THE EFFECT OF NON UNIFORM
AXIAL HEAT FLUX DISTRIBUTION

NEIL E. TODREAS
WARREN M. ROHSENOW

SEPTEMBER 20, 1965

CONTRACT NsG-496
REPORT NO. 9843-37
DEPARTMENT OF
MECHANICAL ENGINEERING
MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

TECHNICAL REPORT

NO. 9843-37

THE EFFECT OF NONUNIFORM AXIAL HEAT FLUX DISTRIBUTION ON THE CRITICAL HEAT FLUX

by
Neil E. Todreas
Warren M. Rohsenow

Support extended by the National Association for the Advancement of Science under Contract NsG-496 with the

Center for Space Research DSR Project No. 9843

September 20, 1965

Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge 39, Massachusetts

Abstract

A systematic experimental and analytic investigation of the effect of nonuniform axial heat flux distribution on critical heat ilux was performed with water in the quality condition. Utilizing a model which ascribes the critical condition, to either a nucleation-induced disruption of the annular liquid film or annular film dryout, the experimental results taken at low pressures (50-200 psia) were confirmed. Application of this model to higher pressure conditions (500-2000 psia) indicated qualitative agreement with available data of other investigators.

Experimental data was obtained for flux distributions representing cosine, linear increasing and decreasing, inlet and exit peaked, spike and uniform shapes. These flux distributions were achieved by electrical resistance heating of test sections whose outside diameter had been machined to the required dimensions. In each case the critical location as well as the total critical power was obtained by testing the tubes in vertical upflow to failure.

The analytic prediction of the results for all flux shapes has been achleved by development of a model which considers the effect of nucleation within the annular film. It is shown that the occurrence of the critical condition is related to the local degree of nucleation (the ratio of the local flux to the flux required to cause nucleation at the local conditions) and the local film flow rate. Both the experimental total critical power and the critical location are confirmed by this model. The results indicate that the total critical power for the outlet peaked flux distributions tested (ratios of maximum to minimum flux of 2, 4, and 5.75 to 1) can be 15 to 30% lower than for uniform flux distributions at comparable hydrodynamic operating conditions. In addition, from this model for given operating conditions, a locus of critical conditions can be constructed from uniform flux distribution data which will enable prediction of the performance of nonuniform flux distributions at similar conditions of mass velocity, pressure and diameter.

ACKNOWLEDGEMENT

Support for this study was extended to the Massachusetts Institute of Technology by the National Aeronautics and Space Administration under contract with the Center for Space Research. In addition support to facilitate initiation of the study. was provided by the Shell Companies Foundation. This study was done in part at the Computation Center at the Massachusetts Institute of Technology.

The permission granted by the Babcock and Wilcox Company and the Atomic Energy Commission to include results from a Babcock and Wilcox Company preliminary report is gratefully acknowledged.

Professors P. Griffith, A. Bergles, H. Fenech and M. Suo gave their time generously to discuss the program during the course of the investigation.

Mr. F. Johnson and Mr. E. Hartell of the Heat Transfer Laboratory were of great assistance in constructing the experimental arrangement and keeping the facility operational.

Mr. A. Werthen of the Whitman Tool and Die Company and Mr. P. Wassmouth were responsible for developing the techniques for fabricating the required test sections to specified tolerances. The machining of all test sections was performed by the Whitman Tool and Die Company.
PAGE
Title Page 1
Abstract 11
Acknowledgement 111
Inst of Figures vi
Nomenclature
Conversion of Units
CHAPTER I: IMIRODUCTION 1
1.1 Background of Problem 1
1.2 Scope of the Research 2
1.3 Literature Survey 3
CHAPTER II: TWO PHASE FLOW WITH HEAT ADDITION 18
2.1 Flow Regimes 18
2.2 Critical Heat Flux 22
CHAPTER III: EXPERIMENTAL PROGRAM 28
3.1 Description of Apparatus 28
3.1.1 Hydraulic System 28
3.1.2 Power Supply 30
3.1.3 Instrumentation 31
3.1.4 Test Section 33
3.2 Experimental Procedures and Experience 34
3.2.1 General Loop Operation 34
3.2.2 Loop Operation for Critical Heat 36 Flux Data
3.2.3 Two Phase Heat Transfer Coefficient 38 Measurements
3.2.4 Correction of Oscillatory Instabilities 39
3.2.5 Critical Flow Considerations 41

PAGE

CHAPTER IV: PRESENTATION AND DISCUSSION OF RESULTS

4.1 Experimental Results 43
4.1.1 Total Critical Power 44
4.1.2 Critical Location 46
4.1.3 Reproducibility of the Data 48
4.2 Formulation of the Method of Analysis 50
4.3 Calculation Procedure for the Method of 54 Analysis
4.4 Application of the Method of Analysis to 57 Experimental Data
4.4.1 Discussion of Results 60
4.4.1.1 Total Critical Power 61
4.4.1.2 Critical Location 61
4.4.2 Discussion of Results - Flux Spikes 66
4.5 Application to Higher Pressures 70
CHAPTER V: SUMMARY AND CONCLUSIONS 74
5.1 Summary 74
5.2 Conclusions 75
5.3 Design Procedure (50-200 psia) 76
APPENDIX A Error Analysis 78
APPENDIX B Test Section Analysis 82
APPENDIX C Test Section Design 110
APPENDIX D Data Reduction and Analysis 115
APPENDIX E Program for Data Reduction and Analysis 122
APPENDIX F Tabulation of Data 170
BIBLIOGRAPHY 177
FIGURES 181

LIST OF FIGURES

FIGURE

1 Effect of Local Heat Flux Spike on Burnout
2 Prediction of Critical Condition by Local Condition Method of Janssen and Kervinen (Ref. 6)

Prediction of Critical Condition by Equivalent Length Method of Lee and Obertelli (Ref. 9)

4 Regimes of Two-Phase Flow
5 Flow Regime Map for Test Conditions

6 Comparison of Uniform Flux Data with Existing Correlations, $G=0.5 \times 10^{6} \mathrm{BIU} / \mathrm{HR}-\mathrm{FT}^{2}$

7 Comparison of Uniform Flux Data with Existing Correlations, $G=1.0 \times 10^{6} \mathrm{BIU} / \mathrm{HR}-\mathrm{FT}^{2}$

8 Comparison of Uniform Flux Data with Existing Correlations, $G=2.0 \times 10^{6} \mathrm{BTU} / \mathrm{HR}-\mathrm{FT}^{2}$

9 Schematic Layout of Experimental Facility and Test Section Arrangement

Axial Flux Distributions Tested
Confirmation for Test Section 112 That the Overall Slope Goes to Zero at the Flow Rate $\left(G=2.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}\right.$) where Oscillation Occurred

Total Critical Power for Uniform and Cosine Flux Distributions at $G=0.5 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

Total Critical Power for Linear and Peaked Flux Distributions at $G=0.5 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

Critical Locations (Inches from Inlet) for the Nonuniform Axial Distributions Investigated at $G=0.5 \times 10^{6} \mathrm{LBM} / \mathrm{HR}^{6} \mathrm{FI}^{2}$

15 Total Critical Power for Uniform and Cosine Flux Distributions at $G=1.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}$?

Total Critical Power for Linear and Peaked Flux Distributions at $G=1.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

FIGURE

17 Critical Locations (Inches from Inlet) for the Nonuniform Axial Flux Distributions Investigated at $G=1.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

18 Total Critical Power for Uniform and Cosine Flux Distributions at $G=2.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

19 Total Critical Power for Linear and Peaked Flux Distributions at $G=2.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

Critical Locations (Inches from Inlet) for the Nonuniform Axial Flux Distributions Investigated at $G=2.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

21 Summary of Effect of Linear Increasing and Decreasing Flux Distributions on Total Critical Power

22 Summary of Effect of Peak Inlet and Exit Flux Distributions on Total Critical Power

23 Total Critical Power for Data of Bertoletti et al (Ref. 11)
Total Critical Power for Data of Swenson (Ref. 5)
Total Critical Power for Data of Babcock and Wilcox (Ref. 15)

Schematic Presentation of Method of Analysis
Bergles-Rohsenow Criteria (Ref. 35) for Incipient Boiling $(q / A)_{i}=15.60 \mathrm{P}^{1.156}\left(\mathrm{~T}_{\mathrm{WALL}} \mathrm{T}_{\mathrm{SAT}}\right)^{2.30 / \mathrm{P}^{0.0234}}$

Variation of Two Phase Heat Transfer Coefficient (h) with Mass Flow Rate (G) and Quality (X) $\mathrm{h}_{\text {TP }}$ per Dengler-Addoms Correlation (Ref. 38)

Typical Determination of Heat Flux Required for Incipient Boiling, $(q / A)_{1}$, at the Critical Location
30 Heat Flux Conditions Along Test Section Length
Operating Lines for Test Section 1271 for QTOT Equal to and Less Than $Q_{\text {CRIT }}$
Critical Flux Results at $G=0.5 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$ Critical Flux Results at $G=1.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

FIGURE
34 Critical Flux Results at $G=2.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$
35 Dimensionless Representation of Bergles-Rohsenow Nucleation Theory. The Effect of Limited Maximum Cavity Sizes is Shown for $P=100$ psia ($\tau_{W} \sim .1$) Only

36 Uniform Flux Distribution Data of Hewitt et al (Ref. 41)

37 Operating Histories for Total Input Power up to the Critical Power (Uniform and Linear Flux Distributions)

38 Operating Histories for Total Input Power up to the Critical Power (Cosine and Peaked Flux Distributions)

39 Effect of Axial Flux Distribution on the Critical Location

40 The Effect of M Value (Ratio of Maximum to Minimum Flux) on the Critical Location

41 The Effect of Inlet Subcooling on the Critical Location (Peak Exit and Inlet Flux Distributions)

43 Comparison of Critical Flux Results for the Range of Mass Velocities Investigated

44 Effect of Length on the Critical Condition
45 Effect of Inlet Subcooling on the Critical Condition

46 Effect of Flux Shape Length on the Critical Condition for $G=1.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

47 Effect of Flux Spike Length and M Value (Ratio of Maximum to Minimum Flux) on the Critical Condition for $G=1.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$ and $\Delta \mathrm{H}_{\mathrm{IN}}=-100 \mathrm{BTU} / \mathrm{LBM}$
48 Critical Flux Results at 1000 Psia from Babcock and Wilcox Data (Ref. 15)

49 Estimation of the Critical Region Width (in \% Total Input Power) of Figure 48 for 1000 psia Data (Ref. 15)

> ix

FIGURE

50 Critical Flux Results at 2000 psia from Babcock and Wilcox Data (Ref. 5)

51 Estimation of the Critical Region Width (in \% Total Input Power) of Figure 50 for 2000 psia Data (Ref. 5)

52 Effect of Inlet Subcooling on Critical Flux Results for Cosine Flux Distribution with Flux Spike (Ref. 5)

NOMENCLATURE

Symbol	Variable	Units
${ }^{\text {A }}$ F	Flow cross sectional area	$f t^{2}$
${ }^{A_{S}}$	Inside surface area	$f t^{2}$
${ }^{\text {(}}$ X	Wall cross sectional area	$f t^{2}$
D_{1}	Inside diameter	inches
C_{p}	Specific heat at constant pressure	$\mathrm{btu} / 1 \mathrm{bm}{ }^{\circ} \mathrm{F}$
C_{1}	Constant associated with peaked inlet and outlet flux distributions defined by Eq. B-53	inches
C_{7}	Constant associated with spike (Cosine Shaped) flux distribution defined by Eq. B-85	inches
Do	Outside diameter	inches
E	Test section voltage drop	volts
8	Acceleration due to gravity	$\mathrm{ft} / \mathrm{sec}^{2}$
g_{0}	Gravitational constant, 32.2	$\frac{1 b m}{1 b f} \frac{f t}{\sec ^{2}}$
G	Mass velocity	$1 \mathrm{bm} / \mathrm{hr}-\mathrm{ft}{ }^{2}$
h	Heat transfer coefficient	$\mathrm{btu} / \mathrm{hr} \mathrm{ft}{ }^{20} \mathrm{~F}$
H	Enthalpy	btu/lbm
I	Test section current	amperes
k	Thermal conductivity	$\mathrm{btu} / \mathrm{hr} \mathrm{ft}{ }^{\circ} \mathrm{F}$
ℓ	Test section heated length	inches
l^{\prime}	Length of cosine portion of test section length or spike length (see Fig. 10)	inches
L	Half-wavelength of cosine test section which is truncated to length ℓ (see Fig. 10)	inches
L^{\prime}	Half-wavelength of cosine portion of test section which is truncated to length ℓ^{\prime} (see Fig. 10)	Inches

	$x i$ Nomenclature (Continued)	
Symbol	Variable	Units
\mathcal{L}	Length of test section for peaked and spiked flux distributions defined in Fig. 10.	inches
$L_{X=0}$	Location at which saturation condition is reached	Inches
L_{S}	Length over which quality condition exists	Inches
M	Ratio of maximum to minimum flux	dimensionless
P	Pressure	psia
P_{r}	Prandlt number	dimensionless
$q / A, \varnothing$	Heat flux	$b t u / h r-f t^{2}$
Q	Integrated power input	$\mathrm{btu} / \mathrm{hr}$
r	Maximum cavity size required for nucleation	ft
R	Overall tube resistance	OHM
Re	Reynolds number	dimensionless
T	Temperature	${ }^{\circ} \mathrm{F}$
X	Quality	$\frac{1 \mathrm{bm} \text { steam }}{\text { total } 1 \mathrm{bm}}$
X_{tt}	Martinelli-Nelson Parameter	dimensionless
u, x, y, z	```Axial position indices (see Fig. 10)```	inches
V	Specific volume	$\mathrm{ft}^{3} / 1 \mathrm{bm}$
V	Velocity	$\mathrm{ft} / \mathrm{sec}$
W	Mass flow rate	$1 \mathrm{bm} / \mathrm{hr}$

Subscripts

ANN

C

CRIT
EXIT
f
fg
film
G
1
IN Inside, inlet
INLET Inlet
L Liquid
MAX Maximum
MIN
OUT
p

S
SAT
SUB
TOT
TP
V
WALL
u, x, y, z Critical location

Critical condition
Exit
Saturated liquid
Liquid to vapor
Film
Gas

Minimum
Outlet
Pump
Saturation location
Saturation condition
Subcooled
Total
Two Phase
Vapor
Wall

Tube length in annular flow condition

Required to initiate nucleation

Axial position indices
xiii
Greek Letters

ρ	Specific resistivity	ohm/ft
	Constant associated with peaked	dimensionless
ξ	flux distributions defined by	
\}	Eqs. B-51 and B-73	
σ	Surface tension	$1 b_{f} / \mathrm{ft}$
τ	Shear stress	$1 b_{f} / f t^{2}$
μ	Viscosity	lbm/hr ft
γ	Kinematic viscosity	$\mathrm{ft}^{2} / \mathrm{hr}$
\emptyset or $9 / A$	Heat flux	$\mathrm{btu} / \mathrm{hr} \mathrm{ft}^{2}$

CONVERSION OF UNITS

ENGLISH TO METRIC (MKS, CGS)

PRESSURE (P)
UNIT MASS FLOW RATE (G) $\quad \mathrm{kg} / \mathrm{m}^{2} \mathrm{sec}=1.361 \times 10^{-3} \mathrm{Xlb} / \mathrm{hr} \mathrm{ft}^{2}$
heat flux (\varnothing)

DENSITY (ρ)
KINEMATIC VISCOSITY (γ) $\quad \mathrm{cm}^{2} / \mathrm{sec}=3.88 \mathrm{Xft}^{2} / \mathrm{hr}$
VISCOSITY (μ)
LENGTH (1)

METRIC TO ENGLISH

PRESSURE (P)
psia $=14.25 \mathrm{Xkg} / \mathrm{cm}^{2}$
UNIT MASS FLOW RATE (G) $\quad \ell_{\mathrm{b}} / \mathrm{hr} \mathrm{ft}^{2}=735 \mathrm{xkg} / \mathrm{m}^{2} \mathrm{sec}$
$\mathrm{lb}_{\mathrm{b}} / \mathrm{hr} \mathrm{ft}^{2}=7350 \mathrm{Xg} / \mathrm{cm}^{2} \mathrm{sec}$
HEAT FLUX (\varnothing)
BIU $/ \mathrm{hr}_{\mathrm{ft}^{2}}=3170$ Xwatts $/ \mathrm{cm}^{2}$ $=322 \times \mathrm{kJ} / \mathrm{m}^{2} \mathrm{sec}$
$\mathrm{lb} / \mathrm{ft}^{3}=0.016 \mathrm{Xgm} / \mathrm{cm}^{3}$
KINEMATIC VISCOSITY (γ)
VISCOSITY (μ)
LENGTH (1)
$\mathrm{g} / \mathrm{cm}^{2} \mathrm{sec}=1.361 \times 10^{-4} \times \mathrm{lb} / \mathrm{hr} \mathrm{ft}^{2}$
watts $/ \mathrm{cm}^{2}=3.15 \times 10^{-4} \mathrm{XBIU} / \mathrm{hr} \mathrm{ft}^{2}$
$\mathrm{kJ} / \mathrm{m}^{2} \mathrm{sec}=3.105 \times 10^{-3} \mathrm{XBTU} / \mathrm{hr} \mathrm{ft}{ }^{2}$
$\mathrm{gm} / \mathrm{cm}^{3}=62.4 \mathrm{xlb} / \mathrm{ft}^{3}$
$\mathrm{gm} / \mathrm{cm} \mathrm{sec}=243 \mathrm{Xlb}(\mathrm{m}) / \mathrm{hr} \mathrm{ft}$
$\mathrm{mm}=25.4 \mathrm{x}$ in
$\mathrm{kg} / \mathrm{cm}^{2}=0.0702 \mathrm{Xpsia}$
$\mathrm{ft}^{2} / \mathrm{hr}=0.258 \mathrm{Xcm}^{2} / \mathrm{sec}$
$h_{b}(m) / \mathrm{hr} \mathrm{ft}=0.00412 \mathrm{Xgm} / \mathrm{cm} \mathrm{sec}$
in $=0.0394 \mathrm{Xmm}$

CHAPTER I

INTRODUCTION

1.1 Background of the Problem

Forced convection boiling of water in axial flow is being utilized in pressurized and boiling water reactors and has been Investigated as a means for cooling the nozzles of electrothermal engines, electric-arc wind tunnels and nuclear rockets. One of the most important limits in the thermal performance of such systems is the so-called critical or burnout condition. This condition is characterized by a sharp reduction in ability to transfer heat from the heated surface. Nuch test data are available for uniform heat flux distributions along the test section and numerous correlations of these data have been proposed. However, in reactor systems as well as high temperature flow nozzles mentioned above, 'the heat flux distributions are inherently nonuniform and possess such large gradients that the existing uniform flux burnout correlations are not applicable. In addition, although interpretation of the limited data available on nonuniform heat flux distributions varies as discussed in the literature survey of section 1.3 , the overall conclusion is that certain non-uniform heat flux distributions can significantly lower the critical heat flux compared to a uniform heat flux distribution under similar hydrodynamic operating conditions. Therefore, it is highly desirable for design purposes to have a satisfactory method for predicting the effect on the critical condition of nonuniform heat flux distributions which exist in practice.

In general three basic axial flux shapes exist:
(a) A reasonably symmetrical flux distribution with central peak, approximated by a "chopped" cosine. This corresponds to an end-of-core-life condition where the flux is not significantly perturbed by control rods or nonuniform burnup, or to a core with chemical control
(b) A flux distribution markedly peaked near the inlet of the channel, corresponding to a new, clean core with control rods in the upper part of the core (upflow); and
(c) A flux distribution markedly peaked near the exit of the channel, corresponding to a maximum xenon override condition where the control rods are withdrawn but the upper part of the core has had less burnup.

In addition to these macroscopic flux distributions, there may be superimposed microscopic flux peaks which may occur at any point along the channel. These flux peaks may be due to nuclear effects (fuel peaks or water holes) or manufacturing dimensional tolerances (fuel thickness or eccentricity) and are of some short but undefined axial extent. It is the purpose of this investigation to determine the effect of these types of axial flux distributions on the critical heat flux in the quality region by a systematic experimental and analytic investigation. The two quantities of interest are (1) the location of the critical condition and (2) the power input to the reactor channel required to cause the critical condition.

1. 2 Scope of the Research

A comprehensive experimental program was undertaken to
investigate nonuniform axial flux distributions under bulk boiling conditions. In addition to the flux shapes of direct reactor interest, additional nonuniform as well as uniform shapes were tested to permit more thorough analysis of the fundamental nature of the critical condition. Also the flux gradient was varied for several of the distributions tested as tabulated below to bracket and extend data available in the 11terature.

Flux Distribution

Uniform
Cosine
Iinear Increasing
Linear Decreasing
Peak Inlet
Peak Outlet
Flux Spike (Step)
Flux Spike (Cosine)
Approximate
Ratio
Maximum Flux
Minimum FIux
1.0
2.27, 4.03, 5.75
2.27, 5.75
2.27, 5.75
5.75
5.75
4.1 to 5.1
2.27, 5.75, 7.00

The experimental program was run on the flow loop available in the Heat Transfer Laboratory of the Mechanical Engineering Department. Therefore the operating pressure was limited to approximately 200 psia but the analytic results obtained from this data were successfully applied qualitatively to the higher pressure regions of practical interest. The ranges of other operating and test section conditions are listed below. TEST SECTION

Material - Aluminum Tubes
Inside Diameter - . 214 Inches (. 544 cm)
Heated Length - 30 and 48 Inches (76.2 and 122 cm)
Inlet Calming Length - 3.7 Inches (9.4 cm)
OPERATING CONDITIONS
Pressure - 60 to 200 psia (4.2 to $14 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{abs}$)

Mass Flow Rate - . 5, 1.5 and $2.0 \times 10^{6} \frac{\mathrm{lbm}}{\mathrm{hr} \mathrm{ft}}{ }^{2}(680,2040$, and $2720 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{sec}$)
Inlet Temperature - 60 to $290^{\circ} \mathrm{F}$
Power - Direct Current Resistance Heating
Burnout Detection - Tubes Tested to Failure
It should be noted that several definitions of the critical condition are used throughout the literature. Generally the definition selected by an experimenter is related to the burnout detection mechanism used. In this work since each tube was tested to failure, the critical condition is taken as the physical destruction of the aluminum test section. Correspondingly the critical location is defined as the location of the test section failure.

1.3 Literature Survey

Review of the literature on the subject of axial heat flux distribution reflects the developing interest in this area manifested by expanding experimental programs and more sophisticated analytic procedures. However, as this literature is reviewed it should be noted that for all efforts except that of Becker ${ }^{(16)}$ and Tong ${ }^{(17)}$, which are the most recent, workers have attempted to characterise the results by intuitive judgments based on uniform flux results. Since uniform flux data indicates that the critical condition occurs at the exit where enthalpy is a maximum but heat flux is equivalent to that all along the tube, it is not possible to distinguish whether the critical heat flux is governed by local or integrated conditions. Hence, in the case of nonuniform flux distributions, we find some test results are interpreted to suggest that the critical heat flux is a function of local conditions along the nonuniformly heated test section, while other results
are interpreted to suggest that the total integrated heat transfer or exit enthalpy determines the critical condition which is therefore independent of the local conditions at the critical location.

The seemingly perplexing part of this disagreement is that reliable data supporting each interpretation has been presented. In anticipation of the conclusions of this work it can be stated that both the above interpretations can be shown to be correct, if each is viewed within the framework of a broader interpretation of the critical phenomenon. That is, the critical condition is a phenomenon which, when represented by the analytic model developed in this work, is dependent on both local and integral conditions, the relative importance of each, depending upon the existing thermal and hydrodynamic conditions.

Among the earliest results were those of the Bettis Plant reported in the summary report by DeBertoli et al ${ }^{(1) *}$ which includes results of DeBortoli, Roarty and Weiss ${ }^{(2)}$ and Weiss (3). These results consisted of the two basic kinds of nonuniform heat flux experiments (1) gradual variation of axial heat flux in cosine or other shape distributions where $(d(q / A) / d x$ is small) and (2) axial step changes in heat flux commonly called hot-patch or spike tests.

The cosine tests reported by DeBertoli were for a rectangular test section (0.055 in. $x 2.116$ in. $x 27 \mathrm{in}$. or $0.14 \mathrm{~cm} \times 5.36 \mathrm{~cm} \times 68.5 \mathrm{~cm}$) with 2000 psia (136 atm) water
for a center-peak-to-minimum heat flux of 4.0 and maximum-toaverage of 1.38 . The critical condition always occurred between the peak flux location and the channel exit. A plot of local heat flux vs. local enthalpy at the critical condition resulted in a downward sloping curve which was approximately 70% of the critical heat flux calculated for a uniform flux distribution at the same mass flow velocity and exit enthalpy by the Bell ${ }^{(4)}$ correlation. A surprising result was the observation that with the central peak in the cosine distribution, the magnitude of average heat flux vs exit enthalpy when a critical condition exists somewhere along the tube length would lie close ($+15 \%$ to -25%) to a plot of critical heat flux vs exit enthalpy for the uniform flux distribution data.

The hot-patch tests performed at Bettis utilized a rectangular channel (0.097 in . $x 1.0 \mathrm{in} . x 27 \mathrm{in}$. or $0.25 \mathrm{~cm} x$ 68.5 cm) with water at 2000 psia (136 atm). The first $265 / 8$ in. (67.5 cm) of the channel were at a uniform heat flux \varnothing_{1} and the last $3 / 8 \mathrm{in}$. (0.95 cm) was operated at heat flux \varnothing_{2} where ϕ_{2} / ϕ_{1} was maintained at 1.98 throughout the tests. The results are shown in Fig. 1 where the upper curve is ϕ_{2} at the critical condition and the lower curve is the corresponding magnitude of $\varnothing_{1}=\phi_{2} / 1.98$. Superimposed on this plot is the curve for \varnothing_{3}, the critical heat flux obtained for the same exit enthalpy and flow rate when the channel is uniformly heated along the entire 27 in . (68.5 cm) lengen. At around $60^{\circ} \mathrm{F}$ $\left(33{ }^{\circ} \mathrm{C}\right)$ exit subcooling $\varnothing_{2}=\varnothing_{3}$, and at exit quality of around $50 \%, \phi_{3}=\phi_{1}$. It is seen that the ratio

$$
E_{p}=\left(\frac{\varnothing_{3}-\varnothing_{1}}{\phi_{2}-\varnothing_{1}}\right)
$$

decreases from around unity well in the subcooled region to near zero as quality increases. These results show that for the subcooled exit region, where $E_{p}=1$, the equivalent hot-patch heat flux must be achieved in the uniformly heated case to obtain burnout, hence suggesting the importance of local conditions in the burnout phenomena. On the other hand, in the 50% quality region, where $E_{p}=0$, burnout is achieved at the same exit enthalpy even though the hot-patch heat flux is greater than the uniformly heated tube flux. This suggests that the integrated conditions are of prime importance in this region.

These initial results illustrated the existence of nonuniform flux effects and indicated the need to allow for these effects in design, particularly since these distributions could lower the critical heat flux from that expected by extrapolation of uniform flux distributions data. The next investigation in this area was an extensive program performed by Swenson et al ${ }^{(5)}$, with 2000 psia (136 atm) water for cosine distributions with central peak, central peak with spike, peak near inlet and peak near outlet in 0.411 to $.446^{\prime \prime}$ dia. (1.04 to 1.17 cm) and 72 in. (183 cm) long tubes. The flux spike tests were very limited but did indicate a decrease in effectiveness, E_{p}, as the exit quality increased in agreement with the Bettis results. However, in this case the quality range was limited to approximately 30% to 24%. For the central-peak flux distribution, the data at the critical location was about one-half of the magnitude of $(q / A)_{\text {crit }}$ at the same enthalpy in a tube with uniform flux distribution.

The data for both skewed cosine distributions were still
lower. The average heat flux vs exit quality (critical condition existing between the location of the peak flux and the exit) agreed reasonably well with ($q / A)_{\text {crit }}$ vs. exit enthalpy for uniform flux distribution for the central peak and the peak-near-outlet data but the data for peak-near-inlet fell much below this. These results indicate that when additional flux distributions are considered, the apparent success obtained with cosine and central peak distributions in comparing the average critical heat flux to the critical heat filux for uniform distributions cannot be generalized. This fact should be borne in mind in the following discussion of other programs which have achieved success in applying such techniques or their variations to cosine shape distributions only. From a practical point of view, these techniques of simple comparison with, or extrapolation of, uniform heat flux data give reasonable answers when applied to cosine distributions and can be used in these cases. However, for the important cases of peaked inlet and outlet distributions, these techniques fail dramatically and thus indicate that these methods are not based on a correct fundamental interpretation of the critical phenomena.

Reported programs in this group which deal exclusively with the cosine flux distribution include that of Janssen and Kervinen ${ }^{(6)}$, Casterline and Matzner ${ }^{(7)}$, Shaefer and Jack ${ }^{(8)}$, Lee and Obertelli (9) and Lee ${ }^{(10)}$. Janssen and Kervinen carried out experiments for cosine, and truncatedcosine heat flux distributions for an annulus (0.54 in . x 0.875 in. $x 100$ in. or $1.37 \mathrm{~cm} \times 2.22 \mathrm{~cm} \times 254 \mathrm{~cm}$) with only
the inner rod heating $1000 \mathrm{psia}(68 \mathrm{~atm})$ water. The ratios of maximum flux to minimum flux, M, were $1.86,3.25$ and 3.5 . In all cases the inlet was subcooled and the operation was reported to be stable without noticeable flow oscillations. The data from these experiments was analysed by plotting local heat flux versus local quality for all points on the cosine test section at the critical power on the same curve with similar data for uniform flux distributions as represented by a General Electric correlation for such data (see Fig. 2). Assuming that the critical condition depends only on local conditions, the point of tangency between these curves will allow prediction of (1) the burnout location and (2) the power level at burnout. Based on this type of analysis, the cosine data was about 9 to 20% lower than predicted. Considering that (1) the actual burnout location was uncertain to at least ± 1 inches due to placement of thermocouples whose temperature rise was monitered and (2) that the uniform rod data upon which the correlation was based had a deviation of the same order as above (9 to 20\%), the method predictsthe cosine distribution behavior well. However, it should be noted that using the same uniform correlation and the integrated burnout concept, the cosine average heat is also within 20% of the uniform critical heat flux. Thus for cosine data of reasonablesteepness, predictions of comparable accuracy can be obtained with the two basically divergent views of the burnout phenomenon.

Similar results were obtained in the high mass flow range ($\mathrm{G} \geq 3.0 \times 10^{6} \mathrm{lbm} / \mathrm{hr} \mathrm{ft}^{2}$) by Casterline and Matzner ${ }^{(7)}$ who carried out cosine distribution experiments in a 192 in. long (487 cm)
.400 inch diameter (1.02 cm) tube with water at 1000 psia ($70.2 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}$). However for lower mass flow rates, the cosine tube supported higher heat fluxes for the same local condiltions than the uniform tubes. Thus for lower mass flow rates, analyses based on both local and average conditions fail for this distribution with the rather extreme ratio of MAXIMUM FLUX/ MINIMUM FLUX $=34.8$. However this discrepancy may be due to the presence of reported severe pressure oscillations which were probably due to the inherent compressibility existing in the void fraction in the long tube since the inlet conditions were in all cases subcooled.

Limited but interesting data applicable to nozzle cooling applications was obtained by Schaefer and Jack ${ }^{(8)}$ for central peak shapes at very high heat fluxes. These experiments were performed with tubes having heated lengths of 1.5 and 5.5 in. $(3.81$ and 14.0 cm$), .120$ in. $(.304 \mathrm{~cm})$ diameters in 200 psia ($14.0 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}$) water. The flux gradient was large since the heated length was short and M large (5.88). The experiments were run at high mass velocity $\left(G=4.0 \times 10^{7} \frac{1 \mathrm{bm}}{\mathrm{hr} \mathrm{ft}}{ }^{2}\right)$ and yielded high local critical heat fluxes $\left(q / A=4.0 \times 107 \frac{\mathrm{hr} \mathrm{ft}^{2}}{\mathrm{hr} \mathrm{ft}}{ }^{2}\right)$. Hence this data which is outside the normal range of variables is available for comparison with new methods of analysis.

Extensive additional tests with cosine flux distributions have been reported by Lee and Obertelli ${ }^{(9)}$ and Lee ${ }^{(10)}$. These experiments were performed with 60 to 144 in. (152 to 366 cm) tubes of diameters .373 or .383 in. (. 95 or .975 cm) in water at pressures of 550 to 1600 psia (38.6 to $112 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}$). The first report surveys the entire range of variables listed, while the
second report contains data from the 144 in. long tubes at 1000 psia only. These reports show that the average heat flux condition for estimating burnout is satisfactory. This condition can be expressed as the equivalence of the average cosine heat flux with the critical uniform heat flux under the same thermal and hydrodynamic test conditions or simply as equivalence of total input power to the test sections in each case. The reports also introduce another prediction method based on the integrated condition concept. In this case prediction of burnout power and location is obtained as the point of intersection between cosine and uniform data on a local heat flux versus length plot. However, the length used on this plot for the uniform case is an equivalent length which is defined as

$$
L_{E} \times \varnothing(Z)=\int_{0}^{Z} \varnothing_{M A X} \cos \left(\frac{\pi z}{I_{T}}\right) d z
$$

where $\varnothing(Z)=$ heat flux on the cosine tube at a point distant (Z) from the inlet. In this manner, for each location on the cosine tube, an equivalent length of a uniform tube is defined such that the local heat fluxes and integrated power inputs are the same at that point (Z) for uniform and cosine heat flux distributions (see Fig. 3). Using this refined method good results for the critical power and location are achieved for the range of cosine shapes tested ($M=5.0$).

Only three additional investigations have been completed utilizing flux distributions other than the cosine shape. Bertoletti et al (11) tested rods 25.4 in. long (64.5 cm) of .318 in . diameter (. 807 cm) in water at $1020 \mathrm{psia}\left(71.5 \mathrm{~kg} / \mathrm{cm}^{2}\right)$. These sections represented linear increasing and linear decreas-
ing flux distributions in addition to cosine and uniform distributions. In all nonuniform distribution cases the maximum flux to minimum flux ratio, M, was about 2.3 . The data was presented to show the equivalence of total power input for test sections of all flux distributions for the same thermal and hydrodynamic test conditions. Review of the data corfirms this equivalence for the cases of inlet quality above saturation. However for subcooled inlet conditions, which are of direct interest to many practical applications, divergence of total power input of up to 10 to 20% between the various flux distributions is apparent, with the exit peaked distribution exhibiting the lowest allowable total power. Additional CISE data reported by Silvestri ${ }^{(12)}$ further indicates that the total power input is not independent of flux shape for subcooled inlet conditions. In these experiments, heat was added uniformly over only the first and last quarter of the tube witr the middle half being unheated. The data showed that for subcooled inlet conditions, the total power for the nonuniform flux distribution was also up to 10 to 15% below that for the uniform flux. Such deviations, which were also previously pointed out for exit peaked shapes in Swenson's data of reference (5), are of direct consequence to reactor design for the control-rodswithdraw configuration. In addition this deviation illustrates that the total power input equivalence concept is not valid over the complete range of nonuniform flux distributions of interest. The experiments of Styrikovich et al ${ }^{(13)}$ were performed in 6.3 in. (16.0 cm) long tubes of diameter $.236 \mathrm{in} .(.6 \mathrm{~cm})$ in water at 1470 and 2000 psia (103 and $140 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}$). The outside
diameter of the test sections varied linearly (increasing and decreasing) with length, hence the flux distribution varied as the square of the external diameter. Results with subcooled inlet conditions, which did not exhibit flow pulsations, indicated that the local critical heat flux for both increasing and decreasing flux shape was greater than the uniform critical heat flux at the same inlet onditions. In addition for the linearly decreasing flux, the onset of the critical condition occurred near the inlet as contrasted to the CISE tests where it was detected by wall thermocouples to set at the tube exit in all cases. To explain these results, the proposal is advanced by Styrikovich that the deviation of the upstream heat flux distribution from uniform causes an attendent deviation in vapor content in the boundary layer. Postulating that the vapor content in the boundary layer is effective in aiding or retarding the vapor film formation which causes the critical condition, higher upstream heat flux is predicted to promote achieving the critical condition while the reverse holds for lower upstream heat flux levels. This qualitative explanation has been modified and adopted in part in the analysis of the data of the present investigation.

Duke ${ }^{(14)}$ performed a series of critical heat flux and film heat transfer coefficient measurements with an exponential decreasing flux distribution ($M=27.0$) in 36 in. (91.5 cm) long tubes of $.187 \mathrm{in} .(.476 \mathrm{~cm})$ diameter in water at 535 to 1915 psia (37.5 to $134.5 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}$). The range of mass flow rates investigated was limited to the rather low values of . 01 to $.24 \times 10^{6}$ $\mathrm{lb} / \mathrm{hr} \mathrm{ft}{ }^{2}$ (13.6 to $325.0 \frac{\mathrm{~kg}}{\mathrm{~m}^{2} \mathrm{sec}}$). The results for both critical
heat flux and heat transfer coefficient were correlated by statistical techniques and hence application of these correlations outside the limited range of variables investigatied is very questionable.

Additional investigations with varied nonuniform filux distributions are presently being carried out in the USA and Sweden. The U.S. work is being performed at Babcock and Wilcox Co. on 72 in. (183 cm) long tubes of $.446 \mathrm{in} .(1.13 \mathrm{~cm}$) diameter in water at pressures of 1000, 1500, and 2000 psia ($70.2,105$ and $140.4 \frac{\mathrm{~kg}}{\mathrm{~cm}^{2}}$). The flux distributions include those of the previous Babcock and Wilcox work ${ }^{(5)}$ as well as several of the same distributions tested in annular configurations. The most recent progress report ${ }^{(15)}$: Indicated that the data agreed well with that of their previous program. Preliminary Babcock and Wilcox review of this latest data indicated that analysis based on local condition hypothesis was not valid whereas analysis based on the integrated average critical heat flux or the input power to the critical location looked promising. Such an analysis is a variation of the total input power equivalence but realistically considers only the power input to the critical location.

The Swedish work ${ }^{(16)}$ is being performed for inear increasing and decreasing flux distributions in . 236 in. and . 394 in. (. 6 cm and 1.0 cm) long tubes. The local burnout heat flux data is apparently predicted by the correlation of Becker ${ }^{(17)}$ when the nonuniform heat flux is accounted for in the related heat balance equation. The basic correlation is a
simplification of the results of Isbin ${ }^{(18)}$ which assumes the critical condition to occur at the axial position where the annular liquid film disappears. Becker achieves simplification of Isbin's model by assuming based on his own data for uniform tubes that the critical condition is a function of local conditions only. The success of this local condition hypothesis in predicting the critical heat flux for linearly increasing flux distributions is not surprising, since in this case the local flux and local enthalpy are both a maximum at the critical location. However, this is not the case for linearly decreasing flux where upstream burnout may occur and here the accurate predictions obtained may be significant. However a significant drawback of the entire procedure is that the critical location is not predicted and in fact the calculation of critical heat flux requires knowledge, presumably to be supplied from experimental data, of the critical location. However since the completed report is not yet available, comprehensive critical review of this method of analysis is not yet possible.

The most recently published work is that of Tong et al (19) in which the hypothesis is forwarded that the critical condition occurs when the enthalpy of a superheated liquid layer adjacent to the heated surface reaches a limiting value. The superheated layer is presumably formed and maintained by a bubble layer which isolates it from the core. The limiting enthalpy value of nonuniform flux cases was taken equal to that for a uniform flux. Using this approach a correction factor, F, was defined to enable prediction of nonuniform behavior from existing uniform data.

$$
F=\frac{q^{\prime \prime}{ }_{D N B} \text {, equivalent to uniform flux }}{q^{\prime \prime} \text { DNB, local in nonuniform flux }}
$$

The analytic expression for F is a function of (1) local critical heat flux, (2) a constant C which was determined to be a function of local conditions and (3) an integral of local heat flux weighted by the factor $\left.e^{-C\left(I_{D N B}\right.}-z\right)$. Thus we see F combines local (1 and 2) and integrated (3) effects in a manner determined by the model chosen. This method is applied to experimental data of many varied flux distributions yielding predicted F values within $\pm 25 \%$ of experimentally determined values. While this agreement does not significantly improve the accuracies available from other schemes, the method does yield the following significant result. In the subcooled and low quality region, the factor C is large and thus the product $C\left(l_{D N B_{2}}{ }^{-z}\right)$ is small. This reduces the weighting factor and results in local conditions primarily determining the critical condition. Conversely for high qualities, C is small and integrated conditions primarily determine the critical condition. Using a basically different model for the critical condition, this same dependence of the critical condition on local versus integrated conditions is obtained in the present work.

From the foregoing review of the literature, we see that most attempts to deal with nonuniform flux effects have been based a priori on a concept that the critical condition is a phenomenonrelated to either local or integrated conditions. Significantly these attempts have satisfactorily predicted behavior over only narrow parameter ranges. In addition their apparent
successful interpretations of similar data from diametrically opposite viewpoints has lead to much confusion. The efforts of Becker ${ }^{(16)}$ and Tong ${ }^{(19)}$ while not yet pointing the way to a general satisfactory solution of the problem, have been based on postulated models of the heat transfer and critical phenomenon. In the case of Tong in particular, the application of the model itself to the various nonuniform flux distributions determines the relative importance of local versus integrated conditions. Such an approach seems to be the most reasonable method of analysis and it is along these lines that the subject investigation has been directed. However, to fully comprehend the formulation of the model which has been applied, it is necessary to review what is known regarding the flow of water and steam In heated tubes. In the next chapter, therefore, the subject of two phase flow in tubes with heat addition will be discussed as it relates to the subject experiment.

CHAPTER II

TWO PHASE FLOW WITH HEAT ADDITION
To provide a sound basis for the developments presented in Chapter IV, the present understanding of two phase flow in tubes with heat addition will be reviewed.

2.1 Flow Regimes

Consider a cylindrical tube with vertical upflow of water under forced convection being electrically resistance heated. Adapting the discussion of Milloti ${ }^{(20)}$ let us review with reference to Fig. 4 the dominant flow regimes and associated heat transfer mechanisms which will ideally exist along the tube.

Coolant water entering the bottom of the tube is below the saturation temperature corresponding to its pressure. In Section 1, where subcooled water exists forced-convection governs the heating process.

As the water temperature approaches the saturation value, the surface temperature reaches the saturation temperature. As soon as the surface temperature exceeds the saturation temperature by a few degrees, the liquid immediately adjacent to the heated surface becomes superheated. In this condition, if the degree of superheat is sufficient, bubbles can form along the surface at suitable nucleation sites. Under certain conditions bubbles have been found to slide along the wall surface in the direction of flow. As the bubbles grow larger, they detach from the wall and enter the fluid stream where they collapse because of the cooler buik stream temperature. This Section, 2, is the subcooled nucleate boiling region.

When the bulk stream temperature reaches saturation, the bubbles can now be sustained in the turbulent flow of water. This Section, 3, is the saturated nucleate boiling region characterized by very high heat transfer rates. It is in this region that the quality of the two-phase flow begins to increase. The bubbles cause a very high turbulence in the superheated liquid, as they grow and detach themselves from the wall. This intense turbulence of the liquid upon the surface accounts for the high heat transfer rates in this bubble flow region. As more and more bubbles form at the wall and join the bulk stream, they start to coalesce and form larger bubbles. This tendency is expected, because a large bubble has less surface area than the equivalent volume of small bubbles and thus there is a tendency for bubbles to agglomerate. The flow is now unstable under all conditions, and eventually slugs of intermittent water and steam give the hydrodynamic pattern called slug flow as shown in Section 4.

Downstream from Section 4, the steam slugs begin to predominate and the steam increases in proportion to the water to the point where it can now be considered the continuous phase. A thin film of slow moving superheated liquid forms on the wall, while the steam flows in the central core. The liquid film thickness is of the order of thousandths of an inch and has a wave-like surface. The steam moves with a much higher velocity than the liquid film, resulting in high heat transfer coefficients and an annular slip-type flow shown in Section 5. There is usually also a spray of small droplets in the steam core, hence, the name spray-annular flow region. Through Section 5,
the liquid film flow rate on the wall decreases due to net entrainment of liquid from the film and evaporation of the film. Depending on the local heat flux and quality, nucleation can also occur within the thin liquid film. Heat transfer can be though of primarily as conduction through the liquid film with evaporation at the liquid-vapor surface.

When Section 6 is reached, the liquid film has disappeared, the wall is dry, and one finds tiny droplets of water in the steam. As soon as the liquid film is destroyed and the wall dry, the evaporative cooling of the wall breaks down, causing a very large decrease in the heat transfer coefficient with a correspondignly large increase in wall temperature. In Section 7, single-phase dry saturated or superheated steam is present. Because only single-phase steam is present in this region, it can be considered a film boiling region. However, the heat fluxes which can be carried under this condition are considerably lower than those which can be carried with nonfilm boiling.

From this discussion, it is seen that the critical condition can be caused by at least two different mechanisms, (I) in the subcooled or low quality region by a vapor blanketing of the tube wall, or (2) in the high quality region by dryout of the liquid film. In fact, the occurrence of the critical condition can also be postulated to be caused by a nucleation induced disruption of the liquid film or by the instability characteristics of the slug region. Hence it is desirable
to quantitatively identify the existence of the various flow regimes possible and the transitions between these flow regimes. Flow maps exist for predicting this information for adiabatic systems but since the effects of heating tend to distort the regime boundaries, such maps are not an accurate representation of conditions with heat addition. Generally speaking, heating may be expected to promote the transitions between the regimes shown in Fig. 4 so that for given pressure and mass flow rates these transitions occur at lower qualities than in the adiabatic case. In particular the bubbly flow region may be suppressed and the flow may go directly from single phase to slug flow. Similarly the slug-annular transition may occur at lower quality. From limited results reported at high pressures by Suo ${ }^{(21)}$ and at low pressures by Lopina ${ }^{(22)}$, such expectations seem to be borne out.

With regard to the low pressure conditions of the subject tests, the corrections to an adiabatic flow map due to heating are small since the flow regime transitions occur at relatively low qualities. Considering the test conditions and the dimensions of the test sections, the relevant flow regime map for these experiments is presented in Fig. 5. The transitions pictured are limited to the transitions to annular from both bubble and slug.

At high mass velocities the annular transition is taken from the correlation of Baker. (24) For these conditions, the slug regime is suppressed and the transition occurs directly from bubbly to annular flow over the quality range of approxi-
maetly 6 to 10\%. It should be recognized that at a given mass flow rate this transition to annular flow is gradual and intermediate flow regimes are probably encountered before true annular flow is achieved. As Fig. 5 shows, this transition describes conditions in the region of the test conditions investigated. Due to non-adiabatic conditions, additional uncertainties in the actual location of the flow regime transition are introduced. Hence a mean value of 8% was chosen to characterise the annular transition for all three flow rates of the subject data.

For completeness, the annular transition at lower flow rates is also illustrated on Fig. 5. At these low flow rates, the transition is from slug to annular flow and was calculated from the correlation of Haberstroh and Griffith. (23) 2.2 Critical Heat Flux

Prediction of the critical heat flux for uniform flux distribution is necessary in this study for two reasons: (a) a uniform flux distribution correlation is required to evaluate published correlation methods for nonuniform flux distributions such as that of Janssen et $a^{(6)}$ and Lee ${ }^{(10)}$. (b) test runs with uniform distribution should be checked against available correlations to insure that operating procedures and the experimental rig are performing satisfactorily.

Unfortunately there is no existing low pressure (14.7 to 200 psia) quality range correlation which is applicable over a wide range of test conditions and geometries. In fact data in this region is limited to that of Lowdermilk and Weiland (25), Jens and Lottes (26), Lowdermilk, Lanzo and Siegel (27), Becker ${ }^{(28)}$, Becker and Persson (17) and Lopina (22). From this data, four correlations are available which use certain of this data as indicated below:

CORRELATION

DATA SOURCE

Lowdermilk, Lanzo and Siegel ${ }^{(27)}$

Von Glahn ${ }^{(29)}$

MacBeth (30)

Becker and Persson (17)

Lowdermilk, Lanzo and Stegel ${ }^{(27)}$

Lowdermilk, Lanzo and Siegel ${ }^{(27)}$
$\left.\begin{array}{l}\text { Lowdermilk and Weiland } \\ \text { Jens and Lottes }(26)\end{array}\right\}_{\text {psia }} 15$ Becker ${ }^{(28)}$

Becker ${ }^{(28)}$, Becker and Persson (17)

The correlation of Lowdermilk, Lanzo and Siegel (27) is based on their data obtained at inlet temperature of $75^{\circ} \mathrm{F}$, atmospheric exit pressure, and diameters from 0.051 inches to . 188 in . The correlation establishes two burnout regimes: a high velocity, low-exit quality regime for $G /(L / D)^{2}<150$ correlated

and a low velocity, high exit quality regime for $G /(L / D)^{2}>150$ correlated by

$$
(q / A)_{C R} D^{0.2}(L / D)^{0.85}=270 G^{0.85}
$$

The correlation of Von Glahn ${ }^{(29)}$ is intended to cover cryogenic fluids as well as water over the pressure range 14.7 to 2000 psia. The correlation is based on a relationship developed between X_{c}, a critical vaporization parameter, and a function consisting of several dimensionless groups. Specifically

$$
X_{c}=f \underbrace{\left[\frac{G D}{\left(\frac{L}{1}\right)^{1.3}}\right.}_{\begin{array}{c}
\text { Flow } \\
\text { Parameter }
\end{array}} \underbrace{\left.\frac{P_{r_{v}} 0.4}{\mu_{v}}\left(\frac{\rho_{e}-\rho_{v}}{\rho_{v}}\right) \quad{ }^{0.4}\left(\frac{\mu_{v}}{\mu_{L}}\right)^{1.7} N_{B}\right]}_{\begin{array}{c}
\text { Fluid Property } \\
\text { Parameter }
\end{array}}
$$

where $X_{c}=\frac{Q_{c}}{W \Delta H}$

$$
N_{B}=\frac{\sqrt{g} \mu_{v}^{2} \sqrt{\rho_{e}-\rho_{v}}}{\rho_{v}\left(g_{c} \sigma_{e}\right)^{1.5}}
$$

the functional relation f being graphically described in the NASA report.

The MacBeth correlation (30) also represents data as either a high-velocity or a low velocity regime with the boundary between regimes defined graphically. For a system pressure $\mathrm{p}<200 \mathrm{psia}$, and a $\mathrm{L} / \mathrm{D}<200$, the maximum mass velocity for existence of a low velocity regime is $.25 \times 10^{6} \mathrm{lb} / \mathrm{hr} \mathrm{ft}^{2}$. Thus the data for this report lies within the high velocity regime which is given as

$$
\mathrm{q} / \mathrm{A} \times 10^{-6}=\frac{\mathrm{A}+\frac{1}{4} \mathrm{CD}\left(\mathrm{~A} \times 10^{-6}\right) \Delta \mathrm{H}_{1}}{1+\mathrm{CL}}
$$

where

$$
\begin{aligned}
& A=y_{0} D^{y_{1}}\left(\mathrm{Gx} \times 10^{-6}\right)^{y_{2}} \\
& C=y_{3} D^{y_{4}}\left(\mathrm{Gx} 10^{-6}\right)^{y_{5}} \\
& D=\text { inches }
\end{aligned}
$$

The "y" coefficients obtained by MacBeth by computer optimization of data at various pressures are

15 psia
$\mathrm{y}_{0} \quad 1.12$
$\mathrm{y}_{1}-0.211$
$\mathrm{y}_{2} \quad 0.324$
$\mathrm{y}_{3} \quad 0.001$
$y_{4}-1.4$
$y_{5}-1.05$
1.77
-0.553
-0.260
0.0166
-1.4
-0.937

Finally the correlation of Becker ${ }^{(17)}$ as discussed in Chapter I covers the pressure range 142.5 to 195.0 psia. The correlation, which is based on extension of the flow model of Isbin ${ }^{(18)}$ is presented as curves of
$\frac{1}{q / A\left(\frac{\dot{m}}{F}\right)^{1 / 2}}$ versus $X_{\text {CRIT }}$
where $X_{C R I T} \equiv$ the steam quality at the critical location $\mathrm{q} / \mathrm{A} \equiv$ surface heat flux, $\frac{\mathrm{kJ}}{\mathrm{m}^{2} \mathrm{~S}}$

$$
\frac{\dot{m}}{F} \equiv \text { mass velocity, } \frac{\frac{\hbar}{k}}{\mathrm{~m}^{2} \mathrm{~S}}
$$

Each of thescerrelations together with the uniform flux distribution data of this report are plotted in Figs. 6, 7, and 8. The wide variation in predicted critical heat flux values
is obvious. In addition the dependence of critical heat flux on pressure for the MacBeth correlation is opposite to that for the Becker and Von Glahn correlations. In appraising these figures the following conclusions can be drawn (the deviation between stable and unstable points will be discussed in Chapter III).
(1) The MacBeth correlation contains only the early and limited data of Lowdermilk and Weiland ${ }^{(25)}$, which is suspect to flow instabilities as described in the later report by Lowdermilk (27), and the data of Jens and Lottes ${ }^{(26)}$ which was taken at low flow rates (. 01 to $.04 \times 10^{-6} \mathrm{lb} / \mathrm{hr} \mathrm{ft}{ }^{2}$) in large diameter (. 94 in) tubes. Hence this correlation would not be expected to yield reasonable results for the subject test conditions.
(2) The Von Glahn and Lowdermilk correlations are based on Lowdermilk ${ }^{(27)}$ data which had limited diameters (up to .188 inches) and a single subcooling. Thus as discussed by Lopina (22) for the test diameters of the subject test data, these correlations are not applicable.
(3) The Becker correlation yields good agreement with results at low flow rates ($G=0.5 \times 10^{6} \mathrm{lb} / \mathrm{hr} \mathrm{ft}{ }^{2}$). As flow rate increases, the agreement becomes poorer.
(4) The 250 psia prediction of MacBeth's correlation agrees well with the data. However the data is at generally lower pressures than the pressure for which the correlating line was established.

These results indicate that the available low pressure correlations do not appear to be based on the correct fundamental variables. Hence although each is satisfactory over the range of data from

-27-

which it was derived, none can be safely extrapolated to the desired region of the subject test conditions. Therefore, the best empirical procedure for representing the present data appears to be use of a simple equation of the form, $(q / A)_{C R}=C_{1}+C_{2} \Delta H_{\text {INLEI }}$ where the constants can be determined from the data of Figures 6, 7 and 8.

CHAPTER III

EXPERIMENTAL PROGRAM

3.1 Description of Apparatus

The following section contains a description of the experimental facility and test sections which was used in this investigation. This was divided into four categories: the hydraulic system, the power supply, the associated instrumentation and the test sections. Although detailed descriptions of the apparatus are available in other reports, (31) they are repeated here for the convenience of the reader. The basic apparatus had been designed and constructed in a previous study by Bergles. (32)

3.1.1 Hydraulic System

A schematic of the flow loop is shown in Fig. 9. The pipings and fittings, all of brass and stainless steel for corrosion resistance, are erected around a test bench constructed of Dexion slotted angles and plywood. Rayon reinforced rubber hose was used where flexible connections were required. Flow circulation is provided by a Fairbanks Morse two-stage regenerative pump (260 psi at $3.6 \mathrm{gal} / \mathrm{min}$) driven through a flexible coupling by a 3 HP Allis Chalmers induction motor. To avoid contamination of the system water, the pump was fitted with special seals of teflon-impregnated asbestos. A rellef valve set for 300 psi protected the pump casing from overpressure.

The main flow loop contains a Jamesbury ball valve to control the overall pressure drop. The test section line, installed in parallel with the main loop can be isolated by means of two more Jamesbury ball valves. To limit coolant
loss upon test section failure, upstream and downstream check valves were built into the test section connector pieces. The upstream valve contains a spring sized to hold the valve open during normal operation with system pressure on either side of the valve but closed at test section failure with system pressure upstream and ambient pressure downstream. The downstream valve is simply held open by system pressure during normal operation but closed at test section failure by the pressure difference between the back system pressure and the ambient test section pressure. The test section flow rate is controlled by means of Jenkins needle valves set just upstream and downstream of the test section itself. The valve downstream is particularly useful in adjusting test section pressure. The test section line also contains two basic Fischer-Porter flowmeters with the appropriate isolating valves. Four Chromalox heaters of approximately 6 kw . each are also provided to control the test section inlet temperature. Three of these are controlled simply with "off-on" switches while the fourth can provide a continuous range from 0 to 6 kw . by means of a bank of two variacs mounted on the test bench. Pressure fluctuations at the outlet of the pump are damped out by means of a 2.5 gallon Greer accumulator charged with nitrogen to an initial pressure of 40 psi. This accumulator contains a flexible bladder-type separator which prevents the nitrogen from being absorbed by the system water. A Jamesbury ball valve isolates the accumulator from the loop at shut-down.

Since the system is closed loop, the heat added to the system water is rejected to a shell-and-tube heat exchanger
connected to a city water line. Due to seasonal temperature variations, the minimum operating temperature varies from approximately $50^{\circ} \mathrm{F}$ in the winter to $75^{\circ} \mathrm{F}$ for summer operation. Continuous deionization and deoxygenation is provided in a parallel loop containing four resin beds, two of which provide deionization and the other two, deoxygenation. The conductivity of the loop water may be maintained at 1.5×10^{6} ohm-cm as read on a Barnstead meter. In order to insure a minimum of dissolved air in the system, a 5 gallon degassing tank was provided with five electrical heaters (3-220 VAC and 2-110 VAC). This tank was also used to provide makeup water to the system. A storage tank for filling the system and degassing tank was mounted above the degassing tank and could be filled with distilled water from standard 5 gallon bottles with a small Hypro pump. Both the storage tank and the degassing tank were equipped with glass sight gages so that the proper levels could be maintained.

3.1.2 Power Supply

Power was supplied to the test section by means of two 36 kw. Chandrysson externally excited generators, each capable of delivering 3000 amperes at 12 volts. The generators are driven by 440 volt- 3 phase- 600 rpm synchronous motors.

The power could be regulated from zero to maximum power as desired through a portable control console. The generator outputs were connected in series and the output from one was added to or subtracted from the output of the other. Watercooled shunts, installed in parallel with the test section, eliminated the shock of a sudden open circuit caused by a test section
burnout.
An existing buss-bar system was used, with the addition of air cooled copper braided cables just at the test section. The use of these flexible cables permitted flexibility in the size of the test section which could be accomodated. At the upstream end of the test section, the cable assembly is clamped to an aluminum plate to which a rigid aluminum test section holder is attached. At the downstream side, the connection to the test section holder is accomplished by a flexible braided conductor. This entire connection to the test section was put in tension by a spring arrangement to assure adequate allowance for thermal expansion of the test section. The test section holders were made of aluminum plate in two segments which, when bolted together, clamped to a bushing surrounding the test section. The downstream end of the test section was connected to the piping with rubber hose to provide electrical insulation and increased flexibility.

3.1.3 Instrumentation

Instrumentation was provided to monitor the steady-state and transient conditions throughout the system. Pressure gages on the main loop, as indicated in Fig. 9, aid in adjusting the pressure level in the test section and in determining system stability. A thermocouple was installed in the degassing tank to monitor the water temperature during degassing operations. Another at the discharge of the pump insured that the water temperatures in the deionizing beds never exceeded $140^{\circ} \mathrm{F}$. A varlety of metering tubes and floats which could be installed interchangeably in the basic Fischer-Porter flowmeter housing
provided measurement of the test section flows from 1.5 to $4000 \mathrm{lbm} / \mathrm{hr}$. The results were calibrated at installation and checked periodically against the initial calibration.

The test section itself was instrumented with thermocouples to record inlet and outlet water temperatures. In both cases, the thermocouples were located at positions where the flow was well-mixed. At the downstream end, the thermocouple was located far enough from the exit of the heated section so that it could be safely assumed that the vapor fraction is completely condensed.

Thermocouples were constructed from Leeds and Northrup 24-gage duplex copper-constantan wire. Calibrations were performed and deviations from N.B.S. standard tables were found to be slight so that no corrections were necessary. All of the thermocouples were connected to a common ice junction through a twelve position Leeds and Northrup thermocouple switch. The output could be read on either a potentiometer or a recorded. The recorder is a pen-type, single channel instrument manufactured by Minneapolis-Honeywell Brown. There are five manually selected ranges for $0-6,5-11,10-16,15-21$, and $20-26$ millivolts. Occasional calibration against the potentiometer insured the accuracy of the recorder to within . Ol millivolts.

Test section pressures, both upstream and downstream were monitored on $4 \mathrm{l} / 2$ inch U.S. gage supergages with $0-200 \mathrm{psi}$ range. Each gage was checked on a dead weight tester and callbrated to an accuracy of approximately . 5 psi over the entire range. They were checked against one another periodically at various static pressure levels under zero flow conditions.

Porous-plug snubbers were provided to protect the geges from severe pressure fluctuations.

The heat input to the test section was computed from measurements of the voltage drop across the heated length and the current to the section. The voltage drop was read on a Weston, multirange d.c. voltmeter with a specified accuracy of $\pm 1 / 2 \phi$ of full scale. The current was inferred from the voltage drop across an air-cooled N.B.S. shunt with a calibrated conductance of $60.17 \mathrm{amps} / \mathrm{m} . \mathrm{v}$.

3.1.4 Test Section

The required flux shapes were obtained by machining the tube outside diameter to obtain the desired variation in wall cross-sectional area since electrical power generation is directly proportional to resistance. The design was made within the limits imposed by (a) available power and hydraulic supply (b) test conditions and geometries desired for investigation and (c) materials having adequate resistivity and machinability. A discussion of the interplay between these variables and the final test section designs is presented in Appendix C. Confirmation of the shape of the experimental flux distribution was obtained on a sampling basis by room temperature incremental resistance measurements and by 100\% inspection of resultant outside diameter dimensions. Details of the results of these procedures and discussion of other factors affecting the shape of the experimental flux distribution are included in Appendix A. See Figure 10 for schematic presentation of the various test sections used in the investigation.

3.2 Experimental Procedures and Experience

3.2.1 General Loop Operation

Many aspects of the experimental procedure, particularly the installation of test sections and final preparation of the loop for operation were common to all types of runs. Distilled water was pumped into the storage tank from the standard five gallon bottles. The system and degassing tank were filled by gravity. Vents on the flowmeter, preheaters, test section, exit plenum, and the deionization tank were opened to allow the displaced air to escape. The degassing tank vent was open at all times. The other vents were closed when no further bubbles were seen. The pump was then turned on and all valves opened and closed several times to dislodge any remaining air pockets, The vents were then opened and closed again in turn until airfree water was obtained at each vent. Visual observation of the flow through the glass flowmeter tube aided in determining when the system was free of air.

