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ABSTRACT

A large gap exists in the body of knowledge about the relation-

ship of system structure and system behavior. The gap exists between

formal mathematical methods and the conceptual or experiential tools

that interact to give a "gut feel" for the behavior of a system. The

traditional means of narrowing this gap is to work with feedback sys-

tems for several years until the analyst acquires a trained intuition.

This thesis gives another means of narrowing the gap between formal

mathematics and intuition: clearly enunciating explicit principles

or rules of thumb about the relationship between a system's structure

and its behavior. Conceptual knowledge of that relationship allows

one to begin from a behavior mode and identify the kinds of structures

that could have generated it. Thus, in formulating and restructuring
a model of a social or economic system, such principles can provide

a criterion for selecting the known cause-and-effect relationships

which are to be explicitly included in the model. Also, the concepts

with which such principles are expressed provides a means of explicating

and communicating further experiences with dynamic systems. Finally,

in testing a model of a social or economic system, principles on the

relationship between structure and behavior can provide a basis for

identifying structural changes that can render the model's behavior
more realistic.

As an example of using a principle, suppose one is testing

a model whose natural period is unrealistically long, and whose oscil-

lations seem too heavily-damped. What sorts of structural additions

or modifications might render the behavior (and structure) more realis-

tic? The analyst here is searching for structural changes that shorten

the period and decrease the damping. The principle in Section 3.3. states

that "If a minor loop with a delay is added around a level already on

an oscillatory loop, the added loop forms another pathway throug'i which

disturbances in the level can propagate back to the level. When the



additional disturbance returns to the level, it moves the level more
rapidly to and past its steady-state value, which results in a shorter
period and less damping." In this case, the principle in Section 3.3
directly identifies one type of structural change that can render the
model behavior more realistic. One can then search within the cause-
and-effect relationships of the real system to (possibly) find such a
structure (in this case, a minor negative loop with a delay).

The principles in this thesis are empirical and conceptual
rather than theoretical and mathematical: the principles explain
what has usually happened in real applications, rather than describing
what must happen of mathematical necessity. (Even so, Chapter 5
validates an empirical and conceptual principle with mathematically-
derived results.)

The principles explicated in this thesis cover a diversity
of structure-behavior relationships, although the focus is on oscil-
latory systems and the effect of structural changes on oscillations.
The topics of the principles include: the origin of oscillations,
damping, reduction to an effectively-first-order system, adding
cross-links, adding a minor negative loop with a delay, adding a
positive loop, adding a minor positive loop with a delay, and examining
the entrainment of two similar but not identical systems subjected to
a common exogenous random input.
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CHAPTER ONE:

INTRODUCTION

Chapter 1 provides the context and motivation for the

remaining chapters. It reviews the process of formulating and testing

system dynamics models, and shows how and why experience is needed to

perform these tasks. Chapter 1 examines experience, conceptualization,

insight, and communication of experiences in some detail. This

discussion motivates Chapters 2 through 6, which attempt to effectively

communicate a specific set of useful experiences of how system structure

determines system behavior.
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1.1. PURPOSE, USEFULNESS, AND AUDIENCE OF THESIS

The purpose of this thesis is to effectively communicate to the

audience my present experiences with oscillation and entrainment,

which are embodied in a series of principles.

The principles in this thesis provide conceptual summaries of

empirical relationships between the structure and the behavior of a number

of dynamic systems. These principles grow out of the author's experiences

with social and economic systems, whose oscillations tend to be moderately

damped.*l* For the most part, nonlinearities in the structures of these

systems have not played a major role in determining their behavior, so

the rules of thumb given in this thesis do not focus on oscillatory

phenomena uniquely generated by nonlinearities. The behavior characterized

in this thesis is usually a step, impulse, or initial-condition response

of a model, as these responses have been the forms of analysis during the

formulation and testing of the models from which the principles are drawn.

*l *One can distinguish two types of principles that one can extract from

one's experiences. The type of principle not dealt with in this thesis

is principles pertaining to a particular field, discipline, or area of

study. For example, one could develop principles of inventory manage-

ment in the field of business, or principles of land-use policy in urban

studies. These are principles about systems with shared, and rather

specialized, structure. In contrast, the principles developed in this

thesis apply to systems in a diversity of fields or disciplines. The

object of study in this thesis is oscillations in general, regardless

of whether they occur in a management, biological, social, or even an

astronomical system.



In brief, the explication of principles in this thesis is intended

to increase the ability of the reader to characterize a change in a system's

behavior given a change in its structure, or vice-versa. The need for such

characterizations can arise either during the formulation of a model, or

during policy testing. The principles are concepts that embody both the

experiences described in succeeding chapters, and the reader's own

experiences. Thus, this thesis should have the effect of making a modeler

seem more experienced, at least in situations where the principles apply.

I expect this to have four desirable results:

(1) In some situations, the reader of this thesis should be able
to use a principle to arrive quickly at hypotheses about the
structural features of a system that do or could cause a
given behavior.

As an example of using a principle relating structure and

behavior, I was once discussing with a friend the behavior of a model of

corporate activity.*2* The model was a production sector in the System

Dynamics National Model, which is described in the following section of

this thesis. He pointed out a seemingly strange phenomenon concerning

the price charged by the corporation for its output. If some disturbance

raised this price above its long-term equilibrium value, the price

returned smoothly to that value, but with a time constant of decline

very much longer than any of the time constants of the negative loops

that regulated price in that model! To make a long story short, I had

*2*The purpose and structure of the System Dynamics National Model are

summarized in Forrester, J.W., N.J. Mass, and C.J. Ryan, "The System
Dynamics National Model: Understanding Socio-Economic Behavior and
Policy Alternatives," System Dynamics Group Working Paper D-2243-3,
Alfred P. Sloan School of Management (Cambridge, Mass.: MIT, 1976).
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already outlined Section 4.1 of this thesis, so I was able to immediately

hypothesize the cause of this behavior, whereas my friend had taken a

few days to arrive at the same conclusion. (As a result of that conversation,

Section 4.1 now contains as an example the analysis of how price can

decline much more slowly than any of the time-constant parameters of the

system might seem to indicate.)

(2) In other situations, the reader of this thesis will use the
principles to form hypotheses and expectations about the
relation between a system's structure and behavior. When
those expectations are not met (and the principle breaks
down), the modeler is alerted that there is something unusual
in the model's structure and behavior.

The principles in this thesis have exceptions. They are presented

in this thesis by virtue of being useful and often true. Even when the

principles are violated, the principles provide tangibility and direction

to the analysis: the analyst can begin by asking "what caused this

principle to break down?" rather than "is there anything here I should

know about?" Section 4.3 provides two specific examples of the utility

of violated principles. In this respect, the analysis of model structure

and behavior seems to follow a classic dictum for writing, which states

that if the rules are going to be broken, one had better know the rules

and why they are being broken.

(3) The concepts within the principles add to the vocabulary with
which systems can be described. If people share the same
descriptive vocabulary (and the similar experiences that underlie
the vocabulary), they can communicate with one another more
effectively than without the descriptive vocabulary.

An incident occurred during the time this thesis was being

written that clearly illustrates the usefulness of properly-choosen



concepts and principles in communicating about systems. I told a student

of the curious result of Section 3.3, namely that when two loops, each

independently oscillatory with periods of 4 and 12 years respectively,

are coupled through a shared level, the composite system oscillates with

a period around the period of the faster loop. The student asked if there

were circumstances under which the slower loop could dominate the system

behavior, and cause oscillations at closer to the longer period. I answered

immediately with close to these words: "Yes. If you consider the dominant

loop as the loop around which a disturbance can propagate most easily

(and between you and me, we know that "most easily" has something to do

with phase and gain), then it is natural that the faster loop, which

oscillates with less damping than the slower loop, should propagate what-

ever distrubances were present in the system around it, and dominate the

oscillatory behavior. If the slower-oscillating loop were markedly less

damped than the faster loop, the disturbances would propagate the longest

around it, and it should dominate the oscillatory behavior." At least

three things about this incident are remarkable to me. First, because I

considered the question in terms of properly-choosen concepts, it was

easy for me to arrive at the spontaneous insight just described. Second,

the compactness of the answer is remarkable, considering the complexity

of the issue. Third, and most remarkable, the short explanation repro-

duced above communicated to the student a clear sense of how that third-

order system behaved.
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(4) Byutilizing principles, the reader of this thesis should become
more aware of his or her own half-conscious rules of thumb that
relate structure to behavior, to the extent that they can be
explicated as principles. This both adds to the body of commun-
icable experiences with systems (embodied in the principle),
and creates the opportunity for still less-conscious conceptual-
izations of experiences to emerge.

My experience is that, although the present principles provide

satisfactory answers to a number of questions, the present principles

point the way toward the development of many, many more principles. Section

6.3 describes the main avenues of future investigation I have uncovered

in the process of developing the present principle.

The operational test of whether or not the thesis achieves its

purpose is to see whether or not a reader dealing with some model has the

appropriate principle come to mind at the appropriate time. If a reader is

able to call to mind the experiences represented by the principle at the

appropriate moment, the experiences have been "effectively communicated."

Note that this degree of internalization on the part of the reader sets a

standard for quality of presentation much higher than the usual technical

presentations. Most technical presentations can be called successful if

the readers understand it well enough to judge the material correct. This

thesis will be adequately presented only if readers can spontaneously bring

the material to mind and apply it to their own work. Obviously, it is

impossible for me, the author, to guarantee that my experiences will be

effectively communicated to you, the reader. If it happens, it happens.

I can say that at least the prerequisites for communication are present:

numerous examples drawn from a variety of fields and disciplines, concepts

and principles gradually and explicitly evolved from the examples, and

continual relation of the principles to normal, everyday situations as



well as well-known System Dynamics models, all should serve to recreate

my original experience of the principles within the reader -- that is,

to communicate. (Section 1.4 discusses communication of experiences,

concepts, and principles in detail.)

By now, the vocabulary used in the examples has probably begun

to convey a sense of the background and motivations required to read

this thesis profitably.

This thesis addresses an audience of people who want or need to
increase their qualitative understanding of the oscillatory
behavior of a model of a dynamic system, and who are also
familiar with the basic tools, concepts, and examples of
System Dynamics and differential equations.

More specifically, I assume that the reader is familiar with

DYNAMO equations and flow diagrams, and concepts of modeling and system

structure. Such material can be found in Industrial Dynamics, or in one

or two introductory courses. I assume' that the reader has seen (but not

necessarily mastered) models of physical systems, managerial systems,

predator-prey systems, and endocrine systems, so that the examples used

in this thesis will not seem foreign or unusual. I also assume that the

reader is familiar with elementary differential equations. (Section 5.2

requires more sophisticated mathematical preparation, but is not essential

to understand any of the principles.)

Another, equivalent, way of characterizing the intended audience

is anyone who is in the same frame of mind as the student who has taken

a few System Dynamics courses and a smattering of control theory, sees

that they are related, wants to relate them, and doesn't know how. That

student will have perceived that there is an intuitive skill or art

-18-
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in tying together system structure and behavior, and that concepts from

control theory are helpful but not sufficient. Where does the student

proceed from there? The conceptual principles in this thesis are aimed

precisely at unifying and expanding the body of knowledge desired by

that person.

Note that this thesis is not intended as a piece of curriculum

material per se, but, if anything, as a basis for future curriculum

materials. The presentation of the principles assumes that the reader

is familiar with state space, diverse applications of System Dynamics,

characteristic equations, phase and gain, and undoubtedly several other

pieces of knowledge. In curriculum materials, each of those pieces of

knowledge would need to be introduced with its own text, examples, and

exercises for a student to gain familiarity with it. One can consider

this thesis as a guideline for selecting and organizing the pieces of

knowledge within a curriculum aimed at teaching relationships between

structure and behavior of dynamic systems. In addition to lacking

introductory and preparatory material, this.document also lacks exercises

and tests to ensure that the reader understands the material. So, although

reading this thesis may be educational, the thesis itself does not

constitute curriculum materials, but a possible basis for future curriculum

materials.



1.2. ORGANIZATION OF THESIS

The preceding commentary specifies in a very brief and abstract

way what conceptual principles on the relationship between structure and

behavior are, and why they are useful. The remaining two sections of

this introductory chapter provide more detailed description of the nature

and need for such principles. The remaining chapters explicate the

principles themselves.

The principles each deal with some aspect of oscillation, but

each principle does so in a different way. Chapter 2 develops two

principles that establish a conceptual basis for explaining oscillations.

Chapters 3 and 4 develop corrollary principles based on the concepts

of Chapter 2, that describe the effects of various types of structural

and parametric changes on oscillatory behavior. Chapter 5 develops only

one principle for a methodologically significant configuration: similar

oscillatory systems with similar random inputs. Chapter 6 concludes the

thesis with a number of suggestions for further principles linking system

structure to system behavior.

The true building block of this thesis is the presentation of

each principle, one in each succeeding section. As Section 1.4 will

discuss, the section presenting each principle contains considerably

more material than a statemeft of the principle and one example. Each

section begins with a simple example of the behavior to be explained.

The section takes several different viewpoints on the behavior--several

different ways of explaining the ' Thavior. For example, the section on

the origin of oscillations explains oscillations in terms of differential
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equations, conserved flows, and state-space trajectories. For each

explanation, each section examines the shortcomings of the explanation

(the questions upon which it sheds no light), and identifies the concepts

from it that do seem valuable. The principle synthesizes these concepts,

after which the section concludes by giving diverse examples of applications

of the principle, and discussing implications of the principle for other

situations.

Having been forewarned of the volume of material for each

principle, the reader should expect to be covering more material than

may at first seem necessary. The reader's approach to reading the

remaining chapters should probably not be the same as he or she would

use to read a technical report. Instead, think perhaps of an autobiography,

where the reader stores away interesting and possibly relevant expei -nces

for later use. These numerous experiences are only summarized and made

accessible by the principles themselves.



-22-

1.3. NEEDS FOR A CONCEPTUAL UNDERSTANDING OF DYNAMIC MODELS

This thesis presents principles (conceptual rules of thumb)

that are intended to be used in the process of modeling social and economic

systems. Since such modeling has proceeded for years virtually without

such principles (or at least such principles explicitly recognized as

such), one might well ask, "Are they necessary?" or "What can principles

do that ordinary mathematics or intuition can't do just as well?" In

order to provide tangible answers to these questions, this section discusses

an example in which conceptual explanations of the relationship between

structure and behavior assumes paramount importance, and to which the

principles in this thesis can make a significant contribution.

The System Dynamics National Model. The System Dynamics Group at MIT is

constructing a simulation model of the U.S. economy. The System Dynamics

National Model addresses a broad range of economic and social issues:

inflation, economic fluctuations (at periods ranging from four to fifty

years), the nature of economic growth, tax policy, energy-resource manage-

ment, and the long-term prospects for the agriculture and education sectors

of the economy. The National Model is divided into seven sectors, which

are being developed separately. Broadly, these sectors represent production,

labor, consumption, finance, government, demographic changes, and inter-

national trade. The production sector is a generic model of corporate

activities, including production, shipping, hiring, inventory management,

capital investment, accounting, payments, price-setting, and financing.

It will be replicated once for each producing segment being represented
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in the economy. Parameter values will be set to reflect the different

characteristics of each individual production sector. (For example,

capital goods, durable and non-durable manufacturing, or service sectors

are characterized by different pricing policy characteristics, different

requirements for factors of production, and different probabilities of

individual business failure. Each of these ch.racteristics can be

represented by specifying the value of one or more parameters within the

production sector.) Similarly, the labor and household sectors will be

replicated once for each socio-economic group explicitly represented in

the Model.

The National Model is being constructed by first constructing,

testing, and revising individual sectors, and then testing and revising

larger and larger agglomerations of sectors.*3* Testing and revising

the structure of the National Model requires considerable time and

thought, because the formulations must give realistic responses both for

short-term transient conditions, and for the long sweep of a

two-hundred-year depiction of the development from an agricultural to an

industrial economy. Each formulation must contribute to a number of distinct

behavior modes: hyperinflation, "stagflation," depre ;sion, short-term

labor-inventory cycles, long-term capital-adjustment cycles, and so on.

Each formulation must respond correctly to a variety of

*3*The current status of the National Model is described in "The System

Dynamics National Project Annual Report 1976," System Dynamics Group
Working Paper D-2453-4, Alfred P. Sloan School of Management
(Cambridge, Mass.: MIT, 1976).
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extreme conditions: depression, war, resource shortage, hyperinflation,

and the other vicissitudes that plague real economies.

Formulating and Testing the National Model. One possesses two kinds of

information at the beginning of model formulation: the behavior one

wishes to explain or control, and a vast number of real cause-and-effect

relations. For example, behavior addressed by the National Mcdel was

described briefly above. With the National Model, as in many other

models, one also begins with much more knowledge about real cause-and-

effect relationships than can possibly be put into a model. All of one's

knowledge about work, how to do things, and all of one's observations

about how things influence other things, fall into the category of known

real cause-and-effect relationships.*4* Therefore, the problem of formu-

lating a model is really the process of selecting the real cause-and-effect

relationships associated with the behavior mode being explained and

controlled, and then embodying those cause-and-effect relationships

in realistic equations.

*4*On an epistomological level, it is quite difficult to distinguish

between "real" cause-and-effect relationships and correlations.
Suffice it here to say that there seems to be an axis along which we

can characterize relationships. At one extreme along that axis

are the highly regular, multisensory correlations (which I am here

calling "real cause-and-effect relaionships") that we all experience

as a part of our physical existence. At an intermediate point on
that axis are models of those real cause-and-effect relationships, which

abstract, quantify, and correlate the individual cause-and-effect

events into mathematical relationships between two or more variables.
At the other extreme along that axis are purely corellative relation-

ships, where, if there exists any interpretation of cause and effect

for the relationships, the interpretation is much less significant
than the statistical fact of correlation.
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What basis does one have for selecting the real cause-and-effect

relationships that are to go into a model, prior to the formulation of

any equations? All that the modeler has is intuition (nonconscious

concepts relating structure and behavior) and principles (conscious concepts

relating structure and behavior). Even if the modeler proposes to use

numerical data, there must be some prior conceptual basis for determining

which numerical data are appropriate.

Pri tples--explicit patterns relating concepts of structure

to concepts of behavior--can streamline the process of selecting the real

cause-and-effect relationships to be represented explicitly in a model.

For example, suppose one is seeking to analyze the three- to seven-year

business cycle. The principle in Section 2.1 of this thesis suggests

that one should look for loop structures to explain cyclic behavior.

Principle 10.3-1 in Principles of Systems suggests that the coupling time

constants appropriate for generating a three- to seven-year fluctuation

are 1/27T of those periods, or on the order of two to five months.*5* These

principles provide considerable focus to the search for cause-and-effect

relationships that can produce the observed behavior. Even when these

principles fail to identify structures that fluctuate with the observed

period, other principles can suggest classes of structural changes that

could move the period into a realistic range. The principles in

Sections 3.3, 4.1, and 4.2 all identify such classes of structural

changes that alter the period of a system's oscillation. Such conceptual

principles, then, provide considerable guidance during model formulation.

*5*Forrester, J.W., Principles of Systems (Cambridge, Mass.: Wright-Allen
Press, 1968, pg. 10-20).
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Testing a model consists of carefully scrutinizing the behavior

of each model variable, identifying the structural features that cause the

behavior, and evaluating whether or not the behavior and the structure

that causes it seem plausible. For example, suppose one is testing the

labor sector of the National Model by subjecting it to a step increase

in the demand for labor, and the step response of unemployment overshoots

its equilibrium value before equilibrating. One might attribute the

overshoot to a delay in the perception of wage conditions by the unemployed,

using whatever intuition, principles, or algorithms one possesses to make

that attribution. Only when one has attributed the behavioral features

to structural causes can one begin to evaluate the model's realism and

how the realism might be improved: For example, one can start by asking

whether it seems possible for unemployment to remain as high as it did,

given other variables in the labor market. One can ask whether the over-

shoot points toward missing cause-and-effect relationships, or an unrealis-

tically long perception delay.*6* Thus, in both the processes of model

formulation and testing, the modeler needs to know what strucutral

features are causing the system behavior, and principles can aid in

knowing that.

*6*There are numerous criteria for judging the realism or validity of
model behavior too numerous to discuss individually here. For
comments on criteria for non-statistical model testing, see
Forrester, J.W., Industrial Dynamics (Cambridge, Mass.: MIT Press,
1961), pp. 122-129.
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Useful Answers to "What Causes the System Behavior?" One legitimate but

trivial answer is always possible: "The whole system structure causes

the system to behave as it does." This answer, however, is not very

useful. It is model-bound, in the sense that it is tied to exactly one

particular way of representing the system. That answer cannot be

transferred to similar models or similar systems. In particular, this

answer does not give even loose indications of the parameters to which

the dynamics are and are not sensitive (by whatever definition of

sensitivity is appropriate to the task at hand). This answer provides no

guidance during model development as to which relationships in the model

can be altered to give more realistic behavior. This answer provides

no beginning point for policy analysis other than trial and error.

Clearly, more useful answers are possible to "what causes the

system behavior?" Consider what form the answer should take: The answer

should be a general concept or concepts, transferrable to a family of

systems, rather than just one system. The answer should provide a conceptual

basis for policy design--a way of selecting the policies that are likely

to improve the behavior of the system. The answer should help the

modeler to understand the system by indicating why some elements of the

system are important in producing the system behavior mode, and why other

elements are relatively unimportant.
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Urban Dynamics provides examples of general, conceptual

principles linking system structure behavior.*7* An explanation

of virtually all of the behavior modes and policy results can be based

upon only three principles, wbich can be briefly characterized as follows:

First, if an urban area is more attractive for inward migration

than its surrounding environment, people will move into the area, expand

its population, and eventually cause a shortage of some resource of the

area (jobs, housing, open space, transportation, for instance) and deter

further population growth.

Second, the balance of land use between residential and commercial

uses determines whether a shortage of housing or a shortage of jobs will

be the ultimate deterrent to population growth.

Third, new construction within a growing urban area keeps the

average age of houses and commercial and industrial buildings relatively

low, so that a growing area has a relatively new housing stock, suitable

for occupancy by upper- and middle-income groups, and high employment

densities in commercial and industrial structures to provide adequate

jobs. When the land area begins to be fully-occupied by structures,

aging and obsolescence reduce the employment densities of the commercial

and industrial structures, while at the same time aging and obsolescence

increase the proportion of relatively aged housing, attractive only for

lower-income groups. When limited land ends urban gr6wth, aging and

*T*For those readers unfamiliar with Urban Dynamics', these concepts are

explicated in Forrester, J.W., Urban Dynamics (Cambridge, Mass.:

MIT Press, 1969), Chapter 7, and in Alfeld, L.E., and A.K. Graham,
Introduction to Urban Dynamics (Cambridge, Mass.: Wright-Allen Press,

1976), Chapter 10.
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obsolescence thus attract lower-income groups with the availability of

lower-income housing, while aging and obsolescence at the same time reduce

the number of jobs available for these groups. The three principles--land-use

balance, attractiveness for migration, and aging and obsolescence--here

linking urban cause-and-effect structure to urban behavior are conceptual

devices (mental tools for considering urban problems), which do not

appear as a part of the formal model structure. They abstract the

myriad details of the system (such as a city) into the essential structural

features that give rise to the behavior mode (which is itself an abstraction

of many specific instances of behavior). Perhaps a principle of system

behavior might best be thought of as similar to the final summary

paragraph of a book: while it in isolation appears plausible, it in

concert with all of the other materials allows the reader/modeler an

effective mastery of the entire body of knowledge about structure and

behavior.

Conceptual principles linking system behavior to system structure

permeate the entire process of modeling. In model formulation, the modeler

uses a conceptual understanding of the dynamic hypothesis to select the

cause-and-effect relationships that are relevant to the problem being

addressed. In model testing, the modeler uses a conceptual understanding

of dynamics to scrutinize the model structure and the model behavior to
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perceive the less-than-realistic formulations.*8* Similarly in policy

design, the modeler uses a conceptual understanding of the system

dynamics to select effective policy leverage points out of the plethora

of possible policy changes. The final and perhaps most critical role

for concepts and principles of system behavior occurs in the area of

implementation. In most cases, a faith in the competence of the analyst/

modeler is not sufficient grounds for implementing the recommended policy

changes. The decision-maker must have a clear understanding which,

independently of the particular mathematical structure used in the model,

explainswhy and how the recommended policy changes will improve the behavior

of the system. That understanding is communicated by the modeler in the

form of a concept or principle of system behavior. Such principles, then,

seem essential in effectively solving real problems. For a more specific

set of examples, let us return to one aspect of the System Dynamics

National Model.

My Difficulties in Analyzing Entrainment. At one point in the

development of the System Dynamics National Model I undertook to create

conceptual answers to a relatively simple question: What causes the

multitudinous sectors of the economy to rise and fall so closely with

one another over the three- to seven-year business cycle?

*8*A conceptual understanding is not the only tool available for

analyzing model behavior; Section 5.2 discusses mathematical methods
as an alternative to the qualitative, conceptual approach described
in this section. In particular, Section 5.2 discusses the
limitations which sometimes render mathematical approaches inefficient
or inappropriate in treating the dynamics of socio-economic systems.
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("Entrainment" is the general name given to such phenomena.) I proposed

to answer the question by examining all of the channels through which two

production sectors could entrain each other in a short-term business

cycle.*9* I initiated a two-pronged attack on the problem. I began to

analyze, in detail, the dynamics of a single production sector, and also

immediately began simulating two sectors interacting with each other through

one sector ordering and purchasing the other sector's output. Even after

many months, however, neither activity yielded much insight into entrainment.

The investigation of a single production sector expanded severalfold as

the complexity of the structure and behavior of even one production sector

manifested itself. At the same time, I was unable to formulate a satis-

factory conceptual explanation for the behavior of two production sectors

coupled in a chain of production (that is, one buying from the other).

Although I had amassed a large number of observations of the behavior of

the two sectors with various parameters and inputs, the data were not

coalescing into any clear, easy-to-communicate description of entrainment

behavior in a chain of production.

The research described above was not ihfertile, despite

failing to shed light on the causes of entrainment in a chain of

*9*There seem to be only four channels: buying and selling to one

another, a common source for a factor of production (such as labor,

capital, or financing), a common source of demand for production

(such as consumer demand), and common susceptibility to exogenous

disturbances (weather, tax changes, wars, and so on). This research

is described in more detail in Graham, Alan K., "Proposal for Thesis
Research: Entrainment of Economic Sectors in Cyclic Behavior," System

Dynamics Group Working Paper D-2256-3, Alfred P. Sloan School of

Management (Cambridge, Mass.: MIT, 1976).
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production. Some of the simulations had important implications for

leading-indicator analysis.*10* More importantly for this thesis, I

generalized what I had observed over the course of the research into a

series of principles that related system structure to system behavior.

For example, many of the principles predict changes in the fluctuations

of an oscillatory system that result from activating positive or negative

loops, with or without delays in them. I needed to develop the principle's

to consolidate what I had learned to date, and hopefully to allow me

to analyze faster the behavior I did not as yet understand.

On examining the list of principles and the work remaining to

be done on entrainment, it became obvious that I would need considerably

more principles (embodying a great deal more experience into many more

descriptive concepts) before I could offer an adequate explanation of

entrainment dynamics for production sectors. In other words, I discovered

that there are very few explicit rules of thumb, concepts, or images that

describe the characteristics of oscillatory systems, in comparison to

what I would need to describe entrainment. I recognize that the reader

may not fully grasp what it means to not have enough concepts to fully

describe something. Here is an example: If I had enough concepts about

thinking and modeling, I would have been able to describe and communicate

*10*In brief, I discovered another theoretical flaw in using leading
indicators as predictors of system performance. A noise input in
one sector in the chain of production causes it to lead the other
sector. The apparent lead-lag relationship betweeu the two sectors
thus depends on if and when each sector happens to be disturbed by
some random event.
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my difficulties with entrainment concisely and clearly. But I don't, so

I haven't. Perhaps the reader can gain some experience of what it is like

to be both with, and without, adequate concepts by comparing the fragmented,

incomplete portrayal of the urban problem given in the popular press to the

compact, orderly description of the origin of urban problems given above.

There is a test for whether or not one has enough concepts to

understand some system's behavior: Is one able to predict what the system

will do in broad terms 50 percent of the time, without recourse to

computation or mathematics? Note that this test requires one to attempt

to understand the behavior before examining the behavior. Many people

can claim to understand behavior after seeing it, but demonstrating an

understanding without first knowing the behavior is much more difficult.

The 50 persent mark is probably a very high standard. At any rate, I

couldn't claim to understand the entrainment behavior anywhere close

to that mark.*11*

Entrainment is not the only research area in the National Model

Project in which adequate rules of thumb are missing. A capital production

sector ordering capital from itself generates a fifty-year oscillation

remarkably similar to the empirically-observed Kondratieff Cycle.*12*

*11*I have not, however, gone back to analyze entrainment behavior after'
having developed the principles reported in this thesis. My suspicion
is that with the fully-developed concepts and principles in hand,
entrainment behavior would be much more comprehensible.

*12*The structure and behavior of the fifty-year oscillation are described
in more detail in both Forrester, J.W., "Business Structure, Economic
Cycles, and National Policy," Futures, June 1976, pp. 195-214, and Mass,
Nathaniel J., "Modeling Cycles in the National Economy," Technology
Review, vol. 78, no. 5, 1976, pp. 1-12. For a discussion of the real
implications of this Kondratieff wave, see "National Project Annual
Report 1976," o . cit.



There is no well-developed body of knowledge that would allow one to

accurately hypothesize which one of the hundreds of feedback loops in the

production sectors are responsible for the fifty-year cycle, and why the

other loops are not essential. How can one know how to alter the fifty-

year cycle? This lack of a well-developed body of knowledge (that can

render complex oscillatory systems reasonably intuitive) will impede the

understanding of nearly every important behavior mode of the economy. Which

structural features and policies produce inflation? What can be changed

to retard or reverse inflation? What structural changes in the economy

lead to energy independence? And even before those questions can be posed,

how is one to find the causes of any unrealistic behavior that may arise

during the formulation and testing of the System Dynamics National Model?

It seems natural that such a body of knowledge about complex

oscillatory systems in general can exist; if not, it would imply that no

oscillatory system has anything in common with any other oscillatory

system. Even though very few generalizations about oscillatory systems

are always true, many generalizations are true often enough to serve as

useful guides. For example, there is an implicit principle among

engineers that says increasing the gain of a feedback controller decreases

the stability of the system. Even though this is not always true, the

principle is quite useful to engineers (and public speakers using

microphones and amplifiers, who reduce the gain to eliminate feedback

"howl").

In brief, from my difficulties in analyzing entrainment of

production sectors, I concluded that the body of qualitative knowledge

describing oscillatory systems is far smaller than is necessary to give
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any clear qualitative understanding or description of a complex socio-

economic system such as the U.S. economy. This thesis attempts to expand

that body of knowledge. Before beginning on that task, we must first

examine the nature of such a body of knowledge in more detail.
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1.4. COMMENTS ON THE NATURE OF CONCEPTUAL UNDERSTANDING

The following material describes mental processes such as

intuition, concepts, insight, explanation, and communication; although

the material may seem excessively psychological, it seems appropriate to

examine what is being conveyed (insights leading to a conceptual

understanding) before conveying it in the succeeding chapters. Just as

it would be foolhardy to design a tool without knowing the use to which

the tool would be put, it would be less than wise to attempt to

facilitate someone in generating insights without first examining the

form and substance of insights.*13* The material is definitely

introspective and "soft"; perhaps the best way to think of the following

is not about whether or not the material is true in any scientific

sense, but about whether or not the material provides a useful

conceptual framework for considering the insightful use of principles

linking system behavior to system structure.

*13*The descriptions of psychological events concerning insights into
the structure and behavior of feedback systems arise from my own
experience with such systems, both in attempting to address the
problem of entrainment and in working with previous systems,
However, the way in which I describe my personal experience has been
influenced by numerous persons and literature. Among the foremost
contributors are personal contacts with Jay W. Forrester and Werner
Erhard, and reading Koestler, A., Yb& ALQLZCreation (New York:
MacMillan, 1964) and Kuhn, T. W., Thk Structure daScientific
Reyolutions(Chicago: University of Chicago Press, 1964).

-
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Nrmal Intuition: Implicit.e 2 LExperiences. "Normal intuition" in

the present context denotes taking some action without a conscious

reason for the action. For example, a control engineer may use

"engineering judgement" to specify initial values for gains in a

feedback controller. The initial guesses may in fact be quite close to

the final values derived from repeated experimentation, even though

the control engineer did not consciously utilize any algorithms or rules

of thumb to obtain gains from the known structure of the plant being

controlled. Clearly, there was some reasoning or some mental process

which produced the initial guesses at gain values; mental processes were

merely below the level of consciousness. This nonconscious reasoning is

normally called "intuition." (I will use "nonconscious" rather than

confusing anything with Freud's "unconscious.") The existence of

intuition is widely acknowledged; educational institutions even seek to

inculcate it by exposing the students again and again to engineering

problems and solutions.* 14* In this way, the student begins to amass a

*14*This is not to imply that engineering is entirely a matter of

intuition. The engineering literature consists principally of
formal algorithms. However, even the selection of the appropriate
formal algorithm is usually a process that is nonconscious, hence,
intuitive. There is constant interplay between intuition and more
explicit, formal methods. In this respect, engineering is little
different from classical arts such as painting and sculpture. There
are numerous explicit guidelines regarding form and design that an
artist may consciously utilize, and yet much of the composition of a

work of art is highly intuitive.
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body of experiences that can be drawn on, consciously or not, to solve

problems.*15*

Conaeptual Understanding: -A Descriptive Langaugq fQ Lega Implicit 112.

.Qf Experiences. There is a spectrum of mental tools used in

problem-solving. At one end is nonconscious intuition. At the other

end of the spectrum are completely explicit formal algorithms that can

be automated totally, such as finding the gain matrix for a linear

quadratic Gaussian control problem. Between these two extremes, there

are descriptive concepts. For example, control engineers have a concept

that says, "Systems controlled by feedback can be made unstable if the

feedback gain is too high, so if the system is unstable, try reducing

the feedback gain." In general, the most obvious component of a

conceptual understanding consists of conscious statements in a language

that describes the specific situation in general terms. The general

terms also describe similar past experiences, so that the conceptual

understanding is an explicit way of connecting a current problem to past

experiences with similar problems. ("I stabilized that other system by

reducing the gain.") When a current problem is explcitly described in

general conceptual terms, the mind automatically connects with other

experieaces that have been described with the same general terms. In

*15*An "experience" is used in this thesis to denote a highly specific
event: what happened at a particular place and time, and what one
sees, hears, thinks, and feels at that particular time. Note that
an experience can be a mental event such as a thought or insight, as
well as a physical event.
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contrast, intuitive understandings have no explicit and conscious device

to connect the current problem with past experiences, so the connections

may not be made as reliably.

If the relationship between a concept and the experiences that

it describes were to be cast in geometrical terms, the concept would

appear as the peak of a pyramid, supported by the far more numerous and

specific experiences, images, and subsidiary concepts. Thus, when a new

problem is described with a concept, the mind establishes a connection

with part of the base of the pyramid and its peak (See Figure 1-1).

Because the concept at the peak of the pyramid has been used already to

describe other experiences, the peak of the pyramid is connected to

other specific experiences relevant to the problem at hand. Thus,

utilizing a conceptualdescription of a problem allows more efficient

mobilization of the previous experiences necessary to solve the

problem.*16* Concepts are therefore devices that allow one to access

*16*The importance given here to mobilization of experiences as a means
to arrive at an insight may strike some engineers as odd. For
models of social or economic systems, the structure of the system
(and even many of the parameter values) are well-known to the
participants in the system. In contrast, in many engineering
applications, the principal barrier to problem-solving seems to be
acquiring sufficient data about the system structure and behavior to
be able to reason out a solution. Even then, experiences must be
mobilized and manipulated to give the engineer a concept of what
needs to be known.
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Figure 1-1.
RELATIONSHIP AMONG A CONCEPT, AND OLD AND NEW EXPERIENCES

and manipulate detailed, tangible experiences in a way that produces new

insights into the problem at hand.

Figure 1-1 shows a concept imposing an organization or pattern

among experiences. Figure 1-1 also suggests that a concept can impose

organization or pattern among other concepts. In fact, the principles

developed in this thesis are such concepts, which show consistent

relationships among concepts such as "oscillation," "loop," "state,"

"propagation," and so on. So principles are both a type of concept,

and made up of concepts.

-40-
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Insight. The aim of this thesis is to communicate principles (which are

concepts) about relationships between system structure and system behavior.

The principles are to be used to give a modeler insight into the structural

causes of the behavior he or she must deal with. The introductory chapter

has thus far examined the need for principles relating system structure

to behavior in practical modeling situations, and the function of principles

in such situations. With this background, it is now possible and

appropriate to examine more closely the process of applying these particular

kinds of concepts by generating an insight. "Insight" can be operationally

defined as the reorganization and redescription of existing experiences

(or concepts, for that matter) in a satisfactory manner. (An equivalent

and more compact definition is changing concepts in a satisfactory manner.

The next subsection characterizes the "satisfaction" involved in an insight.)

Experiences do not reside within the mind independent of one

another. They are connected by our ideas of what is relevant to what--a

conceptual organization. When an insight changes, this organization of

experiences changes, so that things thought to be irrelevant turn out

to be relevant, and things thought to be relevant turn out not to be.

Figure 1-2 diagrams such a change in the relationships among experiences;

the experiences are the same, but they assume a different pattern of

importances. For example, when a child has the insight that its parents

emphasize cleanliness to prevent the entry of germs into its body, many

actions which the child had thought were unimportant, such as handling

food with dirty hands, become important. In contrast, before the insight,

a child is sometimes upset by fingerprints on the outside of glasses--the

glass is "dirty." After the insight, such "dirt" is irrelevant to



cleanliness. As another example of how previously unrelated facts become

related to the problem at hand, consider the principle in Section 2.1,

which implies that in order to oscillate a system needs two subsystems

with comparable time constants. This principle integrates several of my

experiences with oscillations;fcr example,that increasing the time

constant of an integral controller increases stability, or that either

increasing or decreasing a parameter can stabilize a system.*l7*
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Figure 1-2.
REORGANIZATION OF EXPERIENCES BY AN INSIGHT

*l7*William Bode derived this result for feedback radio amplifiers in
the 1930s, and Dale Runge discusses an economic example in
"Understanding Simple System Behavior: An Examination of Job
Vacancy - Employment Interactions," D-2244-1, Alfred P. Sloan School
of Management, E40-253 (Cambridge, Mass.: MIT, 1976).
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*18*Forrester, J. W., "Business Structure, Economic Cycles, and National
Policy," Futures, June 1976, p. 209.
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I have called the reorganization of experiences that occurs

during an insight a redescription of experiences, to emphasize the relation-

ship between a descriptive concept ("the system is unstable") and the specif

experiences that the concept gathers together by implying some similarity

between ("perhaps its feedback gain is too high, just like that other system

Although an insight is just a change in concepts, calling it a redescription

emphasizes the substance of an insight (experiences or concepts) in addition

to its form (concepts). For example, the Phillips Curve is usually describe

as the curve that specifies the structural or causal relationship between

unemployment and inflation, and which shifts due to unknown factors. Forrest

redescribes the curve as describing only a correlative (behavioral) relation

ship between unemployment and inflation over a four-year business cycle, wit

shifts in average unemployment due to the long-term fifty-year Kondratieff

Cycle, and shifts in average inflation due to monetary policy.*1
8 * This

redescription totally changes the range of policy issues that are relevant

to unemployment. Long-term economic development planning becomes as germane

to unemployment as next year's federal budget.

Another way of describing the reorganization that occurs during

an insight is to claim that the insight creates a new context for considerin

the difficulties. Forrester's insight into the Phillips Curve clearly

provides a substantially different context for considering difficulties with

unemployment. In the case of many system dynamics models, the context

is a clear and simple explanation of troublesome behavior. For example,

I have given a reasonably simple explanation for



the onset of puberty in males.*19* That explanation provides a

completely new context for designing hormone therapy for precocious or

delayed puberty, by providing a description or image of how such

therapeutic programs act on the internal hormone system. The same

explanation of puberty also provides a simple framework that renders a

substantial number of previously inexplicable phenomena logical and

straightforward: why the age at which puberty occurs is correlated with

body weight, or why precocious puberty sometimes occurs as a byproduct

of other hormone therapy. The central insight creates a context for

these previously obscure and irrelevant facts that renders them

straightforward corollaries. Insights, then, can be thought of as

creating a new context for already well-known content.

Explanation and Description. Most insights concern explaining something

that previously was only described--knowing why something happens rather

than the previous knowledge that something happens. An explanation

characterizes a wider range of situations (including what happens when

*19*The theory is that simple bodily growth is the "biological clock"

for puberty. Briefly, my theory suggests that sex hormone levels

are usually in an equilibrium maintained by a nonlinear negative
feedback system. Before puberty, sex hormones are maintained at low

levels. Somatic growth causes blood volume to expand, so hormone
secretions become progressively more diluted as the child grows.
The dilution effect gradually shifts the nonlinear feedback system
to a point where it is no longer able to stabilize hormones at the

low prepuberal levels. Puberty eventually occurs when the feedback

system, unable to maintain low hormone levels, allows the hormone

levels to rise to normal adult equilibrium. (See Graham, A.K.,
"Feedback Processes Underlying the Onset of Puberty in Males,"

unpublished M.S. Thesis (Cambridge, Mass., MIT, 1973).
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we change things), has fewer apparent exceptions or contraindications,

ard usually uses a smaller number of basic concepts than a description i.e.

Newton's law of universal gravitation characterizes both the elliptical

trajectories of planets and the parabolic trajectories of earth-bound

projectiles. That law has very few observable exceptions, and uses a small

number of basic concepts, such as mass, acceleration, momentum, and gravita-

tional force. But what of later theories, such as Einstein's relativistic

mechanics? Compared to it, Newtonian mechanics are merely a description,

and sometimes an awkward one at that because, for example, Newtonian

mechanics treats mass and energy as two separate entities.

