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ABSTRACT

The world has been facing a huge population boom for the last few decades. In this context, food
security is a big challenge for many developing countries. Crop yield estimates play a crucial
role in formulating food-related policies. They are generally produced using statistical data. But
integrating actual remote sensing observations and deeper understanding of the dynamics of crops
can help us to provide more accurate crop yield estimates. Moreover, we can have a sense of how
crops respond to changing climatic conditions.

Several parameters (such as chlorophyll content, leaf area index [LAI], water content in leaf
etc.) defining crop dynamics are essential inputs for modelling ecosystem carbon and water fluxes.
It is possible to retrieve values of these parameters from remote sensing observations.

This study focuses on two wheat-growing seasons (2018-19 and 2019-20) at Samrakalwana vil-
lage, located in the northern part of India. The main objective of this study is to simulate eco-
system fluxes using Soil Canopy Observation of Photosynthesis and Energy fluxes (SCOPE) with
vegetation parameters retrieved from Sentinel-3 (S3) and Sentinel-2 (S2) data. Then, the simulated
carbon flux was used to provide crop yield estimate.

Two radiative transfer models (i.e., Optical Radiative Transfer Routine [RTMo] of SCOPE
and Soil-Plant-Atmosphere Radiative Transfer [SPART]) were inverted to retrieve mainly crop
parameters from S3 Ocean and Land Color Imager (OLCI) and S2 Multispectral Instrument (MSI)
observations. The RTMo in SCOPE only represents a soil-vegetation system, whereas the SPART
includes atmosphere also and it is possible to retrieve parameters defining atmospheric conditions
(Aerosol Optical Thickness [AOT], columnar water and ozone content). The data from S3 OLCI
was used as it has observations from 21 different bands with a higher temporal resolution of 1.1
days. In contrast, the advantage of S2 MSI is its higher spatial resolutions (4, 6 and 3 bands with
10m, 20m and 60m resolution respectively).

The retrieved parameters and meteorological data from ECMWF ERA5 dataset were then used
to model ecosystem fluxes (Gross Primary Production [GPP] and Evapotranspiration [ET]) using
SCOPE. The SCOPE simulated GPP and ET were compared against MODIS and ECOSTRESS
bases GPP and ET products. Then simulated GPP fluxes were used to provide crop yield estimate.
Supplementary information, such as Water Use Efficiency (WUE), Light Use Efficiency (LUE)
and Evaporative fraction (EF), were also calculated.

The retrieved parameters, in general, are affected by spikes due to noisy input data. In some
cases, the expected pattern of crop dynamics can be observed and retrieved LAI agrees with field-
measured LAI. The SCOPE simulated GPP flux was in a range of 0 to 12 µmol m2s−1. The
simulated ET was in a range of 0 to 11 mm/day. It was found that the values of simulated fluxes
are mostly higher than the MODIS based estimate. Crop yield estimates from simulated carbon
fluxes were also bit higher than the actual field measurements.

Keywords: Sentinel-3 OLCI, Sentinel-2 MSI, RTMo, SPART, SCOPE, Gross Primary Production,
Evapotranspiration, Crop yield
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CROP YIELD ESTIMATION FROM SIMULATED CARBON FLUX USING SCOPE: A CASE STUDY OF SAMRAKALWANA VILLAGE IN INDIA

Chapter 1

Introduction

1.1 GENERAL BACKGROUND

The world population was 7.7 billion in 2019, and it has been predicted to rise by 10% and to
8.5 billion in 2030 and by 26% to 9.7 billion by 2050. Geographically this population boom will
be concentrated in South Asia and Africa. It is projected that India will overtake China as the
world’s most populous country by 2027 (United Nations, Department of Economic and Social
Affairs, Population Division, 2019). This rapid population growth will impose great pressure on
agriculture to produce the food required to sustain society. It will further increase the competition
among the limited resources of water, land and energy (Godfray et al., 2010).

India is an agriculturally intensive country as 54.6% of India’s total human power is involved in
this sector. The agriculture and allied sector contributed 16% of India’s Gross Value Added (GVA)
during 2018 – 19. India also produced 284.83 million tonnes of food grain in the growing sea-
son of 2017 – 2018 (Department of Agriculture, Cooperation and Farmers Welfare, Government
of India, 2019). Despite the involvement of a large workforce and production of such a massive
amount of food, the problem of malnutrition still exists in India. Farmers, as well as the customers
also suffer from the problem of fluctuating price of food grains. Farmers are forced to sale their
produced grain with a considerable loss which leads to a high number of farmer’s suicide cases
(Merriott, 2016). The common people also have to buy food at higher prices which make food
grains inaccessible to a huge population living below poverty level.

Government and policymakers highly rely on crop yield estimates to formulate policies aiding
food security in order to avoid above described situations. Crop yield forecasts are also crucial
for developing efficient land and water management practices and determining various business
policies (White et al., 2020). The Directorate of Economics and Statistics of the Department of
Agriculture provides four advance estimates of major crop yields in September, February (in the
following year), April – May and July – August respectively. They rely on different methodologies
like econometric modelling, previous years statistics and trends, meteorological factors to validate
production and yield data reported by different state governments (Department of Agriculture,
Cooperation and Farmers Welfare, Government of India, 2019).

There are also various types of crop growth models, which incorporates crop growth paramet-
ers to simulate crop biophysical parameters, grain yield, energy fluxes etc. (Mandal & Rao, 2020).
Statistical models exploit historical crop yield data to generate a future trend of crop yield for a
large area. Mechanistic models simulate different plant functions and soil mechanisms to reach to a
specific output. The functional model tries to simplify complex natural processes and provide em-
pirical relations (Basso et al., n.d.). Nowadays, these functional models are also integrating remote
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sensing data with meteorological observations to predict crop yield. Few examples of these types
of functional model include Forecasting Agricultural output using Space, Agro-meteorological
and Land based observation (FASAL) (Parihar & Oza, 2006), Monitoring Agriculture with Re-
mote Sensing (MARS) Crop Yield Forecasting System (MCYFS) of the European Commission
Joint Research Centre (JRC) (Genovese et al., 2004), Integrated Canadian Crop Yield Forecaster
(ICYF) of Agriculture and Agri-Food Canada (Chipanshi et al., 2012) and CropWatch (Wu et al.,
2014).

Besides, crop growth models, there are radiative transfer models coupled with photochemistry
or light use efficiency model which can provide information about ecosystem functioning using
remote sensing data. The ecosystem functioning is evaluated by plant Evapotranspiration (ET)
and photosynthesis or Gross Primary Production (GPP) which are provided as the output of these
models (Bayat et al., 2019).

Europe’s Copernicus programme provides a large amount of satellite observed data for various
applications including monitoring of land, atmosphere, ocean etc. Sentinel-3 (S3) and Sentinel-2
(S2) are two of the optical satellites of Copernicus programmes which provides a wide range of
observations. The advantage of S3 is its high temporal resolution and more number of bands.
Whereas, S2 has higher spatial resolution. A research framework is adopted to use these satellite
based observations along with radiative transfer models to retrieve key crop biophysical paramet-
ers and later simulating primary production of crop and other ecosystem fluxes. This framework
is shown in Figure 1.1.

Figure 1.1: A brief representation of the research
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1.2 MODELS FOR CROP BIOPHYSICAL PARAMETERS RETRIEVAL

The key indicators of vegetation growth and thus crop productivity include leaf chlorophyll con-
centration (Cab), Leaf Area Index (LAI) and equivalent leaf water thickness (Cw). Together, these
indicators can provide insight into the spatial dynamics of vegetation. They can be retrieved from
satellite observations, for example S3 or S2. Various modelling approaches or model inversion
techniques can be adopted for this purpose. Some of the possibilities are using a physically-based
model (e.g., inverting radiative transfer models by numerical optimization or look-up tables) or
data driven approaches (e.g. training neural networks) or hybrid modelling approaches combin-
ing the advantages of both (Berger et al., 2020; Combal et al., 2003; Darvishzadeh et al., 2008; De
Grave et al., 2020).

Inversion of two different integrated radiative transfer models have been performed during
this study. The first one is the Optical Radiative Transfer Routine (RTMo) of the Soil Canopy
Observation of Photosynthesis and Energy fluxes (SCOPE) model. This model utilizes the Brightness-
Shape-Moisture (BSM) and Fluspect for soil and leaf reflectance respectively and then they are in-
tegrated to canopy level by using SAIL model (Prikaziuk & van der Tol, 2019). The second one
is Soil-Plant-Atmosphere Radiative Transfer (SPART) which is constructed using BSM to account
for soil, PROSPECT + SAIL (PROSAIL) to account for canopy and Simplified Method for At-
mospheric Correction (SMAC) to account for atmosphere (Yang, van der Tol, Yin et al., 2020).
More details about these models are given in Sections 2.1 and 2.2.

There is a key difference between the RTMo of SCOPE and SPART related to the model do-
main. SCOPE is only a soil-vegetation model. So, Top of Canopy (TOC) reflectance is necessary
for retrieval using SCOPE. Thus, atmospheric correction of Top of Atmosphere (TOA) reflectance
has to be performed first. On the other hand, SPART is a coupled surface-atmosphere model. So,
TOA reflectance/ radiance can be directly used for retrieval using this model. It is also possible
to retrieve parameters related to atmosphere, such as Aerosol Optical Thickness (AOT), ozone
content, water vapour content etc.

1.3 SOIL CANOPY OBSERVATION OF PHOTOSYNTHESIS AND ENERGY FLUXES (SCOPE) MODEL

SCOPE model has been applied and validated in different study area with different ecosystems
for simulating water, carbon fluxes and developing different aspects of the model. SCOPE model
was developed between 2006 – 2009 under the framework of the ECO-RTM project, which was
supported by the Netherlands Organization for Scientific Research (NWO-SRON-EO-071) (Abd
El Baki, 2013). The details on the theoretical construction of the model and how the model works
along with required input parameters were first published in 2009 by van der Tol et al., 2009.

A recently published version of the SCOPE model, known as SCOPE 2.0 includes an im-
proved representation of heterogeneous canopy, capturing effect of xanthophyll cycle on leaf and
canopy reflectance and increasing computational efficiency (Yang, Prikaziuk et al., 2020).

The SCOPE is a one dimensional vertical model. Thus, spatially it considers vertical fluxes
only and ignores any horizontal interaction of fluxes. SCOPE performs simulations for a given
set of instantaneous vegetation and weather conditions. Thus, in temporal domain, it does not
has a memory effect and each individual simulation is independent from each other. The model
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considers a wide range of wavelength (0.4 to 50 µm) including visible, near and shortwave infrared,
thermal domain. Besides, it can also simulate fluorescence emission in the domain of 640 to 850
nm.

SCOPE has been used in various studies. Pardo et al., 2018 applied SCOPE for simulating
carbon and energy fluxes for rapeseed in Spain. Bayat et al., 2018 exploited optical and thermal in-
frared observations of Landsat along with SCOPE to apply for a drought case in U.S.A. Wolanin
et al., 2019 combined machine learning with SCOPE using Landsat and S2 data for simulating
GPP in test sites at U.S.A. and Germany. Sinha et al., 2020 applied SCOPE for a tropical de-
ciduous forest in India. SCOPE has also been widely used for researches related to Sun-Induced
Fluorescence (SIF). For example, Migliavacca et al., 2017 used SCOPE to assess the relationship
between SIF and GPP with a variation in canopy structure induced by different nutrient condi-
tions. SCOPE has also been also used to successfully retrieve SIF in order to monitor plant stress
recovery after a herbicide treatment by Celesti et al., 2018.

1.4 JUSTIFICATION

Agricultural ecosystems or croplands are unique ecosystems. The behaviour of these ecosystems
not only depends on natural factors (e.g. weather conditions, such as temperature, humidity, pre-
cipitation etc.) but also on the management practices by human (e.g. irrigation, application of
fertilizer, pesticides). Thus, crop growth and crop yield also depend on these factors.

The changing climatic conditions are threatening the production of crops or agricultural eco-
system (Flach et al., 2021). The monitoring of crops at different stages can contribute to under-
standing crop response better. It is not always possible to monitor ecosystem fluxes, such as carbon
and water fluxes, with in-situ measurements. In this case, satellite-based observations and monitor-
ing have proven to be useful. The potential of new generation satellite-based products along with
integrated radiative transfer models have been explored to quantify ecosystem fluxes of a cropping
ecosystem that lacks in-situ instrumentation.

1.5 PROBLEM STATEMENT

Many retrieval algorithms and approaches exist to retrieve vegetation parameters from satellite
remote sensing. These algorithms have been individually applied to retrieve vegetation biophysical
parameters for different biome classes. For example, Yang, van der Tol, Yin et al., 2020 and Yang
et al., 2021 have applied SPART model for biome classes, such as mixed forest, cropland, Savannah
etc. Prikaziuk and van der Tol, 2019 have performed a global sensitivity analysis of combined BSM
and RTMo routines of the SCOPE model with S3 observations. But there is a need of comparative
study between SPART and SCOPE to assess suitability of a certain model or to find out advantages
of a certain model in combination with specific satellite observations.

The agricultural field size in the study area in India is usually very small as most of the farmers
in India are small and marginal farmers. In fact, the average size of farm holding in India was 1.08
ha in 2015-16 (Department of Agriculture, Cooperation and Farmers Welfare, Government of
India, 2020). It is not easy to quantify ecosystem fluxes in these small farms with remote sensing
data. Moreover, these farms also lacks ground measurements or instrumentation, such as eddy-
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covariance based flux measurements. It is important to explore the potential of new generation
high resolution satellites, such as S2 to quantify the fluxes and ecosystem efficiency parameters.

1.6 OBJECTIVES

1.6.1 General Objective

The research aims to simulate carbon flux (photosynthesis or GPP) and water flux (ET) by SCOPE
model using remote sensing data for an agricultural ecosystem to provide crop yield estimation and
ecosystem efficiency parameters.

1.6.2 Specific Objectives

The specific objectives formulated for this research are as follows.

1. To retrieve key crop biophysical parameters that determine for agricultural productivity.

• To implement an existing retrieval algorithm for the inversion of RTMo in SCOPE
with TOC S3 and S2 observations.

• To implement an existing retrieval algorithm for the inversion of SPART model with
TOA S3 and S2 observations.

2. To evaluate the retrieved crop biophysical parameters from TOC and TOA observations
(specifically, LAI).

• against in-situ measurements.

• against other global remote sensing based LAI products.

3. To select a suitable time-series of crop parameters for the simulation of ecosystem fluxes
using SCOPE.

4. To assess the ability of SCOPE to simulate radiative and non-radiative ecosystem fluxes.

5. To compare simulated GPP and ET with similar remote sensing based products.

6. To provide crop yield estimation and ecosystem efficiency parameters.

1.7 RESEARCH QUESTIONS

The research questions formulated based on the above specific objectives are as follows.

1. Are there any specific advantages of using a coupled atmosphere-surface model (SPART) over
using an only soil-vegetation model (RTMo in SCOPE) for the retrieval of crop parameters?

2. Which satellite observations (S3 or S2) are more suitable for retrieval of the crop biophysical
parameters for the chosen study area?
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3. Is it possible to meaningfully perform a one-to-one comparison between LAI retrieved from
S3 and S2 observations, and ground measured LAI?

4. To what extent, do SCOPE simulated GPP and ET estimates agree with similar satellite-
based products?

5. How well the crop yield estimation from SCOPE simulated photosynthesis agree with the
actual field measurement of crop yield?

1.8 SIGNIFICANCE OF THE STUDY

A previous study was conducted by Denis, 2013 in the same study area to quantify ET using Surface
Energy Balance System (SEBS) and SCOPE with Moderate Resolution Imaging Spectroradiometer
(MODIS) imagery. The algorithms and satellites have evolved since then. In this study, a new
generation of satellites (S3 and S2) have been explored to retrieve crop biophysical parameters. A
newer version of SCOPE model (v2.0) has been used in this research to quantify both water and
carbon flux of the study area.

This study also aims to apply both SPART and SCOPE along with S3 and S2 data in a compar-
ative analysis between them. The current publicly available version of SPART is only compatible
with LANDSAT-4,5,6,7 & 8, S3 A & B, and MODIS Terra/Aqua observations. S2 specifications
have also been integrated with SPART model during this study in order to meet the objectives of
this research.

This research also aims at going a step further with modelled GPP and explore if it can be used
to get a rough estimate of crop yield.

1.9 RESEARCH OUTLINE

The details of the research is presented in 7 chapters in this thesis and they are structured in the
following way.

• The first chapter presents the general background of the research and brief description of
retrieval algorithms and SCOPE model. It also outlines justification, problem statement,
objectives, research questions, significance of the study.

• The second chapter provides a more detailed description and the theoretical background of
the models (RTMo of SCOPE and SPART) used for retrieval as well as that of SCOPE.

• The third chapter gives a general description of the study area, study period, cropping details.
It also describes the major data used in this research.

• The fourth chapter describes all the methodological steps in detail.

• The fifth chapter describes the results obtained at different steps of research methodology.

• The sixth chapter provides a discussion on the achieved result.

• The seventh chapter gives main research conclusions and recommendations.
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Chapter 2

Theoretical Basis of the Models Used

The three major models used in this research are RTMo, SPART and SCOPE. RTMo is also a
sub-model of the SCOPE. Each of these model is described in the following sections.

In this study, the RTMo of SCOPE and SPART were used for the retrieval of certain soil,
vegetation and atmospheric parameters from satellite observations in an inverse scheme. But in
this chapter, the forward scheme of these models is described in terms of model structure, main
input and output parameters in general. The inversion of the models or the retrieval methods are
described in detail in Section 4.4.

