
Dr. Todd W. Neller
Professor of Computer Science

Click-Through Rate (CTR) Prediction

• Number of impressions = number of times an
advertisement was served/offered

• Given: much data on past link offerings and
whether or not users clicked on those links

• Predict: the probability that a current user will
click on a given link

Example Data on Past Link Offerings

• User data:
– User ID from site login, cookie

– User IP address, IP address location

• Link context data:
– Site ID, page ID, prior page(s)

– Time, date

• Link data:
– Link ID, keywords

– Position offered on page

Example: Facebook Information

Better CTR
Prediction

Better Ad
Selection

Greater Click-
Through Rate

Greater Ad
Revenue

Why is CTR Prediction Important?

• Advertising Industry View:

– Much of online advertising is billed using a pay-
per-click model.

New Idea?

https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468

https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468
https://www.slideshare.net/savvakos/how-you-can-earn-attention-in-the-digital-world-80695468

Benefits Beyond Advertising

• Herbert Simon, 1971:
– “In an information-rich world,

the wealth of information
means a dearth of something
else: a scarcity of whatever it
is that information consumes.
What information consumes
is rather obvious: the
attention of its recipients.”

• Better CTR prediction 
more relevance  better use
of scarce time

https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1978/simon-bio.html
https://www.nobelprize.org/nobel_prizes/economic-sciences/laureates/1978/simon-bio.html

Outline

• Click-Through Rate Predition (CTRP) Introduction
• Kaggle

– Learning community offerings incentives
– CTRP Competitions

• Feature Engineering
– Numbers, Categories, and Missing Values

• Favored regression techniques for CTRP
– Logistic Regression
– Gradient Boosted Decision Trees (e.g. xgBoost)
– Field-aware Factorization Machines (FFMs)

• Future Recommendations

What is Kaggle.com?

• Data Science and Machine Learning Community
featuring
– Competitions  $$$, peer learning, experience,

portfolio

– Datasets

– Kernels

– Discussions

– Tutorials (“Courses”)

– Etc.

• Status incentives

https://www.kaggle.com/
https://www.kaggle.com/competitions
https://www.kaggle.com/datasets
https://www.kaggle.com/kernels
https://www.kaggle.com/discussion
https://www.kaggle.com/learn/overview

Kernels

• Jupyter notebooks of mixed text and Python/R

– Interleaved explanations and free runnable code

• E.g. https://www.kaggle.com/mjbahmani/a-
comprehensive-ml-workflow-with-python

https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python
https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python
https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python
https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python
https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python
https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python
https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python
https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python
https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python
https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python
https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python
https://www.kaggle.com/mjbahmani/a-comprehensive-ml-workflow-with-python

Discussions

Tutorials

Status Incentives

Kaggle CTRP Competitions

Criteo Display Advertising Challenge

https://www.kaggle.com/c/criteo-display-ad-challenge

https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge

Criteo Display Advertising Challenge

• Criteo Display Advertising Challenge Data:

– Features (inputs):

• 13 numeric: unknown meanings, mostly counts, power
laws evident

• 26 categorical: unknown meanings, hashed (encoding
without decoding), few dominant, many unique

– Target (output): 0 / 1 (didn’t / did click through)

Mysterious Data

Source: https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf

https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf

Mysterious Data

Source: https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf

Unknown Labels: meanings of numbers and categories not given

https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf

Mysterious Data

Source: https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf

Categorical data is hashed.

https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf

Hashing

• A hash function takes some data
and maps it to a number.

• Example: URL (web address)
– Representation: string of characters
– Character representation: a

number (Unicode value)
– Start with value 0.
– Repeat for each character:

• Multiply value by 31
• Add next character Unicode to value

– Don’t worry about overflow – it’s
just a consistent “mathematical
blender”.

“Hi”
H = 72, i = 105
31 * 72 + 105 = 2337

https://en.wikipedia.org/wiki/Hash_function

Hash Function Characteristics

• Mapping: same input  same
output

• Uniform: outputs have similar
probabilities
– Collision: two different inputs 

same output

– Collisions are allowable (inevitable if
#data > #hash values) but not
desirable.

