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Inter-IC Communication Trends
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 Memory Bus (Single-ended, Parallel)
• DDR (4.266 Gbps)
• LPDDR4 (4.266 Gbps)
• GDDR (7 Gps)
• XDR (differential, 4.8 Gbps)
• Wide IO2, HBM

   

 Cable (Differential, Serial)
• USB (4.266 Gbps)
• HDMI (4.266 Gbps)
• Firewire: Cat 5, Cat 5e, Cat 6

 Storage (Differential, Serial)
• eMMC, UFS (6 Gbps)
• SAS, STATA (6 Gbps)
• FiberChannel (10 – 20 Gbps)

 Ethernet (Differential, Serial)
• XAUI (10 Gbps)
• XFI (10 Gbps)
• CEI-6GLR
• SONNET (10 Gbps)
• 10GBase-x, 100GBase (25 Gbps)

 Front Side Bus (Differential, Parallel)
• QuickPath Interconnect (6.4 Gbps)
• HyperTransport (6.4 Gbps)

   

 Computer IO (Differential, Parallel)
• PCIe (8 Gbps)
• InfiniBand (10 Gbps)

   

High-Speed Bus and Networks
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Basic Serial Link Architecture
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Basic Serial Link Architecture
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Why SERDES?
• Traditional parallel communication not suitable 

for inter-IC data transport in high-speed links.
– High design overhead due to cross-talk, data-skew.

• Serial links are most cost-effective. 
– Parallel links  = extra pins  Higher packaging costs.
– Speed v/s cost tradeoff with serial links.

• Solution = SERDES!!!
– Parallel communication still used in internal buses of 

ICs thus a need for SerDes.
– Mitigate cost while maintaining high-speeds with a fast 

serial-parallel data conversion. 
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What is a SERDES?

• SERDES = SERializer – DESerializer
– Used to transmit high speed IO-data over a serial 

link in I/O interfaces at speeds upwards of 2.5Gbps.
– SerDes TX: transmit parallel data to receiver 

overhigh speed serial-link. 
– SerDes RX: receive data from serial-link and deliver 

parallel data to next-stage. 
– Advantage: Fast signaling, robust, high signal 

integrity. 
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* J. Hart et al., "A 3.6GHz 16-Core SPARC SoC Processor in 28nm", Proceedings of  the 2013 IEEE 
International Solid-State Circuits Conference.

Serial Links in SoC: Oracle SPARC T5*

About 50 SerDes IPs 
– Single IP power & area 
– Integrated with SoC 
– Portable with SoC 
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Serializer/Deserializer Blocks

• Serializer: 

• Deserializer
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Embedded Clock Architecture

Converts parallel data into serial data (Tx side)
Applies equalization to the data stream
Converts serial data into parallel data (Rx side)



ECE 546 – Jose Schutt-Aine 11

Forwarded Clock Architecture

Additional lane for delivering the clock
Jitter introduced by the clock can be canceled at receiver
Offers better jitter performance
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DC and AC Coupling

DC Coupled Link

AC Coupled Link

Terminated to VCC

Terminated to VSS

Terminated to Vcm

AC coupling has 
advantage of isolating 
common-mode voltage 
levels between RX and TX
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Transmitter

Need large enough voltage swing 
Pre-driver is used to deliver large enough swing to Tx
FFE can be realized anywhere along data path
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Current-Mode Driver

• Group of  differential pairs 
• Arranged in a binary weighted form
• Controlled by 6-bit equalized data 
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Current-Mode Driver

DC-Coupled Link AC-Coupled Link
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Receiver

• Receives data
• Performs equalization
• Recovers data and clock
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• Number of  data bits per clock cycle
• Need multiple phases for half  rate and quarter rate

Link Classification
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Signaling Protocol NRZ vs RZ
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Clock Synthesizer
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• Closed-loop feedback system that synchronizes the 
output CLK phase with that of the reference CLK. 

• Tracks phase changes w/i the specified BW. 
• Idea is that the PD (Phase Detector) will compare the 

reference CLK phase with that generated by the VCO.
– Goal: Stabilize Δ𝜙𝜙𝑒𝑒𝑆𝑆𝑆𝑆 → 0  such that VCO output CLK and 

reference CLK are locked at same frequency and phase. 
– Tracks low-frequencies but rejects high-frequencies. 