2.1 OPTICAL RADIATIVE TRANSFER ROUTINES IN SCOPE

The RTMo is part of the original SCOPE model (van der Tol et al., 2009), and it is described in
detail in Prikaziuk and van der Tol, 2019.

2.1.1 Model Structure

The RTMo is made of various sub-models representing leaf, canopy and soil in order to repres-
ent a vegetation layer bounded by a soil layer. The Fluspect model (Vilfan et al., 2016) is used to
represent the leaf layer which calculates reflectance, fluorescence and transmittance of it using leaf
optical parameters (Table 2.1). The BSM model (Jiang & Fang, 2019; Verhoef et al., 2018) is used
to represent soil layer and it calculates soil reflectance using four soil parameters (Table 2.1). A
numerical SAIL model (Verhoef, 1984) integrates the output of BSM model and Fluspect at can-
opy level using canopy parameters and parameters describing illumination-observation geometry
(Table 2.1). RTMo provides four TOC reflectance factors for direct (s) and diffuse sunlight (d), to
reflected radiance in observation (o) and hemispherical direction (d) as output which are known
as bidirectional (rso), directional-hemispherical (rsd), hemispherical-directional (rdo) and bihemi-
spherical (rdd). TOC reflectance (ρTOC) depending on angle of observation or sun-observer geo-
metry is then calculated by four of the outputs and direct TOC irradiance (Edir) and diffuse TOC
irradiance (Edif ) using Equation 2.1. The interactions between these sub-models and their input
and output are described in Figure 2.1.

ρTOC = Edir · rso + Edif · rdo

Edir + Edif
(2.1)
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Figure 2.1: Structure of the forward radiative transfer of incident radiation in the SCOPE model
(BSM, Fluspect and RTMo).

2.1.2 Inputs of the SCOPE Radiative Transfer of Incident Radiation

The inputs of this algorithm are classified into four types, i.e., soil, leaf, canopy and illumination-
observation geometry parameters. These parameters are summarized in Table 2.1.

2.1.3 Outputs of the SCOPE Radiative Transfer of Incident Radiation

The combined BSM, Fluspect and RTMo can simulate TOC reflectance for a specific sensor and
for a given set of input parameters (Table 2.1). If the actual observed TOC reflectance from a sensor
is given as input, the soil, leaf and canopy parameters can be retrieved by inverting the model.

2.2 SOIL-PLANT-ATMOSPHERE RADIATIVE TRANSFER (SPART)

This section provides a brief description of SPART, based on the original paper by Yang, van der
Tol, Yin et al., 2020.

2.2.1 Model Structure

SPART consists of three sub-models to represent radiative transfer in soil-vegetation-atmosphere
continuum. The soil, canopy and atmosphere are represented by BSM (Verhoef et al., 2018), PRO-
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Table 2.1 Input parameters required for RTMo model
Parameters Units Description

Soil parameters
B - Soil brightness
BSMlat Degree BSM model parameter lat
BSMlon Degree BSM model parameter lon
SMC % Volumetric soil moisture content
Leaf parameters
Cab µg cm−2 Leaf chlorophyll content
Cca µg cm−2 Leaf carotenoid content
Cant µg cm−2 Leaf anthocyanin content
Cdm g cm−2 Leaf mass per area (dry matter)
Cw cm Equivalent leaf water thickness
Cs - Senescent material (brown pigments)
N - Mesophyll structure parameter
Canopy parameters
LAI m2 m−2 Canopy leaf area index
LIDFa - Leaf inclination distribution function parameters
LIDFb - Leaf inclination distribution function parameters
Parameters describing illumination-observation geometry
SZA Degree Solar zenith angle
OZA Degree Observation zenith angle
SAA Degree Solar azimuth angle
OAA Degree Observation azimuth angle

SAIL (Jacquemoud & Baret, 1990; Verhoef, 1984) and SMAC (Rahman & Dedieu, 1994) respect-
ively. Interactions of these sub-models in SPART produce both TOA and TOC reflectance/ radi-
ance for a certain sensor at any viewing direction. Each of these sub-models are briefly described
in following sections. The structure of the SPART model is shown in Figure 2.2.

There are few key differences in model structure between the SCOPE and SPART. These
differences are as follows.

1. The SMAC is integrated with SPART to represent the atmosphere. SCOPE lacks this atmo-
spheric component.

2. SCOPE has an energy balance module and capable of simulating photosynthesis and heat
fluxes. Whereas, SPART can only simulate TOC or TOA radiance/reflectance for a given
set of soil, vegetation and atmospheric conditions.

3. SCOPE is capable of simulating fluorescence using Fluspect. On the other hand, SPART
uses PROSPECT to only simulate reflectance and radiance.

BSM Soil Reflectance Model

The BSM was applied in two different ways for dry soil and wet soil in SPART. Three basis spectra
or Global Spectral Vectors (GSV) (Jiang & Fang, 2019) were used in this model to simulate reflect-
ance from a dry soil surface. In case of dry soil, three main parameters, i.e., soil brightness (B),
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Figure 2.2: Structure of the forward SPART model (from Yang, van der Tol, Yin et al., 2020)

soil spectral latitude (φ), soil spectral longitude (λ) are needed for the simulation. B determines
the ‘intensity’ of soil reflectance. The other two parameters account for the other soil properties
(roughness, organic matter content and mineralogical composition etc.) and responsible for the
‘shape’ of the simulated reflectance.

In case of wet soil, SPART uses a water film coating approach (Ångström, 1925). In this ap-
proach, wet soil is represented by a dry soil layer covered by a thin layer of water. So, the effective
reflectance comes from the combined contributions (it includes i.Fresnel reflection from the top
of water film, ii.reflection from the dry soil layer and iii.multiple reflection between bottom of
water and top of dry soil layer) of dry soil and the thin water layer.

PROSAIL Canopy Radiative Transfer Model

PROSAIL is a combination of two radiative transfer models, i.e., PROSPECT and SAIL. The
most recent version of PROSPECT (known as, PROSPECT-D) (Féret et al., 2017) has been used
in SPART. More specifically, the Fluspect was used with the fluorescence simulation eliminated. It
outputs the reflectance and transmittance of a leaf. The SAIL up-scales this leaf reflectance to can-
opy level using canopy parameters (Table 2.2) and angles defining viewing-illumination geometry.
A version of SAIL model, (SAILH) (Verhoef, 1998) which considers hotspot effect has been used
for this purpose. SPART uses a lighter version of RTMo for SAILH, in which the computation of
net radiation is eliminated.

It should be emphasized, that SCOPE and SPART yield identical TOC reflectance for identical
input.
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SMAC Atmosphere Radiative Transfer Model

A substantially modified version of the SMAC (Rahman & Dedieu, 1994) has been used in the
SPART to represent the atmosphere. It was revised in order to simulate TOA reflectance from non-
lambertian surfaces to represent the anisotropic vegetation. SMAC is an empirical simplification
of 5S, the predecessor of the widely used Second Simulation of the Satellite Signal in the Solar
Spectrum (6S) model (Vermote et al., 1997). The input parameters required for SMAC are given
in Table 2.2.

2.2.2 Inputs of SPART

The inputs of the SPART can be divided into five broad categories, i.e., soil, leaf, canopy, atmo-
sphere, sun-viewing geometry parameters. These parameters are required as input to each of the
sub-models representing different layers in SPART. All these parameters are listed in Table 2.2.

Table 2.2 Input parameters required by SPART

Parameters Units Description

Soil parameters
B - Soil brightness
φ Degree Soil spectral latitude
λ Degree Soil spectral longitude
SMp - Soil moisture volume percentage
Leaf parameters
Cab µg cm−2 Chlorophyll a and b content
Cdm g cm−2 Dry mass per unit leaf area
Cw cm Equivalent leaf water thickness
Cs - Senescent material (brown pigments)
Cca µg cm−2 Leaf carotenoid content
Cant µg cm−2 Leaf anthocyanin content
N - Leaf internal structure parameter
Canopy parameters
LAI m2 m−2 Leaf area index
LIDFa - Leaf inclination determination parameter a
LIDFb - Leaf inclination determination parameter b
q - Hot-spot parameter (leaf width/canopy height)
Atmosphere parameters
AOT550 - Aerosol optical thickness at 550 nm
UO3 cm-atm Ozone content
UH2O g cm−2 Water vapour content
Pa hPa Air pressure
Viewing-illumination geometry
θs Degree Solar zenith angle
θo Degree Observation zenith angle
Φso Degree Difference between solar and zenith azimuth angles
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2.2.3 Outputs of SPART

The forward SPART can simulate both TOA and TOC radiance or reflectance a spectral resolution
and interval of 1 nm. After convolution to a specific sensor (for example, Multispectral Instrument
(MSI) on S2), the forward model can be inverted with observations from these sensors to retrieve
a large number of different soil, leaf, canopy and atmosphere parameters based on the number and
position of available bands.

2.3 SOIL CANOPY OBSERVATION OF PHOTOSYNTHESIS AND ENERGY FLUXES (SCOPE)

This section is based on Yang, Prikaziuk et al., 2020, where SCOPE 2.0 model has been described
in detail.

2.3.1 Model Structure

The SCOPE 2.0 model uses various sub-models to simulate different radiative and non-radiative
fluxes. The various outputs produced by each sub-model can be used as an input to other sub-
models or can be given as final output. The sub-models can be broadly divided into radiative
transfer modules and energy balance module. Besides, there is a leaf biochemical model and all
these modules interact with each other. A brief description of these sub-models is provided in the
following sections.

Radiative Transfer Modules (RTMs)

SCOPE integrates seven Radiative Transfer Modules (RTMs) in order to model radiance from a
vegetation-soil stand. BSM (Verhoef et al., 2018) is used to represent soil layer, Fluspect (Vilfan
et al., 2016) is used for leaf layer and five other RTMs represents the integrated vegetation-soil
layer. These five RTMs are responsible for different functions. They are i) RTMo (for sun and sky
incident radiation), ii) and iii) RTMt_sb and RTMt_planck (for radiation from soil and vegetation
in thermal domain), iv) RTMf (for chlorophyll fluorescence), v) RTMz (to capture change in leaf
reflectance or transmittance due to change in pigments in the xanthophyll cycle). A table with brief
descriptions of these RTMs are taken from Yang, Prikaziuk et al., 2020 and given as Table 2.3.

Energy Balance Module

The energy balance module is responsible for minimizing the energy balance closure error (eebal).
This error is calculated using Equation 2.2. This minimization is done by changing the temper-
ature of all leaf and soil layers in iteration. In this equation, Rn, H, λE and G are net radiation,
sensible heat flux, latent heat flux and ground heat flux respectively. The unit of all these parameter
is Wm−2.

eebal = Rn −H − λE −G (2.2)
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Table 2.3 Description of different RTMs of SCOPE (from Yang, Prikaziuk et al., 2020)

Sl. No. RTMs Main functions Main input Main output

i. BSM simulating soil
reflectance

soil moisture, brightness
and two spectral shape
related parameters

anisotropic soil
reflectance

ii. Fluspect leaf RTM leaf biophysical
properties

leaf reflectance,
transmittance and
fluorescence emission
matrices

iii. RTMo RTM for incident
radiation

canopy structure, leaf
reflectance,
transmittance and soil
reflectance

canopy reflectance,
radiation absorbed by
each leaf

iv. RTMf RTM for fluorescence
fluxes

canopy structure, leaf
reflectance,
transmittance, soil
reflectance and
fluorescence emission
matrices

fluorescence of each leaf
and of the whole canopy

v. and vi. RTMt_sb/
RTMt_planck

RTM for thermal fluxes leaf temperature,
incoming thermal
radiation, emissivity of
soil and leaves

thermal emission of each
leaf and of the whole
canopy

vii. RTMz RTM for fluxes induced
by the xanthophyll cycle

leaf absorbed radiation,
canopy structure, leaf
reflectance,
transmittance, soil
reflectance

dynamic modulations of
canopy reflectance

The net radiation in SCOPE is calculated by RTMo and RTMt sub-modules. A scheme for
the aerodynamic resistance, which depends on wind speed, surface roughness and atmospheric
stability, is used for the calculation of sensible and latent heat fluxes (van der Tol et al., 2009). The
ground heat flux is calculated either as a default fraction of soil surface net radiation, or with the
force-restore method as a function of previous soil temperatures and soil thermal properties.

Leaf Biochemical Model

The leaf biochemical module is required to partition energy into heat dissipation, photochem-
istry and fluorescence in photosystems (Maxwell & Johnson, 2000). This part is based on two
photosynthesis model by Collatz et al., 1991 and Collatz et al., 1992 for C3 and C4 plants respect-
ively. The differentiation between C3 and C4 plants is necessary because they use two different
pathways, i.e., Calvin cycle and Hatch-Slack pathway respectively for the dark reactions of photo-
synthesis. The photosynthetic light use efficiency is simulated by this model using carbon dioxide
concentrations, leaf temperature, leaf irradiance intencity maximum carboxylation rate (Vcmo) etc.
Empirical relationships established by van der Tol et al., 2014 are used to differentiate between the
leaf fluorescence and heat dissipated from the absorbed radiation.
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Interactions between the Sub-models

A run with the SCOPE model starts with the BSM and the Fluspect model. These two sub-models
take soil and leaf parameters and simulate soil reflectance and leaf transmittance and reflectance
respectively. The output of BSM and Fluspect are passed to RTMo for simulation of net radiation
in the optical domain. The RTMt module requires temperature of soil and leaves to perform the
simulation in thermal domain. This information is initially not available. RTMt iterates with the
calculation of fluxes in the energy balance module until eebal is minimized by adjusting the soil
and leaf temperatures. RTMf uses leaf fluorescence emission excitation matrices and output of
Fluspect model to simulate the fluorescence emission of leaves. Finally, RTMz captures the effect
of xanthophyll cycle on leaf transmittance and reflectance. All these processes are summarized in
Figure 2.3.

Figure 2.3: Structure of the SCOPE model (from Yang, Prikaziuk et al., 2020)

2.3.2 Inputs of SCOPE

The SCOPE input parameters can be divided into soil, leaf, canopy, sun-observer geometry para-
meters and weather variables. These parameters are listed in Table 2.4.
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Table 2.4 Main input parameters required by SCOPE

Parameters Units Sub-model Description

Cab µg cm−2 Fluspect leaf chlorophyll concentration
Cca µg cm−2 Fluspect leaf carotenoid concentration
Cw cm Fluspect equivalent water thickness in leaves
Cs - Fluspect leaf senescence parameters
Cdm g cm−2 Fluspect leaf dry matter content
Cant µg cm−2 Fluspect Anthocyanin content
N - Fluspect leaf structure parameter
LAI m2 m−2 canopy RTMs projected leaf area per unit ground area
hc m canopy RTMs vegetation height
LIDFa - canopy RTMs parameter for the mean leaf zenith angle
LIDFb - canopy RTMs bimodality of leaf angle distribution
tts Degree canopy RTMs solar zenith angle
tto Degree canopy RTMs viewing zenith angle
psi Degree canopy RTMs absolute azimuth difference
Rin W m−2 canopy RTMs shortwave irradiance
Rli W m−2 canopy RTMs longwave irradiance
p hPa energy balance air pressure
T ◦C energy balance air temperature
u m s−1 energy balance wind speed
ea hPa energy balance vapour pressure
z m energy balance measurement height
SMC - BSM, energy balance surface volumetric soil moisture content
BSMBrightness - BSM soil brightness
BSMlat Degree BSM soil ‘latitude’ parameter (not geographical)
BSMlon Degree BSM soil ‘longitude’ parameter (not geographical)
Ca ppm biochemical model atmospheric CO2 concentration
Vcmo µmol m−2 biochemical model carboxylation capacity at 25 degC
m - biochemical model Ball-Berry stomatal parameter

2.3.3 Outputs of SCOPE

The main outputs of SCOPE includes spectral simulation of radiance in optical and thermal do-
main, incoming and outgoing shortwave and longwave radiation, sensible, latent and ground heat
fluxes and absorption of radiation by canopy. The outputs are listed in Table 2.5.
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Table 2.5 Outputs of the SCOPE (from Yang, Prikaziuk et al., 2020)

Output Description Units

spectral simulation

Eout_spectum hemispherical leaving irradiance [Wm−2µ m−1]
Lo_spectrum radiance in the viewing direction [Wm−2µ m−1sr−1]
fluorescence fluorescence radiance in the viewing direction [Wm−2µ m−1sr−1]
fluorescence_hemis hemispheric leaving fluorescence irradiance [Wm−2µ m−1]
reflectance TOC reflectance in the viewing direction []

vegetation

aPAR PAR absorbed by the vegetation [µmolm−2s−1]
aPARbyCab PAR absorbed by chlorophyll [µmolm−2s−1]
aPARbyCab_en PAR energy absorbed by chlorophyll [Wm−2]
Photosynthesis canopy photosynthesis rate [µmolm−2s−1]
LST black-body radiometric land surface temperature [K]

fluxes

Rnctot Net radiation of canopy [Wm−2]
lEctot Latent heat flux of canopy [Wm−2]
Hctot Sensible heat flux of canopy [Wm−2]
Actot Net photosynthesis of canopy [Wm−2]
Tcave Average canopy temperature [◦C]
Rnstot Net radiation of soil [Wm−2]
lEstot Latent heat flux of soil [Wm−2]
Hstot Sensible heat flux of soil [Wm−2]
Gtot Soil heat flux [Wm−2]
Tsave Average soil temperature [◦C]
Rntot Total net radiation [Wm−2]
lEtot Total latent heat flux [Wm−2]
Htot Total sensible heat flux [Wm−2]

radiation

ShortIn Incoming shortwave radiation [Wm−2]
LongIn Incoming longwave radiation [Wm−2]
HemisOutShort hemispherical outgoing shortwave radiation [Wm−2]
HemisOutLong hemispherical outgoing longwave radiation [Wm−2]
Lo radiance in observation direction [Wm−2sr−1]
Lot thermal radiance in observation direction [Wm−2sr−1]
Lote emitted radiance in observation direction [Wm−2sr−1]
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Chapter 3

Study Area and Data Description

3.1 STUDY AREA

3.1.1 General Description

The study area, Samrakalwana (also known as, Semra Kalbana) village is located in Bara Tehsil of
Allahabad district of Uttar Pradesh state in the northern part of India. The study area is situated
between 25◦ 17’ North latitude and 81◦ 49’ East longitude, and the elevation is approx. 137 m a.s.l.
This village is part of very fertile Indo-Gangetic plane and the main occupation of the villagers is
farming cereal crops. The study area is also closely located to the confluence of two important
Indian rivers, i.e., Ganga and Yamuna river. The study area is shown in Figure 3.1.

