
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

OpenSPARC™ T1 Processor
Design and Verification

User’s Guide

Part No. 819-5019-12
May 2008, Revision C

http://www.sun.com/hwdocs/feedback

Please
Recycle

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or
more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, AnswerBook2, docs.sun.com, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and in other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and in other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, Californie 95054, États-Unis. Tous droits réservés.

Sun Microsystems, Inc. possède les droits de propriété intellectuels relatifs à la technologie décrite dans ce document. En particulier, et sans
limitation, ces droits de propriété intellectuels peuvent inclure un ou plusieurs des brevets américains listés sur le site
http://www.sun.com/patents, un ou les plusieurs brevets supplémentaires ainsi que les demandes de brevet en attente aux les États-Unis et
dans d’autres pays.

Ce document et le produit auquel il se rapporte sont protégés par un copyright et distribués sous licences, celles-ci en restreignent l’utilisation,
la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque
moyen que ce soit, sans l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a.

Tout logiciel tiers, sa technologie relative aux polices de caractères, comprise, est protégé par un copyright et licencié par des fournisseurs de
Sun.

Des parties de ce produit peuvent dériver des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée
aux États-Unis et dans d’autres pays, licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, AnswerBook2, docs.sun.com, et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux États-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux États-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface utilisateur graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox dans la recherche et le développement du concept des interfaces utilisateur visuelles ou graphiques
pour l’industrie informatique. Sun détient une license non exclusive de Xerox sur l’interface utilisateur graphique Xerox, cette licence couvrant
également les licenciés de Sun implémentant les interfaces utilisateur graphiques OPEN LOOK et se conforment en outre aux licences écrites de
Sun.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DÉCLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES DANS LA LIMITE DE LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE
GARANTIE IMPLICITE RELATIVE À LA QUALITÉ MARCHANDE, À L’APTITUDE À UNE UTILISATION PARTICULIÈRE OU À
L’ABSENCE DE CONTREFAÇON.

Contents

Preface xi

1. Quick Start 1–1

1.1 System Requirements 1–1

1.2 EDA Tool Requirements 1–2

1.2.1 EDA Simulation Tools 1–2

1.2.2 EDA Synthesis Tools 1–2

1.2.3 FPGA Tools 1–2

1.3 Running Simulations and Synthesis 1–3

1.3.1 Get the Simulation Files 1–3

1.3.2 Set Up Environment Variables 1–4

1.3.3 Run Your First Regression 1–6

1.3.3.1 To Run a Regression 1–7

1.3.4 Run Your First Synthesis 1–8

1.3.5 Gate-Level Verification 1–9

2. OpenSPARC T1 Design Implementation 2–1

2.1 OpenSPARC T1 Design Hierarchy 2–1

2.2 Module Directory Structure 2–3

2.3 Megacells 2–6
iii

2.4 External Interfaces 2–7

3. OpenSPARC T1 Verification Environment 3–1

3.1 OpenSPARC T1 Verification Environment 3–1

3.2 Running a Regression 3–3

3.2.1 To Run a Regression 3–4

3.2.2 What the sims Command Does 3–4

3.2.3 Running Regression With Other Simulators 3–5

3.3 Verification Code 3–6

3.3.1 Verilog Code Used for Verification 3–6

3.3.2 Vera Code Used for Verification 3–7

3.4 PLI Code Used For the Test Bench 3–8

3.4.1 To Compile All PLI Libraries 3–9

3.5 Verification Test File Locations 3–9

3.6 Compiling Source Code for Tools 3–10

3.7 Gate-Level Verification 3–10

4. OpenSPARC T1 Synthesis 4–1

4.1 Synthesis Flow for the OpenSPARC T1 Processor 4–1

4.2 Synthesis Output 4–3

5. OpenSPARC T1 FPGA Synthesis 5–1

5.1 Synplicity FPGA Synthesis Flow for the OpenSPARC T1 Processor 5–1

5.2 Synplicity FPGA Synthesis Output 5–4

5.3 XST Synthesis Flow for the OpenSPARC T1 Processor 5–4

5.4 XST Synthesis Output 5–6

5.5 Selecting OpenSPARC T1 Options for Reduced Size 5–6

6. OpenSPARC T1 EDK Project 6–1

6.1 System Description of the EDK Project 6–1
iv OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

6.1.1 Hardware Operation 6–2

6.1.2 MicroBlaze Firmware Operation 6–3

6.2 Generation of a Bit File for a Xilinx FPGA 6–3

6.3 Running OpenSPARC T1 Diagnostics on an Evaluation Board 6–5

6.3.1 Running the Default Diag: bypass_win 6–6

6.3.2 Running other Diags on the FPGA Board 6–7

6.3.3 Running an Entire Regression on the FPGA Board 6–8

6.4 Running a Standalone Program on the OpenSPARC T1 Core on an
Evaluation Board 6–10

6.4.1 Running the Included “Hello World” Program 6–10

6.4.2 Creating your own Stand-alone Program 6–14

6.5 Booting OpenSolaris on an FPGA Evaluation Board 6–14

6.5.1 Booting from the provided OpenSolaris RAM Disk Image 6–15

6.5.2 Adding new Programs to the OpenSolaris RAM Disk Image. 6–17

6.6 Running System-level Simulation with Modelsim 6–17

6.7 EDK Project for the ML411 Evaluation Board 6–21

6.8 Running System-level Simulation on Legacy Projects 6–22

A. Design and Verification Manual Pages A–1

A.1 sims A–1

A.2 midas A–15

A.3 goldfinger A–24

A.4 regreport A–32

A.5 vlog A–33
Contents v

vi OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

Figures

FIGURE 2-1 OpenSPARC T1 Block Diagram 2–2

FIGURE 2-2 OpenSPARC T1 External Interfaces 2–7

FIGURE 3-1 OpenSPARC T1 Verification Test Bench Overview 3–3

FIGURE 6-1 EDK OpenSPARC T1 System Block Diagram 6–2

FIGURE 6-2 Xilinx Platform Studio (XPS) window with OpenSPARC project open. 6–4

FIGURE 6-3 Allocation of the ML505-V5LX110 256-MB DRAM with the hypervisor firmware set-up 6–10

FIGURE 6-4 Memory addressing of the MicroBlaze memory controller 6–19

FIGURE 6-5 Memory addressing of the MicroBlaze memory controller 6–23
vii

viii OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

Tables

TABLE 1-1 Disk Space Requirements 1–1

TABLE 1-2 Contents of the OpenSPARCT1 Directory 1–3

TABLE 1-3 Environment Variables in .cshrc File 1–4

TABLE 2-1 OpenSPARC T1 Top-Level Modules 2–3

TABLE 3-1 Source Code Types in the Verification Environment 3–2

TABLE 3-2 Details of Regression Groups 3–3

TABLE 3-3 OpenSPARC T1 Verification Test Bench Modules 3–6

TABLE 3-4 PLI Source Code and Object Libraries 3–8

TABLE 3-5 Options for the mkplilib Script 3–9

TABLE 3-6 Verification Test File Directories 3–10

TABLE 3-7 Gate Netlist Files 3–12

TABLE 4-1 Synthesis Script Details 4–2

TABLE 4-2 Synthesis Output 4–3

TABLE 5-1 Synplicity FPGA Synthesis Script Details 5–2

TABLE 5-2 Synplicity FPGA Synthesis Output 5–4

TABLE 5-3 XST Synthesis Script Details 5–5

TABLE 5-4 FPGA Synthesis Output 5–6

TABLE 6-1 OpenSPARC T1 prom.bin files 6–11

TABLE A-1 Environment Variables A–13
ix

x OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

Preface

The OpenSPARC™ T1 Processor Design and Verification User’s Guide gives an overview
of the design hierarchy on the OpenSPARC T1 processor. It also describes the files,
procedures, and tools needed for running simulations and synthesis on the
OpenSPARC T1 processor.

This book covers the following topics:

■ Design and Verification implementation overview

■ Design and Verification directory and files structure

■ System and Electronic Design Automation (EDA) tools required to run
simulations and synthesis

■ Tools and scripts required to run simulation or complete regressions, including
simulation flow

■ Synthesis flow and scripts

How This Document Is Organized
Chapter 1 describes quick steps to run simulations after you download the design
and verification files from the web site. It also includes system requirements and
EDA tools requirements to run simulations and synthesis.

Chapter 2 gives an overview of the OpenSPARC T1 design hierarchy and directory
structure.

Chapter 3 gives an overview of the OpenSPARC T1 verification environment
implementation and directory structure. The verification environment includes test
benches, tests, scripts, and Verilog Programming Language Interface (PLI).

Chapter 4 describes the synthesis flow and synthesis scripts.
xi

Chapter 5 describes the Synplicity Pro software scripts and the XST software scripts
for synthesizing field programmable gate arrays (FPGA).

Chapter 6 describes the included EDK project, which enables the user to download
the synthesized OpenSPARC T1 core to a Xilinx FPGA, run diagnostic tests on it, and
boot hypervisor.

Appendix A has manual pages for regression commands.

Using UNIX Commands
This document might not contain information about basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices. Refer to the following for this information:

■ Software documentation that you received with your system

■ Solaris™ Operating System documentation, which is at:

http://docs.sun.com

Shell Prompts
Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
xii OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

http://docs.sun.com

Typographic Conventions

Related Documentation
The documents listed as online or download are available at:

http://www.opensparc.net/

Typeface*

* The settings on your browser might differ from these settings.

Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your.login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized.
Replace command-line variables
with real names or values.

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.
To delete a file, type rm filename.

Application Title Part Number Format Location

OpenSPARC T1 instruction
set

UltraSPARC Architecture 2005
Specification

950-4895-03 PDF Online

OpenSPARC T1 processor’s
internal registers

UltraSPARC T1 Supplement to the
UltraSPARC Architecture 2005

819-3404-02 PDF Online

OpenSPARC T1 megacells OpenSPARC T1 Processor Megacell
Specification

819-5016-10 PDF Download

OpenSPARC T1 signal pin
list

OpenSPARC T1 Processor Datasheet 819-5015-10 PDF Download

OpenSPARC T1 processor
J-Bus and SSI interfaces

OpenSPARC T1 Processor External
Interface Specification

819-5014-10 PDF Download
Preface xiii

http://www.opensparc.net/

Documentation, Support, and Training

Third-Party Web Sites
Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can submit your comments by going to:

http://www.sun.com/hwdocs/feedback

Please include the title and part number of your document with your feedback:

OpenSPARC T1 Processor Design and Verification User’s Guide,
part number 819-5019-12

Sun Function URL

Documentation http://www.sun.com/documentation/

Support http://www.sun.com/support/

Training http://www.sun.com/training/
xiv OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

http://www.sun.com/training/
http://www.sun.com/support/
http://www.sun.com/hwdocs/feedback
http://www.sun.com/documentation/

CHAPTER 1

Quick Start

This chapter covers the following topics:

■ System Requirements
■ EDA Tool Requirements
■ Running Simulations and Synthesis

Before you start running simulations or synthesis, make sure you meet system
requirements and that you have the required Electronic Design Automation (EDA)
tools. Once you download the OpenSPARC T1 tar file from the
http://www.opensparc.net web site, follow the steps in this chapter to get
started and run your first regression on the OpenSPARC T1 design.

1.1 System Requirements
OpenSPARC T1 regressions are currently supported to run only on SPARC® systems
running the Solaris 9 or Solaris 10 Operating System.

Disk space requirements are listed in TABLE 1-1.

TABLE 1-1 Disk Space Requirements

Disk Space required Required for:

1.5 Gbyte Download, unzip or uncompress, and extract from the tar file

1.6 Gbyte Run a mini-regression

67 Gbyte Run a full regression

0.3 Gbyte Run synthesis

70.4 Gbyte Total
1-1

http://www.opensparc.net

1.2 EDA Tool Requirements
This section describes the commercial EDA tools required for running simulations
for the OpenSPARC T1 processor and synthesizing OpenSPARC T1 Verilog Register
Transfer Level (RTL) code.

1.2.1 EDA Simulation Tools
The following EDA tools are required to run Verilog simulations: Verilog Simulator,
either VCS or NCVerilog.

■ VCS from Synopsys, version 7.1.1R21 or later
■ NCVerilog from Cadence, version 5.3.s2 or later

It is permissible to use a Verilog Simulator other than VCS or NCVerilog. See details
in Section 3.2.3, “Running Regression With Other Simulators” on page 3-5.

The following EDA tools are optional for running Verilog simulations:

■ Vera from Synopsys, version 6.2.8 or later
■ Debussy from Novas, version 5.3v19 or later

1.2.2 EDA Synthesis Tools
The following EDA tool is required to perform Verilog RTL synthesis:

■ Design Compiler from Synopsys, version X-2005.09 or later

One of the following EDA tool is required to perform Verilog RTL synthesis for field
programmable gate arrays (FPGA):

■ Synplicity Pro from Synplicity, version 8.5 or later or
■ Xilinx Synthesis Technology (XST) from Xilinx, version 9.1i or later

1.2.3 FPGA Tools
The following EDA tools are required to place and route a design on a Xilinx FPGA,
download the design to the Xilinx FPGA, and run tests on the FPGA system:

■ Embedded Development Kit (EDK) from Xilinx, version 9.1i or later
■ Integrated Synthesis Environment (ISE) from Xilinx, version 9.1i or later
■ Modelsim from Mentor Graphics, version 6.1e
1-2 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

1.3 Running Simulations and Synthesis
This section outlines the steps needed to obtain the simulation tools, set up the
simulation environment, run the simulation, and read its log file.

1.3.1 Get the Simulation Files
1. Download the file.

Download the OpenSPARCT1.tar.bz2 file from the
http://www.opensparc.net web site. For this procedure’s examples, the
destination directory is:

/home/johndoe/OpenSPARCT1

2. Change directories to the directory where you downloaded the file. For example:

3. Use the bunzip2 command to unzip the file.

4. Extract the tar file using the tar command.

This step creates the files and subdirectories listed in TABLE 1-2 in your current
directory.

% cd /home/johndoe/OpenSPARCT1

% bunzip2 OpenSPARC_1.tar.bz2

% tar -xvf OpenSPARC_1.tar

TABLE 1-2 Contents of the OpenSPARCT1 Directory

Name Type Description

OpenSPARCT1.cshrc File File to set up environment variables and paths

README File Instructions to set up and run simulations

lib Directory Verilog libraries

verif Directory Verification directories and files
Chapter 1 Quick Start 1-3

http://www.opensparc.net

1.3.2 Set Up Environment Variables
Edit the OpenSPARCT1.cshrc file to set the required environment variables as
shown in TABLE 1-3:

design Directory Verilog RTL for OpenSPARC T1 design

tools Directory Tools and scripts needed to run simulations and synthesis

doc Directory Documentation in PDF form for the OpenSPARC T1 processor

TABLE 1-3 Environment Variables in .cshrc File

Environment Variable Usage Example value

DV_ROOT Running
simulations and
synthesis

/home/johndoe/OpenSPARCT1

(Directory where you ran the tar command above)

MODEL_DIR Running
simulations

/home/johndoe/OpenSPARCT1_model

(Directory where you want to run your simulations)

VERA_HOME Running
simulations

/import/EDAtools/vera/vera,v6.2.10/5.x

(Directory where Vera is installed)

NOVAS_HOME Running
simulations

/import/EDAtools/debussy/debussy,v5.3v19/5.x

(Directory where Debussy is installed)

VCS_HOME Running VCS
simulations

/import/EDAtools/vcs7.1.1R21

(Directory where VCS is installed)

NCV_HOME Running NCVerilog
simulations

/import/EDAtools/ncverilog/ncverilog.v5.3.s2/5.x

(Directory where NCVerilog is installed)

SYN_HOME Running synthesis /import/EDAtools/synopsys/synopsys.vX-2005.09

(Directory where Synopsys is installed)

CC_BIN Compiling PLI code /usr/dist/pkgs/devpro,v4.2/5.x-sparc/bin

(Directory where C++ Compiler binaries are installed)

LM_LICENSE_FILE Running
simulations and
synthesis

/import/EDAtools/licenses/synopsys_key:/import/
EDAtools/licenses/ncverilog_key

(EDA tool license files)

SYNP_HOME Running Synplicity
for FPGA synthesis

/import/EDAtools/synplicity/synplify.v8.5/fpga_85

(Directory where Synplicity is installed)

MODEL_HOME Running Modelsim /import/EDAtools/modelsim.v6.1e/modeltech

TABLE 1-2 Contents of the OpenSPARCT1 Directory (Continued)

Name Type Description
1-4 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

Once you set the environment variables from TABLE 1-3, the OpenSPARCT1.cshrc
file sets the following environment variables:

■ TRE_ENTRY
■ TRE_LOG
■ TRE_SEARCH
■ ENVDIR
■ PERL_MODULE_BASE

The OpenSPARCT1.cshrc script also adds the following directories to your PATH
and path variables:

■ $DV_ROOT/tools/bin
■ $NCV_HOME/tools/bin
■ $VCS_HOME/bin
■ $VERA_HOME/bin
■ $SYN_HOME/sparcOS5/syn/bin
■ $CC_BIN

After completing your OpenSPARCT1.cshrc file edits, source it by using the
source command:

You might want to include the above command in your ~/.cshrc file so that the
above environment variables are set every time you log in.

Finally, create the following symbolic link to set up the correct platform files for the
verification environment. For example, if you are running the verification on a
x86_64 Linux cluster, you would create the symbolic link as follows:

% source /home/johndoe/OpenSPARCT1/OpenSPARCT1.cshrc

% cd $DV_ROOT/tools/env
% ln -s Makefile.Linux.x86_64 Makefile.system
Chapter 1 Quick Start 1-5

1.3.3 Run Your First Regression

Note – OpenSPARC T1 Release 1.4 includes one more environment for single-core,
single-thread implementation of OpenSPARC T1. Tests included in the thread1
environment are a subset of the core1 environment. The thread1 environment
does not include tests that verify multi-threaded functionality and Stream Processing
Unit (SPU) related functionality.

The OpenSPARC T1 Design/Verification package comes with two test bench
environments: core1 and chip8.

The core1 environment consists of:

■ One SPARC CPU core
■ Cache
■ Memory
■ Crossbar

The core1 environment does not have an I/O subsystem.

The chip8 environment consists of:

■ A full OpenSPARC T1 chip, including all eight cores
■ Cache
■ Memory
■ Crossbar
■ I/O subsystem

Each environment can perform either a mini-regression or a full regression.

