

IBM RT PC Advanced Interactive Executive Operating System Version 2.1

Managing the AIX Operating
System

Programming Family

-~- ----- -------- -. ---- - - ---------
-~-.-

Personal
Computer
Software

First Edition (January 1987)

Portions of the code and documentation described in this book were developed at the Electrical Engineering and Computer
Sciences Department at the Berkeley Campus of the University of California under the auspices of the Regents of the
University of California.

This edition applies to Version 2.1 ofIBM RT PC AIX Operating System Licensed Program, and to all subsequent releases until
otherwise indicated in new editions or technical newsletters. Changes are made periodically to the information herein; these
changes will be reported in technical newsletters or in new editions of this publication.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any functionally equivalent program may be used instead.

International Business Machines Corpora.tion provides this manual "as is," without warranty of any kind, either
express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IBM may make improvements and/or changes in the product(s) and/or the program(s) described
in this manual at any time.

Products are not stocked at the address given below. Requests for copies of this product and for technical information about
the system should be made to your authorized IBM RT PC dealer or your IBM marketing representative.

A reader's comment form is provided at the back of this publication. If the form has been removed, address comments to IBM
Corporation, Department 997, 11400 Burnet Road, Austin, Texas 78758. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

©Copyright International Business Machines Corporation 1985, 1987
©Copyright INTERACTIVE Systems Corporation 1984, 1987
©Copyright AT&T Technologies 1984

About This Book

A computer system has two main parts:

Hardware The physical components of the system.

Software The programs that control how the hardware works.

On the IBM RT Personal Computer! system, there are two types of
software:

The operating system
A set of programs that controls how the system works.
Some of the tasks an operating system usually performs
are allocating system resources, scheduling operations,
and controlling the flow of data through the system.

Application programs
Software that performs a particular task such as word
processing, project planning, or inventory control.

The AIXI Operating System consists of a kernel (the programs that
control how the system works) and a shell or (command
interpreter). The shell provides a set of commands (programs)
that cause the system to perform specific operations. The subject
of this book is the AIX Operating System-a part of the RT PC
system that exists between the hardware and the application
programs. To determine whether you want to work with the AIX
Operating System as this book describes, please read the remainder
of this section.

RT, RT PC, RT Personal Computer, and AIX are trademarks of International
Business Machine Corporation.

About This Book iii

The AIX Operating System is based on UNIX2 System V, which
consists of a kernel and a standard UNIX shell (the Bourne shell).
Your RT PC system may have additional command interpreters
installed, for example:

• csh (described under csh in AIX Operating System Commands
Reference

• DOS Services (described in Using AIX Operating System
DOS Services)

• Usability Services (described in Usability Services Guide).

This book explains how to manage the AIX system. System
management is a broad term for all of the tasks required to adapt
the AIX Operating System to your needs and to keep the system in
good working order. Among the topics included are:

• Setting up user accounts of different types

• Creating, using, and maintaining file systems

• Making backup copies of information stored on the system

• U sing system accounting facilities.

Who Should Read This Book

This book is written for those who are responsible for managing an
AIX system. If more than one person uses your system, system
management responsibilities may be given to one person or shared
among several. If you are the only person using your system, you
still must perform certain system management tasks.

2 UNIX was developed and licensed by AT&T. It is a registered trademark of
AT&T in the United States of America and other countries.

iv Managing the Operating System

Before Y ou Begin

Before you can begin to work with this book, your RT PC system
must be set up and the AIX Operating System must be installed. In
addition, you should have a user name and possibly a password.
If your system is not installed, see Installing and Customizing the
AIX Operating System. If you need a user name, see "Creating,
Changing, and Removing Accounts-The users Command" on
page 2-16.

Note: Many of the tasks in this book require you to use one of
the RT PC text editing programs. The following editing programs
are available on the RT PC system:

o ed (see Using the AIX Operating System)

• INed3 (see INed)

o vi (see AIX Operating System Commands Reference)

How to Use This Book

This book is divided into chapters, with each chapter devoted to a
major AIX Operating System concept or feature:

• Chapter 1, "Introduction to System Management" on page 1-1
includes background information necessary for effective system
management. It explains the structure of the system in general,
and the file system in particular, from the viewpoint of someone
responsible for managing and maintaining the AIX Operating
System.

• Certain system management tasks must be performed routinely.
Chapter 2, "Routine System Management" on page 2-1 explains
such common system management tasks as starting the system,
establishing user accounts, creating and using file systems, and
making backup copies of data stored in file systems.

INed is a registered trademark of INTERACTIVE Systems Corporation

About This Book v

• In addition to the routine system management tasks, there are
other tasks that you may need to perform periodically, as well
as other concepts that you should understand in order to make
your system as efficient and dependable as possible.
Chapter 3, "Maintaining the AIX Operating System" on
page 3-1 explains several of these system maintenance tasks,
including'the very important task of maintaining the file
system. This chapter also contains explanatory information
about the AIX Operating System input/output, queueing, and
error-reporting systems.

• Chapter 4, "Additional System Management Topics" on
page 4-1 is an assortment of other useful system management
information. Among the topics in this chapter are ways to
communicate with system users, how to run commands at
pre-determined times, and some considerations about system
security. You may find it helpful to simply browse through this
chapter, looking for features or capabilities that you can use to
make your system better suit your needs.

• The AIX Operating System includes an accounting system that
allows you to collect data about how your system is being used.
The accounting system, described in Chapter 5, "Running
System Accounting" on page 5-1, is most useful on systems that
have more than one user, especially those with more than one
display station attached.

• Chapter 6, "Using the System Activity Package" on page 6-1
describes the AIX Operating System facilities for measuring and
reporting input and output, processing unit utilization, file
system access, and other system activity. This chapter explains
how the system activity package works, what its capabilities
are, and how to use it to generate daily system activity reports.

In addition, this book also includes supplemental information in
the appendixes, and a glossary and an index to make it easier for
you to find information.

A Reader's Comment Form and Book Evaluation Form are
provided at the back of this book. Use the Reader's Comment
Form at any time to give IBM information that may improve the

vi Managing the Operating System

book. After you become familiar with the book, use the Book
Evaluation Form to give IBM specific feedback about the book.

About This Book vii

Special Features

You can use this book in one of two ways:

• As a training manual. Read and work through it from the first
chapter to the last one. This should give you a general
understanding of the AIX Operating System.

• As a reference manual. Use the "Contents" and "Index" to
locate particular topics. This is a good way to refresh your
memory or learn more details about the AIX Operating System.

This book uses type sty Ie to distinguish among kinds of
information. General information is printed in the standard type
style (the type style used for this sentence). The following type
styles indicate other types of information:

New terms
Each time a new term is introduced, its first occurrence is
printed in this type style (for example, "the AIX
Operating System file system").

System parts
The names for keys, commands, files, and other parts of
the system are printed in this type style (for example, "the
cp command").

Variable information
The names for information that you must provide are
printed in this type style (for example, "type yourname").

Special characters
Any characters that have a special meaning are printed
in this type style (for example, "the & and && operators
have different uses"). This type is also used for the
names of files that you create as you work through this
book (for example, "create a file named afi 1 e").

Information you are to type
Many examples in this book are designed for you to try
them on your own system; the information that you

viii Managing the Operating System

should type is printed in this type style (for example,
"type 1 s text and press Enter").

Where appropriate, the chapters and major sections of this book
begin with a box containing quick reference material, for example:

To Use a Quick Reference Box

1. Skip the quick reference boxes the first time you read a
section.

2. Use the quick reference boxes as a fast path through the
book.

3. Refer to the quick reference boxes to refresh your memory.

~-----------.-.-------

You should use the boxes for reference after you are generally
familiar with the contents of a section or chapter. You can skip
the box the first time you read a section. The boxes make a
convenient fast path through the book, but they are not
comprehensive and they are not intended to take the place of the
explanatory material in each section.

After the quick reference boxes, each chapter in this book takes
the same general approach to the topics it covers-a series of
explanations and examples. The examples build upon each other;
in many instances, an example uses a file created in a previous
example. Therefore, if you intend to follow the examples on your
system, it is important for you to work through each chapter from
start to finish.

In the examples, the characters you should type are printed in blue,
as this example shows:

$ 15
afi1e
bfile
cfi 1 e

$

After you type the characters on a line, press the Enter key.

About This Book ix

Related Books

In the text, whenever you are told to enter a command or other
information, you should type the information and then press the
Enter key.

• IBM RT PC Installing and Customizing the AIX Operating
System provides step-by-step instructions for installing and
customizing the AIX Operating System, including how to add or
delete devices from the system and how to define device
characteristics. This book also explains how to create, delete,
or change AIX and non-AIX minidisks.

• IBM RT PC Using the AIX Operating System describes using
the AIX Operating System commands, working with file
systems, and developing shell procedures.

• IBM RT PC AIX Operating System Commands Reference lists
and describes the AIX Operating System commands.

• IBM RT PC Guide to Operations describes the IBM 6151 and
IBM 6150 system units, the displays, keyboard, and other
devices that can be attached. This guide also includes
procedures for operating the hardware and moving the IBM
6151 and IBM 6150 system units.

• IBM RT PC Problem Determination Guide provides instructions
for running diagnostic routines to locate and identify hardware
problems. A problem determination guide for software and
three high-capacity (1.2MB) diskettes containing the IBM RT
PC diagnostic routines are included.

• IBM RT PC Usability Services Guide shows how to create and
print text files, work with directories, start application
programs, and do other basic tasks with Usability Services.
(Packaged with Usability Services Reference)

• IBM RT PC Usability Services Reference supplements IBM RT
PC Usability Services Guide by including information on using
all of the Usability Services commands. (Packaged with
Usability Services Guide)

x Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

• IBM RT PC Exploring Usability Services is an online tutorial
for first-time users of the Usability Services. This tutorial
simulates the user interface and shows how to use the keyboard
and the optional mouse, how to manipulate windows, and how
to use files and directories.

• IBM RT PC Messages Reference lists messages displayed by the
IBM RT PC and explains how to respond to the messages.

• IBM RT PC Using AIX Operating System DOS Services
provides step-by-step information for using AIX Operating
System shell. (Available optionally; packaged with IBM RT PC
AIX Operating System DOS Services Reference)

• IBM RT PC AIX Operating System Technical Reference
describes the system calls and subroutines that a C programmer
uses to write programs for the AIX Operating System. This
book also includes information about the AIX file system,
special files, file formats, GSL subroutines, and writing device
drivers. (Available optionally)

• IBM RT PC AIX Operating System Communications Guide
provides information and customizing details on communicating
with other users in a multiple work station environment and in
two system-to-system configurations. One configuration links a
single interactive work station with a remote host, and the
other links two AIX-based systems for batch file transfer.

• IBM RT PC INed provides guide and reference information for
using the IN ed program to create and revise files.

• IBM RT PC AIX Operating System Programming Tools and
Interfaces describes the programming environment of the AIX
Operating System and includes information about using the
operating system tools to develop, compile, and debug programs.
In addition, this book describes the operating system services
and how to take advantage of them in a program. This book
also includes a diskette that includes programming examples,
written in C language, to illustrate using system calls and
subroutines in short, working programs. (Available optionally)

About This Book xi

TNL SN20-9862 (June 26 1987) to SBOF-0168

• IBM RT PC SN A Services Guide and Reference describes the
capabilities and functions provided by the IBM RT PC Systems
Network Architecture (SNA) Services when it is installed on an
IBM RT PC. It includes information on the structure and
operation of SNA (Systems Network Architecture) on the RT
PC, configuring a network, controlling SNA on the local
system, finding problems associated with SNA Services,
programming using the SNA Services application programming
interface, and using the Usability Services extensions that are
active when SNA Services is installed. (Available optionally)

• IBM RT PC Interface Program for use with TCPIIP describes
the Interface Program commands for transferring data among
host computers, logging into remote computers, and managing
networks. This book also describes the programming interfaces
to the Interface Program.

Ordering Additional Copies of This Book

To order additional copies of this publication (without program
diskettes), use either of the following sources:

• To order from your IBM representative, use Order Number
SBOF-0168.

• To order from your IBM dealer, use Part Number 92X1268.

A binder, and the Managing the AIX Operating System manual are
included with the order. For information on ordering the binder
and manual separately, contact your IBM representative or your
IBM dealer.

xii Managing the Operating System

Contents

Chapter 1. Introduction to System Management ... 1-1
About this Chapter 1-3
General System Structure 1-4
The File System-Background for System Management 1-8
The Base AIX File System 1-15

Chapter 2. Routine System Management 2-1
About This Chapter 2-3
Starting the System 2-4
Stopping the System 2-15
Managing User Accounts 2-16
Tailoring the User Environment 2-41
Information about File Systems-The / etc/filesystems File 2-47
Creating and Mounting File Systems 2-50
Backing up Files and File Systems 2-58
Managing the AIX Distributed Services Environment 2-73

Chapter 3. Maintaining the AIX Operating System . 3-1
About This Chapter 3-3
Maintaining the File System 3-4
The Input/Output System 3-17
Using the Queueing System 3-20
Customizirig Distributed Services 3-35
Handling System Errors 3-115
Generating aNew Kernel 3-132

Chapter 4. Additional System Management Topics . 4-1
About This Chapter 4-4
Updating the System and Installing Local Programs 4-5
Communicating with System Users 4-8
Setting the System Date 4-15
Understanding System Security 4-17
Running Commands at Pre-set Times 4-19
Monitoring Files and Directories that Get Larger

Automatically 4-24

Contents xiii

Finding Files and Directories 4-25
Managing Display Station Features 4-26
Managing Printers 4-34
Maintaining System Performance 4-37
Logging in Automatically 4-49
Introduction to International Character Support 4-50
Environment 4-55

Chapter 5. Running System Accounting 5-1
About This Chapter 5-3
An Introduction to System Accounting 5-4
Setting Up the Accounting System 5-9
Running Daily Accounting-The runacct Command 5-14
Accounting Reports 5-20
Accounting File Formats 5-24
Accounting System Files 5-27
Files in the /usr/adm Directory 5-27
Files in the /usr/adm/acct/nite Directory 5-27
Files in the /usr/adm/acct/sum Directory 5-28
Files in the /usr/adm/acct/fiscal Directory 5-29

Chapter 6. Using the System Activity Package 6-1
About This Chapter 6-3
An Introduction to the System Activity Package 6-4
System Activity Counters 6-5
System Activity Commands 6-8
System Activity Daily Reports 6-11
System Activity Data Structures and File Formats 6-13
sysinfo.h .. 6-13
sar Data File Structure 6-15

Appendix A. Printer Control Codes A-I

Appendix B. Getting Started With Distributed
Services Customization Commands B-1

Using Distributed Services Menus B-3
Command Bar Commands B-7
Using the dsldxprof Command B-19

Appendix C. Distributed Services Customization
Forms C-l

xiv Managing the Operating System

User IDs: '. C-3
Group IDs: '. C-4
User IDs: ... C-5
Group IDs: .. C-6

Figures X-I

Glossary X-3

Index ... X-27

Contents xv

xvi Managing the Operating System

Chapter 1. Introduction to System Management

,

,',
,;

".

r ~~

" "
--.

)
/

L
/1 L -- -"'" , ' ;"", ,',;,',r.' ,..;::~~,. ' ; ,,"" l"l

~""'~""",' ,",'~"""." ,1
·v

I
l

Introduction to System Management 1-1

CONTENTS

About this Chapter .. 1-3
General System Structure•................................ 1-4

The Virtual Resource Manager (VRM) 1-5
The Kernel .. 1-5
The Shell ... 1-6

The File System-Background for System Management 1-8
Bootstrap Block ... 1-10
The Superblock ... 1-11
I-nodes .. 1-11
Data Blocks .. 1-13

The Base AIX File System ... 1-15
Major Files and Their Functions 1-15
Finding and Viewing System Files 1-18

1-2 Managing the Operating System

About this Chapter

The AIX Operating System operating system is a powerful and
versatile tool. Generally, you use the operating system to do your
work-for example, to process data, edit text files, run spreadsheet
programs, and communicate with other users. There are times,
however, when you must work on the operating system itself-for
example, to add new users to the system or to create, back up, and
repair file systems. The work you do on the operating system is
called system management.

This chapter includes the background information necessary for
effective system management. While this chapter and the
remainder of this book provide much specific information and
careful guidance, you should understand that the job of system
management is not the same on any two systems, and that system
management requirements may change considerably on a particular
system over time. Thus, in addition to becoming familiar with the
information in the rest of this book, the best way to manage your
system effectively is to continue to learn about the AIX system and
the requirements placed on your system by its users.

Introduction to System Management 1-3

General System Structure

You can think of the AIX system as having four levels. At the first
level is the computer hardware, especially the system unit. At the
second level is the Virtual Resource Manager (VRM), a set of
programs that manages the resources of the computer (main
storage, disk storage, display stations, and printers). At the third
level is the AIX Operating System kernel, a group of programs that
send instructions to the VRM. At the fourth level are the
application programs such as the shell, text editors, electronic
spreadsheets, calendars, and communications programs. Together,
the hardware, VRM, AIX Operating System kernel, and application
programs comprise the RT PC system software.

AUS105149

Figure 1-1. Relationships Between RT PC Hardware and Software

1-4 Managing the Operating System

The Virtual Resource Manager (VRM)

The Kernel

The VRM is a group of programs that controls the system's
physical components (the hardware) and makes the functions of the
hardware available to an operating system (more than one
operating system can run on the same VRM). An operating system
interacts with the VRM as if the VRM were the hardware itself.

Through its management of hardware, the VRM provides virtual
resources to the operating system. A virtual resource, such as
virtual memory or a virtual terminal, is a simulation of a real
resource. Virtual resources are based on the real resources of the
system. The use of virtual resources makes the RT PC system more
flexible than it would be if the operating system had to use real
resources directly.

The kernel, using the VRM, controls the physical components of
the RT PC system. Among the tasks done by the kernel are:

• Scheduling of processes (programs or commands) so that each
process gets its share of processing unit time

• Handling data transfer (input and output) among system devices
(for example, keyboards, displays, printers, and storage media)

• Managing the file system so that data can be stored and
retrieved in an orderly way.

The shell and other programs use system calls to access the
kernel. You do not need to understand system calls in order to
manage your RT PC system. For those who do need to understand
them (programmers, for example), the system calls are described in
AIX Operating System Technical Reference.

Introduction to System Management 1-5

The Shell

The shell, often called an interface or a command interpreter, is
the part of the operating system that makes it possible for you to
use the kernel. The shell is actually an ordinary program that is
said to run on top of the kernel.

You can use different interfaces, or different versions of the
standard shell. Following is a list of the interfaces available on
the AIX system:

• AIX shell

• Usability Services, described in Usability Services Guide

• DOS Services, described in Using AIX Operating System
DOS Services

• C Shell, described under csh in AIX Operating System
Commands Reference.

The information in this book is about the standard AIX shell.

The shell makes it possible for other programs to run by starting
kernel processes. The kernel manages how its services are shared
among programs.

The shell also makes it convenient for you to use certain basic
kernel services, such as:

• Device-independent input and output (used by the shell to
accomplish I/O redirection; for more information about
redirecting the input and output, see Using the AIX Operating
System.)

• Pipes (For information about pipes, see Using the AIX
Operating System.)

1-6 Managing the Operating System

Finally, the shell is a command programming language. That
is, with the shell, you can develop your own commands or shell
procedures without having to use a conventional programming
language. (For more information about the shell, see Using the
AIX Operating System and sh in AIX Operating System Commands
Reference.)

Introduction to System Management 1-7

The File System-Background for System Management

Note: Before you begin this section, you should be familiar with
how the file system appears to an ordinary system user. For
information on file systems, see Using the AIX Operating System.

A file system is a complete directory structure, including a root
directory and any subdirectories and files beneath it. File systems
are confined either to a single minidisk (partition of a fixed disk)
or to a diskette (one file system per diskette). Some ot"tne most
important system management jobs have to do with file systems,
specifically:

• Allocating space for file systems on minidisks

• Creating file systems

• Making file system space available to system users

• Monitoring file system space usage

• Backing up file systems to guard against data loss in the event
of system or disk failures

• Maintaining file systems in a consistent state.

There are certain system commands designed specifically for
system management. Of those commands, the ones you probably
will use regularly for working with file systems are:

backup

clri

dd

df

Performs a full or incremental backup of a file system.

Clears i-nodes (used when file system inconsistencies
cannot be corrected by fsck).

Copies data directly from one device to another (for
making file system back ups).

Reports the amount of space used and free on a file
system.

1-8 Managing the Operating System

fsck Checks file systems and repairs inconsistencies.

mkfs Makes a file system of a specified size on a specified
minidisk.

mount Attaches a file system to the system-wide naming
structure so that files and directories in that file system
can be accessed.

restore Restores files from a backup.

umount Removes a file system from the system-wide naming
structure, making the files and directories in the file
system inaccessible.

Regardless of the device they reside on (diskette or minidisk), all
file systems have the same structure. Thus, you can move a file
system from one device to another, provided the destination device
is large enough. Disk space is allocated for file systems in blocks
that can contain 512 bytes of data.

A file system has four major parts:

• Bootstrap block

• Superblock

• I-node blocks

• Data blocks.

Figure 1-2 on page 1-10 represents the major parts of a file system.

Introduction to System Management 1-9

Bootstrap Block

AUS105151

Figure 1-2. Major Parts of an AIX File System

The first block of every file system (block 0) is reserved for a
bootstrap, or initialization, program. The bootstrap block is not
actually part of the file system structure. File system data begin
on block 1 of the minidisk.

1-10 Managing the Operating System

The Superblock

I-nodes

Block 1 of every file system is called the superblock. Among the
most important information the superblock contains are:

• Total size of the file system (in blocks).

• Number of blocks reserved for i-nodes (explained below).

• N arne of the file system.

• Volume ID of the minidisk or diskette.

• Date of the last superblock update.

• The head of the free-block list, a chain that contains all of the
free blocks in the file system (the blocks available for
allocation). When new blocks are allocated to a file, they are
allocated from this list. When a file is deleted, its blocks are
returned to this list.

• A list of free i-nodes. This is a partial list of i-nodes available
to be allocated for newly created files.

After the superblock there is a group of blocks that contain
i-nodes (descriptions of the individual files in the file system).
There is one i-node for each possible file in the file system. Each
i-node is associated with an i-node number, or i-number. For any
file system, there is a maximum number of i-nodes and thus, a
maximum number of files that the file system can contain. This
maximum number varies with the size of the file system. The first
i-node (i-node 1) on every file system is unnamed and unused.
When associated with files, the remaining i-nodes contain the
following information:

• File type. Possible file types are ordinary file, directory, block
device, character device, and first-in-first-out (also sometimes
called FIFO or named pipe).

Introduction to System Management 1-11

• File owner. The i-node contains the user and group IDs
associated with the file.

• Protection information. This is a specification of read, write,
and execute access for the owner, members of the group
associated with the file, and others. It also includes other mode
information specified by the chmod command. (For a
discussion of protections, see Using the A/X Operating System.)

• Link count. A directory entry (link) consists of a name and
the number of the i-node that represents the file (its i-number).
The link count specifies the number of directory entries that
refer to the file. A file is deleted when the link count becomes
zero. That is, its i-node is returned to the list of free i-nodes
and its associated data blocks are returned to the free-block
list. (For a discussion of links, see Using the A/X Operating
System.)

• Size of the file (in bytes).

• Date the file was last accessed.

• Date the file was last modified.

• Date the i-node was last modified.

• Pointers to data blocks. These pointers indicate the location
of the data blocks on the physical disk.

I-node 2 must correspond to the root directory for the file system.
All other files in the file system are below the root directory in the
file system. Beyond i-node 2, any i-node can be assigned to any
file. Similarly, any data block can be assigned to any file. Neither
i-nodes nor blocks have to be allocated in any particular order.

1-12 Managing the Operating System

Data Blocks

Beyond the i-nodes, the file system consists of data blocks. Each
data block can contain 512 bytes of information. The i-node points
directly to the first 10 data blocks of the file.

Previous I-node
Block

Next I-node
Block

I Data I roatal
Block ~

AUSI05154

Figure 1-3. Direct Pointers from an I-node to Data Blocks

When a file contains more than 10 blocks of data, block number 11
is an indirect block. The indirect block contains pointers to 128
additional data blocks. A file that has one indirect block is called
single-indirect, and has a maximum size of 139 blocks (the first 10
data blocks, plus the indirect block, plus the 128 data blocks.

If a file is larger than 138 blocks, block number 12 is a double
indirect block. A double-indirect block points to an indirect block
that contains 128 pointers to other indirect blocks. Each of those
indirect blocks in turn points to 128 data blocks. Thus, a
double-indirect file has a maximum size of 138 + (128 * 128), or
16,522 blocks.

The largest files possible are triple-indirect. Block number 13 of a
triple-indirect file points to the first of three levels of indirect
blocks, allowing a maximum file size of 16,522 + (128 * 128 *128),

Introduction to System Management 1-13

or 2,113,674 blocks. Figure 1-4 shows the relationship of data
blocks and indirect blocks associated with an i-node.

Figure 1-4. The Relationship of Data Blocks and Indirect Blocks

1-14 Managing the Operating System

AUS105155

The Base AIX File System

The AIX operating system is made up of four separate file systems:

I (called root)

lusr

Itmp

lu

Each of these file systems resides on a separate minidisk. The
system automatically mounts all four file systems when it
initializes. Under normal conditions, it does not matter that there
are four file systems-they mount automatically and function like a
single file system. However, multiple file systems are convenient
for certain system management tasks (for example, backing up,
restoring, and repairing file systems) because they allow you to
isolate a part of the system while you work on it.

Major Files and Their Functions

The AIX Operating System contains hundreds of files, even before
anyone creates work files on the system. (If you are curious about
just how many files the operating system contains, enter the
command 1 s -Ra to display the path name of every file in the
system.) You do not need to work directly with most of these files,
or even to know where they are located in the file system. There
are a few files, however, that are important in routine system
management. You should be familiar with what these files contain
and where they are located in the root file system. Figure 1-5 on
page 1-16 shows these files and their relationships.

Introduction to System Management 1-15

/'

-~

bin u dev etc lib lost & found tmp usr
I ;.

J ~
ddi passwd rc group

adm spool bin lib Ipd

AUSI05156

Figure 1-5. The Base AIX File System

Following are brief descriptions of the major AIX system files:

f

fdev

fete

fetcfddi

The highest directory in the file system hierarchy, usually
called the root directory.

A directory containing the special files that allow input
and output operations to system devices (such as fixed
disks, diskette drives, and terminals). (For more
information on special files and system devices, see "The
Input/Output System" on page 3-17.)

A directory containing most of the commands required for
system startup, and maintenance.

A directory containing files that describe system devices
(for example, printers). ddi stands for device dependent
information.

1-16 Managing the Operating System

fete/master
A file that contains information about system devices
used by the eonfig program to create configuration files.

/ete/passwd
A file containing the information that defines users for
the system (including encrypted passwords).

fete/group

/ete/re

/u

/usr

A file containing the information that defines groups of
users for the system.

A file containing the system startup routine (run
commands). The usual way to change how the system
starts up (for example, to specify what programs run
automatically) is to modify this file.

A directory containing the home directories of all system
users.

A directory containing other directories of commands.

/usr/adm
A directory containing the commands used in system
accounting operations.

/usr/spool

/usr/lpd

/usr/bin

A directory containing the spooled files to be sent
between users, between the system and devices, and
between systems.

A directory containing commands used to send data to
system printers and to collect accounting statistics on
printer usage.

A directory containing commands typically available to
all system users and not contained in /bin.

Introduction to System Management 1-17

/usr/lib

/bin

/lib

/tmp

A directory containing system libraries and system
management, text processing, and other commands not
found in /usr /bin or /bin.

A directory containing the basic commands required to
run the system. Additional commands are contained in
/usr/bin and /usr/lib.

A directory containing files that make up the C language
programming library and parts of the C compiler.

A directory containing temporary files created by
processes.

Finding and Viewing System Files

As you learn about the AIX system, you probably will find it very
helpful to be able to locate directories and files and look at their
contents. The following three commands make it easy for you to
do so:

find

Is

Use the find command to search the file system for a file
(or directory) when you know its name. The command:

find / -name filename -print

searches the file system, from the root directory (I) down,
for filename. If it finds a file with that name, it displays
the complete path name for that file. If filename is not in
the file system, the find command displays nothing when
it completes.

Use the Is (list directory) command to list the contents of
a directory. The command

1-18 Managing the Op~rating System

1 s dirname

lists the names of the entries in the directory dirname.
The name of the directory can be a path name. You can
use Is command flags to get different types of information
about the items in a directory. For information about the
different ways to use Is, see Using the AIX Operating
System and Is in AIX Operating System Commands
Reference.

Use the pg (page) command to display the contents of a
file one page at a time. The command

pg filenalne

displays the contents of filename one page at a time. At
the bottom of each page on the screen, the pg command
displays: (colon). To display the next screen of
information, press Enter. For more information on the
pg command, see Using the AIX Operating System or pg
in AIX Operating System Commands Reference. (You also
can use the cat [concatenate] command to display the
contents of a file; however, the cat command scrolls
through the entire file at once, rather than one page at a
time.)

For more information about these commands and the different ways
in which you can use them, see the appropriate entries in AIX
Operating System Commands Reference.

Introduction to System Management 1-19

1-20 Managing the Operating System

Chapter 2. Routine System Management

Routine System Management 2-1

CONTENTS

About This Chapter .. 2-3
Starting the System .. 2-4

System Initialization ... 2-4
Running the Maintenance System 2-6

Stopping the System ... 2-15
Managing User Accounts ... 2-16

Creating, Changing, and Removing Accounts-The users Command 2-16
Types of User Accounts ... 2-29
Using Different Log In Names .. 2-33
User Account Files .. 2-34

Tailoring the User Environment .. 2-41
/etc/environment .. 2-41
Login ... 2-45
/etc/profile and $HOME/.profile 2-45

Information about File Systems-The /etc/filesystems File 2-47
Creating and Mounting File Systems 2-50

Mounting and Unmounting File Systems 2-52
Creating and Mounting Diskette File Systems 2-54

Backing up Files and File Systems 2-58
Types of Back Ups ... 2-58
Backup Media .. 2-60
Backing Up the VRM Minidisk 2-62
Using the backup and restore Commands 2-64
Individual File Backup ... 2-68
Backing Up Complete File Systems with the dd Command 2-71

I Managing the AIX Distributed Services Environment 2-73
I Distributed Services File Systems 2-78
I Distributed Services ID Translation 2-85
I Listing Directory Contents- The li (List) Command 2-93

2-2 Managing the Operating System

About This Chapter

This chapter explains the routine tasks associated with managing
an AIX system. You may do some of the tasks described in this
chapter daily, for example, starting up and shutting down the
system, mounting and unmounting file systems, and backing up file
systems. Other tasks you probably will do less often-setting up
user accounts and creating new file systems. However,
understanding the information in this chapter will help you use the
AIX system effectively and keep it running smoothly.

Routine System Management 2-3

Starting the System

To start the AIX system under normal circumstances, turn on the
power switch for each system component. If there is a diskette in
drive 0 (A), the system will attempt to initialize from that diskette.
If there is no diskette in the drive, the system attempts to initialize
from the fixed-disk. Under normal circumstances, the system
should initialize from the fixed-disk. When the system successfully
initializes from the fixed-disk, it displays the copyright notice and
the 1 ogi n prompt. At that time, the system is ready for normal
use. For an explanation of how the initialization procedure works,
see "System Initialization."

For certain system management tasks, you occasionally need to
run a special version of your system: the maintenance system.
For an explanation of the maintenance system, see "Running the
Maintenance System" on page 2-6.

System Initialization

After loading the kernel into memory, the system goes through a
period of internal initialization, during which it runs internal
checks, initializes all memory, initializes some devices, and
analyzes the root file system. After completing its internal
initialization, the kernel starts the init (system initialization)
process. All other processes on the system (except the scheduler)
can be traced back to init. Most important of the processes that
init creates are the shell and the processes that allow users to gain
access to the system; that is, init runs the getty command for each
port (display station) defined on the system. (For more information
about the initialization processes, see init and getty in AIX
Operating System Commands Reference.)

If the kernel is loaded from the maintenance diskette, init
initializes the maintenance system. The maintenance system
consists of only a shell with superuser authority, the init process,
and the scheduler. (For more information about the maintenance
system, see "Running the Maintenance System" on page 2-6.) To
go from the maintenance system to normal operation, run
shutdown and then press SOFT IPL.

2-4 Managing the Operating System

When the system is initialized for normal operation, init creates a
shell process to run the commands in the /etc/rc file. The
commands in /etc/rc prepare the system for users to log in. If the
previous shutdown was not orderly, init runs the fsek command to
check the consistency of the root file system and all other file
systems normally checked (as specified in /ete/filesystems).

To alter the way the system starts up, edit the /ete/re file.
Generally, /ete/re contains three types of commands:

Housekeeping
One of the first commands in /etc/re is vrmconfig, which
configures the VRM for use with the AIX Operating
System. Se~ral commands in /ete/re make certain that
the system is 1n proper running condition, regardless of
its condition when it was last stopped. The fsek
command, which should be the first command in /ete/re,
checks the consistency of file systems and, as far as
possible, corrects file system problems. If fsek cannot
automatically repair the file system damage it detects, it
causes the shell to stop the system. You cannot start the
system until you repair the file system damage by running
the maintenance system as described under "Running the
Maintenance System" on page 2-6. Other housekeeping
commands remove files from temporary directories,
initialize queues, save logged data, restore certain files to
their original (default) states, and set up the ports that
give display stations access to the system.

Mounting
The rm -f /ete/mnttab command in /ete/re restores the
mount table to its default state. Then the fete/mount all
command mounts all of the file systems described in
jete/filesystems.

Starting daemons
Daemons are processes that should start when the system
starts and run until the system stops. The two most
important daemons started by /ete/re are eron and
qdaemon.

Routine System Management 2-5

The cron daemon runs the sync system call at 3D-second
intervals, completing any unfinished disk I/O. Thus, if
the system fails, data on the disks cannot be more than
one minute out of date. You can also use the cron
daemon to start processes (specified in
/usr/lib/cron/crontab) at preset times. For example,
cron can start the processing of system accounting data
late at night.

The qdaemon provides queued access to certain system
resources, such as printers. For more information on
queues, see "Using the Queueing System" on page 3-20.

Once it successfully completes the initialization process, init starts
the necessary getty processes to allow display stations to use ports.
After creating the initial loggers, the only function of init is to
create loggers or set up new ports as required.

Running the Maintenance System

The AIX maintenance system provides you with a way to perform
certain system management tasks without starting the system in
the normal manner. Yau can use the Illaintenance system for one
of two reasons:

• The system will not initialize. The maintenance system may
allow you to correct the problem that prevents your system
from operating normally.

• You need to perform system management tasks that would be
complicated by other processes running on the system. The
maintenance system is a very limited form of the operating
system, consisting of just the parts of the system required to
perform certain system management tasks.

The maintenance system is most useful for backing up and
repairing file systems or for making any change to the system that
might be complicated if other processes are running. For example,
during normal startup, the operating system tries to correct any
file system damage. However, some types of damage cannot be
corrected automatically. In such cases, the operating system

2-6 Managing the Operating System

displays a message indicating that the operator must help correct
the damage. To make the repairs, start the maintenance system
and do one of the following:

• Use the check a file system maintenance command (a version
of the fsck command described under "Checking and Repairing
File Systems-The fsck Command" on page 3-8).

• Start the standalone shell and run fsck on the damaged file
system.

Note: If you catch file system damage immediately, it is usually
simple to repair. However, if the system runs on a damaged file
system, the damage can spread, in some cases to the point that the
entire file system is unusable.

You should run fsck only on unmounted file systems, and you
should not need daemon processes while you use the maintenance
system (a daemon process is a process that runs continually in the
background, such as the process that manages printer queues).
Therefore, when you start the maintenance system, none of the
usual file systems are mounted and none of the usual daemon
processes are started.

The remainder of this section explains how to start and use the
maintenance system with the AIX Operating System
Installation/Maintenance diskette.

Routine System Management 2-7

To Start the IVlnin tennnce Systenl

• If the system is not powered on:

1. Insert the AIX Operating System
Installation/Maintenance diskette into diskette drive 0
(or A).

2. Turn on the power to all components as usual.

• If the system is powered on:

1. Be certain that all other users log out of the system.

2. Enter:

shutdov/n

3. When shutdown completes, insert the AIX Operating
System Installation/Maintenance diskette into diskette
drive 0 (or A).

4. Press SOFT IPL.

2-8 Managing the Operating System

Once initialized, the maintenance system displays the SYSTEM
MANAGEMENT menu:

SYSTEM MANAGEMENT

1 Install the Operating System

2 Use Maintenance Commands

3 Start the Standalone Shell

4 End System Management

To SELECT an Item, type its ID and press Enter: 1

Select item 2 to use the maintenance commands explained under
"Using Maintenance Commands" on page 2-10. Select item 3 to
use the standalone shell explained under "Using the Standalone
Shell" on page 2-11. To stop the maintenance system, select item 4.
Then, to initialize the system for normal operation, press SOFT
IPL.

.~"" .. '

Routine System Management 2-9

Using Maintenance Commands

When you choose item 2 (Use Maintenance Commands) on the
SYSTEM MANAGEMENT menu, the maintenance system displays
the USE MAINTENANCE COMMANDS menu:

USE MAINTENANCE COMMANDS

1 Show fixed disk minidisk information
2 Change load status of a fixed disk minidisk
3 Create a fixed disk minidisk
4 Delete a fixed disk minidisk

5 Check a file system
6 Make a file system

7 Format a diskette

8 Restore commands
9 Backup commands

To CANCEL a~d g~back to the SYSTEM MANAGEMENT menu, press F3.

To SELECT an Item, type its ID and press .Enter: 1

To select an item, enter its number.

For more information about the function of each maintenance
command, see the following:

Item ID Reference

1-4 Information on installing the AIX Operating System in
Installing and Customizing the AIX Operating System.

2-10 Managing the Operating System

5 "Checking and Repairing File Systems-The fsck
Command" on page 3-8.

6 "Creating and Mounting File Systems" on page 2-50.

7 "Formatting Diskettes" on page 2-55 and format in AIX
Operating System Commands Reference.

8-9 "Backing up Files and File Systems" on page 2-58.

Note: When you choose items 8 and 9 on the USE
MAINTENANCE COMMANDS menu to backup a file
system, the backups and restores are by i-node only.

Each item leads you through a series of menus that allow you to
accomplish a particular task.

U sing the Standalone Shell

When you choose item 3 (Start the Standalone Shell) on the
SYSTEM MANAGEMENT menu, the maintenance system displays
the following screen:

Notice that the standalone shell prompt is # rather than the $ of
the standard shelL

Routine System Management 2-11

The standalone shell is most useful for tasks that you cannot
perform while the operating system is running, such as repairing a
file system.

When you start the standalone shell, the init command runs
automatically, much as it does when you start the system for
normal operation. Once the standalone shell is started, the
following commands are available:

backup (make backup copies of files and file systems)

chparm (change system parameters)

clri (clear i-nodes)

cp (copy files)

dd (convert and copy files)

ed (edit files)

format (format diskettes)

fsck (check and repair file systems)

fsdb (debug file systems)

init (initialize system)

In (link files)

Is (list directory contents)

maint (maintenance program)

mkdir (make directories)

mkfs (make file systems)

mknod (create special files)

2-12 Managing the Operating System

mount (mount file systems)

mv (move files)

rm (remove files)

rmdir (remove directories)

sh (run a shell)

stty (set display station characteristics)

sync (update storage from buffers)

restore (restore backed up files and file systems)

tctl (send subcommands to the streaming tape device)

umount (unmount file systems)

Most of these commands are discussed in other sections of this
book (see the index) or in A/X Operating System Commands
Reference.

File systems used during normal mode operation may be mounted
from the standalone shell. The /mnt directory may be used for
this. For example, the root directory of the normal system is
created when the AIX Operating System is installed. The /dev/hdO
minidisk contains this file system. To access files on the normal
root file system from the standalone shell, use the command:

mount /dev/hdO /mnt

Likewise, /usr is found on the /dev/hd2 minidisk, /tmp is found on
the /dev/hd3 minidisk, and /u is found on the /dev/hdl minidisk.
Thus, you could also use the command:

mount /dev/hd2 /mnt/usr

The commands of the standalone shell may be extended by
mounting /dev/hdO and /dev/hd2 and running commands that exist
on these file systems.

Routine System Management 2-13

1. To examine data or to run normal mode commands, enter:

mount /dev/hdO /mnt
mount /dev/hd2 /mnt/usr
mount /dev/hdl /mnt/u
mount /dev/hd3 /mnt/tmp
PATH=/mnt/bin:/mnt/usr/bin:$PATH
cd /mnt

2. To check the root file system, enter:

fsck /dev/hdO

3. To check the /usr file system, enter:

fsck /dev/hd2

4. To make backups by name, enter:

mount /dev/hdO /mnt
mount /dev/hd2 /mnt/usr
mount /dev/hdl /mnt/u
mount /dev/hd3 /mnt/tmp
backup -i
cd !mnt

(Enter the file names relative to the current working directory,
that is, etc/system, bin/cp.)

To end the standalone shell, press END OF FILE.

2-14 Managing the Operating System

Stopping the System

The AIX system can run multiple processes, including background
processes, at the same time. To prevent damage to the file system,
you should bring all processes to an orderly stop before you turn
off the power to the computer. The shutdown command (described
from a user's perspective under "Starting the System" on page 2-4)
is the usual way to bring the system to an orderly stop.

During the default shutdown, all users are notified through the
wall command of the impending system shutdown. The hold
command prevents any new logins. After the specified number of
seconds (60 by default), the system stops the accounting and
error-logging processes. shutdown then runs the killall command
to end any remaining processes and runs the sync command to
flush all memory resident disk blocks. Finally, it unmounts the file
systems and sends the appropriate signal to init and prints the
message: Shutdown camp 1 eted At this point, you can
safely turn off the power switch on the system unit.

Note: If you have a single user system, you may wish to do a
shutdown -f to eliminate the message from the wall command and
the delay.

For information related to stopping the system, see "Disk
Buffering-the sync Command" on page 3-5.

Routine System Management 2-15

Managing User Accounts

Giving users access to the system is an important system
management task. Even if you are the only user on the system,
you may need to create accounts, remove accounts, and change
account information occasionally. You can perform these account
management tasks with the users command described under
"Creating, Changing, and Removing Accounts-The users
Command." To manage the accounts on your system most
effectively, you also should be familiar with the information under
"Types of User Accounts" on page 2-29, "Using Different Log In
Names" on page 2-33, and "User Account Files" on page 2-34.

Note: Another name for users is add user.

Creating, Changing, and Removing Accounts-The users
Command

The users command is a tool for managing user accounts. users
provides the following sub commands:

add

change

delete

help

Creates new user accounts and new groups.

Changes account and group information, such as user
name, password, and group ID.

Removes accounts or groups from the system.

Displays the users subcommands.

invalidate Makes a user password invalid.

quit Puts changes into effect and ends users.

show Displays user or group account information.

To run the users command, you must be a member of the system
group or have superuser authority.

2-16 Managing the Operating System

Starting and Stopping users

[To Start users

• Enter users.

After you start users, you can use any of its subcommands to
perform your account management tasks. Enter? (question mark)
to display the list of subcommands:

Available commands are:

a [dd]
c[hange]
d [e 1 eteJ
h[elp]
i[nvalidate]
q[uit]
s [how]

user or group
user or group
user or group
print this message
a user
finalize changes and exit
user or group

 will exit without changing any of the files.
>

Note: The DEL key referred to in this message corresponds to
INTERRUPT.

To select a subcommand, type its initial letter (for example, a for
add) and press Enter. If the subcommand requires you to specify
user or group, use the abbreviation u or g (for example, a u tom).

To show the information about a user, enter: show user username
(or S u username). To show the information about a group, enter:
show group groupname (or s g groupname).

To display help information, enter: h.

Routine System Management 2-17

To Stop users

• To stop users without making any changes, press
INTERRUPT.

OR

• To put changes you have made into effect and stop users,
enter q.

The following sections explain how to use the remaining users
subcommands (add, change, delete, and invalidate).

2-18 Managing the Operating System

Using the a[dd] Subcommand

To Add a User

1. Enter: users (If users is already started, go to step 2.)

2. After the> prompt, enter: a u username. (Use lowercase
letters for the names of users you add to the system.)

3. To add user information, enter: n after OK? (y).

4. To add the user's full name:

a. Enter: fu after the Fi e 1 d? prompt.
b. Enter the user's full name (for example, john doe,

5. To add a password:

a. Enter: pa after the Fi e 1 d? prompt.
b. Enter the password.

6. To add other information:

a. After the Fi e 1 d? prompt, enter enough of the field name
to identify it.

b. Enter the information.

7. When your changes are complete, press Enter after the
Fie 1 d? prompt. users displays the new information
(passwords are encrypted).

8. If the changes are correct, press Enter after the OK? (y)
prompt to add the new user to the system. (If the changes
are not correct, enter n and then make the necessary
corrections) .

9. Press Enter after the prompt Standard new user
initialization? (y).

10. Enter another subcommand or stop users.

Routine System Management 2-19

Note: You are not allowed to change the information in the opt.
groups field from the add user subcommand. To add a user to a
group, use the change group subcommand.

You can set the values for other items with the same procedure
used to set Full name and Password. For more information about
user accounts, see "Types of User Accounts" on page 2-29.

To Add a Group

1. Enter: users. (If users is already started, go to step 2.)

2. After the> prompt, enter a 9 groupname.

3. To accept the displayed information, press Enter after the
OK? (y) prompt. (To add group information, enter n after
the OK? (y) prompt.)

4. To add a group password:

a. Enter pa after the Fi e 1 d? prompt.
b. Enter the group password.

5. To add members to a group:

a. Enter m after the Fi e 1 d? prompt.
b. Enter a ..
c. Enter the username of the user you are adding.

Note: Be sure to type the name correctly because there is
no check to verify if this name is defined.

6. To end this procedure, press Enter after the Fi e 1 d?
prompt.

7. If the changes are correct, press Enter after the OK? (y)
prompt to add the group to the system.

8. Enter another subcommand or stop users.

2-20 Managing the Operating System

For more information about groups and the fields used by the add
group command, see "The Group File" on page 2-38.

Routine System Management 2-21

Using the c[hange] Subcommand

To Change User Information

1. Enter: users (If users is already started, go to step 2.)

2. After the > prompt, enter c u username

3. To make changes to the displayed information, enter n
after the OK? (y) prompt.

4. Enter the name of the field you want to change after the
Fi e 1 d? prompt.

5. Enter the information for the field you specified.

6. Use the same method to change the information in other
fields.

7. When your changes are complete, press Enter after the
Fi e 1 d? prompt.

8. If the changes are correct, press Enter after the OK? (y)
pronlpt. users displays the [UPDATED] message.

9. Enter another subcommand or stop users.

For more information about the fields for which you can change
values, see "The /etc/passwd File" on page 2-35.

Note: You cannot change the information in the opt. groups
field from the c u subcommand. To add a user to a group, use the
change group subcommand.

2-22 Managing the Operating System

To Change Group Information

1. Enter: users. (If users is already started, go to step 2.)

2. After the> prompt, enter c 9 groupname.

3. To make changes to the displayed information, enter n
after the OK? (y) prompt.

4. Enter the name of the field you want to change after the
Fie 1 d? prompt. (For example, to change the members
shown as part of the group, enter m or member.

5. Enter a or d

6. Enter the user name you wish to add or delete. Be sure to
type the name correctly because there is no check to verify
if this name is defined.

7. When your changes are complete, press Enter after the
Fi e 1 d? prompt.

8. If the changes are correct, press Enter after the OK? (y)
prompt. users displays the [UPDATED] message:

9. Enter another subcommand or stop users.

Routine System Management 2-23

Using the d[elete] Subcommand

To Delete a User

1. Determine if you want to save the files in the user's
directory. If you do, change the name of the directory,
change the owner of the directory, or follow the
instructions in step 3 for saving files. If you do not want to
save the files, remove all files (including the hidden files
such as the .profile file) from the directory of the user that
is to be deleted.

2. Enter: users. (If users is already started, go to the next
step.)

3. After the> prompt, enter d u username. users displays the
prompt Should the login directory (/u/usernarne) be
removed? (y). If you want to save the files in that
directory, type n and press the Enter key.

If you do not want to save the files, press the Enter key,
and you should see the [0 EL ET ED] message.
(If you have not removed all files from the user's login

directory, users displays the message, The uSer cannot be
deleted because the user's login directory is not
empty.

4. To verify that the user is deleted, enter s u username.
users should display a message indicating that there is no
such user.

5. Enter another subcommand or stop users.

Notes:

1. Be sure to change the ownership of (or delete) all files owned by
the user who is being deleted, including files which may reside
in directories other than the /u/username directory. Failure to
do so may cause problems later. The owner of a file is
identified by the user number (UID). Later, when a new user is
added to the system, the same number may be used by the

2-24 Managing the Operating System

system again. The new user can then own any of the files
which were not removed or for which ownership was not
changed. For information about changing the ownership of a
file, see the chown command in A/X Operating System
Commands Reference.

2. When you delete a user, you have the choice of removing all of
the files in that user's login directory or answering no to the
prompt, Should the user's login directory be removed? If
you answer no to the prompt, the entry for username is removed
from the /etc/passwd file, but the /u/username directory will
not be removed. You would not have to copy the files you want
to save to another directory, but you would need to change the
ownership of the files in the /u/username directory and of any
other files owned by that user.

Routine System Management 2-25

To Delete a Group

1. Enter: users. (If users is already started, go to the next
step.)

2. After the> prompt, enter s 9 groupname. Write down the
names of all the users listed under Members.

3. After the > prompt, enter s u username for one of the
members of the group. Check to see if the group you want
to delete is listed under Group. If it is, use the e u
username subcommand to change the Group field. Repeat
this step for each user you listed in the previous step.

Note: See the example below for an alternate method for
determining which users use the group you want to delete
as their primary group. If there is a large number of
members in the group, you may prefer the alternate
method.

4. After the> prompt, enter d 9 groupname. users displays
the [DELETED] message.

5. To verify that the group is deleted, enter s 9 groupname.
users should display a message indicating that there is no
such group.

6. Enter another subcommand or stop users.

Note: Before deleting a group, change the group field for all users
using that group as their primary group. The next group added is
assigned that group id. Users may get incorrect group
assignments.

You can use an alternate method to delete a group. In the
following example, the group is named groupl. Use information in
the fete/group and /ete/passwd files to determine which users
have groupl as their primary group.

2-26 Managing the Operating System

Enter pg fete/group to display the group file. For more
information about the /etc/group files see "The Group File" on
page 2-38. The following example shows groupl with a group
number (GID) of 200:

system: :O:root,su
staff::1:user2,user3,user4,user5
bin::2:root,su,bin
sys::3:root,su,bin,sys
adm::4:root,su,bin,adm
mail: :6:root.su
usr::100:guest
group1: :200:user3,user4,user1

Note that the group number for groupl is 200. You can also get
this information by using the s g groupl subcommand after
starting users. The group number is shown in the GID field.

Enter pg /ete/passwd to display the password file. For more
information about the /etc/passwd file, see "The /etc/passwd File"
on page 2-35. The following example shows groupl with a group
number (GID) of 200 for the primary group:

root: : 0: 0: : / :
su:*:O:O: :/:
daemon:*:l:l::/ete:
netmail :*:1:1: :/usr/spool/qftp:/usr/lib/INnet/waxsrvr
bin:*:2:2: :/bin:
sys:*:3:3: :/usr/sys:
adm:*:4:4: :/usr/adm:
uuep:*:5:1: :/usr/spool/uueppublie:/usr/lib/uuep/uueieo
adduser:*:O:O::/usr/adm:/ete/adduser
guest:*:100:100::/usr/guest:
name::201:0::/u/name:
user1:utGzXG(TBLEso:200:200::/u/user1:/bin/sh
user2:6uxK1vlyz4eGe:202:1::/u/user2:/bin/sh
user3:Iu44UqeUnatjg:202:1::/u/user2:/bin/sh
user4:Yu101nqNFPurY:202:1::/u/user2:/bin/sh
user5:kumNeVh8GqHT2:202:1::/u/user2:/bin/sh

Notice in the above example, that userl is the only entry with 200
as the group number field. It is the only entry in the above
example with groupl as the primary group. Using the information
from the /etc/group and the /etc/passwd files, you can change the

Routine System Management 2-27

primary group for user! by using the users command as described
below:

1. Enter: users.

2. After the> prompt, enter c u use r 1.

3. To change the displayed information, enter n after the OK? (y)
prompt.

4. To change the primary group:

a. Enter: gr after the Fi e 1 d prompt.
b. Enter the name for the new primary group.

5. Press Enter after the Fie 1 d? prompt.

6. If the changes are correct, press Enter after the OK? prompt.
users displays the [UPDATED] message:

7. After the> prompt, enter d 9 groupl to delete the group. users
displays the [DELETED] message:

8. To verify that the group is deleted, enter s 9 groupl. users
should display a message indicating that there is no such group.

9. Enter q to stop users.

Note: When deleting a group, check and see if any users have it
as their primary group. If they do, change the primary group for
those users. Failure to do so may cause problems later. The
primary group for a user is identified by the group number (GID).
Later, when a new group is added to the system, it may be assigned
the same GID that was used by the deleted group. Users whose
primary group was not changed would then have the new group as
their primary group.

Files also need to be checked. It may not be practical to change
the group ownership of all files created by a deleted group.
However, there may be particular files which you may want to
reassign. Use the chgrp command to change the group ownership

2-28 Managing the Operating System

of a file. For more information about the chgrp command, see A/X
Operating System Commands Reference.

Because of the possible problems involved in using the delete
group subcommand, use it sparingly. Give careful consideration to
the consequences before deleting a group.

Invalidating and Reinstating Users

You can prevent a user from logging in to the system by
invalidating the user. You do not have to delete a user's files to
invalidate the user.

To Invalidate a User

1. Enter: users. (If users is already started, go to step 2.)

2. After the> prompt, enter i usernanw. users displays the
I nv ali dat i ng username message.

Note: Do not specify u with the i subcommand.

3. Enter another subcommand or stop users.

To reinstate the user, use the change subcommand to clear the
user's program field.

Types of User Accounts

Each entry in the /etc/passwd file identifies an account. ("The
/etc/passwd File" on page 2-35 describes the /etc/passwd file.)

There are two types of accounts on the AIX system:

• The account with superuser authority

• User accounts.

Routine System Management 2-29

If you know the user name and password associated with an
account, you can log in as that user. Thus, you can have one or
more user accounts for your regular work and also, when
necessary, use the account with superuser authority for system
management work.

root-The Account with Superuser Authority

The user name root identifies the one user who operates without
any restrictions-the user who has superuser authority. (Another
name for root is su, for superuser.)

When you have superuser authority, you are immune from all
permission checks in the system, you have read, write, and execute
permission for every file in the system, you can issue any system
call, and you can cancel any process.

Because none of the usual protections apply when you have
superuser authority, you should be extremely careful when you are
logged in as root. Make it a practice never to log in as root when
you can log in as a regular user and accomplish the same task. On
a system that serves several different people, it is good practice to
strictly limit who knows the root password, and to change the
password often, in order to reduce the chance of accidental
damage.

You can obtain superuser authority in three different ways:

• After you log in with your normal user name, enter the su
(switch user) command and supply the root password when
prompted to do so. The shell prompt changes (usually from $ to
#) to remind you that you have superuser authority. To return
to normal user status, press END OF FILE. This is usually the
most convenient way to obtain and give up superuser authority.

• Log in with the one of the user names su or root. Instead of
the usual $ (shell) prompt, the system displays the root prompt
(usually #), to remind you that you have superuser authority.
After you finish the work that requires superuser authority,
either log out (press END OF FILE and the $ prompt returns)
or run the shutdown command to stop the system.

2-30 Managing the Operating System'

User Accounts

• Start the maintenance system (see "Running the Maintenance
System" on page 2-6). The maintenance system shell has
superuser authority.

All user accounts are subject to normal system checks and
protections. To reduce the chance of accidental damage to the
system, always work with a user account except when you must
have superuser authority.

There are two types of user accounts: those created with the users
program (described under "Creating, Changing, and Removing
Accounts-The users Command" on page 2-16) and those supplied
with the system to perform certain system management tasks.
Accounts created with users might be called ordinary user
accounts. These accounts are commonly identified with a
particular person. They are used to run application programs (for
example, the shell, text editors, or electronic spreadsheets) and
store the data associated with them. As with any account, there is
an entry in the /ete/passwd file for each ordinary user account.
The home (or log in) directories for ordinary user accounts are
located in the /u directory (for example, lui jones).

The second group of user accounts is supplied with the system.
They give users access to certain data and the ability to perform
certain system management tasks which otherwise would require
superuser authority.

Following is a list of these special user accounts:

bin The user bin owns most of the directories, libraries,
and programs or commands provided with the
system. While most users have x (execute)
permission for the files owned by bin, only bin can
modify those files. Normally, you should log in as
bin to install new programs and libraries.

In most respects, bin has ordinary user privileges.
However, because bin owns the very important
directories /bin, /usr/bin, /lib, and fete, any

Routine System Management 2-31

users

adm

mistakes you make while logged in as bin could
affect the entire system.

bin also owns the directory that contains the special
files for system disks, which are write and read
protected from other system users. When you run a
command that must read system disks (for example,
df), the system sets the user name associated with
that command to bin. (Such commands are called
suid [set user id] programs; the suid feature can
work with any user name, including root, depending
upon the requirements of the program.)

The user users (or adduser) is limited to one
function: creating and maintaining user accounts.
After logging in, users runs the account
maintenance program users (which is described in
detail under "Creating, Changing, and Removing
Accounts-The users Command" on page 2-16).

The user adm owns the administrative and
accounting files in fusrfadm. The adm user allows
you to isolate billing from other system management
tasks.

In addition to these special user accounts, there is also a special
user group-the system group, or group o. Certain commands (in
the directory fete) which are not available to regular users can be
run by any member of the system group.

Two good reasons for having a system group are to:

• Limit the number of users who need to know the root password.
Members of the system group can do many system management
jobs without obtaining superuser authority. However, because
members of the system group do not have superuser authority,
any mistakes they make are less likely to cause serious
problems.

• Increase the level of security provided to ordinary system users.
Superuser authority gives a user complete access to every file
on the system. Members of the system group do not have such

2-32 Managing the Operating System

access. Thus, members of the system group can perform system
management tasks with less chance of compromising the
security of data stored on the system.

U sing Different Log In Names

Once you are logged in to the system, the most convenient way to
change the account name you are using is with the su (switch user)
command. To obtain superuser authority with the su command,
simply enter su and then enter the superuser password when the
system prompts you for it:

$ su
password:
-

Notice that when you obtain superuser authority, the shell prompt
changes from $ to #. To return to your original user name, press
END OF FILE.

You also can use su to change your user name to that of any other
user on the system, provided you know the required password:

$ s u username
password:
$ -

Notice that you must supply the su command with username any
time except when you are obtaining superuser authority. To return
to your original user name, press END OF FILE.

For more information about the su command, see su in AIX
Operating System Commands Reference.

Routine System Management 2-33

When you use a number of different accounts, and especially if you
often change from one account to another with the su command,
you may forget either your current user name or the user name you
used when you logged in to the system. Use the id command to
determine your current user name:

i d
uid=O(root) gid=O(system)

Regardless of your current user name, you can use the logname
command to determine the user name you used to log in to the
system:

$ logname
jones
$

You can also use the who am i command to determine your user
name:

$ who am
jones
$

console Apr 4 15:04

In addition to your user name, the who am i command also gives
you the name of the display station you are using (console in this
example) and the date and time that you logged in.

User Account Files

To determine the authority associated with a user account, the
system refers to two files:

/etc/passwd

/etc/group

The next two sections explain the information these files contain
and how you can modify these files as necessary to maintain user
accounts on your system.

2-34 Managing the Operating System

The / etc/passwd File

The /etc/passwd file contains all information that defines a user
and contains one line for each user on the system. Each line
contains seven fields separated by : (colons), for example:

bud:Ym2CnRPo17Dyg:200:1:Bud Smith/3000;tech:/u/bud:/bin/sh
T I TT I -r- I

1 2 34 5 6 7

Figure 2-1. The Fields in a Password File Entry

The fields, from left to right, are:

1. User name

2. Encryrted password

3. User number (UID)

4. Group number (GID)

5. Optional information field

6. Home (login) directory

7. Initial program (login shell).

Following are descriptions of the information in each field:

User name
The user name field contains the name (up to eight
characters long) with which a particular user logs in to
the system. The system always uses the name in this field
to refer to that user.

Encrypted password
If this field is empty, the user does not have a password.
(A user without a password does not receive a password
prompt.) It is always good practice to use passwords,
even on a single-user system.

Routine System Management 2-35

If a user forgets their password, you can give them access
to the system by deleting the password field from the line
for their account in /etc/passwd. Whenever you delete a
password, encourage (or require) the user to set a new
password immediately. (For information on how to
change a passwd, see Using the A/X Operating System.)
You can also use the users command to set a new
password for a user once you have deleted the old
password field from / etc/passwd.

A password field may also contain optional aging
information, separated from the encrypted password by a
comma. Aging information consists of encoded numbers
that specify the maximum and minimum age (in weeks)
for the password and the week during which the password
was last changed. A user whose password expires is
forced to set a new password before logging in to the
system. Only a user with superuser authority can change.
a password before it is at least as old as the minimum
age. If security is a maj or concern on your system, you
can use the aging feature to force users to change their
passwords frequently. To force a user to set a password
before beginning to work on the system, set the maximum
and minimum times to zero and make sure there is not an
indication of the time the password was last changed.
The users command makes it easy to arrange for all new
accounts to have standard aging parameters, or to change
the aging time limits for a selected user when you suspect
that a password is no longer secure.

User number and Group number
The user number (UID) and group number (GID) define
the identity of users for security purposes. All file
protection on the AIX system is based on three sets of
permissions, those for owner, group, and others. Every
process started by a user is identified with that user's
user number and group number. Thus, the user number
and group number together with permissions make it
possible to control the files to which a particular user has
access.

2-36 Managing the Operating System

Optional information
The fifth field of the password file contains assorted
information related to the user. It consists of three
optional subfields in the form:

fullnamel filesize;siteinfo

fullname is the real name of the person whose user
name appears in the first field.

filesize specifies the maximum size (in blocks) of files
that the user is allowed to create. If you do not set
the maximum file size, you can omit the separator (f),
and a standard, system-wide value will apply to that
user's files. (For more information on setting
maximum file size, see ulimit, described under sh, and
login in AIX Operating System Commands Reference.)

siteinfo can contain whatever information you wish to
include. If you do not include the siteinfo field, you
can omit the separator (;).

Home (log in) directory
The sixth field contains the name of the user's home
(login) directory. The login program places the user in
this directory at login. Typically, this directory is owned
by the user and all the user's private files are kept in the
directory tree below it. When you add a new user to the
system, the users command automatically creates a login
directory for the user.