3.1.2 Climatic Conditions

The climate of the study area is classified as humid subtropical climate (Cwa) during the analysis
of 1980 – 2016 in Köppen-Geiger climate classification map (Beck et al., 2018). The maximum
and minimum temperature recorded until now in the study area are 48◦C and -2◦C respectively.
The annual average temperature is 26.1◦C and monthly average temperatures are between 18 –
29◦C. Allahabad experiences a hot dry summer (temperature often exceeds 40◦C) between April
and June), a warm humid monsoon between July and September and a cold dry winter between
December to February. The average annual rainfall in Allahabad district between 2014 – 2018 was
727 mm.

3.1.3 Demographics

The Samrakalwana village has a total population of 4,509 of which 2,369 are males and 2,140 are
females. There are total 892 families residing in the village. Whereas, the Allahabad district has
5,959,798 residents and a population density of 1087 per km2. The district has experienced a
population growth of 26.61% between 2001 and 2011 census (Directorate of Census Operations,
Uttar Pradesh, 2011).
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3.1.4 Agricultural Practices

The soils at the study area is mainly clay loam to sandy loam. There are three main agricultural
seasons in India. They are termed as Rabi (October – March), Zaid (April – June) and Kharif (June
– September). The major crop of the Rabi season are wheat and other crops cultivated are tomato,
potato, and mustard. Pigeon pea and paddy are cultivated dominantly during Zaid and Kharif
season, respectively.

Chemical fertilizers are also used during the cultivation of crops. The application dose of these
fertilizers have been summarized in Table 3.1.

Table 3.1 General dosage of application of fertilizers/manures in the study area

Sl. No. Description Dose (Kg/hectares)

Manures and Fertilizer application for Wheat
1. Basal dressing N:P:K (at the time of sowing) 112:58:55
2. 1st top dressing of N (After 1st Irrigation) 56
3. 2nd top dressing of N 28
4. 3rd top dressing of N 28

Manures and Fertilizer application for Rice
1. Basal dressing N:P:K (at the time of sowing) 152:76:60
2. 1st top dressing of N (After 1st Irrigation) 76
3. 2nd top dressing of N 38
4. 3rd top dressing of N 38

3.1.5 Considerations for This Study

The study has been conducted for the wheat growing season between November 2018 to April
2019 and November 2019 to April 2020. Wheat (Triticum aestivum) was chosen for this study as it
is the major cereal crop in India. Two points (shown as red squares in Figure 3.1) were selected for
2018 - 2019 season and three points (shown as green triangles in Figure 3.1) were selected for 2019
- 2020 season for carrying out all the analysis. These points were chosen based on the availability
of ground measurements at these locations. The coordinates of these points and the wheat variety
cultivated is given in Table 3.2.

Table 3.2 Coordinates of point of interest and the cultivated variety of wheat at these points

ID Latitude Longitude Wheat variety

2018_a 25.3056 81.8220 AAIW4
2018_b 25.3034 81.8139 AAIW 10 and AAIW 13
2019_a 25.2943 81.8137 AAIW 16
2019_b 25.3033 81.8159 K1317
2019_c 25.2969 81.8228 SHIATSW 9
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Figure 3.1: The whole area of India (top left), map of Uttar Pradesh state (right) and a map of the
study area (bottom left)
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3.2 DATA DESCRIPTION

The major data used in this research are described in the following sections. A comprehensive list
with all the data, codes or programmes used in this study along with their sources are listed in
Appendix B.

3.2.1 Sentinel-3 OLCI Data

S3 is a constellation of two satellites with four instruments on-board namely, Synthetic Aperture
Radar Altimeter (SRAL), Microwave Radiometer (MWR), Ocean and Land Color Imager (OLCI)
and dual-view Sea and Land Surface Temperature Radiometer (SLSTR). These instruments are re-
sponsible for monitoring of topography (SRAL, MWR), ocean (OLCI) and temperature (SLSTR).
Besides, the upcoming Fluorescence Explorer (FLEX) mission of European Space Agency (ESA)
has also been tasked to fly in tandem with S3 in order to provide complementary information
on global photosynthesis and SIF. Although the agricultural fields in the study area are relatively
small, the retrieval of vegetation parameters from OLCI observations was approached as this can
be used in future studies in synergy with data from FLEX. Furthermore, the temporal resolution
of S3 is nearly daily which is helpful for monitoring different crop growth stages.

In this study, observations only from OLCI were used to retrieve crop biophysical paramet-
ers. This instrument has 21 bands and central wavelength of these bands varies from 400 to 1020
nm. The Spectral Response Function (SRF) of S3 OLCI bands has been plotted in Figure 3.2.
A full spatial resolution of 300 m and a reduced spatial resolution of 1200 m is provided by this
instrument. It has a swath width of 1270 km and a revisit time of 1.1 days at the equator.

S3 OLCI Level 1 (L1) full resolution images (OL_1_EFR_) from November 2019 to April 2020
were downloaded from Copernicus Open Access Hub (Sentinel, 2018) using a bulk-downloader,
called aria2. Similar images for November 2018 to April 2019 are placed in Long Term Archive
(LTA) by Copernicus Open Access Hub. There is a cap of downloading one product per half
an hour through Graphical User Interface (GUI) and 20 products per 12 hours through Applica-
tion programming interface Hub (API Hub) of Copernicus Open Access Hub (Copernicus Open
Access Hub, 2021). As an alternative Open Data Protocol (OData) Application programming in-
terface (API) of ONDA Data and Information Access Services (DIAS) has been used to download
products from LTA which has a higher cap of 20 products per hour. Moreover, the retrieval of
products from LTA through ONDA DIAS portal (takes approx. 20 minutes) is also much faster
compared to Copernicus Open Access Hub (which has no defined time limit).

A semi-automated pipeline was formulated using Python and batch script for retrieval of LTA
products from ONDA DIAS portal. First, a OData API query was built to find all the unique
ids for the products of interest. These ids were provided in JSON format. This JSON files were
flattened by Pandas (v1.0.5) (The pandas development team, 2020) in Python (v3.7.7). Then mul-
tiple batch scripts were generated (for 20 products at a time) by a Python script, for putting requests
for retrieval from LTA and downloading these products. Automatic execution of these batch
scripts were scheduled using ‘Windows Task Scheduler’ considering the time frames described in
the above paragraph.

The bulk of S3 images were downloaded in the above described way for the growing seasons
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in order to retrieve certain crop parameters from the satellite observations using radiative transfer
models.

Figure 3.2: Spectral response functions of Sentinel-3 OLCI bands

3.2.2 Sentinel-2 MSI Data

S2 is also a constellation of a pair of twin satellites. Both satellites are equipped with a MSI. This
instrument was designed to provide remote sensing data suitable for applications in thematic areas,
such as spatial planning, monitoring of agriculture and environment, water monitoring, natural
resources monitoring etc. The first satellite of S2 constellation was launched on 23rd June 2015
and the second was launched on 7th March 2017. These satellites together now provide a revisit
time of 5 days.

The data observed by MSI was used to retrieve crop parameters. The instrument has total 13
bands with central wavelength ranging from 443 nm to 2190 nm. 4 of these bands have a spatial
resolution of 10 metres, 6 bands have a spatial resolution of 20 metres and 3 bands have a spatial
resolution of 60 metres. The swath width of this instrument is 290 km. The SRF of MSI is shown
in Figure 3.3.

Time series of “COPERNICUS/S2” (for S2 TOA reflectance) and “COPERNICUS/S2_SR”
(for S2 TOC reflectance) products were downloaded for the coordinates of interest (Table 3.2)
from Google Earth Engine (GEE). Pixels affected by clouds were filtered out from the time-series
using ‘Bitmask’ filter for S2 products available in GEE.

Figure 3.3: Spectral response functions of Sentinel-2 MSI bands
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3.2.3 ECMWF CAMS Near-Real-Time Data

European Centre for Medium-Range Weather Forecasts (ECMWF) provides global re-analysis data
sets with parameters defining atmospheric conditions (such as concentration of different gases,
aerosols and water vapour). Some of these atmospheric parameters were necessary for this study.
For example, values of AOT at 550 nm was necessary for atmospheric correction with 6S. Other
parameters, such as total columnar water vapour (H2O) and GEMS total columnar ozone (O3)
data along with AOT data from CAMS re-analysis was necessary as initial guess for retrieval of
atmospheric parameters using SPART. These data were downloaded for 3:00 hrs. and 6:00 hrs. at
a daily time scale for the study periods from ECMWF CAMS Near-real-time in NetCDF format.
The data were downloaded at a spatial resolution of 0.125◦ × 0.125◦.

3.2.4 MODIS Based Global Remote Sensing Products

Different MODIS based global remote sensing products were used in this study for plausibility
check of retrieved or modelled parameters. These products are described below.

MODIS LAI Product

The MODIS LAI product which has been used in this study is MODIS/Terra+Aqua Leaf Area In-
dex/FPAR 4-Day L4 Global 500 m SIN (MCD15A3H v006) (Myneni et al., 2015). The MCD15A3H
v006 data were downloaded from Land Processes Distributed Active Archive Center (LPDAAC)
Application for Extracting and Exploring Analysis Ready Samples (AρρEEARS) portal which
converts MODIS SIN grid to proper coordinate system (World Geodetic System 1984 (WGS84))
and extract pixel values for the given coordinates of interest and provide analysis ready time series
data in .csv file. This specific service was used to save time for the processing of MODIS products
and also to save local storage space. This product is generated using a Look-Up-Table (LUT) (which
is generated using 3D radiative transfer equation (Knyazikhin et al., 1998)) approach by exploiting
the surface reflectance from MODIS red (648 nm) and near-infrared (858 nm) bands. In case of
dense forests or high vegetation (when the LUT approach fails), empirical relationships between
Normalized Difference Vegetation Index (NDVI) and LAI for different biome classes are used as
backup method.

MODIS ET Products

Four MODIS ET products has been used in this study. These products are listed in Table 3.3. The
values of these data products for the coordinates of interest were extracted also using AρρEEARS
portal. The algorithm for generating these products are based on Penman-Monteith (PM) equa-
tion and it utilizes 8 day vegetation property dynamics measured by MODIS and daily weather
reanalysis data (Mu et al., 2013).
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Table 3.3 MODIS ET products used in this study

Sl.
No.

Product name Reference

1. MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m SIN
Grid (MOD16A2) v006

(Running
et al., 2017a)

2. MODIS/Terra Net Evapotranspiration Gap-Filled 8-Day L4 Global
500 m SIN Grid (MOD16A2GF) v006

(Running
et al., 2019a)

3. MODIS/Aqua Net Evapotranspiration 8-Day L4 Global 500 m SIN
Grid (MYD16A2) v006

(Running
et al., 2017b)

4. MODIS/Aqua Net Evapotranspiration Gap-Filled 8-Day L4 Global
500 m SIN Grid (MYD16A2GF) v006

(Running
et al., 2019b)

MODIS GPP Products

Four different MODIS products were also used in this study for GPP. These products are listed in
Table 3.4. These products were also extracted in AρρEEARS portal. These GPP products were
created by establishing a relationship between it and Absorbed Photosynthetically Active Radi-
ation (aPAR) by using output of Biome-BGC simulations. The algorithm also estimates vegetation
Maintenance Respiration (MR) and Growth Respiration (GR) from ecophysiological parameter
lists from Biome-BGC in order to compute Net Primary Production (NPP) (Running et al., 1999).

Table 3.4 MODIS GPP products used in this study

Sl.
No.

Product name Reference

1. MODIS/Terra Gross Primary Productivity 8-Day L4 Global 500 m
SIN Grid (MOD17A2H) v006

(Running
et al., 2015a)

2. MODIS/Terra Gross Primary Productivity Gap-Filled 8-Day L4
Global 500 m SIN Grid (MOD17A2HGF) v006

(Running &
Zhao, 2019)

3. MODIS/Aqua Gross Primary Productivity 8-Day L4 Global 500 m
SIN Grid (MYD17A2H) v006

(Running
et al., 2015b)

4. MODIS/Aqua Gross Primary Productivity Gap-Filled 8-Day L4
Global 500 m SIN Grid (MYD17A2HGF) v006

(Running &
Zhao, 2019)

3.2.5 ECOSTRESS Based Global Remote Sensing Products

ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mis-
sion is implemented by installing the Prototype HyspIRI Thermal Infrared Radiometer (PHyTIR)
instrument on the Japanese Experiment Module External Facility (JEM-EF) of International Space
Station (ISS). It was launched to ISS on 29th June 2018 and become autonomously operational on
20th August 2018. This instrument has 5 thermal bands present with wavelengths in 8 - 12.5 µm
range. But after 15th May 2019, only three of these bands (with central wavelength of 8.78 µm
[Band 2], 10.49 µm [Band 4] and 12.09 µm [Band 5]) are being used to optimize acquisition ap-
proach and counter failure of the Mass Storage Units (MSU).
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ET is derived from the observations using two algorithms. The first algorithm is Disaggreag-
tion of Atmosphere–Land Exchange Inverse (DisALEXI) (Anderson et al., 1997) which is used to
derive ET at a finer spatial resolution (30 m) only for targeted agricultural sites within continental
United States (CONUS). The second algorithm, called Priestley-Taylor Jet Propulsion Laborat-
ory (PT-JPL) (J. B. Fisher et al., 2008) uses surface temperature and emissivity measurements from
ECOSTRESS and ancillary MODIS and Landsat products to compute ET at a global scale with 70
m spatial resolution. In the event of absence of ancillary data from MODIS or Landsat, data from
Visible Infrared Imaging Radiometer Suite (VIIRS) and Global Modeling and Assimilation Office
(GMAO) Modern Era Retrospective-Analysis for Research and Applications (MERRA) are used
as backup. The PT-JPL algorithm also provides different components of ET, such as soil evapor-
ation, canopy transpiration and ET of intercepted water (J. B. Fisher & ECOSTRESS Algorithm
Development Team, 2015).

The time-series of ECOSTRESS Evapotranspiration PT-JPL Daily L3 Global 70 m (ECO3ETPTJPL)
(v001) (Hook & Fisher, 2019a) product was downloaded for the coordinates of interest for the two
crop growing seasons using the AρρEEARS portal.

A global Water Use Efficiency (WUE) product (ECOSTRESS Water Use Efficiency Daily L4
Global 70 m (ECO4WUE) v001) (Hook & Fisher, 2019b) is also computed from ECO3ETPTJPL
product and MODIS GPP (J. B. Fisher & ECOSTRESS Algorithm Development Team, 2018).
This product was downloaded to compare against modelled ecosystem efficiency parameters.

3.2.6 Meteorological Data from ECMWF ERA5

Time series of weather parameters have an important role in controlling simulation of photosyn-
thesis in SCOPE. ECMWF provides a variety of weather parameters as gridded data (9 km spatial
resolution) in ‘GRIB’ and ‘NetCDF’ format. ECMWF Reanalysis 5th Generation (ERA5)-land
hourly data which is an improved (can be used in all types of applications for land) and light ver-
sion (as no calculation is performed for the oceans) of the original ERA5 data was used in this
study (Muñoz Sabater, 2019). The variables downloaded were surface solar radiation downwards
(ssrd), surface thermal radiation downwards (strd), 2m temperature (t2m), 2m dewpoint temperat-
ure (d2m), surface pressure (sp), 10m u-component of wind (u10) and 10m v-component of wind
(v10). The data were downloaded at an hourly time scale for both the crop growing seasons in
‘NetCDF’ format.

3.2.7 In-situ Data Collection

The in-situ data were not primarily collected as part of this study. Secondary in-situ measure-
ments (which were already acquired), were collected from the local University (SHUATS, Pray-
agraj, India). Ground measurements of LAI and crop yield were used in this study for evaluation
of modelled results.

The in-situ LAI measurements were taken using a Leaf Area Meter 211 (Systronics, India).
There were 10 measurements of LAI taken in each wheat growing season (2018 - 19 and 2019 -
20) between January to March. The measurements were not taken at any fixed interval. The LAI
measurements were taken on same days of 2019 and 2020. These dates are given in Table 3.5.
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Crops from a small number of representative areas at the given coordinates (Table 3.2) were
harvested. Crop grains were separated and weighed in a weighing balance to estimate crop yield.
The crop yield from this small area was used to exponentially calculate crop yield per hectare.

The coordinates for the measurements for LAI and crop yield were not measured using a pro-
fessional Global Positioning System (GPS). The coordinates were measured using recreational GPS
of mobile phone which led to some wrong ground locations. These were later corrected using
digitized map of agricultural plots of the study area. This method may add some amount of uncer-
tainty to the measurements and it is not easy to quantify the inaccuracy. This may lead to incorrect
comparison between ground measurement and modelled data from remote sensing observations.