At this point, all the degassing tank heaters were turned on, and water was circulated through the system. The temperature of the degassing tank water was monitored on the recorder, and all but one of the heaters turned off as the boiling point was approached. If this was not done, the degassing tank was found to boil too vigorously with the result that considerable overpressure built up in the tank and a large amount of water was forced out through the vent. When boiling occurred, water from the loop was bypassed into the degassing tank. The amount of flow was regulated so that a small but continuous
flow of steam issued from the vent hose. The system water was effectively degassed by being dumped into the boiling water at the top of the degassing tank. This was continued until the temperature in the loop rose to approximately $180^{\circ} \mathrm{F}$. Care was taken to shut off flow to the deionization tank before the loop temperature exceeded $140^{\circ} \mathrm{F}$. The entire procedure took about 30 minutes. A standard Winkler analysis, described in Reference (32), indicated that this method of degassing reduced the air content to less than .1 cc air/liter. Upon completion of the process, the remaining tank heaters were shut off, and the heat exchanger turned on. The flow of system water to the degassing tank was turned off as soon as steam stopped coming out the vent. The system was then ready for operation. This process was repeated at the beginning of each day of operation, where the degassing take was refilled, or when air bubbles were visible in the flowmeter. The daily degassing was necessary since the degassing tank is vented to the atmosphere, and the water in the tank would eventually become saturated with air ($18 \mathrm{cc} /$ liter).

The system was then operated for at least 15 minutes at zero power before taking measurements. At the end of this time the system water was completely cool and had been thoroughly circulated through the deionizers. This time was also used to allow the generators to warm up. If the generators were used immediately after starting, fluctuations in the power level were much larger and harder to control. If a particularly low resistance test section was in place, it was necessary to disconnet one of the power leads until the generators had come up to speed. If this was not done, high
voltage drops could result from the fact that the two generators did not speed up in unison and on occasion could lead to unwanted burnouts.

At shutdown, it was necessary to isolate the accumulator from the loop. Otherwise, the water would be forced out of the accumulator, into the loop, and eventually out through the degassing tank vent. The pump and generator were connected together electrically so that the generators would be shut off if the pump should be turned off accidentally or due to a power failure. However, the generators could be shut off independently by means of a switch on the control console. Turning off the generators or the pump also interrupted the power to the preheaters. This was a safety precaution to prevent burning out the heater elements should they be left on with no flow.

3.2.2 Loop Operation for Critical Heat Flux Data

At the beginning of each test run, the bypass flow was reduced to maximize the pressure drop taken across the needle valve upstream of test section. A large upstream restriction pressure drop was desired to minimize the occurence of flow oscillations. These oscillations did occur early in the test program and steps taken to analyse and eliminate them will be discussed in Section 3.2.4. For low mass flow rates ($G=0.5 \times 10^{6}$) a $3 / 8^{\prime \prime}$ exit line was used and desired exit pressure maintained throughout the entire test run by adjusting the needle valve in the line. For higher mass flow rates ($G=1.0$ and 2.0×10^{6}) a $1^{\prime \prime}$ exit line was used but in this case since valve manipulation
did not allow adequate adjustment of exit pressure, the exit pressure was not directly set but allowed to vary within the desired range with the power level and inlet subcooling.

With the mass flow rate and test pressures established, the generators were turned on and power applied to the test section. After a heat balance was taken, power level was gradually increased simultaneously with adjustment of inlet temperature by operation of the loop preheaters. This adjustment was complete before the test section power achieved approximately 50% of the anticipated burnout power. In the final approach to burnout, mass flow rate and inlet temperature were maintained constant as power was increased in small steps. Test section inlet and exit pressures were maintained approximately constant at low flow rates but increased at high flow rates as power increased. At each step in power level, values of all these variables were recorded manually. Since only inlet temperature was automatically recorded only values of inlet temperature and test section voltage (meter was continually viewed) were noted at burnout. The values of all other parameters at burnout were obtained by extrapolating data recorded at previous power steps.

When burnout did occur, the generators, preheaters and pump were turned off and the test section line isolated from the main loop. When a new test section was inserted, a small volume of undegassed water was necessarily allowed into the system from the fill tank because the test section line was above the level of the degassing tank. Care was taken to bleed the system under such circumstances to minimize the
amount of air entrapped in the system. When the pump was restarted, the flow meter was observed to ensure that air bubbles were not present. This departure from the initial thoroughly degassed conditions for certain test runs was considered acceptable since critical test results should not be effected by slight differences in the degassed condition of the loop water.

3.2.3 Two Phase Heat Transfer Coefficient Measurements

In addition to burnout measurements, an attempt was made to measure two phase heat transfer coefficients. As discussed in Chapter IV, such data is necessary for the critical heat flux model presented. For these measurements, a test section with two independent power supplies attached was used. The inlet portion was heated with the generators described in Section 3.1.2, while a 1.5 inch portion at the exit was heated by a motor generator set capable of delivering about 17 volts at 700 amperes. The power to the inlet section was adjusted to yield a desired quality condition in the exit portion. The exit section or nucleation section was designed to minimize the heat input to the fluid (and hence the quality change) but maximize the available heat flux which could be achieved. By measuring temperature differences, $\mathrm{T}_{\text {WALL }}{ }^{-T}$ SATURATION $^{\prime}$ at pre-established values of pressure, mass flow and quality, determination of heat transfer coefficients for these conditions was attempted.

The experimental difficulties encountered for the test conditions explored i.e. steam-water mixtures at $X=.10$ to .60 , $P=100$ psia, $G=0.5$ to $2.0 \times 10^{6} \mathrm{lbm} / \mathrm{hr} \mathrm{ft}{ }^{2}$ and $\mathrm{D}=, 214$ inches, were
a) The mechanical strength of the nucleation portion of the test section was poor due to the thin wall
required to achleve high heat fluxes by resistance heating with the available power supply. The wall thickness could be increased by decreasing D, or by heating the test section indirectly by conduction from a resistance coil wound around the test section.
b) The exit pressure could not be maintained constant for flows in the quality region thus causing $T_{\text {SATURATION }}$ to vary. This may be able to be corrected by installation of a pressure regulating valve, although it appears that the configuration - and hydraulic characteristics of the existing loop prevent adequate correction of this problem.
c) Accurate measurement of low temperature differences, .5 to $3^{\circ} \mathrm{F}$, was not possible due to (b) above as well as inherent difficulties in accurately measuring the wall temperature, even with a guard heater arrangement. Although some data was obtained it was generally not internally consistent, particularly in the low temperature difference regions of interest. Hence, the heat transfer coefficients obtained were not considered accurate and therefore not used further in this work.

3.2.4 Correction of Oscillatory Instabilities

Certain of the data obtained during the loop checkout with uniform heat flux distribution exhibited critical heat flux values (see Figs. 8 and 9) significantly lower than the bulk of other data. In addition during certain of these experimental runs, the flow rate was observed to oscillate as the
critical condition was approached.
Although no compressibility was deliberately inserted in the system between the control valve and the heated section, it was felt that enough compressibility was present upstream of the control valve in the form of preheaters and accumulators to initiate an instability if other conditions were also present. These conditions reduce per the theory of Maulbetsch (31) to the requirement that the slope of the overall pressure drop vs flow rate curve goes to zero. Overall pressure drop here includes both the control valve and whe heated section. Check of the suspect points by this method confirmed that the instabilities resulted from this cause. A sample graphical comparison is given on Fig. 11 of the heated section versus control valve pressure drop which shows that the overall slope does go to zero at the flow rate where oscillation and the critical condition occurred. Similar calculations along with some experimental measurements were made on the points which were belleved to be valid and the overall slope was established as positive.

To eliminate this oscillatory instability based on this theory, an increase in the slope of the control valve characteristic or a decrease in the slope of the test section characteristic is necessary. Since the test section characteristic is determined by the desired test conditions, only modification of the control valve characteristic is possible. For the loop available, the pump delivery pressure and the heat exchanger condensing pressure (15 psia) limit the overall pressure drop available which is distributed between the control valve, test section, and other line losses. Hence, to increase the control
valve pressure drop, extraneous line losses were reduced by increasing the exit line diameter from $3 / 8^{\prime \prime}$ to $I^{\prime \prime}$. With this modification, stable data at the higher flow rates was obtained. However for conditions of low inlet subcooling, instabilities were encountered for certain test sections exhibiting rapid axial variation in heat flux and data under these conditions could not be obtained. Apparently, in these cases the test section pressure drop vs flow rate characteristic became equal to the control valve characteristic thus causing the slope of the overall pressure drop characteristic to go to zero. It should be noted that this problem could probably have been corrected and data for these cases obtained by installation of a higher head pump which would permit increased pressure drop to be taken across the control valve.

3.2.5 Critical Flow Considerations

Since the sonic velocity can be quite low in a two phase flow, it is desirable to check whether or not a choked flow condition existed. Such a condition could lead to erroneous results regarding critical heat flux levels for various operating conditions. Using the slip equilibrium model of Fauske ${ }^{(33)}$, from Fauske's Fig. 4, we see that the minimum critical velocity is achieved at minimum pressure and maximum quality. Calculating this minimum critical velocity for composite worst case test conditions, we obtain the results shown below. Basing the calculation on a hypothetical composite case which would yield a higher predicted critical velocity than any real case assures that the results obtained are conservative estimates. Since the actual
-42-

Actual MassVelocity	Composite Worst Case				Predicted Critical Velocity	Actual is \% of Predicted Critical Velocity
		Minimum Observed		Maximum		
	Tube		Tube	Observed		
	Num.	Pressure	Num.	Quality		
1b		兂			1b	
$556 \overline{\mathrm{sec} \mathrm{ft}^{2}}$	2554	72	1256	. 35	$620 \overline{\mathrm{sec} \mathrm{ft}^{2}}$	90\%
278	1502	57	508	. 52	320	87\%
139	514	85	1552	. 80	300	45\%

velocities are in all cases less than the predicted critical velocities, it is reasonable to conclude that the critical velocities were not achie ved during the experimental program. Direct confirmation of this conclusion by varying the test section exit pressure to achieve a critical velocity was not possible due to the operating limitations of the test loop.

CHAPTER IV

PRESENTATION AND DISCUSSION OF RESULTS

4.1 Experimental Results

The complete range of variables investigated was presented in Chapter I. Basically for each axial flux distribution, critical heat flux tests were conducted at three mass velocities, $G=0.5,1.0$ and $2.0 \times 10^{6} 1 \mathrm{bm} / \mathrm{hr} \mathrm{ft}^{2}$ and a range of inlet subcooling conditions. The total number of tests, each carried to physical failure of the test section was approximately 144. A complete listing of the experimental data is presented in Appendix F

The basic experimental results are presented as:

1) the total power applied to a channel to attain a critical condition (defined in this investigation as physical destruction of the aluminum test section). This parameter is of particular interest since maximization of $Q_{\text {crit }}$ is a prime objective in engineering design.
2) the physical location of the critical condition (defined in this investigation as the failure location in the aluminum test section).

The test results for each of the three mass velocities are presented in terms of $Q_{\text {crit }}$ and critical location in Figures 12 through 22. It should be noted that in all cases the inlet condition was subcooled and the total critical power, $Q_{\text {crit }}$, in these figures is presented as a function of the independent variable, inlet subcooling $\Delta H_{\text {in }}$.
4.1.1 Total Critical Power

Considering the uniform flux results as a basis for reference, the following observations of $Q_{\text {crit }}$ are apparent from

Figures 12, 15, and 17 which present cosine flux distribution behavior and Figures 21 and 22 which summarize behavior of the remaining flux shapes.

$Q_{\text {crit }}$ - Cosine and Other Flux Distributions with Maximum Flux Near or at the Test Section Inlet

The value of $Q_{\text {crit }}$ for these distributions is general 10\% larger than $Q_{\text {crit }}$ for uniform flux data. However, for the inlet flux peak distribution, the vaiue of $Q_{\text {crit }} d i d$ drop to 10% less than $Q_{\text {crit }}$ for uniform flux data as the mass flow velocity increased to $G=2.0 \times 10^{6} \mathrm{lbm} / \mathrm{hr} \mathrm{ft}{ }^{2}$ 。 As the inlet condition approaches saturation, $Q_{\text {crit }}$ for these nonuniform flux distributions decreases in the same manner as the uniform flux data. There is no apparent dependence of $Q_{\text {crit }}$ between distributions of the same shape with different M values (ratio of maximum to minimum flux). For cosine flux distributions in particular, no apparent stratification exists between the results for $M=$ 2.27, 4.0 and 5.75. These results indicate that the total critical power, $Q_{\text {crit }}$ cannot be significantly increased by tailoring of the flux distribution to an optimum shape.
$Q_{\text {crit }}$ - Flux Distributions with Maximum Flux Near or at the Test Section Exit
The value of $Q_{\text {crit }}$ for these distributions can be significantly less than $Q_{c r i t}$ for uniform flux distributions at the same operating conditions. The deviation depends on the degree of inlet subcooling, $\Delta H_{i n}$, the mass velocity, G, the flux shape, and its associated M ratio. For the maximum inlet subcooling investigated, about $-300 \mathrm{btu} / 1 \mathrm{bm}$, Table IV-A below summarizes the maximum decreases observed in total critical power.

Flux Distribution
MASS VELOCITY, G, LBM/HR-FT ${ }^{2}$

	0.5×10^{6}	1.0×10^{6}	2.0×10^{6}
Linear increasing $(M=2.27)$	-20%	-5%	-5%
Linear increasing $(M=5.75)$	-35%	-15%	-30%
Peak $(M=5.75)$	-15%	-15%	-30%

> Table IV-A
> MAXIMUM DECREASE IN ${ }^{\text {Q CRIT }}$ COMPARED TO UNIFORM FLUX DISTRIBUTION RESULTS

As the inlet condition approaches saturation, the deviations of Table IV-A decrease, resulting in approximately equal values of $Q_{\text {crit }}$ for uniform and nonuniform flux distributions at low inlet subcooling levels.

The increased deviations with increased M for a given flux shape are clearly apparent in the table above. This dependence is observed for results in the annular regime and several results which were obtained in the subcooled region. In fact the test data show (Fig. 21 and 22) that if the flux distribution is severely peaked, the flux level can be high enough to cause a critical condition at a location where subcooled conditions prevail. Thus the actual flux distribution can cause both (1) decreased $Q_{\text {crit }}$ compared to uniform flux data when both data are in the annular regime and (2) severely decreased $Q_{c r i t}$ due to a subcooled critical condition which occurs at a high flux location of the nonuniform distribution.

Similar results have also been obtained by other experimenters at higher pressures. Portions of the data of Bertoletti (11), Swenson (5) and the most recent Babcock and Wilcox inves-
tigation (15), are presented in Figures 23, 24 and 25 which confirm the principal observations of this study, namely

1) For cosine and other distributions with the maximum flux near or at the test section inlet, $Q_{\text {crit }}$ is within $\pm 10 \%$ of uniform flux data and decreases as $\Delta \mathrm{H}_{\text {in }}$ approaches the saturated inlet condition.
2) For distributions with the maximum flux near or at the test section exit, $Q_{\text {crit }}$ can be up to 30% less than the uniform flux data at large inlet subcoolings. This deviation approaches zero as $\Delta \mathrm{H}_{1 \mathrm{n}}$ approaches the saturated inlet condition.

4.1.2 Critical Location

The location of the critical phenomenon for each test section was also determined experimentally and is presented in Figures 14, 17, and 20. The tabulation of Appendix F in some cases indicated two critical locations. In these cases, before effective corrective action was taken, the test sections were somewhat bowed during testing and upon attaining the critical condition, both a thermal failure and mechanical failure occurred. The thermal failure was characterized by melting of approximately an $1 / 8^{\prime \prime}$ wide by $1 "$ long (axial) rectangular portion of the test section. In Appendix F, the actual critical location is reported as the midpoint of the thermal failure with its axial extent listed as the \pm value. The mechanical failure was a complete circumferential shearing of the test section characterized by a Jagged unfused cleavage. In certain cases, which are noted, a double thermal failure did occur. In all other cases, the first

$$
-47-
$$

listed location, is the thermal failure location and this is used in subsequent analysis. These results can be summarized as follows.

CRITICAL LOCATION - UNIFORM FLUX
The critical location occurred within 1% of the test section exit, the slight deviation probably being attributable to axial conduction effects.

CRITICAL LOCATION - MONOTONICALLY INCREASING FLUX (i.e. LINEAR INCREASING)

The critical location occurred within 1% of the test section outlet except for one case. In this case, test section 1204 which was tested at $G=1.0 \times 10^{6}$ and $\Delta H_{\text {in }}=-160 \mathrm{BIU} / \mathrm{LBM}$, the critical location was slightly upstream from the exit (. $7 \pm .5$ inches from exit of the 30 inch test section). CRITICAL LOCATION - FLUX PEAK ALONG TEST SECTION AT ANY LOCAtion excluding exit (i.e. COSINE, PEAK NEAR INLET, PEAK NEAR EXIT, LINEAR DECREASING)

The critical location for these flux distributions always occurred between the flux peak and the test section exit or at the test section exit. The critical location is dependent on inlet subcooling, $\Delta \mathrm{H}_{\text {in }}$, and moves upstream from the tube exit with increased subcooling. In addition, for a given flux shape, the critical location appears also dependent on M. For example for cosine distributions the critical location is further upstream for M values of 2.27 and 5.75 versus 4.03 . For linear decreasing flux shape, increased M value (5.75 versus 2.27) results in upstream movement of the critical location.

The data of other investigators generally confirm these results particularly the upstream movement of the critical location for the peak inlet flux distribution with increased inlet subcooling. However precise determination of the critical location was not generally obtained due to the burnout detection systems used. The CISE investigators (11) on the other hand, indicated that in all cases the onset of the critical condition occurred at the test section exit.

The possibility that the onset of the critical condition occurred at the exit but moved, causing a physical failure upstream, was considered and investigated in this work. Differential thermocouples were used with the point of interest and an unheated exit portion of the test section as the two opposing inputs. A series of thermocouples were simultaneously used to monitor several locations between the tube exit and the expected burnout location. The output from these thermocouples was recorded on a multichannel recording oscillograph by galvanometers with natural frequencies ranging from 50 to 300 cycles per second. However, these traces did not show movement of a wall temperature excursion from the tube exit to the critical location. Thus it appeared that the critical condition occurred initially and only at the location of tube failure.

4.1.3 Reproducibility of the Data

Several runs were made at almost identical inlet and mass velocity conditions to establish the reproducibility of the data. These results, tabulated below in Table IV-B, indicate that differences exist in total critical power, $Q_{\text {crit }}$, up to $\pm 10 \%$ and in critical location up to 4.0 inches. Note that

Test Section	Date	Flux Shape	M	$\frac{\begin{array}{c} \mathrm{G} \\ \mathrm{LBM} \end{array}}{\text { HR } \mathrm{FT}^{2}}$	$\begin{gathered} \Delta \mathrm{H}_{\text {inlet }} \\ \frac{\text { BrU }}{\mathrm{LBM}} \end{gathered}$	$\begin{gathered} Q_{\text {crit }} \\ \times 10^{-5 \frac{5 H U}{h r}} \end{gathered}$	$\underset{\text { Diff. }}{\neq}$	Critical Location Inches (From Inlet	Inches Diff.
$\begin{aligned} & 142 \\ & 135 \end{aligned}$	$\begin{array}{r} 10 / 21 \\ 9 / 25 \end{array}$	UNIFORM	1.0	$\begin{aligned} & 2.0 \times 10^{6} \\ & 1.99 \times 10^{6} \end{aligned}$	$\begin{aligned} & -271.2 \\ & -270.8 \end{aligned}$	$\begin{aligned} & 2.029 \\ & 2.232 \end{aligned}$	10\%	$\begin{aligned} & 29.8 \pm 0 \\ & 29.6 \pm 0 \end{aligned}$. 2
$\begin{aligned} & 310 \\ & 333 \end{aligned}$	9/3 9/23	COSINE	4.03	1.0×10^{6}	$\begin{aligned} & -246.5 \\ & -246.9 \end{aligned}$	$\begin{aligned} & 1.435 \\ & 1.538 \end{aligned}$	7.2\%	$\begin{aligned} & 24.0 \pm 0 \\ & 27.6 \pm .4 \end{aligned}$	3.2 to 4.0
$\begin{aligned} & 511 \\ & 512 \end{aligned}$	$\begin{aligned} & 10 / 14 \\ & 10 / 14 \end{aligned}$	COSINE	5.75	0.5×10^{6}	$\begin{aligned} & -159.2 \\ & -154.4 \end{aligned}$	$\begin{aligned} & 7.404 \\ & 6.837 \end{aligned}$	8.3\%	$\begin{aligned} & 24.3 \pm .2 \\ & 22.6 \pm .2 \end{aligned}$	$\begin{array}{r} 1.3 \\ \text { to } \\ 2.1 \end{array}$
$\begin{aligned} & 1271 \\ & 1252 \end{aligned}$	$\begin{aligned} & 11 / 12 \\ & 11 / 19 \end{aligned}$	LINEAR DECREASING	2.27	1.0×10^{6}	-249.9 -247.5	$\begin{aligned} & 7.572 \\ & 7.988 \end{aligned}$	5.5\%	$\begin{aligned} & 26.4 \pm 1.4 \\ & 25.5 \pm 1.0 \end{aligned}$	$\begin{array}{r} 0 \\ \text { to } \\ 3.3 \end{array}$

the error analysis of reference A indicates a probable variation of $\pm 3.4 \%$ in total critical power. Thus $Q_{\text {crit }}$ has been determined in this work to at least within $\pm 10 \%$. The observed variation in the critical location is quite large. However, from the analysis to be presented, such variations are shown to be probable and still consistent with the more accurate determination of $Q_{\text {crit }}$.

4.2 Formulation of the Method of Analysis

With the experimental results presented, a method of analysis is desired which predicts the salient features of these results and permits interpolation and some extrapolation of these data to other conditions of interest. The most convenient approach initially appeared to be extension of the models of Becker (16) and Isbin (18) to the nonuniform distribution case. This model, applicable to the annular regime, identifies processes which increase and deplete the film flow rate and establishes dryout of the annular film as the mechanism causing the critical condition. Dryout in this model and throughout this discussion refers to the decrease of the annular film flow rate to a low value sufficient to cause the annular film to break up and expose dry patches of the heating surface. However, since the annular film flow rate calculated in this manner is generally always a minimum at the tube exit, such a model apparently cannot predict the observed occurrence of the critical condition upstream of the test section exit for certain nonuniform flux distributions. Consequently, while the decrease of film flow rate to some low value has been demonstrated by Harwell researchers (34) to be responsible for the critical phenomenon
in some cases, an additional mechanism probably is responsible for the occurrence of upstream critical conditions. This mechanism must cause a severe local decrease in the heat transfer coefficient sufficient to initiate the critical phenomenon at an axial location where the nominal film flow rate may not necessarily go to zero. Mechanisms for promoting local disruption of an annular film have been proposed by other investigators. In particular, the occurrence of bubble nucleation on the tube wall within the annular film has often been cited as a possible mechanism. Since the initiation of nucleation is principally dependent on local heat flux, the occurrence of nucleation is particularly dependent on the flux shape and its M (ratio of maximum to minimum flux) value. Hence results from a variety of axial heat flux distributions offer a particularly appropriate means to evaluate the nucleation effect as a second mechanism responsible for the occurrence of the critical phenomenon in addition to the dryout effect.

The definitions used in formulation of a model which includes this nucleation-induced disruption of the annular film are presented in Figure 26. At every point along the test section, in the quality region, the ratio of flux required to initiate nucleation to the actual flux can be obtained as indicated in Figures $26 a, b, c$, and d. If this ratio is at or above one, nucleation is presumed to occur, the intensity of nucleation being directly proportional to the value of the ratio. Approximation of the local film flow rate is also required since intuition leads one to conclude that the magnitude of film flow rate affects the intensity of nucleation required
to locally disrupt the annular film sufficiently to cause the critical condition.

The principal factors governing the magnitude of the film flow rate are (a) evaporation from the film surface (b) entrainment from the film and (c) re-entrainment of water droplets from the vapor core into the film. Two major simplifying assumptions were made (1) for each test section the annular film is formed at the slug-annular transition with the same initial film flow rate, and (2) the effect of (b) and (c) was assumed approximately equal for all tubes. Since the test sections investigated were all 30 inches long (except for three test sections of 48 inches length) and the quality change per unit length did not vary greatly with flux distribution, the decrease film flow rate was assumed proportional to the evaporation effect only. Consequently the local film flow rate was taken inversely proportional to the enthalpy addition from the slug-annular transition point to the point of interest, $\Delta H_{a n n-x}$.

In this manner the necessary parameters are established to confirm the hypothesis that the critical condition is caused by either
(a) a nucleation-induced dismuption of the annular film or if (a) does not occur, then ultimately by
(b) dryout resulting from decrease of the nominal film flow rate to zero.

The parameters are evaluated at the critical location and displayed as illustrated on Figure $26 e$ as $(q / A)_{c} /(q / A)_{i}$ versus $\Delta H_{a n n-c}$. Figure 26e also indicates the expected behavior of the experimental data. For critical conditions occurring
where the flux ratio is above one, nucleation is occurring and mechanism (a) should be operative. In this region, the nucleation intensity necessary to disrupt the annular film should decrease with decreasing film flow rate. Hence the locus of critical conditions should exhibit a negative slope as indicated.

Where the flux ratio is below one, nucleation is suppressed and hence mechanism (b) should be operative. Since the only mechanism for depletion of the initial film flow rate is assumed to be evaporation, the amount of evaporation required by mechanism (b) to produce dryout should be equal for all axial flux distributions. Hence below a flux ratio of one, the locus of critical conditions should be a vertical line representing constant $\Delta H_{\text {ann-c. }}$. Since all critical conditions in this region are presumably due to dryout, the critical location of the data falling in this region should be only at the test section exit.

Figure 26e according to this model, should be valid for all axial flux distributions operated at given mass velocity and pressure. While small variations in pressure are accounted for in the calculation of the basic parameters, large variations (>100 psia for example) result in variation in nucleation bubble size and thus may fundamentally affect the basic assumed mechanism. The success of this postulated model can in part be measured by the degree of scatter of test results about a mean critical condition locus. While some distribution about a mean locus is inevitable due to the simplifying assumptions made concerning the film flow rate and experimental scatter, a
reasonable coalescence of data from all nonuniform axial flux distributions on such a plot should be achieved if the postulated model is valid.

Before presenting the experimental results, the exact method of calculating parameters required by the assumed model will be presented.

4.3 Calculation Procedure for the Method of Analysis

The presentation of data on an $\Delta H_{a n n-c}$ versus ($\left.q / A\right)_{c}$ / $(q / A)_{i}$ requires determination of the following parameters.

1) QUALITY AT SLUG-ANNULAR TRANSITION - For the low pressure data of this investigation, this quality is taken as 8% as discussed in Chapter II.
2) $\triangle H_{\text {ann-c }}$, CHANGE IN ENIHALPY FROM THE SLUG-ANNULAR TRANSITION LOCATION TO THE CRITICAL LOCATION - Establishing the transition location at the location where quality equals 8% and the critical location from experimental results, $\Delta H_{a n n-c}$ can be readily calculated by a heat balance as described in Appendix D.
3) $(q / A)_{c}$, CRITICAL HEAT FLUX - The critical heat flux can be obtained directly from experimental results as described in Appendix D.
4) ($q / A)_{i}$, HEAT FLUX REQUIRED FOR INCIPIENT BOILING This heat flux must be calculated at the same conditions of pressure, quality, and mass velocity as ($q / A)_{c}$. The BerglesRohsenow result (35) is used to calculate the heat flux required for incipient boiling. Although this result was derived for single phase flow, it should also be applicable to nucleation in a liquid film in contact with the heated surface. The
implicit assumption is that the temperature distribution within the liquid film can be expressed by the Fourier conduction relation with the conductivity evaluated at the wall surface temperature. The details of the analysis are summarized in the insert on Figure 27. The result, presented below, yields $(q / A)_{1}$ as a function of pressure and temperature difference, $T_{\text {WALL }}-T_{S A T}$ 。

$$
(q / A)_{1}=15.60 \mathrm{P}^{1.156}\left(\mathrm{~T}_{\mathrm{WALL}}-\mathrm{T}_{\mathrm{SAT}}\right)^{2.30 / \mathrm{P}^{0.0234}}
$$

From Figure 27 it is seen that this result requires that a minimum cavity size in the heated surface be present to serve as a nucleation site. Hence for applicability of this result, it is essential that the existence of cavities of the required minimum cavity size be confirmed. The dependence of $(q / A)_{1}$ with pressure and temperature difference and the minimum cavity size required are also shown in Figure 27. For comparison the limiting condition for incipient boiling, the approximate fully developed boiling curve, for 100 psia is also shown in Figure 27. This curve was obtained by modifying the results of Jens and Lottes (36) to reflect the results of Bernath and Begell (37) which indicate that slightly larger superheats are required for an aluminum surface compared to a nickel or stainless steel surface.

To use the Bergles-Rohsenow result for predicting performance of a test system, the two phase heat transfer coefficient at the critical location conditions must be established. For the range of pressures and qualities investigated, the DenglerAddoms Correlation (38) is directly applicable

$$
h_{T P}=h_{L}\left(1 / x_{t t}\right)^{0.5} .
$$

A more general correlation which is also applicable to steam water mixtures at higher pressures and other fluids has been proposed by Chen (39), and is fully presented in Appendix D. This result gives heat transfer coefficients about 15% lower than the Dengler-Addoms correlation for the conditions of interest. Since the Dengler-Addoms result is based on data at similar conditions to those of this investigation, it is used unless otherwise noted to calculate heat transfer coefficients. The dependence of h Dengler-Addoms with mass velocity and quality at a given pressure is shown in Figure 28. Combining the results of Bergles and Rohsenow

$$
(q / A)_{i}=f(p)\left(T_{W A L L}-T_{S A T}\right)^{f(p)}
$$

and Dengler-Addoms

$$
\mathrm{q} / \mathrm{A}=\mathrm{h}_{\text {Dengler-Addoms }}\left(\mathrm{T}_{\text {WALL }}-\mathrm{T}_{\text {SAT }}\right)
$$

at the critical conditions, $\left(P_{c}, X_{c}\right.$, and $\left.G\right)$, the heat flux required for inception of nucleation is obtained as the intersection of the two equations as illustrated in Figure 29. With the required parameters determined, the critical condition can be presented on a $\Delta H_{a n n-c}$ versus $(q / A)_{c} /(q / A)_{1}$ plot. Similarly for every point along the test section at the total critical power condition, the pressure, quality and mass velocity can be calculated and $(q / A)_{1}$ established. Figure 30 illustrates the results for test section 1271 . In general, as Figure 30 shows, at low qualities $(q / A)_{1}$ is low and hence the flux ratio $(q / A)_{x} /(q / A)_{1}$ is large.

In this manner conditions along the entire test section at the total critical power can be represented as shown on Figure 31. For total input power levels less than the critical level, operating conditions can be calculated for all points along the test section by the methods described above. Figure 31 also presents curves for power levels less than the critical level.

It should be noted that Figure 31 presents the behavior of only the linearly decreasing flux shape. Representation of other flux shapes on a plot of the same coordinates exhibit different shapes since values of $\Delta H_{a n n-x},(q / A)_{1}$ and particularly $(q / A)_{x}$ are dependent on the axial flux distribution. The analysis of the experimental data using the methods just described will be presented next. 4.4 Application of the Method of Analysis to Experimental Data

The parameters $\Delta H_{a n n-c}$ and $(q / A)_{c} /(q / A)_{1}$ were calculated for all experimental data. Figures 32,33 and 34 present the experimental results at each of the three mass velocities investigated. In each cast the data can be bracketed to define a critical condition region. This region should ideally reduce to a single line which represents the locus of critical conditions. However, in view of the assumptions made in representing the film flow rate, as well as experimental scatter of the results themselves, the width of the data band is to be expected.

The results of Figures 32, 33, and 34 depend on the existence in the aluminum surface of cavities of the size required by the Bergles-Rohsenow nucleation theory. For the experimental conditions of this investigation, the maximum radius size
required is about $8 \times 10^{-5} \mathrm{ft}$. Confirmation of the existence of such cavity sizes was attempted by visual observation of the boiling surface at high magnification (1000x). However, the depth of field resolution was not sufficient to permit identification of any surface features of depth less than about $3 \times 10^{-6} \mathrm{ft}$. Thus while no hemispherical cavities of the required dimension 8×10^{-5} ft could be observed, suitable elliptical or other irregular shaped nucleating cavities of minor radius less than 3×10^{-6} ft could not be detected by the Zeis microscope used. However, as discussed by Brown in reference (40), the surfaces were investigated by another method which confirmed the existence of nucleation sites by their active nucleation behavior in a superheated pool. This method indicated that cavities of about $2.0 \pm 2.0 \times 10^{-5} \mathrm{ft}$ equivalent radius were present in the test surface. Since these cavity sizes were slightly less than those required by the theory, in principle a modification should be made to the theory as shown in the insert of Figure 35 to account for this deviation. The remainder of Figure 35 presents a dimensionless representation from Brown (40) of the Bergles-Rohsenow nucleation theory modified to account for surfaces having limited cavity sizes. However, as Figure 35 shows, for the experimental conditions of this test, only slightly higher heat fluxes are required because of the actual cavity sizes present. In view of the small correction involved and the uncertainty in actually assessing the cavity sizes present in the test aluminum surfaces, this small correction was not made in analysing the data in this investigation.

As anticipated, the critical limits of Figures 32, 33, and 34 are negatively sloping lines representing the decreased nucleation intensity necessary to disrupt the annular film as the film flow rate decreases. In addition, where the flux ratio decreases below one, i.e., where nucleation ceases, the critical limits become vertical suggesting that in this region, dryout is the mechanism for causing the critical condition. As previously mentioned, data falling in this dryout region should exhibit a critical condition at the test section exit only. Table IV-C below tabulates data in this dryout region from Figure 33 (nonuniform heat flux data was obtained in the dryout region for $G=1.0 \times 10^{6} \frac{\text { LBM }}{\mathrm{HR} \mathrm{FI}^{2}}$ only). In all but one case the critical location occurred within 3% of the tube exit. In this one case (No. 1555) and other cases having the critical location between 1 and 3% from the exit, the flux profile had a severe negative gradient with length near the exit. Thus axial conduction effects probably account for the slight deviations from predicted behavior of these test sections.

Clearer delineation of this dryout region was not possible since 48 inches was the maximum length of test sections that could be fabricated and installed in the apparatus. However, Figure 36 presents additional low pressure data taken at Harwell (41) on uniform tubes from 9 to 96 inches long. In Figure 36 the dryout region is clearly apparent. In addition, however, the dotted lines in this figure identify an additional stratification within the critical region with tube length. This stratification is probably due to entrainment and reentrainment contributions to the film flow rate which must be
expected to vary significantly with varying test section length.

Test Section	Flux Shape	M	Critical Location	$\Delta \mathrm{H}_{\text {ann-c }}$	$(q / A)_{c} /(q / A)_{1}$
210	COSINE	2.27	29.6 ± 1 inches	331.2	1.2
211	COSINE	2.27	29.5 ± 0	326.5	1.09
332	COSINE	4.03	$28.9 \pm .2$	313.7	1.01
336	COSINE	4.03	$29.5 \pm .3$	312.2	.74
508	COSINE	5.75	$29.0 \pm .3$	350.6	. 69
1254	LINEAR DECREASING	2.27	29.8 ± 0	333.1	1.10
1255	LINEAR DECREASING	2.27	29.8 ± 0	343.3	1.13
1554	LINEAR	5.75	$29.2 \pm .4$	339.4	.74
1555	LINEAR DECREASING	5.75	$28.2 \pm .1$	326.7	. 86
1556	LINEAR DECREASING	5.75	$28.6 \pm .5$	324.9	. 69
2506	LINEAR PEAK INLET	5.75	$29.3 \pm .3$	334.4	. 71

TABLE IV-C CRITICAL LOCATIONS FOR TEST SECTIONS HAVING RATIO $(q / A)_{c} /(q / A)_{1} \quad$ APPROXIMATELY EQUAL TO OR LESS THAN ONE. $\left(G=1.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}\right)$

4.4.1 Discussion of Results

From Figures 32, 33 and 34, it is seen that a critical region can be established which represents both postulated mechanisms for the critical condition. This critical region is shown below to provide a reasonable criteria for predicting both $Q_{c r i t}$ and critical location for all axial flux distributions.

4.4.1.1 Total Critical Power

Figure 31 previously showed the variation in test section operating lines with total input power. Since the critical condition can occur whenever any portion of the test section operating line projects into the critical region, the power change necessary for any point of an operating line to pass through the critical region represents the maximum uncertainty in predicting total critical power. As Figures 37 and 38 which represent various flux distributions show, it requires about 20% variation in total power for any given test section location to pass through the width of the critical region. Taking the critical locus through the midpoint of the critical region, prediction of $Q_{\text {crit }}$ within $\pm 10 \%$ can be made for any flux distribution investigated once the critical region for given mass velocity and pressure is experimentally established. This region can be established by a combination of tests of uniform and nonuniform flux distributions as in this study or with uniform data only as the Harwell data of Figure 36 indicates.

4.4.1.2 Critical Location

The critical location results presented in Figures 14, 17 and 20 exhibited some significant variations with flux distribution and inlet subcooling. These variations can be qualitatively explained in terms of the critical regions established for each mass velocity on the $(q / A)_{c} /(q / A)_{1}$ versus $\Delta H_{\text {ann-c }}$ plots. The basis of these qualitative arguments is that the critical condition will occur at that test section location of the operating line which first intersects the critical region.

EFFECT OF FLUX DISTRIBUTION

The most striking experimental result is that for uniform and linearly increasing flux distributions as opposed to the others tested, the critical condition always occurs at the tube exit. A clear explanation lies in the shape of the test section operating lines for these flux distributions. As shown in Figure 39, the operating lines are convex when viewed from the origin. Thus the tube exit always intersects the critical region first, causing the critical condition to occur at the tube exit.

On the other hand for the flux distributions with a flux peak along or at the exit of the test section, the operating lines are concave when viewed from the origin as illustrated In Figures 40, 41 and 42. This concave portion is always bounded by the location of maximum flux and the tube exit. Hence some location downstream of the maximum flux always will intersect the critical region before the maximum flux location. This characteristic appears to explain the observation that the critical condition always occurs between the maximum flux location and the tube exit for such flux distributions.

EFFECT OF M VALUE

The second experimental observation is that for test sections of the same flux shape at the same inlet subcooling, an increase in M will cause the critical location to move upstream from the tube exit. This is shown in Figure 40 for the linearly decreasing flux shape and for the cosine flux shape. The increased concavity resulting from increased M value causes upstream portions of the operating line to inter-
sect the critical region before the tube exit portions. However, for the cosine shape $M=2.27$ this result does not follow as shown in Figure 40 because the M factor is so low that the operating line is a straight line almost parallel to the critical region. Hence in this case, failure at any point past the maximum flux location is generally equally probable. EFFECT OF INLET SUBCOOLING

The significant effect on critical location due to inlet subcooling can also be qualitatively explained. First, it should be observed that the effect of decreased subcooling on the test section operating line is to extend it to larger values of $\Delta H_{\text {ann-x }}$. This results from a net gain in total heat input over the annular region owing to a larger decrease in heat input from the inlet to the annular transition compared to the decrease in total critical power. The effect of this change in operating line length is to permit the exit portion of the operating line to approach the dryout portion of the critical region where the critical condition will occur if local conditions do not cause its prior occurrence upstream from the tube exit. For this reason, the critical location should move to the tube exit as the inlet subcooling is decreased. This effect is shown in Figure 41 for the inlet and the exit flux peak distributions, and Figure 42 for the linearly decreasing flux distribution. It should be recognized that due to the shapes of the operating lines and critical regions, in some cases several locations are equally probable as the critical location. Thus the locations of the critical conditions have a fairly large experimental spread (see Table IV-B) and consequently can be only qualitatively
confirmed by the model developed in this work.
The effect of experimental variables on the critical condition can be summarized as follows:

Mass velocity - The mass velocity has been the key variable in the presentation of Figures 32, 33 and 34. Figure 43 summarizes the results for the three mass velocity values selected. This data exhibits the behavior predicted by Bell (4) that for a given quality ($\Delta H_{a n n-x}$ in this case) the critical heat flux is inversely proportional to the mass velocity.

Length - The test data of Figures 32, 33, 34 and Figure 36 which presents the Harwell (41) data, illustrates that the location of the critical condition approaches the dryout region as the test length increases. Figure 44 shows that for the longer tube lengths, the test section operating lines for uniform flux are S shaped instead of simply convex as are the shorter lengths. If a similar S shape can be shown to exist for long uniform tubes at high pressures, it is possible that an upstream portion of the test section operating line would first intersect the critical region. This could offer a plausible explanation for the upstream critical conditions which have been observed by Waters et al (42).

Inlet Subcooling - As previously discussed, decreased inlet subcooling tends to extend the test section operating line to larger exit quality regions (larger $\Delta \mathrm{H}_{a n n-x}$). Thus inlet subcooling variations can cause the critical phenomenon mechanism to change from nucleation-induced film dismuption to dryout. Figure 45 indicates the effect of the inlet subcooling on the

Harwell data. It should be noted that in Figure 45 for the 12 " long section, the inlet subcooling does not cause the $\Delta \mathrm{H}_{\mathrm{ann}-\mathrm{c}}$ to increase at low values. On the Harwell presentations this effect shows as an unexplained decrease in critical heat flux with low inlet subcoolings. Unfortunately, analysis of the Harwell data by the method proposed in this report does not explain this discrepancy.

Diameter - The effect of diameter has not been investigated in this study. Prediction of the effect is difficult since a diameter change results in conflicting increases and decrease of the relevant parameters. For example at fixed G, as the diameter increases, the local flux q / A tends to be decreased but since the local quality would also decrease, $(q / A)_{i}$ would also tend to decrease. The net result on the flux ratio cannot easily be predicted although $\Delta H_{a n n-c}$ would be expected to be decreased. Thus as diameter increased, with G, P, ℓ and $\Delta H_{\text {INLET }}$ constant, the operating curve may be elevated or lowered on the flux ratio (vertical) axis, but would be displaced toward the origin of the $\Delta H_{\text {ann-c }}$ axis.

This prediction assumes that the basic mechanism is not fundamentally altered by a diameter change. This assumption may not be valid since a diameter change will affect the ratio of surface radius of curvature to bubble diameter, a parameter which could be of importance in defining the critical condition mechanism.

4.4.2 Discussion of Results - Flux Spikes

In addition to the experimental results already presented, eleven additional tests were performed with test sections having a localized flux peak, 1.e. a flux spike. These flux spikes were superimposed on available test sections already having uniform and cosine flux distributions by additional local reduction in the tube outside diameters. The flux profiles investigated are illustrated in Fig. 10 and the test geometry and results are tabulated in Appendix F.

The investigation of flux spike shapes is important for the following two reasons which are discussed in detail below.

1) The flux peak offers a unique opportunity to investigate the validity of the model already developed to describe the occurrence of the critical condition.
2) The effect of such flux peaks on the critical condition and the resultant total critical power is pertinent since flux peaks are present in reactor systems.

APPLICATION OF MODEL TO FLUX PEAK DATA

Figures 46 and 47 present the test results on the appropriate coordinates for comparison with the predictions of the model which has been developed. Note that Fig. 46 represents cosine flux distributions with stepped spikes of length varying from . 085 to 1.5 inches. Figure 47 represents uniform flux
distributions with cosine spikes of length varying from 1.0 to 9.0 inches. Axial conduction effects have been investigated and determined to be negligible since in the worst case (shortest spike length), the applicable L/D ratio is about 15. From the results of Figures 46 and 47 , the following conclusions can be drawn:

1) For short spike lengths, a larger value of the flux ratio, $(q / A)_{c}(q / A)_{i}$, is necessary to cause a critical condition than predicted by the model. However, for spike lengths greater than about 1.5 inches, or as the flux peak distributions approaches the shape of the other flux distributions investigated, the critical condition can be predicted by the model. This observation indicates that conditions prior to the flux peak location play some additional role not included in the model in defining the occurrence of the critical condition. However, sufficient additional data for flux spikes was not obtained to generalize the model to accurately predict behavior of flux spikes of short length. Nevertheless, the model developed can still be applied in practice to flux peaks of short length since conservative predictions result.
2) The existance of two critical regions, one caused by nucleation induced film disruption and the other by film dryout is further confirmed. This confirmation is particularly apparent from Fig. 47 where the flux peak M values (maximum flux/minimum flux) were systematically altered. For the lowest M values, the nucleation-induced film disruption mechanism is operative since the flux peak reaches a critical condition before the test section exit reaches the dryout region.

TOTAL CRITICAL POWER
Table IV-D below presents the results of the total critical power for test sections with flux peaks. These results indicate that the total critical power for flux peak distributions up to an M value of 5.75 is slightly greater ($0-15 \%$) than that for uniform flux distributions at the same inlet conditions. The increase is inversely proportional to the M value, the test sections with lower M values exhibiting the largest increases in total critical power. For flux spikes of $M=7.0$, the total critical power becomes slightly less (0 to -4%) than that for uniform flux distributions at the same inlet conditions. As mentioned above, these results can be confirmed for spike lengths 1.5 inches or greater by application of the model developed. However, for flux peaks of shorter lengths, the model yields conservative predictions and hence total critical power values less than those for uniform flux distributions would probably be predicted for these cases.

TABLE IV-D

TOTAL CRITICAL POWER RESUITS FOR TEST SECTIONS WITH FLUX PEAKS

Test Section	Spike Length inches	Ratio of Maximum to Minimum Flux	Inlet Subcooling BIU/Ibm	Critical Power BIU/hr	\% increase in total critical power above that for uniform flux distribution
0326	. 085	4.17	-67.4	1.09×10^{5}	+5.0\%
0345	. 50	4.17	-119.3	1.255×10^{5}	+9.2\%
0343	. 50	4.52	-116.6	1.205×10^{5}	+5.8\%
0344	1.5	$\begin{gathered} 5.14 \\ t o \\ 4.54 \end{gathered}$	-113.8	1.198×10^{5}	+5.7\%
7210	1.0	2.27	-114.1	1.247×10^{5}	+9.4\%
7510	1.0	5.75	-115.3	1.138×10^{5}	+0.7\%
7710	1.0	7.0	-110.1	1.125×10^{5}	+0.5\%
7250	5.0	2.27	-116.5	1.300×10^{5}	+14.6\%
7550	5.0	5.75	-105.6	1.109×10^{5}	+0.0\%
7750	5.0	7.0	-103.0	1.061×10^{5}	-4.0
7290	9.0	2.27	-116.8	1.263×10^{5}	+10.2\%

4.5 Application to Higher Pressures

The success of the model in explaining behavior of low pressure results suggests its application to higher pressure data. In applying the model to existing high pressure data, two difficulties are encountered.
I) Measurements or a correlation of the heat transfer coefficient for annular flow at pressures above 550 psia are not available. Consequently the Chen correlation (39) was extrapolated from 550 psia to 2000 psia to yield required two phase heat transfer coefficients.
2) The critical condition locations for available nonuniform results at high pressures have a large uncertainty. This results from the burnout detection systems used to detect the location of the critical condition.

However, estimating heat transfer coefficients from the Chen correlation and carrying the uncertainty in critical location, the model has been applied to a limited amount of high pressure data with the results illustrated in Figs. 48 and 50. In these cases, the quality at the annular transition location has been approximated as 6% and 14% respectively from the preliminary results of Suo (21).

The shape of the critical locus in these figures is similar to that for low pressure data in that the flux ratio required to produce the critical condition decreases as the film flow decreases. However, the magnitude of the flux ratio required to produce the critical condition is an order of magnitude higher than for low pressure conditions. This could result from the uncertainty in the two phase heat transfer
coefficient value. A dryout region is not indicated in these figures. Additional data at the test conditions represented in these figures is necessary to fill in the regions of higher $\Delta H_{a n n-c}$ to establish the existence of a dryout region. Even if the heat transfer coefficient is an error, such a region should still be indicated although it may occur at a flux ratio higher than 1.

Figure 48 represents Babcock and Wilcox data at 1000 psia from reference 15. The limit bands indicated reflect the large uncertainty in critical condition location which result in very broad limits for the critical region. As illustrated in Fig. 49, the width of the critical region including the maximum uncertainty limits is about $\pm 40 \%$. However even considering the most probably critical locations, the width of the critical region is still $\pm 20 \%$.

Figure 50 presents earlier Babcock and Wilcox data from reference (5) taken at 2000 psia. The width of the critical limits can be considerably reduced if the diameter difference between test sections in this experiment is recognized. As illustrated in Fig. 51, the minimum critical region in this case is approximately \pm 15\%. This latter Babcock and Wilcox data also contains four results for test sections with flux spikes superimposed on cosine flux distributions. These data indicates a distinct movement of the critical condition from the flux spike to the test section exit as the inlet subcooling decreased.

In terms of the model, this effect can be qualitatively explained. Recall that the effect of decreased inlet subcooling
as discussed in Section 4.4.1.2 is to extend the test section operating line to larger exit quality regions (larger $\Delta H_{a n n-c}$). Thus decreased inlet subcooling should cause the critical phenomenon to shift from a nucleation-induced film disruption at the flux peak location to film dryout at the test section exit. The critical location will thus shift with decreased inlet subcooling from the flux peak to the tube exit.

Figure 52 illustrates the operating lines of the flux spike test sections. The critical location is seen to shift to the test section exit which extends to larger values of $\Delta H_{a n n-x}$ with decreased subcooling. If a dryout region is assumed to exist at high values of $\Delta H_{\text {ann }}$ as was shown for the lower pressure results, these Babcock and Wilcox as well as the Bettis flux spike results of reference (I) can be explained. In particular the behavior of the spike effectiveness value, E_{p} as introduced by Bettis (reference 1) and iliustrated in Fig。 I is readily predictable. When the critical condition is caused by nucleation-induced film disruption, \varnothing_{3} will equal ϕ_{2} (see Chapter 1 for definitions) and E_{p} will equal 1. For a dryout caused critical condition, \varnothing_{3} will equal \varnothing_{1} and E_{p} will equal 0 . Hence the model predices the observed Bettis result that with decreased iniet subcooling E_{p} goes from 1 to 0 and the critical condition moves from the flux peak location to the tube exit.

However, due to the uncertainties in heat transfer coefficient and critical location determination and ilmited data at fixed conditions of filow, pressure and diameter, appilcation of the model to high pressure data as yet does not indicate the existence of the dryout region and resuits in a broad predicted
critical region due to the film disruption mechanism. Nevertheless the model does yield the correct shape of the critical locus in the nucleation-induced film disruption region as well as a reasonable possible explanation for flux spike results. These qualitative predictions indicate that successful extrapolation of the model to the high pressure region may be accomplished when the heat transfer coefficient and critical location are determined more accurately for test runs in this region.

5.1 Summary

An experimental and analytic investigation of the effect of axial heat flux distribution on the critical flux has been performed. Experimental determination of the total critical power and critical location was accomplished for a wide variety of flux distributions. An analytic model describing the occurrence of the critical condition was developed which explains the behavior of the low pressure experimental results.

This model assumes that the critical condition is caused by either
(a) a nucleation-induced disruption of the annular film or if (a) does not occur, then ultimately by
(b) dryout resulting from decrease of the nominal film flow rate to zero. The basic assumptions in analytically formulating this model are
(I) an annular film is established at the annular transition location predicted by Baker (24)
(2) the effects of entrainment and re-entrainment on the local annular film flowrate are approximately equal for tubes of similar length. Hence the local film flow rate decrease with test section length was assumed proportional to the evaporation effect only
(3) the heat flux required to initiate nucleation can be predicted from the Bergles-Rohsenow correlation (35) using heat transfer coefficients calculated from the Dengler-Addoms correlation (38).

The resulting procedure does not allow prediction of critical conditions from simply the specification of the relevant independent variables but does provide a method by which limited experimental data can be used to establis h a locus of critical conditions which is applicable to test sections with nonuniform axial flux distributions. Specifically uniform test data taken at fixed pressure, mass flow rate, and diameter can be used to predict critical conditions for various flux distributions at the same pressure, mass flow rate and diameter but with varying inlet subcooling and test section length.

5.2 Conclusions

The conclusions of this investigation can be summarized as follows.

1) Total input power to achieve a critical condition:
(a) For the cosine and other flux distributions with the maximum flux near or at the test section inlet, the total critical power is within -10% (peak inlet) to $+10 \%$ (others) of that for uniform flux distribution.
(b) For flux distributions with the maximum flux near or at the test section exit, the total critical power can be up to 30% less than that for uniform flux distributions. This deviation, however, approaches zero as the inlet condition approaches the saturated condition.
(c) For flux spikes of various lengths with the ratio of maximum to minimum flux up to about six, the total critical power is about 0 to 10% greater than that for uniform flux distributions. For more severe flux spikes, the total critical power becomes less than that for uniform flux distributions.
2) The Critical Location:
(a) For uniform and monotonically increasing flux distributions, the critical location occurs very near to or at the test section exit.
(b) For flux distributions with the flux peak at any location except the test section exit, the critical condition can occur upstream depending on the inlet subcooling and the M walue (ratio of maximum to minimum flux). The critical condition tends to move upstream as either the subcooling and M value increases.
3) The analytical model proposed to describe the occurrence of the critical condition successfully explains the test data for all axial flux distributions except flux spikes of short ($\leqslant 1.5$ inch) extent. For these short flux spikes, the model predicts lower local critical heat flux and total power values than were determined by experiment.
4) Application of the model to high pressure data gives qualitative agreement with test results. More precise experimental determination of the critical location and data yielding two phase heat transfer coefficients are needed at these higher pressures to effectively test the validity of the model under higher pressure conditions.
5.3 Design Procedure ($50-200 \mathrm{psia}$)

Based on the conclusions of this investigation, the following design procedure can be used to establish safe operating limits for vertical up flow in tubes with nonuniform axial flux distributions.

1) Establish locus of critical conditions - For the mass velocity, pressure and tube diameter of interest, use existing
critical data to plot the critical conditions on coordinates of $(q / A)_{c} /(q / A)_{i}$ versus $\Delta H_{a n n-c}$. Section 4.3 explains in detail the method of calculating these parameters from experimental data. This data may include uniform flux data or a combination of uniform and nonuniform flux data from tubes of all lengths.
2) Establish design conditions - Pick the axial flux distribution and values of inlet subcooling and test section length of interest. These values along with the previously established values of mass velocity, pressure, and diameter fully establish the design conditions.
3) Calculate the test section operating line for an arbitrary value of total input power, QroT - Select a value of $Q_{T O T}$ and calculate the test section operating line as described in Section 4.3 Plot this operating line with the locus of critical conditions determined per (2) above.
4) Establish $Q_{\text {crit }}$ - For varying values of $Q_{T O T}$ plot operating lines until the locus of critical conditions is intercepted. The value of $Q_{T O T}$ for this intersection is $Q_{c r i t}$ and the test section axial location at the intersection is the location of the critical condition.
5) . Optimize - Vary inlet subcooling, test section length and axial flux distribution as allowed by design requirements to maximize the parameters of design interest; generally the total critical power (Q $Q_{\text {crit }}$).

ERROR ANALYSIS

It is important to estimate the probable errors in the two basic parameters of interest, the critical heat input to the test section and the local heat flux.

The heat input is computed from measurements of the voltage drop across the heated length and the current to the section. Since the critical condition was generally reached while the input power was being increased to a slightly higher level, the error in the total critical power includes both an uncertainty from this operational procedure and a measuring instrument uncertainty.

For the voltage drop, this operational variation was about .15 volts over the range 12 to 27 volts and the voltmeter accuracy was $\pm 1 / 2 \%$ of full scale. Hence in the worst case (lowest power level) the uncertainty in the voltage at the critical condition was

$$
r=12 \pm .3 \text { volts or } \pm 2.5 \%
$$

The current was inferred from the voltage drop across an air-cooled N.B.S. shunt with a calibrated conductance of 60.17 amps/mo. The uncertainty from the operational procedure was .3 mv over the range 23 to 52 mv , and the voltmeter accuracy was $\pm 1 / 2 \%$ of full scale. Hence in the worst case (lowest power level) the uncertainty in the current at the critical condition was

$$
I=60.17(23 \pm .6) \text { amps or } \pm 2.6 \%
$$

Hence the most probably error in power for the lowest power cases was

$$
\sqrt{(2.5)^{2}+(2.6)^{2}} \cong 3.4 \%
$$

Note that the experimental reproducibility of total critical power results as summarized in Table IV-B was 5 to 10\%.

The local flux for electrically heated test sections is obtained as

$$
\phi(z)=\frac{d A_{s}}{d Q}=\frac{d A_{s}}{I^{2} d R}=\frac{d A_{s}}{I^{2} \frac{\rho(T) d}{A_{x}(Q)}}
$$

From these equations we see that perturbations in the local flux are principally caused by variations in $A_{X}(\ell), \rho(T)$, and $d Q$ (axial conduction effects). The variations in these parameters will be separately estimated to arrive at the overall experimental error in the local flux.
A_{x}-Wall Cross-Section Area
Variations in A_{x} are due to (1) variations in test section internal diameter and (2) variations in the outside diameter due to machining. The machining errors were controlled by 100% inspection of test section outside diameters for conformance with allowed tolerances. The net actual variation in A_{x} was established by measuring wall thicknesses on 32 sections taken from seven tubes selected randomly to represent all the basic designs. From these measurements the average variation from design of wall thicknesses (4 at each section) was 3.5% with a maximum variation of 7.5%.

$\rho(T)$ - Electrical Resistivity

Variations in resistivity result from wall temperature differences due to axial changes in heat transfer coefficient. The changes in heat transfer coefficient result from the axial quality changes which can exist in a test section.

The variation in wall temperature along a test section can be bounded as follows. The minimum ($T_{W}-T_{S A T}$) can be taken from the fully developed boiling curve at a heat flux of 3×10^{5} since heat fluxes of interest in this work were all above $3 \times 10^{5} \mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2}$. From Fig. 29, $\left(\mathrm{T}_{\mathrm{W}}-\mathrm{T}_{\mathrm{SAT}}\right)_{\mathrm{MIN}}$ is $40^{\circ} \mathrm{F}$. The maximum ($T_{W}-T_{S A T}$) can be also taken from the fully developed boiling curve at the maximum heat flux achieved in test i.e. $3 \times 10^{6} \mathrm{BrU} / \mathrm{hr} \mathrm{ft}^{2}$. From Fig. $29\left(\mathrm{~T}_{\mathrm{W}} \mathrm{T}_{\mathrm{SAT}}\right)_{\mathrm{MAX}}$ equals $70^{\circ} \mathrm{F}$. Hence, the maximum wall temperature difference for the composite worst case is $30^{\circ} \mathrm{F}$.

Now for the 2024-T3 alubminum used, the resistivity as a function of temperature is

$$
\rho(T) \text { ohm-ft }=.1765 \times 10^{-6}\left[1+1.152 \times 10^{-3} \mathrm{~S}_{\mathrm{T}} \mathrm{O}_{\mathrm{F}}\right]
$$

in the range $200-500^{\circ} \mathrm{F}$. Based on the nominal experimental pressure of $100 \mathrm{psia},\left(3278^{\circ} \mathrm{F}\right)$ the maximum variation in resistivity along a test section would be 2.2%

dQ - Axial Conduction

Axial conduction effects can also be bounded by a worst case analysis. The maximum axial heat transfer is given by

$$
d Q_{\text {axial }}=k A_{x} \frac{\partial T}{\partial z}
$$

where

$$
\mathrm{k}_{2024 \mathrm{~T} 3 \text { aluminum }}=80 \frac{\mathrm{BTU}}{\mathrm{hr} \mathrm{ft} \mathrm{t}^{\circ} \mathrm{F}}
$$

$A_{x \text { maximum }}$
$\left.\frac{\partial T}{\partial x}\right)_{\text {maximum }}$

$$
=248 \times 10^{-6} \mathrm{ft}^{2}(.3020 .0 \text { inch, } .214 \text { inch I.D. })
$$

$$
=\frac{30^{\circ} \mathrm{F}}{7.5 / 12 \mathrm{ft}}=48^{\circ} \mathrm{F} / \mathrm{ft} \quad \begin{aligned}
& \text { (the maximum axial } \\
& \text { temperature differ- }
\end{aligned}
$$ ence of $30^{\circ} \mathrm{F}$ can occur over a minimum distance of 7.5 in . in the peak inlet and exit designs)

Hence $d Q_{A X I A L}$ MAXIMUM $\xlongequal{ }=1 \mathrm{BTU} / \mathrm{hr}$. The minimum radial heat transfer, assuming the minimum heat $f l u x$ is $1 \times 10^{5} \mathrm{BrU} / \mathrm{hr} \mathrm{ft}^{2}$, is about $500 \mathrm{BrU} / \mathrm{hr}$.

Hence in the worst composite case the axial heat flow is less than $.5 \%$ of the radial heat flux. This is primarily due to the thin wall test section geometry which yields large L (length) $/ D$ (wall thickness) ratios thus inhibiting axial conduction. In the immediate regions of the test section inlet and exit, the temperature gradients are probably more severe and the local flux profiles in these extreme locations may be somewhat effected by axial conduction effects.

Overall Variation

Combining the effects discussed above, and the estimate of the most probable error in local heat flux is obtained as

$$
\sqrt{(3.5)^{2}+(2.2)^{2}+(.5)^{2}} \cong 4.2 \phi
$$

48" Long Test Sections

These test sections were fabricated by coupling two shorter length together with a $1 / 2^{\prime \prime}$ threaded thin walled sleeve (TEST SECTION 114136) or a $1^{\prime \prime}$ soldered thin walled sleeve (OTHERS). Hence, at the midsection of these test sections over the sleeve length, the heat flux is slightly lower than over the remainder of the test section.

APPENDIX B
 TEST SECTION ANALYSIS

The analysis of the experimental data first requires calculation of various parameters from the test section data. These parameters, which are dependent on the flux profile shape are derived on the following pages.

The governing heat balance expression relating heat flux and electrical heat imput, applicable to a length dx of tubing is

$$
\begin{equation*}
\phi(x) \pi D_{1} d x=I^{2} d R=I^{2} \frac{\rho d x}{A_{x}(x)} \tag{B-1}
\end{equation*}
$$

The assumptions inherent in this expression are

1. One dimensional (radial) heat flow
2. Adiabatic outside diameter tube wall
3. Constant radial temperature profile so that $f(T)$ is a constant
4. No asmuithal variation in tube wall thickness so that the power is generated uniforml: throughout the tube wall at any axial location.

This expression can be assumed to be applicable over the entire tube length with the additional assumption of

1. Constant tube temperature so that ρ which
is temperature dependent is a constant over the entire tube length.

These assumptions are shown, in Appendix A, to be met for the data presented and analyzed in this work and hence equation (1) serves as a valid point of reference for the following derivations. In the following derivations consistency of units is assumed; hence for use in actual computations numerical factors should be inserted where appropriate to assure this consistency of units. Also for the uniform and linear flux shapes, x is used as the axial position variable, while for the cosine and peaked flux shapes, z is used as the axial position variable.