• Non-invertible: can’t get back input
from output (e.g. cryptographic
hashing, anonymization)

https://en.wikipedia.org/wiki/Hash_function

Missing Data

• The first 10 lines of the training data:

• Missing numeric and categorical features:

…

Missing Data: Imputation

• One approach to dealing with missing data is to
impute values, i.e. replace with reasonable values
inferred from surrounding data.

• In other words, create predictors for each value
based on other known/unknown values.

• Cons:
– Difficult to validate.

– In Criteo data, missing values are correlated.

– So … we’re writing predictors to impute data we’re
learning predictors from?

General Introduction to Handling Missing Data

https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4

Missing Data: Embrace the
“Unknown”

• Retain “unknown” as data that contains
valuable information.

• Does the lack of CTR context data caused by
incognito browsing mode provide information
on what a person is more likely to click?

• Categorical data: For each category C# with
missing data, create a new category value
“C#:unknown”.

Missing Data: Embrace the
“Unknown”

• Numeric data:

– Create an additional feature that indicates
whether the value for a feature is (un)known.

• Additionally could impute mean, median, etc., for
unknown value.

– Convert to categorical and add “C#:unknown”
category…

Numeric to Categorical: Binning

• Histogram-based
– Uniform ranges: (+) simple (-) uneven distribution,

poor for non-uniform data
– Uniform ranges on transformation (e.g. log): (+)

somewhat simple (-) transformation requires
understanding of data distribution

• Quantiles
– E.g. quartiles = 4-quantiles, quintiles = 5-quantiles
– (+) simple, even distribution by definition, (-)

preponderance of few values  duplicate bins
(eliminate)

Categorical to Numeric:
One-Hot Encoding

• For each categorical input variable:
– For each possible category value, create a new numeric

input variable that can be assigned numeric value 1
(“belongs to this category”) or 0 (“does not belong to this
category).

– For each input, replace the categorical value variable with
these new numeric inputs.

https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding

https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding
https://www.kaggle.com/dansbecker/using-categorical-data-with-one-hot-encoding

Categorical to Numeric: Hashing

• When there are a large number of categories,
one-hot encoding isn’t practical.

– E.g. Criteo data category C3 in its small sample of CTR
data had 10,131,226 distinct categorical values.

– One approach (e.g. for power law data): one-hot
encode few dominant values plus “rare” category.

– Hashing trick:

• Append category name and unusual character before
category value and hash to an integer.

• Create a one-hot-like category for each integer.

Hashing Trick Example

• From https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf:

• Fundamental tradeoff: greater/lesser number
hashed features results in …
– … more/less expensive computation

– … less/more frequent hash collisions (i.e. unlike categories treated as
like)

https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf

Logistic Regression Motivation

• Logistic regression is perhaps the simplest
technique to beat the Criteo benchmark,
scoring ~42nd percentile on leaderboard:
– https://www.kaggle.com/c/criteo-display-ad-

challenge/discussion/10322

– 100 lines of Python, 200MB RAM, 30 min. training

– Also: logistic regression recommended for CTRP
by researchers of Criteo, Microsoft, LinkedIn,
Google, and Facebook for practical, scalable
implementation.

https://www.kaggle.com/c/criteo-display-ad-challenge/discussion/10322
https://www.kaggle.com/c/criteo-display-ad-challenge/discussion/10322
https://www.kaggle.com/c/criteo-display-ad-challenge/discussion/10322
https://www.kaggle.com/c/criteo-display-ad-challenge/discussion/10322
https://www.kaggle.com/c/criteo-display-ad-challenge/discussion/10322
https://www.kaggle.com/c/criteo-display-ad-challenge/discussion/10322
https://www.kaggle.com/c/criteo-display-ad-challenge/discussion/10322
https://www.kaggle.com/c/criteo-display-ad-challenge/discussion/10322
http://people.csail.mit.edu/romer/papers/TISTRespPredAds.pdf
http://people.csail.mit.edu/romer/papers/TISTRespPredAds.pdf
https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/41159.pdf
http://quinonero.net/Publications/predicting-clicks-facebook.pdf

Example: Passing vs. Studying

Unknown Logistic Model

Misapplication of Linear Regression

Logistic Regression Recovering Model

Logistic Regression with Stochastic
Gradient Descent

• Output:
• Initially: β0 = β1 = 0
• Repeat:

– For each input x,
• Adjust intercept β0 by learning rate * error * p′(x)
• Adjust coefficient β1 by learning rate * error * p′(x) * x

• Note:
– Error = y - p(x)
– p′(x) = p(x) * (1 – p(x)) (the slope of p at x)
– This is neural network learning with a single logistic

neuron with bias input of 1

Logistic Regression Takeaways

• The previous algorithm doesn’t require
complex software. (12 lines raw Python code)

• Easy and effective for CTR prediction.