Is there any way, then, of distinguishing an explanation from a

description? They certainly have the same form: collections of concepts

that tie together specific experiences and other concepts. The only distinc-

tion that can be made is relative: description A is more of an explanation

than description B. Description A is more general (it explains many more

things), has fewer apparent exceptions, and uses a smaller number of concepts

(that is, it's simpler).*20* It is these characteristics that in some sense

make the insight of a new explanation more satisfying. For instance,

Chapter 2 begins by describing the behavior of an oscillatory system,

then explaining the behavior through solution of differential equations.

But that "explanation" is a description in comparison to later

"explanations." Chapter 2 arrives at better and better

*20*There will be cases where one explanation is not obviously superior
to another; two examples are Freudian psychology (versus behaviorist
psychology) and monetary economics (versus what might be called
Keynesian or fiscalist economics).



explanations, but of course does not arrive at an ultimate and

unimprovable explanation.1 21*

Communication 4Concepts_a4 Insights. Figure 1-1 shows how a concept

(a description of a specific situation in general terms) can facilitate

the mental connection between a new situation and the appropriate

previous experiences. The concept serves as a handle by which previous

experiences can be manipulated and aligned with new situations so as to

resolve the difficulty under consideration. The figure implies that a

concept is useful only insofar as it is mentally connected to previous

experiences. Therefore, one cannot communicate a conceptual

understanding or an insight (a new concept) by merely repeating the

words that describe the concept or insight. For example, a child can be

told hundreds of times not to handle food with dirty hands, but until

the child connects these words with some concept or experience of germs

and disease, the words have no operational meaning and no motivating

power. Similarly, people can peruse page 110 of Urban Dynamic.a, and

* 21JThere can be no ultimate explanation of something, because the
substance of explanations is concepts, which always differ from the
experiences or events being conceptualized. For example, consider
explaining why an upward-thrown ball returns to earth. Is gravity
Mhy. the ball returns? Does gravity gause an upward-thrown ball to
return to earth? Yes and no. Yes, because we possess a
thoroughly-tested set of concepts (physical laws) that describe
cause-and-effect relationships in kinetics. No, because gravity is
a concept: an abstraction, a mental event. It seems clear that a

- thrown ball will return to earth regardless of whether or not I have
the concept of gravity in my head. So gravity, strictly speaking,
cannot be said to be the ultimate cause of the ball's teturning to
earth, and thus, not an ultimate explanation.



read that "Complex systems are remarkably insensitive to changes in many

of the system parameters (constants in the equation)." But again and

again, people cannot accept that statement as a fact until they have

experienced it for themselves.

The only way to communicate a concept or insight is to

recreate in the listener one or more of the experiences that the concept

embodies, either by creating a new experience for the listener, or

utilizing the listener's previous experiences.*22* Sometimes, the

experiences of the speaker and the experiences of the listener have so

much in common that relatively few words are needed to communicate.

"I am sad" can be understood and acted upon by nearly everyone. But we

do not look upon our everyday experience as experience with complex

feedback systems, so communicating concepts or insights about such

systems requires considerably more explicit communication of the

numerous experiences that underlie the simple verbal expression of a

concept or insight.

This thesis aims at allowing the reader to apply principles

(which is the insightful application of a concept) to new situations.

One method of accomplishing this might be to simply describe the

022*Sometimes, a listener can hear a concept and imagine (create) an
experience of it mentally. However, that experience is not vivid
and real enough to use the concept to understand further concepts.
So, for example, someone is able to accept the idea that systems are
often insensitive to parameter variations, but is unable to accept a
consequence of that idea: that one should not attempt to
statistically estimate all of a model's parameters (especially not
the insensitive ones).
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principle and one application, and hope that the reader can recreate the

experience embodied in the principle in the context of a new problem.

This method seems to place an undue burden on the insight of the reader.

Another method is to use several examples and allow the reader to

actually experience the transfer of the principle from one situation to

another. Thus the principle does not become so tightly attached to a

specific example. This thesis must of needs utilize a variety of

examples to communicate the principles.
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CHAPTER TWO:

OSCILLATIONS

Oscillations permeate the behavior of virtually any system one

examines, In the sphere of the natural sciences, elementary particles,

molecules, endocrine glands, planets (and perhaps even the universe

itself) fluctuate. In the sphere of the social sciences, psychological

well-being, organizational effectiveness, corporate sales, social

attitudes, and long-term economic development all show cyclic behavior.

This rhapter concerns itself with understanding the structural causes of

such oscillations. The chapter gives principles that give a general

explanation of the origin of oscillations and some factors that affect

the damping. The next chapter then gives more principles on the effect

of various structural changes on oscillatory behavior.
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2.1. ORIGIN OF OSCILLATIONS

An Example: A Spring-Mass System. To begin a description of

oscillatory behavior, I will start by describing a very simple

oscillatory system. Then, instead of taking advantage of its

simplicity, the subsequent text will attempt to describe the system

structure and its oscillatory behavior in general terms. In that way,

the description should apply to very complex oscillatory systems, as

well as the simple two-level system to be described here. Figure 2-1

gives a diagram of the system under consideration: a mass sliding on a

surface, attached to one end of a spring. The other end of the spring

is fixed to some stationary object. Assume for the moment that friction

is negligible. This system is representative of a large class of

pendulums, whose other members include the gravity pendulums in clocks,

swinging doors, and suspension systems for cars (which bounce up and

down). Although the structure of these systems can be obtained directly

from well-known physical laws, the explanation of their oscillations

does not depend on where the modeler obtains the system structure.

Later examples in this section describe biological and corporate systems

whose structures are obviously not obtained from physical laws, but

whose behavior is oscillatory, and arises from the same structural

features that characterize the physical system in Figure 2-1.

Figure 2-2 gives a preview of the structure of the system, by

showing a DYNAMO flow diagram. The description of the equations of

motion for the system could begin anywhere on the loop shown in
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Figure 2-2; the position of the mass is a suitable beginning point. The

position P of the mass is the accumulated result of the mass' movements,

which is quantified as the velocity V. Thus, the position P is just the

integral of velocity V. (This reverses the standard physics definition

of velocity as the time-derivative of position.) The initial position

has been set at half a foot to provide some disturbance to the system,

so that it will not simply sit at rest.

P.K=P.J+(DT)(V.J) 1, L
P=IP 1.1, N
IP=.5 1.2, C

P - POSITION (FEET)
V - VELOCITY (FEET/SECOND)
IP - INITIAL POSITION (FEET)

Newton's laws of motion say that an object in motion tends to

remain in motion. Thus, the velocity V of the mass is a
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level: The velocity V accumulates acceleration A.

V.K=V.J+(DT) (A.JK)
V=IV
IV=O

V
A
IV

- VELOCITY (FEET/SECOND)
- ACCELERATION (FEET/SECOND/SECOND)
- INITIAL VELOCITY (FEET/SECOND)

C

2, L
2.1, N
2.2, C
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The acceleration A results from forces acting on the mass.

The modern formulation of Newton's laws gives the relationship as:

F = m*a

a = F/m

where a is the acceleration, m is the mass being accelerated, and F is

the sum of the forces acting on the mass. But what is the mass? When

we weigh something, that weight W is only the force exerted on the mass

by gravitational acceleration G. Using Newton's law again, F = ma for

gravitational force becomes

W = mG
or

m = W/G

The last formula allows us to write an equation for acceleration A in

more familiar terms:

a = F/(W/G)

Force F is the sum of forces due to the spring, friction, and any

exogenous forces exerted on the mass (the force from spring FS, the

force from friction FF, and the force from driving FD). Of these, only

the force from spring FS will be considered in this section. The other

forces are set to zero in this section, and will be activated (i.e. made

active or varying over time) and discussed in later sections. In

DYNAMO, the equation for acceleration becomes:



-55-

A.KL=(FS.K+FF.K+FD.K)/(W/G) 3, R
w=160 3.1, C
G=32 3.2, C

A - ACCELERATION (FEET/SECOND/SECOND)
FS - FORCE FROM SPRING (POUNDS)
FF - FORCE FROM FRICTION (POUNDS)
FD - FORCE FROM DRIVING (POUNDS)
W - WEIGHT (POUNDS)
G - GRAVITATIONAL ACCELERATION (FEET/SECOND/

SECOND)

The force from the spring FS is simply proportional to the

amount that the spring is lengthened or compressed (as measured by the

position P); the further the spring is stretched, the more force it

exerts to return to its original length. Because the force is exerted

in the opposite direction from that in which the spring is moved, the

proportionality is negative. (Historically, this formula is known as

Hooke's Law.)

FS.K=-SC*P.K 4, A

SC=5 4.1, C
FS - FORCE FROM SPRING (POUNDS)
SC - SPRING CONSTANT (POUNDS/METER)
P - POSITION (FEET)

The spring constant SC is a simple empirical parameter, characterizing

the force exerted by the spring per foot of expansion or contraction of

the spring. The value chosen for SC represents a spring about as

powerful as a screen-door spring: if the spring is extended one foot,

it exerts a force of 5 pounds in the opposite direction.

Figure 2-3 graphs a 10-second simulation of the spring-mass

system described by the equations above. The behavior is clearly

oscillatory. For the moment, let us concentrate on the most basic

feature of this behavior: the same pattern of behavior of the variables
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being repeated at regular intervals. What is

structure that causes this behavior? How can

fundamental features of the system which give

behavior? The following subsections begin to

these questions.

there about the system

one characterize the

rise to oscillatory

work toward an answer to
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Explanation in Terms of Equation Solutions. The classical answer to

"Why does the system oscillate?" is to solve the differential equatitss

that characterize the system, and then claim that the system oscillates

"because" the eigenvalues of the system are imaginary. "Because" in

this context is a very slippery concept; the eigenvalues are mathematical

fabrications, and in fact they do not physically cause the oscillations.

The cause of the system's oscillation is nothing more and nothing less than

the system's structure. ("Structure" in the context of this thesis can

denote all of the information necessary to generate the time-behavior

being studied: equation form, parameters, initial conditions, and

driving inputs.) The eigenvalues are only a way of describing the system's

oscillations. A more pragmatic alternative to asking "Why does the system

oscillate?" is to ask "How can we explain the system structure in a way

that emphasizes the structural features essential to oscillatory behavior?"

An equation solution slightly more intuitive than eigenvalues

is given in Forrester's Principles of Systems.*l* Translating that

explanation of oscillation into terms of the spring-mass system, assume

that the position P shows steady-state oscillations. That oscillation

can be described by a cosine:

P(t) = .5*cos((2*PI/PER)*t)

where t is time, PI is the constant 3.1415..., and PER is some period of

oscillation. (Its value will be specified later.) Given the assumed

behavior of P, we can trace the consequences of fluctuations around the

*l*Forrester, Jay W., Principles of Systems (Cambridge, Mass.:

Wright-Allen Press, 1969), Section 10.3.
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loop to the velocity V, which is the only rate affecting P. In this

way, we can show that oscillations in the position P can be

self-sustaining.

The fluctuations in position P create an opposing force

exerted by the spring, whose magnitude can be computed from the model

equations as follows:

At) = FS/(W/G)

= -SC*P/(W/G)

= -5*P/5

= -. 5*cos((2*PI/PER)*t)

Because of the constants chosen for the system, the acceleration A

exerted by the spring has a magnitude precisely the negative of that of

the position P. Figure 2-3 corroborates this calculation by showing

position P and acceleration A at all times equal in magnitude but

opposite in sign.

The velocity V is the integral of the acceleration A. The

integration causes velocity V to lag 90 degrees behind acceleration A.

Thus in Figure 2-3, when acceleration A is at its minimum (trough)

value, the velocity V is declining through zero at its maximum rate of

change, and when acceleration A is zero a quarter cycle later, the

velocity V is unchanging at its minimum (trough) value. If the

acceleration A is described by a cosine, the velocity V is described by

a sine:
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V(t) =JA(t) dt

= -(.5*PER/(2*PI))sin((2*PI/PER)*t)

Integration also changes the magnitude of the fluctuation by a factor of

PER/(2*PI). Just as velocity V is the integral of acceleration A, the

position P is similarly the integral of the velocity V. The second

integration again produces a phase shift of 90 degrees, and changes the

magnitude of the fluctuation by another factor of (PER/(2*PI)):

P(t) =fJ*V(t) dt

= .5*(PER/(2*PI))**2*cos((2*PI/PER)*t)

(The "**" in the equation above denotes exponentiation, so the term

preceding "**211 is squared.)' Thus, the fluctuation that propagates

around the loop in Figure 2-2, beginning with the position P, and

returning to the position P, has exactly the same phase it was assumed

to have. Figure 2-4 summarizes: the position P caused an

acceleration A phase-shifted by 180 degrees (i.e., multiplied by -1.0);

the two integrations caused a phase-shift of 90 degrees each, summing to

a total phase shift of 360 degrees, which is equivalent to no phase

shift. If the period of oscillation PER is such that (PER/(2*PI))**2

equals one, then the oscillation which was assumed to exist in the

position P is completely self-sustaining. Indeed, Figure 2-3 indicates

that the system has chosen a period apparently equal to that needed to

sustain oscillation (2*PI, or about 6.2830).
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Which features of the preceding explanation of oscillation are

useful, and which are not useful? The most obvious shortcoming of this

explanation is a lack of generality, for it capitalizes on a structural

feature usually found only in very simple models: all of the rate-level

interactions are pure integrations. No minor loops or nonlinearities

modify the propagation of the sinusoids (and spoil the mathematics).

The explanation in terms of equation solution is clearly more

of a description than an explanation. It relies on an intuition about

mathematics, not an intuition about the system structure. The

organization of the explanation is devious, for it shows that

oscillations in a particular variable, if they exist, are

self-sustaining. The explanation does not make it clear that the system

will oscillate, merely that it taa.* 2* Also, the argument relies on

examining open-loop behavior, then closing the loop by strictly

mathematical arguments. This strategy of considering an open-loop

system is certainly not very appealing conceptually.

One useful concept emerges from Figure 2-4. That figure

segments the elements on the loop (levels, rates, and auxiliaries) into

subsystems that produce phase lag between their input and their output.

It is such phase-a. subsysteMs that transform the sinusoidal signal and

allow it to continue propagating. We can observe that higher-order

*2*If one proves enough theorems about existence and uniqueness of
solutions, one can indeed prove that the system will oscillate.
Still, those theorems do not go very far toward exnlaining the
oscillation.
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structures such as a third-order delay can also constitute a phase-lag

subsystem, so a subsystem can be a group of levels as well as one

level.*3*

Explanation in Terms aL DePartures from Euilibrium Lalusj. In 1975,

Mass and Senge evolved an explanation of oscillation in terms of

departure from equilibrium values, in addition to the previous concept

of phase-lag subsystems.*4* Mass and Senge gave their explanation in

terms of an industrial model whose two levels were inventory and

workforce. That model is structurally analogous to the pendulum model

discussed here. In terms of the pendulum model, the explanation runs as

follows.

Figure 2-5 shows the first quarter-cycle of the oscillation.

The position P greater than zero causes a negative acceleration A,

causing velocity V to decline. As the position P approaches zero, the

acceleration A goes to zero, and the velocity V temporarily ceases

*3*Qf course, one could contend that a third-order delay is just three
first-order phase-lag subsystems in a row, so that subsystems can be
defined as composed of just one level. But the whole purpose of
defining concepts such as the phase-lag subsystem is to simplify
descriptions of system structure. Therefore, let us define a
phase-lag subsystem as a level or group of levels and the associated
rates and auxiliaries that produce an output that is phase-lagged in
relation to the input.

*4*Mass, Nathaniel J. and Peter M. Senge, "Understanding Oscillations
in Simple Systems," System Dynamics Group Working Paper D-2045-2
(Cambridge, Mass.: MIT, 1975). Mass and Senge do not use the terms
"phase-lag subsystem" or "departures from equilibrium valuei."
These concepts do fit the explanation Mass and Senge give, however.
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changing. At time t2 when the position P equals zero (its equilibrium

value), the system has transformed the initial disturbance in the

position P into a departure of the velocity V from its equilibrium

value.

Poshon P

Figure 2-5.

FIRST QUARTER-CYCLE OF SPRING-MASS OSCILLATION

Figure 2-6 shows how the velocity V of the mass continues to

move the mass past the zero position, so that by the end of two

quarter-cycles at time t3, the velocity V is again zero, and the

position P of the mass equals the negative of the initial position P.

The disturbance in V has propagated around the loop to disturb

positibn P away from its equilibrium value, this time in the opposite

direction from that of the initial disturbance. After the first



half-cycle, the whole process reverses itself, as the disturbance of

position P is transferred to the velocity V (and position P is zero) at

time t4. Finally, Figure 2-7 shows how the mass goes through the zero

position and returns once more to its initial position as the

disturbance returns the position P to its initial disequilibrium state

at time t5.
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The preceding explanation identifies the feature of a

phase-lag subsystem essential to producing oscillation: if the input to

such a subsystem goes to its equilibrium value, the output goes to its

equilibrium value only later.*5* The preceding explanation also

suggests the concept of a disturbance proagating arourd a loop: an

exogenous input or initial condition disturbs a subsystem away from its

equilibrium value, and even as that subsystem returns to its equilibrium

value, the loop has transmitted the disturbance to leave another

subsystem out of equilibrium. The disturbance propagates around and

around the loop, moving successive subsystems out of equilibrium.

There are, of course, numerous questions left unanswered by

the explanation in terms of disturbance from the equilibrium values.

The explanation itself does not clearly identify underlying structures

necessary for oscillations in general (even though the reflections above

begin to): What happens if we change a parameter? Why is the period

constant? Why is the period what it is? The following subsection uses

another form of describing systems to begin to answer such questions.

*5*This is not to say that loops containing phase-lead subsystems cannot
oscillate; I- suspect that the other subsystems on such loops produce
more than 360 degrees phase lag, so that aggregating the phase-lead
subsystem with the surrounding phase-lag subsystems produces an
aggregate phase-lag subsystem. Chapter 6 discusses the issue of
phase-lead systems and forecasting as areas for future research.



Explanation in State Space. In order- to see more clearly the

relationships of each of the levels to their equilibrium values and to

each other, we can plot the system behavior along two dimensions

representing the two levels, and leave the time dimension implicit: a

state-space diagram. (In contrast, the normal computer printout such as

Figure 2-3 shows all levels plotted on the same vertical dimension, with

time explicit along the horizontal dimension.) Figure 2-8 shows a

state-space diagram for the spring-mass system, with one axis for the

position P and one axis for the velocity V. The diagram gives

rate-of-change vectors which indicate how the system will change for

every state on the state plane. More specifically, the rate-of-change

vectors are the vector sum of the rates of change of position P and

velocity V that result from the state of the system at that point.

Thus, the horizontal component of the rate-of-change vector gives the

rate of change of velocity V (that is, the acceleration A) and the

vertical component of the rate-of-change vector gives the rate of change

of the position P. The direction of the arrows describes hw the system

changes, and the magnitude of the arrows describes how fast it changes.

For example, when velocity V is zero and the position P is greater than

zero (as would occur when the spring is stretched to its farthest

point), Figure 2-8 shows the vertical component of the arrow equal to

zero; there is no rate of change of position P. The horizontal

component of the arrow indicates that the rate of change of velocity V

is negative; the acceleration A is reducing the velocity V, to reduce

the position P back to zero.

-67-
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Producing a diagram such as Figure 2-8 may seem tedious, but

we can use the system equations to streamline the computation of the

vectors for each point. For example, consider the vectors originating

from the vertical axis, where the velocity V is always zero. The rate

of change of position P is none other than the velocity V, so that the

vertical component of these vectors is always zero. The horizontal

/
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component, the rate of change of velocity V, equals the acceleration A.

The system equations work out to make acceleration A equal to the

negative of position P. Thus, the magnitude of the arrows originating

from the vertical axis is always proportional to the distance from the

equilibrium point. In fact, the derivation below shows that the

magnitude of ~an rate-of-change vector on the state-space diagram is

proportional to its distance from the equilibrium point, and that the

direction of the vector is at right angles (90 degrees clockwise) from

the direction from the equilibrium point to the specific state.

The magnitude of a rate-of-change vector ("r") is given by the

normal Euclidean distance formula

i (((d/dt)P)**2 + ((d/dt)V)**2)**(1/2)

= (V**2 + (-P)**2)**(1/2)

(V**2 + P**2)**(1/2)

Thus, the magnitude of the rate-of-change vector is exactly

equal to the magnitude of the state vector (i.e., the Euclidean distance

from the equilibrium point to the point on the state plane). The

direction of the rate-of-change vector can be specified by its slope,

which equals the vertical component divided by the horizontal

component, or

slope(r) = (d/dt)P/(d/dt)V = V/(-P)

From geometry, we know that if a line has a slope S, then the line at

right angles to it has a slope -I/S. The state vector has a slope P/V,

so the line at right angles to it has a slope of -V/P, which is exactly

the slope of the rate-of-change vector. Therefore, the rate-of-change



vector is either 90 degrees clockwise or counterclockwise from the state

vector. The counterclockwise direction of the rate-of-change vector

follows from observing that when velocity V is positive, the rate of

change of position P is also positive. Thus, in the right side of the

state plane, the vertical (position P) component of the rate-of-change

vector must be positive: the vector goes upward and not downward. (The

opposite happens in the left side of the state plane.) The upward

orientation in the right side of the state plane corresponds to a

counterclockwise rotation from the direction of the state vector.

Given a state-space diagram such as Figure 2-8 with a large

number of arrows, the trajectory of the system can be approximated

graphically by connecting the arrows. Figure 2-9 shows two such

trajectories for the spring-mass system, each corresponding to a

different set of initial conditions. Consider the trajectory beginning

at point A, where the position P equals one-half foot, and the

velocity V equals zero. (This corresponds to the simulation in

Figure 2-3.) At point tl, the position P is away from its equilibrium

value.*6* The negative loop begins to build up velocity V to carry P

back to equilibrium, which moves the trajectory directly left. The

*6*"Equilibrium value" characterizes the system behavior more than it
does the system structure. Although models of managerial systems
equilibrate when levels are equal to managerially-determined desired
levels, many systems equilibrate at values with no particular
structural significance. For example, the structure of the Urban
Dlnamis model does not contain any targets at which the system
should equilibrate. Indeed, until one has studied the behavior of
the model, one cannot easily determine from the system structure
even approximate equilibrium conditions.
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position P continues to exceed its equilibrium value, so velocity

continues to build up until at time t2, P is at its equilibrium value,

but the disturbance has propagated to leave V away from its equilibrium

value. The built-up velocity V continues to move the level P past its

equilibrium value, until time t3, when the velocity V becomes zero, but

the position P is again away from its equilibrium value. The ;ituation
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at time t3 is in effect the mirror image of the situation at time tl:

the velocity V is at its equilibrium value, but the position P is

disturbed away from its equilibrium value, this time below it. Thus,

the same events will ensue in reverse, with velocity V building up and

moving P past its equilibrium point. One cycle of oscillation is

completed when the system returns the position P at time t5 to the same

value it had at time tl. The system will obviously continue to

oscillate around the circular trajectory.*7*

The state-space diagram indicates that oscillation is an

inescapable property of the structure of the spring-mass system. The

negative loop shown in Figure 2-2 compensates for any of the system

levels being out of equilibrium. But the compensation involves moving

to the side in state space, so that a level travels to zero only when

the other level moves away from zero, forming a quarter-circle in state

space. The system always attempts to move toward the equilibrium point,

but always fails because the system is always moving sideways as well.

A physical analog to this trajectory is an orbiting satellite, which is

always falling toward earth, but never reaches earth because it is also

moving sideways with respect to the earth.

*7*For the trajectory to form a perfect circle is fairly unusual; this
is caused by the absence of minor loops and the values chosen for
the parameters. One way of seeing that the trajectory moves in a
circle is to remember that the rate-of-change vectors are always at
right angles to the line from the vector to the origin, so that the
distance from the system state to the origin can never change.
Obviously, when this property is changed, the trajectory no longer
necessarily forms a perfect circle. Trajectories which will be
explored later include inward- and outward-spiraling trajectories.
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The state-apace form of describing the structure and behavior

offers tentative explanations to many of the questions posed at the end

of the last subsection.

Why is the period constant? Because the system returns after

one cycle to values of the levels completely identical to the initial

conditions, so that as far as a state-space description goes, the

succeeding cycles of an oscillation are not similar behavior but the

iame. behavior, which of course has the same period each time it

manifests itself. We can formalize these ideas by saying that the

initial disturbance propagates around the loop until it returns the

system's levels to a comparable disequilibrium stat&.

- Why is the period the same for all amplitudes of oscillation?

We know that for the spring-mass system, the speed at which the state

travels through state space (i.e., the magnitude of the rate-of-change

vector) is proportional to the distance between the state and the

equilibrium point. The distance through which the state must move to

complete one cycle of oscillation is also proportional to the distance

between the state and the equilibrium point. Thus, no matter what the

amplitude of oscillation, the time it takes to circumnavigate one

complete cycle remains constant. In any system where the rate of change

in approximately proportional to the discrepancies between the actual

levels and the equilibrium level values, increasing the amplitude of

disturbance increases both the speed of change and the amount of

changing needed to complete a cycle together. Thus, in such a system,
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the period remains the same for any amplitude of disturbance.

Why is the period what it is? The period is the time it takes

for the rate-of-change vectors to propel the system around one complete

cycle. The magnitude of the rate-of-change vectors depends on how

rapidly each subsystem attempts to move the next subsystem around the

negative loop toward equilibrium. For example, the parameters that

characterize "how rapidly" (i.e., the coupling time constants) for the

spring-mass system are 1.0 ((d/dt)P = V*l.0) and -SC/(W/G) (((d/dt)V =

(-SC/(W/G))*P). These two parameters connect the two subsystems of the

spring-mass system together, and determine "how rapidly" disequilibrium

in one system changes the other subsystem. The magnitude of the

rate-of-change vector is

r =((d/dt)P**2 + (d/dt)V**2)**0.5

- (V**2 + ((-SC/(W/G))*P)**2)**0.5

When P = 0, the magnitude of the rate-of-change vector is 1.0 times the

distance from the state to the equilibrium point. When V = 0, the

magnitude of the rate-of-change vector is (-SC/(W/G))t times the

magnitude of the state vector. (For the parameters chosen, (-SC/(W/G))

also equals 1.0, but this is not true in general.) For states not on

the axes, the magnitude will be somewhere between 1.0 and (-SC/(W/G))H

times the magnitude of the state vector. The description in terms of

magnitude of the rate-of-change vector jibes well with Forrester's

Principle 10.3-1 in Princi e-plea QSystems that
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The second-order negative loop with no minor loops

oscillates as a sustained sinusoid with a period P =
2*PI*(Al*A2)**0.5 where the A's are the coupling time

constants or the reciprocals of the gain multipliers that

relate levels to succeeding rates.

So the rate-of-change propels the state around one cycle at an average

speed proportional to the geometric mean of the gains.*
8 *

One way of deriving the period (at least approximately) is to

assume that the average speed of movement through state space is:

(geometric mean of gains)(magnitude of state vector)

and that the distance to be moved in one complete cycle is

2*PI*(magnitude of state vector)

Then the time it takes to move that distance at that speed is distance

divided by speed or

2*PI/(geometric mean of gains)

which, assuming that the coupling time constants are defined as the

reciprocals of the coupling gains, equals Forrester's result of

2*PI*(geometric mean of coupling time constants)

Thus far we have seen three explanations of oscillations: in

terms of equation solution, in terms of departures from equilibrium

*8*There is another explanation of why the period is what it is: not

so long that there is very little phase shift around the loop, and

not so short that the signal is attenuated. Further exploration of

this question, or finding commonality between the two explanations,
however, seems inappropriate to the scope of this thesis.



values, and in terms of movements in state space. From these

explanations we have abstracted three concepts: a loop formed of

phase-lag subsystems, a disturbance propagating around the loop from

subsystem to subsystem, and the disturbance moving the state through one

complete cycle to return to a comparable disequilibrium state. Before

formally unifying these concepts into a principle, let us examine the

oscillatory behavior of two more systems to clarify and refine the

concepts.

Oscillation from a Purely Positive Loo. It is customary to think of

oscillations as arising from negative loops, even though it is not hard

for us to conjure up a counterexample where a series of delays

(first-order negative loops) are interconnected to form a positive loop.

Disturbances might propagate around such a positive loop to produce

oscillatory behavior superimposed on exponentially-growing behavior.

Indeed, that combination of behavior modes arises from such a structure

in Forrester's "Market Growth as Influenced by Capital Investment."Y*9*

Figure 2-10 shows a causal-loop diagram of the structure. (The levels

are shown on the positive loop.) It is tempting to ascribe the

oscillation in some fashion to the presence of minor negative loops on

the major positive loop. This ascription is not correct, as can be seen

from the following example.

*9*Forrester, Jay W., "Market Growth as Influenced by Capital
Investment," IndustiaL jManagementyRejie [now Sloan Mnageent

Reviewl (Winter 1968).
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Consider a system where four integrators are connected in a

single positive loop, as shown in Figure 2-11. The equations for the

system are:

(d/dt)LI = L4

(d/dt)L2 = LI

(d/dt)L3 = L2

(d/dt)L4 = L3

Solving for a differential equation in terms of U,

(d4/dt4)Ll = L

or

(d4/dt4)Ll - L = 0

The characteristic equation is therefore

s**4 - 1 = 0

This equation factors as follows

s**4 - 1 = 0

(s**2 + 1)(s**2 - 1) = 0

(s+j)(s-j)(s+l)(s-l) = 0

so that the eigenvalues of the system are -j, +j, -1, and +1, where j is

the square root of negative one.
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The eigenvalue of +1 is expected, as it corresponds to

exponential growth. The eigenvalue of -1 might be thought of as

characterizing the time it takes for all of the levels to enter a pure

steady-state exponential growth mode. Both of these eigenvalues occur

in a second-order positive loop with pure integrators and unity gains,

as well as the fourth-order system discussed here.

The eigenvalues of +j and -j correspond to sustained

sinusoidal oscillation. Four integrations produce four 90-degree phase

shifts, so that a disturbance, once started, can propagate itself

indefinitely. This oscillation is analogous to the oscillation in

Figure 2-4, where two integrations produced a 90-degree phase shift

each, and the negative sign in the negative loop in effect produce

another 180-degree shift, so that the total 360-degree phase shift

allows an initial disturbance to propagate itself indefinitely.

Just as structural changes to the second-order negative loop

in Figure 2-4 can amplify or attenuate the propagating disturbance, so

probably can modifications to the higher-order positive loop in

Figure 2-11 likewise amplify or attenuate a propagating disturbance.

Oscillation arises from disturbances propagating around loops.



Period.*10*

If oscillations can arise as an integral part of an exponentially-

growing (i.e., non-equilibrium) behavior mode, it is clear that the previous

explanations in terms of disturbance from equilibrium must be modified:

the oscillatory behavior in the system in Figure 2-11 can be described in

terms of departures from steady-state values. "Steady-state" here denotes

all other behavior modes, and excludes the oscillation being examined

(which in this case also could be considered a steady-state phenomenon,

as the oscillations do go on indefinitely).

Let us further refine the concepts with one more example before

integrating them into a principle.

Damped Oscillation in a Managerial System. The previous examples have had

structures consisting of pure integrations and oscillatory behavior

consisting of pure sinusoids. We can examine a slightly more complex

structure that gives rise to another type of oscillatory behavior: damped

*10*The traditional discussion of loop polarity and behavior connects

negative loops with convergent, sometimes oscillatory behavior, and

positive loops with divergent behavior. But there are certainly now

too many practical counterexamples for these connections to remain

useful. Negative loops can show explosively divergent oscillatory

behavior. Positive loops with steady-state open-loop gains less

than 1.0 can show convergent, nonoscillatory behavior (see Chapter 4).
And finally, as the discussion above indicated, positive loops can

generate convergent or divergent oscillations superimposed on other

behavior modes. For further discussion as well as explicit simulations
of the four-integrator positive loop, see Graham, Alan K., "Positive

Loops and Divergent Behavior," System Dynamics Group Working Paper

D-2751, Alfred P. Sloan School of Management (Cambridge, Mass.: MIT,
1977).
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oscillations, where the magnitude of the oscillation diminishes with each

cycle. The example (which will be reexamined many times in subsequent

chapters) is an oscillatory managerial system. In brief, the system can

be described as follows: a company receives orders for its products,

which accumulate in an order backlog until the company fills the order

by producing the required product. If the order backlog becomes too high,

the company hires more people to produce its goods more rapidly and reduce

the backlog. Figure 2-12 shows a DYNAMO flow diagram of the system. The

major outside loop is negative. As the order rate OR increases the

backlog B, this increases the correction for backlog CB, the desired employ-

ment DE, the correction for employment CE, and the net hiring rate NHR.

As hiring increases the employment E, the output OUT increases, which

decreases the backlog B. The goals for desired employment DE and desired

backlog DB are based on the average level of activity in the company,

represented by the expected average output EAO.*11*

*ll*The expected average output EAO is one of several variables held
constant in this section. These variables will be made active in
later sections to show the effects on behavior of structural changes.
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The employment-backlog system may at first seem much more

complex than the spring-mass system whose flow diagram appears in

Figure 2-2. However, much of the apparent complexity is due to the

auxiliaries connecting the backlog B to the net hiring rate NHR. Those

auxiliaries can be thought of as a disaggregation of the rate equation

for NHR. If we think of the rate equation subsuming all of the

auxil) les, the strucbure appears much simpler: Figure 2-13 shows that

the structure of the employment-backlog system is a simple second-order

negative loop, like the spring-mass system. The only difference is that

the employment-backlog system has an additional minor negative loop

around one level.

Employment E is a level variable altered by the net hiring

rate NHR.

E.K=E.J+(DT) (NHR.JK) 1, L
E=EN 1.1, N
EN=50 1.2, C

E - EMPLOYMENT (MEN)
NHR - NET HIRING RATE (MEN/YEAR)
EN - EMPLOYMENT INITIAL (MEN)

The net niring rate NHR represents a management policy, in

this case a rather simple one. The discrepancy between the actual

employment E and the desired employment DE is corrected with a time

constant of TCE--the time to correct employment.

NHR.KL=(DE.K-E.K)/TCE 2,R
TCE=.5 2.1, C

NHR - NET HIRING RATE (MEN/YEAR)
DE - DESIRED EMPLOYMENT (MEN)
E - EMPLOYMENT (MEN)
TCE - TIME TO CORRECT EMPLOYMENT (YEARS)
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The desired employment DE responds to production plans, as

represented by the desired output DOUT. The desired employment DE is

simply equal to the desired output DOUT divided by the productivity

PROD. This constant represents the number of units produced by an

employee in one year. It has been set at 30 units per year per man,

representing a fairly large, complex unit to be manufactured.

DE.K=DOUT.K/PROD 3, A
PROD=30 3.1, C

DE - DESIRED EMPLOYMENT (MEN)
DOUT - DESIRED OUTPUT (UNITS/YEAR)
PROD - PRODUCTIVITY (UNITS/YEAR/MAN)

The desired output DOUT has two components. The first

component, the expected average output EAO, provides a base figure

around which production can be planned. The second component, the

correction for backlog CB, adjusts this base figure by increasing

desired production when the backlog of orders is high, or decreasing

production when very few orders have been placed.

DOUT.K=EAO.K+CB.K 4, A
DOUT - DESIRED OUTPUT (UNITS/YEAR)
EAO - EXPECTED AVERAGE OUTPUT (UNITS/YEAR)
CB - CORRECTION FOR BACKLOG (UNITS/YEAR)

The correction for backlog CB responds to a discrepancy

between the backlog B and the desired backlog DB, with a time constant

equal to the time to correct backlog TCB.*12* Thus, when backlog B

exceeds the desired backlog DB, the correction for backlog CB is greater

*12*Technically, TCB is not a time constant but a coupling time
constant. This distinction is discussed in Section 3.1.



than zero, which increases the desired output DOUT in the face of an

excessive number of orders.

CB.K=(B.K-DB.K)/TCB 5, A

TCB=.5 5.1, C
CB - CORRECTION FOR BACKLOG (UNITS/YEAR)
B - BACKLOG (UNITS)
DB - DESIRED BACKLOG (UNITS)
TCB - TIME TO CORRECT BACKLOG (YEARS)

The desired backlog DB sets a goal of a constant backlog

coverage (the desired backlog coverage DBC), based on the expected level

of activity (as measured by the expected average output EAO). Thus, if

the company is manufacturing 1200 units per year, and the desired

backlog coverage DBC equals 0.5 years, the company wants to have

1200 x 0.5 = 600 orders in the backlog.

DB.K=EAO.K*DBC 6,A
DBC=.5 6.1, C

DB - DESIRED BACKLOG (UNITS)
EAO - EXPECTED AVERAGE OUTPUT (UNITS/YEAR)
DBC - DESIRED BACKLOG COVERAGE (YEARS)

The backlog B of orders is a level increased by the incoming

order rate OR, and decreased by the company's output OUT (which by

assumption is shipped immediately and thus depletes the backlog B.) The

backlog B is initialized at its desired level, the desired backlog DB.

B.K=B.J+(DT)(OR.JK-OUT.JK) 7, L
B=BN 7.1, N
BN=660 7.2, C

B - BACKLOG (UNITS)
OR - ORDER RATE (UNITS/YEAR)
OUT - OUTPUT (UNITS/YEAR)
BN - BACKLOG INITIAL (UNITS)
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The actual output OUT, as mentioned before, is simply equal

to the current employment E times the productivity PROD per man. (In

this simple model, we will assume that the company uses no overtime or

fractional workdays to meet production plans.)

oUT.KL=E.K*PROD 8, R
OUT - OUTPUT (UNITS/YEAR)
E - EMPLOYMENT (MEN)
PROD - PRODUCTIVITY CUNITS /YEAR/MAN)

Figure 2-14 shows the response of the employment-backlog

system when employment E is initialized out of equilibrium. At first,

the overshoot and slight undershoot of most variables may seem to bear

little resemblance to the persistent sinusoidal behavior shown in the

spring-mass bystem. However, closer examination reveals the same

qualitative pattern of behavior. The initial employment E exceeds the

steady-state value of employment necessary to produce output OUT at a

rate eaual to the order rate OR. As a result of the initial disturbance

in employment E, OUT exceeds the order rate OR, and the backlog B begins

to fall. The falling backlog B reduces the desired employment DE and

thus the actual employment E falls. At about time 0.6 years,

employment E has been reduced to its steady-state value, and the

disturbance has propagated to the backlog B, which is well below its

steady-state value. But employment E still exceeds the desired

employment DE (which is below its steady-state value because the

backlog B is), so employment E and output OUT continue to fall. After
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about time 0.6 years, the order rate OR exceeds the output OUT, so that

the backlog B rises, soon to equal its steady-state value of 660 units

at time 1.6 years. But the phase-lag subsystem that determines output

OUT is still below its steady-state value at time 1.6 years; the

disturbance has propagated back to a disturbance in the employment E,

this time of the opposite sign as the initial disturbance.

Subsequently, the same pattern ensues to return the system to a

comparable disequilibrium state at about time 3.2 years, where the

backlog B is at its steady-state value, and the employment E is

disturbed above its steady-state value.

The major difference between Figure 2-14 and the spring-mass

oscillation in Figure 2-3 is that the disturbance attenuates as it

propagates around the employment-backlog loop. Thus, after one cycle,.

the disturbance in the employment E is reduced to about a twelfth of its

initial magnitude. (Section 2.2 explains how minor negative loops such

as that around employment E can attenuate disturbances and cause damped

oscillation.)
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comparable disequilibrium state after one cycle of 3.3 years, however.

Figure 2-15 shows the trajectory of E and B after one cycle on an enlarged

scale, with a dotted line. The trajectory after year 3.3 is quite similar

in shape and period to the initial trajectory; only the magnitude is

different.*13* (Again, the analogy of the satellite is apt, for a

satellite whose motion is restricted by atmospheric friction shows such

inward spirals, until it either hits the earth or burns from friction

heating.)

The example of the employment-backlog system indicates that we

must extend the concept of comparable state to include not only equal states,

as it did before, but also states whose disturbances from their steady-state

values are proportional to one another. Thus, the initial state is

comparable to any state on the upper half of the vertical axis. In

-general comparable states will lie on the same ray in state space

*13*The similarity of trajectories comes about because of the linearity
of the system around the equilibrium point. As long as the system
is approximately linear, multiplying the initial conditions by some
constant will multiply the response by the same constant, by the
principle of superposition. Thus, a ray in state space from the
equilibrium point specifies a set of states whose ensuing trajectories
differ from one another only by multiplication by a constant. (This
linearity also explainedvtythe spring-mass system shows the same
period for any mangitude of oscillation.)
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emanating from the equilibrium point.*14* *15* Thus, for the damped

oscillation of the employment-backlog system, we can characterize each

cycle as showing comparable trajectories, and the explanation for the

constant period of the spring-mass system applies to the present

oscillations as well.

*1 4*Technically, we could define any states on a line (instead of a ray)

as comparable, 'ith the disturbances away from steady-state values
of some states being the negative of the disturbances of other
states. Restricting comparable states to a ray, however, allows us
to visualize comparable trajectories with just scale changes
(instead of mirror-image reflections).

*15*Most socioeconomic systems contain relative smooth nonlinearities,
so that the system is approximately linear about the equilibrium
point. Thus, the description given above often holds, but only
approximately.
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A Principle. As remarked earlier, the function of a principle is to state

a relationship among concepts that summarizes, explains, and makes

accessible a large number of more specific experiences. The concepts

developed thus far--the "raw material" for a principle on oscillations--

are:

Subsystem

A collection of rates, levels, and auxilliaries within a system
with one input and one output, which, for the purpose of analyzing
the behavior of the overall system, is characterized only by its
input-output characteristics; internal structure per se is not of
major concern in the analysis.

Phase-lag subsystem

A subsystem (possessing one or more levels) that produces a phase
lag between its input and its output, so that when the input reaches
its steady-state value, the output reaches its steady-state value
only later.

This concept describes both integrators and first order delays, as well as

more complex structures. The concept of phase-lag subsystems allows us to

aggregate above the level of individual levels and rates, and thus

simplify our thinking about oscillation. The concept also allows us to

begin to make the coupling between individual parameters and overall

behavior, by asking how a parameter change affects the propagation of a

disturbance through a particular subsystem.