Table 3.5 Dates of in-situ LAI measurements in 2019 and 2020

Serial number LAI measurement dates (in 2019 and 2020)

1 10-January
2 17-January
3 20-January
4 30-January
5 02-February
6 18-February
7 20-February
8 02-March
9 06-March
10 12-March
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Chapter 4

Methodology

4.1 METHODOLOGY FLOWCHART

A detailed methodology was formulated to accomplish the objectives of this research. This meth-
odology is summarized in a flowchart in Figure 4.1. The different steps of the methodologies are
described in detail in the later sections.

4.2 DATA PRE-PROCESSING

4.2.1 Extraction of Pixel Values from Sentinel-3 OLCI Images

The values from different OLCI bands, tie-point grids and masks from each S3 OL_1_EFR_
products were extracted for the coordinates of interest using “Extract Pixel Values” function of
SeNtinel Application Platform (SNAP) 8.0. The pixel values were extracted using geo-coordinates.
Then the observations flagged as bright, invalid, dubious pixels and saturated bands were removed.
These flags were used as proxy to identify clouded pixels or pixels with erroneous values.

S3 OL_1_EFR_ products also come with columnar H2O and O3 in the atmosphere at the time
of overpass. These variables are provided in kg/m2. These values were changed to suitable units
needed for atmospheric correction using Equation 4.1 and 4.2.

H2O [g/cm2] = 0.1×H2O [kg/m2] (4.1)

O3 [cm− atm] = 100
(2.144×O3 [kg/m2]) (4.2)
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Figure 4.1: Flowchart of the methodology. The inputs and outputs of various stages are defined as orange parallelograms and processes are defined as green
rectangles
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4.2.2 Interpolation of CAMS Atmospheric Data

This study requires values of atmospheric parameters such as, AOT, H2O and O3 during the time
of S3 and S2 overpass, over the study area.

In case of S3, these atmospheric parameters were necessary for atmospheric correction of S3
OLCI data. Among these, values of atmospheric H2O and O3 concentrations at the time of over-
pass were already extracted from S3 OLCI products as described in 4.2.1. Only the interpolation
of ECMWF AOT value from was necessary.

Whereas, in case of S2 MSI data in GEE, it does not come with these atmospheric parameters.
But these data were necessary for inversion of SPART. So, all the three parameters (AOT, H2O
and O3) from were ECMWF interpolated for the time of S2 overpass.

The values of atmospheric parameters were extracted from the ‘NetCDF’ files using ‘ncread’
function of MATLAB R2019a for the pixels of interest. Then the values only for the dates of
satellite overpass (S3 or S2) were kept. The both satellites over-passed on the study area between
3:00 hrs. and 6:00 hrs. So, a time weighted interpolation of extracted atmospheric parameters at
these time-steps were performed to estimate the values at the time of satellite overpass. Numpy
(v1.18.5) 1D interpolation (numpy.interp) function (Harris et al., 2020) in Python 3.7.7 was used
for this purpose.

4.2.3 Atmospheric Correction of Sentinel-3 OLCI TOA Radiance

The 6S model can be used to simulate the effect of the atmosphere on the path of electromagnetic
wave from the illumination source to the target and back to the sensor (Vermote et al., 1997). A
Python interface to 6S (Py6S) (which is a Python wrapper on the original MODTRAN code of
6S model) has been used to simulate the optical coefficients (atmospheric transmittance factors)
(Wilson, 2013). These coefficients (Xa, Xb, Xc) were simulated for a given atmospheric condition
(for a certain amount of columnar aerosol, ozone and water vapour in the atmosphere), sun and
sensor geometry (defined by Solar Zenith Angle (SZA), Solar Azimuth Angle (SAA), Observation
Zenith Angle (OZA), Observation Azimuth Angle (OAA)) and day of the year. Later, TOC
reflectance (RT OC ) was calculated using these coefficients from TOA radiance (LT OA) (as shown
in Equations 4.3 and 4.4).

In some cases, the atmospherically corrected RT OC values were found to be negative for a
certain band. In this case, it is assumed that the atmospheric correction cannot be performed with
confidence and the whole spectrum was removed and not used for retrieval of crop biophysical
parameters.

y = (Xa × LT OA)−Xb (4.3)

RT OC = y

1 + (Xc × y) (4.4)
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4.2.4 Unit Conversion and Aggregation of ECMWF ERA5 Meteorological Data

Several meteorological parameters were downloaded at hourly time scale from ERA5 climate re-
analysis data as described in Section 3.2.6. These parameters need to be converted into the units of
SCOPE and renamed as required by SCOPE. These meteorological parameters were also aggreg-
ated to a daily time scale as the time step for SCOPE simulation was chosen as daily.

ssrd and strd were converted to integrated incoming shortwave radiation (Rin) and integrated
incoming longwave radiation (Rli) using Equation 4.5 and 4.6 respectively. t2m was converted
from degree centigrade to Kelvin using Equation 4.7 and renamed as air temperature (Ta). sp was
used to calculate air pressure (p) using Equation 4.8. Wind speed (u) was calculated from u10 and
v10 by Equation 4.9. d2m was first converted from Kelvin to degree centigrade (Equation 4.10).
Then 2m dewpoint temperature in degree centigrade (T) was used to calculate atmospheric vapour
pressure (ea) using Equation 4.11.

Rin [Wm−2] = ssrd [Jm−2]
60× 60× 24 (4.5)

Rli [Wm−2] = strd [Jm−2]
60× 60× 24 (4.6)

Ta [◦C] = t2m [K]− 273.15 (4.7)

p [hPa] = sp [Pa]× 0.01 (4.8)

u [ms−1] =
√
u102 [ms−1] + v102 [ms−1] (4.9)

T [◦C] = d2m [K]− 273.15 (4.10)

ea [hpa] = 6.107× 10
7.5×T

237.3+T (4.11)

4.3 INTEGRATION OF S2 MSI WITH SPART AND SENSITIVITY ANALYSIS

4.3.1 Integration of S2 MSI

SPART has earlier been used for S3 (Yang, van der Tol, Yin et al., 2020; Yang et al., 2021), but not
for S2. In order to make it applicable to S2, it was necessary to integrate sensor characteristics with
SPART. This enabled the retrieval of vegetation parameters from S2 MSI observations.

A total of 49 sensor specific coefficients for each band are required for functioning of SMAC
model (which is a sub-model of SPART, as described in Section 2.2) (Rahman & Dedieu, 1994).
These SMAC coefficients were calculated using a best fit technique and provided for a large number
of sensors in a public repository hosted by Centre d’Etudes Spatiales de la Biosphère (CESBIO),
Centre national d’études spatiales (CNES). The SMAC coefficients were downloaded from this
repository for this study. It is worth noting that only SMAC coefficients for S2A are available in
the mentioned repository. As S2A and S2B are twin-satellites and their spectral characteristics are
similar, these coefficients were used interchangeably for SPART simulation of both the cases.
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Besides these coefficients, another piece of necessary information was SRFs of S2 MSI which is
shown in Figure 3.3. The other required general sensor characteristics are summarized in Table 4.1
and 4.2. All information has been collected from S2 document library, which is managed by ESA.

Table 4.1 Overview of Sentinel-2 MSI sensor

Attribute Values

Mission Sentinel-2
Name MSI
Swath width 290 km
Revisit period 5 days

Table 4.2 Characteristics of MSI sensor

Band Central wavelength
(nm)

Spectral width (nm) Spatial resolution (m)

B1 443 20 60
B2 490 65 10
B3 560 35 10
B4 665 30 10
B5 705 15 20
B6 740 15 20
B7 783 20 20
B8 842 115 10
B8A 865 20 20
B9 945 20 60
B10 1375 30 60
B11 1610 90 20
B12 2190 180 20

4.3.2 Sensitivity Analysis of SPART Model with Sentinel-2 MSI

Yang, van der Tol, Yin et al., 2020 performed a sensitivity analysis of SPART with spectral char-
acteristics of S3 OLCI sensor. In this study, a similar sensitivity analysis of SPART has been per-
formed for S2 MSI sensor using the same code as published by the authors. The effect of only Cab,
LAI and AOT on simulated TOC or TOA reflectance has been investigated in this study.

4.4 RETRIEVAL OF CROP BIOPHYSICAL, SOIL AND ATMOSPHERIC PARAMETERS

4.4.1 Inversion of RTMo module of SCOPE

The radiative transfer of incident radiation in SCOPE, thus RTMo coupled with Fluspect and
BSM, was used to retrieve crop biophysical parameters and some soil parameters using TOC re-
flectance observed by S3 and S2 satellites.
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In case of S3 OLCI, time-series of TOC reflectance from 19 bands (excluding band 13 and 14),
time-series of SZA and central wavelengths of used bands were provided as input for the inversion
of RTMo. Band 13 and 14 were removed as a dip can be observed in those bands which may not be
ideal for spectral fitting using RTMo. Moreover, these bands are O2 absorption and atmospheric
correction bands. So, these bands are highly sensitive to errors in the atmospheric correction of
TOA to TOC.

Atmospherically corrected TOC reflectance from 12 bands (excluding band 10) of S2 MSI, their
central wavelengths and time series of SZA were also used for retrieval of crop and soil parameters
by inverting RTMo. Band 10 was not used as TOC reflectance of this band is not provided by
GEE. The most likely reason behind the non-availability of TOC reflectance from band 10 is that
the atmospheric correction of this band is prone to error as it is responsible for detection of cirrus
clouds. Moreover, this band may not be very useful for retrieval of vegetation parameters.

The retrieval was carried out by inverting forward RTMo of SCOPE (as described in Sec-
tion 2.1) using numerical optimization. The numerical optimization in RTMo was implemented
by using a built-in function in MATLAB Optimization Toolbox, known as ‘lsqnonlin’ (Prikaziuk
& van der Tol, 2019). A trust-region-reflective algorithm was used in this case to update paramet-
ers in iteration and find a local minimum for the defined cost function (Coleman & Yuying, 1994,
1996). An optimality tolerance of 1 × 10−6 and 30 as number of maximum iteration were set as
stopping criteria for ‘lsqnonlin’. An initial guess was provided for each parameter and parameters
were updated within their upper and lower bounds (summarized in Table 4.3). This procedure is
described in detail by van der Tol et al., 2016; Verhoef et al., 2018; Yang et al., 2019.

Two different cost functions were defined in RTMo (van der Tol et al., 2016), one is without
using any prior information (Equation 4.12) and another using prior information (Equation 4.13).
Root Mean Square Error (RMSE) between the measured spectra and final modelled spectra was
also calculated and given as output by RTMo.

f0(i) = [RT OCmod
(i)−RT OCmeas(i)] (4.12)

Where f0(i) is the cost function which is to be minimized. RT OCmod
and RT OCmeas are mod-

elled and measured TOC reflectance respectively. RT OCmeas is same as the atmospherically correc-
ted TOC reflectance measured by S3 OLCI (defined as RT OC in Section 4.2.3) as well as observed
TOC reflectance by S2 MSI (which were extracted from GEE). i is the measurement index in the
time-series.

f(i) = f0(i) + fp(i)
f0(i) = [RT OCmod

(i)−RT OCmeas(i)]

fp(i) = w ×
(
X(i)−X0

σp

) (4.13)

In this case the cost function (f(i)) has two components. The first component (f0(i)) is same as
Equation 4.12. The second component (fp(i)) considers a prior information in the cost function.
In this componentw is the weight given the prior information (here 0.03),X is the posterior value,
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X0 is the initial guess/ prior values (as given in Table 4.3) and σp is the uncertainty associated with
each parameter (as given in Table 4.3).

Table 4.3 Initial guess, upper and lower bounds, uncertainty of parameters retrieved using RTMo

Parameters Initial guess (X0) Lower bound Upper bound Uncertainty (σp) Units

Soil parameters
B 0.5 0 0.9 0.3 -
BSMlat 25 20 40 12 Degree
BSMlon 45 40 60 9 Degree
SMC 30 5 55 12 %
Leaf parameters
Cab 40 0 100 30 µg cm−2

Cca 5 0 25 4 µg cm−2

Cant 1 0 5 1 µg cm−2

Cdm 0.012 0 0.02 0.006 g cm−2

Cw 0.009 0 0.2 0.02 cm
Cs 0.6 0 1.2 0.4 -
N 1.4 1 3.5 0.75 -
Canopy parameters
LAI 3 0 7 1 m2 m−2

LIDFa -0.35 -1 1 0.6 -
LIDFb -0.15 -1 1 0.6 -

A description of different parameters which can be retrieved using RTMo are provided in
Table 2.1. A different combinations of these parameters were retrieved at a time with or without
using prior information in cost function to assess the performance of RTMo. These combinations
are summarized in Table 4.4.

Table 4.4 Combinations used for retrieval using RTMo

Combination
number

Usage of prior in cost
function

Retrieved parameters

1 No prior used in cost
function

Leaf and canopy parameters (Cab, Cca, Cant,
Cdm, Cw, Cs, N, LAI, LIDFa and LIDFb)

2 No prior used in cost
function

Soil parameters (B, BSMlat, BSMlon), leaf and
canopy parameters (Cab, Cca, Cant, Cdm, Cw,
Cs, N, LAI, LIDFa and LIDFb)

3 Prior used in cost
function

Leaf and canopy parameters (Cab, Cca, Cant,
Cdm, Cw, Cs, N, LAI, LIDFa and LIDFb)

4 Prior used in cost
function

Soil parameters (B, BSMlat, BSMlon), leaf and
canopy parameters (Cab, Cca, Cant, Cdm, Cw,
Cs, N, LAI, LIDFa and LIDFb)

4.4.2 Inversion of SPART

A numerical optimization method was applied to invert SPART and retrieve crop parameters, soil
parameters and parameters describing atmospheric composition from S3 OLCI TOA radiance
and S2 MSI TOA reflectance measurements. The MATLAB function ‘lsqnonlin’ was used for
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this purpose. Details on this function are described in Section 4.4.1. The stopping criteria for
‘lsqnonlin’ are as described in Section 4.4.1. The initial guess, upper and lower bounds used in
case of retrieval from SPART are summarized in Table 4.5.

Two different cost functions were defined for minimization. The first cost function (given
as Equation 4.14) was only defined using measured and modelled TOA radiance or reflectance,
whereas, the second function (Equation 4.15) utilizes additional prior information.

f0(i) = [LT OAmeas(i)− LT OAmod
(i)]T × [LT OAmeas(i)− LT OAmod

(i)] (4.14)

Where f0(i) is the cost function which is to be minimized. LT OAmod
and LT OAmeas are mod-

elled and measured TOA radiance respectively. In case of S2, measured and modelled TOA reflect-
ance has been used. i is the measurement index in the time-series.

f(i) = f0(i) + fp(i)
f0(i) = [LT OAmeas(i)− LT OAmod

(i)]T × [LT OAmeas(i)− LT OAmod
(i)]

fp(i) = w ×
(
X(i)−X0

σp

)T

×
(
X(i)−X0

σp

) (4.15)

In this case the cost function (f(i)) has two components. The first component (f0(i)) is same as
Equation 4.14. The second component (fp(i)) considers prior information in the cost function. In
this component w is the weight given the prior information (here 0.006, background on this value
is given in the next paragraph). X is the posterior value retrieved, X0 is the initial guess/ prior
values (as given in Table 4.5) and σp is the standard deviation of parameters, which is calculated for
parameters with uniform distribution over a given interval by 1/

√
12 (≈ 0.3) of difference between

upper and lower bound of each parameter (Lumen learning, n.d.).

The value of w provides a weight to the part of the cost function with prior information. If a
higher weight is provided to the prior part, then the retrieved parameter will remain closer to the
initial guess. Whereas, if a lower value is provided, then the retrieval will go closer to the retrieval
without any prior information in the cost function. A sensitivity analysis was performed by using
different values of weight from 0.005 to 0.05 in order to remove spikes from the retrieved val-
ues. However, many spikes remain in the retrieved parameters even after using this cost function
(Equation 4.15).

In case of observations from S3 OLCI, all the soil, leaf and canopy parameters (as listed in
Table 4.5) and AOT values were retrieved as S3 OLCI has many bands (21 nos.). Other parameters,
such as H2O, O3, SZA, OZA and difference between SAA and OAA, Day of Year (DOY) were
provided as constant from actual S3 observations. All the 21 bands were used for retrieval.

It is required to have an equal or higher number of observations from different bands of a
sensor than the numbers of parameters which can be retrieved. In case of S2 MSI, a limited number
of parameters can be retrieved at a time, as it has 13 bands. First, an image with bare soil was
identified and spectral fitting was performed using SPART to find out a fixed set of values for two
of the BSM soil parameters, i.e., φ and λ. Then constant values were assumed for some of the other
parameters, i.e., 15 for soil moisture volume percentage (SMp), 0.05 for the hot-spot parameter (q)
and 10 for the leaf carotenoid content (Cca). Actual values from S2 observations were provided for
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parameters related to viewing-illumination geometry. In case of atmospheric parameters (H2O,
O3 and AOT), interpolated values during satellite overpass from ECMWF data were provided as
initial guess and then optimized by the model. All other soil, leaf and canopy parameters (as listed
in Table 4.5) were retrieved.