To run a regression, use the sims command as described in Section 1.3.3.1, “To Run
a Regression” on page 1-7. The important parameters for the sims command are:

■ -sim_type: Simulator type

Set this to vcs or ncv. For example: -sim_type=vcs

■ -group: Regression group name

The choices for -group are: core1_mini, core1_full, chip8_mini,
chip8_full, thread1_mini and thread1_full.
For example: -group=core1_mini
1-6 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

1.3.3.1 To Run a Regression

1. Create the $MODEL_DIR directory.

2. Change directory to $MODEL_DIR.

This is where the simulations are run.

3. Run a mini-regression for the core1 environment using the VCS simulator.

This command creates two directories:

■ A directory called core1 under $MODEL_DIR. The regression compiles Vera
and Verilog code under the core1 directory. This is the Vera and Verilog
“build” directory.

■ A directory named with today’s date and a serial number, such as
2006_01_07_0 (the format is YYYY_MM_DD_ID) under the current directory
where simulations will run. This is the Verilog simulation’s “run” directory.
There is one subdirectory under this directory for each diagnostics test.

By default, the simulations are run with Vera. If you do not want to use Vera, add
following option to the sims command:

-novera_build -novera_run

4. Once simulations are completed, run the regreport command to generate a
regression report.

Where run-directory is the “run” directory created in the above step, such as
2006_01_07_0.

The core1_mini regression has 68 tests. An example of its report.log output is
shown in CODE EXAMPLE 1-1.

% mkdir $MODEL_DIR

% cd $MODEL_DIR

% sims -sim_type=vcs -group=core1_mini

% cd run-directory
% regreport $PWD > report.log
Chapter 1 Quick Start 1-7

If your report.log file displays a similar status, you have successfully completed
running a mini-regression for the OpenSPARC T1 processor.

1.3.4 Run Your First Synthesis
The command to run a synthesis is rsyn. For example, to run a synthesis for one of
the modules called efc, type:

This command runs a synthesis for the efc block and creates gate level netlists
under the $DV_ROOT/design/sys/iop/efc/synthesis/gate directory.

The synthesis flow and scripts are described in more detail in Chapter 4.

CODE EXAMPLE 1-1 Example report.log Regression Output

===
Status: core1_mini | ALL |

PASS: 68 | 68 |
FAIL: 0 | 0 |

 Diag Problem: 0 | 0 |
License Problem: 0 | 0 |
 MaxCycles Hit: 0 | 0 |
 Socket Problem: 0 | 0 |
 Timeout: 0 | 0 |
 LessThreads: 0 | 0 |
 Simics Problem: 0 | 0 |
 Performance: 0 | 0 |
Killed By Job Q: 0 | 0 |
 Unknown: 0 | 0 |
 UnFinished: 0 | 0 |
 flexlm error: 0 | 0 |

Diag Count: 68 | 68 |

% rsyn efc
1-8 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

1.3.5 Gate-Level Verification
OpenSPARC T1 depends heavily on Cross-Module References (XMRs) within the
verification environment. Therefore, dropping in a netlist in place of the RTL core
will produce a high number of XMR errors. Because of this, a simple playback
support is now added. The details of the suggested methodology are described in
Chapter 3.
Chapter 1 Quick Start 1-9

1-10 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

CHAPTER 2

OpenSPARC T1 Design
Implementation

This chapter gives details on the following topics:

■ OpenSPARC T1 Design Hierarchy
■ Module Directory Structure
■ Megacells
■ External Interfaces

2.1 OpenSPARC T1 Design Hierarchy
The top-level Verilog module for the OpenSPARC T1 processor is called
OpenSPARCT1. There are various types of design blocks at the top level:

■ Cluster –A hierarchical block with one or more instances of this block in the
design. For example, a SPARC CPU core is called sparc and has eight instances
at the top level.

■ Pads – Input, Output and Bi-directional pins on the OpenSPARC T1 processor,
including input buffer, output driver, etc. For example, pad_ddr0 contains pads
for DDR bank 0.

■ Repeaters – Many buffers and repeaters at the top level for signals going to
blocks or signals with long traces in the physical implementation, such as
dram0_ddr0_rptr.

■ Clock – This includes global clock distribution, including buffers, drivers,
repeaters, and so on.

A block diagram of the OpenSPARC T1 processor is shown in FIGURE 2-1.
2-1

FIGURE 2-1 OpenSPARC T1 Block Diagram

OpenSPARC T1

Cross Bar (ccx)

fpu
iobdg jbi

J-Bus SSI

DDR-II
SDRAM

DDR-II
SDRAM

ctu efu

DDR-II controller (dram)

DDR-II
SDRAM

DDR-II
SDRAM

DDR-II controller (dram)

Level 2 cache
(L2 $)

Level 2 cache
(L2 $)

Level 2 cache
(L2 $)

Level 2 cache
(L2 $)

sparc0
cluster

sparc1
cluster

sparc2
cluster

sparc3
cluster

sparc4
cluster

sparc5
cluster

sparc6
cluster

sparc7
cluster
2-2 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

2.2 Module Directory Structure
The Verilog RTL for the OpenSPARC T1 processor is in the
$DV_ROOT/design/sys/iop directory. All the top-level modules that make up that
RTL, and their locations, are listed in TABLE 2-1. You can also browse the Verilog
source code on the OpenSPARC web site at http://www.opensparc.net.

TABLE 2-1 OpenSPARC T1 Top-Level Modules

Module Name Type

Number
of
Instances Instance Names

Directory
Location
under
$DV_ROOT/
design/sy
s/iop Description

ccx Cluster 1 ccx ccx CPU-Cache Cross
bar

ctu Cluster 1 ctu ctu Clock and Test
Unit

dram Cluster 2 dram02, dram13 dram DRAM controller

efc Cluster 1 efc efc e-Fuse Cluster

fpu Cluster 1 fpu fpu Floating Point
Unit

iobdg Cluster 1 iobdg iobdg I/O bridge

jbi Cluster 1 jbi jbi J-Bus Interface

scbuf Cluster 4 scbuf[0-3] scbuf L2 $ buffer

scdata Cluster 4 scdata[0-3] scdata L2 $ data

sctag Cluster 4 sctag[0-3] sctag L2 $ tag

sparc Cluster 8 sparc[0-7] sparc SPARC CPU core

pad_ddr0 Pad 1 pad_ddr0 pads DDR0 pads

pad_ddr1 Pad 1 pad_ddr1 pads DDR1 pads

pad_ddr2 Pad 1 pad_ddr2 pads DDR2 pads

pad_ddr3 Pad 1 pad_ddr3 pads DDR3 pads

pad_efc Pad 1 pad_efc pads efc pads

pad_jbusr Pad 1 pad_jbusr pads J-Bus pads

pad_jbusl Pad 2 pad_jbusl, pad_dbg pads J-Bus pads
Chapter 2 OpenSPARC T1 Design Implementation 2-3

http://www.opensparc.net

pad_misc Pad 1 pad_misc pads Miscellaneous
pads

bw_temp_diode Pad 2 pad_diode0,
pad_diode1

analog Temperature
diode pads

bw_ctu_pad_cluster Pad 1 pad_ctu analog CTU pads

ccx_iob_rptr Repeater 1 ccx_iob_rptr cmp ccx repeater

ccx_spc_rpt Repeater 8 ccx_spc_rpt[0-7] cmp ccx repeater

ctu_top_rptr Repeater 1 ctu_top_rptr cmp ctu repeater

ctu_top_rptr2 Repeater 1 ctu_top_rptr2 cmp ctu repeater

ctu_bottom_rptr Repeater 1 ctu_bottom_rptr cmp ctu repeater

ctu_bottom_rptr2 Repeater 1 ctu_bottom_rptr2 cmp ctu repeater

dram0_ddr0_rptr Repeater 1 dram0_ddr0_rptr0 cmp dram repeater

dram1_ddr1_rptr Repeater 1 dram1_ddr1_rptr0 cmp dram repeater

dram2_ddr2_rptr Repeater 1 dram2_ddr2_rptr0 cmp dram repeater

dram3_ddr3_rptr Repeater 1 dram3_ddr3_rptr0 cmp dram repeater

dram_ddr_pad_rptr Repeater 2 dram0_ddr0_rptr2,
dram2_ddr2_rptr2

cmp dram repeater

dram_ddr_pad_rptr_south Repeater 2 dram1_ddr1_rptr2,
dram3_ddr3_rptr2

cmp dram repeater

dram_ddr_rptr Repeater 2 dram0_ddr0_rptr1,
dram2_ddr2_rptr1

cmp dram repeater

dram_ddr_rptr_south Repeater 2 dram1_ddr1_rptr1,
dram3_ddr3_rptr1

cmp dram repeater

dram_l2_buf2 Repeater 8 dram_sc_[0-3]_rep1,
dram_sc_[0-3]_rep3

cmp dram repeater

dram_sc_0_rep2 Repeater 1 dram_sc_0_rep2 cmp dram repeater

dram_sc_1_rep2 Repeater 1 dram_sc_1_rep2 cmp dram repeater

dram_sc_2_rep2 Repeater 1 dram_sc_2_rep2 cmp dram repeater

dram_sc_3_rep2 Repeater 1 dram_sc_3_rep2 cmp dram repeater

ff_dram_sc_bank0 Repeater 1 ff_dram_sc_bank0 cmp dram repeater

TABLE 2-1 OpenSPARC T1 Top-Level Modules (Continued)

Module Name Type

Number
of
Instances Instance Names

Directory
Location
under
$DV_ROOT/
design/sy
s/iop Description
2-4 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

ff_dram_sc_bank1 Repeater 1 ff_dram_sc_bank1 cmp dram repeater

ff_dram_sc_bank2 Repeater 1 ff_dram_sc_bank2 cmp dram repeater

ff_dram_sc_bank3 Repeater 1 ff_dram_sc_bank3 cmp dram repeater

ff_jbi_sc0_1 Repeater 1 ff_jbi_sc0_1 cmp jbi repeater

ff_jbi_sc0_2 Repeater 1 ff_jbi_sc0_2 cmp jbi repeater

ff_jbi_sc1_1 Repeater 1 ff_jbi_sc1_1 cmp jbi repeater

ff_jbi_sc1_2 Repeater 1 ff_jbi_sc1_2 cmp jbi repeater

ff_jbi_sc2_1 Repeater 1 ff_jbi_sc2_1 cmp jbi repeater

ff_jbi_sc2_2 Repeater 1 ff_jbi_sc2_2 cmp jbi repeater

ff_jbi_sc3_1 Repeater 1 ff_jbi_sc3_1 cmp jbi repeater

ff_jbi_sc3_2 Repeater 1 ff_jbi_sc3_2 cmp jbi repeater

iob_ccx_rptr Repeater 1 iob_ccx_rptr cmp iob repeater

iob_jbi_rptr_0 Repeater 1 iob_jbi_rptr_0 cmp iob repeater

iob_jbi_rptr_1 Repeater 1 iob_jbi_rptr_1 cmp iob repeater

jbi_l2_buf2 Repeater 4 rep_jbi_sc[0-3]_1 cmp jbi repeater

rep_jbi_sc0_2 Repeater 1 rep_jbi_sc0_2 cmp jbi repeater

rep_jbi_sc1_2 Repeater 1 rep_jbi_sc1_2 cmp jbi repeater

rep_jbi_sc2_2 Repeater 1 rep_jbi_sc2_2 cmp jbi repeater

rep_jbi_sc3_2 Repeater 1 rep_jbi_sc3_2 cmp jbi repeater

sc_0_1_dbg_rptr Repeater 1 sc_0_1_dbg_rptr cmp L2 repeater

sc_2_3_dbg_rptr Repeater 1 sc_2_3_dbg_rptr cmp L2 repeater

sctag_cpx_rptr_0 Repeater 1 sctag_cpx_rptr_0 cmp L2 repeater

sctag_cpx_rptr_1 Repeater 1 sctag_cpx_rptr_1 cmp L2 repeater

sctag_cpx_rptr_2 Repeater 1 sctag_cpx_rptr_2 cmp L2 repeater

sctag_cpx_rptr_3 Repeater 1 sctag_cpx_rptr_3 cmp L2 repeater

sctag_pcx_rptr_0 Repeater 1 sctag_pcx_rptr_0 cmp L2 repeater

sctag_pcx_rptr_1 Repeater 1 sctag_pcx_rptr_1 cmp L2 repeater

sctag_pcx_rptr_2 Repeater 1 sctag_pcx_rptr_2 cmp L2 repeater

TABLE 2-1 OpenSPARC T1 Top-Level Modules (Continued)

Module Name Type

Number
of
Instances Instance Names

Directory
Location
under
$DV_ROOT/
design/sy
s/iop Description
Chapter 2 OpenSPARC T1 Design Implementation 2-5

2.3 Megacells
The OpenSPARC T1 design contains many megacells, which are custom blocks for
static random access memory (SRAMs), translation lookaside buffer (TLB), TAGs,
Level 2 Cache, and so on. These megacells are instantiated in the top-level clusters.
The detailed descriptions of all megacells, including their function descriptions, I/O
lists, block diagrams, and timing diagrams, are in the OpenSPARC T1 Megacell
Specification.

sctag_pcx_rptr_3 Repeater 1 sctag_pcx_rptr_3 cmp L2 repeater

sctag_scbuf_rptr0 Repeater 1 sctag_scbuf_rptr0 cmp L2 repeater

sctag_scbuf_rptr1 Repeater 1 sctag_scbuf_rptr1 cmp L2 repeater

sctag_scbuf_rptr2 Repeater 1 sctag_scbuf_rptr2 cmp L2 repeater

sctag_scbuf_rptr3 Repeater 1 sctag_scbuf_rptr3 cmp L2 repeater

spc_pcx_buf Repeater 8 buf_pcx_[0-7] sparc Buffer

bw_clk_gl Clock 1 bw_clk_gl analog Global clock
distribution and
buffers

bw_clk_gl_rstce_rtl Clock 1 flop_rptrs analog Global clock
buffers and
repeaters

TABLE 2-1 OpenSPARC T1 Top-Level Modules (Continued)

Module Name Type

Number
of
Instances Instance Names

Directory
Location
under
$DV_ROOT/
design/sy
s/iop Description
2-6 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

2.4 External Interfaces
The OpenSPARC T1 processor has the following external interfaces:

■ Four DDR-II interfaces
■ J-Bus
■ SSI - Serial System Interface
■ JTAG - IEEE 1149.1 interface
■ System control
■ Test and debug
■ Debug port

The block diagram of external interfaces is shown in FIGURE 2-2.

FIGURE 2-2 OpenSPARC T1 External Interfaces

Test and
debug
13 pins

OpenSPARC T1

J-Bus interface
120-200 MHz

161 pins

Total: 1111 Signal Pins

JTAG
signals
5 pins

DDR-II 400 [2]
SDRAM interface

400 MT/s
214 pins

DDR-II 400 [3]
SDRAM interface

400 MT/s
214 pins

DDR-II 400 [0]
SDRAM interface

400 MT/s
214 pins

DDR-II 400 [1]
SDRAM interface

400 MT/s
214 pins

Debug
port

46 pins

System
control
26 pins

SSI
4 pins
Chapter 2 OpenSPARC T1 Design Implementation 2-7

2-8 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

CHAPTER 3

OpenSPARC T1 Verification
Environment

This chapter describes the following topics:

■ OpenSPARC T1 Verification Environment
■ Running a Regression
■ Verification Code
■ PLI Code Used For the Test Bench
■ Verification Test File Locations
■ Compiling Source Code for Tools
■ Gate-Level Verification

3.1 OpenSPARC T1 Verification
Environment
The OpenSPARC T1 verification environment is a highly automated environment.
With a simple command, you can run the entire regression suite for the OpenSPARC
T1 processor, containing thousands of tests. With a second command, you can check
the results of the regression.

The OpenSPARC T1 Design and Verification package comes with two test bench
environments: core1 and chip8.

The core1 environment consists of:

■ One SPARC CPU core
■ Cache
■ Memory
■ Crossbar

The core1 environment does not have an I/O subsystem.
3-1

The chip8 environment consists of:

■ A full OpenSPARC T1 chip, including all eight cores
■ Cache
■ Memory
■ Crossbar
■ I/O subsystem

OpenSPARC T1 Release 1.4 includes a third regression environment for single-thread
implementation of the OpenSPARC T1 core. This regression environment has all the
components present in core1 except that it only supports one hardware thread and
removes the Stream Processing Unit (SPU). This implementation is primarily
developed to create a core with a foot-print amenable for the FPGA map. You can
add back SPU into the design by disabling FPGA_SYN_NO_SPU flag during design
compile time.

The verification environment uses source code in various languages. TABLE 3-1 shows
a summary of the types of source code and their uses.

TABLE 3-1 Source Code Types in the Verification Environment

Source Code Language Used for:

Verilog Chip design, test bench drivers, and monitors.

Vera Test bench drivers, monitors, and coverage objects. Use of Vera is
optional.

PERL Scripts for running simulations and regressions.

C and C++ PLI (Programming Language Interface) for Verilog.

SPARC Assembly Verification tests.
3-2 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

The block diagram for the verification test bench is in FIGURE 3-1.

FIGURE 3-1 OpenSPARC T1 Verification Test Bench Overview

The top-level module for the test bench is called cmp_top. The same test bench is
used for both the core1 and chip8 environments with compile-time options.

3.2 Running a Regression
For each environment, there is a mini-regression and a full regression. TABLE 3-2
describes the regression groups.

TABLE 3-2 Details of Regression Groups

Regression Group name Environment No. of Tests Disk space needed to run (Mbyte)

thread1_mini thread1 42 25

thread1_full thread1 605 900

core1_mini core1 68 41

OpenSPARC T1 DDR-II
model

Monitors
and

drivers

SPARC
assembly

test
Assembler

Memory
image

cmp_top

Source code Data Program
Chapter 3 OpenSPARC T1 Verification Environment 3-3

3.2.1 To Run a Regression
1. Run the sims command with your chosen parameters.

For instance, to run a mini-regression for the core1 environment using the VCS
simulator, set up the sims command as follows:

To run regressions on multiple groups at the same time, specify multiple -group=
parameters at the same time. For a complete list of command-line options for the
sims command, see Appendix A.

2. Run the regreport command to get a summary of the regression.

3.2.2 What the sims Command Does
When running a simulation, the sims command performs the following steps:

1. Compiles the design into the $MODEL_DIR/core1 or $MODEL_DIR/chip8
directory, depending on which environment is being used.