Lop formed of phase-lag subsystems

Several phase-lag subsystems, each of whose inputs is the output
of another phase-lag subsystem, with each output being used as
input only once.
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The concept of a loop formed of subsystems underlies the explanation of

oscillation in terms of departures from equilibrium: If one phase-lag

subsystem is out of equilibrium, it will cause the next subsystem around

the loop to move away from its own equilbrium, so that even if the first

subsystem returns to equilibrium, the next subsystem will be out of

equilibrium. In turn, the next subsystem after that will begin to move

out of equilibrium, and the condition of disequilibrium moves around the

loop. This chain of events is formalized in the next two concepts.

Disturbance

A condition where one or more levels in a system are different
from their respective steady-state values. The steady-state values
can be either constant, or varying as a function of another behavior
mode, such as exponential growth, or oscillations of a longer period.

Disturbance propagating around a loop formed of phase-lag subsystems

Behavior in which a disturbance away from steady-state values
in one subsystem disturbs the next subsystem around the loop away
from its steady-state values, and so on, so that a pattern of
disturbances moves around the loop.*16 *

The concept of disturbances propagating ties together the explanation

in terms of departures from equilibrium with the mathematical procedures

where one first analyzes the open loop- propagation of a sinusoid, and

then somehow deduces the closed-loop behavior. One instance of this

*16*Obviously, two or more subsystems are necessary for a disturbance

to have some place to propagate to; a first-order system cannot
generate endogenous oscillations. If ever the level reaches its
equilibrium value, no further movement is possible, because the
whole system (of one level) is at equilibrium. For further
discussion, see Mass and Senge, 2k. cit.
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procedure is shown in Figure 2-4; more general methods are available.*l7*

Comparable disequilibrium states

Two total states of a system (possibly at different points in time)

where the disturbances of each of the levels from their steady-

state values are proportional to one another. For systems that go

to equilibrium in steady-state, comparable disequilibrium states

in state space lie on the same ray from the equilibrium point.*18*

The concept of comparable disequilibrium states allows one to utilize the

powerful geometric intuition inherant in visualizing a state space. Thus,

for example, the concept of comparable states puts damped, expanding, and

constant-amplitude oscillations into a uniform framework.

The concepts discussed above seem to embody most of the

oscillatory phenomena exhibited thus far. It remains only to tie them

all together by stating a principle which gives the relationships among

--------------------------------

*17*One method is a Nichols chart which converts a graph of open-loop phase

and gain at various frequencies to a graph of closed-loop phase and

gain. It is thus a simple and elegant way of arriving at closed-loop

characteristics of a system. Chapter 6 discusses the Nichols chart as

a possible adjunct to the materials presented here. Another means of

deducing closed-loop response from open-loop response is with transfer-

functions, which can be used to perform the same operation as the

Nichols chart, but mathematically instead of graphically.

*18*For systems with a dynamic steady-state, the geometry is slightly

more complicated. Two total states are comparable disequilibrium

states if the vectors representing the disturbance away from steady

state (i.e. the total state minus the nominal steady-state state
for that time) are parallel.
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the concepts:

Principle on the origin of oscillations

Oscillations occur when a disturbance propagates around a

loop formed of two or more phase-lag subsystems to return the

system to a state comparable to the initial disequilibrium state.

There are two types of oscillatory system that do not fit neatly

into the descriptive framework established by the principle. One such

class of systems contains approximate differentiators or other non-phase-

lag subsystems that play an important role in the oscillation.

Section 6.3 discusses such systems as the subject for further research.

The other class of systems are agglomerations of individual systems,

each of which has some tendency to oscillate. There are many possible

loops around which disturbances can propagate, each with a characteristic

natural period. For example, some electric power networks, the head

of a drum, and a waterbed all fall into this category. Such systems

(unless disturbed in highly special ways) will show complex and irregular

fluctuations, corresponding to a multiplicity of oscillatory behavior

modes.

What are the implications of the principle on the origin of oscil-

lations? How can one use it as a practical modeling tool? First and

foremost, the principle tells us that when we are looking for the cause

of regular fluctuations, a loop with two or more phase-lag subsystems

with response times on the same order of magnitude may be the cause of

them.

Additionally, the principle gives us some insight into a very

common property of complex oscillatory systems: one or two feedback
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loops often dominate the behavior despite the presence of thousands

of others. (Here, a loop dominates the behavior in the sense that

if the loop is disconnected or substantially altered, the behavior

mode also changes substantially.) Thinking in terms of the propagation

of a disturbance, the reason is fairly clear: We know that a disturbance

will propagate longest around the loop that propagates the disturbance

most strongly (and remember that "strongly" has to do with both the phase

and gain with which a sinusoid is propagated around a loop.) It seems

unlikely that there would be several seperate loops around which a

disturbance could propagate, each with about the same time constant

of delay as the others. More likely, one or two loops propagate the

disturbance markedly better than the other loops present in the system.,

By analogy, we can think of a large number of rooms or cubicles, some

connected to each other by a door, just as the various subsystems of

a system are interconnected by material flows and information links.

Within that "system" of cubicles, there are probably only one or two

shortest paths around which one can rapidly and easily run in a circle.

The other paths tend to be roundabout, and not as fast for running,

just as many loops in a feedback system do not propagate disturbances

very well. One example of this type of loop dominance occurs when

one shouts into a valley or canyon whose shape is somewhat contorted and

irregular. Often an echo results, which is a form of oscillation where

a distinctive disturbance travels back and forth, to give periodic but

very nonsinusoidal oscillatory behavior, which is damped: HELLO...Hello...

hello.... One path along which the sound travels dominates the behavior,

to result in oscillations of a single frequency, simply because that
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two-way path is the loop best able to propagate the sound. Sometimes,

one can hear echods not at the dominant frequency, but they usually fade

much more quickly than the main echo. These quickly-fading oscillations

arise from paths or loops that cannot propagate the sound as well as

the dominant loop.

The description above of loop dominance in oscillation gives one

a guideline for considering parametric and structural changes intended

to alter the loop dominance. One instance where one would want to know

how to change loop dominance is it designing policies to stabilize

an oscillatory system. The description above implies that a very

efficient way to stabilize a system's oscillations is to identify the

dominant loops and reduce their ability to propagate disturbances,

through either parameteric or structural changes.

Prior to policy testing, one often investigates the sensitivity of

the behavior to parameter changes--in other words, are there alternative

sets of realistic parameters capable of yielding behavior that results

from a different set of dominant loops? Again, the principle and the

discussion that follows it implies that one should answer such

questions in terms of changing a loop's ability to propagate distur-

bances,which is certainly a much more focused beginning point than

picking parameters at random to test for sensitivity.



Further Examples: Wire Memory and Glucose Regulation. In the early

days of computers before the development of magnetic core memory, one

form of computer memory in effect used echoes to preserve and

"remember" information: instead of having an echo that preserves a

HELLO...Hello...hello..., the echo preserves the value of a binary

number: 11001001...11001001...11001001.... Figure 2-16 shows

schematically the physical equipment used to preserve this complex

oscillation. (The actual device was rendered more compact by using a

coil of wire instead of a loop; the principle of operation, however, is

exactly the same.) The figure shows a loop of wire, to which an

electromechanical device can apply a sharp twist. The twist does not

twist the whole wire around and then back as a unit; the twist must

propagate around the wire, just like a sound wave, so a very short

section of wire twists, twists back, and is ready for the next twist

to come through. One can start a very complex echo around the loop

to represent a binary number: twist for a 1, and no twist for a zero.

When the twist reaches the terminal end of The wire, a sensor detects

the twists, and causes the electromechanical twister to do the same

twists at the beginning of the wire as are being detected at the end.

The effect of this recirculation is to cause the same pattern of

disturbances to propagate endlessly around the loop. (Naturally, in

a working computer system, there are provisions for temporarily

blocking the recirculation in order to allow the electromechanical

twister to put new information into the memory.)
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WIRE MEMORY

As the final example, we will consider the body's system for

controlling the sugar content of the blood.*19* There is only one type

of sugar that circulates in the blood, called glucose. Figure 2-17

shows a simplified flow diagram of the system that controls the level of

glucose in the blood. The amount of glucose G in the blood is a level

altered by the rate of change in glucose CG, which aggregates the

release of glucose from the liver and uptake of glucose by most organs

*19*This example is a simplified version of the system described in

Foster, Richard O., "The Dynamics of Blood-Sugar Regulation,"
unpublished M.S.E.E. thesis (Cambridge, Mass.: MIT, 1970).
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in the body. The change in glucose CG is determined by the effects of a

hormone that circulates within the blood called insulin.*20* Insulin

causes both an increase in glucose uptake by organs and a decrease in

glucose release by the liver, so that insulin causes glucose to

disappear from the bloodstream. The insulin concentration IC does not

influence CG instantaneously; there is a delay, represented in the level

of physiologically effective insulin concentration PEIC, which

influences change in glucose CG with a negative polarity. The insulin

concentration IC itself depends on the amount of insulin I in the blood

and the volume of blood in which the insulin circulates. Insulin is

broken down in the liver and other places, so it has a characteristic

half-life. Thus, the level of insulin I is depleted by the rate of

insulin degradation ID that depends on the amount of insulin I and the

time constant of insulin removal. lnsulin enters the bloodstream by

being released from the pancreas, a small organ near the stomach and

intestines. This insulin release IR responds to high glucose

concentration GC.*21* Thus, insulin release IR closes a negative loop

running through the levels of insulin I, physiologically effective

insulin concentration PEIC, and glucose G.

*20*Insulin is the medication taken by diabetics when their bodies are
no longer able to secrete it internally. For further discussion,
see Foster, ibid.

*21*The actual system is more complex than indicated by the flow
diagram. One of the omitted complexities concerns the stock of
insulin available in the pancreas for secretion. If this stock is
exhausted by a sudden influx of glucose, the response of insulin
release IR to glucose concentration GC changes.
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One can influence the amount of glucose in the blood by either

injecting glucose directly, or ingesting sugary foods such as candy

bars. If sugary foods are eaten on an empty stomach, they digest

quickly and provide almost an impulse of glucose into the blood.

Figure 2-18 shows a sketch of the response of the glucose-insulin system

to such a disturbance. As the reader no doubt expected, the glucose

concentration GC rises rapidly at first due to the influx of glucose

from outside the system. This disturbance causes the insulin

concentration IC to build up and removes glucose from the bloodstream,

until glucose returns to its steady-state value, but insulin is still

disturbed above its steady-state value. The disturbance continues to

propagate around the.loop, until glucose undershoots (i.e., is disturbed

below) its steady-state value, although the magnitude of the disturbance

is much smaller than the initial disturbance. The undershoot in glucose

is noticeable in real life: if a person is hungry, eating a candy bar

makes him or her feel much better, due to the more-than-adequate supply

of sugar in the bloodstream. However, after about an hour, the

blood-sugar concentration dips lower than ever, leading to a feeling of

weakness, dizziness, and apathy. (This overshoot can be eliminated by

vigorous exercise, which prevents glucose from building up in the blood,

or by eating food that is less digestible than the candy bar, so that

the glucose is released into the blood in smaller amounts over a longer

period of time.)
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2.2. DAMPING

The word "damping" usually denotes both an action or device

intended to reduce the magnitude of an oscillation, and also the

resulting oscillation with diminishing magnitude. In one fell swoop of

semantics, the distinction between structure and behavior is erased. For

the remainder of this thesis, I would like to let "damping" denote only

a type of behavior or behavior change: oscillations whose magnitudes

are diminished over time. A first-order negative loop around a level

(often called a "damping loop" because it so often damps the oscillatory

behavior) I will call a minor negative loop. To explore the structural

features that result in damped behavior, let us begin with a simple

example.

An Example: Damped Spring-Mass OaQillation. The spring-mass system

as described in the previous section oscillates forever with constant

magnitude. In real life, no such perpetual-motion systems have been

discovered to date. Mechanical resistance (friction), electrical

resistance, and fluid resistance all dissipate the energy of the

oscillating system, and return it to an equilibrium eventually. One

source of energy loss in the spring-mass system is friction between the

mass and the support upon which it slides. In terms of the equations

described in the previous section, friction exerts a force on the mass:
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A.KL=(FS.K+FF.K+FD .K)/(W/G) 3, R
M=10 3.1, C

A - ACCELERATION (FEET/SECOND/SECOND)
FS - FORCE FROM SPRING (POUNDS)

FF - FORCE FROM FRICTION (POUNDS)
FD - FORCE FROM DRIVING (POUNDS)

W - WEIGHT (POUNDS)
G - GRAVITATIONAL ACCELERATION (FEET/SECOND/

SECOND)

The force from friction FF is proportional to the velocity V.

The constant of proportionality, the friction coefficient FC, is an

empirical result that indicates how much force is required to keep the

mass moving at one foot per second on its supporting surface. FC was

set equal to zero in the previous section; for the simulation below it

is set at 2.5 pounds per foot per second. Because the force from

friction FF always works in the opposite direction of the velocity, the

equation for FF contains a negative sign:

FF.K=-FC*V.K 5, A

FC=O 5.1, C
FD - FORCE FROM FRICTION (POUNDS)

DC - FRICTION COEFFICIENT (POUNDS/FOOT/SECOND)
V - VELOCITY (FEET/SECOND)

The force of friction FF closes a minor negative loop around "elocity V,

which decreases FF, which decreases the rate of acceleration A, which

decreases the level of velocity V.

Figure 2-19 shows the behavior of the spring-mass system with

damping superimposed on the undamped simulation of Figure 2-3. As

before, the position P declines to its equilibrium value, overshoots,

and reaches a minimum value. But unlike the previous simulation of the

spring-mass system, the minimum value is only about half the magnitude

of the initial displacement. The maximum excursion of P seems to
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Figure 2-19.
DAMPED BEHAVIOR OF SPRING-MASS SYSTEM

diminish by half each half-cycle. The other variables show similar

diminution. How does the added minor loop cause this change?
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ExpanationjiTerm QL DiminutionQt Disturbances. In the light of the

preceding section, one might be tempted to say that adding a minor

negative loop damps oscillations by attenuating disturbances.

Figure 2-19 illustrates: the solid lines show how a disturbance in

position P propagates to become a disturbance in velocity V at time t2

if there is no minor loop (i.e., when V is simply minus the integral

>f P). The dotted line between the two curves indicates the diminution

in the buildup of velocity V caused by the minor loop. (In effect, the

phase-lag subsystem around the level of velocity V has been made less of

a phase-lag subsystem, because the minor loop reduces the velocity V to

its equilibrium value more quickly.) Thus at the time when position P

equals zero, the disturbance (which will continue to propagate around

the loop) is smaller than it would have been without the minor negative

loop. Each succeeding half-cycle will further attenuate the

disturbance, so the amplitude of the oscillation diminishes

exponentially toward zero.

The discussion above shows that the concepts developed in the

previous section can be used to explain one kind of damping. Still, the

concepts thus far do not provide much basis for detecting exceptions:

can one add minor loops that destabilize a system? Also, minor negative

loops are not the only structural changes that can cause damping. What

characterizes the other, more complex changes? To begin to formulate a

more general characterization of structures that cause damping, let us

describe oscillation and damping in state space.
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Figure 2-20.
STATE-SPACE TRAJECTORY OF SPRING-MASS SYSTEM WITH FRICTION

Explanation ia State-Space. Figure 2-20 shows a state-space trajectory

of the pendulum. The addition of a minor negative loop changes the

former circular trajectory into an inward-spiraling trajectory; no

longer does the system return to its exact initial conditions on each

oscillation. However, each oscillation results in similar subsequent

oscillations: any ray from the equilibrium point intersects the
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trajectory at several points, each representing a comparable state in

relation to the equilibrium state and each causing comparable subsequent

trajectories. For example, each half-cycle, the maximum excursion of

the position P, is diminished by about half.

Figure 2-21 shows how the addition of the minor negative loop

representing friction changes the trajectory of the system. The solid

arrows show the direction and magnitude of changes in the state (as in

Figure 2-8). Friction exerts a force proportional to the velocity V,

and in the opposite direction as velocity V, which changes the

acceleration A (the rate of change of velocity V). Thus, friction has

the effect of moving the arrows toward the vertical axis. The dotted

arrows represent the direction and magnitude of the change in the states

when friction is present. When velocity V is zero, friction exerts no

force, so that the arrows emerging from the vertical axis are unchanged.

All other arrows move the system in a direction that corresponds to

oscillations of smaller magnitude, as indicated by the concentric

circular arcs on Figure 2-21.

It is tempting to conclude that a structural change produces

damping whenever it tends to diminish the magnitude of the state vector

(i.e., the distance from the state to the equilibrium point in state

space). Unfortunately, this is roughly equivalent to saying "The

fastest way to get somewhere is to head directly at it." As anyone who

has driven a car in a large city knows, this is not always the case.

Sometimes, the roundabout way is faster. Section 4.2 describes one

structural change that both produces damping and tends to increase the
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STATE-SPACE DIAGRAM OF SPRING-MASS SYSTEM WITH FRICTION

magnitude of the state vector at first (the distance between the state

and the equilibrium point). Figure 2-22 shows how this can happen.

The solid line in Figure 2-22 represents the trajectory of two

levels oscillating without a structural addition that involves movement

of a third level. The trajectory therefore lies on the plane specified

by the two horizontal axes. The heavy dotted line shows the trajectory

0

r
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when the structural change is made, so the third level is allowed to

vary. The third level increases at first until after a quarter-cycle,

it is well above the plane of the two original state variables. The

structure of the system is assumed to be such that when the third state

variable Is not equal to zero, it alters the trajectory of the first two

state variables. Figure 2-22 shows the trajectory bending inward,

crossing over the original trajectory without the structural change.

When the trajectory of the structural change intersects the plane of the

first two state variables, the state is closer to the equilibrium point

than it would have been had it followed the original trajectory. Thus,

although the structural change increased the magnitude of the state

vector at first, by the time the two states were comparable (i.e., lying

on the same ray in state space) the state resulting from the structural

change had a smaller magnitude.

Figure 2-22 suggests one class of structural changes where

adding a minor negative loop around a level can decrease the damping.

Suppose a minor negative loop were added around the third level, plotted

on the vertical axies. This change would tend to drive the third state

variable toward the horizontal plane, which would nullify the damping

effect of activating the third level. In general, if a minor negative

loop diminishes the magnitude of oscillation in a loop that itself

contributes to damping, then the added minor loop probably decreases

damping.
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Figure 2-22.
ROUNDABOUT TRAJECTORY IN STATE SPACE

A Principle. The outset of this section provided a very simple

definition for damping:

Damping

A type of behavior where the magnitude of oscillations dim'inishes
over time.

By examining oscillations in state space, we saw that a minor negative

loop can produce this behavior by directly moving the state toward a

state corresponding to oscillations of smaller magnitude. Figure 2-22

indicated how a structural change might produce damping by moving the

state in a direction which eventually resulted in a state comparable

to the original trajectory, but with smaller magnitude. We can

characterize these results in a principle as follows:



-115-

Principle on damping

A structural or parametric change produces more damping when it

realigns the trajectory toward a future state, comparable to
a state on the original trajectory, that corresponds to
oscillations of smaller magnitude. The simplest structural
change that potentially can produce such a realignment is
the addition of a minor negative loop. More complex changes
can produce damping as well.

In effect, this principle expands the definition of damping to include

both cause and effect. The effect is a diminished tendency to

continue oscillating, and the cause is a realignment of the system's

trajectory in state space. Unfortunately, since a very large variety of

types of parametric and structural changes can increase damping, one

can characterize them only with the very general concept of

"rea2.igning the trajectory." Even this very general principle can be

of acsistance in identifying structural changes that will increase

damping.

One type of structural change that can increase damping is where

the change increases the rate of movement of a single state variable

toward its steady-state value, which can diminish the propagation of a

disturbance through that level, so that the magnitude of future oscillations

decreases. The old standby, the minor negative loop is one such

structural change. But one can also search for changes that move two

or more levels toward their equilibrium values. The rabbit-coyote example

in the next subsectioa gives a change of this type, where a single

parameter change (corresponding to a single policy in the real system)

alters the rate-of-change for both the level of rabbits and the level

of coyotes. Perhaps identifying such multiple-effect policies is very



difficult , but the effects.on several levels at once can have a

dramatic effect on the overall oscillation, as the rabbit-coyote

example will illustrate.

The principle on damping suggests a final type of structural

change that will produce damping: changes whose effect on the movements

of the levels is not immediate, but is delayed, so that only some

future state shows a disturbance of smaller magnitude. Sections 3.3

and 4.2 will give examples where the effect of adding a minor loop with

a delay depends entirely on the delay time. Further discussion on the

implications of delays for damping should be deferred until those

sections develop specific examples.

It must be admitted that the principle on damping is not a

directly-applicable rule of thumb that says "if you change this

parameter, that behavior will result." This material in Chapter 2,

however, is the foundation for the very specific rules of thumb in

Chapters 3 and 4. Perhaps the most imporant implication of the

principle on damping is that one cannot pass over damping lightly,

for the phenomenon in general is more complex than is commonly

acknowledged, as the following examples illustrate.
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Another Example: Influence of Backlog on Ordering. Adding one minor

negative loop can increase damping. Adding a second or third or

whatever can again increase the damping. We can locate another minor

negative loop in real employment-backlog systems as follows: The

employment-backlog system in Section 2.1 oscillates due to out-of-phase

movements of the level of order backlog B and the level of employment

E, as shown in Figure 2-14. The negative loop involving employment E

is one means by which the magnitude of the backlog B is controlled.

In real life, many factors compensate for high or low backlogs.

Figure 2-26 gives a representation of one such factor: an attempt by

the individual firms placing the orders to avoid having placed

an excessive or insufficient number of unfilled orders. If someone

places too many orders, they will be filled later, and the person will

wind up with too many units. Therefore, the individuals or firms

placing the orders attempt to maintain some desired backlog for

ordering DBO, by making a correction for backlog on ordering CBO,

which results in an adjusted order rate AOR. (The order rate OR itself

is modified by the multiplier from delay on ordering MDO, which is set

at 1.0 in this chapter.) These relationships form a minor negative

loop around the backlog B.
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The order rate OR is based on the adjusted order rate AOR, and

modulated by the multiplier from delay on ordering MDO, which represents

the effect of long-term unavailability of the firm's product on orders

for that product. MDO is always set equal to 1.0 in this chapter.

OR.KL=(AOR.K)(MDO.K) 9, R
OR - ORDER RATE (UNITS/YEAR)
AOR - ADJUSTED ORDER RATE (UNITS/YEAR)

. MDO - MULTIPLIER FROM DELAY ON ORDERING
(DIMENSIONLESS)

The adjusted order rate AOR modifies the desired order rate

DOR with the correction for backlog on ordering CBO. DOR is constant at

1320 units per year.

AOR.K=DOR.K+CBO.K 10, A
AOR a ADJUSTED ORDER RATE (UNITS/YEAR)
DOR - DESIRED ORDER RATE (UNITS/YEAR)
CBO - CORRECTION FOR BACKLOG ON ORDERING (UNITS/

YEAR)

The correction for backlog on ordering CBO represents the

effect of a discrepancy between the desired and actual backlog B on

ordering. In this simple formulation, the discrepancy alters the stream

of orders through a time constant, the time to correct backlog for

ordering TCBO.

CBO.K=(DBO.K-B.K)/TCBO 11, A
TCBO=lEll 11.1, C

CBO - CORRECTION FOR BACKLOG ON ORDERING (UNITS/
YEAR)

DBO - DESIRED BACKLOG FOR ORDERING (UNITS)
B - BACKLOG (UNITS)
TCBO - TIME TO CORRECT BACKLOG FOR ORDERING

(YEARS)



The desired backlog for ordering DBO is the product of the

desired order rate DOR and the perceived delay for backlog adjustment

PDBA. Thus, DBO represents the size of the order backlog B necessEry to

keep units arriving at the desired order rate DOR, assuming that the

only information about production of the units available to the orderers

is the delay between placing an order and having it filled. This delay

is smoothed into the perceived delay for backlog adjustment PDBA. In

this chapter, PDBA is held constant.

DBO.K=PDBA.K*DOR.K 12, A
DBO - DESIRED BACKLOG FOR ORDERING (UNITS)
PDBA - PERCEIVED DELAY FOR BACKLOG ADJUSTMENT

(YEARS)
DOR - DESIRED ORDER RATE (UNITS/YEAR)

Figure 2-24 plots the state-space trajectory of the

employment-backlog system when backlog influences ordering. In the

previous simulation of the employment-backlog system, the time to

correct backlog for ordering TCBO was set at a very large magnitude, so

that the correction for backlog on ordering CBO was effectively zero at

all times. In Figure 2-24 (and the plot versus time in Figure 2-25),

the time to correct backlog for ordering TCBO is set at 0.3 years.

Figure 2-24 indicates that the employment-backlog system still

possesses a slight tendency to oscillate, even with a minor loop added

around the backlog B. The oscillation begins with the

initially-excessive employment E causing the firm's output OUT to exceed

the order rate OR, so that backlog B begins to fall. With a smaller

backlog B, desired employment DE and employment E also fall. The

trajectory with the time to correct backlog for ordering TCBO equal to
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0.3 begins to diverge from the original trajectory: when the backlog B

falls below the desired backlog for ordering DBO (constant at 660 units

in this simulation), the correction for backlog on ordering CBO

increases the order rate OR, so that backlog B does not drop as fast as

in the original simulation. In other words, the minor negative loop

around backlog B tends to reduce the disturbance in backlog B, so that

the state is always moving toward a state corresponding to a smaller

magnitude of oscillation. The effect of the minor loop is quite

apparent by time 0.6, when backlog B in the original trajectory has just

reached a minimum value at 605 units (55 units below the steady-state

value), and in the trajectory with TCBO = 0.3 backlog B has already gone

through its minimum value (of only about 629 units, or 31 units below

its steady-state value) and begun to increase again toward equilibrium,

having already reached 640 units. The minor loop has cut the magnitude

of the disturbance in half over one quarter-cycle.
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Some continued oscillation is apparent on the state-space plot

in Figure 2-24, even though the oscillation cannot be seen on the time

plot in Figure 2-25. However, the magnitude of the oscillation is so

reduced after a half-cycle that an expanded scale (expanded by a factor

of ten) is necessary to see that the-trajectory does in fact return to

a disequilibrium state comparable to the initial state, i.e., lying

on the vertical axis, where backlog B is at its steady-state value, and

employment E exceeds its steady-state value.

So again the addition of a minor negative loop increased the

damping of a system, by moving the state toward states corresponding

to smaller magnitudes of oscillation. What have the added negative

loops done to the periods of oscillation? For the spring-mass system,

comparing Figures 2-3 and 2-20 reveals that the period increases very

slightly from about 6.2 to 6.4 with the addition of a minor loop.

For the employment-backlog system, comparing Figures 2-15 and 2-24

reveals that the period decreased from 3.5 years to 2.7 years with the

addition of a minor loop. There is no consistent pattern as yet with

respect to changing the period; Section 4.2 will provide further

discussion when more examples of adding both positive and negative

loops have been examined.
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shows a flow diagram of the interaction between a coyote population

and a rabbit population. Rabbit births RB are proportional to the

population of rabbits R, but they are diminished when high density of

rabbits causes disease, semi-starvation, and low fertility. Similarly,

the rate of rabbit fatalities RF is proportional to the population of

rabbits R but is increased when high rabbit densities cause disease

and starvation. High rabbit densities also allow rabbits to be consumed

more readily by coyotes. The health of the coyote population largely

depends upon how well they eat, so that both coyote fatalities CF and

coyote births CB depend on the average coyote consumption ratio ACCR,

which measures the average rabbit consumption per coyote.

The structure shown in Figure 2-26 causes periodic population

explosions of rabbits R, as shown in Figure 2-27. When the large rabbit

R populat on begins to stimulate the growth of the coyote C population,

the number of rabbits R begins to decline. Finally, a large number of

coyotes C are hunting a vanishingly small population of rabbits R,

so the population of coyotes C declines to a level low enough to

trigger another explosion in the population of rabbits R.

Interestingly, the oscillation is highly resistant to the addition

of a minor negative loop around the level of rabbits R. Such a loop

might correspond to a policy of exterminating rabbits in proportion

to the rabbit density. The maximum rate of rabbit extermination with

such a policy would occur at the peaks of rabbit population, when the
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A policy of protecting a small number of rabbits from coyote predation

can be represented by shifting the rabbit density consumption multiplier

RDCM, so that for a given number of rabbits, coyotes can consume fewer

of them. (See the flow diagram in Figure 2-26.) This change affects

the behavior primarily during conditions of low rabbit density. The

change has two effects: first, the rabbit population is prevented from

declining quite so precipitously when there are many coyotes about.

Second, because the rabbit consumption per coyote is diminished for any

rabbit density, the population of coyotes begins to decline sooner and

more gradually when there are few rabbits to be eaten. The effects of

this policy change are sketched in the state-space diagram in

Figure 2-28. The original trajectory forms a closed loop, with the same

cycle repeated again and again.*23* The rabbit protection policy moves

the rate-of-change vectors inward. Even during non-extreme conditions,

rabbit protection has some effect on the rate-of-change vectors. As it

turns out, this effect suffices to change the limit-cycle behavior shown

*23N1n fact, although the sketch does not show it, the cycles are limit

cycleg, where any disturbance away from equilibrium causes
oscillations that increase in magnitude to the amplitude shown in
the simulation.
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to the damped behavior shown in Figure 2-29.'24 *

/ N

Poad
0.

r
API

* A
easel

at'0*6g

Saerce J

Coyoe

Figure 2-28.

EFFECT OF RABBIT PROTECTION ON STATE-SPACE TRAJECTORY

6 4 ne possible lesson from the rabbit-coyote system is that damping
can be altered by changing the manner in which disturbances
propagate from one phase-lag system to another. Indeed, as
Section 3.1 shows, in the employment-backlog system the parameter
TCB (time to correct backlog) controls propagation of disturbances
from backlog B to employment E, and increasing TCB (decreasing the
gain) increases damping. However, there is a glaring exception to
this possible lesson: in the spring-mass system, decreasing the
gain from one phase-lag subsystem to another does absolutely nothing
to the damping. Chapter 6 discusses this matter of gains between
subsystems as an area for future research.
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The rabbit-protection policy was represented in Forrester's

model by manipulating a structural feature that prevents coyotes from

eating rabbits when there are no rabbits to eat. Such loops--loops that

prevent a level from traveling to or below zero--occur frequently in

systems, and are frequently omitted from models of those systems. For

example, in the employment-backlog system, there is the possibility of

a
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filling orders when no orders are in the backlog to be filled. In real

life, a firm even approaching sech A situation would probably put its

workers on half days, so that the output OUT would decline when the

backlog B approached zero. If this phenomenon was modeled, it would

further decrease the tendency of the employment-backlog system to

oscillate.*25*

*25*Of course added structure does not always reduce a system's tendency

to oscillate. As one adds more delays in information links and
intervening accumulations in material flows, the stability of the
system usually tends to decrease. Also, just as adding minor
negative loops to increase model realism often stabilizes the
system's oscillations, adding minor positive loops to increase
model realism often destabilizes the system's oscillations.
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CHAPTER 3

FURTHER PRINCIPLES ON OSCILLATIONS

Chapter 2 explained oscillation in terms of a disturbance

'propagating around a loop of two or more phase-lag subsystems,

eventually returning the system to a state comparable to the initial

disequilibrium state. Chapter 3 utilizes these concepts (disturbance,

phase-lag subsystem, and comparable states) to characterize three

specific types of structural change: reduction to a first-order system,

addition of cross-links between subsystems, and addition of a minor loop

containing a delay.
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3.1. REDUCTION TO A FIRST-ORDER SYSTEM

Characterizing Jj Effrct f fParameter Change: fIt QConatnanta. There

are two parameters in the employment-backlog system identified as time

constants: the time to correct employment TCE, and the time to correct

backlog TCB. In the basic employment-backlog model, both parameters

have a value of 0.5. Figures 3-1 and 3-2 show the effect of reducing

each parameter respectively to 0.1. Reducing TCE in Figure 3-1 appears

to completely eliminate the tendency of the employment-backlog system to

oscillate. In contrast, reducing TCB in Figure 3-2 produces sustained,

lightly-damped oscillations with a period of about 1.4 years. Despite

TCE and TCB being identified as "time constants," they differ

dramatically in their effect on system behavior. Seemingly, there

should be a way of characterizing the various parameters in a model that

is more closely aligned with the effect of those parameters on the model

behavior. What, then, is the difference between the time to correct

employment TCE and the time to correct backlog TCB?

The effect of reducing the time to correct employment TCE can

'be seen in the state-space diagram in Figure 3-3. The dotted line

rising from left to right represents the locus of states where the

employment E equals the desired employment DE. The equation for desired

employment DE can be derived from the model equations as follows:
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DE = DOUT/PROD

DE = (EAO+CB)/PROD

DE = (EAO+(DB-B)/TCB)/PROD

DE = (EAO+(EAO*DBC-B)/TCB)/PROD

DE = 1320+(1320*0.5-B)/TCE)/30

DE = 44+(660-B)/(TCE*30)

DE = 44+(660-B)/15

Thus, the desired employment DE is a decreasing function of the

backlog B, so that a value of backlog B above the steady-state value

calls for employment E larger than its steady-state value in order to

produce units and lower the backlog. The actual employment E moves

toward the desired employment DE. In state space, the rate of change of

employment E is given by the vertical component of the rate-of-change

vectors. The rate of change of employment E is given by

(d/dt)E = NHR

= (DE-E)/TCE

Thus, the employment E will always move toward the dotted line: down

when above the line, and upward when below the line. The farther

employment E is from desired employment DE, the larger will be the

vertical component of the rate-of-change vector. Over the entire state

plane, the magnitude of the rate of change of employment E (the vertical

component of the rate-of-change vector) is inversely proportional to the

time to correct employment TCE. Thus, at every point in state space,



-138-

S

* 41
5~

5i

V
'A

II.1

.1
V

'I

620 -- 630

4 0

OF

ZI

6A0

Eneloymcn4

50

4.o

-

-

. a,. 5

hL*

45-

. 650-

ta.
A0 A

kAc44
tr ojedry

+vg

00

--
.St

400

a-o

It

A

101
a

at Bac o
v I IW- Va Kj

i+s w 4 620

I.

/
/

/

44L/

-43

Figure 3-3.
EFFECT OF REDUCING TCE IN STATE SPACE

LC

r-_ MMWWAW

a

I

-



-139-

reducing TCE from 0.5 to 0.1 magnifies the vertical component of the

rate-of-change vector by a factor of five. This is shown schematically

in Figure 3-3. (On the diagram, the magnitudes are only multiplied by a

factor of about 2.5, because of the unwieldy length of the

rate-of-change vectors.)

Describing Figure 3-3 in very simple terms, the response has two

very distinct components: a very fast initial transient, and a much

more liesurely, asymptotic approach to equilibrium. The effect of the

initial transient is to bring the initially-excessive employment E

down to the value of the desired employment DE. Because employment E

was initially higher than its equilibrium value, the backlog B drops

slightly during the initial transient. Afterwards, when E essentially

equals DE, the backlog B shows a first-order, asymptotic approach to

equilibrium.

The actual trajectory does not differ very much from the

simple overall description just given. The initial employment E is high

and drops rapidly at first. The backlog B decreases as long as

employment E exceeds its steady-state value. When employment E crosses

the horizontal axis and equals 44 men, the rate of output OUT exactly

equals the order rate OR, so the rate of change of backlog B is zero,

and the trajectory is exactly vertical at that point. When employment E

passes through 44 men (the number of employees necessary to produce at a

rate of output OUT equal to the order rate OR), the backlog B begins to

decrease slightly. The overall movement, however, is predominantly

downward toward the dotted line. As employment E approaches the dotted

line, E changes more slowly, and the backlog B maintains about the same



rate of change, so the trajectory curves right. When the trajectory

crosses the dotted line, the rate of change of employment E is zero

(since employment E equals desired employment DE), so the trajectory is

horizontal at that point.

After the trajectory crosss the dotted line, both backlog B

and employment E move smoothly toward the equilibrium point. As they

move, employment E remains slightly below the desired employment DE,

since as B increases, the desired employment DE increases, and actual

employment E will lag DE by the time to correct employment TCE. The

discrepancy between E and DE causes the net hiring rate NHR to exceed

zero, which allows employment E to rise. Overall, the trajectory in

Figure 3-3 can be characterized by first, rapid movement of employment E

toward desired employment DE, and second, much slower movement of both

backlog B and employment E along the desired employment DE line toward

the equilibrium point. For most of the time, then, the employment E can

be considered equal to desired employment DE, which is in turn a

function of the backlog B. In effect, employment E becomes an auxiliary

variable in the system. Figure 3-4 shows employment E as an auxiliary

variable in the employment-backlog system. The resulting system

effectively contains only one level, so that no endogenous oscillation

can occur. Oscillation would require the backlog B to pass through the

equilibrium point, but if the backlog B is in equilibrium, the whole
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system is in equilibrium, so that no further change can occur.*l*

Reducing the time to correct employment TCE eliminates

oscillations in the employment-backlcg system. Before generalizIng this

result into a principle, let us first examine the effect of reducing the

other explicit time constant in the system, the time to correct

backlog TCB, and find the characteristics that distinguish TCB from TCE.

Recall that the desired employment DE is a function of the backlog B and

the time to correct backlog TCB:

DE = 44+(660-B)/(TCB*30)

Thus, reducing the time to correct backlog TCB increaaes the slope of

the dotted line showing the locus where employment E equals desired

employment DE, as shown in Figure 3-5. As discussed above, the

magnitude of the vertical component of the rate-of-change vectors (the

rate of change of employment E) is proportional to the discrepancy

between employment E and desired employment DE. Thus, increasing the

slope of the dotted line changes the. rate-of-change vectors from the

original solid arrows to the dotted arrows in Figure 3-5. In the second

and fourth quadrants (shaded), reducing the time to correct backlog TCB

causes the rate-of-change vectors to move the state toward states

corresponding to oscillations of smaller magnitude than the original

rate-of-change vectors. In the first and third quadrants (unshaded),

the effect of reducing TCB is to move the state toward states

corresponding to oscillations of larger magnitude. Over the entire

*l*For further discussion, see Mass, N.J., and P.M. Senge,

"Understanding Oscillations in Simple Systems," System Dynamics
Group Working Paper D-2045,-2, Alfred P. Sloan School of Management,
E40-253 (Cambridge, Mass.: MIT, 1976).
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spiral trajectory, then, the effect of reducing TCB appears to be mixed,

tending to increase damping in some states, and tending to decrease

damping in other states. However, closer inspection of Figure 3-5

reveals that in the shaded quadrants, the effect of reducing TCB is

mostly to propel the state around virtually the same trajectory more

rapidly. In contrast, reducing TCB in the unshaded quadrants causes the

rate-of-change vectors to propel the system definitely outward, away

from the equilibrium point. Thus, Figure 3-5 indicates that reducing

TCB from 0.5 to 0.1 should markedly reduce the damping of the

oscillations. Indeed, Figure 3-2 shows very lightly-damped

oscillations, instead of the original moderately-damped oscillations.

Thus far, we have reduced two parameters from 0.5 to 0.1. For

the time to correct employment TCE, this reduction eliminated

oscillations in the employment-backlog system. For the other parameter,

the time to correct backlog TCB, this reduction increased the tendency to

oscillate. The distinction between the two parameters is shown in

Figure 3-6, which plots the open-loop response of employment E to an

increase in the backlog B, for the original and reduced parameters. (In

other words, backlog B is treated as exogenous, not affected by

employment E.) The trajectory for the original parameters shows the

employment E approaching desired employment DE with a time constant

equal to the time to correct employment TCE. This parameter is actually

a time constant, whose value in fact characterizes the behavior of part

of a system. Reducing TCE reduces the time constant of the approach to
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desired employment DE. In contrast, the time to correct backlog TCB

seems to function as a gain: reducing TCB increases the magnitude of

the response to the negative step in backlog B, without altering the

time form. Employment E still approaches desired employment DE with a

time constant of TCE even though the change is made larger when TCB is

reduced.

The time to correct employment TCE and the time to correct

----
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backlog TCB perform quite different functions within the system

structure. If we wish to be accurate in thinking about the effects of

such parameters on system behavior, TCE and TCB probably ought not to be

classified as "time constants," with both parameters subsumed under the

same concept of "time constant." The time to correct employment TCE is

in fact a true time constant, and its value characterizes the behavior

of a subsystem. But the time to correct backlog TCB does not so

characterize any particular aspect of the system behavior. Its

function is that of a gain element--a system element whose output at

each successive moment of time depends only on its input at that time.

TCB thus characterizes an instantaneous input-output relation, not

behavior over time, so TCB ought not to be called a time constant.*2*

Because gain elements couple levels to rates, their dimensions often

work out to be (1/time units). Since the inverse of gains often has the

dimension of time units, it is sometimes convenient to think of gains as

equivalent to a correction time. I suggest that such time-related

quantities be called "coupling time constants," and that the name "time

constant" be reserved exclusively to describe the time constant of a

first-order loop.

*2*In real life, of course, no input-output relationship is truly
instantaneous. Gain elements are a simple way of modeling dynamic
processes that equilibrate so rapidly that the dynamics of
equilibration have a negligible effect on the behavior of the rest
of the system.



