 

filetype or * 
Indicates the filetype of the file that contains the 
inserted. The filetype may be speciiied as an asterisk 
indicates that all filetypes with the given filename 
inserted. If a filetype is not specified, the filetype 
you are processing is assumed. 

data to be 
(*), which 
are to be 

of the file 

filemode or * 

m 

Indicates the filemode of the file that contains the data to be 
inserted. If a filemode is not specified, then * is assumed and all 
of your disks are searched for the file. 

Indicates the first line of the file 
file being edited. If m is omitted, 
is assumed. 

that is to be inserted into the 
then the first line of the file 

n or * 
Indicates 
specified 
then that 
inserted. 

the number of lines to be inserted, starting with the line 
by ~. If a number is not specified, or * is specified, 
part of the file between m and the end of the file is 

section 3: EDIT Subcommands 50.1 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

The GETFILE operand list is positional; if you omit one operand, you 
cannot specify any operands that follow. Thus, if you want to specify ~ 
and B, you must specify the filetype and ~ilemode for the file. 

50.2 IBM VM/370: EDIT Guide 



When verification is on, if the end of the file containing the data 
is encountered, the message EOF REACHED is displayed. The last line 
inserted becomaes the new current line. If the record length of the 
records in the file containing the data to be inserted exceeds that of 
the file being edited, an error message is displayed, and the GETFILE is 
not executed; if shorter, the records are padded to the record length of 
the file being edited and inserted in the file. 

If you use the GETFILE subcommand to insert lines into a VSBASIC 
file, you must also use the RENUM subcommand to resequence the file. 

Suppose you are writing a program in which you want to process 
certain types of data in the same way as you do in other programs, 
and the source statements of the other programs are available on a 
disk that can be processed by the Editor. You can use the GETFILE 
subcommand to copy needed parts of the other programs and insert them 
into the program you are writing: 

LABLEX B XYZ 
g listx assemble a1 452 120 

BR R14 
g pay assemble a1 457 93 

BR R14 
g print assemble a1 
EOF REACHED 

Statement in your program 
Translate routine from LISTX 

Convert routines from PAY 

Get all of PRINT program 

You must establish the proper linkage to and from those programs 
that you are using so that your program will execute properly. 

IMAGE SUBCOMMAND 

The IMAGE subcommand controls how the Editor looks at, manipulates, and 
expands input data, or displays the current IMAGE setting. 

ON 

IMAGE [ ON I OFF I CANON] 

If ON is specified, text entered while in INPUT mode or as lines of 
data in the operands of the FIND, INPUT, OVERLAY, and REPLACE 
subcommands, is expanded into a "line image" where backspaces are 
removed and tabs are replaced by the appropriate number of blanks. 
The process that builds the line image simulates a typewriter having 
133 columns per line for printing, with appropriate tab stops. If 
the input line contains backspaces, the column pointer can move 
forward and backward. The rules are as follows: 

Section 3: EDIT Subcommands 51 



OFF 

• Backspace characters immediately following a command name are 
interpreted as separator characters and do not delete any part of 
the command name. 

• Backspace characters act in a similar 
character-delete symbol, in deleting the 
sufficient number of other characters 
backspace characters. 

manner to the logical 
previous characters if a 
or blanks follow the 

• If a backspace character is the last character in the input line, 
it is ignored. 

• If an attempt is made to put a nonblank character beyond column 
133, or if a nonblank character remains in the line beyond the 
normal or redefined truncation column for that filetype, then 
truncation occurs. 

Text entered in the form of delimited strings, 
LOCATE, and ALTER, is not expanded. Thus, tabs and 
treated in the same way as other characters. 

as in CHANGE, 
backspaces are 

IMAGE ON is the default for all filetypes except SCRIPT. 

If OFF is specified, tabs and backspaces are treated as data 
characters in the same way as other characters. Thus, they enter the 
file without being deleted, translated, expanded, or reordered. 

CANON 
When CANON is specified, backspaces can produce compound characters 
such as underlined words, headings, or phrases. Before they are 
inserted in the file, compound characters are put into an arrangement 
that is independent of the order in which the characters were keyed 
in. (Backspaces are arranged singly between the characters that 
overlay each other, and the overlaying characters are arranged 
according to their EBCDIC values.) Tab characters do not receive 
special treatment, and ~nter the file in the same way as ordinary 
printing characters. CANON is the assumed default for SCRIPT files. 
For an example of the use of CANON, see "Data Files" in section 1. 

When a line of text follows a subcommand in the same line of input, 
the text begins with the character following the delimiter after the 
subcommand name. 

Note: Some subcommands, such as UP, DOWN, and NEXT, which can take only 
a-sIngle numeric operand, do not require a delimiter separating the 
subcommand name from the operand. 

INPUT SUBCOMMAND 

The INPUT subcommand creates new lines and places them in a file, or, if 
no data line is specified, leaves EDIT mode and enters INPUT mode. 

52 IBM VM/370: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

r--------------------------------------------------------------------------------, 
I 
I Input [line] 
I 
L 

line 
specifies the exact input line to be entered into the file. It can 
contain blanks and tabs. 

If a data line is specified, it is put into the file following the 
current line and subsequently becomes the current line. The Editor 
remains in EDIT mode. This data line option is invalid if the LINEMODE 
option is set LEFT or RIGHT. 

If no data is entered, the Editor enters INPUT mode, receives lines 
from the terminal, and puts them into the file following the current 
line. As each line is entered, it becomes the new current line. EDIT 
mode is restored by entering a null line. Typing at least one blank 
inserts a blank line. 

If you insert a record when using a local display terminal 
aode, the Editor rewrites the entire output display area. 
inserted record becomes the current line on line 9. The 
line and all records above it move up one line, except for 
record formerly on line 2, which is deleted from the screen. 

in DISPLAY 
The newly 

old current 
the topmost 

If you issue an INPUT subcommand with no text when using a local 
display terminal in DISPLAY mode, the Editor causes a change to INPUT 
mode. INPUT appears in the EDIT status field and you can enter input 
text in the display user input area. After you enter each input line, 
the output area reflects the current status of the file; that is, the 
line last entered appears on line 9 of the display and all previous 
lines are moved upward and finally dropped from the screen. As before, 
a null entry in INPUT mode causes a return to EDIT mode. 

If you are using a local or remote display terminal in LINE mode, the 
terminal remains in LINE mode when you issue the INPUT subcommand. That 
is, it continues to operate as if it were a typewriter terminal, 
displaying lines on the screen as you enter them. A terminal can be in 
LINE mode and in INPUT mode at the same time. 

If you are using a remote display terminal in DISPLAY mode and you 
issue the INPUT subcommand with no text, the terminal is forced into 
LINE mode. The display of the file on the screen disappears and the 
word INPUT: appears. As you enter input lines, they appear in the 
output display area. When you leave INPUT mode by entering a null line, 
the rem~te terminal returns to DISPLAY mode. The display of the file 
reappears on the screen, with the lines you have just entered in their 
proper place in the file. 

When you are entering data in INPUT mode at a display terminal that 
is in LINE mode, a tab character generated by a program function (PF) 
key only generates one character, and appears as one character on the 
screen. That is, the line does not appear spaced according to the tab 
settings. 

section 3: EDIT Subcommands 53 



GC20-1805-3, Page 80dified by TNL GN20-2660, 8arch 31, 1975 

LINEMODE SUBCOMMAND 

The LINE80DE subcommand can be invoked for COBOL, BASIC, VSBASIC, 
FREEFORT, or similar files having fixed SO-character records. It 
permits you to choose whether or not the Editor is to create a file in 
which every line is prompted for and numbered in ascending order, and in 
which the line number is placed either at the beginning or end of each 
record. If no operand is specified, the current LINEMODE setting is 
displayed. 

When in INPUT mode, the Editor displays at the beginning of each line 
the line number associated with the next record to be keyed in (except 
when LINEMODE OFF is specified). This prompting appears at the 
beginning of each line, regardless of whether LINEMODE LEFT or RIGHT was 
specified. The 3270 display terminals display the line number in the 
message area at the top of the screen. You can use the nnnnn subcommand 
described later in this section to insert records into a numbered file 
while in EDIT mode. 

Note: LINEMODE LEFT or RIGHT should not be specified for files 
containing variable-length records, because these positions in the 
records may already contain valid data. 

r-------------------------------
I 
I LINEmode [LeftlRightloFF] 
I 
I 

LEFT 
LEFT is the default for BASIC, VSBASIC, and FREEFORT files. If LEFT 
is in effect for BASIC or VSBASIC files, columns 1-5 of the records 
are set aside for line numbers. If the file already exists, the 
Editor assumes that all records are numbered in ascending order in 
columns 1-5 and that all numbers are right justified with leading 
blanks. The near zone and the first column in which text is entered 
(first tab setting) are set to 7 so the ALTER, CHANGE, FIND, LOCATE, 
and OVERLAY subcommands do not process the line numbers. If tabs are 
set anywhere in positions 1 through 5, the data in columns 1 through 
5 is lost for each line entered after that point. 

If LEFT is in effect for FREEFORT files, columns 1-8 are set aside 
for line numbers, and the near zone is set to 9. All the other above 
considerations still apply. 

LINEMODE LEFT should not be specified for ASSBMBLE files, since the' 
label of assembler statements appears on the left. 

RIGHT 
If RIGHT is specified, column 16-80 of the record are set aside for 
line numbers. If the file already exists, the Editor assumes that 
all records are numbered in ascending order in columns 76-80, and 
that all numbers are right justified with leading zeros. RIGHT is 
only valid for files with fixed length 80-character records. 

Specify LINEMODE RIGHT for ASSEMBLE 
number prompting. If not, do not 
serialization is already in effect. 

files only if you want line 
specify LINEMODE at all since 

Lines entered 
line number, 

at a typewriter terminal are reformatted so that the 
followed by a blank, appears in the file at the 

5q IB8 V8/310: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

beginning of the line being typed. On entering LINEMODE R~GHT, the 
verification column is reset to 72 to prevent the line number in 
columns 76-80 from printing a second time. In INPUT mode, you are 
prompted with a 5-digit number followed by a blank (as when lines are 
typed). This number is placed into the file in columns 76-80. Its 
appearance. on the left is to minimize typing time and does not 
indicate its true position. A display terminal always reflects the 
true position of the line number. 

If LINEMODE is LEFT or RIGHT, the data line operand of the INPUT 
subcommand is disabled, and treated as an invalid request. However, 
if while in EDIT mode you simply invoke the INPUT subcommand with no 
operands, the Editor goes into INPUT mode and prompts you with line 
numbers. The line numbers usually are successive multiples of the 
prompting increment. However, if the number so generated for 
prompting is larger than the next line number in the file, the Editor 
selects a number between the current line number and the next line 
according to a pre-established algorithm. If a prompting number 
cannot be generated, because the current line and the next line 
differ by only one, a message is displayed telling you to renumber 
the lines, and EDIT mode is entered. For example, if LINEMODE RIGHT 
is in effect for an ASSEMBLE file, respond as follows: 

Section 3: EDIT Subcommands 54.1 





RENUMBER LINES 
EDIT: 
line off 
serial all 10 
save 
EDIT: 
line right 

If the file is a BASIC, VSBASIC, or FREEFORT file with LINEMODE LEFT 
in effect, do the following: 

RENUMBER LINES 
EDIT: 
renum 

If a SAVE, AUTOSAVE, or FILE subcommand is issued while LINE MODE is 
set to RIGHT, reserialization in columns 76-80 is suppressed to allow 
the line numbers that are saved on disk to have the same values they 
had during the editing session. If LINEMODE is set to OFF before 
issuing the subcommand, reserialization takes place according to the 
SERIAL options currently in effect. This allows you to renumber all 
your lines during an editing session. 