• Key to good performance: skillful feature
engineering of numeric features

• Foreshadowing: Since logistic regression is a
simple special case of neural network
learning, I would expect deep learning tools to
make future inroads here.

Maximizing Info with Decisions

• Number Guessing Game example:

– “I’m thinking of a number from 1 to 100.”

– Number guess  “Higher.” / “Lower.” / “Correct.”

– What is the best strategy and why?

• Good play maximizes information according to
some measure (e.g. entropy).

Decision Trees for Regression
(Regression Trees)

• Numeric features (missing values permitted)

• At each node in the tree, a branch is decided
on according to a features value (or lack
thereof)

A regression tree estimating the probability of kyphosis (hunchback) after surgery,
given the age of the patient and the vertebra at which surgery was started.
Source: https://en.wikipedia.org/wiki/Decision_tree_learning

https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning

The Power of Weak Classifiers

• Caveats:
– Too deep: Single instance leafs  overfitting; similar

to nearest neighbor (n=1)

– Too shallow: Large hyperrectangular sets 
underfitting; poor, blocky generalization

• Many weak classifiers working together can
achieve good fit and generalization.
– “Plans fail for lack of counsel, but with many advisers

they succeed.” – Proverbs 15:22

• Ensemble methods: boosting, bagging, stacking

Gradient Boosting of Regression Trees

• Basic boosting idea:
– Initially, make a 0 or constant prediction.

– Repeat:
• Compute prediction errors from the weighted sum of

our weak-learner predictions.

• Fit a new weak-learner to predict these errors and add
its weighted error-prediction to our model.

• Alex Rogozhnikov’s beautiful demonstration:
https://arogozhnikov.github.io/2016/06/24/gr
adient_boosting_explained.html

https://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html
https://arogozhnikov.github.io/2016/06/24/gradient_boosting_explained.html

XGBoost

• “Among the 29 challenge winning solutions

published at Kaggle’s blog during 2015, 17

solutions [~59%] used XGBoost. Among these

solutions, eight [~28%] solely used XGBoost

to train the model, while most others combined

XGBoost with neural nets in ensembles.” -
Tianqi Chen, Carlos Guestrin. “XGBoost: A Scalable Tree
Boosting System”

https://arxiv.org/pdf/1603.02754.pdf
https://arxiv.org/pdf/1603.02754.pdf
https://arxiv.org/pdf/1603.02754.pdf
https://arxiv.org/pdf/1603.02754.pdf

XGBoost Features

• XGBoost is a specific implementation of gradient
boosted decision trees that:
– Supports a command-line interface, C++, Python

(scikit-learn), R (caret), Java/JVM languages + Hadoop
platform

– A range of computing environments with
parallelization, distributed computing, etc.

– Handles sparse, missing data

– Is fast and high-performance across diverse problem
domains

– https://xgboost.readthedocs.io

https://xgboost.readthedocs.io/
https://xgboost.readthedocs.io/

Field-aware Factorization Machines
(FFMs)

• Top-performing technique in 3 of 4 Kaggle CTR
prediction competitions plus RecSys 2015:
– Criteo: https://www.kaggle.com/c/criteo-display-ad-

challenge

– Avazu: https://www.kaggle.com/c/avazu-ctr-
prediction

– Outbrain: https://www.kaggle.com/c/outbrain-click-
prediction

– RecSys 2015:
http://dl.acm.org/citation.cfm?id=2813511&dl=ACM
&coll=DL&CFID=941880276&CFTOKEN=60022934

https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/outbrain-click-prediction
https://www.kaggle.com/c/outbrain-click-prediction
https://www.kaggle.com/c/outbrain-click-prediction
https://www.kaggle.com/c/outbrain-click-prediction
https://www.kaggle.com/c/outbrain-click-prediction
http://dl.acm.org/citation.cfm?id=2813511&dl=ACM&coll=DL&CFID=941880276&CFTOKEN=60022934
http://dl.acm.org/citation.cfm?id=2813511&dl=ACM&coll=DL&CFID=941880276&CFTOKEN=60022934

What’s Different? Field-Aware Latent
Factors

• Latent factor

– learned weight; tuned variable

– How much an input contributes to an output

• Many techniques learn “latent factors”:

– Linear regression: one per feature + 1

– Logistic regression: one per feature + 1

What’s Different? Field-Aware Latent
Factors (cont.)