A Principle. The principle on the origin of oscillations in Section 2.1

states that "oscillations occur when a disturbance propagates around a

loop formed by two or more phase-lag subsystems to return the system to

a state comparable to the initial disequilibrium state." The

employment-backlog system has two phase-lag subsystems, one consisting

of the level of backlog B and its associated rates, and the other

consisting of the level of employment E and its associated rates and

auxiliaries. Reducing the time to correct employment TCE to a very

small value in effect causes the phase-lag property of the subsystem

around employment E to vanish; In effect, employment E becomes an

auxiliary variable. We can formalize this property by saying that the

phase-lag subsystem containing the employment E has become a gain

element, which can be defined as

Gain element

A subsystem whose output at any given time depends only on
its input at that moment of time.*3*

In this case, with TCE very small, the employment subsystem just becomes

a linear gain element connecting backlog B to the rate of output OUT,

*3*The gain of the gain element is defined as the partial derivative
of the magnitude of the input with respect to the magnitude of the
output. For linear gain elements, the gain of the element is
therefore constant, regardless of the magnitude or time-behavior
of the input.
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whose gain is

(dOUT/dB) = (d/dB)(PROD*E)

= (d/dB)(PROD*DE)

= PROD*(d/dB)(44+(66O.B)/(TCB*PROD))

= PROD*(-l)/(TCB*PROD)

= -1/TCB

The concept of gain element provides a clear distinction between

time constants and coupling time constants. Reducing the time to

correct employment TCE (a true time constant) to near zero turns a

phase-lag subsystem effectively into a pure gain element. Reducing

TCE effectively eliminates the ability of the loop to propagate a

disturbance from one part of the system to another. In contrast,

reducing the time to correct backlog TCB (a coupling time constant)

to near zero amplifies disturbances in the backlog B as they are

transmitted to desired employment DE and employment E.*4* Altering

a coupling time constant may alter the oscillatory characteristics of

the system as a whole, but the alteration does not turn a phase-lag

subsystem into a pure gain element (as is the case for time constants).

The coupling time constant from B to OUT tQ B is -TCB (which in fact

has become a true time constant when B effectively becomes the only

*4*Again, the reader is cautioned that decreasing the coupling time
constant between one phase-lag subsystem and another does not
necessarily destabilize oscillations, even though this is frequently
the case. Section 6.3 discusses coupling time constants as a
subject for future research.
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level in a first-order system). We can formalize this property as

follows:

Effectively-first-order system

A system in which the response time of one level
significantly exceeds (perhaps by a factor of '-:n)
those of other phase-lag subsystems in the Jstem,
which thus effectively become gain eleme -s with respect
to the movements of the remaining level.

The response time is a characteristic of a system's or a subsystem's

behavior. The parametric change required to decrease a response

time may be either an increase or decrease in the parameter value.

The principle assumes that the parameter changes do not cause any of

the subsystems tc generate their own endogenous oscillations. (With

complex, higher-order subsystems, it could be possible for a parameter

change to render the subsystem oscillatory in its own right, independent

of the larger system in which it functions.) There are two ways to

make parameter changes that render a system effectively first-order.

One way is to decrease the response times in all subsystems but one.

The other way is to increase one response time well beyond the response

times of the other subsystems in the loop.

The concept of gain element allows one to define the concept of

effectively-first-order system, which in turn allows one to state a

principle:
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Principle on reduction to an effectively-first-order system

An oscillatory system can be made not to oscillate by
changing it to an effectively-first-order system, so that when
the remaining effective level passes through its equilibrium
value, the entire system does so, and no further movement
occurs.

The principle above may not seem particularly useful, in that one

rarely has the opportunity to implement policies that correspond to

reducing response times to near zero. However, it is often true that

changing response times in the direction that would produce an

effectively-first-order system can suffice to reduce the system's

tendency to oscillate, even if the changes are not extreme enough to

actually render the system effectively-first-order.

Another way of expressing the principle above is to say that at

least two of the longest response times of phase-lag subsystems around

a loop must be comparable for that loop to generate oscillations. If

all subsystems but one reach equilibrium before that one subsystem

begins to approach equilibrium, the approach of the one subsystem to

equilibrium will be smooth, first-order-like behavior. This

formulation of the principle explains why reducing the gain on an

integral controller usually diminishes or eliminates oscillations

generated by a loop going through the integral controller. If the rest

of the system comes close to equilibrating before the level in the

integral controller can overshoot its equilibrium value, then the level

in the integral controller can approach equilibrium smoothly, as if it

were a first-order system, and the rest of the system were auxiliary
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variables .*5*

The notion of requiring comparable response times for oscillation can

be useful in formulating a model of an oscillatory phenomenon. During

model formulation one is always in need of guidelines both first

selecting which real cause-and-effect relationships should be

explicitly included in the model, and second, deciding which relation-

ships should be modelled as instantaneous (by auxilliary variables, or

pure gain elements), and which relationships should be modelled as

dynamic (involving level and rate structure between input and output).

The principle above in some in3tances also provides a conceptually

correct way to think about the effect of minor loops on oscillation: if

adding a minor loop or decreasing the time constant of an existing minor

loop tends to eliminate a phase-lag subsystem, that change will stabilize

the system's oscillations.

Another Application: Orders in a Pipeline. The preceding discussion

shows how a system effectively can be made into a first-order system by

changing a time constant. There are structural changes that have the

same effect. Section 3.2 discusses one type of structural change,

cross-links between subsystems,, that accomplishes this. The following

*5*Strictly speaking, "integral controller" is usually a misnomer,

since only very rarely do systems contain a pure integration. Much

more often, integrations are embedded in feedback loops. However,
we can think of an "integral controller" as a local structural
feature, so that an integration without minor loops, that is, an
integration embedded in only second-order or higher-order loops,
can be considred an integral formulation.
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example is another instance.

Figure 3-7 shows a very simple system designed to maintain an

inventory I at its desired level, the desired inventory DI, despite the

varying usage rate UR. The order rate OR simply replaces the units

removed from inventory by the usage rate UR, and adjusts the inventory I

toward the desired inventory DI, through a coupling time constant, the

time to correct inventory TCI. The order rate OR feeds into a

third-order delay, so on the average, after the time to deliver

orders TDO, the orders are filled and flow into the inventory I. If the

time to correct inventory TCI is sufficiently much shorter than the time

to deliver orders TDO, the system shown in Figure 3-7 can exhibit

damped, steady-state, or even expanding oscillattons.
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PIPELINE SYSTEM

Figure 3-8 shows one structural change that will stabilize the

pipeline system shown in Figure 3-7. The order rate OR now incorporates

a desired inventory on order DIO and the actual inventory on order I0.

Thus, when the inventory on order i exceeds the desired inventory on

order DIO, the order rate OR will be reduced, even before excessive

orders have raised the inventory I. Notice that the order rate OR in

effect regulates the total number of units in all four of the system

levels:
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OR = UR+(DI-I+DIO-IO)/TCI

= UR+((DI+DIO)-(I IO))/TCI

= UR+(Desired total inventory - Total inventory)/TCI

The term "total inventory" denotes the sum of the actual inventory I on

hand plus an inventory already on order 10. Figure 3-9 shows the

first-order system that is the exact mathematical equivalent of the

pipeline system shown in Figure 3-8. The feedback link from inventory

on order IO to the order rate OR has rendered the pipeline system an

effectively-first-order system. We can therefore predict, a priori,

that this seemingly-complex system will show no oscillations but instead

just simple first-order asymptotic behavior, with a time constant of TCI.
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Figure 3-8.
PIPELINE SYSTEM WITH FEEDBACK FROM PIPELINE
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Further Examples: The Spring-Mass System and Time to Correct Backlog

for Orders. A variety of physical, biological, and social systems are

capable of exhibiting very rapid initial transients, but for many

purposes these systems can be regarded as having a much lower order

(number of levels) if only the longer responses are of interest. The

following two examples give situations where a somewhat-oscillatory

second-order system can be regarded as an effectively-first-order system.

A door with a closing spring is quite similar in structure to the

spring-mass system analyzed earlier. It has two state variables.,

position P and velocity V. Although many doors do in fact swing and

exhibit oscillation, many doors exhibit virtually no oscillation, because
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declines very slowly.

One way to think of the behavior in Figure 3-10 is to notice

that the velocity V equilibrates fairly quickly to a value determined by

the position P. We can derive this quasi-steady-state value of

velocity V as follows: Imagine for a moment that the position P is

fixed (which is close to the actual short-term dynamics. To what

value V(P) would the velocity V equilibrate? Substituting the system

equations into the equation for the rate of change of velocity V,

(d/dt)V = -P-(FC/5)V = 0

V(P) = -(5/FC)P

The quasi-steady-state value of velocity V, V(P), is thus a function of

the position P. The expression for the velocity V can be rewritten to

show that in fact the actual velocity V is an exponential smoothing of

the quasi-steady-state value.

(d/dt)V = -P-(FC/5)V

= (FC/5)(-5/FC)P-(FC/5)V

= (FC/5)(V(P)-V)

When the friction coefficient FC is 25, the velocity V approaches the

quasi-steady-state velocity V(P) with a time constant of

1/(FC/5)

= 5/FC

= 5/25

= 0.2
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With the position P declining with a time constant of about 7 seconds,

the delay in velocity V adjusting to V(P) of 0.2 seconds is negligible.

In effect, the velocity V has become an auxiliary variable, and the

spring-mass system with such heavy damping is effectively a first-order

system.

As the discussion of the principle in this section indicated,

there is more than one way to make a system into an effectively-first-

order system. In fact, we have already seen two ways of making the

employment-backlog system into an effectively-first-order system. One

way was to reduce the time to correct employment TCE, which made the

employment E virtually a function of the backlog B. We saw a second

way earlier, where reducing the time to correct backlog for orders TCBO

also strongly reduced the tendency of the employment-backlog system to

oscillate. In fact, lowering TCBO effectively makes the backlog B a

function of employment E, as can be seen from the following derivation.

Assume for the moment that the employrent E remains unchanging,

so that the backlog B will seek an equilibrium value B(E), which can

be computed from the equation for the rate of change of backlog B as

follows:

(d/dt)B = OR-OUT = 0

= DOR+(DBO-B)/TCBO-E*PROD

implying that

(B-DBO)/TCBO = DOR-E*PROD

B(E) = DBO+(DOR-E*PROD)*TCBO
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So the backlog B seeks a steady-state value B(E), with a time constant

we can see from rewriting the equation for the rate of change of

backlog B:

(d/dt)B = OR-OUT

= DOR+(DBO-B) /TCBO-E*PROD

= -B/TCBO+(DBO+ (DOR-E*PROD)*TCBO) /TCBO

=-B/TCBO+B(E)/TCBO

= (B(E)-B)/TCBO

Thus, when the time to correct backlog for ordering TCBO is made small,

the backlog B for all practical purposes becomes a function of the level

of employment E, and the system is effectively a first-order system.

(Figure 3-11 illustrates.) There will be little if any oscillation.
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3.2. ADDING CROSS-LINKS BETWEEN SUBSYSTEMS

The preceding section used the principle on the origin of

oscillations to enunciate a category of parametric and structural

changes that reduce a system's tendency to oscillate. This section uses

the same principle on the origin of oscillations as the basis for

another type of structural change to reduce or eliminate oscillations.

Oscillations, according to the principle, can originate from a loop

formed of phase-lag subsystems. Because of the loop structure, one

subsystem on one side of the loop can be rising up away from its

steady-state value even when another subsystem on the other side of

the loop can be declining away from its steady-state value. It is

possible for two subsystems to (at least temporarily) move in opposite

directions because of the delays involved in one subsystem communicating

around the loop with the other system. One common strategy for reducing

a system's tendency to oscillate is to increase the ability of one

subsystem to communicate with another by adding a direct link between

them:

Cross-link

A cause-and-effect relationship that connects two

subsystems that otherwise would be distant from one
another, in terms of the number of intervening levels
and other cause-and-effect relationships.

Before formally stating a principle on cross-links, let us examine two
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common situations, one physical and one economic, where cross-links

help to stabilize oscillations.

A DeariptiY& Example: Vehicle ContL. One future form of

transportation currently under intense investigation is a motor roadway,

much like current highways, with the vehicles under automatic control.

In theory, traffic on such a roadway could move far more rapidly and

with much smaller spacing between vehicles than is possible under manual

operation. One question which must be answered before such a system

becomes feasible is what should control the acceleration of each

vehicle.

Figure 3-12 illustrates the simplest sort of control. Each

vehicle has a position P and a velocity V, both of which are to be

controlled by the vehicle's acceleration A. In the simple control

scheme, the acceleration A of each vehicle depends only on the vehicle's

position P and velocity relative to the positions P and velocities V of

the vehicles immediately behind and in front of the vehicle being

controlled. (This is approximately the situation when the vehicles are

under manual control.) Unfortunately, this type of control yields

instabilities when the vehicles are close together. These instabilities

are probably familiar to most freeway drivers: a car in front brakes
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Figure 3-12.
SIMPLE VEHICLE CONTROL SCHEME



and the car behind it brakes, a little more sharply than the first car,

because the second car is now both moving too fast relative to the first

car (which slowed down) and is also too close to the first car. Each

succeeding car must brake more sharply, until the required deceleration

exceeds the ability of some vehicle to brake, and a rear-end collision

occurs. Similar but less extreme instabilities occur with "stop-and-go"

traffic on very crowded freeways. In both cases, an initial disturbance

propagates through the system, is amplified, and causes undesirable

oscillations. The solution to this problem for manually-controlled

vehicles (or vehicles automatically controlled with very local

information) is to space the vehicles more widely, so that disturbances

in the velocity and position of one vehicle will not cause such dramatic

action in the next--the disturbance will not be amplified, and the

system behave3 more smoothly.

Another way of reducing the tendency of a string of vehicles

to oscillate is to change the information used to determine the

acceleration of each vehicle. It. can be shown that the optimal control

for vehicle acceleration A requires the acceleration A of each vehicle

to respond to the position P and velocity V of every other vehicle in

the chain of vehicles.*6* In effect, the optimal solution requires

*6*Indeed, experienced drivers probably often make a habit of looking
at the two or three cars in front, by looking through the windows of
the car immediately in front. This is why at least the author is
uncomfortable when tall vans or trucks cut off the forward line of
vision.
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cross-links from every level in the system to every available rate.

Such a control scheme would be considerably more costly than the simple

scheme discussed earlier. Considerable attention has been given to the

tradeoff between simplicity and performance. The results indicate that

satisfactory results usually can be achieved by controlling the

acceleration A of each vehicle using information from the neighboring

five or six vehicles. (Obviously, information from more vehicles

improves behavior further, but not by as much.) The performance of such

compromise schemes comes quite close to the optimal performance with

full cross-linking between all vehicles.

Another Descriptive Example: A Production-Distribution Chain. A very

common problem of firms that sell to other firms is that the orders for

their product fluctuate. In general, final demand for retail goods

fluctuates less than the retailer's orders placed with the distributor,

which in turn fluctuate less than the distributor's orders placed with

the factory warehouse. Industrial Dynamica devotes considerable space

to analyzing such a system; Figure 3-13 gives an overview of the system

structure.*7* The overall structure is reminiscent of the structure of

vehicle control: each sector is connected (initially, at least) only

with its immediate neighbors. The vehicles attempt to maintain the

appropriate position and velocity relative to their neighbors, and the

firms attempt to maintain the appropriate inventories of goods and

*7*Forrester, Jay W., Industrial Dynamics (Cambridge, Mass.: MIT
Press, 1961), pp. 137-186.



backlogs of unfilled orders relative to their neighbors. Both systems

are capable of considerably amplifying disturbances, so that, for

example, a small increase in demand to the retail sector can result in a

large increase in demand to the factory sector, as each sector attempts

to ship goods at an increased rate, and at the same time, to refill inven-

tories depleted in earlier attempts to ship goods.*8* When goods finally

arrive through the distribution chain, the goods arrive in such quantity

that the sectors attempt to control excessive inventories and reduce

their respective order rates. This reduction is in turn amplified as it

moves through the distribution chain back toward the factory. The

system thus continues to oscillate.

*8*This amplification is known as the inventory accelerator, and plays
art important role in current business-cycle theory. See
Mass, N. J., EconomiQCycles (Cambridge, Mass.: Wright-Allen Press,
1975).
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PRODUCTION-DISTRIBUTION SYSTEM
(From Industrial Dynamics)

Appendix J of Industrial Dynamics reports modest success

(reduction of oscillation) for a policy that uses information about

retail sales at the factory level, thus establishing a cross-link

between two otherwise-distant sectors.

A Principle. Figure 3-14 shows an abstract representation of adding

a cross-link between otherwise-unconnected systems, such as in the

examples above. The cross-link might be thought of as converting the

three separate phase-lag subsystems into effectively only one phase-lag

subsystem, through which a disturbance can propagate more rapidly than

-t167-
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ABSTRACT REPRESENTATION OF ADDING A CROSS-LINK

it could through a series of three phase-lag subsystems. The principle

on the origin of oscillations implies that oscillations can only arise

from structures in which a disturbance can cause one phase-lag subsystem

to depart from its steady-state condition, even while the other

subsystems are at their steady-state conditions. Adding a cross-link

reduces the ability of the phase-lag subsystems to move independently of

one another, and thus the ability to oscillate out-of-phase with one

another.

Adding a minor loop can be considered as one way of adding a

cross-link. Figure 3-15 shows the equivalence between adding a minor

-168-
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Figure 3-15.
ABSTRACT REPRESENTATION OF ADDING A MINOR LOOP

loop around phase-lag subsystem one and adding a cross-link between the

input to phase-lag subsystem two and the output of phase-lag subsystem

four. Adding the minor loop reduces the ability of phase-lag subsystem

one to oscillate out-of-phase with the other subsystems, first by

reducing the magnitude of whatever oscillations it does show, and

second, by coupling the movements of phase-lag subsystem one more

cIosely to the output of phase-lag subsystem four.

Finally, reducing a system to an effectively-first-order

system can be considered as an extreme form of adding a cross-link,

where not only does one add a cross-link to reduce the ability of
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Figure 3-16.
ABSTRACT REPRESENTATION OF REDUCTION TO A FIRST-ORDER SYSTEM

phase-lag systems to fluctuate out-of-phase with one another, but also

one eliminates one of the phase-lag subsystems (which is replaced entirely

by the cross-link). Figure 3-16 shows an abstract representation.

The previous examples and figures suggest a relatively simple

principle:
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Principle on adding cross-links

Adding cross-links between subsystems that reduce the ability
of the subsystems to move out-of-phase with one another can
reduce the tendency of the system to oscillate.

This principle is fairly abstract, but quite intuitive if interpreted,

for example, in terms of the production-distribution system. Imagine

going into someone's office, seeing them furiously ordering things to

meet a high perceived demand, and saying "Excuse me, but the fellow

who orders from the fellow who orders from you doesn't really have that

much demand, so he's not going to be ordering much. Knowing that things

are going to calm down in a bit, you'd better cool it with your own

ordering and shipping. Otherwise, you'll be stuck in a bit with very

few orders to fill." Structurally, your taking information from one

part of the system and having it used in another corresponds to a

cross-link. This example is illustrative of the way one can utilize

the principle on adding cross-links in general: Examine the behavior

and identify two sub-systems on an oscillatory loop that move

substantially opposite one another. (In other words, not necessarily

180 degrees out of phase, but certainly from 90 to 270 degrees out of

phase.) Then make a structural change that gives one subsystem advance

warning about the disturbance that will be arriving due to a disturbance

in the other subsystem.

The principle on adding cross-links also provides guidance

during model refinement. If the model is unrealistically unstable,

one can seek to identify real cross-links that are missing from the

model structure. If two sectors of the model have very few connections
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between them, ont should always suspect missing cross-links: In a

model of a firm, is it really true that the financial department has

no direct influence on production planning? On occassion, informal

ties between different departments (cross-links) are important in a

system's behavior, and can be identified by interviewing, in

this example, the people who do production planning.

Several caveats are in order about the practical ability of

cross-links to reduce oscillation. First, not all cross-links in fact

reduce oscillation, for if a given cross-link stabilizes a system, then

reversing a sign in that cross-link may destabilize the system. The

same warning applies to phase shifts as well: if a given cross-link

(containing a level) produces a given phase shift, and stabilizes the

system, then changing the phase shift by 180 degrees will probably

destabilize the system.*9* In other words, one must consider the

dynamics of the surrounding system to choose the phase and gain of a

cross-link that will in fact stabilize the system; the proper phase and

gain aren't implicit in the principle, which states only that such a

cross-link exists.

The second caveat on cross-links concerns the magnitude of

behavioral change one can obtain from adding cross-links. The idea of

adding a cross-link is that the information coming through the

*9*Another possibility, less common but possible nonetheless, is that
if the cross-link exerts a powerful-enough influence on the
oscillation, changing the sign or phase shift may switch the system
to a new oscillatory mode. Appendix M of Industrial Dynamics gives
an example.

l
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cross-link will in some sense oppose the information coming out of a

phase-lag subsystem: when one says go up, the other says down, so the

disturbance is not propagated as well. One may not be able to realistically

attach enough credibility to the information coming through the cross-link

to allow it to effectively oppose the information coming through normal

channels. Indeed, the cross-link used in Appendix J of Industrial

Dynamics is weighted heavily in relation to information from normal

sources, and still adding the cross-link produces only a modest

decrease in the system's tendency to oscillate.

The third and final caveat on cross-links concerns alternate

methods of stabilizing a system. Forrester observes in Appendix J of

Industrial Dynamics that policy changes within sectors (using only

information from within each sector) provide performance equivalent or

superior to that provided by adding a cross-link. This observation has

since held true in other production-distribution systems as well.

A simple explanation is suggested by the abstract representations in

Figures 3-14 to 3-16: if the ability to oscillate depends on the

ability of each phase-lag subsystem to propagate a disturbance with some

phase lag, the oscillation--that is, the propagation of the

disturbance--can in theory (and often in practice) be interrupted by

alterations in a single phase-lag subsystem which attenuate the

disturbance.

At present, there is no characterization of systems in which

adding a cross-link is very effective, as opposed to only modestly

effective in reducing oscillations; Section 6.3 discusses this and
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related unanswered questions about the effect of cross-links on system

behavior.

An Optimal Control Viewpoint. Figures 3-14 through 3-16 suggest that all

of the methods of reducing a system's tendency to oscillate discussed

thus far are special cases of adding cross-links, One can go much

further: this subsection demonstrates mathematicelly, using only

calculus, that the best way to stabilize a system is in general to add

all possible cross-links (for a restricted but useful class of systems

and definitions of "best"). The mathematical demonstration is due to

Brockett.*10* Figure 3-17 shows schematically the system being analyzed:

The behavior of a dynamic system is modified by raising or lowering the

control inputs u(t). The mathematics that follows serves to demonstrate

that optimally, each control input in general should have a cross-link

originating from every state variable in the system. Readers not

concerned with the intermediate mathematical steps can skim directly

to the discussion of the optimal solution.

*10*Brockett, R.W., Finite-Dimensional Linear Systems (New York: Wiley
and Sons, 1970).
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Figure 3-17.
SCHEMATIC OF OPTIMAL CONTROL PROBLEM

The dyr ics of the system are described by

( dt)x(t) = A(t)x(t) + B(t)u(t)

where x(t) is the vector of levels, jj(t) is the vector of control

inputs, and At) and .(t) are (possibly time-varying) matrices that

couple the state and the inputs to the rates. The levels have been

normalized so that their equilibrium values are zero. Note that the

equation above can provide an approximate (i.e., linearized) description

of a nonlinear system as well.

The problem, then, is to find a set of control inputs as a

function of the levels x(t) and possibly time. (Since the structure may be

time-varying, we should allow for the possibility of a control law or

policy that varies with time.) The criterion for a good control policy

is to minimize



t2

V = fx'(t)L(t)x(t) + u'(x(t),t)u(x(t),t) dt + xI'(t2)Qx(t2)

where L and _Q are positive definite matrices that define the cost in

some sense of departing from equilibrium during and at the end of,

respectively, the time the behavior is being controlled, and the cost of

controlling the system is just

(t
2 

,

aU(x(t),t)u(x(t),t) dt
itl

or the integral of the magnitude of the control vector. The

minimization should hold for whatever initial conditions x(tl) hold.

Note that the criterion above can be considered as the linear and

quadratic terms in a Taylor series approximation of a more general

criterion around an optimal trajectory (for which the linear term is

zero).

Although the mathematical form of the problem as stated,.is

fairly simple, the form is that of an approximation to a much larger set

of problems. Thus, we might expect the characteristics of the solution

to appear in a much larger set of situations as well.

To solve this optimization problem, we first examine the

properties of the following quadratic form:

xt)
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(The motivation for the examination is that the optimal cost criterion V

may very well have that form, since its definition is completely

quadratic, and the initial conditions x(tl) are the only remaining

determinants of optimal cost, once the optimal policy has been

determined.) For simplicity, x(t), j(x(t),t), A(t), j(t), L(t), and

L(t) are denoted by x, -, A, B., L, and ., respectively.

x'Kx - ft 2 (d/dt)(x'Kx) dt
ti ti

From the definition of an integral, and using the chain rule and the

system equations, the quadratic form becomes

.[Ax+ Bu]'Kx + x'K[Ax+ Bu] + x' ((d/dt)K)x dt
t

- . x'A'Kx+u'B'Kx+ x'KAx+ x'KBu+x'((d/dt)K)x dt
ft

0B'K'2: c'A'4-- ct
t(d/dt(K))++KA + A'

So

0 t2 0 B 'K u

ft , -- KB ((d/dt) _) + g+ AK dt

- (x'(t2)K(t2)x(t2) - x'(tl)K(tl)x(tl))



Returning to the expression for cost,

t 2 ,10" U,

V= [ (Ux] 4 dt + x'(t2)Qx(t2)

Adding the identity for zero derived above,

t2'I 0' U"

V f-[u'x'] L L]X dt + x'(t2)Qx(t2)
tj

t.2 0 B'K U
+ -[U'X']

ftj - - . KB ((d/dt) (K)) + KA+ A'K x dt

- (_x'(t2)K(t2)x(t2) - x' (tl)K(tl)x(tl))

f t2I 
B'K u[''- B ~ [~ldt

t -[- -- --
KB L +((d/dt) (K)) +KA + A'K x d

+ x'(tl)K(tl)x(tl) + (x'(t2)[Q -K(t2)]x(t2))

Thus far, nothing has been assumed about K(t); the equations above hold

for all differentiable choices of 1(t). The time has come to make a

fortuitous choice for K(t). Let

K(t2) = 2

to cancel out the final term in the expression for V above, and let

K = -AK - KA - L + KBB'K

so that we "complete the square" with the expression for V simplifying

to
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ti I B'K'1U'
V s -U'xK'] dt + x'(tl)K(tl)x(tl)

t2i

= [u+ B'Kx]'([u+ B'Kx] dt + x'(tl)K(tl)x(tl)

The expression for the cost V above holds for any choice of n.

The choice of u(xit),t that minimizes V is obviously

U =[-B'Klx

or more formally

u(x(t) ,t) = (-B'(t)K(t)lx(t)

We have a boundary condition and a differential equation for K(t), so we

can numerically compute K(t) and thus -B'(t)K(t). The expression in

brackets gives the parameters of a control policy, independent of the

initial or subsequent states.

Looking again at the form of the optimal control policy, it is

clear that each element of the control vector--each channel through

which the system's behavior can be manipulated--to be optimally
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controlled must in principle respond to the value of every level in the

system.*11* In other words, within the constraints posed by a limited

number of control inputs, the optimal solution calls for adding all

possible cross-links.

*11*It is undoubtedly possible to construct examples where many elements
of -B(t)K(t) are zero, that is, where the optimal control does not
always depend on every level. The probability of such a condition
occurring by happenstance, however, seems remote. For this to
occur, for some element ij of K,

(d/dt)K]. = [-AK - KA - L + KBB'K] = 0
i----- V t E[tlgt2]

which would seem fairly unlikely in a model well-focused on a
particular set of dynamic behavior modes.



3.3. ADDING A MINOR NEGATIVE LOOP WITH A DELAY

Sections 3.1 and 3.2 in effect answered the question, "Given a

desire to diminish or eliminate oscillations, what parametric or

structural changes can accomplish this?" Section 3.3 provides one

answer to an opposite sort of question: "Given a contemplated

structural change, what is the effect on oscillatory behavior?" The

structural change thus analyzed in Section 3.3 is a minor negative loop

containing a delay.

An Example: Influence of Availability 2n Ordering. Section 2.2

described one constraint on the size of the backlog B in the

employment-backlog system, where orderers attempted to maintain a given

number of orders in the backlog. There is also another effect that

regulates the size of the backlog B, which operates over longer time

horizons. If the order backlog of a company is too high, orderers are

not getting their orders filled right away. There is a delivery delay,

which, if it persists at high values for a significant amount of time,

will cause the company's customers, the orderers, to go elsewhere to

obtain the products they want. As the company loses customers, the

order rate is diminished, all other things being equal, so that not as

many new orders are added to the backlog, which tends to reduce the size

of the backlog. Inversely, if the backlog is very low, orders are

filled quickly, which makes the company's product attractive to

customers, because the customers need not maintain as much of their own

stocks of the product, and yet the product will always be readily



available. So a low delivery delay increases the order rate, which

tends to drive up the order backlog; the product-availability loop is

negative.

Figure 3-18 shows how the influence of product availability

can be modeled in the employment-backlog system. The order rate OR is

modulated by the multiplier from delay on ordering MDO, which responds

to the perceived delay for ordering PDO. This variable is a two-year

smoothing of the actual delivery delay DD, which is the average time it

takes an order to be filled. DD is computed by dividing the backlog B

by the rate at which orders are filled, the output OUT.
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Figure 3-18.
PRODUCT-AVAILABILITY LOOP

The equations for backlog B, output OUT, and order rate OR are

already familiar from Section 2.1:

B.K=B.J+(DT) (OR.JK-OUT.JK)
B=BN
BN=660

B
OR
OUT
BN

7, L
7.1, N
7.2, C

BACKLOG (UNITS)
ORDER RATE (UNITS/YEAR)
OUTPUT (UNITS/YEAR)
BACKLOG INITIAL (UNITS)

40

% -- j

.%R4ftI

k S



OUT.KL=E.K*PROD*(l-WTO)+TOUT.K*WTO 8, R
WTO=O 8.1, C

OUT - OUTPUT (UNITS/YEAR)
E - EMPLOYMENT (MEN)
PROD - PRODUCTIVITY (UNITS/YEAR/MAN)
WTO - WEIGHTING ON TEST OUTPUT (DIMENSIONLESS)
TOUT - TEST OUTPUT (UNITS/YEAR)

OR.KL=(AOR.K) (MDO.K) 9,R
OR - ORDER RATE (UNITS/YEAR)
AOR - ADJUSTED ORDER RATE (UNITS/YEAR)
MDO - MULTIPLIER FROM DELAY ON ORDERING

(DIMENSIONLESS)

The multiplier from delay on ordering MDO simulates the

long-term effect of product availability (represented by perceived delay

for ordering PDO). Figure 3-19 shows a graph for MDO. For consistently

low product availabilty (represented by a high PDO), the multiplier

diminishes the order rate OR below what it otherwise would be. This

diminution represents the company losing customers. At the other end

of the graph, high product availability (low perceived delivery

delay PDO) stimulates ordering.

MDO.K=TABLE(TMDO,PDO.K/DBC,0,4,.5) 14, A
TMDO=1.3/1.2/l/."5/.5/.3/.2/.15/.1 14.1, T

MDO - MULTIPLIER FROM DELAY ON ORDERING
(DIMENSIONLESS)

TMDO - TABLE FOR MULTIPLIER FROM DELAY ON ORDERING
PDO - PERCEIVED DELAY FOR ORDERING (YEARS)
DBC - DESIRED BACKLOG COVEARGE (YEARS)
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Figure 3-19.

TABE FOR MULTIPLIER FRCM DEIAY ON ORDERING PDX

The perceived delay for ordering PDO represents the perception

of product availability over an averaging period of two years. In the

basic employment-backlog model the time to perceive delay for ordering

TPDO is set at lEll, so that PDO effectively never varies from its

initial value, and the multiplier from delay on ordering MDO remains

equal to 1.0. In this section, MDO is activated by setting TPDO equal

to two years.

PDO.K=PDO.J+(DT/TPDO)(DD.J-PDO.J) 15, L
PDO=DBC 15.1, N
TPDO=lEll 15.2, C

PDO - PERCEIVFD DELAY FOR ORDERING (YEARS)
TPDO - TIME TO PERCEIVE DELAY FOR ORDERING
DD - DELIVERY DELAY (YEARS)
DBC - DESIRED BACKLOG COVERAGE (YEARS)



The delivery delay DD is the average time taken for an order

to be filled, which is just the order backlog B divided by the rate of

filling orders, the output OUT.

DD.K=B.K/OUT.JK 16, A
DD - DELIVERY DELAY (YEARS)
B - BACKLOG (UNITS)
OUT - OUTPUT (UNITS/YEAR)

Figure 3-20 shows the behavior of the employment-backlog

system with the product-availability loop activated. For easy

comparison, the behavior without MDO active is shown in the succeeding

figure, Figure 3-21 (identical to Figure 2-14). Comparing the curves

for backlog B reveals little overall change in the oscillatory behavior:

a slightly shorter period and slightly less damping result from

activating the product-availability loop, a minor negative loop with a

delay.*12*

In Section 2.2, activating a minor loop around the level of

backlog B increased the damping. Here, activating a minor loop with a

delay around the backlog B decreases the damping. What is there about a

delay that causes such a difference? The following subsection begins to

explain.

*12*"tAdding a minor loop with a delay" here denotes adding a loop that
contains one additional level, a delay, around an already-present
level. "Minor loop with a delay" borders on being a misnomer
(because minor loops contain no levels), but is retained for
convenience.
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Explanaton in I.erm. tbPhae ShiLt. Before examining in detail the

dynamics of the entire employment-backlog system with the multiplier

from delay on ordering MDO activated, let us first examine the dynamics

of only the subsystem shown in Figure 3-18.*13* We can isolate the

subsystem by changing a parameter in the equation for the rate of

output OUT, so that OUT responds to an exogenous test output TOUT,

rather than the rate determined by the number of employees E within the

system. By changing the weighting on test output WTO from 0.0 to 1.0,

we eliminate the effect of employment E on output OUT, which will now

respond only to the test output TOUT.

We can test the responsp of the backlog subsystem to a step in

the rate of output OUT, by setting the test output step height TOSH to

132 units per year from zero. Figure 3-22 shows the result. The

negative loop connecting the level of backlog B and the other level, the

perceived delay for ordering PDO, causes a damped oscillation, with a

period of about ten or twelve years. In effect, a step in the rate of

output OUT resets the steady-state values for both levels. The

*13*The motivation for examining the dynamics of the subsystem comes
from two features of the simulation in Figure 20: first, the effect
of a varying multiplier from delay on ordering MDO on the order
rate OR is difficult to see because the behavior is still fairly
damped, and the magnitude of the effect of MDO quickly becomes very
small. Second, examining the curve for MDO reveals an apparently
exponential transie'nt with a time constant of about three years,
upon which the oscillation is superimposed. The transient makes it
difficult to analyze MDO or OR in terms of disturbance from
steady-state values.
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perceived delay for ordering PDO must be lower than before to raise the

multiplier from delay on ordering MDO and the order rate OR to equal the

new higher rate of output OUT. The backlog B must therefore also

equilibrate at a lower value to produce a lower delivery delay DD, which

is averaged to produce PDO. Initially, then, both the backlog B and

perceived delay for ordering PDO exceed their steady-state values. When

the output OUT steps up at year 1, the backlog B begins to drop, causing

the delivery delay DD to drop. Eventually, PDO (a two-year lag of DD)

begins to drop. When the backlog B reaches its steady-state value, the

perceived delay for ordering PDO has yet to reach its steady-state

value, so the multiplier from delay on ordering MDO and the order

rate OR are still below their respective steady-state values, so that

the difference between the rate of output OUT and the order rate OR

continues to reduce the backlog B. Thus, when the perceived delay for

ordering PDO reaches its steady-state value, and the order rate OR and

the rate of output OUT are equal, the backlog B and the actual delivery

delay DD are below their respective steady-state values. So PDO

continues to decline, and the oscillation continues, with the levels

being alternately disturbed from their steady-state values.

What effect can a loop that oscillates with a period of ten or

twelve years have on another loop that oscillates with a period around

three years? One beginning point in answering this question is to

reexamine Figure 3-22, which actually plots two simulations of the

backlog subsystem: one with the multiplier from delay on ordering MDO
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activated (which was discussed above), and another simulation with MDO

set at 1.0. In this second simulation, there is no feedback from the

backlog B to the order rate OR, so the initial discrepancy between the

rate of output OUT and the order rate OR remains constant, and produces

a steady downward-sloping ramp in the backlog B. Thus, the difference

between the two curves for backlog B on Figure 3-22 results from the

action of MDO. The difference between the two curves remains fairly

small for about three-quarters of a year after the initial step. At

that point, the curves begin to diverge markedly, with one continuing to

decline (the curve for the simulation without an active MDO), and one

beginning to level out (the curve for the simulation with MDO active).

Thus, even though the resonant period of the subsystem is on the order

of a decade or more, the negative loop begins to significantly alter the

behavior of backlog B after only a few months.

The effects of the negative loop in the backlog subsystem on a

three-year oscillation can be seen in Figure 3-23.*14* The backlog B

still lags about 90 degrees behind its exogenous driving input, the rate

of output OUT. Because of the two-year delay in perceiving the actual

delivery delay, the perceived delay for ordering PDO lags another 48

degrees behind the backlog B. Thus, the order rate OR fluctuates with a

*14*As noted previously, the backlog subsystem shows a long transient,

which we can now associate with its ten- or twelve-year oscillatory
period. To eliminate this transient, the simulation in
Figure 3-23 is plotted starting at year 18 through year 23. By this

time, the three-year oscillation has come quite close to its

steady-state behavior.
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phase lag of about 138 degrees, not very far away from a 180-degree

phase shift.*15* Thus, due to the delay in the negative loop, the order

rate OR fluctuates with a phase shift such that most of the time, it is

augmenting the effects of the sinusoidal distrubance in the rate of

output OUT. The striped areas enclosed by the order rate OR and its

equilibrium value indicate the periods of time when the order rate OR is

changing the backlog B in the same direction as the rate of output OUT.

The dotted areas indicate times during which the effects of the order

rate OR and the output OUT oppose one another on the backlog B.

Clearly, at least in this case, the preponderant effect of adding the

negative loop is to add to the effect of the disturbance, and increase

the magnitude of oscillation.

The magnitude of oscillation of backlog B is increased due to

the phase shifting of compensation through the multiplier from delay on

ordering MDO. To what extent does this phase-shift effect depend on the

value of the time to perceive delay -for ordering TPDO (two years)?

*15*The effect of the two-year delay in perceived delay for ordering PDO
is somewhat diminished by the formulation for delivery delay DD,
which varies not only in response to excursions in the backlog B,
but also responds to excursions in the rate of output OUT. In
Figure 3-23, the actual delivery delay DD leads fluctuations in
backlog B by about 36 degrees. This must always be the case because
of the way DD, B, the order rate OR, and the rate of output OUT are
related. Imagine a trough (minimum) in backlog B, where the rate of
output OUT has been declining, and has just equaled the order
rate OR. (The backlog B attains its maxima or minima when OUT
equals OR.) At that point, the delivery delay DD (which equals
B/OUT) will already have passed its minimum point, because with
backlog B unchanging and the output OUT declining, DD must already
be beginning to rise.
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relative to the period (three years)? Figure 3-24 shows a simulation

with TPDO reduced by one-half to 1.0. Two phenomena are apparent.

First, there is indeed a smaller phase shift, so that the amount of time

that movements in the order rate OR oppose those of the rate of

output OUT is larger relative to the amount of time that OR and OUT move

the backlog B in the same direction. Second, the fluctuations in the

order rate OR are larger, since the one-year delay attenuates the signal

less than does the two-year delay. The smaller phase shift tends to

diminish the magnitude of oscillations in the backlog B; the larger

amplitude of fluctuation tends to increase fluctuations in B. The net

effect of reducing the time to perceive delay for ordering TPDO is to

leave the fluctuations in backlog B at about the same magnitude as when

TPDO is 2.0. Apparently, then, the delay time must be fairly small

relative to the period of oscillation (perhaps one-fifth or less) in

order for the negative loop to increase rather than decrease the

damping.

Consider now the effect of the product-availability loop in

the context of the entire employment-backlog system. Figure 3-20 shows

that between year 0.5 and year 2, the rate of output OUT and the order

rate OR (which fluctuates as a result of the operation of the

product-availability loop) do indeed move in opposite directions, so

that the effect of the product-availability loop during the first two

years is to increase the magnitude of movement in the backlog B.

Figure 3-25 shows an expanded view of the system's behavior between
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years 2 and 4.5. Roughly the same phase relationships obtain: the

order rate OR decreases at about the same time that the rate of output

OUT is increasing, and vice versa, which suggests that the effect of the

minor negative loop with a delay is indeed to increase the magnitude of

oscillation, and therefore to decrease the damping.

Figure 3-20 shows one additional effect of the minor loop with

a delay that could not be directly predicted from the analysis of the

backlog subsystem: the period of oscillation is shorter with the minor

loop with a delay in operation. To see why, imagine the subsequent

behavior of the system if the employment E were at its steady-state

value, and the backlog B was below its steady-state value. (This

happens in Figure 3-20 at about year 0.5.) The effect of the minor loop

with a delay is to move the backlog B more rapidly toward its

steady-state value (and beyond it as well), so that B will reach its

steady-state value sooner, and employment E can cease its decline and

begin to rise sooner. In other words, the minor loop with a delay

tncreases the velocity of a system's movement through its cycles in

state space.

A Principle. The description above explains the effect of adding a

minor negative loop with a delay on oscillations in terms of phase

shift. That explanation, however, does not suggest the ubuiquity of the

result. In terms of phase shift, the result seems to derive from a

rather special relationship among the gains and phase shifts in the

various parts of the system. Is there a way of describing the effect of
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a minor negative loop with a delay such that it becomes clear why the

effect happens so often? To begin that explanation, let us first

identify the concepts in the previous explanation that are Useful as

independent, free-standing concepts.

One element of a useful explanation is contained in the

commentary on Figure 3-22. That figures demonstrates that the added

minor loop with a delay begins to affect the level around which it is

added almost immediately; the magnitude of the effect, however, becomes

larger as time passes. Compensation that arrives almost immediately

will tend to ogpose movement of the level. Compensation that arrives

later (out-of-phase) will tend to augment the movement of the level. If

the magnitude of the compensation becomes larger over time, the

augmenting effect outweighs the opposing effect, and the added minor

negative loop has an appreciable destabilizing effect on oscillations

much shorter than its own resonant frequency. The natural period of the

loop added to the backlog subsystem is around ten years, and it still

has a destabilizing effect on the three-year oscillation of the

employment-backlog system.