OFF 
If OFF is specified, line numbers are omitted unless serialization is 
in effect. There is no prompting with numbers in INPUT mode. The 
nnnnn subcommand is disabled. The start column (first logical tab 
stop) is reset to '1' and the ZONE setting is unchanged. 

The default settings are: 

li!g!:.YEg 
BASIC 
FREEFORT 
VSBASIC 
All Others 

11.!!lHtQ!H~_~g t t.!.!!g 
LEFT 
LEFT 
LEFT 
OFF 

LOCATE SUBCOMMAND 

The LOCATE subcommand scans the file, beginning with the next line, for 
the first occurrence of a specified string of characters. 

r-----------------------------------------------------------------------------, 
I 
I Locate /string[ /] 
I L-__________________________________________________________________________ ~ 

/ (diagonal) 
Signifies any unique delimiting character that does not appear in the 
string. The delimiter may be any nonblank character. The closing 
delimiter is optional. 

string 
specifies any group of characters to be searched for in the file. 

If the string is found before the end of the file is reached, the 
line containing it becomes the new current line; otherwise, the message 
HOT FOUND is displayed. 

section 3: EDIT Subcommands 55 



If the beginning delimiter is I, the subcommand name LOCATE or an 
abbreviation for it need not be entered. If the string is null or 
blank, the search is successful on the first line encountered. If the 
line pointer is at the end of the file when LOCATE is issued, scanning 
starts from the top of the file. When verification is on, the located 
line is displayed at your terminal. 

1 Iformatl 
PORMATC'DAILY AUDIT') 

Note: The ZONE subcommand can be issued to indicate those columns that 
are-to be operated on by LOCATE. 

LONG SUBCOMMAND 

The LONG subcommand instructs the Editor to respond ?EDIT: when an 
invalid EDIT subcommand or macro is entered. This is the default mode 
for the Editor. The LONG subcommand has no operands. Por the short 
form of Editor responses, see the description of the SHORT subcommand. 

LONG 
L-___________________________________________________________________________ ~ 

NEXT SUBCOMMAND 

The NEXT subcommand advances the line pointer forward to the next line 
or a specified number of lines. The line pointed to becomes the new 
current line. 

n 

Next [lin] 

Indicates the number of lines to advance the line pointer. 
omitted, then the pointer is moved down only one line. 

If ~ is 

NEXT operates in the same way as the DOWN subcommand. When 
verification is on, the line pointed to is displayed at your terminal. 
Also, if NEXT causes the end of the file to be reached, the message EOP: 
is displayed. 

next 2 
This is the line pointed to. 
n 1000 

BOP: 

56 IBM VM/370: EDIT Guide 

results in: 

results in (if the file is less 
than 1000 lines long) : 



OVERLAY SUBCOMMAND 

The OVERLAY subcommand selectively replaces one or more character 
strings in the current line with the corresponding nonblank characters 
in the line being keyed in. Blank characters in the input line indicate 
that the corresponding characters in the current line are not to be 
altered. 

This subcommand may be entered at a typewriter terminal by typing the 
letter "0", followed by a backspace, followed by the overlaying 
characters. This sets up the correct alignment on the terminal (see 
example). 

Because the backspace function on the 3270 display device causes the 
next character entered to replace the previous one, column alignment for 
the OVERLAY subcommand cannot be achieved on the 3270 in the same way as 
on a typewriter terminal. As an alternative, however, you can issue the 
OVERLAY subcommand with no operands and then put the overlay argument in 
the user input area of the display and press ENTER. 

r-
I 
I Overlay line 
I , 

line 
Specifies an input line that replaces corresponding character 
positions in the current line. 

An underscore in the overlaying line must 
into the corresponding position of the 
underscore cannot be placed (or replaced) in 
subcommand. 

EDIT: 
top 
TOF: 
n 
programmer 
o ing 
programming 

be used to place a blank 
current line. Thus, an 
a line by using an OVERLAY 

OVERLAY should be used with care on lines containing underscored 
words or other compound characters. 

When verification is on, the line is displayed at the terminal after 
it has been overlaid. 

PRESERVE SUBCOMMAND 

The PRESERVE subcommand retains the current settings of the CASE, FHODE, 
FNAME, IMAGE, LINEMODE, LONG, RECFORM, SERIAL, SHORT, TABSET, TRUNC, 
VERIFY, and ZONE subcommands. Any or all of these subcommands may be 
then set to new values. All of the saved settings are restored when you 
issue a RESTORE subcommand. The PRESERVE subcommand has no operands. 

Section 3: EDIT Subcommands 57 



r--------
I 
I PREserve 
I L-________________________________________________ _ 

PROMPT SUBCOMMAND 

The PROMPT subcommand changes the prompting increment by which 
numbers are incremented during line number prompting. This is 
applicable to INPUT mode when LINEMODE RIGHT or LINEMODE LEFT 
effect. 

PROMPT [n] 
L-________________________________________________ _ 

n 

line 
only 

is in 

specifies the prompting increment. The setting specified should not 
exceed 32,767. 10 is the initial increment setting. If B is 
omitted, the current setting is displayed. 

QUIT SUBCOMMAND 

The QUIT subcommand terminates the current editing session and leaves 
the previous copy of the file, if any, intact on the disk. You would 
normally use the QUIT subcommand if you discover that serious errors 
have been made during the editing session and you do not wish to 
preserve the contents of the file currently being edited. If a SAVE or 
AUTOSAVE subcommand was issued before the QUIT subcommand and the file 
identification was not changed, the file on disk contains the changes 
that occurred during the session up to the time the file was saved. The 
QUIT subcommand has no operands. 

r-
I 
I QUIT 
I 
I 

RECFM SUBCOMMAND 

The RECFM subcommand indicates to the Editor whether 
for the file is fixed or variable, or displays 
setting. 

the record format 
the current RECFM 

r-----------------------------------------------------------------------------, 
I 
I RECfm [FIV] 
I 
I 

58 IBM VM/370: EDIT Guide 



I , 

F 

v 

Indicates fixed-length records. F is assumed by default for all new 
files except LISTING, SCRIPT, FREEFORT, VSDATA, and BASDATA. 

Indicates variable-length records. V is assumed by default for all 
new LISTING, FREEFORT, VSBDATA, BASDATA, and SCRIPT files. Usually, 
a variable format file occupies a smaller amount of disk space 
because trailing blanks are deleted from each line before it is 
written onto disk. 

If neither V nor F is entered, the current RECFM setting is 
displayed. 

RENUM SUBCOMMAND 

The RENUM subcommand recomputes the line numbers for VSBASIC and 
FREEFORT source files. Also, for all VSBASIC statements that have 
statement numbers for operands, those operands are recomputed so that 
they correspond to the new line numbers. The VSBASIC statements with 
line number operands are: 

DELETE 
EXIT 
GET 
GOSUB 
GOTO 

IF 
INPUT 
PRINT USING 
PUT 

READFILE 
REREADFILE 
REWRITEFILE 
WRITEFILE 

The Editor generates new line numbers when you enter the RENUM 
subcommand and specify initial and increment line number values. 

r-
I 
I RENum [strtnoll~ [incrnol~~£inQ]] 
I L-______ _ 

strtno 
Indicates the number from which you wish to start renumbering your 
file. Because RENUM renumbers the whole file from beginning to end, 
the number you specify as strtno becomes the statement number of the 
first statement in the newly renumbered file. This number may not 
exceed 99999 for VSBASIC files or 99999999 for FREEFORT files. The 
default start number value is 10 and the specified start number must 
not be zero. 

incrno 
Indicates the increment number value by which you wish to renumber 
your file. This value may not exceed 99999 for VSBASIC files or 
99999999 for FREEFORT files. The default for incrno is strtno, the 
first sequence number in the renumbered file, and the specified 
incrno must not be zero. 

If you do not specify strtno and incrno, the default value for both 
is 10. If you specify only strtno, incrno defaults to the same value as 
strtno. 

section 3: EDIT Subcommands 59 



The current line pointer remains as it was before you specified RENUM 
regardless of whether or not RENUM completes successfully. If you are 
editing a VSBASIC file, the file to be renumbered must either originate 
from a read/write disk or you must issue an FMODE subcommand to change 
the file destination to a read/write disk. 

If any error occurs during the RENUM operation, the Editor terminates 
the RENUM operation and the file being edited remains unchanged. 

REPEAT SUBCOMMAND 

The REPEAT subcommand executes the immediately following OVERLAY 
subcommand (or an X or Y subcommand assigned to invoke OVERLAY) for the 
specified number of lines, or to the end of the file. 

If the subsequently entered subcommand is not one of the above, 
REPEAT has no effect on it. 

r--------
1 
1 REPEAT [ll n l*] 
1 
L-

n or * 
Indicates the number of times to repeat the specified OVERLAY 
subcommand or its equivalent X or Y subcommand that immediately 
follows, starting at the current line. The asterisk (*) indicates 
that the request is to be repeated until the end of the file is 
reached. If neither n nor * is specified, then only one line is 
handled. The last line processed becomes the new current line. 

REPLACE SUBCOMMAND 

The REPLACE subcommand replaces the current line with a specified line. 
If no line is specified, the Editor deletes the current line and enters 
INPUT mode. 

r---
1 
I Replace [line] 
I L-__________ _ 

line 
Specifies an input line that is to replace the current line. If a 
line is specified, then the Editor puts it into the file in place of 
the current line. If no line is specified, the Editor deletes the 
current line, enters INPUT mode, and receives lines from the 
terminal. As each line is entered, it becomes the new current line. 
EDIT mode is restored by entering a null line. If the LINEMODE 
option is set LEFT or RIGHT, then REPLACE with a line operand is not 
valid. If REPLACE is used without any operands when LINEMODE is set 
LEFT or RIGHT, the current line is replaced using the next available 
line number. 

60 IBM VM/370: EDIT Guide 



RESTORE SUBCOMMAND 

The RESTORE subcommand restores the settings of CASE, FMODE, FNAME, 
IMAGE, LINEMODE, LONG, RECFM, SERIAL, SHORT, TABSET, TRUNC, VERIFY, and 
ZONE to the values they held before the last issued PRESERVE subcommand, 
or to their initial values if a PRESERVE subcommand has not been 
issued. The RESTORE subcommand has no operands. 

,-----
I 
I REStore 
I L-______________________________ __ 

RETURN SUBCOMMAND 

RETURN is not an EDIT subcommand, but a CMS subset command used to 
return to EDIT mode from the CMS subset environment. It is listed here 
as a companion to the CMS subcommand. RETURN has no operands. 

,-----------.--------------------------.--------
I 
I RETURN 
I 
L-

REUSE SUBCOMMAND 

The REUSE subcommand (which can also be specified as =) allows you to 
stack last in, first out (LIFO) the last EDIT subcommand, except for 
REUSE or a question mark, and then execute the stacked subcommands. 

,-
I 
I {REUSE I=} [subcommand] 
I 
L---

subcommand 
specifies any EDIT subcommand. 

If an invalid EDIT subcommand is specified (and is therefore not 
executed), the stacked subcommand is deleted. Thus, the invalid 
subcommand has no effect except to display an error message. 

section 3: EDIT Subcommands 61 



REUSE can also be used to repeat a valid EDIT subcommand or, in some 
cases, to correct an invalid one. For instance, consider a user, with 
verification set off, who mistakenly thinks he is in INPUT mode and 
enters: 

The self-abnegation must be complete. From 

Because he is not in INPUT mode, the message 

?EDIT: The self-abnegation must be complete. From 

is displayed. He then enters 

= input 

to insert the INPUT subcommand in front of the previously entered line 
of data, and continues entering lines of text. 

the point of view of Gautama, the dread of 
death, that greed for an endless continuation 

If, instead of entering the "= input," he had entered "input," it 
would have been necessary to re-enter the first line of text. 