Initial program (log in shell)
The last field in the password file contains the name of
the program that the user runs upon logging in (the login
shell). Usually this is the /bin/sh, or shell program
(described in Using the AIX Operating System and under
sh in A/X Operating System Commands Reference). If this
field is blank, the system automatically starts the /bin/sh
program for that user. You can specify another program
in this field if, for example, the user requires a different
command interpreter.

Routine System Management 2-37

The Group File

Figure 2-2 on page 2-38 shows a typical password file. The entries
for certain users (for example, root and bin) appear on all systems,
but with different encrypted passwords. This sample password file
includes users in different groups and users with special login
programs:

root:8eCGXCGuI6HR2:0:0::/:
users:zlBclk147ta4Q:0:l::/usr/adm:/etc/adduser
daemon:mchxEqsYbPOMY:l:l::/:
bin:tbltZt2qTqfuk:2:2:/3000:/bin:
adm:7dyLNacEX90ss:4:4::/usr/adm:
sync:4U8zktFt.GEj6:20:1::/:/bin/sync
chris:Wjpfqst3yXpOQ:201:1:Chris Cooper;tech:/u/chris:
heinz:mlk2beSZBxVq6:202:1:Heinz Hart;mgmt:/u/heinz:
ted:w.UVCyYgX28Es:203:1:Ted Black;tech:/u/ted:
jim:ckSsEP4GH/cwE:204:1:Jim Mori;tech:/u/jim:
bud:Ym2CnRPo17Dyg:200:1:Bud Smith/3000;tech:/u/bud:/bin/sh

Figure 2-2. Sample /etc/passwd File

It is good practice to reserve some number of user numbers (50 to
200) for use by programs that are created on your system and
require special privileges. The remaining user numbers then are
available for ordinary users.

You can assign a user to one or more groups. Each group shares
certain protection privileges. For example, you may want to place
users in the same group because they work on the same project and
need access to a common set of files. Or you may create a group
(like the system group) to give certain users special privileges.
Thus, you can use groups to increase or restrict the privileges of
the users assigned to them.

When a user logs in, the system assigns the user to the group
specified by the group number in that user's entry in /etc/passwd.
The user can then use the newgrp command (described in A/X
Operating System Commands Reference) to change the group
associated with all processes the user creates. The group under
which the user is currently working is called the primary group.

2-38 Managing the Operating System

The AIX system allows users to belong to several groups at the
same time. A user's primary group is the one specified in the
/ete/passwd file. However, you can use the users command
(described under "Creating, Changing, and Removing
Accounts-The users Command" on page 2-16) to add users to other
groups. (Also use users to create new groups.) Any files created
by a user belong to that user's primary group, but the user has
access to all files accessible to any group to which he belongs. To
change the primary group, use the newgrp command (described
under newgrp in AIX Operating System Commands Reference).

The file fete/group defines which users make up each group. Each
line in fete/group defines a group and consists of four fields
separated by colons:

1. Group name

2. Encrypted password

3. Group number (GID)

4. Permission list (user names separated by commas).

The group name is a string of up to eight characters used to refer
to the group. If there is a password, any user who attempts to
enter the group is required to use it. The group number is simply
the number assigned to that group. The permission list contains
all users who have permission to enter the group, for example:

system: :O:root,bin,jim,steve
staff::l:
managers::200:heinz,ted

The users command usually puts new users in the staff group.
You can add users to groups and create new groups as necessary.
It may be useful to establish a group for new users; such a group,
often called other allows new users to work on the system before
they are assigned to a particular group. As with user numbers, it
is good practice to reserve some group numbers for uses unique to
your system (perhaps 50 to 200 in all, with the first 10 to 20
reserved for use in system management tasks). The remaining
group numbers can be assigned to users.

Routine System Management 2-39

For users to change their primary group, they either must be on
the list of users permitted to enter that group or, if the group has a
password, know the password for that group. The one exception to
this rule is that a user always can return to the group specified in
the password file (the primary group). That is, a user does not
need to give a password or appear in the permission list in order to
return to their primary group.

Note: Group passwords are rarely necessary. In practice, the
permission list usually provides adequate group security, and most
systems do not use group passwords.

2-40 Managing the Operating System

Tailoring the User Environment

Certain variable factors control how the shell operates. The way
these variables are set determines the shell's environment.
Several files control the environment and thereby control many of
the programs that users run. While the AIX system includes
prototypes for these files, you may need to change the prototypes,
or add to them, to adapt the system to your needs.

This section will be easier to understand if you are somewhat
familiar with the AIX shell. For information about the AIX shell,
see Using the A/X Operating System.

The shell provides named variables and mechanisms for assigning
string values to them, testing them, and substituting them into
cOlnmands. In addition to their use as program variables for the
shell as a high-level programming language, some of these
variables control how the shell works. Furthermore, exported
shell variables are passed in the process environment from the
shell to the programs that it runs as user commands. Since
exported variables can affect how any program runs, they provide
potentially wide-ranging control over the user environment. Some
of the commonly used environment variables are discussed under
sh in A/X Operating System Commands Reference; others are
discussed in the same book in conjunction with specific commands.
This section discusses where the shell obtains exported variables
other than those explicitly exported by the user.

Jete/environment

Before any user logs in to the system, the init process (the main
process involved in starting the system) reads the file
fete/environment. The init process passes variable assignments
made in fete/environment to each process it creates (its child
processes). These variables automatically become part of the list of
exported shell variables. To modify the fete/environment
settings, use a text editor to change the fetefenvironment file.

Routine System Management 2-41

Note: fete/environment can contain only variable assignments,
not shell commands.

Unless the values shipped with your system are correct, you should
set at least the following variables in fete/environment:

TZ This TZ (time zone) variable controls how your system
translates its standard time (Universal Coordinated Time,
also known as Greenwich Mean Time) into local time.
The form of the TZ variable assignment is:

TZ=nnnhddd

• nnn is the three-character name of your normal time
zone.

• h is the number of hours by which your time zone
normally lags behind standard system time. For
locations east of Greenwich, you can use a variable of
the form -h to specify the number of hours by which
your time zone leads standard system time.

• ddd is the three-character name for your time zone
during daylight savings time. (Omit this field if
daylight savings time is not observed locally.)

Some typical TZ assignments are:

TZ = EST5EDT Eastern Standard Time, 5 hours behind
Greenwich, Eastern Daylight Time.

TZ = CST6CDT Central Standard Time, 6 hours behind
Greenwich, Central Daylight Time.

TZ = MST7MDT Mountain Standard Time, 7 hours
behind Greenwich, Mountain Daylight
Time.

TZ = PST8PDT Pacific Standard Time, 8 hours behind
Greenwich, Pacific Daylight Time.

2-42 Managing the Operating System

TZ = GMTO Greenwich Mean Time, 0 hours behind
Greenwich. Note that, as this example
shows, when daylight savings time is not
observed locally, the ddd field must be
omitted.

TZ = CET-l Central European Time, 1 hour before
Greenwich. Note that h is specified hours
before Greenwich and, again, the ddd field
is omitted.

PATH Executable files (programs or commands) are located in
various directories. The PATH variable contains a list of
directory names (separated by colons) that the shell and
other commands use when searching for an executable
file. In the PATH assignment, a : (colon) that is not
preceded by a directory name stands for the current
directory. If the PATH variable is not otherwise set, its
default assignment is:

PATH=:/bin:/usr/bin:/etc::

With this assignment, a command searches the current
directory (:) first, then the directory /bin, and finally the
directory /usr/bin.

Two common reasons for setting the PATH variable to
something other than its default are:

• To increase the efficiency of searches. In some cases,
a PATH that searches the current directory last is
most efficient. The following assignment causes the
current directory to be searched last:
PATH = /bin:/usr/bin:/etc::

• To include other directories in the search. For
example, if you have a directory named /local
containing commands that you have created, you can
include it in the search path with the assignment
PATH = /bin:/usr/bin:/local:/etc::

Routine System Management 2-43

umask The file creation mask, umask, controls the mode
(permissions) set for new files by specifying what
permissions are not given. umask is set by the umask
command in /etc/profile.

If no umask were set, files would be created with mode
777 (read, write, and execute permission for owner,
group, and others). Typical settings of the umask
variable are:

umask = 022 Files are created in mode 755. Group and
others do not have write permission.

umask = 002 Files are created in mode 775. Others do
not have write permission.

umask=007 Files are created in mode 770. Others do
not have permissions; owner and group have
all permissions.

For a general discussion of permissions, see Using the
AIX Operating System.

file size The file size variable sets a default value for the
system-wide maximum file size (in 512-byte blocks). The
default file size limit is 2048 blocks or slightly more than
one million bytes. You can override the default setting
for individual users by setting a different value for
file size in the /etc/passwd file. (For more information
on setting maximum file size, see ulimit described under
sh and login in AIX Operating System Commands
Reference.)

2-44 Managing the Operating System

Login

The login program adds the following values to the environment:

LOGNAME (user name)

TERM (display station, or terminal, type from fete/ports)

HOME (log in directory).

fete/profile and $HOME/.profile

An initial user shell includes in its environment the variables
passed to it by login. Then, before the shell accepts any input
from the user, it runs the commands in fete/profile and in the file
.profile in the user's login directory. Thus, fete/profile should
contain any commands that all users need to run when they log in
(for example, the news -n command, which informs users of items
in the system news facility). At the same time, fete/profile should
not contain nonessential commands. (Although the system runs all
commands in fete/profile, individual users can override the
variable assignments made in fete/profile with assignments in
their private profile files, $HOME/ .profile.)

Two environment variables should be set in fete/profile and
marked for export: MAIL and MAILMSG. The shell checks the
last modification date of the file MAIL to determine whether the
user should be notified of the receipt of new mail, and MAILMSG
is the notification message itself. If you use the MAIL facility on
your system, the following variable assignments should appear in
fete/profile:

MAIL=/usr/mail/$LOGNAME
MAILMSG="[You have new mail]"
export MAIL MAILMSG

You also may set the TIMEOUT variable in fete/profile. The
value of TIMEOUT is specified in minutes. When a user remains
at command level for TIMEOUT minutes without entering a
command, the shell exits and logs off the user. Generally, the
TIMEOUT variable is most useful on systems that serve a number

Routine System Management 2-45

of users or on systems where security is a major concern (where,
for example, a display station left unattended for a long time could
give unauthorized people access to classified data).

If there are commands that you believe most users will want to run
when they log in, but that are not appropriate for /etc/rc, you can
create a default .profile file to be added automatically to the home
directories of new users. The users command and the autolog
function makes it possible to set up default .profile files through
the /usr/adm/newuser.usr command file, which runs when a user
is added to the system. For more information on users, see
"Managing User Accounts" on page 2-16.

2-46 Managing the Operating System

Information about File Systems-The /etc/filesystems
File

Information about file systems is stored in the file
/etc/filesystems. Most of the file system maintenance commands
use /etc/filesystems to relate file system names to corresponding
devices and to provide information about file systems to those
commands.

The /etc/filesystems file is organized into stanzas that describe
file systems. A stanza has the same name as the file system that it
describes, and contains a series of attribute = value pairs that
specify the characteristics of the file system. Stanzas named
default contain information common to several file systems.

Following is part of a sample /etc/filesystems file:

*
*
*
*
*
*

This file describes all of the known file systems. It
is used by most of the file system maintenance routines
to map file system names into the corresponding device
names. It also provides the information which tells fsck,
df, mount and other programs what file systems to operate
on by default.

default:
vol = "AIWS"
mount = false
check = false
free = false
backupdev /dev/rfdO
backuplen = 720

/ :
dev = /dev/hdO
vol Ilroot"
mount = automatic
check = false
free = true

/mnt:
dev = /dev/fdO

Routine System Management 2-47

Stanzas can contain attributes in addition to the ones shown in the
example. Following is a list of the possible /etc/filesystems
attributes and a brief explanation of their meanings:

account Determines file system to be processed by the accounting
system. The value can be either true or false.

backupdev Used by the backup and restore commands to
determine the backup device associated with each file
system. The value is usually the name of a diskette or
magnetic tape special file.

backuplen Used by the backup command to determine the size of
the default backup device associated with each file
system.

backuplev Used by the backup command to determine the default
backup level for each file system. For an explanation of
backup levels, see "Backing up Files and File Systems"
on page 2-58.

boot Used by the mkfs command to initialize the boot block of
a new file system. The value of boot specifies the name
of the load module to be placed into the first block of the
file system.

check Used by the fsck command to determine the file systems
to be checked. The value can be true, false, or some
number that corresponds to a particular phase of the fsck
program. For more information about fsck, see
"Checking and Repairing File Systems-The fsck
Command" on page 3-8.

cyl Used by the mkfs command to initialize the free list and
superblock of a new file system. The value is set the
number of blocks in one cylinder.

dey Identifies the block special file where the file system
resides. System management programs use this attribute
to relate file system names to the appropriate device
names.

2-48 Managing the Operating System

free Used by the df command to determine which file systems
are to have their free space displayed. This value is set
either true or false.

mount Used by the mount command to determine whether to
mount the file system. If the value of mount is true,
then the mount all command mounts the file system.
The most convenient way to accomplish routine file
system mounting is to place the mount all command in
the /etc/rc file. The value of mount can be set true,
false, or readonly. When the readonly value is set, the
file system is mounted, but its contents cannot be
changed.

The mount attribute for the root file system has a special
value: automatic. The automatic value causes the root
file system to be mounted whenever the system is
initialized and prevents the mount all command from
attempting to mount the already-mounted root file system.

size U sed by the mkfs command to specify the size of a new
file system. The value of size is some number of 512-byte
blocks.

skip Used by the mkfs command to initialize the free list and
superblock of a new file system. The value of skip is
some number of 512-byte blocks to be skipped between
data blocks (the interleave factor).

vol Used by the mkfs command when it initializes the label
on a new file system. The value is a volume label with a
maximum length of six characters.

Routine System Management 2-49

Creating and Mounting File Systems

A file system is a complete directory structure confined to a single
minidisk or diskette. Before you can use a minidisk or diskette to
store data, create a file system on it. Use the mkfs (make file
system) command to create file systems.

Note: The mkfs command is not the only way to create a file
system on a minidisk. For more information on creating file
systems, see Installing and Customizing the AIX Operating System.

The general form of the mkfs command is:

/etc/mkfs name size

where name is the name of the minidisk on which the. file system is
to be created and size is the total size of the file system in 512-byte
blocks. Allocate more space than you need because the i-nodes use
up to 5% of the blocks. In order to create a new file system, the
mkfs command must have the following information:

dev The name of the device on which the file system is to be
created.

size The size of the new file system in 512-byte blocks.

vol A volume label.

cyl The number of 512-byte blocks per cylinder on the disk.
This parameter is used with skip to form the interleave
specification. For an explanation of the interleave
specification, see mkfs in AIX Operating System
Commands Reference.

skip Used with cyl to form the interleave specification.

boot The name of a file containing a bootstrap (initialization)
program to be loaded into the boot block of the new file
system.

2-50 Managing the Operating System

Note: "Information about File Systems-The /etc/filesystems File"
on page 2-47 discusses these and other file system attributes more
fully.

You can supply these parameters to mkfs in one of three ways:

• From information contained in /etc/filesystems.

1. Use a text editor to create a stanza for the new file system
in /etc/filesystems. The most convenient way to create
this stanza is to copy a similar stanza, give it the label you
want to assign to the new file system, and then modify it as
necessary. Save the modified /etc/filesystems file.

2. At the $ (shell) prompt, enter the command /etc/mkfs label.

A stanza in /etc/filesystems contains, in one place, all of the
information that defines that file system. Thus, if you need to
know something about how a file system is defined, it is very
easy to get the information you need if the file system has a
stanza in /etc/filesystems.

• On the command line along with the mkfs command. For
information on supplying parameters in this way, see mkfs in
AIX Operating System Commands Reference.

• From the special file for the device on which the file system is
to be created. If you do not supply the parameters for the new
file system in one of the ways just described, mkfs takes them,
if possible, from the device driver for the device on which the
file system is to be created. If you want to take the parameters
from a device driver, simply specify the path name for the
device on which you want to create the file system. For
example, the following command creates a file system on the
/dev /hdO device:

/etc/mkfs /dev/hd7

You cannot create a file system on a device that is not already
defined in /dev.

Routine System Management 2-51

Mounting and Unmounting File Systems

File systems are independent from each other and from the
operating system. Each file system is associated with a different
device (a minidisk or a diskette). Before you can use a file system,
it must be connected to the existing directory structure (either to
the root file system or to another file system that is already
connected). The mount command makes this connection. During
the start up process, the system automatically mounts the file
systems with the line mount = true in their /etc/filesystems
stanza. However, you must use the mount command to mount any
file system that:

• Does not have a stanza in /etc/filesystems

• Has the line mount = fa 1 se in its /etc/filesystems stanza.

The mount command attaches one file system to another at a
specified directory.

B

/dev/hdx

I 1 I
A 2

I
3

mountldev/hdx/c

!
I 1 I
A B c

I I
2 3 AUSI05152

Figure 2-3. Mounting a File System

2-52 Managing the Operating System

The general format for the mount command is:

mount directory

where directory is the name of the directory on which the file
system is to be mounted. For example, to mount a file system
identified in /ete/filesystems as I contro 1 s (mount = false),
enter:

mount Icontrols

If you have superuser authority, you also can specify the device
that contains the file system to be mounted. The format for mount
when you specify both the device and directory is:

mount device directory

For example, to mount the file system on device hd9 on the
directory contro 1 s, use the command:

mount Idev/hd9 Icontrols

If there is a stanza in /ete/filesystems for the directory to be
mounted, simply specify the name of the stanza with the mount
command. For example, mount /u mounts the file system
described by the following /ete/filesystems stanza onto the /u
directory:

lu:
dey = Idev/hdl
vol = II lUll

mount = true
check = true
free = true

Notice that the mount attribute in this stanza is set to true,
which means that this file system is automatically mounted by the
mount all command in fete/reo Thus, under normal
circumstances, you do not have to use mount to mount this file
system.

Routine System Management 2-53

After you mount a file system, directory functions as the root
directory of that file system. Also, the operating system records
the presence of this file system in the file /etc/mnttab.

Use the mount command by itself (without device or directory) to
list what file systems are mounted, where they are mounted, when
they were mounted, and whether they are writable (that is,
whether their contents can be modified).

You can disconnect mounted file systems with the umount
command. The general format for the umount command is umount
filename, for example:

umount /dev/fd2/accounts

where filename is either the special file for a mounted device or the
name of the directory on which a device is mounted. To unmount
all mounted file systems, use the command umount a 11.

Creating and Mounting Diskette File Systems

In general, the procedures for creating and using file systems are
the same, whether the file systems reside on minidisks or diskettes.
However, before you use diskette file systems, you should be aware
of the information in this section.

Notes:

1. If you are not familiar with the proper way to handle diskettes,
please read the material on diskette handling in Guide to
Operations before you begin to use diskettes for AIX file
systems.

2. If you want to transfer data to or from a DOS formatted
diskette, see "Using DOS Formatted Diskettes" on page 2-56.

2-54 Managing the Operating System

Formatting Diskettes

Before you can create a file system on a diskette, you must use the
format command to prepare the diskette to contain data.

Note: Formatting erases any data stored on the diskette.
Following is the procedure for formatting diskettes:

1. Insert a diskette into the diskette drive. If you have more than
one diskette drive, insert the diskette into drive 0 (A).

2. Enter: format

For more information about the format command, see format in
AIX Operating System Commands Reference.

Creating Diskette File Systems

After you have formatted a diskette, you must create a file system
on it:

1. Insert a formatted diskette into the diskette drive (or simply
leave the diskette in the drive if you have just formatted it). If
you have more than one diskette drive, insert the diskette into
the drive 0 (A).

2. Enter: /etc/mkfs /dev /fdO

Mounting and Unmounting Diskette File Systems

To use a diskette file system, insert the diskette into the diskette
drive and enter a command of the form:

mount directory

The standard directory for mounting a diskette file system is
/disketteO. (If you have a second diskette drive, it is associated
with the directory /diskette!.)

Routine System Management 2-55

Warning: Do not remove a mounted diskette. Damage to the
diskette file system could result.

When you finish your work with the diskette file system, unmount
it with a command of the form:

umount directory

In the /etc/filesystems stanza for /disketteO, the value for mount
is true, removable. Thus, the system does not automatically
mount the diskette file system at startup.

If you want to mount a diskette on a directory other than
/disketteO, use a mount command of the form: mount device
directory. For example, if you want to mount a diskette file system
on the directory /mountfs, insert the diskette in drive 0 and enter:

mount /dev/fdO /mountfs

Using DOS Formatted Diskettes

With the dosread and doswrite commands, you can use diskettes
to transfer data between the AIX system and a computer that uses
the Disk Operating System (DOS). The dosread command copies a
DOS file from the diskette to the AIX file system. The doswrite
command copies a AIX file to a DOS diskette. Both commands
perform the necessary translations required to make the data
usable on the destination system.

The most common form of the dosread command is:

dosread -a dosfilename filename

where:

-a specifies translations usually required for text files.

dosfilename is the name of the file you want to copy from the
DOS diskette.

filename is the name you want to copy the file to in the AIX file
system.

2-56 Managing the Operating System

The most common form of the doswrite command is:

doswri te -a filename dosfilename

where:

-a specifies translations usually required for text files.

filename is the name of the file you want to copy from the AIX
file system.

dosfilename is the name you want to copy the file to on the DOS
diskette.

For more information, see dosread and doswrite in AIX Operating
System Commands Reference.

Routine System Management 2-57

Backing up Files and File Systems

Once your AIX system is set up and in use, your next consideration
should be backing up the file systems (there is one file system per
minidisk). Whether due to system malfunction or user error, file
systems and the data they contain can be damaged or lost. If you
take a careful and methodical approach to backing up your file
systems, you should always be able to restore recent versions of
files or file systems with little difficulty. This section discusses
different file and file system backup procedures and how those
procedures can be combined into a dependable backup policy.

Types of Back Ups

Backup procedures rely upon the following commands:

cvid Use the cvid command to backup the VRM minidisk.
You should always have a backup of the current VRM
minidisk. Before you modify the VRM minidisk (for
example, by installing a licensed program or an update,
or using the mvmd command), make certain that you
have a backup of the current VRM minidisk. If not,
backup the VRM minidisk before you make the changes.
Always make a new backup of the VRM minidisk after
you modify the VRM minidisk. The VRM minidisk
backup procedure is explained under "Backing Up the
VRM Minidisk" on page 2-62.

backup Use the backup command to backup individual files or
entire file systems. "Individual File Backup" on page 2-68
explains how to backup individual files. "Using the
backup and restore Commands" on page 2-64 explains
how to backup complete file systems with the backup
command.

To use backup from the maintenance system, select
Backup commands from the USE MAINTENANCE
COMMANDS menu, and then select Bac k up a fi 1 e
system.

2-58 Managing the Operating System

Note: When you select Back up a fi 1 e system from the
USE MAINTENANCE COMMANDS menu, the backup
is by i-node only. (For information about the
maintenance system, see "Running the Maintenance
System" on page 2-6.)

restore Use the restore command to read files backed up with
backup to a device or directory. For information on how
to restore individual files, see Using the AIX Operating
System. "Using the backup and restore Commands" on
page 2-64 explains how to restore complete file systems.
(The restore command can restore individual files from a
complete file system backup.)

To use restore from the maintenance system, select
Restore commands from the USE MAINTENANCE
COMMANDS menu, and then select Restore a fi 1 e
sys tern.

Note: When you select Restore a fi le system from the
USE MAINTENANCE COMMANDS menu, the restore
is by i-node only. (For information about the
maintenance system, see "Running the Maintenance
System" on page 2-6.)

dd Use the dd (device-to-device copy) command to backup
entire file systems. The dd command is a faster way to
backup entire file systems. However, you cannot restore
individual files from a dd backup. "Backing Up Complete
File Systems with the dd Command" on page 2-71
explains how to perform file system backups with the dd
command.

You also can use dd from the USE MAINTENANCE
COMMANDS menu to:

• Backup a file system.

Select Bac kup commands and then select Bac k up a
minidisk image.

• Restore a file system.

Routine System Management 2-59

Backup Media

Select Res tore commands and then select Res tore a
minidisk image.

(For information about the maintenance system, see
"Running the Maintenance System" on page 2-6.)

It is very important for you to understand how to use these
commands to protect the users of your system from loss of data.
You should be familiar with the information in:

• "Running the Maintenance System" on page 2-6

• "Backup Media"

• "Backing Up the VRM Minidisk" on page 2-62

• cvid in A/X Operating System Commands Reference

• "Using the backup and restore Commands" on page 2-64

• backup in A/X Operating System Commands Reference

• restore in A/X Operating System Commands Reference.

• "Backing Up Complete File Systems with the dd Command" on
page 2-71

• dd in A/X Operating System Commands Reference

Diskettes are the standard backup medium. Unless you specify a
different value for backupdev in /etc/filesystems, the backup
command automatically writes its output to /dev /rfdO, the device
name for the diskette drive.

When you install a streaming tape drive, the devices command
automatically changes the value of backupdev to /dev /rmtO, the
device name for the tape. The rmtO value makes the tape rewind
when it is finished backing up a file system. If you change the
value to rmt4, the tape does not rewind.

2-60 Managing the Operating System

Note: You may need to change the value for backuplen. For
example, a backuplen of 2700 represents a 300-foot tape with nine
tracks (300x9 = 2700).

If you remove a tape drive from the system, devices changes the
value of backupdev back to /dev/rfdO and the value of backuplen
back to 2400.

After you install a tape device, the backup command uses the tape
as the backup device for complete file system backups (the
procedure described under "Using the backup and restore
Commands" on page 2-64). However, even with a tape installed,
the backup command still backs up individual files to diskettes
(for information about file backups, see Using the AIX Operating
System).

Routine System Management 2-61

Backing Up the VRM Minidisk

Use the cvid command to backup your VRM minidisk files onto a
diskette. You should always have a backup of your current VRM.
With a current VRM backup, you are prepared to reinstall the
most recent version of the VRM should a system failure or other
error require it.

Backup the VRM immediately after you install it and back it up
again after each change you make to it. The following commands
modify the VRM, and you should backup the VRM after using any
of them:

installp Modifies the VRM when you install a licensed program.

updatep Modifies the VRM when you install an update.

mvrnd Modifies the VRM directly, by adding, changing and
deleting files. Generally, mvmd is used by installp and
updatep; that is, you do not ordinarily enter mvmd
commands on the command line.

(For more information on installp, updatep, and mvmd, see
Installing and Customizing the AIX Operating System and AIX
Operating System Commands Reference.)

This section describes how to use cvid to create a VRM diskette.
You must have superuser authority or be a member of the system
group to use the cvid command. (See AIX Operating System
Commands Reference for a discussion of the cvid command. For an
explanation of any error messages that may occur as you use this
command, see Messages Reference.)

Note: Before you change the VRM, make certain that you have a
backup of the current VRM. If not, backup the VRM before you
change it.

2-62 Managing the Operating System

The command format is:

cvid dev -f -v proto

where:

dev Specifies the device on which the file system is created, as
in fdO (diskette drive 0). It can also be the name of a file
system.

-f

-v

Specifies the file system label for the new file system.
The default label is vrmmnt.

Specifies volume label for the new file system. The
default volume label is VRMIBM.

proto Specifies the name of the prototype file. Default is
/vrm/vproto.

To Back Up Your VRM Minidisk

1. Insert a formatted diskette into the diskette drive.

2. After the system prompt, type cvi d, plus any needed
parameters.

3. Press Enter.

4. When the VRM files have been copied to the diskette,
remove the new VRM install diskette and store it in a safe
place.

While the cvid command is running, the system creates a file
system, using the mkfs command, and copies files from your VRM
minidisk.

Routine System Management 2-63

Using the backup and restore Commands

The backup command allows you to backup files selectively or to
backup entire file systems. Similarly, you can use the restore
command to restore all or part of the backups you create with
backup.

Both backup and restore are available from the USE
MAINTENANCE COMMANDS menu in the maintenance system.
For information on the maintenance system, see "Running the
Maintenance System" on page 2-6.

Note: If you only want to backup and restore complete file
systems, it may be faster to use the dd command than it is to use
backup and restore. Among the factors that determine which
backup method is faster are the size of the minidisk to be backed
up and how many of its blocks are allocated.

This section explains how to use backup and restore for complete
file systems.

Note: If you use diskettes as your backup media, have several
formatted diskettes ready to use before you enter the backup
command.

2-64 Managing the Operating System

To Bach:up a ~ile SYGten:1 \7ith baclcup

1. Prepare the backup medium:

• Make certain that the tape device is ready to operate,
or

• Insert a formatted diskette into drive o.

2. Enter:

backup -0 -u filesysteln

where filesystem is the name of the file system to be backed up.

(The system prompts you for additional backup media as
required).

1. Load the tape or diskette containing the file system to be
restored. (If you restore from diskettes, and the backup
occupies more than one diskette, insert the first diskette of
the group into drive 0).

2. Enter:

restore -r filesysteln

where filesystem is either the name of a physical device or a
directory name listed in the /etc/filesystems file. The-r
flag is for i-node backups only.

(The system prompts you for additional media as necessary, for
example, for the second of a group of diskettes.)

Routine System Management 2-65

Volume Backups

The backup command individually backs up each file in a file
system. Thus, you do not have to restore an entire file system if all
you need to do is restore specific files. Also, you can restore a file
or group of files to any file system that is large enough to
accommodate them.

To backup an entire file system, use a command of the following
form:

backup -0 -u filesystem

Following is an explanation of the parts of this command:

-0

-u

filesystem

A flag that indicates the level of the backup. Level
o causes every file in the file system to be backed up.
Use other backup levels (1-9) for incremental dumps,
as is explained under "Incremental Backups" on
page 2-67.

A flag that causes backup to record the date and
level of the backup in the /etc/ddate file.
/etc/ddate contains the date of the last backup of
each file system at each level.

The name of the file system to be backed up.
filesystem can be either the name of the physical
device that contains the file system or the name of
the file system's root directory.

Unless you specify otherwise on the command line, the backup
command uses information in /etc/filesystems to determine:

dev The device, or minidisk, that contains the file system.

backupdev The device (for example, a diskette drive) on which the
backup is to be made.

backuplen The size in blocks of the backup device (diskette or
tape) to be used (for computing the amount of data that
will fit on each diskette).

2-66 Managing the Operating System

Note: When you restore a complete file system, the restore
command organizes the files efficiently, but does not reduce the
total amount of storage space needed for the file system. The-m
flag backs up an entire minidisk as an exact image. An image
backup is appropriate for backing up very large AIX file systems or
minidisks that do not contain AIX file systems. A backup by
minidisk (backup -m) must be restored by minidisk (restore -m).

Incremental Backups

A level 0 backup can require a considerable amount of time and a
large number of diskettes to complete. Because only a fraction of
the files on your system can change from day to day, it is not
necessary for you to make a level 0 backup daily. Instead, you can
make incremental backups-backups of only the files changed
since a previous backup.

An incremental backup backs up all files changed since the last
backup at the next lower level. For example, the following level 1
backup command backs up all files changed since the last level 0
backup:

backup -1 -u filesystem

The parameter that indicates the level of the backup (-1 in this
example) can be any number from 0 through 9. Thus, a level 4
backup backs up all files that have changed since the last level 3
backup, and so forth. You can use the backup levels to develop a
very dependable backup system. For example, you might make
level 0 backups monthly, level 1 backups weekly, and level 2
backups daily. Then, should you have to restore a complete file
system, you would restore from the latest level 0 backup, then from
the latest level 1 backup, and finally from the latest level 2 backup.
For many systems, it should be adequate to use only two levels of
backup (for example, level 0 weekly and level 1 daily or level 0
monthly and level 1 weekly).

Routine System Management 2-67

Individual File Backup

You can also use the backup command to backup individual files,
for example, when some or all of the files that belong to a
particular user will not be needed for an extended period. Backup
copies of individual files are also a convenient means for
exchanging data among different systems (for example, you backup
the files from your system onto a diskette and then the user of
another system restores the files from the diskette). To backup
individual files, use the -i (backup by name) flag with the backup
command.

2-68 Managing the Operating System

The following sequence backs up three files to a backup device
defined in /etc/filesystems:

$ backup -i
Plellse mount volume 1 on /de'l/bcchup device

and type return to backup
fi 1 e 1
file2
file3
END OF FILE
Done at date and tin~e
n blocks on n volullle(s)
$ -

You can also use the backup command with a list of file names
created with an editor. In the following example, backup makes
backup copies of the files named in the file 1 i st:

backup -i < list

To backup all files and subdirectories of the current directory, use
the command:

find. -print I backup -i

Guidelines for Backup Policies

No single backup policy can meet the needs of all AIX system
users. A policy that works well for a system with one user, for
example, could be inadequate for a system that serves five or 10
different users. A policy developed for a system on which many
files are changed daily would be inefficient for a system on which
data changes infrequently. Only you can determine the best
backup policy for your system, but the following general guidelines
should help:

• Make sure you can recover from major losses.

Can your system continue to run after any single fixed disk
fails? Can you recover your system if all of the fixed disks fail?
Could you recover your system if you lost your backup diskettes
or tape to fire or theft? Although these things are not likely,
any of them is possible. Think through each of these possible

Routine System Management 2-69

losses and design a backup policy that would enable you to
recover your system after any of them.

• Use your backups periodically.

Diskettes, diskette drives, and tape devices can be unreliable.
A large library of backup tapes or diskettes is useless if their
data cannot be read back onto a fixed disk. Thus, it is a good
idea to make certain that your backups are useable. Try to
restore files periodically (for example, to /dev/null), just to
make sure that they can be read. If you use diskettes for your
backups and have more than one diskette drive, try to read
diskettes from a different drive than the one on which they
were created. Therefore, you may want the security of
repeating each level 0 backup with a second set of diskettes. If
you use a streaming tape device for backups, you can use the
tapechk program to perform rudimentary consistency checks
on the tape. For more information about the tapechk
command, see tapechk in AIX Operating System Commands
Reference.

• Keep old backups.

You probably will develop some cycle for re-using your backup
media-tapes or diskettes. However, you should not re-use all of
your backup media. Sometimes it may be months before you, or
some other user of your system, notices that an important file is
damaged or missing. You should save old backups for just such
possibilities. For example, you could have three cycles of
backup tapes or diskettes:

Once per week, recycle all daily diskettes except the one for
Friday.

Once per month, recycle all Friday diskettes except for the
one from the last Friday of the month. This makes the last
four Friday backups always available.

Once per quarter, recycle all monthly diskettes except for
the last one. Keep the last monthly diskette from each
quarter indefinitely, perhaps in a different building.

2-70 Managing the Operating System

• Check file systems before backing them up.

A backup that was made from a damaged file system may be
useless. Before making your backups, it is good policy to check
the integrity of the file system with the fsck command (covered
under "Maintaining the File System" on page 3-4).

Your system should not be in use when you make your backups. If
you backup a file system while it is in use, files can change while
they are being backed up. The backup copy of such a file would
not be accurate.

Finally, it is always good policy to backup your entire system
before any hardware testing or repair work is performed or before
you install any new devices, programs, or other system features.

Backing Up Complete File Systems with the dd Command

When you want to backup (and restore) only complete file systems,
the dd (device-to-device copy) command gives you a potentially
faster alternative to backup and restore. The backup -m
command actually uses dd and is a convenient way to backup file
systems. However, this section describes how to use the dd
command.

The dd command is available from the USE MAINTENANCE
COMMANDS menu in the maintenance system. To use dd from
the maintenance system:

• To backup a file system, select Backup commands and then
select Back up a minidisk image.

• To restore a file system, select Restore commands and then
select Restore a mi ni di ski mage.

For information on the maintenance system, see "Running the
Maintenance System" on page 2-6.

Routine System Management 2-71

To backup a file system with dd, you need to specify the following
parameters:

if The name of the input file. Use the value of dey = in the
/etc/filesystems stanza for the appropriate file system.
dd works more quickly with the raw versions of devices
(that is, the ones which begin with r).

of The name of the output file. Use the device name for the
streaming tape device (fdev /rmtO).

bs The input and output block sizes, in bytes.

The following dd command backs up 80 blocks from the file system
on /dev/hdn to the streaming tape, /dev/rmtO, using a block size of
512 bytes:

dd if=/dev/rhdn of=/dev/rmtO bs=512 count=80

To restore a file system backed up with dd, use the dd command
again, copying the file system from the backup device to the
minidisk.

Note: The dd command may be less efficient than the backup
command if the file system being backed up does not contain many
files. Also, if you restore a backup made with dd to a different
minidisk, its size may change.

2-72 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Managing the AIX Distributed Services Environment

Previous versions of the AIX operating system allowed you to
mount and unmount only local minidisks. With the enhanced
mount capabilities of AIX, however, you can create file trees that
are independent of the file systems on individual minidisks. In
addition, the Distributed Services licensed program allows you to
use both local and remote directories and files to build these file
trees. The following terms apply to AIX directory and file
structures possible with the enhanced AIX mount capabilities.:

file system
The complete structure of directories and files contained
on a single minidisk. To mount a file system, you mount
the device that contains it (for example: mount /dev /hd7
/mnt).

virtual file system

file tree

The structure created by mounting a directory or file (as
opposed to mounting a minidisk). Each directory or file
mount creates a new virtual file system.

The complete directory and file structure of a particular
node, starting at the root directory (/). A file tree is the
product of all minidisk, directory, and file mounts that
have been performed. The path name to any accessible
directory or file is determined by the structure of the file
tree.

These additional terms apply to a Distributed Services network:

node

client

An individual system connected to the network.

In an interaction between nodes, the node that requests
resources.

Routine System Management 2-73

I
I
I
I
I
I

TNL SN20-9862 (June 26 1987) to SBOF-0168

server
In an interaction between nodes, the node that provides
resources.

The following three figures represent the creation of a file tree (on
node 0174) from parts of different file systems; each file system
resides on a different node in a Distributed Services network.
First, each node mounts its file system that contains the lu
directory. The figure shows a portion of this file system for each
node: '

1 Node 0145 1

lu

~
tom

Node 01741

lu

~
I Node 0211 I

lu

~
sam

todo prop_data memos

~
planned actual

Figure 2-4. Creating a File Tree: File System Mounts

Next, node 0174 mounts a directory from node 0145 with the
command:

mount -n 0145 /u/tom/proj_data /u/joe/data

2-74 Managing the Operating System

AJ2DLOIO

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Node 0145 1

/u

~
tom

Node 01741

/u

~
I Node 0211

/u

~
sam

todo prop_data memos

~
planned actual

Figure 2-5. Creating a File Tree: Directory Mount

AJ2DLOll

This mount creates a virtual file system (/u/joe/data), and the file
tree on 0174 now includes a remote directory structure. Generally,
it does not matter to a user whether a particular directory or file is
local or remote.

Finally, node 0174 mounts a directory from node 211 with the
command:

mount -n 0211 /u/sam/proj3_data /u/joe/data/proj3

Routine System Management 2-75

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Node 0145 1

lu

L1
Node 01741

/u

~
I Node 0211

/u

~
sam joe

tL aJ p,Jdata lis.-----t-----,ata todo prop_data memos

r-h.
proJ1 proJ2 proJ3 proj1 proJ2 pro 3

~
planned actual

~
planned actual

Figure 2-6. Creating a File Tree: The Completed Structure

AJ2DL012

The structure below the / u / joe directory now contains directories
and files that physically reside on three different nodes. However,
the file tree created by the directory mounts works just as it would
if the same structure existed on a single (minidisk) file system.

Depending upon your requirements, your Distributed Services
network can be simple or elaborate. If, for example, your network
is small and its users perform their own mounts from the command
line, your Distributed Services network will be relatively simple to
configure and maintain. However, if you have a larger network
and require a high degree of uniformity from node to node, your
planning, configuration, and maintenance of Distributed Services
will be more complex.

Certain AIX commands are enhanced to make them more useful in
a distributed AIX environment. Other commands work differently

2-76 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

in a distributed AIX environment than they do in an AIX
environment without Distributed Services. For example:

• The chown (change owner) and chgrp (change group)
commands, which change information recorded in i-nodes, can
use either local or remote IDs.

• The find command expression, -node nodename, restricts the
search to files and directories that exist on a specific node.
Without -node, find searches a complete file tree.

• The Ii and Is commands, which list directory contents, can
differentiate between local and remote items. (For more
information about using Ii in a distributed AIX environment,
see "Listing Directory Contents- The Ii (List) Command" on
page 2-93.)

• The -n flag for the mount command lets you display the mount
table of a remote node.

Other commands that either work differently in a distributed AIX
environment, as well as those that are unique to Distributed
Services, are discussed at the appropriate place in the remainder of
the Distributed Services managing and customizing information as
well as in A/X Operating System Commands Reference.

The following sections explain how Distributed Services works and
also give guidance for managing a Distributed Services network.
"Customizing Distributed Services" on page 3-35 explains the
specific steps involved in creating the network.

Routine System Management 2-77

TNL S:N20-9862 (June 26 1987) to SBOF-0168

I Distributed Services File Systems

Before you read this section, you should be familiar with the
information about file systems, minidisks, and mounts in "The File
System-Background for System Management" on page 1-8 and
"Creating and Mounting File Systems" on page 2-50, and with the
terms defined in "Managing the AIX Distributed Services
Environment" on page 2-73.

Note: Minidisks must be mounted locally before any of their
contents can be mounted by remote nodes.

The /etc/filesystems file can contain stanzas for file and directory
mounts just as it does for file system mounts. Also, a user with the
appropriate authority can perform directory and file mounts from
the command line.

I Background for System Management

Each mount command creates a description of a virtual file system
and adds the description to a master list of virtual file systems on
that node. Each umount command removes a description from the
list. The description contains information about the mounted
object, the object that is mounted over, and the relationship of the
virtual file system to other virtual file systems in the list.

A vnode describes a file or directory in a specific file system (since
the same file or directory can be part of more than one file system).
The vnode points to the i-node that describes the file on the
minidisk that contains it.

The file system subtree is the structure of vnodes beneath each
niounted directory. Each vnode contains a pointer to the virtual
file system description. The file system of a particular system
consists of all subtrees created by mounts on that system.

A file handle contains the file's device number, i-node number,
i-node generation number, and type. The file handle, combined
with the node ID of the system that contains the file, uniquely
identifies the file on a specific system.

2-78 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

The following system maintenance commands can be run only on
file systems (that is, on minidisks, not on virtual file systems or file
trees):

o backup-m

• restore-m

• fsck

I Mounting and Unmounting Files and Directories

When used to mount directories or files, the general format of the
mount command is:

mount pathnamel pathname2

where pathnamel is the path name of the object to be mounted and
pathname2 is the path name of the object to be mounted over.

The following flags to the mount command apply specifically to
file and directory mounts:

-n nodename Specifies a remote system. If the object to be
mounted (pathnamel) is remote, you must use the -n
flag in a command of the form:

-t string

mount -n nodename pathnamel pathname2

nodename is the name of the remote system that
contains the object to be mounted. pathnamel is the
path name to the obj ect on the remote system.
pathname2 is the path name to the obj ect on the
local system to be mounted over. If run without
parameters, mount -n nodename displays the mount
table at the remote node, nodename (the remote
equivalent of running mount without flags locally).

Specifies mounts of type string. type is an attribute
that can be included in the /etc/filesystems stanza.

Routine System Management 2-79

TNL SN20-9862 (June 26 1987) to SBOF-0168

-i Causes a remote file tree structure to be inherited.
That is, the -i flag enables mount to replicate, on a
local node, the structure of a remote file tree. The
inherited structure includes all file and directory
mounts below the mounted directory (pathnamel).
To replicate the structure, mount -i individually
performs each directory or file mount contained in
the file tree to be inherited.

The umount command unmounts files and directories as well as
local minidisks. To unmount a file or directory, use a umount
command of the form:

umo u n t pathname2

where pathname2 is the the file or directory over which another
file or directory is mounted).

Note: You cannot unmount an object by naming the object itself
(for example, pathnamel in the previous mount command
example).

To unmount only the remote mounts from a specific node, use the
-n flag, for example:

umo u n t - n nodename

To unmount all remote mounts, use the allr flag, for example:

umount allr

The umount all command unmounts all remote files and
directories as well as all local minidisks.

Users can issue arbitrary file or directory mounts
(mount directoryl directory2, mount filel file2) or mounts
described in /etc/filesystems if they:

• Have search permission to the directory or file to be mounted
• Own the directory or file to be mounted over
• Have write permission in the parent directory of the file or

directory to be mounted over.

2-80 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

In addition, members of the system group can issue any mount
described in the /etc/filesystems file. A user with superuser
authority can issue any valid mount command.

Users can unmount any mount that they are allowed to issue.
Members of the system group can unmount any mount described in
/etc/filesystems.

The remainder of this section discusses ways to use the file system
mount capabilities in a Distributed Services environment.

I Mounting File Trees That Contain Mounts

Once a minidisk file systems are mounted, you can assemble objects
from them into file trees with directory and file mounts.
Ordinarily, when you mount a directory, you mount only some part
of a file system, not a file tree. However, you can replicate file
trees by using inherited mounts. For example, if a directory has
two directories mounted in its subtree, then:

• An ordinary mount command performs only one mount, that of
named directory.

• An inherited mount performs three mounts: the named
directory and then each of the two directories mounted in its
subtree.

Thus, a single inherited mount command may result in numerous
individual mounts.

There are two ways to perform inherited mounts:

• Issue the mount -i command.

• Place the mount = inherit attribute in the appropriate
/etc/filesystems stanzas.

Inherited mounts are convenient when:

• Users at different nodes require access to the same data, and

• The physical location of the data may have to be changed
regularly to balance system requirements and resources.

Routine System Management 2-81

TNL SN20-9862 (June 26 1987) to SBOF-0168

With inherited mounts, you can rearrange the location of data in
one file system without requiring users at other nodes to update
their /etc/filesystems file or automatic mount procedures.

The other nodes have a single /etc/filesystems stanza to describe
the mount. However, inherited mounts are performed only when
the mount command runs; that is, if the file tree is modified while
the system is in use, the inherited mounts are not dynamically
updated. Therefore, when it is necessary to change file trees that
are inherited by other nodes, it is best to inform users that the
changes will be made at specific times.

An inherited mount consists of multiple, individual directory or file
mounts. To unmount an inherited mount, you must do one of the
following:

• Unmount each directory or file individually, in the reverse
order from that in which it was mounted.

• Use the umount all command.

You cannot unmount an inherited mount by naming the directory
that was originally mounted, or by using the umount allr or
umount -n commands. Generally, it is most convenient to design
inherited mounts that:

• Are performed automatically at system start
• Do not require modification while users are logged into the

system
• Can be unmounted with the umount all command as part of

shutting down the system.

I Performing Routine Mounts Automatically

The way in which remote mounts are managed depends upon the
nature of the particular Distributed Services network. In some
cases, it may be sufficient simply to allow users to perform mounts
as needed; that is, there is no set network file system structure that
must be in place in order for the network to be useful. In other
cases, however, it is convenient to create a file system structure
that automatically incorporates routine remote mounts. This
section discusses techniques that can help you manage remote
mounts.

2-82 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

If you routinely mount specific remote directories, it is convenient
to mount them automatically. Because the nodes in a Distributed
Services network may start at different times, relative to each
other, remote mounts may fail when they are first issued. This
section explains how to develop an automatic mount procedure
that continues to issue the mounts until they succeed.

An automatic mount procedure involves the following AIX and
Distributed Services components:

/etc/filesystems The file containing file system descriptions (see
"Information about File Systems-The
/etc/filesystems File" on page 2-47).

type = string

-t string

An attribute that can appear in an
/ etc /filesystems stanza.

A mount argument that causes the mount
command to mount all directories or files whose
file systems stanzas contain the attribute
type = string).

In addition, when you specify the -t flag with a
file or directory mount, the mount command
checks to see if that file or directory is already
mounted. If it is, mount does not attempt to
mount it again.

This flag is necessary because the mount
command treats duplicate mount requests
differently depending on whether it is a file
system mount or a file or directory mount. If a
file system is already mounted, mount mount
will not mount it again. However, mount does
duplicate file or directory mounts unless you
specify the -t string argument.

shell programs User-written programs that issue remote mounts,
monitor their status, and reissue or reschedule
remote mounts, as needed.

Routine System Management 2-83

TNL SN20-9862 (June 26 1987) to SBOF-0168

/ete/re.ds

Note: In the following examples, all
user-written shells are assumed to:

• Belong to UID 0 and GID 0

• Reside in the fete directory

• Have the permissions 754 (read, write,
execute by owner; read, execute by group;
read by others).

An initialization file run by init to configure
Distributed Services at system start. (This is
also a shell program.)

For a sample automatic mount shell program, see "Automatic
Mount Procedures" on page 3-74.

2-84 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Distributed Services ID Translation

The AIX Operating System uses a combination of identification
numbers (IDs) and permissions to provide data security. When a
user logs in, the /etc/passwd file associates a user ID (UID) with
the login name. Similarly, the /etc/group file associates one or
more group IDs (GIDs) with the login name. When a user starts a
process (runs a command), AIX associates the user's UID and
GID(s) with the process. AIX also associates a UID and GID with
each file or directory. Unless they are explicitly changed, the UID
and GID associated with a file are those of the user who created it.

AIX also associates three permissions (read, write, and search or
execute) for three classes of users (owner, group, and other) with
each file or directory. A file's i-node contains information about
its permissions, UID, and GID. A process can use a file only if the
appropriate correlation between IDs (UID and GID) and
permissions exists. (For more information about file permissions,
see "Protecting Files and Directories" in Using the AIX Operating
System. For more information about i-nodes, see "I-nodes" on
page 1-11.)

The same user name may correspond to different IDs on each node
in a Distributed Services network. To satisfy the requirements of
AIX permission checking, Distributed Services has the following
facilities for associating the IDs on one node with those on another
node:

inbound translation Translates the IDs of incoming requests
into their local equivalents.

outbound translation Translates the IDs of outgoing requests
into their network equivalents.

The following terms describe the different forms that IDs can have
in a distributed AIX environment:

localID A numeric ID associated with a user or group name
defined in the local /etc/passwd or /etc/group file.
This ID is found in local i-nodes and is associated
with locally running processes.

Routine System Management 2-85

TNL SN20-9862 (June 26 1987) to SBOF-0168

remote ID A numeric ID associated with a user or group name
defined in a remote /ete/passwd or fete/group file.
This ID is found in remote i-nodes and is associated
with a process running at the remote node.

network ID A numeric ID associated with a communication
request; the ID that is passed between nodes on the
network.

ID translation is the process of converting between a local ID or
remote ID and a network ID. In respect to the local node, ID
translation occurs in two directions:

forward translation
The translation of IDs associated with running processes.
A local ID is transmitted to a remote node. The remote
node translates the ID to determine whether the process
has access to the remote node and to do AIX permission
checking.

backward translation
The translation of IDs found in i-nodes. The local node
translates a remote ID into its local equivalent to
determine which local IDs own a remote file or directory.

At least two IDs (UID and GID) are associated with each process.
Distributed Services translates IDs according to information in
tables on each node. After a remote ID is translated to its local
equivalent, AIX checks permissions by referring to the local
/ete/passwd and fete/group files. Thus, data security in a
distributed AIX environment is comparable to that of an AIX
system without Distributed Services.

Distributed Services loads profiles that contain the translation
data into the AIX kerneL Appendix B, "Getting Started With
Distributed Services Customization Commands" on page B-1
explains how to create and modify the profiles.

2-86 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Inbound Translation

Each request from a client contains node ID (NID), UID, and GID
information, and requires permission checking at the server. When
a server receives a request, it uses the ID information of the
request to select a row from the translation table. The row
provides the equivalent local ID that AIX uses to perform the
permission checking.

Note: The examples in this section demonstrate UID translation.
Distributed Services translates GIDs in the same way.

Figure 2-7 on page 2-88 represents inbound translation. When the
client node (NID 108133EB, nickname D94) places a request on the
network, the local ID and network ID of the requesting process are
the same (201). When the server node (NID 208131AA, nickname
D87) receives the request, it translates the network ID into its local
equivalent (301). To determine whether to give the process access
to a file, the server node performs normal AIX permission checking;
in this case, the file's owner (UID 301) has all three permissions for
the file (-rwx r-- r--).

Routine System Management 2-87

TNL SN20-9862 (June 26 1987) to SBOF-0168

Client Node Server Node

NID: 108133EB NID: 208131AA
Nickname: 094 Nickname: 087

I
Requesting Process I Inbound Translation

Network UID ~ 201

I

Local UID = 201 I

I

UID 201 --> UID 301

U
Permission Checking

U
File

Local UID = 301
-rwxr--r--

AJ2DLO09

Figure 2-7. Inbound ID Translation

To perform the translation shown in Figure 2-7, the translation
table on 087 contains the following data:

Usr/Grp
Name U/G

tom U

Local
10

301

Network 10
Outbound Inbound

201 201

Originating Node
Name/Nickname

094

Node 087 translates the inbound network ID 201 into the local UID
301. The local UID 301 corresponds to the local user name tom.

In some cases, it is convenient to use wildcard entries in
translation tables. An asterisk (*) in a field indicates that a
specific ID is not required. In the following table, for example, a
request with the inbound network ID 210 translates to the local

2-88 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

UID 208, regardless of which node the request comes from:

Usr/Grp Local Network 10 Originating Node
Name U/G 10 Outbound Inbound Name/Nickname

tom U 301 201 201 094
don U 208 210 210 *

The following example shows a wildcard character in the NID and
inbound network ID fields of the third line. Any incoming request
that does not match either of the first two lines in the table is
mapped to the local guest ID.

Usr/Grp Local Network 10 Originating Node
Name U/G 10 Outbound Inbound Name/Nickname

tom U 301 201 201 094
don U 208 210 210 *
guest U 200 200 * *

If a line in the translation table explicitly matches the UID and
NID of an incoming request (that is, there are no wildcards),
Distributed Services always performs that translation. However,
with wildcards, an incoming request can match more than one
translation line. According to the following table, a request with
the inbound UID 210 and the NID 094 matches three different local
IDs (208, 212, and 200):

Usr/Grp Local Network 10 Originating Node
Name U/G 10 Outbound Inbound Name/Nickname

tom U 301 201 201 094
don U 208 210 210 *
jean U 212 212 * 094
guest U 200 200 * *

In such cases, since an inbound network ID can be translated to
only one local ID, Distributed Services selects one of the possible
translations

Routine System Management 2-89

TNL SN20-9862 (June 26 1987) to SBOF-0168

according the the following priorities:

Priority Inbound UID Inbound NID

1 explicit *
2 * explicit

3 * *

If no match occurs, Distributed Services rejects the request.

Note: Wildcards simplify ID translation by making it less
restrictive. Consider the security requirements of your network
when you decide how extensively to use ID translation wildcards.

I Outbound and Inbound Translation

The principle of outbound translation is the same as that of
inbound translation-one ID is translated into another according to
data contained in a table. Outbound translation, however, occurs
at the client node when the client places a request on the network.
Outbound translation produces a network ID which can be
different from both the local ID and the remote ID.

Figure 2-8 on page 2-91 represents inbound and outbound
translation working together. Before placing a request on the
network, node 094 translates the local ID of the process (201) to
produce the network ID (210). Upon receiving the request from the
network, node 087 performs inbound translation and permission
checking as usual.

2-90 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

Client Node Server Node

NID: 108133E8 NID: 208131AA
Nickname: D94 Nickname: D87

Outbound Translation Inbound Translation
Network UID = 210

UID 201 ---> UID 210 UID 210 --> UID 301

/',

U
Requesting Process Permission Checking

U Local UID = 201

File
Local UID = 301

-rwxr--r--

AJ2DLO08

Figure 2-8. Outbound and Inbound ID Translation

When used together, outbound and inbound translation can
simplify certain network management tasks. For example, the
same user (tom) might have a different UID on each of five nodes in
a network:

User Name Node UID

tom Node--A 300

tom Node~ 214

tom Node_C 461

tom Node~ 302

tom Node.-E 270

Without outbound translation, each of the five lines in the
translation table at a given node must have a different value for
the inbound network UID:

Routine System Management 2-91

TNL SN20-9862 (June 26 1987) to SBOF-0168

Usr/Grp Local Network ID Originating Node
Name U/G ID Outbound Inbound Name/Nickname

tom U 300 300 Node-A
tom U 300 214 Node_B
tom U 300 461 Node_C
tom U 300 302 Node_D
tom U 300 270 Node_E

With outbound translation, however, each node can translate the
local ID to a common network ID (a Social Security number, for
example). While the table at each node still must have five rows
for the user in the example, each row has the same value for the
inbound network UID (that is, you have to gather less information
to set up the translation tables):

Usr/Grp Local Network ID Originating Node
Name U/G ID Outbound Inbound Name/Nickname

tom U 300 250 250 Node-A
tom U 300 250 250 Node_B
tom U 300 250 250 Node_C
tom U 300 250 250 Node_D
tom U 300 250 250 Node_E

You can further simplify the translation tables by using wildcards
in conjunction with outbound translation. For example, the five
lines required for the user in the previous example can be reduced
to a single line if you use a wildcard for the NID:

Usr/Grp
Name U/G

tom U

Local
ID

300

Network ID
Outbound Inbound

250 250

Originating Node
Name/Nickname

*

In practice, a network administrator should maintain a registry of
user names and their corresponding network IDs. Then, when a
user is added to a node on the network, the person who creates the
account can refer to the registry for the common network IDs.

2-92 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Listing Directory Contents- The Ii (List) Command

Use the Ii (list) command to list the contents of one or more
directories. The general form for the Ii command is simply 1 i,
which lists the contents of your current directory.

You can do several other things with the Ii command as well. For
example, you can list the contents of directories other than the
current directory. You also can use the Ii command flags to get
different types of information about directory contents. (For
information about the Ii flags, see "Ii Command Flags" on
page 2-94.)

To List Directory Contents

Enter: 1 i name

where name is the name of a directory or file.

I The Current Directory

I Other Directories

To list the contents of your current directory, enter 1 i :

$ li
book
emdefs.p
emkeys.o
$ -

examples
mail.test
memo.equip

memo.schedule memo.vac
memo. space translation
memo. test

Used without flags, the Ii command simply lists the names of the
files and directories in your current directory.

To list the contents of directories other than your current
directory, use a command of the form 1 i pathname. In the
following example, the pwd command shows that the current
directory is /u/mark, and the Ii command lists the contents of a

Routine System Management 2-93

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Ii Command Flags

different directory, lu:

$ pwd
jujmark
$ li ju
a342374 dale filesystems mark profsvcs
bi lld david george mel roller
brown ds gorg melanie root
ctw eacono laurie monroe scheetz
dagitz etc lost+found morley tcpip
$ -

As this example shows, the Ii command ordinarily sorts directory
and file names alphabetically.

Note: Your listing of the lu directory will not be exactly like this
one. Generally, it will contain the names of login directories for
users on your system, but may also contain other files or
directories.

In its simple form, the Ii command lists only the names of files and
directories. However, several flags that you can use with Ii give
you more information about the files and directories or change the
way the listing displays. To use flags, enter a command of the form
1 i-flag name.

2-94 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

The following table lists some of the most useful Ii command flags:

Flag

-a

-k

-1

-Sflag

Action

Lists all entries. Without this flag, the Ii command does
not list the names of entries that begin with . (period), such
as relative directory names, .profile, and .login.

Provides information about files and directories that exist
on remote systems (in a Distributed Services environment).
A -k listing shows the type, permissions, remote system that
contains the file, remote user ID and group ID, size, time of
last modification, and name for each file or directory listed.

Lists in long format. An -1 listing shows the type,
permissions, number of links, owner, group, size, time of
last modification, and name for each file or directory listed.

Controls how Ii sorts and displays the listing. The sorting
options include:

Last access time (-Sa)
Last modification time (-8m)
Name (-8n)
Size (-8s)
Creation time (u).

The -r flag reverses the sorting order (for example, Ii -8nr
sorts by name in reverse alphabetical order).

Figure 2-9. Ii Command Flags

If you want to use more than one flag, type all of the flag names
together in one string. For example, Ii -alSnr lists all entries in
long form, sorting them in reverse alphabetical order.

The following example shows a long (-1) listing of a current
directory:

Routine System Management 2-95

TNL SN20-9862 (June 26 1987) to SBOF-0168

$ li -1
Drwxr-xr-x 2 mark staff 176 Apr 16 00:23 book
-rw-rw-rw- 1 mark staff 7258 Feb 26 19:21 emdefs.p
-rw-rw-rw- 1 mark staff 2224 Feb 26 19:21 emkeys.o
drwxr-xr-x 2 mark staff 80 Apr 17 14:24 examples
-rw-r--r-- 1 mark staff 28 Feb 26 10:33 mail .test
-rw-r--r-- 1 mark staff 440 Apr 17 11:01 memo.equip
-rw-r--r-- 1 mark staff 220 Apr 17 11:01 memo. schedule
-rw-r--r-- 1 mark staff 220 Apr 17 11:01 memo. space
-rw-r--r-- 1 mark staff 28 Apr 17 13:11 memo. test
-rw-r--r-- 1 mark staff 110 Apr 17 11:01 memo.vac
-rw-r--r-- 1 mark staff 1873 Apr 15 14:24 translation
tot a 1 60 blocks
$ -

2-96 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

The Ii -1 command returns the following information:

Field Information

-rw-rw-rw- File type and permissions set for each file or
directory. The first character in this field indicates
file type:

- (hyphen) for ordinary files
d for directories
b for block special files
c for character special files
p for pipe (first in, first out) special files
F for remote ordinary files
D for remote directories
B for remote block special files
C for remote character special files
P for remote pipe special files.

Remaining characters indicate what read, write,
and execute permissions are set for owner, group,
and others. For more information on permissions,
see "Changing Permissions-The chmod (Change
Mode) Command" on page 3-45.

2 Number of links to each file. For an explanation of
file links, see "Linking Files-The In (Link)
command" on page 3-27.

mark User name of the file's owner.

staff Group to which the file belongs.

7258 Number of characters in the file.

Feb 26 19:21 Date and time the file was created or last modified.

emdefs.p Name of the file or directory.

total 60 Number of 512-byte blocks taken up by files in this
blocks directory.

Figure 2-10. Ii -1 Command Information

The following example shows a long listing of all files in the
current directory, including files whose names begin with a period:

Routine System Management 2-97

TNL SN20-9862 (June 26 1987) to SBOF-0168

$ li -la
drwxr-xr-x 4 mark staff
drwxrwxr-x 26 mel system
-rw-rw-rw- 1 mark staff
-rw-rw-r-- 1 mark staff
-rw-rw-r-- 1 mark staff
Drwxr-xr-x 2 mark staff
-rw-rw-rw- 1 mark staff
-rw-rw-rw- 1 mark staff
drwxr-xr-x 2 mark staff
-rw-r--r-- 1 mark staff
-rw-r--r-- 1 mark staff
-rw-r--r-- 1 mark staff
-rw-r--r-- 1 mark staff
-rw-r--r-- 1 mark staff
-rw-r--r-- 1 mark staff
-rw-r--r-- 1 mark staff
total 84 blocks
$ -

272 Apr 17 13:10 .
448 Apr 8 18:21

33 Apr 17 14:28 .estate
541 Apr 17 13:10 .profile
531 Feb 24 12:02 .profile.bak
176 Apr 16 00:23 book

7258 Feb 26 19:21 emdefs.p
2224 Feb 26 19:21 emkeys.o

80 Apr 17 14:28 examples
28 Feb 26 10:33 mail.test

440 Apr 17 11:01 memo.equip
220 Apr 17 11:01 memo.schedule
220 Apr 17 11:01 memo. space

28 Apr 17 13:11 memo. test
110 Apr 17 11:01 memo.vac

1873 Apr 15 14:24 translation

In the previous example, the 0 file type indicates that book is a
remote directory (a directory that exists on a different system).