2. Creates a directory for regression called $PWD/DATE_ID, where $PWD is your
current directory, DATE is in YYYY_MM_DD format, and ID is a serial number
starting with 0. For example, for the first regression on Jan 25, 2006, a directory
called $PWD/2006_01_26_0 is created. For the second regression run on the
same day, the last ID is incremented to become $PWD/2006_01_26_1.

3. Creates a master_diaglist.regression_group file under the above directory.
such as master_diaglist.core1_mini for the core1_mini regression group.
This file is created based on diaglists under the $DV_ROOT/verif/diag
directory.

core1_full core1 900 1,680

chip8_mini chip8 492 1,517

chip8_full chip8 3789 29,000

% sims -sim_type=vcs -group=core1_mini

% regreport $PWD/2006_01_25_0 > report.log

TABLE 3-2 Details of Regression Groups

Regression Group name Environment No. of Tests Disk space needed to run (Mbyte)
3-4 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

4. Creates a subdirectory with the test name under the regression directory created
in step 2 above.

5. Creates a sim_command file for the test based on the parameters in the diaglist
file for the group.

6. Executes sim_command to run a Verilog simulation for the test. If the -sas option
is specified for the test, it also runs the SPARC Architecture Simulator (SAS) in
parallel with the Verilog simulator. The results of the Verilog simulation are
compared with the SAS results after each instruction.

The sim_command command creates many files in the test directory. Following
are the sample files in the test directory:

The status.log file has a summary of the status, where the first line contains the
name of the test and its status (PASS/FAIL).

7. Repeats steps 4 to 6 for each test in the regression group.

3.2.3 Running Regression With Other Simulators
To use a Verilog simulator other than VCS or NCVerilog, use following options for
the sims command:

-sim_type=”Your simulator name”

-sim_build_cmd=”Your simulator command to build/compile RTL”

-sim_run_cmd=”Your simulator command to run simulations”

-sim_build_args=”Arguments to build/compile”

-sim_run_args=”Arguments to run simulations”

You only need to specify the sim_type, sim_build_cmd, and sim_run_cmd
options once. You can specify sim_build_args and sim_run_args multiple times
to specify multiple argument options.

diag.ev diag.s l2way.log perf.log
sas.log.gz sims.log symbol.tbl sim.perf.log
diag.exe.gz efuse.img midas.log sim_command
status.log sim.log.gz

Diag: xor_imm_corner:model_core1:core1_full:0 PASS
Chapter 3 OpenSPARC T1 Verification Environment 3-5

3.3 Verification Code
This section outlines Verilog and Vera code structures and locations.

3.3.1 Verilog Code Used for Verification
There are various test bench drivers and monitors written in Verilog. A list of all
Verilog modules, the location of the source code, and descriptions is in TABLE 3-3. All
verification Verilog files are in the $DV_ROOT/verif/env directory.

TABLE 3-3 OpenSPARC T1 Verification Test Bench Modules

Module Name Type

Number
of
instances Instance Names

Directory Location
under
$DV_ROOT/verif/env Description

OpenSPARCT1 Chip 1 iop $DV_ROOT/design
/sys/iop/rtl

OpenSPARC T1
top level

bw_sys Driver 1 bw_sys cmp SSI bus driver

cmp_clk Driver 1 cmp_clk cmp Clock driver

cmp_dram Model 1 cmp_dram cmp DRAM modules

cmp_mem Driver 1 cmp_mem cmp Memory tasks

cpx_stall Driver 1 cpx_stall cmp CPX stall

dbg_port_chk Monitor 1 dbg_port_chk cmp Debug port
checker

dffrl_async Driver 4 flop_ddr[0-3]_oe $DV_ROOT/design
/sys/iop/common
/rtl

Flip-flop

err_inject Driver 1 err_inject cmp Error Injector

jbus_monitor Monitor 1 jbus_monitor iss/pli/jbus_mo
n/rtl

J-Bus Monitor

jp_sjm Driver 2 j_sjm_4, j_sjm_5 iss/pli/sjm/rtl J-Bus Driver

monitor Monitor 1 monitor cmp Various monitors

one_hot_mux_mon Monitor 1 one_hot_mux_mon cmp Hot mux monitor

pcx_stall Driver 1 pcx_stall cmp PCX stall

sas_intf SAS 1 sas_intf cmp SAS interface

sas_tasks SAS 1 sas_tasks cmp SAS tasks
3-6 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

3.3.2 Vera Code Used for Verification
Two types of Vera code are included in the OpenSPARC T1 verification environment:

■ Test bench driver and Monitor Vera code

■ Vera Object coverage Vera code

Vera code is in the $DV_ROOT/verif/env/cmp/vera directory. Each object
coverage module has a corresponding subdirectory. Following is a list of Vera object
coverage modules:

Object coverage Vera code for jbi is in the
$DV_ROOT/verif/env/iss/vera/jbi_coverage directory. Object coverage Vera
code is only used for the chip8_cov regression groups.

slam_init Driver 1 slam_init cmp Initialization
tasks

sparc_pipe_flow Monitor 1 sparc_pipe_flow cmp SPARC pipe flow
monitor

tap_stub Driver 1 tap_stub cmp JTAG driver

cmpmss_coverage dram_coverage exu_coverage fpu_coverage
lsu_coverage mt_coverage tlu_coverage coreccx_coverage
err_coverage ffu_coverage ifu_coverage mmu_coverage
spu_coverage tso_coverage

TABLE 3-3 OpenSPARC T1 Verification Test Bench Modules (Continued)

Module Name Type

Number
of
instances Instance Names

Directory Location
under
$DV_ROOT/verif/env Description
Chapter 3 OpenSPARC T1 Verification Environment 3-7

3.4 PLI Code Used For the Test Bench
Verilog’s PLI (Programming Language Interface) is used to drive and monitor the
simulations of the OpenSPARC T1 design. There are eight different directories for
PLI source code. Some PLI code is in C language, and some is in C++ language. The
object libraries for the VCS simulator and NC-Verilog simulator are included for the
PLI code in the $DV_ROOT/tools/SunOS/sparc/lib directory. TABLE 3-4 gives the
details of PLI code directories, VCS libraries, and NC-Verilog libraries.

VCS object libraries are statically linked libraries (.a files) which are linked when
VCS compiles the Verilog code to generate a simv executable. NC-Verilog object
libraries are dynamically loadable libraries (.so files) which are linked dynamically
while running the simulations.

Makefiles are provided to compile PLI code. There is a makefile file under each
PLI directory to create a static object library (.a file). There is a makefile.ncv file
under each PLI directory to create a dynamic object library.

TABLE 3-4 PLI Source Code and Object Libraries

PLI name
Source code location under
$DV_ROOT

VCS object library
name NC-Verilog object library name Description

iop tools/pli/iop libiob.a libiob_ncv.so Monitors and
drivers

mem tools/pli/mem libmem_pli.a libmem_pli_ncv.so Memory
read/write

socket tools/pli/socket libsocket_pli.a libsocket_pli_ncv.so Sockets to
SAS

utility tools/pli/utility libutility_pli.a libutility_ncv.so Utility
functions

common verif/env/iss/pli/
common/c

libjpcommon.a libjpcommon_ncv.so Common PLI
functions

jbus_mon verif/env/iss/pli/
jbus_mon/c

libjbus_mon.a libjbus_mon_ncv.so J-Bus Monitor

monitor verif/env/iss/pli/
monitor/c

libmonitor.a libmonitor_ncv.so Various

sjm verif/env/iss/pli/
sjm/c

libsjm.a libsjm_ncv.so J-Bus Driver
3-8 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

3.4.1 To Compile All PLI Libraries
To compile all PLI libraries, run the mkplilib script. This script has three options as
listed in TABLE 3-5.

● Compile PLI libraries with your chosen option.

For example, to compile PLI libraries in VCS, type the following:

Either version of this procedure, VCS or NC_Verilog, compiles C/C++ code, creates
static or dynamic libraries, and copies them to the
$DV_ROOT/tools/SunOS/sparc/lib directory.

3.5 Verification Test File Locations
The verification or diagnostics tests (diags) for the OpenSPARC T1 processor are
written in SPARC assembly language (the file names have a .s extension). Some
diags require command files for a J-Bus Driver. Those command files are named
sjm_4.cmd and sjm_5.cmd. Some diagnostics test cases in SPARC assembly are
automatically generated by Perl scripts.

TABLE 3-5 Options for the mkplilib Script

Option Used for

vcs Compiling PLI libraries for VCS

ncverilog Compiling PLI libraries for NC-Verilog

clean Deleting all PLI libraries

% mkplilib vcs
Chapter 3 OpenSPARC T1 Verification Environment 3-9

The main diaglist for core1 is core1.diaglist. The main diaglist for chip8 is
chip8.diaglist. These main diaglists for each environment also include many
other diaglists. The locations of various verification test files are listed in TABLE 3-6.

3.6 Compiling Source Code for Tools
To compile source code for some Sun tools used for the OpenSPARC T1 processor,
use the mktools script. The tools source code is located in the
$DV_ROOT/tools/src directory.

The mktools script compiles the source code and copies the binaries to
$DV_ROOT/tools/<Operating System>/<Processor Type> directory, where:

■ <Operating System> is defined by the uname -s command
■ <Processor Type> is defined by the uname -p command

3.7 Gate-Level Verification
OpenSPARCT1 depends heavily on Cross-Module References (XMRs) within the
verification environment. Therefore, dropping in a netlist in place of the RTL core
will produce a high number of XMR errors. In order to overcome this difficulty, a
simple playback support is now added.

Although we anticipate this method to be useful primarily to verify FPGA
synthesized netlists, it could be potentially used with netlists generated by semi-
custom synthesis flows as well (for example, Synopsys).

TABLE 3-6 Verification Test File Directories

Directory Contents

$DV_ROOT/verif/diag All diagnostics, various diagnostic list files with the
extension.diaglist.

$DV_ROOT/verif/diag/
assembly

Source code for SPARC assembly diagnostics. More than 2000
assembly test files.

$DV_ROOT/verif/diag/
efuse

EFuse cluster default memory load files.
3-10 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

Caution – Running this vector playback mechanism on RTL, although feasible, is
not recommended due to some array initialization issues. In the gate playback mode,
all arrays are explicitly initialized to zero while in RTL and some arrays are
initialized to random values. This may result in mismatch in playback simulation. If
RTL arrays are initialized correctly (zeros) then this mechanism can be used to verify
RTL netlist as well.

To verify a netlist, do the following:

1. Run RTL mini or full regression to generate stimuli files for netlist verification.

To do this, add the -vcs_build_args=
$DV_ROOT/verif/env/cmp/playback_dump.v option to the regression
command.

For example, thread1_mini regression command for the SPARC level driver
(stimuli) generation would require the following:

The above regression will generate stimuli.txt file under the run directory of
each diagnostic. Sample stimuli.txt files are included under
$DV_ROOT/verif/gatesim for the thread1_mini regression (file
thread1_mini_stim.tar.gz). These files are generated with VCS build args
(-vcs_build_args)FPGA_SYN, FPGA_SYN_1THREAD, FPGA_SYN_8TLB and
FPGA_SYN_NO_SPU flags.

2. Create a verilog file list which includes the following files:

$DV_ROOT/verif/env/cmp/playback_driver.v
<SPARC level gate netlist>.v
<library used for synthesis>.v

Sample flist is provided under $DV_ROOT/verif/gatesim for reference (file
flist.xilinx_unisims)

3. Compile the design to build the gate level model.

A sample compile script is provided under the $DV_ROOT/verif/gatesim
directory. The following shows usage of the compile script:

% sims -sim_type=vcs -group=thread1_mini -debussy \
-vcs_build_args=$DV_ROOT/verif/env/cmp/playback_dump.v

% $DV_ROOT/verif/gatesim/build_gates <flist>
Chapter 3 OpenSPARC T1 Verification Environment 3-11

4. Run the simulation by including +stim_file=<path to
stim file>/stimuli.txt

If playback fails, the simulation will return with “Playback FAILED with #
mismatches!” If it passes, it will return with “Playback PASSED!”

Use fsdb generation options in the compile script to debug failing runs.

A simple run_gates script is also included for reference under the
$DV_ROOT/verif/gatesim directory. The following shows usage of the run script:

% $DV_ROOT/verif/gatesim/run_gates <path to stim file>

TABLE 3-7 Gate Netlist Files

Directory/File Contents

$DV_ROOT/verif/gatesim/build_gates Compile script to create gate level model of SPARC netlist

$DV_ROOT/verif/gatesim/run_gates Run script to execute playback of vectors on gate netlist

$DV_ROOT/verif/gatesim/
flist.xilinx.unisims

Sample verilog file list with Xilinx synthesis library

$DV_ROOT/verif/gatesim/
thread1_mini_stim.tar.gz

FOR REFERENCE ONLY: Collection pre-packaged stimulus
files for thread1_mini regression suit.
3-12 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

CHAPTER 4

OpenSPARC T1 Synthesis

This chapter describes the following topics:

■ Synthesis Flow for the OpenSPARC T1 Processor
■ Synthesis Output

The scripts provided in the source code are for the Synopsys Design Compiler.

4.1 Synthesis Flow for the OpenSPARC T1
Processor
There are two types of synthesis scripts:

■ One set to run the Synopsys Design Compiler (rsyn and syn_command)
■ One set used as input for the Design Compiler

The main script used to run Synopsys Design Compiler is called rsyn. This is a
PERL script that calls a second script, syn_command, once for each module you are
synthesizing. The command-line options for the rsyn script are described in
CODE EXAMPLE 4-1.
4-1

Synthesis scripts for most of the modules are provided in the $DV_ROOT/design
sub-directories. There are no synthesis scripts for the following types of modules:

■ Megacell modules (SRAMS, TLB, TAG, Cache, etc.)
■ Top-level hierarchical modules

Synopsys scripts, their locations, and their descriptions are listed in TABLE 4-1.

The top-level Synopsys script, run.scr,calls the module-specific script named
user_cfg.scr. The user_cfg.scr script calls the project_sparc_cfg.scr
script or the project_io_cfg.scr script, depending on whether the module
belongs to sparc or io.

CODE EXAMPLE 4-1 Command-Line Options for rsyn Script

rsyn : Run Synthesis for OpenSPARC T1

-all
to run synthesis for all blocks

-h / -help
to print help

-syn_q_command=’Your job Queue command’
to specify Job queue command. e.g. specify submit command
for LSF or GRID

block_list :
specify list of blocks to synthesize

Examples:

rsyn -all
rsyn fpu_add

TABLE 4-1 Synthesis Script Details

Script name Location Description

run.scr $DV_ROOT/design/sys/synopsys/script Main synthesis script that
calls user_cfg.scr

project_sparc_cfg.scr $DV_ROOT/design/sys/synopsys/script SPARC module-specific
synthesis script

project_io_cfg.scr $DV_ROOT/design/sys/synopsys/script I/O module-specific
synthesis script

target_lib.scr $DV_ROOT/design/sys/synopsys/script Target library-specific script

user_cfg.scr Module directory/synopsys/script Module-specific synthesis
script
4-2 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

The list of all modules with synthesis scripts is in the
$DV_ROOT/design/sys/synopsys/block.list file. Each module has:

■ A synopsys directory under the module directory
■ A script directory under each synopsys directory
■ The user_cfg.scr file under the script directory

For example, the efc module-specific synthesis script has the following directory
path:

The target library is set to a generic library called lsi_10k.db in the
target_lib.scr script. Modify this file to set your own target library and its
required variables.

4.2 Synthesis Output
Running synthesis for a module creates files and directories under the
Module name/synopsys directory, described in TABLE 4-2.

$DV_ROOT/design/sys/iop/efc/synopsys/script/user_cfg.scr

TABLE 4-2 Synthesis Output

Name Type Description

dc_shell.log File Log file from running Design Compiler

command.log File Command log from running Design Compiler

log Directory Area report files from Design Compiler

gate Directory Gate netlist generated by Design Compiler

.template Directory Template directory used by Design Compiler
Chapter 4 OpenSPARC T1 Synthesis 4-3

4-4 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

CHAPTER 5

OpenSPARC T1 FPGA Synthesis

This chapter describes the following topics:

■ Synplicity FPGA Synthesis Flow for the OpenSPARC T1 Processor
■ Synplicity FPGA Synthesis Output
■ XST Synthesis Flow for the OpenSPARC T1 Processor
■ XST Synthesis Output
■ Selecting OpenSPARC T1 Options for Reduced Size

The scripts provided in the OpenSPARC T1 source code are for the Synplicity Pro
software, version 8.5, and for the Xilinx Synthesis Technology (XST) Software,
version 9.1.

5.1 Synplicity FPGA Synthesis Flow for the
OpenSPARC T1 Processor
Several scripts are required to run FPGA synthesis with Synplicity

■ Shell scripts to run the Synplicity Pro software (rsynp and synp_command)
■ Synplicity scripts which are read by the Synplicity Pro software

The main script used to run the Synplicity software is a PERL script called rsynp.
rsynp calls a second script, synp_command, once for each module you are
synthesizing into an FPGA. CODE EXAMPLE 5-1 describes the command-line options
of the rsynp script.
5-1

The OpenSPARC T1 source code provides FPGA synthesis scripts for the following
modules: sparc, fpu, and ccx. The rsynp script first creates a module-specific
script proj.prj in the <module-directory>/synplicity directory, and then it calls
the Synplicity software in batch mode using the proj.prj script as input. TABLE 5-1
lists the FPGA Synplicity scripts, their locations, and their descriptions. The
proj.prj script uses all the scripts listed in this table.

CODE EXAMPLE 5-1 Command-Line Options for the rsynp Script

rsynp : Run Synplicity for OpenSPARC T1

Options are :
 -all
 to run Synplicity for all blocks
 -h / -help
 to print help
 -syn_q_command=’Your job Queue command’
 to specify Job queue command
 -device=’Target Device’
 to specify Target FPGA device
 -flat
 To run synthesis flat, must use this for Altera parts.
 -clean
 To remove all unneeded files and/or directories.

Need to specify target device when not using default device

 block_list :
 specify list of blocks to synthesize

Examples:

 rsynp -all
 rsynp -device=XC4VLX200 sparc
 rsynp -flat -device=EP2S180 sparc

TABLE 5-1 Synplicity FPGA Synthesis Script Details

Script name Location Description

block.list $DV_ROOT/design/sys/synplicity List of blocks with synthesis scripts
5-2 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

The $DV_ROOT/design/sys/synplicity/block.list file lists all of the
modules that can be synthesized using the Synplicity software. Each module has:

■ A synplicity directory under the module (<module>) directory.

■ A <module>.flist file under each <module>/synplicity directory. (This file
lists the Verilog files for the module.)