UNIFORM FLUX PROFILE

The flux shape in this case, figure 10 , is simply

$$
\begin{equation*}
\phi(x)=\varnothing \tag{B-2}
\end{equation*}
$$

From equation (I) we obtain

$$
A_{x}(x)=A_{x}=\frac{I^{2} \rho}{\varnothing \pi D_{i}}
$$

and by the governing assumptions we find that $A_{X}(x)=A_{x}$ and hence D_{o} is also constant. However it is desirable to obtain all relevant parameters in terms of experimentally determined quantities as is accomplished below
a. $\varnothing(x)=\varnothing$

$$
\begin{align*}
Q(x) & =\int_{0}^{x} \varnothing \pi D_{i} d x \\
Q_{T O T} & =\emptyset \pi D_{i} l \\
\varnothing & =\frac{Q_{\text {TOT }}}{\pi D_{i} l} \tag{B-3}
\end{align*}
$$

b. $D_{0}(x)=D_{0}$

From equation (1) we obtained A_{x} as a constant,
hence

$$
\begin{equation*}
D_{0}=\sqrt{\frac{4}{\pi} A_{x}+D_{i}^{2}} \tag{B-4}
\end{equation*}
$$

Now A_{x} is a function of the overall tube resistance R which is established to make maximum use of the available D.C. power supply. The maximum power supply available is 72 kilowatts at 24 volts and 300 amperes hence establishIng the optimum tiabe resistance as 8.0×10^{-3} ohms.

-85-

Again from equation (1)

$$
\begin{aligned}
d R & =\frac{\rho d x}{A_{x}(x)} \\
R & =\frac{\rho l}{A_{x}}
\end{aligned}
$$

and substituting this into equation (4) we obtain

$$
\begin{align*}
& D_{0}=\sqrt{\frac{(4)}{\pi} \frac{\rho l}{R}+D_{i}^{2}} \tag{B-5}\\
& \text { c. } Q(x) \\
& \text { Now } Q(x)=\int_{0}^{x} \phi(x) \pi D_{i} d x \text { in general. For } \varnothing(x)=\varnothing \\
& \text { per equation (3) we obtain simply. } \\
& Q(x)=Q_{T O T} \frac{x}{l} \tag{B-6}
\end{align*}
$$

The flux shape in this case as shown in figure 10 is

$$
\phi(z)=\varnothing_{\mathrm{MAX}} \cos \frac{\pi z}{L} \quad \text { for }-\frac{l}{2} \leq z \leq+\frac{l}{2} \quad(B-7)
$$

Note that as defined in figure $10, L$ represents one half wavelength of a cusine wave which is truncated at $z= \pm \ell / 2$ to form a test section of physical length l. Using this flux shape, equation (7) and equation (1), we derive the relevant parameters in terms of experimental quantities as follows:
a. $\varnothing(z)$

$$
\begin{aligned}
& Q(z)=\int_{-\ell / 2}^{z} \phi(z) \pi D_{i} d z \\
& Q_{\mathrm{TOT}}=\int_{-\ell / 2}^{+\ell / 2} \phi_{\mathrm{MAX}} \cos \frac{\pi z}{L} \pi D_{1} d z
\end{aligned}
$$

Yields

$$
\emptyset_{\mathrm{MAX}}=\frac{Q_{\mathrm{TOT}}}{2 \mathrm{D}_{\mathrm{i}} \mathrm{~L} \sin \frac{\pi}{2} \frac{l}{\mathrm{~L}}}
$$

and

$$
\begin{equation*}
\phi(z)=\frac{Q \operatorname{TOT}}{2 D_{1} L \sin \frac{\pi}{2} \frac{\ell}{L}} \quad \cos \frac{\pi z}{L} \tag{B-8}
\end{equation*}
$$

This expression however contains the quantity, I, which can be expressed in terms of the physical length, l, and the quantity M which is defined below as the ratio of
the maximum flux to minimum f'lux.

$$
\begin{equation*}
M=\frac{\emptyset_{\mathrm{MAX}}}{\varnothing_{\mathrm{MIN}}} \tag{B-9}
\end{equation*}
$$

and thus is a crutial variable in selection of the flux profile for experimentation.

Now from (1) we see that for D_{i}, I^{2}, and \int constant, $\phi(z)$ is inversely proportional to $A_{x}(z)$. Hence at $z=0$ where $\varnothing(z)$ is maximum, $A_{x}(z)$ is minimum and conversely at $z= \pm \ell / 2$ where $\varnothing(z)$ is minimum, $A_{x}(z)$ is maximum. This leads to the relations.

$$
\begin{align*}
& \phi(z)=\emptyset_{M A X} \cos \frac{\pi z}{L} ; \quad A_{X}(z)=\frac{A_{M I N}}{\cos \frac{\pi z}{L}} \quad(B-10 a) \tag{B-10a}\\
& \text { at } z=+\ell / 2 \quad \emptyset_{M I N}=\emptyset_{M A X} \cos \frac{\pi l}{2 L} \text { and } A_{M A X}=\frac{A_{M I N}}{\cos \frac{\pi l}{2 L}} \quad(B-10 b) \\
& \text { Hence } \cos \frac{\pi}{2} \frac{\ell}{L}=\frac{\emptyset_{M I N}}{\emptyset_{M A X}}=\frac{A_{M I N}}{A_{M A X}}=\frac{1}{M} \quad(B-10 c) \tag{B-10c}
\end{align*}
$$

Thus we obtain

$$
\begin{equation*}
L=\frac{\pi l / 2}{\cos ^{-1} 1 / M} \tag{B-1I}
\end{equation*}
$$

and using the identity, $\sin \alpha=\sqrt{1-\cos ^{2} \alpha}$, we obtain

$$
\begin{equation*}
\sin \frac{\pi}{2} \frac{l}{L}=\sqrt{1-\cos ^{2} \frac{\pi l}{2 L}}=\sqrt{\frac{M^{2}-1}{M^{2}}} \tag{B-12}
\end{equation*}
$$

Substituting these values into equation (8) we obtain the desired result

$$
\begin{equation*}
\phi(z)=\frac{Q_{T O T}}{2 D_{1} \frac{L}{\frac{M^{2}-1}{M^{2}}}} \cos \frac{\pi z}{L} \tag{B-13}
\end{equation*}
$$

where L is retained for convenience and defined in equation (ll).
b. $D_{0}(z)$

Now

$$
\begin{equation*}
D_{O}(z)=\sqrt{\frac{(4)}{\pi} A_{x}(z)+D_{i}^{2}} \tag{B-14}
\end{equation*}
$$

Again from equation (1) obtain

$$
R=\int_{-\ell / 2}^{+\ell / 2} d R=\int_{-\ell / 2}^{+\ell / 2} \frac{\rho_{d z}}{A_{x}(z)}
$$

Now substituting from equation (10) where $A_{x}(z)$ is defined, obtain

$$
\begin{gather*}
R=\int_{-l / 2}^{+l / 2} \frac{\rho}{A_{M I N}} \cos \frac{\pi z}{L} d z \\
R=\frac{2 \rho}{A_{M I N} \pi} \sin \frac{\pi}{2} \frac{\ell}{L} \\
\text { or } \quad A_{X}(z)=\frac{A_{M I N}}{\cos \frac{\pi Z}{L}}=\frac{2 \rho I}{\pi R} \frac{\sin \frac{\pi}{2} \frac{\ell}{L}}{\cos \frac{\pi z}{L}} \tag{B-15}
\end{gather*}
$$

Substituting (15) into (14) we obtain the desired result

$$
\begin{equation*}
D_{0}(z)=\sqrt{\frac{(8) \rho L \sin \frac{\pi}{2} \frac{Q}{L}}{\pi^{2} R \cos \frac{\pi z}{L}}+D_{i}^{2}}=\sqrt{\frac{(4) A_{M I N}}{\pi \cos \frac{\pi Z}{L}}+D_{i}^{2}} \tag{B-16}
\end{equation*}
$$

-89-
c. $Q(z)$

$$
\text { Now } \begin{aligned}
Q(z) & =\int_{-\ell / 2}^{z} \pi D_{1} \phi(z) d z \\
Q(z) & =\int_{-\ell / 2}^{-z} \pi D_{i} \emptyset_{M A X} \cos \frac{\pi z}{L} d z \text { for }-\ell / 2 \leq z \leq 0 \\
& =\int_{-\ell / 2}^{+z} \pi D_{i} \emptyset_{M A X} \cos \frac{\pi z}{L} d z \quad \text { for } 0 \leq z \leq+\ell / 2
\end{aligned}
$$

Carrying out the indicated operations and substituting for

$$
\varnothing_{M A X}=\frac{Q_{T O T}}{2 D_{i} L \sin \frac{\pi}{2} \frac{\ell}{L}} \quad \text { per equation } B-8
$$

and

$$
\sin \frac{\pi}{2} \frac{\ell}{L}=\sqrt{\frac{M^{2}-1}{M^{2}}} \quad \text { per equation } B-12
$$

obtain

$$
\begin{equation*}
Q(z)=\frac{Q_{T O T}}{2}\left[1-\frac{\sin \frac{\pi z}{L}}{\sqrt{\frac{M^{2}-1}{M^{2}}}}\right] \text { for }-\frac{\ell}{2} \leq z \leq 0 \tag{B-17}
\end{equation*}
$$

and

$$
Q(z)=\frac{Q_{T O T}}{2}\left[1+\frac{\operatorname{sir} \cdot \frac{\pi z}{L}}{\sqrt{\frac{M^{2}-1}{M^{2}}}}\right] \text { for } 0 \leq z \leq+l / 2 \text { (B-18) }
$$

where L is defined as $\in q u a l$ to $\frac{\pi l / 2}{\cos ^{-1} 1 / M}$ per equation (11).

-90-

LINEARLY INCREASING FLUX PROFILE

The flux shape in this case as shown in figure 10 is

$$
\begin{equation*}
\phi(x)=\phi_{\text {IN }}+\left(\phi_{\text {OUT }}-\phi_{\text {IN }}\right) \frac{x}{\ell} \text { for } 0 \leq x \leq \ell \tag{B-19}
\end{equation*}
$$

Using this flux shape equation and equation (l) we obtain
a. $\varnothing(x)$

$$
\begin{align*}
& Q_{\text {TOT }}=\int_{0}^{l}\left[\phi_{I N}+\left(\phi_{\text {OUT }}-\phi_{I N}\right) \frac{x}{2}\right] \pi D_{I N} d x \\
& Q_{\text {TOT }}=\frac{\pi D_{i} l}{2}\left[\phi_{I N}+\phi_{\text {OUT }}\right] \tag{B-20}
\end{align*}
$$

Now $\quad M=\frac{\phi_{\text {OUT }}}{\phi_{\text {IN }}}$ for a linearly increasing flux
and hence

$$
\begin{align*}
& Q_{\mathrm{TOT}}=\frac{\pi D_{1} l}{2(144)} \phi_{\text {OUT }}\left[\frac{1+M}{M}\right]=\frac{\pi D_{i} l}{2} \phi_{I N}[1+M] \\
& \emptyset_{\text {OUT }}=\frac{\left(2 Q_{\mathrm{TOT}}\right)}{\pi D_{i} l}\left[\frac{M}{1+M}\right] \tag{B-21}\\
& \phi_{\mathrm{IN}}=\frac{\left(2 Q_{\mathrm{TOT}}\right)}{\pi D_{i} l}\left[\frac{1}{1+M}\right] \tag{B-22}
\end{align*}
$$

Substituting these expressions for $\varnothing_{\text {IN }}$ and $\varnothing_{\text {OUT }}$ into equation (19), we obtain the desired result

$$
\begin{equation*}
\phi(x)=\frac{2 Q_{\operatorname{TOT}}}{A_{S}}\left(\frac{1}{1+M}\right)\left[1+(M-1) \frac{x}{\ell}\right] \tag{B-23}
\end{equation*}
$$

b. $D_{0}(x)$

Now in general

$$
\begin{equation*}
D_{0}(x)=\sqrt{\frac{4}{\pi} A_{x}(x)+D_{1}^{2}} \tag{B-24}
\end{equation*}
$$

Proceeding as in the cosine tube case we obtain from equation (l) the general expression for overall tube resistance, R,

$$
\begin{equation*}
R=\int_{0}^{Q} d R=\int_{0}^{Q} \frac{\rho d x}{A}(x) \tag{B-25}
\end{equation*}
$$

Now from equation (1) we also obtain an expression for $A_{x}(x)$ as follows:

$$
\begin{gather*}
\phi(x)=\frac{I^{2} \rho}{\pi D_{i}} \frac{1}{A_{x}(x)} \tag{B-26}\\
\text { At } x=0 \quad \phi_{I N}=\frac{I^{2} \rho}{\pi D_{i}} \frac{1}{A_{I N}} \tag{B-26a}\\
\text { At } x=\ell \quad \emptyset_{\text {OUT }}=\frac{I^{2} \rho}{\pi D_{i}} \frac{1}{A_{\text {OUT }}} \tag{B-26b}\\
\text { Hence } \quad \emptyset_{\text {IN }}=\frac{A_{\text {OUT }}}{A_{\text {IN }}}=\frac{1}{M} \tag{B-26c}
\end{gather*}
$$

Substituting the above equations, $26 a$ and b, into equation (1) we obtain

$$
\begin{equation*}
\varnothing(x)=\frac{I^{2} \rho}{\pi D_{1}}\left[\frac{1}{A_{I N}}+\left(\frac{1}{A_{\text {OUT }}}-\frac{1}{A_{I N}}\right) \frac{x}{\ell}\right] \tag{B-27}
\end{equation*}
$$

Now equating the expressions for $\phi(x)$ from equations (26) and (27) obtain

$$
\begin{equation*}
A_{x}(x)=\frac{1}{\frac{1}{A_{I N}}+\left(\frac{1}{A_{O U T}}-\frac{1}{A_{I N}}\right) \frac{x}{\ell}} \tag{B-28}
\end{equation*}
$$

-92-
or utilizing equation (260)

$$
\begin{equation*}
A_{x}(x)=\frac{A_{I N}}{1+(M-1) \frac{x}{\ell}} \tag{B-29}
\end{equation*}
$$

Now substituting the expression for $A_{x}(x)$, equation (29), into equation (25), we obtain

$$
R=\int_{0}^{l} \frac{\rho\left(1+(M-1)^{\frac{x}{l}}\right)}{A_{I N}} d x=\frac{\rho_{l}}{2 A_{I N}}(M+1) \quad(B-30)
$$

Hence

$$
A_{I N}=\frac{f_{\ell}}{2 R}(M+1)
$$

and from equation (29)

$$
\begin{equation*}
A_{x}(x)=\frac{\rho_{\dot{\ell}}(M+1)}{2 R\left[1+(M-1) \frac{x}{\ell}\right]} \tag{B-31}
\end{equation*}
$$

Substituting equations (29) and (31) Into the general expression for $D_{0}(x)$, equation (24), we obtain the desired results.

$$
\begin{equation*}
D_{0}(x)=\sqrt{\frac{2 f_{l}(M+1)}{\pi R\left[1+(M-1) \frac{x}{l}\right]}+D_{i}^{2}}=\sqrt{\frac{(4) A_{I N}}{\pi\left[1+(M-1) \frac{x}{l}\right]}+D_{i}^{2}} \tag{B-32}
\end{equation*}
$$

c. $Q(x)$

$$
\text { Now } Q(x)=\int_{0}^{x} \pi D_{i} \phi(x) d x
$$

Performing the indicated integration yields

$$
\begin{equation*}
\varnothing(x)=\frac{2 Q \mathrm{TOT}}{}\left(\frac{1}{1+M}\right)\left[\frac{X}{l}+\left(\frac{M-1}{2}\right) \frac{x^{2}}{l^{2}}\right] \tag{B-33}
\end{equation*}
$$

LINEARLY DECREASING FLUX PROFILE

The flux shape in this case is the mirror image of the linearly decreasing profile and is shown in figure 10. In this case the maximum flux occurs at the test section inlet and hence is written as

$$
\phi(x)=\varnothing_{\text {IN }}-\left(\phi_{\text {IN }}-\phi_{\text {OUT }}\right) \frac{x}{\ell} \text { for } 0 \leq x \leq \ell \quad(B-34)
$$

and M in this case is defined as the inverse of the linearly increasing flux case and is written as

$$
\begin{equation*}
M=\frac{\varnothing_{\text {IN }}}{\varnothing_{\text {OUT }}} \tag{B-35}
\end{equation*}
$$

These basic expressions are different from corresponding quantities of the linearly increasing flux profile and hence yield different expressions for the desired parameters as shown below.
a. $\varnothing(x)$

$$
Q_{T O T}=\int_{0}^{l}\left[\phi_{I N}-\left(\phi_{I N}-\phi_{\text {OUT }}\right) \frac{x}{l}\right] \pi D_{i} d x
$$

$$
\begin{equation*}
Q_{\text {TOT }}=\frac{\pi D_{i}^{l}}{2}\left[\phi_{\text {IN }}+\phi_{\text {OUT }}\right] \tag{B-36}
\end{equation*}
$$

However since $M=\frac{\varnothing_{\text {IN }}}{\bar{\varnothing}_{\text {OUT }}}$, we obtain

$$
\begin{equation*}
Q_{\mathrm{TOT}} \equiv \frac{\pi \mathrm{D}_{1} l}{2} \emptyset_{\mathrm{IN}}\left[\frac{1+M}{M}\right]=\frac{\pi D_{i} \ell}{2} \phi_{\mathrm{IN}}[1+M] \tag{B-37}
\end{equation*}
$$

-94-

and $\phi_{I N}=\frac{2 Q_{T O T}}{\pi D_{i} L}\left(\frac{M}{1+M}\right)$

$$
\begin{equation*}
\phi_{\text {OUT }}=\frac{2 Q_{\text {TOT }}}{\pi D_{i} \ell}\left(\frac{1}{1+M}\right) \tag{B-39}
\end{equation*}
$$

Substituting these expressions for $\emptyset_{\text {IN }}$ and $\emptyset_{\text {OUT }}$ into equation (34), we obtain the desired result

$$
\begin{equation*}
\phi(x)=\frac{2 Q_{T O T}}{A_{S}}\left(\frac{M}{1+M}\right)\left(1-\left(\frac{M-1}{M}\right) \frac{x}{l}\right) \tag{B-40}
\end{equation*}
$$

b. $D_{0}(x)$

Now in general $D_{0}(x)=\sqrt{\frac{4}{4} A_{x}(x)+D_{i}^{2}}$
From equation (1) obtain

$$
\begin{equation*}
R=\int_{0}^{0} d R=\int_{0}^{\theta} \frac{\rho d x}{A_{x}(x)} \tag{B-42}
\end{equation*}
$$

Now from equation (1), we also obtain an expression for $A_{x}(x)$ as follows

$$
\begin{gather*}
\phi(x)=\frac{I^{2} \rho}{\pi D_{1}} \frac{1}{A_{x}(x)} \tag{B-43}\\
\text { At } x=0 \quad \phi_{I N}=\frac{I^{2} \rho}{\pi D_{i}} \frac{1}{A_{I N}} \tag{B-43a}\\
\text { At } x=\ell \quad \phi_{\text {OUT }}=\frac{I^{2} \rho}{\pi D_{i}} \frac{1}{A_{\text {OUT }}} \tag{B-43b}
\end{gather*}
$$

Hence

$$
\begin{equation*}
\frac{\varnothing_{\text {IN }}}{\bar{\phi}_{\text {OUT }}}=\frac{\mathrm{A}_{\text {OUT }}}{\mathrm{A}_{\text {IN }}}=\mathrm{M} \tag{B-43c}
\end{equation*}
$$

Substituting the above equations, (43a) and (43b), into equation (1) we obtain

$$
\begin{equation*}
\phi(x)=\frac{I^{2} f}{m D_{i}}\left[\frac{1}{A_{I N}}+\left(\frac{1}{A_{\text {OUT }}}-\frac{1}{A_{I N}}\right) \frac{x}{\lambda}\right] \tag{B-44}
\end{equation*}
$$

Now equating the expressions for $\varnothing(x)$ from equations (43) and (44) obtain

$$
\begin{equation*}
A_{x}(x)=\frac{1}{\frac{1}{A_{I N}}+\left(\frac{1}{A_{\text {OUT }}}-\frac{1}{A_{I N}}\right) \frac{x}{2}} \tag{B-45}
\end{equation*}
$$

or utilizing equation (43c)

$$
\begin{equation*}
A_{x}(x)=\frac{A_{I N}}{1+\frac{I-M}{M} \frac{x}{l}} \tag{B-46}
\end{equation*}
$$

Now substituting equation (46) into equation (42)

$$
\begin{equation*}
R=\int_{0}^{\ell} \frac{P\left(1+\left(\frac{1-M}{M}\right) \frac{x}{n}\right)}{A_{I N}} d x=\frac{\int Q}{2 A_{I N}}\left(\frac{M+1}{M}\right) \tag{B-47}
\end{equation*}
$$

Hence

$$
\begin{equation*}
A_{I N}=\frac{f l}{2 R}\left(\frac{M+1}{M}\right) \tag{B-48}
\end{equation*}
$$

and from equation (46)

$$
\begin{equation*}
A_{x}(x)=\frac{f\left(\frac{M+1}{M}\right)}{2 R\left[1+\left(\frac{1-M}{M}\right) \frac{x}{l}\right]} \tag{B-49}
\end{equation*}
$$

Substituting equations (46) and (49) into the general expression for $D_{0}(x)$, equation (41), we obtain the desired results

$$
D_{0}(x)=\sqrt{\frac{2 \rho \ell\left(\frac{M+1}{M}\right)}{\pi R\left[1+\left(\frac{1-M}{M}\right) \frac{x}{\ell}\right]}+D_{i}^{2}}=\sqrt{\frac{4 A}{\pi\left[1+\left(\frac{1-M}{M}\right) \cdot \frac{x}{\ell}\right]}+D_{i}^{2}}
$$

c. $Q(x)$

$$
\text { Now } Q(x)=\int_{0}^{x} \pi D_{1} \phi(x) d x
$$

where per equation (40)

$$
\phi(x)=\frac{2 Q_{T O T}}{A_{S}}\left(\frac{M}{1+M}\right)\left(1-\left(\frac{M-1}{M}\right) \frac{x}{l}\right)
$$

Performing the indicated integration yields

$$
\begin{equation*}
Q(x)=2 Q_{T O T}\left(\frac{M}{M+1}\right)\left(\frac{x}{l}-\left(\frac{M-1}{2 M}\right) \frac{x^{2}}{\ell^{2}}\right) \tag{B-51}
\end{equation*}
$$

PEAKED COSINE PROFILE

To simulate an inlet or outlet flux peaking, a flux profile consisting of cosine shaped portion and an exponential portion was chosen as shown in figure 10. For the inlet flux peaked tubes, the cosine portion was established by fixing the maximum position 7.5 inches fros the inlet. The exponential portion was blended into the cosine profile at 12 inches from the inlet by a suitable choice (1.33) of the constant ξ which occurs in the exponential expression for the flux. The outlet flux peaked tubes are mirror images of the inlet peaked tubes. Hence the expressions for the flux profile in the inlet peaked geometry are:

$$
\begin{align*}
& \phi(z)=\varnothing_{\text {MAX }} \cos \frac{\pi z}{L^{\prime}} \quad \text { for }-\frac{\ell^{\prime}}{2} \leq z \leq 0 \\
& \phi(z)=\varnothing_{\text {MAX }} \cos \frac{\pi z}{L^{\prime}} \quad \text { for } 0 \leq z \leq\left(l-L-.5 l^{\prime}\right) \tag{B-51b}\\
& \varnothing(u)=\varnothing_{u=0} \exp \left(-\frac{\xi u}{\not Z}\right) \\
& =\varnothing_{\text {MAX }} \cos \frac{\pi\left(\ell-\mathcal{Z}-.5 \ell^{\prime}\right)}{L^{\prime}} \exp \left(\frac{\xi u}{-\nmid}\right) \text { for } 0 \leq u \leq K \tag{B-51c}
\end{align*}
$$

For this specific design, the break point between the cosine and exponential portions of the flux profile was

-98-

taken at 12 inches from the tube inlet and hence for the tubes under consideration:

$$
\begin{aligned}
& M=5.75 \\
& \ell=30 \text { inches } \\
& \mathcal{L}=\ell-12=18 \text { inches } \\
& \ell^{\prime}=15 \text { inches } \\
& L^{\prime}=\frac{\pi \ell^{\prime}}{2 \cos ^{-1} \frac{1}{M}}=16.88 \text { inches } \\
& \xi=1.33 \text { (dimensionless) }
\end{aligned}
$$

However, the derivations of relevant parameters will be carried out without the insertion of these specific numerical values to obtain more general defining equations.
a. $\quad \varnothing(z$ and $u)$

Now $Q(z)=\int_{-l / 2}^{z} \phi(z) \pi D_{i} d z$
$Q_{\text {TOT }}=\pi D_{i}\left[\int_{\ell / 2}^{0} \emptyset_{M A X} \cos \frac{\pi z}{L^{\prime}} d z+\int_{0}^{\ell-\mathcal{L}^{-}-.5 \ell^{\prime}} \varnothing_{M A X}^{\cos \frac{\pi z}{L^{\prime}} d z+}\right.$

$$
\left.\int_{0}^{\ell} \emptyset_{M A X} \cos \frac{\pi\left(l-\mathcal{L} \cdot .5 l^{\prime}\right)}{L^{1}} \exp -\left(\frac{\xi u}{\mathscr{\ell}}\right) d u\right]
$$

$$
Q_{T O T}=\pi D_{i} \varnothing_{\mathrm{MAX}}\left[\left.\frac{L^{\prime}}{\pi} \sin \frac{\pi z}{L^{\prime}}\right|_{-\ell / 2} ^{\ell-l-.5 l^{\prime}}+\cos \frac{\pi\left(l-f^{\prime}-.5 l^{\prime}\right)}{L^{\prime}}\left(-\frac{\mathcal{L}^{\prime}}{\xi}\right)\right.
$$

$$
\begin{equation*}
\left.\left.\exp \left(-\frac{\xi u}{\mathscr{L}}\right)\right|_{0} ^{\mathcal{L}}\right] \tag{B-52}
\end{equation*}
$$

Hence $\oint_{\text {MAX }}=\frac{Q_{\text {TOT }}}{\pi \mathrm{D}_{1} \mathrm{C}_{1}}$
where $c_{1}=\left[\frac{L^{\prime}}{\pi}\left(\sin \frac{\pi}{L^{\prime}}\left(\ell-\mathcal{L}^{\prime}-5 \ell^{\prime}\right)+\sin \frac{\pi l^{\prime}}{L^{\prime} 2}\right)+\right.$

$$
\begin{align*}
& \left.\cos \frac{\pi\left(\ell-\ell^{\prime}-.5 \ell\right)}{L^{1}}(1-\exp (-\xi)) \frac{\chi^{\xi}}{\xi}\right] \\
& =\left[\frac{L^{\prime}}{\pi}\left(\sin \frac{\pi}{L^{\prime}}\left(\hat{x}-\alpha^{\prime}-.5 x^{\prime}\right)+\sqrt{\frac{M^{2}-1}{M^{2}}}\right)+\right. \\
& \left.\cos \frac{\pi\left(\hat{x}-\hat{\alpha}-.5 \hat{x}^{\prime}\right)}{L^{1}}(1-\exp (-\xi)) \frac{\hat{\alpha}}{\xi}\right] \tag{B-54}
\end{align*}
$$

Substituting the expressions for $\oint_{\text {MAX }}$ back into equations (51 arb, and c) we obtain the desired result:

$$
\begin{align*}
& \phi(z)=\varnothing_{M A X} \cos \frac{\pi z}{L^{\prime}}=\frac{Q_{T O T}}{\pi D_{i} C_{1}} \cos \frac{\pi z}{L^{\prime}} \text { for }-\frac{l^{\prime}}{2} \leq z \leq 0 \quad \text { (B-55a) } \\
& \phi(z)=\varnothing_{\operatorname{MAX}} \cos \frac{\frac{\pi z}{L^{\prime}}}{}=\frac{Q_{T O T}}{\pi D_{i} C_{1}} \cos \frac{\pi z}{L^{\prime}} \text { for } 0 \leq z \leq 2-\not \alpha^{\prime}-.5 Q^{\prime} \tag{B-550}
\end{align*}
$$

$$
\begin{align*}
& \phi(u)=\frac{Q_{T O T}}{\pi D_{i} C}, \cos \frac{\pi\left(\ell-\not \ell^{2}-.5 \ell\right)}{L^{1}} \exp \left(-\frac{5 u}{\alpha}\right) \text { for } 0 \leq u \leq \mathcal{L} \tag{B-55c}
\end{align*}
$$

In the above expressions the quantities $L \prime$, l^{\prime}, and M are derived and defined in the same manner as in the cosine flux case. Hence we obtain

$$
\begin{equation*}
\cos \frac{\pi}{2} \frac{l^{\prime}}{L^{\prime}}=\frac{Q_{M I N}}{Q_{M A X}}=\frac{A_{M I N}}{A_{M A X}}=\frac{1}{M} \tag{B-57}
\end{equation*}
$$

and

$$
\begin{equation*}
L=\frac{\pi \ell^{\prime} / 2}{a r \cos (1 / M)} \tag{B-58}
\end{equation*}
$$

where MIN and MAX refer to values on the cosine portion of the profile.
b. $D_{0}(z$ and $u)$

Now in general $D_{0}(z$ or $u)=\sqrt{\frac{4}{\pi} A_{x}(z \text { or } u)+D_{i}^{2}}$
From equation (1) we obtain

$$
\begin{equation*}
R=\int_{\ell^{\prime} / 2}^{\mathcal{L}} \mathrm{dR}=\int_{-\ell^{\prime} / 2}^{\mathcal{L}} \frac{\rho_{\mathrm{d}}(z \text { or } u)}{\left.\mathrm{A}_{\mathrm{or}} \text { or }\right)} \tag{B-60}
\end{equation*}
$$

Now over the region $-\ell / 2 \leq z \leq \ell-\mathcal{L}-.5 \ell \prime, A_{x}(z)$ can be expressed as

$$
\begin{equation*}
A_{x}(z)=\frac{A_{M I N}}{\cos \frac{\pi z}{L}} \tag{B-61}
\end{equation*}
$$

whereas over the region $0 \leq u \leq \mathcal{L}, A_{x}(u)$ can be expressed as

$$
\begin{equation*}
A_{x}(u)=\frac{A_{M I N} / \cos \frac{\pi}{L_{1}}\left(\ell-\rho^{\prime}-.5 \ell^{\prime}\right)}{\exp \left(-\frac{\xi u}{\ell}\right)} \tag{B-62}
\end{equation*}
$$

Hence

$$
\begin{gather*}
R=\int_{-\ell^{\prime} / 2}^{\ell-\ell^{\prime}-.5 \ell^{\prime}} \frac{\rho}{A_{M I N}} \cos \frac{\pi z}{L^{\prime}} d z+\int_{0}^{\ell} \frac{\rho \cos \frac{\pi}{L^{\prime}}\left(\ell-f-.5 \ell^{\prime}\right)}{A_{M I N}} \\
\exp \left(-\frac{\xi u}{\ell^{\ell}}\right) d u \tag{B-63}
\end{gather*}
$$

Integrating we obtain R in terms of $A_{M I N}$ as

$$
\begin{gather*}
R=\frac{\rho}{A_{M I N}}\left(\frac { L ^ { \prime } } { \pi } \left(\sin \frac{\pi l^{\prime}}{2 L^{\prime}}+\sin \frac{\pi}{L},\left(l-f-.5 l^{\prime}\right)+\frac{\cos \frac{\pi}{L_{1}}\left(l-L^{\prime}-.5 \ell^{\prime}\right)}{5 / \mathscr{L}}\right.\right. \\
(1-\exp (-\xi))) \tag{B-64}
\end{gather*}
$$

or $R=\frac{\rho_{C}}{A_{\text {MIN }}}$ where C, is defined by equation (54)
Thus $A_{\text {MIN }}=\frac{\rho C_{1}}{R}$
Hence in the range $-\ell^{\prime} / 2 \leq z \leq \ell-l-.5 \ell^{\prime}$

$$
\begin{equation*}
A_{x}(z)=\frac{A_{M I N}}{\cos \frac{\pi^{\prime}}{L^{\prime}}} \text { where } A_{M I N} \text { is defined by equation (65) } \tag{B-66}
\end{equation*}
$$

and in the range $0 \leq u \leq \ell$

$$
\begin{equation*}
A_{x}(u)=\frac{A_{M I N}}{\cos \frac{\mathbb{K}}{L}(\ell-\dot{X}-.5 \dot{X}) \exp \left(-\frac{\xi u}{\alpha}\right)} \tag{B-67}
\end{equation*}
$$

where $A_{\text {MIN }}$ is defined by equation (65).
Hence the desired result for $D_{0}(z)$ can be obtained by substituting equation (61) into equation (59) obtaining

$$
\begin{equation*}
D_{0}(z)=\sqrt{\frac{4}{\pi} \frac{A_{M I N}}{\cos \frac{\pi^{\prime}}{L^{\prime}}}+D_{1}^{2}} \tag{B-68}
\end{equation*}
$$

where $A_{\text {MIN }}$ is expressible as a function of tube parameters only (ie. R, l, Q', \mathcal{L}^{\prime} and ξ) per equation (65).

The desired result for $D_{0}(u)$ can be obtained by substituting equation (62) into equation (59), obtaining

$$
\begin{equation*}
D_{0}(u)=\sqrt{\frac{4}{\pi} \frac{A_{\text {MIN }}}{\left(\cos \frac{\pi}{L}\left(l-L^{\prime}-.5 \ell^{\prime}\right) \exp \left(-\frac{\xi u}{\alpha}\right)\right.}+D_{i}^{2}} \tag{B-69}
\end{equation*}
$$

where $A_{M I N}$ is also expressed per equation (65).
c. $Q(z$ and $u)$

$$
\text { Now } Q(x)=\int_{\text {INLET }}^{x} \phi(x) \pi D_{i} d x \text { where } \phi(x) \text { as a }
$$

function of position and total power was previously derived in equation (55). Substituting this expression for \varnothing and performing the indicated integrations, we obtain the desired results in the range $-\ell^{\prime} / 2 \leq z \leq 0$.

$$
\begin{align*}
Q(z) & =\int_{-\ddot{x}^{\prime} / 2}^{z} \frac{Q_{T O T}}{\pi D_{i} C}, \pi D_{i} \cos \frac{\pi z}{L^{\prime}} d z \\
& =\frac{Q_{T O T} L^{L}}{C_{1} \pi}\left[\sin \frac{\pi}{2} \frac{i^{\prime}}{L^{\prime}}+\sin \frac{\pi z}{L^{\prime}!}\right] \\
Q(z) & =\frac{Q_{T O T} L^{\prime}}{C_{1} \pi}\left[\sqrt{\frac{M^{2}-1}{M^{2}}}-\sin \frac{\pi|z|}{L^{\prime}}\right] \tag{B-70}
\end{align*}
$$

In the range $0 \leq z \leq \ell-f-5 \ell 1$

$$
\begin{align*}
& Q(z)=\int_{-Q^{\prime} / 2}^{z} \frac{Q_{T O T}}{\pi D_{1} C_{i}} \pi D_{i} \cos \frac{\pi z}{L^{\prime}} d z \\
& Q(z)=\frac{Q_{T O T} L^{\prime}}{C_{1} \pi}\left[\sqrt{\frac{M^{2}-1}{M^{2}}}+\sin \frac{\pi z}{L^{\prime}}\right] \tag{B-71}
\end{align*}
$$

In the range $0 \leq u \leq{ }^{\circ}$

$$
\begin{align*}
Q(z)= & \int_{-\ddot{x}^{\prime} / 2}^{\ddot{x}-.5 \hat{x} x^{\prime}} \phi(z) \pi D_{i} d z+\int_{0}^{u} \phi(u) \pi D_{i} d u \\
Q(z)= & \frac{Q_{T O T} L^{\prime}}{C_{1} \pi}\left[\sin \frac{\pi\left(\ell-2^{3}-.5 \dot{\chi}^{\prime}\right)}{L^{\prime}}+\sin \frac{\pi}{2} \frac{\ell^{\prime}}{L^{\prime}}\right]+ \tag{B-72}\\
& \frac{Q_{T O T} \alpha^{t}}{C_{1}}\left[\cos \frac{\pi\left(\ell-x^{2}-.5 \ell^{\prime}\right)}{L^{1}}\left(1-\exp \left(-\frac{\xi u}{\rho}\right)\right]\right.
\end{align*}
$$

OUTLET PEAK

This flux profile is shown in figure 10. The analytic expression for the flux profile is as follows:

$$
\begin{align*}
& \phi(u)=\emptyset_{\operatorname{MAX}} \cos \frac{-\pi\left(+\ell-\mathscr{L}-.5 \ell^{\prime}\right)}{L^{\prime}} \exp \left(\xi\left(\frac{u-\mathscr{L}}{\mathscr{L}}\right)\right) \\
& =\varnothing_{\operatorname{MAX}} \cos \frac{\pi(l-\mathcal{L}-.5 l)}{L^{1}} \exp \left(\xi\left(\frac{u-\dot{L}}{J}\right)\right) \text { for } 0 \leq u \leq \mathcal{L} \\
& \phi(z)=\varnothing_{\mathrm{MAX}} \cos \frac{\pi z}{L^{1}} \text { for }-\left(l-f^{\prime}-.5 l^{\prime}\right) \leq z \leq 0 \tag{B-73b}\\
& \phi(z)=\emptyset_{\text {MAX }} \cos \frac{\pi z}{L^{1}} \text { for } 0 \leq z \leq+\ell^{\prime} / 2 \tag{B-73c}
\end{align*}
$$

a. $\varnothing(z)$

Now $Q_{\text {TOT }}$ is expressable by equation (52) for the inlet peak case since the flux profile are mirror images.

Hence

$$
\begin{equation*}
\emptyset_{\text {MAX }}=\frac{Q_{\text {TOT }}}{\pi D_{i} C_{1}} \text { were } C_{1} \text { is also given by equation }(54) \tag{B-74}
\end{equation*}
$$

Substituting equation (74) into equations (73 a, b, and c) we obtain

$$
\begin{align*}
& \phi(u)=\frac{Q T O T}{\pi D_{i} C} \cos \frac{\pi\left(l-\ell-.5 \ell^{\prime}\right)}{L^{\prime}} \exp \left(\xi\left(\frac{u-\ell}{f}\right)\right) \text { for } 0 \leq u \leq \mathcal{L} \tag{B-75}\\
& \phi(z)=\frac{Q_{T O T}}{\pi D_{i} C_{1}} \cos \frac{\pi z}{L^{\prime}} \text { for }-\left(l-\mathcal{L}-.5 \ell^{\prime}\right) \leq z \leq 0 \tag{B-75b}\\
& \phi(z)=\frac{Q_{T O T}}{\pi D_{i} C} \cos \frac{\pi z}{L^{\prime}} \text { for } 0 \leq z \leq+l^{\prime} / 2 \tag{B-75c}
\end{align*}
$$

b. $D_{0}(z$ and $u)$

The desired relations for tube outside diameter, $D_{0}(z$ and $u)$, are obtained in the same manner as the inlet peak case. Since the two cases are mirror images of each other
$R=\frac{f C_{1}}{A_{M I N}}$ where C_{1} is defined by equation (54) (B-76)
and $A_{M I N}=\frac{\rho C_{1}}{R}$
This result may easily be seen by direct integration. Now in this case, the wall cross sectional areas are given by

$$
\begin{align*}
& A_{x}(u)=\frac{A_{M I N}}{\cos \frac{\pi}{L}\left(\eta-\mathscr{L}-.5 \hat{l}^{1}\right) \exp \left(\xi\left(\frac{u-\mathcal{L}}{\mathscr{L}}\right)\right)} \text { for } 0 \leq u \leq \mathscr{\chi} \tag{B-78}\\
& A_{x}(z)=\frac{A_{M I N}}{\cos \frac{\pi Z}{L^{1}}} \text { for }-\left(\ell-f^{\prime}-.5 \ell^{\prime}\right) \leq z \leq+\ell^{\prime} / 2 \tag{B-79}
\end{align*}
$$

Hence the desired results are

$$
\begin{equation*}
D_{O}(z)=\sqrt{\frac{4}{\pi} \frac{A_{M I N}}{\cos \frac{\pi z}{L^{1}}}+D_{i}^{2}} \tag{B-80}
\end{equation*}
$$

where $A_{\text {MIN }}$ is expressible as a function of tube parameters only (i.e. $R, \hat{\chi}, \ell^{\prime}, \hat{\alpha}$, and ξ) by equations (74 and 54).
and $D_{0}(u)=\sqrt{\frac{4}{\pi} \frac{A_{M I N}}{\cos \frac{\pi}{L^{\prime}}\left(Q-\mathcal{L}-.5 \ell^{\prime}\right) \exp \left(\xi\left(\frac{u-l}{\mathscr{Z}}\right)\right)}+D_{1}^{2}}$
where $A_{\text {MIN }}$ is also expressed by equations (77 and 54).

-105-

c. $Q(z$ and $u)$

$$
\text { Now } Q(x)=\int_{\text {INLET }}^{x} \phi(x) \pi D_{1} d x \quad \text { where }
$$

$\phi(x)$ as a function of position and total power was previously derived in equation (75). Substituting this expression for \varnothing and performing the indicated integrations we obtain the desired results.
In the range $0 \leq u \leq \dot{I}^{\prime \prime}$

$$
\begin{equation*}
Q(u)=\frac{Q_{\operatorname{TOT}}}{C_{1}} \cos \frac{\pi\left(\ell-\mathcal{L}^{\prime \prime}-.5 \chi^{\prime}\right)}{L^{1}}\left(\frac{\mathcal{l}^{\prime}}{\xi}\right) \exp \left(\frac{\xi}{f}\left(u-\mathcal{L}^{\hat{l}}\right)-\exp (-\xi)\right) \tag{B-82a}
\end{equation*}
$$

In the range $-(\ell-\mathcal{L}-.5 \ell) \leq z \leq 0$, where z is inherently negative
$Q(z)=\frac{Q_{T O T}}{C_{1}}\left(\frac{\mathcal{L}}{\xi} \cos \frac{\pi(\ell-f-.5 \ell)}{L^{1}}(1-\exp (-\xi))+\right.$

$$
\begin{equation*}
\frac{L^{\prime}}{\pi}\left(\sin \frac{\pi\left(\ell-I^{\prime}-.5 \ell^{\prime}\right)}{L^{\prime}}-\sin \frac{\pi|z|}{L^{\prime} \mid}\right) \tag{B-82b}
\end{equation*}
$$

In the range $0 \leq z \leq+l / 2$, where z is positive

$$
\begin{gather*}
Q(z)=\frac{Q_{T O T}}{C_{1}}\left(\frac{f}{\xi} \cos \frac{\pi\left(\ell-f-.5 \ell^{\prime}\right)}{L^{\prime}}(1-\exp (-\xi))+\right. \\
\left.\frac{L^{\prime}}{\pi}\left(\sin \frac{\pi\left(\ell-\mathcal{L}^{\prime}-.5 \ell^{\prime}\right)}{L^{\prime}}+\sin \frac{\pi z}{L^{1}}\right)\right) \tag{B-82c}
\end{gather*}
$$

FLUX SPIKE (COSINE SHAPED)

This flux profile is shown in Fig. 10. The analytic expression for the flux profile is as follows:

$$
\begin{align*}
& \varnothing=\varnothing_{\text {MIN }} \text { for }-\left(t-\chi+\frac{\ell^{\prime}}{2}\right) \leq z \leq-\ell^{\prime} / 2 \tag{B-83a}\\
& \varnothing=\varnothing_{\text {MAX }} \cos \frac{\pi z}{L^{\prime}} \text { for }-\frac{\ell^{\prime}}{2} \leq z \leq+\ell^{\prime} / 2 \\
& \varnothing=\varnothing_{\text {MIN }} \text { for }+\ell^{\prime} / 2 \leq z \leq L-\frac{e^{\prime}}{2}
\end{align*}
$$

a. $\varnothing(z)$

$$
\text { Now } Q(z)=\int_{-\left(\ell-K+\ell^{\prime} / 2\right)}^{\mathscr{L}-\ell^{\prime} / 2} \quad \varnothing(z) \pi D_{1} d z
$$

$$
+\int \begin{aligned}
& +\mathcal{L}-\frac{e^{\prime}}{2} \\
& +\ell^{\prime} / 2
\end{aligned} \varnothing_{\mathrm{MIN}^{\pi D_{i}}} \mathrm{dz}
$$

$Q_{T O T}=\pi D_{i} \varnothing_{\text {MIN }}\left[\ell-l^{\prime}\right]+\varnothing_{M A X^{2}} 2 D_{i} L^{\prime} \sin \frac{\pi}{2} \frac{\ell^{\prime}}{L^{\prime}}$
Since $M \equiv \frac{\emptyset_{\text {MAX }}}{\varnothing_{\text {MIN }}}$
We obtain $Q_{T O T}=\pi D_{1} \varnothing_{\text {MAX }}\left\{\frac{\ell-\ell^{\prime}}{M}+\frac{2 L^{\prime}}{\pi} \sin \frac{\pi}{2} \frac{\ell^{\prime}}{L^{\prime}}\right\}$

$$
\begin{align*}
& \text { Let } c_{7} \equiv \frac{\ell-\ell^{\prime}}{M}+\frac{2 L^{\prime}}{\pi} \sin \frac{\pi}{2} \frac{\ell^{\prime}}{L^{\prime}} \\
& \text { or } \frac{\ell-\ell^{\prime}}{M}+\frac{2 L^{\prime}}{\pi} \sqrt{\frac{M^{2}-1}{M^{2}}} \text { (per Eq. B-12) } \tag{B-85}
\end{align*}
$$

-107-

Hence we obtain

$$
\begin{align*}
& \varnothing_{\mathrm{MAX}}=\frac{Q_{\mathrm{TOT}}}{\pi D_{i} C_{7}} \\
& \varnothing_{\mathrm{MIN}}=\frac{Q_{\mathrm{TOT}}}{\mathrm{MTD}_{i} C_{7}}
\end{align*}
$$

Substituting these expressions for $\varnothing_{\text {MAX }}$ and $\varnothing_{\text {MIN }}$ into Eq. (B-83) we obtain

$$
\begin{align*}
& \varnothing(z)=\frac{Q_{T O T}}{M \pi D_{1} C_{7}} \text { for }-\left(\ell-\not \subset+\frac{\ell^{\prime}}{2}\right) \leq z \leq-\frac{\ell^{\prime}}{2} \tag{B-87a}\\
& \varnothing(z)=\frac{Q_{T O T}}{\pi D_{1} C_{7}} \cos \frac{\pi z}{L_{1}^{\prime}} \text { for }-\frac{e^{\prime}}{2} \leq z \leq \frac{e^{\prime}}{2} \tag{B-87b}\\
& \varnothing(z)=\frac{Q_{T O T}}{M \pi D_{1} C_{7}} \text { for }+\frac{\ell^{\prime}}{2} \leq z \leq \mathscr{L}-\frac{\ell^{\prime}}{2} \tag{B-87c}
\end{align*}
$$

b. $D_{0}(z)$

The relation for the tube outside diameter, D_{0}, is obtained as follows. The wall cross sectional areas are given as

$$
\begin{align*}
A_{X}(z)=\frac{A_{M I N}}{\cos \frac{\pi \ell^{\prime}}{2 L^{\prime}}}=M A_{M I N} \text { for } & -\left(\ell-\neq \frac{\ell^{\prime}}{2}\right) \leq z \leq-\ell^{\prime} / 2 \tag{B-88a}\\
& +\frac{\ell^{\prime}}{2} \leq z \leq \ell-\ell^{\prime} / 2 \tag{B-88b}\\
A_{X}(z)=\frac{A_{M I N}}{\pi z} & -\frac{\ell^{\prime}}{2} \leq z \leq+\frac{\ell^{\prime}}{2}
\end{align*}
$$

Now since $R=\int_{T O T} d R=\int_{T O T} \frac{\rho d z}{A_{X}(z)}$

Substituting for $A_{X}(z)$ from Eq. (B-88) we obtain

$$
R=\int_{-\left(l-\neq+\ell^{\prime} / 2\right)^{-}}^{-\frac{\ell^{\prime} / 2}{M A} \mathrm{MIN}}+\int_{+\frac{e^{\prime}}{2}}^{\mathcal{L}-\frac{\ell^{\prime}}{2}} \frac{\rho d z}{M_{M I N}}+\int_{-\frac{\ell^{\prime}}{2}}^{+\frac{e^{\prime}}{\left(\frac{A_{M I N}}{\cos \frac{\pi z}{L^{\prime}}}\right)}}
$$

$$
\begin{equation*}
R=\frac{\rho}{A_{M I N}}\left[\frac{\left(l-l^{\prime}\right)}{M}+\frac{2 L^{\prime}}{\pi} \sqrt{\frac{M^{2}-1}{M^{2}}}\right] \tag{B-89}
\end{equation*}
$$

Hence $A_{M I N}=\frac{\rho}{R}\left[\frac{l-l^{\prime}}{M}+\frac{\ell^{\prime}}{\cos ^{1} \frac{1}{M}} \sqrt{\frac{M^{2}-1}{M^{2}}}\right]$
Hence $D_{0}(z)=\sqrt{\frac{4}{\pi} M A_{M I N}+D_{i}^{2}}$ for $-\left(\ell-\rho+\frac{\ell^{\prime}}{2}\right) \leq z \leq-\ell^{\prime} / 2$

$$
\begin{align*}
&+l^{\prime} / 2 \leq z \leq L-\frac{l^{\prime}}{2} \tag{B-91a}\\
&=\sqrt{\frac{4}{\pi} \frac{A_{\mathrm{MIN}}}{\cos \frac{\pi z}{L^{\prime}}}+D_{1}^{2}} \text { for }-\frac{l^{\prime}}{2} \leq z \leq+\frac{l^{\prime}}{2} \tag{B-91b}
\end{align*}
$$

where $A_{\text {MIN }}$ is given by Eq. (B-90).
c. $Q(z)$

$$
\begin{equation*}
\text { Now } Q(z)=\int_{-\left(l-\angle L+l^{\prime} / 2\right)^{z}}^{\pi D_{1} \phi(z) d z} \tag{B-92}
\end{equation*}
$$

where $\varnothing(z)$ as a function of position and total power was previousll derived in Eq. (B-83).

In the range $-\left(l-\chi^{2}+\frac{l^{\prime}}{2}\right) \leq z \leq-l^{\prime} / 2$

$$
\begin{align*}
& \left.Q(z)=\int_{-(l-\mathscr{L}}^{-z} \ell^{\prime} / 2\right)^{\pi D_{1} \frac{Q_{T O T}^{M D}}{M D_{1} C_{7}} d z} \\
& Q(z)=\frac{Q_{T O T}}{M C_{7}}\left(-z+l-\mathscr{L}+\frac{\ell^{\prime}}{2}\right) \tag{B-93a}
\end{align*}
$$

$$
-109-
$$

In the range $-\frac{\ell^{\prime}}{2} \leq z \leq 0$

$$
\begin{align*}
Q(z) & =\int_{-\left(\ell-\ell+\ell^{\prime} / 2\right)}^{-\ell^{\prime} / 2} \pi D_{1} \frac{Q_{T O T}}{M C_{7} \pi D_{1}} d z+\left.\right|_{-l^{\prime} / 2} ^{-z} \pi D_{1} \frac{Q_{T O T}}{\pi D_{1} C_{7}} \cos \frac{\pi z}{L^{\prime}} d z \\
& =\frac{Q_{T O T}}{M C_{7}}(\ell-\mathscr{})+\frac{Q_{T O T}}{C_{7}} \frac{L^{\prime}}{\pi}\left[\sqrt{\frac{M^{2}-1}{M^{2}}}-\sin \frac{\pi / z /}{L^{\prime}}\right] \quad \text { (B-93b) } \tag{B-93b}
\end{align*}
$$

In the range $0 \leq z \leq+\frac{l^{\prime}}{2}$

$$
\begin{align*}
Q(z) & =\frac{Q_{T O T}}{M C_{7}}(l-<)+\int_{-l^{\prime} / 2}^{0} \pi D_{1} \frac{Q_{T O T}}{\pi D_{1} C_{7}} \cos \frac{\pi z^{\prime}}{L} d z \\
& +\int_{0}^{z} \pi D_{1} \frac{Q_{T O T}}{\pi D_{1} C_{7}} \cos \frac{\pi z}{L} d z \\
Q(z) & =\frac{Q_{T O T}}{M C_{7}}(\rho-L)+\frac{Q_{T O T}}{C_{7}} \frac{L^{\prime}}{\pi}\left[\sqrt{\frac{M^{2}-1}{M^{2}}}+\sin \frac{\pi z}{L^{\prime}}\right] \tag{B-93c}
\end{align*}
$$

In the range $+\frac{l^{\prime}}{2} \leq z \leq \alpha-\frac{e^{\prime}}{2}$

$$
\begin{align*}
Q(z) & =\frac{Q_{T O T}}{M C_{7}}(\ell-\ell)+\frac{Q_{T O T} L^{\prime} 2}{C 7 \pi} \sqrt{\frac{M^{2}-1}{M^{2}}}+\int_{+\ell^{\prime} / 2}^{\pi D_{i} \frac{Q_{T O T}^{M \pi D_{i} C_{7}}}{} d z} \\
& =\frac{Q_{T O T}}{M C_{7}}\left(\ell-t z-\hat{\ell}^{\prime} / 2\right)+\frac{Q_{T O T}}{C_{7}} \frac{L^{\prime} 2}{\pi} \sqrt{\frac{\mathrm{M}^{2}-1}{M^{2}}} \tag{B-93d}
\end{align*}
$$

APPENDIX C

TEST SECTION DESIGN

The initial factor to be considered in the design of the test sections is the characteristics of the available power supply. With the 24 volt, 3000 ampere supply available, Ohms Law indicates that an overall tube resistance of 8.0×10^{-3} ohms is necessary to achieve full power of 72 kw without exceeding either the generator voltage or current limitations.

Sccondly the range of mass velocity (G) to be investigated is fixed. In this investigation values of $.5 \times 10^{6}, 1.0 \times 10^{6}$ and 2.0×10^{6} were chosen to cover the range reported by previous investigators and/or selected in reactor design application. Now the dimensions, D_{i} and l, are established by consideration of the limiting operating condition requiring the maximum heat input (and flux) to achieve the critical condition. Thus we take the limiting case as that of $G_{\text {MAX }}\left(2.0 \times 10^{6}\right)$, and $X_{\text {in-MIN }}($ about -.28 for 80 psia) which utilizing the critical heat flux correlation of Macbeth (reference 30) defines a critical heat flux \varnothing as

$$
\begin{equation*}
\phi_{c} \cdot 10^{-6}=\frac{A+\frac{1}{4} C D_{1}\left(\mathrm{G} \cdot 10^{-6}\right) \Delta \mathrm{H}_{\mathrm{SUB}-I N}}{1+\mathrm{Cl}} \tag{c-1}
\end{equation*}
$$

where A and C both represent expressions which are functions of D_{i}, G, and P.

A second equation defining the limits of tube geometry results from the identity $\varnothing_{c}=\frac{Q_{\text {TOT }}}{A_{S}}$. Substituting for A_{S} we obtain

$$
\begin{equation*}
\varnothing_{c} D_{i}=\frac{Q_{T O T}}{\pi \ell} \tag{c-2}
\end{equation*}
$$

However, additional factors also limit the selection of individual values of ℓ and D_{i}.
a) To simulate reactor conditions and also to avoid effects on critical heat flux resulting from very short test lengths, it is desirable that le as large as possible, at least 20 inches or greater. b) It is desirable to work within the limits of existing uniform flux data to provide a reference point for the nonuniform flux data obtained. This existing data can then be used as a check of uniform data obtained during this study and to provide the basis for a uniform flux correlation useful to analytic work. Hence the following restrictions on ℓ / D ratio are in order

$$
50 \leq l / D \leq 250
$$

c) As reported by Bergles (reference 32) for the subcooled burnout case, small tube data deviates from the data obtained for large tubes. This probably is a consequence of the existence of considerable nonequilibrium vapor volume as the hydraulic diameter
becomes comparable to bubble dimensions. Although this study is concerned primarily with burnout in the quality region, nucleation can occur within the annular film. This nucleation and the present lack of definition of the mechanics of the burnout process in this case make it prudent to restrict the test section diameters to relatively large values, .150 inches or greater, to eliminate any extraneous diameter effect on the results. d) Finally a limitation on maximum tube inside diameter is imposed by the desire to achieve maximum pump discharge pressure (270 psia) to assure adequate flow control of the loop. From the pump characteristic, the maximum flow rate allowed is about $1800 \mathrm{lb} / \mathrm{hr}$ which corresponds to a pump discharge of 260 psia. Since

$$
\begin{equation*}
G=\frac{W}{A_{F}}=\frac{W}{\frac{\pi}{4} \frac{D_{i}}{144}} 2 \tag{c-3}
\end{equation*}
$$

For $G_{M A X}=2.0 \times 10^{-6}$, the maximum inside diameter is .410 inches.

Summarizing now we have two equations (1 and 2) and three unknowns (ℓ, D_{i} and \varnothing_{c}) with the following additional restrictions from physical grounds listed above

$$
\begin{aligned}
& .150 \text { inches } \leq D \leq .410 \text { inches } \\
& \ell \geq 20 \text { inches } \\
& 50 \leq l / D \leq 250
\end{aligned}
$$

From the range of values which satisfy these conditions, the following set of parameters was selected
$D=.214$ inches
$f=30$ inches
and hence $\ell . / D=140$ and $\varnothing_{C}\left(\right.$ MAX G and $\left.\Delta H_{S U B-I N}\right)=1.8 \times 10^{-6}$ $\mathrm{BIU} / \mathrm{hr} \mathrm{ft}^{2}$.

Next the degree of steepness of the test flux shapes was established. The M values ($M=$ MAXIMUM FLUX/MINIMUM FLUX) of this study were chosen to duplicate and bracket those of other investigators.

With the conditions established above, the finished tube dimensions for the flux shapes chosen can be calculated and the test section material selected.

The tube outside diameter for aluminum and hence the required amount of wall material to be removed was less than that for A nickel and stainless steel, due to the lower value of resistivity for Aluminum 2024-T3. Since the machinability of Aluminum 2024-T3 is also good, it was selected as the working material.

The specification of the actual machined dimensions of the test sections, the outside diameter as a function of axial length, can be calculated from expressions in Appendix B. Equation ($\mathrm{B}-16$) typically illustrates alternate expressions for $D_{0}(z)$ as a function of ρ, R and M or $A_{\text {MIN }}$ and M. Either expression can be used for tube design.

Permissable dimensional tolerances were established by the requirement that the local filux at any point should be within 5% of the design. Since

$$
\begin{aligned}
& d P=I^{2} d R=I^{2} \rho \frac{d}{A_{x}} \\
& d P \propto \frac{I}{A_{x} 1 O c a 1}
\end{aligned}
$$

Hence for locations of small wall cross section area the machining tolerance to hold $\pm 5 \%$ power becomes tighter. The tolerances specified for the first batches of machined tubes reflected this fact and specified several tolerances, each one applicable over a different axial location range. However, as manuf'acturing techniques improved, the minimum tolerance, applicable only to the area of minimum wall thickness, was applied to the entire tube. Typically on wall thicknesses ranging from . 009 inches to .044 inches, a tolerance of $\pm .001$ inches was met. This resulted in flux shapes at any point within $2-5 \%$ of design.

APPENDIX D

DATA REDUCTION AND ANALYSIS
The reduction of the experimental data and the computation of parameters relevant to the analytic model developed are performed by the computer program described in Appendix E. The computational methods and equations upon which this program is based are presented in this appendix in the following order
a) INITIAL DATA
b) PARAMETERS DERIVED FROM FIRST LAW (BASIC DATA REDUCTION)
c) ANALYTIC MODEL
d) ANNULAR FILM CHARACTERISTICS
a) INITIAL DATA

For each fabricated test section, the following data is available:
D_{i}, ℓ, M
L, L' (applicable only to test sections with a cosine shaped portion)
$\mathcal{L}, \xi, \ell^{\prime}$ (applicable only to peaked inlet, peaked outlet, or spike-cosine shaped test sections)

The following additional data is obtained from each experiment
$T_{\text {IN }} \quad E \quad P_{p}$ OUT
W I $\quad P_{I N}$
$P_{\text {OUT }}$
From these data, $\Delta \mathrm{P}=\mathrm{P}_{\text {IN }}-\mathrm{P}_{\text {OUT }}$ and $\mathrm{H}_{\text {IN }}$ are directly available.

b) PARAMETERS DERIVED FROM FIRST LAW

Using the above data, the desired parameters at the test section inlet and along the test section are calculated as follows

TUBE INLET $\quad X_{I N}=\frac{H_{I N}-H_{f-I N}}{H_{f g-I N}}=\frac{\Delta H_{S U B-I N}}{H_{f g-I N}}$
AXIALLY ALONG TUBE
$\left(q / A_{x}\right),(q / A)_{c}, Q_{x}, Q_{c}$ per equations in Appendix B
$H_{X}=H_{I N}+\frac{Q_{X}}{W}$
$X_{x}=\frac{H_{x}-H_{f-x}}{H_{f g-x}}$
In addition parameters associated with the saturation location and the bubbly-annular transition point are calculated as follows

SATURATION LOCATION
$Q_{X=0}=-\Delta H_{S U B}-I N^{W}$
$L_{X=0}$ is length at which $Q_{X}=Q_{X=0}$. This parameter is obtained by solving the relevant Q_{x} equation in Appendix B for the position variable having first made the substitution $Q_{X=0}=Q_{x}$
$L_{S}=\mathcal{E}-L_{X=0}$
$Q_{S A T}=E I 3.41 \mathrm{BIU} / \mathrm{hr} /$ watt $-Q_{X=0}=Q_{T O T}-Q_{X=0}$

BUBBLY- ANNULAR TRANSITION LOCATION

The value of x at the transition location is established by repetition of calculations for increasing
distances beyond the zero quality length, $I_{X_{x=0}}$, until the preset value of quality at the transition point is attained. With x thus established at the transition location, the additional parameters below are calculated

$Q_{\text {ANN }-C}=Q_{C} Q_{X}$
CALCULATION OF $P(X)$
In all the above work, calculation of P_{x} is computed by the empirical formulation below. This formulation was established by calculating pressure drops using the Martinelli-Nelson model (43) for tubes representing the extreme ranges in pressure drop and mass flow experienced. These results of pressure over tube length were then fitted by two straight lines, the latter line which is applicable over the higher quality regions having the more negative slope to reflect the larger rate of pressure drop in the higher quality region. The empirical fitted results compared well with the calculated results. While this method gives pressure results which are only within $\pm 10 \%$, these values are used only to obtain enthalpy, quality, and heat flux for incipient nucleation which are relatively insensitive to small changes in pressure. This procedure was adopted since the accuracy obtained was acceptable and a more complicated program for pressure calculation was therefore not needed.