Table 4.5 Initial guess, upper and lower bounds of parameters retrieved using SPART

Parameters Unit Lower bound Upper bound Initial guess (X0)

Soil parameters
B - 0 0.9 0.5
φ Degree -30 30 0
λ Degree 80 120 100
SMp - 5 55 15
Leaf parameters
Cab µg cm−2 0 80 40
Cdm g cm−2 0 0.02 0.01
Cw cm 0 0.1 0.02
Cs - 0 1 0
Cca µg cm−2 0 30 10
Cant µg cm−2 0 30 10
N - 1 4 1.5
Canopy parameters
LAI m2 m−2 0 8 3
LIDFa - -1 1 -0.35
LIDFb - -1 1 -0.15
q - 0 0.2 0.05
Atmosphere parameter
AOT550 - 0 2 0.3246 or ECMWF data
UO3 cm-atm 0 0.8 0.35 or ECMWF data
UH2O g cm−2 0 8.5 1.41 or ECMWF data

4.5 FILTERING OF RETRIEVALS WITH HIGHER RMSE BETWEEN MEASURED AND MODELLED SPECTRA

This step was aimed to remove values of retrievals from the time-series obtained in above steps
(during inversion of SCOPE, thus RTMo and SPART), where the fit between modelled spectra
(by retrieval algorithms) and measured spectra were insufficient after minimization of the cost
function. A threshold RMSE value between measured and modelled spectra was chosen for each
sensor and model combination by plotting histograms of RMSE values. In case of inversion of
SPART model with S3 data, two different values for this threshold were chosen for inversion using
cost function with prior and no prior respectively. The retrievals were rejected where the RMSE
during spectral fitting were higher than this chosen threshold, and was assumed that the parameters
could not be retrieved with confidence in these cases.
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4.6 EVALUATION OF RETRIEVED PARAMETERS

4.6.1 Parameters Retrieved from Sentinel-3 OLCI Data

Prikaziuk et al., 2021 explored the extraction of time-series of TOA radiance of S3 OLCI obser-
vations by different means, and warned users for potential problems. They also highlighted the
problem that the effective footprint of S3 observations can vary based on the extraction method
and source of data. The authors also warned that S3 has 365 different orbits and almost every point
can be observed from different angles with high temporal resolution. But this leads to jumping
pixel centres around the point of interest and a larger effective footprint.

In this study, original images were downloaded from Copernicus Open Access Data Hub Ser-
vice (DHUS) or ONDA DIAS and time-series was extracted using geo-coordinates by SNAP tool
(as described in Sections 3.2.1 and 4.2.1), as recommended by Prikaziuk et al., 2021. Figure 4.2
shows the actual pixel centres extracted from S3A and S3B dataset for the point 2019_a for 2019
- 2020 crop growing season. A buffer of 212 m (background on choosing this distance is given in
next paragraph) was drawn around these pixel centres and merged to get the blue polygon (in Fig-
ure 4.2), which shows the effective footprint. Another buffer of 212 m (transparent pink circle in
Figure 4.2) was drawn around the actual point of interest. This shows that all the pixel centres lie
inside this buffer (transparent pink circle). But their actual footprint (blue polygon) covers a larger
area and the pixel centres are located on may different agricultural fields rather than on the actual
point of interest. There may be different vegetation on different fields and land-cover inside the
effective footprint may not be homogeneous. This makes retrieved LAI with field measured LAI
(which was measured at the actual point of interest) unrelated with each other. For this reason,
in this study this type comparison has not been approached. The comparison between retrieved
time-series of LAI from S3 dataset and MODIS LAI has been carried out just for a plausibility
check, acknowledging that both of remote sensing based datasets have their limitations.

The buffer distance of 212 m in the above description was considered based on the S3 OLCI
pixel resolution (300 m). Theoretically, the nearest pixel to the point should lie at a half distance
(300 m

2 = 150 m) to pixel centre. But considering possible pixel rotation, the distance was calculated
from the corner of a pixel, which is, 150 m×

√
2 ≈ 212 m. This threshold was also suggested by

Prikaziuk et al., 2021.

Besides crop biophysical parameters, atmospheric parameters were also retrieved with SPART
model using S3 data. These retrieved parameters were compared against that of ECMWF estima-
tion.

4.6.2 Parameters Retrieved from Sentinel-2 MSI Data

S2 MSI has comparatively higher spatial resolution (Table 4.2) than S3 OLCI sensor. This higher
spatial resolution enabled a one-to-one comparison between in-situ LAI (described in Section 3.2.7)
and LAI retrieved using S2 observations. In some cases, there are no S2 overpass exactly on the date
of in-situ measurements. In these cases, in-situ measurements were compared with retrievals from
1 - 3 days before or after S2 overpass, assuming that plant parameters like LAI are conservative
over this time frame (with the exception of harvest).
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Figure 4.2: Effective ground footprint (blue polygon) of Sentinel-3 OLCI dataset, expected ground
footprint (transparent pink polygon) and S3A (magenta dots) and S3B (yellow dots) pixel centres.

The correlation coefficient (r), coefficient of determination (R2) and RMSE were calculated
using Equations 4.16, 4.17 and 4.18 respectively:

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2 (4.16)

R2 = r2 (4.17)

RMSE =

√√√√( 1
n

)
n∑

i=1
(xi − yi)2 (4.18)

Where xi and yi are ith point in dataset x and y respectively. x̄ and ȳ are mean of dataset x and
y respectively. n is number of points in the dataset. Here x and y are measured and retrieved LAI
respectively.

A comparative check between MODIS LAI product (described in Section 3.2.4) and retrieved
LAI was also performed. A comparative check between atmospheric parameters retrieved by
SPART with that of provided by ECMWF has also been performed in this study.
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4.7 PREPARING TIME-SERIES OF RETRIEVED PARAMETERS AS INPUT TO THE SCOPE

4.7.1 Choosing Best Performing Time-series

Different parameters were retrieved using different models, sensors and settings of the retrieval
algorithms. A total of 12 time-series were retrieved per point of interest, resulting in 60 different
time-series for the 5 points (Table 3.2) considered in this study. It was important to choose a few
of the best performing time-series from it for further simulation of carbon and water fluxes with
SCOPE.

There were four cases involved, i.e., i) parameters retrieved with SPART and S2 data, ii) para-
meters retrieved with RTMo (thus SCOPE) and S2 data, iii) parameters retrieved with SPART and
S3 data, iv) parameters retrieved with RTMo and S3 data.

For the first two cases, a one-to-one comparison between retrieved LAI and ground measured
LAI was performed and statistical parameters were calculated as described in Section 4.6.2. The
time series with retrieved LAI values that shows lowest RMSE with ground measured LAI was
chosen for further steps. In the third case, no one-to-one comparison with in-situ measurements
was performed. Instead, the time series with the most realistic seasonal cycle was selected from
the SPART retrievals for further analysis, which appeared to be the retrieval without considering
any prior information in the cost function. In the fourth case, all time-series exhibited spikes, no
one-to-one comparison was performed, and none of the retrievals was selected for further analysis.

4.7.2 LOESS Curve Fitting

It was found that the chosen time-series of retrieved parameters were not very smooth and con-
tains some unrealistic spikes. A curve fitting method has been adopted to smooth the time-series:
the Locally Estimated Scatterplot Smoothing (LOESS) algorithm (Cleveland et al., 1992) as im-
plemented in R (R Core Team, 2020). In this method, multiple regressions are fitted in a local
neighborhood. The size of the local neighbourhood plays an important role as for fitting at a cer-
tain point, points within its local neighbourhood are considered which are weighted by its distance
from the point in consideration. The size of the neighbourhood is defined by an argument called
‘span’ in the LOESS function (which is part of ‘stats’ package) in R (R Core Team, 2020). In this
study, a fixed value of 0.4 (which means 40% smoothing span will be used for curve-fitting) was set
to this ‘span’ argument as there was many time-series with many parameters were involved.

The retrieved parameters were interpolated to a daily interval from the fitted LOESS curve us-
ing ‘predict’ (part of ‘Companion to Applied Regression (car)’ package) function (Fox & Weisberg,
2019) in R (R Core Team, 2020). Sometimes, some of the predicted values of certain parameters
goes to a physically implausible range (i.e., lower than the lower bound or higher than the upper
bound). In these cases, the values were replaced by values of lower and upper bound of paramet-
ers respectively. An example of this case is, sometimes the values of LAI were almost closer to
zero for few consecutive retrievals. When the values of LAI were interpolated for the missing
dates from these retrievals, it was found some of the interpolated values are in negative range (but
closer to zero). In this case, those negative values were replaced by zero, as negative value of LAI
is physically not possible.
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4.8 ECOSYSTEM FLUX SIMULATION WITH SCOPE MODEL

The main input parameters for the SCOPE are listed in Table 2.4. The input parameters can be
broadly classified into two types, i.e., i) parameters describing soil and canopy and ii) parameters
describing meteorological conditions. The time series of retrieved canopy and soil parameters (in
some cases) as well as time series of meteorological variables from ERA5 data (from Section 4.2.4)
were used as input for the SCOPE simulation. For some other parameters, either default values
from Yang, Prikaziuk et al., 2020 or constant values were used. The values of the input parameters
used for SCOPE are summarized in Table 4.6.

Two of the important parameters for SCOPE simulation are Vcmo and Ball-Berry stomatal
parameter (m). Unlike LAI and other crop biophysical parameters, these parameters can not re-
trieved using remote sensing data. These parameters can only be measured with some in-vivo
experimentation in the study area, which was not possible during the course of this study. As an
alternative, a constant value of 85 µmol m2s−1 and 12 were used for Vcmo and m. SCOPE can
not simulate respiration of the vegetation. But it can use a respiration rate as proportion of Vcmo

(Rdparam). The use of this Rdparam was leading to negative GPP values in some cases as it was
considering a higher respiration than carbon assimilation. So, zero was used as the value of Rd-
param. In case of solar zenith angle in SCOPE (tts), a constant value of 30 were used as sensitivity
of the simulated fluxes is low to tts.

Table 4.6: Values of input parameters used in SCOPE simulation

Variable Values used Unit Description
FLUSPECT
Cab Retrieved time-series µg cm−2 leaf chlorophyll concentration
Cca 10 or retrieved

time-series
µg cm−2 leaf carotenoid concentration

Cdm Retrieved time-series g cm−2 leaf dry matter content
Cw Retrieved time-series cm equivalent water thickness in leaves
Cs Retrieved time-series - leaf senescence parameters
Cant Retrieved time-series µg cm−2 Anthocyanin content
N Retrieved time-series - leaf structure parameter
rho_thermal 0.01 - broadband thermal reflectance
tau_thermal 0.01 - broadband thermal transmittance
Leaf_Biochemical
Vcmo 85 µmol m2s−1 carboxylation capacity at 25 degC
m 12 - Ball-Berry stomatal parameter
BallBerry0 0.01 - Minimum stomatal resistance
Type 0 - Photochemical pathway: 0=C3,

1=C4
kV 0.6396 - extinction coefficient for Vcmax in

the vertical (maximum at the top). 0
for uniform Vcmax

Rdparam 0 - Respiration = Rdparam*Vcmcax
Tparam 0.2, 0.3, 281, 308, 328 - These are five parameters specifying

the temperature response
Continued on next page
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Table 4.6 – Continued from previous page
Variable Values used Unit Description
Soil
spectrum 1 - Spectrum number
rss 2000 sm−1 soil resistance for evaporation from

the pore space
rs_thermal 0.06 broadband soil reflectance in the

thermal range (1-emissivity)
cs 1180 JKg−1 K−1 specific heat capacity of the soil
rhos 1800 Kg m−3 specific mass of the soil
lambdas 1.55 J m−1 K−1 heat conductivity of the soil
SMC 15 - volumetric soil moisture content in

the root zone
BSM
Brightness

0.5 or retrieved
time-series

- BSM model parameter for soil
brightness

BSMlat -11.21 or retrieved
time-series

deg BSM model parameter ’lat’

BSMlon 91.34 or retrieved
time-series

deg BSM model parameter ’long’

Canopy
LAI Retrieved time-series m2 m−2 leaf area index
hc 2 m vegetation height
LIDFa Retrieved time-series - leaf inclination
LIDFb Retrieved time-series - variation in leaf inclination
leafwidth 0.1 m leaf width
Meteo
z 2 m measurement height of

meteorological data
Rin ERA5 time-series Wm−2 shortwave irradiance
Ta ERA5 time-series ◦C air temperature
Rli ERA5 time-series Wm−2 longwave irradiance
p ERA5 time-series hPa air pressure
ea ERA5 time-series hPa vapour pressure
u ERA5 time-series ms−1 wind speed
Ca 410 ppm atmospheric CO2 concentration
Oa 209 per mille atmospheric O2 concentration
Aerodynamic
zo 0.25 m roughness length for momentum of

the canopy
d 1.34 m displacement height
Cd 0.3 - leaf drag coefficient
rb 10 s m−1 leaf boundary resistance
CR 0.35 - Drag coefficient for isolated tree
CD1 20.6 - fitting parameter
Psicor 0.2 - Roughness layer correction
CSSOIL 0.01 - Drag coefficient for soil
rbs 10 s m−1 soil boundary layer resistance

Continued on next page
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Table 4.6 – Continued from previous page
Variable Values used Unit Description
rwc 0 s m−1 within canopy layer resistance
timeseries
startDOY 20060618 date

(yyyymmdd)
date of start of simulations

endDOY 20300101 date
(yyyymmdd)

date of end of simulations

LAT actual latitude of point of
interest

decimal deg Latitude

LON actual longitude of point
of interest

decimal deg Longitude

timezn 0 hours east of Greenwich
Angles
tts 30 deg solar zenith angle
tto 0 deg observation zenith angle
psi 0 deg azimuthal difference between solar

and observation angle

4.9 EVALUATION OF SCOPE SIMULATED ECOSYSTEM FLUXES

4.9.1 Comparison with Other Global Remote Sensing Products

Direct ground measurements of ecosystem fluxes (such as, carbon flux, sensible, latent and ground
heat fluxes) were not available for the study area. For this reason the simulated ecosystem fluxes
were compared against other global remote sensing based products only. SCOPE simulated GPP
was compared to MODIS GPP products given in Table 3.4 and simulated ET was compared to
MODIS ET (Table 3.3) and ECOSTRESS ET products. The gap-filled MODIS GPP products
(MOD17A2HGF and MYD17A2HGF) were used for November 2018 to April 2019 and Novem-
ber to December 2019. The gap-filled products are discontinued after this period. The standard
MODIS GPP products (MOD17A2H and MYD17A2H) were used for January to April 2020.

The gap-filled MODIS ET (MOD16A2GF and MYD16A2GF) products were used for the
period November 2018 to April 2019 and November 2019 to December 2019. Although the gap-
filled product should be available until the present date (according to the product description),
in reality, it ends at December 2019. So, from January 2020 to April 2020 the MOD16A2 and
MYD16A2 were used for this study.

An argument for choosing data derived from ECOSTRESS instrument is to investigate if there
is any significant difference in ET estimates derived from an instrument with thermal bands and
an instrument (as OLCI observations are used in SCOPE modelling) with mainly optical (VIS-
SWIR) bands, but no thermal bands. However, very limited observations of ECOSTRESS were
available (only 9) between January 2019 to March 2019 for the crop growing season 2018-19. It is
due to the fact that ECOSTRESS was facing consistent anomaly with its MSU in the early stage
of its operation. For 2019-20 season, there are 14 observations between November 2019 to April
2020. It is due to the data anomaly created in band 4 of the instrument in February 2020 and also
the instrument was in ISS SAFEHOLD for some time.
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4.9.2 Comparison against a Unified Vegetation Index

Vegetation indices such as NDVI are commonly used for satellite based monitoring of vegetation.
NDVI exploits information from red (vegetation absorbs radiation in visible domain for photo-
synthesis) and Near-infrared (NIR) (vegetation reflects more NIR radiation as it is unsuitable for
photosynthesis) bands. A limitation of NDVI is the saturation with higher green biomass. A
more robust nonlinear NDVI, which is known as kernel NDVI (kNDVI) has been suggested by
Camps-Valls et al., 2021. This index has proven to better correspond with measured GPP at flux
tower sites and remotely sensed SIF by the authors.

In this study, kNDVI has been calculated using Equation 4.19, as suggested by the authors. In
case of S3 OLCI, TOC reflectances from band 8 and 17 were used as red and NIR band respectively
to calculate kNDVI. For S2 MSI, TOC reflectance from band 4 and 8 were used as red and NIR
bands respectively for the same.

The kNDVI was calculated to check if it corresponds to SCOPE simulated GPP and MODIS
GPP products as a means of qualitative evaluation.

NDV I = NIR−Red
NIR+Red

kNDV I = tanh(NDV I2)

(4.19)

4.10 ECOSYSTEM EFFICIENCY PARAMETERS AND CROP YIELD ESTIMATION

4.10.1 Ecosystem Efficiency Parameters

The output of the SCOPE can be used to calculate some of the ecosystem efficiency parameters.
For example, Light Use Efficiency (LUE) can be calculated using GPP and aPAR (Equation 4.20),
WUE can be calculated using GPP and ET (Equation 4.21) and Evaporative fraction (EF) can be
calculated using Latent heat flux (IE) and sensible heat flux (H) (Equation 4.22). These equations
were taken from Prikaziuk et al., 2020. This ecosystem efficiency parameters or ecosystem func-
tional properties were calculated as complementary information.

LUE = GPP

aPAR
(4.20)

WUE = GPP

ET
(4.21)

EF = IE

IE +H
(4.22)

4.10.2 Crop Yield Estimation

GPP or photosynthesis was simulated by the SCOPE model at a daily time step. The SCOPE
model provides GPP in µmol m−2 s−1. The simulated GPP was converted into mass flux density
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and aggregated from the date of sowing to the date of harvesting. Ideally, the GR and MR should
have been subtracted from the GPP and then crop yield should be calculated. Because SCOPE
cannot simulate plant respiration, a Harvest Index (HI) of 0.4 (Maheswarappa et al., 2011) was
directly multiplied with GPP to have an estimation of crop yield as shown in Equations 4.23:

GPP [gC m−2 s−1] = GPP [µmol m−2 s−1]× 12× 10−6

GPP [gC ha−1 day−1] = GPP [gC m−2 s−1]× 24× 3600× 10000

GPP [gC ha−1 season−1] =
harvesting date∑

sowing date

GPP [gC ha−1 day−1]

GPP [t ha−1 season−1] = GPP [gC ha−1 season−1]× 10−6

yield [t ha−1 season−1] = GPP [t ha−1 season−1]× 0.4

(4.23)

The sowing and harvesting date for wheat for each points of interest are given in Table 4.7.