■ Optional <module>.mlist file under <module>/synplicity directory, this is the
list of SRAM modules for the module. SRAM modules are synthesized
hierarchically.

■ Optional <module>.fmlist file under <module>/synplicity directory, this is
the flat list of SRAM Verilog files.

■ Optional <module>.prj file under <module>/synplicity directory, this is the
file for module specific Synplicity settings.

■ Optional <module>.sed file to change names of the modules to make them
unique module names in the Synplicity-generated output design .vm file.

pre_syn_settings.prj $DV_ROOT/design/sys/synplicity Synplicity software settings

env.prj $DV_ROOT/design/sys/synplicity OpenSPARC environment-related
settings

<device>.prj $DV_ROOT/design/sys/synplicity Target device-specific settings
(for example, the XC4VLX200.prj
script would be for the Xilinx
XC4VLX200 device)

TABLE 5-1 Synplicity FPGA Synthesis Script Details (Continued)

Script name Location Description
Chapter 5 OpenSPARC T1 FPGA Synthesis 5-3

5.2 Synplicity FPGA Synthesis Output
While running a FPGA synthesis for a module, the Synplicity software will create
files and directories under the <module>/synplicity directory. TABLE 5-2 describes
these files and directories.

5.3 XST Synthesis Flow for the OpenSPARC
T1 Processor
Scripts are now available to allow automated synthesis of the OpenSPARC T1 using Xilinx
Synthesis Technology (XST).

The main script used to run the XST software is a PERL script called rxil.

The rxil script calls XST once for each module that is being synthesized into an FPGA. CODE

EXAMPLE 5-2 describes the command-line options of the rxil script.

TABLE 5-2 Synplicity FPGA Synthesis Output

Name Type Description

<device> Directory Target device-specific directory (for example, XC4VLX200
would be the directory name for the Xilinx XC4VLX200 device).
The Synplicity software will create a number of files and sub-
directories under this <device> directory.

<device>/<module>.srr File Synplicity software output file for a <module> using the <device>
as a target FPGA. This file is a log of the synthesis process, and
contains information about the estimated timing, area, and so
on.

<device>/<module>.edf File EDIF netlist for the synthesized block.
5-4 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

CODE EXAMPLE 5-2 Command-Line Options for the rxil Script

The OpenSPARC T1 source code provides XST synthesis scripts for the followingmodules:
sparc, fpu, and ccx. The rxil script first copies a device file for the target device into the
<module-directory>/xst directory, creates a <device> subdirectory, and then it calls the XST
software in batch mode using the device file and the <block>.flist file as input.

The $DV_ROOT/design/sys/xst/block.list file lists all of the modules that can be
synthesized using the XST software. Each module has:

■ A xst directory under the module (<module>) directory.

■ A <module>.flist file under each <module>/xst directory. (This filelists the Verilog files
for the module.)

rxil : Run XST for OpenSPARC T1
Options are :
-all

to run XST for all blocks
-h / -help

to print help
-device=’Target Device’

to specify Target FPGA device
block_list :

specify list of blocks to synthesize
Examples:

rxil -all
rxil -device=XC4VLX200 sparc
rxil -device=XC4VLX200 fpu ccx

TABLE 5-3 XST Synthesis Script Details

Script Name Type Description

block.list $DV_ROOT/design/sys/xst List of blocks which may be synthesized.

XC4VFX100.xst $DV_ROOT/design/sys/xst One of the device files for XST. This one
is for a Xilinx Virtex-4 part: XC4VFX100

xst_defines.h $DV_ROOT/design/sys/iop/include Sets top-level defines for XST synthesis.
Allows selection of different OpenSPARC
T1 options.
Chapter 5 OpenSPARC T1 FPGA Synthesis 5-5

5.4 XST Synthesis Output
While running a FPGA synthesis for a module, the XST software will create files and
directories under the <module>/xst directory. TABLE 5-4 describes these files and
directories.

5.5 Selecting OpenSPARC T1 Options for
Reduced Size
OpenSPARC T1 RTL now includes four conditional compile options in the design.
Each of these options create a different variant of the OpenSPARC T1 core. Although
these four options are orthogonal to each other in terms of what change it brings to
the design, when combined together, they produce a significantly smaller design and
a very compelling solution for FPGA mapping. The following describes these
options:

■ FPGA_SYN: This option enables different implementation for some of the
megacells and SRAM arrays to make it more effectively utilize FPGA resources
like Block RAMs and multipliers. This option also removes all asynchronous logic
(for example, latches) from the design to make it amiable for FPGA synthesis.
FPGA synthesis will not complete without this option.

■ FPGA_SYN_1THREAD: This option reduces multi-threaded overhead of logic and
creates a small and clean single thread implementation of OpenSPARC T1 core.
The basic functionality of the SPARC core here is the same.

TABLE 5-4 FPGA Synthesis Output

Name Type Description

<device> Directory Target device specific directory (for example, XC4VLX200 would
be the directory name for the Xilinx XC4VLX200 device). The XST
software will create a number of files and subdirectories under this
<device> directory.

<device>/<block>.ngc File Synthesized block netlist in Xilinx NGC format.

<device>/<block>.v File Synthesized block netlist in Verilog format.

<device>/<device>.srp File XST Synthesis log. Contains FPGA utilization and timing
information.
5-6 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

■ FPGA_SYN_NO_SPU: The Stream Processing Unit (SPU) in OpenSPARC T1
provides hardware acceleration for cryptographic functions. In designing general
purpose FPGA based processor, this unit can be safely removed without affecting
the base functionality. This option removes SPU from the design and provides
further reduction in the design size.

■ FPGA_SYN_8TLB: The OpenSPARC T1 TLB normally has 64 entries. To save
space,a reduced-size TLB of 8 entries may be selected. The function of the TLB is
remains the same. It just has fewer entries.

■ FPGA_SYN_16TLB: This option can be used instead of the FPGA_SYN_8TLB
option to create a design with 16 TLB entries instead of 8. This improves
performance of the design, at the cost of area.

■ CONNECT_SHADOW_SCAN: The shadow scan chain is used to scan out system
state information for debug purposes. Normally, it is not connected in the RTL
because the connection was performed by the regular scan connection tools. This
option connects the shadow scan elements in the RTL. This prevents the shadow
scan registers from being optimized away during FPGA synthesis, and eliminates
the need for a scan connection step in an FGPA environment, where regular scan
chains are not used.

Based on our experiments, combining the first four options create a design that
would consume about 40,000 4-input Look-Up Tables (LUT) in the Xilinx Virtex-4
family.

To run the FPGA synthesis with Synplicity Simplify Pro,

1. Add the following line in the file

$DV_ROOT/design/sys/synplicity/env.prj

2. Then run rsynp.

For rsynp script details, see Section 5.1, “Synplicity FPGA Synthesis Flow for the
OpenSPARC T1 Processor” on page 5-1.

To run the FPGA synthesis with Xilinx XST,

Set +defines
set_option -hdl_define -set “FPGA_SYN FPGA_SYN_NO_SPU
FPGA_SYN_1THREAD FPGA_SYN_8TLB”
Chapter 5 OpenSPARC T1 FPGA Synthesis 5-7

1. Add the following lines in the file

$DV_ROOT/design/sys/iop/include/xst_defines.h

2. `Then run rxil. For rxil script details, see Section 5.3, “XST Synthesis Flow for the
OpenSPARC T1 Processor” on page 5-4

Caution – The four options described above should be used only with the
thread1_mini and thread1_full regression environments. Attempting to
include these options in core1 regressions will cause the diagnostics to fail. core1
regression includes tests that verify multi-threaded and SPU related functionality
which does not exist when the model is built with the above options.

`define FPGA_SYN
`define FPGA_SYN_NO_SPU
`define FPGA_SYN_1THREAD
`define FPGA_SYN_8TLB
5-8 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

CHAPTER 6

OpenSPARC T1 EDK Project

This chapter describes the following topics:

■ System Description of the EDK Project

■ Generation of a Bit File for a Xilinx FPGA

■ Running OpenSPARC T1 Diagnostics on an Evaluation Board

■ Running a Standalone Program on the OpenSPARC T1 Core on an Evaluation
Board

■ Running System-level Simulation with Modelsim

■ EDK Project for the ML411 Evaluation Board

■ Running System-level Simulation on Legacy Projects

6.1 System Description of the EDK Project
A Xilinx Embedded Development Kit (EDK) project is included to provide a
platform for running the OpenSPARC T1 core on a Xilinx ML505-V5LX110T or
ML411 evaluation board. The Xilinx EDK environment allows the user to quickly put
a new system together, place and route the design on a target FPGA, then download
the design to the target FPGA to test and debug it.

A block diagram of the system provided in the EDK project is shown in FIGURE 6-1.

The system contains the following components.

■ OpenSPARC T1 core

■ An Adapter block which adapts the cache crossbar interface of the OpenSPARC
T1 core to the MicroBlaze FSL interface.

■ A MicroBlaze controller which will run software to service all memory and I/O
requests coming from the core. The MicroBlaze core contains:
6-1

■ 16k I-cache

■ 16k D-cache

■ DDR2 SDRAM controller. This controller accesses the 256 MB SODIMM on the
ML505 board or the 256 MB DIMM on the ML411 board.

■ UART Lite controller to communicate with a host PC over a serial interface.

■ A network controller to allow the board to be connected to the network.

FIGURE 6-1 EDK OpenSPARC T1 System Block Diagram

6.1.1 Hardware Operation
The EDK system was designed for minimal overhead on top of the core. This makes
it possible to fit the core into a fairly small FPGA. The system operates as follows:

Memory accesses from the core (instruction fetches, loads, and stores) are sent over
the 124-bit processor-to-cache crossbar (PCX) interface. Interrupts are also
communicated through this interface. The ccx2mb adapter block breaks these 124-bit
requests into four 32-bit words and places those words into an FSL FIFO. Firmware
running on the MicroBlaze core reads the requests out of the FSL FIFO, interprets
them, and services them. Once the firmware has completed the request, it generates
a 144-bit response packet, which is placed in a second FSL FIFO as 5 32-bit words.
The ccx2mb block reads these words from the FIFO, reconstructs the 144-bit
response, and forwards it on to the OpenSPARC T1 core.
6-2 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

6.1.2 MicroBlaze Firmware Operation
The firmware must perform the following functions:

■ Interpret and service the memory requests coming from the OpenSPARC T1 core.

■ Maintain a memory map which maps OpenSPARC T1 addresses to addresses in
the MicroBlaze memory system.

■ Maintain directories of the level 1 instruction and data caches of the OpenSPARC
T1 core. This is required in order to keep these caches coherent.

■ Send invalidations to the level 1 caches to keep them coherent.

■ Send the initial wake-up interrupt to the OpenSPARC T1 after reset completes.

■ Communicate device interrupts to the OpenSPARC T1 core.

The firmware operates by continuously polling the FSL FIFO connected to the
OpenSPARC T1 PCX interface. When there is a valid packet, the firmware decodes it
and services the request. For any kind of memory transaction, the firmware must
translate the OpenSPARC T1 address to the corresponding board address. Once the
correct board address is obtained, the firmware can get data from or store data to
memory. Then it generates the appropriate packets to send back to the OpenSPARC
T1 core.

There are two variations of the firmware: One to run OpenSPARC T1 diagnostic
tests, and one to run standalone programs under hypervisor. The only difference
between these variations is the memory mapping of OpenSPARC T1 addresses to
board addresses.

6.2 Generation of a Bit File for a Xilinx FPGA
The OpenSPARC T1 EDK project should be ready to go. To generate a bitstream for
a Xilinx FPGA, there is a simple two-step process:

1. Copy the correct OpenSPARC T1 netlist into the pcores directory if necessary.

By default, there is a Synplicity netlist of a four-thread core in the netlist directory
for the OpenSPARCT1. The provided netlist was synthesized with the following
features:

■ Four Threads
■ 16-entry TLB
Chapter 6 OpenSPARC T1 EDK Project 6-3

■ No stream processing unit (SPU)

To use an XST netlist instead, the Synplicity netlist must be removed and the XST
netlist placed in the netlist directory in its place. There can only be one netlist in the
netlist directory. The text box shows how to replace the Synplicity netlist with the
XST netlist

After the new netlist has been put in place, the file data/iop_fpga_v2_1_0.bbd
must be edited to point to the new netlist.

2. Start Xilinx Platform Studio (XPS)

Xilinx Platform Studio will come up as shown in FIGURE 6-2.

% cd $DV_ROOT/design/sys/edk/pcores/iop_fpga_v1_00_a
% mv netlist/sparc.edf .
% cp path-to-netlist/sparc.ngc netlist

FIGURE 6-2 Xilinx Platform Studio (XPS) window with OpenSPARC project open.
6-4 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

3. Select the menu option to generate a bitstream

Select the menu item:
Hardware --> Generate Bitstream

6.3 Running OpenSPARC
T1 Diagnostics on an
Evaluation Board
Once a bitstream has been generated, it can be downloaded to the FPGA on the
evaluation board, and SPARC diagnostic tests (called diags at Sun) can be run on the
hardware.

The version of the firmware to run stand-alone diagnostics requires a source file,
mbfw_diag_memimage.c, which is a C structure representation of the memory
image for the test. To run any diag, the assembly language program for that test
must be assembled into an executable. Then the executable is converted to a binary
file, and a perl script is run to convert the binary file into the C structure
representation that is needed by the firmware. Then the firmware is re-compiled
with the new C structure. The EDK project relies on the sims program to generate
the executable programs, since it calls the assembler with all the proper options for
each test.

The ccx-firmware-diag software project is set up to run the bypass_win test by
default. To run this test, perform the following procedure:
Chapter 6 OpenSPARC T1 EDK Project 6-5

6.3.1 Running the Default Diag: bypass_win
1. Select the Applications tab in the Project

Information Area (the left-hand window).

A list of software applications will be shown.

2. Right-click on the microblaze_0_bootloop
application and select “Mark to initialize
BRAMs.”

This will select the microblaze_0_bootloop
program to be automatically downloaded to
BRAMs with the bitstream. This will keep the
MicroBlaze processor safely looping at address 0
until the ccx-firmware-diag program is
downloaded to the DRAM. Make sure no other
program is marked to initialize BRAMs

3. Select the following menu item to update the bitstream.

Select menu Device Configuration --> Update Bitstream

4. Download the bitstream to the FPGA.

Select menu Device Configuration --> Download Bitstream

5. Make sure the Firmware executable is up to date

Right-click on the ccx-firmware-diag software project and select build in the
popup menu

6. Start any terminal window, such as Hyperterminal, and connect to the serial port
that is connected to the FPGA board.

The communication settings should be set to 9600 baud, data 8 bits, parity none,
stop bits 1, and flow control none.

7. Launch XMD.

Select menu Debug --> Launch XMD or click the button to
launch XMD from the XPS GUI.

8. Download the firmware executable file.

XMD% dow ccx-firmware-diag/executable.elf
6-6 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

9. Run the diagnostic test.

The output from the test will appear in the terminal window.

6.3.2 Running other Diags on the FPGA Board
To run other diags on the FPGA board, the assembly language program for the
desired diag must be assembled, and the resulting executable must be converted into
a C structure which is compiled into the ccx-firmware-diag application.

1. Run sims to generate the desired test executable.

When running diags on the FPGA, the source code for the test must be compiled
with a different set of compiler options than when it is run in the simulation
environment. Therefore to generate the memory image, sims must be run with the
following options.

This calls the assembler to create an executable from the assembly language source
of the test. The resulting executable contains some simple reset code, trap tables, as
well as the main diagnostic code. The sims program then takes this executable and
creates a memory image file from it. All the code and data sections from the
executable are placed into the memory image file. Then the required page table
entries and translation storage buffers for virtual memory are added.

XMD% run

MBFW_INFO: Running RTL diag "v9_allinst"
MBFW_INFO: Microblaze firmware initialization completed.

MBFW_INFO: Powering on OpenSPARC T1
MBFW_INFO: speculative_ifill_data being returned for 0x1000144020
MBFW_INFO: received ifill request for good trap addr: 0x1000122000
MBFW_INFO: Thread 0 reached good trap.
MBFW_INFO: All threads reached good trap.

sims -novcs_build -novera_build -midas_only
-midas_args=’-DFPGA_HW -DCIOP’ test_name.s
Chapter 6 OpenSPARC T1 EDK Project 6-7

2. Run the genmemimage.pl script to create a C source file representation of the
executable.

This program takes the mem.image file created by sims and converts it into a C
structure that can be compiled with the MicroBlaze firmware.

3. Copy the output C file to the firmware source directory.

4. Recompile the ccx-firmware-diag project.

Right-click on the ccx-firmware-diag software project and select “Build Project.”

5. Follow the steps in the previous section to run the diag on the FPGA board.

6.3.3 Running an Entire Regression on the FPGA Board
Scripts are included to allow the user to run an entire regression on the FPGA board.
These scripts automatically copy the C structure representation of each executable to
the ccx-firmware-diag source directory, re-compile the ccx-firmware-diag
code, download the bitstream to the FPGA, and run the test. The results of each test
are recorded, and a summary is generated when the regression is completed. Here is
the procedure to run a complete regression:

1. Run a sims to generate memory image files for a complete regression group

The applicable regressions that may run on a one-thread core are thread1_mini
and thread1_full. For a four-thread core, the applicable regressions are
core1_mini and core1_full.

The sims program will generate memory image files for all the tests included in the
regression. The program is run with options to simply generate the test executable,
without calling the simulator. The sims program will create a directory for each test
which includes the executable for that test.

The above command generates memory image files for all the tests in the
thread1_mini regression, compiled with the proper options to run on the FPGA
board.

% genmemimage.pl -single -f memory-image-file -name test_name

% cp mbfw_diag_memimage.c ccx-firmware-diag/src

% sims -novcs_build -novera_build -group=thread1_mini -copyall
-midas_only -midas_args=’-DFPGA_HW -DCIOP’
6-8 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

2. Run the genmemimage.pl script to generate C structure representations of all the
tests in the regression.

This will create a directory called diags which contains all the output files. There
will be one file for every test in the regression.

3. Edit the file thread1_full.list, thread1_mini.list, core1_mini.list, or
core1_full.list in the EDK project.

These files are lists of tests which will be run as a set. A subset of the tests in any of
the above files may be selected by deleting or commenting out undesired tests in the
file.

Note – Tests which access the SPU are commented out in the core1_mini and
core1_full regressions. If a core is generated with an SPU, then these tests may be
un-commented.