For $x \leq L_{X=0}, P_{X}=P_{I N}$ (neglects single phase pressure drop)

For $\mathrm{L}_{\mathrm{X}=0}<\mathrm{x} \leq 1.6 \mathrm{I}_{\mathrm{X}=0}$

$$
P_{x}=P_{I N}-.750 \Delta P\left(\frac{x-L_{X=0}}{\ell-I_{X=0}}\right)
$$

For $x>1.6 \mathrm{I}_{\mathrm{X}=0}$

$$
P_{X}=P_{B K}-\left(P_{B K}-P_{O U T}\right)\left(\frac{x-1.6 L_{X=0}}{R-1.6 L_{X=0}}\right)
$$

where

$$
P_{B K}=P_{I N}-.750 \Delta P\left(\frac{0.60 L_{X=0}}{l-I_{X=0}}\right)
$$

c) ANALYTIC MODEL

The model discussed in Chapter IV requires comptation of the heat flux to initiate nucleate boiling at given conditions of mass flow rate G, pressure P, quality X and tube geometry, D, ℓ. The correlations used in this computation are

TWO PHASE HEAT TRANSFER COEPFICIENT, h

1) DENGLER-ADDOMS CORRELATION (38)

$$
h=3.5 h_{L}\left(1 / x_{t t}\right)^{+0.5} \text { for } .25<x_{t t}<70
$$

where

$$
h_{L}=.023\left(\frac{k_{L}}{D / 12.0}\right)(\mathrm{Re})^{0.8}\left(\mathrm{Pr}_{L}\right)^{0.4}
$$

and

$$
1 / x_{t t}=\left(\frac{x}{1-x}\right)^{0.9}\left(\frac{v_{v}}{v_{L}}\right)^{0.5}\left(\frac{\mu_{v}}{\mu_{L}}\right)^{0.1}
$$

2) CHEN CORRELATION (39)

$$
\begin{aligned}
h & =h_{M A C}+h_{M I C} \\
h_{M A C} & =0.23\left(\frac{k_{L}}{D / 12.0}\right)\left(R e_{L}\right)^{0.8}\left(\operatorname{Pr}_{L}\right)^{0.4} \mathrm{~F}
\end{aligned}
$$

where

$$
\begin{aligned}
\mathrm{Re}_{\mathrm{L}} & =\frac{\mathrm{G}(1-X) D}{\mu_{\mathrm{L}} 12.0} \\
F & =\text { function of } \frac{1}{X_{\mathrm{t}}} \text { defined by Chen's Fig. } 7 .
\end{aligned}
$$

and
where

$$
\Delta T=T_{\text {WALL }}-T_{S A T}
$$

$\Delta P=$ difference in vapor pressure corresponding to $\Delta T, \mathrm{lb}_{\mathrm{f}} / \mathrm{ft} \mathrm{t}^{2}$
$S=$ function of $R e_{\mathrm{L}} \mathrm{rl}^{1.25}$ defined by Chen's Fig. 8. BERGLES-ROHSMNOW INCIPIENT HEAT FLUX FOR NUCLEATION, (g/A)I (35)
$(\mathrm{q} / \mathrm{A})_{1}=15.60 \mathrm{p}^{1.156}\left(\mathrm{~T}_{\mathrm{WALL}}-\mathrm{T}_{\mathrm{SAT}}\right)^{2.30 / \mathrm{p}^{0.0234}}$
The associated maximum cavity size required is obtained

where

$$
\gamma=\mathrm{q} / \mathrm{A} / \mathrm{k}={ }^{\mathrm{O}} \mathrm{~F} / \mathrm{ft} \text { or }{ }^{\circ} \mathrm{R} / \mathrm{ft} .
$$

$$
\begin{aligned}
& \alpha=\frac{h_{f g} 778}{R_{g}}=o_{R} \text { where } R_{g}=85.8 \frac{1 b_{f} \mathrm{ft}}{1 b_{m} o_{R}} \\
& \beta=\frac{\mathrm{P}}{\sigma 144.0}=\frac{1}{\mathrm{ft}}
\end{aligned}
$$

d) ANNULAR FILM CHARACTERISTICS (44)

The GEAP report presents curves of $\frac{b-a}{b}$ as a fundtion of $F^{\prime}\left(\frac{b-a}{b}\right)$. The film thickness, $b-a$, is thus obtained from the quantities b (radius in $f t$) and $F^{\prime}\left(\frac{b-a}{b}\right)$ where

where

$$
\begin{aligned}
& \mathrm{n}=0 \text { if }\left(-\frac{d P}{d z}\right)_{T O T-T P} \geqq \frac{g}{g_{0}} \rho_{L} \\
& n=-1 / 3 \text { if }\left(-\frac{d P}{d z}\right)_{\text {TOT -TM }}<\frac{g}{g_{0}} \rho_{L}
\end{aligned}
$$

Computation of the film flow rate, G_{f} is accomplished by the following series of equations

$$
\begin{aligned}
\tau_{\text {WALL }} & =\left[\left(-\frac{d P}{d z}\right)_{T O T-T P}-\frac{g \rho_{L}}{g_{0}}\left(1-\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right)\right] \frac{\mathrm{b}}{2} \\
\mathrm{y}^{+} & =\mathrm{y} \sqrt{\frac{\tau_{\text {WALL }} 4.17 \times 10^{8}}{\rho_{\mathrm{L}}}} \frac{\rho_{\mathrm{L}}}{\mu_{L}}
\end{aligned}
$$

where

$$
y \equiv b-a
$$

$$
G_{f i 1 m}=\frac{2}{b} \mu_{L} F\left(y^{+}\right)
$$

where

$$
\begin{array}{rlrl}
F\left(y^{+}\right) & =3 y^{+}+2.5 y^{+} \operatorname{lny^{+}}-64 \text { for } y^{+}>30 \\
& =12.5-8.05 y^{+}+5 y^{+} 1 n y^{+} & \text {for } 5<y^{+} \leq 30 \\
& =0.5 y^{+^{2}} \quad \text { for } y^{+} \leq 5
\end{array}
$$

The results of the GEAP report are applicable only to adiabatic conditions and hence are not strictly applicable to the conditions of the subject investigation. However, the test results were analysed based on the above equations to explore the possibility of calculating local film flow rates by this method. Since contradictory answers were obtained, the extrapolation of the equations to the test conditions was not considered rellable and hence analysis by this means was not pursued.

APPENDIX E

COMPUTER PROGRAM FOR DATA REDUCTION
AND ANALYSIS
The experimental data obtained was reduced in accordance with the equations of Appendix D by a program written in FORTRAN and mun on the MIT Computation Center IBM 7090 computer.

The program consists of a main program (AXIAL) which identifies from the input the flux shape of each tube (i.e. uniform, cosine, etc.) and transfers control to one of seven subroutines, one for each flux shape, where computations are initiated. These routines (UNIFRM, COSINE, LININC, LINDEC, PKIN, PKOUT, SPKCOS) together with the subroutines for calculating the saturated liquid and evaporation enthalpy (LIQEN and EVAPEN respectively) perform calculations of desired parameters at the critical location and over the entire length of the test section. In addition these subroutines call the subroutines (UNIANN, COSANN, LNIANN, LNDANN, PKIANN, PKOANN, SPKANN, CSPIKE) which calculate the desired parameters at the location of the bubbly-annular transition.

Calculation of the annular film thickness and the film flow rate past the bubbly-annular transition point is initiated by the subroutine FIIMRR
which is also called by the seven basic subroutines (UNIFRM, COSINE, etc.). The subroutine FIIMFR accomplishes this calculation by calling the subroutines listed below.
a) Local momentum pressure gradient based on the homogeneous flow assumption (HOMMGD).
b) Overall momentum pressure drop divided by the length yielding a linear momentum pressure gradient (GRDMOM).
c) Fluid properties - specific volume of saturated water (SPECVL), specific volume of saturated water vapor (SPECVG), saturation temperature (SATMMP), viscosity of saturated liquid (VISCOS), saturated liquid enthalpy (IIQEN) and evaporation liquid enthalpy (EVAPEN).
d) The Martinelli-Nelson friction pressure gradient multiplier (MNPGRD).
e) The ratio of film thickness to tube radius for given value of Levy's universal factor F^{\prime} (UNIVER).

If it is desired to exclude calculation of the film thickness and flow rate, it is sufficient to substitute dummy subroutines in place of subroutines FILMFR and GRDMOM.

The program also computes the relevant variables for the model by which the test results are analysed. These variables are (1) the change in enthalpy from the bubblyannular transition location to the local point of interest
and (2) the ratio of the local flux to the flux required to initiate nucleation in the liquid film based on both Chen's (39) and Dengler's (38) correlations. The calculation is initiated from the subroutine FILMFR by calling subroutines BONUCF and LONUCF which perform the desired calculations respectively at the burnout location and any local position of interest. The associated subroutines used in this calculation are
(1) Chen's two phase heat transfer coefficient (XHCHEN)
(2) Largest pit radius needed for nucleation per the Bergles-Rohsenow theory (XRAD)
(3) Fluid properties (in addition to those listed above under FIIMFR) - thermal conductivity of saturated water (XTHCON), specific heat at constant pressure of saturated water (XCPLIQ), steam-water surface tension (XSURFT), pressure of saturated water (XSATP), saturated vapor viscosity (XVISCG)
(4) Derived property dependent quantities - difference in vapor pressure corresponding to given water temperature difference (XDEIIV), Martinelli parameter (XXIT), Chen's F factor (XFCHEN) and Chen's factor (XSCHEN).

In addition provision is available thru subroutine NFLUX2 for a revised nucleation flux criteria in those cases where the maximum available surface pit radius is less than that required by the Bergles-Rohsenow criteria. However, NFLUX2 presently exists as a dummy subroutine.
-125-
A complete listing of the fortran statements for this program is included at the end of this appendix.

A listing of the variable names and the physical parameters which they represent is presented in Tables E-1, E-2, and E-3 where Table E-2 includes specifically the variables associated with the calculation of annular film thickness and flow rate (Subroutines FILMFR, GRDMOM and other called subroutines) and Table E-3 pertains to BONUCF and LONUCF and associated subroutines.

The procedure for inputing data to run this program is as follows. Following the star data card which follows the compiled program is the first data card on which the number of individual sases to be run is punched. This number is fixed point and should be punched, right oriented, in the field 1-5. This card controls the actual number of executions of the program which should correspond to the number of cases to be reduced.

The remaining data cards directly pertain to the data for individual tubes. For uniform, cosine and linear flux shapes, five cards are required for each case. For the peaked flux shapes a sixth card is required as described below. For the cosine spike shape a seventh card is required.
a) First card - A fixed point number, right oriented, should be punched in the field 1-5. This number identifies the flux shape according to the code;

1 - uniform, 2 - cosine, 3-linear increasing,
4 - linear decreasing, 5 - peaked inlet,

6 - peaked exit and 7-spiked cosine.
b) Second Card - Seven floating point input variables should be punched in sequence in fields of ten each. The variables, in sequence, are tUBE, RATIOM, DIAINS, VOLTS, AMPS, ENTHIN, FLMASS. The physical parameters and units represented by these variables are listed in Table E-1. Since these variables are all floating point, they should be punched with a decimal point unless specific care is taken to right orient them in their field and provide sufficient digits' to accomodate the format statements in the program. This comment applies equally to cards $3,4,5$ and 6.
c) Third Card - Six floating point input variables should be punched in sequence in fields of ten each. The variables in sequence are PRESP, PRESIN, PRESOT, RESDP, TSDP, BOLOCA.
d) Fourth Card - Two floating point input variables should be punched in sequence in field of ten each. The variables in sequence are XLNGTH and SHUNTM.
e) Fifth Card - A fixed point variable JLOCAT is punched right oriented in columns $1-5$, and a floating point variable QUALIA is punched in columns 6-15.
f) Sixth Card - Three floating point input variables should be punched in sequence in fields of ten each.

The variables in sequence are SCRPTL, ZETA and PLNGTH and are applicable only to the peaked inlet and exit flux shapes and with new definitions to the spike cosine shape.
g) Seventh Card - The fixed point variable J, should be punched in format I5. This card is applicable only to spike cosine flux shape.

The following characteristics of the program should be noted in particular.

1) PRESP and RESDP are input only to maintain a complete record of the data for each tube. Since they are not used in the subsequent calculation, they can if desired be set equal to zero fur convenience.
2) AMPS represents the tube amperage in millivolts (shunt voltage drop) and is used in conjunction with SHUNTM to calculate the tube current. SHUNTM represents the number of amperes per millivolt for the particular calibration shunt installed in the heat transfer laboratory. Since the product AMPS and SHUNTM represents tube current in amperes, the arbitrary value 1.00 can be assigned to SHUNIM if an experiment yields current directly in amperes.

A group of punched input cards for the case of an inlet peaked and a cosine spike tube are shown for illustration with the program listing.
-128-
The basis for the formulations of the subroutines for fluid properties and the subroutines MNPGRD and UNIVER are discussed below. The polynomial fits of data for subroutines below were taken from the work of Trembley (45) unless otherwise noted.
a) Subroutine SPECVL - Specific Volume of Saturated

Liquid vs. Pressure

The specific volume of saturated liquid as function of pressure was obtained by fitting the Keenan and Keyes' values (46) on a power series to obtain for $\mathrm{P}<400$ psia,

$$
v_{f}(P)=\sum_{i=0}^{9} a_{i} P^{i}
$$

where

$$
\begin{array}{ll}
a_{0}=1.6401745\left(10^{-2}\right) & a_{5}=3.8991151\left(10^{-15}\right) \\
a_{1}=2.3289060\left(10^{-5}\right) & a_{6}=-4.3187213\left(10^{-18}\right) \\
a_{2}=-1.5364591\left(10^{-7}\right) & a_{7}=2.8681090\left(10^{-21}\right) \\
a_{3}=7.4158910\left(10^{-10}\right) & a_{8}=-1.0458372\left(10^{-24}\right) \\
a_{4}=-2.1694997\left(10^{-12}\right) & a_{9}=1.6082445\left(10^{-28}\right)
\end{array}
$$

for $P \geq 400$ psia,

$$
v_{f}(P)=\sum_{i=0}^{4} b_{i} P^{i}
$$

where

$$
\begin{array}{ll}
b_{0}=1.7382154\left(10^{-2}\right) & b_{3}=6.6669956\left(10^{-13}\right) \\
b_{1}=5.5320054\left(10^{-6}\right) & b_{4}=-2.1537248\left(10^{-17}\right) \\
b_{2}=-1.9348749\left(10^{-9}\right) &
\end{array}
$$

b) Subroutine SPECVG - Specific Volume of Saturated

Vapour vs. Pressure

The specific volume of saturated vapour as a
function of pressure was obtained by a power series fit of the Keenan and Keyed' values.

For $\mathrm{P}<200$ psia, we have

$$
v_{g}(P)=\sum_{i=0}^{10} a_{i} P^{1}
$$

where

$$
\begin{array}{ll}
a_{0}=7.0026614\left(10^{1}\right) & a_{6}=8.8808151\left(10^{-9}\right) \\
a_{1}=-5.2270893\left(10^{0}\right) & a_{7}=-4.6173317\left(10^{-11}\right) \\
a_{2}=2.2026868\left(10^{-1}\right) & a_{8}=1.5321887\left(10^{-13}\right) \\
a_{3}=-5.7651685\left(10^{-3}\right) & a_{9}=-2.9334747\left(10^{-16}\right) \\
a_{4}=9.8819624\left(10^{-5}\right) & a_{10}=2.4643861\left(10^{-19}\right) \\
a_{5}=-1.1389329\left(10^{-6}\right) &
\end{array}
$$

For $200 \leq P / 400$ psia,

$$
v_{g}(P)=\underset{\substack{i=0}}{5} b_{i} P^{i}
$$

where

$$
\begin{array}{ll}
b_{0}=9.1051359\left(10^{0}\right) & b_{3}=-8.6394549\left(10^{-7}\right) \\
b_{1}=-7.6398584\left(10^{-2}\right) & b_{4}=1.1495386\left(10^{-9}\right) \\
b_{2}=3.4342061\left(10^{-4}\right) & b_{5}=-6.3157880\left(10^{-13}\right)
\end{array}
$$

For $P \geq 400$ psia,
-130-
where

$$
\begin{array}{ll}
c_{0}=4.2909747\left(10^{0}\right) & c_{4}=3.6138355\left(10^{-11}\right) \\
c_{1}=-1.6646162\left(10^{-2}\right) & c_{5}=-1.7180116\left(10^{-14}\right) \\
c_{2}=3.5532997\left(10^{-5}\right) & c_{6}=4.4959690\left(10^{-18}\right) \\
c_{3}=-4.5689872\left(10^{-8}\right) & c_{7}=-4.9699884\left(10^{-22}\right)
\end{array}
$$

c) Subroutine LIQEN - Enthalpy of Saturated Liquid

vs. Pressure

The enthalpy of saturated liquid as function of
pressure was obtained by a power series fit of the
Keenan and Keyed' values.
For $P<200$ psia,

$$
h_{f}(P)=\sum_{i=0}^{9} a_{1} P^{1}
$$

where

$$
\begin{array}{ll}
a_{0}=1.1222734\left(10^{2}\right) & a_{5}=2.1239014\left(10^{-7}\right) \\
a_{1}=6.3204790\left(10^{0}\right) & a_{6}=-1.0067598\left(10^{-9}\right) \\
a_{2}=-1.4742752\left(10^{-1}\right) & a_{7}=2.9480958\left(10^{-12}\right) \\
a_{3}=2.5403593\left(10^{-3}\right) & a_{8}=-4.8430355\left(10^{-15}\right) \\
a_{4}=-2.8788220\left(10^{-5}\right) & a_{9}=3.4075972\left(10^{-18}\right)
\end{array}
$$

For $P \geqslant 200$ psia,

$$
h_{f}(p)=\sum_{1=0}^{7} b_{1} P^{1}
$$

where

$$
\begin{array}{ll}
b_{0}=2.4510585\left(10^{2}\right) & b_{4}=-6.8660980\left(10^{-10}\right) \\
b_{1}=7.1675962\left(10^{-1}\right) & b_{5}=2.6573456\left(10^{-13}\right) \\
b_{2}=-9.9955201\left(10^{-4}\right) & b_{6}=-5.5654666\left(10^{-17}\right)
\end{array}
$$

$$
b_{3}=1.0516702\left(10^{-6}\right) \quad b_{7}=4.8594220\left(10^{-21}\right)
$$

d) Subroutine EVAPEN - Latent Heat vs. Pressure

By definition the latent heat is simply the enthalpy difference between that of the saturated vapour and that of the saturated liquid ($\left.h_{f g}=h_{g}-h_{f}\right)$. It was obtained by fitting the Keenan and Keyes' values on a power series.

For $\mathrm{P}<400$ psia,

$$
h_{f g}(P)=\sum_{i=0}^{9} a_{i} P^{1}
$$

where

$$
\begin{array}{ll}
a_{0}=9.9704457\left(10^{2}\right) & a_{5}=-1.2499843\left(10^{-9}\right) \\
a_{1}=-2.1762821\left(10^{0}\right) & a_{6}=1.9322768\left(10^{-12}\right) \\
a_{2}=1.9558791\left(10^{-2}\right) & a_{7}=-1.8023251\left(10^{-15}\right) \\
a_{3}=-1.2610018\left(10^{-4}\right) & a_{8}=9.2680092\left(10^{-19}\right) \\
a_{4}=5.0308804\left(10^{-7}\right) & a_{9}=-2.0148643\left(10^{-22}\right)
\end{array}
$$

For $P>400$ psia,

$$
h_{f g}(P)=\sum_{i=0}^{4}, b_{i} P^{i}
$$

where

$$
\begin{array}{ll}
b_{0}=8.9642372\left(10^{2}\right) & b_{3}=-4.3416487\left(10^{-8}\right) \\
b_{1}=-3.3549732\left(10^{-1}\right) & b_{4}=4.8788247\left(10^{-12}\right) \\
b_{2}=1.2678091\left(10^{-4}\right) &
\end{array}
$$

e) Subroutine SATTMP - Saturation Temperature vs. Pressure

The saturation temperature as function of pressure was obtained from Steltz and al. (47).

$$
T=\sum_{i=0}^{8} a_{i} P_{L}^{i}
$$

where

	$0.2 \leq \mathrm{P}<450 \mathrm{psia}$	$450 \leq \mathrm{P}<3206$ psia
P_{L}	$\ln (10 \mathrm{P})$	$\ln \mathrm{P}=0$
a_{0}	$3.5157890\left(10^{1}\right)$	$1.1545164\left(10^{4}\right)$
a_{1}	$2.4592588\left(10^{1}\right)$	$-8.3860182\left(10^{3}\right)$
a_{2}	$2.1182069\left(10^{0}\right)$	$2.4777661\left(10^{3}\right)$
a_{3}	$-3.4144740\left(10^{-1}\right)$	$-3.6344271\left(10^{2}\right)$
a_{4}	$1.5741642\left(10^{-1}\right)$	$2.6690978\left(10^{1}\right)$
a_{5}	$-3.1329585\left(10^{-2}\right)$	$-7.8073813\left(10^{-1}\right)$
a_{6}	$3.8658282\left(10^{-3}\right)$	0
a_{7}	$-2.4901784\left(10^{-4}\right)$	0
a_{8}	$6.8401559\left(10^{-6}\right)$	0

f) Subroutine VISCOS - Viscosity of Saturated Liquid and Vapour vs. Temperature
The viscosity of saturated liquid as function of temperature to $600^{\circ} \mathrm{F}$ was obtained by a power series fit of Wellman and Sibbitt's data. (48)

$$
\mu_{f}=\sum_{i=0}^{10} a_{i} T^{1}
$$

where

$$
\begin{array}{ll}
a_{0}=8.0144599\left(10^{0}\right) & a_{6}=8.4382483\left(10^{-13}\right) \\
a_{1}=-1.6728317\left(10^{-1}\right) & a_{7}=-1.4493830\left(10^{-15}\right)
\end{array}
$$

$$
\begin{array}{ll}
a_{2}=2.0423535\left(10^{-3}\right) & a_{8}=1.5963800\left(10^{-18}\right) \\
a_{3}=-1.6324668\left(10^{-5}\right) & a_{9}=-1.0173273\left(10^{-21}\right) \\
a_{4}=8.8555744\left(10^{-8}\right) & a_{10}=2.8496174\left(10^{-25}\right) \\
a_{5}=-3.3015965\left(10^{-10}\right) &
\end{array}
$$

Above $600^{\circ} \mathrm{F}$ the viscosity was obtained by a series of straight line fits of the Wellman and Sibbitt data.
g) Subroutine MNPGRD - Martinelli-Nelson's Friction Pressure Gradient Ratio
Jones' polynomial fit (49) of Martinelli-Nelson values was used, ie.,

$$
\varnothing_{M-N}=\exp \sum_{i=1}^{4} \sum_{j=0}^{7} a_{i j} \cdot e^{j} \cdot x^{i}
$$

where

$$
\begin{aligned}
& p=P / 1000 \\
& x=\ln (100 x+1)
\end{aligned}
$$

j

$$
a_{1 j}
$$

$a_{2 j}$
${ }^{a_{3 j}}$
$0 \quad 2.5448316\left(10^{0}\right) \quad-5.1756752\left(10^{-1}\right) \quad 1.0193956\left(10^{-1}\right)$
$1-7.8896201\left(10^{0}\right) \quad 1.9550200\left(10^{0}\right)-3.7233785\left(10^{-1}\right)$
$21.5575870\left(10^{1}\right)-9.6886164\left(10^{-1}\right)-1.9025685\left(10^{-1}\right)$
$3-1.7340906\left(10^{1}\right)-4.6120079\left(10^{0}\right)-2.2654839\left(10^{0}\right)$
$41.0409842\left(10^{1}\right) \quad 8.4910340\left(10^{0}\right) \quad-3.4925414\left(10^{0}\right)$
$5-3.2044877\left(10^{0}\right)-5.9583098\left(10^{0}\right) \quad 2.3299085\left(10^{0}\right)$
$6 \quad 4.2484805\left(10^{-1}\right) \quad 1.8989183\left(10^{0}\right) \quad-7.2534973\left(10^{-1}\right)$
$7-1.0804871\left(10^{-2}\right)-2.2867680\left(10^{-1}\right) \quad 8.6169847\left(10^{-2}\right)$
-134-
j
$a_{4 j}$
$-8.0606798\left(10^{-3}\right)$
$2.6160876\left(10^{-2}\right)$
$6.0288725\left(10^{-2}\right)$
$-3.2426871\left(10^{-1}\right)$
$4.6553847\left(10^{-1}\right)$
$-3.0333482\left(10^{-1}\right)$
$9.3379834\left(10^{-2}\right)$
$-1.1021915\left(10^{-2}\right)$

Corrected Pressure Gradient Ratio

It was recognized that the Martinelli-Nelson values of \varnothing correspond to a mass velocity of about $2001 \mathrm{bm} / \mathrm{sec}-\mathrm{ft}^{2}$ and that the pressure gradient ratio depends not only on quality and pressure but also on the mass velocity. Jones (49) has derived a mass velocity correction factor that is valid for $G \leqslant 10^{3}$ lbm/sec-ft ${ }^{2}$. This factor is function of both pressure and mass velocity and is expressed in polynomial form as

$$
\Omega^{\prime}=\sum_{i=0}^{5}\left(a_{i}+b_{i} p\right) \cdot a_{0}{ }^{1}
$$

where

$$
a_{0}=\ln (.0036 G+0.2)
$$

1

0 1 2 3

4 5
a
$1.4012797\left(10^{\circ}\right)$
$-6.8082318\left(10^{-2}\right)$
$-8.3387593\left(10^{-2}\right)$
$3.5640886\left(10^{-2}\right)$
$2.1855741\left(10^{-2}\right)$ $-6.3676796\left(10^{-3}\right)$
b
$-3.8229399\left(10^{-5}\right)$
$-4.5200014\left(10^{-4}\right)$
$1.2278415\left(10^{-4}\right)$
$1.5165216\left(10^{-4}\right)$
$-3.4296260\left(10^{-5}\right)$
$-3.2820747\left(10^{-5}\right)$

But, at $G \simeq 200$ at any pressure Jones predicts of value of $\Omega^{\prime}=1.4$. Since the Martinelli-Nelson pressure gradient ratios correspond to that mass velocity, Jones' correction factor should therefore be unity. Therefore, the suggested Jones factor was normalized as

$$
\Phi=S^{\prime}-0.4
$$

It was found by Trembley (45) that the transition across the $\mathrm{G}=10^{3}$ boundary yielded a serious discotinuity. Hence

$$
S ?_{-}=\left\{\left\{_{G=10^{3}} \text { for } G>10^{3}\right.\right. \text { was assumed. }
$$

The two-phase to liquid-phase pressure gradient ratio is therefore

$$
\varnothing=\zeta \cdot \varnothing_{\mathrm{M}-\mathrm{N}}
$$

h) Subroutine UNIVER - The relevant curves of GEAP 4615 relating the ratio film thickness/tube radius to the calculated factor F^{\prime} were fit by an MIT Computational

Center Share program (50). The form of the fit is

$$
\frac{b-a}{b}=\sum_{i=0}^{n} a_{i}\left(F^{\prime}\left(\frac{b-a}{b}\right)\right)^{1-1}
$$

1) Subroutine XITHCON - Thermal Conductivity of Saturated

Liquid Water vs Temperature

The thermal conductivity of saturated liquid water was obtained by a series of straight line fits of the data of Wellman and Sibbitt (48).
j) Subroutine XCPLIQ - Constant Pressure Specific Heat of Saturated Liquid Water vs Temperature

The specific heat of saturated liquid water was obtained by a series of straight line fits of the data of Wellman and Sibbitt (48).
k) Subroutine XSURFT - Surface Tension of Saturated Water

The surface tension for saturated water as a function of pressure to 1000 psia was obtained by a power series fit on Volyak's data. (51)

$$
\sigma=\sum_{i=0}^{10} a_{i} P^{1}
$$

where
$a_{0}=6.3225462\left(10^{1}\right) \quad a_{6}=2.8461426\left(10^{-13}\right)$
$a_{1}=-3.2677020\left(10^{-1}\right) \quad a_{7}=-3.0063514\left(10^{-16}\right)$
$a_{2}=2.8126518\left(10^{-3}\right) \quad a_{8}=1.9734415\left(10^{-19}\right)$
$a_{3}=-1.7494856\left(10^{-5}\right) \quad a_{9}=-7.3149007\left(10^{-23}\right)$
$a_{4}=6.8880390\left(10^{-8}\right) a_{10}=1.1689972\left(10^{-26}\right)$
$a_{5}=-1.7378005\left(10^{-10}\right)$
Above 1000 psia (544.69° F) the surface tension was obtained by a series of straight line fits to data presented in figure E. 2 of Rohsenow and Choir (52).

1) Subroutine XSATP - Saturation Pressure vs. Temperature The saturation pressure corresponding to the temperature was obtained from Steltz et al (47) as

$$
P=P_{c} \cdot 10^{-X}
$$

where

$$
\begin{aligned}
& \mathrm{X}=\frac{\mathrm{t}}{\mathrm{~T}_{\mathrm{K}}}\left(\frac{\mathrm{~N}_{\mathrm{u}}}{\mathrm{D}_{\mathrm{N}}}\right) \quad \mathrm{P}_{\mathrm{c}}=3206.182 \\
& \begin{array}{ll}
N_{u}=A+B t+C t^{3}+E t^{4} & t=T_{c}-T_{K} \\
T_{c}=647.27
\end{array} \\
& D_{N}=1+D t \\
& T_{K}=\frac{T-32}{1.8}+273.16 \\
& 50 \leq T<200 \quad 200<T \leqslant 705
\end{aligned}
$$

m) Subroutine XVISCG - Viscosity of Saturated Vapour For $T \leq 500^{\circ} \mathrm{F}$, the viscosity of saturated vapour was taken from Kestin's correlation (53)

$$
\begin{aligned}
\mu_{\mathrm{g}}(\mathrm{P}, \mathrm{~T}) & =2.419\left(10^{-4}\right)\left[88.020+0.32827 \cdot \mathrm{~T}_{\mathrm{c}}+\right. \\
& \left.2.1350\left(10^{-4}\right) \mathrm{T}_{\mathrm{c}}{ }^{2}-1.6018\left(10^{-2}\right)\left(1858-5.90 \mathrm{~T}_{\mathrm{c}}\right) / \mathrm{v}_{\mathrm{g}}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& T_{c}=(T-32) / 1.8 \\
& v_{g}(P, T)=\text { (use subroutine sPECVG) }
\end{aligned}
$$

For $T>500^{\circ} \mathrm{F}$, we used Keys! correlation as given by Guan (54)

$$
\begin{aligned}
\mu_{\mathrm{g}}(\mathrm{P}, \mathrm{~T}) & =2.419\left(10^{-3}\right)\left[420 \mathrm{~T}^{1 / 2}\left(1+2600 \mathrm{~T}^{-1} \cdot 10^{-30 \mathrm{~T}^{-1}}\right)^{-1}\right. \\
& +1.5\left(10^{\left.0.0906 / v_{g-1}\right)}\right]
\end{aligned}
$$

TABLE E-1

VARIABLE NAME	PHYSICAL PARAMETER OR DEFINING EQUATION	UNITS
Input Variables		
NTUBES	Number of tubes	-
MSHAPE	Index representing tube flux shape	-
TUBE	Tube identification no.	-
RATIOM	M	-
DIAINS	$\mathrm{D}_{\text {in }}$	inches
VOLTS	V	volts
AMPS	a	millivolt
ENTHIN	$\mathrm{h}_{\text {IN }}$	$\mathrm{BTU} / 1 \mathrm{~b} \mathrm{~m}$
FLMASS		lb m/hr
JLOCAT	Index indicating length over which calculation of thermal and hydralic parameters should be made.	-
PRESP	Pump outlet pressure	psia
PRESIN	$\mathrm{P}_{\text {IN }}$	psia
PRESOT	$\mathrm{P}_{\text {OUT }}$	psia
QUALIA	Quality at bubbly-annular transition	wt \% steam
RESDP	Pressure drop across needle value at test section inlet	psi
TSDP	$\Delta \mathrm{P}$	psi
BOLOCA	c	inches
XLNGTH	2	inches
SHUNTM	S	amperes/millivolt
SCRPTL	\mathscr{L}	inches
ZETA	ξ	-
PLNGTH	Q'	inches

ARG	$\arcsin \left[\pm\left(\frac{2 Q_{X=0}}{Q_{\text {rot }}-1}\right)\left(\frac{M^{2}-1}{M^{2}}\right)\right]$	-
CONSTP	C,	inches
COSABK	$\cos \frac{\pi}{L},\left(\ell-\mathcal{L}^{\prime}-.5 \ell^{\prime}\right)$	-
COSLEN	L or L'	Inches
EXTRAA	SINABK + ONEMSQ	-
EXTRAB	(SCRPTL * COSABK)/zETA	Inches
EXTRAC	$\begin{aligned} & (\text { POWERT } * \text { COSLEN }) / \\ & (\operatorname{CONSTP} * \pi) \end{aligned}$	$\mathrm{BTU} / \mathrm{hr}$
EXTRAD	C_{2}	
Extras	$\begin{aligned} & (\text { POWERT * 144.0)/ } \\ & (\text { (CONSTP * DIAINS * *) } \end{aligned}$	$\mathrm{BTU} / \mathrm{hr} \mathrm{ft}{ }^{2}$
EXTRAF	$\underset{(\text { PONSTP } * \text { ZETA })}{(\text { POWERT }}{ }^{*} \text { COSABK } * \text { SCRPTL) }$	BTU/hr
EXTRAG	Unused floating point varia	able
EXTRAH	DVLSPL (see FILMFR)	$\mathrm{ft}^{3} / 1 \mathrm{bm}$
EXTRAI	DVLSPG (see FILMFR)	$\mathrm{ft}^{3} / 1 \mathrm{bm}$
EXtraj	QUALOX (see FILMFR)	wt \% steam
FACMIB	$1-\frac{\sin \frac{\pi}{L}\left\|\frac{c-l / 2}{2}\right\|}{\left(\frac{M^{2}-1}{M^{2}}\right)}$	-
FACPLB	$1+\frac{\frac{M}{\sin \frac{\pi}{L}}\left(\frac{c-l / 2}{2}\right)}{\left(\frac{m^{2}-1}{M^{2}}\right)}$	-
FACTMI	$1-\frac{\sin \frac{\pi}{L}\|z\|}{\left(M^{2}-1 / M^{2}\right)^{1 / 2}}$	-
FACTPL	$1+\frac{\sin \frac{\pi}{L}\|2\|}{\left(\frac{m^{2}-1}{M^{2}}\right)^{1 / 2}}$	-

Intermediate Computed Variables (Cont.)

K	Position index	-
L	Position index	-
ONEOVM	$1 / M$	-
ONEMSQ	$\left(\frac{M^{2}-1}{M^{2}}\right)^{1 / 2}$	-
POWOQ	$Q_{X=0}$	BTU/hr
PBREAK	$P_{B K}$	psia
SINABK	$\sin \frac{\pi}{L_{1}}\left(l-\alpha-5 \ell^{1}\right)$	-
SIGNZ	$\pm\left(\frac{M^{2}-1}{M^{2}}\right)^{1 / 2}\left(\frac{2 Q_{X=0}}{Q_{T O T}}-1\right)$	-
ULOCAT	$1-\exp (-\xi)$	

Output Variables	
AREAFL	${ }^{\text {A }}$ F
AREAIS	A_{5}
CFXAVG	$\varnothing_{\text {AVG }}$
CFXBO	\emptyset_{c}
CFXLLOX	$\varnothing(\mathrm{x})$
CFXLOY	$\phi(\mathrm{y})$
DMEFB	$\mathrm{H}_{\mathrm{f}-\mathrm{c}}$
DMEFGB	$\mathrm{H}_{\mathrm{fg}} \mathrm{c}$
DMEFX	$\mathrm{H}_{\mathrm{f}-\mathrm{x}}$
DMEFGX	$\mathrm{H}_{\mathrm{fg}-\mathrm{x}}$

DMEFGX

	Output Variables		
	DMEFY	$\mathrm{H}_{\mathrm{f}-\mathrm{y}}$	BTV/lb m
-	DMEFGY	${ }^{\mathbf{H}} \mathrm{fg}_{\mathrm{g}-\mathrm{y}}$	$\mathrm{BTU} / \mathrm{lb} \mathrm{m}$
-	ENFPX		BTU/1b m
-	ENFGPX	H_{fg}	BTU/1b m
-	ENLOB	H_{c}	BTU/lb m
-	ENLOX	H_{x}	$\mathrm{BTU} / 1 \mathrm{bm}$
	ENLOY	H_{y}	BTU/1b m
$\mathrm{BTU} / \mathrm{hr}$	ENSIN	${ }^{4}{ }_{\text {HUB-IN }}$	$\mathrm{BTU} / 1 \mathrm{bm}$
psia	ENSLOB	${ }^{\triangle H_{S U B}-\mathrm{C}}$	BTU/1b m
	ENSLOX	${ }^{\triangle H_{S U B}} \mathrm{X}$	$\mathrm{BTO} / \mathrm{lb} \mathrm{m}$
-	ENSLOY	${ }^{\triangle} H_{\text {SUB }-Y}$	BTU/1b m
	P	P	psia
-	PANBOL	$Q_{\text {ANN -c }}$	$\mathrm{BTU} / \mathrm{hr}$
	POWERA	$Q_{\text {ANN }}$	$\mathrm{BTU} / \mathrm{hr}$
-	POWERB	Q_{c}	$\mathrm{BTU} / \mathrm{hr}$
	POWERT	$Q_{\text {TOT }}$	$\mathrm{BTU} / \mathrm{hr}$
	POWERX	$Q(x)$	$\mathrm{BTU} / \mathrm{hr}$
	POWERY	Q(y)	$\mathrm{BTU} / \mathrm{hr}$
	PSATL	Q_{s}	BTU/hr
	PSLBOL	$Q_{\text {sc }}$	$\mathrm{BTU} / \mathrm{hr}$
	QUALSL	$\mathrm{I}_{\mathrm{X}=0}$	Inches
	QUALO4	16. $\mathrm{I}_{\mathrm{x}} \mathrm{x}=0$	inches
	QUALIN	$\mathrm{x}_{\text {IN }}$	wt \% steam
ft^{2}	QUALOB	x_{c}	wt to steam
$\mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2}$ $\mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2}$	QUALOX	$\mathrm{X}(\mathrm{x})$	wt \% steam
$\mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2}$	SATL	L_{8}	inches
$\mathrm{BTU} / \mathrm{hr} \mathrm{ft}^{2}$	\mathbf{v}	u	inches
BTU/lb m			
BTU/lb m	x	I	inches
BTU/1b m	Y	y	inches
BTU/lb m	z	z	1nches

TABLE E-2
FILMFR, GRDMOM and called subroutines
VARIABLE NAME PHYSICAL PARAMETER

UNITS

Intermediate Computed Variables

a	Distance from centerline to film-core interface	Inches
b	Tube radius	Inches
BMAOA	$b-a / b$	
COLM 1)		
COLM 2)	Intermediate variables	
COLM 3)	in the subroutine MNPGRD	
COLM 4)		
DENFO	$\mathrm{H}_{\mathrm{f} \text {-OUT }}$	$\mathrm{BTU} / \mathrm{lb} \mathrm{m}$
DENFGO	$\mathrm{H}_{\mathrm{fg} \text {-OUT }}$	BTU/1b m
DP	$\mathrm{P} / 1000$	psia
DPMOM	$\triangle \mathrm{P}_{\text {TPF-MOM }}$	$1 b_{f} / \mathrm{ft}^{2}$
DX	$\log (100 \mathrm{X}+1.0)$	-
DUMMY A	Linear momentum gradient	$1 b_{f} / \mathrm{ft}^{3}$
DUMMY B	I	-
DUMMY C	$K+1, L+1$	-
ENO	$\mathrm{h}_{\text {OUT }}$	$\mathrm{BTU} / 1 \mathrm{bm}$
ENSO	$\triangle \mathrm{H}_{\text {OUT }}$	BTU/1b m
FFACTP	$\mathrm{f} / 4.0$	-
FILMTK	$12.0(\mathrm{~b}-\mathrm{a})$	ft
GRAVAC	$g=32.2$	$\mathrm{ft} / \mathrm{sec}^{2}$
GRAVCS	$\mathrm{g}_{0}=32.2$	$\frac{1 b_{m}}{I b_{f}} \frac{f t}{s e c}{ }^{2}$
GRAVCH	$\mathrm{g}_{\mathrm{OO}}=4.17 \times 10^{+8}$	$\frac{1 b_{m}}{1 b_{f}} \frac{\mathrm{ft} \delta}{\mathrm{shr}}{ }^{2}$

Intermediate Computed Variables (Cont.)

GRDMT	$\mathrm{dP} / \mathrm{d} \mathrm{z}_{\mathrm{TPF}-\mathrm{MOM}}$	$\underline{l b} \mathrm{f}_{\mathrm{f}} / \mathrm{ft}^{3}$
GSUBZ	$\log (.0036 \mathrm{G} / 3600.0+0.2)$	
GTOT	G	$1 b^{\prime} / \mathrm{hr} \mathrm{ft}{ }^{2}$
GTOTSC	G/3600.0	$1 b_{m}$
		$\overline{s e c-f t^{2}}$
I	3 or 2; spacing between	inches
	calculations along the tube	
	length.	
OMEGA	$S=S^{\prime}-0.4$	
OMEGAP	Ω	
PGMULT	\varnothing	-
PHIMN	\emptyset_{M-N}	-
PSUBL	$\log (10.0 p)$	-
QUALO	$\mathrm{X}_{\text {OUT }}$	-
QUALO 4	$16.0 \mathrm{~L}_{\mathrm{X}=0}$	inches
SUMCOL]		
SUMO		
SUM 1	Intermediate variables	
SUM 2$\}$	in the subroutine MNPGRD.	
SUM 3		
SUM 4		
SuM 5		
T	T	O_{F}
TERM 1	$\left(v_{g} / v_{l}\right)^{0.334}$	${ }_{-}$
TERM 2	$3600.0 / v_{g} \mathrm{G}_{\mathrm{G}}$	$\mathrm{sec} / \mathrm{ft}$
TERM 3	$\left(\frac{\left(-\frac{d P}{d z}\right)_{T P F-T O T} 32.2 b v_{l}}{2}\right)^{1 / 2}$	$\mathrm{ft} / \mathrm{sec}$
TERM 4	$\left(\frac{g}{g_{O} v_{l}\left(-\frac{d P}{d z}\right)_{T P F-T O T}}\right)^{n}$	-
FISCL	μ	$1 \mathrm{~b}_{\mathrm{m}} / \mathrm{hr} \mathrm{ft}$
VOLSPL	v_{2}	$\mathrm{ft} 3 / \mathrm{lb} \mathrm{m}$
VOLSPG	v_{g}	$\mathrm{ft} 3 / 1 \mathrm{bm}$

TABLE E-3

dBMAOA	b-a	-
DBMAOA	b	
DPGMLT	$\phi_{\mathrm{M}-\mathrm{N}}$	-
DT	T	O_{F}
DVLSPG	v_{g}	$\mathrm{ft}^{3} / \mathrm{lbm}$
DVLSPL	$\mathrm{v}_{\text {¢ }}$	$\mathrm{ft}^{3} / \mathrm{lbm}$
DVISCL	μ	$1 \mathrm{~b}_{\mathrm{m}} / \mathrm{hr} \mathrm{ft}$
FACTUN	F	-
Fpact	f	-
FYplus	$\mathrm{F}\left(\mathrm{y}^{+}\right)$	- ${ }^{-}$
GFILM	$\mathrm{G}_{\text {FILM }}$	$1 \mathrm{~b}_{\mathrm{m}} / \mathrm{hr} \mathrm{ft}{ }^{2}$
GGAS	G_{G}	$1 \mathrm{~b}_{\mathrm{m}} / \mathrm{hr} \mathrm{ft}^{2}$
GLIQ	$\mathrm{G}_{\text {L }}$	$1 \mathrm{~b}_{\mathrm{m}} / \mathrm{hr} \mathrm{ft}{ }^{2}$
GLQENT	$\mathrm{G}_{\text {L-ENT }}$	$1 \mathrm{~b}_{\mathrm{m}} / \mathrm{hr} \mathrm{ft}{ }^{2}$
GRDFS	$\left.\frac{\mathrm{dP}}{\mathrm{dz}}\right)_{\text {SP-FRICTION }}$	$1 \mathrm{~b}_{\mathrm{f}} / \mathrm{ft}^{3}$
GRDFT	$\left.\frac{\mathrm{dP}}{\mathrm{dz}}\right)_{\mathrm{TPF}-\text { FRICTION }}$	$1 \mathrm{~b}_{\mathrm{f}} / \mathrm{ft}^{3}$
GRDMT	$\left.\frac{\mathrm{dP}}{\mathrm{dz}}\right)_{\text {TPF-MOM }}$	$1 \mathrm{~b}_{\mathrm{f}} / \mathrm{ft}^{3}$
GRDTOT	$\left.\frac{d P}{d z}\right)_{T P F-T O T}$	$1 \mathrm{~b}_{\mathrm{f}} / \mathrm{ft}^{3}$
PCLIQ	\% LIQ	$\frac{1 b_{m} \text { liquid }}{1 b_{m} \text { total }}$
PCLENT	㡈	
REYNUM	Re	- ${ }^{\text {a }}$
TAUWAL	τ	$1 b_{f} / \mathrm{ft}^{2}$
TKINCH	b-a	inches
Valuen	n	-
VELOC	v	$\mathrm{ft} / \mathrm{sec}$
YPLUS	y^{+}	-

BONUCF, LONUCF and called subroutines

variable name	PHYSICAL PARARETERR OR DERTINING EQUATIOM	UnITS
INPUP VARIABIE		
J	$J / 8=$ spacing at which calculations are performed over spiked portion of test section 4 (CSPIKR)	-
IMTERYEDIATE AND OUTPUT VARIABLES		
BERGIHP	$\left(\frac{1.0}{15.6 p^{1.156}}\right)^{\frac{.0}{2.30-p .0234}}$	-
bmaoa	($q / A) \times /(q / A)_{1-C H E N}$	-
cc	($q / 4) \times /(q / A)_{1-\text { denalicr }}$	-
CPLIQ	C_{p}	BEV/LEBM- ${ }^{\circ} \mathrm{F}$
DD	$1.0 / \mathrm{X}_{t t}$	-
delimen	${ }^{\text {a }}$ ARM-C	BRU/LEM
DELIT	$\mathrm{T}_{\mathbf{W}} \mathrm{T}^{\text {S }}$ S ${ }_{\text {AT }}$	${ }^{\circ} \mathrm{F}$
DEIITVP	ΔP corresponding to $\mathrm{T}_{\mathbf{W}}{ }^{-\mathbf{T}_{\text {SAT }}}$	1bs/ft ${ }^{2}$
dTCHES	$\left(\mathrm{T}_{\mathbf{W}} \mathrm{T}_{\text {SAT }}\right)_{\text {chias }}$	${ }^{\circ} \mathrm{F}$
dTDEsG	($\left.\mathrm{T}_{\mathbf{W}} \mathrm{T}_{\text {SAF }}\right)_{\text {dEMOLER }}$	${ }^{\circ} \mathrm{F}$
EE	$\mathrm{F}_{\text {CHiss }}{ }^{1.25} \mathrm{Re}_{\text {L }}$	-
FILPIK	$(1-\bar{x} / x)^{0.9}$	-
HCHEN	${ }^{h_{\text {Chis }}}$	
HDB	${ }^{h_{\text {DITITUS-BORIMER }}}$	BTU/ $\mathrm{HR}-\mathrm{FT}-{ }^{\circ} \mathrm{F}$
HDENG	$\mathrm{h}_{\text {DENaLER }}$	BrO/FRR FITP
HRAC	$\mathrm{h}_{\text {MAC }}(\mathrm{from} \mathrm{CHEs})$	BrO/FR PT ${ }^{\circ} \mathrm{F}$

> 100 CALL UNIFRM
> $200 \begin{gathered}\text { CALL COSINF } \\ \text { GOTO } 2000\end{gathered}$
> 500
> 800
> call linner
> 1100
> CALI TM mon
> 1400
> 600
> GALL SDKCOS $\begin{aligned} & \text { CONTINUE: } \\ & \text { CALL EXIT }\end{aligned}$

SURROUTINF UNIFRM
COMMON NTUBES,MSHAPE, TUBE,RATIOM,DIAINS,VOLTS, AMPS, ENTHIN,FLMASS, 1 PRESD, PRESIN, PRESOT, RESDP, TSDP, BOLOCA, XLNGTH, SHUNTM, P.
2 DMFFX, ENFPX, DMFFGX, FNFGPX, ENSIN, DUALIN, DOWER - , AREAFL, AREAIS,
3 DUALOL, SATL, PSATL, O OWERB, PSLAOL © CFXAVG, CFXLOX, JLOCAT, K, X,
4DRDEAK, POWFRX, ENLOX, ENSLOX, DUALOX, DMEFY, DMEFGY, POWOO, ONEOVM,
5 COSLFN, ONFMSC, SIGNZ,ARG,Z, FACMIR, FACPLB,CFXBR,L,Y,
TCONSTD, SCRPTL, ZFTA, PLNGTH,JOU,ULOCAT, COSABK, SINABK,I,
F FXTRAA, EXTRAR,FXTRAC, FXTRAD, EXTRAF,FXTRAF,
PMEFB, DMEFGB FNLOB, FNSLO日, OUALOB, EXTRAG, EXTRAH, EXTRAI, EXTRAJ
COMMON DUALIA,GLID,TKINCH,
OLM4, SUMCOL, PHIMN, GTOTSC, GSURZ, SUMO, SUM 1 .
SUM2, SUM 3, SUM4, SUM5, OMEGAP, OMEGA,PGMULT, NSUBL, T,VISCL,VOLSPL, ENO,
3VOLSPG, QUALO4,DOWERA,PANBOL DENFO, DENFGO, FNSO, DUALO, DVSPLO, DVSPGO,
4GTOT, DPMOM, GRDMT, OVLSPL,DVLSPG, TERM1, TERM2, TERM3, TERM4,GGAS,DT,
SOVISCL, REYNUM,FFACTP,FFACT,VELOC,GPDFS, DPGMLT,GRDFT, DGRDMT,GRDTO
SB, GRAVAC,GRAVCS,GRAVCH,VALUEN,FACTUN,BMAOA, DBMADA A,FILMTK,YPLLUS,
TTAUWAL, FYPLUS,GFILM, GLOENT PCLIO,PCLENT, DUMMYA,DUMMYB, DUMMYC
FORMAT (FIO.0,FIO.2,F10.4,4F10.1)
515
520
525
520
525
527
540
5
FODMAT (5F10.0, (FiO.)
FORMAT (2F10,
$53 \cap$ FORNAT (15,Fin. 3)
FORMATI24H INLFT LIRUID ENTHALPY $=$ F8.2,
25H INLET EVAP ENTHALY $=F 8.2,22 H$ INLET SUBCOOLING $=F 8.21$

545 FORMAT 12 H FLOW AREA $=3$ PE15.2,25H INSIDE SURFACE AREA $=$ OPE 15.41
142 H L LENGTH OVER WH CH OUALITY ABOVE ZRR $=F 15.2$,
I F 15.21
555 FORMAT (24H DNWER OVER SAT LENGTH $=1$ PE10.3.17H POWER TO BO $=$
11 PE10. $3,26 \mathrm{H}$ POWER FPOM SAT TO BO $=1$ PE10.3)
PRTICAL FLUX $=1$ PF10 $=1$ PE10.31

565
570
format (f10.21)
READ 515,TUBE,RATIOM,DIAINS,VOLTS,AMPS, ENTHIN,FLMASS READ 520 ,PRESP, PRES IN, PRESOT, PESDP,TSDD, ROLACA
READ 525 .XLNGTH, SHUNTM
PEAD 530 , JLOCAT, DUALIA
PRINT 515, TUBE,RATTOM, OIAINS, VOLTS, AMPS, ENTHIN,FLMASS
PRINT 520,PRESP,PRESIN,PRESOT,RESDP,TSOP:BOLOLA

PRTNT 525,xLNGTH,SHUNTM
100
CALL LI
DMFFX $=$ ENFDX
CALL
OMFFGX F FNFAOX
FNSIN= FNTHIN-MMFFX
OUALIN=ENSIN/DMEFGX
POHIFRT $=$ VALTS*AMOS*3.41*SHUNTM
ARFAFL $=(2.1416 *$ NTAINS*NIAINS $) / 576.0$
ADFAIS $=(3.1416 * X L N G T H * D I A I N S) / 144.0$
OUALDL $=(-X L N G T H * F N S$ PN*FLMASS)/DOWFRT
SATL=XLNCTTU-NUAL
PCATL=ONWFDT*(SATL/ XLNETH)

755 IF 1BnLOCA-11.6*OUALOLI) $760,760,765$
$\mathrm{D}=\mathrm{DRESTN}$
GO TO 770
760 D=ODFSIN-
GO TO 770

(G.6n*OIILDRDEAK-DDFSCT)*(ROLOCA-(1.60*DUALOL))/(XLNGTH-

773 C
OMFFR
CALL FVADEN
CMEEGR=ENFTGDX
FNLOR = FNTHIN+DOWFRRIFLMASS
ONSLDR $=$ FNL $\cap R-D M F F R ~$
145 PSLROL =PSATL - IPOWERT -DOWERB)
153 CEXAVG =POWRRT/AREAIS
53 CFXAVG =POWFRT/AREAI
CFXBO=ROWFRT/ARFAIS
PDINT 54C,DMFFX, DMFFGX, ENSIN
DRINT 543, NUALIN
PRTNT545,ARFAFL,ARFATS
PRTNT 55 , OUALOL, SATL
DRTNT 555 , PSATL, POWFRA, PSLAOL
DOINT 56O, TFXAVT. CFXRO
DOINT $775, D$, NMFFR, MMFFEB
PDINT 7 RO, ENLNA, FNSLAR
DOINT
75 FRDMAT (17H DRESSURE AT BO $=F 6.1,25 \mathrm{H}$
SAT LIO ENTH AT BO =F8.2, 1 ग2H FVAD FNTH AT BO $=58.21$

SUBCOOLEC ENTH AT BO =F8.2)

CALL GROMCN
CALL INNIANN
nn $46 \cap \mathrm{~K}=1$, JLOCAT, 3
15s $x=k-1$

$16 \cap$ POPRFSIN
157 $\operatorname{P=PRFSIN-10.750*TSNP*(X-QUALOL)/(XLNGTH-SUALOL))~}$
PRPFAK=DRFSIN-10.750*TSDP*(0.60*QUALOL) ((XLNGTH-OUALOL))
P=ORQFAK-((DRDEAK-PQRSNT)*(X-11.60*SUALOL))
1 (xLNGTH-11.6C*OUALOL)!)
167 CALL LIAFN
CALE
CALL $=V$ FADFN
FMEFGX


```
    PRINT 565 OX
    PRINT 570 ,P
17C PRINT 575,DMFFX,DMFFGX
170 CFXLOX=POWFRTARFAIS 
185 ENSLOX=FNLOX-DMFFX
OUALOX=ENSLOX/DMEFGX
PRINT 700,DOWERT,POWERX,CFXLOX
PQINT 710.ENLOX
PRINT 72n,FNSLOX,OUALOX
700 FORMAT(14H POWER TOTAL =E9.4/,
710 FORMAT(31H LOCAL ENTHALPY AT POSITION X =F8.i)
    130H LOCAL QUALITY AT POSITION X = F6.3)
    CALL FILMFD
460 CONTINUE
    lortuON
subroutine cosine

    COMMON NTUBES, MSHAPE, TUBE, RATIOM, DIAINS,VOLTS,AMPS, ENTHIN,FLMASS,
    1 PRESD, PRESIN, DRESOT,RESDP,TSDP, POLOCA, XLNGTH, SHUNTM, P,
    2DMEFX, ENFPX, DMEFGX, ENFGPX, ENSINP RUALIN, POWEDT, ADEAFL, APFAIS,
    3 OUAL
    4PBREAK, DOWFRX. ENLOX, ENSLOX, QUALOX, DMEFY, DMEFGY, POWOD.ONEOVM,


    TCANSTR, SCRPTL. ZFTA, OLNGTH,J,UULOCAT, COSABK, SINABK, 1
    8 EXTRAAPEXTRAB, EXTRAC•EXTRAD,FXTRAF, FXTRAF,
    8 EXTRAA, EXTRAB, EXTRAC, EXTRAD,FXTRAE, EXTRAF,
9
DMEFB, DMEFGB,ENLOB, ENSLOB, RUALOR, EXTPAG, EXTRAH, EXTRAI, EXTRAJ
    COMMON QUALIA,GLIO.TKINCH.
    1DP,DX, COLM1,COLM2, COLM3,COLM4,SUMCOL, PHIMN,GTOTSC, GSUBZ, SUMO, SUM 1 ,


    4GTOT, \(D P M A M\), GRDMT, DVLSOL, DVLSPG, TFRM1, TFRM2, TFDM3,TFQM4, GGAS, DT,

    7TAUWAL, FYDLUS, GFILM, GLOENT, PCLID, PCLENT, DUMMYA, OU'MYYB, DUMMYC
515 FORMAT (F10.0.F10.2,F10.4,4F10.1)
0.0, 1F10.21
525 FORMAT (2F10.2)
525 FORMAT (2F10.2)
540 FORMAT(24H INLFT LIOUID ENTHALPY \(=\) F8.2,

543 FORMAT (16H INLFT QUALITY \(=\) F6.3)
545 FORMAT (12H FLOW AREA \(=3\) PE15. \(2.25 \mathrm{H} \quad\) INSIDE SI'RFACE, AREA \(=0\) PE15.4)
550 FORMAT (35H LENGTH WHEPE SUALITY ESUALS ZFRO \(=115.2\),



125 H CRITICAL FLUXAT BO \(=1 \mathrm{PE} 10.3\)
565 FORMAT(FIO. CRITIC
570 FORMAT F10.2)
575 FORMAT (2F20.
75 FOPMAT(2F20.2)
    READ 520,PRESD,PRESIN,PRESNT,RESDP,TSDP,BOLOCA

READ \(515, T U B E\), RATIOM,DIAINS,VOLTS,AMDS, ENTHIN,FLMASS
READ 520,PRESD,PRESIN,PRESOT,RESDP,TSDP,BOLOCA
```

 READ 525, XLNGTH,SHJNTM
 PDINT 515,TURE,OATTIN, OIAINS,VRLTS,AMDS,FNTHIN,FLMASS
 M,
 DDINT 53?.,INCAT,OUALIA
 ODRF!"
 CALL LIOEN
 MMFFY=RNFDX
 CALL FVADEAI
 NSIN=FNTHIN-NMEEY
 SULIN=FNSIN/~MEFR
 OWFRT=V\LTS*A*DS*3.4T*SHIJMTM
 AZFATS=(3.141G*ПIAINS*ПIAINS)/(576.0)
    ```

```

2357
24? ONEMSO= SnTF((OATIOM**? -1.0)/ QATIOM**2
IF (1.0-(2.0*POW\capG/POWERT), 255, 755, 245

```

```

55 SIGNZ= ONF*SN*1 (2.0*DOWON/DNWEDT) - 1.01
MAN ADCI=ASINE(STGNZ)
255 Z =CSLFN*ARG13.1416
\HMLnL=1XL
= ADC=ASTMF(GTCNZ)
Z=COSL=N*ADF/3.1416
35, OU\DeltaL{L=(XLNGTH/O.On,-7
295 OCLTL= DCNGNOTHAL^L
T= (ROL\CA-(XLNGTH/7.02)) 225,325,342
FAC'STR=11.0-1SINF((2.141G*(1XLNGTH/2.0n)-BOLNCA))/COSLFN)/
1\capNFMSn!!
ONWFR2 = (DONEDTYFACMID) I?.C

```

```

 45- D=ODESIN
 <
    ```

```

 755 PROTAK=PPF5T:10.750*TSDP*(0.60*QUALOL)/(XLNGTH-QUALOL))
 P= FRRFAK-((PROFAK-DDESNT)*(ROL\capCA-(1.60*SUALOL))/(XLNGTH-
 77%
    ```

```

 CALL LIDNN
 CALL FVADENM
 FNLAR=FNTHIN+DNWER=/FL"ASS
 FNGL\capQ=FNLM2-nUEFR
 2a (FXRO=144.0*(DOWERT/17.0*DIAINS*COSLFN*ONEMSO))*
240
IC\capSF(3.1416*1 (XLMFTH/2.0)-ROLOCA) /COSLEN)

```

```

OSLRNL =PNWERR ODNWMN
24 FACPLQ=(1.0+1SINFI (2.1416*(BOLOCA-(XLNGTH/7.0)))/COSLEN
1/ONFMSN \i
345 DNWFDR =(D)WFRT*FACDLQ) /2.0
JF (ROLOCA-OUALOL) R50,850,855
855 IF (ANLOCA-(1.G*OUALOL)) A60,880,865
85) D=OOFGIN
RAO D=DDESIN- 10.750*TSDO*(ROLOCA-OUALOL)/(XLNGTH-OUALOL))

```

65 PRPEAK = DPFSIN- \(10.750 * T S D P *(0.60 *\) OUALOL \() /(X L N G T H-O U A L O L))\) P=DBREAK-((DRPEAK-DDESOT)*(BOLOCA-(1.60*OUALDI)/1) XLNGTH-
370 (11.60*OUALOL))
CALL LIOFN
DMFFR=FNFPX
CALL EVADFN
DMFFGB=FNFTDX
FNLOB =ENTHIN+DOWERB/FLMASS
ONSLOB \(=\) ENLOB-DMEFB
OUALOB \(=\) ENSLOB/DMEFGB
348

1COSF(2.1416*(3OLOCA-IXLNGTH/2.0) 1/COSLEN
353 CFXAVG \(=\) POWERT / AREATS
DRINT 54? DMFFY,DMFFTY,FNSIN
DDINT 543, SUALIN
PRINT 545 , ARFAEL , AREATS
PRINT 550 , DUAL
PRINT 55 , DUALOL, SATL
PRINT 560,CFXAVC.CEXRO
PRTNT 775, \({ }^{\text {,DMEFR,DMEFGB }}\)
PDINT 780, ENLRR,\(~ F N S L A B ~\)


75 FORMATIITH PRESSURE AT BO \(=F 6.1,25\)
SAT LIO ENTH AT BO =F8.2,

785 FORMAT (16H SUALITY AT BO =F6.3)
CALL \(\operatorname{SDDMOM}\)
CALL COSANN
nO \(46 n \mathrm{~L}=1\), JLOCAT, 3
360
IF Y \(Y\) - JUALOL
IF
IY
365 IF (Y -(1.6*QUALCL), \(375,375,380\)