The other useful concept that can be abstracted from the

previous explanation is that of accelerated movement through state

space. The effect of adding the minor loop with a delay in the

employment-backlog system was to accelerate the movement of the

backlog B, both toward and beyond its steady-state value. It is this

accelerated movement that causes both the shortened period and decreased

damping of the system's oscillation. We can go beyond the concepts that
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arose in the previous explanation to observe that the accelerated

movement through state space of the backlog B is caused by a disturbance

in the added level of the perceived delay for ordering PDO. This

disturbance in turn arose from disturbances in the rate of output OUT

and the backlog B. In other words, the accelerated movement through

state space results from the addition of a pathway through which

disturbaesces can propagate. This observation provides enough

descript 4 ve material to state a principle:

Principle on adding a minor negative loop with a delay

If a minor negative loop with a delay is added around a level already

on an oscillatory loop, the added loop forms another pathway

through which disturbances in the level can propagate back to

the level. When the additional disturbance returns to the

level, it moves the level more rapidly to and past its

steady-state value, which results in a shorter period and less

stable oscillation.*16 *

Figure 3-26 illustrates the principle by showing the original

system as one loop and the added loop as a pathway symmetrical with the

original loop (the auxiliary variables are subsumed within the rate

symbols for simplicity). The original system is one pathway through

which a disturbance can propagate to cause oscillation in the backlog B.

The added loop constitutes another system through which disturbances

can propagate to cause oscillations in the backlog B.

*16*Less "stable" in this context means that the system exhibits a larger

number of oscillations before coming essentially to equilibrium. In

this sense, then, the oscillations described in the principle, which

have shorter periods than the original oscillations, would be

described as less stable, even if the time-constant of the

exponential envelope around the oscillations remains the same.
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ADDING A MINOR Loop WITH A DELAY AS ADDING AN OSCILLATORY PATHWAY

In complex social and economic systems, it is a common occurence

to have a level be in part controlled by a minor negative loop wIth a

delay: because it often takes time to perceive and act to change the

system condition represented by the level, there are often delays in the

negative loops whose goal is to control the level. Therefore, there

are probably many opportanities in model formulation and policy design

to use the principle on adding a minor negative loop with a delay. In

policy design, such loops are immediate suspects for exacerbating the
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oscillatory tendencies of the system. If that turns out to be the case,

the system can be made more stable by either reducing the delay time

(far enough that the loop effectively becomes a pure minor loop, which

usually tends to stabilize oscillatory systems) or increasing the delay

time (far enough that the delay filters out most of the inputs at the

natural frequency of the system). In model formulation, if a preliminary

model is unrealistically stable or has an unrealistically long response

time, the principle above suggests that one scrutinize the real system

for additional delays in minor loops presently in the model, and

additional minor loops with delays not presently in the model. Many real

decisions (price-setting, for example) are influenced by many streams

of information, so that it is often relatively easy to identify additional

streams of information, ommitted from the preliminary model, that could

have a significant influence on the system behavior by forming a minor

negative loop with a delay.

There are caveats concerning the principle above: It seems

possible that if the gain of the added minor negative loop with a delay

is large enough, the added loop will dominate in controlling the level,

rather than the original loop. This domination may cause oscillation

and damping more characteristic of the added loop than the original

system. At this point, all one can say is that there is very little

qualitative knowledge existant about such phenomena; Section 6.3

suggests a means of investigation.

The second caveat concerns the delay time. If it is made

short enough, the minor negative loop with a delay (which previously



-203-

may have destabilized the system's oscillations) effectively becomes

a pure minor negative loop (which usually tends to stabilize the

oscillations).

The example of the employment-backlog system may seem

somewhat specialized, for the natural period of the added loop

considerably exceeds the natural period of the original oscillating

loop. We have seen that the slower loop is capable of exaggerating

oscillations resulting from the more rapidly-oscillating loop. If

the original system were the slowly-oscillating system, we would

expect the oscillatory tendencies of the added loop to increase.

In other words, there is a symmetry between the original loop and

the added loop, and both loops acting in concert tend to produce

more movement of the common level than either does alone, regardless
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of which loop has the shorter natural period.*17* *16*

*17*The magnitude of the effect of adding a minor loop with a delay
will of course depend on the period and damping ratios of the two
loops. One suspects that coupling two loops with identical natural
periods would result in a considerable decrease in damping, in
contrast to the mild decrease shown in the example in this section.
Section 6.3 discusses questions for further research that arise out
of the configuration shown in Figure 3-26, such as determining the
natural period and damping of the total system as a function of
the natural periods and damping ratios of the individual loops.

*18*The preceding material offers a tentative explanation for a curious

phenomenon in economic dynamics. National economies, which are
made of numerous disparate oscillating loops, might be expected
to resonate at numerous frequencies. In fact, the detectable
resonant frequencies are rather widely separated at 4, 20, and 50-
year periods. This seperation could be due to the ability of
coupled negative loops (such as those in Figure 3-26) to become
entrained at a resonant frequency higher (shorter period) than the
resonant frequency of either loop oscillating independently.
If a 4-year business cycle is able to entrain loops with resonant
periods up to 15 years into the 4-year cycle, then a 20-year
independent natural period is the next periodicity that will not
simply be "captured" by the 4-year oscillation.
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CHAPTER FOUR

POSITIVE LOOPS

Chapter 4 concludes the exposition begun in Chapter 3

on the effects of various types of structural changes on oscillatory

behavior. Thus far, the exposition has described primarily the con-

tribition of negative loops to oscillation. Chapter 4 completes the

exposition by considering the effects of positive loops on oscillatory

behavior, and demonstrating the symmetry between the effects of

positive and negative loops.
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4.1 POSITIVE LOOPS CHANGING RESPONSE TIME

An Example: Saving. Let us begin consideration of positive

loops with an extremely simple first-order system. Figure 4-1 shows

a level of savings S such as might be kept in a savings bank for

retirement purposes. An exogenous deposit rate DR can also increase

savings S. The withdrawal rate WR is proportional to savings S, so

that the more savings S are available, the more they will be used.

The withdrawal rate WR forms a negative loop with savings S. If

the savings are in a bank that pays interest, the interest payment

IP will be proportional to savings S, and will increase savings S,

so that interest payments IP form a positive loop.

The savings S are determined in a level equation, with the

deposit rate DR and interest payments IP increasing the level, and

with the withdrawal rate WR decreasing savings S. The level is

initialized at $10,000, representing an amount a person might possess

when he or she retires.

S.K=S.J+(DT)(DR.JK+IP.JK-WR.JK) 1,L
S=SN 1.1,N
SN=lE4 1.2,C

S - SAVINGS (DOLLARS/YEAR)
DR - DEPOSIT RATE (DOLLARS/YEAR)
IP - INTEREST PAYMENTS (DOLLARS/YEAR)
WR - WITHDRAWAL RATE (DOLLARS/YEAR)
SN - SAVINGS INITIAL (DOLLARS)

The withdrawal rate WR is formulated as a coqstant function

of the existing savings S, so that no withdrawals can be made when

-207-
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there are no savings. The withdrawal fraction WF is set at 0.08,

so that withdrawals will exhaust the level of savings S with a time

constant of 12.5 years, without any deposits or interest payments.

WR.KL=S.K*WF 2,R

WF=.08 2.1,C

WR - WITHDRAWAL RATE (DOLLARS/YEAR)
S - SAVINGS (DOLLARS)
WF - WITHDRAWAL FRACTION (FRACTION/YEAR)

IR

CDR ICondgi nkrst T hfce~

de si 
ry

iur-1.

4A I kG drqw l4

frae4

Figure 4-1.
SAVING SYSTEM
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Interest payments IP are proportional to the level of

savings S. The interest rate IR is initially set at 0.0, so that the

effect of the withdrawal loop alone on the behavior can be seen

clearly. In a later simulation the interest rate IR will be set

at 0.5.

IP.KL=S.K*IR 3, R
IR=0 3.1, C

IP - INTEREST PAYMENTS (DOLLARS/YEAR)
S - SAVINGS (DOLLARS)
IR - INTEREST RATE CFRACTIOT/YEAR)

The deposit rate DR is set at a single constant deposit

rate CDR. This constant is initially set at zero to exhibit the

consequences of the withdrawal loop alone on the behavior. In a

later simulation, the constant deposit rate CDR will be set to

$250.00 per year.

DR.KL=CDR 4, R
CDR=0 4.1, C

DR - DEPOSIT RATE (DOLLARS/YEAR)
CDR - CONSTANT DEPOSIT RATE (jDOLLARS/YEAR)

Figure 4-2 shows a comparative plot of the behavior of the

savings system for four different sets of parameters. Curve A shows

the behavior when withdrawals are made, but with no interest payments

or deposits. Savings S declines with a time constant of Cl/WFI =
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(1/0.08)=12.5 years. Curve B shows the behavior of the saving system

with the positive loop involving interest payments IP activated by

setting the interest rate IR equal to 0.05. The effective time

constant of decline in savings S can be computed as follows:

Effective time constant = S/((d/dt)S)

= S/(IP-WR)

= S/(S*IR-S*WF)

= 1/(IR-WF)

= 1/(0.05-0.08)

= 1/(-0.03)

= -33.3 years

The equations above imply that the interest rate IR and

the withdrawal fraction WF can be set to give a very long time

constant of behavior. For example, if the withdrawal fraction 14F

is reduced from 0.08 to 0.06, the effective time constant of the

decline of the savings S becomes 100 years. This large value occurs

because the effective time constant responds to the difference of

the two system parameters, as well as their magnitude. Thus, a

system involving both positive and negative loops can exhibit behavior

with a time horizon much longer than might be inferred from any of

the time-related parameters within the system structure.

Curve C shows the behavior of savings S when deposits are

made at a rate of $250 per year but with no interest payments or

withdrawals. Curve C shows savings S increasingly linearly.
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Activating the positive loop involving interest payments IP causes

savings S to rise very much faster: Curve A reaches $20,000 in ten

years, whereas Curve C reaches this value in 40 years.

To begin to develop concepts that go into a principle con-

cerning the effect of positive loops on behavior, how might we charac-

terize the impact of activating the positive loop involving interest

payments IP? One way of describing these particular results is to

say that the positive loop destabilized the behavior. However, the

examples in Chapters 2 and 3 indicated that adding negative loops does

not always stabilize a system's behavior. By analogy, we should be

wary of similar cases where positive loops do not necessarily destabilize

a system's behavior. Indeed, Section 4.2 gives an example of.a positive

loop that has a slightly stabilizing effect on the employment-backlog

system's behavior. A more precise way of characteriz-ang the behavior

in Figure 4-2 is to say that adding the positive loop tended to augment

the disturbance present in the system's levels, so that the levels move

either more rapidly away from their steady-state values (if the levels

were already diverging), or more slowly toward their steady-state values

(if the levels were already converging). For convergent oscillatory

systems, whether or not this slower movement toward steady-state values

can produce either more damping or less damping depending on the

characteristics of each specific system.
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Another Example: A Driven Pendulum. Another example of activating a

positive feedback loop occurs when the spring-mass system described

in Section 2.1 is pushed with a force proportional to its velocity.

Whichever direction the mass is going, the driving force pushes it

faster in that direction. As the velocity of the mass diminishes,

so does the driving force. Figure 4-3 shows a model of this driven

mass, with the positive loop connecting the velocity V, the force

from driving FD, and the acceleration A.

so.a
sprgE

GO amp 23 fVPosi00ob

--- nrS

0N

'4

Fb
Thse frov

drevw*

ro

do Ac

(.1.)

/ , Gr avi oal

ce, 3=6/

Ve~T

a -)- -- -- 2
DC, bniv co/cin

Figure 4-3.
POSITIVE LOOP FORMED BY DRIVING THE SPRING-MASS SYSTEM



The force from driving FD is one of the forces that results

in the acceleration A of the mass, which has already been defined in

Chapter 2 as:

A.KL=(FS.K+FF.K+FD.K)/(W/G) 3, R
W=160 3.1, C
G=32 3.2, C

A - ACCELERATION (FEET/SECOND/SECOND)
FS - FORCE FROM SPRING (POUNDS)
FF - FORCE FROM FRICTION (POUNDS)

FD - FORCE FROM DRIVING (POUNDS)
W - WEIGHT (POUNDS)

G - GRAVITATIONAL ACCELERATION

(FEET/SECOND/SECOND)

The force from driving FD is assumed proportional to the

velocity V. The constant of proportionality, the driving constant DC,

is equal to 0.0 in the basic model, and is set to 3 pounds/foot/second

to represent driving. Obviously, other policies of driving the system

exogenously will have different effects on the behavior; anyone who

has pushed a swing knows the swing can be pushed either to increase the

swings, or to decrease the swings. The present policy, however, is both

easily visualized, and corresponds to a simple structural addition, a

minor positive loop.

FD.K=DC*V.K 6,A
DC=O 6.1,C

FD - FORCE FROM DRIVING (POUNDS)

. DC - DRIVING CONSTANT (POUNDS/FOOT/SECOND)
V - VELOCITY (FEET/SECOND)

Figure 4-4 shows the behavior that results from activating the

positive loop. The oscillations diverge quite sharply. The causes for
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the divergence can be seen by examining the values of the two levels

at time 4.8, when the position P has risen to zero. Without the

positive loop, a position P of zero would cause the acceleration A (exer-

ted by the spring alone) to also equal zero. As position P continued to

rise without the positive loop, the acceleration A would become negative

and the velocity V would begin to decline. In contrast Figure 4-4

indicates that the velocity V continues to rise when position P equals

zero: the rise is due to the force from driving FD, which continues

to give the mass a positive acceleration A, thus causing the velocity

V to rise further. Thus, the positive loop causes the velocity V to

return to its steady-state value later than it would have without the

influence of a positive loop. (This lengthened response time is the

cause of the divergent oscillation; the longer the velocity V stays

positive, the further position P will rise, so that the positive loop

causes a larger disturbance over each cycle of the oscillation.)

The period of oscillation in Figure 4-4 can be inferred approximately

from the time of the peak in position P around time 7.2. At that time,

the position P has moved through one comnlete cycle, so the period

is around 7.2 seconds, as opposed to 6.28 seconds for the original

system in Figure 2-3.



-216-

000 .1 .. .. j

IW6 I

I

1011 1I

IL

Figure 4-4.

BEHAVIOR OF DRIVEN SPRING-MASS SYSTEM

_A Further Example: Price Maintained bL Traditio. Figure 4-5 shows a

representative of a very large class-of positive loops that occur in

socio-economic systems. These loops occur in conjunction with a

negative loop that attempts to control a system variable. In this case ,

a negative loop changes the price P that a company charges for its

product to attempt to maintain a gross margin GM of revenues over cost .

If the price P should fall, the gross margin GM also falls, which causes

the change in price from margin CPM to make the change in price CP

positive, which raises the price P. The goal of this negative loop
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Figure4 -5.
REGULATION OF PRICE BY GROSS MARGIN

is to maintain the gross margin GM equal to the traditional gross

margin TOM.

What forms the firm's goal for profitability, the traditional

gross margin TOM? In many institutions, the long-standing goals that

regulate short-term behavior seem to be formed mostly on the basis of

what has been the traditional performance. This formation of a

traditional performance is represented by the long-term smoothing in

the equation for the traditional gross margin TGM. The loop going

'I
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through TGM is positive; an increase in price P increases the gross

margin GM, which will eventually increase the traditioi. ;l gross margin

TGM. A rise in this variable causes rises in the indicated price from

traditional margin IPTM, the change in price from margin CPM, the

change in price CP, and price P. The sign of the loop is positive;

a change in one variable on the loop propagates around the loop to

result in a change of the same sign. The gain, however, may not be

nearly large enough to cause divergent behavior. In fact, the steady-

state open-loop gain of such positive loops involving goals is usually

1.0 or less. *1*

Another negative loop attempts to regulate the price P with

respect to competitive prices, represented here by the market place

MP. If the price P becomes too high, the management of the firm

perceives that the price may cause a loss in market share, so that

the management will tend to lower prices, represented by the change

in price from demand CPD. In this simple model, there is a separate

time constant that regulates the adjustment of price in response to

competition from other firms, a time to adjust price to demand TAPD.

* .*In brief, the gain is often 1.0 because the loop represents the

formation of goals that allow the system to function at a scale of
operation exactly equal to some measure of the current scale of
operation. One example in the employment-backlog system is the
positive loop closed by the perceived delay for backlog adjustment
PDBA, which is discussed in Section 4.2. Another example in the
employment-backlog system is the positive loop closed by the expected
average orders EAO, which is discussed in Section 4.3. These positive
loops are common enough to warrant a name of their own; I suggest
calling positive loops with an open-loop, steady-state gain of 1.0
"a unity-gain loop."
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Figure 4-6.
RECOVERY OF PRICE LEVELS

Figure 4-6 shows a sketch of the response of the price system

shown in Figure 4-5 to a disturbance in the level of price P. A

larger price P produces a larger gross margin GM, which eventually

results in a larger traditional gross margin TGM. Between times tl

and t2, the gross margin GM is larger than the traditional gross

margin TGM, so that the influence of margins on the price P is to

reduce P. After the time t2, however, the traditional gross margin

niajnJade
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TGM has risen, and the falling price P has reduced the gross margin GM

so that the gross margin GM is actually below the traditional gross

margin TGM. After time t2, the influence of margins on price P is to

raise P to attempt to maintain the now-traditional gross margin GM.

Only the influence of the negative loop representing price competition

from other firms continues to reduce price P. The positive loop

involving traditional gross margin TGM tends to maintain and prolong

the disturbance in price P. In fact if one calculates the time constant

for the decline in price P for the equations shown on Figure 4-5, the

time constant turns out to be much longer than any of the time constants

in the system. If the time to adjust price to margin TAPM equals 2.0,

the time to adjust price to demand TAPD equals 2.0, and the time to form

traditional gross margin TFTGM equals 3.0 months, the time constant of

decline is 72 months.* 2 * Thus in this situation, as with the simple

saving system in Figure 4-1, the existence of a positive loop produces

behavior with a time horizon much longer than might be expected from

the values of the individual time-related parameters of the system.

*2*The system in Figure 4-5 is entirely linear, so that its behavior

can be characterized by its eigenvalues, which can be calculated

by any of a number of simple methods. The system has two eigen-
values, one of which corresponds to a time constant of 0.98 months,

representing the time it takes for the two negative loops to adjust
the price to some compromise between the market price MP and the

indicated price from traditional margin IPTM. The 72-month time

constant represents the time required for the traditional gross
margin TGM to decline, given that the negative loop going through
IPTM tends to maintain TGM.



-221-

A Principle. The preceding examples suggest a relatively simple principle:

Prciple on addin a 2 positive loop

Adding a positive loop around a level tends to augment
whatever disturbance is present in a system's levels, so

that the levels move more slowly toward their steady-state

values. The system thus takes longer to complete a cycle

in an oscillation, or to smoothly approach a steady-state value.*3*

The principle above can. be justified heuristically by examining

the consequences of raising the gain of a positive loop. Figure 4-7

illustrates. Curve A on the top part of the figure shows smoothly-

convergent behavior, such as might occur in a first-order system or a

highly-damped, higher-order system. The convergence is usually

caused by a negative loop.*4* If a positive loop is activated with a

gain so high that the original negative loop is unable to cause the

*3*In the case of smoothly divergent behavior, the statement in the

principle that "the level moves more slowly toward its steady-

state value" can be rephrased more accurately as "the level moves
more rapidly away from its steady-state value." Thus, the principle

implies that activating a positive loop increases the response time
of a level returning to its steady-state value, or decreases the

response time of a level diverging from its steady-state value. For
example, the savings system in Figure 4-2 with deposits and no

withdrawals produces the smoothly-divergent behavior shown in
curve C. Activating the positive interest loop produces curve D,
whose "response time of divergence" is clearly shorter than in
curve C without the positive loop.

*4*Convergent behavior can also arise from purely positive loops; the

fourth-order example of a purely positive loop in Section 2.1 has

an eigenvalue of -1.0 which corresponds to convergent behavior

with a time constant of 1.0. Such behavior modes, however,
if they exist, are rarely the behavior mode of interest.
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Figure 4-7.
HEURISTIC FOR EFFECT OF POSITIVE LOOP ON RESPONSE TIME

system to converge to an equilibrium, then a curve such as B might

result. Reducing the gain of the positive loop somewhat might result

in the behavior shown by Curve C, where the state of the system still

diverges, although less rapidly than in Curve B.
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If the gain of the positive loop is reduced still further,

the negative loop or loops that caused the original convergence

would again be able to dominate the behavior and cause convergence.

However, the convergence would be much slower than the original, as

in Curve D. In comparison to the original convergent behavior, the

time taken in Curve D to converge is very much longer than the time

taken in Curve A. If the gain of the positive loop is reduced still

further, a curve such as Curve E might result, where the trajectory

is quite close to the original trajectory, but again, the response

time is still longer than the original response time.

The lower part of Figure 4-T shows a similar lengthening of

response time for an oscillatory system.*5* Curves B and C represent

the effect of activating a positive loop around a level in the origin-

ally-convergent system with a very high gain. As the gain is reduced

(corresponding to changing from Curve B to C to D), the negative

loops that cause the trajectory to return to the steady-state value

eventually overcome the effect of the positive loop. Note that for

a gain that just barely suffices to bring the trajectory back toward

the steady-state value, the period of oscillation is very much longer

than that of the original trajectory. (Indeed, just such a lengthening

occurred in Figure 4-4, where a positive loop lengthened the period

*5*Section 2.1 shows that convergent oscillations can also arise from

positive loops, with or without minor negative loops. For the

purpose of presenting a simple heuristic, let us ignore such cases,

as it is only quite rarely that one would wish to know the effect

of activating another positive loop around a level in such a system.
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of oscillation of the spring-mass system.)*6* Figure 4-5 shows another

trajectory, Curve E, that might result from further decreasing the gain

of the added positive loop. Cureve E is fairly similar to the original

trajectory, Curve A, although, as usual, the period of oscillation is

lengthened by the presence of an added positive loop.*7*

The principle on adding a positive loop can prove useful

both during model refinement and policy design. During the process of

model refinement it regularly occurs that a seemingly realistic model

shows oscillatory behavior with an unrealistically short period. The

principle implies that we should examine the real cause-and-effect

relationships to identify positive loops, which includes many goal-

formation processes, such as in the example of price declines in

Figure 4-5.

*6*Notice that one cannot infer from Curve D whether activating the
positive loop has increased or decreased the damping. In fact,

either can happen, depending on the specific system. In Figure 4-4,
a positive loop around the velocity V in the spring-mass caused less

damping than the original trajectory. In contrast, the following
section gives an example where activating a positive loop around the

backlog B of the employment-backlog system causes slightly more
damping. In both cases, however, the period is lengthened, similar

to the lengthening shown in the heuristic in Figure 4-5.

*7*The lengthening of the period of oscillation by a positive loop

has an interesting implication for the study of business cycles.
It is often assumed that business cycles occur independently of,
and superimposed upon, exponential economic growth arising from
the positive loop of capital reinvestment. The principle here

implies that those positive growth loops may have the effect of

lengthening the periods of business cycles, especially the twenty-
year and fifty-year fluctuations, where the time constant of expo-

nential growth is of the same order of magnitude as the periods
and the time constants within the oscillatory portions of the

system.
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In searching for effective policies, it is sometimes desired

to enhance the system's Ability to track an exogenous input. For example,

one might desire to enhance a firm's ability to follow upward trends

in sales. (Whether or not this implies that the firm will also follow

random fluctuations--which are present in every market--is another

issue.) The principle suggests that a faster response time can result

from eliminating or reducing the influence of positive loops.

There is at least one exception to the principle above. If

che structure that is added to form a positive loop comtains enoudh

levels to be able to produce a large phase shift at a significant gain,

the added structure could produce a large enough phase shift that

disturbances propagating through the added structure arrive at a time

when they cause the level that was in the original system to move more

rapidly toward its steady-state value, instead of more slowly, as the

principle states. To put it more concretely, adding a piece of structure

that forms a positive loop and produces a 180-degree phase shift is

functionally equivalent to adding a minor negative loop, whose sign

change also produces, in effect, a 180-degree phase shift.*8* Adding

minor negative loops often causes increased damping.

*8*None of the structures in this thesis added to produce a positive

loop can produce a 180--degree phase shift, since they have no more
than one level, and the largest phase shift obtainable from one
level without a sign change is 90 degrees.
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Further Examples: Cold Hands, and the Flu. Most of us are familiar

with the uncomfortable period that follows coming indoors after an

extended period of outdoor activity during winter. The cause of the

discomfort is quite simple; despite the warm environment (and often

brisk rubbing) hands and feet continue to feel cold for an appreciable

amount of time after coming indoors. The duration of cold hands and

cold feet arises at least in part from a positive loop produced by the

body's reaction to prolonged low temperatures in the extremities. At

normal indoor temperatures, the normal homeostatic response of blood'

flow through the hands and feet reduces blood flow when the temperature

becomes too low. This tends to produce a stable temperature. The

right side of Figure 4-8 shows the negative loop just described.

Figure 4-8 also shows a response that occurs when extremities

are exposed to prolonged cold. At some point, the body attempts to

conserve heat and reduce heat loss by restricting the flow of blood

through the extremities. This restriction, of course, allows the hands

and feet to become quite cold. Even if the person then goes indoors,.

the blood flow is restricted in the hands and feet, so that little
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Figure 4-8.
CONTPOL OF TEMPERATURE OF HANDS AND FEET

heat is transmitted to the flesh of the hands and the feet, so they

remain cold in relation to the indoor environment. This positive loop

considerably prolongs the time it takes for the hands and feet to

reach normal temperatures.

A similar an? very much more uncomfortable prolongation of

response time occurs in recovering from influenza. Normally, when one

is hungry, one eats, which assuages the hunger. However, if one is sick
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and hungry, the hunger also causes weakness and slows recovery from

the disease. One of the unfortunate symptoms of the flu seems to be

the inability to retain food. When one cannot retain food, one attempts

to eat less often and one stays hungry. Both of these factors tend

to maintain hunger and weakness. These effects form a positive loop,

which is shown in Figure 4-3. The operation of this loop can cause the

recovery from the flu to last several days. If one could only retain

one good meal, the recovery could be very much quicker. In terms of

the principle, this positive loop tends to augment the disturbance to

the system (hunger, weakness, and disease), which slows the movement

back toward the steady-state value of normal health.

Wtekness

4 NM
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Q 400001

Figure 4-9
RECOVERY FROM INFLUENZA



-229-

4.2 ADDING A MINOR POSITIVE LOOP WITH A DELAY

An Example: The Influence of Backlog on Ordering. Section 2.2

described a minor negative loop around the level of backlog B in the

employment-backlog system. That loop represented an attempt on the part

of firms ordering units to maintain an appropriate level of orders

in the backlog B. Figure 4-10 shows this minor negative loop.

The appropriate level of orders that the minor negative

loop in Figure 4-10 attempts to maintain is the desired backlog for

ordering DBO. DBO is formulated to maintain a desired coverage of the

desired order rate DOR. The coverage is equal to the aggregate

orderers' perception of how long an order in the backlog B takes to

be filled. This perception is quantified as the perceived delay for

backlog adjustment PDBA.

DBO.K=PDBA.K*DOR.K 12, A

DBO - DESIRED BACKLGG FOR ORDERING (UNITS)
PDBA - PERCEIVED DELAY FOR BACKLOG

ADJUSTMENT (YEARS

DOR - DESIRED ORDER RATE (UNITS/YEAR)

The formulation above ensures that, if the orderers' percep-

tions are accurate with respect to the delivery delay DD, maintaining

the backlog B equal to the desired backlog for ordering DBO causes

the actual rate at which orders are filled (the rate of output OUT)

to equal the desired order rate DOR. This can be shown starting with

the definition of the delivery delay DD:
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DD = B/OUT

Assuming that the perceived delay for backlog adjustment PDBA equals

DD,

PDBA = B/OUT

With the equation above, one can calculate the backlog B required to

maintain deliveries of the units (which equals the rate of output OUT)

at the desired order rate DOR by substituting DOR for OUT and solving

for B:*9*

B = PDBA*DOR

The backlog B computed above specifies the goal at which the actual

backlog B must be held in order to maintain the desired delivery rate,

so the equation immediately above specifies the computation for the

desired backlog for ordering DBO:

DBO = PDBA*DOR

The DYNAMO equation for DBO embodies this result.

The perceived delay for backlog adjustment PDBA represents

a delayed and averaged perception of the current delivery delay DD.

In previous simulations, the value of PDBA was held constant, despite

variations in DD, by setting the time to perceive delay for backlog

adjustment TPDBA at a very large number. In the simulation that

follows, TPDBA has been reduced to 1.5 years. (A more realistic

value might be somewhat shorter; the value of 1.5 years is chosen to

*9*The astute reader will notice that the calculations here arise
from the viewpoint of an individual orderer, who does not perceive
that his or her orders in any way effect the magnitude of the
delivery delay DD. The individual orderers accept DD as given,
and, under that assumption, attempt to control the number of units
they each have on order.
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show more clearly the effects of activating a minor positive loop with

delay.)

PDBA.K=PDBA.J+(DT/TPDBA)(DD.J-PDBA.J) 19,L

PDBA=DBC 19.1,N

PTDBA=lEll 19.2,C

PDBA - PERCEIVED DELAY FOR BACKLOG ADJUSTMENT

(YEARS)
TPDBA - TIME TO PERCEIVE DELAY FOR BACKLOG

ADJUSTMENT (YEARS)
DD - DELIVERY DELAY (YEARS)

DBC - DESIRED BACKLOG COVERAGE (YEARS)

The loop closed by the perceived delay for backlog adjustment

PDBA is positive; an increase in PDBA increases the desired backlog

for ordering DBO, which increases the order rate OR, the backlog B,

and the delivery delay DD. Thus an increase in PDBA propagates

around the loop to cause a further increase in its value. We can

calculate the steady-state open-loop gain of the positive loop in Figure

4-10, beginning with the delivery delay DD. If we break the loop at

DD, and assume that some input value of DD exists (denoted by DDIN),

we can calculate the delivery delay which would occur as a result of

that DDIN propagating around the loop, the DDOUT. Taking the partial

derivative of DDOUT with respect to DDIN yields the steady-state,

open-loop gain of the positive loop. We know that in steady-state,

PDBA = DDIN

which implies that

DBO = PDBA*DOR

= DDIN*DOR
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How does the value of DBO influence the steady-state value of

the next level in the loop, the backlog B? For B to be in equilibrium,

OUT = OR

= DOR + CBO

= DOR + (DBO-B)/TCBO

= DOR + (DDN*DOR-B)/TCBO

Solving for B,

B = DDIN*DOR - (OUT-DOR)(TCBO)

Finally, DDOUT comes from the regular equation for DD,

DDOUT = B/OUT

= (DDIN)(DOR/OUT) + (OUT-DOR)(TCBO)/OUT

If the employment E can be assumed to maintain the rate of output OUT

at the desired order rate DOR (i.e. OUT = DOR), then

DDOUT = DDIN

and so the steady-state, open-loop gain is

d(DDOUT)/d(DDIN) = d(DDIN)/d(DDIN)

= 1.0

Figure 4-11 shows the behavior of the employment-backlog

system with the positive loop shown in Figure 4-10 activated. The

time to correct backlog for ordering TCBO is set at 0.3 to allow the

correction for backlog on ordering CBO to function. Also, the time to

perceive delay for backlog adjustment TPDBA is set at 1.5 years.

Since the correction for backlog on ordering CBO is active, the

simulation in Figure 4-11 should not be compared with the base
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simulation. Instead, the effect of activating the positive loop is

most easily discerned by comparing Figure 4-11 with a simulation in

which CBO is active, but the perceived delay for backlog adjustment

PDBA is kept constant. Figure 4-12 shows that simulation; it is

identical to Figure 2-25.

Consistent with the principle in the last section, activating

the positive loop going through the perceived delay for backlog adjust-

ment PDBA has significantly increased the response time of the system.

Between years 1.0 and 4.5, the desired backlog for ordering DBO is

below the steady-state value for backlog B, so that the effect of the

positive loop during this time is to reduce the order rate OR and

prolong the approach of the backlog B to its steady-state value.

The backlog B smoothly approaches its steady-state value with a time

constant of about one year, coming very close to its steady-state

value at year 4.5. In contrast, the backlog B in the system without

the active positive loop in Figure 4-12 already reaches its steady-

state value at year 1.3, overshoots, and is very close to equilibrium

at year 2.2.

Activating the positive loop has also eliminated the slight

oscillation present in Figure 4-12; in Figure 4-11, the backlog B

rises smoothly to its steady-state value, without overshoot. The

lack of overshoot is due to the delay in perceiving the delivery delay

DD. This can be seen by comparing the curves for delivery delay DD

and the perceived delay for backlog adjustment PDBA. At time 2.0, the
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actual delivery delay DD has peaked and is starting to decline. The

perceived delay for backlog adjustment PDBA, however, is still well

below the actual DD and still rising. Since PDBA is below its steady-

state value, the desired backlog for ordering DBO (which is proportional

to PDBA) is likewise below its steady-state value. Thus, even when

the backlog B is approaching its steady-state value, the desired

backlog for ordering DBO is still lower than both the backlog B and

its own steady-state value. DBO thus depresses the order rate OR,

and slows the rise of the backlog B. Were there little or no delay

in perceiving the delivery delay DD, the restraining effect of the

desired backlog for ordering DBO would disappear as backlog B approached

its steady-state value.*lO*

*10*If the time to perceive delay for backlog adjustment TPDBA is set at

0.5 years instead of the 1.5 years used in Figure 4-11, the resulting
behavior shows much less damping than either Figure 4-11 or Figure
4-12. The desired backlog for ordering DBO responds much more quickly
to the delivery delay DD, so that as the backlog B rises toward its
steady-state value, the retarding effect of the desired backlog for
ordering DBO diminishes as well. The backlog B is not restrained
in this case from overshooting its steady-state value.
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A Principle. The behavior change caused by adding a minor positive

loop with a delay in Figure 4-11 is in many ways symmetric with the

effect of adding a minor negative loop with a delay, whose effect is

shown in Figure 3-20. The negative loop decreased the response time,

and the positive loop increased the response time. The minor negative

loop with a delay destabilized the system, and the minor positive

loop with a delay stabilizes the system.*11* In both cases, adding the

loop formed another pathway through which disturbances in a level could

propagate back to the level. When the disturbance propagated around

the added negative loop, it moved the level more rapidly to and past

its steady-state value. When the additional disturbance propagated

around the positive loop, it retarded the movement of the level toward

its steady-state value, which resulted in a longer period and more

stable oscillation. Just as a detailed examination of phase and gain

in the backlog subsystem was performed with the minor negative loop

with a delay, so could the same type of examination be performed with

opposite signs for the minor positive loop. However, such an effort

seems redundant, given the strong symmetry between the two systems.

Instead, we can capitalize on this symmetry by stating a principle

symmetrical to that stated in Section 3.3:

*11*As in the principle on adding a minor negative loop with a delay,
"destabilize" here denotes having more oscillations occur before
essentially reaching equilibrium. Also "destabilize" is not
necessarily the same as "increase the time constant of the
exponential envelope," since the time constant of exponential
approach in Figure 4-11 is longer than the time constant of the
envelope of the "less stable" oscillations in Figure 4-12.
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Principle on adding a minor positive loop with a delay

If a minor positive loop with a delay is added around a

level already on an oscillatory loop, the added loop
forms another pathway through which disturbances in the
level can propagate back to the level. When the additional
disturbance returns to the level, it retards the move-
ment of the level toward its steady-state value, which
results in a longer period and more stable oscillations.

As usual, it is not clear that a general rule can be stated for how

short the delay in the added loop can be and still have a stabilizing,

rather than destabilizing effect. In this particular case, a delay

of less than 1.0 years causes the positive loop to destabilize the

oscillations. Section 6.3 discusses a method for possibly arriving at

general conclusions about the effect of the delay time on oscillations.

The principle here derives from a single example of a

minor positive loop with a delay, just as the principle in Section

3.3 derives from a single example of a minor negative loop with a

delay. However, because of the symmetry between the two examples,

they can be considered as both supporting and exemplifying both

principles.

As is true for most of the principles, the principle on

adding a minor positive loop with a delay finds uses both in model

refinement and policy design. During model refinement, a modeler may

be uneasy about adding an obviously realistic positive loop to a model,

even if the addition would probably make the period of oscillation

longer and more realistic, given the folklore that associates positive

loops with instability and divergent oscillations, The principle

indicates that the folklore is not generally true for minor positive
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loops with a delay. If the modeler wishes to stabilize a model's

oscillations and at the same time lengthen the response time, the modeler

can examine the real cause-and-effect relationships for positive loops

with delays in them. In policy design, the principle indicates that

if a minor positive loop with a delay is present in the system, the

system's oscillations may very well be stabilized by increasing the

gain of the positive loop, if at the same time the delay time is

choosen to give the appropriate phase lag.

Symmetrical Effect of Positive and Negative Loops. Given the dependence

of the arguments above on appeal to symmetry, this matter of

symmetry between positive and negative loops warrants further examination.

We can begin to put positive and negative loops into a uniform framework

by regarding the polarity of a loop as the result of its parameters

rather than regarding positive and negative loops as intrinsically

different from one another. Figure 4-13 illustrates for a simple first-

order loop. The rate R is equal to the level L times k, so that if k

is less than zero, the loop is a negative loop, and if k is larger than

zero the loop is a positive loop. Activating another negative loop

around the level L corresponds to -reducing the value of k. Activating

another positive loop around the level L corresponds to increasing'the

value of k.

Consider now the behavior changes that result from activating

positive or negative loops. These activations can be represented by

changes in the system's parameters. (Indeed, the actual mechanism by
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I

Figure 4-13.
SIMPLE FIRST-ORDER SYSTEM

which loops are activated in the employment-backlog model is changing

the parameters of the system.) We can consider the behavior of any

system as a function of its parameters, even though for complex systems

we may not be able to write down an explicit function that gives a

behavioral characteristic (such as damping, period, or time constant

of approach) as a function of its parameters. For example the

behavior of the first-order system in Figure 4-13 can be described

as a function of the parameter k as follows: if k is larger than zero,

the undriven system will diverge exponentially from its initial condition

with a time constant equal to 1/k. If k is less than zero, the undriven

system will converge exponentially toward zero with a time constant

equal to 1/k. If k is equal to zero, the level L will remain at its

initial value. Similar but more complex relationships can be obtained



between the parameters and the behavior of the spring-mass system, or

the employment-backlog system.

We can consider (in the abstract) any measurable behavioral

characteristic as a function of one of the system's parameters as shown in

Figure 4-14. This figure shows the relationship of a specific

behavioral characteristic of a system (such as damping time constant,

or period) as a function of a parameter value of the system such as k

in Figure 4-13, which controls whether a loop is inactive, positive,

or negative. The curve is smooth and locally monotonic. There are no

sharp discontinuities, or reversals of slope at any maxima or minima.

In practice, the behavioral characteristics of the majority of socio-

economic systems show this well-behaved dependence on parameter values.

For example in the employment-backlog system, Figure 3-2 indicates that

reducing the time to correct backlog TCB decreases the damping and the

period of oscillation. If damping and period are well-behaved functions

of TCB, one would expect them to increase when TCB does; Figure 4-16

shows that this is indeed the case.

Given that one can expect the behavioral characteristic in

Figure 4-14 to be a smooth, locally-monotonic function of the parameter,

let us return to positive and negative loops. Parameter values to the

left of the vertical bar in Figure 4-14 correspond to the activation

of a negative loop. Parameter values to the right of the vertical bar

correspond to the activation of a positive loop. If the behavioral
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Figure 4-14.
A BEHAVIORAL CHARACTERISTIC AS

A FUNCTION OF A PARAMETER

characteristic is a smooth function of the parameter value (as it is on

Figure 4-14), deactivating a negative loop has the same effect on the

behavior as activating a positive loop; both of these actions correspond

to increasing the parameter value. Similarly, deactivating a positive

loop has the same effect on the behavioral characteristic as activating

a negative loop; both of these actions correspond to decreasing the
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parameter value. Therefore, for systems whose behavioral characteristics

are (at leest locally) monotonic functions of the parameter values,

the effects of activating positive and negative loops will be

symmetrical.

The symmetrical effect of activating positive and negative

loops is borne out in examples given thus far.*12* Figure 3-20 shows that

in the employment-backlog system, a minor negative loop with a delay

around the backlog B decreases the damping and the period of oscillation;

Figure 4-11 indicates that a minor positive loop with a delay around

the backlog B increases the damping and the period of oscillation.

It is common for minor negative loops to increase damping; it is

common for minor positive loops to decrease damping.

To complete the symmetrical treatment of positive and negative

loops in this thesis, the principle on positive loops changing

response times can be restated for negative loops as follows:

Adding a negative loop around a level tends to diminish
whatever distrubance is present in the level, so that the
level moves more rapidly toward its steady-state value.
The system thus takes less time to complete a cycle in
an oscillation, or to smoothly approach a steady-state
value.

*12*The single most flagrant exception is, as usual, the undamped
second-order system exemplified by the spring-mass system.
Although adding minor negative and positive loops changes the
damping in opposite directions, adding a minor negative loop
and adding a minor positive loop both increase the period
(See Figures 2-3, 2-19 and 4-4).
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With one exception, the principle above is borne out by all of the

examples of adding a negative loop given in this thesis.*13* There

is a class of exceptions, however, just as with the principle on

positive loops: If the structure that is added to form a negative

loop contains enough levels to be able to produce a large phase

shift at a significant gain, the added structure could produce a

large enough phase shift that disturbances propagating through

the added structure arrive at a time when they cause the level that

was in the original system to move more slowly toward its steady-

state value, and not more rapidly as the principle states.