4. Run the regression.

The following command will run the entire regression. It will re-compile the
firmware code with each new memory image, then download the design to the
FPGA, then run the test on the hardware. The test is most easily run from the project
directory.

% $DV_ROOT/edk/scripts/genmemimage.pl -d regression-dir

% xtclsh edk-project-dir/scripts/rundiags.tcl -edk edk-project-
dir -d regression-path -list
edk-project-dir/scripts/core1_mini.list -model core1
-suite core1_mini
Chapter 6 OpenSPARC T1 EDK Project 6-9

6.4 Running a Standalone Program on the
OpenSPARC T1 Core on an Evaluation
Board
A second firmware set-up is provided to allow the running of a stand-alone program
under hypervisor. In this set-up, the OpenSPARC T1 core will boot hypervisor,
which will then branch to a stand-alone program. A very simple “Hello World”
program is included with the project to demonstrate this. This set-up may also be
used to boot an operating system under hypervisor.

The memory map of the system is shown in FIGURE 6-3. One megabyte of the 256 MB
memory is allocated for the MicroBlaze firmware code. Another megabyte is
allocated for the OpenSPARC boot PROM image. The remaining 254MB is split
between memory space for the OpenSPARC T1 core and a RAM disk image that
contains the executable. The firmware translates the OpenSPARC T1 addresses to
board addresses as shown in FIGURE 6-3.

6.4.1 Running the Included “Hello World” Program
An example “Hello World” program is included in the EDK project. The program
may be run under hypervisor by performing the following procedure:

FIGURE 6-3 Allocation of the ML505-V5LX110 256-MB DRAM with the hypervisor
firmware set-up

MicroBlaze
Address

Function

0x5000_0000 MicroBlaze Firmware Code (1MB)

0x5010_0000
—
0x5aef_ffff

OpenSPARC Memory Space: (174 MB)

Addresses: 0x00_0000_0000 — 0x00_0fdf_ffff

0x5af0_0000
—
0x5fef_ffff

RAM Disk Image (80 MB)

0x5ff0 0000 OpenSPARC boot PROM Image: 0xff_f000_0000 (1MB)
6-10 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

1. Locate the proper boot PROM image file.

The prom.bin file contains an image of the boot PROM for the system. This file
contains the reset code, hypervisor code, and the Open Boot PROM (OBP) code.
Four prom.bin files are included in the hardware package. They are located in the
following directory:

The purpose of each file is shown in TABLE 6-1.

TABLE 6-1 OpenSPARC T1 prom.bin files

2. Compile the application program.

A pre-built memory image of the “Hello World” program is included in the EDK
project. However, if it is desired to change the program, make scripts are included to
make it easy to re-compile the example program. The make must be run on a SPARC
machine with SunStudio compilers.

Note – The following commands will require one to download and install
OpenSPARC T2 architecture bundle. You can download this bundle from:

http://www.opensparc.net/opensparc-t2/download

$DV_ROOT/design/sys/edk/os/OpenSolaris/proto

File Purpose

1clt_prom.bin One-core, one-thread system running stand-alone programs
under hypervisor

1c4t_prom.bin One-core, four-thread system running stand-alone programs
under hypervisor

1clt_obp_prom.bin One-core, one-thread system booting OpenSolaris from OBP

1c4t_obp_prom.bin One-core, four-thread system booting OpenSolaris from OBP
Chapter 6 OpenSPARC T1 EDK Project 6-11

http://www.opensparc.net/opensparc-t2/download.html
http://www.opensparc.net/opensparc-t2/download.html
http://www.opensparc.net/opensparc-t2/download
http://www.opensparc.net/opensparc-t2/download.html
http://www.opensparc.net/opensparc-t2/download.html
http://www.opensparc.net/opensparc-t2/download

To compile the code, execute the following commands:

3. Compress the application program

The MicroBlaze firmware assumes that the application program has been
compressed with gzip. This allows for faster downloading to the board, especially
when the application program is quite large. To compress the application programs,
run the following command:

4. Compile the MicroBlaze firmware for standalone programs.

In the XPS user interface right-click on the ccx-firmware project in the
Applications window and select Build.

5. Make sure that the microblaze_0_bootloop software project is set to initialize
BRAMs.

Right-click on the microblaze_0_bootloop project in the Applications window
and select “Mark to initialize BRAMs.”

6. Select the following menu item to update the bitstream.

Device Configuration --> Update Bitstream

7. Download the bitstream to the FPGA.

Device Configuration --> Download Bitstream

8. Start any terminal window, such as Hyperterminal, and connect to the serial port
that is connected to the FPGA board.

9. Start XMD.

Select menu Debug --> Launch XMD or click the button on the XPS GUI.

10. Download the firmware program to the FPGA.

% setenv SUN_STUDIO path-to-SunStudiio-Compilers
% setenv QTOOLS $SAM_ROOT/hypervisor/src/hypervisor-tools

% cd design/sys/edk/examples/src
% make install

% gzip design/sys/edk/examples/bin/hello_world.mem.image
% gzip design/sys/edk/examples/bin/l2_emul_test.mem.image

XMD% dow ccx-firmware/executable.elf
6-12 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

11. Download the binary image of the code for the sample OpenSPARC T1 program
to DRAM.

12. Download the reset and hypervisor code for the OpenSPARC T1 to DRAM.

13. Run the program.

The output of the program will appear in the terminal window. CODE EXAMPLE 6-1
shows the hypervisor output, followed by the output of the “Hello World” program.

XMD% dow -data examples/bin/hello_world.mem.image.gz 0x5af00000

XMD% dow -data os/OpenSolaris/proto/1c4t_prom.bin 0x5ff00000

XMD% run

CODE EXAMPLE 6-1 Output of the “Hello World” program running under hypervisor

MBFW_INFO: Powering on OpenSPARC T1
‘‘Alive and well ...
Strand start set = 0xf
Total physical mem = 0xae00000
Scrubbing the rest of memory
Number of strands = 0x4
membase = 0x0
memsize = 0x1000000
physmem = 0xae00000
 done
returned status 0x0
setup everything else
Setting remaining details
Start heart beat for control domain
Hello World

Guest stand-alone program has terminated.
Entering infinite loop.
Chapter 6 OpenSPARC T1 EDK Project 6-13

6.4.2 Creating your own Stand-alone Program
Other programs can be run under hypervisor using this set-up, but there are some
limitations:

■ The program must be in a binary image format, because ELF format is not
understood by hypervisor.

■ There is no operating system, so system and library calls that are normally
handled by the operating system are not available.

■ Hypervisor does not dynamically link programs, so the program must be
statically linked.

Solaris executable programs are in ELF format. When an executable program is run
on Solaris, a memory image of the process is created from the executable program by
the Solaris run-time loader. Hypervisor doesn’t understand ELF format and it
doesn’t provide a run-time loader for ELF executable programs. The memory image
of the application program is generated off-line by an ELF to memory image utility.
It is this memory image that is preloaded in memory. Hypervisor doesn’t support
shared libraries and the executable program must be statically linked.

A minimalist Operating System for running the stand-alone program is provided by
the library libos.a. All stand-alone programs must be linked with this OS library.
The libos.a library provides functionality to initialize hypervisor interface,
initialize privileged registers, set up a trap table, set up stack for the stand-alone
program and write to console. Spill/Fill trap handlers are provided by the trap table
so that the stand-alone program can execute nested and/or recursive function calls.

6.5 Booting OpenSolaris on an FPGA
Evaluation Board
Booting OpenSolaris is accomplished in the same way that a stand-alone program is
run. The critical OpenSolaris binaries are bundled into a RAM disk image, which is
loaded into memory at the proper location. The firmware code will decompress the
disk image at the start of the simulation, then will start loading the operating
system.

The OpenSolaris boot setup uses the same memory allocation as a stand-alone
program. Refer to FIGURE 6-3 for the memory allocation.
6-14 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

6.5.1 Booting from the provided OpenSolaris RAM
Disk Image
To boot OpenSolaris on an FPGA evaluation board, perform the following
procedure:

1. Locate the proper boot PROM image file.

The boot PROM image files are found in the following location:

The boot PROM image which starts OBP is required for booting an operating
system.

2. Locate the disk image file for OpenSolaris

A RAM disk image of a stripped-down OpenSolaris installation is included in the
hardware package. It is located in the same directory as the boot PROM image files.

3. Compile the MicroBlaze firmware for standalone program.

In the XPS user interface right-click on the ccx-firmware project in the Applications
window and select Build.

4. Make sure that the microblaze_0_bootloop software project is set to initialize
BRAMs.

Right-click on the microblaze_0_bootloop project in the Applications window and
select "Mark to initialize BRAMs." Make sure that no other application is marked
this way

5. Select the following menu item to update the bitstream.

Device Configuration --> Update Bitstream

6. Download the bitstream to the FPGA.

Device Configuration --> Download Bitstream

7. Start any terminal window, such as Hyperterminal, and connect to the serial port
that is connected to the FPGA board.

$DV_ROOT/design/sys/edk/os/OpenSolaris/proto

$DV_ROOT/design/sys/edk/os/OpenSolaris/proto
Chapter 6 OpenSPARC T1 EDK Project 6-15

8. Start XMD.

Select menu Debug --> Launch XMD or click the Launch XMD button on the XPS
GUI.

9. Download the firmware program to the FPGA

In XMD, type the following command

10. Download the RAM disk image of the OpenSolaris installation to DRAM.

11. Download the reset and hypervisor code for the OpenSPARC T1 to DRAM.

12. Start the boot process.

Hypervisor will start up, then branch to Open Boot PROM (OBP). After a few
minutes, OBP will give an OK prompt.

13. Type "boot" at the OBP OK prompt

The OBP program will then start to load OpenSolaris. The boot process will take
anywhere from 40 to 60 minutes, but will eventually give a login prompt. Type
“root” at the login prompt. At this point most of the basic commands may be run.

XMD% dow ccx-firmware/executable.elf

XMD% dow -data os/OpenSolaris/proto/ramdisk.snv-b77-nd.gz
0x5af00000

XMD% dow -data os/OpenSolaris/proto/1c4t_obp_prom.bin 0x5ff00000

XMD% run

ok boot -mverbose
6-16 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

Note – For details on default OpenSolaris boot process and services. Refer to the
Frequently Asked Questions (FAQ) under:

$DV-ROOT/design/sys/edk/os/OpenSolaris/docs/
t1_fpga_Opensolaris_faq.txt

6.5.2 Adding new Programs to the OpenSolaris RAM
Disk Image.
New programs may be added to the RAM disk image. These programs may then be
run under OpenSolaris on the FPGA evaluation board. This is done by mounting the
RAM disk image as a file system, making new directories, copying files to it, then
unmounting it. This process requires root permissions on the machine where this
process is performed. The sequence of commands to do this is shown below:

6.6 Running System-level Simulation with
Modelsim
Environment files are provided to enable the user to run a system-level simulation of
an OpenSPARC T1 diagnostic test using Xilinx Platform Studio (XPS) and the
Modelsim simulator from Mentor Graphics. The simulation environment includes
the following items:

■ A board model which instantiates the FPGA and a DDR2 DRAM DIMM model.

■ Scripts to generate the full FPGA model, compile the firmware programs and set
up the simulation.

% su -
mkdir ram-disk-mount-dir
lofiadm -a ram-disk-file-name /dev/lofi/1
mount /dev/lofi/1 ram-disk-mount-dir
cd ram-disk-mount-dir
cp new-file path
cd /
umount ram-disk-mount-dir
lofiadm -d ram-disk-file-name
Chapter 6 OpenSPARC T1 EDK Project 6-17

To run the system simulation using the default bypass_win test, follow the following
procedure:

1. Copy the EDK project

The full-system simulation requires an edit to the system.mhs file, which would
cause EDK to try to re-build the entire design. This can be prevented by creating a
copy of the project just for simulation.

2. Edit the system.mhs file

The following line must be added to the system.mhs line. This parameter needs to be
added to the configuration of the mpmc block. This parameter must not be set when
generating a bit file for an FPGA.

3. Compile the Xilinx libraries with Modelsim or link the project with already-
compiled libraries.

From the XPS user interface, select the following menu item and follow the
instructions from the wizard that pops up:

Simulation --> Compile Simulation Libraries

4. Ensure that the software project ccx-firmware-diag is set to mark BRAMs.

If it is not, then right-click on the ccx-firmware-diag software project and select
“Mark to Initialize BRAMs.” Make sure that no other program is set to initialize
BRAMs.

5. Change the compile options for the ccx-firmware-diag project to include the
-DSIMULATION option.

The -DSIMULATION compile option suppresses all print statements from the
firmware. This is necessary to avoid simulating the printing of messages, which are
sent by the UART at 9600 baud. To set this option, right-click on the ccx-firmware-
diag software project and select Set Simulation Options. Then click on the Paths and
Options tab. The best options for simulation are shown in the box below:

PARAMETER C_SKIP_SIM_INIT_DELAY = 1

-DREGRESSION_MODE -DSIMULATION
6-18 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

6. Next call a TCL script to generate the system model.

This script generates a simulation model for the entire FPGA, including the
OpenSPARC T1 core, MicroBlaze core, memory controllers, and all the connecting
logic. It also compiles the firmware code. When the firmware code has been
compiled, the script converts the executable into a binary image, and then prepares
initialization images for the DRAM models. Currently the binary image is split into
four pieces because the current simulation configuration has four DRAM model
instances. The script can be modified for a different memory configuration

7. Download a DDR2 SDRAM model and modify it to allow pre-initialization using
the verilog function readmemh.

The system-level simulation requires a DDR2 SDRAM model, which must be
downloaded from a DRAM vendor. The model must allow for pre-initialization so
that the firmware code can be placed in memory at the start of the test. The second
thing to be careful about is the ordering of memory addresses within the model. The
DRAM memory space is broken up into banks, rows and columns, and the code will
be scrambled up if the model partitions its memory differently than the memory
controller does. FIGURE 6-4 shows how the Xilinx mpmc memory controller allocates
address bits between row, column and bank addresses.

A DDR2 SDRAM model from Micron Technology, Inc. was used in preparing the
system simulation. This model did not have the capability for pre-initialization of
the model. In addition, the model provided has a 184-pin DIMM model, not the 200-
pin SODIMM that is on the board. This was handled by using the x16 configuration
of the DIMM model, and adapting the board model to fit it. A script is provided to
hack this memory model to work with the system simulation set-up. To run this
script do the following:

a. Download the Micron DDR2 memory model from the following web site:

http://download.micron.com/downloads/models/verilog/sdram/
ddr2/512Mb_ddr2.zip

% xps -nw -scr boardsim/setupsim.tcl system.xmp

FIGURE 6-4 Memory addressing of the MicroBlaze memory controller

27

RAS[12:0] CAS[9:0]Bank

13 12 0
Byte
Offset

26 25 23
Chapter 6 OpenSPARC T1 EDK Project 6-19

http://download.micron.com/downloads/models/verilog/sdram/ddr2/512Mb_ddr2.zip
http://download.micron.com/downloads/models/verilog/sdram/ddr2/512Mb_ddr2.zip

b. Copy the models to the edk directory and run the patch script.

If different DDR2 SDRAM models are used, the procedure to get them working in
the system simulation will be different.

8. Run the simulation.

Change to the behavioral directory and run the simulation.

The simulation should start. The first 3 ms of the simulation are required for the
MicroBlaze processor to initialize its instruction and data caches. When this is
complete, the OpenSPARC T1 core is started and begins to execute code. A monitor
model prints diagnostic messages to the log every time the OpenSPARC T1 core
fetches instructions from memory. Sample output from the code monitor is shown in
CODE EXAMPLE 6-2.

At the end of the test, the code will branch to one of two locations. The good trap
location indicates a successful test, while the bad trap location indicates a problem.
The PCX monitor will stop the simulation shortly after the good trap or bad trap
location is reached.

% mkdir design/sys/edk/boardsim/dram_model
% cp ddr2.v ddr2_parameters.v design/sys/edk/boardsim/dram_model
% cp ddr2_dimm.v design/sys/edk/boardsim/dram_model
% cd design/sys/edk/boardsim/dram_model
% ../micronddr2_patch

% cd simulation/behavioral
% vsim -do ../../do_sim_mb.do

CODE EXAMPLE 6-2 Output from the PCX Monitor

PCX: 3082235.000 ns : I-fetch from address 0xfff0000020
PCX: 3143915.000 ns : I-fetch from address 0xfff0000024
PCX: 3166855.000 ns : I-fetch from address 0xfff0000028
PCX: 3188215.000 ns : I-fetch from address 0xfff000002c
PCX: 3209655.000 ns : I-fetch from address 0xfff0000030

. . .

PCX: 6191955.000 ns : I-fetch from address 0x1130000140
PCX: 6223335.000 ns : I-fetch from address 0x1130000160
PCX: 6255515.000 ns : I-fetch from address 0x1000122000
PCX: 6255515.000 ns : Reached good trap: Diag Passed
6-20 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

The default diagnostic test that is simulated is bypass_win. Other diagnostic tests
may be simulated by following the same procedure used to run these tests on the
FPGA board. This is discussed in Section 6.3.2 “Running other Diags on the FPGA
Board” on page 6-7.

6.7 EDK Project for the ML411 Evaluation
Board
An EDK project file is provided for the ML410/ML411 evaluation board. This project
file contains the same peripherals as the default project for the ML505-V5LX110T
board, and has the same address map. All the procedures outlined in the previous
sections can be run on the ML411 board with the following changes:

1. The script for downloading the design to the ML411 board is different from the
one used on the ML505 board. Before attempting to download the design to the
FPGA, change to the edk/etc. directory, and rename the ML411 script.

2. When opening the project in EDK, open the system_ml411.xmp file instead of the
system.xmp file.

3. The OpenSPARC T1 netlist supplied in the pcores directory of the EDK project is
too large to route easily on the XC4VFX100 FPGA. Try generating a netlist with
one of the following options:

a. Reduce the number of TLB entries to 8.

b. Use a single-thread core.

4. For an ML410 board with an XC4VFX60 FPGA, only a single-thread core will fit.

% cd design/sys/edk/etc
% mv download.cmd download_bak.cmd
% mv download_ml411.cmd download.cmd
Chapter 6 OpenSPARC T1 EDK Project 6-21

6.8 Running System-level Simulation on
Legacy Projects
Release 1.5 of OpenSPARC T1 featured an EDK project which used the on-board 64
MB DDR DRAM chip instead of the DDR2 DIMM. This section preserves the
instruction for running full-system simulation on the OpenSPARC T1 release 1.5
project.