Table 4.7 Sowing and harvesting date of wheat at the points of interest

Location ID Sowing date Harvesting date

2018_a 01-December-2018 19-April-2019
2018_b 07-December-2018 19-April-2019
2019_a 18-November-2019 12-April-2020
2019_b 28-November-2019 12-April-2020
2019_c 04-December-2019 21-April-2020
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Chapter 5

Results

The results obtained from different stages of the methodologies are described in the following
sections.

5.1 DATA PRE-PROCESSING

5.1.1 Atmospheric Correction of Sentinel-3 OLCI TOA Radiance

Two different spectra observed on 21st December 2018 (04:21:29 hrs.) and 22nd December 2018
(04:56:21 hrs.) by S3A and S3B respectively were chosen to illustrate the results of atmospheric
correction for two points of interest (i.e., 2018_a and 2018_b) of crop growing season 2018-19.
For the other crop growing season (2019-20), there were S3A and S3B observations on a same day
(21st December 2019) at 04:58:28 hrs. and 04:19:30 hrs. respectively and these two were chosen
to illustrate the atmospheric correction results at three points of interest (i.e., 2019_a, 2019_b and
2019_c). Figure 5.1 shows some differences in the observation of S3A and S3B. Moreover, the
difference between TOA and TOC reflectance can be noticed, as well as dips in reflectance near
band 13 and 14 (which may not be very ideal for retrieval).

Time-series of TOC reflectance for both the crop growth season were plotted to show the
variation of S3 observed reflectance at different crop stages. For this purpose, a spectrum was
plotted from an observation around the middle of each month (from November to April) in the
two crop growing seasons. Figure 5.2 shows the reflectance time-series for the season 2018-19. The
same for the wheat growing season for 2019-20 is shown in Figure 5.3. It can be observed from
both the Figure 5.2 and Figure 5.3 that the reflectance in the visible range was lower when the
crop was greener (DOY 349[2018], 44[2019], 47[2020], 76[2020]) due to the absorption of light
by chlorophyll.

5.1.2 Unit Conversion and Aggregation of ECMWF ERA5 Meteorological Data

The variation of different weather parameters for the two crop seasons of 2018-19 and 2019-20
are plotted in Figure 5.4 and 5.5 respectively. This data served as an input for SCOPE. The
weather parameters were identical for all selected points due to the coarse spatial resolution of
ERA5 weather data (9km).
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Figure 5.1: Atmospheric correction of S3A and S3B OLCI bands for coordinates of interest

Figure 5.2: Time-series of TOC reflectance for the coordinates of interest for 2018-19 season. The
black solid lines denote the central wavelengths of each band of S3
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Figure 5.3: Time-series of TOC reflectance for the coordinates of interest for 2019-20 season. The
black solid lines denote the central wavelengths of each band of S3

Figure 5.4: Variation of different weather parameters for 2018-19
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Figure 5.5: Variation of different weather parameters for 2019-20

5.2 SENSITIVITY OF SPART MODEL TO CAB, LAI AND AOT, WITH S2 OBSERVATIONS

The response of SPART with varying Cab values has been shown in Figure 5.6. It can be observed
that there is little effect of Cab in the spectral region between 400 nm to 500 nm as well as between
800 nm to 2200 nm. But, as expected, a decreasing trend in TOC and TOA reflectance with in-
creasing Cab values can be observed between 500 nm to 800 nm as chlorophyll absorbs light in
this spectral region for photosynthesis.

Figure 5.6: Response of SPART model with varying chlorophyll content
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Figure 5.7 shows the effect of LAI on SPART simulation. No change in TOA reflectance can be
observed between 1100 nm to 1400 nm, whereas, in visible and NIR region (400 nm to 1100 nm),
a strong effect of LAI can be observed as TOC reflectance is gradually decreasing with increasing
LAI values.

The effect of varying AOT on the simulation of SPART model has also been plotted in Fig-
ure 5.8. It can be observed the AOT values largely effect TOA reflectance as expected (as AOT is
one of the representative parameters for the atmospheric conditions). However, there is no effect
of AOT on TOC reflectance can be observed.

Figure 5.7: Response of SPART model with varying LAI values

Figure 5.8: Response of SPART model with varying AOT values
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5.3 RETRIEVAL OF CROP BIOPHYSICAL, SOIL AND ATMOSPHERIC PARAMETERS

5.3.1 Inversion of RTMo of SCOPE

A total of 4 different combinations (Table 4.4) were used to retrieve 10 crop biophysical parameters
and 3 soil parameters (Table 4.3) with or without using prior information.

The time-series of retrieved parameters from Sentinel-3 data for the crop season 2018-19 is
given in Figure 5.9 for the location 2018_a. Similarly, Figure 5.10 shows the retrieval results for
2019_a.

RTMo was also inverted to retrieve the same parameters using S2 data. The time-series of
retrieved parameters from Sentinel-2 data are provided in Figures 5.11 and 5.12 for the locations
2018_a and respectively. The retrieval results for other point locations using both S3 and S2 data are
provided in Appendix A. These retrieval results are presented after removing the retrieval where
spectral fit was not very well.

Although in some cases the retrieval shows the expected pattern of crop growth, it can be
observed that the retrievals are not very stable (considering the fact that plant parameters do not
change rapidly) in most of the cases. Overall retrieval of some parameters using S2 data is bit better
in comparison to S3 data. For example, the retrieval of LAI and senescent material (Cs) for 2019-20
season shows a typical seasonal cycle when using S2 observations as input.

50



C
R

O
P

Y
IE

LD
E

S
TIM

ATIO
N

FR
O

M
S

IM
U

LATE
D

C
A

R
B

O
N

FLU
X

U
S

IN
G

S
C

O
P

E
:A

C
A

S
E

S
TU

D
Y

O
F

S
A

M
R

A
K

A
LW

A
N

A
V

ILLA
G

E
IN

IN
D

IA

Figure 5.9: Time-series of retrieved parameters from S3 data using different settings of RTMo for the point 2018_a
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Figure 5.10: Time-series of retrieved parameters from S3 data using different settings of RTMo for the point 2019_a
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Figure 5.11: Time-series of retrieved parameters from S2 data using different settings of RTMo for the point 2018_a
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Figure 5.12: Time-series of retrieved parameters from S2 data using different settings of RTMo for the point 2019_a
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5.3.2 Inversion of SPART

Effect on Retrievals using Different Weight Values to the Prior

The values of retrieved parameters with SPART model depend on the weight given to the prior
information while using it in the cost function (Equation 4.15). If a higher weight is given to the
prior, the values of retrieved parameters become closer to the initial guess, whereas a lower weight
yields values of retrieved parameters closer to the retrieval without using any prior information
in cost function. So, 7 different values ranging from 0.005 to 0.05 were assigned to the weight and
investigated which value can give a more realistic retrieval results.

In case of S3 data, the effect of weight on the retrieval results were checked only for LAI and
Cab, as shown in Figure 5.13. It can be observed that retrievals with weights between 0.05 and 0.03
converge to the prior values, whereas retrieval with weight 0.005 converge to the retrievals using
no prior at all. For other values of weight ranging from 0.006 to 0.01, retrievals are somewhere in
the middle.

In case of S2, the effect of weight on retrieval results were assessed for 13 different soil, ve-
getation and atmospheric parameters and shown in Figure 5.14. It can be observed that for some
parameters (e.g. LAI, B), there is limited effect of using prior information (with different weight)
on the retrieval, whereas for other parameters (e.g. Cs), retrieval using prior removes all variability
from the retrieved values.

Finally, a very small value of 0.006 was assigned to the weight for performing SPART retrievals
with prior information for both S3 and S2 data. This analysis was done only with the retrievals
using satellite observations for location 2019_a.

Figure 5.13: Sensitivity analysis of retrieval of Cab and LAI using SPART and S3 data for different
values of weight to the prior information in the cost function (for location 2019_a)
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Figure 5.14: Sensitivity analysis of SPART retrievals using S2 data for different values of weight to
the prior information in the cost function (for location 2019_a)

Retrieval of soil, vegetation and atmospheric parameters using SPART

Thereafter, soil, vegetation (leaf and canopy) and atmospheric parameters (AOT) were retrieved
for all the 5 point locations both with or without using prior information in the cost function in
the SPART model from the S3 and S2 observed TOA radiance.

The results of retrieved leaf, canopy and soil parameters from S3 data for the location 2018_a
and 2019_a are shown in Figures 5.15 and 5.16 respectively. The results of retrieved leaf, canopy
and soil parameters from S2 data for the location 2018_a, 2019_a are shown in Figures 5.17 and 5.18
respectively. The retrieval results for other point locations using both S3 and S2 data are provided
in Appendix A. These retrieval results are presented after removing the retrieval where spectral fit
was not very well.

It can be observed that even the retrievals from SPART using TOA observations of S3 exhibit
spikes. The retrievals from S2 data show better result in some cases (for example, retrieval of LAI
and Cs in Figure 5.18). The fixed value of 0.006 to the weight of the prior also resulted in retrievals
close to the initial guess for many parameters in different locations.
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Figure 5.15: SPART retrieval results from S3 data for point 2018_a
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Figure 5.16: SPART retrieval results from S3 data for point 2019_a
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Figure 5.17: SPART retrieval results from S2 data for point 2018_a
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Figure 5.18: SPART retrieval results from S2 data for point 2019_a
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5.4 RMSE FILTERING OF RETRIEVED TIME-SERIES

There were some unexpected fluctuations in all the retrieval results. Histograms of RMSE between
modelled and measured spectra were plotted for each of the cases in order to chose a threshold
RMSE value to filter out the retrievals where a spectral fit is of poor quality. These histogram plots
for different sensor and model combination are shown in Figure 5.19 for point location 2019_a.

Constant threshold RMSE values were chosen for each sensor and model combination (for
SPART with S3 data, two different thresholds were chosen for using prior or no prior in the cost
function), and are given in Table 5.1.

The retrieval results in the above section (Section 5.3) are presented after doing this RMSE
based filtering.

Figure 5.19: Histogram of RMSE between measured and modelled spectra for different sensor and
model combination (for location 2019_a)

Table 5.1 Threshold used for RMSE based filtering for different sensor and model combination

Combinations Threshold values of RMSE

SPART with S3
no prior 0.011 W/m2/sr/nm
with prior 0.022 W/m2/sr/nm

SPART with S2 0.034 [-]
RTMo with S3 0.05 [-]
RTMo with S2 0.025 [-]
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5.5 EVALUATION OF RETRIEVED PARAMETERS

5.5.1 Parameters Retrieved from Sentinel-3 OLCI Data

Figure 5.20 and 5.21 show the comparative plot between MODIS LAI and LAI retrieved using
RTMo and SPART respectively. An underestimation of LAI values with respect to the MODIS
can be noticed in both the Figures (Figure 5.20 and 5.21). The LAI retrievals using RTMo show
a lot of unrealistic spikes. Although these fluctuations also exists in retrievals from SPART, the
extent of fluctuations is less.

Figure 5.20: An inter-comparison between MODIS LAI and LAI retrieved from S3 observations
using RTMo

Figure 5.21: An inter-comparison between MODIS LAI and LAI retrieved from S3 observations
using SPART
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The SPART retrieved AOT were compared against interpolated ECMWF AOT values (as de-
scribed in 4.2.2) at the time of S3 overpass and shown in Figure 5.22. The general trend of AOT
from SPART matches with the one from ECMWF. But there quite some spikes observable in both
ECMWF and AOT values that do not always co-locate in time.

Figure 5.22: Comparison of AOT values retrieved from S3 TOA observations using SPART, with
interpolated ECMWF AOT values

5.5.2 Parameters Retrieved from Sentinel-2 MSI Data

Figure 5.23 and 5.24 show an inter-comparison between MODIS LAI, in-situ LAI measurements
and LAI retrieved from S2 observations using RTMo and SPART respectively. It can be observed
that in-situ LAI measurements are comparatively low and match with the lower LAI estimations
from MODIS data. The LAI retrieval using SPART (without using prior in cost function) matches
well with the in-situ LAI for 2018_a and 2018_b. The LAI retrieved using SPART also shows the
expected trend for all the points in the 2019-20 season. In case of retrievals using RTMo, ground
LAI measurements matches with retrieval using combination 1 and 2 (Table 4.4) for point 2019_a
and 2019_c.

Table 5.2 provides the r, R2 and RMSE between the measured and modelled LAI values using
different combinations for the coordinates of interest. In some cases (e.g. for combination 3 and 4
for the point 2019_c) the RMSE values is relatively high, but the correlation R2 is relatively high
too. For 2018_a and 2018_b (combination 4 and 3 respectively), a good agreement can be found
between measured and retrieved LAI. In some case, the values of r is negative, showing a worse
correlation of the retrievals with the observations than the prior values.

Figure 5.25 was plotted to show the agreement of RTMo retrieved LAI with in-situ LAI meas-
urements either on same day or the closest day to the day of S2 overpass. It can be observed that
in some cases, the LAI retrieved from RTMo is somewhat higher values than the measured value.
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Figure 5.23: An inter-comparison between MODIS LAI, in-situ LAI measurements and LAI
retrieved from S2 observations using RTMo

Figure 5.24: An inter-comparison between MODIS LAI, in-situ LAI measurements and LAI
retrieved from S2 observations using SPART
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Table 5.2 Correlation coefficient (r), R2 and RMSE between LAI retrieved from S2 using different
settings of RTMo and in-situ measurements

Combination 1 Combination 2 Combination 3 Combination 4

Location ID r [-] R2 [-] RMSE r [-] R2 [-] RMSE r [-] R2 [-] RMSE r [-] R2 [-] RMSE

2018_a -0.26 0.07 0.67 0.10 0.01 0.51 0.84 0.70 0.73 0.80 0.64 0.40
2018_b 0.49 0.24 0.80 0.74 0.54 0.33 0.81 0.67 0.23 0.81 0.65 0.29
2019_a -0.64 0.41 0.60 -0.78 0.60 0.78 -0.12 0.01 2.19 -0.30 0.09 2.05
2019_b 0.33 0.11 1.05 0.24 0.06 0.99 0.71 0.50 1.06 0.44 0.20 0.80
2019_c -0.52 0.27 0.86 0.51 0.26 1.01 0.62 0.38 2.98 0.64 0.40 2.86
Here unit of RMSE is m2 m−2

Figure 5.25: Comparison of LAI retrieved from S2 data using RTMo with in-situ measurements
(trend-lines are given as dashed lines)

65



CROP YIELD ESTIMATION FROM SIMULATED CARBON FLUX USING SCOPE: A CASE STUDY OF SAMRAKALWANA VILLAGE IN INDIA

Comparative plots between in-situ measurements of LAI and SPART retrieved LAI were pre-
pared for all the 5 point locations and shown in Figure 5.26. These plots show the overestimation
of LAI with SPART in some cases (2019_a and 2019_c). Further Table 5.3 was prepared to present
the r, R2 and RMSE between the in-situ LAI measurements and SPART retrieval with S2 data. In
some cases, comparatively better agreement between SPART retrieval and in-situ measurements
can be found (e.g. 2018_a, 2019_b).

Table 5.3 Correlation coefficient, R2 and RMSE between LAI retrieved from S2 using SPART and
in-situ measurements

Without using prior information With prior information

Location ID r [-] R2 [-] RMSE r [-] R2 [-] RMSE

2018_a 0.92 0.84 0.67 0.92 0.85 0.66
2018_b -0.52 0.27 0.46 -0.03 0.0007 0.72
2019_a -0.69 0.47 1.99 -0.45 0.20 2.11
2019_b 0.96 0.92 0.83 0.82 0.68 1.10
2019_c 0.27 0.07 2.49 0.28 0.08 2.59
Here unit of RMSE is m2 m−2

Figure 5.26: Comparison of LAI retrieved from S2 data using SPART with in-situ measurements
(trend-lines are given as dashed lines)
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The atmospheric parameters from ECMWF was supplied as initial guess of to the SPART
model and then the model optimized the parameters for the spectral fit of TOA reflectance while
performing the model inversion. The inter-comparison between the initial guess from ECMWF
and the one retrieved from SPART are plotted in Figures 5.27, 5.28, 5.29, 5.30 and 5.31 for the
location 2018_a, 2018_b, 2019_a, 2019_b and 2019_c respectively. It can be observed that the
retrieved AOT and H2O remained closer to the initial guess, whereas a large difference between
initial guess and retrieval can be found for O3 in case of not using any prior in cost function. This
difference is not reasonable as concentration of O3 remains almost constant over time. Thus, use
of prior in cost function is necessary for retrieval of O3 using SPART.

Figure 5.27: Comparison between atmospheric parameters retrieved from S2 observations using
SPART model with the ECMWF estimation (for 2018_a)

Figure 5.28: Comparison between atmospheric parameters retrieved from S2 observations using
SPART model with the ECMWF estimation (for 2018_b)
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Figure 5.29: Comparison between atmospheric parameters retrieved from S2 observations using
SPART model with the ECMWF estimation (for 2019_a)

Figure 5.30: Comparison between atmospheric parameters retrieved from S2 observations using
SPART model with the ECMWF estimation (for 2019_b)
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Figure 5.31: Comparison between atmospheric parameters retrieved from S2 observations using
SPART model with the ECMWF estimation (for 2019_c)

5.6 PREPARING TIME-SERIES OF RETRIEVED PARAMETERS AS INPUT TO THE SCOPE

5.6.1 Choosing Best Performing Time-series

The best performing time-series of the retrieved parameters for further use in SCOPE was chosen
based on the criteria described in Section 4.7.1. Table 5.2 and 5.3 have been used for this purpose.
The chosen time-series are summarized in Table 5.4.