The file now appears as: 

The self-abnegation must be complete. From 
the point of view of Gautama, the dread of 
death, that greed for an endless continuation 

SAVE SUBCOMMAND 

The SAVE subcommand saves the file that is being edited on disk. 

r--------------------------------------------------------------------------------, 
I 
I SAVE [filename [filetype [filemode]]] 
I 
I 

filename 
Indicates the filename of the file to be saved. 

filetype 
Indicates the filetype of the file to be saved. 

filemode 
Indicates the filemode of the file to be saved. 

The SAVE subcommand uses the specified filename, filetype, and 
filemode, or the current value in effect as a default for any parameter 
not specified. Any file on disk that has the identical filename, 
filetype, and filemode identification is replaced. You remain in the 
EDIT mode after SAVE is issued; after FILE is issued you are in CMS 
mode. 

If you want to save data automatically, see the description of the 
AUTOSAVE subcommand. 

62 IBM VM/370: EDIT Guide 

/ 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

SCROLL SUBCOMMAND 

This subcommand provides you with a more efficient method of scanning an 
EDIT file than the TYPE subcommand. It displays a file in increments of 
20 lines if the VERIFY setting is 80 characters or less, or increments 
of 10 lines if the VERIFY setting is greater than 80. This subcommand 
is valid only with a display terminal in DISPLAY mode, and is the only 
subcommand that causes the screen to go into MORE ••• status. 

r--------
I 
I S[croll[Up] 
I 

[*Inll] 
I' 
I 
I ~ ______________________________________ • ______________________________________ .J 

SCROLL 
Causes the Editor to scan forward through the file. The minimum 
abbreviation for SCROLL is S. 

SCROLLUP 
Causes the Editor to scan backward through the file. 
specified by any combination of the abbreviations of 
the minimum abbreviation is SUe 

SCROLLUP can be 
SCROLL and UP; 

* Displays in increments of 20 (or 10) lines to the end of the file (or 
to the beginning of the file, if SCROLLUP is specified) • 

n 
Is a number from 1 to 255 that specifies the number of screens of 
data to be displayed. 

The current line pointer advances by 20 (or 10) output lines and the 
Editor rewrites the output display using the new CLP. This occurs the 
number of times that you indicate in the subcommand (with a one-minute 
pause between screen loads). 

If you start scrolling forward from the beginning of the 
first 7 lines (lines 2 through 8) are blank, line 9 (the 
contains "TOF;", indicating the null line that precedes the 
record in the file, and lines 10 through 21 contain the first 
of the file. After the one-minute interval has elapsed (or 
press the CANCEL key), the next 20 records are displayed. 
through 20 appear at the top part of the screen, and record 
line currently pointed to. 

file, the 
CLP line) 

first real 
12 records 
after you 

Records 13 
21 is the 

At end-of-file, if the CLP was advanced by less than 20 lines, some 
lines are repeated in the next-to-Iast and last displays. This 
repetition is for consistency in displaying the CLP always at line 9. 
Lines 2 through 8 contain the last seven records of the file. Line 9 
contains "EOF;", and the rest of the lines are blanks. 

To stop scrolling, enter the HT command and press the CANCEL key 
twice. 

SERIAL SUBCOMMAND 

The SERIAL subcommand controls the serialization of records in columns 
73-80. To change the record numbers in VSBASIC, and FREEFORT files, use 
the RENUM subcommand. 

section 3: EDIT Subcommands 63 



i 

SERial {OFFIONIALLlseq}[incrllQ] 
I 
I 
I 

OFF 

ON 

ALL 

seq 

, 

Indicates that neither serialization number nor identifier is to be 
placed in columns 73-80. 

Indicates that the first three characters of the filename are to be 
used in columns 73-75 as an identifier. 

Indicates that columns 73-80 are to be used for serialization 
numbers. 

specifies a three-character identification to be used in columns 
73-75. 

incr 
specifies the increment for the line number in columns 76-80 (or 
73-80). This number also becomes the first line number. If the 
number is not specified, then 10 is assumed. 

Initially, serialization is determined by the filetype specified in 
the EDIT command. The SERIAL subcommand is valid only if the file uses 
fixed-length records with a record length of 80. It takes effect after 
LINEMODE has been turned off and a FILE, SAVE, or AUTOSAVE subcommand is 
issued. The SERIAL subcommand cannot be used to delete serialization 
inserted in a file by a previous SAVE, AUTOSAVE, or FILE subcommand that 
was issued with the serialization optiori ~ctive. 

If LINEMODE has been set RIGHT, the 
when the next FILE, AUTOS AVE, or SAVE 
message is displayed: 

RESERIALIZATION SUPPRESSED 

SERIAL subcommand 
is issued, and the 

is ignored 
following 

Except for COBOL records, which have serialization in columns 1 
through 7 of each record, normal serialization consists of a 
three-character identifier in columns 73 through 75, followed by a 
five-digit number in columns 76 through 80. This is obtained by issuing 
SERIAL with a specific three-character identifier or by using the ON 
option (which means that the sequence name is to be taken from the first 
three characters of the filename of the file being edited) • 

An alternate form of serialization uses an eight-digit number in 
columns 73-80. This is obtained by issuing SERIAL ALL. Serialization 
can be turned off by issuing SERIAL OFF. 

When serialization is indicated for files with LINEMODE RIGHT active, 
the Editor sets the truncation value to the minimum of 72; the existing 
setting is changed, and the message TRUNe SET TO 72 is displayed. The 
end zone is also set to 72; if the end zone is changed, the message END 
ZONE SET TO 72 is displayed. The setting for the VERIFY subcommand is 
not changed. 

64 IBM VM/370: EDIT Guide 



SHORT SUBCOMMAND 

The SHORT subcommand sets the message response mode. Invalid EDIT 
subcommands invoke the' response -. instead of "?EDIT:". Invalid EDIT 
macros invoke the response -.$. The SHORT subcommand has no operands. 

SHORT 

'-----

STACK SUBCOMMAND 

The STACK subcommand stacks lines or EDIT subcommands in the terminal 
input buffer for subsequent processing. 

r----------------------------------------'------------
I 
I STACK [11 n I subcommand] 
1 
I 

n 
Indicates the number of lines to be stacked. If a number or a 
subcommand is not specified, then one line is assumed by default. 
The subcommand stacks n lines on a first-in, first-out (FIFO) basis, 
starting with the current line, in the terminal input buffer. The 
line pointer position after execution of the STACK subcommand depends 
upon the lines (subcommands) that were stacked and executed. The 
length of the lines is taken from the column set by the TRUNC 
subcommand. If STACK is issued with an argument of 0 (zero), a null 
line is stacked. A maximum of 25 lines can be stacked. 

subcommand 
Specifies that an EDIT subcommand is to be stacked. If a subcommand 
is specified, it is stacked FIFO. STACK enables subcommands to be 
issued from the file, and also makes it possible to move or copy 
lines. 

TABSET SUBCOMMAND 

The TABSET subcommand 
used as a delimiter. 
setting. 

sets the logical tabs for the file. ~ space is 
TAESET may not be issued without at least one tab 

TABSet {n n 
1 2 

n } 
x 

'--------------------------------------------------
n 

Indicates column positions for logical tab settings. Up to 25 are 
allowed. The first tab entry indicates the column that the column 
pointer identifies before the TAB key is pressed. The default 
settings are: 

Section 3: EDIT Subcommands 65 



X!!~~!E~~ Q~!~l! !~B ~~!!i~~ 
ASM3705, ASSEMBLE, 1, 10, 16, 31, 36, 41, 46, 69, 72, 80 

MACRO, UPDATE, 
UPDTxxxx 

FORTRAN 1 , 7, 10, 15, 20, 25, 30, 80 

FREEFORT 9, 15, 18, 23, 28, 33, 38, 81 

BASIC, VSBASIC 7, 10, 15, 20, 25, 30, 80 

PLIOPT, PLI 2, 4, 7, 10, 13, 16, 19, 22, 25, 31, 37, 
43, 49, 55, 79, 80 

COBOL 1, 8, 12, 20, 28, 36, 44, 68, 72, 80 

Others 1 , 6, 11, 16, 21, 26, 31, 36, 41, 46, 51, 
61, 71, 81, 91, 101, 111 , 121, 131 

Tab set~ings have no effect if a SCRIPT filetype is used (canonical 
ordering 1n effect) or if the IMAGE subcommand is set off. A tab 
entered into a file under these conditions appears as X'05'. 

TOP SUBCOMMAND 

The TOP subcommand moves the line pointer to the top of the file. The 
null top line becomes the current line. The TOP subcommand has no 
operands. When you are using a display terminal, if you specify TOP and 
VERIFY is on, line 9 contains the characters TOP (indicating the top of 
the file), lines 2 through 8 are blank, and lines 10 through 21 contain 
the first 12 lines of the file. 

r 
I 
I TOP 
I L-________________________________________________________________________ ~ 

TRUNC SUBCOMMAND 

The TRUNC subcommand changes the truncation column of records or 
displays the current truncation column setting • 

.---
I 
I TRUNC [n I *] 
I 
I 

n 

* 

Indicates the column at which truncation is to occur. 

Indicates that truncation is to be set to the record length for the 
filetype. 

66 IBM VM/370: EDIT Guide 



The TRUNC subcommand sets the column of truncation to n, or to the 
record length. If no operand is specified, the current truncation 
column is displayed. The truncation value is used by the INPUT, 
REPLACE, CHANGE (for display terminals onl~, STACK, and OVERLAY 
subcommands. The defaults are: 

~!le!~E~§ 
ASSEMBLE, UPDATE, MACRO, UPDTxxxx 
PORTRAN, COBOL, PLI, PLIOPT 
FREEPORT 
Others: Fixed Length 
Others: Variable Length 

trunc 6 
top 
TOF: 
input I I I I I I I I I I I I I I I I I I I I 
TRUNCATED 
IIIIII 
replace **************** 
TRUNCATED 
****** 
overlay +++++++++++++++ 
TRUNCATED 
++++++ 

TYPE SUBCO~~AND 

Truncation ~QJ~!~ -------7'-
72 
81 

Record Length 
132 

The TYPE subcommand displays all or any part of a file at the terminal. 
Entering the TYPE subcommand on the display console erases the present 
output display. 

If you enter the TYPE subcommand with no operands, the record pointed 
to by the CLP appears on the line on which the 3270 "SYSTEM AVAILABLE" 
hardware indicator appears (line 9). Enough records precede and follow 
line 9 to complete the 20-line output display. If the records are 80 
characters or less, each record occupies one display line. If a record 
exceeds 80 characters, the excess beyond 80 characters appears on the 
following line. 

The TYPE subcommand displays ~ lines, or to the end of the file, 
starting with the current line. The last line displayed becomes the new 
current line. The maximum length of the displayed lines is determined 
by the column set by the VERIFY subcommand. If LINEMODE RIGHT has been 
specified, the line numbers stored in columns 76 through 80 are 
displayed on the left. TYPE m issued with a display terminal performs 
the same function as the subcommand NEXT m-1. 

section 3: EDIT Subcommands 67 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

r 
I 
I Type [llml* [nl*]] 
I '~ ______________ . _________________________________________________________________ -J 

m or * 

·n 

* 

Indicates the number o£ lines to be displayed. The asterisk (*) 
indicates all lines between the current line and the end of the file. 
If m or * is omitted, ~nly one line is displayed. If the number of 
lines specified exceeds the number remaining in the file, displaying 
stops at the end of the file. 

Indicates the column at which displaying is to 
using a display terminal, the second operand 
truncation of the record occurs. 

stop. If you are 
is ignored and no 

Indicates that displaying is to take place for the full record 
length. 

UP SUBCOMMAND 

The UP subcommand repositions the line pointer to a line with a lower 
line number than the one that you are processing. 

n 

Up [lin] 

Indicates the number of lines the pointer is to be moved back (up) in 
the file. If a number is not specified, then the pointer is moved up 
only one line. The line pointed to becomes the new current line. 