Basic PLL Block Diagram: 

PLL Overview
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Why need PLLs?

• Reduces jitter. 

• Reduces clock-skew in high-speed digital ckts. 

• Instrumental in frequency synthesizers.

• Essential building block of CDRs. 
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PLL Building Blocks

• PD/PFD ~ Phase/Phase+Frequency Detector

• CP ~ Charge pump circuit

• LF ~ Loop-Filter

• VCO ~ Voltage controlled oscillator

• Frequency Divider

Basic PLL Components: 
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PD/PFD Circuits

• PD/PFD are strictly digital circuits in high speed SerDes 
transceivers. 

• Ideal PD is a “multiplier” in time-domain, ex: Mixer
• Analog PD  High Jitter, noise. 
• XOR PD  sensitive to clock duty cycle
• PFD ~ best to lock phase and frequency! 

Common PD Implementations: Common PFD Implementations: 

Gilbert-cell Mixer

XOR PD
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PFD Theory
1. PFD is needed to adjust the 
control voltage for VCO according 
to the phase difference between 
the VCO output and reference 
frequency

2. PFD can be seen as a state machine with 
three states. It will change the control 
voltage of VCO according to its current state 
and phase/frequency difference will cause 
state transition.
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PFD Analysis

1. PFD is in state 0 with no phase 
difference.

2. PFD is in state 1 with positive 
phase difference.

3. PFD is in state -1 with negative 
phase difference.
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PFD Design Overview

Down 
circuit

UP circuit

Charge pump

Phase Frequency detector
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PFD Simulation
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The Hogge Phase Detector

• Two Functions
– Transition detection 
– Phase Detection
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The Charge Pump

• Combination of 
current source and 
sink

• Converts PD output 
to a current pulse 
influencing control 
voltage of VCO
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Charge-Pump Circuit

• Used in conjunction with PFD over PD+LF combo. b/c:
– Higher capture/lock acquisition range of PLL
– Δ𝜙𝜙𝑒𝑒𝑆𝑆𝑆𝑆 = 0 provide no device mismatch exists. 
– Provide infinite gain for a static phase-error 

Common CP Implementations: 
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The Loop Filter

• Low-pass for 
rejection of high 
frequency noise

• Forms the control 
voltage of the VCO
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Loop-Filter

• Extracts average of PD error signals generate VCO control 
voltage. 

• Integrates low-frequency phase-errors on C1 to set avg. freq. 

• R adds thermal noise, C1 determines loop BW, C2 smoothens 
control voltage ripple. 

Common LF Implementations: 
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Loop-Filter Design
1. Needed to filter out high frequency noise 
generated by PFD
2. Due to the superior performance of PFD, only 
a passive second order RC low pass filter is 
needed.

Low pass filter for 
current input

Where 𝑅𝑅2 = 70.18𝐾𝐾Ω,𝐶𝐶1 =
 72.56f𝐹𝐹,𝐶𝐶3 = 18.136f𝐹𝐹;

Assuming 𝐾𝐾0 = 4.5 ⁄𝐺𝐺𝐺𝐺𝐺𝐺 𝑉𝑉 ;  𝐾𝐾𝑃𝑃 =
⁄3.183𝜇𝜇𝜇𝜇 𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑁𝑁 = 8,𝜔𝜔𝑇𝑇 = 25MHz
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Voltage Controlled Oscillator
• Generates an 

output with 
oscillation 
frequency 
proportional to the 
control voltage

• Helps the CDR 
accumulate phase 
and achieve lock
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VCO

• Extracts average of PD error signals generate VCO 
control voltage. 

• PLL acts like a High-pass filter with respect to VCO jitter. 

• VCO always has one pole!