2-98 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

The following example shows a long listing of that directory:

$ 1; -1 book
Frw-r--r-- 1 mark staff 7258 Apr 16 00:22 appendix
Fn/-r--r-- 1 mark staff 28 Apr 16 00:22 chap.1
Fn/-r--r-- 1 mark staff 440 Apr 16 00:22 chap.2
Frw-r--r-- 1 mark staff 110 Apr 16 00:22 chap.3
Frw-r--r-- 1 mark staff 220 Apr 16 00:22 chap.4
Frw-r--r-- 1 mark staff 1873 Apr 16 00:22 chap.5
Frw-r--r-- 1 mark staff 220 Apr 16 00:22 cover.ltr
Frw-r--r-- 1 mark staff 2224 Apr 16 00:22 glossary
Frw-r--r-- 1 mark staff 28 Apr 16 00:22 preface
total 52 blocks
$ -

The long listing of a remote directory resembles that of a local
directory with two exceptions. First, the type field (F in this
example) indicates that all items in the directory are remote.
Second, the user and group names are translated into their local
equivalents. For example, if:

• The local user name mark corresponds to the local DID (user
identification number) 300,

• The local DID 300 corresponds to the remote DID 200, and
• The remote DID 200 corresponds to the remote user name

jones,

the long listing shows mark as the file's owner; mark is the local
equivalent of j ones on the remote system.

The -k flag displays information about remote files and directories,
including their remote DID and GID (group identification number);
that is, the DID and GID that Ii -k displays are not translated into
their local equivalents. The following example shows an Ii -k
listing of the remote directory book:

Routine System Management 2-99

TNL SN20-9862 (June 26 1987) to SBOF-0168

$ li -k book
Frw-r--r-- dept998 200 1 7258 Apr 16 00:22 appendix
Frw-r--r-- dept998 200 1 28 Apr 16 00:22 chap.1
Frw-r--r-- dept998 200 1 440 Apr 16 00:22 chap.2
Frw-r--r-- dept998 200 1 110 Apr 16 00:22 chap.3
Frw-r--r-- dept998 200 1 220 Apr 16 00:22 chap.4
Frw-r--r-- dept998 200 1 1873 Apr 16 00:22 chap.5
Frw-r--r-- dept998 200 1 220 Apr 16 00:22 cover.ltr
Frw-r--r-- dept998 200 1 2224 Apr 16 00:22 glossary
Frw-r--r-- dept998 200 1 28 Apr 16 00:22 preface
total 52 blocks
$ -

Certain fields in an Ii -k listing are the same as they are in an Ii -I
listing (type, permissions, size, date, and name). However, Ii -k
displays the name of the remote system (dept998), the remote UID
(200), and the remote GID (1), instead of the link count, local user
name, and local group name that Ii -I displays.

There are other flags to the Ii command that you may find useful
as you gain experience with the AIX system. All of the Ii command
flags are explained under Ii in AIX Operating System Commands
Reference. Another AIX command, Is, has features similar to those
of Ii, and is also described in AIX Operating System Commands
Reference.

I Displaying Remote IDs: Special Conditions

Note: This section explains how Ii uses the fullstat system call to
determine what remote file IDs to display. It is primarily intended
to help you understand why, in some cases, Ii may display IDs
other than those that you expect to see.

In the previous examples of how Ii lists remote IDs, each remote ID
corresponds to a specific local ID and the translated ID of the file
is the same as the local ID of the requesting process. To indicate
this unambiguous condition, the fullstat system call (used by Ii)
returns the translated ID and the CALLER tag.

2-100 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

Following is an example of the CALLER condition:

• Local translation entries:

Usr/Grp Local NehJOrk 10 Originating Node
Name U/G 10 Outbound Inbound Name/Nickname

tom U 201 2000 2000 *

• Remote translation entries:

Usr/Grp Loca 1 Network 10 Originating Node
Name U/G 10 Outbound Inbound Name/Nickname

jones U 205 2000 2000 *
system G 0 0 0 *

With these translation entries, if:

UID GID
Requesting process 201 1 (concurrent group 0)

Remote file 205 0

then:

UID GID
Ii -k returns 205 0

Ii -1 returns tom staff

However, it is possible to set up translation tables that create the
following special cases:

OTHER
The translated ID is the same as some local ID other than
that of the requesting process. fullstat returns a
translated ID and the OTHER tag. If the network ID
translates to more than one local ID, fullstat returns the
local ID that appears first in the translation table. For
an example of conditions that cause fullstat to return the

Routine System Management 2-101

TNL SN20-9862 (June 26 1987) to SBOF-0168

OTHER tag, see "Example: The OTHER Condition" on
page 2-102.

SOMEONE

NOONE

The inbound ID is a wildcard and, therefore, can match
any of the local IDs. fullstat returns the SOMEONE tag.
H displays the value of netsomeone (a system parameter
set in the fete/master file), typically 65534. For an
example of conditions that cause fullstat to return the
SOMEONE tag, see "Example: The SOMEONE
Condition" on page 2-103.

The inbound ID matches no local ID. fullstat returns the
NOONE tag. H displays a hyphen (-) to represent the
value of netnoone (anoth~r system parameter that is set
in the fete/master file, typically to 65535). For an
example of conditions that cause fullstat to return the
NOONE tag, see "Example: The NOONE Condition" on
page 2-104.

Example: The OTHER Condition:

• Local translation entries:

Usr/Grp Local Network 10 Originating Node
Name U/G 10 Outbound Inbound Name/Nickname

karin U 201 2000 2000 *
tom U 202 2001 2001 *
tj U 203 2001

• Remote translation entries:

Usr/Grp Local Network 10 Originating Node
Name U/G 10 Outbound Inbound Name/Nickname

karin U 203 2000 2000
jones U 205 2001 2001 *
system G 0 0 0 *

With these translation entries, if:

2-102 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

UID GID
Requesting process 201 1 (concurrent group 0)

Remote file 205 0

then:

UID GID
Ii -k returns 205 0

Ii -1 returns tom system

Example: The SOMEONE Condition:

• Local translation entries:

Usr/Grp Local Network 10 Originating Node
Name U/G 10 Outbound Inbound Name/Nickname

karin U 201 2000 2000 *
tom U 202 2001 2001 *
tj U 203 2001

• Remote translation entries:

Usr/Grp Local Network 10 Originating Node
Name U/G 10 Outbound Inbound Name/Nickname

jones U 205 2001 * *
usr G 100 100 * *

With these translation entries, if:

UID GID
Requesting process 201 1 (concurrent group 0)

Remote file 205 0

then:

Routine System Management 2-103

TNL SN20-9862 (June 26 1987) to SBOF-0168

DID GID
Ii -k returns 205 0

Ii -1 returns 65534 65534

Example: The NOONE Condition:

Usr/Grp Local Network 10 Originating Node
Name U/G 10 Outbound Inbound Name/Nickname

karin U 201 2000 2000 *
tom U 202 2001 2001 *

• Remote translation entries:

Usr/Grp Local Net\'Jork 10 Originating Node
Name U/G 10 Outbound Inbound Name/Nickname

watt U 205 2002 2002 *

With these translation entries, if:

DID GID
Requesting process 201 1 (concurrent group 0)

Remote file 205 0

then:

DID GID
Ii -k returns 205 0

Ii -1 returns - -

For more information about the fullstat system call (and the
related stat system call), see A/X Operating System Technical
Reference.

2-104 Managing the Operating System

Chapter 3. Maintaining the AIX Operating System

Maintaining the System 3-1

CONTENTS

About This Chapter .. 3-3
Maintaining the File System ... 3-4

Causes of File System Damage .. 3-4
Examples .. 3-6
Checking and Repairing File Systems-The fsck Command 3-8
Repairing File Systems by Destroying Files 3-15

The Input/Output System ... 3-17
Device Drivers and Special Files 3-17
Block I/O System .. 3-18
Character I/O System .. 3-18

U sing the Queueing System 3-20
Parts of the Queueing System .. 3-20
Queues and Devices .. 3-22
Backends .. 3-27
Changing the Configuration File 3-31
Keeping the qdaemon Running 3-32

1 Customizing Distributed Services 3-35
1 Before You Begin ... 3-35
1 Working with Distributed Services Profiles 3-38
1 Setting Up a Test Network .. 3-51
1 Planning the Network .. 3-58
1 Automatic Mount Procedures .. 3-74
1 Customizing a Server Node .. 3-89
1 Customizing a Client Node .. 3-92
1 Scenario One: A Program Development Environment 3-93
1 Scenario Two: A Text Processing Environment 3-107
Handling System Errors ... 3-115

Recovering from Unexpected System Halts 3-115
Error Logging, Analysis, and Reporting 3-116
Memory Dump Services .. 3-118
trace Services .. 3-120

.1 Using trace to Monitor Distributed Services Activities 3-121
Generating a New Kernel .. 3-132

Using the make Command .. 3-132
System Parameters .. 3-135
Distributed Services Tuning and Problem Determination 3-139

3-2 Managing the Operating System

About This Chapter

This chapter covers the tasks required to maintain the AIX
Operating System and to adapt the system to your needs. Anyone
who manages an AIX system will perform some of the tasks
described in this chapter (for example, maintaining the file system).
Other tasks described here only concern you if you modify your
system (for example, installing applications and local commands).
A third set of tasks may become more important the longer you use
the system (for example, refining your security policies).

Maintaining the System 3-3

Maintaining the File System

Each time a file is created, changed, or deleted, the operating
system performs a series of file system updates. These updates,
when written to a disk, produce a consistent file system. If all of
the updates do not complete successfully, the result can be an
inconsistent file system. Some inconsistencies may not be severe,
but others, if not promptly corrected, can spread and eventually
make an entire file system unusable. The fsck (file system
consistency check) command analyzes a file system, locates
inconsistencies, and often can correct certain inconsistencies
automatically.

Causes of File System Damage

The major causes of file system damage are:

• A system halting (or failing) before it completes all pending file
system updates, for example, due to power failure

• Poor operating procedures

• Failure of a disk drive or drive controller

• Physical damage to a diskette.

Generally, when a system halts before it completes its pending file
system updates, damage to the file system is minor and easily
corrected. File system damage that results from poor operating
procedures or from fixed-disk or disk controller failure, however,
can be severe enough to destroy an entire file system.

3-4 Managing the Operating System

Disk Buffering-the sync Command

Any operation involving a file requires data to be retrieved from
the fixed disk (read into memory), returned (written) to the disk, or
both. These read and write operations also are known as disk
input and output, or disk I/O. To make some disk I/O more
efficient, the operating system maintains a buffer (temporary
storage area) in memory for recently accessed data blocks. The
operating system writes data from the buffer to the disk only when:

• There is a sync system call.

• There is an fsync system call.

• The system needs the buffer for another purpose.

Disk buffering can increase the efficiency of I/O operations because
it allows repeated reads and writes to the same block to occur
without the block being physically read from the disk or written to
the disk each time. The system is also able to schedule c'ertain I/O
operations (especially read operations) so that they occur in an
order that is more efficient for the disk, rather than in the order in
which they were requested. Together, disk buffering and disk
scheduling help match the demand for I/O operations to the
physical characteristics of the fixed-disk.

Although it may improve the efficiency of disk I/O, disk buffering
can indirectly cause one type of file system damage-if the system
stops before writing all data from the buffer back to the disk, the
data on the disk is not current (and the data in memory is lost).
Thus, it is extremely important for buffered data to be written to
the disk (with the sync command) before the system is stopped.
The shutdown command automatically runs the sync command.
Failure to run sync (with shutdown) before stopping the system is
a common cause of file system damage, but one that is very easy to
avoid.

Even if the system Jails, which usually means that you do not have
time to run the sync command, any structural damage to the file
system is usually easy to find and repair. The fsck command often
can automatically repair this kind of damage. Thus, before you use
the file system, you check it with fsck (either use the Check a file

Maintaining the System 3-5

Examples

system item on the AIX Operating System
Installation/Maintenance diskette, or run fsek from the standalone
shell, as described under "Running the Maintenance System" on
page 2-6). Otherwise, if files are created on the damaged file
system, the damage can become much worse.

The dfsek command lets you check two file systems on two
different drives at the same time. Flags specified with dfsek are
passed to fsek, letting you interact with two fsek programs. dfsek
prints the file system name for each message that it sends. Thus,
when you answer a message from dfsek, prefix the response with
either 1 or 2 to indicate the first or second file system. For more
information about dfsek, see "fsek" in AIX Operating System
Commands Reference.

Note: The fsek -p command should be included in /ete/re so that
it always runs during normal startup. To check two file systems on
two different drives at the same time during normal startup,
include the dfsek command in Jete/reo

Following are two examples of how a file system can become
inconsistent. In each example, the system stops before all disk
updates are complete.

• Example 1. Block Allocation Inconsistency

When the operating system allocates a new block to a file, two
things must be updated:

The i-node, to indicate that the file contains a new block

The free list, to indicate that a block that was free is no
longer available.

If the system stops between the first and second update
operations, the i-node shows that the new block is allocated to
the file, while the free list still shows that the block is
available. There is an inconsistency in the file system.

3-6 Managing the Operating System

The fsck command often can find and correct such
inconsistencies if it is run on the file system immediately.
However, if you begin to use the file system again without
correcting the inconsistency, more serious problems can occur.
For example, the block shown as both allocated (in the i-node)
and free (in the free list) could be allocated to a second i-node;
that is, the same block would be part of two different files or
directories. File system damage of this type can spread quickly
and be extremely difficult to correct; it can result in the
appearance of strange information in files and the loss of some
files or even an entire file system.

• Example 2. File Deletion Inconsistency

When the operating system deletes a file, up to five things must
be updated:

The directory entry that points to the file must be cleared.

The reference count in the i-node for the file must be
reduced by one.

If the reference count goes to zero, all blocks in the file
must be added to the free list.

If a large number of blocks are freed, a new link in the free
chain must be written.

The i-node for the file must be made available again.

Depending upon which of these update operations is completed
at the time the system stops, different types of file system
inconsistencies can occur.

Note: Lost data does not necessarily produce file system
inconsistency. Generally, the data stored in ordinary files has
nothing to do with the consistency of the file system. For example,
if you begin a write operation and the system stops before the
operation completes, the file on the disk simply does not get
updated. While you have lost data, that loss may not affect the file
system. The fsck command can only determine whether the

Maintaining the System 3-7

structure of the file system is internally consistent; it cannot check
the data within files.

Checking and Repairing File Systems-The fsck Command

A file system contains redundant information about its structure.
If the file system is consistent, each instance of a particular piece
of information is identical. The fsck command uses this redundant
information to detect and, in many cases, correct file system
inconsistencies.

The fsck program makes several passes through a file system,
performing a different phase of checking in each pass. When it
detects an inconsistency, fsck reports the error condition,
displaying a message on the screen and waiting for a response. For
an explanation of the fsck messages and what actions you should
take to respond to them, see Messages Reference.

The file /etc/rc contains a list of the commands run each time the
system starts. Generally, /etc/rc contains the /etc/fsck -p
command. This line starts fsck before the system mounts any file
systems. If the /etc/filesystems stanza for a file system contains
either of the following lines, fsck checks the file system at this
point:

check=true

check=group.

(fsck checks all file systems with the same group at the same time.)

Note: A stanza is a group of lines that define a part of the
system. A stanza in /etc/filesystems defines a file system.

The -p (preen) flag causes fsck to run automatically, correcting all
simple inconsistencies without requiring any action from the user.
The -p flag enables fsck to repair most inconsistencies that result
from the system stopping unexpectedly.

Without the -p flag, fsck runs interactively, displaying each error
condition that it locates and waiting for you to decide whether

3-8 Managing the Operating System

corrections should be made. For information about other fsck
flags, see "fsck" in IBM RT PC AIX Operating System Commands
Reference.

It is very important to run fsck on unmounted file systems. The
fsck command goes completely through the file system several
times, often comparing data collected on one pass with data
collected on another. Thus, any activity on the file system can
interfere with the ability of fsck to check and repair file system
damage.

The fsck Consistency Checks

Following is a list of the types of file system inconsistencies that
fsck checks for, together with descriptions of how they can be
corrected:

• Superblock Inconsistencies

The superblock is the most frequently updated part of a file
system and it is therefore the most likely to be inconsistent
after the system stops unexpectedly. Every time a block or
i-node is allocated or deallocated, the superblock should be
updated.

The fsck program checks all information about the file system
in the I?uperblock to make sure that it is consistent with the
standard requirements for a file system. This information
(including file system size, number of blocks allocated to
i-nodes, cluster size, and interleave factors) never changes
during normal operation. Should any of these values change,
there is evidence that the file system is severely damaged. In
such cases, fsck reports the condition and does nothing else
with the file system. Usually the only way to recover such a
file system is to restore it from a backup.

If the information about the file system seems to be consistent
and reasonable, fsck uses the file system and i-list size to
validate all block numbers. All reasonable blocks are between
the end of the i-list and the end of the file system. Any
reference to a block not within that range is not valid and
probably indicates severe file system damage.

Maintaining the System 3-9

Free block list

The free list is a series of logically connected blocks which
are available (that is, they are not allocated to any file).
The superblock contains the first block of the free list. The
fsck command checks the structure of the free list and also
checks the block numbers of every block in the list. fsck
makes separate checks to make sure that no allocated blocks
appear in the free list and that all blocks that are not
allocated do appear in it. fsck can repair any
inconsistencies found in the free list, usually by
constructing a new free list that contains all blocks found
not to be allocated.

Free block count

The superblock contains a count of the total number of free
blocks within the file system. fsck compares this count to
the number of blocks it found free within the file system. If
the counts disagree, fsck can replace the count in the
superblock with the actual free block count.

Free i-node count

The superblock contains a count of the total number of free
i-nodes within the file system. The fsck command compares
this count to the number of i-nodes it found free within the
file system. If these counts disagree, fsck can replace the
count in the superblock with the actual free i-node count.

• I-node Inconsistencies

An individual i-node is not likely to be inconsistent as is the
superblock. There is, however, a danger that the i-nodes for
files that are in use when the system stops will be inconsistent.

The fsck command checks the list of i-nodes in sequence,
starting with i-node 1 and continuing to the last i-node in the
file system. fsck checks each i-node for inconsistencies in
format and type, link count, duplicate blocks, bad blocks, and
i-node size.

3-10 Managing the Operating System

I-node format and type inconsistencies

Each i-node contains a mode word-a description of the
type and state of the i-node. There are five i-node types:

Regular

Directory

Block special

Character special

First-in-first-out (FIFO, also called a named pipe).

An i-node whose type is not one of these five does not have a
valid type.

There are three i-node states:

Allocated
Unallocated
Neither allocated nor unallocated.

An i-node that is neither allocated nor unallocated is not
correctly formatted. The format of an i-node can be
damaged when incorrect data are written to the i-node list
(for example, as a result of a system failure).

I-node link count inconsistencies

Each i-node contains a count of the total number of
directory entries that refer to the i-node (the reference
count). fsck verifies the reference count in each i-node by
scanning the entire directory structure, beginning with the
root directory, and counting the actual number of links to
that i-node.

If the stored link count is not zero and the actual link count
is zero, the file is inaccessible. If the inaccessible file
contains any data, fsck links the file into the lost + found

Maintaining the System 3-11

directory on the file system. If the file contains no data,
fsek deallocates-1the i-node for that file.

If the actual link count is neither zero nor equal to the
stored link count, it is likely that a directory entry was
added or removed without the i-node being updated. fsek
can replace the stored link count with the correct value.

Inconsistencies from duplicate and invalid blocks

Each i-node contains a list, or pointers to lists (indirect
blocks), of all the blocks claimed by that i-node. fsek first
determines whether each block number in the list is valid
and then compares the block number against a list of
allocated blocks. If it finds inconsistencies, fsek displays
the names of all files that contain invalid or duplicate
blocks.

Inconsistencies of this type usually occur when you create
or extend files on a file system that has duplicate blocks in
its free list. If the duplicate block contains data in both
files, the damage is not severe. If the file system uses the
duplicate block for a directory or an indirect block,
however, severe inconsistencies in the file system structure
may occur. Although such inconsistencies are serious, you
can prevent them by routinely checking every file system
with fsek before you mount it. (For example; do not use the
fsek -f command in fete/reo The -f [fast] flag saves time by
not checking file systems that were cleanly unmounted the
last time they were used. The extra precaution of running
fsek -p from /ete/re reduces the chance that your system
will mount a damaged file system.)

Generally, fsek corrects such inconsistencies by deleting the
files with invalid or duplicate blocks, but not
automatically-that is, you must respond to a prompt from
fsek before it will destroy the files. Before allowing fsek to
destroy such damaged files, you should examine the files to
determine whether you can save any important data.

3-12 Managing the Operating System

Size inconsistencies

In each i-node is a size field that indicates the number of
bytes in the file associated with the i-node. fsck can
determine whether the number of bytes is consistent with
the number of blocks allocated to the file. In the case of
directories, fsck can also make sure that the size is a
multiple of 16 (the length of a directory entry).

If it finds size inconsistencies, fsck displays a warning
message. Size errors are not serious, but fsck does not have
sufficient information to correct the size. You can correct
the problem by copying the data from the old file into a new
file and then deleting the old file.

• Indirect Block Inconsistencies

There are three types of indirect blocks: single-indirect,
double-indirect, and triple- indirect. A single-indirect block
contains a list of some of the block numbers associated with an
i-node. Each entry in a single-indirect block is a data block
number. A double-indirect block contains a list of
single-indirect block numbers. A triple-indirect block contains
a list of double-indirect block numbers.

Indirect blocks are associated with a particular i-node. Thus,
inconsistencies in indirect blocks directly affect the associated
i-node. fsck can check for inconsistencies such as blocks that
are already claimed by another i-node and block numbers that
are outside the range of the file system. fsck finds and corrects
indirect block inconsistencies just as it does inconsistencies
between the i-node and data blocks.

• Data Block Inconsistencies

There are two types of data blocks: plain and directory. Plain
data blocks contain the information stored in a file. Because
an ordinary file may contain any type of data, fsck cannot
check the validity of the contents of a plain data block.

Directory data blocks contain directory entries. Each directory
data block can be checked for inconsistencies involving

Maintaining the System 3-13

directory i-node numbers pointing to unallocated i-nodes,
directory i-node numbers greater than the number of i-nodes in
the file system, incorrect directory i-node numbers for the
current and parent directories (. and .. , respectively), and
directories disconnected from the file system.

If a directory entry i-node number points to an unallocated
i-node, then fsck tries to remove that directory entry. This
condition might occur if the data block containing the directory
entry were modified and written to the disk, but the system
stopped before the i-node could be updated.

If a directory entry i-node number points beyond the end of the
i-node list, fsck tries to remove that directory entry. This
condition occurs if incorrect data are written into a directory
data block.

The directory i-node number entry for. should be the first entry
in the directory data block. Its value should be equal to the
i-node number for the directory itself.

The directory i-node number entry for .. should be the second
entry in the directory data block. Its value should be equal to
the i-node number for the parent directory (or the i-node
number of the directory itself if the directory is the root
directory).

The fsck command checks the internal connections of the file
system in general. If it finds a file or directory not linked into
the file system, fsck links the file or directory to the
lost + found directory. This condition can be caused by i-nodes
being written to disk and the system stopping before the
corresponding directory data blocks are updated. Items linked
to lost + found are identified by their i-node number (for
example, if fsck finds a file whose i-node number is 1234, it
links the file to /1ost+found/1234).

3-14 Managing the Operating System

Repairing File Systems by Destroying Files

Under some conditions, the only way fsck can restore consistency
to a file system is to clear i-nodes-that is, by destroying files. For
example, if a block is allocated to two files, fsck clears both files.
This section explains how to keep your loss of possibly useful data
to a minimum.

Before letting fsck destroy a file, be sure you know which file is to
be destroyed and what is wrong with the file. Most files damaged
when a system stops unexpectedly are temporary files and they
usually are of little value. However, if it is necessary to destroy a
permanent file, you should try to salvage its contents and, if the
file belongs to another system user, notify that person that the file
is to be destroyed. Before fsck destroys a file, it lists all the names
linked to that file, and prompts you to determine whether each link
to the file can be removed. Only when all links are removed can
fsck destroy the file.

Often, the name of a file indicates whether the file's contents are
important. For example, temporary files may have names like
ctm5a. P5024 and often are in special directories like /tmp or
/usr/tmp. Like temporary files, editor backup files (files with a
. bak extension) and object modules (files with a .0 extension)
usually are not important. However, it is likely that a file named
boss/emp 1 oyees/rai ses is quite important, and you should make
every effort to salvage its contents. If you cannot tell from its
name whether a file is important, try to salvage its contents.

If you know the i-number of a file, you can find the name of the file
with the ncheck program. For example, if fsck indicates that two
files, i-numbers 408 and 1212, on the /u file system with have a
duplicate block, you could find the names of those files by
entering:

ncheck -i 408 1212 /u

For more information about the ncheck command, see ncheck in
AIX Operating System Commands Reference.

When a file contains one or two bad or duplicate blocks, you
probably can salvage most of its contents by copying them into a

Maintaining the System 3-15

new file before destroying the original (damaged) file. To copy the
contents of the file, mount the file system temporarily (and
readonly, if possible) and use the cp command. It is safest to copy
the file onto another (consistent) file system. If you want to copy
the file within its original file system, first run fsck to make sure
the free list is consistent.

You can destroy a damaged file in several different ways. If a file
contains invalid or duplicate blocks, fsck removes all links to the
file and then destroys the file by deallocating its i-node (assuming
that you respond y to the fsck prompts). You can destroy a file
directly with the clri (clear i-node) command. However, it is safer
to let fsck destroy the file, since fsck automatically restores the
file's data blocks to the free list; clri does not do this.

You should not use the rm (remove file) command to destroy files
for two reasons:

• You must mount the damaged file system to run rm. Mounting
the damaged file system can compound the damage.

• rm frees all bad and duplicate blocks. Thus, if you removed the
damaged file with rm, the same type of damage is likely to
occur the next time the system allocates those blocks.

Any time you destroy files, run fsck on the file system before using
it again. fsck eliminates inconsistent directory references and
makes sure that the free list is correct.

3-16 Managing the Operating System

The Input/Output System

An I/O (input/output) system is a mechanism for transferring data
among system devices (for example, when you print a file, the I/O
system transfers the data from the file to the printer). The AIX I/O
system is independent of the particular devices that produce output
or receive input. If three devices (for example, a printer, a
fixed-disk, and a display station) can all take input in the same
form, the I/O system makes no distinction among them. To
understand how the I/O system works, you should first have a
general understanding of device drivers and special files.

Device Drivers and Special Files

A device driver is a program that makes the logical connection
between the system and a device. The kernel contains a device
driver for each type of device on the system. For example, if your
system has two identical printers, you need only one device driver
to run both of them; if you have two different types of printers,
your system needs a separate device driver for each printer type.

Each device has a class, a major device number, and a minor
device number. There are two device classes, block and
character, and each class is associated with a group of device
drivers. (For descriptions of the device classes, see "Block I/O
System" on page 3-18 and "Character I/O System" on page 3-18.)
The major device number indicates which driver the device uses.
The minor device number passes additional information to the
driver (for example, to specify which of several identical printers
should be used).

Device characteristics are recorded in special files (ordinarily
located in the /dev directory). A process can have read and write
access to a special file just as it does to an ordinary file. However,
the read and write operations on special files produce device I/O.
To, perform I/O operations, a process simply has to access the
appropriate special file; it does not have to deal with the
characteristics of the device itself.

Maintaining the System 3-17

Block I/O System

A model block I/O device consists of randomly addressed memory
blocks of a uniform size: 2048 bytes. The blocks are addressed 0, 1,
... up to the size of the device (because the addresses start at 0,
the highest-numbered address is the device size less one). A block
device driver creates this model on a physical device.

Input and output for block devices is through a group of buffers.
The system maintains a buffer for each block device. When a
device issues a read request, the system searches the buffers for the
requested block. If the block is in the buffer, the system makes it
available to the device without any physical I/O. If the block is
not in the buffer, the system performs a physical I/O operation,
replacing the least recently used block in the buffer with the
requested block. The system handles block write operations
similarly.

Generally, block (buffered) I/O increases system efficiency. First,
block I/O can greatly reduce the number of read and write
operations required to perform I/O. Second, block I/O allows the
operating system to schedule I/O for the most efficient system
operation. In some instances, however, block I/O is a
disadvantage. If the system stops unexpectedly, there may be
physically incomplete I/O-changes made to the buffers that were
not yet written to the disk.

Note: Not all file I/O is done with the block I/O system. Files can
be mapped directly into memory. A single segment of a mapped
file can be shared by more than one program. Changes made to
mapped files show up in the file immediately.

Character I/O System

The character I/O system includes all devices that do not fit the
block I/O model. Unlike block I/O requests, character I/O requests
go directly to the device driver.

A model character device places characters directly onto a queue
until the queue contains the maximum number of characters. As
soon as there are any characters in the queue, the I/O operation

3-18 Managing the Operating System

starts, removing the characters from the queue one at a time and
sending them to the device. When the number of characters falls
to a specific level, the process passing characters to the queue
refills the queue to its maximum capacity.

However, many devices in the character class are more accurately
described as raw devices. For example, I/O for both fixed-disks and
streaming tapes occurs in units of bytes which have no relationship
to characters. Raw devices are included in the character class only
because they are not block I/O devices.

Maintaining the System 3-19

U sing the Queueing System

A queue is an ordered list of jobs waiting to be done by the
computer. The main job of the AIX queueing system is to manage
printer use, especially on systems that have more than one printer.
However, you also can use the queueing system to control access to
other system resources, as is explained under "Friendly and
Unfriendly Backends" on page 3-28. You can adapt the queueing
system to your requirements easily. For example, by changing one
word in a master configuration file, you can set a printer to take
jobs in the order in which they are submitted or according to their
sizes. Because your requirements of the queueing system may
change periodically, you should understand how the system works
and how to modify it-the subjects of this section.

Parts of the Queueing System

The queueing system has four parts:

The print program
The print program accepts requests for print jobs and
places them in the queue directory, /usr/lpd/qdir. (For
more information on the print command, see Using the
AIX Operating System.)

The qdaemon program
A daemon is a process that starts when you start your
computer and runs until you shut your computer down.
The qdaemon is a daemon that keeps track of print job
requests (or other output) and the printers (or other
devices) available to handle them. The qdaemon process
maintains queues of outstanding requests and sends them
to the proper device at the proper time. The qdaemon
also records printer usage data for system accounting
purposes.

The backend program
A backend program sends output to a particular device (a
printer, for example). You do not run a backend program
directly; rather, qdaemon runs a backend program,

3-20 Managing the Operating System

sending it the names of the files to be printed and any
print flags that you specify. The backend returns this
and other information to the qdaemon through a status
file in the /usr/lpd/stat directory. You can use the print
-q command to interpret and display this status
information, such as how many pages were printed, what
the status of the printer is, and how much of the print job
is finished.

The configuration file
The configuration file, /etc/qconfig, describes the
configuration of available queues and devices. Both the
print command and the qdaemon process refer to the
configuration file.

letc/rc
I
I

V
Qdaemon
Process - E - - - - V - - - - - - - - - - V

: lusr Ilpd/qdir lusr Ilpd/stat
I I I

L - - - Backend I
I I I I I • _____ J L ____ _

User's Request: I
print filename

I
I.... - - - - {> Printer

Figure 3-1. How the Queueing System Works

AUSI05153

Maintaining the System 3-21

Queues and Devices

Configuration

A queue is simply an ordered list of requests for a particular
service. A device is something that can handle those requests one
at a time. Each queue must be handled by at least one device, but
it often may be handled by more than one.

Often you do not have a choice about which device services which
queue. For example, if your system has only one printer, then that
printer must service the print queue. There are times, however,
when you should consider carefully the relationship between
queues and devices. For example, if your system has two identical
printers located next to each other, you probably will want both
printers to service a single printer queue. You could accomplish
this by placing the following stanzas in the configuration file
/ etc/ q config:

1 pr:

lpdevO:

lpdevl:

argname = -1
device = lpdevO, lpdevl

file = /dev/lpO
backend = /usr/lpd/lp

file = /dev/lpl
backend = /usr/lpd/lp

The first stanza describes the lpr queue. The argname line sets the
flag used to request this queue, -1. A print command requesting
this queue has the form pri nt -1 filename. The devi ce line
specifies which devices service the queue. The second and third
stanzas describe the printers that service the queue. In each case,
fi 1 e is the special file associated with the printer, and backend is
the file that contains the printer backend program. Once a print
request reaches the top of the queue, the backend sends the file to
the next available printer.

3-22 Managing the Operating System

In another situation, you might want to define a different queue for
each printer. For example, if the two identical printers are in
different buildings, or if there is a difference in speed or quality
between the two printers, you (or those who use your system)
should be able to select a particular printer. In this case, the
stanzas in /etc/qconfig could be:

1 pa:

lpO:

lpb:

1 pI:

argname = -la
device = lpO

file = /dev/lpO
backend = /usr/lpd/lp

argname = -lb
device = lpl

file = /dev/lpl
backend = /usr/lpd/lp

In this example, there are two queue stanzas, 1 pa and 1 pb.
Following each queue stanza is a stanza describing the printer that
services that queue.

Queue and Device Names

The names of queues and devices are similar, but there are
important differences in how they work. Most system users do not
use device names, since a print command is actually a request for
a queue, not for a device.

Two lines in the /etc/qconfig file relate to the naming of queues:

• queue name. This is the name of the stanza that describes the
queue (like 1 pa and 1 pb in the previous example). The queueing
system refers to a queue by its queue name and uses the queue
name in any messages about the print job (including responses
to the print -q command).

Maintaining the System 3-23

Status Control

• argname. This is the name you use with the print command to
request a specific queue (like - 1 a and - 1 b in the previous
example).

Although the queue name and argname can be the same, you may
find it helpful to make them different so that, as in the previous
example, the queue name can look like the name of a printer and
argname can look like a command flag.

When more than one printer services a queue, you can request a
particular printer by naming it explicitly. (Ordinarily, your
request would be serviced by the first device on that queue that
became available.) To name a device explicitly, use the argname of
the queue serviced by that device, followed by a colon (:) and the
devi ce number of the printer. (Devices are numbered
independently for each queue, starting at 0; device numbers refer to
devices in the order in which they appear in /etc/qconfig.) The
following stanza (taken from an earlier example) defines a queue
service by two printers:

1pr:
argname = -1
device = 1pdevO, 1pdevl

The command print -1:0 requests the printer 1 pdevO; the command
print -1:1 requests the printer 1 pdevl.

All references to devices by the print command and qdaemon are
based upon the names contained in the /etc/qconfigfile. Thus,
within the guidelines given in "Changing the Configuration File"
on page 3-31, you can choose your own names for queues and
devices.

By setting the status of queues or printers to up or down, you can
control access to them. A status setting of up or down refers to
how the system treats the queue or device, not to the physical state
of any system component.

A queue is available to both the print command and the qdaemon
if its stanza in /etc/qconfig contains the line:

3-24 Managing the Operating System

up = TRUE

or if the stanza does not contain the line up = (since the default
value for up is TRUE). A queue is not available if its stanza
contains the line:

up = FALSE

A queue that is up works normally. However, if a queue is down:

• The qdaemon command does not send jobs to devices on the
queue.

• The print command does not accept requests for the queue.

• The print -q command shows that all devices on that queue are
OFF.

The only way to set the status of a queue on or off is to change
the /etc/qconfig file. Generally, you should not set the status of a
queue to off unless you know that printers that service the queue
cannot be used for several days (for example, if they are to be
taken down for repair).

You can set the status of a device more easily, using the print -dd
(device down) or print -du (device up) command. To set status
down for the first device servicing queue 1, use the command:

print -1:0 -dd

To set status up for the same device, use the command:

print -1:0 -du

In both examples, the device name - 1 : 0 consists of the queue name
(- 1), a colon (:), and the device number (0).

The qdaemon does not send jobs to down devices, but print accepts
requests for their queues. It also is possible for a backend to set
the status of a device to off. Once a device is down, either because
of a print command or the action of a backend, you must use the
print command to set its status back to up.

Maintaining the System 3-25

Job Order

Accounting

The qdaemon records device status in a status file in the directory
/usr/lpd/stat. When you start the system, qdaemon checks this
status file before trying to run any device. Thus, you do not have
to reset the status of devices each time you stop and restart your
system.

The discipline line in the /etc/qconfig file determines the order in
which printers service the requests in a queue. In a queue stanza,
the line:

discipline = fcfs

sets the order to first come first served. If there is no dis c i p 1 i ne
line in the queue stanza, requests are serviced in first-corne-first
served (fcfs) order. The line:

discipline = sjn

in a queue stanza sets the order to shortest job next.

Each print job also has a priority number that can be changed
with the print command flag -pr = n. Print jobs with higher
priority numbers (n) are handled before requests with lower
priority numbers. Any system user can alter the priority of a print
request with a command such as:

print -pr=20

The default priority number is 15. The maximum priority number
for ordinary users is 20. The maximum priority number for
privileged users (su and members of the system group) is 30.

Accounting information consists of the user number, user name,
and number of pages printed for each request. The backend
program determines what constitutes a page. You can cause the
queueing system to produce accounting records by placing the
following line in the appropriate queue stanza in /etc/qconfig:

3-26 Managing the Operating System

Backends

acctfile = /usr/adm/qacct

If a queue stanza does not contain an acctfi 1 e line or contains the
line:

acctfile = FALSE

the queueing system does not produce accounting records for that
queue.

The qdaemon, which produces the accounting records, does not
create the accounting file. Thus, you can substitute another file
name for /usr/adm/qacct if you choose.

You also can use a separate file to record the accounting data for
each queue. Using separate accounting files can help you collect
usage statistics for each queue (a useful ability if, for example, you
are looking for ways to improve the efficiency of your queueing
system) or allow you to assess different charges to the users of your
system for the use of different printers.

For a full discussion of AIX facilities for accounting and
monitoring system activity, see Chapter 5, "Running System
Accounting" on page 5-1 and Chapter 6, "Using the System
Activity Package" on page 6-1.

The backend line of the stanza for a device in the /etc/qconfig file
determines what backend the qdaemon runs for that device. A
line like:

backend = /usr/lpd/lp

specifies the name of the backend program and includes any flags
that are to be passed to that program. A line such as:

file = /dev/lp

causes qdaemon to send the backend's standard output to this file
(in this case, the special file associated with a printer).

Maintaining the System 3-27

The line:

access = both

gives the backend both read and wri te access to the file. The line:

access = write

or the absence of an access line in the stanza gives the backend
only wri te access to the file. If fi 1 e does not have a value,
qdaemon ignores the value of access.

The default value for fi 1 e is FALSE and is only used by backends
that access devices without help from qdaemon.

Friendly and Unfriendly Backends

Ordinarily, the actions of the queueing system and a backend (as
described so far) are neatly integrated. As long as a backend
program follows certain conventions for communicating with
qdaemon and the print command, it is called a friendly backend.
The queueing system also can handle unfriendly
backends-backends that do not follow these communication
conventions. An unfriendly backend can be virtually any program;
qdaemon requires no special communication or coordination with
an unfriendly backend. The fri end line in a queue stanza:

friend = TRUE

or

friend = FALSE

indicates whether a backend is friendly or unfriendly. If there is
not a fri end line in the stanza, the default value is TRUE.

You can use the queueing system to provide organized access not
only to system devices (often printers), but to other system
resources as well. These applications of the queueing system
typically use unfriendly backends. For example, on a system that
has a log file (fetc/logfile) available to all users, only one user at a
time should be allowed to edit the file. By adding the following

3-28 Managing the Operating System

stanzas to /etc/qconfig, you can require all access of the file to be
through the queueing system (that is, one user at a time):

log:

logdev:

argname = -If
device = logdev
friend = FALSE

file = /etc/logfile
backend = /bin/cat

To add a paragraph to the logfile, you now must first write the
paragraph into a file (named, for example, temp) and then use the
print command:

print -If temp

When the queueing system services your request for access to
/etc/logfile, the print command adds the contents of temp to
/etc/logfile. The (unfriendly) backend in this example is a
standard command (cat). The qdaemon writes the contents of the
temporary file to the end of /etc/logfile, not the beginning. Any
system users who do not have wri te permission to /etc/logfile can
change the file only by going through the queueing system.

You also can use the queueing system to require queued access to a
program. For example, suppose a program on your system
(/bi n/bi gjob) requires so much processing that, if two people run
it at once, your entire system slows down seriously. You can make
the program accessible only through the queueing system by
adding the following stanzas to /etc/qconfig:

hog:
argname = -b
fri end FALS E
device = bigjob

bigjob
backend = /bin/bigjob

To run bi gjob, enter pri nt -b name (name is the name associated
with the queued request and is used when you cancel the job,

Maintaining the System 3-29

Burst Pages

change its priority, or display its status, and is not necessarily the
name of a file}. The queueing system services requests for the
bi gj ob program one at a time. Queued access is not appropriate
for interactive programs.

The term burst pages refers to printer output formatted so that
each sheet of paper contains one page of output (on continuous
form paper, the pages can be burst apart at the perforations). With
the appropriate instructions in /etc/qconfig, most friendly
backends print burst pages on their devices. For example, the
following lines usually appear in the device stanza for a line
printer:

header = always
trailer = group
feed = 3

The first line tells the backend to print a header page that gives
the name of the job, who requested it, its date, and other
information before every file printed. Other possibilities for the
header line are:

header = group

which requests a header before every group of files for a single
user, and:

header = never

(or the absence of a header line) which eliminates headers
completely.

The trai 1 er line in the device stanza tells the backend to print a
trailer page, which gives the name of the user, only after a group
of files is printed. (Y ou also can use the group and never values
with trailers.)

The feed line specifies that three feed (blank) pages are to be
printed whenever the printer becomes idle. The feed operation
pushes paper out of the printer so that it is easier to tear off. If the
feed line in the stanza is:

3-30 Managing the Operating System

feed = never

the backend is not invoked when the machine becomes idle, and
therefore feed pages are not printed. The result of feed = never is
usually the same as the result of:

feed = 0

except that the 0 value invokes the back end, but tells it not to feed
any pages. For some printers, feed = never and feed = 0 produce
different results. For example, some line printers make a loud
noise if the paper fold rests under the spinning drum. The backend
for such a printer might interpret feed = 0 to mean that three
blank lines should be fed, moving the fold off of the printer drum.

The ali gn value is another way to control the number of extra
pages between print jobs. The following line in the device stanza
tells the backend to print an aligning form feed before any job
requested after the printer is idle:

align = TRUE

This value applies only to printers using continuous form paper.
As a rule, alignment on such printers is unnecessary, since
backends maintain proper paper alignment. However, on some
continuous form printers, it is possible for users to get the paper
out of alignment when they remove their jobs. If this is a problem
on your system, the alignment line will help. The absence of an
ali gn line is the equivalent of the line:

align = FALSE

Changing the Configuration File

Both print and qdaemon read /etc/qconfig when they start.
qdaemon starts when you start the system; print starts each time
someone requests a print job. Thus, if you change /etc/qconfig,
print will read the new version of the configuration file the next
time it runs, while qdaemon continues to rely on the original
version of /etc/qconfig. To avoid problems due to this
inconsistency, give the command:

Maintaining the System 3-31

print -rr

which causes qdaemon to reread /etc/qconfig and reinitializes
itself, based on the new version of /etc/qconfig, after all of its
running jobs complete. (You also can cause qdaemon to reread
the configuration file by shutting down and restarting the system,
but the print -rr command usually is more convenient.)

You should be alert to two common problems associated with
installing a new /etc/qconfig:

• If you install a new queue, someone may request that queue
before you reinitialize qdaemon.

• If you remove an old queue, someone may request that queue at
the last minute and find that it is no longer valid.

In either case, qdaemon logs an error message. You must
determine whether the message refers to a new queue (in which
case there is no longer a problem once you reinitialize qdaemon)
or to an old queue (in which case the problem will exist until you
remove the obsolete queue entries "from /usr/lpd/qdir).

Keeping the qdaemon Running

Under normal circumstances, qdaemon starts when the system
starts, runs until the system shuts down, and should require no
attention from you. Under unusual circumstances, however, the
qdaemon may stop running or be unable to perform its function.
This section explains what you need to do under these conditions.

Any of the following conditions indicates that the qdaemon needs
maintenance:

• print requests return the error message:

cannot awaken qdaemon (request accepted anyway)

• qdaemon detects serious inconsistencies within itself and
displays an error message

3-32 Managing the Operating System

• ps -ef (the process status command that gives a full listing of
all processes) does not show a process named /etc/qdaemon or
qdaemon.

To restart the qdaemon, use the following command:

/etc/qdaernon

Generally, only privileged users can use this command. The new
qdaemon goes through an initialization process.

If the qdaemon does not stay running, make sure that both
qdaemon and print have the appropriate permissions. The user
root owns both qdaemon and print. However, qdaemon and
print must run as if they are owned by the user who starts them.
The permission s sets the effective owner (user ID) of a process to
that of the command that is running it. Thus, the appropriate
permissions for these two commands are:

qdaemon -r-sr-xr--

print

To check these permissions, enter 1 s - 1 / etc/ qdaernon.

If the permissions need to be reset, enter: chmod 4454
/ etc/ qdaemon. (You must have superuser authority to
reset these permissions.)

-r-sr-xr-x

To check these permissions, enter 1 s - 1 fbi n/pri nt.

If the permissions need to be reset, enter: chrnod 4455
fbi n/pri nt. (You must have superuser privileges to reset
these permissions.)

If you continue to have problems with qdaemon, you can
reinitialize the entire queueing system by going through the
following procedure:

1. If the qdaemon is running (use the ps -ef command to find
out), end it with the kill command (kill process id number).

Maintaining the System 3-33

2. If any back ends are running, use the kill command to stop
them.

3. Delete the contents of the following directories:

• /usr/lpd/stat

• /usr/lpd/qdir

• /tmp/copies

4. Restart the qdaemon with the command /etc/qdaemon.

3-34 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Customizing Distributed Services

I Before You Begin

For information on adding the RT PC to a communications
network, see "Part 3. Communications Planning" in the Planning
Guide.

I Hardware Requirements

Install a communications adapter (see Options Installation):

• Multiprotocol Adapter OR
• Baseband Adapter.

I Software Requirements

• AIX Operating System licensed program, Version 2.1.1 (see
Installing and Customizing the AIX Operating System)

VRM Program
Base System Program
VRM Device Drivers

- Multiprotocol Adapter Device Driver OR
- VRM Baseband Adapter Device Driver

SNA Services.

• Distributed Services licensed program, Version 1.1.

In addition, you need to customize the local AIX Operating System:

• Run the devices command to add the Multiprotocol Adapter
Device Driver or VRM Baseband Adapter Device Driver (see
"Customizing System Devices" in Installing and Customizing
the AIX Operating System):

Install the Multiprotocol Adapter as the mpdO device.
Install the Baseband Adapter as the netO device.

Maintaining the System 3-35

TNL SN20-9862 (June 26 1987) to SBOF-0168

• Run the minidisks command to add local file systems (see
"Customizing System Minidisks" in Installing and Customizing
the AIX Operating System).

• Run the users command to add local users (see "Managing
User Accounts" on page 2-16).

I Information Requirements

Finally, you need to understand the basic principle of AIX system
management, particularly the following topics:

• "The File System-Background for System Management" on
page 1-8 and "The Base AIX File System" on page 1-15

• "Managing User Accounts" on page 2-16

• "Information about File Systems-The / etc/filesystems File" on
page 2-47

• "Backing up Files and File Systems" on page 2-58

You should also be familiar with the Distributed Services
information provided in the following sections:

• "Managing the AIX Distributed Services Environment" on
page 2-73

• "Distributed Services File Systems" on page 2-78

• "Distributed Services ID Translation" on page 2-85

• Appendix B, "Getting Started With Distributed Services
Customization Commands" on page B-l.

3-36 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Configuration Topics

The discussion of customizing a Distributed Services network
includes the following topics:

• "Working with Distributed Services Profiles" on page 3-38

• "Setting Up a Test Network" on page 3-51

• An overview of extended network planning:

"Managing ID Translation" on page 3-58
"Building Distributed File Trees" on page 3-62
"Managing the Single System Image Environment" on
page 3-70.

• A discussion of advanced customization procedures:

"Automatic Mount Procedures" on page 3-74
"Customizing a Server Node" on page 3-89
"Customizing a Client Node" on page 3-92.

• A description of two configuration scenarios:

"Scenario Two: A Text Processing Environment" on page 3-107
"Scenario One: A Program Development Environment" on
page 3-93.

In addition, customization forms are provided for your use in
Appendix C, "Distributed Services Customization Forms" on
page C-l.

Maintaining the System 3-37

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Working with Distributed Services Profiles

Distributed Services keeps all network information in structured
files called profiles, which are data base files controlled by data
management routines. These files are stored, by default, in the
/ etc/profsvcs/pfslocal directory.

I Creating and Modifying Distributed Services Profiles

The following commands provide an interface to these profiles
through which you can customize your network:

ndtable

ugtable

ipctable

Provides a window interface to the Distributed
Network Node Table. This table contains an entry for
each remote node that is known to the local node.
Each entry identifies the remote node's nickname
(optional), node ID (NID), node security, data link
type, connection profile name, and attachment profile
name. This information is stored in the Distributed
Services SNA profiles.

Provides a window interface to the Network
Users/Groups Table. This table correlates a list of
local user and group IDs with incoming and outgoing
network IDs. The AIX Operating System uses this
information to control access to the node and to do
AIX permission checking. This information is stored
in the Distributed Services UID/GID Translation
profiles.

Provides a window interface to the Distributed IPC
Queues Table. Each entry that describes a local queue
contains a queue name and an IPC key. Each entry
that describes a remote queue correlates a local queue
name and IPC key with a remote IPC key and node ID
or nickname. This information is stored in the
Distributed Services IPC Key profiles. See AIX
Operating System Programming Tools and Interfaces
for more information on using distributed message
queues.

3-38 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

dsldxprof Allows you to modify the UID/GID Translation profiles
with information stored in an ASCII file. See "Using
the dsldxprof Command" on page B-19 for more
information.

You can access these programs directly from the AIX Operating
System command line; you can also access ndtable, ugtable, and
ipctable through the Usability Services Interface. See
Appendix B, "Getting Started With Distributed Services
Customization Commands" on page B-1 for detailed discussion of
these commands.

I Backing Up Distributed Services Profiles

You should periodically make a backup copy of the Distributed
Services profiles to protect against loss of these profiles.

To Back Up Distributed Services Profiles

1. Change directories to the directory in which the profiles
reside:

cd /etc/profsvcs/pfs1oca1

2. Enter the following backup command:

ls -a I backup -iv

More Detailed Information: In addition to the normal periodic
backup procedure, back up the profiles under any of the following
conditions:

• Before and after you create a new set of profiles.

• Before and after you update or change a current set of profiles.

• Before and after you change the security level of SNA Services.

• Before and after you change the communications password (to
protect against forgetting the password).

Maintaining the System 3-39

TNL SN20-9862 (June 26 1987) to SBOF-0168

Enter the following commands on the AIX Operating System
command line to back up the Distributed Services profiles in the
standard directory:

cd /etc/profsvcs/pfs1oca1

ls -a I backup -iv

To back up profiles in a different directory, use the cd command to
change to that directory before using the backup command. This
procedure copies all of the profiles in the selected directory to the
diskette in /dev/fdO. If you use another method of backing up the
files, make sure that the method you choose backs up the hidden
files (file names beginning with a. [period]) as well as the normal
files.

I Restoring a Backup Copy of Distributed Services Profiles

To Restore Distributed Services Profiles

1. Shut down Distributed Services:

shutdown -d

2. Stop SNA Services:

stop sna

3. Change to the directory in which the Distributed Services
profiles reside:

cd /etc/profsvcs/pfs1oca1

4. Insert the backup diskette in diskette drive 1 and enter the
following restore command:

restore -xv

5. Restart SNA Services and Distributed Services:

rc.ds

3-40 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

More Detailed Information

1. Shut down Distributed Services:

shutdown -d

When you specify the -d flag, shutdown issues the following
commands (after sending a warning message to logged-on users
and waiting 60 seconds):

/etc/dsstate -sb
/etc/umount allr
/etc/dsstate -ab

The two dsstate commands block all incoming and outgoing
network activity. The umount command unmounts all remote
directories.

Note: If you have mounted local files or directories over
remote directories, you must unmount the local object
before the umount command can unmount all remote
directories.

Shutting down Distributed Services stops network traffic
in and out of the node, but it does not shut down SNA
Services.

If you are the only user currently logged on, or if there is no
current remote activity, you can use the "fast" version of
shutdown:

shutdown -df

When you specify both the -d and -f flags, shutdown does not
send a warning message to other logged-on users and does not
wait 60 seconds before issuing the dsstate commands or the
umount command. Alternatively, you can specify some period
other than 60 seconds (instead of specifying -f), for example:

shutdown -d 15

This sends the warning message and waits 15 seconds before
proceeding.

Maintaining the System 3-41

TNL SN20-9862 (June 26 1987) to SBOF-0168

2. Stop SNA Services:

stop sna

This step is necessary because AIX will not copy new versions
of the SNA profiles over the files currently in use. If you are
not restoring profiles into the /ete/profsves/pfsloeal directory,
you do not need to shut down Distributed Services and stop
SNA Services. (See "Creating Alternate Sets of Profiles" on
page 3-47 for more information about alternate profiles.)

3. Change to the directory that will contain the restored profiles.
For example, to restore Distributed Services profiles that were
backed up to diskette using the procedure described in
"Backing Up Distributed Services Profiles" on page 3-39:

cd /etc/profsvcs/pfslocal

4. Restore the files:

restore -xv

5. Restart SNA Services and Distributed Services, if necessary, by
running the re.ds initialization file:

rc.ds

I Loading Distributed Services Profiles

In order for AIX to use the UIDjGID Translation profiles or the
IPC Key profiles, they must be loaded into the running kernel.
There are two ways to do this:

1. Run the ugtable, dsldxprof, or ipetable commands to create or
modify local tables.

Whenever a member of the system group or a user with
superuser authority ends any of these three commands, it loads
the corresponding table into the kernel.

2. Run the dsxlate or dsipe command.

3-42 Managing the Operating System

I The /ete/re.ds File

TNL SN20-9862 (June 26 1987) to SBOF-0168

The dsxlate command loads the Network Users/Groups Table
into the kernel; the dsipe command loads the Distributed IPC
Queues Table.

Normally, you need to run these commands under two
circumstances:

a. At system start up.

Distributed Services provides a shell initialization file,
/ete/re.ds, that is run by the init process at system startup.
The default copy of this file includes lines that run both
dsxlate and dsipe.

b. After remote configuration.

When you use ugtable, dsldxprof, or ipetable to create or
modify remote tables, the command does not load the
corresponding table when you exit. Someone must run
dsxlate or dsipe at the remote node to load the tables into
the remote kernel.

In addition to running dsxlate and dsipe at system startup, the
/ete/re.ds file runs several other commands that initialize the
Distributed Services environment. Figure 3-2 on page 3-44 shows
the default /ete/re.ds file.

After it loads the Distributed Services profiles, /ete/re.ds starts
SNA Services:

start sna

and starts a Baseband Adapter default attachment:

start /attachment/EDEFAULT&

If your network uses an SDLC link, change this line to the
following:

start /attachment/SDEFAULT&

Maintaining the System 3-43

TNL SN20-9862 (June 26 1987) to SBOF-0168

@(#)rc.ds 5.4 87/04/13 09:29:36

echo Translate tables are being loaded
dsxlate

echo IPe keys are being loaded ...
dsipc

echo Starting SNA
start sna

echo Starting attachment
start /attachment/EDEFAULT&

Dsstate specifies starting 100 kernel processes here. The command will
actually start only the maximum number of processes available to
Distributed Services, which in the default case is 20 processes.
The number 100 is used here to ensure that the maximum number of kernel
processes (up to 100) will automatically be started without requiring the
user to edit this file.
echo Starting kernel processes •..
dsstate -plOD -k -ce -se -sa -aa

Figure 3-2. Default /etc/rc.ds File

If your RT PC is part of both a Baseband Adapter network and an
SDLC network, re.ds should start both default attachments.

Finally, /ete/re.ds runs the dsstate command to set the
Distributed Services kernel logic. See the dsstate command in
AIX Operating System Commands Reference for a discussion of all
dsstate flags.

3-44 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-OI68

I Recovering Distributed Services Profiles

Infrequently, you may receive an error message telling you to
recover your profiles. When you receive this message, or any time
that you suspect that your profiles may be damaged, run the
/etc/profsvcs/profck command as follows:

/etc/profsvcs/profck -ds /etc/profsvcs/pfslocal

This command tries to rebuild the profiles in the directory you
specify. If profck cannot rebuild the profiles, restore a backup
copy of the profiles (see "Restoring a Backup Copy of Distributed
Services Profiles" on page 3-40).

You can also use the recover command to rebuild individual
database files as follows:

/etc/profsvcs/recover
/etc/profsvcs/recover
/etc/profsvcs/recover

/etc/profsvcs/pfslocal/pfsnid
/etc/profsvcs/pfslocal/pfsuidgid
/etc/profsvcs/pfslocal/pfsipcky

In this example, the first command tries to recover the Distributed
Network Node Table. The second tries to recover the Network
Users/Groups Table. The third tries to recover the Distributed IPC
Queues Table.

See the discussions of the profck and recover commands in SN A
Services Guide and Reference for more detailed information about
these commands.

I Working with Remote Profiles

Note: To change the profiles on a remote node:

• The remote node must be defined in the local Distributed
Network Node Table, and the local node must be defined
in the remote Distributed Network Node Table.

• You must be a member of the local system group or be
running with local superuser authority. You must also
have system group or superuser access to the remote
node.

Maintaining the System 3-45

TNL SN20-9862 (June 26 1987) to SBOF-0168

To change the profiles on a remote node, enter the NID or
nickname of that node in the pop-up panel that appears when you
run ndtable, ugtable, or ipctable:

Enter Node 10 Ni ckname »
(Default is the local id.)

This causes the command to mount the remote
/etc/profsvcs/pfslocal directory and allows you to modify the
profiles in that remote directory. You can access and modify these
profiles just as you do local profiles with the following differences:

• If you are not a member of the system group or do not have
superuser authority, you cannot browse remote tables.

• The Network Users/Groups Table does not display user or
group names. To add a translation entry, you must specify a
numeric ID.

• ugtable and ipctable do not load the Network Users/Groups
Table or Distributed IPC Queues Table into a remote kernel
when you end the command.

Note that any changes you make to the Network Users/Groups
Table or Distributed IPC Queues Table do not take effect until
the tables are loaded into the kerneL To load the tables, do one
of the following:

Have a user at the remote node shut down and restart
Distributed Services.

Run the dsxlate or dsipc command at the remote node.

If you have installed TCP /IP and have a remote login ID
with superuser or system group authority, you may be able
to use the tn command to log onto the remote node or the
rexec command to run dsxlate remotely. See Interface

3-46 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

Program for use with Tepi IP for more information on
running these commands.

I Creating Alternate Sets of Profiles

The default Distributed Services profiles are stored in the
/etc/profsvcs/pfslocal directory. However, you can create
additional sets of profiles for Distributed Services to use, and store
those sets in other directories in the directory /etc/profsvcs.

Creating an Alternate Set of Local Profiles

1. Create a new directory in the /etc/profsvcs directory to
contain the new set of profiles.

2. Copy all files (* and. *) from /etc/profsvcs/pfslocal into
the new directory.

3. Use the Distributed Services customization programs to
change the tables as required. Be sure to specify the new
directory name instead of accepting the default when the
system asks for the Node IO/Ni ckname.

4. Copy the new profiles to /etc/profsvcs/pfslocal when you
want the system to use them.

More Detailed Information

1. Create a new directory in the directory /etc/profsvcs to
contain the new set of profiles (the Distributed Services
customization commands expect /etc/profsvcs to be the parent
directory.) For example, to create a new directory called
newprofs, use the following commands:

cd letc/profsvcs
mkdir newprofs

2. Copy all files from /etc/profsvcs/pfslocal into the new
directory. Note that each profile database has an index file
(with a corresponding file name beginning with a . [period]).

Maintaining the System 3-47

TNL SN20-9862 (June 26 1987) to SBOF-0168

If you use the AIX cp command, be sure to specify both the
database files and the "hidden" index files:

cd /etc/profsvcs/pfslocal
cp * * /etc/profsvcs/newprofs

If you have installed Data Management Services, you can use
its copy command. This command copies the index files along
with the database files you specify:

cd /etc/profsvcs/pfslocal
copy * /etc/profsvcs/newprofs

3. Use the Distributed Services customization programs to change
the profiles as required. When you run ndtable, ugtable, or
ipctable, a pop-up panel appears:

Enter Node 10 Nickname
(Default is the local id.)

» ••••••••••••••

Instead of selecting the default value, enter the name of the
new directory that contains the alternate set of profiles and
then press Do. For example, enter the directory name newprofs
to select the new set of profiles created in the previous
examples. The full path name of the directory is not required
because the specified directory must be in /etc/profsvcs. You
can then change the values in the profiles in the new directory.

4. Copy the new profiles to /etc/profsvcs/pfslocal when you want
the system to use them. (Follow the same procedures listed in
"Restoring a Backup Copy of Distributed Services Profiles" on
page 3-40 for stopping Distributed Services and SNA Services.)

3-48 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

You might also want to create alternate sets of profiles to be used
on another node:

Creating an Alternate Set of Remote Profiles

1. Create a new directory in the /etc/profsvcs directory to
contain the new set of profiles:

mkdir /etc/profsvcs/remoteprofs

2. Mount the remote /etc/profsvcs/pfslocal directory:

mount -n node /etc/profsvcs/pfslocal /mnt

3. Copy all files (* and . *) from /mnt into the new directory:

cd /mnt
cp .* * /etc/profsvcs/pfslocal/remoteprofs

4. Unmount the remote /etc/profsvcs/pfslocal directory:

umount /mnt

5. Use the Distributed Services customization programs to
change the tables as required. Be sure to specify the new
directory name instead of accepting the default when the
system asks for the Node I D/N; ckname.

6. Copy the new profiles to the remote /etc/profsvcs/pfslocal
directory when you want the remote system to use them.

More Detailed Information

1. Create a new directory in the /etc/profsvcs directory to
contain the new set of profiles:

mkdir /etc/profsvcs/remoteprofs

Maintaining the System 3-49

TNL SN20-9862 (June 26 1987) to SBOF-0168

When selecting a name for the new directory in /etc/profsvcs,
do not use the following:

• The node ID of a node in the network

• The nickname of a node in the network.