When verification is on, the line pointed to is typed at your 
terminal. 

VERIFY SUBCOMMAND 

The VERIFY subcommand causes the Editor to display all or any part of a 
line at the terminal after it is processed, or to display the current 
verification settlng. 

r 
I 
I Verify [ONIOFF][[startcolll] endcoll*] 
I L ________________________________ __ 

ON 
Allows editing verification. Lines that are located, altered, or 
changed are displayed, and changes between EDIT and INPUT mode are 
indicated. 

68 IBM VM/370: EDIT Guide 



OFF 

GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

Prevents editing verification. Lines that are located, 
changed are not displayed, and changes between EDIT and 
are not indicated. 

altered, or 
INPUT mode 

startcol 
is a number that indicates the column in which verification is to 
begin. The default is column 1. startcol must not be greater than 
the record length or greater than endcol. 

endcol 
is a number that indicates the last column to be verified. endcol 
must not be greater than the record length. 

I * I Indicates that the last column to be verified is the last column of 
I the record. 

Unless you specify VERIFY OFF, verification is on for all terminal 
types and for all filetypes. 

If you issue the VERIFY subcommand with only one operand, that 
operand is assumed to be the endcol operand. For example, if you issue 
V 10, verification occurs in columns 1 through 10. 

If you issue VERIFY with no operands, the current startcol and endcol 
settings are displayed, regardless of whether verification is on or 
off. Unless you have changed these settings, the start column is 1 and 
the end column depends on the filetype, as follows: 

!,.!let:l.E~§ 
ASSEMBLE, UPDATE, UPDTxxxx, 

FORTRAN, COBOL, PLI, 
PLIOPT, MACRO 

Others (Including FREEFORT) 

X OR Y SUBCOMMAND 

Record Length 

The X or Y subcommands cause the Editor to assign to X or Y a given EDIT 
subcommand, or to execute the previously assigned subcommand a specified 
number of times. 

---------------------------------------------------------------------, 
I 
I {X I Y} [llnlsubcommand line] 

I 
I 
I I 

L 

n 
Indicates the number 
to be executed. If 
assumed. 

____________ . ______________ J 

of times the previously assigned subcommand is 
X or Y is entered with no operands, 1 is 

subcommand line 
Indicates any EDIT subcommand followed by its usual operands. The 
Editor assumes that you have specified a valid EDIT subcommand, and 
no error checking is done. 

section 3: EDIT Subcommands 69 



GC20-1805-3, Page Modified by TIL GI20-2660, Barch 31, 1975 

If n is specified and is greater than 1, the current line is not 
necessarily advanced between executions. Advancement depends upon the 
EDIT subcom~and that has been assigned to X or Y. Execution stops at the 
end of the file. If a number or a subcommands is not specified, the 
previously assigned subcommand is executed once. 

X and I are initially set to null strings. 

If you wanted to create a number of entries similar to the boxes 
around the EDIT subcommands, it would be repetitious to enter 
successive lines of dashes and headings for each box. By issuing 
the {XII} subcommand in EDIT mode as follows: 

edit test script 
NEW FILE: 
EDIT: 
x i --------------------
Y 0 

The repetitious entries would be entered once initially. Then 
you can create the input file: 

input 
INPUT: 

SUB SIN 
T1 T2 
T3 T4 
TS T6 

In EDIT mode, the X and I subcommands are added: 

EDIT: 
top 
TOF: 
next 

SUB SIN 
repeat 4 
y 
I SUB SIN 
I T1' T2 
I T2 T3 
I T3 T4 
I TS T6 
top 
TOF: 
x #next 
I SUB SIN 
x'n 
I T1 T2 
x#n 
I T3 T4 

70 IBM VM/370: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

A display of the file would appear as follows: 

top 
TOP: 
type * 

SOB SIB 

T1 T2 

T3 T4 
I T5 T6 
EOP: 

ZONE SOBCO!!AND 

The ZONE subcommand tells the Editor the portion of each record 
(starting position and ending position) to be scanned when scanning 
occurs, or to display the current ZONE settings. 

Section 3: EDIT Subcommands 70.1 





----------------------------------------------------------------, 
Zone [llml* [nl*]] 

m 

I 
I 
I 
I 

Indicates the first column of the zone of each record to be scanned. 
If m is specified as *, column 1 is assumed by default. 

n 
Indicates the last column 
If n is specified as *, 
default. 

of the zone of each record 
the length of the record 

to be scanned. 
is assumed by 

The ZONE settings are used by the ALTER, CHANGE, and LOCATE 
-subcommands to define the columns that will be scanned. If no operand is 
entered, -the current settings are displayed. The defaults for the 
starting and ending zones are: 

l~!g!IE!!§ 
ASSEMBLE, UPDATE, MACRO, 

UPDTxxxx 
FORTRAN, COBOL, PLI, 

PLIOPT 
BASIC, VSBASIC 
FREEFORT 
Others 

edit newfile memo 
NEW FILE: 
EDIT: 
zone 

1 80 
zone 10 20 

Start Zone Column-'--
Column 

Column 7 
Column 9 
Column 1 

End Zone 
column-=]1 
Column 72 

Record Length 
Column 81 
Record Length 

input the zone is now set for columns 10-20 

EDIT: 
top 
TOF: 
locate 0 
the zone is now set for columns 10-20 
change /0/*/ 
the zone is n*w set for columns 10-20 

Note that the LOCATE and CHANGE subcommands operated on the word now, 
not the word zone, because scanning started in position 10, not in 
position one. 

? SUBCOMMAND 

The ? subcommand displays the last EDIT subcommand executed (or issued 
in the user input area of a display terminal), except for REUSE or a 
question mark subcommand. On a display terminal, pressing the ENTER key 
causes this subcommand to be executed again. 

r---
I 
I ? 
I L-___________________________________________________ ___ 

section 3: EDIT Subcommands 71 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

After an X 
subcommand that 
subcommand. 

nnnnn SUBCOMMAND 

or Y subcommand, the last 
was executed as a result 

EDIT subcommand 
of issuing the 

is the 
X or Y 

The nnnnn subcommand enters lines by number, while in EDIT mode, into 
the file, or searches the file for that line number. This subcommand 
can be used only if LINEMODE LEFT or RIGHT is in effect for the file. 
If no text is given, the record number nnnnn is made the current line, 
and is displayed if verification is on. INPUT mode is not entered. 

.--
I 
I nnnnn [text] 
I L __________________________________ . ________ __ 

nnnnn 

---1 

I 
I 
I _ ________ J 

Indicates a line number between 0 and 99999 if the filetype is BASIC 
or VSBASIC, or 0 and 99999999 if the filetype is FREEFORT. 

text 
Specifies a line of text to be put into the file. 

A line number not followed by any text is interpreted as a subcommand 
to locate the line with that number. If such a line is found, it is 
displayed (unless verification is off). If the line is not found, the 
line pointer is reset to the previous line and LINE NOT FOUND is 
displayed. If LINEMODE is LEFT and the filetype is BASIC or VSBASIC, 
the line number is assumed to be in columns 1 through 5, right justified 
with leading blanks. If LINEMODE is RIGHT or OFF, the line number is 
assumed to be in columns 76 through 80, right justified with leading 
zeros. 

A line number followed by text inserts the text into the file if the 
line does not already exist, or replaces the existing line in the file. 

with LINEMODE LEFT, the line number is padd~d with blanks on the left 
(if necessary) and inserted in columns 1 through 5. The text is placed 
on the same line at the first tab position (column 7). The entire 
reformatted line is placed in the file in the location appropriate to 
its line number. If a line with that number already exists, it is 
replaced. Line numbers with leading zeros are not accepted. 

with LINEMODE RIGHT, the line number is padded with zeros on the left 
(if necessary) and inserted in columns 76 through 80. The text is 
placed on the same line at the first tab position (normally column 1). 
The entire reformatted line is placed in the file at the location 
appropriate to its line number. If a line with that number already 
exists, it is replaced. Line numbers with leading zeros are accepted. 

For FREEFORT files, the same procedures are followed, but the line 
number occupies columns 1 through 8 or 73 through 80. 

with LINEMODE OFF, the nnnnn subcommand is invalid. 

The nnnnn subcommand does not operate with variable-length files. 

72 IBM VM/370: EDIT Guide 



Section 4: Edit Macros 

An EDIT macro defines a sequence of EDIT subcommands that can be 
executed by issuing the macro name while in EDIT mode. 

EDIT macros are CMS EXEC files that allow you to create complex 
sequences of EDIT subcommands. See the VMLl]Q: ~~~~ Q§~~~§ §~!Q~ for 
additional information on creating and invoking EXEC files. 

The following EDIT macros are supplied with VM/370 for your 
convenience. See "Appendix B: User-Wri tten EDIT Macros" for samples of 
user-supplied macros. 

r--------------------------------
I $DUP I [lin] L-__________________________________________________________________________ ~ 

Duplicates the current line n times. The last copy of the line becomes 
the new current line. If n is omitted, the line is duplicated once. 

$MOVE n {Up mlDown mlTo label} L-__________________________________________________________________________ ~ 

Moves n lines (starting with the current line) up or down m lines; or 
moves n lines (starting with the current line) and inserts -them after 
the specified label, or at the end of the file if the label is not 
found. The last line moved becomes the new current line. The label to 
be found should start in column 1, and should not contain any lower-case 
letters. Truncations may be used for UP, DOWN, and TO. 

Up to 25 lines can be moved or duplicated with one $MOVE or $DUP 
macro. 

Note: The $DUP and $MOVE subcommands delete any existing stacked lines when invoked. 

To display the $DUP or $MOVE macros, type: 

type $dup exec * 
or --

type $move exec * 

If you have a good knowledge of the CMS EXEC facilities, you can write 
your own EDIT macros. You must ensure that any EDIT macro you write 
checks the validity of its operands and displays an error message if 
necessary. 

section 4: EDIT Macros 73 



The conventions followed when creating EDIT macros are: 

1. EXEC files that are EDIT macros have a filename that starts with a 
dollar sign ($) and a filetype of EXEC. These files are referred 
to as EDIT macro files. 

2. An EDIT macro subcommand consists of the name of an EDIT macro file 
(including the initial $), possibly followed by operands. 

3. An EDIT macro file contains only EDIT subcommands and EXEC control 
statements. EDIT macros can execute only in EDIT mode. 

Operands of an EDIT macro must be separated from the macro name, and 
from each other, by at least one blank. Percent signs (~) cannot be 
entered as operands, since they have a special meaning to the EXEC 
interpreter. Operands passed to an EDIT macro are subject to the same 
rules as any other EXEC file (that is, the length of an operand must not 
exceed eight characters) • 

When you create the macro, IMAGE mode must be off if you include tab 
characters (X' 05') • 

All EDIT subcommands in EDIT macros must be stacked (that is, you 
must specify &STACK or &BEGSTACK before the EDIT subcommands). If your 
EDIT macro uses variables, you should use &STACK rather than &BEGSTACK, 
since &BEGSTACK inhibits sUbstitution of variables. 

If an EDIT macro is issued, and the EDIT macro file does not exist, 
the Editor issues the message ?EDIT:. If an EDIT macro is used 
incorrectly, the Editor displays a message, and the macro is ignored. 
If an EDIT macro is assigned to X or Y, it is an error to issue that X 
or Y subcommand with a numeric operand other than 0 or 1. 

Some EDIT macros use the CMS function DESBUF during their execution 
(for example, $DUP and $MOVE). If stacked lines exist when one of these 
macros is invoked, the macro deletes the stacked lines and issues the 
message STACKED LINES CLEARED BY (macro name). This also occurs in 
user-written macros if the CMS line end character has been used to stack 
additional subcommands after the macro is issued. 