• Many techniques learn “latent factors”:

– Degree-2 polynomial regression: one per pair of
features

– Factorization machine (FM):

• k per feature

• “latent factor vector”, a.k.a. “latent vector”

What’s Different? Field-Aware Latent
Factors (cont.)

• Many techniques learn “latent factors”:

– Field-aware Factorization machine (FFM):

• k per feature and field pair

• Field:
– Features are often one-hot encoded

– Continuous block of binary features often represent different
values for the same underlying “field”

– E.g. Field: “OS”, features: “Windows”, “MacOS”, “Android”

– libffm: FFM library (https://github.com/guestwalk/libffm)

https://github.com/guestwalk/libffm
https://github.com/guestwalk/libffm

Winning Team Process

• From https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf:

https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf
https://www.csie.ntu.edu.tw/~r01922136/kaggle-2014-criteo.pdf

Is the Extra Engineering Worth it?

• Kaggle Criteo leaderboard based on
logarithmic loss (a.k.a. logloss)

– 0.69315  50% correct in binary classification
(random guessing baseline)

• Simple logistic regression with hashing trick:

– 0.46881 (private leaderboard) ~62.6% correct

• FFM with feature engineering using GBDT:

– 0.44463 (private leaderboard) ~64.1% correct

Computational Cost

• ~1.5% increase in correct prediction, but
greater computational complexity:

– Logistic regression: n factors to learn and relearn
in dynamic context

– FFM: kn2 factors to learn and relearn

Published Research from the Trenches

• Initial efforts focused on logistic regression

• Most big production systems reportedly kept
it simple in the final stage of prediction:
– Google (2013): prob. feature inclusion + Bloom

filters  logistic regression

– Facebook (2014): boosted decision trees 
logistic regression

– Yahoo (2014): hashing trick  logistic regression

• However…

https://research.google.com/pubs/archive/41159.pdf
https://research.fb.com/wp-content/uploads/2016/11/practical-lessons-from-predicting-clicks-on-ads-at-facebook.pdf?
http://people.csail.mit.edu/romer/papers/TISTRespPredAds.pdf

Towards Neural Network Prediction

• More recently, Microsoft (2017) research

– reports “factorization machines (FMs), gradient
boosting decision trees (GBDTs) and deep neural
networks (DNNs) have also been evaluated and
gradually adopted in industry.”

– recommends boosting neural networks with
gradient boosting decision trees

https://www.microsoft.com/en-us/research/wp-content/uploads/2017/04/main-1.pdf

Perspective

• The last sigmoid layer of a neural network (deep or
otherwise) for binary classification is logistic regression.

• Previous layers of a deep neural network learn an internal
representation of inputs, i.e. perform automatic feature
engineering.

• Thus, most efforts to engineer successful, modern CTR
prediction systems focus on layered feature engineering
using:
– Hashing tricks
– Features engineered with GBDTs, FFMs, and deep neural

networks (DNNs), or a layered/ensembled combination thereof.

• Future: Additional automated feature representation
learning with deep neural networks

CTRP Conclusions

• To get prediction performance quickly and easily,
hash data to binary features and apply logistic
regression.

• For + few % of accuracy, dig into Kaggle forums
and the latest industry papers for a variety of
means to engineer features most helpful to CTR
prediction. We’ve surveyed a number here.

• Knowledge is power. ( data   predictions)

• Priority of effort:  data >  feature engineering >
 learning/regression algorithms.

Next Steps

• Interested in learning more about Data Science and
Machine Learning?

– Create a Kaggle Account

– Enter a learning competition, e.g. “Titanic: Machine
Learning from Disaster”

– Take related tutorials, learn from kernels and discussions,
steadily work to improve your skills, and share it forward

https://www.kaggle.com/c/titanic
https://www.kaggle.com/c/titanic