To run the system simulation using the default bypass_win test, follow the following
procedure:

1. Compile the Xilinx libraries with Modelsim or link the project with already-
compiled libraries.

From the XPS user interface, select the following menu item and follow the
instructions from the wizard that pops up:

Simulation --> Compile Simulation Libraries

2. Ensure that the software project mb-firmware is set to mark BRAMs.

This should be set by default in the project. If it is not then, right-click on the mb-
firmware software project and select “Mark to Initialize BRAMs”.

3. Change the compile options to include the -DSIMULATION option.

The -DSIMULATION compile option suppresses all print statements from the
firmware. This is necessary to avoid simulating the printing of messages, which are
sent by the UART at 9600 baud. To set this option, right-click on the mb-firmware
software project and select Set Simulation Options. Then click on the Paths
and Options tab. The best options for simulation are shown in the box below:

4. Next call a TCL script to generate the system model.

This script generates a simulation model for the entire FPGA, including the
OpenSPARC T1 core, MicroBlaze core, memory controllers, and all the connecting
logic. It also compiles the firmware code.

-DREGRESSION_MODE -DSIMULATION

% xps -nw -scr boardsim/setupsim.tcl system.xmp
6-22 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

5. Download a DDR SDRAM model and modify it to allow pre-initialization using
the verilog function readmemh.

The system-level simulation requires a DDR SDRAM model, which must be
downloaded from a DRAM vendor. The model must allow for pre-initialization so
that the firmware code can be placed in memory at the start of the test. The second
thing to be careful about is the ordering of memory addresses within the model. The
DRAM memory space is broken up into banks, rows and columns, and the code will
be scrambled up if the model partitions its memory differently than the memory
controller does. FIGURE 6-4 shows how the address of the DRAM is split between
row, column and bank addresses.

A DDR SDRAM model from Micron Technology, Inc. was used in preparing the
system simulation. This model did not have the capability for pre-initialization of
the model. A script is provided to hack this memory model to work with the system
simulation set-up. To run this script do the following:

a. Download the Micron DDR memory model from the following web site:

http://download.micron.com/downloads/models/verilog/sdram/ddr/
256meg/256Mb_ddr.zip

b. Copy the models to the edk directory and run the patch script.

If different DDR SDRAM models are used, the procedure to get them working in the
system simulation will be different.

6. Run the simulation.

Change to the behavioral directory and run the simulation.

The simulation should start. The first 3 ms of the simulation are required for the
MicroBlaze processor to initialize its instruction and data caches. When this is
complete, the OpenSPARC T1 core is started and begins to execute code. A monitor

FIGURE 6-5 Memory addressing of the MicroBlaze memory controller

% cp ddr.v ddr_parameters.v design/sys/edk/boardsim
% cd design/sys/edk/boardsim
% ./micronddr_patch

% cd simulation/behavioral
% vsim -do ../../do_sim_mb.do

25

RAS[12:0] CAS[8:0]Bank

13 1012 11 0
Chapter 6 OpenSPARC T1 EDK Project 6-23

http://download.micron.com/downloads/models/verilog/sdram/ddr/256meg/256Mb_ddr.zip

model prints diagnostic messages to the log every time the OpenSPARC T1 core
fetches instructions from memory. Sample output from the code monitor is shown in
CODE EXAMPLE 6-2.

At the end of the test, the code will branch to one of two locations. The good trap
location indicates a successful test, while the bad trap location indicates a problem.
The PCX monitor will stop the simulation shortly after the good trap or bad trap
location is reached.

The default diagnostic test that is simulated is bypass_win. Other diagnostic tests
may be simulated by following the same procedure used to run these tests on the
FPGA board. This is discussed in Section 6.3.2 “Running other Diags on the FPGA
Board” on page 6-7.

CODE EXAMPLE 6-3 Output from the PCX Monitor

PCX: 3082235.000 ns : I-fetch from address 0xfff0000020
PCX: 3143915.000 ns : I-fetch from address 0xfff0000024
PCX: 3166855.000 ns : I-fetch from address 0xfff0000028
PCX: 3188215.000 ns : I-fetch from address 0xfff000002c
PCX: 3209655.000 ns : I-fetch from address 0xfff0000030

. . .

PCX: 6191955.000 ns : I-fetch from address 0x1130000140
PCX: 6223335.000 ns : I-fetch from address 0x1130000160
PCX: 6255515.000 ns : I-fetch from address 0x1000122000
PCX: 6255515.000 ns : Reached good trap: Diag Passed
6-24 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

APPENDIX A

Design and Verification Manual
Pages

This appendix provides the manual pages for commands used for OpenSPARC T1
design and verification.

A.1 sims
NAME

sims - Verilog rtl simulation environment and regression script

SYNOPSIS

sims [args ...]

NOTE: Use "=" instead of "space" to separate args and their options.

where args are:

SIMULATION ENV

-sys=NAME
sys is a pointer to a specific testbench configuration
to be built and run. A config file is used to associate
the sys with a set of default options to build the
testbench and run diagnostics on it. The arguments
in the config file are the same as the arguments passed
on the command line.

-group=NAME
group name identifies a set of diags to run in a
A-1

regression. The presence of this argument indicates
that this is a regession run. The group must be found
in the diaglist. Multiple groups may be specified to be
run within the same regression.

-group=NAME -alias=ALIAS
This combination of options gets the diag run time options
from the diaglist based on the given group and alias.
The group must be found in the diaglist. The alias is
made up of diag_alias:name_tag. Only one group should be
specified when using this command format.

VERILOG COMPILATION RELATED

 -sim_type=vcs/ncv
Defines which simulator to use, vcs or ncverilog, Defaults to vcs.

 -sim_q_command="command"
Defines which job queue manager command to use to launch jobs.
Defaults to /bin/sh and runs simulation jobs on the local machine.

 -ncv_build/-noncv_build
Builds a ncverilog model and the vera testbench. Defaults to off.

 -ncv_build_args=OPTION
ncverilog compile options. Multiple options can be specified using
multiple such arguments.

 -ncv_use_vera/-noncv_use_vera
Compiles in the vera libraries. Defaults to off.

 -vcs_build/-novcs_build
Builds a vcs model and the vera testbench. Defaults to off.

 -vcs_build_args=OPTION
vcs compile options. Multiple options can be specified using
multiple such arguments.

 -vcs_clean/-novcs_clean
Wipes out the model directory and rebuilds it from scratch.
Defaults to off.

 -vcs_use_2state/-novcs_use_2state
Builds a two-state model instead of the default four-state model.
This defaults to off.

 -vcs_use_initreg/-novcs_use_initreg
Initializes all registers to a valid state (1/0).
This feature works with -tg_seed to set the seed of the random
A-2 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

initialization. Defaults to off.

 -vcs_use_fsdb/-novcs_use_fsdb
Uses the debussy fsdb pli and include the dump calls in the
testbench. this defaults to on.

 -vcs_use_vcsd/-novcs_use_vcsd
uses the vcs direct kernel interface to dump out debussy files.
Defaults to on.

 -vcs_use_vera/-novcs_use_vera
Compiles in the vera libraries. If -vcs_use_ntb and -vcs_use_vera are
used, -vcs_use_ntb wins. Defaults to off.

 -vcs_use_ntb/-novcs_use_ntb
Enables the use of NTB when building model (simv) and running simv.
If -vcs_use_ntb and -vcs_use_vera are used, -vcs_use_ntb wins.
Defaults to off.

 -vcs_use_rad/-novcs_use_rad
Uses the +rad option when building a vcs model (simv).
Defaults to off.

 -vcs_use_sdf/-novcs_use_sdf
Builds vcs model (simv) with an sdf file. Defaults to off.

 -vcs_use_cli/-novcs_use_cli
Uses the +cli -line options when building a vcs model (simv).
Defaults to off.

 -flist=FLIST
Full path to flist to be appended together to generate the
final verilog flist. Multiple such arguments may be used and
each flist will be concatenated into the final verilog flist
used to build the model.

 -graft_flist=GRAFTFILE
GRAFTFILE is the full path to a file that lists each verilog
file that will be grafted into the design. The full path to
the verilog files must also be given in the GRAFTFILE.

 -vfile=FILE
Verilog file to be included into the flist

 -config_rtl=DEFINE
Places each such parameter as a ‘define’ in config.v to
configure the model being built properly. This allows
each testbench to select only the rtl code that it needs
from the top-level rtl file.
Appendix A Design and Verification Manual Pages A-3

 -model=NAME
The name of a model to be built. The full path to a model
is $MODEL_DIR/$model/$vcs_rel_name.

 -vcs_rel_name=NAME
Specifies the release of the model to be built. The full path
to a model is $MODEL_DIR/$model/$vcs_rel_name.

VERA COMPILATION RELATED

 VERA and NTB share all of the vera options except a few. See NTB RELATED.

 -vera_build/-novera_build
 Builds the vera/ntb testbench. Defaults to on.

 -vera_clean/-novera_clean
 Performs a make clean on the vera/ntb testbench before building
 the model. Defaults to off.

 -vera_build_args=OPTION
 Vera testbench compile time options. Multiple options can be
 specified using multiple such commands. These are passed as
 arguments to the gmake call when building the vera testbench.

 -vera_diag_args=OPTION
 Vera/ntb diag compile-time options.
 Multiple options can be specified using multiple such arguments.

 -vera_dummy_diag=NAME
 Provides a dummy vera diag name that will be
 overridden if a vera diag is specified, else used for vera
 diag compilation.

-vera_pal_diag_args=OPTION
 Vera/ntb pal diag expansion options.
 (i.e., "pal OPTIONS -o diag.vr diag.vrpal")
 Multiple options can be specified using multiple such arguments.

 -vera_proj_args=OPTION
 Vera proj file-generation options. Multiple options can be
 specified using multiple such arguments.

 -vera_vcon_file=ARG
 Name of the vera vcon file that is used when running the simulation.

 -vera_cov_obj=OBJ
 This argument is passed to the vera Makefile as a OBJ=1 and to
 vera as -DOBJ to enable a given vera coverage object. Multiple
A-4 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

 such arguments can be specified for multiple coverage objects.

NTB RELATED

 NTB and VERA share all of the vera options except these:

-vcs_use_ntb/-novcs_use_ntb
Enables the use of NTB when building model (simv).
If -vcs_use_ntb and -vcs_use_vera are used, -vcs_use_ntb wins.
Defaults to off.

-ntb_lib/-nontb_lib
Enables the NTB two-part compile where the Vera/NTB files get
compiled first into a libtb.so file which is dynamically
loaded by vcs at runtime. The libtb.so file is built by
the Vera Makefile, not sims. Use the Makefile to affect the
build. If not using -ntb_lib, sims will build VCS and NTB
together in one pass (use Makefile to affect that build as
well). Defaults to off.

VERILOG RUNTIME RELATED

 -vera_run/-novera_run
 Runs the vcs simulation and loads in the vera proj file
 or the ntb libtb.so file. Defaults to on.

 -vcd/-novcd
Signals the bench to dump in VCD format.

 -vcdfile=filename
 The name of the vcd dump file. If the file name starts with
 a "/", that is the file dumped to; otherwise, the actual file is
 created under $tmp_dir/$vcdfile and copied back to the current
 directory when the simulation ends. Use "-vcdfile=‘pwd‘/filename"
 to force the file to be written in the current directory directly
 (not efficient since dumping is done over network instead of to
 a local disk).

 -vcs_run/-novcs_run
 Runs the vcs simulation (simv). Defaults to off.

 -vcs_run_args=OPTION
 vcs (simv) runtime options. Multiple options can be specified
 using multiple such arguments.

 -vcs_finish=TIMESTAMP
 Forces vcs to finish and exit at the specified timestamp.
Appendix A Design and Verification Manual Pages A-5

-fast_boot/-nofast_boot
 Speeds up booting when using the ciop model. Passes the
 +fast_boot switch to the simv run and the -sas_run_args=-DFAST_BOOT
 and -midas_args=-DFAST_BOOT to sas and midas. Also sends
 -DFAST_BOOT to the diaglist and config file preprocessors.

 -debussy/-nodebussy
 Enables debussy dump. This must be implemented in the testbench
 to work properly. Defaults to off.

 -start_dump=START
 Starts dumping out a waveform after START number of units.

 -stop_dump=STOP
 Stops dumping out a waveform after STOP number of units.

 -fsdb2vcd
Runs fsdb2vcd after the simulation has completed to generate a vcd file.

 -fsdbfile=filename
 The name of the debussy dump file.
 If the file name starts with a "/", that is the file dumped to.
 Otherwise, the actual file is created under $tmp_dir/$fsdbfile
 and copied back to the current directory when the simulation ends.
 Use "-fsdbfile=‘pwd‘/filename" to force the file to be
 written in the current directory directly (not efficient since
 dumping is done over network instead of to a local disk).

 -fsdbDumplimit=SIZE_IN_MB
 Max size of Debussy dump file. Minimum value is 32MB.
 Latest values of signal values making up that size is saved.

 -fsdb_glitch
 Turns on glitch and sequence dumping in fsdb file. This will collect

 glitches and sequence of events within time in the fsdb waveform.
 beware that this will cause the fsdb file size to grow significantly.

This option effectively does this:
 setenv FSDB_ENV_DUMP_SEQ_NUM 1
 setenv FSDB_ENV_MAX_GLITCH_NUM 0

Defaults to off.

 -rerun
 Reruns the simulation from an existing regression run directory.

 -post_process_cmd=COMMAND
 Post-processing command to be run after vcs (simv) run completes.

 -pre_process_cmd=COMMAND
A-6 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

 Pre-processing command to be run before vcs (simv) run starts.

 -use_denalirc=FILE
 Uses FILE as the .denalirc in the run area. Default copies
 $env_base/.denalirc

ZEROIN RELATED

 -zeroIn_checklist
 Runs 0in checklist

 -zeroIn_build
 Builds 0In pli for simulation into vcs model.

 -zeroInSearch_build
 Builds 0in search pli for simulation into vcs model.

 -zeroIn_build_args
 Additional arguments to be passed to the 0in command.

 -zeroIn_dbg_args
 Additional debug arguments to be passed to the 0in shell.

SAS RELATED

 -sas/-nosas
Runs architecture-simulator. If vcs_run option is OFF,
simulation is sas-only. If vcs_run option is ON, sas
runs in lock-step with rtl. Defaults to off.

 -sas_run_args=DARGS
 Defines arguments for sas.

MIDAS RELATED

midas is the diag assembler.

 -midas_args=DARGS
 Arguments for midas. midas creates memory image and user-event
 files from the assembly diag.

 -midas_only
 Compiles the diag using midas and exit without running it.

 -midas_use_tgseed
 Adds -DTG_SEED=tg_seed to midas command line. Use -tg_seed to
 set the value passed to midas or use a random value from /dev/random.

SJM RELATED
Appendix A Design and Verification Manual Pages A-7

sjm is the J-Bus bus functional model

 -sjm_args
Arguments to be passed in to sjm_tstgen.pl for generation of an sjm
random diagnostic.

 -sjm/-nosjm
Generates a random sjm diagnostic using the -tg_seed if provided.
Defaults to off.

 -tg_seed
Random generator seed for sjm random test generators.
Also the value passed to +initreg+ to randomly initialize registers
when -vcs_use_initreg is used.

VCS COVERMETER RELATED

 -vcs_use_cm/-novcs_use_cmd
 Passes in the -cm switch to vcs at build time and simv at runtime
 Defaults to off.

 -vcs_cm_args=ARGS
 Argument to be given to the -cm switch.

 -vcs_cm_cond=ARGS
 Argument to be given to the -cm_cond switch.

 -vcs_cm_config=ARGS
 Argument to be given to the -cm_hier switch.

 -vcs_cm_fsmcfg=ARGS
 Argument to be given to the -cm_fsmcfg switch.
 Specifies an FSM coverage configuration file.

 -vcs_cm_name=ARGS
 Argument to be given to the -cm_name switch. defaults to cm_data.

MISC

 -nobuild
 Master switch to disable all building options.

 There is no such thing as -build to enable all build options.

 -copyall/-nocopyall
 Copies back all files to launch directory after passing
 regression run. Normally, only failing runs cause a
 copy back of files. Defaults to off.
A-8 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

 -copydump/-nocopydump
Copies back dump file to launch directory after passing
regression run. Normally, only failing runs cause a copy
back of non-log files. The file copied back is sim.fsdb,
or sim.vcd if -fsdb2vcd option is set.
Default is off.

 -tarcopy/-notarcopy
Copies back files using ’tar’. This only works in copyall or
in the case the simulations ’fails’ (per sims’ determination).
Default is to use ’cp’.

 -diag_pl_args=ARGS
If the assembly diag has a Perl portion at the end, it
is put into diag.pl and is run as a Perl script.
This allows you to give arguments to that Perl script.
The arguments accumulate, if the option is used multiple
times.

 -pal_use_tgseed
 Sends ’-seed=<tg_seed_value>’ to pal diags. Adds
 -pal_diag_args=-seed=tg_seed to midas command line, and
 -seed=tg_seed to pal options (vrpal diags). Use -tg_seed to set
 the value passed to midas or use a random value from /dev/random.

 -parallel
When specifying multiple groups for regressions, this switch will
submit each group to Job Q manager to be executed as a separate regression.
This has the effect of speeding up regression submissions.
NOTE: This switch must not be used with -injobq

 -reg_count=COUNT
Runs the specified group multiple times in regression mode. This
is useful when we want to run the same diag multiple times using
a different random generator seed each time or some such.

 -regress_id=ID
Specifies the name of the regression.

 -report
Used to produce a report of a an old or running
regression. With -group options, sims produces the report
after the regression run. Report for the previous
regression run can be produced using -regress_id=ID
option along with this option.

-finish_mask=MASK
 Masks for vcs simulation termination. Simulation terminates
 when it hits ’good_trap’ or ’bad_trap’. For multithread
Appendix A Design and Verification Manual Pages A-9

 simulation, simulation terminates when any of the thread
 hits bad_trap, or all the threads specified by the finish_mask
 hits the good_trap.
 example: -finish_mask=0xe
 Simulation will be terminated by good_trap, if threads 1, 2 and
 3 hit the good_trap.

 -stub_mask=MASK
 Mask for vcs simulation termination. Simulation ends when the
 stub driving the relevant bit in the mask is asserted. This
 is a hexadecimal value similar to -finish_mask.

 -wait_cycle_to_kill=VAL
 Passes a +wait_cycle_to_kill to the simv run. a testbench
 may chose to implement this plusarg to delay killing a
 simulation by a number of clock cycles to allow collection
 of some more data before exiting (e.g. waveform).