A user-written EDIT macro that uses first-in, first-out (FIFO) 
stacking should ensure that the stack is initially clear. You do this 
by including in your EDIT macro the line 

&IF &READFLAG EQ STACK DESBUF 

before you stack anything. The DESBUF function clears the console 
stack. Alternatively, your EDIT macro can use last-in, first-out (LIFO) 
stacking to avoid having to initially clear the console stack. 

If the operation of an EDIT macro is completed without an error, the 
Editor clears any stacked lines and issues the message STACKED LINES 
CLEARED. Thus, the macro has no effect on the Editor or its contents. 

To avoid having the Editor type during execution of your EDIT macros, 
you can specify that your EDIT macros operate with verification off. 
You can accomplish this without losing your setting by stacking PRESERVE 
and VERIFY OFF for execution first, and RESTORE for execution last. 

Do not interrupt the execution of an EDIT macro by pressing the ATTN 
(attention) key or its equivalent. 

74 IBM VM/370: EDIT Guide 



GC20-1805-3, Page Modified by TIL GB20-2660, March 31, 1975 

Section 5: Operational Characteristics 

Figure 5 shows the approximate number of records, rounded to the nearest 
hundred, that the Editor can handle in different amounts of virtual 
storage. 

These numbers are for a CMS system with only one disk accessed. 

r-
virtual Machine storage Size 

Record 
Length 320K 512K 768K 1024K 

80· Char 1700 3800 6800 9800 

120 Char 1100 2600 4700 6800 

132 Char 1100 2400 4300 6200 

160 Char 900 2000 3600 5100 

Figure 5. Number of Records Handled by the Editor 

At the top of every file is a null line. It is not a part of the file 
on disk, but is present only during editing, and cannot be mOdified. If 
displayed, it appears as a null line. There is also an end-of-file 
(EOF) condition, which arises when you attempt to advance the line 
pointer beyond the last line of the file. "EOF:" is displayed. 

When issued at the top of the file or at the end of the file, the 
EDIT subcommands behave as follows: 

~!!~£Q!!!!~1!,g 
ALTER, CHANGE 

DELETE 

DSTRING 

GET FILE 

DOWN, NEXT, 
TYPE, STACK 

~!!~£! g! !~~ IQE Q! £~~ lile 
If the subcommand applies to the top line only, the 
message NOT FOUND is issued. If it applies to more than 
one line, the number is decremented by one before 
proceeding to the next line. 

Processed as though it is successful, but the top line is 
not deleted. 

If the string is in the first data line of the file, that 
line becomes the current line. If the string is in any 
other line, all lines before that line are deleted. 

The new lines obtained are inserted at the top of the 
file, and the last line that is inserted becomes the 
current line. 

The top line is processed as a blank line. 

section 5: Operational Characteristics 75 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

OVERLAY 

REPLACE 

TOP, UP 

~YQ£Q~~~!~ 
ALTER, CHANGE 

FIND, LOCATE 

BOTTOM 

DELETE, DOWN, 
NEXT, OVERLAY 
STACK 

DSTRING 

G~FnE 

TYPE 

INPUT, 
REPLACE 

UP 

If OVERLAY applies to the top line only, it has no 
effect. If it applies to more than one line, the number 
is decremented by one before proceeding to the next 
line. 

The new line is inserted and becomes the current line. 

Have no effect. 

Effect at the End of the File 
When--verifIcation-is--off;-the response is NOT POUND. 
When verification is on, the response is NOT FOUND, 
followed by EOP:. The EOF condition is not cleared. 

Processed as though they are issued at the top of the 
file. 

The EOF condition is cleared, and the last line of the 
file becomes the current line. 

If verification is off, the subcommand is ignored; if on, 
"EOF:" is displayed. 

The response is STRING NOT,FOUND, NO DELETIONS MADE. The 
current line remains at EOP:. 

The EOF condition is cleared, the new lines obtained are 
inserted after the last line of the file, and the last 
line obtained becomes the current line. 

"EOF:" is displayed. 

The EOF condition is cleared, and the new lines are 
inserted after the last line. 

processed as though the current line is a null line 
following the last line of the file. 

Several methods of inserting a continuation character in column 72 of 
Assembler Language source records are available. They are: 

1. Specify the LINEMODE RIGHT subcommand, which causes the zone 
setting to default to columns 2 and 72. This allows a continuation 
character to be placed in column 72, but does not permit column 1 
to be used for ALTER, CHANGE, or LOCATE subcommands, unless the 
zone is reset to column 1 by specifying ZONE 1*. 

2. Use the default zone settings for ASSEMBLE files (columns 1 and 
71), and invoke an EDIT macro similar to the user-supplied macro 
$MARK (s~e "Appendix B: User-Written EDIT Macros") • 

3. Redefine the default zone setting from columns 1 and 71 to columns 
1 and 72. The default zone settings have been established for 
columns 1 and 71 ,to minimize inadvertent data entries in column 
72. 

76 IBM VM/370: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

Section 6: Error Conditions and Recovery Procedures 

All EDIT subcommands are fully checked for validity. 
subcommand or macro is not processed, the count 
subcommand is reset to 1, and the message 

., or ?EDIT: 

When 
for 

an invalid 
the REPEAT 

is issued. If a valid subcommand or macro fails during execution, a more 
detailed message is displayed. 

During an editing session, the 
about current subcommands. These 
error code and do not indicate a 
termination of Editor processing. 
actions taken or to confirm normal 

Editor displays status information 
messages do not have an associated 
condition serious enough to require 
some messages are to inform you of 

Editor operation. 

For yo~r convenience, a complete list of responses and informative 
messages 1.S provided under "Editor Messages" in this section. For a 
more complete description of the messages, see the !~L37Q: EY~l~~ 

~~.§~g~~. 

If the available storage of your virtual machine becomes full, the 
Editor issues the message: 

AVAILABLE STORAGE IS HOW PULL 

It is then possible to add new lines only if 
deleted first. If you attempt to insert a line (or 
is no room, the Editor responds: 

NO ROOM 

existing ones are 
a file) when there 

ensures that EDIT mode is set, deletes any stacked lines, and if 
necessary issues the message: 

STACKED LINES CLEARED 

to avoid multiple error messages if any lines are cleared (see the 
description of the STACK subcommand) • 

You can use the CP command DEFINE STORAGE to temporarily increase the 
size of your virtual storage. 

section 6: Error Conditions and Recovery Procedures 77 



In executing a FILE, SAVE, or AUTOSAVE subcommand, the Editor writes a 
temporary work file, called EDIT CMSUT1. During this process, if the 
output disk becomes full, CMS displays the message: 

DMSBWR170S DISK 'mode (cuu) , IS FULL 

The Editor immediately erases the work file (which is incomplete) , 
and issues the message: 

SET NEW FILEMODE, OR ENTER CMS SUBSET AND CLEAR SOME SPACE 

The original file remains intact with no updates. Thus, the FILE, 
SAVE, or AUTOSAVE subcommands have no effect except to produce the 
messages. A similar response follows an attempt to create more than the 
maximum number of CMS files. 

When enough space is available on the disk to hold the EDIT CMSUTl 
work file, the old copy of the file (if one exists) is erased, and the 
EDIT CMSUT1 file is then renamed to the required filename and fi1etype. 
The updated file thus replaces any old copy on the disk. This is the 
reason that a file with mode=2 can, in effect, be edited. It is not 
modified, but completely replaced by the utility file. 

If there are data transmission errors 
connecting the terminal to the central 
computer is shut down, the terminal 
disconnected status for 15 minutes. If 
15-minute interval, you can resume where 
are automatically logged off. (In the 
shutdown, active files are saved up to 
FILE, SAVE, or AUTOSAVE subcommand.) 

on the communication line 
computer, or if the central 
is automatically placed in 
you log back on within that 

you left off. Otherwise, you 
case of a central computer 

the point of the last issued 

If the terminal session was ended due to a central computer shutdown, 
communication cannot be reestablished until the central computer is 
operational. To resume the terminal session, issue the LOGON command. 

78 IBM VM/370: EDIT Guide 



~~E1~~~~1~~: An automatic save (AUTOSAVE) was just performed on the 
file currently being edited. 

AVAILABLE STORAGE IS NOW FULL 

~~E1~~~!ig~: The size of the file cannot be increased. Any attempt 
to add lines produces the message NO ROOM. Other commands are 
unaffected. To continue editing, you may temporarily increase the 
size of your virtual machine by issuing the CP command DEFINE, or 
split the file into two smaller ones. 

EDIT: 

~!E!~B~!!QB: Indicates entry to EDIT mode. During initialization, 
if the file identification specified in the EDIT command is found 
on disk, this is the first response; otherwise, the file is new and 
the message NEW FILE precedes EDIT:. Also, during the editing 
session, this message indicates a return from INPUT mode, or 
indicates a null line while in EDIT mode, subject to the setting of 
the VERIFY subcommand. 

END ZONE SET TO 72 

EOF: 

]~E1~~~!~EB: The SERIAL subcommand was issued and the second zone 
specification was set within the serialization field. The end zone 
is reset to column 72. 

!!~!~B~~!QB: The line pointer is positioned after the bottom line 
of the file' or, if the file is empty, after the null line at the 
top of the file (subject to the setting of the VERIFY subcommand) • 

EOF REACHED 

]~E1~~!~EB: The number of lines beyond the 
in a GETFILE subcommand exceeded the end 
The lines from the starting line to the 
inserted in the file. When verification 
inserted is displayed at the terminal. 

FILE IS EMPTY 

starting line specified 
of the indicated file. 

end of the file were 
is on, the last line 

~!E!~B~~!QB: An attempt to FILE, SAVE, or AUTOSAVE a null file was 
detected. If the subcommand was FILE, the Editor exits; if it was 
SAVE or AUTOSAVE, control returns to EDIT mode. In either case, the 
file is not stored on your disk. 

FILE NOT FOUND 

!!E!~B~~!QB: The file identification specified in a GETFILE 
subcommand was not found on an auxiliary storage device. 

section 6: Error Conditions and Recovery Procedures 79 



GETFILE IS INCOMPLETE 

~!E!~~~~!Q~: The available storage was exceeded while attempting to 
execute a GETFILE subcommand. The last line inserted into the file 
is displayed at the terminal. 

GIVEN STARTING LINE IS BEYOND EOF 

~~E1~~~~~~~: The starting line specified in a GETFILE subcommand 
points beyond the last line of the indicated file. 

NON-NUMERIC CHARACTER IN LINE NUMBER COLUMNS 

~~E1~~~~~~: A nonnumeric character was found in the columns 
reserved for line numbers. The line pointer identifies the line in 
error. You should correct or delete the line in error. 

INPUT: 

~!E!~B~~!Q~: Indicates entry to INPUT mode; lines entered at the 
terminal become part of the file. 

INVALID LINE NUMBER REFERENCE IN STMNT nnnnn 

~!E!~~~~!Q~: This message occurs for VSBASIC files only. The line 
number referenced in statement nnnnn is invalid (not numeric). The 
old line number is nnnnn. The Editor terminates the RENUM 
subcommand without renumbering the file. To continue, correct 
statement nnnnn and reissue the subcommand. 

INVALID SYNTAX IN STMNT nnnnn 

~~E1~~~~~~~: This message occurs with VSBASIC files only. RENUM 
cannot convert the line number operand in statement nnnnn due to 
incorrect language usage. The old line number is nnnnn. The 
Editor terminates the RENUM subcommand. To continue, correct the 
statement in line nnnnn and reissue the command. 

INVALID $name PARAMETER LIST 

~!E!~~~~!Q~: The indicated EDIT macro was invoked with one or more 
errors in the subcommand line. 