Table 5.4 The best performing time-series chosen for further use in SCOPE modelling

Location ID SPART with S2 data RTMo with S2 data SPART with S3 data

2018_a retrieval with prior Combination 4 retrieval without prior
2018_b retrieval without prior Combination 3 retrieval without prior
2019_a retrieval without prior Combination 1 retrieval without prior
2019_b retrieval without prior Combination 4 retrieval without prior
2019_c retrieval without prior Combination 1 retrieval without prior

5.6.2 LOESS Curve Fitting

It was found that the chosen time-series contain some fluctuations. So, it was decided to smoothen
the time-series by fitting a LOESS curve. Moreover, the fitted curve can be used to interpolate
values of the retrieved parameters at a daily time scale. The LOESS curve fitting was performed
for all the retrieved parameters for the 15 chosen time-series (Table 5.4). But here only LOESS
fitting for the 2019_b point location from the chosen time-series of SPART with S2 data has been
shown in Figure 5.32.
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This step is useful for interpolating crop parameters at a daily time scale which is helpful for
simulation of ecosystem flux at a daily time-scale using SCOPE. But now the values in the time-
series are interpolated from the fitted curve (not retrieved from actual satellite observations). In
some cases, there may be considerable time gap between consecutive observations. In that case,
the interpolation result may not be very well.

Figure 5.32: LOESS curve fitting for the time-series chosen from SPART S2 retrievals (for 2019_b)

5.7 RESULTS AND EVALUATION OF SCOPE SIMULATION

It was found during SCOPE simulation that for some days, the ecosystem fluxes can not be simu-
lated using input data obtained by inversion of RTMo module of SCOPE from S2 observations. In
some cases, there were also energy balance closure error for a few days. Those data were removed.
These data gaps can be observed in the plots of simulated ecosystem flux.

5.7.1 GPP/ Photosynthesis

GPP or photosynthesis was simulated for all the 5 points of interest for the two crop growing
seasons using parameters retrieved in combination of SPART or RTMo of SCOPE and S3 or S2
observations as described in earlier Sections (Section 4.7.1 and 5.6.1). The time-series of simulated
GPP were plotted along with GPP from MODIS data and an unified vegetation index (kNDVI).
This is shown in Figure 5.33.

It can be observed that GPP simulated from SPART retrieved data is quite flat and does not
exhibit a seasonal variation very well, whereas GPP simulation using the RTMo retrieved para-
meters shows the variation expected in this ecosystem (especially for 2019-20 season). In some
cases (2019_a and 2019_c), the values of GPP can not be simulated for a few days with input data
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obtained using RTMo from S2 observations. It can also be noticed that GPP simulation in the
middle of the season (1st December to 31st March) is almost similar even with using different sets
of input data.

The GPP estimation from Terra or Aqua MODIS data is somewhat lower than the simulations
in this study. The kNDVI values are also mostly lower and remain close to the MODIS estimation.
The range of simulated GPP varies within 0 to 12 µmol m2s−1 for both the crop growing seasons.

5.7.2 Evapotranspiration (ET)

The water fluxes or ET were simulated as well with the SCOPE model with different time-series
of retrieved parameters. The simulated ET along with MODIS based ET products and ET es-
timations from ECOSTRESS are shown in Figure 5.34. The pattern of ET is quite similar to the
pattern of simulated GPP. The ET simulation using RTMo retrieved data captures the expected
variation (higher ET during the growth period) a bit better. The MODIS ET estimation is also
bit lower. But the ET estimation from ECOSTRESS is quite higher than the simulated ET flux.
It is emphasized that there are very few observations from ECOSTRESS due to various reasons
described in Section 3.2.5.

5.7.3 Sensible and Ground Heat Fluxes

The SCOPE simulated H and ground heat flux (G) are shown in Figures 5.35 and 5.36 respectively.
There are sudden rise in the heat fluxes at the beginning or end of the season in case of simulation
with parameters retrieved using RTMo from S2 data. In other parts of the season the heat flux
matches quite well with each other from different simulations.

5.8 ECOSYSTEM EFFICIENCY PARAMETERS AND CROP YIELD ESTIMATION

5.8.1 Ecosystem Efficiency Parameters

Three of the ecosystem efficiency parameters, i.e. WUE, LUE and EF have been plotted in Figure
5.37, 5.38, and 5.39 respectively. In Figure 5.38, for point 2019_a, a few negative values of LUE
have been found with simulation using input data using RTMo from S2 observations.
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IAFigure 5.33: Variation of simulated GPP flux in the study area and its evaluation against other GPP products and kNDVI
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Figure 5.34: Variation of simulated ET flux in the study area and its evaluation against other remote sensing based ET products
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Figure 5.35: Variation of simulated sensible heat flux in the study area
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Figure 5.36: Variation of simulated ground heat flux in the study area

75



C
R

O
P

Y
IE

LD
E

S
TIM

ATIO
N

FR
O

M
S

IM
U

LATE
D

C
A

R
B

O
N

FLU
X

U
S

IN
G

S
C

O
P

E
:A

C
A

S
E

S
TU

D
Y

O
F

S
A

M
R

A
K

A
LW

A
N

A
V

ILLA
G

E
IN

IN
D

IA

Figure 5.37: Variation of water use efficiency in the study area
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Figure 5.38: Variation of light use efficiency in the study area
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Figure 5.39: Variation of evaporative fraction in the study area
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5.8.2 Crop Yield Estimation

Table 5.5 has been prepared to show the estimated crop yield from different SCOPE simulations as
well as the absolute difference between estimated and actual crop yield. The crop yield estimation
is little bit higher than the actual yield in most of the cases.

Table 5.5 Crop yield (in t/ha) estimation for the study area

Estimated crop yield Absolute difference between actual
and estimated crop yield

Location ID Actual crop
yield

RTMo_S2 SPART_S2 SPART_S3 RTMo_S2 SPART_S2 SPART_S3

2018_a 4.66 4.83 4.96 4.70 0.17 0.30 0.04
2018_b 4.42 4.66 4.28 4.55 0.24 0.14 0.13
2019_a 4.30 5.02 5.07 5.16 0.72 0.77 0.86
2019_b 4.20 5.03 4.62 4.69 0.83 0.42 0.49
2019_c 3.60 4.48 4.76 4.82 0.88 1.16 1.22

Here unit of crop yield is t/ha
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Chapter 6

Discussions

This chapter intends to answer the research questions (formulated in Section 1.7) from the results
obtained in Chapter 5. Some of the limitations or challenges of this study will also be discussed in
the last section of this chapter.

6.1 COMPARISON OF RETRIEVAL FROM TOC AND TOA OBSERVATIONS USING RTMo IN SCOPE AND
SPART MODEL

The SPART model used in this study, simulates radiative transfer in the soil, vegetation and atmo-
sphere continuum, whereas RTMo, a sub-model of SCOPE accounts only for soil and vegetation.
Either model has its own set of advantages or disadvantages.

The main advantage of using SPART is its ability to account for the atmosphere by implement-
ing a modified SMAC. This SMAC model was modified by Yang, van der Tol, Yin et al., 2020
to account for the anisotorpic surface reflection. It enables user to retrieve various atmospheric
parameters, such as H2O, AOT and O3 which is demonstrated in this study. Moreover, it is not
necessary to perform atmospheric correction of satellite observations by the user. Both TOA radi-
ance or reflectance can be directly used to retrieve a wide range of soil, vegetation and atmosphere
related parameters with the SPART. In this study, TOA radiance from S3 and TOA reflectance
from S2 have been used. A wide range of satellites, such as Landsat 4,5,7 and 8, Sentinel-3A and
3B, Terra/Aqua MODIS were already present in the existing SPART model. The capability of
SPART to simulate S2 observations has also been extended in this study. In some cases, it has
been observed that the retrieval using SPART is a bit more stable and there are less unexpected
fluctuations depending on the sensor used.

There are certain limitations of the SPART. The SMAC model in SPART is a simplified version
of 6S model. Though the SMAC model can simulate atmospheric radiative transfer well, it is not
very accurate. Besides, SMAC model needs 49 different coefficients. Although these coefficients
for a variety of satellites or sensors have already been calculated, the code for calculating these
coefficients is not publicly available. It makes the inclusion of new sensors little difficult. It can
be observed quite often when a prior information is used in the cost function during inversion of
SPART, the retrieved values tend to go near the initial guess. So, a more robust implementation
of this prior information may be necessary as suggested by Yang et al., 2021.

In case of RTMo thus in SCOPE, a very user friendly model inversion approach has already
been developed and publicly made available. It enables user to retrieve vegetation or soil paramet-
ers very easily if surface or TOC reflectance is available as RTMo does not have an atmospheric
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component. So, it may be easy to use for sensors like S2 for which globally atmospherically cor-
rected data is available for most of the recent times. For S3, it is possible to use an atmospherically
corrected synergy product of OLCI and SLSTR, but atmospheric corrections for all the bands are
not available there. If any user wants to use a single sensor or use some other bands, they have to
perform atmospheric correction themselves as demonstrated in this study. This step may make
the usage of RTMo a bit difficult, as performing atmospheric correction is not very easy and time
consuming due to different reasons, including the (un)availability of atmospheric parameters and
the computational demand.

6.2 COMPARISON BETWEEN USING SENTINEL-3 AND SENTINEL-2 DATA

The most important parameters for comparison between two satellites for remote sensing applic-
ations are their spectral characteristics, spatial resolution and revisit time.

S3 OLCI sensor has 21 bands ranging from 400 nm to 2190 nm. This large number of bands
are very useful for retrieving a wide variety of parameters by radiative transfer model inversions.
Moreover, S3 has a high revisit time of 1.1 days which helps to obtain a more complete time-series.
These high temporal resolution is achieved through multiple orbits, which produces jumping pixel
centres (as described in Section 4.6.1). This makes comparison between in-situ measurements at a
certain point with values retrieved from a S3 OLCI pixel data very unsuitable. Besides, S3 OLCI
has a coarse spatial resolution of 300 m (as this sensor was mainly designed for ocean monitoring),
which is unsuitable for monitoring small agricultural fields in most parts of the world.

S2 MSI has 13 bands with a wider range from of 440 nm to 2190 nm. Thus, fewer parameters
may be retrieved at once with MSI data. S2 achieves a revisit time of 5 days with its twin satellites.
But due to cloud and other atmospheric conditions, it is always not possible to get a very complete
time-series from S2 observations. On the other hands, the biggest advantage of MSI is, many of its
band has a very high spatial resolution of 10 m which is very useful for many applications.

There is also another aspect regarding downloading or extraction of observation data from
these two satellites. Both TOA and TOC S2 MSI data along with all the required metadata are
readily available at GEE platform. So, extracting S2 data for a point of interest is relatively easy
with GEE and it also requires less computational power and storage space. In contrast S3 data in
GEE have been found to deviate from the official release, and as quite some metadata are missing
there (Prikaziuk et al., 2021). As an alternative all the official S3 images can be downloaded and
point data can be extracted (as done in this study). But this procedure is time consuming.

6.3 ONE-TO-ONE COMPARISON BETWEEN RETRIEVED PARAMETERS AND IN-SITU MEASUREMENTS

There were very limited in-situ measurements available for this study area. Only the comparison
of ground measurements and retrieved values for LAI was approached. Moreover, the values re-
trieved from S3 has a very coarse spatial resolution and affected by other problems. It was decided
to carry out a one-to-one comparison between data retrieved from S2 observations and measure-
ments only, while for S3 this was not performed. A one-to-one comparison between LAI retrieved
from S2 data and ground measurements was performed. It was found that their agreement is poor
and higher resolution remote sensing products are needed in order to get detailed information
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about these fields. The other option is to use the similar methodology for a professional study site
(where experimental field size matches with satellite pixel and intensive ground measurements are
available) in order to perform a detailed evaluation between different combinations of radiative
transfer models and satellite observations.

6.4 ECOSYSTEM FLUX SIMULATION AND THEIR EVALUATION

One of the main challenges in ecosystem flux simulation with SCOPE is choosing suitable time-
series of input parameters. Time-series of various SCOPE input parameters were retrieved in this
study using various combinations of integrated radiative transfer models and satellite observations.
The final time-series used as SCOPE input were chosen solely based on the comparison of LAI
retrieval as ground measurements of no other variable were available. This method may not be
very optimal. Moreover, the values of few other important input parameters, such as Vcmo, m
were kept constant. Actual crop specific measurements of these values may help to obtain a better
simulation result.

The SCOPE model able to simulate various ecosystem carbon, water and heat fluxes mostly
within expected ranges. But there are some cases, where the SCOPE can not simulate ecosystem
fluxes (especially where input data is retrieved using RTMo of SCOPE from S2 observations).
The SCOPE can capture the expected variation of the fluxes in some cases based on the input data
used. It was found, the MODIS based remote sensing products have comparatively lower values
than the simulated ones, whereas, ECOSTRESS data provide an overestimation in comparison
to the simulated result. Although in some cases, the values of kNDVI were agreeing with the
simulated GPP, mostly its values are less than the modelled results.

6.5 CROP YIELD ESTIMATION

The crop yield estimation from carbon flux simulated by SCOPE has a higher value than the
actual yield measurements at the study site. This is expected as SCOPE can not account for crop
respiration and provide simulated NPP. Most probably using NPP, for crop yield estimation could
have provided a more closer results to the actual yield.

6.6 LIMITATIONS OF THIS STUDY

One of the major limitation in this study is lack of validation data. An intensive measurements of
various crop parameters could be helpful for choosing a good input data for SCOPE simulation.
It could be also useful to get a more complete idea about performance of the retrieval algorithms
or to come to solid conclusion if a certain retrieval algorithm is superior to the other. In-situ eddy
covariance flux measurements also could have used to further validate the simulated ecosystem
fluxes or to calibrate the SCOPE model.

Numerical optimization methods were implemented for model inversion during retrieval.
This optimization methods find a local minima based on the initial guess and various such local
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minima or various solutions are possible. This leads to the problem of equifinality or ill-posed
retrievals.

Optical remote sensing data were mainly used in this study. But optical remote sensing obser-
vations gets affected by the weather conditions or cloud. It can lead to significant gaps or incom-
plete time-series.
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Chapter 7

Conclusions and Recommendations

7.1 CONCLUSIONS

The main objective of this research was simulating ecosystem fluxes with SCOPE in the study
area for wheat growing seasons. Crop biophysical parameters and weather data are the main input
parameters for the SCOPE. Two retrieval algorithms, i.e. RTMo of SCOPE and SPART, were used
to retrieve soil, crop and atmospheric parameters from S2 and S3 data using both TOA and TOC
observations, whereas ERA5 data was used to get the time-series of required weather variables.
Finally, crop yields were estimated from simulated carbon fluxes.

A wide variety of crop and soil parameters can be retrieved using both RTMo of SCOPE and
SPART. But SPART has the advantage of retrieving additional atmospheric parameters. In both
cases, the retrieval results contain many unrealistic deviation or spikes. Some of them can be re-
moved using various filtering criteria (for example, a threshold based on RMSE between measured
and modelled spectra was used in this study). Another option is to use a prior information in the
cost function of these retrieval algorithms, which can stabilize the retrievals. But it was also found
that the use of prior removes the seasonal variability in some cases and retrieval results tends to
remain near the initial guess. Overall, it can be concluded that this radiative transfer models can
be used to get an idea of seasonal variation of crop parameters from satellite data, as in many cases,
the expected variation of Cab, LAI and Cs was observed. Besides, users need to be careful in using
good quality satellite observations and remove any retrieval where the spectral fitting is not very
well.

One of the main challenges in this study remains the evaluation between retrieved parameters
from satellite observations and ground measurements. It is mainly due to the coarse spatial res-
olution of satellite data, small field size and a limited number of ground measurements (in some
cases, the in-situ measurements were also not done on the same overpass date). This task became
more challenging, as the pixel centres of S3 does not co-locate well with ground measurements
and ultimately, evaluation between S3 based retrievals and in-situ measurements were aborted. It
was found that ground LAI measurements were somewhat lower than the expected LAI values of
wheat crop as well as, MODIS based LAI estimate was also lower than the retrieved LAI values.
For some cases, a good agreement was found between LAI retrieved from S2 data and that of in-situ
measurements.

The input time-series of retrieved parameters for further modelling using SCOPE were also
chosen mostly based on the RMSE between retrieved LAI and ground LAI measurements. This
method was not probably very accurate and it should have been chosen, taking multiple retrieved
parameters into account. But this kind of approach could not be implemented in this study due
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to limited in-situ measurements. It is of utmost importance to use good input data for further
modelling tasks in order to get expected output results. It can be concluded that a more robust,
multi-criteria based approach should be used to choose input time-series, whenever possible.

SCOPE was able to simulate different ecosystem fluxes, such as photosynthesis or carbon flux,
sensible, ground and latent heat flux within expected range in most cases. There are a few days
where SCOPE could not simulate the fluxes and also there are cases where some unexpected rise or
decline in heat fluxes can be found (specially either at the beginning or end of the simulation). It is
also noticeable that the values of SCOPE simulated fluxes were higher than MODIS based estim-
ates, whereas ECOSTRESS based ET has higher values than that of SCOPE simulation. The crop
yield estimates from GPP simulation of SCOPE also seems to be promising. It can be concluded
that SCOPE can be used with remote sensing data to realistically simulate ecosystem fluxes. A
more professional experimental scheme could also be developed where the input parameters of
SCOPE can be tuned based on the in-situ flux measurements and later use it as an operational
scheme for monitoring of ecosystem fluxes.

7.2 RECOMMENDATIONS

The following recommendations can be considered for future studies.