Common VCO Implementation: 

LC-Tank Oscillator
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Oscillators Overview

• Closed-Loop Transfer function:

– 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜
𝑉𝑉𝑖𝑖𝑖𝑖

𝑠𝑠 = 𝐻𝐻 𝑠𝑠
1+ 𝛽𝛽𝐻𝐻 𝑠𝑠

,𝑤𝑤𝑤𝑤𝑤𝑟𝑟𝑤𝑤 𝑠𝑠 = 𝑗𝑗𝜔𝜔

• Barkhausen’s criteria for oscillation:
– 𝛽𝛽𝐺𝐺 𝑗𝑗𝜔𝜔0 = 1
– arg 𝛽𝛽𝐺𝐺 𝑗𝑗𝜔𝜔0 = −1800.

• 𝜔𝜔0 = oscillation-frequency. 
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Ring Structure LC-Tank Structure

1. Low-power, highly integrated.

2.  Occupies smaller die-area.

3.  Poor-performance at high-  
     frequency due  to large 
     phase-noise + jitter. 

4.  Can only accept digital 
     signals.

1.  High-power, not integrable.

2. Occupies large die-area.

3. Great phase-noise and jitter 
performance at high 
frequency.

4. Can accept analog and  
      digital signals. 

Ring v/s Tank Architecture



ECE 546 – Jose Schutt-Aine 38

MOS Varactor
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Cascode MOS Varactor
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LC-Tank VCO Designs - I
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LC-Tank VCO Designs - II
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LC-Tank VCO Designs - III
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LC-Tank VCO Designs - Final



ECE 546 – Jose Schutt-Aine 44

Final VCO Design Parameters

M1 L = 100n, W = 2u

M2 L = 100n, W = 2u

M3 L = 100n , W = 2u

M4 L = 100n, W = 2u

M5 L = 500n, W = 10u

M6 L = 500n, W = 10u

M7 L = 500n, W = 10u

M8 L = 500n, W = 10u

M9 L = 100n, W = 2u

M10 L = 50n, W = 2u

L 1.5nH, Q = 5

R 465 Ω
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Fractional N-Divider Simulation
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VCO Jitter Analysis
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Theoretical Design Overview

• 𝑄𝑄 = 𝑄𝑄𝐿𝐿 = 𝜔𝜔0𝐿𝐿
𝑅𝑅

= 5

• 𝜔𝜔0 = 1
𝐿𝐿𝐿𝐿

1 − 𝑅𝑅2𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣
𝐿𝐿

• 𝐶𝐶𝑤𝐶𝐶𝐶𝐶𝑠𝑠𝑤𝑤 𝑔𝑔𝑚𝑚  ≥ 𝑅𝑅𝐿𝐿𝑣𝑣𝑣𝑣𝑣𝑣
𝐿𝐿

 𝑓𝑓𝐶𝐶𝑟𝑟 𝑤𝑤𝑟𝑟𝑒𝑒𝑤 𝑡𝑡𝑟𝑟𝑟𝑟𝑡𝑡𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝐶𝐶𝑟𝑟.

– Recall, 𝑔𝑔𝑚𝑚 = 𝜇𝜇𝑛𝑛𝐶𝐶𝑜𝑜𝑜𝑜
𝑊𝑊
𝐿𝐿
𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠

• 𝑅𝑅𝑃𝑃𝑃𝑃 = − 2
𝑔𝑔𝑚𝑚𝑚,2

 𝑟𝑟𝑡𝑡𝑟𝑟 𝑅𝑅𝑃𝑃𝑃𝑃 = − 2
𝑔𝑔𝑚𝑚𝑚,4
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Fractional N-Divider Circuit
1. Needed to slow down the VCO’s output so that 
PFD can compare it with reference frequency. 

2. N D-FlipFlops cascaded together to achieve 2𝑁𝑁 
divider.

Positive edge-triggered DFF 
using split-output latches

Fractional 8 
Divider
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Complete PLL Circuit



ECE 546 – Jose Schutt-Aine 50

Complete PLL Simulation 
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Complete PLL Jitter Analysis
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Equalization
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Channel
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Equalization
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FFE vs. DFE
• FFE 

• Can mitigate the pre-cursor 
channel response in low-BW 
channels. 

• Can compensate ISI arising 
from transient TL loss over 
wide time-spans. 