LINE xxxxx REFERENCBD IN STMBT nnnnn, NOT FOUND 

~~E!~~~~!Q~ This message occurs for VSBASIC files only. The line 
number specified as an operand in statement nnnnn, was not found. 
The old line number is nnnnn. The Editor terminates the RENUM 
subcommand. To continue, correct the line number operand xxxxx in 
statement nnnnn and reissue the command. 

MAXIMUM LINE NUMBER EXCEEDED 

~ZE1~~~ti~B: The RENUM subcommand specified values for strtno and 
incrno which would result in a line number that exceeds 99999 for 
VSBASIC files or 99999999 for FREEFORT files. The Editor 

80 IBM VM/370: EDIT Guide 



terminates the RERUM subcommand. To continue, reissue RERUM with 
proper strtno and incrno values. 

This message is also issued for other serialized files if the 
line number exceeds 99999. The file must be reserialized. 

NEW FILE: 

~~E!~n~~!Qn: The message is issued during Editor initialization if 
the file identified in the EDIT command is not found on any disk to 
which the user has read or write access. 

NO LINES MOVED 

E~E1~~~~~~~: The EDIT macro $MOVE was invoked with number of lines 
to be moved equal to O. 

NO ROOM 

E~E1~~~!~~~: An attempt to enter additional lines to a file has 
been detected after the "full storage" message was typed. Any 
stacked lines are cleared to avoid multiple error messages or 
improper subcommand execution sequences. At this point, you must 
either split the file into two smaller files or temporarily 
increase the storage size of your virtual machine via the CP DEFINE 
STORAGE command. The maximum virtual storage permitted is 
determined by the MSTOR value in your directory entry. 

NOT FOUND 

E~E1~~~i~~~: The search operand specified in the ALTER, CHANGE, 
FIND, or LOCATE subcommand was not encountered in the delimited 
range (current ZONE setting), or befdre the end of the file was 
reached. 

OVERFLOW AT STATEMENT nnnnn 

E~E1~~~~~~: This message occurs with VSBASIC files only. The 
convers~on of the line number operand in statement nnnnn would 
produce a record exceeding the logical record length. The old line 
number is nnnnn. The Editor' terminates the RENUM subcommand; to 
continue, correct the statement at old line number nnnnn and 
reissue the subcommand. 

READ ERROR - GETFILE IS INCOMPLETE 

~~E1~~~i~~B: An unrecoverable error was encountered during the 
execution of a GETPILE subcommand. The last.line inserted into the 
file is displayed at the terminal. 

RECORD LENGTH OF FILE TOO LARGE 

~~E!~n~~!QB: The file identification of a GETFILE subcommand 
indicates a file with a record length greater than the file being 
edited. The GETFILE subcommand is not executed. 

section 6: Error Conditions and Recovery Procedures 81 



RENUM MODULE NOT FOUND 

~zEl~~~!~~~: The RENUM subcommand requires that there be a RENUM 
module on the system disk. The Editor terminates the RENUM 
subcommand. your installation system programmer must place the 
RENUM module on the system disk. 

RENUMBER LINES 

1. The line number prompter cannot proceed because there are no 
more numbers between the current line number and the line 
number of the next line already in the file (that is, they 
differ by one). In LINEMODE RIGHT, the user can turn LINEMODE 
OFF, issue a SERIAL subcommand, SAVE the file on disk 
(reserializing it), and finally turn LINEMODE RIGHT on and 
continue with the editing session. 

2. The next line number, 100000000 or 100000, is too large. 
3. If you are editing a VSBASIC or FREEFORT file, you can use the 

RENUM subcommand to renumber your file. 

RESERIALIZATION SUPPRESSED 

~~E!~g~i!Qg: Reserialization on a SAVE, AUTOSAVE, or FILE 
subcommand is suppressed when LINEMODE RIGHT is set so that the 
numbers used during the editing session are retained. To 
reserialize, repeat the SAVE, AUTOSAVE, or FILE with LINEMODE OFF 
set. 

SAVED (See _SAVED.) 

SERIALIZATION IS INCOMPLETE 

~zEl~~~!iQB: During the execution of a SAVE, AUTOSAVE, or FILE 
subcommand that is serializing a file, the disk becomes full before 
the last line is written. the partial file is erased and the user 
is notified of the condition. 

SET NEW FILEMODE, OR ENTER CMS SUBSET AND CLEAR SOME SPACE 

~~El~~~!~~~: During the execution of a SAVE, RENUM, AUTOSAVE, or 
FILE subcommand, the disk becomes full before writing the last line 
of the file. The Editor erases the partial file. To continue, 
either (1) alter the Edit file with the FMODE subcommand, or (2) 
enter CMS SUBSET and erase unneeded files to make more room 
available. 

SET NEW FILEMODE AND RETRY 

~~El~~~!~~~: An attempt was made to SAVE, AUTOSAVE, or FILE a file 
on a disk that is read-only or not accessed. The user may reissue 
the subcommand using a read/write disk as the filemode 
specification in the subcommand line; or, if he does not have a 
read/write disk active, he may enter the CMS SUBSET environment by 
issuing the subcommand CMS, then issue the ACCESS command to gain 
access to a disk in read/write status, then return to the EDIT 
environment by issuing the RETURN command. 

82 IBM VM/370: EDIT Guide 



,{ 

GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

If you are using a VSBASIC file and issued a RENUM subcommand, 
you must access the disk you specified in read/write status for the 
subcommand to operate. The Editor terminates the RENUM subcommand 
without renumbering the file. To continue, use the FMODE 
subcommand to direct the file to a read/write disk and reissue the 
RENUH subcommand. 

SET NEW FILENAME AND RETRY 

]!El~B~!~~B: During the execution of a SAVE, AUTOSAVE, or FILE 
subcommand, an error occurred while altering the name of the CMS 
work file. you can now institute recovery procedures, since the 
Editor returns to EDIT mode. The work file remains. It should be 
erased, and a different file identification for a subsequent SAVE, 
AUTOSAVE, or PILE subcommand should be specified. 

STACKED LINES CLEARED 

]!E!~B2!~~~: Multiple subcommands were detected after a failure to 
increase the file size when the Editor had indicated NO ROOM. This 
message is also displayed when an abnormal exit from the EDIT mode 
occurs (to preserve the CMS command environment from stacked EDIT 
subcommands), or when an error is encountered in executing an EDIT 
macro. 

STACKED LINES CLEARED BY $name 

~!E!~B2!~2~: When the named EDIT macro (such as $MOVE) is invoked, 
any stacked lines are cleared by the macro before its execution. 
This message also occurs at the top of the file or the end of the 
file. At any other point in the file, the message does not occur 
unless lines are stacked in the input buffer. 

STRING NOT FOUND, NO DELETIONS HADE 

TOP: 

~!E!~Bg!!QB: The specified character string has not been found by 
the end of the file. No deletions have been made, and the current 
l~ne pointer remains unchanged. 

]~E!2B2!~2~: The current line pointer is positioned at the null 
line at the top of the file. This message appears either after the 
TOP subcommand has been issued or after any other EDIT subcommand 
has positioned the line pointer at the null line at the beginning 
of the file. 

TOO MANY LINES TO MOVE 

~~E!~Bg!!QB: The $HOVE EDIT macro was invoked with the number of 
lines to be moved greater than 25. 

TOO MANY LINES TO STACK 

~~E!~Bg!!QB: During initialization, the parameter of the STACK 
subcommand implies a storage requirement in excess of that reserved 
for the execution of the subcommand. The limit is 25 lines. 

section 6: Error Conditions and Recovery Procedures 83 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

TRUNC SET TO 72 

~~£!~B~!!QB: The SERIAL subcommand was issued and 
column was set within the serialization field. 
column is reset to column 72. 

TRUNCATED 

the truncation 
The truncation 

~~E!~~~!~~~: The current line has exceeded the truncation column. 
If verification is on, the truncated line is displayed, followed by 
the message INPUT: (if in INPUT mode) • 

WRONG PILE PORMAT POB LINEMODE RIGHT 

~~E!~n~!!Q~: The LINEMODE 
variable-length files or 
other than 80. 

RIGHT option is not compatible with 
files that have a fixed record length 

WRONG FILE FORMAT FOR RENUM 

~~E!~n~!i~~: The filetype of the file you are editing is not 
VSBASIC or FREEPORT, or the Editor detected an invalid line number. 
For VSBASIC files, the line number must be the first five 
characters of the record. For FREEFORT files, the line number must 
be the first eight characters of the record. The Editor terminates 
the BENUM subcommand without renumbering the file. To continue, 
correct the line number or filetype and reissue the RENUM 
subcommand. 

WRONG FILE FORMAT FOR SERIALIZATION 

~~El~n~!iQn: The SERIAL subcommand was issued for a variable-length 
file or for a file that does not have a fixed record length of 80. 

ZONE ERROR 

~~E!~n~!i~n: The string specified in a 
long for the current zone specification. 

CHANGE subcommand is too 
The file is not changed. 

~~E!~n~!iQn: Same as ?EDIT:, but the input line is not displayed 
because the SHOBT subcommand is in effect. 

]~El~n~!!Qn: Same as ?EDIT:, but is displayed when an invalid EDIT 
macro is issued and the SHORT subcommand is in effect. 

?EDIT: 

~!E!~n~!iBn: An unrecognizable EDIT subcommand or invalid 
subcommand operand has been encountered. The input line is 
displayed for inspection. This form is used if the LONG subcommand 
is in effect. 

84 IBM VK/370: EDIT Guide 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

DMSBWR170S DISK 'mode (CCU) , IS FULL 

~~E!~B~!!2~: CMS issues this message if the output disk being 
filled by a FILE, SAVE, RENUM, or AUTOSAVE subcommand becomes full. 
The Editor terminates the subcommand, erases the work file (which 
is incomplete), and requests the user to specify a new filemode or 
make more room on the disk. 

Section 6: Error Conditions and Recovery Procedures 84.1 





GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

Appendix A: Summary of Edit Subcommands 

Operands 

{parm1}{parm2] [llnl* [GI*]] 

[n I OFF] 

[11 n] 

[MI U] 

/string1/string2[/ [llnl* [GI*]]] 

[!Inl*] 

[lin] 

/string[/] 

[filename [filetype [filemode]]] 

[line] 

[filemod~ ] 

[filename] 

{ DISPLAY I LINE} 

[lin] 

filename [filetypel* [filemodel~ [11m [n I~]] ]] 

[ ON I OFF I CANON] 

[line] 

[ Left I Right I OFF] 

/string[/ ] 

[11 n] 

line 

[n] 

Appendix A: Summary of EDIT Subcommands 85 



GC20-1805-3, Page Modified by TNL GN20-2660, March 31, 1975 

,.-._--_. 
Subcommand 

RECfm 

RENum 

REPEAT 

Replace 

REStore 

RETURN 

{REUSEI=} 

SAVE 

S[ croll[ Up ] 

SERial 

SHORT 

STACK 

TABSET 

TOP 

TRUNC 

Type 

Up 

Verify 

{X I Y} 

Zone 

? 

nnnnn 

r-'---' 
I 

Operands 

[FIV] 

[strtnollQ [incrnoI2~~~nQ]] 

[llnl*] 

[line] 

[ subcomma nd ] 

[filename [filetype [filemode]]] 

[*Inll] 

{OFFIONIALLlseg}[incrljQ] 

[llnlsubcommand] 

{n n 
1 2 

[n I *] 

n } 
x 

[llml* [nl*]] 

[lin] 

[ONIOFF][[startcolll]endcoll*] 

[llnlsubcommand line] 

[llml* [nl*]] 

[text] 

EDIT MACROS 
1---------------------------------------
I Macro Operands 
I 
I $DUP [lin] 
I 
I $MOVE n {Up mlDown mlTo label} L ______ . ___________________________________ _ 

86 IBH VM/370: EDIT Guide 



Appendix B: User-Written Edit Macros 

The user-supplied EDIT macros in this appendix have not been formally 
tested by IBM; they are presented for your convenience only. See the 
!~LllQ: ]!~£ y§~!~§ §yig~ for a detailed description of the EXEC 
facilities illustrated in this appendix. The $MOVE and $DUP EDIT macros 
are not illustrated here since they are distributed with the CMS system, 
and can be displayed at your terminal by keying in: 

type $move exec * 

and 

type $dup exec * 

or simply: 

list $* EXEC * (EXECICMS TYPE 

which results in all EXEC files with a filename that starts with $ being 
displayed. 