375 D=PRESIN-10.750*TSND*(Y-OUALOL)/(XLNGTH-NUALAL)
380
380 DBDFAK=PRFSIN-(0.750*TSDP*(0.60*OUALOL)/(XLNG*H-OUALのL)
\(385 \mathrm{P}=\mathrm{DRDFAK}\)-(1PRRFAK-DPFSNT)*(Y-11.60*NUALOL) )
390
CALL LIDFN
DMFFY=FNFDX
DMEFGY \(=\) ENFGPX
DRINT \(565 . Y\)
PRINT 57n, P
PRINT 575, DMEFY, RMFEEY
400 FACTMI = (1.0-1SINF ( \(3.1416 *(\) (XLNGTH/2.0)-Y) )
\(410^{1 / \text { COSLEN }}\) ) 1 ONEMSO
410 POWFRY \(=(\) POWFRT*FACTMI) 2.0
O*DIAINS*COSLEN*ONFMSOII*

420 ENSLOY=ENLOY-DMFFY
425 NUALOX \(=\) ENSLOYY/OMFFGY
fO TO 455
478

430 POWFRY \(=\) (ONWFRT*FACTPL), 2
433 CFXLOY \(=144.0 *(P O W E P T / 12.0 * D I A I N S * C O S L E N * O N E M S O) 1 *\)
1COSF \((3.1415 *(Y-(X L N G T H / 2.0) 1 /\) COSLFN)
ENLOY \(=\) ENTHIN + ( POWERT* FACTPL)
440 ENSLOY = ENLOY-DMFFY
```

450 nUALOX=ENSLOY/DMFFTY
455CONTINUF
CONTINUF
MRNNT 71O,FNLOY
00 FORMATIT, FNSLOY,OUALNX POWFD TOTAL= 50.4
1 28H DOWER INPUT TO DOSITION X = E9.4/%
2 1RH LOCAL HFAT FLUX = F11.5
10 FORMAT (31H LOCAL ENTHALPY AT POSITION7X = F8.:)
FORMAT(41H LOCAL SURCONLED ENTHALPY AT POSITION X = F8.2%,
13nH LOCAL SUALITY AT POSITION X = F6.3)
CALL EILMFD
CONTINUE
MOTHIN
SURROUTINF LININC
1 PQFSD,PQESIN,DDESNT,DESDD,TSDP,BOLOCA, XLNGTH,SHUNTM,D,
DMFFF, NATL OSATL,OOWFRB, DSI BRL, CFXAVG.CFXIOX,JLOCAT,K.XAIS
4PRDEAK, POWFDX, FNLOX, ENSLOX,OUALOX,DMEFY,OMEFGY,POWOA,ONEOVM,
\& COSLEN.ONFMSO,SIGNZ,ARG,Z,FACMIB,FACPLR,CFXBO,L,Y,
FACTMI,DOWERY,CFXLOY, ENLOY, ENSLOY,OUALOY,FACTPL,
CONSTP,SCRPTL,ZETA,PLNGTH,J,U,ULOCAT,COSABK,SINABK,1,
O FXTPAA,FXTPAR, EXTRAC, EXTRAD, FXTPAF, EXTRAF,
COMMON QUALIA,GLIO,TKINCH,
OP,DX,COLN1, COLM2,COLMM, COLM4,SUMCOL,PHIMN,GTOTSC,GSURZ,SUMO,SUM1,
2SUM2,SUM3,SUM4,SUM5,OMEGAP,OMFGA,PGMULT,PSUBL,T,VISCL,VNLSPL,FNO,
4GTOT, DPMOM,GPDMT,DVLSPL,DVLSPG,TERM1,TERM2,TERM3,TERM4,GGAS,DT,
SDVISCL,PEYNUM,FFACTP,FFACT,VELOC,GRDFS,DPGMLT,GRDFT,DGRDMT,GRDTOT,
G,GRAVAC,GRAVCS,GRAVCH,VALUFN,FACTUN,BMAOA,DBMAOA,A,FILMTK,YDLUS,
TIAUWAL,FYDLUS,GFILMPGLOENT,PCLIO,PCLFNT,DUMMYA,DUMMYR,DUMMYC
515 FONMAT (F10.0,F10.?,F10.4,4F10.1)
525 FORMAT (5F10.0:1F10.2)
520 FORMAT (15.F10.0)
54.) FORMAT(24H INLFT LIOUID ENTHALPY = F8.2. INET SUBCOOLING =F8.21
54* FORMAT(16H INLFT QUALITY = F6.3)
M, FOMAT(12H FLOW AREA =3PE15.2,25H INSIDE SIDRFACE AREA =OPE15.4)
457 FODMAT135H LFNGTH WHFRF QUALITY FOUALS ZFRO =F15.2,
55 FORMATI24H PNWER OVFQ SAT LENGTH =1PE10.3,17H POWEQ TO BO =
1 IPE10.3,26H POWER FROM SAT TO BO = 1PE10.:1)
GAN FODMATIOOH AVG, ROITICAL FLUX =1PF10.30
555 FOMMAT(F10.2)
570 FORMATIF10.1)
575 FORNAT(DFJO.?
DEAD 515,TURE,FATIOM,DIAINS,VOLTS,AMPS, ENTHIN,FLMASS
READ 5>O,PDFSD,POESIN,PRESOT,RESDP,TSDP,BOLOCA
PEAD 525,XLNGTH,SHUNTM
PRIMT 515,TUBE, DUALIA DIAINS,VILTS,AMPS.ENTHIN,FLMASS
DPINT 5>N',DRESD,PRESIN,DPESOT,RESDP,TSDP,BOLOCA
ODINT 535, XLNGTH,SHUNTM
DPINT 53n,JLOCAT,OUALIA

```

01690
01700
21710
01720 21710
01720
01730 01760
01770

PxDRFSIN
CALL LIOEN
DMFFX \(=\) FNFPX
CALL FVADFN
DMEFGX
ENFGPX
DMEFGX=ENFGPX
FNSIN \(=\) FNTHIN-DMEFX
OUALIN=ENSIN/DMEFGX
DOWFRT \(=\) VnLTS*AMDS**. \(41 *\) SHUNTM
AREAFL \(=(3.1416 * N I A I N S * D A I N S) / 576.0\)
ARAIS \(=(3.146 * X(N G T H * D A I N S) / 14)^{\circ}\)
POWOO \(=-(E N S I N * F L M A S S)\)
QUADA \(=(R A T I O M-1.00) /(2.00 * \times L N G T H)\)
OUADC \(=-1 \times L N G T H *\left(R A T 10^{M+1.00) * P O W O O) /(12.00 * P O W F R T)}\right.\)
OUALOL=1-1.00+1ARSFI SORTF(1.00-4.00*OUADA*OUADC) 11\() /(12.00 * O U A D A)\)
SATL \(=X L\) LNGTH-QUALOL
PSAT \(=\) POWFRT-POWOO
POWFRR=1(DOWFDT*2.00)/(RATIOM+1.001)* (IBOLOCA/XLNGTH)

IF (ROLOCA-OUALOL) \(750,750,755\)
\(\mathrm{P}=\mathrm{DOESIN}\)
COPRFSIN- \(10.750 * T S D O *(B O L O C A-O U A L O L) /(X L N G T H-O U A L O L))\)
5 PBREAK =PRESIN-10.750*TSDP*(0.60*QUALOL)/(XLNGTH-SUALOL) P=PRREAK-( \((P B P E A K-P Q E S \cap T) *(B \cap L C C A-(1.60 *\) OUALOL \() /\) ) (XLNGTH-
1 (11.60*OUALCL)
CALL LIDEN
DMEFBEENFPX
DMEFB=ENFPX
CALL FVAPFN
DMFFGD \(=\) ENFFDX
ENLOB=ENTHIN+DOWFRR/FLMASS
ENSLOB=ENLOB-DMEFB
CFXBO \(=(12.0 * D O W E R T) /(A D E A I S *(1.00+R A T I O M))\) )
1 *(1.00+(ROLACA*(RATICM-1.00))/XLNGTH)
PSLROL=POWFRR-POWOO
PRINT 540, DMEFX.DMEFGX,ENSIN
PRINT 543, QUALIN
PRINT545,AREAFL,AREAIS
PRINT 550. QUALOL, SATL
PRINT 555 DSATL
PRINT 555 , DSATL, POWERA, PSLBOL
PRINT 560,CFXAV,CFXBO
PRNT 775, P, DMEFS,DMEFG
PRNN 775, P,DMEFS,DMEFG
PRNT 78T,ENLOR,ENSLOB
75 FORMATI17H PRESSURE AT BO \(=F 6.1 .25 \mathrm{H}\) SAT LIQ ENTH AT BO \(=F 8.2\),

785 FORMAT(16H SUALITY AT BO \(=\) FG.3) CALL GRDMOM DO \(460 \mathrm{k}=1\), JLOCAT, 3
156
\(X=k(X)\)
\(I F(X) R U A L O L) 160,160,157\)
7 IF \((x-(1.60 *\) OUALOL \(), 162,162.165\)
60 P=PRFSTN
GO TO 167
162 P=PRESIN-10.750*TSDP*(X-QUALOL)/(XLNGTH-SUALOt) ) GOTO 167
165
166
PBPEAK =PRESIN-10.750*TSDP*(0.60*SUALOL) (XXNGTH-DUAL () ) ) 1 (XLNGTH-(1.60*QUALOL)
167 CALL LIOEN

DMFFX=FNFDX
CALL EVADFN
\begin{tabular}{l} 
PRINT 565 : \\
PRINT 570 : \\
\hline
\end{tabular}
PRINT 575, DNEFX, DMEER,
CFXLOX \(=(12.0\) ODONEDT \() /(A D F A T S *(D A T I O M+1.00) 1)\)




ODNT フnn, DOWEDT, DNWERX, CFXLDX

1 2RH DOWFD INDUT TO DNSITION \(X=59.4 /\),
1 RRH DNWFD INPUT TO DNSITION
2 1RH LDCAL HFAT FLUX \(==11.5\) )
 13 H L OCAL NUALTTY AT POSTTION \(X=F 6.31\)
Call rilme
COMTINUF
COMTN
DTIIDN

DDFSD, PRESIN,DDFSOT,RESDD, TSND, ROLOCA, XLNGTH, SHUNTM,D,
 4ORDEAK, ONWFDX, FMLDX, FNSLOX, ПUALOX, DMFFY, DMEFGY, POWOD, ONFOVM,
5 COSLEN, NMF
G FACTMT, DOLEDY, CFXLAY, ENLCY, FMSLAY, OUALOY,FAC, DL,
A EXTDAA, FXTPAR, EXTOAT, EXTPAD, EXTRAF, EXTOAF,
ORMFFR, TMFFFR, ENL OQ, =NSLOR, NUALOB,FXTRAG, FXTDAH, EXTRAI, EXTRAJ COMAEOM SUALIA,GLIQ.TKINCH,
 RYOL SDC, DJAL 4 , DNWEDA, DANR

 GR, GDAVAC, GOAVCS, TADAVCH, VALUEN, FACTUN, RMANA, DQMADA, A, FILMTK, YDLUS, LENT, ПUMMYA, ПUMMYR, DUMMYC


540 FORMATI24H INLET LIOUID ENTHALPY \(=58.2\), \(53^{1}\) 2KH INLET EVAP FNTHALPY \(=F 8.2\), 22 H
545 FODUATI 55: EnDMATI \(35 H\) LENGTH WHFDE QUALITY FOUALS ZFRO \(=F 15.2\),
555 ENDVATIフ4H DRWED OVFD SAT LENGTH \(=10 \mathrm{~F} 10.2,17 \mathrm{H}\), POWER TO BO \(=\)
1 IDE1N.7.3KH DOWFR ERON SAT TO RO \(=1\) DF10.3)
\(125 H\) CQITICAL FLUX AT On = 1PE10.31

565 77
75

FORMAT (F10.2)
FORMAT(F17.1
FORMAT(2F20.
EORMAT(2F20.2) 5 SAD 515 ,TURF, RATIOM, DIAINS, VOLTS, AMDS, ENTHIN, FLMASS PFAD 520, PRESD,ORESN, DRFSNT, PESDP, TSDO,ROLOCM
PEAD 530, JLNCAT, DUALIA
DOINT 515,TURE, DATINM,DIAINS,VOLTS,AMDS,FNTHIN,FLMASS
DOTNT 520,OPESD, DRFSIN, PRFSOT, OESDP, TSDD, BOLACA
PRINT 525 ,XLNGTH,SHUNTM
100
CALL LIDFN
OMEFX=FNFPX
CALL FVADEN
ENSIN=ENTHIN-DMEFX
SUALIN=FNSIN/DMEFGX
POWFRT \(=\) VOLTS*AMDS*2. \(41 *\) SHUNTM
AREAFL \(=(2.1416 * D I A I N S * D I A I N S) / 576.0\)
POWOR \(=-(E N S I N * F L\) MASS \()\)
OUADA \(=(R A T I \cap M-10 \cap O) / 12,00 * X L N G T H * R A T I O M)\)
QUADC
QUADC \(=(\) XLNGTH*(RATIOM +1.00\() * P O W O Q) /(7.00 * P O W E R T * R A T I O M)\)
ARSFISORTF(1.00-4.00*OUADA* OUADC)!')
SATL =XLNGTH-NUMLDL
OSATL=OOWFDT-DNWNS
POWFRR \(=(\) (DOWFRT*2.OO*PATIOM)/(DATIOM+1*001)*
((BNL NCA/XLNGTH)-(RCLOCA*SNL \(\cap\) CA*(RATINM-1.00))/(XLMGTH IF (ROLNCA-OUALOL) \(750,750,755\)

P=PDESIN
GO TO 770
760 D=DOFSIN- 10.750 \#TSOD*(BOLOCA-SUALOL)/(XLNGTH-OUALCL))
76 GOTO 7 PBPFAK=PRESIN-10.750*TSDP*(0.60*OUALOL) /(XLNGTH-OUALOL)
PBPFAK=PRESIN-10.750*TSDP*(0.60*NUALOL)/(XLNGTH-OUALNL)
P=PBREAK-(1DRPEAK-PRESOT)*(BOLOCA-11.6O*SUALOL)
P=PBREAK \(-(\) PDREA
\(1(1.60 * O U A L O L 1))\)
770 CALL LIDEN
CALL FVAPFN
FNLOR=ENTHIN+OOWFRR/FLMASS
FNSLOR \(=F N L O R-D M F F B\)
SUALOB=ENSLOB/DMFFGR
CFXRO \(=(1) .0 * P O W F R T * R A T I O M 1 /(A R F A I S *(1.00+R A T I T M)) 1 *\)
(1.00-(BOLOCA*(PATIOM-1.00) //(XLNGTH*RATIOM))

PSLROL \(=\) POWFDR-O OWOR
CFXAVG \(=\) POWERT/ARFAIS
ORINT \(54 C\), DMEFX, OMEFGX, ENSIN
PRINT 543, DUALIN
DRINT 550, DUALSL, SATI
PRINT 555 DSATL, DOWERB, PSLBOL
PRINT 560,CFXAVG, CFXRO
PRINT 775, D, DMEFS,DMFFGB
PRINT 775, D, DMEFE,DMEFGB
PRINT 780,FMLNR,F
PRINT 785, NUALOR
775 FORMATII7H PRESSURE AT BO \(=F 6.1,25 \mathrm{H}\) SAT LIO ENTH AT BO \(=\) F8.2,

780 FORMATI \(13 H\) FNTH AT RO \(=F 8.2 \cdot 27 \mathrm{H} \quad\) SUBCOOLED ENTH AT RO \(=F 8.21\)
```

 CALL LNDANN
 56
M=k-1 (XUALOL)16n,16n,157
M=OP(1, (GO*OUALOLT), 152,162,165
Gn TO 167
O=DDFSTN-(0.750*TSDO*(X-QUAL\capL)/IXLNGTH-OUAL\capL)
165 DROFAK=PRFSTN-(0.750*TSDP*(0.60*OUALOL)/(XLNGTH-OUAL\capL))
66 D=PROFAK-1(PRDFAK-PDFSOT)*(X-11.60*OUALOL)),
67 CALLLITHFN
OMEFX=FNFDX
CALL FVAPFN
MPINT 565, X
PRINT 565, ,
PRINT 575, DMEFX,DMFETX
CFXLOX=(12.0*POWFRT*RATICM)/(ADEAIS*(1.00+RATIOM)))*
O\capWFOX=((DOWFRT*T.OO*PATIOM)/(RATIOM+1.00))*((X/XLNGTH)
18) F-(X*X*(RATOM-1,NO)1/(XLNGTH*XANGTH*2.OO*RATIOM))
195 FNSLOX=FNLDX-DMFFX
PRTNT 700,ONWFRT,DOWFDX.CFXLOX
PDTNT 710,FNLOX
DOINT 72O,FNSLOX,OUALOX
1 2RH PDWFR INPUT TO POSITION }X=F9.4/
2 1BH LOCAL HEAT FLUX = E11.5)
712 FORMAT131H LOCAL ENTHALPY AT POSITIONTX = F8.2)
2C FORMAT/4IH LNCAL SURCNOLED ENTHALPY AT POSITION X = F8.2%,
130H LOCAL OUALITY AT POSITION X = FG.3)
46C
CALL FILMED
CONTINUE

SIJROMUTINE DKIN DRFSD, PDFSIN, DPESOT, PFSDD,TSDD, BCLOCA, XLNGTH, SHUNTM, P, 2 SUALAL, SATL, PSATL, DOWFRR,DSLROL, CFXAVG, CFXLOX, JLOCAT,K,X, LOQOEAK, ONWFOX, FNL NX, FNSLOX, QUAL X, DMFFY, DMFFFY, OOWNO, ONEOVM,

6 FACTMI, DDWFRY, CCXLOY, ENLOY, ENSLOY, OUALOY, FACTPL,
P EXTDAA,FXTOAR, FXTPAC, FXTRAD. EXTRAF,FXTRAF:
ORMFFR, DMFFGR, FNLL B, ENSLOR, OUAL $\cap B$, EXTRAG, FXTRAII,EXTRAI, FXTRAJ COMMON QUALIA, CLIIO.TKINCH.

 FTAUWALPFYPLUS,GFILM, FALDENT,DCLIO;D

520 FORMAT (5F10.0. 1F10.2)
525 FORMAT 12510.21

543 FOOMAT (16H INLET OUALITY $=$ F6.31

FOPMATI 35H LENGTH WHFRE OUALITY EOUALS ZFRO $=2 F 15.2$,
LENGTH OVER WHICH OUALITY ABOVE ZERO $=F 15$

1 1PE10.3.26H POWFR FROM SAT TO BC $=1$ PE 10.31
FORMAT(20H AVG CRITICAL FLUX $=1$ PE10.3,
125 H CRITICAL FLUXAT BO $=1$ (PE10.3)
$125 H$ CRITIC
FORMAT(F10.2)
FORMAT (F10.1)
570
575
585
580
FORMAT (2F20.2)
FORMAT (3F10.2)
READ 515,TUBF, RATIOM,DIAINS,VOLTS,AMPS, ENTHIN,FLMASS
READ 520,PRESP, PPESIN,PRESOT,RESDP,TSDP,BOLNCA
READ 530 , JLOCAT DUUALTA
READ 580,SCRPTL,ZETA,PLNGTH
PQINT 515 , TUBF, RATIOM, DIAINS, VOLTS, AMDS, ENTHIN,FLMASS
PRINT 520,PRESP,PRESIN,PRESOT,RESDP,TSDP,BOLOCA
PRINT 525,XLNGTH, SHUNTM
PRINT 530, JLOCAT,OUALIA
PRINT 530, LLOCAT, OUALIA
PRINT 580, SCRPTL, ZFTA,PLNGTH
PaPRESIN
CALL LIDEN
DMEFY=ENFDX
CALL FVAPFN
DMFFGYENFGDX
NSIN $=$ ENTHIN-DMFFY
QUALIN $=$ ENSIN/DMEFGY
POWFRT $=$ VOL TS*AMDS*3. 41 \#SHUNTM
AREAFL $=(3.1416 * D I A I N * D I A I N S) /(576.0)$
25 AREAON $=$-ENSINFLLNASS
ONEOVM $=1.0 / R A T I O M$
COSLEN $=11.5708 * P L N G T H$) /ACOSFIONEOVMI
ONFMSN $=$ SORTFI (RATHTOH*2
 $\operatorname{COSABK}=\operatorname{COSF}(3.1416 *($ XLNGTH-SCRPTL- $-500 *$ PL NGTH) $) /$ COSLEN $)$ EXTRAA $=$ SINABK + ONFMSO
EXTRA $=1$ SCRPTL* $\operatorname{COSARK} 1 /$ ZFTA

EXTRAC = (POWFRT*COSLFN)/(3.1416*CONSTR)
EXTRAD $=1.0+(1(C O S L E N * E X T R A A / 3.1416)=(C O N S T P * P O W O O / D O W E R T) / / E X T P A B)$ EXTRAE $=(144.0 * D O W E R T) /(C O N S T P * D I A I N S * 3.1416)$
IF (POWOO-(EXTRAC*ONEMSQ)) 245.245 .255
245
ARG:ASINF(SINZ)
$Z=$ COSLFN*ARG/3.1416
BUALOL $=1$ (PLNGTM/7.00)-2
GO TO 270
255 IF (POWOO-IFXTRAC*(ONFMSO+SINABK) 11$) 260.260 .255$
60 SINZ $=$ - IONEMSN-(POWOR/FXTRAC)
$A R G=A S I N F(S I N Z)$
$Z=C O S L E N * A R G / 3$
OUALOL $=(P L N G T H / 2.00)+Z$
265
G0 TO 270
$U=1-S R P T L / 2 E T A)$ *LOGF(EXTRAD)
QUALOL $=$ XLNGTH-SCRPTL+U
270 SATL $=$ KLNGTH-OUALOL
DSATL $=$ POWERT-POWOO

00220
00230
00240
00250

```
IF (BOLOCA-(PLNGTH/7.00)) 275,275,280
275 POWFDA=FXTQAC*IONFNSR-SINF13.1416*(1PLNGTH/2.VO)-
    ROLOCA)/COSLEN)
    IF (ROL\capCA-DUALCL) 750,750,755
755 IF (BOLOCA-(1.6#OUALOL)) 750,760,765
750 P=DRFSIN
760 D=9DESTN- (0.750*TSNP*(BOLOCA-OUALOL)/(XLNGTH-OUALOL))
765 PROFAK=ORESIN-10.750*TSDO*(0.60*OUALOL)/ XLNGIH-OUALRL))
165 PRDFAK=DRESIN-10.750*TSDO*(0.60*RUALOL)/IXLNGiH-OUALOL))
    1 11.60*NUALDL!)!
770 CALL LIOFN
    OMFFQ=FNFPX
    CALL FVADEN
    ENLOB=ENTHIN+DOWERB/FLMASS
    FNSLOB =FNLOB-DMFFB
    CFXRO =EXTRAF*COSF13.1416*((PLNGTH/2.00)-
    OOLOCA)/COSLFN)
    GO TO 35n
280 IF (ROLNCA-IXLNGTH-SCQDTL)) 285,285,790
    POVFDR=FXTOAC*(ONFMSO+SINF13.1416*1
    IRNLOCA-(DLNGTH/7.001)/COSLFN)
955 1F (BnLnCA-(1.6*OUALOL)) 860,860,86
953 P=DRESIN
RA: D=DRESIN- (0.750*TSDP*(BOLOCA-QUALOL)/(XLNGTH-QUALOL))
DRDFFAKPDSSIN-10-750*)
DRDFAK=PDFSIN-10.75n*TSDP*(0.60*OUALRL)/(XLNGTH-QUALNL))
    D=PRRFAK-(1PAREAK-PRFSOT)*(BOLOCA-1106O*OUALOL)//XLNGTH-
970 (1060*NUALNLI)
    OMFFR=FNFDX
    CAIL FV\triangleDFN
    FNLOR=ENTHIN+POWERQ/FLMASS
    FNSLOR=FNLOR-DMFFB
    SUALOQ =FNSLOR/DMFFGQ
    CFXBO =EXTRAE*COSF13.1416*1
    ROLOCA-(DLNGTH/2.00)//COSLFN)
200 POWFRR=(POWERT/CONSTP)*(ICOSLEN*EXTRAA/3.1416;+EXTRAR*11.00-
    1FXOF( {-ZETA)*(ROLOCA-(XLNGTH-SCRPTL))/SCRPTL!)'
    IF (BOLOCA-OUALOL) 950,950,955
955 IF PDOESIN
O&.- D=DOESIN- (C.7AO*TSDP*(BOLOCA-QUALOL)/IXLNGTH-QUALOL))
OKF GRFRAK=ODFSIM-10.750*TSDD*(n.60*OUAL~L)/(XLNGTH-SUALOL))
    D=DRDFAK-((DRDFAK-DDFSOT)*(AOLOCA-(1.60*NUALOL))/XLNGTH-
    M=DADFAK-((DADFA
970 CALL LIOEN
    MMEFRENFPX
    CALFGGADNFT,DX
    ENLOR=FNTHIN+POWFRS/FLMASS
    ENSLOR=ENLCB-DMEFR
    CFXRO =FXTAF*COSAGK* FXPFI (-2ETA)*1
    1 QNLOCA-(XLNGTH-SCROTLI)/SCRDTL)
350 PSLBOL =POWFRR -POWOO
```

353 CFXAVF $=$ POWERT / AREAIS
PRINT 540 , DMEFY, DMEFGY, ENSIN
PRINT 543 , DUAL IN
PRINT 543, QUALIN
PRINT 545 , AREAFL
PRRNT 545 , AREAFL ,AREAIS
PRTNT 550 , DUALOL
PRINT 550 , NUALOL, SATL
PRNT 555 ,PSATL, POWFRB, OSLBOL
PRINT 560 ,CFXAVG, CFXBO
PRINT 560, CFXAVG, CXEBO
PRINT 75, P
PRINT 775, P, DMEFE,DMEFG
PRINT 780,FNLOR,ENSLOB
PRINT 785 , OUALOA
FORMAT 117 H PRESSURE
75 FORMATIITH PQESSURE AT BO $=26.1,25 \mathrm{H}$
SAT LIO ENTH AT BO =F8.2, SUBCOOLED ENTH AT BO =FB. 21
780 FORMAT 113 H ENTH AT BO $=F 8.2,27 \mathrm{H}$
785 FORMATI16H DUALITY AT BO $=F 6.31$

SUBCOOLED ENTH AT BO =FB.21

FORMATI16H
CALL GRDMOM
CALL PKIANN
DO $460 \mathrm{~L}=1, \mathrm{LLOCAT}, 2$
360
$Y=L-1$
$I F$
(Y - SUALOL)
370, 370,
365
365 IF (Y - 11.5 *DUALOL) 1375,375 , 380
$370 \mathrm{D}=$ PRESIN

380 GBREAK=PRESIN-10.750*TSDP*(0.60*QUALOL)//XLNGTH-QUALOL))
385 D=PRREAK-1(PRRFAK-PPESOT)*(Y-11.60*OUALOL) 1
390 (ALL LIOFN 60*OUALOL)
DMFFY=FNFPX
CALL EVAPEN
DMEFGY=ENFGPX
PRINT $565, Y$
PRINT 570, D
PRINT 575, DMEFY,DMEFGY
IF (Y-(PLNGTH/2.0)) 400,400,410
400 POWERY $=$ EXTRAC*IONEMSO-SINF13.1416*1IPLNGTH/2.001-
$1 Y(1)(C O S L E N)$,
CFXLOY=EXTRAF*COSF(3.1416*(1PLNGTH/2.00)-
$1 \mathrm{Y} \quad 1 /$ COSLEN
410 IF TO 435
410 FF (Y-(XLNGTH-SCRPTL) $415,415,425$
$1 Y \quad$ - (PLNGTH/2.00 1)/COSLEN) ${ }^{1416}$
CFXLOY=EXTRAE\#COSF(3.1416*1
$1 Y$
GO TO
435 ${ }^{-(P L N G T H / 2.001 / / C O S L E N)}$
425 POWERY $=($ POWERT/CONSTP) $\#(1$ (COSLEN*EXTRAA/3.1416) +EXTRAB* $11.00-$ 1EXPF ($(-2 E T A) *(Y$ - (XLNGTH-SCRPTL) $) /$ SCRPTL) $)$ CFXLOY=EXTAAE*COSABK* FXPFI (-ZETA)*I

440 ENSLOY=ENLOY 4 DMEFY
450 OUALOX $=E N S L O Y / D M E F G Y$
455 CONTINUF
PRINT 700, DOWERT, POWERY, CFXLOY PRIN
PRINT 720, ENSLLOY, DUALOX
700 FORMAT14H POWFP TOTAL $=$ E9.4 1 ,
128 H POWER INPUT

 FORMAT (L1H LOCAL SUBCOOLED ENTHALPY AT
$13 O H$ LOCAL OUALITY AT POSITION $X=F 6.3$) CALL FILMFR
460 CONTINUE

SURROUTINF PKOUT
COMMN NTUBFS,MSHAPF, TUBE,RATICM,DIAINS,VDLTS,AMPS, ENTHIN,FLMASS,
DPFSD, DDESIN,DDESOT, RESDD,TSDD, BDLOCA, XLNGTH,SHUNTM,D,
2 DUFFX,FNFPX, DMEFGX, FNFGPX, ©NSIN, OUALIN, POWFRT,AREAFL, ADEAIS

5 COSLFN, $A N E M S \cap, S I G M Z, A R G, Z, F A C M I R, F A C P L B, C F X B O, L, Y$,
G FACTMI, POWEPY, CEXLOY, ENLOY, ENSLOY, OUALOY,FACTPL,
CONSTO, SCROTL, ZFFA, OLNGTH,J,U,ULOCAT, COSABK, SINABK, I
EXTRAA, FXTLA, FXTRAC, FXTRADPEXTRAF,FXTRAF
CTMMON NUALIA,GLIJ,TKINCH,
1DO,DX, COLM1, COLM2, COLM3, COLM4, SUMCOL, PHIMN, GTOTSC, GSUBZ, SUMO, SUMI, ?SUN2,SUM3, SUM4, SUM 5 , MMFGAD, OMEGA, PGMULT, DSURL, T, VISCL,VOLSPL, ENO,
 SAVISCL,REYNUM,FFACTD,FFACT,VELOC, GRDFS, DPGMLT, GRDFT, DGRIMT, GRDTOT, GR, $G R A V A C, G R A V C S, G R A V C H, V A L U E N$,FACTUN, BMAOA, DBMAOA, A,FILMTK,YPLUS,
TAU'AL, FYDLUS,GFILY, FLDENT,DCLIO, PCLENT, DUMMY, , DUMMYY, DUMMYC
15 FDOMAT (F10.2,F1C.2,F1C.4,4F10.1)
5? FIDMAT (5Fi).n. 1F10.2)
25 EПOWAT (TF 10.?
52 EnOMAT (I5,F10.3)
54. FMDMAT (24H INLFT LIDUID ENTHALPY $=$ F8.2,

25 H INLFT FVAO ENTHALDY $=5822 \mathrm{H}$ INLITT SUBCOOLING $=78.21$ 54^{2} FODMAT 116 H INLFT OUALITY $=F 6.31$
545 FПOVATII2H FLOW AREA $=3$ PE15.2.25

IDE SURFACE AREA $=0$ PE15.4)
5." F OOMAT 354 LFNGTH WHERF OUALITY EQUALS ZFRO $=F 15.2$.

11 DE10.3.2AH POWFR FROM SAT TO BO $=1$ IDE10.31
K^{-}FOOMATISH AVE CRITICAL FLUX $=1$ PF10.3,

575 ERONATIFIへ?
575
\%
FOOMAT 13Fin.?
OEAD 515, TURF,RATIOM, DIAINS, VOLTS, AMPS, ENTHIN,FLMASS
PFAD $5>0$.DPESD, DPESIN,DRESOT,RESDP,TSDP,ROLOC
DEAN 535 , XLNFTH, SHUNTM
PFAO 530 , JLOCAT, RUALIA
SEAR ERE.SCDPTL, ZFTA, DLNGTH
DDINT 515 , TURF, RATINM, DIAINIS, VOLTS, AMDS, ENTHIN, FLMASS
DOINT 59, DOFSD, DDFSIN,PRESNT, RESND,TSDP,ROLOCA
PRTMT 525,XLNETH,SHUNTM
ODTMT FR , SCODTL, ZFTA,OLNGTH
PDDESIN
CMLEFY=NFDX
CALL FVAPFN
OMFEGY
FNCIN =FNTHIN-RMEFY
On:NFDT=VOLTS*AMDS*3.41*SHUNTM
$\triangle D E A F L=(2.141$ A*DIAINS*OIAINS $) /(576.0)$

225 POWOB= -ENSJN*FLMASS
240 COSLEN $=(1.5708 * P L N G T H) / A C O S F(O N E O V M)$
240 ONEMSO $=$ SORTFI (RATIOM**2-1.0) / RATIOM**2)
 EXTRAA $=$ SINABK + ONFMS
 FXTOAF $=(144.0 *$ DOWFDT $) /($ CNNSTP*DIAINS*3.1416

EXTRAF=(POWFRTFCOSARK*SCRPTL)/(CONSTP*ZETA

OUALOL $=U$
in $T \cap \rightarrow 0$

 IONWFRT)
$A P G=A S I N F(S I N Z)$
$\mathrm{Z}=$ COSLFN*ARG/3. 1416
SUALCL $=$ XLNGTH-(PLNGTH/2.00)-2
$265 \begin{aligned} & \text { COn TO 270 } \\ & \text { SIMZ } 2 \text { SiNAB }\end{aligned}$
IDNWFDTI
$A R G=A S I N F(S I N Z)$
Z=COSLFN*ARG/3.1416
SUALSL $=X$ LNGTH-10LNGTH/2.00) +2
PSATL $=$ POWERT-PCWOO
IS (ROLOCA-SCROTL) $175,275,280$
275 DOWERR=EXTRAF*(EXPFIZETA*
1BnLOCA-SCRPTL)/SCRDTL)-EXPF(-2ETA)
IF (ROLOCA-NUALOL) $750,750,755$
755 if (ROLOCA-11.6*NUALOLI) $760,760,765$
$750 \mathrm{P}=\mathrm{ORESIN}$
760 P=PRESIN- (0.750*TSDP*(BOLOCA-QUALOL)/(XLNGTH-QUALOL)
76 GOTO 770
0.750*TSDP*(BOLOCA-QUALOL)/(XLNGTH-QUALOL)

P=PRREAK-((PBREAK-PDESOT)*(BOLOCA-11.6O*SUALOI))/(XLNGTH-
1.60*@̣UALOLII)

770 CALL LIOFN
DMAFB=ENFDX
CALL FVAPFN
ENI RR =FNTHTM+DNWFRR/FLMASS
FNSLAA $=$ FNL

(ROLOCA-SCRDTLI/SCRDTLI)
TO TO 350
28) IF (ROLOCA-(XLNCTH-(DLNATTH/2.0011) 285,285.200
$+($ COSLEN/3.1416)*1
1SINARK-SINF(I3.1416/COSLFN) 1 (XLNGTH-(DLNGTH/2.001-BOLOCA))),
855 IF (ANLOCA-(1.6*DUALOLI) A6O.860,865
$850 \mathrm{D}=0 \mathrm{PFSTN}$

R65 PRDFAK=PRFSIN-10.750*TSDP (0.60*OUALOL)/(XLNGTH-SUALOL) P=PRQFAK-(1PRRFAK-DRESNT)*(POLOCA-(1.60*NUALOL))


```
870 CALL LIAFN
    MMFFR=FNFDX
```



```
    ENSLINR=CMLNA-NMCFR
    OUALOR=FNSLOR/OMFFTR
    CFXBO = FXTPAE*COSF(13.1416/COSLEN)*(XLNGTH-(PLNGTH/2.00)-BOLOCA))
    An Tn 35n
(DOWEDT/CONSTD)*((EXTPAB*UL\capCAT) & ((COSLEN/3.1416)*1
    SINARK+SINF(17.141G/COSLEN)*(BOL\capCA-(XLNGTH-(LLNGTH/7.00) ) ),
    #'''(ROLnea-nualnL) O5C,050,055
arg if (ROLnra-11.6*2UALOLi) 960,960,965
aan D=ODESiN
OK7 D=ODFSTN- (9.750*TSND*(ROLOCA-OUALOL)/(XLNGTH-QUALOL))
    DROFAK=PDFSIN-10.75n*TSDP*(0.60*OUALRL)/IXLNGIH-SUALOL))
    P=PRDFAK-(1PRDEAK-PDESNT)*(ROLOCA-11.00*OUALOL))/(XLNGTH
77)(1.0^**刀UALOL.))
    CALL LINNM
    CALL FVAPFN
    ENLIQ=FMTHIN+ONWFRR/FLMASS
    ENGLOR=FNINR-NMFFR
    CFXBN =FXTDAF*CNSF(13.1416/COSLEN)*(BOLOCA-1XLNGTH-(PLNGTH/2.00) )
25n OGLPML =ONWEDR -OOWOR
253 RFXAVG = DOWFRT / ARFAIS
    ORINT 54, DMFFY,DMFFT,Y,ENSTN
    3, NUALIN
    ORMNT 55%, ,NJALDL,'SREAL
    ODNT 555,OSATL, POWEPB, PSLROL
    DDINT GAN,CEXAVT,CEXRO
    DRINT 78才, ENLOB,FNSLNB
    DDINT 7R5,NUALOR
775 FTOMATI17H DRESSURE AT BO =F6.1,25H SAT LIQ ENTH AT BO =F8.2,
```



```
70% FOOMATIIGH OUALITY AT BO =F6.3)
```



```
fon EnONAT:1GH
    CALL RORMAM
    nn 46n L=1, Jlocat,2
*^ }y=L-
255 if (Y -(1.<*NH14| OL), 375, 275, zan
zan O = DDECP
Ta 
O:()
(XLNGTH-(1.*^*OUALOL!))
TOOSALLLIDFN
    CALL EVADFA
    OMFFYY=FNFCOOX
    MDTHT 56F,Y
    PQTNT 575,DMFFY,OMEFRY
```

iF (Y-SCRPTL) 400,400,410
OOWFRY=FXTRAF* (EXPFIZETA *
IY Y-SCRPTL)/SCRPTL)-EXPF(-2FTA)
01920
$\begin{array}{r}01920 \\ 01930 \\ 0190\end{array}$
IY in 439 SR (1)/SRPTL)

an Tn 435
425 POWFRY $=($ (PNWFDT $/$ CONSTP) $*(1 E X T R A B * U L D C A T)+($ COSLEN/3.1416)*1

$5{ }^{1}$ FNLOY=FNTHIN+(DOWERY/FLMASS),
44 ENSLOY=FNLOY- חMEFY
455 CONTINUE
DRINT $70 \cap$, DOWFRT, DOWFOY, CFXLOY PRINT 710 ,FNLOY
FORMATC14H DOWFR BUALOX

2 18H LOCAL HEAT FLUX $=$ E11.5)

130 H LOCAL OUALITY AT POSITION $X=$. F6.3)
CALL FILMFQ
460 CONTINUF.
FND

COMMOM NTUBFS, MSHAPE, TUBE, RATIOM,DIAINS, VOCTS, AMPS, ENTHIN,FLMASS,
DOFSO, DRESIN, DRESOT, RESDP,TSDP,BOLNCA, XENGTH, SHUNTM, D,
a DUALOL, SATL, OSATL, POWFRA, DSLROL, CFXAVE, CFXLOX, HLOCAT,K, X,
4PRDFAK, DNWFDX, FNL OX, ENSLOX, QUALOX, DMFFY, DMFFGY, POWMA, ONF V VM.
5 COSLFN, ONEMSA,SIGNZ, ARG,Z,FACMIR,FACOLB,CFXBN,L,Y,
6 FACTM , POWFRY, CFXLCY,FNLOY, ENSLDY, NUALNY,FACTPL,
TCONSTP, SCRPTL,ZFTA,DLNGTH,J,U,ULOCAT,CDSABK, SINABK, It
8 EXTRAA,FXTRAR, FXTRAC, FXTRAD, EXTRAF,FXTRAF,
QDMFFR, DMEFGR, FNLOR, FNSLCB, DUALOB, EXTRAG, EXTRAH, EXTRAI, EXTRAS
COMMON OUALIA,GLIO,TKINCH,
2SUM2,SUM3, SUM4, SUM5, OMEGAP, OMFGA,PGMULT, PSUQL,T,VISCL,VNLSPL,FNO, 3VOLSOG, RUALO4, PNWERA, PANBOL, DENFO, DFMFGO, ENSO OUALC, DVSDLO, DVSPGO,

7 TAUWAL, FYPLUS, GFILM, GLDENT, PCLIO, PCLFMT, DUMWYA, DUMMYR, NUMMYC
COMMON N,M,THCOND, FCHEN, SCHEN,VISCG.CPLID, SUPFTL,
$1 \times T T$, SATP, SMALLT, DELTVP, TWALL , HCHEN, HMAC OHMIC, REYNLOUNFLUX,
DRNUMB, BERGHT, HDB, HDENG, OADENG, DTDENG, DELTT, OACHEN.
3 DTCHFN,RADMAX, NFLTFN,RADIUS,CC,DD,FF
515 FORMAT (F10.0,F10.2,F10.4,4F10.1)
525 FORMAT (5F10.0, 1F10.2)
525 FORMAT (2F10.2)

```
53n FORMAT(15,E
535 fnomat(15)
```



```
543 EnRMATIISH INLET NUALITY = F6.3)
545 FODMAT12H FLOW AREA =3PE15.2.25H INSIDE SURFACE AREA = ODE 15.4
55) FORMAT135H LENGTH NHFDF NUALTYY EOUALS ZFRO =F15.2,
    FGRMATI24H POWES OVEP SAT LENETH =1PE10.3.17H POWER TO BO =
555 FORMAT10.4, PGHWED POWER FRONENGT TO BO =1PE 1PE10.5)
S:O FORMATISNH AVE CDITICAL FLUX =1PF10.3;
ak FOPMAT(FIn.) 
7n FORMATIFI?.?
*75 ENOMAT\ESi!?,
QFAD 515,TUBF,QATIOM,DIAINS,VOLTS,AMDS,ENTHIN,FLMASS
    RFAD GPO,DDFSD,PRFSIN,DRFSNT,RFSDP,TSDP,BOLOCA
    RFAN 5T5, XLNGTH,SHUNTM
    READ 53,, JLICAT,OUALIA
    ,PINGTH
    DDIMT 515,TURF,DATIOM,DIAINS,VOLTS,AMDS,ENTHIN,FLMASS
    ODNNT 5,N,ODFS,DRFSIN,PDFSNT,DESDD,TSOP,BOLOCA
    DONNT 525,XLNGTY,SHUNTM
    ODTNT 5an,SCOPT, ZFTA,DLNGTH
    MDINT 535,J
    O=NDFGIN
    CALL LINEN
    cali evanen
    ZMFFGY=FNFTADX
    NIALIN=FNTHSN-DNFFY
    On*EOT =VMLTS*AMDS*2,41*SHUNTM
    AOFAFL=(2.141A*NIANS*NIAINS)/(576.0)
2?5 ORWIS=(2.141N**LNGT
OMSLFN= (1.ETOQ*DLNGTH) /ACOSE(ONFOVM)
    PONSTD= (1XLMTTY-OLNGTH)/DATIOM)+1?.O*COSLFN*ONFMSO/
    M
    FXTQAA=P\capWFRT/IDATIOM*CONSTP)
    EXTRAR=D\capWFOT*CNSLFN/(CONSTP*3.1416)
    EXTDAE=1144.C*OOWFDT)
    IF(ONW\capN-(EXTPAA*(XLNGTH-SCPDTLIINS*)
Mas THONWRN-IEXTRAA*(XLNGTH-SCPDTLI)) 245,245,25
OUAL\capL =ULOCAT-Z
T,E TF(PONMO-1(FXTRAA*IXLNGTH-SCDOTL)ITIFXTRAB*ONEMSS
```



```
    (XLNGTH-SCRPTL)))/FXTRAB)+ONEMS
    ART=ASINF(SINZ)
    Z=CNSLFNADC/3.1416
    BMaLOL vulOCAT-Z
<E TFIONWMA-1(EXTOAA*IXINGTH-SCDOTL))+(FXTRAB##NEMSA
SaK STNZ=+1/ONWAN-IFXTRAA*(XLNGTH-SCPPTLI)I/FXTPAQ)-ONEMSA
    MDREACMNE(STNT)
    n|AL\capL=|!~CAT;?
```

SO TO 270
((POWOR-(FXTRAB*2.0*ONEMSQ))/FXTRAA
SUALOL $=U L \cap C A T+Z$
DSATL=PLNGTH-OUALOL
DSATEPOWFDT-ONWNO
IF (ROLOCA - XLNGTH-SCDDTL)) 275,275,280
DOWFRR=EXTRAA*ROLOCA
IF (ROLNCA-NUALOL) 750,750,755
755 IF (ROLOCA-(1.6*OUALOL) $) 760,760,765$
TKO $0=$ PDESTN

PRRFAK=PDESIN-10.75n*TSDP*(0.6R*OUALOL) ((XLNGTH-QUALOL))
P=PRREAK-1(PRRFAK-PRFSOT)*(BOLOCA-(1.60*DUALOI 1)/(XLNGTH-
1 (1.60*QUaLol))
CALL $L I D E N$
DMFFR $=E N F P X$
CALL FVAPFN
ENLOB=ENTHIN+POWERB/FLMASS
FNSLOB=ENLSB-DMEFB
OUALOA $=$ ENSLCB/DMEFGB
CFXBO=FXTRAFIRATTOM
GO TO 350
280 IF (BOLOCA-ULOCAT) 285,285,290

IF (BOLOCA-QUALOL) $850,850,855$
IF (ROLOCA- 1 , 6 *NUALOL) 8 860,860,865
OSRFSIN
GO 870
860 P=DRESIN- $10.750 * T S D P *(B O L O C A-S U A L O L) /(X L N G T H-Q U A L O L))$
5 PRDEAK=PRESIN-(0.750*TSDP*(0.60*OUALOL)/(XLNGTH-SUALOL))
$P=D P R F A K-($ (DRPFAK $-D R F S \cap T) *(B O L \cap C A-(1.60 *$ OUALOL) $)$
70^{1} (XLNGTH-(1.060*OUALOLI) $)$
870 CALL LIDEN
CMFFRFNFPX
CALL FVAPFN
OMEFTR
FFMFTDX
FNLOB =ENTHIN+PQWFRB/FLMASS
ENSLOR $=F N L$ NR-DMFFB
QUALOA $=$ ENSLOB/DMFFGR
CFXBO $=$ EXTPAE\#COSF(3.1416*(ULOCAT-BOLOCA)/CNSLEN)
ro Tn 350
200
295
IFIBOLOCA-(ULOCAT+(PLNGTH/2.01)) 295,205.300
200 IFIBOLOCA-CLOCAT+(PLNGTH/2.0) 1)
295 POWERA $=$ (EXTRAA\# (XLNGTH-SCRTL)
(IEXTRAB*IONFMSO+SINF(3.1416*(ROLOCA-ULOCATI/CNSLFNI))
IF (ROLOCA-OUALOL $950,950,955$
IF (ROLOCA-11.6*DUALALI) $960,960,995$
950 P=DRESIN
960

$1(1.60$ \# OUALDL) 1)
970 CALL LIOFN
CALL EVAPEN
CALL EVAEN

ENSLOB $=E N L O B-D M E F B$
OUALOB $=E N S L O B / D M E F G B$
=FXTRAF*PNSF(3.1416*(ROLOCA-ULOCAT)/COSLEN)
IF (ROIOCA- $U U A L \cap$)
IF
IF

$\mathrm{D}=\mathrm{DPFSIN}$
GO TO 325
a
$P=P D F S I N-(0.750 * T S N D *(B O L \cap C A-\cap U A L \cap L) /(X L N G T H-O I J A L O L))$
20 DRDFAK=PRFSTN-(0.750*TSDP*(0.60*OUALOL)/(XLNGTH-SUALOL))
$P=$ PBPEAK- $(10 B R F A K-P R F S O T) *(B O L O C A-11.60 * Q U A L C L) / /(X L N G T H-$
325 CaLL AOHUALDLI)
MMEFR=NFOX
OMFFTR=ENFFDX
FML AR = FNTHIN+POWFDR/FLMASS

357 PSLQOL =POWFRR -DOWNO
353 CFXAVF $=$ POWERT/AQFAIS
PRINT 54 , DMFFY, RMCFGY, ENSIN
DRINT 543 , OUAIIN
PRINT 543, SUALIN
PRINT 550, NUALOL, ARFAT
PRTNT 555 , DSATL, DOWERB, DSLBOL

DRTMT 7R TRNLOR FNSLDE
EDTMT 785 , DUALOR
775 FRPMATI 17 H DDFSSURF A^{\top} BO $=F 6.1,25 \mathrm{H}$

SAT LIO ENTH AT BO =F8.2,

FARMAT (16H NUALITY AT RO $=$ F6.3) CALL CDKANN
$n_{Y=L-2}^{n} \quad=1$, JLOCat, 3

364 CALL PSPIKF
(in 10 46?
an If (Y-nlJaLnl) 370,270,365

on in 30 in
75 P=DDFSIN-10.7RO*TSND*(Y-3UALOL)/(XLNGTH-YUALOL))
20. DRDFAK =PFESIN-10.75n*TSDP*(0.6^*RUALOL)/(XLNGTH-OUALOL)

2an D=ORDFAK-(1DRDEAK-DDFSOT)*(Y-(1.60*AUALOL))/
$20 \cap$ CALLIOEN GO*SUALOL)I
CMFFY=FNFPX
PALL EVADEN
DMFFAY Y FNFFGDX
DOPNT 5GE,Y
DPIMT 570,
ORINT 575, DMFFY, DMEFTY
IF IY -(XLNGTH-SCRPTL) $1400,400,410$
LOO DOWFOY=FXTOAAFY
CFXLOY=FXTRAE/RATIOM
515 if -ulacati 415,4i5,435

POWFRY = (FXTRAA* (XLNGTH-SCRPTL)) + CFXLOY=FXTRAF*COSF(3.1416*(ULOCAT-Y)/COSLEN)
$1 /$
(Coslen $) / 1$ CFXLOM
Gn
if
435
 1 (EXTOAB*IONFMSO+SINF(3.1416*(Y -ULOCAT)/COSLEN)I) CFXLOY=EXTRAE*COSF(3.1416*(Y -ULOCAT)/COSLEN)
GOTO 435
GOTO TO 435
POWFRY=EXTRAA*IY
CFXLOY=FXTPAF/RATIOM
-PLNGTH) + (EXTRAR*2.O*ONEMSO
FFNTHIN+(POWERY/
ENSLOY=ENLOY-DMEFY
450
455
QUALOX=ENSLOY/DMEFGY
CONTINUE
CONTINUE
PRINT 700 PRINT 710, ENLOY
PRINT 720 OFNSLOY, OUALOX
1 2RH POWER INPUT TOTAL $=E 9.4$
$218 H$ POCAL HEAT FLUX $=$ ITION
710 FORMAT(31H LOCAL ENTHALPY 11)
720 FORMAT(41H LOCAL SUBCOOLED ENTHALPY AT POSIT2)
130H LOCAL QUALITY AT POSITION $X=F 6.3$)
460 CONTINUE
$\mathrm{N}=0$
RETUP
RFFTURN
FND

SURROUTINF CSPIKE
COMMON NTUBES,MSHAPE, TUBE,RATIOM, DIAINS, VOLTS, AMPS, ENTHIN, FLMASS.
1 PDFSD, PRESIN,PRFSOT,RFSDP,TSDP,BOLOCAOXLNGTH,SHUNTM*P,
2 DMFFX, ENFPX, DMEFGX, ENFGPX, ENSIN, QUALIN, POWER-, APEAFL,AREAIS
3 OUALOL,SATL,PSATL,POWERB,PSLBOL,CFXAVG,CFXLOA, JLOCAT,K,X,
4PBRFAK, POWFRX, FNLOX, ENSLOX, OUALOX, DMFFY, $M E F$ CY, POWOO.ONFOVM,
5 COSLEN, ONFMSO,SIGNZ,ARG,Z,FACMIB,FACPLA,CFXBO,L,Y,
6 FACTMI, POWWERY, CFXLOY, ENLOY, FNSLOY OUALOY, FACTPL,
7CONSTD, SCRPTL,ZETA, PLNGTH,J•U,ULOCAT, COSABK, SI NABK,I,
ODMFFB, DMEFGR, FNLOB, FNSLOB, OUALOB, EXTRAG, FXTRAH, EXTRAI, FXTRAJ COMMON OUALIA,GLIO.TKINCH,
1DP,DX, COLMI, COLM2. COLM3. COLM4, SUMCOL, PHIMN.GTOTSC,GSUBZ, SUMO, SUM1, 2SUM2, 4GTOT, DPMOM, GRDMT, DVLSPL, DVLSPG, TERM1, TERM2,TERM3, TERM4, GGAS,DT, SDVISCL, REYNUM, FFACTD,FFACT,VFLOC,GRDFS,DPGMLT,GDDFT,DGRDMT,GRDTOT 6B, GRAVAC, GRAVCS, GRAVCH,VALUEN, FACTUN, BMAOA, DBMAOA,A,FILMTK, YPLUS,

COMMON N, M, THCOND, FCHEN, SCHEN, VISCG, CPLIO, SURFTL,
IXTT, SATD, SMALLT, DELTVP, TWALL, HCHEN, HMAC, HMIC, P FYNL
2
2 PRNUMB, BERGHT,HDE, HDENG, OADENG,DTDENG,DELTT,QACHEN,
4 DUALO4 $=8.0 *(X L N G T H-S C P P T L+$ PLNGTH)
$\mathrm{NFLUX}=$ RUALO4
$K=R .0 *(X L N G T H-S C R P T L)$
DO 459 N $=K$ •NFLUX.J
ZETAFN
2 IF (Y-QUALOL) 170,370,365

```
365 IF (Y -(1.G*NUALOL), 375, 375, 2AO
    270 D=DDESTN
75 P=PDESIN-10.750*TSDD*(Y-QUALOL)/(XLNGTH-OUALOL),
380
PRDFAK=DPESIN-10.750*TSDP*(0.GO*OUALOL)/(XLNG:H-SUALOL),
    *(Y-11.60*OUALOL)!/
300
    (XLNGTH-(1.60*OUALOLII)
    CALLLIDFN
    \MFFY=FNFPX 
    DRINT 5S5,Y,D,DMFFY,DMFFGY
ang EnOMAT(4e?n.a)
XLNETH-SCDOTLI/400,40n,410
TFYY EXTO-\X
YatinM
CFXLOY=FXTOAF/QATIOM
CExLnY=xイ%
415 IE YY -ULOCAT) 415,415,4%5
    (EXTOAR*(ONEMSO-SINF(3.1416*(ULOCAT-Y, /COSLEN)))
    CFXLOY=EXTOAE*COSF13.1416*(ULOCAT-Y I/COSLEN
475 TEIY (-IULNCAT+(DLNCTH/2:O1)1/43n,430,432
    OOWEDY= (FXTOAA*(XLNGTH-SCDDTL))+
        (FXTRAR*(INNEMSO+SINF(3.1415*(Y-ULOCAT, /COSLEN)))
        CEXL\capY=FXT
DNWFRY=FXTRAA*(Y -DLNGTH)+(EXTRAS*2.O#ONEMSO)
    CFXLOY=FXTRAF/RATIOM
425 ENLOY= ENTHIN+DOWFOY/FLMASS)
45) DUAL\capX=FNSL\capY/DMFFGY
    455 CONTNME
        ODTMT 7MO,DOWFRT, POWFRY,CFXLOY
        ODINT 7In,FNLNY
    1 2RH ONWFD INDUT TO ONSITINN X'O = E9.4/,
, 1RH LNCAL HEAT FLUXX = FI1.5)
72^ FOOMATI41H LOCAL SURCNOLED FNTHALPY AT POSITION X = F8.2%,
    13OH LOCAL DUALITY AT POSITION X = F6.31
    5a% CALLTFILMFD
    an Pantim!/
    Detug
SIgDNUTTMF UNTAN
    COMMON NTUBFS,MSHAPE,TUBE,RATIOM,DIAINS,VOLTS,AMPS,ENTHIN,FLMASS,
    CNSLEM, ПNFMSN,SIGNZ,ADG,Z,FACMIO,FACDLR,CFXAC,L,Y,
    TCONSTD,SCOOTL,2FTA,OLNGTH,J,U,ULOCAT,COSABK,SINABK,I
    R EXTRAA,FXTDAR,FXTPAC, EXTRAD, EXTRAR,EXTRAK,
    SMFFR,ПMEFTR,FNLIR,ENSLOB,NUALOB, EXIRAG,FXTRAH,EXTRAI,EXTRAJ
    COMMON NUALIA,GLID,TKINCH.