It should be noted that behavioral characteristics are not

always smooth functions of parameter values, especially for appre-

ciable changes in parameter values. Usually, a discontinuity

arises because a positive loop finally gains dominance over a

negative loop. For example, the pollution sector in the World Dynamics

*13*The one exception is the undamped spring-mass system, in which

adding a minor negative loop around the velocity V increased
the period, as shown in Figure 2-19. This system is problematic
in a number of areas. Either positive or negative minor

loops increase its period of oscillation. It is the most dommon

exception to the general rule that increasing a coupling time
constant increases the damping of an oscillation in a loop.
It is also the most common system for which the normal rules
for choosing DT break down.
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model shows a sharp discontinuity in its response to additional pol-

lution.*14* During the smooth growth phase of the World Dynamics

model, increases in the rate of pollution generation slightly

increase the steady-state value of pollution. However, a point is

reached where the presence of pollution inhibits the processing

and degradation of pollutants, so that the outflow rate of the

level of pollution is dramatically decreased. At that point, further

increases in the rate of pollution generation result in runaway

levels of pollution; there is no more quasi-steady-state. Another

example is Shaffer's model of the criminal justice system.*15* Small

perturbations in the crime rate do not significantly effect the

average crime rate until prisons approach their carrying capacity of

prisoners. At that point, prisoners begin to be released, and the

deterrent effect of imprisonment begins to be eroded, and increases in

the crime rate lead to further erosion of deterrence, which leads

to still more crime. Thus, when prisons are adequate, the crime

rate is stable, and when prisons are at or near capacity, the crime

rate increases exponentially. Numerous other examples could of

ccurse be found, but the lesson is clear: there are o0 occasion

*lh*Forrester, J.W., World Dynamics (Cambridge, Mass.: Wright-Allen
Press, 1971). The dynamics of a similar pollution sector are
analyzed in Goodman, M.R., Study Notes in System Dynamics
(Cambridge, Mass.: Wright-Allen Press, 1974).

*15*Shaffer, W.A., "Court Management and the Massachusetts Criminal
Justice System", Unpublished Ph.D. Dissertation (Cambridge, Mass.:
MIT, 1976).



sharp discontinuities in the system's response to parameter changes

or perturbations. While these exceptions to continuity form a class

of systems too large to ignore, it nonetheless remains true that for

the most part behavioral characteristics are continuous functions of

parameter values, and there is a symmetry between the activation of

positive and negative loops.
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4.3. USE OF PRINCIPLES WHEN THEY DON'T HOLD

The principles enunciated in this thesis seem to be true in

a large enough fraction of cases that they can be enunciated as

working rules. However, there are always exceptions. In such

cases, the principles are in fact still useful, as principles

lead one to form expectations which when broken facilitate one

in detecting something out of the ordinary. To make this point

clear, this section describes two instances that occurred in the

process of writing Sections 4.1 and 4.2.

An Example: Time to Average Output TAO. In the basic employment-

backlog model in Figure 2-12, the desired output DOUT and the desired

backlog DB are both based upon a measure of expected level of

activity of the firm, the expected average output EAO. This

variable has been held constant thus far. EAO is formulated as a

first-order exponential smoothing of the actual rate of output OUT,

as shown in Figure 4-15. The expected average output EAO closes

a positive loop. An increase in EAO increases the desired output

DOUT, the desired employment DE, the employment E and thus, the

rate of output OUT. Increases in OUT cause a further increase in

EAO. The open-loop, steady-state gain of this loop is 1.0; it is

a unity-gain loop.
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Before giving an equation for the expected average output

EAO, it will be helpful to review the two equations in which EAG

is used. The first is desired output DOUT, in which the expected

average output EAO is used as the baseline around which the

correction for backlog CB varies the desired output DOUT.

DOUT.K=EAO.K+CB.K 4,A
DOUT - DESIRED OUTPUT (UNITS/YEAR)
EAO - EXPECTED AVERAGE OUTPUT

CB (UNITS/YEAR)
- CORRECTION FOR BACKLOG

(UNITS/YEAR)

The other use of the iexpected average output EAG is to

determine the desired backlog DB of the firm. DB is computed in

terms of the coverage (the desired backlog coverage DBC) of some

expected rate of activity, the expected average output EAO.

DB.K=EAO.K*DBC 6,A
DBC=.5

DB - DESIRED BACKLOG (UNITS)
EAG - EXPECTED AVERAGE OUTPUT

(UNITS/YEAR)

DBC - DESIRED BACKLOG COVERAGE
(YEARS)

The expected average output EAG is defined as a simple

first-order smoothing equation. The time to average output TAO

has been set in the basic model at a very large value, so that EAG

remains constant. In simulations where the expected average output

EAG is to vary, TAO is set at 0.5 years.
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EAO.KKEAO.J+(DT/TAO)(OUT.JK-EAO.J) 19.,L

EAO=DOR 19.l,N

TAO=lEll 19.2,C

FAQ - EXPECTED AVERAGE OUTPUT (UNITS/YEAR)
TAO - TIME TO AVERAGE OUTPUT (YEARS)
OUT - OUTPUT (UNITS/YEAR)
DOR - DESIRED ORDER RATE (UNITS/YEAR)

Since allowing the expected average output EAO to vary would

activate a positive loop, I expected that activating EAQ by setting

the time to average output TAO at 0.5 years would increase the

period of oscillation. In fact, no value of TAO produced any percep-

tible effect on the oscillation. After obtaining those results,

another look at the flow diagram indicated the causes: increases in

expected average output EA0 also increased the desired backlog DB,

which cause decreases in the correction for backlog CB. In other

words, when the level of activity is expected to be large, the

present backlog becomes less adequate, so that the management would

want to slow down production to maintain the backlog. This effect

on the desired backlog DB is of the opposite sign from the effect

on the desired output DOUT. Thus, EAQ also closes a negative loop

that goes through the desired backlog DB. Which is more influential,

the positive loop through FAQ or the negative loop through EAO?

We can compute the net effect of variations in the expected

average output EAO on the desired output DOUT, substituting the

model equations,
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DOUT = EAO+CB

= EAO+(B-DB)/TCB

= EAO+B/TCB-EAO*DBC/TCB

= B/TCB+EAO(1-DBC/TCB)

= B/0.5+EAO(1-0.5/0.5)

= 2B

In other words, because the time to correct backlog TCB was chosen

exactly equal to the desired backlog coverage DBC, the expected

average output EAO has exactly no effect on the desired output DOUT.

Without the principle on the effect of positive loops on

response time, I probably would have done one simulation with the

time to average output TAO set at 0.5 years, seen very little effect,

concluded that the system was insensitive to TAO, and gone on to

some other topic. As it happened, the principle led me to expect

the period to lengthen, and when it did not, I knew something out

of the ordinary had happened. In this case, it was the existence of

an additional negative loop going through expected average output

EAO, and the happenstance choice of parameters that caused EA0 to have

no effect on the system behavior. Given the time pressures that

normally accompany research, this peculiarity would almost certainly

have gone unnoticed without the principle.
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Another Example: Changing TCB and TAO. After having deduced that

for the original parameters of the employment-backlog system, the

expected average output EAO would have no effect on system behavior,

I increased the time to correct backlog TCB in order to further

experiment with the effects of the positive loop involving EAO.

Figure 4-16 shows the behavior that results from increasing the

time to correct backlog TCB from 0.5 to 1.5. This value renders

the loop closed by EAQ positive, even when the effect of desired

backlog DB is considered.*16* The effect of increasing '2CB in

Figure 4-16 (in which EAO is not activated) is as expected: the

damping and the response time are increased. (This effect is

symmetrical with the results shown in Figure 3-2, in which decreasing

TCB decreased the damping and response time.) Although one can

not be sure from the figure whether or not the system is in fact

oscillating, the response time can be judged by the time the

backlog B'requires to return to its steady-state value of 660

units, about 4.8 years.

The principle enunciated in Section 4.1 indicates that

activating a positive loop (such as that going through the expected

average rutput EAO) increases the response time of the system

Figure 4-17 shows the effect of setting the time to average output TAO

*16*The equations above indicate that if TCB exceeds the desired back-
log coverage DBC, the partial derivative of DOUT with respect
to EAQ is positive, and the loop closed by EAO is positive. If,
on the other hand, DBC exceeds TCB, the partial derivative is
negative, as is the loop.



D
B
O
=
D
p
D
=
B
C
B
O
=
C
P
C
B
=
I
E
=
E
D
E
=
J
O
U
T
=
O
O
R
=
R
D
O
U
T
=
P
E
A
0
m
V

59
0.

-6
0

.
4
0
.

11
00

.
.
0
-

2.
-

4
.
-

H 1-3C
) H W

 P
.

S
H

-

0 bd
 

H (D

C)W

c 
\

C
) Li
i

F2
i

'10 0 t- 0 bd
l

61
0o
. 

6
3
0
.
 

6
5
0
.

-
4
0
.
 

-
2
0
.
 

.
0

4
3
. 

4
6

. 
4
9
.

12
00

. 
1
3
0
0
.
 

1
4
0
0
.

-
-
J
-
-
-
 -

-
-
R
-
 -

-
--

C
- 

-

P
.
E
 

R
 

0 
c 

D
E

P
 

R 
0 

c 
D

I 
.

E 
p

 
.
0
 

c 
D

I 
* 
.
0
R
 

C
 

1D
J
1
.E

 
P

 
0
 

R
 

C
 

D
JE

 
I 

P
O

. 
R

 
C
 

D
I 

P
O

. 
R 

C
 

D
E 

I 
.

R
 

C
 

D
-

-
-

-
-

-
E

J-
- 

-
0
-
 
-
R
-
-
 

-
-
C
-
 
-

-D-
E

J 
R
 

C
 

D
E

J 
OP

 
C
 

1D
E

J
 

0
P
 

I 
C
 

D
.E

J
 

OP
 R

 
I 

C
 

1D
.

E
J
 

OP
 R

 
I 

C
 

D
.
E
J
 

.
D
P
R
 

I
 

D
.

E
J
 

.
0
P
R
 

I
 

D
E

J 
*0

PR
 

I 
C
 

D
E

J 
OR

 
I 

C
 

D
-

-
-

-
-

-
-
E
J
-
-
-
-
 

OR
- 

-
1-

-C
- 

_
D
-
_

.
E 

.O
R

 
IC

 
D

E 
.

OR
 

I
C

E
*
 

.
OR

 
C

.
E 

.
OR

 
c

.
E 

.
OR

 
c

.
E 

.
OR

 
C
i
g
 

D 
E

E 
.

0
 

C
0
1
3

.
E 

.
0 

D 
i

.
E 

.
0 

c 
D

-
E
 

-
-
-

-
-
-

-
-
-

-
-

-C
- 
-
-
D
 

0
E 

.
0
 

C
 

D1
.

E
.O

--
- 

c-
D

.
E 

.
0O

c 
D 

i
.

E 
.

0O
c 

D 
I

.
E 

.
0 

c 
D 

I
.

E 
.

0O
c 

D 
r

.
E 

.
0 

c 
D

.
E 

.
0 

c 
D

.
E 

.
0 

c 
D

-
--

 
--

 
E

- 
-

-
-

-
-

-
-

-
C
-
-
 

-
D

.
E 

0 
O

c 
D

.
E 

# 
0 

c 
D

.
E 

.0
 

c 
D

.
E 

.
0 

c 
D

.
E 

.0
O

c 
D

.
E 

.
0 

C
 

D 
s

.
E 

.
0 

c 
D

.
E 

.
0 

c 
D

.
E 

.
0 

c 
D

-
-

--
 

-
E
 -

-
-

-
-

-
-0

--
 

-
C
 -

-
-

-D

6
7

0
. 

DB
2
0
.
 

C
I

52
. 

EJ
15

00
. 

O
R
P
V

-
-
0
 
D
B
v
C
I
u
R
P
V

.
I
P
u
R
V

B
Jr

R
V

R
V

.
I
J
P
O
R
V

I
J
r
R
V

.
R
V

R
V

.
B

E
R

V
E

J 
O
P
P
R
V

-
-

-
OP

vR
V

.
I
O
u
R
V

R
V IR

V
.
R
V

R
V

.
R
V RV RV

.
OP

vR
V

-
O

P.
R

V
E

JO
P

uR
V

E
J
v
O
P
R
V

D
B

P
C

IP
E

JP
R

P
V

3D
B

C
IE

Jv
R

P
V

D
B

C
IE

JP
R

P
V

C
I
E
J
.
R
P
V

C
IE

J
O

R
P

V
C
I
E
J
v
O
R
P
V

C
I
E
J
P
O
R
P
V

-
-

-
C

IE
JP

O
R

P
V

C
Iu

E
JP

O
R

P
V

C
I.E

JP
O

R
P

V
.

C
IE

JP
O

R
P

V
.

C
IE

J
O

R
P

V
.

C
Iw

E
JP

O
R

P
V

C
IE

JP
O

R
P

V
C
I
u
E
J
O
R
P
V

C
IE

J
O

R
P

V
.

C
Iv

E
JY

O
R

P
V

-
-

-
C

I.E
JP

O
R

P
V

.
C

IP
E

J.
O

R
P

V
.

C
IE

J
D

R
P

V
C

IP
E

JP
O

R
P

V
C
I
E
J
F
O
R
P
V

.
C
I
E
J
P
O
R
P
V

.
C

Iv
E

Jr
D

R
P

V
C

IP
E

JD
R

P
V

C
IE

J
D

R
P

V
C

IP
E

Jr
D

R
P

V
-

-
-

C
IE

JP
D

R
P

V

6
.-

8
.-

\
)

\J
1

1
0

.-



-255-

(the smoothing time constant for EAO) at 0.5. As in the previous

simulation, the time to correct backlog TCB has been increased from

0.5 to 1.5. Activation of the positive loop has caused the

resumption of perceptible oscillations. Such a decrease in damping,

however, is not inconsistent with the indications of the principle.

However, the time taken for the backlog B to reach its steady-state

value of 660 units for the first time has decreased substantially,

from 4.8 years in the previous simulation to about 3.5 years. This

shortening of the response time is exactly the opposite of what the

principle in Section 4.1 would predict.

On further considering the behavior shown in Figure 4-17,

the possibility arose that the level of expected average output EAO

might be involved in a new behavior mode, as opposed to merely

modifying the employment-backlog oscillations. This hypothesis

is borne out in the simulation shown in Figure 4-18. In this

simulation, the time to correct backlog TCB is again set at 1.5,

the time to average output TAO is again set at 0.5, and, in addition,

the time to correct employment TCE is set at 0.1. In other words,

the time to correct employment TCE has been set so small that for

all practical purposes, the employment E equals the desired employ-

ment DE, and the original employment-backlog system is an effectively-

first-order system. In Figure 3-1, a similar reduction of TCE

totally eliminated oscillation in the employment-backlog system.
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However, in Figure 4-18, oscillation still results, from propagating

the disturbance around the loop containing the backlog B and the

expected average output EAO. The dominant oscillatory mode of

behavior has changed.*17*

In Figure 4-18, the initially-high employment E causes

the rate of output OUT to exceed the order rate OR, which causes

decline in backlog B, desired output DOUT, desired employment DE,

employment E, the rate of output OUT, and the expected average

output EAO. At time 1.2, EAO has declined back to its steady-state

value. However, at time 1.2 EAO is declining because the current

rate of output OUT is below its steady-state value (which occurs

because the backlog B, the desired output DOUT, and hence the

rapidly-responding employment E are below their respective equi-

librium values). In short, at time 1.2, EAO is at its steady-state

value and B is disturbed below its steady-state value.

When the rate of output OUT is below its steady-state equality

with the order rate OR, the backlog B rises. At time 1.5, B has

*lT*One of the areas described in Chapter 6 as open for further
investigation is the characterization of situations in which
parametric or structural changes evoke a new behavior mode
instead of merely modifying the original behavior mode. One
form of evoking a new behavior mode occurs in Figures 4-17
and 4-18, where a new dominant oscillatory loop seems to have
shifted because the original employment-backlog loop is highly
damped and is no longer an efficient propagator of disturbances;
the backlog-expected average output loop is more efficient at
propagating disturbances, so the oscillations that emerge result
from propagation through the latter loop.
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risen to its steady-state value. The expected average output EAO,

however, has dropped away from its steady-state value, following

the (lower-than-steady-state) rate of output OUT. Thus, in going

from time 1.2 to time 1.6, a disturbance in B has propagated into

a disturbance in EAO. Oscillations continue after time 1.6 with

the disturbance propagating back and forth from B to EAO.

Figure 4-18, then, implies that the dominant oscillatory loop in

Figure 4-17 no longer the original employment-backlog loop,

but a new loop.

As in the previous example, a principle set up expectations

about system behavior. When the actual behavior violated those

expectations, the need for additional analysis was made very clear.

Again as in the previcus exzmple, it seems unlikely that this

property of the system could have been discovered without the principle.
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CHAPTER FIVE:

SEPARATE SYSTEMS WITH A COMMON RANDOM INPUT

Sections 3.3 and 4.2 began to address some aspects of the

general phenomenon of entrainment, where fluctuations in two or more

oscillatory systems are drawn into a regular relationship with one

another. In those sections, entrainment occurred as a result of

both systems reacting to, or attempting to control, the same level.

Chapter 5 analyzes another means by which entrainment occurs: two

similar but completely separate systems can be subjected to the same

random influences, so that to some extent, the behavior of the simi-

lar systems is also similar. One instance of such a configuration

occurs when a real system and a model of that real system are both

subjected to a known exogenous disturbance. Under what circumstances

should the model behavior be expected to track real behavior, and what

can be inferred from differences between the two? The principle devel-

oped in Chapter 5 begins to answer such questions.
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5.1 A HEURISTIC DEVELOPMENT OF THE PRINCIPLE

The Configuration and its Significance, Figure 5-1 shows the con-

figuration being considered in this chapter. The similar, but not

necessarily identical, dynamic systems are driven by the same random

input. The systems have no causal connection with one another. In

broad terms, the question this chapter seeks to answer is "Given

that both systems oscillate, what is the relationship between the

two oscillatory outputs?"

The question above occurs in several different contexts.

This material was originally developed in the context of analyzing

the question of why the multitudinous sectors of the economy seem

to move roughly in unison in an aggregate three- to seven-year business

cycle.*l* One means by which the various productive sectors of the

economy might be driven to behave in unison is by being subjected,

each and every one of the sectors, to the same exogenous influences.

Changes in tax laws, changes in expectations about economic growth,

wars, presidential elections, weather, and rapid oil price changes

all have an impact on most productive sectors. The question quite

naturally arises, "Can such random exogenous influences account for

the unanimity with which productive sectors exhibit business cycles?"

*l*Section 1.3 describes this aspect of the System Dynamics National
Model development in more detail.
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Another context within which questions arise about the

relationships of the outputs of two separate systems with a common

input occurs is in testing models against time-series data. For

example, system one could be the actual system that determines hog

prices in the U.S., which is influenced by the price of corn. (Corn

is the principal food for hogs, and buying or growing corn is the

principal cost of raising hogs.) System two could be a model of

the U.S. hog price system, again subject to the known fluctuations

in corn prices. In one study of U.S. hog prices, the outputs of the

Cowmwmon

iosPdo

Figure 5-1.
SEPARATE SIMILAR SYSTEMS WITH A COMMON RANDOM INPUT

* oupI



two systems (real hog prices and simulated hog prices) seemed to

accord very well with one another; Figure 5-2 illustrates.*2*
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(After Naill, et.al,)

*2*R.F.Naill, N.J. Mass, M.K. Simpson, and J. Randers, "Dynamic
Modeling as a Tool for Managerial Planning: A Case Study of
the U.S. Hog Industry," Proceedings of the Summer Computer
Simulation Confererce, Montreal, 1973.
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Under what conditions should we expect a valid model of a system such

as the hog price system to closely track the behavior of the real

system? And, if the tracking is not exact, how would we interpret,

say, a consistent phase difference between the simulated and the real

outputs? To answer such questions, let us begin with a concrete

example.

An Example in the Employment-Backlog System. Figure 5-3 shows the

step response of two similar but not identical employment-backlog

systems.*3* One system has the same parameters that have been used

all along, which resulted in the initial condition response shown in

Figure 2-14. The other system is identical to the first, except that

the time to correct backlog TCB is raised from 0.5 to 1.0. Increasing

TCB from 0.5 to 1.0 apparently does not much effect the damping time

constant, although the period of oscillation is substantially increased.

The original system, the faster system, requires about 1.8 years to

traverse from the first trough to the first peak. The system with the

larger TCB, the slower system, requires 3.0 years, implying that increas-

*3*Technically, the two trajectories were not generated simultaneously.

Two successive simulations of the same employment-backlog system
with two sets of parameters generated the two trajectories. Both
trajectories, however, result from exactly the same sequence of
pseudo-random inputs.
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ing TCB has increased the natural period from about 3.6 years to about

6.0 years.*4*

Figure 5-4 shows the response of the two employment-backlog

systems subjected to exactly the seme random variations in the desired

order rate DOR, which (because no extr& loops are activated) equals

the actual order rate OR. The random input to the desired order rate

DOR is generated by a macro that produces first-order autocorrelated

noise.*5* The standard deviation is set to zero in the basic model.

In Figure 5-3, the standard deviation of noise SDN is set at 10 percent

of the mean; the exponential smoothing that generates the first-order

autocorrelation has a time constant (the time to correlate noise TCN)

of 0.7 years.

DOR.K=1320*PKNS(1,SDN,TCN) 13, A
SDN=O 13.1, C
TCN=.7 13.2, C

DOR - DESIRED ORDER RATE (UNITS/YEAR)
PKNS - COLORED (PINK) NOISE FUNCTION
SDN - STAJ2DARD DEVIATION OF NOISE (DIMENSIONLESS)
TCN - TIME TO CORRELATE NOISE (YEARS)

*4*The measurement of natural period here is only approximate; in
general, the maxima and minima are not exactly one-half of the
natural period apart, due to transients and the "tilt" of the
peaks due to damping. A correct method of assessing the natural
period is finding the frequency at which a sinusoidal input pro-
duces the maximum steady-state response. However, the approxi-
mation used here suffices to indicate that the natural periods
indeed differ significantly from one another, irrespective of
their exact values.

*5*The macro definition for PKNS appears in the program listing in
Appendix F. A discussion of the mathematical properties of this
macro are given in KR. Britting "DYNAMO Noise Generator," Sys-
tem Dynamics Group Working Paper D-2261, Alfred P. Sloan School
of Management (Cambridge, Mass.: MIT, 1975).
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Both systems start out in equilibrium, but fairly rapidly begin to

show somewhat regular fluctuation. The trajectories of the two

systems for both employment E and backlog B seem to move basically

together. The major difference between the behavior of the two sys-

tems is that the basic model (the more rapidly-responding model) often

both rises and falls first, prior to increases and declines in the

variables of the slower system. For example, the employment E of the

basic model peaks at year 4.0 and begins to decline. The slower system

reaches its maximum at year 4.4 or 0.4 years later. The employment

E of both systems thereafter declines, with the employment of the fast-

er system lower at any given point during the decline than the employ-

ment E of the slower system. Later around year 8, the faster system

again begins to reverse its direction (albeit somewhat erratically),

while the slower-responding system reaches its extreme later. Similar

differences occur later, as well as between the backlogs B of the two

systems.
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A Heuristic Analysis. The basic behavior of Figure 5-4 seems to be

that the two systems fluctuate in parallel, with their differences

in natural period manifesting themselves as phase differences. Term

this behavior probabalistic entrainment, to distinguish it from the

types of entrainment that can result from causal connections between

the two systems. One way of rendering probabalistic entrainment more

plausible is to consider the noise input as a series of impulse dis-

turbances. Figure 5-3 shows the responses of the two systems to one

such impulse disturbance (in this case, a disturbance in the employ-

ment E; disturbances to the backlog B have the same properties).

The largest deviation from steady-state values occurs between time 0.0

and time 1.8, during which both the slower system and the faster sys-

tem are below their steady-state values. They are basically in phase,

although the faster system does reach its trough before the slower

system does. Because the natural periods of the two systems are diff-

erent, the oscillations slowly become out of phase with one another

However, because damping occurs as the two systems drift out of phase,

the magnitude of the out-of-phase oscillation between years 3.2 and

4.5 is quite small. Thus, if the two systems were subjected to a ser-

ies of such impulses, one would expect the resulting behavior to be

dominated by the larger in-phase portion of the response, rather than

the relatively much smaller out-of-phase portion of the response.*6*

*6*The heuristic description above is the verbal equivalent of performing

a convolution integral, which computes exactly the contribution of each

portion of the impulse response to the behavior.
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Furthermore, because the faster system moves toward and achieves its

maxima and minima more rapidly than the slower system, one would ex-

pect some of the discrepancies in the trajectories of the two sys-

tems to manifest themselves as phase differences, exactly as happened

in Figure 5-4k

A moderate amount of damping seems essential in producing the

behavior described above. In the extreme case of no damping, where

both systems maintain the same amplitude of oscillation forever, each at

its own natural period, the trajectories of the two systems will move

in and out of phase with one another, in a "beat" pattern. Even in

cases of very light damping, the step responses of the two systems would

show nearly as much magnitude in the out-of-phase portion of the response

as the in-phase portion of the response, so that the sum of such re-

sponses still would not show a strong regular relationship. In contrast,

consider a very heavily-damped pair of systems, where both responses will

follow the profile of the common input -- sluggish systems will go wherev-

er the input moves them, and recover through exponential decay. The

resulting behavior will reflect the time-shape of the input much more

than the internal dynamics of the two systems. The trajectories will

therefore be very similar to one another.

Can one say anything more quantitative about the circumstances

under which the two systems will exhibit probabilistic entrainment?

From the description above, we can infer that two systems will show

such entrainment when their oscillations damp out before the oscillations
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become out of phase with one another. The time it takes for two

inphase sinusoids to become out-of-phase is inversely proportional to

the difference between the two natural periods.*7* Thus, systems

whose natural periods are close to one another will take a relatively

long time to get out-of-phase. Even very lightly-damped systems can

show probabilistic entrainment if their periods are close enough

together that the time it takes to get out of phase is still longer than

the damping time constants. The more damped the systems are, the

further apart their natural periods can be and still show probabilistic

entrainment.

A Principle. The essence of the heuristics above can be embodied in

the following principle (the principle is called preliminary because

a more precise formulation of the principle is given in Section 5.2):

*7*Consider the number of half-cycles N it takes for a faster system

(with period Pl) to get out-of-phase with a slower system (with
period P2), if they start in phase. That event takes time N (Pl/2)
to occur. Over the same time period, the slower system goes through
N-1 half cycles, which takes time (N-1)(P2/2). Since the time taken
to get out of phase is the same for both systems, we can get N(Pl/2)
= (N-1) (P2/2), which implies that N = P2/(Pl-P2). The time taken to
get out-of-phase is N*Pl = Pl*P2/(Pl-P2). If Pl=P2, the time is
quite properly infinite: they never get out of phase.
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Prelimintry principle on two similar systems subject to a common random

input

Two similar systems can show significantly-similar
time-profiles of response to a common random input

when the time it takes the two oscillatory impulse

responses to get out of phase is significantly

longer than the damping time constants of the two systems.

In such cases, the initial portion of the response of the

two systems to each random impulse will dominate their

behavior, since the latter portions are diminished by

damping. In the initial portion of the impulse response,

the two systems oscillate fundamentally in-phas3, but with

the system with the faster response time (usually implying a

shorter period) peaking and troughing ahead of the slower

system. Thus, differences in period manifest themselves

as phase differences rather than as a "beat" phenomenon.

The principle above implies a rule of thumb for time-series

testing. Suppose that a model of some system is moderately-damped

(damping time constants approximately equal in magnitude to the period

of oscillation), and the real system is also moderately damped as it

should be if the model is realistic. In such cases, if the behavior

of the real system is driven by a known exogenous influence, then the

model, when subjected to that same known exogenous influence, should show

behavior similar to the real system's output. Regular phase-lag or phase-

lead relationships between the real output and model output can result

from a difference in natural period between the two. Of course, if

some other type of discrepancy occurs (unrealistic magnitude of

response, occasional large deviations, and so on), the modeler must look

elsewhere to explain the discrepancies.



Other Examples: Menstruation and Squirrels. Probabilistic entrainment

can explain two otherwise inexplicable biological phenomena. One

phenomenon is that women who live together for long periods of time

tend to menstruate together. It is well known that women menstruate with

a period that averages 28 days. The period, however, is not inviolable:

many events are capable of influencing, however slightly, the progress

of the menstural cycle, including diet, emotional upsets, and

especially light and dark cycles. Thus, when a number of women that

live together for a long period of time and subject themselves to the same

exogenous influences of diet, emotional climate, and light and dark

cycles, we would expect the hormonal oscillations to become entrained.

The second inexplicable phenomenon is that squirrels hibernate

every winter, but will hibernate once a year anyway if cut off from

all environmental stimuli. In other words, a squirrel kept in a cage

with constant light and dark cycles and constant temperature (and even

constant electronic and magnetic influences) will continue to hibernate

once a year. Given the existence of an internal oscillator with a

period of one year, how is it that all wild squirrels hibernate only during

the winter? One tenable hypothesis based on the existence of probabilistic

entrainment, is that environmental stimuli have some impact on the one-

year oscillations, so that if a squirrel's internal timing mechanism

should ever begin to deviaie from producing hibernation each winter,

environmental conditions (relative balance of light and dark, average

temperature, or other influences) would tend to straighten out the cycle.

Most long-distance air travelers have noticed a phenomenon
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similar to the entrainment of squirrels' hibernation. Humans, like

squirrels, have a natural cycle of sleeping, which for us lasts any-

where from 23 to 26 hours per cycle. But environmental and social

stimuli suffice to keep the vast majority of the human population

together on a 24-hour schedule. When, however, someone travels and

changes time zones, the traveler's internal cycle is at odds with the

light-dark cycle and the eating cycle. The traveler experiences "jet

lag" for around three days while his or her internal cycle readjusts

to those in the new environment, and his or her daily schedule becomes

much like everyone else's in that time zone.

Admittedly, the random in-puts to squirrels and travellers

are not pure white processes; they contain predominant periods of one

year and one day, respectively. Still, the principle on similar

systems with a common random input helps one explain these phenomenon.

Section 6.3 discusses two similar systems subject to a common

sinusoidal input as a topic for future investigation.
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5.2 MATHEMATICAL DEVELOPMENT OF THE PRINCIPLE

The simulation in the previous sections suggests a definite

pattern of common response to a common random input. Differences in

period between the two similar systems reveal themselves as an appar-

ent phase difference between their oscillation. Two heuristic justifi-

cations for this behavior were given in the previous section; these

qualitative concepts indicate that some probabilistic entrainment

should occur, but give only sketchy indications of the extent to which

it occurs under various conditions. The qualitative concepts provide

one type of certainty about the behavior of the combined system; they

assert that probabilistic entrainment should occur to some extent in one

large class of oscillatory systems. A different type of certainty about

the behavior of the two systems can be obtained from the mathematical

analysis below, which provides an exact quantitative description of the

behavior of a very limited class of systems. In the case of probabilistic

entrainment, a mathematical analysis is clearly complementary (rather

than redundant) to the more conceptual simulation analysis given in the

previous section. Readers not interested in a mathematical development

may skip this section entirely, or use the table of contents to locate

specific subsections of interest.

Mathematical Approach. Entrainment can be very broadly defined as the

presence of a regular and strong relationship between conditions in one

sector and the corresponding conditions in another sector. For example,
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sectors entrained in an aggregate business cycle might consistently

show peaks in production around the same time, with only small phase

differences among them. One way of describing such relationships is

to ask, given conditions in one sector, what are conditions in the

other sector likely to be? For entrained sectors, if one sector is peak-

ing, other sectors are likely to have peaked or be about to peak.

The mathematical analysis which follows does no more than give

a quantitative answer to the question "given conditions in one sector,

what are the conditions in the other?" Of course, because the inputs to

both sectors are random, the relationship between the two sectors can

only be characterized probabilistically: given conditions in one sec-

tor, what are the conditions in the other sector most likely to be, and

with what certainty can that be stated? In mathematical terms, this

question is equivalent to asking for the conditional probability density

function for the state of one system, given the state of the other. The

following analysis derives that function.

General Linear Case. We begin by analyzing the equations of motion for

two general time-invariant linear systems (which also approximates a

pair of time-invariant nonlinear systems oscillating close to an equi-

librium). The equations will then be applied to a specific pair of sec-

ond-order oscillators, to derive a general expression characterizing the

probabilistic entrainment as a function of the system parameters. Fin-

ally, the expression will be evaluated numerically to delineate the para-
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ieter values for which the systems show probabilistic entrainment.

The equations for the two general linear systems can be com-

bined into one composite equation, so that the dyanmics of both systems

can be described in a single set of equations. If the individual sector

equations are

x Fx +G v(t)
-"1 -1-1 *-1

x Fx +G v(t) G sG2 22 -2 -l -

then the composite system is

(t) F 0 x G
-1. 1 .- -1 + ~1VWt

S 0 F x G

The input gain matrices Gl and G2 are equal, so that the systems can

respond in the same manner to their common input. To simplify the

notation, let the composite matrices be denoted

X1 F 0 G

= x, (! J = Fand(J =G

LX2, 0 F G
t- - 2 L.72)

Assume that v(t) is a scalar-gaussian white noise signal, with a covar-

iance factor q. It can be shown that the response to v(t) is also gau-

ssian, with zero mean, and with covariance defined as

(t =E(xt)-E x) ( xt)-E (x )'
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The covariance changes through time according to this differential

equation.*8*

d r(t) = FP(t) + r(t)F' + GqG_'

If F, G, and q are known, the equation above specifies the steady-state

covariance by setting

r(t) = 0

and solving the resulting linear equations for the elements of gamma.

The mean and the covariance completely specify the gaussian probability

density function, which takes the form

p(x) - (( 2 7 r)kI -1/2-1/2 J(x)

where k is the dimension of the state vector x, the vertical bars denote

the determinant (of the steady-state covariance matrix), and

J(x) = (x - m)'r~'(x - m)

*8*F.C. Schweppe, Uncertain Dynamic Systems, Prentice-Hall, Englewood
Cliffs, N.J., 1973, p.60.
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Since the equations specifying the system dynamics have no constant terms,

and if the initial conditions are zero, then the system's behavior is

zero mean, so m equals zero. J(x) is therefore completely characterized

by gamma, which can be expressed in terms of the two subsystems that

define xl and x2

r r, 12"

(2i P22

Then

J(x) = (x' x' E2L.

- -2 1 22

To begin to derive an expression for the conditional probability

density of xl and x2, first consider the defining equation for the con-

ditional probability density.

P(21XI). P (Xi?5)

As indicated above, the joint probability density of xl and x2 is gau-

ssian, so whatever the specific value of p(xl), the conditional probab-

ility density will always depend on x2 as follows:

P(I211)- constant * el/2 J(Xd 1 x3 )
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Through tedious matrix manipulations, it can be shown that

P(321) ) constant * e -1/2(!2)

where

r=r -T T'
- 22 -- 11-

T-r' r-Mr r 1
=-2- 221:4

Tn

These equations have several interesting features. The state

of the first system, x1, completely summarizes the available knowledge

about the state of the composite system. The most likely state of the

second system, x2-tilde, is therefore a function of xl. However, the cer-

tainty with which the state of the second system can be known, gamma-

tilde, is independent of the specific state of the first system. The

expression for gamma-tilde contains only the difference between two posi-

tive semi-definite matrices. The first matrix, gamma22, represents the

unconditional covariance of the state of the second system, so the se-

cond term represents the decrease in uncertainty due to information about

the state of the first system. Because of the negative sign, that in-

formation can only decrease the uncertainty, which is proper.
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The equations give the correct results for the case in which

the first system is exactly identical to the second system. Since

the corresponding state variables in the two systems would be exactly

equal, covariances between corresponding pairs of state variables should

also be exactly equal. Therefore, all four submatrices of the uncondi-

tional covariance matrix gamma will be exactly equal. The product of

any one submatrix and the inverse of any other submatrix will be the

identity matrix. Thus, the state transformation matrix T equals the i-

dentity matrix, which gives x2-tilde equal to xl. The equations correc-

tly indicate that the states of identical systems will indeed be identi-

cal. Moreover, the error covariance by which the estimated (conditional)

state of the second system may be known, gamma-tilde, equals a zero

matrix for identical systems.

The equations also give the correct results if both systems

are undamped: T goes to the zero matrix, and at least the diagonal ele-

ments of gamma-tilde go to infinity. If both systems are oscillating

(each with a different period), then there is no information about the

state of the second system in the state of the first: they could be in

phase, or they could be out of phase.

Equations for a Simple System. The equations given above cannot indi-

cate the quantitative extent of probabilistic entrainment without spe-

cific values for the system structure and parameters. This subsection
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uses two specific oscillatory systems to generate the conditional

probability density function of the state of one system, given the

state of the other. It is possible to perform such calculations for

the employment-backlog system, but it seems more insightful to use

even simpler systems, with a minimal number of parameters, and that

equilibrate at zero.

Figure 5-5 shows the structures of two such systems. The

parameters c and d control the damping, and the parameters a and b

control the period (along to some extend with c and d).

As indicated earlier, the steady-state unconditional covar-

iance gamma can be obtained by solving a set of linear equations result-

ing from setting the derivative of gamma to zero:

A = =Fr + GG'
dtr=-
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For the pair of systems shown in Figure 5-5, that calculation results

in the following submatrices of gamma:

a

a - q/2ac

8 - -q/2a

y - q(c 2 - a)/2ac

r2- r; -( tJ'22 21 p VI

6 - q(c + d)/k

S- -q(b a + cd + d 2 )/k

p - q(b - a - cd -c2)/k

v = q(c 2 d - ac + cd 2 -bd)/k

k - (ad + bc)(C + d) - (a - b)2

Tj a
r 22 (73

i - q/2bd

a - -q/2b
X q(d 2 - b)/2bd
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This completes the derivation of the conditional probability density

function for the second system given the state of the first system.

Consider now the original qualitative hypothesis, that for moderately-

damped systems, differences in natural period manifest themselves in

apparent phase differences between the two systems. Do the equations

bear out the hypothesis? The state transformation matrix T can be

expressed in terms of the system parameters as follows:

Tr, r' rA
- 12-1 1

, : p qc+d b-a-cd-c 2

212 1 k
VI k-b+a-cd-d c d-ac+cd 2 -bdj

2-a
- 2 2acd

2
1

- -"""4)

-d (b-a)+a( )bc+ -b(l+.d)
C C C

If the transformation represented by T truly induced only a phase shift,

the angle between xl and x2-tilde would be constant, as illustrated

in Figure 5-6. It is quite easy to compute the tangent of the angle

9 for two specific values of xl, the unit vectors el and e2:
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By inspection, the tangents of 01 and 62 are not equal. However, when

the systems are identical

8 =e6 =6d
1 2

and, because both angles are continuous functions of the system para-

meters, the angles will be nearly equal when the system parameters

are nearly equal. Only numerical calculations can indicate the extent

to which the state transformation matrix T induces an approximate phase

shift effect.

Numerical Results for the Simple System. Before considering the quan-

titative extent of the phase relationship, let us consider the quanti-

tative extent of any consistent relationship. How might we character-

ize the consistency of a relationship--the confidence with which we can

assert that the two system states will be related? There are a number

of measures, called distance measures, that quantify the extent to which

two probabilistic processes are similar; the divergence and the Battach-

arya distance are the most common.*9* Both of these measures are based

on functions of the probability that a single given trajectory could have

*9*Schweppe, 9p. cit., pg. 263.
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been generated by either of two systems. Thus, both of these measures

would deem very similar two identical undamped oscillatory systems,

even though their outputs would not be in any way related to one another.

We seek not a measure of how related systems are (by hypothesis, we

know they are highly related), but of how related the two outputs are.

The well-known t-statistic provides a model for an index of

confidence in the relationship of one system output to the other.

One definition for the t-statistic for a given parameter estimate is

just the magnitude of the estimated parameter Mivided by the standard

deviation of the parameter estimate. The exact equivalent for the

vector case is analytically intractable, so instead we can define

an index with the corresponding quantities squared:

N = E t(x Ix )'I(x Ix )]
X 113 - 2 1

The index N takes the "square" of the vector "divided by" the "square"

ef the "standard deviation," that is, multiplied by the inverse of
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the conditional covariance matrix. The expectation is taken to

cause the index to be a single number, instead of a function of the

state of the first system.*10* We can derive N as a function of only

the system parameters as follows.

Substituting the definition of x2-tilde,

~-1

N = E (x' T' ' T x )
~~1 - ~ 1

*10*Note that N is not the same as

E 2X 1 2 2 - 2 2
2 -1

= E ( [tr(i-x) ( -x )

X -X - 2 - 2 - 2 - 2

= tr =- tr I = n

where n is the order of each system
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which from matrix algebra we know is equivalent to

N = E (tr(T' F T K x'))

The trace operator tr takes the sum of the diagonal elements of a

square matrix. Both the trace operator and the expectation operator

are linear so they commute and associate.

N = tr(E(T' '1T E (x x'))
- - - 1-1

= tr(T' r-1T E (x x'))

= tr(T' F-T r )

We can

tively-appealing

gammatilde ,

carry the computation further to arrive at an intui-

result. Substituting in the definitions of T and

N =tr([F~1 P _(_ - U'P1 P _- if P~rhr)(ILI, -12 -22 -12 f-11 -12 -12 E-11 11J

Using a matrix identity on the expression within brackets,

N=tr([-P + (r - P 112 1' ) ]L )
-112 - -12-2 -12 -12

1 2 12 2 l1

tr-12 ' 1
t([I1ll- 11212 2 12122 LIid-
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The expression now inside the brackets should seem familiar. It has

the same form as the expression for ganmatilde, the covariance of

the estimate of x2 given xl. The expression now within the brackets

is the error-covariance that would result from estimating x2 given xl.

This symmetry is reasurring. It says, in effect, that there is a two-

way relationship between the two systems: whenevr knowing something

about xl says something about x2, then knowing something about x2 says

something about xl.

The entrainment index N, then, takes a scalar measure, the

trace, of the error covariance of an xl estimated from x2. That error

covariance is inverted to give a high index of entrainment for low error

covariance. The inverse of the error covariance is also normalized

with respect to the noise present in the systems by multiplication by.

the unconditional covariance of xl, i.e., the covariance we can expect

from xl without any knowledge of x2. In effect, the multiplication of

the two matrices compares the error covariance an estimate of x1, with

and without knowledge of x2. If knowledge of x2 decreases the error

covariance significantly, then the index of entrainment is large.