The $MACROS EDIT macro enables you to key in "$MACROS filename" to 
verify the existence of any files that have a filename beginning with $ 
on your system. If the specified filename is present, full 
identifications of all files with that filename are displayed. If no 
operands are specified, all existing files whose filenames begin with $ 
are displayed. If $MACROS 1 is entered, the macro usage is explained. 

$MACROS [filename1 [filename2 [filenamen]]] 

filename1, 2, or n 
The filename or filenames of EDIT macros. 

To create $MACROS, enter: 

edit $macros exec 

and in INPUT mode, enter the following: 

&CONTROL OFF 
&IF &INDEX EQ 1 &IF &1 EQ 1 &GOTO -TELL 
&IF &INDEX GT 0 &GOTO -PARTIC 

* &BEGTYPE ALL 
EXEC FILES STARTING WITH A DOLLAR-SIGN ARE AS FOLLOWS. 
FOR INFORMATION ON ONE OR MORE OF THEM, TYPE: 
$MACROS FILENAMEl <FILENAME2) 
&END 
LISTF $* EXEC * (NOHEADER FNAME) 
&EXIT 

Appendix B: User-written EDIT Macros 87 



* -PARTIC &TRIP = 0 
&INDEXl = 0 

* &LOOP -ENDLOOP &INDEX 
&INDEXl = &INDEXl + 1 
&SUB = &SUBSTR &&INDEXl 1 1 
&IF &SUB EQ $ &GOTO -STATIT 
&TIPE &&INDEXl IS INVALID 
&TRIP = 1 
&GOTO -ENDLOOP 
-STATIT STATE &&INDEXl EXEC * 
&IF &RETCODE EQ 0 &GOTO -CALLIT 
&TYPE &&INDEXl HOT FOUND 
&TRIP = 1 
&GOTO -ENDLOOP 
-CALLIT EXEC &&INDEXl 1 
-END LOOP 

* &EXIT &TRIP 

* -TELL &BEGTYPE 
'$MACROS' HANDLES THE '$MACROS' REQUEST. 
TYPE '$MACROS' ALONE FOR MORE INFORMATION. 
&END 
&EXIT 

The $MARK EDIT macro allows you to insert from One to six characters, 
starting with the current line and in the column specified, for ~ 
records. If $MARK 1 is entered, the macro usage is explained. 

r.--------------------------------------------------------------------------, 
I $MARK [lin [1~lcol [!Ichar ]]] I 
L I 

n 

col 

Indicates the number of consecutive lines, starting with the record 
currently being pointed to, that will have a character or characters 
inserted. If ~ is not specified, 1 is assumed for!, and the other 
default values are also assumed. 

Indicates the starting column in each record where the character 
string is to be inserted. The default is column 72. 

char 
Indicates from 1 to 6 characters to be inserted in each record. The 
default is an asterisk (*). 

To create $MARK, enter: 

edit $mark exec 

88 IBM VM/370: EDIT Guide 



and in INPUT mode, enter the following: 

&CONTROL OFF 
&IF &INDEX EQ 1 &IF &1 EQ ? &GOTO -TELL 
&IF &INDEX GT 3 &GOTO -BADPARM 

* &INDEX1 = 1 
&IF &INDEX GT 0 &INDEX1 = &1 
&IF &INDEX1 LT 0 &GOTC -BADPARM 
&INDEX2 = 72 
&IF &INDEX GT 1 &INDEX2 = &2 
&IF &INDEX2 LT 0 &GOTO -BADPARM 
&IF &INDEX2 GT 133 &GOTO -BADPARM 
&CHAR = * 
&IF &INDEX EQ 3 &CHAR = &3 
&LEN3 = &LENGTH &CHAR 
&IF &LEN3 GT 6 &GOTO -BADPARM 

* &STACK LIFO RESTORE 
&STACK LIFO OVERLAY (TAB)1 &CHAR 
&STACK LIFO REPEAT &INDEX1 
&STACK LIFO TABS &INDEX2 
&BEGSTACK LIFO 
IMAGE ON 
TRUNC * 
VERIFY OFF 
LONG 
PRESERVE 
&END 
&EXIT 

* -BADPARM &BEGTYPE 
INVALID $MARK OPERANDS 
&END 
&EXIT 1 
* 
-TELL &BEGTYPE 
CORRECT FORM IS: $MARK <N <COL <CHAR»> 
PUTS A 1-6 CHARACTER STRING IN COLUMN 'COL' OF 'N' LINES, STARTING 
WITH THE CURRENT LINE. THE NEW CURRENT LINE IS THE LAST LINE MARKED. 
DEFAULTS ARE: N=1; COL=72; CHAR=*. 
&END 
&EXIT 

1The word (TAB) represents pressing the tab key (or equivalent logical 
tab) and should not be included in the data line. Instead, enter the 
appropriate tab character. 

Appendix B: User-written EDIT Macros 89 



The $POINT EDIT macro allows you to scan only the columns 73-80 of each 
record in. the file, starting with the first record, for a match on a 
one- to eight-character key. The current ZONE and TRUNC subcommand 
settings are ignored. If $POINT? is entered, the macro usage is 
explained. 

r-----------------------------
I $POINT key 
I 

key 
contains a one- to eight-character field. If the specified key is 
less than eight characters long, it is padded with leading zeros. 

To create $POINT, enter: 

edit $point exec 

and in INPUT mode, enter the following: 

&CONTROL OFF 
&IF &INDEX EQ 0 &GOTO -TELL 
&IF &INDEX EQ 1 &IF &1 EQ ? &GOTO -TELL 
&IF &INDEX GT 1 &GOTO -BADPARM 

* &KEYL = &LENGTH &1 
&INDEX1 = 8 - &KEYL 
&Z = &SUBSTR 00000000 1 &INDEX1 
&1 = &CONCAT &Z &1 

* &STACK LIFO RESTORE 
&STACK LIFO FIND (TAB)l &1 
&BEGSTACK LIFO 
TOP 
TABS 1 72 
IMAGE ON 
LONG 
PRESERVE 
&END 
&EXIT 

* -BADPARM &BEGTYPE ALL 
INVALID $POINT OPERANDS 
&END 
&EXIT 

* -TELL &BEGTYPE ALL 
CORRECT FORM IS: $POINT KEY 
IF 'KEY' CONTAINS LESS THAN 8 CHARACTERS, IT IS PADDED WITH LEADING 
ZEROS. THE FILE IS THEN SEARCHED FROM THE TOP FOR 'KEY' IN COLUMNS 
73-80. 
&END 
&EXIT 

lThe word (TAB) represents pressing the tab key (or equivalent logical 
tab) and should not be included in the data line. Instead, enter the 
appropriate tab character. 

90 IBM VM/370: EDIT Guide 



The $COL EDIT macro allows you to insert, after the current record 
pointed to, a line containing column numbers (that is, 1, 6, 11, ••• , 
76). If any operands are entered, the macro usage is explained. 

$COL 

No operands are used with $COL. 

To create $COL, enter: 

edit $col exec 

and in INPUT mode, enter the following: 

&CONTROL OFF 
&IF &INDEX NE 0 &GOTO -TELL 
&STACK LIFO RESTORE 
&STACK LIFe 
&BEGSTACK LIFO ALL 
1 6 11 16 21 26 31 
&END 
&STACK LIFO INPUT 
&BEGSTACK LIFO 
TRUNC * 
VERIFY OFF 
LONG 
PRESERVE 
&END 
&EXIT 

* -TELL &BEGTYPE 
CORRECT FORM IS: $COL 

36 41 46 51 

INSERTS A LINE INTO THE FILE SHOWING COLUMN NUMBERS. 
&END 
&EXIT 

56 61 66 71 76 

Appendix B: User-Written EDIT Macros 91 



¢ logical line delete character 11 

$COL user-written EDIT macro 91 
$DUP EDIT macro 73 
$MACROS user-written EDIT macro 87 
$MARK user-written EDIT macro 88 
$MOVE EDIT macro 73 
$POINT user-written EDIT macro 90 

1 subcommand 71 

• logical line end character 11 

a logical character delete character 10 

" logical escape character 11 

D (lozenge) 6 

A 
abnormal ending, for terminal session 78 
access modes, for CMS files 31 
alphabetic listing, of EDIT subcommands 40 
ALTER subcommand 41 

use of 15 
Assembler file 

changing by line numbers 23 
creating by line numbers 23 

Assembler files, line number prompting for 
54 

attention, signaling to VM/370 27 
AUTOSAVE subcommand 42 

B 
backspacing 

at display terminal 13 
at typewriter terminal 12 

BACKWARD subcommand 43 
BOTTOM subcommand 43 

C 
CANON operand 52 
CASE subcommand 43 
CHANGE subcommand 44 

inadvertent changes 45 

Index 

changing a file 
by context editing 19 
by line number editing 22 

changing an Assembler file by line numbers 
23 

changing default tab settings 14 
character, continuation, placement of 76 
character delete character 10 
character strings 

as operands 16 
in operands 16 

characteristics, of Editor operation 75 
characters, logical line editing 10 
clearing console stack with EDIT macros 74 
CMS 

EDIT subcommands 39 
Editor 5 

error recovery procedures 77 
messages 79 
operational characteristics 75 
subcommand summary 85 

entering via FILE or QUIT 37 
file identifiers 29 
immediate commands 31 
loading and initializing 29 

CMS EDIT mode 33 
CMS Editor 5 
CMS mode 29 

entering 37 
CMS subcommand 46 

using 37 
CMS subset commands 37 
column 72, placing a continuation character 
in 76 

command, CMS, EDIT 8 
command modes 25 
commands, CMS immediate 31 
console stack, clearing with EDIT macros 

74 
context editing 17 

example of 19 
subcommands for 17 

continuation characters, placing in column 
72 76 

Control Program (~gg CP) 
Conversational Monitor System (seg CMS) 
CP mode 29 

entering 29 
returning to 33,35 

from CMS 33 
from EDIT mode 35 

creating a file 
by context editing 19 
by line number editing 22 

creating an Assembler file by line numbers 
23 

current line pointer 6,9 

D 
data files, attributes 12 
data truncation 13 

Index 93 



default tab settings 14 
defaults, for record length in EDIT 9 
defining a new logical tab character 15 
defining a 3270 program function key for 
tab settings 16 

DELETE subcommand 47 
delimiters, for character strings 16 
DESBUF function, used in EDIT macros 74 
disk space capacity, exceeding 78 
display terminal (§~~ 3270 display 

terminal) 
DOWN subcommand 47 
duplicating lines 73 

E 
EDIT command, format of 8 
EDIT macros 73 

clearing console stack 74 
conventions for writing 74 
deleting stacked lines in 74 
DESEUF function in 74 
entering 35 
stacking EDIT subcommands in 74 
user-written 87 

$COL 91 
$MACROS 87 
$MARK 88 
$POINT 90 

variables in 74 
writing 73 

EDIT mode 
entering 33 
entering from CMS 33 
entering from CMS via RETURN 33 
returning to, from INPUT 37 
use of 33 