1DO. DX, COLM1, COLM2, COLM3.COLM4,SUMCOL, DHIMN.GTOTSC, GSUBZ, SUMO,SUM1
 3VOLSPG, DUALO4,POWERA, PANBOL, DENFO, DENFGO, ENSO, OUALO,DVSPLO.DVSPGO 4GTOT, DPMOM, GRDMT, DVLSPL, DVLSPG, TERM1, TEPM2, TERM 3, TERM4, GGAS,DT,
 TTAUWAL,FYPLUS, GFILM,GLDENT, PCLIO,PCLENT, DUMYYA,DUMMYB,DUMMYC
DUALOA=16.0"DUALOL
\(1=\) DUALO \({ }^{4}\)
ก \(451 \mathrm{k}=1,10000,1\)

57 IF (X-OUALOL) \(160,160,157\)
P=DRESIN
GO TO 167
\(\mathrm{P}=\mathrm{DRESIN}-10\)
Gn Tn 167 -70*TSOP*(X-OUALOL)/(XLNGTH-OUALOW)
 P=PRDFAK-(PBRFAK-PDFSCT)*(X-(1.60*NUALOL)

167 CALL LIOEN
DMFFX=FNFPX
CALL \(\operatorname{FVAPFN}\)
DMFFGX
CFXLOX=POWFRT/ARFAIS
175 POWFPX=POWFOT*(X/XLNGTH)
180 ENLLX \(=\) FNTHIN + OnWFRX/FLMASS
185 FNSLOX \(=F N L \cap X-\cap M F F X\)
190 UUALOX \(=E N S L \cap X / \cap M E F C\)
455 IF (OUALOX OUALIA) \(451,453,453\)
451 CONTINUE
453 DOWFPA OOWFDT-DONFFDX

PRINT 727,DMEFX,DMEFGX
PRINT 723, POWERA,PANBOL
PRINT 700, POWERT, POWERX. CFXLOX
DDINT 710, ENLDX
FORMAT(14H POWFR TOTAL \(=E 9.4 /\), \(=E 9.4 /\),
128 H POWER INPUT TO DOSITION \(x=E 9.4 \%\),
218 LOCAL HEAT FLUX \(=\) EII.51)

FORMAT(41H LOCAL SUBCOCLED ENTHALDY AT POSITION X \(=\) F8. \(3 /\),
721 FORMAT(SIH CONDITIONS AT SLUG ANNULAR TRANSITINN POSITION =FR.1,
114 H PRFSSURF \(=F \mathrm{~F}_{\circ} 11\)
722 FORMAT(18H LIOUID ENTHALPY 2 F8.2,19H EVAP ENTHALPY \(=F 8.2\) )
145 H POWFR FROM SLUG ANNULAR TRANSITION TO PO =1PE10.31
RFTURN
FND

5 COSLEN，ONFMSO，SIGNZ，ARG，Z，FACMIR，FACDLB，CFXBO，L，Y，
6 FACTMI，POWFOY，CFXLOY，FNLDY，FNSLOY，חUALAY，FACTPL，
COANSD，SCROFL，ZETA，
B EXTRAA，

1DP，DX，COLM, COLM ，COLM3，COLM4，SUMCOL，PHIMN，GTOTSC，GSURZ，SUMO，SUM 1 ， 2SUM2，SUM3，SUM4，SUM5，OMEGAP，OMEGA，PGMULT，DSUBL T，VISCL，VOL SPL，ENO， 4GTOT，DPMOM，GRDMT，DVLSDL，DVLSDG，TFPM1，TERM2，TERM3，TFQM4，GGAS，DT， 5nVISCL．REYNUM，FFACTD，FFACT，VFLDC，GODFS，DDGMLT，GRDFT，DGROMT，GRDTOT 6B，GRAVAC，GPAVES，GRAVCH，VALUEN，FACTUN， OMAOA，DBMADA，A，FILMTK，YPLUS， \(7 T A U W A L, F Y P L U S, G F I L N, G L D F N T, D C L I \vartheta, P C L F N T\), ，UUMMYA，DUMMYR，DUMMYC

ПUMMYC \(=t+1\)
\(Y=\) ПUMMYC／1F．
IF IY－NUALOL \(370,370,365\)
\(370 \mathrm{D}^{\circ}=\) DDESIN
275
P＝OPESIN－10．750＊TSDO＊（Y－OUALOL）／（XLNGTH－QUALOL）
TO 307

or
（XLNGTH－（10KD＊OUALOL）1）（Y－（1．60＊OUALOL）＂）
CALL IIAFN
CMFFY \(=\) NFDX
CALL FVADFN
MMFFTY＝ENFTPX

In OCNEDY＝ 1 DOWFDT FFA
CFXL
IFOSE（2．141ム＊（ \(\times\) LNGTH／フ．0）－Y）／COSLEN）
15 ENLOY＝FNNTHIN + （DOWERT＊FACTMI）\(/ 17.0\)＊FLMASS）
つ5 nUALCX \(=\) FNSLEMY／DMFFfiY

FACTPL＝11．0＋1SIMF1（3．1416＊（Y－1XLNGTH／2．0））， \(1 /\) COSLEN）（IONEMSD）

1 OSF \(2=1416 *(Y-(X L N G T H 2,0) 1 / C O S L F N)\)
35 ENLRY＝ENTHIN \(+(\) POWERT＊FACTPL）\(/(2.0\)＊FLMASS）

455 TFIOUALAX－NUALIA） \(451,453,453\)
451 CONTINUF
451
453
\(53 \begin{aligned} & \text { DTWFRA }=\text { DOWFRT－DOWFRY } \\ & \text { PANBML }\end{aligned}\)
PRINT \(721, Y, D\)
PRINT 722 ， 2 ，PNEFY，DMEFGY
DRINT 72 ，PCWFRA，
PRANRINT 700 ，POWFRT，PONFRY，CFXLO
PRINT 71 l ，FNLOY
PRINT T2n．ENSLOY，OUALOX
FRRMATI14H POWFR TOTAL \(=E 0.4 / \%\)
1 2RH ONWFR INPUT TN POSITION \(x=E 9.4 /\) ，
FORMAT（31H LOCAL FNTHALPY AT POSITION7X \(=\) F8． 2 ）
720 FOPMAT（4IH LOCAL SURCOOLED ENTHALPY AT POSITION \(X=F 8.2 \%\),
\(130 H\) LOCAL SUALITY AT POSITION \(X=F 6.31\)

721 FORMATISIH CONDITIONS AT SLUG ANNULAR TRANSITION POSITION \(=58.1\) ． \(722^{1} 14 \mathrm{H} \quad\) PRFSSURF \(\left.=F 9.1\right)\) 722 FORMAT（18H LIOUID ENTHALPY \(=F 8.2,19 \mathrm{H}\) EVAP（NTHALPY \(=58.2\) ）
 RETUR
    END

SURROUTINE LNIANN
COMMON NTUBES，MSHAPE，TUBE，RATIOM，DIAIMS，VOLTS，AMPS TENTHIN，FLMASS，
PRESP，PRESIN，DRESOT，DESDP，TSDP，BOLOCA，XLNGTH，SHUNTM，P，
OUALOL ENFPX，DMEFGX，ENFGPX，ENSIN，QUALIN，POWERT，AREAFL，APEAIS，

4PBREAK，POWERX，ENLOX，ENSLOX，QUALOX，DMEFY DMEFGY，POWOO．ONEOVM，
5 COSLEN，DNEMSA，SIGNZ，APG，Z，FACMIE，FACPEB，CFXBOPL，Y＊
7CONSTD，SCRDTL，LETAOPLNGTH，J，U，ULOCATPCOSABK，SINABK，I＊
8 EXTRAA，EXTRAR，FXTRAC，FXTRAD，EXTRAF，FXTRAF，
OMEFB ，DMEFGB，ENL OB，FNSLOB，QUALOB，EXTRAG，EXTRAH，EXTRAI，EXTRAS
COMMON QUALIA， COMMON QUALIA，GLIO，TKINCH，
 3VOLSPG，QUALO4，POWERA PANBOL，DENFO，DENFGO，EESSO，OBALOLOVSPLO OVSPGO，
 68 ，GRAVAC ，GRAVCS，GRAVCH，VALUEN PFACTUN• BMAOA PDRMAOA，A FFILMTK PYPLUS， TTAUWAL，FYPLUS，GFILM，GLDENT，DCLIO，DCLENT，ПUMMYA，DUMMYR，DUMMYC
QUALO \(=16.0 *\) GUALOL
\(1=\) DUALO 4
DO \(451 \mathrm{~K}=\mathrm{I}, 10\) Oñ，
DUMMYC \(=K+1\)
\(\mathrm{x}=\mathrm{DUMMYC/16.0}\)
IF（X－OUALOL） \(160,160,157\)
157 IF（X－11．6C＊OUALOL）\(, 162,162,165\)
P＝PRESIN
GO TO 167
162 P＝PRFSIN－10．750＊TSDP＊（X－QUALOL）／（XLNGTH－QUALOL）
165 GOTR 167 PRPFAK＝PRESIN－10．750＊TSDP＊（0．60＊OUALOL）（XLNE：TH－OUALクL）
\(166 \mathrm{P}=\) PRPRAK－（ \({ }^{2}\)（DRRFAK－PDFSOT）＊（X－11．60＊OUALOL）
（XLNGTH－11．60＊SUALOL＇））
167 CALL LIOFN
DMFFX \(=\)＝NFPX
CALL EVAPEN
DMEFGX＝ENFGPX
CFXLOX＝（ \(\left.(2.0 * P \cap W F R T) / / A D E A T S *\left(R A T I 0^{*}+1.001\right)\right)\)
1 ＊（1．00 \(1(\)（X＊ 1 RATIOM－1．00）1／XLNGTH）\()\)
DOWFRX＝（1PNWFRT＊2．001／（RATIOW＋1．00））＊（X／XLNGTH＋（1X＊X＊（RATIOM－1．00） \(1 /(X L N G T H * X L N G T H * 2.0011)\)
ENLOX \(=E N T H I N+\) DOWEQX／FLMASS
185 ENSLOX \(=\) ENLDX－DMFFX
190 DUALOX \(=\) ENSLOX OMMFGX
455 IF（OUALOX－OUALIA） \(451,453,453\)
453 POWFRA＝DOWFRT－POWFQX
PANBNL＝POWFRR－POWFPX
PRINT \(721, X, P\)
PRINT 722，DMEFX，DMEFGX
PRINT 700，POWFRT，DOWERX，CFXLOX
PRINT 710 ，ENLOX
PRINT 720，ENSLOX，OUALOX

I 28 H POLH DOWFD TOTAL \(=\) FO. \(4 /\),
2 2RH POWFR INDUT TO DOSITION \(X=59.4 /\),

\(130 H\) LOCAL DUALITY AT POSIIION \(X=F 6.3\) I
221 FOQMATISIH CONITTITNS AT SLUG ANMULAR TRANSITIOM POSITION \(=F 8.1\),

 OFTUON FTUDN WIR FROM SLUG ANNULAR TRANSITION TN BN \(=1\) PE10.3) 02070 END
subroutine lntanin
COMMOH MTUESS,MSHAPE, TUBE, RATIDM, DIAIMS, VOLTS, AMDS, ENTHIN, FLMASS,
1 DDESD, PDFSIM, PDESOT, DESDD,TSDD, BDLLCA, XLNGTH, SHUNTM,D,
2 DMFX, ENFPX, DMFFGX. ENFGPX, ENSIN, QUALIN, DCWFPN, AREAFL,ADEAIS,
3 OUALLL, SATL, PSATL, DOWEPB, DSLARL, CFXAVG, CFXLOA, JLOCAT, K, X,

6 FACTMI, POWFPY. CFXLOY, ENLOY, ENSLOY, RUALOY,FACTPL,
TCONSTD,SCODTL,CETA, DLNGTH,J,U,ULOCAT, COSARK,SINABK,I,
B EXTRAA, EXTPAB, EXTQAC, FXTRAD, EXTRAE EXTRAF,
,
\[
\begin{aligned}
& \text { COMMON DUALIA, ELIC,TKINCH, } \\
& \text { D,DX. COLMI, COLM?, COLM3, }
\end{aligned}
\]
GR,GPAVAC, GQAVCS, GPAVCHOVALUEN,FACTUN, PMAOA, NBADA, A, EILMTK, YPLUS,

कत \(451 \quad k=1,10000,1\)
DUMMYC \(=K+1\)

157 IF(x-(1.60*JUALOL) \()_{162,162,165}^{157}\)
an D=DOESIN
TO Tn 167

ORFAK=DPESIN-10.750*TSDP*(0.60*RUALOL) (XLNGTH-SUALOL
K \(P=D A D F A K-(\) (DSRFAK-DDFSNT \() *(X-(1.60 * O U A L O L) 1)\)
1 (XLLNETH-(1.6ク*NUALOL) \()\)
K7 CALL LIOFN
CALL
SVAPFN
MEFRX

11, \(000-(X * 1 Q A T 1 O M-1.001) / 1 \times\) LNGTHFRATIOM) 1
)*('X/XLNGTH
FNL \(X=F N T H I N\) + + OWFOX/FLMASS

or SUALOX=FNSLIX/DMFFCX
( \(451,453,453\)
451 COMTVNUF
453 PNWEDA OOWFDT-DNWEDX
PANROL =POWFRG-DOWEPX
PRINT 721•X:D
\[
\begin{aligned}
& \text { PRIN } \\
& \text { PRINT } 722 \text {,DMEFX, OMEFGX } \\
& \text { PRINT } 723 \text {, POWERA, PANBO }
\end{aligned}
\]
\[
\begin{aligned}
& \text { PRINT } 723 \text {,POWERA,PANBOL } \\
& \text { PRINT } 70 \text {,POWERT, POWFRX, CFXLOX }
\end{aligned}
\]
\[
\begin{aligned}
& \text { PRINT } 710, F N L O X \\
& \text { PRNT } 7 \text { PO FNIOX }
\end{aligned}
\]
\[
\begin{aligned}
& \text { PRINT } 710, F N L O X \\
& \text { PRINT } 720, F N S L O X, \text { OUALOX } \\
& \text { PROMAT } 14 \mathrm{H} \text { POWER TOTAL }
\end{aligned}
\]
\[
\begin{aligned}
& \text { FORMATII4H POWER TOTAL }=E 9.4 / 1 \\
& 128 H \text { DOWER INPUT TO POSITION }
\end{aligned}
\]
\[
\begin{aligned}
& 218 H \text { LOCAL HFAT FLUX }=\text { F11.5) } \\
& 10 \text { FORMAT(3LH LOCAL ENTHALPYAT POSITION X }=\text { F8.2) }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 130H LOCAL QUALTY AT POSIION } X=F 6.3 \text { ) } \\
& \text { T21 FORMATISIH CONDITIONS AT SLUG ANNULAR TRANSITION POSITION }=F 8.1 \text {, }
\end{aligned}
\]
\[
\begin{aligned}
& 1 \text { 14H PRESSURF }=\text { F8.1) } \\
& 722 \text { FORMAT (18H LIOUID ENTHALPY }=F 8.2,19 \mathrm{H} \quad \text { FVAD ENTHALPY }=F 8.21
\end{aligned}
\]
\[
\begin{aligned}
& 722 \text { FORMAT } 118 \mathrm{LI} \text { LIOUID ENTHALPY }=F 8.2,19 \mathrm{H} \text { FVAD ENTHALPY }=F 8.21 \\
& 723 \text { FORMAT } 28 \mathrm{P} \text { POWFR OVFR ANNULAR REG1ON }=1 P=10.3 \text {, }
\end{aligned}
\]
\[
723 \text { FORMATI28H POWFR OVER ANNULAR REGION =IPEIO.3, }
\]
\[
145 H \text { POWER FROM SLUG ANNULAR TRANSITION TO BO }=1 \text { PE10. } 31
\]
\[
\begin{aligned}
& \text { REVR } \\
& \text { FNO }
\end{aligned}
\]
SURROUTINE PKIANN
COMMON NTUBES,MSHAPE, TUBE, RATIOM,DIAINS,VOLTS, AMPS, FNTH
1 PDESD, RRESIN, PRESOT, QESDP, TSDP, BOLOCA, XLNGTH, SHUNTM, P.3 OUALOL,SATL,PSATL, DOWFRB,PSLROL, CFXAVG,CFXLOX, HOCAT,K, X,4PAREAK, POWFOX, FNLOX, FNSLOX, DUALOX, DMFFY, DMEFEY, DOWOO, ONEOVM,
    5 COSLEN, ONEMSO, SIGNZ, ARG, Z,FACMIA,FACPLE, CFXBC, \(L, Y\),
    FACTMI, POWFPY, CFXLOY, FNLOY, FNSLOY, DUALOY, FACTRL,
    6 FACTMI, POWERY, CFXLOY,FNLOY, FNSLOY, AUALOY,FACTPL,
    TCONTD, SCRDTL, ZFTA, DLMGTH,
B EXTRAA, UXP ULOCAT, COSABK,
EXTRAC, EXTRAD, EXTRAF, EXTRAF.
    8GXTRAA EXTRAR,FXTRAC, FXTRAD,EXTRAF,FXTRAF,
    COMMON QUALIA,GLIO.TKINCH,
    TP, DX, COLM1, COLM2, COLM 3 , COLM4, SUMCOL, PHIMN, GTOTSC,GSURZ, SUM , SUM 1 ,

    GGTOT, DPMOM,GROMT, DVLSPL,DVLSPG, TERU1,TERM2,TERM3, TERM4,GGAS,DT,
    SVISCL,REYMUM,FFACTP,FFACT,VFLOC,GRDFS,DPGMLT,GRDFT,DGPDMT,GRRTNT,

    GB, GRAVAC,
    QUALO \(=1600\) \# OUALOL

    no \(455^{2} L=1,10000\),
    пUмMY \(=L+1\)
\(Y=\) DUMMY
365 IF \({ }^{\text {TY }}-1116\)
\(37 \mathrm{P}_{\mathrm{P}}=\) PRRSIN
280

390
P=PRRFAK-1 (XLNGTHR (1.6n*OUALOLI)
CALL LIOFN
    DMFFY \(=\) F NFPX
    CALL FVAPFN
DMFFGTYFNFGPX


```

 60 TO 435
 417 IF (Y-1XLNFTH-SCOPTL)/ 415,415,425
\15 DOWFQY=EXTDAC*(ONFMSO+SINF(3.1416*
CEXLOY=EXTOAF*COSF(3.1416*1
IY -(OLNGTH/7.00)1/COSLEN)
POWFRY=(POWFDT/CONSTP)*(ITOSLEN*EXTRAA/3.1416)+FXTRAR*(1.00-
EXPF((-ZETA)*(Y -(XLNGTH-SCRPTL!)/SCRPTL))1
CFXLOY=FXTRAE*COSAQK* EXPF (1-ZETA)*
1Y - (XLNGTH-SCRPTL)1/SRPTL
ENSL\capY=ENLCY-DMEFY
OUALDX=ENSLOY/DMFFGY
IF{OUALOX-OUALIAS 451,453,453
PANROL = PDWFRR-DOWERY
PRTNT 721,Y,D
PRINT 722,DMFFY,DMEFGY
PRINT 723,POWFRA,PANROL,
PRTNT 710,ENLOY
M, PRINT 77O,FNSLYY,OUALOX
x = E9.4/
2 18H LOCaL heat flux = El1.5)
71. FNDMAT131H LOCAL FNTHALPY AT POSITIONTX = F8.2)

```


```

\#22 FRMATIIRH LIQUID ENTHALPY =F8.2,19H EVAD ENTHALPY =F8.2)
2 FORMATI2RH POWFD OVFP ANNULAR QEGIION =1PE10.30
OETUDN
GUQRNUTMM DKOANN
CNMMON NTUBES,MSHAPE,TUEE,RATIOM,DIAINS,VOLTS,AMPS,ENTHIN,FLMASS,
CNMMON NTUBES,MSHAPE,TUEE,RATIOM,DIAINS,VOLTS,AMPS,ENTH
, \MFFX,PMEDX,DMFFCX,FNFGDX,FNSIN, NUALIN,POWFR-,ARFAFL,ADEAIS

```

```

 5 COSLFN,ONEMSN,SIGNZ,ARG,Z,FACMIB,FACPLB,CFXBOLLY,
 F FACTMI,OCWFRY,CFXLOY,FNLOY,ENSLOY,NUALOY,FACTLL,
 F
O FXTOAA,EXTRAR, EXTRAC,FXTRAD,FXTRAF,EXTRAF,
OMFFR,\capMFFGR,FNL\capB,FNSLOB, DUAL\capB, EXTRAG, EXTRAH, FXTRAI, EXTRAJ
CDNVON DUALIA,GLIO,TKINCH,
1DP,DX,COLM1,CNLM2,COLM3,COLM4,SUMCOL,DHIMN,GTOTSC,GSUBZ,SUMO,SUM1,
2SUM2,SUM3, SUM4,SUM5,OMEGAP,OMEGA,DGMULT,DSUBL,T,VISCL,VOLSPL,ENO,
4GTNT.DDMOM,GDDM, DVLSDL,DVLSPG,TERMI,TERM2,TERM3,TERM4,GGAS,DT,
GDVISCL,RFYNUM,FFACTP,FFACT,VFLOC,GRNES,DPGMT,GRDFT, AGRDMT,GRDTOT,

```

```

 TAUWAL,FYPLUS,GFILM,GLDENT,OCLID,PCLFNT,DUMMYA,DUMMYB,DUMMYC
 OUALDA=16.n*SUALOL
 On 451L L=1,1\capO7n,
 \UMMYC=L+1
    ```

IF (Y T BUALOL) 370, 370, 365
35 IF (Y -11.6*OUALOL) \(1375,375,380\)
365
370
\(\mathrm{P}=\mathrm{DRESIN}\)
GO
TO
375 GOTO 390
385 PBPFAK \(=\) PDFSIN-10.750*TSDP*(0.60*OUALOL)/(XLNGTH-QUALOL) \()\)
P=PBRFAK-( \((\) PRPFAK-PRESOT) \() *(Y-(1.60 * O U A L O L)) / ~\)
( (XLNGTH-(1.60*OUALOL))
CALL LTOEN
DMFFY \(=\) NFPX
CALL EVAPEN
DMEFGY=ENFGPX
IF (Y-SCRPTL) 400,400,410
POWERY=EXTRAF*IFXPFIZETA*
400
IY -SCRPTL)/SCRDTLI-EXPF(-ZETA)
IY -SCRDTLI/SCRPTL)
60 TO 435
10 IF (Y-(XLNGTH-1PLNGTH/2.00)1) 415,415,425
POWERY (POWERT/CONSTP)*(CXTRAB*ULOCAT) + (ICOSLEN/3.1416)*
1SINABK-SINF(13.1416/COSLEN)*(XLNGTH-(PLNGTH/2.00)-Y

6n TO 435

\({ }_{2} 1 / 1\) NABK \(+\operatorname{SINF}(13.1416 /\) COSLEN \() *(Y\)
-(XLNGTH-1PLNOTH/2.00): 11
CFXLOY=EXTOAF*COSF(13.1416/COSLEN)*(Y -(XLNGTH-(PLNGTH/2.00)
\(5^{1}\) ' 11
OY=FNTHIN+(DOWERY/FLMASS)
440 ENSLOY \(=\) ENLOY-DMFFY
450 OUALOX \(=\) ENSLCY/DMEFGY
455 IF (OUALOX-QUALIA) \(451,453,453\)
451 CONTINUE
PANROL =POWFRR-POWEPY
PRINT \(721, Y\), \(P\)
PRINT 722, DMEFY,DMEFGY
PRINT 723, P OWERA, PANBL
PRINT 700 POWERT, POWERY, CFXLOY
PRINT 710, ENLOY
PRINT 720.FNSLOY, QUALOX
FORMAT 14 H POWER TOTAL \(=\) E9.4 \(/\),
FORMAT14H POWER TOTAL = E9.4/,
1 28H POWER INPUT TO POSITON \(X=E 9.4 /\),
128 LH POWER INPUT
2 18H LOCAL HEAT FLUX \(=\) E11.5)
710 FORMAT (31H LDCAL ENTHALPY AT POSITION7X \(=\) F8. 211
720 FORMATI41H LOCAL SURCOOLED ENTHALPY AT DOSITION \(X=F 8.2 \%\),

114 H PRESSURE \(=F 8.11\)
722 FORMAT(18H LIOUID ENTHALPY \(=58.2 .19 \mathrm{H}\) EVAP TNTHALPY aF8.2)
723 FORMAT (28H POWER OVER ANNULAR REGION \(=1\) IPE10.3.
145 H POWER FROM SLUG ANNULAR TRANSITION TO BO \(=1 P E 10.31\)
END

SURROUT INE SPKANN NTUBES,MSHAPE, TUBE,RATIOM,DIAINS,VOLTS,AMPS, ENTHIN,FLMASS,
COMMON NTUBES,MSHAPE,TUBE,RATIOM,DIAINS,VOLTS,AMPS, ENTH


4PBREAK, POWERX,ENLOX,ENSLOX,QUALOX,DMEFY, DMFFGY,PDWOQ.ONEOVM,

COSLEN，NNEMSR，SIGNZ，ADE，Z，FACMIR，FACPLR，CFXBO，L，Y
FACTMI，DOWFOY，CEXLCY，RNLOY，ENSLOY，NUALDY，FACTOL，
CONSTO，
GOMEFB，DMEFGG，FNLRQ，ENSLOB，OUALOB，EXTRAG，EXTRAH，EXTRAI，EXTRAJ COMMON OUALIA，GLIO，TKINCH，
 2SUM2，SUMZ，SUN4，SUM5，OMEGAD，ONFGA，PGNULT，PSUPL，T，VISCL，VNLSPL，FNO， 4GTกT，ПOMAM，\(F R\) RMT，DVL SPL，DVLSPG，TFRM1，TFRM2，TERM3，TERM4PGGAS，DT， SNVISCL，RFYNUM，FFACTD，FFACT，VFLOC，GRDFS，NDGLL

NWA FYDLUS，GF ILM，GLDENT，DCLIS．
XTT，SATP，EMALLT，DFLTVD，TWALL，HCHFN，HMAC，HMIC，OFYNLO，NFLUX，
DONUM，REDGHT，HLQ，HDENT，，AADENG，DTAFNG，DELTT，\(A C C H E N\) ，
DT
\(!=n\) IJaLna




\(270 \mathrm{p}=\mathrm{DOESI}\)



CHFFY \(=\) FNFDX
CALI
EVAPFN
CALL YFGYY FNF

CEXLПY＝EXTPAF／OATIOM
In Tn 435

 on TO 435
 （EXTDAB＊INEA：SN＋SINE（3．1416＊（Y－ULOCAT／／COSLEN）I） CEXIOY＝EXTDAF＊COSF（2．1415＊iY－ULOCAT f－n TO 435
432
（D（NGTH）＋（FXTPAR＊
\[
\begin{aligned}
& \text { ONWEOY EXTOAAFYY } \\
& \text { CFXLOY=EXTRAFOATIOU }
\end{aligned}
\]

FNLDY＝FNTHIN＋（DOWEDY／FLMASS）
4E：nUAL \(\cap X=F V S L \cap Y /\) OMEFFY
455 IFINUALNX－NUALIA） \(451,453,453\)
451 CNNTINUF
DNWEDA＝ПNWFDT－DOWEOY
DANEOL \(=\) POWFOS－D NWEDY
DDINT \(7210 Y 0\)
DRINT フクフ，ПMEFY，DMEFTY
PRINT 773，DNWFQA，PANROL
ODINT 7 In，ORYFRT，DOWFDY，CFXLOY
PRINT 710，FNLAY
ODINT 72 PR FNSLOY
FOOMAT114H DNWFR TATAL \(=50.4 /\) ，

284 POWER INPUT TO DOSITION \(X=E 9.4 /\)
21 ah local hfat elux＝El1．5）

720 FOOMAT（41H LOCAL SUBCOOLED FNTHALDY AT PCSITIUN \(X=F 8.2 \%\) ，
721 FORMATISIH CONDITIONS AT SLUG ANNULAR TOANSITION POSITION \(=F 8.10\) 114 H DRESSURE \(=F 9.11 \quad\) OY \(=F 8\)
722 FORMAT 18 H LIRUID ENTHALPY \(=78.2\) ． 19 H ． 10 EVAP
145 H POWFR FPOM SLUG ANNULAR TPANSITION TO BD \(=1\) PEIO．31 RFTUR
END

COMMON NTUBES，MSHADE，TUBE，DATIOM，DIAINS，VOLTS，AMPS，ENTHIN，FLMASS，
1 PRESD，OOESIN，PDESOT，DFSDP，TSDP，BOL \(C\) CA，XLNGTH，SHUNTM，P，
DMEFX，ENFDX，DMF
4DRPFAK，POWFOX，FNL OX，ENSLOX，DUALOX，DMFEY，DMEFFY，PNWNO，ONFOVM，
5 COSLEN ONEMSO，SIGNZ，ARG，Z，FACMIB，FACOLR，CFXRO，L，Y，
6 FACTMI，DOWFRY，CFXLOY ENLOY，FNSLOY，NUALAY，FACTPL，
TCONSTP，SCRPTL，ZFTA，PLNGTH，J，U，ULOCAT，COSABK，SINARK， 1
EXTRAA，EXTRAB，FXTRAC，EXTPAD，FXTRAF，EXTRAF，
8 EXTRAA，EXTRAB，EXTRAC，FXIPAC，FXTRAF，FXTRAF，
GDMEFB，DEFGB，ENLOB FNSLOB，OULIB，EXTPAG，FXTPAH，EXTRAI，EXTRAJ COMMON QUALIA，GLIO，TK INCH，
10P，DX，COLM1，COLM2，COLM3，COLM4，SUMCOL，DHIMN，GTTTSC，GSUBZ，SUMO，SUM1，
 4GTVT，DPM M，GODMT，DVLSOL，DVLSDG，TERM1，TEOM2，TFOM 3 ，TFRM4，GGAS，DT， 5DVISCL，RFYNUM PFACTD，FFACT，VFLDC，GODFS，DPGMLT，\(F\) IDDFT， 6B，GRAVAC，GRAVCS，\(T R A V C H, V A L U E N\) ，FACTUN，QMAOA，DBMAOA，A，FILMTK，YPLUS， TAUWAL，FYPLUS，GFILM，GLDENT，PCLIC，PCLENT，DUMMY A，DUMMYY，DUMMY
\(1 \times T\), SATP，SMALLT，DELTVP，TWALL，HCHEN，HMAC，HMIC，PFYNLC，NFLUX，
2 PRNUMB，BFRGHT，HDB，HDFNG，DADFNG，DTDFNG，DELTT，QACHEN，
3 DTCHEN，PADMAX，
IFIBOLOCA－（1．6＊OUALOL）\(\quad 760,760,765\)
50 P＝PRESIN

765 PBREAK＝PRFSIN－10．750＊TSDP＊（0．60＊OUALOL）／（XLNGTH－RUALOL P＝PBREAK－（1DRREAK－DRESOT）＊（ROLOCA－11．60＊RUALOL））／（XLNGTH－
\({ }^{1}\)（1．60＊OUALOL＇）

775 CALL XXTT
CALL SATTMD
CALL VISCOS
CALL XTHCON
CALL
XCPLIA
CALL XSURFT
CALL
CALL EVAPEN
CALL SDECVG
CALL SPEEVG
CALL
SDECVL
PRNUMA＝CPLIQ＊VISCL／THCOND
\(A=(P * * .0234)\)
SUM1 \(=A /(2,30-A)\)

REYNUM \(=1 G T O T * D I A N S) /(12.0 * V I S C L)\)
```

 HDFNG=3.5*HDR/(XTT**C.5)
 A=12.3n)(1.7n-A),
 OTRFNG=DADFNG/HOENG
 PQINT 1OC,HNFNG,RADFNG,DTNFNG
 1)}\mp@subsup{}{~}{4HHTWALL MIMUS TSAT DFNG = =15.5)
 MFLTT=DTMFN
 CALL XHCHEN
    ```

```

 DTCHEN=OACHEN/HCHEM
 DSNT 2O, NTCHEN,DFLTT,HCHEN,DACHEN
 0) ERDMATI1NH NT CHFN =FIO.5,14H NT PDFVIOUS = =11.05,
1 OH 4 CHEN =F10.5, 22H NUC FLUX CHEN-EERGLES=EIO.51
OFLTT=NTCHEN
40. Sn TS 5
OANMAX=:^n\capnCa75
CALL XRAD
41. CALL NFLUX2
CNMTINUF
RMAOA=CEXRO/OACHEN
CC=CFXRO/DADFNG
ODTMT {OORODRLTEN,DMMADOWEDA))/FLMASS
2?`? FOOMAT(4OH NCLTA ENTHALPY ANNULAR TRANS TO LOCAL =F9.2,
1 37H LOCAL FLUX CVEO FLUX FOR NUCLFATION=F8.2,
2 13H RATIn DENG =F\&.21
OETURN
ENn
sundmutinf lmnuce
CO*OON NTURFS,MCHADE,TUBE,OATIOM,DIAINS,VOLTS,AMDS,ENTHIN,FLMASS,
1 DDFSO,ODFSIN,DDFSTT,DFSDO,TSD,ROLOCA,XLNGTH,SHUNTM,D,
, DMFFX, FNFDX, RMEFGX,FNFGPX, ENSIN, UUALIN, POWFRT, ARFAFL,AREAIS,
2 חUAL\capL,SATL,PSATL,ONWERR,OSLROL,CFXAVG,CFXLOX,JLOCAT,K,X,
\angleDRDFAK,DOWFOX,FNLOX, FNSLOX, OUALOX, DMEFY,OMEFGY,POWOO,ONEOVM,
\& CNSLEN,ONFMSN,SIGNZ,ADF,Z,FFACMIB,FACDLR,CFXRO,L,Y,
TCONSTO,SCRDTL,ZFTA,PLNGTH,J,U,ULOCAT,COSABK,SINABK,I,
A EXTDAA,EXTRAR, FXTOAC, FXTRAD,EXTRAF,FXTPAF,
GクMCFB,NMEEGR,FNLRE,FNSLOB,NUALCB, EXTRAG, EXTRAH, EXTRAI, FXTRAJ
```

```

 2SUM2,SUM2,SUML, SUME,NM,GAD,NMFGACPG,PHINN,GTTTSC,GSURZ,SUMO,SUM1,
    ```

```

 4GTNT,DOMOM,GRDMT, DVLSPL,DVLSPG,TERM1,TERM2,TEFM3,TEM4,GGAS,DPG,
 GR,GRAVAC,GPAVCS,GRAVCH,VALUEN,FACTUN,BMAOA,DBHIAOA,A,FILMTK,YPLUS,
ITAUWAL,FYPLUS,GFILM,FLLOENT,DCLIQ,DCLENT, DUMMYA,DUMMYR, DUMMYC
COWMNN N,N,THCOND,FCHEN,SCHEN,VISCG,CPLIS,SURFTL,
IXTT,SATO,SMALLT,NFLTVO,TWAL,HCHFN,PHMAC,HMIC,OFYMLO,NFLUX
PDNUA, BFOGHT,HDB,HDFNG,OADENG,DTIFNG,DELTT,QACHEN,
* RALLHFN,OADMAX, XELTFN,RAMIUS,CC,DD,FF
CALL SATTMD
CALL VISCOS

CALL XCPLIO
CALL XSUPFT
CALL SDECVE
SALL SPECV
PRNUMP = CPLIO*VISCL/THCOND
$A=1 P * * \cdot 0234)$
$S U M 1=A /(2.30-A$
GERGHT $=(11.0 /(15.6 *(P * * 1.156) 1) * * S U M 1)$
REYNUM=(GTTT*DIAINS)/112.0*VISCL,
HDB $=0.023 * T H C O N D *(12.0 / D$ IAINS)*(REYNUM**O.8)*(PRNUMB**0.4)
$B=(2.30 /(2 \cdot 30-A))$
OADENG $=1 B E R G H T *(H D E$
PRINT 100, HDENG, NADFNG, DTDFNG
100 FORMAT (9H H DFNG $=$ E15.5.25H NUCL FLUX DENG-AERGLES $=515.5$, 124 H TWALL MINUS TSAT DENG $=E 15.51$
DELTT = DTDENG
CALL XHCHFN
CALL XHCHFN
10 QACHEN=1PERGHT*(HCHFN** B) 1 DTCHEN=OACHFN/HCHEN
FORMATIOH DT CHEN

IF (ABSFICTCHFN-DFLTT) -0.05$) 40.40,20$
DELTT=DTCMFN
20 DELTT=DTCHFN
40 RADMAX $=.000057$
RADMAX $=000$
CALL XRAD
IF (RADIUS-RA)MAX) $\quad 50,50,60$
CALL NFLUXZ CNNTINUE
IFIABSEIMS IF(ABSF (MSHAPF-11) $\quad 900,905,900$
IF(ABSF 1 MSHAPE-2)

900 IF
910 IF
920 IF
925 IF

930
940
905
$\begin{array}{lr}\text { IFABSF(MSHAPE-4) }) & 920,905,920 \\ \text { IFABSF(MSHAF-5) } & 925,905,925 \\ \text { IF(ABSF(MSHADF }) & 930,915,930\end{array}$
40 I
IF(ABSF(MSHAPF-6) $) \quad 940,915,940$
IFIARSF(MSHADE-7)) $\quad 915,915,915$
BMADA $=C F X L \cap X / D A C H E N$
$C C=C F X L O X L D X A C H E N$

BMADA $=$ CFXLOY/OACHEN
CC $=C F X L O Y / D A D E N G$
$D E L T E N=1 P O W E P Y$
000 PRLTM
1000 PRINT 3002, DFLTFN. BMAOA,C
3000 FORMAT (40H DELTA ENTHALPY
ANNULAR TRANS TO LOC
FOR NUCLEATIONaFB.
137 H LOCAL FLUX OVEQ FL
2 13H RATIO DENG $=F R .21$
RETURN
FND

SURPOUTINF XRAD
COMMON NTUBES,MSHAPE,TUBE,RATIOM,DIAINS, VOLTS,AMPS,ENTHIN,FLMASS,
1 DPESP, PRESIN, PRESOT, RESDP, TSDP, BDLOCA, XLNGTH; SHUNTM, D,
2 DMEFX ENFDX,DMEFG, FNFGDX,ENSIN, DUALIN, POWFR 2 .APEAFL, APFAIS,
3 DUALOL, SATL, PSATL, POWERA, PSLBRL, CFXAVG, CFXLOA, JLOCAT, K, X,
4PBREAK, POWFRX, ENLOX, ENSLOX, QUALOX, DMEFY, DMEFGY,POWOR,ONFOVM,
:8: 00280
00290
003300
00310 00310
000320
00330
00340 00320
00390
00340
00350
00030 00360
00370
00390 00370
00380
00390 00390
00400
00410 00410
00420
00430 00430
00440
00450 00450
00460
00470
00450 00470
00480
00490
00500 00480
00490
00500
00510 00510
00520
00530
00540 00540
00550
00560 00560
05950
0

5 CASLFN，तMEMSN，SIGNZ，ADG，Z，FACMIR，FACPLA，CFXRUPL，Y
TCONSTO，SCOOTL，ZETA，DLNGTH，J，U，ULCCAT，CNSARK，SINAQK，I
 COMOON SUALIA，CALIC，TKINCH．
1DP，DX，COLM1，COLM2．CAL M3，COLM4，SUMCOL，DHIMN，GTOTSC，GSUBZ，SUMO，SUM1， 2SUM2，SUM 3，SIMA SUM5，DMFGAP，DMEGA，DGMULT，DSURL，T，VISCL，VOLSPL，ENO， 4FTRT，ПDM M ，COnMT，DV SDVISCL，QCYNUM，FFACTD，FFACT，VELNC，GORFS，DOGMLT，
 TTAUWAL，FYOLUS，CFIL M，RLEENT，DCLID，PCLFMT，DUMMYA，DUMMYR，DUMNYC

,
DRNUMA, RERGUT, HDP, HDENG, PADENG, DTDEN
$A=F N F F D D X * 778.0 / 85 \cdot 5$
$A=(P * 14400) / S U R F T$
$X=D A N E N G / T H C O N)$
$T W A L L=\cap T \cap F N C+T+460$. \cap
$\mathrm{CLL}_{1} 1=2 \cdot 0 * A * R * T W A L L * T W A L L / D X$

$\begin{aligned} & n L{ }^{*} 3=A * A \\ & 4 \\ & M\end{aligned}=A+1$

$\left(リ^{n} 3=(2 \cdot 7 * n \bar{x})-(A * R)\right.$
PARIUS=ISUM1-SRRTF(SUMZ) I/SUM
fnomati48H largest qadiusift) needed for nucleationssdengee10.4
AX OAACHEN/THCONT
WaLLentitit46).
*Twalt/nx
$L^{2} M 3=A * A$
UM1 $=A+(2.0 * T W A L L)$
$\operatorname{sun} 2=C \cap(M 1+E O L M 2+C O L M 3$

DOINT 10.DADIUS
FOOMAT(48H LARGEST RADIUS(FT) NEEDED FOR NUCLEATIONSSCHEN=E10.4)
emin
sijadmitine xhehen
STNROAMT MTUPES,MSHADE, TUBE, DATIOM,DIAINS, VOLTS, AMPS, ENTHIN,FLMASS,
ODESD,DDESN,ODESOT,DESDO,TSDD, BOLACA, XLNGTH,SHUNTM,O,
$\frac{2}{2}$ DMEX, ENFPX, OMEFGX, ENFGPX, ENSIN, QUALIN, POWERT, AREAFL, $A R E A I S$,
3 ПUALAL, SSATL,DSATL, DNWFDA, DSLRNL CFXAVG. CFELOX, JLDCAT, ${ }^{2}, X$,

TCONSTO, SCPDTL,ZETA, DLMGTH:JOU,ULOCAT, COSABK, SINABK,I,

2SUM2, SUMA, SUM4, SUMS, OMEGAP, CMEGA, PGMLT, OSURL, T, VI ISCL,VOLSPL, FNO

6R, GPAVAC, GDAVCS, GPAVCH,VALUEN, FACTUN, AMACA, DBMAOA, A, FILMTK, YPLUS,
＝IP＊14400）／SUR
$\cap_{L M 1}=? .0 * A * Q * T W A L L * T W A L L / D$

nLm3

（4RH LARGST QADIUSIFT）NEEDED FOR NUCLEATIONSSDENG＝E10．4 WALL $=$ NFLTT $T+T+460$ ．
OMフ＝
新 $=A$
UM2＝（？
Dint 10．DADIUS emivan
eNn

TTAUWAL，FYDLUS，GFILM．GLQENT，DCLIO，PCLENT，DUMMYA，DUMMYF，DUMMYC
COMMON N ， M ，THCOND，FCHEN，SCHEN，VISCG，CPLIO，SURFTL，
$1 \times T$ ，SATD，SMALLT，DELTVD，TWALL，HCHEN，HMAC，HMIC，REYNLO，NFLUX，

CALL XDELTV
CALL XFCHFN
PEYNLO $=1 G T O T * D I A I N S *(1.0-$ OUALOXI）／（12．0＊VISCL）
CALL XSCHFN

```
    =(THCOND**)
    \((4.17 E+R * * 0.25)\)
TER2 \(=(S U R F T * * 0.5) *(\mathrm{VISCL} * * 0.29) *(E N F G P X * *(.24) *\)
    TEDM3 = SCHEN*0.00122*(TFRN1/TERM2)
    HMIC=TERM3*(DELTT**0.24)*(ABSF(DELTVP)**0.75)
    HCHEN \(=4 M A C+H M I C\)
    PRINT 100.THMIC
    PRINT
    PRINT 150,P,FNFGDX,VOLSPG,VOLSPL
PRINT 200,SATP, DELTVO,PRNUMB,XTT,FCHEN, SCHEN, REYNLO
    PRINT 300. HMAC. HMIC.HCHEN
```



```
    FORMAT 16 H HMAC \(=E 10.406 \mathrm{H}\) HMIC \(=\mathrm{EF} 10.4\). 7 H HCHEMEE10.4,
RETU
END
```

COMMON NTUBESCMSHAPE，TUBE，RATIOM，DIAIMS，VOLTS，AMPS，ENTHIN，FLMASS，
PRESP，PRESIN，PRESOT，RESDP，TSDP ©BOLOCA，XLMGTH，SHUNTM，P，
DMEFX，ENFPX，DMFFGX，FNFGPX，ENSIN，OUAL IN，POWFDT，AREAFL A ADEAIS OUALOL，SATL，PSATL，POWERB，PSLBOL，CFXAV．CFXL OX，JLCCAT PK，X ，
PBREAK，POWERX，ENLOX，ENSLOX，OUALOX，DMEFY，OMEFGY，POWOO，ONEOVM，
5 COSLEN，ONEMSO，SIGNZ，ARG，Z FACMIB ，FACPLB，CFXBOLL Y ，
5 FACTMI ，POWERY，CFXLOY，ENLOY，ENSLOY，NUALOY ，FACTPL，
CONSTD，SCRPTL，ZETA，PL NGTH，J，U，ULOCAT，COSABK，SiNABK 1 ，
B EXTRAA，FXTRAB，EXTRAC，FXTRAD，EXTRAE，FXTRAF，
COMMON OUALIA，GLIO，TKINCH，
DD，DX，COLM1，COLM2，COLM3，COLM4，SUMCOL，PHIMN，GTCTSC，GSUBZ，SUMO，SUM 1 ，
3VOLSPG，QUALOM，POWERA，PANBOL OENFO，OENFGO，ENSO，OUALO，OVSPLO，DVSPGO，
4GTOT，DPMOM， 7 RDMT，DVLSPL，OVLSPG，TERM1 ，TERM2，TEFM3，TERM4，GGAS，OT，
SOVISCL，REYNUM，FFACTP，FFACT，VELOC，GRDFS，DPGMLT，GRDFT，DERDMT，GRDTOT，
6B，GRAVAC，GRAVCS，GRAVCH，VALUEN，FACTUN，BMAOA，DBHAOA，FFILMTK，YPLUS，

IXT，SATP，SMALLT，DELTVP，TWALL，HCHEN，HMAC，HMIC，PEYNLO，NFLUX．
2 PRNUMB，BERGHT；HD，HDENG，QADENG，DTDENG，DELTT，OACHEN，
CTCHEN，RADMA
CALL SATTMD
1F
T－AO．O．
0 IF（T－130．0， $\begin{aligned} 10,20,20 \\ 30,40.40\end{aligned}$
40 IFIT－180．0）$\quad 50.60 .60$
$\begin{array}{lll}60 & I F(T-250,0) & 70,80,80 \\ 80 & \text { IFTF－270．0）} & 90,100,100 \\ 100 & \text { IFIT－380，} & 110,10\end{array}$

120	TFPT-530.0)	120,140,140	00310
14 ?	IF(T-55n.0)	1an.1an.1*0	00320
160	1F(T-6^n.?)	17n.19n.180	On330
180	1F(T-55n.0)	10n.20n.200	00340
200	$\begin{aligned} & \text { THCOND }=1.7 \cap \cap E-3 * T 1+.302 \\ & \text { RETURA } \end{aligned}$		00350
10			00360 00370
32			0n37n
	THCCNH $=(.496 F-2 * T)+.215$TETURNTHE		00390
50	DFPURN ${ }_{\text {THCOND }}(.266 \mathrm{~F}-3 * \mathrm{~T})+.3426$		00400
	THCOND $=(.266 F-3 * T)+.3426$		00410
70	THCOND $=1.0234 \mathrm{~F}-3 * T 1+.376$		00420
	DFTUPN		n043n
on	THFONR $=0.3060$DFTUPN		00440
			00450
115	THCTND $=(-.1505 F-2 * T)+.447$		00460
	RFTURN		00470
130	THCOMD $=(-.318 \mathrm{E}-3 * \mathrm{~T})+.504$		00480 00490
150	THENND $=1-.496 \mathrm{~F}-3 * \mathrm{~T})+.5974$		00490 00500
	DFTUPN		00510
170	$T H C \cap N D=(-.655 F-3 * T)+.6849$		00520
	RETURN		00530
100	THCON $=(-.031 \mathrm{~F}-3 * T)+.8504$		00540
	prtuen		00550
219	THEAMDETUPN(00560
320	THCOND $=.1854$		00580
	$\begin{aligned} & \text { PETURN } \\ & \text { FNN } \end{aligned}$		00590
			00600
	SURROUTINE XCPLIO		00010
	LIMTTS On Th	HTS SURROUTINF ARE 32 DFG F (CPLIO $=1.0001$	00020
	ANO 650 DFF. F CCPLIO $=2.001$ DATA FROM WFLLMAN THFSIS		00030
	COUMON NTURES,MSHADF,TUBE,RATIOM,DIAINS,VOLTS,AMPS,ENTHIN,FLMASS, 1 DDFSD, PRFSTM,DDFSCT, RESDD, TSDP, BOL OCA, XLNGTH, SHUNTM, D,		00040
			00050
			00060
	3 UUAL $\sim L$, SATL, DSATL, DOWFRB, PSLAOL, CFXAVG, CFXLOX, JLOCAT, ${ }^{\text {, }}$, ,		00070
			00080
			00090
			00100
	TCTNSTD, SCRPTL, ZFTA, PLNGTH,J,U,ULOCAT, COSABK, SINABK, I,		00110
	8 EXTPAA,FXTRAR, EXTRAC, EXTRAD, EXTRAF, EXTRAF,		00120
	ORMEFR, \quad MFFTR	, FNLOE, FNSLOB, ©UALOB, EXTRAG, EXTRAH, EXTRAI, EXIRAJ	00130
	COMMON CUALIA, GLIIS,TKINCH.		00140
	1DP,DX,COLM1,CCLM2,COLM3,COLM4,SUMCOL,PHIMN,GTOTSC,GSUBZ, SUMO, SUM1, TSU"?,SUMЗ,SUM4, SUM5, ПMEGAP, OMEGA, PGMULT,DSUBL,T,VISCL,VOLSPL, ENO,		00150
			00160
			00170
	GMVISCL, REYAUU,FFACTD,FFACT, VELOC, GRDFS, DPGMLT, GRDFT, DGRDMT, GRDTOT,		00180
			00190
	6R, ERAVAC, GRAVCS, GRAVCY, VALUEN,FACTUN,BMAOA,DSMADA,A,FILMTK,YPLUS, ITAUWAL, FYPLUS, GFILM, GLOENT,PCLIQ, PCLENT, DUMMYA, DUMMYR, DUMMYC		00200
			00210
	COMMON N, N, THCONS, FCHFN, SCHFN,VISCG, CPLIO, SURFTL,		00220
			00230
			00240
	3 OTCHFN,RADMAX,		00230
	CALL SATTMD		00260
	1F(T-180.n)	19, 20.00	00270
20	「FT-24C0,	30,4n,40	00280
47	'Fit-3>0.n)	5n,kn,R0	00290
an	「F(T-45n. $)$	7npenpan	00300
a)	ETT-añon)	on,inn,inn	n0310


```
00 TF(T-550.0) 110,120,120
120 TF(T-600.0) }130,140,14
IF(T-650.0)
CPLIO
CPLIO =(1.5F-4*T)+.076
50 DFTIDN = CDLIN =17.8PF-4*T)+.047
7n CDLIn =(6.61F-4*T)+.823
90 CPTIONN (12.0E-4*T)+.536
OCPLIN =(12.0E-4*T)+.536
110 CPLIQ Cl(74.8F-4*T)-.056
130 CPLIN =(40.0F-4*T)-.890
150
M OFTURN
70)
180
CPLIO =2.00
l
```

 SURROUTINF XSURFT
 COMMON NTUBES,MSHAPE, TUBE, RATIOM, DIAINS, VOLTS, AMPS, ENTHIN, FLMASS.
1 PRESP, PRESIN, PRESOT, RESDP,TSDP, BOLOCA, XLNGTH,SHUTM, P,
DMEFX, ENFPX, DMEFGX, ENFGPX,ENSIN, QUALIN, POWER ${ }^{-}$, AREAFL, AREAIS
CUALOL, SATL, DSATL, POWFRB, PSLBOL, CFXAVG, CFXLOK, HLOCAT, R, X,

G FACTMI, POWERY, CFXLOY,ENLOY,ENSLOY, DUALOY, FACIPL,
6 FACTMI, POWERY, CFXLOY, ENLOY, ENSLOY, OUALOY, FACIPL,
EXTRAA,FXTRAB,FXTRAC OXTRAD, FXTRAF,FXTRAF,
ODMFFB, DMEFGA, FNLOB, FNSLOB, RUALOB, EXTRAG, EXTRAH, EXTRAI, EXTRAJ
COMMON GUALIA,GLIO,TKINCH,
IDP, DX, COLM1, COLM2, COL M3, COLM4, SUMCOL, PHTMN aGTATSC, GSUBZ ,SUMO, SUM1,
2VOLSPG,OUAL 4 , POWERA,DANBOL, DFNFO, DEMFGO, EASO, TUALO, DVSPLO,
4GTOT, DPMOM, GRDMT, DVLSPL,DVLSPG. TERM1, TERM2,TERM3,TERM4,GGAS,DT,
5 VVISCL, REYNUM, FFACTP,FFACT, VELOC, GRDFS, DOGMLT,GRDFT, DGRDMT,GRDTOT,
SR,GRAVAC,GRAVCS, GRAVCH, VALUEL
COMMON N, M, THCOND, FCHEN, SCHEN =VISCG, CPLIO, SURFTL,

DTCHFN,RADMAX,DELTEN,RADIUS,CC.DD.EE
5 CONTINUE

$-1.7378005 \mathrm{~F}-10 *(P * * 5)+2.8461426 \mathrm{~F}-13 *(P * * 6)$
$-7.3149007 E-73 *(P * * Q)+1.1689972 \mathrm{E}-26 *(\mathrm{P} * * 10)$
SURFTL $=$ SUM1*2.24E-6*2.54*12.0
$1 \begin{aligned} & \text { SURTURN } \\ & \text { CALL SATM }\end{aligned}$
IF(T-610.0) 15,15.20
SUM1 $=33.8-16.45 *$ LOGF(T) ,


```
MIJOFTL
M,
SURROUTINE XSATD
1 DORSD, DDESIN, DDFSOT, RESOD, TSND, ORLNCA, XLNGTH, SHUNTM,D,
a NUAL
```



```
8 FXTRAA, EXTRAR, EXTPAC, EXTRAD, EXTRAE, FXTOAF.
ORMEFR, DMEFGG, FNLOB, COMMON DUALIA,GLIOTKINCH.
```



``` 2VOLSOG, \(U\) UALCA,DOMEFA,PAASOL,DENF?, DENFGC, ENSO,OUALO,DVSPLO, DVSPGO,
```



``` COWNN N,M,THCNNDFCHEN,SCHEN,VISCG.CPLIO, SURFTL,
XTT, SATD, SVALLT, OELTVO, TWALL, HCHEN, HMAC , HMIC, PEYNLO,NFLUX,
```



```
Cn ( \(M\) ? \(=(1(T-32.7) / 1.9)+273.16\)
```



```
- \(51141=1.7+1\) SMALLT*2.1878462E-3
```



```
SUV \(=3.246313 \mathrm{C}+\) (SMALLT*4.14113F-2
```



```
or+10
\[
4 / 110
\]
\[
\begin{aligned}
& \text { ertibm } \\
& \text { exin }
\end{aligned}
\]
```

SJDONUT INE XVISCR OOFSO,DOFSIN,DOESNT,DFSND,TSND, RNLNCA, XLNGTH, SHUNTM, D, OUALOL,SATL, PSATL,DONERE, PSLP CDRDFAK. DOWFOX, FNLLCX, FNSLCX, OUALOX, OMEFY, DMFFGY, POWOA, ONEOVM,
C SLEV, $A M E N S A, S I G N Z A C G, Z, F A C M I R, F A C P L R, C F X B O, L$, Y.

```

```

a EXTPAA, EXTOAR, EXTOAC, EXTPAD, EXTPAF, EXTQAF,

```



SUM2,SUM3, SUM4, SUMS, OMEGAP, OMEGA, PGMULT, PSUML,T,VISCL.VOLSPL, EMO, VOLSPG, OUALOL, POWERA,PANBOL ,DENFO, DEWFGO, EMSO,OUALO,OVSPLO,DVSPG
 Q, GPAVAC,GRAVOFS,GRAVCH,VALUEN,FACTUN \(B M A O A D B E M A O A, A, F I L M T K, Y P L U S\)


DONUMB, BERGHT, HDE, HDENG.OADENG.DTDENG.DELTT.OACHEM,
DTCHEN,RADMA
CALL SATTMD
GSURZ \(=1 T-32\).
CALL SPECV
TF \(1 T-50 n .0)\)
\(5,5,10\)
COLM \(=\) =(1858.0-(5.000*GSUBZ) \(1 /\) VOLSPC
CnLw3 =88.0フD \(+1.22827 *\) ESUBZ
VISCG=2.419F-4*(COLM3 +COLM1 -11.6018E-2*COLI'T)
RETURN
SUMl 4 20*STRTIT
TFRM1 \(=-3 C .0 / T\)
SUM2 \(=1.0+(7600.0 / T) \#\) SUM
TFRM2 \(=00006 / \mathrm{VOLSDG}\)
SUM5 \(=110.00 * T F O\)
SUM \(5=1(10.00 * * T F O M 2)-1.0\)
VISCG=2.410F-3*( ( SUM1/SUm2) + SUM4 \()\)
DETUQN
evo
suaroutine xneltv

\section*{COMON MTUBFS, MSHAPE, TUBE,RATIOM,DIAINS, VOLTS, AMPS, ENTHIN, FLMASS}

COMMON WTUBFS, MSHAPE, TUBEPRATIOM,DIAINS XVETH; SHUNTM, D,
2 DMEX, EMFPX, DMEFGX, ENFGPX, EMSIN\& OUAL IN, POWERT, AREAFL, AREAIS,

SOBRFAL, PNWFRX, ENL OX , FNSLLOX , QUALOX , DMEFY , DMEFGY, POWO
5 COSLEN, ONFMSN, SIGNZ, ARG, Z DFACMIB, FACPLBECFXBO IL ,Y,
TCONSTD, SCRDTL, ZETA,OLNGTH,J,U,ULOCAT, COSABK, SINABK, I
EXTRAA, EXTRAR,FXTRAC, EXTRAD, EXTRAF, EXTRAF,
 COUMON SUALIA,GLID,TKINCH,
1DP,DX, COLM1, COLM2, COLM3,COLM4,SUMCOL, PHIMN,GTOTSC,GSUBZ,SUMO. SJM1, 2SUM2, SUM 3, SUM4, SUM5,OMEGAP, OMEGA, PGMULT, PSUML, T,VISCL.VOLSDL, ENO,


 TTAUWAL, FYPLUS,GFIL", GLOENT, PCLIO, PCLFNT, DUMMYA, DUMMYA.DUMMYC
COMMN N, N, THCOND, FCHFM, SCHEN,VISCG•CPLIT, SUPFTL,
XTT, SATD, SMALLT, DELTVD, TWALL, HCHEN, HMAC, HMIC, PEYNLO, NFLUX.
DRNUMB, BERGHT, YDS, HDENG, DADENG, DTDENG,DELTT,QACHEN.
3 DTCHFN, DADMAX, NFLTFN, DADIUS.CC,DO,FF
CALL SATTMD
\(T\) WaLL=AFLTT \(+T\)
\(\mathrm{T}=\mathrm{TWALL}\)
CALL
XSAT
CALL XSATD
CALL SATMP
DELTVO=(SATP-P)*144.0
DELTVP:
RETURN
END

SURDOUTINE XXtT
COMMN NTURES, MSHADF, TUBE, DATIOM, DIAINS, VOLIS, AMPS, FNTHIN, FLMASS,
DPFSD, DPFSIN, DFSSOT, RESDD,TSDP, BOLACA, XLNGTH, SHUNTM,D,

PRDFAK, DNWFOX, FNLDX, ENSLOX, OUALOX, DMEFY, DMEFGY, POWOD, ONEOVM,

TCNNSTP, SCRDTL, ZFTA, PLNGTL, J,U,ULOCAT, COSABK,SINABK, I
EXTRAA, FXTRAP, EXTDAC, FXTRAD, EXTRAF, FXTRAF,

 SJM2, SUM3, SUM4, SUM 5 , MMFGAP, OMFGA, DGMULT, PSURL, T, VISCL, VOL SPL, ENO,
 GTVISCL, \(F\) FYNUN, FFACTD,FFACT,VELOC,GRDFS, DPGMLT,GRDFT, DGRDMT,GRDTO GR,GPAVAC, GDAVCS, GRAVCH,VALUEN,FACTUN, BMADA, DBMA \(A, A, F I L M T K, Y P L U S\), 7TAUWAL, PYDLUS,GFILD,GLDENT, PCLIA, DCLENT, ПUMMYA, DUMMYA, DUMMYC
COMNAN N, ․,THCOND,FCHEN,SCHFN,VISCG, CPLIT, SURETL,
XTT, SAID, SNALLT, RFLTVD, TWALL, HCHFN,HMAC, HMIC, DFYNLO, NFLUX,
3 DTEHFN,DADMAX, \(E\) ELTFN, PADIUS, CC,DD,FE

CALL GDFCVE
YOLUS=(IVNLSOLIVNLSDG)***5)
CALL VISCOS
-all XVICre

OחTMT 10, nUALDX, FILMTK, YPLUS, TAUWAL
 XTT=FILMTKAYDLUS*TAUWAL
equ

SUBROUTINE XFCHEN
Lm! (OMMON NTTURFS, MSHADF, LESS THAN \(100(F\) LESS THAN 70)
DDEST, PDES OUALOL, SATL, PSATL, POWEPB,DSLADL, CEXAVG, CFXIOX, JLOCAT,K, PRRFAK, PONFRX, FNLOX, FNSLOX, RUALOX, DMEFY, DMEFGY, POWOA, ONEOVM,

CONSTO, SCOCTL CETA, OLNGTH,
a FXTPAA, EXTRAD, EXTRAC, EXTRAD, EXTRAF,FXTRAF,
 COMMON DUALIA, FILIO.TKINCH,
RP, DX, COLM , CCLM2, CRL M 3 , COLM4, SUMCOL, PHIMN, GTOTSC, GSUBZ, SUMO, SUM1,




TTAUWAL, FYCLUS, GFILM,GLDENT, DCLIO, PCLENT, DUMYYA, OUMMYE, DUMMYC COMMON N,M,THCAND, ECHEN,SCHEN,VISCT,CPLIO,SURFTL,

1XT, SATP, SMALLT, DELTVP,TWALL, HCHEN, HMAC. HMIC,P EYNLP,NFLUX D DRNUMB,BERGHT, HDE,HDENG, DADENG, DTD
3 DTCHEN PRA
CALL XXTT
Dn=1.0/XTT
RETURN
FHCHFN \(=3\)
FHCHFN \(=344.0\)
PRINT \(90, F C H F\)

SUBROUTINE XSCHEN
LIMITS ON THIS SUBROUTINE ARE EE GREATER THAN \(2 E+4\) (Sm. 80 ) AND FF LFSS THAN \(1 F+6\) IS \(=.11\)
COMMON NTUBES,MSHSE, TUBE,RATIOM,DIAINS, VOLTS, AMPS, ENTHIN,FLMASS, 2 DMEFX, ENFPX, DMEFGX, ENFGPX, ENSIN, OUAL IN PPOWFRT, AREAFL ,AREAIS, 3 OUALOL, SATL, DSATL, DOWERB, DSLBOL, CFXAVG, CFXLEX, \(L C O C A T, K\), \(X\), PRRFAK, POWFRX, FNLOX, FNSL OX, OUALOX, DMEFY, DMEFTYY, DEWOO, ONFOVM 5 COSLEN, ONEMSN, SIGNZ, ARG, Z, FACMIR, FACPLA, CFXBN, TCONSTD, SCQDTL,ZETA, PLNGTH,J,U,ULOCAT, COSABK,SINABK,I, A EXTRAA, EXTRAR, FXTRAC, EXTRAD, EXTRAE,FXTRAF,
ODMEFB, DMEFGB, ENLDB, ENSLOB, OUALOB, EXTRAG •EXTRAH, EXTRAI, EXTRAJ COMMON QUALIA, GLIO,TKINCH,

MA, SUMCOL, PHIMN, GTT TSC, GSUBZ, SUMO,SUM 1 , 2SUM2, SUM 3 , SUM4,SUM5, OMEGAD, DMEGA, PGMULT, PSUBL,T,VISCL,VOLSPL, ENO, 3VOLSPG, QUAL O4, DOWERA, DANBOL, DENFO, DFNFGO, ENSO, OUALO, NVSRLO, DVSPGO 4GTOT, OPMOM, GRDMT, DVL SPL, DVL SPG, TERM1, TERM , TERM3, TERM4 5 GGAS, DT, SB, GRAVAC OGRAVES, GRAVCH, VALUFN ,FACTUN, BMAOA, \(\cap B M A \cap A, ~, A, F I L M T K\), YPLUS. ITAUWAL, FYPLUS, GFILM, GLOENT, PCLIO, PCLENT, DUMMY, DUMMFR, DUMMYC
COMMON N, M, THCOND, FCHEN, SCHFN, VISCG. CPLIQ, SURFTL,
XTT, SATP, SMALLT, DELTVP, TWALL, HCHEN, HMAC, HMIC, RFYNLO, MFLUX
3 DTCHEN: RADMAX, DELTEN,RADIUS, CC•DD, FE
EE=(FCHEN\#*1.25)*REYNLQ
    \(\begin{array}{ccc}\text { IF(FE-70000.0) } & 10,20.20 \\ 30,40,40\end{array}\)
    \(\begin{array}{lll}\text { IF(FE-7000.0) } & \mathbf{3 0 , 4 n , 4 0} \\ \text { IF (FF-450000. } & 50,60,60\end{array}\)
    SCHEN \(=-80\)
    RETURN
SCHEN=6
    SCHEN=6.15/(EE**.204)
RFTURN
SCHEN \(=4800.0 /(F F * *, R 25)\)
RFTUPN
SCHEN \(=10\)
RETUR
fND
```

SURROUTINF NFLUX,
SOMMO NTURFS,MSHAPF, TUBE, RATIOM, DIAINS, VOLTS, AMDS, ENTHIN,FLMASS,
PRFSD, DRFSIN,PDESNT,DFSDD,TSDD,ROLACA, XLNGTH,SHUNTM,D,
DMFFX, FMEDX, DMFFGX, FNFGDX, FNSIN, DUALIN, DOHICRT, AREAFL, ADFAIS
2 SUALOL, SATL,PSATL, DCAFSR, DSLQNL, CFXAVG, CFXLNX, JLOCAT,K, X,

```

```

COSLEN, ONENSO, SIGN2,ARG,Z,FACMIB,FACPLB,CFXBODL,Y
TCONSTD, SCOTTL, ZFTA,PLMGLH,J,U,ULCAT,COSAER,SINABK, I
B EXTRAA, EXTPAP, FXTOAC, EXTRAD, FXTRAF, FXTRAF,
DUFFB, DMMFFE, ENLOQ, FNSLOB, DUALOB, EXTRAG, FXTRAI', FXTRAI, EXTRAJ
COMOM SUALIA,GLIN,TKINCH,

```

```

 SUMP, S'JM3, SIMM4, СUM5, OMFGAD, CMFGA, PGWULT, DSURL, T,VTSCL, VSLSPL, FNO.
 ZVOLSDG, DUALC, 4, PNWETA, DANROL, DFNF
    ```

```

GE, GRAVAC, GRAVCS, GRAVCH,VALUEN,FACTUN, PMAOA, DBMAOA, A,FILMTK,YPLUS,
ITAUWAL, FVDLUS,GFILY,GLQENT, RCLIC, PCLFNT, DUMMYA, DUMMYB, DUMMYC