• Instrumentation for in-situ measurements, such as eddy covariance flux tower data can be
installed which can be used for validation of simulation results. Intensive in-situ measure-
ments of crop parameters, such as Cab, LAI can be used to better assess the retrieval al-
gorithms. This can help to better select certain data and tune the models and later an oper-
ational scheme could be developed solely based on modelling approaches.

• Weather station capable of recording measurements with high temporal resolution can be
established in the study location. Use of these data may improve SCOPE simulation results.

• In case of remote sensing based monitoring, aerial or Unmanned Aerial Vehicle (UAV) based
data can also be used to monitor small agricultural fields with more details.

• Observations from other types of sensor such as, Synthetic-aperture Radar (SAR), Light
Detection and Ranging (LiDAR) or microwave instruments can be integrated with optical
remote sensing for all weather monitoring of vegetation.

• The radiative transfer models can be used in a spatially distributed manner for the whole
scene to get a more complete information. This can be computationally intensive. So, data
driven or hybrid modelling approaches can be used to replace intensive numerical parts or
increasing model efficiency.

• SCOPE can not currently simulate plant respiration components. The capability of this
model can be extended to get a more intensive information on carbon cycle.

• In this study, the focus was only on agricultural ecosystem. This kind of study can also be
extended to several other biome classes.
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Appendix A

Additional Results

Figure A.1: Time-series of retrieved parameters from S3 data using different settings of RTMo for the
point 2018_b

Figure A.2: Time-series of retrieved parameters from S3 data using different settings of RTMo for the
point 2019_b
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Figure A.3: Time-series of retrieved parameters from S3 data using different settings of RTMo for the
point 2019_c

Figure A.4: Time-series of retrieved parameters from S2 data using different settings of RTMo for the
point 2018_b
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Figure A.5: Time-series of retrieved parameters from S2 data using different settings of RTMo for the
point 2019_b

Figure A.6: Time-series of retrieved parameters from S2 data using different settings of RTMo for the
point 2019_c
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Figure A.7: SPART retrieval results from S3 data for point 2018_b

Figure A.8: SPART retrieval results from S3 data for point 2019_b
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Figure A.9: SPART retrieval results from S3 data for point 2019_c

Figure A.10: SPART retrieval results from S2 data for point 2018_b

91



CROP YIELD ESTIMATION FROM SIMULATED CARBON FLUX USING SCOPE: A CASE STUDY OF SAMRAKALWANA VILLAGE IN INDIA

Figure A.11: SPART retrieval results from S2 data for point 2019_b

Figure A.12: SPART retrieval results from S2 data for point 2019_c
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Appendix B

Sources of Data and Code

Sl. No. Data/ code Source/ URL
Code/
Application
1 SCOPE v.2.0 https://doi.org/10.5281/zenodo.4309327

docs:https://scope-model.rtfd.io
2 RTMo/ SCOPE retrieval

algorithm
https:
//github.com/Prikaziuk/retrieval_rtmo
docs:https://scope-model.readthedocs.io/
en/latest/retrieval.html

4 SPART Forward Model https://github.com/peiqiyang/SPART
5 Py6S (6S model with a Python

wrapper)
https://github.com/robintw/Py6S
docs:https://py6s.readthedocs.io/en/latest/

6 LPDAAC AρρEEARS https://lpdaacsvc.cr.usgs.gov/appeears/
7 aria2 https://aria2.github.io/

docs:https://aria2.github.io/manual/en/
html/index.html
Bulk downloading Sentinel images with
aria2:
https://un-spider.org/links-and-resources/
data-sources/batch-download-sentinel

8 GEE code for S2 data
extraction

https://code.earthengine.google.com/
2f4be36dff6109058b6309d9aa9e983c?
noload=true (Prikaziuk et al., 2021)

Data
1 Sentinel - 2 MSI TOA reflectance: https:

//developers.google.com/earth-engine/
datasets/catalog/COPERNICUS_S2
Surface reflectance: https:
//developers.google.com/earth-engine/
datasets/catalog/COPERNICUS_S2_SR

Continued on next page
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Continued from previous page
Sl. No. Data/ code Source/ URL
2 Sentinel - 3 OLCI Level-1 full

resolution (OL_1_EFR)
Offline data [for
2018-19]:https://www.onda-dias.eu/cms/
data/catalogue/sentinel-3/
https:
//www.onda-dias.eu/cms/knowledge-base/
odata-odata-open-data-protocol/
Online data [for 2019-20]:
https://scihub.copernicus.eu/dhus

3 Sentinel - 2 MSI SRF https://sentinel.esa.int/web/sentinel/
user-guides/sentinel-2-msi/
document-library/-/asset_publisher/
Wk0TKajiISaR/content/
sentinel-2a-spectral-responses

4 SMAC coefficients http://tully.ups-tlse.fr/olivier/
smac-python/tree/master/COEFS

5 Total Aerosol Optical Depth at
550 nm

https://apps.ecmwf.int/datasets/data/
cams-nrealtime

6 MCD15A3H v006
MODIS/Terra+Aqua 4 day
LAI/FPAR

https://doi.org/10.5067/MODIS/
MCD15A3H.006

7 MCD15A3H v061
MODIS/Terra+Aqua 4 day
LAI/FPAR (latest version)

https://doi.org/10.5067/MODIS/
MCD15A3H.061

8 ERA5-Land hourly data from
1981 to present

https://doi.org/10.24381/cds.e2161bac

9 MOD16A2 v006
MODIS/Terra 8 day Net
Evapotranspiration

https://doi.org/10.5067/MODIS/
MOD16A2.006

10 MOD16A2GF v006
MODIS/Terra 8 day Net
Evapotranspiration Gap-Filled

https://doi.org/10.5067/MODIS/
MOD16A2GF.006

11 MYD16A2 v006
MODIS/Aqua 8 day Net
Evapotranspiration

https:
//doi.org/10.5067/MODIS/MYD16A2.006

12 MYD16A2GF v006
MODIS/Aqua 8 day Net
Evapotranspiration Gap-Filled

https://doi.org/10.5067/MODIS/
MYD16A2GF.006

13 MOD17A2H v006
MODIS/Terra 8 day Gross
Primary Productivity

https://doi.org/10.5067/MODIS/
MOD17A2H.006

14 MOD17A2HGF v006
MODIS/Terra 8 day Gross
Primary Productivity
Gap-Filled

https://doi.org/10.5067/MODIS/
MOD17A2HGF.006

Continued on next page
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Continued from previous page
Sl. No. Data/ code Source/ URL
15 MYD17A2H v006

MODIS/Aqua 8 day Gross
Primary Productivity

https://doi.org/10.5067/MODIS/
MYD17A2H.006

16 MYD17A2HGF v006
MODIS/Aqua 8 day Gross
Primary Productivity
Gap-Filled

https://doi.org/10.5067/MODIS/
MYD17A2HGF.006

17 ECO3ETPTJPL v001
ECOSTRESS
Evapotranspiration PT-JPL

https://doi.org/10.5067/ECOSTRESS/
ECO3ETPTJPL.001

18 ECO4WUE v001
ECOSTRESS Water Use
Efficiency

https://doi.org/10.5067/ECOSTRESS/
ECO4WUE.001

19 In-situ LAI measurements Acquired directly from SHUATS, Prayagraj,
India
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List of Acronyms and Symbols

Symbols

φ soil spectral latitude. 10, 34
λ soil spectral longitude. 10, 34
λE latent heat flux. 12
ρTOC TOC reflectance. 7
6S Second Simulation of the Satellite Signal in

the Solar Spectrum. 11, 22, 29, 81

A

AρρEEARS Application for Extracting and
Exploring Analysis Ready Samples.
22, 23, 24

AOT Aerosol Optical Thickness. 3, 22, 29, 31,
34, 35, 49, 56, 63, 67, 81

aPAR Absorbed Photosynthetically Active Ra-
diation. 23, 42

API Application programming interface. 20
API Hub Application programming interface

Hub. 20

B

B soil brightness. 9, 10, 55
BSM Brightness-Shape-Moisture. 3, 4, 7, 8, 9,

12, 14, 31, 34

C

Cab chlorophyll concentration. 3, 31, 48, 55,
85, 86

car Companion to Applied Regression. 38
Cca leaf carotenoid content. 34
CESBIO Centre d’Etudes Spatiales de la

Biosphère. 30
CNES Centre national d’études spatiales. 30
CONUS continental United States. 24
Cs senescent material. 50, 55, 56, 85
Cw equivalent leaf water thickness. 3
Cwa humid subtropical climate. 17

D

d2m 2m dewpoint temperature. 24, 30
DHUS Copernicus Open Access Data Hub Ser-

vice. 36
DIAS Data and Information Access Services.

20, 36
DisALEXI Disaggreagtion of Atmo-

sphere–Land Exchange Inverse. 24
DOY Day of Year. 34

E

Edif diffuse TOC irradiance. 7
Edir direct TOC irradiance. 7
eebal energy balance closure error. 12, 14
ea atmospheric vapour pressure. 30
ECMWF European Centre for Medium-Range

Weather Forecasts. 22, 24, 29, 35, 36,
37, 63, 67

ECO3ETPTJPL ECOSTRESS Evapotranspir-
ation PT-JPL Daily L3 Global 70 m. 24

ECO4WUE ECOSTRESS Water Use Effi-
ciency Daily L4 Global 70 m. 24

ECOSTRESS ECOsystem Spaceborne
Thermal Radiometer Experiment on
Space Station. 23, 24, 41, 71, 83, 86

EF Evaporative fraction. 42, 71
ERA5 ECMWF Reanalysis 5th Generation. 24,

30, 39, 45, 85
ESA European Space Agency. 20, 31
ET Evapotranspiration. 2, 5, 6, 22, 24, 41, 42,

71, 86

F

FASAL Forecasting Agricultural output using
Space, Agro-meteorological and Land
based observation. 2

FLEX Fluorescence Explorer. 20

G
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G ground heat flux. 12, 71
GEE Google Earth Engine. 21, 29, 32, 82, 93
GMAO Global Modeling and Assimilation Of-

fice. 24
GPP Gross Primary Production. 2, 4, 5, 6, 23,

24, 39, 41, 42, 43, 70, 71, 83, 86
GPS Global Positioning System. 25
GR Growth Respiration. 23, 43
GSV Global Spectral Vectors. 9
GUI Graphical User Interface. 20
GVA Gross Value Added. 1

H

H sensible heat flux. 12, 42, 71
H2O total columnar water vapour. 22, 27, 29,

34, 35, 67, 81
HI Harvest Index. 43

I

ICYF Integrated Canadian Crop Yield Fore-
caster. 2

IE Latent heat flux. 42
ISS International Space Station. 23, 41

J

JEM-EF Japanese Experiment Module External
Facility. 23

JRC Joint Research Centre. 2

K

kNDVI kernel NDVI. 42, 70, 71, 83

L

LT OA TOA radiance. 29
L1 Level 1. 20
LAI Leaf Area Index. 3, 5, 6, 22, 24, 25, 31, 36,

37, 38, 39, 49, 50, 55, 56, 62, 63, 66, 82,
83, 85, 86

LiDAR Light Detection and Ranging. 86
LOESS Locally Estimated Scatterplot Smooth-

ing. 38, 69
LPDAAC Land Processes Distributed Active

Archive Center. 22
LTA Long Term Archive. 20
LUE Light Use Efficiency. 42, 71
LUT Look-Up-Table. 22

M

m Ball-Berry stomatal parameter. 39, 83
MARS Monitoring Agriculture with Remote

Sensing. 2
MCD15A3H v006 MODIS/Terra+Aqua Leaf

Area Index/FPAR 4-Day L4 Global
500 m SIN. 22

MCYFS Crop Yield Forecasting System. 2
MERRA Modern Era Retrospective-Analysis

for Research and Applications. 24
MOD16A2 MODIS/Terra Net Evapotranspir-

ation 8-Day L4 Global 500 m SIN
Grid. 23, 41

MOD16A2GF MODIS/Terra Net Evapotran-
spiration Gap-Filled 8-Day L4 Global
500 m SIN Grid. 23, 41

MOD17A2H MODIS/Terra Gross Primary
Productivity 8-Day L4 Global 500 m
SIN Grid. 23, 41

MOD17A2HGF MODIS/Terra Gross
Primary Productivity Gap-Filled 8-
Day L4 Global 500 m SIN Grid. 23,
41

MODIS Moderate Resolution Imaging Spec-
troradiometer. 6, 22, 23, 24, 36, 37, 41,
42, 62, 63, 70, 71, 81, 83, 85, 86

MR Maintenance Respiration. 23, 43
MSI Multispectral Instrument. 12, 21, 29, 30,

31, 32, 33, 34, 36, 42, 82
MSU Mass Storage Units. 23, 41
MWR Microwave Radiometer. 20
MYD16A2 MODIS/Aqua Net Evapotranspira-

tion 8-Day L4 Global 500 m SIN Grid.
23, 41

MYD16A2GF MODIS/Aqua Net Evapotran-
spiration Gap-Filled 8-Day L4 Global
500 m SIN Grid. 23, 41

MYD17A2H MODIS/Aqua Gross Primary
Productivity 8-Day L4 Global 500 m
SIN Grid. 23, 41

MYD17A2HGF MODIS/Aqua Gross
Primary Productivity Gap-Filled 8-
Day L4 Global 500 m SIN Grid. 23,
41

N

NDVI Normalized Difference Vegetation In-
dex. 22, 42, 97
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NIR Near-infrared. 42, 49
NPP Net Primary Production. 23, 83

O

O3 GEMS total columnar ozone. 22, 27, 29, 34,
35, 67, 81

OAA Observation Azimuth Angle. 29, 34
OData Open Data Protocol. 20
OLCI Ocean and Land Color Imager. 20, 27,

29, 31, 32, 33, 34, 36, 41, 42, 82
OZA Observation Zenith Angle. 29, 34

P

p air pressure. 30
PHyTIR Prototype HyspIRI Thermal Infrared

Radiometer. 23
PM Penman-Monteith. 22
PROSAIL PROSPECT + SAIL. 3, 8, 10
PT-JPL Priestley-Taylor Jet Propulsion Labor-

atory. 24
Py6S A Python interface to 6S. 29

Q

q hot-spot parameter. 34

R

r correlation coefficient. 37, 63, 66
R2 coefficient of determination. 37, 63, 66
rdd bihemispherical. 7
rdo hemispherical-directional. 7
Rn net radiation. 12
rsd directional-hemispherical. 7
rso bidirectional. 7
RT OC TOC reflectance. 29, 32
Rdparam respiration rate as proportion of

Vcmo. 39
Rin integrated incoming shortwave radiation.

30
Rli integrated incoming longwave radiation. 30
RMSE Root Mean Square Error. 32, 35, 37, 38,

61, 63, 66, 85
RTM Radiative Transfer Module. 12
RTMo Optical Radiative Transfer Routine. 3,

4, 5, 6, 7, 8, 10, 14, 31, 32, 33, 35, 38,
50, 62, 63, 70, 71, 81, 82, 83, 85

S

S2 Sentinel-2. 2, 3, 4, 5, 6, 12, 21, 29, 30, 31, 32,
33, 34, 36, 38, 42, 50, 55, 56, 63, 66, 69,
70, 71, 81, 82, 83, 85, 93

S3 Sentinel-3. 2, 3, 4, 5, 6, 20, 27, 29, 30, 31, 32,
33, 34, 35, 36, 38, 42, 45, 50, 55, 56, 61,
63, 70, 81, 82, 85

SAA Solar Azimuth Angle. 29, 34
SAR Synthetic-aperture Radar. 86
SCOPE Soil Canopy Observation of

Photosynthesis and Energy fluxes. 3,
4, 5, 6, 7, 9, 10, 12, 13, 14, 15, 24, 30,
31, 32, 35, 38, 39, 41, 42, 43, 45, 69, 70,
71, 79, 81, 83, 85, 86

SEBS Surface Energy Balance System. 6
SIF Sun-Induced Fluorescence. 4, 20, 42
SLSTR Sea and Land Surface Temperature Ra-

diometer. 20, 82
SMAC Simplified Method for Atmospheric

Correction. 3, 9, 11, 30, 81, 94
SMp soil moisture volume percentage. 34
SNAP SeNtinel Application Platform. 27, 36
sp surface pressure. 24, 30
SPART Soil-Plant-Atmosphere Radiative

Transfer. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
22, 29, 30, 31, 33, 34, 35, 36, 37, 38, 48,
49, 55, 56, 61, 62, 63, 66, 67, 69, 70, 81,
85

SRAL Synthetic Aperture Radar Altimeter. 20
SRF Spectral Response Function. 20, 21, 31, 94
ssrd surface solar radiation downwards. 24, 30
strd surface thermal radiation downwards. 24,

30
SZA Solar Zenith Angle. 29, 32, 34

T

T 2m dewpoint temperature in degree centi-
grade. 30

t2m 2m temperature. 24, 30
Ta air temperature. 30
TOA Top of Atmosphere. 3, 5, 9, 11, 12, 21, 29,

31, 32, 33, 34, 36, 45, 48, 49, 56, 67, 81,
82, 85, 93, 97

TOC Top of Canopy. 3, 5, 7, 8, 9, 10, 12, 21, 29,
31, 32, 42, 45, 48, 49, 81, 82, 85, 98

tts solar zenith angle in SCOPE. 39

U

u Wind speed. 30
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u10 10m u-component of wind. 24, 30
UAV Unmanned Aerial Vehicle. 86

V

Vcmo maximum carboxylation rate. 13, 39, 83,
98

v10 10m v-component of wind. 24, 30

VIIRS Visible Infrared Imaging Radiometer
Suite. 24

W

WGS84 World Geodetic System 1984. 22
WUE Water Use Efficiency. 24, 42, 71
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