EDIT session status 6 
EDIT subcommands 

alphabetic list of 40 
by function 

ending the session 39 
miscellaneous 39 
modifying data 39 
moving the pointer 39 
saving intermediate results 39 
specifying record attributes 39 
upper/lower case control 39 

summary of 
alphabetic 85 
by function 39 

used for context editing 17 
EDIT subcommmands, by function, changing 

EDIT modes 39 
editing 

by context 17 
example of 19 
subcommands for 17 

by line numbers 21 
example of 22 
subcommands for 21 

display terminal 5 
screen layout for 6 
with a 3270 display terminal 5 

editing a file with a 3270 display terminal 
7 

Edi tor, CMS 5 
Editor error procedures 77 

94 IBM VM/370: EDIT Guide 

Editor messages 79 
Editor mode of operation 5 
ending 

abnormal, for terminal session 78 
an input line 27 

end-of-file condition, resolution of 75 
entering CMS via FILE or QUIT 37 
entering EDIT macros 35 
entering EDIT mode from CMS 33 
entering EDIT mode via RETURN from CMS 33 
entering INPUT mode 37 
EOF (§~~ end-of-file condition) 
error conditions, recovery from 77 
escape character 11 
exceeding disk storage capacity 78 
exceeding real storage capacity 77 

F 
file 

creating or changing 
by context 19 
by line number editing 22 

file 10 6 
file identifiers, CMS 29 
file records, serialization of 16 
FILE subcommand 48 
filemode 

CMS 29 
in EDIT command 8 

filename 
CMS 29 
in EDIT command 8 

files, data 12 
filetype 

CMS 29 
in EDIT command 8 

FIND subcommand 48 
FMODE subcommand 49 
FNAME subcommand 49 
format, o~ EDIT command 8 
FORWARD subcommand 50 
FREEFORT files, renumbering 59 
function keys (§~~ program function keys) 

G 
GETFILE subcommand 50 

• 
H 
HO command 31 
HT command 31 
HX command 31 

I 
10, file 6 
identifiers, CMS file 29 
IMAGE subcommand 51 
immediate commands, CMS 31 
initial program loading CMS 29 
input area, user 6 
input line, ending 27 



INPUT mode 
entering 37 
using 37 

INPUT subcommand 52 
inserting tab characters at a display 

terminal 15 
inserting tab characters at a typewriter 

terminal 15 
intermediate results, saving 12 
IPL CMS 29 

L 
line delete character 11 
line editing, logical 10 
line end character 11 
line number editing 21 

example of 22 
subcommands for 21 

line pointer 
current 6 
for editing 9 
positioning 9 

LINEMODE subcommand 53 
listing, of EDIT subcommands 40 
LOCATE subcommand 55 
locating records 9 
logical line editing characters 10 
logical tab character, new, defining 15 
logical tab stops, setting 14 
LOGON command, using 29 
LOGON procedures, for VM/370 users 27 
long form of EDIT responses 56 
LONG subcommand 56 
lozenge 6 
LRECL operand, in EDIT command 9 

M 
macros 

EDIT 73 
entering 35 
user-written 87 
writing 73 

message, display screen 6 
messages, Editor 79 
mode 

access, for CMS files 31 
CMS 29 
CMS subset, entering 37 
CP 29 

entering 29 
returning to 33 
returning to 35 

EDIT 
entering 33 
returning to 33 

INPUT 
entering 37 
using 37 

mode of operation, Editor 5 
modes, command 25 
moving lines 73 
MSG command, using 29 

N 
new logical tab character, defining 15 
NEXT subcommand 56 
nnnnn subcommand 72 
null line, created by Editor 10 
number, of records handled by Editor 75 

o 
operands 

character strings in 16 
containing character strings 16 

operational characteristics, CMS Editor 75 
output display area 6 
OVERLAY subcommand 57 

P 
placing a continuation character in column 
72 76 

pointer, line, for editing 9 
PRESERVE subcommand 57 
program function keys 

defining, for tab settings 16 
3270 

sample settings 8 
using 7 

PROMPT subcommand 58 

Q 
QUIT subcommand 58 

R 
real storage capacity, exceeding 77 
RECFM subcommand 58 
record length 

assumed defaults 9 
maximum permitted 9 
specification, in EDIT command 9 

records 
number of, handled by Editor 75 
serialization of 16 

recovery procedures, for error conditions 
77 

RENUM subcommand 59 
REPEAT subcommand 60 
REPLACE subcommand 60 
RESTORE subcommand 61 
results, intermediate, saving 12 
RETURN command, using 33 
RETURN subcommand 61 
returning to CP mode from eMS 33 
returning to CP mode from EDIT mode 35 
returning to EDIT mode from CMS 61 
returning to EDIT mode from INPUT 37 
REUSE subcommand 61 
RT command 31 

Index 95 



S 
sample settings of 3270 program function 

keys 8 
SAVE subcommand 62 
saving intermediate results 12 
screen layout for editing 6,6 
screen status 6 
SCROLL subcommand 63 
SERIAL subcommand 63 

use of 16 
serialization 

defaults 17 
of file records 16 

settings 
tab stop 14 

default 14 
short form of EDIT responses 65 
SHORT subcommand 65 
signaling attention, to VM/370 27 
special null line 10 
stack, console, clearing with EDIT macros 

74 
STACK subcommand 65 
status 

Edit session 6 
screen 6 

stops 
tab 

default 14 
setting 14 

storage capacity 
disk, exceeding 78 
real, exceeding 77 

strings, character, as operands 16 
subcommand, EDIT, AUTOSAVE 42 
subcommands 

EDIT 
? 71 
alphabetic summary of 85 
ALTER 41 
BACKWARD 43 
BOTTOM 43 
CASE 43 
CHANGE 44 
eMS 46 
DELETE 47 
DOWN 47 
FILE 48 
FIND 48 
FMODE 49 
FNAME 49 
FORWARD 50 
functional summary of 39 
GETFILE 50 
IMAGE 51 
INPUT 52 
LINEMODE 53 
LOCATE 55 
LONG 56 
NEXT 56 
nnnnn 72 
OVERLAY 57 
PRESERVE 57 
PROMPT 58 
QUIT 58 
RECFM 58 
RENUM 59 
REPEAT 60 
REPLACE 60 

96 IBM VM/370: EDIT Guide 

RESTORE 61 
RETURN 61 
REUSE 61 
SAVE 62 
SCROLL 63 
SERIAL 63 
SHORT 65 
STACK 65 
TAB SET 65 
TOP 66 
TRUNC 66 
TYPE 67 
UP 68 
VERIFY 68 
X or Y 69 
ZONE 70 

for context editing 17 
for line number editing 21 

subset, CMS, entering 37 
summary 

of EDIT subcommands 
alphabetic 85 
by function 39 

symbols, logical line editing 10 

T 
tab characters 

in EDIT macros 74 
inserting 

at display terminal 15 
at typewriter terminal 15 

tab settings 14 
default 14 

changing 14 
TAB SET subcommand 65 
terminal session, ending abnormaLly 78 
termination, abnormal 78 
TOF (§~~ top-of-file condition) 
TOP subcommand 66 
top-of-file condition, resolution of 75 
TRUNC subcommand 66 

.truncation, data 13 
truncation columns for EDIT subcommands 14 
TYPE subcommand 67 

U 
underscoring 

at display terminal 13 
at typewriter terminal 12 

unplanned ending, for terminal session 78 
UP subcommand 68 
user input area 6 
user-written EDIT macros 73 

examples 87 
using the 3270 program function keys 7 

V 
VERIFY subcommand 68 
Virtual Machine Facility/370, LOGON 
procedures 27 

VM/370 (~~~ Virtual Machine Facility/370) 
VSBASIC files, renumbering 59 



w 
writing EDIT macros 73 

x 
X or Y subcommand 69 

Z 
ZOUE subcommand 70 

3 
3270 display terminal 

backspacing at 13 
defining PF keys for tab settings 15 
editing with 7 
inserting tab characters at 15 
output area 6 
program function keys 

defining for tab settings 16 
sample settings of 8 
using 7 

screen layout 6 
screen layout for editing 6 
screen message agea 6 
subcommands that operate differently on 

40 
underscoring at 13 

3270 display terminal editing 5 

Index 97 



QI • 
c:: • 
:J : 
.!!! • 
~. 
I- • 
o· c:: • 
o· « : 
.§ : 
~ : 

READER'S COMMENTS 

Title: IBM Virtual Machine 
Facility/370: 

Order No. GC20-180S-3 

EDIT Guide 

Please check or fill in the items; adding explanations/comments in the space provided. 

Which of the following terms best describes your job? 

o Programmer 0 Systems Analyst o Customer Engineer 
o Manager 0 Engineer o Systems Engineer 
o Operator 0 Mathematician o Sales Representative 
o Instructor 0 Student/Trainee o Other (explain below) 

Does your installation subscribe to the SL/SS? DYes o No 

How did you use this publication? 
o As an introduction o As a text (student) 
o As a reference manual o As a text (instructor) 
o Foranotherpurpose(exp~in)~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Did you find the material easy to read and understand? 0 Yes 

Did you find the material organized for convenient use? 0 Yes 

Specific criticisms (explain below) 

o No (explain below) 

o No (explain below) 

Clarifications on pages ______________________________ _ 
Additions on pages ~ ______________________________ _ 
Deletions on pages ~ ______________________________ _ 
Errors on pages ________________________________ ___ 

Explanations and other comments: 

Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



GC20-1805-3 

YOUR COMMENTS PLEASE ... 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance and/or additional publications or to suggest 
programming changes will delay response, however. For more direct handling 
of such requests, please contact your IBM representative or the IBM Branch 
Office serving your locality. Your comments will be carefully reviewed by 
the person or persons responsible for writing and publishing this material. All 
comments or suggestions become the property of IBM. 

FOLD FOLD 

: ~ 
: 3' 
: ~ 
'0 
• :J ·cc 
:-t 
.:T 
• iii' :r · ::;. 
• (1) 

........................................................................................................................... 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. 

POSTAGE WILL BE PAID BY 

IBM CORPORATION 
VM/370 PUBLICATIONS 

24 NEW ENGLAND EXECUTIVE PARK 

BURLINGTON, MASS. 01803 

FIRST CLASS 

PERMIT NO. 172 

BURLINGTON, MASS. 

-

'OJ :s: 
:< :s: ......... 
·w ....... 
:!=? 
:m 
:S2 
:-1 
:e> 
.c 
:~ 

......•.................................................................•...........................................•..... :::!' 
FOLD FOLD ::i" 

International BUllness Machlnel Corporation 
Data Processing Division 
1133 Weltchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

• r+ .CD .c.. 
::i" 
:C 
:en 
:~ 



ltmrul/reChnical Newsletter This Newsletter No. 

Date 

GN20·2660 

March 31, 1975 

Base Publication No. 

File No. 

GC20·1805·3 
S370·36 

Previous Newsletters None 

IBM Virtual Machine Facility /370: 
EDIT Guide 

© IBM Corp. 1975 

This Technical Newsletter, a part of Release 2 PLC 13 of IBM Virtual 
Machine Faci1ity/370, provides replacement pages for your publication. 
These replacement pages remain in effect for subsequent VM/370 releases 
unless specifically altered. Pages to be removed and/or inserted are 
listed below. 

Title Page, 2 
Summary of Amendments 
Contents (2 pages) 
5-10.4 
11, 12 
17-18.1 
19,20 
31,32 
39-44.1 

47-50.2 
53-54.1 
63,64 
67-70.1 
71,72 
75-78 
83-84.1 
85,86 

Changes or additions to the text and illustrations are indicated by a 
vertical line to the left of the change. 

SUMMARY OF AMENDMENTS 

This Technical Newsletter incorporates changes reflecting su~~ort for 
remote 3270 Display stations and enhancements to the CMS Editor. 

Note: Please file this cover letter at the back of your publication to 
provide a record of changes. 

IBM Corporation, VM/370 Publications, 24 New England Executive Park, Burlington, Massachusetts 01803 

Printed in U.S.A. 