The customization commands check the name you give in step 5
to see if it is a valid NID or node nickname before they check
to see if it is the name of a directory in /etc/profsvcs. If it is a
valid NID or nickname, they mount the remote
/etc/profsvcs/pfslocal and access that, rather than accessing
the local copy you have made in Step 3.

2. Mount the remote /etc/profsvcs/pfslocal directory in a
temporary location:

mount -n node /etc/profsvcs/pfslocal /mnt

3. Copy all files (* and . *) from the remote directory (fmnt) into
the new directory:

cd /mnt
cp .* * /etc/profsvcs/pfslocal/remoteprofs

4. Unmount the remote /etc/profsvcs/pfslocal directory:

umount /mnt

5. Use the Distributed Services customization programs to change
the tables as required. Be sure to specify the new directory
name instead of accepting the default when the system asks for
the Node I D/N; c kname.

6. Copy the new profiles to the remote /etc/profsvcs/pfslocal
directory when you want the remote system to use them.
(Follow the same procedures listed in "Restoring a Backup
Copy of Distributed Services Profiles" on page 3-40 for stopping
Distributed Services and SNA Services and in "Loading
Distributed Services Profiles" on page 3-42 for reloading remote
profiles.)

3-50 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Setting Up a Test Network

This section describes how to set up a limited Distributed Services
test network. Since a limited network requires fewer customization
decisions (and less set up), you can use it to test your mount
capabilities and become familiar with the basic principles of ID
translation before you plan your fully customized network.

A working Distributed Services network requires that:

1. Each node in the network be identified to SNA Services.

2. At least one network user or group be identified to the AIX
Operating System running at each server node_

To accomplish step 1, build a Distributed Network Node Table at
each node. Each entry in this table identifies a node to SNA
Services.

The minimum required to accomplish step 2 depends on the type of
access you want users to have:

• To enable all network users to have read access to a node, you
need to add only one translation entry to the Network
Users/Groups Table on a server node. This entry should
associate all incoming IDs (*) with a local ID and can be either
a user or group translation entry. As long as the Network
Users/Groups Table translates one of the IDs associated with a
remote user, he can issue mounts and can list directories and
read files that have read permission set for others.

• To enable all network users to have write access to a node, you
need to have at least two translation entries, one that
associates all incoming UIDs with a local UID and one that
associates all incoming GIDs with a local GID.

Maintaining the System 3-51

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Testing Remote Mounts

To enable two nodes to mount each other's files or directories,
complete the following steps:

To Test Remote Mounts Between Two Nodes

1. Query the node ID at each node:

uname -m

2. At each node, add an entry to the Distributed Network
Node Table that describes the other node.

3. Test the link:

linktest NID

4. At each node, add one global translation entry (one that
has a wildcard inbound ID) to the Network Users/Groups
Table.

5. Issue a test mount:

cd /
mount -n NID /u /mnt

More Detailed Information

1. Query the node ID by running the following command at each
node:

uname -m

2. Assume that the node IDs of two nodes on a Local Area
Network are 20810CBF and 108133EB. To identify these nodes
to each other, add the following entry to the Distributed
Network Node Table at node 108133EB:

3-52 Managing the Operating System

Remote Nickname

Remote Node 10

Node Security

Data Link Type

Attachment Profile

TNL SN20-9862 (June 26 1987) to SBOF-0168

»

»20810CBF

»None
»Secure

»Ethernet
»SOLC

» •••••••

If Left blank, Remote Node 10 will be used

and add the following entry to the Distributed Network Node
Table at node 20810CBF:

Remote Nickname

Remote Node 10

Node Security

Data Link Type

Attachment Profile

» ••.••.••••••.

» 108133EB

»None
» Secure

»Ethernet
»SOLC

»
If Left blank, Remote Node 10 will be used

Maintaining the System 3-53

TNL SN20-9862 (June 26 1987) to SBOF-0168

3. Test the SNA Services link between the two nodes by running
the linktest command at one of the nodes, for example:

linktest 208l0CBF

If the link test succeeds, proceed to the next step. If it fails, see
SN A Services Guide and Reference.

4. Add the following entry to the Network Users/Groups Table at
each node:

User/Group Entry »User »Group

User/Group Local 10 »100 •..
(opt. if U/G name entered exists)

User/Group Name »
(Ignored if U/G Id entered)

Outbound Network 10 »100••••
Inbound Network 10 »* .••.•.•.•.

Originating Node IO/Nickname »* •.•..•••••...

This translation entry associates all incoming UIDs (from any
node defined in the Distributed Network Node Table) with local
UID 100.

These entries allow users from either node to mount a remote
file or directory, assuming that they meet the ordinary mount
requirements (see "Mounting and Unmounting Files and
Directories" on page 2-79). They can also list remote
directories and read or copy remote files that belong to remote
user 100 or which have read permission granted to others.

3-54 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

5. Issue a remote mount command, for example:

mount -n 20810CBF /u /mnt

Be sure that you enter alphabetic characters in the node ID as
uppercase characters.

If the mount fails, see "Distributed Services Tuning and
Problem Determination" on page 3-139.

I Allowing Remote Write Access

To give network users write access to remote files on your test
network, do the following:

To Allow Write Access to Remote Users

1. Add both a global UID translation entry and a global GID
translation entry to the Network Users/Groups Table.

2. Issue a test mount command:

mount -n 20810CBF /usr/guest /usr/guest

3. Create a file:

cd /usr/guest
echo "Thi sis a test II > testfi 1 e

More Detailed Information

1. In order for a user to create a remote file, both his user ID and
one of his group IDs must translate to a valid remote user ID
and group ID because the AIX Operating System must place a
local UID and a local GID in a newly created i-node.

Once a user has write access to a remote node, regular AIX
permission checking determines which remote directories or
files he can modify. To give write access to the users in the
two-node example discussed under "Testing Remote Mounts" on

Maintaining the System 3-55

TNL SN20-9862 (June 26 1987) to SBOF-0168

page 3-52, add the following global GID translation entry to the
Network Users/Groups Table at each node:

User/Group Entry » User » Group

User/Group Local 10 »100 ...
(opt. if U/G name entered exists)

User/Group Name »
(Ignored if U/G Id entered)

Outbound Network 10 »100
Inbound Network 10 »*

Originating Node ID/Nickname »*

2. Issue a mount command, for example (from node 108133EB):

mount -n 20810CBF /usr/guest /usr/guest

The /usr/guest directory is the home directory of user 100
(guest). User guest also belongs to group 100 (usr).

3. Create a file:

cd /usr/guest
echo "This is a test" > testfile

Once you have created this file, use the Ii command to see
which user and which group it belongs to:

1 i - 1

Regardless of your local user or group ID, this file should
belong to guest and usr:

Frw-r--r-- 1 guest usr 15 May 26 15:54 testfile

3-56 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Enabling Remote Configuration

To be able to customize a remote node, follow these steps before
doing any other customization:

To Allow Remote Configuration from One Node

1. Select one node to be the administrative node.

2. At the administrative node, add Distributed Network Node
Table entries describing each node in the network.

3. At each nonadministrative node, add a Distributed
Network Node Table entry describing the administrative
node.

4. At each nonadministrative node, add an entry to the
Network Users/Groups Table that translates group 0 from
the administrative node to local group 0

Maintaining the System 3-57

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Planning the Network

I Managing ID Translation

The Distributed Services ID translation facilities make possible
five different types of individual translation entries. You can
associate:

1. One inbound network ID (from one node) with one local ID.
2. One inbound network ID (from all nodes) with one local ID.
3. All inbound network IDs (from one node) with one local ID.
4. All inbound network IDs (from all nodes) with one local ID.
5. One local ID with one outbound network ID.

In addition, by having several instances of entry types 1, 3, or 5,
each naming a different node, you can have a total of eight
possible translation relationships, as illustrated in the following
table:

Local IDs Outbound IDs Inbound IDs Node IDs

One One One One

One One One Several

One One One All (*)

One One All One

One One All (*) Several

One One All (*) All (*)

One One

Several One

Figure 3-3. ID Translation: Possible Combinations

Among all these possibilities, how do you choose the ones to use in
your own translation strategy?

3-58 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

The following are three general guidelines to follow when planning
and managing ID translation:

To Plan ID Translation

1. Make read-only access the "default" access granted at each
node.

• To avoid automatically granting write access to
unknown users, do not add both wildcard G ID and
wildcard UID translation entries to the Network
Users/Groups Table.

• Add UID translation entries only for those network
users with write access to the node. Network users do
not need a translated user ID for read-only access.

2. Use UID translation entries to control write access:

• Map one network user to one local ID.

Do not map several network IDs to one local ID unless
all IDs belong to the same network user (and therefore
will not be simultaneously active on the network).

• Create a local user ID for each network user with write
access to the node.

Do not map a network user to an already existing local
ID unless both IDs really belong to the same user.

3. Use wildcard NID entries with caution on a large network
(especially one in which you do not have customizing
authority on all nodes).

Maintaining the System 3-59

TNL SN20-9862 (June 26 1987) to SBOF-0168

Additional Guidelines

• Use one-to-one translation entries to grant write access.

This lessens the chances of having more than one user ID
"own" a file. You should minimize the possibility of several
users' writing simultaneously to the same file, unless they are
using applications specifically designed to manage such access.
Otherwise, the changes made by one user may be lost.

For example, if two ed editing sessions have the same remote
file open simultaneously, only the changes made by the session
that ends first are saved. If the work from both editing sessions
is to be saved, the first one to end should write the file to a
different file name, the second one to the original file name.
This strategy assumes, of course, that the first user knows that
the second has the file open. One way to reduce the possibility
of such conflicts is to use relatively restrictive file permissions.
Another is to use restrictive ID translation. Using both
restrictive ID translation and restrictive file permissions (for
example, write only by owner) is probably the safest strategy to
follow.

• Grant read-only access to users who only need to access remote
commands.

• Grant read-only access to unknown users, especially if you are
not responsible for adding new users to all the nodes in the
network. For nodes that you have control over, you might have
both a global UID and a global GID entry for your own
(temporary) convenience.

• As a general rule, grant read-only access (or no access) to any
remote ID that is not normally used as a login ID.

• Consider carefully the potential consequences of granting read,
write, or no access to system IDs such as root, system, mail,
and those IDs belonging to system daemons (tftpd and smtpd,
for example). You may need to find out how the IDs installed
by some licensed programs (such as TCP lIP) are used by these
programs to judge whether or not they need to be included in
your translation plan.

3-60 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

If you want to run remote set-user-ID or set-group-ID commands,
the corresponding user or group IDs must translate to the same
ID on both the server and client systems. Since most of the AIX
set-user-ID programs belong to UID 0, you must translate UID 0
to UID 0 to be able to run these set-user-ID and set-group-ID
commands as remote programs.

If you want to perform remote network administrative tasks,
you must translate an incoming Group ID to GID 0 at the nodes
you want to customize. This does not, however, mean that you
must translate GID 0 to GID 0, just that some group on the
server must translate to system group on the client. If you do
translate GID 0 to GID 0, any network user that is a member of
the local system group can do such things as change your
network tables.

One conservative approach to implementing remote
administration is to create a special ID that can be mapped to
user root or a special group that can be mapped to system. Be
sure to limit access to the /etc/passwd and Jete/group files
and the users command on the system where this login ID or
group resides.

Finally, if you do not map either root or system to some local
ID (guest or usr, for example), network nodes may not be able
to issue mounts automatically at system start up, since these
are normally done by root through the /ete/re.ds initialization
file.

Maintaining the System 3-61

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Building Distributed File Trees

The following are points to consider when planning and managing
distributed file trees:

To Select the Type of Mounts to Use

1. Restrict your use of file-on-file mounts to special cases:

• The files required to implement the Single System
Image Environment (see "Managing the Single System
Image Environment" on page 3-70).

• Read-only mounts of programs that you want to run
remotely, but which reside in directories that you do
not want to mount as a whole (perhaps to avoid the
problems discussed in identifying and managing
dependencies on page 3-66).

2. Use directory mounts to build those portions of the file tree
to which users will have write access.

More Detailed Information

1. Restrict your use of file mounts to special cases:

• The files required to implement the Single System Image
Environment (see "Managing the Single System Image
Environment" on page 3-70).

• Read-only mounts of programs that you want to run
remotely, but which reside in directories that you do not
want to mount as a whole (perhaps to avoid the problems
described in the discussion of identifying and managing
dependencies on page 3-66).

2. Use directory mounts to build those portions of the file tree to
which users will have write access.

To understand the problems that using file-on-file mounts to
build file trees can cause, you need to remember the

3-62 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

relationship between a file tree and a file system and to
remember how the enhanced mount facility has changed that
relationship.

• The restrictions against linking or renaming files across file
system boundaries still remain.

• The new mount facility now makes it possible for two files
in the same directory to be in two different file systems and
for a file to be in a different file system than its parent
directory.

• Many programs (especially editors), designed for the old
mount environment, assume that a file is part of the same
file system as its parent directory. They may try to use the
In or mv commands to create temporary copies or backup
copies of files. They may create a new file to hold the
changed version of the existing file; however, that file
resides in the same file system as the parent directory, not
as the original file. Even if the program copies the new
version back to the original file, there can be additional
problems. For example, the INed editor generates a new
i-node when it modifies a file. If a user modifies the file at
the server, the client node continues to use the original
i-node (which is the one actually mounted at the client
node). Thus, the INed program should not generally be used
to edit a file on the server that is mounted over a file at the
client node. Since users at the server are generally unaware
of the mounts issued by client nodes, a client node should
not build a file tree that allows this problem to develop.

Maintaining the System 3-63

TNL SN20-9862 (June 26 1987) to SBOF-0168

When selecting what directories or files to mount from a program
server, consider the following:

To Select Mounts from a Program Server

1. The following directories contain programs that cannot (or
should not) be run from a client node:

• /bin

• /etc

• /usr/lpp

2. The following directories, in general, contain programs or
support facilities that can be accessed from a client node:

• /usr/bin

• /lib, /usr/lib

• /include, /usr/include

• /usr/mail

• /usr/news

More Detailed Information

1. The following directories contain programs that cannot (or
should not) be run from a client node:

/bin This directory contains the sh, csh, and su
commands, as well as many other basic programs that
you want to have available at all times.

/etc This directory contains system administrative
commands, such as fsck, mkfs, shutdown, devices,
minidisks, mount, and umount. It also contains
many system daemons, such as cron and qdaemon.

3-64 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

Not only do these commands need to be available at
times, but many can only be run locally.

/usr/lpp This directory contains locally installed licensed
programs. Distributing licensed programs is subj ect
to the licensing agreements, restrictions, and
requirements imposed by their owners.

Note: Licensed programs usually install some
programs in other system directories, too, such as
/usr/bin.

2. The following directories, in general, contain programs or
support facilities that can be accessed from a client node:

Directory

/usr/bin

/lib

/usr/lib
/include
/usr /include
/usr/news

/usr/mail

Possible Restrictions

This directory can contain set-user-ID and
set-group-ID programs that a remote user can run
only if the supporting ID translation entries exist
in the Network Users/Groups Table (see page
3-61).

This directory can contain licensed
program-installed programs that cannot (or
should not) be run by remote users_

This library contains the shared library
(sharsys.0201) used by many AIX commands. A
local copy of this library needs to be available
for use when the server is off line (see the
discussion of identifying and managing
dependencies on page 3-66).

To share this directory, the mail group (GID 6)
needs to be translated at each node.

Maintaining the System 3-65

TNL SN20-9862 (June 26 1987) to SBOF-0168

In addition, when data files, system files, or programs reside on
another node, each client node needs to identify critical
dependencies and have a plan for managing those dependencies if
those files or programs should be unavailable. These problems
usually fall into one of two areas:

The server node is not on line when the client node starts up.

To manage this problem:

• Be sure that there are local copies of any programs that users
must have access to at all times.

• Alternatively, you might customize a secondary program server.
Files and directories from this system would not be mounted
automatically, but would be available if the first server were
inaccessible.

• Use a shell program to issue automatic remote mounts, so that
they can be retried until successful. See "Automatic Mount
Procedures" on page 3-74 for a complete discussion of this
alternative.

The server node goes off line while the client node is using
remote resources.

Depending on what system resources you are using at the server,
the following are possible problems you can have under these
circumstances:

• You can no longer run many local commands.

When you attempt to run a command, you get the following
message:

Shared library: sharsys.0201 cannot be mapped.
ki 11 ed

The command is trying to use the library /lib/sharsys.0201, but
the /lib directory on the server is inaccessible because the
server is off line or there is some other network problem.
Without access to this library, most commands cannot run.

3-66 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

To solve this problem, provide a local copy of the shared library
for local commands to use when /lib is inaccessible:

1. Create a new directory named /ete/suidlibs:

mkdir /etc/suidlibs

The name of the new directory must be /ete/suidlibs,
because set-user-ID programs (such as mount and umount)
are already coded to look for a directory of this name.

2. Copy /lib/sharsys.0201 to this directory:

cp /lib/sharsys.0201 /etc/suidlibs

3. Set the LIBP ATH shell variable by adding the following
lines to the fete/profile file:

LIBPATH=/lib:/usr/lib:/etc/suidlibs
export LIBPATH

The LIBPATH shell variable identifies which directories
the shell should search for shared libraries and the order in
which they should be searched.

• Users can no longer log in or run commands that read the
/ete/passwd file.

For example, a user tries to log in with a valid user name, but
receives the following message:

You entered a login name or password that is not valid.

or a user tries to use the su command to change to a valid user
ID, but receives the following message:

Un known i d

The AIX Operating System must read the /ete/passwd file to
get the UID that corresponds to a user name. If the
/ete/passwd file is remote, the local AIX Operating System
cannot access it when the remote system is off line. This
problem is complicated by the fact that, under these

Maintaining the System 3-67

TNL SN20-9862 (June 26 1987) to SBOF-0168

circumstances, if a user with superuser (system group) authority
is not logged on when the server goes off line, it will not be
possible to unmount remote files or directories or to shut down
the client node until the server is accessible again. In addition,
if no user is logged on, no one will be able to log on until the
server is accessible again.

To solve this problem, you must provide some way for a
non-system group user to unmount an inaccessible /etc/passwd
file or for the system to monitor that file and to unmount it
when it becomes inaccessible.

To allow a non-system group user to unmount an inaccessible
password file, compile the program listed in Figure 3-4 on
page 3-69 (a copy of this sample program can be found in the
/usr/lpp/ds/samples directory). Use the following commands
to make this program available to users:

ed jusrjlppjdsjsamples
ee umpasswd.e -0 umpasswd
chown root umpasswd ; chgrp system umpasswd
ehmod u+s umpasswd
ep umpasswd jete

The ehmod u+s command makes this a set-user-ID program (the
cc command has already made it executable by all users). This
gives a user the necessary authority to issue the uvmount
system call in the program. (N ote that the program only
unmounts the password file if it cannot open it. Otherwise, it
exits without taking any action.)

To have the system run this program periodically, schedule it to
be run by the cron command. Then even if no user is logged
on, the password file will eventually be unmounted once it
becomes inaccessible.

3-68 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

/* urnpasswd.c */

#include <stdio.h>
#include <fcntl.h>

extern int errno;

rna in ()
{

}

int fil des;
int rc;

errno = 0;
fildes = open(,l/etc/passwd ll

, O-RDONLY);

if (fildes == -1) {

}

printf(lI/etc/passwd file cannot be opened, II);
printf("(errno %d)\n", errno);

errno = 0;
rc = uvrnount("/etc/passwd");
if (rc == -1) {

printf("unrnount of /etc/passwd failed, ");
printf("errno %d\n", errno);

} else {
printf(lI/etc/passvld urnounted \n");

}

Figure 3-4. The umpasswd.c Sample Program. This program unmounts an
inaccessible /etc/passwd file.

Maintaining the System 3-69

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Managing the Single System Image Environment

A multi-node network can be said to have a single system image
when the following conditions are true:

To Provide a Single System Image

1. Users have the same identity on each node in the network:

• The same login name
• The same UID
• The same GID
• The same concurrent group list.

2. Users see the same file tree at each node.

3. No matter which node runs the users command, a new user
(or group) lR Hdded to (or deleted from) H 11 nodeR.

4. The system initialization files issue all mounts necessary to
achieve the single-system-image environment.

More Detailed Information

1. Users have the same identity on each node in the network.

To achieve this, you must have all nodes share the same copy of
the following system files:

• /ete/passwd
• /ete/opasswd
• fete/group
• /ete/ogroup
• /usr/adm/user.efile

In order for the passwd and users commands to run in this
environment, all five of these files must reside on the same node
and be mounted at each client node in the network, using
file-on-file mounts (the fete directory cannot be mounted
remotely).

3-70 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

Another candidate for a file-on-file mount in this environment
is the /etc/motd file. (Sharing this file allows you to place a
special message in the local copy of /etc/motd so that a user
can be warned when the server is inaccessible.)

2. Users see the same file tree at each node.

Each node mounts the same files and directories from all the
servers in the network. The simplest single-system-image
environment to customize has one server node and multiple
client nodes.

3. No matter which node runs the users command, a new user (or
group) is added to (or deleted from) all nodes.

To accomplish this goal, each node must build the same /u file
tree. There are two ways to do this:

Method One

The /etc/filesystem file at each node contains a stanza for
each home directory at all the other nodes. The /u directory at
each node contains empty stub directories for each remote home
directory. At system start up, each remote home directory is
mounted on the corresponding stub directory in the local /u
directory. When a local system administrator adds a new user,
the network administrator adds a new stanza to each
/etc/filesystems file and makes a new stub directory at each
remote node.

Method Two

The complete /u file tree is built at the server, and then each
client node mounts that /u directory as an inherited mount.
This approach is somewhat more complicated to set up initially,
but easier to administer once it is set up. With this
arrangement, all new home directories are created
automatically at the server. Alternatively, if you create new
home directories at client nodes, only the server must modify its
/etc/filesystems file for the rest of the network to pick up this
new mount.

Maintaining the System 3-71

TNL SN20-9862 (June 26 1987) to SBOF-0168

To set this up, use the following steps:

a. At the client node, alter the stanza in /etc/filesystems file
that defines the default mount point of the /dev/hdl device
(fu) as follows:

Original Stanza:

/u:
dev
vol
mount
check
free

= /dev/hdl
= II/U ll

= true
= true
= true

New / dey /hdl stanza:

/mnt:
dev
vol
mount
check
free

New /u stanza:

/u:
dev
nodename
mount
type

=
=
=
=
=

/dev/hdl
II/mntll
true
true
true

= /u
= Server
= inherit,false
= string

The reason that the /dev/hdl device must be mounted in an
alternative location is to prevent its being covered up by the
first mount in the series of mounts that will be issued as a
result of inheriting /u from the server.

Once the entire /u directory is mounted from the server,
running the users command at any node in the network
creates the new home directory at the server. Thus it is
automatically inherited by each client node the next time
the client reissues this mount.

3-72 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

If you want the new home directories created at the client
node that runs the users command, alter the
/usr/adm/user.cfile as follows:

Replace the line:

udir lui

with the line:

udir Imntl

The users command now creates home directories in the
/mnt directory rather than in the /u directory.

Note: Since this is a shared file, this change applies to
home directories created at the server.

b. At the server, create a stub directory in /u for each home
directory at the client nodes and add stanzas to
/etc/filesystems to mount the remote home directories
(from the remote /mnt directory) onto those stub directories.

4. The system initialization files issue all mounts necessary to
achieve the single-system-image environment. See "Automatic
Mount Procedures" on page 3-74, especially "Single System
Image Mounts" on page 3-80 and "Inherited Mounts" on
page 3-82, for a complete discussion of the available options.

Maintaining the System 3-73

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Automatic Mount Procedures

Note: Copies of the sample shell programs used in the following
discussion of automatic mount procedures can be found in the
/usr/lpp/ds/samples directory.

There are a number of automatic mount procedures, depending, in
part, on whether or not remote mounts are inherited.

I Mounts That Are Not Inherited

If your remote mounts are not inherited, automatic mount
procedures need only be implemented at the node issuing the
remote mount.

There are at least two way to reschedule mounts:

• Have a shell program use the at command to rerun itself.

• Run a background shell program that does not end until its
mounts are all successful or until it reaches some specified
limit.

I Rescheduling Mounts: the at Command

The sample shell program retry-mount shown in Figure 3-5 on
page 3-75 illustrates one way to use the at command to reschedule
mounts. This shell program issues a mount, tests its return value,
and reschedules itself if the mount is unsuccessful. This process
continues until the mount succeeds.

3-74 Managing the Operating System

@(#)retry-mount
/I
/I SHELL SCRIPT NAME: RETRY-MOUNT

TNL SN20-9862 (June 26 1987) to SBOF-0168

USAGE: retry-mount type interval

msgpath=${msgpath=/usr/adm/mnt.msg}

if test $/1 -ne 2
then

eeho IIUsage: retry-mount type interval II
exit

fi
jete/mount -t $1 »${msgpath} 2>&1
if test $? -eq 0
then

exit
else

echo II re try_mount $1 $211 I at now + $2 minute »${msgpath} 2>&1
fi

Figure 3-5. The retry-mount shell program. Reschedules itself.

The retry-mount program should be run from the /ete/re.ds
initialization file if any remote mounts faiL For example, see the
following command list from the re.ds file shown in Figure 3-6 on
page 3-76:

mount -t remote >/usr/adm/mnt.msg 2>&1 II retry-mount remote 5

The commands in this list are separated by two II (vertical bars).
T~:is causes the second program (retry-mount) to run only if the
first program (mount) fails. retry-mount also uses conditional
substitution to assign a value to the user-defined variable
msgpath:

msgpath=${msgpath=/usr/adm/mnt.msg}

This line assigns the value Ius r / adm/mnt. msg to the variable
msgpath if that variable has not already been set on the command
line. Conditional substitution can be useful if normally you expect

Maintaining the System 3-75

TNL SN20-9862 (June 26 1987) to SBOF-0168

to use a particular value, but want to be able to change that value
if necessary. To reset this variable, enter a command such as the
following:

msgpath=/dev/null retry-mount remote 5

This command line assigns all output from the mount commands to
/dev/null.

See the sh command in AIX Operating System Commands Reference
for a description of available command-list separators and
terminators and for a discussion of user-defined variables and
conditional substitution.

@(#)rc.ds 5.3 87/02/05 11:05:49

echo Translate tables are being loaded
dsxlate

echo IPe keys are being loaded ...
dsipc

echo Starting SNA
start sna

echo Starting attachment
start /attachment/EDEFAULT&

echo Starting kernel processes
dsstate -plOD -k -ce -se -sa -aa

echo Mounting remote directories
mount -t remote >/usr/adm/mnt.msg 2>&1 II retry-mount remote 5

Figure 3-6. An re.ds file. Automatic start up (at command)

3-76 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Using a Shell Program that Sleeps

Another automatic mount procedure runs a background shell
program that sleeps for a specified interval and then reissues the
required mounts until they are all successful. The do-mounts
program in Figure 3-7 is an example of such a program. The only
exit from this program appears in the command list:

mount -t $1 »${msgpath} 2>&1 && exit

The && separator causes ex; t to run only if the mount is successful.

@(#) do-mounts -- Perform mounts of a certain type until successful

usage: do-mounts mount-type delay

msgpath=${msgpath=/usr/adm/mnt.msg}

whil e true
do

mount -t $1 »${msgpath} 2>&1 && exit
sleep 'expr 60 * $2'

done

Figure 3-7. The do-mounts shell program

On the other hand, you may want to limit the number of times your
system retries a mount. You may not want to tie up system
resources indefinitely. Perhaps some nodes provide only limited
file services or are not always on line. In this case, you could use
a shell program such as the one in Figure 3-8 on page 3-78 to limit
mount attempts. This version of the domounts shell program
accepts an optional third command line argument that specifies the
number of times that the program is to attempt the mount. If you
do not specify a third argument, the program continues to loop
until the mount is successful. The following line sets the default
limit (0):

1; m; t=${3-0}

Maintaining the System 3-77

TNL SN20-9862 (June 26 1987) to SBOF-0168

The program, using conditional substitution to assign a value to a
variable named 1 i mi t, checks to see if a third argument is set on
the command line ($3). If it is, domounts assigns that value to
1 i mi t. If it is not set, domounts assigns the value 0 to 1 i mi t.

@(#)domounts -- Perform mounts of a certain type

usage: domounts mount-type delay1 [trys]

Assign defaults
msgpath=${msgpath=/usr/adm/mnt.msg}
1 i mit=${3-0}
i=l

while [${limit} -eq 0 -0 ${i} -le ${limit}]
do

done

jete/mount -t $1 »${msgpath} 2>&1 && exit
sleep 'expr 60 \ * $2'
i='expr ${i} + l'

Figure 3-8. The domounts shell program

Have the re.ds file run do-mounts in the background so that
re.ds can complete system startup. See Figure 3-9 on page 3-79.

3-78 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

II @(II)rc.ds 5.3 87/02/05 11:05:49

echo Starting kernel processes ...
dsstate -p100 -k -ce -se -sa -aa

II clear the message file
>/usr/adm/mnt.msg

echo Mounting remote directories
domounts primary 2 &
domounts secondary 5 10 &

Figure 3-9. An rc.ds file. Automatic start up (process that sleeps)

Maintaining the System 3-79

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Single System Image Mounts

The single system image automatic mount procedure needs to
handle both the making of backup copies of the relevant shared
files as well as the mounting of the shared file and directories. See
the s sirna u n t s shell program in Figure 3-10 on page 3-81. This
shell program issues remote mounts in two stages. First it mounts
the master remote files-/ete/passwd, /ete/opasswd, fete/group,
and /ete/ogroup-over temporary files and makes local copies so
that each system has a recent copy of the master files. Then it
mounts all files and directories from the server node. This shell
program is run by /ete/re.ds, as shown in Figure 3-11 on
page 3-82.

The four files to be copied are mounted twice; first over a
temporary file, from which they can be copied and then
unmounted, then over the local copy just made. The stanzas in
/etc/filesystems that define the temporary mounts of the four files
include the attribute type = stagel. The remaining stanzas that
define remote mounts contain the attribute type = stage2. This
allows ssirnaunts to wait to perform the second set of mounts until
after the first set of mounts are completed. Since all home
directories, most data files, and many programs are not available
until all these mounts have been completed, the procedure retries
unsuccessful mounts as quickly as possible until they have all
succeeded.

3-80 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

@(#)ssimounts -- Perform single system image mounts

usage: ssimounts mount-type1 mount-type2 [delay]

Assign defaults (delay is in seconds)
msgpath=${msgpath=/usr/adm/ds.msg}
delay=${3-0}

touch /ete/passwd.tmp /ete/opasswd.tmp /ete/group.tmp /ete/ogroup.tmp

until mount -t $1 »${msgpath} 2>&1
do

sleep ${delay}
done

ep /ete/passwd.tmp /ete/passwd
ep /ete/opasswd.tmp /ete/opasswd
ep /ete/group.tmp jete/group
ep /ete/ogroup.tmp /ete/ogroup

umount allr »${msgpath} 2>&1

rm /ete/passwd.tmp /ete/opasswd.tmp /ete/group.tmp /ete/ogroup.tmp

until mount -t $2 »${msgpath} 2>&1
do

sleep ${delay}
done

Figure 3-10. The ssimounts shell file. Sets up a single-system-image
environment

Maintaining the System 3-81

TNL SN20-9862 (June 26 1987) to SBOF-0168

i Inherited Mounts

@(#)rc.ds 5.4 87/04/13 09:29:36

echo Starting kernel processes ...
dsstate -p100 -k -ce -se -sa -aa 2>&1

echo Mounting remote directories ...
ssimounts stage1 stage2 &

Figure 3-11. An rc.ds file. Run at each client node

To get all the remote mounts in an inherited file tree, the node
issuing an inherited mount must not issue that mount until after
the tree has been built at the Server. Following are two solutions
to this problem, one implemented from the server node (the "Smart
Server"), and one implemented from the client node (the "Smart
Client").

Smart Server: To implement this solution, a server node uses the
dsstate command to block incoming requests until the file tree to
be inherited has been completed or until a specified interval has
passed. Then it reenables incoming server requests and, if
necessary, continues reissuing the mounts. See Figure 3-12 on
page 3-83.

By blocking incoming requests, the server node prevents other
nodes from mounting a partially finished file tree. This solution is
suited to environments where there is only one server node
building file trees to inherit (and thus blocking incoming requests).

To enable this approach, the server node runs an re.ds
initialization file similiar to Figure 3-13 on page 3-84, while each
client node runs an re.ds file like the one in Figure 3-9 on
page 3-79.

3-82 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

@(#)repeatmounts -- Attempt to build file tree to be inherited

usage: repeatmounts mount-type delay1 tries delay2

msgpath=${msgpath=/usr/adm/mnt.msg}

loop n times controlled by third parameter
i=1
while [i -le $3]
do

mount -t $1 »${msgpath} 2>&1 && { dsstate -sa exit }
sleep 'expr 60 \ * $2'
i='expr Hi} + l'

done

Reached limit on attempts, allow server requests
dsstate -sa >/dev/null 2>&1

II Keep trying to mount, if necessary
whil e true
do

mount -t $1 »${msgpath} 2>&1 && exit
sleep 'expr 60 \ * $4'

done

Figure 3-12. The repeatmounts shell program. Builds an inherited file tree

Note: Be sure that the /etc/filesystems file stanzas of all
inherited mounts contain the attribute mount = inherited.

Maintaining the System 3-83

TNL SN20-9862 (June 26 1987) to SBOF-0168

@(#)rc.ds 5.3 87/02/05 11:05:49

Disable server requests (change -sa to -sb)
Enable all other requests (-aa)
echo Starting kernel processes
dsstate -p100 -k -ce -se -sb
dsstate -aa

echo Mounting remote directories
repeatmounts filetree 1 10 4 &
do-mounts remote 5 &

Figure 3-13. An rc.ds file. Automatic startup of inherited mounts controlled
by the Server

3-84 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

Smart Client: To implement this solution, the server node keeps a
log of the type attribute of each successful mount. This can be
done by enhancing the domounts shell program as illustrated in
Figure 3-8 on page 3-78. This enhanced shell program is
illustrated by recordmounts shown in Figure 3-14.

@(#)recordmounts -- Perform and track mounts of a certain type

usage: recordmounts mount-type delay1 [trys]
if

Assign defaults
msgpath=${msgpath=/usr/adm/mnt.msg}
typepath=${typepath=/usr/adm/mnt.types}
limit=${3-0}
i=1

while [${limit} -eq 0 -0 ${i} -le ${limit}]
do

done

/etc/mount -t $1 »${msgpath} 2>&1 \
&& { echo $1 »${typepath} ; exit; }

sleep 'expr 60 * $2'
i='expr ${i} + l'

Figure 3-14. The recordmounts shell program

After each successful mount, recordmounts writes the mount type
in a file. The client node checks this log file, and does not attempt
an inherited mount until this file contains a specified mount type,
as illustrated by the eli entmounts shell file shown in Figure 3-15
on page 3-86.

Maintaining the System 3-85

TNL SN20-9862 (June 26 1987) to SBOF-0168

@{#)clientmounts -- Wait for a complete file tree before mounting it

usage: clientmounts srvr-nid type delay stub-path

Assign defaults
msgpath=${msgpath=/usr/adm/mnt.msg}
typepath=${typepath=/usr/adm/mnt.types}

mount file containing types mounted at server
mkdir /tmp/$$
touch /tmp/$$/mnt.types
while true
do

mount -n $1 ${typepath} /tmp/$$/mnt.types » ${msgpath} 2>&1 && break
sleep 'expr 60 \ * $3'

done

keep checking for entry in file indicating server mounts are done
until fgrep $2 /tmp/$$/mnt.types >/dev/null
do

sleep 'expr 60 \ * $3'
done

do inherited·mount
mount -i $4

clean up
umount /tmp/$$/mnt.types »${msgpath} 2>&1
rm -r /tmp/$$

Figure 3-15. The clientmounts shell program. Wait for a complete file tree
before mounting it

The cl i entmounts shell program uses its process ID ($$) to create a
temporary directory and null file on which to mount the server's
log file. It keeps scanning this file until it contains a line
matching the mount type that cl i entmounts is looking for. Only
then does it issue its inherited mounts.

3-86 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

The shell program shown in Figure 3-16 on page 3-87 manages the
building of inherited file trees at the server, insuring that server
requests are not reenabled until all the specified file trees have
been completed. The re.ds file shown in Figure 3-17 on page 3-88
runs at the Server; the file shown in Figure 3-18 on page 3-88 runs
at the client node.

@(#)buildtrees -- coordinate mounts

usage: buildtrees mount-type1 mount-type2 ... &

Assign defaults (delays are in minutes)

typepath=${typepath=/usr/adm/mnt.types}
delay1=${delay1=1}
tries=${tries=lO}
delay2=${delay2=5}

empty out record of mounts by type
>${typepath}

for t
do

recordmounts ${t} ${delay1} ${tries} &
done

wait
dsstate -sa >/dev/null 2>&1

for t
do

done

fgrep ${t} ${mspath} >/dev/null 2>&1 II \
recordmounts ${t} ${delay2} &

Figure 3-16. The buildtrees shell program. Coordinates mounts

Maintaining the System 3-87

TNL SN20-9862 (June 26 1987) to SBOF-0168

@(#)rc.ds 5.3 87/02/05 11:05:49

Disable server requests (change -sa to -sb)
Enable all other requests (-aa)
echo Starting kernel processes
dsstate -p100 -k -ce -se -sb
dsstate -aa

Retry mounts if not successful
echo Mounting remote directories
buildtrees filetree1 filetree2 &

Figure 3-17. An re.ds file. Server node logs successful mounts

@(#) rc. ds 5.3 87/02/05 11:05:49

echo Starting kernel processes ...
dsstate -p100 -k -ce -se -sa -aa

echo Mounting remote directories
clientmounts node-a filetree1 2 /u &
clientmounts node-a filetree2 5 /library &
domounts remote 5 10 &

Figure 3-18. An re.ds file. Client waits for Server to log successful mounts

3-88 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Customizing a Server Node

Take the following steps to customize each RT PC that allows
remote access to local files or programs:

To Plan a Server Node

1. Identify network requirements.

2. List the node ID (NID) of each RT PC that has remote
access to local files and programs.

3. List the names of all network users and groups that have
remote access to local files and programs. Include both the
user or group ID and the node ID of the originating system.

4. Decide how to manage the translation of incoming and
outgoing user and group IDs.

5. Build the necessary node and ID tables.

6. Check the permissions of local files and directories to
insure that they provide or restrict network access as you
intend.

7. Give client nodes the information they need to access local
files and programs.

I More Detailed Information

1. Identify network requirements. Consider the following:

• To which files and directories do network users need access?

• What kind of access is needed-search or execute permission,
read permission, or write permission?

• Which users need access-all users (local and remote), all
network users, selected network and/or local users?

Maintaining the System 3-89

TNL SN20-9862 (June 26 1987) to SBOF-0168

• Which groups need access-all groups (local and remote), all
network groups, selected network and/or local groups?

• Who should be denied access?

2. List the node ID (NID) of each RT PC with remote access to
local files and programs. To learn the NIDs, run the following
command at each RT PC on the network:

uname -m

If you do not have access to all the RT PCs on the network, you
will need to request this information from the local system
administrator. If your network is part of a Baseband (Ethernet)
LAN and you have installed TCP /IP, you may be able to use
remote login to collect this information.

AQ ~ O'~n~r~l r1l1~ vnll Qhn1l1rl ~lQn ~QQiO'n ~ 1_ tn 1LL"h~r!:1,.to-r-- - 0-...... _ _ _, J -- __ _, '""' 0 '""' _ _..&.'""'-,"-',A..

nickname to each node. Associating a nickname with a NID
can make it easier to build the tables or use the commands
(such as mount) that require you to specify a NID.

A node has only one valid NID, but it can have as many
nicknames as it has client systems. Each system that accesses a
node can assign it a different nickname. For example, Node A
has NID 20810CBF. Node B assigns the nickname Tom to Node
A, while Node C assigns the nickname Server. The profiles at
each system translate the locally defined nickname to NID
20810CBF, which uniquely identifies Node A on the network.

3. List the names of all network users and groups with remote
access to local files and programs. This list should include both
the user or group ID and the node ID (or nickname) of the
originating system.

4. Decide how you want to manage the AIX Operating System's
translation of incoming and outgoing user and group IDs (see
"Managing ID Translation" on page 3-58).

5. Build the necessary tables. Run the ndtable command to add a
node profile for each node on the network to the Distributed

3-90 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

Network Node Table. Run the ugtable or dsldxprof command
to add translation entries to the Network Users/Groups Table.

Note: If creating additional local user or group IDs is
part of your plan to manage network IDs, add them to the
/ete/passwd or fete/group file before building the
Network Users/Groups Table. (See the users command in
AIX Operating System Commands Reference.)

While you can create either table first, if you create the
Network Users/Groups Table before you create the
Distributed Network Node Table, you get a message with
each entry warning you that the node is not known.

6. Check the permissions settings of local files and directories to
insure that they provide or restrict network access as you
intend.

If you do not map network user or group ID 0 to local ID 0 (and
as a general rule you should not), be sure the permissions of
directories that are available for remote access are set to
search by others (allowing other nodes to mount the
directory) and to read by others (allowing users at other nodes
to list the contents of the directory with commands like Ii or
Is).

Conversely, you can set the search permissions on a directory
so that a remote user cannot mount or read that directory, but
keep in mind that this will restrict local access as well. You
can, however, use concurrent group membership at the local
node and careful mapping of remote IDs to deny access to
remote users while allowing it to local users, if such security is
important.

7. Give client nodes the information they need to access your files
and programs. Include the full path names of available
resources, the path names that should be mounted as inherited
mounts, and a list of network IDs.

Maintaining the System 3-91

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Customizing a Client Node

Take the following steps to customize each RT PC that accesses
remote files or programs:

Planning a Client Node

1. Identify network requirements.

2. List the node IDs of each RT PC that has files or programs
tha t you plan to use.

3. If local users or groups have been assigned network IDs,
list each user or group name and its corresponding network
ID.

4. Decide where you want to mount remote directories or files
n~,.:J ,...,..."n " """""''''+''I'T rl~""I"\""""","~ru·, ",... f'~lr'\rt " 'I"V\"",.,-4-- 1""\".,,, ~f'
a..l.lU ~.Lc;a."c; C;.l.l.ll'''J' U.L.LC;~"V.L.LC;O V.L .1..l.l.C;O "V .l.l.lV\A..l.l" VV~.1.,.I..1.

necessary.

5. Build the necessary node and ID tables.

6. Add stanzas to the /etc/filesystems file to describe remote
mounts.

7. Modify the /etc/rc.ds file to enable automatic or graceful
startup, if desired, and to block all incoming requests
(dsstate -sb), if you do not want other nodes to have
access your file systems.

3-92 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Scenario One: A Program Development Environment

Joe manages a programming department within a large company.
His department provides programming support to others in the
company. Joe's department employs four programmers, a technical
writer, and an administrative assistant. The group has five RT
PCs, as shown in Figure 3-19 on page 3-94. These RT PCs are
connected via a Baseband (Ethernet) LAN and configured for
TCP/IP, SNA Services, and Distributed Services.

Joe, Gary (the lead programmer), and Don (administrative
assistant) share one RT PC, which is customized with a lot of disk
space. It is also connected to both a 3812 Pageprinter and an IBM
5201 Quietwriter printer. Users at RT PCs on the LAN can access
either printer by using TCP/IP's remote printing facility.

This shared system also provides services and resources to the
other members of the network, and operates as a server in the
network. It provides the following services and resources:

o File and process services to the other RT PCs on the LAN

• Disk space for:

A central code library
A documentation library
System mail
News

• Extended Services programs for programmers use, including:

INed
vi
SCCS (source code control system).

• Locally developed tools for:

Proj ect tracking
Doculnentation development
Additional programming support.

Maintaining the System 3-93

TNL SN20-9862 (June 26 1987) to SBOF-0168

Display

Display RTPC

Display RTPC

ASCII
Terminal

RTPC

ASCII
Terminal

Local Area Network
RTPC Display

RTPC Display

AJ2DL002

I Figure 3-19. A Programming Environment

Other members of the department can access these programs as
needed. This RT PC is on line at all times during working hours.

The three programmers-Ellen, Hal, and Liz-and the technical
writer, Todd, each work at one of the four remaining RT PCs on
the network. They develop their portions of the code or

3-94 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

documentation at their own system, and store each version in the
common code library as schedules warrant. They have not
installed sees, but access the commands installed on the server
system when they need them. They can also use most of the
programming tools that they need from the server system without
having them installed at their own system. These four RT PCs are
not always on during a working day. Their network connections
are not always active. Ellen, Hal, Liz, and Todd must customize
their own systems for network access, and mount and unmount
files and directories as needed.

I Customizing the Server

Gary creates the code and documentation libraries and mounts
them on /libraryl in his root file system. (His login ID owns this
directory.) He decides that he will create a new group on his
system, called projl, to own that directory. Later, after he has
created that group with the users command, he must change the
group associated with that directory to ensure that it has the
proper permissions to allow access by the proj 1 group:

chgrp proj1 /library1
1i -ld /library1
drwxrwxr-x 2 gary proj1 112 May 21 10:10 /library1

Joe assigns him the additional task of customizing his RT PC as
the network file server.

Identifying Requirements: Gary begins by identifying the
following network requirements:

1. The network should require a minimum amount of
administrative overhead to maintain and to expand. Additional
nodes and/or network users may be added in the future.

Maintaining the System 3-95

TNL SN20-9862 (June 26 1987) to SBOF-0168

2. All network users need read and execute access to the following
system directories:

Directory

/usr/bin

/usr/lib/help

/usr/news

/usr/mail

Contents

Contains the SCCS programs, the INed and vi editors,
and other locally developed support tools. He notes that
it has the following permissions and IDs associated with
it:

drwxr-xr-x bin bin

Gary also notes that /usr/bin contains set-user-ID and
set-group-ID programs that belong to root and to
system group.

Contains the information files used by the SCCS help
command. It has the following permissions and IDs
associated with it:

drwxr-xr-x bin bin

Contains the files that are read by the news command.
It has the following permissions and IDs associated with
it:

drwxrwxrwx bin bin

Contains the mailbox files accessed by the mail
command. It has the following permissions and IDs
associated with it:

drwxrwxr-x bin rnai 1

Gary also notes that the mail command runs as a
set-group-ID command, owned by the mail group (GID
6).

3. Gary, Ellen, Hal, Liz, and Todd need read and write access to
libraryl. This is the mount point for the file system that
contains the shared library.

Gary decides to use group ownership to control access to the
shared library, network IDs to create flexible ID translation
tables, and wild card translations to handle all other incoming

3-96 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

IDs (except for GID 6-mail-which will be mapped to itself).
He will leave it up to each node to select which local IDs to
map to these network IDs.

4. Network users will not have superuser authority, but incoming
system UIDs and GIDs (such as root and system) will be
allowed into the node as UID or GID 100.

Building the Node Table: Once Gary has identified his
requirements, he makes a list of the NIDs of the other RT PCs and
of the user and group IDs that need access to his RT PC, using
information provided by Ellen, Hal, Liz, and Todd. He assigns the
user's name as the nickname for each node to produce the
following list of nodes:

Nickname

ha 1
1 i z
ellen
todd

NID

l08133EB
l08133F5
2081064A
20810CBF

With this information, Gary is ready to build his Distributed
Network Node Table. He uses the ndtable command to add each
NID and its corresponding nickname, letting the system provide
the other choices by default. This produces the following node
table:

Remote Remote Node Data Li nk Connection Attachment
Nickname Node ID Security Type Profil e Profil e

ha 1 lO8133EB None Ethernet lO8133EB lO8133EB
liz lO8133F5 None Ethernet lO8133F5 108133F5
ellen 2081064A None Ethernet 2081064A 2081064A
todd 20810CBF None Ethernet 20810CBF 20810CBF

208131AA None Ethernet CDEFAUL TCFD CDEFAULT

Maintaining the System 3-97

TNL SN20-9862 (June 26 1987) to SBOF-0168

Building the Users/Groups Table: Next he talks to each of the
other four people on the network to get the following list of
information about network users and groups:

Name U/G

ellen U
1 i z U
todd U
hal U
staff G
system G
mail G

IO

201
201
201
201

1
o
6

Node

ellen
1 i z
todd
ha 1
ellen, liz, todd, hal
ellen, liz, todd, hal
ellen, liz, todd, hal

To allow these users to access the server system, he runs the users
command to add four new user IDs and to create one new group, as
follows:

Name UjG

ellen U
liz U
ha 1 U
todd U
proj 1 G

10

203
204
205
206
200

Comment

members are ellen, liz,
hal and todd

The new group, proj 1, contains the IDs of all users who need
access to libraryl.

He decides to assign the following network IDs to the new user and
group IDs:

Name U/G IO Network IO

ellen U 203 10000
liz U 204 10001
ha 1 U 205 10002
todd U 206 10003
proj 1 G 200 20000

The outbound translation tables at each node must map the local
user and group IDs to their proper network IDs. If users change

3-98 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

(or add) nodes, or if new users are added who should access these
IDs, the outbound translations can be changed to include the new
information.

Next he plans to map all requests from GID 6 (mail) to local GID 6,
so that the mail commands running at each node have write access
to the /usr/mail directory. All remaining IDs will be mapped to
UID 100 (guest) and GID 100 (usr) to ensure that mount requests
from root (re.ds) are allowed.

Next he runs the ugtable command to enter this user and group
information into the system, to produce the following Network
Users/Groups Table:

Usr/Grp Local Net\-mrk 10 Originating Node
Name U/G 10 Outbound Inbound Name/Nickname

ellen U 203 10000 10000 *
1 i z U 204 10001 10001 *
ha 1 U 205 10002 10002 *
todd U 206 10003 10003 *
guest U 100 * *
mail G 6 6 *
proj 1 G 200 20000 20000 *
usr G 100 90000 *

Maintaining the System 3-99

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Customizing the Client

To connect to the server, each client (Ellen, Hal, Liz, and Todd)
must analyze their expected needs and decide how to configure
their system to achieve those needs. The following paragraphs
summarize the important areas that they must consider when
customizing their systems.

Network IDs: Each client must decide which local IDs should be
mapped to the assigned network IDs. One client may map several
local IDs to one network ID for access to shared library
information. Others may require unique IDs for each ID on a
system. If more network IDs are needed, they must ask Gary to
create more network IDs.

File Tree: Each client must create mount points for the remote
directories library1 and /usr/lib/help. The mount points already
exist for /usr/hill, /uSl"/lnail and /usr/news.

Access: Each client must decide whether to block incoming
requests or to allow selected network users to have access to the
system. Incoming requests can be blocked either by running
dsstate or by not having any inbound ID translation specified in
the Users/Groups Table.

Start Up: Each client must decide whether to have:

• Manual start up - This method requires that each user enter
the mount command for each file or directory to be mounted.
The command can use information from /ete/filesystems or
from the command line parameters to perform the mount.

• Automatic start up - This method requires that each of the
mount points be defined by a stanza in /ete/filesystems. All
mount commands are placed in /ete/re.ds so that they are
executed automatically when the system starts. However, if the
server is not active when the client system starts, the mounts
must be performed manually after the server starts.

• Graceful start up - This method requires that each of the
mount points be defined by a stanza in /ete/filesystems. The
user creates a shell procedure that tries to mount the required

3-100 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

files or directories, but retries them later if they are not
successful on the first try. The user then puts the name of that
procedure in /ete/re.ds so that the procedure is executed
automatically when the system starts. An example shell
procedure is retry -mount in the /usr/lpp/ds/samples
directory.

• Some combination of the three - This method allows you to
automatically mount some files or directories through re.ds,
and to manually mount others that are not used often.

Set-user-id programs: Each client must decide what to do about
the set-user- and set-group-ID programs in /usr/bin or any other
mounted directory. To use any of these programs, copy them to a
local directory that is searched before /usr/bin (or other mounted
directory) in the PATH. For example:

find /usr/bin \(-perm -4000 -0 -perm -2000 \) -exec mv {} /bin \;

is one solution.

When deciding which programs to copy from another system,
consider the following points:

o Program licensing agreements may restrict moving programs
from one system to another.

o Prerequisite programs and data files may need to be present on
the local system for the copied program to work properly.

• If the program to be copied is part of an installed program on
the other system and the installation for that program modified
the kernel on the other system, the entire program must be
installed on the local system to be able to use the desired
program.

Maintaining the System 3-101

TNL SN20-9862 (June 26 1987) to SBOF-0168

Programs Needed When the Server is Down: If the server
system is not operating, any programs on that system will not be
available for use at any of the client systems. Each client must
decide which programs that it uses from the server system are
important to the operation and use of the local system. The client
should ensure that those important programs are installed on the
local system so that they are always available.

3-102 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Example: Ellen's Configuration

Ellen defines the network on her system using the ndtable
command to produce the following node table:

Remote Remote Node Data Link Connection Attachment
Nickname Node 10 Security Type Profile Profile

Ha 1 108133EB None Ethernet 108133EB 108133EB
Liz 108133F5 None Ethernet 108133F5 108133F5
Ell en 2081064A None Ethernet 2081064A 2081064A
Todd 20810CBF None Ethernet 20810CBF 20810CBF
Gary 208131AA None Ethernet 208131AA 208131AA
Ell en 2081064A None Ethernet CDEFAUL TCFD CDEFAULT

Ellen investigates how she and others will use the network. The
following paragraphs describe how she considers each of the
important areas when deciding how to configure her system in the
network.

Network IDs: Ellen decides to restrict access to her local machine
so that others on the network can only access her machine through
the user ID, gues t. She still wants to allow the mail system to
work properly, however. In addition, she wants to access the
server under her user ID (e 11 en) and the library group ID (proj 1),
regardless of what user ID (root or ell en) or group ID (system,
staff or proj1) she may be using on her own system. After
reviewing the IDs that Gary assigned at the server node, Ellen
creates the following Network Users/Groups Table on her machine
using the ugtable command:

Usr/Grp Local
Name U/G ID

ellen U 200
guest U 100
mail G 6
root U 0
staff G 1
system G 0
usr G 100
proj 1 G 8

Network 10
Outbound Inbound

10000
90000

6
10000
20000
20000
90000
20000

*
6

*

Originating Node
Name/Nickname

*
*

*

Maintaining the System 3-103

TNL SN20-9862 (June 26 1987) to SBOF-0168

File Tree: She creates a mount point for the library1 directory in
her lu directory, and a mount point for lusr/lib/help in her
lusr/lib directory:

$ mkdir /u/libraryl
$ mkdir /usr/lib/help

Access: She limits external access to her machine through the
limited ID translations that she provides in her User/Groups Table.

Start Up: To ensure access to the library1 directory and to other
system services, she decides to mount all directories during start
up. To ensure that the files will be ready as soon as the server is
available, she decides on a graceful start up approach. To
implement this approach, she performs the following steps:

1. ~he adds the following stanzas to her /etc/filesystems file:

/u/libraryl:
nodename = Gary
dev = /libraryl
type = pro9-1 i b

/usr/lib/help:
nodename = Gary
dev = /usr/lib/help
type = pro9-1 i b

/usr/bin:
nodename = Gary
dev = /usr/bin
type = pro9-1 i b

/usr/mail:
nodename = Gary
dev = /usr/mail
type = pro9-1 i b

/usr/news:
nodename = Gary
dev = /usr/news
type = pro9-1 i b

3-104 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

The type value of pr09-1 i b allows her to select these mounts as
a group to be mounted.

2. After looking at the sample shell script, retry -mount in the
/usr/lpp/ds/samples directory, she decides that it will serve
her purpose without changes. She copies that file into the fete
directory and ensures that it has the correct permissions:

$ ep /usr/lpp/ds/samples/retry-mount jete
$ li -1 jete/retry-mount
-r-xr-xr-x 1 ellen system 370 May 21 15:42 jete/retry-mount
$ ehmod 754 jete/retry-mount
$ ehown root jete/retry-mount
$ li -1 jete/retry-mount
-rwxr-xr-- 1 root system 370 ~lay 21 15:42 jete/retry-mount

3. She adds the following lines at the end of /ete/re.ds to ensure
that the remote directories of type pro9-1 i b (as specified in
/ete/filesystems) are mounted at start up:

eeho Mounting remote directories ...
jete/retry-mount prog-lib 3 &

This entry instructs the system to mount the remote directories
when the system starts up. If the system cannot mount the
directories at that time, it tries every three minutes until it is
successful. Because this process runs in the background, she
may experience a delay between the time that she can log on to
her system and the time that the remote directories are
mounted.

Set-user-id Programs: Ellen runs the following command on
Gary's system to determine what set-user-ID and set-group-ID
programs are available:

$ find /usr/bin \(-perm -4000 -0 -perm -2000 \) -print
/usr/bin/at
/usr/bin/eonneet
/usr/bin/erontab
/usr/bin/format
/usr/bin/iperm
/usr/bin/ipes

Maintaining the System 3-105

TNL SN20-9862 (June 26 1987) to SBOF-0168

/usr/bin/dumpfmt
/usr/bin/errpt
/usr/bin/trace
/usr/bin/trcrpt
/usr/bin/timex
/usr/bin/netmail
/usr/bin/netstat
/usr/bin/ping
/usr/bin/tcom

She compares this list with what she already has installed in her
/usr/bin directory. She finds that any programs that she may need
are already on her system. She copies those programs from her
local /usr/bin directory to her local/bin directory. Because her
Path variable designates that /bin is searched before /usr/bin, the
system executes the local copy of the program before it finds the
remote copy.

Programs Needed When the Server is Down: Ellen decides that
the only program she needs in case the server system is not
operating is an editor program. She installs the vi editor from the
Extended Operating System diskettes onto her system to allow for
tha t circumstance.

3-106 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Scenario Two: A Text Processing Environment

Bill owns a company that provides documentation and text
processing services. His company has three RT PCs as shown in
Figure 3-20 on page 3-108.

Bill employs four technical writers and a production assistant. The
four technical writers share two RT PC Model lOs and Bill and the
production assistant share an RT PC Model 25 that has been
customized with 400M bytes of IBM 9332 DASD. All three RT PCs
have 4M bytes of memory, are connected via a Baseband (Ethernet)
LAN, and have installed word processing programs, SNA Services,
and Distributed Services.

Bill plans to share the disk space installed on his RT PC Model 25
with all RT PCs on the network. The home directories of all users
will reside on this shared disk. In addition, all users can access
the Extended Services, M ulti-User Services, and IN ed programs
installed at this node.

I Customizing the Server

Bill serves as both network administrator and system administrator
for the three systems on the LAN. He has just installed the
software on the three systems, but hasn't added any users yet.

Identifying Requirements: Bill wants to create a single system
environment among the nodes in the network. To achieve this
goal, he must satisfy the following requirements:

1. The three nodes on the LAN appear to the logged-in user to be
part of a single system:

• Users have the same identity regardless of where they log
In:

The same login name
The same UID
The same GID
The same concurrent group list.

Maintaining the System 3-107

TNL SN20-9862 (June 26 1987) to SBOF-0168

ASCII

RTPC

RTPC RTPC
Local Area Network

AJ2DLO03

I Figure 3-20. The Text Processing Environment

In addition, each local ID translates to the corresponding ID
at each node in the LAN.

• Users see the same file tree, regardless of where they log in.

All home directories reside at the server, and each client
mounts the server's lu directory to have access to these
home directories. Since both clients mount the same files
and directories from the server, each has the same
letc/filesystems file.

• When users are added to any node, they are added to all
nodes.

3-108 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

No matter which node runs the users command, it creates
the home directory on the server and adds the new user to
the server's passwd file.

To give all users the same identity, Bill plans to have all nodes
share the following server files:

• /ete/passwd
• /ete/opasswd
• fete/group
• /ete/ogroup
• /ete/motd
• /usr / adm/user. efile

Since the home directories of all users will also reside at the
server, Bill needs to run the users command only at the server,
adding all network users (and groups) to the server's
/ete/passwd (and fete/group) file and creating all home
directories.

2. The system initialization files issue all mounts necessary to
achieve the single-system-image environment:

• This automatic mount procedure enables each node to
continue to retry remote mounts until all succeed.

• This automatic mount procedure also makes a copy of the
master passwd and group files at each node so that users
can log in when the master node is not available.

3. The two client nodes rely heavily on the server for program and
data resources. The following directories will be shared by all
systems:

• /u
• /lib
• /usr/bin
• /usr/guest
• /usr/inelude
• /usr/lib
• /usr/mail
• /usr/news

Maintaining the System 3-109

TNL SN20-9862 (June 26 1987) to SBOF-0168

Because the client systems are so dependent on the server, Bill
plans to shut down the entire LAN whenever server resources
are unavailable for an extended period.

Building the Node Table: Bill runs the uname -m command at
each RT PC and makes a list of NIDs. Even though he does not
plan to issue mounts from the server, he still decides to assign each
node a nick name, including his own node, and to use the same
nick names in all the node tables. He ends up with the following
list of nodes:

Nickname

Clientl
Client2
Server

NID

l08133EB
l08133F5
20810CBF

HTit], t],ico inf'rYr't'Y'l<3tinn "Rill ~C! "l"oarlu tn hll~lrl h~C! n~C!t"l"ihlltorl
"..L\J.I...L V.L.I...I..U .L.L.I..L\J.I...I..I..I.LA,.\J.l.V.L.L, ..L...I..L..L.L ..LU .L VL"-'-4.J V"-J ,..., """"-..L.L"-Ao. .L..L.Ll.,.I .A-',v&.p.J ""-'Lv""'

Network Node Table. He uses the ndtable command to add each
NID and its corresponding nickname (including an entry for his
own node), letting the system provide the other choices by default.
This produces the following node table:

Remote Remote Node Data Link Connection Attachment
Nickname Node ID Security Type Profil e Profil e

Clientl 108133EB None Ethernet 108133EB 108133EB
Client2 108133F5 None Ethernet 108133F5 108133F5
Server 20810CBF None Ethernet 20810CBF 20810CBF
Server 20810CBF None Ethernet CDEFAULTCFD CDEFAULT

He gives his own node a nickname because he plans, once the LAN
is customized, to manage the network from the server, using remote
mount queries (for example, mount -n C1 i entl) and remote
customization commands. By giving his own node a nick name
(and using the same nick names at each node), he will see the same
set of names, regardless of the mount table he is looking at.

3-110 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-OI68

Building the Users/Groups Table: Since each user (group)
translates to the same ID everywhere on the LAN, each node needs
to have the same Network Users/Groups Table. Instead of using
the ugtable command to build the same table at each node (each
table would have to be built separately), Bill decides to create an
ASCII file that includes all the necessary translation entries so
that he can use the dsldxprof command to load that file at each
node. In addition, since each node uses the same /ete/passwd and
fete/group files, he decides to use a shell program to build his
translation entries for him, using the /ete/passwd and fete/group
files as ID source files. The shell program that he uses is shown in
Figure B-13 on page B-24.