Finally N is normalized with respect to the order of the systems by

subtracting n.

Note that, analogously to the t-statistic that inspired its

definition, N goes to infinity when the two systems are identical and

xl equals x2. This implies that

r =r = r =r
11 22 2 ~21
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So
N = tr([r - r Vr1 r' V r )- n

1 1 12 22 12 ~11

= tr([r -r ~1 r -'r )-n

= tr([r - r f 1 r )- n
1 M1 ~ I ~~

= tr([0V]~ r )- n

N thus approaches infinity as xl(t) approaches x2(t) for all systems with

nonzero steady-state covariance.

If there is no relationship between xl and x2.

. ' = r = 0
12 r21 ~

So that

N = tr([ - P P~ 1 F' ] I )- n
~'I ~~ 2 ~~2 2 ~1 2 ~~

=tr(~ 1 p ) n-

= tr I - n

= n - n = 0

So N, again analogous to the t-statistic, goes to zero for unrelated

system outputs.
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While the computation of N from the system parameters is

complex, it can be done, since each of the matrices is already known

as functions of the system parameters. Figure 5-7 shows the entrain-

ment index N as a function of the ratio of the natural periods of the

two systems, for several different values of the respective time con-

stants.*11* Significant entrainment would seem to occur when N equals

about 4. (The corresponding point for the t-statistic occurs where

the parameter value divided by its standard deviation equals 2; a t-sta-

tistic of 2 is usually considered significant, although not exception-

ally so.) As might be suspected from the simulations in the previous

section, significant entrainment occurs for moderately-damped systems

with fairly disparate natural periods. For example, with the damping

time constants equal to the natural period of the second system, the

entrainment index N exceeds 4.0 if the natural period of the first

system is anywhere between 80% and 130% of the natural period of the

second system. For damping time constants equal to half the natural

period of the second system, the range of entrainment for natural per-

iods of the first system is from 67% to 200% of the period of the second.

*ll*A DYNAMO program was written to implement the calculations des-
cribed previously, and to graph the results. Appendix G lists
the program and the rerun parameters and Appendix I defines the
variables in the program.
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The heuristic analysis in the previous section places con-

siderable importance on differences between the periods, and suggests,

by ommission, that differences between the damping time constants

of the two systems are not nearly so important. Figure 5-8 confirms

this, by showing the same curves as in the previous figure, but with

the damping time constants differing by 40% between the first and se-

cond system. However, the geometric means of the damping time con-

stants for the corresponding curves are exactly equal. The resulting

entrainment behavior, as characterized by the index N, is remarkably

similar to the case of equal damping time constants.

As noted above, the phase shift between the state of the

first system and the conditional state of the second system depends on

the state of the first system. Different states produce different

apparent phase shifts. We can examine the phase shift induced by the

state transformation matrix T for the two unit vectors el and e2. The

tangents of the resulting phase shifts are shown in Figures 5-9 and

5-10. The curves show an unmistakable trend: the system with the

longer natural period will typically lag behind the system with the

shorter period. (On Figure 5-9, the tangent of the phase angle jumps

from negative values to positive values when the angle passes through

90 degrees; this discontinuity is a property of the tangent function).

Although the phase shift angles are not identical for the two unit

vectors, within the ranges of periods where significant entrainment can

occur, the angles are close enough to result in an apparent phase
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relation between the two systems. For example, consider a pair of

systems whose periods are at the outer limit of being able to show

entrainment. The damping time constants are equal to the period of

the second system, and the first system has a period 80% of the

period of the second system. 01 is about 45 degrees, and 02 is about

22 degrees. In a more extreme case where the period of the first

system is about 30% greater than the period of the second system,

01 is about 90 degrees and 62 is again about 22 degrees. Even these

disparate angles have the proper signs, and are not so far apart as

to destroy the appearance of a phase shift relation between the first

and second systems.

The results discussed above describe a steady-state probab-

ilistic entrainment. How long does it take for systems to fall into

this entrainment? Can probabilistic entrainment occur quickly enough

to happen in real life, or is it a statistical artifact? In the simu-

lations in the previous section, the systems seemed to be entrained from

the start, although that could result from both systems starting in

exact equilibrium. Or was this just a coincidence? A mathematical ana-

lysis can provide more certainty about the time required for systems to

fall into probabilistic entrainment.

The equations developed previously show that the entrainment

index N can be expressed as a function of only the submatrices of the

unconditional covariance matrix gamma for the combined systems. Values

for the elements of gamma were derived from the differential equation
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that describes how gamma changes over time. By implementing that

differential equation directly, we can compute the entrainment index

N as a function of time.

Figure 5-11 shows N(t) for several combinations of parameters.*12 *

By design, all of the combinations of parameters results in a steady-

state N of about 4. The specific parameter values are given on the

figure itself. The covariance matrices are initialized so that the

states of both systems have their steady-state amount of randomness,

but with no statistical relationship between the two systems. In general,

the time taken for two systems to become entrained seems very close to

the magnitude of their damping time constants. For example, the highly-

damped systems whose entrainment index is shown on Curve 1 have very

little momentum in their oscillations and can rather quickly show a

similar response to current values of their common random input. In

contrast, the lightly-damped systems whose entrainment index is shown on

Curve 4 possess considerable momentum in their oscillations. A much

longer time period is required for the common input fluctuations to

nudge the systems into an entrained relationship. This result makes

good intuitive sense, since the damping time constants characterize

the time it takes for the system levels to "forget" things -- every-

thing about the system's state, including being out of phase, disappears

with these time constants.

*12*The DYNAMO program that produced the plots is given in Appendix
H. Definitions of the variables in the program appear in Appen-
dix I.
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Figure 5-11.
ENTRAINMENT INDEX AS A FUNCTION OF TIME
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All of the cases shown in Figure 5-11 result in steady-state

values of the entrainment index N of about 4. However, most of the

curves seem to overshoot and then return to the steady-state value.

(Curve 4 does in fact merely overshoot and return to its steady-state

value of about 4, but the eventual return requires many times the len-

gth of the simulations shown.) I suspect that the initial peaks in

the entrainment index N represent the first time in which the two

systems have the opportunity to oscillate in phase. However, as time

passes, the differences between the two systems eventually cause them

to fall somewhat out of entrainment. Certainly the peaks are not well

understood, but further analysis of the phenomenon would seem to fall

outside the scope of this thesis.

With the mathematical analysis completed, let us return for

a moment to the heuristic development of Section 5.1. The discussion

there suggested that the tendency for the outputs of the 'similar sys-

tems derives from the time taken for the oscillatory impulse response

to damp out being shorter than the time the oscillations at the two

different periods require to get out of phase. This suggests that it

might be possible to form a simple heuristic measure of entrainment

NH. Use the geometric mean of the damping time constants of the

two systems as a scalar characterization of the damping time constants.

Use the formula in footnote 7 to determine the time to get out of phase:

ts PP
out of phase Ii-P2I
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Taking the ratio of these two quantities, and multiplying by some

constant to make the magnitude of NH comparable to the magnitude of

N,

NT PiP ;k
i- P2TVDTC1 * DTC2

To determine a value for k, use one of the sets of parameters on

Figure 5-11 which results in N equal to 4:

N = 5.19*4*k
15.19-4|/4*4

Solving the equation yields a value for k of 0.91. (Other sets of

parameters yield values of k fairly close to 0.91, which bodes well

for the accuracy of the heuristic measure.) Thus, significant probab-

ilistic entrainment occurs when

0.91*(tout of rhase) y>4
(geometric mean of damping

time constants)

The equations above imply that if DTCl=DTC2=Pl, then P2 can be anywhere

between 80 percent and 125 percent ofPl , and significant entrainment
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can occur. This is in rough accord with the results on Figure 5-7.

If we are willing to let NH=4 x 0.91=3.64 be considered significant

entrainment, we can say that significant entrainment occurs when the

time to get out-of-phase is equal to or greater than four times the

geometric mean of the damping time constants.

To test more thoroughly the accuracy of the heuristic index of

probabilistic entrainment NH, Figure 5-12 shows values of NH for the

same periods and damping time constants that were used to display N in

Figure 5-7. Although the shapes of the N and NH curves differ, care-

ful inspection reveals that NH and N agree very well on which systems

will and will not show probabilistic entrainment. If anything, the

heuristic index NH is slightly more conservative than the mathematical

index N, that is, N might indicate that borderline cases do show probab-

ilistic entrainment, whereas NH would not so indicate.
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A Restatement of the Principle. With the heuristic index of probabilistic

entrainment fairly well validated by comparison to a much more rigorously-

derived measure, we can restate the principle on probabilistic entrainment

with more precision:

Principle on two similar systems subject to a common random input

Two similar oscillatory systems will show significantly-
similar time profiles of response to a common random
input when the time it takes for the two oscillations to
go from in-phase to out-of-phase equals or exceeds four
times the geometric mean of the two damping time constants.
In such a case, the initial portion of the response of the

two systems to each random impuse will dominate their
behavior, since the latter portions are diminished by damping.
In the initial portion of the impulse response, the two
systems oscillate fundamentally in-phase, but with the
system with the faster response time (usually implying a
shorter period) peaking and troughing ahead of the slower
system. Thus, differences in period manifest themselves
as phase differences, rather than as a "beat" phenomenon.

The principle above seems to cover systems with one

oscillatory behavior mode fairly well. But note that we can consider

all of the preceding analysis as applying to one behavior mode of a

linearized multimodal system as well. Thus we would expect productive

sectors in a national economy, which seem to show moderatley-damped

oscillations around both four- and twenty-year periods, to show

probabilistic entrainment in both behavior modes.*13*

*13*See Mass, J.N., Economic Cycles (Cambridge, Mass.: Wright-Allen

Press, 1974) for a description of these two behavior modes.
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The principle above implies a convenient rule of thumb for

deciding when simply comparing model output with real time series on a

point-by-point basis is appropriate as a validity test, or when more

elaborate techniques such as Kalman-Bucy filtering are necessary.*14*

If the model is capable of showing probabilistic entrainment, with

systems similar to itself it should be capable of showing probabilistic

entrainment with the real system, and comparing model output with real

time series is valid as a validity test. If such a test is performed,

then, as remarked in Section 5.1, phase differences between model output

and time series could be attributed to a difference in natural period

between the model and the real system. If the model cannot show probab-

ilistic entrainment with systems similar to itself, then a more elaborate

whole-model test of validity, such as tests derived from Kalman-Bucy

filter theory, is necessary.

*14*This thesis is not the appropriate place to elaborate on
Kalman-Bucy filtering. Suffice it to say that it can give
whole-model validity tests (as opposed to tests of individual
model relationships) even for systems that are unable to show
probalistic entrainment. For an explanation of Kalman-Bucy
filtering, see Schweppe, op. cit., Chapter 6. For an exposition
of validity tests that can be derived from Kalman-Bucy filtering
theory, see Peterson, D.W. "Hypothesis, Estimation, and Validation
of Dynamic Social Models." Unpublished Ph.D. dissertation
(Cambridge, Mass.: MIT, 1975).
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Observations on Mathematical Techniques. As the present section contains

the only extensive example of mathematical analysis in this thesis, it

is appropriate here to reflect on the choice between mathematical

analysis and simulation methods. The two are not alternatives, nor

substitutes for one another. They differ in the generality and the

certainty of their conclusions. They differ in the level of effort

required to achieve results, and they provide different kinds of

opportunities for unexpected insights. The choice between mathematical

analysis and simulation analysis really depends on the purpose and

current status of the analysis, and not upon the predilections of

the analyst.

Mathematical analysis and simulation analysis produce results

that apply to different classes of systems, and with different degrees

of certainty. Simulation analysis produces very general, intuitive

conceptsthat, at least in principle, apply to many similar systems.

The ability to apply a basic set of conepts about system behavior

to wide classes of systems usually appears under the rubric of "trans-

ferability of structure." However, the general concepts of system

behavior are not certainties for each system being studied; even if

the concepts are correct, simulation testing is necessary to confirm and

refine them. (One example is the simple principle on the origin of

oscillations of the production sector given in Section 2.1. Many sim-

ulations were needed to be able to assert the causes of such system be-

havior with confidence. In contrast, mathematical analysis provides
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very certain and very exact conclusions about particular properties of

one system structure (or any different system structures which result

from only parameter changes. )*14*

Mathematical analysis says little or nothing about systems

similar to the system being analyzed. For example, the mathematical

analysis in this section gives no confidence that the results apply

to, for example, nonlinear oscillatory systems. (The heuristics in

Section 5.1, however, indicate that the results do transfer to other

linear or smoothly-nonlinear oscillatory systems, but the mathematical

analysis cannot say.) As another example, formal sensitivity analysis

can yield sensitivities for every parameter of the system in the neigh-

borhood of the nominal set of parameter values. However, the formal ana-

lysis provies no indication of the consequences of either large para-

meter changes, multiple parameter changes, or parameter changes under

different structural assumptions. In contrast, a general concept of

system behavior (such as the identification of the dominant loops of

the system) provides at least tentative indications.

*14*The generality of mathematical results should not be overstated,
however. Most useful and realistic models seem to be complex
enough that closed-form analytical solutions do not yield much
tangible information. Therefore, in even the most sophisticated
mathematical analysis, one must eventually resort to numerical
methods to yield tangible results. For example, the equations
that describe entrainment of two general linear systems pro-
vide very little description of the class of systems which can
be so entrained.
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Mathematical analysis and simulation analysis can differ

dramatically in the level of effort required to obtain results. This

is not to say that the greater certainty of mathematical analysis nec-

essarily involves more effort in all cases. In this section, the

mathematical analysis handled the probabilistic nature of the pro-

blem much more cleanly and simply than could a corresponding simula-

tion analysis. In some large systems, such as power systems, the

structure of the system is so involved that the sources of behavior

within the structure are virtually impossible to identify with simu-

lation. In such cases, the initial overhead involved in setting up a

mathematical description of the system is in fact the most effective

means of arriving at conclusions about the system's behavior. There

are, however, many problems for which mathematical analysis is not the

most efficient means. For example, the principles in Chapters 2

through 4 derive from simulation results. In theory, those or similar

conclusions could also have been drawn from a mathematical analysis.

But the cost would have been high relative to the insights gained.

Mathematical analysis and simulation analysis differ in their

fertility for new insights. Each activity provides opportunities for

different kinds of insights about the systems. For example, it is Un-

likely that enough simulations would have led me to discover that the

time two sectors require to become entrained is about the same time as

the damping time constants of the two systems. In contrast, the form
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of the mathematical analysis made the investigation and the conclusion

quite natural and straightforward. Similarly, the example of a pure-

ly positive loop oscillating followed quite naturally from the analy-

sis of sinusoids propagating around a second-order loop. Simulation

and conceptual analysis provide the opportunity for different sorts

of insights. Forrester's observations on the characteristics of com-

plex systems are a perfect example of principles that derive from re-

peated simulations.*15* Such insights can in theory derive from any

number of techniques of analysis, and obviously each technique contains

biases toward some insights (or types of insights) and away from others.

Finally, the appropriateness of mathematical analysis ver-

sus more conceptual simulation analysis depends on the current status

of the analysis. This chapter provides an example of shifting from

conceptual to mathematical analysis and back. The order of presenta-

tion in this chapter is quite close to the way in which the research ac-

tually progressed: initially, there was no dynamic hypothesis - no per-

ception of probabilistic entrainment - upon which to base a mathematical

analysis. Simulation provided an opportunity to observe probabilistic

entrainment, and to motivate the search for a heuristic explanation. With

an explanation of the "how" of probabilistic entrainment, the next ques-

tion naturally asked "how much," and the mathematical analysis yielded the

*15*Forrester, J.W., Urban Dynaics (Cambridge: MIT Press, 1969),

Chapter 6.
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answer. That mathematical machinery provided a me'ans of validating

and refining the initial heuristic principle, as well as facilitating

the insight that the concepts of the principle applied to each oscilla-

tory behavior mode of a multimodal system. Thus, the analysis for

this chapter alternately used mathematical analysis and conceptual

simulation analysis, gaining certainty and generality with each alterna-

tion.
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CHAPTER SIX:

CONCLUSION

Chapter 6 reviews the principles developed in the first five

chapters, and the concepts out of which the principles are built. The

chapter goes on to describe three types of results which could arise

from the explication of these principles: their immediate value to

a reader of this thesis, the various avenues of research they open up,

and their function as focal points for developing an organized and

efficient curriculum to teach the relation between system structure

and system behavior.
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6.1 SUMMARY OF CONCEPTS INTRODUCED

Below are listed the concepts introduced in this thesis,

and their definitions. Some are original, and some are merely more

precise and technical specification of normal English definitions.*l*

Their role here is not to summarize the thesis results (which are the

principles relating structure to behavior), but to serve as the frame-

work within which the principles can be stated. The concepts below

serve as intermediaries between the specific examples and the general

principles: they tie together common features of the examples under

one concept. (For example, the structure of the spring-mass system

and the structure of the employment-backlog system are tied together

by the concept of "loop"; both systems of cause-and-effect relation-

ships form a loop.) The principles provide still more organization

and abstraction by tying together several concepts into a specific

relationship. ("Oscillations occur when a disturbance propagates

around a loop formed of phase-lag subsystems to return the system to a

state comparable to the initial disequilibrium state.")

*l*The list here by no means lists all of the concepts used or defined
in the thesis. For the purpose of concluding the thesis, only the
relatively unfamiliar concepts actually used in the principles are
listed; the remainder await some enterprising pedagogue to compile
a glossary of System Dynamics terms.
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If one were to create an analogy for the relationship among

the examples, the concepts, and the principles, the analogy might be

stated in terms of access to a filing system. Specific papers go into

one of many folders, which in turn go into one of many locked file

drawers. The principle corresponds the key that unlocks the appropriate

collection of folders (concepts) within which the relevant papers

(relevant experiences) may be accessed. In terms of the analogy,

then, the reader is being given a means of classifying and storing

specific experiences so that shortly, the principles themselves can

give the reader the keys to all of the information in the thesis.

Subsystem

A collection of rates, levels, and auxilliaries within a system
with one input and one output, which, for the purpose of analyzing
the behavior of the overall system, is characterized only by its
input-output characteristics; internal structure per se is not
of major concern in the analysis.

Phase-lag subsystem

A subsystem (possessing one or more levels) that produces a
phase lag between its input and its output, so that when the
input reaches its steady-state value, the output reaches its
steady-state value only later.

Loop formed of phase-lag subsystems

Several phase-lag subsystems, each of whose inputs is the output
of another phase-lag subsystem, with each output being used
as input only once.

Disturbance

A condition where one or more levels in a system are different
from their respective steady-state values. The steady-state
values can be either constant, or varying as a function of
another mode of behavior, such as exponential growth, or
oscillations of a longer period.
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Disturbance propagating around a loop formed of phase-lag subsystems

Behavior in which a disturbance away from steady-state values in

one subsystem disturbs the next subsystem around the loop away
from its steady-state values, and so on, so that a pattern of

disturbances moves around the loop.

Comparable disequilibrium states

Two total states of a system (possibly at different points in

time) where the disturbances of each of the levels from their

steady-state values are proportional to one another. For systems

that go to equilibrium in steady-state, comparable disequilibrium

statel 'n state space lie on the same ray from the equilibrium

point.

Damping

A type of behavior, where the magnitude of oscillations

diminishes over time.

Gain element

A subsystem whose output at any given time depends only on

its input at that moment of time.

Effectively-first-order system

A system in which the response time of one level significantly

exceeds (perhaps by a factor of ten) those of other phase-lag

subsystems in the system, which thus effectively become gain

elements with respect to the movements of the remaining level.

Cross-link

A cause-and-effect relationship that connects two subsystems

that otherwise would be distant from one another, in terms of

the number of intervening levels and other cause-and-effect
relationships.
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Minor loop

A loop containing only one level. Thus, when one creates a
minor loop by adding structure around an existing level, the
added structure contains no more levels.

Minor loop with a delay

A loop containing two levels, one in the form of a delay.
Thus, when one creates a minor loop with a delay by adding
structure around an existing level, the added structure contains
one level, in the form of a delay.

Stabilize

To cause a system to exhibit fewer oscillations before essentially
reaching equilibrium. To stabilize in this sense is not
necessarily to decrease the time constant of the exponential
envelope around damped oscillations, if whatever change
stabilizes the system also increases the period of oscillation.
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6.2 SUMMARY OF PRINCIPLES DEVELOPED

Below is the list of principles developed in this thesis.

These are the culmination of this thesis: in terms of the filing-system

analogy, the principles are the keys to the whole affair, which the

reader can take away to use at his or her discretion. The principles

will allow the reader to recall relevant examples, both from here in

the text and from the reader's own exoeriences, and to recall them at

appropriate times in the course of model formulation, analysis, and

testing.

This section is here for the benefit of people who have read

the text of the thesis, scrutinized the examples, and become familiar with

the concepts. To the extent that the reader does not have this prepar-

ation, the principles are not useful: the concepts and the principles

are just words, with no experiences behind them to make them useful.

If the reader is experienced with the dynamics of oscillatory feedback

systems, and has elected to start reading here, at least go back and

read the concepts, because they are the terms in which the principles

are couched, and their meaning is not always the ordinary English

meaning. If the reader is not experienced, go back to the beginning

of the thesis and get exposure to the material; in terms of the file

system analogy, a filing system is useless if there is nothing to

go into the folders.
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By now, it is quite possible that the reader, especially an

experienced reader, will have internalized the principles, and find

them completely obvious, if not old hat. This is a totally

acceptable result, and is evidence that the thesis has fulfilled its

purpose.. A good principle'can seem perfectly obvious, with the only

real mystery being why someone did not say it before. Here, then, are

the hopefully old hat principles connecting system structure to system

behavior:

Origin of oscillations (Section 2.1)

Oscillations occur when a disturbance propagates around a
loop formed of two or more phase-lag subsystems to return
the system to a state comparable to the initial
disequilibrium state.

Damping (Section 2.2)

A structural or parametric change produces more damping when it
realigns the trajectory toward a future state, comparable
to a state on the original trajectory, that corresponds to
oscillations of smaller magnitude. The simplest structural
change that potentially can produce such a realignment is the
addition of a minor negative loop. More complex changes can
produce damping as well.

Reduction to an effectively-first-order system (Section 3.1)

An oscillatory system can be made not to oscillate by
changing it to an effectively-first-order system, so that
when the remaining effective level passes through its
equilibrium value, the entire system does so, and no further
movement occurs.

Adding cross-links (Section 3.2)

Adding cross-links between subsystems that reduce the ability
of the subsystems to move out-of-phase with one another can
reduce the tendency of the system to oscillate.
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Adding a minor negative loop with a delay (Section 3.3)

If a minor negative loop with a delay is added around a
level already on an oscillatory loop, the added loop forms
another pathway through which disturbances in the level can
propagate back to the level. When the additional disturbance
returns to the level, it moves the level more rapidly to
and past its steady-state value, which results in a shorter
period and less stable oscillation.

Addinga_ positive loop (Section 4.1)

Adding a positive loop tends to augment whatever disturbance
is present in a system's levels, so that the levels move
more slowly toward their steady-state values. The system
thus takes longer to complete a cycle in an oscillation,
or to smoothly approach a steady-state value.

Adding a minor 2psitive loop with a delay (Section 4.2)

If a minor positive loop with a delay is added around a
level already on an oscillatory loop, the added loop forms
another pathway through which disturbances in the level can
propagate back to the level. When the additional disturbance
returns to the level, it retards the movement of the level
toward its steady-state value, which results in a longer
period and more stable oscillations.

Similar systems with a common random input (Section 5.2)

Two similar oscillatory systems will show significantly-
similar time-profiles of response to a common random input
when the time it takes for the two oscillations to go from
in-phase to out-of-phase eauals or exceeds four times the
geometric mean of the two damning time constants. In such
a case, the initial portion of the response of the two systems
to each random impulse will dominate their behavior, since
the latter portions are diminished by damping. In the initial
portion of the impulse response, the two systems oscillate
fundamentally in phase, but with the system with the faster
response time (usually implying a shorter period) peaking
and troughing ahead of the slower system. Thus, differences
in period manifest themselves as phase differences, rather
than as a "beat" phenomenon.
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6.3 CONSEQUENCES OF THESIS

At this point, this thesis is complete. All that remains

is to be of assistance in considering what to do about or with the

material the reader has acquired in the course of reading this thesis.

There seem to be three types of future contribution this thesis can make:

changing the reader's ability to relate system structure to system

behavior (resulting from just reading the thesis itself), opening new

avenues of inquiry into the relation between structure and behavior,

and serving as a focal point in developing curriculum materials to

teach the relation between structure and behavior.

Fulfilling the Purpose: Value to the Reader. The purpose of this

thesis, as stated in Section 1.1, is

to effectively communicate to the audience my present
experiences with oscillation and entrainment, which are
embodied in a series of principles.

At this point, only the reader can judge whether or not the

thesis is useful, by observing whether or not the reader utilizes the

experiences embodied by the principles in the course of everyday

modeling, either in model formulation, testing, refinement, or

policy design. As discussed in Section 1.1, there are four possible

ways in which these concepts and principles can be used:

(1) In some situations, the reader of this thesis should be able
to use a principle to arrive quickly at hypotheses about the
structural features of a system that do or could cause a
given behavior.



(2) In other situations, the reader of this thesis will use the
principles to form hypotheses and expectations about the
relation between a system's structure and behavior. When
those expectations are not met (and the principle breaks
down), the modeler is alerted that there is something unusual
in the model's structure and behavior.

(3) The concepts within the principles add to the vocabulary with
which systems can be described. If people share the same
descriptive vocabulary (and the similar experiences that
underlie the vocabulary), they can communicate with one
another more effectively than without the descriptive vocabulary.

(4) By utilizing principles, the reader of this thesis should become
more aware of his or her own half-conscious rules of thumb
that relate structure to behavior, to the extent that they can
be explicated as principles. This both adds to the body of
communicable experiences with systems (embodied in the principle),
and creates the opportunity for still less-conscious conceptual-
izations of experiences to emerge.

These, then, describe one form of contribution available to the reader

just by the act of reading this document. As valuable as the present

body of principles may be, my experience in developing them was that

they stimulated more questions than they answered. The following

subsection outlines many of these questions.

Avenues for Further Development of Principles. How does developing

principles clear the way for developing still more principles? In

terms of the filing-system analogy, developing principles is like

filing old experiences neatly away in file drawers, each under its

appropriate concept folder. This process brings one squarely up

against the remaining materials that cannot (.as yet) be handled so

neatly.
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One batch of material that does not really fit into any present

principle concerns a more precise specificat4on of the behavioral

consequences of closing a feedback loop. The present body of principles

is fairly vague in this area. For example, there is much confusion

about positive and negative loops, resulting from the ability of negative

loops to show divergent behavior (explosive oscillation) and positive

loops to show both smoothly-convergent behavior (when the steady-state

open-loop gain is between zero and one) or oscillatory behavior (as in

Figure 2-11). Thus, there is still a vagueness in the concepts of

positive loop, negative loop, convergent behavior, and divergent behavior.

This vagueness need not be present, for it is certainly not present in

mathematical treatments of closing a feedback loop. For example,

thinking in terms of a Nichols chart, a negative loop is characterized

as negative only because its steady-state, open-loop gain is negative.

If a negative loop produces divergent oscillations, the sinusoidal

disturbance is propagating around the loop at zero phase shift and a

gain larger than one. The sinusoidal disturbance adds to itself each

cycle, resulting in exponentially-growing magnitude. At that frequency,
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the loop must be considered a positive loop. Clearly then, this matter

of loop polarity is one area in which clarifying concepts and princi-

ples are needed. My intuition is that those concepts and principles

will be the rough qualitative equivalent of the quantitative Nichols

chart. Those concepts and principles should allow one to answer such

questions as: "What does it mean for a signal to propagate around

a closed loop am4 other than zero phase shift? What are the consequences

of inserting another subsystem into the loop which is itself resonant,

or which produces a phase lead?*2* Indeed, how might one characterize

the behavior of a loop composed of phase lead systems, or mixed phase

lead and phase lag subsystems? Are the~re many real examples of such

systems? Are there any qualitative features of the open loop character-

istics (as shown on Bode plots, for example) that provide an indication

of the closed-loop behavior? Is there a good way of intuiting a

system's response to driving inputs, given its undriven behavior

characteristics?

Other questions about the consequences of closing a loop

occur in the time domain: Are there any qualitative features of a

system's open-loop step/impulse/initial condition response (which is

easy to approximate intuitively) that provide an indication of the

*2*Recall that the principle on the origin of oscillations (Section
2.1) describes oscillations only in terms of phase-lag subsystems.
While this principle is of assistance in considering a great many
systems, the neglect of phase lead subsystems is a major lacuna
in the conceptual framework established by the principles in this
thesis.
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system's closed loop response? Are there any simple ways of characterizing

the effects of changing a gain or delay time in a loop? Can one state

any rule of thumb for the natural period of a higher-order loop,

corresponding to the second-order P = 2*PI* (Geometric mean of

coupling time constants)?

The phenomenon of entrainment begins to be approached in

several places in the thesis: Sections 3.3 and 4.3 describe systems

with two loops each of which is capable of independent oscillation,

and Sections 5.1 and 5.2 of course describe the probabilistic entrain-

ment of two separate but similar systems. The whole area of adding

complex dynamic structure to an already-oscillatory system is filled

with uncertainty. Is it significant if the added structure is capable

of independent oscillation? What determines how easy it is for added

structure to modify the damping or period, possibly pulling the period

toward its own resonant frequency? In Section 3.3, activating a loop,

which in isolation had a relatively long natural period, actually

shortened the period of the total system. Is there some kind of

continental divide effect, where if the periods were closer together,

activating the loop would lengthen the period?

The three-level systems in Sections 3.3 and 4.2 are quite

similar: two second-order loops with one level in common. That

structure seems as if it is susceptible to mathematical and conceptual

analysis, in a format similar to the treatment of the two separate

second-order loops in Chapter 5. The dynamics of the third-order systems

from Sections 3.3 and 4.2 could be solved analytically, and then the
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natural period and damping of the total system could be computed as a

function of the natural period and damping of each of the two loops

in isolation. These analytical and numerical results could probably

be simplified into a principle far more general than those in Section

3.3. and 4.2, just as the numerical results in Section 5.2 were

simplified.*3* Another means of approaching the area of entrainment

might come from extending the analysis of Chapter 5 to two similar

systems subject to sinusoidal inputs: under what set of combinations

of natural periods, damping ratios, and driving frequencies will the

two systems show approximately entrained steady-state or transient

behavior? Once that question is answered, one could proceed to the

special case where the two systems are productive sectors in a

national economy, the driving input is demand for their respective

*3*Many of the questions above may seem to imply that I am advocating

doing control theory to System Dynamics models. That implication is not
quite accurate. I see the principles that would emerge from answering
the questions above as an independently-useful body of knowledge, which
does not depend (as control-theoretic knowledge so often does) on
performing quantitative calculations for an exactly-specified model
structure. I would very much favor, however, concepts and principles
that closely relate to control-theoretic concepts and calculation.
For example, if a principle could be formulated that describes in the
frequency domain the consequences of closing a loop, it will almost
surely be the qualitative equivalent of the quantitative description
provided by a Nichols chart. Indeed, one way of formulating such a
principle might be to attempt to explain in conceptual, intuitive

terms why a Nichols chart works. That explanation undoubtedly is
already possessed nonconsciously by control engineers experienced
with classical techniques; the purpose of developing a principle is
to furnish explicit concepts and relationships to make that experience
communicable to people without spending ten years doing classical
control theory.
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products, and the output is orders for factors of production such as

capital or labor. Are there conditions under which the two sectors are

close in phase with each other, both outputs (orders for factors of

production) are in phase with the input (orders for the sector's product),

and fluctuations in the output are greater in magnitude than fluctuations

of the input? If there were such conditions, and if it could be

argued that those conditions typified real economies, then one could go

a long way toward explaining entrainment into a business cycle in terms

of each sector's in-phase amplification of economic transactions between

sectors. Even if these conditions did not obtain, the principles that

would fall out of the analysis would illuminate the whole subject of

driven oscillations.

An area that might be termed the theory of complex systems is

another area in which the present principles expose many additional

areas of ancertainty. For example, several of the principles speak

of adding a loop around a level and oscillatory or dominant loop. Why

should one loop dominate others in the first place? Section 2.1 begins to

address this question, by characterizing the dominant oscillatory loop

as the path that is in some sense the easiest for a disturbance to

traverse. Still, this explanation is less than satisfying, and does

not really explain the dominance of a positive loop producing smooth

exponential growth at all. Also, most of the principles are predicated

on the assumption that the behavior mode of the basic system will not

change much as a result of making the structural change. Why should

system behavior be so insensitive to structural and parametric changes



in so many cases?*4* And is there any way of detecting instances when

the system is sensitive to its parameters, or instances when the

behavior is not a smooth, continuous function of parameter values?

A remarkable number of System Dynamics models of socioeconomic

behavior have a large number of coupled positive and negative loops.

A surprising number of these systems are insensitive to most of their

parameters, and, around equilibrium at least, show moderately-damped

oscillatory behavior. Is there any connection between these facts?

It seems like the question of the origin of moderately-damped oscillations

might be susceptible to mathematical analysis, similar to the way in

which theorems about steady-state undriven responses for (continuous)

general nonlinear systems have been proven.*5* This is not to say,

however, that a theorem about damping could be proven with the same

mathematical tools, or even that I have any intuition for how one

would go about proving such a result)

The final avenue of investigation is most embarassing, and

therefore last: weakness in the present principles. As has been noted

*4*The beginnings of an answer are given in Graham, Alan K., "Parameter
Formulation and Estimation in System Dynamics Models," System Dynamics
Group Working Paper D-2349-1, Alfred P. Sloan School of Management,
(Cambridge, Mass.: MIT, 1976), page 29. That explanation, however,
requires considerable amplification and support before it can become
either convincing or useful.

*5*In essence, the results say that a very general class of nonlinear

systems must eventually reach a steady state of either equilibrium
or behavior that is for,most practical purposes, periodic.
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previously, all of the principles concerning structural additions are

predicated on the assumption that the additions will only modify the

previous behavior mode, and do not create a new behavior mode. Section

4.3 illustrates that creating a new behavior mode is a very real

possiblity, but none of the principles implies any clear guidelines

for when such changes occur.*6* Characterizing this area of uncertainty

in a more positive light, there are no principles that allow one to

identify the parameters and structures at which policy changes could

have the most impact, and actually alter the behavior mode of the

system.

The other major weakness in the present principles is the

vagueness of the principle in Section 3.2 on adding crosslinks. What

characterizes a stabilizing cross-link versus a destabilizing cross-link?

Will the stabilizing effect of a cross-link depend on the specific

parameter values of the original system? Answers to such questions

could prove quite useful, especially in industrial modeling, where

less-than-richly-interconnected chains of production and distribution

are common.

*6*Another example of an apparent change in behavior mode occurs in

Forrester, Jay W., Industrial Dynamics (Cambridge, Mass.: MIT
Press, 1961), Appendix M, in which a single sign change initiates
behavior quite different from the original behavior (explosive
instead of convergent oscillations with a seventy percent
reduction in period.)
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Role in Curriculum Development. The conclusion has thus far characterized

the desirable consequences of this thesis in terms of the value to a

reader, and the opening up of new avenues for further research. There

is a final area to discuss, the area of curriculum development and

education. The process of educating people in the art and science of

System Dynamics is usually long and difficult, due in part to the

intuitive nature of virtually every phase of System Dynamics modeling.

Very little of the process is mechanical enough that one can get by with

just following rules.

Perhaps the most difficult facet of a System Dynamics education

is learning to relate system structure to system behavior. Prior to

this thesis, there were four developed bodies of knowledge to which one

could turn to establish conceptual relationships between system structure

and system behavior: First-order systems (as taught in Principles of

Systems or Study Notes in System Dynamics), characterstics of complex

systems (as enumerated in Urban Dynamics), characteristics of particular

models (in Industrial Dynamics or Introduction to Urban Dynamics), and

whatever concepts could be gleaned from a computationally-oriented

control theory.*7*

*7*Forrester, J.W., Principles of Systems (Cambridge, Mass.: Wright-
Allen Press, 1968). Goodman, M.R., Study Notes in System Dynamics
(Cambridge, Mass.: Wright-Allen Press, 1974). Forrester, J.W.,
Urban Dynamics (Cambridge, Mass.: MIT PRess, 1969). Forrester, J.W.,
Industrial Dynamics (Cambridge, Mass.: MIT Pess, 1961). Alfeld, L.A.
and A.K. Graham, Introduction to Urban Dynamics (Cambridge, Mass.:
Wright-Allen Press, 1976). There are numerous texts on control theory;
for one of the best see Bryson, A.E. and Y.C, Ho, Applied Optimal
Control (Waltham, Mass.: Ginn and Company, 1969).
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Unfortunately, these four bodies do not cover all that one needs to know

about structure and behavior to do System Dynamics. Usually, this

missing knowledge has had to be accumulated intuitively, by repeated

exposure to many, many systems. Principles relating system structure

and system behavior (like those developed in this thesis) offer a

means of structuring that missing body of knowledge.

More specifically, there are a variety of ways in which

principles function as a focal point for designing a curriculum that

explicitly and effectively teaches the relationship between structure

and behavior. First, because the concepts and principles are explicit,

they provide a goal toward which the curriculum can aim. For example,

without concepts and principles about oscillation, all one can teach

i* "morestuff" about oscillation. With the principle on the origin

of oscillations (Section 2.1), there is a definite ending-place, the

principle itself, toward which each piece of prior material must move.

Second, and again because concepts and principles are explicit, they

allow the material being taught to be broken down into a step-by-step

organization of lectures and exercises. For example, the organization

of Section 2.1 demonstrates how a principle can be communicated to an

experienced dynamicist; students would of course require additional

preparation, in the form of actually working through integration of

sinusoids, constructing and manipulating a state-space plot, analyzing

computer runs, and so on. With a guiding principle, each of these
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activities has a clear role in attaining the educational objectives.

A third way in which principles can aid curriculum organization

arises from the generality of well-chosen concepts and principles: they

can serve as a bridge between verbal description of specific models

and the mathematical machinery of quantitative analysis. For example,

the concept (developed from several examples in Section 2.1) of a

disturbance propagating around a loop provides an intuitive basis for

going on to learn about phase and gain, transfer functions, and so on.

Similarly, the concepts involving movements through state space provide

students with a simple means of understanding the (potentially very

arbitrary and mechanical) manipulations of matrix exponentials and

Liapunov stability theory.

A fourth and final way in which principles can serve as focal

points for curriculum development comes about because principles are

a simple, compact way of summarizing and "carrying away" a considerable

amount of learning: principles can integrate both specific case studies

and technical knowledge into the mainstream of System Dynamics modeling.

Without principles relating system structure to system behavior, there

is little likelihood that a student can detect opportunities for

appropriately using mathematical analysis, or making an analogy to a

system previously studied. A principle causes one to analyze the

system with concepts that naturally lead to the mathematical tools or

previous examples needed. Thus, for example, after studying a unit on

oscillations, the student can work subsequent exercises using the
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principles that emerged from the unit, and carrying the analysis into

computation of gain, phase shift, eigenvalues when appropriate.