```

```

 PRNUMB, BERGHT, HDZ, HDENG, QADENG, DTTFNG, DELTT,QACHEN,
 DTCHEN, PADMAX, DFLTEN,DADIJS,CC,DR,FF
 SETUPN
 - MI
    ```
    Gijoonitinf filme
    OMMMN NTURFS,MSHAPF,TUBE,DATIOM,DIAINS, VOLTS, AMPS, ENTHIN,FLMASS,
    DDESD,DOFSIN,DRFSOT, RFSDP, TSDP, ROLOCA, XLNGTH, SHUNTM,P,
    , DMEEX,FNFDX, DMFFGX, ENFGPX, FNSIN, QUALIN, POWERT,AREAFL, AREAIS,
    'JAL \(^{\prime}\), SATL,PSATL, PNWERB,PSLBNL, CFXAVG. CFXLOX, JLOCAT,K,X,
    ORDEAK, DOMFDX, ENLOX, ENSLOX, TUALOX,DMEFY,DMEFGY,POWOD, ONEOVM.

    FACTMT, DN:FDY, CFXLOY, FNL NY, FNSLOY, ©UALCY, FACTDL,
    7 TANSTR, SCPPTL, ZETA, PLNCTH,J,'J,ULOCAT, COSABK,
    EXTDAA, =XTOAR, FXTPAC, EXTDAC, EXTOAF, EXTRAF, SINABK, I,
    DMFFR, DUFFFE, ENLOB, ENSLOB, JUALOB, EXTRAG, EXTRAH, EXTRAI, FXTRAJ

    (UM), SUM 2, SUM 4 , SUM, ONFGAD, OMEGA, DGMULT, OSUBL,T,VISCL,VOLSPL, ENO.


    -2, RAVAC, RPAVCS, \(-R A V C H, V A L U E N, F A C T U N, B M A D A, D R M A O A, A, F I L M T K, Y P L U S\),
    TTA'M:ZL, FYOLUS,GFIL", FLLOFNT, DCLID, DCLENT, ПUММYA, DUMMYB, DUMMYC
    COUM
    XIT, SA \({ }^{-}\), CMAL \(T\), DFITVD, TU'ALL, HCHFN, HMAC, HMIC, TEYNLO, NFLUX
    , DDN:JMR,BFDGHT, \(D\) DR,HOFNS, PADENG,DTDENG, DELTT, DACHEN,
    OTCHEN, PADMAX, DFLTEN,DADIUS,CC,DD, EF

01 IF IF(ARSE(MSUADF-7)) \(\quad\) 010,015,910


\(O_{2}\) IF(ARSE(MSHADF-6)) \(040,915,040\)
24, IF(ARSE(MSHAPF-7)) \(\begin{array}{ll}040,915,040 \\ 915,915,915\end{array}\)
015 IF(ONYEOY-10へ) 1,1,?
- IFCDNVEDX-
, entinian
3. call lonuic

CALL \(5 P F C V L\)
CVLSPL \(=V O L S P L\)
CALL SPFCVG
nVLSPG \(=\) VOLSPG
TFRM \(=(1\) SVLSPG/DVLSPL)
GGAS \(=\) OUALOX*TTRT
GLIn=11.n才-nUaLnx)*fTOT
\(T F R M=3600 . n /(\cap V L S D G * G G A S)\)
CALL SATTMP
OVISCL \(=\mathrm{VISCL}\)
\({ }^{n} T=T\)
PEYNUM \(=(G T O T * N I A I N S) /(D V I S C L * 12.0)\)
IF(RFYNUM-2500.0)

FFACTD \(=0.046 /(\) PFYNUM**O. \() 1\)
5 FFACT=4.0*FFACTO
VFLCC \(=(G T \cap T * \cap V L S D L) / 3600.0\)
CDRFS \(=(-F F A C T * V E L O C * V E L O C) /(1) .0 * 22.2 *(D I A T N S / 1) .0) * D V L S P L)\)
CALL \(M N P G R D\)
DPGMLT \(T=A B S F(P G M U L T)\)
\(G R D F T=F P D F S * D P G M L\)
IFIEXTRAJ-0.n) \(23,21,23\)
21 DCRRMT =-ARSE ( \(U\) UMMYA
23 CALL HOMMCD
ППRDMT=-ARSE(GDDMT)
TF(DGODMT+9QDOO.0) \(26,26,27\)
\(\begin{array}{ll}28 & \text { TFIDFODMT }+90 \\ 26 & \text { DfRDMT }=0.0 \\ 27 & \text { CONTINU }\end{array}\)

R=1OTATNS \(/ 12.01 / 2.0 ~\)
GPAVAr \(=32 . ?\)
GPAVCS \(=32 . ?\)
PRINT 100, DDGMLT, DGRDMT,GRDFT,GRDTOT
PRINT 11n,GGAS, PGLIA

TERM3 = SORTFIABSF(IGPDTOT*B*3).2*DVLSPL)/2.0)
IF1-GPDTOT-(GRAVAC/(GRAVCS*DVLSPL))1) \(25,20,20\)
VALUEN \(=0.0^{-}\)
GI TO 30

FACTUN \(=\) TFRM1*TFRM2*TFRN3*TFRM4
PRINT 135,TERM1,TERM2,TERM3,TERM4
CALL UNIVFR
\(A=A *(1.00-A B S F(D B M A O A)\) )
FILMTK=BMADA*R
TKINCH=12.0*FILMTK
TAUWAL \(=(B / 2.0) *(-G R D T O T-(1.00-((A * A) /(R * R))) *(\) R.DAVAC/(C.QAVCS*RVL

TFIYPLUS-5.7140,40,25
35
40
45 FYDLUS \(=17.5-18.05 * Y P L U S)+(5.0 * Y P L U S * L\) (NGF(YPLUS) \()\)
45
50 FYPLUS \(55(3.0 * Y P L U S)+(9.5 * Y P L U S * L \cap G F(Y P L U S))-64.0\)
\(G F I L M=(2.0 * O V I S C L * F Y P L U S) / A\)
\(G L \cap N T=G L I n-G F I L M\)
```

 DCLID=ALIO/RTT
 DCLFNT=RLINENT/ALIO
 01n0n
S0 FXTRAJ=\リALnX
EXTOAT=TVLSD

```

```

 ODINT 15%,TAJWAL,YOLUS,FYDLJS
 DOTNT 162,TKINCH,GFILN,GLOFNT
 MRIMT 1T,DCLIC,DCLENT (1,1OH SGRDMT =F8.1,1OH GRDFT =F8.1
 FROMATITH F,GAS =1PE1O.3,8H GLIO =1PE10.3
 FNOMATIOH DVISDI =FR.4,11H OVLSPG =F8.4.7H DT =F8.2
 F1!H NVISCL =FR.3)
 FNOMAT(OH NFYNUM =1PF8.2,1OH FFACT =OPF8.5,10H VFLOC
 125 = ODMT(8H TFRM1 =F10.4,9H TERM2 =F10.6,9H TFRM3 =F10.3,
14: \ OHONTT(OH4 VALUSN4)

```

```

 17, FONMATI?GH PERCENT LIOUID OF TOTAL =F10.2,
 cocminue
 O=T1O

```

```

 , DPESP,PDFSIN,DRESOT,RESDP,TSND,BOLOCA,XLNGTH,SHUNTM,D,
 MIJAIOL,SATL,DSATL,ONNFRX,OSIROL, CFXAVG, PFFRT, AREAFL,AREAIS
    ```

```

 & COGLFM,NNEMSN, SISNZ,ARG,Z,FACMIR,FACDLR,CFXRO,L,Y,
 EACTM, DOWEPY, CFXLOY,ENLOY,FNSLNY,NUALOY,FACPL,
 Q EXTOAA,FXTOAR,FXTRAC,FXTRAC, EXTRAF,EXTRAF,
 ONuE=R,NMFFGR,FNLAR, FNSLOS,\UALOB, EXTRAG. FXTRAH,EXTRAI,EXTRAJ
 ErIMMM \capUALTA,GLI,TKINCH,
 \D,DX,COLN1,CCLN2,COLM3,COLM, SUWCOL,PHIMN,GTUTSC,GSURZ,SUMO,SUM1,
    ```

```

 4GTT, ПNMNF,TONWT,DVLSNL,DVLSOG,TFRM1,TERM2,TERM3,TERM4,GGAS,DT,
 MDVIGRL,RFYNGM,FFACTP,FFACT,VELOC,GPDFSDDGMLT,GRDFT,DGRDMT,GRDTOT,
 TAUWAL,FYPLUS,GFILY,TLDENT,DCLIN,DCLENT, DUNWYA,DUMMYQ,DUMMYC
 CNYMNM, N,THCONN,FCHEN, SCHFN,VISCGOCOLIN,SGPFTL.
 MXT, SATD,SNALLT, NFLTVD,TWALL,HCHFN,HMAC,HMIC,OFNLI,NFLUX,
    ```

```

 G.T\capT=FLMASS/ADEAFL
 nDMMM=-(1GTAT*TTAT)/4.17C+q)*
    ```

```

 \(nVLSDL*(1:On-OUAL\capXX+NUALOX*(DVLSPG/DVLSPL))),
 \F(MC4APF-4) 5,5,10
 #unuya=
 Mon in ls
 IF (MSHADF-7) 11,19,12

```

    , DMEFX,FNFDX,DMFFGX,FNFGPX,FNSIN,OUALIN,POWFRT,AREAFL,ARE
    MICHEN,DAMMAX,neLTEN.QADIUS.CC,OD,FF 1020 nin3n
nin4n 1047
01050 01060 01070 01080
01090
01090 01090
01100 01100
01110 01120
01130
DUMMYR=Y-(XLNGTH-SCODTL+PLNGTH)
\(1=2\)
nUMMY
GRDMT= \(=\) DPMOM/(DUMMYB/12.0)
DRTMT \(>O\), ПUMMYR, EXTPAJ, EXTPAI, FXTPAH

1,7 H DVLSDO CONTDOL VOL INLET \(=F R .4\),
227H NVLSPL CONTPRL VOL INLET \(=F 8.4\) )
RETURN
RETURN
FNO

\section*{00355
00360
00370 \\ 00370
00370
00380
00390
00400 \\ 00390
00400
00410 \\ 00400
00410
00420
00490 \\ 00420
\(n 0430\)
\(n 0440\) \\ \(n 0440\)
\(n 0450\)
\(0 n 469\) \\ On46n
no4
nen}

пUMMYR=2FTA/8.0
fO TO 15
DUMMYA \(=Y-(X L N G T H-S C D D T L+P L N G T H)\)
\(1=2\)
nUMMY \(=1\)
DDTMT \(\rightarrow O\), OUMWYR, EXTOAJ:EXTPAI, EXTPAH
177H DVLSDT CONTPOL VOL INLET \(=F 8.4\),
227 HVLSPL CONTPOL VOL INLET \(=F 8.4\) )
RETUQN
FNO

SURDDUTINE GRDMOM 1 PRESP, PRESIN, PRESOT, RESDP, TSDP, BOLOCA, XLNGTH, SHUNTM,P,
, DMEFX, ENFPX, DMEFGX, ENFGPX, ENSIN, QUALIN, POWERT, AREAFL,AREAIS, 3 OUALOL, SAT, DSATL, PNWFRR,OSLRNL, CFXAVG, OFXLDX, JLOCAT,K, X,
5 COSLFN, ONEMSR,SIGNZ, ADG,Z,FACMIR,FACPLR,CFXROLPY,
6 FACTMI, POWFRY, CFXLOY,ENLOY, ENSLOY, OUALOY,FACTPL,
TCONSTR, SCRDT,ZFTA, PLNGTH,J,U,ULOCAT, COSABK,SINABK,I,
B EXTRAA, FXTRAR, EXTRAC, EXTRAD, EXTRAF, EXTRAF,
ODMEFB, DMEFGB, ENLOB, ENSLOS, QUALOB, EXTRAG, EXTOAH, EXTRAI, EXTRA COMMON QUALIA,GLIQ,TKINGH.
1DP, DX, COLN1, COLM2, COLM3, COLM4, SUMCOL, PHIMN, GTOTSC.GSURZ, SUMO, SUM1, 2SUM2, SUM3, SUM 4 , SUM5, OMEGAP, OMEGA, PGMULT, DSURL, T, VI SCL, VOLSPL, FNO,
 SDVISCL, PEYNUM,FFACTD,FFACT,VFLOC,GDDES,DPGMLT,GDDFT, DGPDMT,GPDTO GF, GRAVACOGPAVCS,GRAVCH,VALUEN,FACTUN, BMAOA, DBMAOA, A,FILMTK,YPLUS, 7 TAUWAL, FYPLUS,GFILM,GLOENT, PCLIQ, PCLFNT, DUMMYA, DUMMYG, DUMMYC ENC=ENTHIN+(POWFDT/FLMASS)
D=DPESOT
CALL LIOEN
DFNFO \(=\) ENFPX
CALL EVAPFN
ONFGOZFNFTDX
ENSOENOTDENFO
QUALO=ENSO/DENFGO
CALL SPFCVL
nVSPLO \(=\) VOLSPL
CALL SPECVG
CALL SPECVG
DVSPGOVVOLSDG
GTOTzFLMASS/ARFAFL
 1SPLOll-1.مn)
DUMMYA
(-DPMOM) \(/(X L N G T H / 12.0) ~\)
175
\(\begin{aligned} & \text { PRINT } 175, \text { DUMMYA } \\ & \text { FORMAT } 138 \mathrm{H} \\ & \text { DGRMT BASED ON LINEAR MOM GRADIETT }\end{aligned}=\) F12.1) RETURN

SURRQUTINF MNPGRD
limits on tne application of this subroutine are popercent ouality 1 AND 2500 PSIA PPESSURF
COMMON NTUBES MSHAPF,TUEE,RATIOM, DIAINS, VOLTS, AMPS, ENTHIN,FLMASS,
1 PRESD, PRESIN,PRESOT,RESDP,TSDP, BOLACA,XLNGTH,SHUNTM,P,
```

TMFFX,FNEPX, NMFFGX, ENFTDX,FNSIN, SUALIN,DOWFQT,ADFAFL,ADFAIS
MUAL\capL,SATL,OSATL,DOWFDR,DSIROL,CFXAVG,CFXLNX,JLOCAT,K,X,
5 COSLEN,ONENST,SIGN:O,ARG,Z,FACMIB,FACDLR,CFXBOLLY,
FACTMI,D\capNFOY,CFXLOY, ENLOY,FNSLOY, JUAL\capY, FACTPL,
CONSTD,SCDOTL,ZETA,OLNGTH,J.U,ULOCAT, COSABK,SINAEK,I,
FXTDAA,=XTRAR,EXI,

```

```

CNM,OX,COLMI,COLMID, COLMM,CNLM4,SUMCOL,PHIMN,GTOTSC,GSUBZ, SUMO,SUM
2SUM, SJM2,SUML,SUN5,OMEGAD,OMFGA,PGMULT,PSUBL,T,VISCL,VOLSPL,FNO,
3VOLSPG, DUAL^4,ODWEDA, DANEOL,DFMFC,DFNFGO, ENSO,QUALO, NVSPLO,DVSPGO
GNVISCL,OFYMUM,FFACTD,FFACT,VFLNC,GROSS, DPGMLT,GDDFT, NGRDMT,GRDTOT
GR,GOAVAC,GPAVCS, GRAVCH,VALUEN,FACTUN,BMAOA,DBMAOA,A,FILMTK,YPLUS,
TTAUWAL,FYOLUS,GEIL",GLDENT,PCLIO,DCLENT, DUMMYA,DUMMYB,DUMMYC
no=0/innn,n

```

```

 -1.734000&F+1*(DP*NP*DP) +1.0409R4>E+1*(DP*DH*DP*DP)
 * -2.7744R77*(DP*DP*DP*DP*DP) +4.7484R05E-1*(DF *DP*DP*DP*DP*DP)
    ```

```

 COLMP = (nX*DX)*(-5.1756752F-1+1.9550200*DP -9,
 -5.0583098*(DP*DP*DO*DP*DP) +1.8989183*(DP*D'*DP*DP*DP*D
 * }->\mathrm{ \\aK7KROE-1*(DP*NP*DP*DP*DD*DP*DP),
 -).90256855-1*(DP*DD) +2.7654839*(DP*DP*DP)
 -2.407544*(nP*NP*NP*DP) +7.3209095*(DP*OP*DP*DP*DP)
 -7.P534072E-1*(DP*DP*DP*DP*DP*DP) +*.6169847E->*(DP*DP*DP*DP*DP
 *no*nol
 ~n1 M4=(nX*nX*nX*nX)*(-A.0606798E-3 +(2.6160876E-2 #nP
 1+6.0788725F-2#(DP*ND) -3.2426871F-1*(DP*DP*DP)
 1 +6.0558725F-P*(DP*DP*DP*DP) -3.0333482E-1*(DF*DP*DP*NP*DD,
    ```

```

 4 *DD*NO),
 SUMMOL=COLN1+COLM2+COLM3+COLM4
 C.TATSr=r,TOT/36nn.
 \FICTnTSC-100n.0)
 OSUTO 15
    ```

```

 UN1=(-K.9nG>2,*E-7 -4.52n0014E-4*D)*(GSUBZ
 (-8,2*G7503E-2 +1,2278415E-4*P)*(GSUBZ*GSURZ)
 <1M2=(7.56409R6F-2+1.<165716F-4*P)*(GSURZ*GSUB2*GSURZ)
 SUM5=(-6.2576706E-2-2.2820747F-5#P)
 1*(ESURZ*RSUR2RSURZ*RS1PZ*FSURZ,
 MMEr,A=NNEGAD-n.4.4
 DETUD
 surrmutiNE UMIVER
COMMOM NTURES,NSHADE,TUBE,OATICM,DIAINS,VOLTS,AMDS,ENTHIN,FLMASS.
1 DOFSN,ODFSIN,ODESNT,PESDD,TSDP,RDLDCA,XLNGTH,SHUNTM,P,
, nMEX,FNESX, ПMFEGX, FNEGSX,FNSIN,DUALIN, POWFR',ARFAFL,AREAIS,

5 COSLEN, ONFMSQ, SIGMZ,ADG,Z,FACMIG,FACDLS,CFXPU.LO

 COMMON OUALTA.GLIO.TKINCH.
 2SUM2, SUM 3, SUM4, SUM5, חNEGAC, OMFGA, PGNULT, PSUBL, T,VISCL,VNLSPL, ENO,

 GR,GRAVAC, GRAVCS,GRAVCH,VALUEN, FACTUN, GMADAMDBMACA OA,FILYTK, YPLUS, TTAUWAL PFYOLUS,GFILN, GLDENT, OCLIS, DCLFNT DUMMYA, DUMMYA, OUMMYC FOR N=O DFFFR TO FIGURE 6 GFAP4615

If (VALUEN - $-0.01, \quad \mathbf{7 , 9 , 7}$
IF (FACTUN -.046) $25,10,10$
IFIFACTUN-.03n) 20,5,5
RMAOA $=+894236107 F-1-97340465 F+1 * F A C T U N+.18204540 E+3 *(F A C T U N * * ?$

$2+.40524361 \mathrm{E}+5 *($ FACTUN\#*5) $-=1856937 \mathrm{E}+6 * 1 F A C T U N * * 6)$

BMAOA
$1-.48776056 E 4 *(F A C T U N * * 3)+119313986 E 5 *(F A C T U N * * 4)$

GO TO
RMAOA
O
O
$20 \quad \begin{array}{ll}\text { RMAOA } & =0022 \\ G O T O\end{array}$
25 RMADA $=0150$
30 AMAOA $=0.75 n$
35 RFTU

SURROUTINE SPFTVL 1 DRESD, PRESIN,DDESNT, QEESDP, TSDP,ROLNCA, XLNGTH, SHUNTM,P,
2 DMEFX, FNFPX, $M M F G X$, ENFGPX, ENSIN, $L U A L I N$, POWFRT, ARFAFL,ADEAIS 3 OUAL 2 , SATL, PSATL, DNWERB, PSLROL, CFXAVG, CFXLDX, JLOCAT, K, X,

6 FACTMI, POWEPY, CFXLOY,FNLOY, FNSLOY, DUALOY OFACTPL,
TCONSTD, SCPDTL, 2 ETA,PLNGTH,J,U,ULOCAT, COSABK, 5 INABK, I
8 EXTRAA,FXTRAR, EXTRAC, EXTRAD, EXTRAF, EXTOAF,
ODMEFA, DMEFGR, ENLLB, FNSLOB, DUALAB, FXTRAG, EXTDAH, EXTRA1, FXTRAJ

 3VOL SDG, DUAL 4 , DOWERA, PANBOL DE VFO. DEMFGC, FNSN, OUALO, NVSDL O, DVSDG
 6R,GRAVAC,GRAVCS, GRAVCH,VALUEN.FACTUN, BMAOA,DSMAOA, FFILMTK,YPLUS, TTAUWAL,FYPLUS,GFILM, GLOENT, PCLIO,PCLFNT, DUMMYA, DJMMYR, DUMMYC

$+2 . R 0011515-15 *(D * D * D * D * D)-4.31 Q 7)^{2} 2=-1 R *(0 * D * D * D * D * D$

4 PFTUQN
 QETIIPN
ENO
ghanutine somev

 2 IUAL LDRDFAK, ONWFDX, FAII OX, ENSLOX, DJALOX, DMFF, RMEFGY, DNWOR, ONFOVM,

CONMSTD, SCDDT, 2 ETA, DLNGTH, J, 1

- FXTPAA, FXTPAB, EXTRAC, EXTRAD, FXTRAF, FXTPAF,

ODMFFR, DMEFGF, =NLOE, FNSLOB, NUALOB, EXTRAF, FXTPAH, EXTRAI, FXTRAJ COMYOM DUALIA,FGLIO,TKINSH,

 ITAUWAL, FYDLUS, GFFIC, GLOEMT, PCLID, DCLENT, ПUMNYA, DUNAYB, DUMMYC

- $51 \mathrm{~F}-Q *(P * P * P * D * D * P)$
- $0.6173217 E-11 *(P * P * P * P * P * P * D)+1.5321887 E-13 *(P * P * P * P * P * P * P * P)$

QETUQN
ie
(D.

$0=T 10 \mathrm{~N}$

 =mn

[^0]TCOMSTO, SCDDTL,ZFTA,DLMGTH,J,'J,ULDCAT, COSARK, SIMARK, 1 ,
FXTRAA, EXTRAR, EXTRAC, EXTRAT, FXTPAF, FXTRAF,
COMMON OUALIA, TELIT, TK INCH, M, SUMCOL, PHI WN, PFTOTSC, GSURZ, SUMO, SUM 1DP, DX, COLM1, CNL W2, COLM3, COLM4, SUYCOL, PHI WN, F FTOTSC. GSURZ , SUMO, SUM1, ZVOLSDT, OUAL 4 , PONEDA, PANBDL, DFNFR, DFNFG
 SDVISCL, RFYNUM,FFACTD, FFACT,VFLOC,GPDFS, DPGMLT, GRDFT, DERDMT,GRDTCT,

15 TF ($0-450.0$) 15,2n.2
$T=3.5157390 E+1+2.4502588 E+1 *$ PSUBL $+2.1182060 *(D S U B L * * 2)$
$\mathbf{-}^{-2.4144740 E-1 *(\text { PSURL } * * 3)+1.5741642 \mathrm{E}-1 *(\text { PSUBL } * * 4)}$

PETURN
PSUBL2=LNGF(D)
$T=+1.1545164 F+4-8 \cdot 3840193 F+3 * P$ SURL $2+2.4777661 \mathrm{E}+3 *(P$ SUEL2**2) $1^{-3.6344) 71 F+7 *(D S U R L 2 * * 2)+7.6600978 F+1 *(P S U C L 2 * * 4) ~}$
RETURN
EnT

SURROUTINF VISCOS
COMMON NTURESSMSH
COMMAN NTUBES, MSHADE, TUBE,RATIOM,DIAINS, VOLTS, AMDS, ENTHIN,FLMASS,
 OUAL 1 , SATL, MFFGX, EMFGPX,FNSIN, OUALIN, DOWERT, AREAFL, AREAIS,
 CNSLFN, OMFMSO, SIGMI, AOG,Z,FACMIROFACPLR,CFXROPL,Y,
FACTM, DNWFOY, CFXLAY, FNL
Q FXTRAA, EXTRAR, EXTRAC, FXTRAR, EXTRAF FXTOAF,
DMFFB, DMEFGR, ENLDA, FNSLOS, OUALOB, EXTPAG, FXTOAH, EXTPAI, EXTQAJ COMNON QUALIA,GLIC,TKINCH,
SUM2, SUM 3, SUM 4 , SUM 5 , OMFGAP, OMFGA, PGMUT MN,GIOTSC,GSUAZ, SIMC, SJM1,

 TTAUWAL, FYDLUS, CFILV, GLOENT, DCLID, PRLFMT, ПUMMYA, DUMMYA, M,JNMYC CALL SATMD
IFIT-GNOO)
5 CONTINUF
5,5,10
VISCL=8.0144599-1.672R317F-1*T +2.0423535E-3*(T
$1-1.6324569 F-5 *(T * T * T)+8.2555744 F-8 *(T * T * T * T)$

1.595 (

5 PETURN
10
$\begin{array}{ll}\text { IFT-642.5) } & 15,20,20 \\ \text { IF } T \text { T-675:0) } & 25,20,30 \\ \text { I }\end{array}$
$\begin{array}{lll}\text { IF TT-690.0) } & 25,20,30 \\ \text { VIST }\end{array}$
VISCL=.5100-.0ก050*T
VFTURN $\mathrm{VISCL}=.6310-.00069 * T$
$35 \quad$ RETURN
VISCL $=.9985-.00123 * T$


```
4) {RTUQN ( VICRL=.14R
    SURDNUTIMF FVADEN 
    , DOESN,DOESN,DDESNT,PESDS,TSND,RCLACA,XLNGTH,SHUMTM,D,
    , N"FFX,FNFDX, RUFFFX,FNFGPX,ENSIN, UUALIN, DNWERT, AREAFL,AOFAIS,
    LDOOCAK,ONWEDX, FNLCX, FNSLIX,JUAL\capX,DMEFY,DNFFY,DNWOD,ONFOVM,
    5 COSLFN,ANFNER,SIG"Z,ADG,Z,FACMIR,FACOLQ,CEXRNPL,Y,
    S FACTMI,ONWERY,CPXLOY,FNLOF,EVSLNY,NUALCY,CACTOL,
    TrN"STD,SCOTL,TETA,OLNETH,J,U,JLNCAT,CNSABK.SINABK,I,
```



```
    CN\cdotsMN NUALIA,GLIR,TVINCH
```



```
    LETAT,
    AD, ODAVAC,FDAVCS, FRAVCH,VALUEN,FACTUN,RMANA,DSNAOA,A,FILVTK,YOLUS,
    TTAUAL,FYOGUS,GFIL,CHEN,SCHEM,VISCG,CDLIOSUDFTL
    IXTT,SATD,S""ALLT, MFLTVD,TWALL,HCHEN,HWAC,HMIT, YEYNLD,VELUX,
    , DONUMR,OCDGHT,HDQ,HNENF, \capARFNGODTDENG,DFLTT, DACHEN,
    mius,er,no,er
    \F(0-47n.-) 5,5,10
    # -1.2610j10F-4*(D**2)+5.020804F-7*(P**4)-102499843E-0*(0**5)
```