Before he runs this shell program, he runs the users command to
create user IDs and home directories for each of his employees.
Once he has added his system users, he runs the rna ke . i d 1 i s t shell
program. This program produces a file names i d. 1 i st. He then
runs the following command to build the server's Network
Users/Groups Table:

dsldxprof -f id.list

This produces the Network Users/Groups Table shown in
Figure 3-21 on page 3-112:

Customizing the Clients: Bill has four tasks to complete at each
client. He must:

1. Build the Distributed Network Node Table.

He runs the ndtable command at each node, using the same
NIDs and nicknames that he used at the server.

2. Build the Network Users/Groups Table.

He copies the i d. 1 i st file that he created at the server, and
runs the same dsldxprof command at each client:

dsldxprof -f id.list

3. Implement a procedure that allows the client to function if the
server goes off line.

Maintaining the System 3-111

TNL SN20-9862 (June 26 1987) to SBOF-0168

Usr/Grp Local Network ID Originating Node
Name U/G 10 Outbound Inbound Name/Nickname

system G 0 0 0 *
root U 0 0 0 *
staff G 1 1 1 *
daemon U 1 1 1 *
usr G 100 100 * *
guest U 100 100 * *
bin G 2 2 2 *
bin U 2 2 2 *
ctw U 200 200 200 *
bi 11 U 201 201 201 *
mark U 202 202 202 *
mel U 203 203 203 *
geo U 204 204 20~ *
maureen U 205 205 205 *
sys G 3 3 3 *
sys U 3 3 3 *
adm G 4 4 4 *
adm U 4 4 4 *
uucp U 5 5 5 *
mail G 6 6 6 *
tftpd U 6 6 6 *

Figure 3-21. A Sample Network Users/Groups Table

Since the clients in a single-system environment are very
dependent on the server for system resources, Bill uses all the
procedures outlined in the discussion of managing client
dependencies on page 3-66.

4. Implement an automatic startup procedure.

Bill decides to use the ssimounts shell program as his automatic
startup program (see Figure 3-10 on page 3-81). He copies this
program to the jete directory as follows:

cp /usr/lpp/ds/samples/ssimounts jete

3-112 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

He then adds the following line to the end of /ete/re.ds:

/etc/ssimounts stagel stage2 &

He also adds stanzas to the /ete/filesystems file that identify all
the mounts that ssimounts invokes. The first four stanzas define
the initial set of (temporary) mounts that enable ssimounts to
make backup copies of key files:

/ete/passwd.tmp:
nodename = Server
dey = /ete/passwd
type = stagel

/ete/opasswd.tmp:
nodename = Server
dey = /ete/opasswd
type = stagel

/ete/group.tmp:
nodename = Server
dey = jete/group
type = stagel

/ete/ogroup.tmp:
nodename = Server
dey = /ete/ogroup
type = stagel

These files are unmounted after each one is copied to the local
fete/passed, /ete/opasswd, fete/group, and /ete/ogroup files.
(See Figure 3-10 on page 3-81.)

He also changes the stanza that defines the default mount point for
the /dev /hdl device (lu) as follows.

Original stanza: New /dev/hdl stanza:
/u: /mnt:

dey = /dev/hdl dey = /dev/hdl
vol = II/Ull vol = II/mn t ll
mount = true mount = true
eheck = true check = true
free = true free = true

Maintaining the System 3-113

TNL SN20-9862 (June 26 1987) to SBOF-0168

The remaining stanzas define the second stage of mounts:

/ete/passwd:
nodename = Server
dev = /ete/passwd
type = stage2

/ete/opasswd:
nodename = Server
dev = /ete/opasswd
type = stage2

jete/group:
nodename = Server
dev = jete/group
type = stage2

/ptr /nnY'nlin.
I -~-I ~::I' ~~t".

nodename = Server
dev = /ete/ogroup
type = stage2

/usr/adm/user.efile:
nodename = Server
dev = /usr/adm/user.efile
type = stage2

/ete/motd:

/u:

nodename = Server
dev = /ete/motd
type = stage2

nodename = Server
dev = /u
type = stage2

3-114 Managing the Operating System

/lib:
nodename = Server
dev = /lib
type = stage2

/usr/bin:
nodename = Server
dev = /usr/bin
type = stage2

/usr/guest:
nodename = Server
dev = /usr/guest
type = stage2

/lIcY'/inrlllrlo. I , I ... '" '" •

nodename = Server
dev = /usr/inelude
type = stage2

/usr/lib:
nodename = Server
dev = /usr/lib
type = stage2

/usr/mail :
nodename = Server
dev = /usr/mail
type = stage2

/usr/news:
nodename = Server
dev = /usr/news
type = stage2

TNL SN20-9862 (June 26 1987) to SBOF-0168

Handling System Errors

Whenever some part of your AIX system does not function
properly, the system has an error condition. Some error
conditions are minor as when, for example, you make a typing
mistake and enter a command that the system does not recognize.
Other error conditions can be so severe that they cause your
system to halt. The first part of this section summarizes what you
should do if your system halts unexpectedly. The remainder of this
section describes the AIX facilities for collecting, analyzing, and
reporting system errors:

• Error logging services

• The dump command

• The traee command.

Recovering from Unexpected System Halts

Under normal conditions, before you turn off the power to the
system, you use the shutdown command to bring all system
processes to an orderly halt. Among other things, the shutdown
command assures that all files are updated and stops any running
system processes. In the event of a power failure, or if someone
turns off the power to the system without running shutdown, your
file system may have inconsistencies. You may be able to restore
your system to normal operation by simply supplying power again.
As part of the normal initialization procedure, the system runs the
fsek program. If the file system sustained only minor damage, the
form of fsek that runs automatically may be adequate to repair the
damage. If not, a system message will indicate what action to take
next.

The / (root) file system can become too full to use. For protection,
the system moves /ete/passwd to /ete/opasswd and fete/group to
/ete/ogroup. In this state, the system either does not accept a
valid password or prompts you for a password when one should not
be required. In either case, you cannot use the system. To correct
the problem, first start the maintenance system and verify that the

Maintaining the System 3-115

TNL SN20-9862 (June 26 1987) to SBOF-0168

names of passwd and group have been changed. Then either
delete a substantial number of files from the / file system or back
up the / file system, create a larger minidisk for it, and restore it.
Next, move /etc/opasswd and /etc/ogroup back to their original
names. Finally, start the system, obtain superuser authority, and
run the df command to verify that the / file system is large enough
(usage should be about 90 percent or less).

If a system halt is not caused by power failure or a full/ file
system, you should see Problem Determination Guide to determine
its cause.

Error Logging, Analysis, and Reporting

The following components provide the AIX error logging services:

event log
Two files, /usr/adm/ras/errfile.O and
/usr/adm/ras/errfile.1, of a predetermined size, which
contain entries about system errors and other system
events. When one file is full, the system begins to log
events in the second file. When the second file is full, the
system begins to overwrite data in the first file with new
event entries.

error analysis facility
A program that provides information about the probable
cause of errors.

errdemon
The error daemon process, which collects error records
from a buffer in memory, calls the error analysis facility,
and writes error records, together with analysis
information, to the event log. When it writes certain
types of error records to the event log, the error daemon
sends an alert message to the display.

error device driver
The device driver, /dev/err, used by errdemon to write
error records to the event log.

3-116 Managing the Operating System

errpt

TNL SN20-9862 (June 26 1987) to SBOF-0168

A command that produces a report of logged errors from
the data stored in the event log. errpt can produce
summary or detailed reports, and you can specify what
type of error records the report includes or the time span
tha t the report covers. Generally, this is the only part of
the error logging system that you work with directly.

When you start the AIX system, the error logging services start
automatically. When you stop your system, the error logging
services stop automatically.

To generate a report of entries in the event log, including errors,
enter a command of the form:

errpt flags filenames

where filenames specifies the event log files. The errpt command
accepts the following flags:

-sdate

-edate

-a

Ignores all records logged earlier than date. date
must be in the form mmddhhmmyy.

Ignores all records logged later than date.

Produces a detailed report on a single record.

-nnodename Includes only error entries from nodename in the
report.

-vumid

-dlist

Includes only error entries from this system name
(umid) in the report.

Limi ts the report to the types of error records
specified in list. For the values that can appear in
list, see errpt in A/X Operating System Commands
Reference.

For more information about using errpt to analyze error data in
the event log, see Problem Determination Guide.

Maintaining the System 3-117

TNL SN20-9862 (June 26 1987) to SBOF-0168

There are two ways to limit the information in the error log report
to that which you find useful:

• Periodically remove the error log files (you must have superuser
authority):

1. Enter errs top to stop the error daemon.

2. Enterdel /usr/adm/ras/errfile.O

3. Enter del /usr/adm/ras/errfi le.l

4. Enter /usr/l i b/errdemon to restart the error daemon.

• N arrow the error log report by selecting the errpt options to
limit the error report generator to the type of information you
find useful.

Memory Dump Services

The RT PC system has three facilities for recording its state at the
time of a failure:

• Virtual Resource Manager dump

• AIX Operating System (kernel) dump

• Full image dump.

The data collected by any of these dump facilities is intended to
help you or the person servicing your system determine the cause
of the failure.

The Virtual Resource Manager Dump

If the system detects a failure, it starts the Virtual Resource
Manager dump automatically. If the system, or part of the system,
appears to be hung up (but a dump has not been started
automatically), you can start the Virtual Resource Manager dump
by pressing Ctrl-(Left)Alt-numpad8.

3-118 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

The Virtual Resource Manager dump program records its data on a
diskette. You can use any formatted high-capacity diskette as a
dump diskette. However, since the system may not be able to
format a diskette at the time you need one to hold dump data, you
always should keep a dump diskette ready to use-store a dump
diskette in the sleeve designed for that purpose in the back of
Problem Determination Guide.

Besides the dump program) the AIX system provides a dump
formatter. The formatter, dumpfmt, processes the data collected
by dump, producing information in a readable form. For more
information about Virtual Resource Manager dump facilities, see
A/X Operating System Commands Reference and Prob lem
Determination Guide.

The AIX Operating System (kernel) Dump

If the system detects an operating system failure, it may start an
operating system dump automatically. If the system, or part of the
system, appears to be hung up (but a dump has not been started
automatically), you can start an operating system dump by pressing
DUMP (Ctrl-(Left)Alt-End).

The operating system dump program writes its output to the dump
minidisk on the fixed disk. To be used in problem determination,
the data produced by this program must be copied to diskettes. See
Problem Determination Guide for information about copying an
operating system dump to diskettes.

Note: The crash command is a utility program designed to
examine operating system dumps. If you are a very experienced
computer user, you may find the crash command useful. See
crash in A/X Operating System Commands Reference.

The Full Image Dump

A full image dump writes all of your system's real memory to
diskettes (up to four). Generally, you should not make a full image
dump unless you have been directed to do so by the person
servicing your system. A full image dump takes longer to complete
than a Virtual Resource Manager dump does, and you cannot use

Maintaining the System 3-119

TNL SN20-9862 (June 26 1987) to SBOF-0168

trace Services

the dump formatter to inspect the data produced by a full image
dump.

To be prepared to make a full image dump, you should have
enough formatted diskettes available for your system:

System Memory Number of Diskettes

2M bytes 2

3M bytes 3

4M bytes 4

The trace command monitorR RVRtem eventR while a nroQ'ram runR.
You can use trace data to analyze system performan~e ;nd to
detect problems with programs. The trcrpt command processes the
data collected by trace into a useable form and writes it into a file.

The trace command monitors the system events specified in a trace
profile. The default profile is the /etc/trcprofile file. To change
the events that trace monitors, you can either modify /etc/profile
(with an editor) or create alternate trace profiles.

To use trace, enter trace, then start the program with the activity
you want to trace. To stop trace, enter trcstop.

3-120 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Using trace to Monitor Distributed Services Activities

You can use the AIX Operating System trace facility to help
determine whether the system is operating properly, or to indicate
the nature of a problem that you may be experiencing on the
network. The trace facility consists of the following components:

trace

/ etc/trcfm t

The trace command starts a background process
that logs system events in a log file.

This system text file defines the format of the
events logged for each program that uses the trace
facility.

/etc/trcprofile A system file that you edit to select the system
events to be traced.

trcstop

trcrpt

The trcstop command stops the background
logging process.

The trcrpt command formats and displays the
contents of the log file.

Each of the commands is described in AIX Operating System
Commands Reference. The file /etc/trcfmt is useful only to
programmers designing error reports. "Selecting Trace Events for
Distributed Services" on page 3-122 describes the contents of
/etc/trcprofile and how to use it to select Distributed Services
events. Refer to AIX Operating System Programming Tools and
Interfaces for a description of the structure of the trace facility and
how to use it with an application program.

Maintaining the System 3-121

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Selecting Trace Events for Distributed Services

To select the events that you want to trace, you must edit the file
/etc/trcprofile. This file contains a list of all event classes that
can be traced. Each event class is on a separate line in the file. If
the line begins with an asterisk (*), events in that class are not
logged; if the line does not begin with an asterisk, events in that
class are logged. For Distributed Services, the following event
classes appear in the file:

167 remote IPe [OS- I pe]
166 rpc OS miscellaneous [OS-MISe]
165 rpc OS 1 ocki ng [OS-LK]
164 rpc OS open/close . [OS-De]
163 rpc OS read/write [OS-RW]
162 rpc server sending [OS-SS]
161 V'nr

't''"' client receiving [DS-CR]
160 rpc client sending [OS-eS]

Each of these values selects a set of internal trace points. These
values are defined in the following table. See "Remote Operations"
on page 3-130 for information about these internal operations.

Number Hook ID Description

167 DS-IPC Trace calls to remote IPC queues (msgget, msgsnd,
msgrcv).

166 DS-MISC Trace miscellaneous remote operations (null,
mount, mntctl, msgctl, link, remove, getattr,
access, setattr, statfs, mkdir, rmdir, rename,
mknod, loadtbl, fsync, sgetattr).

165 DS-LK Trace remote file locking operations (flock).

164 DS-OC Trace remote file open and close operations
(lookup, open, close, create, chg-sync, advise).

163 DS-RW Trace remote file read and write operations (read,
write, reada-clt, sync-ct, fclear, ftrunc).

3-122 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

Number Hook ID Description

162 DS-CS The client node has sent a remote request to the
server node. This event is logged in the trace
report on the client node.

161 DS-SS The server node has sent a response to a request
from the client node. This event is logged in the
trace report on the server node.

160 DS-CR The client node has received a response from the
server node. This event is logged in the trace
report on the client node.

Maintaining the System 3-123

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Tracing a Remote Mount Example

The following example shows how to use the trace facility to
determine if the network is operating properly. It uses two systems
that are connected by an Ethernet local area network and are
running Distributed Services. These systems are:

Hera Machine 2061064A (Hera) is the client in this example.
The client starts the remote mount operation with the
command:

mount -n Zeus jetc jmnt

Zeus Machine 208131AA (Zeus) is the server in this example.
The server receives the request for the mount.

1. Before starting the trace program, edit the file fetcftrcprofile
011 each systelll Lo remove the asterisks from column 1 of the
following lines (near the bottom of the file):

166
162
161
160

rpc OS miscellaneous
rpc server sending
rpc client receiving
rpc client sending

[DS-MISC]
[DS-SS]
[DS-CR]
[DS-CS]

Removing the asterisks from column 1 enables tracing for the
four event classes (for this example, all other lines in the file
begin with an asterisk).

2. Having enabled tracing for the selected functions, start the
trace program on each system with the following command:

$ trace

3. Run the mount command on Hera to mount the fetc directory
from Zeus on the local fmnt directory.

$ mount -n Zeus jetc jmnt

4. When the mount is complete, turn off trace. Enter the
following command at each system:

3-124 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

$ trcstop

5. Create a trace report at each node. At Hera:

$ trcrpt >Hera.rpt

At Zeus:

$ trcrpt >Zeus.rpt

6. Use the pg command to examine the report files. The actual
report may contain many other entries depending upon system
activity at the time the trace was run. However, for only the
remote mount, the trace report at Hera might look like that
shown in Figure 3-22 on page 3-126; Figure 3-23 on page 3-127
shows the report at Zeus. Figure 3-24 on page 3-128 explains
the fields in the trace report.

Maintaining the System 3-125

TNL SN20-9862 (June 26 1987) to SBOF-0168

TRACE LOG REPORT

File: /usr/adm/ras/trcfile

Wed May 13 09:42:41 1987
System: D19 1.1.2
Machine: 2081064A

Node: Hera

TIME SEQ PID IODN IOCN TYPE
09:43:42.50 0015 00215 FFFF FFFF DS-CS

Uid=O Gid=O DS-Op=1
09:43:42.52 0016 00215 FFFF FFFF DS-CR

Summary of event counts.
rpc client sending [DS-CS]: 1
rpc client receiving [DS-CR]: 1

Total number of events: 2

I Figure 3-22. Example Trace Report at Hera

3-126 Managing the Operating System

HOOK DATA
Client-s Nid=208131AA Seq#=371

Client-r Seq#=371 Errno=O

TNL SN20-9862 (June 26 1987) to SBOF-0168

TRACE LOG REPORT

File: /usr/adm/ras/trcfile

Wed May 13 09:42:14 1987
System: 019 1.1.2
Machine: 208131AA

Node: Zeus

TIME SEQ PIO lOON IOCN TYPE
09:43:00.58 0007 30002 FFFF FFFF OS-SS

Uid=O Gid=O Errno=O

Summary of event counts.
rpc server sending [OS-SS]: 1

Total number of events: 1

I Figure 3-23. Example Trace Report at Zeus

HOOK DATA
Server-s Seq#=371

Maintaining the System 3-127

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Field

I TIME
I
I
I

I SEQ
I

I PI D
I
I

I IODN

I IOCN

! TYPE
I
I

I HOOK
I

Definition

This field shows the time that the trace event occurred. Time is the local machine
time where the event occurred. If the two machines are not exactly synchronized (as
in the example), the times do not show the correct sequence of events between the two
machines.

This field contains a sequence number given to the entry in the trace log. This
number is local and does not correlate across the two systems.

This field contains the process ID of the process associated with the trace event. This
number is the process ID on the machine that is running that process and does not
correlate across the two systems.

This field is not used.

This field is not used.

'This field defjnes t.be type of trflce event t.hflt. cfll1sen the entry. 'The ent.ry in t.his field
corresponds to the line in /etc/trcprofile from which you removed the asterisk to
enable tracing that event.

This field contains a label that identifies the trace point in the code that generated
the trace entry.

Figure 3-24 (Part 1 of 2). Trace Report Field Definitions

3-128 Managing the Operating System

I Field

I DATA
I
I
I

TNL SN20-9862 (June 26 1987) to SBOF-0168

Definition

This field contains miscellaneous data that changes for each type of entry in the trace
report. Each program that supports tracing has a unique set of data that it writes.
The format of these reports is defined in /etc/trcfmt. For this example, the data
included has the following meanings:

Server-s A server send operation caused the trace entry.

Client-s A client send operation caused the trace entry.

Client-r A client receive operation caused the trace entry.

Seq# = This field contains the sequence number for the operation that
generated the entry in the trace report. In the example, the operation
was the remote mount and the sequence number is 371. The sequence
number correlates all trace entries on both systems for a given
operation. That is, the number 371 is common to all trace entries (on
both Hera and Zeus) associated with the remote mount operation.

UID This field contains the user ID of the process that created the trace
entry. This ID is local to the system on which the trace report is
generated.

GID This field contains the group ID of the process that created the trace
entry. This ID is local to the system on which the trace report is
generated.

Errno = This field contains the error number associated with the attempted
operation. If the error number is 0, the operation was successful.
Otherwise, refer to A/X Operating System Technical Reference
(errno.h) for information about the indicated error.

Nid = This field contains the node ID of the remote system with which the
operation was attempted.

DS-Op = This number indicates the remote operation that is associated with this
entry in the trace report. The number is a displacement into the list of
remote operations defined in the format definition for this entry. The
format definition is found in /etc/trcfmt. Refer to "Remote
Operations" on page 3-130 for a list of these remote operations. In
Figure 3-22 on page 3-126, the value of 1 in this field indicates a
dfs-mount operation.

Figure 3-24 (Part 2 of 2). Trace Report Field Definitions

Maintaining the System 3-129

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Remote Operations

When Distributed Services performs operations on one system that
were requested on another system, the local system (client) sends a
request on the network for an operation to be performed on the
remote system (server). These requests are called remote
procedure calls, or rpcs. These operations are performed internal
to the kernel and cannot be affected by the administrator or
application programmer. To help understand the information
contained in the trace report, the following table lists the remote
operations, their DS-Op value (displacement into the list of rpc's in
/etc/trcfmt) and a summary of the operation being requested.

DS-Op RPC Name Function Requested

0 dfs-null U sed to test the connection.
1 dfs-mount Mount a remote file or directory.
2 rlf(;1_1nnlnm -_..... _ -- -- ---~- Get. st.at.us informat.ion about. a remot.e file.
3 dfs-open Open a remote file.
4 dfs-close Close a remote file.
5 dfs-create Create a remote file.

6 dfs-read Read from a remote file.
7 dfs-write Write to a remote file.
8 dfs-chsync Change the sync mode of a remote file.
9 dfs-mntctl Execute the mntctl system call on the remote

system.
10 dfs-msgget Execute the msgget system call on the

remote system.

11 dfs-msgsnd Execute the msgsnd system call on the
remote system.

12 dfs-msgrcv Execute the msgrcv system call on the
remote system.

13 dfs-msgctl Control and status for a remote message
queue.

14 dfs-link Create a link to a remote file.
15 dfs-remove Remove a link to a remote file.

16 dfs-getattr Get the attributes of a remote file.

3-130 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

DS-Op RPC Name Function Requested

17 dfs-access Execute the access system call on the remote
system.

18 dfs-setattr Set or change attributes for a remote file or
directory.

19 dfs-statfs Execute the ustat system call on the remote
system.

20 dfs-mkdir Create a directory in the remote file system.

21 dfs-rmdir Remove a remote directory.
22 dfs-rename Rename a remote file or directory.
23 reada_clt Remote file read-ahead.
24 rbsync-clt Remote file write-behind/
25 dfs-advise Control of the remote directory cache.

26 dfs-mknod Execute the mknod system call on the remote
system.

27 dfs-flock Lock all or part of a remote file.
28 dfs-loadtbl Execute the loadtbl system call on the remote

system.
29 dfs-fclear Execute the fclear system call on the remote

system.
30 dfs-fsync Write all data in the remote (server) buffer to

disk.

31 dfs-ftruncate Execute the ftruncate system call on a
remote file.

Maintaining the System 3-131

TNL SN20-9862 (June 26 1987) to SBOF-0168

Generating a New Kernel

Customizing is the process of adapting the AIX for a particular
set of requirements. When you customize a system, you define for
the kernel such things as:

• Devices attached to the system (for example, printers, display
stations, and fixed disks)

• Limits on system resources (for example, the maximum number
of processes that can run at the same time or the maximum
number of file systems that can be used at the same time).

The system is initially customized when it is installed; much of the
customizing happens automatically during the installation process
described in Installing and Customizing the AIX Operating System.
You can customize some aspects of the sysLenl while it is in use (for
example, with the devices command described in Installing and
Customizing the AIX Operating System).

However, some system modifications require you to generate a new
kernel. For example, if you modify system parameters or add new
class of device drivers to your system, you must generate a new
kernel. This section describes the procedure for generating a new
kernel and provides general information about system parameters.
It is beyond the scope of this section to discuss the potential
advantages and disadvantages of modifying specific system
parameters on your system.

Note: Generating a new kernel is not a routine procedure. You
may never need to perform it.

U sing the make Command

Two system description files, /etc/master and /etc/system, define
the characteristics of your system:

3-132 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

fete/master Contains system parameters and the stanzas that
describe device drivers included in the system
(whether they are in use or not). You can think of
this file as a model.

fete/system Contains entries for devices that make up the
current system.

Depending upon the changes you want to make to your system, you
may need to modify one or both of these files. For information
about the types of changes you can make to the system description
files, see "System Parameters" on page 3-135. Except for modifying
the system description files, the process of generating a new kernel
is automated.

To Generate a New I(ernel

1. Use an editor to modify /etc/master or fete/system as
necessary.

2. Enter cd /usr/sys

3. Enter make and wait until the make command completes.

4. Test the new kernel. Verify changes to the new kernel
before moving to the next step.

5. Enter mv fun; x /unix.old (where unix.old is a unique name
for the old kernel).

6. Enter mv un; x. std fun; x

Mter you modify the system description file or files, change
directories to /usr/sys. /usr/sys contains the Makefile file used
by the make command to generate the new kernel. The make
command, using the information in Makefile, generates the new
kernel in two steps:

1. Uses the /ete/eonfig command to translate fete/master and
fete/system into a C language program (eonf.e).

Maintaining the System 3-133

TNL SN20-9862 (June 26 1987) to SBOF-0168

2. Compiles the C program (with the cc compiler) and cOlnbines
the compiled program with standard parts of the operating
system to produce the new kernel, a file named unix.std.

Even if you make only a minor change to a system parameter, you
should first back up your file systems (see "Backing up Files and
File Systems" on page 2-58) and then test the new kernel. To test
the new kernel, start the standalone shell (as is explained under
"Running the Maintenance System" on page 2-6) and then:

1. Save the old kernel under a different name, for example:

mv /unix /unix.old

2. Move the new kernel to /unix, for example:

mv /usr/sys/unix.std /unix

3. Shutdown the system and then restart it.

Note: Every version of the system should have a unique name.
As far as is practical (given the amount of storage available on
your system), you should keep old versions of the kernel until they
become obsolete.

Once the new kernel is loaded, try read, write, and other
operations that should indicate whether the kernel works properly.
It is beyond the scope of this guide to discuss the testing and
refinement of new versions of the kernel except for one general
guideline: When you generate a new kernel, thoroughly test
every change you make and the general operation of the
kernel.

If the new kernel does not work, you must use the AIX Operating
System Installation/Maintenance diskette to remove the new kernel
and change the name of the original kernel back to /unix:

1. Start the standalone shell.

2. Mount the fixed disk:

mount /dev/hdO /mnt

3-134 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

3. Renalne the faulty kernel:

/mnt/bin/mv /mnt/unix /mnt/unix.bad

4. Rename the original kernel:

/mnt/bin/mv /mnt/unix.old /mnt/unix

5. U nmount the fixed disk:

umount /dev/hdO

6. Restart the system.

Systern Parameters

To a large extent, system parameters determine the system's
capacity and performance. This section discusses several of the
parameters that are most commonly reset to correct system
resource problems. To modify any of these parameters, you first
make your changes to the Jete/master file and then generate a
new kernel (as described under "Using the make Command" on
page 3-132). The values for the following parameters on your
system are listed in the file Jete/master.

kbuffers Almost all disk I/O goes through a group of buffers.
To avoid extra I/O operations, the system uses the
buffers to maintain copies of the disk blocks that are
being used most frequently. As the size of the buffer
group decreases, the amount of disk I/O required
increases, reducing the effectiveness of the buffering
system. At the same time, an excessively large set of
buffers may not improve the effectiveness of the
buffering system, but will prevent the system from
using the memory allocated to buffers for other
purposes. The kbuffers parameter specifies the
number of buffers used by a particular kernel.

Note: Each buffer is 2048 bytes. If you specify zero
for the kbuffers parameter, the system uses the
physical size of the installed memory to determine

Maintaining the System 3-135

TNL SN20-9862 (June 26 1987) to SBOF-0168

procs

maxprocs

mountab

inodetab

the number of buffers. If your system has less then 2
megabytes of memory installed, the system uses 75.
If it has 2 megabytes or more of memory installed,
the system uses 150. Generally, the best number to
use is between 10%) and 25% of the total system
memory.

The number you choose may depend on how the
system is being used. For example, if the system is
used mostly for engineering graphics, you might
choose fewer buffers; if the system is a multi-user
system, you might choose more buffers.

The procs parameter specifies the maximum number
of simultaneous processes the kernel supports. Once
this limit is reached, no new processes can start. As
long as the maximum number of processes is
-rllnn;nO' !::tnu !::tttOl"nnt tn c:!t!::t-rt !::t nOUT n-rnr>oc:!c:! r>!::tllc:!Oc:!
... -..&.A.A..&..&. ... O, t.A..L.a.J """""'..,.....,&.&..1"'" "'''''' 1tJ"'''''''' '" ""'" .&. ... '-' ... ,t-'.L ""'''''''''Ul..,J '-'ILA.,""'''-'

the shell to display a message telling you to try
again later.

The maxprocs parameter specifies the maximum
number of processes that can be run by any
particular user. maxprocs controls the number of
processes for each user in the same way that procs
controls them for the kernel. The value for
maxprocs on your system is listed in /etc/master.

The mountab parameter specifies the maximum
number of file systems that can be mounted at the
same time. In general, the value of mountab should
be one or two more than the number of file systems
you expect to have mounted at the same time. Thus,
if you normally mount four file systems, the value for
mountab should be at least 5 or 6.

The system keeps copies of the i-nodes for all active
files in a table in memory. The inodetab parameter
sets the size of this table. An i-node is considered
active if it is the i-node of an open file, if it is the
current directory of any process, or if a file system is
mounted on it. Once the table is full, no other files

3-136 Managing the Operating System

file tab

callouts

texttab

TNL SN20-9862 (June 26 1987) to SBOF-0168

can be used, and almost all new system activity will
be delayed until some processes complete, freeing up
space in the i-node table.

On most systems, an allocation of five or six i-nodes
for each process is adequate. If the value of
maxprocs is 40, the value of inodetab usually
should be about 250.

The filetab parameter specifies the maximum number
of files that can be open at the same time. If the
limit of the file table is reached, attempts to open
new files will fail until running processes close some
of their files. The value of file tab should
approximately equal the value of inodetab.

Certain activities must be timed (that is, they require
a predetermined interval between one action and
another). Device drivers that use timed activities
schedule them with the kernel's callout mechanism.
The callouts parameter specifies how many entries
are in a callouts table and thus, the maximum
number of timed actions that can be scheduled
(pending) concurrently. If the maximum number of
callouts is reached, the system halts.

The callout mechanism is used most commonly by
the display station device drivers. The value for
callouts should be 25-100 percent more than the
number of devices on the system.

The AIX system makes it possible for all processes
that are running the same program to share a single
copy of the program (rather than loading a separate
copy of the program into memory for each process).
The texttab parameter determines the size of a text
table. The text table contains one entry for each
active shared text (program) segment in the system.
If the text table fills up, no other text segments can
be shared among processes until some processes
complete and create some room in the text table.

Maintaining the System 3-137

TNL SN20-9862 (June 26 1987) to SBOF-0168

The value of texttab is usually 30-50 percent of the
number of processes on the system.

This section does not discuss a number of the system parameters.
The fete/master file contains all of the system parameters.
System parameters also are documented in A/X Operating System
Technical Reference.

3-138 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Distributed Services Tuning and Problem Determinatioll

In a distributed AIX environment, performance tuning and error
handling are closely related. For example, in some situations,
increasing the number of buffers in the device buffer pool may
improve the server's performance in handling concurrent remote
requests; an insufficient number of buffers can cause a connection
to fail. This section describes several modifications that may
improve perfonnance, correct error conditions (such as connection
failures, kernel panics, and hangs), or both.

Notes:

1. The default values for the parameters discussed here are
adequate for typical network environments. Whether you will
be able to improve performance by altering these values
depends upon the unique characteristics and requirements of
your Distributed Services installation.

2. This section does not discuss the SNA Services profile
parameters that could have an effect on Distributed Services
performance. For information about these profile parameters,
see SN A Services Guide and Reference.

If you are trying to correct an error condition, you should check
two things before you consider changing the values described in
this section:

1. Make sure that the network hardware options are installed
correctly.

2. Make sure that the remote node or nodes are running normally.

If Interface Program for use with TCPjIP is installed on your
network, you can use the ping command to determine whether
remote nodes are responding and, thus, whether the network
hardware is working properly.

Maintaining the System 3-139

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Increasing Kernel Buffers

The kbuffers parameter in the fete/master file determines how
many kernel buffers are reserved for disk I/O and the i-nodes of
open files. Increasing the value of the kbuffers parameter can
improve the speed of I/O operations, depending upon the amount of
memory and disk space available. Beyond a certain point,
however, increasing the value of kbuffers degrades performance.

The default value of kbuffers (0) reserves 100 buffers (2048 bytes
each) for every M byte of memory installed. To change the value,
first change the value of kbuffers in fete/master, then generate a
new kernel by following the procedure described in "Generating a
New Kernel" on page 3-132.

I Increasing Kernel Processes

The maximum number of concurrent, remote requests that a server
can handle is limited by the maximum number of kproes (internal
kernel processes) that the server can run. Two conditions that may
indicate an inadequate number of kproes are:

• Slower performance in handling local requests
• Connection failures.

The kproes parameter in fete/master sets the maximum number
of internal kernel processe~. The default value of kproes is 21.
Generally, there should be two kproes for each concurrent client
request. Before you change the kproes value, estimate the
maximum number of remote requests that will run concurrently,
multiply that estimate by two, and compare the result to the
default (or current) value of kproes.

To change the number of kproes that can be run, do the following:

1. Change the value of kproes in fete/master.
2. Generate a new kernel (following the procedure described in

"Generating a New Kernel" on page 3-132).
3. Run a dsstate command of the form:

dsstate value

3-140 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

where value is the value of kprocs in fete/master; this determines
the number of possible kproes that can run. (See A/X Operating
System Commands Reference for information about dsstate.)

I Increasing Device Buffers

In a distributed AIX environment, increasing the number of device
buffers may:

• Improve performance
• Increase the number of concurrent remote requests that a server

can handle
• Eliminate connection failures.

To change the number of device buffers, change the values of one
or more of the following network adapter parameters with the
devices command:

nobodr Determines the number of buffers in the device ring. The
default value of nobodr is 30.

When the number of requests to a server exceeds the
capacity of the server's internal message queues, some
message transmissions fail. The server continues to try to
transmit those messages; consequently, its performance
slows. If the server is unable to transmit the message
successfully within a certain number of attempts, the
transmission fails. Increasing the value of nobodr may
restore or improve performance by reducing message
retransmission.

norbosr Determines the number of receive buffers in the SLIH
ring. The default value of norbosr is 30. The value of
norbosr should be the same as that of the nobodr
parameter.

nobibp Determines the number of buffers in the network device
buffer pool. The default value of nobibp is 100. A larger
value can enable a server to handle more concurrent
remote requests and may eliminate some connection
failures.

Maintaining the System 3-141

TNL SN20-9862 (June 26 1987) to SBOF-0168

Use the following formula as a guide for changing the
value of nobibp:

nobodr + n * (tw * 2) + 2 * n

where:

nobodr is the value of that device parameter.

n is the number of nodes in the network.

tw is the value of the SNA Services transmit window
parameter. (For the value of tw, see the applicable
SNP-,- Services logical link profile.)

For example, if the server is on a four-node network, its
nobodr value is 30, and its tw value is 16, the value for
'nn.'h~'h'n ~" 1 c:c: •
... .&.'-J1JJ.a,..,j:I ..I.....:J .Lvv.

30 + 4 * (16 * 2) + 2 * 4 = 166

I Changing Device Descriptions

The values for the device description parameters should be set
according to the configuration of your Distributed Services
network. Connections fail if the values of these parameters are too
small. To change one or both of the following network adapter
parameters, use the devices· command :

mnonid Sets the maximum number of node IDs that the server can
handle. The default value of mnonid is 4. The value of
mnonid should be equal to the number of clients on the
network.

mnoal Sets the maximum number of gateways that the server
can handle, including the base network. The default
value of mnoal is 3. The value of mnoal should be equal
to the number of network adapters installed in the server.

3-142 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Tuning for Larger Networks and More Concurrent Activity

By modifying the values of the system parameters addressed in this
section, you may be able to improve performance or correct error
conditions on larger networks or on nodes that have unusually
high concurrent file and process activity.

Note: Because each Distributed Services network is unique, there
cannot be clear guidelines about what constitutes either a large
network or unusually high concurrency.

The parameters covered in this section are in the fete/master file.
To change them, do the following:

1. Make the necessary changes in fete/master.

2. Generate a new kernel (as described in "Generating a New
Kernel" on page 3-132).

3. Increase the amount of paging space on the system (as described
under "Increasing Paging Space" on page 3-144) to accomodate
the new, larger kernel.

Parameters:

dsnkproes Sets the maximum number of kernel processes
available for use by Distributed Services. The value
of dsnkproes should equal the number of concurrent
connections. The default value of dsnkprocs is 20.

nneh Sets the amount of memory allocated for Distributed
Services translation tables. The value of nneh should
equal the number of concurrent connections. If nneh
is inadequate, the dsxlate command will fail. The
default value of nneh is 25.

maxnode Sets the maximum number of nodes that can be
connected in the Distributed Services network. The
default value of maxnode is 20.

Maintaining the System 3-143

TNL SN20-9862 (June 26 1987) to SBOF-0168

filetab

inodetab

callouts

Sets the maximum number of files (local and remote)
that can be open simultaneously. The default value
of file tab is 250. The values of filetab and inodetab
should be approximately equal.

Sets the maximum number of i-nodes that can be
active simultaneously. The value of inodetab should
equal the number of files (local and remote) that are
open simultaneously. The default value of inodetab
is 250. The values of inodetab and file tab should
be approximately equal.

Sets the maximum number of timed events that can be
scheduled concurrently. The value of callouts should
be approximately:

maxnode - dsnkprocs + 50

Increasing Paging Space: When you increase the values of the
parameters covered in the previous section, you also increase the
size of the AIX kernel (funix). The larger kernel requires more
paging space. Therefore, besides increasing the values of the
parameters and generating a new kernel, you also must increase
the size of the page space minidisk.

As a general guideline for how much to increase paging space, use
the size difference between the new and old kernels. Use the size
command to determine the size of each kernel. In the following
example, the size difference between the new and old kernels is
69756 bytes:

size junix
482272 + 67672 + 417752 = 967696
size junix.old
443316 + 62136 + 392488 = 897940

To change the size of the page space minidisk, use the procedure
described in Installing and Customizing the AIX Operating System.
Since the VRM customizing program requires sizes specified in
blocks, you must divide the size difference between the two kernels
(bytes) by 512 (bytes per block). In the previous example, the size
difference is 69756/512, or 136 blocks. To accommodate the new

3-144 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

page space minidisk, you may need to put it on a different fixed
disk (which you can do with the VRM customizing program) or
rearrange the other minidisks (as is explained in "Handling the
minidisk full Condition" on page 4-41).

Maintaining the System 3-145

3-146 Managing the Operating System

Chapter 4. Additional System Management Topics

" k I I~ .. '

"
,
L

IV

'J ~
," ()

IV

if'.

"~
" • /

/
/

./ '. V
:"', '

. ' ; '
'. i '

'.' . . . :

J .. ,,:r J · .. ,
\

I' I

" .* > •
.,." .

.. I :· ..' .
~

/ I I""" .

.

.
Additional System Management Topics 4-1

CONTENTS
About This Chapter .. 4-4
Updating the System and Installing Local Programs 4-5

Updating the System ... 4-5
Installing Applications and .. 4-6

Communicating with System Users :......................... 4-8
Communicating with Another User-The write Command 4-8
Sending a Message to all Logged-In Users-The wall Command 4-9
Creating a Message of the Day 4-10
Creating and Reading News Items-The news Command 4-10
Sending and Reading Messages-The mail Command 4-12
Identifying Logged-In Users-The who Command 4-14

Setting the System Date .. 4-15
Understanding System Security ... 4-17

Passwords ... 4-17
File Protections ... 4-18
Invalid Login ... A ... ttempts ... 4-18

Running Commands at Pre-set Times 4-19
Using the at Command ... 4-19
Using the crontab Command ... 4-22

Monitoring Files and Directories that Get Larger Automatically 4-24
Finding Files and Directories .. 4-25
Managing Display Station Features 4-26

Setting Display Station Characteristics Automatically 4-26
Managing Special Features of the Main Display Station 4-27
TERM Values for Different Displays, Adapters, and Terminals 4-32

Managing Printers .. 4-34
The Printing Process ... 4-34
Controlling the Printing Process 4-35

Maintaining System Performance 4-37
Keeping Directory Files Small .. 4-37
Reorganizing File Systems ... 4-39
Handling the minidisk full Condition 4-41

Logging in Automatically ... 4-49
Introduction to International Character Support 4-50

Features .. 4-51
Configuration .. 4-52
Code Point Support .. 4-53
Limi ts .. 4-55
Intersystems Compatibility .. 4-55

Environment ... 4-56

4-2 Managing the Operating System

Time and Date Strings .. 4-56
Collation Table ... 4-60
Terminal Mapping ... 4-63

Additional System Management Topics 4-3

About This Chapter

This section covers an assortment of topics that you may find
useful in managing the AIX system. If your system supports
several users, you also should acquaint yourself with the AIX
facilities for accounting and monitoring system activity.
Chapter 5, "Running System Accounting" on page 5-1 describes
the AIX accounting facilities and how to use them.
Chapter 6, "Using the System Activity Package" on page 6-1
describes the facilities for monitoring system activity.

4-4 Managing the Operating System

Updating the System and Installing Local Programs

There are three ways in which you can alter the basic features of
the RT PC system:

• Install additional licensed programs or components of licensed
programs (using the installp command as is explained in
Installing and Customizing the AIX Operating System).

• Make updates to one or more licensed programs or components
of licensed programs that are already installed.

• Create your own programs.

This section contains guidelines for updating your system and
installing your own programs.

Updating the System

An update is an improvement for some part of the system. An
update may apply to one or more licensed programs or components
of licensed programs. If IBM supplies updates for your AIX system,
you will receive a diskette containing the update. You will use the
updatep command to apply updates.

Updates for IBM provided software products on your AIX system
are packaged together on the same diskette. You select the
products for which you want to apply updates. After the updates
are applied, you can selectively commit or reject the complete set
of updates for each product based on the results of a test period.
You must be a member of the system group to run the updatep
command.

You start an update by running the updatep command, which
performs four functions:

updatep -a Apply selected product updates from the diskette.

Additional System Management Topics 4-5

updatep -c Commit selected product updates that have been
applied.

updatep -r Reject selected product updates that have been
applied.

updatep -s Present status about all currently applied product
updates.

You must enter the appropriate action when you enter the
updatep command.

A menu is presented if you choose one of the first three actions. If
you choose apply, the menu contains every product on the diskette
for which there is an earlier version on the system (that is, a
version with a lower update level). If you choose either commit or
reject, the menu contains all of the products on the system that
hQUO <:Innl~or1 llnr1<:1toco
.L.L",,". '-" """"t-'.t'.L.L '-A. \.A..t'\.A.CA....,,,-,u.

Select the appropriate products from the apply, commit, or reject
menu. The action (reject, for example) is performed for all
selected products.

For additional information on using updatep, see updatep in AIX
Operating System Commands Reference.

Installing Applications and

Local Commands

If you create your own commands or programs (shell programs, for
example), the following guidelines will make them convenient to
use:

• Create a directory for local commands. If you create
commands that are to be available to all system users, place
them in a single directory, for example, lull oca l. If you create
commands that are to be available only to members of certain
groups, create a different command directory (for example,
/u/local/system) and set its permissions appropriately.

4-6 Managing the Operating System

By keeping local commands together in one (or two) directories,
you make it very simple to:

Remember the path name of the command.

Determine what local commands are on the system (by
listing the contents of the local command directory).

• Create a directory for private commands. If you (or other
system users) create commands for private use, keep them in a
single subdirectory of the $HOME directory (for example,
/u/tom/bin). This type of organization has the same
advantages for an individual user that it does, on the larger
scale, for all users of the system-it is easy to remember where
the commands are and thus, to distinguish the standard system
from the parts of the system that you have added or created.

Additional System Management Topics 4-7

Communicating with System Users

If your system has more than one user, you may find it convenient
to use the system to communicate about such things as changes to
the system, work schedules, unexpected system shutdowns, or new
information that affects that project you are working on. The
services described in this section provide several convenient means
for communication among users.

Communicating with Another User-The write Command

The write command sends a message to another user. Often, the
write command is used to converse with another user (that is, each
user alternately sends and receives a short message).

If you do not want to be interrupted by messages, enter mesg n to
deny message permission. Enter me s 9 y to permit messages again.

The write command sends a sound signal to the display station of
the person receiving the message, and then displays the following
message on that display station:

Messa.ge from username (ttynn)
[dateJ . . .

After successful connection with the other user's display station,
write sends two sound signals to your display station.

When you try to send a message to a user who is not logged in,
write displays the message: user not logged in. If you send a
message to a user who has refused message permission (with the
mesg command), write displays the message: write: permission
deni ed.

4-8 Managing the Operating System

To Send a Message with write

1. Enter:

wri te username

2. After the two sound signals, enter your message.

3. At the end of your message, press:

END OF FILE.

After you send a write message, the other user can respond by
sending a message back to you. You may find the following
conventions for carrying out such an exchange of messages useful:
When you first enter the write username command, wait for the
other user to send a message back before you send any text. End
each message with a signal such as 0 (over) to alert the other
person to reply. Use 00 (over and out) when you complete the
exchange.

For more information about write, see write in AIX Operating
System Commands Reference.

Sending a Message to all Logged-In Users-The wall Command

The wall (write all users) command sends a message to all
logged-in users. If you realize that you will have to shut down the
system unexpectedly, the wall command is a good way to tell
everyone who logged in to bring their work to a stopping place and
log out. You must have superuser authority to use the wall
command.

To send a message with wall, enter wa 11 message:

wall System shutdown at 14:30
-

Additional System Management Topics 4-9

The wall command sends the message, preceded by a heading, to
every user logged in to the system, for example:

Broadcast Message from root
System shutdown at 14:30

Creating a Message of tIle Day

To communicate with all users who will log in on a given day (not
just those currently logged in), you can create a message of the
day. To create a message of the day, edit the /etc/motd file.
Simply enter the text of your message into /etc/motd and then
save the edited file. After you create a message of the day, the
system sends a copy of the message to each user when the user logs
In.

Creating and Reading News Items-The news Command

Use the news command to keep system users informed of news
about the system or other topics of general interest. There are two
tasks involved in using the news command:

• Posting news items

• Informing system users about how news works.

To post a news item, create a file in the /usr/news directory. You
can either use an editor to create a file in /usr/news or copy a file
from another directory into /usr/news. For example, if you create
a file named schedul e in your current directory, you can use the
cp (copy) command to enter schedul e as a news item:

cp schedule /usr/news

To create a news item, you must have write permission for the
/usr/news directory. You should periodically remove all the files
that contain outdated news items.

The news command gives you access to the items stored in
/usr/news. To avoid reporting old news, the news command stores

4-10 Managing the Operating System

a currency time each time a user reads news items. news
considers only the items posted after this time to be current for
that user.

You can use the news command alone, with the name of one or
more news items, or with one of three flags, depending Up011. the
type of information you need. The following list explains the type
of information returned by each version of the news command:

news Displays all items posted since you last read the news. To
display the news items one page at a time, pipe the output
of news to the pg command:

news I pg

news -a Displays all news items, regardless of the currency time.
The currency time does not change.

news -n Reports the names of current news items without
displaying their contents. The currency time does not
change.

news -s Reports the number of current news items without
displaying their names or contents. The currency time
does not change.

news item Displays the contents of a particular item.

Typically, users enter the news -n command first. If news -n
shows items that may be of interest, then the user can use the news
item command to display the contents of the individual news items.

The most convenient way to use news -n is to set it up to run
automatically each time a user logs in, which you can do in one of
two ways:

• Add news -n to each user's $HOME/.profile file.

• Add news -n to the system's fete/profile file.

Additional System Management Topics 4-11

Sending and Reading Messages-The mail Command

The mail command allows you to:

• Send messages or files to specific users ..

• Receive and process mail sent to you.

To Send Mail

1. Enter:

ma; 1 username

where username is a list of one or more user names.

2. Enter your message.

3. Press END OF FILE.

You can also use mail to send a file to other users with a command
of the form:

rna; 1 username <filename

The mail command prefixes each message with the sender's name
and the date and time of the message (its postmark). mail then
places messages in /usr/ma; 1 /username (for example,
/ u s r / m a; 1 / t om. When users read their mail and then use the s
subcommand to save the message, mail saves the file in the user's
mailbox-that user's $HOME/mbox file (unless the user specifies a
different file name).

4-12 Managing the Operating System

To Read Mail

1. Enter:

mail

2. At the? prompt following each message, press Enter to
read the next message.

3. (Optional) To display the previous message, enter:

- (hyphen)

4. (Optional) To delete the current message and display the
next message, enter:

d

5. (Optional) To save the message, enter:

s filename

If filename is not specified, mail saves the message in
/$HOME/mbox.

6. (Optional) To forward a message to another user, enter:

m username

7. To leave any remaining mail in the /usr/mail/username
file and end the mail program:

Enter q or press END OF FILE.

For information about other mail flags and sub commands, see
mail in AIX Operating System Commands Reference.

Additional System Management Topics 4-13

Identifying Logged-In Users-The who Command

Use the who command to identify all users currently logged-in to
the system. Besides showing the user name of each logged in user,
who also reports which display station each user is using and the
date and time that each user logged in. In the following example,
who reports that there are three users logged in to the system:

$ who
sam
pat
mark
$ -

console
ttyO
tty2

Apr 4 09:19
Apr 4 13:31
Apr 4 15:04

For information about other ways to use the who command, see
who in AIX Operating System Commands Reference.

4-14 Managing the Operating System

Setting the System Date

The RT PC system has an internal, battery-powered clock. You set
the time and date when you install the system and the clock
maintains the time and date whether power to the system is on or
off. Should you need to reset the time or date (for example, to
synchronize system time with standard time or because of a battery
failure) you can do so with the date command. You also can use
the date command to find out what the current system date and
time are.

To set the date and time, enter a comlnand of the form:

date lnlnddhhmJn.ssyy

where:

mm designates the month.
dd designates the day.
hh designates the hour, using a 24-hour clock (for example, 7
p.m. is represented as 19).
mm designates the minutes .
. ss designates the seconds.
yy designates the year.

Each time or date designation must be two digits long (for example,
the date designation for July is 07). For values that do not need to
be changed, type spaces (for example, if the system's current month
designation is correct, but you need to change the setting for day,
type two spaces and then the new date).

Warning: Do not set the date or time while other users are
logged in to the system.

You must have superuser authority to set the time and date.

In the following example, the date command sets the date and time
to April 18, 3:15.32 (32 seconds after 3:15) p.m., 1985:

date 04181515.3285

Additional System Management Topics 4-15

To display the system's current date and time values, simply enter:
date.

For more information about the date command, see date in AIX
Operating System Commands Reference.

4-16 Managing the Operating System

Understanding System Security

Passwords

The key to effective security is understanding how the security
features work and then using them conscientiously. If more than
one person uses your system, it is important for everyone to
understand how security works and the importance of observing
certain security guidelines.

The principal AIX security features are described in other sections
of this book. This section summarizes important security features
and indicates where you can find more detailed information.

Passwords help protect your system against unauthorized access.
The AIX system encrypts passwords, stores them in a file, and then
compares the password supplied when a user tries to log in with
the encrypted version. If the two match, the user gains access to
the system.

While it is not Inandatory to use passwords on your system, it is
strongly advised, even if you are the system's only user. Without
password protection, all data on your system is available to anyone
who knows how to turn on the power switch and enter a valid user
name (generally, user names are easy to obtain or guess). Even if
your system does not contain sensitive data, an unauthorized user
cause problems by altering the contents of files or turning off the
system without running shutdown.

Note: If user root does not have a password, password protection
is not enforced. Anyone who knows a valid user name can log in
without entering a password and use the AIX system.

Additional System Management Topics 4-17

File Protections

For more information about passwords, the password file, and the
passwd command, see the following:

• Using the A/X Operating System

• "Managing User Accounts" on page 2-16

• passwd in A/X Operating System Commands Reference.

Every file and directory in the AIX system has a group of
permissions associated with it. The permissions define who can use
the file in what way. In other words, the permissions grant certain
users access to the files and directories and protect the files and
directories from other users.

For an explanation of how the file and directory permissions work,
see Using the A/X Operating System. While permissions afford an
effective way to control access to data stored in the system, they
are only as effective as users make them. Thus, it is important for
all users of your system to understand how the permissions work,
how they can be modified, and how their effectiveness can be
undermined by a lax attitude toward system security.

Invalid Login Attempts

Invalid login attempts due to an incorrect login name or password
are recorded in the fete/.Hog file. The contents of this file can be
examined only by the user root or SU, or a member of the system
group. Each time you log in as root or su and there is an entry in
fetef .Hog, the system displays a message advising you to check the
contents of fete/.Hog. Use the who command to look at this file.

4-18 Managing the Operating System

Running Commands at Pre-set Times

The crOll command resembles a clock that can run shell commands
at pre-set dates and times. You do not enter the crOll command;
rather, crOll is included in the /etc/rc file and starts during the
system initialization process. Specify what commands are to run
and when they are to run, with either the at command or the
crontab command:

at Use at when a command is to be run only once.

crontab Use crolltab when a command is to be run regularly.

U sing the at Command

The at command takes its list of commands from standard input.
Standard output and standard error from the commands are mailed
to the user who ran the at command unless they are redirected.

To Use the at Command

1. Enter:

at tim,e date + increment

2. Enter the commands to be run (either one command per
line, or separated by ; [semicolons]).

3. Press END OF FILE.

Following is an explanation of each at command parameter and
how to set it:

time Required parameter. Specify time in one, two, or four
digits. at interprets one- and two-digit numbers as hours,
four-digit numbers as an hour and minutes (for example,
10 means 10 o'clock, 1043 means 10:43). Though not

Additional System Management Topics 4-19

required, you can separate the hours and minutes with a
colon (10:43).

To indicate whether the time is a.m. or p.m., do one of the
following:

• Append an am or pm suffix to time (for example,
10: 43pm).

• Use a 24-hour clock (for example, 10:43 p.m. is 22: 43).
If you do not supply an am or pm suffix, at interprets
the time based on a 24-hour clock.

You also can use the following special names in the at
time specification:

noon
midnight
now
next

date Optional parameter. Specify date in one of the following
ways:

• monthname daynumber,yearnumber. For monthname,
use a three-letter abbreviation (Jan, Feb, Mar, Apr,
May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec). For
daynumber, use a one- or two-digit number. The
yearnumber is an optional two-digit number preceded
by a comma.

• dayname. Specify the name of a day of the week,
either fully spelled out or abbreviated to three letters.

The at command also recognizes the following special
days:

today
tomorrow

4-20 Managing the Operating System

If you do not specify date, at interprets the time to be:

today if time is later than the current time
tomorrow if time is earlier than the current time.

+ increment Optional parameter. The + increment parameter,
which is sometimes a more convenient way to specify time
or date, is a number followed by one of these special
words:

minute or minutes
hour or hours
day or days
week or weeks
month or months
year or years.

For example, to run a command at this same time
tomorrow (rather than specifying the exact time) you
could set up an at job like the one in the following
example:

$ at now + 1 day
skulker
END OF FILE
$ -

Enter at -1 to list the at jobs you have scheduled. Note that at
- 1 lists at jobs by the numbers at assigns them. To see what
commands a job contains, look at the file
Ius r Ispoo 1 I cronl atjobsljobnumber.

To cancel a scheduled command, use the -r flag:

at -r jobnumber

Additional System Management Topics 4-21

Using the crontab Command

The crontab command copies a specified file into the directory
that contains all crontab files. The cron command (started by
/etc/rc at system initialization) runs commands according to
instructions in crontab files.

The general format of the crontab command is:

crontab filename

where filename is the name (or path name) of a file that contains
information cron uses to schedule commands.

A crontab file can contain more than one entry (one entry
corresponds to one command or command group). Each entry is on
a separate line and consists of the following six fields, separated by
spaces:

minute hour day/month month/year day/week command

Each field except command can contain:

• A number in the specified range

Minute (0-59)
Hour (0-23)
Day of the month (1-31)
Month of the year (1-12)
Day of the week (0-6 for Sunday-Saturday)

• Two numbers separated by a - (hyphen) to indicate a range of
values (for example, 4-15)

• A list of numbers separated by commas, which specifies each
number in the list (for example, 4, 8, 17)

• An * (asterisk), which specifies all possible values.

cron runs the command at the specified time. If you include a %
(percent sign) in the sixth field, cron takes everything before the %
as the command and everything after it as input for the command.

4-22 Managing the Operating System

Following is a sample crontab file, named happy, which you can
create with an editor:

o 16 10-31 12 5 wall%HAPPY HOLIDAYS!

This crontab file writes a message to all logged-in users (wall) at
4:00 p.m. (0 minutes, 16 hours), from the 10th through the 31st
(10-31) of December (12), on Fridays (5). The wall command takes
the text following the % as its standard input.

Once you create happy, enter it into the crontab directory with the
command: crontab happy.

You can modify the action of crontab with the following flags:

-1 Lists the contents of your crontab file.

-r Removes your crontab file from the crontab directory.

Note: If you are logged in as the user root, you cannot run
crontab on a file named /usr/spool/cron/crontabs/su unless su
is the first entry in /etc/passwd. Similarly, if you are logged in as
the user su, you cannot run crontab on a file named
/usr/spool/cron/crontabs/root unless root is the first entry in
/etc/passwd.

Additional System Management Topics 4-23

Monitoring Files and Directories that Get Larger
Automatically

Even though the fixed-disk on the RT PC system holds a large
amount of data, it can become crowded, even full. Certain files on
the system can grow automatically, using disk space to store data
that are no longer useful. Following is a list of files that you may
or may not have on your system. If you do have any of these files,
you should check them periodically and remove all useless data.

• Accounting files:

/usr/adm/wtmp

/usr / adm/pacct

/usr / adm/ acct/nite/*

• Other files:

/usr /lib / cron/log

/usr/spool

$HOME/mbox

Also check the /tmp directory for files that you can delete.
Ordinarily processes should remove their temporary files from
/tmp, but they may not always do so.

You can use the following shell procedure to locate files in
specified directories (in this case, /usr/adm, /usr/l i b, and
/usr/spool) that are larger than a certain number of blocks (in
this case, 50):

for i in /usr/adm /usr/lib /usr/spoo1
do

find $i -size +50 -exec 15 -1 {} \;
done

4-24 Managing the Operating System

Finding Files and Directories

The find command searches the file system for all file names that
match a specified expression (characteristic or group of
characteristics). For example, the following find command lists
the complete path name of all files in the file system with the file
name .profile:

find / -name .profile -print

The / starts the find command at the root directory; the search
continues through all subdirectories of /. The - name parameter
specifies the name that find is to match. The -pri nt parameter
causes find to display the path name of each file that matches the
- name expression.

The -name expression is just one of several expressions that you
can use with the find command. For more information about find
and its expressions, see find in AIX Operating System Commands
Reference.

You can use the find command together with the skulker and
xargs commands to periodically remove unwanted files from the
file system. For more information, see skulker and xargs in AIX
Operating System Commands Reference.

Additional System Management Topics 4-25

Managing Display Station Features

This section covers two topics:

• How to automatically set the characteristics of any display
station on your system

• How to use the special features of the main display station.

Setting Display Station Characteristics Automatically

A display station has standard characteristics, such as the length
of the lines displayed on the screen, the number of lines per screen,
and whether the special command line editing functions are
available. However. vou can use the sttv command to chanQ"e
certain display statioil characteristics. (For more informati;n
about stty, see Using the A/X Operating System and stty in A/X
Operating System Commands Reference.)

If you want the display station characteristics set in a particular
(nonstandard) way every time you log in, you may find it
convenient to have the system run stty automatically. Depending
upon your requirements, you can do this in one of two ways:

• Place the stty command in the fete/profile file.

Each time you start the system, the system automatically runs
the commands in fete/profile. If you include stty in
fete/profile, every display station on the system starts with the
same characteristics.

• Place the stty command in your user profile file,
$HOME/ .profile.

Each time you log in, the system automatically runs the
commands in $HOME/.profile (the individual user's profile).
Commands in $HOME/.profile supersede those in fete/profile.
Therefore, if you include the stty command in your user profile,
the display station always has the same characteristics when
you first log in.

4-26 Managing the Operating System

For more information about these two profiles, see "/etc/profile and
$HOME/.profile" on page 2-45.

Managing Special Features of the Main Display Station

The /dev /hft device driver provides the special features of the
main display station. (hft stands for high function terminal.)
Another device driver, /dev/console, also can run the main display
station (or console), but it does not provide the special features).

Note: You should open another virtual terminal with open sh to
run commands and programs; thus, leaving /dev/console free to
receive error messages. To ensure that error messages do not scroll
off the screen, enter stty page 1 ength 22.

"Managing the Virtual Terminal Feature" explains how to manage
virtual terminals, a special feature you can use directly.
"Additional Main Display Station Features" on page 4-28 lists
some other special features provided by the /dev/hft device driver.

Managing the Virtual Terminal Feature

As explained in Using the AIX Operating System, a virtual terminal
is one of several equivalents of a display station, one or more of
which can be available at the main display station concurrently.
The actman (activity manager) command monitors virtual
terminal acti vi ty.

To Enable actman

1. Enter:

users

2. Use the c (change) subcommand to place fbi n/ actman in
the program field for the appropriate user.

3. End users.

Additional System Management Topics 4-27

The actman command creates the initial shell and then monitors
the number of open virtual terminals until all are closed. If you
try to end the initial shell before all virtual terminals are closed,
actman restarts the initial shell.

If you do not have virtual terminal capabilities (that is, you are not
logged in at the main display station), the system replaces actman
with the initial shell program.

Additional Main Display Station Features

In addition to virtual terminal capability, the device driver for the
main RT PC display station provides several other special features:

• Sound control

• Keyboard control

• Locator (mouse) control

• Access to an extended character set

• Access to multiple fonts (character styles)

You generally cannot use the extended character set and multiple
fonts directly. That is, there is no command or key to turn them
on and off. Rather, these features are available, through system
calls, to programs that require them. For more technical
information about the hft device driver and the system calls
associated with it, see AIX Operating System Technical Reference.

Controlling Sound: The sound command controls the volume of
the sound output (the console bell and the keyboard click). You
can set these two sound specifications independently of each other.
There are two sets of flags for the sound command. The following
flags control the volume of all sound output:

-h Sets the volume to high.

-I Sets the volume to low.

4-28 Managing the Operating System

-m Sets the volume to medium.

-0 Turns the volume off.

The second set of flags whether the click is produced:

-c Turns clicking on.

-q Turns clicking off.

The sound command in the following example sets the sound
volume to low and turns the click function off:

$ sound -lq

Controlling the Keyboard: The keyboard command controls the
delay rate and repetition rate of the keyboard. The delay rate is
the interval from when you press a key to when it begins to repeat.
The repetition rate is the number of times the key repeats per
second. These rates are set at system startup to 500 milliseconds
and 14 characters per second, respectively.

The keyboard has two flags:

-drate

-rrate

Sets the delay rate to the specified value. rate can be 300,
400, 500, or 600.

Sets the rate of repetition to the specified value. This
rate can be an integer from 2 to 40.