In brief then, principles relating system structure to system

behavior serve as focal points for developing educational goals, struc-

turing lectures, exercises, cases, and technical material to achieve

those goals, and continually integrating the material learned into the

ongoing practice of System Dynamics.
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APPENDIX A

DOCUMENTED EQUATIONS FOR THE SPRING-MASS SYSTEI

P.K=P.J+(DT) (V.J) 1, L
P=IP 1.1, N
IP=.5 1.2, C

P - POSITION (FEET)
V - VELOCITY (FEET/SECOND)
IP - INITIAL POSITION (FEET)

V.K=V.J+(DT) (A.JK) 2, L
V=IV 2.1, N
IV=O 2.2, C

V - VELOCITY (FEET/SECOND)
A - ACCELERATION (FEET/SECOND/SECOND)
IV - INITIAL VELOCITY (FEET/SECOND)

A.KL=(FS.K+FF.K+FD.K) / (W/G) 3, R
W=160 3.1, C
G=32 3.2, C

A - ACCELERATION (FEET/SECOND/SECOND)
FS - FORCE FROM SPRING (POUNDS)
FF - FORCE FROM FRICTION (POUNDS)
FD - FORCE FROM DRIVING (POUNDS)
W - WEIGHT (POUNDS)
G - GRAVITATIONAL ACCELERATION (FEET/SECOND/

SECOND)

FS.K=-SC*P.K 4,A
SC=5 4.1, C

FS - FORCE FROM SPRING (POUNDS)
SC - SPRING CONSTANT (POUNDS/FOOT)
P - POSITION (FEET)

FF.K=-FC*V.K 5, A
FC=O 5.1, C

FF - FORCE FROM FRICTION (POUNDS)
FC - FRICTION COEFFICIENT (POUNDS/FOOT/SECOND)
V - VELOCITY (FEET/SECOND)

FD.K=DC*V.K 6,A
DC=O 6.1, C

FD - FORCE FROM DRIVING (POUNDS)
DC - DRIVING CONSTANT (POUNDS/FOOT/SECOND)
V - VELOCITY (FEET/SECOND)
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APPENDIX B

ANALYZER LISTING FOR THE SPRING-MASS SYSTEM

NAME NO T DEFINITION
WHERE USED

A 3 R ACCELERATION (FEbT/SECOND/SECOND)
V,L,2/PLOT,6.3/SAVE,6.4

DC 6.1

FC

FD

FF

FS

G

FD,A,6

FF,A,5

A,R,3

A,R,3

A,R,3

5.1

6

5

4

3.2

A,R,3
IP 1.2

P,N,.11
IV 2.2

V,N,2.1
LENGTH

SPEC,6.5
P 1

C DRIVING CONSTANT (POUNDS/FOOT/SECOND)

C FRICTION COEFFICIENT (POUNDS/FOOT/SECOND)

A FORCE FROM DRIVING (POUNDS)

A FORCE FROM FRICTION (POUNDS)

A FORCE FROM SPRING (POUNDS)

C GRAVITATIONAL ACCELERATION (FEET/SECOND/
SECOND)

C INITIAL POSITION (FEET)

C INITIAL VELOCITY (FEET/SECOND)

L POSITION (FEET)
1.1 N

FSA,4/PLOT,6.3/SAVE,6.4
PLTPER

SPEC,6.5
SAVPER

SPEC,6.5
SC 4.1 C SPRING CONSTANT (POUNDS/FOOT)

FSA,4
V 2 L VELOCITY (FEET/SECOND)

2.1 N
P,L,1/FFA,5/FD,A,6/PLOT,6.3/SAVE,6.4

W 3.1 C WEIGHT (POUNDS)
A,R,3



-338-

APPENDIX C

EQUATION LISTING FOR THE SPRING-MASS SYSTEM

SM.DYNAMO
00001 *
00010 L
00011 N
00012 C
00020 L
00021 N
00022 C
00030 R
00031 C
00032 C
00040 A
00041 C
00050 A
00051 C
00052 NOTE
00060 A
00061 C
00062 NOTE
00063 PLOT
00064 SAVE
00065 SPEC
00066 RUN
00067 C
00068 CPLOT
00069 C
00071
00072
00073
00074
00075
00076
00077

SPRING-MASS SYSTEM
P.K=P.J+(DT) (V.J)
P=IP
IP=.5
V.K=V.J+(DT) (A.JK)
V=IV
IV=0
A.KL= (FS.K+FF.K+FD.K)/(W/G)
W=160
G=32
FS.K=-SC*P.K
SC=5
FF.K=-FC*V.K
FC=0
FRICTION COEFFICIENT FC = 2.5 FOR DAMPING

FD.K=DC*V.K
DC=O
DRIVING CONSTANT DC = 3 FOR DRIVING

P=P/V=V/A=A
P,V,A
DT=.01/LENGTH=10/PLTPER=.2/SAVPER=.2
FIGURE 2-3
FC=2.5
P.BASE,P.FRIC,A.BASEA.FRIC,V.BASEV.FRIC
PRTPER=.4

RUN FIGURES 2-19, 2-20
C FC=25
PLOT P=P,V=V,A=A
RUN FIGURE 3-10
C DC=3
PLOT P=P/V=V/A=A
RUN FIGURE 4-4
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APPENDIX D

DOCUMENTED EQUATIONS FOR THE EMPLOYMENT-BACKLOG SYSTEM

MACRO PKNS(MNSESDNTCN) .2
PKNS - COLORED (PINK) NOISE FUNCTION
MNSE - MEAN OF NOISE (DIMENSIONLESS)
SDN - STANDARD DEVIATION OF NOISE (DIMENSIONLESS)
TCN - TIME TO CORRELATE NOISE (YEARS)

PKNS.K=PKNS.J+(DT/TCN) (SSFN*NOISEo+MNSE-PKNS.J) 1, L

PKNS=MNSE 1.1, N
SFN=SDN*SQRT(24*TCN/DT) 1.2, N

PKNS - COLORED (PINK) NOISE FUNCTION

DT - COMPUTATION INTERVAL (YEARS)
TCN - TIME TO CORRELATE NOISE (YEARS)

$SFN" ' - SCALING FACTOR FOR NOISE (DIMENSIONLESS)
MNSE - MEAN OF NOISE (DIMENSIONLESS)
SDN - STANDARD DEVIATION OF NOISE (DIMENSIONLESS)

MEND

E.K=E.J+(DT) (NHR.JK) 1, L

E=EN 1.1, N

EN=50 1.2, C
E - EMPLOYMENT (MEN)
DT - COMPUTATION INTERVAL (YEARS)
NHR - NET HIRING RATE (MEN/YEAR)
EN - EMPLOYMENT INITIAL (MEN)

NHR.KL=(DE.K-E.K)/TCE 2,R

TCE=.5 2.1, C
NHR - NET HIRING RATE (MEN/YEAR)
DE - DESIRED EMPLOYMENT (MEN)
E - EMPLOYMENT (MEN)
TCE - TIME TO CORRECT EMPLOYMENT (YEARS)

DE.K=DOUT.K/PROD 3, A
PROD=30 3.1, C

DE - DESIRED EMPLOYMENT (MEN)
DOUT - DESIRED OUTPUT (UNITS/YEAR)
PROD - PRODUCTIVITY (UNITS/YEAR/MAN)



DOUT.K=EAO.K+CB.K
DOUT - DESIRED OUTPUT (UNITS/YEAR)
EAO - EXPECTED AVERAGE OUTPUT (UNITS/YEAR)
CB - CORRECTION FOR BACKLOG (UNITS/YEAR)

CB.K= (B.K-DB.K) /TCB
TCB=.5

CB - CORRECTION FOR BACKLOG (UNITS/YEAR)
B - BACKLOG (UNITS)
DB - DESIRED BACKLOG (UNITS)
TCB - TIME TO CORRECT BACKLOG (YEARS)

DB. K=EAO.K*DBC
DBC=.5

DB - DESIRED BACKLOG (UNITS)
EAO - EXPECTED AVERAGE OUTPUT (UNITS/YEAR)
DBC DESIRED BACKLOG COVERAGE (YEARS)

B.K=B.J+(DT) (OR.JK-OUT.JK)
B=BN
BN=660

B BACKLOG (UNITS)
DT - COMPUTATION INTERVAL (YEARS)
OR - ORDER RATE (UNITS/YEAR)
OUT - OUTPUT (UNITS/YEAR)
BN - BACKLOG INITIAL (UNITS)

OUT.KL=E.K*PROD* (1-WTO)+TOUT.K*WTO
WTO=O

OUT
E
PROD
WTO
TOUT

- OUTPUT (UNITS/YEAR)
- EMPLOYMENT (MEN)
- PRODUCTIVITY (UNITS/YEAR/MAN)
- WEIGHTING ON TEST OUTPUT (DIMENSIONLESS)
- TEST OUTPUT (UNITS/YEAR)

OR.KL=(AOR.K) (MDO.K)
OR - ORDER RATE (UNITS/YEAR)
AOR - ADJUSTED ORDER RATE (UNITS/YEAR)
MDO - MULTIPLIER FROM DELAY ON ORDERING

(DIMENSIONLESS)

4,A

5, A
5.1, C

6, A
6.1, C

7, L
7.1, N
7.2, C

8, R
8.1, C

9, R

AOR.K=DOR.K+CBO.K 10, A
AOR - ADJUSTED ORDER RATE (UNITS/YEAR)
DOR - DESIRED ORDER RATE (UNITS/YEAR)
CBO - CORRECTION FOR BACKLOG ON ORDERING (UNITS/

YEAR)
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CBO.K=(DBO.
TCBO=lEll

CBO

DBO
B
TCBO

K-B.K)/TCBO 11, A
11.1, C

- CORRECTION FOR BACKLOG ON ORDERING (UNITS/
YEAR)

- DESIRED BACKLOG FOR ORDERING (UNITS)
- BACKLOG (UNITS)
- TIME TO CORRECT BACKLOG FOR ORDERING

(YEARS)

DBO.K=PDBA.K*DOR.K
DBO - DESIRED BACKLOG FOR ORDERING (UNITS)
PDBA - PERCEIVED DELAY FOR BACKLOG ADJUSTMENT

(YEARS)
DOR - DESIRED ORDER RATE (UNITS/YEAR)

DOR.K=132OWPKNS(1,SDN,TCN)
SDN=U
TCN=.7

DOR
PKNS
SDN
TCN

12, A

13, A
13.1,
13.2,

DESIRED ORDER RATE (UNITS/YEAR)
COLORED (PINK) NOISE FUNCTION
STANDARD DEVIATION OF NOISE (DIMENSIONLESS)
TIME TO CORRELATE NOISE (YEARS)

MDO.K=TABLE(TMDO,PDO.K/DBC,0,4,.5) 14, A
TMDO=1.3/l.2/1/.75/.5/.3/.2/.15/.1 14.1,

MDO - MULTIPLIER FROM DELAY ON ORDERING
(DIMENSIONLESS)

TMDO - TABLE FOR MULTIPLIER FROM DELAY ON ORDERING
PDO - PERCEIVED DELAY FOR ORDERING (YEARS)
DBC - DESIRED BACKLOG COVERAGE (YEARS)

PDO.K=PDO.J+(DT/TPDO) (DD.J-PDO.J)
PDO=DBC
TPDO=lEll

PDO - PERCEIVED DELAY FOR ORDERING (YEARS)
DT - COMPUTATION INTERVAL (YEARS)
TPDO - TIME TO PERCEIVE DELAY FOR ORDERING
DD - DELIVERY DELAY (YEARS)
DBC - DESIRED BACKLOG COVERAGE (YEARS)

15, L
15.1,
15.2,

C
C

T

N
C



DD.K=B .K/OUT.JK
DD - DELIVERY DELAY (YEARS)
B - BACKLOG (UNITS)
OUT - OUTPUT (UNITS/YEAR)

TOUT.K=1320+STEP(TOSH,TOST)+SINA*SIN((6.28/SINP)*
TIME.K)

TOSH=O
TOST=1
SINA=O
SINP=3

TOUT - TEST OUTPUT (UNITS/YEAR)
TOSH - TEST OUTPUT STEP HEIGHT (UNITS/YEAR)
TOST - TEST OUTPUT STEP TIME (YEAR)
SINA - SINE AMPLITUDE (UNITS/YEAR)
SINP - SINE PERIOD (YEARS)
TIME - ELAPSED TIME (YEARS)

EAO.K=EAO.J+(DT/TAO) (OUT.JK-EAO.J)
EAO=DOR
TAO=lEll

EAO - EXPECTED AVERAGE OUTPUT (UNITS/YEAR)
DT - COMPUTATION INTERVAL (YEARS)
TAO - TIME TO AVERAGE OUTPUT (YEARS)
OUT - OUTPUT (UNITS/YEAR)
DOR - DESIRED ORDER RATE (UNITS/YEAR)

PDBA.K=PDBA.J+(DT/TPDBA) (DD.J-PDBA.J)
PDBA=DBC
TPDBA=lEll

PDBA - PERCEIVED DELAY FOR BACKLOG ADJUSTMENT
(YEARS)

DT - COMPUTATION INTERVAL (YEARS)
TPDBA - TIME TO PERCEIVE DELAY FOR BACKLOG

ADJUSTMENT (YEARS)
DD - DELIVERY DELAY (YEARS)
DBC - DESIRED BACKLOG COVERAGE (YEARS)

FLTPER.K=CLIP(PLTINT,0,TIME.KPLTST)
PLTINT=.2
PLTST=-1

PLTPER - PLOT PERIOD (YEARS)
PLTINT - PLOTTING INTERVAL (YEARS)
TIME - ELAPSED TIME (YEARS)
PLTST - PLOT STARTING TIME (YEAR)

16, A

17, A

17.2, C
17.3, C
17.4, C
17.5, C

18, L
18.1, N
18.2, C

19, L
19.1, N
19.2, C

20, A
20.1, C
20.2, C
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PRTPER.K=CLIP(0,PRTINTTIME.K,PRTKT)
PRTINT=0
PRTKT=lEll
DT=.05
LENGTH=10

PRTPER - PRINTING PERIOD (YEARS)
PRTINT - PRINTING INTERVAL (YEARS)
TIME - ELAPSED TIME (YEARS)
PRTKT - PRINTING KILL TIME (YEAR)
DT - COMPUTATION INTERVAL (YEARS)
LENGTH - LENGTH OF SIMULATION (YEARS)

iVE B,E,DOR
B - BACKLOG (UNITS)
E - EMPLOYMENT (MEN)
DOR - DESIRED ORDER RAE (UNITS/YEAR)

PLOT DB=DB=B/NHR=N/E=E,DE=J/OUT=0,OR=R,DOUT=P,
EAO=V

DB - DESIRED BACKLOG (UNITS)
B - BACKLOG (UNITS)
NHR - NET HIRING RATE (MEN/YEAR)
E - EMPLOYMENT (MEN)
DE - DESIRED EMPLOYMENT (MEN)
OUT - OUTPUT (UNITS/YEAR)
OR - ORDER RATE (UN]TS/YEAR)
DOUT - DESIRED OUTPUT (UNITS/YEAR)
EAO - EXPECTED AVERAGE OUTPUT (UNITS/YEAR)

PLOT DB=D,B=B/NHR=N/E=EDE=J/OUT=OOR=R,DOUT=P,
EAO=V

DB
B
NHR
E
DE
OUT
OR
DOUT
EAO

- DESIRED BACKLOG (UNITS)
- BACKLOG (UNITS)
- NET HIRING RATE (MEN/YEAR)
- EMPLOYMENT (MEN)
- DESIRED EMPLOYMENT (MEN)
- OUTPUT (UNITS/YEAR)
- ORDER RATE (UNITS/YEAR)
- DESIRED OUTPUT (UNITS/YEAR)
- EXPECTED AVERAGE OUTPUT (UNITS/YEAR)

PRINT E,B
E
B

21.8
- EMPLOYMENT (MEN)
- BACKLOG (UNITS)

21, A
21.1, C
21.2, C
21.3, C
21.4, C

21 .5

21.6

21.7
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LENGTH 21.4 C LENGTH OF SIMULATION (YEARS)
MDO 14 A MULTIPLIER FROM DELAY ON ORDERING

(DIMENSIONLESS)
OR,R,9

MNSE MEAN OL' NOISE (DIMENSIONLESS)
MACRO,.2/PKNS,L,1/PKNS,Nl.1

NHR 2 R NET HIRING RATE (MEN/YEAR)
E,L,1/PLOT,21.6/PLOT,21.7

OR 9 R ORDER RATE (UNITS/YEAR)
B,L,7/PLOT,21.6/PLOT,21.7

OUT 8 R OUTPUT (UNITS/YEAR)
B,L,7/DD,A,16/EAO,L,18/PLOT,21.6/PLOT,21.7

PDBA 19 L PERCEIVED DELAY FOR BACKLOG ADJUSTMENT
19.1 N (YEARS)

DBO,A,12
PDO 15 L PERCEIVED DELAY FOR ORDERING (YEARS)

15.1 N
MDO,A,14

PKNS 1 L COLORED (PINK) NOISE FUNCTION
1.1 N

MACRO,.2/DOR,A,13
PLTINT 20.1 C PLOTTING INTERVAL (YEARS)

PLTPER,A,20
PLTPER 20 A PLOT PERIOD (YEARS)
PLTST 20.2 C PLOT STARTING TIME (YEAR)

PLTPERA,20
PROD 3.1 C PRODUCTIVITY (UNITS/YEAR/MAN)

DEA, 3/OUTR, 8
PRTINT 21.1 C PRINTING INTERVAL (YEARS)

PRTPER,A,21
PRTKT 21.2 C PRINTING KILL TIME (YEAR)

PRTPER,A,21
PRTPER 21 A PRINTING PERIOD (YEARS)
SDN 13.1 C STANDARD DEVIATION OF NOISE (DIMENSIONLESS)

MACRO, .2/SFN,N,1.2/DOR,A,13
SINA 17.4 C SINE AMPLITUDE (UNITS/YEAR)

TOUT , A, 17
SINP 17.5 C SINE PERIOD (YEARS)

TOUTA,17
TAO 18.2 C TIME TO AVERAGE OUTPUT (YEARS)

EAO,L,18
TCB 5.1 C TIME TO CORRECT BACKLOG (YEARS)

CB,A,5
CBO 11.1 C TIML TO CORRECT BACKLOG FOR ORDERING

(YEARS)
CBO,A,ll
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TCE 2.1 C TIME TO CORRECT EMPLOYMENT (YEARS)
NHR,R,2

TCN 13.2 C TIME TO CORRELATE NOISE (YEARS)
MACRO,.2/PKNSL,1/$SFN,N,1.2/DOR,A,13

TIME ELAPSED TIME (YEARS)
TOUT,A,17/PLTPERA,20/PRTPERA,21

TMDO 14.1 T TABLE FOR MULTIPLIER FROM DELAY ON ORDERING
MDOA,14

TOSH 17.2 C TEST OUTPUT STEP HEIGHT (UNITS/YEAR)
TOUTA,17

TOST 17.3 C TEST OUTPUT STEP TIME (YEAR)
TOUT,A,17

TOUT 17 A TEST OUTPUT (UNITS/YEAR)
OUT,R,8

TPDBA 19.2 C TIME TO PERCEIVE DELAY FOR BACKLOG
ADJUSTMENT (YEARS)

PDBA,L,19
TPDO 15.2 C TIME TO PERCEIVE DELAY FOR ORDERING

PDO,L,15
WTO 8.1 C WEIGHTING ON TEST OUTPUT (DIMENSIONLESS)

OUTR,8
$SFN 1.2 N SCALING FACTOR FOR NOISE (DIMENSIONLESS)

PKNSL,1
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APPENDIX F

EQUATION LISTING FOR EMPLOYMENT-BACKLOG SYSTEM

EB.DYNAMO
00001 *
00002 MACRO
00010 L
00011 N
00012 N
00013 MEND
10010 L
10011 N
10012 C
10020 R
10021 C
10030 A
10031 C
10040 A
10050 A
10051 C
10060 A
10061 C
10070 L
10071 N
10072 C
10080 R
10081 C
10090 R
10100 A
10110 A
10111 C
10112 NOTE
10120 A
10130 A
10131 C
10132 C
10140 A
10141 T
10150 L
10151 N
10152 C
10153 NOTE

EMPLOYMENT-BACKLOG SYSTEM
PKNS (MNSE,SDNTCN)
PKNS.K=PKNS.J+(DT/TCN) ($SFNWNOISEo+MNSE-PKNS.J)
PKNS=MNSE
$SFN=SDN*SQRT (24*TCN/DT)

E.K=E.J+(DT) (NHR.JK)
E=EN
EN=50
NHR.KL=(DE.K-E.K)/TCE
TCE=.5
DE. K=DOUT.K/PROD
PROD=30
DOUT.K=EAO.K+CB.K
CB.K=(B.K-DB.K)/TCB
TCB=.5
DB. K=EAO. K*DBC
DBC=.5
B.K=B.J+(DT) (OR.JK-OUT.JK)
B=BN
BN=660
OUT.KL=E.K*PROD*(1-WTO) +TOUT.K*WTO
WTO=0
OR.KL=(AOR.K) (MDO.K)
AOR. K=DOR. K+CBO. K
CBO.K=(DBO.K-B.K)/TCBO
TCBO=lEll
TCBO=.3 FOR BACKLOG CORRECTION
DBO.K=PDBA.K*DOR.K
DOR.K=1320*PKNS(1,SDN,TCN)
SDN=0
TCN=.7
MDO.K=TABLE(TMDOPDO.K/DBC,0,4,.5)
TMDO=1.3/1.2/l/.75/.5/.3/.2/.15/.1
PDO.K=PDO.J+(DT/TPDO) (DD.J-PDO.J)
PDO=DBC
TPDO=lEll
TPDO=2 FOR MDO RESPONDING TO DELIVERY DELAY
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10160 A DD.K=B.K/OUT.JK
10170 A TOUT.K=1320+STEP(TOSH,TOST)+SINA*SIN(
10171 X (6.28/SINP)*TIME.K)
10172 C TOSH=0
10173 C TOST=1
10174 C SINA=0
10175 C SINP=3
10180 L EAO.K=EAO.J+(DT/TAO)(OUT.JK-EAO.J)
10181 N EAO=DOR
10182 C TAO=lEll
10183 NOTE TAO=l FOR FLOATING GOAL
10190 L PDBA.K=PDBA.J+(DT/TPDBA) (DD.J-PDBA.J)
10191 N PDBA=DBC
10192 C TPDBA=lEll
10193 NOTE TPDBA=1 FOR DESIRED BACKLOG RESPONDING TO DELIVERY
10194 NOTE DELAY
10195 NOISE 1234567
10200 A PLTPER.K=CLIP(PLTINT,U,TIME.K,PLTST)
10201 C PLTINT=.2
10202 C PLTST=-l
10210 A PRTPER.K=CLIP(0,PRTINT,TIME.K,PRTKT)
10211 C PRTINT=0
10212 C PRTKT=lEll
10213 C DT=.05
10214 C LENGTH=10
10215 SAVE B,E,DOR
10216 PLOT DB=D,B=B/NHR=N/E=E,DE=J/OUT=OOR=RDOUT=PEAO=V
10217 PLOT DB=D,B=B/NHR=N/E=EDE=J/OUT=O,OR=R,DOUT=PEAO=V
10218 PRINT E,B
10219 RUN FIGURES 2-14, 3-21
10221 C PRTINT=.2
10222 RUN FIGURE 2-15
10223 C TCBO=.3
10224 C PRTINT=.2
10225 PLOT DBO=D,B=B/CBO=C/E=E,DE=J/OR=R,OUT=O,DOUT=P,EAO=V
10226 PLOT DBO=D,B=B/CBO=C/E=EDE=J/OR=R,OUT=O,DOUT=P,
10227 X EAO=V(1300,1340)
10228 RUN FIGURES 2-24,2-25,4-12
10229 C TCE=.1
10231 PLOT DB=D,B=B/CB=I/E=E,DE=J/OUT=O,OR=R,DOUT=P,EAO=V

10232 C PRTINT=.05
10233 C PRTKT=2
10234 RUN FIGURES 3-1,3-3
10235 C TCB=.1
10236 PLOT DB=D,B=B/CB=I/E=E,DE=J/OUT=O,OR=R,DOUT=P,EAO=V
10237 RUN FIGURE 3-2
10238 PLOT DB=D,B=B/NHR=N/E=E,DE=J/OUT=O,OR=R,DOUT=P/MDO=M/DD
10239 C TPDO=2
10241 RUN FIGURE 3-20
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10242 C WTO=1
10243 C TOSH=132
10244 C SAVPER=.2
10245 C PLTINT=O
10246 RUN OPEN
10247 C TPDO=2
10248 C WTO=1
10249 C TOSH=132
10251 CPLOT OUT=O,OR=R/DD=D,PDO=P/MDO=M/B=B,DBO=S,B.OPEN=E(300,700
10252 RUN FIGURE 3-22
10253 C PLTINT=.1
10254 C PLTST=17.99
10255 C LENGTH=23
10256 C WTO=I
10257 C SINA=132
10258 C TPDO=2
10259 PLOT OUT=O,OR=R/DD=DPDO=P/MDO='/B=B ,DBO=S
10261 RUN FIGURE 3-23
10262 C PLTINT=.1
10263 C PLTST=17.99
10264 C LENGTH=23
10265 C WTO=1
10266 C SINA=132
10267 C TPDO=l
10268 PLOT OUT=O,OR=R/DD=D,PDO=P/MDO=M/B=BDBO=S
10269 RUN FIGURE 3-24
10271 PLOT DB=D,B=B/NHR=N/E=E,DE=J/OUT=O,OR=R,DOUT=P,EAO=V
10272 C PLTST=1.999
10273 C LENGTH=4.5
10274 C PLTINT=.05
10275 RUN FIGURE 3-25
10276 C TPDBA=l
10277 C TCBO=.3
10278 PLOT DBO=D,B=B/CBO=CCB=I/PDBA=V,DD=L/E=E/OUT=O,OR=R,DOUT=P
10279 RUN FIGURE 4-11
10281 C TCB=1.5
10282 PLOT DB=D,B=B/CBO=C,CB=I/E=EDE=J/OUT=OOR=RDOUT=PEAO=V
10283 RUN FIGURE 4-16
10284 C TCB=1.5
10285 C TAO=.5
10286 PLOT DB=DB=B/CBO=C,CB=I/E=E,DE=J/OUT=O,OR=RDOUT=PEAO=V
10281 RUN FIGURE 4-17
10288 C TCB=1.5
10289 C TAO=.5
10291 C TCE=.1
10292 PLOT DB=D,B=B/CBO=CCB=I/E=E,DE=J/OUT=O,OR=RDOUT=P,
10293 X EAO=V(1300,1340)
10294 RUN FIGURE 4-18
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10295 C SAVPER=.2
10296 C PLTINT=O
10297 RUN BASE
10298 C TCB=1
10299 C PLTINT=.2
10301 CPLOT E.BASEE/B.BASEB/DOR.BASEDOR(1000,2600)
10302 RUN FIGURE 5-3
0303 C SAVPER=.4

10304 C PLTINT=O
10305 C SDN=.1
10306 C EN=44
0307 C LENGTH=20

10308 RUN BASE
10309 C TCB=l
10311 C PLTINT=.4
10312 C SDN=.1
10313 C EN=44
10314 C LENGTH=2O
10315 CPLOT E.BASEE/B.BASE,B/DOR.BASE,DOR(1000,2600)
10316 RUN FIGURE 5-4
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APPENDIX G

EQUATION LISTING FOR NOFPER

NOFPER. DYNAMO
00010 *
00020 A
00030 C
00040 A
00050 C
00060 A
00070 A
00080 A
00090 A
00100 A
00110 C
00120 A
00130 C
00140 A
00150 C
00160 A
00170 A
00180 A
00190 A
00200 A
00210 A
00220 A
00230 A
00240 A
00250 A
00260 A
00270 A
00280 A
00290 A
00300 A
00310 A
00320 A
00330 A
00340 X
00350 A
00360 X
00370 A
00380 X
00390 A

ENTRAINMENT MEASURES
L2RP. K=IL2RP+TIME. K
IL2RP=-2
L2Pl.K=L2RP.K+L2P2
L2P2=2
P2.K=4
Pl.K=EXP (. 693 *L2Pl.K)
A.K=-(39.478/(Pl.K*Pl.K))+C.K*C.K/4
B.K=-(39.479/(P2.K*P2.K))+D.K*D.K/4
C.K=-2/DTC1
DTC1=1
D.K=-2/DTC2
DTC2=1
AL.K=Q/ (2*A.K*C.K)
Q=l
BE.K=-Q/(2*A.K)
GA.K=(Q) ((C.K*C.K-A.K)/(2*A.K*C.K))
ET.K=Q/(2*B.K*D.K)
LA.K=(Q) ((D.K*D.K-B.K)/(2*B.K*D.K))
SI .K=-Q/ (2*B.K)
DE.K=Q*(C.K+D.K)/K.K
XI.K=-Q*(B.K-A.K+C.K*D.K+D.K*D.K)/K.K
K.K=(A.K*D.K+B.K*C.K) (C.K+D.K)-(A.K-B.K) (A.K-B.K)
RH.K=Q*(B.K-A.K-C.K*D.K-C.K*C.K)/K.K
NU.K=Q*(C.K*C.K*D.K-A.K*C.K+C.K*D.K*DK-B.K*D.K)/K.K
ID.K=1/(AL.K*GA.K-BE.K*BE.K)
Tll.K=ID.K*(DE.K*GA.K-RH.K*BE.K)
T12.K=ID.K*(-DE.K*BE.K+RH.K*AL.K)
T2 I.K=ID.K*(XI.K*GA.K-NU.K*BE.K)
T22.K=ID.K*(-XI.K*BE.K+NU.KtAL.K)
TTH1.K=T21.K/Tll.K
TTH2. K=-T12. K/T22. K
GT11.K=ET.K-AL.K*Tll.K*Tll.K-GA.K*T12.K*T12.K-

2*BE.K*Tll.K*Tl2.K
GT22.K=LA.K-AL.K*T21.K*T2J.K-GA.K*T22.K*T22.K-

2*BE.K*T21.K*T22.K
GT12.K=SI.K-AL.K*Tll.K*T21.K-BE.K*

(T21 .K*T12'.K+Tll. K*T22.K) -GA. K*T22. K*Tl2. K
GT21.K=GT12.K
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00400 A GTIDET.K=MAX(lE-15,GT11.K*GT22.K-GT12.K*GT21.K)
00410 A GTIll.K=GT22.K/GTIDET.K
00420 A GTI12.K=-GT12.K/GTIDET.K
00430 A GTI21.K=-GT21.K/GTIDET.K
00440 A GT122.K=GTII.K/GTIDET.K
00450 A TERM3.K=Tll.K*GTI11.K+T21.K*GTI21.K
00460 A TERM4.K=Tll.K*GTII2. K+T21.K*GTI22.K
00470 A TERM5.K=Tl2.K*GTI11.K+T22.K*GTI21.K
00480 A TERM6.K=Tl2.K*GTI12.K+T22.K*GTI22.K
00490 A Mll. K=TERM3 .K*Tll .K+TERM4 . K*T21.K
00500 A M12.K=TERM3.K*T12.K+TERM4.K*T22.K
00510 A M211.K=TERM5.K*Tll.K+TERM6.K*T21.K
00520 A M22.K=TERM5.K*TI2.K+TERM6.K*T22.K
00530 A N.K=Mll.K*AL.K+ML2.K*BE.K+M21.K*BE.K+M22.K*GA.K
00540 A NH.K=KNH*TOP.K/GMDTC
00550 C KNH=.917
00560 N GMDTC=SQRT(DTCI*DTC2)
00570 A TOP.K=Pl.K*P2.K/CLIP(P1.K-P2.K,P2.K-Pl.K,Pl.K,P2.K)
00580 CPLOT N.BASE,N.TWO,N.THREE,N.FOURN.FIVE,N.SIX,N.TEN(0,8)
00590 CPLOT TTH1.BASETTH1.TWOTTHl.THREETTH1.FOURTTH1.FIVE,
00600 X TTHI.SIXTTH1(-4,4)
00610 CPLOT TTH2.BASETTH2.TWOTTH2.THREETTH2.FOURTTH2.FIVE,
00620 X TTH2.SIXTTH2(-4,4)
00630 CPLOT NH.BASENH.TWONH.THREENH.FOURNH.FIVENH.SIX,
00640 X NH(0,8)
00650 C DT=.1
00660 N TIME=TIMEN
00670 C TIMEN=0
00680 C LENGTH=4
00690 C PLTPER=0
00700 C PRTPER=0
00710 C SAVPER=.1
00720 SAVE N,TTHLTTH2,NH
00730 RUN BASE
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00740 C DTC1=2
00750 C DTC2=2
00760 RUN TWO
00770 C DTC1=3
00780 C 0TC2=3
00790 RUN THREE
00800 C DTC1=4
00810 C DTC2=4
00820 RUN FOUR
00830 C DTCI=5
00840 C DTC2=5
00850 RUN FIVE
00860 C DTC1=6
00870 C DTC2=6
00880 RUN SIX
00890 C DTC1=l0
00900 C DTC2=10
00910 C PLTPER=.1
00920 RUN FIGURES 5-7, 5-9, 5-10, 5-12
00930 C DTC1=1.18325
00940 C DTC2=.845178
00950 RUN BASE
00960 C DTCI=2.336 4
00970 C DTC2=1.6902
00980 RUN TWO
00990 C DTC1=3.5496
01000 C DTC2=2.5354
01010 RUN THREE
01020 C DTCI=4.7328
01030 C DTC2=3.3805
01040 RUN FOUR
01050 C DTC1=5.916
01060 C DTC2=4.2257
01070 RUN FIVE
01080 C DTCI=7.0992
01090 C DTC2=5.0708
01100 RUN SIX
01110 C DTC1=11.832
01120 C DTC2=8.4514
01130 C PLTPER=.1
01140 RUN FIGURE 5-8
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EQUATION LISTING FOR NOFTIME

NOFTIME.DYNAMO
00010 * ENTRAINMENT MEASURES
00020 C P2=4
00030 C Pl=2.713
00040 N A=-(39.478/(Pl*Pl))+CwC/4
00050 N B=-(39.479/(P2*P2))+D*D/4
00060 N C=-2/DTC1
00070 C DTC1=2
00080 N D=-2/DTC2
00090 C DTC2=2
00100 L AL.K=AL.J+(DT) (CAL.JK)
00110 N AL=CIC*Q/(2*A*C)
00120 C Q=1
00130 C CIC=1
00140 R CAL.KL=2*(C*AL.K+BE.K)
00150 L BE.K=BE.J+(DT) (CBE.JK)
00160 N BE=-CIC*Q/(2"A)
00170 R CBE.KL=C*BE.K+GA.K+A*AL.K
00180 L GA.K=GA.J+(DT) (CGA.JK)
00190 N GA=(CIC*Q) ((C*C-A)/(2*A*C))
00200 R CGA.KL=2*A*BE.K+1
00210 L ET.K=ET.J+(DT) (CET.JK)
00220 N ET=CIC*Q/(2*B*D)
00230 R CET.KL=2*(D*ET.K+SI.K)
00240 L SI.K=SI.J+(DT) (CSI.JK)
00250 N SI=-CIC*Q/(2t B)
00260 R CSI.KL=D*SI.K+LA.K+Bt ET.K
00270 L LA.K=LA.J+(DT) (CLA.JK)
00280 N LA=(CIC*Q) ((D*D-B)/(2*B*D))
00290 R CLA.KL=2*B*SI.K+1
00300 L DE.F=DE.J+(DT) (CDE.JK)
00310 N DE=CIE*Q*(C+D)/K
00320 C CI=lE-10
00330 R CDE.KL=C*DE.K+RH.K+D*DE.K+XI.K
00340 L XI.K=XI.J+(DT) (CXI.JK)
00350 N XI=-CIE*Q*(B-A+C*D+D*D)/K
00360 R CXI.KL=C*XI.K+NU.K+B*DE.K
00370 L RH.K=RH.J+(DT) (CRH.JK)
00380 N RH=CIEt Q*(B-A-C*D-C*C)/K
00390 R CRH.KL=A*DE.K+D*RH.K+NU.K



-355-

00400 L NU.K=NU.J+(DT) (CNU.JK)
00410 N NU=CIE*Q*(C*C*D-A*C+C*D*D-B*D)/K
00420 R CNU.KL=A*XI.K+BtRH.K+1
00430 N K=(A*D+B*C) (C+D)-(A-B) (A-B)
00440 A ID.K=1/(AL.K*GA.K-BE.K*BE.K)
00450 A Tll.K=ID.K*(DE.K*GA.K-RH.K*BE.K)
00460 A Tl2.K=ID.K*(-DE.K*BE.K+RH.K*AL.K)
00470 A T21.K=ID.K*(XI.K*GA.K-NU.K*BE.K)
00480 A T22.K=ID.K*(-XI.K*BE.K+NU.K*AL.K)
00490 A TTH1.K=T21.K/Tli.K
00500 A TTH2.K=-Tl2.K/T22.K
00510 A GT11.K=ET.K-AL.K*Tll.K*Tll.K-GA.K*Tl2.K*T12.K-
00520 X 2*BE.K*Tll.K*Tl2.K
00530 A GT22.K=LA.K-AL.K*T21.K*T21.K-GA.K*T22.K*T22.K-
00540 X 2*BE.K*T21.K*T22.K
00550 A GT12.K=SI.K-AL.K*Tl1.K*T21.K-BE.K*
00560 X (T21.K*Tl2.K+Tl1.K*T22.K)-GA.K*T22.K*Tl2.K
00570 A GT21.K=GT12.K
00580 A GTIDET.K=MAX(lE-15,GTl1.K*GT22.K-GT12.K*GT21.K)
00590 A GTIll.K=GT22.K/GTIDET.K
00600 A GTII2.K=-GT12.K/GTIDET.K
00610 A GTI21.K=-GT21.K/GTIDET.K
00620 A GT122.K=GTLI.K/GTIDET.K
00630 A TERM3.K=TlI.K*GTIi1.K+T21.K*GTI21.K
00640 A TERM4.K=Tll.K*GTI12.K+T21.K*GTI22.K
00650 A TERM5.K=Tl2. K*GTIll.K+T22.K*GTI21.K
00660 A TERM6.K=T12.K*GTI12.K+T22.K*GTI22.K
00670 A Mll.K=TERM3.K*Tll.K+TERM4.K*T21.K
00680 A M12.K=TERM3.K*Tl2.K+TERM4.K*T22.K
00690 A M21.K=TERM5.K*Tll.K+TERM6.K*T21.K
00700 A M22.K=TERM5.K*T12.K+TERM6.K*T22.K
00710 A N.K=Mll.K*AL.K+M12.K*BE.K+M21.K*BE.K+M22.K*GA.K
00720 PRINT 1)A,B,C,D
00730 PRINT 2)ALBEGAET
00740 PRINT 3)SI,LA,DEXI
00750 PRINT 4)KRH,NUID
00760 PRINT 5)Tll,T12,T21,T22
00770 PRINT 6)GTllGT12,GT21,GT22
00780 PRINT 7)GTIllGTIl2,GTI21,GTI22
00790 PRINT 8)Mll,Ml2,M21,M22
00800 PRINT 9)TTHlTTH2,N
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00810 C DT=.01
00820 N TIME=TIMEN
00830 C TIMEN=O
00840 C LENGTH=12
00850 C PLTPER=O
00860 C PRTPER=O
00870 C SAVPER=.3
00880 SAVE N
00890 CPLOT N.BASE,N.TWO,N.THREE,N(0,8)
00900 RUN BASE
00910 C DTC=4
00920 C DTC2=4
00930 C P1=3.252
00940 RUN TWO
00950 C DTC=4
00960 C DTC2=4
00970 C Pl=5.19
00980 RUN THREE
00990 C DTCl10
01000 C DTC2=10
01010 C P1=3.68
01020 C PLTPER=.3
01030 RUN FIGURE 5-11
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APPENDIX I

DEFINITIONS OF VARIABLES IN CALCULATIONS OF N

NAME NO
WHERE USED

A

AL
B

BE
C

CAL
CBE
CDE
CET
CGA
CIC
CIE
CLA
CNU
CRH
CSI
CXI
D

DE
DTC.
DTC2
ET
GA

GAMMAll

GAMMAl2

GAMMA22

T DEFINITION

PARAMETER CONTROLLING PERIOD IN FIRST
SYSTEM

ALPHA -- ELEMENT 1,1 OF GAMMAll
PARAMETER CONTROLLING PERIOD IN SECOND
SYSTEM

BETA -- OFF-DIAGONAL ELEMENTS OF GAMMAll
PARAMETER CONTROLLING DAMPING IN FIRST
SYSTEM

CHANGE IN AL -- ALPHA
CHANGE IN BE -- BETA
CHANGE IN DE -- DELTA
CHANGE IN ET -- ETA
CHANGE IN GA -- GAMMA
COEFFICIENT ON INITIAL COVARIANCE
COEFFICIENT ON INITIAL ENTRAINMENT
CHANGE IN LA -- LAMBDA
CHANGE IN NU -- NU
CHANGE IN RH -- RHO
CHANGE IN SI -- SIGMA
CHANGE IN XI -- XI
PARAMETER CONTROLLING DAMPING IN SECOND
SYSTEM

DELTA -- ELEMENT 1,1 OF GAMMAL2
DAMPING TIME CONSTANT OF FIRST SYSTEM
DAMPING TIME CONSTANT OF SECOND SYSTEM
ETA -- ELEMENT 1,1 OF GAMMA22
GAMMA -- ELEMENT 2,2 OF GAMMAll
CONDITIONAL ERROR COVARIANCE OF ESTIMATED

STATE OF SECOND SYSTEM GIVEN THE STATE OF
THE FIRST

UNCONDITIONAL COVARIANCE OF STATE OF FIRST
SYSTEM

UNCONDITIONAL COVARIANCE BETWEEN FIRST
SYSTEM AND SECOND SYSTEM

UNCONDITIONAL COVARIANCE OF STATE OF SECOND
SYSTEM
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GMDTC GEOMETRIC MEAN OF TIME CONSTANTS
GTIDET DETERMINANT OF GAMMATILDE
GTIlI ELEMENT 1,1 OF GAMMATILDE INVERSE
GTI12 ELEMENT 1,2 OF GAMMATILDE INVERSE
GTI21 ELEMENT 2,1 OF GAMMATILDE INVERSE
GTI22 ELEMENT 2,2 OF GAMMATILDE INVERSE
GTll ELEMENT 1,1 OF GAMMATILDE
GT12 ELEMENT 1,2 OF GAMMATILDE
GT21 ELEMENT 2,1 OF GAMMATILDE
GT22 ELEMENT 2,2 OF GAMMATILDE
ID INVERSE OF DETERMINANT OF GAMMAll
IL2RP INITIAL LOG BASE TWO OF THE RATIO OF

PERIODS
K CONSTANT FOR COMPUATATION OF Kl
KNH SCALING CONSTANT FOR NH
Kl CONSTANT TERM FOR ALL ELEMENTS OF T
LA LAMBDA -- ELEMENT 2,2 OF GAMMA22
L2P1 LOG BASE TWO OF PERIOD ONE
L2P2 LOG BASE TWO OF PERIOD TWO
L2RP LOG BASE TWO OF THE RATIO OF PERIODS
M SYMMETRICAL MATRIX USED FOR COMPUTATION OF

N
Mil ELEMENT 1,1 OF M
M12 ELEMENT 1,2 OF M
M21 ELEMENT 2,1 OF M
M22 ELEMENT 2,2 OF M
N ENTRAINMENT INDEX
NH HEURISTIC ENTRAINMENT INDEX
NU NU -- ELEMENT 2,2 OF GAMMA12
Pi PERIOD OF FIRST SYSTEM
P2 PERIOD OF SECOND SYSTEM
Q AMPLITUDE FACTOR OF WHITE NOISE INPUT
RH RHO -- ELEMENT 2,1 OF GAMMA12
SI SIGMA --OFF-DIAGONAL ELEMENTS OF GAMMA22
T MATRIX DEFINING CONDITIONAL STATE OF SECOND

SYSTEM GIVEN THE FIRST
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TERM FOR COMPUTATION OF Mll AND
TERM FOR COMPUTATION OF Mll AND
TERM FOR COMPUTATION OF M21 AND
TERM FOR COMPUTATION OF M21 AND
TERM FOR COMPUTATION OF TERM5
TIME INITIAL
TIME TO GET OUT OF PHASE
TAN THETA BETWEEN UNIT VECTOR 1

SECOND STATE VECTOR
TAN THETA BETWEEN UNIT VECTOR 2

SECOND STATE VECTOR
ELEMENT 1,1 OF T
ELEMENT 1,2 OF T
ELEMENT 2,1 OF T
ELEMENT 2,2 OF T
XI -- ELEMENT 1,2 OF GAMMA12

M12
M12
M22
M22

AND THE

AND THE

TERM3
TERM4
TERM5
TERM6
TERM9
TIMEN
TOP
TTH1

TTH2

Tll
T12
T21
T22
XI
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