```
    ENERDX=R.964727PE2-3.354C732F-1*P+1.267R091E-4*(P*D)
```



```
        RENN
```


APPEMDIX F

| 2 | 337.0 | $\begin{aligned} & 4.03 \\ & 29.4 \end{aligned}$ | $\begin{array}{r} .211 \\ .2 \end{array}$ | $\begin{aligned} & 30.0 \\ & 92.7 \end{aligned}$ | $\begin{array}{r} 121.5 \\ .602 \end{array}$ | $\begin{array}{r} 111.0 \\ .276 E \mathrm{Cb} \end{array}$ | $\begin{gathered} 92.0 \\ .9355 E \quad 05 \end{gathered}$ | $\begin{aligned} & 19.0 \\ & .609 \end{aligned}$ | $\begin{array}{r} 65.8 \\ 453.1 \end{array}$ | $\begin{array}{r} -240 . e \\ 1.7 \end{array}$ | 3.9 | C | C. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 313.0 | $\begin{aligned} & 4.03 \\ & 29.5 \end{aligned}$ | $\begin{array}{r} .211 \\ .2 \end{array}$ | $\begin{aligned} & 30.6 \\ & 94.6 \end{aligned}$ | $\begin{array}{r} 121.5 \\ .614 \end{array}$ | $\begin{array}{r} 116.0 \\ .259 E 06 \end{array}$ | $\begin{gathered} 94.0 \\ .9019 E^{25} \end{gathered}$ | $\begin{array}{r} 22.0 \\ -620 \end{array}$ | $\begin{aligned} & 104.2 \\ & 462.5 \end{aligned}$ | $\begin{array}{r} -2 C 5.6 \\ 1.6 \end{array}$ | 3.7 | 28.5 | 0. |
| 2 | 339.0 | $\begin{aligned} & 4.03 \\ & 27.2 \end{aligned}$ | $\begin{array}{r} .213 \\ .2 \end{array}$ | $\begin{aligned} & 30 . C \\ & 92.2 \end{aligned}$ | $\begin{array}{r} 124.4 \\ .553 \end{array}$ | $\begin{array}{r} 111.0 \\ .387 E 06 \end{array}$ | $\begin{gathered} 89.0 \\ .8254 E \quad 05 \end{gathered}$ | $\begin{array}{r} 22.0 \\ .590 \end{array}$ | $\begin{array}{r} 153.8 \\ 409.5 \end{array}$ | $\begin{array}{r} -152.6 \\ 2.8 \end{array}$ | 5.9 | C. | 0. |
| 2 | 314.0 | $\begin{aligned} & 4.03 \\ & 29.3 \end{aligned}$ | $.210$ | $\begin{aligned} & 30.0 \\ & 92.7 \end{aligned}$ | $\begin{array}{r} 12 C .0 \\ .631 \end{array}$ | $\begin{array}{r} 112.0 \\ .254 E C 6 \end{array}$ | $\begin{gathered} 92.0 \\ .8233 E 05 \end{gathered}$ | $\begin{aligned} & 20.0 \\ & .639 \end{aligned}$ | $\begin{aligned} & 176.9 \\ & 478.5 \end{aligned}$ | $\begin{array}{r} -130.2 \\ 1.4 \end{array}$ | 3.5 | 27.9 | . 4 |
| 2 | 340.0 | $\begin{aligned} & 4.03 \\ & 28.9 \end{aligned}$ | $\begin{gathered} 213 \\ 0 . \end{gathered}$ | $\begin{aligned} & 30 . C \\ & 95.9 \end{aligned}$ | $\begin{array}{r} 123.8 \\ .624 \end{array}$ | $\begin{array}{r} 113.0 \\ .271 E \mathrm{Cb} \end{array}$ | $\begin{gathered} 95.0 \\ .8138 E 05 \end{gathered}$ | $\begin{aligned} & 18.0 \\ & 6636 \end{aligned}$ | $\begin{array}{r} 203.5 \\ 473.8 \end{array}$ | $\begin{array}{r} -1 C 4.3 \\ 1.6 \end{array}$ | 4.0 | 06 | 0. |
| 2 | 324.0 | $\begin{aligned} & 4.03 \\ & 28.9 \end{aligned}$ | $\begin{array}{r} .211 \\ .2 \end{array}$ | $\begin{aligned} & 30 . C \\ & 96.0 \end{aligned}$ | $\begin{array}{r} 122.0 \\ .618 \end{array}$ | $\begin{array}{r} 115.0 \\ .259 E \quad 06 \end{array}$ | $\begin{aligned} & 95.0 \\ & .7709 E_{05} \end{aligned}$ | $\begin{array}{r} 20.0 \\ .629 \end{array}$ | $\begin{array}{r} 223.5 \\ 466.3 \end{array}$ | $\begin{array}{r} -85.6 \\ 1.6 \end{array}$ | 3.8 | 2764 | - 1 |
| 2 | 325.0 | $\begin{aligned} & 4.03 \\ & 29.1 \end{aligned}$ | $\begin{array}{r} .211 \\ .3 \end{array}$ | $\begin{aligned} & 30.0 \\ & 93.8 \end{aligned}$ | $\begin{array}{r} 121.5 \\ .629 \end{array}$ | $\begin{array}{r} 114.0 \\ .236 E 06 \end{array}$ | $\begin{gathered} 93.0 \\ .7384 E_{05} \end{gathered}$ | $\begin{array}{r} 21.0 \\ .637 \end{array}$ | $\begin{array}{r} 25460 \\ 476.6 \end{array}$ | $\begin{array}{r} -54.4 \\ 1.3 \end{array}$ | 3.3 | Cb | 0. |
| 2 | 510.0 | $\begin{aligned} & 5.75 \\ & 19.9 \end{aligned}$ | $.214$ | $\begin{aligned} & 30.0 \\ & 97.2 \end{aligned}$ | $\begin{array}{r} 125.6 \\ .304 \end{array}$ | $\begin{array}{r} 104.0 \\ .775 \mathrm{E} \end{array}$ | $\begin{gathered} 86.0 \\ .8549 E 05 \end{gathered}$ | $\begin{array}{r} 18.0 \\ .522 \end{array}$ | $\begin{array}{r} 74.3 \\ 194.3 \end{array}$ | $\begin{array}{r} -227.1 \\ 15.1 \end{array}$ | 23.4 | 2069 | c. |
| 2 | 511.0 | $\begin{aligned} & 5.75 \\ & 24.3 \end{aligned}$ | $\begin{array}{r} .214 \\ .2 \end{array}$ | $\begin{array}{r} 30.0 \\ 104.8 \end{array}$ | $\begin{array}{r} 125.6 \\ .417 \end{array}$ | $\begin{array}{r} 115.0 \\ .487 E \text { C6 } \end{array}$ | $\begin{aligned} & 100.0 \\ & .7404 E 05 \end{aligned}$ | $\begin{array}{r} 15.0 \\ .496 \end{array}$ | $\begin{array}{r} 149.9 \\ 292.6 \end{array}$ | $\begin{array}{r} -1 E 9.2 \\ 6.8 \end{array}$ | 11.7 | C6 | 0. |
| 2 | 512.0 | $\begin{aligned} & 5.75 \\ & 22.6 \end{aligned}$ | $\begin{array}{r} .215 \\ .2 \end{array}$ | $\begin{array}{r} 30.0 \\ 100.5 \end{array}$ | $\begin{array}{r} 12 \epsilon .3 \\ .337 \end{array}$ | $\begin{array}{r} 108.0 \\ .526 E C 6 \end{array}$ | $.6837 E 05$ | $\begin{aligned} & 13.0 \\ & .445 \end{aligned}$ | $\begin{aligned} & 149.9 \\ & 223.8 \end{aligned}$ | $\begin{array}{r} -154.4 \\ 9.3 \end{array}$ | 14.9 | Ob | C6 |
| 2 | 513.0 | $\begin{aligned} & 5.75 \\ & 20.1 \end{aligned}$ | $\begin{aligned} & .214 \\ & 1.1 \end{aligned}$ | $\begin{array}{r} 30.0 \\ 104.2 \end{array}$ | $\begin{array}{r} 125.0 \\ .425 \end{array}$ | $\begin{array}{r} 115.0 \\ .557 E 06 \end{array}$ | $\begin{gathered} 95.0^{\circ} \\ .8152 E 05 \end{gathered}$ | $\begin{array}{r} 20.0 \\ .626 \end{array}$ | $\begin{aligned} & 20064 \\ & 298.2 \end{aligned}$ | $\begin{array}{r} -108.7 \\ 9.9 \end{array}$ | 17.2 | c. | C. |
| 2 | 514.0 | $\begin{aligned} & 5.75 \\ & 23.2 \end{aligned}$ | $.214$ | $\begin{aligned} & 30.0 \\ & 91.4 \end{aligned}$ | $\begin{array}{r} 125.6 \\ .460 \end{array}$ | $\begin{array}{r} 105.0 \\ .542 E \text { C6 } \end{array}$ | $\begin{array}{r} 85.0 \\ .7398 E 05 \end{array}$ | $\begin{array}{r} 10.0 \\ \hdashline .563 \end{array}$ | $\begin{aligned} & 202.3 \\ & 330.5 \end{aligned}$ | $\begin{array}{r} -59.8 \\ 5.5 \end{array}$ | 9.7 | 06 | c. |
| 2 | 515.0 | $\begin{aligned} & 5.75 \\ & 26.1 \end{aligned}$ | $\begin{array}{r} .214 \\ .2 \end{array}$ | $\begin{aligned} & 30.0 \\ & 98.2 \end{aligned}$ | $\begin{array}{r} 125.6 \\ .601 \end{array}$ | $.4 \text { CIE } \begin{array}{r} 115.0 \end{array}$ | $\begin{aligned} & 95.0 \\ & .7748 E 05 \end{aligned}$ | $\begin{aligned} & 20.0 \\ & .647 \end{aligned}$ | $\begin{aligned} & 254.6 \\ & 453.1 \end{aligned}$ | $\begin{array}{r} -54.5 \\ 2.7 \end{array}$ | 6.2 | c. | Cb |
| 3 | 1202.0 | $\begin{aligned} & 2.27 \\ & 29.7 \end{aligned}$ | $\begin{array}{r} .214 \\ .1 \end{array}$ | $\begin{array}{r} 30.0 \\ 111.2 \end{array}$ | $\begin{array}{r} 125.0 \\ .336 \end{array}$ | $\begin{array}{r} 117.0 \\ .673 E 06 \end{array}$ | $\begin{gathered} 111.0^{0} \\ .6829 E 05 \end{gathered}$ | $\begin{array}{r} 6.0 \\ .345 \end{array}$ | $\begin{array}{r} 64.1 \\ 221.7 \end{array}$ | $\begin{array}{r} -246.3 \\ 13.7 \end{array}$ | 12.2 | Ci | C* |
| 3 | 1208.0 | $\begin{aligned} & 2.27 \\ & 29.7 \end{aligned}$ | $\begin{array}{r} .214 \\ .1 \end{array}$ | $\begin{aligned} & 30 . C \\ & 97.2 \end{aligned}$ | $\begin{array}{r} 125.0 \\ .419 \end{array}$ | $\begin{array}{r} 107.0 \\ . \in S O E \quad 06 \end{array}$ | $\begin{gathered} 97.0 \\ .6593 E 05 \end{gathered}$ | $\begin{aligned} & 10.0 \\ & .428 \end{aligned}$ | $\begin{aligned} & 149.5 \\ & 295.4 \end{aligned}$ | $\begin{array}{r} -154.1 \\ 8.1 \end{array}$ | 13.9 | 0 - | 0. |
| 3 | 1209.0 | $\begin{aligned} & 2.27 \\ & 29.9 \end{aligned}$ | $\begin{aligned} & 215 \\ & 0 \end{aligned}$ | $\begin{array}{r} 30.0 \\ 100.1 \end{array}$ | $\begin{array}{r} 126.3 \\ .523 \end{array}$ | $\begin{array}{r} 115.0 \\ .659 E \mathrm{Ct} \end{array}$ | $.{ }_{.}^{1090.0} 05$ | $\begin{aligned} & 15.0 \\ & .526 \end{aligned}$ | $\begin{array}{r} 203.5 \\ 383.7 \end{array}$ | $\begin{array}{r} -105.6 \\ 6.3 \end{array}$ | 12.4 | OL | 0. |
| 3 | 1210.0 | $\begin{aligned} & 2.27 \\ & 29.7 \end{aligned}$ | $\begin{array}{r} .214 \\ .2 \end{array}$ | $\begin{aligned} & 30.0 \\ & 95.2 \end{aligned}$ | $\begin{array}{r} 125.0 \\ .583 \end{array}$ | $\begin{array}{r} 113.0 \\ .699 E 06 \end{array}$ | $\begin{gathered} 95.0 \\ .7091 E 05 \end{gathered}$ | $\begin{aligned} & 18.0 \\ & .592 \end{aligned}$ | $\begin{aligned} & 254.7 \\ & 437.5 \end{aligned}$ | $\begin{array}{r} -53.1 \\ 4.8 \end{array}$ | $10 . t$ | C. | c. |
| 4 | 1260.0 | $\begin{aligned} & 2.27 \\ & 29.6 \end{aligned}$ | $\begin{array}{r} .214 \\ .2 \end{array}$ | $\begin{aligned} & 30.0 \\ & 97.3 \end{aligned}$ | $\begin{array}{r} 125.0 \\ .615 \end{array}$ | $\begin{array}{r} 116.0 \\ .430 E 06 \end{array}$ | $.9693 E^{97.0} 05$ | $\begin{aligned} & 19.0 \\ & 6622 \end{aligned}$ | $\begin{array}{r} 74.4 \\ 463.09 \end{array}$ | $\begin{array}{r} -235.4 \\ 2.7 \end{array}$ | 6.5 | 06 | O6 |
| 4 | 1259.0 | $\begin{aligned} & 2.27 \\ & 29.5 \end{aligned}$ | $\begin{array}{r} .214 \\ .2 \end{array}$ | $\begin{aligned} & 30.0 \\ & 97.5 \end{aligned}$ | $\begin{array}{r} 125.0 \\ .619 \end{array}$ | $\begin{array}{r} 118.0 \\ .3 ¢ 5 E 06 \end{array}$ | $.97 .0$ | $\begin{aligned} & 21.0 \\ & .629 \end{aligned}$ | $\begin{aligned} & 149.1 \\ & 467.1 \end{aligned}$ | $\begin{array}{r} -162.0 \\ 2.4 \end{array}$ | 5.9 | 00° | 0. |
| 4 | 1258.0 | $\begin{aligned} & 2.27 \\ & 29.7 \end{aligned}$ | $\begin{gathered} -214 \\ 0 . \end{gathered}$ | $\begin{array}{r} 30.0 \\ 103.3 \end{array}$ | $\begin{array}{r} 125.0 \\ .671 \end{array}$ | $\begin{array}{r} 125.0 \\ .3 E 5 E O 6 \end{array}$ | $\begin{aligned} & 103.0 \\ & .8714 E O 5 \end{aligned}$ | $\begin{aligned} & 22.0 \\ & .876 \end{aligned}$ | $\begin{gathered} 202.7 \\ 510.1 \end{gathered}$ | $\begin{array}{r} -112.9 \\ 2.1 \end{array}$ | 6.0 | Cb | 0. |
| 4 | 1257.0 | 2.27 | . 214 | 30.0 | 125.0 | 120.0 | 98.0 | 22.0 | 257.6 | -54.8 | | | |

| | | 29.7 | 0. | 98.2 | .tet | . 353 Cb | . 7973605 | . 673 | 508.4 | 1.8 | 5.1 | c* | c. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1501.0 | $\begin{aligned} & 5.75 \\ & 29.6 \end{aligned}$ | $\begin{array}{r} 213 \\ .3 \end{array}$ | $\begin{aligned} & 30 . c \\ & 96.4 \end{aligned}$ | $\begin{array}{r} 123.8 \\ .27 \mathrm{C} \end{array}$ | $.114 E \cdot 0$ | $.595 . e^{. e} 05$ | $\begin{array}{r} 5.0 \\ .262 \end{array}$ | $\begin{array}{r} 69.2 \\ 166.2 \end{array}$ | $\begin{array}{r} -229.3 \\ 15.9 \end{array}$ | 24.2 | c. | c. |
| 3 | 1503.0 | $\begin{aligned} & 5.75 \\ & 29.8 \end{aligned}$ | $\stackrel{.214}{0 .}$ | $\begin{array}{r} 30.6 \\ 101.2 \end{array}$ | $\begin{array}{r} 125.0 \\ -398 \end{array}$ | $\begin{array}{r} 1120.0 \\ .713 E 06 \end{array}$ | $.6366 E_{05}^{101.0}$ | $\begin{array}{r} 9.0 \\ .405 \end{array}$ | $\begin{aligned} & 14709 \\ & 277.5 \end{aligned}$ | $\begin{array}{r} -157: 8 \\ 11.0 \end{array}$ | 10.5 | c. | c. |
| 3 | 1504.0 | $\begin{aligned} & 5.75 \\ & 29.8 \end{aligned}$ | $\begin{array}{r} .214 \\ .1 \end{array}$ | $\begin{array}{r} 30.0 \\ 93.2 \end{array}$ | $\begin{array}{r} 125.0 \\ .563 \end{array}$ | $\begin{array}{r} 109.0 \\ .9 C I E 0_{0} \end{array}$ | $.7451 \mathrm{P}^{93.0} 05$ | $\begin{aligned} & 16.0 \\ & .571 \end{aligned}$ | $\begin{aligned} & 206.5 \\ & 421.4 \end{aligned}$ | $\begin{array}{r} -98.5 \\ -6.5 \end{array}$ | 13.7 | c. | c. |
| 3 | 1505.0 | $\begin{aligned} & 5.75 \\ & 29.5 \end{aligned}$ | $.215$ | $\begin{array}{r} 30.0 \\ 103.4 \end{array}$ | $\begin{array}{r} 126.3 \\ -490 \end{array}$ | $\begin{array}{r} 117 . \mathrm{c} \\ .749 \mathrm{Cb} \end{array}$ | ${ }_{.6284 E^{103.0} 05}$ | $\begin{aligned} & 14.0 \\ & .508 \end{aligned}$ | $\begin{aligned} & 253 \cdot 2 \\ & 356.4 \end{aligned}$ | $\begin{array}{r} -5.3 \\ 7.9 \end{array}$ | 15.0 | c. | c. |
| 4 | 1560.0 | $\begin{aligned} & 5.75 \\ & 17.0 \end{aligned}$ | $.215$ | $\begin{gathered} 30.6 \\ 107.3 \end{gathered}$ | $\begin{array}{r} 126.3 \\ .372 \end{array}$ | $\begin{array}{r} 116.0 \\ .617 E \\ \hline 0 \end{array}$ | $.9574 E^{96.0} 05$ | $\begin{aligned} & 20.0 \\ & .601 \end{aligned}$ | $\begin{array}{r} 12.3 \\ 252.1 \end{array}$ | $\begin{array}{r} -237.5 \\ 10.4 \end{array}$ | 17.3 | c* | O. |
| 4 | 1550.0 | $\begin{aligned} & 5.75 \\ & 28.3 \end{aligned}$ | $.213$ | $\begin{aligned} & 30.6 \\ & 96.4 \end{aligned}$ | $\begin{array}{r} 123.8 \\ e \in 29 \end{array}$ | $\begin{array}{r} 116.0 \\ .240 E \text { c6 } \end{array}$ | $.8093 E^{95.0}$ | $\begin{array}{r} 21.0 \\ .645 \end{array}$ | $\begin{aligned} & 151.0 \\ & 476.1 \end{aligned}$ | $\begin{array}{r} -150.8 \\ 1.4 \end{array}$ | 3.5 | c. | 0. |
| 4 | 1551.0 | $\begin{aligned} & 5.75 \\ & 28.8 \end{aligned}$ | $\begin{array}{r} .214 \\ .5 \end{array}$ | $\begin{array}{r} 30 . \mathrm{C} \\ 103 . \mathrm{C} \end{array}$ | $\begin{array}{r} 125 . \mathrm{C} \\ .675 \end{array}$ | $\begin{array}{r} 124.0 \\ .221 E 06 \end{array}$ | $\text { .8775E } 05$ | $\begin{array}{r} 22.0 \\ .685 \end{array}$ | $\begin{aligned} & 206.1 \\ & 513.8 \end{aligned}$ | $\begin{array}{r} -1 C 0.9 \\ 1.2 \end{array}$ | 3.4 | 0. | c. |
| 4 | 1552.0 | $\begin{aligned} & 5.75 \\ & 28.3 \end{aligned}$ | $\begin{array}{r} .214 \\ .3 \end{array}$ | $\begin{gathered} 30.0 \\ 103.4 \end{gathered}$ | $\begin{array}{r} 125 . \mathrm{C} \\ .675 \end{array}$ | $.223 E 60$ | $\begin{aligned} & 102.0 \\ & .0245 E^{0} 05 \end{aligned}$ | $\begin{aligned} & 22.0 \\ & .691 \end{aligned}$ | $\begin{aligned} & 253.2 \\ & 515.5 \end{aligned}$ | $\begin{array}{r} -81.8 \\ 1.2 \end{array}$ | 3.4 | c. | c. |
| 5 | 2502.0 | $\begin{array}{r} 5.75 \\ 9.8 \end{array}$ | $\begin{array}{r} .215 \\ .2 \end{array}$ | $\begin{array}{r} 30.0 \\ 108.5 \end{array}$ | $\begin{array}{r} 126.3 \\ 6122 \end{array}$ | $\begin{array}{r} 110.0 \\ .110 E \mathrm{CK} \end{array}$ | $.9059 E^{91.0} \text { os }$ | $\begin{aligned} & 19.0 \\ & .560 \end{aligned}$ | $\begin{aligned} & 73.9 \\ & 36.5 \end{aligned}$ | $\begin{array}{r} -231.8 \\ E 7.1 \end{array}$ | 112.4 | ct | cb |
| 5 | 2503.0 | $\begin{aligned} & 5.75 \\ & 28.1 \end{aligned}$ | $.213$ | $\begin{array}{r} 30 . C \\ 100.6 \end{array}$ | $\begin{array}{r} 123.8 \\ .677 \end{array}$ | $\begin{array}{r} 120.0 \\ .242 E \end{array}$ | $\begin{gathered} 99.0 \\ .0813 E \\ 05 \end{gathered}$ | $\begin{aligned} & 21.0 \\ & .696 \end{aligned}$ | $\begin{aligned} & 204.2 \\ & 517.8 \end{aligned}$ | $\begin{array}{r} -1 c e .2 \\ 1.3 \end{array}$ | 3.4 | cb | cb |
| 6 | 2552.0 | $\begin{aligned} & 5.75 \\ & 25.1 \end{aligned}$ | $\begin{array}{r} .214 \\ .3 \end{array}$ | $\begin{array}{r} 30.0 \\ 103.9 \end{array}$ | $\begin{array}{r} 125.0 \\ .330 \end{array}$ | $\text { . } 9168090$ | $.7705 \mathrm{P}^{98.0}$ | $\begin{aligned} & 11.0 \\ & .435 \end{aligned}$ | $\begin{array}{r} 67.6 \\ 200.5 \end{array}$ | $\begin{array}{r} -237.4 \\ 10.9 \end{array}$ | 29.4 | cb | c. |
| 6 | 2553.0 | $\begin{aligned} & 5.75 \\ & 28.0 \end{aligned}$ | $\begin{array}{r} .214 \\ .3 \end{array}$ | $\begin{aligned} & 30.0 \\ & 95.0 \end{aligned}$ | $\begin{array}{r} 125 . C \\ .602 \end{array}$ | $.572 E_{06}^{112.0}$ | $.8179 .{ }^{93.0} 05$ | $\begin{aligned} & 19.0 \\ & .635 \end{aligned}$ | $\begin{gathered} 205.4 \\ 454.6 \end{gathered}$ | $\begin{array}{r} -101.7 \\ 3.7 \end{array}$ | 1.5 | c. | c. $\frac{1}{\frac{1}{n}}$ |
| 1 | 132.0 | $\begin{aligned} & 1.07 \\ & 29.0 \end{aligned}$ | $\begin{array}{r} .213 \\ .2 \end{array}$ | $\begin{aligned} & 30 . \mathrm{C} \\ & 70 . \mathrm{c} \end{aligned}$ | $\begin{gathered} 248.8 \\ .4 C 8 \end{gathered}$ | $\begin{array}{r} 127.0 \\ .1 \subset 3 E \quad 07 \end{array}$ | $.1495 .{ }^{69} 06$ | $\begin{aligned} & 58.0 \\ & .414 \end{aligned}$ | $\begin{array}{r} 70.6 \\ 260.8 \end{array}$ | $\begin{array}{r} -244.3 \\ 3.1 \end{array}$ | 4.9 | 29.32 | 28.500 |
| 1 | 129.0 | $\begin{aligned} & 1.00 \\ & 29.5 \end{aligned}$ | $.213$ | $\begin{aligned} & 30 . C \\ & 68.8 \end{aligned}$ | $\begin{array}{r} 247.5 \\ .374 \end{array}$ | $.{ }^{123.0}$ | $\begin{gathered} 67.0 \\ .1257 t \\ 06 \end{gathered}$ | $\begin{array}{r} 56 . \mathrm{C} \\ .385 \end{array}$ | $\begin{aligned} & 112.0 \\ & 231.6 \end{aligned}$ | $\begin{array}{r} -2 C 2.4 \\ 3.0 \end{array}$ | 4.4 | c. | 0. |
| 1 | 139.0 | $\begin{aligned} & 1.00 \\ & 29.8 \end{aligned}$ | $\begin{array}{r} 210 \\ .1 \end{array}$ | $\begin{array}{r} 30.0 \\ 64.9 \end{array}$ | $\begin{array}{r} 241.5 \\ .423 \end{array}$ | $\begin{array}{r} 129.0 \\ , \operatorname{schecc} \end{array}$ | $\begin{gathered} 64.0 \\ .1245 E 06 \end{gathered}$ | $\begin{aligned} & 65.0 \\ & .439 \end{aligned}$ | $\begin{aligned} & 150.7 \\ & 279.4 \end{aligned}$ | $\begin{array}{r} -167.4 \\ 2.3 \end{array}$ | 3.6 | c. | c. |
| 1 | 140.0 | $\begin{aligned} & 1.06 \\ & 29.8 \end{aligned}$ | $\begin{gathered} -210 \\ 0 . \end{gathered}$ | $\begin{aligned} & 30 . c \\ & 63.6 \end{aligned}$ | $\begin{array}{r} 241.5 \\ .424 \end{array}$ | $\begin{array}{r} 128.0 \\ .7 \subseteq 7 E \text { CE } \end{array}$ | $.1093 \mathrm{E}^{63.7} \text { ot }$ | $\begin{aligned} & 65.0 \\ & .437 \end{aligned}$ | $\begin{aligned} & 205.7 \\ & 275.6 \end{aligned}$ | $\begin{array}{r} -111.8 \\ 7.0 \end{array}$ | 3.2 | $0 \cdot$ | c. |
| 1 | 131.0 | $\begin{aligned} & 1.00 \\ & 29.5 \end{aligned}$ | $._{6}^{210}$ | $\begin{gathered} 30.6 \\ 68 . \end{gathered}$ | $\begin{array}{r} 241.5 \\ .456 \end{array}$ | $\begin{array}{r} 132 . \mathrm{C} \\ .758 \mathrm{CB} \end{array}$ | $\begin{gathered} 67.0 \\ .1044 e^{\circ} \text { on } \end{gathered}$ | $\begin{aligned} & 65.0 \\ & .465 \end{aligned}$ | $\begin{aligned} & 260.0 \\ & 300.1 \end{aligned}$ | $\begin{gathered} -59.4 \\ 1.5 \end{gathered}$ | 3.1 | c. | c. |
| 2 | 201.0 | $\begin{aligned} & 2.27 \\ & 22.4 \end{aligned}$ | $\begin{array}{r} .213 \\ .3 \end{array}$ | $\begin{aligned} & 30 . C \\ & 98.1 \end{aligned}$ | $\begin{aligned} & 247.5 \\ & .237 \end{aligned}$ | $\begin{array}{r} 129.0 \\ .160 E 07 \end{array}$ | $\begin{gathered} \text { 6x.e } \\ .1 \text { ORE ON } \end{gathered}$ | $\begin{aligned} & 60.0 \\ & .492 \end{aligned}$ | $\begin{array}{r} 68.4 \\ 128.1 \end{array}$ | $\begin{array}{r} -246 . c \\ 9.6 \end{array}$ | 14.7 | c. | c. |
| 2 | 209.0 | $\begin{aligned} & 2.21 \\ & 24.4 \end{aligned}$ | $.214$ | $\begin{aligned} & 30.0 \\ & 47.6 \end{aligned}$ | $\begin{array}{r} 25 c . c \\ .35 \mathrm{C} \end{array}$ | .1CIE C7 | $\begin{gathered} 71.0 \\ .1392 \mathrm{E} \end{gathered}$ | $\begin{aligned} & 55.0 \\ & .474 \end{aligned}$ | $\begin{aligned} & 150.7 \\ & 221.0 \end{aligned}$ | $\begin{array}{r} -1+9.3 \\ 5.6 \end{array}$ | $9 . \mathrm{C}$ | c. | c. |
| 2 | 210.0 | $\begin{aligned} & 2.27 \\ & 29.6 \end{aligned}$ | $\begin{array}{r} .214 \\ -1 \end{array}$ | $\begin{aligned} & 30.0 \\ & 10.3 \end{aligned}$ | $\begin{array}{r} 25 \mathrm{c} \cdot \mathrm{c} \\ .492 \end{array}$ | $.530 \mathrm{Ec}$ | $\begin{gathered} 69.0 \\ .12970_{06} \end{gathered}$ | $\begin{aligned} & 66.0 \\ & .497 \end{aligned}$ | $\begin{aligned} & 204 . ? \\ & 331.2 \end{aligned}$ | $\begin{array}{r} -111 . e \\ 1.2 \end{array}$ | 2.1 | c. | ${ }^{\text {c }}$ |
| 2 | 211.0 | $\begin{aligned} & 2.21 \\ & 29.5 \end{aligned}$ | $\begin{gathered} .214 \\ 0 . \end{gathered}$ | $\begin{aligned} & 30.7 \\ & 68.5 \end{aligned}$ | $\begin{gathered} 35 \mathrm{c} .6 \\ -487 \end{gathered}$ | $\begin{array}{r} 135.0 \\ .4+9 E C 6 \end{array}$ | $\begin{gathered} 67.0 \\ .1162 E^{0} 06 \end{gathered}$ | $\begin{aligned} & 68.0 \\ & .493 \end{aligned}$ | $\begin{aligned} & 252.6 \\ & 326.5 \end{aligned}$ | $\begin{array}{r} -69.2 \\ 1.1 \end{array}$ | 1.9 | c. | c. |
| 2 | 310.0 | $\begin{aligned} & 4.113 \\ & 24.0 \end{aligned}$ | $\begin{gathered} 211 \\ 0 . \end{gathered}$ | $\begin{aligned} & 30.0 \\ & 93.1 \end{aligned}$ | $\begin{array}{r} 244 . C \\ .322 \end{array}$ | $.9 ¢ 2506$ | $.1435 E_{06}^{67.0}$ | $\begin{aligned} & 61.0 \\ & .420 \end{aligned}$ | $\begin{array}{r} 11.0 \\ 196.0 \end{array}$ | $\begin{array}{r} -246.5 \\ 5.8 \end{array}$ | 9.1 | c. | c. |
| 2 | 334.0 | $\begin{aligned} & 4.03 \\ & 27.6 \end{aligned}$ | $\begin{array}{r} .210 \\ .4 \end{array}$ | $\begin{aligned} & 30.0 \\ & 16.0 \end{aligned}$ | $\begin{array}{r} 241.5 \\ .45 c \end{array}$ | $\begin{array}{r} 131.0 \\ .644 E \mathrm{Cb} \end{array}$ | $.1538 .0_{06}^{65}$ | $\begin{aligned} & 66.0 \\ & .489 \end{aligned}$ | $\begin{array}{r} 72.5 \\ 299.0 \end{array}$ | $\begin{array}{r} -246.9 \\ 7.0 \end{array}$ | .3.3 | c. | c. |

| | 2 | 308.0 | $\begin{aligned} & 4.03 \\ & 25.8 \end{aligned}$ | $\begin{array}{r} .71 \\ .2 \end{array}$ | $\begin{aligned} & 30.0 \\ & 85.3 \end{aligned}$ | $\begin{array}{r} 243 . C \\ .405 \end{array}$ | $\begin{array}{r} 133 . C \\ .837 E C 6 \end{array}$ | $\begin{array}{r} 67.0 \\ .1451 E 06 \end{array}$ | $\begin{aligned} & 66.0 \\ & .472 \end{aligned}$ | $\begin{aligned} & 101.3 \\ & 261.8 \end{aligned}$ | $\begin{array}{r} -219.3 \\ 3.2 \end{array}$ | 5.3 | C. | c. | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | 2 | 331.0 | 4.03 | . 211 | 30.0 | 243.0 | 137.0 | 65.0 | 71.0 | 151.8 | -171.2 | 4.3 | c. | 0. |
| | | | 26.0 | . 2 | 82.3 | . 435 | . 7t9E 06 | . 1375 E 06 | . 494 | 285.4 | 2.5 | | | |
| | 2 | 311.0 | 4.03 | . 210 | 30.0 | 240.0 | 137.0 | 69.0 | 68.0 | 176.5 | -146.5 | 2.5 | 0. | 0. |
| | | | 28.0 | 0. | 76.4 | . 476 | .540E 06 | .1317E 06 | . 500 | 319.7 | 1.4 | | | |
| | 2 | 332.0 | 4.03 | . 213 | 30.1 | 247.5 | 135.0 | 67.0 | 69.0 | 205.5 | -116.9 | 1.7 | C. | 0. |
| | | | 28.9 | . 2 | 70.9 | .473 | .415E C6 | .1247E 06 | . 484 | 313.7 | 1.0 | | | |
| | 2 | 336.0 | 4.03 | . 213 | 30.C | 248.8 | 135.0 | 67.0 | 68.0 | 255.4 | -60.4 | 1.3 | 0. | c. |
| | | | 29.5 | . 3 | 69.5 | .47? | . 315 E 06 | .1112E 06 | . 476 | 312.2 | . 7 | | | |
| | 2 | 309.0 | 4.03 | . 212 | 30.0 | 246.3 | 134.0 | 66.0 | 68.0 | 262.5 | -58.7 | 1.9 | 27.5 | -2 |
| | | | 28.0 | - 1 | 71.9 | .45C | .432E 06 | . 1065E 06 | . 469 | 296.1 | 1.2 | | | |
| | 2 | 501.0 | 5.75 | . 212 | 30.0 | 243.0 | 125.0 | 64.0 | 61.0 | 73.9 | -241.7 | 12.0 | c. | 0. |
| | | | 22.6 | . 6 | 97.0 | . 990 | . 110 E 07 | . 1419 CB | . 424 | 172.1 | 7.7 | | | |
| 三 | 2 | 507.0 | 5.75 | . 214 | 30.0 | 251.3 | 132.0 | 65.0 | 66.0 | 150.7 | -169.3 | 10.1 | 06 | C. |
| \square | | | 22.1 | . 7 | 96.4 | - 235 | . ICSE 07 | .1373E 06 | . 472 | 207.3 | 6.4 | | | |
| | 2 | 504.0 | 5.75 | . 214 | 30.0 | 251.3 | 135.0 | 70.0 | 65.0 | 204.6 | -117.2 | 0.1 | c. | c. |
| , | | | 22.4 | - 2 | 95.3 | . 381 | . 1C2E C7 | .1311E 06 | . 500 | 245.9 | 4.9 | | | |
| | 2 | 508.0 | 5.75 | . 214 | 30.0 | 250.0 | 138.0 | 6R.0 | 70.0 | 255.1 | -68.5 | 1.3 | O. C. | |
| | | | 20.0 | - 3 | 71.1 | . 515 | . 328 E 06 | . 1226E 06 | . 523 | 350.6 | . 7 | | | | |
| | 3 | 1204.0 | 2.27 | . 213 | 30.0 | 244.8 | 120.0 | 62.0 | 58.0 | 153.0 | -159.4 | 5.4 | c. $0 . \stackrel{\rightharpoonup}{4}$ | |
| | | | 29.3 | . 5 | 64.9 | . 382 | .117E 07 | .1189E 06 | -40? | 739.5 | 3.5 | | | | |
| | 3 | 1205.0 | 2.27 | . 214 | 30.c | 250.0 | 125.0 | 75.0 | 50.0 | 203.9 | -111.7 | 5.8 | c. | 0. |
| | | | 29.8 | . 1 | 75.6 | .41C | . 111E C7 | .1122E 06 | . 415 | 267.6 | 3.6 | | | |
| | 3 | 1207.0 | 2.27 | . 214 | 30.0 | 25c.c | 132.01 | 65.0 | 67.0 | 253.9 | -66.1 | 4.1 | 0 . | c. |
| | | | 29.9 | c. | 65.3 | . 461 | . 1 C8E C7 | - ICgue 06 | . 464 | 304.4 | 2.5 | | | |
| | 4 | 1271.0 | 2.27 | . 214 | 30.0 | 250.0 | 130.0 | 66.0 | 64.0 | 68.9 | -249.8 | 4.6 | C. | 0. |
| | | | 26.4 | 1.4 | 78.6 | . 38 C | . 757 O 06 | . $1505 E 06$ | . 442 | 238.8 | 2.5 | | | |
| | 4 | 1252.0 | 2.27 | . 214 | $30 . \mathrm{C}$ | zsc.c | 131.0 | 66.0 | 65.0 | 71.9 | -247.5 | 5.1 | C. | 0. |
| | | | 25.5 | 1.0 | 81.7 | . 379 | . 7 S9E 06 | . 1536 E 06 | . 459 | 238.7 | 3.2 | | | |
| | 4 | 1253.0 | 2.27 | . 214 | 30.C | 25C.C | 135.0 | 65.0 | 70.0 | 151.0 | -170.8 | $2 \cdot 3$ | C. | 0. |
| | | | 29.9 | 0. | 65.3 | . 447 | . 576E 06 | .1313E 06 | . 449 | 287.9 | 1.4 | | | |
| | 4 | 1254.0 | 2.27 | . 214 | $30 . \mathrm{C}$ | 250.0 | 138.0 | 63.0 | 75.0 | 203.5 | -120.1 | $2 . C$ | c. | c. |
| | | | 29.8 | 0. | 63.8 | . 501 | .576E C6 | .1306E 06 | . 505 | 333.1 | 1.1 | | | |
| | 4 | 1255.0 | 2.27 | . 214 | 30.0 | 25c.c | 14r.0 | 70.0 | 70.0 | 254.3 | -70.5 | 2.1 | c. | 00^{-} |
| | | | 29.8 | 0. | 70.5 | .5C8 | . 530 E 06 | . 1203E 06 | .510 | 343.3 | 1.1 | | | |
| | 3 | 1502.0 | 5.75 | . 213 | 30.0 | 248.8 | 1 C2.0 | 57.0 | 45.0 | 71.8 | -228.2 | 9.9 | c. | C. |
| | | | 29.5 | -3 | 70.0 | . 285 | .141E 07 | .1179E 06 | . 302 | 166.3 | 6.8 | | | |
| | 3 | 1507.0 | 5.75 | . 214 | 30.0 | 250.0 | 105.0 | 53.0 | 47.0 | 149.8 | -152.3 | 6.1 | c. | 0. |
| | | | 29.8 | . 1 | 59.4 | . 326 | . 126 ET | . 1040 C6 | . 334 | 193.5 | 4.2 | | | |
| | 3 | 1508.0 | 5.75 | . 214 | 30.C | 25c.c | 123.0 | 64.0 | 59.0 | 206.5 | -1C7.9 | | | |

| | | 29.7 | 0. | 65.2 | . 425 | -12SE 07 | . 1141E OR | . 435 | 277.1 | 3.6 | 5.7 | C. | c. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1509.0 | $\begin{aligned} & 5.75 \\ & 29.7 \end{aligned}$ | $\begin{array}{r} 213 \\ .1 \end{array}$ | $\begin{aligned} & 30 . C \\ & 64.0 \end{aligned}$ | $\begin{array}{r} 24 \varepsilon .8 \\ .42 C \end{array}$ | $\begin{array}{r} 125.0 \\ .121 E 07 \end{array}$ | $\begin{gathered} 63.0 \\ .1005 E 06 \end{gathered}$ | $\begin{aligned} & 62.0 \\ & .428 \end{aligned}$ | $\begin{aligned} & 252.0 \\ & 270.4 \end{aligned}$ | $\begin{array}{r} -63.6 \\ 3.2 \end{array}$ | 5.C | C. | C. |
| 4 | 1553.0 | $\begin{aligned} & 5.75 \\ & 11.8 \end{aligned}$ | $\begin{array}{r} .214 \\ 1.6 \end{array}$ | $\begin{array}{r} 30 . C \\ 121.4 \end{array}$ | $\begin{array}{r} 25 \mathrm{C} . \mathrm{C} \\ . \mathrm{C96} \end{array}$ | $\begin{array}{r} 129.0 \\ .119 E 07 \end{array}$ | $\begin{gathered} 64.0 \\ .1450 \mathrm{E} 06 \end{gathered}$ | $\begin{aligned} & 65.0 \\ & .423 \end{aligned}$ | $\begin{aligned} & 71.9 \\ & 12.4 \end{aligned}$ | $\begin{array}{r} -246.2 \\ 36.2 \end{array}$ | E1.5 | Cb | 0. |
| 4 | 1554.0 | $\begin{aligned} & 5.75 \\ & 29.2 \end{aligned}$ | $.214$ | $\begin{aligned} & 30.0 \\ & 69.5 \end{aligned}$ | $\begin{array}{r} 25 \mathrm{C} . \mathrm{C} \\ .5 \mathrm{Ct} \end{array}$ | $\begin{array}{r} 14 C .0 \\ .349 E C 6 \end{array}$ | $. \begin{gathered} 67.0 \\ .1453 E \end{gathered}$ | $\begin{aligned} & 73.0 \\ & .513 \end{aligned}$ | $\begin{array}{r} 150.3 \\ 339.4 \end{array}$ | $\begin{array}{r} -174.5 \\ .7 \end{array}$ | 1.3 | C: | O. |
| 4 | 1555.0 | $\begin{aligned} & 5.75 \\ & 28.2 \end{aligned}$ | $\begin{array}{r} .213 \\ .1 \end{array}$ | $\begin{aligned} & 30.0 \\ & 73.3 \end{aligned}$ | $\begin{array}{r} 248.8 \\ .489 \end{array}$ | $\begin{array}{r} 140.0 \\ .354 E 06 \end{array}$ | $\begin{array}{r} 68.0 \\ .1311 E \end{array}$ | $\begin{aligned} & 12.0 \\ & .505 \end{aligned}$ | $\begin{aligned} & 202.4 \\ & 326.7 \end{aligned}$ | -122.4 | 1.5 | Cb | C. |
| 4 | 1556.0 | $\begin{aligned} & 5.75 \\ & 28.6 \end{aligned}$ | $\begin{array}{r} .213 \\ .5 \end{array}$ | $\begin{aligned} & 30 . c \\ & 70.8 \end{aligned}$ | $\begin{array}{r} 78.8 \\ .483 \end{array}$ | $\begin{array}{r} 140.0 \\ .3 C P E C 6 \end{array}$ | $.1167 . \mathrm{E}_{06}$ | $\begin{aligned} & 73.0 \\ & .500 \end{aligned}$ | $\begin{aligned} & 255.1 \\ & 324.9 \end{aligned}$ | $\begin{array}{r} -69.7 \\ .7 \end{array}$ | 1.2 | 0. | Cb |
| 5 | 2504.0 | $\begin{aligned} & 5.75 \\ & 11.8 \end{aligned}$ | $\begin{array}{r} .215 \\ .5 \end{array}$ | $\begin{array}{r} 30.0 \\ 115.6 \end{array}$ | $\begin{array}{r} 252.5 \\ . c \in 6 \end{array}$ | $\begin{array}{r} 120.0 \\ .124 E 07 \end{array}$ | $.13200_{06}^{62.0}$ | $\begin{aligned} & 58.0 \\ & .359 \end{aligned}$ | $\begin{array}{r} 69.3 \\ -12.4 \end{array}$ | $\begin{array}{r} -243.1 \\ 50.1 \end{array}$ | 84.C | c. | C. |
| 5 | 2506.0 | $\begin{aligned} & 5.75 \\ & 29.3 \end{aligned}$ | $\begin{array}{r} .213 \\ .3 \end{array}$ | $\begin{aligned} & 30.0 \\ & 70.2 \end{aligned}$ | $\begin{array}{r} 247.5 \\ .560 \end{array}$ | $\begin{array}{r} 14 \mathrm{C} .0 \\ .325 \mathrm{E} 06 \end{array}$ | $\begin{aligned} & \quad 68.0^{69} \\ & .1292 E^{2} \end{aligned}$ | $\begin{aligned} & 72.0 \\ & .506 \end{aligned}$ | $\begin{array}{r} 208.7 \\ 334.4 \end{array}$ | $\begin{array}{r} -116.1 \\ .7 \end{array}$ | 1.3 | 0. | C. |
| 6 | 2551.0 | $\begin{aligned} & 5.75 \\ & 24.2 \end{aligned}$ | $\begin{array}{r} .215 \\ .3 \end{array}$ | $\begin{array}{r} 30.0 \\ 146.3 \end{array}$ | 252.5 .139 | $\begin{array}{r} 153.0 \\ .152 E C 7 \end{array}$ | $\begin{gathered} 131.0 \\ .1198 \mathrm{E} \end{gathered}$ | $\begin{aligned} & 22.0 \\ & .268 \end{aligned}$ | $\begin{aligned} & 81.7 \\ & 47.9 \end{aligned}$ | $\begin{array}{r} -250.5 \\ 40.8 \end{array}$ | 72.4 | c. | c. |
| 6 | 2556.0 | $\begin{aligned} & 5.75 \\ & 24.4 \end{aligned}$ | $\begin{array}{r} .213 \\ .3 \end{array}$ | $\begin{aligned} & 30 . C \\ & 88.6 \end{aligned}$ | $\begin{array}{r} 247.5 \\ .342 \end{array}$ | $\begin{array}{r} 127.0 \\ .158 \mathrm{E} \quad 0 \end{array}$ | $\begin{gathered} 65.0 \\ .1241 E 06 \end{gathered}$ | $\begin{aligned} & 62.0 \\ & .480 \end{aligned}$ | $\begin{aligned} & 203.4 \\ & 214.8 \end{aligned}$ | $\begin{array}{r} -113.5 \\ 8.0 \end{array}$ | 12.0 | c. | C. |
| 1 | 142.0 | $\begin{aligned} & 1.00 \\ & 29.8 \end{aligned}$ | $\begin{gathered} .209 \\ 0 \end{gathered}$ | $\begin{array}{r} 30.0 \\ 128.3 \end{array}$ | $\begin{aligned} & 478.0 \\ & -210 \end{aligned}$ | $\begin{array}{r} 192.0 \\ .148 \mathrm{E} 07 \end{array}$ | $\begin{gathered} 105.0 \\ .2029 E 06 \end{gathered}$ | $\begin{array}{r} 87.0 \\ .215 \end{array}$ | $\begin{aligned} & 80.5 \\ & 92.9 \end{aligned}$ | $\begin{array}{r} -271.2 \\ 7.3 \end{array}$ | 11.9 | C. | 0. 1 |
| 1 | 135.0 | $\begin{aligned} & 1.00 \\ & 29.6 \end{aligned}$ | $\begin{gathered} -210 \\ 0 . \end{gathered}$ | $\begin{array}{r} 30.0 \\ 112.3 \end{array}$ | $\begin{array}{r} 480.0 \\ .264 \end{array}$ | $\begin{array}{r} 193 . C \\ .1 \in 2 E C 7 \end{array}$ | $\begin{gathered} 106.0 \\ .2232 \mathrm{E} \end{gathered}$ | $\begin{aligned} & 87.0 \\ & .275 \end{aligned}$ | $\begin{array}{r} 81.4 \\ 128.5 \end{array}$ | $\begin{array}{r} -270 . 月 \\ 5.2 \end{array}$ | 8.3 | | $\text { o. } \stackrel{7}{7}$ |
| 1 | 130.0 | $\begin{aligned} & 1.00 \\ & 29.5 \end{aligned}$ | $\begin{array}{r} .212 \\ .5 \end{array}$ | $\begin{array}{r} 30.0 \\ 115.9 \end{array}$ | $\begin{array}{r} 492.5 \\ .268 \end{array}$ | $\begin{array}{r} 195.0 \\ .142 E 07 \end{array}$ | $\begin{gathered} 112.0 \\ .1981 E 06 \end{gathered}$ | $\begin{array}{r} 83.0 \\ .278 \end{array}$ | $\begin{aligned} & 149.9 \\ & 132.4 \end{aligned}$ | $\begin{array}{r} -203.2 \\ 4.7 \end{array}$ | 7.5 | c. | C. |
| 1 | 141.0 | $\begin{aligned} & 1.00 \\ & 29.8 \end{aligned}$ | $\begin{gathered} -210 \\ 0 . \end{gathered}$ | $\begin{array}{r} 30.0 \\ 111.8 \end{array}$ | $\begin{array}{r} 483 . c \\ .316 \end{array}$ | $\begin{array}{r} 217.0 \\ .134 E 07 \end{array}$ | $\begin{gathered} 110.0 \\ .1848 \mathrm{E} 06 \end{gathered}$ | $\begin{array}{r} 107.0 \\ .321 \end{array}$ | $\begin{aligned} & 206.3 \\ & 164.2 \end{aligned}$ | $\begin{array}{r} -156 . t \\ 3.4 \end{array}$ | 5.6 | C. | 0. |
| 1 | 133.0 | $\begin{aligned} & 1.00 \\ & 29.4 \end{aligned}$ | $\begin{array}{r} .213 \\ .4 \end{array}$ | $\begin{array}{r} 30.0 \\ 123.1 \end{array}$ | $\begin{array}{r} 495.0 \\ .320 \end{array}$ | $\begin{array}{r} 217.0 \\ .124 E 07 \end{array}$ | $\begin{gathered} 120.0 \\ .1724 \mathrm{E} 06 \end{gathered}$ | $\begin{array}{r} 97.0 \\ .329 \end{array}$ | $\begin{aligned} & 253.4 \\ & 172.2 \end{aligned}$ | $\begin{array}{r} -1 C 9.5 \\ 3.5 \end{array}$ | 5.8 | 27.51 | 5.0 |
| 2 | 213.0 | $\begin{aligned} & 2.27 \\ & 21.6 \end{aligned}$ | $\begin{array}{r} .214 \\ .5 \end{array}$ | $\begin{array}{r} 30.0 \\ 166.6 \end{array}$ | $\begin{array}{r} 5 C C .0 \\ . C 87 \end{array}$ | $\begin{array}{r} 185.0 \\ .1 \in 8 E \quad 7 \end{array}$ | $\begin{gathered} 108.0 \\ .2150 E 06 \end{gathered}$ | $\begin{aligned} & 77.0 \\ & .240 \end{aligned}$ | $\begin{array}{r} 86.4 \\ 4.5 \end{array}$ | $\begin{array}{r} -2 \in 2.1 \\ 28.6 \end{array}$ | 50.1 | c. | 0. |
| 2 | 212.0 | $\begin{aligned} & 2.27 \\ & 26.9 \end{aligned}$ | $\begin{array}{r} .214 \\ .4 \end{array}$ | $\begin{array}{r} 30.0 \\ 146.3 \end{array}$ | $\begin{array}{r} 5 C C .0 \\ .233 \end{array}$ | $\begin{array}{r} 215.0 \\ .116 E 07 \end{array}$ | $\begin{gathered} 115,0 \\ .2065 E_{06} \end{gathered}$ | $\begin{array}{r} 10 \mathrm{CC} . \mathrm{C} \\ .284 \end{array}$ | $\begin{aligned} & 146.1 \\ & 108.5 \end{aligned}$ | $\begin{array}{r} -216.0 \\ 6.0 \end{array}$ | 10.1 | c. | C. |
| 2 | 202.0 | $\begin{aligned} & 2.27 \\ & 27.9 \end{aligned}$ | $\begin{array}{r} .212 \\ .9 \end{array}$ | $\begin{array}{r} 30.0 \\ 130.1 \end{array}$ | $\begin{array}{r} 450.0 \\ .320 \end{array}$ | $\begin{array}{r} 223.0 \\ .148 \mathrm{C} \end{array}$ | $\begin{gathered} 115.0 \\ .2017 \mathrm{E} 06 \end{gathered}$ | $\begin{array}{r} 108.0 \\ .349 \end{array}$ | $\begin{aligned} & 205.2 \\ & 171.6 \end{aligned}$ | $\begin{array}{r} -1 \in 0.1 \\ 3.2 \end{array}$ | 5.3 | Cb | c. |
| 2 | 203.0 | $\begin{aligned} & 2.27 \\ & 23.1 \end{aligned}$ | $\begin{array}{r} 213 \\ .1 \end{array}$ | $\begin{array}{r} 30.6 \\ 153.7 \end{array}$ | $\begin{array}{r} 455.0 \\ .242 \end{array}$ | $\begin{array}{r} 217.0 \\ .128 E 07 \end{array}$ | $\begin{gathered} 113.0 \\ .1751 E 06 \end{gathered}$ | $\begin{array}{r} 104.0 \\ .339 \end{array}$ | $\begin{aligned} & 253.2 \\ & 117.9 \end{aligned}$ | $\begin{array}{r} -1 C 9.7 \\ 6.8 \end{array}$ | 11.5 | c. | 0. |
| 2 | 329.0 | $\begin{aligned} & 4.03 \\ & 25.9 \end{aligned}$ | $\begin{array}{r} .212 \\ .4 \end{array}$ | $\begin{array}{r} 30.0 \\ 150.6 \end{array}$ | $\begin{array}{r} 45 C .0 \\ .221 \end{array}$ | $\begin{array}{r} 197 . C \\ .132 E 07 \end{array}$ | $\begin{gathered} 108.0 \\ .2344 E 06 \end{gathered}$ | $\begin{array}{r} 89.0 \\ .288 \end{array}$ | $\begin{array}{r} 80.5 \\ 105.7 \end{array}$ | $\begin{array}{r} -273.5 \\ 7.5 \end{array}$ | 12.8 | 0. | c. |
| 2 | 330.0 | $\begin{aligned} & 4.03 \\ & 22.0 \end{aligned}$ | $\begin{array}{r} 212 \\ .1 \end{array}$ | $\begin{array}{r} 30.0 \\ 173.4 \end{array}$ | $\begin{array}{r} 493.5 \\ .181 \end{array}$ | $\begin{array}{r} 207.0 \\ .172 E 07 \end{array}$ | $\begin{gathered} 114.0 \\ .2154 E_{06} \end{gathered}$ | $\begin{array}{r} 93.0 \\ .315 \end{array}$ | $\begin{array}{r} 149.3 \\ 77.4 \end{array}$ | $\begin{array}{r} -209.5 \\ 14.7 \end{array}$ | 26.0 | 25.8 | . 6 |

| | 2 | 327.0 | $\begin{aligned} & 4.03 \\ & 25.1 \end{aligned}$ | $\begin{array}{r} .213 \\ .4 \end{array}$ | $\begin{array}{r} 30.0 \\ 148.6 \end{array}$ | $\begin{array}{r} 455.0 \\ .277 \end{array}$ | $\begin{array}{r} 215.0 \\ .124 E 07 \end{array}$ | $\begin{gathered} 115.0 \\ .2013 E 06 \end{gathered}$ | $\begin{array}{r} 100.0 \\ .341 \end{array}$ | $\begin{aligned} & 202.8 \\ & 144.5 \end{aligned}$ | $\begin{array}{r} -159.3 \\ 5.3 \end{array}$ | 9.1 | 0. | 0. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 2 | 328.0 | $\begin{aligned} & 4.03 \\ & 23.9 \end{aligned}$ | $\begin{array}{r} .212 \\ .3 \end{array}$ | $\begin{array}{r} 30.0 \\ 153.8 \end{array}$ | $\begin{array}{r} 450.0 \\ .274 \end{array}$ | $\begin{array}{r} 225.0 \\ .184 \mathrm{E} 07 \end{array}$ | $\begin{gathered} 115.0^{2} \\ .1778 E_{06} \end{gathered}$ | $\begin{array}{r} 110.0 \\ .351 \end{array}$ | $\begin{aligned} & 255.5 \\ & 141.4 \end{aligned}$ | $\begin{array}{r} -110.6 \\ 5.6 \end{array}$ | 9.6 | C. | 0. |
| | 2 | 506.0 | $\begin{aligned} & 5.75 \\ & 16.3 \end{aligned}$ | $\begin{array}{r} .215 \\ .1 \end{array}$ | $\begin{array}{r} 30 . C \\ 155 . C \end{array}$ | $\begin{aligned} & 5 C 5.0 \\ & -.059 \end{aligned}$ | $\begin{array}{r} 155.0 \\ .1 ¢ 9 E \quad 07 \end{array}$ | $\begin{gathered} 95.0 \\ .1984 E 06 \end{gathered}$ | $\begin{aligned} & 60.0 \\ & .170 \end{aligned}$ | $\begin{gathered} 62.5 \\ 0 . \end{gathered}$ | $\begin{gathered} -270.8 \\ 0 . \end{gathered}$ | 0. | C6 | C. |
| | 2 | 516.0 | $\begin{aligned} & 5.75 \\ & 22.5 \end{aligned}$ | $\begin{array}{r} .214 \\ .4 \end{array}$ | $\begin{array}{r} 30 . C \\ 156.1 \end{array}$ | $\begin{array}{r} 5 C 2.5 \\ .117 \end{array}$ | $\begin{array}{r} 178.0 \\ .1 \in 6 E \quad 07 \end{array}$ | $\begin{gathered} 105.0 \\ .2150 \mathrm{E} 06 \end{gathered}$ | $\begin{aligned} & 73.0 \\ & .233 \end{aligned}$ | $\begin{aligned} & 80.9 \\ & 27.8 \end{aligned}$ | $\begin{array}{r} -2 \in 4.2 \\ 19.5 \end{array}$ | 36.6 | C | c. |
| | 2 | 505.0 | $\begin{aligned} & 5.75 \\ & 21.8 \end{aligned}$ | $\begin{array}{r} .214 \\ 1.2 \end{array}$ | $\begin{array}{r} 30 . C \\ 174.6 \end{array}$ | $\begin{array}{r} 5 C C . C \\ .172 \end{array}$ | $\begin{array}{r} 207 . \mathrm{C} \\ .174 \mathrm{E} \quad \end{array}$ | $.2123 .0_{06}$ | $\begin{array}{r} 94.0 \\ .305 \end{array}$ | $\begin{array}{r} 151.6 \\ 69.7 \end{array}$ | $\begin{array}{r} -2 C 7.2 \\ 15.8 \end{array}$ | 28.3 | C. | C. |
| | 2 | 502.0 | $\begin{aligned} & 5.75 \\ & 23.3 \end{aligned}$ | $\begin{gathered} .212 \\ 0 . \end{gathered}$ | $\begin{array}{r} 30.0 \\ 163.6 \end{array}$ | $\begin{array}{r} 490.0 \\ .242 \end{array}$ | $\begin{array}{r} 219.0 \\ .143 E 07 \end{array}$ | $\begin{gathered} 114.0 \\ .1956 E 06 \end{gathered}$ | $\begin{array}{r} 105.0 \\ .335 \end{array}$ | $\begin{aligned} & 203.6 \\ & 119.3 \end{aligned}$ | $\begin{array}{r} -1 \in C .1 \\ 8.2 \end{array}$ | 14.2 | C. | 0. |
| | 2 | 503.0 | $\begin{aligned} & 5.75 \\ & 22.0 \end{aligned}$ | $\begin{array}{r} .213 \\ .0 \end{array}$ | $\begin{array}{r} 30.0 \\ 161.6 \end{array}$ | $\begin{array}{r} 455.0 \\ .239 \end{array}$ | $\begin{array}{r} 215 . C \\ .146 E 07 \end{array}$ | $\begin{gathered} 113.0 \\ .1811 E 06 \end{gathered}$ | $\begin{array}{r} 102.0 \\ .346 \end{array}$ | $\begin{aligned} & 247.0 \\ & 118.0 \end{aligned}$ | $\begin{array}{r} -115.1 \\ 8.4 \end{array}$ | 14.4 | 21.8 | . C |
| a | 3 | 1211.0 | $\begin{aligned} & 2.27 \\ & 29.8 \end{aligned}$ | $\begin{array}{r} .214 \\ .1 \end{array}$ | $\begin{array}{r} 30.0 \\ 117.8 \end{array}$ | $\begin{array}{r} 5 C C .0 \\ .187 \end{array}$ | $\begin{array}{r} 158.0 \\ .2 C 6 E 07 \end{array}$ | $\begin{gathered} 103.0 \\ .2091 E 06 \end{gathered}$ | $\begin{aligned} & 55.0 \\ & .192 \end{aligned}$ | $\begin{aligned} & 60.7 \\ & 80.7 \end{aligned}$ | $\begin{array}{r} -274.2 \\ 10.4 \end{array}$ | 17.0 | C. | c. |
| \checkmark | 3 | 1212.0 | $\begin{aligned} & 2.27 \\ & 29.8 \end{aligned}$ | $\begin{array}{r} .214 \\ .1 \end{array}$ | $\begin{array}{r} 30.0 \\ 114.8 \end{array}$ | $\begin{array}{r} 5 C 2.5 \\ .252 \end{array}$ | $\begin{array}{r} 185.0 \\ .1 C 9 E 07 \end{array}$ | $\begin{gathered} 109.0 \\ .1932 E \end{gathered}$ | $\begin{aligned} & 76.0 \\ & .260 \end{aligned}$ | $\begin{aligned} & 150.0 \\ & 123.4 \end{aligned}$ | $\begin{array}{r} -198.5 \\ 6.7 \end{array}$ | 10.6 | c. | 0. |
| | 3 | 1213.0 | $\begin{aligned} & 2.27 \\ & 29.9 \end{aligned}$ | $\begin{gathered} .214 \\ 0 . \end{gathered}$ | $\begin{array}{r} 30.0 \\ 102.0 \end{array}$ | $\begin{array}{r} 5 C C .0 \\ .293 \end{array}$ | $\begin{array}{r} 2 C C .0 \\ .176 E 07 \end{array}$ | $\begin{gathered} 101.0 \\ .1775 \mathrm{E} 06 \end{gathered}$ | $\begin{aligned} & 99.0 \\ & .295 \end{aligned}$ | $\begin{aligned} & 206.2 \\ & 146.5 \end{aligned}$ | $\begin{array}{r} -149.1 \\ 4.4 \end{array}$ | 7.0 | Cb | C. $\frac{1}{4}$ |
| | 3 | 1200.0 | $\begin{aligned} & 2.27 \\ & 29.8 \end{aligned}$ | $\begin{array}{r} .214 \\ .1 \end{array}$ | $\begin{array}{r} 30.0 \\ 116.7 \end{array}$ | $\begin{array}{r} 5 C C .0 \\ .316 \end{array}$ | $\begin{array}{r} 215.0 \\ .167 E 07 \end{array}$ | $\begin{gathered} 115.0 \\ .1694 E 06 \end{gathered}$ | 100.0 .322 | $\begin{aligned} & 253.6 \\ & 168.5 \end{aligned}$ | $\begin{array}{r} -1 C 8.5 \\ 4.5 \end{array}$ | 7.4 | | c. |
| | 4 | 1250.0 | $\begin{aligned} & 2.27 \\ & 28.9 \end{aligned}$ | $\begin{array}{r} .214 \\ .8 \end{array}$ | $\begin{array}{r} 30 . C \\ 120.6 \end{array}$ | $\begin{array}{r} 5 C C . C \\ .259 \end{array}$ | $\begin{array}{r} 2 \mathrm{CO} . \mathrm{C} \\ .1 \mathrm{CgEO} \end{array}$ | $\begin{gathered} 112.0 \\ .2378 E^{06} \end{gathered}$ | $\begin{aligned} & 88.0 \\ & .276 \end{aligned}$ | $\begin{array}{r} 75.1 \\ 124.1 \end{array}$ | $\begin{array}{r} -220.2 \\ 3.9 \end{array}$ | $6 . ?$ | c. | C. |
| | 4 | 1251.0 | $\begin{aligned} & 2.27 \\ & 29.7 \end{aligned}$ | $\begin{array}{r} .215 \\ .1 \end{array}$ | $\begin{array}{r} 36.0 \\ 118.2 \end{array}$ | $\begin{array}{r} 5 C 5.0 \\ .311 \end{array}$ | $\begin{array}{r} 215.0 \\ .976 E 00 \end{array}$ | $\begin{gathered} 116.0^{2} \\ .2214 \mathrm{E}^{2} \end{gathered}$ | $\begin{array}{r} 99.0 \\ 60.316 \end{array}$ | $\begin{aligned} & 149.7 \\ & 162.6 \end{aligned}$ | $\begin{array}{r} -212.4 \\ 2.7 \end{array}$ | 4.5 | Cb | 0. |
| | 4 | 1256.0 | $\begin{aligned} & 2.27 \\ & 29.5 \end{aligned}$ | $\begin{array}{r} .214 \\ .3 \end{array}$ | $\begin{array}{r} 30.0 \\ 123.1 \end{array}$ | $\begin{array}{r} 5 c \mathrm{c} .0 \\ .342 \end{array}$ | $\begin{array}{r} 227.0 \\ .930 \mathrm{E} \quad 00 \end{array}$ | $\begin{gathered} 120.0 \\ .2081 E 06 \end{gathered}$ | $\begin{array}{r} 107.0 \\ 60.349 \end{array}$ | $\begin{aligned} & 202.9 \\ & 186.0 \end{aligned}$ | $\begin{array}{r} -1 \epsilon 4.0 \\ 2.4 \end{array}$ | 4.1 | c 6 | 0. |
| | 3 | 1500.0 | $\begin{aligned} & 5.75 \\ & 29.9 \end{aligned}$ | $\begin{gathered} .214 \\ 0 . \end{gathered}$ | $\begin{aligned} & 30 . C \\ & 83 . \mathrm{C} \end{aligned}$ | $\begin{aligned} & 5 \mathrm{5c} 0.0 \\ & . \mathrm{CB6} \end{aligned}$ | $\begin{array}{r} 110.0 \\ .1 E 8 E 07 \end{array}$ | $\begin{gathered} 73.0 \\ .1552 \mathrm{E} 06 \end{gathered}$ | 37.0 .089 | $\begin{array}{r} 53.7 \\ 3.7 \end{array}$ | $\begin{array}{r} -252 . C \\ 13.4 \end{array}$ | 23.5 | C. | c. |
| | 3 | 1510.0 | $\begin{aligned} & 5.75 \\ & 29.9 \end{aligned}$ | $\begin{gathered} .214 \\ 0 . \end{gathered}$ | $\begin{array}{r} 30.0 \\ 120.8 \end{array}$ | $\begin{array}{r} 5 \mathrm{SC.c} \\ .218 \end{array}$ | $\begin{array}{r} 170.0 \\ .217 E \quad 07 \end{array}$ | $\begin{gathered} 104.0 \\ .1786 E^{06} \end{gathered}$ | $\begin{aligned} & 66.0 \\ & .220 \end{aligned}$ | $\begin{aligned} & 148.4 \\ & 104.2 \end{aligned}$ | $\begin{array}{r} -192.8 \\ 9.5 \end{array}$ | 15.4 | C. | C. |
| | 3 | 1511.0 | $\begin{aligned} & 5.75 \\ & 29.8 \end{aligned}$ | $\begin{array}{r} .214 \\ .1 \end{array}$ | $\begin{array}{r} 30.0 \\ 115.9 \end{array}$ | $\begin{array}{r} 5 C C . C \\ .281 \end{array}$ | $\begin{array}{r} 192.0 \\ .215 E 07 \end{array}$ | $\begin{gathered} 113.0 \\ .1775 E 06 \end{gathered}$ | $\begin{aligned} & 79.0 \\ & .287 \end{aligned}$ | $\begin{aligned} & 205.8 \\ & 145.4 \end{aligned}$ | $\begin{array}{r} -145.9 \\ 6.7 \end{array}$ | 1 C .7 | Cb | Cb |
| | 3 | 1512.0 | $\begin{aligned} & 5.75 \\ & 29.9 \end{aligned}$ | $\begin{gathered} .213 \\ 0 . \end{gathered}$ | $\begin{array}{r} 30.0 \\ 113.8 \end{array}$ | $\begin{array}{r} 495.0 \\ .298 \end{array}$ | $\begin{array}{r} 203.0 \\ .153 E 07 \end{array}$ | $\begin{gathered} 113.0 \\ .1584 E 06 \end{gathered}$ | $\begin{aligned} & 90.0 \\ & .300 \end{aligned}$ | $\begin{aligned} & 252.2 \\ & 155.8 \end{aligned}$ | $\begin{array}{r} -1 \subset 4.9 \\ 5.5 \end{array}$ | 8.8 | c. | 0. |
| | 4 | 1557.0 | $\begin{aligned} & 5.75 \\ & 22.4 \end{aligned}$ | $\begin{array}{r} .214 \\ .8 \end{array}$ | $\begin{array}{r} 36.0 \\ 161.7 \end{array}$ | $\begin{array}{r} 5 C 0.0 \\ .216 \end{array}$ | $\begin{array}{r} 21 C .0 \\ .116 E 07 \end{array}$ | $\begin{gathered} 118.0 \\ .2489 E 06 \end{gathered}$ | $\begin{aligned} & 92.0 \\ & .309 \end{aligned}$ | $\begin{array}{r} 84.8 \\ 100.5 \end{array}$ | $\begin{array}{r} -275.3 \\ 7.5 \end{array}$ | 12.8 | c. | c. |
| | 5 | 2505.0 | $\begin{aligned} & 5.75 \\ & 19.9 \end{aligned}$ | $\begin{array}{r} .213 \\ .4 \end{array}$ | $\begin{array}{r} 30.0 \\ 173.4 \end{array}$ | $\begin{array}{r} 455 . C \\ .241 \end{array}$ | $\begin{array}{r} 225.0 \\ .1 C 3 E 07 \end{array}$ | $.2042 \mathrm{E} 06$ | $\begin{array}{r} 104.0 \\ .347 \end{array}$ | $\begin{aligned} & 205.2 \\ & 118.8 \end{aligned}$ | $\begin{array}{r} -1 \epsilon 0.9 \\ 6.4 \end{array}$ | 11.1 | c. | C. |

| 5 | 2501.0 | 5.75 10.9 | - 214 | $\begin{array}{r} 30.0 \\ 155.0 \end{array}$ | $\begin{aligned} & 5 c c .0 \\ & -.068 \end{aligned}$ | $\begin{gathered} 155.0 \\ .2 \text { CiE } 07 \end{gathered}$ | $\begin{gathered} 93.0 \\ .1855 E_{06} \end{gathered}$ | ${ }^{62.0}$ | $\begin{gathered} 77.8 \\ 0 \end{gathered}$ | $\begin{gathered} -255.4 \\ 0 \end{gathered}$ | 0. | c. | c. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 2555.0 | $\begin{aligned} & 5.75 \\ & 27.0 \end{aligned}$ | $\begin{array}{r} .214 \\ .2 \\ .2 \end{array}$ | $\begin{array}{r} 30.0 \\ 143.9 \end{array}$ | $\begin{gathered} 5 c 0.0 \\ -2220 \end{gathered}$ | $\begin{array}{r} 187.0 \\ .154 E 07 \end{array}$ | $\begin{gathered} 1110.0 \\ .1716 E^{06} \end{gathered}$ | $\begin{aligned} & 77.10 \\ & .273 \end{aligned}$ | $\begin{gathered} 203.2 \\ 107.3 \end{gathered}$ | $\begin{array}{r} -146.2 \\ 8.3 \end{array}$ | 14.6 | c. | 0. |
| 6 | 2554.0 | 5.75 22.3 | $\begin{array}{r} .214 \\ .1 \end{array}$ | $\begin{array}{r} 30.6 \\ 105.0 \end{array}$ | $\begin{aligned} & 5 c 0.0 \\ & -.054 \end{aligned}$ | $\begin{array}{r} 165.0 \\ .210807 \end{array}$ | $\begin{gathered} 72.0 \\ .1562 E \\ 06 \end{gathered}$ | $\begin{aligned} & 33.0 \\ & .688 \end{aligned}$ | 49.3 | $\begin{gathered} -752: \AA \\ 0 \end{gathered}$ | c. | c. | 0. |
| 8 | 0326.0 | 4.03 28.4 | . 214 | 30.0 67.3 | 249.8 .450 | . $4058{ }^{133.06}$ | ${ }^{62.0}$ | . 41.0 | 253.2 297.7 | $\begin{array}{r} 67.4 \\ 1: 0 \end{array}$ | 4.17 | ${ }_{0}^{085}$ | ${ }_{0}^{20.0}$ |
| 8 | 0345.0 | 4.03 20.4 | .214 .0 | 30.0 112.2 | 250.0 .281 | . 4308 240.0 | . $1255^{90} \mathrm{E}^{\circ} \mathrm{O} 06$ | ${ }^{50.0}$ | 205.5 192.8 | -119.3 37.5 | 4.17 60.0 | . 50 | 20.0 |
| 8 | 0343.0 | 4.03 27.2 | ${ }^{.} 215$ | 30.0 76.8 | $\begin{array}{r}252.5 \\ \hline 408\end{array}$ | .2358 ${ }^{137}$ or | | . 60.0 | 204.0 276.1 | -116.6 | [4.52 | . 50 | 27.0 |
| 8 | 0344.0 | 4.03 28.1 | . 2117 | 30.0 61.0 | 244.0 .400 | | ${ }_{.1198 \cdot \mathrm{E}^{6}}^{06}$ | 75.0 | 202.5 297.0 | -113.8 | *** | 1.5 | 27.0 |
| 7 | 7210.0 | 1.00 29.8 | ${ }_{.} 2130$ | 30.0 35.9 | 250.0 .500 | $.871806$ | $\begin{array}{r} 35.0^{3} \\ .1247 \mathrm{~B}^{2} 66 \end{array}$ | 93.0 | 203.4 318.7 | ${ }^{-114.818}$ | 2.27 | | 24.0 |
| 7 | 7510.0 | ${ }_{24.6}^{1.00}$ | . 214 | 30.0 59.1 | 250.0 .332 | . 4082 E O7 0 | .$^{11^{36} 8 \mathrm{E}^{\circ} \mathrm{O}} 06$ | ${ }^{86}{ }^{86}{ }^{\circ}$ | 198.4 188.9 | -115.3 13.4 | 5.75 19.2 | 1.0 | 24.0 |
| 7 | 7710.0 | ${ }_{2}^{1.00}$ | .213 .2 | 30.0 58.4 | 250.0 .330 | . 481218 of | $\begin{array}{r} { }^{365 \cdot 0} 0 \\ .1125 \mathrm{E}_{06} \end{array}$ | ${ }^{85} 50.0$ | 202.3 188.5 | ${ }_{-110.1}$ | 7.0 21.9 | 1.0 | 24.0 |
| 7 | 7250.0 | 1.00 29.7 | ${ }_{.2125}$ | 30.0 38.4 | 250.0 | .82180600 | $.1300 \mathrm{E}{ }^{37} 06$ | . 525.0 | 303.5 | -116.53 | 2.27 | 5.0 | 22.0 |
| 7 | 7550.0 | 1.00 25.7 | .212 .2 | 30.0 55.9 | 250.0 .352 | . 239150 | ${ }^{36.0} 06$ | . 49.5° | 203.5 213.4 | -105.6 6 | 9.7 7^{5} | 5.0 | 22. |
| 7 | 7750.0 | 1.00 25.9 | ${ }^{.211}$ | 30.0 57.7 | 250.0 .345 | ${ }^{22885}$ | .$^{1061 \mathrm{~B}^{37}{ }^{\circ} 06}$ | 78.0 | 206.1 210.3 | -103.6 | 7.0 | 5.0 | 22.0 |
| 7 | 7290.0 | 1.00 29.8 | .211 .0 | 30.0 39.0 | 250.0 .506 | . $733{ }^{135.0} 06$ | ${ }_{.12838 \mathrm{E}^{38}{ }_{06}}$ | . 5710° | 205.0 324.6 | $\begin{array}{r} -116.8 \\ .77 \end{array}$ | $\begin{aligned} & 2.27 \\ & 1.27 \end{aligned}$ | 9.0 | 20.0 |
| 481 | Loma tub | | | | | | | | | | | | |
| 1 | 114136 | 1.00 47.6 | .212 .1 | 48.0 39.0 | 250.0 .484 | $.4915 \mathrm{E} .140 .0$ | $.1091 \mathrm{E} .06$ | 102.0 .489 | 254.2 300.4 | $\begin{array}{r} -70.6 \\ \hline .56 \end{array}$ | . 87 | | |
| 1 | 139135 | $\stackrel{1.00}{47.8}$ | .210 .1 | 48.0 38.7 | 240.0 .494 | ${ }^{.53828 .06}$ | ${ }_{.118484 \mathrm{E}^{38} 06}$ | 100.0 .498 | 206.1 310.1 | -117.51 | . 95 | | |
| 1 | 128110 | ${ }_{47}^{1.80}$ | . 212 | 988.1 | 125.0 .637 | ${ }_{.} 345318.06$ | | . 64.0 | ${ }^{251.3} 481.6$ | - 59.2 | 4.5 | 47.5 | |
| dat | ca taken w | oscI | I nss | ILIty P | Sast | | | | | | | | |
| 1 | 107.0 | 1.00 27.0 | $\begin{array}{r} .213 \\ 0.0 \end{array}$ | 30.0 95.0 | 250.0 | $.4278 .06$ | $.5955^{95.0}$ | . 017 | 71.8 | -222 7 | | 17.0 | |
| 1 | 108.0 | 1.80 28.3 | $\begin{array}{r} .214 \\ .7 \end{array}$ | 30.0 | 250.0 | $\begin{array}{r} 834 \mathrm{~B} 06 \\ \hline \end{array}$ | . $11568 \mathrm{E}^{\circ} \mathrm{O} 06$ | . 24.0 | 88.8 | -252.3 | | | |
| 1 | 120.0 | 1.00 29.9 | ${ }_{.1}^{.215}$ | $\begin{array}{r} 30.0 \\ 181.2 \end{array}$ | $\begin{array}{r} 244.0 \\ .374 \end{array}$ | $\begin{array}{r} 209.0 \\ .1014 \mathrm{E} \\ \hline 07 \end{array}$ | $\stackrel{181.0}{.1404 \mathrm{~B}} 06$ | $.28 .0$ | 90.8 | -268.7 | 25.0 | 12.8 | |
| 1 | 128.0 | 1.00 29.8 | . 211 | 30.0 | 243.0 | $.86203 .0$ | $\begin{aligned} & 170.0 \\ & .1190 \mathrm{E} 06 \end{aligned}$ | . 33.0 | 124.3 | -228.2 | | | |
| 1 | 111.0 | 1.00 29.6 | ${ }^{.} 213$ | 30.0 | 250.0 | $\begin{aligned} & 725 \mathrm{E} .0 \\ & .7 \end{aligned}$ | $\begin{gathered} 147.0^{1} \\ .1010 \mathrm{E} 06 \end{gathered}$ | ${ }^{2845}{ }^{28}$ | 162.7 | -180.9 | | | |
| 1 | 119.0 | 1.00 29.6 | ${ }_{\text {. }} .1135$ | 30.0 | 249.0 | 225.0
 .9900 B
 06 | $.1395 .0_{06}$ | . ${ }^{30.0}$ | 175.8 | -190.3 | | | |
| 1 | 118.0 | 1.00 29.6 | $\begin{array}{r} .2135 \\ .2 \end{array}$ | $\begin{array}{r} 30.0 \\ 190.5 \end{array}$ | 24.9 .414 | $.83628 .0$ | $.11968 \mathrm{E} 06$ | . 29.0 | 238.7 | -124.7 | | | |
| 1 | 112.0 | 1.00 28.1 | . 21.6 | 30.0 | 500.0 | ${ }^{187.0}$ | $.1559 .0{ }_{06}$ | $.18 .8^{0}$ | 99.4 | -250.0 | | | |
| 1 | 122.0 | $\begin{aligned} & 1.00 \\ & 29.8 \end{aligned}$ | $\begin{gathered} .2105 \\ .0 \end{gathered}$ | 30.0 | 483.0 | $.11211 .0$ | ${ }^{1867.0}{ }_{06}$ | $\begin{gathered} 24.0 \\ .086 \end{gathered}$ | 104.8 | -255.3 | 4.9 | | |
| 1 | 113.0 | ${ }_{25}^{1.00}$ | $\cdot 2.212$ | 30.0 | 500.0 | $\text { . } 2760 \mathrm{E} .06$ | $.1355 \dot{I}^{196}$ | ${ }^{18.063}$ | 144.1 | -215.6 | | | |
| 1 | 128.0 | 1.00 | . 211 | 30.0 | 486.0 | $.1262 \mathrm{E} 0 \mathrm{O}$ | $.1745 \mathrm{i} 06$ | ${ }^{29.0}$ | 114.6 | -245.2 | | | |
| past transiemt tegr | | | | | | | | | | | | | |
| 2 | 513.0 | 5.75 20.1 | $\begin{array}{r} 214 \\ 1.1 \end{array}$ | 30.0 104.2 | 125.0 .425 | $.73395 .06$ | | ${ }^{20.0}$ | $\begin{aligned} & 200.4 \\ & 298.2 \end{aligned}$ | $\begin{array}{r} -108.7 \\ 9.9 \end{array}$ | 17.2 | | |
| | | tribut | | 5 7 7 | eak $\operatorname{In} 1$ niform cosine | ith Conine th Stepped | $\begin{aligned} & \text { Spike } \\ & \text { Spike } \end{aligned}$ | | | | | | |
| **Second Thermal Pailure **5.14 to 4.54 | | | | | | | | | | | | | |

BIBLIOGRAPHY

1. DeBortoli, R.A., S.J. Green, B.W. LeTourneau, M. Troy and A. Weiss, "Forced-Convection Heat Transfer Burnout Studies for Water in Rectangular Channels and Round Tubes at Pressure Above 500 psi," Report WAPD-188, Bettis Atomic Power Laboratory (1958).
2. DeBortoli, R.A., J.D. Roarty, and A. Weiss, "Additional Burnout Data for a Rectangular Channel Having a Cosine Axial Heat Flux," WAPD-TH-227, August 23, 1956.
3. Weiss, A., "Hot Patch Burnout Tests in a 0.097 in. x in. x 27 in. long Rectangular Channel at 2000 Psia," WAPD-TH338, August 7, 1957.
4. Bell, D.W. "Correlation of Burnout Heat-Flux Data at 2000 Psia," NSE, 7, 245-251 (1960).
5. Swenson, H.S., J.R. Carver and R. Kakarala, "The Influence of Axial Heat Flux Distribution on the Departure from Nucleate Boiling in a Water Cooled Tube," ASME Paper 62-WA-297, Nov. 1962.
6. Janssen, E., J.A. Kervinen, "Burnout Conditions for Nonuniformly Heated Rod in Annular Geometry Water at 1000 Psia," GEAP-3755, APED, General Electric Co., San Jose, Calif., June 1963.
7. Casterline, J. and B. Matzner, "Burnout in Long Vertical Tubes with Uniform and Cosine Heating Using Water at 1000 Psia," Columbia Univ., Eng. Res. Labs., Topical Report, $\neq 1$, Task XVI of Contract AT (30-3)-187, July 27, 1964. See also AEC Report TID-21031.
8. Schaefer, J.W. and J.R. Jack, "Investigation of ForcedConvection Nucleate Boiling of Water for Nozzle Cooling at Very High Heat Fluxes," NASA TND-1214, May 1962.
9. Lee, D.H. and J.D. Obertelli, "An Experimental Investigation of Forced Convection Burnout in High Pressure Water: Part II, Preliminary Results for Round Tubes with NonUniform Axial Heat Flux Distribution," AEEW-R309, November 1963.
10. Lee, D.H., "An Experimental Investigation of Forced Convection Burnout in High Pressure Water: Part III, Long Thbes with Uniform and Non-Uniform Axial Heating," AEEW-R355, March 1965.
11. Bertoletti, So, G. Gaspari, C. Lombardi and R. Zavattarelli, "Critical Heat Flux Data for Fully Developed Flow of Steam Water Mixtures in Round Vertical Tubes with Non-Uniform Axial Power Distribution, " CISE-R74, April 1963.
12. Silvestri, M., "Two Phase Flow Problems," Report EUR 352.e, EURATOM, Brussels, Belgium, 1963.
13. Styrikovich, M. A., Z.I. Miropolsky and Shen Chzhao-Yuan, "The Effect of Non-Uniformity of Heating Along a Length of Pipe on the Magnitude of Critical Heat Fluxes," (Doklady) of the Academy of Sciences, USSR, No. 4, 859-862, 139 (1961). See AEC-TR-4961.
14. Duke, E., "Burnout and Heat Transfer Correlations for Once Through Superheat at Iow Flow with an Exponential Source," ANS Meeting, June 1964, Paper AED-CONF. 1964-081-8.
15. Non-Uniform Heat Generation Experimental Program, Quarterly Progress Report No. 7, BAW-3238-7, January-March 1965.
16. Becker, K. et al., "The Influence of Non-Uniform Axial Heat Flux Distribution on the Burnout Conditions in Round Ducts," Report in Progress, $A B$ Atomenergi, Sweden.
17. Becker, K. and P. Persson, "An Analysis of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts," ASME Trans. Series C, 86, 3, 393-407 63-HT-25, August 1964.
18. Isbin, H.S. et al., "A Model for Correlating Two Phase, Steam-Water Burnout Heat Transfer Fluxes," Jour. of Heat Transfer, Trans. ASME, Series C, 23, 149 May 1961.
19. Tong, L., H. Currin, P. Larsen and 0. Smith, "Influence of Axial Non-Uniform Heat Flux on DNB, "WCAP-2767, April 1965. See also AICHE paper, No. 17, Eighth National Heat Transfer Conf., LosAngeles, August 1965.
20. Milloti, S., "A Survey of Burnout Correlations as Applied to Water-Cooled Nuclear Reactors," SM Thesis, Dept. of Nuc. Eng., Penn. State Univ., September 1964.
21. Suo, M. et al., "Investigation of Boiling Flow Regimes and Critical Heat Flux," Dynatech Report No. 517, NYO-33043, March 1965.
22. Lopina, R.F., "Two-Phase Critical Heat Flux to Low Pressure Water Flowing in Small Diameter Tubes," SM Thesis, Dept. of Mech. Eng., MIT, June 1965.
23. Haberstroh, R. and P. Griffith, "The Transition from the Arnular to the Slug Flow Regime in Two-Phase Flow," Contract No. AT (30-1)-3301, Technical Report 5003-28, Dept. of Mech. Eng., MIT, June 1964.
24. Baker, 0., "Simultaneous Flow of 011 and Gas," 011 and Gas Jour., 53, 185 (1954).
25. Lowdermilk, W.H. and W.F. Weiland, "Some Measurements of Boiling Burnout," NACA-RM-E54 KlO, (1955).
26. Jens, W.H. and P.A. Lottes, "Two-Phase Pressure Drop and Burnout Using Water Flowing in Round and Rectangular Channels," ANL-4915, October 1952.
27. Lowdermilk, W.H., C.D. Lanzo and B.L. Siegel, "Investigation of Boiling Burnout and Flow Stability for Water Flowing in Tubes," NACA-TN 4382, September 1958.
28. Becker, K.M., "Measurements of Burnout Conditions for Flow of Boiling Water in Vertical Round Ducts, " AE-87 (1962).
29. VonGlahn, U., "An Empirical Correlation of Critical Boiling Heat Fiux in Forced Flow Upward Through Uniformly Heated Tubes", NASA TMD-1285, September 1962.
30. MacBeth, R.V., "Burnout Analys1s, Part 4: Application of a Local Condition Hyopthesis to World Data for Uniformly Heated Round Tubes and Rectangular Channels," AEEW-R267, August 1963.
31. Maulbetsch, J.S., "A Study of System-Induced Instabilities in Forced-Convection Flows with Subcooled Boiling," Contract AF 49(638)-1468, Report No. 5382-35, Dept. of Mech. Eng., MIT, April 15, 1965.
32. Bergles, A.E. and W.M. Rohsenow, "Forced Convection Surface Boiling Heat Transfer and Burnout in Tubes of Small Dlameter," Contract AF 19(604)-7344, Report No. 8767-21, Dept. of Mech. Eng., MIT, May 25, 1962.
33. Fauske, H. K., "Two-Phase Critical Flow," Notes from Special Summer Program on Two-Phase Gas-Liquid Flow, MIT, July 1964.
34. Hewitt, G. et al., "Burnout and Nucleation in Climbing Film Fiow," AERE-R4374, August 1963.
35. Bergles, A.E. and Rohsenow, W.M., "The Determination of Forced Convection Surface-Boiling Heat Transfer," Jour. of Heat Transfer, 86, Series C, No. 3, 365-372 (Paper 63-HT-22) August 1964.
36. Jens, W. H. and P.A. Lottes, ANL-4627, May 1951.
37. Bernath, L. and Begell, W., "Forced Convection, Local Boiling Heat Transfer in Narrow Annuli," Chem. Eng. Prog. 55 Symposium Series, No. 29, 59-65 (1959).
38. Dengler, C.E. and J.N. Addoms, Chem. Eng. Prog. Symp. Series 52, 18, 95-103 (1956).
39. Chen, J.C., "A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow," ASME Paper No. 63-HT-34, ASME-AIChE Heat Transfer Conf., Boston, August 1963.
40. Brown, W., MechE Thesis, Dept. of Mech. Eng., MIT (in progress - to be completed February 1966).
41. Hewitt, G. et al., "Burnout and Film Flow in the Evaporation of Water in Tubes,: AERE-R 4864, March 1965.
42. Waters, E. et al., "Experimental Observations of Upstream Boiling Burnout, "AIChE Paper No. 7, ASME-AIChE Heat Transfer Conf., Boston, August 1963.
43. Martinelli, R.C. and Nelson, D.B., "Prediction of Pressure Drop During Forced-Circulation Boiling of Water", Trans. ASME, 70, August 1948.
44. Levy, S., "Prediction of Two-Phase Annular Flow with Liquid Entrainment", APED-4615, May 1964.
45. Trembley, P., Priv. Comm., MIT, Nuc. Eng. Dept. (1965).
46. Keenan, J.H. and F.G. Keyes, "Thermodynamic Properties of Steam", Wiley (1962 ed).
47. Steltz, W.G., "The Formulation of Steam Properties for Digital Computer Application," Trans. ASME, Paper No. 57-A109 (1958).
48. Wellman and Sibbitt, "Heat Transfer Properties of Water", Combustion, April 1955.
49. Jones, A.B. and D.G. Dight, "Hydrodynamic Stability of a Boiling Channel, Part 2^{11}, KAPL-2208, Knolls Atomic Power Laboratory (1962).
50. Kadakia, P.L., "SI PYFT-TO FIT POLYNOMIAL OF DEGREE 15 (MAX)," MIT Share Program No. 1421, January 3, 1962.
51. Volyak, L.D., "Temperature Dependence of the Surface Tension of Water, " Doklady Akad. Nauk. S.S.S.R. 74, 307-10 (1950).
52. Rohsenow, W. and H. Choi, Heat Mass and Momentum Transfer Prentice-Hall Inc. (1961).
53. Kestin, J. and P.D. Richardson, "The Viscosity of Superheated Steam up to $275^{\circ} \mathrm{C}$. A Refined Determination, "Trans. ASME, Paper No. 62-WA-172 (1963).
54. Quan, D., "Properties of Superheated Steam" Nuclear-13, Orenda Engines Limited, Malton, Ont., December 1959.

FIGURE 1. EFFECT OF LOCAL HEAT FLUX SPIKE ON BURNOUT

FIGURE 4. REGIMES OF TWO - PHASE FLOW
-185-

FIGURE 5. FLOW REGIME MAP FOR TEST CONDITIONS

FIGURE 6. COMPARISON OF UNIFORM FLUX DATA WITH EXISTING CORRELATIONS, $G=0.5 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

FIGURE 7. COMPARISON OF UNIFORM FLUX DATA WITH EXISTING CORRELATIONS, $G=1.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-F T^{2}$
-188-

FIGURE 8. COMPARISON OF UNIFORM FLUX DATA WITH EXISTING CORRELATIONS, $G=2.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

FIGURE 9. SCHEMATIC LAYOUT OF EXPERIMENTAL FACILITY AND TEST SECTION

UNIFORM
2717/7/D
Cl/ $\angle 1 / \square$
$\triangle \rightarrow 7 / 7$
区-27C7

cosine

yoncy

PEAK OUTLET
BZACM

LINEARLY DECREASING

PEAK INLET

FIGURE 10. AXIAL FLUX DISTRIBUTIONS TESTED

FIGURE II: CONFIRMATION FOR TEST SECTION II2 THAT THE OVERALL SLOPE GOES TO ZERO AT THE FLOW RATE ($G=2.0 \times 10^{6}$ LBM/HR-FT ${ }^{2}$) WHERE OSCILLATION OCCURED

FIGURE 12. TOTAL CRITICAL POWER FOR UNIFORM AND COSINE FLUX DISTRIBUTIONS AT $G=0.5 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

FIGURE 13. TOTAL CRITICAL POWER FOR LINEAR AND PEAKED FLUX DISTRIBUTIONS AT $G=0.5 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

FIGURE 14. CRITICAL LOCATIONS (INCHES FROM INLET) FOR THE NONUNIFORM AXIAL FLUX DISTRIBUTIONS INVESTIGATED AT $G=0.5 \times 10^{6}$ LBM HR-FT²

FIGURE 16. TOTAL CRITICAL POWER FOR LINEAR AND PEAKED FLUX DISTRIBUTIONS AT $G=1.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

FIGURE 17. CRITICAL LOCATIONS (INCHES FROM INLET) FOR THE NONUNIFORM AXIAL FLUX DISTRIBUTIONS INVESTIGATED AT $G=1.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

FIGURE 18. TOTAL CRITICAL POWER FOR UNIFORM AND COSINE FLUX DISTRIBUTIONS $A T G=2.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

FIGURE 19. TOTAL CRITICAL POWER FOR LINEAR AND PEAKED FLUX DISTRIBUTIONS AT $G=2.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}-\mathrm{FT}^{2}$

FIGURE 20. CRITICAL LOCATIONS (INCHES FROM INLET) FOR THE NONUNIFORM AXIAL FLUX DISTRIBUTIONS INVESTIGATED AT G $=2.0 \times 10^{6} \mathrm{LBM} / \mathrm{HR}^{2}-\mathrm{FT}{ }^{2}$

FIGURE 2I. SUMMARY OF EFFECT OF LINEAR INCREASING AND DECREASING FLUX DISTRIBUTIONS ON TOTAL CRITICAL POWER

FIGURE 22. SUMMARY OF EFFECT OF PEAK INLET AND EXIT FLUX DISTRIBUTIONS ON TOTAL CRITICAL POWER

FIGURE 23. TOTAL CRITICAL POWER FOR DATA OF BERTOLETTI ET AL. (REF. II)

FIGURE 24. TOTAL CRITICAL POWER FOR DATA OF SWENSON (REF. 5)

MAXIMUM CAVITY RADIUS (FT) REQUIRED FOR VARIOUS PRESSURES

FIGURE 27. BERGLES-ROHSENOW CRITERIA (REF 35) FOR INCIPIENT BOILING (q/A) $i=15.60 P^{1.156}$
$\left(T_{\text {WALL }}-T_{\text {SAT }}\right)^{2.30 / P 0.0234}$

FIGURE 29. TYPICAL DETERMINATION OF HEAT FLUX REQUIRED FOR INCIPIENT BOILING, $(q / A)_{i}$, AT THE CRITICAL LOCATION

FIGURE 30. HEAT FLUX CONDITIONS ALONG TEST SECTION LENGTH

FIGURE 3I. OPERATING LINES FOR TEST SECTION 1271 FOR $Q_{\text {TOT }}$ EQUAL TO AND LESS THAN $Q_{\text {CRIT }}$

ENTHALPY INCREASE, ANNULAR TRANSITION TO CRITICAL LOCATION, $\triangle H_{A N N}-C$, BTU/LBM
FIGURE 32. CRITICAL FLUX RESULTS AT $G=0.5 \times 10^{6}$ LBM/HR-FT ${ }^{2}$

FIGURE 33. CRITICAL FLUX RESULTS AT $G=1.0 \times 10^{6}$ LBM/HR-FT ${ }^{2}$

ENTHALPY INCREASE, ANNULAR TRANSITION TO CRITICAL LOCATION, $\triangle H_{A N N}-C$, BTU/LBM
FIGURE 34. CRITICAL FLUX RESULTS AT $G=2.0 \times 10^{6}$ LBM/HR-FT ${ }^{2}$

FIGURE 35. DIMENSIONLESS REPRESENTATION OF BERGLESROHSENOW NUCLEATION THEORY. THE EFFECT OF LIMITED MAXIMUM CAVITY SIZES IS SHOWN FOR $P=100$ psia ($\mathrm{T}_{\mathrm{W}} \sim$.I) ONLY
-216-

FIGURE 36. UNIFORM FLUX DISTRIBUTION DATA OF HEWITT ET AL. (REF.4I)

-LL己-

FIGURE 37. OPERATING HISTORIES FOR TOTAL INPUT POWER UP TO THE CRITICAL POWER (UNIFORM AND LINEAR FLUX DISTRIBUTIONS)

figure 38. operating histories for total input power up to the critical power (COSINE AND PEAKED FLUX distributions)

FIGURE 39. EFFECT OF AXIAL FLUX DISTRIBUTION ON THE CRITICAL LOCATION

FIGURE 4I. THE EFFECT OF INLET SUBCOOLING ON THE CRITICAL LOCATION (PEAK EXIT AND INLET FLUX DISTRIBUTIONS)
RATIO OF LOCAL FLUX TO FLUX REQUIRED FOR NUCLEATION,

FIGURE 42. THE EFFECT OF INLET SUBCOOLING ON THE CRITICAL LOCATION (LINEAR DECREASING FLUX DISTRIBUTION)
-223-

FIGURE 43. COMPARISON OF CRITICAL FLUX RESULTS FOR THE RANGE OF MASS VELOCITIES INVESTIGATED

FIGURE 44. EFFECT OF LENGTH ON THE CRITICAL CONDITION

FIGURE 45. EFFECT OF INLET SUBCOOLING ON THE CRITICAL CONDITION

FIGURE 46 THE EFFECT OF FLUX SPIKE LENGTH ON THE CRITICAL CONDITION FOR G=10XIO ${ }^{6}$ LBM/hR-FT ${ }^{2}$

FIGURE 48. CRITICAL FLUX RESULTS AT 1000 PSIA FROM BABCOCK AND WILCOX DATA (REFERENCE 15)

FIGURE 50. CRITICAL FLUX RESULTS AT 2000 PSIA FROM BABCOCK AND WILCOX DATA (REFERENCE 5)

FIGURE 5I. ESTIMATION OF THE CRITICAL REGION WIDTH (IN \% TOTAL INPUT POWER) OF FIGURE 50 FOR 2000PSIA DATA REFERENCE 5)

FIGURE 52. THE EFFECT OF INLET SUBCOOLING ON CRITICAL FLUX RESULTS FOR COSINE FLUX DISTRIBUTION WITH FLUX SPIKE (REFERENCE 5)

[^0]: Ginanutive satt
 Hin reß゙ The Anolication ne this sugdnutinf are above . 2PSia

 DRESTURES,"SHADF, TUBF,DATIMM, JIAINS, VOLTS,AMPS,FNTHIN,FLMASS
 ORFSN, POESI:, ODESNT, DFSNO, TSDN, RNLCCA, XLNGTH,SHIUNTM, D,