The following keyboard command sets the delay to 300
milliseconds and the repetition rate to 40 characters per second:

keyboard -d300 -r40

Additional System Management Topics 4-29

Controlling the Locator (Mouse): The locator command controls
the rate at which the system checks the position of the locator
(mouse). You can specify any of the following rates: 10, 20, 40, 60,
80, or 100 times per second. At system startup, the locator rate is
set at 60.

The following locator command sets the rate at 40 times per
second:

locator -r40

Changing the Physical Display

With the display command, you can change the physical display
assigned to the current virtual terminal and the virtual terminal
characteristics or assign a default display to be used when you
open a virtual terminal. You can request only displays that are
actually installed on your system.

The flags to the display command are:

-b Changes the background color on the display.

-c Changes current virtual terminal display.

-d Sets default display to be used when a virtual terminal is
opened.

-f Changes the foreground color on the display.

-m Changes the DMA pinned page size.

-p Change the color palette to be used.

-t Changes the font.

The display command with the -c and -d flags accept the following
parameters:

pcmono PC Monochrome Adapter and Display

4-30 Managing the Operating System

egamono Enhanced Graphics Adapter and PC Monochrome
Display

egacol Enhanced Graphics Adapter and Display

advmono Advanced Monochrome Graphics Adapter and Display

advcol Advanced Color Graphics Adapter and Display

extmono Extended Monochrome Graphics Adapter and Display

megapel Megapel Display Adapter and IBM 5081 Display
Model 16 or 19.

To see a menu of available options, enter display without flags or
parameters. For example, when you enterdi sp 1 ay -t, you see a
menu that contains a list of the available fonts. Choose one that is
suitable for the work you will be doing. Not all fonts are available
on all displays, nor do they all work with all programs.

The following display command changes the current virtual
terminal display to an attached PC Monochrome Adapter and PC
Monochrome Display:

display -c pcmono

You can use the -c and -d flags at the same time. The following
display command changes the current virtual terminal display to
the PC Monochrome Adapter and Display and makes the Enhanced
Graphics Adapter the default display:

display -c pcmono -d egamono

For more information, see display in AIX Operating System
Commands Reference.

Additional System Management Topics 4-31

TERM Values for Different Displays, Adapters, and Terminals

Change the value of TERM in the .profile file, and add export TERM
to the . profile file.

Use the following values for TERM:

Display/Terminal Adapter Value

IBM Personal Computer IBM Monochrome Display ibm5151
Display and Printer Adapter

IBM Personal Computer IBM PC Enhanced ibm5154
Display Graphics Adapter

IBM Personal Computer IBM PC Enhanced ibm5154
Enhanced Color Display Graphics Adapter

IBM RT PC Advanced IBM RT PC Advanced ibm6153
Monochrome Graphics Monochrome Graphics
Display Display Adapter

IBM Advanced Color IBM Advanced Color ibm6154
Graphics Display Graphics Display Adapter

IBM Extended IBM Extended ibm6155
Monochrome Graphics Monochrome Graphics
Display Display Adapter

IBM 3161 ASCII Display n/a ibm3161
Station

IBM 3163 ASCII Display n/a ibm3161
Station

DEC VT100 l (terminal) n/a vt100

DEC VT220 l (terminal) n/a vt220

IBM 3161 ASCII Display n/a ibm3161-C
Station with cartridge2

IBM 3162 ASCII Display n/a ibm3161
Station

Figure 4-1 (Part 1 of 2). TERM Values for Different Displays, Adapters,
and Terminals

4-32 Managing the Operating System

Display /Terminal Adapter Value

IBM 3162 ASCII Display n/a ibm3162
Station with cartridge2

IBM 5081 Display Megapel Display Adapter ibm3162

Figure 4-1 (Part 2 of 2). TERM Values for Different Displays, Adapters,
and Terminals

DEC, VT100, and VT220 are registered trademarks of Digital Equipment
Corporation.

2 International character support

Additional System Management Topics 4-33

Managing Printers

There are two main management tasks associated with printers on
the RT PC system:

• Adding new printers to the system.

For information about adding a printer that is supported by the
RT PC system, consult the documentation that comes with the
printer and the section of Installing and Customizing the AIX
Operating System that discusses the devices command.

For information about adding a printer that is not supported,
consult the documentation that comes with the printer.

• Altering the way printers work (the subject of this section).

When you print a file, the system sends a stream of codes to the
printer. Some of the codes cause the printer to print particular
characters (for example, a-z, A-Z, and 0-9). Other codes cause the
printer to print characters or files in a particular way (for example,
underscoring certain characters or making every page 60 lines
long).

If you want to send different character codes to the printer (for
example, to change the word that to the word thi s), you simply
edit your file-you do not have to understand that codes are
involved. However, altering the way a printer works is somewhat
more complicated-you must understand what happens when you
print a file, what options you have for sending control information
to the printer, and what printer characteristics you can control.

The Printing Process

You use the print command to send a file to a printer. Often you
may do nothing more than enter a command of the form pri nt
filename and wait for the printer to complete the job.

A file does not go directly to the printer, however. First, the
qdaemon command places the print request in a queue. The print

4-34 Managing the Operating System

request stays in the queue until a printer becomes available, at
which point qdaemon runs the piobe (printer input/output
backend) command. (For more information on queues and the
qdaemon command, see "Parts of the Queueing System" on
page 3-20.)

The piobe command processes the file and sends it, along with
control information, to the printer. Thus, the printer receives a
data stream composed of the contents of the file and the control
information supplied by piobe.

Controlling the Printing Process

You can add printer control information to the printer data stream
in the following ways:

o Include printer control codes in the file

All printer control information that is unique to a file should be
included in that file. For example, if you want to underscore
the title of a book or print a paragraph in bold type, you must
use an editor to insert codes into your file that cause the
printer to start and stop the special treatment at the correct
places. Appendix A, "Printer Control Codes" on page A-I
includes the RT PC printer control codes. Consult the
documentation for your editor to learn how to use it to enter
control codes into a file.

• Supply piobe flags with the print command

The piobe command recognizes a number of flags that control
printer operations such as:

Starting and stopping condensed, emphasized, double-wide,
and double-strike printing
Printing in specified colors
Setting the left, right, top, and bottom margins
Setting the number of lines per vertical inch
Maintaining the horizontal position on the print line for a
line feed or vertical tab control.

Additional System Management Topics 4-35

All of the piobe flags are listed and explained under piobe in
A/X Operating System Commands Reference.

If you want to use particular piobe flags for a single print job,
specify them along with the print command. For example, the
piobe flag for setting form (page) length is -fl =num, where
num is a number of lines. If the standard piobe setting is
-fl =66 and you want the file pri nttest to be printed with 45
lines per page, you can enter the command:

print -fl=45 printtest

The flag on the command line overrides the standard piobe
setting for this one job. However, the standard piobe form
length setting remains 66.

• Change the standard piobe settings

To modify some printer characteristic for all print jobs, modify
the standard piobe flags; piobe flags are contained in the
/etc/qconfig file. (The piobe flags are listed under piobe in
A/X Operating System Commands Reference.)

For example, if you want the standard page length for all print
jobs to be 45 lines, you can use an editor to modify the
/etc/qconfig file, setting the value of -fl to 45. Regardless of
the page length set in /etc/qconfig, you always can specify a
different page length for a particular print job by supplying a
different value for -fl when you enter the print command.

4-36 Managing the Operating System

Maintaining System Performance

System performance can be a highly specialized and complex
subject, further complicated by the fact that a tactic that improves
the performance of one system might actually impair the
performance of a similar system used for different work. A
discussion of improving system performance is beyond the scope of
this book. However, there are several things you can do to
maintain the performance level of your system:

• Keep directory files small.

• Reorganize file systems.

• Reconstruct minidisks.

This section covers each of these system maintenance tasks. (For a
discussion of system configuration parameters that affect
performance, see "Generating a New Kernel" on page 3-132.)

Keeping Directory Files Small

Directories that are larger than 10 logical blocks are very
inefficient. A 10-block directory can contain over 1200 entries.
(Each logical block can contain 2048 bytes of data, and each entry
requires 16 bytes.) Thus, there usually is little reason to have
larger directories. However, large directories (directories that
occupy more than 10 blocks) can occur when, for example:

• A user has a large number of closely-related small files.

• A user does not understand how to use a directory .structure to
organize files.

• A directory (such as /usr/news) is shared by several users.

• A command or program writes its output to a new file (or files)
each time it runs.

Additional System Management Topics 4-37

Your first tactic for ,keeping directory files small should be to
inform all users that their directories should contain no more than
a certain number of directories (a number well below the 1200 that
could be possible). At the same time, you should make certain that
all users understand how to use directory structures to organize
files. (For information on how to use directory structures to
organize files, see Using the A/X Operating System.)

Your second tactic should be to periodically search all file systems
for directories larger than 10 blocks. If any large directories exist,
the following find command displays a list of them:

find / -type d -size +10 -print

Simply removing files from a directory does not make that
directory smaller; rather, it leaves the directory entries for the
removed files vacant and ready to be assigned to other files.

To make a directory smaller, you must:

1. Make sure the directory has an acceptable number of entries.
(For convenience, you might establish a 100-file directory size
guideline.)

If you need to remove files from the directory, you can use
either the rm command (to remove files from the system) or the
mv command (to move files to another directory).

2. Create a compacted directory or directory structure (one that
does not contain the vacant entries).

• To compact a single directory:

a. Create a new directory with the mkdir command.

b. Move (mv) or copy (cp) the files from the old directory
into the new directory.

c. Remove all files from the old directory (rm) and then
remove the old directory (rmdir).

• To compact a complete file system, use the dcopy command
to copy the entire old file system to a new file system. For

4-38 Managing the Operating System

information about dcopy, see dcopy in AIX Operating
System Commands Reference.

Reorganizing File Systems

When you create a file system, its free list is organized for
maximum efficiency. However, as you create, delete, link, unlink,
copy, and move files on the file system, the free list becomes less
and less organized. At the same time, the physical location of data
on the disk becomes less organized. The less organized the free list
and data are, the longer average time it takes for the system to
access files and directories in the file system. Reorganizing the
free list and data of a file system often can improve system
response time.

Reorganizing Only the Free List

Two flags cause the fsck command to reorganize free lists: -s and
-S.

The -s flag causes fsck to reorganize the free list regardless of the
condition of the file system. The -S flag causes fsck to reorganize
the free list if fsck finds no inconsistencies in the file system.

If you only want to reorganize the free list, fsck -S is the quickest
way to do so. You should run fsck -S regularly, perhaps once per
week or twice per month, depending upon how heavily your system
is used.

Note: Always run fsck on unmounted file system.

For more information about the fsck command, see "Checking and
Repairing File Systems-The fsck Command" on page 3-8 and fsck
in AIX Operating System Commands Reference.

Additional System Management Topics 4-39

Reorganizing Data and the Free List

There are two ways to reorganize both the data and the free list of
a file system:

• backup, mkfs, and restore

1. Back up the complete file system (with the backup
command).

2. Make a new file system on the minidisk that held the file
system (with the mkfs command).

3. Restore the backed up file system to the new file system
(with the restore command).

This procedure for reorganizing free lists is most appropriate
when done in conjunction with routine level 0 syst.em backu_ps.
For more information on backup, backup levels, and restore,
see "Backing up Files and File Systems" on page 2-58. For
more information on mkfs, see "Creating and Mounting File
Systems" on page 2-50. Also see backup, restore, and mkfs in
A/X Operating System Commands Reference.

• dcopy

Besides compacting directories (as is discussed under "Keeping
Directory Files Small" on page 4-37), the dcopy command also
reorganizes a file system's free list. The main purpose of dcopy
is to reorganize the file system for faster access times. It is also
useful for copying an existing file system into a new file system
(for example, when you move a file system from one minidisk to
another, perhaps to balance the load among several fixed-disks).
In such cases, the effect that dcopy has on directories and free
lists is of secondary importance.

However, if you want to use dcopy to reorganize the free list
and compact directories, but do not want to move the file
system, first use dcopy to copy the file system to an available
minidisk, and then use either dcopy or dd to copy the file
system back to its original minidisk. (For more information on

4-40 Managing the Operating System

the dd command, see dd in AIX Operating System Commands
Reference.)

Handling the minidisk full Condition

Your system consists of a certain number of separate file systems,
each of which resides on its own minidisk. At the very least, your
system has four minidisks for the operating system, one for the
VRM, and one for page space. The exact number of minidisks on
your system depends upon the options you have installed and the
number of additional minidisks you have created.

The size of each minidisk is set when when the minidisk is created.
A minidisk that is too small for its purpose can significantly reduce
your system's performance. A mini disk can be too small either
because it was not made large enough initially (the problem shows
up immediately) or because it has become full with use (the
problem may appear gradually). If you suspect that one or more
minidisks are becoming too full, enter the df command to
determine, for each mounted file system:

• Total number of disk blocks

• Number of disk blocks free

• Number of disk blocks used.

Note: The df command (without arguments) only reports
information about file systems with stanzas in /etc/filesystems
that contain the line df=true.

In some cases, you may be able to correct a minidisk size problem
by removing files from the file system. Often, however, you will
need to reconstruct one or more minidisks, increasing their size as
necessary. The remainder of this section describes how to recover
from a mi ni di sk full condition, whether it results from the
installation of a program or from free space being used up over
time.

Note: If you are not familiar with the minidisks command, please
see the information on creating minidisks in IBM RT PC Installing

Additional System Management Topics 4-41

and Customizing the A/X Operating System before you continue
with this section.

To Recover from a minidisk full Condition

1. Use the minidisks command to determine the amount and
location of existing free space.

2. Determine the amount of free space required.

3. Determine whether sufficient free space exists to meet your
requirements.

4. Follow an appropriate recovery procedure.

If you are installing a licensed program, the documentation
supplied with the progranl should sLate how many blocks the
program requires and which file systems (minidisks) must contain
those blocks. Thus, you know how much free space such a
program requires. However, if a mini disk has simply filled up over
time, it is not so easy to determine how much of the available free
space you will allocate to it; you will have to make this decision
based on your overall understanding of how your system is used.

If there is not sufficient free space to meet your requirements, you
have two alternatives when faced with the minidisk full condition:

• Remove a sufficient number of existing files to create free
space.

• Add additional storage to your system (that is, install another
fixed disk).

• Replace an existing fixed disk with a larger one.

If there is sufficient free space available to meet your requirements,
you can use one of the following four procedures to recover from a
minidisk full condition:

• Expand a subdirectory into a file system.

4-42 Managing the Operating System

• Create and mount a new licensed program file system.

• Expand a file system.

o Reconstruct existing minidisks.

Expanding a Subdirectory into a File System

This procedure involves creating a new minidisk, moving all data
from an existing subdirectory into its own file system on the new
minidisk, and then mounting the new minidisk onto the original
file system subdirectory.

Note: For this procedure to be successful, the subdirectory to be
expanded must have no mounted subdirectories and there must be
sufficient contiguous free space for a copy of the complete
subdirectory plus the new data.

Following are the steps for expanding a subdirectory into a file
system:

1. Use the add subcommand of minidisks to create a new
minidisk large enough to hold the old subdirectory plus the new
requirements. For the mount directory, specify the original
subdirectory name.

2. Mount the new minidisk on a temporary directory (for example,
mount /dev/hdn /tmp/lpp).

3. Copy the original subdirectory to the new file system. (To copy
everything under the current subdirectory to the new file
system, you can use the command: find. -print I cpio -pdvm
dinlame.)

4. Compare the original subdirectory to the new one (use the
dircmp command).

5. Unmount the new file system from its temporary directory (for
example, umount /tmp/lpp).

6. Use fsck to check the consistency of the new file system.

Additional System Management Topics 4-43

7. Delete files from the original subdirectory. (Enter pwd to
verify that the original subdirectory is your current directory
and then enter rm -r * to delete all files under that
subdirectory.)

8. Use the cd command to move to the parent directory.

9. Mount the new file system onto the original subdirectory.

Creating and Mounting a New licensed program File System

This procedure involves creating a mini disk large enough for the
new requirements, mounting that minidisk onto a new subdirectory
of an existing file system, and installing the new files onto the new
file system.

Note: For thi8 procedure to be successful, there must be enough
contiguous free space on the fixed disk to meet the new
requirements.

Following are the steps for creating and mounting a new licensed
program file system:

1. Use the add subcommand of minidisks to create a new
minidisk large enough to meet the requirements of the new
licensed program and specify the minidisk mount directory (for
example, /usr/lpp/lppname).

2. Create the minidisk mount directory (for example, mkdir
/usr/lpp/ lppname).

3. Mount the new file system onto the mini disk mount directory
(for example, mount /usr/lpp/lppname).

Note: If you create a separate minidisk for each licensed program,
you could eventually reach the maximum number of minidisks (28)
and perhaps experience problems due to fragmentation of disk
space. Therefore, it is good practice to merge minidisks
periodically, if possible.

4-44 Managing the Operating System

Expanding a File System

This procedure involves transferring all data from a mounted file
system to a file system on a new, larger minidisk. There must be
enough contiguous free space to hold the old file system and the
new data. Following are the steps for expanding a file system:

1. Start the maintenance system from the AIX Operating System
Installation/Maintenance diskette. (For information on starting
and using the maintenance system, see "Running the
Maintenance System" on page 2-6.)

2. Select Use Mai ntenance Commands.

3. Select Bac kup commands.

4. Select Backup a fi 1 e system and back up the file system that
you are expanding.

Note: Do not use the Backup a mi ni di ski mage option.

5. Select De 1 ete a fi xed di s k mi ni di s k and write down the
Mi ni di sk lOON for the minidisk to be deleted-this information
is required to complete the procedure. Delete the minidisk.

6. Select Create a fi xed di sk mi ni di sk:

a. Select Spec i fy lOON and supply the IODN that you noted in
the previous step.

b. Select No preference to cause the minidisk to be created in
the first disk area large enough to accommodate it. (Do not
use the beginning, middle, end allocation suboptions.)

c. Specify the number of blocks necessary to meet your new
req uirements.

7. Select Make a fi 1 e system to create a file system on the new
minidisk. Select the same IODN that the original file system
had, the one you noted above.

8. Select Restore commands.

Additional System Management Topics 4-45

a. Select Res tore a fi 1 e sys tem

b. Restore the old file system to the new minidisk, using the
same IODN.

9. Select Check a fi 1 e system and check the structure of the new
file system.

10. Remove the AIX Operating System Installation/Maintenance
diskette and start the system from the fixed disk.

Rearranging Existing Minidisks

With this procedure, you can physically rearrange the minidisks on
the fixed disk(s). Use this procedure if:

• There is enough total free space to meet your requirements and

• You cannot use any of the previous procedures because the free
space is not contiguous.

Following are the steps for rearranging existing minidisks:

1. Start the maintenance system from the AIX Operating System
Installation/Maintenance diskette. (For information on starting
and using the maintenance system, see "Running the
Maintenance System" on page 2-6.)

2. Select Use Mai ntenance Commands.

3. Select Bac kup commands.

4. Select Bac kup a fi 1 e sys tem and back up the file systems that
you are expanding. (If you want to arrange minidisks so that
all of the free space is in one area, backup all minidisks
between the first and last areas of free space on a particular
disk.)

Note: Use the Backup a m; ni di sk image option only for
minidisks that are not AIX file systems.

4-46 Managing the Operating System

5. Select Delete a fixed disk minidisk and write down the
Mi ni di s k lOON and number of blocks for each mini disk to be
deleted-this information is required to complete the procedure.
Delete the minidisk.

6. Select Create a fixed disk minidisk to create a new minidisk
to replace each of the minidisks that you deleted:

a. Select Speci fy lOON and supply the IODN that you noted in
the previous step.

b. Select No preference to cause the minidisk to be created in
the first disk area large enough to accommodate it. (Do not
use the begi nni ng, mi ddl e, end allocation suboptions.)

c. Specify the number of blocks that you noted in the previous
step.

d. Repeat these steps for each of the new minidisks.

7. Select Ma ke a fi 1 e sys tem and create a file system on each
new minidisk that requires one (that is, the ones that originally
had file systems). Use the same IODN that the original file
system had, the one you noted above.

8. Select Res tore commands.

a. Select Restore a fi 1 e system

b. Restore the old file system to the new minidisk, using the
same IODN.

c. Repeat these steps for each of the new file systems.

Note: To restore minidisks that do not have AIX file systems
(the ones that were backed up with the Bac kup a mi n i dis k
image option), select the Restore a mi ni di sk image option.

9. For all mini disks that contain AIX file systems, select Chec k a
fi 1 e system and check the structure of the new file system.

Additional System Management Topics 4-47

10. Remove the AIX Operating System Installation/Maintenance
diskette and start the system from the fixed disk.

4-48 Managing the Operating System

Logging in Automatically

Generally, it is best to use the standard login and password system
to protect your system from unauthorized access. However, if your
situation does not require this security, you can modify your
system so that it logs you in automatically each time you start it.
To make your system log you in automatically, create a file named
/ete/autolog that contains a valid user name (that is, a user name
that is in the password file). For information about users and the
password file, see "Managing User Accounts" on page 2-16.

Note: You can use the automatic log in only for the main display
stations (the console).

Additional System Management Topics 4-49

Introduction to International Character Support

The AIX operating system provides international character support
in the form of an extended character set that includes accented
characters and characters and symbols not used in the English
language. A configurable table establishes the character set and
the sorting order for the characters. Environment variables let you
select alternate time, date, and currency formats, and the
characters to use for currency and other symbols. Appropriate
defaults can be selected by nationality.

The following terms are defined for use with international
character support:

Codepage

Code point

Collating order

Collation table

An ordered set of up to 256 characters.

A conceptual character; a I-byte or 2-byte
value that identifies a single character of
a code page. AIX translates code points
to support character sets for many
languages, while remaining compatible
with systems and devices that only
support ASCII characters.

The sequence in which characters and
character strings are sorted.

A table that defines the collating order.

Conversion subroutine Provides an appropriate format and
strings that the system uses to translate
date, time, and currency information for
a selected nationality.

Equivalence class

4-50 Managing the Operating System

A set of characters that are considered
equal for purposes of collation. For
example, U.S. dictionary collation
sequences place an uppercase character
in the same equivalence class as its
lowercase form, but ASCII collation sorts
uppercase and lowercase alphabetical

Features

Extended character

Flattened character

characters into different equivalence
classes, because the sort is by the ordinal
position of the character. Many collation
sequences will not distinguish between
accented and unaccented character forms
for the purpose of collation, but some
will.

A character other than a 7-bit ASCII
character. An extended character can be
a I-byte character with the high-order bit
set or a 2-byte character.

An extended character translated to an
7-bit ASCII equivalent of similar
appearance. For example, the flattened
form of e is e.

The international character support provides these features:

Extended characters
Extended characters can be used to support
various languages and dialects. Extended
characters are supported throughout the
system in files, names of files and user, group,
and queue names. A few programs do not
support extended characters, such as the DOS
services shell, vi, and nroff.

When a password is defined, the system
determines that it is unique, and that its
flattened ASCII equivalent is also unique.

Character translation
The dd command and various conversion
subroutines translate between extended
characters and ASCII escape strings that
preserve unique character information.

Additional System Management Topics 4-51

Configuration

Extended characters can also be converted to
ASCII characters of a similar appearance.

Regular expression support
Regular expression support is provided for
ASCII and extended characters.
Metacharacters retain their traditional use,
but now support extended characters.

Configurable Collation

String formats

Numeric symbols

A collating table defines an alphabetical (sort)
order, designates character case and sets up
equivalence classes. You can alter the
collation order, case, and equivalence classes
to support a language, dialect, site or user.

TJtilities that output time and date information
use a format selected from the environment.
The at utility accepts input dates in the
current format as well.

The currency symbol, decimal point character,
and thousands-divider character can be set for
the site. An example figure using the (U.S.)
default is $9,999.99.

The environment for international character support is established
using local environment variables from the user profile. If a
variable is not established as a local variable, an NLFILE variable
is used. If a variable is not defined in the local environment or in
NLFILE, default values are used. The NLgetctab function loads
a collation table automatically at system initialization. To change
environment settings from an application, NLgetfile subroutine
runs the NLgetctab subroutine. To select an initialization
environment suitable for your site, set the environment variable
NLLANG to the an appropriate language string, set the NLFILE

4-52 Managing the Operating System

environment to a suitable environment file and the NLCT AB
environment variable to the appropriate collation table file name.

A number of environment files are established in directory
/usr/lib/nls; environment files have an .en suffix.

You can revise .the collation table file using the ctab command, to
change the character set, collation sequence, or equivalences
values. Collation table files are found in /usr/lib/nls directory,
and have a .ctab suffix. The ctab output files in the same
directory have no suffix. For example, the output file
corresponding to french.ctab is french.

Code Point Support

The ASCII character set is represented as code points of code page
PO, which is a code page composed of I-byte characters. The 7-bit
ASCII characters are lower code page PO. Upper code page PO is
composed of I-byte extended characters, with the high-order bit set
high. Included in code page PO are ASCII, accented, and other
characters that support many languages.

The I-byte character set is extended by using four values (OxIc,
Oxld, axle, and Oxl£) as single-shift bytes that, together with the
next byte in the data stream, select a character from code page PI
or P2. 2-byte characters are handled by an NLchar data type.
Each NLchar occupies two bytes of storage. The high order bit of
the NLchar is not used in representing a character. An extended
character cannot be mistaken for an ASCII character because the
high bit is set.

Bytes

Oxxxxxxx
1xxxxxxx

00011111 1xxxxxxx

Ordinal
(NLchar Value)
OOOxxxxxxx
001xxxxxxx
010xxxxxxx

Figure 4-2 (Part 1 of 2). Code Points

Ordinal
Decimal

0-127
128-255
256-383

Code Page

PO low
PO high
PI low

Additional System Management Topics 4-53

Bytes Ordinal Ordinal Code Page
(NLchar Value) Decimal

00011110 lxxxxxxx 011xxxxxxx 384-511 PI high
00011101 lxxxxxxx 100xxxxxxx 512-639 P210w
00011100 lxxxxxxx 101xxxxxxx 640-767 P2 high

Figure 4-2 (Part 2 of 2). Code Points

Any character in any code page can be entered from the keyboard.
Techniques for entering characters that are not supported by the
keyboard map are fully described in Keyboard Description and
Character Reference, Appendix C.

4-54 Managing the Operating System

Limits

Some character-handling commands do not support extended
characters, such as the editing commands edit, vi, and ex. The
enhanced edit mode does not work with multi-byte characters.

Warning: Do not use edit, ex or vi to examine or edit a
non-ASCII file.

File and directory names have a size limit of 14 bytes. Because
code points can represent either 1 or 2 bytes of storage, the number
of significant code points in a file name or directory name can be
limited to as few as 7. The kernel checks for a final byte consisting
of a single-shift character and replaces that character with a null
character.

Intersystems Compatibility

The AIX operating system is compatible with environments that do
not support extended characters, providing work station,
intersystem mail, networking, and program development support.

An ASCII-character synonym is automatically defined for a login
name containing extended characters so that ASCII synonyms do
not have to be explicitly maintained in the /etc/passwd file. The
adduser utility checks both the login name containing extended
characters and its ASCII equivalent against all existing full IDs,
their ASCII equivalents, and synonyms before permitting the login
name to be added to the system. Subroutines can convert extended
characters to ASCII characters. This provides support for
communications to ASCII systems that do not have international
character support.

AIX can communicate with systems that use standard ASCII work
stations. Site names must conform to the requirements of the host
system communication protocol (SNA, uucp, or other), and must
be composed of ASCII characters. Therefore, site names are limited
to ASCII characters or some subset of ASCII characters. See the
AIX Operating System Communications Guide for further
information.

Additional System Management Topics 4-55

Environment

To select an environment for international character support, you
must provide appropriate environment variables to control date
and time strings and to select the collation table. The collation
table must be set up appropriately for international character
support. For most sites, seting up the environment requires
creating an appropriate NLFILE value for the collation table file
without changing the default collation order or equivalences, and
selecting strings and values for time and date conversion. You
should set an appropriate TZ value to establish time zone
information and daylight savings time change points on
appropriate Julian dates for the system.

Time and Date Strings

You can set the string variables for indicating the day of the week,
month of the year, and other time strings, such as substitution
strings for yesterday, today, and noon. You can set other
environment variables as well, for example, the local time value
(plus or minus GMT) and a 12-hour or 24-hour time display format.

You can set the system environment with the environment
variables described on page 4-57 in the file fete/profile. An
environment for an individual can differ from the system
environment, and is stored in the $HOME/.profile (from the
password file) for the user. These variables can also be changed
from the command line or by subroutines.

Environment variables for international character support are
specified in the process environment using ordinary shell
environment variables or in the text file with a path name that is
specified by the shell environment variable NLFILE. Values
specified in the process environment take precedence over values
specified in NLFILE. If a given environment variable is not set
either in the process environment or in NLFILE, or if a specified
value is the null string, a default value (suitable for U.S. English)
is u'sed.

4-56 Managing the Operating System

Note: If different international character support environments
are in use on the same system, particularly different collation
tables or time settings, confusion can result.

The form of environment variables is variable = valuers).
Environmental variables that establish the local environment
vocabulary consist of a sequence of strings separated by colons.
The actual language is identified by the value of NLLANG. Each
string must be a translation of the U.S. English name or symbol
used in the defaults, in exactly the same order. You can set the
following environment variables for international character
support:

NLLANG
Is a string that represents the international character support
environment name.

NLFILE
Is the path name of a file containing other environment variable
definitions for international character support. You cannot
define NLFILE within a file that is identified by another
NLFILE definition. There is no default path name.

TZ
Provides time zone strings, the difference in hours from
Greenwich Mean Time (GMT), and times for the site to switch to
and from daylight savings time. It has eight parameters in five
fields in the form:

lclndst:bgn:end:chgwd:chghr:chgamt

The first field contains the following parameters:

leI is the standard local time zone abbreviation.
n is the difference in local time from GMT in hours (a

number from -12 to 12).
dst is the abbreviation for the local daylight savings time

zone, if any.

The remaining fields contain the following:

Additional System Management Topics 4-57

bgn is the beginning day (Julian) of daylight savings time, if
any.

end is the ending day (Julian) of daylight savings time, if
any.

chgwd is the weekday of the change to daylight savings time, if
any (a numeric value).

chghr is the hour of the change to daylight savings time, if any
(using a 24-hour clock).

chgamt is the amount, in hours, of the change to daylight
savings time.

An example setting is:

TZ=EST5.5EDT:119:315:7:2:1.5

NLCTAB
Provides the path name of the file containing tables that define
~,he current collating sequence, as produced by etah. The default
IS:

NLCTAB=/etc/nls/ctab/default

NLLANG
Provides the language label for the set of strings, collation table,
and environment formats used. The default environment label
for international character support is:

NLLANG=u.s.english

NLCURSYM
Provides the currency symbol and symbol placement relative to
quantity. Placement is f or F if the symbol precedes the
quantity, and 1 or L if the symbol follows the quantity. The
default is:

NLCURSYM=:$:L:

NLNUMSEP
Provides numeric triad and decimal separator symbols. (The first
of the two separators is the triad separator.) The defaults are:

NLNUMSEP=:,:.:

4-58 Managing the Operating System

NLLDAY
Provides strings for the full ("long") names for the days of the
week. The default values are:

NLLDAY=Sunday:Monday:Tuesday:Wednesday:Thursday\
:Friday:Saturday

NLLMONTH
Provides the long name strings for the months of the year. The
default values are:

NLLMONTH=January:February:March:April :May:June:\
July:August:September:October:November:December

NLSDAY
Provides short name strings of the days of the week. Names
should be the same length, and of 5 or fewer characters. The
defaults are:

NLSDAY=Sun:Mon:Tue:Wed:Thu:Fri:Sat

NLSMONTH
Provides short name strings of the months of the year. Names
should be the same length, and of 5 or fewer characters. The
default values are:

NLSMONTH=Jan:Feb:Mar:Apr:May:Jun:Jul :Aug:Sep:Oct:Nov:Dec

NLTMISC
Provides miscellaneous strings needed for input and output of
date and time specifications. The default values are:

NLTMISC=at:each:every:on:through:am:pm

NLTSTRS
Provides strings for relative or informal names used for input of
date and time specifications to the remind and at commands.
The default informal time string values are:

NLTSTRS=now:yesterday:tomorrow:noon:midnight:\
next:weekdays:weekend

Additional System Management Topics 4-59

Collation Table

NLTUNITS
Provides singular and plural forms of strings for all names of
units of time, used for input of date specifications to the at
command. The defaults are:

NLTUNITS=minute:minutes:hour:hours:day:days:\
week:weeks:month:months:year:years

NLTIME
Specifies the format of the time. The default time format string
IS:

NLTIME=hh:mm:ss

NLDATE
Specifies the short form of the date. The default is:

NLDATE=MM/DD/YY

NLLDATE
Specifies the long form of the date. The default is:

NLLDATE=mon DD, YYYY

You can use the ctab command to establish collating sequence and
case conversion of characters. The input and output files are
stored in the conventional directory /usr/lib/nls. Numerous files
exist to support various user environments, and you can create new
ones. (See "Configuration" on page 4-52.) File names should
generally reflect their contents - for example, uk for British
characters, symbols, and lexicographical collating sequence. An
example collation table is provided for you in
/usr/lib/nls/example.ctab.

Using ctab, you can use a defined table file for a language without
changes, modify an existing table, or build a customized table.

For each character in a collating sequence (each NLchar), the
table input file provides the following information:

4-60 Managing the Operating System

• For alphabetical characters, the corresponding uppercase or
lowercase version of the given character. (You can assign case
to any character.)

• Collating sequence.

• The range of an equivalence class. All the characters in this
class are counted in the character range, along with this
character, whenever a character is named as an end point of a
character range.

• You can assign a string of characters to a character
equivalence class.

The following ctab input conventions are used for setting up a
table file:

• Input starts from a standard template file containing the entire
supported character set in the general order of an ISO collating
sequence. Collating sequence follows the ordering of the
per-character input lines. Except for ASCII characters and the
characters in all supported languages, lines in the file are
commented out.

• Escape sequences (in the style of the C language); are permitted
in the input table if a backslash does not form part of a valid
escape sequence, it strips the following character of any special
meaning it could have had.

• One line of information is present for each character explicitly
named.

Each character information line in a collation table file contains
four data fields:

1. Subject Character
Identifies the character to appear in the collating order at that
point. The treatment of the subject character is dependent on
the type of character and its use. The subj ect character can be:

• A (nonprinting) control character or a space character.

Additional System Management Topics 4-61

• An alphabetical character (having a case equivalent
character) and (optional) equivalent characters. If a string
of characters is given, they are collated as a single unit.

• A character to be translated using a defined translation
string. The field contains a subject character followed by a
I (vertical bar) and a single or multiple-character string; this
is a translation string that the subject character is
translated to before collation. For example, to treat the
character ce as equivalent to the string oe the line will
contain: celoeas its first field. However, the subject
character cannot be used in the string of characters in to
which it is to translate. This is an illegal construction:

oloe

2. case match
Identifies the matching case character for the ~haracter in field
1 if field 1 is an alphabetical character. If the field 1 character
is lowercase, field 2 holds its uppercase equivalent, and
visa-versa. If the character in field 1 has no equivalent, this is
an empty (null) field.

3. type identifier
Identifies the type of character in field 1:

• If the subject character is to be treated as an alphabetic
character (even if field 2 is null) this field must identify the
character as lowercase or uppercase. An 1 or L placed in
the type identifier field selects a lowercase subject character
(or characters). A U or u in this field selects an uppercase
character (or characters).

• If the subject character is a (nonprinting) control character,
a value of C or c must be placed in this field.

• If the subject character is a space (blank or tab) character, a
value of S or s must be placed in this field.

4. equivalence class
Specifies the first character in the equivalence class of the
subject character. Members of an equivalence class must be
listed in consecutive lines. If this field is not specified, the
group of consecutive subject characters having blank fourth

4-62 Managing the Operating System

fields are placed in the same equivalence class (only) if they are
based on the same roman alphabetic character.

A line beginning with the word opt; on serves to change one or
more of the default conditions or metacharacters built into etab.
This option line contains a set of name-value pairs; each pair is
delimited by space or tab characters. Recognized names are:

eelass
Turn equivalence class function on or off globally. The value
must be on or off; the default is on.

sep
Use the value as the separator character between fields on an
input line; the default is : (colon). Tab or space characters may
surround fields and separators.

trans
Use the value as an indicator of translation in subject character
fields; the default is 1.

repeat
Use the value as a repeat indicator meaning same as previous
character in subject character fields; the default is A

(circumflex). A repeat character cannot be used following a
translation string because the character to be translated has no
inherent collating value.

comment

Terminal Mapping

Use the value as a comment character; the default is # (pound
sign). That portion of a line to the right of a comment character
is ignored.

You can set the terminal maps for your system with the stty
command. The imap parameter sets a terminal .in filename and
the omap parameter sets a terminal .out. You must select the
terminal .in and terminal .out names from the files in the
/ete/nls/termmap.

You can establish terminal map assignments in the Jete/ports file.
The getty utility uses this file at system initialization.

Additional System Management Topics 4-63

4-64 Managing the Operating System

Chapter 5. Running System Accounting

i~

iUUOO1_IU:L~ '\ ",
o DD;Dt.~ 2
~ I ODD [0 l I. ~ ~ //

r-- ,...-- . ~ / ,
, II ~. + ,

\ ..
, i

+ rl I

I

,~
1=i'

{)
i ;l !'D

8 1
iO to

':0 to ~O to '0 :0 ., ..

0 :\D I,D
\.

Running System Accounting 5-1

CONTENTS

About This Chapter .. 5-3
An Introduction to System Accounting 5-4

Connect-Time Accounting ... 5-4
Process Accounting .. 5-6
Disk-Usage Data ;......................... 5-7
Printer-Usage Data .. 5-7
Fees for Services and Materials 5-8
Files and Directories ... 5-8

Setting Up the Accounting System 5-9
Accounting Setup Procedure ... 5-9

Running Daily Accounting-The runacct Command 5-14
Output Files ... 5-14
Operational States ... 5-15
Recovering From Failure .. 5-17
Restarting runacct ... 5-18
Fixing Damaged FileS .. 5-19

Accounting Reports .. 5-21
Daily Report ... 5-21
Daily Usage Report .. 5-22
Daily Command and Monthly Total Command Summaries 5-23
Last Login ... 5-25

Accounting File Formats .. 5-26
Accounting System Files .. 5-29
Files in the /usr/adm Directory ... 5-29
Files in the /usr/adm/acct/nite Directory 5-29
Files in the /usr/adm/acct/sum Directory 5-31
Files in the /usr/adm/acct/fiscal Directory 5-32

5-2 Managing the Operating System

About This Chapter

This chapter describes the structure, setup, and management of the
AIX accounting system, as well as the reports it generates.

This accounting system is designed to provide not only a way to
bill for computer use but also a way to monitor various aspects of
system operations.

Since you need system data combined and summarized by system
users for billing purposes, and you need data combined and
summarized by system resources for monitoring system operations,
the accounting system collects detailed data on each transaction
and provides tools for processing the data to produce different
kinds of reports.

Note: The accounting system commands are part of the
Multi-User Services licensed program. Before you can use the
accounting system, the Multi-User Services licensed program must
be installed on your system.

Running System Accounting 5-3

An Introduction to System Accounting

AIX system accounting provides for collecting and processing the
following types of system data:

1. The amount of time each user spends logged into the system
(connect-time accounting).

2. The use by each process of the processing unit, memory, and I/O
resources (process accounting).

3. The amount of disk space occupied by each user's files.

4. The amount of printer use by each user.

5. Fees charged for materials and services.

Connect-Time Accounting

Data collection

Connect-time data are collected through cooperation between the
init and login commands. When you log in, the login program
writes a login record in the file /etc/utmp. This record includes
your user name, the date and time of the login, and the login port.
Commands such as who use this file to find out which users are
logged in and onto which display stations. If the connect
accounting file /usr/adm/wtmp exists, login adds a copy of this
login record to it.

When your login program ends (normally when you log out), the
init process records the end of the session by writing another
record in /usr/adm/wtmp. Both the login and logout records have
the form described in the header file utmp.h. Logout records
differ from login records in that they have a blank user name.

The acctwtmp command also writes special entries in
/usr/adm/wtmp having to do with system shutdown and startup.

5-4 Managing the Operating System

Reports: The accounting commands concerned with keeping track
of each user's share of system resources write standardized total
accounting records, whose format is given in the header file
acct.h. All billable accounting data originates as, or can be
converted to, either the total accounting record format or a
readable and editable ASCII version thereof.

With the acctmerg command, you can convert between the ASCII
and binary formats and merge the records from different sources
into single records, one for each user.

You can use the prtacct command to display any total accounting
file. You can also use awk scripts to produce site-specific reports
from the ASCII representation of the total accounting records.
(For a brief discussion of the awk command, see AIX Operating
System Commands Reference. For a more detailed discussion, see
AIX Operating System Programming Tools and Interfaces.)

The acctconl command produces connect-time and line-use records
(session records), from login and logout records. From these
session records, you can produce reports that show each individual
login session, that show a summary of login sessions for each port,
or that show an overall summary of login sessions for the system.

You can use the prctmp command to display session records, with
appropriate heJldings. The acctcon2 command converts a
collection of session records, sorted by user name, to total
accounting records. You usually merge these records with the
total accounting records produced by other parts of the accounting
system to produce reports for each user.

You can also find out the last date on which each user logged in.
The lastlogin command produces this report, normally as a part of
the runacct procedure.

Running System Accounting 5-5

Process Accounting

Data collection

The AIX Operating System collects resource usage data for each
process as it runs. The data include the user and group numbers
under which the process runs, the first eight characters of the
name of the command, the elapsed time and processor time used by
the process, memory use, the number of characters transferred, and
the number of disk blocks read or written on behalf of the process.
The accton command causes the kernel to record this data in a
specified file, usually /usr/adm/pacct. If called without
parameters, accton turns off the recording of data.

Other commands relating to the recording of process accounting
data are startup, shutacct, dodisk, ckpacct, and turnacct.
These commands are simple shell files that build on the other
commands discussed in this section.

Reports: In addition to providing billing information, process
accounting data also provides a rich source of information that you
can use to monitor the use of system resources.

The acctcms command summarizes resource use by command
name. It provides information on how many times each command
was run, how much processor time and memory it used, and how
intensive that use was while the command was running (its hog
factor). It can also produce long-term statistics on system
utilization. Thus, it provides answers to questions about total
system usage, what commands are used frequently enough to be
worth optimizing, and so on.

The acctcom command handles the same data as acctcms, but for
a different purpose. Whereas acctcms summarizes the data by
command, acctcom provides detailed information about each
running of each process. With it, you can display all process
accounting records or select records of particular interest.
Selection criteria include the load imposed by the process, the time
period during which the process ended, the name of the command,
the user or group that ran the process, and the port from which the
process was run.

5-6 Managing the Operating System

The acctprcl and acctprc2 commands produce billing information
in two forms. acctprcl translates the user ID into a user name
and writes ASCII records containing the chargeable items (prime
and nonprime CPU time, mean memory size, and I/O data).
acctprc2 transforms these records into total accounting records.

Disk-Usage Data

Most accounting information on AIX is collected continuously as
the resources are consumed. Disk usage data is an exception.
Rather than maintain a running record of disk space consumption,
you use the dodisk command to collect this data periodically.
dodisk examines file systems and summarizes space use by user
name. You then use acctmerg to produce total accounting records
from the output of dodisk.

The dodisk command charges a user name for links to files found
under that user's login directory. It divides the charge for a file
evenly among links to that file. The decision to charge for links
rather than for files owned, is motivated by two considerations:

o The cost of a file should be borne by all who use it. The most
reasonable way to determine who uses a file is to see who has
links to it.

• A user can create a file, allow another user to link to it and
then remove his own link to it. Once he has relinquished his
access to the file, it seems unfair to charge him for it.

Printer-Usage Data

Collection of printer usage data is a cooperative effort between the
print command that enqueues files to be printed and the queuing
daemon that schedules the printing. The print command enqueues
the user name and number of the user doing the printing, along
with the name of the file to be printed and other user-specified
flags. After the file has been printed, the qdaemon writes to a file,
usually /usr/adm/qacct, an ASCII record containing the user
name, user number, and number of pages printed. You can sort
these records, convert them to total accounting records, and use
acctmerg to combine them with data from other sources.

Running System Accounting 5-7

Fees for Services and Materials

You use the chargefee command to charge users for services, such
as file restores or consulting, or for certain materials. chargefee
writes an ASCII total accounting record in the file /usr/adm/fee.

Files and Directories

The directory /usr/lib/acct contains all of the C Language
programs and shell procedures necessary to run AIX system
accounting. The accounting system data files belong to user adm
(currently user ID 4), and all active data files (wtmp, pacct, etc.),
reside in this user's home directory, /usr/adm. All reports and
summary files are stored in the subdirectories nite, sum, and
fiscal (see Figure 5-1).

/usr/adm

~
aect

+ i +
nite sum fiscal

OL807203

Figure 5-1. Accounting Directory Structure

The nite directory contains files that runacct reuses daily. The
sum directory contains the cumulative summary files that runacct
updates. Finally, the fiscal directory contains the summary files
that monacct creates.

5-8 Managing the Operating System

Setting Up the Accounting System

In order to automate the operation of this accounting system, you
need to do several things.

To Set up System Accounting

1. Enter:/usr/l ib/acct/null adm wtmp pacct

2. Update the file /usr/lib/acct/holidays.

3. Turn on process accounting through the file /etc/rc.

4. In the file /etc/filesystems, identify file systems to include
in disk accounting.

5. Specify the data file for printer usage data in the file
/etc/qconfig.

6. Schedule daily accounting in the file
/usr/spool/cron/crontab/adm.

7. Schedule monthly or fiscal summaries in the file
/usr/spool/cron/crontab/adm.

8. Set the PATH shell variable in /usr/adm/.profile to
include /usr/lib/acct.

Accounting Setup Procedure

1. Run the nulladm procedure as follows:

a. Log in as user root.

b. Enter:

/usr/lib/acct/nulladm wtmp pacct

Running System Accounting 5-9

The nulladm procedure ensures that each file has the proper
access permission code (664).

2. Update the file /usr/lib/acct/holidays, if necessary. This file
contains the time table that the accounting system uses to
distinguish prime time and nonprime time. Edit this table to
reflect your holiday schedule for the year and to reflect the
hours during each day that you want to designate as prime
time.

This file contains three types of entries:

a. Comment lines:

Comment lines may appear anywhere in the file as long as
the first character in the line is an asterisk (*).

b. Year Designation Line:

This line must be the first data line (that is, the first line
that is not a comment) and may appear only once. It
consists of three fields of four digits each (leading blanks
ignored). These three fields contain:

1) The year

2) The time (hhmm) at which prime time begins

3) The time (hhmm) at which prime time ends.

Use a 24-hour clock to specify the time. You can enter the
hour of midnight as either 0000 or 2400.

For example, to specify the year as 1984, prime time as
beginning at 8:00 a.m. and nonprime time as beginning at
5:00 p.m., enter the following line:

1984 0800 1700

c. Company Holiday Lines:

5-10 Managing the Operating System

These entries come after the year designation line. Each of
these lines, composed of four fields, has the following
general format:

Year-day Month Day Description of Holiday

The Year-day field contains a number from 1 through 366
that indicates the day of the year on which the holiday falls
(leading blanks ignored). The other three fields-Month,
Day, and Description of Holiday- are treated as comments
by other accounting programs. These fields identify to other
users what holiday is designated by the number in the
Year-Day field. Figure 5-2 shows a sample holidays file.

* Curr Prime Non-Prime
* Year Start Start
*

1985 0830 1700
*
* Day of Calendar Company
* Year Date Holiday
*

1 Jan 1 New Year's
2 Jan 2 day after

46 Feb 15 Wash. Birthday
152 May 31 Memorial Day
186 Jul 5 Indep. Day
249 Sep 6 Labor Day
332 Nov 28 Thanksgiving
333 Nov 29 day after
358 Dec 24 Christmas eve

Figure 5-2. Sample Holidays File

3. To turn on process accounting, add the follo\ving line to
fete/re, if it is not already there (or delete the comment symbol
if it is present):

/bin/su - adm -c /usr/lib/acct/startup

The startup shell procedure calls aeetwtmp to record in
fusrfadm/wtmp the time that accounting was turned on. It
calls turnacct on, which cleans up the previous day's
accounting files by calling the remove shell procedure.

Running System Accounting 5-11

The remove procedure deletes all /usr/adm/acct/sum/wtmp*,
/usr /adm/ acct/ sum/pacct*, and /usr /adm/ acct/nite/lock*
files.

4. In /etc/filesystems, add the following line to each stanza that
defines a file system you want to include in system accounting:

account = true

5. Enable printer usage accounting by adding the following line to
the queue stanza in the file /etc/qconfig:

acctfile = /usr/adm/qacct

6. To automatically run daily accounting through cron, add the
following lines to the file /usr/spool/cron/crontab/adm. (See
the discussions of cron and crontab in A/X Operating System
CommandR Reference for details about submitting jobs to cron.)
If these times do not fit the hours that your system is
operational, adjust your entries accordingly.

o 2 * * 4 /usr/lib/acct/dodisk
5 * * * * /usr/lib/acct/ckpacct
04* * 1-6 /usr/lib/acct/runacct

2>/usr/adm/acct/nite/accterr

The first entry schedules the running of dodisk for 2:00 a.m.
(0 2), each Thursday (4). This second schedules ckpacct for 5
minutes past every hour (5 *) of every day (*). The third
schedules runacct for 4:00 a.m. (0 4) every Monday through
Saturday (1-6).

The dodisk procedure calls diskusg and acctdisk to write disk
usage records to the file dacct. It stores this file in
/usr/adm/acct/nite.

The ckpacct procedure monitors the size of /usr/adm/pacct.
If the file is larger than 500 blocks, ckpacct calls turnacct
switch to copy the current pacct file to pacctx, where x is an
integer that is increased each time turnacct switch is called.
The advantage of having several smaller pacct files becomes
apparent when you must restart runacct after a failure in
processing these records.

5-12 Managing the Operating System

The runacct procedure processes the active data files
(including wtmp, pacct) to produce command summaries and
usage summaries sorted by user name. For a detailed
discussion of runacct, see "Running Daily Accounting-The
runacct Command" on page 5-14.

7. To automatically perform monthly merging of accounting data,
add the following line to the file
/usr/spool/cron/crontab/adm:

15 5 1 * * /usr/lib/acct monacct

Be sure to schedule this procedure at a time (5:15 a.m. here),
that allows runacct sufficient time to finish. This will, on the
first day of each month, create monthly accounting files with
the entire month's data. For a detailed discussion of monacct
reports, see "Daily Command and Monthly Total Command
Summaries" on page 5-23.

8. Set the PATH shell variable in /usr/adm/.profile as follows:

PATH=/usr/lib/acct:/bin:/etc:/usr/bin::
export PATH

This simplifies the running of individual accounting commands
when you are logged in as adm.

Running System Accounting 5-13

Running Daily Accounting-The runacct Command

Output Files

The runacct command is the main daily accounting shell
procedure. Normally initiated by cron during nonprime hours,
runacct processes connect, fee, disk, and process accounting files.
It also prepares daily and cumulative summary files for use by the
prdaily command or for billing purposes.

The following files produced by runacct are of particular interest.
See Figure 5-3 on page 5-26 for a description of Accounting file
formats.

/usr / adm/ acct/ni te/lineuse
This file contains usage statistics for each terminal
line on the system. This report is especially useful
for detecting bad lines. If the ratio between the
number of logouts and logins exceeds about 3 to 1,
there is a good possibility that a line is failing.

/usr/adm/acct/nite/daytacct
This is the total accounting file for the previous
day.

/usr/adm/ acct/ sum/tacct
This file contains the accumulation of each day's
nite/daytacct file and can be used for billing
purposes. monacct restarts it each month or fiscal
period.

/usr/adm/ acct/ sum/ems
This file contains the accumulation of each day's
command summaries. monacct uses this binary
version of the file and restarts it. The ASCII
version is nite/cms.

/usr/adm/ acct/ sum/daycms
This file contains the daily command summary. An
ASCII version is stored in nite/daycms.

5-14 Managing the Operating System

/usr / adm/ acct/ sum/loginlog
This file contains a record of the last time each
user ID was used.

/usr / adm/ acct/ sum/rprtmmdd

Operational States

This file contains a copy of the daily report saved
by runacct.

The runacct procedure takes care to protect active data files. It
checks frequently for operational errors. If it detects one, it writes
a message to /dev/console (the command line in crontab/adm
should redirect these messages to the file
/usr/adm/acct/nite/accterr), mails messages to the users root and
adm, removes locks, saves diagnostic files, and exits.

To make runacct easier to restart after an error, its operation is
divided into clearly defined stages, or operational states. It
records its progress through these states by writing descriptive
messages in the file /usr/adm/acct/nite/active. It also writes its
current state to the file /usr/adm/acct/nite/statefile. The last
operation in each state is to write the next state to statefile. After
it completes each state, runacct reads statefile for the next state
to process.

These states are processed as follows:

State

SETUP

WTMPFIX

Actions

This state calls turnacct switch. It moves the
process accounting files /usr/adm/pacct? to
/usr/adm/Spacct?mmdd. It also calls acctwtmp
to write the current time as the last record in
/usr/adm/wtmp and then moves the file to
/usr/adm/acct/nite/wtmp.mmdd.

This state calls wtmpfix to check nite/wtmp for
accuracy. Some date changes cause problems
with the acctcon1 command, so wtmpfix

Running System Accounting 5-15

CONNECTl

CONNECT2

PROCESS

MERGE

FEES

DISK

5-16 Managing the Operating System

attempts to adjust the time stamps in the wtmp
file if a date change record appears.

This state calls acctcon1 to write session records
from wtmp to the ctmp file (see Figure 5-3 on
page 5-26). It also creates the lineuse file and
the reboots file. Together, these three files
contain all of the login and logout records found
in the wtmp file.

This state calls acctcon2 to convert ctmp files to
total accounting files. It sends these to acctmerg
to produce the ctacct.mmdd file. This file
contains all the connect accounting records (see
Figure 5-3 on page 5-26).

This state calls acctprc1 and acctprc2 to convert
tht:l nY'("\~t:lC!C! a~~("\l1 t~ n' f'~ln ...
"'t-' '\,J""''"''uu lA.'-V'-J\,A.~..LV.l..l..I.O1..I.vO

/usr/adm/Spacct? .mmdd into total accounting
records in ptacct? .mmdd (see Figure 5-3 on
page 5-26). The Spacct and ptacct files are
correlated by number so that if runacct fails in
this state, you do not need to reprocess all Spacct
files.

Note: When restarting runacct in the
PROCESS state, remove the last ptacct file as it
will not be complete.

This state calls acctmerg to merge all process
accounting records with the connect accounting
records, writing these to the daytacct file (see
Figure 5-3 on page 5-26).

This state calls acctmerg to merge any records
from the file fee into daytacct.

This state calls acctmerg to merge dacct with
daytacct.

QUEUEACCT This state sorts the queue (printer) usage records,
converts them into total accounting records, and
calls acctmerg to merge them with the other
total accounting records in daytacct.

MERGETACCT This state calls acctmerg to merge daytacct
with sum/tacct, the cumulative total accounting
file. Each day, daytacct is saved as
sum/tacctmmdd, so that sum/tacct can be
recreated in the event it becomes damaged or lost.

CMS This state merges the current day's command
summary with the cumulative command summary
file sum/cms, producing both ASCII and binary
summary files (see Figure 5-3 on page 5-26).

USEREXIT If the shell file /usr/adm/siteacct exists, this
state calls it to perform site-dependant processing.

CLEANUP This state cleans up temporary files, runs prdaily
and saves its output in sum/rprtmmdd, removes
the locks, and exits.

Recovering From Failure

The runacct procedure can fail for a variety of reasons, most
commonly because the system goes down, the file system /usr runs
out of space, or the wtmp file has records with inconsistent date
stamps. If runacct fails, do the following:

1. Check the file /usr/adm/acct/nite/activemmdd first for error
messages.

2. If both the active file and lock files exist in acct/nite/, check
the file accterr (the file you redirected error messages to when
cron called runacct).

3. Perform any actions needed to eliminate errors (see "Fixing
Damaged Files" on page 5-19).

Running System Accounting 5-17

4. Restart runacct (see the following section, "Restarting
runacct" on page 5-18).

Restarting runacct

If you call runacct with no command line parameters, it assumes
that this is the first invocation of the day. You need to include the
parameter mmdd if you are restarting runacct. This parameter
specifies the month and day for which runacct is to rerun
accounting. If you do not specify a state, runacct determines the
entry point for processing by reading statefile. To override
statefile, specify the desired state on the command line.

Note: When you perform the following tasks, you may need to use
the full path name of runacct (fusr/lib/acct/runacct) rather than
the simple command name. ~

1. To start runacct, enter:

nohup runacct 2>/usr/adm/acct/nite/accterr &

This entry causes runacct to ignore all INTERRUPT and
QUIT WITH DUMP signals while it performs its processing in
the background. It also redirects all standard error output (file
descriptor 2) to the file /usr/adm/acct/nite/accterr.

2. To restart runacct:

nohup runacct 0601 2»/usr/adm/acct/nite/accterr &

This restarts runacct for day of June 1 (0601). runacct reads
the file /usr/adm/acct/nite/statefile to find out which state it
should begin with. All standard error output is appended to the
file /usr/adm/acct/nite/accterr.

3. To restart runacct at a specified state, in this case the MERGE
state, enter the following:

nohup runacct 0601 MERGE 2»/usr/adm/acct/nite/accterr &

5-18 Managing the Operating System

Fixing Damaged Files

Unfortunately, a file occasionally becomes damaged or lost.
Certain files must be fixed in order to maintain the integrity of the
accounting system.

Fixing wtmp Errors

The wtmp files seem to cause the most problems in the day-to-day
operation of the accounting system. When the date is changed and
the RT PC AIX Operating System is in multiuser mode, a set of
date change records is written to /usr/adm/wtmp. The wtmpfix
command is designed to adjust the time stamps in the wtmp
records when a date change is encountered. However, some
combinations of date changes and system restarts will slip through
wtmpfix and cause acctcon1 to fail. The following steps show
how to patch up a wtmp file:

cd /usr/adm/acct/nite
fwtmp <wtmp . mmdd)wtmp. new
ed wtmp.new

(Delete damaged records or
delete all records from beginning
up to the date change)

fwtmp -ic <wtmp . new)wtmp . mmdd

The fwtmp command without a flag converts a binary utmp file to
an ASCII file that you can edit. fwtmp with the -ic flag converts
the ASCII file back to the binary utmp format.

If the wtmp file is beyond repair, use the nulladm command to
create an mnpty wtmp file. This prevents any charging of connect
time.

Running System Accounting 5-19

Fixing tacct Errors

If you are using the accounting system to charge users for system
resources, the integrity of sum/tacct is quite important.
Occasionally, mysterious tacct records appear that contain
negative numbers, duplicate user numbers, or a user number of
65,535. If this happens, first use the prtacct command to check the
sum/tacctprev file. If it looks all right, the latest
sum/tacct.mmdd should be patched up, then sum/tacct recreated.
A simple patchup procedure would be:

cd /usr/adm/acct/sum
acctmerg -v <tacct.TnTndd >tacct.new
ed tacct.new

(Remove the bad records.
Write duplicate user number
records to anothp.r file.)

acctmerg - i <tacct. new >tacct. mmdd
acctmerg tacctprev <tacct. mmdd >tacct

Remember that the monacct procedure removes all the
tacct.mmdd files; therefore, sum/tacct can be recreated by
merging these files together.

5-20 Managing the Operating System

Accounting Reports

Daily Report

The runacct procedure produces five basic reports. They cover the
areas of connect accounting, daily use of system resources by each
user, command usage reported by daily and monthly totals, and a
report of the last time users were logged in.

The following sections describe the reports and the meaning of
their tabulated data.

In the first part of the /usr/adm/acct/sum/rpt mmdd report, a
from . . . to banner identifies the period reported on. The
beginning time for each report is the time the last accounting
report was produced. The ending time is the time the current
accounting report was produced. The banner is followed by a log
of system restarts, shutdowns, power fail recoveries, and any other
record written to /usr/adm/wtmp by acctwtmp.

The second part of the report breaks down line use. The TOTAL
DURATION entry tells how long the system was in the multiuser state
(that is, able to be accessed through terminal lines). The report
columns are:

LINE

MINUTES

PERCENT

SESS

The terminal line or access port.

The total number of minutes that line was in use
during the accounting period.

The total number of MINUTES the line was in use
divided into the TOTAL DURAT ION.

The number of times this port was accessed for a login
session.

ON The same as # SESS.

Running System Accounting 5-21

OFF The total number of both logouts and interrupts that
occur on a line.

During real time, you should monitor /usr/adm/wtmp. If it grows
rapidly, run acctconl to see which line is the noisiest. System
performance is affected as the interrupt rate increases.

Daily Usage Report

This report, /usr/adm/acct/nite/lineuse, gives a breakdown of
system resource use by user. Its data consists of:

UID

LOGIN NAME

CPU (MINS)

KCORE-MINS

CONNECT (MINS)

DISK BLOCKS

5-22 Managing the Operating System

The user ID.

The user name of the user. There can be more
than one user name for a single user ID; this
identifies which one is referred to.

The amount of time that the user's process
used the central processing unit. This
category is broken down into PRIME and NPRIME
(nonprime) use. The accounting system's
definition of prime and nonprime time is taken
from the /usr/lib/acct/holidays file.

A cumulative measure of the amount of
memory a process uses while running. The
amount shown reflects kilobyte segments of
memory used per minute. This measurement is
also broken down into PRIME and NPRIME
amounts.

The amount of time that a user was logged into
the system. This column is also subdivided
into PRIME and NPRIME use.

The number of disk blocks used.

OF PROCS

OF SESS

DISK SAMPLES

FEE

The number of processes that were invoked by
the user. This is a good column to watch for
large numbers indicating that a user may have
a faulty shell procedure.

The number of times the user logged onto the
system.

The number of times the disk accounting was
run to obtain the average number of DISK
BLOCKS listed earlier.

The total charged against the user by the
chargefee command.

Daily Command and Monthly Total Command Summaries

These two reports, /usr/adm/acct/sum/cms and
/usr/adm/acct/sum/daycms, are virtually the same except that
the Daily Command Summary only reports on the current
accounting period while the Monthly Total Command Summary
tells the story for the start of the fiscal period to the current date.
In other words, the monthly report reflects the data accumulated
since the last running of monacct.

These reports are sorted by TOTAL KCOREMIN, which is an arbitrary
yardstick but often a good one for calculating drain on a system.

COMMAND NAME The name of the command. Unfortunately,
all shell procedures are lumped together
under the name sh since only object modules
are reported by the process accounting
system. You should monitor the frequency of
programs called a.out or core or any other
name that does not seem quite right.
acctcom is also a good tool to use to
determine who ran a specific command and
to determine if superuser authority was used.

Running System Accounting 5-23

NUMBER CMOS

TOTAL KCOREMIN

TOTAL CPU-MIN

TOTAL REAL-MIN

MEAN SIZE-K

HOG FACTOR

CHARS TRNSFO

BLOCKS REAO

5-24 Managing the Operating System

The total number of invocations of this
particular command.