 -rtl_timeout
 Passes a +TIMEOUT to the simv run.

 Sets the number of clock cycles after all threads have become
 inactive for the diag to exit with an error. If all threads hit
 good trap on their own the diag exits right away. If any of the
 threads is inactive without hitting good trap/bad trap the
 rtl_timeout will be reached and the diag fails. Defaults to 1000.
 This is only implemented in the cmp based testbenches.

 -max_cycle
 Passes a +max_cycle to the simv run.

 Sets the maximum number of clock cycle that the diag will take
 to complete. Defaults to 30000. If max_cycle is hit the diag
 exits with a failure. Not all testbenches implement this
 feature.

 -norun_diag_pl
 Does not run diag.pl (if it exists) after simv (vcs) run.
 Use this option if, for some reason, you want to run an
 existing assembly diag without the Perl part that is in
 the original diag.

 -nosaslog
Turns off redirection of sas stdout to the sas.log file.
Use this option when doing interactive runs with sas.

 -nosimslog
Turns off redirection of stdout and stderr to the sims.log file.
Use this option to get to the cli prompt when using vcs or to
see a truncated sim.log file that exited with an error. This
must be used if you want control-c to work while vcs is running.
A-10 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

 -nogzip
Turns off compression of log files before they are copied over
during regressions.

 -version
Print version number.

 -help
Prints this man page.

IT SYSTEM RELATED

 -use_iver=FILE
Full path to iver file for frozen tools.

 -use_sims_iver
For reruns of regression tests only, use sims.iver to choose
TRE tool versions saved during original regression run.

 -dv_root=PATH
Absolute path to design root directory. This overrides $DV_ROOT.

 -model_dir=PATH
Absolute path to model root directory. This overrides $MODEL_DIR.

 -tmp_dir=PATH
Path where temporary files such as debussy dumps will be created.

 -sims_config=FILE
Full path to sims config file.

 -env_base=PATH
Specifies the root directory for the bench environment.
It is typically defined in the bench config file. It has no
default.

 -config_cpp_args=OPTION
Allows the user to provide CPP arguments (defines/undefines)
that will be used when the testbench configuration file is
processed through cpp. Multiple options are concatenated
together.

 -result_dir=PATH
Allows the regression run to be launched from a different
directory than the one sims was launced from. Defaults to
$ENV{PWD}.

 -diaglist=FILE
Appendix A Design and Verification Manual Pages A-11

Full path to diaglist file.

 -diaglist_cpp_args=OPTION
Allows the user to provide CPP arguments (defines/undefines)
that will be used when the diaglist file is processed through
cpp. Multiple options are concatenated together.

-asm_diag_name=NAME
 -tpt_diag_name=NAME
 -tap_diag_name=NAME
 -vera_diag_name=NAME
 -vera_config_name=NAME
 -efuse_image_name=NAME
 -image_diag_name=NAME
 -sjm_diag_name=NAME
 -pci_diag_name=NAME
 Name of the diagnostic to be run.

 -asm_diag_root=PATH
 -tpt_diag_root=PATH
 -tap_diag_root=PATH
 -vera_diag_root=PATH
 -vera_config_root=PATH
 -efuse_image_root=PATH
 -image_diag_root=PATH
 -sjm_diag_root=PATH
 -pci_diag_root=PATH

Absolute path to diag root directory. sims will perform a find
from here to find the specified type of diag. If more than one
instance of the diag name is found under root, sims exits with
an error. this option can be specified multiple times to allow
multiple roots to be searched for the diag.

 -asm_diag_path=PATH
 -tpt_diag_path=PATH
 -tap_diag_path=PATH
 -vera_diag_path=PATH
 -vera_config_path=PATH
 -efuse_image_path=PATH
 -image_diag_path=PATH
 -sjm_diag_path=PATH
 -pci_diag_path=PATH

Absolute path to diag directory. sims expects the specified
diag to be in this directory. The last value of this option
is the one used as the path.

ENV VARIABLES

sims sets or uses the following ENV variables that may be used with pre/post
A-12 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

processing scripts, and other internal tools:

PLUSARGS

+args are not implemented in sims. They are passed directly to simulator at
compile time and at runtime.

DESCRIPTION

sims is the frontend for vcs to run single simulations and regressions.

How To Build Models

Build a vcs model using $DV_ROOT as design root:

 sims -sys=cmp -vcs_build

Build a ncverilog model using $DV_ROOT as design root:

 sims -sys=cmp -ncv_build

Build the vera testbench only using $DV_ROOT as design root:

 sims -sys=cmp -vera_build

Build a model from any design root:

 sims -sys=cmp -vcs_build -dv_root=/home/regress/2002_06_03

TABLE A-1 Environment Variables

Environment Variable Description

SIMS_LAUNCH_DIR Path to launch directory where sims is running the job

ASM_DIAG_NAME Contains the assembly diag name

VERA_LIBDIR Dir where Vera files are compiled

DV_ROOT Overwrite by -dv_root if specified

MODEL_DIR Overwrite by -model_dir if specified

TRE_SEARCH Based on -use_iver, -use_sims_iver

DENALI User defined

VCS_HOME User defined

VERA_HOME User defined

NCV_HOME User defined
Appendix A Design and Verification Manual Pages A-13

Build a graft model from any design root:

 sims -sys=cmp -vcs_build -dv_root=/model/2002_06_03 \
-graft_flist=/regress/graftfile

Build a model and re-build the vera:

 sims -sys=cmp -vcs_build -vera_clean

Build a model and turn off incremental compile:

 sims -sys=cmp -vcs_build -vcs_clean

Build a model with a given name:

 sims -sys=cmp -vcs_build -vcs_rel_name=mymodel

How to Run Models

Run a diag with default model:

 sims -sys=cmp -vcs_run diag.s

Run a diag with a specified model:

 sims -sys=cmp -vcs_rel_name=mymodel -vcs_run diag.s

Run a diag with debussy dump with default model:

 sims -sys=cmp -debussy +dump=cmp_top:0 -vcs_run diag.s

=head2 Run regressions

Run a regression using $DV_ROOT as design root:

 sims -group=mini

Run a regression using $DV_ROOT as design root and specify the diaglist:

 sims -group=mini -diaglist=/home/user/my_dialist

Run a regression using any design root:

 sims -group=mini -dv_root=/afara/design/regress/model/2002_06_03
A-14 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

A.2 midas
NAME
 midas - assembles diags (Midas Is a Diag Assembler)

SYNOPSIS
 midas [options] <diag_name>

DESCRIPTION
 This program builds assembly diags. It is substantially
 more involved than simply assembling the diag because it
 also has to link the diag, program the MMU, and generate
 several output files.

 The diag specified on the command line will be built.
 Pretty much everything else is configurable.

Options

 The following are the options you need to get started:

 -h Display man page.

 -verbose [level] / -noverbose (abbreviated -v / -nov)
 Sets verbosity level (default=2). -noverbose (or -nov)
 is a synonym for -verbose 0, which means to generate no
 output in the absence of errors. The highest level of
 verbosity currently defined is 3.

 -version
 Returns version information and exit.

 -format
 Displays help on the diag format and exit.

 -config <file>
 Uses this file as the config file instead of the one that
 is distributed with Midas.

 -project <project>
 Uses this project for project-specific configuration.
 Default is the environment variable $PROJECT. Legal
 value is OpenSPARCT1.
Appendix A Design and Verification Manual Pages A-15

Common Options

 The following are the commonly used options:

 -diag_root <path>
 Uses the specified path as a base for finding standard
 include files. Default is $DV_ROOT.

 -build_dir <path>
 Path (absolute or relative to where command is invoked)

to directory where temporary files are generated and the
 build is done. Default is ’./build’.

 -dest_dir <path>
 Path (absolute or relative to where command is invoked)
 of where to store output files. Default is ’.’.

 -find_root <dir>
 Interprets the diag on the command line as the name of a
 diag to search for. It does a breadth-first search
 under the specified directory. The default behavior is
 not to do any search, but to assume that the specified
 diag is a full or relative path to the file.

 -find
 This is a shortcut for "-find_root
 <diag_root>/verif/diag".

 -mmu <mmu_type>
 Generates programming for the specified MMU. Recognized
 options are "ultra2", "OpenSPARCT1".

 -ttefmt <tte_format>
 Specifies TTE format for those MMUs that require it.
 May be "sun4u" or "sun4v". Default is project specific:
 "sun4v" for OpenSPARC T1.

 -tsbtagfmt <tsbtagfmt>
 Specifies the format of the TSB tag. Legal values are
 ’tagaccess’ and ’tagtarget’. Default is
 project-specific: ’tagaccess’ OpenSPARC T1.

 -force_build or -f
 Builds the diag, even if it looks like it has the same
 input as before and the same args as before.

 -copy_products / -nocopy_products
 By default, the product files generated in the build
 directory are hard linked to the destination directory.
A-16 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

 The reason they are hard linked and not copied is for
 speed. If the hard link fails, it will fall back to a
 copy in case the directories are on different physical
 disks. If -copy_products is given, however, it will
 always do a copy, not a hard link. Default is
 project specific: -nocopy_products for OpenSPARC T1.

 -E Stops after the preprocessing stage.

 -cleanup / -nocleanup
If -cleanup is enabled, then after a successful build,

 the build directory is erased if and only if the build
 directory was created by this invocation of midas.
 Default is project specific: -cleanup for OpenSPARC T1.

 -force_cleanup / -noforce_cleanup
 If -cleanup is enabled, but this invocation of midas did
 not create the build directory, -force_cleanup will
 remove the build directory anyway. Default is
 project specific: -noforce_cleanup for OpenSPARC T1.

 -D<symbol> or -D<symbol>=<value>
 Adds a define to the preprocessing line. Option may be
 repeated.

 -stddef / -nostddef
 Includes standard preprocessor definitions on
 command line. -nostddef disables these. Default is
 -stddef, but no standard symbols are currently defined.

 -I<dir>
 Adds a directory to the include path used by cpp and m4.
 Path should be absolute or relative to the directory
 where midas was invoked. Option may be repeated.

 -stdinc / -nostdinc
 With -stdinc, the standard include paths are used during
 preprocessing (both cpp and m4). -nostdinc disables
 these. The standard include directories are the directory

where midas was invoked,the build directory and
 <diag_root>/verif/diag/assembly/include (keep in mind
 that <diag_root> defaults to $DV_ROOT). Default is -stdinc.

 -include_build / -noinclude_build
 This option is only meaningful with -nostdinc. If
 standard includes are switched off, -include_build will
 add the build directory back to the include path.
 Default is -noinclude_build.
Appendix A Design and Verification Manual Pages A-17

 -include_start / -noinclude_start
 This option is only meaningful with -nostdinc. If
 standard includes are switched off, -include_start will
 add the start directory (the directory where midas was
 invoked) back to the include path. Default is
 -noinclude_start.

 -L<dir>
 Adds a directory to the search path when looking for
 object files in a MIDAS_OBJ directive. Option may be
 repeated.

 -C<dir>
 Adds a directory to the search path when looking for C
 source files in a MIDAS_CC directive. Option may be
 repeated.

 -pal_diag_args <args>
 If the diag is run through pal, gives these arguments to
 the pal diag. Option may be repeated. Note that these
 arguments are given to the diag, not pal itself. For
 instance, "midas -pal_args -abc mydiag.pal
 -pal_diag_args def -pal_diag_args ghi" will run the pal
 command sline "pal -abc mydiag.pal def ghi".

 -build_threads <num_threads>
 When doing work that can be done in parallel (such as
 assembling a bunch of files), use <num_threads> to do
 it. Default is project specific: 3 for OpenSPARC T1.

 -print_errors / -noprint_errors
 If -noprint_errors is defined, then generation of error
 messages is turned off. When used with -verbose 0,
 midas is completly silent. This is probably only useful
 for the test harness (which is why the switch is there).

 -copy_products / -nocopy_products
 If this is set, then copies files from the build directory
 to the starting directory. With -nocopy_products, the
 files are hard linked instead. If it tries to create a
 hard link and fails, it will fall back to a copy.
 Default is -nocopy_products.

 -compress_image / -nocompress_image
 If -compress_image is enabled (as it is by default),
 then allows compressed mem.images to be generated. By
 default, all MMU-generated blocks are compressed when
 written to mem.image, meaning that instead of
 initializing unused sections to zero, they are simply
A-18 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

 uninitialized. The -nocompress_image is equivalent to
 explicitly putting a ’compressimage=0’ in all
 attr_text/attr_data blocks.

 -env_zero / -noenv_zero
 When compressing blocks, if -env_zero is enabled the
 blocks will contain ’// zero_image’ directives to the
 environment. These directives are supported only by
 OpenSPARC T1, and they are used to backdoor initialize large
 tracts of memory to zero. If -noenv_zero is used, then
 compression will simply leave the data uninitialized.

 -default_radix <decimal|hex>
 Radix to assume for all parameters that do not
 explicitly start with ’0x’. Default is ’decimal’.

 -gen_all_tsbs / -nogen_all_tsbs
 If -gen_all_tsbs is given, then all TSBs that are
 defined are written to the memory image. If
 -nogen_all_tsbs, then generate only the TSBs that are
 used. Default is project specific: -nogen_all_tsbs for
 OpenSPARC T1.

 -allow_tsb_conflicts / -noallow_tsb_conflicts
 If -allow_tsb_conflicts is enabled, then it is legal to
 have multiple virtual addresses map to the same entry in a
 TSB. A linked list will be created to hold all entries.
 With -noallow_tsb_conflicts (which is the default for
 N1), collisions in the TSB can only happen with the same
 VA but different contexts. Default is project specific.

 -allow_empty_sections / -noallow_empty_sections
 If TEXT_VA is specified, then at least one attr_text
 block for the section has to be specified, and the same
 is true for DATA_VA and attr_data blocks. If
 -allow_empty_sections is specified, then midas will
 allow you to specify a TEXT_VA(DATA_VA) for the section,
 even if the section has no attr_text(attr_data) blocks.
 Of course, any text(data) in such a section will be
 ignored. Default is project specific:
 -noallow_empty_sections for OpenSPARC T1.

 -allow_duplicate_tags / -noallow_duplicate_tags
 When adding to a TSB link list, it is an error to add
 the same tag twice. -allow_duplicate_tags suspends the
 error check. Default is project specific:
 -noallow_duplicate_tags for OpenSPARC T1.
Appendix A Design and Verification Manual Pages A-19

 -allow_illegal_page_sizes / -noallow_illegal_page_sizes
 If -allow_illegal_page_sizes, then tte_size attributes
 are not checked for valid values, though they are still
 checked against the width of the field. For instance,
 in the OpenSPARC T1 MMU, there are 3 page bits, so values can
 be specified 0-7. However, the only legal values for
 OpenSPARC T1 are 0, 1, 3, and 5, and unless
 -allow_illegal_page_sizes is in effect, setting page
 bits of 2, 4, 6, or 7 will cause an error. The default
 is project specific: -noallow_illegal_page_sizes for
 OpenSPARC T1.

 -allow_misalgined_tsb_base / -noallow_misaligned_tsb_base
 If -allow_misaligned_tsb_base is set, then a TSB base
 address need not be aligned with the TSB size.

If an unalgined address is specified
 as the base and -allow_misaligned_tsb_base is specified,
 then midas will forcibly align the address. Default
 should be -noallow_misaligned_tsb_base for all projects.

-errcode <error_code>
 Prints a one-line description for the midas error code,
 then exits with status 0.

 Configuring Commands

 midas runs several commands in the course of its operation.
 Several of these can be configured. The configurable
 commands are: pal, cpp, m4, gcc, as, and ld. Each
 configurable command has 3 associated options:

 -std_<command>_args / -nostd_<command>_args
 When -std_<command>_args is enabled, the standard set of
 arguments for <command> is used. Default is
 -std_<command>_args

 -<command>_args <args>
 Adds <args> to the argument list for the specified
 <command>.

 -<command>_cmd <custom_command>
 Uses <custom_command> to run the specifed <command>
 instead of the standard version.

 Example

 For instance, to add -foo to the link line, use my_cpp to
 preprocess, and not use any standard assembler options, use:
A-20 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

 midas -ld_args -foo -cpp_cmd my_cpp -nostd_as_args mydiag.s

 Configuring Filenames

 There are several generated files, and they all have default
 names. You can configure the names of many of the files
 with the following option:

 -file <tag>=<name>
 Causes midas to name the file whose tag is <tag> to be
 named <name> instead of the default. <name> is treated
 as the name of a file in the build directory.

 Valid tags for the -file option are:

 src Local version of the original source code for the diag.
 Default is diag.src.

 s Assembly portion of diag before any preprocessing.
 Default is diag.s.

 pl Perl portion of the diag. Default is diag.pl.

 cpp Output of the C preprocessor. Default is diag.cpp.

 m4 Output of the m4 preprocessor. Default is diag.m4.

 ldscr
 Linker script. Default is diag.ls_scr.

 exe Linked executable. Default is diag*.exe where * is
 application name.

 image
 Verilog memory image. Default is mem.image.

 events
 Events file Default is diag.ev.

 symtab
 Symbol table. Default is symbol.tbl.

 goldfinger
 Specification to goldfinger on how to create memory
 image. Default is diag.goldfinger.

 directives
 File to contain midas directives after section
 splitting. Default is diag.midas.
Appendix A Design and Verification Manual Pages A-21

 cmdfile
 File to stash the midas command-line. Default is .midas_args.

 oldcmdfile
 File to move old command-line options. Default is .midas_args.old.

 oldm4
 File to stash m4 output of previous run. Default is

.midas.diag.m4.old.

 Running Specific Phases

 The build process is broken into phases: setup, preprocess,
 sectioning, assemble, link, postprocess, copydest, cleanup.
 The default behavior is to run all phases. You can,
 however, restrict operation to a selected set of phases.

 -start_phase <phase_name>
 Starts with the named phase and run all subsequent phases.

 -phase <phase_name>
 Runs the specified phase. If any -phase or -start_phase
 option exists, then by default all phases are off
 (except for the ones that -phase and -start_phase switch
 on). You can have multiple -phase options.

 -E This option (mentioned above, which runs the
 preprocessor only) is just a shortcut for "-phase setup
 -phase preprocess").

 Keep in mind that running selected phases is caveat emptor.
 There are cases where phases expect data or files from
 previous phases.

 Errors

 When midas is unable to run correctly it will exit with one
 of the following error codes.