• DFE

• Cannot equalize ISI arising 
from pre-cursor channel 
response.

• Can only compensate ISI 
from a fixed time-span. 

FFE + DFE
• Guarantees max. performance from the SerDes. 
• Advantage: 

– DFE permits use of low-frequency de-emphasis at TX resulting in 
a larger received signal envelope, smaller signal/crosstalk ratio.

– System capable of employing continuous adaptive equalization of 
its feedback taps to optimize performance.  
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The CDR Circuit
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CDR Circuit Overview
• Monitor data signal transitions and select optimal 

sampling phase for the data at midpoint between 
edges. 

• Extracts clock information from incoming data stream 
and uses this regenerated clock to resample the data 
waveform and recover the data.

• Non-linear circuit and key block to limit jitter, noise 
within the SERDES circuit. 
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Basic Idea
• Serial data transmission sends binary bits of information 

as a series of optical or electrical pulses

• The transmission channel (coax, radio, fiber) generally 
distorts the signal in various ways

• From this signal we must recover both clock and data
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10 Gigabit Ethernet Serializer
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10 Gigabit Ethernet Deserializer
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Full-speed Cable Delay

Universal Serial Bus (USB)
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One-way Propagation Delay
Low-speed Cable Delay

Universal Serial Bus (USB)

• The cable delay must be less than 5.2 ns per meter.
• The maximum delay allowed is 30 ns. 
• Allocation for cable delay is 26 ns
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Universal Serial Bus (USB)
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Serial Link

- Passive channel consists of linear elements (TL, package) 

- Analog channel includes TX driver and RX termination network

- End-to-end channel includes everything
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– Need to accurately handle very high data rates
– Simulate large number of bits to achieve low BER
– Non-linear blocks with time variant Systems
– TX/RX equalization and vendor specific device settings
– Coding schemes
– All types of jitter: (random, deterministic, etc.)
– Crosstalk, loss, dispersion, attenuation, etc…
– Clock Data Recovery circuits
– TX and RX may come from different vendors

High speed Serial channels are pushing the current 
limits of  simulation.  Models/Simulator need to handle 
current challenges

High-Speed Serial Channels
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Timing Margin
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Timing Jitter
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• Millions of bits of behavior are needed to adequately 
characterize serial links long simulation times

• SERDES transmitters / receivers can be modeled as a 
combination of analog & algorithmic elements

• Serial channels can be characterized using S Parameter 
data and/or other passive interconnect models

Serial Channel Characterization
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Analysis Method Advantages Drawbacks

IBIS Fast Not accurate

Device Level Accurate
Nonlinear

Very slow
IP liability

Fast convolution Very fast
Handles EQ
Include bit patterns

Not Silicon Specific
Assumes LTI

Statistical Very Fast
Handles EQ

Not silicon specific
No bit patterns
Assumes LTI

IBIS-AMI Fast
Handles Vendor EQ
Includes Bit Patterns
Not limited to LTI

Implementations vary

Simulation Methods
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• Provided as binary code
• Fast, efficient execution
• Protects vendor IP
• Extensible modeling capability
• Allows models to be developed in multiple 

languages
• Standardized execution interface
• Standardized control (.AMI) file

Industry Standard: IBIS

IBIS homepage: http://www.eigroup.org/ibis/
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• AMI stands for Algorithmic Modeling Interface
faster signal processing algorithms 
 intellectual property protection
used in convolution transient engines
designed to be used with fixed time step data
introduced in IBIS 5.0 specs
in these specs the library is specified inside 

the IBIS wrapper

IBIS stands for “I/O Buffer Information Specification”; high-level buffer
specification for circuit modeling 
http://eda.org/pub/ibis/ver5.0/ver5_0.txt

AMI



ECE 546 – Jose Schutt-Aine 73

• AMI models are compiled DLLs and text files
– No graphical representation

• Package model standard not finalized
– User needs to manually add IC/package parasitics to 
channel model

• Each IC vendor has different parameter set
– No standards set
– Each vendor must document their models

• No standard way to sweep parameters
– Need to create multiple .AMI files
– EDA tools need to parse arbitrary .AMI parameters

AMI Challenges
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