The total cumulative measurement of the
amount of kilobyte segments of memory used
by a process per minute of run time.

The total processing time this program has
accumulated.

The total real-time (wall clock) minutes this
program has accumulated. This total is the
actual time that you must wait for a system
prompt, as opposed to starting a process in
the background.

This is the mean of the TOTAL KCOREMIN over
the number of invocations reflected by
NUMBER CMOS.

A relative measurement of the ratio of
system availability to system utilization. It
is computed by the formula:

(total processor time) / (elapsed time)

This gives a relative measure of the total
available processor time consumed by the
process during its execution.

The total count of the number of characters
transferred by the read and write system
calls. (This total may be a negative number.)

A total count of the physical block reads and
writes that a process performed.

Last Login

This report, /usr/adm/acct/sum/loginlog,' simply gives the date
w hen a particular user name was last used. This could be a good
source for finding likely candidates for the archives or for getting
rid of unused logins and login directories.

Running System Accounting 5-25

Accounting File Formats

Figure 5-3 provides a description of the formats of the major
accounting data and summary data files.

File Record
Name Format Contents

wtmp utmp.h Login records:
1. user number
2. user name
3. device name
4. process ID
5. entry type
6. exit status
7. date / time

ctmp ASCII Connect records:
1. user number
2. user name
3. device name
4. prime connect time
5. nonprime connect time
6. session starting time
7. starting date

pacct* acct.h Process records:
1. beginning time

Spacct* 2. user time
3. system time
4. elapsed time
5. memory used
6. chars transferred
7. blocks read / written
8. command name

Figure 5-3 (Part 1 of 3). Accounting File Formats

5-26 Managing the Operating System

File Record
Name Format Contents

daytacct tacct Total accounting records:
I. user number

sum/tacct (acct.h) 2. user name
3. total kcore minutes
4. total connect time
5. total disk usage
6. number of processes
7. number of login

seSSIons
8. number of disk samples
9. fees for special services
10. total chars transferred
II. total blocks read /

written
12. queuing system charges

ptacct tacct Process total accounting
records:
I. user number
2. user name
3. total kcore minutes
4. number of processes
5. total chars processed
6. total blocks read /

written

ctacct tacct Connect total accounting
records:
1. user number
2. user name
3. total connect time

Figure 5-3 (Part 2 of 3). Accounting File Formats

Running System Accounting 5-27

File Record
Name Format Contents

cms binary Command summary
records:

daycms & 1. command name
2. number of times called

ASCII 3. total kcore minutes
4. total processor minutes
5. total read minutes
6. mean memory size
7. mean processor size
8. Hog factor

Figure 5-3 (Part 3 of 3). Accounting File Formats

5-28 Managing the Operating System

Accounting System Files

Files in the /usr/adm Directory

diskdiag

dtmp

fee

pacct

Spacct?MMDD

Diagnostic output during the execution of disk
accounting programs.

Output from the acctdusg command.

Output from the chargefee command, in
ASCII tacct records.

Active process accounting file.

Process accounting files for MMDD during
the execution of runacct.

Files in the /usr/adm/acct/nite Directory

active

cms

ctacct.MMDD

ctmp

U sed by runacct to record progress and print
warning and error messages. The file
activeMMDD is a copy of active made by
runacct after it detects an error.

ASCII total command summary used by the
prdaily command.

Connect total accounting records.

Connect session records.

Running System Accounting 5-29

daycms

daytacct

dacct

accterr

lastdate

lock
lockl

line use

log

logmmdd

reboots

statefile

tmpwtmp

wtmperror

wtmperrmmdd

wtmp.mmdd

5-30 Managing the Operating System

ASCII daily command summary used by the
prdaily command.

Total accounting records for one day.

Disk total accounting records, created by
dodisk.

Diagnostic output produced during the
execu tion of runacct.

The last day runacct executed, in date
+ %m %d format.

Used to control serial use of runacct.

tty line usage report URP-O hy prdaily.

Diagnostic output from acctconl.

Same as log after runacct detects an error.

Contains beginning and ending dates from
wtmp, and a listing of system restarts.

Used to record the current state during
execution of runacct.

wtmp file corrected by wtmpfix.

Contains wtmpfix error messages.

Same as wtmperror after runacct detects an
error.

The previous day's wtmp file.

Files in the fusrfadmfacctfsum Directory

cms

cmsprev

daycms

lastlogin

pacct.mmdd

rprtmmdd

tacct

tacctprev

tacctmmdd

wtmp.mmdd

Total command summary file for the current
fiscal period, in binary format.

The command summary file without the latest
update.

The command summary file for the previous
day, in binary format.

The file created by lastlogin.

Concatenated version of all pacct files for
mmdd. This file is removed after system
startup by the remove procedure.

The saved output of prdaily.

The cumulative total accounting file for the
current fiscal period.

The same as tacct without the latest update.

The total accounting file for mmdd.

The saved copy of the wtmp file for mmdd.
This file is removed after system startup by
the remove procedure.

Running System Accounting 5-31

Files in the /usr/adm/acct/fiscal Directory

ems?

fiserpt?

taeet?

5-32 Managing the Operating System

The total command summary file for fiscal
period ?, in binary format.

A report similar to that of prdaily for fiscal
period ?

The total accounting file for fiscal period ?

Chapter 6. U sing the System Activity Package

~,

",
)

/ L/

X / ~

~
/

J r/

~ t /

.~
~ 1-·,.

/
At... III / 1\
~~ 1'_\

y

, ~~ II)'~ r=t !:::::::: v "~I, j/ ~~ ~
" IV ",

~\
I:~

, "

~ti v' l"",,'/"
i---

V('~ R
"-

"

• 1----

,

"

Using the System Activity Package 6-1

CONTENTS

About This Chapter .. 6-3
An Introduction to the System Activity Package 6-4
System Activity Counters ... 6-5
System Activity Commands .. 6-9

The sar Command ;......................... 6-9
The sag Command ... 6-10
The timex Command ... 6-10

System Activity Daily Reports ... 6-12
Facilities .. 6-12
Suggested Operational Setup ... 6-12

System Activity Data Structures and File Formats 6-14
sysinfo.h .. 6-14
sar Data File Structure ... 6-16

6-2 Managing the Operating System

About This Chapter

This chapter describes the design and implementation of the AIX
System Activity Package.

Note: The system activity package is part of the Multi-User
Services licensed program. Before you can use the system activity
package, the Multi-User Services licensed program must be
installed on your system.

Using the System Activity Package 6-3

An Introduction to the System Activity Package

The AIX Operating System contains a number of counters that are
incremented as various system actions occur. The system activity
package reports system-wide measurements, including central
processing unit utilization, disk and tape I/O activities, terminal
device activity, buffer usage, system calls, system switching,
file-access activity, queue activity, and message and semaphore
activities.

The package provides three commands that generate various types
of reports. Procedures that automatically generate daily reports
are also included. The four functions of the activity package are:

The sar command This command allows you to generate system
activity reports in real-time and to save
system activities in a file for later use.

The sag command This command displays system activity in a
graphical form.

The timex command

Daily Reports

This command is a modified time command
that times a process and also optionally
reports concurrent system activity and process
accounting activity.

Procedures are provided for sampling and
saving system activities in a data file
periodically and for generating the daily
report from the data file.

The system activity information reported by this package is derived
from a set of system counters located in the AIX Operating System
kernel. These system counters are described under "System
Activity Counters" on page 6-5. "System Activity Commands" on
page 6-9 describes the commands provided by this package. The
procedure for producing daily reports is described under "System
Activity Daily Reports" on page 6-12.

6-4 Managing the Operating System

System Activity Counters

The AIX Operating System manages a number of counters that
record various activities and provide the basis for the system
activity reporting system. The data structure for most of these
counters is defined in the sysinfo structure in
/usr/include/sys/sysinfo.h (see "System Activity Data Structures
and File Formats" on page 6-14). The system table overflow
counters are kept in the _syserr structure. The device activity
counters are extracted from the device status tables.

The following is a list of the system activity counters sampled by
the system activity package:

CPU time counters
At each clock interrupt, the system increments one of
four time counters (cpu[]), depending on the mode the
CPU is in at the interrupt (idle, user, kernel, and wait for
I/O completion).

lread and lwrite
The Ire ad and Iwrite counters contain the count of
logical read and write requests issued by the system to
block devices.

bread and bwrite
The bread and bwrite counters contain a count of the
number of times data are transferred between the system
buffers and the block devices. The ratio of block I/O to
logical I/O is a common measure of the effectiveness of
system buffering.

phread and phwrite
The phread and phwrite contains a count of the read
and write requests issued by the system to raw devices.

Using the System Activity Package 6-5

pswitch and syscall
These counters are related to the management of
multiprogramming. syscall is incremented every time a
system call is invoked. The numbers of invocations of
read, write, fork, and exec system calls are kept in
counters sysread, syswrite, sysfork, and sysexec.
pswitch counts the times the switcher was invoked,
which occurs when:

1. A system call resulted in a road block.

2. An interrupt occurred resulting in awakening a higher
priority process.

3. A one-second clock interrupt occurs.

iget, namei, and dirblk
These counters apply to file-access oPerations. igct and
namei, in particular, are the names of AIX Operating
System routines. The counters record the number of
times the respective routines are called.

The namei routine performs file system path searches. It
searches the various directory files to get the associated
i-number of a file corresponding to a special file.

The iget routine locates the i-node entry of a file. It first
searches the i-node table in memory. If the i-node entry is
not in the table, the iget routine gets the i-node from the
file system where the file resides and enters it in the
i-node table in memory. iget returns a pointer to this
entry.

The namei routine calls iget, but other file access
routines also call iget. Therefore, counter iget is always
greater than counter namei.

Counter dirblk records the number of directory block
reads issued by the system. Note that the directory
blocks read divided by the number of namei calls
estimates the average path length of files.

6-6 Managing the Operating System

runque and runocc
These counters record queue activities. They are
implemented in the clock.c routine. The clock routine
periodically examines the process table to see whether
any processes are in memory and in ready state. If so, the
system increments the counter runocc and adds the
number of such processes to counter runque.

readch and writech
The readch and writech counters record the total
number of bytes (characters) transferred by the read and
write system calls.

Monitoring terminal device activities
There are six co un ters monitoring terminal device
activities. rcvint, xmtint, and mdmint are counters
measuring hardware interrupt occurrences for receiver,
transmi tter, and modem indi vid ually. ra wch, canch, and
outch count the number of characters in the raw queue,
canonical queue, and output queue. Characters
generated by devices operating in the "cooked" mode,
such as terminals, are counted in both ra wch and (as
edited) in canch; but characters from raw devices, such
as communication processors, are counted only in rawch.

msg and serna counters
These counters record message sending and receiving and
semaphore operations.

Monitoring I/O activities
Four counters are kept for each disk or tape drive in the
device status table. Counter i o_op s is incremented when
an I/O operation has occurred on the device. It includes
block I/O, and physical I/O. i o_bcnt counts the amount
of data transferred between the device and memory in
512-byte units. i o_act and i o_resp measure the active
time and response time for a device in time ticks summed
over all I/O requests that have completed for each device.
The device active time includes the device seeking,
rotating, and data transferring times, while the response
time of an I/O operation is the time the I/O request is
queued to the device to the time when the I/O completes.

Using the System Activity Package 6-7

i-nodeovf, fileovf, textovf, and procovf
These counters are extracted from the _syserr structure.
When an overflow occurs in any of the i-node, file, text,
and process tables, the corresponding overflow counter is
incremen ted.

6-8 Managing the Operating System

System Activity Commands

The system activity package provides three commands for
generating various system activity reports and one command for
profiling disk activities. These tools facilitate observation of
system activity during:

• A controlled standalone test of a large system

• An uncontrolled run of a program to observe the operating
environment

• Normal production operation.

The sar and sag commands permit you to specify a sampling
interval and number of intervals for examining system activity and
then to display the observed level of activity in tabular or
graphical form. The timex command reports the amount of system
activity that occurred during the precise period of execution of a
timed command.

The sar Command

The sar command can be used in the following two ways:

• When you specify the frequency parameters interval and
number, sar invokes the data collection program sadc to
sample the system activity counters in the operating system
every interval seconds for number intervals and generates
system activity reports in real-time. Generally, it is desirable to
include the option to save the sampled data in a file for later
examination. For the format of this file, see "System Activity
Data Structures and File Formats" on page 6-14. In addition to
the system counters, a time stamp is also included. It gives the
time at which the sample was taken.

• If you do not supply frequency parameters, sar generates
system activity reports for a specified time interval from an
existing data file that was created by sar at an earlier time.

Using the System Activity Package 6-9

A convenient usage is to run sar as a background process, saving
its samples in a temporary file but sending its standard output to
/dev/null. Then an experiment is conducted after which the
system activity is extracted from the temporary file.

See sar in AIX Operating System Commands Reference for a
discussion of all flags and usage.

The sag Command

The sag command displays system activity data graphically. It
relies on the data file produced by a prior run of sar, from which
any column of data or the combination of columns of data can be
plotted. A fairly simple but powerful command syntax allows the
specification of cross plots or time plots. Data items are selected
using the sar column header names.

See sag in AIX Operating System Commands Reference for a
discussion of all flags and usage.

The timex Command

The timex command is an extension of the time command.
Without flags, timex behaves like time. In addition to giving the
time information, it can also display a system activity report and a
process accounting report. For all the flags available, see AIX
Operating System Commands Reference.

In the report, the user and sys times reported in the second and
third lines apply to the measured process itself, including all its
children. The remaining data, including cpu user % and cpu sys
0/0, apply to the entire system.

6-10 Managing the Operating System

While the normal use of timex will probably be to measure a
single command, multiple commands can also be timed, either by
combining them in an executable file and timing it or by entering:

timex sh -c "cmdl; cmd2; ... ;"

This establishes the necessary parent-child relationships to
correctly extract the user and system consumed by cmdl,
cmd2, . .. (and the shell).

Using the System Activity Package 6-11

System Activity Daily Reports

Facilities

The previous section described the commands available to users to
initiate activity observations. It is probably desirable for each
installation to routinely monitor and record system activity in a
standard way for historical analysis. This section describes the
steps that you may follow to automatically produce a standard
daily report of system activity.

sadc This command reads system counters from /dev/kmem and
records then in a file. In addition to the file parameter, two
frequency parameters are usually specified to indicate the
sampling interval and number of samples to be taken. If
frequency parameters are not given, it writes a dummy
record in the file to indicate s system restart.

sal The shell procedure that invokes sadc to write system
counters in the daily data file /usr/adm/sadd, where dd
represents the day of the month. It may be invoked with
sampling interval and iterations as parameters.

sa2 The shell procedure that invokes sar to generate daily report
/usr / adm/ sal sardd from the daily data file
/usr/adm/sa/sadd. It also removes the daily data files and
report files after seven days. The starting and ending times
and all report options of sar are applicable to sa2.

Suggested Operational Setup

You should use cron to control the normal data collection and
report generation operations. For example, the sample entries in
/usr/spool/cron/crontabs/sys:

o * * * 0,6 /usr/lib/sa/sa1
o 18-7 * * 1-5 /usr/lib/sa/sa1
o 8-17 * * 1-5 /usr/lib/sa sal 1200 3

6-12 Managing the Operating System

would cause the data collection program sadc to be invoked every
hour on the hour. Moreover, depending on the arguments
presented, it writes data to the data file one to three times at every
20 minutes. Therefore, under the control of cron, the data file is
written every 20 minutes between 8:00 and 18:00 on week days and
hourly at other times.

Note that data samples are taken more frequently during prime
time on week days to make them available for a finer and more
detailed graphical display. You should invoke sal hourly rather
than invoking it once every day, as this ensures that if the system
crashes, data collection will be resumed wi thin an hour after the
system is restarted.

Because system activity counters restart from zero when the system
is restarted, a special record is written on the data file to reflect
this situation. This process is accomplished by invoking sadc in
/etc/rc, without frequency parameters, when going to multiuser
state:

su adm -c II/usr/l i b/sa/sadc /usr/adm/sa/sa' date +%d'il

cron also controls the invocation of sar to generate the daily
report via shell procedure sa2. You may choose the time period
the daily report is to cover and the groups of system activity to be
reported. For instance, if:

o 20 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:00 -i 3600 -uybd

is an entry in /usr/spool/cron/crontabs/sys, cron will execute
the sar command to generate daily reports from the daily data file
at 20:00 on week days. The daily report reports the processor
utilization, terminal device activity, buffer usage, and device
activity every hour from 8:00 to 18:00.

In case of a shortage of the disk space or for any other reason,
these data files and report files can be removed by a user with
superuser authority.

Using the System Activity Package 6-13

System Activity Data Structures and File Formats

sysinfo.h

This section contains the data structures and file formats used by
the system activity package.

#ifndef Jl_SYSINFO
#define Jl_SYSINFO

struct sysinfo {
time_t cpu[4]

#define CPUJDLE 0
#define CPU_USER 1
#define CPU_KERNEL 2
#define CPU_WAIT 3

time_t wait[3]
#define W JO 0
#define W YIO 2

long bread;
long bwri te;
long lread;
long lwrite;
long phread;
long ph wri te;
long pswitch;
long syscall;
long sysread;
long syswrite;
long sysfork;
long sysexec;
long runque;
long runocc;
long iget;
long namei;
long dirblk;
long readch;

6-14 Managing the Operating System

long writech;
long rcvint;
long xmtint;
long mdmint;
long rawch;
long canch;
long outch;
long msg;
long serna;
long ksched;
long koverf;
long kexit;

};

extern struct sysinfo sysinfo;

struct syswait {
short iowai t;
short physio;

};

extern struct syswait syswait;

extern syserr {
long i-nodeovf;
long fileovf;
long textovf;
long procovf;
long shi[5];

#define SBI_SILOC 0
#define SBLCRDRDS 1
#define SBI~LERT 2
#define SBLFAULT 3
#define SBI_TIMEO 4
};

extern struct syserr syserr;
#endif

Using the System Acti vi ty Package 6-15

sar Data File Structure

The structure of the binary daily data file is:

struct sa {
struct sysinfo si;
int szi-node; 1* current entries of i-node table *1
int szifile; 1* current entries of file table *1
int szitext; 1* current entries of text table *1
int sziproc; 1* current entries of proc table *1
int mszi-node; 1* size of i-node table *1
int mszfile; 1* size of file table *1
int msztext; 1* size of text table *1
int mszproc; 1* size of proc table *1

long i-nodeofv; 1* cum. overflows of i-node table *1
long fileofv; 1* cum. overflows of file table *1
long textofv; /* CUlll. overflows of text table * /
long procofv; 1* cum. overflows of proc table *1
time_t ts; 1* time stamp, seconds *1
long devio[NDEVS] [] 1* device info for up to NDEVS units *1

#define 10_OPS 0 1* cum. 110 requests *1
#define 10_BeNT 1 1* cum. blocks transferred *1
#define 10-ACT 2 1* cum. drive busy time in ticks *1
#define 10-RESP 3 1* cum. 110 resp time in ticks *1
};

6-16 Managing the Operating System

Appendix A. Printer Control Codes

Figure A-Ion page A-2 lists the printer control codes that you can
use with RT PC printers. If the printer can perform the function
by itself, the system passes the code directly to the printer. If the
codes do not work on the printer installed on your system, the
printer support system performs one of the following actions:

• Tries to emulate the control with functions that the installed
printer does have.

• Removes the control from the output stream. The function is
not performed.

The three code columns in the table show different representations
of the same code, depending on how you enter the code into the
data stream.

Control Name This column shows the name of the control
character. In many cases the name is the same as the
keyboard key that produces the required ASCII code
for the control code.

Hex Code This column show the hexadecimal representation of
the control code.

ASCII Code This column shows the decimal representation of the
control code.

Printer Control Codes A-I

Category Function Performed Control Name Hex Code ASCII Code

Control: Provides a null value. NUL 00 0
Used as a list terminator.

Sounds the buzzer. 2 BEL 07 7

Prints the next character as a ESC " 1B5E 27 94
printable character. The next
character is a control with an ASCII
value of less than 32.

Prints more than one character with ESC \ m n c 1B5C m n c 27 92 mn
an ASCII value that is below 32. C

Clears the printer memory of all data CAN 18 24
waiting to be printed following the
last received line feed. !

C't .L. 1 .L. _ I' I· • •

ESC [0 1B5B4F 27 91 79 Oel,s l'eS01ULIOIl lor ras{;er Image print n n
(n indicates a string of control bytes).! n

Performs a printer power on reset.! ESC [K 1B5B4B 27 91 75 1
0100 0 o 0

Positioning Sets back space. BS 08 8
the
Printhead: Sets horizontal tab. HT 09 9

Sets horizontal tabs ESC 0 n NUL 1B44nOO 27 68 n 0
(n is a list of one or more tab
positions).
Sets tab stops to power-on settings. ESC R 1B52 27 82

Sets line feed. LF OA 10

Sets reverse line feed. ESC] 1B50 27 93

Starts automatic line feed. ESC 5 1 1B35 1 27 53 1

Figure A-I (Part 1 of 7). Printer Control Codes

A-2 Managing the Operating System

Category Function Performed Control Name Hex Code ASCII Code

Stops automatic line feed. ESC 5 0 IB35 0 27 53 0

Provides a carriage return (no line CR 00 13
feed).
Provides a vertical tab. VT OB 11

Sets vertical tabs ESC B n NUL IB42 n 27 66 n
(n is a list of tab positions). NUL NUL

Paper Provides a form feed. FF OC 12
Control:

Sets top of forms. 2 ESC 4 IB34 27 52

Ignores End of Forms. 2 ESC 8 IB38 27 56

Respects End of Forms. 2 ESC 9 IB39 27 57

Sets skip perforation 2 ESC N n IB4E n 27 i8 n
(n is lines to skip).

Stops skip perforation 2 ESC 0 IB4F 27 79

Formatting Uses 12 characters-per-inch printing. ESC IB3A 27 58
the Page
Image: Sets 1/8" Line spacing. ESC 0 IB30 27 48

Starts n/72" Line spacing. ESC 2 IB32 27 50

Sets n/72" Line spacing. ESC A n IB41 n 27 59 n

Sets Page Length. 2 ESC C n IB43 n 27 67 n
(n is lines per page).

Sets Page Length 2 ESC COn IB43 0 n 27 67 0 n
(n is inches per page).

Figure A-l (Part 2 of 7). Printer Control Codes

Printer Control Codes A-3

Category Function Performed

Sets left and right margins
(m and n are column numbers).

Sets top and bottom margins
(m and n are length of control;
ti to are high/low-order bytes of top
margin; bi bO are high/low-order bytes
of bottom margin).

Starts automatic line justification.

Stops automatic line justification.

Starts proportional spacing.

Stops proportional spacing.

Sets print resolution for draft quality
font and ESC K image data
(n indicates the resolution value).!

Sets presentation surface color
(n indicates the available colors).!

Controlling Sets color band 1 (yellow).
the Ribbon:

Sets color band 2 (magenta).

Sets color band 3 (cyan).

Sets color band 4 (black).

Sets automatic ribbon band shift.

Figure A-I (Part 3 of 7). Printer Control Codes

A-4 Managing the Operating System

Control Name Hex Code

ESC X m n

ESC [S m n
tl to bl bO

ESC M 1

ESC M 0

ESC P 1

ESC P 0

ESC [0 n

ESC [L n

ESC y

ESC m

ESC c

ESC b

ESC a

1B58 m n

1B5B53 m
n tl to bl
bO

1B40 1

1B40 0

1B50 1

1B50 0

1B5B30
0100 n

1B5B4C
0200 00 n

1B79

1B60

1B63

1B62

1B61

ASCII Code

27 88 m n

27 91 83
m n tl to
bl bO

27 77 1

27 77 0

27 80 1

27 80 0

27 91 48 1
o n

27 91 76 2
o n

27 121

27 109

27 99

27 98

27 97

Category Function Performed Control Name Hex Code ASCII Code

Selecting
Print
Mode:

Sets the background color for Text, ESC [N n
ESC K, or ESC [0 printing
(n indicates the available colors).!

Sets the foreground color for Text, ESC [M n
ESC K, or ESC [0 printing
(n indicates the available colors).!

Swaps the foreground and background ESC [J
printing color
(n = 0 indicates normal printing; n =
1 indicates reversing background and
foreground colors).!

Starts double wide printing.

Stops double wide printing.

Starts double wide continuous
printing.
Stops double wide continuous
printing.
Starts compressed printing.

Stops compressed printing.

Starts under line printing.

Stops underline printing.

Starts emphasized printing.

Stops emphasized printing.

Starts double strike printing.

Stops double strike printing.

SO

OC4

ESC W 1

ESC W 0

SI

OC2

ESC -1

ESC -0

ESC E

ESC F

ESC G

ESC H

Figure A-I (Part 4 of 7). Printer Control Codes

1B5B4E
0100 n

1B5B40
0100 n

1B5B50
0100 n

OE

14

1B57 1

1B57 0

OF

12

1B20 1

1B20 0

1B45

1B46

1B47

1B48

27 91 78 1
o n

27 91 77 1
o n

27 91 93 1
o n

14

20

27 87 1

27 87 0

15

18

27 45 1

27 45 0

27 69

27 70

27 71

27 72

Printer Control Codes A-5

Category Function Performed Control Name Hex Code ASCII Code

Starts superscript printing. ESC S 0 1B53 0 27 83 0

Starts subscript printing. ESC S 1 1B53 1 27 83 1

Stops superscript or subscript ESC T 1B54 27 84
printing.
Starts color underline, bypassing ESC [B 1 n 1B5B42 27 91 66 2
white space 0200 1 n o 1 n
(n defines the available color).1

Starts continuous color underline ESC [B o n 1B5B42 27 91 66 2
(n defines the available color).! 0200 0 n o 0 n

Stops underline. ESC [E 1B5B450000 27 91 69 0
0

Selecting Uses PC character set 2. ESC 6 1B36 27 54
the
Character Uses PC character set 1. ESC 7 1B37 27 55
Set:

Selects font ESC I n 1B49 n 27 73 n
(n specifies the font; varies with
printer type).

Sets graphic set ID ESC [T 1 0 1B5B54 1 0 27 91 84 1
(c selects graphic set 0, 1 or 2). C C o C

Using Bit Sets bit graphics normal ESC K n 1B4B n 27 75 n
Image (n is a string of control bytes).
Graphics: 3

Sets graphics dual-half speed ESC L n 1B4C n 27 76 n
(n is a string of control bytes).

Sets bit graphics dual-normal speed ESC Y n 1B59 n 27 89 n
(n is a string of control bytes).

Sets bit graphics high-half speed ESC Z n 1B5A n 27 90 n
(n is a string of control bytes).

Figure A-I (Part 5 of 7). Printer Control Codes

A-6 Managing the Operating System

Category Function Performed Control Name Hex Code ASCII Code

Sets aspect ratio to 1:l. ESC n 1 1B6E 1 27 110 1

Sets aspect ratio to 5:6. ESC n 0 1B6E 0 27 110 0

Moves carriage to home position. ESC < 1B3C 27 60

Moves right n/120. ESC d n 1B64 n 27 100 n

Moves left n/120. ESC e n 1B65 n 27 101 n

Starts unidirectional printing. ESC U 1 1B551 27 85 1

Stops unidirectional printing. ESC U 0 1B550 27 85 0

Sets 7 dot line spacing. ESC 1 1B31 27 49

Sets graphics line spacing ESC 3 n 1B33 n 27 51 n
(n is the number of 1/216-inch steps).

Sets variable space line feed ESC J n 1B4A n 27 74 n
(n is the number of 1/216-inch steps).

Moves vertical presentation down the ESC [U n 1B5B55 27 91 85 1
page in number of dots 0100 n o n
(n indicates how far to move the
presentation). 1

Selecting a Selects the printer to accept data. 2 DC1 11 17
Printer:

Deselects the printer so as to not DC3 13 19
receive data. 2

Sets initialize function on. 2 ESC ? 1 1B3F 1 27 63 1

Sets initialize function off. 2 ESC ? 0 1B3F 0 27 63 0

Figure A-I (Part 6 of 7). Printer Control Codes

Printer Control Codes A-7

Category Function Performed Control Name Hex Code

Queries a parallel attached printer for ESC Q n
identification. If the device queried is
equal to n, this printer deactivates the
select line. 2

1851 n

Figure A-I (Part 7 of 7). Printer Control Codes

Use with the Color Jet Printer.

2 Do not use these controls when using the print queue.

ASCII Code

27 81 n

3 These controls may not work on the installed printer. Use passthrough mode
to send these codes to the printer.

A-8 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

Appendix B. Getting Started With Distributed
Services Customization Commands

This appendix tells you how to use the commands that build the Distributed
Network Node Table, the Network Users/Groups Table, and Distributed IPC
Queues Table.

Note: You must have superuser authority or be a member of the system
group to create or modify these tables. Any user can browse the tables for
information.

Using Customization Commands B-1

TNL SN20-9862 (June 26 1987) to SBOF-0168

Contents

Using Distributed Services Menus B-3
Command Bar Commands B-7

ADD-Adding Entries to a Table B-7
CHANGE-Changing an Entry B-11
CLOSE-Closing a Window B-12
COPY-Copying Profiles B-13
DELETE-Deleting an Entry B-13
PICK-Picking Entries B-14
PRINT-Printing a List B-16
SORT-Sorting Entries B-17
UPDATE-Updating Profiles B-18

Using the dsldxprof Command B-19
Adding Translation Entries B-19
Deleting Translation Entries B-27
Modifying Translation Entries B-28
Using dsldxprof with Remote Tables B-29

B-2 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I USil1.g Distributed Services Menus

To use a windows interface to build, examine, or modify the Distributed
Network Node Table, the Network Users/Groups Table, or the Distributed
IPC Queues Table, run one of the following commands:

ndtable To access the Distributed Network Node Table

ugtable To access the Network Users/Groups Table

ipctable To access the Distributed IPC Queues Table.

These commands use data files that reside, by default, in the local directory
/etc/profsvcs/pfslocal. When you start up each command, it asks you to
identify the data files you want to access:

Enter Node ID Nickname »
(Default is the local id.)

If you specify a NID or node nickname, the files found in
/etc/profsvcs/pfslocal on the specified node are accessed. If you specify a
directory name, the command looks under /etc/profsvcs for a directory
with that name and uses the files found in that directory.

Using Customization Commands B-3

TNL SN20-9862 (June 26 1987) to SBOF-0168

The list of nodes, DID/GID translations, or IPC message queues currently
configured then appears in a window:

»UPDATE ~>SORT»ADD»PRINT »(lOSE

Distributed NeJwork.Node Table: Node2000002A

Last UPOATEat 14:25

Remote
Nickname

»057
»092

Network Namel IBMRTDS

Attachment
Prof ile

2000068E
2120B68E
38406512
COEFAUlT

AJ2DLO07

Information also appears in a command bar above the window and in
pop-up panels that appear when you make certain selections. In the
display screen shown above, the available commands are PIC K, UP DA T E,
SORT, ADD, PRINT, and CLOSE.

B-4 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

The command bar displays the commands currently available in a session.
When you select an entry in the list, the command bar changes to show the
commands that are available for that entry:

»CHANGE »COpy > >OELETE > >CLOSE

Distributed Network Node Table: Node 2000002A

Last UPDATE at 14: 25 Network Name: IBMRTDS

Remote Remote Node Data link Connection Attachment
Nickname Node 10 Security Type Profile Prof i le

»057 2000068E Secure Ethernet 2000068E 2000068E
»092 2120B356 Secure Ethernet 2120B68E 2120B68E
»Admi n 38406512 Secure Ethernet 38406512 38406512
» 2000002A Secure Ethernet COEFAULTCFD (DEFAULT

AJ2DLO06

In the display screen shown above, the commands that appear on the
command bar when you select an entry are CHANGE, COPY, DELETE, and
CLOSE.

Depending on the display station, either the> or » symbol appears before
certain items on the display screen. Each item (word, phrase, or symbol)
that follows this symbol is called a button and you can select it as a unit
from the display screen. If an area filled with periods (...) follows this
symbol, this area is called an input field. An input field allows you to type
in or change the data required in an entry.

You can use a mouse to select entries, buttons, and input fields, or you can
use Usability Services Functions from the keyboard. To identify the
necessary keys or key sequences, see the Usability Services Functions

Using Customization Commands B-5

TNL SN20-9862 (June 26 1987) to SBOF-0168

keyboard template that corresponds to your keyboard. The functions you
will probably use most frequently are Command Bar (to move between the
display window and the command bar), Do, Help, Quit, Select, and Tab.

B-6 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Command Bar Commands

I ADD-Adding Entries to a Table

Within any tables list window, selecting ADD allows you to add a new entry
to the list.

I Adding a Node to the Network

When you select ADD from the command bar of the Distributed Network
Node Table window, you see the following pop-up panel:

Remote Nickname))

Remote Node 10))

Node Security))None
)) Secure

Data Link Type)) Ethernet
))SOLC

Attachment Profile))
If Left blank, Remote Node 10 will be used

Figure B-l. Distributed Network Node Table ADD Panel

You must provide a Remote Node I D. All other input fields are either
optional (Remote Ni ckname) or have default values (Node Securi ty,
Data Lin k Type, Attachment Profi 1 e).

The Remote Nickname can contain both uppercase and lowercase letters.
In the Node ID input field, ndtable converts lowercase alphabetic
characters to uppercase.

Using Customization Commands B-7

TNL SN20-9862 (June 26 1987) to SBOF-0168

If you select Secure, you are given the following additional choices:

PLEASE SELECT BIND PASSWORD TYPE.
»30-80 CHARACTER PHRASE PASSWORD

»16 CHARACTER HEX BIND PASSWORD

Figure B-2. Password Selection Panel

You are asked to enter your password twice:

When you have made all your choices in the ADD pop-up, press Do to add
the new node to the list.

B-8 Managing the Operating System

TNL SN20-9862 (Jl,lne 26 1987) to SBOF-0168

I Adding a User or Group to the Network

When you select ADD from the command bar of the Network Users/Groups
Table window, you will see the following pop-up panel:

User/Group Entry » User » Group

User/Group Local 10 »
(opt. if U/G name entered exists)

User/Group Name »
(Ignored if U/G Id entered)

Outbound Network 10 »
Inbound Network 10 » •..•......

Ori g; nat; ng Node IO/N; ckname »

Figure B-3. Network Users/Groups Table ADD Panel

Select User or Group to indicate whether the entry describes a user (the
default) or a group ID. If you are adding an entry to a local table, you must
specify either a numeric UID (GID) or the user (group) name. If you specify
a numeric ID, the corresponding name from the /ete/passwd or jete/group
file will be displayed (even if you specify a different name). If you are
adding an e~try to a remote table, you must specify a numeric ID, and no
corresponding name will be displayed.

If you enter a NID in the Or; g; nat; ng Node lO/N; ckname input field,
you must enter all alphabetic characters as uppercase characters. Unlike
ndtable, ugtable cannot convert lowercase characters to uppercase, since
you can enter a node nickname in the same field, a name that can contain
both upper- and lowercase characters.

You can have more than one entry in the table for a single local ID, but
each entry must have the same outbound ID. If you try to add another
entry that has a different outbound ID from the one already associated with
that local ID, you will be asked if you want to change all the existing
outbound IDs. You may then press Do to change all the outbound IDs or

Using Customization Commands B-9

TNL SN20-9862 (June 26 1987) to SBOF-0168

Quit to return to the ADD pop-up panel where you can change the
information for the new ID.

I Adding a Message Queue to the Network

When you select ADD from the command bar of the Distributed IPC Queues
Table window, you will see the following pop-up panel:

Queue Name
Local Key
Remote Key
Remote Node ID/Nickname

))
»...... (196608-104575)
»...... (196608-104575)
))

If you are adding a local queue profile, you must specify a Queue Name.
You can also specify a L 0 cal Key (one not already assigned). If you do not
specify a local key, ipctable provides that value when you press Do.

If you are adding a remote queue profile, you must specify a Queue Name,
a Remote Key, and a Remote Node lO/Ni ckname. The queue name and
remote key must match those of the corresponding queue profile installed at
the remote node.

If you enter a NID in the Ori gi nat; ng Node lO/Ni ckname input field,
you must enter all alphabetic characters as uppercase characters. Unlike
ndtable, ipctable cannot convert lowercase characters to uppercase, since
you can enter a node nickname in the same field, a name that can contain
both upper- and lowercase characters.

B-IO Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I CHANGE-Changing an Entry

Selecting CHANGE allows you to modify the description of an existing entry.

I Changing An Existing Node Entry

When you select CHANGE, a pop-up panel appears containing the fields that
you can change. When you change an existing node entry in the local
node, the following actions occur, depending on the changes you have
made:

• If you change the node nickname or node ID, all tables-the Distributed
Network Node Table, the Network Users/Groups Table, and the
Distributed IPC Queues Table-are updated to reflect that change.

• If you change node security from None to Secure or if you reselect
Secure, you are prompted for a node password (see page Figure B-2 on
page B-8). The Node password is encrypted with the Communication
Authority Password key and stored in the SNA Services connection
profile. (For more information see SNA Services Guide and Reference.)
The node password must be the same on both communicating nodes
(that is, in the connection profile on each node).

If you change node security from Secure to None, the node password is
deleted from the SNA Services connection profile.

• If you change the attachment profile name, all the other SNA Services
connection profiles that refer to the attachment profile are also
changed. If the new attachment profile does not exist, it is created and
if no other profiles use the old profile, it is deleted.

I Changing Network User/Group Entries

The change pop-up panel displays the values in the user/group entry
selected. The name comment field will not be displayed if a remotely
mounted node is being configured. The change may be either to an ID or a
name and the same validation checks will be made for the name/ID as in
adding and copying. If the outbound ID is changed and if other entries
have the same local ID, then you see a pop-up panel that allows you to
change the outbound IDs of all old entries to the new ID or to return to the
add/copy pop-up panel to correct the outbound ID on the new entry.

Note: The system does not update the passwd or group files. You
must run the users command to update these files if necessary.

Using Customization Commands B-11

TNL SN20-9862 (June 26 1987) to SBOF-0168

Another way to change a profile is to copy it first with the COpy
command and then change the information in the copied panel.

I Changing IPC Message Queues

You can change the local queue name, the local IPC key, the remote IPC
key, or the remote node ID or nickname.

I CLOSE-Closing a Window

Use the CLOSE command when you have finished working with a window.
This command removes the selected window from the screen and returns
you to the AIX Operating System.

B-12 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I COPY-Copying Profiles

The COpy command copies a selected profile entry. It does not change the
original en try.

Sometimes it is easier to copy an entry to make minor changes rather than
adding an entry. When you copy a node entry, the default values supplied
for the SNA Services profiles used for communicating with this node are
taken from the selected node entry.

I DELETE-Deleting an Entry

Warning: The DELETE command permanently erases the
selected profile entry.

I Deleting An Existing Remote Node Entry

When you delete an existing remote node entry from the local node's
database, ndtable does the following:

• Deletes the node's SNA Services Protocol profiles, if they are not used
by any other profiles.

• Removes any keys in the IPC key profile that contain the NID of the
deleted node.

• Removes all Network Users/Groups Table entries that identify the
deleted node as the originating node.

I Deleting a User or Group

If you delete an entry in the local Network Users/Groups Table, the kernel
rebuilds its Network Users/Groups Table when you have completed
configuring the table.

Note: The system does not delete any entries in the passwd or group
files. You must run the users command to make any required updates to
these files.

Using Customization Commands B-13

TNL SN20-9862 (June 26 1987) to SBOF-0168

I PICK-Picking Entries

The PICK command allows you to select which entries to display in the
window by specifying a pattern, a specific name, or a attribute to match.

When you select PICK, you will see one of the following pop-panels:

Remote Nickname Matching

Remote Node Id Matching

Node Security Matching

Data Link Type Matching

Connection Profile Matching ,
Attachment Profile Matching

» •••••••••••••

»••....•.

»None
»Secure

» Ethernet
»SDLC

»

»

Figure B-5. Distributed Network Node Table PICK panel

B-14 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

User/Group Name Matching
User/Group Matching
Loca 1 10 f·1atchi ng
Outbound Network 10 Matching
Inbound Network 10 Matching
Originating Node IO/Nickname Matching

»
)) User)) Group
))
))
))
))

Figure B-6. Network Users/Groups Table PICK panel

Queue Name Matching »
Local Key Matching »
Remote Key r·1atchi ng))•.........
Remote Node IO/Nickname Matching »

Figure B-7. Distributed IPC Queues Table PICK panel

The strings you enter into these pop-up fields can contain pattern-matching
characters (*) at the beginning, at the end, or at both the beginning and
end of the string. However, you cannot imbed pattern-matching characters
within the string. Select DO to process the pop-up choices. The current
panel changes to display the entries that meet the specified criteria.

Press Quit to cancel a pop-up panel without saving your changes. To
display all of the profiles again (after using PICK), type * in the NAME field
and press Do or select UP DA T E.

Using Customization Commands B-15

TNL SN20-9862 (June 26 1987) to SBOF-0168

I PRINT-Printing a List

Select PRI NT to write the list displayed on the screen to a file or to the
printer.

When you select P R I NT, you will see the following pop-up panel:

Print with Headings: »Ves »No

Output Print to: » Fil e » Pri nter

Figure B-S. PRINT Panel

You can choose to print both the headings and list that appear on the
screen or only the list.

If your print destination is a file you will see the following additional panel:

Fil e Name: »

File Action: »Replace » Return Error
(Action taken if file already Exists)

Figure B-9. PRINT File Action Panel

Select the action you want the system to take if the specified file name
already exists.

B-16 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I SORT-Sorting Entries

The SORT command allows you to select the order in which to list the
profiles that are currently displayed in the Distributed Network Node
Table, Network Users/Groups Table, or Distributed IPC Queues Table
windows.

When you select SORT you see one of the following panels:

By

In Order

»Remote Nickname
»Node ID
» Node Securi ty
»Oata Link Type
»Connection Profile
»Attachment Profile

»Ascendi ng
»Descending

Figure B-10. Distributed Network Node Table SORT Panel

By:

In Order:

» User/Group Name
» User/Group
»Loca 1 ID
»Outbound Network ID
»Inbound Network 10
»Originating Node IO/Nickname

»Ascending
»Descending

Figure B-11. Network Users/Groups Table SORT panel

Using Customization Commands B-17

TNL SN20-9862 (June 26 1987) to SBOF-0168

By

In Order

)) Queue Name
)) Local Key
)) Remote Key
»Remote ID/Nickname

)) As cend i ng
))Descendi ng

Figure B-12. Distributed IPC Queues Table SORT Panel

You can select one field to sort by and one sort order.

I UPDATE-Updating Profiles

Using UPDATE, you can refresh information displayed in a window with
changes made from other windows. The UP DA T E command is not a function
automatically performed by the system. The time of the last UPDATE
command is displayed so that you know when you last updated the list. For
example:

Last Update at 15:30

B-18 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Using the dsldxprof Command

The dsldxprof command can be very useful if you work with large Network
Users/Groups Tables or if you need to make many changes. In addition, if
you are building several Network Users/Groups Tables that have many
translation entries in common, you can define those entries in a single
ASCII file, and use dsldxprof to load them into each Network
Users/Groups Table that you need to customize.

I Adding Translation Entries

The dsldxprof command reads one line at a time from standard input or
from an ASCII file specified with the -f flag. Each input line defines one
translation entry and must contain the following six fields:

name

where

name

type

local-ID

type local-ID outbound-ID inbound-ID node-ID

Specifies a login name. If you provide a local ID number in
the third field, you can use a - (minus) character as a place
holder for this field.

Specifies whether the line defines a UID or a GID translation
entry. The character U specifies a UID translation entry; the
character G a GID translation entry. These can be lower- or
uppercase characters.

Specifies a local ID number. If you specify a valid user name
in the first field, you can use a - (minus) character as a place
holder for this field.

Note: Unlike the ugtable command, dsldxprof does not
warn you if the ID number is not defined in the /ete/passwd
or fete/group file.

outbound-ID Specifies the outbound network ID number to associate with
the local ID number. If you specify an inbound ID and a
node ID, you can use a - (minus) character as a place holder
for this field.

Using Customization Commands B-19

TNL SN20-9862 (June 26 1987) to SBOF-0168

inbound-ID Specifies the incoming network ID number to associate with
the local ID number. If you do not specify a node ID, you can
use a - (minus) character as a place holder for this field. If
you do specify a node ID, you must provide a value for this
field.

node-ID Specifies the node ID number or nickname to associate with
the inbound ID number specified in field four. If you do not
specify an inbound ID, you can use a - (minus) character as a
place holder for this field.

For example, the following input line:

u o o o *
specifies the same translation entry as the following ugtable panel:

User/Group Entry))User))Group

User/Group Local ID »0
(opt. if U/G name entered exists)

User/Group Name »
(Ignored if U/G Id entered)

Outbound Network ID »0••...
Inbound Network ID »0 ..•.•....•

Originating Node ID/Nickname »*

B-20 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-OI68

Example One: The following file defines the translation entries
necessary to set up limited network access for most users and to allow one
network user to have local superuser authority:

U
G
U

100
100
o

100
100

* *
* *
201 20810CBF

Assuming that this file has the name; dtab 1 e and is copied to each node in
the network, the following command:

dsldxprof -f idtable

builds a Network Users/Groups Table that enables user 201 working at
node 20810CBF to do any further network customization needed at any
node in the network. Other users have limited access to the network until
that customization is completed.

Note: The Distributed Network Node Tables must also be built at each
node before user 201 can do remote customization.

Using Customization Commands B-21

TNL SN20-9862 (June 26 1987) to SBOF-0168

Example Two: If all the nodes in the network share the same
/ete/passwd and fete/group files (see "Managing the Single System Image
Environment" on page 3-70), you can use these files to build the Network
Users/Groups Table.

Assume that a node has the following /ete/passwd and fete/group files:

passwd file

root: : 0 : 0: : / :
su:*:O:O: :/:
daemon:*:l:l::/etc:
netmail :*:1:1: :/usr/spool/qftp:/usr/lib/INnet/waxsrvr
bin:*:2:2: :/bin:
sys:*:3:3: :/usr/sys:
adm:*:4:4::/usr/adm:
uucp:*:5:1: :/usr/spool/uucppublic:/usr/lib/uucp/uucico
adduser:*:O:O::/usr/adm:/etc/adduser
guest:*:100:100::/usr/guest:
tftpd:*:6:1::/tftpd:
smtpd:*:7:1: :/smtpd:
ctw: :201:1: :/u/ctw:/bin/sh
mark: :202:1::/u/mark:/bin/sh
mel:: 203: 1:: /u/mel : fbi n/sh
gorg::205:1: :/u/gorg:/bin/sh
geo: :207:1: :/u/geo:/bin/sh
maureen: :208:1: :/u/maureen:/bin/sh

group file

system: :O:root,su,ctw
staff::1:ctw,mel,gorg,mark,geo,maureen
bin::2:root,su,bin
sys: :3:root,su,bin,sys
adm: :4:root,su,bin,adm
mail: :6:root.su
usr: :100:guest
daemons: :7:tftpd,smtpd,root

B-22 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

Let us examine the results of running the sample shell program shown in
Figure B-13 on page B-24 with this passwd and group file as input.

Lines 2-4 and 9-11 use the AIX eut and paste commands to pull out and
recombine the first and third fields from the /ete/passwd and fete/group
files (the user or group name and the user or group number). The results
are stored in two temporary files, 1 i s t 1 and 1 i s t2:

listl

root:O 0 0
su:O 0 0
daemon:1 1 1
netmail: 1 1 1
bin:2 2 2
sys:3 3 3
adm:4 4 4
uucp:5 5 5
adduser:O 0 0
guest:100 100 100
tftpd:6 6 6
smtpd:7 7 7
ctw:201 201 201
mark:202 202 202
mel:203 203 203
gorg:205 205 205
geo:207 207 207
maureen:208 208 208

list2

system:O 0 0
staff:1 1 1
bin:2 2 2
sys:3 3 3
adm:4 4 4
mail:6 6 6
us r: 100 100 100
daemons:7 7 7

Using Customization Commands B-23

TNL SN20-9862 (June 26 1987) to SBOF-0168

@(#) make.idlist -- create a master 10 list

Input:

Output:

/ete/passwd
jete/group
./id.list

dir='pwd' ; cd /tmp

Build master UIO list

(file containing master list of UIOs and GIOs)

cut -fl,3 -d: /ete/passwd >names
cut -f3 -d: /ete/passwd >uids
paste -d" " names uids uids >listl

sed -e "s/:/ U /
s/$/ */
s/" [a-z]*/-/
s/100 100 100/100 100 * /" 1 i stl >ui d. 1 i st

Build master GIO list

cut -fl,3 -d: jete/group >names
cut -f3 -d: jete/group >gids
paste -d" " names gids gids >list2

sed -e "s/:/ G /
s/$/ */
s/" [a-z]*/-/
s/IOO 100 100/100 100 */" list2 >gid.list

Merge master 10 lists

cat uid.list gid.list sort +f2 -f3 I uniq >$dir/id.list

Clean up

rm -r names uids gids listl list2 uid.list gid.list

01

02
03
04

05
06
07
08

09
10
11

12
13
14
15

16

17

Figure B-13. make.idlist. Sample shell program that builds a master ID list

B-24 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

Next, this sample shell program uses the sed editor to:

Lines

5, 12

6, 13

7, 14

8,15

sed Action

Replaces the: (colon) separating the first two fields with" U "
or" G "

Adds" * "to the end of each line.

Replaces the user or group name with a place holder character.

Replaces inbound id 100 with the wild card character.

The sed editor produces the following two temporary files:

uid.list gid.list

- U 0 0 0 * - G 0 0 0 *
- U 0 0 0 * - G 1 1 1 *
- U 1 1 1 * - G 2 2 2 *
- U 1 1 1 * - G 3 3 3 *
- U 2 2 2 * - G 4 4 4 *
- U 3 3 3 * - G 6 6 6 *
- U 4 4 4 * - G 100 100 * *
- U 5 5 5 * - G 7 7 7 *
- U 0 0 0 *
- U 100 100 * *
- U 6 6 6 *
- U 7 7 7 *
- U 201 201 201 *
- U 202 202 202 *
- U 203 203 203 *
- U 205 205 205 *
- U 207 207 207 *
- U 208 208 208 *

Finally, in line 16, this program used the cat command to combine these
two files, pipes the results to the sort command, and sends the sorted
output to the uniq command to remove duplicate entries.

Using Customization Commands B-25

TNL SN20-9862 (June 26 1987) to SBOF-0168

This produces the following file, ready to load with dsldxprof:

dsldxprof -f id.list

id.list

- G 0 0 0 *
- U 0 0 0 *
- G 1 1 1 *
- U 1 1 1 *
- G 100 100 * *
- U 100 100 * *
- G 2 2 2 *
- U 2 2 2 *
- U 201 201 201 *
- U 202 202 202 *
- U 203 203 203 *
- U 205 205 205 *
- U 207 207 207 *
- U 208 208 208 *
- G 3 3 3 *
- U 3 3 3 *
- G 4 4 4 *
- U 4 4 4 *
- U 5 5 5 *
- G 6 6 6 *
- U 6 6 6 *
- G 7 7 7 *
- U 7 7 7 *

See the AIX Operating System Commands Reference for more information
on the cut, paste, sed, sort, and uniq commands, and for other useful
commands for modifying files.

B-26 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Deleting Translation Entries

The dsldxprof command can simplify the process of removing a
large number of translation entries from a Network Users/Groups
Table. To construct a line that deletes a translation entry, append
characters to the first field, for example:

##- u 200 200 200 *
Suppose that you wanted to delete all the entries in a Network
Users/Groups Table. By using dsldxprof to delete the entries, you
can clear even a large table in only a few steps:

To Delete All Translation Entries

1. Use ugtable to access the Network Users/Groups Table.
Select PRI NT to copy the Network Users/Groups Table
without headers to a file.

2. Use sed to convert each line in the file to a deletion line:

sed -e "5 /" */##/" idtable >rmtable

3. Use dsldxprof to remove the translation entries:

dsldxprof -f rmtable

Using Customization Commands B-2?

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Modifying Translation Entries

To understand how dsldxprof handles input lines intended to modify
existing translation lines, you need to remember two rules governing the
building of the Network Users/Groups Table:

1. A local ID can have more than one inbound ID.

2. A local ID can have only one outbound ID.

Suppose that you want to change both the inbound and the outbound IDs in
the following translation entry from 20000000 to 30000000:

bi lld u 200 20000000 20000000 *

You give dsldxprof the following line, specifying the -a flag (which
instructs dsldxprof to replace any existing lines that conflict with the new
line):

bi 11 d u 200 30000000 30000000 *

However, dsldxprof does not interpret this line as telling it to change both
the inbound and outbound IDs to 30000000. dsldxprof interprets this line as
two instructions:

1. Add a translation entry that associates inbound ID 30000000 with local
ID 200.

2. Change the outbound ID associated with local ID 200 from 20000000 to
30000000.

As a result, when dsldxprof finishes, you have two translation entries for
this local ID:

bill d
billd

u
u

200
200

30000000
30000000

20000000
30000000

*
*

Thus, if you want to change both the inbound and outbound IDs in one
translation entry, first have dsldxprof delete the existing line, then add the
new line:

##bill d
bill d

u
u

B-28 Managing the Operating System

200
200

20000000
30000000

20000000
30000000

*
*

TNL SN20-9862 (June 26 1987) to SBOF-0168

I Using dsldxprof with Remote Tables

You can add, delete, and modify translation entries in a remote Network
Users/Groups Table by running dsldxprof with the -n flag, for example:

dsldxprof -n 20810CBF -f rmtable

In order to modify a remote table, you must have system group or
superuser privileges at the remote node. In addition, the dsxlate command
must be run at that node before your changes take effect (see "Loading
Distributed Services Profiles" on page 3-42).

Using Customization Commands B-29

TNL SN20-9862 (June 26 1987) to SBOF-0168

B-30 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

Appendix C. Distributed Services Customization
Forms

This appendix provides forms to help define your network. Copy these
forms as required for each node in the network, and then enter the
information on the forms before defining the network. See "Customizing
Distributed Services" on page 3-35 and Appendix B, "Getting Started With
Distributed Services Customization Commands" on page B-1 for
explanations of the information needed on the forms.

Customization Forms C-l

TNL SN20-9862 (June 26 1987) to SBOF-0168

DEFINING A NODE

NODE: --------

Remote Nickname: 0 None 0
(default)

Remote Node ID:

Node Security: 0 None
(default)

0 Secure

Password:1

Data Link Type: 0 Ethernet 0 SDLC
(default)

Attachment Profile: 0 Use Node ID 0
(default)

Do not write the password in this space if unauthorized people have access to this form.

Password is either 16 hexadecimal characters or 30 to 80 alphameric characters.

C-2 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

INBOUND NETWORK ID TRANSLATIONS

NOD E : --------

User IDs:

Network ID Originating Node
(* = Any Node)

LocalID

Customization Forms C-3

TNL SN20-9862 (June 26 1987) to SBOF-0168

INBOUND NETWORK ID TRANSLATIONS

NODE: --------

Group IDs:

Network ID Originating Node
(* = Any Node)

C-4 Managing the Operating System

LocalID

TNL SN20-9862 (June 26 1987) to SBOF-OI68

OUTBOUND NETWORK ID TRANSLATIONS

NOD E: --------

User IDs:

User Name Local User ID Network ID

Customization Forms C-5

TNL SN20-9862 (June 26 1987) to SBOF-0168

OUTBOUND NETWORK ID TRANSLATIONS

NOD E : --------

Group IDs:

User Name Local User ID Network ID

C-6 Managing the Operating System

Mount Point
(Local Path Name)

TNL SN20-9862 (June 26 1987) to SBOF-0168

FILE SYSTEM MOUNTS

NODE: --------

Location
(nodename =)

Remote Path Name
(dev =)

Auto Mount Type
(type =)

Customization Forms C-7

C-8 Managing the Operating System

TNL SN20-9862 (June 26 1987) to SBOF-0168

Figures

1-1. Relationships Between RT PC Hardware and Software 1-4
1-2. Major Parts of an AIX File System 1-10
1-3. Direct Pointers from an I-node to Data Blocks 1-13
1-4. The Relationship of Data Blocks and Indirect Blocks 1-14
1-5. The Base AIX File System 1-16
2-1. The Fields in a Password File Entry 2-35
2-2. Sample / etc/passwd File .. 2-38
2-3. Mounting a File System .. 2-52
2-4. Creating a File Tree: File System Mounts 2-74
2-5. Creating a File Tree: Directory Mount 2-75
2-6. Creating a File Tree: The Completed Structure 2-76
2-7. Inbound ID Translation .. 2-88
2-8. Outbound and Inbound ID Translation .. ;.......................... 2-91
2-9. Ii Command Flags ... 2-95

2-10. Ii -1 Command Information 2-97
3-1. How the Queueing System Works 3-21
3-2. Default / etc/rc.ds File .. 3-44
3-3. ID Translation: Possible Combinations 3-58
3-4. The umpasswd.c Sample Program 3-69
3-5. The retry-mount shell program 3-75
3-6. An rc.ds file ... 3-76
3-7. The do-mounts shell program 3-77
3-8. The domounts shell program 3-78
3-9. An rc.ds file ... 3-79

3-10. The ssimounts shell file .. 3-81
3-11. An rc.ds file ... 3-82
3-12. The repeatmounts shell program 3-83
3-13. An rc.ds file ... 3-84
3-14. The recordmounts shell program 3-85
3-15. The clientmounts shell program 3-86
3-16. The buildtrees shell program 3-87
3-17. An rc.ds file ... 3-88
3-18. An rc.ds file ... 3-88
3-19. A Programming Environment 3-94
3-20. The Text Processing Environment 3-108

Figures X-I

TNL SN20-9862 (June 26 1987) to SBOF-0168

3-2I.
3-22.
3-23.
3-24.
4-I.
4-2.
5-I.
5-2.
5-3.

A-I.
B-I.
B-2.
B-3.
B-4.
B-5.
B-6.
B-7.
B-8.
B-9.

B-10.
B-1I.
B-12.
B-13.

A Sample Network Users/Groups Table 3-112
Example Trace Report at Hera 3-126
Example Trace Report at Zeus 3-127
Trace Report Field Definitions 3-128
TERM Values for Different Displays, Adapters, and Terminals 4-32
Code Points ... 4-53
Accounting Directory Structure 5-8
Sample Holidays File .. 5-11
Accounting File Formats 5-24
Printer Control Codes .. A-2
Distributed Network Node Table ADD Panel B-7
Password Selection Panel .. B-8
Network Users/Groups Table ADD Panel B-9
Distributed IPC Queues Table ADD Panel B-10
Distributed Network Node Table PICK panel B-14
Network Users/Groups Table PICK panel B-15
Distributed IPC Queues Table PICK panel B-15
PRINT Panel ... B-16
PRINT File Action Panel B-16
Distributed Network Node Table SORT Panel B-17
Network Users/Groups Table SORT panel B-17
Distributed IPC Queues Table SORT Panel B-18
make.idlist· ... B-24

X-2 Managing the Operating System

access. To obtain data from or put data
in storage.

access permission. A group of
designations that determine who can
access a particular AIX file and how the
user may access the file.

account. The log in directory and other
information that give a user access to the
system.

activity manager. A collection of
system-supplied tasks allowing users to
manage their activities. Provides the
ability to list current activities (Activity
List) and to begin, cancel, hide, and
activate activities.

All Points Addressable (AP A) display.
A display that allows each pel to be
individually addressed. An AP A display
allows for images to be displayed that are
not made up of images predefined in
character boxes. Contrast with character
display.

allocate. To assign a resource, such as a
dis,k file or a diskette file, to perform a
specific task.

alphabetic. Pertaining to a set of letters
a through z.

Glossary

alphanumeric character. Consisting of
letters, numbers and often other symbols,
such as punctuation marks and
mathematical symbols.

American National Standard Code for
Information Interchange (ASCII). The
code developed by ANSI for information
interchange among data processing
systems, data communications systems,
and associated equipment. The ASCII
character set consists of 7-bit control
characters and symbolic characters.

American National Standards
Institute. An organization sponsored by
the Computer and Business Equipment
Manufacturers Association for
establishing voluntary industry standards.

application. A program or group of
programs that apply to a particular
business area, such as the Inventory
Control or the Accounts Receivable
application.

application program. A program used
to perform an application or part of an
application.

argument. Numbers, letters, or words
that change the way a command works.

ASCII. See American National Standard
Code for Information Interchange.

Glossary X-3

attribute. A characteristic. For
example, the attribute for a displayed field
could be blinking.

auto carrier return. The system
function that places carrier returns
automatically within the text and on the
display. This is accomplished by moving
whole words that exceed the line end zone
to the next line.

backend. The program that sends output
to a particular device. There are two
types of back ends: friendly and
unfriendly.

background process. (1) A process that
does not require operator intervention
that can be run by the computer while the
work station is used to do other work.
(2) A mode of program execution in which
the shell does not wait for program
completion before prompting the user for
another command.

backup copy. A copy, usually of a file or
group of files, that is kept in case the
original file or files are unintentionally
changed or destroyed.

backup diskette. A diskette containing
information copied from a fixed disk or
from another diskette. It is used in case
the original information becomes
unusable.

bad block. A portion of a disk that can
never be used reliably.

base address. The beginning address for
resolving symbolic references to locations
in storage.

X-4 Managing the Operating System

base name. The last element to the right
of a full path name. A filename specified
without its parent directories.

ba tch printing. Queueing one or more
documents to print as a separate job. The
operator can type or revise additional
documents at the same time. This is a
background process.

ba tch processing. A processing method
in which a program or programs process
records with little or no operator action.
This is a background process. Contrast
with interactive processing.

binary. (1) Pertaining to a system of
numbers to the base two; the binary digits
are 0 and 1. (2) Involving a choice of two
conditions, such as on-off or yes-no.

bit. Either of the binary digits 0 or 1
used in computers to store information.
See also byte.

block. (1) A group of records that is
recorded or processed as a unit. Same as
physical record. (2) In data
communications, a group of records that is
recorded, processed, or sent as a unit.
(3) A block is 512 bytes long. (4) A
logical block is 2048 bytes long.

block file. A file listing the usage of
blocks on a disk.

block special file. A special file that
provides access to an input or output
device is capable of supporting a file
system. See also character special file.

bootstrap. A small program that loads
larger programs during system
initialization.

branch. In a computer program an
instruction that selects one of two or more
alternative sets of instructions. A
conditional branch occurs only when a
specified condition is met.

breakpoint. A place in a computer
program, usually specified by an
instruction, where execution may be
interrupted by external intervention or by
a monitor program.

buffer. (1) A temporary storage unit,
especially one that accepts information at
one rate and delivers it at another rate.
(2) An area of storage, temporarily
reserved for performing input or output,
into which data is read, or from which
data is written.

burst pages. On continuous-form paper,
pages of output that can be separated at
the perforations.

byte. The amount of storage required to
represent one character; a byte is 8 bits.

call. (1) To activate a program or
procedure at its entry point. Compare
with load.

callouts. An AIX kernel parameter
establishing the maximum number of
scheduled activities that can be pending
simultaneously.

cancel. To end a task before it is
completed.

carrier return. (1) In text data, the
action causing line ending formatting to
be performed at the current cursor
location followed by a line advance of the
cursor. Equivalent to the carriage return
of a typewriter. (2) A keystroke generally
indica ting the end of a command line.

case sensitive. Able to distinguish
between uppercase and lowercase letters.

character. A letter, digit, or other
symbol.

character display. A display that uses a
character generator to display predefined
character boxes of images (characters) on
the screen. This kind of display cannot
address the screen any less than one
character box at a time. Contrast with
All Points Addressable display.

character key. A keyboard key that
allows the user to enter the character
shown on the key. Compare with function
keys.

character position. On a display, each
location that a character or symbol can
occupy.

character set. A group of characters
used for a specific reason; for example, the
set of characters a printer can print or a
keyboard can support.

character special file. A special file
that provides access to an input or output
device. The character interface is used for
devices that do not use block I/O. See
also block special file.