 M_NOERROR (#0): No error.
 M_MISC (#1): Miscellaneous error
 M_CODE (#2): Error in midas code.
 M_DIR (#3): Directory error.
 M_FILE (#4): File error.
 M_CMDFAIL (#5): Command failed.
 M_SECSYNTAX (#6): Error in section syntax.
 M_ATTRSYNTAX (#7): Error in attr syntax.
 M_MISSINGPARAM (#8): Missing parameter.
A-22 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

 M_ILLEGALPARAM (#9): Illegal parameter.
 M_OUTOFRANGE (#10): Out of range.
 M_NOTNUM (#11): Not a number.
 M_VACOLLIDE (#12): VA collision.
 M_PACOLLIDE (#13): PA collision.
 M_DIRECTIVESYNTAX (#14): Directive syntax error.
 M_GENFAIL (#15): File generation failed.
 M_ASMFAIL (#16): Assembler failed.
 M_CCFAIL (#17): C compiler failed.
 M_LINKFAIL (#18): Linker failed.
 M_CPPFAIL (#19): CPP failed.
 M_M4FAIL (#20): M4 preprocessor failed.
 M_BADCONFIG (#21): Bad configuration.
 M_EVENTERR (#22): Event parsing error.
 M_ARGERR (#23): Argument error.
 M_NOSEC (#24): Undefined section.
 M_BADTSB (#25): Bad TSB.
 M_BADALIGN (#26): Bad Alignment.
 M_EMPTYSECTION (#27): Empty section.
 M_TSBSYNTAX (#28): Error in tsb syntax.
 M_APPSYNTAX (#29): Error in app syntax.
 M_MEMORY (#30): Memory error.
 M_GOLDFINGERPARSE (#31): Goldfinger parse error.
 M_GOLDFINGERARG (#32): Goldfinger arg error.
 M_ELF (#33): ELF error.
 M_BADLABEL (#34): Bad label.
 M_GOLDFINGERMISC (#35): Uncategorized goldfinger error.
 M_GOLDFINGERVERSION (#36): Bad version of goldfinger
 M_DUPLICATETAG (#37): Duplicate tags in TSB
 M_BLOCKSYNTAX (#38): Error defining goldfinger BLOCK
Appendix A Design and Verification Manual Pages A-23

A.3 goldfinger
NAME
 goldfinger - Midas’ partner for building diags

SYNOPSIS
 goldfinger [options]

DESCRIPTION

 Goldfinger is midas’ partner. Goldfinger is implemented in
 C and uses libelf for efficient

 analysis of ELF files. In the new regime, midas builds a
 linked executable and a command file (i.e., a .goldfinger
 file), which are then processed by goldfinger. The final
 output files are produced by goldfinger. It is the
 intention that end users never invoke goldfinger directly,
 but only through midas. Nevertheless, users may find a case
 whey they need to build a diag in a very non-standard way,
 and goldfinger provides a lower-level interface.

 Goldfinger is typically used twice in a normal build
 process:

 Section splitting
 "goldfinger -splitsec <diag_file>" is used to split a
 diag into multiple assembly files, one per section. All
 embedded midas directives are written to a separate
 file.

 Extracting from executable file
 After the executable file is linked, midas needs to
 extract a memory image and a symbol table. The options
 "goldfinger -in <cmd_file> -genimage -gentsbs
 -gensymtab" will generate these files based on the
 directives in <cmd_file>.

 Options

 The options recognized by goldfinger are:

 -h Show usage.

 -version
 Print version number and exit.
A-24 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

 -v or -verbose
 Make it more chatty.

 -d or -debug
 Make it very chatty.

 -silent
 Say nothing unless there’s an error.

 -n or -nooutput
 Do not write any output files (for debugging only).

 -noprint_errors
 Don’t print any error messages (usually used with
 -silent). You can still tell there was an error by the
 exit status.

 -prefix <string>
 Prepend <string> to each line of normal output.

 -destdir <dir>
 All created files go in this directory (or a relative
 path from it). The directory specified can be absolute
 or relative from where goldfinger is invoked.

 -srcdir <dir>
 If any of the command files specify filenames with
 relative paths, start searching from this directory.
 Note that the command files themselves are always
 specified absolutely or relative to where goldfinger is
 run.

 Section splitting options

 The following functions are meaningful when splitting
 sections.

 -splitsec <file>
 Splits the specified file into sections and writes an
 assembly file for each. Writes all midas directives
 into a file that must be specified by the -midasfile
 option.

 -midasfile <file>
 When doing section splitting, write all midas directives
 into this file.
Appendix A Design and Verification Manual Pages A-25

 Linked executable options

 The following options are meaningful when analyzing linked
 executables.

 -in <command_file>
 Analyzes linked executables based in the directives in
 <command_file> (also referred to as a .goldfinger file).

 -genimage
 Generates a memory image based on the linked executable.
 Goes to stdout unless -imagefile is also specified.

 -imagefile <file>
 If -genimage is also specified, then redirects output here
 instead of stdout.

 -gensymtab
 Generates a symbol table from the linked executable.
 Goes to stdout unless -symtabfile is also specified.

 -symtabfile <file>
 If -gensymtab is also specified, then writes the symbol
 table here instead of stdout.

 -gentsbs
 Generates TSB programming based on the object files. It
 is in mem.image format. It will go to stdout unless
 -imagefile is also specified.

 -allow_tsb_conflicts
 If -tsbgen is also provided, then doesn’t cause a fatal
 error if there is a collision in the TSB. Adds to the
 TSB_LINK area instead.

 -allow_duplicate_tags
 If -allow_tsb_conflicts is enabled, you are adding
 elements to a TSB_LINK area, and you try to add the same
 tag more than once, it is normally an error. This
 option disables the error check. This option is not
 recommended, since the duplicate tag defines a
 translation that can never be used.

 -nocompress
 Does not do compression of mem.image sections for any
 sections, regardless of what is in the imagespec file.

 -noenvzero
 Does not use the backdoor environment initialization to
A-26 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

 zero during image compression.

COMMAND FILE SYNTAX

 In the command file (i.e., the .goldfinger file), all
 keywords can be either all uppercase or all lowercase, but
 not mixed. All numbers are 64-bit numbers. They can be
 written as decimal (first digit is 1-9), octal (first digit
 is 0), or hex (begins with 0x). A boolean option can be set
 to a nonzero number (true) or 0 (false). If a boolean
 option is named, but not assigned to (e.g, "COMPRESS;"
 instead of "COMPRESS = 1;"), then it is assigned to 1.

 The attrs file is a list of four types of objects at the top
 level. They can appear on any order:

 PA_SIZE = num;

 APP <name>
 app_lines
 END APP

 TSB <name>
 tsb_lines
 END TSB

 TSB_LINK <name>
 tsb_link_lines
 END TSB_LINK

 The PA_SIZE field is the only top-level attribute. It
 defines the size of a physical address in bits. The default
 is 40.

 All types of block contain two attributes:

 SRC_FILE = "file";
 File name where this block is originally defined. Used
 for error and debugging output.

 SRC_LINE = num;
 Line number in SRC_FILE where this block is originally
 defined. Used for error and debugging output.

 APP

 An APP object contains a few parameters and a list of block
 objects. An APP names one linked executable (see ELF_FILE)
 and a list of blocks that describe what to do with that
Appendix A Design and Verification Manual Pages A-27

 file. The APP syntax is:

 APP <appname>

 SRC_FILE = "source file";
 SRC_LINE = <num>;
 ELF_FILE = "executable file";

 BLOCK <name>
 block_attrs
 END BLOCK

 BLOCK <another_name>
 block_attrs
 BLOCK_TSB <name>
 block_tsb_attrs
 END BLOCK_TSB
 END BLOCK

 ...

 END APP

 ELF_FILE = "executable file";
 Names the linked executable file (relative to
 srcdir) that will be processed by this APP object.

 BLOCK

 A BLOCK defines a section of a linked executable that should
 be treated the same way. It can take the following
 parameters:

 SECTION_NAME = "name";
 Name of the section (e.g., ".MAIN") where this block is
 defined (used for debugging and error reporting). Used
 only for error reporting.

 SEGMENT_NAME = "name";
 Name of segment within the section (e.g., "text") for
 which this block is defined. Used only for error
 reporting.

 LINK_SECTION = "name";
 ELF section name where this block should look in the
 executable.

 VA = <num>;
A-28 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

 START_LABEL = "label";
 Optionally specifies that the block should start at a
 particular address or label. You can specify one or the
 other, but not both. If neither is specified, then the
 starting VA for the elf section is used. The starting
 address, however it is specified, must be page aligned
 if it is to be added to a TSB.

 END_VA = <num>;
 END_LABEL = "label";
 Optionally specifies that the block should end at a
 particular address or label. You can specify one or the
 other, but not both. If neither is specified, the the
 ending VA for the elf section is used.

 COMPRESS = num;
 Boolean. If set, then compresses the output of this block
 in the image. Compression means that if an entire line
 (i.e., aligned 32 bytes) is zero, the line is skipped.
 If -noenvzero is enabled, the 32 bytes are simply
 uninitialized. Otherwise, the backdoor ’// zero_bytes’
 syntax is used to initialize the memory in the
 environment. The backdoor syntax is specific to
 Niagara, so other projects should either adopt it or use
 -noenvzero.

 IN_IMAGE = <boolean>;
 If this is defined and num is zero, then doesn’t write
 this block to the memory image. It is still included in
 the symbol table.

 PA = <num>;
 Physical address to write to the image file. Also used
 in symbol table.

 RA = <num>;
 Real address. Used to write into the TSB and for the
 symbol table. Written as ’X’ in the symbol table if
 this is not specified.

 RA_EQ_VA = <boolean>;
 Boolean. If set, then sets RA to VA (perhaps after VA is
 computed from a label). It is illegal to set both RA
 and RA_EQ_VA.

 PA_EQ_VA = <boolean>;
 Boolean. If set, then sets PA to VA (perhaps after VA is
 computed from a label). It is illegal to set both RA
 and PA_EQ_VA.
Appendix A Design and Verification Manual Pages A-29

 NO_END_RANGE_CHECK = <boolean>;
 If this is set to a nonzero value, then does not do an
 error check to make sure that end_va is not off the end
 of the segment.

 BLOCK_TSB <name>
 A BLOCK may contain one or more BLOCK_TSB blocks
 (delimted by "BLOCK_TSB <name>" and "END BLOCK_TSB". A
 BLOCK_TSB definition names a TSB (see TSB objects below)
 that the block shoudl add itself to. It also defines
 parameters about how the block should add itself.

 BLOCK_TSB
A BLOCK_TSB object defines how to add its containing block
to a TSB. The name of the BLOCK_TSB object is the name of
the TSB object (see below) that the block should add itself
to.

 TAG_BASE = num;
 Number to use as the basis for TSB tags in this
 attr block. The virtual address is OR’d into the proper
 bit range in this number (using TAG_ADDR_BITS) to form
 the TSB tags.

 DATA_BASE = num;
 Basis for the TSB data entries in this attr
 block. The real addres is OR’d into the proper bit
 range in this number (using DATA_ADDR_BITS) to form the
 TSB data entries.

 START_RA = num;
 Starting real address for this attr block. Must be page
 aligned.

 PAGE_SIZE = num;
 Page size used for computing number of TSB entries and
 for alignment checks.

 VA_INDEX_BITS = hi : lo;
 Bits of the virtual address used to index a TSB. This
 is independant of the TSB size. If the TSBs being used
 have non-zero size_bits, they will add the size_bits to
 the ’hi’ value specified.

 TAG_ADDR_BITS = hi : lo;
 Bits of the TSB tag that should contain a
 portion of the virtual address.
A-30 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

 TTE_TAG_ADDR_BITS = hi : lo;
 Bits in the TSB tag that contain the VA.

 DATA_ADDR_BITS = hi : lo;
 Bits of the TSB data that should contain a
 portion of the real address.

 TSB
Defines a TSB. The ATTR blocks define which TSBs they
want to write to use, and this holds the address
translations for them.

 START_ADDR = num;
 Physical address of where this TSB should live in
 memory.

 NUM_ENTRIES = num;
 Number of entries in the TSB. This can be computed from
 SIZE_BITS for a particular MMU, but goldfinger doesn’t
 want to get in the business of interpreting prcoessor-
 specific bit fields.

 SIZE_BITS = num;
 Sizes bits from the config register. It is used in the
 index calculation.

 SPLIT = binary;
 If set and num is non-zero, then makes this a split TSB.

 LINKAREA = name;
 If there is a collision at any entry in the TSB, it can
 create a linked list. This parameter names a TSB_LINK
 object (see below) that should contain the linked list.
 If a collision occurs when -allow_tsb_conflicts is not
 set, however, a collision is a fatal error.

 TSB_LINK
This defines a link area. If there is a collision in the TSB, a
linked list can be used to track the multiple entries. This is an
object for containing that linked list.

 START_ADDR = num;
 Physical address where the linked list should live.

EXIT STATUS
 The exit status will be 0 if the command succeeds. If it
 fails, it will exit with a positive exit status. The error
 codes are identical between goldfinger and midas. See
 "midas -h" for the most up to date description of the
Appendix A Design and Verification Manual Pages A-31

 errors.

A.4 regreport
NAME
regreport - regression report generator

SYNOPSIS
regreport <options> [<directory> [<list>]]

DESCRIPTION

regreport examines all regression *.log files for diags under regression directory
and prints report. It is called by sims for each diag. User typically calls
regreport to generate summary of regression by typing following :

regreport <regression_direcotry>

<options>: [default]

-1 [<diag_dir>]:
Prints report for the specified or current-directory diag

-regress <output_file> <directory>:
In regression mode, regreport writes summary status for finished
diags to a file until all diags are finished. NOTE: if
some diag doesn’t produce status, regreport,1.73 will wait forever.

-sas_only
Verilog simulator will not run, sas only.

-regenerate
Regenerates the status.log files in the diag directories.
Call it from the parent dir of all diag runs e.g. 2004_04_04/

<directory> [<list>]
Prints report for all diags under <directory>. <list> is 0 or more
of simulation system (testbench) names, such as ’core1’, ’chip8’, etc.
When nothing specified, all systems are included.

-simline
Typically only 1000 last lines of sim.log will be examined.

-simline=NNN can increase or decrease this number

-full
A-32 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

The whole file will be processed in regreport -1 mode

-[no]printpassed
Does not print passed diags in detailed summary

-[no]vlog
Disables vlog run on failing diags. Enabled by default
If a diag fails we run vlog on it. This is good for automation.

-debug
Runs with debug on.

-summary
Prints only summary

-emailaddr=<e-mail address>
Gives an email address where regression status will be sent.

A.5 vlog
NAME
vlog - post process verilog log file

SYNOPSIS

vlog [logfilename|path_to_sim.log] [-debug -h -ccx -l2 -dram -cycles -[no]sort] [-
perf]

DESCRIPTION

vlog is called by regreport and user does not need call it directly. Supported
command options are:

-ccx
Prints ccx related messages

-l2
Prints l2 related messages

-dram
Prints dram related messages

-h
Prints out this screen
Appendix A Design and Verification Manual Pages A-33

-debug
Script debug.

-cycles
Prints the cycles and not the time

-sort
Sorts sim.log according to time stamps first [default is on]

-perf
Prints all kinds of performance data - I, D miss e.t.c.

Examples:
vlog -ccx -l2 -dram >! vlog.log
vlog <my_path>/sim.log >! vlog.log
A-34 OpenSPARC T1 Processor Design and Verification User’s Guide • May 2008

	OpenSPARC™ T1 Processor Design and Verification User’s Guide
	Contents
	Figures
	Tables
	Preface
	Quick Start
	1.1 System Requirements
	1.2 EDA Tool Requirements
	1.2.1 EDA Simulation Tools
	1.2.2 EDA Synthesis Tools
	1.2.3 FPGA Tools

	1.3 Running Simulations and Synthesis
	1.3.1 Get the Simulation Files
	1.3.2 Set Up Environment Variables
	1.3.3 Run Your First Regression
	1.3.3.1 To Run a Regression

	1.3.4 Run Your First Synthesis
	1.3.5 Gate-Level Verification

	OpenSPARC T1 Design Implementation
	2.1 OpenSPARC T1 Design Hierarchy
	2.2 Module Directory Structure
	2.3 Megacells
	2.4 External Interfaces

	OpenSPARC T1 Verification Environment
	3.1 OpenSPARC T1 Verification Environment
	3.2 Running a Regression
	3.2.1 To Run a Regression
	3.2.2 What the sims Command Does
	3.2.3 Running Regression With Other Simulators

	3.3 Verification Code
	3.3.1 Verilog Code Used for Verification
	3.3.2 Vera Code Used for Verification

	3.4 PLI Code Used For the Test Bench
	3.4.1 To Compile All PLI Libraries

	3.5 Verification Test File Locations
	3.6 Compiling Source Code for Tools
	3.7 Gate-Level Verification

	OpenSPARC T1 Synthesis
	4.1 Synthesis Flow for the OpenSPARC T1 Processor
	4.2 Synthesis Output

	OpenSPARC T1 FPGA Synthesis
	5.1 Synplicity FPGA Synthesis Flow for the OpenSPARC T1 Processor
	5.2 Synplicity FPGA Synthesis Output
	5.3 XST Synthesis Flow for the OpenSPARC T1 Processor
	5.4 XST Synthesis Output
	5.5 Selecting OpenSPARC T1 Options for Reduced Size

	OpenSPARC T1 EDK Project
	6.1 System Description of the EDK Project
	6.1.1 Hardware Operation
	6.1.2 MicroBlaze Firmware Operation

	6.2 Generation of a Bit File for a Xilinx FPGA
	6.3 Running OpenSPARC T1 Diagnostics on an Evaluation Board
	6.3.1 Running the Default Diag: bypass_win
	6.3.2 Running other Diags on the FPGA Board
	6.3.3 Running an Entire Regression on the FPGA Board

	6.4 Running a Standalone Program on the OpenSPARC T1 Core on an Evaluation Board
	6.4.1 Running the Included “Hello World” Program
	6.4.2 Creating your own Stand-alone Program

	6.5 Booting OpenSolaris on an FPGA Evaluation Board
	6.5.1 Booting from the provided OpenSolaris RAM Disk Image
	6.5.2 Adding new Programs to the OpenSolaris RAM Disk Image.

	6.6 Running System-level Simulation with Modelsim
	6.7 EDK Project for the ML411 Evaluation Board
	6.8 Running System-level Simulation on Legacy Projects

	Design and Verification Manual Pages
	A.1 sims
	A.2 midas
	A.3 goldfinger
	A.4 regreport
	A.5 vlog