Glossary X-5

character string. A sequence of
consecutive characters.

character variable. The name of a
character data item whose value may be
assigned or changed while the program is
running.

child. (1) Pertaining to a secured
resource, either a file or library, that uses
the user list of a parent resource. A child
resource can have only one parent
resource. (2) In the AIX Operating
System, child is a process spawned by a
parent process that shares resources of
parent process. Contrast with parent.

C language. A general-purpose
programming language that is the primary
language of the AIX Operating System.

class. Pertaining to the I/O
characteristics of a device. AIX devices
are classified as block or character.

close. (1) To end an activity and remove
that window from the display.

code. (1) Instructions for the computer.
(2) To write instructions for the computer;
to program. (3) A representation of a
condi tion, such as an error code.

code segment. See segment.

collating sequence. The sequence in
which characters are ordered within the
comput~r for sorting, combining, or
comparIng.

color display. A display device capable
of displaying more than two colors and the

X-6 Managing the Operating System

shades produced via the two colors, as
opposed to a monochrome display.

column. A vertical arrangement of text
or numbers.

column headings. Text appearing near
the top of columns of data for the purpose
of identifying or titling.

command. A request to perform an
operation or run a program. When
parameters, arguments, flags, or other
operands are associated with a command,
the resulting character string is a single
command.

command interpreter. A program that
sends instructions to the kernel; also
called an interface.

command line. The area of the screen
where commands are displayed as they are
typed.

command line editing keys. Keys for
editing the command line.

command programming language.
Facility that allows programming by the
combination of commands rather than by
writing statements in a conventional
programming language.

compile. (1) To translate a program
written in a high-level programming
language into a machine language
program. (2) The computer actions
required to transform a source file into an
executable object file.

compress. (1) To move files and
libraries together on disk to create one
continuous area of unused space. (2) In
data communications, to delete a series of
duplicate characters in a character string.

concatenate. (1) To link together.
(2) To join two character strings.

condition. An expression in a program
or procedure that can be evaluated to a
value of either true or false when the
program or procedure is running.

configuration. The group of machines,
devices, and programs that make up a
computer system. See also system
customization.

configuration file. A file that specifies
the characteristics of a system or
subsystem, for example, the AIX queueing
system.

consistent. Pertaining to a file system,
without internal discrepancies.

console. (1) The main AIX display
station. (2) A device name associated
with the main AIX display station.

constant. A data item with a value that
does not change. Contrast with variable.

context search. A search through a" file
whose target is a character string.

control block. A storage area used by a
program to hold control information.

control commands. Commands that
allow conditional or looping logic flow in
shell procedures.

control program. Part of the AIX
Operating System system that determines
the order in which basic functions should
be performed.

controlled cancel. The system action
that ends the job step being run, and saves
any new data already created. The job
that is running can continue with the next
job step.

copy. The action by which the user
makes a whole or partial duplicate of
already existing data.

crash. An unexpected interruption of
computer service, usually due to a serious
hardware or software malfunction.

current directory. The directory that is
active, and can be displayed with the pwd
command.

current line. The line on which the
cursor is located.

current working directory. See current
directory.

cursor. (1) A movable symbol (such as
an underline) on a display, used to
indicate to the operator where the next
typed character will be placed or where
the next action will be directed. (2) A
marker that indicates the current data
access location within a file.

Glossary X-7

cursor movement keys. The directional
keys used to move the cursor.

customize. To describe (to the system)
the devices, programs, users, and user
defaults for a particular data processing
system.

cylinder. All fixed disk or diskette
tracks that can be read or written without
moving the disk drive or diskette drive
read/write mechanism.

daemon. See daemon process.

daemon process. A process begun by
the root or the root shell that can be
stopped only by the root. Daemon
processes generally provide services that
must be available at all times such as
sending data to a printer.

data block. See block.

data communications. The
transmission of data between computers,
or remote devices or both (usually over
long distance).

data stream. All information (data and
control information) transmitted over a
data link.

debug. (I) To detect, locate, and correct
mistakes in a program. (2) To find the
cause of problems detected in software.

default. A value that is used when no
alternative is specified by the operator.

X-8 Managing the Operating System

default directory. The directory name
supplied by the operating system if none is
specified.

default drive. The drive name supplied
by the operating system if none is
specified.

default value. A value stored in the
system that is used when no other value is
specified.

delete. To remove. For example, to
delete a file.

dependent work station. A work
station having little or no standalone
capability, that must be connected to a
host or server in order to provide any
meaningful capability to the user.

device. An electrical or electronic
machine that is designed for a specific
purpose and that attaches to your
computer, for example, a printer, plotter,
disk drive, and so forth.

device driver. A program that operates a
specific device, such as a printer, disk
drive, or display.

device name. A name reserved by the
system that refers to a specific device.

diagnostic. Pertaining to the detection
and isolation of an error.

diagnostic aid. A tool (procedure,
program, reference manual) used to detect
and isolate a device or program
malfunction or error.

diagnostic routine. A computer
program that recognizes, locates, and
explains either a fault in equipment or a
mistake in a computer program.

digit. Any of the numerals from 0
through 9.

directory. A type of file containing the
names and controlling information for
other files or other directories.

disable. To make nonfunctional.

discipline. Pertaining to the order in
which requests are serviced, for example,
first-come-first-served (fcfs) or shortest job
next (sjn).

disk I/O. Fixed-disk input and output.

diskette. A thin, flexible magnetic plate
that is permanently sealed in a protective
cover. It can be used to store information
copies from the disk or another diskette.

diskette drive. The mechanism used to
read and write information on diskettes.

display device. An ou tpu t unit that
gives a visual representation of data.

display screen. The part of the display
device that displays information visually.

display station. A device that includes a
keyboard from which an operator can send
information to the system and a display
screen on which an operator can see the
information sent to or received from the
computer.

dump. (1) To copy the contents of all or
part of storage, usually to an output
device. (2) Data that has been dumped.

dump diskette. A diskette that contains
a dump or is prepared to receive a dump.

dump formatter. Program for analyzing
a dump.

EBCDIC. See extended binary-coded
decimal interchange code.

EBCDIC character. Anyone of the
symbols included in the 8-bit EBCDIC set.

edit. To modify the form or format of
data.

edit buffer. A temporary storage area
used by an editor.

editor. A program used to enter and
modify programs, text, and other types of
documents and data.

emulation. Imitation; for example, when
one computer imitates the characteristics
of another computer.

enable. To make functionaL

enter. To send information to the
computer by pressing the Enter key.

entry. A single input operation on a
work station.

environment. The settings for shell
variables and paths set associated with
each process. These variables can be
modified later by the user.

Glossary X-9

error-correct backspace. An editing
key that performs editing based on a
cursor position; the cursor is moved one
position toward the beginning of the line,
the character at the new cursor location is
deleted, and all characters following the
cursor are moved one position toward the
beginning of the line (to fill the vacancy
left by the deleted element).

escape character. A character that
suppresses the special meaning of one or
more characters that follow.

exit value. A numeric value that a
command returns to indicate whether it
completed successfully. Some commands
return exit values that give other
information, such as whether a file exists.
Shell programs can test exit values to
control branching and looping.

expression. A representation of a value.
For example, variables and constants
appearing alone or in combination with
operators.

extended binary-coded decimal
interchange code (EBCDIC). A set of
256 eight-bit characters.

feature. A programming or hardware
option, usually available at an extra cost.

field. (1) An area in a record or panel
used to contain a particular category of
data. (2) The smallest component of a
record that can be referred to by a name.

FIFO. See first-in-first-out.

X-tO Managing the Operating System

file. A collection of related data that is
stored and retrieved by an assigned name.

file name. The name used by a program
to identify a file. See also label.

filename. In DOS, that portion of the
file name that precedes the extension.

file specification (filespec). The name
and location of a file. A file specification
consists of a drive specifier, a path name,
and a file name.

file system. The collection of files and
file management structures on a physical
or logical mass storage device, such as a
diskette or minidisk.

filetab. An AIX kernel parameter
establishing the maximum number of files
that can be open simultaneously.

filter. A command that reads standard
input data, modifies the data, and sends it
to standard output.

first-in-first-out (FIFO). A named
permanent pipe. A FIFO allows two
unrelated processes to exchange
information using a pipe connection.

fixed disk. A flat, circular,
nonremoveable plate with a magnetizable
surface layer on which data can be stored
by magnetic recording.

fixed-disk drive. The mechanism used to
read and write information on fixed disk.

flag. A modifier that appears on a
command line with the command name

that defines the action of the command.
Flags in the AIX Operating System almost
al ways are preceded by a dash.

font. A family or assortment of
characters of a given size and style.

foreground. A mode of program
execution in which the shell waits for the
program specified on the command line to
complete before returning your prompt.

format. (1) A defined arrangement of
such things as characters, fields, and
lines, usually used for displays, printouts,
or files. (2) The pattern which determines
how data is recorded.

formatted diskette. A diskette on which
control information for a particular
computer system has been written but
which mayor may not contain any data.

free list. A list of available space on
each file system. This is sometimes called
the free-block list.

free-block list. See free list.

full path name. The name of any
directory or file expressed as a string of
directories and files beginning with the
root directory.

function. A synonym for procedure. The
C language treats a function as a data
type that contains executable code and
returns a single value to the calling
function.

function keys. Keys that request actions
but do not display or print characters.

Included are the keys that normally
produce a printed character, but when
used with the code key produce a function
instead. Compare with character key.

generation. For some remote systems,
the translation of configuration
information into machine language.

Gid. See group number.

global. Pertains to information available
to more than one pro'gram or subroutine.

global action. An action having general
applicability, independent of the context
established by any task.

glo bal character. The special characters
* and ? that can be used in a file
specification to match one or more
characters. For example, placing a ? in a
file specification means any character can
be in that position.

global search. The process of having the
system look through a document for
specific characters, words, or groups of
characters.

global variable. A symbol defined in one
program module, but used in other
independently assembled program
modules.

graphic character. A character that can
be displayed or printed.

group name. A name that uniquely
identifies a group of users to the system.

Glossary X-II

group number (Gid). A unique number
assigned to a group of related users. The
group number can often be substituted in
commands that take a group name as an
argument.

hardware. The equipment, as opposed to
the programming, of a computer system.

header. Constant text that is formatted
to be in the top margin of one or more
pages.

header label. A special set of records on
a diskette describing the contents of the
diskette.

here document. Data contained within
a shell program or procedure (also called
inline input).

highlight. To emphasize an area on the
display by any of several methods, such as
brightening the area or reversing the color
of characters wi thin the area.

history file. A file containing a log of
system actions and operator responses.

hog factor. In system accounting, an
analysis of how many times each command
was run, how much processor time and
memory it used, and how intensive that
use was.

home directory. (1) A directory
associated with an individual user.
(2) The user's current directory on login
or after issuing the cd command with no
argument.

I/O. See input/output.

X-12 Managing the Operating System

ID. Identification. \

IF expressions. Expressions within a
procedure, used to test for a condition.

indirect block. A block containing
pointers to other blocks. Indirect blocks
can be single-indirect, double-indirect, or
triple-indirect.

informational message. A message
providing information to the operator,
that does not require a response.

initial program load (IPL). The process
of loading the system programs and
preparing the system to run jobs. See
initialize.

initialize. To set counters, switches,
addresses, or contents of storage to zero or
other starting values at the beginning of,
or at prescribed points in, the operation of
a computer routine.

inline input. See here document.

i-node. The internal structure for
managing files in the system. I-nodes
contain all of the information pertaining
to the node, type, owner, and location of a
file. A table of i-nodes is stored near the
beginning of a file system.

i-number. A number specifying a
particular i-node on a file system.

inodetab. An AIX kernel parameter that
establishes a table in memory for storing
copies of i-nodes for all active files.

input. Data to be processed.

input device. Physical devices used to
provide data to a computer.

input file. A file opened by a program so
that the program can read from that file.

input list. A list of variables to which
values are assigned from input data.

input redirection. The specification of
an input source other than the standard
one.

input-output file. A file opened for
input and output use.

input-output device number. A value
assigned to a device driver by the guest
operating system or to the virtual device
by the virtual resource manager. This
number uniquely identifies the device
regardless of whether it is real or virtual.

input/output (I/O). Pertaining to either
input, output, or both between a computer
and a device.

interactive processing. A processing
method in which each system user action
causes response from the program or the
system. Contrast with batch processing.

interface. A shared boundary between
two or more entities. An interface might
be a hardware component to link two
devices together or it might be a portion
of storage or registers accessed by two or
more computer programs.

interleave factor. Specification of the
ratio between contiguous physical blocks
(on a fixed-disk) and logically contiguous
blocks (as in a file).

interrupt. (1) To temporarily stop a
process. (2) In data communications, to
take an action at a receiving station that
causes the sending station to end a
transmission. (3) A signal sent by an I/O
device to the processor when an error has
occurred or when assistance is needed to
complete I/O. An interrupt usually
suspends execution of the currently
executing program.

IPL. See initial program load.

job. (1) A unit of work to be done by a
system. (2) One or more related
procedures or programs grouped into a
procedure.

job queue. A list, on disk, of jobs
waiting to be processed by the system.

justify. To print a document with even
right and left margins.

kbuffers. An AIX kernel parameter
establishing the number of buffers that
can be used by the kernel.

K-byte. See kilobyte.

kernel. The memory-resident part of the
AIX Operating System containing
functions needed immediately and
frequently. The kernel supervises the
input and output, manages and controls
the hardware, and schedules the user
processes for execution.

Glossary X-13

kernel parameters. Variables that
specify how the kernel allocates certain
system resources.

key pad. A physical grouping of keys on
a keyboard (for example, numeric key pad,
and cursor key pad).

keyboard. An input device consisting of
various keys allowing the user to input
data, control cursor and pointer locations,
and to control the dialog between the user
and the display station

keylock feature. A security feature in
which a lock and key can be used to
restrict the use of the display station.

keyword. One of the predefined words of
a programming language; a reserved word.

keyword argument. One type of
variable assignment that can be made on
the command line.

kill. An AIX Operating System command
that stops a process.

kill character. The .character that is
used to delete a line of characters entered
after the user's prompt.

kilobyte. 1024 bytes.

kprocs. An AIX kernel parameter
establishing the maximum number of
processes that the kernel can run
simultaneously.

label. (1) The name in the disk or
diskette volume table of contents that
identifies a file. See also file name.

X-14 Managing the Operating System

(2) The field of an instruction that assigns
a symbolic name to the location at which
the instruction begins, or such a symbolic
name.

left margin. The area on a page between
the left paper edge and the leftmost
character position on the page.

left-adjust. The process of aligning lines
of text at the left margin or at a tab
setting such that the leftmost character in
the line or filed is in the leftmost position.
Contrast with right-adjust.

library. A collection of functions, calls,
subroutines, or other data.

licensed program product (LPP).
Software programs that remain the
property of the manufacturer, for which
customers pay a license fee.

line editor. An editor that modifies the
contents of a file one line at a time.

linefeed. An ASCII character that causes
an output device to move forward one
line.

link. A connection between an i-node
and one or more file names associated
with it.

literal. A symbol or a quantity in a
source program that is itself data, rather
than a reference to data.

load. (1) To move data or programs into
storage. (2) To place a diskette into a
diskette drive, or a magazine into a

diskette magazine drive. (3) To insert
paper into a printer.

loader. A program that reads run files
into main storage, thus preparing them for
execution.

local. Pertaining to a device directly
connected to your system without the use
of a communications line. Contrast with
remote.

log. To record; for example, to log all
messages on the system printer. A list of
this type is called a log, such as an error
log.

log in. To begin a session at a display
station.

log in shell. The program, or command
interpreter, started for a user at log in.

log off. To end a session at a display
station.

log out. To end a session at a display
station.

logical device. A file for conducting
input or output with a physical device.

loop. A sequence of instructions
performed repeatedly until an ending
condition is reached.

main storage. The part of the
processing unit where programs are run.

maintenance system. A special version
of the AIX Operating System which is

loaded from diskette and used to perform
system management tasks.

major device number. A system
identification number for each device or
type of device.

mapped files. Files on the fixed-disk
that are accessed as if they are in memory.

mask. A pattern of characters that
controls the keeping, deleting, or testing
of portions of another pattern of
characters.

matrix. An array arranged in rows and
columns.

maxprocs. An AIX kernel parameter
establishing the maximum number of
processes that can be run simultaneously
by a user.

memory. Storage on electronic chips.
Examples of memory are random access
memory, read only memory, or registers.
See storage.

menu. A displayed list of items from
which an operator can make a selection.

message. (1) A response from the system
to inform the opera tor of a condition
which may affect further processing of a
current program. (2) Information sent
from one user in a multi-user operating
system to another.

minidisk. A logical division of a fixed
disk.

Glossary X-I5

minor device number. A number used
to specify various types of information
about a particular device, for example, to
distinguish among several printers of the
same type.

mode word. An i-node field that
describes the type and state of the i-node.

modem. See modulator-demodulator.

modulation. Changing the frequency or
size of one signal by using the frequency
or size of another signal.

modulator-demodulator (modem). A
device that converts data from the
computer to a signal that can be
transmitted on a communications line, and
converts the signal received to data for
the computer.

module. (1) A discrete programming unit
that usually performs a specific task or set
of tasks. Modules are subroutines and
calling programs that are assembled
separately, then linked to make a
complete program. (2) See load module.

mount. To make a file system accessible.

mountab. An AIX kernel parameter
establishing the maximum number of file
systems that can be mounted
simultaneously.

multiprogramming. The processing of
two or more programs at the same time.

multivolume file. A diskette file
occupying more than one diskette.

X-I6 Managing the Operating System

nest. To incorporate a structure or
structures of some kind into a structure of
the same kind. For example, to nest one
loop (the nested loop) within another loop
(the nesting loop); to nest one subroutine
(the nested subroutine) within another
subroutine (the nesting subroutine).

network. A collection of products
connected by communication lines for
information exchange between locations.

new-line character. A control character
that causes the print or display position to
move to the first position on the next line.

null. Having no value, containing
nothing.

null character (NUL). The character
hex 00, used to represent the absence of a
printed or displayed character.

numeric. Pertaining to any of the digits ° through 9.

object code. Machine-executable
instruction, usually generated by a
compiler from source code written in a
higher level language. consists of directly
executable machine code. For programs
that must be linked, object code consists
of relocatable machine code.

octal. A base eight numbering system.

open. (1) To make a file available to a
program for processing.

operating system. Software that
controls the running of programs; in
addition, an operating system may provide

services such as resource allocation,
scheduling, input/output control, and data
management.

operation. A specific action (such as
move, add, multiply, load) that the
computer performs when requested.

operator. A symbol representing an
operation to be done.

output. The result of processing data.

output devices. Physical devices used by
a computer to present data to a user.

output file. A file that is opened by a
program so that the program can write to
that file.

output redirection. The specification of
an output destination other than the
standard one.

override. (1) A parameter or value that
replaces a previous parameter or value.
(2) To replace a parameter or value.

overwrite. To write output into a
storage or file space that is already
occupied by data.

owner. The user who has the highest
level of access authority to a data object
or action, as defined by the 0 bj ect or
action.

pad. To fill unused positions in a field
with dummy data, usually zeros or blanks.

page. A block of instructions, data, or
both.

page space minidisk. The area on a
fixed disk that temporarily stores
instructions or data currently being run.
See also minidisk.

pagination. The process of adjusting
text to fit within margins and/or page
boundaries.

paging. The action of transferring
instructions, data, or both between real
storage and external page storage.

parallel processing. The condition in
which multiple tasks are being performed
simultaneously within the same activity.

parameter. Information that the user
supplies to a panel, command, or function.

parent. Pertaining to a secured resource,
either a file or library, whose user list is
shared with one or more other files or
libraries. Contrast with child.

parent directory. The directory one
level above the current directory.

partition. See minidisk.

password. A string of characters that,
when entered along with a user
identification, allows an operator to sign
on to the system.

password security. A program product
option that helps prevent the unauthorized
use of a display station, by checking the
password entered by each operator at
sign-on.

Glossary X-17

path name. See full path name and
relative path name.

pattern-matching character. Special
characters such as * or ? that can be used
in search patterns. Some used in a file
specification to match one or more
characters. For example, placing a ? in a
file specification means any character can
be in that position. Pattern-matching
characters are also called wildcards.

permission code. A three-digit octal
code, or a nine-letter alphabetic code,
indicating the access permissions. The
access permissions are read, write, and
execute.

permission field. One of the
three-character fields wi thin the
permissions column of a directory listing
indicating the read, write, and run
permissions for the file or directory owner,
group, and all others.

phase. One of several stages file system
checking and repair performed by the fsck
command.

physical device. See device.

physical file. An indexed file containing
data for which one or more alternative
indexes have been created.

physical record. (1) A group of records
recorded or processed as a unit. Same as
block. (2) A unit of data moved into or
out of the computer.

PID. See process ID.

X-IS Managing the Operating System

pipe. To direct the data so that the
output from one process becomes the input
to another process.

pipeline. A direct, one-way connection
between two or more processes.

pitch. A unit of width of typewriter type,
based on the number of times a letter can
be set in a linear inch. For example,
10-pitch type has 10 characters per inch.

platen. The support mechanism for paper
on a printer, commonly cylindrical,
against which printing mechanisms strike
to produce an impression.

pointer. A logical connection between
physical blocks.

port. (1) To make the programming
changes necessary to allow a program that
runs on one type of computer to run on
another type of computer. (2) An access
point for data input to or data output from
a computer system. See connector.

position. The location of a character in
a series, as in a record, a displayed
message, or a computer printout.

positional parameter. A shell facility
for assigning values from the command
line to variables in a program.

print queue. A file containing a list of
the names of files waiting to be printed.

printout. Information from the computer
produced by a printer.

priority. The relative ranking of items.
For example, a job with high priority in
the job queue will be run before one with
medium or low priority.

priority number. A number that
establishes the relative priority of printer
requests.

privileged user. The account with
superuser authority.

problem determination. The process of
identifying why the system is not working.
Often this process identifies programs,
equipment, data communications facilities,
or user errors as the source of the
problem.

problem determination procedure. A
prescribed sequence of steps aimed at
recovery from, or circumvention of,
problem conditions.

procedure. See shell procedure.

process. (1) A sequence of actions
required to produce a desired result.
(2) An entity receiving a portion of the
processor's time for executing a program.
(3) An activity within the system begun
by entering a command, running a shell
program, or being started by another
process.

process accounting. An analysis of the
use each process makes of the processing
unit, memory, and I/O resources.

process ID (PID). A unique number
assigned to a process that is running.

profile. (1) A file containing customized
settings for a system or user (2) Data
describing the significant features of a
user, program, or device.

program. A file containing a set of
instructions conforming to a particular
programming language syntax.

prompt. A displayed request for
information or operator action.

propagation time. The time necessary
for a signal to travel from one point on a
communications line to another.

qdaemon. The daemon process that
maintains a list of outstanding jobs and
sends them to the specified device at the
appropriate time.

queue. A line or list formed by items
waiting to be processed.

queued message. A message from the
system that is added to a list of messages
stored in a file for viewing by the user at
a later time. This is in contrast to a
message that is sent directly to the screen
for the user to see immediately.

quit. A key, command, or action that
tells the system to return to a previous
state or stop a process.

quote. To mask the special meaning of
certain characters; to cause them to be
taken literally.

random access. An access mode in
which records can be read from, written
to, or removed from a file in any order.

Glossary X-I9

readonly. Pertaining to file system
mounting, a condition that allows data to
be read, but not modified.

recovery procedure. (1) An action
performed by the operator when an error
message appears on the display screen.
Usually, this action permits the program
to continue or permits the operator to run
the next job. (2) The method of returning
the system to the point where a major
system error occurred and running the
recent critical jobs again.

redirect. To divert data from a process
to a file or device to which it would not
normally go.

reference count. In an i-node, a record
of the total number of directory entries
that refer to the i-node.

relational expression. A logical
statement describing the relationship
(such as greater than or equal) of two
arithmetic expressions or data items.

relational operator. The reserved words
or symbols used to express a relational
condition or a relational expression.

relative address. An address specified
relative to the address of a symbol. When
a program is relocated, the addresses
themselves will change, but the
specification of relative addresses remains
the same.

relative addressing. A means of
addressing instructions and data areas by
designating their locations relative to
some symbol.

X -20 Managing the Operating System

relative path name. The name of a
directory or file expressed as a sequence of
directories followed by a file name,
beginning from the current directory.

remote. Pertaining to a system or device
that is connected to your system through
a communications line. Contrast with
local.

reserved character. A character or
symbol that has a special (non-literal)
meaning unless quoted.

reserved word. A word that is defined in
a programming language for a special
purpose, and that must not appear as a
user-declared identifier.

reset. To return a device or circuit to a
clear state.

restore. To return to an original value
or image. For example, to restore a
library from diskette.

right adjust. The process of aligning
lines of text at the right margin or tab
setting such that the rightmost character
in the line or file is in the rightmost
position.

right justify. See right align.

right margin. The area on a page
between the last text character and the
right upper edge.

right-adjust. To place or move an entry
in a field so that the rightmost character

of the field is in the rightmost position.
Con trast with left-adjust.

root. Another name sometimes used for
superuser.

root directory. The top level of a
tree-structured directory system.

root file system. The basic AIX
Operating System file system, which
contains operating system files and onto
which other file systems can be mounted.
The root file system is the file system that
contains the files that are run to start the
system running.

routine. A set of statements in a
program causing the system to perform an
operation or a series of related operations.

run. To cause a program, utility, or
other machine function to be performed.

run-time environment. A collection of
subroutines and shell variables that
provide commonly used functions and
information for system components.

scratch file. A file, usually used as a
work file, that exists until the program
that uses it ends.

screen. See display screen.

scroll. To move information vertically or
horizontally to bring into view
information that is outside the display
screen boundaries.

sector. (1) An area on a disk track or a
diskette track reserved to record

information. (2) The smallest amount of
information that can be written to or read
from a disk or diskette during a single
read or write operation.

security. The protection of data, system
operations, and devices from accidental or
intentional ruin, damage, or exposure.

segment. A contiguous area of virtual
storage allocated to a job or system task.
A program segment can be run by itself,
even if the whole program is not in main
storage.

separator. A character used to separate
parts of a command or file.

sequential access. An access method in
which records are read from, written to, or
removed from a file based on the logical
order of the records in the file.

session records. In the accounting
system, a record of time connected and
line usage for connected display stations,
produced from log in and log out records.

set flags. Flags that can be put into
effect with the shell set command.

shared printer. A printer that is used by
more than one work station.

shell. See shell program.

shell procedure. A series of commands
combined in a file that carry out a
particular function when the file is run or
when the file is specified as an argument
to the sh command. Shell procedures are
frequently called shell scripts.

Glossary X-21

shell program. A program that accepts
and interprets commands for the operating
system (there is an AIX shell program and
a DOS shell program).

shell prompt. The character string on
the command line indicating the the
system can accept a command (typically
the $ character).

shell script. See shell procedure.

shell variables. Facilities of the shell
program for assigning variable values to
constant names.

size field. In an i-node, a field that
indicates the size, in bytes, of the file
associated with the i-node.

software. Programs.

sort. To rearrange some or all of a group
of items based upon the contents or
characteristics of those items.

source diskette. The diskette containing
data to be copied, compared, restored, or
backed up.

source program. A set of instructions
written in a programming language, that
must be translated to machine language
compiled before the program can be run.

special character. A character other
than an alphabetic or numeric character.
For example; *, +, and % are special
characters.

special file. Special files are used in the
AIX system to provide an interface to

X-22 Managing the Operating System

input/output devices. There is at least one
special file for each device connected to
the computer. Contrast with directory and
file. See also block special file and
character special file.

spool files. Files used in the
transmission of data among devices.

standalone shell. A limited version of
the shell program used for system
maintenance.

standalone work station. A work
station that can be used to preform tasks
independent of (without being connected
to) other resources such as servers or host
systems.

standard error. The place where many
programs place error messages.

standard input. The primary source of
data going into a command. Standard
input comes from the keyboard unless
redirection or piping is used, in which
case standard input can be from a file or
the output from another command.

standard output. The primary
destination of data coming from a
command. Standard output goes to the
display unless redirection or piping is
used, in which case standard output can
be to a file or another command.

stanza. A group of lines in a file that
together have a common function.
Stanzas are usually separated by blank
lines, and each stanza has a name.

statement. An instruction in a program
or procedure.

status. (1) The current condition or
state of a program or device. For example,
the status of a printer. (2) The condition
of the hardware or software, usually
represented in a status code.

storage. (1) The location of saved
information. (2) In contrast to memory,
the saving of information on physical
devices such as disk or tape. See memory.

storage device. A device for storing
and/or retrieving data.

string. A linear sequence of entities such
as characters or physical elements.
Examples of strings are alphabetic string,
binary element string, bit string, character
string, search string, and symbol string.

SUo See superuser.

subdirectory. A directory contained
within another directory in the file system
hierarchy.

subprogram. A program invoked by
another program, such as a su bshell.

subroutine. (1) A sequenced set of
statements that may be used in one or
more computer programs and at one or
more points in a computer program. (2) A
routine that can be part of another
routine.

subscript. An integer or variable whose
value refers to a particular element in a
table or an array.

subshell. An instance of the shell
program started from an existing shell
program.

substring. A part of a character string.

subsystem. A secondary or subordinate
system, usually capable of operating
independently of, or synchronously with, a
controlling system.

superblock. The most critical part of the
file system containing information about
every allocation or deallocation of a block
in the file system.

superuser (su). The user who can
operate without the restrictions designed
to prevent data loss or damage to the
system (User ID 0).

superuser authority. The unrestricted
ability to access and modify any part of
the operating system associated with the
user who manages the system. The
authority obtained when one logs in as
root.

system. The computer and its associated
devices and programs.

system call. A request by an active
process for a service by the system kernel.

system customization. A process of
specifying the devices, programs, and
users for a particular data processing
system.

Glossary X-23

system date. The date assigned by the
system user during setup and maintained
by the system.

system dump. A copy of memory from
all active programs (and their associated
data) whenever an error stops the system.
Contrast with task dump.

system management. The tasks
involved in maintaining the system in
good working order and modifying the
system to meet changing requirements.

system parameters. See kernel
parameters.

system profile. A file containing the
default values used in system operations.

system unit. The part of the system that
contains the processing unit, the disk
drives, and the diskette drives.

system user. A person who uses a
computer system.

target diskette. The diskette to be used
to receive data from a source diskette.

task. A basic unit of work to be
performed. Examples are a user task, a
server task, and a processor task.

task dump. A copy of memory from a
program that failed (and its associated
data). Contrast with system dump.

terminal. An input/output device
containing a keyboard and either a
display device or a printer. Terminals
usually are connected to a computer and

X-24 Managing the Operating System

allow a person to interact with the
computer.

text. A type of data consisting of a set of
linguistic characters (for example,
alphabet, numbers, and symbols) and
formatting controls.

text application. A program defined for
the purpose of processing text data (for
example, memos, reports, and letters).

text editing program. See editor and
text application.

texttab. A kernel parameter establishing
the size of the text table, in memory, that
contains one entry each active shared
program text segment.

trace. To record data that provides a
history of events occurring in the system.

trace table. A storage area into which a
record of the performance of computer
program instructions is stored.

track. A circular path on the surface of
a fixed disk or diskette on which
information is magnetically recorded and
from which recorded information is read.

trap. An unprogrammed,
hardware-initiated jump to a specific
address. Occurs as a result of an error or
certain other conditions.

tree-structured directories. A method
for connecting directories such that each
directory is listed in another directory
except for the root directory, which is at
the top of the tree.

truncate. To shorten a field or statement
to a specified length.

typematic key. A key that repeats its
function multiple times when held down.

typestyle. Characters of a given size,
sty Ie and design.

Uid. See user number.

update. An improvement for some part of
the system.

user. The name associated with an
account.

user account. See account.

user ID. See user number.

user name. A name that uniquely
identifies a user to the system.

user number (Uid). (1) A unique
number identifying an operator to the
system. This string of characters limits
the functions and information the operator
is allowed to use. The Uid can often be
substituted in commands that take a user's
name as an argument.

user profile. A file containing a
description of user characteristics and
defaults (for example, printer assignment,
formats, group ID) to be conveyed to the
system while the user is signed on.

utility. A service; in programming, a
program that performs a common service
function.

valid. (1) Allowed. (2) True, in
conforming to an appropriate standard or
authority.

value. (1) In Usability Services,
information selected or typed into a
pop-up. (2) A set of characters or a
quantity associated with a parameter or
name. (3) In programming, the contents
of a storage location.

variable. A name used to represent a
data item whose value can change while
the program is running. Contrast with
constant.

verify. To confirm the correctness of
something.

version. Information in addition to an
object's name that identifies different
modification levels of the same logical
object.

virtual device. A device that appears to
the user as a separate entity but is
actually a shared portion of a real device.
For example, several virtual terminals
may exist simultaneously, but only one is
active at any given time.

virtual machine. A functional
simulation of a computer and its related
devices.

virtual machine interface (VMI). A
software interface between work stations
and the operating system. The VMI
shields operating system software from
hardware changes and low-level interfaces
and provides for concurrent execution of
multiple virtual machines.

Glossary X-25

virtual resource manager (VRM). A
set of programs that manage the hardware
resources (main storage, disk storage,
display stations, and printers) of the
system so that these resources can be used
independently of each other.

virtual resources. See virtual resource
manager.

virtual storage. Addressable space that
appears to be real storage. From virtual
storage, instructions and data are mapped
into real storage locations.

virtual terminal. Any of several logical
equivalents of a display station available
at a single physical display station.

Volume ID (Vol ID). A series of
characters recorded on the diskette used
to identify the diskette to the user and to
the system.

VRM. See virtual resource manager.

X-26 Managing the Operating System

wildcard. See pattern-matching
characters.

word. A contiguous series of 32 bits (4
bytes) in storage, addressable as a unit.
The address of the first byte of a word is
evenly divisible by four.

work file. A file used for temporary
storage of data being processed.

work station. A device at which an
individual may transmit information to, or
receive information from, a computer for
the purpose of performing a task, for
example, a display station or printer. See
programmable work station and dependent
work station.

working directory. See current
directory.

wrap around. Movement of the point of
reference in a file from the end of one line
to the beginning of the next, or from one
end of a file to the other.

I Special Characters I
/ 1-15
/etc/environment 2-41
/etc/qconfig 3-31
/etc/rc 2-5
/tmp 1-15
/u 1-15
/usr 1-15

account
in / etc/filesystems stanza 2-48

accounting
information from queueing system 3-26
setting up 5-9
system

daily, running 5-14
file formats 5-24
files 5-27
introduction 5-4
reports 5-20

accounts
/etc/passwd entries 2-35
changing 2-33
managing 2-16
precautions 2-31
superuser 2-30
system management 2-31
user 2-31

created with users command 2-31
files 2-34

TNL SN20-9862 (June 26 1987) to SBOF-0168

ordinary 2-31
supplied with system 2-31

user accounts
actman command 4-27
adding groups 2-20

adding 2-20
adding users 2-19
adm account 2-32
aging information

password
in / etc/passwd 2-36

application program
definition iii

apply
updates 4-5

at command 4-19, 4-52
attribute

/ etc/filesystems 2-47

backend program
friendly 3-28
piobe 4-35
printer 4-35
unfriendly 3-28

backends
queueing system 3-27

backing up
backup device 2-47
file systems

backup command 2-58
cvid command 2-58
dd 2-71

Index

Index X-27

TNL SN20-9862 (June 26 1987) to SBOF-0168

dd command 2-59
restoring 2-59

tape device 2-70
backing up file systems

commands 2-58
backup 2-58
cvid 2-58
dd 2-58
restore 2-58

backup 2-58
dd

image backup 2-59
image restore 2-59

incremental 2-67
individual file 2-68
policy guidelines 2-69
volume 2-66

backup command
by mini disk 2-67
file system reorganization 4-40
file systems 2-58
using 2-64

backup media
backup

cvid command 2-62
diskettes 2-60
tape 2-60

backupdev
in / etc/filesystems stanza 2-47

backuplen
in /etc/filesystems stanza 2-47

backuplev
in / etc/filesystems stanza 2-48

bin account 2-31
block I/O 3-18
block special i-node type 3-11
blocks

bootstrap 1-9, 1-10
data 1-9, 1-13
duplicate 3-12
free count 3-10
free list 3-10

X-28 Managing the Operating System

i-node 1-9
indirect 1-13
superblock 1-9, 1-11

boot
in /etc/filesystems stanza 2-48

bootstrap block 1-9, 1-10
buffers 3-5

in disk I/O 3-5
burst pages 3-30

callouts 3-137
changing group information 2-23
changing user information 2-22
character conversion 4-51
character I/O 3-18
character special i-node type 3-11
character, thousands divider 4-52
check

in / etc/filesystems stanza 2-47
child process 2-41

environment variable 2-42, 2-43
class

device 3-17
block 3-17
character 3-17

client
definition 2-73

codes
control

Miscellaneous A-2
printer A-I

collating sequence 4-52
definition 4-52

command
interpreter iii

csh iv
DOS Services iv

command interpreters 1-6

commands 4-54
actman 4-27
adduser 4-54
at 4-19
backup 1-8, 2-58

action 1-8
clri 1-8

action 1-8
cron 4-19
cvid 2-58
dcopy 4-40
dd 1-8, 2-58, 2-59, 2-71

action 1-8
df 1-8, 4-41

action 1-8
dfsck 3-6
differences with Distributed
Services 2-76

dosread 2-56
doswri te 2-56
dump 3-115
edit 4-54
editor 4-54
ex 4-54
find 1-18, 4-25
format 2-54
fsck 1-9, 3-8

action 1-9
getty 2-4
id 2-34
installp 2-62
Ii 2-93
logname 2-34
mail 4-12
mkfs 1-9~ 2-50

action 1-9
mount 1-9, 2-52

action 1-9
mvmd 2-62
ncheck 3-15
news 4-10
PATH assignment 2-43

TNL SN20-9862 (June 26 1987) to SBOF-0168

restore 1-9, 2-58
action 1-9

runacct 5-14
runnIng

at pre-set times 4-19
shutdown 2-15
su 2-30, 2-33
sync (system call) 3-5
systelIi activity package 6-8
system management 1-8
tapechk 2-70
trace 3-115, 3-121

remote procedure calls 3-130
selecting events for Distributed
Services 3-122

using with remote mounts 3-124
umount 1-9, 2-52

action 1-9
u pda tep 2-62
users 2-16
vi 4-54
wall 4-9
where shell searches 2-43
who 4-14
wi th standalone shell 2-12
write 4-8

commit
updates 4-5

communicating with users
mail command 4-12
message of the day 4-10
MOTD 4-10
news comlnand 4-10
wall command 4-9
who command 4-14
wri te con1mand 4-8

communication
mail 4-12
message of the day 4-10
news 4-10
who 4-14

compressed printing A-5

Index X-29

TNL SN20-9862 (June 26 1987) to SBOF-0168

concurrent groups 2-39
configuration tables

configuration tables B-1
IPC message queues B-1
network nodes IDs B-1
user I group IDs B-1

control codes
control

piobe 4-35
printer 4-34, A-I
process

qdaemon 4-34
creating file systems 2-50

See also mkfs command
cron command 4-19

crontab 4-19
crontab 4-19
currency 4-52

format 4-52
symbol 4-52

curren t directory
listing contents of 2-93

current user name
checking 2-34

cvid command
VRM backup 2-58, 2-62

cyl
in I etc/filesystems stanza 2-48

data blocks 1-9, 1-13
date

setting 4-15
date command 4-15

warning 4-15
date string 4-52
dcopy command

file system reorganization 4-40
reconstructing 4-41

X-30 Managing the Operating System

relationship to file systems 4-41
dd command

file system backup 2-59
image backup 2-59
image restore 2-59
parameters 2-71

decimal character 4-52
deleting groups 2-26
deleting users 2-24
dev

in /etc/filesystems stanza 2-47
device drivers 3-17
devices

changing descriptions 3-142
character 3-18
class 3-17
device drivers 3-17
increasing buffers for 3-141
major device number 3-17
minor device number 3-17
names 3-23
queues 3-22
raw 3-18

df command 4-41
dfsck command 3-6
directories

lu 2-31
current 2-93

listing contents of 2-93
finding large ones 4-38
home 2-31, 2-35

in I etc/passwd 2-35, 2-37
li command 2-93
listing 2-93
listing contents 2-93

using path names 2-93
log in 2-31, 2-37

in / etc/passwd 2-37
mounting 2-79
name 2-97
unmounting 2-80

directory i-node type 3-11

disk buffering 3-5
disk I/O 3-5
effect on disk buffering 3-5

diskette
DOS formatted
file systems 2-54
formatting 2-54, 2-55
initializing from 2-4
mounting 2-55
unmounting 2-55

display stations
managing

actman command 4-27
special features 4-26

Distributed Services
concepts 2-73
file handle 2-78
file systems 2-78
ID translation 2-85
ID types 2-85
managing 2-73
menus B-1
problem determination 3-121, 3-139

changing device descriptions 3-142
increasing device buffers 3-141
increasing kernel buffers 3-140
increasing kernel processes 3-140

subtree 2-78
tuning 3-139

for larger networks 3-143
for more concurrency 3-143
increasing paging space 3-144

using trace with 3-121
vnode 2-78

dollar sign 4-52
DOS

diskettes
dosread command 2-56
doswrite command 2-56

using 2-56
dosread command

for data transfer 2-56

TNL SN20-9862 (June 26 1987) to SBOF-0168

doswri te command
for data transfer 2-56

double-indirect block 1-13
double strike printing A-5
double wide printing A-5
dump

AIX Operating System 3-118
full image 3-118
operation 3-118
Virtual Resource Manager 3-118

dump command

emphasized printing A-5
encrypted password 2-35
environment

login program 2-45
user
variables 2-45

environment variables 4-50
equivalence class 4-52
errors

analysis 3-116
dump command 3-115
handling 3-115
logging 3-116
logging services 3-115
reporting 3-116
trace services 3-120

/etc/autolog
creating 4-49

/etc/environment
/ etc/filesystems

disketteO stanza 2-55
diskette1 stanza 2-55
mount attribute 2-53
stanza 2-47
use by mount command 2-53
use in creating file systems 2-50

Index X-3t

TNL SN20-9862 (June 26 1987) to SBOF-0168

used by mkfs 2-50
/etc/group

fields 2-39
/ etc/master

system description 3-132
/ etc/passwd

fields 2-35
home directory 2-37
initial program 2-37
log in directory 2-37
log in shell 2-37
optional information 2-35, 2-37
password aging information 2-36
si teinfo 2-37

/ etc/profile
/ etc/ q config

changing 3-31
/ etc/ system

system description 3-132
examples

color in ix
how to use ix
Special Features

color ix
extended character 4-51

failure
system 3-4

fast path ix
Special Features

examples ix
FF

See form feed
FIFO i-node type 3-11

destroying
to repair file systems 3-15

for finding file name 3-15
inconsistencies

X-32 Managing the Operating System

duplicate block 3-12
inconsistencies 3-13
invalid block 3-12

invalid 3-12
link count

inconsistencies 3-11
repairing

destroying files 3-15
precautions 3-16

size inconsistencies
inconsistencies 3-13

file
date created 2-97
group 2-38
handle 2-78
information about 1-11
name 2-97
number of characters 2-97
permission 2-97
time created 2-97
type 2-97

file size limit
See ulimit

file system
background 1-8
backing up 2-64
base 1-15
block size 1-9
damage
directories

listing contents 2-93
disk buffering 3-5
diskette 2-55
Distributed Services 2-78
fsck consistency checks 3-9
i-nodes 1-11
i-numbers 1-11
information about 2-47
Ii command 2-93, 2-94

flags 2-94
maintaining 3-4
moving 1-9

parts 1-9
relationship to minidisks 4-41
reorganizing 4-39

backup command 4-40
data 4-40
dcopy command 4-40
freelist 4-39, 4-40
mkfs command 4-40
restore command 4-40

repairing 3-15, 3-16
restoring 2-64
sync command 3.,5
system management tasks 1-8
virtual 2-73
with Distributed Services 2-73

file systems
backing up 2-58

media 2-60
backup

individual file 2-68
volume 2-66

checking
fsck 3-8

creating 2-50
diskette

crea ting 2-54
formatting 2-55
mounting 2-54

file systems
crea ting 2-54
mounting 2-54

independence 2-52
mounting 2-50, 2-52
mounting file systems 2-52
repairing

fsck 3-8
unmounting 2-52
unmounting file systems 2-52

file tree
creating 2-74
definition 2-73
mounting 2-81

TNL SN20-9862 (June 26 1987) to SBOF-0168

files 4-54
/ 1-16
/bin 1-18
/dev 1-16
/etc 1-16
/etc/autolog 4-49
/etc/ddi 1-16
/etc/environment 2-41
/ etc/filesystems 2-47
/etc/group 1-17
/etc/master 1-17, 3-132
/etc/passwd 1-17, 2-35, 4-54
/ etc/profile 2-45
/etc/qconfig 3-31
/etc/rc 1-17, 2-5

commands contained in 2-5
system initialization 2-5

/lib 1-18
/tmp 1-18
/u 1-17
/usr 1-17
/usr/adm 1-17
/usr/bin 1-17
/usr/lib 1-18
/usr/lpd 1-17
/usr/spool 1-17
accounting 5-27

formats 5-24
backup

indi vid ual 2-68
configuration 3-21
destroying 3-15
finding 1-18
major 1-15
monitoring size 4-24
mounting 2-79
operating system 1-15
permissions 2-44
protections 4-18
special 3-17
unmounting 2-80
user account 2-34

Index X-33

TNL SN20-9862 (June 26 1987) to SBOF-0168

viewing 1-18, 1-19
pg 1-19

filetab 3-137
find command 4-25

locating files by size 4-24
fixed-disk

initializing from 2-4
form feed A-3
format command

formatting diskettes 2-54
formatting

diskette 2-55
mounting 2-55
unmounting 2-55

DOS formatted
using 2-56

Forms control, printer A-3
free

backup 2-47
in / etc/filesystems stanza 2-47

free block count 3-10
free block list 3-10
free i-node count 3-10
friendly backends 3-28
fsck command 3-8

consistency checks 3-9
destroying files 3-15
function 3-4
inconsistencies

checked by fsck 3-9
operation 3-8

fullsta t system call
&I2@fullst.

CALLER tag 2-100
OTHER tag 2-101

NOONE tag
SOMEONE tag
used by Ii 2-100

X-34 Managing the Operating System

general system structure 1-4
getty command 2-4
Graphics codes, printer A-6
group name

date created
shown by Ii 2-97

name
shown by li 2-97

number of characters
shown by Ii 2-97

shown by li 2-97
time created

shown by li 2-97
groups

changing information about 2-23
concurrent 2-39
crea ting 2-39
deleting 2-26
GID 2-39
group file 2-38
name 2-39
number 2-35, 2-39

GID 2-36
in / etc/passwd 2-35

password 2-39
permission list 2-39
system 2-32

advantages 2-32
o 2-32

halt
unexpected

recovering from 3-115
hardware

definition iii

i-node
format 3-11
free count 3-10
inconsistencies 3-10, 3-12
information contained in 1-11
link count 3-11
size inconsistencies 3-13
type 3-11

i-nodes 1-11
I/O system

block I/O 3-18
character 3-18
device drivers 3-17
overview 3-17
special files 3-17

IBM Personal Computer Disk Operating
System (DOS)

See DOS
id command
ID translation

backward translation 2-86
forward translation 2-86
inbound 2-85, 2-87, 2-90
outbound 2-85, 2-90

IDs
displaying remote 2-100

image backup
dd command 2-59, 2-71

image restore
dd command 2-59, 2-71

incremental backup 2-67
indirect blocks

inconsistencies 3-13
inherited mounts

managing 2-81
init program 2-4

TNL SN20-9862 (June 26 1987) to SBOF-0168

ini tializa tion
/etc/rc 2-5
getty 2-4
init program 2-4
maintenance system 2-4

INmail 4-54
inodetab 3-136
input

See I/O system
input/output
installp command

VRM changes 2-62
interface 1-6
international character support 4-51, 4-52

collating sequence 4-52
configuration 4-52
equivalence class 4-52
extended character 4-51
introduction 4-50

invalid logins 4-18
invalidating users 2-29

kbuffers 3-135
kernel

buffers 3-140
definition 111

generating 3-132
generation

parameters 3-135
parameters 3-135
processes 3-140
Special Features

fast path ix
quick reference boxes IX

type styles viii

Index X-35

TNL SN20-9862 (June 26 1987) to SBOF-0168

Ii command
flags

-a 2-95
-k 2-95
-1 2-95
-S 2-95

information returned 2-97
links

count inconsistencies 3-11
shown by Ii 2-97

local ID 2-85
log in shell 2-37
logging in

automatically 4-49
login

automatic 4-49
login program

HOME 2-45
LOGNAME 2-45
TERM 2-45

names
different, using 2-33

tailoring 2-45
login directory

in j etcjpasswd 2-37
login name synonym 4-54

MAIL
environment variable 2-45

mail command 4-12
MAILMSG

environment variable 2-45
variables 2-45

TIMEOUT 2-45
maintenance commands 2-10

x-a6 Managing the Operating System

maintenance system 2-6
loading 2-4
maintenance commands menu 2-10
standalone shell 2-11
standalone shell commands 2-12
starting 2-8
superuser authority 2-31
system management menu 2-9

major device number 3-17
major files 1-15
Managing the AIX Operating System

About This Book iii
Before You Begin v
How to Use This Book v
Related Books x
Special Features viii, ix
Who Should Read This Book IV

maxprocs 3-136
memory

dumps 3-118
memory dumps 3-118
message of the day 4-10
metacharacter interpretation 4-52
minidisks

backup by 2-67
full condition 4-41
restore by 2-67

minor device number 3-17
mkfs command

file system reorganization 4-40
MOTD 4-10
mount

jetcjfilesystems check attribute 2-47
in j etcjfilesystems stanza 2-47

mount command
inherited mounts 2-80
managing automatic mounts 2-82
remote mounts 2-79
type a ttri bu te 2-79
use of j etcjfilesystems 2-53
with Distributed Services 2-73

mountab 3-136

mounting file systems 2-50
mvmd command

VRM changes 2-62

named pipe i-node type 3-11
ncheck command
network ID 2-86
news command 4-10
NLgetctab subroutine 4-52
node

definition 2-73

opera ting system
defini tion iii
files 1-15
parts iii

output
See I/O system

paging space
increasing 3-144

parameters
kernel 3-135
system 3-135

password
aging 2-36
effect on system security 4-17
encrypted 2-35
in / etc/passwd 2-35
recovery 2-36

TNL SN20-9862 (June 26 1987) to SBOF-0168

after memory lapse 2-36
deleting 2-36

passwords
system security 4-17

PATH
filesize 2-44
umask 2-44

performance
maintaining 4-37

permissions
effect on system security 4-17
list

for group 2-39
set by umask 2-44

piobe command
printing process control 4-35

printer
codes, control

graphics A-6
page appearance A-3
paper control A-3
print mode A-5
printhead A-2
ribbon control A-4
type style A-5

printer control codes A-I
printer input/output backend

See pio be command
printers

control codes 4-34, A-I
managing 4-34

printing
control 4-35
process 4-34

Printing ASCII codes less than 32. A-2
processes

child 2-41
procs 3-136
.profile
programs

application
defini tion 111

Index X-37

TNL SN20·9862 (June 26 1987) to SBOF·0168

initial 2-37
in / etc/passwd 2-37

installing 4-5
local 4-5
user 2-35

initial 2-35

qdaemon 3-20, 3-32
configura tion

queueing system 3-21
function 3-20
part of queueing system 3-20

queueing system
/etc/qconfig 3-31
accounting information 3-26
backends 3-27, 3-28
burst pages 3-30
configuration 3-22

/etc/qconfig 3-22
configuration file 3-31
devices 3-22
job order 3-26

discipline 3-26
parts 3-20

back end program 3-20
configuration file 3-21
print program 3-20
qdaemon program 3-20

parts of 3-20
qdaemon

keeping it running 3-32
queueing system configuration 3-22
queues 3-22

queues
definition 3-20
names 3-23

quick reference boxes IX

X-3S Managing the Operating System

raw I/O 3-18
recovering

from unexpected halts 3-115
regular expression 4-51
regular i-node type 3-11
reinstating users 2-29
reject

updates 4-5
remote ID 2-86
reports

system accounting 5-20
restore command

by minidisk 2-67
file system reorganization 4-40
file systems 2-59
using 2-64

root account 2-29
for superuser authority 2-30

runacct command 5-14

sar data file structure 6-15
security

invalid logins 4-18
passwords 4-17
system 4-17

server
definition 2-74

shell
in system structure 1-6
interface 1-6
log in 2-37
standalone 2-11

shell command path

See PATH
single-indirect block 1-13
single-shift byte 4-53
siteinfo 2-37
SIze

in / etc/filesystems stanza 2-49
skip

in / etc/filesystems stanza 2-49
SNA 4-54
software

defini tion 111

special files 3-17
standalone shell

commands available 2-12
ending 2-14
system management 2-11

stanza
/ etc/filesystems

definition 2-47
stanza

default 2-47
starting the system 2-4
stopping the system 2-15
structure

system 1-4
su command

checking user name 2-34
using 2-33

subscript printing A-6
subtree 2-78
superblock 1-9

blocks 1-9
free block count 3-10
free block list 3-10
free i-node count 3-10
i-node inconsistencies 3-10
information contained in 1-11

superscript printing A-5
superuser account 2-29
superuser authority

account with 2-30
definition 2-30

TNL SN20-9862 (June 26 1987) to SBOF-0168

for maintenance system 2-4
obtaining 2-30

root login 2-30
su command 2-30
su login 2-30
with the maintenance system 2-31

precautions 2-30
superuser account 2-29

sync system call
synonym, login name 4-54
sysinfo.h 6-13
system

initialization 2-4
kernel

generating 3-132
maintenance system 2-6
starting 2-4
stopping 2-15
updating 4-5

system activity package
commands 6-8
counters 6-5
daily reports 6-11
data structures 6-13
file formats 6-13
introduction 6-4
sar data file structure 6-15
sysinfo.h 6-13

system description
/etc/master 3-132
/etc/system 3-132

system management
system

parameters 3-135
system group 2-32
system management

/etc/filesystems 2-47
accounting

file formats 5-24
files 5-27
reports 5-20
runacct 5-14

Index X-39

TNL SN20-9862 (June 26 1987) to SBOF-0168

running daily 5-14
setting up 5-9

accounts
changing 2-16
creating 2-16
different log in names 2-33
removing 2-16
root 2-29
superuser 2-29
types 2-29
user 2-29
user account files 2-34

backup
incremental 2-67
individual file 2-68
policy guidelines 2-69

blocks
data 1-13

commands
find 4-25
fsck 3-8
running at pre-set times 4-19
system activity package 6-8
users 2-16

communicating
mail 4-12
message of the day 4-10
news 4-10
wall 4-9
who 4-14

communicating with users 4-8
date

setting 4-15
definition 1-3
dfsck 3-6
diskette file systems 2-54
display station

features 4-26
Distributed Services 2-73
environment

/etc/environment 2-41
/ etc/profile 2-45

X-40 Managing the Operating System

login 2-45
tailoring 2-41
user 2-41

errors
analysis 3-116
dumps 3-118
handling 3-115
logging 3-116
memory dumps 3-118
recovering, unexpected halts 3-115
reporting 3-116
trace services 3-120

file system
base 1-15
bootstrap block 1-10
data blocks 1-13
finding files 1-18
i-nodes 1-11
information about 2-47
major files 1-15
super block 1-11
viewing files 1-18

file system background 1-8
file systems

backing up 2-58
backup 2-68, 2-69
backup media 2-60
backup policy 2-69
causes of 3-4
checking 3-8
creating 2-50
damage, causes 3-4
diskette 2-54
fsck 3-8
incremental backup 2-67
individual file backup 2-68
maintaining 3-4, 3-6
mounting 2-50, 2-52
repairing 3-8
streaming tape 2-60
unmounting 2-52
volume backup 2-66

files
/ etc/filesystems 2-47
/ etc/profile 2-45·
finding 4-25
monitoring size 4-24
user account 2-34

function 2-45
general system structure 1-4
generating

kernel, new 3-132
I/O system

block 3-18
character 3-18
device drivers 3-17
special files 3-17

input/output system
introduction 3-17

introduction 1-1
kernel

generating 3-132
log in names

different 2-33
login

automatic 4-49
main taining

consistency 3-4
major files 1-15
make

kernel 3-132
performance

maintaining 4-37
printers

managing 4-34
queueing system

/etc/qconfig 3-31
backends 3-27
configuration file 3-31
devices 3-22

TNL SN20-9862 (June 26 1987) to SBOF-0168

parts of 3-20
qdaemon 3-32
queues 3-22
using 3-20

security
file protections 4-18
invalid logins 4-18
passwords 4-17
understanding 4-17

starting the system 2-4
initialization 2-4
maintenance system 2-6

stopping the system 2-15
system activity package

commands 6-8
counters 6-5
daily reports 6-11
data structures 6-13
file formats 6-13
introduction 6-4
sar data file structure 6-15
sysinfo.h 6-13

system structure
kernel 1-5
shell 1-6
Virtual Resource Manager 1-5
VRM 1-5

system update 4-5
tasks 1-5
types 2-29
updating the system 4-5
user accounts

managing 2-16
using 3-20
variables

MAIL 2-45
MAILMSG 2-45

Index X-41

TNL SN20-9862 (June 26 1987) to SBOF-0168

tape
as a backup medium 2-60

tape device 2-70
tapechk command 2-70
texttab 3-137
time string 4-52
time zone

See TZ
TIMEOUT

environment variable 2-45
trace command
trace services 3-120
triple-indirect block 1-13
TZ

ulimit
umask 2-44

file size limit 2-44
new file permissions 2-44
permissions

set by umask 2-44
umount command

unmounting remote objects 2-80
underline printing A-5
unfriendly backends 3-28

back ends
friendly 3-28
unfriendly 3-28

updatep
updatep command

VRM changes 2-62
updates

apply 4-5
commit 4-5
reject 4-5

X-42 Managing the Operating System

user environment
function 2-41
tailoring 2-41

user name
checking 2-34
in / etc/passwd 2-35
shown by li 2-97

users
/ etc/passwd 2-35
accounts 2-29, 2-31

for system management 2-31
ordinary 2-31

adding 2-19
changing information 2-22
deleting 2-24
environment 2-41
home directory 2-31, 2-35

in / etc/passwd 2-35
initial program 2-35

in / etc/passwd 2-35
invalidating 2-29
number 2-35

in / etc/passwd 2-35
UID 2-36

optional information 2-37
in /etc/passwd 2-37

reinstating 2-29
root 2-30
su 2-30
superuser 2-30
system management 2-31

adm 2-32
bin 2-31
users 2-32
users account 2-32

users command 2-16
add subcommand 2-19, 2-20
change subcommand 2-22, 2-23
delete subcommand 2-24, 2-26
display sub commands 2-18
invalidate subcommand 2-29
starting 2-17

sub commands 2-17
uucp 4-54

value
jetcjfilesystems 2-47

Virtual Resource Manager 1-5
function 1-5
memory 1-5
terminal 1-5

virtual resources
virtual terminals

managIng 4-27
vnode 2-78

TNL SN20-9862 (June 26 1987) to SBOF-0168

vol
in / etc/filesystems stanza 2-47

volume backup 2-66
VRM

backup 2-58, 2-62
virtual resources 1-5

wall command 4-9
warning

setting date 4-15
setting time 4-15

who command 4-14
write command 4-8

Index X-43

X-44 Managing the Operating System

--------- -------- - ---- - - ----------_.-
Reader's Comment Form

Managing the AIX
Operating System

The IBM RT PC
Family

SX23-0793-0

Your comments assist us in improving our products. IBM may
use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

For prompt resolution to questions regarding set up, operation,
program support, and new program literature, contact the
authorized IBM RT PC dealer in your area.

Comments:

L __ _
I adBl pUB PIC.::!

a.>
c

:.J
OJ
c
o
~
"0
"0
u.

o
+-'
::J

U

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adBl pUB PIC.:

IBM RT PC Managing the AIX Operating System SC23-0793

Book Title Order No.

Book Evaluation Form

Your comments can help us produce better books. You may use this form to communicate your comments about this book, its
organization, or subject matter, with the understanding that IBM may use or distribute whatever information you supply in any
way it believes appropriate without incurring any obligation to you. Please take a few minutes to evaluate this book as soon as
you become familiar with it. Circle Y (Yes) or N (No) for each question that applies and give us any information that may
improve this book.

Y N Is the purpose of this book clear?

Y N Is the table of contents helpful?

Y N Is the index complete?

Y N Are the chapter titles and other headings
meaningful?

Y N Is the information organized appropriately?

Y N Is the information accurate?

Y N Is the information complete?

Y N Is only necessary information included?

Y N Does the book refer you to the appropriate
places for more information?

Y N Are terms defined clearly?

Y N Are terms used consistently?

Y N Are the abbreviations and acronyms
understandable?

Y N Are the examples clear?

Y N Are examples provided where they are needed?

Y N Are the illustrations clear?

Y N Is the format of the book (shape, size, color)
effective?

Other Comments

What could we do to make this book or the entire set of
books for this system easier to use?

Your name

Company name

Street address

City, State, ZIP

Optional Information

No postage necessary if mailed in the U.S.A.

L __ _

Q)

c:
:.J
Cl
c:
a

<i:
"0
"0
u..

o
....
::J

U

adBl pUB PIO::!

!::Inn.

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

adBl PUB PIO::!

© IBM Corp. 1987
All rights reserved.

International Business
Machines Corporation
Department 997, Building 998
11400 Burnet Rd.
Austin, Texas 78758

Printed in the
United States of America

SC23-0793-0

~~::.= I:ZI I::CI __ __
ell __
l::1li ~ __ J:CII - ~ - ---------
-~--.,-

®

SC23-0793-00
~~ r r~ ..
'! it' l I

LI!:' 1,'1' ,I:; I, '

'1',111",

1,li, il: II! I i " I t: I

Jl ~ uJ ~~
92X1265

